38 TH EDITION +1961

.

 amateulis

THE STANDARD MANUAL OF AMATEUR

RADIO COMMUNICATION

SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

[^0]
THE RADIO AMATEUR'S HANDBOOK

By the HEADQUARTERS STAFF of the AMERICAN RADIO RELAY LEAGUE WEST HARTFORD, CONN., U.S.A.

Thirty-eighth Edition

COPYRIGHT 1961 BY

THE AMERICAN RADIO RELAY LEAGUE. INC.

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Quedan reservados todos los derechos

Library of Congress Catalog Card Number: 41 -3345

Thirty-eighth Edition
$\$ 3.50$ in U. S. A. proper
$\$ 4.00$ in U. S. Possessions and Canada
$\$ 4.50$ elsewhere
Buckram Edition \$6.00 Everywhere

Foreword

In thirty-five years of continuous publication The Radio A mateur's Handlook has become as much of an institution as amateur radio itself. Produced by the amateur's own organization, the American Radio Relay League, and written with the needs of the practical amateur constantly in mind, it has earned universal acceptance not only by amateurs but by all segments of the technical radio world. This wide dependence on the IIandbook is founded on its practical utility, its treatment of radio communication problems in terms of how-to-do-it rather than by abstract discussion.

Virtually continuous modification is a feature of the IIandlook - always with the objective of presenting the soundest and best aspects of current practice rather than the merely new and novel. Its annual revision, a major task of the headquarters group of the League, is participated in by skilled and experienced amateurs well acquainted with the practical problems in the art.

The Handbook is printed in the format of the League's monthly magazine, (SAT'. This, together with extensive and useful catalog advertising by manufacturers prorlucing equipment for the radio amateur and industry, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

The Handbook has long been considered an indispensable part of the amateur's equipment. We earnestly hope that the present edition will succeed in bringing as much assistance and inspiration to amateurs and would-be amateurs as have its predecessors.

Join Huntuon
General Manager, ARRL

West Hartford, Conn.

CONTRENTS

Circuit Symbols frontispiece
The Amateur's Code 8
Chapter 1 - Amateur Radio 9
2 - Electrical Laws and Circuits 15
3-Vacuum-Tube Principles 59
4-Semiconductor Devices 79
5-High-Frequency Receivers 86
6-High-Frequency Transmitters 144
7 - Power Supplies 218
8-Keying and Break-In 243
9 -Speech Amplifiers and Modulators 255
10-Amplitude Modulation 283
11 -Suppressed-Carrier and Single-Sideband Techniques. 303
12 -Specialized Communication Systems 324
13-Transmission Lines 336
14-Antennas 355
15—Wave Propagation 389
16-V.H.F. Receivers 397
17- V.H.F. Transmitters 419
18- V.H.F. Antennas 448
19 - Mobile and Portable-Emergency Equipment 460
20-Construction Practices 497
21 - Measurements 507
22 -Assembling a Station 539
$23-\mathrm{BCI}$ and TVI 546
24-Operating a Station 566
25 - Vacuum Tubes and Semiconductors V1Catalog SectionIndex

THE
 AMATEUR'S
 CODE

- ONE •

The Amateur is Gentlemanly... He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

-TWO •

The Amateur is Loyal... He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

- THREE

The Amateur is Progressive... He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.

- FOUR •

The Amateur is Friendly... Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and cooperation for the broadcast listener; these are marks of the amateur spirit.

- FIVE •

The Amateur is Balanced... Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

-SIX•

The Amateur is Patriotic... His knowledge and his station are always ready for the service of his country and his community.

- Paul M. Segal

CHAPTER 1

Amateur Radio

Amateur radio is a scientific hobby, a means of gaining personal skill in the fascinating art of electronics and an opportunity to communicate with fellow citizens by private shortwave radio. Sattered over the globe are over 250,000 amaten radio operators who perform a service defined in international law as une of "self-traming, intercommunication and technical investigations carried on loy . . . duly authorized persons interested in radio techmique solely with a personal aim and without pecuniary interest."

From a humble beginning at the turn of the century, amateur ralio has grown to become an established institution. Today the Ameri(eall followers of amateur radio number over 200,000 , trainel communicators from whose ranks will cone the professional commmications sperialists and executives of tomorrow just as many ol today's radio leaders were first atracted to radio by their carly interest in amatcur radio communication. it powerful and prosperous organization now provides a bond botweon amateurs and protects their interests; an intornationally respected magazine is published selely for their benefit. The military servicers seek the cooperation of the amateur in developing communications reserves. Amateur radio supports a manulacturing industry which, by the very demands of antateurs for the latest and best equipment, is always up-to-date in its designs and production techniques - in itself a national asist. Amateurs have won the gratitude of the nation for their herois performances in times of natural disastor; traditional amateur skills in wacreney eommomiration are also the stand-by system for the nation's rivil delfenser. Amatew radio is, indom, a magnificently uselul institution.

Although as old as the art of radio itself, amateur radio die not always enjog such prostige. Its first enthusiasts were private citizens of an experimental lurn of mind whose imaginations went wild when Mareoni first proved that moesages actually could be sent by wireless. They set about learning enough about the new seientife marved to build honemado spark trumsmitters. By 1912 there were numerous Government and rommerrial stations, and hondreds of amateurs; regulation was nerded, so laws, livenses and wavelongth speciforations appeared. There was then no amateur organization nor spokesman. The official viewooint toward amateurs was something like this:
"Amateurs? . . . Oh, yes. . . . Well, stick 'em on 200 meters and below; they'll never get out of their backyards with that,"

But as the years rolled on, amateurs found out how, and DN (distance) jumped from local to 500 -mile and even oreasional $1000-\mathrm{mil}$ o twoway contacts. Bceause all tong-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Govermment suddenly called lundrods of skilled amateurs into war servico in 1917. Meanwhile IV. S. amateurs began to wonder if thore were amathurs in other countries across the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnessed the birth of the Ameriean Ratio Relay League. the amateur radio organization whose name was to be virtually symonymous with subsequent amatour progress and short-wave development. Concoived and formed by the famous incentor, the late Hiram Perey Maxim, ARRI. was formally launched in early 191t. It had just begun to exert its full fore in amateur activities when the [nited States declared war in 1917, and by that act sommed the knell for amateur radio for the next two and a half yars. There were then over 6000 amateurs. O_{0} ver 4000 of them served in the armed forces during that war.

Todas, few amateurs realize that World War I not only marked the chose of the first phase of amateur development but eame very

HIRAM PERCY MAXIM
President ARRL, 1914-1936
near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The Government, having had a taste of supreme authority over communications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old ever to be resumed. ARRL's President Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio; the war ban continued. Repeated representations to Washington met only with silenre. The League's offices had been closed for a year and a half, its records stored away. Most of the former amateurs had gone into service; many of them would never come back. Would those returning be interested in such things as amateur radio? Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was discouraging: amateur radio still banned by law, former members scattered, no organization, no membership, no funds. But those few determined men financed the publication of a notice to all the former amateurs that could be located, hired Kenneth B. Warner as the League's first paid secretary, floated a bond issue among old League members to obtain money for immediate running expenses, bought the magazine QS'T to be the Ieague's official organ, started activities, and dunned officialdom until the wartime ban was lifted and amatenr radio resumed again, on October 1, 1919. There was a headlong rush by amateurs to get back on the air. (iangway for King Spark! Manufacturers were hard put to supply radio apparatus fast enough. Each night saw additional dozens of stations crashing out over the air. Interference? It was bedlam!

But it was an era of progress. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. Amateurs immediately adapted the new gear to 200 -meter work. Ranges promptly increased and it became possible to bridge the continent with but one intermediate relay.

TRANSATLANTICS

As DX became 1000 , then 1500 and then 2000 miles, amateurs began to dream of transatlantic work. Could they get across. In December, 1921, ARIRL sent abroad an expert amateur, Paul F. Godley, 2ZE, with the best receiving equipment available. Tests were run, and thirty American stations were heard in Europe. In 1922 another transatlantic test was carried out and 315 American calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across
the Atlantic! It must be possible - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers? They had superheterodynes. Another wavelongth? What about those undisturhed wavelengths below 200 meters? The engineering world thought they were worthless - but they had said that about 200 meters. So, in 1922, tests between Hartford and Boston were made on 130 meters with encouraging results. Early in 1923, ARRL-sponsored tests on wavelengths down to 90 metens were sucerssful. Reports indieated that as the wavelength dropped the results were better. Excitement began to spread through amateur ranks.

Finally, in November, 1923, after some months of careful preparation, two-way amateur transatlantic communication was accomplished, when Schnell, 1MO, and Reinartz, 1X.1M (now W4CF and K(6I3J, respectively) worked for several hours with Deloy, 8:AB, in France, with all three stations on 110 meters! Additional stations dropped down to 100 meters and found that they, too, could casily work two-way across the Atlantic. The exodus from the 200 -meter region had started. The "short-wave" era had begun!

By 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a series of national and international radio conferences partitioned off various bands of frequencies for the different services. Although thought still centered around 100 meters, League officials at the first of these frequency-determining conferences, in 1924, wisely obtained amateur bands not only at 80 meters but at 40, 20, and even 5 meters.

Eighty meters proved so successful that "forty" was given a try, and OSOs with Australia, New Zealand and South Africa soon became commonplace. Then how about 20 meters? This new band revealed entirely unexpected possibilities when 1XAM worked 6TS on the West Coast, direct, at high noon. The dream of amateur radio - daylight DX! was finally true.

PUBLIC SERVICE

Amateur radio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as is given it by our Government at international conferences. There are other reasons. One of these is a thorough appreciation by the military and civil defense authorities of the value of the amateur as a source of skilled radio personnel in time of war. Another asset is best described as "publie, service."

About 4000 amateurs had contributed their skill and ability in '17-' 18 . After the war it was only natural that cordial relations should prevail between the Army and Navy and the amateur. These relations strengthened in the next few years and, in gradual steps, grew into cooperative activities which resulted, in 1925, in
the establishment of the Naval Communications Reserve and the Army-Amateur Radio System (now the Military Affiliate Radio System). In World War II thousands of amateurs in the Naval Reserve were called to active duty, where they served with distinction, while many other thousands served in the Army, Air Forces, Coast Guard and Marine Corps. Altogether, more than 25,000 radio amateurs served in the armed forces of the United States. Other thousands were engaged in vital civilian electronic research, development and manufacturing. They also organized and manned the War Emergency Radio Service, the communications section of OCD.

The "public-service" record of the amateur is a brilliant tribute to his work. These activities can be roughly divided into two classes, expeditions and emergencies. Amateur cooperation with expeditions began in 1923 when a League member, Don Mix, 1'TS, of Bristol, Conn. (now assistant technical editor of QST'), accompanied MacMillan to the Arctic on the schooner Bowdoin with an amateur station. Amateurs in Canada and the U.S. provided the home contacts. The success of this venture was so outstanding that other explorers followed suit. During subsequent years a total of perhaps two hundred voyages and expeditions were assisted by amateur radio, the several explorations of the Antarctic being perhaps the best known.

Since 1913 amatenr radio has been the principal, and in many cases the only, means of outside communication in several hundred storm, flood and earthquake emergencies in this country. The $19: 36$ and 1937 eastern states floods, the Southern California flood and Long Island-New England hurricane disuster in 1938, the Florida-Gulf Coast hurricanes of 1947, and the 1955 flood disasters called for the amateur's greatest emergency effort. In these disasters and many others - tornadoes, sleet storms, forest fires, blizzards - amateurs plaved a major rôle in the relief work and earted wide commendation for their resourcefuluess in effecting commenication where all other means had failed. During 1938 ARRL inaugurated a new emer-gency-preparedness program, registering personnel and equipment, in its Emergency Corps and putting into effect a comprehensive program of cooperation with the Red Cross, and in 1947 a National Emergency Coordinator was appointed to fuli-time duty at League headquarters.

The amateur's outstanding record of organized preparation for emergeney communications and performance under fire has boon largely resuonsible for the decision of the Federal Government ta a mot up special regulations and set aside special frequencies for use by amateurs in providing auxiliary communidations for civil defense purposes in the event of war. Conder the banner, "Radio Amateur ('ivil Emergency Sorvice," amateure are setting up and manning community and area networks integrated with civil defense functions of the municipal governments. Should a war cause the shut-down of routine amateur activi-
ties, the RACES will be immediately available in the national defense, manned by amateurs highly skilled in emergency communication.

TECHNICAL DEVELOPMENTS

Throughout these many years the amateur was careful not to slight experimental development in the enthusiasm incident to international DX. The experimenter was constantly at work on ever-higher frequencies, devising improved apparatus, and learning how to cram several stations where previously there was room for only one! In particular, the amateur pressed on to the development of the very high frequencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ability to make the most of what is at hand. Jn 1924. first amateur experiments in the vicinity of 56 Mc . indicated that band to be practically worthless for D.N. Nonetheless, great "short-haul" activity eventually came about in the band and new gear was developed to meet its special problems. Beginning in 1934 a series of investigations by the brilliant experimenter, Ross Hull (later QST's editor), developed the theory of $v . l, f$. wave-bending in the lower atmosphere and led amateurs to the attainment of better distances: while occasional manifestations of ionospheric propagation, with still greater distances, gave the band uniquely erratic performance. By Pearl Harbor thousands of amateurs were spending much of their time on this and the next higher band, many having worked hundreds of stations at distances up to several thousand miles. Transcontinental 6 meter DX is not uncommon; during solar peaks, even the oceans have been bridged! It is a tribute to these indefatigable amateurs that today's concept of v.h.f. propagation was developed largely through amateur research.

The amateur is constantly in the forefront of technical progress. His incessant curiosity, his eagerness to try anything new, are two reasons. Another is that ever-growing amateur radio continually overcrowds its frequency assignments, spurring amateurs to the development and adoption of new techniques to permit the

A comer of the ARRL laboratory.
accommodation of more stations. For examples, amateurs turned from spark to c.w., designed more selective receivers, adopted crystal control and pure d.c. power supplies. From the ARIRL's own laboratory in 1932 came James Lamb's "sin-gle-signal" superheterodyne - the world's most advanced high-frequency radiotelegraph receiver -and, in 1936, the "noise-silencer" circuit. Amateurs are now turning to speech "clippers" to reduce bandwidths of phone transmissions and "single-sideband suppressed-carrier" systems as well as even more selectivity in receiving equipment for greater efficiency in spectrum use.
During World War II, thousands of skilled amateurs contributed their knowledge to the development of secret radio devices, both in Government and private laboratories. Equally as important, the prewar technical progress ly anateurs provided the keystone for the development of modern military communications equipment. Perhaps more important today than individual contributions to the art is the mass cooperation of the amateur body in Government projects such as propagation studies; each participating station is in reality a separate field laboratory from which reports are made for correlation and analysis. An outstanding example was varied amateur participation in several activities of the International Geophysical Year program. ARRL, with Air Foree sponsorship, conducted an intensive study of v.h.f. propagation phenomena - DX transmissions via little-understood methods such as meteor and auroral refleetions, and transequatorial seatter. ARRLL-affiliated clubs and groups have operated precision receiving antennas and apparatus to help track earth satellites via radio. For volunteer astronomers searching visually for the satellites, other amateurs have manned networks to provide instant radio reports of sightings to a central agency so that an orbit might be computed.

Emergency relief, expedition contact, experimental work and countless instances of other forms of public service - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacetime national life. The importance of amateur participation in the armed forces and in other aspects of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence

THE AMERICAN RADIO RELAY LEAGUE

'I'lue ARRL is today not only the spokesman for amateur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommercial and has no stockholders. The members of the League are the owners of the ARRI, and QsT.

The League is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of

The operating room of WIAW.
messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high stanclard of conduct. It represents the amateur in legislative matters.

One of the League's principal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence. Amateur radio offers its followers countless pleasures and unending satisfaction. It also calls for the shouldering of reaponsibilities - the maintenance of high standards, a cooperative loyalty to the traditions of amateur radio, a dedication to its ideals and principles, so that the institution of amateur radio may continue to operate "in the publie interest, convenience and necessity."

The operating territory of ARRL is divided into one Canadian and fifteen U. S. divisions. The affairs of the League are managed by a Board of Directors. One director is elected avery two years by the membership of each U. S. division, and one by the Canadian membership. These dircetors then choose the president and vice-president, who are also members of the Board. The secretary and treasurer are also appointed by the Board. The directors, as representatives of the amateurs in their divisions, meet annually to examine current amateur problems and formulate AIRIRL polieies thereon. The directors appoint a general manager to supervise the operations of the League and its headquarters, and to carry out the policies and instructions of the board.

ARLRL owns and publishes the monthly magazine, QST'. Acting as a bulletin of the League's organized activities, QST' also serves as a medium for the exchange of ideas and fosters amateur spirit. Its technical articles are renowned. It has grown to be the "amateur's bible," as well as one of the foremost radio magazines in the world. Membership dues include a subscription to $Q S^{\prime} T$.

ARRI. maintains a model headquarters amateur station, known as the lliram Percy Maxim Memorial Station, in Newington, Comn. Its call is WlAW, the call held by Mr. Maxim until his death and later transferred
to the League station by a special FCC action. Separate transmitters of maximum legal power on each amateur band have permitted the station to be heard regularly all over the world. More important, W1AW transmits on regular schedules bulletins of general interest to amateurs, conducts code practice as a training feature, and engages in two-way work on all popular bands with as many amateurs as time permits.

At the headquarters of the League in West Hartford, Conn., is a well-equipped laboratory to assist staff members in preparation of technical material for QST and the Rudio Amateur's IIandbook. Among its other activities, the League maintains a Communications Department concerned with the operating activities of I.eague members. A large field organization is headed by a Section Communications Manager in each of the League's seventy-three sections. There are appoint ments for qualified members in various fields, as outlined in Chapter 24. Special artivities and contests promote operating skill. A special sertion is reserved each month in QST for amateur news from every section of the country.

AMATEUR LICENSING IN THE UNITED STATES

Pursuant to the law, FCC has issued detailed regulations for the amateur service.

A radio amateur is a duly authorized person interested in radio technique solely with a personal aim and without pecuniary interest. Amateur operator licenses are given to U.S. citizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate alility to send and receive code. There are four available classes of amateur license - Novice, Technician, General (called "Conditional" if exam taken by mail), and Amateur Extra Class. Each has different requirements, the first two being the simplest and consequently conveying limited privileges as to frequencies available. Exams for Novice, Technician and Conditional classes are taken by mail under the supervision of a volunteer examiner. Station licenses are grauled only to licensed operators and permit communication between such stations for amateur purposes, i.c., for personal noncommercial aims flowing from an interest in radio technique. An amateur station may not be used for material compensation of aly sort nor for broadeasting. Narrow bands of frequencies are allocated exelusively for use by amateur stations. Transmissions may be on any frequency within the assigned bands. All the frequencies may be used for c.w. telegraphy; some are available for radiotelephone, others for special forms of transmission such as teletype, facsimile, amateur television or radio control. The input to the final stage of amateur stations is limited to 1000 watts and on frequencies below 144 Me. must be adequately filtered direet current. Jimissions must be free from spurious radiations. The licensee must
provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station operation must be maintained, with specified data. The station license also authorizes the holder to operate portable and mobile stations subject to further regulations. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to anyone who suecessfully completes the examination. When you are able to copy code at the required speed, have studied basie transmitter theory and are familiar with the law and amateur regulations, you are ready to give serious thought to securing the Government amateur licenses which are issued you, after examination by an FCC engineer (or by a volunteer, depending on the license class), through FCC at Washington. A complete up-to-the-minute discussion of license requirements, and study guides for those preparing for the examinations, are to be found in an AIRRL publication, The Radio Amateur's License Mamual, available from the American Radio Relay League, West Hartford 7, Conn., for $50 \&$, post paid.

LEARNING THE CODE

In starting to learn the code, you should consider it simply another means of conveying

A didah	N dahdit
B dahdididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	S dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	V didididah
J didahdahdah	W didahdah
K dahdidah	X dahdididah
L didahdidit	Y dahdidahdah
M dahdah	2 dahdahdidit
1 didahdahdahdal	6 dahdidididit.
2 dididahdahdah	7 dahdahdididit
3 didididahdah	8 dahdahdahdidit
4 dididididah	9 dah dah dahdahdit
5 dididididit	0 dahdah dahdahdah

Period: didahdidahdidah. Comma: dahdahdididahdah. Question mark: dididahdahdidit. Error:didididididididit. Doubledash:dahdidididah. Wait: didahdididit. End of message: didahdidahdit. Invitation to transmit: dahdidah. End of work: didididahdidah. Fraction bar: dahdididahdit.

Fig. 1-1-The Continental (International Morse) code.
information. The spoken word is one method, the printed page another, and typewriting and shorthand are additional examples. Learning the code is as easy - or as difficult - as learning to type.

The inportant thing in beginning to study code is to think of it as a language of sount, never as combinations of dots and dashes. It is easy to "speak" code equivalents by using "dit" and "dah," so that A would be "didah" (the " t " is dropped in such combinations). The sound "di" should be staccato; a code character such as " 5 " should sound like a machinegun burst: dididididit! Stress each "dah" equally; they are underlined or italicized in this text because they should be slightly accented and drawn out.

Take a few characters at a time. Learn them thoroughly in didah language before going on to new ones. If someone who is familiar with code can be found to "send" to you, either by whistling or by means of a buzzer or code oscillator, enlist his cooperation, Learn the code by listening to it. Don't think about speed to start; the first reguirement is to learn the characters to the point where you can recognize each of them without hesitation. Concentrate on any difficult letters. Learning the code is not at all hard; a simple booklet treating the subject in detail is another of the beginner pulbications available from the League, and is entitled, Learning the Radiotelegraph Code, 50c postpaid.

Code-practice transmissions are sent low Wha every evening at 21:30 EST (EIDST May through October), See Chapter 24, "Code I'rofisienty."

THE AMATEUR BANDS

Amateurs are assigned bands of frequencies at approximate harmonic intervals throughout the spectrum, Like assignments to all services, they are subject to modification to fit the changing picture of world communications needs. Modifications of rules to provide for domestic needs are also oceasionally issued by FCC, and in that respect each amateur should keep himself informed by WiAW bulketins, QST' reports, or by communication with ARRL IIq. concerning a specific point.

In the aljoining table is a summary of the I. S. amateur bands on which operation is permitted as of our press date. Figures are megacycles. A0 means an unmodulated sarrier, $A 1$ means $(\cdot . w$. telegraphy, $A 2$ is tone-modulated c.w. telegraphy, A:3 is :mplitude-modulated phone (n,f.m, may also be used in such bands, except on 1.8-2.0 Mc.), At is facsimile, A5 is television, n.f.m. desiguates narrow-band frequency- or phase-modulated radiotelephony, f.m. means frequeney modulation, phone (including n.f.m.) or telegraphy, and FI is frequency-shift kering.

$$
\begin{aligned}
& 80 \text { 3.500-4.000 - A1 } \\
& \text { meters } \quad 3.500-3.800-\mathrm{F} 1 \\
& 3.800-4.000-\mathrm{A} 3 \\
& \text { 7.000-7.300 - A1 } \\
& 40 \mathrm{~m} . \quad 7.000-7.200-\mathrm{F} 1 \\
& 7.200-7.300-.13 \\
& 14.000-14.3 .20-\mathrm{A} 1 \\
& 20 \mathrm{~m} . \quad 14.000-14.200-\mathrm{Fl} \\
& \text { 14.200-1 } 1.3 .50-\mathrm{A} 3 \\
& \text { 21.000-21. } 150-\mathrm{Al} \\
& 15 \mathrm{~m} .2 .2000-21.2 .50-\mathrm{Fl} \\
& \text { 21.2.50-21.4.50 - A3 } \\
& 28.000-29.700-\mathrm{A} 1 \\
& 10 \mathrm{~m} . \quad 28.500-29.700-\mathrm{A} 3 \\
& \text { 29.000-29.700-f.m. } \\
& 0 \mathrm{~m} . \quad 50.0-50.1 \text { - } \mathrm{Al} \\
& \text { 50.1-51 - A1, A2, A3, A4 } \\
& 51-54-A 4 \\
& \text { 52.5-5 }{ }^{2}-\mathrm{f} . \mathrm{m} \text {, } \\
& 2 \mathrm{~m} . \quad 144-147.4-\mathrm{A}, \mathrm{~A}, \mathrm{~A}, \mathrm{~A}, \mathrm{~A}, \mathrm{~A} 4, \mathrm{f} . \mathrm{m} . \\
& \text { 147.0-1.48 - A1 } \\
& 290-22-\mathrm{A}, \mathrm{~A}, \mathrm{~A}, \mathrm{~A} 3, \mathrm{~A}, \mathrm{f}, \mathrm{~m}, \\
& 420-4.00^{1} \quad A 0, A 1, A 2, A 3, A 4, A 5 \text {, } \\
& \text { 1,215-1,300 f f. n. } \\
& 2,300-2,450 \\
& 3, .500-3,700 \\
& \text { 5, } 6,50-5,925 \\
& A b, A 1, A 2, A 3, A 4, \\
& 10,0(00-10,500)^{2} \\
& \text { A } \overline{5}, \mathrm{f}, \mathrm{~m} \text {, pulse } \\
& 21,000-22,0000 \\
& \text { tll above } 30,000
\end{aligned}
$$

${ }^{1}$ Input power must not exreed 50 watts.
2 No pulse permitted in this band.
Note: The bands 220 through 10,50 Mc. are shared with the (iovermment Radio Positioning Service, which has jriority:

In addition, 11 and $1: 3$ (exeept non.f.m.) on portions of $1.800-2.000$, as follows:

		I'ouer (uatts)	
Area	band, kic.	Day	Niyht
Minn., Iowa, Wis., Mich., I'u., Md., Del. and states to north	1800-1825	500	200

N.D., S. D., Nebr., (olo., N. 19:5-2000 500* 200*

Mex., and states west, including
Hawsilian Ids.
Okia., Kans., Mo., Ark., III., 1801-1825 20050 Ind., Ky., Tenn., Ohio., WI. Vat.,
Va., N. (C..s. C., and l'exas (west of $99^{\circ} W^{\circ}$ or north of $32^{\circ} \mathrm{N}$)
No operation elsewhere.

* Exerpt in state of Washington. 201) watts day. 50 watts night.

Novice licensers may use the following frequencies, trammitters to be erystalcontrolled and have a maximum power input of 75 watts.

$3.700-3,750$	A1	$21.100-21.250$	A1
$7.150-7.200$	A1	$145-147$	A1, A2,
			A.3, f.m.

Technician licensees are permitted all amateur privileges in $50 \mathrm{Mc} \cdot, 1+5-1.4 \overline{\mathrm{Mc}} \mathrm{M}$. and in the bands 220 Mer and above.

CHAPTER 2

Electrical Laws and Circuits

ELECTRIC AND MAGNETIC FIELDS

When something occurs at one point in space because something else happened at another point, with no visible means by which the "cause" can be related to the "effect," we say the two events are ronnected by a field. In radio work, the fietds with which we are concerned are the electric and magnetic, and the combination of the two called the electromagnetic field.

A field has two important properties, intensity (magnitude) and direction. The field exerts a force on an object immersed in it; this force represents potential (ready-to-be-used) energy, so the potential of the field is a measure of the field intensity. The direction of the field is the direction in which the object on which the force is exerted will tend to move.

An electrically charged object in an electric field will be acted on by a force that will tend to move it in a direction determined by the direction of the field. Similarly, a magnet in a magnetic field will be subject to a fores. Weryone has seen demonstrations of magnetic fields with pocket magnets, so intensity and direction are not hard to grasp.

A "static" field is one that neither moves nor changes in intensity. Such a field can be set up by a stationary electric charge (electrostatic field) or by a stationary magnet (magnetostatic field). ISut if either an electric or magnetic field is moving in space or changing in intensity, the motion or change sets up the other kind of field. That is, a changing electric field sets up a magnetic field, and a changing magnetic field gencrates an oloctrir field. This interrelationship between magnetic and electric fields makes possible such things as the electromagnet and the electric motor. It also makes possible the electromagnetic waves by which radio communication is carried on, for such waves are simply traveling fields in which the energy is alternately handed back and forth between the electric and magnetic fields.

Lines of Force

Although no one knows what it is that composes the field itself, it is useful to invent a pieture of it that will help in visualizing the forces and the way in which they art.

A field can be pictured as being made up of lines of force, or flux lines. These are purely imaginary threads that show, by the direction in which they lie, the direction the object on
which the foree is exerted will move. The number of lines in a chosen cross sertion of the field is a measure of the intensity of the force. The number of lines per unit of areat (square inch or square centimeter) is called the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

Everything physical is built up of atoms, particles so small that they camnot be seen even through the most powerful microscope. But the atom in turn consists of several different kinds of still smaller particles. One is the electron, essentially a small particle of electricity. The quantity or charge of electricity represented by the electron is, in fact, the smallest quantity of clectricity that can exist. The kind of electricity associated with the electron is called negative.

An ordinary atom consists of a central core called the nucleus, around which one or more electrons circulate somewhat as the earth and other planets circulate around the sun. The nucleus has an electric charge of the kind of electricity called positive, the amount of its charge being just exactly equal to the sum of the negative charges on all the electrons associated with that nucleus.

The important fact about these two "opposite" kinds of electricity is that they are strongly attracted to each other. Also, there is a strong force of repulsion between two charges of the same kind. The positive nucleus and the negative electrons are attracted to each other, but two electrons will be repelled from each other and so will two nuclei.

In a normal atom the positive charge on the niacleus is exartly balanced by the negative charges on the electrons. However, it is possible for an atom to lose one of its electrons. When that happens the atom has a little less negative charge than it should - that is, it has a net positive charge. Such an atom is said to be ionized, and in this case the atom is a positive ion. If an atom picks up an extra electron, as it sometimes does, it has a net negative charge and is called a negative ion. A positive ion will attract any stray electron in the vicinity, including the extra one that may be attached to a nearby negative ion. In this way it is possible for electrons to travel from atom to atom. The movement of ions or electrons constitutes the electric current.

The amplitude of the current (its intensity or magnitude) is determined by the rate at which electric charge - an accumulation of electrons

2-ELECTRICAL LAWS AND CIRCUITS

or ions of the same kind - moves past a point in a circuit. Since the charge on a single electron or ion is extremely small, the number that must move as a group to form even a tiny current is almost inconceivably large.

Conductors and Insulators

Atoms of some materials, notably metals and acids, will give up an clectron readily, but atoms of other materials will not part with any of their electrons even when the electric fore is extremely strong. Materials in which electrons or ions can be moved with relative ease are callel conductors, while those that refuse to permit such movement are called nonconductors or insulators. The following list shows how some common materials are classified:

Conductors	Insuluhurs
Metals	Jry Air
Carlon	Wrod
Acids	I'oreclain
	Textiles
	(ilass
	IRubler
	IResins

Electromotive Force

The electric fore or potential (called electromotive force, and abbreviated e.m.f.) that causes eurrent flow may be developed in several ways. The action of certain chemical solutions on dissimilar metals sets up an e.m.f.; surh a combination is called a cell, and a group of cells forms an electrie battery. The amount of current that such cells can carry is limited, and in the course of current flow one of the metals is caten away. The amount of electrical energy that wan be taken from a battery eonsequently is rather small. Where a large amount of energy is needed it is usually furnished by an eleetric generator, which develons its e.m.f. by a combination of magnetio and mechanical means.

Direct and Alternating Currents

In picturing current flow it is natural to think of a single, constant force causing the electrons to move When this is so, the electrons always move in the same direction through a path or circuit made up of conductors connected together in a continuous chain. Such a current is ealled a direct current, abbreviated d.c. It is the type of current furnished by batteries and by certain types of gencrators.

It is also possible to have an c.m.f. that periodieally reverses. With this kind of e.m.f, the eurrent flows first in one direction through the circuit and then in the other. Such an c.m.f. is called an alternating e.m.f., and the current is ealled an alternating current (ablreviated a.c.). The reversals (alternations) may occur at any rate from a few per seond up to several billion per second. Two reversals make a cycle; in one curcle the fore acts first in one direction, then in the other, and then returns to the first direction to begin the next cycle. The number of cyedes in
one second is called the frequency of the alternating current.

The difference between direct current and alternating current is shown in Fig. 2-1. In these graphes the horizontal axis measures time, increasing toward the right away from the vertical axis. The vertical axis represents the amplitude or strength of the current, increasing in either the up or down direction allay from the horizontal axis. If the graph is alowe the horizontal axis the current is flowing in one direction through the cirenit (indicated by the + sign) and if it is brlur the horizontal axis the current is flowing in the reverse direction through the eireuit (indi(ated by the - sign). Fig. 2-1.1 shows that, if we Nose the cireuit - that is, make the path for the current complete - at the time indieated by X°, the current instantly takes the amplitude indicated by the beight A. dfter that, the curvent rontinues at the same amplitucle as time goes on. This is an ordinary dired current.

In Jig. 2-113, the current starts flowing with the amplitude A at time X, eontinues at that amplitude until time I' and then instantly ceases. Ifter an interval 5% the current again begins to fow and the same sort of start-and-stop performane is repeated. This is an intermiteret direct current. We could get it ly altemately dowing and opening a switch in the circuit. It is a direct current because the direction of current flow deses not change; the graph is always on the + side of the horizontal axis.

In Fig, 2-1C the rurrent starts at zero, inreases in amplitude as time gues on until it reacher the amplitude A_{1} while flowing in the + direction, then decreases until it drous to zero amplitude once more. At that time (N) the
(A)

(B)

Fig. 2-1 - Three types of current flow. A-direct current; B-intermittent direct current; C-alternating current.

Frequency and Wavelength

direction of the current flow reverses; this is indicated by the fact that the next part of the graph is below the axis. As time gaes on the amplitude increases, with the current now flowing in the direction, until it reaches amplitute $.1_{2}$. Then the amplitude decreases until finally it drops to zero (Y) and the direction reverses once more. This is an alternoting current.

Waveforms

The type of alternating current shown in Fig. $2-1 \mathrm{C}$ is known as a sine wave. The variations in many a.c. waves are not so smooth, nor is one half-cycle neressarily just like the preceding one in shape. llowever, these complex waves can be shown to be the sum of two or more sine waves of frequencies that are exact integral (whole-mumber) multiples of some lower frequency. The lowest frequency is called the fundamental frequeney, and the higher frequencies (2 times, :3 times the fundamental frequency, and so on) are called harmonics.

Fig. 2-2 shows how a fundamental and a second harmonie (twice the fundamental) might add to form a eomplex wave. Simply by changing the relative amplitudes of the two waves, as well as the times at which they pass through zoro amplitude, an infinite number of waveshapes can be constructed from just a fundamental and second harmonic. Waveforms that are still mowe complex can be constructed if more harmonics are used.

Electrical Units

The unit of electromotive force is called the volt. An ordinary flashlight cell generates an e.m.f. of about 1,5 volts. The e.m.f. commonly supplied for domestic lighting and power is 11.5 volts, usually a.c. having a frequency of 60 cycles per second. The voltages used in radio receiving and transmitting circuits range from a few volts (usually a.ce) for filament heating to as high as several thousand d.e. volts for the operation of power tubes.

The flow of electric current is measured in amperes. One ampere is equivalent to the movement of many billions of electrons past a point its thic circuit in one seronsl. (urrents in the neighborhood of an ampere are required for heating the filaments of small power tubes. The direct currents used in amateur radio equipment usually are not so large, and it is customary to measure such currents in milliamperes. One milliampere is equal to one one-thousandth of an ampere, or 1000 milliamperes equal one ampere.

A "d.c, ampere" is a measure of a steody current, but the "a.c. anmere" nust measure a current that is continually varying in amplitude and periodically reversing dircetion. To put the two on the same basis, an a.e. ampere is defined as the current that will cause the same heating effect as one ampere of steady direct current. For sine-wave a.c., this effective (or r.m.s., for root mean square, the mathematical derivation) value is equal to the morimum (or peak) amplitude (A_{1} or A_{2} in Fig. 2-1C) multiplied by $0.7(17$.

Fig. 2-2-A complex woveform. A fundamental (top) and second harmonic (center) added together, point by point at each instant, result in the waveform shown at the bottom. When the two components hove the same polarity at a selected instant, the resultant is the simple sum of the two. When they have opposite polarities, the resultant is the difference; if the negative-polarity component is larger, the resultant is negative at that instant.

The instantaneous value is the value that the current (or voltage) has at any solected instant in the revele. If all the instantaneous values in a sine wave are averaged over at holf-opele, the resulting figure is the average value. It is equal to 0.636 times the maximum amplitude.

FREQUENCY AND WAVELENGTH

Frequency Spectrum

Frequencies ranging from about 15 to 15,000 cyeles per second are called audio frequencies, berause the vibrations of air particles that our ears recognize as sounds occur at a similar rate. Audio frequencies (abbreviated a.f.) are used to artuate loudspeakens and thus oroate somod waves.
Frequencies above about 15,000 cycles are called radio frequencies (r.f.) because they are useful in radio transmission. Frequencies all the way up to and beyond $10,000,000,000$ rycles have been used for radio purposes. . It radio frequencies the numbers berome solarge that it becomes convenient to use a larger unit than the cyele. Two such units are the kilocycle, which is equal to 1000 (ycles and is abbreviated kc., and the megacycle, which is equal to $1,000,000$ cycles or 1000 kilocycles and is abbreciated Mc.

The various radio frequencies are divided off into classifieations for ready identifiration. These classifications, listed below, constitute the frequency spectrum so far as it extends for radio purposes at the present time.

2-ELECTRICAL LAWS AND CIRCUITS

Frequency 10 to 30 ke . 30 to 300 kc . 300 to 3000 ke . 3 to 30 Mc . 30 to 300 Me . 300 to 3000 Me . 3000 to $30,000 \mathrm{Me}$.

Classification
Very-low frequencies Low frequencies Medium frequencies High frequencies Very-high frequencies Ultrahigh freguencies Superhigh frequencies

Abbreviation
v.l.f.
I.f.
m.f.
h.f.
v,h.f
u.h.f.
s.h.f.

Wavelength

Radio waves travel at the same speed as light - $300,000,000$ meters or about 186,000 miles a second in space. They can be set up by a radiofrequency current flowing in a circuit, because the rapidly changing current sets up a magnetic field that changes in the same way, and the varying magnetic field in turn sets up a varying electric field. And whenever this happens, the two fields move outward at the speed of light.
Suppose an r.f. current has a frequency of $3,000,000$ cycles per second. The fields will go through complete reversals (one cycle) in $1 / 3,000,000$ second. In that same period of time the fields - that is, the wave - will move $300,000,000 / 3,000,000$ meters, or 100 meters. By the time the wave has moved that distance
the next cycle has begun and a new wave has started out. The first wave, in other words, covers a distance of 100 meters before the beginning of the next, and so on. This distance is the wavelength.

The longer the time of one cycle - that is, the lower the frequency - the greater the distance occupied by each wave and hence the longer the wavelength. The relationship between wavelength and frequency is shown by the formula

$$
\lambda=\frac{300,000}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in kilocycles
or

$$
\lambda=\frac{300}{f}
$$

where $\lambda=$ Wavelength in meters $f=$ Frequency in megacycles
Example: The wavelength corresponding to a frequency of 3650 kilocyeles is

$$
\lambda=\frac{300,000}{3650}=82.2 \text { meters }
$$

Resistance

Given tro conductors of the same size and shape, but of different materials, the amount of current that wiil flow when a given e.m.f. is applied will be found to vary with what is called the resistance of the material. The lower the resistance, the greater the current for a given value of e.m.f.

Resistance is measured in ohms. A circuit has: a resistance of one ohm when an applied e.m.f. of one volt causes a current of one ampere to flow. The resistivity of a material is the resistance, in ohms, of a cube of the material measuring one centimeter on each edge. One of the best conductors is copper, and it is frequently convenient. in making resistance calculations, to compare the resistance of the material under consideration with that of a copper conductor of the same size and shape. Table 2-I gives the ratio of the resistivity of various conductors to that of copper.

The longer the path through which the current flows the higher the resistance of that condurtor. For direct current and low-frequency alternating

currents (up to a few thousand cycles per second) the resistance is inversely proportional to the cross-sectional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in cross-sectional area, the one with the larger area will have the lower resistance.

Resistance of Wires

The problem of determining the resistance of a round wire of given diameter and length - or its opposite, finding a suitable size and length of wire to supply a desired amount of resistance can be easily solved with the help, of the copperwire tahle given in a later chapter. This table gives the resistance, in ohms per thousand feet, of each standard wire size.

Example: Suppose a resistance of 3.5 ohms is needed and some No, 28 wire is on hand. The wire table in Chaster 20 shows that No. 28 has a resistance of 66.17 ohms per thousand feet. Since the desired resistance is 3.5 ohms, the length of wire required will be

$$
\frac{3.5}{66.17} \times 1000=52.89 \text { feet. }
$$

Or, suppose that the resistance of the wire in the circuit must not exceed 0.05 ohnm and that the length of wire required for making the conneetions totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.05 \mathrm{ohm}
$$

where R is the maximum allowable resistance in ohms per thousand feet. Rearranging the formula gives

$$
R=\frac{0.05 \times 1000}{14}=3.57 \text { ohms } / 1000 \mathrm{ft}
$$

Reference to the wire table shows that No. 15 is the smallest size having a resistance less than this value.
When the wire is not copper, the resistance values given in the wire table should be multi-

Resistance

Types of resstors used in radio equipment. Those in the foreground with wire leads are carbon types, ranging in size from $1 / 2$ watt at the left to 2 watts of the right. The larger resistors use resistance wire wound on ceramic tubes; sizes shown range from 5 watts to 100 watts. Three are of the adiustable type, having a sliding contact on an exposed section of the resistance winding.

plied by the ratios given in Tahle 2-I to obtain the resistance.

Examble: If the wire in the first example were iron instead of copper the length required for 3.5 ohms would be

$$
\begin{gathered}
\frac{3.5}{60.17 \times 5.65} \times 1000=9.3 \mathrm{~s} \text { fect. } \\
\text { Temperature Effects }
\end{gathered}
$$

The resistance of a conductor changes with its temperature. Although it is seldom necessary to consider temperature in making resistance calculations for amateur work, it is well to know that the resistance of practically all metallic conductors increases with increasing temperature. (arbon, however, acts in the opposite way; its resistance decieases when its temperature rises. The temperature effect is important when it is neressary to maintain a constant resistance under all conditions. Special materials that have little or no change in resistance over a wide temperature range are used in that case.

Resistors

A "package" of resistance made up into a single unit is called a resistor. Resistors having the same resistance value may be considerably different in size and construction. The flow of purrent through resistance causes the conductor to become heated; the higher the remistance and the larger the eurrent, the greater the amount of heat developed. Resistors intended for carrying large eurrents must be physically large so the heat can be radiated quickly to the surrounding air. If the resistor does not get rid of the heat quickly it may reach a temperature that will cause it to melt or burn.

Skin Effect

The resistance of a conductor is not the same for alternating current as it is for direct current. When the current is alternating there are internal effects that tend to force the current to flow mostly it the outer parts of the conductor. This decreases the effective cross-sectional area of the conductor, with the result that the resistance increases.

For low audio frequencies the increase in resistance is unimportant, bent at radio frequencies this skin effect is so great that practically all the current flow is confincel within a few thonsandths of an inch of the conductor surface. The r.f. resistance is conseguently many times the d.c. resistance, and increases with increasing frequency. In the r.f. range a conductor of thin tubing will have just as low resistance as a solid conductor of the same diameter, because material not close to the surface carries practically no current.

Conductance

The reciprocal of resistance (that is, $1 / R$) is (alled conductance. It is usually represented by the symbol 6 . A circuit having large conductance has low resistance, and vice versa. In radio work the term is used chiefly in connection with vacuum-tube characteristics. The unit of conductance is the mho. . resistance of one ohm has a conductance of one mho, a resistance of 1000 ohms has a conductance of 0.001 mho , and so on. I unit frequently used in connection with vacuum tubes is the micromho, or one-millionth of a mho, It is the conductance of a resistance of one megohm.

OHM'S LAW

The simplest form of elechic cincuit is a battery with a resistance connected to its terminals, as shown by the symbols in Fig. $2-3$. A complete circuit must have an unbroken path so current

can flow out of the battery, through the apparatus connected to it, and back into the battery. The circuit is broken, or open, if a comnection is removed at any point. 1 switch is a device for making and breaking connections and thereby closing or opening the circuit, either allowing current to flow or preventing it from flowing.

TABLE 2-II Conversion Factors for Fractional and Multiple Units			
To change from	To	Dicide by	Multiply by
Units	Micro-units Milli-units Kilo-units Mega-units	$\begin{gathered} 1000 \\ 1,000,000 \end{gathered}$	$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$
Micro-units	Milli-units Linits	$\begin{gathered} 1000 \\ 1,000,000 \end{gathered}$	
Millionnits	Micro-units Units	1000	1000
Kilo-units	Units Mega-units	1000	1000
Mega-units	Units Kilo-units		$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$

The values of current, voltage and resistance in a circuit are by no means independent of each other. The relationship between them is known as Ohm's Law. It can be stated as follows: The current flowing in a circuit is directly proportional to the applied e.m.f. and inversely proportional to the resistance. Expressed as an cquation, it is

$$
I \text { (amperes) }=\frac{E(\text { volts })}{R(\text { ohms })}
$$

The equation above gives the value of current when the voltage and resistance are known. It may be transposed so that each of the three quantitics may be found when the other two are known:

$$
E=I R
$$

(that is, the voltage acting is equal to the current in amperes multiplied by the resistance in ohms) and

$$
R=\frac{E}{I}
$$

(or, the resistance of the circuit is equal to the applied voltage divided by the current).
All three forms of the equation are used almost constantly in radio work. It must be remembered that the quantities are in volts, ohms and umperes; other units camnot be used in the equations without first being converted. For example, if the current is in milliamperes it must be changed to the equivalent fraction of an ampere before the value can be substituted in the equations.
Table 2-II shows how to convert between the various units in common use. The prefixes attached to the basic-unit name indicate the nature of the unit. These prefixes are:

$$
\begin{aligned}
& \text { micro - one-millionth (abbreviated } \mu \text {) } \\
& \text { nilli - one-thousandth (abbreviated } m \text {) } \\
& \text { kilo - one thousand (abbreviated } k \text {) } \\
& \text { mega - one million (abhreviated } M \text {) }
\end{aligned}
$$

For example, one microvolt is onc-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,000,000$ nicrovolts in one volt, and 0.000001 megohm in one ohm.

The following examples illustrate the use of Ohm's Law:
The current flowing in a resistance of 20,000 ohms is 150 milliamperes. What is the voltage? Since the voltage is to be found, the equation to use is $E=I R$. The current must first be converted from milliamperes to amperes, and reference to the table shows that to do so it is necessary to divide by 1000 . Therefore,

$$
E=\frac{150}{1000} \times 20,000=3000 \text { volts }
$$

When a voltage of 150 is applied to a circuit the current is measured at 2.5 amperes. What is the resistance of the circuit? In this case R is the unknown, so

$$
R=\frac{E}{I}=\frac{150}{2.5}=60 \text { ohnıs }
$$

No conversion was neeessary because the voltage and eurrent were given in volts and amperes.

How much eurrent will flow if 250 volts is applied to a 5000 -ohm resistor? Since I is unknown.

$$
I=\frac{E}{R}=\frac{250}{5000}=0.05 \text { anpere }
$$

Milliampere units would be more convenient for the current, and $0.05 \mathrm{amp} . \times 1000=50 \mathrm{mil}-$ liamperes.

SERIES AND PARALLEL RESISTANCES

Very few actual electric circuits are as simple as the illustration in the preceding section. Commonly, resistances are found connected in a

Fig. 2.4—Resistors

variety of ways. The two fundamental methods of connecting resistances are shown in Fig. 2-4. In the upper drawing, the current flows from the source of e.m.f. (in the direction shown by the arrow, Iet us say) down through the first resistance, R_{1}, then through the second, R_{2}, and then back to the source. These resistors are connected in series. The current everywhere in the circuit has the same value.
In the lower drawing the current flows to the common connection point at the top of the two resistors and then divides, one part of it flowing through R_{1} and the other through. R_{2}. At the lower comnection point these two curamis again combine; the total is the same as the current that flowed into the upper common comection. In this case the two resistors are commected in parallel.

Series and Parallel Resistance

Resistors in Series

When a circuit has a number of resistances connected in series, the total resistance of the circuit is the sum of the individual resistances. If these are numbered R_{1}, R_{2}, R_{3}, etc., then
$R($ total $)=R_{1}+R_{2}+R_{3}+R_{4}+. . .$. where the dots indicate that as many resistors as necessary may be added.

Example: Suppose that three resistors are connected to a source of e.m.f. as shown in lig. 2-5. The e.m.f. is $2 \overline{0} 0$ volts, R_{1} is 5000 ohms, R2 is 20,000 ohnis, and $R 3$ is 8000 ohms. The total resistance is then

$$
\begin{gathered}
R=R_{1}+R_{2}+R_{3}=5000+20,000+8000 \\
=33,000 \text { ohnıs }
\end{gathered}
$$

The current flowing in the circuit is then

$$
I=\frac{E}{R}=\frac{250}{33,000}=0.00757 \mathrm{amp} .=7.57 \mathrm{ma}
$$

(We need not carry calculations beyond three significant figures, and often two will suffice because the accuracy of neasurements is seldom better than a few per cent.)

Voltage Drop

Ohm's Law applies to amy part of a circuit as well as to the whole circuit. Although the current is the same in all three of the resistances in the example, the total voltage divides among them. The voltage appearing across each resistor (the voltage drop) can be found from Ohm's Law.

Example: If the voltage across R_{1} (Fig. 2-5) is ealled E_{1}, that aeross R_{2} is called E_{2}, and that across R_{3} is ealled E_{3}, then

$$
\begin{aligned}
& E_{1}=I R_{1}=0.00757 \times 5000=37.9 \text { volts } \\
& E_{2}=I R_{2}=0.007 .57 \times 20,000=151.4 \text { volts } \\
& E_{3}=I R 3=0.00757 \times 8000=60.6 \text { volts }
\end{aligned}
$$

The applied voltage must equal the sum of the individual voltage drops:

$$
\begin{aligned}
E=E_{1}+E_{2} & +E_{3}=37.9+151.4+60.6 \\
& =249.9 \text { volts }
\end{aligned}
$$

The answer would have been more nearly exact if the current had been caleulated to more decimal places, but as explaned above a very high order of accuracy is not neeessary.

In problems such as this considerable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the

Fig. 2-5—An example of resistors in series. The solution of the circuit is worked out in the text.
resistance is expressed in kilohms rather than ohms. When resistance in kilohms is substituted directly in Ohm's Law the current will be in milliamperes if the e.m.f. is in volts.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowest value of resistance present. This is trecause the
total current is always greater than the current in any individual resistor. The formula for finding the total resistance of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots \cdot}
$$

where the dots again indicate that any number of resistors can be combined by the same method. For only two resistances in parallel (a very common case) the formula becomes

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Example: If a 500 -ohm resistor is paralleled with one of 1200 olins, the total resistance is

$$
\begin{aligned}
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}} & =\frac{500 \times 1200}{500+1200}=\frac{600,000}{1700} \\
& =353 \mathrm{ohnss}
\end{aligned}
$$

It is probably easier to solve practical problems by a different method than the "reciprocal of reciprocals" formula. Suppose the three re-

Fig. 2-6-An example of resistors in parallel. The solution is worked out in the text.
sistors of the previous example are connected in parallel as shown in Fig. 2-6. The same e.m.f., 250 volts, is applied to all three of the resistors. The current in each can be found from Ohm's Law as shown below, I_{1} being the current through R_{1}, I_{2} the current through R_{2} and I_{3} the current through R_{3}.

For convenience, the resistance will be expressed in kilohms so the eurrent will be in nilliamperes.

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}}=\frac{250}{5}=50 \mathrm{ma} \\
& I_{2}=\frac{E}{R_{2}}=\frac{250}{20}=12.5 \mathrm{ma} \\
& I_{3}=\frac{E}{R_{3}}=\frac{250}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The total current is

$$
\begin{gathered}
I=I_{1}+I_{2}+I_{3}=50+12.5+31.25 \\
=93.75 \mathrm{ma} .
\end{gathered}
$$

The total resistance of the circuit is therefore

$$
R=\frac{E}{I}=\frac{250}{93.75}=2.66 \text { kilohms }(=2660 \text { ohms })
$$

Resistors in Series-Parallel

An actual circuit may have resistances both in parallel and in series. 'To illustrate, we use the same three resistances again, but now connected as in Fig. 2-7. The method of solving a circuit such as lig. 2-7 is as follows: Consider R_{2} and R_{3} in parallel as though they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R_{1} forms a simple zories circuit, as shown at the right in Fig. 2-7.

2 -ELECTRICAL LAWS AND CIRCUITS

Fig. 2-7-An example of resistors in series-parallel. The equivalent circuit is at the right. The solution is worked out in the text.

Example: The first step is to find the equivalent resistance of R_{2} and R_{3}. From the formula for two resistances in parallel,

$$
\begin{aligned}
R_{\text {eq. }}= & \frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times 8}{20+8}=\frac{160}{28} \\
& =5.71 \text { kilohms }
\end{aligned}
$$

The total resistanee in the eircuit is then

$$
\begin{aligned}
R=R_{1} & +R_{r_{4,}}=5+5.71 \text { kilohms } \\
& =10.71 \text { kilohms }
\end{aligned}
$$

The current is

$$
I=\frac{E}{R}=\frac{250}{10.71}=23.3 \mathrm{ma}
$$

The voltage drops across R_{1} and $R_{\text {eq. }}$ are $E_{1}=I R_{1}=23.3 \times 5=117$ volts $E_{2}=I R_{\text {eq. }}=23.3 \times 5.71=133$ volts
with sufficient aecuracy, These total 250 volts. thus cheeking the calculations so far, because the sum of the voltage drops must equal the applied voltage. Since E_{2} appears aeross both R_{2} and R_{3}.

$$
\begin{aligned}
I_{2} & =\frac{E_{2}}{R_{2}}=\frac{133}{20}=6.65 \mathrm{ma} \\
I_{3} & =\frac{E_{2}}{R_{3}}=\frac{133}{8}=16.6 \mathrm{na} . \\
\text { where } I_{2} & =\text { Current through } \mathrm{R}_{2}
\end{aligned}
$$

$I_{3}=$ Current through R_{3}
The total is 23.25 ma., which eliceks elosely enough with 23.3 ma., the eurrent through the whole eireuit.

POWER AND ENERGY

Power - the rate of doing work - is equal to voltage multiplied by current. The unit of electrical power, called the watt, is equal to one volt multiplied by one ampere. The equation for power therefore is

$$
I^{\prime}=E I
$$

where $P^{P}=$ Power in watts
$E=$ E.m.f. in volts
$I=$ Current in amperes
Common fractional and multiple units for power are the milliwatt, one one-thousandth of a watt, and the kilowatt, or one thousand watts.

> Example: The plate voltage on a transmitting vaeuum tube is 2000 volts and the plate eurrent is 350 millianperes. (The eurrent must be changed to amperes before substitution in the formula, and so is 0.35 amp.) Then

$$
P=E I=2000 \times 0.35=700 \text { wats }
$$

By substituting the Ohm's Law equivalents for E and I, the following formulas are obtained for power:

$$
\begin{aligned}
& P=\frac{E^{2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

These formulas are useful in power ealculations
when the resistance and either the current or voltage (but not both) are known.

Example: How much power will be used up
in a 4000 -ohm resistor if the voltage applied to
it is 200 volts? From the equation

$$
P=\frac{E^{2}}{R}=\frac{(200)^{2}}{4000}=\frac{40.000}{4000}=10 \mathrm{watts}
$$

Or, suppose a current of 20 milliamperes flows through a $300-\mathrm{ohm}$ resistor. Then

$$
\begin{gathered}
P=I^{2} R=(0.02)^{2} \times 300=0.0004 \times 300 \\
=0.12 \mathrm{watt}
\end{gathered}
$$

Note that the eurrent was ehanged from milliamperes to amperes before substitution in the formula.

Electrical power in a resistance is turned into heat. The greater the power the more rapidly the heat is generated. Resistors for radio work are made in many sizes, the smallest being rated to "dissipate" (or carry safely) about $1 / 4$ watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

Electrical power is not always turned into heat. The power used in running a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted into radio waves. P'ower applied to a loudspeaker is changed into sound waves. But in every case of this kind the power is completely "used up,' - it camnot be recovered. Also, for proper operation of the device the power must be supplied at a definite ratio of voltage to current. Both these features are characteristies of resistance, so it can be said that any device that dissipates power has a definite value of "resistance." This concept of resistance as something that absorbs power at a definite voltage/current ratio is very useful, since it permits substituting a simple resistance for the load or power-consuming part of the device receiving power, often with considerable simplification of calculations. Of course, every elect rical device has some resistance of its own in the more narrow sense, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power may be converted to another form.

Efficiency

In devices such as motors and vacuum tubes, the object is to obtain power in some other form than heat. Therefore power used in heating is considered to be a loss, berause it is not the usefnl power. The efficiency of a device is the useful power output (in its converted form) divided by the power input to the device. In a vacuum-tube transmitter, for example, the object is to convert power from a d.c. source into a.c. power at some radio frequeney. The ratio of the r.f. power output to the d.c. input is the effieiency of the tube. That is,

$$
\text { Eff. }=\frac{I_{0}}{I_{\mathrm{i}}^{\prime}}
$$

Capacitance

Where Eff. = Efficiency (as a decimal)
$P_{0}=$ Power output (watts)
$P_{\mathrm{i}}=$ Power input (watts)

Example: If the d.c. input to the tube is 100 watts and the r.f. power output is 60 watts, the efficiency is

$$
E f f .=\frac{P_{\mathrm{o}}}{P_{\mathrm{i}}}=\frac{60}{100}=0.6
$$

Efficiency is usually expressed as a percentage; that is, it tells what per cent of the input power will be available as useful output. The efficiency in the above example is 60 per cent.

Energy

In residences, the power company's bill is for electric energy, not for power. What you pay for is the work that electricity does for you, not the rate at which that work is done.

Electrical work is equal to power multiplied by time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
W=P T
$$

where $W=$ Energy in watt-hours
$P=$ Power in watts
$T=$ Time in hours
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.

Energy units are seldom used in amateur practice, but it is obvious that a small amount of power used for a long time can eventually result in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

Capacitance

Suppose two flat metal plates are placed close to earh other (but not touching) and are conneeted to a battery through a switch, as shown in Fig. 2-8. At the instant the switch is closed, elecotrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower plate from

Fig. 2-8-A simple capacitor.
the negative battery terminal. Enough eleetrons move into one plate and out of the other to make the e.m.f. between them the same as the e.m.f. of the battery.

If the switeh is opened after the plates have been charged in this way, the top plate is left with a deficiency of electrons and the bottom plate with an excess. The plates remain charged despite the fact that the battery no longer is connected. Huwever, if n wion is tomehed between the two plates (short-circuiting them) the excess electrons on the bottom plate will flow through the wire to the upper plate, thus restoring electrical neutrality. The plates have then been discharged.

The t wo plates constitute an electrical capacitor, and from the discussion above it should be clear that a capacitor possesses the property of storing electricity. (The energy actually is stored in the electric field between the plates.) It should also be clear that during the time the electrons are moving - that is, while the capacitor is being charged or discharged - a current is flowing in the circuit even though the circuit is "broken" by the gap between the capacitor plates. However, the current flows only during the time of charge and discharge, and this time is usually very short. There can be no continuous flow of direct current "through" a capacitor.

The charge or quantity of electricity that can be placed on a capacitor is proportional to the applied voltage and to the capacitance of the capacitor. The larger the plate area and the smaller the spacing between the plate the greater the capacitance. The capacitance also depends upon the kind of insulating material between the plates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the eapacitance many times. The ratio of the eaparitance with some material other than air between the plates, to the capacitance of the same capacitor with air insulation, is called the dielectric constant of that particular insulating material. The material itself is called a dielectric. The dielectric constants of a number of materials commonly used as dielectrics in eapacitors are given in Table 2-III. If a sheet of photographic glass is substituted for air between the plates of a capacitor, for example, the calparitane will be increased 7.5 times.

TABLE 2-III
Dielectric Constants and Breakdown Voltages

Material	Dielectric Constant *	Pincture Voltare **
Air	1.0	
Alsimag 196	5.7	240
Bakelite	4.4-5.4	300
Bakelite, mica-filled	4.7	325-375
Cellulose acetate	3.3-3.9	250-600
Fiber	5-7.5	150-180
Fornica	4.6-4.9	450
Glass, window	7.6-8	200-250
Class, Pyrex	4.8	335
Mica, ruby	5.4	3800-5600
Mycalex	7.4	250
Paper, Royalgrey	3.0	200
Plexiglass	2.8	990
Polyethylene	2.3	1200
Polystyrene	2.6	500-700
Porcelain	5.1-5.9	40-100
Quartz, fused	3.8	410
Steatite, low-loss	5.8	150-315
Teflon	2.1	1000-2000

At 1 Mc. ${ }^{ *}$ In volts per mil (0.001 inch)

2-ELECTRICAL LAWS AND CIRCUITS

Units

The fundamental unit of capacitance is the farad, but this unit is much too large for pramtical work. (aparitance is usually measured in microfarads (abbreviated μ f.) or micromicrofarads ($\mu \mu \mathrm{f}$.). The microlarad is one-millionth

Fig. 2-9-A multiple-plate capacitar. Alternate plates are cannected tage ther.
of a farad, and the micromicrofarad is one-millionth of a microfarad. Capacitors nem! always have more than two plates, the altenate plates heing connected tugether to form two sets as shown in Fig. 2-9. This makes it possible to at tain a fairly large eaparitance in a smatl spare, since several phates of smaller individual area ean be stacked to form the equivalent of a single large plate of the same total area. Nso, all plates, execpt the two on the ends, are cxposed to platers of the other group on toth sides, and so are twiee as cfiective in increaving the caparitane.

The formula for calculating capacitane is:

$$
C=0.2 .4 \frac{K A}{d}(n-1)
$$

where $C=$ Capacitance in $\mu \mu$.
$K=$ Diclectric constant of material between phates
$A=$. Wea of one side of one plate in square inches
$d=$ Separation of plate surfares in inches
$n=$ Number of plates
If the plates in one group do not have the same area as the plates in the other, use the area of the smoller plates.

The usefuness of at caparitor in elertrical circuits lies in the faet that it can be charged with electrical enorgy at one time and then discharged at a later time. In other words, it is an "electrical reservoir."

Capacitors in Radio

The types of capacitors used in radio work differ considerably in physical size, eonstruction, and caparitance. some representative types are shown in the photograph. In variable sapacitors falmost alwas romstruoted with aib for the dieleetrico ome set of phates is made mowable with resperet to the other set so that the caparitance ("an he viriod. Fixed calpatitors - that is, assemhlime having a single, non-adjustable vature of (apatritaner -also (ath bre made with metal plates and with air as the dieleretrie, hat usmally are constructed from plates of metal foil with a thin solid of liguid dielectrie samdwided in between, so that a rolatively large (apmataner can be sertured in a small unit. The solid didedtres commonly used are mion, paper and special ceramis. . In example of a liquid dielectric is mineral oil. The electrolytic absacitor uses alumi-num-foil plates with a semiliguid roncheting chemical eompound between them; the artual diclectris is a vere thin film of insulating material that forms on one set of plates through clectromemical artion when a d.a. voltage is applied to the raparitor. The rapamatare obs tamed with a wiven phate area in an eleetrolytie ("ipacitor is very hare, rompared with mapotors having other dielerties, beratue the film is so extremely thin - much loss that any thickness that is practicuble with a solid dielectrie.

Voltage Breakdown

When a high roltage is applied to the plates of a coapacitor, a comsiderathe fore is exemed on the electrons and nuelei of the dielectric. Because the dielectrie is an insulatem the dertrons do not become detached from atoms the way they do in ronductors. However, if the force is great enough the dieloetric will "break down"; usually it will puncture and may char (if it is solid) and permit cument to flow. The breakdown voltage depends upon the kind and thickness of the dielectric, as shown in Table ?-III. It is not divectly proportional to the thickness; that is, donbling the thideness does not quite double the beakdown voltage. If the dielectric is air or any othom gas, hrakidown is

Fixed and variable capacitars. The large unit at the left is a transmitingtype variable capacitar for r.f. tank eircuits. Ta its right are ather airdielectric variables of different sizes ranging fram the midget "oir padder" to the medium-pawer tank capacitar at the tap center. The cased capacitars in the tap row are far pawer-supply filters, the cylindrical-can unit being an electralytic and the rectangular ane a paper-diele etric capacitar. Variaus rypes af mica, ceramic, and paperdielectric capacitars are in the fareground.

Capacitors

evidenced by a spark or arc between the plates, but if the voltage is removed the arc ceases and the capacitor is ready for use again. Breakdown will occur at a lower voltage between pointed or sharp-edged surfaces than between rounded and polished surfaces; consequently, the breakdown voltage between metal plates of given spacing in air can be increased by buffing the edges of the plates.

Since the dielectric must be thick to withstand high voltages, and since the thicker the dielectric the smaller the capacitance for a given plate area, a high-voltage caparitor must have more plate areat than a low-voltage one of the same capacitance. High-voltage high-capacitance capacitors are physically large.

CAPACITORS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with reference to capacitors have the same circuit meaning as with resistances. When a number of capacitors are connected in parallel, as in Fig. 2-10, the total caparitance of the group is equal to the sum of the individual capacitances, so
$C($ total $)=C_{1}+C_{2}+C_{3}+C_{4}+\cdots \cdots \cdots \cdot \cdot$
However, if two or more capacitors are connected in series, as in the second drawing, the total capacitance is less than that of the smallest capacitor in the group. The rule for finding the capacitance of a number of seriesconnected capacitors is the same as that for finding the resistance of a number of parallelconnected resistors. That is,
$C($ total $)=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\frac{1}{C_{4}}}+$
and, for only two capacitors in series,

$$
C(\text { total })=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

The same units must be used throughout; that is, all capacitances must be expressed in either $\mu \mathrm{f}$. or $\mu \mu \mathrm{f}$.; both kinds of units cannot be used in the aame equation.

Capacitors are connected in parallel to obtain a larger total capacitance than is available in one unit. The largest voltage that can be applied safely to a group of capacitors in parallel is the voltage that can be applied safely to the one having the lowest voltage rating.

When capacitors are connected in series, the applied voltage is divided up among them; the situation is much the same as when resistors are in series and there is a voltage drop across each. However, the voltage that appears across each capacitor of a group connected in series is in inverse proportion to its capacitance, as

compared with the capactance of the whole group.

Example: Three capacitors having capacitances of 1,2 and 4μ, resnectively. are connected in series as shown in Fig, 2-11. The total capacitance is

$$
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{\frac{7}{4}}=\frac{4}{7}
$$

$$
=0.571 \mu \mathrm{f}
$$

The voltage across each capacitor is mroportional to the total capacitance divided by the capacitance of the capacitor in fuestion, so the voltage across C_{1} is

$$
E_{1}=\frac{0.571}{1} \times 2000=1142 \text { volts }
$$

Similarly, the voltages across C_{2} and C_{3} are

$$
\begin{aligned}
& E_{2}=\frac{0.571}{2} \times 2000=571 \text { volts } \\
& E_{3}=\frac{0.571}{4} \times 2000=286 \text { volts }
\end{aligned}
$$

totaling approximately 2000 volts, the applied voltage.

Capacitors are frequently connected in series to enable the group to withstand a larger voltage (at the expelse of decreased total capacitance) than any individuad eapacitor is rated to stand. However, as shown by the previous example, the applied voltage does not divide equally among the capacitors (except when all the capacitances are the same) su carc must be taken to see that the voltage rating of no capacitor in the group is exceeded.

Fig. 2.11-An example of capacitors connected in series. The solution to this arrangement is worked out in the text.

2 -ELECTRICAL LAWS AND CIRCUITS

Inductance

It is possible to show that the flow of curvent through a conductor is aceompanied by magnetic effects; a compass needle brought near the conductor, for example, will be deflected from its normal north-south position. The current, in other words, sets up a magnetic field.
The transfer of energy to the magnetie field represents work done hy the source of e.m.f. lower is required for doing work, and since power is equal to current multiplied by voltage, there must be a voltage drop in the cireuit during the time in which energy is boing stored in the field. This voltage "drop" (which has nothing to do with the voltage drop in any resistance in the (ireuit) is the result of an opposing voltage "induced" in the circuit while the field is building up to its final value. When the field becomes constant the induced e.m.f. or back e.m.f. disappears, since no further energy is being stored.
Since the induced e.m.f. opposes the e.m.f. of the souree, it tends to prevent the current from rising rapidly when the cireuit is closed. The amplitude of the induced e.m.f. is proportional to the rate at which the current is changing and to a constant associated with the cireuit itself, called the inductance of the circuit.

Inductance depends on the physical chararteristics of the conductor. If the conductor is formed into a coil, for example, its inductance is inereased. A roil of many turns will have more inductance than one of few turns, if both coils arre otherwise physically similar. Also, if a coil is placed on an iron core its inductance will be greater than it was without the magnetie core.

The polarity of an induced e.m.f. is always such as to oppose any change in the current in the cireuit. This means that when the current in the circuit is increasing, work is being done against the indured e.m.f. by storing energy in the magnetie fied. If the current in the cireuit tends to decrease, the stored cnergy of the fiold returns to the cireuit, and thus adds to the energy being
supplied by the souree of e.m.f. Ihis tends to keep the eurrent flowing even though the applied e.m.f. may be decrasing or be removed entirely.

The unit of inductance is the henry. Values of inductance used in radio equipment vary over a wide range. Inductance of several hemrys is required in power-supply circuits (see chapter on Power Supplios) and to ohtain such values of inductance it is necessary to use coils of many turns wound on iron cores. In madio-frequency circuits, the inductance values used will be measured in millihenrys (a millihonry is one ondthousundth of a henry) at low frequencies, and in microhenrys (one one-millionth of a hemry) at. medium frecuuencies and higher. Although eoils for radio frequencies may be wound on special iron cores (ordinary iron is not suitable) most r.f. coils made and used by amateurs are of the "air-eore" type: that is, wound on an insulating support ronsisting of nonmagnetic material.

Every condurtor has inductance, even though the conductor is not formed into a coil. The inductance of a short length of straight wire is smatl, but it may not be negligible because if the curvent through it changes its intensity rapidly enough the induced voltage may be appreciable. This will be the ease in even a few inches of wire when an alternating eurrent having a frequency of the order of 100 Me . or higher is flowing. Ilowever, at much lower frequencies the inductance of the same wire could be left out of any calculations beause the induced voltare would he negligibly small.

Calculating Inductance

The approximate inductance of single-layer air-core coils may be calculated from the simplified formula

$$
L(\mu \mathrm{~h} .)=\frac{a^{2} u^{2}}{9 u+19 b}
$$

where $L=$ Inductanes in microhenrys

Inductors for power and radio frequencies. The two iran-core coils of the left are "chokes" for power-supply filters. The mounted air-core coils at the top center are adjustable inductors for transmitting tank circuits. The ''piewound" coils at the left and in the foreground are radio-frequency choke coils. The remaining coils are typicel of inductors used in r.f. tuned circuits, the larger sizes being used principally for transmitters.
$a=$ Coil radius in iuches
$b=$ Coil length in inches
$n=$ Number of turns
The notation is explained in Fig. 2-12. This

Fig. 2.12-Coil dimensions used in the inductance formula. The wire diameter does not enter into the formula.

formula is a close approximation for coils having a length equal to or greater than 0.8et.

$$
\begin{aligned}
& \text { V:xanule: Assume a coil having } 48 \text { turns } \\
& \text { wound } 32 \text { turns prr inch and a diameter of } 3 / 3 \\
& \text { inch. Thus } a=0.75 \div 2=0.375, b=48 \div 32 \\
& =1.5, \text { and } n=48 . \text { substituting, } \\
& \quad L=\frac{.375 \times .375 \times 48 \times 48}{(9 \times .375)+(10 \times 1.5)}=17.6 \mathrm{~m} .
\end{aligned}
$$

To calculate the number of turns of a singlelayer coil for a required value of inductance,

$$
n=\sqrt{\frac{L(!a+10 b)}{a^{2}}}
$$

Example: Suppose an inductance of $10 \mu \mathrm{~h}$, is regnired. The form on which the coil is to be wound has a diameter of one inch and is long enough to accommodate a coil of $11 / 4$ inchen. Then $a=0.5, b=1.25$, and $L=10$. Substituting.

$$
n=\sqrt{\frac{10(4.5+12.5)}{.5 \times .5}}=\sqrt{680}=2(6.1 \text { turns }
$$

A 26-turn coil would 1 ne close enough in practical work. Since the coil will be 1.25 inchew long, the number of turns per ineh will be $26.1 \div 1.25=20.8$. Consulting the wire table, we find that No. 17 enameled wire (or anything smatler) can be used. The proper induetance is ohtained by wituling the reguired number of turns on the form and then adjusting the spacing between the turns to make a uniformyspaced eoil 1.2.) inches long.

Inductance Charts

Most inductance formulas lose acouracy when applied to small eoils (such as are used in v.h.f. work and in low-pass filters built for reducing harmonic interference to television) because the conductor thickness is no longer negligible in comparison with the size of the coil. Fig, 2-13 shows the measured inductance of y hif poils, and may be used as a basis for circuit design. Two curves are given: curve A is for eoils wound to an inside climeter of $1 / 2$ inch; curve B is for coils of $3 / 4$-inch inside diameter. In both curves the wire size is No. 12, winding piteh 8 tums to the inch ($1 / 8$ inch center-to-center turn spacing). The inductance values given include leads $1 / 2$ inch long.

The charts of Figs. 2-14 and $2-15$ are useful for rapid determination of the indectance of coils of the type commonly used in radio-frequency circuits in the range $3-30$ Mc. They are of sufficiont areurary for most practical work. Given the eoil length in inches, the curves show the multiplying factor to be applied to the inductance value given in the table below the curve for a coil of the same diamoter and number of turns per inch.

Example: A coil 1 inch in diameter is $11 / 4$ inches long and has 20 turns. Therefore it has 10 turns per inch, and from the table under Fig. 2.15 it is found that the reference inductance for a coil of this diameter and number of turns per inch is $16.8 \mu \mathrm{~h}$. From curve B in the figure the multiplying factor is 0.35 , so the inductanee is

$$
16.8 \times 0.35=5.9 \mu \mathrm{~h}
$$

The charts also can be used for finding suitable dimensions for a roil having a required value of inductance.

Example: A coil having an inductance of 12 $\mu \mathrm{h}$, is required. It is to be wound on a form having a diameter of 1 inch, the length available for the winding being not more than $11 / 4$ inches. From Fig. 2-15, the multiplying factor for a 1 -inch diameter coil (curve B) having the maximum possible length of $11 / 4 \mathrm{inches}$ is 0.35 . Hence the number of turns per inch must be chosen for a reference inductance of at least $12 / 0.35$, or $34 \mu \mathrm{~h}$. From the Table under Fig. 2-1.5 it is seen that 16 turns per inch (reference inductance $16.8 \mu \mathrm{~h}$.) is too small. L'sing 32 turns per inch, the multiplying factor is 12/68, or 0.177, and from curve B this corresponds to a coil length of $8 / 4$ inch. There will be 24 turns in this length, since the winding "pitch" is 32 turns per inch.

Machine-womd coils with the diameters and turns per inch given in the tables are available in many radio stores, under the trade names of " $13 \& W$ Winiductor" and "Illumitronic Air I Mix."

IRON-CORE COILS

Permeability

Suppose that the coil in Fig. 2-16 is wound on an iron core having a cross-sectional area of 2 square inches. When a certain current is sent through the coil it is found that there are 80,000 lines of force in the eore. Since the area is 2 square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron core is removed and the same current is maintained in the coil, and that the flux density without the iron core is found to be 00 lines per square inch. The ratio of the flux density with the given core

Fig. 2-13-Measured inductance of coils wound with No. 12 bare wire, 8 turns to the inch. The values include half-inch leads.

2-ELECTRICAL LAWS AND CIRCUITS

material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permenbility of the iron is $40,000 / 50=800$. The inductance of the coil is increased 800 times by inserting the iron core sinee, other things being equal, the inductance will be proportional to the magnetic flux through the coil.

The permeability of a magnetie material varies with the flux density. At low flux densities (or with an air core) increasing the current through the coil will cause a proportionate increase in flux, but at very high flux densities, inereasing the current may cause no appreciable change in the flux. When this is so, the iron is said to be saturated. Saturation causes a rapid decrease in permeability, because it decreases the ratio of

Fig. 2-14-Factor to be applied to the inductance of coils listed in the table below, for coil lengths up to 5 inches.

Coil diameter, Inches	No. of turns per inch	Inductance in μh.
11/4	4	2.75
	6	6.3
	8	11.2
	10	17.5
	16	42.5
11/2	4	3,9
	6	8.8
	8	15.6
	10	24.5
	16	63
18/6	4	5.2
	6	11.8
	8	21
	10	33
	16	85
2	4	6.6
	6	15
	8	26.7
	10	42
	16	108
21/2	4	10.2
	6	23
	8	41
	10	64
3	4	14
	6	31.5
	8	56
	10	89

flux lines to those obtainable with the same current and an air core. Obviously, the inductance of an iron-core inductor is highly dependent upon the current flowing in the coil. In an air-core coil, the inductance is independent of current because air does not saturate.

Iron core coils such as the one sketched in

Fig. 2-15-Factor to be applied to the inductance of coils listed in the table below, as a function of coil length. Use curve A for coils marked A, curve B for coils marked B.

Coil diameter, Inches	No. of turns per inch	Inductance in μ.
$\begin{aligned} & 1 / 2 \\ & (A) \end{aligned}$	4	0.18
	6	0.40
	8	0.72
	10	1.12
	16	2.9
	32	12
$\begin{aligned} & 5 / 8 \\ & (A) \end{aligned}$	4	0.28
	6	0.62
	8	1.1
	10	1.7
	16	4.4
	32	18
$3 / 4$(IB)	4	0.6
	6	1.35
	8	2.4
	10	3.8
	16	9.9
	32	40
$\begin{gathered} 1 \\ (\mathrm{~B}) \end{gathered}$	4	1.0
	6	2.3
	8	4.2
	10	6.6
	16	16.8
	32	68

Fig. 2-16 are used chicfly in power-supply equipment. 'They usually have direet current flowing through the winding, and the variation in inductance with current is usually undesimable. It may be overcome by kecping the flux density below

Fig. 2-16-Typical construction of an iron-core inductor. The small air gap prevents magnetic saturation of the iron and thus mainfains the inductance of high currents.

Inductance

the saturation point of the iron. This is done by opening the core so that there is a small "air gap," as indicated by the dashed lines. The magnetic "resistance" introduced by such a gap is so large - even though the gap is only a small fraction of an inch - compared with that of the iron that the gap, rather than the iron, controls the flux density. This redures the inductance, but makes it practically constant regardless of the value of the current.

Eddy Currents and Hysteresis

When alternating current flows through a coil wound on an iron core an e.m.f. will be induced, as previously explained, and since iron is a conductor a current will flow in the core. Such currents (called eddy currents) represent a waste of power because they flow through the resistance of the iron and thus cause heating. Eddycurrent losses can be reduced by laminating the core; that is, by cutting it into thin strips. These strips or laminations must be insulated from each other by painting them with some insulating material such as varnish or shellac.

There is also another type of energy loss: the iron tends to resist any change in its magnetic state, so a rapidly-rhanging current such as a.c. is forced continually to supply energy to the iron to overeme this "inertia." Losses of this sort are called hysteresis losses.

Eddy-current and hysteresis losses in iron increase rapidly as the frequency of the alternating current is increased. For this reason, ordinary iron cores can be used only at power and audio frequencies - up to, say, 15,000 cycles. Even so, a very good grade or iron or steel is necessary if the core is to perform well at the higher audio frequencies. Iron cores of this type are completely useless at radio frequencies.

For radio-frequency work, the losses in iron cores can lie reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "binder" of insulating material in such a way that the individual iron particles are insulated from each other. By this means cores can be made that will function satisfactorily even through the v.h.f. range - that is, at frequencics up to porhans 100 Mc . Because a large part of the magnetie path is through a nonmatgnetic material, the permeability of the iron is low compared with the values obtained at power-supply frequencies. The core is usually in the form of a "slug" or eylinder which fits inside the insulating form on which the coil is wound. Despite the fact that, with this eonstruction, the major portion of the magnetic path for the flux is in air, the slug is guite effective in increasing the roil indurtance. By pushing the slug in and out of the coil the indurtane ran be varied over a considerable range.

INDUCTANCES IN SERIES AND PARALLEL

When two or more inductors are connected in series (Fig. 2-17, left) the total inductance is

equal to the sum of the individual inductances, prorided the coils are sufficiently separated so that no coil is in the magnetic field of another. That is,

$$
L_{\text {total }}=L_{1}+L_{2}+L_{3}+L_{4}+\ldots \ldots \ldots
$$

If inductors are connected in parallel (Fig. 2-17, right), the total inductance is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\frac{1}{L_{4}}+\ldots \ldots}
$$

and for two inductances in parallel,

$$
L=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$

Thus the rules for combining inductances in series and parallel are the same as for resistances, if the coils are far enough apart so that earh is unaffected by another's magnetic field. When this is not so the formulas given above cannot be used.

MUTUAL INDUCTANCE

If two coils are arranged with their axes on the same line, as shown in Fig. 2-18, a current sent through Coil 1 will cause a magnetic field which "cuts" Coil 2. Consequently, an e.m.f. will be induced in Coil 2 whenever the field strength is changing. This induced e.m.f. is similar to the e.m.f. of self-induction, but since it appears in the second coil because of current flowing in the first, it is a "mutual" effect and results from the mutual inductance between the two evils.

If all the flux set up by one coil cuts all the turns of the other coil the mutual inductance has its maximum possible value. If only a small part of the flux set up by one coil cuts the turns of the other the mutual inductance is relatively small. Two coils having mutual inductance are said to be coupled.

The ratio of actual mutual inductance to the maximum passible value that could theoretically be obtained with two given coils is called the coefficient of coupling between the coils. It is frequently expressed as a percentage. Coils that have nearly the maximum possible (coefficient $=$ 1 or 100%) mutual inductance are said to be closely, or tightly, coupled, but if the mutual inductance is relatively small the coils are said to be loosely coupled. The degree of coupling

2-ELECTRICAL LAWS AND CIRCUITS

Fig. 2-18-Mufual inductance. When the switch, S, is closed current flows through coil No. 1 , setting up a magnetic field that induces an e.m.f. in the furns of coil No. 2.
depends upon the physical spacing between the coils and how they are placed with respect to each other. Maximum coupling exists when they have a common axis and are as close together as possible (one wound over the other). The coupling is least when the coils are far apart or are placed so their axes are at right angles.

The maximum possible cocfficient of coupling is closely approached only when the two coils are wound on a closed iron core. The coefficient with air-core coils may run as high as 0.6 or 0.7 if one coil is wound over the other, but will be much less if the two coils are separated.

Time Constant

Capacitance and Resistance

Connecting a source of r.m.f. to a capacitor causes the caparitor to become charged to the full e.m.f. partically instantanously, if there is no resistane in the cireuit. IIowever, if the cireuit contans resistanee, as in Fig. 2-19.1, the resistance limits the current flow and an apprectable length of time is reguired for the e.m.f. between the caparitor plates to build up to the same value as the e.m.f. of the souree. During this "Huildingup" period the current gradually dereases from its initial value, because the inereasing e.m.f. stored on the capacitor offers increasing opposition to the steady e.m.f. of the souree.

Fig. 2-19-1llustrating the time constant of an RC circuit.
Theorotically, the charging proress is never really finished, but eventually the charging current drops to a value that is smatler than anything that can be measured. The time constant of such a circuit is the length of time, in seconds, required for the voltage across the euparitor to rewh 103 per cent of the applied e.m.f. (this figure is chosen for mathematical reasons). The voltage aross the culuaritor rises with time as shown by Fig. 2-20.

The formula for time constant is

$$
T=R C^{\prime}
$$

where $T=$ Time constant in seconds
$C=$ Capacitance in farads
$R=$ Resistance in ohms
If C^{\prime} is in microfarads and R in megohms, the time constant also is in seconds. These units usually are more convenient.

$$
\begin{aligned}
& \text { Example: The time constant of a } 2-\mu f \text {. ca- } \\
& \text { paritor and a } 250,000-0 \text { han }(0.25 \text { megohm) } \\
& \text { resistor is } \\
& \qquad T=R C=0.25 \times 2=0.5 \text { second }
\end{aligned}
$$

If the applied e.m.f. is 1000 volts, the voltage brtween the rapacitor plates will be 630 volts at the end of $1 / 2$ second.
If a charged capacitor is discharyed through a resistor, as indicated in Fig. 2-1913, the same time constant applies. If there were no resistance, the capacitor would discharge instantly when S was closed. However, since R limits the current flow the eapacitor voltage eamot instantly go to zero, but it will decrease just as rapidly as the capaeitor cam rid itself of its charge through R. When the capacitor is discharging through a resistance, the time constant (calculated in the same way as above) is the time, in seconds, that it takes for the capacitor to lose 63 per cent of its voltage: that is, for the voltage to drop to 37 per rent of its initial value.

Fig. 2-20 - How the valtage across a capacitor rises, with time, when charged through a resistor. The lower curve shows the way in which the voltage decreases across the capacitor terminals on discharging through the same resistor

Fig. 2-21-Time constant of an $L R$ circuit.

Inductance and Resistance

A comparable situation exists when resistance and inductance are in series. In Fig. 2-21, first consider L to have no resistance and also assume that R is zero. Then closing S would tend to send a current through the circuit. However, the instantaneous transition from no current to a finite value, however small, represents a very rapid change in current, and a buck e.m.f. is developed by the self-inductance of L that is practically equal and opposite to the applied e.m.f. The result is that the initial current is very small.

The back e.m.f. depends upon the chamge in current and would cease to offer opposition if the current did not continue to increase. With no resistance in the circuit (which would lead to an infinitely large current, by Ohm's Law) the current would increase forever, always growing just fast enough to keep the e.m.f. of self-induction equal to the applied e.m.f.
When resistance is in series, Ohm's Law sets a limit to the value that the current can reach. The back e.m.f. generated in L has only to equal the difference between E and the drop across R, hecause that difference is the voltage actually applied to L. This difference becomes smaller as the eurrent approaches the final Ohm's Law value. Theoretically, the back e.m.f. never quite disappears and so the current never quite reaches the Ohm's Law value, but practically the difference becomes unme:tsurable after a time. The time constant of an inductive circuit is the time

Fig. 2-22-Voltage across capacitor terminals in a discharging $R C$ circuit, in terms of the initial charged voltage. To obtain time in seconds, multiply the factor t, $R C$ by the time constant of the circuit.
in seconds required for the current to reach 63 per cent of its final value. The formula is

$$
T=\frac{L}{R}
$$

where $T=$ Time constant in seconds
$L=$ Inductance in henrys
$R=$ Resistance in ohms
The resistance of the wire in a coil acts though it were in series with the inductance.

Example: A coil having an inductance of 20 henrys and a resistance of 100 ohms has a time constant of

$$
T=\frac{L}{R}=\frac{20}{100}=0.2 \text { second }
$$

if there is no other resistance in the eircuit. If a d.c. em.f. of 10 volts is applied to such a coil, the final current, by Ohm's Iaw, is

$$
I=\frac{E}{R}=\frac{10}{100}=0.1 \mathrm{amp} . \text { or } 100 \mathrm{ma}
$$

The current would rise from zero to 63 milliamperes in 0.2 second after closing the switch.

An inductor cannot be "discharged" in the same way as a capacitor, because the magnetic field disappears as soon as current flow ceases. Opening s ' docs not leave the inductor "charged." The energy stored in the magnetic field instantly returns to the circuit when S is opened. The rapid disappearance of the field causes a very large voltage to be induced in the coil - ordinarily many times larger than the voltage applied, because the induced voltage is proportional to the speed with which the field changes. The common result of opening the switch in a circuit such as the one shown is that a spark or arc forms at the switch contacts at the instant of opening. If the inductance is large and the current in the circuit is high, a great deal of energy is released in a very short period of time. It is not at all unusual for the switch contacts to burn or melt under such circumstances.
Time constants play an important part in numerous devices, such as electronic keys, timing and control circuits, and shaping of keying characteristics by vacuum tubes. The time constants of circuits are also important in such applications as automatic gain control and noise limiters. In nearly all such applications a resistance-capacitance ($R C$) time conslant is invo! ed, and it is usually necessary to know the voltage across the capacitor at some time interval larger or smaller than the actual time constant of the circuit as given by the formula above. Fig. 2-2:2 can be used for the solution of such problems, since the curve gives the voltage across the capacitor, in terms of percentage of the initial charge, for percentages between 5 and 100, at any time after discharge begins.

[^1]
2-ELECTRICAL LAWS AND CIRCUITS
 Alternating Currents

- PHASE

The term phase essentially means "time," or the time interval between the instant when one thing oceurs and the instant when a second related thing takes phares. The later evont is satid to lag the earlier, while the one that occurs first is said to lead. In a.c. circuits the cemrent amplitude changes continuously, so the eoncept of phase or time beoomes important. Ihase can be measured in the ordinary time units, surf as the second, hut there is a more convenient method: Since each a.c. cyrle occupies exactly the same amount of time as every other cyele of the same frequency, we can use the cyele itself as the time unit. I sing the cerole as the time unit makes the specification or measurement of phase independent of the frequency of the current, so long as only one frequeney is under consideration at a time. When two or more frequencies are to be eonsidered, as in the rase where harmonics are present, the phase moasurements are made with respert to the lowest, or fundamental, frequencr.

The time interval or "phase difference" unter consideration usually will be less than one cycle. Phase difference could be measured in decimal parts of a cycle, but it is more convenient to divide the cyele into 360 parts or degrees. A phase degree is therefore 1/360 of a eycle. The reason for this ehoice is that with sine-wave alternating current the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degreas - that is, length of time-from the instant the cyele began. There is no actual "angle" associated with an alternating current. Fig. 2-2:3 should help make this method of measurement clear.

Fig. 2-23-An a.c. cycle is divided off into 360 degrees that are used as a measure of time or phase.

Measuring Phase

The phase difference between two currents of the same frequency is the time or angle differenere between corresponding parts of cerles of the twe currents. This is shown in Fig. 2-24. The current labeled A leads the one marked B by 45 degrees, since A 's cycles begin 45 degrees earlier in time. It is equally correct to say that B lags A by 45 degrees.

Fig. 2-24-When two waves of the same frequency start their cycles at slightly different times, the time difference or phase difference is measured in degrees. In this drawing wave B starts 45 degrees (one-eighth cycle) later than wave A, and so logs 45 degrees behind A.

Two important special cases are shown in Irig. 2-25. In the upper drawing B lags 90 degrees behind A; that is, its cyele begins just onequarter eycle later than that of A. When one wave is passing through zero, the other is just at its maximum point.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one is considered to lead or lag. B is always positive while A is negative, and vice versa. 'The two waves are thus completely out of phase.

The waves snown in Figs. 2-24 and 2-25 could represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage and B current in the same circuit. If A and B represent two currents in the same circuit (or two voltages in the same circuit) the total or resultant current (or voltage) also is a sine wave, berause adding any number of sine waves of the same frequency always gives a sine wave also of the same frequency.

Phase in Resistive Circuits

When an alternating voltage is applied to a resistance, the eurrent flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any frequency if the resistance is "pure" - that is, is free from the reactive effects discussed in the next seetion. Practically, it is often difficult to obtain a purely

Fig. 2-25-Two important special cases of phase difference. In the upper drawing, the phase difference between A and 8 is 90 degrees; in the lower drawing the phase difference is 180 degrees.

Alternating Currents

resistive circuit at radio frequencies, because the reactive effects bccome more pronounced as the frequency is increased.

In a purely resistive circuit, or for purely resistive parts of circuits, Ohm's Law is just as valid for a.c. of any frequency as it is for d.c.

REACTANCE

Alternating Current in Capacitance

In Fig. 2-26 a sine-wave a.c. voltage having a maximum value of 100 volts is applied to a capacitor. In the period $O A$, the applied voltage inereases from zero to 38 volts; at the end of this period the capacitor is charged to that voltage. In interval $A B$ the voltage increases to 71 volts; that is, 33 volts additional. In this interval a smaller quantity of charge has been added than in $O A$, because the voltage rise during interval $A B$ is smaller. Consequently the average current during $A B$ is smaller than during $O A$. In the third interval, $B C$, the voltage rises from 71 to 92 volts, an increase of 21 volts. This is less than the voltage increase during $A B$, so the quantity of electricity added is less; in other words, the avcrage current during interval $B C$ is still smaller. In the fourth interval, CD, the voltage increases only 8 volts; the charge added is smaller than in any preceding interval and therefore the current also is smaller.

By dividing the first quarter cyele into a very large number of intervals it could be shown that the current charging the capacitor has the shape of a sine wave, just as the applied voltage does. The current is largest at the beginning of the cycle and becomes zero at the maximum value of the voltage, so there is a phase difference of 90 degrees between the voltage and current. During the first quarter cycle the current is flowing in the

Fig. 2-26-Voltage and current phase relationships when an alternating voltage is applied to a capacitor.
normal direction through the circuit, since the capacitor is being charged. Hence the current is positive, as indicated by the dashed line in Fig. 2-26.

In the second quarter cycle - that is, in the time from D to H, the voltage applied to the capacitor decreases. During this time the capacitor loses its charge. Applying the same reasoning, it is plain that the current is small in interval $D E$ and continues to increase during each succeeding interval. However, the current is flowing against the applied voltage because the capacitor is discharging into the circuit. Hence the current is
negative during this quarter cycle.
The third and fourth quarter cycles repeat the events of the first and second, respectively, with this difference - the polarity of the applied voltage has reversed, and the current changes to correspond. In other words, an alternating current flows in the circuit because of the alternate charging and discharging of the capacitance. As shown by Fig. 2-26, the current starts its cycle 90 degrees before the voltage, so the current in a capacitor leads the applied voltage by 90 degrees.

Capacitive Reactance

The quantity of clectric charge that can be placed on a capacitor is proportional to the applied e.m.f. and the capacitance. This amount of charge moves back and forth in the circuit once each cycle, and so the rate of movement of charge - that is, the current - is proportional to voltage, capacitance and frequency. If the effects of capacitance and frequency are lumped together, they form a quantity that plays a part similar to that of resistance in Ohm's Law. This quantity is called reactance, and the unit for it is the ohm, just as in the case of resistance. The formula for it is

$$
X_{\mathrm{C}}=\frac{1}{2 \pi f C}
$$

where $X_{\mathrm{C}}=$ Capacitive reactance in ohms
$f=$ Frequency in cycles per second
$C=$ Capacitance in farads
$\pi=3.14$
Although the unit of reactance is the ohm, there is no power dissipation in reactance. The energy stored in the capacitor in one quarter of the eycle is simply returned to the circuit in the next.

The fundamental units (cycles per second, farads) are too large for practical use in radio circuits. However, if the capacitance is in microfarads and the frequency is in megacycles, the reactance will come out in ohms in the formula.

Example: The reactance of a capacitor of 470 $\mu \mu$ f. $(0.00047 \mu \mathrm{f}$.) at a frefuency of 7150 kc . (7.15 Mc .) is

$$
X=\frac{1}{2 \pi f(C}=\frac{1}{6.28 \times 7.15 \times 0.00047}=47.4 \mathrm{ohms}
$$

Inductive Reactance

When an alternating voltage is applied to a pure inductance (one with no resistance - all practical inductors have resistance) the current is again 90 degrees out of phase with the applied voltage. However, in this case the current lags 90 degrees behind the voltage - the opposite of the capacitor current-voltage relationship.

The primary cause for this is the back e.m.f. generated in the inductance, and since the amplitude of the back e.m.f. is proportional to the rate at which the current changes, and this in turn is proportional to the frequency, the amplitude of the current is inversely proportional to the applied frequency. Also, since the back e.m.f. is proportional to inductance for a given rate of cur-

2-ELECTRICAL LAWS AND CIRCUITS

rent change, the current flow is inversely proportional to inductance for a given applied voltage and frequener. (Another way of saying this is that just enough current flows to gencrate an induced e.m.f. that equals and opposes the applied voltuge.)

The combined effect of inductance and frequency is ralled inductive reactance, also expressed in ohms, and the formula for it is

$$
X_{\mathrm{L}}=2 \pi f L
$$

where $\boldsymbol{X}_{L}=$ Inductive reactance in ohms
$f=$ Frequency in cyeles per second
$L=$ huductance in henrys
$\pi=\$, 14$
Example: The reactance of a coll having an inductance of 8 henrys, at a frequency of 120 cyeles, is

$$
X_{\mathrm{L}}=2 \pi f L_{\mathrm{L}}=6.28 \times 120 \times 8=6029 \mathrm{ohms}
$$

Fig. 2.27 - Phase relatianships between valtage and current when on alternating valtage is applied to an inductance.

In radio-frequency circuits the inductance values usually are small and the frequencies are large. If the inductanere is expressed in millihenrys and the frequency in kiloeveles, the emversion factors for the two units cancel, and the formula for reactance may be used without tirst converting to fandamental units, Similarly, no conversion is necessary if the inductance is in microhenrys and the frequeney is in megaryoles.

$$
\begin{aligned}
& \text { Example: The reactance of a } 1 . \text {-microhenry } \\
& \text { coil at afrerdency of } 14 \mathrm{Mc} \text {. is } \\
& \lambda_{\mathrm{L}}=2 \pi f \mathrm{f}=6.28 \times 14 \times 15=1310 \text { ohms }
\end{aligned}
$$

The resistance of the wire of which the roil is wound has no effect on the reatamee, but simply acts as though it were a separate resistor connected in series with the coil.

Ohm's Law for Reactance

Ohm's haw for an a.c. circuit containing only reactance is

$$
\begin{aligned}
I & =\frac{E}{X} \\
E & =I X \\
X & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ Current in amperes
$I=$ Reactance in ohms

The reactance may be either inductive or capacitive.

Example: If a current of 2 amperes is flowing through the capacitor of the previous example (reactance $=47.4$ ohans) at 71.30 kr ., the voltage drop across the camaritor is

$$
E=1 X=2 \times 17.1=41.8 \text { volts }
$$

If 400 solts at 120 reveles is anplime to the 8 henry inductor of the previsus example, the current throngh the cosil will the

$$
I=\frac{E}{X}=\frac{400}{6029}=0.0(663 \mathrm{amp} .(60.3 \mathrm{ma})
$$

Reactance Chart

The aceompanying chart, Fig. 2-28, shows the reactance of eapacitances from $1 \mu \mu$. to $100 \mu \mathrm{f}$., and the reactance of inductances from $0.1 \mu \mathrm{~h}$. Wo 10 henrys, for frequencies between 100 eveles and 100 meg adeyeres per second. The approximate value of reactanee can be read from the chart or, where more exatet values are needed, the chart will sorve ts: atherk on the order of magnitude of reataneres calrulated from the formulas given above and thas avoid "flecimal-point errors".

Reactances in Series and Parallel

When reatinces of the same kind are connected in series or parallel the resultant reactance is that of the resultant inductance or capacitance. This leads to the same rules that are used when determining the resultant resistande when resistors are combined. That is, for series reatances of the same kind the resultant reactanes is

$$
N=X_{1}+X_{2}+\Lambda_{3}+X_{4}
$$

and for reactances of the same kind in parallel the resultant is

$$
X=\frac{1}{\frac{1}{X_{1}}+\frac{1}{X_{2}}+\frac{1}{X_{3}}+\frac{1}{X_{1}}}
$$

or for two in parallel,

$$
X=\frac{X_{1} X_{2}}{X_{1}+\overline{X_{2}}}
$$

The situation is different when reactanems of opposite kinds are combined. Sinee the current in a enpacitance leads the applied voltage by 90 degress and the current in an inductane lags the applied foltage by 90 degreess. the voltages at the treminalls of opposite types of reactance are 180 degrees out of phase in a series rireuit (in which the eurrent has to be the same through all elements), and the currents in reactances of opposite types are 180 degrees out of phase in a parallel circuit (in which the same voltage is applied to all clements). The 180 -degree phase relationship mone that the currents or voltagus are of opposite polarity, so in the series circuit of Fig. 2-20A the voltage E_{L} a aross the indurtive reactance.$_{\mathrm{L}}$ is of opposite polarity to the voltage $E C$ across the caparitive reactance Jc_{c}. Thus if we call K_{I} "positive" and Xce "negative" (a common convention) the applied voltage $E_{\mathrm{A}}\left(\right.$ is $E_{\mathrm{L}}-E C$. In

Reactance

Fig. 2-28-Inductive and capacitive reactance vs. frequency. Heavy lines represent multiples of 10 , intermediate light lines multiples of 5; e.g., the light line between $10 \mu \mathrm{~h}$. and $100 \mu \mathrm{~h}$. represents $50 \mu \mathrm{~h}$., the light line between $0.1 \mu \mathrm{f}$. and $1 \mu \mathrm{f}$. represents $0.5 \mu \mathrm{f}$., etc. Intermediate values can be estimated with the help of the interpolation scale shown.
Reactances outside the range of the chart may be found by applying appropriate factors to values within the chart ronge. For example, the reactance of 10 henrys at 60 cycles can be found by taking the reactance of 10 henrys at 600 cycles and dividing by 10 for the 10 -times decrease in frequency
the parallel circuit at B the total current, l, is oqual to $I_{\mathrm{h}}-I_{\mathrm{r}}$ since the currents are 180 degrees out of phase.

In the series case, therefore. the resultant reactance of X_{L} and X_{C} is

$$
X=X_{L}-X_{C}
$$

and in the parallel case

$$
X=\frac{-X_{\mathrm{L}} X_{\mathrm{C}}}{X_{\mathrm{L}}-X_{\mathrm{C}}}
$$

Note that in the series circuit the total reartance is negative if X_{c} is larger than X; this indicates that the total reactance is capacitive in such a case. The resultant reactance in a series circuit is always smaller than the larger of the two individual reactances.

In the parallel circuit, the resultant reactance is negative (i.e., capacitive) if X_{I}, is larger than $X_{c} c$, and positive (inductive) if X_{1}, is smaller than X_{C}, but in every case is always larger than
the smaller of the two individual reactances.
In the special case where $X_{L}=X_{c}$ the total reactance is aere in the sorins circuit and infinitely large in the parallel circuit

Reactive Power

In Fig. 2-29A the voltage drop across the inductor is larger than the voltage applied to the circuit. This might seem to be an impossible condition, but it is not; the explanation is that while energy is being stored in the inductor's

Fig. 2.29-Series and parallel circuits containing opposite kinds of reactance.

2-ELECTRICAL LAWS AND CIRCUITS

magnetic field, energy is being returned to the circuit from the capacitor's electric field, and vice versa. This stored energy is responsible for the fact that the voltages across reantances in series can be larger than the voltage applied to them.

In a resistance the flow of current causes heating and a power loss equal to $I^{\prime} l R$. The power in a reactance is equal to $1^{2} \mathrm{X}$, but is not a "loss": it is simply power that is transferred back and forth between the field and the circuit but not used up in heating anything. To distinguish this "nondissipated" power from the power which is actually consumed, the unit of reactive power is called the volt-ampere-reactive, or var, instead of the watt. Reactive power is sometimes called "wattless" power.

IMPEDANCE

When a circuit contains both resistance and reactance the combined effect of the two is called impedance, symbolized by the letter Z. (Impedance is thus a more general term than either resistance or reactance, and is frequently used even for circuits that have only resistance or reatance, although usually with a qualification - such as "resistive impedance" to indicate that the circuit has only resistance, for example.)

The reactance and resistance comprising an inpedance may be connected either in series or in parallel, as shown in lig. 2-30. In these circuits the reactance is shown as a box to indicate that it maty be either inductive or eapacitive. In the serios circuit the current is the stme in both elements, with (generally) different voltages appoaring across the resistance and reactance. In the parallel cireuit the same voltage is applied to both elements, but different currents flow in the two branches.

Fig. 2.30-Series and parallel circuits containing resistance and reactance.

Since in a resistance the current is in phase with the applied voltage while in a reactance it is 90 degrees out of phase with the voltage, the phase relationship between current and voltage in the circuit as a whole may be anything between zero and 90 degrees, depending on the relative amounts of resistance and reactance.

Series Circuits

When resistance and reactance are in series, the impedance of the circuit is

$$
Z=\sqrt{R^{2}+\lambda^{2}}
$$

where $Z=$ impedance in ohms
$R=$ resistance in ohms
$X=$ reatance in ohms.

The reactance may be either capacitive or inductive. If there are two or more reactances in the circuit they may be combined into a resultant by the rules previously given, before substitution into the formula above: similarly for resistances.

The "square root of the sum of the squares" rule for finding impedance in a series circuit arises from the fact that the voltage drops across the resistance and reactance are 90 degrees out of phase, and so combine by the same rule that applies in finding the hypothenuse of a rightangled triangle when the base and altitude are known.

Parallel Circuits

With resistance and reactance in parallel, as in lig. 2-30B, the impedance is

$$
Z=\frac{R X}{\sqrt{R^{2}+X^{2}}}
$$

where the symbols have the same meaning as for series circuits.

Just as in the case of series circuits, a number of reactances in parallel shoukd be combined to find the resultant reactance before substitution into the formula ahove; simitarly for a number of resistanees in parallel.

Equivalent Series and Parallel Circuits

The two cireuits shown in Fig. 2-30 are equivalent if the same eurrent flows when a given voltage of the same frequency is applied, and if the phase angle between voltage and current is the same in both cases. It is in fact possible to "transform" any given series cireuit into an equivalent parallel cireuit. and vice versa.

Transformations of this type often lead to simplification in the solution of complicated eireuits. However, from the standpoint of practical work the usefulness of sueh transformations lies in the fact that the impedance of a circuit maty be modified by the addition of either series or paralled elements, depending on which happens to be most ronvenient in the partisular case. Typi(al applieations are considered later in connection with tuned circuits and transmission lines.

Ohm's Law for Impedance

Ohm's Law can be applied to circuits contait!ing impedance just as readily as to circuits having resistance or reactanec only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ Current in amperes
$Z=1 m p e d a n c e ~ i n ~ o h m s ~$
Fig. 2-31 shows a simple circuit consisting of a resistance of 75 ohms and a reactance of 100 ohms in series. From the formula previound! given, the impedance is

Impedance

```
\(Z=\sqrt{R^{2}+X_{L}{ }^{2}}=\sqrt{(75)^{2}+(100)^{2}}=125\)
ohms.
If the applied voltage is 250 volts, then
```

$$
I=\frac{E}{\bar{Z}}=\frac{250}{125}=2 \text { amperes. }
$$

This current flows through both the resistance and reartance, so the voltage drops are

$$
\begin{aligned}
& E_{\mathrm{k}}=I R=2 \times 75=150 \text { vilts } \\
& E_{\mathrm{X}_{1}}=J \mathrm{~N}_{L}=2 \times 100=200 \mathrm{volit}
\end{aligned}
$$

The simple arit!metical sum of these two drops. 350 volis, is greater that the applied voltage the canse the two voltages are 90 degrees out o! phase. Their actual resultant, when phave is taken into account, is $\sqrt{(\overline{1}} \overline{5} \overline{0})^{2}+(\overline{2} 0 \overline{0})^{2}=2.50$ volte.

Power Factor

In the circuit of Fig. 2-31 an applied e.m.f. of 250 volts results in a current of 2 amperes, giving an apparent power of $250 \times 2=500$ watts. However, only the resistance actually consumes power. The power in the resistance is

$$
P=I^{2} R=(2)^{2} \times 75=300 \text { watts }
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in this example the power factor would be $300 / 500=0.6$. Power factor is frequently expressed as a percontage: in this case, it would be 60 per cent.

Fig. 2.31-Circuit used as an example for impedance colculations.
"Real" or dissipated power is measured in watts; apparent power, to distinguish it from real powor, is moasured in volt-amperes. It is simply the product of volts and amperes and has no direct relationship to the power actually used up or dissipated unless the power factor of the
circuit is known. The power factor of a purely resistive circuit is 100 per cent or 1 , while the power factor of a pure reactance is zero. In this illustration, the reactive power is
$V A R=1^{2} X=(2)^{2} \times 100=400$ volt-amperes.

Reactance and Complex Waves

It was pointed out earlier in this chapter that a complex wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of harmonic frequencies. When such a complex voltage wave is applied to a circuit contaning reactance, the current through the eireuit will not have the same wave shape as the applied voltage. This is because the ractance of an inductor and raparitor depend upon the applied frequency. For the second-hammonic component of a complex wave, the reactance of the inductor is twice and the reactance of the capacitor onehalf their respertive values at the fundamental frequeney; for the third harmonic the inductor seactance is three times and the rapacitar reartance one-third, and so on. Thas the rirouit impedance is different for earh harmonic component.
Just what happens to the current wave shape depends upon the values of resistance and reatance involved and how the circuit is arranged. In a simple cireuit with resistance and induetive reartance in series, the amplitudes of the harmonie currents will be reduced becalase the itductive reactance increases in proportion to frequeney. When caparitature and resistance are in series, the harmonic eurrent is likely to be accentuated berause the caparitive reatance becomes lower as the frequency is raised. When both inductive and capacitive reartance are prosent the shape of the rument wave can be altered in a variety of ways, depending upon the circuit and the "eonstants," or the relative values of L, C, and R, selected.
This property of nonuniform behavior with respert to fundamental and harmonics is an extremely useful one. It is the basis of "filtering," or the suppression of undesited frequencies in favor of a single desired frequence or group of such frequencies.

Transformers for Audio Frequencies

Two coils having mutual inductance constitute a transformer. The coil connected to the source of energy is called the primary coil, and the other is called the secondary coil.

The usefulness of the transformer lies in the fact that electrical energy can be transferred from one circuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example. 115 volts a.c. and only a 44() -volt source is available, a transformer can be used to change the souree voltage to that required. A transformer can be used only with a.c., since no voltage will be in-
duced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be indued in the seeondary only at the instant of closing or opening the primary circuit, since it is only at these times that the field is changing.

THE IRON-CORE TRANSFORMER

As shown in Fig. 2-32, the primary and secondary coils of a transformer may be wound on a core of magnetic material. This increases the indurtance of the coils so that a relatively small number of turns may be used to induce a given value of voltage with a small current. I closed core (one

2-ELECTRICAL LAWS AND CIRCUITS

Fig. 2-32-The transformer. Power is transferred from the primary coil to the secondary by means of the mag. netic field. The upper symbol ot right indicates on iron-core transformer, the lower one an air-core transformer.
having a continuous magnctie path) such as that shown in Fig. 3-3: also tends to insure that practically all of the fied set up by the current in the primary coil will cut the turns of the secondary coil. However, the core introduces a power loss because of hysteresis and eddy currents so this type of construction is nomally practicable only at power and audio frequencies. The diseussion in this section is confincel to transformers operating at such frequencies.

Voltage and Turns Ratio

For a given varying magnetic firld, the voltage induced in a coil in the field will be proportional to the number of turns in the roil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of tums in each coil. In the primary the indured voltage is practically equal to, and opposes, the applied voltage, as deseribed carlior. Hernere.

$$
E_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{p}}} E_{\mathrm{p}}
$$

where $E_{0}=$ secondary voltage
$E_{\mathrm{p}}=$ l'rimary applied voltage
$n_{8}=$ Number of turns on secondary
$n_{\mathrm{p}}=$ Number of turns on primary
The ratio n_{s} / n_{p} is ealled the secondary-to-primary turns ratio of the transformer.

$$
\begin{aligned}
& \text { Example: A transformer has a primary of } 400 \\
& \text { turns and it serondary of } 28(0 \text { turns, and an } \\
& \text { emafon } 11 . \text { volts is applied to the primary. The } \\
& \text { serondary voltane will be } \\
& \qquad \begin{aligned}
E_{\mathrm{s}}=\frac{n_{\mathrm{n}}}{n_{\mathrm{D}}} E_{\mathrm{p}} & =\frac{2800}{400} \times 115=7 \times 115 \\
& =805 \text { volts }
\end{aligned}
\end{aligned}
$$

Also. If an e.m.f. of 80.7 volts is applied to the $28100-\mathrm{tur}$) winding (which then beromes the primary) the output voltage from the 100 -turn winding will bee 11.5 volts.

Either winding of a transformer can be used as the prinatry, providing the winding has enough turns (enough inductance) to induce n voltage equal to the applied voltage without requiring an excessive current flow

Effect of Secondary Current

The current that flows in the primary when no rurrent is taken from the secondary is called the magnetizing current of the transformer. In any properly-designed transformer the primary induetance will be so large that the magnetizing
eurrent will be quite small. The power consumed by the transformer when the secondary is "open" - that is, not delivering power - is only the amome necessary to supply the losses in the iron core and in the resistance of the wire with which the primary is wound.

When power is taken from the secondary winding, the secomdary current sets up a magnetic field that opmoses the field set up by the primary current. But if the induced voltage in the primary is to equal the applied voltage, the original field must be maintained. Consequently, the primary must draw enough additional current to set up a field exactly equal and opposite to the field set up by the serondary current.

In practical calculations on transfor mers it may be assumed that the entire primary current is caused hy the secomdiuy "load." This is justiliable bectuse the magnetizing current should be very small in comparison with the primary "load" current at rated power output.

If the magnetic fiolls set up by the primary and secondary currents are to be equal, the primary current multiplied by the primary turns must equal the secondary eurrent multiplied by the seomdary turns. From this it follows that

$$
I_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} l_{\mathrm{s}}
$$

where $I_{\mathrm{p}}=$ I'rimary current
$I_{\mathrm{B}}=$ Secondary rurrent
$n_{p}=$ Number of turns on primary
$n_{\mathrm{s}}=$ Number of turns on secondars
Fxample: supmose that the secondary of the transformer in the previous example is deliver ing a current of 0.2 ampere to a load. Then the primary rurrent will he

$$
l_{\mathrm{v}}=\frac{u_{\mathrm{v}} l_{\mathrm{s}}}{u_{\mathrm{p}}}=\frac{2 \times(0)}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{am1}
$$

Although the serondary voltage is higher than the primary voltage, the secondary current is lower than the primary current, and by the same ratio.

Power Relationships; Efficiency

A transformer eamot eveate power; it can only transfor it and change the e.m. f . Henee, the power taken from the secondary eamot exeed that taken be the primary from the soure of applied e.m.f. There is always some power loss in the resistance of the poils and in the iron core, so in all practical cases the power taken from the soure will exemed that taken from the secondary. Thus,

$$
l_{0}=n I_{1}
$$

wher $l_{0}=$ Power output from secondary
$l_{\mathrm{i}}=$ Power input to primary
$n=$ Efficiency fartor
The efliciency, n, always is less than I. It is usually expressed as a percentage; if n is 0.65 , for instance, the efficiency is 60 per cent.

Example: A transformer has an efficiency of 8.5 先 at its full-load output of 1.50 watts. The power input to the primary at full seemodars load will be

$$
P_{\mathrm{i}}=\frac{P_{0}}{n}=\frac{150}{0.8 .5}=176.5 \text { watts }
$$

Transformers

A transformer is usually designed to have its highest efficiency at the power output for which it is rated. The efficiency decreases with either lower or higher outputs. On the other hand, the losses in the transformer are relatively small at low output but increase as more power is taken. The amount of power that the transformer can handle is determined by its own losses, because these heat the wire and core. There is a limit to the temperature rise that can be tolerated, because too-high temperature either will melt the wire or cause the insulation to break down. A transformer ahways can be operated at reduced output, even though the efficiency is low, because the actual loss also will be low under such conditions.

The full-load efficiency of snall power transformers such as are used in radio receivers and transmitters usually lies between about 60 per rent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the anount of flux that "cuts" one eoil and not the other is only a small percentage of the total flux. This leakage flux rauses an e.nif. of self-induction; consequently, there are small anounts of leakage inductance associated with both windings of the transformer. Leakage indurtance arts in exartly the same way as an equivalent amount of ordinary induetance inserted in series with the eircuit.

fig. 2-33 - The equivalent circuit of a transformer includes the sffects of leakage inductance and resistance of both primary and secondary windings. The resistance R_{C} is an equivalent resistance representing the core losses, which are essentially constant for any given applied voltage and frequency. Since the se are comparatively small, their effect may be neglected in many approximate calculations.

It has, therefore, a certain reactance, dependirg upon the amount of leakage inductance and the frequency. This reactance is called leakage reactance.

Current flowing through the leakage reactance mauses a voltage drop. This voltage drop increases with increasing current, hence it increases as more power is taken from the secondary. Thus, the greater the secondary current, the smaller the secondary terminal voltage becomes. The resistances of the transformer windings also cause voltage drops when current is flowing; although these voltage drops are not in phase with those caused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transformer.

At power frequencies (60 cycles) the voltage at the secondary, with a reasonably well-designed transformer, should not drop more than about 10
per cent from open-circuit conditions to full load. The drop in voltage may be considerably more than this in a transformer operating at audio frequencies because the leakage reactance increases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without losses or leakage reartance - the following relationship, is truc:

$$
Z_{\mathrm{p}}=Z_{\mathrm{B}} N^{2}
$$

where $Z_{p}=$ Impedance looking into primary terminals from source of power

$$
Z_{s}=\begin{gathered}
\text { Impedance of load connected to } \\
\text { secondary }
\end{gathered}
$$

$N=$ Turns ratio, primary to secondary
'lhat is, a load of any given impedance conneeted to the secondary of the transformer will be transformed to a different value "looking into" the primary from the source of power. The impedance transformation is proportional to the stuluare of the primary-to-secondary turns ratio.

$$
\begin{aligned}
& \text { Example: A transformer has a primary-to- } \\
& \text { secondary turns ratio of } 0.6 \text { (primary has } 6 / 10 \\
& \text { as many turns as the secondary) and a load of } \\
& 3000 \text { ohms is connected to the secondary, The } \\
& \text { impedance looking into the primary then will be } \\
& \begin{array}{r}
Z_{D}=Z_{n} N^{2}=3000 \times(0.6)^{2}=3000 \times 0.36 \\
=1050 \text { ohns }
\end{array}
\end{aligned}
$$

By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any desired value, within practical limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance: thus if the load is a pure resistance the load presented by the primary to the source of power also will be a pure resistance.

The above relationship may be used in practical work even though it is based on an "ideal" transformer. Aside from the normal design requirements of reasonably low intemal losses and low leakage reactance, the only requirement is that the primary have enough inductabce to operate with low magnetizing current at the voltage applied to the primary.
The primary impedance of a transformer as it appears to the sourre of power - is determined wholly by the load cumected to the secondary and by the turns ratio. If the characteristics of the transformer have an appreciable effect on the impedance presented to the power source, the transformer is either poorly designed or is not suited to the voltage and frequency at which it is being used. Nost transformers will operate quite well at voltages from slightly ahove to well below the design figure.

Impedance Matching

Many devices require a specific value of load resistance (or impedance) for optimum operation. The impedance of the actual load that is to dissipate the power may differ widely from this value, so a transformer is used to change the actual load into an impedance of the desired value. This is called impedance matching. From

2-ELECTRICAL LAWS AND CIRCUITS

the preceding,

$$
\therefore=\sqrt{\frac{Z_{10}}{Z_{0}}}
$$

where $N=$ Required turns ratio, primary to seromdary
$\chi_{1}=$ Primary impodane required
$\%_{\mathrm{s}}=$ hupedance of load comberted to soreondary

Example: A racmum-tube af. amplitier refures a load of 5 (m) ohms for ontimmon performantre, and is to be ronnested to a loudspeaker having an impedance of 10 ohnus. The mirns ratu, primary to secondary, regured in the coupling transformer is

$$
N=\sqrt{\frac{Z_{p}}{Z_{8}}}=\sqrt{\frac{5000}{10}}=\sqrt{500}=2.3 .4
$$

The brimary therefore must have 29.4 times as many thrns as the secondary.
Impedance matching means, in general, adjusting the load impedance - by means of a transformer or otherwise - to a desired value. Ilowever, there is also mother meaning. It is possible to show that any source of power will deliver its maximum posisille output when the impedance of the load is equal to the internal impedance of the source. The impedance of the source is said to be "matehed" under this comdition. The efficiency is only 00 per cent in such a case; just as much power is used up; in the source as is delivered to the load. Because of the poom efficiency, this type of impedance matching is limited to cases where only a small amount of power is available and heating from power loss in the source is not important.

Transformer Construction

Transformers usually are designed so that the magnetic path around the core is as short as possible. A short magnetic path means that the transformer will operate with fewer turns, for a given applied voltage, than if the path were long.

Fig. 2.34 - Two common types of transformer construction. Core pieces are interleaved to provide a continuous magnetic path.

A short path also helps to reduce flux leakage and therefore minimizes leakage ractance.

Two core shapes are in conmon use, as shown in Fig. 2-34. In the shell type both windings are
plared on the inner leg, while in the core type the primary and secondary windings may be plared on separate legs, if desired. This is sometimes done when it is necessary to minimize capacitive effects between the primary and secondary, or when one of the windings must operate at very high voltage.

Core material for small transformers is usually silicon steel, called "transformer iron." The core is built up of laminations, insulated from each "ther (by a thin coating of shellac, for example) to prevent the flow of eddy currents. The laminations are interleaved at the emfs to make the magnetic path as continuous as possible and thus reduce flux leakuge.

The number of turns required in the primary for a given applied e.m.f. is determined by the size, shape and type of core material used, and the frequency. The number of turns required is inversely proportional to the cross-sectional area of the core. As a rough indieation, windings of small power transformers frequently have about six to eight turns per volt on a core of $1-s q u a r e-$ inch cross section and have a magnetic path 10 or 12 inches in length. A longer path or smaller ross section requires more turns per volt, and vice versa.

In most transformers the coils are wound in laters, with a thin sheet of treated-paper insulation between each layer. Thicker insulation is used between coils and between coils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 2-35; the principles just discussed apply

Fig. 2.35-The autotransformer is based on the transformer principle, but uses only one winding. The line and load currents in the common winding (A) flow in opposite directions, so that, the resultant current is the difference between them. The voltage across A is proportional to the turns ratio.
equally well. A one-winding transformer is called an autotransformer. The current in the common section (1) of the winding is the difference between the line (primary) and the load (secondary) currents, since these currents are out of phase. Hence if the line and load currents are nearly equal the common section of the winding may be wound with comparatively small wire. This will be the case only when the primary (line) and secondary (load) voltages are not very different. The autotransformer is used chiefly for boosting or reducing the power-line voltage by relatively small amounts.

The Decibel

In most radio communication the received signal is converted into sound. This being the case, it is useful to appraise signal strengt his in terms of relative loudness as registered by the ear. A peculiarity of the ear is that an increase or decrease in louduess is responsive to the ratio of the amounts of power involved, and is practically independent of absolute value of the power. For example, if a person estimates that the signal is "twice as loud" when the transmitter power is increased from 10 watts to 40 watts, he will also estimate that a 400 -watt signal is twice as loud as a 100 -watt signal. In other words, the human ear has a logarithmic response.

This fact is the basis for the use of the relative-power unit called the decibel (abbreviated db.) A change of one decibel in the power level is just detwetable as a change in loudness under ideal conditions. The number of decibels: corresponding to a given power ratio is given by the following formula:

$$
D b .=10 \log \frac{P_{0}}{P_{1}}
$$

Common logarithms (base 10) are used.

Voltage and Current Ratios

Note that the decibel is based on poneer ratios. Voltage or current ratios can be used, but only when the impedance is the same for both values of voltage, or current. The gain of an amplifier camnot be expressed correctly in db. if it is based on the ratio of the out put voltage to the input voltage unless both voltages are measured across the same value of impedance. When the impedance at bothpoints of measurement is the stme, the following formula may be used for voltage or current ratios:

$$
\begin{gathered}
\text { Ib. }=20 \log \frac{V_{2}}{V_{1}} \\
\text { or } 20 \log \frac{I_{2}}{I_{1}}
\end{gathered}
$$

Decibel Chart

The two formulas are shown graphically in Fig. 2-36 for ratios from 1 to 10 . Gains (increases) expressed in thecibels may be added arithmetically; losses (therreases) may be subtracted. A power werease is indicated by prefixing the decibel figure with a minus sign. Thus +6 db . means that the power has been multiplied by 4 , while -6 db . means that the power has been divided by 4 .

Fig. 2-36-Decibel chart for power, voltage and current ratios for power ratios of $1: 1$ to $10: 1$. In determining decibels for current or voltage ratios the currents for voltages) being compared must be referred to the same value of impedance.

The chart may be used for other ratios by adding (or subtracting, if a loss) 10 dl , each time the ratio seale is multiplied by 10, for power ratios: or by adding (or sultracting) 20 dh . cach time the scale is multiplied by 10 for voltage or current ratios. For example, a power ratio of 2.5 is 4 db . (from the chart). A power ratio of 10 times 2.5, or $2 \overline{5}$, is 14 db . $(10+4)$, and a power ratio of 100 times 2.5 , or 250 , is $24(\mathrm{dh} .(20+4)$. A voltage or current ratio of 4 is 12 db ., a voltage or current ratio of 40 is 32 db . $(20+12)$, and a voltuge or eurront ratio of $4(1)$ is 52 db$)(40+12)$.

Radio-Frequency Circuits

RESONANCE IN SERIES CIRCUITS

F'ig. 2-37 shows a resistor, capacitor and inductor connerted in series with a source of alternating current, the frequency of which can be varied over a wide range. At some lou frequency the capacitive reartance will be much larger than the resistance of R, and the inductive reactance will he small compared with either the reactance of C or the resistance of R. (R is assumed to be the same at all frequencies.) On the other hand, at some very high frequency the reactance of C will be very small and the reactance of L will be very large. In cither of these cases the current will be
small, because the reactance is large at either low or high frequencies.

Fig. 2-37-A series circuit containing L, C and R is 'resonant" at the applied frequency when the reactance of C is equal to the reactance of L.

2-ELECTRICAL LAWS AND CIRCUITS

At some intermediate frequency, the reactances of C and L will be equal and the voltage drops across the coil and capacitor will be equal and 180 degrees out of phase. Thercfore they cancel each other completely and the current flow is determined wholly by the resistance, R. At that frequeney the current has its largest possible value, assuming the source voltage to be constant regardless of frequency. A serics circuit in which the inductive and capacitive reactances are equal is said to be resonant.

The principle of resonance finds its most extensive application in radio-frequency circuits. The reactive effects associated with even small inductances and capacitances would place drastic limitations on r.f. circuit operation if it were not possible to "cancel them out" by supplying the right amount of reactance of the opposite kind in other words, "tuning the circuit to resonance."

Resonant Frequency

The frequency at which a series circuit is resonant is that for which $X_{L}=X_{C}$. Substituting the formulas for inductive and capacitive reactance gives

$$
=\frac{1}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in cerles per second
$L=$ Inductance in henrys
$\boldsymbol{C}=$ Capacitance in farads
$\pi=3.14$
These units are inconveniently large for radiofrequency circuits. A formula asing more appropriate units is

$$
=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilocycles (ke.)
$L=$ Indurtance in microhenrys ($\mu \mathrm{h}$.)
$\ell=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{f}$.)
$\pi=3.14$
Example: The resonant frequency of a series circuit containing a $\overline{5}-\mu \mathrm{l}$. inductor and a $35-$ $\mu \mu \mathrm{f}$. сарасіtor is

$$
\begin{aligned}
& =\frac{10^{6}}{2 \pi \sqrt{L C}}=\frac{10^{6}}{6.28 \times \sqrt{5 \times 35}} \\
& =\frac{10^{6}}{6.28 \times 13.2}=\frac{10^{6}}{83}=12,050 \mathrm{kc} .
\end{aligned}
$$

The formula for resonant frequency is not affected by the resistance in the circuit.

Resonance Curves

If a plot is drawn of the current flowing in the circuit of Fig. 2-37 as the frequency is varied (the applied foltage being constant) it would look like one of the curves in Fig. 2-38. The shape of the resonance curve at frequencies near resonance is determined by the ratio of reactance to resistance.

If the reactance of either the coil or capacitor is of the same order of magnitude as the resistance.

Fig. 2-38-Current in a series-resonant circuit with various values of series resistance. The values are arbitrary and would not apply to all circuits, but represent a typical case. It is assumed that the reactances (at the resonant frequency) are 1000 ohms. Note that at frequencies more than plus or minus ten per cent oway from the resonont frequency the current is substantially unaffected by the resistance in the circuit.
the current decreases rather slowly as the frequency is moved in either direction away from resonance. Such a curve is said to be broad. On the other hand, if the reartance is considerably larger than the resistance the current decreases rapidly as the frequency moves away from resonance and the circuit is suid to be sharp. A sharp circuit will respond a great deal more readily to the resonant frequency than to frequencies quite close to resonance; a broad circuit will respond almost equally well to a group or band of frequencies centering around the resonant frequency.

Both types of resonance curves are useful. A sharp circuit gives good selectivity - the ability to respond strongly (in terms of current amplitude) at one clesired frequency and diseriminate against others. A broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.

Fig. 2-39-Current in series-resonant circuits having different Qs. In this graph the current of resonance is assumed to be the same in all coses. The lower the Q , the more slowly the current decreases as the opplied fre. quency is moved away from resonance.

Radio-Frequency Circuits

Most diagrams of resonant circuits show only inductance and capacitance; no resistance is indicated. Nevertheless, resistance is always present. At frequencies up to perhaps 30 Mc . this resistance is mostly in the wire of the coil. Above this frequency energy loss in the capacitor (principally in the solid dielectric which must be used to form an insulating support for the capacitor phats) aloo boomes a fartor. This energy loss is equivalent to resistance. When maximum sharpness ur selectivity is needed the object of design is to reduce the inherent resistance to the lowest possible value.

The value of the reantance of either the inductor or capacitor at the resonant frequency of a series-resonant circuit, divided by the resistance in the cirenit, is called the Q (quality factor) of the circuit, or

$$
Q=\frac{X}{R}
$$

where $Q=$ Quality factor
$X=$ Reatance of either coil or capacitor in ohms
$R=$ Series resistance in ohms

$$
\begin{aligned}
& \text { Example: The indurtor and capacitor in a } \\
& \text { series circuit each have a reactance of } 350 \text { ohms } \\
& \text { at the resonant frerguency. The resistance is } 5 \\
& \text { ohtus. Then the } Q \text { is } \\
& \qquad Q=\frac{X}{R}=\frac{350}{5}=70
\end{aligned}
$$

The effect of () on the sharpness of resonance of a circuit is shown by the curves of Fig. 2-39. In these curves the frequency change is shown in percentage above and below the resonant frequency. (es of $10,20,50$ and 100 are shown; these values cover much of the range commonly used in radio work.

Voltage Rise at Resonance

When a voltage of the resonant frequency is inserted in series in a resonant cireuit, the voltage that appars across either the inductor or caparitor is considerably higher than the applied voltage. The current in the circuit is Cimited only: by the resistance and may have a relatively high vilue; however, the same current flows through the high reactanees of the unductor and capacitor and causes large voltage drops. The ratio of the reactive voltage to the applied voltage is equal to the ratio of reactance to resistance. l'his ratio is also the Q of the circuit. 'lherefore, the voltage across either the inductor or capacitor is equal to (L, where E is the voltage inserted in sories with the circuit.

RESONANCE IN PARALLEL CIRCUITS
When a variable-frequency source of constant voltage is applied to a parallel circuit of the type shown in Fig. 2-40 there is a resonance effect similar to that in a series circuit. However, in this case the "line" current (measured at the point indicated) is smallest at the frequency for which the inductive and capacitive reactances are equal. At that frequency the current through L is exartily canceled by the out-of-phase current through C_{1} so that only the current taken by R !lows in the line. At frequencies below resonance the current through L is larger than that through C, because the reactance of L is smaller and that of C higher at low frequencies; there is only partial cancellation of the two reactive currents and the line current therefore is larger than the current taken by R alone. At frequencies above resontince the situation is reversed and more current fiows through C than through $L_{\text {, }}$ so the line current again increases. The current at resonance, being determined wholly by R. will be small if R is large and large if R is small.

Fig. 2-40-Circuit illustrating paraliel resonance.
The resistance R shown in Fig. 2-40 is not necessarily an actual resistor. In most cases it will be an "equivalent" resistance that represents the energy loss in the circuit. This loss can be inherent in the coil or capacitor, or maty represent energy transferred to a load by means of the resonant circuit. (For example, the resonant circuit may be used for transferring power from a vacuum-tube amplifier to an antennat system.)

Parallel and series resonant circuits are quite alike in some respects. For instance, the circuits given at A and B in Fig. 2-41 will behave identically, when an external voltage is applied, if (1) L and C are the sume in both cases; and (2) R_{D} multiplied by R_{s} equals the square of the reactance (at resonance) of either L or C. When these conditions are met the two circuits will have the

Fig. 2.41-Series and parallel equivalents when the two circuits are resonant. The series resistor, R_{s}, in A san be replaced by an equivalent parallel resistor, R_{p}, in B and vice versa.

2-ELECTRICAL LAWS AND CIRCUITS

same Qs. (These statements are approximate, but are quite accurato if the (is 10 or more.) The cirenit at A is a series circuit if it is viewed from the "insite" --that is, going around the loop formed by L, C and R - so its Q can be found from the ratio of N to $R_{\text {s }}$.
"Thus a circuit like that of Fig. 2-4 A has an equivalent parallel impedance (at resonance) of $R_{\mathrm{p}}=\frac{X^{2}}{R_{\mathrm{y}}} ; X$ is the reactance of either the inductor or the capacitor. Although R_{p} is not an actual resistor, to the source of voltage the parallel-resonant circuit "looks like" a pure resistance of that value. It is "pure" resistance because the inductive and capacitive currents are 180 degrees out of phase and are equal; thus there is no reactive current in the line. In a practical circuit with a high- Q capacitor, at the resonant frequency the parallel impedance is

$$
Z_{\mathrm{r}}=Q X
$$

where $Z_{r}=$ Resistive impedance at resonance
$Q=$ Quality fartor of inductor
$X=$ Reactance (in ohms) of either the inductor or capacitor
Example: The parallel impedance of a circuil with a coil Q of 50 and having imductive and ca. pacitive reactances of 300 ohms will be
$Z_{\mathrm{r}}=Q X=50 \times 300=15.000$ ohms.
At frequencies off resonance the impedance is no longer purely resistive because the inductive and capacitive currents are not equal. The offresonant impedance therefore is complex, and is lower tham the resonant impedance for the reasons previously outlined.

The higher the Q of the circuit, the higher the paralle! impedance. Curves showing the variation of impedame (with frequency) of a parallel circuit have just the same shape as the curves showing the variation of current with frequency in a series circuit. Fig. 2-12 is a set of such curves.

Fig. 2-42-Relative impedance of parallel-resananl circuits with different Qs. These curves are similar to thase in Fig. $\mathbf{2}-42$ far current in a series-resanant circuit. The effect af Q an impedance is mast marked near the resanant frequency.

Parallel Resonance in Low-Q Circuits

The preceding discussion is accurate only for Qs of 10 or more. When the Q is below 10, resonance in a parallel circuit having resistance id
series with the coil, as in lig. 2-41. , is not so easily defined. There is a set of values for L and C that will make the parallel impedance a pure resistance, but with these values the impedance does not have its maximum possible value. Another set of values for L and C will make the paratlel impedaner a maximum, but this maximum value is not a pure resistance. Lither condition could be called "resonance," so with low-(Q circuits it is necessary to distinguish between maximum impedance and resistive impedance parallel resonance. The difference betweon these L and (' values and the equal reactances of a series-resonant circuit is appreciable when the Q is in the vicinity of 5 , and beromes more marked with still lower Q values.

Q of Loaded Circuits

In many applications of resonant circuits the only power lost is that dissipated in the resistance of the circuit itself. At frequencies below 30 Mc . most of this resistance is in the coil. Within limits, increasing the number of turns in the coil inereases the reactance faster than it raises the resistance, so coils for circuits in which the Q must be high may have reartances of 1000 ohms or more at the frequency under consideration.

Fig. 2-43- The equivalent circuit of a resanant circuit delivering pawer to a laad. The resistar R represents the laad resistance. At B the laad is tapped acrass part af l, which by transfarmer action is equivalent ta using
a higher laad resistance acrass the whale circuit.
However, when the circuit delivers energy to a load (as in the case of the resonant circuits used in transmitters) the energy consumed in the circuit itself is usually negligible compared with that consuned by the load. The equivalent of such a circuit is shown in Fig. 2-43.1, where the parallel resistor represents the load to which power is delivered. If the power dissipated in the load is at least ten times as great as the power lost in the inductor and capacitor, the parallel impedance of the resonant circuit itself will be so high compared with the resistance of the load that for all practical purposes the impedance of the combined circuit is equal to the load resistance. Under these conditions the Q of a paralle!resonant circuit loaded by a resistive impedance is

$$
Q=\frac{R}{N}
$$

where $Q=$ Quality factor
$R=$ l'arallel load resistance (ohms)
$x=$ Reactance (ohms) of either the inductor or capacitor
Example: A resistive load of 3000 ohms is connected across a resonant circuit io which the in-

Radio-Frequency Circuits

ductive and capacitive reactances are each 250 ohms. The circuit Q is then

$$
Q=\frac{R}{X}=\frac{3000}{250}=12
$$

The "effective" Q of a circuit loaded by a parallel resistance becomes higher when the reactances are decreased. A circuit loaded with a relatively low resistance (a few thousand ohms) must have low-reactance elements (large capacitance and small inductance) to have reasonably high Q.

Impedance Transformation

An important application of the parallelresonant circuit is as an impedance-matching device in the output circuit of a vacuum-tube r.f. power amplifier. As described in the chapter on vacuum tubes, there is an optimum value of load resistance for each type of tube and set of operating conditions. However, the resistance of the load to which the tube is to deliver power usually is considerably lower than the value required for proper tube operation. To transform the actual load resistance to the desired value the load may be tapped across part of the coil, as shown in lig. $2-43 \mathrm{~B}$. This is equivalent to connecting a higher value of load resistance across the whole circuit, and is similar in principle to impedance transformation with an iron-core transformer. In high-frequency resonant circuits the impedance ratio does not vary exactly as the square of the turns ratio, because all the magnetic flux lines do not cut every turn of the coil. A desired reflected impedance usually must be obtained by experimental adjustment.
When the load resistance has a very low value (say below 100 ohms) it may be connected in series in the resomant circuit (as in Fig. $2-41 \mathrm{~A}$, for example), in which case it is transformed to an equivalent parallel impedance as previously described. If the Q is at least 10 , the equivalent parallel impedance is

$$
Z_{\mathrm{r}}=\frac{\mathrm{X}^{2}}{R}
$$

where $Z_{r}=$ Resistive parallel impedance at resonance
$X=$ Reactance (in ohms) of either the coil or capacitor
$R=$ Ioad resistance inserted in series
If the (Q) is lower than 10 the reactance will have to be adjusted somewhat, for the reasons given in the discussion of low-() circuits, to obtain a resistive impedance of the desired value.

Reactance Values

The charts of Figs. 2-44 and 2-45 show reactance values of inductances and capacitances in the range commonly used in r.f. tuned circuits for the amateur bands. With the exception of the 3.5-4 Mc. band, limiting values for which are shown on the charts, the change in reactance over a band, for either inductors or capacitors, is small enough so that a single curve gives the reactance with sufficient accuracy for most practical purposes.

Fig. 2.44-Reactance chart for inductance values commonly used in amateur bands from 1.75 to 220 Mc

L/C Ratio

The formula for resonant frequency of a circuit shows that the same frequency always will be obtained so long as the product of L and C is constant. Within this limitation, it is evident that L can be large and C small, L small and C large, etc. The relation between the two for a fixed frequency is called the L / C ratio. A high- C circuit

Fig. 2-45-Reactance chart for capacitance values commonly used in amateur bands from 1.75 to 220 Mc .

2-ELECTRICAL LAWS AND CIRCUITS

is one that has more capacitance than "normal" for the frequency; a low- C circuit one that has less than normal capacitance. These terms depend to a considerable extent upon the particular application considered, and have no exact numerical meaning.

LC Constants

It is frequently convenient to use the numerical value of the $L C$ constant when a number of calculations have to be made involving different L / C ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C=\frac{2 \overline{5}, 330}{f^{2}}
$$

where $L_{\alpha}=$ Inductance in microhenrys ($\mu \mathrm{h}$.)
$C=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{f}$.)
$f=$ Frequency in megarycles
Example: Find the inductance reguired to resonate at 3650 kc . (3.65 Mc .) with capacitances of $25,50,100$, and $500 \mu \mu \mathrm{f}$. The $L C$ constant is

$$
\begin{aligned}
& L C=\frac{2 \overline{5}, 330}{(3,65)^{2}}=\frac{25,330}{13.35}=1900 \\
& 25 \mu \mu \text { f. } L=1900 / C=1900 / 25 \\
& =76 \mu \mathrm{~h} . \\
& 50 \mu \mu \mathrm{f} . L=1900 / C=1900 / 50 \\
& =38 \mu \mathrm{~h} \text {. } \\
& 100 \mu \mu \mathrm{f} . L=1900 / C=1900 / 100 \\
& =19 \mu \mathrm{~h} \text {. } \\
& 500 \mu \mu \mathrm{f}, L=1900 / C=1900 / 500 \\
& =3.8 \mu \mathrm{~h} \text {. }
\end{aligned}
$$

COUPLED CIRCUITS

Energy Transfer and Loading

Two circuits are coupled when energy can be transferred from one to the other. The circuit delivering power is called the primary circuit; the one recejving power is called the secondary circuit. The power may be practically all dissipated in the secondary circuit itself (this is usually the case in receiver circuits) or the secondary may simply act as a medium through which the power is transferred to a load. In the latter case, the coupled circuits may act as a radio-frequency impedance-matching device. The matching can be accomplished by adjusting the loading on the secondary and by varying the amount of coupling between the primary and secondary.

Coupling by a Common Circuit Element

One method of coupling between two resonant circuits is through a circuit element common to both. The three common variations of this type of coupling are shown in Fig. 2-46; the circuit element common to both circuits carries the subscript M. At A and B current circulating in $L_{1} C_{1}$ flows through the common element, and the voltage developed across this element causes current to flow in $L_{2} C_{2}$. At $\mathrm{C}, C_{\mathrm{M}}$ and C_{2} form a capacitive voltage divider across $L_{1} C_{1}$, and some of the voltage developed across $L_{1} C_{1}$ is applied across $L_{2} C_{2}$.

Fig. 2-46-Three methods of circuit coupling.
If both circuits are resonant to the same frequency, as is usually the case, the value of coupling reactance required for maximum energy transfer can be approximated by the following, based on $L_{1}=L_{2}, C_{1}=C_{2}$ and $Q_{1}=Q_{2}$:
(A) $L_{\mathrm{M}} \approx L_{1} / Q_{1} ;$ (B) $C_{\mathrm{M}} \approx Q_{1} C_{1}$; (C) $C_{\mathrm{M}} \approx$ C_{1} / Q_{1}.

The coupling can be increased by increasing the above coupling elements in A and C and decreasing the value in I 3 . When the coupling is increased, the resultant bandwidth of the combination is increased, and this principle is sometimes applied to "broad-band" the circuits in a transmitter or receiver. When the coupling elements in A and C are decreased, or when the coupling clement in I is increased, the coupling betwren the circuits is decreased below the critical coupling value on which the above approximations are based. Less than critical coupling will decrease the bandwidth and the energy transfer; the principle is often used in receivers to improve the selectivity.

Inductive Coupling

Figs. 2-47 and 2-48 show inductive coupling, or coupling by means of the mutual inductance between two coils. Circuits of this type resemble the iron-core transformer, but because only a part of

Fig. 2-47-Single-tuned inductively coupled circuits.

Coupled Circuits

the magnetic flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core transformer do not hold.

Two types of inductively-coupled circuits are shown in Fig. 2-47. Only one circuit is resonant. The circuit at A is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. Circuit 13 is used prineipally in transmitters, for coupling a radiofrequency amplifier to a resistive load.

In these circuits the coupling between the primary and sceondary coils usually is "tight" that is, the coefficient of eoupling between the coils is large. With very tight coupling either circuit operates nearly as though the device to which the untuned coil is connected were simply tapmed across a corresponding number of turns on the tuned-circuit coil, thus either circuit is approximately equivalent to l"ig. $2-43 \mathrm{BB}$.

By proper choice of the number of turns on the untuned coil, and by adjustment of the coupling, the parallel impedance of the tuned circuit may be adjusted to the value required for the proper operation of the device to which it is connected. In any case, the maximum energy transfer possible for a given cocfficient of coupling is obtained when the reactance of the untuned coil is equal to the resistance of its load.

The Q and parallel impedance of the tuned circuit are reduced by compling through an unfuned coil in much the same way as by the tapping arrangement shown in Fig. 2-4313.

Coupled Resonant Circuits

When the primary and secondary circuits are both tuned, as in Fig. 2-48, the resonance effects

Fig. 2-48-Inductively-coupled resonant circuits. Circuit A is used for high-resistance loads (load resistance much higher than the reactance of either L_{2} or C_{2} at the resonant frequency). Circuit B is suitable for low resistance loads (load resistance much lower than the reactance of either L_{2} or C_{2} at the resonant frequency).
in both eircuits make the operation somewhat more complicated than in the simpler eircuits just considered. Imagine first that the two circuits are not coupled and that each is independently tuned to the resonant frequency. The impedance of each will be purely resistive. If the primary circuit is connected to a source of r.f. energy of the resonant
frequency and the secondary is then loosely coupled to the primary, a current will flow in the secondary circuit. In flowing through the resistance of the secondary circuit and any load that may be connccted to it, the current causes a power loss. This power must come from the energy source through the primary circuit, and manifests itself in the primary as an increase in the equivalent resistance in series with the primary coil. IIence the Q and parallel impedance of the primary circuit are decreased by the coupled secondary. As the coupling is made greater (without changing the tuning of either circuit) the coupled resistance becomes larger and the parallel impedance of the primary continues to decrease. Aso, as the coupling is made tighter the amount of power transferred from the primary to the secondary will increase to a maximum at one value of coupling, called critical coupling, but then decreases if the coupling is tightened still more (still without changing the tuning).
Critical coupling is a function of the $Q s$ of the two erreuits. A higher coeflicient of coupling is required to reach eritical coupling when the (S are low; if the (ss are high, as in receiving applications, a coupling coefficient of a few per cent may give erritical coupling.

With loaded circuits such as are used in transmitters the Q may be too low to give the desired power transfer even when the coils are coupled as tightly as the physical construction permits. In such case, increasing the Q of cither circuit will be helpful, although it is generally better to increase the (Q of the lower-Q circuit rather than the reverse. The Q of the parallel-funed primary (input) circuit can be increased by decreasing the L / C ratio hecause, as shown in connection with lig. 2-43, this circuit is in effect loaded by a parallel resistance (cffect of coupled-in resistance). In the parallel-tuned secondary cireuit, lig. 2-48. 1 , the Q can be increased, for a fixed value of load resistance, either by decreasing the L / C ratio or by tapping the load down (sce liig. $2-43$), In the series-tuned secondary circuit, Fig. $2-48 \mathrm{~B}$, the Q may be increased by increasing the L / C ratio. There will generally be no difficulty in securing sufficient coupling, with practicable eoils, if the product of the $Q s$ of the two tuned circuils is 10 or tume. A amellor prodiot. will suffice if the coil construction permits tight coupling.

Selectivity

In Fig. 2-47 only one circuit is tuned and the selectivity curve will be essentially that of a single resonant circuit. As stated, the effective Q depends upon the resistance conneeted to the untuned coil.

In Fig. 2-48, the selectivity is the same as that of a single tuned circuit having a Q equal to the product of the Qs of the individual circuits - if the coupling is well below critical (this is not the condition for optimum power transfer discussed immediately above) and both circuits are tuned to resonance. The Q s of the individual circuits

Fig. 2.49-Showing the effect on the output voltage from the secondary circuit of changing the coefficient of coupling between two resonant circuits independently tuned to the same frequency. The voltage applied to the primary is held constant in amplitude while the frequency is varied, and the output voltage is measured across the secondary.
are affected by the degree of coupling, because each couples resistance into the other; the tighter the coupling, the lower the individual Q s and therefore the lower the over-all selectivity.

If both circuits are independently tuned to resonance, the over-all selectivity will vary about as shown in Fig. 2-49 as the coupling is varicd. With loose coupling, A, the output voltage (across the secondary circuit) is small and the sclectivity is high. As the coupling is increased the secondary voltage also increases until critical coupling, l, is reached. At this point the output voltage at the resonant frequency is maximum but the selectivity is lower than with looser coupling. At still tighter coupling, C, the output voltage at the resomant frequency decreases, but as the frequency is varicd either side of resonance it is found that there are two "humps" to the curve, one on either side of resonance. With very tight coupling, D, there is a further decrease in the output voltage at resonance and the "humps" are farther away from the resonant frequency. Curves such as those at C and D are nelled flattopped because the output voltage does not change much over an appreciable band of frequencies.

Note that the off-resonance humps have the same maximum value as the resonant output voltage at critical coupling. These humps are caused by the fact that at frequencies off resonance the secondary circuit is reactive and couples reactance as well as resistance into the primary. The coupled resistance decreases off resonance, and each hump represents a new condition of critical coupling at a frequency to which the primary is tumed by the additional coupled-in reactance from the secondary.

Fig. 2-50 shows the response curves for various degrecs of coupling between two circuits tuned to a frequency f_{o}. Equal Q s are assumed in both circuits, although the curves are representative if the Q s differ by ratios up to 1.5 or even 2 to 1 . In these cases, a value of $Q=\sqrt{Q_{1} Q_{2}}$ should be used.

Band-Pass Coupling

Over-coupled resonant circuits are useful where substantially uniform output is desired over a continuous band of frequencies, without read-

Fig. 2-50-Relative response for a single tuned circuit and for coupled circuits. For inductively-coupled circuits
(Figs. 2-46A and $2-48 \mathrm{~A}$), $k=\frac{M}{\sqrt{L_{1} L_{2}}}$ where M is the mutual inductance. For capacitance-coupled circuits (Figs. 2.46 B and $2-46 \mathrm{C}), k \cong \frac{\sqrt{C_{1} C_{2}}}{C_{M}}$ and $k \cong \frac{C_{M}}{\sqrt{C_{1} C_{2}}}$, respectively.
justment of tuning. The width of the dat top of the resonance curve depents on the $Q s$ of the two circuits as well as the tightness of coupling; the frequency separation between the humps will increase, and the curve becone more flat-topped, as the Q s are lowered.

Band-pass operation also is secured by tuning the two circuits to slightly different frequencies, which gives a double-humped resonance curve even with loose coupling. This is called stagger tuning. However, to secure adequatc power transfer over the frequency band it is usually necessary to use tight coupling and experimentally adjust the circuits for the desired performince.

Link Coupling

A modification of inductive coupling, called link coupling, is shown in Fig. 2-51. This gives

Fig. 2-51-Link coupling. The mutual inductances at both ends of the link are equivalent to mutual inductance between the tuned circuits, and serve the same purpose.
the cffect of indurtive coupling between two coils that have no mutual inductance; the link is simply a means for providing the mutual inductance. The total mutual inductance between two coils coupled by a link cannot be made as great as if the coils themsclves were coupled. This is because the coeflicient of coupling between aircore coils is considerably less than 1, and since

Impedance Matching

there are two coupling points the over-all coupling coefficient is less than for any pair of coils. In practice this need not be disadvantageous because the power transfer can be made great enough by making the tuned circuits sufficiently high-Q. Link coupling is convenient when ordinary inductive coupling would be impracticable for constructional reasons.

The link coils usually have a small number of turns compared with the resonant-circuit coils. The number of turns is not greatly important, because the cocfficient of coupling is relatively independent of the number of turns on either coil; it is more important that both link coils should have about the same inductance. The length of the link between the coils is not critical if it is very small compared with the wavelength, but if the length is more than about one-twentieth of a wavelength the link operates more as a transmission line than as a means for providing mutual inductance. In such case it should be treated by the methods described in the chapter on Transmission limes.

IMPEDANCE-MATCHING CIRCUITS

The coupling circuits discussed in the preceding section have been based either on inductive coupling or on coupling through a common circuit element between two resonant circuits. These are not the only circuits that may be used for transferring power from one device to another. There is, in fact, a wide variety of such circuits

$R_{\text {in }}>R$
$X_{L}=\sqrt{R R_{\text {in }}-R^{2}}$
$X_{C}=\frac{R R_{\text {in }}}{X_{L}}$
(B)

$R_{\text {in }}<R$
$X_{c}=R \sqrt{\frac{R_{\text {in }}}{R-R_{\text {in }}}}$
$X_{L}=\frac{R R_{\text {in }}}{X_{c}}$
(C)

$R_{1}>R_{2}$
$X_{C_{1}}=\frac{R_{1}}{Q}$
$X_{c_{2}}=R_{2} \sqrt{\frac{R_{1} / R_{2}}{Q^{2}+1-\left(R_{1} / R_{2}\right)}}$
$X_{L}=\frac{Q R_{1}+\left(R_{1} R_{2} / X_{C_{2}}\right)}{Q^{2}+1}$
(D)

Fig. 2-52-Impedance-matching networks adaptable to amateur work. (A) L network for transforming to a higher value of resistance. (B) L network for transforming to a lower resisfance value. (C) Pi network. R_{1} is the larger of the two resistors; Q is defined as $R_{1} / X_{\text {c1 }}$. (D) Tapped tuned circuit used in some receiver applications. The impedance of the tuned circuit is transformed to a lower value, $R_{i n}$, by the capacitive divider.
available, all of them being classified generally as impedance-matching networks. Several networks frequently used in amateur equipment are shown in Fig. 2-52.

The L Network

The L network is the simplest possible im-pedance-matching circuit. It closely resembles an ordinary resonant circuit with the load resistance, R, Fig. 2-52, either in series or parallel. The arrangement shown in Fig. 2-52A is used when the desired impedance, R_{IN}, is larger than the actual load resistance, R, while Fig. $2-52 \mathrm{~B}$ is used in the opposite case. The design equations for each case are given in the figure, in terms of the circuit reactances. The reactances may be converted to inductance and capacitance by means of the formulas previously given or taken directly from the charts of Figs. 2-44 and 2-45.

When the impedance transformation ratio is large - that is, one of the two impedances is of the order of 100 times (or more) larger than the other - the operation of the circuit is exactly the same as previously discussed in connection with impedance transformation with a simple $L C$ resonant circuit.

The Q of an L network is found in the same way as for simple resonant circuits. That is, it is equal to X_{L} / R or $R_{\mathrm{IN}} / X_{\mathrm{C}}$ in Fig. 2-52A, and to $X_{\mathrm{L}} / R_{1 \mathrm{~N}}$ or R / X_{C} in Fig. 2-52B. The value of Q is determined by the ratio of the impedances to be matched, and cannot be selected independently. In the equations of Fig. 2-52 it is assumed that both R and $R_{1 \times}$ are pure resistances.

The Pi Network

The pi network, shown in Fig. 2-52C, offers more flexibility than the L since the operating Q may be chosen practically at will. The only limitation on the circuit values that may be used is that the reactance of the series arm, the inductor L in the figure, must not be greater than the square root of the product of thetwo values of resistive impedance to be matched. As the circuit is applied in amateur equipment, this limiting value of reactance would represent a network with an undesirably low operating Q, and the circuit values ordinarily used are well on the safe side of thes limiting values.

In its principal application as a "tank" circuit matching a transmission line to a power amplifier tube, the load R_{2} will generally have a fairly low value of resistance (up to a few hundred ohms) while R_{1}, the required load for the tube, will be of the order of a few thousand ohms. In such a case the Q of the circuit is defined as $R_{1 /} X_{\mathrm{Cl}}$, so the choice of a value for the operating Q immediately sets the value of $X_{\mathrm{C} 1}$ and hence of C_{1}. The values of $X_{C 2}$ and X_{L} are then found from the equations given in the figure.

Graphical solutions of these equations for the most important practical cases are given in the chapter on transmitter design in the discussion of plate tank circuits. The L and C values may be calculated from the reactances or read from the charts of Figs. 2-44 and 2-45.

2-ELECTRICAL LAWS AND CIRCUITS

Fig. 2-53-Basic filter sections and design formulas. In the above formulas R is in ohms, C in farads, l in henrys, and f in cycles per second.

Tapped Tuned Circuit

The tapped tuned circuit of Fig. 2-52C is useful in some recciver applications, where it is desirable to use a high-impedance tuned circuit as a lower-impedance load. When the Q of the inductor has been determined, the capacitors can be selected to give the desired impedance transformation and the necessary resultant capacitance to tume the circuit to resonance.

FILTERS

A filter is an electrical circuit configuration (network) designed to have specific chararteristics with respect to the transmission or attenuation of various frequencies that may be applied to it. There are three gencral types of filters: lowpass, high-pass, and band-pass.

A low-pass filter is one that will permit all frequencies below a sperified one called the cut-off frequency to be transmitted with little or no loss, but that will attenuate all frequencies above the cut-off frequency.

A high-pass filter similarly has a cut-off frequency, above which there is little or no loss in transmission, but below which there is considerable attenuation. Its bchavior is the opposite of that of the low-pass filter.

A band-pass filter is one that will transmit a selected band of frequencies with substantially no loss, but that will attenuate all frequencies rither higher or lower than the desired band.

The pass band of a filter is the frequency spectrum that is transmitted with little or no loss. The transmission characteristic is not necessarily perfectly uniform in the pass band, but the variations usually are small.

The stop band is the frequency region in which attenuation is desired. The attenuation may vary in the stop band, and in a simple filter usually is least near the cut-off frequency, rising to high values at frequencies considerably removed from the cut-off frequency.

Filters are designed for a specific value of purely resistive impedance (the terminating impedance of the filter). When such an impedance is connected to the output terminals of the filter, the iupedance looking into tho input terminals has essentially the same value, throughout most of the pass band. Simple filters do not give perfectly uniform performance in this respect, but the input impedance of a properly-terminated filter can be made fairly constant, as well as closer to the design value, over the pass band by using m -derived filter sections.

A discussion of filter design principles is beyond the scope of this Handbook, but it is not difficult to build satisfactory filters from the circuits and formulas given in Fig. 2-53. Filter circuits are built up from elementary sections as shown in the figure. These sections can be used alone or, if greater attenuation and sharper cut-off (that is, a more rapid rate of rise of attenuation with frequency beyond the cut-off frequency) are required, several sections can be connected in series. In the low- and high-pass filters, f_{c} repre .
sents the cut-off frequency, the highest (for the low-pass) or the lowest (for the high-pass) frequency transmitted without attenuation. In the band-pass filter designs, f_{1} is the low-frequency cut-off and f_{2} the high-frequency cut-off. The units for L, C, R and f are henrys, farads, ohms and cycles per second, respectively.

All of the types shown are "unbalanced" (one side grounded). For use in balanced circuits (e.g., 300 -ohm transmission line, or push-pull audio circuits), the series reactances should be equally divided between the two legs. Thus the balanced constant- $k \pi$-section low-pass filter would use two inductors of a value equal to $L_{k} / 2$, while the balanced constant-k π-section high-pass filter would use two capacitors each equal to $2 C_{\mathbf{k}}$.

If several low- (or high-) pass sections are to be used, it is advisable to use m-derived end sections on either side of a constant- k center section, although an m-derived center section can be used. The factor m determines the ratio of the cut-off frequency, f_{c}, to a frequency of high attenuation, f_{∞}. Where only one m-derived section is used, a value of 0.6 is generally used for m, although a deviation of 10 or 15 per cent from this value is not too serious in amateur work. For a value of $m=0.6, f_{\infty}$ will be $1.25 f_{c}$ for the low-pass filter and $0.8 f_{\mathrm{c}}$ for the high-pass filter. ()ther values can be found from
$m=\sqrt{1-\left(\frac{f_{c}}{f_{\infty}}\right)^{2}}$ for the low-pass filter an r^{\prime}
$m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$ for the high-pass filter.
The output sides of the filters shown should be terminated in a resistance equal to R, and there should be little or no reactive component in the termination.

PIEZOELECTRIC CRYSTALS

A number of crystalline substances found in nature have the ability to transform mechanical strain into an electrical charge, and vice versa. This property is known as the piezoelectric effect. A small plate or bar cut in the proper way from a quartz crystal and placed between two conducting electrodes will be mechanically strained when the electrodes are connerted to a source of voltage. Conversely; if the erystal is squeezed between two electrodes a voltage will be developed between the electrodes.
l'iezoelectric crystals can be used to transform mechanical energy into electrical energy, and vice versa. 'They are used in microphones and phonograph pick-ups, where mechanical vibrations are transformed into alternating voltages of corresponding frequency. They are also used in headsets and loudspeakers, transforming electrical energy into mechanical vibration. Crystals of Rochelle salts are used for these purposes.

Crystal Resonators

Crystalline plates also are mechanical resonators that have natural frequencies of vibration

2-ELECTRICAL LAWS AND CIRCUITS

ranging from a few thousand cycles to tens of megacycles per second. The vibration frequency depends on the kind of crystal, the way the plate is cut from the natural crystal, and on the dimensions of the plate. The thing that makes the crystal resonator valuable is that it has extremely high Q, ranging from 5 to 10 times the Qs obtainable with good $L C$ resonant circuits.

Analogies can be drawn between various mechanical properties of the crystal and the electrical characteristics of a tuned circuit. This leads to an "equivalent circuit" for the crystal. 'The electrical coupling to the crystal is through the holder plates between which it is sandwiched; these plates form, with the crystal as the dielec:tric, a small capacitor like any other capacitor constructed of two plates with a dielectric between. The crystal itself is equivalent to a seriesresonant circuit, and together with the capacitance of the holder forms the equivalent circuit shown in Fig. 2-54. At frequencies of the order of 450 kc ., where crystals are widely used as resonators, the equivalent L may be several henrys and the equivalent C only a few hundredths of a

Fig. 2-54-Equivalent circuit of a crystal resonator. L, C and R are the electrical equivalents of mechanical properties of the crystal; C_{l} is the capacitance of the holder plates with the crystol plate between them.

micromicrofarad. Although the equivalent R is of the order of a few thousand ohms, the reactance at resonance is so high that the Q of the crystal likewise is high.

A circuit of the type shown in Fig. 2-5t has a series-resonant frequency, when viewed from the circuit terminals indicated by the arrowheads, determined by L and C only: At this frequency the cireuit impedance is simply equal to R, providing the reactance of C_{14} is large compared with
R (this is generally the case). The circuit also has a parallel-resonant frequency determined by L and the equivalent capacitance of C and C_{h} in series. Since this equivalent capacitance is smaller than C alone, the parallel-resonant frequency is higher than the series-resonant frequency. The separation between the two resonant frequencies depends on the ratio of C_{h} to C, and when this ratio is large (as in the case of a crystal resonator, where C_{b} will be a few $\mu \mu \mathrm{f}$. in the average case) the two frequencies will be quite close together. A separation of a kilocycle or less at 455 kc . is typical of a quartz crystal.

Fig, 2-55 shows how the resistance and react-
Fig. 2-55-Re= actance and re-
 sistance vs, frequency of a circuit of the type shown in Fig. 2-54. Actual values of reactance, resistance and the separation between the series- and parallel-resonant frequencies, f_{1}, and f_{2}, respectively, depend on the circuit constants.
ance of such a circuit vary as the applied frequency is varied. The reactance passes through zero at both resonant frequencies, but the resistance rises to a large value at parallel resonance, just as in any tuned circuit.

Quartz crystals may he used either as simple resonators for their selective properties or as the frequency-controlling elements in oscillators as described in later chapters. The series-resonant frequency is the one principally used in the former case, while the more common forms of oscillator circuit use the parallel-resonant frequency.

Practical Circuit Details

COMBINED A.C. AND D.C.

Most ratio circuits are built around vacuum tubes, and it is the nature of these tubes to require direct current (usually at a fairly high voltage) for their operation. They convert the direct current into an alternating current (and sometimes the reverse) at frequencies varying from well down in the audio range to well up in the superhigh range. The conversion process almost invariably requires that the direct and alternating currents meet some where in the circuit.

In this meeting, the a.c. and d.c. are actually combined into a single current that "pulsates" (at the a.c. frequency) about an average value equal to the direct current. This is shown in Fig. 2-56, It is convenient to consider that the alternating current is superimposed on the direct current, so we may look upon the actual current as having two components, one d.c. and the other a.c.

Fig. 2-56-Pulsating d.c., composed of an alternating current or voltage superimposed on a sfeady direct current or voltage.

In an alternating current the positive and negative alternations have the same average amplitude, so when the wave is superimposed on a direct current the latter is alternately increased and decreased by the same amount. There is thus no average change in the direct current. If a d.c. instrument is being used to read the current, the reading will be exactly the same whether or not the a.c. is superimposed.

However, there is actually more power in such a combination current than there is in the direct

Practical Circuit Details

current alone. This is because power varies as the square of the instantaneous value of the current, and when all the instantaneous squared values are averaged over a cycle the total power is greater that the d.c. power alone. If the a.e. is a sine wave having a praik value just equal to the d.c., the power in the rircuit is $1 . \bar{s}$ times the d.c. power. An instrument whose readings are proportional to power will show such an increase.

Series and Parallel Feed

Fig. $2-57$ shows in simplified form how d.c. and a.c. may be combined in a vacuum-tube circuit. In this case, it is assumed that the a.c. is at radio frequency, as suggested by the coil-andcapacitor tuned circuit. It is also assumed that r.f. current can easily flow through the d.c. supply; that is, the impedance of the supply at radio frequencies is so small as to be negligible.

In the circuit at the left, the tube, tuned circuit, and d.c. supply all are comected in series. The direct current flows through the r.f. coil to get to the tube; the r.f. current generated by the tube

Fig. 2-57-Illustrating series and parailel feed.
flows through the d.e. supply to get to the tumed circuit. This is series feed. It works because the impedance of the d.c. supply at radio frequencies is so low that it does not affect the flow of r.f. current, and because the d.c. resistance of the coil is so low that it does not affect the flow of direct current.

In the circuit at the right the direct current does not flow through the r.f. tuned circuit, but instead gress to the tube through a sccond coil, RFC (radio-frequency choke). Direct current cannot flow through L beculuse a blocking capacitance, C, is placed in the cireuit to prevent it. (Without C, the d.c. supply would be shortcircuited by the low resistance of L.) On the other hand, the r.f. current generated by the tube can easily flow through C to the tuned circuit because the capacitance of C is intentionally chosen to have low reactance (compared with the impedance of the tuncd circuit) at the radio frequency. The r.f. current cannot flow through the d.c. supply because the inductance of $R F C$ is intentionally made so large that it has a very high reactance at the radio frequency. The resistance of $R F C$, however, is too low to have an appreciable effert on the flow of direct current. The two currents are thus in parallel, hence the name parallel feed.

Either type of feed may be used for both a.f. and r.f. circuits. In parallel feed there is no d.c. voltage on the a.c. circuit, a desirable fcature from the viewpoint of safety to the operator, because the voltages applied to tubes - particularly transmitting tubes - are dangerous. On the other hand, it is somewhat difficult to make an r.f. choke work well over a wide range of frequencies. Series feed is often preferred, therefore, because it is relatively easy to keep the impedance between the a.c. circuit and the tube low.

Bypassing

In the series-feed circuit just discussed, it was assumed that the d.c. supply had very low impedance at radio frequencies. This is not likely to be true in a practical power supply, partly because the normal physical separation between the supply and the r.f. circuit would make it necessary to use rather long connecting wires or leads. At radio frequencies, even a few feet of wire can have fairly large reactance - too large to be considered a really "low-impedance" connection.

An actual circuit would be provided with a bypass capacitor, as shown in Fig. 2-58. Capacitor C is chosen to have low reactance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short comnerting wires. Ilence the r.f. current will tend to flow through it rather than through the d.c. supply.

To be effective, the reactance of the bypass

Fig. 2.58-Typical use of a bypass capacitor and r.f. choke in a series-feed circuit.

capacitor should not be more than one-tenth of the impedance of the bypassed part of the circuil. Very often the latter impedance is not known, in which case it is desirable to use the largest capacitance in the bypass that circumstances permit. To make doubly sure that r.f. current will not flow through a non-r.f. circuit such as a power supply, an r.f. choke may be connected in the lead to the latter, as shown in Fig. 2-58.

The same type of bypassing is used when audio frequencies are present in addition to r.f. Because the reactance of a capacitor changes with frequency, it is readily possible to choose a capacitance that will represent a very low reactance at radio frequencies but that will have such high reartance at audio frequencies that it is practically an open circuit. A capacitance of $0.001 \mu \mathrm{f}$. is practically a short circuit for r.f., for example, but is almost an open circuit at audio frequencies.

2 -ELECTRICAL LAWS AND CIRCUITS

(The artual value of comaritance that is usable will be modified be the impedances concerned.) Bypass capacitors also are used in audio eirenits to earry the audio frequencies around a d.c. supply.

Distributed Capacitance and Inductance

In the discussions earlier in this chapter it was asumed that a capacitor has only capacitance and that an inductor has only inductance. lonfortunately, this is not striotly true. There is always a eertain amont of inductance in a comductor of any lenuth, and a capacitor is bound to have a little inductance in addition to its intended caparitance. Niso, there is always eaparitance betwern two conductors or botwem parts of the same conductor, and thos there is appreciable caparitance between the turns of an inductance coil.

This distributed inductance in a capacitor and the distributed capacitance in an indurtor have important practical offects. Actually, every cat pacitor is a tumed cirouit, resonant at the frequency where its colparitance and distributed inductance have the same reactance. The same thing is true of a coil and its distributed capacitance. At frequencies well below these natural resonances, the capacitor will act like a normal catpacitance and the coil will act like a normal inductance. Near the natural resonant points, the coil and capacitor ate like self-tuned circuits. Ahove resonance, the capacitor acts like an inductor and the inductor acts like a capacitor. Thus there is a limit to the amount of capacitance that can be used at a riven frequenes. There is a similar limit to the inductane that can he used. It audio freguencies, mpacitances measured in microfarads and inductances measured in henrys are practicable. At low and medium radio frequencies, inductances of a few millihenrys and capacitances of a few thomsand micromierofarads are the largest practicable. At high radio frequencies, usable inductance values drop to a few microhenrys and capacitances to a few hundred micromicrofarads.

Distributed eapacitance and inductance are important not only in r.f. thued circuits, but in bypassing and choking as well. It will be appreciated that a bepass ablacitor that actually acts like an inductance, or an r.f. choke that acts like a low-reactance capacitor, cannot work as it is intended they should.

Grounds

Throughout this book there are frequent references to ground and ground potential. When a connection is said to be "grounded" it does not necessarily mean that it aclually goes to earth. What it meuns is that an arthal earth connection to that point in the circuit should not disturb the operation of the rircuit in any way. The term also is used to indicate a "common" point in the eireuit where power supplies and metallie supports (such as a metal chassis) are electrically tied together. It is general practice, for example, to "ground" the negative terminal of ad.e, power supply, and to "ground" the filament or beater
power supplies for vacuum tubes. Since the eathode of a vacuum tube is a junction point for grid and plate voltage supplies, and since the various circuits connected to the tube elements have at least one point connected to cathode, these points also are "returned to ground." Ground is therefore a common reference point in the radio circuit. "Ground potential" means that there is no "difference of potential" - that is. no voltuge - between the rireuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a ciruit may be either sirgle-ended (unbalanced) or balanced. In a single-ended rireuit, one side of the circuit is connected to ground. In a balatoed circuit, the electrical midpoint is comerted to ground, so that the circuit has two ends each at the same voltage "above" ground.

Typieal single-ended and balanced circuits are shown in lig. 2-5!. li.f. circuits are shown in the upper row, while iron-core transformers (such

Fig. 2.59-Single-ended and balanced circuits.
as are used in power-supply and audio (ineuits) are shown in the lower row. The r.f. cireuits may be balanced either by connecting the center of the coil to ground or by using a "balanced" or "split-stator" capacitor and connecting its rotor to ground. In the iron-core transformer, one or both windings may be tapped at the center of the winding to provide the ground connection.

Shielding

Two circuits that are physically near each other usually will be coupled to each other in some degree even though no coupling is intended. The metallic parts of the two circuits form a small capacitance through which energy can be transferred by means of the electric field. Nso, the magnetic field about the coil or wiring of one circuit can couple that circuit to a serond through the latter's coil and wiring. In many cases these unwanted couplings must be prevented if the circuits are to work properly.

Capacitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallie containers, called shields. The electric field from the circuit components does not penctrate the shield. A metallic plate, called a baffle shield, inserted be-

U.H.F. Circuits

tween two components also may suffice to prevent electrostatic coupling between them. It should be large enough to make the components invisible to each other.

Similar metallic shielding is used at radio frequencies to prevent magnetic coupling. The shielding effect for magnetic fields increases with frequeney and with the conductivity and thickness of the shielding material.

I closed shield is required for good magnetic shiclding; in some cases separate shields, one about each coil, may be required. The baffle shield is rather ineffective for magnetic shielding, although it will give partial shielding if placed at right angles to the axes of, and between, the coils to be shielded from each other.

Shielding a coil reduces its inductance, because part of its field is canceled by the shieid. Also,
there is always a small amount of resistance in the shield, and there is therefore an energy loss. This loss raises the effective resistance of the coil. The decrease in inductance and increase in resistance lower the Q of the coil, but the reduction in inductance and Q will be small if the spacing between the sides of the coil and the shield is at least half the coil diameter, and if the spacing at the ends of the coil is at least equal to the eoil diameter. The higher the conductivity of the shied material, the less the effect on the inductance and Q. Copper is the best material, but aluminum is quite satisfactory.

For good magnetic shielding at audio frequencies it is necessary to enclose the coil in a container of high-permeability iron or steel. In this case the shield can be quite close to the coil without harming its performance.

U.H.F. Circuits

RESONANT LINES

In resonant circuits as employed at the lower frequencies it is possible to consider each of the reactance components as a separate entity. The fact that an inductor has a certain amount of self-capacitance, as well as some resistance, while a capacitor also possesses a small selfinductance, can usually be disregarded.

At the very-high and ultrahigh frequencies it is not readily possible to separate these components. Also, the connecting leads, which at lower frequencies would serve merely to join the caparitor and coil, now may have more inductance than the coil itself. The required inductance coil may be no more than a single turn of wire, yet even this single turn may have dimensions comparable to a wavelength at the operating frequency. Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the circuit

For these reasons it is common practice to utilize resonant sections of transmission line as tuned circuits at frequencies above 100 Mc . or so. A quarter-wavelength line, or any odd multiple thercof, shorted int one end and open at the other exhibits large standing waves, as deseribed in the section on transmission lines. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit The equivalent relationships are shown in Fig. 2-(i0. At frequencies off resonance the line displays qualities comparable with the inductive and capacitive reactances of a conventional tumed circuit, so sections of transmission line can be used in much the same manner as inductors and capacitors.

To minimize radiation loss the two conductors of a parallel-conductor line should not be more than about one-tenth wavelength apart, the spacing being measured between the conductor axes. On the other hand, the spacing should not be less than about twice the conductor diameter

Fig. 2-60-Equivalent coupling circuits for parallel-line, coaxial-line and conventional resonant circuits.
because of "proximity effect," which causes eddy currents and an increase in loss. Above 300 Mc. it is difficult to satisfy both these requirements simultaneously, and the radiation from an open line tends to become excessive, reducing the Q. In such case the coaxial type of line is to be preferred, since it is inherently shielded.

Representative methods for adjusting coaxial lines to resonance are shown in Fig. 2-61. At the left, a sliding shorting disk is used to reduce the effective length of the line by altering the position

Fig. 2.61-Methods of tuning coaxial resonant lines.
of the short-circuit. In the center, the same effect is accomplished by using a telescoping tube in the end of the inner conductor to vary its length and thereby the effective length of the line. At the right, two possible methods of using parallelplate capacitors are illustrated. The arrangement with the loading capacitor at the open

2-ELECTRICAL LAWS AND CIRCUITS

end of the line has the greatest tuning effect per unit of capacitance; the alternative method, which is equivalent to tapping the capacitor down on the line, has less effect on the Q of the cirruit. Lines with capacitive "loading" of the sort illustrated will be shorter, phosically, than unloaded lines resonant at the same frequency.

Two methods of tuning parallel-conductor lines are shown in Fig. 2-62. The sliding short-

Fig. 2-62-Methods of funing parallel-type resonant lines.
circuiting strap can be tightened by means of serews and nuts to make good electrical contace. The paratlel-phate eaparitor in the seeond drawing may be placed anywhere along the line, the tuning effect becoming less as the arapacitor is located nearer the shorted end of the line. Although a low-eaparitance variabe cupacitor of ordimary construction can be used, the circular-plate type shown is symmetrical and thus does not unbalance the line. It also has the further advantage that no insulating material is required.

WAVEGUIDES

A waveguide is a condurting tube through which energy is transmitted in the form of elec-

Fig. 2-63 - Field distribution in a rectangular waveguide. The $I E_{1,0}$ mode of propagotion is depicted
tromagnetic waves. The tube is not considered as carrying a current in the same sense that the wires of a two-conduetor line do, but rather as a boundary which confines the waves to the enclosed space. Skin effoct prevents any electromagnetic effeets from being avident outside the guide. The energy is injected at one end, either through capacitive or inductive coupling or by radiation, and is received at the other end. The waveruide then merely ronfines the energy of the fields, which are propagated through it to the receiving end by means of reflections against its inner walls.

Analysis of waveguide operation is based on the assumption that the guide material is a perfert conductor of electricity. Typical distributions of electric and magnetic fields in a rectangular guide are shown in Fig. :-fi3. It will be observed that the intensity of the electric field is greatest (as indicated by closer sparing of the lines of foree) at the center along the x dimension, lig. 2-6:3(B), diminishing to zero at the end walls. The latter is a necessury condition, since the existence of any electric field parallel to the walls at the surfare would cause an infinite current to flow in a perfect conductor. This represents an impossible situation.

Modes of Propagation

Fig. 2-63 represents a relatively simple distribution of the electric and magnetic fields. There is in general an infinite number of ways in which the fields can arrange themselves in a guide so long as there is no upper limit to the frequency to be transmitted. Each field configuration is called a mode. All modes may be separated into two general groups. One group, designated $T . M$ (transverse magnetic), has the magnetic field cntirely transverse to the direction of propagation, but has a component of electrie field in that direction. The other type, designated $T E$ (transverse electric) has the electric fied entirely transverse, but has a component of magnetic field in the direction of propagation. TM waves are sometimes called E waves, and $T E$ waves are somotimes callod $I I$ waver, but the $T M$ and $T E^{\prime}$ designations are preferred.

The particular mode of transmission is identifiod by the group letters followed by two subscript inmerals; for example. it Eion T'M $H_{\text {h }}$. ete. The number of possible modes increases with frequeney for a giver size of guide. There is only one possible morle (ealled the dominant mode) for the lowest fiequency that can be transmitted. The dominant mode is the one generally used in practical work.

Waveguide Dimensions

In the rectangular guide the critical dimension is x in Fig. 2-63; this dimension must be more than onc-half wavelength at the lowest frequency to be transmitted. In practice, the y dimension usually is mate about equal to $1 / 2 x$ to avoid the possibility of operation at other than the dominant mode.

Waveguides

Other cross-sectional shapes than the rectangle can be used, the most important being the circular pipe. Much the same considerations apply as in the rectangular case.

Wavelength formulas for rectangular and circular guides are given in the following table, where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

	Rectanuular	Circular
Cut-off wavelength	2.2	$3.41 r$
lomeses wavelenurth tramsmitted with little attern11:3tion, .	- $1.6 x$	$3.2 r$
Shoriont wavelenget before mext motle frectmes possille.	- $1.1 x$	$2.8 r$

Cavity Resonators

Another kind of cireuit particularly applicable at wavelengths of the order of centimeters is the cavity resonator, which may be looked upon as a seetion of a waveguide with the dimensions chosen so that waves of a given length can be maintained inside.

Typical shapes used for resonators are the cylinder, the rectangular lox and the sphere, as shown in Fig. 2-6i4. The resonant frequeney depends upon the dimensions of the cavity and the mode of oseillation of the waves (eompar-

SQUARE PRISM

CYLINDER

SPHERE
Fig. 2-64-Forms of cavity resonators.
able to the transmission modes in a waveguide). For the lowest modes the resonant wavelengths ine as follows:

rivinder. .	$2.61 r$
Sipure tox .	1.41ℓ
2. $28 r$	

'The resonant wavelengths of the cylinder and square box are independent of the height when the height is less than a half wavelength. In other moxles of aseillation the height must be a multiple of a half wavelength as measured inside the cavity. A cylindrical cavity can be tuned by a sliding shorting disk when operating in such a mode. Other tuning methods include placing adjustable tuning pardles or "slugs" inside the cavity so that the standing-wave
pattern of the electric and magnetic fields can be varied.

A form of cavity resonator in practical use is the re-entrant cylindrical type shown in I'ig. $2-65$. In construction it resembles a concentric line elosed at both ends with capacitive loading at the top, but the actual mode of oscillation may differ ronsiderably from that occurring in

CROSS-SECTIONAL VIEW
Fig. 2.65—Re-entrant cylindrical cavity resonator.
coaxial lines. The resonant frequency of such a cavity depends upon the diameters of the two cylinders and the distance d between the ends of the inner and outer rybinders.

Compared with ordinary resonant circuits, cavity resonators have extremely high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can be serured with good design and ronstruetion.

Coupling to Waveguides and Cavity Resonators

Energy may be introduced into or abstracted from a waveguide or resonator by means of either the electric or magnetic field. The energy transfer frequently is through a coaxial line, two methods for coupling to which are shown in Fig. 2-66. The prohe shown at A is simply a short extension of the inner conductor of the coaxial line, so oriented that it is parallel to the electric lines of force. The loop shown at B is arranged so that it encloses some of the magnetic liness of force. The point at which maximum coupling will be secured depends upon the particular mode of propagation in the guide or cavity; the coupling will be maximum when the coupling device is in the most intense field.

Fig. 2-66-Coupling to waveguides and resonators.
Coupling can be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the electric lines the coupling will be minimum; similarly, when the plane of the loop is parallel to the magnetic lines the coupling will have its least possible value.

2-ELECTRICAL LAWS AND CIRCUITS
 Modulation, Heterodyning and Beats

Since one of the most widespread uses of radio frequencies is the transmission of speech and music, it would be very convenient if the audio spectrum to be transmitted could simply be shifted up to some radio frequency, transmitted as radio waves, and shifted back down to audio at the recediving point. Suppose the audio signal to to transmitted be radio is a pure 1000 -eyele tone, and we wish to transmit it at 1 Me. (1,(ono,000 reves prer serond). One possible wisy might be to add 1.000 Me. and 1 ke, together, therelse obtaining a radio frequency of 1.001 Mr. No simple method for doing this directly hats ben devised, although the effect is obtaned and used in "single-sideband transmission."

When two different frequencies are present simultaneously in an ordinary eirenit (specifi(ally, one in which Ohm's haw holds) each behavas as though the othor wre not there. The fotal or resultant voltage (or current) in the cireuit will be the sum of the instantaneous values

Fig. 2-67-Amplitude-vs.-time and amplitude-vs.-frequency plots of various signals. (A) $11 / 2$ cycles of an audio signal, assumed to be 1000 c.p.s. in this example. (B) A radio-frequency signal, assumed to be 1 Mc ; 1500 cycles are completed during the same time as the $11 / 2$ cycles in A, so they cannot be shown accurately. (C) The signals of A and B in the same circuit; each maintains its own identity. (D) The signals of A and B in a circuit where the amplitude of A can control the amplitude of B. The 1 -Mc. signal is modulated by the 1000 -cycie signal.
E. F, G and H show the spectrums for the signals in A, B, C and D, respectively. Note the new frequencies in H, resulting from the modulation process.
of the two at every instant. This is because there can be only one value of current or voltage at any single point in a circuit at any instant. Figs. 2-67A and B show two such frequencies, and C shows the resultant. The amplitude of the 1-Mc. current is not affected by the presence of the 1-kc. current, but the axis is shifted back and forth at the l-ke. rate. In attempt to tramsmit such a combination as a radio wave would result in only the radiation of the 1-Mc. frequener, since the $1-k e$. frequency retains its identity as an audio frequeney and will not radiate.

There are devices, however, which make it possible for one frequeney to control the amplitude of the other. It, for example, a l-ke. tone is used to control a $1-$ Me. signal, the maximum r.f. output will be obtaned when the 1 -ke. signal is at the paak of one alternation and the minimum will oecur at the peak o the next alternation. The process is called amplitude modulation, and the effect is shown in Fig. 2-6id). The resultimt signal is now entirely at radio frequency, hut with its amplitude varying at the modulation rate (1 ke.). Rereiving equipment adjusted to receive the 1-Mc. r.f. signal can roproduce these changes in amplitude, and reveal what the audio signal is, through a process called detection.
It might be assumed that the only radio frequency present in such a signal is the original 1.000 Me , but such is not the case. Two new frequencies have appeared. These are the sum ($1.000+.001$) and difference $(1.000-.001)$ of the two, and thus the radio frequencies appearing after modulation are $1.001,1.000$ and . 999 Mr .

When an audio frequenery is used to control the amplitude of a radio frequence, the prowess is generally called "amplitude modulation," as mentioned, but when a radio frequence modulates :mother radio frequencer it is callod heterodyning. The processes are identical. A general term for the sum and difference frequencies generated during heterodyning or amplitude modulation is "beat frequencies," and it moro sperifie one is upper side frequency, for the sum. and lower side frequency for the difference.

In the simple example, the modudating signal was assumed to be a pure tone, but the modnlating signal can just as well be a band of frequencies making up speech or music. In this case, the side frequencies are grouped into the upper sideband and the lower sideband.

In .1, 13, C and D) of Fig. 2-67, amplitude is plotted against time. For better understanding it is often more helpful to visualize the spectrum, a plot of amplitude vs. frequency, as illustrated by $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H. Any one frequency is represented by a vertical line.

Amplitude modulation (a.m.) is not the only possible type nor is it the only one in use. Such signal properties as phase and frequency can also be modulated. In every case the modulation process leads to the generation of a new set (or sets) of radio frequencies symmetrically disposed about the original radio (carrier) frequency.

Vacuum-Tube Principles

- CURRENT IN A VACUUM

The outstanding difference between the varuum tube and most other electrical devices is that the electric current does not flow throngh a conductor but through empty space - a varuum. This is only possible when "free" elertrons - that is, electrons that are not attached to atoms - are somehow introduced into the vacuum. Free electrons in an evacuated space will be attracted to a positively charged object within the same space. or will be repelled by a negatively charged object. The movement of the electrons under the attriction or repulsion of such charged objects eonstitutes the current in the vacuum.
The most practical way to introduce a sufficiontly large number of electrons into the evaruated space is by thermionic emission.

Thermionic Emission

If a thin wire or filament is heated to incandescence in a vachum, electrons near the surface are given enough energy of motion to fly off into the surrounding space. The higher the temperature, the greater the number of electrons emitted. A more general name for the tilament is cathode.

If the cathode is the only thing in the vacuum, most of the emitted electrons stay in its immediate vicinity, forming a "cloud" about the cathode. The reason for this is that the electrons in the space, being negative electricity, form a negative charge (space charge) in the region of the cathode. The space charge repels

Representalive tube types. Transmitting tubes having up to 500 -watt capability are shown in the back row. The tube with the tap cap in the middle row is a low-power transmitting type. Others are receiving tubes, with the exception of the one in the center foreground which is a v.h.f. transmitting type.
those electrons nearest the cathode, tending to make them fall back on it.

Now suppose a second conductor is introdured into the vacuum, but not connected to anything else inside the tube. If this second eonductor is given a positive charge by connecting a source of e.m.f. between it and the

Fig. 3-1 - Conduction by thermionic emission in a vacuum tube. The A battery is used to heat the filament ta a temperature that will cause it to emit electrons. The B battery makes the plate positive with respect to the filament, thereby causing the emitted electrans ta be attracted to the plate. Electrons captured by the plate flow back through the B battery ta the filament.
cathode, as indicated in Fig. :3-1, elertrons emitted by the cathode are attracted to the positively charged conductor. An electric current then flows through the circuit formed by the cathode, the charged conductor, and the source of e.m.f. In Fig. 3-1 this e.m.f. is supplied by a battery ("B" battery); a second battery ("A" battery) is also indicated for heating the cathode or filament to the proper operating temperature.

The positively charged conductor is msually a metal plate or cylinder (surrounding the cathode) aild is colled on anode or plate, Tike the other working parts of a tube, it is a tube element or electrode. The tube shown in Fig. $3-1$ is a two-element or two-electrode tube, one element being the cathode or filament and the other the anode or plate.

Since electrons are nogative electricity, they will be attracted to the phate omlly when the plate is positive with respert to the rathode. If the plate is given a negative charge, the electrons will be repelled back to the cathode and no current will flow. The vacuum tube therefore can conduct only in one direction.

Cathodes

Before electron emission ran occur, the cathode must be heated to a high temperature. However, it is not essential that the heating cur-

Fig. 3-2-Types of cathode construction. Directly heated cathodes or filaments are shown at A, B, and C. The inverted V filament is used in small receiving tubes, the M in both receiving and transmitting tubes. The spiral filament is a transmitting-tube type. The indirectly-heated cathodes at D and E show two types of heater construction, one a twisted loop and the other bunched heater wires. Both types tend to cancel the magnetic fields set up by the current through the heater.
rent flow through the actual material that does the emitting; the filament or heater ran be electrically separate from the emitting cathode. such a cathode is called indirectly heated, while an emitting filament is called directly heated. Fig. 3-2 shows both types in the forms in which they are commonly used.

Much greater electron emission can be oblatined, at relatively kow temperatures, by using special eathone materials rather than pure metals. One of these is thoriated tungsten, or tungsten in which thorium is dissolved. Still greater efliciency is achieved in the oxide-coated cathode, a cathode in which rare-earth oxides form a coating over a metal base.

Although the oxide-coated cathode has much the highest efliciency, it can be used successfully only in tubes that operate at rather low plate voltages. Its use is therefore confined to receiv-ing-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tubes.

Plate Current

If there is only a small positive voltage on the pate, the number of electrons reaching it will be smatl because the spare charge (which is negative) prevents those electrons nearest the mathode from being attracted to the pate. As the plate voltage is increased, the effert of the space charge is bareasingly overome and the number of eledrons attracted to the plate becomes larger. That is, the plate current increases with increasing phate voltalue.

Fig. 3-3 shows a typical plot of plate current vs. plate voltage for a two-element tube or diode. A curve of this type can be obtained with the circuit shown, if the plate voltage is increased in small steps and a current reading taken (by means of the current-indicating instrument -a millianmeter) at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has sub)stantially overcome the space charge and

Fig. 3-3-The diode, or two-element tube, and a typical curve showing how the plate current depends upon the voltage applied to the plate.

Vacuum-Tube Amplifiers

With the diode connected as shown in Fig. 3-4, the polarity of the voltage drop across the load is such that the end of the load nearest the cathode is positive. If the connections to the diode elements are reversed, the direcfion of rectified current flow also will be reversed through the load.

Fig. 3.4-Rectification in a diode. Current flows only when the plate is positive with respect to the cathode, so that only half-cycles of current flow through the load resistor, R.

Vacuum-Tube Amplifiers

TRIODES

Grid Control

If a third element - called the control grid, or simply grid - is inserted between the eathode and plate as in Fig. 3-i, it can be used to control the effect of the space charge. If the grid is given a positive voltage with respect to the cathode, the positive charge will tend to neutralize the negative space charge. The

Fig. 3.5-Construction of an elementary triode vac. uum tube, showing the filament, grid (with an end view of the grid wires) and plate. The relative density of the space charge is indicated roughly by the dot density.
result is that, at any seleeted plate voitage, more electrons will flow to the plate than if the grid wore not present. On the other hand, if the grid is made negative with respect to the rathode the negative charge on the grid will add to the space charge. This will reduce the number of electrons that can reach the plate at any selected plate voltage.
'I'he grid is inserted in the tulue bo contabl the space charge and not to attract clectrons to itself, so it is made in the form of a wire mesh or spiral. Vilectrons then ean go through the open suaces in the grid to reach the plate.

Characteristic Curves

For any particular tube, the effect of the grid voltage on the plate current can be shown by a set of characteristic curves. A typical set of eurves is shown in Fig. 3-6, together with the eircuit that is used for getting them. For each value of plate voltage, there is a value of negative grid voltage that will reduce the plate current to zero; that is, there is
a value of negative grid voltage that will cut off the plate current.

The curves could be extended by making the grid voltage positive as well as negative. When the grid is negative, it repels electrons and therefore none of them reaches it; in other words, no current flows in the grid circuit. However, when the grid is positive, it attracts electrons and a current (grid current) flows, just as current flows to the positive phate. Whenever there is grid current there is an accompanying power loss in the grid circuit, but so long as the grid is negative no power is used.

It is obvious that the grid can act as a valve to control the flow of plate current. Jetually, the grid has a much greater effect on plate current flow than does the phate voltage. A small change in grid voltage is just as effective in bringing about a given change in plate current as is a large change in plate voltage.
The fact that a small voltage acting on the grid is equivalent to a large voltage arting on the plate indicates the possibility of amplification with the triode tube. The many uses of the electronic tube nearly all are based upon this amplifying feature. The amplified output is not obtained from the tube itself, but from the source of e.m.f. commected between its phate and cathode. The tube simply controls the power from this source, changing it to the desired form.
To utilize the controlled power, a load must be connected in the plate or "output" circuit, just as in the diodo ense. The load may bie

Fig. 3.6-Grid-voltage-vs.-plate-current curves at various fixed values of plate voltage $\left\{E_{b}\right.$) for a typical small triode. Characteristic curves of this type can be taken by varying the battery voltages in the circuit at the right.

3-VACUUM-TUBE PRINCIPLES

either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construction of a triode determines the relative effectiveness of the grid and plate in controlling the plate current. If a very small change in the grid voltage has just as much effect on the plate current as a very large change in plate voltage, the tube is said to have a high amplification factor. Amplitic:ttion factor is commonly designated by the Greek letter μ. An amplification factor of 20 , for example, means that if the grid voltage is changed by 1 volt, the effect on the plate current will be the same as when the plate voltage is changed by 20 volts. The amplification factors of triode tubes range from 3 to 100 or so, .1 high- μ tube is one with an amplification factor of perhaps 30 or more; medium- μ tubes have amplification factors in the approximate range 8 to 30 , and low- μ tubes in the range below 7 or 8 .

It would be natural to think that a tube that has a large μ would be the best amplifier, but to obtain a high μ it is necessary to construct the grid with many turns of wire per inch, or in the form of a fine mesh. This leaves a relatively small open area for electrons to go through to reach the plate, so it is difficult for the plate to attract large numbers of electrons. Ouite a large change in the plate voltage must be made to effect a given change in plate current. This means that the resistance of the plate-cathode path - that is, the plate resistance - of the tube is high. Since this resistance acts in series with the load, the amount of current that can be made to flow through the load is relatively small. On the other hand, the plate resistance of a low- μ tube is relatively low.

The best all-around indication of the effectiveness of the tube ats an amplifier is its grid-plate transconductance - also called mutual conductance. This characteristic takes account of both amplification factor and plate resistance, and therefore is a figure of merit for the tube. Transconductance is the change in plate current divided by the change in grid voltage that causes the platecurrent change (the plate voltage being fixed at a desired value). Since current divided by voltage is conductance, transconductance is measured in the unit of conductance, the mho. Practical values of transconductance are very small, so the micromho (one-millionth of a mho) is the commonly-used unit. Different types of tubes have transconductances ranging from a few hundred to several thousand. The higher the trinsconductance the greater the possible amplification.

AMPLIFICATION

The way in which a tube amplifies is best shown by a type of graph called the dynamic characteristic. Such a griph, together with the
circuit used for obtaining it, is shown in Fig. 3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. The difference between this circuit and the one shown in Fig. :3-6 is that in Fig, :3-7 a load resistance is comnerted in series with the plate of the tube. Fig. 3-7 thus shows how the plate current will vary, with different grid voltages, when the plate current is made to flow through a load and thus do useful work.

Fig. 3.7-Dynamic characteristics of a small triode with various load resistances from 5000 to 106,000 ohms.
The several curves in Fig. : $3-7$ are for various values of load resistance. When the resistanere is small (as in the case of the 5000 -ohm laad) the plate current changes rather rapidly with a given change in grid voltage. If the load resistance is high (as in the 100,000 -ohm curve), the change in plate current for the sane grid-voltage change is relatively small; also, the curve tends to be straighter.
lig. :3-8 is the same type of curve, but with the circuit arranged so that a source of alternating voltage (signal) is inserted between the grid and the grid battery ("C" battery). The voltage of the grid battery is fixed at -5 volts, and from the curve it is seen that the plate current at this grid voltage is 2 milliamperes. This current flows when the load resistance is 50,000 ohms, as indicated in the circuit diagram. If there is no a.c. signal in the grid circuit, the voltage drop in the load resistor is $50,000 \times 0.002=100$ volts, leaving 200 volts between the phate and cathode.

When a sine-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantancous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative peak. The maximum plate current will occur at the instant the grid voltage is -3 volts. As shown by the graph, it will have a value of 2.65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35 ma . At intermediate values of grid voltage, intermediate plate-current values will occur.

The instantaneous voltage between the plate

Vacuum-Tube Amplifier

Fig. 3.8-Amplifier operation. When the plate current varies in response to the signal applied to the grid, a varying voltage drop appears across the load, $\boldsymbol{R}_{\mathrm{b}}$, as shown by the dashed curve, E_{p}, I_{p} is the plate current.
and cathode of the tube also is shown on the graph. When the plate cureent is maximum, the instantanerons woltage drop in R_{p} is io,000 $\times 0.100265=132.5$ volts: when the plate current is minimum the instantaneous voltage drop in R_{0} is $50,000 \times 0.00135=67.5$ volts. The actual voltage between pate and cathode is the difference botween the plate-supply potential, 300 volts, and the voltage drop it the load resistance. The plater-to-eathode voltage is therefore 166^{-5}) volts at maximum phate corrent and 23 ?. 5 volts at minimum plate chereit.

This varying plate voltagre is an aco. voltage superimposed on the steady pate-cathode potential of 200 volts (as prevously determined for no-signal conditions). The prak value of this a.e. output voltage is the difference betwern either the maximum or minimum plate-cathode voltage and the no-signal value of 200 volts. In the illustration this difference is $2: 32.5-200$ or $200-$ Itia. $\overline{0}$; that is, $: 3.5$ volts in either case. since the grid sigmal voltage hats a peak value of 2 volts, the voltage-amplification ratio of the amplificr is 32.5 2 or 16.2%. That is, approximately 16 times as much voltage is obtained from the phate circuit as is applied to the grid circuit.

As shown by the drawings in fig. 3-8, the alternating component of the plate voltage swings in the negative direction (with reference to the no-signal value of plate-eathode voltage) when the grid voltage swings in the positive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias

The fixed negative grid voltage (called grid bias) in Fig. 3-8 serves a very useful purpose. One object of the type of amplification shown in this drawing is to obtain, from the plate circuit, an alternating voltage that has the same waveshape as the signal voltage applied to the grid. To do so, an operating point on the straight part of the curve must be selected. The curve must be straight in looth direetions from the operating point at least far emough to acommodate the maximum value of the signal applied to the grid. If the grid signal swing the plate current back and forth over a part of the curve that is not straight, as in frig. 3-9, the shape of the a.c. wave in the plate cireuit will not be the same as the shape of the grid-signal wave. In such a case the output wave shape will be distorted.

A second reason for using negative grid bias is that any signal whose peak positive voltage does not exceed the fixed negative voltage on the grid camot caluse grid current to fow. With no eurrent flow there is oo power consumption, so the tulo will amplify without taking any power from the signal sobree. (Jowever, if the positive peak of the signal ches exreed the negative bias, current will flow in the grid circuit during the time the grid is positive.

Distortion of the output wave shape that results from working over a part of the eurve that is mot straight (that is, a nonlinear part of the (urve has the eflect of translorming a sine-wave gride signal into a more complex waveform. As explanod in an earlier ehapter, a complex wave (an be resolved into a fundamental and a series of harmonics. In other words, distortion from nombineaty canses the generation of harmonic frepueneis: - frequencies that are not present in the signal applied to the grid. Harmonic distortion is undesirable in most amplifiers, although

Fig. 3-9-Harmonic distortion resulting from choice of an operating point on the curved part of the tube characteristic. The lower half-cycle of plate current does not have the same shape as the upper half-cycle.

3-VACUUM-TUBE PRINCIPLES

there are occasions when harmonies are deliberately generated and used.

Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the alternating component of plate current or plate voltage. The d.c. voltage on the plate of the tube is essential for the tube's operation, but it almost invariably would cause difficulties if it were applied, along with the a.c. output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.c. is transferred to the load but the d.c. is not.

Three types of coupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. 3-10. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices than tubes.
In the resistance-coupled circuit, the a.c. voltage developed across the plate resistor R_{p} (that is, the a.c. voltage between the plate and cathode of the tube) is applied to a second resistor, R_{g}, through a coupling capacitor, C_{c}. The capacitor "blocks off" the d.c. voltage on the plate of the first tube and prevents it from being applied to the grid of tube B. The latter tube has negative grid bias supplied by the battery shown. No current flows in the grid circuit of tube B and there is therefore no d.c. voltage drop in R_{g}; in other words, the full voltage of the bias battery is applied to the grid of tube B.
The grid resistor, R_{g}, usually has a rather high value (0.5 to 2 megohms). The reactance of the coupling capacitor, C_{c}, must be low enough compared with the resistance of R_{g} so that the a.c. voltage drop in C_{c} is negligible at the lowest frequency to be amplified. If R_{g} is at least 0.5 megohm, a $0.1-\mu$. capacitor will he amply large for the usual range of audio frequencies.

So far as the alternating component of plate voltage is concerned, it will be realized that if the voltage drop in C_{c} is negligible then R_{p} and R_{g} are effectively in parallel (although they are quite separate so far as d.c. is concerned). The resultant parallel resistance of the two is therefore the actual load resistance for the tube. That is why R_{g} is made as high in resistance as possible; then it will have the least effect on the load represented by R_{p}.

The impedance-coupled circuit differs from that using resistance coupling only in the substitution of a high-inductance coil (usually several hundred henrys for audio frequencies) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.c. It thus permits obtaining a high value of load impedance for a.c. without an excessive d.c. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary connected in the plate

Fig. 3-10-Three basic forms of coupling between vacuum-tube amplifiers.
circuit of the tube and its secondary connected to the load (in the circuit shown, a following amplifier). There is no direct comection between the two windings, so the plate voltage on tube A is isolated from the grid of tube B. The trans-former-coupled amplifier has the same advantage as the impedance-coupled circuit with respect to loss of d.c. voltage from the plate supply. Also, if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the turns ratio.

Resistance coupling is simple, inexpensive, and will give the same amount of amplification - or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example. Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequency range; it tends to "peak," or give maximum gain, over a comparatively narrow band of frequencies. With a good transformer the gain of a trans-former-coupled amplifier can be kept fairly constant over the audio-frequency range. On the

Power Amplifiers

other hand, transformer coupling in voltage amplifiers (see below) is best suited to triodes having amplification factors of about 20 or less, for the reason that the primary inductance of a practicable transformer cannot be made large enough to work well with a tube having high plate resistance.

Class A Amplifiers

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high as possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage generated will appear across the load.

Voltage amplifiers belong to a group called Class A amplifiers. A Class A amplifier is one operated so that the wave shape of the output voltage is the same as that of the signal voltage applied to the grid. If a Class A amplifier is biased so that the grid is always negative, even with the largest signal to be handled by the grid, it is called a Class A_{1} amplifier. Voltage amplifiers are always Class A_{1} amplifiers, and their primary use is in driving a following Class λ_{1} amplifier.

Power Amplifiers

The end result of any amplitication is that the amplified signal does some work. For example, an audio-frequency amplifier usually drives a loudspeaker that in turn produces sound waves. The greater the amount of a.f. power supplied to the speaker, the louder the sound it will produce.

Fig. 3-11-An elementary power-amplifier circuit in which the power-consuming load is coupled to the plate circuit through an impedance-matching transformer.

Fig. 3-11 shows an elementary power-amplifier circuit. It is simply a transformer-coupled amplifier with the load connected to the secondary. Athough the load is shown as a resistor, it actually would be some device, such as a loudspeaker, that employs the power usefully. Every power tube requires a specific value of load resistance from plate to cathode, usually some thousands of ohms, for optimum operation. The resistance of the actual load is rarely the right value for "matching" this optimum load resistance, so the transformer turns ratio is chosen to reflect the proper value of resistance into the primary. The turns ratio may be either step-up or step-down, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the plate circuit to the power required from the a.c. signal in the grid circuit. There is no power lost in the grid circuit of a Class A_{1} amplifier, so such an amplifier has an infinitely large power-amplification ratio. However, it is quite possible to operate a Class A amplifier in such a way that current flows in its grid circuit during at least part of the cycle. In such a case power is used up in the grid circuit and the power amplification ratio is not infinite. A tube operated in this fashion is known as a Class A_{2} amplifier. It is necessary to use a power amplifier to drive a Class A_{2} amplifier, because a voltage amplifier cannot deliver power without serious distortion of the wave shape.

Another term used in connection with power amplifiers is power sensitivity. In the case of a Class A_{1} amplifier, it means the ratio of power output to the grid signal voltage that causes it. If grid current flows, the term usually means the ratio of plate power output to grid power imput.

The a.c. power that is delivered to a load by an amplifier tube has to be paid for in power taken from the source of plate voltage and current. In fact, there is always more power going into the plate circuit of the tube than is coming out as useful output. The difference between the input and output power is used up in heating the plate of the tube, as explained previously. The ratio of useful power output to d.c. plate input is called the plate efficiency. The higher the plate efliciency, the greater the anount of power that can be taken from a tube having a given plate-dissipation rating.

Parallel and Push.Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similar tubes may be connected in parallel. In this case the similar elements in all tubes are connected together. This method is shown in Fig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or exciting voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required is in proportion to the number of tubes used.

An increase in power output also can be secured by connecting two tubes in push-pull. In this case the grids and plates of the two tubes are connected to opposite ends of a balanced circuit as shown in Fig, 3-12, At any instant the ends of the secondary winding of the input transformer, T_{1}, will be at opposite polarity with respect to the cathode connection, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. IIence, in any push-pull-connected amplifier the voltages and currents of one tube are out of phase with those of the other tube.

3-VACUUM-TUBE PRINCIPLES

Fig. 3-12-Parallel and push-pull a.f. amplifier circuits.

In push-pull operation the even-harmonic (second, fourth, etc.) distortion is balanced out in the plate circuit. This means that for the same power output the distortion will be less than with parallel operation.
The exeiting voltage measured between the two grids must be twice that required for one tube. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tule alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier and apply it as a signal on the grid of a second amplifier, then take the second amplifier's output and apply it to a third, and so on. Pach amplifier is called a stage, and stages used successively are said to be in cascade.

Class B Amplifiers

Fig. 3-13 shows two tubes connected in a push-pull circuit. If the grid bias is set at the point where (when no signal is applied) the phate current is just cut off, then a signal can riuse plate current to flow in either tube only when the signal voltage applied to that particular tulse is positive with respect to the cathode. Since in the balanced grid circuit the signal voltages on the grids of the two tubes always have opposite polarities, plate current flows only in one tube at a time.

The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the plate current of tube A. Thus each half of the output-transformer primary works altemately to induce a half-cycle of voltage in the secondary. In the secondary of T_{2}, the original waveform is restored. This type of operation is called Class B amplification.

The Class 13 amplifier has considerably higher plate efficiency than the Class A amplifier. Fur-
thermore, the d.c. plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.c. plate power input to a Class a amplifier is the same whether the signal is large, small, or absent altogether; therefore the maximum d.e. plate input that can be applied to a Class A amplifier is equal to the rated plate dissipation of the tube or tuines. Two tubes in a Class 13 amplifier can deliver approximately twelve times as much audio power as the same two tubes in a Class A amplifier.

A Class 13 amplifier usually is operated in such a way as to secure the maximum possible power output. This requires rather large values of plate current, and to olitain them the signal voltage must completely overcome the grid bias during at least part of the cegle, so grid current flows and the grid circuit consumes power. While the power requirements are fairly low (as compared with the power output), the fact that the grids are positive during only part of the cerlo means that the load on the preereding amplifier or driver stage varies in magnitude during the cyole: the effective load resistance is high when the grids are not drawing courrent and relatively low when they do take current. This must be allowed for when designing the driver.

Certain types of tubes have been designed specifically for (lass 13 service and can be operated without fixed or other form of grid bias (zero-bias tubes). The amplification factor is so high that the plate eurrent is small without sigmal. Boranse there is no fixed bias, the grids start drawing current immediately whenever a signal is applied, so the grid-current flow is continuous throughout the evele. This makes the load on the driver much more constant than is the cave with tubes of lower μ biased to platecurrent cut-off.

Chass is amplifiers used at radio frequencios are known as linear amplifiers because they are

Fig. 3-13-Class B amplifier operation.

Class B Amplifiers

adjusted to operate in such a way that the power output is proportional to the square of the r.f. exciting voltage. This permits amplification of al modulated r.f. signal without distortion. Pushpull is not required in this type of operation; a single tube can be used equally well.

Class AB Amplifiers

A Class AB amplifier is a push-pull amplifier with higher bias than would be normal for pure Class A operation, but less than the cut-off bias required for Class B. At low signal levels the tubes operate practically as Class A amplifiers, and the plate current is the same with or without signal. At higher signal levels, the plate current of one tube is cut off during part of the negative cycle of the signal applied to its grid, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly designed Class $A B$ amplifier the distortion is as low as with a Class A stage, but the efficiency and power output are considerably higher than with pure Class .1 operation. A Class AI3 amplifier can be operated either with or without driving the grids into the positive region. A Class AB_{1} amplifier is one in which the grids are never positive with respect to the cathode; therefore, no driving power is required - only voltage. A Class AB_{2} amplifier is one that has grid-current flow during part of the cycle if the applied signal is large; it takes a small amount of driving power. The Class AB_{2} amplifier will deliver somewhat more power (using the same tubes) but the Class IB_{1} amplifier avoids the problem of designing a driver that will deliver power, without distortion. into a load of highly variable resistance.

Operating Angle

Inspection of Fig. 3-13 shows that either of the two tubes actually is working for only half the a.c. cycle and idling during the other half. It is convenient to describe the amount of time during which plate current flows in terms of clectrical degrees. In Fig. 3-13 each tube has "Ibu-degree" uxcitation, a half-oyclo being equal to 180 degrees. The number of degrees during which plate current flows is called the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class A amplifier has 360 -degree excitation, because plate current flows during the whole cycle. In a Class Als amplifier the operating angle is between 180 and 360 degrees (in each tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle becontes.

An operating angle of less than 180 degrees leads to a considerable amount of distortion, because there is no way for the tube to reproduce even a half-eycle of the signal on its grid. Ising two tubes in push-pull, as in Fig. 3-13, would merely put together two distorted half-cycles. An operating angle of less than 180 degrees
therefore cannot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencies distortion of the r.f. wave form is relatively unimportant. For reasons described later in this chapter, an r.f. amplifier must be operated with tuned circuits, and the selectivity of such cireuits "filters out" the r.f. harmonics resulting from distortion.

A radio-frequency power amplifier therefore can be used with an operating angle of less than 180 degrees. This is called Class C operation. The advantage is that the plate efficiency is increased, because the loss in the plate is proportional, among other things, to the amount of time during which the plate current flows, and this time is reduced by decreasing the operating angle.

Depending on the type of tube, the optimum load resistance for a Class C amplifier ranges from about 1500 to 5000 ohms. It is usually secured by using tuned-circuit arrangements, of the type described in the chapter on circuit fundamentals, to transform the resistance of the actual load to the value required by the tube. The grid is driven well into the positive region, so that grid current flows and power is consumed in the grid circuit. The smaller the operating angle, the greater the driving voltage and the larger the grid driving power required to develop full output in the load resistance. The best compromise between driving power, plate efficiency, and power output usually results when the minimum plate voltage (at the peak of the driving cycle, when the plate current reaches its highest value) is just equal to the peak positive grid voltage. linder these conditions the operating angle is usually between 150 and 180 degrees and the phate efficiency lies in the range of 70 to 80 percent. While higher plate efficiencies are possible, attaining them requires excessive driving power and grid bias, together with higher plate voltage than is "normal" for the particular tube type.

With proper design and adjustment, a Class C amplifier can be made to operate in such a way that the power input and output are proportional to the square of the applied plato roltage. This is an important consideration when the amplifier is to be plate-modulated for radiotelephony, as described in the chapter on amplitude modulation.

FEEDBACK

It is possible to take a part of the amplified energy in the plate circuit of an amplifier and insert it into the grid circuit. When this is done the amplifier is said to have feedback.

If the voltage that is inserted in the grid circuit is 180 degrees out of phase with the signal voltage acting on the grid, the feedback is called negative, or degenerative. On the other hand, if the voltage is fed back in phase with the grid signal, the feedback is called positive, or regenerative.

3-VACUUM-TUBE PRINCIPLES

Negative Feedback

With negative feedback the voltage that is fed back opposes the signal voltage. This decreases the amplitude of the voltage acting between the grid and eathode and thus has the effect of reducing the voltage amplification. That is, a larger exciting voltage is required for obtaining the same output voltage from the plate circuit.

The greater the amount of negative feedback (when property applied) the more independent the amplification becomes of tube characteristics and circuit conditions. This tends to make the frequene v-response characteristic of the amplifier flat - that is, the amplification tends to be the same at all frequencies within the range for which the amplifier is designed. Also, any distortion generated in the plate eircuit of the tube tends to "buck itself out." . Implifiers with negative feedburk are therefore comparatively free from hatmonic distortion. These advantages are worth while if the amplifier otherwise has enough voltage gain for its intended use.

Fig. 3-14-Simple circuits for producing feedback.
In the circuit shown at A in Fig. $3-14$ resistor R_{c} is in series with the regular plate resistor, R_{p}, and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across R_{r}. Ilowever, R_{c} also is connected in series with the grid circuit, and so the output voltage that appears across R_{c} is in series with the signal voltage. The output voltage across R_{c} opposes the signal voltage, so the actual a.c. voltage between the grid and cathode is equal to the difference between the two voltages.

The circuit shown at B in Fig. 3-14 can be used to give either negative or positive feedlback. The secondary of a transformer is connected back into the grid circuit to insert a desired amount of feedback voltage. Reversing the terminals of either transformer winding (but not both simultaneously) will reverse the phase.

Positive Feedback

Positive feedback increases the amplification because the feedback voltage adds to the original
signal voltage and the resulting larger voltage on the grid causes a larger output voltage. The amplification tends to be greatest at one frequency (which depends upon the particular circuit arrangement) and harmonic distortion is increased. If enough energy is fed back, a selfsustaining oscillation - in which energy at essentially one frequency is generated by the tube itself - will be set up. In such case all the signal voltage on the grid can be supplied from the plate circuit; no external signal is needed because any small irregularity in the pate current - and there are always some such irregularities - will be amplified and thus give the oscillation an opportunity to build up. Positive feedback finds a major application in such "oseillators," and in addition is used for selective amplification at both andio and radio frequencies, the feedback being kept below the value that causes self-oscillation.

INTERELECTRODE CAPACITANCES

lianh pair of elements in a tube forms a small calpacitor, with euch element acting as a capacitor "plate." There are three such capacitances in a triode - that between the grid and cathode, that between the grid and plate, and that between the plate and cathode. The capacitances are very small - only a few micromicrofarads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.c. grid voltage and a.c. plate voltage of an amplifier having a resistive load are 180 degrees out of phase, using the cathode of the tube as a reference point. However, these two voltages are in phase going around the circuit from plate to grid as shown in Fig. 3-15. This means that their sum is acting between the grid and plate; that is, across the grid-plate capacitance of the tube.

As a result, a capacitive current flows around the circuit, its amplitude being directly proportional to the sum of the a.c. grid and plate voltages and to the grid-plate capacitance. The source of grid signal must furnish this amount of current, in addition to the capacitive current that flows in the grid-cathode capacitance. Hence the signal source "sees" an effective capacitance that is larger than the grid-cathode capacitance. This is known as the Miller Effect.

Fig. 3-15-The a.c. voltage appearing between the grid and plate of the amplifier is the sum of the signal voltage and the output voltage, as shown by this simplified circuit. Instantaneous polarities are indicated.

Screen-Grid Tubes

The greater the voltage amplification the greater the effective input capacitance. The input capacitance of a resistance-coupled amplifier is given by the formula

$$
C_{\text {input }}=C_{k k}^{r}+C_{\text {gp }}^{r}(A+1)
$$

where $C_{k k}$ is the grid-to-cathode capacitance, $C_{4 p}$ is the grid-to-plate eapacitance, and A is the voltage amplification. The input capacitance may be as much as several hundred miromicrofarads when the voltage amplification is large, even though the interelectrode capacitances are quite small.

Output Capacitance

The principal component of the output capacitance of an amplifier is the actual plate-tocathode eapacitance of the tube. The output caparitance usually need not be considered in audio amplifiers, but becomes of importance at radio frequencies.

Tube Capacitance at R.F.

It radio frequencies the reactances of even very small interelectrode capacitances drop to very low values. A resistaneeroupled amplifior gives very little amplification at r.f., for example, beratuse the reactances of the interelectrome "capacitors" are so low that they practically shortcireuit the input and output eireuits and thus the tube is unable to amplify. This is overcome at radio frequencies be using thed (ircuits for the grid and plate, making the tuhe cotpacitances part of the tuning capacitanes. In this way the rircuits can have the high resistive impedances necassary for satisfactory amplifieation.

The grid-plate rapareitance is important at radio frequencies hecause its reactance, relatively low at r.f., offers a path over which energy can be fed batek from the plate to the grid. In practically every case the feedback is in the right phase and of suffieicut amplitude to cunse self-oscillation, su the circuit beromes useless as an amplifier.
special "neutralizing" circuits can be used to prevent feedback but they are, in general, not too satisfactory when used in radio receivers. They are, however, used in transmitters.

SCREEN-GRID TUBES

The grid-plate capacitance can be reduced to a negligible value by inserting a second grid betwoen the control grid and the plate, as indiated in Fig. :3-16. The second grid, called the screen grid, acts as an electrostatic shield to prevent capacitive coupling between the control grid and plate. It is made in the form of a grid or coarse screen so that elcetrons can pass through it.

Because of the shielding action of the screen grid, the positively charged plate cannot attract electrons from the cathode as it does in a triode. In order to get electrons to the plate, it is necessary to apply a positive voltage (with respert to the cathode) to the sereen. The serem then attracts electrons much as does the plate in a friode tube. In traveling toward the screen the electrons arquire such velocity that most of them

Fig. 3-16-Representative arrangement of elements in a screen-grid tetrode, with part of plate and screen cut away. This is "single-ended" construction with a button base, typical of miniature receiving tubes. To reduce capacitance between control grid and plate the leads from these elements are brought out at opposite sides; actual tubes probably would have additional shielding between these leads.
shoot between the screen wires and then are attracted to the plate. A certain proportion do strike the sereen, however, with the result that some current also flows in the screen-grid circuit.

To be a good shield, the serech gyid must be eomected to the eathode through a circuit that has low impedance at the frequeney being amplified. A bypass capacitor from sereen grid to cathode, having a reactance of not more than a few hundred ohms, is generally used.

A tube having a cathole, control grid, sereen grid and plate (four elements) is called a tetrode.

Pentodes

When an electron traveling at appreciable velocity through a tube strikes the plate it dislodges other electrons which "splash" from the plate into the interelement space. This is called secondary emission. In a triode the negative prid repels the secondary electrons bark into the plate and they cause no disturbance. In the sereen-grid tube, however, the positively charged sereen attrates the secondary electrons, cunsing a reverse current to flow between screen and plate.

To overcome the effects of secondary emission, a third grid, called the suppressor grid, may be inserted between the screen and plate. This grid acts as a shield between the sereen grid and plate so the secondary electrons cammot be attrated by the sereen grid. They are henee attrated back to the plate without appreciably obstructing the regular plate-current flow. A five-dement tube of this type is called a pentode.

Nthough the sereen grid in either the tetrode or pentode greatly reduces the influence of the plate upon plate-curent flow, the control grid still can control the plate current in essentially. the same way that it does in a triode. Consequently, the grid-plate transeonductane (or mutual eondurtance) of a tetrode or pentode will be of the same order of value as in a triode of cor-

3-VACUUM-TUBE PRINCIPLES

responding structure. On the other hand, since a change in plate voltage has very little effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high. In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more megohms. Because of the high plate resistance, the actual voltage amplification possible with a pentode is very much less than the large amplification factor might indicate. A voltage gain in the vicinity of 50 to 200 is typical of a pentode stage.
In practical screen-grid tubes the grid-plate capacitance is only a small fraction of a micromicrofarad. This capacitance is too small to cause an appreciable increase in input capacitance as described in the preceding section, so the input capacitance of a screen-grid tube is simply the sum of its grid-cathode capacitance and control-grid-to-screen caparitance. The output capacitance of a screen-grid tube is equal to the capacitance between the plate and screen.
In addition to their applications as radiofrequency amplifiers, pentodes or tetrodes also are used for audio-frequency power amplification. In tuhes designcd for this purpose the chief function of the screen is to serve as an accelerator of the electrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tubcs have quite high power sensitivity compared with triodes of the same power output, although harmonic distortion is somewhat greater.

Beam Tubes

A beam tetrode is a four-element screen-grid tube constructed in such a way that the electrons are formed into concentrated beams on their way to the plate. Idditional design features overcome the effects of sccondary emission so that a suppressor grid is not needed. The "beam" construction makes it possible to draw large plate currents at relatively low plate voltages, and increases the power sensitivity.
For power amplification at both audio and radio frequcncies beam tetrodes have largely supplanted the non-beam types because large power outputs can be secured with very small amounts of grid driving power.

Variable μ Tubes

The mutual conductance of a vacuum tube decreases when its grid bias is made more ncgative, assuming that the other electrode voltages are held constant. Since the mutual conductance controls the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain control is universally used in radio-frequency amplifiers designed for receivers.
The ordinary type of tube has what is known as a sharp-cutoff characteristic. The mutual conductance decreases at a uniform rate as the negative hias is increased. The amount of signal voltage that such a tube can handle without causing distortion is not sufficient to take care of
very strong signals. To overcome this, some tubes are made with a variable- μ characteristic - that is, the amplification factor decreases with increasing grid bias. The variable $-\mu$ tube can handle a much larger signal than the sharp-cutoff type before the signal swings either beyond the zero grid-bias point or the plate-current cutoff point.

INPUT AND OUTPUT IMPEDANCES

The input impedance of a vacuum-tube amplifier is the impedance "seen" by the signal source when connected to the input terminals of the amplifier. In the types of amplifiers previously discussed, the input impedance is the impedance measured between the grid and cathode of the tube with operating voltages applied. At audio frequencies the input impedance of a Cliss A_{1} amplifier is for all practical purposes the input capacitance of the stage. If the tube is driven into the grid-current region there is in addition a resistance component in the input impedance, the resistance having an average value equal to E^{2} / P, where E is the r.m.s. driving voltage and P ' is the power in watts consumed in the grid. The resistance usually will vary during the a.c. cycle because grid current may flow only during part of the cycle; also, the grid-voltage/grid-current characteristic is seldom linear.

The output impedance of amplifiers of this type consists of the plate resistance of the tube shunted by the output capacitance.

At radio frequencies, when tuned circuits are employed, the input and output impedances are usually pure resistances; any reactive components are "tuned out" in the proccss of adjusting the circuits to resonance at the operating frequency.

O OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-to-cathode circuit. That is, the cathode has been the meeting point for the input and output circuits. IIowever, it is possible to use any one of the three principal elements as the common point. This leads to two additional kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

These two circuits are shown in simplified form in Fig. 3-17. In both circuits the resistor R represents the load into which the amplifier works; the actual load may be resistance-capacitancecoupled, transformer-coupled, may be a tuned circuit if the amplifier operates at radio frequencies, and so on. Also, in both circuits the batteries that supply grid bias and plate power are assumed to have such negligiblc impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the plate and grid. The

Cathode Circuits and Grid Bias

Fig. 3-17-In the upper circuit, the grid is the junction point between the input and output circuits. In the lower drawing, the plate is the iunction. In either case the output is developed in the load resistor, R, and may be coupled to a following amplifier by the usual methods.
grid is thus the common element. The a.c. component of the plate current has to flow through the signal source to reach the cathode. The source of signal is in series with the load through the phate-to-rathode resistance of the tulue. so some of the power in the load is supplied by the signal source. In transmitting applications this fed-through power is of the order of 10 per cent of the total power output, using tubes suitable for groumded-grid service.

The input impedance of the grounded-grid amplifier consists of a capacitaner in parallel with an equivalent resistance representing the power furnished be the driving source to the grid and to the load. This resistance is of the order of a few hundred ohms. The output impedance, neglecting the interelectrode capacitances, is equal to the plate resistance of the tube. This is the same as in the case of the grounded-eathode amplifier.

The grounded-grid amplifier is widely used at v.h.f. and wh.h.f., where the more conventional amplifier circuit fails to work properly. With a triode tube designed for this type of operation, an r.f. amplifier cam be built that is free from the type ol feedback that causes oscillation. This reguires that the grid art as a shield between the cathode and pate, reduring the plate-cathode capabitance to a very low value.

Cathode Follower

The cathode follower uses the plate of the tube as the common element. The input signal is applied between the grid and plate (assuming negligible impedance in the batteries) and the output is taken between cathode and phate. This circuit is degenerative: in fact, all of the output voltage is fed. back into the imput circuit out of: phase with the grid signal. The input signal therefore has to be larger than: the output voltage: that is, the cath ${ }_{T}$ ode follower gives a loss in voltages. although it gives the same power gain. as other circuits under equivalent op-arating conditions.

Fig. 3-18-Filament center-tapping methods for use with directly heated tubes.

3 -VACUUM-TUBE PRINCIPLES

free. For this reason directly-heated filaments are employed for the most part in power tubes, where the amoment of hum introdued is extremely small in eomparison with the poweroutput level.

With indirectly heated rathodes the rhief problem is the mangetie field set up by the heater. Ocrasionally, also, there is leakage between the heater and cathode, allowing a small a.e. voltage to get to the grid. If hum appears, grounding one side of the heater supply usually will help to reduce it, although sometimes better results are ohtained if the heater supply is center-tapped and the center-tap grounded, as in Fig. 3-18.

Cathode Bias

In the simplified amplifier circuits discussed in this ehapter, grid bias has been supplied hy a hattery. Ilowever, in equipment that operates from the power line cathode bias is very frequently used.

The eathode-bias method uses a resistor (cathode resistor) comerted in series with the cathode, as shown at R in Fig. 3-19. The direction of platecurrent flow is such that the end of the resistor nearest the eathode is positive. The voltage drop

Fig. 3.19-Cathode biasing. R is the cathode resistor and C is the cathode bypass capacitor.
arrose I therefore plates a negutive voltage on the grid. This negative bias is ohtained from the steady de, plate current.

If the alternating component of plate current flows through R when the tube is amplifying, the voltage drop caused by the a.c. will be degenerattive (note the similarity between this circuit and that of Fig. :3-14,1). To prevent this the resistor is bupassed by a capacitor, $($ ', that has very low reartinee compared with the resistance of k. Iopending on the type of tube and the particular kind of operation, R may he between about 100 and 3000 ohms. For good bypassing at the low atudio frequencies, (should be 10 to 50 mierofarads (electrolytic capacitors are used for this purpose). At radio frequencios, mparitances of about $100 \mu \mu \mathrm{f}$, to $0.1 \mu \mathrm{f}$, are used; the small values are sufficient at very high frequencies and the largest at low and medimm frequencies. In the ringe 3 to 30 megarycles a capacitance of $0.01 \mu \mathrm{f}$, is satisfactory.

The value of eathode resistor for an amplifier having negligible d.c. resistance in its plate cira ait (transformer or impedance conpled) can casily be caleulated from the known operating conditions of the tube. The proper grid bias and plate current always are specified by the mamufacturer. Knowing these, the required resistance can be found by applying Ohm's Law.

Example: It is found from tube tables that the tube to be used should have a negative grid bias of 8 volts and that at this bias the plate current will be 12 milliamperes (0.012 amp.). The rewuired cathode resistance is then

$$
R=\frac{F}{I}=\frac{8}{0.012}=067 \text { ohus. }
$$

The nearest standard vabue, ti80 oltus, would be elose enourh. The power used in the resistor is

$$
I^{\prime}=E I=8 \times 0.012=0.016 \text { watt }
$$

A $1 / 1$-with or $1 / 2$-watt resistor would have atmple rating.
The current that flows through R is the total cathode current. In an ordinary triode amplifier this is the same as the plate current, but in a sereen-grid tube the cithode current is the sum of the plate and screen currents. Hence these two currents must be added when calculating the value of cathode resistor required for a screengrid tube.

Example: A receiving pentode resuires 3 volts negative bias. At this bias and the recommended phate and screen voltages, its pate current is 9 math and its screen current is 2 ma. The cathode current is thercfore 11 mas. (0,011 amp.). The repuired resistance is

$$
n=\frac{E}{I}=\frac{3}{0.011}=27^{2} \text { olims. }
$$

A 270-ohan resistor would be satisfactory. The power in the resistor is

$$
P=E I=3 \times 0.011=0.033 \text { watt. }
$$

The cathode-resistor methoul of hiasing is selfregulating, beramse if the tube chatacteristies vary slightly from the published values (as they do in pratiee) the bias will increase if the plate current is slightly high, or decrease if it is slightly low. This tends to hold the plate current at the proper value.

Calculation of the eathode resistor for a re-sistance-roupled amplifier is ordinarily not practicable by the method deseribed above, because the plate current in such an amplifier is usually much smaller than the rated value given in the tube tables. However, representative data for the tubes commonly used as resistance-coupled amplifiers are given in the chapter on audio amplifiers, including cathode-resistor values.

"Contact Potential" Bias

In the absence of any uegative bias voltage on the grid of a tube, some of the electrons in the sparer charge will have enough velocity to reach the grid. This cabses a small current (of the order of mieroamperes) to flow in the external circuit between the grid and cathode. If the current is made to flow through a high resistance - a megohm or so - the resulting voltage drop in the resistor will give the grid a negative bias of the order of one volt. The bias so obtained is ealled eontact-potential bias.

Contact-potential bias ean be used to advantage in circuits oprating at low signal levels (less than one volt peak) since it chiminates the eath-ode-biats resistor and bypass capacitor. It is principally used in low-leved resistanceroupled audio

Oscillators

amplifiers. The hits resistor is connerted directly between grid and cathode, and must be isolated from the signal source by ablocking capacitor.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the sereen frequently is taken from the plate supply through it resistor. A typical circuit for an r.f. amplifier is shown in Fig. 3-20. Resistor R is the screen dropping resistor, and C^{\prime} is the screen bypass capacitor. In flowing through R, the screen current causes a voltage drop, in R that reduces the plate-supply voltage to the proper value for the sereen. When the plate-supply voltage and the sereen current are known, the value of R can be calculated from Ohm's Law.
Example: An r.f. receiving pentode has a rated
screen current of 2 milliamperes (0.002 amp.) at
normal oiverating conditions. The rated screen
voltage is 100 volts, and the mate suphly wives
250) volts. To pent loon volts on the sereen, the
drop abross $i f$ must tre equal to the diference
between the mate-sinply voltare and the wereon
voltage; that is, $230-100=150$ volts. Then

$$
R=\frac{E}{I}=\frac{1.00}{0.002}=75.0000 \text { ohms. }
$$

The power to be dissibated in the resistor is

Fig. 3-20-Screen-voltage supply for a pentode tube through a dropping resistor, R. The screen bypass capacitor, C, must have low enough reactance to bring the screen to ground potential for the frequency or frequencies being amplified.

$$
P=B I=150 \times 0.002=0.3 \text { watt. }
$$

A $3 / 2$ - or 1-watt resistor would be satisfactory.
The reactance of the screen bypass capacitor, C, should be low compared with the sereen-t()eathode impedance. For radin-frequency appliontions a capacitance in the vicinity of $0.01 \mu \mathrm{f}$. is amply large.

In some vacuum-tube cireuits the sereen voltage is obtained from a voltage divider eonnected across the plate supply. The design of voltage dividers is discussed at length in Chapter 7 on Power Supplies.

Oscillators

It was mentioned cartier that if there is enough positive feedrack in an amplifier circuit, solfsustaning oscillations will be set up. When an amplifier is arranged so that this condition exists it is called an oscillator.

Oseillations normally take place at only one frequency, and a desired frequency of oscillation can be obtained by using a resonant cireuit tuned to that frequeney. For example, in Fig. 3-21A the circuit $L C$ ' is tuned to the desired frequency of oscillation. The cathode of the tube is connected to a tip on coil L and the grid and plate are connected to opposite ends of the tunced eircuit. Whon an r.f. current flows in the tuned eireuit there is a voltage drop across L that increases progressively along the turns. Thus the point at which the tap is connected will be at an intermediate potential with respect to the two ends of the coil. The amplified current in the plate cireuit, which flows through the bottom section of L_{L}, is in phase with the current already flowing in the circuit and thus in the proper relationship for positive feedback.

The amount of feedback depends on the positinn of the tap. If the tap is too near the grid eud the voltage drop between grid and cathode is ton small to give enough feedback to sustain oscillation, and if it is too near the plate end the impedance between the cathode and plate is too amall to permit good amplification. Maximum feedback usually is obtained when the tap is somewhere near the renter of the roil.

The cireuit of Fig. 3-21A is parallel-fed, (1 , being the blocking capacitor. The value of 8 , is not eritical so long as its reactance is low (not more than a few hundred ohms) at the operating frequency.

Capacitor C_{g} is the grid capacitor. It and R_{k} (the grid leak) are used for the purpose of ob)-

Fig. 3-21-Basic oscillator circuits. Feedback voltage is obtained by tapping the grid and cathode across a portion of the tuned circuit. In the Hartley circuit the tap is on the coil, but in the Coifitts circuit the voltage is obtained from the drop across a copacitor.
taining grid bias for the tube. In most oscillator circuits the tube generates its own bias. During the part of the cycle when the grid is positive with respect to the cathode, it attracts electrons. These electrons camnot flow through L back to the cathode because C_{k} "blocks" direct current. They thercfore have to flow or "leak" through R_{k} to cathode, and in doing so cause a voltage drop in R_{k} that places a negative bias on the grid. The amount of bias so developed is equal to the grid current multiplied by the resistance of R_{z} (Ohm's Law). The value of grid-leak resistance required depends upon the kind of tube used and the purpose for which the oscillator is intended. Values range all the way from a few thousand to several hundred thousand ohms. The eapacitance of C_{g} should be large enough to have low reactance (a few hundred ohms) at the operating frequency.

The circuit shown at B in Fig. 3-21 uses the voltage drops across two caparitors in series in the tuned circuit to supply the feedback. Other than this, the operation is the same as just described. The feedback can be varied by varying the ratio of the reactances of C_{1} and C_{2} (that is, by varying the ratio of their capacitances).

Another type of oscillator, called the tunedplate tuned-grid circuit, is shown in Fig. 3-22.

Fig. 3-22-The tuned-plate tuned-grid oscillator.
Resonant circuits tuned approximately to the same frequency are comected between grid and cathode and between plate and cathode. The two coils, L_{1} and L_{2}, are not magnetically coupled. The feedback is through the grid-plate capacitance of the tube, and will be in the right phase to be positive when the plate circuit, $C_{2} L_{2}$, is tuned to a slightly higher frequency than the grid circuit, $L_{1} C_{1}$. The amount of feedback can be adjusted by varying the tuning of either circhit. The frequency of oscillation is determined by the tuned circuit that has the higher Q. The grid leak and grid capacitor have the same functions as in the other circuits. In this case it is convenient to use series feed for the plate circuit, so C_{b} is a bypass capacitor to guide the r.f. current around the plate supply.

There are many oscillator circuits (examples of others will be found in later chapters) but the basic feature of all of them is that there is positive feedback in the proper amplitude and phase to sustain oscillation.

Oscillator Operating Characteristics

When an oscillator is delivering power to a load, the adjustment for proper feedback will depend on how heavily the oscillator is loaded - that is, how much power is being taken from
the circuit. If the feedback is not large enough grid excitation too small - a small increase in load may tend to throw the circuit out of oscillation. On the other hand, too much ferdback will make the grid current excessively high, with the result that the power loss in the grid circuit becomes larger than necessary. Since the oscillator itself supplies this grid power, excessive feedback lowers the over-all efficiency because whatever power is used in the grid circuit is not available as useful output.

One of the most important considerations in oscillator design is frequency stability. The principal factors that cause a change in frequency are (1) temperature, (2) plate voltage, (3) loading, (4) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube elements to expand or contract slightly, thus causing variations in the interelectrode capacitances. Since these are unavoidably part of the tuned circuit, the frequency will change correspondingly. Temperature changes in the coil or the tuming capacitor will alter the inductance or capacitance slightly, again causing a shift in the resonant frequency. These effects are relatively slow in operation, and the frequency change caused by them is called drift.

A change in plate voltage usually will cause the frequency to change a small amount, an effect called dynamic instability. Dyuamic instability can be reduced by using a tuned circuit of hirh effective Q. The energy taken from the circuit to supply grid losses, as well as energy supplied to a load, represent an increase in the effective resistance of the tuncd circuit and thus lower its Q. For highest stability, therefore, the coupling between the tuned circuit and the tube and load must be kept as loose as possible. Preferably, the oscillator should not be required to deliver power to an external circuit, and a high value of grid leak resistance should be used since this helps to raise the tube grid and plate resistances as seen by the tuned circuit. Loose coupling can be effected in a variety of ways - one, for example, is by "tapping down" on the tank for the connections to the grid and plate. This is done in the "series-tuned" Colpitts circuit widely used in variable-frequency oscillators for amateur transmitters and described in a later chapter. Alternatively, the L / C ratio may be made as small as possible while sustaining stable oscillation (high C) with the grid and plate connected to the ends of the circuit as shown in Figs. 3-21 and 3-22. Using relatively high plate voltage and low plate current also is desirable.

In general, dynamic stability will be at maximum when the feedback is adjusted to the least value that permits reliable osrillation. The use of a tube having a high value of transconductance is desirable, since the higher the transconductance the looser the permissible coupling to the tuned circuit and the smaller the feedback required.

Load variations act in much the same way as plate-voltage variations. A temperature change in the load may also result in drift.

Mechanical variations, usually caused by

Clipping Circuits

vibration, cause changes in inductance and/ or capacitance that in turn cause the frequency to "wobble" in step with the vibration.

Methods of minimizing frequency variations in oscillators are taken up in detail in later chapters.

Ground Point

In the oscillator circuits shown in Figs. 3-21 and 3-22 the cathode is connected to ground. It is not actually essential that the radiofrequency circuit should be grounded at the cathode; in fact, there are many times when an $r . f$. ground on some other point in the circuit is desirable. The r.f. ground can be placed at any point so long as proper provisions are made for feeding the supply voltages to the tube elements.

Fig. 3-23 shows the IIartley circuit with the plate end of the circuit grounded. No r.f. choke is needed in the plate circuit because the plate already is at ground potential and there is no r.f. to choke off All that is necessary is a bypass capacitor, C_{b}, across the plate supply. Direct

Fig. 3-23-Showing how the plate may be grounded for r.f. in a typical ascillator circuit (Hartley).
current flows to the cathode through the lower part of the tuned-circuit coil, L. An advantage of such a circuit is that the frame of the tuning capacitor can be grounded.

Tubes having indirectly heated cathodes are more easily adaptable to circuits grounded at other points than the cathode than are tubes having directly heated filaments. With the latter tubes special precautions have to be taken to prevent the filament from being bypassed to ground by the capacitance of the filament-heating transformer.

Clipping Circuits

Vacuum tubes are readily adaptable to other types of operation than orlinary (without substantial distortion) amplification and the genera-

tion of single-frequency oscillations. Of particular interest is the clipper or limiter circuit, because of its several applications in receiving and other equipment.

Diode Clipper Circuits

Basic diode clipper circuits are shown in Fig. $3-24$. In the series type a positive d.c. bias voltage is applied to the plate of the diode so it is normally conducting. When a signal is applied the current through the diode will change proportionately during the time the signal voltage is positive at the diode plate and for that part of the negative half of the signal during which the instantaneous voltage does not exceed the bias. When the negative signal voltage exceeds the positive bias the resultant voltage at the diode
plate is negative and there is no conduction. Thus part of the negative half cycle is clipped as shown in the drawing at the right. The level at which elipping occurs depends on the bias voltage, and the proportion of signal clipping depends on the signal strength in relation to the bias voltage. If the peak signal voltage is below the bias level there is no clipping and the output wave shape is the same as the input wave shape, as shown in the lower sketch. The output voltage results from the current flow through the load resistor R.
In the shunt-type diode clipper negative bias is applied to the plate so the diode is normally nonconducting. In this case the signal voltage is fed through the series resistor R to the output circuit (which must have high impedance compared with the resistance of R). When the negative half of the signal voltage execeds tho hins voltage the diode conducts, and because of the voltage drop in R when current flows the output voltage is reduced. By proper choice of R in relationship to the load on the output circuit the clipping can be made equivalent to that given by the series circuit. There is no clipping when the peak signal voltage is below the bias level.

Two diode circuits can be combined so that both the negative and positive peaks of the signal are clipped.

Triode Clippers

The circuit shown at A in Fig. 3-25 is capable of clipping both negative and positive signal peaks. On positive peaks its operation is similar to the shunt diode clipper, the clipping taking place when the positive peak of the signal voltage

3-VACUUM-TUBE PRINCIPLES

Fig. 3-25-Triode clippers. A-Single triode, using shunt-type diode clipping in the grid circuit for the positive peak and plate-current cut-off clipping for the negative peak. 8-Cathode-coupled clipper, using plate-current cut-off clipping for both positive and negative peaks.

is large enough to drive the grid positive, The positive-clipped signal is amplified by the tube as a resistance-coupled amplifier. Negative peak clipping occurs when the negative peak of the signal voltage exceeds the fixed grid bias and thus cuts off the plate current in the output circuit.
In the cathode-coupled clipper shown at B in Fig. 3-25 V_{1} is a cathode follower with its output circuit directly connected to the cathode of V_{2}, which is a grounded-grid amplifier. The tubes are biased by the voltage drop across R_{l}, which carries the d.c. plate currents of both tubes. When the negative peak of the signal voltage ex-
ceeds the d.c. voltage across R_{1} clipping occurs in V_{1}, and when the positive peak exceeds the same value of voltage V_{2} 's plate current is cut off. (The bias developed in R_{1} tends to be constant because the plate current of one tube increases when the plate current of the other decreases.) Thus the circuit clips both positive and negative peaks. The clipping is symmetrical, providing the d.c. voltage drop in R_{2} is small enough so that the operating conditions of the two tubes are substantially the same. For signal voltages below the clipping level the circuit operates as a normal amplifier with low distortion.

U.H.F. and Microwave Tubes

At ultrahigh frequencies, interelectrode capacitances and the inductance of internal leads determine the highest possible frequency to which a vacuum tulle can be tuned. The tube usually will not oscillate up to this limit, however, because of dielectric losses, transit time and other effects. In low-frequency operation, the actual time of flight of electrons between the cathode and the anode is negligible in relation to the duration of the cycle. At 1000 kc ., for example, transit time of 0.001 microsecond, which is typical of conventional tubes, is only $1 / 1000$ cycle. But at 100 Mc., this same transit time represents $1 / 10$ of a cycle, and a full cycle at 1000 Mc . These limiting factors establish about 3000 Mc . as the upper frequency limit for negative-grid tubes.
With most tubes of conventional design, the upper limit of useful operation is around 150 Mc . For higher frequencies tubes of special construction are required. About the only means available for reducing interelectrode capacitances is to reduce the physical size of the elements, which is practical only in tubes which do not have to handle appreciable power. However, it is possible to reduce the internal lead inductance very materially by minimizing the lead length and by using two or more leads in parallel from an electrode.

In some types the electrodes are provided with up to five separate leads which may be connected in parallel externally. In double-lead types the plate and grid elements are supported by heavy single wires which run entirely through the envelope, providing terminals at either end of the
bulb. With linear tank circuits the leads become a part of the line and have distributed rather than lumped constants.
In "lighthouse" tubes or disk-seal tubes, the plate, grid and cathode are assembled in parallel

Fig. 3-26-Sectional view of the "lighthouse" tube's construction. Close electrode spacing reduces transit time while the disk electrode connections reduce lead inductance.
planes, as shown in Fig. 3-26, instead of coaxially. The disk-seal terminals practically eliminate lead inductance.

Velocity Modulation

In conventional tube operation the potential on the grid tends to reduce the electron velocity during the more negative half of the cycle, while on the other half cycle the positive potential on the grid serves to accelerate the electrons. Thus the electrons tend to separate into groups, those leaving the cathode during the negative halfcycle being collectively slowed down, while those

U.H.F. and Microwave Tubes

leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the clectron stream follows the original form of the oscillation erele, the remainder traveling to the plate at differing velorities. Sime these contribute nothing to the power output at the operating frequency; the efficienc! is reduced in direct proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-cycle.

This effect is turned to advantage in velocitymodulated tubes in that the input signal voltage on the grid is used to change the velocity of the electrons in a constant-current electron beam, rather than to vary the intensity of a constantvelocity current flow as is the method in ordinary tubes.

The velocity modulation principle may be used in a number of ways, leading to several tube designs. The major tulne of this type is the "klystron."

The Klystron

In the klystron tube the electrons emitted by the cathode pass through an electrice field established by two grids in a catvity resonator eatled the buncher. The high-frequency electric field betwen the grids is paraillel to the electron streatm. This field arecelerates the electrons at one moment and retards them at another, in areordance with the variations of the ref. voltage applied. The resulting velocity-modulated beam trabels through a field-free "drift spatee," where the slower-moving eleretrons are gratually overtaken be the faster ones. The electrons emerging from the pair of grids thevefore are separated into groups or "buached" along the direction of motion. The velocite-modulated clectron stream then goes to a catcher cavity where it again passes through two parallel grids, and the r.f. current created by the bunching of the elec-

Fig. 3-27-Circuit diogram of the klystron oscillotor, showing the feed-back loop coupling the frequency-controlling covities.
tron beam induces an r.f. voltage between the grids. 'I he catcher cavity is mude resonant at the frequency of the velocit y-modulated electron beam, so that an oscillating field is set up within it by the passage of the electron bunches through the grid aperture.

If a feedback loop is provided between the two cavities, as shown in Fig. 3-27, oscillations will occur. The resonant frequency depends on the electrode voltages and on the shape of the cavities, and may be adjusted by varying the supply voltage and altering the dimensions of the cavities. Although the bunched beam current is rich in harmonics the output wave form is remarkably pure because the high Q of the catcher cavity suppresses the unwanted harmonics.

Magnetrons

A magnetron is fundamentally a diode with cylindrical electrodes placed in a uniform magnetic field, with the lines of magnetic force parallel to the axes of the elements. The simple cylindrical magnetron consists of a cathode surrounded by a concentric eylindrical anode. In the more effi-

Fig. 3-28-Conventionol magnetrons, with equivolent schemotic symbols of the right. A, simple cylindricol magnetron. B, split-onode negotive-resistonce mognetron.
cient sphit-anode magnetron the cylinder is divided lengthwise.

Magnetron oscillators are operated in two different ways. Electridally the circuits are similar, the difference being in the relation hetween eletron transit time and the frequency of oscillation.

In the necative-resistance or dynatron type of magnetron oscillator, the element dimeusions and anode voltage are surh that the transit time is short compared with the period of the oscillation frequency. Electrons emitted from the cathode are driven toward both halves of the anode. If the potentials of the two halves are unequal, the effect of the magnetic field is such that the mitjority of the electrons travel to the half of the anode that is at the lower potential. That is, a decrease in the potential of either half of the anode rosults in an increase in the electron current flowing to that half. The magnetron consequently cxhibits negative-resistance characteristios. Negative-resistance magnetron oscillators are useful between 100 and 1000 Mc. Under the best operating conditions efficiencies of 20 to 25 per eent may be ohtained.

3-VACUUM-TUBE PRINCIPLES

In the transit-time magnetron the frequency is determined primarily by the tuhe dimensions and by the electric and magnetic field intensities rather than by the tuming of the tank circuits. The intensity of the magnetic field is adjusted so that, under static conditions, electrons leaving the cathode move in curved paths which just fail to reach the anode. All electrons are therefore deflected back to the cathode, and the anode culrent is zero. An alternating voltage applied between the two halves of the anode will cause the

potentials of these halves to vary about their average positive values. If the period (time required for one cycle) of the alternating voltage is made equal to the time required for an electron to make one complete rotation in the magnetic fied, the a.c. component of the anode voltage reverses direction twice with each electron rotation. Some electrons will lose energy to the electric field, with the result that they are unable to reach the cathode and continue to rotate about it. Meanwhile other electrons gain energy from the fied and are
assembly is a solid block of copper which assists in heat dissipation. At extremely high frequencies operation is improved by subdividing the anode structure into 4 to 16 or more sagments, the resonant cavities for each anode being coupled to the common cathode region by slots of critical dimensions.

The efficiency of multisegment magnetrons reaches (is or 70 per cent. Slotted-anode magnetrons with four segments function up to 30,000 Mc. (1 cm .), delivering up to 100 watts at efficiencies greater than 50 per cent. Using larger multiples of anodes and higher-order modes, performance can be attaned at 0.2 cm .

Traveling-Wave Tubes

(ains as high as 23 db . over a bandwidth of 800 Mc . at a center frequency of 3600 Mc . have been obtained through the use of a travelingwave amplifier tube shown schematically in Fig. :3-30. An electromagnetic wave travels down the helix, and an electron beam is shot through the helix parallel to its axis, and in the direction of propagation of the wave. When the clectron velocity is alrout the same as the wave velocity in the absence of the dectrons, turning on the electron beam causes a power gain for wave propagation in the direction of the electron motion.

The portions of Fig. 3-30 marked "input" and

Fig. 3-30-Schematic draw. ing of a traveling-wave amplifier tube.

returned to the cathode. Since those electrons that lose energy remain in the interelectrode spatce longer than those that gain energy, the net effect is a transfer of energy from the electrons to the electric field. This energy can be used to sustain oscillations in a resonant transmission line connected between the two halves of the anode.

Split-anode magnetrons for u.h.f. are constructed with a cavity resonator built into the tube structure, as illustrated in Fig. 3-29. The
"output" are waveguide sections to which the ends of the helix are coupled. In practice two electromagnet ic focusing coils :ure used, one forming a lens at the electron gum end, and the other a solenoid running the length of the helix.

The outstanding features of the traveling-wave amplifier tube are its great bundwidth and large power gain. However, the efficiency is rather low. Typical power output is of the order of 200 milliwatts.

CHAPTER 4

Semiconductor Devices

Certain materials whose resistivity is not high enough to classify them as good insulators, but is still high compared with the resistivity of common metals, are known as semiconductors. These materials, of which germanium and silicon are examples, have an atomic structure that normally is associated with insulators. However, when small amounts of impuritios are introduced during the manufarture of germanium or silicon crystals, it is possible for free electrons to exist and to move through the erystals under the influenee of an electrice fied. It is also possible for some of the atoms to be deficient in an electron, and these electrou defiecieneies or holes cin move from atom to atom when urged to do so by an applied electric force. The movement of a hole is actually the movement of an electron, the electron becoming detathed from one atom, making a hole in that atom, in order to move into an existing hole in another atom.) The holes ean be considered to be equivalent to particles carrying a positive electric charge, while the electrons of course have negative charges. Ioles and electrons are called charge carriers in semiconductors.

Electron and Hole Conduction

Material which conduets by virtue of a deficiency in electrons - that is, by hole conduction - is called p-type material. In n-type material, which has an excess of electrons, the conduction is termed "electronic." If a piece of p-type material is joined to a piece of n-type material as at A in Fig. $1-1$ and a voltage is applied to the pair as at 13, current will flow across the boundary or junction between the two (and also in the external (irenit) when the hattery has the polarity indicated. Eleatrons, indicated by the minus symbol, are attracted across the junction from the 11 material through the p material to the positive terminal of the battery, and holes, indicated by the plus symbol, are attracted in the opposite direction across the junction by the negative potential of the battery. Thus current flows through the circuit by means of
electrons moving one way and holes the other.
If the battery polarity is reversed, as at C , the excess electrons in the n material are artracted away from the junction and the holes in the p material are attracted by the negative potential of the battery away from the junction. This loaves the junction region without any current carriers, consequently there is no conduction.

In other words, a junction of p - and n-type materials constitutes a reetifier. It differs from the tube diode rectifier in that there is a measurable, although comparatively very small, reverse 'urrent. The reverse eurrent results from the presence of some curriers of the type opposite to those which principally characterize the material. The principal ones are catled majority carriers, while the lesser ones are minority carriers.

The process by which the earriers cross the junction is essentially diffusion, and takes place romparatively slowly: This, toget her with the fact that the junction forms a caparitor with the two plates separated by practically zero spacing and hence has relatively high capacitance, places a limit on the upuer freguency at which semiconductor deviees of this construction will operate, as eompared with vacuum tubes. Also, the number of excess electrons and holes in the material depends upon temperature, and since the conductivity in turn depends on the number of excess holes and electrons, the device is more temperature sensitive than is a vacuum tube.

Capacitance maty be reduced by making the contact area very small. This is done by means of a point contact, a tiny p-tpre region heing formed under the contact point during manufacture when n-type material is used for the main body of the device.

SEMICONDUCTOR DIODES

Diodes of the point-contact type are used for many of the same purposes for which tube diodes are used. The construction of such a diode is

4 -SEMICONDUCTOR DEVICES

Fig. 4.2-Construction of a germanium-point-contact diode. In the circuit symbol for a contact rectifier the arrow points in the direction of minimum resistance measured by the conventional method-that is, going from the positive terminal of the voltage source through the rectifier to the negative terminal of the source. The arrow thus corresponds to the plate and the bar to the cathode of a tube diode.
shown in Fig. 4-2. Germanium and silicon are the most widely used materials, the latter prineipally in the u.h.f. region.

As compared with the tube diole for r.f. :upplications, the erystal diode has the advantages of very small size, very low interelertrode cat pacitance (ol the order of $1 \mu \mu \mathrm{f}$. or less) and requires no heater or filament power.

Characteristic Curves

The germanium orvatal diode is characterized by relatively large current flow with small applied voltages in the "forward" direation, and small, although finite, current flow in the reverse or "back" direction for much larger :upplied voltages. A trpical characteristic curve is shown in Fig. 4-3. The dynamic resistance in either the forward or back direction is determined by the change in eurrent that oceurs, at any given point on the eurve, when the applied voltage is changed by a small amount. The forward resistance shows some variation in the region of very small alpplied voltages, but the curve is for tho most part quite straight, indicating fairly constiant dynamic resistance. For smath applied voltages, the forward resistance is of the order of 200 ohms in most such diodes. The bask resistance shows considerable variation, depending on the particular voltage chosen for the measurement. It may run from in few hundred thousand ohms to over a megohm. In applications such as meter reetifiers for r.f. indicating instruments (r.f. voltmeters, wavemeter indicators, and so on) where the load resistance masy be smatl and the applied voltage of the ordior of several volts, the resistances vary with the value of the applied voltage and are considerably lower.

Junction Diodes

Junction-type diodes made of germanimm or silicon are employed principally as power rectifiers, in applications similar to those where selenium rectifiers are used. Depending on the design of the particular diode, they are capable of rectifying currents up to several hundred milliamperes. The safe inverse paak voltage of a junction is relatively low, so an appropriate number of rectifiers must be connected in seriess to oprate saffly on a given a.c. input voltage.

Ratings

Crystal diodes are rated primarily in terms of maximum safe inverse voltage and maximum average rectified current. Inverse voltage is a voltage applied in the direction opposite to that which causes maximum current flow. The average current is that which would be read by a d.c. meter conneeted in the eurrent path.
It is also customary to specify standards of performance with respect to forward and back current. A minimum value of forward eurrent is usually sperified for one volt applied. The voltage at which the maximum tolerable back current is specified varies with the type of diode.

Fig. 4.3-Typical point contact germanium diode characteristic curve. Because the back current is much smaller than the forward current, a different scale is used for back voltage and current.

Zener Diodes

The "zener diote" is a spreial type of silicon junction diode that has a characteristic similar to that shown in Fig. 4-4. The sharp break from non-conductance to conductance is called the Zener Khee: at applied voltages greater than this breakdown point. the voltage drop across the diok is essentially constant over a wide range of currents. The substantially constant voltage

Fig. 4.4-Typical characteristic of a zener diode. In this example, the voltage drop is substantially constant at 30 volts in the (normally) reverse direction. Compare with Fig. 4-3. A diode with this characteristic would be called a
"30-volt zener diode."

Transistors

drop over a wide range of currents allows this semiconductor deviee to be used as a constant voltage reference or control element. in a manner somewhat similar to the gaseous voltage-regulator tulo. Voltages for zener diode action range from a few volts to several hundred and power ratings run from a fraction of a watt to 50 watts.

Zener diodes can be connected in series to advantage: the temperature eofficient is improved over that of a single diode of equivalent rating and the power-handling capability is inereased.

Two zener diodes connected in opposition, lig. $4-\overline{3}$, form a simple and highly effective rlipper.

Voltage-Variable Capacitors

Voltage-variable capacitors are p-n junetion diodes that behave as capacitors of reasonable Q (35 or more) up to 50 Me . and higher. They are useful in many applications because the actual caparitance value is dependent upon the d.e. Dias voltage that is applied. In a twpical capacitor the eapacitance ran be varied over a $10-\mathrm{to}-1$ range with a hias change from 0 to -100 volts. The current demand on the bias supply is on the order of a few mieroamperes.

Typical appliations include remote control of tumed eircuits, automatie froquency control of reeeiver loral oseillators, and simple frequency

Fig. 4-5-Full-wave clipping action with two zener diodes in opposition. The output level would be at a peak-to-peak voltage of twice the zener rating of a single diode. R_{1} should have a resistance value sufficient to limit the current to the zener diode rating.
modulators for communications and for sweeptuning applications.

Tunnel Diode

Mueh hope is held for the future use of the "tunnel diode," a junction semiconductor of special construction that has a "negative resistance" eharaeteristic at low voltages. This charamteristio (decrease of current with incerease of voltage) permits the diode to be used as an oscillator and as an amplifier. Since electrimal charges move through the diode with the speed of light, in contrast to the relatively show motion of electrical rharge rarriers in other semiconduetors, it has been possible to ohtain oseillations at 2000 Me , and higher.

Transistors

lig. 4-i shows a "sandwich" made from two lityers of p-type semiconductor material with a thin layer of n-type between. There are in affect two pha $^{-1}$ junction diodes back to back. If a positive bias is applied to the p-twpe material at the left, current will flow through the lefthand junction, the holes moving to the right and the electrons from the n-thee material moving to the left. Some of the holes moving into the n-type material will combine with the electrons there and be neutralized, but some of them also will travel to the region of the righthand junction.

If the $p-n$ combination at the right is biased negatively, as shown, there would normally be no current llow in this cireuit (sue Piz. 1 1C). However, there are now additional holes available at the jumetion to travel to point B and electrons can travel toward point A, so a current can flow even though this section of the sandwich considered alone is biased to prevent conduction.

Fig. 4-6 - The basic arrangement of a transistor. This represents a junction-type $p-n-p$ unit.

Most of the eurrent is between A and B and does not flow out through the rommon connection to the n-type material in the sandwieh.

A semiconductor combination of this trpe is called a transistor, and the three sections are known as the emitter, base and collector, respectively. The amplitude of the eollector eurrent depends principally upon the amplitude of the emitter current; that is, the collector current is controlled by the emitter current.

Power Amplification

Because the collector is biased in the buck direction the eollector-to-base resistance is high. On the other hand, the emitter and collector currents are sinstantially calual, so the power in the eolloctor cirmut is larger than the power in the emitter circuit $\left(P=I^{2} R\right.$, so the powers are proportional the the respective resistances, if the currents are the same). In practical transistoms emitter resistance is of the order of a frew handerd ohms while the eollector resistane is humedreds or thousududs of times higher, so power gatins of 20 to 40 db . or even more are possible.

Types

The transistor may be one of the several types shown in Fig. 4-7. The assembly of p- and n-type materials may be reversed, so that $p-n-p$ and n-p-n transistors are both possible.

Point-Contact Transistors

The point-contact transistor, shown at the

left in Fig. 4-7, has two "cat whiskers" placed very close together on the surface of a germanium wafer. It is principally of historical interest and is now superseded by the junction type. It is difficult to manufacture, since the two contact points must be extremely close together if good high-frequency characteristics are to be sccured.

Junction Transistors

The junction transistor, shown at the center in Fig. 4-7, has higher capacitances and higher power-handling capacity than the point-contact type. The "electrode" areas and thickness of the intermediate layer have an important effect on the upper frequency limit. Ordinary junction transistors may have cut-off frequencies (see next section) up to 50 Mc . or so. The types used for audio and low-radio frequencies usually have cut-off frequencies ranging from 500 to 1000 kc .
The upper frequency limit is extended considerably in the drift transistor. This type has a particular form of distribution of impurities in the base material resulting in the creation of an internal electric field that accelerates the carriers across the junction. Typical drift transistors have cut-off frequencies of the order of 100 Mc .

Another type of transistor useful in highfrequency work is the surface barrier transistor, using plated emitter and collector electrodes on a wafer of n-type material, as shown at the right in Fig. 4-7. Surface-barrier transistors will opcrate as amplifiers and oscillators at frequencies of 250 Mc . or higher.

- TRANSISTOR CHARACTERISTICS

An important characteristic of a transistor is its current amplification factor, usually designated by the symbol α. This is the ratio of the change in collector current to a small change in emitter current, measured in the common-base circuit described later, and is comparable with the voltage amplification factor (μ) of a vacuum tube. 'The current amplification factor is almost, but not quite, 1 in a junction transistor. It is larger than 1 in the point-contact type, values in the neighborhood of 2 being typical.
The α cut-off frequency is the frequency at which the current amplification drops 3 db . below its low-frequency value. Cut-off frequencies range from 500 ke. to frequencies in the v.h.f.

Surface barrier type

Fig. 4-7-Point-contact, junction-type and sur-face-barrier types of transistors with their circuit symbols. The plus and minus signs associated with the symbols indicate polarities of voltages, with respect to the base, to be applied to the elements.
region. The cut-off frequency indicates in a general way the frefuency spread over which the transistor is useful.

Each of the three elcments in the transistor has a resistance associated with it. The emitter and colloetor resistances were diseussed earlier. There is also a certain amount of resistance associated with the base, a value of a few hundred to 1000 ohms being typical of the base resistance.

The values of all three resistances vary with the type of transistor and the operating voltages. The collector resistance, in particular, is sensitive to operating conditions.

Characteristic Curves

The operating characteristics of transistors can be shown by a series of characteristic curves. One such set of curves is shown in Fig. 4-8. It

Fig. 4-8-A typical collector-current vs. collector-voltage characteristic of a junction-type transistor, for various emitter-current values. The circuit shows the setup for taking such measurements. Since the emitter resistance is low, a current-limiting resistor, R, is connected in series with the source of current. The emitter current can be set at a desired value by adjustment of this revistance.
shows the collector current is. collector voltage for a number of fixed values of emitter current. Practically, the collector current depends almost entirely on the emitter current and is independent of the collector voltage. The separation between curves representing equal steps of emitter current is quite uniform, indicating that almost distortionless output can be obtained over the useful operating range of the transistor.

Another type of curve is shown in Fig. 4-! , together with the circuit used for obtaining it This also shows collector current $v s$. collector voltage, but for a number of different values of base current. In this case the emitter element is used as the common point in the circuit. The collector current is not independent of collector voltage with this type of connection, indicating

Transistor Characteristics

that the output resistance of the device is fairly low. The base current also is quite low, which

Fig. 4.9-Collector current vs. collector voltage for various values of base current, for a junction+type transistor. The values are delermined by means of the circuit shown
means that the resistance of the base-emitter circuit is moderately high with this method of connection. This may be contrasted with the high values of emitter current shown in Fig. t-8.

Ratings

The principal ratings applied to transistors are maximum collector dissipation, maximum collector voltage, maximum collector current, and maximum emitter current. The voltage and current ratings are self-explanatory.
The collector dissipation is the power, usually expressed in milliwatts, that can safely be dissipated by the transistor as heat. With some types of transistors provision is made for transferring heat rapidly through the container, and such units usually require installation on a heat "sink," or mounting that can absorb heat.

The amount of undistorted output power that can be obtained depends on the collector voltage, the collector current being practically independent of the voltage in a given transistor. Increasing the collector voltage extends the range of linear operation, but must not be carried beyond the point where either the voltage or dissipation ratings are exreeded.

TRANSISTOR AMPLIFIERS

Amplifier circuits used with transistors fall into one of three types, known as the groundedbase, grounded-emitter, and grounded-collector eircuits. These are shown in Fig. 4-10 in elementary form. The three circuits correspond approximately to the grounded-grid, grounded-canode and cathode-follower circuits, respectively, used with vacuum tubes.
The important transistor parameters in these pircuits are the short-circuit current transfer ratio, the cut-off frequency, and the input and output impedances. The short-circuit current transfer ratio is the ratio of a small change in output current to the change in input current that causes it, the output circuit being shortcircuited. The cut-off frequency is the frequency at which the amplification decreases by 3 db . from its value at some frequency well helow that at which frequency effects begin to assume importance. The input and output impedances are, respectively, the impedance which a signal source working into the transistor would see, and the internal output impedance of the transistor
(corresponding to the plate resistance of a vacuum tube, for example).

Grounded-Base Circuit

The input circuit of a grounded-base amplifier must be designed for low impedance. since the emitter-to-hase resistance is of the order of $25 / I_{c}$ ohms, where I_{e} is the emitter current in milliamperes. The optimum output load impedance, R_{L}, may range from a few thousand ohms to 100,000 , depending upon the requirements.
The current transfer ratio is α and the cut-off frequency is as defined previously.

In this circuit the phase of the output (collector) current is the same as that of the input (emitter) current. The parts of these currents that flow through the base resistance are likewise in phase, so the circuit tends to be regenerative and will oscillate if the current amplification factor is greater than 1. A junction transistor is stable in this circuit since α is less than 1, but a point-contact transistor will oseillate.

Grounded-Emitter Circuit

The grounded-emitter circuit shown in Fig. 4-10 corresponds to the ordinary grounded-cathode varuum-tube amplifier. is indicated by the curves of Fig. 4-9, the base current is small and the input impedance is therefore fairly high -several thousand ohms in the average case. The collector resistance is some tens of thousands of ohms, depending on the signat souree impedance. The current transfer ratio in the commonemitter circuit is equal to

$$
\frac{\alpha}{1-\alpha}
$$

Since α is close to 1 (0.98 or higher being representative), the short-circuit current gain in the grounded-emitter circuit may be 50 or more. The cut-off frequency is equal to the α cut-off frequency multiplied by ($1-\alpha$), and therofore is relatively low. (For example, a transistor with an α cut-off of 1000 kc . and $\alpha=0.98$ would have a cut-off frequency of $1000 \times 0.02=20$ kc. in the grounded-emitter circuit.)

Within its frequency limitations, the groundedemitter circuit gives the highest power gain of the thres.

In this circuit the phase of the output (collector) current is opposite to that of the input (base) current so such feedl)ack as occurs through the small emitter resistance is negative and the amplifier is stable with either junction or pointcontact transistors.

Grounded-Collector Circuit

Like the vacuum-tube cathode follower, the grounded-collector transistor amplifier has high input impedance and low output impedance. The latter is approximately equal to the impedance of the signal input source multiplied by $(1-\alpha)$. The input resistance depends on the load resistance, being approximately equal to the load resistance divided by $(1-\alpha)$. The fact that input resistance is directly related to the load
resistance is a disadvantage of this tye of amplifier if the load is one whose resistance or impedan'e varies with frequency.

The current transfer ratio with this circuit is

$$
\frac{1}{1-\alpha}
$$

and the cut-off frequency is the same as in the grounded-emitter cireuit. The output and input currents are in phase.

Practical Circuit Details

The transistor is essentially a low-voltage device, so the use of a battery power supply rather than a rectified-a.c. supply is quite common. U"sually; it is more convenient to employ a single battery as a power source in preference to the two-battery arrangements shown in Fig. 1-10, so most eircuits are designed for singlebattery operation. P'rovision must be included, therefore, for obtaining proper biasing voltage for the emitter-hase circuit from the battery that supplies the power in the collector circuit.

Fig. 4-10-Basic transistor amplifier circuits. $R_{\text {La }}$ the load resistance, may be an actual resistor or the primary of a tronsformer. The input signal may be supplied from a transformer secondary or by resistancecapacitance coupling. In any cose it is to be understood that o d.c. path must exist between the base and emitter.

P-n-p transistors are shown in these circuits. If $n-p-n$ types are used the battery polarities must be reversed.

COMMON COLLECTOR
Coupling arrangements for introducing the input signal into the circuit and for taking out the amplified signal are similar to those used with vacuum tubes. Ilowever, the artual component values will in general be quite different from those used with tubes. This is because the impedances associated with the input and output rircuits of transistors may differ widely from the comparable impedanees in tube circuits. . Nlso, d.e. voltage drops in resistances may require more careful attention with transistors because of the much lower voltage available from the ordinary battery power source. Battery economy becomes an important factor in eirenit design, both with respect to voltage required and to overall current drain. A bias voltage divider, for example, easily maty use more power thath the transistor with which it is assoriated.

Typieal single-hattery grounded-emitter cir-

Fig. 4-11 - Practical grounded-emitter circuits using transformer and resistance coupling. A combination of either also con be used-e.g., resistance-coupled input and transformer-coupled output. Tuned transformers may be used for r.f. and i.f. circuits.

With small transistors used for low-level omplification the input impedance will be of the order of 1000 ohms and the input circuit should be designed for on impedance step-down, if necessary. This can be done by appropriate choice of turns ratio for T_{1} or, in the case of tuned circuits, by tapping the base down on the tuned secondary circuit. In the resistance-coupled circuit \boldsymbol{R}_{2} should be large compared with the input impedance, values of the order of 10,000 ohms being used.

In low-level circuits R_{1} will be of the order of 1000 ohms. R_{3} should be chosen to bias the transistor to the desired no-signal collector current; its value depends on R_{1} and R_{2} (see text).
euits are shown in Fig. 1-11. R_{1}, in series with the emitter, is for the purpose of "swamping out " the resistance of the emitter-l)ase diode; this swamping helps to stahilize the emitter current. The resistance of R_{1} should be large compared with that of the emitter-base diode, which, as stated earlier, is approximately equal to 25 divided by the emitter current in ma.

Since the current in R_{1} flows in such a direction as to bias the emitter negativel. with respect to the hase (a p-n-p transistor is assumed), a baseemitter bias slightly greater than the drop in R_{1} must be supplied. The proper operating point is achieved through adjustment of voltage divider $R_{2} R_{3}$, the constants of which are ehosen to give the desired value of collector current at the nosignal operating point.

In the transformer-roupled circuit, input signal currents flow through R_{1} and R_{2}, and there would be a loss of signal power at the hase-emitter diode if these resistors were not bepassed bey (${ }_{1}$ and (${ }_{2}{ }_{2}$. The rapacitors should have low ractance compared with the resistances across which they are comerted. In the resistance-coupled circuit R_{2}

Transistor Circuits

has the dual function of acting as part of the hias voltage divider and as part of the load resistance for the signal-input source. Also, as seen by the signal source, R_{3} is in parallel with R_{2} and thus becomes part of the input load resistance. ('s must therefore have low reactance compared with the net resistance of the parallel combination of R_{2}, R_{3} and the base-to-emitter resistance of the transistor. The reactance of C_{4} will depend on the impedance of the load into which the circuit delivers output.

The output load resistance in the transformercoupled case will be the actual load as reflected at the primary of the transformer, and its proper value will be determined by the transistor characteristics and the type of operation (Class A, I3, etc.). The value of R_{L} in the resistance-coupled case is usually such as to permit the maximum a.c. voltage swing in the collector circuit without undue distortion, since Class A operation is usual with this type of amplifier.

Bias Stabilization

Transistor currents are rather sensitive to temperature variations, and so the operating point tends to shift as the transistor heats. The shift in operating point unfortunately is in such a direction as to increase the heating, leading to "thernal runaway" and possible destruction of the transistor. The heat developed depends on the amount of power dissipated in the transistor, so it is obviously advantageous in this respert to operate with as little internal dissipation as possible: i.e., the d.c. input should be kept to the lowest value that will permit the type of operation desired, and in any event should never exceed the rated value for the part icular transistor used.

A contributing factor to the shift in operating point is the collector-to-base leakage current (usually designated I_{co}) - that is, the current that flows from collector to hase with the emitter comection open. This current, which is highly temperature sensitive, has the effect of increasing the emitter current by an amount much larger than $I_{\text {co }}$ itself, thus shifting the operating point in such a way as to increase the collector current. This effect is rerluced to the extent that $I_{o c}$ can be made to flow out of the base terminal rather than through the base-emitter diode. In the circuits of Fig. 4-11, bias stabilization is improved by making the resistance of R_{1} as large as possible and both R_{2} and R_{3} as small as possible, consistent with other considerations such as gain and battery economy.

- transistor oscillators

Since more power is available from the output circuit than is necessary for its generation in the input circuit, it is possible to use some of the output power to supply the input circuit and thus sustain self-oscillation. Representative oscillator circuits are shown in Fig. +12 . Their resemblance to the similarly-named vacuum-tube circuits is evident,

Fig. 4-12-Typical transistor oscillator circuits. Component values are discussed in the text.

The upper frequency limit for oscillation is principally a function of the cut-off frequency of the transistor used, and oscillation will cease at the frequency at which there is insufficient amplification to supply the energy required to overcome circuit losses. Transistor oscillators usually will operate up to, and sometimes well beyond, the a cut-off frequeney of the particular transistor used.

The approximate oscillation frequency is that of the tuned circuit, $L_{1} C_{1} . R_{1}, R_{2}$ and R_{3} have the same functions as in the amplifier circuits given in Fig. 4-11. Capacitors C_{2} and C_{3} are bypass or blocking capacitors and should have low reactance compared with the resistances with which they are associated.

Feedback in these circuits is adjusted in the same way as with tube oscillators. In the Hartley circuit it is dependent on the position of the tap on the tank coil; in the tickler circuit, on the number of turns in L_{2} and degree of coupling between L_{1} and L_{2}; and in the Colpitts circuit, on the ratio of the tank capacitance between base and emitter to the tank capacitance between collector and emitter.

High-Frequency Receivers

A good receiver in the amateur station makes the difference between mediocre contacts and solid QSOs, and its importance cannot be overemphasized. In the less crowded v.h.f. bands, sensitivity (the ability to bring in weak signals) is the most important factor in a receiver. In the more crowded amateur bands, good sensitivity must be combined with selectivity (the ability to distinguish between signals separated by only a small frequency difference). To receive weak signals, the receiver must furnish enough amplification to amplify the minute signal power delivered by the antenna up to a useful amount of power that will operate a loudspeaker or set of headphones. Before the amplified signal can operate the speaker or phones, it must be converted to audio-frequency power by the process of detection. The sequence of amplification is not too important - some of the amplification can take place (and usually does) before detection, and some can be used after detection.

There are major differences between receivers for phone reception and for code reception. An a.m. phone signal has sidebands that make the signal take up about 6 or 8 kc . in the band, and the audio quality of the received signal is impaired if the bandwidth is less than half of this. A code signal occupies only a few hundred cycles at the most, and consequently the bandwidth of a code receiver can be small. A single-sideband phone signal takes up 3 to 4 kc ., and the audio quality can be impaired if the bandwidth is much less than 3 kc . although the intelligibility will hold up down to around 2 kc . In any case, if the bandwidth of the receiver is more than nec-
essary, signals adjacent to the desired one can be heard, and the selectivity of the receiver is less than maximum. The detection process delivers directly the audio frequencies present as modulation on an a.m. phone signal. There is no modulation on a code signal, and it is necessary to introduce a second radio frequency, differing from the signal frequency by a suitable audio frequency, into the detector circuit to produce an audible beat. The frequency difference, and hence the beat note, is generaily made on the order of 500 to 1000 cycles, since these tones are within the range of optimum response of both the ear and the headset. There is no carrier frequency present in an s.s.b. signal, and this frequency must be furnished at the receiver before the audio can be recovered. The same source that is used in code reception can be utilized for the purpose. If the source of the locally generated radio frequency is a separate oscillator, the system is known as heterodyne reception; if the detector is made to oscillate and produce the frequency, it is known as an autodyne detector. Modern superheterodyne receivers generally use a separate oscillator (beat oscillator) to supply the locally generated frequency. Summing up the differences, phone receivers can't use as much selectivity as code receivers, and code and s.s.b. receivers require some kind of locally generated frequence to give a readable signal. Broadcast receivers can receive only a.m. phone signals hecause no beat oseillator is included. Communications receivers include beat oscillators and of ten some means for varying the selectivity. With high selectivity they often have a slow tuning rate.

Receiver Characteristics

Sensitivity

In commercial circles "sensitivity" is defined as the strength of the signal (in microvolts) at the input of the receiver that is required to produce a specified audio power output at the speaker or headphones. This is a satisfactory definition for broadeast and communications receivers operating below about 20 Mc ., where atmospheric and man-made electrical noises normally mask any noise generated by the receiver itself.

Another commercial measure of sensitivity defines it as the signal at the input of the receiver required to give a signal-plus-noise output some stated ratio (generally 10 db .) above the noise output of the receiver. This is a more useful sensitivity measure for the amateur, since it indicates how well a weak signal will be heard and
is not merely a measure of the over-all amplification of the receiver. However, it is not an absolute method, because the bandwidth of the receiver plays a large part in the result.

The random motion of the molecules in the antenna and receiver circuits generates small voltages called thermal-agitation noise voltages. Thermal-agitation noise is independent of frequency and is proportional to the (absolute) temperature, the resistance component of the impedance across which the thermal agitation is produced, and the bandwidth. Noise is generated in vacuum tubos by random irregularities in the current flow within them; it is convenient to express this shot-effect noise as an equivalent resistance in the grid circuit of a noise-free tube. This equivalent noise resistance is the resistance

Detection

(at room temperature) that placed in the grid circuit of a noise-free tube will produce platecircuit noise equal to that of the actual tube. The equivalent noise resistance of a vacuum tube increases with frequency.

An ideal receiver woukd generate no noise in its tubes and circuits, and the minimum detectable signal would be limited only by the thermal noise in the antenna. In a practical receiver, the limit is determined by how well the amplified antenna noise overrides the other noise in the plate circuit of the input stage. (It is assumed that the first stage in any good recciver will be the determining factor; the noise contributions of sulsequent stages should be insignificant by comparison.) At freatencies below 20 or 30 Mc , the site noise (atmospheric and man-made noise) is generally the limiting factor.

The degree to which a practical receiver approaches the quiet ideal receiver of the same bandwidth is given by the noise figure of the receiver. Noise figure is defined as the ratio of the signal-to-noise power ratio of the ideal receiver to the signal-to-noise power ratio of the actual receiver output. Since the noise figure is a ratio, it is usually given in decibels; it runs around 5 to 10 (lh. for a good communications receiver below 30 Mc. Although noise figures of 2 to 4 db . can be oltained, they are of little or no use below 30 Mr . except in extremely quiet locations or when a very small antenna is used. The noise figure of a reeciver is not modified by changes in handwidth.

Selectivity

Selectivity is the ability of a receiver to discriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned circuits and the number of such circuits.

The selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various frequencies off resonance to the signal strength at resonance, to give constant output. A resonance curve of this type is shown in Fig. 5-1. The bandwidth is the width of the resonance curve (in cycles or kilocycles) of a receiver at a specified ratio; in Fig. 5-1, the bandwidths are indicated for ratios of response of 2 and 10 (" 6 db. down" and " 20 db . down").

Fig. 5.1-Typical selectivity curve of a modern super. heterodyne receiver. Relative response is plotted against deviations above and below the resonance frequency. The scale at the left is in terms of voltage ratios, the corresponding decibel steps are shown of the right.

The bandwidth at 6 db . down must be sufficient to pass the signal and its sidebands if faithful reproduction of the signal is desired. However, in the crowded amateur bands, it is generally advisable to sacrifice fidelity for intelligibility. The ability to reject adjacent-channel signals depends upon the skirt selectivity of the receiver, which is determined by the bandwidth at high attenuation. In a receiver with good skirt selectivity, the ratio of the $6-\mathrm{db}$. bandwidth to the $60-\mathrm{db}$. bandwidth will be about 0.25 for code and 0.5 for phone. The minimum usable bandwidth at 6 db . down is ahout 150 cyeles for code reception and about 2000 cycles for phone.

Stability

The stability of a receiver is its ability to "stay put" on a signal under varying conditions of gain-control setting, temperature, supplyvoltage changes and mechanical shock and distortion. The term "unstable" is also applied to a receiver that breaks into oscillation or a regenerative condition will sume settings of its controls that are not specifically intended to control such a condition.

Detection and Detectors

Detection is the process of recovering the modulation from a signal (see "Modulation, Heterodyning and Beats"). Any device that is "nonlinear" (i.e., whose output is not exaclly proportional to its input) will act as a detector. It can be used as a detector if an impedance for the desired modulation frequency is connected in the output circuit.

Detector sensitivity is the ratio of desired detector output to the input. Detector linearity is a measure of the ability of the detector to
reproduce the exact form of the modulation on the incoming signal. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is connected to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consume power, and this power must be furnished by the preceding stage. The signal-handling capability means the ability to accept signals of a specified amplitude without overloading or distortion.

5-HIGH-FREQUENCY RECEIVERS

Diode Detectors

The simplest detector for am. is the diode. A galena, silicon or germanium crystal is an imperfert form of diode (a small current can pass in the reverse direction), and the principle of detection in a crystal is similar to that in a vacuum-tube diode.

Circuits for both half-wave and full-wave diodes are given in Fig. 5-2. The simplified half-wave circuit at $8-2 \mathrm{~A}$ inchudes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, D, with its load resistance, R_{1}, and bypass capacitor, C_{2}. The flow of rectified r.f. current causes a d.c. voltage to develop across the terminals of R_{1}. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation causes corresponding variations in the value of the d.c. voltage arross R_{1}. In audio work the load resistor, R_{1}, is usually 0.1 megohm or

Fig. 5-2-Simplified and practical diode detector circuits. A, the elementary half-wave diode detector; B, a practical circuit, with r.f. filtering and audio output coupling; C, fullwave diode detector, with output coupling indicoted. The circuit, $L_{2} C_{1}$, is tuned to the signal frequency; typical values for C_{2} and R_{1} in A and C are $250 \mu \mu f$. and 250,000 ohms, respectively; in B, C_{2} and C_{3} are $100 \mu \mu$. each; $R_{1}, 50,000$ ohms; and $R_{2}, 250,000$ ohms. C_{4} is $0.1 \mu \mathrm{f}$. and R_{3} may be 0.5 to 1 megohm.
higher, so that a fairly large voltage will develop from a small rectilied-ecurrent flow.

The progress of the signal through the detector or rectifier is shown in Fig. :-.3. A typical modulated signal as it exists in the tuned

Fig. 5-3-Diagrams showing the detection process.
circuit is shown at A. When this signal is applied to the rectifier tube, current will flow only during the part of the r.f. rycle when the plate is positive with respect to the eathode, so that the output of the rectifier consists of half-rycles of r.f. These current pulses flow in the load circuit comprised of R_{1} and C_{2}, the resistance of l_{1} and the capacity of C_{2} being so proportioned that (2 charges to the peak value of the rectified voltage on earh pulse and retains enough charge beticuen pulses so that the voltage across R_{1} is smoothed out, as shown in C. Ciz thus acts as a filter for the radio-frequency component of the output of the rectifier, leaving a d.c. component that varies in the same way as the morlulation on the origimal signal. When this varying d.e. voltage is ap'plied to a following amplifier through a coupling capacitor (${ }^{\prime}+{ }_{4}$ in Fig. 5-2), only the marulions in voltage are transferred, so that the final output signal is a.c., as shown in J).

In the circuit at $5-2 B, R_{1}$ and C_{2} have been divided for the purpose of providing a more elfertive filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, because it may cause overloading of a succeeding amplifier tube. The audiofrequency variations can be transferred to another circuit through a coupling capacitor, C_{4}, to a load resistor, R_{3}, which usually is a "potentiometer" so that the audio volume can be adjusted to a desired level.

Coupling to the potentiometer (volume control) through a capacitor also avoids any flow of d.c. through the control. The flow of d.c. through a high-resistance volume control often tends to make the control noisy (scratchy) after a short while.

The full-wave diode circuit at $\mathrm{j}-2 \mathrm{C}$ differs

Detectors

in operation from the half-wave circuit only in that both halves of the r.f. cycle are utilized. The full-wave circuit has the advantage that r.f. filtering is easier than in the half-wave circuit. As a result, less attenuation of the higher audio frequencies will be obtained for any given degree of r.f. filtering.

The reactance of C_{2} must be small compared to the resistance of R_{1} at the radio frequency being rectified, but at audio frequencies must be relatively large compared to R_{1}. If the capacity of C_{2} is too large, response at the higher audio frequencies will be lowered.

Compared with other detectors, the sensitivity of the diode is low, normally running around 0.8 in audio work. Since the diode consumes power, the Q of the tuned circuit is redured, bringing about a reduction in selectivity. The loading effect of the diode is close to one-half the load resistance. The detector linearity is good, and the signal-handling capability is high.

Plate Detectors

The plate detector is arranged so that rectification of the r.f. signal takes place in the plate circuit of the tube. Suflicient negative bias is ap-

Fig. 5-4-Circuits for plate detection. A, triode; B, pentode. The input circuit, $L_{2} C_{1}$, is tuned to the signal frequency. Typical values for the other components are:
Com-

ponent	nt Circuit A	Circuit B
$\mathrm{C}_{2} 0$.	0.5μ f. or larger.	0.5μ f. or larger.
$\mathrm{C}_{3} 0$.	0.001 to 0.002μ.	250 to $500 \mu \mu$ f.
$\mathrm{C}_{4} 0$.	0.1μ f.	$0.1 \mu \mathrm{f}$.
C_{5}		$0.5 \mu \mathrm{f}$. or larger.
$\mathrm{R}_{1} 25$	25,000 to 150,000 ohms.	10,000 to 20,000 ohms.
$\mathrm{R}_{2} 50$	50,000 to 100,000 ohms.	100,000 to 250,000 ohms.
R_{3}		50,000 ohms.
R_{4}		20,000 ohms.
RFC 2.	2.5 mh.	2.5 mh.

Plate voltages from 100 to 250 volts may be used. Effective screen voltage in B should be about 30 volts.
plied to the grid to bring the plate current nearly to the cut-off point, so that application of a signal to the grid circuit causes an increase in average plate current. The average plate current follows the changes in signal in a fashion similar to the rectified current in a diode detector.

Circuits for triodes and pentodes are given in Fig. 5 -t. ('3 is the plate bypass caparitor, and, with $R F C$, prevents r.f. from appearing in the output. The cathode resistor, R_{1}, provides the operating grid bias, and C_{2} is a bypass for both radio and audio frequencies. R_{2} is the plate load resistance and C_{4} is the output coupling (expacitor. In the pentode circuit at $I 3, R_{3}$ and R_{4} form a voltage divider to supply the proper sereen potential (about 30 volts), and C_{5} is a bypass capacitor. ('2 and ('s must have low reactance for both radio and audio frequencies.

In general, transformer coupling from the plate circuit of a plate detector is not satisfactory, because the plate impedance of any tube is very high when the bias is near the platecurrent cut-off point. Impedance coupling may be used in place of the resistance coupling shown in Fig. i-4. Usually 100 henrys or more inductance is required.

The plate detector is more sensitive than the diode because there is some amplifying action in the tube. It will handle large signals, but is not so tolerant in this respect as the diode. Linearity, with the self-hiased circuits shown, is good. l"p to the overload point the detector takes no power from the tuned cirenit, and so does not affect its Q and selectivity,

Infinite-Impedance Detector

The circuit of Fig. ij-ij combines the high signal-handling capabilities of the diode detector with low distortion and, like the plate detector, does not load the tuned circuit it connects to. The circuit resembles that of the plate detector, except that the load resistance, R_{1}, is connected between cathode and ground and thus is common to both grid and plate circuits, giving negative foedback for the audio frequencies. The cathode resistor is bypassed for r.f. but not for audio, while the plate circuit is bypassed to

Fig. 5-5-The infinite-impedance detector. The input circuit, $L_{2} C_{1}$, is tuned to the signal frequency. Typical values for the other components are:
$\mathrm{C}_{2}-250 \mu \mu \mathrm{f}$.
$\mathrm{R}_{1}-0.15$ megohm.
$\mathrm{C}_{3}-0.5 \mu \mathrm{f} . \quad \mathrm{R}_{2}-25,000$ ohms.
$\mathrm{C}_{4}-0.1 \mu \mathrm{f} . \quad \mathrm{R}_{3}-0.25$-megohm volume control.

A tube having a medium amplification factor (about 20) should be used. Plate voltage should be 250 volts.

5-HIGH-FREQUENCY RECEIVERS

resistor. More elaborate r.f. filtering is shown in the plate of the output tube ($2-\mathrm{mh}$, choke and the $220-\mu \mu$, capacitors), and the degree of plate filtering in either cireuit will deprond upon the frequencirs involved. At low intermediate frequencies, more elaborate filtering is required.

REGENERATIVE DETECTORS

By providing controllable r.f. feedlack (regemeration) in a triode or pentode detector circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detector. Regeneration also increases the effertive Q of the eircuit and thus the selectivity: The grid-leak type of detector is most suitable for the purpose.

The grid-leak detector is a combination diode rectilier and audio-frequency amplifier. In the circuit of Fig. $5-7 \mathrm{~A}$, the grid corresponds to the diode plate and the rectifying action is exactly the same as in a diode. The d.c. voltage from rectified-current flow through the grid leak, R_{1}, biases the grid negatively, and the audiofrequency variations in voltage across R_{1} are amplified through the tube as in a normal a.f. amplifier. In the plate circuit, R_{2} is the plate load resistance and C_{3} and RFC a filter to eliminate r.f. in the output circuit.

A grid-leak detector has considerably greater sensitivity than a diode. The sensitivity is further inereased by using a screen-grid tube instead of a triode. The operation is equivalent to that of the triode circuit. The screen bypass capacitor should have low reactance for both radio and audio frequencies.
'I'he circuit in Fig. 5-7B is regenerative, the feediback boing obtained by feeding some signal from the plate eircuit back to the grid by indurtive coupling. The amount of regeneration must be controllable, hecause maximum regenerative amplification is secured at the critical point where the circuit is just about to oscillate. The critical

(A)

Fig. 5-7-(A) Triode grid-leak detector combines diode detection with triode amplification. Although shown here with resistive plate load, R_{2}, an audio choke coil or transformer could be used.
(B) Feeding some signal from the plate circuit back to the grid makes the circuit regenerative. When feedback is sufficient, the circuit will oscillate. Feedback is controlled here by varying reactance at C_{5}; with fixed capacitor at that point regeneration could be controlled by varying plate voltage or caupling between L_{2} and L_{3}.

point in turn depends upon circuit conditions, which may vary with the frequency to which the detector is tumed. An oseillating detector can be detuned slightly from an incoming c.w. signal to give autodyne reception.

The circuit of Fig. 5-7B uses a variable bypass capacitor, C_{5}, in the plate circuit to control regeneration. When the capacitance is small the tube does not regenerate, but as it increases toward maximum its reactance becomes smaller until there is sufficient feodback to reanse oscillation. If L_{2} and L_{3} are wound end-to-end in the same direction, the plate connection is to the outside of the plate or "tickler" coil, L_{3}, when the grid connection is to the outside end of L_{2}.

Although the regenerative grid-leak detector is more sensitive than any other type, its many disadvantages commend it for use only in the simplest receivers. The linearity is rather poor, and the signal-handling capability is limited. The signal-handling capability can be improved by reducing R_{1} to 0.1 megohm, but the sensitivity will be decreased. The degree of antenna coupling is often critical.

Tuning

For c.w. reception, the regencration control is advanced until the detector breaks into it "hiss," which indicates that the detector is oscillating. Further advancing the regeneration control will result in a slight decrease in the hiss.

The proper adjustment of the regeneration control for best reception of code signids is where the detector just starts to oscillate. Then code signals can be tuned in and will give a tone with each signal depending on the setting of the tuning control. As the receiver is tuned through a signal the tone first will be heard as a very high pitch, then will go down through "zero beat" and rise again on the other side, finally disappearing at a very high pitch. This behavior
is shown in Fig. 5-8. \dot{A} low-pitched beat-note cannot be obtained from a strong signal because the detector "pulls in" or "blocks"; that is, the signal forces the delector to oscillate at the signal frequency, even though the circuit may not be tumed exactly to the signal. It usually can be corrected by advancing the regeneration control until the beat-note is heard again, or by reducing the input signal.
The point just after the detector starts oscillating is the most sensitive condition for code reception. Further advancing the regeneration control makes the receiver less prone to blocking, but also less sensitive to weak signals.

If the detector is in the oscillating condition and a phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to phone if the receiver can be tuned to exact zero beat, it is more satisfactory to reduce the regeneration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

Single-sideband phone signals can be received with a regenerative detector by advancing the regeneration control to the point used for code reception and tuning carefully across the s.s.b. signal. The tuning will be very critical, however, and the operator must be prepared to just "creep" across the signal. A strong signal will pull the detector and make reception impossible, so either the regeneration must be advanced far enough to prevent this condition, or the signal must be reduced be using loose antenna coupling.

Fig. 5-8-As the funing dial of a receiver is furned past a code signal, the beat-note varies from a high tone down through "zero beat" (no audible frequency difference) and back up to a high tone, as shown at A, B and C. The curve is a graphical representation of the action. The beat exists past 8000 or 10,000 cycles but usually is not heard because of the limitations of the audio system.

5-HIGH-FREQUENCY RECEIVERS
 Tuning and Band-Changing Methods

Band-Changing

The same coil and tuning capacitor cannot be used for, say, 14 Mc. to 3.5 Mc., because of the impracticable maximunt-to-minimum capacity rat tio required, and also because the tuning would be excessively critical with such a large frequency range. It is necessary, therefore, to provide a means for changing the cireuit eonstants for various frequency bands. As a matter of convenience the same tuning catparitor usually is retained, but new eoils are inserted in the circuit for each band.

One mothod of changing inductances is to use a switch having an appropriate number of contacts, which connects the desired coil and disconnerts the others. The unused coils are sometimes short-circuited by the switeh, to avoid the persibility of undesirable selferesonances in the unused coils. This is not neressary if the coils are separated from each other hy several coil diameters, or are mounted at right angles to each other.

Inother method is to use coils wound on forms with contacts (usually pins) that can be plugged in and removed from a sooket. These plur-in coils are advantageous when space in a multiband receiver is at a premium. They are also very useful when considerable experimental work is involved, because they are easier to work on than eoils rlustered around a switeh.

Bandspreading

The tuning range of a given coil and variable capacitor will depend upon the induetance of the coil and the change in tuning capacity. For case of tuning, it is desirable to adjust the tuning range so that practically the whole dial scale is occupied by the band in use. This is called bandspreading. Jecause of the varying widths of the bands, sperial tuning methods must be devised to give the correct maximumminimum capacity ratio on earh band. several of these methods are shown in Fig. i-9.
(A)

(B)

Fig. 5-9-Essentials of the three basic bandspread tuning systems.
(c)

In A, a small bandspread capacitor, C_{1} (15to $2:-\mu \mu \mathrm{f}$. maximum capacity), is used in parallel with a capacitor, (${ }^{2}$, which is usually large enough (100 to $140 \mu \mu$ f.) to cover a 2 -to-1 frequency range. The setting of C_{2} will deformine the minimum caparitance of the circuit. and the maximum capacity for bandspread tuning will be the maximum capacity of C_{1} plus the setting of C_{2}. The inductance of the
coil can be adjusted so that the maximumminimum ratio will give adequate bandspread. It is almost impussible, because of the nomharmonic relation of the various band limits, to get full bandspread on all bands with the same patir of eapacitors. C_{2} is variously called the band-setting or main-tuning capacitor. It must be reset each time the band is changed.

If the capacitance change of a tuning capacitor is known, the approximate total fixed shunt (atparitance (Fig. 5-9.1) for covering an amateur band is given by

$$
C_{2}=\frac{C_{1} F}{2 f}
$$

where (1 = capacitance chanye

$$
\begin{aligned}
C_{2} & =\text { total shunt caparcitance } \\
I^{\prime} & =\text { low-frequency limit of hand } \\
f & =\text { width of band }
\end{aligned}
$$

Example: What fixed shant capacitance will allow a caparitor with it range of $\overline{5}$ to $1.5 \mu \mu \mathrm{f}$, to tume 6.95 to 7.35 Me .?

$$
C_{2}=\frac{(15-5) \times 7}{2 \times(7.35-(6.95)}=\frac{70}{.8}=88 ; \mu \mathrm{f}
$$

The $\overline{2}-\mu \mu \mathrm{f}$. minimum of the tuning caparitor, the tube rapacitance and any stray capacitanre most the included in the $88 \mu \mu$.

The method shown at B makes use of eapacitors in series. The timing capacitor, C_{1}, may have a maximum capacitance of $100 \mu \mu$. or more. The minimum capacitance is determined principally by the setting of ('3, which usually has low caparitance, and the maximum capacitanee by the setting of C_{2}, which is of the order of 25 to $50 \mu \mu \mathrm{f}$. This method is capable of close adjustment to practically any desired degree of bamlspread. Either C_{2} and C_{3} must be adjusted for each band or separate preadjusterd capacitors must be switched in.

The circuit at \mathbf{C} also gives complete spread on each band. C_{1}, the bandspread capacitor. may have any convenient value: $50 \mu \mu$. is satisfactors. C_{2} may he used for continuous frequency coverage ("general coverage") and as a handsetting capacitor. The effective maximum-minimum eapacitance ratio depends upon C_{2} and the point at which C_{1} is tapped on the eril. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given coil and tap, the bundspread will be greater if C2 is set at higher capacitance. C2 may he connected permanently aross the individual indurtor and preset, if desired. This requires a separate capacitor for each band, but eliminates the necessity for resetting C_{2} each time.

Ganged Tuning

'The tuning captritors of the several r,f. circuits may be coupled together mechanically and operated by a single control. However, this operating eonvenience involves more complicated construction, both electrically and mechanically, It becomes necessary to make the various circuits track - that is, tune to the same frequency at each setting of the tuning control.

Superhetrodyne

True tracking can be obtained only when the inductance, tuning capacitors, and circuit inductances and minimum and maximum capacities are identical in all "ganged" stages. A small trimmer or padding capacitor may be connected across the coil, so that variations in minimum capacity can be eompensated. The use of the trimmer necessarily increases the minimum circuit capacity, but it is a necessity for satisfactory tracking. Didget capacitors having maximum capacities of 15 to $30 \mu \mu$ f. are commonly used.

The same methods are applied to bandspread circuits that must be tracked. The circuits are identical with those of Fig. 5-9, If both general-coverage and bandspread tuning are to be available, an additional trimmer capacitor must be connected across the coil in each circuit shown. If only amateur-hand tuning is desired, however, then (3 in Fig, $\bar{n}-9 \mathrm{~B}$, and (${ }_{2}$ in Fig. is-9(), serve as trimmers.

The coil inductance can be adjusted by
starting with a larger number of turns than necessary and removing a turn or fraction of a turn at a time until the circuits track satisfactorily, An alternative method, provided the inductance is reasonably close to the correct value initially, is to make the coil so that the last turn is variable with respect to the whole coil.

Another method for trimming the inductance is to use an adjustable brass (or copper) or powdered-iron core. The brass core acts like a single shorted turn, and the inductance of the coil is decreased as the brass core, or "slug," is moved into the coil. The powdered-iron core has the opposite effect, and increases the inductance as it is moved into the coil. The Q of the coil is not affected materially by the use of the brass slug, provided the brass slug has a clean surface or is silverplated. The use of the powdered-iron core will raise the $(Q$ of a coil, provided the iron is suitable for the frequency in use. Good pow-dered-iron cores can be obtained for use up to about i0 Mc.

The Superheterodyne

For many years (until about 19:32) practically the only type of receiver to be found in amateur stations consisted of a regenerative detector and one or more stages of audio amplification. Receivers of this type can be made quite sensitive but strong signals block them easily and, in our present crowded bands, they are seldom used exrept in emergencies. They have been replared by superheterodyne receivers, generally ralled "superhets."

The Superheterodyne Principle

In a superheterodyne receiver, the frequency of the incoming signal is heterodyned to a new radio frequency, the intermediate frequency (abbreviated "i,f."), then amplified, and finally detected. The frequency is changed by modulating the output of a tunable oscillator (the high-frequency, or local, oscillator) by the incoming signal in a mixer or converter stage (first detector) to produce a side frequency equal to the intermediate frequency. The other side frequency is rejected by selective circuits. The audiufrequency signal is obtained at the second detector. Code signals are made audible by autodyne or heterodyne reception at the second detertor.

As a numerical cxample, assume that an intermediate frequency of 4.55 kc . is chosen and that the incoming signal is at 7000 kc . Then the high-frequency oscillator frequency may be set to 740.5 kc ., in order that one side frequency (7455 minus 7000) will be 455 kc . The high-frequency oscillator could also be set to 6545 kc . and give the same difference frequency. To produce an audible code signal at the second detector of, say, 1000 cycles, the autodyning or heterodyning oscillator would be set to either 454 or 4.56 ke .

The frequency-conversion process permits
r.f. amplifieation at a relatively low frequency, the i.f. lligh selectivity and gain can be obtained at this frequency, and this selectivity and gain are constant. The separate oscillators can be designed for good stability and, since they are working at frequencies eonsiderably removed from the signal frequencies (percentage-wise), they are not normally "pulled" les the ineoming signal.

Images

Wach h.f, oscillator frequency will ause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to $74 \overline{5} \mathrm{kc}$, to tune to a $7000-k c$. signal, for example, the receiver cun respond also to a signal on 7910 kc ., which likewise gives a 455 -kc. beat. The undesired signal is called the image. It can cause unnecessary interference if it isn't eliminated.

The radio-frequency circuits of the receiver (those used before the signal is heterodyned to the i.f.) normally are tuned to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the image signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selectivity of the r.f. tuned circuits preceding the mixer tube. Also, the higher the intermediate frequency, the higher the image ratio, since raising the i.f. increases the frequency separation between the signal and the image and places the latter further away from the resonance peak of the signal-frequency input eircuits. Most receiver designs represent a compromise between economy (few r.f. stages) and image rejection (large number of r.f. stages).

Other Spurious Responses

In addition to images, other signals to which the receiver is not ostensibly tuned may be heard. Harmonics of the high-frequency oscillator may beat with signals far removed from the desired frequency to produce output at the intermediate frequency; such spurious responses can be reduced by adequate selectivity before the mixer stage, and by using sufficient shielding to prevent signal pick-up by any means other than the antemna. When a strong signal is received, the harmonics generated by rectification in the second detector may, by stray coupling, be introduced into the r.f. or mixer circuit and converted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the intermediate frequency. The cure is proper circuit isolation and shielding.

IIarmonics of the beat oscillator also may be converted in similar fashion and amplified through the receiver; these responses can be reduced by shielding the beat oscillator and operating it at a low power level.

The Double-Conversion Superheterodyne

At high and very-high frequencies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of $45 \% \mathrm{kc}$. To reduce image response the signal frequently is converted tirst to a rather high ($1.500,5000$, or even $10,000 \mathrm{kc}$.) intermediate frequency, and then - sometimes after further amplification - reconverted to a lower i.f. where higher adjarent-rhamel selectivity can be obtained. Such a rereiver is called a double-conversion superheterodyne.

FREQUENCY CONVERTERS

A circuit tuned to the intermediate frequency is placed in the phate circuit of the mixer, to offer a high impedance load for the i.f. voltage that is developed. The signal- and oscillator-frequency voltages appearing in the plate circuit are rejected by the selectivity of this circuit. The i.f. tuned circuit should have low impedance for these frequencies, a condition easily met if they do not approach the intermediate frequency.

The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. High conversion efficiency is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wanted, particularly if the mixer is the first tube in the receiver.

A change in oscillator frequency caused by tuning of the mixer grid circuit is called pulling. Pulling should be minimized, because the stability of the whole receiver depends critically upon the stability of the h.f. oscillator. Pulling decreases with separation of the signal and h.f.oscillator frequencies, being less with high in-
termediate frequencies. Another type of pulling is caused by regulation in the power supply. Strong signals cause the voltage to change, which in turn shifts the oscillator frequency.

Circuits

If the first detector and high-frequency oscillator are separate tubes, the first detector is called a "mixer." If the two are combined in one envelope (as is often done for reasons of economy or efficiency), the first detector is called a "converter." In either case the function is the same.

Typical mixer circuits are shown in lig. 5-10. The variations are chiefly in the way in which the oscillator voltage is introduced. In 5-10A, a pentode functions as a plate detector: the oscillator voltage is caparity-coupled to the grid of the tube through ('2. Inductive coupling may be used instead. The conversion gain and

Fig. 5-10-Typical circuits for separately excited mixers. Grid injection of a pentode mixer is shown at A, cathode injection at B, and separate excitation of a pentagrid converter is given in C. Typical values for C will be found in Table 5-1-the values below are for the pentode mixer of A and B.
$C_{1}-10$ to $50 \mu \mu \mathrm{f}$.
$\mathrm{C}_{2}-5$ to $10 \mu \mu \mathrm{f}$.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{f}$.
R_{1} - 6800 ohms.
Positive supply voltage can be 250 volts with a 6 AH6, 150 with a 6 AK5.

Frequency Converters

input selectivity generally are good, so long as the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exceed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligible. If the signal frequency is only $\overline{5}$ or 10 times the i.f., it may be difficult to developenough oscillator voltage at the grid (because of the selectivity of the tuned imput circuit). However, the rircuit is a sensitive one and makes a good mixer, particularly with high-transconductance tubes like the $6.1 H t$, b:ML5 or 60/8 (pentode section). Triode tulus can be used as mixers in grid-injection circuits, but they are commonly used only at 50 Mc . and higher, where mixer noise may hecome a significunt factor. The triode mixer has the lowast inherent noise, the pentode is mext, and the multigrid converter tubes are the moisiest.

The circuit in Fig. 5-1013 shows cathode injection at the mixer. Operation is similar to the grid-injection case, and the same considerations apply.

It is difficult to avoid "pulling" in a triode or pentode mixer, and a pentagrid mixer tube provides much better isolation. A typical cirruit is shown in Fig. 5-110, and tubes like the 6SA7, 6BA7 or 613 L 6 6 are commonly used. The oscillator voltage is introduced through atn "injertion" grid. Measurement of the rectified current flowing in R_{2} is used as a check for proper owillator-voltage amplitude. Tuning of the signal-grid circuit can have little effect on the oscillator frequency because the injection grid is isolated from the signal grid by a screen grid that is at r.f. ground potential. The pentagrid mixer is much noisier than a triode or pentode mixer, but its isolating characteristics make it a very useful device.

Many receivers use pentagrid converters, and two typical circuits are shown in Fig. 5-11. The circuit shown in Fig. 5-11.1, which is suitable for the 6K x, is for a "triode-hexode" converter. A triode oscillator tube is mounted in the same envelope with a hexode, and the control grid of the oscillator portion is connected internally to an injection grid in the hexode. The isolation between oscillator and coinciter tubo is reasonably good, and very little pulling results, except on signal frequencies that are quite large compared with the i.f.

The pentagrid-converter circuit shown in Fig.

Fig. 5-11-Typical circuits for triode-hexade (A) and pentagrid (B) converters. Values for R_{1}, R_{2} and R_{3} can be found in Table 5 -I; others are given below.

$\mathrm{C}_{1}-47 \mu \mu \mathrm{f}$.	$\mathrm{C}_{3}-0.01 \mu \mathrm{f}$.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{f}$.	$\mathrm{R}_{4}-1000$ ohms.

$5-1113$ can be used with a tube like the 6 Si 17 , 6SB7Y, 6B. 37 or 6BE6. Generally the only care necessary is to adjust the feedback of the oseillator circuit to give the proper oscillator r.f. voltage. This condition is checked by measuring the d.c. eurrent flowing in grid resistor R_{2}.

A more stable recciver generally results, particularly at the higher frequencies, when separate tubes are used for the mixer and oscillator. Practically the same number of circuit components is required whether or not a combination tube is used, so that there is very little difference to be realized from the cost standpoint.

Typial circuit constants for converter tubes are given in Table \bar{j}-l. The grid leak referred to is the oscillator grid leak or injection-grid return, R_{2} of ligs. $5-10 \mathrm{C}$ and $5-11$.

The effectiveness of converter tubes of the type just described becomes less as the signal fregueney is increased. Some oscillator voltage will

TABLE 5-1 Circuit and Operating Values for Converter Tubes $\text { Plate voltage }=250 \quad \text { Screen voltage }=100 \text {. or through specified resistor from } 250 \text { volts }$								
	Selfeexcited				Separate Excitation			
Tube	Cathode Resistor	Screen Resistor	Grid Leak	Grid Currem	Cathode Resistor	Screen Resistor	Grid leak	Grid Current
${ }_{6 B 171}{ }^{1}$	0	12,000	$\bigcirc 9.0100$	0.35 ma .	68	15,000	22,010	0.35 ma.
$6 \mathrm{BE} 6^{1}$	${ }^{0}$	2, 0 , 000	23, 0106	0.5	150	20, 0100	23,000	0.5
${ }_{6}^{6} \mathrm{~K}^{8} \mathrm{~B}^{2}$	240	\bigcirc	+7,000	0.15-0.2	-		-0,000	
	0	18,000	? 2,000	0.5	150	18,000	20,000	0.5
${ }^{6}$ Miniature ${ }^{\text {e }}$	ctal bas	metal.	22,000	0.35	68	15,000	22,000	0.35

5-HIGH-FREQUENCY RECEIVERS

be coupled to the signal grid through "spacecharge" coupling, an effect that increases with frequency. If there is relatively little frequency difference between oscillator and signal, as for example a 14 - or 28 -Me. signal and an i.f. of 455 kc., this voltage can become considerable because the selectivity of the signal circuit will be unable to reject it. If the signal grid is not returned directly to ground, but instead is returned through a resistor or part of an a.v.c. system, considerable bias can be developed which will cut down the gain. For this reason, and to reduce image response, the i.f. following the first converter of a receiver should be not less than 5 or 10 per cent of the signal frequency, for best results.

Transistors in Mixers

Typical transistor circuitry for a mixer operating at frequencies below 20 MI . is shown in Fig. $5-12$. The local oscillator current is injected in the emitter circuit by inductive coupling to $L_{1} ; L_{1}$ should have low reactance at the oscillator frequency. The input from the r.f. amplifier should be at low impedance, obtained by inductive coupling or tapping down on the tuned circuit. The output transformer T_{1} has the collector connection tapped down on the inductance to maintain a high Q in the tuned circuit.

Fig. 5-12-Typicol tronsistor mixer circuit.
L_{1}-Low-impedonce inductive coupling to oscillotor.
T_{1}-Tronsistor i.f. transformer. Primary impedance of 100,000 ohms, secondary impedance of 1700 ohms, unloaded $Q=100$, looded $Q=35$.

Audio Converters

Converter circuits of the type shown in Fig. $5-11$ can be used to advantage in the reception of code and single-sideband suppressed-carrier signals, by introducing the local oscillator on the No. 1 grid, the signal on the No. 3 grid, and working the tube into an audio load. Its operation can be visualized as heterodyning the incoming signal into the audio range. The use of such circuits for audio conversion has been limited to selective i.f. amplifiers operating below 500 kc . and usually below 100 kc . An ordinary a.m. signal cannot be received on such a detector unless the tuning is adjusted to make the local oscillator zero-beat with the incoming carrier.

Since the beat oseillator modulates the eleetron
stream completely, a large beat-oscillator component exists in the plate circuit. To prevent overload of the following audio amplifier stages, an adequate i.f. filter must be used in the output of the converter.

The "product detector" of Fig. 5-6 is also a converter circuit, and the statements above for audio converters apply to the product detector.

THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is dependent chiefly upon the stability of the h.f. oscillator, and particular care should be given this part of the recciver. The frequency of oscillation should be insensitive to mechanical shock and changes in voltage and loading. Thermal effects (slow change in frequency because of tube or circuit heating) should be minimized. They can be reduced by using ceramic instead of bakelite insulation in the r.f. circuits, a large cabinet relative to the chassis (to provide for good radiation of developed heat), minimizing the number of high-wattage resistors in the receiver and putting them in the separate power supply, and not mounting the oscillator coils and tuning capacitor too close to a tube. Propping up the lid of a receiver will often reduce drift by lowering the terminal temperature of the unit.

Sensitivity to vibration and shock can be minimized by using good mechanical support for coils and tuning capacitors, a heavy chassis, and by not hanging any of the oscillator-circuit components on long leads. Tie-points shoukl be used to avoid long leads. Stiff short leads are excellent because they can't be made to vibrate.
Smooth tuning is a great convenience to the operator, and can be oltained by taking pains with the mounting of the dial and tuning capacitors. They should have good alignment and no back-lash. If the capacitors are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-lash unless the posts have extra-wide bases. The capacitors should be selected with good wiping contacts to the rotor, since with age the rotor contacts can be a source of erratic tuning. All joints in the oscillator tuning circuit should be carefully soldered, because a loose connection or "rosin joint" can develop trouble that is sometimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver, and its harmonic output should be as low as possible to reduce the possibility of spurious responses.

The oscillator plate power should be as low as is consistent with adequate output. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer circuits should be well isolated, pref-

I.F. Amplifiers

Fig. 5.13-High-fiequency oscillator circuits. A, pentode grounded-plate oscillator; B, triode grounded-plate oscillator; C, triode oscillator with tickler circuit. Coupling to the mixer may be taken from points X and Y. In A and B, coupling from Y will reduce pulling effects, but gives less voltage than from X; this type is best adapted to mixer circuits with small oscillator-voltage requirements. Typical values for components are as follows:

Circuit A	Circuit B	Circuit C
$C_{1}-100 \mu \mu \mathrm{f}$.	$100 \mu \mu \mathrm{f}$.	$100 \mu \mu \mathrm{f}$.
$\mathrm{C}_{2}-0.01 \mu \mathrm{f}$.	$0.01 \mu \mathrm{f}$.	$0.01 \mu \mathrm{f}$.
$\mathrm{C}_{3}-0.01 \mu \mathrm{f}$.		
$\mathrm{R}_{1}-47,000$ ohms.	47,000 ohms.	47,000 ohms.
$\mathrm{R}_{2}-47,000$ ohms.	10,000 to	10,000 to
	25,000 ohms.	25,000 ohms.

The plate-supply voltage should be 250 volts. In circuits B and $C_{2} R_{2}$ is used to drop the supply voltage to $100-150$ volts; it may be omitted if voltage is obtained from a voltage divider in the power supply.
erably by shielding, since coupling other than by the intended means may result in pulling.

If the h.f.-oscillator frequency is affected by changes in phate voltage, a voltage-regulated plate supply (VR tube) can be used.

Circuits

Several oseillator circuits are shown in Fig. $5-13$. Circuits A and B will give about the same results, and require only one coil. Llowever, in these two circuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the oscillator output at 14 Mc. and higher frequencies when a.c.-heated-eathote tubes are used. The cireuit of Fig. 5-13C reduces hum because the cathode is grounded. It is simple to adjust, and it is also the best circuit to use with filament-type tubes. With filament-type tubes, the other two cireuits would require r.f. chokes to keep the filament above r.f. ground.

Besides the use of a fairly high ($/ / L$ ratio in the tuned circuit, it is necessary to adjust the feedback to obtain optimum results. Too much feedback may cause "squegging" of the oscillator

and the generation of several frequencies simultancously; too little feedback will cause the output to be low. In the tapped-coil circuits (A, B), the feedback is increased by moving the tap toward the grid end of the coil. In C, more feedback is obtained by increasing the number of turns on L_{2} or moving L_{2} closer to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity can be obtained by using a good i.f. amplifier. This can be a onestage affair in simple receivers, or two or three stages in the more claborate sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between conflicting factors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired signal and hence decreases the image ratio. A low i.f. alse increases pulling of the oscillator frequency. On the other hand, a high i.f. is beneficial to both image ratio and pulling, but the gain is lowered and selectivity is harder to obtain by simple means.

An i.f. of the order of 455 kc . gives good selectivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencies up to 7 Mc . The image ratio is poor at 14 Mc . when the mixer is connected to the antenna, but adequate when there is a tuned r.f. amplifier between antema and mixer. At 28 Mc . and on the very high frequencies, the image ratio is very poor unless several r.f. stages are used. Above 14 Mc., pulling is likely to be bad without very loose coupling between mixer and oseillator.

With an i.f. of about $1600 . k c$., satisfactory image ratios can be secured on 14, 21 and 28 Mc. with one r.f. stage of good design. For frequencies of 28 Me . and higher, a common solution is to use double conversion, ehoosing one high i.f. for image reduction (5 and 10 Me . qre frequently used) and a lower one for gain

5-HIGH-FREQUENCY RECEIVERS

and selectivity.
In choosing an i.f. it is wise to avoid frequencies on which there is considerable activity by the various radio services, since such signals nay be picked up directly on the i.f. wiring. Shifting the i.f. or better shielding are the solutions to this interferonere problem.

Fidelity; Sideband Cutting

Modulation of a carrier causes the generation of sideband frequencies numerically equal to the carrier frequency plus and minus the highest modulation frequency present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, audio irequencios up to 5000 cycles, it must at least be atapable of amplifying equally all frequencies contained in a band extending from 000 cycles above or below the carrier frequency. In a superheterodyne, where all earrier frequencies are changed to the fixed intermediate frequency, the i.f. amplification must he uniform over a band 5 kc , wide, when the carrier is set at one edge. If the carrier is sot in the center, a $10-\mathrm{kc}$. band is required. The signal-frequency rircuits usually do not have enough over-all selectivity to affert materially the "adjacentchanne" seleetivity; so that only the i.f.-amplifier selertivity need he considered.

If the selectivity is too great to permit uniform amplification over the band of frequencies occupied by the modulated signal, some of the sidebands are "cut." While sideband cutting reduces fidclity, it is frequently preferable to sacrifice naturalness of reproduction in favor of communications effectiveness.

The selectivity of an i.f. amplifier, and hence the tendency to cut sidehands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of communication, sideband cutting is never serious with two-stage amplifiers at frequencies as low as 45 ke . A two-stage i.f. amplifier at 85 or 100 kc . will be sharp enough to ent some of the higher-frequeney sidebands, if good transformers are used. I Iowever, the cutting is not at all serious, and the gain in selectivity is worthwhile in crowded amateur bands.

Circuits

I.f. amplifiers usually consist of one or two stages. At 455 ke , two stages generally give all the gain usable, and also give suitable selectivity
for phone reception.
A typical circuit arrangement is shown in Fig. 5-14. A second stage would simply duplicate the circuit of the first. The i.f. amplifier practically ahways uses a remote cut-off pentode-type tube operited as a Class A amplifier. For maximum selertivity, double-tuned transfomers are used for interstage coupling. although single-tuned circuits or transformers with untuned primaries ran he used for coupling, with a consequent loss in selectivity. All other things being equal, the selentivity of an i.f. amplifior is proportional to the number of tuned cirenits in it.

In Fig. 5-14, the gain of the stage is reduced by introlucing a negative voltage to the lead marked "AGC" or a positive voltage to R_{1} at the point marked "mamual gain control." In either case, the voltage increases the bias on the tube and reduces the mutual condurtance and hene the gain. When two or more stages are used, these voltages are generally obtaincd from common sourres. The decoupling resistor, R_{3}, helps to prevent unwanted interstage coupling. ('2 and K_{4} are part of the automatic gaincontrol circuit (described later); if no a.g.c. is used, the lower end of the i.f.-transformer secondary is commerted to chassis.

Tubes for I.F. Amplifiers

Viriable- μ (remote cut-off) pentodes are almost invariathly used in i.f. amplifier stages. since grid-bias gain control is practically always applied to the i.f amplifier. Tubes with high plate resistance will have least effect on the selectivity of the amplifier, and those with high mutual conductance will give greatest gain. The choice of i.f. tubes normailly has no effect on the signal-to-noise ratio, since this is determined by the preceding mixer and r.f. amplifier.

Typieal values of cathode and sereen resistors for common tubes are given in Table 5-H1. The $6 B .16,613 J 6$ and $613 / 6$ arre recommended for i.f. work because they have desirable remote cut-off characteristics. The indicated screen resistors drop) the plate voltage to the correct screen voltage, as R_{2} in Fig. b-It.

When two or more stages are used the high gain may tend to cause instability and oscillation, so that good shiclding, bepassing, and eareful circuit arrangement to prevent stray coupling between input and output circuits are necessary.

When single-ended tubes are used, the plate and grid leads should be well separated. With these tubes it is advisable to mount the screen

Fig. 5-14-Typical intermediate-frequency amplifier circuit for a superheterodyne receiver. Representative values for components ore os fallows:
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.02 \mu \mathrm{f}$. of 455 kc .; $0.01 \mu \mathrm{f}$. af 1600 kc . and higher.
$C_{2}-0.01 \mu \mathrm{f}$.
$\mathbf{R}_{1}, \mathbf{R}_{2}$-See Toble 5-II.
$R_{3}, R_{5}-1500$ ahms.
$R_{1}-0.1$ megahm.

TABLE 5-II				
Cathode and Screen-Dropping Resistors for R.F. or I.F. Amplifiers				
Tube	I'tule Tolls	Screen Volts	Cathode Resistor R1	Screen Resiator R_{2}
6. AC^{1}	300		160	62,000
6AH6 ${ }^{2}$	300	150	140	62.000
$6.1 \mathrm{~K} 5^{2}$	180	120	200	27,000
6al'62	250	150	69	33,000
613AG2*	250	100	68	33,000
$613116{ }^{2}$	250	150	100	33,000
613J6 ${ }^{\text {* }}$	250	100	82	47,000
${ }^{613} / 66^{2 *}$	200	150)	180	20,000
61136	200	150	1×1	56,000
613 (62	200	135	18	24,000
	250	125	68	27,000
6 N 11 T	2.50	150	$6{ }^{6}$	39,000
$6 \mathrm{~N}_{7}{ }^{1}$	250	100	820	180,000
$6 \mathrm{SK}^{\text {it* }}$	250	100	270	56,010
${ }^{1}$ Octal hase, metal. 2 Miniature tulse *Remote cut-off qyuc.				

bypass capacitor directly on the bottom of the socket, erosswise between the plate and grid pins, to provide additional shielding. If a paper capacitor is used, the outside foil should be grounded to the chassis.

I.F. Transformers

The tuned circuits of i.f. amplifiers are built up as transformer units consisting of a metal shield container in which the coils and tuming eapheitors are mounted. Both air-eore and powdered iron-core miversal-wound coils are used, the latter having somewhat higher Q_{s} and hence greater selectivity and gain. In universal windings the coil is wound in layers with each turn traversing the length of the coil, back and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straght multilayer winding, a fairly large capmoitance can exist between layers. Universal winding, with its "eriss-erossed" turns, tends to redure distributed-apteleity effects.

For tuning, airedielectric tuning eapacitors are preferable to mical compression types because their capacity is practically unaffected by changes in temperature and humidity. Jron-ore transformers may be tumed by varyiug the industanco (permeability tuning), in which case stability comparable to that of variable arir-capacitor tuning can be obtained ly use of high-stability fixed mica or ceramic eapacitors. Such stability is of great importance, since a circuit whose frequency "drifts" with time eventually will be tuned to a different freguency than the other circuits, thereby reducing the gain and selectivity of the amplifier. Typicali.f.-transformer construction is shown in Fig. 5-15.

The normal interstage i.f. transformer is loosely coupled, to give good selectivity eonsistent with adequate gain. A so-called diode transformer is similar, but the coupling is tighter, to give sufficient transfer when working into the finite load presented by a diode detector. L-sing a diode transformer in place of an interstage transformer would result in loss of selectivity;
using an interstage transformer to couple to the diode would result in loss of gain.
lesides the type of i.f. transformer shown in Fig. 5-15, sperial units to give desired selectivity characteristics are available. For higher-than-ordinary adjarent-channel selertivity tripletuned transformers, with a third tuned circuit inserted between the input and output windings, are sometimes used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to the over-all selectivity of the transformer.

A method of varying the selectivity is to vary the coupling between primary and secondary, overcoupling being used to broaden the selectivity curve. Special cireuits using single tuned circuits, coupled in any of several different ways, are used in some advanced recoivers.

Fig. 5-15-Representative i.f.transformer construction. Coils are supported on insulating tubing or (in the airtuned type) on wax-impregnated wooden dowels. The shield in the air-funed transformer prevents capacity coupling between the tuning capacitors. In the permea-bility-tuned transformer the cores consist of finely-divided iron particles supported in an insulating binder, formed into cylindrical "plugs." The tuning capacitance is fixed, and the inductances of the coils are varied by moving the iron plugs in and out.

Selectivity

The over-all selectivity of the r.f. amplifies will depend on the frequency and the number of stages. The following figures are indicative of the bandwidths to be experted with goodquality transformers in amplifiers so construeted as to keep regeneration at a minimum:

	Bandridth in Kilocycles		
	cull	do db.	11) db .
Intermediate Frequency	down	down	doun
One stage, 50 kc , (iron corc)	2.0	3.0	4.2
One stage, 45 s kc. (air core)	8.7	17.8	32.3
One stage, 45.5 kc , (iron core)	4.3	10.3	20.4
Twostages, $45 \overline{5 k}$. (iron core)	2.9	6.4	10.8
Twostages, 1000 kc .	11.0	16.6	27.4

Transistor I. F. Amplifier

A typical circuit for a two-stage transistor i.f. amplifier is shown in Fig. 5-16. Constants are given for a $455-k e$. amplifier, bat the same gen-

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-16-Typical circuit for a twostage transistor i.f. amplifier. At high frequencies a neutralizing capacitor may be required, as mentioned in the text.

T_{1}-Transistor inputi.f.transformer. Primary impedance $=$ 100,000 ohms, secondary impedonce $=1700$ ohms, unlooded $Q=100$, laaded $Q=35$.
T_{2}-Transistor interstage i.f. Iransformer. Primary impedance $=4600$ ahms, secondary impedance
$=1700$ ahms, unlooded $Q=39$, looded $Q=$ 35.

T3-Transistor output i.f. Iransformer. Primary impedance $=30,000$ ohms, secondary impedance $=1000$ ohms, unlaaded $Q=100$, loaded $Q=35$.

THE SECOND DETECTOR AND BEAT OSCILLATOR

Detector Circuits

The second deteetor of a superheterodyne receiver performs the same function as the detector in the simple receiver, but usually operates at a higher input level because of the relatively. great amplifiration ahead of it. Therefore, the ability to handle large signals without distortion is preferable to high sensitivity. Flate deteetion is used to some extent, but the diode detector is most popular. It is especially adapted to furnishing antomatice gain or volume eontrol. The basie
cirruits have been deseribed, although in many
eral circuitry applies to an amplifier at any frequeney within the operating range of the transistors. When higher frequencies are used, it may tre necersary to neutralize the amplifier to aroid overall oseillation: this is done by connecting a small variable capacitor of a few $\mu \mu$. from hase to base of the transistors.

Automatic gain control is obtained by using the develoned d.e. at the 1 N295 diode detece tor to modify the rmitter bias current on the first stage. As the bias eurrent changes, the input and output impedanes change and the resultant impedance mismatehes eauses a reduction in gain. Such a.g.e. assumes. of course, that the amplifier is set up initially in a matched condition.

Fig. 5-17-Deloyed automatic gain-control circuits using a twin diade (A) and a dual-diode triade. The circuits are essentially the same and differ only in the method af biasing the o.g.c. rectifier. The o.g.c. contral voltage is applied to the contralled stages as in (C). Far these circuits typical values are:
$C_{1}, C_{3}, C_{4}-100 \mu \mu$.
$\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{-}, \mathrm{C}_{8}-0.01 \mu \mathrm{f}$.
$\mathrm{C}_{0}-5-\mu \mathrm{f}$. electrolytic.
$\mathbf{R}_{1}, R_{9}, R_{10}-0.1$ megohm.
$\mathrm{R}_{2}-0.47$ megohm.
$\mathrm{R}_{3}-2$ megohms.
R_{4} - 0.47 megohm.
R_{5}, R_{6}-Valtage divider ta give 2 to 10 volts bias at 1 to 2 ma . drain.
R_{7} - 0.5 -megahm valume contral.
$\mathrm{R}_{\mathbf{8}}$ - Carrect bias resistor far triade section of dualdiade triade.

Automatic Gain Control

cases the diode elements are incorporated in a multipurpose tube that contains an amplifier section in addition to the diode.

Audio-eonverter cireuits and product detectors are often used for conde or s.s.b. detectors.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne reception. Special beat-oscillator transformers are avaidable, usually consisting of a tapped coil with adjustable tuning; these are most conveniently used with the circuits shown in Fig. D-13A and B, with the output taken from Y. A variable capacitor of about $25-\mu \mu$. capacitance can be comected between athode and ground to provide fine adjustment of the frequency. The beat oscillator usually is coupled to the seconddetector tuned circuit through a fived eapacitor of a few $\mu \mu$ f.

The bat oscillator should be well shielded, to prevent coupling to any part of the recciver except the serond detertor and to prevent its harmonics from getting into the front end and being amplified along with desired signals. The b.f.o. power should be as low as is consistent with sufficient audio-frequency output on the strongest signals. However, if the heat-oscillator output is too low, strong signals will not give a proportionately strong audio signal. Contrary to some opinion, a weak b.f.o. is never an advantage.

AUTOMATIC GAIN CONTROL

Automatic regulation of the gain of the receiver in inverse proportion to the signal strength is an operating convenience in phome reception, since it tends to keep the output level of the receiver constant regardless of input-signal strength. The average rectified d.c. voltage, developed by the received signal across a resistance in a detector circuit, is used to vary the bias on the r.f. and i.f. amplifier tubes. Since this voltage is proportional to the average amplitude of the signal, the grain is reduced as the signal strength beromes greater. The control will be more complete and the output more constant as the umulue of stages to whinh the nug.e. hias is applied is increased. Control of at least two stages is advisable.

Circuits

Although some recoivers derive the a.g.e, voltage from the diode detertor, the usual pratioe is to use a separate a.g.c. roctifier. Typical cireuits are shown in Figs. 5-17A and 5-1713. The two rectifiers can be combined in one tule, as in the 61 I 6 and $6,4 \mathrm{~L} 5$. In Fig. $5-17 . \mathrm{I}_{1}$ is the diode detector: the signal is developed across $R_{1} R_{2}$ and coupled to the audio stages through (${ }_{3}$. (C_{1}, R_{1} and C_{2} are included for r.f. filtering, to prevent a large r.f. component being coupled to the audio (ireuits. The a.g.e. reetifier, r_{2}, is coupled to the last i.f. translormer through $(4$, and most of the reetified voltage is developed aeross R_{3}, V_{2} does not rectify on wak signals, however; the fixed
bias at R_{5} must be exeeeded before rectification can take place. The developed negative a.g.e. bias is fed to the controlled stages through R_{4}.

The circuit of Fig. $5-1713$ is similar, except that a dual-diode triode tube is used. Since this has only one common cathode, the cireuitry is slightly different but the prineiple is the same. The triode stage serves as the first audio stage, and its bias is developed in the eathode circuit arross R_{8}. This same bias is applied to the a.g.e. rectifier by returning its load resistor, h_{3}, to ground. To avoid placing this hias on the detector, V_{1}, its load resistor $R_{1} R_{2}$ is retumed to cathode. thus avoiding any bias on the detector and permitting it to respond to weak signals,

The developed nogative a.g.e. bias is applied to the controlled stages through their grif cir-
 serve as filters to avoid common coupling and possible feedback and oscillator. The a.r.c. is disibled by closing switch S_{1}.

The a.g.c. rectifier bias in Fig. $5-17 \mathrm{~B}$ is set by the bias required for proper operation of V_{3}. If less bias for the a.g.e. rectifier is required, K_{3} can be tapped up on R_{y} instead of being returned to chassis ground. In P'ig. 5-17.A, proper choice of bias at R_{5} depends upon the over-all gain of the receiver and the number of controlled stages. In general, the bias at h_{5} will be made higher for receivers with more gain and more stages.

Time Constant

The time constant of the resistor-fapacitor combinations in the a.g.e. circuit is an important part of the system. It must be long enough so that the modulation on the signal is completely filtered from the d.c. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading, . Iudiofrequeney variations in the a.g.e. voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal. But the time constant must not be too long or the a.g.e. will be unable to follow rapid fading. The capacitance and resistance values indicated in Fig. $5-17$ will give a time constant that is satisfactory for average reception.

C. W. and S.S.B.

A.g.e. can be used for cew, ant s.s.b. reception but the cireuit is usually more complicaterl. The a.g.e, voltage must be derived from a redifier that is isolated from the beat-frequency owillator (otherwise the rertified b.f.o. voltage will redure the receiver gain even with no signal roming through). This is done by using a separate a.g.e. chamel comerted to an i.f. amplifier stage ahead of the second detector (and b.f.o.) or hy rectifying the audio output of the detector. If the selectivity ahead of the a.v.e. rectifier isn't good, strong adjacent-channel signals may develop a.g.e. voltages that will reduce the reereiver gain while listening to weak signals. When clear channels are available, however, (.iw, and s.s.b). a.g.e. will hold the receiver output constant over

Fig. 5-18-Audio "hang" a.g.c. system. Resistors are $1 / 2$ watt unless specified otherwise. R_{1}-Normal audio volume control in receiver. $T_{1}-1: 3$ step-up audio transformer (Stancor A-53 or equiv.)
The hang time can be adjusted by changing the value of the recovery diode load resistor (4.7 megohms shown here). The a.g.c. line in the receiver must have no d.c. refurn to ground and the receiver should have good skirt selectivity for maximum effectiveness at the system.
a wide range of signal inputs. A.g.c. systems designed to work on these signals should have fast-attack and slow-decay charaeteristics to work satisfactorily, and often a sclection of time constants is made available.

The a.g.e, circuit shown in Fig. 5-18 is applicable to many reerivers without too much modification. Audio from the receiver is amplified in $V_{\text {IA }}$ and rectified in $V_{2 B}$. The resultant voltage is applied to the a.g.c. line through $V_{2 c}$. The capacitor (1 charges quickly and will remain charged until discharged by V_{13}. This will oceur some time after the signal has disappeared, because the audio was stepped up through T_{1} and rectified in $V_{2 A}$, and the resultant used to charge ('2. This voltage holds V_{13} cut off for an
appreciable time, until (2 discharges through the 4.7 -megohm resistor. The threshold of rompression is set by aljusting the bias on the diodes (changing the value of the 3.3 K or 100 N resistors). There cam be no d.e. return to ground from the a.g.e. line, becouluse ('i must be discharged only by l_{13}. Even a v.t.v.m. across the a.g.e. line will be too low a resistance, and the operation of the system must be observed by the action of the S meter.

Oceasionally a strong noise pulse may cause the a.g.e. to hang until ('2 discharges, but most of the time the gain should return very rapidly to that set by the sigmal. A.g.e. of this type is very helpful in handling netted s.s.b. signals of widely varying strengths.

Noise Reduction

Types of Noise

In addition to tube and cireuit noise, much of the noise interference experienced in reception of high-frequency signals is caused by domestic or industrial eleetrical equipment and by automohile ignition systems. The interference is of two trpes in its effects. The first is the "hiss" type, consisting of overlapping pulses similar in nature to the receiver noise. It is largely reduced by high selectivity in the receiver, especially for code rereption. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference usually is caused by commutator sparking in d.c. and series-wound a.c. motors, while the "shot" type results from separated spark discharges (a.c. power leaks, switch and key clicks, ignition sparks, and the like).

The only known approach to reducing tube and circuit noise is through better "front-end" design and through more over-all selectivity.

Impulse Noise

Impulse noise, because of the short duration of the pulses compared with the time between them, must have high amplitude to contain much average energy; Hence, noise of this type strong enough to cause much interfer-
ence generatly has an instantaneous amplitude much higher than that of the signal being received. The general principles of devices intended to reduce such moise is to allow the desired signal to pass through the receiver unaffected, but to make the recoiver inoperative for amplitudes greater than that of the signal. The greater the amplitude of the pulse compared with its time of duration, the more successful the noise reduction.

Another approach is to "silence" (render inoperative) the receiver during the short duration time of any individual pulse. The listener will not hear the "hole" because of its short duration, and very effective noise reduction is obtained. Such devices are called "silencers" rather than "limiters."

In passing through selective receiver circuits, the time duration of the impulses is increased, because of the ($?$ of the circuits. Thus the more selertivity ahead of the noise-reducing devire, the more difficult it beromes to secure good pulse-type noise suppression.

Audio Limiting

A considerable degree of noise reduction in code reception can be accomplished by am-plitude-limiting arrangements applied to the audio-output circuit of a receiver. Such limiters

also maintain the signal output nearly constant during fading. These output-limiter sustems are simple, and adautable to most receivers. However, they cannot prevent moise paks from overloading previous stages.

- SECOND-DETECTOR NOISE LIMITER CIRCUITS

Most audio limiting circuits are based on one of two principles. In a sories limiting rirenit, a nommally eonducting element (or chements) is comereted in the cirenit in series and operated in such a manmer that it beromes nom-eonduetive above a given signal level. In a shunt limiting eireuit, a non-condurting eloment is comnected in shunt across the cirenit and operated so that it beromes conductive ahove a given signal level, thus short-cirouiting the signal and preventing its being transmitted to the remainder of the amplifier. The usual comlucting element will be a forward-hiased diode, and the usual non-conducting element will be a back-hiased diode. In mang applications the value of bias is set manually hy the oprerator: usually the clipping level will be set at ahout 5 to 10 volts.

A full-wave clipping cirenit that operates at a low level (approximately $1 / 2$ volt) is shown in Fig. 5-19. Fach dionle is biased by its own contact potential, developed across the 2.2 -megohm resiftors. The . MO1-uf. capacitors become charged to rlose to this valur of contact potential. A negative-going signal in exeess of the bias will

Fig. 5,19-Full-wave shunt limiter using contact-potentialbiased diodes. A low-level limiter ($1 / 2$ volt), this circuit finds greatest usefulness following a product detector.
$\mathrm{C}_{1}, \mathrm{C}_{2}$-Part of low-pass filter with cutoff below i.f. RFC_{1}-Part of low-pass filter; see C_{1}. T_{1}-Center-tapped heater transformer.
be shorted to ground by the upper diode; a posi-tive-going signal will be conducted by the lower diode. The conducting resistance of the dioles is small by comparison with the $2: 20,000$ ohms in series with the circuit, and litthe if any of the excessive signal will appear across the 1 -megohm volume control. In order that the elipping does not beome excessive and cause distortion, the input signal must be held down by a gain control ahead of the detector. This circuit finds good application following a low-level detector.

To minimize hum in the receiver output, it is desirable to ground the center tap of the heater transformer, as shown, instead of the more common practice of returning one side of the heater circuit to chassis.

Second-detector noise-limiting circuits that automatically adjust themselves to the received carrier level are shown in Fig. 5-20. In either circuit. V_{1} is the usual diode second detector, $R_{1} R_{2}$ is the diode load resistor, and C_{1} is an r.f. bypass. A negative voltage proportional to the carrier level is developed arross $(2$, and this voltage emont ehange rapidly becanse R_{3} and C_{2} are hoth large. In the cirenit at Λ, diode V acts as a conductor for the audio signal up to the point where its anode is negative with respect to the cathode. Noise praks that execed the maximum carrier-motulation bevel will drive the anode negative instantancously, and during this time the diode does not comduct. The long time eonstant of ('2 R_{3} prevents any rapid change of the reference voltage. In the circuit at B , the diode V_{2} is inartive until its cathode voltage exceeds its anode voltage. This rondition will obtain under noise peaks and when it does, the diode Va shortcircuits the signal and no voltage is passed on to the audio amplifier. Diode reetifiers such as the 6II6 and 6ALs can be used for these types of nolse limitas. Seiller ciroutt is usefu! for r.w. nr s.s.b. reception, but they are both quite affortive

Fig. 5-20-Self-adiusting series (A) and shunt (B) noise limiters. The functions of V_{1} and V_{2} can be combined in one tube like the 6 H 6 or 6AL5.
$\mathrm{C}_{1}-100 \mu \mu \mathrm{f}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.05 \mu \mathrm{f}$.
$\mathbf{R}_{1}-0.27$ meg. in $A_{;} 47,000$ ohms in B.
$R_{2}-0.27$ meg. in $A_{;} 0.15$ meg. in B.
$R_{3}-1.0$ megohm.
$R_{4}-0.82$ megohm.
$\mathrm{R}_{5}-6800$ ohms.

Fig. 5-21 -Practical circuit diagram of an i.f. noise silencer.
For best results the silencer should be used ahead of the high-selectivity portion of the receiver.
T_{1}-Interstage i.f. transformer
for a.m. phone work. The series circuit (A) is slightly better than the shunt eireuit.

I.F. NOISE SILENCER

The i.f, noise sikencer eireuit shown in Fig. it-21 is designed to be used in a receiver as far along from the antemat stage as possible but ahead of the high-selectivity section of the receriver. Noise pulses are amplified and reetified, and the rosulting negative-going d.e. pulses are used to cut off an amplifier stage during the pulse. A mamaal "threshold" contiol is set by the operator to a level that only permits rectification of the noise pulses that rise above the peak amplitude of the desired signal. The elamp diode, Va, short eircuits the positive-going putse "overshoots." Running the ($\mathrm{j} 31: 6$ controlled i.f. amplifier at low sereen voltage makes it possible for the No. 3 grid (pin 7) to cut off the stage at a lower voltage than if the screen were oprated at the morenormal 100 volts, but it also reduces the available gain through the stage.

It is necessary to avoid i.f. freedback around the GBEG stage, and the eloser RFP ('I can be to selliresonant at the i.f. the better will be the filtering. The filtering cannot be improved by inereasing the values of the $150-\mu \mu$ f. capacitors because this will tend to "streteh" the pulses and reduce the signal strength when the silencer is operative.

SIGNAL-STRENGTH AND TUNING INDICATORS

The simplest tuning indicator is a milliammeter
T_{2}-Diode i.f. transformer.
$R_{1}-33,000$ to 68,000 ohms, depending upon gain up to this stage.
RFC $_{1}$-R.f. choke, preferably self-resonant at i.f.
connected in the d.e. plate lead of an a.g.e.controlled r.f. or i.f. stage. Since the plate current is reduced as the a.g.c. voltage beeomes higher with a stronger signal, the plate current is a measure of the signal strength. The meter aun hatve a $0-1,0-2$ or 0-5 mar. movement, and it should be shunted by a 2 .j-ohm rheostat whieh is used to set the no-signal reading to full seale on the meter. If a "forward-reading" meter is desired, the meter can be mounted upside down.

Two other S-meter cireuits are shown in lig. i)-22. The system at A uses a milliammeter in a bridge eircuit, arranged so that the meter readings inerease with the a.v.e, voltage and signal strength. The meter reads approximately in a linear decibel seale and will not be "crowded."

To adjust the system in Fig. 5-22A, pull the tube out of its socket or otherwise break the eathode eircuit so that no plate current flows, and adjust the value of resistor R_{1} across the meter until the scale reading is maximum. The value of revistance required will depend on the internal resistance of the moter, and must be determined by trial and error (the current is approximately 2.5 ma .). Then replace the tube, allow it to warm up. turn the a.g.e. switeh 10 "off" so the grid is shorted to ground, and adjust the 3000 -ohm variable resistor for zero meter current. When the a.g.c. is "on," the meter will follow the signal variations up to the point where the voltage is high enough to cut off the meter tube's plate eurrent. With a (j)5 or 6SN7GT this will occur in the neighborhood of 15 volts, a high-amplitude sigual.

The circuit of Fig. i)-2213 requires no additional tubes. The resistor R_{2} is the normal cathode

Fig. 5-22-Tuning indicator or S-meter circuits for superheterodyne receivers.

MA- 0.1 or 0.2 milliammeter. $\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{4}}$-See text.

resistor of an a.g.c.-controlled i.f. stage: its cathode resistor should be returned to chassis and not to the manual gain control. The sum of R_{3} plus R_{4} should equal the normal cathode resist or for the audio amplifier, and they should be proportioned so that the arm of R_{3} can pick off a voltage equal to the normal cathode voltage for the i.f. stage. In some cases it may be necessary to interchange the positions of R_{3} and R_{4} in the circuit.

The zero-set control R_{3} should be set for no reading of the meter with no incoming signal, and the $1500-$ ohm sensitivity control should be set for a full meter reading with the i.f. tube removed from its socket.

Neither of these S-meter circuits can be "pinned", and only severe misadjustment of the zero-set control can injure the meter.

- HEADPHONES AND LOUDSPEAKERS

There are two basic types of headphones in common use, the magnetic and the crystal. A magnetic headphone uses a small electromagnet that attracts and releases a steel diaphragm in accordance with the electrical output of the radio receiver; this is similar to the "receiver" portion of the household telephone. A erystal headphone
uses the piezorlectric properties of a pair of Rochelle-salt or other crystals to vibrate a diaphragm in accordance with the electrical output of the radio receiver. Magnetic headphones can be used in circuits where d.c. is flowing, such as the plate eircuit of a vacuum tube, provided the current is not too heavy to be carried by the wire in the coils; the limit is usually a few milliamperes. Crystal headphones can be used only on a.c. (a steady d.e. voltage will damage the erystal unit), and conseduently must be coupled to a tube through a device, such as a capacitor or transformer, that isolates the d.c. but passes the a.c. Most modern receivers have a.e. coupling to the headphones and hence either type of headphone can be used, but it is wise to look first at the cireuit diagram in the instruction book and make sure that the headphone jack is connected to the secondary of the output transformer, as is usually the ease.

In general, crystal headphones will have considerably wider and "flatter" audio response than will magnetic headphones (exeent those of the "hi-fi" type that sell at premium prices). The lack of wide response in the magnetie headphones is sometimes an advantage in rode reception, since the desired signal cim le set on the peak and be given a boost in volume over the undesired signals at slightly different frequencies

Crystal headphones are available only in highimpedance values around 50,000 ohms or so, while magnetic headjphones run around 10,000 to 20,000 ohms, although they can be obtained in values as low as 15 olims. Usually the impedance of a headphone set is unimportant because there is more than enough power available from the radio receiver, but in marginal cases it is possible to improve the acoustic output through a better mateh of headphone to output impedance. When headphone sets are conmected in series or in parallel they must be of similar impodance levels or one set will "hog", most of the power.

Lond speakers are practically always of the low-impedance permanont-field dynamic variety, and the loudspeaker output conmections of a receiver can connect direetly to the voice coil of the loudspeaker. Some receivers also provide a " 500 -ohm output" for connection to a long line to a remote loudspuaker. A loulspoabor perpires mounting in a suitable enclosure if full lowfrequency response is to be obtained.

Improving Receiver Selectivity

INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned earlier in this chapter, one of the big advantages of the superheterodyne receiver is the improved selectivity that is possible. This selectivity is obtained in the i.f. amplifier, where the lower frequency allows more selectivity per stage than at the higher signal frequency. For phone reception, the limit to useful selectivity in the i.f. amplifier is the point
where so many of the sidebands are eut that intelligibility is lost, although it is possible to remove completely one full set of side bands without impairing the quality at all. Maximum receiver selectivity in phone reception requires good stability in both transmitter and receiver, so that they will both remain "in tune" during the transmission. The limit to useful selectivity in code work is around 100 or 200 cycles for hand-key speeds, but this much selectivity requires good stability in both transmitter and

5-HIGH-FREQUENCY RECEIVERS

receiver, and a slow receiver tuning rate for ease of operation.

Single-Signal Effect

In heterodyne c.w, reception with a superheterodyne receiver, the beat oscillator is set to give a suitable audio-frequency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oscillator may be set to 454 kc . (the i.f. being 455 kc.$)$ to give a 1000 -cycle beat note. Now, if an interfering signal appears at 453 kc ., or if the receiver is tuned to heterodyne the incoming signal to 453 ke., it will also be heterodyned by the beat oscillator to produce a $1000-$ cycle beat. Hence every signal can be tuned in at two places that will give a 1000 -cycle beat (or any other low audio frequency). This audiofrequency image effect can be reduced if the i.f. selectivity is such that the incoming signal, when heterodyned to 453 kc ., is attenuated to a very low level.
When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero beat characteristic of less-selective reception, hence the name: single-signal reception.

The necessary selectivity is not obtained with nonregenerative amplifiers using ordinary tuned circuits unless a low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a singlesignal effect, particularly when the i.f. is 455 kc . or lower. The resonance curve of an i.f. stage at critical regeneration (just below the oscillating point) is extremely sharp, a bandwidth of 1 kc . at 10 times down and 5 kc . at 100 times down being obtainable in one stage. The audio-frequency image of a given signal thus can be reduced by a factor of nearly 100 for a 1000 -cycle beat note (image 2000 cycles from resonance).
legeneration is casily introduced into an i.f. amplifier by providing a small amount of capacity coupling between grid and plate. Bringing a short length of wire, comnerted to the grid, into the vicinity of the plate lead usually will suffice. The feedback may be controlled by the regular cathode-resistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overloading and increases selectivity.
The higher selectivity with regeneration reduces the over-all response to noise generated in the earlier stages of the receiver, just as does high selectivity produced by other means, and therefore improves the signal-to-noise ratio. llowever, the regenerative gain varies with signal strength, being less on strong signals.

Crystal-Filters; Phasing

Probably the simplest means for obtaining high selectivity is by the use of a piezoelectric

Fig. 5-23-Typical response curve of a crystal filter. The notch can be moved to the other side of the response peak by adjustment of the "phasing" control. With the above curve, setting the b.f.o. at 454 kc . would give good singlesignal c.w. reception.
quartz crystal as a selective filter in the i.f. amplifier. Compared to a good tuned eireuit, the ($)$ of such a crystal is extremely high. The erystal is ground resonant at the i.f. and used as a sclective coupler between i.f, stages.

Fig. 5-2.3 gives a typieal crustal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by 50 db , or more. Besides practically eliminating the a.f. image, the high selectivity of the erystal filter provides good diserimination against adjacent signals and also reduces the noise.

Two erystal-filter cireuits are shown in Fig. 5-24. The circuit at A (or a variation) is found in many of the current commumications receivers. The erystal is comected in one side of a bridge circuit, and a phasing capacitor, C_{1}, is connected in the other. When ('1 is set to balance the erystah-holder capacitance, the resonance curve of the filter is practically symmetrical: the crustal acts as a series-resonant cireuit of very high () and allows signals over a narrow band of frequencies to pass through to the following tube. More or less capacitance at C_{1} introduces the "rejection notch" of Fig, 5 -2:3 (at 453.7 kc , as drawn). The (Q of the load circuit for the filter is adjusted by the setting of R_{1}, which in turn varies the inandwidth of the filter from "sharp" to a bandwidth suitable for phone reception. some of the components of this filter are special and not generally available to amateurs.

The "band-pass" crystal filter at 13 uses t wo (rystals separated slightly in frequency to give a band-pass characteristic to the filter. If the frequencies are only a few hundred cycles apart, the characteristic is an excellent one for c.w.

Fig. 5-24-A variable-selectivity crystal filter (A) and a band-pass crystal filter (B).
reception. With crystals about 2 ke. apart, a good phone characteristic is obtained.

Additional I.F. Selectivity

Many commercial communications receivers do not have sulficient selectivity for amateur use, and their proformane ean be improved by additional i.f. selectivity. One mothod is to loosely coupte a $13 C-153$ aircraft receiver (war surphus, tuning range $1: 00$ to 550 kc .) to the tail end of the 455 -ke, i.f. :mplifier in the communications receiver and use the resultant output of the BC-45:3. The aircraft receiver uses an 85 -kc. i.f. amplifier that is sharp for voice work 6.5 kc . wide at -60 db . - and it helps considerably in separating phone signals and in backing up crystals filters for improved c.w. reception.

If a BC-153 is not available, one can still enjoy the henefits of improved selectivity. It is only necessary to heterodyne to a lower frequency the $455-k c$ signal existing in the receiver i.f. amplifier and then rectify it after passine it through the sharp low-frequeney amplifier. The J. W. Miller Company offers $50-k e$, transformers for this nuplisation.

RADIO-FREQUENCY AMPLIFIERS

While selectivity to reduce audio-frequency images can be built into the i.f. amplifier, diserimination against radio-frequency images can only be obtained in circuits ahead of the first detector. 'These tuned circuits and their associated varuum tuhes are called radio-frequency amplifiers. For top performance of a communications receiver on frequencies above 7 Mc ., it is mandatory that it have a stage of r.f. amplifieation, for image rejection and a good noise figure (mixers are noisier than amplifiers).

Receivers with an i.f. of 4.55 kc , can be expected to have some r.f. image response at a signal frequency of 14 Me . and higher if only one stage of r.f. amplification is used. (Regen-
eration in the r.f. amplifier will reduce image response, but regeneration usually requires frequent readjustment when tuning across a band.) With two stages of r.f. amplification and an i.f. of 455 kc ., no images should be apparent at 14 Me., but they will show up on 28 Mc . and higher. Three stages or more of r.f. amplification, with an i.f. of 45.5 kc , will reduce the images at 28 Mc., but it really takes four or more stages to do a good job. A common solution at 28 Mc , is to use a "double-conversion" superheterodyne, with one stage of r.f. amplification and a first i.f. of 1600 kc . or higher. A normal receiver with an i.f. of 455 kc . can be converted to a double conversion by connecting a "converter" ahoad of the receiver.

For best selectivity, r.f. amplifiers should use high- Q circuits and tubes with high input and output resistance. Variable- μ pentodes are practically always used, although trionles (neutralized or otherwise ronnected so that the won't oscillate) are often used on the higher frequeneies because they introduce less noise. Pentodes are better where maximum image rejection is desired, because they have less loading effect on the tuned circuits.

Transistor R. F. Amplifier

A typical r.f. amplifier eircuit using a 2×370 transistor is shown in Fig, 5-25. Since it is desirable to maintain a reasonable Q in the tuned circuits, to reduce r.f. image response, the base and collector are both tapped down on their tuned circuits. An alternative method, using lowimpedance inductive coupling, is shown in Fig. $5-2513$; this method is sometimes easier to adjust than the taps illustrated in Fig. 5-25.A. The tuned

Fig. 5-25-Transistor r.f. amplifier circuit. The low-impedance connections to the base and collector can be (A) taps on the inductors or (B) low-impedance coupling links. $L_{1} C_{1}, L_{2} C_{2}$-Resonant at signal frequency.

5-HIGH-FREQUENCY RECEIVERS

circuits, $L_{1} C_{1}$ and $L_{2} C_{2}$, should resonate at the operating frequency, and they should be mounted or shielded to climinate inductive coupling betweren earh other.

FEEDBACK

Feedback giving rise to regeneration and oscillation can occur in a single stage or it may appear as an over-all feethatek through several stages that are on the same frequency. To avoid feedhack in a smgle stage, the output must be isolated from the input in every way possible, with the vacuum tube furnishing the only coupling between the two circuits. An oscillation can be obtained in an r.f. or i.f. stage if there is any undue capacitive or inductive coupling between output and input circuits, if there is too high an impedance between cathode and ground or screen and ground, or if there is any appreciable impedance through whieh the grid and phate currents can flow in common. This means good shielding of eoils and tuning capacitors in r.f. and i.f. circuits, the use of good bypass capacitors (nica or ceramic at r.f., paper or ceramic at i.f.), and returning all bypass eapacitors (griu, cathode, plate and screen) for a given stage with short leads to one spot on the chassis. If single-ended tubes are used, the sereen or cathode bypass capacitor should be mounted across the socket, to serve as a shield between grid and plate pins. Less care is required as the frequene \boldsymbol{y} is lowered, but in high-impedance circuits, it is sometimes necessary to shield grid and phate leads and to be eareful not to run them close together.

To avoid over-all feedback in a multistage amplifier, attention must be paid to avoid running any part of the output circuit back near the input circuit without first filtering it carefully. Since the signal-arrying parts of the circuit (the "hot" grid and plate leads) can't be filtered, the best design for any multistage amplifier is at straight line, to keep the output as far away from the input as possible. For example, an r.f. amplifier night rum along a chassis in a straight line, rum into a mixer where the frequency is changed, and then the i.f. amplifier could be run back parallel to the r.f. amplifier, provided there was a very large frequency difference between the r.f. and the i.f. amplifiers. llowever, to avoid any possille coupling, it would be better to run the i.f. amplifier off at right angles to the r.f.'amplifier line, just to be on the safe side. Good shielding is important in preventing over-all oscillation in high-gain-per-stage amplifiers, but it beeomes less important when the stage gain drops to a low value. In a high-gain amplifier, the power leads (including the heater eircuit) are eommon to all stages, and they can provide the over-all coupling if they aren't properly filtered. Good bypassing and the use of series isolating resistors will generally eliminate any possilility of coupling through the power leads. R.f. chokes, instemb of resistors, are used in the heater keads where neressary:

CROSS-MODULATION

Since a one- or two-stage r.f. amplifier will have a bandwidth measured in hundreds of ke. at 14 Me . or higher, strong signals will be amplified through the r.f. amplifier even though it is not tuned exactly to them. If these signals are strong enough, their amplified magnitude may be measurable in volts after passing through several r.f. stages. If an undesired signal is strong enough aft?r amplification in the r.f. stages to shift the operating point of a tube (by driving the grid into the positive region), the undesired signal will modulate the desired signal. This effect is called cross-modulation, and is often encountered in receivers with several r.f. stages working at high gain. It shows up as a superimposed modulation on the signal being listened to, and often the effect is that a signal can be tuned in at several points. It can be reduced or eliminated by greater selectivity in the antenna and r.f. stages (difficult to obtain), the use of variable- μ tubes in the r.f. amplifier, reduced gain in the r.f. amplifier, or reduced antemaia input to the receiver. The 6BJJ6, 6BA6 and 6DC6 are recommended for r.f. amplifiers where cross-modulation may be a problem.

A receiver designed for minimum cross-motlulation will use as little gain as possible ahead of the high-selectivity stages, to hold strong unwanted signals below the overload point.

Gain Control

To avoid cross-modulation and other overload effects in the mixer and r.f. stages, the gain of the r.f. stages is usually made adjustable. This is aceomplished by using variable- μ tubes and varying the d.c. grid bias, either in the grid or cathode circult. If the gain control is automatie, as in the case of a.g.e., the bias is controlled in the grid eireuit. Manual control of r.f. gain is generally done in the cathode circuit. A typical r.f. amplifier stage with the two types of gain control is shown in schematic form in Fig. $5-26$.

Tracking

In a receiver with no r.f. stage, it is no incon-

Fig. 5-26-Typical radio-frequency amplifier circuit for a superheterodyne receiver. Representative values for components are as follows:
C_{1} to $\mathrm{C}_{4}-0.01 \mu \mathrm{f}$. below $15 \mathrm{Mc}, 0.001 \mu \mathrm{f}$. af 30 Mc . $\mathrm{R}_{1}, \mathrm{R}_{2}$-See Table 5-II.
$R_{3}-1800$ ohms.

Fig. 5.27-A practical squelch circuit for cutting off the receiver output when no signal is present.
venience to adjust the high-frequency oseillator and the mixer cirruit independently, berause the mixer tuning is broad and requires little attention over an amateur band. However, when r.f. stages are added ahead ol the mixer, the r.f. stages and mixer will require retuning over an entire amateur band. Hence most receivers with one or more r.f. stages gang all of the tuning controls to give a single-tuning-control receiver. Ohviously there must exist a constant difference in frequency (the i.f.) between the oseillator and the mixer/r.f. circuits, and when this condition is achieved the circuits are said to track.

In amateur-band receivers, tracking is simplified by choosing a bandspread circuit that gives practically straight-line-frequency tuning (equal frequency change for each dial division), and then adjusting the oscillator and mixer tuned circuits so that both cover the same total number of kiloeycles. For example, if the i.f. is 455 kr , and the mixer circuit tumes from 7000 to 7300 kr . between two given points on the
dial, then the oscillator must tune from 7455 to 7755 kc . between the same two dial readings. With the bandspread arrangement of Fig. $\overline{0}-9 \mathrm{~A}$, the tuning will be practically straight-line-frequency if C_{2} (bandset) is 4 times or more the maximum capacity of C_{1} (bandspread), as is usually the case for strictly amateur-band coverage. C_{1} should be of the straight-line-capacity type (semicircular plates).

Squelch Circuits

An audio squelch cirenit is one that cuts off the receiver output when no signal is coming through the receiver. It is useful in mobile or net work where the no-signal receiver noise may be as loud as the signal, calusing undue operator fatigue during no-signal periods.

A practical squelsh sireuit is shown in Fig. 5-27. When the a.g.c. voltage is low or zero, the GSJ7 draws plate current. Voltage drop across the 47,000 -ohm resistor in its plate cireuit cuts off the 6J5 and no receiver signal or noise is passed. When the a.g.e. voltage rises to the cut-off value of the 6 SJ 7 , the pentode no longer draws current and the bias on the dion is now only the operating bias, furnished be the 1000 -ohm cathode resistor. The triode now functions an ordinary amplifier and passes signals. By varying the screen voltage on the 6s.J7 through R_{1}, the pentode's cut-off bias can be varied, so that the relation between a.g.c. voltage and signal cut-off point of the amplifier is adjustable.

Connections to the receiver consist of two a.f. lines (shielded), the a.g.c. lead, and chassis ground. The squeleh cireuit is mormally inserted between detector output and the audio volume control of the receiver. Since the circuit is used in the low-level audio point, its plate supply must be free from ar.e or objeationable hum will he introduced.

Improving Receiver Sensitivity

The sensitivity (signal-to-noise ratio) of a receiver on the higher frequencies above 20 Mc . is dependent upon the band whda of the re: ceiver and the noise contributed by the "front end" of the receiver. Neglecting the fact that image rejection may be poor, a receiver with no r.f. stage is generally satisfactory, from a sensitivity point, in the $3.5-$ and 7 -Mc. bands. However, as the frequency is increased and the atmospheric noise becomes less, the advantage of a good "front end" becomes apparent. Hence at 14 Mc. and higher it is worth while to use at least one stage of r.f. amplification ahead of the first detector for best sensitivity as well as image rejection. The multigrid converter tubes have very poor noise figures, and even the best pentodes and triodes are three or four times noisier when used as mixers than they are when usod as amplifiers.

If the purpose of an r.f. amplifier is to improve
the receiver noise figure at 14 Mc . and higher, a high-g.n pentode or triode should be used. Among the pentodes, the best tuber are the 6AH6, 6.1150 and the $613 \% 6$, in the order manted. The $6 . \mathrm{M} 5$ takes the lead around 30 Mc . The 6 J 4 , 6J6, and triodromennected 6.1K5 are the best of the triodes. For best noise figure, the antenna circuit should be coupled a little heavier than optimum. This cannot give best selectivity in the antenna circuit, so it is futile to try to maximize sensitivity and selectivity in this circuit.

When a receiver is satisfactory in every respect (stability and selectivity) except sensitivity on 14 through 30 Me ., the best solution for the amateur is to add a preamplifier, a stage of r.f. amplification designed expressly to improve the sensitivity. If image rejection is lacking in the receiver, some selectivity should be built into the preamplifier (it is then called a preselector). If, however, the receiver operation is poor on the

5-HIGH-FREQUENCY RECEIVERS

higher frequencies but is satisfactory on the lower oncs, a "converter" is the best solution.
some commercial receivers that appear to lack sensitivity on the higher frequencies can be improved simply by tighter coupling to the antemna. This can be accomplished by changing the antenna feed line to the right value (as determined from the receiver instruction book) or by using a simple matching device as described later in this chapter. Overcoupling the input cirenit will often improve sensitivity but it will, of course, always reduce the image-rejection contribution of the antemna circuit

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often improve the sensitivity because the greater gain it provides serves to mask more completely the firstdetector noise, and it also provides a measure of automatic matching to the antenna through tighter coupling. llowever, accurate ganging becomes a problem, because of the increased selectivity of the regenerative r.f. stage, and the receiver almost invariably becomes a two-handed-
tuning device. Regeneration should not be overlooked as an expedient, however, and anateurs have used it with considerable sucress. High- g_{m} tubes are the best as regenerative amplifiers, and the feedback should not be controlled by changing the operating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the feedback coupling. This is a tricky process and another reason why reqeneration is not too widely used.

Gain Control

In a receiver front end designed for best signal-to-noise ratio, it is advantageous in the reception of weak signals to eliminate the gain control from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (and other r.f. stages, if any), the signal-to-moise ratio of the receiver will suffer. As the gain is reduced, the g_{m} of the first tube is reduced, and its noise figure becomes higher. A good receiver might well have two gain controls, one for the first radio-frequency stage and another for the i.f. and other r.f. stages.

Tuning a Receiver

C.W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To adjust the beat-oscillator frequency, first tune in a moderately weak but steady carrier with the beat oscillator turned off. Adjust the receiver tuning for maximum signal strength, as indicated by maximum hiss. Then turn on the beat oscillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsequently be touched, except for occasional checking to make certain the frequency has not drifted from the initial setting. The b.f.o. may be set on either the high- or low-frequency side of zero beat.

The best receiver condition for the reception of code signals will have the first r.f. stage running at maximum gain, the following r.f., mixer and i.f. stages operating with just enough gain to maintain the signal-to-noise ratio, and the audio gain set to give comfortable headphone or speaker volume. The audio volume should be controlled by the audio gain control, not the i.f. gain control. Under the above conditions, the selectivity of the receiver is being used to best advantage, and cross-modulation is minimized. It precludes the use of a receiver in which the gains of the r.f. and i.f. stages are controlled simultaneously,

Tuning with the Crystal Filter

If the receiver is equipped with a crystal filter the tuning instructions in the preceding paragraph still apply, but more care must be used
both in the initial adjustment of the beat oscillator and in tuning. The beat oscillator is set as described above, but with the crystal filter set at its sharpest position, if variable selectivity is available. The initial adjustment should be made with the phasing control in an intermediate position. Once adjusted, the beat oscillator should be left set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same signal to give a beat note of the same tone. This beat will be considerably weaker than the first, and may be "phased out" almost completely by careful adjustment of the phasing control. This is the adjustment for normal operation; it will be found that one side of zero beat has practically disappeared, leaving maximum response on the other.

An interfering signal having a beat note differing from that of the a.f. image can be similarly phased out, provided its frequency is not too near the desired signal.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to lengthen out so that they seem to "run together." It must be emphasized that, to realize the benefits of the crystal filter in reducing interference, it is necessary to do all tuning with it in the circuit. Its high selectivity often makes it difficult to find the desired station quickly, if the filter is switched in only when interference is present.

A.M. Phone Reception

In reception of a.m. phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, switch on the a.g.c., and use the audio gain

Alignment Servicing

control for setting the volume. This insures maximum effectiveness of the a.g.c. system in compensating for fading and maintaining constant audio output on either strong or weak signals. On occasion a strong signal close to the frequency of a weaker desired station may take control of the a.g.e., in which case the weaker station may disappear because of the reduced gain. In this case better reception may result if the a.g.c. is switched off, using the manual r.f. gain control to set the gain at a point that prevents "blocking" by the stronger signal.

When receiving an a.m. signal on a frequency within 5 to 20 kc . from a single-sidehand signal it may also be necessary to switch off the a.g.c. and resort to the use of manual gain control, unless the receiver has excellent skirt selectivity. No ordinary a.g.c. circuit can handle the syllabic hursts of energy from the sideband station, but there are sperial circuits that will.

A crystal filter will help reduce interference in phone reception. Although the high selectivity cuts sidebands and reduces the audio output at the higher audio frequencies, it is possible to use quite high selectivity without destroying intelligibility. As in code reception, it is advisable to do all tuning with the filter in the circuit. Variableselectivity filters permit a choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heterodyne with it to produce a beat note equal to the frequency difference. Such a heterodyne can be reduced by adjustment of the phasing control in the erystal filter.

I tone control often will be of help in reducing the effects of high-pitched heterodynes, sidehand
splatter and noise, by cutting off the higher audio frequencies. This, like sideband cutting with high selectivity circuits, reduces naturahess.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to identify an image by the nature of the transmitting station, if the frequency assigmments applying to the frequency to which the receiver is tuned are known. However, an image also can be recognized by its behavior with tuning. If the signal causes a heterodyne beat note with the desired signal and is actually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the beat will vary in pitch as the receiver is tuned. The beat oscillator in the receiver must be turned off for this test. Using a crystal filter with the beat oseillator on, an inage will peak on the side of zero beat opposite that on which desired signals peak.

Harmonic response can be recognized by the "tuning rate," or movement of the tuning dial required to give a specified change in beat note. Signals gotting into the i.f. via high-frequency oscillator harmonies tune more rapidly (less dial movement) through a given change in beat note than do signals received by normal means.

ILarmonies of the beat oscillator can be recognized by the tuning rate of the beat-oscillator pitch control. A smiller movement of the control will suffice for a given change in beat note than that necessary with legitimate signals. In poorlyshielded receivers it is often possible to find b.f.o. harmonies below' Me., but they should be very weak at higher frequencies.

Alignment and Servicing of Superheterodyne Receivers

I.F. Alignment

A calibrated signal generator or test oscillator is a useful device for aligmment of an i.f. amplifier. Some means for measuring the output of the reveiver is rectured. If the rerefiver hat a tuning meter, its indications will serve. Lacking an S meter, a high-resistance voltmeter or a varuumtube voltmeter can be connected across the sec-ond-detector load resistor, if the second detector is a diode. Alternatively, if the signal generator is a modulated type, an a.c. voltmeter can be conneeted across the primary of the transformer feeding the speakir, or from the plate of the last audio amplifier through a $0.1-\mu \mathrm{f}$. blocking cat pacitor to the reediver chassis. Lacking an a.e. voltmeter, the audio output can be judged by ear, although this method is not as acrurate as the others. lf the tuning meter is used as an indication, the a.g.c. of the receiver should be turned on, but any other indication requires that it be turned off. Lacking a test oscillator, a stearly signal tuned through the input of the receiver (if the joh is one of just lourching up the i.f.
amplifier) will be suitable. However, with no oscillator and tuning an amplifier for the first time, one's only recourse is to try to peak the i.f. transformers on "noise," a diflicult task if the transformers are badly off resonance, as they are apt to be. It would be much bellei to haywire together a simple oscillator for test purposes.

Initial aligmment of a now i.f. amplifier is as follows: The test oscillator is set to the correct frequency, and its output is coupled through a capacitor to the grid of the last i.f. amplifier tube. 'The trimmer eapacitors of the transformer feeding the second detector are then adjusted for maximum output, as shown by the indicating device being used. The oscillator output lead is then clipped on to the grid of the next-to-the-last i.f. amplifier tube, and the second-from-the-last transformer trimmer adjustments are peaked for maximum output. This process is continued, working back from the second detector, until all of the i.f. transformers have been aligned. It will be necessary to reduce the output of the test oscillator as more of the i.f. amplifier is brought

5-HIGH-FREQUENCY RECEIVERS

into use. It is desirable in all cases to use the minimum signal that will give useful output readings. The i.f. transformer in the plate circuit of the mixer is aligned with the signal introduced to the grid of the mixer. Since the tuned circuit feeding the mixer grid may have a very low impedance at the i.f., it may be necessary to boost the test generator output or to disconnect the tuned circuit temporarily from the mixer grid.

If the i.f. amplifier has a crystal filter, the filter should first be switched out and the alignment carried out as ahove, setting the test oscillator as closely as possible to the crustal frequency. When this is completed, the crystal should be switched in and the oscillator frequency varied back and forth over a small range either side of the erystal frequener to find the exact frequency, as indicated by a sharp rise in output. Leaving the test oscillator set on the crystal peak, the i.f. trimmers should be realigned for maximum output. The necessary readjustment should be small. The oscillator frequence should be checked frequently to make sure it has not drifted lrom the crystal peak.

A modulated signal is not of much value for aligning a erystal-filter i.f. amplifier, since the high selectivity cuts sidebands and the results may be inacounte if the audio output is used as the tuning udication. Lacking the a.v.e. tuning meter, the transformers may be conveniently aligned by ear, using a weak unmodulated signal adjusted to the crystal peak. switch on the beat bscillator, aljust to a suitable tone, and align the i.f. transformers for maximum audio output.

An amplifier that is only slightly out of alignment, as a result of normal drift or aging, can be realigned by using any steady signal, such as a local broadeast station, instead of the test oscillator. One's 100-kc. standard makes an excellent signal source for "touching up" an i.f. amplifier. Allow the receiver to warm up thoroughly, tume in the signal, and trim the i.f. for maximum output.

If you bought your receiver instead of making it, be sure to read the instruetion book carefully belore attempting to realign the receiver. Most instruction books include alignment details, and any little special tricks that are peculiar to the receiver will also be described in detail.

R.F. Alignment

The objective in aligning the r.f. circuits of a gang-tuned receiver is to secure adequate tracking over each tuning range. The adjustment may be earried out with a test oscillator of suitable frequency range, with harmonics from your 100 -kc. standard or other known oseillator, or aven on noise or such signals as may be heard. First set the tuning dial at the high-frequeney end of the range in use. Then set the test oscillator to the frequency indicated by the receiver dial. The test-oscillator output may be connected to the antenna terminals of the receiver for this test. Adjust the oscillator trinmer capacitor
in the receiver to give maximum response on the test-oscillator signal, then reset the receiver dial to the low-frequency end of the range. Set the test-oscillator frequency near the frequency indicated by the receiver dial and tune the test oscillator until its signal is heard in the receiver. If the frequency of the signal as indicated by the test-oscillator calibration is higher than that indicated by the receiver dial, more inductance (or more capacity in the tracking celpacitor) is needed in the receiver oscillator circuit; if the frequency is lower, less inductance (less tracking capacity) is required in the receiver oscillator. Most commereial receivers provide some means for varying the inductance of the coils or the capacity of the tracking caprotitor, to promit aligning the receiver tuning with the dial calibration. Set the test oscillator to the frequency indicated by the receiver dial, and then adjust the tracking capacity or inductance of the receiver oscillator coil to obtain maximum response. After making this adjustment, recheck the high-frequency end of the scale as previonsly deseribed. It may be necessary to go back and forth between the ends of the range several times before the proper combination of indurtance and capacity is secured. In many cases, better over-all tracking will result if frequencies near but not actually at the ends of the taning range are selected, instead of taking the extreme dial settings.

After the oscillator range is properly adjusted, set the recoiver and test oscillator to the highfrequency end of the range. Adjust the mixer trimmer eapacitor for maximum hiss or signal. then the r.f. trimmers. Reset the tuning dial and test oscillator to the low-frequency end of the range, and repeat; if the circuits are properly designed, no change in trimmer settings should be necessary. If it is necessary to increase the trimmer caparity in any cirenit, more inductance is meeded: conversely, if loss capacity resonates the eirenit, less inductance is required.

Tracking seldom is perfect throughout a tuning range, so that a check of aligmment at intermediate points in the range may show it to be slightly off. Normally the gain variation will be small, however, and it will suffice to bring the circuits into line at both ends of the range. If most reception is in a particular part of the range, such as an amateur hand, the circuits may be aligned for maximam performance in that region, even though the ends of the frepuency range as a whole may be slightly out of alignment.

Oscillation in R.F. or I.F. Amplifiers

Oscillation in high-frequency amplifier and mixer circuits shows up as squeals or "birdies" as the tuning is varied, or by complete lack of audible output if the oscillation is strong enough to cause the a.g.c. s.stem to reduce the receiver gain drastically. Oscillation can be caused by poor connections in the common ground circuits. Inadequate or defective bepass capacitors in cathode, plate and screen-grid circuits also can cause such oscillation. A metal tube with an ungrounded shell may cause trouble. Improper

Improving Performance

screen-grid voltage, resulting from a shorted or too-low screen-grid series resistor, also may he responsible for such instability.

Oscillation in the i.f. circuits is independent of high-frequency tuning, and is indicated by
a continuous squeal that appears when the gain is advanced with the c.w. beat oscillator on. It can result from defects in i.f.-amplifier circuits. Inadequate sereen or plate bypass capacitance is a common cause of such oscillation.

Improving the Performance of Receivers

Frequently amateurs unjustly criticize a receiver's performance when actually part of the trouble lies with the operator, in his lack of knowledge about the receiver's operation or in his inability to recognize a readily curable fault. The best example of this is a complaint about "lack of selectivity" when the receiver contains :un i.f. crystal filter and the operator hasn't bothered to learn how to use it properly. "Lark of sensitivity" may be nothing more that poor alignment of the r.f. and mixer tuning. The cures for these two complaints are ohvious, and the details are troated both in this chapter and in the recedver instruction book.

However, many complaints about selectivity, sensitivity, and other points are justified. Inexpensive, and most second-hand, receivers eannot be expected to measure up to the performance standards of some of the current and toppriced receivers. Nevertheless, many amateurs overlook the possibility of improving the performance of these "bargains" (they maty or mas. not be bargains) by a few simple additions or modifications. lirom time to time articles in QST' describe improvements for specific recoivers, and it may repay the owner of a newlyacquired second-hand reeciver to examine past issues and see if an :uphlicable article was pub)lished. The anmual index in each December issue is a help in this respect.

Where no applicable article can be found, a few general prineiples can be laid down. If the complaint is the inability to separate stations, better i.f. (and oceasionally audio) selectivity is indicated. The answer is not to be found in better handeproad tuning of the dial as is sometimes erroneously concluded. F'or code reception the addition of a "Q Multiplier" to the i.f. amplifier is a simple and effective attack; a () Multiplier is at its best in the region 100 to ! 00 kc , and higher than this its effectiveness drops off. The selectoject is a selective audio device based on similar principles. For phone meaption the addition of a Q Multiplier will help to reject an interfering carrior, and the use of a BC-453 as a "(25 -er" will add adjacentchannel selectivity.

With the addition of more i.f. selectivity, it may be found that the receiver's tuning rate (number of ke. tuned per dial revolution) is too high, and consequently the tuning with good i.f. selectivity becomes too critical. If this is the case, a 5 -to-1 reduction planetary dial drive mechanism may be added to make the tuning
rate more favorable. These drives are sold by the larger supply houses and ean usually be added to the receiver if a suitable mounting bracket is made from sheet metal. If there is already some backlash in the dial mechanisn, the addition of the planetary drive will nagnify its effect, so it is necessary to minimize the backlash before attempting to improve the tuning rate. While this is not possible in all cases, it should be investigated from every angle before giving up. Replaring a small tuming knob with a larger one will add to ease of tuning; in many cuses after doing so it will then be desirable or necessary to raise the receiver higher above the table.

If the receiver appears to lack the ability to bring in the weak signals, particularly on the higher-frequency bands, the performance can often be improved by the addition of an antenna coupler (described elsewhere in this chapter): it will always be improved by the aldition of a preselector (also described elsewhere in this chapter).

If the receiver shortcoming is inadequate r.f. selectivity, as indicated by r.f. "images" on the higher-frequency bands, a simple antenna coupler will often add sufficient selectivity to cure the trouble. However, if the images are severe, it is likely that a preselector will be required, preferably of the regenerative type. The preselector will also add to the ability of the receiver to detect woak signals at 14 IIc. and higher.

In many of the inexpensive receivers the frequeney calibration of the dial is not very accurate. The receiver's usefulness for determining band limits will be greatly improved by the addition of a $100-\mathrm{ke}$, erystal-controlled frequeney standard. These units can be built or purchased complete at very reasonable prices, and no amateur station worthy of the name should be without one.
Some receivers that show a considerable frequency drift as they are warming up can be improved by the simple expedient of furnishing more ventilation, by propping up the lid or by drilling extria ventilation holes. In many cases the warm-up drift can be cut in half.

Reccivers that show frequency changes with line-voltage or gain-control variations can be greatly improved by the addition of regulated voltage on the oscillators (high-frequency and b.f.o.) and the sereen of the mixer tube. There is usually room in any receiver for the addition of a VI tube of the right rating.

5-HIGH-FREQUENCY RECEIVERS The "SimpleX Super" Three-Tube Receiver

The name of this receiver derives from "simple", " Λ " for crystal (filter), and "super" for superheterodyne: hence a "simple erystal-filter superheterodyne." For about fifty dollars and a few nights at the workbench this little receiver will allow you to copy practically any c.w. or s.s.b, signal in the 40 - or 80 -meter band that a much more expensive receiver might drag in. Isy the flip of a switch you can tune to 5 Mc. for IIWV.

This 3 -tube receiver will permit the singlesignal reception of code signals. Single-sideband phone can be handled with no difficulty at all. With the b.f.o. turned off for the reception of a.m. signals, a threshold effer shows up that prevents digging all the way down for the weak ones, but one can still copy plenty of a.m. signals. Since the receiver uses only three tubes, it doesn't have the more-than-enough gain of a hig recolver, and its performanee won't be very impressive on a poor (short or low) antema. Ilowever, if the transmitting antomma is also used for recoiving, you will find yoursolf backing down on the volume control to save your cars.

Referring to the circuit dingram in lig. 5-2!, the receiver is a superhoterodyne with an intermediate frequency of 1700 ke . With the h.f. oseillator tuning 5.2 to 5.7 Mc., the $3.5-$ or the 7 -Mt. amateur bands can be tuned merely by retuning the input eireuit, $L_{1} C_{1}$. Since (' ${ }_{1}$ is large enough to hit the two bands without a coil change, the band-changing process consists of turning (${ }^{2}$ to the low- or high-aparitanee end of its range. To copy WWV at 5 Me., the oscillator must be tumed to 3.3 Mc., and this is done by switching in an additional capacitor arross the oseillator circuit.

If you are dis: ppoointed because the receiver doesn't ture the $21-\mathrm{Mc}$. band, remember that the "under- $\$ 100$ " receivers don't either. Sure, the dials show 21 Me., but try to use the receivers to hold a signal for any length of time! The Simpled Super, with a cristal-controlled converter between it and the antenna, will handle 15 meters like 80.

Selectivity at the i.f. is ohtained through the use of a single crystal. Although not as sharp as the usual 45j-ke. erystal filtor, it is sharp enough

Fig. 5-28 -The SimpleX Super receiver uses three dual tubes and a crystal filter ta caver the 80- and 40-meter bands, and it can tune to 5 Mc . far capying WWV. The dial scale is made from white paper held to the panel by red Scatch tape; the painter is a slice of the tape.
to provide a fair degree of singlo-signal c.w. reception and yet broad enough for good copy of an s.s.b. phone signal.

In the detector stage, the pentode section of a 6U8A is used as a grid-leak detertor, and the triode section serves as the b,fo. Stray coupling at the socket and in the tube provides adequate injection. Audio amplification is ohtained from the two triode sections of a 6 CG 7 . The primary of a small output transformer, T, serves as the coupling for high-impedance headphone output, and a small loudspeaker or low-impedance headphones can be connerted at the output winding of the transformer. Although the audio power output is less than a watt, it is sufficiont to drive a loudspeaker adecuately in a small quiet room.

The power supply uses a large choke and two 40- μ f. capacitors, and the very slight hum that can be detereted in the headphones with the volume full on is straty a.e. pieked up by the detector grid; it doesn't rome from inadequate filtering of the power supply. (The hum can only be heard with no antema on; under normal operation the incoming noise will mask the slight hum.)

A switch at the input of the receiver is included so that the receiver can be used to listen to one's own transmitter without too severe borking. ['sing the b.f.o. switch to cut in the WWV padder was done (instead of hy the more logieal S_{1}) to keep the imput short-cireniting leads short.

An $8 \times 12 \times 3$-inch aluminum chassis takes all of the parts without crowding, and the location of the components can be seen in the photographs. The $71 / 4 \times 13$-inch aluminum panel (1/16-inch thick) is held to the chassis by the b,fo. capacitor mounting screws, the phone jack, the dial drive and the two rotary switches. The tuning capacitor ('2 is mounted on a small aluminum bracket made from an extra strip of the panel material; before the bracket is finally fastened to the chassis the caparitor and bracket should be used to locate the dial hole on the panel. When drilling the hole for the dial drive, measure the dimension instead of using the temphate provided with the National K dial. It pays to take care in

Fig. 5-29-Circuit diagram of the SimpleX Super receiver. Unless otherwise indicated, copocitonces ore in $\mu \mu \mathrm{f}$., resistances ore in ohms, resistors are $1 / 2$ walt. Polarity shown on electrolytic copocitors; fixed copacitors $330 \mu \mu \mathrm{f}$. or less are silver mica or NPO ceramic. Nanelectrolytic fixed capocitors over 0.025μ f. are 400 -valt molded tubulars.

Fixed capacitors 0.001 through 0.025 ore ceramic.
C_{1} - $140-\mu \mu \mathrm{f}$. midget variable (Hammarlund APC-140-B).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$. midget varioble (Hammarlund HF-15).
$\mathrm{C}_{3}-15-\mu \mu \mathrm{f}$. trimmer (Hommarlund MAPC-15-B).
$\mathrm{C}_{6}, \mathrm{C}_{6}-3-30-\mu \mu \mathrm{f}$. mico compression trimmer.
C_{5}-Dual 40 - μ f. 450 -volt electrolytic (Mallory TCD- 78 or equiv.).
J_{1}, J_{3}-Phono jack.
\mathbf{J}_{2}-Open-circuit headphone jack.
$\mathrm{L}_{1}, \mathrm{~L}_{2}$-See Fig. 5-35.
$L_{3}, L_{4}-1.05-200-\mu h$. slug-tuned (North Hills 120.H coil mounted in North Hills S-1 20 shield can!.
$L_{5}-36-64-\mu$ h. slug-tuned (North Hills 120-F coil mounted in North Hills S-1 20 shield can).
L θ - 16-hy. $50-\mathrm{mo}$. filter choke (Knight 62-G-1 37 or equiv.).
$R_{1}-1 / 2$ megohm volume control, oudio taper, with switch. $\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-2.2-\mathrm{mh}$ r.f. choke, resonant near 1.6 Mc . (Waters Clo59 or Miller 9350-36).
St-1-pole 12-position (2 used) rotary ceramic switch (Centrolob PA-2001).
S_{2}-2-pole 6 -position (4 used) rotory ceromic switch (Centralab PA-2003). S_{3}-S.p.s.t. switch, part of R_{1}.

I I_{1} 10,000-ohms-to-voice-coil output transformer (Stancor A-3822 or equiv.).
$\mathrm{I}_{2}-480 \mathrm{v}$. c.t. of 40 mo ., 5 v . at 2 amp ., 6.3 v . of 2 amp . (Knight 62-G-034 or equiv.).
$\mathrm{Y}_{1}-1700-\mathrm{kc}$. crystal in FT-243 holder (E. B. Lewis or equiv.).
(All radio stores do not handle the above components For prices and names of dealers write to North Hills Electric Co., 402 Sagamore Ave., Mineola, N. Y.; Knight is hondled by Allied Radio, 100 N. Western Ave., Chicago 80. III.; Waters Mfg. Inc., Boston Post Rd., Wayland Mass.; E. B. Lewis, 11 Brogg St., E. Hartford, Conn.l

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-30-Details of the coil construction. Each one is made from B \& W 3016 Miniducter stock, which is wound 32 t .p.i. and 1 -inch diameter. The separation between coils in L_{1} is 7 turns; the separation between coils L_{2} is 1 turn. It is important that the coils be connected as indicated. The Miniductor stock can be cut into the required lengths by pushing in a turn, cutting it inside the coil and then pushing the newly cut ends through to outside the coit. Once outside, it is easy to peel away the wire with the help of long-nose pliers. When sufficient lurns have been removed, the suppart bars can be cul with a fine saw.
mounting the tuning caparitor and the dial, since a smooth tuning drive is an essential in any receiver. To facilitate tuning, a National HRT knob was used instead of the puny knob furnished with the K dial. The other knots are gray National HIR and HR-4.

Tie points are used liberally throughout the receiver, as junctions for components and interronnecting wires. The coils L_{1} and L_{2} are mounted on tie points, using short leads. If the leads from L_{2} are too long, the coil will be "floppy" and the receiver may te unstable. Fig. 5-30 shows how coils L_{1} and L_{2} are constructed and connected. The leads from ('1 and ('2 are brought through the chassis in insulating grommets. The 3- to 30$\mu \mu \mathrm{f}$. miea compression trimmer arross L_{2} is soldered to the tie points that support the coil.

The receiver is wired with shielded wire for many of the leads, in an effort to minimize hum in the audio and feedthrough around the erystal filter. The shielded leads are marked in Fig. 5-29 where feasible: the simple rule to follow is to shield all $\mathrm{B}+$ leads along with those shown shielded in Fig. $\overline{0}-2!$. For easy of wiring, these shielded leads should be installed first or at loast early in the construction. As the wiring progresses, a neat-looking unit ean be obtained by dressing the leads and components in paralled lines or at right angles. D.e. amd a.c. leads can be tucked out of the way along the edges of the chassis, while r.f. leads should be as direct as is reasonable.

If this is your first reveiver or construction job, there are several pitfalls to be avoided. When installing a tube socket, first give a little thought to where the grid and plate leads will run, and orient the socket so that these leads will be direet and not cross over the socket.

Another thing to look out for is the wellmeaning store elerk who sells you stranded wire for making the connections throughout the receiver. The only stranded wire in this receiver is in the leads from the transformers, filter capacitor and filter choke, and in the shielded wire, and all this only because there was no choice. Where stranded wire is used, be very careful to avoid wild strands that stray over to an adjarent sorket. terminal and short-circuit a part of the circuit. without your knowing it. No. 20 or 22 insulated solid timed copper wire should be used for connections wherever no shiehling is used. Long bare leads from resistors or capacitors should be cov-
ered with insulating tubing unless they go to chassis groumds.

The final bugatro is, of course, a poorlysoldered connection. If this is your first venture. by all means practice soldering before you start to wire this receiver. Read an article or two on how to solder, or get a friend to show you how and to (aiticize your first attempts. A good soldering iron is an essential: there have been instances of a first venture having been "soldered" with an iron that would just barely melt the solder: the iron was incapable of heating the solder and work to the point where the solder would flow properly.
There is no need to worry about the dial scale when the receiver is first built, because the receiver has to be checked. The scale is a sheet of white paper held in plave by red or black Scoteh tape. The dial pointer is a slice of the same tape.

When the wiring has been completed and checked once more against the circuit diagram. plug in the tubes and the line cord and turn on the recoiver through S_{3}. The tube heaters and rectifier filament should light up and nothing should start to smoke or get hot. If you have a voltmeter you should measure about 250 volts on the $\mathrm{B}+$ line.

With hearphones plugged in the receiver, you should be able to hear a little hum when the volume control is advanced all the way. If you can't hear any hum, touehing a screwdriver to Pin 2 should produce hum and a loud click. This shows that the detector and andio amplifier are working.

The next step is to tune L_{3}, L_{4} and L_{5} to 1700 kc, the crystal frequency. If you have or can borrow a signal generator, put $1700-\mathrm{kr}$, r.f. in at the grid of the 6U8A mixer and peak L_{3} and L_{4}. Lacking a signal generator, you may be lucky enough to find a strong signal by tuning around with ('2, but it isn't likely. Your best bet is to tune a broadeast receiver to around 1245 kc .; if the receiver has a 455 -ke. i.f. the oscillator will then be on 1700 ke. Don't depend upon the calibration of the broadcast receiver: make your own by cherking known stations. The oscillator of the broadeast receiver will furnish a steady (possibly hum-modulated) carrier that can be picked up by running a wive temporarily from the grid of the GU8A mixer to a point near the chassis of the b.c. receiver. Adjust L_{5} until you get a beat with the $1700-\mathrm{kc}$. signal, and then peak L_{3} and L_{4}. If the signal gets too loud, reduce the signal by

Fig. 5-31-Top view of the SimpleX Super. The tube between the two variable copacitors is the mixer-oscillator 6U8A; the 6CG7 audio amplifier is at the far right. The flexible insulated coupling between moin tuning dial and the tuning capacitor is a Millen 39016.
moving the wire away from the b.c. recriver. Now slowly swing the sigmal frequeney back and forth with the b.f.o. turned off: you should find a spot where the noise rushes up quickly and then drops off. This is the crystal frequency, and L_{3} and L_{4} should be praked again on this frequency if you were a little off the first time.

An antenna connected to the receiver should now pormit the reception of signals. With ('1 nearly ummeshed, you will be in the region of the 7 -Me. band, and with f_{1} almost completely meshed, you will be near 3.5 Mc. Do your tuming with the compression trimmer in the oscillator circuit, until you find a known frequency (it can be your own transmitter). Let's say your transmitter has a erystal at 3725 kc . Set ('2 at half capacitance and tume with (${ }_{6}$ montil you hear your transmitter. You shouldn't need any antemata on the receiver for this test. Once you have the setting for the trimmer, put the antenna on the reediver and look around for other known signals. (CHU , the Canadian standard-frequency station at 7335 ke , is a good marker.') With turk roui should just be able to cover the 80 -meter band; if you can get one end but not the other, a

Fig. 5.32-Shielded wire, used for most of the d.c. and 60 -cycle leads, lends to the clean oppeorance underneath the chassis. The switch at the left shorts the input of the receiver, and the adjacent switch handles the b.f.o, and the padding capacitor for WWV.
The phono jack at the top left is for the antenna; the other phono jack is for low-impedance audio output. The headphone jack (lower right) is for high-impedance audio output.
minor readjustment of the trimmer is indieated.
Once you have acquainted yourself with the 80- and 40 -meter bands, and appreciate that you have to peak up the imput cireuit (c_{1}) fairly often as you tune arross the bands, you are ready to trim up the crystal filter. Run the volume fardy high, so that you can hear noise from the properly peaked imput circuit, and tum ('3 until the noise takes on a higher-pitched characteristic. (The b,fo. stage is originally set up with Con at mideapacitance and L_{5} adjusted for lowestpitched noise.) Now tune in a code signal with ('2 and swing back and forth through it. "()ne side" of the signal should be louder than the other. Tune to the weak side with a beat note of around 800 cyeles and then adjust ('4 for minimum signal. After a few attempts, juggling (${ }_{3}, \prime_{4}{ }_{4}, L_{3}$ and L_{4}, you should get a condition where the single-signal e.w. effect is quite apparent.

All that remains is to install the dial scale and ralibrate it. A l00-ke, oseillator is ideal for this job: lacking one or the ability to borrow one, you will have to rely on other signals. If your crystal filter is 1700 ke. exactly, the 80 - and 40 -meter calibrations will coineide as they do on the scale shown in Fig, 5-33; if not, the calibration marks will be offert on the two bands.

If you find that you can't get WWV at 5 Me. with the $150-\mu \mu f^{\prime}$. caparitor switched in, substitute a $1: 30-\mu \mu$ f. mica in parallel with a $30-\mu \mu f$, trimmer, and adjust so that WWV falls on scale.
ds you arquaint yourself with the operation of the receiver, you will notier that tuning ' 1 will have a slight effect on the tuning of the signal. In other words, tuning ('i "pulls" the oscillator slightly. To remedy this would have made the receiver more complicated, and the simple solution is merely to first peak C_{1} on noise and then tune with ('2.

You will find this to be a practical receiver in overy way for the c.w. (or s.s.b.) operator. The tuning rate is always the same on 80 or 40 , or 15 with a converter, and $21-$ Me. s.s.b. signals tune as easily as those on 3.9) Me. The warm-up drift is negligible, and the oscillator is surprisingly insensitive to voltage changes. Whether or not the oseillator is insensitive to shock and vibration will depend upon the care with which the compononts aro anchored to their respertive tie points.

5-HIGH-FREQUENCY RECEIVERS
 The 2X4+1 Superheterodyne

The receiver shown in Fige. 5--3:3, 5-36 and $5-37$ is a two-band four-tube (2N-1) rocoiver with a transistor $(+1)$ 100-ke. frequeney standard. ()ther fatures inelude the ability to tune to $\overline{5}$ Me., for the reception of WWV, and a dualerystal filter for single-sidehand and single-signal c.w. reception. Tuning the 40 -and 80 -meter amateur bands with good stability and selectivity, the reediver can bo used on other bands by the addition of crystal-controlled converters ahead of it.

Referring to the circuit in Fig. 5-34, the pentode suction of a 6 (68-S is used as a mixer, with the triode portion of the same tube serving as the oseillator. The i.f. is 1700 ke . and the oscillator tunes 5.2 to 5.7 Me.: tuning the input circuit to the 80 -meter hand brings in 80 -meter signals, and all that is required to hear 40 -motor signals is to swing the imput tuning, ('1, to the low-capacitancer end of its range. Although, e.g., a $7.0 \overline{\mathrm{j}}$ - Me. ($5.35+1.7$) and a 3.65 -Ме. (5.35 1.7) signal will appear at the same setting of the tuning dial, the two signals cannot be received simultaneonsly becanse the double-tuned circuit, ('1a L_{2} and ('us L_{3}, between antemna and mixer grid provides the neemesary rejertion. To provide optimum coupling in both ranges, the eoupling capacitance is changed by a switeh, S_{1}. actuated by the shaft of (". This the coupling change takes place automationlly as the capacitor is tuned to the desired hand. To make the two eir-
ruts track over the contire range, a 3 - to $30-\mu \mu 1$ trimmer is provided to compensate for the input capacitanee of the miver. For WWV mereption, capacitance ('6 is added to the oscillator cirenit to bring its frequency to 3.3 Me .
The mixer is followed by the duat ervstal filter at 1700 ke . and at stage of i.f. amplitication. I.f. gain is manually controlled by a variablo bias eontrol in the eathonde cirvuit of the giside i, f. amplifior stage. A triode section of a $6\left(\times\left(i 7, V_{2 A}\right.\right.$, sorves as a grid-leak detector, and the other sorotion is used as the b.f.o. A two-stage autio amplifier follows, providing high-impedance output for headphones or low-impedaner output for a loudspaker. The audio power is suffiegent to give more than enough high-impedane headphone volume and quite aderuato londspaker volume in a quiet room.
The power supply includes a 0 C 3 to supply regulated 105 volts for the two osillators and the sereen of the miser.
The transistor 100-ke. calibation oscillator user for its power souree the 8 volts developed across the rathode resistor of $V_{3 n}$. switeh S_{3} tums the oseillator on and off and also adde the caparitance to the osoilator cireuit that permits WIV' rereption. The four positions of S_{3} are orf - wwy (only) - che (oseillator only) Borre. Although the 100-ke, standard is not cesential to the operation of the revelver, its inclusion will be foum to be quite valuable.

Fig. 5.33-The $2 \times 4+1$ superheterodyne is a four-tube receiver with 7 -tube performance. It tunes the 80 . and 40 . meter amateup bands, and provision is included for receiving WWV on 5 Mc . A built-in trystal oscillator provides $100-\mathrm{kc}$. frequency markers throughout the bands. Black knob on the left-hand side controls the calibration oscillator and the WWV reception.

Fig. 5-35-Circuit diagram of the $2 \times 4+1$ super-heterodyne. Unless indicated otherwise, decimal capacitances ore in μ f., other capacitances in $\mu \mu \mathrm{f}$. , resistors are $1 / 2$ watt
C_{1}-Dual variable, $140 \mu \mu \mathrm{f}$. per section (Hammarlund

$$
\text { MCD. } 140-\mathrm{MI} \text {. }
$$

$\mathrm{C}_{2}, \mathrm{C}_{3}-480-\mu \mu \mathrm{f}$, mica compression trimmer (ArcoElmenca 466)
$\mathrm{C}_{4}-5-\mu \mu \mathrm{f}$. variable (Hammarlund MAC-5).
$\mathrm{C}_{5}-100-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-100).
$\mathrm{C}_{6}-240 \mu \mu \mathrm{f} . \pm 5 \%$ mica in parallel with $30-\mu \mu \mathrm{f}$. mica compression trimmer.
$\mathrm{C}_{7}-35-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-35).
$\mathrm{C}_{8}-5-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-15 with 3 plates removed).
$\mathrm{C}_{9}-3 \mu \mu$ f. approx. Insulated wires twisted together for 3 Purns.
J_{1}-Phono jock.
$L_{1}-19$ turns Na. 24, part of L_{2} stock, $1 / 16$ inch from L_{2}.
$L_{2}, L_{3}-43$ turns No. 24, $3 / 4$-inch diam, 32 i.p.i. (B\&W 3012 or Illumitronic 632).
$L_{4}-7$ furns No. 24, part of L_{5} stock, $1 / 32$ inch from L_{5}.
$L_{5}-17$ turns No. 24, $3 / 4$-inch diam., 32 t.p.i. (B\&W 3012 or lllumitronic 632).
$\mathrm{L}_{6}, \mathrm{~L}_{7}-64$ to $105 \mu \mathrm{~h}$., adjustable (Narth Hills 120-G in North Hills S-120 shield can).
Ls - 36 to $64 \mu \mathrm{~h}$., odjustable (North Hills 120-F in North Hills S-1 20 shield can).
L9-1 15 -henry, 75 -ma. filter choke (Stancor C-1002). $\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-2.2 \mathrm{mh}$., self resonant at 1.6 Mc . (Waters

Cl059 or Miller 9350-36).
$\mathrm{RFC}_{3}-10 \mathrm{mh}$. (National R-50-1).
S_{1}-Homemade cam switch mounted an C_{1}. See fext.
S_{2}-2-pole 3-position rotary switch (Centralab 1472).
S_{3}-2-pole 6-pos tion (4 used) minioture ceramic switch (Centralab PA-3 with Centralab PA-301 index, $21 / 2$ inches used
T1 3-watt, 8000 to 3.2 ohms, output transformer (Stancor A-3329).
$\mathrm{T}_{2}-650$ v.c.t. at $55 \mathrm{ma}, 5 \mathrm{v}, 6.3 \mathrm{v}$. at 2 amp . (Stancor PC-8407).
$Y_{1}, Y_{2}-1700$-kc. crystals, FT-243 holders. $\mathbf{Y}_{3}-100$-kc. (James Knight H-93 or equiv.)

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-35-The cam-operated switch, S_{1}, is made from the contacts and insulators taken from an open-circuit phone jack (Mallory 703) and mounted on an aluminum bracket. The cam, mounted on the shaft of C_{1}, is made by grinding one side of a small insulated knob (Johnson 116-214-1). Switch is open during minimum-capacitance half of capacitor range. Bracket is made from a $1 \frac{1 / 4}{} \times$ $31 / 2$-inch strip of aluminum; the shelf is $3 / 4$-inch deep.

Construction

The receiver is built on an $8 \times 12 \times 3$-inch aluminum chassis, A panel can be made from $1 / 6$-inch thick sheet aluminum or from a standard $83 / 4$-inch rack panel. While the rack panel will be more substantial, it really isn't necessary, and the $1 / 16$-inch stock will he adequate. The panel is held t.) the chassis by the b.f.o. capacitor, ('8, the line/b.f.o, switch, S_{2}, the dial, and an extra pair of 6-32 screws.

It is worth while to mount the tuning caparit or, (", as arcurately as possible with respect to the National ICN dial. For minimum backlash and maximum strength, C_{7} is momed on a threesideol aluminum housing that is secorely fastened to the chassis on three sides by $3 / 8$-inch lips. A good flexible insulated coupling should be used between dial and capacitor shaft - a Millen : 9006 is shown in the photograph.
The loration of most of the major components can be determined by reference to the photographs. The inductors $L_{1} L_{2}, L_{3}$ and $L_{4} L_{5}$ are sup)ported by suitable tie strips, as are the two $+80-\mu \mu \mathrm{f}$. mical compression trimmers, C_{2} and C_{3}, in the erystal filter cireuit and the pair of $3: 30-\mu \mu$. capacitors in the b.f.o. $L_{1} L_{2}$ should be wired so thit the outside ends go to antemna and grid, and $L_{4} L_{5}$ should be wired with outside ends to phate and grid.

Details of the only unusual construction, the ram-operated switch S_{1}, are shown in Fig. 5-35. Note that the associated .006- and .01- μ. coupling capacitore are mounted above the chassis; at clearance hole with a rubber grommet is provided in the chassis for the common lead back to L_{2} and L_{3}.
Since the rotor of C_{1} must not make contact with the panel, a large clearance hole must be provided for the shaft bushing, and a pair
of extruded fiber washers used to insulate the bushing from the panel. A brass screw or bayonet lug should be set into the chassis at the shield partition between the two stators of C_{1}, and the shield soldered to this chassis comection. The 3 - to $30-\mu \mu \mathrm{f}$. compression trimmer across (ia ran be soldered between rotor and shield partition.

Many of the comections are made- with shielded leads, to minimize hum and chances for feedhack or feedthrough. The shielded leads are indicated in Fig. 5-34. The lead from the antema jack is run in RG-58/U coaxial cable, as is the short lead from C_{8}^{\prime} to a $3330-\mu \mu f$. capacitor. Heater leads to the tubes are made of shielded wire.

Alignment

The aligmment procedure can be simplified if a short-wave receiver or a signal generator can be horrowed. Lacking these, a grid-dip meter can be used to provide a signal source and to cheek the resonances of the tuned circuits. If the $100-\mathrm{ke}$. oveillator can be checked on another reeciver, it can be used to align the receiver. A broadeast receiver will tell if the 100 -ke, oseillator is funetioning - it should be possible to identify sevaral of the oscillator's harmonics at loo-ke. intervals in the irouldast hand, by the reduction in noise at those points.

The audio amplifier of the receiver can be checked by turning on the reociver and listening to the headphones as the audio gain control is advanced. When it is full clockwise a low-pitched hum should be just audible in the headphones. A further check can be made by bringing a finger near the arm of the audio gain control - the hum should increase.

If a means is available for checking the froquency of the b,f.o., it should be turned on at S_{2} and set on or about 1700 kc . he means of the slug in L_{9}. I) o this with (" set at half seale. If a broadcast receiver is the only measuring equipment you have, a 1700-ke. signal can be derived from it by tuning the reeeiver to 12.5 kr ., which puts its oscillator on 1700 kc , if the standard $45.5-\mathrm{ke}$. i.f. is used. A wire from around the receiver to the $2 \mathrm{~N} t+1$ should provide sufficient signal. Feeding a 1700-kr. signal into the detertor by laying the source wire near the grid of the 6BAt (i.f. gain arm at ground). it should be possible to peak $L_{;}$for maximum sigmal and, as the signal frequency is changed slightly, a change in piteh of the whistla should tre heard. With no ineoming signal, a slight rushing noise should be hard in the headphones when the b.f.o. is switched on hy N_{2}. If this rushing noise is just bavely disermible increase the capacitance at C_{9} by adding a few more twists.

If the oscillator V_{13} is operating, a voltmeter commerted arross the 4700 -ohm 1 -watt resistor it its plate lead should show an increase in voltag. when the stator of C_{5} or C_{7} is shorted to ground momentarily with a screwdriver or other conductor. Connect the + lead of the voltmeter to the side of the resistor rumning to +105 and the - connection to the . $001-\mu \mathrm{f}$. side. If the oscillator

2X4+1 Superhet

doesn't work, it may be berause the outside turns of L_{4} and L_{5} are not connected to plate and grid respectively. With the b,f.o. on and C_{1} almost fully meshed, set the tuning capacitor C_{7} at about 90 per cent full capacitance. Run C_{5} to full caparitane and slowly reduce capacitance. At one point vou should hear a loud signal, the serond hamonic of the b.f.o. at 3400 ke . If the b.f.o. is reasonably close to frequmery, turning on the calibration oscillator should give a weaker sigual nearly (on the main tuning dial). Tune ('7 to a higher frequency (less capacitance) and you should hear another weaker signal, the 3ath harmonic of the owillator (3500 ke.). Pak C C_{1} for maximum signal and leave it. liun C'z hack to ahout 90 per cent full capacitance and then sowly reduce caparitance at C_{5} until the 3 ath hamonic of the osillator is again heard. If a 3500-ke. signal is available the adjustment can he made in a more straightforward manner.

Once the oseillator trimmer C_{5} has been set to give the proper tuming range of the oscillator cir(cuit (5.2 to 5.7 Me.), the next problem is that of adjusting the erystal filter cireuit. With a capacitance bridge, or a grid-dip meter and an inductance, are set the two capacitors C_{2} and C_{3} at the same capacitance (near maximum compression)
before soldering them in the receiver. The actuad value of capacitance isn't important. Lacking these instruments, tighten the capacitors to full compression and then loosen their screws by $3 / 4$ turn. Tune in at signal - it can le from the 100-kc. oscillator or any other steady soure and parak L_{6} for maximum response. Tune off the signal until it disappears and set the piteh eontrol, Cs, to a point where the background noise is reasonably high-pitehed. 'This is easy to dotermine berause at the lowest-pitched point there will be an increase in hum; make the lowestpitched point the center of the knob, sale he adjustment of L_{8}, and thon set the piteh control to one end of its range, 'Tune hark to the signal and "rock" the tuning, (' 7 , as you change the adjustment of L_{6}. Look for a condition that gives considerably more response on one sitle of zero beat than on the other. It is a good idea to buy several extra $1700-\mathrm{ke}$. crystals and try them in different combinations, small changes in the setting of C_{2} or (3 will have an offect on the selectivity characteristic, but hear in mind that a change in (ta or ('3 must be compensated for he a readjustment of L_{6}. With a littla patience it should be possible to obtain a marked difference in the output strength on the two sides of zero beat. This will

Fig. 5-36-Top view of the $2 \times 4+1$ receiver. The dual capacitor at the left funes the receiver input; a homemake cam switch on its shaft changes the coupling between the two bands. The main tuning capacitor, rear center, is mounted on a three-sided aluminum bracket for maximum stability. The tube to the left of the bracket is the 6U8-A mixer-oscillator stage, and the 6BA6 i.f. stage is in front of the main tuning capacitor. The remaining tubes in shields are the 6CG7 detector/b.f.o. and the audio 6CG7 (near panel). Metal can plugged in socket above antenna jack houses 100 -ke. calibrating crystal.

5-HIGH-FREQUENCY RECEIVERS

"flip over" to the other side if the pitch control is set at the other end of its range.

The remaining aligument job consists of bringing the input circuits into resonance on both bands. With a signal tuned in at 40 meters, "rock" ('i back and forth to see if there are two (close-together) points where the signal peaks. If there are, adjust the $3-30-\mu \mu$ f. trimmer across L_{2} until only one peak is found. Check on 80 meters in a similar fashion. If for any reason it is found that the two-prak condition can be eliminated on only one hand at a time, it indicates an ahommal amount of antenna reactance, and a compromise adjustment will have to be made.

In operation, the receiver input control, (Y_{1}, should be set for maximum volume on the incoming signal or moise. The i.f. gain should be run at close to maximum on all but the loudest signals, and the audio gain control should be set for comfortable headphone or speaker volume. If an antema changeover relay is used, it may he possible to monitor your own transmitter by detuming the input rircuit to another hand: this ability will depend upon the transmitter power and field in the vicinity of the receiver.

Frequency Standard

No trouble should be encountered with the $100-\mathrm{kc}$. oscillator if care is exereised in handling the transistor. When soldering its leads in place, hold the lead with a pair of pliers; the metal of the pliers will alsortb heat and prevent injury to the transistor.

To tune the receiver to WWV, set C_{7} to mid seale, set S_{3} at the WWV position, peak C_{1} on noise and slowly tune with C_{6}. (nn a busy day a wide varicty of signals will be heard in this region: look for one with steady tone modulation and time tieks. If it can't be found within the range of C_{6}, set C_{7} near one end of its range and try again. An alternate method is to disconnert the antemna, establish the position on the tuning dial ((${ }^{\prime} 7$) of several 100-ke. harmonies, conneret the antenna and investigate each one of these froquencies. Depending upon one's geographical location, there will be times when WWV camot be heard on 5 Me ., so don't be discouraged by failure on the first try. Onee W'WV has been located with good strength, the 50th harmonic of the $100-k e$ erystal can be brought to zero beat with WWV by adjustment of C_{4}.

Fig. 5-37-The input inductors $L_{1} L_{2}$ are supported by o terminal strip on the side of the chassis (upper right), and L_{3} is supported nearby by o terminal strip mounted on the chossis. The coils ore ot right angles to minimize inductive coupling. The oscillator inductors, $L_{4} L_{5}$, are also supported by o terminol strip (top center). A mico compression trimmer to the left of the oscillotor inductors is used to center WWV on the tuning dial; the pair of
compression trimmers below L_{3} are in the crystal filter circuit.

Selective Convertor

A Selective Converter for 80 and 40 Meters

Many inexpensive "commmications" receivers are lacking in selectivity and bandspread. The 80 - and 40 -meter performance of such a receiver can be improved considerably by using ahead of it the converter shown in Figs. $5-38$ and $5-10$. This eonverter is not intended to be used ahead of a broadnast receiver except for phone reception, beraase the b.e. set has no !, f.o, or manual gatin control, and both of these features are neerssary for good c.w. reception. The converter can be built for less than $\$ 20$, and that cost can be eut

Fig. 5-38 - Used ahead of a small receiver that tunes to 1700 kc ., this converter will add tuning eose ond selectivity on the 80- ond 40 -meter bonds. The input copacitor is the duol section unit at the upper left-hond corner. The erystol ond the tuning slug for L_{6} ore neor the center at the foreground edge.
appreciably if the power can be "borroweri" from anot her source.

The converter uses the tuning principle employed in the two-band superheterodynes desoribod cartier in this ehapter. A doubla-tumed input circuit with large eaparitors covers both 80 and 40 meters without switching, and the oseitlator tunes from 5.2 to 5.5 Me. Consequently with an i.f. of 1700 ke. the tuning range of the converter is 3.5 to 4.0 Mc. and 6.9 to 7.4 Mr. Which band is being heard will depend upon the setting of the input circuit tuning (C_{1} in fig. z-3:3). The converter output is amplified in the receiver, which must of course be set to 1700 ke . To add selectivity, a loolke. quatto erystal is used in series with the output commertion. I small power supply is shown with the eonverter, and some expense can be eliminated if 300 volts d.e. at 15 ma . and 6.3 volts ate. at 0.45 : tmpmor is availathe fom an existhar supply.

Construction

The unit is built on a $7 \times 11 \times 2$-inch aluminum chassis. The front panel is made from : ($\times 7$-inch piede of aluminum. The power supply is mounted to the rear of the chassis and the converter components are in the renter and front. The layout shown in the bottom view should be followed, at least for the placement of L_{1}, L_{2}, L_{3} and L_{4}.

The input and oscillator coils are made from a single length of $\mathrm{B} \& \mathrm{~W}$ Miniductor stock, No.

5 -HIGH-FREQUENCY RECEIVERS

3016. Count off 31 turns of the coil stock and bend the 32 nd turn in toward the axis of the coil. Cut the wire at this point and then unwind the 32nd turn from the support bars. Lsing a hacksaw blade, curefully cut the polyst yrene sumport bars and separate the 31-turn eoil from the origimal stock. Next, count off 9 turns from the 31 -turn coil and cut the wire at the ! !th turn. At the cut unwind a hatf turn from earh coil, and also unwind it half turn at the outside ends. This will leave two eoils on the same support bars, with half-turn leads at their ands. One coil has 21 turns and the other has 8 turns. and they are separated by the space of one turn. These coils are L_{4} and L_{i}.

The input coils L_{1} and L_{2} are made up in the same manner. Standard bakedite tie points are used to mount the roils. Two f-torminal tie points are needed for $L_{1} L_{2}$ and $L_{4} L_{5}$, and at oneterminal unit is required for L_{3}. The plate load inductance L_{6} is a $105-200 \mu \mathrm{~h}$. variahle-indurtance roil (North Hills 1201I). The coupling coil L_{7} is t5 turns of No. 32 entem. scramble-wound adjarent to L_{6}. If the constructor should have difficulte in obtaining No, 32 wire any size smatl enough to allow to turns on the eoil form e:m be substituted.

The input caparitor, (" 1 , is a 2 -gang t.r.f. variable, $365 \mu \mu$ f. per section. As both the stators and rotor must be insulated from the chassis, extruded fiber washors shoukd be used with the sorews that hold the mit to the chassis. The panel shaft hole should be made large enough to cleat the rotor shaft.

A Nitional type 0 dial assembly is used to tune C3. One word of adviee when drilling the holes for the dial assembly: the template furnished with the unit is in error on the 2 -inch dimension (it is slightly short) so use a ruler to measure the hole spacing.

In wiring the unit, it is importime that the output lead from the erystal socket be run in shiclded wire. A phono jack is mounted on the butk of the chassis, and a piece of shiolded lead ronnects from the jatek to the erestab socket terminal. The leads from the stators of C_{1} and ('3 tre insulated from the chassis by means of rubler grommets.

Testing and Adjustment

A length of shielded wire is used to connect the converter to the receiver: the imner conductor of the wire is connected to one antema terminal: the shield is comected to the other terminal and grounded to the receiver chassis. The use of shielded wire helps to prevent pickup of unwanted $1700-\mathrm{ke}$. signals, Turn on the converter and receiver and allow them to warm up. Tune the receiver to the $5.2-$ Me. region and listen for the oscillator of the converter. The b.f.o. in the receiver should be turned on. Tune around until the oscillator is heard. Once you spot it. tune C ${ }_{3}$ to maximum capacitance and the receiver to as close to 5.2 Me. as you cim. Adjust the oscillator trimmer catpucitor, C_{2}, until you hear the oscillattor signal. P'ut your receiving antenna on the converter, set the receiver to 1700 ke , and tune the input caparitor, (' ${ }^{\prime}$, to near maximum capacitance. At one point you'll hear the batekground noise come up. This is the 80 -meter tuning. The point near minimum capacitance - where the noise is loudest - is the 40 -meter tuning.

With the input tuning set to 80 meters. turn on your transmitter and tune in the signal. By spotting your erystal-controbled fregueney you'ld hate one sure calibration point for the dial. by listening in the evening when the band is crowded you should be able to find the band edges.
lou'll find be experimenting that there is one point at or near 1700 ke . on your reeeiver where the background noise is the loudest. Set the receiver to this point and adjust the slug on L_{6} for maximum noise or signal. When you have the receiver tumed exactly to the frequener of the crystal in the converter, you'll find that you have quite a bit of selectivity. Tune in a c.w. signal and tune slowly through zero beit. You should notice that on one side of zaro beat the signal is strong, and on the other side you won't hear the signal or it will be very weak (if it isn't, off-set the b.f.o. a bit). This is single-signal ew. reception.

When listening to phone signals, it may be found that the use of the quartz erystal destroys some of the naturalness of the voiec signal. If this is the case, the crystal should be unphuged and repuaced by a 10 - or $20-\mu \mu$ f. capabitor.

Fig. 5-40-Bottom view of the converter showing placement of parts. The coil at the lower left is L_{3}, and the input coil, $L_{1} L_{2}$, is just to the right of L_{3}. The oscillator ccil $L_{4} L_{5}$, is at the left near the center. The output coil, L_{B}, is near the top center.

Fig. 5-41 - This view of the "bonus" converter shows all of the components projecting above the chassis. At the left on the front is the r.f. control and next to it is the mixer tuning. At the far right is the a,c. switch. The tube at the left is the r.f. amplifier, and the crystal is between the transformer and the mixer tube. Screw adjustment to the right of the mixer tube sets the slug of L_{5}.

The "Bonus" 21-Mc. Converter

The eure for most of the high-frequency ills of many recespers is the instaliation of a good cres-tal-rontrolled converter between the anterna and the receiver. The converter shown in Figs, $\mathbf{5}-11$ and 5-12, while intended primarily for 21-Mc. operation, gives a bonus of 28 - Me. recoption without any additional parts or switehing. This is acomplished by using signal cireuits that tune more than the 21- to 30-Mc. range and using a rrystal-controlled oscillator at 25 Mr. ['sing the converter ahoud of a redeiver, the 15 -meter hand, 21.0 to 21.45 Me ., will be found from 4.0 to 3,55 on the reeceiver. The receeiver thenes "backwards." The 10 -mater band tunes 3.0 to 4.7 Mc . on the recoiver.

Reforring to $\mathrm{Fig}, 5-\mathrm{F}: 3$, the converter consists of three stages, but it uses only two tubes. An r.f. stage amplifies the ineoming signals, and an oseillator provides a stomaty signal that, in a mixer stage, heterodyues the ineoming signal to the difference froquency mentioned above. If the input and output circuits of the r.f. stage aren't tuned to 21 Me. the 21-Me, signals can't be amplified to the full capability of the stage. However, the el-Ne, tunced circuits aron't too sharp, so a single-setting will usually suffice for most of the $21-$ Mc. band, and all of the tuning will normally be done at the receiver alone. The 47 OOO-ohm resistor across ('2 was used to make the atsonciated eircuit a bit broader.

The selenium-rectifier powor supply is quite adequate for the jols and makes the converter a self-sufficient unit, although the power may be "borrowed" from the receiver if it is lolt that the selenimm supply is an unnecessary exprose.

In the erystal-controlled oscillator portion, a caparitive divider (\boldsymbol{C}_{3} and (${ }^{\circ}$) provides a tap on the tank eirenit so that the oseillator is loaded very lightly. If you dien't tap down on the thaned cirenit the overtone ersstal, l_{1}, might show lower-frequency chergy as well, or it might not ostillate at all.

The size of the chassis shown in Figs, $5-41$ and $5-12$ is $2 \times 5 \times 7$ inches. However, ally chassis large enough to accommodate the parts ran be used. Most of the construction is simple but there are a fow places where certain prectations should be taken, and these will be treated in detail.

Study the photographs, partieularly the bottom view, to ser how the coils and tube sorket are monnted. Notiee the shield that euts amoss the 6.3 Kis socket. The purpose of the shichl is to minimize the coupling between the grid and plate circuits of the r.f. stage, to avoid oseillation. A serap of roofing copper was cut to $31 / 2$ be 2 inches for the shield. Brass, or any other metal that can be soldered, could be substituted. The shield and sorket should be mounted so that the shield bisects the soeket between Pins 4 and 5 . There is a $1 / 4$-inch lip on the shield which is used to mount it to the chassis top. The to the chassis top. The
metal tulue in the conter of the tube socket shonht be soldered to the shield; the shied lis held to the chassis by two (i-3? screws. Soldering lugs should be mounted under

Fig. 5.42-All of the components of the power supply are grouped at the right. The tubular capacitor, C_{5}, mounts against the chassis wall. At the opposite side of the chassis, the metal strip shields the input circuit of the r.f. stage. The coils to the right of the shield are L_{3}, and L_{1}.

5－HIGH－FREQUENCY RECEIVERS

the muts that hold the（6．1ぶ5 socket，and all the chassis ground comections of the 6AK゙5 grid and plate circuit should be made to these lugs．

The coils are made from 13 \＆W 3007 Mini－ ductor stock．To make the coils，first cut off a coil of 21 turns from the stock．Next，unwind one turn from each end of the 21 －turn coil．Now count off $51 / 2$ turns from one end and cut the wire at this point．If you bernd the thand bith turns in to－ ward the center of the coil you should be able to reach the 5th turn with your wire cutters．Un－ wind the half turn from cach side leaving two coils on the same support bars，one 5 turns and the other 1：3 turns．Two of these dual coils are needed，one for the r．f．stage and the other for the miver．They ean be monnted on a standard ter－ minal tie point or supported by their own leads． Tie points provide a more rigid support．

The power supply is a simple half－wave recti－ fier，using a transformer，selonium rectifier，and an $R r^{\prime}$ filter circnit．Ineidentally，when comert－ ing the rectifier，the + side is comnected to the oulput side of the supply．Again，a standard ter－ minal tie point is used for most of the comnections of the supply．

The preliminary checks are simple and should present no problems to the builder．First，turn on S_{1} and see if the tubes light up．If they don＇t， turn off the switch and carefully cherk the wiring． Once the tubes light，allow a minute or two for the unit to warm up．The first thing to check is the erystal－controlled oscillator．If your receiver tunes to $25 \times 2 \cdot$ ．listen in that region for the oscil－ lator signal，which should come in loud and clear．

MIXER REC．

Fig．5－43－Circuit diagram of the two－band crystal－controlled converter． Unless indicated otherwise，all capacitances are in $\mu \mu \mathrm{f}$ ．，all resistors are $1 / 2$ watt，all resistances are in ohms．
t．p．i．stock．See text．（B \＆W Miniductor No．3007）． Ls－2－to $3-\mu \mathrm{h}$ ．slug－tuned inductor（North Hills 120－A）． $\mathrm{RFC}_{1}-50-\mu$ h．r．f．choke（National R－33，Millen 34300－50）． $S_{1}-$ S．p．s．t．toggle．
$\mathrm{T}_{1}-125$ volts at 50 ma．， 6.3 volts at 2 amperes（Stancor PA8422）or 135 volts at 50 ma．， 6.3 volts at 1.5 amperes（Triad R－30－X）．
Y_{1}－25．0－Mc．crystal（International Crystal Co．，type FA－9）．

If it doesn＇t．adjust the slug of L_{5} until the oseil－ lator starts．Should you find that it dorsn＇t oseil－ late you＇ll need to make some voltage checks to make sure there is plate voltage on the oscillator． The voltage should be approximately 110 ，give or take 10 volts．If no voltage is indirated，check the wiring for errors．

Commert the converter to your receiver，using a pieco of coas as the comnerting line．Coax is used for the lead between the two units to mini－ mize any pickup of unwanted signals near or in the 80 －meter band．Set your receiver to tune the right range， 4000 to 3550 kc ．，and turn both units on．

Adjust r_{1} and（ ${ }_{2}$ for maximum background noise，You＇ll find two values of caparitance（four points）on（ach caparitor that will give an in－ rrease in noise，one nowr minimum caparitance （plates unmeshed）and the other with more ca－ pacitance．The setting at the greater capacitance point is 21 Me ，while the lesser is 28 Me ．Adjust the converter for maximum noise at 21 Mc ．and tune your receiver across the band．If the band is open－and don＇t forget that sometimes it＇s as dead as the famous doornail－you shoud hear signals．Tune in one and peak it up by toning（＇1 and（＇2 of the converter．baeh control should give a definite poak．Pretty nice to know that your reweiving front end is lined up．isn＇t it？And it is， you know；you align it when yon peak the two rontrols．Your receiver is now working as a tuma－ ble i．f．and the only adjustment required is to prak the antema trimmer（if you have one）for maximum signal．

Selectojet

The "Selectoject"

The Selectoject is a recciver adjunct that can be used as a sharp amplifier or as a single-frequency rejection filter. The frepuency of operation may be set to any point in the audio range by turning a single knol. The degree of selectivity (or depth of the null) is continuously adjustable and is independent of tuning. In phone work, the rejection notch can be used to reduce or eliminate a heterodyne. In c.w. reception, interfering signals may be rojected or, alternatively, the desired signal may be picked out and amplified. The Selectoject may also be operated as a low-distortion variable-frequency audio oscillator suitable for amplifier frequency-response measurements, modulation tests, and the like, by ardvaneing the "selectivity" control far enough in the selectiveamplifier condition. The Selectoject is connected in a receiver botween the detector and the first audio stage. Its power requirements are 4 ma . at 150 volts and 6.3 volts at 0.6 ampere. For proper operation, the 150 volts should be obtained from across a VIR-150 or from a supply with an output capacity of at least $20 \mu \mathrm{f}$.
The wiring diagram of the Selectoject is shown in Fig. i)-4t. lResistors R_{2} and R_{3}, and R_{4} and R_{5}, can be within 10 per cent of the nominal value but
they should be as close to each other as possible. An ohmmeter is quite satisfactory for doing the matching. Our-watt resistors are used because the larger ratings are usually more stable over a long period of time.

If the station receiver has an "accessory socket" on it, the cable of the Seleetoject can be made up to match the connections to the socket, and the numbers will not necessarily match those shown in lig. 5 -14. The la between the second detector and the receiver gain control should be broken and run in shielded leads to the two pins of the socket corresponding to those on the plug marked "A.F', lnput" and "A.F. Output." If the receiver has a VR-150 included in it for voltage stabilization there will be no problem in getting the plate voltage - otherwise a suitable voltage divider should be incorporated in the receiver, with a $20-$ to $40-\mu$ f. electrolytic capacitor connected from the +150 -volt tap to ground.

In operation, overload of the receiver or the Selectojert should be avoided, or all of the possible selectivity may not be realized.

The selectoject is useful as a means for obtaining much of the performance of a "Q Multiplier" from a recriver lacking one.

Fig. 5-44-Complete schematic of Selectoject using 12AX7 tubes.
$\mathrm{C}_{1}-0.01-\mu \mathrm{f}$. mica, 400 volts.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.1-\mu \mathrm{f}$. paper, 200 volts.
$\mathrm{C}_{4}, \mathrm{C}_{8}-0.002-\mu \mathrm{f}$. paper, 400 volts.
$\mathrm{C}_{5}-0.05-\mu$ f. paper, 400 volts.
$\mathrm{C}_{6}-16-\mu \mathrm{f}$. 150 -volt electrolytic.
$C_{7}-0.0002-\mu \mathrm{f}$. mica.
$R_{1}-1$ megohm, $1 / 2$ watt.
$R_{2}, R_{3}-1000$ ohms, 1 watt, matched as closely as possible (see text).
$R_{s}, R_{j}-2000$ ohms, 1 watt, matched as closely as possible (see text).
$R_{6}-20,000$ ohms, $1 / 2$ watt.
$R_{7}-2000$ ohms, $1 / 2$ watt.
Rs $-10,000$ ohms, 1 watt.
$\mathrm{R}_{9}-6000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{10}-20,000$ ohms, $1 / 2$ watt.
$R_{11}-0.5$-megohm $1 / 2$-watt potentiometer (sele ctivity).
R_{12}-Ganged 5 -megohm potentiometers (tuning control)
(IRC PQ11-141 with IRC M11-141.)
$R_{13}-0.12$ megohm, $1 / 2$ watt.
S_{1}, S_{2}-D.p.d.t. toggle (can be ganged).

Antenna Coupler for Receiving

In many instances reception can be improved by the addition of an antenna coupler between the antoma fredline and the receiver, and in all cases the r.f. image rejection will be increased. The unit shown on this page consists of one series-tumed cirenit and one parallel-tuned circuit; usually its best performance is ohtained with the parallel-tuned circuit connected to the receiver input, as indicated in Fig. 5-45. However, the coupler should also be tried with the connections reversed, to see which gives the better results. The desired commection is the one that gives the sharper peak or louder signals when the circuits are resonated.

The coupler is built on one section of a $5 \times$ 4×3-inch Minibox (Bud CU-2105A). Tuning capacitors C_{1} and C_{2} are mounted directly on the Minibox face, since there is no need to insulate the rotors. The arrangement of the components can be seen in Fig. 5-46.
The coils L_{1} and L_{2} are made from a single length of B\& W 3011 Miniductor. The wire is snipped at the center of the coil and unwound in both directions until there are three empty spaces on three support bars and two empty spaces on the bar from which the suipped ends project. These inner ends run to the connectors J_{1} and J_{2}. (Fig. $5-45$). Unwind turns at the ends of the coils until each coil has a total of 22 turns. When soldering the leads to the $3 \mathrm{rd}, 6$ th, 8 th and 12th turns from the inside ends of the coils, protect the adjacent turns from solder and flux by plaring strips of aluminum cooking foil between the turns. An iron with a sharp point will be required for the soldering.

The "pand" side of the box can be finished off with decals indicating the knob functions and switch positions.

The antenna coupler should be mounted within a few feet of the receiver, to minimize the length of $12 G-59 / \mathrm{U}$ between coupler and receiver. In crowded quarters, the use of $\mathrm{M}-359 \mathrm{~A}$ right-angle

Fig. 5-46-Receiver antenna coupler, with cover removed from case. Unit tunes 6 to 30 Mc . The coil is supported by the leads to the capacitors and switches.
adapters (Amphenol 8:3-58) and J_{1} and J_{2} will make it possible to lring out the cables in better lines.

Normally the coupler will be adjusted for optimum coupling or maximum image rejection, but by detuning the coupler it can be used as an auxiliary gain control to reduce the overloading effects of strong loeal signals. The coupler circuits do not resonate below 6 Mc ., but a coupher of this type is seldom if ever used in the 80-meter band; its major usefulness will be found at the higher fregumeies.

Fig. 5-45-Circuit diagram of the receiver antenna coupler.
$\mathrm{C}_{1}, \mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. midget variable (Hammorlund MF-100). $\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial cable connector, SO-239.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-22$ turns No. 20, $3 / 4$-inch diameter, 16 t.p.i. Tapped
3, 6, 8 and 12 turns from inside end. See text
on spacing and tapping.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$-Single-pole 11 -position switch (5 used) rotary switch (Centrolab PA-1000).
,

A Regenerative Preselector for 7 to $\mathbf{3 0} \mathbf{M c}$.

The proformance of many receivers begins to drop off at It Me, and higher. The signal-tonoise ratio is reduced, and unless double conversion is umed in the receiver there is likely to be increased trouble with r.f. images at the higher frequencies. Tha presedertor shown in Figes. 5 - -7 and 5-18 can be added ahead of any reeciver without making any chathes within the receiver, and a selferontained power supply eliminates the prohbom of furnishing hester and plate power. The pooter the reseiver is at the higher freguencides, the more it will hernefit by the addition of the preselector.

A truly wood receiver at 28 Mr. will show little or $n 0$ imprevemont when the preselector is added, but a mediorere recerver or one withont an r.f. stage will be improved groatly through the use of the preselector.

A 60 Cio dual triode is used in the preselector, one triode as : hamdewitehed regenerative r.f. stuge and the other as a cathode follower. A conventional montatizing circuit is used in the amplifier: ly upetting this citrout amough the stago rall le made to owillate. Smooth control of regrencration up to this print is ohtamed hy varying one of the capacitanes in the nemtalizing eireuit.

If and when it heromes meerssary to reduen gain (10 avoid owerlowding the recciver), the regeneration control ran beratarded. Gne position of the lanulswitch permits straight-through opration, so the preselector unit can be left conneeded to the rempior even during low-frequener. reception.

The preselector is built on : $5 \times 10 \times 3$-inch
 panel is held to the chassis be the extension-shaft bashing for the regenerationerontrol eapacitor, (3 B. and the hushing for the rotary switch. The coils, L_{1} and $L_{\text {an }}$ are supported on a smath staging

Fig. 5-47 - The regenerative preselector covers the range 7 to $30 \mathrm{Mc}$. ; it can be used ahead of any receiver to improve gain, image rejection and, in many cases, sensitivity. A dual triode 6CG7 is used as r.f. amplifier and cathode follower.
of $11 / 4 \times 3$-inch remar plastie. (It ran lo made from the lid of the box that the spragur oti.|-s. . $01-\mu$ f. disk ceramir capacitors conte in.) All coils
 Miniductor. There are ermented to the pastire staging with Dueo erment.

The rotor of r_{1} can le instatater from the chassis by monnting the raparitor bracket on insulating hushings (National Xsed or Millon 3-201); its shaft is extembed through the use of an insulated extender shatit (Allien Radio No. (6) If :305). The haudewiteh s_{1} is madre from the sperified actions (ane Fig. i-1!)

The first sertion is spared $3 / \frac{1}{4}$ inch from the indexing head, there is l-inch saparation lee-

Fig. 5-48-The r.f. components are bunched around the 9 -pin miniature fube socket. Power supply components are supported by screws and tie points.

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-49-Circuit diagram of the regenerative preselector. Unless otherwise specified, resistors are $1 / 2 \mathrm{watl}$, capacitors are in $\mu \mu \mathrm{f}$., capacitors marked in polarity are electrolytic.
$\mathrm{C}_{1}-140-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF -140).
$\mathrm{C}_{2}-3$ - to $30-\mu \mu \mathrm{f}$. mica compression trimmer.
$\mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. midget variable (Hammarlund MAPC-100. B).
$C R_{1}$ - 50 -ma. selenium rectifier (International Rectifier RSO 50).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ —Phono jack.
$\mathrm{L}_{1}-19$ turns, 7 -turn primary.
$L_{2}-5$ turns, 2 -turn primary. Coils are $3 / 4$-inch diameter, 16 t.p.i., No. 20 wire (B \& W 3011 Miniductor).

One-turn spacing between coils and primaries.
S_{1}-Three-wafer switch. $S_{1 A}$ and S_{13} are 1-pole 12-position (4 used) miniature ceramic switch sections (Centralab PA-1); $S_{1}\left({ }^{(}\right.$and S_{11}) are 2 -pole 6 position (4 used) miniature switch (Centralab PA-3). Sections mounted on Centralab PA-301 index assembly.
$\mathrm{T}_{1}-125 \mathrm{v}$. at $15 \mathrm{ma} ., 6.3 \mathrm{v}$. at 0.6 amp . (Stancor PS. 8415).

RFC $_{t}-100-\mu$ h. r.f. choke (National R-33).
tween this and the next section (S_{18}), and the next section ($S_{1 C}, S_{1 D}$) is spaced 2 ! 2 inches from $S_{\text {lb }}$.

The regeneration control, C_{3}, is mounted on a small aluminum bracket. Its shaft does not have to be insulated from the chassis. so either an insulated or a solid shaft conmertor can be used. The small neutralizing capacitor, ('2, is supported by soldering one lead of it to a stator bar of C_{3} and running a wire from the other lead to pin (i) of the tube socket. The rotor and stator connections from ('i are brought through the chassis deck through small rubber grommets.

Power supply components, resistors and catpacitors are supported by suitable lugs and tie points. Phono jacks are used for the input and output eonnectors.

Adjustment

Assuming that the wiring is correct and that the coils have been constructed properly and cover the required ranges, the only preliminary adjustment is the proper setting of C_{2}. Connect an antenna to the input jack and connect the receiver to the output jack through a suitable length of $\mathrm{RG}-58 / \mathrm{U}$. Turn on the receiver b.f.o. and tune to 28 Mc . with S_{1} in the ox position. Now turn S_{1} to the 21 - to $30-\mathrm{Mc}$. range. Swing
the runing capacitor, ('1, and listen for a loud rough signal which indicates that the preselector is oscillating. If nothing is heard. advanee the regeneration control toward the minimum caparitance end and repeat. If no oscillation is heard, it may be necossary to change the setting of C_{2}. Onee the oscillating condition has been found, set the regeneration control at minimum rapacitance and slowly adjust ('2 motil the preselector oscillates only when the regeneration control is set at minimum caparitance. Vou can now swing the receiver to 21 Ne. and peak the preselector tuming caparitor. It will be found that the regeneration capacitaner will have to be inereased to avoid ossillation.

Check the performance on the lower range by tuning in signals at 1.4 and 7 Mc. and peaking the preselector. It should be possible to set the regeneration control in these two ranges to give both an oscillating and a non-oscillating condition of the preselector.

A little experience will berequired before you can get the best performance out of the preselector. Learn to set the regeneration control so that the preselector is selective, but not so selective that it must be retuned every 10 kc . or so. Changing antenna loads will modify the correct regeneration control setting.

A Clipper/Filter

A Clipper/Filter for C.W. or Phone

The clipper/filter shown in Fig. $5-50$ is plugged into the receiver headphone jack and the headphones are plugged into the limiter, with no work required on the receiver. The liniter will eut down serious noise on phone or c.w. signals and it will keep the strength of e.w. signals at a constant level, and while the filter will add selectivity to your receiver for c.w. rereption, the unit will do mueh to relieve the operating fatigue caused ly long hours of listening to static crashes, key clicks encountered on the air and with break-in operation, and the like.
There are times when ouly the selective audio circuits will be wanted, while on other oecasions only clipping will be needed. Since it is a simple matter to provide a switching arrangement so that either function, or both, can be used at will, this has been done in the unit deseribed here.
The frequency response of the selective cirenits reaches a peak at about 700 cyeles and has a null at about 2000 eyrles. The peak frequenery is dotermined b_{5} the combined values of L_{1}, C_{1}, and $!_{2}$ (or $L_{3,}, \dot{C}_{3}$ and ('4), while the noteh frequeney is that of the parallel-resonant circuit $L_{1} C_{1}$ (or Los (3). If different paak and null frequencies are desirced the values of $C^{\prime} 1$ and C_{2} (and C_{3} and ('4) can be changed: for raising the notech frequency the capacitance of ('1 and C'3 should be made
smaller; to raise the peak frequency reduce the capacitance at C $_{2}$ and C $_{4}$.
The rotary switch S_{0} (Fig. 5-50) is used to provide different combinations of the clipper and filter. To simplify the wiring diagram the switehing circuit is shown separately in the diagram.
The filter-clipper can be built on an aluminum chassis. but a steel cabinet should be used to house the mit. Steel is preferable to aluminum because L_{1} and L_{2} are sensitive to stray magnetie fields (which would show up as hum at the output) and the steel cabinet aids in shielding. (ne layout precaution should be observed: Place the filter inductors L_{1} and L_{2} as far as possible from the power transformer, and mount them with their cores at right aughes to the core of the transformer. This will minimize hum piekup by the inductors.

Before mounting L_{1} and $L_{\text {a }}$, it will be necessary to remove the mounting frames and insulate the "I" laminations, as shown in Fig. 5-51. The frame is removed casily by prying out its two legs and then lifting it from the core. The "I" laminations are in the form of a bar lying across the top of the " E " core.
By mounting the chokes with nommetallie straps the (Q will remain high. If aluminum or other nonmagnetic materials are used the Q will

Fig. 5-50-Circuit of the two-stage clipper-filter. All capacitances are in $\mu \mathrm{f}$. All $0.01 \mu \mathrm{f}$. capacitors may be ceramic; capacitors marked wilh polarity are electrolytic. Others should be tubular plastic or mica. Resistors are $1 / 2$ watt unless otherwise specified. Switch functions are as follows: Position 1, dual filter alone; Position 2, clipper and dual filter; Position 3, clipper alone; Position 4, straight through with cathode-follower output.
$C R_{1}-50$-ma. selenium rectifier.
$\mathrm{I}_{1}-6.3$-volt pilot lamp.
J_{1}-Open-circuit phone jack.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-5-\mathrm{h} .65$-ma. filter choke; frame removed and choke remounted as described in the text.
\mathbf{S}_{1}-S.p.s.t. loggle switch
$\mathrm{S}_{2}-3$-section 6 -pole 4 -position rotary switch, shorting type preferable. (Centralab PA-1020).
$\mathrm{T}_{1}, \mathrm{~T}_{\mathbf{2}}$-Output transformer: 7000-10,000-ohm primary to 3.2-ohm voice coil (Thordarson24S52).
T_{3}-Power transformer: 125 volts. 50 ma ; 6.3 volts, 2 amps. (Stancor PA-8421).

5-HIGH-FREQUENCY RECEIVERS

Fig. 5.51-Sketch showing the method of clamping and tuning the filter inductors. Clamping strips must be of bakelite, phenal, plastic or other suitable insulating material. Metal should not be used.

be adversely affected and the seleetivity of the filter will suffer.

The switch wiring sbown at the bottom of the sehematic diagram can be done before mounting Sy in plate. After the switeh is mounted the wiring between it and the other components can be completed.

Apply power by closing S_{1}, insert the plug in the receiver phone jack and turn switch S_{2} to the "out" or straight-through position. Tume the receiver until a c.w, signal is found and adjust the receiver controls for comfortable copying.

Now turn S_{2} to the "clipper" position. In order to become familiar with the action of the clipper these steps should be followed: Adjust the "clip)ping" control so no clipping orcurs (maximum positive bias on the diode plates). Set the "clip level" control on the unit so that there will be no apparent change in the strength of the c.w. signal when switching from "elipper" to "out" and back to "elipper." Then turn the "clipping" control until the positive bias is low enough to cause limiting to start; the point at which limiting begins can be recognized by the fact that the signal strength begins to decrease. Back off slightly with the "clipping" control so that the signal streugth in the phon's is just at the original level.
Tuning the receiver without the use of the limiter shows signals of all strengths, some so loud
as to be ear-breaking; but switching to "clipper" will make these big ones drop down to the "comfortable" preset level.

The filter can be aligned with the help of an audio signal generator and a scope. The procedure is to set the two tumed circuits individually to within 10 to 15 cycles of the chosen peak frequeney, but on opposite sides of that frequency. This adjustment can be made by tightening or loosening the clamping serews on carch choke until each circuit is tumed to the desired frequency: Altering the number of lavers of paper placed between the "I" and "LD" laminations of either or both chokes will allow any two similur chokes which, due to manufacturing tolerances, may be of slightly different inductanees, to be tuned to the same frequency. The filter is then ready to go. If the response is too sharp, slighty greater separation of the two frequencies can be achieved by readjusting the champ on one of the chokes.

In order to peak a desired signal the receiver b.f.o. or tuning control should be adjusted so the pitch of the signal is 700 cycles. Since the seleetivity curve is rather sharp, any adjacent undesired signals will fall short of the peak and be attenuated. If the receiver b,fo. has sufficient range to tune 700 cycles or more on both sides of zero beat, the undesired signal can atways be placed on the noteh side of the peak.

A Simple Audio Limiter

Fig. 5.52-Circuit diagram of a simple audio limiter. $C R_{1}, C R_{2}$ - $1 N 34 A$ or similar germanium diode.
J_{1}-Open-circuit headphone jack.
P_{1}-Headphone plug.
S_{1}-D.p.s.t. toggle or rotary switch.
A Keystone battery holder No. 155 (Allied Radio) will hold two Burgess N, Eveready W468 or Ray-0-Vac 716 flashlight cells.

A simple audio limiter to hold down static crashes and key clicks can be male from two Hashlight cells, two germanium diodes and a few other parts. Its use requires no alteration of the receiver, since it is plugged in at the output jack of the receiver and the heaphones are plugged into the limiter. A suitable circuit is shown in Fig. $\overline{5}-52$. No constructional details are given because there is nothing critical. If desired, the parts can the housed in a small utility cabinet or "Minibox." leads can be soldered directly to the flashlight cells or, if desired, a suitable battery holder can be ohtained from a radio or model airplane store. Hold the germanium diode leads with pliers when soldering, to prevent heat from reaching and injuring the crystals.

DCS-500

DCS-500 Double-Conversion Superheterodyne

The recoiver shown in Fig. 5-5.3 was designed to mert a need for a better-than-average ham receiver requiring a minimum of mechanieal work and using standard and casily obtainable parts. It incorporates surh leatures as a 100-ke. calibrator, provision for reception on all ham hands from 80 through 10 meters, adequate selectivity for today's crowded bands, and stability high enough for copying s.s.b. sigmals, I lubbed the D('S-500 because of its 500 -rerle selectivity in the sharpest i.f. position, it is a double-conversion superheterodyne receivar capable of giving good results on either a.m., c.w. or s.s.b.

The Circuit

IReforring to the cirenit diagram. Figs. B-jot
 6L8A mixer-oscillator. The 4.5-Me. mixer output is amplified hes a bBA6 and filtered bey two-
 mixer-osillator, erystal-ontrolled, heterodynes the signal to 50 ke .

The combination of i.f. amplifiers may appear rather unusual at first glance, *uce one might expect that a caseade crestal filter in the highfreguency i.f. would make further selectivity unnecessary: This would be true with highly developed filters, but two filters are needed if the best possible job is to be done on both phone and e.w., and such filters are expensive. With inexpensive sumplus crystals sueh as are used in this receiver it would be difficult, if not impossible, to match the performance of the high-class filters; in addition, sperial test equipment and extreme care in adjustment would be necessary. The approach used here is to use the surplus erystals without such special adjustment, thereby achieving a grood, if not quite optimum, degree of selectivity against strong signals near the desired one, and then to back up the filter by a low-frequener i.f. amplifier that will give the "elose-in" straightsided solectivity nerded in present-day operation. The overall result is a high order of protection against strong interforing signals at considerably less cost, for the entire double-i.f. system, than that of ewo hyln-performance filters alone. The choice of 4.5 Me., approximately; for the first i.f. was based on the availability of surplus reystals around this frequency, with due consideration for minimizing spurious responses. A second i.f. of 50 kc . was chosen because it lent itself nicely to the utilization of Iow-cost TV horizontal-oseillator coils as i.f. transformers.

Fig. 5-53-The DCS-500 double-conversion superheterodyne. Left bottom, antenna trimmer, 100 -kc. calibrator switch; center, left, top to bottom, noise-limiter switch, volume control, sensitivity control, center, right, b.f.o, switch, a.g.c. speed, selectivity; right, headphone jack, b.f.o. pitch control. The dial is a National ICN. Front panel is $83 / 4$ inches high; the receiver is mounted in a Bud CR-1741 rack cabinet.

The two i.f. amplifiers at 50 kc . contribute the necessary adjarent-channel selectivity. Three degrees of selectivity are available, depending on the degree of eapacitive coupling between the two windings of each i.f. transformer. The greater the number of capaciors switched in parallelthat is, the larger the coupling capacitanee - the lower the ronpling between the windings and thus the greater the seloetivity.

A standard diode detector develops the audio output for all reception modes. The output of the detector is simultancously applied to both the first audio amplifier and the audio a.g.e. circuit. A series-type noise limiter can be used on a.m. to reduce inupulse-noise interference, but this type is inceffertive on e.w. or s.s.b. Weranse of the large amplitude of the b, f.o. injertion voltage.

The b,io., a Hartloy-tupe oscillator, can he tuned from 3 ke , above to 3 kc . below its 50 -ke. center frequence by the thaing rapacitor.

The first audio stage is a normal (lass a voltage amplifier with its output rither coupled to the grid cirenit of the audio output tube or to a phone jack. High-impodance heal-phones (20,000 ohms a.c. impedane or higher) are required. lougging in the phones atumatioally diseonnects the sueaker. If low-impedance luadphones are used, they can be commerted to the speaker terminals. Cipacitances shonting the grid resistors restriet the audio response to an upper limit of about 4000 cyeles.

The audio output transformer couples to a lowimpedance (3,2 -ohm) speaker. The 47 -ohm resistor across the sceondary protects the transformer in the absence of a spocaker load.

The audio output of the detector is ako amphified separately in the audio a.g.e. circuit and then rectified to develop a negative voltage that cam le thed for a.g.e. on e.w. and s.s.b. Two different time constants are used in the rectifier filter eircuit, for cither fast- or slow-decay a.g.e.

The 100 -ke. calibator emploges two 2 N 107 p-n-p transistors, one as the oscillator and the serond as a lot-ke. amplifier. Its transistors ohfain the neressary operating potential from the
 from the 100-kc. unit is capacity-voupled to the antenma winding of the r.f. coil. Calibrating sigmals at 100 -ke. intervals are available on all frequencies sovered by the receiver.

The calibrator unit is constructed in a acparate

5-HIGH-FREQUENCY RECEIVERS

Fig. 5-54-Frant-end circuit of the receiver. Unless atherwise specified, resistars are $1 / 2$ watt; 0.01 and $0.02-\mu \mathrm{f}$. capacitars are disk ceramic, 600 valts; 0.5 capacitars are tubular paper ar Mylar; capacitars belaw $0.01 \mu \mathrm{f}$. are mica; capacitars marked with palarities are electralytic.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. variable (Hammarlund HF-50).
$\mathrm{C}_{2}, \mathrm{C}_{1}$-See cail table.
$\mathrm{C}_{3}-2$-sectian variable, $5-28.5 \mu \mu \mathrm{f}$. per sectian, dauble spaced (Hammarlund HFD-30-X),
$\mathrm{C}_{5,-3-30-\mu \mu \mathrm{f} \text {. ceramic trimmer. }}$
J_{1}-Caaxial receptacle, chassis maunting (SO-239).
L_{1}, L_{2}, L_{3}-See cail table.
$L_{i}, L_{j}-18-36-\mu h$. slug-tuned (Narth Hills 120E coil maunted in Narth Hills $\mathrm{S}-120$ shield can).

Minibox so that it can be plugged into the accossory socket of the receiver or used as an individual mit powered by penlite cells.

The power supply, Fig. 5-56, is a full-wave rectifior with a choke-input filter. It provides approximately 250 volts d.c. under load. A $0.25-\mu \mathrm{f}$. capacitor is shunted across the 10 -hemry filter choke to form a parallel-resonant circuit at $1: 20$ cyeles; this provides an increased impedance to the ripple component and thus reduces hum in the output of the supply.

The power-supply requirements are 250 volts at 110 milliamperes, and 6.3 volts at approximately 5 amperes. Any transformer-choke combination fulfilling the requirements can be used.

Front End

The use of plug-in coils for the front end climinated the mechanical problems of a band-
$\mathrm{L}_{6}-4.7 \mathrm{mh}$. (Waters C1061).
$\mathrm{L}_{7}-1-2-\mathrm{mh}$. slug-tuned (Narth Hills 120K).
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-100-\mu$ h. r.f. chake resanant near 4.7 Mc .
(Waters C 1108 ar Miller 70F104A1).
S_{1}-Single-pale ratary.
$\mathrm{Y}_{1}-100 \mathrm{kc}$. (James Knights H-93).
$\mathrm{Y}_{2}, \mathrm{Y}_{4}-4495 \mathrm{kc}$. (surplus).
$Y_{3}, Y_{5}-4490 \mathrm{kc}$. (surplus).
switching tuner, and also offered the possibility of realizing higher-() timed circuits. Ginged tuning of the r.f. amplifier along with the h.f. oscillator and mixer circuits was decided against because of the eomplexities it would cause in eoil construction and the problem of keeping three stages tracking with cach other. The r.f. amplifier has to be peaked separately by the antenna trimmer, but separate peaking insures maximum performance at all frequencies.

Construction

The receiver is constructed on a $12 \times 17 \times$ 2 -inch aluminum chassis with an $83 / 4 \times 19$-inch aluminum front panel, which permits it to be installed in a table-type rack eabinet. The general layout of eomponents can be seen in Figs. 5-57 and 5-59. A good procedure to follow when

Fig. 5-55-l.f. amplifier, detector, a.g.c. and audio circuits. Unless otherwise specified, resistors are $1 / 2 \mathrm{watt} ; 0.01$. and $0.02-\mu \mathrm{f}$. capacitors are disk ceramic, 600 volts; $0.5-\mu$. capacitors are tubular paper or Mylar; capacitors below 0.01μ f. are mica; capacitors marked with polarities are electrolytic.
$\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}-0.01$ mica (Aerovox CM -30B-103)
$\mathrm{C}_{12}-9-180-\mu \mu \mathrm{f}$, mica compression trimmer.
$\mathrm{C}_{13}-50-\mu \mu \mathrm{f}$. variable (Hammarlund HF-50).
$\mathrm{C}_{14}-0.1-\mu \mathrm{f}$. paper (Sprague 2TM-P1).
J_{2}-Phono jack.
J_{3}-Closed-circuit phone jack.
$L_{8}-125 \mathrm{mh}$. (Meissner 19-6848).
Le-9-18 $\mu \mathrm{h}$., slug-funed (North Hills 120D).
$\mathrm{MI}_{\mathrm{I}}-0-1$ d.c. milliammeter (Triplett 227-PL).
$\mathrm{R}_{1}-2500$-ohm, 4 -watt control, wire-wound.
$\mathrm{R}_{2}-0.5$-megohm control, audio taper with push-pull type switch ($S_{i j}$) (Mallory No. PP55DT1 683).
$R_{s}-1000 \mathrm{okm}_{3} 1$-watt gontrol, wire-wound.
RFC $_{3}-10 \mathrm{mh}$. (National R-50-1).
$\mathrm{S}_{1}, \mathrm{~S}_{3}$-Rotary, 1 section, 1 pole, 2 position.
starting to wire the receiver is first to complete the power supply and heater wiring, and then start wiring from the antenna toward the speaker. This allows proceeding in a logical order so that the work can loe pieked up readily at any time after an intermission.

The use of good quality ceramic tube and coil sockets, particularly in the front end, is highly recommended. When mounting the sockets orient them so that the leads to the various points in the circuit will be as short as possible.

Millen coil shields (80008) are used around the plug-in coils in the front end-i.e., the r.f., miser and oscillator - and the shield hasos are mounted with the same screws that hold the
S_{2} —Rotary, 2 section, 1 pole per section, progressively shorting. Switch section Centralab PA-12, index Centralab PA-302.
S_{4}-Rotary, 1 section, 5 poles per section (4 poles used), 3 positions used, Centralab PA-2015.
S_{5}-Rotary, 1 section, 2 poles per section, 2 positions used. Centralab PA-2003.
$T_{1}-T_{5}$, inc. -50 -kc. i.f. transformers made from TV components (Miller 6183); see text.
T_{f}-B.f. O . transformer (Miller © 8 83); see text.
$\mathrm{T}_{\text {- }}$-Audio interstage transformer, 1:2 ratio (Thordarson 20A1b).
Tq-Audia output transformer, 5000 to 4 ohms (Stancor 3856).
$Y_{B}-4540 \mathrm{Kc}$. (surplus).
ceramic roil sorkets. All plug-in coils are wound with No. 26 enameled wire on Amphenol polystyrene forms, and Hammarlund APC-type airpadder capacitors are mounted in the recesses at the tops of the coil forms. After finishing a coil it is a good idea to fasten the winding and the trimmer capacitor in place with Duco cement. Decal each set of coils for a particular band and mount them on small wooden bases that have holes to take the pins. Then paint or stain each of the coil-set bases. The final result will be a neat and convenient arrangement for holding the coils for each band (Fig. 5-58). I'lug-in coil data for each band are given in the coil table.

The tuning capacitor, C_{3}, is mounted on the

5-HIGH-FREQUENCY RECEIVERS

ally two separate windings; each one will he tuned and used either as a primary or secondary for the $50-\mathrm{kc}$. i.f. transformer. The tap on the large winding must be lifted off the soldering lug \mathbf{C}, taped, and tucked away, being carcful not to break it: this leaves just the lead from the small winding on terminal C. Terminals A and F represent the large winding. The small roil is tuned by connecting a $680-\mu \mu \mathrm{F}$. mica capacitor letween terminals C and 1); these rapacitors should be fastened on the soldering lugs inside the shield can. The can is then slipped back over the coil and capacitor, keeping in mind that the lugs must come out the bottom, and the assembly is ready for mounting on the chassis.

The b,f.o. coil is also a Nilier 6183, and the procedure for reversing the assembly before mounting is identical to that followed with the $50-\mathrm{kc}$. transformers. However, it is not necessary to alter any of the wiring in the b,f.fo. transformer, since only the large winding ($A-F$) and its tap (C) is used.

Point-to-point wiring is recommended, along with generous use of both insulated tie points and ground lugs. Use of shiedded wire facilitates routing wires throughout the receiver as the shields can tre spot-soldered to ground lugs and to each other in bundles. When wiring, mount components at right angles to the ehassis sides wherever possille; this helps give the finished unit a neat appearance. In eritical circuits, however, do not sarrifice short and direct leads for the sake of

Fig. 5-56-Power-supply circuit. Capacitors marked with polarities are electrolytic.
$\mathrm{C}_{15}-0.25-\mu \mathrm{f}$. paper, 600 voits.
L_{10}-Filter choke, 10.5 henry, 110 ma . (Knight 62 G 139). P_{1}-Fuse plug.
making the unit look pretty.
Plaring the receiver in a rapk catbinct and marking all controls on the front pancl with decals also helps in giving the finished receiver a neat and "commerial" appearance.

The Calibrator

The 100-ke. calibator is built in a somate $4 \times 4 \times 2$-inch aluminum box and phass into the acessory sorket at the left rear of the receiver chassis. Fig. 5-6l shows the internal construction. The areessory socket provides the necossary operating voltage for the fransistors and offers a convenient means for coupling the $100-\mathrm{ke}$. harmonics out of the calibrator into the receiver. If the calibrator is to be ueded as a selfecontained unit it must he supplied with approximately - -10 volts. I series arrangement of penlite cells, or : moreury battery, can bo used. A hattery rlip mounted on the side of the box is a convenient way to hold the internal hatteries. If the unit is to be selferontained, a separate output jack for ther calibrator mast he provided.

I.F. Alignment

Before starting aligmment of the receiver, first determine whether the autio stages are functioning correctly-. An audio signal should be coupled to the topend of the volmme control, and varying the control should change the output level of the
andio signal. If an andio signal is not availathe, the 60 -evele heater voltage will provide a convenient audio signal for ehecking.

There are various ways to approach the alignment prohlem. A $\overline{0} 0$-ke. signal generator can low used: however, these are hard to come ber. Some of the better autio oseillators go as high as $\overline{0} 0 \mathrm{ke}$. and ran he used for aligmonent purposes. A serond. and posibly suprior, mothod is to use any of the mamerons signal gencrators which will dediver t.5-Me. ontput: fed into the first i.f. amplifier grid, the f.5-Ale signal will beat against the second econversion oseillator to promber a $50-\mathrm{kc}$. i.f. sigual which then ran be used for aligmment. This methon also insores that the first i.f. signal will fall within the crystal filter handpass in case the crustal frequencies are not exact. When aligning, ronnect a d.e. voltmoter (prefarably a v.t.v.m.) arross the detector load resistor (point 1) of I_{5} and (chassis), set s_{2} for high selectivity, (all calpawitoms iu), turn the i.f. gain contrib about there-gmarters open, and the both the phate circuit of the scomel couversion owillator and the iol-ke. i.f. transformers for maximum output, as indieated on the moter. The output of the signal generator should not he motulated, :and at the start will most likely be "wide open." However, as alignment progresses the output of the generator will have to be progressively decreased. When aligning the i.f. transformers there should

Fig. 5-57 - The power supply is built along the bock of the chassis; filter capacitor and VR tube are just in back of the filter choke in this view. The crystal calibrator unit at right is cushioned by rubber bumpers mounted on the receiver chassis, C; is on top of the ralibrator unit. Front-end coil shields are of the top right in this photograph, along with the tuning capacitor bracket and flexible coupling. The on-off switch, $S_{f \text {, }}$, on rear of the audio gain control, is a new push-pull type. Filter crystals are grouped behind the volume control, and the second conversion oscillator crystal is slightly to their left. The 4.5-Mc. i.f. tronsformers (in the small shield cons) ore close to the filter crystols. The b.f.o. coil is at the extreme left in this view; oll other lorge cons contain the $50-\mathrm{kc}$. i.f, transformers, Connections on the back chossis wall, left to right, ore the muting terminals, B-plus output for auxiliary use, speaker terminols, i,f. output (phono jack), and antenna input connector.

5-HIGH-FREQUENCY RECEIVERS

DCS-500 Coil Table

All roils wound with No. 26 entmeled wire on 1^{1}-inch diameter polystyrene forms. IR.f. coil forms are four-prong (. Imphenol $21-\left.1\right|^{\prime}$) : mixer and oseilatur coils ate five-prong (Amphemol
 countend from ground end. Primaries and ticklers are close-wound in the sume direction as the main coil at hottom of coil form: rovel and plate (or antenna) comections at out side ends.
Band Secombary Jrimary or 7'ikler

14 Mr. La, $10^{3}+$ turn- antomd to 1 inch. Tapped at 3 turns.

1034 turns, ${ }^{3}$ 多-inch smeving from serendary 11 it turns, ! i-inch spaming from serondary

 f: ${ }^{2}$ t turns. $3 / 4$-inch apteing from sorondars -3, purns, \mathfrak{i}-imels aparing from somondars: 6'i turns, skinch apteing from secondars: $5^{-3}{ }^{3}$ turns, ${ }^{3}$-inch sparing from serontars: $3^{4}{ }^{4}$ turns, ${ }^{3}$-inch shaming from serondars: $6^{2}{ }^{4}$ turns, ${ }^{3}$ winch spacing from seronlars 3" turns, ${ }^{5}$-inch spacing from semondars. 3: turns, ${ }^{3}$-imeth sparing from serondars: $5^{3}+$ turn,$^{3}{ }_{1}$-inch shating from scomdars.

Fig. 5-58-Each set of coils is provided with a wooden base for storage. C_{2} and C; are mounted in the recesses at the tops of the oscillator and mixer coil forms.

Fig. 5-59- The potentiometer for S-meter adjustment and the audio output transformer are on the right chassis wall in this view. The $50-\mathrm{kc}$. i.f. trap is located just above the power transformer in the lower right-hand corner. The antenna trimmer is located at extreme left center. The crystal filter sockets are at top center, and to their left on the front wall is the calibrator switch S_{1}. To the right of the calibrator switch is the sensitivity control, followed to the right by the selectivity switch S2 and the b.f.o. pitch-control capacitor. The octal accessory socket for the calibrator is at the lower left. As shown, shielded wire spot-soldered together in bundles can be routed conveniently to various points in the receiver. Ceramic sockets are used throughout the front end (center left). Mounting components parallel with the chassis sides helps give the finished unit a neat appearance.

DCS-500

be a definite peak in output as each circuit is brought through resonance. If a particular coil does not peak, that coil and its associated circuits should be checked. After peaking one winding of a transformer, recheck the other; it may need touching up. After alignment of all the $50-\mathrm{kc}$. coils is compheted, go back and "rock" each coil slug to be sure it is poaked for maximum output. This completes the $50-\mathrm{ke}$. alignment.

Leave the signal generator on, set the b.f.o. piteh control at half capacitance, turn the b.f.o. on, and adjust its coil slug for zero beat with the $50-\mathrm{kc}$. i.f. signal. Varying the piteh control over its range should produce a tone with a maximum frequency of 3 ke , either side of zero beat.

Next, the 50 -kc. trap on the output of the detector should be adjusted. Comoct the vertical input terminals of an oscilloseope between the plate of the first audio amplifier and chassis, turn on the b.f.o., and adjust (12 for minimum $50-\mathrm{ke}$, signal on the scope. This trap, made up of C_{12} and Ls, attenuates any 50-kc. feed-through.

The first-i.f. coils at $4.5-\mathrm{Mc}$. should next be adjusted. Couple the signal generator to the grid of the first mixer and peak L_{4} and L_{5} for maximum deflection of the v.t.v.m. at the detector. The i.f. system is then completely aligned.

Front-End Alignment

To adjust the front cnd, plug in a set of coils and check the oscillator frequency range either with a calibrated g.d.o. or on a calibrated gen-eral-coverage receiver, the latter being preferable. Keep in mind that the oveillator works 4.5 Mc. above the signal on 80,40 and 20 meters. and 4.5 Mc. below the signal frequency on the 15 - and 10 -meter bands. This means that on 15 and 10 meters the oseillator trimmer capacitor, (4, must be at the larger-eapacitance setting of the two that bring in signals. After establishing the correct frequency range of the oscillator, inject a signal at the low end of the band into the antemna terminals and peak the mixer capacitor, (C_{2}, and the antemat trimmer, (', for maximum signal. Then move the test signal to the high end of the band and recheck the mixer trimmer capacitor (the antema trimmer also will have to be repeaked) Ior cortere tracking. If ra has to ber readjusted, spread the mixer coil turns apart or compress them together until the signal strength is uniform at both ends of the band, without readjustment of ('2. If the mixer trimmer capacitance had to be increased at the high-frequency end of the band to maintain tracking, the coil tap is too

far up the coil and the turns helow the tap must be spread apart or the tap itself must be moved down. If the trimmer capacitance has to be decreased the tap is too low. Coil specifications might possibly have to be altered slightly from those given in the table, particularly on the higher frequencies, because of variations in strays from one receiver to another.

General

Adjustment of the calibrator is relatively straightforward, and should present no problems. Tum on the calibrator and you should hear the 10n-ke. harmonies on whatever band you happon to be using. Once it is determined that the unit is working correctly, the only adjustment necessary is to set the frequency of the calibrator exactly. The usual reference is WWV or any broadeast station that is on a frequency which is a wholenumber multiple of 100 kc . The frequency tolerance for standard broadcast stations is 20 cycles, thus b.c. stations represent a source for accurate frequency determination.

Using a general-coverage or b.c. receiver, tune in either WWV or a known broadcast station and adjust the calibrator trimmer C_{5} for zero beat. The calibrator will then provide accurate $100-\mathrm{kc}$. signals that can be used for frequency determination and band-edge marking.

The first intermediate frequency can be altered slightly to facilitate the use of particular sets of crystals available. However, if the deviation is more than 20 ke. or so, slight changes may be needed in the h.f. oscillator coil specifications to maintain the proper bandspreal.

If the receiver is to be worked in a rack cabinet as shown in Fig. 5-5:3, or if a cover plate is attached to the bottom of the receiver chassis, minor alignment touch-up may be necessary.

Spraying the receiver chassis with a light coat of elear plastic lacquer before mounting any of the components will prevent fingerprints and oxidation of the chassis.

The audio output stage has adequate power to drive a 5 - or (j-inch speaker, which may be mounted in a small open-hark metal utility box.

The i.f. output jack at the rear provides a ronvenient way of attaching acressory devices such as an oscilloseope for motulation checking.

A side-by-side comparison of the finished receiver with some of the better-quality commercial units will show that this receiver ean hold its own in sensitivity, solectivity and stability. Needress to say, the more care taken in construction, wiring and alignment the better the results.

Fig. 5-60-Inside view of the calibrator unit. The $100 \cdot \mathrm{kc}$. oseillator coil, L_{15}, is at the right, the oscillator transistor, Q_{2}, is in the foreground mounted to the crystal socket, and the amplifier transistor, Q_{1}, is mounted at the right on a terminal strip. The $100-\mathrm{kc}$. crystal is mounted horizontally between the plate and the octal plug. The plug can be mounted on 2 -inch screws as shown in the photograph, or on the bottom plate of the Minibox, with flexible leads to the circuit. If the calibrator is to be used as a self-contained unit (see text) the octal plug is not necessary.

A Transistorized Q Multiplier

A "() multiplior" is an electronie device that boosts the (O of a tumed cireuit many times beyond its normal value. In this condition the single funed eireuit has much greater solectivity thath normal, and it can be utilized to rejere or amplify a harrow band of frequencies. There are vacumtube versions of the (Q-multiplier cireuit, but the transistorized () multiphier to be described has the advantage that it climinates a power-supply problem and is very compact.

Circuit and Theory

Parallel-t uned circuits have been used for vears as "suck-out" trap circuits. Properly coupling a parallel-tumed eircuit loosely to a vacmum-tube amplifier stage, it will be found that the amplifier stage has no gain at the frequency to which the trap circuit is tumed. The additional tumed circuit puts a "noteh". in the response of the amplifier. The principle is used in TV and other amplifiers to minimize response to a narrow band of froqueneies. Increasing the (? of the trap rircuit reduees the width of the rejection noteh.
The transistorized () multiplier makes use of the above effere for its operation. A tumed cirenit is made regenerative to incorase its () and is roupled into the i.f. stage of a receiver. Re changing the fregurney of the regeneratise direnit, the sharp not ch can be moved athout arros the passband of the receiver. The width of the noteh is changed by controlling the amonnt of regencration.

Although it serms paradoxical, the transistorizad (multiplier with no change in cirenitry will also permit "praking" an incoming signal the way a varum-tube ($($ multiplier doess The mode of operation is selected by adjustment of the regreneation control, and this then usually reguires a slight readjustment of the frepueney control. The peaking effect is not quite as pronounered as the noteh, but it is still adequate to give fairly good single-signal cew. reereption with a reconer of otherwise inadequate selectivity.

The regenerative cireuit builds up the signal and fereds it back to the amplifier at a higher level
and in the proper phase to add to the original signal. The notch effect described carlior works in a similar manner exeopt that the tuning of the regencrative circuit is such that it ferds bark the signal out of phase.

The schematic diagram of the () multiplier is shown in Fig. $\overline{5}$-if. The inductor L_{1} furnishes coupling from the receiver to the Q multiplier, and C_{4} is reguired to prevent short-cireniting the recoiver's phate supply. The multiplier proper consists of the tumable circuit $C_{1} C_{3} L_{2}$ conneded to a transistor in the collector-tuned commonbase oscillator circait using caparitive feedloack via ('2. Regeneration is controlled by varying the d.c. operating voltage through dropping resistor R_{1}.

Layout

The unit and power supply are built in a small aluminum "Minibos" measuring $5 \times 21 / 4 \times 21 / 4$ inches (Bud C C-300t) and the operating controls are mounted on a lurite or aluminum subpanel. All parts of the unit are built on one half of the hox. This featare not only simplifies construction but makes a battery change a simple joh, even if this is reguired only a couple of times a year.

All major components, such as the two slagtuned eoils, tie point, battery holder, regeneration and tuming controls, are mount ed direetly on the box and subpanel. The remaining resistors, eapacitors and the single transistor are supported be their comeretions to the above parts.

The two slig-tuned coils, L_{1} and L_{2}, are centered on the box and spared one inch apart on renters. Oprating controls C_{1} and l_{1} are phaced $11 / 4$ inches from the ends of the subpanel and ecutered. The tir point mounts direstly behind tuning control C_{1}.

Lower for the unit is supplied by four penlight edls (tyme912) which are motuted in the hattery holder (Lalayptte Radio Co. Stock No. Ms-170) directly behind regeneration control h_{1}. Total drain on the battery never exereds 0.2 ma.

Connertion to the receiver is made with a thresfoot length of R(i-is $/ \mathrm{U}$ cable brought through the rear wall of the Minibox. A rubber grommet

Fig. 5.61-Circunt dia gram of the $455-k$ c. transistorized Q multiplier. Unless otherwise indicated, capacitances are in $\mu \mu \mathrm{f}$., resistances are in ohms, resistors are $1 / 2$ watt.

Q Multiplier

should be placed in the hole to prevent chating of the cable insulation.

When soldering the transistor in place, be sure to take the usual precautions against heal damage.

Alignment

Alter eompleting the wiring (and double-cheeking it) comect the upeit and of the there-fiont cable to the plate eiresut of the reerever miaer tube. This can he done in a permaneht fashion by soldering the imner eonductor of the cable to the plate pin on the whe socket or any point that is commected directly to this pin, and ing soldering the shifeld to ang ramonient nearby gromel point. If wou are one of those people whe is altaid to take the bot tom phate off his receiver, and you have a reeriver with ortal tubes. a "chicken connertion" "an be made by removing the mixer tube and wrapping a short piece of small wire around the plate pin. Reinsert the tube in its socket and solder the conter conductor of the coas to the small wire coming from the plate pin. Now grom the coas shied to the reweiver chassis. It is important to keep the leal from the tube pin to the roax as short as possiblo, to prevent stray pickup.

Check the schematio diagram of the recenver for help in lowating the aboverereiver romertions.

Tum on the rereiver and thne in a signal st rong enongh to give an S-motor mading. Any derent signal on the broadeast band will do. Next, tune the slug on L_{1} until the signal peaks up. Jou are thening ont the rearetance of the connereting cable, and chectively peaking up the i.f. If the receiver has no smeter, use an and voltmeter aneross the andio ontput. When this step has been surerssinlly completed the (Q matiphier is property commeted to the recomeer and when switched to "off" (s, opened) will hot affert normal reerever operation.

The enext step is to bring the multiplier into oscillation, and to adjust its freequeney to a useful mange. Not the faning cont rol to hall capacity amd advane the remeneration control to abont half open. This latter movement also turns the power on. Trme the pereiver to a rlear spot and set the reediver bifo. to the renter of the pass-hand. Now adjust the slug of L_{2}. The multiphier should be oseillating, and somewhere in the adjustumat of L_{2} a beat note will be heard from the receiver. This indicates the frequency of oseillation is somewhere on or near the i.f. Swing this into zero beat with the lof.o.

Final Adjustment

One of the best ways to make fina! aligmment is to simulate an mowanted heterodyne in the receiver and adjust the (ℓ multiplier for maximum attenmation of the mawanted signal. To do this, thae in a moderately wak signal with the b.f.o. on. A broadeast station reecived with the antema disconnered will do. The b.i.o. will beat with the incoming sighal, prohucing all andio tone. Adjust the b.i.o. for a tome of athout $t \mathrm{ke}$. or so.

Back off on control R_{1} until the oscillator becomes regenerative. liy alternately adjusting the

Fig. 5-62-View of the Q multiplier showing its single connecting cable to the receiver. The box can be placed in any convenient spot on or around the receiver.
tuning control, (${ }_{1}$, and the regeneration control, R_{1}, a point an lo fond where the andio tone disappeats, or at least is attemated. Nome slight retonching of he mas haw to be done in the above alignment. sime the movement of any one control tends to "pull" the others. The optimum sithat ion is to have the tuming cont rol C_{1} sed at about half capacity when the noth is in the center of the passlatid.

If you hanpxat to ger a super adive transistor and the regeneration control dues not have the range to stop uscillatom adion, increase the value of the series resistor lis. ('onsersely, if the unit fails to escellate, reduer the value of $/$ Pe.

When making the ahowe aljustments, you shonk notiee that the andio tone can be peaked as well as mullen, If it coun mot be peaked, a little more paratier with the controks should produce this condition. In the mat shown here, the best anll was produed with the regeneration control turned only a few degrees. (0ptimum peak position was obtained with the regeneration rontrol almost at the point of oseilation.

Fig. 5-63-The Q multiplier and its battery supply are combined in one sinall Minibox. The single transistor is visible near the top right corner.

5-HIGH-FREQUENCY RECEIVERS

Conelrad

Effective January 2, 1957, the "Conelrad" rules became part of the amaten regulations. Essentially, compliance with the rules consists of monitoring a broadeast station - standard band, f.m. or TV - either continuously or at intervals not exceeding ten minutes, during periods in which the amateur transmitter is in use. On receipt of a Conehrad Alert all transmitting must cease, except as athorized in 12,193 and 12.194 of the FCC regulations.
The existence of an Alert may be determined

Fig. 5-64 - Canverter circuit far manitaring braadcast statians in cannectian with a cammunicatians receiver. Capacitances are in $\mu \mu \mathrm{f}$.
$C_{1_{A}}, C_{1 B}$-Twa-gang braadeast capacitar, ascillatar secfian accarding ta intermediate frequency ta be used.
L_{1}-Loop stick.
T_{1}-B.c, ascillatar transfarmer (far i.f. ta be used).
T_{2}-l.f. cail and trimmer. This can be taken fram an i.f. transfarmer, ar the transfarmer can be used intact, the autpul being taken fram the secandary.
Nate: If anly ane braadcast station is ta be manitared $\mathrm{C}_{1 \mathrm{~A}}$ and $\mathrm{C}_{1_{\mathrm{B}}}$ can be padder-type capacitars (ar a cambinatian of padding and fixed capacitance as required) adjusted far the desired statian and intermediate frequencies. Other types of canverter tubes may be substituted if desired.

Pawer far the unit can be taken fram the receiver's "accessary" sacket.
as outlined in 12.192(b)(3). Operation during hours when local broadeast stations are not on the air will require tuning through the standard broadcast hand to determine if operation appears to be normal. The presence of any U. S. broadeast stations on frequencies other than 640 and 1240 ke. indieates normal operation.

Perhaps the simplest form of compliance is he means of a simple converter working into the i.f. amplifier of the regular station receiver. A typical circuit is shown in Fig, $5-61$. The converter can be built in a small metal case and mounted at a
convenient spot on the receiver so that S_{1} can be closed at regular intervals for checking the broadeast station. As an alternative, the eonverter can be mounted out of the way at the rear of the receiver and the switch leads brought out to a convenient spot.

- a "Fail-proof" conelrad alarm

The conchad alarm shown in Fig. $\overline{3}-6$ buses a small b.e. recoiver to furnish both andible and visible indiations of a Conelrad Alert (the receiver may still be used for normal broadeast reception).

With the receiver tumed to a brodeast carrier and the alarm circuit in operation, a green "safe" light indicates that all is well on the broadcast band. When the broadeast carrier goes off, as it will in a Conelrad Radio Alert, the green light goes out, a red "danger" light somes on, a buzzer sounds, and the 115 -volt a.c. line to the transmitter is opened up. In other words, the device puts you off the air! The audible and visible warnings also are given in the event of a component failure in cither the control receiver or the alarm. Even the disappearance of the 115volt supply will not go unnoticed, since in that case the green "safe" light will go out, indicating that the alam is inoperative.

The alarm requires a minimum of 0.7 volts (negative) from the receiver's a.v.c. (automatio volume control) cirenit for dependible operation. Receivers having one stage of i.f. amplification will develop at least this much avie, voltage When tuncd to a signal of reasomable strength. But watch out for the "superhets" what do not have an i.f. stage: they are of little value as a source of control voltage for the alam, You can usually find out if the receiver has an i.f. stage by looking at the tube list pasted on either the chassis or the inside of the cabinet.

The circuit of the alarm is shown in section 13 , Fig. $\overline{5}$-(is. . Section A is a typical a.v.e.detectorfirst audio stage of tur ate- -d.e. recoiver, and shows how the alarm circuit is tied into a recoiver.

Although a $12 . A V 6$ is shown as the detector, other tubes may be used in some receivers. However, the basic "irenit will be the same or very similar.

Finding the a.v.e. line in the jumble bencath the chassis of the ordinary a.c.-d.c. receiver is not always casy. Here are a few hints:

Using section A, Fig. $\bar{b}-\mathrm{bin}$, as a guide, lomate the detector tube socket. Trace out the leads going to the secondary of the last i.f. transformer, T_{1}. This transformer usually will be adjacent to the detector tube. The lower end of the secondary winding will be connected to several different resistors, one of these being the diode-load filter resistor (approximately 50 K in most circuits) and another the a.v.c. filter resistor, R_{1}. The value of the latter resistor is ordinarily above one megohm. Trace through R_{1} in the direction of the arrow (Fig. 5-65), until you locate the fairly high

Conelrad

Fig. 5-65-Circuit of the Conelrad alarm (B) connected to the a.v.c. circuit (A) of a typical a.c.-d.c. broadcast receiver. Resistors are $1 / 2$ watt unless otherwise specified, C_{1}, R_{1} and T_{1} in section A are components in the broadcast receiver.
I_{1}-6-volt a.c. buzzer (Edwards 725).
$\mathrm{l}_{2}, \mathrm{I}_{3}$-6-volt pilotlamp, No. 47.
K_{1}-D.p.d.t. sensitive relay, 5000-ohm coil, 5 -amp, contocts (Potter \& Brumfield GB11D).
R_{2}-5-megohm polentiomeler.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$-S.p.s.t. rotary canopy switch (ICA 1257).
S_{2}-Momentary-contact switch (Switcheraft 101).
T_{2}-Replacement-łype power transformer, 150 volis, 25 mo.; 6.3 volts, 0.5 amp. (Merit P-3046 or equivalent).
value ($0,05 \mu \mathrm{f}, \mathrm{or}$ so) a.v.e. filter capacitor, C_{1}. Now you have the a.v.e. line clearly identified and the tap for the alam rimenit may be made.

Notiee that the eathede of V_{1} and the cold side of c_{1} are both returned to at common bus or -13 line, mot directly to the chassis. Aso observe that the return for the alam cireuit is mate to the rommon bus in the receiver, not to the chassis of the sot. Do not !!round lhis lead to the chassis or commert il to any expesed melal puls. If there is any difficulty in loeating the eommon bus in the vicinity of the detector stage, check back from the uegative side of the power-supply filter eatparitors, as this point is always attached to the common bus.

The monitor should be built in an insulated box of some kind and not in a metal case. The box ean be made of plywood, or a bakelite instrument (ase (e.g., 1('A type 8202). The bakelite case is ideal for the application, but it must be handled with foure during eonstruction, to avoid seratching, chipping, or breakage. Be esperially careful when drilling large holes such as those used in mounting the pilot-lamp assemblies and switches, because a large drill tends to bind and crack the case.

Testing and Operating

The chanoss are pretty good that right after the receriver and the monitor have been turned on the red lamp will light and - if you haven't had the forasight to open sis to prevent the noise the buzzer will sound. Tume the recoiver to a brouldeast station and ser if the red light goes out and the green light comes on. If this happens, chose stand wou're all sot for rondrad eompliance. If the "saffe" light does not rome on, tume aromed for a signal strong enough to atuate the alarm. Should the signal of greatest apparent strength fail to trignor the monltor, leave the seeevere tumed to this signal and then momentarily pross S_{2}. The alarm should now lock on "safe," provided the a.v.e. circuit delivers 0.7 volt or more to $V_{2 A}$.

The only d.c. measurements of any ronsequence that need be mate in chereking through the alarm cirenit are the output voltage of the power supply and the voltage at the cathode of V_{21}. The proper voltuges at these two points are given on the circuit diagram. If the alarm fails to respond properly, it may be advisable to check the a.v.c. voltage with a v.t.v.m.

High-Frequency Transmitters

The principal requirements to be met in e.w. transmitters for the amateur bands between 1.8 and 30 Me. are that the frequency must be as stable as good practice permits, the output signal must be free from modulation and that harmonies and other spurious emissions must be eliminated or reduced to the point where they do not canse interference to other stations.

The over-all design depends primarily upon the bands in which operation is desired, and the power output. I simple osciliator with satisfactory frequency stability may be used as a transmitter at the lower froguencies, as indicated in Fig. 6-1.1, but the power output obtaimable is small. Is a general rule, the output of the oseillator is fed into one or more amplifiers to bring the power led to the antemna ap to the desired level, as shown in 13 .

An amplifier whose output frequency is the same as the input frequency is called a straight amplifier. A buffer amplifier is the term sometimes applied to an amplifier stage to indieate that its primary purpose is one of isolation, rather than powergain

Because it becomes increasingly diffieult to maintain oscillator frequeney stability as the frequency is increased, it is most usual praco tice in working at the higher frequencies to operato the oscillator at a low frequency and follow it with one or more frequency multipliers as required to arrive at the desired output frequeney. A frequeney multiplier is an amplifier that delivers output at a multiple of the exriting frequency. A doubler is a multiplier that gives output at twice the exciting frequency; a tripler multiplies the expiting frequency by three, ete. From the viewpoint of any particular stage in a transmitter, the preceding stage is its driver.

As a general rule, frequency multipliers should not be used to feed the antenna system direetly, but should feed a straight amplifier which, in turn, feeds the antenna system, as shown in lig. 1-C, I) and E. . Is the diagrams indicate, it is often posible to operate more than one stage from a single power supply.
(iond frequency stability is most easily obtained through the use of a crystal-controlled oscillator, although a different erystal is needed for each frequency desired (or multiples of that frequency). I self-controlled oscillator or v.f.o. (variable-frequeney oscillator) may be tuned to any frequency with a dial in the manner of a
receiver, but requires great care in design and construction if its stability is to eompare with that of a crystal oscillator.

In all types of transmitter stages, screen-grid tubes have the advantage over triodes that they require less driving power. With a lower-power exciter, the problem of harmonic reduction is mate easior. Most satisfactory oscillator eircuits use a sereen-grid tube.

Fig. 6.1-Block diagrams showing typical combinations of oscillator and amplifiers and power-supply arrangements for tronsmitters. A wide selection is passible, depending upan the number of bonds in which aperation is desired and the power output.

Oscillators

CRYSTAL OSCILLATORS

The frequency of a crystal-controlled oscillator is held constant to a high degree of accuracy by the use of a quartz erystal. The frequency depends almost entirely on the dimensions of the erystal (essentially its thickness); other circuit values have comparatively neg!igible effect. However, the power obtainable is limited by the heat the erystal will stand without fracturing. The amonnt of heating is dependent upon the r.f. crestal current which, in turn, is a function of the amome of feednack required to provide proper excitation. Crystal heating short of the danger point results in frequeney drift to an extent depenching upon the way the erystal is cut. Fxcitation should always be adjusted to the minimum necessary for proper operation.

Crystal-Oscillator Circuits

The simplest crystal-oneillator circuit is shown in Fig, ($\mathrm{j}-2.2$. An equivalent eireuit is shown in Fig. (6-2l3, where ('i represents the gridrathode catateitance and (c_{5} indieaters the paterathode. or whtpat eaparitance. The ratio of these capacitors controls the exeitation for the oscillator, and good pratetier gemerally requires that both of these capacitanes in angmented
adjustments made in the plate tank virenit when the latter is fumed near the fundamental frequency of the crustal, the effects can bo sutisfactorily minimized by proper choiee of the osedlator tule.

The cirenit of Fig. $6-3 \mathrm{~d}$ is known as the Tritet. The oscillator circuit is that of Fig. (i-2C. Excitation is controlled by aljust ment of the tank $L_{1} C_{1}$, which should hatve a low L / C ratio, and be tuned considerahly to the high-frequener side of the crustal frequeney (approximately 5 . We. for a 3.5-Mc. crystal) to prevent over-excitation and high erystal rurrent. Once the proper adjustment for average crystals has been found, ('1 mas be replaced with a fixed capacitor of equal value.

The oscillator circuit of Fig. 6-3B is that of Fig. 6-2A. Excitation is controlled by C C_{g}.

The oscillator of the grid-plate cireuit of Fig. (b-3C is the same as that of Fig. 6-313. oxeept that the ground point has been moved from the wathode to the plate of the oscillitor (in other words. to the sercen of the tube). Excitation is adjusted by proper proportioning of (${ }_{6}$ and (${ }^{\prime} 7$.

When most tipes of tubes ine used in the circuits of prig. b-3, oscillation will stop when the output plate cirenit is tumed to the erystal froquency and it is necessary to operate with the

Fig. 6-2-Simple crystal-oscillator circuits. A-Pierce, B-Equivalent of circuit A. C-Simple triode oscillator, C_{1} is a plate blocking capacitor, C_{2} an output coupling capacitor, and C_{3} a plate bypass. C_{4} and C_{5} are discussed in the text. C_{6} and L_{1} should tune to the crystal fundamental frequency. R_{1} is the grid leak.
h. exturnal capacitors to provide better control of the excitation.

The circuit shown in Fig. 6-2C is the equivalent of the tuned-grid tuned-plate circuit discussed in the chapter on vacumm-tahe principles, the crystal mplacing the tuned grid cirenit.

The most commonly used ervstal-oscillator circuits are based on one or the other of these two simple types, and are shown in Fig. 6-3. Although these circuits are somewhat more complicated, they combine the functions of osciliator and amplifier or frequence multiplier in a single tube. In all of these circuits, the screen of a tetrode or pentode is used as the plate in a triode oscillator. Power out put is taken from a separate tuned tank circuit in the actual plate circuit. Although the oscillator itself is not entirely independent of
phate tank circuit aritically detuned lor masimum output with stability. However. when the $6 \mathrm{AG} 7,5763$, or the lower-power 6.AH6 is used with proper adjustment of excitation. it is possible to tune to the rrystal frecuency withont stopping oscillation. The plate thing characteristic should then be similar to Fig. 6-4. These tubes also operute with less crystal current than most other types for a given powr output, and less frequency change occurs when the plate circuit is tumed through the crystal frequeney (less than 25 eycles at 3.5 Mc .).

Crystal current may be estimated by observing the relative brilliance of a $60-\mathrm{ma}$. dial lamp connected in series with the crystal. Current should be held to the minimum for satisfactory output by careful adjustment of excitation. With the

6-HIGH-FREQUENCY TRANSMITTERS

operating voltages shown, satisfactory output should be obtained with erystal currents of 40 ma. or less.

In these circuits, output may be obtained at multiples of the arystal frequency by tuming the plate tank eircuit to the desired harmonic, the

Fig. 6.3-Commonly used erystal-controlled oscillator circuits. Values are those recammended for a 6AG7 or 5763 tube. (See reference in text for other tubes.)
C_{1}-Feedback-control capacitor-3.5-Mc. crystals-approx. $220-\mu \mu$ f. mico-7.Mc. crystals-approx. 150- $\mu \mu \mathrm{f}$. mica.
C_{2}-Output tank capacitor $-100-\mu \mu \mathrm{f}$, variable for single . band tank; $250-\mu \mu \mathrm{f}$. variable for two-band tank.
C_{3}-Screen bypass- $0.001-\mu$ f. disk ceramic.
C_{4}-Plote bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{5}-Output coupling capacitor-50 to $100 \mu \mu \mathrm{f}$.
C_{6}-Excitation-control capacitor- $30-\mu \mu \mathrm{f}$. trimmer.
$\mathrm{C}_{\text {- }}$-Excitation capacitor- $220-\mu \mu \mathrm{f}$. mica for 6AG7; 100- $\mu \mu \mathrm{f}$. for 5763.
C_{8}-D.c. blocking capacitor- $0.001-\mu$ f. mica.
C_{9}-Excitation-control copacitor- $220-\mu \mu \mathrm{f}$. mica.
R_{1}-Grid leak-0.1 megohm, $1 / 2$ watt.
R_{2}-Screen resistor- 47,000 ohms, 1 wott.
L_{1}-Excitotion-control inductance-3.5.Mc. crystals-approx. $4 \mu \mathrm{~h} . ; 7$-Mc. crystals-approx. $2 \mu \mathrm{~h}$.
$L_{2}-O u t p u t-c i r c u i t$ coil-single band:-3.5 Mc.- $17 \mu \mathrm{~h}$,; 7 Mc. $-8 \mu \mathrm{~h} . ; 14 \mathrm{Mc} .-2.5 \mu \mathrm{~h} . ; 28 \mathrm{Mc} .-1 \mu \mathrm{~h}$. Two-band operation: $3.5 \& 7 \mathrm{Mc} .-7.5 \mu \mathrm{~h} . ; 7$ \& 14 Mc. -2.5μ h.
RFC_{1}-2.5-mh. 50-ma. r.f. choke.
output dropping off, of course, at the higher harmonics. Lispecially for harmonic operation, a lowC plate tank circuit is desirable.

For best performance with a $6 A G 7$ or 5763 , the values given under Fig. 6-3 should be followed closely.

- VARIABLE-FREQUENCY OSCILLATORS

The frequency of a v.f.o. depends entirely on the values of inductance and capacitance in the circuit. Therefore, it is necessary to take careful steps to minimize changes in these values not under the control of the operator. As examples, even the minute changes of dimensions with temperature, particularly those of the coil, may result in a slow but noticeable change in frequency called drift. The effective input capacitance of the oscillator tube, which must be comnected across the circuit, changes with variations in electrode voltages. This, in turn, causes a change in the frequency of the oscillator. To make use of the power from the oscillator, a load, usually in the form of an amplifier, must be eoupled to the osctlator, and variations in the had may reflect on the frequency. Very slight mochanical movement of components may rosult in a shift in frequency, and vibration can cause modulation.

V.F.O. Circuits

Fig. 6.5 shows the most commonly used circuits. They are all designed to minimize the efferts mentioned above. All are similar to the crustal oscillators of Fig. 6-3 in that the sereen of a tetrode or pentode is used as the oscillator plate. The oscillating circuits in Figs. 6-5A and B are the Hartley type; those in (and 1) are Cohpitts circuits. (Sere chapter on varumm-tube principles.) In the circuits of $A, 13$ and (${ }^{\prime}$, all of the ahove-mentioned offerts, except changes in inductance, are minimized by the use of a high-() tank eireuit obtained through the use of large tank capaeitances. Any uncontrolled changes in caparitance thus become a very small perecentage of the total eirenit caparitance.

In the series-tuned Colpitts rirenit of Fig. 6-51) (sometimes called the (llapp cireuit), is high-() circuit is obtained in a different manner. The tube is tapped across only a small portion of the oscillating tank cireuit. resulting in very loose coupling between tube and cireuit. The taps are provided by a series of three eapacitors across the coil. In addition, the tule caparitances are shunted by large capacitors, so the effects of the tube - changes in electrode voltuges and loading - are still further reduced. In contrast

Fig. 6.4 - Plate funing characteristic of circuits of Fig. 6.3 with preferred types (see text). The platecurrent dip at resonance broadens and is less pronounced when the circuit is loaded.

Oscillators

to the preceding circuits, the resulting tank circuit has a high L / C ratio and therefore the tank current is much lower thim in the circuits using high-C tanks. As a result, it will usually be found that, other things being equal, drift will be less with the low-C circuit.

For best stability, the ratio of C_{12} or C_{13} (which the usually equal) to ('in $+C_{11}$ should be as high as possible without stopping oscillation. The permissible ratio will be higher the higher the ($)$ of the coil and the mutual conduetance of the tube. If the cirenit does not oscillate over the desired range, a coil of higher () must be used or the capacitance of C_{12} and C_{13} reduced.

Load Isolation

In spite of the precautions already discussed, the tuning of the output plate circuit will cause a
noticeable change in frequency, particularly in the region around resonance. This effect can be reduced considerably by designing the oscillator for half the desired frequency and doubling frequency in the output circuit.

It is desirable, although not a striet neeessity if detuning is recognized and taken into account, to approach as closely as posisible the condition where the adjustment of tuning controls in the transmitter, beyond the v.f.o. frepuency control, will have negligible effert on the frequency. This can be done hy substituting a fixed-tumed circuit in the output of the oscillator, and adding isolating stages whose thuing is fixed hetween the oscillator and the first tunable amplifier stage in the transmitter. Fig. 6 - 6 shows sueh an arrangement that gives good isolation. In the first stage, a $6 \mathrm{C}+$ is connected as a cathode follower. This

Fig. 6.5-V.f.o. circuits. Approximate values for $3.5 \cdot 4.0-\mathrm{Mc}$. output are given below. Grid circuits are tuned to half frequency (1.75 Mc .).
C_{1}-Oscillator bandspread tuning capacitor-200- $\mu \mu \mathrm{f}$. $\quad \mathrm{C}_{11}$-Oscillator bandspread tuning capacitor- $50-\mu \mu \mathrm{f}$. variable.
C_{2}-Output-circuit tank capacitor-47. $\mu \mu \mathrm{f}$.
C_{3}-Oscillator tank capacitor-600- $\mu \mu \mathrm{f}$. zero-tempera-ture-coefficient mica.
C_{4}-Grid coupling capacitor-100- $\mu \mu \mathrm{f}$. zero-tempera-ture-coefficient mica.
C_{5}-Screen bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{6}-Plate bypass- $0.001-\mu$ f. disk ceramic.
C_{7}-Output coupling capacitor-50 to $100-\mu \mu \mathrm{f}$. mica.
C_{8}-Oscillator tank capacitor-750- $\mu \mu \mathrm{f}$. zero-tempera-ture-coefficient mica.
C_{8}-Oscillator tank capacitor- 0.0033 - μ f. zero-tem-perature-coefficient mica.
C_{10}-Oscillator bandspread padder-100- $\mu \mu \mathrm{f}$. variable air.

6 - HIGH-FREQUENCY TRANSMITTERS

drives a 57 tid buffer amplifier whose input cireuit is fixed-tuned to the approximate band of the v.f.o, output. For best isolation, it is important that the 6 C 4 does not draw grid current. The output of the vif.o., or the eathode resistor of the ect should be adjusted matil the voltage aeross the eathode resistor of the tide (as measured with a high-rosistane d.e. voltmeter with an r.f. choke in the positive lead) is the same with or without exatation from the v.for. l_{1} should be adjusted for most constant output from tha 57 (i3 over the band.

Chirp

In all of the circuits shown there will be some change of frequency with changes in screen and plate voltages, and the use of regulated voltages for both usually is necessary. One of the most serious results of voltage instability occurs if the oscillator is keyed, as it often is for break-in operation. Although voltage regulation will supply a steady voltage from the power supply and therefore is still desirable, it camot alter the fact that the voltage on the tube must rise from zero when the key is open, to full voltage when the key is closed, and must fall bark again to zero when the key is opened. The result is a chirp) (arth time the key is opened or closed, unless the time constant in the keying circuit is reduced to the point where the chirp takes place so rapidly that the receiving operator's ear camot detect it. Unfortunately, as explained in the chapter on keying, a certain minimum time constant is necassary if key clicks are to be minimized. Therefore it is evident that the measures necessary for the reduction of chirp and clicks are in opposition, and a compromise is nemessary. For best keving characteristics, the oscillator should be allowed to run continuously while a subsequent amplifier is keyed. Hlowever, a keyed amplifier represents a widely variable load and unless sufficient isolation is prowided between the oscillator and the keyod amplifier, the keving characteristics may be little better than when the oscillator itself is keyod. (wor keving chapter for other methods of break-in keving.)

Frequency drift is further redured most easily by limiting the power input as much as pussible and by mounting the components of the tumed circuit in a separate shielded compartment, so that they will be isolated from the clirect heat from tubes and resistors. The shiolding also will
eliminate changes in frequency caused hy movement of nearby objects, such as the operator's hand when tuning the vifo. The circuit of Fig. 6-5D lends itself well to this arrangement, since relatively long leads betwern the tube and the tank rireuit have nergligible effere on fiequency beranse of the lage shmoting capmitances. The grid, eathode and ground leads to the tube ean be bunchod in a cable up to several fiet long.

Variable capacitors should have ecramio insulation, good bearing eontacts and should proferably be of the doublo-bearing type and fixed caparitors should have zoro temperature coefficient. The tulue socket also should have eremmie insulation and special attention should be paid to the selection of the coil in the oscillating section.

Oscillator Coils

The Q of the tank eoil used in the oscillating portion of any of the cincuits under discussion should be as high as circumstances (usually space permit, since the losses, and therefore the heating, will be less. With recommended care in regard to other factors mentioned previonsly, most of the drift will originate in the coil. The coil should be well spaced from shielding and other large metal surfaces, and be of atype that radiates heat well, such as a commercial air-

Frequency Drift

Fig. 6-6-Circuit of an isolating amplifier for use between v.f.o. and first tunable stage. Unless otherwise specified, all capacitances are in $\mu \mathrm{f}$., all resistors are $1 / 2$ walt. L_{i}, for the $3.5-\mathrm{Mc}$. band, consists of $100-140 \mu \mathrm{~h}$. adjustable inductor. RFC_{1} is $100 \mu \mathrm{~h}$. All capacitors are disk ceramic.
wound typre or should be wound tightly on a threaded coramic form so that the dimensions will not change radily with temperature. The wire with which the coil is wound should be as large as practicable, espercially in the high-e cireuits.

Mechanical Vibration

Toeliminate merhanical vibration, components should be mounted securely. Darticularty in the circuit of Fig. (i-zl), the caparitor should preferably have small, thick plates and the coil hracol. if neressary to prevent the slightest mechanieal movencent. Wire commertions between tank-rimenit components shonld be as short as possible and thexible wire will have less temdeney to vibrate than solid wire. It is advisable to cuahion the entire oscillator unit by mounting on sponge rubber or other ahork moninting.

R.F. Amplifiers

Tuning Characteristic

If the circuit is oscillating, touching the grid of the tube or any part of the eireuit connected to it will show a change in phate current. In tuning the phate output circuit without load, the plate current will be relatively high until it is thened near resonance where the plate current will dip to a low value, as illustrated in Fig. 6-4. When the output cireuit is loaded, the dip should still be found, but broader and much less pronounced as indicated by the dashed line. The circuit should not be loaded beyond the point where the dip is still recognizable.

Checking V.F.O. Stability

A v.f.o. should be cheeked thoroughly before it is placed in regular operation on the air. Since succeeding amplifier stages may affect the signal characteristics, final tests should be made with the complete transmitter in operation. Almost any v.f.o. will show signals of good quality and stability when it is rumning free and not conneeted to a load. A well-isolated monitor is a necessity. Perhaps the most conveniont, as well as one of the most satisfactory, well-shielded monitoring arrangements is a receiver combined with a crystal oscillator, as shown in Fig. 6-7. (Bors "Crystal Oscillators," this chaptor.) The crystal frequency should lie in the hand of the lowest frequeney to be ehecked and in the frequency range where its harmonies will fall in the higher-frequency bands. The reroiver b.f.o. is turned off and the v.f.o. signal is tuned to beat with the signal from the cristal oscillator instead. In this way any recoiver instability caused by overloading of the input circuits, which may result in "pulling" of the h.f. oscillator in the receiver, or by a change in line voltage to the reecever when the transmitter is keved, will not
affect the reliability of the check. Most crystals have a sufficiently low temperature corfficient to give a check on drift as well as on chirp and signal quality if they are not overloaded.
Harmonies of the erystal may be used to beat with the transmitter signal when monitoring at the higher frequencios. Since any chiry at the lower frequencies will be magnified at the higher frequencies, accurate chocking ean bost be done by monitoring at a harmonic.

The distance hetween the crystal oscillator and receiver should be adjusted to give a good beat between the crystal oscillator and the transmitter signal. When using harmonics of the crystal oscillator, it may be necessary to attach a piece

Fig. 6.7-Setup for checking v.f.o. stability. The receiver should be tuned preferably to a harmonic of the v.f.o. frequency. The crystol oscillotor may operote somewhere in the bond in which the v.f.o. is operating. The receiver b.f.o. should be turned off.
of wire to the oscillator as an antema to give suflicient signal in the receiver. Cheeks maty show that the stability is sufficiently good to permit oscillator keving at the lower frequencies. where break-in opration is of grater value, but that ehirp beromes objectionable at the higher frequencies. If further improvement does not seem possible, it would be logical in this case to use oseillator keving at the lower frequencirs and amplifier keying at the higher freguencies.

R.F. Power-Amplifier Tanks and Coupling

In the remainder of this chapter the vacuum tubes will he shown, for the most part, with in-directly-heated cathodes. However, many transmitting tubes use directly-heated filaments for the eathodes; when this is done the filament "renter-tap" connection will be used, as shown in Fig. 6-8.

- PLATE TANR Q

IR.f. power amplifiers used in amateur transmitters are operated under Class-C or -AB conditions (see chapter on tule fundamentals). The main objective, of course, is to deliver as much fundamental power as possible into a load, R, without excerding the tube ratings. The load resistance R may be in the form of a transmission line to an antennat, or the grid circuit of another amplifier. A further objective is to minimize the harmonic energy (always generated by a Class (; amplifier) fed into the load cireuit. In attaining these objectives, the Q of the tank cireuit is of importance. When a load is eoupled inductively, as in Fig. 6-10, the Q of the tank circuit will have an effect on the coeffirient of compling nec-
essiry for proper loading of the amplitier. In respect to all of these factors, a tank () of 10 to 20 is usually considered optimum. A much lower Q will result in less efficient operation of the amplifier tube, greater harmonic output, and greater difficulty in coupling inductively to a load. A much higher Q will rewnlt in highere tank current with increased loss in the tank coil.

The Q is determined (sce chapter on electrical laws and circuits) by the $L /($ ratio and thr load resistanee at which the tube is operated. The tube load resistance is related, in approximation, to

Fig. 6-8-Filament center-tap connections to be substituted in place of cathode connections shown in diagrams when filament-type tubes ore substituted. T_{1} is the filoment fransformer. Filament bypasses, C_{1}, should be $0.01-\mu \mathrm{f}$. disk ceramic capacitors. If a self-biasing (cathode) resistor is used, it should be ploced between the center tap and ground.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-9-Chart showing plate tonk capocitance required for $0 Q$ of 10 . Divide the fube plate voltage by the plate current in milliamperes. Select the vertical line corresponding to the answer obtained. Follow this vertical line to the diagonalline for the bond in question, and thence horizontally to the left to read the capacitance. For a given ratio of plate-voltage/plate current, doubling the capacitance shown doubles the Q etc. When a split-stator capacitor is used in a balanced circuit, the capacitance of each section may be one half of the value given by the chart.
the ratio of the d.c. plate voltage to d.c. plate current at which the tube is operated.

The amount of C that will give a Q of 10 for various ratios is shown in Fig. 6-9. F'or a given plate-voltate/plate-current ratio, the Q will vary directly as the tank capacitance, twice the eaparitance doubles the Q, etc. For the same Q. the capacitance of each section of a split-stator capacitor in a balanced circuit should be half the value shown.

These values of capacitance include the output caparitance of the amplifier tube. the input capacitance of a following amplifier tube if it is coupled capacitively, and all other stray caparitances. At the higher plate-voltage, plate-current ratios, the chart may show values of capacitance, for the higher frequencies, smaller than those attainable in practice. In such a casc, a tank Q higher than 10 is untwoidable.

In low-power exciter stages, where capacitive coupling is used, very low-($($ circuits, tuned only by the tube and stray circuit capacitances are sometimes used for the purpose of "broadband-
ing" to avoid the necessity for retuning a stage across a band. Higher-order harmonies generated in such a stage can usually be attentuated in the tank circuit of the final amplifier.

INDUCTIVE-LINK COUPLING

Coupling to Flat Coaxial Lines

When the load R in Fig. 6-10 is located for convenience at some distance from the amplifier, or when maximum harmonic reduction is desired, it is advisable to feed the power to the load through a low-impedance coaxial cable. The shielded construction of the cable prevents radiation and makes it possible to install the line in any convenicnt manner without danger of unwanted coupling to other circuits.

If the line is more than a small fraction of a wavelength long, the load resistance at its output end should be adjusted, by a matching circuit if necessary, to match the impedance of the cable. This reduces losses in the cable and makes the coupling adjustments at the transmitter independent of the cable length. Matching circuits for use between the cable and another transmission line are discussed in the chapter on transmission lines, while the matching adjustments when the load is the grid circuit of a following amplifier are described elsewhere in this chapter.

Assuming that the cable is properly terminated, proper loading of the amplifier will be assured, using the circuit of Fig. 6-11.1, if

1) The plate tank circuit has reasonably high value of O. A value of 10 is usuatly sufficient.
2) The inductance of the pick-up or link coil is close to the optimum value for the frequency and type of line used. The optimum coil is one whose self-inductance is such that its reactance at the operating frequency is equal to the charac-

Fig. 6-10-Inductive-link output coupling circuits.
C_{1} - Plate tank capacitor-see text and Fig. 6-9 for capacitance, Fig. 6-33 for voltage rating.
C_{2}-Screen bypass-voltage rating depends on method of screen supply. See paragraphs on screen considerations. Voltage rating same as plate voltage will be sofe under any condition.
C_{3}-Plate bypass- 0.001 - $\mu \mathrm{f}$. disk ceramic or mica. Voltage rating same as C_{1}, plus safety factor.
L_{1} - To resonate at operating frequency with C_{1}. See IC chart and inductance formula in electricol-laws chopter, or use ARRL Lightning Calculator.
L_{2}-Reactance equal to line impedance. See reactance chart and inductance formula in electrical-laws chapter, or use ARRL Lightning Calculotor.
R-Representing load.

(A)

(B)

(C)

Fig. 6.11-With flat transmission lines, power transfer is obtained with looser coupling if the line input is tuned to resonance. C_{1} and L_{1} should resonate at the operating frequency. See table for maximum usable value of C_{1}. If circuit does not resonate with maximum C_{1} or less, inductance of L_{1} must be increased, or added in series at L_{2}.
teristic impedaner. Z_{0}, of the line.
3) It is possible to make the coupling between the tank and pick-up coils very tight.

The second in this list is offen hard to meet. Few manalactured link coils have adequate inductance even for roupling to a atolam line at lose frequeneies.

If the line is operating with at low sw.r., the system shown in lig. ti-11A will require tight coupling hotween the two coils. Sine the serondary (pick-up roil) circuit is not resonant. the leakthe reactance of the pick-up coil will cause some detuning of the amplifier tank cireuit. This drtuning affert increases with increasing eoupling, hut is usually not serlous. Howeret, the amplifier tuning must be adjusted to resontance, as indicated he the plate-eurrent dip, each time the coupling is chatnged.

Capacitance in $\mu \mu$. Required for Coupling to Flat Coaxial Lines with Tuned Coupling Circuit		
Frequeney	Characteristir:	dance
band	52	ה
/Ic.	ohms ${ }^{1}$	ohrns '
1.8	900	600
3.5	450	300
7	230	150
14	115	75
28	60	40
${ }^{1}$ Capaci	values are m	m usa

Vofe: Inductance in circuit must be adjusted to resonate at operating frequency.

Tuned Coupling

The design difficulties of using "untuned" pick-up eoils, mentioned above, cat be avoided by using at coupling eircuit tuned to the operating frequency. This contributes additional seleetivity as well, and hence abds in the suppression of epurious ratiations.

If the line is flat the input imperdance will be essontially resistive and equal to the Z_{0} of the line. With emaxial cable, a cireuit of reasomable (d ran be ohtained with parabicable values of induct:unce tud capateitanere ronnerted in serides with the line's input tremimals, suitable cireuits are given in Frig. ©-11 at B and (C . The Q of the coupling cireuit often may be as low as 2 , without running into difficultw in getting adequato coupling to at tank cirenit of proper design. Larger values of (\& can be used and will result in increased case of coupling, but as the Q is increased the frequencer ramge over which the cireuit will operate without readjustment beomes smatler. It is usuatly good pratione therefore, to use at eroplingrifenit (just low emough to permit operation, over as much of a band as is mormatly used for a particular type ol commomication. without requiring retuning.

Caparitamer values for a Q 2 of 2 and line impedances of 52 and 75 ohms are given in the aceompansing lathle. These are the matimum values that should be used. The induetance in the eirenit should be adjusted to give resomance at the operating frequeluy. If the link coil used lor a particular hand loes not have conough inductance to resonate, the additional indurtane may be connested in suries an shown in Fig. G-11C.

Characteristics

In practied, the amount of indurtance in the rircuit should be chasen so that, with somewhat loose coupling betwern L_{1} and the amplition tank eoil, the amplifier phate current will increase when the variable citpacitor, C_{1}, is luned through the value of rapacitanee given by the table. The (ooupliag betwern the two coils should then be incroased until the amplifier loarls normally, without changing the selting of C_{1}. If the transmission line is flat over the entire frepueney band under consideration, it shoud not be nee essary to realjust C_{1} when changing frequency, if the values given in the thblo are hsed. However, it is unlikely that the line actuatly will be fat over surla a range, so some readjustment of C_{1} may be needed to compensate for changes in the input impedtance of the line. If the input impedance variations are not large, C_{1} may be used as a loading control, no changes in the coupling between L_{1} and the tank coil heing necessary.

The degree of coupling between L_{1} and the amplifier tank eoil will depend on the couplingcircuit Q. With a Q of 2 , the coupling should be tight - comparable with the coupling that is typical of "fixed-link" manufactured coils. With a swinging link it may be necessary to increase the Q of the coupling circuit in order to get sufficient power transfer. This can be done by increasing the L / C ratio.

6-HIGH-FREQUENCY TRANSMITTERS

PI-SECTION OUTPUT TANK

A pi-section tank circuit may also be used in coupling to an antema or transmission line, as shown in Figg. 6-12. The values of capacitance for ('1 and C_{2}, and inductance for L_{1} for any values of tube load resistance and output load resistance may be caloulated from the formulas in the chapter on clectrical laws.

Fig. 6-12-Pi-section output tank circuit.
C_{1}-Input capacitor. See text or Fig. 6-13 for reactance. Voltage roting for c.w. equal to d.c. plate voltage; twice this for piate modulation.
C2-Output capacitor. See text or Fig. 6-1 5 for reaciance. See text for voltage rating.
$\mathrm{C}_{: 3}$-Heater bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{4}-Screen bypass. See Fig. 6-10.
C_{5}-Plate bypass. See Fig. 6-10.
C_{6}-Plate blocking copocitor- $0.001-\mu \mathrm{f}$. disk ceramic or mica. Voltage rating same as C_{1}.
L_{1}-See text or Fig. 6-14 for reactance.
RFC_{1}-See later paragraph on r.f. chokes.
$\mathrm{RFC}_{2}-2.5-\mathrm{mh}$. receiving type (to reduce peak voltage across both C_{1} and C_{2} and to blow plate power supply fuse if C_{6} fails).
Values of reactane for (C_{1}, L_{1} and ('2 mar be taken directly from the charts of F'igs. (i-13, (i-1) and 6 -35 if the output load resistance is 22 or 72 ohms. It should be borne in mind that these values apply only where the output load is resistive, i.e., where the antema and line have bean matrhed. The tube load resistaner R_{1} in ohms is dotermined be dividing the plate voltage. by twice the d.e. plate curront in derimal parts of an ampere.

Output-Capacitor Ratings

The voltage rating of the output capacior will depend upon the s.w.r. If the load is resistive, rowiving-type air capacitors should he adecuate for amplifier imput powers up to 1 kw . with plate modulation when ferding az- or 72 -ohm loads. In obtaining the largor capacitances roquired for the lower frequencios, it is common praction to switch fixed caparitors in parallel with the variable air apacitor. While the voltage rating of a miea or ceramic capacitor may not he exceeded in a particular case, caparitors of these types are limited in eurrent-earrying eapacity. Postage-stamp silver-mica capacitors should be adequate for amplifier inputs over the range from about 70 watts at 28 Mic. to 400 watts at 14 Mc . and lower. The larger mica capaciors (C.V-45 (ease) having voltage ratings of 1200 and 250% volts are usually satisfartory for inputs varying from about 350 watts at 28 Mc . to 1 kw . at 14 Mc . and lower. Because of these current limitations, partieularly at the higher frequencies, it is ad-

PI-NETWORK DESIGN CHARTS FOR FEED. ING 52- OR 72-OHM COAXIAL TRANS. MISSION LINES

Fig. 6-13-Reactance of input capacitor, C_{1}, as a function of tube load resistance, R_{1}, for pi networks. R_{1} equals plate voltage divided by twice plate current (amperes).

Fig. 6-14-Reactance of tank coil, L_{1}, as a function of load resistance, R_{1}, for pi networks.

Fig. 6-15-Reactance of loading capacitor, C_{2}, as a function of iube load resistance, R_{1}, for pi networks.

Pi-Section Output Tanks

Fig. 6-16-Multiband tuner circuits. In the unbalanced circuit of A, C_{1} and C_{2} are sections of a single split-stator capacitor. In the balanced circuit of D, the two split-stator capacitors are ganged to a single control with an insulated shaft coupling between the two. In D, the two sections of L_{2} are wound on the same form, with the inner ends connected to C_{2}. In $A_{\text {, each section of the capacitor should }}$ have a voltage rating the same as Fig. 6-33A. In D, C_{1} should have a rating the same as Fig. 6-33H (or Fig. 6-33E if the feed system corresponds). \mathbf{C}_{2} may have the rating of Fig. 6-33E so long as the rotor is not grounded or bypassed to ground.
visable to use as large an air capacitor as practicable, using the micas only at the lower frequencies. Broadcast-receiver replacement-type capacitors can be obtained very reasonably. They are available in triple units totaling about $1100 \mu \mu$ f., or dual units totaling about $900 \mu \mu \mathrm{f}$. Their insulation should be sufficient for iuputs of 500 watts or more. Air capacitors have the additional advantage that they are seldom permanently damaged by a voltage break-down.

Neutralizing with Pi Network

Screen-grid amplifiers using a pi-nctwork output circuit may be neutralized by the system shown in Figs. 6-23B and C.

- MULTIBAND TANK CIRCUITS

Multihand tank circuits provide a convenient means of covering several bands without the need for changing coils. Tuners of this type consist essentially of two tank circuits, tumed simultaneously with a single control. In a tumer designed to cover 80 through 10 meters, each circuit has a sufficiently large capacitance variation to assure an approximately 2 -to- 1 frequency range. Thus, one circuit is designed so that it covers 3.5 through 7.3 Mc., while the other covers 14 through 29.7 Mc .

A single-ended, or unbalanced, circuit of this type is shown in Fig. 6-16A. In principle, the reactance of the high-frequency coil, L_{2}, is small enough at the lower frequencies so that it can be largely neglected, and C_{1} and C_{2} are in piriallel acrose L_{1}. Then the rirmit for low frequencies becomes that shown in Fig. 6-16B.

At the high frequencies, the reactance of L_{1} is high, so that it may be considered simply as a choke shunting C_{1}. The high-frequency circuit is essentially that of lig. $6-16 \mathrm{C}, L_{2}$ being tuned by C_{1} and C_{2} in series.

In practice, the effect of one circuit on the other cannot be neglected entircly. L_{2} tends to increase the effective eapacitance of C_{2}, white L_{1} tends to decrease the effective capacitance of C_{1}. This effect, however, is relatively small. Each cireuit must cover somewhat more than a 2 -to-1 frequency range to permit staggering the two ranges sufficiently to avoid simultaneous responses to a frequency in the low-frequency range, and one of its harmonics lying in the range of the high-frequency cireuit.

In any circuit covering a frequency range as great as 2 to 1 by capacitance alone, the circuit () must vary rather widely. If the circuit is designed for a (ℓ of 12 at 80 . the (ℓ will be 6 at 40 , 24 at 20,18 at 15 , and 12 at 10 meters. The increase in tank current as a result of the increase in ($)$ toward the low-frequency end of the highfrequency range may mako it necessary to design the higl-frequency coil with care to minimize loss in this portion of the tuning range. It is generally found desirable to provide separate output coupling eoils for each circuit.

Fig. ($\mathrm{i}-1 \mathrm{ij}$) shows a similar tank for balanced circuits. The same principles apply.

Series or parallel fred may be used with either balanced or unbalanced circuits. In the balanced circuit of Fig. 6-16D, the series feed point would be at the center of L_{1}, with an r.f. choke in series.
(For further discussion sec (SST, July, 1954.)

R.F. Amplifier-Tube Operating Conditions

In addition to proper tank and output-coupling circuits discussed in the preceding sections, an r.f. amplifier must be provided with suitable electrode voltages and an r.f. driving or excitation voltage (see vacuum-tube chapter).

All r. f. amplifier tuhes require a voltage to operate the filament or heater (a.c. is usually permissible), and a positive d.c. voltage between the plate and filament or cathode (plate voltage). Most tubes also require a negative d.c. voltage (biasing voltage) between control grid (Grid No. 1) and filament or cathode. Soreen-yrid
tubes require in addition a positive voltage (screen voltage or Cirid No. 2 voltage) between screen and filament or cathode.

Biasing and plate voltages may be fed to the tube either in series with or in parallel with the associated r.f. tank circuit as discussed in the chapter on electrical laws and circuits.

It is important to remember that true plate, sereen or biasing voltage is the voltage between the particular electrode and filament or cathode. Only when the cathode is directly grounded to the chassis may the electrode-to-chassis voltage

6-HIGH-FREQUENCY TRANSMITTERS

be taken as the true voltage.
The required r.f. driving voltage is applied between grid and cathode.

Power Input and Plate Dissipation

Plate power input is the d.c. power input to the plate circuit (d.c. plate voltage \times d.c. plate current. Sereen power input likewise is the d.c. serem voltage X the d.e. sereen eurrent.
Ilate dissipation is the difference between the r.f. power delivered by the tube to its loaded plate tank cireuit and the d.e. plate power input. The sereen. on the other hand, does not deliver any output power, and therefore its dissipation is the same as the sereen power input.

TRANSMITTING.TUBE RATINGS

Tube manufacturers specify the maximum values that should be applied to the tubes they produce. They also publish sets of typical operating values that should result in grod efficieney and normal tube life.

Maximum values for all of the most popular transmitting tubes will be found in the tables of transmitting tubes in the last chapter. Also included are as many sets of typioal operating values as space permits. Howrere, it is recommended that the amateur secure at transmittingtube manual from the manufaturer of the tube or tuber he plans to use.

CCS and ICAS Ratings

The same transmitting tube may have different ratings depending upon the manner in which the tube is to be operated, and the servier in which it is to be used. These different ratings are based primarily upon the heat that the tube can sately dissipate. Some typers of operation, such as with grid or sereen modulation, are less efficient than others, meaning that the tube must dissipate more heat. Other types of operation, such as ew. or single-sideband phone are intermittent in nature, resulting in less average heating that in other modes where there is a continuous power input to the tube during transmissions. There are also different ratings for tubse used in transmitters that are in almost constant use (CCs Continuous Commereial service), and for tubes that are to be used in transmitters that average only a few hours of daily operation (ICAS Intermittent Commercial and Amateur Service). The latter are the ratings used by amateurs who wish to ohtain maximum output with reasonable tube life.

Maximum Ratings

Maximum ratings, where they differ from the values given under typieal operating values, are not normally of significance to the amateur except in special applications. No single maximum value should be used unless all other ratings can simultaneously be held within the maximum values. As an example, a tube may have a maximum plate-voltage rating of 2000 , a maximum
plate-current rating of 300 ma ., and at maximum plate-power-input rating of 400 watts. Therefore, if the maximum plate voltage of 2000 is used, the plate current should be limited to 200 ma . (instead of 300 ma .) to stay within the maximum power-input rating of 400 watts.

SOURCES OF ELECTRODE VOLTAGES

Filament or Heater Voltage

The filament voltage for the indirectly heated eathode-type tubes found in low-power classifications may vary 10 per cent above or below rating without seriously redueing the life of the tube. But the voltage of the higher-power fila-ment-type tubes should be held elosely between the rated voltage as a minimum and 5 per cent above rating as a maximum. Make sure that the plate power drawn from the power line dow not cause a drop in filament voltage helow the proper value when plate power is applied.

Thoriated-type filaments lose emission when the tube is overloaded appreciably. It the overfoad has not been too prolonged, emission sometimes may be restored hy oprating the filament at rated voltage with all other voltages removed for a period of 10 minutes, or at 20 per cent above rated voltare for a few minutes.

Plate Voltage

D.c. plate voltage for the operation of r.f. amplifiers is most often oltained from a trans-former-rectifier-filter system (ser power-supply chapter) designed to deliver the required plate voltage at the required current. However, batteries or other d.c.-generating dovieas are sometimes used in ecratain trpes of operation (see portable-mobile (hatpter).

Bias and Tube Protection

Several methods of ohtaining bias are shown in Fig. 6-17. In A, hias is obtained by the voltage drop across a resisto. in the grid d.c. return circuit when rectified grid current flows. The proper value of resistance maty be determined by dividing the required hiasing voltage be the d.e. grid current at which the tube will be operated. Then, so long as the r.f. driving voltage is adjusted so that the d.e. grid current is the recommended value, the biasing voltage will be the proper value. 'The tube is biased only when excitation is applied, since the voltage drop across the resistor depends upon griderurrent flow. When exeitation is removed, the biats falls to zero. At zero bias most tubes draw power far in excess of the plate-dissipation rating. so it is advisable to make provision for protecting the tube when exeitation fails by accident, or by intent as it does when a preceding stage in a c.w. transmitter is keyed.

If the maximum c.w. ratings shown in the tube tables are to be used, the input should be cut to zero when the key is open. Aside from this, it is not necessary that plate current be cut off completely but only to the point where the rated

(4)

(D)

(B)

(E)

(C)

(F)

Fig. 6-17-Various systems for obtaining protective and operating bias for r.f. amplifiers. A—Grid-leak. B-Battery. C-Combination battery and grid leak. D-Grid leak and adjusted-valtage bias pack. E-Combination grid leak and voltage-regulated pack. F-Cathode bias.
dissipation is not exceeded. In this case platemodulated phone ratings should be used for c.w. operation, however.

With triodes this protection can be supplied by obtaining all bias from a source of fixed voltage, as shown in lig. 6-1713. It is preferable, however, to use only sufficient fixed hias to protect the tube and obtain the balance neded for operating bias from a grid leak, as in C. The gridleak resistance is calculated as above, except that the fixed voltage is subtracted first.

Fised bias may be obtained from dry batteries or from a power pack (see power-supply chapter), If dry batteries are used, they should be checked periodically, since even though they may show normal voltage, they eventually develop a high internal resistance. Grid-current flow through this battery resistance may increase the bias considerably above that anticipated. The life of batteries in bias service will be approximately the same as though they were subject to a drain equal to the grid current, despite the fact that the grid-current flow is in sueh a direction as to charge the battery, rather than to diseharge it.

In Fig. 6-17F, bias is obtained from the voltage drop across a resistor in the cathode (or filament center-tap) lead. Protective bias is obtained by the voltage drop across R_{5} as a result of plate (and screen) current flow. Since plate current must flow to obtain a voltage drop across the resistor, it is obvious that cut-off protective bias cannot be obtained. When exeitation is ap-
plied, plate (and scren) current increases and the grid current also contributes to the drop across R_{5}, thereby increasing the bias to the operating value. Since the voltage between plate and cathode is reduced by the amount of the voltage drop arross R_{5}, the over-all supply voltage must be the sum of the plate and operating-hias voltages. For this reason, the use of cathode bias usually is limited to low-voltage tubes when the extrai voltage is not diffieult to oltain.
The resistance of the cathode biasing resistor R_{5} should be adjusted to the value which will give the correct operating bias voltage with rated grid, plate and screen currents flowing with the amplifier loaded ton rated input. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tube, at least for the period of time required to remove plate voltage. A disadvantage of this biasing system is that the cathode r.f. connection to ground depends upon a bupass capacitor. From the eonsideration of v.h.f. harmonics and stat bility with high-jerveance tubes, it is preferable to make the cathode-to-ground impedance as elose to zero as possible.

Screen Voltage

For c.w. operation, and under certain conclitions of phone operation (see amplitude-modulation chapter), the screen may be operated from a power supply of the same type used for plate supply, execpt that voltage and eurrent ratings

6-HIGH-FREQUENCY TRANSMITTERS

should be appropriate for sereen requirements. The sereen may also be operated through a series resistor or voltage-divider from a source of higher voltage, such as the plate-voltage supply, thus making a separate supply for the sereen unnecessary. Cortain precautions are necessary, depending upon the method used.

It should be kept in mind that sereen current varies widely with both exditation and loading. If the sereen is operated from a fixed-voltage souree, the tube should never be operated without phate voltage and toad, otherwise the sereen may be damaged within a short time. supplying the sereen through a series dropping resistor from a higher-voltage source, such as the phate supply, affords a measure of protection, since the re sistor canses the sereon voltage to drop as the current increases, thereby limiting the power drawn by the sereen. However, with a resistor, the sereen voltage may vary eonsiderably with exoitation, making it necessary to chock the voltage at the soreen terminal umber actual operating conditions to make sure that the sereen voltage is nommal. Ioducing excitation will cause the serem eurrent to drop, increasing the voltage; increasing exitation will have the opposite offect. These changes are in addition to those caused by changes in hias and plate loading, so if a sereen-grid tube is operated from a series resistor or a poltage divider, its voltage should he checked as one of the dinal adjustments after excitation amd loading have hern set.

An approximate valae for the seren-voltage dropping resistor may be obtained be dividing the voltage drop required from the supply voltage (differonce betwern the supply voltage and rated screen voltage) ler the rated sereon current in derimad parts of an ampere. Some further adjustment may be neressary, as montioned above, so atl adjustable resistor with a total resistance above that rabulated should be provided.

Protecting Screen-Grid Tubes

Sereen-rgrid tubes cannot be cut off with bias unless the sereen is operated from a fixed-voltage supply. In this case the cut-off hias is approximately the sereen voltage divided by the amplification factor of the serem. This figure is not dways shown in tubedata sheets, but eut-off voltage may be determined from an inspection of tube curves, or be experiment.

When the serem is supplied l'rom a series dropping resistor, the tube can be proteded by the use of a clamper tule, as shown in Fig. (i-18. The arid-leak hias of the anmplifier tube with expitation is supplied also to the grid of the clamper tube. This is usually sufficient to rut off the clamper tube. However, when excitation is removed, the elamper-tube bias falls to zero and it draws enough curvent through the sereen dropping resistor usually to limit the input to the amplifier to a safe value. If complete sereenvoltage cut-off is desired, a VIR tube may be inserted in the screen lead as shown. The V'Rtube voltage rating should be high enough so that it will extinguish when exritation is removed.

Fig. 6-18-Screen clamper circuit for protecting screengrid power tubes. The VR tube is needed only for complete cut-off.

- feEding excitation TO THE GRID

The required r.f. driving voltage is supplied by an osillator generating a voltage at the desired frequency either directly or through intermediate amplifiers or frequency multipliers.

As explained in the chapter on vacuum-tube fundamentals, the urid of an amplifier operating under Class C ronditions must have an exeiting voltage whose peak value exceds the negative biasing voltage over a portion of the excitation evele. During this portion of the rycle. eurrent will flow in the gridereithorde circuit as it does in a diode cireuit when the phate of the diode is ponitive in respert to the cathoute, This requires that the r.f. driver supply power. The power roquired to develop the required peak driving voltage arross the grid-eathode impedance of the amplifier is the r.f. driving power.

The tube tolbles give approximate figures for the grid driving power reduired for each tube under various operating conditions. These figures, howerer, do not include circuit losses. In generall, the driver stage for any Class C amplifier should be eapable of supplying at least three times the driving power shown for typieal operating conditions at frequencies up to 30 Mc ., and from threc to ten times at highor frequencies.
Nince the d.e. grid current relative to the biasing voltage is related to the peak driving voltage, the d.e. grid current is commonly used as a convenient indicator of driving conditions. A driver adjustment that results in rated d.e. grid eurrent when the d.e. bias is at its rated value, indieates proper exeitation to the amplifier when it is fully losuded.

In coupling the grid input circuit of an amplifior to the output eircuit of a driving stage the objective is to load the driver plate circuit so that the desired amplifier grid excitation is obtained without exceeding the plate-input ratings of the driver tube.

Driving Impedance

The grid-current flow that results when the grid is driven positive in respert to the cathode

Feeding the Grid

Fig. 6-19-Coupling excitation to the grid of an r.f. power amplifier by means of a low. impedance coaxial line.
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{~L}_{1}, \mathrm{~L}_{3}$-See corresponding components in Fig. 6-10.
C_{2}-Amplifier grid tank capacitor-see text and Fig. 6-20 for capacitance, Fig. 6-34 for voltage rating.
$\mathrm{C}_{4}-0.001-\mu \mathrm{f}$, disk ceramic.
L_{2}-To resonate at operating frequency with C_{2}. See LC chart inductance formula in electrical-laws chapter, or use ARRL Lightning Calculator.
L_{1}-Reactance equal to line impedance-see reactance chart and inductance formula in ele etrical-laws chapter, or use ARRL Lightning Calculator.
R is used to simulate grid impedance of the amplifier when a low-power s.w.r. indicator, such as a resistance bridge, is used. See formula in text for calculating value. Standing-wave indicator SWR is inserted only while line is made flat.
over a portion of the excitation cycle represents an average resistance atoross whith the exciting voltage must he developed by the driver. In other words, this is the lead resistance into which the driver plate cireuit must be coupled. The approximate grid input resistance is given by:

$$
\begin{aligned}
& \text { Input impedunce (ohms) } \\
& =\frac{\text { driming power }(\text { watts })}{\text { d.c. } \text { grid rurrent }(\mathrm{ma})^{2}} \times 622 \times 10^{3} \text {. }
\end{aligned}
$$

For normal operation, the driving power and grid current may be taken from the tube tables,

Since the grid imput resistance is a matter of a few thousand ohms, an impedance step-down is necessary if the grid is to be fed from a lowimpedance transmission line. This can be done by the use of a tank as an impedance-transforming device in the grid circuit of the amplifier as shown in Fig. 6-19. This conpling system may be considered ather as simply a means of obtaining mutual inductanee between the two tank coils, or as a low-impedance transmission line. If the line is longer than a small fration of a wave length, and if as s.w.r. bridge is available, the line is more easily hathded by adjusting it as a matched transmission line.

Inductive Link Coupling with Flat Line

In adjusting this type of line, the object is to make the s.w.r. on the line as low as possible over as wide a band of frequencies as possible so that power can be transferred over this range without retuning. It is assumed that the output coupling considerations diseussed earlicr have beon observed in commection with the driver plate circuit. So far as the amplifier grid eircuit is concerned, the controlling factors are the Q of the tuned grid circuit, $L_{2} C_{2}$, (see Fig. 6-20) the inductance of the coupling coil, L_{4}, and the degree of coupling between L_{2} and L_{4}. Variable coupling between the coils is convenient, but not strictly necessary if one or both of the other factors can be varied. An s.w.r. indicator (shown as "SWR" in the drawing) is essential. An indicator such as the "Micromatch" (a commercially available instrument) may be connected as shown and the adjustments made under actual operating
conditions; that is, with full power applied to the amplifier grid.

Assuming that the coupling is adjustable, start with a trial position of L_{4} with resperet to L_{2}. and adjust C_{2} for the lowest s.w.r. Then change the coupling slightly and repeat. Continue until the s.w.r. is as low as possible; if the cireuit constants are in the right region it should not be difficult to get the s.w.r. down to 1 to 1 . The () of the tuned grid circuit should be designed to be at least 10 , and if it is not posisible to get a very low s.w.r. with such a grid circuit the probable reason is that L_{4} is too smatl. Mixximum coupling, for a given degree of physi-

Fig. 6-20-Chart showing required grid tank capacitance for a Q of 12. To use, divide the driving power in watts by the square of the d.c. grid current in milliamperes and proceed as described under Fig. 6-9. Driving power and grid current may be taken from the tube tables, When a split-stator capacitor is used in a balanced grid circuit, the capacitance of each section may be half that shown.
fal coupling, will oceur when the inductance of L_{4} is such that its reactance at the operating frequency is equal to the characteristio impedance of the link line. The reactance can be calculated as deseribed in the chapter on electrical fundamentals if the inductance is known; the inductance can either be calculated from the formula in the same chapter or measured as described in the chapter on measurements.

Once the s.w.r, has been brought down to 1 to 1, the freduency shoukd be shifted over the band so that the variation in s.w.r. can be observed, without changing (2 or the coupling between L_{2} and L_{4}. If the s.w.r. rises rapidly on either side of the original frequeney the circuit can be made "flatter" by reducing the Q of the tuned grid circuit. This may he done by decreasing (${ }_{2}$ and correspondingly incroasing L_{2} to maintain resomance, and by tightening the coupling between L_{2} and L_{4}, going through the same adjustment process atgain. It is possible to set up the system so that the s.w.r. will not exeed 1.5 to 1 over, for example, the ontire - -ale hand and proportionately on other bands. Inder these circumstaners a single setting will serve for work anywhere in the band, with essentially constant power transfer from the line to the power-amplifier grids.

If the coupling between L_{2} and L_{4} is not adjustable the same result may he seroured by varying the L / E ratio of the tumed grid cireuit - that is, by varying its (d. If any difliculty is encomtered it can be overrome hy changing the number of turns in L_{4} until a mateh is secured. The two coils should be tightly coupled.

When a resistance-bridge type sw.r. indicator (see measurements (hinpter) is used it is not posisible to put the full power through the line when making adjustments. In such case the operating conditions in the amplifier grid circuit call be simulated bey using a carbon resistor ($1 / 2$ or I watt size) of the same value as the calculated amplifier grid impedance, comeroted as indicated be the arrows in Fig. (i-1!). In this case the amplifier tube must be operated "cold" - without filament or heater power. The adjustment process is the same as described above, but with the driver power reduced to a value suitable for operat ing the s.w.r. bridge.

When the grid coupling system has been adjusted so that the s.w.r. is close to 1 to 1 over the desired frequency range, it is certain that the power put into the link line will be delivered to the grid cireuit. (oupling will be faceilitated if the line is tuned as deseribed under the earlier section on output coupling systems.

Link Feed with Unmatched Line

When the system is to be treated without regard to transmission-line effects, the link line must not offer appreciable reactance at the operating frequency. Any appreciable react ance will in cffect reduce the coupling, making it imposible to transfor sufficient power from the driver to the amplifier grid cireuit. Coaxial cables aspecially have considerable capacitance for even
short lengths and it may be more desirable to use a spaced line, such as Twin-Lead, if the radiation ean be tolerated.

The reactance of the line can be nullified only by making the link resonant. This maty require changing the number of turns in the link coils, the length of the line, or the insertion of a tuning capacitance. Since the s.w.r. on the link line may be quite high, the line losses increase because of the greater current, the voltage increase may be sufficient to cause a breakdown in the insulation of the cable and the added tuned cirenit makes adjustment more critical with relatively small changes in frequency.

These troubles may not be ancountered if the link line is kept very short for the highest frequenery. A length of 5 feet or more may he tolcrable at 3.5 Mc., hut a length of a foot at 28 Me . may be chough to cause serious effects on the functioning of the system.

Adjusting the coupling in such a system must neressarily be largely a matter of cut and try. If the line is short conough so as to have negligible reactance, the coupling hetween the two tank circuits will increase within limits by adding turns to the link coils, or by coupling the link coils more tightly, if possible, to the tank coils. If it is impossible to change cither of these, a variable (apacitor of $300 \mu \mu \mathrm{f}$, maty be connected in series with or in parallel with the link eoil at the driver end of the line, depending upon which commetion is the most effective.

If coaxial line is used, the eapacitor should be connected in series with the inner conductor. If the line is long enough to have appreciable reactance, the variable caparitor is used to resonate the entire link cireuit.

The size of the link coils and the length of the line, as well as the size of the capacitor, will affect the resonant frequoley, and it may take an adjustment of all three before the eaparitor will show a pronouneed effect on the coupling.

When the system has been made resonant, coupling may be adjusted by varying the link eapacitor.

Simple Capacitive Interstage Coupling

The apacitive system of Fig. 6-21A is the simplest of all coupling systems. In this cirenit, the plate tank circuit of the driver, $C_{1} L_{1}$, serves also as the grid tank of the amplifior. Although it is used more frequently than any other system, it is less floxible and has erertain limitations that must be taken into consideration.

The two stages camot lo separated physically any appreciable distance without involving loss in transferred power, radiation from the coupling lead and the danger of feedback from this lead. Since both the output caparitance of the driver tule and the input capacitance of the amplifier are across the single circuit, it is sometimes difficult to obtain a tank eircuit with a sufficiently low Q to provide an eflicient circuit at the higher frequoncies. The coupling cam be varied by altering the caparitance of the coupling eapacitor, (2 . The driver load impedance is the

Fig. 6.21-Capacitive-coupled amplifiers. A-Simple capacitive coupling. $\mathrm{B}-\mathrm{Pi}$-section coupling.

C_{1} —Driver plate tank capacitor—see text and Fig. 6.9 for capacitance, Fig. 6.33 for valtage rating.
C_{2}-Coupling capacitor- 50 to $150 \mu \mu \mathrm{f}$. mica, as necessary for desired coupling. Voltage rating sum of driver plate and amplifier biasing voltages, plus safely factor.
C_{3}-Driver plate bypass capacitor- $0.001-\mu \mathrm{f}$. disk ceramic or mica. Voltage rating same as plate voltage.
C_{4} - Grid bypass- $0.001-\mu \mathrm{f}$. disk ceramic.
C_{5}-Heater bypass- $0.001 \cdot \mu \mathrm{f}$. disk ceramic.
C_{6}-Driver plate blocking capacitor- $0.001 . \mu$. disk ceramic or mica. Voltage rating same as C_{2},
$\mathrm{C}_{\text {F }}$-Pi-section input capacitor-see text referring to fig. 6.12 for capacitance. Voltage rating-see Fig. 6.33A.
$\mathrm{C}_{s}-\mathrm{Pi}$-section output capacitor-100- $\mu \mu \mathrm{f}$. mica. Voltage rating same as driver plate voltage plus safely factor.
L_{1}-To resonate at operating frequency with C_{1}. See LC chart and inductance formula in electrical-laws chapter, or use ARRL Lightning Calculator.
L_{2} —Pi-section inductor-See Fig. 6-1 2. Approx. same as L_{1}.
RFC_{1}-Grid r.f. choke-2.5.mh.
RFC_{2}-Driver plate r.f. choke- 2.5 mh .
sum of the amplifier grid resistance and the reactane of the coupling capacitor in series, the conpling capacior serving simply as a serios reartor. The driver load resistanee increases with a decrase in the capacitance of the coupling capacitor.
When the amplifier grid impedance is lower than the optimum load resistance for the driver, a transforming action is possible by tapping the grid down on the tiank coil, but this is not recommenderl treanse it invariahly canses an inereases in v.h.f. harmonics and sonotimes sets up a parasitie circuit.
so far as coupling is concerned, the Q of the circuit is of little significance. However, the other considerations discussed earlier in connertion with tank-cireuit Q should be observed.

Pi-Network Interstage Coupling

A pi-section tank circuit, as shown in Fig. 6-2113, may he used as a coupling device between screen-grid amplifier stages. The circuit can also In considered at coupling arrangement with the grid of the amplifier tapped down on the circuit ly means of a capacitive divider. In contrast to the tapped-coil method mentioned previously, this system will be very effective in reducing v.h.f. harmonies, because the output capacitor,

Cs, provides a dired caparitive shunt for harmonics arross the amplifier grid circuit.

To be most effective in reducing v.h.f. harmonies, ('s should be a mieab "uparitor comerted directly arross the tube-socket terminals. Tapping down on the circuit in this manner also helps to stabilize the amplifier at the operating frequency beatuse of the grid-circuit loading provided be ('s. For the purposes both of stability and harmonic reduction, experience has shown that a value of $100 \mu \mu$ for ("s usually is sufficient. In general, C_{7} and L_{2} should have values approximating the capacitance and inductance used in a conventional tank circuit. A reduction in the indurtance of L_{2} results in an increase in ccupling because C_{i} must be increased to retume the circuit to resonance. This changes the ratio of C_{7} to C_{8} and has the effert of moving the grid tap up on the circuit. Since the coupling to the grid is comparatively loose under any condition, it may be found that it is impossible to utilize the full power capability of the driver stage. If sufficient excitation camnot be obtained, it may be necess:ry to raise the plate voltage of the driver, if this is permissible. (therwise a larger driver tube may be required. As shown in Fig. 6-21I3, parallel driver plate feed and amplifier grid feed are necessary.

6-HIGH-FREQUENCY TRANSMITTERS
 R.F. Power Amplifier Circuitry

- stabilizing amplifiers

A straight amplifier operates with its input and output circuits tuned to the same frequency. Therefore, unless the eoupling between these two circuits is brought to the necessary minimum, the amplifier will oscillate as a tumed-plate tumed-grid cireuit. Care should be used in arranging components and wiring of the two circuits so that there will be negligible opportunity for roupling external to the tube itself. Complote shielding between input and output circuits usually is required. All r.f. leats should be kept as short as possible and particular attention should be paid to the r.f. return paths from piate and grad tank circuits to cathode. In general, the best arrangement is one in which the eathode connection to ground, and the plate tank cireuit are on the same side of the chassis or other shiedling. The "hot" lead from the grid tank (or driver plate tank) should be brought to the socket through a hole in the shielding. Then when the grid tank capacitor or hypass is groumded, a return path through the hole to cathode will be encouraged, since transmission-line characteristice are simulated.

A check on external coupling between input and output circuits can be made with a sensitive indieating deviere, such as the one diagrammed in Fig. 6-22. The amplifier tube is removed from its socket and if the plate terminal is

Fig. 6-22-Circuit af sensitive neutralizing indicatar. Xtal is a 1 N34 crystal detectar, MA a 0-1 direct-current milliammeter and C a $0.001-\mu \mathrm{f}$. mica bypass capacitar.
at the socket, it should be discommerted. With the driver stage running and tuned to resonance, the indicator should be coupled to the output tank coil and the output tank capacitor tuned for any indication of r.f. feedthrough. Bxperiment with shielding and rearrangement of parts will show whether the isolation can be improved.

Screen-Grid Tube Neutralizing Circuits

The plate-grid capacitance of soren-grid tubes is reduced to a fraction of a micromicrofarad by the interposed grounded screen. Nevertheless, the power sensitivity of these tubers is so great that only a very small amount of feedhark is necessary to start oscillation. To assure a stable amplifier, it is usually necessary to load the grid cireuit, or to use a neutralizing circuit.

Fig. 6-23.1 show: how a sereen-grid amplifier may be neutralized by the use of an inductive link line coupling the input and output tank circuits in proper phase. If the initial connection proves to be incorvect, conmections to one

Fig. 6-23-Screen-grid neutralizing circuits. A-Inductive neutralizing. $\mathrm{B}-\mathrm{C}-$ Capocitive neutralizing.
C_{1}-Grid bypass capacitor-approx. $0.001-\mu f$. mica. Voltage rating same as biasing valtage in B, same as driver plate voltage in C.
C_{2}-Neutralizing copacitor-opprox, 2 ta $10 \mu \mu \mathrm{f}$.-see text. Valtage rating same as amplifier plate valtage for c.w., twice this value for plate madulatian.
 sufficient.
of the link coils should be reversed. Neutralizing is adjusted be changing the distance between the link coils and the tank coils. In the case of maparitive coupling betwern stares. one of the link coils will be coupled to the plate tank coil of the driver stage.

A caparitive neutralizing system for screengrid tules is shown in Fig. 6-2313. ('2 is the neutralizing caparitor. The capacitance should be chosen so that at some adjustment of (2,

$$
\frac{C_{2}}{C_{1}}=\frac{\text { Tube grid-plate raparitance (or (' }{ }^{\text {Ge }} \text {) }}{\text { Tube input copacitunce (or CNS }}
$$

The tube interelectrode capmextances (${ }_{\text {кр }}$ and fin are given in the tube tables in the last chapter. The grid-cathode capacitance must include all

Neutralizing

strays directly across the tube capacitance, including the eaparitane of the tuming-capacitor stator to ground. This may amount to 5 to 20 $\mu \mu$. In the ease of capacitance coupling, as shown in Fig. 6-23C, the output capacitance of the driver tube must be added to the gridcathode capacitance of the amplifier in arriving at the value of C_{2}. If C_{2} works out to an impractically large or small value, (cican be changed to compensate by using combinations of fixed mica capacitors in parallel.

Neutralizing Adjustment

The procedure in neutralizing is essentially the same for all types of tubes and circuits. The filament of the amplifier tube should be lighted and exritation from the preceding stage fed to the grid eireuit. Both sereen and phate voltages should be disconnected at the transmitter terminals.

The immediate objective of the neutralizing process is roducing to a minimum the r.f. driver voltage fed from the input of the amplifier to its output eireuit through the grid-plate capacitance of the tube. This is done by adjusting rarefully, bit by hit. the neut ratizing capacitor or link coils until an r.l'. indicator in the outpot circuit reads minimum.

The devier shown in lig. (j-22 makes a sensitive neutralizing indicator. The link should be coupled to the output tank eoil at the low-potential or "ground" point. Care should be taken to make sure that the coupling is loose enough at all times to prevent burning out the meter or the rextitier. 'The plate tank capacitor should be readjusted for maximum reading after each change in neutralizing.

The gridedurent moter may also be used as a neutralizing indicator. With plate and sereen voltages removed as described above, there will toe a change in grid corrent as the plate tank riment is tumed through resonamere. The neutralizing capacitor should be adjusted until this deflertion is brought to a minimum. As a final adjustment, plate and sereen voltages should be applied and the neutralizing caparitance adjusted to the point where minimum plate current, maxi-
 oceur simultaneously. An increase in grid current when the phate tank cireuit is tuned slightly on the high-frequency side of resonance indicates that the neptralizing capacitance is too small. If the increase is on the low-frequeney side, the nentralizing capacitanec is too large. When neutralization is complete, there should be a slight ibcreases in grid current on cither side of resonaner.

Grid Loading

The use of a neutralizing circuit may often be avoided by loading the grid circuit if the driving stage has some power capability to spare. Loarting by tapping the grid down on the grid tank coil for the plate tank roil of the driver in the (ase of capacitive coupling), or by a resistor from grid to cathode is effective in stabilizing an :mplifier, but either device may increase v.h.f.
harmonics. The best loading system is the use of a pi-section filter, as shown in Fig. 6-21I3. This cireuit paces a capacitance direetly between grid and cathode. This not only provides the desirable loading, but also a very elfective capacitive short for v.h.f. harmonics. A $100-\mu \mu \mathrm{f}$. mica capacitor for C_{8}, wired directly between tube terminals, will usually provide suffieient loading to stabilize the amplifier.

V.H.F. Parasitic Oscillation

Parasitic oscillation in the v.h.f. range will take place in almost every r.f. power amplifier. To test for v.h.f. parasitic oscillation, the grid tank coil (or driver tank coil in the case of capacitive eoupling) should be short-circuited with a clip lead. This is to prevent any possible t.g.t.p. oscillation at the operating frequency which might lead to confusion in identifying the parasitic. Any fixed hias should be replaced with a grid leak of 10,000 to 20,000 ohms. All load on the output of the amplifier should be disconneeted. Plate and screen voltages should be redued to the point where the rated dissipation is not exceeted. If a Variat is not available, voltage may be redued by a 115 -volt lamp in series with the primary of the plate transiormer.

With power applied only to the amplifier under test, a search should be made by adjusting the input eapacitor to several settings, inchuding minimum and maximum, and turning the plate capacitor through its range for each of the gridcaparitor settings. Any grid current, or any dip or flicker in plate current at any point, indicates oscillation. This can beconfirmed by an indirating alsorption wavemeter tuned to the frequency of the parasitic and held close to the plate lead of the tube.

The heavy lines of rig. 6-24A show the usual parasitie tank circuit, which resonates, in most cases, hetween 150 and 200 Me . For each type of tetrode, there is a region, usually below the parasitic frequency, in which the tube will be selfneutralized. By adding the right amount of inductance to the parasitic cireuit, its resonant frequency can be brought down to the frequency

Fig. 6-24-A—Usual parásitic circuit. B-Resistive loading of parasitic circuit. C-Inductive coupling of loading resistance into parasitic circuit.
at which the tube is self-neutralized. However, the resonant frequency should not be brought down so low that it falls close to 'TY Channel 6 (88 Mc .). From the consideration of TVI, the circuit may be loaded down to a frequeney not lower than 100 Me . If the self-neutralizing frequenty is below 100 Me ., the rircuit should be loaded down to somewhere between 100 and 120 ML . with inductance. Then the parasitic can be suppressed by loading with resistance, as shown in Fig. 6-24B. A coil of 4 or 5 turns, $1 / 4$ ineh in diameter, is a good starting size. With the tank capacitor turned to maximum capacitance, the areuit should be checked with a g.d.o. to make sure the resonance is ahove 100 Mc . Then, with the shortest possible loads, a nonimductive 100 -ohm 1 -watt resistor should be comected arross the entire coil. The amplifier should be tuned up to its highest-froquency band and operated at low voltage. The tap should be moved a little at a time to find the minimum number of turns required to suppress the parasitic. Then voltage should be increased until the resistor begins to feel warm after several minutes of operation, and the power input noted. This input should be compared with the normal input and the pourer rating of the resistor increased hy this proportion: i.e., if the power is half normal, the wattage rating should be doubled. This inerease is best made by connecting 1 -watt carbon resistors in parallel to give a resultant of about 100 ohms. As power input is inereased, the parasitic may start up again, so power should be applied only momentarily until it is made rertain that the parasitie is still suppressed. If the parasitic starts up again when voltage is raised, the tap must be moved to include more turns. So long as the parasitie is suppressed, the resistors will heat up only from the opratingfrequency eurrent.

Since the resistor can be placed across only that portion of the parasitic circuit representer iby L_{r}, the latter should form as large a portion of the rircuit as possible. Therefore, the tank and bypass caparitors should have the lowest possible inductance and the leads shown in heavy lines should be as short as possible and of the heaviest practical conductor. This will permit L_{p} to be of maxinum size without tuning the circuit below the $100-\mathrm{Mr}$. limit.

Another arrangement that has been used successfully is shown in Fig. $6-2.4 \mathrm{C}$, A small turn or two is inserted in place of L_{p} and this is coupled to a circuit tuned to the parasitic frequeney and loaded with resistance. The heavy-line circuit should first be checked with a g.d.o. Then the loaded dircuit should be tuned to the same frequency and compled in to the point where the parasitic ceases. The two coils can be wound on the same form and the coupling varied by sliding one of them. slight retuning of the loaded cireuit may be required after coupling. Start out with low power as before, until the parasitic is suppressed. Since the loaded circuit in this case carries much less operating-frequency current, a single 100 -ohm $1-$ watt resistor will often be sufficient and a $30-\mu \mu$ f. miea trimmer should serve
as the tuning capacitor, C_{p}.

Low-Frequency Parasitic Oscillation

The screening of most transmitting screen-grid tubes is sufficient to prevent low-frequency parasitic oscillation caused ber resonant circuits set up be r.f. chokes in grid and plate circuits. Should this type of oscillation (usually betwern 1208 and 200 ke .) orour, soer paragraph under triode amplifiers.

PARALLEL-TUBE AMPLIFIERS

The cirwuits for parallel-tube amplifiers are the same as for a single tube, similar terminals of the tubers loing eonnected together. The grid impedance of two tulses in parallel is hatl that of a single tube. This means that twien the griel tank caparitanee shown in Fig. 6-20 should be used for the sime (2.

The phate load resistane is halved so that the plate tank capabitance for at single tube (Fïg. (i-10) also should be doubled. The total grid current will be doubled, so to maintain the same grid bias the grid-leak resistance should be half that used for a single tube. The required driving power is doubled. The capacitance of a neut ralizing capacitor, if used, should be cloubled and the value of the sereen dropping resistor should be rut in half.

In treating parasitic oscillation, it is often necessary to use a choke in earh plate lead, rather that one in the eommon lead to avoial building in a push-pull type of v.h.f. circuit, a factor in oltatining efficient operation at higher frequencies.

PUSH-PULL AMPLIFIERS

Basic push-pull cirruits are shown in Fig. (6-26C and D). Amplifiers using this circuit are cumbersome to bandswiteh and consequently are not very popular below 30 Me . However, sinere the push-pull configuration places tube input and output rapacitances in series, the cerenit is widely used at in Me. and higher.

TRIODE AMPLIFIERS

Circuits for triode amplitiers are shown in Fig. 6-26. Neglecting references to the screen, all of the foregoing information applies equall:well to triodes. . Ill triode straight amplifiers must be neutralized, as Fig. 6-26 indicates. From the tube tables, it will be seen that triodes require considerably more driving power than screengrid tubes. However, they also have less power semsitivity, so that greater leodnack ran be tolerated without the danger of instability.

Low-Frequency Parasitic Oscillation

When r.f. chokes are used in both grid and plate circuits of a triode amplifier, the splitetator tank capacitors combine with the r.f. chokes to form a low-frequency parasitic circuit, unless the amplifier circuit is arranged to prevent it. In the circuit of Fig. 6-26l3, the amplitier grid

Fig. 6-25-When a pi-network output circuit is used with a triode, a balanced grid circuit must be provided for neutralizing. A-Inductive-link input. B-Capacitive input coupling.

Fig. 6-26-Triode amplifier circuits. A-Link coupling, single tube. B-Capacitive coupling, single tube. C-Link coupling, push-pull. D-Capacitive coupling, push-pull. Aside from the neutralizing circuits, which are mandatory with triodes, the circuits are the same as for screen-grid tubes, and should hove the same volues throughout. The neutralizing capacitor, C_{1}, should have a capacitance somewhat greater than the grid-plate capacitance of the tube. Voltage rating should be twice the d.c. plate voltage for c.w., or four times for plate modulation, plus safety factor. The resistance R_{1} should be at least 100 ohms and it may consist of port or preferably all of the grid leak. For other component volues, see similor screen-grid diagrams.

Fig. 6.27-A-Grounded-grid triode input circuit. B-Tetrode input circuit with grid and screen directly in para!lel. C -Tetrode circuit with d.c. voltage applied to the screen. Plate circuits are conventional.
pedance and a relatively high driver-power requirement. The additional driver power is not consumed in the amplifier but is "fed through" to the plate rircuit where it combines with the normal plate output power. The total r.f. power output is the sum of the driver and amplifier output powers less the powry normally required to drive the tube in a grounded-eathode rircuit.

Positive feedlack is from plate to eathode through the plate-cathode, or plate-filament, eapacitance of the tube. Sime the grounded grid is interposed botween the plate and cathode, this eaparitance is very small, and moutralization usually is not neressary.

A disadvantage of the grounded-grid rireuit is that the eathode must be isolated for r.f. from ground. This presents a practical difliculty, especially in the ease of a filament-type tube whose filament current is large. Another disadvantage in plate-modulated phone operation is that the driver power fed through to the output is not modulater.
The chief application for grounded-grid amplifiers in amateur work at frequencies below 30 Mr . is in the rase where the avalable driving power far exceeds the power that cam be used in driving a conventional grounded-eathode amplitier.
D.e. electrode voltages and rurrents in grounded-grid triode-amplitier operation are the same as for grounded-a thode operation. Approximate values of driving power, driving imperlane, and total power output in Class C operation can be calculated as follows, using information normally provided in tube datat sheets. R.m.s. values are of the fimblamental components:

```
\(\boldsymbol{E}_{\mathrm{p}}=\) r.m.s. value of r.f. plate vollage
    \(=\frac{\text { d.c. plate rolls }+ \text { d.e. hins volts }- \text { peak r.f. grid volls }}{1.41}\)
\(\boldsymbol{I}_{\mathrm{p}}=\) r.m.s. value of r.f. plate current
    \(=\frac{\text { rated poueer outpul watls }}{E_{\mathrm{s}}}\)
\(\boldsymbol{E}_{\mathrm{g}}=\) r.m.s. ralue of orid diring voltage
    \(=\frac{\text { peak r.f. orid volis }}{1.41}\)
\(I_{\mathrm{R}}=\) r.m.s. value of r.f. orid eurrent
    \(=\underline{\text { rated driving power wall }}\)
    \(E_{\text {R }}\)
```

Then,
Driving potier (wats) $=E_{\mathrm{E}}\left(I_{n}+I_{\mathrm{g}}\right)$
Driring impalanef (ohms) $=\frac{E_{\mathrm{g}}}{J_{\mathrm{K}}+I_{\mathrm{p}}}$
Pourer fed through from drirer stage (wath) $=E_{\alpha} I_{0}$
Total poirer output (wals $)=J_{\mathrm{F}}\left(E_{\mathrm{R}}+E_{\mathrm{R}}\right)$
Screen-grid tubes are also wed sometimes in grounded-grid amplifiers. In some rases, the sereen is simply romected in patallel with the grid, as in Fig. (i-2;13, and the tube operates as: a high- μ triode. In other rases, the sereen is hypassed to ground and operated at the usual d.re. potential, as shown at C. Since the sereen is still in parallel with the grid for ref, operation is very much like that of a triode exerpt that the positive voltage on the sereen redures driver-power requirements. Since the information usually furnished in tube-data sheets rloes not apply to triode-type operation, operating conditions are usually determined experimontally. In general, the bias is adjusted to produce maximum output (within the tubers diseipation rating) with the driving power available.

Fig. ti-28 shows two methods of roupling at grounded-grid amplifier to the 80 -ohm output of an existing trammitter. It A an I , network is used, while a conventional link-coupled tank is shown at B. The values shown will be approximately eorreat for most trionde amplifiors operating at 3, is Mr. Vatues should be cut in hatf earh time frequeney is doubled, i.e., $250 \mu \mu$ f. and 7.5 $\mu \mathrm{h}$. for C Me. ente.

Filament Isolation

Since the filament or cat thode of the grounderlgrid amplitier tuhe onerates at some r.f. potential above ground, it is neressaty to isolate the filament from the power line. In the eave of lowpower tubes with indirectly hested cathodes, it is sometimes feasible to depend on the small eaparitance existing between the heater and rathome, although it is proferable to provide additional isolation.

In Fig. 6-29, isolation is provided by a special low-caparitame filament transformer. RN' (atrries only the eathode eurrent. However, since transformers of this type are not generally avail-

Grounded-Grid Amplifiers

able, other means must usually be emplowed.
In Fig. (i-3913, chokes are used to isolate the filament from the filament transformer. The reartance of the chokes should be several times the input impedance of the amplifier and must be wound with conductor of suffirient size to carry the filament current. It is usually necessary to use a transformer delivering more than the rated filament voltage to eompensate the voltage drop aross the chokes. In Fig. 6 - 29 C , r.f. chokes are placed in the primary side of the transformer. This reduces the current that the chokes must handle, but the filament transformer must be mounted so that it is sumed from the chassis and other grounded metal to minimize the eaparitance of the transformer to ground. RFC carries cathode current only.

In the case of the input circuit of Fig. 6-28B, it is sometimes feasible to wind the tank inductor with two conductors in parallel, and feed the filament voltage to the tube through the two conductors, as shown in Fig. (i-29) . This arrangement does not lend itself well to bandehanging, however.

- FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequency at which it is being driven may be obtained from an amplifier stage if the output cireuit is tuned to a harmonic of the exciting frequency instead of to the fundamental. Thus, when the frequency at the grid is 3.5 Mc ., output at 7 Mc ., 10.5 Mc., 14 Mc., etc., may be obtained by tuning the plate tank circuit to one of these froquencies. The circuit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions may reguire change for maximum multiplier afliciency.

Efficiency in a single- or parallel-tube multiplier comparable with the efficiency ohtainable when operating the same tube as a straight amplifier involves tlecreasing the operating angle in proportion to the increase in the order of frequency multiplication. Ohtaining output comparable with that possible from the same tube as a straight amplifier involves greatly increasing the plate voltage. A practical limit as to efficiency and output within normal tube

Fig. 6.29-Methods of isoluting filament from ground. A-Special low-capacitance filament transformer. BR.f. chokes in filament circuit. C-R.f. chokes in transformer primary. D-Filament fed through input tank inductar.

(B)

165

6-HIGH-FREQUENCY TRANSMITTERS

ratings is reached when the multiplier is operated at maximum permissible plate voltage and maximum permissible grid current. The plate current should be reduced as necessary to limit the dissipation to the rated value by inereasing the bias. Iligh efficiency in multipliers is not often required in practice, since the purpose is usually served if the frequency multiplication is obtained without an appreciable gain in power in the stage.

Multiplications of four or five sometimes are used to reach the bands above 28 Mc . from a lower-frequency crystal, but in the majority of lower-frequeney transmitters, multiplication in a single stage is limited to a factor of two or three, because of the rapid decline in practicably obtainable effieiency as the multiplication factor is inereased. Screen-grid tubes make the best frequeney multipliers because their high power-sensitivity makes them easier to drive properly than triodes.

Since the input and output circuits are not tuned close to the same frequency, neutralization usually will not be required. Instances may be encountered with tubes of high transconductance, however, when a doubler will oscillate in t.g.t.p. fashion, requiring neutralization. The link neutralizing system of Fig 6-23A is convenient in such a contingeney.

Push-Push Multipliers

A two-tube circuit which works well at even harmonies, but not at the fundamental or odd harmonies, is shown in Fig. fi-30. It is known as

Fig. 6-30-Circuit of a push-push frequency multiplier far even harmanics.
$C_{1} L_{1}$ and $C_{2} L_{2}$-See fext.
 age rating equal to plate valtage plus safery factar.
RFC -2.5 -mh. r.f. chake.
the push-push eircuit. The grids are connected in push-pull while the plates are conneeted in parallel. The efficiency of a doubler using this circuit may approach that of a straight amplifier, because there is a plate-current pulse for each cycle of the output frequency.

This arrangement has an advantage in some applications. If the heater of one tube is turned off, its grid-plate capacitance, being the same as that of the remaining tube, serves to neutralize the eircuit. Thus provision is made for either
straight amplification at the fundamental with a single tube, or doubling frequency with tro tubes as desired.

The grid tank cireuit is tuned to the frequency of the driving stage and should have the sam. constants as indicated in Fig. 6-20 for balanced grid circuits. The plate tank cireuit is tuned to an even multiple of the exciting frequener, and should have the same values as a straight amplifier for the harmonic frequeney (see Fig. $6-10$), bearing in mind that the total plate current of both tubes determines the C to be used.

Push-Pull Multiplier

A single- or parallel-tube multiplier will deliver output at either even or odd multiples of the exeiting frequeney. A push-pull multiplier does not work satisfactorily at even multiples because even harmonies are largely eanceled in the outpot. On the other hand, amplifiers of this type work well as triplers or at other odd harmonies. The operating requirements are similar to those for single-tube multipliers, the plate tank circuit being tuned, of course, to the desired odd harmonic frequency.

METERING

Fig. 6-31 shows how a voltmeter and milliammeter should be comected to read various voltages and currents. Voltmeters are seldom installed permanently, since their principal use is in preliminary checking. Also, milliammeters are not normally installed permanently in all of the positions shown. Those most often used are the ones reading grid current and plate current, or grid current and cathode current.

Milliammeters come in various current ranges. Current values to be expeeted can be taken from the tube tables and the meter ranges seleeted accordingly. To take care of normal overloads and pointer swing, a meter having a current range of about twice the normal current to he expected should be selected.

Meter Installation

Grid-current meters connected as shown in Fig. 6-31 and meters conneeted in the eathode circuit need no special precautions in mounting on the transmitter panel so far as safety is eoneerned. However, milliammeters having zeroadjusting serews on the face of the meter should be recessed behind the panel so that aecidental contact with the adjusting screw is not possible. if the meter is conneeted in any of the other positions shown in Fig. 6-31. The meter can be mounted on a smatl subpanel attached to the front panel with long screws and spacers. The meter opening should be coveref with glass or relluloid. Illuminated meters make reading easier. Reference should also be made to the TVI chapter of this Itandbook in regard to wiring and shifelding of meters to suppress TTI.

Meter Switching

Milliammeters are expensive items and there-

Fig. 6-31-Diagrams showing placement of voltmeter and milliommeter to obtain desired measurements. A-Series grid feed, parallel plate feed and series screen voltagedropping resistor. B-Parallel grid feed, series plate feed and screen voltage divider.
fore it is seldom feasible to provide even gridcurrent and plate-current meters for all stages. The exciter stages in a multistage transmitter often do not reguire metering after initial adjustments. It is common practice to provide a meterswitching sustem by which a single milliammeter may be switched to read currents in as many circuits as desired. surh a meter-switchang circuit is shown in lig. ti-32. 'lhe resistors, h, are connected in the various circuits in place of the milliammoters shown in Fig. (6-31. Nince the resintance of h is severral times the intermal resistance of the milliammeter, it will have no practical effect upon the reading of the meter.

When the moter must read eurrents of widely differing values, a meter with a range sufficiently low to aceommodate the lowest values of current to be measured maty be selected. In the eireuits in Which the rurrent will be above the sale of the meter, the resistance of R ran be adjusted to a lower value which will give the meter reading a multiphing factor, (Nere chapter on Measurements.) Care should be taken to observe proper polarity in masking the connections hetween the resistors and the switeh.

A variation of the foregoing method uses the low-current meter as a voltmeter to measure the voltage drop across various low resistances placed in the lines where the currents are to be meas ured. Both the line resistor and the higher re-
sistance running to the meter (eorresponding to a normal voltmeter multiplier) ean be varied, to give a wide range for the single meter. Standard values of resistors can usually be found for any desired range.

AMPLIFIER ADJUSTMENT

Farlier sertions in this chapter have dealt with the design and adjustment of input (grid) and output (plate) roupling systems, the stabilization of amplifiers, and the methods of obtaining the required electrode voltages, Refercnce to these sections should he made as neerssary in following a proredure of amplifier aljust ment.

The objective in the adjustment of an intermediate amplifier stange is to secure adequate excitation to the following stage. In the case of the output or final amplifier, the objeetive is to obtain maximum power output to the antenna. In luoth cases, the adjustment must be consistent with the tube ratings as to voltage, current and dissipating ratings.

Adequate drive to a following amplifier is normatly indieated when rated gride current in the following stare is olotained with the stage operating at rated bias, the stage loaded to rated plate current, and the driver stage tuned to resonames. In a final amplifier, maximum output is normally indicated when the output coupling is adjusted so that the amplifier tube draws rated plate current when it is tuned to resoname.

Resoname in the plate circuit is nomally indicated by the dip in plate-rurrent reading as the plate tank raparitor is tuned through its range. When the stage is unloaded, or lighty

Fig. 6-32-Switching a single milliommeter. The resistors, R, should be 10 to 20 times the internal resistance of the meter; 47 ohms will usually be satisfactory. S_{1} is a 2 section rotary switch. Its insulation should be ceromic for high voltages, and an insulating coupling should always be used between shaft and control.
loaded, this dip in plate current will be quite pronounced. As the loating is increased, the dip will become less noticeable. See lig. 6-t. However, in the case of a sercen-grid tube whose screen is fed through a series resistor, maximum output may not be simultaneous with the dip in pate current. The reason for this is that the sereen current varies widely as the plate circuit is tuned through resonamce. This variation in sereen rurrent eamses a romresponding variation in the voltage drop across the sereen resistor. In this case, maximum output may oceur at ath adjustment that results in an optimum combination of screen voltage and nearness to resonance. This effect will seldom be observed when the sercen is operated from a fixed-
 voltage source.

The first step in the adjustment of an amplifier is to stabilize it, both at the operating frequency by neutralizing it if necessary, and at parasitic frequencies by introducing suppression circuits.

If "flat" transmission-line eoupling is used, the output end of the line should be matelied, as deseribed in this chapter for the rese where the amplitier is to feed the grid of a following stage, or in the tramsmission-line chapter if the amplitier is to feed an antenna system. After proper mateh has been ohtained, all adjustments in coupling should the mate at the input end of the line.

Until preliminary adjustments of exatation have been mate, the amplifier should be operated with filament voltage on and fixed bias, if it is required, but arren and plate voltages off. With the exriter eoupled to the amplifier, the coupling to the driver should be adjusted until the amplifier draws rated grid current, or somewhat above the rated value. Then a load (the antema grid of the following stage, or a dummy load) should be coupled to the amplifier.

With sureen and plate voltages (preferably reduced) applied, the plate tank rapacitor should be adjusted to resonance as indieated by a dip in plate current. 'Then, with full sereen and plate voltages applied, the coupling to the load should be adjusted until the amplifier draws rated plate current. Changing the mapling to the lowt will usually detane the tank eirevit, so that it will he necessary (0) radjust for resonance each time a change in coupling is made. An amplifier should not be operated with its plate circuit off reso-
nance for any exerept the briefest neressary time. since the plate dissipation indereases greaty when the plate dircuit is not at remomare. Also, a serern-grid tube should not be onerated without normal load for any appreciable length of time, since the serern dissipation incrowes.

It is normal for the grid current to derrease When phate voltage is aphlied, and to derrase again as the amplifier is loaded more havily. As the grid current fatls off, the coupting to the driver should be inereased to maintain the grid rurrent at its rated value.

COMPONENT RATINGS AND INSTALLATION

Plate Tank-Capacitor Voltage

In selecting a tank capacitor with a sparing between plates sufficient to prevent voltage breakdown, the peak r.f. voltage across a tank eircuit under load, but without modulation, may be taken conservatively as equal to the d.e. plate voltage. If the d.e. plate woltage ahow appears aross the tank rapanitor, this must be added to the peak r.f. voltage, making the total peak voltage twiee the d.e. plate voltage. If the amplifier is to be plate-modulated, this last value must be doubled to make it four times the d.e. plate voltage, becanse both d.e. and r.f. voltages double with 100-per-eent plate modulation. At the higher plate voltages, it is desirable to choose a tank circuit in which the d.e and modulation voltages do not appear across the tank capacitor, to permit the

Component Ratings

use of a smaller capacitor with less plate spacing. Fig. 6-3.3 shows the peak voltage, in terms of d.c. plate voltage, to he expected across the tank rapacitor in various circuit arrangements. These peak-voltage values atre given assuming that the amplifier is loaded to rated plate rarrent. Without lowd, the peak r.f. voltture will run murh highor.

The plate spacing to be used for a giver preak voltage will depend upon the design of the variable capacitor, influencing factors being the mechanical construction of the unit, the insulation used and its placement in respert to intense tields, and the caparitor plate shape and degree of polish. Capacitor manufacturers usually rate their products in terms of the peak voltage between plates. Typical plate spacings are shown in the following table.

Typical Tank-Capacitor Plate Spacings					
sipacing (In.)	Jeak Voltage	Spacing (In.)	$\begin{gathered} \text { P'erak } \\ \text { Voltage } \end{gathered}$	Spacing (In.)	Peak Coltage
0.015	1000	0.07	3000	0.175	7000
0.02	1200	0.08	3500	0.25	WKOO
0.0:;	1.800	$0.12 . \%$	4500	0.35	11000
0.0 .5	2000	0.15	18000	0.5	13000

Plate tank eapatiotors should be mounted as close to the tube as temperature considerations will premit, to make possible the shortest caparitive path from phate to cathode. Evpecially at the higher freducheies where minimum rireuit capabitaner beromes important, the rapacitor should he mounted with its stator phates well *pued from the chatsis or other shiedding. In "irruits where the rotor must he insulated from ground, the eapacitor should be mounted on reramie insulators of size commensurate with the plate voltage involved and - most important of all. from the viewpoint of safety to the operater - it well-imsulated colpling should be used betweren the caparitor shaft and the dial. The section of the shafl attached to the dial should be wedl groumber. This (ath be done eonveniently through the usu of pathel shafthenariug units.

Grid Tank Capacitors

In the cirenit of lig. 6 - 34.1 , the grid tank cat pacitor should have a voltage rating approximately equal to the hiasing voltage plus 20 per cent of the plate voltage. In the balaned eircuit of B, the voltage rating of each sfection of the raparitor should be this sume vatur.

The grid tank caparitor is preferably mounted with shidding betwern it and the tube socket for isohation purposes. It should, however, be mounted rlose to the socker su that a short lead can be prased through a hole to the socket. The rotor ground lad of bypass lated should be rum directly to the nearest point on the chassis or other shielding. In the eirenit of Fig. fi-3th, the same inaulating premations mentioned in connertion with the plate tank capateitor should be used.

Fig. 6-34-The voltage rating of the grid tank capacitor in A should be equal to the biasing voltage plus about 20 per cent of the plate voltage.

Plate Tank Coils

The inductance of a manufactured coil usually is based upon the highest plate-voltage/ plate-current ratio likely to be used at the maximum power level for which the coil is designed. Therefore in the majority of cases, the eapacitance shown by Figs. (i-9 and 6 -20 will be greater than that for which the coil is designed and turns must be removed if a Q of 10 or more is needed. At 28 Me., and sometimes 21 Me., the value of caparitanee shown be the chart for a high plate-voltage/plate-current ratio may be lower than that attainable in practice with the romponents available. The design of manufarfured coils usually takes this into consideration also and it may be found that values of capacitance greater than those shown (if stray capacitanere is included) are reguired to tume these coils to the band.

Manufactured coils are rated according to the plate-power input to the tube or tubes when the stage is loaded. Since the circulating tank current is much greater when the ampifior is unloaded, care should be taken to operate the amplifier conservatively when unloaded to prevent damage to the coil as a result of exceswive heating.

Tank coils should the mounted at least their diameter away from shidding to prevent a marked loss in Q. Exrept perhaps at 28 Mc., it is not important that the coil be mounted quite close to the tank rapacitor. Leads up to 6 or 8 inehes are permissible. It is more important to kepp the tank capacitor as well an other components out of the immediate field of the coil. For this reason. it is proferable to mount the coil so that its axis is parallol to the capacitor shaft, either alongside the eapacitor or above it.

There are many factors that must be taken into consideration in determining the size of wire that should be used in winding a tank eool. The ronsiderations of form factor and wire size that will produce a eoil of minimum loss are often of less importane in prate ier that the coil size that will fit into available spare or that will handle the reguired power without exerssive heating. This is particularly true in the cease of sereen-grid tubes where the relatively small driving power reguired can be cosily ohtained even if the losses in the driver are quite high. It may be considered preferable to take the power loss if the physical

6-HIGH-FREQUENCY TRANSMITTERS

size of the exciter can be kept down by making the coils small.

The accompanying table shows typial romductor sizes that are usually found to be adequate for varions power levels. For powers under 25 watts, the minimum wire sizes shown are largely. a matter of obtaining a coil of reasonable Q. *i far as the power is comermed, smatler wire could be used.

Wire Sizes for Transmitting Coils		
Pover Input (Wafts)	Band (.Mc.)	Wire size
1000	$\begin{aligned} & 2821 \\ & 1+-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{array}{r} 6 \\ 8 \\ 10 \end{array}$
500	$\begin{aligned} & 2821 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{array}{r} 8 \\ 12 \\ 14 \end{array}$
150	$\begin{gathered} 28-21 \\ 14-7 \\ 3.5-1.8 \end{gathered}$	$\begin{aligned} & 12 \\ & 14 \\ & 18 \end{aligned}$
75	$\begin{aligned} & 28-21 \\ & 14-7 \\ & 3.5-1.8 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \\ & 22 \end{aligned}$
2.) or less*	$\begin{aligned} & 28-21 \\ & 1+7 \\ & 3.5-1.8 \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \\ & 28 \end{aligned}$
* Wire size limited principally by consideration of Q.		

Spare-winding the turns invariably will result in a coil of higher (e, especiatly at frequencies above $\bar{\sigma}$ Ie, and at form factor in which the turns spacing results in at coil length betwern 1 and 2 times the diameter is usathy considered satisfartory, Spate winding is esperially desirable at the higher power levels beranse the heat developed is dissipated more readily. The power lost in at tank roil that develops appreciable heat at the highorpower levels does not usuadly represent a serious loss percentarewise. A more serions comsequence. especially at the higher frequencios, is that coils of the popular "air-wound" trpe supported on plastie strips maty deform. In this case, it maty be necessary to use wire (or copper tuling) of sulfirient size to make the coil self-supporting. Coils wound on tubular forms of 'eramic or micit-filled bakelite will also stand higher temperatures.

Plate-Blocking and Bypass Capacitors

Plate-blocking capaceitors should have low induetance: therefore rapacitors of the mica or ceramie type are preforred. For frequencies between 3 , 5 and 30 Me., a capacitane of 0.001 is commonly used. The voltage rating should be 25 to $50{ }^{c}{ }_{c}$ abowe the phate-supply voltate (twier this rating for plate modulation).
small disk ceramic eapacitors (approximately $1 / 4$ inch in diameter) are to be preferred as byatss capaeitors, since when they are applied eorrectly. (see TVI chapter), they are serios rewonant in the TV range and therefore are an important measure in filtering power-supply leads. ('ipacitors of this
tepe are rated at dillo to 1000 volts. At higher voltages, disk ceramics with higher-voltage ratings, or ratpacitors of the TV' "doorknob" tyu" are recommended. Voltage ratings ol byase capacitors should be similar to those for booking (:Lpacitors.

R. F. Chokes

The rharatereristies of any r.f. whoke will vary with frequency, from chanderistios mesembling those of at paralled-resonsut rireuit, of high impedanere to those of a series-resonant circuit, where the impedance is lowest. In between these extremes. the choke will show varying amounts of inductive or eaparitive reactance.

In serios-feed rircuits, these characteristics are of relatively small importane because, in a correctly operating rirenit, the r.f. voltage across the choke is negligible. In a parallelfeed circuit, however, the shoke is shunted aross the tank circuit, and is subjere to the full tank r.f. voltage. If the choke does not present it sufficiently high imperdance, renough power will be ahsorbed by the choke to catuse it to burn out. With chokes of the usual tepe, wound with small wire for compactmess, a rekatively small amount of power loss in the choke will cause excessive heating.
To avoill this, the choke mast have a sulficiently high reatanere to be efferetive at the lowest frequency, and vet have no series resonances, ne:t the higher-freculumey bands. The design of a rhoke that meets regnirements ower at range as wide as 3.5 to 30 Mr . at the higher voltages is quite eritical.

Gniversal pie-wound chokes of the "receiver" type (2.5 mh ., 125 mat .) are usually satisfactory if the plate voltage does not exeed 750 . For higher volt ages, a single-layer solenoid-tyme choke of correct design has been found satisfactory. The National type IR-155. and Raypat IRI-100, RL-101 and R L L - 102 are representative manufactured types. An example of a satisfactory homemade choke for voltages up to at least 30M0 consists of 112 turns of No. 26 wire, spaced to at length of $37 / \mathrm{s}$ inches on a 1 -inch reramic form (Centralat, stamd-off insulator, type X3022H). A ceramie form is alvisable from the consideration of temperature. This choke has only one series resonance (near $2+\mathrm{Mc}$.), and exhibits an equivatlent parallel resistance of 0.25 megohm or more in all of the amateur bands from 80 through 10 .
since the characteristies of a choke will be affected by any metal in its field, it should be checked when mounted in the position in which it is to be used, or in a temporary set-up simulating the same ronditions. The plate end of the choke should not be comnerted, but the power-supply end should be connected directly, or begnased, to the chassis. The g.d.o. should be coupled as rlose to the ground end of the rhoke as prsihle, series resonances, indicating the frequencies of greatest loss. should be cheeked with the choke short-rireuited with a short pieee of wire. Parallol resonances, indicating frequencies of least lose, ate cherked with the short removed.

A Three-Band Oscillator Transmitter for the Novice

The novice tramsmitter shown in Figs. (i-35-(i-38, inclusive, is easy to build and get working. It is a reystal-controllod, one-tube oscillator capable of ruming at 30 watts imput on the :3.5-, 7-, and 21-Mr. Novire bands, I sperial feature of the transmitter is a built-in keying monitor which permits the operator to listen to his own sernding.

Ragulated voltage is used on the sereern of the oseillator. This minimizes frequency shift of the oseillator with kerying, which is the cause of chirp. In addition, a small amount of cathode bias (R_{4}) is used on the oscilator, This also temde to improve the keving chardeteristios in a cathodekeved simpla-reseilator transmitter.

Circuit Details

The oscillator cireut used is the grid-plate type, and the tube is a bilegit pentode. The power output is taken from the phate rimenit of the tube. (On so meters, ath somener erystal is nereded. (Th 10, wither so- or tometor crystals ran be used, although slightly more output will Io ohtained by using to-meter arystals. To oprater on 15 meters, at to-moter erystal is nowl.
The tank cirenit is a pi motwork. The plate bank reapacitor is the variable ("6, and the tank iondurdane is $L_{2} L_{3}$. 6 ', is at woseretion variable. approximately $3 \sin ^{2} \mu \mu \mathrm{t}$, per soction, with the stators commeded together to give a total raparitance of aloout \mathbf{T} :30 $\mu \mu \mathrm{f}$. This range of "apacitanere is adecquate for rompling to 50 or $\overline{7}$ a ohms on 7 and 21 Mr. When operat ing on 3.5 Me, an addi-
 needed mange of rapacitaner. L_{1} and h_{2} are (ssomtial for suppressing v.h.f. patasitic: oscollations.

 fact, J_{1}. The headphones are plugged into J_{2}, a
jack mounted on the back of the transmitter chassis. Another jatok, $J_{3,}$, is used as a torminal for the leads that go to the headphome jawle on the reaciver.

Power Supply

The power supply uses at olt i in a full-wave cirenit. I capacitor-input filter is nised and the output voltage is approximately 370 volts with a cathote eurrent of 90 milliamperes. A $0-150$ milliammoter wats cathodo curvent. The sereen and grid currents arre appoximately 1 ma. when the oseiliator is loaded.

Construction

Al! of the components, including the power supply, are mounted on a $2 \times \overline{ } \times 1: 3$-inch aluminum chassis that is in then enclosed in a
 15:9-). (Gue of the removable (eowers of the box is usod as the front pathel, as shown in lig. (6-35). The box has a lozinch lip aromed bot hopenings, so the bettem adge of the ehassis should he plaved one inch from the bottom of the paned. The sides of the chassis are also one inch from the sides of the patele The ehassis is held to the patmel $\mathrm{b}_{\mathrm{y}} \mathrm{S}_{2}, J_{1}$, and the mometing sorews for the arystal sorket. so both the front edge of the Whassis and the pamel must be drilled alike for these components, N_{1}, at the left in the front view, is one inch from the edge of the chassis (that is, two inches from the colge of the panel) and rentered vertically on the chassis celge. Thus it is one inch from the bottom of the ehassis redge and two inehes from the bottom edge of the pathel, The bole for J_{1} is erentered on the chassis edere and the holes for the revalal socket are drilledat the right-hand end of the chassis to correspond with the position of S_{1} at the left.

Fig. 6-35-This 30 -watt three-band Novice transmitter is enclosed in a $7 \times 9 \times$ 15 -inch aluminum box. A group of $1 / 4$-inchdiameter holes should be drilled in the top of the box over the oscillator tube, as shown, to provide ventilation. A similar set of holes should be drilled in the back cover behind the oscillator circuit.

6 - HIGH-FREQUENCY TRANSMITTERS

Fig. 6-36-Circuit diagram of the three-band transmitter. Unless otherwise specified, capacitances are in $\mu \mu$ f. Resistances are in ohms ($\mathrm{K}=1000$).
$\mathrm{C}_{1}-3.30-\mu \mu \mathrm{f}$. trimmer.
C_{2} - $100-\mu \mu \mathrm{f}$. mica.
$\mathrm{C}_{3}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{15}, \mathrm{C}_{18}-0.001$ - $\mu \mathrm{f}$. disk ceramic.
$C_{4}, C_{5}-0.001-\mu f .1600$-volt disk ceramic.
$\mathrm{C}_{6}-365-\mu \mu \mathrm{f}$. variable capacitor, single section, broad-cast-replacement type.
$\mathrm{C}_{7}-0.001-\mu \mathrm{f} .600$-volt mica.
$\mathrm{C}_{8}-365-\mu \mu \mathrm{f}$. variable capacitor, dual section, broadeastreplacement type.
$\mathrm{C}_{12}-500-\mu \mu \mathrm{f}$. mica or ceramic.
$\mathrm{C}_{13}-0.01-\mu \mathrm{f}$. disk ceramic.
$\mathrm{C}_{1.4}-8 / 8-\mu \mathrm{f} .450$-volt dual electrolytic capacitor.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Open-circuit phone jack.
J_{3}-Phono jack, RCA type.
J_{4}-Coaxial chassis connector, SO-239.
$\mathrm{L}_{1}-10$ furns No. 18 wire space-wound on R_{2}.
There is nothing critical about the placement of the meter or the shafts for C_{6}, C_{8} and S_{1}. As shown in Fig. 6 -38, C_{6} is mounted direetly above I_{1} and approximately two inches from the top of the panel. ('s similarly is above the crystal socket and on the same horizontal line as C_{6}. S_{1} is about at the middle of the sequare formed by these four components.

The holes on the rear edge of the chassis for the coaxial connertor J_{4}, phone jark J_{2}, receiver connector,J_{3}, and for the a.ce corl are drilled at the same height as those on the frome edge. Aecess holes should be cut in the rear cover of the box at the corresponding positions: these holes may be large enough to clear the components, but not larger than is neressaty for this purpose. The cover fits tightly against the rear edge of the chassis and thus maintains the shielding for preventing radiation of harmonies
$\mathrm{L}_{2}-6$ turns No. 16 wire, 8 turns per inch, $11 / 4$ inches diam. (B \& W 3018).
L_{3} - 23 turns No. 16 wire, 8 turns per inch, $11 / 4$ inches diam. ($B \& W$ 3018). The 7-Mc. tap is 18 turns from the iunction of t_{2} and t_{3}.
$\mathrm{L}_{1}-8-\mathrm{h} .150-\mathrm{ma}$. filter choke (Thordarson 20C54).
$M_{1}-0.150 \mathrm{ma}$. (Shurite 950).
$R_{1}-R_{8}$ inc.-As specified.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-2.5$.mh. r.f. choke (National R-50 or or similar).
S_{1}-Single-pole 3-position switch (Centralab 1461).
S_{2}-Single-pole single-throw toggle switch.
T_{1}-Power transformer: $360-0-360$ volts, 120 ma ; 6.3 volts, 3.5 amp ; 5 volts, 3 amp (Stancor 9 M 8410).
$Y_{1}-C r y s t a l($ see text).
in the television bands. However, it is alvisathle to fasten the cover to the chassis edge with a few sheet-metal serews, in order to insure good eleotrical contact.

There are several different types of broadeastreplacement variable capacitors on the market. some of these have holes taperd in the front of the frame, and this tepe can be monnted directly on the panel using marhine serews and parers. Others have mounting holes only in the bottom. In this rase, the caparitor can be mounted on a pair of L-shaped brackets made from strips of aluminum.

Both L_{2} and L_{3} are supported by their leads. One end of L_{3} is romected to the stator of C_{8} and the other end is ronnected to a junction on top of a one-inch-long steatite standeofi insulator. L_{2} hats one end connerted to the stator of f_{6} and the other end to one of the terminats on st.

Fig. 6.37-Rear view of the fronsmitter showing the placement of components above chassis. The loading capacitor, C_{s}, is of the left, L_{3} is the vertical coil and L_{2} the horizontal one. Rubber grommets are used to prevent chafing and to furnish additional insulation on the leads coming from below chassis.

The voltage-dividing network ronsisting of R_{6} and h^{\prime}; provides the romed voltage for operating the keving monitor, Re is 1.6 megohns, a value obdained hy using two 3.3 -megohm 1 -watt resistors in parsille.J. These resistors and other small components maty be mounted on stambard bakelite tie points.

Adjustment and Testing

When the unit is ready for testing, a 15 - or $25-w a t t$ cheotrie light will serve as a dammy load. One side of the lamp should be eonnected to the output leat and the other side to chassis ground. A crestal appropriate for the band to be used shoulal be plagged into the crystal soeket, and a key ronnered to the key jack. St should be sed to the proper band. somat then be closed and the transmitter allowed to wam up.

Sot C's at maximum rapacitaner (phates completely meshed) and (lose the ker. (Quickly tume 6_{6} to resonanere, as indieated by a dip in the rathode-current roding. (iradually decrase the sapacitance of ('s, while retouching the tuning of C_{6}^{\prime} as the loading increases. Inereased loading
will be indicated by increasing lamp brightness and hy latger values of cathoule courent. Tune for maximum lamp brillianer. The cathode current should read betwern ! 0 and 100 milliamperes When the oscillator is fully loaded.
('1 should be adjusted for the best keying characteristics consistent with reasonably good power output. It is not advisable to attempt to adjust C_{1} with a lamp dummy load, since the lamp resistance will change during the heating and rooling that take place during keying, and this will affect the keving chamacteristic of the uscillator. L'se a regular' antenna, with or without an antenna coupler or matching network as the antemat system may require, and listen to the keying on the station recoiver. Ikemove the antemat from the receiver to prevent overloading, and adjust the r.f. gain control for a signal level comparable with that at which signals on that band are nomally heard. Further details on ehocking keying will lex found in the chapter on keying and break-in.
(O)riginally described in QST' December, 1957.)

Fig. 6.38-Below-chassis view. Powersupply components are mounted in the left-hand side and the oscillator section is at the right-hand side. Mounted on the back wall of the chassis is the keying monitor. Although not visible in this view, the monltor components are mounted on a four-terminal tie point.

6-HIGH-FREQUENCY TRANSMITTERS

All-Band Inexpensive 40-Watt Transmitter

The transmitter shown in Figs. 6-39, 6-41 and 6- 42 combines the efficiency and flexibility of plug-in roils with good shielding for TVI prevention. It is a two-stage transmitter using a ti.lG7 erystal oscillator and an inexpensive tetrode amplifier. Eit her the 807 or the 1625 can be used for the amplifier; the 1625 is very cheap on surplus, but to offset this atvantage it has a 12.6 -volt heater requirement. If the power tramsformer has two 6.3 -volt windings ${ }^{\text {? }}$ they ran be connected in series to provide 12.6 volts for the eheaper 1625 . Or an extra 6.3 -volt filament transformer can be connected in series with the single 6.3-volt winding of a power transformer. llowever, if the extra filament transormer must be purchased (instead of borrowed) it might bo: cheaper to use the 807 .

Referring to the circuit diagram of the transmitter, Fig. 6-10, a 6.tGi grid-plate type erystalcontrolled oseillator is used. The output cin be funed to the erystal frequency or to multiples of it, depending upon the coil plugged in at L_{2}.

13oth 80- or to-meter ervistals are used; for sto meter operation a 3.5-MI crystal is used (L. is not required on this batud since L_{1} alone is the 80 -meter tank coil). The same ervistal will furnish adequate drive on 10 meters, with the osidlator working as a doubler, and on 20 meters, in which case the oseillator quadruples. A $4(1)$ meter erystal can be used for $\overline{\mathrm{T}}$ - Mc. work, for 14 Mr . by doubling in the oscillator plate circuit, and for 21 M1. with tripling in the oscillator. A 10 -meter erystal is required on 28 Mr ; ; the oscillat or doubles to 11 Me. and the amplifier doubles to 28 Me. The amplifier is operated straight through on all other hands.

The amplifier tank cireuit is a pi network designed primarily to work into 50 - and $\overline{5}$-ohm loads. It uses a $110-\mu \mu \mathrm{f}$. caparitor, C_{3}, for tuning. A two-section broadeast type variable caparitor, C_{6}, with approxinately tow $\mu \mu \mathrm{f}$. per section is used for adjusting the loading. The two sedions are connected in parallel to provide a total catpacitance of slightly over $900 \mu \mu \mathrm{f}$. Idditional capacitance is needed on 80 meters so mical (apacitors, C_{4} and C_{5}, are comected in parallel with C_{3} and C_{6}, respectively, when the 80 -meter tank

[^2]coil is plugged in. L_{3}, in the plate lead of the amplifier, is for suppressing parasitie oseillations.

Two methods of keving ate provided. The owcillator and amplifier can be keved simultaneously or the amplitier ratn be keyed by itself. In both cases the stages are keved by oprong and closing the eathode eirruits, some amateurs prefer break-in type operation, whieh reguires that both stages of the transmit ter be keved. Howerem, better keying - fewer clicks and chirps - result. with cathode keying when the owillator is permitted to ran cont inuously and the amplifier is keved.
S_{2} is used to switels the oweillator eathonde either to the keying lime or to ehassis ground. Also, s", ean be used as a "spotting" switch to rherk youn transmitting frequency with your reeviver, since switching the osidlator cathode to ground turns on the ospillator hut leaves the amplifier of so long as the key is opero.

A 0-1 milliammeter is connected as a low-range (appoximately 5 vols) voltmeter for measuring the amplifier grid and cathode currents. It ran be switched to either rireuit by means of S_{1}. Fullseate readinge are approximately 10 ma. for grid current and 200 mat. for cathode current, A third position of the meter switeh provides for using the meter as a $0-500$ d.re voltmeter for eherking the voltage on the amplifier sereen and oseillator phate, as outlined later.

Construction Details

A $3 \times 5 \times 3 \times$-inch aluminum chassis is used for the ref. unit. Before starting construction study the top and lottom views of the transmitter; while there is nothing highly oritical about the placement of components it is a good ideato follow the general arrangement shown in the photographes.

Before installing the tube and roil socketmount C_{3}, ('2, and (${ }_{6}$ temporarily in plate. This will show you how murh space is available for mount ing the surkets.

Note in Fig. 6 - 40 that the pin connedions atre different for the 16225 and 807 . In addition, the two types require different sockets. The 1625 hat a $\overline{\mathrm{T}}$-pin base and takes a large $\overline{\mathrm{T}}$-pin surket (Smphenel 76 MID'th) while the 807 takes an ordinary 5 -prong socket

The leads from J_{2} to the difierent vireuits are all run in shielded wire (Belden 8885) bypased at cath end he a 0.001 disk ceramic eaparitor Lsing the shielded wire and bypasise helps to prevent hammonic leakage via the leads.

Fig. 6-39-The complete all-band 40. watt transmitter and pawer supply. The connecting pawer cable (visible across the back) can be any reasonoble length. Seven plug-in cails caver 80 through 10 meters, twa cails far the oscillatar and five for the amplifier.

Fig. 6-40-Circuit diagram of the transmitter. Resistances are in ohms, resistors are $1 / 2$ watt, capacitors are disk ceramic unless otherwise indicated.
$\mathrm{C}_{1}-3.30-\mu \mu \mathrm{f}$. mica trimmer.
$\mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. variable (Hammarlund HF-100).
$\mathrm{C}_{3}-140-\mu \mu \mathrm{F}$. variable (Hammarlund MC.140-M, Johnson 140R12, Millen 19140, Bud MC-1856).
$\mathrm{C}_{4}-100-\mu \mu \mathrm{f}$. mica.
$\mathrm{C}_{5}-0.001$ - μ f. mica.
C_{8}-2-gang t.r.f. type variable, approx. $465 \mu \mu \mathrm{f}$. per section (Allied Radio No. 61H059).
J_{1}-Coax chassis receptacle, SO-239.
\mathbf{J}_{2}-Octal plug, male, chassis-mounting type (Amphenol 86-CP8).
J_{3}-Open-circuit phone jack.
$\mathrm{L}_{1}-25-\mu$ h. r.f. choke (Millen 34300-25).
$\mathrm{L}_{2}, \mathrm{~L}_{1}$-See coil table.
A "fenee" of perforated aluminum runs around the top of the chassis. This is made from a piece of Reviold's do-it-rourself stoek $13 / 4$ inches wide he 2938 inches long. It is formed to fit around the top of the chassis, the two sidea measuring $47 / 8$ inches and the front and back ! ${ }^{5}$ 佰 inches, with a l-ineh overlap at the joint. The fence $\mathrm{is} 1 \frac{1}{2}$ inches high and has a $1 / 4$-ineh wide lip around the bottom for seeuring it to the (hatseds top with machine sorews and nuts.

The sides of the shield are formed from a piece of verforated aluminum $7 \times 295 / 8$ inches thefore folding. The measurements are 115 í6 inches derp and $93 / 8$ inches along the front and back. I one-inel flange is folded in around the top enges, so the over-all height is 6 inehes. There is also a 1 -ineh overlap at the final corner. The top piece is $43 / 4 \mathrm{~b} \cdot 9 \frac{1}{4}$ inches and is held to the flanges by machine serews. When the completed cover is slid over the fence and down flush with the chassis the overlap of the two pieces is sufficient to prevent harmonic leakage, provided care has
$\mathrm{L}_{3}-12$ turns No. 22 enam. wound on high-value (over 10K) 1 -watt resistor as a form.
$M_{1}-0-1$ d.c. milliammeter, miniature D^{\prime} Arsonval type (Lafayelte Radio TM-400).
$\mathrm{R}_{1}-470$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-22$ ohms, 1 watt.
$\mathrm{R}_{3}-4700$ ohms, $1 / 2$ watt; see text.
$\mathrm{RFC} 1, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-2.5 \mathrm{mh}$. (Millen 34300-2500).
S_{1}-Lever-operated, 2 poles, 3 positions non-shorting (Centralab 1454).

S_{2}-S.p.d.t. toggle.

$Y_{1}-3.5$ - or 7 -Mc. crystals as required.
In addition to the above, the power cable requires two 8 -contact connectors, one male and one female (Amphenol 78.PF8 and 86.PM8).
been used in folding to achieve a snug fit, so no serews are needed to hold the eover in place. This simplifies eoil changing because the cover ean be removed and replared quite easily.

Tho power supply schematie diagram is given in Fig. 6-43, and a suggested method of construction is shown in Figs. 6-39 and 6-44.

Information on the plug-in coils is given in the coil table. The oseillator coils are mounted inside the plug-in eoils forms. When cutting the coils from the original stock allow three extra turns for the 20-15-meter coil and five extra turns for the 40 -meter one. When these extrat turns are unwound from earh end of the polystyrene support hars there will be sufficient lead length to reach through the prongs on the plug-in coil forms. An easy way to eut the coils from the original stock is to heat a razor blade and use it to slice through the polystyrene bars.

The Air I ux coils specified in the table have exactly the right inside diameter to make a good fit over the outsides of the coil forms. Allow a

Fig. 6.41-The amplifier tuning and loading controls are to the right of the meter and meter switch. This view of the r.f. unit shows the construction of the "fence" cround the top of the chassis. The cover, also made from perforated aluminum, is visible at the rear. The 6AG7 oscillator tube is at the left on the chassis with its plate coil beside it. The amplifier tank coil is of the right. The crystal socket is a Millen 33102 and the dials are Johnson type 116-222.
rouple extra turns on each of the coils for lead length. Slide the coil over the form and then drill two holes in the form, one at each end of the coil. The leads are fed through these holes and down into the prongs, Before soldering the prongs file the nickel plating from the ends of the prongs, as they will take solder more reulily with the nirkel removed. When soldering, hold the prong with a pair of pliers, to prevent too much heat from rearhing the base of the coil form and softening it. Be sure to clean off any rosin that may adhere to the prongs after soldering.
When assembling the 80 -meter coil, commert jumper leads from the ends of the coil to the prongs that connect the C_{4} and C_{5} when the coil is plugged into the amplifier coil socket.

Tune-Up Procedure

The adjustable tap on R_{4} in Fig. (i)-13 furnishes screen voltage for the amplifier and the plate and screen voltages for the oscillator. Before turning on the power set the slider at almout nequarter of the total resistor length measured from the B-plus end. This setting of the tap should be approximately correct but a finad adjustment may be required when the transmitter is tested.
A dummy load for tune-up is a 40 watt light

A 40-Watt Transmitter

Fig. 6-43-Circuit diagram of the power-supply unit.

II-Dial lamp, 6 volts, 150 ma., type 47.
J_{1}-Octal socket.
Ls-Filter choke, 1 hy., 300 ma., or 1.5 hy., 200 ma. (Thordarson 26C44, Knight 61 G406).
$R_{+}-25,000$ ohms, 25 watts, with slider.
for the dip, which will be lows marked as the lowding increases. The lamp should get brighter cach time you derrease the capacitance of C_{6} and retune \mathbb{C}_{3}. Continue this process until the lamp brightness reaches a maximum and begins to dercrate.

At this point check the sereen voltage by setting s_{1} to the center position. If the voltage is not 300 with the key down when the transmit ter is tumed an deseribed, shat off the power and move the tap on R_{4} to a new trial position. Nove it a little toward the B-plus end of R_{4} if the voltage is low, and in the other direction if it is too high. Then retune as before for maximum lamp brightness and again eheck the sereen voltage. When you find the tap position on R_{4} that gives you 300 volts with the lamp at maximum brightness, the eathode current should be (10) to 100 mal, representing full loading.

The tuning procedure for other bands is just the same. The proper coils have to be used at L_{2} and L_{4}, of course. With 80 -meter (rystals, wee the 40 -meter will at L_{2} for 40 -meter output from the amplifier, and the $20-1$-meter coil at L_{2} for 3 m meter sumplifier out put, With fometer crislals, the 40 -meter coil should be used at L_{2} for 10-meter operation, and the $20-15$-meter coil for 20 -, 15 - and 10 -meter amplifier output. In every rase the amplitier tank eoil, L_{A}, should be the one

Fig. 6-44 - This is just one of many possible ways to arrange the power-supply parts. The transformer on the left wall of the $3 \times 7 \times 12$-inch chassis is a 6.3 -volt unit connocted in series with the 6.3 -volt winding on the power transformer for a 1625 heater.

The double-pole single-throw toggle switch, \mathbf{S}_{3}, has two functions. One pole is used to open or close the center tap of the power transformer high-voltage secondary. This serves as the "stondby-transmit" switch. The other section of S_{3} controls a 115 -volt a.c. outlet (two terminals mounted on the power-supply chassis). This voltage can be used to operate an antenna relay.
$S_{3}-$ D.p.s.t. toggle.
$S_{4}-$ S.p.s.t. toggle.
$\mathrm{T}_{1}-700$ to 800 volts, center-tapped, at 150 ma . or more, with 5 -volt, 3 -amp. winding and two 6.3 -volt windings (for 1625) rated at 1.5 amp. or more; TV receiver type satisfactory. See footnote 1.
designed for the hand yom want to use.
When using the $20-1 \pi$-meter grid coil, certain preatutions should be observed. There are two settings of Cis that will provide grid drive to the amplifier. The one nearest maximum caparitanee of C_{2} is the 20 -meter setting and the one nearest minimum, lis meters. Another way to check the settings of C_{2} is with your recsiver. Remove the antenna from the receiver, turn down the r.f. gain control and listen at the desired multiple of the crystal frequency. The setting of C_{2} that produces the louder signal is the correct one. Another method of checking the band to which the transmitter is tuned is to use an absorption type wavemeter. Details for construction of Wavemeters of this tupe are given in the measurements chapter.
To adjust C, C_{1}^{\prime}, use a fometer erystal and tune up on 15 meters. Aljust (C_{2} so that the amplifier current is no more than 2 mil. with C 2 peaked for maximum reading. This adjustment need not be changed, once set, with crystals ol ordinary activity.

6-HIGH-FREQUENCY TRANSMITTERS
 A 75-Watt 6DQ5 Transmitter

The transmitter shown in Fig. 6-45 is designed to satisfy the requirements of either a Novice or Gencral Class lieenser. As deseribed here it is capable of ruming the full 75 watts limit in the 80-, 40- and bi-moter Novice hands, with hamd switching, crystal switching and other operating features. The Gemeral liemene holder can use the fransmittor in any band 80 through 10 moters. and he can add v.f.o. control or amplitude modulation at any time withont modifying the of (2) transmitter. Crystal switching is a convenience for rapidly shifting frequency within a band to dodge QRM. and a spot position on the oprerate switch permits identifying one's frequeney relat tive to others in a band. An arecssory socket, λ_{3}, furnishes a convenient point for horrowing power for a v.f.o. or for controlling the oseillator by an external switch.
IReferring to Fig. 6-66, the circuit diagram of the transmitter, the crystal selector switeh. Sh. is uned to chooze the desired erystal. For erystalcontrolled operation erystals would be plugged in pins 1 and 3 and 5 and 7 of socket X_{1}. Similar sockets (not shown in the diagram) are used to hold the other crustals. When v.f.o. operation is desired, the v.f.o. output is eommected to J_{1}, the phug l_{1} is insorted in socket X_{1}, and the former $6.1\left(6 a^{4}\right.$ erystal oweillator stage becomes an amplifier or multiplier stage when switeh S_{1} is turned to position 1.

Since the output of the Ga(id stage will vary considerably with the bands in use, an excitation control, R_{1}, is included to allow for proper adjustment of the drive to the 61 DO 5 amplifier. The (b)Q5, a highly sensitive tube, is neutralized to avoid oscillation; the small variable capacitor f'2 and the $390-\mu \mu \mathrm{f}$. mica capacitor form the neut ralizing circuit. Screen or sereen and plate modulation power can be introduced at socket X_{2} : for radiotelegraph operation these comections are
completed by P_{2}. Girid or phate current of the 6 DQ 5 can be read by proper positioning of S_{5} : the $0-15$ milliammeter reads $0-15 \mathrm{ma}$. in the gridcurrent position and $0-300$ ma. in the platecurrent position.

The transmittor is kerved at J_{3}, and a keyclick filter (100 -ohm resistor and $\left({ }_{5}\right.$) is inchuded to give substatially click-lreo keying. The v.f.o. jarek, Jathows a refor tolne keved atong with the transmitter for full break-in opration.

Construction

A $10 \times 17 \times 3$-inch ahuminum chassis is used as the base of the trammitter, with a standard $83 / 4$-inch alumimum relay rack pand helr in place be the bushings of the pilot light, exeitation control and other components common to the chassis and panel. The pand was cut down to 17 inches in longth so that the unit would take a minimam of room on the operating table. A grood idea of the relative loration of the parts ("an be ohtained from the photographs. The sup)port for the r.f. portion housing is made by fastening strips of 1 -inch aluminum angle stock (Reynolds aluminum, available in many hardware stores) to the panel and to a shere of aluminum $9!$ inches long that is held to the roar chassis apron bey serews and the key jack, J_{3}. A piece of aluminum angle must also be cut to mount on the chassis and hold the cancometal (Ireynolds: alumimum) howsing. Fig. 6-17 shows the three clearance holes for the serews that hold this latter angle to the chassis atter the cane metal is in place. Build the can-motal housing as though the holes weren't there atd the bos has to hold water: this will minimize electrical leakage and the chances for TVI. To insure grod electrical contart betwern panel and angle stock, remove the paint where necessary ly heavy applications of varnish remover, with the rest of the panel

Fig. 6.45 - This 75 -watt crystal-contralled transmitter has provision for the addition of v.f.o. control. A 6AG7 oscillator drives o 6DQ5 amplifier on 80 through 15 meters.

As a precaution against electrical shock, the meter switch, to the immediote right of the meter, is protected by a cone-metal housing. The switch to the right of the meter switch handles the spot-oparate function, and the switch of the for top right is the plate-circuit bond switch.

Along the bottom, from left to right: pilot light, excitation control, crystal switch, grid circuit band switch, and grid circuit tuning.

Fig. 6-46-Circuit diagram of the 75 -watt 6DQ5 transmitter. Unless specified otherwise, capacitance is in $\mu \mu \mathrm{f}$. resistance is in ohms, resistors are $1 / 2$ watt.
$C_{1}-100-\mu \mu \mathrm{f}$. midget variable (Hammarlund HF-100).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{fd}$. midget variable, 025 inch specing (Johnson 15J12).
$\mathrm{C}_{3}-325-\mu \mu \mathrm{f}$. variable (Hammariund $\mathrm{MC}-325-\mathrm{M}$). C_{4}-Dual $450-\mu \mu$ f. broadcast replacement variable, two sections connected in parallel. (Allied Radio 61 H 059).
$\mathrm{C}_{5}-1-\mu \mathrm{f} .400$-volt tubular.
$\mathrm{C}_{6,} \mathrm{C}_{7}-16-\mu \mathrm{f}$. 700-volt electrolytic (Aerovax PRS). I_{1}-6-volt pilot lamp.
J_{1} —Phono jack.
J_{2}-Coaxial connector, chassis mounting, type SO-239. $J_{3} J_{4}$-Open-circuit phone jack.
$\mathrm{J}_{1}, \mathrm{~s}_{4}-$ Open-circuit phone jack.
$\mathbf{L}_{1}-71 / 2$. No. 18, $5 / 8$ inch diam., 8 t.p.i., tapped $51 / 2$
turns from grid end (B\&W 3006)
$\mathrm{L}_{2}-38$ t. No. 32, 1 inch diam., 32 t.p.i., tapped 23 and 31 turns up (B\&W 3016).
L3-5 turns No. 14, 1 -inch diam., 4 t.p.i., self-supporting, lapped $31 / 2$ turns from plate end.
$L_{4}-15$ turns No. $14,13 / 4$ inch diam., 4 t.p.i., tapped $61 / 4$ and $101 / 4$ from output end (B\&W 3021).
$\mathrm{L}_{5}-10$-henry 200 -ma. filter choke (Triad C-16A).
P_{1}-Octal plug (Amphenol 86-PM8).
$\mathrm{P}_{2}=4$-pin plug (Amphenal 86-PM4).
P_{3}-Fused line plug.
$R_{1}-25,000$-ohm 4 -watt potentiometer (Mallory M25MPK).
RFC 1, RFC $_{2}-750-\mu \mathrm{h} .100$-ma. r.f. choke (National R-33).
RFC $_{3}-3$ turns No. 14 around 68 -ohm 1 -watt composition resistor.
RFC4-1-mh. r.f. choke, 500 ma . (Johnson 102-752).

RFC 5 -2.5.mh. r.f. choke (National R-100S).
S, i-pole 11-position rotary ceramic switch (Centralab Y section on $\mathrm{P}-121$ index assembly).
S:-Single-pale 11-position (3 used) non-shorting rotary switch (Centralab PA-1001).
S_{3}-Single-pole 12 -position (5 used) rotary ceramic switch (Centralab PA-I on PA-301 index assembly).
S_{4} - 2-pole 5 -position rotary ceramic switch (Centralab 2505).

S:-2-pole 6 -position (3 used) non-shorting ceramic rotary switch (Centralab PA-2003).
S_{6} —S.p.s.t. toggle.
$T_{1}-800$ v.c.t. 200 -ma. power transformer (Triad R-121-A). X_{1}-Octal tube socket.
$X_{2}-4$-pin tube socket
X_{3}-5-pin tube socket.

6-HIGH-FREQUENCY TRANSMITTERS

makked off. The paint will blister and lo easy to remove: wash the panel and then drill the holes for the components and serrews. (If the hodes are drilled first, the varnish remover may loak through and spoil the paint on the front of the panel.)

From a suitable piece of cathe metal. make the four-sided $214 \times 21 / 4 \times 21 / 4-$ inch hox that eovfris S_{5}°, and fasten it to the utility-box cover with sheet-metal serews. I bon't forget J_{1} on the side of the box.

The self-supporting coil, $L_{\text {a }}$, can bre wound on the envelope of the filli- and then pulled apart to give the correct winding length,

Installation of the elecetrical components should present no problems. To insulate it from the rhassis, caparitor (${ }_{1}$ is motunted on a small (rramic cone insalator (Johnson 1:3 - 50 (0) or National (is-10), The sucket for the 6iber is mounted above the chassis on a pair of $3 / 4$ inch sleeves, with at large edearame hole madner the socket for the several leads running from under the chassis, Cathote and sereen bypass mapators for the bides erment to the chassis at soldoring lugs undar the slemeses.

Taps on hare readily made hy first pushing the wire on cither side of the desired turn toward the eenter of the eril.

Note that shinded wire is used for many of the power lads: this is donc to minimize the chaness for stray radiation and it alko contributes to the stability of the tramsmitter. Bon't neghert it.

Adjustment

When the wiring is eompleted and chereked, disable the amplifier stage hy removing l ? plug in I P_{3} and turn on s $_{5}$. The tulne heaters and filaments shouk light up. If a voltmoter is available and romereded across (\%g. it should indicate over 500 volte Later on, with full loading, the plate voltage will run aromed 400.

With siswitehed to an someter errostal. N S_{3} switehed to 80 or -10 and x_{5} switched to samo, flip Se to siout and thene ('1 through its range. If the "rystal is osedlating the moter should give an indication at some sotting of (' 1 . The grid current reading should vary with the setting of (it (maximum at resomance) and with the setting of R_{1} (maximum with arm at 200 (ond), If a key is plugged in at J_{3} and ing is set to orrer, the grid current should appear only when the key is Mosed. Listen to the sigual on at reeciver (on :untemata): if the signal is chirpy tre adjusting the :3-30 $\mu \mu \mathrm{f}$, compres, ion trimmer leatwort grid and cathore of the fill i^{-}.

With at fomber ervisitl switrherl in, rheok for grid corrent at 11 and 21 Mc.. by switching Sis to the devired hemd and tming with F_{1}. Thewe sottinge should be cheeked with ath absorptiontype wavemeter, sime it is possiblo in some (alsos to find more than one harmonic in the range of
 the 1 th harmomie of the $\overline{-}-\mathrm{M}$ e. arystal will yidd only about 1 ma, of grid current.

Noxt cherk the mentralization on the 15 -meter

Fig. 6.47 - Top view of the 6DQ5 transmitter with cane-metal cover removed. A $3 \times 4 \times 5$-inch utility box (upper right) serves as a shield for the crystals; the cane. metal protection for the meter switch is fastened to the box cover. Phono jack mounted on the mefer-side of the box receives v.f.o. output; short length of Twin-Lead from this jack to octal plug brings v.f.o. output to crystal socket.

For protection against high voltage, meter terminals are covered by ceramic tube plate caps (Millen 36001).

Fig. 6-48 - Group of six octal sockets (upper left) serves as crystal sockets. Socket af center of chassis holds 6AG7 oscillator tube; the 3-30- $\mu \mu$. mica compression trimmer mounted alongside is excitation control for ascillator stage. Small midget capacitor above coil is neutralizing sapacitor adjusted from above chassis; this capacitor and grid tuning capacitor to right must be insulated fram chassis.
hand. With :2-Mle, grid current indieating. switeh
 its range. Watch rlasely for a Hivker in grid current. If one is obserwed, try at different stting of fos. Work carefolly until the flickor is a minimum. I more semsitive indication of meutralization ram be obtained by using a gormanium diode :md
 for minimum motur indication. If using this sensitive tost. it is wise to start out with R_{1} sul at had romse or leses, until it has heen determined that the meter will mot swing off seate. Conder no ciremostances use this tost with P_{2} in platere the (il)(e5 output is quite likely to destroy the arystal diode.

When the amplifer has beren meutralized. ronbere a dummy load (a (i)-watt lamp will do)
 a fow duts as r's is tumed through ite range. At resonatue the lamp, should light up and the plate current should dip. The phate corvont wat be mate to incratare along with the lant brillianere.
 plate current can be run up to 180 mal. (9 mat. on the meter) for Nowice work: the grid current shomld he held at 2 to 4 mia. Crystals in the $3,5-$
to 4.0 - $\$ le. rathge should be ued for 80 - and 40 motur operation, and T-Alce. crystals should be usied on to, 20 and 15 meters. For 10 -meter opration, it is rowommended that a v.f.o. with 2 (0)meter ontpet be used to drive the bitcia: trying to drive the fil) (e) with the th harmonic of a T -Mce crystal is tor marginal for all but the most experienced operators. With vifo. control, always freguency multiply (double or triple) in the wideis stage to the dexired hand.

Becaluse the 61 (2) is capable of drawing high baluer of plati curront when not tumat properly. it will pay to take care in learning how to arljust the transmitter. Gne the controls hase been "calibrater" and the approximate settings lor (ath hand become known, it should no lomerer be nereresary to tume up with the "series-of-dots" technigur mentioned ahove. However, in the cally stages of familiarization with the transmitter, the dots, or a fast hand on the kees, may save a tuhe or power supply. The fact that the (i) (2. (ath draw such heavy rurrents at low plato voltages makes it an execllent tube for an effertive inexporsive tramsmitter, but the tube is not as tolerant of careless tuning hatits as are some other tulkes.

6-HIGH-FREQUENCY TRANSMITTERS

A 90-Watt All-Purpose Amplifier

Ther amplifiner shown in lifige ti-t! through li-i2 will sorwe at a (lass-A 13_{1} linear amplifior
 other than the moner adjustment of exedation and laading. Tow areomplish this, a stathilized hits supply provites proper (las- 1 / 3_{1} bias: the hitas inerases on the formed value for ("lass-(" aperation when the expitation is hrought up to the wint that sideds mormal gride current. A stabilized seren suphly is included fo insume hool limear ofrration.

Iacerring to the :mplifior cirenit in Fige (i-is). axpitation ont the desireel band is introduced at It. The grid rirenit is at commerexal assembly, \% , that eath be switched to the corvert hand by S_{1} and tuned by (1 , A pi-tictwork coupler is usad in the output, switched bere tud tmed by ('s. Proper loading is obtamed by adjustment of eq: In provide sufficiont output caparitance in the so-metor hand an additional $680 \mu \mu$. is added.
 adds to the fumdamental stability at the higher frequendies. Parasitic suppresors were found to he neressary in the grid and phate rirenits.

Overlad protection is provided by a 250 -ma, finse in the rathome cirenit. The grich, plate or sorent eurvent rath be moteverd bex atutable selting of Su: with the resistatues shown the metar provides a full-seale reading of 5 mat. on grid curvent, $2-5$ mat, ou soren current, and 250 mat. on plate comrent.

If it is elesired to plate- or surem-modulate the amplifier for a.m. operation, the neeresary audio power can lue introdured at J_{3}.

Fig. 6-49-Front view of the 6146 all-purpose amplifier. The upper panel is part of an $8 \times 6 \times 31 / 2$-inch Minibox (Bud CU-2109); the ventilated shielding of Reynolds Aluminum cane metal is fastened to the Minibox and base with sheet-metal screws.

Plate-circuit tuning controls and switch are mounted on the Minibox, and the grid-circuit controls, power switches and meter are mounted on the end of the $8 \times 12 \times 3$ inch aluminum chassis that serves as a base.

The power-supple eimuit is shown abrately (Fige, 6-5;3) for ronvenione only, sine the amplifier and power supply are all hailt on the same $8 \times 12 \times 3$-ind chassis. High voltage for the plate of the fil lit is proviand by a bridere redifien
 tiens: stabilized servern voltage is ohlationd from the same suply athd two voltagr-regulater tulnes.

Fig. 6-50-Rear view of the 90 -wofl a!!purpose amplifier with the cane-metal cover removed. One valtage-regulator tube has been removed from its socket (right edge of fransformer) to allow the neutralizing capacitor and plate blocking capacitor to be seen. The plate r.f. choke $\left(R F C_{3}\right.$ in Fig. $\left.6-51\right)$ is mounted on one side wall, and the load capacitor and safety choke (C_{+}and RFC, in Fig. $6-51)$ are mounted on the for side wall.

The rear apron of the chassis (foreground) carries the input and output coaxial-connector jacks, the 6146 cathode fuse, and the socket for the a.m. modulator connections. A shorting plug is shown in the socket.

Fig. 6-51 - Circuit diagram of the all-purpose amplifier and its bias supply. Unless otherwise indicated, resistors are $1 / 2$ watt.
$\mathrm{C}_{1}-140-\mu \mu \mathrm{f}$. midget variable (Hammarlurid APC-140-B).
$\mathrm{C}_{2}-10-\mu \mu \mathrm{f}$. midget voriable (Hammarlund HF-15X with one stator plate removed)
$\mathrm{C}_{3}-250-\mu \mu \mathrm{f}$. variable (Hammarlund MC-250M).
$\mathrm{C}_{4}-730-\mu \mu \mathrm{f}$. variable (Broadcast receiver replacement, $365 \mu \mu \mathrm{l}$. each section, connected in parallel).
$C R_{1}$ ~ 20 -mo. 130 -volt selenium rectifier.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial cable connector, SO-239.
$J_{3}-4$-pin tube socket.
$L_{1}-33 / 4$ turns No. 18 ot grid end of L_{2}, tapped 2 furns from ground end.
L2-50 turns No. 24, $13 / 4$ inches long on $3 / 4$-inch diameter threaded ceramic form. Tapped at $5,8,13$ and 25 turns from grid end.
$\mathrm{L}_{3}-41 / 4$ turns No. 14, $13 / 16$ diam., $5 / 8$ inch long.
$L_{4}-18$ turns No. 16, 2 -inch diameter, 10 t.p.i. Tapped at $11 / 8,51 / 8$ and $11 / 8$ furns from plate end. (B\&W 3907-1).

P_{1}-4-prong plug, with jumper connections as shown.

RFC_{1} - $2.5-\mathrm{mh} .100-\mathrm{ma}$. r.f. choke (National R-50).
$\mathrm{RFC}_{2}-5$ turns No. 16 wire, wound on 100-ohm 1-watt resistor.
RFC \mathbf{R}_{3} - 1 -mh. 500-ma. r.f. choke (Johnson 102-752). $\mathrm{RFC}_{4}-2.5-\mathrm{mh} .125$-ma. r.f. choke (National R-100S). $\mathrm{S}_{1}-2$-pole 6 -position (5 used) miniature ceramic switch (Centralab PA-2002).
$\mathrm{S}_{2}-1$-pole 6 -position (5 used) ceramic switch (Contralab 2501).
S_{3}-2-pole 6 -position (5 used) non-shorting miniature ceramic switch. (Centiolab PA-2003). Alternate contacts used only, to increase voitage rating. S_{1}-S.p.s.t. toggle switch.
T_{1}-6.3-volt filament transformer (Stancor P-6134).
Z_{1}, comprising C_{1}, L_{1}, L_{2} and S_{1}, is Harrington Electronics GP-20L unit. Capacitors showing polarity ore electrolytic; $680-\mu \mu \mathrm{f}$. capacitors are silver mica, . $001-\mu \mathrm{f}$. are ceramic.
The neutralizing capacitor, 2, has its rotor Lor in the grid-cireuit return should also be
soldered to one of the ground lugs. nected to the same grombd hags as the cathorle
reirenit. The gromaded sidfe of the $680-\mu \mu \mathrm{f}$. capate
tor in the grid-cirenit return shonld also be nected to the same gronnd hags as the cathorle in the sareen and hater virenits gromed to their
respertive wire whields which in turn are con-
 to the eathode pins (1. I and ti) ground to the
chassis at hers under the nuts holding the soreketThe three. $001-\mu \mathrm{f}$. remamice entracitors romerete is mounted on two 2 -inch-long collars above the
usual $1 \frac{1}{8}$ inch diameter hole in the chassis Figs. $6-19,6-30$ and $6-52$, but a few construction
notes are in order. The octal socket for the 6140 Most of the components can be identified in Construction
 the inside of the cable and not the ontside. R($-58 /$ from f^{2} in plate and at the same time
insures that the r.f. leaves the compartment via I simple rlamp. Pig. ($i-5 \quad$, holds the length of
R($1-58 / \mathrm{C}$ from r_{4} in plate and at the same time
 the meter switch terminal z_{1}. I high-voltage
bopass rapacitor is commerofol het wern the bosh-
 The high-voltage lead from the bense of RFC:3

 truded fiber washers and a suitable hole in the
chassis. Connection to the rotor should be made
under the chassis by using a suitabla soldering

6-HIGH-FREQUENCY TRANSMITTERS

a piece of it to form the rover. Wake the rover with lips on the vertical portion that stip tighty over the sides of the Ninibos, and with a bend at the hottom that ram be lastemed to the chassis. Another pieere of cane metal should be cut to serve as a bottom cover: monnting the chassis on rubler feret lifts it above the table athe permits good air circulation through the unit.

The self-supported inductor L as ran be womd on the envelope of one of the biblet rectifiers. romoved and pultad apart slighty to give the speritied winding longth. The tains on lat aro made be first bending inward the wire on either side of the turn to be tapped, then looping the tap wire around the thrn and soldering it securely in place. Both L_{3} and h_{4} are supported only hy their leads.

Testing and Adjustment

With all tubes in their sockete exerept the (il.th), the line cord should be plugged in and the powere switch turned on. The bias-supply 0A3 shoukd glow immediately and the reetifier filament and heaters should light up. The sereen-supply regu-
latom - homblathe. If a voltmeter is available, the high-roltage supply should show first around 400 volts, and then rise slowly to ahont 1000 volts. switeh off the power: the plate supply voltage should decey to less than 100 in under 20 secomds. indieating that the 10,000 -ohm resistors are "Dherding" the supply. Note atso how long it takes for the woltage to reath a value of only a few volts: this will demonstrate forechatly how long it takes to discharger a high-eaparitamer filter.

When the power supply has diseharged, plug in the eillti, comed the plate (atb, and set S_{4} to swas By, set the meatralizing raparitor ('2 at hall raparitaner and the band switehes on so meters. Turn on the power athed sed the meter switch, sis, to restel plate rurrent. The tillt heater should warm up. Now flip st to operate: the meter should reat $10-20$ mat. (.2-. 1 on tho salale). switehing to ratal sereen aurrent, the moter should show under 1 mat, (2 divisions on thas meter). There should be no gride empent.

Turn off the power aml remove the three rectifier tubes ('omeret at.I_{1} the driver or exeita-

Fig. 6-52-Bottom view of the all-purpose amplifier. The $150-\mathrm{ma}$. filter choke is mounted on the left-hand wall; the smaller filter choke, the small filament Iransformer (T_{1} in Fig. 6.51) and the selenium rectifier ore mounted on the right-hand wall. The strap of aluminum, visible below the meter of the top right, provides additional suppori for the length of RG-58/U cable that runs to the output coaxial cannector. All power leads except the high voltoge to the plate are rutr in shielded wire.

A 90-Watt Amplifier

Fig. 6-53-Power supply section of the all-purpose amplifier.
L_{1}-7-henry 150 -ma. choke (Stancor C-1710).
$\mathrm{L}_{2}-8 \frac{1}{2}$-henry 50 -ma. choke (Stancor $\mathrm{C}-1279$).
P_{1}-Fused line plug, 3 -ampere fuses.
$S_{1}-S . p . s .1$. toggle.
$\mathrm{T}_{1}-800$ v.c.t. at $200 \mathrm{ma} ., 6.3 \mathrm{v}$. at $5 \mathrm{amp} ., 5 \mathrm{v}$. at 3 amp . (Allied Radio Knight 62 G 033).
tion source to be used - hess thath at watt is required for linear operation, and only a shate nore for Class ($\%$ Use the drive at athigh frequeneres such as 21 or 28 Ne. Turn on the amplifier and switeh the band switches to the hand eorresponding to the exertation-sourere irequenes. Adjust the grid tuming (atpacitor for a show of grid eurrent: poak the tuning and (if necessary) adjust the excitation for a half-scale reading of grid eurrent. With the loading rapacitor Cet set at half scale, swing the tening eapacitor ('3 through its range. Watch carefully for a slight flicker in grid current. If one is found. adjust the neutralizing rapacitor (2 until the flicker is minimized. The amplifier is now meutralized. Alternatively, a sensitive detector of r.f. can be couphed at the output commector, J_{2}, and used instead of the griderurrent flicker. Inljust F_{2} for minimum r.f. in the output when the plate eircuit is thed through resonathere. 'Turn off the power switch and diseomeret the exeritation source.

Remove the sensitive detertor, if used. and replace the rectifier tubes. Turn on the power and swith the motor to read plate current. With the grid and plate eircuits switched to the same band ($10,15.20$ or 40) it should the possible to swing the grid and plate tuning to any combination of settings with no whange in plate current roading. This indicates that the amplifior is stable and free from oscillation. (The amplifier can bo made to oseillate on 80 meders with no grid or plate loading, hat in lamen operation it will be stable.)

The antemna and exeitation can now $\mathrm{xe}^{\text {c }}$ conneeted and the amplifier used in normal fashion. Lied as a linear amplifier, the excitation should be: adjusted just below the level that would kick the grid-current indication on signal parak. Proper loading will be obtained when a steady ("arrier just under the grid-current level is used for drive and the loading at resonance is set for about 100 ma . plate current. Under these conditions
of lombing. a sideband signal will kick the phate current to about to or an mat on paks. Measured p.e.p. input before apping should be tio to 70 wats.

When used as at (lass-(' :mplitier, the drive should be increased to where about 2 to 3 mat. grid current is drawn, and the loading to where the 6146 draws about 125 man . If the amplifier is bate moululated, the plate current should be reduced to 95 mat. to stay within the tube ratings.

Sinee the amplifier uses a fixed and "stiff" sereen supply, it is good praction always to bring up the expitation and loading together, while checking to see that the sereen eurrent never exceeds about 15 ma . In mormal (lass-C operation the sereen current will run around 10 ma.

Fig. 6.54-Exploded view of the cabla clamp used to hold the coaxial cable running to J_{2}. The top plate is a $11 / 2$-inch square of sheet aluminum with holes at the four corner: for 6.32 screws. The arch is a 7 /holinch wide strap that mounts diagonally under the chassis. When fightened, the top plate clamps the cable braid to the chassls; the orch lends support to the cable.

6-HIGH-FREQUENCY TRANSMITTERS

A Self-Contained 500-Watt Transmitter

Figs, (i-55 through (i-f0 show the details of a $500-$ watt c.w. transmitter, completely self-rontained except for the external remote v.f.o. tuming box shown in Figs, then) and (6-tio. Provision is made for introducing s.s.b. input at the grid of the driver stage. While plate morlulation can be applied to the final amplifior in the usual manner, ratings of the plate power supply limit the safe? imput to about 050 watts.

The cirruit is shown in Fig, (i-58. switch S. permits either v.f.o. or erystabentrolled operat tion using : 6 Allt ow ofllator. Wither 80- or 40meter crystals maty he used. The v.f.o. cireuit is in the 80 -moter band and S_{1} selecets either of two froqueney ranges - 3.5 to 4 Mc . for complete roverage of all bands, and 3.5 to $\mathbf{3 . 6} \mathrm{ML}$. for greater bandspread over the low-fregteney ends of the wider bands. Ther pater airenit of the oseillator is on 40 motrers for all output bands exerept 80 meters where it is nom-resonant.

A 6 ('Lis buffer separates the oscillator and the first keyed stage. This stage doublens to 20 meters for 20 - and 10 -moter output and rriples to 15 meters. The driver is a 2 lef which doubles to 10 metters and works straight through on all other bands. This stage is neutralized and a potentiometrer in its soreen cirenit sorves as ant exeitation control.

The final is a 70 at, also meutralized, with a
 switrhing inductor unit.

I differential break-in keving sustem using at 12.St7 is ineluded. Both the final amplifier and driver are keved be the grid-block method. The differential is adjusted by R_{1}. (Cheks are provented low envelope-shaping airouits which in-

The 100 -ohm meter shants give a full-seala reading of 5ll mat.. the atohm shunts a full-scate reading of 100 mat , and the 10 -ohm resistor in the negative high-voltage lead provides a moll-mat. scrale.

Power Supply

The plate transtormer in the high-voltage
supply uses a transformer designed for a conventional full-wave rectifier circuit with an ICAS A.e. output rating of 300 ma , at $\overline{\mathrm{c}} \mathrm{E}$ volts. I bridge reotifier is used with this transformer so that an output voltage of 1.000 is obtained. The short duty revele of r.w. or s.s.b, operation makes it possible to draw up to the rated maximum of the $709+4$ (3:30 ma.) through a choke-input filter without a prohibitive rise in transformer temperature.

The low-voltage supply has two redifiers. I full-wave retifier with a caparitive-input filter provides 400 volts for the plate of the driver and the sorreen of the final amplifire. It tap on a voltage divider across 400 volte provides shot volte for the plates of the ow illator. huffer and kerem tules. A half-wave reretifire with at choke-input filtar suphlies 250 volts of bias for the kerer and fixed bias for the 21026 and $009+$ when they are operating as Class AB, linear amplifiors.

Control Circuits

S_{5} is the main power switch. It tums on the low-voltage, filament and bias supplies. ["nti] it has been chosed, the high-voltage supply camot be turned on. In addition to turning on the highvoltage supply, se operates the relay K_{1} whieh applies serreen voltage to the final amplifies. Thas. to protoce the serreth, sereen voltage camot be appliad without applying phate voltage simultaneonsly. J_{8} is in parallel with s_{s} so that the high-voltage supply can be controlled remotely from an extrmal switch. Also, in paralled with the primary of the high-voltage transformer is another jack. I_{7}. Which permits control of ath antemat relay or other deviee by S_{4} if desired.

The v.f.o.sed suitch S_{5} turns on the exeiter and grounds the sereen of the fimal amplifier.
s_{2} has three positions. Ghe is for erestal control, the seeond for v.f.o, operation, and the third position is for onerating the last fwo stages of the transmiter as linear amplifiers with an extermal s.s.b. exaiter. In addition to shifting the input of the driver stage from the buffer amplifier to an s.s.h. input comeretor. fixed bias is provided for $A B_{1}$ oqueration of both stages.

Construction

The transmitter is assembled on a $17 \times 1: 3 \times$

Fig. 6-55-A 500-watt transmitter. Power supplies and a differential keyer are included. It operates with the external v.f.o. tuner shown in Fig. 6-59. Controls along the bottom, from left to right, are for low-voltage power, v.f.o./crystals/s.s.b. switch, driver tank switch, driver tank capacitor, final loading, v.f.o. set switch, and high-voltage. Above, from left to right, are controls for excitation, final tank switch, final tank capacitor and meter switch. The band-switch pointer is made by cutting down the metal skirt of a dial similar to the one to the right.

All dials are Johnson.

Fig. 6-56 - The only shielding required on top of the chassis is the amplifier enclosure shown A perforated cover for the enclosure is not shown.

4-inch aluminum phassis with a $1!\times$ 121/4-inch panel. The amplifier enclo-
 inches dech and Ti/2 inches high. The three permaneont sides shown in Fig. (i-arf can b_{a}. bent up from a singla sheet of solid athminum stock. The top and hack (not shown) are made frome a sinale piece of Reyolds perforaterd sheret ahminuma.

The tube sorkert is monuted on $3 / 4$-inch resramic cones over a large hoherut in the chassis and rovered with a pateh of preforated shert. The tank raparitor C_{15} is mounted on metal spacerts to biring its shaft hewel up to that of the switch on the BSW inductor which is mounted directly on the chassis. The two shaftes are spared thenes

Exciter

A $4 \times$ i \times oi-inch aluminum box is nisod as the foundation for the expiler. 'lhe driver tank aparitor is centered on the dhassis with its eenter approximately: 3 inches back from the from ouge of the whasis. The eapacitor sperified has ath insulated momoting. If an unimsulated rapacitor is substituted, an insulating mounting must he provided. The shafts of s_{2} and s_{3} are spaceel 2! 2 inches and erentered on the front embl of the hox. On the side of the box toward the funing capacitor. the oseilator tube the buffer tube the low-freguentey sedion (L_{6}) of the driver tank roil, and the 2 led are lined up so as to char the tank eapacitor and its shaft. The latter is fitted with an insulated eonpling and at panelhearing unit. The slug-tumed roils are mounted in holes near the hottom edge of the hox. Nemtralizing (abacitor c_{8} is momend at the war end of thr low. elose to the $21: 20$ socket. The highfrequency sertion (L_{i}) of the tathk eoil is suspended betwern the outer end of

Fig. 6-57 - The exciter is assembled using a standard aluminum box as the foundation. The perfarated cover has been removed. The bottom of the chossis should also have a perforated metal cover.

the low-freduence sereton and the plato cap of the 2F:26, (wil-tap leats rin throngh small fealthrough points or aromameoted maratme hole in the side of the bex

The loading capacitor (if is plated so that its shafte sommetrioul with the shaft of se, and S_{5} is spaced from it to balaneres, at the other ement.

The V.F.O. Tuner

The vefon tuner is assumbled inta $\times 6 \times 9$-ineh
 tuning caphodor ('2 has $\overline{5}$ plates. 4 rotor and 3 stationatra, in rach sertion. In the front section, which is used to eover the entire so-meter hand, the two rotor mates nearest the fromt should be ramoved. This haves two rotor phates and two artive stator phates, the fromt stator phate being inartive. In the rear section, the front rotor plate and the last two rotor plates arre removed. This Waves one rotor plate riding betwedn two statore.

Ther eapacitor is monantrol on a brachet fastened against the bottom of the bex, although it eondel he mounted from the front cover with spacers to clear the hut, of the Millen InO: dial. The shat of the capacitor should be central on the front eover. The eoil is suspended between a pair of

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-58-Circuit of the 500 -watt self-contained transmitter. Capacitance less than $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. Fixed capacitors of capacitance greater than $100 \mu \mu$. should be disk ceramic, except as noted below. Fixed capacitors of $100 \mu \mu \mathrm{f}$. and $220 \mu \mu \mathrm{f}$. should be mica. Capacitors marked with polarity are electrolytic. Resistors not otherwise marked are $1 / 2$ watt. R.f. chokes in $\mu \mathrm{h}$. unless otherwise marked.
B_{1}-Blower (Allied 72P715).
$\mathrm{C}_{1}, \mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. air trimmer (Hammariund APC-100-B).
C_{2}-Midget dual variable, $25 \mu \mu \mathrm{f}$. per section (Johnson
167-51 altered as described in the text).
$C_{4}, C_{3}-0.001-\mu f$. silver mica.
$\mathrm{C}_{8}-30-\mu \mu \mathrm{f}$. mica trimmer (National M-30).
$\mathrm{C}_{7}, \mathrm{C}_{11}-0.1-\mu \mathrm{f}$. paper (keyer shaping).
$\mathrm{C}_{8}-30-\mu \mu \mathrm{f}$. miniature variable (Johnson 160-130).
$\mathrm{C}_{9}-100-\mu \mu \mathrm{f}$. midget variable (Johnson 167-11).
$\mathrm{C}_{10}-330-\mu \mu \mathrm{f}$. mica.
C_{13} - $10-\mu \mu \mathrm{f}$. neutralizing capacitor (Johnson 159-125).
$\mathrm{C}_{13}-0.001$ - $\mu \mathrm{f}$. 3000-volt disk ceramic.
$\mathrm{C}_{14}-0.001-\mu \mathrm{f}$. 5000 -volt ceramic (CRL 858S).
$\mathrm{C}_{15}-250-\mu \mu \mathrm{f}$. 2000-volt variable (Johnson 154-1).
C_{16}-Triple-gang broadcast variable, $365 \mu \mu$ f. or more per section, sections connected in paralle!.
I_{1}, I_{2}-One-inch 115 -volt panel lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Cable connector for RG-22/U (Amphenol 83-22R, UG-103/U).
J_{3}-Crystal socket (Millen 33102).
$\mathrm{J}_{4}, \mathrm{~J}_{5}-$ Coaxial receptacle (SO-239).
J_{s}-Key jack, open circuit.
J_{7}, J_{3}-Chassls-mounting a.c. receptacle (Amphenol 61-F).
$\mathrm{K}_{1}-S . p . s .1$. 115 -volt a.c. relay (Advance $\mathrm{GHA} / \mathrm{C}$ / 115 VA or similar).
$\mathrm{t}_{1}-35 \mu \mathrm{~h} .-32$ turns No. 18,2 inches diameter, 2 inches long (Airdux 1616).
L_{2}-Approx. 10μ h. -65 turns No. 26 enam., on $3 /$-inch iron-slug form (Waters CSA-1011-3).
t_{3}-Approx. $2 \mu \mathrm{~h}$. - 16 furns No. 26 enam., close-wound at center of form similar to L_{2}.
L_{4}-Approx. 1μ h. -13 turns No. 26 enam., $1 / 2$ inch long at center of form similar to L_{2}.
Ls-16 turns No. 20, $3 / 4$ inch diameter, 1 inch long, tapped at 10 turns and 13 turns from L_{n} end (Airdux 616).
$\mathrm{L}_{8}-40$ furns No. $16,11 / 4$ inches diameter, $23 / 4$ inches long, tapped at mid point and at L_{5} end (Airdux 1016).
$L_{7}-3$ furns No. $14,1 / 2$ inch diameter, $3 / 4$ inch long.
$\mathrm{L}_{s}-4$ furns $3 /$ /f $_{6} \times 1 / 1$-inch copper strip, $13 / 8$ inches diameter, $21 / 2$ inches long (part of B\&W 851 coil unit).
$\mathrm{L}_{9}-43 / 4$ turns No. 8, $21 / 2$ inches diameter, $13 / 4$ inches long, tapped at $13 / 4$ turns from $L s$ end, plus $91 / 2$ furns No. 12, $21 / 2$ inches diameter, $11 / 2$ inches long, tapped at 6 turns from output end (part of B\&W 851 coil unit).

500-Watt Transmitter

In-7.hy. 150-ma. filter chake (Stancor C-1710).
$\mathrm{L}_{11}-15$-hy. 75 -ma. filter chake (Stancor C-1002).
$\mathrm{L}_{12}-5 / 25$-hy. 300 -ma. swinging filter choke (Triad C.33A).
M_{1}-Shielded 0 - 5 -ma. d.c. milliammeter, $31 / 2$-inch rectangular (Phaostron).
P_{1}, P_{2}-Plug for RG-22/U cable (Ampheno! 83-22SP).
$\mathrm{R}_{1}-100,000$-ohm potentiometer.
$R_{2}, R_{3}, R_{G}-100$ ohms 5%.
$\mathrm{R}_{\mathbf{4}}-20,000$-ohm 4 -watt potentiometer (Mallory M20MPK)
$\mathrm{R}_{s}, \mathrm{Rs}_{\mathrm{s}}-51$ ohms, 1 watt, 5%.
$R_{\text {: }}$-Two 10,000 -ohm 2 -watt resistors in series.
R_{0}-Three 100 -ohm 1 -watt noninductive resistors in parallel.
$\mathrm{R}_{10}-25,000$ ohms, 25 watts with s!ider.
$R_{11}-15,000$ ohms, 20 watts, with slider.
$\mathrm{R}_{12}-4700$ ohms, I watt.
$\mathrm{R}_{13}-2200$ ohms, I watt.
$\mathrm{R}_{14}-10$ ohms (Five 51 -ohm 1-watt 5% resistors in parallel.)
R_{15} - 1000 ohms, $1 / 2$ watt 5%.
S_{1}-Single-pole ceramic rotary switch (Centralab 2000, 2 of 12 posirions used).
S_{2} - Two-wafer ceramic rotary switch (Centralab PA-300 index, PA-4 wafers. $S_{2 A}$ and $S_{2 B}$ are on one wafer, $S_{2 i}, S_{2 p}$ and $S_{2 E}$ on second wafer).
S_{s} - Three-wafer ceramic rotary switch (Centralab PA-301 index, wafers PA-0, 5 positions used).
S_{1}--Port of B\&W 851 coil unit.
S_{5}-2-pole 3 -position ceramic rotary switch (Centralab 2003, two positions used).
S_{6}-Double-pole ceramic rotary switch (Centralab 2003). $\mathrm{S}_{7}, \mathrm{~S}_{s}-\mathrm{S}$. p.s.t. toggle switch.
T_{1}-Power transformer: 750 v.a.c., c.r., 150 ma.; 5 volts 3 amps.; 6.3 volts, 4.7 amps. (Thordarson 22R06).
$\mathrm{T}_{2}, \mathrm{~T}_{3}$-Filament transformer: 2.5 volts, c.1., 3 amps. (Triad F-1X).
T_{4}-Plate transformer: 1780 volts, c.t., 310 ma., center tap not used (Triad P-14A).
T_{5}-Filament transformer: 5 volts, c.t., 3 amps. (Triad F-7X).

6-HIGH-FREQUENCY TRANSMITTERS

$21 /$-inch ceramic pillars (Millen 3100%). It is placed immerliately to the rear of the taning caparitor. The two air trimmers, C_{1} and ('3, are mounted on the top side of the box with their shafts protruding so that they can be adjusted from the top. The bundspread switch is mounted in one end of the box and the cable comector at the other end.

The mit is housed in a standard cabinet (Bud (-1781) having an $s \times 10$-inch panel. The dial should be fastened to the panel, making sure that the hub of the dial lines up ace urately with the shaft of the tuning capacitor. Then the box is inserted in the cabinet through the front opening. The switeh shatt goes out through a hole drilled in the side of the cabinet, and the cable goos

Fig. 6-59 - The remote v.f.o. funing unit is housed in a stondord metal cobinet. The coble ot the right plugs into the moin chossis.
through a hole in the opposite end to the rable (ronnector. The dial should be set to read zero at maximum caparitance of the taning caparitor. The box should he supported on spacers.

Adjustment

With all tulnes exerept the reetifiers out of their sockets, the power supplies should be whecked first to be sure that they are functioning properly. The voltage ontput of the low-voltage supply should be in exress of 400 volts, the biasing voltage 300 or more and the high voltage above 1500. The slider on the low-voltage bleder should be set at approximately three quarters of the way from ground. The slider on the bitssupply bleeder should be set for a reading of -250 volts to ground.

Plug in the oscillator and buffer tubes and an so-meter arstal if one is available: otherwise comere the vifo. tuner. With the low-voltage supply turned on, the 0.12 should glow. When the key is closed, the 0.A? should dim but stad ignited. If it does not, the value of the l0k VR resistor should be reduced.

The vifo. wan now be adjusted to frequency. sot Co at maximum raparitance. Sot S_{1} to the so-meter position. Idjust the 80 -meter trimmer until a signal is heard at 3500 ke . on a calibrated receiver. Then set the receiver to 4000 kc . and tume the v.f.o. until the signal is heard. If the signal is not close to 100 on the dial, carefully.

Fig. 6.60-Interior of the v.f.o. tuning box showing the mounting of the coil and other components.
bend the rear rotor plate of the $8(0)$-meter sertion of C_{2} ontward a little at a time to get the desired bandspread. bach time this adjustment is made, the trimmer should be reset to bring 3500 ke , at zero on the dial.

The same procedure should be followed in atjusting for the other v.for, range, aliming for 3600 ke . (or above if desired) at 100 on the dial.

The 2lidi should now be plugged in and the exatation eontrol R_{4} sitt at the gromend end (zero sereen voltage). Sig should ber set in the v.f.o. position. With low voltage on and the key elosed. a 2 F 26 grid-ruremt reading should be obtained with the hand switch in the 80-meter position. With the switeh in the 10 -medrer position, the slug of L_{2} should be adjusted for maximum grid current on the 2P:26. With the band switeh in the 20-meter position, L_{3} should be adjusted for maximan grid curvent, and then the slug of L_{4} should be aljusted for maximum grid current with the band switel in the 1 b-meter position.

Now insert the 7004 in its socket and mentralizo the 2 E 2 g as deseribed arlier in this chapter.

Testing of the final amplifier revpires a load applied to the output comeredor. Two lion-watt lamps commeted in parablel should serve the purpose. Turning on the high voltage will also apply sereen voltage through the relay K_{1}. With both hand switehes sed to 10 metors, and ('16 set at about half capacitanere, quickly tune the outpat circuit to resoname as indieated by the plate-rurrent dip. The load lamp should show all indieation of ontput. Switeh the meter to read gried current and nentralize as deseribed marlier in this chapter. After noutralization the amplifer ean be loaded to rated plate current. If it is above the rated maximum value, increase ('is and retme to resontane, or decrease \mathcal{C}_{16} if the plate current is below the rated value.

With the final adjusted and the entire transmitter operating, make a final cherk on the voltage at the tap on the low-voltage supply, adjusting the slider if necessary to bring the voltage to 300 with the key closed. B6e sure to turn off all voltages each time an adjustment is made.

The last adjusiment is in the kever. Adjust the potentiometer h_{1} to the point where the oscillator camot be heard between dots and dashes at normal kering speed.

An All-Purpose 813 Amplifier

Figs. (i-i) through ($;$ - 6 t show the eireuit and photographes of an $81: 3$ amplifior designed for $e \cdot \cdots$., atm., or s.s.h. opration. l'rovision has been made for conveniont changing from one mode to another ats well as to any of the hathls from 80 through 10 meters.

The rireuit is shown in ti-it2. A turrettype grid rireuit is used and the output arrent is a pi network designed to work into coax rable. The indurtor is the rotary-tepe variable. Provision for moutralizing is included. R_{1} is a parasitio suppressor.

For ('lasi-(\quad fow, or phone operation, S_{4} is open. The 90 volts of fixed bias, furnished hey a small hias supply and regulated by the VRe0, is augmented by a drop of about 50 volts arross the grid-lacak resistor h, at a normal grid current of 15 ma. This brings the total hits to 140 volts. With ss closed, the grid leak is shortorireuited and the 60 wolts of fixed hias alome remains for . BB_{2} s.s.b. opreation. (An advantage in. BB_{2} for ce. w. operation is that it preserves the keving rharacteristies of the expiter better than with (lass-((operation.) lis should be adjusted so that the Vlevo just ignites with no excitation.
sireen voltage is regulated al 350 volts b a string of five 0A2s forsesh, ongration. When the grid drive is inveraed for (hass-C operation, the sereen current increases. increasing the drop arrese the screpl resistor h_{5}, and the sereen woltage falls to 100. The regulators then lose contro! and the amplifior is ready for plate-sereen modulation

The sereen is protected against exeresive input, should the load or plate voltage be removed, by the overload relay K_{1}. The tripping point is sit at -40 ma . by the variable shunt resistor R_{4}. If the relay trips, current through R_{6} will hold the sereen direuit open until plate voltage is removed. One meter,.L_{1}, measures rathode eurrent, white the other meter, $.12_{2}$, may be switched to read either
grid eurrent or screen current.
Forced-air ventilation is always advisable for a medium- or high-power amplifier if it is buttoned up tight to suppress TVI. A sumphas 100 c.f.m. blower does the job more than adequately.

Construction

The amplifier is built on a $13 \times 17 \times 4$-inch aluminum chassis fastened to a standard $123 / 4 \times$ 19 -inch rack panel. The r.f. output portion is unclosed in at $121 / 2 \times 13 \times 81 / 2$-inch box made of aluminum angle and sheet. The V'R tubes, relay, hower and meters are momed external to the hox.

The grid tank-cireuit eomponents are mounted underneath the chassis and are sholded with a 5) $\times 7 \times 3$-inch aluminum box. A standard chassis of these dimensions might be substituted. The bias and filament transformers are in a second box metauring 6 by 3 by 3 inches. This type of constrution, togethor with the use of shicleded wire for all power circuits, was followed to redure TVI to a minimum. Eath wire was bypassed at hoth ends with $0.001-\mu \mathrm{f}$. ceramic disk capacitors. L_{4} can be adjusted to sories resonate with the $600-\mu \mu \mathrm{f}$, capacitor at the frequence of the most troublesome channel, A Bud low-pass filter competes the TVI treatment. Is a result, the amplifier is completely free of TVI on all chamels reven in most fringe areas.

Adjustment

In the pi network, the output caparitors are fixed. However, the allustment of the notwork is similar to that of the more conventional arrangement using a variable portion of the output rapacitanere. The only difference is that the "fine" loading adjustment is done with the variable inductor.

The inductor is fitted with a (iroth tums counter, making it casy to return to the proper

Fig. 6.61 -W4SUD's all-purpose 813 amplifier. The output-capaciter switch (coarse loading) is above the turns counter for the variable inductor. Dials near the center are for the plate tank copacitor C_{f} (above) and the grid tank capacitor C_{1} (below). To the right of the dials are the controls for the plate padder switch S_{3} (abave) and the grid band switch S_{1} (below). The laggle switch below the meters is the mode switch S_{f} with the meter switch S_{E} ta the left. Ventilating hales are drilled in the caver in the area abave the tube. The output cannector is on the left-hand wall of the shielding box.

261

B_{1}-Ventilating blower, 100 c.f.m. (surplus).
$C_{1}-250-\mu \mu \mathrm{f}$, variable (Hammarlund MC-250-M),
$\mathrm{C}_{2}-1000-\mu \mu \mathrm{f}$. mica.
C_{3}-Neutralizing capacitor, $10 \mu \mu \mathrm{f}$. maximum (Johnson 159-250).
C_{4}-150- $\mu \mu \mathrm{f} .6000$-valt variable (Johnson 153-12).
$\mathrm{C}_{5}-100$ - $\mu \mu \mathrm{f} .5000$-volt fixed capacitor (surplus vacuum Amperex VC-100, or two $200-\mu \mu \mathrm{f}$. 5000 -volt micas in series).
CR_{1} - 130 -volt $50-\mathrm{ma}$, selenium rectifier.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Cooxial receptacle (SO-239).
K_{1}-Screen overload relay, 2500 ohms, 7 ma . (Potter \& Brumfield KCP5).
$\mathrm{L}_{1}-3.5 \mathrm{Mc} .-32$ turns No. 20, 1 -inch diam., 2 inches long, 5 -turn link (B\&W 3015 or Airdux 816).
-7 Mc. -18 turns No. 20, $3 / 4$-inch diam., $11 / 8$ inches long, 3-turn link (B\&W 3011 or Airdux 616).

- 14 Mc.- 10 turns No. 18, 5/8-inch diam., $11 / 4$ inches ong, 2-turn link (B\&W 3006 or Airdux 508).
-21 Mc.-7 turns No. 18, 5/8-inch diam., 7/8 inch long, 1-turn link (B\&W 3006 or Airdux 508).
- 28 Mc. -5 turris No. $18,5 / 8$-inch diam., $5 / 8$ inch long, 1 -turn link (B\&W 3006 or Airdux 508).
$L_{2}-3$ turns $3 / 16$-inch copper tubing, 1 -inch diam., $13 / 4$ inches long.
$L_{3}-15-\mu \mathrm{h}$. variable inductor (B\&W 3852)
L, See text.
$M_{1}, M_{2}-31 / 2$-inch d.c. milliammeter.
$\mathrm{R}_{1}-39$ ohms, $1 / 2$-watt carbon.
R2- 3300 ohms, 2 watts.
$R_{3}-15,000$ ohms, 10 watts with slider.
R_{4}-2000-ohm 4-watt variable resistor (Mallory M2MPK).
RFC $_{1}$, RFC $_{3}$ - 2.5-mh. r.f. chake (National R. 50 or similar).

RFC $_{2}$ —Plate r.f. choke (National R-175-A).
RFC $_{4}$-V.h.f. choke (National R-60).
S_{1}-Rotary switch: 3 wafers, 3 poles, 11 positions per pole, 5 positions used (Centralab PA-0 wafers pole, 5 position
S_{2} —Rotary switch: single pole, 10 positions, progressively shorting, 6 positions used (Centralab PA-2042).
\mathbf{S}_{3} —Rotary switch: s.p.s.t., ceramic (antenna link switch from BC. 375 tuning unit, or Communications Products Model 65).
S_{4}-S.p.s.t. toggle switch.
S_{5}-D.p.d.t. rotary switch (Centralab 1405).
T_{1}-Filament transformer: 10 volts, 5 amp . (Thardarson 21F18).
T_{2}-Bias transformer: 120 voits, 50 ma .; 6.3 volts, 2 amp., filament winding not used; could be used for pilot light (Merit P.3045).

813 Amplifier

Fig. 6-63-This view shows the placement of components on the chassis. The 813 socket is mounted on spacers over a large clearance hole in the chassis. The several mica output capacitors are assem. bled in a stack on a threaded rod fastened to the left-hand wall of the shielding box. The neutralizing capacitor and the 80 -meter plate padder are to the right of the tank capactior. To the right of the box are the five OA2s (the front one hidden), the screen overload relay and the VR90, the blower and meters.

setting for each bend. Lutil the settings for fath band have been found, sts should be tumed so that all of the output caparitallere is in cireuit. 'The inductor should he set anear maximum for 80 . and approximately half maximum for 10 . On the higher-frepueney banks, the induetor should be set so that the cirenit resonates with the tank (:apmator hear minimum ratacitancer loading shoud incerease as the output raparitaner is de-
(reased. . I whange in output (atpacitance recpuires at readjustument of ef for resonamere. When the loading is near the desired point, final adjustment (ean be made by attering the induetanee slightly.
. $\quad 3(0)-1$ or similar exefter is well suited as a driver for this amplifier on all modes. The 81:3 rums cool at a00 watts imput on c.w. and at a little aver 50 watts jerep. 161 sers. (Originally dearibed in (QS'l for Mugust, 19.8.)

Fig. 6-64-Bottom view of the ali-purpose 813 amplifier. The grid tank-circuit components within dashed lines In Fig. 6-62 are enclosed in the box atlower center. Input links are wound over ground ends of grid coils. Filament and bias transformers are in the second box. The large resistor to the left of the grid box is the screen resistor. The variable resistor in the upper left-hand corner is the relay shunt R_{1}. The selenium bias rectifier is fastened against the left-hand wall of the chassis.

6-HIGH-FREQUENCY TRANSMITTERS

One-Band Kilowatt Amplifiers

separate kilowatt amplifiers on each of the hands 80 through 10 meters has ahwass been the re plus ultere of transmitter construction. However, space limitations and cost are the two key fartors that have prevented many from realizing this goal. The amplifiers to he deseribed are compart and atre construed eronomically: the huilder may wish to construct one amplifier for his favorite band or the group of five for versatile all-band operation. Advantages of the separateamplitier philosophy include optinum circuit (d for every hamb, simplified ronstruetion and hand switching, less rhance for talse failure beranse Gath amplifier is pretumed, and fast hand rhanginge for the comtest-minded. The supply voltages reluain on all the amplifiers: only the fitament and exditation pewer are switched to the desired linal amplifier.

The availathility and proven dependability of the $81: 3$ make a pair of them the logiral choiec for the kilowatt amplifier. A shrewd amateur should have no trouble procuring the tubes through surplus channels or by bartering with local hams.

Referring to the circuit diagram, Fig. G-6i6, the amplifier control unit contains the filament, hias

Fig. 6-65-Individual kilowatt amplifiers for two bands plus complete metering and all control circuits and power supplies (except plate) fit handily into a table rack. Amplifiers for five bands plus the plate supply will mount in floor rack. Band switch of lower left (S_{x} in Fig. 6-66) switches filament supply, excitation and output connections to all amplifiers in use; screen and plate supplies are connected to all amplifiers at all times.
and sureen supplies..$: 3$-position mode switeh, S_{2}, selects the hise for cither Class $\mathrm{A} \mathrm{B}_{1}$ or (' operttion, and in the third position gromms the sereen grids, to limit the plate current during initial tuning. Another ;-position switeh, s, allows the total or individual sereen eurrents to be read. The latter position is useful in matching tubes. The high-voltage supply should furnish from 1750 to 2250 volts.

Construction

Wuch amplifier is assembled on a $1: 3 \times 17$-inch aluminum bottom plate. Two $5 \times 1: 3 \times 3$-imelt aluminum chassis are used as the sides of the enclosure. The paint is removed from the hark of a $\overline{\text {-imeh a }}$-hminum rack pancl, and a piece of Resoods cane metal is sablwidhed between the pand and the two chassis. A rectangular window in the panel provides additional ventilation and a means for inspereting the color of the tube plates. The top and bate of the enflosure are formed from at single piece of cane metal, bent to fit the chassis rear and top. Three lengt he of $1 \times 1 \times 1 / 8$ infh aluminum angle stock are used in the corners of the endosure, as can he wem in Figs. 6-68 and ($\mathrm{j}-6$) .

The variable tank caparitors, 1 , atre mounted on b-inch stand-off insulators, to bring the shafts to the proper punel height. In the 10 meter amplifier the capacitor shaft must remain above r.f. ground, and a suitable insulated shaft coupling is used. ()n the other bathds, the rotors of the capawitors are gromeded to the chassis through metal straps.
(H20, 15 and 10 meters the tank roils ate wound solf-supporting of 1 -inch dismeter softdrawn ropper tubing, and they are supported by their leads. On 80 and to the eoils are lengths of Air-bux stork, and they are supported hy small cerami- insulators.

The sereial plate rif. chokes, $R F^{\prime} G_{2}$, are constructed by doke-winding No. 21 onameled wire on 3 - inch diameter eeramic insulators. Four-inch long insulators (National (iN-t) are used on the 80-and to-meter hambs, and 2-ineh long insulators (Nitionall (is-3) are used on the other bathe. In math rase the orgrimal hase of the insulator is removed and the insulator is momited on a standoff (Johnson 135-20). The high-voltage lead and the "cold" and of the choke are connected to a soldering lug mounted between the (wo insulators.
bridge meutralization is indended in the 20)-lis- and 10 -meter amplifiers, The neutratizing (aparitors are made from two $1 / 2$-ith wide aluminum strips $\overline{5}$ inches long. One strip is romected directly. to the plate lad at ('z and the other is supported by a ceramic feed-through insulator that comeets to the rotur of ('1. The amplifiers are neutralized by adjusting the sparing hetwen the ahminum strips.

The metal ring surrounding the base of the 813 should the grounded to the chassis. I piece of

One-Band Kilowatts

10-METER TANK DETAIL

ig. 6.66-Circuit diagram of a single parallel-813s amplifier and the control section. Diagram of each amplifier is similor, except os noted below. Unless specified otherwise, capacitances ore in $\mu \mathrm{f}$, copaci tors marked with palarity are electrolytic, fixed capacitors are ceramic, resisiances are in ohms.

C:2-Not used on 80 or 40 ineters; see text.
C_{3}-Two $500-\mu \mu \mathrm{f}$. 20-kv. ceramic (Centralab TV-207) in parallel on 80 m. ; single $500-\mu \mu \mathrm{f}$. 20-kv. ceramic on other bands.
$\mathrm{C}_{7}-0.001-\mu \mathrm{f} .1-\mathrm{kv}$. ceramic on 80 and $40 \mathrm{~m} . ; 240-\mu \mu \mathrm{f}$. silver mica on other bands.
$I_{1}, I_{2}, I_{3}-115 \cdot v$. pilot lamp.
J_{1}, J_{2}-Coaxial cable receptacle.
$K_{1}-S . p . d . t . ~ r e l a y, 115-v$. a.c. coil.
$\mathrm{L}_{3}, \mathrm{~L}_{4}$-Not required on 80 or $40 \mathrm{~m} . ; 6$ turns No. 14 on $1 / 4$-inch diom.
$\mathrm{R}_{1}-10,000$ ohms, 2 watts, composition (not wirewound).
Re-50,000 ohms, 4 watts (Mallory M50MPK).

RFC $_{1}$ - 2.5-mh. $75-\mathrm{ma}$. r.f. choke
RFC2-See text.
RFC 3 - 2.5 -mh. 300-mo. r.f. choke.
S_{1} - Two-pole 3-position rotary switch, shorting type.
S_{2} - Two-pole 3-position rotary switch, non-shorting type.
S:-S.p.s.t. lock switch (AHH 81715-L).
S_{5} - Time delay relay (Amperite $115 \mathrm{NO60}$).
S_{7}-Heavy duty d.p.s.t. toggle.
T_{1}-10-valt 10 -ampere filament transformer (Thordarson 21F19).
T_{2}-250-volt 25 -mo. transformer (Stancor PS-8416).
T_{3}-800-v.c.t. 200-ma., 5- and 6.3-v. heater windings.

6－HIGH－FREQUENCY TRANSMITTERS

Fig．6－67－View of the 40 －meter amplifier with its cane－metal covering removed．As in each amplifier， the chassis is made from two $5 \times 13 \times 3$－inch chassis and a 13×17－inch base plate． Input and low－voltage leads make ud to terminals and jack in center foreground．

Fïmate louger stork or a homemade contact ran be used for the purpose．

All power wiring is done with shielded wire and hepassed as deseribed in（＇hapter Twentr－Threre． The filament leads should he made liomi No． 1 （or heavier）shieded wire．

The sereern and hitas supplies plasestation eon－ trol cireats are huilt on a ratek－mounting chassis （Bud C13－1：3i：3）behind a \bar{i}－inch pathel．In the
 the sereents athe－ 150 is commerted to the wrids． In the（lass AB，position，the sereen valtage is incereased to 000 and the wrid hiss is dropped to ： value determined hey the setting of lis．This latter sotting should be one that pives best linearity without exceoding a ho－signal plate input of lato watts for the two Sizs：it deprods on the plate voltage available．I heary bered on the sereen

Coil and Capacitor Table					
Band	S0	10	20	15	10
C_{1}	$\begin{gathered} 100 \mu \mu \mathrm{f} \\ \text { (Johnson } 10, \mathrm{I}, \mathrm{t} .) \text {) } \end{gathered}$	$\begin{gathered} 100 \mu \mu f_{2} \\ \text { (Johason } 1001.15 \text {) } \end{gathered}$		$\begin{gathered} 50 \mu \mu f_{v} \\ \text { (Johnson 50L, } 1.5 \text {) } \end{gathered}$	$\begin{gathered} 50 \mu \mu \mathrm{f} . \\ \text { (.Johnson :0l, } 1.5 \text {) } \end{gathered}$
C_{4}	$\begin{gathered} 1.50 \mu \mu \mathrm{f} . \\ \text { (Johnson } 1.50 \mathrm{E} \cdot \mathrm{ti} \text {) } \end{gathered}$	$\begin{gathered} 1.50 \mu \mu \mathrm{f} . \\ \text { (Johnon l.iof: i.8) } \end{gathered}$	$\begin{gathered} 3.5 \mu \mu \mathrm{f} \text {. } \\ \text { (Johnson 3.il: } 1.5 \text {) } \end{gathered}$	$\begin{gathered} 3 . i \mu \mu \text { f. } \\ \text { (Johusin } 35 \mathrm{~F}, 4.5 \text {) } \end{gathered}$	$50 \mu \mu$ f， （lfammarland M（ $-0-\mathrm{ML}$ ）
C_{5}	$\begin{gathered} 710 \mu \mu f_{6} \\ \left(2-\text { gathg }_{2} 36 \sigma_{0}\right) \end{gathered}$	32．＇$\mu \mu \mathrm{f}$ ． （lammarlumd M（ $-3.3 .3-.1])$	33．：）$\mu \mu$ f． （Hammarlund A（（－30．）－M）	32．5 $\mu \mu$ f， （Hammarlund M（ $-3 \cdot 5-\mathrm{M})$	$32.5 \mu \mu \mathrm{f}$ （Ifammarlınd M（－3：5－M）
f_{6}	$\begin{gathered} \pi(6) \mu \mu f . \\ (\text { Contralab, } I \backslash-207) \end{gathered}$		－	－	－
L_{1}	＋t．No．20＊	31．Nu．2：2＊	2 t．No．2：${ }^{\text {＊}}$	1 t．No．22＊	1 t．No．2：2＊
L_{2}	3：t．p．i，No． 24. 1 inch long， 1 inch diam．（BNW 3016）	1tit．p．i．No．： 0 $11 / 4$ inch long， 1 ineth disim．（BatW 301．5）	8 t．p．j．Ňo． 18 $18 / 8 \mathrm{imm} / \mathrm{long}, 1 \mathrm{inch}$ diam．（13心W 3014）	8 t．p．i．No． 18 $8 / 4$ inch long， 1 inch diam．（B心W 3014）	8 t．p．i．No， 18 1／2 inch long， 1 inch diam．（Ba－W ：3014）
L_{5}	（it．1．i．No．12， 3 imelomg． 3 ind diant．（Air 1）${ }^{\text {ax }}$ $2 \cdot(\mathrm{Mi}$	18，p，i，Nor．12． $33 / 4$ inch lons．$\because!$ 白 inch diam．r．lir 	$\begin{aligned} & \because \text { e. b.i. } 1 / 4-\mathrm{inch} \\ & \text { monp } \\ & \text { inth tong, } 21 / 2 \mathrm{i} . \mathrm{d} \text {. } \end{aligned}$	$\because 2.1, i .1 / 4-\mathrm{inch}$ coppler thhing， 3 incliolong．21／2 i．．l．	2t．p．i．1／4－inch copher tukning． 2 inch long，21／2 i．d．（9 tall 2 turns．

[^3]
One-Band Kilowatts

The unit shown in Pige (i-fi.) Hes ath ohmite Model 111 swith at S. This is ganged with antonna and exeitation switches in permit onewotrol bathewitching. The relay K_{1} is atuated

Wher the dater mply is furnel an; when the rehar is open a high bias is applied to the 813 s to redues the plate current in 0 ma . and eliminate the recoiver noise often ransed hy statid plate current.

Fig. 6-68-Top view of the 15 -meter amplifier. The neutralizing capacitor consists of two strips of aluminum, supported by the plate-blocking capacitor and a feedthrough insulator. It is mounted over the r.f. choke between the two 813 tubes.

Fig. 6-69-As in the other amplifiers, the 10 -meter final uses shielded wires in the filament, screen, ond grid-return circuits. For tuning this amplifier uses a small varioble copocitor connected across half of the plate cail, to maintain a fovarable L/C rotio.

A Grounded-Grid Half Kilowatt

The amplifier shown in ligs. ($0-70$, $6-72$ and $6-73$ will rum at about 500 watts input on c.w. or p.e.p. input as an s.s.b. linear - on all bands from 80 through 10 meters. The unit is small enough to sit on the operating table right along with the rest of the station equipment: no need for big racks here.

Using a pair of 811As in parallel in the grounded-grid rireuit, this rig is a good one to use following transmitters such as the Viking Ranger, DN-10, (ilobe Scout, and others of similar power class, for a worth-while increase in power output on c.w. As a linear amplifier following an s.s.b. exciter it recpuires no swamping hecause the 811.1 grids provide a fairly constant load in themselver, and also the fed-through power with gromderl-grid presents an additional constant load to the driver. The total driving power needed on any band is less than 20 watts.

An additional usefin feature is a huilt-in direer tional eoupler using a version of the "Mickey Match." lasides its obvious application for reheeking the s.w.r. on the tramsmission line to the antenna or for help) in tuning up a coax-eoupled antenna coupler, it is practically indispensable as an indicator of relative power output in thming the amplifier.

The Circuit

A number of tube types could bo used in an amplifier of this power class. the the 811As are a good choice because they do not neal a bias supply and are not expensive. (Numplus 811s can be used if you don't want to buy new tubes; the ratings are not quite as high but they can bo pushed a bit in intermittent servire such as (e.w. and s.s.b.)

The eomplete cirelut is shown in Fig. (i-a 1. To save trouble and work, standard romponents: are used throughout - the only sperial construction is the shielding and a few simple r.f. chokes. The tube filaments are driven directly from eoax input from the driver; no tuning is used or is
nerdod in this cireuit. The filaments are kept above ground by the B \& W type FC15 filament choke.
The plate tank is the familiar pi network, using a B \& W type 85l tapped roil and band-switeh assembly. This assembly has bern modified slightly in two respects: First, the eopper-strip 10 -meter coil normally mounted at the top of the rear plate is taken off and moved so that it is supported botween the tank assembly and the stator of the tank tuming capacitor as shown in Fig. $G-6$. A short length of copper strip is bolted between the free end of the coil and the righthand stator comection of the tuning eapacitor, to support the free end. This remage is made in order to avoid the long lead that would have to ber run from the rapacitor to the regular input terminal on the tank assembly, sinee this terminal is at the right-hand side of the asiombly as viewed from the top. The turns of the lo-metar coil are also squeroed together a bit to increasi the induetance, because it was found that a rather large amount of eapacitanee had to be used to tume the eirenit to the hand with the roil at its original length. The length is now $15 / 8$ inches between mounting holes.

The second modifieation is the addition of a pair of switeh eontarts on the rear switell phato of the tank assembly. There is an extra position on this plate with holes already provided for contapts, and the additional set of contarts is used to switch in fixed output boading caparitathee on 80 meters, where a large output capacitance is needed. The variable loading eapacitor, $\%$ with the five tixed miea capacitors, ("s to ('s inclusive give rontinuous variation of caparitance up to 127: $\mu \mu \mathrm{f}$. on atl bands, ineluding the regular switch position for the 80 -meter band. Ilowever, if the switeh is furned to the extrit position an additional $1000-\mu \mu$, mica capacitor is comereted in parallel, so that rontimuns variation of eapacitance to over $2=00 \mu \mu \mathrm{f}$. is possihte on 80 . This takes care of cases where the load resistance

Fig. 6.70-This amplifier operates at a plate input of approximately 500 watts, uses a pair of 81las in grounded-grid, and is complete with power supply on a $13 \times 17 \times 4$. inch chassis. The rack ponel is $101 / 2$ by 19 inches. Front-panel controls include the plate tuning capocitor and band switch in the center, filament and plate power switches with their pilot lights of the lower left, sensitivity control and forward-reflected power swilch for the directional coupler of the lower right, variable loading capacitor and auxiliory loading-copocitor switch underneath the 0.1 milliammeter at the right, and the grid-cathode milliommeter with its switch at the upper left. The filter choke, 866As and plote Pransformer occupy the rear section of the chassis.

Grounded-Grid Half Kilowatt

happens to be musually low or reactive.
A 500 -ma. d.e. meter is used for reading either total cathode current or grid current alone. The cathode current is rearl in preference to plate
${ }^{1}$ These contacts can be obtained directly from the manufactarer of the tunk assembly. To secure a set of contacts with mounting hardware, send one dollar to Barker \& Wi!liamson, Beaver I am and Canal, Bristol, Penna., specifying the type of tank assembly for which they are wanted. The rontacts are not catalog items and are not avialable through dealers.
current because of safety considerations. Putting the moter in the hot d.e. phate lead leaves nothing but a little plastic insulation between the high voltage and the meter adjusting serew. It is a hit of a nuisance to have to subtract the grid current from the cathode current in order to find the plate current, but it inn't serious. The d.e. mrid circuit has a jack, J_{3}, for introducing external bias wither for blocked-grid keying or for eutting

Fig. 6-71 - Circuit diagram of the parallel-811A grounded-grid amplifier. Unless atherwise specified, fixed capacitars are disk ceramic, 600 -volt rating.
$\mathrm{C}_{1}-500 \mu \mu \mathrm{f} ., 20,000$ volts (TV "doorknob" type).
$\mathrm{C}_{2}-250-\mu \mu \mathrm{f}$. variable, 2000 valts (Johnson 250E20).
$\mathrm{C}_{3}-325-\mu \mu \mathrm{f}$. variable, receiving type (Hammariund) MC-325-M).
$\mathrm{C}_{4}-\mathrm{C}_{9}$, inc. -1200 -volt mica, case style CM-4 5 .
$1_{1}, 1_{2}-6.3$-volt dial lamp, $150 \cdot \mathrm{ma}$. (Na. 47).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coax connector, chassis mounting.
J_{3}-Closed-circuit phone jack.
$\mathrm{J}_{1}, \mathrm{~J}_{5}-115$-voit male connector, chassis mounting (Amphenol 61-M1).
$L_{1}, L_{2}, S=5$-band pi-network coil-switch assembly; see text (B \& W 851).
L:-Swinging choke, 4-20 henrys, 300 ma. (UTC S-34).
L_{4}-Section of coax line with extra canductor inserted; see measurements chapter for construction references.
M_{1}, M_{2}-Milliammeter, $31 / 2$-inch plastic case (Triplett $327 . \mathrm{PL})$.
$R_{1}-20,000$-ohm composition control, linear taper.
RFC_{1}-Filament-chake assembly, to carry 8 amp . (B \& W FCl5).
$\mathrm{RFC}_{2}, \mathrm{RFC}_{3}-2 \mu$ h. (National R-60).
$\mathrm{RFC}_{4}-90 \mu \mathrm{~h}$.; $43 / 8$-inch winding of No. 26, 40 t.p.i., on $3 / 4$-inch ceramic form (B \& W 800).
$\mathrm{RFC}_{5}-2.5$ mh., any type.
$\mathrm{RFC}_{6}-\mathrm{RFC}_{9}$, Incl. -18 turns No. 14 enam., close-wound, $1 / 2$-inch diam., self-supporting.
S_{I}-4-pole 2-position rotary, nonshorting (Mallory 3242」 or Centralab 1450).
S_{2}-Part of tank assembly; see $t_{1} t_{2}$.
S_{3}-Miniature ceramic rotary, 1 section, 1 pole, 6 positions used, progressive shorting (Centralab 2042).
S_{4}-Miniature ceramic rotary, 1 section, 2 poles, 2 positions used, nonshorting (Centralab 2003).
$\mathrm{S}_{\mathrm{T}_{1}} \mathrm{~S}_{6}$-S.p.p.t.t. toggle.
T_{1}-Filament transformer, 6.3 volts, 8 amp. min. (UTC S-61).
T_{2} —Filament transformer, 2.5 volts, 10 amp . (UTC S-57).
T_{a}-Plate transformer, 3000 volts center-tapped, 300 ma . d.c. (UTC S-47).
$\mathrm{z}_{1}, \mathrm{Z}_{2}-21 / 2 \mathrm{t}$. No. $16 \frac{1}{2}$-inch diam., over 100 -ohm 2 -watt carbon resistor.

6-HIGH-FREQUENCY TRANSMITTERS

off the phate current during receiving, and a fourpole switeh, S_{t}, is therefore nerded for handling the motor switehing while keeping all rirenits functioning normalle.

The power supply use sbibis with a plate transformer giving lan0 volts eade side of the renter tap, and working into a single-section rhoke-input filter. The filter rapacitor comsists of four 80- μ f. alectrolyties romeeted in series to handle the voltage, giving ath affertive filter raphatitnce of $20 \mu \mathrm{f}$. This supply is rumaing well below its capabilities in the intermittent trpe of operation represented ber cow, and s.s.h., and the amplifior is somewhat "over-powered" in this respert. A lightor plate transformer ram be used sinere the average current in regular operation is only about hali the maximum tule ratimg of 3 ano mat, for the mair.

The are impute to both filaments amb pates have TVI filters installed right at the ate, conwertors. The rhokes in these filters. RFO ${ }_{6}$ to $R F^{\prime}$ 'g inclusive, are homemade be winding is turns of No, It entanded wire elose-wothed on a half-ineh dowed or drill.

Construction

The only space available for the filament tramsformors is helow chassis. su these are monated on the front wath of the chassis ats shown in fïg, 6--:3. There is plenty of rom for all other power-supply parts below whesis, and the photographe make any further comment on this seetion unneressals.

The r.f. layout shown in lig. ($\mathrm{j}-\mathrm{i} 2$ is almost an exat copy of the eirout lavout as given in Fig. ti-7. The plate blowing rapacitor. (in, is mounted on at smatl right-angle hracket fastamed to the lefthand stator commertion of the tank raparitor, ('z. The tube phates ame conmered to ('1 through individual parasitio-suppresion assmblies, Z_{1} and Z_{2}. The hot eme of the plate choke, RP'f, also rommeds to this same point. The tank rapacitor is moment on $3 / 4$-inch eremmio pillars (o) hring its shalt to the same herght as the switch shaft on the tank-eoil assombly. The
caparitor is grounded by comnecting the bottom of its frame through a half-inch wide strip of ahminum to essentially the same point at which the phatorerooke bepases capateitor, a $0.001-\mu$ t. ?OMO-volt disk, is grounded. The ground end ol the aluminum strip adetally is under the bottom of the plate choke, and the gromed has for the hepass raparitor is just to the left. This strip. phes short learls in the rirenit from the tube plates through the tank (alparitor to ground, kerep the rosonant frequency of the lowe that formod well up in the v.h.f. region; this is important berealuse it permits using low-indurtanere parasitic chokes in shunt with the suppressor resistors, athl thas temes to kerp ther.f. plate comerent at the regular operating frembencios out of the resistors. With other tank gromming aramgements originally mied. larger patrasitic chokes had to be wiad and it was impossible to prewell the resistors from haming up when oprating on 10, 15 and aven 20 meters. Now ther do not overheat on ame frefurners, and v.h.f. patasities are monexistent although without the suppresors the parasities arre mely tor mum in evidenere.

The output losaling ratpacitors, ('3 through f 'y. are momed toward the rear so the fads from the tank eoil can lae kept as shore as possible. I length of copper strip is used hetwen the coil and the stator of ras originally this lead was No. It wire but on 10 meters the tamk current was romogh to ha:at it to the point of discoloration. Thu gromed lead from the fixad units, mate to the watr beating anmertion of (\% is also eopper
 shats, using Millen thexible conplinges to simplify the aligmment prothem.
loudernath the ehassis, eath stl. grid is hepassed directly to the socket-monating seres warest the plate choke (right-hand side of the soredel in Fig. (i-a:3). The d.r. houls have smatl

 grid rectification gemerates hammonics in the TV I ands. The filament choke, $/ P^{\prime}\left(\begin{array}{l}1 \\ 1\end{array}\right.$ is mounted

Fig. 6.72-The r.f. section with the shield cover removed. Camponents here are readily identifioble by reference to the circuit diagram. The meters ore enclosed in rectongulor baxes made from thin aluminum sheet, formed to be fostened by the meter mounting screws. The bock covers on these baxes are made from perfarated aluminum, folded over at the edges ond hold on the boxes by sheet-metal screws. The switch for shiffing the 0.500 milliammeter (left) from grid to cothode is concealed by the bax which encloses the meter.

Grounded-Grid Half Kilowatt

so that the tizament side is efose lo the tilament terminals on the tulm sockets: the other end is hepasiod directly to the chassis.

The shichling aroumal the amplifier consists of two piores of shere alhminum and a perforated aluminum ("do-it-yourself" typer) eover hatving the shate of an inverted L'. F"ig. (b-iz shows how the rear wall is made. Its edges are bent to provide flanges for fastening the eover with sheetmotal sorews, and there is a similar flatge projereting to the rair at the bottom for fasterning the wall to the chassis. The front piecer extends the full height of the panel and is identirally drilled and cut ont for moters and controks. It has flanges at the top and extembing down the sides: from the top to the chassis. The cower itself extends down over the sides of the chassis for athont one inch. Xumerons serms are used for fasterning the cover, to prevent leakage of harmonies.

The shichls ower the meters are made as described in the raption for the inside top view. Meter leats aro hepassed to the shield boxes where they emerge.

Construction of the directional compler parallels that given for the antema roupher in (haptrer Thintern.

Operating Conditions and Tuning

The voltage delivered by the power supply is approximately loro) volts with modrive and with the tubere taking only the no-bias statia plate curmen, whid is about bo mat. At the full loand of :300 mas. the voltage is slightle umber 1100 . Optimum oprating combitions for 1 HO volts at 350 ma. peak-ronerlopx pewer input as ant s.s. b, limear call for a prak-admelope grid rurrent of bo mat. The patakedope tabe pewer output is close to B50 watts mater theme rombitions. Ther same operating combitions are akso ahout optimum for c.l.

The helasior of the cathode current when
thang a gromeded-grid triode amplitier is somewhat confusing, and the meter is principally usoful as a check on operating conditions rather than as a thaing indicator. The best indientor of proper thaing of the plate tank capacitor is the forwand-power reading of the direretional compler. For any trial setting of the loating controls and driving power, alurays sot the plate tank "aparitor rontrol at the point which results in a maximum realing on the pewer-output indicator.

The power indirations are only relative, of consere, and the semsitivity control should be set to give a reading in the upper hatf of the seate of the meter.

The ohjortive in adjusting loading and drive is to arrive at maximum power output simultamemady with at plate rurrent of 350 ma , and a gride current of 60 man. - that is. a total rathoulo rurrent of 410 mas. When the grid current reading is 60 mat. The loading is eritieal. If the amplifier is mot lowhed heavily mough the grid rument will fre too high athe the right value of total (athende rurrent either will not be reached or, if reached, the amplifier will be operating in the "Hattening" region as an s.s.b. lincar. (It can be operated this way on c.w., however. sinee lin(arity is mimportant here.) If the loating is too haver, the grid current will low low when the aathole current reaches the proper value, but the effirioney will he low and the thles will overhrat.
(ietting the knack of it takes a little praterere hat when the joh is done right the tubes will run cool on all lands in regular operation. Running key-hown ower a period of time maty show just a trace of dark red color on the phates since thee impat aml dissipation are somewhat over ratings under theme operating conditions, although porfortly satisfactory with ordinary keying or s.s.t. voice.

Fig. 6.73-In this be-low-chassis view, the two filament transform. ers are at the top, mounted on the chossis wall. The 811 A sockets are of the upper left. The rectangular box on the left-hand wall contains the FCI 5 filamentchoke assembly. The '"Mickey Match" directional coupler is ot the upper right. Filter capacitors and the bleeder resistors are in the lower section. A.c. inlets, fuse holder, bias jack, and the 115 -volt line TVI filters are on the bottom chossis wall.

6-HIGH-FREQUENCY TRANSMITTERS

A Kilowatt Grounded-Grid Amplifier

The amplifier shown in ligs, 6-7.4, 6-6t and 6-77 is built around the l'enta I'S-(5580, a high- μ triode designed especially for grounded-grid Class-I r.f. amplifier servier. With a plate veltage of from 3000 to 4000 , from 700 to 900 watts p.e.p. output can be obtained with about 75 watts driving power. A stabilized bias supply is included that will provide the correct bias for any operating plate voltage between 2500 and 4000 .

Referring to the cirenit diagram, Fig. 6-7.5, the rathode (filament) is maintained above ground by the filament chokes RFC' 1 and $R F C^{\prime}$. An 1 . network, tuned by C_{1}, provides voltage step-up to the eathode. On 80 meters the eapacitor C'1, together with fixed mparitor ('2, tumes the filament chokes. (On the othor bands the fixed capacitor is removed and the proper inductance is shmited aeross the chokes.
To insure good r.f. gromading of the grid, threer $0.001-\mu$ f. disk ceramic capacitors are used between the grid pins and the ehassis. The bias supply uses a high-current low- μ (0080 twin triode to stabilize the bias, in conjumetion with the 6:AU6 control tube and the 0A: voltagoreference tubes. The hias voltage is set by the position of the arm of R_{1}.

The plate circuit of the amplifier doparts from more conventional practice in several ways. The output capacitance in the 80 -meter eondition is relatively small; this is a result of using a low capacitance at C_{3}, which in turn lowers the circuit Q and requires a lower output eaparitance for proper loading. If a low plate voltage (2500) is to be used, it would be better to increase the eapacitance value of r_{3} and the caparitanre switehed across the output on 80 meters. (On all
of the other frequmey ranges the capacitances are more in line with normal Q values. On 15 and 10 meters $S_{2 B}$ shorts part of L_{4}, to break up a resonamee in the mused coil.

Although the P'-6580 repuires is wolts on the filament, a 6.3 -wolt filament transformer is used. The resistance of $R F C^{\prime} 1$ and $R F^{\prime}$ '2 is sufficient to drop the voltage to the correet value. The 6080 regulator and the $6 \mathrm{~N} . \mathrm{tectifier} \mathrm{heaters} \mathrm{are} \mathrm{also}$ eonnected to the filament transformer, T_{1}.

Construction

leforring to Figs. 6-76 and 6-77, the amplifier is built on at $12 \times 17 \times 3$-inch chassis, with a standard $10 \frac{1}{2} \times 19$-inch relay rack pamel. Aluminum angle stoek is used to form a framowork for the perforated-metal sides (not shown in the photographs). To rool tha Pl-6:580, a bower is mounted on the ehassis so that the air is pulled in through a perforated-metal side and blown down under the chassis. The chassis, stalled off with ath aluminum bottom phate, can only exhatust the air past the tube and, to farilitate this, the tubre socket is mounted in a :3! $2-$ ineh-diameter hole. The combination of the harge hole, the ventilated sorket (Johuson 129-275) and the glass chimney (Penta PI-Cl) gives suifficiont rooling with any blower of 50 c.f.m. or greater capaeity.

The platerrircuit band switch, se, is mounted on the chassis and eontrolled via a right-anglo drive. Isads from the switeh to L_{3} and L_{4} arr Inest made with roppor tubing of strap. Varions $500-\mu \mu \mathrm{f}, 5$-kv. (apacitors in the plate and output cirenit are high-voltage erramic (centratab) $8.585-500$), mounted on the tuning papacitors or

Fig.6.74-A grounded grid amplifier using the PL-6580 triode. Able to handle a kilowatl p.e.p. input with 3000 volts on the plate, and even more with a higher plate voltage, a chimney surrounds the tube to improve the forced ventilation. In this view the side and top cane-metal panels have been removed.

Grounded-Grid Kilowatt

Fig. 6-75-Circuit diagram of the kilowatt graunded-grid linear amplifier. Unless indicated otherwise, capacitances are in $\mu \mathrm{f}$., resistances are in ohms, resistors are $1 / 2$ watt. Capacitors marked with palarity are electrolytic, capacitors marked * are mica.
B_{1}-Ventilating blower, at least 50 c.f.m. (surplus).
$\mathrm{C}_{1}-200-\mu \mu \mathrm{f}$, variable (Johnson 200L15).
$\mathrm{C}_{2}-200-\mu \mu \mathrm{f}$ variable, locked at full capacitance (Jahnson 200L15).
$\mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. variable, 0.175 -inch spacing (Johnson 100070).
$\mathrm{C}_{4}-350-\mu \mu \mathrm{f}$. variable, 0.075 -inch spacing (Johnson 350E30).
$C_{5}, C_{k}-0.1-\mu f$, feedthrough capacitor, 600 volts (Sprague 80P3).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-5O-239 coaxial jack.
$\mathrm{L}_{1}-201 / 2$ turns No. 18, 8 t.p.i., 1 -inch diam. Tapped at $21 / 2,41 / 2$ and $91 / 2$ furns from ground end (B\&,W 3014).
$\mathrm{L}_{2}-5$ furns No. $12,1 / 8$ diam., $11 / 4$ long, wound around (but not touching) 10 -ohm 25 -watt resistor.
$L_{3}-133 / 4$ furns $3 / 6$-inch copper fubing, $41 / 2$ t.p.i., $11 / 2$ inch
on metal straps.
While moters with integral metal shiclds (Pianstron (oo, lasadena, (alif.) are shown in leig. (j -iti, an alternative is to use regular meters and small allumimm boxer, as doweribed in Chapter 23.

Adjustment

The bias voltage should lne set, with h_{1}^{\prime}, to give a no-signal plate input of 150 to 160 watts. This will require from about - -50 volts with 2500 on
i.d., silver plated. Tapped af $43 / 4$ and $73 / 4$ furns from plate end.
L. - $191 / 2$ turns No. 12, 6 t.p.i., 3 inch diam., 40 -meter tap $81 / 2$ turns from plate end, anti-resonance tap 3 turns from plate end (lllumitronic 2406).
RFC 1, RFC $_{2}-34$ turns No. 14 enam., closewound on same $1 / / 4$ diam. phenolic tubing.
$\mathrm{RFC}_{3}-2$-mh. 400 -ma. r.f. choke (Miller 4550).
RFC $_{4}-225$ - μ h. r.f. choke, 800 -ma. (National R-175A).
RFC $_{5}-28$ furns No. 20, 16 i.p.i., 5/8 diam. (B\& W 3007).
$\mathrm{S}_{1}-5$-position single-pole rotary ceramic, non-shorting (Centralab 2550).
$\mathrm{S}_{2}-5$-position 2 -pole rotary ceramic (two sections Communications Products Model 88).
$\mathrm{T}_{1}-6.3$ v., 20 -amp. filament transformer (Triad F-22A) $\mathrm{T}_{2}-650$ v.e.t., $40-\mathrm{ma}$, power transformer (Stancor PC-8406, 5 -v. secondary not used).
the plate to -100 with 4000 on the plate. The maximum-signal grid current, as indicated on the $0-150$ milliammeter, should be about 95 ma. for the low plate voltage to 65 ma . for the 4000 volts, Cuder this condition, the amplifier shoukd be capable of being loaded to a plate current of 350 mat at the low plate voltage to 300 ma . for the uppor limit. is mentioned earlier, if only 2500 volts is available for the plate, it is advisable to increase the caparitances at ('3 and the output.

6-HIGH-FREQUENCY TRANSMITTERS

for full loading on 80 moters.
As with any grounded-grid amplifier, it is desirable to tune up with an output indicator of
some kint. The deseription of the lower-powered grounded-grid amplifior, earlior in this rhapter, carris: more detail on the tune-up procedure.

Fig. 6.76-Another view of the grounded-grid amplifier, showing the large switch used in the plate circuit. Tubes visible in the upper right are used in a regulated grid-bias supply. Metal shields on the two panel meters minimize radiation.

High voltage for the plate is brought to the jack on the stand-off insulator of the lower right; the a.c. line is connected to the filter terminals to the right of the insulator.

Fig. 6-77-A view under the chassis shows the filament choke between the two voriable capacitors, with the input tuning coil mounted on the input band swith. The small shield compartment at the top surrounds a filter in the B+ lead

Air from the blower is forced through the hole at the upper right, and it finds its way past the socket ond up the chimney as a result of the cut-out area around the sockel. The three grid connections on the socket are connected together by a copper strap and bypassed to chassis af three places. An r.f. choke in the grid lead mounts on the socket.

A right-angle drive (National RAD) furns the large band switch mounted above the chassis.

A Kilowatt Amplifier

A Kilowatt 4-400A Amplifier

Ang transmitter delivering aloont ten watts will drive the :mplifier shown in lfigs. (i-78 through (6-83. When used as a Chass $1 \mathrm{~B}_{1}$ linear for sideland, a poak driving voltage of about lon is required. The phate tank eireuit of the amplifier is homemade from readily atailahla. parts.

Reforring to lig. (i-7!), the amplifier uses the convontional neutralized grounded-cathoole amplifier cireuit. Switch Siss shorts out the unased part of grid eoil La, and $S_{1 a}$ modifios the input link coupling. A harrington Filectronice (il'-20), subasembly is shown, but an equivatent circuit cean $\left.\right|_{\text {re }}$ buile from standard parts. The output cireuit is a shant-fed pi network for the amateur batels 3.5 to :30. Mre. The smatler tuning capacitor. (10 , is used on 20 . 15 and 10 meters, and the latrger (11 is added for tuming on 10 and so metors. Having two tuning apacitors allows the optimum $L / /^{\prime}$ ratio to the maintained on all bands withont resorting to an expelsive vacumm variable.

A $17-6.5 \mathrm{~m}$. blower supplies alequate fored air robling for the $4-400 \lambda$ lrase and plate seals. The blower is connereded across the $4-400 \mathrm{~A}$ filament transformer primary and operates whenever the filament is chergizen.

All required control and metering circuits are mometed on a soparate chassis. Meters are provided for amplifier grid corrent, sereen current, (athorale current and plate voltage, to comply with the JC(rule regarding measurement of input powers owe ! 000 watts.
The umplifier is fixod bianed at -ones volts for
 The full-wave rectifiers in the bias suphly are silieon diokes, with no warm-n! time. and hall oprating hias j applied as som tas the power switch, S_{6}, is closed. Time-delaty relay K_{1} operathe K_{2}, which is in series with the sereon supply primary. Thus there is a bo-serond delaty hefore sareen potentiad am be applied to the amplifier tulx.

The adecesory a.e. socket, J_{8}, and the highvoltage filament transformer sorket, Jy. are rergized as soon as power switeh S_{1} is clowed. The h.v. plate transformer is turned on by a relay plugged into. J_{10} and cont rolled bey the timudelay relay. With this arrangement, it is impessible to apply a.ce to the h.s. wetifier plates before thoir filamonte have had a chance to warm up.

I variable automanstomer in serias wit! the sareen-supply pinatry allows the seraen voltane to tre adjusted from zero to about 800 volts under load. This maker a convenient arrangement for setting the sereon wolage when danging from (lass (' to Clatss AB1 or vice versa, and for andjusting the powser input of the atmplitios.
A suren overtad protertion rimuit is indoded. If exemsive sermen emrent flows, K_{3} is

- na rgized and is kept anorgized by the current through R_{s}. To revet the relay the sereen voltage must he momentarily diseomeded so that the relay will return to its uncompizad condition. This rath le done ley opening s-. The eurent at which the overloud relay throws is sot with shant resistor R-a maximum allowahle sereen dissipat tion is 35 watts.

Construction

The amplifier is built on at $4 \times 1: 3 \times 16$-inch chassis and uses a 1 t-inch rack panel. All major components are visible in the photographs. The Harrington grid eircuit, output lowding catpaitors and whiteh, and filament transiomer are all below the chassis.

Dh insulated coupling mast be used leotwonn the rotor of 6 ' 1 and the shaft going to the grid tuning knob. Ladad from the gride eirenit are brought ont through the 3×5-inch aluminum hark plate via a feed-hbrough capasitor and bushings. The input link is connered to the eose receptarle through a length of R(i-58/C. The flanged cover of a $5 \times 4 \times 3$-inch Minilox is slipped over the grid assombly, and this eover is secured to the back phate with four self-tapping serems and to the main chassis with four 6 -i? sparle holts.
The gathged loading (*ipacitors (${ }^{\prime} 12$) arre monnted off the chassis on 1-inch sparers. Connections in the output cireuit are made with

Fig. 6-78 - The kilowatt 4-400 A amplifier and its control unit are mounted in a 21 -inch gray hammertone rack cabinet (Bud CR-1727). Shelf brackets (Bud SA-1350) are mounted on both sides of the cabinet to hold the amplifier chassis. Below the meters, from left to right: filament pilot light, key-type a.c. switch, Class $A B_{1} / C$ bias switch, screen autotransformer, plate switch and plate pilot light.

6 - HIGH-FREQUENCY TRANSMITTERS

Fig. 6.79-Circuit diagram of the 4-400A amplifier (above the dashed line) and power supply/control unit. Resistances ore in ohms, and resistors are $1 / 2$-wott unless otherwise indicoted. Capacitors not listed are 600 -volt disk ceramic except for those marked with polarity, which are electrolytic.

A Kilowatt 4-400A Amplifier

copper or brass strapping to provide low-indurtance leads.
The blower is monnted on the rear apmon of the chassis by four ($6-32$ spade lugs attached to the walls of the hower output housing. A $1 \frac{1}{4} \times$ $11 / 8$-inch hole ent in the rear apron of the chassis areommodates the hower: a cork gatket is used Indwede the plastie blower housing athl the amplifier chassis.

The chassis should he as airtight as possible to provide maximum air How to the f-400. tube, and ans small loulos should the soaled he eovering them with tape.

Plate Tank and Enclosure

The plate tatuk eoil. L_{4}, band switeh, \mathcal{S}_{3}, and plate thang capacitor switch. S S_{2} are molunted on two ducite plates in the renter of the ehassis. The tank roil romes prewound on one Latite plate which is positioned $3 \frac{1}{2}$ inches ahove the chassis on coramie sparess, Hatd rubluer washers the type used for packing fancedts) we inserted loweron the reramie spacers and the Larite plates to provide a tight fit.

Counting from the boreking caparitor end, the phate coil is taped at 4 turns ($0.4 \mu \mathrm{~h}$.) for 10 meters: 7.5 turns ($1 \mu h_{\text {. }}$) for 15 moters; 10.5 turns ($2.33 \mu \mathrm{~h}$.) for 20 meters, 14 turns ($5.2 \mu \mathrm{~h}$.) for 40 meters, and 24 turns (16.4μ h.) for 80 meters. (All the figures include the -tarn coil mate of ? roil assombly should be suremely soldered to the

Fig. 6-80-This view of the amplifier shows the bandswitch trap door, air-exhaust part and hale far adjusting neutralization, all in the tap af the shielding enclosure. The large knob an the left af the panel is far the 20/15/10-meter plate tuning capacitar, and the matching knab adjusts the capacitar used an 80 and 40 . Forther dawn, fram left ta right: grid band switch, grid tuning contral, variable laading adjustment and laoding swith.
coil at these points. Strapping should then the run from these taps to the appropriate bandswitch terminals. It should he noterl that the hand-switeh termina's lo not progress in conEerotive order. but are arranged to provide the
B_{1}-Blawer-matar assembly, 17 c.f.m. (Ripley, Inc., Middletown, Conn., type 8433).
$C_{1}-140-\mu \mu \mathrm{f}$. midget variable (Mammarlund APC-140-B). Port af Harringtan Electranics GP-20L.
$\mathrm{C}_{2}-10.6-\mu \mu \mathrm{f}$. neutralizing (Jahnsan N250).
C -500 -valt mica.
$\mathrm{C}_{\mathrm{C}}-\mathbf{0 . 0 0 1}-\boldsymbol{\mu}$. feed-thraugh (Centralab FT-1000).
$C_{5,}, C_{i i}, C_{12}, C_{1 \times}-0.001-\mu f_{\text {., }} 3000$-valt disk eeramic (Centralab DD30-120).
$C_{7}, C_{2}, C_{9}-500-\mu \mu$ f., $_{2} 20,000$-valt ceramic (Centralab TV-207).
$\mathrm{C}_{10}-30-\mu \mu \mathrm{f}$. variable, 0.25 -inch spacing (Barker \& Williamsan (X-30C butterfly, one section used).
$\mathrm{C}_{11}-150-\mu \mu \mathrm{f}$. variable, 0.25 -inch spacing (Jahnsan 150 D 90).
$\mathrm{C}_{12}-650-\mu \mu \mathrm{f}$. variable (iwa Hammarlund MC-325M ganged and paralleled).
$\mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}-2500$-valt mica (Aeravax 1652 L).
$\mathrm{C}_{16}-200$-valt malded paper.
$\mathrm{CR}_{1}, \mathrm{CR}_{2}-500$-ma. 600 -valt peak inverse silican diade (Sarkes Tarzian F-b).
$\mathrm{J}_{1}, \mathrm{~s}_{2}$-Caaxial receptacle, chassis maunting (SO-239).
$J_{3}, J_{1}-2$-cantact sacket (Cinch-Jones S-202-B).
$j_{1}, J_{5}-115$-valt plug, chassis mounting (Amphenal $61-\mathrm{M} 1$).
$J_{-}-J_{1} 0_{\text {, inc. }}$ inc. 115 -valt sacket (Amphenol 61-F1).
$\mathrm{K}_{1}-115$-valt 60 -secand time-delay relay, normally open (Amperite 115 NO 00).
K_{2} —S.p.d.t. relay, 115 -valt a.c. cail (Patter \& Brumfield KA5AY).
K:S.p.d.t. relay, 2500-ahm 7.2-ma. cail (Advance GHE/1C/2500).
$L_{1}-33 / 4$ turns Na .18 insulated wire an cald end af $L_{2} ;$ tapped 2 turns fram ground end.
L2-50 turns No. 24 tinned, $13 / 4$ inches tang on $3 / 4$-inch diam. ceramic form; tapped 5, 8, 13 and 25
furns from grid end. (Part af Harringtan GP-20L).
$\mathrm{L}_{3}-3$ turns Na .10 tinned, $5 / 8$-inch diam., 1 inch long, maunted an R_{1}.
L_{4}-Pi-netwark cail assembly (Air Dux 195-2 available fram Illumitranics Engineering, Sunnyvale, Calif.); see text.
$\mathrm{P}_{1}-2$-cantact plug (C inch-Janes P -202-CCT).
R_{1} - 50 -ahm 5 -watt naninductive wire-waund (Sprague 5KT).
$\mathrm{R}_{f_{1},} \mathrm{R}_{i}$ - 10 -watt adjustable.
Rs-200-watt adjustable; set tap at midpaint.
RFC_{1} - 10 -mh. r.f. choke (Natianal R-50-1).
$\mathrm{RFC}_{2}-120-\mu \mathrm{h}$. plate r.f. chake (Raypar RL-101).
$\mathrm{RFC}_{3}-4$ - μ. r.f. chake (National R-60).
$\mathrm{RFC}_{4}-2.5 \mathrm{mh}$. r.f. chake (Natianal R-50).
S_{1}-Miniature ceramic ratary, 2 pales, 6 pasitians, 1 section, shorting, 5 pasitions used (Centralab PA2002). Part of GP-20L.
$\mathrm{S}_{2}, \mathrm{~S}_{3}$-Hamemade, see text and Fig. 6-82.
S_{4}-Ceramic ratary, 9 pasitions, 1 sectian, pragressively shorting, 4 pasitions used (Centralab PISD section and P-270 index assembly).
Ss-S.p.d.t. micraswitch (Unimax 2HBW-1).
S_{fi}-S.p.p.s.t. lock switch (Arrow-Hart \& Hegeman 81715-L).
$S_{i}-$ S.p.s.t. toggle.
T_{1}-Filament transformer, 5.2 volts c.t., 24 amp . (Triad F-1 IU).
T_{2}-Pawer transformer, 460 volts c.t., 50 ma . (Stanco PC-8418).
T_{3}-Filament transfarmer, 5 volts c.t., 3 amp . (Thordorson 21 F03).
TA-Power transfarmer, 1200 volts c.t., 200 ma . (Thordarsan 22R36).
T_{s}-Variable autatransformer, 0.132 valts, 1.75 amp . (Superior 10B).

6 - HIGH-FREQUENCY TRANSMITTERS

Fig. 6.81-Top view of the control unit. The voltmeter multiplier resistors are housed in a cane-metal protective shield (upper left). Resistors R_{s} and Ry are mounted under the sets of ventilation holes (center near panel).
shortest possiblo laid lemgthes.
Brestre no iron or storel hardware is haced in tha bathd-switrh assombly or for that mattor, ampa where it the plate tank rirenitry ol the amplifier. liath piero ol hardware should be rherked fipst with a magnot to insume that it is meithere itom nog' stad before being wed in the plate cirenit.

In order to got tothe band witrh athd raparitor switeh, at trap doom is provided in the top of the enclosure. Mioroswiteh S_{5} is installed so that it i , actated hey the trap door'. Tho late from S_{5} : are
brought ont to a jawk, f_{3}, lowated on the bark wiall of the end losure, and from there to f_{6} ont the reontrol unit. 'Thr trat) door measumes ti_{4}^{1}
 of the edrelosure is $43 / 8$ he 6^{1} a inchos. This pros vides adeduate oferlitp to provent anty latkiger ol r.f.

Adjustment and Operation

First, detornme that the eontrol mit is operating rorreretly. Ipply 115 volls to . $/ 5$. insiat the

Fig. 6-82-Most of the enclo sure has been removed to show the low. and high-frequency plate tuning capacitors, the coil and band-switch assembly (center) and the 4-400A in its glass chimney (Eimac SK-406). The neutralizing capacitor is behind the fube in this view. A cork gasiket is used between chimney and chassis. Across the rear apron: output jack, filament a.c. plug, cathode and ground terminals, highvoltage connector, ground post and blower. The blower hides another terminal strip (for bias and screen connections) and the input jock. The band switch is made from a $41 / 2 \times 8$-inch strip of $1 / 4$-inch thick Lucite and Johnson 108-760 jacks and $108-770$ plugs. The plugs are mounted on two $31 / 8$-inch utility handles (Bud UH-71 A) strengthened by straps of aluminum.

Fig. 6.83-Bottom view of the amplifier. The Minibox shield has been removed from the grid circuit (lower right). Loading capacitors, switch and "safety" choke are at the left. The filament transformer is in the center. Amplifier tube socket is mounted on four tabs spaced evenly around the circular cutout.

tulnes. and turn on the key swith. No. The green filament pilot light should go on immediately.
 and $/^{9}$. $/$ a and f_{3} ane for the amplitiar and plate
 sorket. is provided so that extornal equipmont such as the station rereiver eat lx^{2} rontrolled by Si_{6}. There should tre no power at f_{10}. the phate transformer control serekot.
S゙ext, aldust R_{f} until the VR tulnes just begin to glow. Be sure the stand ye terminal jumper from l'in $\overline{5}$ of l_{3} to ground is in place. 'Turning s_{o} should ehauge the bian from - 1.50 wolts in the (lass $A B_{1}$ pxestion to -225 volts for (hase (in the other. With s_{5} in the linear porition (AB), and leaving a voltmeter on the output of the hias: supply, temperatrily lift the standhe jumper from ground. The output voltage should rise from -1 (0) to apmoximately - 300 volts. The standley terminals provide a monveniont way to bias the t-100A beyont mofo during standby and roreiving prriods. This will brevent aty amoving diode noise gemeration.
 J_{10}. Put at temporary jumper between the two contarts of $/_{6}$. (Conic S_{6} and S_{a} and alter bo seronds there shombla be pewar at I_{10} and the red phate pilot latmy would light. Ruphare the
 witch interlock. Litting the trap dowe should derencrgize $f_{\text {bl }}$, and the plate pilot bulb, should restinguish.

Vext, commect at lise voltmeter tor the ontput of the seren supplys. B y adjusting F_{5} it shoulal be pensible to vary the output trom of to apmeximately 8 gol volts. Fintilly, adjust h_{-}so that κ_{3} trips when 40 ma, is drawn from the sorem sup-
ply, This cam be doreked her emanerting at resistor
 ontput and ruming the voltage up from zero matil the drain is 10 mat. This rompletes the tosting of the control mit.

The amplifier must now tre bebralized. set the grid and plate band switches for 28 Mro., and discomere the serem and plate laads at the amplifier terminals. (ouple a sensitive indieating wavemeter to the obitpat and of the plate tank cirruit and apply the required -o2s volts of Dias. Apply drive, resomate the erid direvit and adjust the outpat of the exciter for rated $4-100.1$ grial rurvent. Noutmizing ratmeitor (\because should then be adjusted for minimum r.i. in the plate tank cirenit. The plate tuming eapacitor should Ine retund for maximum wavemeter reading ather cath change of $\begin{array}{r}\text { n. . After rated phate and }\end{array}$ seren voltages have lewen applied and the amplilied loaded, the mentralizing mpacitor whombly he touched up so that minimum plate current and maximum gred and sereen currents orear simultameonsly as the phate tank is tumed through weothather.

If the amplifier is to be used for s.s.b., the h.v. power supply should have a minimum output ("untuitance of 8μ. For lest voltage regulation the plate transformer should have a 2 evovolt primary. The output of the h.v. power supply should include a ${ }^{2}$-impere fise to protect the suphy from exeresive overloats.

If the amplifier is to be plate modulated, a rhoke. approximately 10 hys at 50 or 100 mat., should bo inserted in serios with the sereon lead of the f-f(0). . . In external switeh can be used to short out the chote when using the amplifier for c.w. or s.s.b.

6-HIGH-FREQUENCY TRANSMITTERS

A V.F.O. With Differential Keyer

Figs. 6-8 8 through (i-88 show asolforoutaned v.f.o. With output on :3.5 Me. Included is at differential sustem for keving the control grid of ath amplifier. The diagram is shown in ligg. ti-86. One section of a $12 . \mathrm{AT}^{-1}$ is used in the Vackar useillator ciremit, while the swemed wertion is used as a cathode follower driving a oftio amplifier. Ss selocts ather of fwo fregueney ramges

 fredueney hatuds. If moly the first ratuge is elosired, ('1 and C'3 may loe omitted and the stators
 L_{1}.

To avoid dharp and jermit full break-in e.w. opration, a differontial keying system is usent. (irid-bloek keving of all amplitier stage beyond the v.f.o. unit is provided by the negative power supply (6.55 rectifior), the for C resistor, the 33 K rowistor h_{1}, and the $0.1-\mu \mathrm{F}$. Capacitor ('s. The 6.5F eathonde follower and the 0.12 control the usallator. A complete desaription of the rirant operation will be fond in Chaptor bight. Opening sig turns on the ascillator for "frecturney "potting" purposes.

Construction

The unit is built on a $7 \times 12 \times 2$-incll aluminum rhassis that will fit insidd an $8 \times 14 \frac{1}{2} \times$ $8 \frac{1}{4}$-inch rablinet (Bual ($-15-17$). Thu patmel is \& by 10 inches and the dial is a Millen 100:30. 13 fore mounting the components, it is advisable to stiffern the chassis against vihation by fasterning two longths of aluminum angle stork rintning lenghtwise against the under sumfare of the chassis. sereeral mathine surews should be wed with eateh.

Fig. 6-84-The v.f.o. unit mounted in its cabinet. Holes are drilled in the dial cover to accommodate the switch shafts. At the right, a poker chip has been cemented to the v.f.o. set push-button switch so that it can be operated while tuning the v.f.o.; this makes frequency-
spotting a one-handed operation.

Thr v.f.o. thmederimuit eomponents are enclosed in a $+\times \overline{5} \times($ indel aluminum box. This shomld also be stiffered with lougths of angla stork, one strip rumbing umder the top of the lox, and one externatly along rawh of the side cowers.
 pillars (.Millen 31002). The tuming capacitor ('t is cleseated above the bottom of the box on an ahmamm Inacket so that its shaft will line up whth the dial. The hamd-spread switeh S_{1} is mounted in the bottom of the box, to the rear of the roil, with its shaft vertieal. The shatit is controllod from the pamel by means of a National RAI) right-angle drive and a "umi-vers:il-joint" tyo shalt roupher (Millern 30001), as shown in Fig. (i-8s.

The threse trimmer caparitoss atre mounted in the top of the box. © 3 is submounted so that its shaft, which is at high r.f. potential, will met pootruld from the box. It is adjusted with ath insulation serewdriver through a hole in the top of the hox. C^{6} is an aid trimmer nised here as a fixed raparitor. It is mombed on a brathet fastened to the bottom of the box, ander the coil, and set at maximum rapacitance.

The box should be plated of the whassis so that an extension of the shaft of the haning e:abatedor will line up with the dial. This places the box somewhat off conter.

Power-supply compormots arremonted at the lafthand and of the ehassis as viewed from the rear. The power transomer, phate and hias metifiers voltage-regnlator thbes athed filter choke L_{5} are plated on the top side of the chassis. The bias filter choke, the ghate filter ehoke L_{6} and the filter capawitors are undermeath. Laf momats

Fig. 6-85-Rear view of the v.f.o. unit. Power-supply components are to the left of the tuned-circuit compartment, and r.f. and 6J5 tubes to the right. The three screws along the center line of the box are used to fasten a stiffening strip of angle stock inside. Similar strips should be fastened against the side covers.

A V.F.O.

Fig. 6-86-Circuit diagram of the v.f.o., with its power supply and the keying system. Except as otherwise indicated, fixed resistors are $1 / 2 \mathrm{watt}$, copacitances are in $\mu \mu \mathrm{f}$., resistances are in ohms. Capacitors marked with polarity are electrolytic.
$C_{1}, C_{2}-75-\mu \mu \mathrm{f}$. variable (Hammarlund APC-75).
$\mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. variable (Hammarlund APC-100).
$\mathrm{C}_{4}-25-\mu \mu \mathrm{f}$. variable (Millen 20025).
$\mathrm{C}_{5}-50-\mu \mu \mathrm{f}$. (Hammarlund APC-50); see text.
$\mathrm{C}_{6}-0.1-\mu \mathrm{f}$. $600-\mathrm{v}$. Pubular, part of shaping circuit. Mounted in amplifier.
J_{1}-Coax connectors, chassis mounting.
$\mathrm{L}_{1}-30$ turns No. $16,13 / 4$ inch diameter, 10 turns/inch (Airdux 1410 T).
$\mathrm{L}_{2}-72$ turns No. 22 enam., clase-wound on $3 /{ }^{\prime \prime}$ diameter slug-tuned form (Waters CSA-1012-1-WH).
$L_{3}-10$ turns, wound on cold end of, but insulated from, L_{2}.
$\mathrm{L}_{4}-10$ hy., 50 mo . (Triad C-3X).
$L_{5,} L_{6}-12$ hy., 75 ma . (Triad C. 5 X).
$\mathbf{R}_{\mathbf{1}}-33,000$ ohms, part of shaping circuit. Mounted in omplifier.
S_{1}-Miniature rotary, 2-position (Centralab PA-2001).
S_{2}-Normally-closed push-button switch (Switcheraft 1002 modified with a longer shaft so as to extend through the main dial housing).
$\mathrm{T}_{1}-700$ v. c.t., $90 \mathrm{ma}. ; 5 \mathrm{v},. 3 \mathrm{amp}$.; 6.3 v., 3.5 amp. (Triad R-1 |A).
T_{2}-6.3-v. 0.6-ampere filament transformer.

6-HIGH-FREQUENCY TRANSMITTERS

Fig. 6-87 - The v.f.o. coil is mounted on ceramic pillars. The funing capacitor C_{1} can be seen behind the rear pair of
 used between the switch and the coil and capacitors. In the foreground, transformer and fubes have been removed to show the adjusting screw of L_{2}.

 "ompontuts to help watilate the mater side of

The v.t.o. rathond follower amplifier amd
 are at the bel hamd whe of the rhasis. Tlue vifor.

Fig. 6.88-Bottom view of the v.f.o. unit. The right-angle drive, right of center, drives the band-spread switch S_{I}. The small sections of aluminum angle stock are stiffeners odded after the components were mounted. The method suggested in the text is preferable.
tumed coil L_{2} is mounted alongside the 576:3. It can be adjusted from the top of the chassis.

Along the rear edge of the chassis are a connector for the a.c. line, connectors for comecting a remote switch in parallel with S_{2}, for the key, for the keyed amplifior grid, and a coaxial connector for r.f. output.

Large rectangular ventilating holes are cut in the lid of the eabinet and then backed with patches of Reynolds perforated ahminum. If this dotail is omitted, the temperature rise of the unit may cause considerable frequeney drift.

Adjustment

In adjusting the v.f.o. frequency ranges, first set S_{1} to the 80 -meter position. With the dial set at zero (\boldsymbol{C}_{4} at maximum capacitance) adjust ℓ_{2} for a signal at 3500 kc , on a calibated receiver. Thern, with the dial of the v.f.o. set at the upper region of the scale, the signal should be heard at foro ke. If it is impossible to reach 1000 ke , with
the v.f.o., the coil should be trimmed a part of a turn at a time.
In adjusting the serond range (3500 to 3650 kc .), turn s_{1} to the 7 - 28 -Mc. position. Set ('3 temporaty at about hati capacitance. Then, with the v.lo. dial set at zero, adjust ('i matil a signal is heard at 3500 kc . Then check the v.f.o. frequency at the upper and of the dial. If the range does not go up) to 3650 kc ., (' 3 should be increased a little and $/ 1$ derreased to bring $3 \overline{50} 0$ ke. at zero on the dial. If the tuning range gows above $3650 \mathrm{ke} ., C_{3}$ should be decreased, and C_{1} increased. A few trial settings should yield the correct range. The only other aljustment of the r.f. circuit is resonating the slug-tuned output roil. If set in the center of the tuning range, output should be reasonably constant over the entire range.

Adjustment of the keying circuit should be in areondane with the factors montioned in Chapter l:ight in connection with grid-block keying.

THE VACKAR VFO CIRCUIT

The Vackar variable-frequenry oseillator abuears to have some adrantages over the usual Clapp eircuit. ${ }^{1}$ In the latter, the output amplitude varies greatly with frequeney. In the Vackar "ironit, the output varies only a little with frefuency. Phe taseful fremerey range of the (lapp eirenit is ahout 1.2 to 1 ; in the Vackar it is about 2.5 to 1 . The first of these advantages should he^{2} of interest to amaterors.

Ny friend and colleaguc, Mr. James B. ISioks, Woto, has pointed out that the $6.1(i 8$ is not the lest tube to use for a series-tuned v.for; indeed the several mapers originally desreribing these circuits incariahly show triokes. The best tule is that one which has the lovest ratio of change of input capacitance to its muthal condutance. The operating mutnal conductanee for the cathode, control grid, und screen grid of a 6 AG 7 (as typically used ats an ascillator) is low, despite its high value for the normal grid-to-plate eirenitry. Also, it has a high ingnt capacitance and high heater and blite power inputs. In consequence, this thle is not ideal for the purpose.

A small datal triode, the 19.17\% offers higher oscillator 0_{n} in one triote section. lower input capacitance, and about one third the heater and plate power inputs reguired by the 6.967 . In consequence, it is a superior tule for seriestuned ossillators. The output voltage will be lower for the 12.1177, naturally, but a tulse shond not be evaluated for v.f.o. use on the bisis of power untput.

W9\%O has adapted the Vackar circuit to an amateur v.for. with nutint on 80 meters using the 12AT7 in the circuit of Fig. 6-89. The first triode unit and its assoniated components form the ospillator proper; the other triode anit is a cathonde follower which reduses loading eflerts on the oseiliator frequency. Two of these v.f.o, mits have feen made and tested; their frequener'stability is excellent, and they key well. 'Ihe" outbut r.f. Wats menasired ats l.: volts r,m,s, using a (iencral Radio v.t.e.m. 'lhe total rursent from the 250-volt regit lated B sumply was lti mat., key down.
In serientumed omellators of the (lanp or Vaekar tape the eharacteristide of the series eapacitor C_{2} are critionl if the oscillator is to te keyed. An annoying ehirp, slight but detertable, was finally traced to imperfection of this ratparitor, even though it was a low temperature coefficient silvered mica one, several silvered miens of good make were tried; they all prohneed slight chirp, some less than others. A so-called zero temprathore "oellirient (N1'()) cermaic rapacitor gave less chirg, (very litth, in fart), but the chiry
 ently, there is enough r.f. current through C_{z} to cause di-
${ }^{1}$ Clapp, J. Ki, "Frequency stable L.C Oscillators," g'roc. of the J.R.E., Aug., 14in, Vol. 42, No. 8, page 124.

Fig. 6-89-Vackar series-tuned v.f.o. circuit of W9TO. The tube is a 12 AT7 dual triode. R.f. output from the cathodefollower second section is 1.2 volts r.m.s.
C_{1}, C_{2}-Silver mica.
C_{3}, C_{1}, C_{3}-Mica.
Cx-APC air variable.
Other capacitors are ceramic.
Wertric heating and a small resulting change in capacity even in these high-grade capacitors. This was confirmed indirectly $\boldsymbol{l}_{\boldsymbol{y}}$ using for C_{2} a negative temperature cocflicient ($\mathrm{N}: \mathbf{0}$ (0) ceramic eapacitor. The chirp was tremendous!

Of course, the series capacitor is not the only possible catuse of chirp; poor plate voltage regulation or a long time "onstant in the keying eircuit might alvo contribute. To aroid this, the phate supply should ix regulated, and series rexistances and shunt capacitances in the keving circuit shonld be kept to a minimum, ${ }^{2}$

The circuit shown will key cleanly without chirp; with the constants shown it will be somewhat elieky, due to turning on and off rapidly; this makes it very desirable for use in a difierential keying system in which the oseillator is turned on before the amplifier, and the amplifier is turned off before the oscillator.

- 1191 K
${ }^{9}$ The chirp discussed in the preceding paragraph evidently is a slow one attributable to temperature effects. . chirp of the "dynamic" type often manifests itself as a - lick when the time constant of the keying cirenit is very short, beronning otoservable as a ehirp when key-thump climination methols are used. - E'd.

This materiat originally apmeared in QST for November, 195\%. - Ed.

6-HIGH-FREQUENCY TRANSMITTERS

Converting Surplus Transmitters for Novice Use

War-surplas radio equipment, available in many radio stores, is a good somere of radio parts. some of the transmitters and recolvers can be made to operate in the amateur bands with little or no modification. It woud bre lard to find a more economical way for a Novice to get started on 40 or 80 meters than be adapting a normatly-v.f.o--coutrolled surphas "Command set" to crystal control.

The "(ommand Bets" are parts of the Sc (TR--itN and $I N / A R(--5$ equpments, tramsmitters and receivers designed for mes in military airroaft. The two sories are substantially identieal in cirruit and constrution. Of the transmillers, two are of partionar interest to the Noviere. These

 7 to 9.1 Mc . The tramsmitter circuit comsists of a 16id trionde variable-freymeney oscillator that drives a pair of 102 si it parallel, which for Novice use can be run at $\overline{7}$ b watts imput. In ecldition to

 nance indieator with a erystal for checeking the dial calibation. The tules have 1 tewold heaters comented in sorisw-parallel for ebvolt hattery
 from surphes dealers at priore ranging from five to fifteren dollars card, depending on condition.
several mothods have twon doseribed for converting the tramsmitters to argatal comben for Novice use hat most of them didnet take into ansideration the remomersion requited to change hatek to rifo. when the Nowier herame a (int aral-(latss limentise halder

In the modifieation to be deseribed, the Noviere

World Radio History
Fig. 6-90 - The complete Novice setup, in this case using the 80-meter (BC-696) tronsmitter. Note the key jack at the lower-left corner of the transmitter panel. The srystal oscillator is connected to the transmitter oscillator-tube socket with a shori length of cable terminating in on octal plug. A smait notch should be cut in the tronsmitter cover to provide clearance for the cable when the cover is installed.

The power transformer, rectifier, and choke are mounted on top of the power-supply chassis of the rear, and the control switches are mounted on the wall as shown. Remaining components are underneath,

Converting Surplus

of the calibration crystal sorket. There is also a lead on Pin $\&$ that was romeeted to the keving relay; conncet this heal to the heatrest matsis ground point.
7) Mount an octal socket (Amphenol 78-RA8) in the hole formerly orcupied by the power socket. Install a solder lug under one of the muts holding the sorket momiting.
8) Wire the octal socket as shown in Fig. 6-91. Whe of the leads misoldered from the original power socket is red with a white 1 racer. This is the $B+$ lead for the 1625 s. The vollow lad is the sereen lead for the 1625 s and the white lead is the heater load. Although the mamals mering this equipment specify these colors, it's safor not to take them for granted; check where cach lead actually goes luffore comecting it to the new power socket. The lead from Pin 1 on the power socket to bin 6 on the calibration-erystal socket is the oseillator plate-voltage lead. The loads from Pins $\overline{6}$ and 8 on the power plug to Pins 1 and 6 on the oscillator socket are new leads to carry power to the cexternal expestat-controlled owillator. The lead from Pin 4 of the power socket to Pin 2 on the 1620 (resonaner indicator) socket is the $12-$ volt heater lead.
9) Mount a closed-circuit phone jack at the lower left-hand corner of the front panel. Connect a lad from the ungrounded phone jack terminal to Pin (6 (eathode) of wither of the 1625 sockets. This completes the mollification.

Crystal-Controlled Oscillator Details

The external cristal-controlled oscillator circuit, shown in lig. (i-92, uses a $6 . \\left(\frac{17}{}\right.$ in the grithphate oscillator cirenit. Wither 80- or 10 -moter (rystals are required, depending on the band in use, A tumed plate rircuit is not required in the
nscillator; it was foumd that more than adequate grid drive comld the whtained with the setup as shown.

Whtput from the osednator is fed to the transmitier through an S-inch length of RCi-58 coax cable. The cable is terminated in an ortal plug. I_{2}, which is plugged into the oscillator tube socket in the transmitter. Power for the external oscillator is obtained through this socket.

The rrastat-ontrollerd oscillator is built in and on a $+\times 2 \times 23 / 4$-inch aluminum box. The tulne and erysial sockets are mounted on top of the bow and the remaining components inside. Lanoul al parts is not martionarly eritical but the generel arrangement shown in Figs. ti-90 and (-9.9:3 shouht he followed to insure good results.

In the rompleted setup, oscillator and amplifier, the eathotes of the 1620s are keyed and the crestal oscillator runs continuously during transmissions. It is thus neressary to turn the oscillator off during standt, y periods, and this is accomplished by opening the B-plas switch on the power supply. This mothod is usad in preferenco to keving the oweilator and amplifier simulaneously bercalle keroing the osidlator is likely to make the signal chirpy. With amplifier keying the signal is a real ToA.

Power Supply

Fig. 6-91 shows the rircuit of the power supply,
 input filter. The power transformer, T_{1}, is a type made he several manufacturess. 'To obtain the neeresary 12.6 volts for the heaters, a 6.3 -volt filament transformer is connceded in serios with the 6.3 -volt winding on T_{1}. This setup also will provide 6.3 volts for the heater of the 6.1 G 7 . Current requirement for the $6 . \mathrm{AG}_{6} 7$ heater is 0.65 amp. and for the $1625 \mathrm{~s}, 0.9 \mathrm{amp}$. total.

T_{1}-Power transformer, 800 volts center-tapped, 200 ma.; 5 volts, 3 amp.; 6.3 volts, 6 amp . (Knight © 1 G414, Triad R-21A, or equivalent).
T_{2}-Filament transformer, 6.3 volts, 3 amp . (Triad F.16X, Knight 62-G-031, or equivalent).

Fig. 6-92-(A) Circuit diagram of external crystal-controlled oscillator. Unless otherwise specified, resistances ore in ohms, resistors ore $1 / 2$ watt. The 0.01 - and 0.001 - $\mu \mathrm{f}$. capocitors ore disk ceramic. (B) Method of connecting the milliammeter in series with the key.
C_{1}-3-30- $\mu \mu$ f. trimmer.
$\mathrm{C}_{2}-220-\mu \mu \mathrm{f}$. fixed mico.
$\mathrm{M}_{1}-0-250$ d.c. milliammeter.
P_{2}-Octal plug, male (Amphenol 86-PM8).

P:-Phone plug.
$\mathrm{RFC}_{1,} \mathrm{RFC}_{2}-1$-mh. r.f. chokes.
Y_{1}-3.5- or 7-Mc. Novice-band crystat, as required.

To turn off the plate voltages on the tramsmitter during stand-by prods, the center tap of T_{1} is opened. This can be done in two wass: he S_{0}, or by a remotely-mounted switch whose leads are connected in parallel with S_{2}. A two-terminal strip is momed on the power-supply chassis, the terminals leing comected to S_{2} which is also on the chassis. The remotely-momeded switch can be installed in any conveniont location at the operating position. A single-pole, single-throw switch can be used for this purpose or, if desired, a multicontact switch can be used to perform simultaneously this and other functions, such as controlling an antema-changeover relay.
The high-voltage and heater leads arre brought out in a cable to an octal plug, P_{1}, that commets to I_{1} on the transmitter. The length of the cable will, of course, depend on where you want to install the power supply. Some amiteurs prefer to have the supply on the floor under the operating desk rather than haw it take mp room at the operating position.

The supply shown here was constructed on a $3 \times 6 \times 10$-inch chassis. The lavout is not critical, nor are there any special precautions to take during construction other than to ohserve polarity in wiring the eldetrolytic capacitors and to see that the power leads are properly insulated. Never have P_{1} tuplugged from J_{1} when the power supply is turned on; there is danger of cheetrical shock at several pins of P_{1}. Interchanging the inserts of I_{1} and J_{1} will remove this hazard.

When wiring P_{1} don't connect the 13 -plus lines to lins 2 or 3 , the amplifier plates and screens, at first. It is more convenient to towt the oscillator withont plate and sereen voltages on the amplifier.

When the supply is compheted, chack between chassis ground and the 12.ti-volt lead with an a.c. voltmeter to see if the two 6.3-volt windings are comected correctly. If you find that the vollage is zere, reverse one of the windings. If you don't have an a.c. meter yon can check by obsersing
the heaters in the 162 ess. The will light up if wou have the windings comeeted corroctly. Incidontally, leave 13 phas off, be oproning iso, for this chreek.

Next, set the slider on the bleader rusistor, h_{1}, at alrout one-puarter of the total resistor length. masuared from the 13 -phus end of the Bheder. Be sure to turn off the powre when making this adjustment. With the talp sed about onsequarter of the way. from the 13 -plas end of the haeder the oscillator plate and amplifior sererol voltages will be approximataly 250 volts.

Testing the Transmitter

A key and moter commedent as shown in Fïr. (i-!)2 are needed for cherking the transmitter. When $/{ }^{\prime}$ is plugged into the jack in the transmitter it will measure the cathome eurrent of the 1620ss. The mathow current is the sim of the plate, sereen and control-grial eurvents. Some amateres prefer to install the meter in the phato. lead so it mads plate current only. This cam le done by opening the B-phes line at the point marked "S" in Fig. Gi-! 1 , and inserting the moter in sories with the line. However, unkess more than ond metere is available don't install it in the power supply setup in this way until after the tests deseribed helow have been made.
lasert the external oscillator phag, P, into the 1620 soeket and conned $/ P_{1}$ to the tramsmattor. llug '/'inta, the key jack on the front parmel of the transmitter. With sepern, turn on the power and allow a minute or two for the tubns to warm up, lext, close the eenter-tap eonneretion, S_{n}, on the power transformer. sit the trammitter dial to the same froqueney as that of the erystal in use and close the key. A slight imlication of grid current should show on the meter. Thare is no plate or sereen eurrent berause there are no sereere or plate voltages on the amplifior. If no gride eument is obtamed, adjust (i) to the proint where gried current shows, or try another erystal.

Converting Surplus

The next step is to peak the :mplifier grid rireuit - that is, the lifeli v.f.o. tank-for maximum griderurrent reading. The v.f.o. trimmer eapanitor is in all aluminum box on tha top of the whassis at the reatr. Therere is at ${ }^{3}$-inch diameter hole in the side of the bex: logesen the small serrew visible through this holde thus malowking the rotor shat of the trimmor caparitor. Nove the rotor-arm shat in wither direetion, wherving the meter reading. and find the position that gives the highest mating. Thes should he something mow than 10 mat.

Now commert the plate and sereen woltage leads
 making the commertions!

The first test of the rig should be with a dimmus.
 for this purpose. The lamps should la commeded lxtwern the antanat terminal and ehassis ground. However, to make the lamp take power it maty lne nerexsary to add eapacitanee in paralled with it. A rewiwing-type variabla (:apatitor having $250 \mu \mu$, or mor maximum capacitance will be adectuate for the jol).

Turn on the power ami allow the talnes to wam up, but leave the keg opern, Sit the antemat compling control on the trathsmitter to 7 or 8 . and wot the variable wapator commeded aross the dummy loat to alont maximum capaci-
 temba inductane contron lor ant increase ins athode aurebt. Turn the frequenery eontab for a dip in rurrent reading. The indieated fereguency will probably differ from that of the arystal in tuse hut don't wory almon it.
 inductance, anteman coupling. and frequences, along with the variable eaparitor anoss the lamp load. until the lamp lighte up to apparently full bribiance. The eathoule current should be betwefn 100 and 200 ma. With the tramsmitter fully
 tha lamp hrilliance just starts to derereatso. This is the optimum setting for (is and it rath be left at this sotting, no furthor adjustments being reguired.

If a cher voltmeter is avatiable, chook the differ(ant voltages in the setup. ('sing the power supply shown here, the plate voltage on the 16 Bhe 2 s is approximataly f(x) with the amplifier fully lowded. With the plate voltage on the owillator and sereen voltage on the 16202 s aljusted to 230 volle (tap on R_{1}). the wsellator sermen voltage is lato volts. The oscillator tahes approsimately :30 ma, and the 1625 amplitior semens about 10 mas. when the amplifier is fully loaded.

Getting on the Air

Topmothe transmitter on the air it is weressary only to commet an antomat to the antronat posis and emneret a ground lead from the transmitter chasis to a water-pipe ground or to a metal stake driven in the ground. Almost any length of antrman will work, but for bres resiltas the
minimum length should not be lass than about $1 / 8$ wavelength for the band in use. This is appproximately $3: 3$ foed for 80 moters and lif lient for 40 meters. It is of course better to matie the antenam longer - and to be sare to get the far rad as high as possible.

An output indicator will prove to be a hamely devier for kowing when power is athally going into the antennat. Fion this parpose use at 6,3 -volt, 150-ma. dial lamp. ('onneet two leads, canch atrout one foot long, to the shell and base of the bulb, respetively. Clip one lead to the antenat post and the other lead on the anternat wire two feer from antenna pest. A small amount of power will g_{o} through the bull, and this will provide a visual indiation of output. Follow the same maing procedure as outlined above for the dummy antemat. If the bulb gets so bright that it is in danger of laming out, move the leads clower together to redue the pickup.

It masy be found that certain antemma lengths won't work - that is. the amplifier won't load not matter where the antenata coupling and inductane are set. In such a case, combeet a variaha catsuctor - like the one used with the lamp Chmmy - betweren the anterna post and the tramsmitter chassis. Aljust the capacitor and antenna inductange for maximum brilliance of the output indicator: this will be the best setting for the erntrols.

I sumerior antemat sishom luse a twomire feeder system and an antenna eonpler: examples ate given in Chapters $1: 3$ and 1.1 . If a coupler is used, the tramsuitter and coupher should be conmeted together with emax line. The inner eomduetor of the exas should be commeded to the antenna terminal and the outer braid to the trammitter case as clowe to the anternat forminal as posiblue. If desirem, the antennat terminal can be removed and a coas fitting substituted.

When the coveted Cimeral Class ticket is obs
 oseillator, put the original tubne hatel in the rig, and move out of the Novice band.

Fig. 6.93 - This bottom view of the crystal oscillator shows the arrangement of components. Terminal strips are used for the cable connections and also as a support for C_{1}, the feedback capocitor.

Power Supplies

lossentially pure direct-current plate supply is required to prevent serious hum in the output of receivers, spech amplifiers, modulators athd transmitters. In the rasi of trathsmitters, pure d.e. plate supply is alse dietated ly government regrulation.

The filaments of tubers in a tramsmitter or modulator wisually may be operated from a.e. However, the filament pow for tubs in a rereiver (exeepting power audio tubes), or those in a speech amplifier maty be a.c. only if the tulues are of the indi-rently-heated-rathode type, if hum is to be avoiled.

Wherever rommerrial a.e. lines are available, high-voltage d.e. plate supply is most cheaply and conveniently obtained by the use of a transformer-rectifier-filter eystom. A yybinal power supply is shown in ligg. $\overline{7}-1$.

In this system, the plate transformer, T_{1}, steps up the a.c. line voltage to the reguired high voltage. The a.e. is changed to pulsating d.e. by the rectitiers, V_{1} and V^{\prime}. Pulsations in the d.e. appearing at the ontput of the rectifier (points A and B) are smothed out by the filter componed of L_{1} and r_{1}. R_{1} is a bleceler resistor. Its chief function is to diselarge (' 1 , as a safery monisure, after the supply is turned off. By proper selection of value, l_{1}
also helps to minimize changes in output voltage with changes in the amount of current drawn from the supply. T is a step-down transformer to provide filament voltage for the rectitier tubes. It must have sulficient insulation betwern the

filament winding and the core and primary winting to withstand the peak value of the rectified voltage, T_{3} is a similar transiormer to supply the filaments or heaters of the tubes in the equipmont operating from the supply. Frequently these three transformers are eombined in a single unit having a single 11 on-volt primary winding and the required three secondary windings on one core.

Rectifier Circuits

Half-Wave Rectifier

lig. 7-2 shows three rectificr circuits roverIng most of the common applations in amateur equipment. Fig. $\overline{-2 .} 1$ is the rirenit of a half-wave rectitier. Buring that half of the a.e. eycle when the rectifier plate is positive with resere to the rathode (or filanment), (rurrent will flow through the rertifier and load. But during the other half of the cerbe, when the phate is nergative with resert to the cathode, no rurrent can flow. The shate of the output wave is shown in (A) at the right. It shows that the current always flows in the same direetion but that the flow of current is not contimous and is pulsating in amplitude.

The average output voltage - the voltage road be the usial dore voltmetor with this rireuit is 01.5 times the r.m.s. value of the ate voltage delivered be the trabsiomer semmbe ary. Because the frequand of the pulses in the output wave is relatively low (one pulsation per cycle), considerable filtering is required to
provide adequately smooth d.e. output, and for this reason this dironit is usually limited to applieations where the curvent involved is small, such as in supplios for cathoteraty tules and for protective bias in a transmitter.

Another disadvantage of the half-wave reetifier rirenit is that the transorner must have a considerally higher primary volt-ampere rating (approximately for per greater), for the same lor. power output, that in other reetifier airenits.

Full-Wave Center-Tap Rectifier

The most universally wed rectifier circuit is shown in lig, T-2B, Being essentially an arrangement in which the outputs of two halfwave rentitiers are rombined, it makes use of Woth halves of the are cerole. I framsformor with a renter-tappol semombary is rempired with the circuit. Whem the plate of V_{1} is positive, current flows through the load to the center tap. Current cannot flow through V_{2} because at this

Rectifiers

instant its cathode (or filament is positive in resipert to its plate. When the polarity reverses, V_{2} conducts and eurrent again flows through the load to the center-tap, this time through ${ }^{\circ}{ }_{2}$.
The average output voltagre is 0.45 times the r.m.s. voltage of the entire trans-former-secondary, or 0.9 times the voltage across half of the transformer seeondary. For the same total secondary voltage, the average output voltage is the same as that delivcred with a half-wave rectifier. Ilowever, as can be seen from the sketches of the output wave form in (13) to the right, the frequene? of the output pulses is twice that of the half-wave rectifier. Therefore much less filtering is required. Since the rectifiers work alternately, eath haudles half of the average load current. Therefore the lowd-current rating of each rectifier need be only half the total load rurrent drawn from the supply.

Two separate transformers, with their primaties connected in parallel and socondaries comered in series (with the proper polarity) may be used in this circuit. llowever, if this sulstitution is made, the primary volt-ampere rating must be reduced to about 40 per cent less than twice the rating of one transformer.

Full-Wave Bridge Rectifier

Another full-wave rectifier circuit is shown in Fig. $7-2 \mathrm{C}$. In this arrangement, two rectifiers operate in series on each half of the eycle, one rectifier being in the lead to the lom, the other being in the return leal. Over that portion of the eycle when the upper end of the transformer secondary is positive with respect to the other end, current flows throngh V_{1}, through the load and thener through V_{2}. During this period enrrent cannot flow through rectifier I'4 beause its plate is negative with respert to its rathode (or filament). ()ver the other half of the ryche. eurrent flows through V_{3}, through the load and thence through V_{4}. Three filament transformers

Fig. 7-2-Fundamental vacuum-lube rectifier circuits. A-Half-wave. B-Fullwave. C-Full-wave bridge. A.c.-input and pulsating-d.c. output wave forms are shown at the right. Output-voltage values indicated do not include rectifier drops. Other types of rectifiers may be substituted.
are needed - one for V_{1}, and V_{3} and one each for V_{2} and V_{4}. The output wave shape (C), to the right, is the same as that from the simple renter-tap rectifier circuit. The output voltage obtainable with this circuit is 0.9 times the r.m.s. voltage delivared by the transformer secondary. For the same total transformersecondary voltage, the average output voltage when using the bridge rectifier will he twice that obtainable with the center-tap rectifier rircuit. IIowever, when comparing rectifier circuits for use with the same transformer, it should be remembered that the pouer which a given transformer will handle remains the same regardless of the rectifier cirenit used. If the output voltage is doubled by substituting the bridge circuit for the center-tap) rectifier circuit, only half the rated load current can be taken from the transformer without exceeding its normal rating. Lath rectifier in a bridge circuit should have a minimum load-eurrent rating of one half the total load current to be drawn from the supuly.

Rectifiers

High-Vacuum Rectifiers

Iligh-varuum restifiers depend entirely upon the thermionia emission from a heated filament and are characterized by a relatively high internal resistance. For this reason, their application usually is limited to low power, although there are a few types designed for medium and high power in cases where the relatively high
internal voltage drop may be tolerated. This high internal resistance makes them less susceptible to damage from temporary overload and they are free from the bothersome electrical noise sometimes associated with other types of rectifiers.
some rectiliers of the high-vacuum full-wave type in the so-ralled receiver-tube class will handle up to 275 ma. at 400 to 500 volts d.c. out-
put. 'Phose in the higher-puwer clase rath be used to handle up to 500 ma , at 2000 volt: d.c. in fullwave "ircuits, Most low-power high-vacuum rectifiers are produced in the full-wave trpe. while those for greater power are invarially of the halfwave type, two tubes being required for a fullwave rectifier circuit. A few of the lower-voltage types have indirectly heated cathodes, but are limited in heater-to-cathode voltage rating.

Mercury-Vapor Rectifiers

The voltage drop through a mercury-vapor rectifier is practically constant at approximately 15 volts regardless of the load current. For high power they have the advantage of cheapneses. Rectifiers of this type, however, have a tendeney toward a trpe of nexillation which produces noise in nearly rereivers, sometimes difficult to eliminate. R.l. filtering in the primary cireuit and at the rectitier plates as well as shiclding maty le reguired. As with high-vacuum rertifiors, full-wave types are available in the lower-power ratings only. For higher gower. two tutes are required in a full-wave circhat.

Selenium and Other Semiconductor Rectifiers

Solonium, germanium and silicon reretifers are finting inereasing application in power supplios for amateur equipment. These inits have the advantages of compacturss low internal voltage drop (about is volts per unit) and low operating temperature. Also. no filament transformers are refuired.

Individaral mits of all three tepes are available with input ratings of $1: 30$ volts r.m.s. Solenium units are mated at up to 1000 mat or more dic. load current: germanium units hate ratings up to tom mat, and silicon units up to - 00 ma . In full-wave cirenits these load-corment figures cam be doubled.

The extreme compactuess of siliem teres makes feasible the stacking of several mits in sories for higher voltages, standard stacks are availathe that will handle up to 2000 volts r.m.s. imput at a d.e. load current of 325 mat Two of these starks in : full-wave cirenit will handle bi, 0 ma., athough they are eomparatively expensive.
somionductor rectifiers may lo substituted in any of the basic cireuites shown in Fig. $\overline{\mathrm{i}} \mathrm{-2}$, the terminal marked " + " or "rathode" "orrosponding to the filament commetion. Advantage maty be taken of the voltage-mbltiplsing circoits disenssed in a later section of this chapter in adapting rectifiers of this type.

Rectifier Ratings

Varoum-tulne rortifiers are sulyert to limitations as to breakdown voltare and current-hatrdling copability. some tepes atre rated in terms of the maximum rem.s. voltage which should be applied to the rertifier plate. This is sometimes dependent on whether a choke- or eapacitiveinput filter is used, others particulaty mercuryvapor types are rated arcording to maximum inverse prak voltage - the peak voltage between plate and cathote while the tube is not con-
ducting. In the eircuits of litg. 7 -2, the inverse peak voltage arross each reetifier is 1.4 times the r.m.s. value of the voltage delivered by the entire transformer secondary, exeept that if a (apacitive-input filter is used with the halfwave rectifier circuit of lig. $7-2 \mathrm{~A}$, the multiplying factor hecomes 2.8 .
Rectifiers are rated also as to maximum d.c. load current, and some may carry peak-current ratings in addition. To assure normal life, all ratings should be carcfully ohserved. Staying within their ratings, rectifiers will deliver more current at a given output voltage with a chokeinput filter than with caparitor input. However a higher a.e. voltage is required when the chokeimput filter is usorl.

Operation of Rectifiers

In operating rectifiers requiring filament or rathode heating, catre shomal be takion to provide the "orree filament voltage at the tube 1 erminals. Low filament voltage rableme exreosive voltage drop in high-varumm rertifiers and a considerable reduetion in the inverse peak-voltage rating of a mereury-vipor tube Filament eomeretions to the rectifior socked should be firmly soldered, particularly in the rase of the larger morcury-vapor tubes whose filamonts operate at low voltage and high rurrent. The sorket should be selereted wilh fobre, not only ts 10 contare surface but also as to insulation, sine the filament usually is at full output voltage to gromel. Bakelite sockets will serve at voltages up to alo or so hat repamic sorkets, well spared from the chassis, always should be used at the higher voltages, sperial filament trathstomerse with high-voltage insulation betwern primary and surondary are required for rectifiors operating at potatials in exerss of lowo volts inverse patik.

The rectificer fubes should be placed in the equipment with adeguate sparer surrounding them so provide for ventilation. When mereury-vapor tubes are first phaced in serviee, and each time after the morrury has heom disturbed, as by removal from the socket to a horizontal position, they should be rum with filament voltage only for 30 minutes before applying ligh voltage. After

> Fig. 7.3 - Connecting mercury-vapor rectifiers in parallel for heavier currents. R_{1} and R_{2} should have the same value, between 50 and 100 ohms, and corre. sponding filament ferminals should be connected together.

that, a dolay of 30 secomels is reommended eath time the filament is turned on.

Reetifiers maty he comeceded in parallel for rurrent higher tham the rated extrent of a single mit. This includes the use of the sertions of a donble diode for this purpose. With mereury-
 should be connected in series with eath plate, as shown in Fig. $7-3$, to holp maintain an equal division of current bet ween the two rectifiers.

Filters

Filters

The pulsating d.e waves from the reetifiers shown in ligg. $7-2$ atre mot sufficientuly comstant in amplitule to provent hum comeremending to the pulsations. Filters consisting of eathatitances and inductances atererpaired between the reetifier and the lowd to smooth out the pulsations to an essentially eomstant de voltage. Also, upon the dowign of the filter depends to a large extent the d.e. voltage output, the zollage regulation of the power supply and the maximum load rurrent that caln he drawn from the supply without exereding the peak-enrent rating of the reedifior.
Power-supply filters fall inta two classifieations, depending upon whother the first filter aldenent following the rectifier is a caparitor on a choke. Ciparitive-imput filtors ate chatractorized by rebatively high output voltage in respere to the transformer voltage, but peor voltage regulation. ('hoke-input filters rexilt in much better regulation, when property designed, but the output voltage is leses than would be ohtained with a caparitive-input filter from the same transformer.

Voltage Regulation

The output voltage of a power supply always derrases as more current is drawn, not only be(athere of increased voltage drops in the transformer, filtor chokes and the rectifier (if highvacumm reotifiors are used) but also beratuse the output voltage at light latds temeds to soar to the peak value of the transformer voltage as a result of charging the first eapheitor. Isy proper filter design the latter offere wan be eliminated. The change in output voltage with load is called molta!e regulation and is exprosed as a beromatase.

$$
\begin{aligned}
& \text { I'er con! requlation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}} \\
& \text { Fiample: No-lean voltage }=E_{\mathrm{t}}=1.5 \mathrm{jo} \text { volts. } \\
& \text { Finti-loal voltage }=E_{2}=1230 \text { volts. } \\
& \text { Percentage regulation }=\frac{1(4)(10.50)-1230)}{1230} \\
& =\frac{32.001}{1230}=26 \text { mer cent. }
\end{aligned}
$$

Regulation may be as great as 1 onor; or more with a coparitive-input filter, but by proper design "ath be held to 20 , c or less with a choke-input filter.

Good regulation is deximbla if the load curment varios charing operation, as in a keyed stage or at Class 13 mondubtor, beramse a large change in voltage maty increase the temdeniey towat key elicks in the former anse or distertion in the latter. On the other hand, atealy load, such as is represented by a receiver. perech amplifier or unkeyed stages in a transmitter, dues not remuire good regulation so long as the proper voitager is obtained under load conditions. Another consideration that makes good woltage regulation desirable is that the filter rapabitors must have at voltage rating safe for the highest value to which the voltage will soar when the extemal load is remowed.

When essentially constant voltage, regardless
of current variation is required (for stabilizing an (saillator, formample), sperial voltage-regulatine circuits described mowhere in this chaptor are userd.

Load Resistance

In discussing the performane of power-supply filters, it is sometimes comvenient to expmess the loud comerted to the output terminals of the supply in terms of resistamer. The load resistance is equal to the output voltage divided by the total current drawn, inchuding the comrent drawn by the beeder resistor.

Input Resistance

The sum of the translormer impedaner and the rectifier resistaner is called the input resistance, The approximate transformer impedanere is given by

$$
Z_{\mathrm{rr}}=I^{2} h_{\mathrm{PR}}+R_{\mathrm{sec}}
$$

where \mathcal{X} is the transformer tums ratio, primary to sedondary (primary to $1 / 2$ seromdary in the case of at full-wave rectifior), and $h_{\text {Pra }}$ and hese are the primary and seromblaty resistances respero tively. $R_{\text {sac }}$ will be the resistanere of half of the serometry in the ase of a full-wave cirenit.

Bleeder

A bleoder resistor is a resistance connereded arross the output torminals of the power supply (sere Fige $7-1$). Its functions are to dischatere the filter capacitors as a satfoty measure when the power is turned off and to improve voltage regulation by providing a minimum load resistance. When voltage regulation is not of inportance, the resistame may be as high as fox ohms per volt. The resistame value to be used for voltageregulating purposes is discused in later sertions. From the consideration of safety, the power rating of the resistor should be as conservative as possible, sinee a hurned-out bleder resistor is more dangrous than none at all!

Ripple Frequency and Voltage

The pulsations in the ontput of the rectifier can be consitered to be the resultant of an alternating eurrent superimposed upon a strady dired current. From this viewoint, the filter maty be eonsidered to consist of shmating relpelcitors which short-circuit the ace component while mot interforing with the flow of the d.e. component, and sories rhokes which priss dice roadily but which imperle the flow of the asce eomponent.

The alternating component is called the ripple. The effectivences of the filter cam be expreseed in trims of per reoth ripple. which is the rat io of the r.m.s. value of the ripple to the de. valae in terma of perectutage. For rew, transmitters, the output ripple from the power supply should not ex-
 plies for voire tratusmitters shomblat nexerel 1 per emot. Class 13 modulators require a ripple reduction to about $0.25^{\prime \prime}$ ", while v.f.o.'s, high-
gain speech amplifiers, and receivers may require a reduction in ripple to $0.01{ }^{\circ} \%$.

Ripple frequency is the frequency of the pulsttions in the rertifier output wave - the number of pulsitions per second. The freduency of the ripple with half-wave rectifiers is the same as the frequency of the line supply - 60 eveles with 60cecle supply. Since the output pulses are doubled with a full-wave rectifier, the ripple frequency is doubled - to 120 aveles with fit-evele supply.

The amount of filtering (values of imhertance and capacitance) required to give adequate smoothing depernds upon the ripple frecpuacy, more filtring being required as the ripple frequency is lowered.

CAPACITIVE-INPUT FILTERS

Caparitive-input filter sustems are shown in Fig. 7-4. Disregarding woltage drops in the chokes, all have the same charactoristies except

Fig. 7-4-Capocitive-input filter circuits. A-Simple copacative, B--Single-section, C-Double-section.
in respect to ripple. Better ripple redurion will he obtained when L ' sections are added, as shown in Figs. $7-4 B$ and C.

Output Voltage

Torletermine the approximate d.e. voltagenatput when a capmitive-input filter is used, refercure should be made to the-graph of Fig. 7 -.j)

Example:
Transformer r.m.s. voltage - 3.50
Input resistance - 200 ohms
Maximum load eurrent, including bleeder cur rent-175illa.
Load resintance $=\frac{3501}{0,175}=2000$ ohans approx.
From Fig. 7-i, for a load resistance of 2000 ohms and an input resistance of 200 ohms, the d.c. output voltage is given as slightly over 1

Fig. 7-5-Chart showing approximote ratio of d.c. output voltage ocross filter input copacitor to transformer r.m.s. secondary voltage for different lood and input resistances.
times the transformor r.m.s. voltatere or about 350 volts.

Regulation

If a blerder resistaner of 50,000 ohms is used, the d.c. output voltage, as shown in Fig. 7 -i, will rise to about 1.3 .5 times the transformor rem.s. value, or atmot 170 volts, when the external load is removed. For greater acrurace, the voltage drops through the input resistanee and the resistanere of the rhokes should be subtracted from the values determined atoove. Far best reguhation with a cetparitive-input filter, the bleeder resistamer should be as low as possible without exeeeding the transformor, rectitier or choke ratings when the external load is ronnected.

Maximum Rectifier Current

The maximum curvent that can be drawn from a supply with a retpacitive-input filter without exreeding the peak-eurrent rating of the reetifier may he estimated from the graph of Fig, $7-6$, I sing vatuas from the preading example, the ratio of prak reetifier current to d.ce load current for 2000 ohms, as shown in Fig. 7 - 6 is 3 . Therefore, the maximum load current that can be drawn without excerding the rectifier rating is $1 / 3$ the peak rating of the rectifier. For al load current of 175 mat, as above, the reetifier peak current rating should be at least $3 \times 17.5=525 \mathrm{ma}$.

With bleeder current only, Fig. $7-6$ shows that the ratio will increase to over 8 . But since the beeder draws lese than 10 mat. dee, the rectifier peak current will be only 90 ma. or less.

Fig. 7-6-Graph showing the relationship between the d.c. load current and the rectifier peak plate current with capacitive input for various values of load and input resistance.
Ripple Filtering
The approximate ripple pereontage after the simple capacitive filter of Fig. $7-4 \mathrm{~A}$ maty le determined from Fig. 7-7. With a load resistance of 2000 ohms, for instance, the ripple will be approximately 10% with an $8-\mu f$. capaction or 20% with a $4-\mu \mathrm{f}$. capacitor. For other capateitances, the ripple will be in inverse proportion to

Fig. 7.7--Showing approximate 120 -cycle percentage ripple across filler input capacitor for various loads.
the rapacitance, e.g., 5% with $16 \mu \mathrm{f} ., 40 \%$ with 2μ., and so forth.

The ripple can be reduced further by the addition of $L C$ ' sections as shown in Figs. $7-4 \mathrm{~B}$ and C. Fig. $7-8$ shows the factor by which the ripple from any preceding seetion is redued depending on the product of the capacitance and inductance added. For instance, if a section composed of a choke of 5 h . and a capacitor of 4μ. were to be added to the simple capacitor of Fig. $7-4 \mathrm{~A}$, the product is $4 \times 5=20$. Fig. $7-8$ shows that the original ripple (IO a a abowe with 8μ f. for example) will be reduced by a factor of about 0.0.0. 'Therefore the ripple perentage after the new section will be

Fig. 7-8-Ripple-reduction factor for various values of L and C in filter section. Output ripple $=$ input ripple X ripple factor.
approximately $0.09 \times 10=0.9 \mathrm{~m} / 6$. If another section is added to the filter, its reduction factor from lig. $7-8$ will lo applied to the $0.9{ }^{\circ}$ en from the preceding setion; $0.9 \times 0.09=0.081{ }^{\circ} \%$ (if the serond section has the same $L C$ product as the first).

CHOKE-INPUT FILTERS

Much better voltage regulation results when a choke-input filter, ats shown in Fig. 7-9, is used. Choke input ako permits better utilization of the rectifier, since a higher batel current usually can be drawn without exceeling the peak current rating of the rectifier.

Minimum Choke Inductance

A choke-input filter will tend to art as a capaci-tive-input filter unkes the input choke has at least a certain minimum value of inductance called the critical value. 'This critical value is given by

$$
L_{\mathrm{L}}=\frac{E_{\mathrm{MOLTS}}}{I_{\mathrm{MA}}}
$$

Where E is the output voltage of the supply, and I is the curent being drawn from the supply.

If the rhoke has at least the critical value, the output volage will be linited to the average value of the rectified wave at the input to the

7 －POWER SUPPLIES

Fig．7－9－Choke－input filter circuits．A－－Single－section． B－Double－section．
shoke（see lig． $7-2$ ）when the current drawn from the supply is small．This is in contrast to the capucitive－input filter in which the ontput volt－ age tends to soar toward the peak value of the rectified wave at light loads．．Iso，if the imput choke has at least the ceritieal value，the rectifier pak plate current will be limited to about wion the d．e．current drawn from the supply．Most rectifier tubes have peak－current ratings of three to four times their maximum d．e．output－eurrent ratings．Therefore，with an input choke of at leasis critionl induetance，current up to the maximum output－current rating of the rectifier may be drawn from the supply without exceding the peak－current rating of the rectifior．

Minimum－Load－Bleeder Resistance

From the formula above for critical inductaner， it is obvious that if no durrent is dawn from the supply，the reritical indurtance will be infinite，so that a practical value of inductance may be used， some current must be drath from the supply al all times the supply is in use．from the formula we find that this minimum value of courrent is

$$
I_{\mathrm{MA}}=\frac{E_{\mathrm{vol.Ts}}}{L_{\mathrm{h}}}
$$

＇Thus，if the ehoke has an inductane of 20 h ．， and the output voltage is $2(M)$ ，the minimum load current should be 100 mas．This load maty be pro－ vided，for example，by tramsmitter stages that draw eurrent condinuously（stages that are not keyed）．However，in the majority of cases it will be most comvenient to adjust the bleeder resist－ ance so that the hereder will draw the reguired minimum eurrent．In the above example，the bleeder resistanter should ba 20ヶ） $0.1=20,0$（К） ohms．

From the formulat for eritical inderetance，it is seen that when more current is drawn from the supply，the eritical inductaner beromes less． Thus，as an example，when the total current，in－ －Fonling the low mat frawn be the bleder rises to （100）mat，the choke need have an indurtance of only 5 h ．to maintain the aritienl value．This is fort unate，because chokes having the required in－ duetance lon the bevedre lond onle and that will maintain this value of inductane for mond hareere currents fure very expensive．

Swinging Chokes

Less costly ehokes are availathe that will main－ tain at least eritical value of inductane over the range of curvent likely to be drawn from prati－ rat supplies．These chokes are ralled swinging chokes．Is aut example，a swinging choke may have an inductanere rating of $5 / 25 \mathrm{~h}$ ．and a cur－ rent rating of 22.5 ma．If the supply lelivers 1000 volts，the minimum load aurrent should be $1000 / 25=10$ mat．When the full load current of 22.5 mat．is drann from the supply，the indurtane e will drop to 5 h．The eritieal indurtance for 225 mat at 1000 volts is $1(\mu) / 225=4.5 \mathrm{~h}$ ．Therefore the $5 / 25-\mathrm{h}$ ．chooke mainatins at least the critional induetance at the full eurrent rating of 220 ma． It all hodd currents betwern 10 mat，and 225 ma．， the choke will aljust its imburtane to at least the approximate eritioal value．
＇Table T－1 shows the maximum supply output voltage that can be used with rommonly－atatil－ able swinging chokes to maintain critical induc－ bance at the maximum eurrent rating of the whoke．These ehoses will alse maintain critical induetanere for any lamer values of voltage，or cour－ rent down to the required minimum drawn by a proper bleder as disiussed above．

		TABLE 7－1		
Lik	Max．ma，	Max，mol＇s	Max，R^{1}	Min．ma．${ }^{2}$
3．5／13．5	1.50	52\％	1：3．5K	39
5／25	17.5	87.5	2．うに	35
2／12	200	400	12K	33
5／25	200	1000	2．5\％	40
5／25	22.5	1125	25K	45
2／12	2.50	500	12K	42
4／20	300	1200	20 K	60
5／25	300	1.500	2．5K	60
3／17	400	1200	17K	71
4／20	400	1t：00	2015	80
5／25	400	2000	2．5\％	80
4／16	500	2000	16 F	125
$5 / 25$	500	2.500	$2: \% \mathrm{~K}$	100
5／25	5．50	27：30	2.5	110
Maximmon bleder rasistance for eritieal inductance． 2 Minimutu current（bleredar）for critical inductance．				

In the case of supplies for higher voltages in particular，the limitation on maximum load resist－ ance may result in the wasting of an apmeriable portion of the transformer power eapacity in the bleder resistance．Two input chokes in series will promit the use of at bleder of twine the resistance．cutting the wasted current in half． Another alternative that can be used in a c．w． transmitter is to use a very high－resistance haeder for protediew purgones and only sut－ hicient tixed hiss on the tulne onverting from the supply to bring the latal cument drawn trom the

Component Ratings

supply, when the key is open, to the value of current that the required bleeder resistance should draw from the supply. Operating bias is brought back up to normal by increasing the grid-leak resistance. Thus the entire current capacity of the supply (with the exception of the small drain of the protective blecder) can be used in operating the transmitter stages. With this system, it is advisable to operate the tubes at phone, rather than c.w., rating. sinme the average dissipation is increased.

Output Voltage

Provided the input-choke inductance is at least the critical value, the output voltage may be calculated quite closely by the following equation:

$$
L_{\mathrm{o}}=0.9 E_{\mathrm{t}}-\left(I_{\mathrm{B}}+I_{\mathrm{L}}\right)\left(R_{\mathrm{L}}+R_{2}\right)-E_{\mathrm{r}}
$$

where E_{0} is the output voltage; E_{t} is the r.m.s. voltage applied to the rectifier (r.m.s. voltage between center-tap and one end of the secondary in the case of the center-tap rectifier); I_{B} and I_{L} are the bleeder and load currents, respectively, in amperes; R_{1} and R_{2} are the resistances of the first and second filter chokes; and E_{r} is the drop between rectifier plate and eathode. The various voltage drops are shown in Fig, $\overline{7}-12$, At no load I_{L} is zero, hence the no-load voltage may be calculated on the basis of beeder current only. The voltage regulation may be determined from the no-load and lull-load voltages using the formula previously given,

Ripple with Choke Input

The percentage ripple output from a singlesection filter (Fig. 7-9A) may be determined to a close approximation, for a ripple frequency of 120 cycles, from Fig. 7-10.

Fig. 7-10-Graph showing combinations of inductance and capacitance that may be used to reduce ripple with a single-section choke-input filter.

Example: $L=5 \mathrm{~h}$. What capacitance is necded to reduce the ripple to 1 per cent? Following the 1-per-cent line to the right to its intersection with the diagonal, thence downward to the $L C$ scale, read $L C=120.120 / 5=$ 24μ.

In selecting valucs for the first filter section, the inductance of the choke should be determined by the considerations discussed previously. Then the c:upacitor should be selected that when combined with the choke inductance (minimum inductance in the case of a swinging choke) will bring the ripple down to the desired valuc. If it is found impossible to bring the ripple down to the desired figure with practical values in a single section, a second section can be added, as shown in Fig. 7-9B and the reduction factor from Fig. 7-8 applied as discussed under capacitive-input filters. The second choke should not be of the swinging type, but one having a more or less constant inductance with changes in current (smoothing choke).

OUTPUT CAPACITOR

If the supply is intended for use with an audio-frequency amplifier, the reactance of the last filter rapacitor should be small (20 per (ent or less) compared with the other audiofrequency rosistance or impedance in the circuit, usually the tube plate resistance and load resistance. On the basis of a lower a.f. limit of 100 cycles for specch amplification, this condition usually is satisfied when the output capacitance (last filter capacitor) of the filter has a capacitance of 4 to $8 \mu \mathrm{f}$., the higher value of capacitance being used in the case of lower tube and load resistances.

- RESONANCE

Resonance effects in the series cireuit across the output of the rectifier which is formed by the first choke (L_{1}) and first filter capacitor (C_{1}) must be avoided, since the ripple voltage would build up to large values. This not only is the opposite action to that for which the filter is intended, but also may cause excessive rectifier peak currents and abnormally high inverse peak voltages. For full-wave rectification the ripple frequency will be 120 cycles for a 60 -cycle supply, and resonance will occur when the product of choke inductance in henrys times capacitor capacitance in microfarads is equal to 1.77. The corresponding figure for 50 -cycle supply (100 -cycle ripple frequency) is 2.53 , and for $2 \overline{5}$-cycle supply (50 -cycle ripple frequency) 13.5 . At least twice these products of inductance and capacitance should be used to ensure against resonance effeets. With a swinging choke, the minimum rated inductance of the choke should be used.

RATINGS OF FILTER COMPONENTS

Although filter capacitors in a choke-input filtor are subjected to smaller variations in d.c. voltage than in the capacitive-input filter, it is
advisable to use capacitors rated for the peak transformer voltage in case the bleder resistor should burn out when there is no load on the power supply, since the voltage then will rise to the same maximum value as it would with a filter of the capacitive-input type.

In a eapacitive-input filter, the capacitors should have a working-voltage rating at least as high, and preferably somewhat higher, than the peak-voltage rating of the transformer. Thus, in the case of a center-tap rectifier having a transformer delivering 550 volts each side of the center-tap, the minimum safe capacitor voltage rating will be $5 \overline{50} 0 \times 1.41$ or 775 volts. In 800 -volt capacitor shoukd be used, or proferably a 1000 -volt unit.

Filter Capacitors in Series

Filter capacitors are made in several different types. lilectrolytie capacitors, which are available for peak voltages up to about 800 , combine high caparitance with small size, since the diclectrie is an extremely thin tilm of oxide on alumimum foil. Capacitors of this type may be connected in series for higher voltages, although the filtering exparitance will be reduced to the resultant of the two caparitances in series. If this arrangement is used, it is important that each of the capacitors be shunted with a rosistor of ahout 100 ohms per volt of supply voltage, with a power rating adequate for the total resistor current at that voltage. These resistors may serve as all or part of the bleder resistance (seo choke-input filters). Capacitors with highervoltage ratings usually are made with a dielectric of thin paper impregnated with oil. The working voltage of a capacitor is the voltage that it will withstand continuously.

Filter Chokes

The input choke may be of the swinging type, the required minimum no-load and full-luad inductance values being calculated as described above. For the second choke (smoothing choke) values of 4 to 20 henres ordinatily are used. When filter chokes are placed in the positive leads, the negative being grounded, the windings should be insulated from the core to withstand the full d.e. output voltage of the supply and be capable of handling the required load current.

Filter chokes or inductances are wound on iron cores, with a small gap in the core to prevent magnetic saturation of the iron at high currents. When the iron becomes saturated its

Fig. 7.11-In most applications, the filter chokes may be placed in the negotive instead of the positive side of the circuit. This reduces the danger of a voltage breakdown between the choke winding and core.
permeability decreases, consequently the inductance also decreases. Despite the air gap, the induetance of a choke usually varies to some extent with the direct current fowing in the winding; hence it is necessary to specify the inductance at the current which the choke is intended to carry. Its inductance with little or no direct current fowing in the winding may be considerably higher than the value when full lawd current is flowing.

- NEGATIVE-LEAD FILTERING

For many years it has been almost universal practice to place filter chokes in the positive leals of plate power supplies. This means that the insulation betwen the choke winding and its core (which should be grounded to chassis as at safoty measure) must be adequate to withatand the output voltage of the supply. This voltage requirement is removed if the chokes are phaced in the negative leal as shown in Fig. 7-11. With this connection, the caparitance of the transformer secondary to ground appears in parallel with the filter chokes tending to bypass the chokes. However, this effert will be negligible in pratical application exerpt in cascs where the output ripple must be reduced to a very low figure. Such applirations are usually limited to low-voltage devioces such as rerrivers, speech amplifiers and v.fo.'s where insulation is no problem and the chokes may be placed in the pasitive side in the conventional manner. In highor-voltage applications, there is no reason why the filter chokes should not be placed in the negative lead to reduce insulation requirements. Choke terminals, nogative capacitor terminals and the transformer center-tap terminal should be well proterted against accidental contact, since these will assume full supply voltage to chassis should a choke burn out or the chassis connertion fail.

Plate and Filament Transformers

Output Voltage

The output voltage which the plate transformer must deliver depends upon the required d.c. load voltage and the type of filter circuit.

With a choke-input filter, the required r.m.s. secondary voltage (each side of center-tap for a center-tap rectifier) can be calculated by the equation:

$$
E_{\mathrm{t}}=1,1\left[E_{\mathrm{o}}+I\left(R_{1}+R_{2}\right)+E_{\mathrm{r}}\right]
$$

where E_{0} is the required d.c. output voltage, I is the load current (including bleeder current) in amperes, R_{1} and R_{2} are the d.e. resistances of the chokes, and E, is the voltage drop in the rectifier, E_{t} is the full-load r.m.s. secondary voltage; the open-eircuit voltage usually will be

Transformers

Fig. 7-12-Diagram showing various voltage drops that must be taken into consideration in determining the required transformer voltage to deliver the desired output voltage.

5 to 10 per eent higher than the full-load value.
The approximate transformer output voltage required to give a desired d.e, output voltage with a given load with a capacitive-input filter system can be calculated with Fig. 7-12.

$$
\begin{aligned}
& \text { Example: } \\
& \text { Recuired d.c. output volts - } 500 \\
& \text { Load current to be drawn - } 100 \text { ma. (} 0.1 \mathrm{amp} \text {) } \\
& \text { Load resistance }=\frac{500}{0.1}=5000 \text { ohms. } \\
& \text { If the rectifier resistance is } 200 \text { ohms, Fig. 7-5 } \\
& \text { shows that the ratio of d.e. volts to the rempired } \\
& \text { transformer r,mos, voltage is approximately } 1.15 . \\
& \text { The rempired transformer terminal voltage } \\
& \text { under lowi with chokes of } 200 \text { and } 300 \text { ohms is } \\
& E_{\mathrm{t}}=\frac{E_{\mathrm{a}}+I\left(R_{1}+R_{2}+R_{\mathrm{r}}\right)}{1.15} \\
& =\frac{500+0.1(200+300+200)}{1.15} \\
& =\frac{570}{1.15}=495 \text { volts } .
\end{aligned}
$$

Volt-Ampere Rating

The volt-ampere rating of the transformer depends upon the type of filter (capacitive or choke input). With a capacitive-input filter the heating effeet in the secondary is higher because of the high ratio of peak to average current, consequently the volt-amperes handled by the transformer may be several times the watts delivered to the load. With a chokr-input filter, provided the imput choke has at least the critical inductance, the sceondary volt-amperes can be calculated quite closely by the equation:

$$
\text { Sec. } V . A,=0.00075 E I
$$

where E is the total r.m.s. voltage of the secondary (hetween the outside ends in the case of a center-tapped winding) and I is the d.e. output current in milliamperes (load current plus bleeder current). The primary volt-amperes will be 10 to 20 per cent higher because of transformer losses.

Broadcast \& Television Replacement Transformers in Amateur Transmitter Service

Small power trunsformers of the type sold for
replacement in broadenst and television receivers are usually designed for service in terms of use for several hours continuously with capacitorinput filters. In the usual type of amateur transmitter service, where most of the power is drawn intermittently for periots of several minutes with equivalent intervals in between, the published ratings can be exceeded without excessive transformer heating.

With eapacitor input, it should be safe to draw 20 to 30 per cent more current than the rated value. With a choke-input filter, an increase in current of about 50) bridge rectifier is used (with a choke-input filter) the output voltage will be approximately doubled. In this ease, it should be prosible in amateur transmitter service to draw the rated current, thus ohtaining about twiee the rated output power from the transformer.

This does not apply, of course, to amateur tranmitter plate transformers which are usually already rated for intermittent service.

Filament Supply

Fxcept for tubes designed for battery operation, the filaments or heaters of vacuum tubes used in both transmitters and receivers are universally operated on alternating current obtained from the power line through a stepdown transformer delivering a secondary voltage equal to the rated voltage of the tubes nised. The transformer should be designed to carry the current taken by the number of tubes which may be connected in parallel across it. The filament or heater transformer generally is center-tapped, to provide a balanced eireuit for eliminating hum.

For medium- and high-power r.f. stages of transmitters, and for high-power audio stages, it is desimble to use a separate filamont transformer for each section of the transmittor, installed natar the tube soekets. "lhis avoids the necessity for abnormally large wires to carry the total filament curront for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filamont tubes, since under- or over-voltage may reduce filament life.

Typical Power Supplies

Figs. 7-13 and 7-14 show typieal powersupply circuits. Fig. 7-13 is for use with trans-
formers commonly listed as broadeast or television replatement power transformers. In addi-

7 -POWER SUPPLIES

Fig. 7-13-Typical a.c. powersupply circuit for receivers, exciters, or low-power transmitters. Representative values will be found in Table 7-II. The 5 -volt winding of T_{1} should hove o current rating of at least 2 omp. for types 5Y3-GT and 5V4.GA, and 3 amp . for 5U4-GB.
tion to the high-voltage winding for plate supply, these transformers have windings that supply filament voltages for both the rectifier tube and the 6.3 -volt tubes in the receiver or low-power transmitter or exciter. Transformers of this type may be obtained in ratings up to 1200 volts r.m.s. center-tapped, 200 d.e. mat. output.
Fig. 7-13 shows a two-section filter with eapteitor input. However, depending upon the maximum hum level that may be allowable for a particular application, the last capacitor and choke may not be needed. In some low-eurrent applications, the first capacitor alone may provide adequate filtering. Table 7 -II shows the approximate full-load and bleeder-load output voltages and a.e. ripple perrentages for several representative sets of eomponents. Voltage and ripple values are given for three points in the circuit-Point A (first capnaitor only used), Point B (hast caparitor and choke omitted), and Point C (complete two-section filter in use).

In each case, the blealer resistor R should be used across the output.
Table 7 -II also shows approximate output voltages and ripple percentages for choke-input filters (first filter capacitor omitted), for l'oint I3 (hast capacitor and choke omitted), and Point C (romplete two-section filter, first caparitor omitted).
Artual full-load output voltages may be somewhat lower than those shown in the table, since the voltage drop through the resistance of the transformer secondary has not been inchaded.

Fig. 7-14 shows the conventional cireuit of a transmitter plate supply for higher powers. A full-wave rectifier eireuit, half-wave rectifier tubes, and separate transformers for high voltage. rectifier filaments and transmitter filaments are used. The high-voltage transformers used in this circuit are usually rated directly in terms of d.c. output voltage, assuming rectifiers and filters of the type shown in Fig, 7-14. Table 7-III shows typical values for representative supplies, hased on commonly available components. Transformer

Table 7-II

Capacitor-Input Power Supplies																
T1 Rating		$\begin{gathered} \mathbf{V}_{1} \\ \text { Tube } \\ \text { Tupe } \end{gathered}$	C		L		R		Approrimate F'ull-load d.c. lonles at			$\begin{gathered} \text { Approrimate } \\ \text { lipple \% } \\ a \ell \end{gathered}$			$\begin{aligned} & \text { Approx, } \\ & \text { Ollpul } \\ & \text { Iolls. } \\ & \text { Bleder } \\ & \text { Looad } \end{aligned}$	
$\begin{aligned} & \text { Vol/s. } \\ & \text { R.N..s. } \end{aligned}$	D.C.		μf.	Volts	I.	Ohms	Ohms	Watts	A	B	C	A	B	C		
6.50	40	5Y3-ciT	8	600	8	400	90k	5	375	360	345	2.5	0.08	0.002	450	36
650	40	- VH_{4} - CA A	8	600	8	400	90K	5	410	39.5	37.	2.5	0.08	0.002	450	36
700	90		8	600	10	225	46K	10	370	350	330	6	0.1	0.002	460	82
700	90	Ev-(GA	8	600	10	225	46 K	10	410	390	370	${ }^{6}$	0.1	0.002	460	82
750	150		8	700	8	145	25%	10	375	3:0	330	9	0.2	0.006	. 500	136
750	150	iV4-CiA	8	700	8	145	25 K	10	42i;	400	380	9	0.2	0.00%	:00	136
800	200	\% C 4 -GB	8	700	8	120	22 k	20	37\%	350	32.7	12	0.3	0.008	5\% 0	184
					Ch	oke-In	nput	ower	Supp	lies						
6.50	40	: Y 3-CTT	8	450	15	420	18K	10	-	240	22.5	-	0.8	0.01	26.5	25
650	40	-5-4-(iA	8	450	15	420	18K	10	-	2π	240	-	0.8	0.01	280	2.5
700	90	i Y 3-(iT	8	450	10	225	11 K	10	-	240	220	-	1.25	0.02	2.00	(8)
700	90	i) P - CiA	8	430	10	223	11 K	10	--	270	220	-	1.25	0.02	280	68
7:0	150	- $\mathrm{Y} 3-\mathrm{GT}$	8	450	12	150	13 K	20	-	265	245	-	1	0.015	32.5	125
750	1:0	5) 4 -GA	8	450	12	150	13K	20	--	280	260	-	1	0.015	340	125
800	200	3L4-GB	8	450	12	140	14 K	20	-	275	250	-	1	0.015	350	175

* Balance of transformer current capacity consumed by bleeder resistor.

Voltage Dropping

Fig. 7-14-Conventional powersupply circuit for higher-power transmitters.
$\mathrm{C}_{1}, \mathrm{C}_{2}-4 \mu \mathrm{f}$. for approximately 0.5% output ripple; $2 \mu \mathrm{f}$. for approximately 1.5% output ripple. C_{2} should be $4 \mu \mathrm{f}$. if supply is for modulator.
R-25,000 ohms.
L_{1}-Swinging choke: $5 / 25 \mathrm{~h}$., current rating same as T_{2}.
L2-Smoothing choke: current rating same as T_{2}.
$\mathrm{T}_{1}-2.5$ volts, $4 \mathrm{amp} ., 2500-\mathrm{v}$. ins. for type 816; 2.5 volts, 10 amp., 10,000-v.
 ins. for 866A.
T_{2}-D.c. voltage rating same as output voltage.
T_{3}-Voltage and current rating to suit transmitter-fube requirements.
V_{1}-Type 816 for $400 / 500$-volt supply; 866 A for others shown in Table 7-III.
See Table 7 -III for other values.
voltages shown are repppresentative for units with dual-voltage serondaries. The bleederload voltages shown may be somewhat Jower than actually found in practice, beo caluse transformer resistance has not been included. Ripple at the output of the first filter section will be apmoximately 5 per cent with a $4-\mu$ f. calmatior, or 10 per cont with a $2-\mu$ l. capacitor. Transformais made for amaterur service are designed for choke-input. If a c:a-pacitor-imput is used rating should be reduced about 30%.

TABLE 7-III							
$\begin{aligned} & \text { Approx. D.C. } \\ & \text { Output } \end{aligned}$		$\underset{\text { Rating }}{T_{2}}$		$\begin{aligned} & L_{2} \\ & I I . \end{aligned}$	Voltrue Rating C_{1}, C_{2}	$\underset{\text { Watts }}{R}$	Approx. BleederLoad Output Volts
Volts	Ma. ${ }^{1}$	$\begin{aligned} & \text { Approx. } \\ & \text { V.R.M.S. } \end{aligned}$	Ma.				
400/500	230	520/615	250	4	700	20	440/510
900)/7.50	260	7.30 0.50	300	8	1000	50	650/800
12.50/1.000	240	1.000/17.50	300	8	2000	130	1300/1600
12.00/1.500	410	1.000/1750	300	6	2000	150	1315/161.5
$2000 / 2.800$	200	$21009 / 2000$	$300{ }^{4}$	8	300\%	320 ${ }^{2}$	$20.50 / 25.50$
$2006 / 2.000$	400	$2100 / 2900$	200	6	3000	$320{ }^{2}$	$2063 / 2565$
2.000/3000	380	$2.500 / 3450$	$300{ }^{5}$	6	1000	$800{ }^{3}$	2.56.5/30695
1 Balance of transformer current rating consmmed by bleeder resistor. ${ }^{3}$ l'se live 100 -watt, $\mathbf{3} 000$-ohom units in series. + Rexulation will be shacwhat better with a 400- or j00-ma. elobk". s Regulation will be somewhat bettor with a 0.00 ma, choke.							

Voltage Dropping

Series Voltage-Dropping Resistor

Certain plates and sereens of the vatrious tubes in a transmitter or receiver often require it variety of operating voltages differing from the ontput voltage of an available power supply. In most cases, it is not ceonomically feasible to provide a separate power supply for each of the required voltages. If the current drawn by an electrode, or combination of electrodes operating at the same voltage, is reasomably constant under normal operating conditions, the required voltage may be obtained from a supply of higher voltage by means of a voltagrdropping resistor in series, as shown in lig. $7-1 \overline{3} \lambda$. The value of the series, resistor, R_{1}, may be olstained from Ohm's Law; $R=\frac{E_{\mathrm{d}}}{I}$, where E_{d} is the voltage drop required from the sup-
ply voltage to the desired voltage and I is the total rated current of the load.

Example: The plate of the tube in one stare and the sereens of the tubes in two other stares reguire an operating voltage of $2 \mathbf{D}^{\circ} 0$. The nearest available supply voltare is 40() and the total of the rated olate and soreen currents is 75 ma. The rerpuired resistance is

$$
R=\frac{400-2.50}{0.07 .5}=\frac{1.00}{0.075}=2000 \text { chnms. }
$$

The power rating of the resistor is obtained from $P($ watts $)=I^{2} R=(0.07 .5)^{2}(2000)=11.2$ watts. A 20 -watt resistor is the morest safe rating to be usct.

Voltage Dividers

The regulation of the voltage ohtaned in this mamer obviously is poor, since any change in current through the resistor will cause a directly proportional change in the voltage drop

7-POWER SUPPLIES

Fig. 7-15-A-Series voltage-dropping resistor. BSimple voltage divider. C-Multiple divider circuit.

$$
R_{3}=\frac{E_{1}}{I_{\mathrm{b}}} ; R_{4}=\frac{E_{2}-E_{1}}{I_{\mathrm{b}}+I_{1}} ; R_{5}=\frac{E-E_{2}}{I_{\mathrm{b}}+I_{1}+I_{2}}
$$

across the resistor. The regulation can be improved somewhat by connecting a second resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. 7-15B. Such an arrangement constitutes a voltage divider. The second resistor, R_{2}, acts as a constant load for the first, R_{1}, so that any variation in current from the tap becomes a smaller percentage of the total current through R_{1}. The heavier the current drawn by the resistors when they alone are connected across the supply, the better will be the voltage regulation at the tap.

Such a voltage divider may have more than a single tap for the purpose of obtaining more than one value of voltage. A typical arrangement is shown in Fig. 7-15C. The terminal voltage is E, and two taps are provided to give power voltages, E_{1} and E_{2}, at currents I_{1} and I_{2} respectively. The smaller the resistance be-

(C)
tween taps in proportion to the total resistance, the smaller the voltage between the taps. For convenience, the voltage divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carries only the bleeder current, $I_{b} ; R_{4}$ carries I_{1} in addition to $I_{\mathrm{b}} ; R_{5}$ carries I_{2}, I_{1} and I_{b}. To calculate the resistances required, a bleeder current, I_{b}, must be assumed; generally it is low compared with the total load current (10 per cent or so). Then the required values can be calculated as shown in the caption of Fig. 7-15C, I being in decimal parts of an ampere.

The method may be extended to any desired number of taps, each resistance section being calculated by Ohm's Law using the needed voltage drop across it and the total current through it. The power dissipated by each section may be calculated either by multiplying I and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequent need for maintaining the voltage applied to a low-voltage low-current circuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such applications, gaseous regulator tubes $(0 \mathrm{C} 3 /$ VR105, 01)3/VR150, etc.) can be used to good advantage. The voltage drop across such tubes is constant over a moderately wide current range. Tubes are available for regulated voltages near 150, 105, 90 and 75 volts.

The fundamental circuit for a gascous regulator is shown in Fig. 7-16.1. The tube is con-

(A)

Fig. 7-16-Voltage-stabilizing circuits using VR tubes.
nected in series with a limiting resistor, R_{1}, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 to 40 per cent higher than the operating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma . is required. The maximum permissible current with most types is 40 ma.; consequently, the load current cannot exceed 30 to 35 ma . if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum tube current to flow and that which just passes the maximum permissible tube current when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{a} is the voltage of the source across which the tube and resistor are comnected, E_{r} is the rated voltage drop across the regulator tube, and

Voltage Stabilization

Fig. 7.17-Electronic voltage-regulator circuit. Resistors are $1 / 2$ watt unless specified otherwise.
I is the maximum tube current in amperes, (usually 40 ma ., or 0.04 amp .).

Fig. 7-16B shows how two tubes may be used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. The limiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for E_{r}. Since the upper tube must carry more current than the lower, the load connected to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not exceed 30 to 35 milliamperes.

Voltage regulation of the order of 1 per cent can be obtained with these regulator circuits.

A single VR tube maty also be used to regulate the voltage to a load current of almost any value
so long as the variation in the current docs not exceed 30 to 35 ma . If, for example, the average load current is 100 ma ., a VR tule may be used to hold the voltage constant provided the eurrent does not fall below 85 ma . or rise above 115 maid. In this case, the resistance should be calculated to drop the voltage to the VIR-tube rating at the maximum load current to be expected plus about 5 ma . If the load resistance is constant, the effects of variations in line voltage may be eliminated by basing the resistance on the load current plus 15 ma . Voltage-regulator tules may also be connected in parallel as described later in this chapter.

Electronic Voltage Regulation

Several circuits have been developed for regulating the voltage output of a power supply elec-

$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{5}$-16- $\mu \mathrm{f} .600$-volt electrolytic. $\mathrm{C}_{3}-0.015$ - $\mu \mathrm{f}$. paper.
$\mathrm{C}_{4}-0.1-\mu \mathrm{f}$. paper.
$R_{1}-0.3$ megohm, $1 / 2$ watt.
$R_{2}, R_{3}-100$ ohms, $1 / 2$ watt.
$R_{4}-510$ ohms, $1 / 2$ watt.
$R_{5}, R_{8}-30,000$ ohms, 2 watts.
$R_{0}-0.24$ megohm, $1 / 2$ watt.
$R_{z}-0.15$ megohm, $1 / 2$ watt.
$R_{2}-9100$ ohms, 1 watt.
$R_{10-0.1-m e g o h m ~ p o t e n t i o m e t e r, ~}^{\text {, }}$
$R_{11}-43,000$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}-8$-hy., 40 -ma. filter choke.
S_{1}-S.p.s.t. loggle.
T_{L}-Power transformer: 375.375 voltsr.m.s., 160 ma .; 6.3 volts, 3 amps.; 5 volts, 3 amps.
(Thor. 22R33).
tronically. While more complicated than the VRtube circuits, they will hamde higher voltages and currents and the output voltage may be varied continuously over a wide range. In the circuit of Fig. 7-17, the 0C3 regulat or tube supplies a reforence of approximately +105 volts for the 6 alch control tube. When the load comnected arross the output terminals increases, the output voltage tends to decrease. This makes the voltage on the control grid of the (iAled less positive, causing the tube to draw lass curront through the 2 megohm plate resistor. As a consequence the grid voltage on the 807 series regulator beromes mere positive and the voltage drop across the 807 decreases, compensating for the reduction in output voltage. With the values shown, adjusiment of R_{1} will give a regulated output from 150 to 250 volts, at up to 60 or 70 ma . A 6 L 0 - Cl 3 c can be substituted for the type $80{ }^{\circ}$; the available output eurrent can be increased by adding tubes in parallel with the serios ragulator tube. When this is done, 100 -chm rewistors should le wired to each control grid and phate terminal, to reduce the chanees for jarasitio oveillations.

Another similar regulator circuit is shown in Fig, 7-18. The principal difference is that screengrid regulator tuhes are used. The fact that a serem-grid tube is relatively insensitive to changes in plate voltare makes it possible to obtain a reduction in ripple voltage adecpate for many purposes simply by supplying filtered d.c. to the sereens with a consecurent saving in weight and cost. The accompanying table shows the performance of the circuit of Fig. $7-18$. Cohumn I shows various output voltages, while Column II shows the maximum eurrent that can be drawn at that voltage with negligible variation in output voltage. Column III shows the measured ripple at the maximum current. The second part of the

table shows the variation in ripple with load current at 300 volts output.

High-Voltage Regulators

Regulated sereen voltage is required for screengrid tubes used as linear amplifiers in single-sideband operation. Figs, $7-19$ through $7-22$ show various different cireuits for supplying regulated voltages up to 1200 volts or more.

In the cireuit of Fig. 7-19, gas-filled regulator tubes are used to establish a fixed reference voltage to which is added an electronically regulated variathe voltage. The design can be modified to give any voltage from 225 volts to 1200 volts. with each design-center voltage variable by plus or minus 60 volts.

The output voltage will depend upon the number and voltage ratings of the VIR tubes in the string between the 991 and ground. The total Vh-tube voltage rating needed can be determined by subtracting 2 20) volts from the desired output voltage. Is examples, if the desired output voltage is 3 30, the total VRtube voltage rating should be $350-2.50=100$ volts. In this case, a VL-105 would be used. For an output voltage of 1000 , the VR-tulse voltage rating should be $1000-250=750$ volts. In this case, five VR-150s would be used in series.

Fig. 7-19-High-voltage regulator circuit by W4PRM. Resistors are 1 watt unless indicated otherwise.
$C_{1}, C_{2}-4-\mu f$. paper, voltage rating above peak-voltage output of T_{1}.
$\mathrm{C}_{3}-0.1-\mu \mathrm{f}$, paper, 600 volts.
$\mathrm{C}_{4}-12-\mu \mathrm{f}$. electrolytic, 450 volts.
$\mathrm{C}_{\mathrm{i}}-40 \mu \mathrm{f}$., voltage rating above d.c. output voltage. Can be made up of a combination of electrolytics in series, with equalizing resistor. (See section on ratings of filter components.)
$\mathrm{C}_{0}-4-\mu \mathrm{f}$. paper, voltage rating above voltage rating of

Voltage Stabilization

Fig. 7-20-Screen regulator circuit designed by W9OKA. Resistances are in ohms ($K=1000$).
$\mathbf{R}_{1}-6000$ ohms for 211; 2300 ohms for $812 \mathrm{~A}, 20$ watts.
$R_{2}-25,000$ ohms, 10 watts.
R_{3}-Output voltage control, 0.1 - megohm, 2-watt potentiometer.
T_{1}-Filament transformer: 10 volts, 3.25 amp. for $211 ; 6.3$ volts, 4 amp. for 812A.
T_{2}-Filament transformer: 6.3 volts, 1 amp.

The maximum voltage output that can be obtained is approximately equal to 0.7 times the r.m.s. voltuge of the trinsformer T_{1}. The current rating of the transformer must be somewhat above the load current to take care of the woltuge dividers and bleder resistances.

I single (ild will hatule ! 0) ma. For larger currents, Gldis may be added in parallel.

The heater circuit supplying the ofd and fisidf should not be grommed. The shatit of R_{1} should be grounded. When the output voltage is above 300 or 100 , the potentiometer should be provided with in insulating monnting, and should be controlled from the panel by an extousion shalt with an insulated coupling and grounded control.
ln some cases where the plate transformer has sufficient current-handling capatity, it maty be desirable to operate a screen regulator from the plate supply, rather than from a separate supply. This eath be done if a regulator tube is used that can take the reguired voltage drop. In lög, $\overline{7}-20$, a type 211 or 812 A is used, the control
tube being : 6.10 (2.5. With an input voltage of 1800 to 2000, : 14 output voltage of 500 to 700 can be whtained with a regulation better than 1 per cont over a current range of 0 to 100 ma.

In the rirenit of Fig. $7-21$, a V - zO) (or 8000) is used as the regulator, and the eontrol tube is an 807 which can take the full output voltage, making it unneressary to raise it above ground with VR tubes. If taps are switehed on R_{1}, the output voltage can be varied over a wide range. hareasing the sereen voltage decreases the output voltage. For cach position of the tap on R_{1}, decreasing the value of R_{3} will lower the minimum output voltage as R_{2} is varied, and decreasing the

Fig. 7-21-This regulator circuit used by WISUN operates from the plate supply and requires no $V R$ string. A small supply provides screen voltage and reference bias for the control tube.
Ur.less otherwise marked, resistances are in ohms. ($K=1000$). Capacitors are electrolytic.
$\mathrm{R}_{1}-50,000$-ohm, 50 -watt adjustable resistor.
R2-0.1-megohm 2-watt potentiometer.
$\mathrm{R}_{3}-4.7$ megohms, 2 watts.
$R_{4}-0.1$ megohm, $1 / 2$ watt.
T_{1}-Power transformer: 470 volts center tapped, 40 ma ; 5 volts, 2 amps.; 6.3 volts, 2 amps.
T2—Filament transformer: 7.5 volts, 3.25 amp. (for V.700).

value of R_{4} will raise the maximum output voltage. However, if these values are made too small, the 807 will lose control.

At 850 volts output, the variation over a current change of 20 to 80 ma . should be negligible. At 1500 volts output with the same eurrent change, the variation in output voltage should be less tham three per cent. Up to 88 volts of grid bias for a Class A or Class Al_{1} amplifier may be taken from the potentiometer across the refer-ener-voltage source. This bias camnot, of course, be used for biasing a stage that is drawing grid current.

A somewhat different type of regulator is the shunt regulator shown in Fig. 7-22. The VIR tubes and R_{2} in serics are across the output. Since the voltage drop armoss the VR tubes is constant, any change in output voltage appears across R_{2}. This canses a dhange in grid bias on the 811-A grid, causing it to draw more or less current in

Fig. 7-22-Shunt screen regulotor used by W2AZW. Resistances are in ohms ($K=1000$).
$\mathrm{C}_{1}-0.01 \mu \mathrm{f} ., 400$ volts if needed to suppress oscillation.
M_{1}-See text.
R_{1}-Adjustable wire-wound resistor, resistance and wattage as required.
inverse proportion to the eurrent being drawn by the amplifier sereen. This provides a eonstant load for the series resistor R_{1}.

The output voltage is equal to the sum of the VIR drops plas the grid-to-ground voltage of the 811-A. This varies from 5 to 20 volts between full load and no load. The initial adjustment is made by placing a milliammeter in the filament center-tap leud, as shown, and adjusting R_{1} for a reading of 15 to 20 ma . higher than the normal peak sereen current. This adjustment should be made with the :mplifier connerted but with no excitation, so that the amplifier draws idling current. After the adjustment is complete, the meter may be removed from the circuit and the filament center tap comected directly to ground. Adjustment of the tap on R_{1} should, of course, be made with the high voltage turned off.

Any number of V'R tubes may be used to provide a regulated voltage near the desired value. The maximum eurrent through the 811-A should be limited to the maximum plate-eurrent rating of the tube. If larger currents are necessary, two 811-As may be comereted in parallel. Over a eurrent range of 5 to 60 mit., the regulator holds the output voltage constant within 10 or 15 volts.

Bias Supplies

As discussed in Chapter 6 on high-frequency transmitters, the chief function of a bias supply for the r.f. stages of a transmitter is that of providing protective bias, although under certain circumstances, a bias supply, or pack, as it is sometimes called, can provide the operating bias if desired.

Simple Bias Packs

Fig. 7-2:3 A shows the diagram of a simple bias supply.- R_{1} should be the recommended grid leak for the amplifier tube. No grid leak should be used in the transmitter with this type of supply. The output voltage of the supply, when amplifier grid current is not flowing, should be some value between the bias re-
quired for plate-eurrent cut-off and the recommended operating bias for the amplifier tube. The transformer peak voltage (1.4 times the r.m.s. value) should not exceed the recommended operating-bias value, otherwise the output voliage of the pack will soar above the operating-hias value with rated grid current.

This soaring can be reduced to a considerable extent by the use of a voltage divider across the transformer secondary, as shown at B. Such a system can be used when the transformer voltage is higher than the operating-bias value. The tap on R_{2} should be adjusted to give amplifier cut-off bias at the output terminals. The lower the total value of R_{2}, the less the soaring will be when grid current Hows.

Voltage Stabilization

Fig. 7-23-Simple bias-supply circuits. In A, the peak transformer voltage must not exceed the operating value of bias. The circuits of B (half-wave) and C (full-wave) may be used to reduce fronsformer voltage to the rectifier.
R_{t} is the recommended grid-leak resistance.

(B)

Fig. 7.24-Illustrating the use of VR tubes in stabllizing protective-bias supplies. R_{t} is a resistor whose value is adjusted to limit the current through each VR tube to 5 ma . before amplifier excitation is applied. R and R_{2} are current-equalizing resistors of 50 to 1000 ohms.

A full-wave circuit is shown in Fig. 7-23C. R_{3} and R_{4} should have the same total resistance and the tiaps should be adjusted symmetrically. In all cases. the transformer must be designed to furnish the current drawn by these resistors plus the current drawn by R_{1}.

Regulated Bias Supplies

The inconvenience of the circuits shown in Fig. 7-2:3 and the difliculty of predicting values in practical application can be avoided in most cases by the use of gaseous voltageregulator tubes across the output of the bias supply, as shown in Fig. 7-24A. A VR tube with a voltage rating anywhere between the biasing-voltage value which will reduce the input to the amplifier to a safe level when excitation is removed, and the operating value of bias, should be chosen. R_{1} is adjusted, without amplifier excitation, until the VR tube ignites and draws about 5 ma. Additional voltage to bring the bias up to the operating value when excitation is applied can be obtained from a grid leak resistor, as discussed in the transmitter chapter.
Each VlR tube will handle 40 ma . of grid current. If the grid current exceeds this value under any condition, similar VIR tubes should be added in parallel, as shown in Fig. 7-2413, for cach 40 ma., or less, of additional grid current. The

7 -POWER SUPPLIES

Fig. 7-25-Cir cuit diagram of an electronically-regulated bias supply.
$\mathrm{C}_{1}-20-\mu \mathrm{f} .450$-volt electrolytic.
$\mathrm{C}_{2}-20-\mu \mathrm{f} .150$-volt electrolytic.
$\mathrm{R}_{1}-5000$ ohms, 25 watts.
$\mathbf{R}_{2}-22,000$ ohms, $1 / 2$ watt. $R_{3}-68,000$ ohms, $1 / 2$ wott. $R_{4}-0.27$ megohm, $1 / 2$ walt $R_{5}-3000$ ohms, 5 wafts. $\mathbf{R}_{6}-0.12$ megohm, $1 / 2$ wall.
resistors R_{2} are for the purpose of helping to maintain equal currents through each VR tube, and should have a value of 50 to 1000 ohms or more.

If the voltage rating of a single VIR tuhe is not sufficiently high for the purpose, othor VIR tubes may be used in series (or series-parallel if required to satisfy grid-eurrent requirements) as shown in the diagrams of Fig. $7-24 \mathrm{C}$ and 1 D .

If a single value of fixed bias will serve for more than one stage, the biasing terminal of each such stage may be connected to a single supply of this type, provided only that the total grid current of all stages so connected does not exceed the current rating of the VIR tube or tubes. Alternatively, other separate Vi-tube branches may be added in any desired combination to the same supply, as in Fig. $7-241 \%$, to adapt them to the needs of each stage.

Providing the Vh-tube current rating is not exceeded, a series arrangement may be tapped for lower voltage, as shown at F.

The circuit diagram of an clectronically regulated bias-supply is shown in Fig. 7-25, The output voltage may be adjusted to any value between 40 volts and 80 volts and the unit will handle grid currents up to 35 ma . over the range of 50 to 80 volts, and 25 ma . over the remainder of the range. If higher currenthandling capaeity is required, more 2A3s can he connected in paralled with V_{3}. The regulation will hold to about 0.01 volt per milliampere of grid current. The regulator operates as follows: Since the voltage drop across V_{3} and V_{4} is in paralle! with the voltage drop across V_{1} and R_{5}, any change in voltage across V_{3} will appear aross R_{5} becanse the voltage drops atross looth VIR tubes remain constant. R_{5} is a cathode biasing resistor for V_{2}, so any voltage change arross it appears as a grid-voltage change on V_{2}. This ehange in grid voltage is amplified by V_{2} and appears across R_{4} which is conneeted to the plate of V_{2} and the grids of V_{3}. This change in
R_{7} - 0.1 -megohm potentiometer.
R8- 27,000 ohms, $1 / 2$ watl.
$\mathrm{L}_{1}-20$-hy. $50-\mathrm{mo}$. filter chake.
T_{1}-Power transformer: 350 volts r.m.s. each side of center 50 ma.; 5 volts, 2 amp.; 6.3 volts, 3 amp .
T_{2}-2.5-volt filament tronsformer (Thordarson 21 FOO).
voltage swings the grids of V_{3} more positive or negative, and thus varios the intermal resistance of V_{3}, mantaning the voltage drop across V_{3} practically constant.

Other Sources of Biasing Voltage

In some cases, it may be convenient to obtain the biasing voltage from a source other than a separate supply. A half-wave rectifier may be connerted with reversed polarization to obtain biasing volage from a low-voltage plate supply, as shown in Fig. 7-26i. In an-

(A)

(B)

Fig. 7-26-Convenient means of obtoining biasing voltage. A-From a low-valtage plate supply. B-From spore filament winding. T_{1} is a filament transformer, of a voltage output similar to that of the spare filament winding, connected in reverse to give 115 volts r.m.s. output. If cold-cathode or selenium rectifiers ore used, no additional filament supply is required.
other arrangement, shown at B, a spare filament winding can be used to operate a filament transformer of similar voltage rating in reverse to obtain a voltare of about 130 from the winding that is customarily the primary. This

Voltage Multiplying

will be sufficient to operate a VR75 or VR90 regulator tube.

A bias supply of any of the types discussed requires relatively little filtering, if the outputterminal peak voltage does not approach the operating-bias value, because the effect of the supply is entirely or largely "washed out" when grid current flows.

VOLTAGE-MULTIPLYING CIRCUITS

Although vacuum-tube rectifiers can be used in voltage-multiplying circuits, the more common application is with selenium, silicon and germanium diodes. The choice of diodes is based on the voltage and current requirements; selenium is normally used up to a source voltage of 130, and above that it becomes necessary to use silicon.

A simple half-wave rectifier circuit is shown in Fig. $7-27 \mathrm{~A}$. Strictly speaking this is not a voltage-multiplying circuit. However, if the current demand is low (a milliampere or so), the d.c. output voltage will be close to the peak voltage of the source, or $1.4 E_{\text {rms }}$. A typical application of the circuit wouk be to ohtain a low bias voltage from a heater winding; the + side of the output can be grounded by reversing the polarity of the rectifier and capacitor, as shown in Fig. $7-27 \mathrm{~B}$. As with all half-wave rectifiers, the output voltage drops quickly with increased current demand.

Fig, 7-27-If the current demand is low, a simple halfwave rectifier will deliver a slight voltage increase, Reversing the polarity of the rectifier (B) allows the + side of the output to be grounded. Typical values, for $E_{\mathrm{rms}}=$ 117 and a load current of 75 ma .:
$\mathrm{C}_{1}-50-\mu \mathrm{f}$., $150-\mathrm{v}$. electrolytic.
$E_{\text {output }}-130$ volts.
$\mathrm{R}_{1}-22$ ohms.
The resistor R_{1} in Fig. 7-27 is included to limit the current through the rectifier, in accordance with the manufacturer's rating for the diode. If the resistance of the transformer winding is sufficient, R_{1} can be omitted.

A voltage-doubling circuit is shown in Fig. $7-28 \mathrm{~A}$. If the current demand is extremely low, the output voltage will be higher than indicated, but with any reasonable current drain the output voltage will be slightly over twice the a.c. input.

Fig. 7-28-Voltage-doubling circuits. Typical values, for $\boldsymbol{E}_{\mathrm{rms}}=117$ and a load current of 75 ma .:
$\mathrm{C}_{1}-50-\mu \mathrm{f}, 150-\mathrm{v}$, electrolytic.
$\mathrm{C}_{2}-50-\mu \mathrm{f} .250-\mathrm{v}$, electrolytic.
$E_{\text {output }}-245$ volts.
$\mathrm{R}_{1}-22$ ohms.

In Fig. 7-28A, C_{1} charges through $C R_{1}$ during one half of the a.c. cycle; $C R_{2}$ is nonconductive at this time. During the other half of the cycle $C R_{2}$ conducts and C_{2} becomes charged; they see as the source the transformer plus the charge in C_{1}. By reversing the polarities of the capacitors and diodes, as shown in Fig. 7-28B, the + side of the output can be grounded.

A voltage-tripling circuit is shown in Fig. 729 A . On one half of the a.c. cycle $C R_{1}$ conducts

Fig. 7-29-(A) Voltage-tripling and (B, C) voltagequadrupling circuits. Typical values, for $E_{r \mathrm{~ms}}=117$ and a load current of 75 ma .:
$\mathrm{C}_{1}-50-\mu \mathrm{f}, 150-\mathrm{v}$. electrolytic.
$\mathrm{C}_{2}-50-\mu \mathrm{f}$. 250-v. electrolytic.
$\mathrm{C}_{3}, \mathrm{C}_{4}-50-\mu \mathrm{f}, 450-\mathrm{v}$. electrolytic.
$\mathrm{R}_{1}-22$ ohms.

7 -POWER SUPPLIES

and C_{1} is charged to the source voltage. On the opposite half of the eycle $C R_{2}$ conducts and C_{2} is charged to twice the source voltage, because it sees the transtormor plus the charge in (C_{1} as the souree. At the same time $C R_{3}$ conducts and, with the transformer and the charge in C_{2} as the source, $C_{3}{ }^{3}$ is charged to three times the transformer voltage. The + side oi the output can be grounded if the polarities of all of the capacitors and diodes are reversed.

A voltage-quadrupling circuit is shown in Fig. $7-293$. On the negative half of the a.c. cycle, when $E_{\text {rnss }}^{\prime}$ is negative with respect to ground, C_{1} chargos through (R_{1}. On the positive half of the cycle, C_{2} charges through $C R_{2}$ to twice $E_{\text {rms }}$, seeing E_{rms} and C_{1} as the source. On
the negative half of the cycle, C_{3} charges through $C R_{3}$ to $3 E_{\mathrm{rm} \%}$, secing E_{rms} and C_{2} as the source. On the positive half of the cycle the output capacitance, C_{4}, charges to $4 E_{\text {rms }}$ through $C R_{4}$, seeing $E_{\text {rms }}$ and C_{3} as the source. The variation in Fig. 7-29C is similar, except that the output capacitor is made up of the two $C_{2} s$ in series. The lower C_{2} serves the function of C_{2} in Fig. 7-29B. The polarity of the output can be reversed, to permit grounding of the + terminal, by reversing the polarities of all diodes and capacitors.
The values of capacitance given for the voltagemultiplying circuits are what might be required for $E_{\text {rms }}=115$ and a load of 75 ma . Larger values will improve the voltage regulation, and smaller values may be used at a sacrifice in regulation.

Power-Line Considerations

POWER-LINE CONNECTIONS

If the transmitter is rated at much more than 100 watts, special consideration should be given to the a.c. line rumning into the station. In some residential systems, three wires are brought in from the outside to the distribution board, while in other systems there are only two wires. In the three-wire system, the third wire is the neutral which is grounded. The voltage between the other two wires normally is 230, while half of this voltage (115) appears between each of these wires and neutral, as indicated in lig. 7-30A. In systems of this type, usually it will be found that the 115 volt household load is divided as evenly as possible between the two sides of the circuit, half of the load being connerted between one wire and the neutral, while the other half of the load is connected between the other wire and neutral. Heavy appliances, such as electric stoves and heaters, normally are designed for 230-volt operation and therefore are connected across the two ungrounded wires. While both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switeh be used in this side of the line. The reason for this is that opening the neutral wire does not disconnect the equipment. It simply leaves the equipment on one
side of the 230 -volt circuit in series with whatever load may be across the other side of the circuit, as shown in Fig. 7-3013. Furthermore, with the neutral open, the voltage will then be divided bet ween the two sides in inverse proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the other side, unless the loads happen to be equal.

The usual line rumning to baseboard outlets is rated at 15 amperes. Considering the power consumed by filaments, lamps, modulator, receiver and other auxiliary equipment, it is not unusual to find this $1 \overline{5}$-ampere rating exceeded by the reguirements of a station of only moderate power. It must also be kept in mind that the same branch may be in use for other household purposes through another outlet. For this reason, and to minimize light blinking when keving or modulating the transmitter, a separate heavier line should be run from the distribution board to the station whenever possible. (A three-volt drop in line voltage will cause noticcable light blinking.)

If the system is of the thrce-wire type, the three wires should be brought into the station so that the lond can be distributed to keep the line balanced. The voltage arross a fixed load on one side of the circuit will increase as the load current on the other side is increased. The rate of increase will depend upon the resist-

Fig. 7-30-Three-wire power-line circuits. A-Normal 3 -wire-line termination. No fuse should be used in the grounded (neutral) line.B-Showing that a switch in the neutral does not remove voltage from ether side of the line. C-Connections for both 115-and 230-volt transformers. D-Operating a 115 -volt plate fransformer from the 230 -volt line to avoid light blinking. T_{1} is a 2 -to-1 step-down transformer.

Power-Line Considerations

ance introduced by the neutral wire. If the resistance of the neutral is low, the increase will be correspondingly small. When the currents in the two circuits are balanced, no current flows in the neutral wire and the system is operating at maximum efficiency.

Light blinking can be minimized by using transformers with 230 -volt primaries in the power supplies for the keyed or intermittent part of the load, comnecting them across the two ungrounded wircs with no connection to the neutral, as shown in Fig. 7-30C. The same can be accomplished by the insertion of a stepdown transformer whose primary operates at 230 volts and whose secondary delivers 115 volts. Conventional 115 -volt transformers may be operated from the secondary of the step-down transformer (see Fig. 7-30D).

When a sperial heavy-duty line is to be installed, the local power company should be consulted as to local requirements. In some localities it is necessary to have such a job) done by a licensed electrician, and there may be sperial requirements to be met in regard to fittings and the manner of installation. Some amateurs terminate the special line to the station at a switch box, while others may use electric-stove rereptacles as the termination. The power is then distributed around the station by means of conventional outlets at convenient points. All cireuits should be properly fused.

Fusing

All transformer primary cireuits should be properly fused. To determine the approximate current rating of the fuse to be used, multiply each current being drawn from the supply in amperes by the voltage at which the current is being drawn. luchade the current taken by bleder resistances and voltage dividers. In the case of series resistors, use the source voltage, not the voltage at the equipment end of the resistor. Inchude filament power if the transformer is supplying filaments. After multiplying the various voltages and currents, add the individual produrts. Then divide by the line voltage and add 10 or 20 per cent. Use a fuse with the nearest larger eurrent rating.

LINE-VOLTAGE ADJUSTMENT

In certain communities trouble is sometimes experienced from fluctuations in line voltage. Usually these fluctuations are caused by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when lights are turned on at evening, thcy may be taken care of by the use of a manually operated compensating device. A simple arrangement is shown in Fig. 7-31A. A toy transformer is used to boost or buck the line voltage as required. The transformer should have a tapped secondary varying between 6 and 20 volts in steps of 2 or 3 volts and its secondary should be capable of carrying the full load current of the entire transmitter, or that portion

Fig. 7-31-Two methods of transformer primary control. At A is a tapped toy transformer which may be connected so as to boost or buck the line voltage as required. At B is indicated a variable transformer or autotransformer
(Variac) which feeds the transformer primaries.
of it fed by the toy transformer.
The secondary is connected in series with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primaries of the transmitter transformers can be brought up to the rated 115 volts by setting the toy-transformer tap switch on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line voltage may be above 115 volts. This method is preferable to using a resistor in the primary of a power transformer since it does not affect the voltage regulation as seriously. The circuit of 7-31 1 illustrates the use of a variable autotransformer (Variac) for adjusting line voltage.

Another scheme by which the primary voltage of each transformer in the transmitter may: be adjusted to give a desired secondary voltage, with a master control for compensating for changes in line voltage, is shown in Fig. 7-32.

This arrangement has the following features.

Fig. 7.32-With this circuit, o single adjustment of the tap switch S_{1} places the correct primary voltage on all transformers in the transmitter.

7-POWER SUPPLIES

1) Adjustment of the switeh st to make the voltmeter read 10.5 volts atotomatically adjusts all transformer primaries to the predetermined correct voltage.
2) The nerewsity for having all primaries work al the same volage is eliminated. Thus, 110 volts can be appled to the primary of one transformer, 115 tw another, ete., as reguired to obtain the desired couput voltage.
3) Independent control of the plate transformer is afforded bey the tap switch dx. This permits power-mput control and does not require an extra antotransformer.

Constant-Voltage Transformers

Nthough comparatively expensive, special transformers called constant-voltage transformers are avalable for use in cases where it is neeressary to hold line voltage and/or filamont voltage constant with fluctuating supple-line voltage. They are rated over a range of 17 vat at 6.3 volts output, for small tube-heater demands, un to seroral thousand volt-amperes at 115 or 230 volis. In average figures, such transformers will hold their output voltages within one per rent under an input-voltage variation of 30 per cent.

Construction of Power Supplies

The length of most leads in a power supply is unimportant, so that the arrangement of romponents from this consideration is mot a factor in construction. Nore important are the points of good high-voltage insulation. adequate conductor size for filament wiring, proper ventilation for rectifier tubes and most important of all - safoty to the operator. lixposed high-voltage terminals or wiring which might be bumped into acerdentally: should not be permited to exist. They shouhd he covered with adequate insulation or phaced inareessible to contact during mormal operafion and adjust ment of the transmitter. Powersupply units should be fused individually. All uegative terminals of pate sapplies amd positive torminats of bias supplies should be serourely grounderl to the chassis, and the chassis commented to a waterpipe or radiator ground. All transformer, choke, and caparcitor cases shoukd also be grounded to the rhassis. A.e. power eords athd chaseis comnectors should be arrathged so that exposed contacts are never "live." starting at the conventional are. wall out let which is female, one end of the eord should be fitted with a male plug. The other end of the rond should have a femate rereptacle. The inpat eonnereor of the pawer supply should have a male roroptade to lit the

Fig. 7-33-A typical low-voltage power supply. The two a.c. connectors permit independent control of filament and high voltage.
fenale receptacle of the cord. The power-output connector on the power supply should be a female socken. A male phug to fit this socket should be commerted to the rable grimg to the arpipment. The opposite end of the able shoud be fitted with a fomale romector, and the serios should terminate with a male romertor on the equipmont. If connertions are made in this mamer. there should be no "live" exposed eontants at any point, regardless of where a diseomertion may lie made.

Reatifier tilament leads should be kept short to assure proper voltage at the rectifier socket. Through a metal ehassis, grommet-lined eleatance holes will serve for voltages up to 500 or 7.0). but coramic feed-though insulators should be used for higher voltages. Bleoder and voltage-dropping resistors should be placed where they are open to air rirubation. Placing them in confined spare reduces the ratiag.

It is highly preferable from the stampoint of oprating romerniener to have separate filament transformers for the rectifier tubes. rather than to use combination filament and phate transformers, such as those used in rereivers. This permits the transmitter plate voltage to be switched on without the neressity for wating for rectifier filaments 10 come up to temperature after earh time the high woltage has been turned off. When using a combination power transformer. high voltage may the turned off without turning the filaments off by using

Fig. 7-34. A bottom view of the low-voltoge power supply. The separate filament transformer is mounted against the lower wall of the chassis. The electrolytic filter capacitors are mounted on terminal strips. Rubber grommets are used where wires pass through the shossis.

Power Supply Construction

Fig. 7-35-A typical high-voltage supply. The sockets for the 866 A mercury-vapor rectifier tubes are spaced from the metal chassis by small cone insulatars. Note the insulated tube plate connectors, the sofety high-voltage output terminal and the fuse.

a switch lwetwen the transformer center tap and chassis. This switeh should he of the rotary type with good insulation betwern rontarts. The shaft of the switch must be groumbenl.

SAFETY PRECAUTIONS

All power supplies in an installation should be fed through a single main power-line switoh so that all puwer may be cut off quickly, either telore working on the equipment, or ith case of ath aderdent. suring-operated switehes or relays are not sutlicionly reliable for this importan service. lionlprof devieres for cutting off all power to the trammiter and ot her equipment are shown in Fig. 7 -37. The arangements shown in Fig. 7 37 a and 13 are similar (eirenits for twowire (115) volt) and thre-wire (2:30-volt) sustems. S is an enclosed dobibe-throw knife switeh of the sort usuatly used as the entrance switch in house instadiations, $/$ is a standand a.e. outlet and I^{\prime} a shorted phug to fit the outlet. The switeh should be located prominemfly in plain sight and members of the homsehold should be instrurted in its:

Fig. 7.36 -Bottam view of the high-valtage supply. The electrolytic capaciters (connected in series) are mounted on an insulating board. Voltage-equalizing resistors are connected ocross each copocitor. Separate input connectors are provided for filament and plate power.
location and nse. I is a red lamplorated alomgside the switoh. Its parpose is not so mueh to some as a warning that the power is on as it is to holp, in identilying and guickly locating the switoh should it become necessary for someone deb to att the power off in an emergen. y

Fig. 7.37-Reliable arrangements for culting off all power to the tronsmitter. S is an enclosed double-pole knife-type switch, J a standard a.c. outlet. P a shorted plug to fit the autlet and I a red lamp.

A is for a two-wire 115 -volt line, B for a three-wire 230 -volt system, and C a simplified orrangement for low-power stations.

The outlet J should be placed in some corner out of sight where it will not be a temptation for children or others to play with. The shorting plug can be removed to open the power circuit if there are others around who might inadvertently throw the switch while the operator is working on the rig. If the operator takes the plug with him, it will prevent someone from turning on the power in his absence and either injuring themselves or the equipment or perhaps starting a fire. Of utmost importance is the fact that the outlet J must be placed in the ungrounded side of the line.

Those who are operating low power and feel that the expense or complication of the switch isn't warranted can use the shorted-plug idea as the main power switch. In this case, the outlet should be located prominently and identified by a signal light. as shown in I'ig. 7-37C.

The test bench ought to be fed through the main power switch, or a similar arrangenent at the bench, if the bench is located remote from the transmitter.

A bleeder resistor with a power rating giving a considerable margin of safety should be used across the output of all transmitter power supplies so that the filter capacitors will be discharged when the high-voltage transformer is turned off.

All types listed below are rated as follows: Max. input r.m.s. volts - 130, Max. peak inverse volts -380 . Series resistors of 47 ohms are recommended for unita rated at less than 65 ma., 22 ohms for 75 - and $100-\mathrm{ma}$. units, 15 ohms for $150-\mathrm{ma}$. units, and 5 ohms for all higher-current units.						
D.C.	Manufacturer					
	A	B	C	D	E	F
20	1159	. . .	8\$20		\cdots	
30				8Y1	. .	
35			$8 \mathrm{S35}$	\ldots	\ldots
50		RS65Q			50	
65	1002A	RS65	$6 S 65$	8 Jl	65	NA-5
75	1003A	RS75	6 655	5M4	75	NB-5
100	1004.	RS 100	6SIL00	5, 11	100	NC-5
150	1005.A	RS150	6 S 150	511	150	ND-5
200	1016.	RS200	6 S 200	5R1	200	NE-5
250	1028A	RS250	6 S 250	5Q1	250	NF-5
300	1090.	RS300	$6 S 300$	6Q4	300	
350	1023	RS350	68350	5QS1		NK-5
400	1130	RS400	6S400	5 S 2	400	NH-5
450		RS 450	6S 450			NJ-5
500	1179	RS500	6 6500	5S1	500	
600					600	
1000		RS1000				

[^4]
Keying and Break-In

Section 12.133 of the l'CC regulations says ". . . The frequener of the emitted . . . wave shall be as constant as the state of the art permits." It also says ". . . spurious radiation shall not be of sufficient intensity to cause interference in receiving equipment of good engineering design including adequate selectivity chararteristics, which is tuned to a frequency or frequencies outside the frequency band of emission normally required for the type of emission being employed by the amateur station."

There are four factors that have to be considered in the keying of a transmitter. They are envelope shape, r.f. clicks, chirp and backwave.

Envelope Shape

The key clicks that go out on the air with the signal are controlled by the shape of the envelope of the signal. The envelope is the outline of the oscilloscope pattern of your transmitter output, but an oscilloscope isn't neaded to observe the effects. Fig. 8-1 shows representative scope pat-

Fig. 8.1-Typical oscilloscope displays of a code transmitter. The rectangular-shaped dots or dashes (A) have serious key clicks extending many kc. either side of the transmitter frequency. Using proper shaping circuits increases the rise and decay times to give signals with the envelope form of B. This signal would have practically no key clicks. Carrying the shaping process 100 far, as in C , results in a signal that is too "soft" and is not easy to copy.

Oscilloscope displays of this type are obtained by coupling the transmitter r.f. to the vertical plates (Chopter 21) and using a slow sweep speed synchronized to the dot or dash speed of an automatic key.
terns that might be obtained with a given transmitter under various conditions.

It must be emphasized that the on-the-air clicks are determined by the shaping, while the r.f. clicks caused by the spark at the key can only be heard in the station receiver and possibly a broadcast receiver in the same house or apartment.

R.F. Clicks

When any circuit carrying d.c. or a.c. is closed or broken, the small or large spark (depending upon the voltage and current) generates r.f. during the instant of make or break. This r.f. covers a frequency range of many megacycles. When a
transmitter is keycd. the spark at the key (and relay, if used) canses a click in the receiver. This click has no effect on the transmitted signal. Since it occurs at the same time that a click (if any) appears on the transmitter output, it must be removed if one is to listen critically to his own signal within the shack. A small r.f. filter is required at the contacts of the key (and relay); typical circuits and values are shown in Fig. 8-2.

Fig. 8-2-Typical filter circuits to apply at the key land relay, if used) to minimize r.f. clicks. The simplest circuit (A) is a small capacitor mounted at the key. If this proves insufficient, an r.f. choke can be added to the ungrounded lead (B). The value of C_{1} is .001 to $.01 \mu \mathrm{f}$., RFC_{1} can be 0.5 to 2.5 mh ., with a current-carrying ability sufficient for the current in the keyed circuit. In difficult cases another small capacitor may be required on the other side of the r.f. choke. In all cases the r.f. filter should be mounted right at the key or relay terminals; sometimes the filter can be concealed under the key. When cathode or center-tap keying is used, the resistance of the r.f. choke or chokes will add cathode bias to the keyed stage, and in this case at high-current low-resistance choke may be required, or compensating reduction of the grid-leak bias (if it is used) may be needed. Shielded wire or coaxial cable makes a good keying lead.
A visible spark on "make" can often be reduced by the addition of a small (10 to 100 ohms) resistor in series with C_{1} (inserted at point " x "). Too high a value of resistor reduces the arc-suppressing effect on "break."

To check the cffectivencss of the r.f. filter, listen on a lower-frequency band than the transmitter is tuned to, with a short antenna and the receiver gain backed off.

Chirp

The frequency-stability reference in the opening paragraph refers to the "chirp" observed on many signals. This is caused by a change in frequeney of the signal during a single dot or dash. Chirp is an easy thing to detect if you know how to listen for it, although it is amazing how some operators will listen to a signal and say it has no chirp when it actually has. The easiest way to detect chirp is to tune in the code signal at a low beat note and listen for any change in frequency during a dash. The lower the beat note, the easier it is to detect the frequency

change. Listening to a harmonic of the signal will arentuate the frequency change.

The main reason for minimizing chirp, aside from complying with the letter of the regulations, is one of pride, since a properly shaped chirp-free signal is a pleasure to copy and is likely to attract attention by its rarity. Chirps cannot be observed on an oscilloscope pattern of the envelope.

Fig. 8.4-The basic circuit for blocked-grid keying is shown at A. R_{1} is the normal grid leak, and the blocking voltage must be at least several times the normal grid bias. The click on make can be reduced by making C_{1} larger, and the click on break can be reduced by making R_{2} larger. Usually the value of R_{2} will be 5 to 20 times the resistance of R_{1}. The power supply current requirement depends upon the value of R_{2}, since closing the key circuit places R_{2} across the blocking voltage supply.

An allied circuit is the vacuum-tube keyer of B. The tube V_{1} is connected in the cathode circuit of the stage to be keyed. The values of C_{1}, R_{1} and R_{2} determine the keying envelope in the same way that they do for blocked-grid keying. Values to start with might be 0.47 megohm for $R_{1}, 4.7$ megohm for R_{2} and $0.0047 \mu \mathrm{f}$. for C_{1}.

The blocking voltage supply must deliver several hundred volts, but the current drain is very low. The 2A3 or other low plate-resistance triode is suitable for V_{1}. To increase the current-carrying ability of a tube keyer, several tubes can be connected in parallel.

A vacuum-tube keyer adds cathode bias and drops the supply voltages to the keyed stage and will reduce the output of the stage. In oscillator keying it may be impossible to use a v.t. keyer without changing the oscillator d.c. grid return from ground to cathode.

Fig, 8-3-The basic cathode (A) and center-tap (B) keying circuits. In either case C_{1} is the r.f. return to ground, shunted by a larger capacitor, C_{2}, for shaping. Voltage ratings at least equal to the cut-off voltage of the tube are required. T_{1} is the normal filament transformer. C_{1} and C_{3} can be about $0.01 \mu \mathrm{f}$.

The shaping of the signal is controlled by the values of L_{1} and C_{2}. Inereased capacitance at C_{2} will make the signal softer on break; increased inductance ot L_{1} will make the signal softer on make. in many cases the make will be satisfactory without any inductance.

Values at C_{2} will range from 0.5 to 4μ., depending upon the tube type and operating conditions. The value of L_{1} will also vary with tube type and conditions, and may range from a fraction of a henry to several henrys. When tetrodes or pentodes are keyed in this manner, a smaller value can sometimes be used at C_{2} if the screenvoltage supply is fixed and not obtained from the plate supply through a dropping resistor.

Oscillators keyed in the cathode circuit cannot be softened on break indefinitely by increasing the value of C_{2} because the grid-circuit time constant enters into the action.

Backwave

The last factor is "backwave," a signal during key-up conditions from some amplifier-keyed transmitters. Some operators listening in the shack to their own signals and hearing a backwave think that the backwave can be heard on the air. It isn't necessarily so, and the best way to check is with an amateur a mile or more away. If he can't hear a backwave on the $S 9+$ signal, you can be sure that it isn't there when the signal is weaker. Backwave is undesirable because it makes a signal harder to copy, even with acceptable shaping and no chirp.

Amplifier Keying

Many two-, three- and even fourstage transmitters are utterly incapable of completely chirp-free amplifier keying because keying the output stage has an effect on the oscillator frequeney and "pulls" through the several stages. This is particularly true when the oscillator stage is on the same frequency as the keyed output stage, but it can also happen when frequency multiplying is involved. Another source of reaction is the variation in oseillator supply voltage under keying conditions, aithough this can usually be handled by stabilizing the oscillator supply with a VR tube. If the objective is a completely chirp-free transmitter, the first step is to make sure that keying the amplifier stage (or stages) has no effert on the oscillator frequency. This can be checked by listening on the oscillator frequeney while the amplifier stage is keyed. listen for chirp on either side of zero beat to eliminate the possible effect of a chirpy receiver caused by line-voltage chatages or pulling. If no chirp of the steadily rumning oscillator can be detected, the transmitter can be keyed without chirp in the stage or stages used for the test. This is no

Vacuum-Tube Keyers

Fig. 8-5 - When the driver stage plate voltage is roughly the same as the screen voltage of a tetrode final amplifier, combined screen and driver keying is an excellent system. The envelope shoping is determined by the values of L_{1}, C_{4}, and R_{3}, although the r.f. bypass capacitors C_{1}, C_{2} and C_{3} also have a slight effect. R_{1} serves as an excitation control for the final amplifier, by controlling the streen voltage of the driver stage. If a triode driver is used, its plate voltage can be varied for excitation control.
The inductor l_{1} will not be too critical, and the secondary of a spare filament transformer can be used if a low-inductance choke is not available. The values of C_{4} and R_{3} will depend upon the inductance and the voltage and current levels, but good starling values are $0.1 \mu \mathrm{f}$, and 50 ohms.

To minimize the possibility of electrical shock, it is recommended that a keying reliay be used in this circuit, since both sides of the circuit are "hot." As in any transmitter. the signal will be chirp-free only if keying the driver stage has no effect on the oscillator frequency.
(The Sigma 41 FZ-35-ACS-SIL 6 -volt a.c. relay is wellsuited for keying applications.)
assurance that the transmitter can be keyed without chirp in an earlier stage until the same test is passed by the calier stage.

An amplifier can be keyed by any method that reduces the output to zero. Neutralized stages can be keved in the cathode circuit, although where powers over 50 or 75 watts are involved it is often desirable to use a keying relay or vacuum
tube keyer, to minimize the chanees for ele etrical shock. Tule keying drops the supply voltages and adds cathode bias, points to be considered where maximum output is required. Blockedgrid keving is applicable to many neutralized stiuges, but it presents problems in high-powered amplifiers and requires a source of negative voltage. Output stages that aren't neutralized, surh as many of the tetrodes and pentodes in widespread use, will usually leak a little and show some lack wate regardless of how they are keyed. In a case like this it may be necessary to key two stages to eliminate backwave. They ean be keyed in the e:athodes, with bloeked-grid keying, or in the sereens. When screen keying is used, it is not always sufficient to reduce the sereen voltage to zero; it may have to be pulled to some negative value to bring the key-up plate current to zero, unless fixed negative control-grid bias is used. It should be apparent that where two stages are keyed. keying the earlier stage must have no effect on the oscillator frequency if completely chirp-free output is the goal.
Shaping of the keying is oltained in several ways. Blocked-grid and vatum-tube keyers get suitable shaping with proper choice of resistor and capacitor values, while eathode and screengrid keying ean be shaped by using inductors and capacitors. sample circuits are shown in Pigs. 8-3, 8-4 :und 8-5, together with instructions for their adjustment. There is no "best" adjustment, since this is a matter of persomal preference and what you want your signal to sound like. Most operators seem to like the make to be heavier than the break. All of the circuits shown here are capable of a wide range of adjustment.

If the negative supply in a grid-block keyed stage fails, the tube will draw excessive key-up current. To protect against tube damage in this eventuality, an overload relay can be used or, more simply, a fast-acting fuse can be included in the cathode circuit.

Vacuum-Tube Keyers

The practical tube-keyer circuit of Fig. 8-6 can be used for keying any stage of any transmitter. Depending upon the power level of the keyed stage, more or fewer Type 2A:3 tubes can be connected in parallel to handle the necessary current. The voltage drop through a single 2A.3
varies from about 70 volts at 50 ma . to 40 volts at 20 ma . Tubes added in parallel will reduce the drop in proportion to the number of tubes used.

When connecting the output terminals of the keyer to the cirenit to be keyed, the grounded output terminal of the keyer must be connected

Fig. 8-6-Wiring diagram of a practical vaccum-lube keyer.

8 -KEYING AND BREAK-IN

to the transmitter ground. Thus the keyer can be used only in negative-lead or eathode keying. When used in cathode keying, it will introduee rathode bias to the stage and reduce the output. This can be compensated for by a reduction in the grid-leak bias of the stage.

The negative-voltage supply can be eliminated if a negative voltage is available from some other
source, such as a bias supply. A simplified version of this circuit could eliminate the switches and assoriated resistors and capacitors, since they are incorporated only to allow the operator to select the combination he prefers. But once the values have been selected, they can be soldered permanently in place. The rule for adjusting the keying characteristic is the same as for blocked-grid keying.

Oscillator Keying

One may wonder why oscillator keying hasn't been mentioned earlier, since it is widely used. A sad fact of life is that excellent oscillator keying is infinitely more difficult to obtain than is excellent amplifier keying. If the oljective is no detectable chirp, it is probably impossible to obtain with oscillator keying, particularly on the higher frequencies. The reasons are simple. Any keyed-oscillator transmitter requires shaping at the oscillator, which involves changing the operating conditions of the oscillator over a significant period of time. The output of the oscillator doesn't rise to full value immediately. so the drive on the following stage is changing, which in turn may reflect a variable load on the oscillator. Vo oscillator has been devised that has no change in frequency over its entire operating voltage range and with a changing load. Furthermore, the shaping of the keyed-oscillator envelope usually has to be exaggerated, because the following stages will tend to sharpen up the keying and introduce clicks unless they are operated as linear amplifiers.

Acceptable oseilator keying can be obtained on the lower-frequency bands, and the methods used to key amplifiers can be used, but chirpfree clickless oscillator keying is probably not possible at the higher frequencies. Often some additional shaping of the signal will be introduced on "make" through the use of a clamp, tube in the output amplifier stage, because the time constant of the sereen bypass capacitor plus screen dropping resistor increases the sereenvoltage rise time, but it is of no help on the "break" portion of the signal.

Break-In Keying

The usual argument for oscillator keying is that it permits break-in operation, which is true. If break-in operation is not contemplated and as near perfect keying as possible is the objective, then keying an amplifier or two by the methods outlined earlier is the solution. For operating convenience, an automatic transmitter "turneronner" (see Camplell, QST', Aug., 1956), which will turn on the power supplies and switch antemna relays and receiver muting devices, can be used. The station switches over to the complete "transmit" condition where the first dot is sent, and it holds in for a length of time dependent upon the setting of the delay. It is equivalent to voice-operated phone of the type commonly used by s.s.b. stations. It does not permit hearing the other station whenever the key is up, as does full break-in.

Full break-in with excellent keying is not easy to come by, but it is easier than many amateurs think. Many use oscillator keying and put up with a second-best signal.

Differential Keying

The principal behind "differential" keying is to turn the oscillator on fast before a keyed amplifier stage can pass any signal and turn off the oscillator fast after the keyed amplifier stage has cut off. A number of circuits have been devised for accomplishing the action. One of the simplest can he applied to any grid-block keyed amplifier or tulb-keyed stage by the addition of a triode and a VIR tube, as in Fig. 8-7. Using this keying

Fig. 8-7-When satisfactory blocked-grid or tube keying of an amplifier stage has been oblained, this VR-tube break-in circuit can be applied to the transmitter to furnish differential keying. The constants shown here are suitable for blocked-grid keying of a 6146 amplifier; with a tube keyer the 6J5 and VR tube circuitry would be the same.

With the key up, sufficient current flows through R_{3} to give a voltage that will cut off the oscillator fube. When the key is closed, the cathode voltage of the GJ5 becomes close to ground potential, extinguishing the VR fube and permitting the ascillator to operate. Too much shunt capacity on the leads to the VR tube, and too large a value of grid capacitor in the oscillator, may slow down this action, and best performance will be obtained when the oscillator (turned on and off this way) sounds "clicky." The output envelope shoping is obtained in the amplifier, and it can be made softer by increosing the volue of C_{1}. If the keyed omplifier is a tetrode or pentode, the screen voltoge should be oblained from o fixed volioge source or stiff voltage divider, not from the plate supply through a dropping resistor.
system for break-in, the keying will be chirp-free if it is chirp-free with the V'I tube removed from its socket, to permit the oscillator to run all of the time. If the transmitter can't pass this test, it indicates that more isolation is required between keyed stage and oscillator.

Another VR-tube differential keying circuit,

Testing Your Keying

useful when the screen-grid circuit of an amplifier is keyed, is shown in Fig. 8-8. The normal screen keying circuit is made up of the shaping capacitor C_{1}, the keying relay (to remove dangerous voltages from the key), and the resistors R_{1} and R_{2}. The + supply should be 50 to 100 volts higher than the normal screen voltage, and the - voltage should be sufficient to ignite the VR tube, V_{2}, through the drop in R_{2} and R_{3}. Current through R_{2} will be determined by voltage required to cut off oscillator; if 10 volts will do it the current will be 1 ma . For a desirable keying characteristic, R_{2} will usually have a higher value than R_{1}. Increasing the value of C_{1} will soften both "make" and "break."

The tube used at V_{2} will depend upon the available negative supply voltage. If it is between 120 and 150 , a $0.33 /$ VR 75 is recommended. Above this a $0 \mathrm{C}: 3 / \mathrm{VR} 105$ can be used. The diode, V_{1}, can be any diode operated within ratings. A

Fig. 8.8-VR-tube differential keying in an amplifier screen circuit.

With key up and current flowing through V_{1} and V_{2}, the oscillator is cut off by the drop through R_{3}. The keyed stage draws no current because its screen grid is negative. C_{1} is charged negatively to the value of the-source. When the relay is energized, C_{1} charges through R_{1} to a + value. Before reaching zero (on its way +) there is insufficient valtage to maintain ionization in V_{2}, and the current is broken in R_{3}, turning on the oscillotor stoge. As the screen voltage goes positive, the VR fube, V_{2}, connot reignite because the diode, V_{1}, will not conduct in that direction. The oscillator and keyed stage remain on as long as the relay is closed. When the relay opens, the voltage across C_{1} must be sufficiently negative for V_{2} to ionize before any bleeder current will pass through R3. By this time the screen of the keyed stage is so far negative that the tube has stopped conducting. (See Fig. 8-5 for suitable reloy.)

6AL5 will suffice with sereen voltages under 2.50 and bleeder currents under 5 ma . For maximum life a separate heater transformer should be used for the diode, with the cathode connected to one side of the heater winding.

Clicks in Later Stages

It wats mentioned earlier that key clicks can he generated in amplifier stages following the keved stage or stages. This can be a puzaling prohlem to an operator who has spent considerable time adjusting the keying in his exciter unit for clickless keying, only to find that the clicks are bad when the amplifier unit is added. There are two possible causes for the clicks: low-frequency parasitic oscillations and amplifier "elipping."
Under some conditions an amplifier will be momentarily triggered into low-frequency parasitic oscillations, and clicks will he generated when the amplifier is driven by a keved exciter. If these clicks are the result of low-frequency parrasitic oscillations, they will be found in "groups" of elicks ocourring at $5(0)$ to $150-k c$. intervals either side of the transmitter frequency. Of course low-frequency parasitic oseilations can be generated in a keyed stage, and the operator should listen carefully to make sure that the output of the exciter is clean before he hamess a later amplifier. Low-frequency parasitic oseillations are usually caused by poor choice in r.f. choke values, and the use of more inductance in the plate choke than in the grid choke for the same stage is recommended.

When the clicks introduced by the addition of an amplifier stage are found only near the transmitter frequency, amplifier "elipping" is indicated. It is quite common when fised hias is used on the amplifier and the bias is well past the "eut-off" value. The effect can usually be minimized by using a combination of fixed and gridloak bias for the amplifier stage. The fixed bias should be sufficient to hold the key-up plate current only to a low level and not to zero.

A linear amplifier (Class $\mathrm{Al}_{1}, \mathrm{Al}_{2}$ or B) will amplify the excitation without adding any clicks, and if clicks show up a low-frequency parasitic oscillation is probably the reason.

Testing Your Keying

The choice of a keying circuit is not as important as its testing. Any of the circuits shown in this chapter can be made to give satisfartory keying, but must be adjusted properly.

The easiest way to find out what your keyed signal sounds like on the air is to trade stations with a near-by ham friend some evening for a short (2SO). If he is a half mile or so away, that's fine, but any distance where the signals are still S 9 will be satisfactory.

After you have found out how to work his rig, make contact and then have him send slow dashes, with dash spacing. (The letter "T" at about 5 w.p.m.) With minimum selectivity, cut the r.f. gain back just enough to avoid receiver
overloading (the condition where you get crisp signals instead of mushy ones) and tune slowly from out of beat-note range on one side of the signal through to zero and out the other side. Knowing the tempo of the dashes, you can readily identify any clicks in the vicinity as yours or someone else's. A good signal will have a thump on "make" that is perceptible only where you can also hear the beat note, and the rlick on "break" should be practically negligible at any point. If your signal is like that, it will sound good, provided there are no chirps. Then have him run off a string of fast dots with the bug - if they are easy to copy, your signal has no "tails" worth worrying about and is a

8-KEYING AND BREAK-IN

gond one for any speed up to the limit of mantal keying. Make one last check with the selectivity in, to sere that the elieks off the signal are negligihle even at high signal level.

If you don't have any convenient friends with whom to trade stations, you can still cherk your keying, although you have to be a little noore careful. The first step is to get rid of the r.f. elick at the kere as desoribed corlior.
so far you hatven't done a thing for your signal on the air and you still don't kiow what it sounds like, but you may have cleaned ap some dieks in the broadrent set. Now disemmedt the antonna from your rereiver and short tho antema terminals with a short piece of wire Tune in your own signal and reduce the rit. gain to the point where your receiver docsn't overload. Detune any antenna trimmer the recoiver may have. If you can't avoid overload within the ref, gatin-control range, pull out the r r. amplifier tube and try again. If you still can't avoid overload, listen to the second harmonice as a last resort. An overloaded receiver ean gemeratur clicks.

Deseribing the volume level at which you should set your receiver for these "shark" tests is a little diflicult. The r.f. filter should be effortive with the receiver rumning wide open and with an antema comneded. When you turn on the tramsmitter and take the other
steps mentioned to reduce the signal in the receiver, run the audio up and the ref. down to the point where you can just hear a little "rushing" sound with the b.f.o. off and the receiver tuned to the signal. This is with the selectivity in. It this level, a proporly adjustenl keying circuit will show no clicks off the rustingsolud range. With the b.f.o. on and the same gain setting, there should be no clicks outside the beatnote range. When oberving relieks, make the slow-dash and fast-dot tosts outlined previonsly.

Sow you know how your signal sounds on the air, with one possible exerption. If keying your trinsmitter makes the lights bink, voil maty not be ahle to tell too aceurately about the chirp on your signal. However, if you aro satisfied with the absence of chirp when tuning either side of zero beat, it is safe to assume that your receiver isn't dhirping with the light flicker and that the ohservel signal is a true representation. No ehirp ather side of zero beat is fine. Don't try to make these tests without first getting rid of the r.f. click at the kev, because chicks can mask a chirp.

The least satisfuctory way to check vour keying is to ask another ham on the air how vour keying soumds. It is the loast satisfactory beranst most hams are reluetant to be highly erition of anothor amateur's signal. In a grat many rases they don't arthally know what to look for or how to deseribe any aberrations they may ohserve.

Monitoring of Keying

In genleral, there are two common methods for monitoring ones"s fist" and signal. The first, and perhaps less common type, involves the use of an atudio oseillator that is keyed simultaneousty with the trumsmitter.

The seeond method is one that permits receiving the signal through one's receiver, and this generally recquires that the receiver be tunod to
the transmitter (not always conveniont unless working on the same frequency) and that some method be provided for preventing overloading of the receiver, so that a good replica of the transmitted signal will be received. Fxeept where quite low power is used, this usually involves a relay for simultaneously shorting the receiver input terminals and reducing the receiver gain.

Break-In Operation

Break-in operation is most easily obtained with a separate receiving antemba, since nome of the availahle antoma changeover relays is fast rnough to follow keying. The receiving antemata should bo installed as far as possible from the transmitting antennat. It should be mounted at right angles to the transmitting antenna and fod with low pick-up) lead-in material such as eoaxial cable or 300 -ohm 'lwin-Lead, to minimize pick-up.

If a low-powered tramsmitter is used, it is: often quite satisfintory to use no special equipment for break-in operation other than the separate receiving antenna, since the transmitter will not block the receiver too seriously. Even if the transmitter keys without elicks, some elicks will be heard when the receiver is tuned to the transmitter frequency because of overload in the receiver. An output limiter, as described in Chapter Five, will wash out these
clicks and permit good break-in operation even on vour transmitter frequency.

When powers ahove 25 or 50 watts are used, speecial treatment is required for quiet break-in on the transmitter frequeney. A means should be provided for shorting the input of the roceiver when the code characters are sent, and at means for reclucing the gain of the receiver at the same time is often necessary. The system shown in liig. 8-9 permits quiet break-in opration for higher-powered stations. It requires a simple operation on the recaver but otherwise is periectly straightforward. l_{1} is the regular receiver r.f. and i.f. gain control. The ground lead is lifted on this control and run to a theostat, R_{2}, that goes to ground. A wire from the junction runs outside the receiver to the keving relay, K_{1}. When the key is up, the ground side of R_{1} is connected to ground through the relay arm, and the receiver is in its normal operating

Receiver Muting

condition. When the key is closed, the reky closes, which breaks the ground connection from R_{1} and applics additional hias to the tubes in the receiver. This hias is controlled by R_{2}. When the relay closes, it also closes the circuit to the transinitter oscillator. A filter at the key suppresses the clicks eaused by the relay current.

The keying relay should be mounted on the receiver as close to the antenna terminals as possible, and the leads shown heatvy in the diagram should be kept short, since long leads will allow too much signal to get through into the receiver. Use a good high-speed keving rolay.

A few of the recent communications receivers bring the return lead from the r.f. gain control to a normally shorted terminal at the rear of the receiver. The preceding break-in system can be readily applied to a receiver of this type, and it will repay the receiver owner to study the instruction book and determine if his receiver already has this connection made in it. (ther receivers have provision for reducing the gain or for blanking the receiver; one popular model hats provision for bringing in negative bias from a trinsmitter grid leak to cut off an audio stage during transmit periods.

Fig. 8-9-Wiring diogrom for
 smooth breok-in operation. The leod shown os o heavy line ond the lead from bottom relay contact to ANT post on receiver should be kept as short as possible for minimum pickup of the transmitter signol.
R_{1}-Receiver monual gain control. $\mathrm{R}_{2}-5000$ - or 10,000 -ohm wire-wound potentiometer.
$K_{t}-S . p . d . t$. keying relay (Sigma 41 FZ-35-ACS-SIL or equiv.) Although battery and d.c. reloy are shown, any suitable a.c. or d.c. relay and power source can be used.

Receiver Muting and Grid-Block Keying

The muting system shown in Fig, 8-10 can be used with any grid-block or tube-keyed transmitter, and it is particularly applicable to the VR-tube differential keying eircuit of Fig. 8-7. Referring to Fig. 8-10, R_{1}, R_{2} and C_{1} have the same values and functions that the similarly designated components in Figs. 8-4 and 8-7 have. When the key is open, a smatl current will flow through R_{3}, the 0A2 and R_{2}, and the voltage drop across R_{3} will be sufficient to cut off the (;C4. With the 6 C 4 cut off, there is no current through R_{4} and consequently no voltage appearing across R_{4}. The voltage of the receiver a.v.c. bus is zero with respect to ground.

When the key is elosed, there is insuffieient voltage across the 0A2 to maintain conduction, and consequently there is no current flow through R_{3}. With zero voltage between grid and eathode, the (iC'4 passes eurrent. The drop across R_{4}, and thus the negative voltage applied to the a.v.e. line in the receiver, is determined by the value of R_{4}. Thus the key-down gain of the receiver can be adjusted to permit listening to one's own signal, by increasing the value of R_{4} until the receiver output level is a comfortable one. To utilize the same antenna for transmitting and receiving, and thus benefit during receiving from any directional properties of the antema, an electronic transmit-reeeive switch ean be used (see hater in this chapter).

Fig. 8.10-Circuit diagram of a receiver muter for use with grid-block or fube keying.
C_{1}-Shaping capacitor, see text.
R_{1}, R_{2}-Shaping resistors, see text.
$\mathrm{R}_{3}-0.1$ megohm.
$\mathrm{R}_{4}-15,000$-ohm 2-watt potentiometer
$\mathrm{RFC}_{1}-1 \mathrm{mh}$. or less.
The receiver a.v.e. bus can be located by reference to the receiver instruction mamual, and connection be made to it through a length of shielded wire. The a.v.c. switch in the receiver must be turned to on for the muter to be effective.

If desired, the muting circuit can be built into the transmitter, or it can le mounted on a shelf or small chassis behind the receiver. The two negative voltages can be furnished by one supply and a reasonably heavy voltage divider; the main requirement of the supply is that the nominal

8-KEYING AND BREAK-IN

-125 volts remain below the normal voltage drop of the 0A2 (150 volts). Installation of the muting circuits should have little or no effect on the
keying characteristic of the transmitter; if it does the characteristic can be restored by proper values for R_{1}, R_{2} and C_{1}.

The "Matchtone"

The "Matchtone" is a c.w. tone-generating monitor using a transistor audio oscillator. A diode rectifier in the antenna circuit or the d.c. from a "Monimatch" (see Chap. 13) serves as the keyed source of d.c. power. In addition to the usual function it can be used by the sightless amateur as an audible transmitter-antenna tuning indicator

While direct monitoring of c.w. transmissions via the receiver is a preferred method because it can reveal much about the keying characteristios, transmissions offset from the receiving frequency call for a sejparate monitor. The self-powered transistorized monitor fills the bill nicely. The use of the r.f. bridge, already connected in the r.f. transmission line, as a source of power for the monitor is a logical choice.

The circuit of the Matchtone and the connections to the Monimatch and the receiver are shown in Fig. 8-11. A small 2 - or 3-to-1 push-pull grid-to-phate audio interstage transformer is used for feedback as well as for coupling to the receiver. If a transformer having a p.p. grid winding is not available from the junk box, the audio coupling to the receiver can be obtained by comerting C_{2} to the ungrounded end of R_{1}. While use of a low value of capacitance for C_{2} is necessary to avoid exeressive shunting of the high-impedance receiver audio cirenit, the value shown will provide suffirient coupling for a good audio tone level from the monitor. A third possibility for the audio output comnection from the monitor is to substitute the headphones for R_{1}, together with a single pole double-throw switch or relay to switch the phones between the monitor and the receiver. The on-off switch, S_{1}, can be made a part of R_{2} by use of a volume control switeh attachment.

The value shown for C_{1} gives an audio pitch in the $500-1000$ cycle range, depending somewhat on the particular transformer, the setting of R_{2} and the transmitter output power. Other values of C_{1} can be used to adjust the pitch to the operator's individual preference. R_{2} may be adjusted to compensate for the changes in the d.e. current from the rectifier or Monimateh caused by a change in transmitter frequency band or power. Using either a 2 N 109 or a CK7 22 transistor, the circuit should oscillate with usable audio level with as little as 0.1 ma . d.c. flowing to ground through the monitor. Other low-cost transistors such as the 2 N 107 and the 2N170 should work equally well.

Fig. 8-11-Circuit of the Matchtone. Section enclosed in dashed line is the Monimatch and its indicating circuit; a simple r.f. rectifier will also serve as the d.c. source. Braid of shielded lead to audio grid should connect to receiver chassis.
C_{1}-Paper.
C_{2}-Mica or ceramic.
$\mathrm{Q}_{1}-2 \mathrm{~N} 109$, CK7 22 or similar.
$R_{1}-1000$ ohms, $1 / 2$ watt.
R_{2} - 0.25 -megohm volume control.
S_{t}-S.p.s.t. toggle.
T_{1}-Push-pull interstage audio transformer, 2:1 or 3:1 total grid to plate.

Because the pitch of the audio tone is to some degree dependent upon the d.c. voltage obtained from the source, the pitch gives a reasonably accurate indication of correct final amplifier plate circuit tuning (maximum power output) and, if an antenna tuner is used, will also indicate resonance of the tuner to the transmitter output frequency. This characteristic of the Matchtone should be of considerable aid to sightless amateurs. (From QST', January, 1958.)

Speed Keys

The average operator finds that a speed of 20 to 25 words per minute is the limit of his ability with a straight hand key. However, he
can increase his speed to 30 to $40 \mathrm{w} . \mathrm{p} . \mathrm{m}$. by the use of a "speed key." The mechanical speed keys, availahle in most radio stores, give additional

Speed Keys

speed by making strings of dots when the key lever is pushed to the right: dashes are made manually by closing the key to the left. After practicing with the speed key, the operator oltains the correct "feel" for the key, which allows him to release the dot lever at exactly the right time to make the required number of dots. A speed key can deliver practically perfect code characters when used by an operator who knows what good code sounds like: however, one will not compensate for :n operator's poor code ability.

An electronic speed key will not compensate for an operator's poor sending ability, either. However, the electronic speed key has the feature that it makes strings of both dots and of dashes, by proper manipulation of the key lever, and in current designs the dashes are self-completing. This means that it is impossible to send anything but the correct length of dash when the key lever is closed on the dash side. It is, of coures, possible to send an incorrect number of dashes through poor operator timing.

Keying Speeds

In radio telegraphy the basic code element is the baud. A dot is one baud, a dot and space is two bauds, and a dash is three bauds. The space between letters is three bauds, and the space between words is seven bauds.
Assuming that a speed key is adjusted to give the proper dot, space and dash values mentioned
aloove, the code speed can be found from

$$
\text { Speed }(\mathrm{w} . \mathrm{p} . \mathrm{m} .)=\frac{b a u d s / \min .}{50}
$$

E.g.: A properly -adjusted electronic key gives a string of dots that counts to 10 dots and 10 spaces per second (10 $+10=20$ bauds $/ \mathrm{sec}$. $)$. speed $=(60 \times 20) \div 50=24$ w, p,in.

An Electronic Speed Key

The unit shown in Figs. 8-12 and 8-14 represents one of the simpler designs of an electronic key. The total cost of the key, in dollars and construction time, is quite low. The keying lever is made from parts taken from two straight telegraph keys: these are available at less than a dollar each in the war-surphus version (J-38). A more elegant keying lever can be built from a (more-expensive) war-surplus mechanical speed key.

Referring to Fig. 8-13, the timing of the key is provided by the oscillator V_{IA}. When the key is closed, a sawtooth wave is generated hy the fast charge and slow discharge of the $.25-\mu \mathrm{f}$, caparitor in the cathode circuit. The rate of discharge is set by the total resistance across the capacitor, and the voltage to which the capacitor is charged is determined by the setting of K_{1}.

Fig. 8-12-This electranic speed key has a range of appraximately 8 to 35 w.p.m., set by the speed cantrol at tap center. It has relay autput and can be used with any transmitter that can be keyed by a hand key. The key (left) is made fram twa telegraph keys and a pair of $1 / 8$ inch thick sheet plastic paddles.

The sawtooth wave, applied to the grid of $V_{2.1}$, cannot drive the grid very positive because the 3.3-megohm resistor limits the current: the effect is to "elip the tops" of the sawtooth cycles. The voltage at which $V_{2 A}$ passes enough eurrent to close the relay is set by the position of the arm of R_{3}.

Except for the tubes, the keyer circuit is housed in a grey Hammertone $6 \times 5 \times+$-inch Minibox (Bual CU-2107), as shown in Fig. 8-14. The tube sockets are mounted so that the two tubes project outside at the rear of the unit. The power transformer is mounted on the rear wall, and the toggle switch and the three controls are mounted on the "front" panel. The power line to P_{2}, the two-wire cable to P_{1}, and the three-wire cable to the key leave the cabinet at the rear through individual rubber grommets. Use multiple tie points generously for the support of the fixed resistors and capacitors.

To make the key, first remove the keys from their bases and strip the bases of their remaining hardware. The four support legs for the key are formed from the original tie strips and shorting switeh arms. At the front they bolt to the key frame at the countersunk holes; at the rear they make up to the linding posts. The three-wire rable connects to two binding posts and a supporting leg. A heavy base of $1 / 2$-inch thick stee?! adds weight to the structure, and rubber or cork feet glued to the steel prevent its soratching the table.

Adjustment of Electronic Speed Key

In operation, the three controls will serve as their labels indicate. There is a unique (but not highly critical) combination of settings of the weight and ratio controls that will give antomatic dots and dashes at the same speed; this setting can only be determined by ear and will be dependent on how well the operator can recognize

Fig. 8-13-Circuit diagram of the electronic speed key. Unless otherwise specified, resistors are $1 / 2$ watt. Polarity-marked capacitors are electrolytic, others are tubular paper.
K_{1}-5000-ohm 3-ma. relay (Sigma 41 F . $5000 \mathrm{~S}-\mathrm{SIL})$.
P_{I}-Phone plug.
$P_{2}-A . c$. line plug.
$\mathbf{R}_{1}, \mathbf{R}_{3}$-100,000-ohm potentiometer, linear taper.
R_{2}-1-megohm potentiometer, linear toper.
$S_{1}-S . p . s . t . t o g g l e$.
T_{1}-5-watt 25,000-to-4-ohm output transformer, secondary not used (Stancor A-3857).
$\mathrm{T}_{3}-125-\mathrm{v} . \quad 15-\mathrm{ma}$. and $6.3-\mathrm{v}$. 0.6 -amp. transformer (Stancor PS-8415 or similar).
good code. If the operator taps his foot to count groups of four dots or two dashes, the dots and dashes will have the same speod when the beat is the same. It is easy to determine whether dots or dashes are too heavy or too light. Comnert an ohmmeter to $/{ }^{\prime}$: holding the dot lever closed should make the ohmmeter needte hover aromed half scale, and holding the dash lever closed should make the ohmmeter hover around 75 per cent of the short-cirenit reading. Lawking an ohmmeter, the transmitter phate milliammeter can be used; dots and dashes should give 50 per rent and $\overline{\text { on }}$ per cent of the key-down value when the kever controls have been properly ablusted.

QS'T articles describing other types of electronic speed keys include:
Barthet, "Compact Antomatic hey Design," Jer., 1951. Ohd, "1ransistorized Electronic Key and Monitor," May, 1!3: Kinda, "The 'Lltimatic" -Transistorized," Sept., Oet., 1960.

Fig. 8-14-Components for the electronic speed key are mounted on the three walis of a Minibox section, with the tubes projecting out the back. Keep wires away from screw holes, to prevent short circuits when the box is assembled.

Electronic Transmit-Receive Switches

No antema relay is fist enough to switch an antenna from transmittor to recoiver and back at uormal keying speeds. As a conseruence. when it is desired to heo the same antema for transmitting and recoiving (ar "must" when directional antennas are used) and to operate c.w. break-in or voice-rontrolled sideband, an electronic switch is used in the antema, The word "switeh" is a misnomer in this case: the transmitter is comnected to the antema at all times and the t.r. "switch" is a deviow for proventing bum-out of the receiver by the transmitter.

One of the simplest approathes is the circuit shown in Fig. $8-15$. The 6 C t cathode follower couples the incoming signal on the line to the receiver input with only a slight reduction in
gain. When the transmitter is "on," the grid of the 60% is driven positive and the rectified current hiases the ($\mathrm{C}+\mathrm{t}$ so that it com pass vory little power on to the recoiver. The faetors that limit the r.f. voltage the cirenit can handle are the voltage break-down rating of the $4 \bar{i}-\mu \mu \mathrm{l}$, cabacitar and the voltage that maty be safoly applied between the grid and cathode of the tube.

To avoid stray pick-up on the lead betwern the cathole and the antoma terminal of the receiver, this lead should be kept as short as possible. The entire unit should be shielded and monnted on the recoiver near the antenna terminals. In wiring the tube socket, input and output cireuit components and wiring should be

T.R. Switches

Fig. 8-15-Schematic diagram of cathode-follower t.r. switch. Resistors are $1 / 2$-watt. The unit should be assembled in a small chassis or shield can and mounted on or very close to the receiver antenna terminals. The transmitter transmission line can be connected ot the coaxial jack with an M-358 Tee adapter.
The heater and plate power can be "borrowed" from the receiver in most cases.
separated to reduce feed-through by stray coupling.

The switch should be commeded to the transmitter by as short a length of coaxial cable as possible, particularly if the higher-frequency

bands (21 and 28 Me .) are commonly used. If this rule is not observed, there may be conditions where a loss of recoived signal will be noticed, caused by resonant conditions in the cable and the transmitter output circuit.

Self-Contained All-Band Electronic T.R. Switch

The t.r. switch shown in Fig. 8-16 differs in several ways from the preceding example. It contains its own power supply and consequently can

Fig. 8-16. The electronic t.r. switch is built in a 5×9 $\times 21 / 2$-inch chassis; the bottom plate has been removed to show the placement of parts. Although two receiver outlets are shown on the near face la phono jack and a coaxial receptaclel, only one is required, depending upon one's choice of cable termination.
be used with any transmitter/receiver combination without "horrowing" power. It will add gain and front-end selectivity to the receiver. A commereial switch-coil-capacitor combination is shown in the unit, although the constructor could build his own if desired.

Reforring to the cirenit diagram in Fig. 8-1 $\overline{7}$, one triode of a $12 . A \mathrm{C}^{\mathrm{T}}$ - is used as an amplifior stage. followed by the other triode as a cathodefollower stage to couple betweon the mund circuit and the reeoiver. As in the simpler switch, the triodes are biased during transmission periods by rectified grid current, and insufficient power is passed along to the receiver to injure its input circuit.

The t.r. switch is intended to mount behind the transmitter near its output terminal, so that the connerting cable is short. The lead from the t.r. switeh to the receiver can be any reasomable length. Components are mounted on the sides and walls of the chassis, although a small burket will be needed to support the tube socket and another is required to hold the far cond of the coil L_{1}. The single coil bracket, aided by panel bushings for the switch and capacitor ' $' 1$ shafts, is sufficient support for the coil-and-capacitor assembly. In wiring the switch, a length of R(i-58/U should be used between the cathode-follower load (resistor and r.f. choke) and the output jack J_{2}, to minimize "feedthrough" around the tube. A pair of $0.01-\mu$. disk ceramic caparitors across the a.e. line where it enters the chassis helps to hold down the r.f. that might otherwise ride in on the a.ce lince.

In operation, it is only neensary to switch the unit to the band in use and peak capacitor C_{1} for maximum signal or background noise. A significant increase in signal or background noise should be observed on any band within the range of the coil/capacitor combination.

TVI and T.R. Switches

The preceding t.r. switches generate harmonics when their grid circuits are driven positive, and

8-KEYING AND BREAK-IN

Fig. 8.17-Circuit diagram of the electronic t.r. switch. Unless otherwise specified, resistances are in ohms, resistors are $1 / 2$ watt, capacitances are in $\mu \mathrm{f}$.
$\mathrm{C}_{1}-140 \cdot \mu \mu \mathrm{f}$. variable (part of Harrington GP-20 funer) CR1—200-ma. 360-p.i.v. silicon rectifier \{Sarkes Tarzian K-200)
J_{1}-Coaxial receptacle and tee fitting (SO-239 and M-358).
J_{3}-Cooxial receptacle or phono jack.
these harmonics can cause TVI if steps are not taken to prevent it. Either switch should be well-

Li-52 furns No. 24 on $3 / 4$-inch diam. form, 28 t.p.i. Tapped af $51 / 2,81 / 2,13$ and 24 turns from grounded end. (Part of Harringion GP-20 funer)
T_{1}-125-v. 15-ma., 6-v. 0.6-amp. transformer (Stancor PS-8415) (GP-20 tuner available from Harrington Electronics, Box 189, Topsfield, Mass.)
shielded and used in the antenna transmission line between transmitter and low-pass filter.

Speech Amplifiers and Modulators

The audio amplifiers used in radiotelephone transmitters operate on the prineiples outlined carlier in this book in the chapter on vacuum tubes. The design requirements are determined principally by the type of moluation system to be used and by the trpe of mirrophone to be employed. It is necessary to have a clear understanding of modulation principles before the problem of laying out a speech system can be approached successiully. Those irinciples are discussed under appropriate chapter headings.

The present chapter deals with the design of audio amplifier systems for communication purposes. In voice eommunication the primary objective is to obtain the most effertive transmission; i.e., to make the message be understood at the receiving point in spite of adverse conditions created by noise and interference. The mothods used to accomplish this do not necessarily coincide with the methords used for
other purposes, such as the reproduction of musie or other program material. In other words, "naturalness" in reproduction is distinetly seeondary to intelligibility.

The fact that satisfactory intelligibility can be maintained in a relatively narrow band of frequencies is particularly fortunate, berause the width of the chamel oceupied by a phone transmitter is directly proportional to the width of the audio-frequeney band. If the channel width is reluced, more stations can orcupy a given band of frequencies without mutual interference.

In speech transmission, amplitude distortion of the voice wave has very little effect on intelligibility. The importanee of sueh distortion in communication lies almost wholly in the fact that many of the audio-frequency harmonies caused by it lie outside the chanmel meded for intelligible speech, and thus will create unneessary interference to other stations.

Speech Equipment

In designing speech equipment it is necessary to know (1) the amount of audio power the modulation system must furnish and (2) the output voltage developed by the mierophone when it is spoken into from normal distance (a few inches) with ordinary loudness. It then becomes possible to choose the number and type of amplifier stages needed to generate the reguired audio power withont overtoading or undue distortion anywhere in the system.

- MICROPHONES

The level of a microphone is its electrical output for a given sound intensity. Level varios greatly with microphones of dificrent types, and depends on the distance of the speaker's lips from the microphone. Only approximate values based on averages of "normal" speaking voices can be given. The values given later are hased on elose talking; that is, with the microphone about an inch from the speaker:s lips.

The frequency response or fidelity of a microphone is its relative athility to eonvert sounds of different frequencies into altermating current. For understandable speech transmission only a limited frequency range is necessary, and intelligible sperch can be obtained if the output of the mierophone does not vary more than a few decibels at any freguency within a range of about 200 to 2500 cyeles. When the variation expressed in terms of decibels is small between two fre-
quency limits, the microphone is said to be flat betwern those limits.

Carbon Microphones

The carbon microphone consists of a metal hiaphragm placed against an insulating cup containing loosely-packed carbon granules (microphone button). When used with a varuum-tube amplifier, the mierophone is connected in the cathode circuit of a low- μ triode, as shown in Fig. 9-1. 1 .

Sound waves striking the diaphragm cause it to vibrate in accordance with the sound, and the pressure on the granules alternately inereases and decreases, causing a corresponding decrease and increase in the electrical resistance of the mierophone. The instantaneous value of this resistance determines the instantaneous value of plate eurrent through the tube, and as a consecuent the voltage drop aeross the plate load resistor increases and decreases with the inereases and deereases in granule pressure.

The earbon mierophone finds its major amateur applieation in mobsile and portable work; a good microphone in the cireuit of Fig. 9-1. A will deliver 25 to 35 volts peak output.

Piezo-electric Microphones

The crystal microphone makes use of the piezoelectric properties of Rochelle salts crystals. This type of microphone requires no battery or transformer and can be connected directly to the

9－SPEECH AMPLIFIERS AND MODULATORS

TABLE 9－I－RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volts．Departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in proportion to the ratio of the new voltage to 300 volts．Voltage gain is measured at 400 cycles．Capacitor values given are based on 100 －cycle cutoff．For increased low－frequency response，all capacitors may be made larger than specilied（cut－off frequency in inverse proportion to capacitor values provided all are changed in the same proportion）．A variation of 10 per cent in the values given has negligible effect on the performance．

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen Bypass $\mu \mathrm{f}$ ．	Cathode Bypass μ f．	Blocking Capacitor $\mu \mathrm{f}$ ．	Output Volts （Peak）${ }^{1}$	Voltage Gain ${ }^{2}$
65J7，12SJ7	0.1	0.1 0.25 0.5	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{array}{r} 500 \\ 530 \\ 590 \end{array}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \end{array}$	$\begin{aligned} & 0.019 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{array}{r} 72 \\ 96 \\ 101 \\ \hline \end{array}$	$\begin{array}{r} 62 \\ 98 \\ 104 \\ \hline \end{array}$
	0.25	0.25 0.5 1.0	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 860 \\ & 910 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.4 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \end{aligned}$	$\begin{aligned} & 139 \\ & 167 \\ & 185 \end{aligned}$
	0.5	0.5 1.0 2.0	2.0 2.2 2.5	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 200 \\ & 238 \\ & 263 \end{aligned}$
$\begin{gathered} \text { 6J7,7C7, } \\ \text { 12J7.GT } \end{gathered}$	0.1	0.1 0.25 0.5	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.02 \\ & 0.06 \end{aligned}$	$\begin{array}{r} 8.5 \\ 8.3 \\ 8.0 \\ \hline \end{array}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \\ & 94 \end{aligned}$
	0.25	0.25 0.5 1.0	1.18 1.18 1.45	$\begin{aligned} & 1100 \\ & 1200 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.4 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.9 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \end{array}$	$\begin{aligned} & 161 \\ & 200 \\ & 230 \end{aligned}$
6AU6，6SH7， 12AU6，12SH7	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & \hline \end{aligned}$	0.13 0.11 0.11	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 76 \\ 103 \\ 129 \\ \hline \end{array}$	$\begin{aligned} & 109 \\ & 145 \\ & 168 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.5 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 122 \end{array}$	$\begin{aligned} & 164 \\ & 230 \\ & 262 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	1.0 1.1 1.2	$\begin{aligned} & 1800 \\ & 1900 \\ & 2100 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.6 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 0.0045 \\ & 0.0028 \\ & 0.0018 \end{aligned}$	$\begin{array}{r} 94 \\ 105 \\ 122 \end{array}$	$\begin{aligned} & 248 \\ & 318 \\ & 371 \end{aligned}$
$\begin{gathered} \text { 6AQ6, 6AQ7, } \\ \text { 6AT6, 6Q7, } \\ \text { 6SL7GT, } \\ \text { 6T8, 12AT6, } \\ \text { 12Q7.GT, } \\ \text { 12SL,.-GT } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	\square	$\begin{aligned} & 1500 \\ & 1800 \\ & 2100 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 4.4 \\ & 3.6 \\ & 3.0 \end{aligned}$	0.027 0.014 0.0065	$\begin{aligned} & 40 \\ & 54 \\ & 63 \end{aligned}$	$\begin{aligned} & 34 \\ & 38 \\ & 41 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	\square	$\begin{aligned} & 2600 \\ & 3200 \\ & 3200 \end{aligned}$		2.5 1.9 1.6	0.013 0.0065 0.0035	$\begin{aligned} & 51 \\ & 65 \\ & 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & 46 \\ & 48 \\ & \hline \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	二	$\begin{aligned} & 5200 \\ & 6300 \\ & 7200 \end{aligned}$	二	$\begin{aligned} & 1.2 \\ & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 61 \\ & 74 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \\ & 51 \end{aligned}$
$\begin{gathered} \text { 6AV6, 12AV6, } \\ 12 A X 7 \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	——	$\begin{aligned} & 1300 \\ & 1500 \\ & 1200 \end{aligned}$	Z	4.6 4.0 3.6	$\begin{aligned} & 0.027 \\ & 0.013 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 43 \\ & 57 \\ & 66 \end{aligned}$	$\begin{aligned} & 45 \\ & 52 \\ & 57 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2200 \\ & 2800 \\ & 3100 \end{aligned}$	－	3.0 2.3 2.1	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 54 \\ & 69 \\ & 79 \end{aligned}$	$\begin{aligned} & 59 \\ & 65 \\ & 68 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	－	$\begin{aligned} & 4300 \\ & 5200 \\ & 5900 \end{aligned}$	－	1.6 1.3 1.1	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 62 \\ & 72 \\ & 92 \end{aligned}$	$\begin{aligned} & 69 \\ & 73 \\ & 75 \end{aligned}$
${\underset{\text { (one triode) }}{ }{ }^{\text {6SC7, 12SC7 }} 3}^{3}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	\square	$\begin{array}{r} 750 \\ 930 \\ 1040 \end{array}$	－	三－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \\ & 54 \end{aligned}$	$\begin{aligned} & 29 \\ & 34 \\ & 36 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \end{aligned}$	三－	－	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \\ & 64 \end{aligned}$	39 42 45
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	三	$\begin{aligned} & 2330 \\ & 2980 \\ & 3280 \end{aligned}$	－	－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 72 \end{aligned}$	45 48 49
$\begin{aligned} & \text { 6CG7, 6J5, } \\ & \text { 7A4, 7N7; } \\ & \text { 6SN7.GT, } \\ & \text { 12J5-GT, } \\ & \text { (onetrigT } \\ & \text { (one triode) } \end{aligned}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	\square	$\begin{aligned} & 1300 \\ & 1580 \\ & 1800 \end{aligned}$	－	$\begin{aligned} & 3.6 \\ & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.061 \\ & 0.032 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 59 \\ & 73 \\ & 83 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \\ & 16 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.42 \end{aligned}$	\square	$\begin{aligned} & 2500 \\ & 3130 \\ & 3900 \end{aligned}$	二	1.9 1.4 1.2	$\begin{aligned} & 0.031 \\ & 0.014 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 68 \\ & 82 \\ & 96 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.42 \\ & 1.0 \end{aligned}$	二	$\begin{aligned} & 4800 \\ & 6500 \\ & 7800 \end{aligned}$	－	$\begin{aligned} & 0.95 \\ & 0.69 \\ & 0.58 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 68 \\ & 85 \\ & 96 \end{aligned}$	16 16 16
$\begin{gathered} \text { 6C4 } \\ \text { 12AÚ7 } \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	\square	$\begin{array}{r} 870 \\ 1200 \\ 1500 \end{array}$	二－	$\begin{aligned} & 4.1 \\ & 3.0 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 38 \\ & 52 \\ & 68 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.42 \end{aligned}$	二	$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	二－	$\begin{array}{r} 1.9 \\ 1.3 \\ 1.1 \\ \hline \end{array}$	$\begin{aligned} & 0.032 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 44 \\ & 68 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$
	0.22	$\begin{aligned} & 0 . \overline{2} \\ & 0.47 \\ & 1.0 \end{aligned}$	二二	$\begin{array}{r} 5300 \\ 8800 \\ 11000 \end{array}$	二二	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 57 \\ & 82 \\ & 92 \end{aligned}$	12 12 12

[^5]
Designing the Speech Amplifier

grids of a Class A or $A B_{1}$ following stage. The resistance coupling is used to keep the d.c. plate current from flowing through the transformer primary, therelsy preventing a reduction in primary inductance below its no-current value; this improves the low-frequency response. With low- μ triodes ($6 \mathrm{C} 5,6 \mathrm{~J} 5$, ete.), the gain is equal to that with resistance coupling multiplied by the sec-ondary-to-primary turns ratio of the transformer.

In B the transformer primary is in series with the plate of the tube, and thus must carry the tube plate current. When the following amplifier operates without grid current, the voltage gain of the stage is practically equal to the μ of the tube multiplied bey the transformer ratio. This circuit also is suitable for transferring power (within the capabilities of the tube) to a following Class ABz or Class I 13 stage.

Phase Inversion

Push-pull output may be secured with resistance coupling by using phase-inverter or phasesplitter cireuits as shown in Fig. 9-4.

The circuits shown in Fig. 9-4 are of the "selfbalancing' type. In A, the amplified voltage

Fig. 9-4-Self-balancing phase-inverter circuits. V_{1} and V_{2} may be a double triode such as the 12AU7 or 12AX7.
V_{3} may be any of the triodes listed in Table 9-1, or one section of a double triode.
R_{1}-Grid resistor (1 megohm or less).
R_{2}-Cathode resistor; use one-half value given in Table 9-1 for tube and operating conditions chosen.
$\mathrm{R}_{3}, \mathrm{R}_{4}$-Plate resistor; select from Table 9-1.
$\mathrm{R}_{5}, \mathrm{R}_{8}$ —Following-stage grid resistor 10.22 to 0.47 megohm).
$\mathrm{R}_{7}-0.22$ megohm.
R_{8}-Cathode resistor; sele ct from Table 9-1.
$\mathrm{R}_{9}, \mathrm{R}_{10}$-Each one-half of plate load resistor given in Table 9-I.
$\mathrm{C}_{1}-10-\mu \mathrm{f}$. ele ctrolytic.
$C_{2}, C_{3}-0.01$ - to $0.1-\mu \mathrm{f}$, paper,
from V_{1} appears across R_{5} and R_{7} in series. The drop across R_{7} is applied to the grid of V_{2}, and the amplified voltage from V_{2} appears across R_{6} and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from V_{1}, thus giving push-pull output. The part that appears across $R_{;}$from V_{2} opposes the voltage from V_{1} across R_{i}, thus reducing the signal applied to the grid of V_{2}. The negative feedback so obtained tends to regulate the voltage applied to the phaseinverter tube so that the output voltages from Iooth tubes are substantially equal. The gain is slightly less thatn twice the gain of a single-tube amplifier using the same operating conditions.

In the single-tube circuit shown in Fig. 9-413 the plate load resistor is divided into two equal parts, R_{9} and R_{10}, one being connerted to the phate in the normal way and the other between cathode and ground. Since the voltages at the plate and cathode are 180 degrees out of phase, the grids of the following tubes are fed equal a.f. voltages in push-pull. The grid return of V_{3} is made to the junction of R_{8} and R_{10} so normal hias will be applied to the grid. This circuit is highly degenerative because of the way R_{10} is connected. The voltage gain is less than 2 even whon a high- μ triode is used at V_{3}.

Gain Control

A means for varying the over-all gain of the amplifier is necessary for kerping the final output at the proper level for modulating the transmitter, The common method of gain control is to adjust the value of a.c. voltage applied to the grid of one of the amplifiers by means of a voltage divider or potentiometer.

The gain-control potentiometer should be near the input end of the amplifier, at a point where the signal voltage level is so low there is no dinger that the stages ahead of the gain control will be overloaded by the full microphone output. With carbon microphones the gain control may be placed direetly across the microphone-transformer secondary. With other types of microphones, however, the gain control usually will affect the frequency response of the microphone when connected directly across it. Also, in a high-gain amplifier it is better to operate the first tube at maximuni gain, sinec this gives the best signal-to-hum ratio. The control therefore is usually placed in the grid circuit of the second stage.

Designing the speech AMPLIFIER

The steps in designing a speech amplifier are as follows:

1) Determine the power needed to modulate the transmitter and select the modulator. In the case of plate modulation, a Class B amplifier may be required. Select a suitable tuhe type and dotermine from the tube tables at the end of this book the grid driving power required, if any.
2) As a safety factor, multiply the required driver power by at least 1.5 .

9 - SPEECH AMPLIFIERS AND MODULATORS

3) Select a tube, or pair of tubes, that will deliver the power determined in the second step. This is the last or output stage of the speechamplifier. Receiver-type power tubes can be used (beam tubes such as the 6L6 may be needed in some cases) as determined from the receiving-tube tables. If the speech amplifier is to drive a Class 13 modulator, use a Class A or $A B_{1}$ amplifier.
4) If the speech-amplifier output stage is also the modulator and must operate Class AB_{2} to develop the required power output, use a lowor medium- μ triode to drive it. If more power is needed than can be obtained from one tube, use two in push-pull, in the driver. In either case transformer coupling will have to be used, and transformer manufacturers' catalogs should be consulted for a suitable type.
5) If the speech-amplifier output stage operates Class A or AB_{1}, it may be driven by a voltage amplifier. If the output stage is push-pull, the driver may be a single tube coupled through a transformer with a bilanced secondary, or may be a dual-triode phase inverter. Determine the signal voltage required for full output from the last stage. If the last stage is a single-tube Class A amplifier, the peak signal is equal to the grid-hias voltage; if push-pull Class A, the peak-to-peak signal voltage is equal to twice the grid bias: if Class AI_{1}, twice the bias voltage when fixed bias is used; if cathode bias is used, twice the bias figured from the cathode resistance and the maxi-mum-signal cathode current.
6) From Table 9-I, select a tube capable of giving the required output voltage and note its rated voltage gain. A double-triode phase inverter (Fig. 9-4A) will have approximately twice the output voltage and twice the gain of one triode operating as an ordinary amplifier. If the driver is to be transformer-coupled to the last stage, select a medium- μ triode and calculate the gain and output voltage as described earlier in this chapter.
7) Divide the voltage required to drive the output stage by the gain of the preceding stage. This gives the peak voltage required at the grid of the next-to-the-last stage.
8) Find the output voltage, under ordinary conditions, of the microphone to be used. This information should be olstained from the manufacturer's catalog. If not available, the figures given in the section on microphones in this chapter will serve.
9) Divide the voltage found in (a) by the output voltage of the microphone. The result is the over-all gain required from the microphone to the grid of the next-to-the-last stage. To be on the safe side, double or triple this figure.
10) From Table $9-I$, select a combination of tubes whose gains, when multiplied together, give approximately the figure arrived at in (9). These amplifiers will be used in caseade. If high gain is required, a pentode may be used for the first speech-amplifier stage, but it is not advisable to use a second pentode because of the possibility of feedback and self-oscillation. In most cases a triode will give enough gain, as a second stage,
to make up the total gain required. If not, a medium $-\mu$ triode may be used as a third stage.

A high- μ double triode with the sections in cascarle makes a good low-level amplifier, and will give somewhat greater gain than a pentode followed by a medium- μ triode. With resistancecoupled input to the first section the cathode of that section may be grounded (contaet potential bias), which is helpful in reducing hum.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable circuit has been selected for a speech amplifier, the construction problem resolves itself into avoiding two difficulties excessive hum, and unwanted feedlack. For reasonably humless operation, the hum voltage should not exceed about 1 per cent of the maximum audio output voltage - that is, the hum and noise should be at least 40 db . below the output level.

E"nwanted feedback, if negative, will reduce the gain below the calculated value ; if positive, is likely to cause self-oscillation or "howls." Feedback can be minimized by isolating each stage with decoupling resistors and rapaeitors, by avoiding layouts that bring the first and last stages near each other, and by shielding of "hot" points in the circuit, such as grid leads in lowlevel stages.

Speech-amplifier equipment, esperially voltage amplifiers, should be constructed on steel chassis, with all wiring kept below the chassis to take advantage of the shielding afforded. Exposed leads, particularly to the grids of low-level high-gain tubes, are likely to piek up hum from the electric field that usually exists in the vieinity of house wiring, Even with the chassis, additional shiehding of the input circuit of the first tube in a highgain amplifier usually is necessary. In addition, such circuits should be separated as much as possible from power-supply transformers and chokes and also from any audio transformers that operate at fairly high power levels; this will minimize magnetic coupling to the grid eircuit and thus reduce hum or audio-frequency feedback. It is ahways safe, although not absolutely necessary, to separate the speech amplifier and its power supply, building them on separate chassis.

If a low-level microphone such as the crystal type is used, the microphone, its connecting cable, and the plug or connector by which it is attached to the speech amplifier, all should be shielded. The microphone and cable usually are constructed with suitable shiekling: this should be connected to the speech-amplifier chassis, and it is advisable - as well as usually necessary - to connect the chassis to a ground such as a water pipe. With the top-(ap) tuber, complete shielding of the grid lead and grid cap is a necessity.
IIcater wiring should be kept as far as possible from grid leads, and either the center-tap or one side of the heater-transformer secondary winding should be connected to the chassis. If the center-

Modulators and Drivers

tap is grounded, the heater leads to each tube should be twisted together to reduce the magnetic field from the heater current. With either type of connection, it is advisable to lay heater leads in the corner formed by a fold in the chassis, bringing them out from the corner to the tube socket by the shortest possithle path.

When metal tubes are used, ahways ground the shell connection to the chassis. Glass tubes used in the low-level stages of high-gain amplifiers must be shielded; tube shields are obtainable for that purpose. It is a good plan to enclose the entire amplifier in a metal box, or at least provide it with a cane-metal cover, to avoid feedback diffi-
culties caused by the r.f. field of the transmitter. R.f. picked up on exposed wiring, leads or tube elements causes overloading, distortion, and self-oscillation of the amplifier.

When using paper capacitors as bypasses, be sure that the terminal marked "outside foil" is connected to ground. This utilizes the outside foil of the capacitor as a shield around the "hot" foil. When paper capacitors are used for coupling between stages, always connect the outside foil terminal to the side of the eircuit having the lowest impedance to ground. Usually, this will be the plate side rather than the following-grid side.

Modulators and Drivers

CLASS AB AND B MODULATORS

Class ΛB or B modulator circuits are basically identical no matter what the power output of the modulator. The diagrams of Fig. 9-5 therefore will serve for any modulator of this type that the amateur may elect to build. The triode circuit is given at A and the circuit for tetrodes at B . When small tubes with indirectly heated cathodes are used, the cathodes should be comnected to ground.

Modulator Tubes

The audio ratings of various types of trans-

Fig. 9.5-Modulator circuit diagrams. Tubes and circuit co'nsiderations ore discussed in the text.
mitting tubes are given in the chapter containing the tube tables. Choose a pair of tubes that is capable of delivering sine-wave autio power equal to somewhat more than half the cl.c. input to the modulated Class C amplifier. It is sometimes convenient to use tubes that will operate at the same plate voltage as that applied to the Class C stage, because one power supply of adequate current capacity may then suffice for both stages.

In estimating the output of the modulator, remember that the figures given in the tables are for the tube output only, and do not include out-put-transformer losses. To be adequate for modulating the transmitter, the modulator should have a theoretical power capability 15 to 25 per cent greater than the actual power needed for modulation

Matching to Load

In giving audio ratings on power tubes, manufacturers specify the plate-to-plate load impedance into which the tubes must operate to deliver the rated audio power output. This load impedance seldom is the same as the modulating imperlance of the Class C r.f. stage, so a match must be brought about by adjusting the turns ratio of the coupling transformer. The required turns ratio, primary to secondary, is

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{m}}}}
$$

where $N=$ Turns ratio, primary to secondary
$Z_{\mathrm{m}}=$ Modulating imperlance of Class C r.f. amplifier
$Z_{\mathrm{p}}=$ Plate-to-plate load impedance for Class B tubes

Example: The modulated r.f. amplifier is to operate at 1250 volts and 250 ma . The power input is

$$
P=E I=1250 \times 0.25=312 \text { watts }
$$

so the modulating power required is 312/2 = 156 watts, Increasing this by 25% to allow for losses and a reawonable operating margin gives

9-SPEECH AMPLIFIERS AND MODULATORS

$156 \times 1.25=195$ watts. The modulating im. pedance of the Class C stage is

$$
Z_{\mathrm{m}}=\frac{E}{-}=\frac{1250}{0.25}=5000 \mathrm{ohms}
$$

From the tube tables a pair of Class B tubes is selected that will give 200 watts output when working into a 6900 ohm load, plate-to-plate. The primary-to-secondary turns ratio of the modulation transformer therefore should be

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{m}}}}=\sqrt{\frac{6!00}{5000}}=\sqrt{1,38}=1.175: 1
$$

The required transformer ratios for the ordinary range of impedances are shown graphically in Fig. 9-6.

Many modulation transformers are provided with primary and secondary taps, so that various turns ratios can be obtained to meot the requirements of particular tube combinations. However, it may be that the exart turns ratio required cannot be secured, even with a tapped modulation transformer. Sinall departures from the proper turns ratio will have no serious affect if the modulator is operating well within its capabilities: if the actual tums ratio is within 10 per cent of the ideal value, the system will operate satisfactorily. Where the diserepancy is larger, it is usually possible to choose a new set of operating conditions for the Class C stage to give a modulating imperdance that can be matched by the turns ratio of the available

- transformer. This may require operating the Class C amplifier at higher voltage and less plate current, if the modulating impedance must be increased, or at lower voltage and higher current if the modulating impedance must be decreased. However, this proress camot be carried very far without exceding the ratings of the Class C tuhes for either plate voltage or plate current, even though the power input is kept at the same figure.

Suppressing Audio Harmonics

Distortion in either the driver or Class 13 modu?ator will cause a.f. harmonics that may lie outside the frequeney bind needed for intelligible speech transmission. While it is almost impossible to avoid some distortion, it is possible to cut down the amplitude of the higher-frequency harmonics.

The purpose of capacitors C_{1} and C_{2} across the primary and secondary, respectively, of the Class B output transformer in Fig. 9-5 is to reduce the strength of harmonies and unneressary highfrequency components existing in the modulation. The capacitors act with the leakage inductance of the transformer winding to form a rudimentary low-patss filter. The values of eapacitance required will depend on the load resistance (modulating impedance of the Class C amplifier) and the leakage inductance of the particular transformer used. In general, capacitances between about 0.001 and $0.01 \mu f$. will be required; the larger values are necessary with the lower values of load resistance. The voltage rating of each capacitor should at least be equal to the d.c. voltage at the transformer winding with which it is associated. In the case of (2 , part of the total capacitance re-

Fig. 9-6-Transformer ratios for matching a Class C modulating impedance to the required plate-to-plate load for the Class B modulator. The ratios given on the curves are from total primary to secondary. Resistance values are in kilohms.
quired will be supplied by the plate bypass or blocking capacitor in the modulated amplifier.

A still better arrangement is to use a low-pass filter as shown later, wen though clipping is not deliberately employed.

Grid Bias

Certain triodes designed for Class B audio work can be operated without grid bias. Besides eliminating the grid-bias supply, the fact that grid current flows over the whole audio cyele means that the load resistance for the driver is fairly constant. With these tubes the grid-return lead from the eenter-tap of the input transformer secondary is simply connected to the filament center-tap or cathoie.

When the modulator tubes require bias, it should ahways be supplied from a fired voltage source. Cathode bias or grid-leak bias cannot be used with a Class 13 amplifier: with both types the bias changes with the amplitude of the signal voltage, whereas proper operation demands that the bias voltage be unvarying no matter what the strength of the signal. When only a small amount of bias is required it can be obtained ronveniently from a few dry cells. For larger bias voltages a heavy-duty " B " battery may be used if the grid current does not exceed 40 or 50 milliamperes on voice peaks. The batteries are charged by the grid eurrent rather than discharged, but a battery nevertheless will deteriorate with time and its internal resistance will increase. When the increase in internal resistance becomes appreciable, the battery tends to aet like a gridleak resistor and the bias varies with the applied signal. Batteries should be checked with a voltmeter occasionally while the amplifier is operating. If the bias varies more than 10 per cent or so with voice excitation, the battery should be replaced.

Modulators and Drivers

As an alternative to batteries, a regulated bias supply may be used. This type of supply is described in the power supply chapter.

Plate Supply

In addition to adequate filtering, the voltage regulation of the plate supply should be as good as it can be made. If the d.c. output voltage of the supply varies with the load current, the voltage at maximum current determines the amount of power that ran be taken from the modulator without distortion. A supply whose voltage drops from 1500 at no load to 1250 at the full modulator plate current is a 1250 -volt supply, so far as the modulator is concerned, and any estimate of the power output available should be based on the lower figure.

Good dynamic regulation - i.e., with suddonly applied loads - is equally as important as good regulation under steady loads, since an instantancous drop in voltage on voice peaks also will limit the output and cause distortion, The output capacitor of the supply should have as much caparitance as conditions permit. A value of at least $10 \mu \mathrm{f}$. should he used, and still larger values are desirable. It is better to use all the available capacitance in a single-sertion filter rather than to distribute it between two seetions.

It is partioularly important, in the case of a tetrode Chass B stage, that the seren-roltage power-supply source have excellent regulation, to prevent distortion. The screen voltage should be set as exactly as possible to the recommended value for the tube. The audio impedance between serem and eathode also must be low.

Overexcitation

When a Chass 13 amplifier is overdriven in an attempt to secure more than the rated power, distortion increases rapidly. 'The high-frequency harmonits which result frum the distortion modulate the transmitter, producing spurions sidebands which can canse serious interference over a band of frequencies several times the chamel width required for speech. (This can happen even thongh the modulation percentage, as defined in the chapter on amplitude modulation. is kess than 100 per cent, if the modulator is incapable of delivering the audio power required to modulate the transmitter.)

As shown later, sum a rondition may be reached by deliberate design, in case the modulator is to be adjusted for peak
clipping. But whether it happens by accident or intention, the sphatter and spurious silebands can be eliminated by inserting a low-pass filter (Fig. 9-13) between the modulator and the modulated amplifier, and then taking care to see that the artual modulation of the r.f. amplifier does not exceed 100 per cent.

Operation Without Load

Excitation should never be applied to a Class B modulator until after the Class \mathbf{C} amplifier is turned on and is drawing the value of plate current required to present the rated load to the modulator. With no load to absorb the power, the primary impedance of the transformer rises to a high value and excessive audio voltages may be developed in the primary - frequently high enough to break down the transformer insulation.

- DRIVERS FOR CLASS-B MODULATORS

Class AB_{2} and Class B amplifiers are driven into the grid-current region, so power is con-

Fig. 9.7-Triode driver circuits for Class B modulators. A, resistance coupling to grids; B, transformer coupling. R_{1} in A is the plate resistor for the preceding stage, value determined by the type of tube and operating conditions as given in Table $9-1 . C_{1}$ and R_{2} are the coupling capacitor and grid resistor, respectively; values also may be taken from Table 9-I.
In both circuits the output transfomer, $\left(T_{1} T_{2}\right)$ should have the proper furns ratio to couple between the driver tubes and the Class B grids. T_{1} in B is usually a $2: 1$ transformer, secondary to primary. R, the cathode resistor, should be calculated for the particular tubes used. The value of C, the cathode bypass, is determined as described in the text.

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9.8-Speech-amplifier driver for 10-15 watts output. Capacitances are in $\mu \mathbf{f}$. Resistors are $1 / 2$ watt unless specified otherwise. Capacitors with polarity indicated are electrolytic; others may be paper or ceramic.

$C R_{1}$-Selenium rectifier, 20 ma .

R_{1}-50,000-ohm potentiometer, preferably wire wound. T_{1}-Interstage audio fransformer, single plate to pushpull grids, furns ratio 2 to 1 or 3 to 1 , total secondary to primary.
T_{2} —Class-B driver transformer, 3000 ohms plate-foplate; secondary impedance as required by
sumed in the grid eireuit. The preceding stage or driver must be capable of supplying this power at the required peak audio-frequency grid-to-grid voltage. Both of these quantities are given in the manufacturer's tube ratings. The grids of the Class 13 tubes represent a varying load resistance over the audio-frequency cyole, because the grid current does not increase directly with the grid voltage. To prevent distortion, theretore, it is neressary to have a driving souree that will maintain the wave form of the signal without distortion even though the load varios. That is, the driver stage must have good regulation. To this end, it should be capable of delivering somewhat more power than is consumed by the Class B grids, as previously desaribed in the diseussion on spech amplifiers.

Driver Tubes

To secure good voltage regulation the internal impedance of the driver, as seen by the modulator grids, must le low. The prineipal component of this impedance is the plate resistance of the driver tube or tubes as reflected through the driver transformer. Hence for low driving-source impedance the effective plate resistance of the driver tubes should be low and the turns ratio of the driver transformer, primary to secondary,

Class-B tubes used; 15 watt rating.
T_{3}-Power transformer, 700 volts c.t., 110 ma.; 5 volts, 3 amp ; 6.3 volts, 4 amp .
T_{4}-Power transformer, 125 volts, 20 ma.; 6.3 volts, 0.6 amp.
$\mathrm{T}_{5}-2.5$-volt 5 -ampere filament transformer (Thordarson 21 FOO).
should be as large as possible. The maximum turns ratio that ean be used is that value which just permits developing the modulator grid-togrid aff. voltage reduired for the desired power output. The rated tube ontput as shown by the tube tables should be redued by about 30 per cent to allow for losses in the Class 13 imput transformer.

Low- μ trioders surh as the 2.13 have luw phate resistance and are therefore good tubes to use as drivers for Class $\mathrm{AB} \mathrm{B}_{2}$ or Class 13 modulators. Tetrodes such as the 606 and 6 di make very poor drivers in this respect when used without negrative feedback, but with such feedback the effective plate resistance can be redued to a value comparable with low- μ triotes.

Fig. 9- $\overline{6}$ shows representative circuits for a push-pull triode driver using cathote bias. If the amplifier operates Class A the cathode resistor need not be bypassed, beratuse the a.f. eurrents from each tube flowing in the eathode resistor are out of phase and cancel each other. However, in Class AB operation this is not true: considerable distortion will be genorated at high signal levels if the cathode resistor is not bypassed. The bypass capacitance required can be calculated by a simple rule: the cathode resistance in ohms multiplied by the bypass capacitance in microfarads should equal at least 25,000 . The

Modulators and Drivers

voltage rating of the capacitor should be equal to the maximum bias voltage. This can be found from the maximum-signal plate current and the cathode resistance.

Example: A pair of DA:s is to be used in Ciass A 3_{1} self-biased. From the tube tables, the cathode resistance should be 780 ohms and the maximum-signal plate current 100 ma. From Ohin's Law.

$$
E=R I=780 \times 0.10=78.6 \text { volts }
$$

From the rule mentioned previously, the bypass capacitance required is

$$
C=25,000 / h=25,000 / 780=32 \mu \mathrm{f} .
$$

A 40 or $50-\mu \mathrm{f}$. 100 -volt electrolytic rapacitor would be satisfactory
Fig. 9-8 is a typical circuit for a speerh amplifier suitable for use as a driver for a Class AB_{2} or (lass B modulator. An output of about 1:3 watts ran be realized with the power supply circuit shown (or any similar well-filtered supply delivering 300 volts under load). This is sufficient for driving any of the power triodes commonly used as modulators. The 2.13 s in the output stage are operated Class Al_{1}. The cireuit provides several times the voltage gain needed for communications-type crystal or ceramic mierophones.

The two sections of a 12 AN 7 tube are used in the first two stages of the amplifier. These are resistance coupled, the gain control heing in the grid circuit of the second stage. Although the cathode of the first stage is grounded and there is no separate bias supply for the grid, the grid
bias actually is about one volt because of "contact potential."

The third stage uses a medium- μ triode which is coupled to the 2.13 grids through a transformer laving a push-pull secondary. The ratio may be of the order of 2 to 1 (total secondary to primary) or higher; it is not eritical sinee the gatin is sufficient without a high step-up ratio.

The output transformer, T_{2}, should be selected to couple between push-pull 2.13s and the grids of the particular modulator tubes used.

The power supply has a capacitor-input filter the output of which is applied to the $2.2:$ plates through T_{2}. For the lower-level stages, additional filtering is provided by suceessive IRC filters which also serve to prevent audio feedback through the plate supply.

Grid bias for the 2 A 3 s is furnished by a separate supply using a small selenium rectifier and a TV "booster" transformer, T4. The bias may be adjusted by means of R_{1}, and should be set to -62 volts or to obtain a total plate current of 80 ma . (as measured in the lead to the primary center tap of T_{2}) for the $2 \mathrm{~A}: 3 \mathrm{~s}$.

In building an amplifier of this type the constructional precautions outlined earlier should be observed. The Class $A B_{1}$ modulators described sulsequently in this chapter are representative of good constructional practice.

Negative Feedback

Whenever tetrodes or pentodes are used as drivers for Class 13 modulators, negative feedback should be used in the driver stage, for the reason already discussed.

Suitable circuits for single-ended and push-pull tetrodes are shown in Fig. 9-9. Fig. 9-9A shows resistanee roupling between the preceding stage and a single tetrode, such as the 6 V 6 , that operates at the same plate voltage as the preceding stage. Part of the a.f. voltage across the primary of the output transformer is fed back to the grid of the tetrode, V_{2}, through the plate resistor of the preceding tube, V_{l}. The total resistance of Λ_{4} and Π_{5} in series should be ten or more times the rated load resistance of V_{2}. Instead of the voltage clivider, at tap on the transformer primary can be used to supply the feellback voltage, if such a tap is available.

The amount of feedlack voltage that appears at the grid of tube V_{2} is determined by R_{1}, R_{2} and the plate resistance of V_{1}, as well as by the relationship between R_{4} and R_{5}. Circuit values for typical tube combinations are given in detail in Fig. 9-9.

The push-pull eircuit in Fig. 9-9B reguires an audio transformer with a split secondary. The feedbaek

9-SPEECH AMPLIFIERS AND MODULATORS

voltage is obtained from the plate of each output tube by means of the voltage divider, R_{1}, R_{2}. The blocking eapacitor, C_{1}, prevents the d.c. plate voltage from being applied to $R_{1} R_{2}$; the reactance of this capacitor should be low, compared with the sum of R_{1} and R_{2}, at the lowest audio frequency to be amplified. Also, the sum of R_{1} and R_{2} should be high (ten times or more) compared with the rated load resistance for V_{2} and V_{3}.
In this circuit the feedback voltage that is developed across R_{2} appears at the grid of V_{2} (or $I^{\prime}{ }_{3}$) through the transformer secondary and grid-cathode circuit of the tube, provided the tubes are not driven to grid current. The per cent feedback is

$$
n=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

where n is the feedback percentage, and R_{1} and
R_{2} are connected as shown in the diagram. The higher the feedback percentage, the lower the effective plate resistance. However, if the percentage is mate too high the preceding tuber, V_{1}, may not be able to develop enough voltage, through T_{1}, to drive the push-pull stage to maximum output without itself generating harmonic distortion. Distortion in V_{1} is not compensated for by the feedback cirenit.

If V_{2} and V_{3} are 61 fis operated self-biased in Class $A B_{1}$ with a load resistance of 9000 ohms, V_{1} is a $\mathrm{m}_{3} \mathrm{~J}$ or similar triode, and T_{1} has aturns ratio of 2 -to-1, total secondary to primary, it is possible to use over 30 per rent feedthack without going beyond the output-voltage capabilities of the triode. Twenty per cent feedhack will reduce the effertive plate resistance to the point where the output voltage regulation is better than that of 2 . 13 s without feedhack. The power output under these conditions is about 20 watts.

Increasing the Effectiveness of the Phone Transmitter

The effectiveness of an amateur phone transmitter can be inereased to a considerable extent by taking advantage of speech chararteristics. Measures that may be taken to make the modulation more effective include band compression (filtering), volume compression, and speech clipping.

Compressing the Frequency Band

Most of the intelligibility in speech is contained in the medium band of frequencirs; that is, between about 500 and 2500 rycles. (On the other hand, a large portion of speech power is mormally found below 500 cycles. If these low frequencies are attemated, the frequencios that carry most of the actual communication can be increased in amplitude without exceeding 100per cent modulation, and the effectiveness of the transmitter is correspondingly inereased.

One simple way to reduce low-frequency response is to use small values of coupling capacitance between resistance-coupled stages, as shown in Fig. $9-10 \mathrm{~A}$. A time constant of 0.0005 second for the coupling capacitor and following-stage grid resistor will have little effert on the amplification at 500 cycles, but will practically halve it at 100 cycles. In two cascaded stages the gain will be down about 5 db . at 200 cycles and 10 (l). at 100 cycles. When the grid resistor is $1 / 2$ megohm a coupling capacitor of $0.001 \mu \mathrm{f}$. will give the required time constant.

The high-frequency resjonse can be reduced by using "tone control" methods, utilizing a catpacitor in serics with a variable resistor connerted across an audio impedance at some point in the speech amplifier. The best spot for the tone control is across the primary of the output transformer of the spereh amplifier, as in Fig. 9-1013. The capacitor should have a reactance at 1000 cycles about equal to the load resistance required by the amplifior tube or tubes, while the variable resistor in series may have a value equal to four or five times the load resistance. The control can
be adjusted while listening to the amplifier, the object being to cut the high-frequency response without unduly sacrifieing intelligibility.
Restricting the frequeney response not only puts more modulation power in the optimum frequency band but also reduces ham, because the low-frequeney response is redued, and helps reduce the width of the channel oceupied by the transmission, because of the reduetion in the amplitude of the high audio frequencies.

Volume Compression

Although it is obviously desirable to modulate

Fig. 9.10-A, use of a small coupling capacitar to reduce low-frequency response; B, tone-contral circuits for reducing high-frequency response, Values far C and R are discussed in the text;0.01 $\mu \mathrm{f}$, and 25,000 ahms are typical.

Increasing Phone Transmitter Effectiveness

the transmitter as completely as possible, it is difficult to maintain constant voire intensity when speaking into the microphone. To overcome this variable output level, it is possible to use automatic gain control that follows the average (not instantancous) variations in speech amplitude. This can be done by rectifying and filtering some of the audio output and applying the rectified and filtered d.c. to a control electrode in an early stage in the amplifior.

A practical circuit for this purpose is shown in Fig. 9-11. V_{1}, a medium- μ triode, has its grid connected in parallel with the grid of the last speech amplifier tube (the stage preceding the power stage) through the gain control R_{1}. The amplified output is coupled to a full-wave rectifier, V_{2}. The rectified audio output develops a negative d.c. voltage across $C_{1} R_{3}$, which has a sufficiently long time constant to hold the voltage at a reasonably steady value between syllables and words. The negative d.c. voltage is applied as control binas to the suppressor grid of the first tube in the specch amplifier (this circuit reguires a pentode first stage), effecting a reduction in gain. The gain reduction is substantially proportional to the average mierophone output and thus tends to hold the amplifier output at a constant level.

Fig. 9-11-Speech-amplifier output limiting circuit. V_{1}-6C4, 6C5, 6CG7, 6J5, 12AU7, etc.
V_{2}-6H6, 6AL5, etc.
T_{1} - Interstage audio, single plate to p. p. grids.
An adjustable bias is applied to the cathodes of I_{2} ta cut off the tube at lnw levels and thus prevent rectification until a desired output level is reached. R_{2} is the "threshold control" which sets this level. R_{1}, the gain control, determines the rate at which the gain is reduced with increasing signal level.

The hold-in time can be inereased by increasing the resistance of R_{3}, C_{2} and R_{4} may not be necessary in all cases: their function is to prevent too-rapid gain reduction on a sudden voice peak. The "rise time" of this circuit can be increased by increasing C_{2} or R_{4}, or both.

The over-all gain of the system must be high cnough so that full output can be secured at a moderately low voice level.

Speech Clipping and Filtering

In speech wave forms the average power con-
tent is considerably less than in a sine wave of the same peak amplitude. Since modulation percentage is based on peak values, the modulation or sideband power in a transmitter modulated 100 per cent by an ordinary voice wave form will be considerably less than the sideband power in the same transmitter modulated 100 per cent by a sine wave. In other words, the modulation percentage with voice wave forms is determined by peaks having relatively low average power content.
If the low-energy peaks are elipped off, the remaining wave form will have a considerably higher ratio of average power to peak amplitude. More sideband power will result, therefore, when such a clipped wave is used to modulate the transmitter 100 per cent. Although clipping distorts the wave form and the result therefore does not sound exactly like the original, it is possible to secure a worth-while increase in modulation power without sacrificing intelligibility. Once the system is properly adjusted it will be impossible to overmodulate the transmitter because the maximum output amplitude is fixed.

By itself, elipping generates the same highorder harmonics that overmodulation does, and therefore will cause splatter. To prevent this, the audio frequencies above those needed for intelligible speech must be filtered out, after clipping and before modulation. The filter required for this purpose should have relatively little attenuation at frequencies below about 2500 cycles, but high attenuation for all frequencies above 3000 cycles.

It is possible to use as much as 25 db . of clipping before intelligibility suffers; that is, if the original peak amplitude is 10 volts, the signal can be elipped to such an extent that the resulting maximum amplitude is less that one volt. If the original 10 -volt signal represented the amplitude that caused 100 -per-cent modulation on peaks, the clipped and filtered signal can then be amplified up to the same 10 -volt peak level for modulating the transmitter.

There is a loss in naturalness with "deep" clipping, even though the voice is highly intelligible. With moderate clipping levels (6 to 12 db .) there is almost no change in "quality" but the voice power is increased considerably.

Before drastic clipping can be used, the speech signal must be amplified several times more than is necessary for normal modulation. Also, the hum and noise must be much lower than the tolerable level in ordinary amplification, because the noise in the output of the amplifier increases in proportion to the gain.

One type of clipper-filter system is shown in block form in Fig. 9-12A. The clipper is a peaklimiting rectifier of the same general type that is used in receiver noise limiters. It must clip both positive and negative peaks. The gain or clipping control sets the amplitude at which clipping starts. Following the low-pass filter for eliminating the harmonic distortion frequencies is a second gain control, the "level" or modulation control. This control is set initially so that the

Fig. 9-12-(A) Block diagram of speech-clipping and filtering amplifier. (B) Practical speech clipper circuit with low-pass filter. Capaci-
tances below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. Resistors are $1 / 2$ watt.
L: -20 henrys, 900 ohms (Stancor C-1515).
S_{1}-D.p.d.t. foggle or rolary.
amplitude-limited output of the clipper-filter cannot cause more than 100 per cent modulation.

It should be noted that the peak amplitude of the audio wave form actually applied to the modulated stage in the transmitter is not necessarily held at the same relative level as the peak amplitude of the signal coming out of the clipper stage. When the elipped signal goos through the filter, the relative phases of the various frequency components that pass through the filter are shifted, particularly those components near the cut-off frequency. This may cause the peak amplitude out of the filter to exceed the peak amplitude of the elipped signal applied to the filter input terminals. Similar phase shifts can occur in amplifiers following the filter, especially if these amplifiers, including the modulator, do not have good low-frequeney response. With poor low-frequency response the more-or-less "square" waves rosulting from elipping tend to be changed into triangular waves having higler peak amplitude. Best practice is to cut the lowfrequeney response before clipping and to make all amplifiers following the clipper-filter as fat and distortion-free as possible.

The best way to set the molulation control in such a system is to cheek the actual modulation pereentage with an oscilloseope connected as deseribed in the section on modulation. With the gain control set to give a desired clipping level with normal voice intensity, the level control should be adjusted so that the maximum modulation does not exceed 100 per cent no matter how much sound is applied to the mierophone.

A practical clipper-filter circuit is shown in Fig. $9-12 \mathrm{~B}$. It may be inserted between two speech-amplifier stages (but after the one having the gain control) where the level is normally a few volts. The eathode-coupled elipper circuit gives some over-all voltage gain in addition to performing the elipping function. The filter constants are such as to give a cut-off characteristic that
combines reasonably good fidelity with adequate high-frequency suppression.

High-Level Clipping and Filtering

Clipping and filtering also can be done at high level - that is, at the point where the modulation is applied to the r.f. amplifier - instead of in the lowlevel stages of the speech amplifier. In one rather simple but effective arrangement of this type the elipping takes place in the Class-13 modulator itself. This is accomplished by carefully adjusting theplate-to-plate load resistance for the modulator tubes so that they saturate or clip peaks at the amplitude level that represents 100 per cent modulation. The load adjustment can be made by choice of output transformer ratio or by adjusting the plate-voltage/plate-current ratio of the modulated r.f. amplifier. It is best done by examining the output wave form with an oscillos rope.
The filter for such a sustem consists of a choke coil and caparitors as shown in Fig. 9-13. The values of L and ('should be chosen to form a lowpass filter section having a eut-off frequeney of about 2500 cyeles, using the modulating impedance of the r.f. amplifier as the load resistance. For this eut-off frequency the formulas are

$$
L_{1}=\frac{R}{7850} \quad \text { and } \quad C_{1}=C_{2}=\frac{63.6}{R}
$$

where R is in ohms, L_{1} in henrys, and (${ }_{1}$ and $~_{\prime}^{\prime}{ }_{2}$ in microfarads. For example, with a plate-modulated amplifier operating at 1500 volts and 200 ma. (modulating impedance 7500 olims) L_{1} would be $7500 / 7850=0.96$ henry and (1 or (22 would be $63.6 / 6500=0.0085 \mu \mathrm{f}$. Bypass eapacitors in the plate circuit of the r.f. amplifier should be included in C_{2}. Voltage ratings for C_{1} and C_{2} when conner ted as shown must be the same as for the plate blocking caparitor - i.e., at least twice the d.e. voltage applied to the plate of the modulated amplifier. L and C values ean vary 10 per cent or so without seriously affecting the opcration of the filter.

Besides simplicity, the high-level system has the advantage that high-frequency components

Fig. 9-13-Splatter-suppression filter for use at high level, shown here connected between a Class B modulator and plate-modulated r.f. amplifier. Values for L_{1}, C_{1} and C_{2} are defermined as described in the text.

A Low-Power Modulator

of the audio signal fed to the morlulator grids, whether present legitimately or as a result of amplitude distortion in lower-level stages, are suppressed along with the distortion components that arise in clipping. Also, the undesirable effects of poor low-frerfuenry response following clipping and filtering, mentioned in the preceding section,
are avoided. Phase shifts can still occur in the ligh-level filter, however, so adjustments preferably should be made by using an oscilloscope to check the actual modulation percentage under all conditions of speech intensity. (For further discussion see Bruene, "High-Level Clipping and Filtering", QST', November, 1951.)

A Low-Power Modulator

A modulator suitable for plate modulation of low-power transmitters or for sereen or controlgrid modulation of high-power amplifiers is pietured in Figs. 9-14 and 9-16. As shown in Fig. 9-15, it uses a pair of (9AQ5's in push-pull in the output stage. These are driven by a 6 Ct phase inverter. A two-stage preamplifier using a 12 AX 7 brings the output voltage of a erystal or ceramie microphone up to the proper level for the $6 \mathrm{C}+$ grid. A power supply is included on the same chassis.

The undistorted audio output of the amplifier is $7-8$ watts. This is sufficient for modulating the plate of an r.f. amplifier rumning 10 to 15 watts imput, or for modulating the control grids or sereens of r.f. amplifiers using tubes having platedissipation ratings up to 250 watts. When sereen modulation is used the sereen power for the modulated amplifier (up to 250 volts) ean be taken from the modulator power supuly. The wiring shown in Fig. 9-15 provides for this, through an alljustable tap on the 25,000 -ohm beeder resistor, R_{5}, in the power supply. If a separate sereen supply is used, or if the modulator is used for grid-bias or plate modulation of an r.f. amplifier, the d.e. circuit should be opened at point " X " in Fig. 9-15.

The amplifier uses resistance coupling up to the output-stage griels. The first section, $V_{1 A}$, of the 12:N7 has "contact-potential" bias. The gatin control, R_{1}, is in the grid rircuit of the second section, $V_{1 n}$, of the $12 A N \overline{7}$. Negative feedback from the secondary of the output transformer, T_{1}, is introdued at the cathode of this tube section. The feedback voltage is dependent on

Fig. 9-14-Speech amplifier and low-power modulator suitable for screen or control-grid modulation of highpower amplifiers, or for plate modulation of an r.f. stage with up to 15 watts plate input. It is assembled on a $7 \times 9 \times 2$-inch steel chassis, with the power supply occupying the left-hand section and the audio circuits the right. The 12AX7 preamplifier is at the lower right-hand corner, the 6C4 phase inverter is to its left, and the 6AQ5 power amplifiers are behind the two. Controls along the chossis edge are, left to right, the power switch, send-receive swith, gain control, and microphone jack.
the ratio of R_{2} to R_{3}, approximately, and with the constants given is sufficient to result in a considerable redurtion in distortion along with improved regulation of the audio output voltage. The latter is important when the unit is used for modulating a screen or control grid, as described in the chapter on amplitude modulation.
The phase inverter is of the split-load type described earlier in this chapter. It drives the push-pull 6AQ5's in the power amplifier. The output transformer used in the power stage is a multitap modulation transformer suitable for any of the types of modulation mentioned above.
Capacitor C_{1} across the secondary of the output transformer, T_{1}, is used to reduce the high-frequeney response of the amplifier. Without it, self-oscillation is likely to occur at a high audio frequeney (usually above audibility) because phase shift in the output transformer at the end of its useful frequency range causes the feedback to become positive.
The power supply uses a replacement-type transformer and choke with a capacitor-input filter. Voltage umder the modulator and speechamplifier load is $2 \overline{50}$. The decoupling resistancecaparitance networks in the plate circuits of $V_{1 A}$ and $V_{\text {a }}$ contribute alditional smoothing of the d.e. for these low-level stages.

The unit ineludes provision for send-receive switching, S_{1} being used for that purpose. S S $S_{1 B}$ can be used to eontrol the r.f. section - for example, by being connected in parallel with the key used for c.w. operation. Simultaneously $S_{1 A}$ short-circuits the secondary of T_{1} so the transformer will not be damaged by being left

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9-15-Circuit of the speech amplifier and madulator. All capacitances are in $\mu \mathrm{f}$.; capacitors with polarities marked are electrolytic, others are ceramic. Resistors are $1 / 2 \mathrm{wath}$ except as nated below. Voltages measured to chassis with v.t. valtmeter.
J_{1}-Microphone cannector (Amphenol 75-PC1M).
$\mathrm{L}_{1}-10$ henrys, 90 ma . (Triad C-7X).
$\mathrm{S}_{1}-$ D.p.d.t. toggle.
$\mathrm{S}_{2}-$ S.p.s.t. toggle.
T_{1}-Modulation transfarmer, tapped secondary, primary 10,000 ohms plate to plate (Thordarson 21 M 68).
without lowd. If S_{13} is eomerted amoros the transmitter key, s, also can be used as a phonee.w. switeh, being loft in the "R" position for e.w. operation.

The terminals marked "B switeh" should be short eireuited (indicated by the dashed line) if S_{1} is used as a sembreorive switch. If a switeh on the transmitter is used for send-recoive, these terminals may be used for turning the plate voltage in the modulator on and off through
T_{2}-Power Iransformer, 525 v.c.t., $90 \mathrm{ma} .6.3 \mathrm{v.}$, $5 \mathrm{v}, 2 \mathrm{amp}$. (Triad R-10A).
$R_{2}-1500$ ohms, $1 / 2$ watt.
R_{4}-App. 200 ohms, 2 watts (two 390 -ohm l-watt re. sistors in parallel).
an extra pair of contacts on the transmitter sendrecoive switrh. In that case S_{1} should be left in the "semd" position for phone operation.
The proper secondary taps to use on T_{1} will depend on the impedanere of the load to which the amplifier is emmecterd. Methods for determining the monlukting impedance with various types of modulation are given in the seretion on amplitude modulation, together with information on connecting the modulator to the r.f. stage.

Fig. 9-16-Below-chassis view of the modulatar. The rectifier-tube socket and electralytic filter capocitars are of the right in this view. The $12 A X 7$ socket is at the lower left. Bleeder resistor R_{5} is at the upper left, near the 6-terminal connection strip on the rear edge of the chassis. Placement of camponents is not critical, but the leads in the first two stages should be kept shart and close to the chassis to minimize hum troubles.

A 25-Watt Modulator

A 25-Watt Modulator using Push-Pull 6BQ6GTs

The speceh amplifier-modulator shown in Figs. 9-17 to 9 -1!, inclusive, can be used for plate modulation of low-power transmitters rumming 25 to 50 watts input to the final stage. The circuit as shown is capable of an atudio output of 25 watts, but this can be inereased to 30 watts be a simple modification. The GBCos in the output staug are operated in Class AB3. Inexpensive repoiver-typo replacement components are used throughout. except for the modulation transformer.

Circuit

The speech amplifior uses a pentode first stage resistance-coupled to a triode second stage. This combination gives sufficient gain for a erystal microphone. The pentode and triode are the two sections of a dual tube, the 6.AN8. Transformer coupling is used hetween the triode and the modulator tubes, in order to get push-pull voltage for the GBQGitiT grids. Cathode bias is used on the final stage.

The coupling eapacitance between the first and second stages is purposely made small to redure the low-frequency response, and the primary of the out put transformer is shunted by C_{2} to reduce the amplification at the high-frequeney end. Ci, on the first stage, also tende to reduce highfrequency response in addition to bypassing any r.f. that might be picked up on the mierophone cord. These measures confine the frequenes response to the most useful portion of the voice range.
S_{2} is the "send-reeeive" switch. One section opens the power transiomer center tap, thus cutting of the plate voltage during receiving periorls. The other section cim be comnected to the key terminals on the transmitter, as indieated in the rirenit diagram, to turn the transmitter on and off along with the modulator. If the transmittor is one in which the oscillator is not
keyed, $S_{\text {n }}$ may be used to control the transmitter plate voltage, usually by being connected in the 115 -volt eircuit to the plate-supply transformer.

The "phone-c.w." switch, S_{3}, short-circuits the secondary of the modulation transformer, T_{3}, when the transmitter is to be keved, and also opens the ernter-tap of T so plate voltage canmot be applied to the modulator.

The power supply uses a receiver replacementtype transformor with a capacitor-input filter. Additional filtering for the speech-implifier stages is provided by the $10-\mu \mathrm{f}$. capacitors and the series resistors in the plate cirenits. Ilum is also reduced by the VIR-150 used to regulate the modulator serean voltage. Note that the regulator tulse is comerted between the screens and rathodes so that the atual sereen voltage is 150 and is not raluced by the drop) in the eathote hias resistor. Maintaining full sereen voltage is important if the rated output is to be serured.

Operating

The $6 B(86 G T$ amplifier requires a plate-toplate loud of 4000 ohms, and the output transformer ratio must be chosen to reflect this load to the plates (see later seetion on matching a modulator to its load). For most small transmitters ruming 30 to 50 watts input to the final stageal-to-1 transformer ratio will besatisfactory, since the modulating impedance of such transmitters usually is in the neighborhood of 4000 ohms. The serondary of T_{3} is comnected in series with the d.e. lead to the plate (and screen, if a sereen-grid tule) of the Class C amplifier to be modulated. For further details, see the chapter on amplitude molulation.

For checking the modulator operation a milliammeter ($0-200$ range satisfactory) may be connected in the lead to the center-tap of the

Fig. 9.17-A modulator for transmit. ters operating at plate inputs up to 50 watts. The speech omplifier and modulator are at the lef in this view; power supply components ore of the right. The chossis is $7 \times 11 \times 2$ inches.

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9-18-Circuit diagram of the 25 -watt modulator. Capacitances below $0.001 \mu f$, are in $\mu \mu \mathrm{f}$. Capocitors up to $0.01 \mu \mathrm{f}$. are ceramic. Resistors are $1 / 2$ watt unless otherwise specified.
L_{1}-8 henrys, 150 ma .
S_{1}-S.p.s.t. toggle.
$S_{2}-$ D.p.d.t. toggle.
S_{3}-2-pole 2-position rotary (Centralab PA-2003).
primary of T_{3}. Without voice input to the mierophone the plate current should be approximately 50 ma. When modulating the transmitter, the current should "kick" to (00 or 70 mat: this will usually represent 100 per cent modulation. If the amplifior can be tested with ta single-tone signal replacing the mierophone, the phate current will be ahout 165 ma at full output.

The audio power output can be increased to
T_{1}-Power transformer, 650 volts c.t., 150 ma .5 volts 3 amp ; 6.3 volts, 5 amp.
T_{2}-Interstage audio, single plate to p.p. grids, pri, to total sec, ratio 1 to 3 .
T_{3}-Modulation transformer, multimatch type (UTC S-19).
ahout 30 watts, sufficient for modulating an 807 at its full phone rating. if the cibobe iT cathodes atre grounded and bias of about 30 volts from a fixed sourre such as a small battery is applied to the grids. The hattery may be substituted for the (athode resistor if the ground connection is moved from the center tap of the secondary of $T 2$ to the eathodes of the bBQ6GTs.
(From QS'T, December, 10.55.)

Fig. 9-19-Underchassis view of the 6BQ6GT modulator. The two large capacitors at the right are the filter capacitors in the power supply. The modulator bias resistor and bypass capacitor ($R_{1} C_{3}$) are at lower left. Leads from the modulation transformer go through the three holes in the chassis. Shielded wire is used for heater, microphone input, and gaincontrol leads.

A 50-Watt Modulator
 A 50-Watt Class AB Modulator

Four type 1605 tulbes ware nidel in the output stage of the motulator shown in ligs. 9-20 and ()-2"? for suaral good reasons, These tabers l?-volt heater versions of the popular sot, are widely available on the surplas market at attractive prices. With the exonomieal power suphly shown harer. four 1 (i2ess will deliver up to 50 watts of andio, sufficient to modulato at 100 -watt transmittor, It highure plate voltages, four 16 iens in
 plate volts), sufficiont to modulate a 2×80-watt transmitter.
liberering to the circuit diagram, the spech amplifier consists of a 6.1 V 6 triods and the two
 $V_{\text {tis }}$ and the modulator tuber gives adequate signal for the 16225 at any rated phate voltage. A buitt-in bias supthy, using a voltagetripling
 furaishes operating hias that can be set to the proper vahue bex Re. Huring standhe conditions, the modulater is turnod off beroming the circuit at J_{3} or by adding additional hias through J_{4}. Since connerting four tetrodes in push-pull paral-
lel rau often yieh parasitic oscillations, resistors are connected in both control and sercen grid cirenits of the morlulator tubs. With these resistors present, there should be no instabilities of amy kind. The low- and high-frequeney responses are restricted to good communieations levels bey proper proportioning of the eoopling capacitors and the shunt eapacitors. The 0.00) $4-\mu$ f. capateitor arrose the secondary of T_{2} will have a greater offect on restricting high-frequener response it a high-voltage low-rurvent amplifier is being modulated than if a low-voltage high-current r.f. stare is used. The $0.00 .+-\mu \mathrm{f}$. value wats selected for use with a 400 -volt 200 -man amplifier.

Provision for connerting an external modulation monitor (sere Chapter 10) is ineluded, as well as a power outlet, J_{5}, for the monitor or other anxiliary efuipment.

Construction

The modulator is built on a $17 \times 10 \times 3$-inch sterel chaseis, although an aluminum chatsis would probably be almost as strong and would be definitely easier to drill and punch. The com-

Fig. 9-20-A 50 -watt modulator, using four 1625 -type tubes in Class $A B_{1}$. With higher plate voltage and a larger modulation transformer, the tubes can deliver up to 140 watts of audio power.

Speech amplifier tubes and coupling transformer are at the right, in front of the four 1625 s . The two voltage-regulator tubes in the center, in front of the modulation transformer, stabilize the screen voltage on the 1625 s .

Power-supply filter choke is at the upper left-hand corner, and the small choke to the immediate right is connected in the screen circuit if a screen-grid r.f. amplifier is used. If desired, a cane-metal housing con be used over the modulator, but the use of high-voltage wire and insulated plate caps practically eliminates the danger of electrical shock when the unit is in its normal position.

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9-21-Circuit diagram of the 50 -walt modulator. Unless specified otherwise, capacitances are in $\mu \mathrm{f}$., resistances are in ohms, resistors are $1 / 2$ watt.
$C_{1}-0.004 \mu \mathrm{f}$, but subject to modification. See text. $\mathrm{CR}_{1}, \mathrm{CR}_{2}, \mathrm{CR}_{3}$-20-ma. 130-v. selenium rectifier.
E_{1}, E_{2}, E_{3}-Nylon tip jacks (Johnson 105-601, $105-602$
105-603).
$1_{1}-6.3$-volt pilot lamp.
J_{1}-Microphone connector (Amphenol 75-PC1M).
$J_{2}-4$-prong fube socker.
$J_{3}, J_{5}-2$-pin chassis-mounting a.c. reseptacle (Amphenol 61-F1).
J_{4}-Phono jack.
L_{1}-Screen choke, used when modulating tetrode amplifier.
ponents were arranged to keep a.c. loads a reasonable distance away from the specel-amplifier circuits, and the heater leads to the GAV6 and 6CG7 were run in shielded wire. These shielded leads, and the shielded leads carrying 115 v . a. c.. were rum along the folded corners of the chassis. Another precaution in wiring the modulator is to keep the leads to and from T_{2} away from the speech-amplifier portion of the modulator, to reduce the chances for feedback and consequent audio oscillation. The leads to and from T_{2} should be made with well-insulated wire, and wherever they pass through the chassis rubber grommets should lo used.

The connections to T_{2} will deprend upon the voltage-to-current ratio of the d.c. input to the modulated stage. With the power supply shown,

L2-8.5-henry 200-ma. filter choke (Knight 61 G 409 or equiv.).
P_{1}-A.c. line plug.
R_{1}-Volume control, audio taper.
$\mathrm{R}_{2}-2$-watt wirewound control, linear taper.
S_{1}-S.p.s.t. toggle switch.
$\mathrm{T}_{1}-1: 3$ ratio interstage transformer (Triad A-31X).
T_{2}-60-watt modulation transformer (Stancor A-3893).
$\mathrm{T}_{3}-400-0-400 \mathrm{v}$, at 200 ma ., 5 v . at $3 \mathrm{a} ., 6.3 \mathrm{v}$. at 5 a (Knight 61 G 420 or equiv.).
$\mathrm{T}_{4}-12.6 \mathrm{v}$. at 2 a . (Knight 61 G 420 or equiv.).
the modulator is well suited to work with the -5-watt 61)(25 transmitter and the 90-watt all-purpose amplifier described in Chapter Six. The proper load for the four 1625 s , with 450 volts on the plates, is 3800 ohms, rising to 6000 ohms with 750 volts on the plates. An instruction sheet is furnished with the transformer; to determine the transformer taps to be used, first measure the plate voltage and current of the motulated stage. Divide the voltage by the current in amperes, to determine the secondary load, and from the instruction sheet select the connections that come closest to matching the secondary load to 3800 ohms. Although it is not likely that an exact match will be possible, it is of little or no consequence. The ratio of the impedances is the important consideration.

A 50-Watt Modulator

Operation

When the modulator is completed, connect a key or other external switeh temporarily at J_{3}, and short-cireuit J_{4}. Plug P_{1} into an a, ${ }^{\text {a }}$, outlet, plug in the $5 \mathrm{U} \cdot \mathrm{t}$-(iB and the 01)3s, and turn on S_{1}. The filament of the $5 \mathrm{C}+\mathrm{t}$ (iB should glow. ('lcse the kery or switch at J_{3}; the 01):3s should light. Open the external switeh and plug in the spereh amplifier tubes. After allowing time for the GAV' and 6CCit to warm up, as indicated loy the heater glow, turn on the external switeh and turn off S_{1}. Nlow a half minute for the filter capacitors to be discharged by the speech amplifier tules, and then eheek with a voltmoter that no charge is left in the filter. Open the external switeh, plug in the 1625 s, and close S_{1}. After the heaters warm up, set the arm of h_{2} to give a voltage of -33 between arm and chassis. Connoet the transmitter or a dummy load to the modulator output (never operate the mordulator without a load: the modulation transformor insulation may break (lown). Set the volume eontrol at minimum (arm of R_{1} at chassis (ond) and close J_{3}. With a microphone connereded at, J_{1}, speaking into the mike and slowly opening R_{1} should deliver audio output from the modulator.

To obtain more power from the four 1625 s, it is necessary to use a highor-powered modulation transformer at $T T_{2}$ and to raise the plate voltage and grid bias. At $\overline{7} 00$ volts on the plates, the bias should te -35 volts.

The modulator should be turned on and off with the transmitter, so that a load is always furnished for the transformer. The modulator can be placed on standly by opening the circuit at J_{3}, or by adding additional negative voltage at J_{4}, depending upon the basic station control circuitry.

If a number of $1625 s$ are available, it is desirable to select four that have substantially the same plate current (28 ma .) for the -32 volts bias. The plate currents of the individual tubes can be measured between insulating plate cap and the tube plate cap, connecting the + terminal of the milliammeter to the transformer lead. Turn off the equipment between measurements to avoid the possibility of a dangerons electrical shock.

As with any modulator using an output transformer, the secondary winding should be short(ircuited (or the modulator disconnected) when the r.f. amplifier is used for c.w. or as a linear amplitier.

Fig. 9-22-Under the chassis of the 50 -watt modulator. Three selenium rectifiers in the bias supply are mounted on the left-hand wall of the chassis. Associated components are grouped around the speech-amplifer sockets (upper right).

Components mounted on the rear apron of the chassis, from left to right, are bias potentiometer, audio power socket \boldsymbol{J}_{2}, external bias connection J_{1}, external switch connection J_{3}, modulation monitor terminals $\boldsymbol{E}_{1}, E_{2}$ and \boldsymbol{E}_{3}, and the accessory socket J i.
Shielded wire is used on 60 -cycle a.c. leads in the power transformer primaries and secondaries to reduce the possibility of hum pick-up in the speech amplifier section.

9-SPEECH AMPLIFIERS AND MODULATORS

A 6146 Modulator and Speech Amplifier

The modulator shown in Figs, 9-23 to 9-25, inclusive, uses a pair of 614 fis in AB_{1}, and is complete with power and hias supplies on a $10 \times 1 \overline{7} \times 3$-inch chassis. The modulator atso is equipped with an audio take-off for sope monitoring.

The audio power that can be olotained (based on measurements) is as follows:

Nominal		Plate-to-Plate
Plate Voltage	Power Outpul	Load Resistaner
500 volts	75 watts	$\$ 200$ ohms
600 volts	6.5 wats	5200 ohms
7.50 volts	120 watts	6000 ohms

Suitahle sets of components for all three of the voltages listed above are readily available, so the power level can be selected to suit the Class C amplifier to be modulated. The modulator shown in the photographs is set up for $\overline{5} 0$-volt operation, but aside from the power and molulation transformers all components are the same regardless of the voltage level.

Audio Circuits

As shown in the cireruit diagram, Fig. (9-2.t. the audio system consists of a $12 . \mathrm{A} \overline{\mathrm{a}}$ preamplifier with the two tube sections in cascade, followed by a $6 C+$ voltage amplifier which is trans-former-coupled to the griuls of the Class AB_{1} modulator tubes. The combination provides ample gain for a communieations-type crystal, ceramie, or dynamic microphone.
The first stage of the amplifier is "contactpotential" biased, and is resistaner-roupled to the second stage. The gain control, h_{1}, is in the grid circuit of the socond stage. Decoupling resistors and caparitors are included in the platesupply circuits of these two stages; these decoupling eireuits also provide additional platesupply hum filtering for the two low-level stages.

The secondary of I_{1}, the transformer coupling the third speech stage to the modulator grids, is shunted by a $470-\mu \mu \mathrm{f}$. capacitor to reduce high-
frequency response. The optimum value of caparitance will depend on the partienlar tope of audio transformer selected, as well as on the highfrequency characteristics of the microphone emploved. Different values should be tried with the object of cutting the high-frequency response as much as possible, consistent with intelligibility.

The modulation transformer is of the multimatch type, and the taps should be selected to reflect the proper plate-to-plate load impedanee, as given earlier, for the desired power output. The impedance ratio, secondary to primary, will depend on the modulating impedance of the morlulated r.f, amplifier, as described earlier in this chapter. The secondary of the modulation transformer is shunted by (1 to reduce output at the higher audio frequencies, particularly for attemuating high-frequency harmonies that might be gencrated in the modulator at high output levels. The value suggested ($0,005 \mu \mathrm{f}$.) is an average figure and should be modified according to the modulating impedance of the Class-C stage as discussed carlier in this chapter.

Power Supply

Plate power for all tubes in the unit is supplied by a single power transformer. Mereury-vapor rectifiers are used berause good voltage regulat tion is desirable. The filter is a single section with choke input and a large (over $25 \mu \mathrm{f}$.) output catpacitance. The filter capacitor eonsists of three $80-\mu \mathrm{f}$. 450 -volt electrolytic capacitors in series for 750 -volt d.e. output. If the output voltage is 600 or less only two capacitors in series will be needed. These capacitors are shunted by 0.1 megohm resistors to help equalize the d.e. voltages across them.

The 200 -volt (approximately) supply for the 6116 sereens and the plates of the speech-amplifier tubes is taken from the main supply through a dropping resistor, and is regulated by two 0 I 3^{\prime} voltage-regulator tubes in series. A $20-\mu \mathrm{f}$. ca-

Fig. 9-23-Class-AB1 modulator using 6146s, complete with speech amplifier and power supply. The reloy-rack panel is $101 / 2$-inches high. Plate- and filoment-supply primary switches, each with its own pilot lamp, are near the lower edge of the panel. The gain control is at lower center. Along the front of the chassis, just behind the panel, ore the plate power transformer, filter choke, and modulation transformer, going from left to right. The fubes at the left are the 816 rectifiers, with the 6146s at the right. Along the rear edge ore the two voltage-regulator tubes, the 12AX7 and 6C4 speech amplifier tubes, and the interstage audio transformer, T_{1}.

A 120-Watt Modulator

Fig. 9-24-Circuit diagram of the 6146 modulator and power supply. Capacitances are in μ. unless indicated otherwise; capacitors marked with polarity are electrolytic, others may be paper or ceramic as convenient. Resistances are in ohms; resistors are $1 / 2$ watt except as indicated.
C_{1}-See text.
$C R_{1}$-Selenium rectifier, 20 ma . or higher rating, 130 volts.
$I_{1}-6.3$-volt pilot lamp.
1_{2}-Neon lamp, NE-51.
J_{1}-Microphone connector (Amphenol 75-PC1M).
J_{2}-Phono jack.
$\mathrm{J}_{3}, \mathrm{~J}_{4}-115$-volt chassis-mounting plug (Amphenol 61-M1).
K_{1}-Antenna changeover relay, 115 -volt coil (Advance $\mathrm{AH} / 2 \mathrm{C} / 115 \mathrm{VA}$; type $A M$ also suitable).
L_{1}-Filter choke, 10 henrys, 300 ma . (Triad C-19A).
R_{1} - 0.5 -megohm control, audio taper.
$\mathrm{R}_{2}-50,000$-ohm wire-wound control, 4 watts.
R_{3} - 15,000 -ohm adjustable, 50 watts.
$S_{1}, S_{2}-S . p . s . t$ t toggle.
$S_{3}-S . p .5 .1$., mounted on R_{1}.
pacitor is connected across the VR tubes to improve the dynamic regulation in the 6146 screen circuit, since the peak instantaneous screen current exceeds the regulating capacity (30 ma .) of the VR tubes when the modulator is driven to maximum output.

Fixed bias for the 6146 grids is taken from : huilt-in bias supply using a TV "booster" transformer with a selenium rectifier. This bias is
T_{1}-Interstage audio, single plate to p.p. grids, 3-to-1 secondary-to-primary ratio (Stancor A-63-C).
T_{2} —Multimatch modulation transformer, 125 watts (Triad M-12AL).
T_{3} —Filament transformer, 6.3 volts af 4 amp. (Triad F-53X).
T_{4}-Power transformer, 117 volts at 20 ma ; 6.3 -volt winding unused (Thordarson 26R32).
T_{5} —Plate transformer. For 500 volts d.c.: 1235 volts c.t., 310 ma . (Triad P-7A); for 600 volts d.c.: 1455 volts c.t., 310 ma . (Triad P-11A). Transformer shown is for either 600 or 750 volts d.c. output at 310 ma.; sec. voltage 1780 c.t. for 750 volts (Triad P-14A).
To—Filament transformer, 5 volts at 3 amp., 2500 -volt insulation (Stancor P-4088).
adjustahle by means of R_{2}. The bias supply and filament transformer are on the same a.c. rircuit so that bias is applied to the modulator grids whenever the tube heaters are energized.

Control and Auxiliary Circuits

The modulator includes an oscilloscope takeoff circuit consisting of the $0.05-\mu \mathrm{f}$. capacitor and three 1 -megohm resistors in series. This can be

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9-25-Below-chassis view of the 6146 modulator. The 816 sockets and filament transformer (T_{6}) are at the lower left. The chassis wall at the bottom has on it, left to right, the 115 -volt a.c. plugs, fuse holders, bias control (R_{2}), microphone input connector (J_{1}), scope take-off connector (J_{2}) and a three-terminal strip (Millen 37303) for oudio output and positive high voltage connections. The high-voltage filter capacitor bank is in the center, mounted on a plate of plastic insulation which is supported away from the chassis on small pillars. The 6.3 -volt transformer (T_{3}) is to the right of the capacitors. The antenna changeover relay used for shorting the modulation-transformer secondary is on the right-hand chossis wall.
used for horizontal deflection of a c.r. tube to give the trapezoidal modulation pattern (see chapter on amplitude modulation). Usually, it will be necessary to use an external control for adjusting the amplitude of the sweep voltage so oltained. If desired, a 1-megohm control can be substituted for the fixed resistor at the bottom of the string, thus avoiding the necessity for an external control.

The normally closed contacts of an antennatype relay, K_{1}, are used to short-circuit the secondary of the modulation transformer when the transmitter is to be used for c.w, work. The switch, S_{3}, that controls the relay is mounted on the gain control, R_{f}, so that when the gain is turned all the way off, thus opening the switch, the relay contacts close. This insures that the modulator is inoperative and cannot be driven by accidental voice input (which would result in excessive plate current) when the transformer secondary is short-circuited.
Separate a.c. imputs are provided for the fila-ment-bias and plate power circuits. The plate supply can thus be controlled by an external switch without disturbing the operation of the filament circuits or requiring a modification of the 115 -volt wiring.
Terminals are provided for taking out highvoltage d.c. for an external unit. The powersupply equipment has more capacity than is needed by the modulator unit itself (the rating for amateur-type service is somewhat over 300
ma.) and may in some cases be sufficient for operation of the modulated r.f. amplifier as well. At least 200 ma. should be available for this purpose, since the average plate-supply current in the modulator unit alone is less than 100 ma., including the speech-amplifier and VR-tube drain.

Operating Data

The dropping resistor in the screen-supply circuit should be adjusted so that the current through OB2s is 30 ma . with the bias on the 6146 grids adjusted so that the no-signal plate current is approximately 50 ma. The eurrent through the VIR tubes may be measured by temporarily opening the lead to the upper 0B2 at pin 5 and inserting a milliammeter of appropriate range.
If a sine-wave signal is used for testing the modulator, full output should be secured with a modulator plate current of approximately 240 ma. This value will be the same for all plate voltages, provided the screen voltage is maintained at approximately 200 volts and the values of plate-to-plate load resistance as specified earlier are used. With voice input the plate current will kick up to about 100 ma. on peaks, depending on the characteristies of the speaker's voice and those of the microphone used. This peak value should be determined under actual operating conditions with an oscilloscope, after which the plate milliammeter can be used as a modulation indicator.

Class B Modulator with Filter

Representative Class B modulator construction is illustrated by the unit shown in Figs. 9-26 and $9-28$. This modulator indudes a splatter

Fig. 9-26-A typical Class B modulator arrangement. This unit uses a pair of 811 As, capable of an audio power output of 340 watts, and includes a splatter filter. The modulation transformer is at the left and the splatter choke of the right. All high-voltage terminals ore covered so they cannot be touched accidentally.
filter, $C_{1} C_{3} L_{1}$ in the rirruit diagram. Fig. 9-27, and also has provision for short-cirruiting the modulation transformor socomdary when cow. is to lie liend.
The aulio input transformer is not built into this unit, it being assumed that this transformer

Fig. 9-27-Circuit diagram of the Class B modulator. C_{1}, C_{2}, L_{1}-See text. (L_{1} is Chisago Transformer type SR-300).
K_{1}-D.p.d.t. relay, high-voltage insulation (Advance type 400).

M-0-500 d.c. milliammeter, bakelife cose.
T_{1}-Variable-ratio modulation transformer (Chicago Transformer type CMS-1).
T_{2}-Filament transformer, 6.3 v. 8 omp . $\mathrm{I}_{1}-6.3$-volt pilot light.
X_{1}, X_{2}-Chassis-type 115 -volt plugs, mole.
X_{3}-Chassis-type 115 -volt receptacle, female.
S_{1}-S.p.s.t. toggle.
will be included in the driver assembly as is customary. If the modulator and spech amplifierdriver are mounted in the same rack or cabinet, the length of leads from the driver to the modulator grids presents no problem. The bias required by the moctulator tubes at their higher platevoltage ratings should he fed through the center tap on the secondary of the driver transformer. At a plate voltage of 1250 or less no hias is needed and the ernter-tap comection on the transformer can be grounded.

The values of C_{1}, C_{2} and L_{1} depend on the modulating impedance of the Class (C p.f. amplifier. They can be determined trom the formulas given in this chapter in the section on high-level clipping and filtering. The splatter filter will be effertive regardless of whether the modulator operating conditions are chosen to give high-level elipping, but it is worth while to design the sustem for elipping at 100 per cent modulation if the tube curves are available for that purpose. The voltage ratings for (${ }_{1}$ and C_{2} should at least equal the d.e. voltage applied to the modulated r.f. amplifier.

A relay with high-voltage insulation is used to short-circuit the secondary of T_{1} when the

Fig. 9-28-The relay and filament transformer are mounted below the chassis. C_{1}, C_{2} and K_{1} are mounted on small stand-off insulators.
relay coil is not energized. A normally closed contaet is used for this purpose. The other arm is used to close the primary cireuit of the modulator phate supply when the relay is energized. Shorting the transformer secondary is necessary when the r.f. amplifier is keyed, to prevent an inductive discharge from the transformer winding that would put "tails" on the keyed eharacters and, with cathode keying of the amplifier, would cause excessive sparking at the key contarts. The: control circuit should be arranged in such a way that K_{1} is not energized during c.w. operation but is morgizod by the send-receive switeh during phone operation.

Careful attention should he paid to insulation since the instantaneous voltages in the secondary circuit of the transformer will be at least twice the d.e. voltage on the r.f. amplifier. If a "hi-fi" amplifier of 10 watts or more output is available, it can be used as the driver for the 811As by coupling as shown in Fig. 9-29.

9-SPEECH AMPLIFIERS AND MODULATORS

Fig. 9-29-A 'hi-fi" audia amplifier will drive a Class-B modulator; a suitable coupling transformer is required. The connections shown here are for a pair of 811 As. The amplifier should have an output rating of at least 10 watts.
T_{1}-10-watt line-to-voice-coil transformer (Stancor A-8104).

Checking Amplifier Operation

An adequate job of cheeking speech equipment can be done with equipment that is neither elahorate nor expensive. A trpieal setup is shown in Fig. 9-30. The construction of a simple audio oseillator is described in the chapter on measurements. The audio-frequency voltmeter can be either a vacuum-tube voltmeter or a multirange volt-ohm-milliammeter that has a rectifier-type a.e. range. The headset is included for aural checking of the amplifier performance.

An audio oscillator usually will have an output control, but if the maximum output voltage is in excess of a volt or so the output setting may be rather eritical when a high-gain speech amplifier is being tested. In such cases an attenuator such as is shown in Fig. 9-30 is a convenience.

Fig. 9-30-Simple oscillator-attenuator test setup for checking a speech amplifier. It is not necessary that the frequency range of the audio oscillator be continuously variable; one or more "spot frequencies" will be satisfactory. Suitable resistor values are: R_{1} and $R_{3}, 10,000$ ohms; \mathbf{R}_{2} and $\mathbf{R}_{\mathbf{4}}, 1000$ ohms.

Each of the two voltage dividers reduces the voltage by a factor of roughly 10 to 1 , so that the over-all attenuation is about 100 to 1 . The relatively low value of resistance, R_{4}, connectedacross the input terminals of the amplifier also will minimize stray hum pickup on the connecting leads.

The output of a power amplifier such as a modulator or driver for a Class B stage may be checked by using a resistance load of the rated value for the amplifier. A useful cireuit arrangement is shown in Fig. 9-31. The load resistance, R_{1}, may be a single adjustable unit of appropriate power rating or may be made up of several resistors in series or parallel to give the required resistance. If measurement of the resistance is necessary an ohmmeter will be sufficiently accurate. In the case of a multimatch output transformer the taps should be those that will actually be used with the Class C amplifier with which the modulator is intended to work, R_{1} then should have a value equal to the modulating impedance of the r.f, amplifier.

Fig. 9-31-Circuif for measuring power and making qualitative checks of the amplifier oufput. Values to be used for R_{1} and R_{2} are discussed in the text. The secondary winding of the output fransformer in the amplifier should be disconnected from any d.c. source in the unit and one end connected to chassis as shown. An earth ground should be used on the system.

If an audio oseillator generating a good sine wave is used as the signal source the output power of the amplifier may be measured by an audio-frequency voltmeter as indicated by V. Either a vacuum-tube voltmeter on its a.c. scale or a rectifier-type a.c. voltmeter will be satisfactory, the prineipal requirements being relatively high impedance (1000 ohms per volt or more) and a reasonally accurate calibration. The power output will be equal to E^{2} / R_{1}, where E is the r.m.s. value of the voltage across the resistor (a.c, instruments usually are calibrated in r.m.s. values). This assumes that the distortion generated in the amplifier is small: if distortion is ligh, the voltmeter reading will be inaccurate.

If the amplifier is a driver for a Class B modulator, the value of R_{1} should be calculated from R / N^{2}, where N is the turns ratio, primary to total secondary, of the elass B input transformer, and R is the rated plate-to-plate load for the driver tube or tubes. R_{1} should of course be connected across the total secondary in this case.

For a qualitative check on distortion, provision is made in Fig. 9-31 for monitoring the output of the amplifier. R_{2} should be a wire-wound potentiometer having a resistance of 10 or 20 ohms. A headset may be connected to the "Monitor" terminals. Using the audio oscillator as a signal source, start with the gain control at minimum and then advance it slowly while listening carefully to the tone signal in the headset. When it begins to sound like a musical octave instead of a single tone, or when higher harmonically related tones can be heard along with the

Checking Speech Equipment

desired one, distortion is starting to become appreciable. This offect usually will be detectable, but not serious, at full output of the amplifier as indicated by the voltmeter realing. Feep the signal in the headset at a moderate level by adjusting $R 2$ when neressary. If the amplifier passes the distortion test satisfactorily, reduce the andio input to zoro and note whether any hum is audible in the headset. There should be none. if the tone level in the headset at full sine-wave output was no more than moderately high.
After completing these checks with satisfactory results, substitute the microphone for the osciflator input to the amplifier and have someone speak into it at a moderate level. The healset will serve to indicate the speech quadity at various output levels. I tape recorder, if availahle, is usefud at this stage since it can be substituted for the headset and will provide a means for comparing the effert of changes and adjustments
in which it is occurring cian be located by working from the last stage toward the front end of the amplificr, applying a signal to each grid in turn from the audio oscillator and adjusting the signal voltage for maximum output. In the rase of push-pull stages, the signal may be applied to the primary of the interstage transformer-after diseonnecting it from the plate-voltage source and the amplifier tube. Assuming that normal design prinejples have been followed and that all stages are theoretically working within their rapabilities, the probable causes of distortion are wiring arors (such as accidental short-cireuit of at eathode resistor), defective components, or use of wrong values of resistance in cathode and plate rircuits.

Using the Oscilloscope

Spereh-amplifier checking is facilitated considerably if an oscilloscope of the type having

Fig. 9-32-Test setup using the oscilloscope to check for distortion. These connections wilt result in the type of pattern shown in Fig. 9-33, the horizontal sweep being provided by the audio input signal. For wave-form pafterns, omit the connection between the audio oscillator ond the horizontal amplifier in the scope, and use the horizontal linear sweep.
in the amplifier as well as giving al hetter over-all cherk on speech quality than the average heatset. The effect of measures taken to attenuate high- or low-frequency response in the amplificr is readily observed by comparing recordings made before and after changes. The output quality of the amplifier also can he eompared with the original output of the microphone as registered on the recorder. In using a recorder care must be taken to set R_{2} so that the first stage in the rerorder amplifier is not overloaded. Cse the normal gain setting of the recorder and adjust R_{2} to give normal level indications.

Amplifier Troubles

If the hum level is too high, the amplifier stage that is causing the trouble can be located hy temporarily short-eireuiting the grid of each tuber to ground, starting with the output amplifier. When shorting a particular grid makes a marked derrease in hum, the hum presumably is coming from a preceding stage. although it is possible that it is getting its start in that particular grid gireuit. If shorting a grid does not decrease the hum, the hum is originating either in the plate rincuit of that tube or the grid circuit of the next. . livele from wiring crrors, a defertive tube, or inadequate plate-supply filtering, objectionable hum usually originates in the first stage of the amplifier.

If distortion occurs below the point at which the expected power output is secured the stage
amplifiers and a lincar swerp circuit is available. A typical setup for using the oseilloseope is shown in Fig. 0-its. With the connections shown, the sweep circuit is not required but horizontal and vertieal amplifiers are neeessary. Audio voltage from the oscillator is fed directly to one oseillosrope amplifier (horizontal in this case) and the output of the speech amplifier is commected to the other. The scope amplifier gains should be adjusted so that each signal gives the same line length with the other signal shut off.

Cnder these conditions, when the input and output signals are applied simultaneously they are compared directly. If the speed amplifier is distortion-free and introduces no phase shift, the resulting pattern is simply a straight linc, as shown at the upper left in Fig. 9-33, making an angle of about 45 degrees with the horizontal and vertical axes. If there is no distortion but there is phase shift, the pattern will be a smooth ellipse, as shown at the upper right. The greater the phase shift the greater the tendency of the ellipse to grow into a circle. When there is evenharmonic distortion in the amplifier one end of the line or ellipse becomes curved, as shown in the second row in Fig. 9-3;3. With ord-harmonie distortion such as is characteristic of overdriven push-pull stages, the line or ellipse is curved at both ends.

Patterns such as these will be obtained when the input signal is a fairly good sine wave. They will tend to become complicated if the input

9-SPEECH AMPLIFIERS AND MODULATORS

wave form is complex and the speerh amplifier introduces appreciable phase shifts. It is therefore advisable to test for distortion with an input signal that is as nearly as possible a sine wave. Also, it is best to use a frequency in the 500-1000 cyele range, since improper phase shift in the amplifier is usually least in this region. I'hase shift in itself is not of great importance in an audio amplifier of ordinary design because it does not change the character of speech so far as the ear is coneerned. However, if a complex signal is used for testing, phase shift may make it difficult to detect distortion in the oscilloscope pattern.

Since the oscilloscope amplifiers themselves may introduce phase shift and possibly distortion as well, it is advisable to check the scope before attempting to make checks on the speech amplifier. Apply the signal from the audio oscillator simultaneously to the horizontal and vertical amplifier input terminals. If both amplifiers have the same phase characteristics and negligible distortion the pattern, after suitable adjustment of the gains, will be a straight line as shown at the upper left in Fig. 9-33. If distortion is visible, note whether it changes when the scope gain controls are reduced; if not, the signal voltage from the audio oscillator is too great and should be reduced to the point where the input amplifiers are not overloaded. After finding the proper settings for signal input and scope gains, leave the latter alone in making checks on the speech equipment and adjust the input to the scope by means of R_{2} and the output of the audio oscillator. Phase shift in the scope itself is not serious since the presence of distortion in the speech amplifier can be detected by the patterns shown at the right in Fig. 9-33.

In amplifiers having negative feedback, excossive phase shift within the feed-back loop may cause self-oscillation, since the signal fed back may arrive at the grid in phase with the applied signal voltage instead of out of phase with it. Such a phase shift is most likely to he associated with the output transformer. Oscillation usually occurs at some frequency above 10,000 cycles, although occasionally it will occur at a very low frequency. If the pass band in the stage in which the phase shift occurs is deliberately restricted to the optimum voice range, as described earlier, the gain at both very high and very low frequencies will be so low that self-oseillation is unlikely, even with large amounts of feedback.

Generally speaking, it is easier to detect small amounts of distortion with the type of pattern shown in Fig. !--333 than it is with the wave-form pattern obtained by feeding the output signal to the vertical plates and making use of the linear sweep in the scope. However, the wave-form pattern can be used satisfactorily if the signal from the audio oscillator is a reasonably good sine wave. One simple method is to examine the output of the oscillator alone and trace the pattern on a sheet of transparent paper. The pattern given by the output of the amplifier can then be

Fig. 9-33-Typical patterns obtained with the connections shown in Fig. 9-32. Depending on the number of stages in the amplifier, the pattern may slope upward to the right, as shown, or upward to the left. Also, depending on where the distortion originates, the curvature in the second row may appear either of the top or bottom of the line or ellipse.
compared with the "standard" pattern by adjusting the oscilloscope gains to make the two patterns coincide as closely as possible. The pattern discrepancies are a measure of the distortion.

In using the oscilloscope care must be taken to avoid introducing hum voltages that will upset the measurements. Hum piekup on the scope leads or other exposed parts such as the amplifier load resistor or the voltmeter can be deteeted by shutting off the audio oscillator and speech amplifier and connecting first one and then the other to the vertical plates of the scope, setting the internal horizontal sweep to an appropriate width. The trace should be a straight horizontal line when the vertieal gain control is set at the position used in the actual measurements. Waviness in the line indicates hum. If the hum is not in the scope itsclf (eheck by disconnecting the leads at the instrument) make sure that there is a good ground connection on all the equipment and, if necessary, shield the hot leads.

The oscilloscope can be used to good advantage in stage-by-stage testing to check wave forms at the grid and plate of each stage and thus to determine rapidly where a source of trouble may be located. When the seope is eomerted to eircuits that are not at ground potential for d.e., a capacitor of about $0.1 \mu \mathrm{f}$, should be eonnected in series with the hot oscilloscope lead. The probe lead should be shielded to prevent hum pickup.

Amplitude Modulation

As described in the chapter on circuit fundamentals, the process of modulation sets up groups of frequencirs ralled sidebands, whirh appear symmetrically above and below the frequeney of the unmodulated signal or carrier. If the instantaneous values of the amplitudes of all these separate frequencies are addod together, the result is called the modulation envelope. In amplitude modulation (a.m.) the modulation envelope follows the amplitade variations of the andio-frequeney signal that is being used to motulate the wave.
For example, modulation by a 1000 -cycle tone will result in a modulation envelope that varies in amplitude at a 100 orevererate. The actual r.f. signal that produees such an envelope consists of three frequencies - the carrier, a side frequency 1000 evelos highor, and a side frequeney 1000 cyoles lower than the carrier. Thase three frequencies easily can be separated by a receiver hatving high selectivity. In order to reproduce the original modulation the receiver must have enough bandwidth to aceept the carrier and the sidebands simultaneously. This is because an a.m. detector respouds to the modulation envelope rather than to the individual signal eomponents, and the envelope will he distorted in the receiver unless all the frequency components in the signal go through without change in their relative amplitudes.

In the simple case of tone modulation the two side frequencies and the carrier are eonstant in amplitude - it is only the envelope amplitude that varies at the molulation rate. With more eomplex modulation such as voice or musie the amplitudes and frequencies of the side frequencies vary from instant to instant. The amplitude of the modulation envelope varies from instant to instant in the same way as the complex audio-frequence signal ealusing the modulation. Nevertheless, even in this case the curvier amplitude is eonstant if the transmitter is properly modulated.

A.M. Sidebands and Channel Width

Speech ean be electrically reproduced, with high intelligibility, in a band of frequencios lying between approximately 100 and 3000 cycles. When these frequencies are combined with a ratho-frequency earrier, the sidebands oceupy the frequency spectrum from about 3000 eycles below the carrier frequency to 3000 cycles abovea total band or channel of about 6 kiloeycles.

Actual speech frequeneins extend up to 10,000 eveles or morr, so it is possible to occuper a $20-\mathrm{kc}$. chamel if no provision is made for redueing its width. For communication purposes such a wamel width represents a waste of valuable spertrum space, since a (i-kc. chamel is fully adequate for intelligibility. Oceupying more than
the minimum channel creates unnecessary interference. Thus speech equipment design and transmitter adjustment and operation should be pointed toward maintaining the channel width at the minimum.

- THE MODULATION ENVELOPE

In Fig. 10-1, the drawing at A shows the unmodulated r.f. signal, assumed to be a sine wave of the desired radio frequency. The graph can be taken to represent either voltage or current.

In B, the signal is assumed to be modulated by the audio frequency shown in the small drawing above. This frequency is much lower than the carrier frequency, a necessary condition for good modulation. When the modulating voltage is "positive" (above its axis) the envelope amplitude is increased abore its ummodulated amplitude; when the modulating voltage is "negative" the envelope amplitude is decreased. Thus the envelope grows larger and smaller with the polarity and amplitude of the modulating voltage.

The drawings at C shows what happens with stronger modulation. The envelope amplitude is doubled at the instant the modulating voltage reaches its positive peak. (On the negative peak of the modulating voltage the envelope amplitude just reaches zero; in other words, the signal is completely modulated.

Percentage of Modulation

When a modulated signal is detected in a receiver, the detector output follows the modulation envelope. The stronger the modulation, therefore, the greater is the useful receiver output. Obviously, it is desirable to make the motulation as strong or "heavy" as possible. A wave modulated as in Fig. 10-1C would produce considerably more useful audio output than the one shown at B.

The "depth" of the modulation is expressed as a percentage of the unmodulated carrier amplitude. In either B or C, Fig. 10-1, X ropresents the unmodulated carrier amplitude, Y is the maximum envelope amplitude on the modulation up-peak, and Z is the minimum envelope ampliturle on the mestulation downpeak.

In a properly operating modulation system the modulation envelope is an accurate reproduction of the modulating wave, as can be seen in Fig. 10-1 at 13 and C by comparing one side of the outline with the shape of the modulating wave. (The lower outline duplicates the upper, but simply appears upside down in the drawing.)

The percentage of modulation is
$\%$ Mod. $=\frac{Y-X}{X} \times 100$ (upward modulation), or $\%$ Mod. $=\frac{A-Z}{X} \times 100$ (downward modulation)

10 - AMPLITUDE MODULATION

Fig. 10-1-Graphical representation of (A) r.f. output unmodulated, (B) modulated 50%, (C) modulated 100%. The modulation envelope is shown by the thin outline on the modulated wave.
If the wave shape of the modulation is such that its peak positive and negative amplitudes are equal, then the modulation percentage will be the same both up and down. If the two percentages differ, the larger of the two is customarily specified.

Power in Modulated Wave

The amplitude values shown in Fig. 10-1 correspond to current or voltage, so the drawings may be taken to represent instantaneous values of either. The power in the wave varies as the square of either the current or voltage, so at the peak of the modulation up-swing the instantaneous power in the envelope of Fig. 10-1C is four times the unmodulated carrier power (because the current and voltage both are doubled). At the peak of the down-swing the power is zero, since the amplitude is zero. These statements are true of 100 per cent modulation no matter what the wave form of the modulation. The instantaneous envelope power in the modulated signal is proportional to the square of its envelope amplitude at every instant. This fact is highly important in the operation of every method of amplitude modulation.

It is convenient, and customary, to describe the operation of modulation systems in terms of sine-wave modulation. Although this wave shape is seldom actually used in practice (voice wave shapes depart very considerably from the sine form) it lends itself to simple calculations and its use as a standard permits comparison between systems on a common basis. With sine-wave modulation the average power in the modulated signal over any number of full cycles of the modulation frequency is found to be $11 / 2$ times the power in the unmodulated carrier. In other words, the power output increases 50 per cent with 100 per cent modulation by a sine wave.

This relationship is very useful in the design of modulation systems and modulators, because any such system that is capable of increasing the average power output by 50 per cent with sinewave modulation automatically fulfills the requirement that the instantaneous power at the modulation up-peak be four times the carrior power. Consequently, systems in which the additional power is supplied from outside the modulated r.f. stage (e.g., plate modulation) usually are designed on a sine-wave basis as a matter of convenience. Modulation systems in which the additional power is secured from the modulated r.f. amplifier (e.g., grid modulation) usually are more conveniently designed on the basis of peak envelope power rather than average power.

The extra power that is contained in a modulated signal goes entirely into the sidebands, half in the upper sideband and half in the lower. As a numerical example, full modulation of a $100-$ watt carrier by a sine wave will add 50 watts of sideband power, 25 in the lower and 25 in the upper sideland. Supplying this additional power for the sidebands is the object of all of the various systems devised for amplitude modulation.

No such simple relationship exists with complex wave forms. Complex wave forms such as speech do not, as a rule, contain as much average power as a sine wave. Ordinary speech wave forms have about half as much average power as a sine wave, for the same peak amplitude in both wave forms. This for the same modulation percentage, the sideband power with ordinary speech will average only about half the power with sine-wave modulation, since it is the peak envelope amplitude, not the average power, that, determines the percentage of modulation.

Unsymmetrical Modulation

In an ordinary electric circuit it is possible to increase the amplitude of current flow indefinitely, up to the limit of the power-handling capability of the components, but it cannot very well be decreased to less than zero. The same thing is true of the amplitude of an r.f. signal; it can be modulated upuard to any desired extent, but it cannot be modulated downward more than 100 per cent.

When the modulating wave form is unsymmetrical it is possible for the upward and downward modulation percentages to be different. A simple case is shown in Fig. 10-2. The positive peak of the modulating signal is about 3 times the amplitude of the negative peak. If, as shown in the drawing, the modulating amplitude is adjusted so that the peak downward modulation is just 100 per cent ($Z=0$) the peak upward modulation is 300 per cent $(Y=4 X)$. The carrier amplitude is represented by X, as in Fig. 10-1. The modulation envelope reproduces the wave form of the modulating signal accurately, hence there is no distortion. In such a modulated signal the increase in power output with modulation is considerably greater than it is when the modulation is symmetrical and therefore has to be limited to 100 per cent both up and down.

Fig. 10-2-Modulation by an unsymmetrical wave form. This drawing shows 100% downward modulation along with 300% upward modulation. There is no distortion, since the modulation envelope is an accurate reproduction of the wave form of the modulating voltage.

In Fig. 10-2 the peak envelope amplitude, Y, is four times the carrier implitude, N, so the peakenvelope power is 16 times the carrier power. When the upward modulation is more than 100 per cent the power celpacity of the modulating system obviously must be increased sufficiently to take care of the much larger poak amplitudes.

Overmodulation

If the amplitule of the modulation on the downwad swing beromes too great, there will be a period of time during which the r.f. output is entirely cut off, This is shown in Fig. 10-3. The shape of the downward hatf of the modulating wave is no longer accurately reproduced by the modulation envelope, consequently the modulation is distorted. (uperation of this type is called overmodulation. The distortion of the modulation envelope caluses new frequencios (harmonias of the modulating frequency) to le generated. These combine with the e:urier to form new side freguencies that widen the chamel ocelupied ly the modulated signal. "hese spurions frequencies are commonly called "splatter."
It is important to realize that the chamel

Fig. 10-3-An overmodulated signal. The modulation envelope is not an accurate reproduction of the wave form of the modulating voltage. This or any type of distortion occurring during the modulation process generates spurious sidebands or "splatter."
occupied by an amplitude-modulated signal is dependent on the shape of the modulation envelope. If this wave shape is complex and can be resolved into a wide band of audio frequencies, then the chanmel occupied will be correspondingly large. An overmodulated signal splatters and occupies a mush wider channel than is nerossary beculuse the "elipping" of the modulating wave that occurs at the zero axis changes the envelope wave shape to one that contains highordor harmonies of the original modulating frequency. These harmonics appear as side frequendies separated by , in some cases, many kilocyeles from the carrier trequency.

Becaluse of this clipping action at the zero axis, it is important that care be taken to prevent applying too large a molulating signal in the downward direction. Overmodulation downward results in more splatter than is caused by most other tepes of distortion in a phone tramsmitter.

GENERAL REQUIREMENTS

For proper operation of an amplitude-modulated transmitter there are a few general requirements that must be met no matter what particular method of modulation may be used. Fitilure to mert thase reguirements is acoompamied by distortion of the modulation envelope. This in turn increases the ehamel width as rompared with that reguired by the legitimate frequeneires rontaned in the original modulating wave.

Frequency Stability

For satisfactory amplitude modulation, the carrier frequency must lee entirely unaffected by modulation. If the application of modulation causes a change in the carrice frequency, the frequency will wobble back and forth with the modulation. This caluses distortion and widens the chamel taken by the signal. Thus unnecessary interference is caused to other transmissions.

In practice, this undesirable frequency modulation is prevented by applying the modulation to an r.f. amplifier stage that is isolated from the frequency-controlling uscillator by a buffer amplifier, Amplitude modulation applied directly to an oscillator always is accompanied by frequency modulation. I'nder existing FCC regulations amplitude modulation of an oscillator is permitted only on frequencies above 144 Mc . Below that frequency the regulations require that an amplitude-modulated transmitter be completely free from frequency modulation.

Linearity

At least up to the limit of 100 per cent upward modulation, the amplitude of the r.f. output should be directly proportional to the implitude of the modulating wave. Fig. 10-4 is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and instantaneous modulation amplitude. The modulation swings the r.f. ampli-

Fig. 10.4-The modulation characteristic shows the relationship between the instantaneous envelope amplitude of the r.f. output current (or voltage) and the instantaneous amplitude of the modulating voltage. The ideal characteristic is a straight line, os shown by curve A.
tude back and forth along the curve A, as the modulating voltage alternately swings positive and negative. Assuming that the negative peak of the modulating wave is just sufficient to reduce the r.f. output to zero (modulating voltage equal to -1 in the drawing), the same modulating voltage peak in the positive direction $(+1)$ should cause the r.f. amplitude to reach twice its unmodulated value. The ideal is a straight line, as shown by curve A. Such a modulation churacteristic is perfectly linear.

I nonlinear characteristie is shown by curve l3. The r.f. amplitude does not reach twice the unmodulated carrier amplitude when the modulating voltage reaches its positive peak. A modulation characteristic of this type gives a modulation envolope that is "flattened" on the uppeak; in other words, the modulation envelope is not an exact reproduction of the modulating wave. It is therefore distorted and harmonies are generated, causing the transmitted signal to
occupy a wider chamel than is necessary. it nonlinear modulation characteristic can easily result when a transmitter is not properly designed or is misadjusted.

The modulation capability of the transmitter is the maximum percentage of modulation that is possible without objectionable distortion from nonlinearity. The maximum capability can never exceed 100 per cent on the down-peak, but it is possible for it to be higher on the up-peak. The modulation capability should be as close to 100 per cent as possible, so that the most effective signal can be transmitted.

Plate Power Supply

The d.c. power supply for the plate or plates of the modulated amplifier should be well filtered; if it is not, plate-supply ripple will modulate the carrier and cause annoying hum. The ripple voltage should not be more than about 1 privent of the d.e. output voltage.

In amplitude modulation the plate current of the modulated 1 .f. amplifier varies at an audiofregueney rate: in other words, an alternating current is superimposed on the d.c. plate current. The output filter capaceitor in the plate supply must have low reactance, at the lowest audio frequency in the modulation, if the transmitter is to modulate equally well at all audio frequencies. The capacitance required depends on the ratio of d.c. plate current to plate voltage in the modulated amplifier. The requirements will be met satisfactorily if the caparitance of the output caparitor is at least equal to

$$
C=2 \pi \frac{l}{k}
$$

where $C=C$ apacitance of matpat capacitor in $\mu \mathrm{f}$.
$J=$ D.c. plate eurrent of momblated amplifior in milliamperes
$E=$ Plate voltage of modulated amplifier

Example: A modulated amplifier operates at 1200 volts and 275 ma. The caparitane of the output capacitor in the plate-supmly filter should be at least

$$
C=2.5 \frac{I}{E}=2.5 \times \frac{27.5}{1250}=2.5 \times 0.22=5.5 \mu \mathrm{f}
$$

Amplitude Modulation Methods

MODULATION SYSTEMS

As cxplained in the preceding section, amplitude modulation of a carvier is accompanied by an increase in power output, the additional power being the "useful" or "talk power" in the sidebands. This additional power may be supplied from an external source in the form of audiofrequency power. It is then added to the unmodulated power input to the amplifier to be modulated, after which the combined power is converted to r.f. This is the method used in plate modulation. It has the advantage that the r.f. power is generated at the high efficieney
characteristic of Class C amplifiers - of the order of 65 to 75 per cent - but has the accompanying disadsuntage that gromerating the audio-frequency power is rather expurive.

An alternative that does not require relatively large amounts of audiofrequency power makes use of the fact that the power output of an amplifier can be controlled by varying the potential of a tube clement - such as a control grid or a screen grid - that does not, in itself, consume appreciable power. In this case the additional power during modulation is secured by saterificing carrier power: in other words, a tube is capable of delivering only so much total power

Fig. 10-5-Plate modulation of a Class C r.f. amplifier. The r.f. plate bypass capacitor, C , in the amplifier stage should have reasonably high reactance at audio frequencies. A value of the order of $0.001 \mu \mathrm{f}$. to $0.005 \mu \mathrm{f}$. is satisfactory in practically all cases. (See chapter on modulators.)
within its ratings, and if more must be delivered at full modulation, then less is available for the unmodulated carrier. Systems of this type must of necessity work at rather low efficiency at the unmodulated carrier level. As a practical working rule, the efficiency of the modulated r.f. amplifier is of the order of 30 to 35 per cent, and the unmodulated carrier power output obtainable with such a system is only about one-fourth to onethird that obtainable from the same amplifier with plate modulation.

It is well to appreciate that no simple modulation scheme that purports to get around this limitation of grid modulation ever has actually done so. Methods have been devised that have resulted in modulation at high over-all efficiency, without requiring audio power, by obtaining the necessary additional power from an auxiliary r.f. amplifier. This leads to circuit and operating complexities that make the systems unsuitable for amateur work, where rapid frequency change and simplicity of operation are almost always essential.

The methods discussed in this section are the basic ones. Variants that from time to time attain passing popularity can readily be appraised on the basis of the preceding paragraphs. A simple grid modulation system that claims high effieiency should be looked upon with suspicion, since it is almost certain that the high efficiency, if actually achieved, is obtained by sacrificing the linear relationship between modulating signal and modulation envelope that is the first essential of a good modulation method.

plate modulation

Fig. 10-5 shows the most widely used system of plate modulation, in this case with a triode r.f. tube. A balanced (push-pull Class A, Class AB or Class B) modulator is transformer-coupled to the plate circuit of the modulated r.f. amplifier. The audio-frequency power generated by the modulator is combined with the d.c. power in the modulated-amplifier plate circuit by transer through the coupling transformer, T. For 100 per cent modulation the audio-frequency power output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the modulated amplifier varies between zero and twice the d.e. operating plate voltage, thus causing corresponding variations in the amplitude of the r.f. output.

Audio Power

As stated earlier, the average power output of the modulated stage must increase during modulation. The modulator must be capable of supplying to the modulated r.f. stage sine-wave audio power equal to 50 per cent of the d.c. plate input. For example, if the d.c. plate power input to the r.f. stage is 100 watts, the sine-wave audio power output of the modulator must be 50 watts.

Modulating Impedance; Linearity

The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
Z_{\mathrm{m}}=\frac{E_{\mathrm{b}}}{I_{\mathrm{p}}} \times 1000 \text { ohms }
$$

where $E_{\mathrm{b}}=$ D.c. plate voltage

$$
I_{\mathrm{p}}=\text { D.c. plate current (ma.) }
$$

E_{b} and I_{p} are measured without modulation.
The power output of the r.f. amplifier must vary as the square of the instantaneous plate voltage (the r.f. output voltage must be proportional to the plate voltage) for the modulation to be linear. This will be the case when the amplifier operates under Class C conditions. The linearity depends upon having sufficient grid excitation and proper bias, and upon the adjustment of circuit constants to the proper values.

Adjustment of Plate-Modulated Amplifiers

The general operating conditions for Class C operation are described in the chapter on transmitters. The grid bias and grid current required for plate modulation usually are given in the operating data supplied by the tube manufaeturer; in general, the bias should be such as to give an operating angle of about 120 degrees at the d.c. plate voltage used, and the grid excitation should be great enough so that the amplifier's plate efficiency will stay constant when the plate voltage is varied over the range from zero to twice the unmodulated value. For best linearit y, the grid bias should be oltained from a fixedbias source of about the cut-off value, supplemented by enough grid-leak bias to bring the total up to the required operating bias.

Fig. 10-6-Plate and screen modulation of a Class C r.f. amplifier using a screen-grid tube. The plate r.f. bypass capacitor, C_{1}, should have reasonably high reactance at all audio frequencies; a value of 0.001 to $0.005 \mu \mathrm{f}$, is generally satisfactory. The screen bypass, C_{2}, should not exceed $0.002 \mu \mathrm{f}$, in the usual case.

When the modulated amplifier is a beam tetrode the suppressor connection shown in this diagram may be ignored. If a base terminal is provided on the tube for the beam-forming plates, it should be connected as recommended by the tube manufacturer.

The maximum permissible d.c. plate power imput for 100 per eent modulation is twice the sine-wave audio-frequency power output available from the modulator. This input is obtained by varying the loading on the amplifier (keeping its tank (ideuit tuned to resonance) until the product of d.c. plate voltage and plate current is the desired power. The modulating impedance under these conditions must be transformed to the proper value for the modulator by using the correct output-transformer turns ratio. This point is considered in detail in the chapter on morlulator design.

Neutralization, when triodes are used, should be as nearly perfect as possible, since regeneration may cause nonlinearity. The amplifier also must be completely free from parasitic oscillations.

Although the total power input (d.c. plus audio-frequency a.c.) increases with morlulation, the d.c. plate current of a plate-modulated amplifier should not change when the stage is modulated. This is because each increase in plate volt-

Fig. 10.7-Plate modulation of a beam tetrode, using an oudio impedance in the screen circult. The value of L_{1} is discussed in the text. See Fig. $10-6$ for data on bypass capacitors C_{1} and C_{2}.
are and pate current is batanced bey an equivalent decrease in voltage and current on the next half-cyede of the modulating wave. D.c. instruments cannot follow the a.f. variations, and since the average d.c. plate current and plate voltage of a properly oproted amplifier do not change, neither do the meter readings. I change in plate current with modulation indicates monlinearity. On the other hand, a thermocouple r.f. ammeter commeted in the antemna or tramsmission line will show an increase in r.f. current with modulation, because instruments of this type respond to power rather than to current or voltage.

Screen-Grid Amplifiers

Screen-grid tubes of the pentode or beamtetrode type cam be used as ('lass C plate-modulated amplifiers he applying the modulation to both the phate and sereen grid. The usual method of feeding the sereen grid with the necessary d.c. and modulation voltages is shown in Fig. 10-6. 'l'he dropping resistor, R, should be of the proper value to apply normal d.c. voltage to the screen under steady carrier conditions. Its value can be calculatod by taking the difference betwern plate and sereen voltages and dividing it by the rated sereen current.
The modulating impedance is found by dividing the d.e. plate voltage by the sum of the plate and sereen currents. The plate voltage multiplied by the sum of the two currents gives the power input to be used as the hasis for determining the audio power required from the modulator.

Modulation of the sereen along with the plate is necesary hecause the sereen voltage has a much greater effect on the plate current than the plate voltage does. The modulation characteristic is nonlinear if the plate alone is modulated. However, some beam tetrodes can be modulated satisfactorily by applying the modulating power to the plate aircuit alone, provided the sereen is connected to its d.e. supply through an audio impedanere. Vnder these conditions the screen becomes self-modulating, berause of the variations in screen current that ocrur when the plate voltage is varied. The circuit is shown in Fig. 10-7. The choke coil L_{1} is the audio impedance in the screen rircuit; its inductance should be large enough to have a reactance (at the low'st desired audio frequency) that is not less than the impedane of the sereen. The sereen impedance ean be taken to be approximately equal to the d.e. sereen voltage divided by the d.c. screen current in amperes.

Choke-Coupled Modulator

The ehoke-coupled Class A modulator is shown in Fig. 10-8. Because of the relatively low power output and plate efficience of a Class A amplifier, this method is seldom used except for a few special applications. There is considerably less freedom in adjustment, since no transformer is available for matching impedances.

The modulating impedance of the r.f. amplifier must be adjusted to the value of load impedance required by the particular modulator tube used,

Plate and Grid Modulation

and the power input to the r.f. stage should not excerd twice the rated a.f. power output of the modulator for 100 per crat modulation. Tha plate voltage on the modalator must be higher than the plate voltage on the r.f. amplifier, for

Fig. 10-8-Choke-coupled Class A modulator. The cothode resistor, R_{2}, should have the normal value for operation of the modulator tube as a Class A power amplifier. The modulation choke, L_{1}, should be 5 henrys or more. A value of 0.001 to $0.005 \mu \mathrm{f}$. is satisfactory at C_{2}, the r.f. amplifier plate bypass capacitor. See text for discussion of C_{1} and R_{1}.

100 per cent modulation, because the a.f. voltage developed by the modulator camot swing to zero without a great deal of distortion. R_{1} provides the neressary d.e. voltage drop between the modulator and r.f. amplifier. The d.e, vollage drop through R_{1} must equal the minimum instantaneous plate voltage on the modulator tube under normal operating conditions, C_{1}, an atudiofrequency bypass ateross h_{1}, should have a rapacitance such that its reactance at 100 cereles is not more than about one-tenth the resistance of R_{1}. Withont $R_{1} '_{1}$ the pereentage of modulation is limited to 70 to 80 per cent in the average case.

GRID MODULATION

The principal disadvantage of plate modulation is that a considerable amount of audio power is noressary. This requirement can be avoided by applying the modulation to a grid element in the modulated amplifier. However, serious disadvantages of grid modulation are the reduetion in the carrier power output obtanable from a given r.f. amplifier tube and the more rigorous operating requirements and more complicated adjustment.
The term "grid modulation" as used here applies to all types - eontrol grid, sereen, or suppressor - sinee the operating prineiples are exactly the same no matter which grid is actually
modulated. With grid modulation the phate voltage is comstant, and the increase in power output with modulation is whaned by making both the plate current and plate efficiency vary with the modulating sigmal as shown in Fig. 10-9. For 100 per eront modulation, both plate earrent and efficiency must, at the peak of the modulation up-swing, be twice their carrier values. Thus at the modulation-envelope prak the power imput is doubled, and sime the plate effiriency also is doubled at the sume instant the peak anvelope

Fig. 10-9-In a perfect grid-modulated amplifier both plate current and plate efficiency would vary with the instantaneous madulating voltage as shown. When this is so the modulation characteristic is as given by curve A in Fig. $10-4$, and the peak envelope output power is four times the unmodulated carrier power. The variations in plate current with modulation, indicated above, do not register on a d.c. meter, so the plate meter shows no change when the signal is modulated.
output power will be four times the carrier power. The efficiendey obatinable at the muclope pats depends on how earefully the modalated amplifier is adjusted, and sometimes ran be as high as 80 per eent. It is genemally less when the amplifier is adjusted for good linearity, and under averame conditions a round figure of $2 / 3$, or tif per cent, is represcntative. The afficioney without modalation is only half the peak efliciemer, on about :f:3 per cent. This low average efficiency redueds the permissible carrier output to about one-fourth the power oltainable from the same tube in c.w. operation, and to about one-third the carrider output obtainable from the tube with plate modulation.

The modulator is required to furnish only the audio power dissipated in the modulated grid under the oprating eonditions chosen. A speech amplifier eapable of delivering 3 to 10 watts is usually sufficient.

Grid modulation does not give quite as linear a modalation chararteristie as phate modulation, even under optimum operating conditions. When misadjusted the nonlinearity mas be severe, resulting in bad distortion and splatter.

10-AMPLITUDE MODULATION

Plate-Circuit Operating Conditions

The d.c. plate power imput to the grid-modulated amplifier, assuming a round figure of $1 / 3$ (33 per (ent) for the plate efficiency, should not exered $1 \frac{1}{2}$ times the plate dissipation rating of the tube or tubes used in the modulated stage. Use the maximum plate voltage permitted by the manufacturer's ratings, berause the optimum oproating conditions are more asily achieved with high plate voltage and the linearity also is improved.

Example: Two tubes having plate dissipation ratings of 5 : watts each are to be usod with grid modulation.
The maximum permissible power inpht, at 333% aficiency, is
$P=1.5 \times(2 \times 55)=1.5 \times 110=16.5$ watts The maximum recommombal plate voltage for these tubes is 1500 volts. laing this figure, the average phate current for the two tubes will be

$$
I=\frac{p}{E}=\frac{100}{1,00}=0.11 \mathrm{amp}=110 \mathrm{~ms}
$$

It 33 co eflicienes, the earrier output to be expected is 55 watts.

The plate-voltage/phate-curront ratio at twief carrior plate curront is

$$
\frac{1.700}{220}=6.8
$$

The tank-eirenit L / C^{*} ratio should be chosen on the basis of wiee the aworage or earrier plate comrent. If the $L / / C^{\prime}$ ratio is based on the phate voltare/plate current ratio under carrier eonditions the () may be too low for gorn colpling to the output circuit.

Screen Grid Modulation

Sereen modulation is probahly the simplest form of grid modulation and the least critieal of adjustment. The most sat isfactory way to apply the modulating voltage to the screen is through a transfomer, as shown in Figs. 10-10. With practieal tubes it is neerssary to drive the sereen some what negative with respere to the eathode to get complete cut-off of r.f. output. For this reason the peak modulating voltage required for 100 per cent modutation is usually 10 per cent or so greater tham the d.e. sereern voltage. The latter, in turn, is approximately half the rated sereen voltage recommended under maximum ratings for ew, operation.

The atudio power required for 100 per eent modulation is approximately one-fourth the d.c. power input to the sereen in cow. operation, hut varies somewhat with the operating conditions. A recoiving-type andio power amplifier will suffice as the modulator for most transmitting tubes. The relationship hetwern sereon voltage and screen current is not linear, which means that the load on the modulator varies over the audio-frequency eyele. It is therefore highly advisable to use negative feredback in the moxlulator circuit. If excess andio power is available, it is also advisable to load the modulator with a resistance (R in lig. 10-10) its value being adjusted to dissipate the exeres power. There is no simple way to dotermine the proper resistane

Fig. 10.10-Screen-grid modulation of beam tetrode. Capacitor C is an r.f. bypass capacitor and should have high reactance at audio frequencies. A value of $0.002 \mu \mathrm{f}$. is satisfactory. The grid leak can have the same value that is used for c.w. operation of the tube.
exerpt experimentally, by ohsorving its effert on the modulation envelope with the aid of an oscilloseope.
On the assumption that the modulator will be fully loaded by the sereen phas the additional load resistor h, the turns ration required in the coupling transformer may be calculatom as follows:

$$
N=\frac{E_{i 1}}{2.5 \sqrt{P R_{\mathrm{L}}}}
$$

where N is the furns ratio, secondary to primary; E, is the rated surero voltage for cew. opreration: P is the rated andio power ontput of the modulator: athe R_{1}, is the rated lowd resistance for the morlulator.

Adjustment

A sereen-modulated amplifier should be adjusted with the aid of an oscilloscope connected to give a trapezoid pattern (ser later in chapter). A tone source for modulating the tramsmitter is a convenience, sine a stemdy tone will give a steady pattern on the oscillosooper, A strady pattern is cosier to study than one that flickers with voice modulation.
llaving determined the permissible carrier plate current as previously deseribed, apply r.f. excitation and d.e. plate and sereen voltages. Without modulation. adjust the plate loading to give the required plate current, keeping the phate tank rireuit tuned to resonamee. Next, apply modulation and increase the modulating voltage until the modulation characterist ic shows carvature (see later in this chapter for usi of the oscilloseoper). If eurvature oreurs well below 100) per eent modulation, the plate efficioncy is too high at the earrier level. Increase the phate loading slightly and readjust the r.f. grid exeitation to mantain the same plate current; then apply modulation and check the characteristie again. Continue until the characteristie is as linear ats possible from zoro to twice the earrion amplitude.

In general, the amplifier should be heavily loaded. L'nder proper operating conditions the plate-current dip as the amplifier plate direnit is tuned through resonance will be little more than just diseernible. Operate with the grid eurent an low as posible, since this reduces the sereen cur-

Types of Modulation

rent and thus reduces the amount of power required from the modulator.

With proper adjustment the linearity is good up to about 90 per cent modulation. When the screen is driven negative for 100 per cent modulation there is a kink in the modulation characteristic at the zero-voltage point. This introduces a small amount of envelope distortion. The kink can be removed and the over-all linearity improved by applying a small amount of modulating voltage to the control grid simultaneously with screen modulation.

In an alternative adjustment method not roquiring an oscilloseope the r.f. amplifier is first tuned up for maximum output without modulation and the rated d.e. sereen voltage (from a fixed-voltage supply) for c.w. operation applied. Use heavy louding and reduce the grid excitation until the output just starts to fall off, at which point the resonance dip in plate current should be small. Note the plate current and, if possiWe, the r.f. output clirrent, and then reduce the d.c. screen voltage until the plate current is one-half its previous value. The r.f. output current should also be one-half its previous value at this sereen voltage. The amplifier is then ready for modulation, and the modulating voltage may be increased until the plate current just starts to shift upward, which indicates that the amplifier is modulated 100 per cent. With voice modulation the plate current should remain steady, or show just an oceasional small upward kick on intermittent peaks.

"Clamp.Tube" Modulation

A method of sereen-grid modulation that is convenient in transmitters provided with a sereen protective tule ("clamp" tube) is shown in Fig. 10-11. An audio-frequency signal is applied to the grid of the clamp tube, which then becomes a modulator. The simplicity of the circuit is some-

Fig. 10-11-Screen modulation by a "clamp" tube. The grid leak is the normal value for c.w. operation and C_{2} should be $0.002 \mu \mathrm{f}$. or less. See text for discussion of C_{1}, R_{1}, R_{2} and R_{3}. R_{3} should have the proper value for Class A operotion of the modulator tube, but cannot be calculated unless triode curves for the tube are available.
what deceptive, since it is considerably more difficult from a design standpoint than the transformer-coupled arrangement of Fig. 10-10.

For proper modulation the elamp tube must be operated as a triode Class A amplifier: the method is essentially identical with the choke-coupled Class A plate modulator of Fig. 10-8 except that a resistance, R_{2}, is substituted for the choke. R_{2}, in the usual case, is the screen dropping resistor normally used for c.w. operation. Its value should be at least two or three times the load resistance required by the Class i modulator tube for optimum audio-frequency output.

Like the choke-coupled modulator, the clamptube modulator is incapable of modulating the r.f. stage 100 per cent unless the dropping resistor, K_{1}, and andio bypass, C_{1}, are incorporated in the circuit. The same design eonsiderations hold, with the addition of the faet that the sereen must be driven negative, not just to zero voltage, for 100 per cent modulation. The modulator tube must thus be operated at a voltage ranging from 20 to 40 per cent higher than the modulated screen.

Adjustment with this system, once the design voltages have been determined, is carried out in the same way as with transformer-coupled screen modulation, preferably with the oseilloscope. Without the oscilloscope, the amplifier may first be adjusted for ew. operation as described earlier, but with the modulator tube removed from its socket. The modulator is then replaced, and the eathode resistance, K_{3}, adjusted to reduce the amplifier plate current to one-half its c.w. value. The amplifier plate current should remain constant with modulation, or show just a small upward flieker on oceasional voice peaks.

Controlled Carrier

As explained earlier, a limit is placed on the output obtainable from a grid-modulation system by the low r.f. amplifier plate efficieney (approximately 33 per cent) under unmodulated carrier conditions. The plate efficiency increases with modulation, since the output increases while the d.c. input remains constant, and reaches a maximum in the neighborhood of 50 per cent with 100 per cent sine-wave modulation. If the power input to the amplifier can be reduced during periods when there is little or no modulation, thus reducing tho plate lose, advantago can bo taken of the higher effiriency at full modulation to obtain higher effective output. This can be done by varying the d.e. power input to the modulated stage in accordance with average variations in voice intensity, in such a way as to maintain just sufficient carrier power to keep the modulation high, but not exceeding 100 per cent, under all conditions. Thus the earrier amplitude is controlled by the average voice intensity. Properly utilized, controlled carrier permits increasing the carrier output at maximum level to a value about equal to the rated phate dissipation of the tube, twice the output obtainable with constant carrier.

It is desirable to control the power input just enough so that the plate loss, without modulation, is safely below the tube rating. Excessive

Fig. 10-12-Circuit for carrier control with sereen modulation. A small triode such as the 6C4 can be used as the control amplifier and a 6Y6G is suitable as a capriercontrol tube. T_{1} is an interstage audio transformer having a 1 -to-1 or larger turns ratio. R_{4} is a 0.5 -megohm volume control and also serves as the grid resistor for the modulator. A germanium crystal may be used as the rectifier. Other values are discussed in the text.
control is disadvantageous beramse the distant reeciver's arer. system nust continually follow the variations in average signal level. The eremit of Fig. IO-I' permits adjustment of both the maximum and minimum power input, and atthough somewhat more eomplicated than some cirenits that have beren used is actuatly simpler to operate becanse it separates the functions of modulation and carrier eontrol. A portion of the audio voltage at the molulator grid is applied to a (lass A "control amplifier" which drives a rectifier cirmit to produce a d.e voltage negative with respect to gromed. Cif filters out the andio variations. leaving at d.e. voltage proport ional to the average voice lavel. This voltage is applied to the grid of a "clamp" tube to "ontrol the d.e. sereen voltage and thes the r.f. carrior level. Maximum ontput is ohtained when the carriorcontrol tube grid is driven to cut-off, the voice level at which this oreurs being determined by the setting of R_{4}. The inpur without modulation is set to the desimed lavel (usuatly about equal to the plate dissipation rating of the modulated stage) by adjusting R_{2}, R_{3} may be the normal screm-dropping resistor for the modulated beam tetrode, but in cosse a sepherate serven supply is used the resistance need be just large enough to give sufficient voltage drop to reduce the nomodulation paver input to the desired value.
$C_{1} R_{1}$ and $C_{2} R_{3}$ should have a time constant of athout 0.1 saromed. An osidloseope is required for proper adjustment.

Suppressor Modulation

Pentode-type tubes do not, in general, modulate woll when the modulating voltage is appliod to the sereongrid. Howeror, a satistatory modulation characteristic can be obtained by applying the modulation to the suppressor grid. The circuit arramgement for suppressor-grid modulation of a pentote tube is shown in Fig. 10-13.

The mothod of adjustment closely resembles

Fig. 10-13-Suppressor-grid modulation of an r.f. amplifier using a pentode-type tube. The suppressorgrid r.f. bypass capacitor, C, should be the same as the grid bypass capacitor in control-grid modulation.
that used with sereen-grid modulation. If an oscilloscope is not available, the amplifier is first adjusted for optimum c.w. output with zero bias on the suppressor grial. Sufficient megative hits is then applied to the suppressor to drop the plate current and r.f. output rument to half their original values. The amplifier is then ready for modulation.
Since the suppressor is always negatively biased, the modulator is not required to furnish any power and at voltage amplifier can be used. The suppressor hias will vary with the type of pentode and the operating conditions, hut usually will be of the order of -100 volts. The peak a.f. voltage required from the modulator is equal to the suppressor bias.

Control-Grid Modulation

Although control-grid modulation may be used with any type of r.f. amplifier tuler, it is seldon used with ter rodes and pentodes because sereen or suppressor motulation is generatly simpler to adjust. However, cont rol-grid modulation is the only form of grid modulation that is applicable to triode amplifiers. A typial triode (irreuit is given in Fig. 10-1t.

In control-grid modulation the d.e. grid bias is the same at in normal (lass ('amplifier service, but the r.f. gride excitation is somowhat smaller. The audio voltage superimposed on the d.c. biats changes the instantaneous grid bias at an audio rate, thus varying the operating conditions in the grid cireuit and controlling the output and efficieney of the amplifior.

The change in instantaneons bias voltage with modulation causes the rectified grid eurrent of the amplifier to vary, which plates a variable load on the modulator. To reduce distortion, resistor R in Fig. lo-It is rommerted in the output circuit of the modulator as a constant load, so that the ower-all load variations will be minimized. This resistor should be equal to or somewhat higher than the kad into whieh the modulator tulke is rated to work at normal audio output. It is also recommended that the modulator circuit incorporate as much negstive foed back as possible, as a further aid in reducing the internal resistance of the modulator and thus improving

Types of Modulation

Fig. 10-14-Control-grid modulation of a Class C amplifier. The r.f. grid bypass capacitor, C, should have high reactance at audio frequencies ($0.005 \mu \mathrm{f}$. or less).
the "regulation" - that is, reducing the effect of load variations on the audio output voltage. The turns ratio of transformer T 'should be about 1 to 1 in most cases.

The loud on the r.f. driving stage also varies with modulation, This in turn will cause the excitation voltage to vary and may eatuse the modulation characteristic to be nomlinear. To overcome it, the driver should be (aipatble of two or three times the r.f. power output actually required to drive the amplifier. The exeess power may he dissipated in a dummy load (such as an incandescent lamp of appropriate power rating) that then performs the same function in the r.f. eirenit that resistor R does in the audio circuit.
Thed.c. bias source in this sestem should have low internal resistance. Batterios or a voltareregulated supply are suitable. (irid-leak bias should not be used.

Satisfactory adjust ment of a control-grid modulated amplifier requires an oscilloscope. The srope connections are similar to those for serecngrid modulation, with audio from the modulator's output transformer secondary applied to the horizontal plates through a blocking capnecitor and volume control, and with r.f. from the plate tank eireuits coupled to the vortical plates. The adjustment procedure follows that for sereen mordulation as previously deseribed.

CATHODE MODULATION

Circuit

The fundamental circuit for cathode modulation is shown in Fig. 10-15. It is at combination of the plate and grid methods, and permits a corrier efficiency midway between the two. Audio power is introduced in the rathode circuit, and both grid hias and plate voltage are modulated.

Because part of the modulation is by the control-grid method, the plate efficiency of the

Fig. 10.15-Circuit arrangement for cathode modulation of a Class C r.f. amplifier. Values of bypass capacitors in the r.f. circuits should be the same as for other modu. lation methods.
modulated amplifier must vary during modulation. The earrier efficioncy therefore must be lower than the efferienery at the modulation peak. The required reduetion in efficieney depends upon the proportion of grid modulation to plate modulation: the higher the pereentage of plate modulation, the higher the permissible carrier efficience, and vier versa. The audio power required from the modulator also varies with the pereentage of plate modulation, being greater as this peremtage is incoased.

The way in which the various quantities vary is illustrated by the curves of Fig, 10-1ti. In these rurves the performance of the cath-ode-modulated r.f. amplifier is plotted in terms of the tube ratings for plate-modulated telephony,

Fig. 10.16-Cathode-modulation performance curves, in terms of percentage of plate modulation plotted against percentage of Class C telephony tube ratings. $W_{i n}$-D.c. plate input watts in terms of percentage of plate-modulation rating.
W_{0}-Carrier output watts in per cent of plate-modulation rating (based on plate efficiency of 77.5%). W_{a}-Audio power in per cent of d.c. watts input.
N_{p}-Plate efficiency of the amplifier in percentage.

10-AMPLITUDE MODULATION

with the percentage of plate modulation as a hase. As the percentage of plate modulation is decreased, it is assumed that the grid modulation is increased to make the over-all modulation reach 100 per ceent. The limiting condition, 100 per cent plate modulation and no grid modulation, is at the right (A): pure grid modulation is reperesented by the left-hand ordinate (B and C).

Modulating Impedance

The modulating impedance of a cathodemodulated amplifier is approximately equal to

$$
m \frac{E_{b}}{L_{k}}
$$

where $m=$ Percentage of plate motulation (expressed as a decimal)
$E_{1}=$ D.c. plate voltage on modulated amplifier
$I_{\mathrm{b}}=$ D.c. plate rurrent of modulated amplifier
The modulating impedanere is the foad into which the modulator must work, just as in the case of pure plate modulation. This load must be matched to the load required by the modnator tubes hey proper choiee of the tirns rat io of the moslulation transformer.

Conditions for Linearity

R.f. excitation requirements for the rathodemodulated amplifier are midway between those for plate modulation and control-grid modulation. Nore excitation is required as the percentage of plate modulation is increased. Cirid bias should be considerably beyond cut-off: fixed bias from a supply having good voltage regulation is preferred. especially when the pereentage of plate modulation is small and the amplifier is operating more nearly like a grid-bias modulated stage. At the higher percentages of plate modulation a combination of fixed and grid-leak bias can be used. since the variation in rectified grid carrent is smaller. The grid leak should be bypassed for audio frequencies. The percentage of grid modulation may be regulated by choice of a suitable tap on the modulation-transformer serendary.

The cathode circuit of the modulated stage must be independent of other stages in the transmitter. When directly heated tubes are modulated their filaments must be supplied from a separate transformer. The filament bypass capacitors should not be larger than about 0.002 $\mu \mathrm{f}$, to avoid hypasing the a.f. modulation.

Adjustment of Cathode-Modulated Amplifiers

In most respects, the adjustment procedure is similar to that for grid-bias modulation. The critical adjustments are antenna loading, grid bias, and excitation.

Adjustments should be made with the aid of an oscilloscope connected in the same way as for grid-bias modulation. With proper antenma loading and excitation, the normal wedge-shaped pattern will be obtained at 100 per cent modula-
tion. Is in the case of grid-bias modulation, too light antenna loading will cause flattening of the upward peaks of modutation as also will too high excitation. The eathode current will be practically constant with or without modulation when the proper operating conditions have been (stablished.

LINEAR AMPLIFIERS

If a signal is to be amplitied after modulation has taken place. the shape of the modulation envelope must be preserved if distortion is to be avoided. This requires the use of a linear ampli-fier-that is, one that will reproduce, in its output rireuit. the exart form of the signal envelope applied to its grid.

The amplitude-modulated driving signal for a linear amplifier can at no time he permitted to swing below cutoff on the modulation downpeaks. To do so would mean that the part of the modulation envelope near the zero axis (see Fig. $1(0-1 C)$ would the clipped, since there would be times when the instantaneous signal voltage would be below the minimum value that would (:ase plate-relurent flow (sore Fig. 10-3).

However. the grid hias may be set at any value less than cutoff. I'suatly. such amplifiers are operated at or noar the Class 13 condition - that is. with the grid hias at or somewhat less than cutoff. Dthough Class 13 operation results in considerahle distortion of the individual r.f. eveles applied to the grid. the modulation envelope is not distorted if the operating ronditions are chosen properly. The r.f. distortion produces only r.f. harmonios, and these can be eliminated by the selertivity of the output tank cireuit.

I linear amplifier used for a.m, has the same disadvantages with respect to efficieney that grid modulation does. The reason also is much the same: since the amplitier must handle a peakenvelope power four times as great as the unmodulated carrier power. it camnot be operated at its full capabilities when it is amplifying only the unmodulated earrier. The plate efficiency of the amplifier varies with the instantancous value of the modulation envelope (Fig. 10-9). The efficiency at the unmodulated carrier level is only: of the order of $30-35$ per rent.

Becanse of this low efficeney, linear amplifiers have not had much application in amateur transmitters. "specially since equivalont efliriences ran be ohtained with grid modulation. along with a less critical adjustment procedure. Revently there has been some increase in ust of a.m. linears, particularly at v.h.f.. as a moans of stepping up the modulated power output of very low power transmitters with a minimum of complication in over-all equipment and operation. 'To obtain a useful increase in power output by this means the linear amplifier must use a tube or tubes capable of relatively large plate dissipation, since ahout two-thirds of the d.e. power input to the amplifier is consumed in hoating the plate and only about one-third is converted to useful carrier output.

Checking A.M. Phone Operation

USING THE OSCILLOSCOPE

Proper adjustment of a phone transmitter is aided immonsurably by the oscilloscope. The scope will give more information, more accurately, than almost any collection of other instruments that might be named. Furthermore, an oscilloseope that is contirely satisfactory for the purpose is mot necessarily an expensive instrument; the cathole-ray tube and its power supply are about all that are needed. Amplifiers and linear swerp eircuits are by no means necessary.

In the simplest soope circuit, radio-frequency voltage from the modulated amplifier is applied to the vartical deflection plates of the tuhe, usually through blocking caparitors as shown in the oscilloscope circuit in the chapter on measurements, and audio-frequency voltage from the modulator is applied to the horizontal deflection plates. As the instantaneous amplitude of the audio signal varies, the r.f. output of the transmittor likewise varies, and this produces a wedgeshaped pattern or trapezoid on the screen. If the oscilloseope has a built-in horizontal sweep, the r.f. voltage can be applied to the vertical plates as before (never through atn amplifier) and the sweep will produce a pattern that follows the morlulation anvelope of the transmitter output, provided the sweep frequency is lower than the modulation frequeney. This produees a waveenvelope modulation pattern.

The Wave-Envelope Pattern

The conneetions for the wave-envelope pattern are shown in lig. 10-17 A. The vertieal deflection plates are coupled to the amplifior tank coil (or an antenna eoil) through a low-imperdance (roax, twisted pair, el(e.) line and piek-up eoil. As shown in the alternative drawing, a resonant cirenit tuned to the operating frequency may be conneeted to the vertical plates, using link coupling between it and the transmitter. This will eliminate r.l. harmonics, and the funing control is a means for adjustment of the pattern height.

If it is inconvenient to couple to the final tank coil, us may bo tho cage if the transmitter is tightly shiekled, the pick-up loop may be coupled to the tuned tank of a matching cirenit or antenna coupler. Any methorl (even a short antenna coupled to the tuncd eircuit shown in the "alternate input connections" of Fig. $10-17 \mathrm{~A}$) that will pick up enough r.f. to give a suitable pattern hoight may be used.

The position of the pick-up coil should be varied until an unmodulated carrier pattern, Fig. 10-1813, of suitable height is obtained. The horizontal sweep voltage should be adjusted to make the width of the pattern somewhat more than half the diameter of the sereen. When voice modulation is applied, a rapidly changing pattern of varying height will be obtained. When the maximum height of this pattern is just twice that of the carrier alone, the wave is being modulated

Fig. 10.17-Methods of connecting the oscilloscope for madulation checking. A-connections for wave-envelope pattern with any modulation method; B-connections for trapezoidal pattern with plate or screen modulation.

100 per cent. This is illustrated hy Fig. 18-181), where the point X represents the horizontal sweep line (reference line) alone, $Y \%$ is the carrier height, and $P Q$ is the maximum height of the modulated wave.

If the height is greater than the distance $P()^{(}$, as illustrated in E , the wave is overmodulated in the upward direction. Overmorlulation in the downward direction is indieated by a gap in the pattern at the reference axis, where a single brisht line appears on the sereen. Overmodulation in cither direction may take place even when the modulation in the other direction is less than 100 per cent.

The Trapezoidal Pattern

Counections for the trapezoid or wedge pattern as used for cherking a.m. are shown in Fig. 10-17I3. The vertical phates of the e.r. tube are coupled to the transmitter tank through a pick-up loop, preferably using a tuned rircuit, as shown in the upper drawing, adjustable to the operating frequeney. Audio voltage from the modulator is applied to the horizontal plates through a voltage divider, $K_{1} R_{2}$. This voltage should be adjustable so a suitable pattern width can be obtained; a $0: 25$-megohm volume control can be used at R_{2} for this purpose.
(A)

NO CARRIER

(G)

CARRIER ONLY

100% MODULATION

(J)
(E)

(D)

OVER MODULATION
Fig. 10.18-Wave-envelope and trapezoidal patterns representing different conditions of modulation.
"The resistame retuired at R_{1} will dequend on the d.e. voltage on the mothated element. The total resistane of h_{1} and h_{2} in series should be about 0.2a mogohm for each 100 volte, For example, if a platermodalated amplifier operatess at boon volts, the total resistance shomid low 3.35 mogohms, $0: 2 \bar{i}$ megohm at R_{2} and the remainder. 3.5 megohms, in h_{1}. l_{1} should be compused of individual rexistors not larger than $0 . \overline{\text { a maghom wach, }}$ in which case l-watt resistors will he satisfartory.
low adrequate rompling at 100 reyeles the cat paritanco, in micenfands, of the borking capac-
 the total resistane ($R_{1}+R_{2}$) in megohms. In the example athove, where R is 3.55 megohms, the raparitane should tre $0.05 / 3.50=0.01: 3$ μ. or more. The voltage rating of the caparitor should be at least twine the d.e. voltage applied to the modulated element.

Trapozoilal paterns for varions conditions of modulation are shown in Fög. 10-1 C at F to J, each alongside the cormponding wate-envelope pattern. With no sigual, only the wathoderay spot appears on the sereon. When the unmodulated carrier is applied, a vertieal line appears; the length of the lime should be adjusted, by means of the pick-up coil (oupling, to a convenient value. When the carrior is modulated.
the wedge-shaped pattern apmears: the highore the modulation perentage, the wider and more pointed the wedge becomes. At 100 per remt modulation it just makes a print on the axis, λ, at one emol, and the hoight. P'(), at the other emd is reptal to twice the carrior herght, $\%$. (Overmodulation in the upward direction is indicated by increased height over P(), and downwad by an extension along the axis \mathcal{X} at the pointed emd.

CHECKING TRANSMITTER PERFORMANCE

The triperonidal pattern is gonerally more useful than the wave-envelope pattern for checking the opreation of a phome tramsmitter. However, both types of pattorns have thoir sperial virtues, and the bost test sotup is one that makes both availathe. "the trapezoidal pattern is better adaptef to showing the performanere of a modulated amplifier from the standpoint of inherent linearity, without regard to the wave form of the

Fig. 10-19-Top-A typical trapezoidal pattern obtained with screen modulation adjusted for optimum conditions. The sudden change in slape near the point of the wedge occurs when the screen voltage passes through zero. Center-If there is no audio distortion, the unmodulated carrier will have the height and position shown by the white line superimposed on the sine-wave modulation pattern. Bottom-Even-harmonic distortion in the audio system, when the audio signal applied to the speech amplifier is a sine wave, is indicated by the fact that the modulation pattern does not extend equal harizantal distances on both sides of the unmodulated carrier.

Checking Transmitter Performance

andio modulating signal, than is the wave-envelope patterm. Distortion in the audio signal also can be deterted in the trapezoidal pattern, although experionce in amalying seope patterms is required to recognize it.

If the wave-envelope pattern is used with a sine-wave adio modulating signal, distortion in the modulation envelope is casily rerognizalble: however, it is difficult to determine whether the distortion is raused by lack of limearity of the r.f. stage or by at.f. distortion in the modulator. If the trapezoidal pattern shows geod linearity in such a case the trouble obviously is in the audio system. It is possible, of course, for both doferts to be present simultaneously. If they are, the r.f. amplifier should be made linear first ; then any distortion in the modulation envelope will be the result of imponer operation in the speech amplifier or modulator, or in roupling the modulator to tha modulated r.i. stage.

R. F. Linearity

The traperoidal pattern is a graph of the modinlation characteristie of the motulated amplifier. The sloping sides of the wedge show the r.f. amplitude for every valur of instantaneous modulating voltage, exatety the type of eure plotted in Fig. 10-4. If these sides are pertectly straight lines, as drawn in Fig. 10-18 at If and I, the modinlation chararteristio is linear. If the sides show curvature, the characteristic is nonlinear to an extent shown by the degree to which the sides: depart from perfect straightuess. This is true regardless of the modnlating wave form.

Audio Distortion

If the speech system can be driven by a grood audio sine-wave signal instead of a microphone, the trapezoidal pattern also will show the presence
of even-harmonic distortion (the most eommon type, esperialty when the modulator is overloaded) in the speech amplifier or modulator. If there is no distortion in the audio systom, the trapozoid will exteme horizontally equal distanees on each side of the vertiond line representing the ummodulated carrier. If there is even-hamonie distortion the trape\%oid will extend farther to one side of the ammodulated-carrier position than to the other. This is shown in Fig. 10-I!. Tha probsable cause is itadequate power output from the modulatore or ineorrere land on the modulator.

An audio oscillator having reasonably good sine-wave outpat is highly desirable for testing both speech equipment and the phone transmitter as a whole. With and oredlator and the seoper. the pattorn is stradr and can be studied closely. to determine the coferets of aljustmonts.

In the case of the wave-onvelope pattern. distortion in the audio system will show up in the modulation envelope (with at sine-wave imput signal) as a departure from the sine-wave form, and may be cherked by comparing the envelope with a drawing of a sine wave. Ittributing any such distortion to the audio sustem assumes, of eourse, that a cheolk hats been made on the limearity of the modulated r.f. : mplifier, preferably by use of the trapergidal pattern.

Typical Patterns

Figs. 10-20, 10-2! and $10-22$ show somme typical seope patterns of modulated signals for difierent conditions of operation. The sereen-modulation patterns, lig. 10-20, also show how the presence of even-harmonic audio distortion cean be detereded in the trapezoidal pattern. The pattern to be sought in adjusting the transmitter is the one at the top in rig. 10-20, where the top and bottom edges of the pattern continue in straight

Fig. 10-20-Oscilloscope patterns showing proper modulation of a plate-and-screen modulated tetrade r.f. amplifier. Upper row, trapezoidal patterns; lower row, corresponding wave-envelope patterns. In the latter a linear sweep having a frequency one-third that of the sine-wave audio modulating frequency was used, so that three cycles of the modulation envelope show in the pattern.

Fig. 10-21 -mproper operation or design. These pictures are to the same scale as those in Fig. $10-20$, on the same transmitter and with the same test setup.
lincs up to the peint representing low per eent modulation. If these edges tend to bend over toward the horizontal at the maximum height of the wedge the amplifior is "Hattening" on the modulation up-peaks. This is usually raused hy attempting to got $t(x)$ latge at carrier output, and ean be corrected be tighter coupling to the antennat or be reduring the d.e. sereen voltage.

Pig. 10-20 shows patterns indicating proper operation of a plate-and-sereren modulated tetrode r.f. implifier. "The slight "tailing off" at the modulation down peak (point of the wedge) can be minimized by careful adjustment of exeitation and platte loading.

Several types of improper operation are shown in lig. 10-21. In the photos at the left the linearity of the r.f. stager is good but the amplifier is being modulated over 100 per eent. This is shown by the maximum height of the pattern (eompate with the emmodulated rartior of Fig. 10-20) and by the bright line extending from the point of the wedge (or betwern sertions of the anveloner).

The patterns in the eenter, ligg. 10)-21, show the effeet of a too-long time constant in the sereen circuit, in an amplifier getting its sereen voltage through a dropping resistor, both plate and soreon being modulated. The "doubleedged" pattern in the result of audio phase shift in the sereen cireuit combined with varying screnm-fo-cathode resistance during modulation. The over-all effect is to delay the rise in output amplitude during the up-swerp of the modulation cevele, slightly distorting the modulation envelope as shown in the wave-envelope pattern. This offect. which beromes more pronounced as the audio modulating frecurney is increased, is usually alwent at low modulation percentages but devolops rapidly as the modulation approathes 100 per rent. It can be reduced by
reducing the sereen beypass rapateitance, and also by connecting resistance (to be determined experimentally, hat of the same order as the sureon dropping resistance) between sereen and cathode.

The right-hand pietures in Fig. 10-2l show the effeet of insufficient andio power. Although the trapezoidal pattern shows good linatrity in the ref. amplifier, the wave-envelope patitern shows flattened peaks (both positive and negattive) in the molulation envelope even though the audio signal applied to the amplifier was a sinc wave. More speceh-amplifier gain merely inereases the flattening without inereasing the modulation pereentage in such a awe. The remedy is to use a larger modulator or less input to the modulated r.f. stage. In some cases the trouble may be catused by ath incorrect modn-lation-transformer turns ratio, "atusing the modulator to be overloaded before its maximum power output capahilities atre reached.

Faulty Patterns

Tho pathern deferts shown in lig. $10-21$ wre only a few out of many that might be observed in the testing of a phone transmit ter, all catpable. of being interpreted in terms of improper operattion in somb part of the transmitter. However, it is not alwats the transmiter that is at fault when the soppe shows an humsual pattern. The trouble mey he in some defert in the test setup.

Patterns representative of two common faults of this nature are shown in Fig. 10-2!? The upper pieture shows the tratpezoidal pattern when the audio voltage applied to the horizontal plates of the a.r. tube is not exatly in phase with the modulation anelope. The normal straight edges of the wedge are transformed into ellipsess which in the case of 100 per cent modulation (shown) touch at the horizontal axis and

Checking Transmitter Performance

fig. 10-22-Upper photo-Audio phase shift in coupling circuit between transmitter and horizontal deflection plates. Lower photo-Hum on vertical deflection plates.
reach maximum heights erpal to the height of the normal welge at the modulation up-peak. Such a phase shift can oreur (and usually will) if the audio voltage applied to the e.r. tube doflection plates is taken from any point in the audio system other than where it is applied to the modulated r.f. stage. The coophing capacitor shown in Fig. 10-17 must have very low reatance eompared with the resistance of R_{1} and R_{2} in suries - not larger than a tew per cent of the resistanere.

The waverenvelope patern in Fig. 10-2:2 shows the effect of hum on the vertical inflection phates. This may actually be on the carrier or may be introlued in some way from the a.e. line through stray coupling betwern the soope and the line or berause of poor grounding of the scope, transmitter or modulator.

It is important that r.f. from the modulated stage only be coupled to the ascilloseope, and then only to the vertical phates. If r.f. is present also on the horizontal plates, the pattern will lean to ono side instear of lwing upright. If the oscillosedoce camot be moved to a position where the unwanted pick-up disappeats, a small bepass capacitor ($10 \mu \mu \mathrm{f}$. or more) should be comereded arross the horizontal plates as rlose to the cathode-ray tube as possible. An r.f. rhoke (2,5 mh. or smaller) may also be connected in series with the ungrounded horizontal plate.

MODULATION CHECKING WITH THE PLATE METER

The plate milliammeter of the modulated amplifier provides a simple and fairly reliable means for checking the performance of a phone transmitter, although it does not give nearly as definite information as the oscilloseope does. If the modulated amplifier is perfectly linear, its plate current
will not change when modulation is applied if

1) the upward modulation percentige does not exceed the modulation capability of the amplifier.
2) the downward modulation does not exceed 100 per cent, and
3) there is no change in the d.c. operating voltages on the transmitter.
The plate current should the constant, ideally, with any of the mothods of modulation discussed in this chapter, with the single exception of the cont rolled-earrier system. The plate meter cannot give a reliathle check on the performance of the latter system because the plate current increases with the intemsity of modulation.

Plate Modulation

With plate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insufficient expitation.
2) Insufficient grid hias.
3) R.f. amplifior not loaded property.
4) Insuffie ient output capmeitance in the filter of the modulated-amplifior plato supply.
5) Lexecssive d.c input to the r.f. amplifier, under carrier conditions. Alternatively, the rathode emission of the amplifier tubers may be low.
(i) In plate-and-serren modudation of tot orodes or pentodes, the sorean is not being suffirionly modulated along with the plate. If the die sereen voltage is ohtatined theough a dropping resistor, a dip in plate current may oreur if the soreon bepass capacitanere is large phough to bypass audio frequencies.
6) Poor voltage regulation of the modabatedamplifior plate supply. It is readily thecked by measuring the voltage with and withont nodulation. Poor line regulation will be shown be a drop in filament voltage with modalation.
Any of the following may canse all upward shift in plate current:
7) Overmodulation (excessive audio power, atadio gain too high.
8) Incomplete ncutralization of the modulated amplifier.
9) Parasitie oseillation in the morlalated amplifier.

Grid Modulation

With athy type of grid modulation, any of the following may catuse a downard shift in modu-Lated-amplifier plate current:

1) 'Too much r.f. exeitation.
2) Insuflicient grid bits with control-grid modulation, (irid biats is usatlly not critional with sereen and suppressor modalation.
3) With control-grid modulation, exeessive resistance in the bias supply.
4) Insufficient output capacitance in phatesupply filter.
5) Amplifier is not loaded heavily cough.

Because grid modulation is not perfectly linear,

10-AMPLITUDE MODULATION

(ahways less so than phate mordulation) ath amplitier that is property designed and oprated may show a small moward phato-rument shift with molulation. 10 mor cont or less with simeWave modulation and amonnting to ath oreasionat upward flicker with roire An ubward wate cumbent shitt in exers of this may he callised bs

1) Overmodulation (axerssive modulating voltalge).
2) Regeneration (ineomphene neutralization).
3) With control-grid or suppressur modulation, bias toogreat.
4) With sereon modulation, de, serren voltage too low.
j) Audio distortion in modulator.

In grid-modulation systems the modulator is not mesessarily operating linearly if the plate curront stas constant with or without modulattion. It is readily porsible to arrive at a set of operating comblitons in which flattening of the up-poaks is just halanced by overmolulation downward. The oseilleseope provides the omly rertain choek on grid modulation.

COMMON TROUBLES IN THE PHONE TRANSMITTER

Noise and Hum on Carrier

Noise and ham may be detected by listerning to the sigual on a receriver, prowided the reeciver is lar enough away from the transmither to avoid werlending. The ham level should be low eompared with the voice at 100 per enot modulation. Hum mas eome either from the sperech amplifier and modulator or from the r.f. seetion of the trammitier. Hum from the r.f. section can be deteeted by eompletely shutting off the moduhator; if hum remains, the power-suphly filturs for one or more of the r.f. stages have insufficient smoothing. With a hum-tree carrior, hum introduced be the modulator ean be whecked by tuming on the modulator but leaving the sperech amplifior off: pow orsuphly fitering is the likely sourere of surh hum. If ratrior athd mothlator are both elean, comene the apeoth amplifior and ohserve the increase in ham level. If the hum disappoats with the gain control at minimum. the hom is boing introduced in the stage or stages precoding the gain controt. The mierophone also may pick up hum, a comdition that can be ehereked by removing the mierophone from the circuit but leaving the first apeoch-amplifior grid cimont otherwise unchanged. A good ground (to a cold water pipe, for example) on the microphone and spereh systom wsually is essential to ham-frere operation.

Spurious Sidebands

A superheterodybe rectiver having good sellect tivity (handwidth of lose than I ke.) is needed lor (horeking spurions sidelabads outside the normal communiation chammel. The r,f. input to the receiver must be kept low enough, hy removing the antemat or by adequate separation from the
trammittor, to avoid overlowting and emsernant sparions readiver responses. An "s"-metor reating of alont half sale is satisfactory. With the seleetivity at its sharpest, func through the region ounside the normal ehamed limits (is to 4 kilocereles each side of the eatrier) white athother person talks into the mierophone. spurions sidebands will be observed as intermittent "elieks" or crackles woll away from the warior fredumery Sidelands more than is to 1 ke. from the earrier should the of negtigible strengith, compared with the carrier, in a prop)aty modulated phome transmitter'. The ranses are oremodulation or nonlinear operation.

With sine-wave modulation the relative intensities of sidebands ean be ohserved if a tone of 1000 a Pedes or ao is used. The "s"-meter will show how the spurious side frequencies (those spaced more than the modulating frequency from the carrier) compare with the earrier itsolf. Without an "s"-mether, the ace.e. should be turned off and the b.for. turned on: then the r.f. gain should be set to give a moderately strong beat note with the carrier. The intensity of side frequencies ran be estimated from the relative strength of the beats as the receiver is tuned through them.

Roceivers having steep-sided band-pass filters for single-sideband reception can be used, but the terhnique is more diffieult. If the hand pass is, saty, 3 ke., the sigual should first be tuned in with the carrier placed at one edge of the pass loand. If it is placed at the low edge, for example, the recoiver should then be tumed 3 ke . higher so its response will lo in the region just outside the normal spectrum space ocenpied by one widehand. Any "crackles" heard in this region represent the results of nonlinearity or overmodulation. This assumes that the precantions montioned above with respect to receiver overloading have been carofully observed.

R.F. in Speech Amplifier

A small amount of r.f. current in the speech amplifier - particularly in the first stage, which is most suscrptible to such r.f'. pickup - will cause overloading and distortion in the low-level stages. Frequently also there is a regenerative effect which caluses all audio-frerpuence oseillation or "howl" to be set up in the audio system. In such cases the gain eontrol camot be alvanced very far before the howl buids up, even though the amplifier mas be perfectly stable when the r.f. section of the tramimitter is mot turned on,
(omplete shielding of the micerphone, mierophone cord, and spereh amplifier is necessary to prevent r.f. pickup, and at ground comertion separate from that to which the transmitter is comerted is adsisable.

If the transmitter is "hot" with r.f., the (ause usually is to be found in the method of coupling to the antenna. Any form of coupling that involves either a direet or capacitive eonneetion between the transmitur and the transmission line is likely to cause the transmitter chassis to assume an r.f. potential above ground

An A. M. Modulation Monitor

because of "parallel" trpe currents on the line. An earth connection to the transmitter does not always help) in such a case. The best remedy is to use inductive compling between the transmitter and line.

MODULATION MONITORING

It is always desirable to modulate as fully as possible, but 100 per cent morlulation should not be excecded - particularly in the downward direction - beatuse harmonic distortion will be generated and the channel width inrroased. This canses unneessary intorference to other stations. 'The oscilloscope is the best instrument for eontinuously cheeking the modulation. However, simpler indicators may be used for the purpose, once calibrated.
A eonvenient indicator, when a Class B modulator is used, is the plate milliammeter in the

Class B stage, since the plate current of the modulator fluctuates with the voice intensity. Vsing the oscilloscope, determine the gatin-control setting and voice intensity that give 100 per cent modulation on voiec peaks, and simultamenosly ohsorve the maximum Class I3 plate-milliammeter reading on the praks. When this maximum reading is obtained, it will suffice to adjust the gain so that it is not excereded.

A high-resistance (1000 (ohms-per-volt or more) reetifier-type voltmeter (copper-oxide or germanium type) also can be used for modulation monitoring. It should be conneeted across the output circuit of an audio driver stage where the power level is a few watte, and similarly ealibrated against the oseilloseope to determine the reading that represents 100 per cent modulation.

The plate milliammeter of the modulated r.f. stage also is of value as an indicator of overmodnlation, as explaned carlier.

A. M. Modulation Monitor

The modulation monitor shown in Figs. 10-2:3 and 10-25 uses two magio-eve tubes and a dual diode. One eve closes whenever the modulation reaches 50 per cent or more, and the socond ave closes when the modulation hits 85 per cent or more. In operation, the operator rontrols his sperech to rlose the " 50% " eve much of the time without closing the " 85% " eye exeept on rare orcasions, No adjustment of the monitor is required other than the setting of two intensity controls for the ambient light condition. The monitor, with the constants to be described, will work with any plate-modulated amplifier at voltages between 300 and 500; with a slight modification it can be extended to 750 volts.

The eireuit diagram is shown in Fig. 10-24. A voltage divider, consisting of R_{1}, R_{2} plus R_{3}, and R_{4}, is commerted arross the phate supply of the modulated stage. The cathodes of two diodes are connereded to the modulated voltage applied to the r.f. amplifier. and the anodes of the two diodes are connected through 100 N resistors to the junctions on the voltage divider. The voltage divider is proportioned so that the cathode of V_{1} is at approximately 50 per cent of the plate supply voltage and the cathode of 12 is at 15 per cent of the voltage. When the instantaneous voltage is 50 per cent or less of the idling phate voltage, as cluring the negative portion of a modulation eycle, the upper diode of V_{3} will conduet

Fig. 10-23-An a.m. modulation indicator using two inexpensive magic eye tubes. It is to be connected to the plate supply and modulation transformer of the plate-modulated transmitter stage. The monitor is built in one half of a Minibox and the entire assembly is supported by a canemetal housing. Heater transformers hang down from the Minibox, inside the housing.
and the voltage drop ateross the associated 100 K resistor will clowe the eye of V_{1}. If during the negative portion of the eyele the instantaneous voltage goes as low as 15 per cent of the supply voltage, the lower diode of V_{3} will conduct and the drop abross the associated 100K resistor will clowe the eve of V_{2} ((apacitors at the grids of V_{1} and V_{2} make the edges of the closing eyes readily visible.

Type 1629 magie cere tubes are used because they are rommon tubes in radio surplus stores and are quite inexpensive. Berause they have a limited eathode-to-heater voltage rating, it is neressary to use a separate heater transformer with its eniter tap connerted to a midpoint on the voltage divider. For similar insulation reasons, a soparate heater transformer is used for the twin diode, V_{3}.

Construction

With the exerption of the transfomers, all components are mounted inside a $5 \times 7 \times 3$-ineh

10 - AMPLITUDE MODULATION

Minibox. A supporting housing for the chassis is made from at small piece of Reynolds No. 33 aluminum mesh, availahle in many hardware stores. I $3 / 8$-inch lip bent in on the lottom edge provides greater rigidity for the strueture and a surtace to which four rubber fere ean be attached. The menitor is built within one halt of the Minibox and the two transiomers are mounted on the ether side of this half. Two Amphenol 58Mhats assemblies are used to support the magic aye tubes: these include the mounting brachets, the sorkets and wires, the light shields and the metal eseuteheons. The 6H6 socket is supported off the chassis by two $3 / 4$-inch ceramic insulators.

Operation

When using the monitor with a transmitter, the only adjustment necessary is that of the two 100 K intensity rontrols. The " 50% " eve will start to close at about 50 per eent modulation and will be completely closed at around 70 per cont. The " 8 ; \%" eve will start to close at about 85 per cont and be eompletely closed at 100 per cent modulation.

Higher Voltages

If the monitor is to be used at supply voltages betwern 500 and 750 , several alterations are required. Bither the "50\%" eve must be eliminated or a serond lag-volt transformer must be added (sc that comb 16 beg has its own heater surply). At the higher voltanes, additional 47 K 2-watt resistors should tre comnected in series with the intensity controls. The voltage divider R_{1} through R_{4} must be modified for the higher dissipation.

Fig. 10-24-Circuit diagram of the modulation monitor.
Unless specified otherwise, resistors are $1 / 2$ watt, resistances are in ohms, capacitances are in $\mu \mathrm{f}$.
$\mathrm{C}_{1}, \mathrm{C}_{2}$-Disk ceramic.
$\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}$-Insulated tip jacks (Johnson 105-601, -602, -603)
T_{1}-12.6-v. 2-a. transformer (Knight 61 G 420)
T_{2} —6.3-v. 0.6-a. transformer (Knight 61 G 416)

Fig. 10-25-Modulation monitor with housing and case removed. Tie strips and adequately-insulated wire are required. Cable clamps hold the wires from the magic-cye sockets, to avold strain on the tubes. Transformers cannot be seen in this view because they are on the other side of the assembly. Note ventilation holes at right-hand corner.

Suppressed-Carrier and Single-Sideband Techniques

A fully modulated am. signal hats twothirds of its prower in the earrier and only one-third in the sidelands. The sidebethds rierry the intelligenere to be transmitted: the rarier "goes atong for the ride" and servesonly to demodulate the signal at the reveiver. By eliminating the catrior and transmitting only the sidelands or just one sidelond, the avaibatble transmitter power is used to greater advantuge. The carrier must be reinserted at the recoiver. Dat this is no great problem, as explained later umber "Rereiving suppressed-Carrier signals."

Asemming that the same linal-amplifier tathe or tubes are nsed sither for normat atm, or for single sidehand, warier suppressed, it rew be shown that the nse of s.s.b. catn give an effertive gain of up to ! dh, over am. - eqpivalent to increasing the tratmimiter powor \& times. Eiliminating the carrier also climinates the heterodyne interference that su often surils eommunication in eongested phone hands.

DOUBLE-SIDEBAND GENERATORS

The curier can be suppressed or nearly eliminated by :n extremely sharp filter or he using a balanced modulator, The hasic prineiple in any babanced modulator is to introduce the carrier in such a way that it does ant appear in the ontput but so that the sidebands will. This requirement is satislied ber introduring the audio in phsh-pull and the ref. drive in parallel, and eomereting the output in push-pull. Balathed modulators can ako be comerted with the r.f. drive and audio inputs in push-pull and the output in parallel with equal effertiveness. The ehoire of a balaneed mondulator circuit is generally dotermined by construetional ronsiderations :und the mothond of modulation preferred hes the buider. Vacummtube balaneed modulators can be operated at high power levels and the double-sidehand output "an be used directly into the antennat. A d.s.b. signal can tw eopied he the same mothods that are used for single-sideband signals, provided the reoceiver hats sufficient selectivity to rejeet one of the sidebathds.

In any halanced-modulator circouit there will be no output with no audio signal. When audio is applied, the balance is upset, and one brameh will conduct more than the other. Since any modulation process is the sime as "mixing" in receivers, sum and difference frequencios (sidobands) will be generated. The modulator is not balanced for the sidebands, and they will appear in the output,

In the rectifier-type batanced modalators shown in lig. II-I, the diode reetifiers are connected in surls at mane that, if the hatve equal forwated resistances, no r.f. can pass from the currier souree to the output circuit via cither of

Fig. 11-1-Typical rectifier-type balanced modulators.
The circuit at A is called a "bridge" balanced modulater and has been widely used in commercial work.

The balanced modulator at B is shown with constants suitable for oferation at 450 kc . It is useful for working into a crystal bandpass filter. T_{1} is a transformer designed to work from the audio source into a 600 -ohm load, and T_{2} is an ordinary i.f. transformer with the trimmer reconnected in series with a $0.001-\mu \mathrm{f}$. capacitor, for impedancematching purposes from the modulator. The capacitor C_{1} is for carrier balance and may be found unne cessary in some instances-it should be tried connected on either side of the carrier input circuit and used where it is more effective. The 250 -ohm potentiometer is normally all that is required for carrier balance. The carrier input should be sufficient to develop several volts across the resistor string.

The circuit at C is shown with constants suitable for operation at 3.9 Mc . T_{3} is a step-down output transformer (Stancor A3250, 10,000 to 200 ohms), shunt-fed to elim. inate d.c. from the windings. L_{i} can be a small coupling coil wound on the "cold" end of the carrier-oscillator tank coil, with sufficient coupling to give two or three volts of r.f. across its output. L_{2} is a slug-tuned coil that resonates to the corrier frequency with the effective 0.001μ f. across it. The 1000 -ohm potentiometer is for carrier balance.

Fig. 11.2-A iwin-diade balanced-madulatar circuit. This is essentially the same as the circuit in Fig. 11-1C, and differs anly in that a fwin diade is used instead af dry reclifiers. The heater circuit far the twin diade can be cannected in the usual way lane side graunded ar center tap graunded).
the two prossible pathes. The net effect is that no r.i. enorgy appars in the output. When audio is applied, it umbalanes the circuit by biasing the diode (or dionles) in one path, depending upon the instantaneous polarity of the audio, and honee some r.f. will apeare in the output. The r.f. in the output will aprear as a double-sideband sup-pressed-rarrier signal. (For a more complete description of dione-modulator operation, see "Jiote Modulators," (SST, April, 195:3, p. 3!).)

In any diode modulator, the r.f. voltage should beat least for 8 times the peak audio voltage, for minimum distortion. The usual operation involues a frantion of a volt of audio and several volts of r.f. The diodes should be matehed as chosely as possible - ohmmeter measurements of their forward resistaners is the usuad test.
(The circuit of lig. 11-1 B is described more fully in Weaver and Brown, "Crystal Lattive Filters for Transmitting and Receiving," (SNTT, August, 1951. The circuit of Fig. 11-1C is suitable for use in a double-balanced-modulator circuit and is so described in "SSB, Jr.," General Electric Hame Nerms, september, 1950.)

Vanumm-tube diodes can also be used in the two-and fourdiode balanced-modulator cirevits, and many oprators consider them superior to the dry reatifier rircuits. A typieal balanced modulator cireuit using a twin diode ($6.15,6$, 61 l), efte.) is shown in Fig. 11-2. In phasing-tyere s.s.b. gencrators (described later) two of these modulators are required, and they are usually worked into a common ontput cireuit. (For a deseription of a complete s.s.b. exeiter using 6.tls balaneed modulators, see Vitale, "Cheap and Basy S.S.B.." (S゙T, Mareh, 1950, and May, 1958.)

Another form of batanced modulator uses the type $\mathbf{F 3 6 0}$ "heam-deflestion" tulse, and it is (at)abhe of a high order of carrier suppression (60 dth .) with good output (4 volts peak-to-peak) and low distortion ($4 \overline{5}$ dh.). A typical application is shown in the s.s.h. generator despribed later in this rhapter.

- single-sideband generators

Two basie systems for generating s.s.b. signals are shown in Fig. 11-3. Gne involves the use of a handpass filter having suffieient selectivity to pass
one sidehand and reject the other. Filters having such characteristies cam only be constructed for relatively low frequencies, and most filters used by amatours are designed to work somewhere around 500 kr . Good sideband filtering can be done at frequencies as high as 5 Mc. by using multiple-erystal filters. The low-frequency oscillator output is combined with the audio output of a sperech amplifier in a balaneed modulator, and only the upper and lower sidubands appear in the output. One of the sidebands is passed by the filter and the other rejected, so that an s.s.b. signal is fed to the mixer. The signal is there mixed with the output of a high-frequency r.f. oseillator to produce the desired output frequener. For additional amplification a lincar r.f. amplifior (Class A or Chass 13) must be used. Whan the s.s.b. signal is generated aromed 500 kc . it may be necessary to ronvert twice to reach the operating frequency, since this simplifies the problem of rejecting the "image" freduencies resulting from the heterodyne process. The problem of image frequencies in the frequeney conversions of s.s.b. signals differs from the problem in receivers bocanse the beat-ing-oscillator frequency becomes important. bither balaned modulators or suflicient selectivity must be used to attenuate these frequencies in the output and hence minimize the possibility of unwanted radiations. (Examples of filtor-typr exciters can be fotud in grit for June, 1958, and January, 1956.)

The second system is based on the phase relationships betwern the carrier and sidehands in a modulated signal. As shown in the diagram, the audio signal is split into two components that are identical except for a plase difference of 90 degrees. The output of the r.f. oscillator (which may be at the operating frequener, il desired) is likewise split into two separate components having a (0)-degrere whase difference. One r.f. and one andio component are combined in eath of two separate balaneed modubators. The carrior is suppressed in the modulators, and the relative phases of the sidebands are such that one sideband is balaneed out and the other is augmented in the combined output. If the output from the balaned modulators is high enough, such an s.s.b. exciter can work directly into the antenna, or the jower level can be inereased in a following amplifier.

Properly aljusted, either system is capable of good results. Arguments in favor of the filter sustem are that it is somewhat easier to adjust without an oscilloseope, since it requires only a reediver and a v.t.v.m. for alignment, and it is more likely to remain in adjustment over a long period of time. The chief argument against it, from the amaterur viewpoint, is that it requires quite a lew st ages and at least one frequency conversion after modulation. The phasing system requires fewer stages and can be designed to require no frequency conversion, but its alignment and adjustment are often considered to be a little "trickier" that that of the filter system. This probably stems from lack of familiarity with the system rather than any actual diffieulty, and now that

Sideband Generators

Fig. 11-3-Two basic systems for generating single-sideband suppressed-carrier signals. Representations of a typical envelope picture (as seen on an oscilloscope) and spectrum picture (as seen on a very selective panoramic receiver) are shown above and below the connecting links.
commererial prodjusted audio-phasing networks are available, most of the alignment difficulty has beron eliminated. In most rases the phasing sustem will bost loss to apply to an existing transmitter.

Regardless of the method used to generate a
s.s.b. signal of 5 or 10 watts, the minimum cost will be found to be higher than for an atm. transmitter of the same low power. However, as the power level is incroased, the s.s.b. transmitter beromes more eromomiral than the a.m. rig, both initially and from an opreating stamdpoint.

Filter-Type S.S.B. Exciters

The basie eonfiguration of a filter-type s.s.b. exeiter was shown in Fig. 11-3. Suitable filters, sharp enough to reject the unwanted sidehand above a few hundred cyrles, cam be built in the range 20 ke . to 5 Mc . The low-frequeney filters generally use iron-rored inductors, and the new toroid forms find considerable favor at frequencies up to 50 or 60 kr . These filters are of normal hand-pass constant-k and m-derived configuration. In the range 450 to 500 ke , either erystallatitice or electro-mechanical filters are used. Iowfrequency filters are manufactured by Barker \& Williamson and by Burnell \& Co., and electromechanieal filters are made by the Collins Radio Co. Crystal-lattice filters are available from Hermes Flectroniss in the megacyeles range; homemade filters generally utilize arrstals from military surplus.

The frequency of the filter determines how many conversions must be made before the op-
erating frequency is reacherl. For example, if the filter frequency is 30 kc . or so, it is wise to convert first to $5(0)$ or 600 kc , and then convert to the 3.9-Me. band, to avoid the image that would almost surely result if the eonversion from 30 to $3: \%(\mathrm{ke}$. were made without the intermediate step. When a filter at 50 () ke, is used, only one conversion is necessary to operate in the 3.9- We. band, but 14-Nc. and higher-frequeney operation would require at last two conversions to hold down the images (and locat-oscillator signals if balaned mixers aren't used) and make them easy to eliminate.
The choice of converter circuit depends largely on the frequencies involved and the impedance level. At low frequencies (up to 500 ke .) and low impedances, rectifier-type balanced modulators are often used for mixers, berause the balanced modulator does not show the local-oscillator frequency in its output and one soure of spurious

Fig. 11-4-One type of balanced-modulator circuit that can be used with a mechanical filter (Collins F455-31 or F500-31 series) in the i .f, range. The filters are furnished in various types of mountings, and the values of C_{1} and C_{2} will depend upon the type of filter sslected.
T_{1} —Plate-fo-push-pull grids audio transformer.
signal is minimized. It high impodance levels, and at the higher frequencies, vacuum tubes are generally used, in straight converter or balancedmodulator circuits, depernding upon the need for minimizing the loral-oseillator frequeney in the output.

Low-frequener sideband filters in the 30- to so-kc. range are usually low-impedance devices, and rectifier-type balanced modulators are common pratidee. Sideband filters in the i.f. range are higher-impedance circuits and vacuum-tube balanced modulators are the rule in this case. An example of one that can be used with the high-impedance (15,000 ohms) mechanical filter is shown in lig. 11-4. The filter can be followed by a converter or amplifier tube, depending upon the signal level. Some models of the mechanical filters have a 23 -dh. insertion loss, while others hater only 10 .

Crustal-lattire filters are also used to rejeet the unwanted sideband. These filters can be made from crystals in the i.f. range - many of these are still available from stores solling military surphas. I popatar configuration is the "cascaded half lattice" shown in Fig. 11-5. The crystals used in this filter cam be obtained at frequencies in the i.f. range, and ones that are within the ranges of the modified i.f. transformers will be satisfactory. Two $100-\mu \mu \mathrm{f}$: capacitors are connected arooss the secondary winding of two of the transiormers to give push-pull output. The crystals should be obtained in pairs 1.8 kc . apart. The i.f. transformers com be cither capacitortuned as shown, or they can be slug-tumed.

A variable-frequency signal generator of some kind is required for alignment of the filter, but this can be nothing more elaborate than a shielded b,f.o, unit. The signal should be introdueed at the balanced modulator, and an output indicator connected to the phate circuit of the vacuum tube following the filter. With the erystals out of the circuit, the transformers can be brought close to frequency by plugging in small capacitors (10 to $25 \mu \mu \mathrm{f}$.) in one crystal socket in earh stage and then tuning the transformers for peak output at one of the two crystal froquencies. The small capacitors can then be removed and the erystals replaced in their sockets.

Tuning the signal source slowly across the pass band of the filter and watehing the output indicator will show the selectivity characteristic of the filter. The objective is a farly flat response for about two ke, and a rapid drop-off outside this range. It will be found that small changes in the tuning of the transformers will ehange the shape of the selectivity characteristic, so it is wise to make a small adjustment of one trimmer, swing the frequency arross the band, and observe the eharacteristic. After a little experimenting it will be found which way the trimmers must be moved to compensate for the paaks that will rise when the filter is out of adjustment.

The (suppressed) carrice frequency must be adjusted so that it falls properly on the slope of the filter characteristic. If it is too close to the filter mid-frequency the sideband rejection will be poor; if it is too far away there will be a lack of "lows" in the signal.

Fig. 11-5-A cascaded half-lattice crystal filter that can be used for sideband selection. The crystals are surplus type of FT-243A holders. Y_{1} and Y_{3} should be the same frequency and Y_{2} and Y_{1} should be 1.8 kc . higher. $T_{1}, T_{2}, T_{3}-450$-kc. i,f. transformers.

A Sideband Exciter
 A Phased Single-Sideband Exciter

The sideland generator shown in Figs. 11-6 and 11-8 uses the phasing principle outlined earlier (Fig. 11-313) to produce an upper or lower single-sideband signal. It will also generate a double-sideband signal, with or without carrier. The generator features the new heam-deflertion Tatio tube in the balanced modulator pertion of the circuit, and it is eomplete (with power supply) except for the frecuency-rontrolting source. A watt or two of r.f. from a v.f.o. or rerstal-controlledosedlator is anficient for the unit.

Referring to the cireuit diagram in lig. 11-7, a 12 AT 7 twin triode werves as the sperch amplifier. An audio phase-shift network (Barker \& Williamson Model 350 2(Qt) plugs in the octal sowet J_{2}. This preadjusted network has the property of delivering two audio signals differing in phase by 90 degrees $\pm 1 . \overline{0}$ degrees over the range 300 to 3000 cecles. The audio network is proterted against low- and high-frequency components outside this range by the coupling-raparitance values and the low-pans filter $C_{1} C_{2} L_{4} L_{2}$. The two audio signals from the network are equalized by the riase control and amplified hy $F_{2 A}$ and $V_{2 \text { s }}$ and applied to the cleflection plates. of the 7360 batanced modulators. The r.f. introduced at J_{4} is split and shifted + and -15 degrees in the r.f. phase-shift network to give a wet difference of ! o degrees.

The output of the balaned modulators is amplified hy a Class-A GCLA, which has sufficient output to drive two or three $61 \mathrm{f} \mathbf{6 \mathrm { s }}$ in Class AB_{1}. The tube complement and power supply shown in the eircuit diagram are such that the $6 \mathrm{CL} A$ cam be overdriven on $\overline{i s}, 10$ and 20 meters (but (lass-i operation demands that the tube never be driven into grid current). (on 15 and 10 meters this reserve gatin is lacking, and sonsequently inductor and phase-shift values for these hands are not given.

For ease of adjustment the grid, sereen and phate currents of the 6Cl.if can be measured, by proper sottings of S_{4}. Further, the input and output r.f. voltages can he metered, for eonvenionce in sotting the expitation and the output tuming.

To simplify the construction and aljustment, plug-in coils and r.f. phase-shift networks are used (Fig. 11-9). The r.f. network is made up of 100 -ohm resistors and suitable caparitors ($100-$ ohms reatance at the operating fredueney); once adjusted it will hold sufficiently over an amateur band.

The mode swit $\cdot h, s_{1}$, shifts from one sideband out put to another by shifting the deflection plate to which the audio is applied in one of the hataned modulators. A third position of the switeh disathes one of the balathed modulators, re-

Fig. 11-6-This phasing-type single (and double) sideband generator features the 7360 beam-deflection tube in the balanced-modulator section. The 6CL6 output amplifier (behind meter) delivers sufficient output to drive one or more 6146 amplifier tubes in Class $A B_{1}$. Plug-in coils are used to simplify construction.
The r.f. phase-shift network (coil form at extreme left, with two capacitor shafts visible) is plug-in for each band. The audio phase-shift network ($B \& W$ Type $2 Q 4$ No. 350) is housed in the tube envelope in front of the audio transformer at rear left. The unshielded tube at rear center is a voltage-regulator tube; two block knobs in front of the VR tube are on the carrier balance controls.

Toggle switches on the panel, left to right, are transmit-receive, power and spotting (carrier insert). Two knobs at left, above the microphone jack, turn the mode (lower) and the tune-operate switches. Knob under the meter is on the 5 -position meter switch.

Fig. 11.7 -Schematic diagram of the sideband generator. Unless specified otherwise, resistors are $1 / 2$ watt, .01 - and $.002-\mu \mathrm{f}$. capacitors are disk ceramic, 600 volts; .1 - and $.2-\mu \mathrm{f}$. capacitors are fubular paper, 400 volts; capacitors marked with polarities are electrolytic.
$C_{1}, C_{2}-0.1-\mu f$. 200-v. paper ± 10 per cent (Sprague J_{3}, J_{t}-Coaxial-plug receptacle (SO-239). 2TM-P1).
Ca-Dual 100- $\mu \mu \mathrm{f}$. variable (Hammarlund HFD-100).
$C_{1}-15-\mu \mu \mathrm{f}$. variable (Hammarlund MAPC-15).
C. $-100-\mu \mu \mathrm{f}$. variable (Hammariund APC-100B).
$\Sigma_{n}-100-\mu \mu \mathrm{f}$. variable (Hammarlund HFA-100A).
C_{i}-Dual $365-\mu \mu$. variatle, stators in parallel (broadcast replacement type).
C_{r}, C_{10}-See coil table.
$C_{9}, C_{11}-32-\mu \mu$ f. variable (Johnson 30M8 160-130).
CR1—360 p.i.v. 200-ma. silican (Sarkes-Tarzion K-200).
11-6.3-v. ponel light.
JI-Microphone connector (Amphenol 75-PCIM).
Je-Octal tube socket, for phase-shift network.
sulting in double-sidehand output from the generator. A spotting switch, S_{2}, is used to momentarily umbatane a bataned modulator and allow r.f. to feed through in an amount suffirient to be heard in the rereiver. The amount of unbalance is cletermined by the setting of the spor oseved resistor, A second rireuit of S_{2} is available 10 turn on the externat osillator at the same time.
$L_{1}, L_{2}-4-30 \mathrm{mh}$. slug-funed coil (Miller 6315) adjusted to 25 mh . See text.
$\mathrm{L}_{3}, \mathrm{~L}_{1}, \mathrm{~L}_{i}$-See coil table.
Lf: 10-henry 110-ma. filter choke (Knight 62G139).
P_{1}-Fuse plug.
S_{1}-3-pole 3-position rotary switch.
S:-D.p.d.t. toggle.
S:-Single-pole 2-position non-shorting rotary switch.
S_{1}-Two-pole 5-position rotary switch, non-shorting.
$\mathrm{S}_{3}, \mathrm{~S}_{6}-$ S.p.s.t. toggle.
$\mathrm{T}_{1}-20,000$-to-600 ohms tube-to-line transformer (Thordorson 22591).
$\mathrm{T}_{2}-520$ v.c.t. at $90 \mathrm{ma} ., 5$ v., 6.3 v. (Knight $61 \mathrm{G4} 12$).

The wive-operate switch, S_{3}, is used to ground the f(\%) sireen during tume-up procelunes.

The power supply includes a bias supply for the e6C,f amplifier stage. When switch S_{6} is rlosed, normal operating bias is applied to the 6(\%6, but when it is opened the bias will rise to the power-supply level and redure the 6C'L6 plate current to zero. This is useful if the 6 CL 6

generates "diode moise" on standby that is audible in the receiver. remotr connections allow the same bias to tre applied to a following amplifier during standly, or they can be used to open and ciose the rircuit normally controlled by S_{6}.

Construction

The phrieal arrangement of the major components is shown in Figs. 11-6 and 11-8. The generator is built on an $8 \times 17 \times 3$-inch aluminum chassis, with a T-inch high relay ratk panel held to it by the components along the bottom front. Nillen $8000821 / 8$-inch diameter aluminum shields are used at the sorkets for L_{4}, L_{5} and the r.f. phase-shift network, I minor departure from convention is the location of the atmo bain control on the chassis instead of the front panel, but the control is used so seldom that the location is justified.

No special considerations are required in wiring the audio section other that the usual precantions against hum pirkup. Before installing L_{1} and L_{2} they should be set to their correct value of 25 mh . An impedane bridge or (l meter an be used for the purpose, if available. If not, they (an be set with an audio oscillator and v.t.v.m. (or oseillosrope). Comnect an inductor in parallel with one of the $0,1-\mu$. caparitors, and comeet the combination to the audio oscillator output through a high resistinne (100 K or so). Connect the v.t.v.m. (or seoper) areros the parallel tuned rireuit, and adjust the indurtor for maximum voltage across the combination when the audio oscillator is set at 3200 ercles. Repeat for the other inductor and caparitor, and do not change the slug settings again. The filter will have a cutoff frequency of 3200 eveles.
R.f. wiring should be made short and direct wherever possible. Input and output are run to jatcks J_{3} and J_{4} in R(i-58/ [" coaxial cable. Try to
maintain symmetry of leads in the balancedmodulator portion of the cirruit.

Coil and r.f. phase-shift network dimensions are given in the coil table. L_{3} is a manufactured product used as is; L_{4} and L_{5} are mate from coil stock and mounted inside the polystyrene plug-in coil forms. The L_{5} form also carries padding "aparitors for ('z (these aren't shown in Fig. 11-7). A $3!-\mu \mu \mathrm{f}$. padder for 6_{6}, used only on 75 meters. (an be conneded to a spare pin on the socket for L_{5}, with the other caparitor terminal comerted to the chassis. A jumper in the 7 -j-meter L_{5} will then commert the padder across C_{6}.

By cutting a small notch in each side of the coil form, the two trimmer capacitors ('g and C_{11} can be mounted side by side in the coil form. Since the rotor terminals of C_{9} and C_{11} would normally touch each other when the two raparitors are in plate, each terminal must be snipped off close to the ceramic. I piese of timed wire is then soldered to the remaining portion of the terminal and led across the ceramic and up through the hole that will be farther from the other trimmer caparitor when the two are in place. The comertions to ('x, ('io and the two 100 -ohm 1-watt (composition, not wirewound) resistors must be made before the wires are snaked through the coil-form pins and soldered. Before soldering to the eoil-formpins, the lengths: of leads to the stators of ('y and Cu can bo measured and solderet. The leads to the rotors from the eoilform pins are long learls that are led up from the pins through the holes in the coramio end supports. When these long leads have been soldered to the leads from the rotors they will serve to hold ('s and ('in in plare. Any surplus length should be suipred off. See Fig. 11-9.

When soldering to the pins of the polystyrene coil forms, hold the pin in pliers or a vise, to prevent heat from reaching the polystyrene.

Adjustment

An audio oscillator or other source of lowdistortion single-tone audio is a necessity in the preliminary adjustment of the sideband generator. An osifloscope is also very useful, but it is possible to adjust the generator with only the source of single-tone a.f., a selective receiver and a v.t.v.m. The basis: arrangement for aligning the sideband generator, or any sideband generator using the phasing method, is shown in Fig, 11-10.

To align the generator just deseribed, comneat an audio oscillator to the microphone jack, J_{1}, through an attenuator as shown in Fig. 11-10. Open the 500K ambo gan control in the generator about half way and apply a 1000 -evole andio tone. Adjust the input level for approximately 1 volt ace, at the plates of $V_{2 A}$ and V_{24}, with the 500 -ohm bataves control set at half resistance. It will be found that the 1 pase control will be offset under these conditions; this is perfectly natural since the attenuations through the two chamels of the audio phase-shift network are not equal. If a good oscilloscope is available (identical phase shifts through vertical and horizontal amplifiers), the outputs from V_{2} and F_{21} should give a circle on the seope face when the vertical and horizontal gains are equalized.

Apply r.f. from the v.fo. or cerstal-controlled oscillator at J_{1}, and increase its amplitude until the meter shows full seale with S_{4} turned full clockwise. A full-scale reading will be close to 10 volts r.m.s. at the No. 3 pins of the 7360 balanced-

Fig. 11-8-View underneath the chassis of the sideband generator. Tuning capacitors are mounted close under the sockets for the associated plug-in coils. At rear of the chassis (bottom in this view), two terminals are used for bias measurement, and the 4 -terminal barrier strip is for making connection to remote control and v.f.o. on-off circuits. Two inductors, part of the low-pass audio filter that protects the audio phase-shift network,
are mounted near the r.f. input jack (lower left).

A Sideband Exciter

Fig. 11-9-Plug-in coils and r.f. phase-shift networks for the sideband generator. Output tank coils (right) include additional padding capacitor for C_{i}, as given in the coil toble. Polystyrene coil forms are 4 -pin (Allied Radio 24-4P) and 5 -pin (Allied Radio 24-BP).

modulator tubes, With S_{3} in the tuxe position, and S_{4} switched to read the grid current of the 6CCLi, it should be possible to tume ('3 and C_{5} and get an indication of grid current. Turn off the generator by pulling the line plug and temporarily onen one side of the 10 -ohm resistor in the phate-voltage lead to the 6CLA. The 6CLd stage can now be neutralized, using for an indicator a receiver comected to the output jark J_{3}. C"se a length of roaxial cable from J_{3} to the receiver, and install an attenuator network at the recejver antenna terminals, as shown in Fig. 11-10. Adjust the neutralizing capacitor for minimum signal at the recoiver, with all circuits resonated, s_{3} on ruse, and the signal backed off below the gridcurrent level.

Turn off the power, reconned the 10 -ohm rosistor, and connert at dummy load to the output of the sideband generator. Couple the seope and or receiver to the dummy load or L_{5}, as shown in fig. 11-10. When connecting to an ascilloserome,
a tuned cireuit is required, and the r.f. voltage developed arross the tumed circuit is applied directly to the vertical deflection mates. The rereiver is comected by compling lowsels through a loop and lougth of shielded cable; when further attenuation is required it is ohtained through the use of resistors at the rerefver input torminals.

With the oscollator ruming, tume the balaneed modulator and 6 © Cd circuits for maximum output - this resonates these circuits. Next adjust the sh basaver potentiometers for minimum output. Then introdure a single audio tone of around 1000 (eyeles at the mierophone terminal. Here again it may the nevessary to use a resistance voltage divider to hold the signal down and prevent overload. Sdvance the gatn control and look at or tistent to the output sigual from the (BCDC 5 . It is most likely to be a heavily modulated signal. Try various settings of f_{9} and (${ }^{\prime \prime} 11$ untit the mondulation is minimized, and experiment as well with slight twuches on the mataver: and

Sideband Generator Coil Table					
13:and (meters)	L_{4}	1.4	L_{1}	($\mathrm{T}_{\text {Did }}{ }^{* *}$	$C_{8} \mathrm{C}_{10} \mathrm{C}_{10}{ }^{* * *}$
75	47 t. No. $24.32 \mathrm{t} . \mathrm{p} . \mathrm{i}$. 11/4 diam.; 3 turnlink (BdW80) M(1.)	41 turns*	27 turns*	$910 \mu \mu \mathrm{f}$.	390 m μ f.
40	25 t. No. 22, 16 t.p.i., 13/1 diam.; 3 turnlink (B\&W 40 MCL$)$	20 turn.s*	19 turns*	$470 \mu \mu \mathrm{f}$.	$200 \mu \mu \mathrm{f}$.
20	13 t. No. 18.8t.p.i.. 14/4iam.; turnlink (B\&W10.MCL)	17 turns**	16 turns**	$270 \mu \mu \mathrm{f}$.	$91 \mu \mu \mathrm{f}$.
* 32 t.p.i. No. 21, 1 inch diam, (13 \& W 3016 Miniductor). ** 16 t.p.i. No. 20,8 inch diam. (13 \& W 3011 Minidurtor). *** silver mica, ± 5 per rent toleraners.					

Fig. 11-10-Fundamental arrangement for using on oscilloscope and/or receiver when testing an s.s.b. exciter or transmitter. An audio oscillator is required to furnish the audio signal, and its output is best controlled by the external contral R_{1}. The audio volume control in the s.s.b. exciter should not be turned on too far, or it should be set at the normal position if you know that position, and all volume controling should then be done with R_{1} and the output attenuator of the audio oscillator. This will reduce the chances of overloading the audio and other amplifier stages in the exciter, a common couse of distortion.

The oscilloscope is coupled to the dummy load through a loop, length of coaxial line, and an L-C circuit tuned to the operating frequency. It is necessary to go directly to the vertical deflection plates of the oscilloscope rather than through the vertical amplifier.

The receiver is coupled to the dummy load through a loop and a length of shielded line. If too much signal is obtained this way, an attenuator, $R_{2} R_{3}$, con be added to the input terminals of the receiver. Small values of R_{2} and large values of R_{3} give the most attenuation: in some cases R_{2} might be merely a few inches of solid wire.

Irinst: controls. Se should be in the opreate positions during these adjustments. With the v.t.v.m. check the r.f. voltages at the No. 3 pins of the 7360 s - they should be the same within a few per cent. If not, they can be brought into this condition by readjustment of C_{9} and C_{11}, consistent with minimum modulation on the output signal.

The s.s.b. signal with single-tone audio input is a steady ummodulated signal. While it may not be possible to eliminate the modulation entirely, it will be possible to get it down to a satisfactorily low level. Conditions that will prevent this are improper r.f. phatsing, lack of carrier hatance (suppression), distortion in the audio signal (at the source or through overload in the speech amplifier), and lack of audio balance at the 12.1T7 audio amplifier. Of these, the r.f. phasing and the audio batanee are perhaps the most eritical.

A final check on the signal can be made with the receiver in its most selective condition. The spectrum testing deseribed below cannot be done
with a broad receiver. lexamining the spectrum near the signal, the side signals other than the main one (carrier, unwanted sidebands, and sidebands from audio harmonies) should be at least 30 dt . down from the desired signal. This checking can be done with the S-meter and the a.g.e. on - in the carlier tests the a.g.e. should be off but the r.f. gain reduced low enough to avoid receiver overload.

Examples of the proper and improper scope patterns are shown in Fig. 11-11.

The bias potentiometer for the (jCl .6 amplifier should he set initially for a hias of about -3 volts, which should correspond to plate and sereen currents of aloout 30 and 7 mas, respertivels. Cnder maximam-signal conditions, just short of running into grid current, the plate current will kick up slightly. The best indicator of proper modulation level is the output meter.
(For an extensive treatment of the alignment of rommercial phasing-type s.s.b. exeiters, see Whrlich, "How to Adjust lh sing-Type S.S.B. bxeiters," (QST, November, 195(5.)

Fig. 11-11-Sketches of the oscilloscope face showing different conditions of adjustment of the exciter unit. (A) shows the substantially clean carrier obtained when all adjustments are at optimum and a sine-wave signal is fed to the audio input. (B) shows improper r.f. phase and unbalance between the outputs of the two balanced modulators. (C) shows improper r.f. phosing but outputs of the two balanced modulators equol. (D) shows proper r.f. phosing but unbolonce between outputs of two bolonced modulotors.

Amplification

Amplification of S.S.B. Signals

Whrn :m s.s.b. sigmal is gencrated at some frequeney other than the operating frequeney, it is neressary to change frequeney by heterodye mothots. These are exactly the same ats those used in receivers, and any of the normal mixer or converter cirruits can be used. Gue exeeption to this is the case where the heterodyning oseillator frequency is close to the desired output frecuener. In this case, a bataneed mixer should be used, to eliminate the heterodyning oseillator frequener in the output.
To increase the power level of an s.s.h. signal, a linear amplifier must be used, A linear amplifier is one that operates with low distortion, and the low distortion is obtained by the proper choiere of tube and operating conditions. Physieally there is little or no difference bet ween a linear amplifier and any other tye of r.f. amplifier stage. The cireuit diagram of a tetrode r.f. amplifier is shown in Fig. 11-12: it is no different basirally than the similar ones in Chapter Six. The pratiral differenes can be found in the supply voltages for the tube and their sperial requirements, The proper voltages for a number of suitable tubes eat be found in Table 11-I : filament-type tubes will require the addition of the filament hypass caparitons $\mathrm{C}^{\prime} 9$ and $\mathrm{C}^{\prime} 10$ and the romplation of the filatment eireuit he gromoding the filament-transformer center tap, The grid hias, E_{1}, is furnished through ath s .f. whole, although a resistor eat bo used if the tube is operated in (lass $A B_{1}$ (now grid (rurent). The soreen voltage, Ee, must be supplied from a "stiff" souree (little or no voltage change with eurrent change) which eliminates the use of a dropping resistor from the phate supply unloss a voltagerregulator thbe is used to stabiliza the sermen voltage

Any r.f. amplifier eimenit ran be adapted to linear operation through the proper choire of operating conditions. For example, the cireuit in Fig. 11-12 ran he motified by the use of different input and/or output coupling rirenits, or by the
use of another neutralizing sehome, and the resultant amplifier will still be linear if the proper operating conditions are olserved. A triode or pentode amplifier rirenit will differ in detail; typical circuits can be found in Chapter Six.

The simplest form of linear amplifier is the Class 1 amplifier, which is used almost without exerpion throughont receivers and low-level spereh equipment. (Seo Chapter Three for an explanation of the classes of amplifier operation.) While its linearity ran be made relatively good, it is inefliciont, The theoretieal limit of efficienery is 50 per cont, and most prate ical amplifiers run 25-35 por rent efficient at full output. At low Invels this is not worth worving about, but when the 2- to l(owatt lavel is exceoted something dise must be done to improve this efficiency and reduce taber, power-supply and operating costs.

Class $A B_{1}$ amplifiers make excellent linear amplifiers if suitable tubes are selected. Primary advantages of Class $.13_{1}$ amplifiers are that they give murh greater output than straight Class A amplifiers using the sume tubes, and they do not recpuire any grid driving power (no grid current drawn at any time). Although triodes ean be used for Class $A B_{1}$ operation, tedrodes or pentodes are usually to be prefermed, sinve Class Al $_{1}$ operation requires high peak plate current without grid current, and this is easier to ohtain in tetrodes and pentodes than in most triodes.

To obtain maximum ont put from tetrotes, pronterdes and most triodes it is necessiry to oparate them in Chass A B3., Athough this produres maximum peak output, it incrases the drivingpower requirements and, what is more important, requires that the driver regulation (athility to maintain wave form under varring load) be good or excellent. The usual method to improve the driver regulation is to commedt a fixed resistor, R_{1}, arross the grid cirenit of the driven stage, to offer a load to the driver that is modified only slightly by the additional loud of the tube when

Fig. 11-12-Circuit diagram of a tetrode linear amplifier using link-coupled input tuning and pi network output coupling. The grid, screen and plate voltages (E_{1}, E_{2} and E_{3}) are given in Table $11-1$ for a number af tubes. Althaugh the circuit is shown for an indirectlyheated cathode tube, the only change required when a filament type tube is used is the addition of the filament bypass capacitors C_{9} and C_{10}.

Minimum voltage ratings far the capacitors are given in terms of the power supply voltages.

$\underset{\stackrel{\omega}{\varphi}}{\omega}$																
	Tuob	coor	Vatabe	Ssation	O．c．atid	cose	mats				${ }_{\text {a }}^{\text {Mox．s．sial }}$		Max	Max．fotal	Avorimb	maxisision
	2126	${ }^{\text {AB }}$	500			，							Smer			\％ow
	\％140	${ }^{\text {A }}$	\％	${ }_{\substack{200}}^{200}$	30	$1{ }_{12}$	${ }^{118}$	3	$1:$	30	：	：	3	三	${ }_{25}^{25}$	∞
	（070	AB．	\％00	－	${ }_{35}^{34}$	${ }^{18}$	${ }_{70}^{70}$	${ }^{3}$	：		－	：	${ }^{2,5}$		${ }_{\substack{25 \\ 30}}$	${ }_{\substack{36 \\ 36}}^{\substack{\text { at }}}$
	O1．A	－	，	三	${ }_{8}^{\circ}$	－		三	三	${ }^{3}$	$\stackrel{7}{13}$		三	三	\％${ }_{\text {8 }}^{8}$	－
	4．6sA	${ }^{\text {a }}$	（inco	cois		$\underset{\substack{35 \\ 20}}{\substack{23}}$	coick	三		，	，	，	，	$\frac{3}{3}$	\％	
	7004		${ }_{\text {2000 }}^{2000}$	（150		$\substack{30 \\ 25}$	（100	三	${ }_{\substack{35 \\ 27}}^{\frac{35}{}}$				${ }_{\substack{10 \\ 20}}$			
	\square	${ }_{\text {A }}^{\text {A }}$	$\underset{\substack{\text { 2350 } \\ \text { 2300 }}}{\substack{\text { 250 }}}$		\％	－	（ist	：	${ }_{\substack{27 \\ 28}}^{28}$		$\stackrel{\circ}{\circ}$	2	${ }_{22}^{22}$		${ }_{125}$	
4．123A		AB：	come	${ }_{\text {\％}}$		${ }^{3}$	${ }^{11250}$		（1at	${ }_{\text {cos }}^{1080}$	：	\square^{2}	$\underbrace{20}_{\substack{20 \\ 20}}$	三	－	$\substack{\begin{subarray}{c} { \text { and } \\ \begin{subarray}{c}{1250{ \text { and } \\ \begin{subarray} { c } { 1 2 5 0 } } \\{180} \end{subarray}} \end{subarray}$
					$\stackrel{9}{511}$		${ }^{105}$									，
		$A_{B_{1}}$		$\underbrace{}_{\substack { \text { cisi } \\ \begin{subarray}{c}{350{ \text { cisi } \\ \begin{subarray} { c } { 3 5 0 } }\end{subarray}}$		\％		！	＂3	${ }^{101}$	？			，	，	，
4×150＾		As，	，	${ }_{\substack{300 \\ 300}}^{\substack{\text { and }}}$	－ 30	sio	$\substack { \text { 225 } \\ \begin{subarray}{c}{225{ \text { 225 } \\ \begin{subarray} { c } { 2 2 5 } } \end{subarray}$	¿	11	30	\％	¿	六	三	三	cis
		As：		coim	110^{2} $=1.108$ -100	\％		三		¢	！	¿		三	三	
		AB				\％	$\underset{\substack{243 \\ 235}}{\substack{235 \\ \hline 15}}$	！	$\begin{aligned} & 1 / 2, \\ & i_{12} \end{aligned}$	¢	，	i，		，		（in
	3041	As：	come	三		${ }^{138}$	（in	三	三	，	\％	！	三	三	三	，
	p．L．sso	＊		三	（osiol	¢	cois			coin	\％	，	三	三	三	cos
	P1．6so	＊		三		¢iction		三	三		\％${ }^{6}$		三	三	三	\％
	${ }^{\text {P．L．172 }}$	AB，		Sticis	－$=1110$	（inco		！	\％	－	：	：		三	三	（1020
	Acxioma	AB．		${ }_{325}^{325}$	＝	${ }_{\substack{235 \\ 230}}^{20}$	（100	${ }_{-2}^{2}$	S	\％	三－	：	年	：	三	${ }_{\text {l }}^{1200}$

Amplification of S.S.B. Signals

it is driven into the gridecurrent region. This increases the driver's output-power requirements. Further, it is desirable to make the grid circuit of the Class AB_{2} stage a high-(' circuit, to improve regulation and simplify coupling to the driver. A "stiff" hias source is also required. sinee it is important that the has remain ronstant, whether or not grid current is drawn.

Class B amplifiers are theoretically capable of 78.5 per cent efficiency at full output, and practical amplifiers run at $60-70$ per cent efficiency at full output. Triodes normally designed for Class 13 audio work can be used in r.f. linear amplifiers and will operate at the same power rating and efficiency provided, of course, that the tube is capable of operation at the radio frequencr. The operating conditions for r.f. are substantially the same ats for atudio work - the only difference is that the input and output transformers are replaced by suitable r.f. tank circuits. Further, in r.f. circuits it is readily possible to operate only one tube if only half the power is wanted - pushpull is not a meressity in Class B r.f. work. However, the r.f. harmonies may be higher in the ease of the single-ended amplifier, and this should be takem into consideration if TVI is a prohlem.

For proper opration of (lass ABy and is amplifiers, and to reduce harmonies and facilitato coupling, the input and output cireuits should not have a low reto-L ratio. A good guide to the proper size of tuning maparitor will be found in (hapter Six: in case of any doubt. it is well to he on the high-capacitane side. When zoro-bias tubes are used, it may not be neressary to and much "swamping" resistance across the grid rireuit, because the grids of the tubes losid the rireuit at all times. However. in AB_{2} operation. the swamping resistor should be such that it dissipates from five to ten times the power required by the grids of the tubes. insuring an almost constant load on the driver stage and good regulation of the r.f. grid voltage. In turn this means that at least five to ten times more driving power will be required than is indicated in Table 11-I. Where an exerss of driving power is available, it is generally better to inerease the loading (ikerease the resistance of the swamping resistor) to the point where the maximum available driver power is utilized on peaks.

Before going into detail on the adjustmont and loating of the linear amplifier, a few genctal considerations should the kept in mind. If proper operation is expereterf, it is assential that the amplifier be so constructed, wired and neatralized that no trace of regeneration or pamasitic instability remains. Necelless to say, this also applies to the stages ahead of it.

The bias supply to the Class AB_{2} or 13 limear amplifier should he quite stiff, such as batteries or some form of voltage regulator. If nonlincarity is noticed when testing the unit, the bias supply may be checked by means of a large electrolyt ic capacitor. Nimply shunt the supply with 100 uf . or so of caparity and see if the linearity improves. If so, rebuild the bias supply for better regula-
tion. Do not rely on a larye capacitor alone.
Where tetrodes or pentodes are used, the sereen supply should have good regulation and its voltage should remain constant under the varying current demands. If the maximum screen current does not exceed 30 or 35 ma , a string of VIR tubes in series can be used to regulate the sereen voltage. If the current demand is higher, it may be necessary to use an electronically regulated power supply or a heavily bled power supply with a current capacity of several times the current. demand of the screen cirenit.

Where VIR tubes are used to regulate the screen supply, they should be selected to give a regulated voltage as close as possible to the tube's rated voltage, but it does not have to be exact. Minor differences in idling plate current can be made un by readjusting the grid hias.

The plate voltage applied to the linear amplifier should the held as constant as possible under the varving current-demand conditions. This condition can be met by using low-resistance transformers and inductors and by using a large value of output capacitor in the power-supply filter. An output eapacitor value three or four times the minimum required for normal filtoring (Chapber Seven) is: reasomable. Athough some slight improvement can be obtained bey using still higher values of output capacitanere, the problem of turning on the supply without blowing fuse's (from the initial surge) starts to berome signifirant.

Gne should bear in mind that the same amplifier can be operated in several classes of operation hy merely ehanging the operating conditions (hias, loading, drive, sereen voltage, etc.). However, when the power sensitivity of an amplifier is increased, as by changing the operation from Class $A B_{2}$ to Class $A B_{1}$, the stability requirements for the amplifier hreome stringent.

From the standpoint of ease of adjust ment and atvailability of proper operating voltages, a linear amplifier with Class $A 3_{1}$ tetrodes or pentodes or one with zero-hias Class 13 triodes would be first choice. The Chass B amplifier would require more driving power. (For examples of Class $A B_{1}$ tetrode amplifiers, see Russ, "The "Little Firceracker' Idinear Amplitier," (QSTJ, sept., 195:3, lickhardt, "The single side-siadde Lincar," (SST, Nov.. 195:3, Wolfe and Romander, " $A \cdot 1$, 25013 Linear." (QSTV, Nov., 1966, Duir. "(irounded(irid Tetrode Kilowatt." Qs'T, April, 19馬, and Rinando. "Compact AB1 Kilowatt." (SNT', Nov., 19.7 .1

Table 11-1 lists a few of the more popular tubes commonly used for s.s.t. linear-amplifier opera1 ion . Exerpt, where otherwise noted, these ratings are those given by the manufacturer for audio work and as such are based on a sinc-wave signal. Those ratings are adequate ones for use in s.s.b. amplifier design, but they are conservative for sueh work and hence do not necessarily represent the maximum powers that can be obtained from the tubes in voice-signal s.s.b. service. In no ease should the arerage plate dissipation be exceeded for any eonsiderable length of time, but
the nature of a s.s.b. signal is such that the average plate dissipation of the tube will run well below the peak plate dissipation.
(ietting the most out of a linear amplifier is done by increasing the peak power without exceeding the average plate dissipation ovar any appreciable length of time. This can le done by raising the plate voltage or the peak current (or both), provided the tube ran withstand the increase. However, the manfarturers have not released any data on such operation, and any extrapolation of the audio ratings is at the risk of the amateur. A $35-$ to 50 -per cent increase abover plate-voltage ratings should be perfectly safe in
most cases. In a tetrode or pentode, the peak phate current cun be boosted some by raising the sereen voltage.

Whon ruming a linear amptifier at considerably higher than the audio ratings, the "two-tone test signal" (deseribed hater) stould newor be applied at full amplitude for more than a fow seconds at any one time. The above statemonts about working tubres above ratings apply only when a voice signal is used - a prolonged whistle or two-tone test signal may damage the tube. (For a method of adjusting amplifiers safely at high input, see (ioodman, "Jinear Amplifiers and Power Ratings," QS'T', August, 195̄.)

Grounded-Grid Amplifiers With Filament-Type Tubes

It is not necessary to use indirectly heated cathode type tubes in grounded-grid cireuits. and filament-t ype tubas can be used just as effertively. However, it is hecessary to raise the filament above r.f. gromed, and one way is shown in Fig, 11-13. Here filament chokes are used between the filament transformers and the tube socket. The inductane of the r.f. chokes does not have to be very high, and 5 to $10 \mu \mathrm{~h}$, will usuatly suffice from 80 meters on down. The aurenterarying caparities of the r.f. chokes must be adecutate for the tube or tubers in use, and if the resistance of the chokes is too high the filament voltage at the tube socket may he too low and the tube life will be endangered. In such a case, a higher-voltage filament transformer can be used, with its primary voltage cut down until the voltage at the tube socket is within the proper limits.

Filament chokes can be womd on ceramic or wooden forms, using a wire size large enough to earry the filament current without undur heating, Large cylindrical ceramic antematinsulators can be used for the forms. If enameled wire is ased, it should be spaced from half the diameter to the diameter of the wire: heary string can be used for this purpose. The separate chokes indicated in Fig. 11-I3 are not essential: the two windings can be womd in parallel. In this casp it is not mecessary to space all windings: the two parallel wires ean be trated as one wire, winding them together with a single piecer of string to space the turns. linameled wire ran be used berame the emamel is sufficient insulation to hande the fitament voltage.

When considerable power is available for driving the gromoded-grid stage, the matehing hetween driver stage and the amplifier is not too important. Howrerer, when the driving power is

Fig. 11-13-When filament-type fubes are used in a grounded-grid circuit, it is necessary to use filament chokes to keep the filament above r.f. ground. In the portion of a typical circuit shown here, the filament chokes. $R F C_{1}$ and $R F C_{2}$, can be a manufactured unit (e.g., B\&W FC1 5 or F(30) or homemade as described in the text. Total plate and grid current can be read on a milliammeter inserted at x.
marginal or when the driver and amplifier are to be connected by a long length of coaxial cable, a pi network matching circuit can be used in the input of the grounded-grid amplifier. The input impedance of a grounded-grid amplifier is in the range of 100 to 400 ohms, depending upon the tube or tubes and their operating conditions. When data for grounded-grid operation is available (as for two thbes in Table 11-I), the input impedance can be computed from

$$
Z_{\text {in }}=\frac{(\text { peak r.f. driviny roltatle })^{2}}{2 \times \text { driviny power }}
$$

From this and the equations for a pi network, a suitable network can be devised.

Adjustment of Amplifiers

One of the more important features of the linear amplifier is that the ordinary plate and grid meters atre at hest only a poor indicator of what is going on, As the meters bounce back and forth, even a person who is thoroughly familiar with this kind of amplifier would be hard put to
sense whether the input power registered is attributable to (a) overdrive and underload, Which vield distortion, splatter, TVI, ete., or (b) underdrive and too-heavy louding, resulting in inefficiency and loss of ontput.

The simplest and best way to get the whole

Adjustment of Amplifiers

story is to make a limearity test : that is, to send through the amplifier a signal whose amplitude varies from zero up to the peak level in a certain known manner and then observe, be means of an oseilloseope, whether this same waveform eomes out of the amplifier at maximum ratings.

Test Equipment

beren the simplest trpe of eathode-ray oscilloscope can be used for linearity tests, so long as it has the regular internal sweep direuit, If this insirument is not already part of the reghlar station equipment, it might be well to purchase one of the several inexpensive kits now on the market. so that it will be on hand not only to make initial tests but also as a permanent monitor during all operation. Barring a purchase, it is recommonded at least that a seope be borrowed to make the line-up checks, whereupon the regular phate and grid metors can serve theroafter to indicate roughly changes in operating conditions.

All limearity tests recuire that the vertical phates of the seope he supplied with r.f. from the amplifier' output. 'To avoid interaction within the instrument, it is usually best to commeet diroctly to the mathole-ray bate teminals at the bark of the cabinet. A piok-up derice and its connections to the oscillosome are shown in Fig. 11-10. Nomally, the pick-up loop, should be coupled to tho dummy Inad, antema timer, or transmission line: i.er.. to a point in the system beyond where any tuning adjustments are to be madr.
The only other piece of test efuipment will be an andio oscillator. Since only one frequeney is needed, the simple circuit of Fig, 11-1:3 works guite well. Some equipment has a cireuit similar to this ono bualt right into the exciter audio system.

Fig. 11-14-Fixed-frequency audio oscillator having good output waveform. The frequency can be varied by changing the values of C_{1} and C_{2}.
L_{1}-Small speaker output transformer, secondary not used.

Two-Tone Test

The two-tone test involves sending through the amplifier or the system a pair of r.f. signals of equal amplitude and a thousand eycles or so apart in frequency. The combined envelope of two such signals looks like two sine waves folded on one another. If this waveform romes out of the final, well and good: if not, there is work to do.

There are two commonly used ways to generate
the two-tone signal, and the choice of which to use depends on the particular tupe of exeiter avaitathe.

Methed 1 - for Filler or Jhasing Exciters:

1) Turn up the carrier insortion until a carrior is obtained at about half the rexperted output amplitude.
2) ('onnere an atudio oseillator to the mierophone input and advance audio gain until (when the carrier and the one sideband are equal) the scope pattern takes on the appearance of full modulation: i.e.. the rusps just meet at the renter line. Sere Fig. 11-15, photo No. 1.
3) To ehange the drive through the system, increase or deerease the carrier and audio settings together, maintaining equality of the two signals.

(1)

(2)

(3)

Fig. 11-15-Correct Patterns. 1-Desired two-tone test pattern. 2-Desired double-trapezoid test pattern. 3 - Typical voice pattern in a correctly adjusted amplifier, scope set for 30 -cycle sweep. Note that peaks are clean and sharp.

. Method B-for I'hasing E.rciters:

1) Disable the audio input to one balanced modulator, by removing a tube or by temporarily short-eircuiting an audio transformer.
2) Comnect the audio oscillator and advance audio gain to get the desired drive. Note that with one balanced molulator cut out, the resultant signal will be double-sideband with no carvier, hence two equal r.f. signals.

Double-Trapezoid Test

When Method B can be used with phasing exeiters, it is possible to derive a somewhat more informative pattern by making a connection from the exciter audio system to the horizontal signal input of the osrilloseope and using this atudio signal, instead of the regular internal sweep, to canse the horizontal deflection. Those who are familiar with the regular traperoid test for atm. transmitters will rerognize this set-up as being the same, except that instead of onf trapezoid, this test produces two triangles pointing toward each other.

Each individuad triangle is subject to the same analysis as the regular trapezoid pattern: i.e.. the sloping sides of the pattern should be straight lines for proper operation. Since it is much easior to tell whether a line is straight or not than to judge the correctuess of a sine curve. the double trapezoid has the advantage of being somewhat more positive and sensitive to slight departures from tinearity than is the regular two-tone patturn.

If the athdio can be pieked off at the phate of the audio modulator thbe that is still working, the input signal need not be a pure sine wave: merely whistling or talking into the midrophone should produce the appropriate pattern. If, berause of the exciter layout, it is neeressary to piek up the andio signal ahead of the phase-shift network, it will then be necossary to use a good sine-wave audio oscillator as before. . Also, with the latter set-up, the pattern will probably have a loopy appearance at first, and phase correction

Fig. 11-16-"Phaser' circuit for the oscilloscope.
will be needed to make the figure dose up. This can be done either by varying the audio frequency or by putting a phaser in series with the horizontal input to the scope, as shown in Fig. 11-16.

Ratings

Before proceeding with linearity tests, it is well to have in mind the current and power levels to expect. A suppressed-carrier signal is

Fig. 11-17-When the two-tone test signol is used for checking the linearity of an amplifier, the peak current is higher than the current indicated by the plate meter. The ratio of these values depends upon the ratio of the idling (no-signal) current to the indicated current.
The graph shows the relationship.
$J_{0}=$ no-signol (idling) current,
$I_{d e}=$ meter reading with two-tone test signal,
$J_{p k}=$ octual peok current.
exactly like an audio signal, except for its frequencer, so the audio ratings for tuny tube are perfectly applicable for linear r.f. service where no earrier is involved. Wn the other hand, the ratings sometimes shown for Class 13 r.f. telephony are not what is wanted, because they are for conventional a.m. transmission with earrier.

If audio ratings are not given for the desired tube type, it will be safe to assume that the maximum-signal input for Class 13 or AB_{2} service is about 10 per cent less than the key-down Class (cew. comditions. The input will have to be held somewhat lower in Class $A B_{1}$ operation because the average effieneney is lower and, also, the tube can draw only a limited amount of current at zero grid voltage.

The maximum-signal conditions dotermined from tube data correspond in s.s.b. work to the very peak of the r.f. envelope: when a two-tone test signal (or voice) is used, the phate milliammeter does not indicate the peak plate current. The relationship betwern peak eurrent and indicated current is variable with voice signals, but with the two-tone test signal applied there is a definite relationship between indieated (d.e.) current and poak courent. This relationship is plotted in Fig. 11-17. Knowing the ratio of the idling current to the phate current with the twotone test signal, I_{0} / I_{10} c. one can find the factor that can be applied to give the peak eurrent. For example, an amplifier draws 50 mat with no signal and 250 ma . (before llattening) with the two-tone test signal. $I_{0} / I_{D C}=0.2$, and $I_{\mathrm{PK}} / I_{\mathrm{DC}}=1$. to, from lig. $11-1 \overline{\mathrm{~h}}$. Thus $I_{\mathrm{PK}}=$ $1.45 \times 250=3603 \mathrm{ma}$.
should the resulting peak input $0.363 \times$ plate voltage) he different than the design value for the particular amplifior tube, the drive and loading adjustments ean be changed in the proper directions (always adjusting the lowding so that the peaks of the envelope are on the verge of flattening) and the proper value reached.

Adjustment of Amplifiers

Using the Linearity Tests

'The photos (IVigs. 11-15, 11-18 and 11-19) have heen taken to show many of the typical patterns that may be encountered with either of the test arrangements described previously. They are classified separately as to those representing correct fonditions (Fig. 11-15), falldy operation of the r.f. amplifier (Fig. 11-18), and various other patterns that look irregular but which really represent a perouliarity in the test set-up or the exciter but not in the final (Fig. 11-19).

Aside from the prohlem of parasitics, which may or may not be a difficult one it should be possible without much difficulty to achieve the corver lineatity pattern by taking action as indicated by the raptions areonpansing the photos. It dan then be assumed that the amplifier is not contributing any distortion to the signal so long as the peak power level indicated hy the test is mot excerded. It is antirely possible, however, that good linearity will be obstained only by holding the power down to a
level considerably below what is axpected, or conversely that there will be signs of exeresive plate dissipation at a level that the tubes should handle quite casily. In such cases, some attention should be given to the plate loading, as discussed brlow.

The several patterns of Jitg. 11-20 show how loading affects the output and efficioner of a linear amplifier. In the first two, loading is relat tively light and limiting takes place in the final phate circuit, leserver power is still available in the driver, evideneed by the fact that heavier loading on the final allows the peak output to inerease up to the optimum level of the thired pattern. With still heavier loading the output ceases to inerease but in fart drops somewhat: even though the input power goos up all the time. the efficiency geos down rapidly. Jn the last two patterns, the driver is the limiting element in the system, and the extra powerhandling copability of the final, due to heavier loading, is wasted bey inability of the driver to do it justier.

Fig. 11-21-Two examples of "high-level" mixer circuits, The circuit at A has been used with 6 V6, 6L6, 6AQ5 and 6Y6 type tubes. With 300 volts on the plate the idling current is about 15 ma , kicking as high as 30 ma . with the s.s.b. signal.

The circuit in B operates with a positive screen valtage and some cathode bias, and is capable of somewhat more output than the circuit shown in \mathbf{A}.

In either case the output circuit, $C_{1} L_{2}$, is funed to the sum or difference frequency of the oscillator and s.s.b. signal. Coupling coils L_{1} and L_{3} will usually be three or four turns coupled to their respective driving sources.

Refreme to tube manuals will diselose no information of the operation of smatl transmitting tubes as mixers. However. it has beron fomed that most of the utroles in the $15-10$:3in-watt platedissipation (lass matio acreptable mixers, and
 used surecssfully. The usual procedure is to feed one of the signals (owillator or s.s.b.) to the control grid and the other to the eathonte or sereen grid. 'Typical circuits are shown in Fig. 11-21.
(Sugyestions for ronverting to and oproating in the 50 and 14-Mc. hands ran be found in Tilton, "Single-Sidehand Ideas for the V.H.F" Man," (2ST, May, 105̄̈.)

VOICE-CONTROLLED BREAK-IN

Although it is possible for two s.s.b. stations operating on widely different frequencios to work "duphex" if the carrier suppression is great enough (inadequate carrier suppression would be a violation of the FCC rules), most s.s.b. operators prefer to use voice-controlled break-in and operate on the same frequency. This overeomes any possibility of violating the FCC rules and permits "round table" operation.

Many various sytems of voice-controlled break-in are in use, but they are all basiatly the same. Some of the audio from the speech amplifier
is amplified and rectified, and the resultaint d.e. signal is used to key an oscillator and one or more stages in the s.s.b, transmitter and "hank" tho receiver at the time that the transmitter is on, Thus the trinsmiter is on at any and all timos that the oporator is speaking but is off cluring the intervals between sentences. The voiererontrol circuit must have a small amount of "hold" built into it, so that it will hold in betweon words, but it should be made to turn on rapidly at the slightest voifer signal coming through the spereh amplifier. Both tube and relay kevers have beren used with good sucerses. Nome voicereontrol systems reguire the use of headphones by the operator, hut a doudspaker tan be need with the proper eircuit. (Nore Nowak, "Voice-(ontrolled Break-In . . . and a Ioudspraker," (2s'T, May, 1051, and IUunter, "simplified Voiere Contmo

If an antemar relay is used to switeh the athtema from the receiver to the transmitter and back again, it is often possible to operate the output linear amplifier stage with some idling current and experienere no difficulty with the "dionte noiso" gemerated by the amplifior plate current. However, when the rereiver, transmitter and antennat are always eonmeded together, as whom an electronic transmit-rocerve switeh is used (see (hapter Eight). weak signals will not be heard through the dionde noise of the transmitter. To overeome this difficulty, the idling current of the amplifier must he redued to zoro during listening periods. This rath bo arcomplished through the use of the cirenit in Fig. 11-22. Here

Fig. 11-22-Bias-switching circuit for use with a Class $A B_{1}$ linear amplifier and an electronic t.r. switch.

$\mathbf{R}_{1}-4700$ ohms, 1 wath.

$R_{2}-100,000$ ohms, 2 watts.
$\mathrm{K}_{1}-$ VOX relay or relay controlled by VOX circuit.
$V_{1}-0 A 2$ or OB2, depending upon amplifie: requirements.
K_{1} is a relay controlled by the voierecontrolled break-in circuit. When the relay is closed, the operating bias E_{1} for the linear amplifier is determined by the setting of the arm on R. When the relay is open, the grid bias jumps to the value E, which should be high enough to all off the amplifier stage. The voltage regulator tulse shonld be one with a nominal voltage drop in excess of the normal bias for the amplifior tube, and the negative supply voltage E should be at least 25 per cent higher than the ignition potential of the VR tube. The circuit in Fig. $11-22$ is applicable to Class $A B_{1}$ amplifiers; it camot be: used when grid current is drawn during operation,

Adjustment of Amplifiers

Using the Linearity Tests

The photos (Figs. 11-15, 11-18 and 11-19) have heen taken to show many of the typical patterns that may be concountered with either of the test arrangements deseribed previously. They are (lassifiod separately as to those representing corrert conditions (lig. 11-15), fanlty operation of the r.f. amplifier (Fig. 11-18), and various other patterns that look irregular but which really represent a perulianity in the tost set-up or the exriter but not in the final (Fig. 11-19).

Aside from the problem of parasities, which may or may not he a difficult one. it shoukt be possible without mueh difficulty to achieve the correct linarity pattern by taking action as indicated by the captions accompanying the photos. It can the be assumed that the amplifier is not eontributing any distortion to the signal so long ats the peak power level indieated by the test is mot exeeeded. It is entirely possible, however, that good linearity will be obtained only by holding the power down to a
level considerably below what is expected, or conversely that there will be signs of exeessive plate dissipation at a level that the tubes should handle quite casily. In such cases, some attention should be given to the plate loading, as diseussed below.

The several patterns of Fig. 11-20 show how loading affects the output and refficioner of a linear amplifier. In the first two, lowding is relatively light and limiting takes pare in the final mate circuit. Rosorvo power is still available in the driver, evideneed hy the fatet that heavier loading on the final allows the proak output to inerease up to the optimum level of the thived pattern, Wiah still heavier loading the ontput ceases to increase but in fact drops somewhat: even though the input power goes up all the time. the efficiencey gows down rapidly. In the last two patterns, the driver is the limiting felement in the system, and the extra powerhandling copabitity of the final, due to havier loading. is wasted by inability of the driver to do it justice.

1) For good efficiency, the final itself must be the limiting eldement in the powrorbanding at pability of the system.
$2)$ If the finat is not being driven to its limit, it should be loaded less hoavily motil such is the case.
2) If the power level obtained above is loss than should be expected, more driving power is neded.

There are several ways to tell whether or not the final is being driven to its limit. One way is to advance the drive until peak limiting is apparent in the output, then move the oscilloseope eonpling link over to the driver plate tank and
see whether or not the same limiting appoars there. Another way is to decrease or increase the final loarling slighty and note whether the limiting output lewe ineroses or derpeases correspondingly. If it dows not, the final is not rontrolling the system. Still another but similar mothod is to detune the final slightly while limiting is apparent, and if proper drive conditions prevail the pattern will improve when the amplifier plate is detuned.

The intermediate and driver stages will follow the same laws, exerpt that what is colled "loating" on a final is oftern referved to as "impedance matching" when going between tubes. Nore

(12)

(13)

1141
(15)

(16)

(17)

(18)

1191

Fig. 11-19-Improper Test Sefup. 12-Two r.f. signals unequal. In Method A, caused by improper settings of either carrier or audio control. Methad B, elither corrier leakage through disabled modulafor or unequal sidebands due to selective action of some high- Q circuit off resonance. 13-Same as 12, double-trapezoid test (Method B). 14-Distarted audia. A clue to this defect is that successive waves are nat identical. 15-Same dis. tortion as 14, but switched to double trapezoid test pattern. Note that correct pattern prevails regardless af poar audio signal. 16Carrier leakage through working modulator (Method B only). 17Same as 16, double trapezoid. 18 -(Note tilt to left.) Caused by incomplete suppression of unwanted sideband (Method A) or by r.f. leakage into horizontal circuits of scope. 19-Double trapezoid with audio phase shift in test setup.

Frequency Conversion

(20)

Fig. 11-20-Amplifier Loading Char acteristies. Two-tone patterns taken at the output of a Class B linear amplifier with constant drive and successively heavier loading. Measured input power: 20-90 watts; 21-135 watts; $22-250$ watts; $23-330$ wotts; $24-$ 400 wotts.

(21)

(23)

(22)

(24)
often than not, an apparent lack of power transfer from :l driver to its succeeding stage is due to a poor match. In Class AB_{2} or 13 service, a step-down type of coupling is required between power stages. and a person areustomed to the conventional plate-to-grid coupling (apacitor technigue will be surprised to find how effective it is to tip) the driven stage down on its tank or otherwise to decouple the system. For examplo, an 807 driving a pair of 811 s recquires a voltage step-down of about 3 or 4 to 1 from whate to cach grid.

Dummy Load

For the sake of everyone concerned, linearity tests should be kept off the air as much as possible. They make quite a racket and spurious signals are phentiful in carlior stages of misadjustment. Ordinary lamp bults make a fine dummy load so long as it is recognized that their impedance is not exactly the same as the antenna and that this imperlance changes somewhat as the bulls light up. These factors can be taken into account by making catciul note of plate and grid currents after the transmitter has been adjusted and is operating with a linearity test
signal at maximum linear output into the lamp load. Then, having reconnected the regular antenna, the same loading conditions for the final will be reproduced by adjusting its tuning and loading until the identical combination of plate and grid currents can be obtained. This process will require only a few moments of on-the-air operation.

When the final on-the-air checks are made, it will be convenient to make a few reference marks on the oscilloscope screen to indicate the peak height of the pattern. The scope will then serve as a permanent output monitor for all operations, For best results the sweep should be set for about 30 cycles, in which case the voice patterns will stand out clearly and can easily be kept just within the reference lines. Incidentally, the pattern is really fascinating to watch.

Don't be a "meter bender." Input power isn't everything. If you have to cut your input in half to avoid overload, the fellow at the other end will hardly notice the difference in level. At the same time, your neighbors, both those on the ham band and those next door trying to wateh TV, will appreciate the difference right away.

Frequency Conversion

The preferred s.s.b. transmitter is probably one that generates the s.s.b. signal at some suitable frequency and then heterodynes the signal into the desired amateur bands, although a few designs exist that gencrate the s.s.b. signal at the operating frequency and consequently climinate the need for heterodyning. When the heterodyning is done at low level (involving an s.s.b. signal of not more than a few volts), standard receiving techniques are satisfactory. The converter tubes operated at manufacturer's rat-
ings leave little to be desired.
When high-level heterodyning is required, as when an exciter delivering from 5 to 20 watts on a single band is available and multiband operation is desired, a high-level converter is used. Since the efficiency of a converter is only about one-fourth that of the same tube or tubes used in Class $A B_{2}$, using a converter stave as the output stage is not very economieal, and the high-level converter is generally used to drive the output stage.

Fig．11－21－Two examples of＂high－level＂mixer circuits． The circuit at A has been used with 6V6，6L6，6AQ5 and 6 Y 6 type tubes．With 300 volts on the plate the idling current is about 15 ma．，kicking as high as 30 ma ，with the s．s．b．signal．

The circuit in B operates with a positive screen voltage and some cathode bias，and is capable of somewhat more output than the circuit shown in A．

In either case the output circuit，$C_{1} L_{2}$ ，is tuned to the sum or difference frequency of the oscillator and s．s．b． signal．Coupling coils L_{1} and L_{3} will usually be three or four turns coupled to their respective driving sources．

Reference to tuhe manuals will diselose no in－ formation of the operation of small transmitting tubes as mixers．However，it has been found that most of the tetrodes in the 15 －to 35 －watt plate－ dissipation class make acerptable mixers，and
 used sureessitully．The usual provedure is to feed one of the siguals（oseillator or s．s．b．）to the control grid and the other to the cathode or sereen grid．Typical eireuits are shown in Fig． 11－21．
（Suggestions for converting to and operating in the 50 －and 141－Mc．bands can be found in Tilton，＂Single－Sideband Ideas for the V．H．F． Man，＂QST＇，May，1957．）

VOICE－CONTROLLED BREAK－IN

Although it is possible for two s．s．b．stations operating on widely different frequencies to work＂dupkex＂if the carrier suppression is great enongh（inadequate carrier suppression would be a violation of the FCC rules），most s．s．b， operators prefer to use voice－controlled break－in and operate on the same frequency．This over－ comes any possibility of violating the FCC rules and permits＂roumd table＂operation．

Many various sytems of voice－controlled break－in are in use，but they are all basically the same．Some of the andio from the speech amplifier
is amplified and rectified，and the resultant d．e． signal is used to key an oscillator and one or more stages in the s．s．b．tramsmitter and＂blank＂the receiver at the time that the transmitter is on． Thus the transmitter is on at any and all times that the operator is speaking but is off churing the intervals between sentences．The voicrerontrol circuit must have a small amount of＂hold＂ built into it，so that it will hold in between words， but it shouke be made to turn on rapidle at the slightest voice signal coming through the sperech amplifier．Both tube and relay kevers have been used with good sucerss．Some voicerontrol systems require the use of headphones ber the operator，but a loudspeaker ratu be used with the proper cireuit．（See Nowat，＂Voicr－Controlled Break－In ．．．and a Loudspeaker，＂（ 1951，and Hunter，＂Simplified Voice Control with a Ioudspeaker，＂（ぶず，（1atoher，195̈3．）

If an antenma relay is used to switeh the an－ temat from the reeriver to the transmitter and back again，it is of ter possible to operate the out－ put linear amplifier stage with some idling cour－ rent and experienere no diffirulter with the＂diode moise＂generated by the amplifier plate＂arrent． However．when the reodier，transmitter and antemat are abwas comereded together，as when an clectronic transmit－rereive switeh is used （see Chapter Vight）．weak signats will not be heard through the diode noise of the transmitter． To overeme this difficulty．the idling current of the amplifier must be redued to zoro during listening periods．This can be arcomplished through the use of the circuit in lig．11－22．Here

Fig，11－22－Bias－switching circuit for use with a Class $A B_{1}$ linear amplifier and an electronic t．r．switch．
$\mathrm{R}_{1}-4700$ ohms， 1 watt．
$\mathrm{R}_{2}-100,000$ ohms， 2 watts．
K_{1}－VOX relay or relay controlled by VOX circuit．
$V_{1}-O A 2$ or OB2，depending upon amplifier re． quirements．
K_{1} is a relay controlled by the voicerontrolled break－in circuit．When the relat is closed，the operating bias E_{1} for the linear amplifier is do－ termined by the setting of the arm on Re．When the relay is open，the grid bias jumps to the value E ，which should be high enough to cut off the amplifier stage．The voltage regulator tube should be one with a nominal voltage drop in excess of the normal bias for the amplifier tuber， and the negative supply voltage E should be at least 25 per cent higher than the ignition potential of the VR tuls．The cireuit in Fig．11－22 is ：up－ plicable to Class $A B_{1}$ amplifiors；it cannot be used when grid current is drawn during operation．

Receiving Suppressed-Carrier Signals
 Receiving Suppressed-Carrier Signals

The reception of suppressed-carrier signals requires that the carrier be accurately reinserted at the receiver. In addition, the reception of a double-sideband suppressed-carrier signal requires that one sideband be filtered off in the receiver hefore demodulation or that a special type of converter be used. Beculuse little or no carrier is transmitted, the usual a.v.c. in the receiver has nothing that indicates the average signal level, and this ficet requires either manual variation of the r.f. gain control or the use of a special a.v.c. system. (As, for example, Luiek, "Improved A.V.C. for Sideband and C.W.," QST', October, 1957.)

A suppressed-carrier signal can be identified by the absence of a strong carrier and by the severe variation of the s meter at a syllabic rate. When such a signal is encountered, it should first be peaked with the main tuming dial. (This centers the signal in the i.f. pass band.) After this operation, do not touch the main tuning dial. Then set the r.f. gain control at a very low level and switch off the a.v.c. Increase the audio volume control to maximum, and bring up the r.f. gain control mitil the signal can be heard weakly. switchen the beat oscillator, and carefully adjust the frequency of the beat oscillator until proper speech is heard. It there is a slight amount of carrier present, it is only necessary to zero-beat the beat oseillator with this weak carrier. It will be noticed that with incorrect tuming of an s.s.b. signal, the sperch will sound high- or low-pitehed or even inverted (very garbled), but no trouble will be had in getting the correct setting once a little experience has been obtained. The use of minimum r.f. gain and maximum audio gain will insure that no distortion (overload) occurs in the receiver. It may require a readjustment of your tuning habits to tune the receiver slowly enough during the tirst few trials.

Once the proper setting of the b.f.o. has been established by the procedure above, all further tuning should be done with the main tuning control. However, it is not unlikely that s.s.b. stations will be encountered that are transmitting the other sideband, and to receive them will require shifting the b.f.o. setting to the other side of the recoiver i.f. passband. The initial thong procedure is exactly the same as outlined above, except that you will end up with a considerably different b, f.o. setting. The two b.f.o. settings should be noted for further reference, and all tuning of s.s.b. signals can then be done with the main tuming dial. With experience, it becomes is simple
matter to determine which way to tune to make the signal sound lower- or higher-pitched if the receiver (or transmitter) drifts off.

When a double sidehand suppressed-carrier signal is received, sufficient selectivity will be required in the receiver to eliminate one sideband and convert the signal into a single-sideband signal before detection, where it can be received by the method outlined above. Receiver bandwidths of 3 ke. or less will be required for this purpose, or the use of a "Signal slicer," a selectivity device that uses the phasing principle. (See GE Ham News, Vol. 6, No. 4, July, 1951.)

Neweomers to single sidebamal of ten wonder if there is any device that can be added to a receiver that will make the tuning of sideband signals less critical. At the present time there is no deviee that will "lock in" :atomatically. However, if the receiver is lacking in selectivity, an apparent improvement can be obtained by using an adapter that adds selectivity to the receiving system. No improvement in ease of tuming will be noticed on good sideband signals (good suppression of unwanted sideband), but fair or mediocre signals will be easier to tune. The reason is that the adapter makes a botter sidehand signal out of the incoming signal by removing the vestiges of the muwanted sideband, and a good sideband signal will tune easier than a fair one. The sideband adapters also usually have detectors designed for best detection of sideband signals, a point that was overlooked in some of the older receivers. Good detectors for sidehand signals include diodes with sufficient b.f.o. injection (5 to 10 times peak sigmal) and "product detectors" (see Chapter Five). lïther detector is capable of low distortion output if the input is held dow"

WHICH SIDEBAND

To identify which sidehand the other station is using, remember this simple rule: If tuning the receiver to a lower frequency makes the voice sound lower-pitched, he is on lower sideband.

With any receiver having sulficient selectivity to give a stronger signal on one side than on the other of zero beat, this rule will aid in properly setting the b.f.o: A selective receiver can be set up for lower-sideband reception by setting the b,f.o. so that there is little or no signal on the low-frequency side of zero beat when tuning through a steady carrier or c.w. signal.

Specialized Communication Systems Frequency and Phase Modulation

It is possible to convey intelligence by modulating any property of a carrier, including its frequeney and phase. When the frequency of the carrier is varied in aroddane with the variations in a modulating signal, the result is frequency modulation (f.m.). Similarly, varying the phase of the carrier current is called phase modulation (p.m.).

F'requency and phase modulation are not independent, since the frequency amnot be varied without also varying the phase, and viee versa. The differnnce is largely a matter of definition.

The effer livemess of $\mathrm{f} . \mathrm{m}$. and p.m. for communication purposes depends almost antirely on the receiving methods. If the receiver will respond to frequence and phase chamges but is insensitive to amplitude changes, it will diseriminate agoinst most forms of noise, particularly impulse noise such as is set up by ignition systems and other sparking devices. Special methods of detection are required to accomplish this result.

Dodulation mothods for f.m. and p.m. are simple and require practically no audio power. There is also the advantage that, sine there is no amplitude variation in the signal, interference to broadeast rereption resulting from rectification of the transmitted signal in the audio eirenits of the BC receiver is sabstantially eliminated. These two peints represent the principal reasons for the use of f.m. and p.m. in amateur work.

Frequency Modulation

Fig. $12-1$ is a representation of frequency
(A)

(B)

(C)

Fig. 12-1-Graphical representation of frequency modu. lation. In the unmodulated carrier of A, each r.f. cycle accupies the same amount af time. When the modulating signal, B, is applied, the radio frequency is increased and decreased according to the amplitude and polarity of the modulating signal.
modulation. When a modulating signal is applied, the carrier frequency is increased during one half-evele of the modulating signal and decreased during the half-cyrde of opposite polarity. This is indieated in the drawing by the fact that the r.f. creles ocrupy less time (higher frequency) when the modulating signal is positive, and more time (lower frequency) when the modulating signal is negative. The change in the arrier frequency (frequency deviation) is proportional to the instantaneous amplitude of the modulating signal, so the deviation is small when the instantaneous amplitude of the modulating signal is small, and is greatest when the modulating signal reatehes its peak, either positive or negative.

As shown be the drawing, the amplitude of the signal dors not change during modulation.

Phase Modulation

If the phase of the current in a cireuit is changed there is an instantaneous frequency chanere during the time that the phase is being shifted. The amount of frequeney change, or deviation, depends on how rapidly the phase shift is accomplished. It is also dependent upon the total amount of the phase shift. In a properly operating b.m. system the anoount of phase shift is proportional to the instantaneous amplitude of the modulating signal. The rapidity of the phase shift is direetly proportional to the frequence of the modulating signat. (onsequently, the frequener deviation in p.m. is proportional to both the amplitude and frequeney of the modulating signal. The latter represents the outstanding difference betwern f.m. and p.m., since in f.m. the frequency deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

Percentage of modulation in $\mathrm{f} . \mathrm{m}$. and p.m. has to be defined differently than for a.m. Practically, " 100 per cent modulation" is reached when the transmitted signal oceupies a channel just equal to the bandwidth for which the receiver is designod. If the frequence deviation is groater than the receiver con arept, ihe reariver distorts the signal. However, on anot her reediver designed for a different bandwidth the same signal might be equivalent to only 25 per cent modulation.

In amateur work "narrow-band" f.m. or p.m. (frequently abbreviated n.f.m.) is defined as having the same channel width as a properly modulated a.m. signal. That is, the effective channel midth does not exceed twice the highest

Fig. 12-2-How the omplitude of the pairs of sidebonds varies with the modulation index in an f.m. or p.m. signal. If the curves were extended for greoter volues of modulation index if would be seen that the carrier amplitude goes through zero of severol points. The some stotement olso opplies to the sidebonds.
audio frequener in the modulating signal. N.f.m. transmissions baseal on an upper andio limit of 30ht eveles therefore should oceupy a channel not signifieantly wider than tike.

F.M. and P.M. Sidebands

The sidehands sot up byy f.m. and p.m. diffor from those resulting from an.m. in that they beem at integral multiples of the modulating frequeney on cither side of the carrier rather than, as in a.m. consisting of a single set of side frequencies for eath modulating frequency, An f.m. or p.m. signal therefore inherently occupies a wider channel than a.m.

The number of "extra" sidehands that oceur in f.m. and p.m. depends on the relationship between the modulating frequeney and the frequency deviation. The ratio between the frequency deviation, in cyeles per second, and the modulating frequency, also in cycles per second, is called the modulation index. That is,

$$
\text { Mordulation index }=\frac{\text { Carrior frequenc! beviation }}{\text { Modulating frequency }}
$$

Example: The maximum frequency deviation in an f.m. transmitter is 3000 eycles either side of the carrier frequency. The modulation index when the modulating frequency is 1000 cycles is

$$
\text { Modulation index }=\frac{3000}{1000}=3
$$

At the same deviation with 3000 -evele modulation the index would be 1 ; at 100 cyeles it would be 30, and so on.
In p.m. the modulation index is constant regardless of the modulating frequency; in $\mathrm{f} . \mathrm{m}$. it varies with the modulating frequency, as shown in the above example, In an f.m. system the ratio of the maximum carrier-frequency deviation to the highest modulating frequency used is called the deviation ratio.
liig. 12-2 shows how the amplitudes of the carrier and the various sidebands vary with the modulation index. This is for single-tone modulattion: the first sidehand cartually a pair. one abowe and one below the carrier) is displaced from the carrier by an amount equal to the modulating frequener, the second is twice the modulating frequemey away from the carrier, and so on. For example, if the modulating frequency is 2000 eycles and the carrier frequency is $29,500 \mathrm{kc}$., the tirst sidehand pair is at $2: 4,498 \mathrm{kc}$, and $29,502 \mathrm{kc}$., the second pair is at $29,496 \mathrm{kc}$. and $29,504 \mathrm{kc}$, the third at $29,49 \mathrm{kc}$. and $29,506 \mathrm{kc}$., etc. The amplitudes of these sidebands depend on the
modulation index, not on the frequency deviation.
Note that, as shown by lig. 12-2, the carrier strength varies with the modulation index. (In amplitude modulation the carrier strength is constant: only the sidehand amplitude varios.) At a modulation index of approximately 2.4 the carrier disappears entirely. It then becomes "negative" at a higher index, meaning that its phase is reversed as compared to the phase without modulation. In f.m. and p.m. the cnergy that goes into the sidebands is taken from the carrier, the total power remaining the same regardless of the modulation index.

Frequency Multiplication

Since there is no change in amplitude with modulation, an f.m. or p.m. signal can be amplified without distortion by an ordinary Class C amplifier. The modulation can take place in a very low-level stage and the signal can then be amplified by either frequency multipliers or straight amplifiers.

If the modulated signal is passed through one or more frequency multipliers, the modulation index is multiplied by the same factor that the carrier frequency is multiplied. For example, if modulation is applied on 3.5 Mc. and the final output is on 28 Me . the total frequency multiplication is 8 times, so if the frequeney deviation is 500 eycles at 3.5 Mc , it will be 1000 eycles at 28 Me. Frequency multiplication offers a means for obtaining practically any desired amount of frequency deviation, whether or not the modulator itself is capable of giving that much deviation without distortion.

Narrow-Band F.M. and P.M.

"Narrow-hand" f.m. or p.m., the only' type that is authorized by leCC for use on the lower frequencies where the phone bands are crowded, is defined as f.m. or p.m. that does mot orcupy a wider chamel than an a.m. signat having the same audio modulating frequencios.

If the modulation index (with single-tone modulation) does not excered 0.6 or 0.7 , the most important extra sideland, the serond, will be at heast 20 db . below the unmodulated carrier level, and this should represent an effective channel width about equivalent to that of an a.m. signat. In the case of speech, a somewhat higher modulittion index can be used. This is because the energy' distribution in a complex wave is such that the modulation index for any one frequency com-

12-SPECIALIZED COMMUNICATION SYSTEMS

ponent is redued, as compared to the index with a sine wave having the same peak amplitude as the voice wave.

The chief advantage of narow-band fim, or p.m. for frequencies below 30 Mr , is that it eliminates or reduces certain types of interference to broadeast reception. Also, the modulating equipment is relatively simple and inexpensive. However, assuming the same unmodulated carrier power in all cases, narrow-hand f.m. or p.m. is not as effertive as a.m. with the methods of reception used by most amateurs. As shown by Fig. 12-2, at an index of 0.6 the amplitude of the first sideband is about 25 per cent of the un-moduhated-carrier amplitude; this compares with a sideband amplitude of 50 per cent in the case of a 100 per cent modulated a.m. transmiter. When ropied on an a.m. rededver, it narrowband f, m. or p.m. transmitter is about equivalent to a 100 por cent modulated a.m. transmitter operating at ono-fourth the carrier power.

Comparison of F.M. and P.M.

Frequener modulation camot be applied to an amplifior stagre, but phase modulation can: p.m. is therefore readily adaptable to transmitters amploying oseillators of high stability surh as the erystal-rontrolled type. The amount of phase shift that can be obtamed with good linearity is such that the maximum practicable modulation index is about 0.5. Because the phase shift is proportional to the modulating frequency, this index can be used only at the highest frequeney present in the modulating signal, assuming that all frequencias will at one time or anothor have
equal amplitudes. Taking 3000 eyeles as a suitable upper limit for voice work, and setting the modulation index at 0.5 for 3000 eycles, the frequency response of the speech-amplifier system above 3000 areles must be sharply attemated, to prevent sideband splatter. Also, if the "timy" quality of p.m, as reccived on an $\mathrm{f} . \mathrm{m}$. receiver is to be avoided, the p.m. must be rhanged to f.m., in which the modulation index decreases in inverse proportion to the modulating froguency. This requires shaping the speechamplifier frequener-response curve in such a way that the output voltage is inversely proportional to frequeney over most of the voice range. When this is done the maximum modulation index can only be used at some redatively low audio frequeney, perhaps 300 to 400 eycles in voire tramsmission. and must decrease in proportion to the increase in frequency. The result is that the maximum linear frequeney deviation is only one or two hundred "yelles, when p.m. is changed to f.m. To increase the deviation for n.f.m. requires a frequener multiplication of 8 times or more.

It is relatively easy to secure a faily large frequency deviation when a solf-rontrolted osrillator is frequenerv-modulated directly. (True frequency modulation of a erystal-controlled oscillator results in only vory small deviations and so requires a great deal of frequency mattiplication.) The chicf problem is to maintain a satisfactory degres of carrier stahility. since the greater the inherent stability of the ceseilator the more diffieult it is to secure a wide frequeney swing with linesurty.

Methods of Frequency and Phase Modulation

A simple and satisfarlory devier for proturing f.m. in the amatere transmiter is the reactane modulator. This is a varum tube commented to the ref. tank cirenit of an oscillator in such a way as to art as a variable inductane or eaparitanere.

Fig. 12-3 is a representative circuit. The control grid of the modulator tube V_{2}, is connerted arross the oscillator tank circuit, C $C_{1} L_{1}$, through resistor R_{1} and boceking capacitor C's. C's represents the input caparitance of the modulator tule. The resistance of R_{1} is made latge compared to the reactance of ${ }^{\prime}$ "s, so the r.f. current through R_{1} ("s will be partically in phase with the r.f. voltare appearing at the terminals of the tank (ircuit. However, the voltage aross Cs will lag the current by $!0$ degrees. The r.f. current in the plate circuit of the modulator will be in phase with the grid voltage, and consequently is 90 degreas behind the current through ('s, or 90 degrees behind the ref. tank voltage. This lagging current is drawn through the osillator tank, giving the same dfect as though an inductance were connected arross the tank. The frequency increases in proportion to the amplitude of the lagging plate current of the modulator. The audio voltage, introduced through a radio-frequency choke, $R F C_{1}$, varies the transonductance of the
tube and thereby varies the r.f. plate current.
The modulated oscillator usually is operated on a relatively low frequener. so that a high ordor of carrior stability cam be serured. Frequency multipliers are used to raise the frequeney to the final frequency desimal.

A reactance modulator can be commerted to a crystal oscillator as well as to the self-controlled type. However. the resulting sigmal is more phasemodulated than it is frequeney-modulated, for the reason that the frequeney deviation that can be serured by varying the tuming of a arystal oseillator is quite small.

Design Considerations

The sensitivity of the modulator (frequener change per unit change in mrid voltage) depends on the transeonduetane of the modulator tube. It increases when R_{1} is made smaller in comparison with C's. It also increases with an increase in L / C ratio in the oscillator tank circuit. However, for highest carrier stability it is desirable to use the largest tank eapacitance that will permit the desired deviation to be secured while keeping within the limits of linear operation.

A change in any of the voltages on the modu-

Frequency and Phase Modulation

Fig. 12.3-Reactance madulatar usirg a hightranscanductance pentade (6BA6, 6CL6, etc.).
C_{1} —R.f. tank capacitance (see text'
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.001-\mu \mathrm{f}$. micc.
$C_{4}, C_{5}, C_{6 j}-0.0047-\mu \mathrm{f}$, mica,
C_{7} - 10- $\mu \mathrm{f}$. ele ctralytic.
C_{8}-Tube input capacitance.
$\mathrm{R}_{\mathrm{I}}-47,000$ ahms.
$\mathrm{R}_{2}-0.47$ megahm.
\mathbf{R}_{3}-Screen dropping resistar; select ta give proper screen valtage an type af madulatar tube used.
R_{4}-Cathode bias resistar; select as in case of R_{3}.
$L_{1}-R . f$, tank inductance.
$R F C_{1}$ - 2.5-mh. r.f. chake.
lator tube will wasio a change in r.f. plate eurrent, and consequently a frequency change. 'Therefore it is advisable to use a regulated plate power supply for both modulator and oseillator. . It the low voltage used (2.50) volts or less) the reguired stab hilization can breserured by means of gaseous ragulator tulus.

Speech Amplification

The speed amplifier prewding the modulator follows ordinary design, exeept that no power is taken from it and the a.f. voltage required be the mondulator grid usually is small - not more than 10 or 15 volts, even with large modulator tubes. Because of these modest repuirements, only a fow sperd stages are meded: a twostage amplifier consisting of a pentode followed by a triode. both resistancoroupled, will more than suffice for ervistal mirophones.

PHASE MODULATION

The same trpe of reatance-tube circuit that is used to vary the tuning of the oscillator tank in f.m. can be used to vary the thning of an amplifier tank and thus vary the phase of the tank current for p.m. Hence the modulator cirrouit of Fig. 12-3 'an be used for p.m. if the reat tunce tube works on an amplifier tank instead of directly on a self-controlled oscillator.

The phase shift that weurs when a circuit is detuned from resonance depends on the amount of detuning and the Q of the circuit. The higher the Q, the smaller the amount of detuning needed to necure a given number of derrees of phase shift. If the Q is at least 10 , the relationship bet ween phase shift and detuning (in kilocycles either side of the resomant frequeney) will be sub-
stantially tinear wer a phase-shift range of about 25 degrees. From the standpoint of modulator sensitivits, the ($)$ of the tuned circuit on which the modutator opreates should be ats high as posible. On the other hathd, the effertive Q of the eirenit will not be very high if the amplifer is delivering power to a load since the load revistance reduces the (ℓ. There mant therefore be a compromise betwern modulator semsitivity and r.i. power output from the modulated amplifer. An optimum figure for (Q appears to be about 20; this allows reasonable leading of the modulated :mmpitior and the nocessary thning variation can be secured from a reactance modulator without difficults: It is advisable to morlulate at a very low power level - proferably in a statere where recoiving type tubes are used.

Reatance modulation of an amplifior stage usually also results in simultaneons amplitude modulation because the modulated stage is detuned from resonance as the phase is shifted. This most be eliminated by feeding the modulated sighal through an amplitude limiter or one or nore "saturating" stages - that is, amplifiers that are operated Class C and driven hard enough so that variations in the amplitude of the grid excitation produce no appreciable variations in the final output amplitude.

For the sume type of reartance modulator, the speedt-innplifier gain required is the same for p.m. as for f.m. However, as pointed out carlier, the fart that the actual frequency deviation inereases with the modulating andio frequene $y^{\text {in }}$ p.m. makes it neressary to cut off the frequencies above about 3000 cycles before modulation takes place. If this is not done, unnecessary sidebands will be generated at frequencios considerably away from the carrier.

Checking F.M. and P.M. Transmitters

Accurate checking of the operation oi an f.m. or p.an. transmitter requires different methods than the corresponding checks on an a.m. set. This is because the common forms of measuring devices either indicate amplitude variations only (a d.e milliammeter, for example), or beeause their indications are most easily interpreted in terms of amplitude. There is no simple measuring instrument that indicates frequence deviation directly.

However, there is one favorable feature in f.m1. or p.m. checking. The modulation tiakes plate at a very low level and the stages following the one that is modulated do not atfoct the linearity of modulation so long as they are properly tuned. Therefore the modulation may be checked without putling the transmitter on the nie, or even on a dummy antenna. The power is simply cut off the amplifiers following the modulated stage. This not only avoids unneces-

12 -SPECIALIZED COMMUNICATION SYSTEMS

sary interference to other stations during testing periods, but also keeps the signal at such a low level that it may be observed quite casily on the station receiver. I good receiver with a crystal filter is an ersential part of the checking cquipment of an fim. or p.m. transmittor, particularly for narrow-band i.m. or p.m.

The quantities to be ehoeked in :n f.m. or p.m. tramsmitter are the linearity and frequeney deviation. Because of the essential difference between f.m. and prom. the methods of chereking differ in detail.

Reactance-Tube F.M.

It is posible to calibrate a roartane modulator by applying an adjustable d.e. voltage to the modulator grid and noting the change in oseillator frequeney as the voltage is varied. A suitable circuit for applying the adjustable voltage is shown in Fig, 12-4. The hattery should have a

Fig. 12-4-D.c. method of checking frequency deviation of a reactance-tube-modulated oscillator. A 500. or 1000 -ohm potentiometer may be used at R_{1}.
voltage of 3 to 6 volts (two or more dry cells in series). 'The arrows indirate clip connections so that the battery polarity ean be reversed.

The oseillator frequency deviation should be measured by using a receiver in romjunction with an accurately calibrated frequency meter, or by any means that will permit acourate measurement of frequency differences of a few hundred eycles. One simple method is to tume in the oseillator on the receiver (disconnerting the receiving antenna, if necessary, to kecp the signal strength well below the overload point) and then set the receiver b.i.o. to zero beat. Then increase the d.c. voltage applied to the modulator grid from zero in steps of about $1 / 2$ volt and note the beat frequency at each change. Then reverse the battery terminals and repeat. The frequeney of the beat note may be moasured by comparison with a calibrated audio-frequency oweillator. Note that with the battery polarity positive with respent to gromad the radio frequenery will move in one diredtion When the voltage is increasel, and in the other dirertion when the battery terminals are reversed. When soveral readings have been taken a curve maty be ploted to demonstrate the redationship between grid voltage and frequency deviation.

I sample curve is shown in lrig. 12-5. The usable portion of the curve is the center part which is essentially a straght line. The bending at the ends indicates that the modulator is no longer linear: this departure from linearity will catuse harmonic distortion and will broaden the chamel occupied by the signal. In the example, the characteristic is linear 1.5 ke . on

Fig. 12.5-A typical curve of frequency deviation vs. modulator grid voltage.
either side of the center or catrider frofuency.
A good modulation indicator is a "magiceye" tube such as the 6 (\%). This should be connected arross the grid resistor of the reatance modulator as shown in ligg. 12-6. Note its deflection (using the d.e voltage method as in Fig. 12-4) at the maximam deviation to be used. For narrow-hand f.m. the poner deviation is approximately 2000 cerles (this maximum doviation is based on an upper a.f. limit of 3000 creles and a deviation ratio of 0.7) at the output freguency. This deflection represents " 100 per cent modulation" and with speerh input the gain should be kept at the point where it is just reached on voice peaks. If the tramsmitter is used on more than one band, the gain rontrol should be marked at the proper setting for

Fig. 12.8-6E5 modulation indicator for f.m. or p.m. modulators. To insure sufficient grid voltage for a good deflection, it may be necessary to connect the gain control in the modulator grid circuit rather than in an earlier speech-amplifier stage.
carh hand, because the sighal amplitude that gives the corred deviation on one band will be either too great or too small on another. For
 hathe amd the oseillator is on 7 Me., the deviation at the asrilletor fropurbey should not exoed $3000 / 4$, or 000 ervos.

Checking with a Crystal-Filter Receiver

With prom. the d.e. mothod of chocking just deseribed camot be used, becanse the frequency deviation at zero frequency (d.e.) also is zero. For narrow-hand pru. it is necossary to Wherk the actual width of the chammel orempied lev the transmission. (The same method also can be used to chaed f.m.) For this purpose it is necessary to have a crystal-filter receiver and

Frequency and Phase Modulation

an a.f. oscillator that generates a 3000-cycle sine wave.

Keeping the signal intensity in the recciver nt a medium level, tune in the carrier at the output frequency. Do not use the a.v.c. Switch on the beat oscillator, and set the crystal filter at its sharpest position. Peak the signal on the erystal and adjust the b.f.o. for any convenient beat note. Then apply the 3000 -cycle tone to the speech amplifier (through an attenuator, if necessary, to avoid overtoading; see chapter on audio amplifiers) and increase the audio gain until there is a small amount of modulation. Tuning the receiver near the carrier frequency will show the presence of sidebands 3 kc . from the carrier on both sides. With low audio input, these two should be the only sidebands detectable.

Now increase the audio gain and tune the receiver over a range of about 10 kc . on both sides of the carrier. When the gain becomes high enough, a serond set of sidebands spaced 6 kc . on either side of the carrier will be detected, The signal amplitude at which these sidebands become detectable is the maximum speech amplitude that should be used. If the 6E5 modulation indicator is incorporated in the modulator, its deflection with the $3000-\mathrm{c}$ wate tone will the the " 100 per cent modulation" deflection for spoerh.

When this method of checking is used with a reactance-tube-modulated f.m. (not p.m.) transmitter, the linearity of the system can be checked by observing the carrier as the a.f. gain is slowly increased. The beat-note frequency will stay constant so long as the modulator is linear, but nonlinearity will be accompanied by a shift in the average carrier frequency that will cause the beat note to change in frequency. If such a shift occurs at the same time that the (i-ke. sidebands appear, the extra sidebands may be caused by modulator distorfion rather than by an exerssive modulation
index. This means that the modulator is not capable of shifting the frequency over a wideenough range. The 6 -ke. sidebands should appear before there is any shift in the carrier frequency.

R.F. Amplifiers

The r.f. stages in the transmitter that follow the modulated stage may be designed and adjusted as in ordinary operation. In fact, there are no special requirements to be met execpt that all tank circuits should be carefully tuned to resonance (to prevent unwanted r.f. phase shifts that might interact with the modulation and thereby introduce hum, noise and distortion). In neutralized stages, the neutralization should be as exact as possible, also to minimize unwanted phase shifts. With f.m. and p.m., all r.f. stages in the transmitter can be operated at the manufacturer's maximum c.w.-telegraplyy ratings, since the average power input does not vary with modulation as it does in a.m. phone operation.

The output power of the transmitter should be checked for amplitude modulation. It should not change from the umodulated-carrier value when the transmitter is modulated. If no output indicator is available, a flashlight lamp and loop can be coupled to the final tank coil to serve as a current indicator. If the carrier amplitude is constant, the lamp brilliance will not change with modulation.

Amplitude modulation areompanying f.m. or p.m. is just as much to be avoided as froquency or phase modulation that accompanics a.m. A mixture of a.m. with either of the other two systems results in the gencration of spurious sidebands and consequent widening of the chamel. If the presence of a.m. is inclicated by variation of antenna current with modulation, the cause is almost certain to be nonlinearity in the modulator.

Reception of F.M. and P.M. Signals

Receivers for f.in, and p.m. signals differ from those for a.m. and s.s.b, principally in two feat tures - there is no need for linearity in the amplifier stages preceding detection (in fact, it is advantageous if the amplitude variations in the signal and hackground noise can be "washed out"), and the detector must be capable of converting the frequency variations in the incoming signal into amplitude variations. These amplitude variations, combined with rectification, produce an abdio volage corresponding to the frequency or phase modulation on the signal.
lrequency- or phase-modulated signals can be received after a fashion on any ordinary receiver that has a selectivity eurve with sloping sides. As shown in Fig. 12-7.A, the receiver is tuned so that the carrier frequency is placed part-way down on one side of the selectivity curve so that the amplitude is less than the maximum that would be
possible with normal tuning. When the frequency of the signal varies with modulation it swings between some such limits as arre indicated in Fig. 12-7A, resulting in an amplitude-modulated output varying between X and 5^{\prime}. After this f.m.--to-a.m. conversion the signal goes to a conventional detector (usually a diode) and is rectified in the same way as an a.m. signal.
With most receivers, particularly those having steep-sided selectivity curves, the method is not very satisfactory because the distortion is quite severe untess the frequency deviation is smatl, because the relationship between frequency deviation and output amplitude is linear over only a small part of the selectivity curve.

A detector designed expressly for f.m. or p.m. will have a characteristic similar to that shown in Fig. 12-7B. The output is zero when the unmodulated carrier is tuned to the center, O, of

12 - SPECIALIZED COMMUNICATION SYSTEMS

Fig. 12-7-F.m. or p.m. defection characteristics. A"Slope detection," using the sloping side of the receiver's selectivity curve to convert f.m. or p.m. to a.m. for subsequent rectification. B-Typical discriminator characteristic. The straight portion of this curve between the two peaks is the useful region. The peaks should always lie outside the pass band of the receiver's selectivity curve.
the characteristic. When the frequency swings higher, the rectified output amplitude increases in the positive direction (as chosen in this example), and when the frequency swings lower the output amplitude inereases in the negative direction. Over the range in which the characteristic is a straight line the conversion from f.m. to a.m. is linear and there is no distortion. One type of detector that operates in this way is the fre-
quency discriminator, which combines the f.m.-to-a.m. conversion with rectification to give an audio-frequency output from the frequencymodulated r.f. signal.

Limiter and Discriminator

A practical diseriminator cireuit is shown in Fig. 12-8. The f,m.-to-it.m. conversion takes place in transformer T_{1}, which operates at the intermediate frequency of a superheterodyne receiver. The voltage induced in the transformer sceondary, N, is 90 degrees out of phase with the primary current. The primary voltage is introduced at the center tap on the secondary through C_{1} and combines with the seeondary voltages on each side of the center tap in such a way that the resultant voltage on one side of the secondary leads the primary voltage and the voltage on the other side lags by the same phase angle, when the circuits are resonated to the ummodulated carrier frequency. When rectified, these two voltages are equal and of opposite polarity. If the frequeney changes, there is a shift in the relative phase of the voltage components that results in an increase in output amplitude on one side of the secondary and a corresponding decrease in amplitude on the other side. Thus the voltage applied to one diode of V_{2} increases while the voltage applied to the other diode decreases. The difference between these two voltages, after rectification, is the audio-frequency output of the detector.

The output amplitude of a simple discriminator depends on the amplitude of the input r.f. signal, which is undesirable because the noise-reducing benefits of f.m. are not secured if the receiving system is sensitive to amplitude variations. A discriminator is always preceded by some form of amplitude limiting, therefore. The conventional type of limiter also is shown in Fig, 12-8. It is simply a pentode i.f. amplifier, V_{1}, with its operating conditions chosen so that it "saturates" on a relatively small signal voltage. The limiting action is aided by grid rectification, with grid-leak

Fig. 12-8-Limiter-discriminator circuit. This type of circuit is frequently used ot 455 kc . in the form of on "adapter" for communications receivers, for reception of narrow-band f.m. signals.
C_{1}-App. $100 \mu \mu$ f. for 455 -kc. i.f.; $50 \mu \mu$ f. for higher $R F C_{1}-10 \mathrm{mh}$. r.f. choke for 455 -kc. i.f.; 2.5 mh . sotisfrequencies.
T_{1}-Discriminator transformer for intermediate frequency used. Push-pull diode transformer may be sub. stlituted.

Radioteletype

bias developed in the 50,000 -ohin resistor in the grid circuit. Another contributing factor is low screen voltage, the screen voltage-divider constants being chosen to result in about 50 volts on the screen.

Receiver Tuning with an F.M. Detector

In tuning a signal with a receiver having a diseriminator or other type of f.m. detector the tuning controls should be adjusted to center the
carrier on the detector characteristic. At this point the noise suppression is most marked, so the proper setting is easily recognized. An am-plitude-modulated sigual tuned at the same point will have its modulation "washed off" if the signal is completely limited in amplitude and the discriminator alignment is symmetrical. With either $\mathrm{f} . \mathrm{m}$. or a.m. signals, there will be a distorted audio-frequency output if the reroiver is tuned "off center."

Radioteletype

Radiotcletype (abbreviated RTTY) is a form of telegraphic communication employing type-writer-like machines for 1) generating a coded set of electrical impulses when a typewriter key corresponding to the desired letter or symbol is prossed, and 2) converting a received set of such impulses into the corresponding printed character. The message to be sent is typed out in much the same way that it would be written on a typewriter, but the printing is done at the distant receiving point. The teletypewriter at the sending point also prints the same material, for checking and reference.
The marhines used for RTVY' are far too complex mechatically for home construction, and if purchased new would be highly expensive. However, used teletypewriters in good mechanical condition are available at quite reasonable prices. These are mathines retired from commercial sorvice but capable of entirely satisfactory operation in amateur work. They may be obtained from a number of sources (latest information on this may be olbtained from ARRL, West Hartford, Conn.) on condition that they will be used purely for amateur purposes and will not be resold for commerrial use.

Types of Machines

There are two general types of machines, the page printer and the tape printer. The former prints on a paper roll about the same width as a husiness letterhead. The latter prints on paper tape, usually gummed on the reverse side so it may be cut to letter-size width and pastod on a sheet of paper in a series of lines. The page printer is the more common type in the equipment available to amateurs.

The operating speed of most machines is such that characters are sent at the rate of about 60 words per minute. Ordinary teletypewriters are of the start-stop variety, in which the pulse-forming mechanism (motor driven) is at rest until a typewriter key is depressed. At this time it begins operating, forms the proper pulse sequence, and then eomes to rest again before the next key is depressed to form the following character. The receiving mechanism operates in similar fashion, being set into operation by the first pulse of the sequence from the transmitter. Thus, although the actual transmission speed cannot exceed about 60 w.p.m. it can be considerably slower,
depending on the typing spered of the operator.
It is also possible to transmit by using perforated tape. This has the advantage that the complete message mary be typed out in advance of actual transmission, at any convenient speed; when transmitted, however, it is sent at the machine's normal maximum speed. I special transmitting head and tape perforator are required for this process. A reperforator is a device that may be connected to the conventional teletypewriter for punching tape when the machine is operated in the regular way. It may thus be used either for an original message or for "taping" an incoming messige for retransmission.

Teletype Code

In the special code used for teletype every character has five "elements" sent in sequence. Farh element has two possible states, either "mark" or "space," which are indicated by different types of electrical impulscs (i.e., mark might be indicated by a negative voltage and space by a positive voltage). In customary practice each element oceupies a time of 22 milliseconds. In addition, there is an initial "start" element (space), also 22 milliseconds long, to set the transmitting and recoiving mechanisms in operation, and a terminal "stop" element (mark) 31 milliseconds long, to shut down the operation and ready the machine for the next character.

This sequence is illustrated in Fig. 12-9, which

Fig. 12-9-Pulse sequence in the teletype cade. Each character begins with a start pulse, always a "space," and ends with a "stap" pulse, always a "mark." The distributian af marks and spaces in the five elements between start and stap determines the particular character transmitted.
shows the letter G with its start and stop elements. The letter code as it would appear on perforated tape is shown in Fig. 12-10, where the black dots indicate marking pulses. Figures and arbitrary signs - punctuation, ete. - use the

There are na lawer-case letters on a teletypewriter. Where blanks appear in the above chart in the "FIGS" line, characters may differ on different machines.
same set of code impulses as the alphabet, and are selected hy shifting the carriage as in the case of an ordinary typewriter. The carriage shift is accomplished hy tramsmitting either the "LTRS" or "FI(is" code symbol as required. There is also at "carriage return" code character to bring the carriage batk to the starting position after the end of the line is reached on a page printer, and a "line feed" character to advance the page to the next line after a line is completed.

Additional System Requirements

To be used in radio communication, the pulses (d.c.) generated by the teletypewriter must be utilized in some way to key a radio transmitter so they may be sent in proper sequence and usable form to a distant point. It the receiving end the incoming signal must be converted into d.e. pulses suitable for operating the printer. These functions, shown in block form in Fig. 12-11, are

Fig. 12-11-Radioteletype system in block form.
performed by clectronic units known respectively as the keyer and receiving converter.

The radio transmitter and recesver are quite conventional in design. Pratically abll the sperial features neded ram be incorporated in the keyer and converter, so that any ordinary amateur equipment is suitable for $\mathrm{I}^{\prime} \mathrm{l}^{\circ} \mathrm{IV}^{\prime}$ with little modification.

Transmission Methods

It is quite possible to transmit teletype signals by ordinary "on-off" or "make-l reak" keying such as is used in regular hand-keyed c.w. transmission. In practice, howevar, frequency-shift keying is preferred beculase it gives definite pulses on hoth mark and space, which is an advantage in printer operation. Also, since f.s.k. can be regeived by methods similar to those used for f.m. reception, there is considerable diserimination against noise, both natural and man-made, distributed uniformly across the receiver's pass band. when the received signal is not too weak. Both factors make for increased reliability in printer operation.

Frequency-Shift Keying

General practice with f.s.k. is to use a frequency shift of 850 cyeles per second, although FCC regulations permit the use of any value of frequency shift up to 900 cycles. The smaller values of shift have been shown to have a signal-to-noiseratio advantage in commercial circuits, and are currently being experimented with by amateurs. At present, however, the major part of amateur RTTY work is done with the 800 -evele shift. This figure also is used in much commereial work. The nominal transmiter frequeney is the mark condition and the frequeney is shifted 850 cyrles (or whatever shift may be chosen) lower for space.
On the v.h.f. bands where A2 transmission is permitted audio frequency-shift keying (a.f.s.k.) is generally used. In this case the r.f. carrier is transmitted continuously, the pulses being transmitted by frequency-shifted tone morlulation, The audio frequencies used have been more-orless standardized at 2125 and 2955 a second, the shift being 850 cyeles as in the case of straight f.s.k. (These frequencios are the 5 th and 7th harmonics, respectively, of 425 (eycles, which is half the shift frequency; and thas are convenient for calibration and aligument purposes.) With a.f.s.k. the lower audio frequency is customarily used for mark and the higher for space.

The Receiving Converter

In receiving an f.s.k. teletype signal, the receivers heat-frequency oscillator is turned on as for ordinary c.w, reception and the receiver tuning is then adjusted so that the mark and spare signals produce audio beat tones of 212 os and 2975 cycles. Fither frequency can be used for
either mark or space, but no matter which may be used at the transmitter, the mark and space frequencies can be reversed at the receiver simply by tuning to the "other side of zero beat." (This cannot be done with a.f.s.k., of course, but the reversal can be accomplished quite simply, if

Fig. 12-12-Receiving converter for f.s.k. teletype signals (W2PAT). Unless otherwise indicated, capacifances are in μ f, resistances are in ohms, resistors are $1 / 2$ watt. Capacitors of $0.01 \mu \mathrm{f}$. or less may be mica or ceramic; larger values may be paper. Capacitors with polarities indicated are electrolytic.
$\mathrm{C}_{\mathrm{I}}-0.15$ - μ f. paper.
$\mathrm{C}_{2}-0.1-\mu \mathrm{f}$. paper.
$C R_{1}, C R_{2}-1 N 34$ or equivalent.
K_{1}-Polar relay, to operate on 20 ma .
$\mathrm{L}_{1}-36 \mathrm{mh}$. (TV width control, GE type RLD-019).
$\mathrm{L}_{2}-29 \mathrm{mh}$. (TV width control, GE type RLD-014).
M_{I}-Zero-center d.c. milliammeter, 20 ma. or more full scale (may be a 100-0-100 microammeter appropriately shunted).
necessary, by interchanging the outputs from the two frequencies as applied to the printer.) The audio-frequency tones are applied to separate rectifiers to convert them into d.c. impulses, which may then be further amplified to the power level required to operate the printer.

The receiving converter which performs these functious generally will include means for clipping or limiting the signals so they are held at constant amplitude, and may also include provision for some shaping of the pulses to overcome distortion that occurs in transmission. There are many ways by which these results can be accomplished, and the higher the order of performance the more complicated the circuits become. However, satisfictory results under reasonably good receiving conditions can be secured with relatively simple equipment, and the "basic" circuit shown in Fig. 12-12 has proved to be quite successful in practice. It operates as follows:

When audio output from the receiver is applied, the two diodes, $C R_{1}$ and $C R_{2}$, which are biased with approximately 0.3 volt, limit the peak voltage at the grid of the limiter tube, $V_{1 A}$, to 0.6 volt or less for signal voltages up to 30 volts or more. Additional limiting in $V_{1 A}$ further stabilizes the voltage level. $V_{1 B}$ is primarily an
$R_{1}-50,000$-ohm volume control, linear taper.
$R_{3}-1000$ ohms, 1 watt.
S_{t}-S.p.s.t. toggle.
T_{1}-Power transformer, 500 volts c.t., $30 \mathrm{ma} ; 6.3$ volts 3 dmp.
$V_{1}, V_{2}-6 S L 7$ (or $12 A X 7$).
$V_{3}-6 S N 7 G T$ (or 12AU7).
amplifier, and delivers approximately 15 volts output, constant to within 1 db . for receiver output voltages varying between about 0.5 volt and more than 30 volts.
The two tones, thus limited in amplitude, are applied to two simple filter circuits, $L_{1} C_{1}$ and $L_{2} C_{2}$, tuned to 2125 and 2975 cycles, respectively. The two tones are thus scparated, one being applied to the grid of $V_{2 \mathrm{~A}}$ and the other to the grid of $V_{2 \mathrm{~B}} . V_{2 \mathrm{~A}}$ and $V_{2 \mathrm{~B}}$ operate as grid-leak detectors, and when a signal is applied to, say, $V_{2 A}$, the flow of grid current causes the grid to be driven practically to plate-current cutoff. As a result the plate voltage on $V_{2 A}$, normally 15 volts with no signal, rises to 50 volts This is sufficient to ignite the neon lamp connected between the plate of $V_{2 A}$ and the grid of V_{33}, and a positive bias of about 25 volts is applied to the grid of $V_{3 \mathrm{~B}} . V_{3 \mathrm{~B}}$ then takes a plate current of about 20 ma . and a bias of 20 volts is developed across the common cathode resistor, R_{2}. This is sufficient to cut off the plate current of $V_{3 A}$, hence the left-hand magnet of the polarized relay, K_{1}, is inoperative while the right-hand magnet closes the contacts on its side. A similar action takes place when a signal is applied to the grid of V_{23} but not to $V_{2,}$; in this

12-SPECIALIZED COMMUNICATION SYSTEMS

Fig. 12-13-Madification of converter circuit for use with single-magnet printers. Unless otherwise indicated, capacitances are in $\mu \mathrm{f}$., resistances in ohms, resistors are $1 / 2$ watt.
M_{1}-Zero-center d.c. milliammeter, 100 ma. full scale (may be microommeter with appropriate shunt).
$\mathrm{R}_{\mathrm{I}}-50,000$-ohm volume control.
case the relay contacts are pulled to the left. The relay thus keys the mark and spare voltages applied to the printer.

Potentiometer R_{1} is adjusted so that incoming noise (which will affect both chamels equally) is balaned out and does not cause K_{1} to operate. The neon lamps improve the operation of the circuit by arting as switches, thus making a sharp demarratom between mark and space pulses.

The zern-center meter, M_{1}, is not a necessity but is a convenience in making adjustments. R_{1} should le adjusted on remiver noise for zero reading. With at 212 -eryele tone the pointer will
swing to the left and L_{1} should be adjusted for maximum deflection, With a 29 Tin-cyele tone the pointer will swing to the right and L_{2} should be adjusted for maximum deflertion. Pequal deflertions should be obtained from both rhanmels.

The keving circuit shown in lFig, $12-12$ is for use with the Model 12 machine which requires an extermal power supply. For marhines having a single selector magnet the modification shown in Fig. 12-1:3 may he used so the printer may he operated directly. These mathines usually reguire a current of 60 ma ., which will be furnished by this cireuit and may be adjusted to the correct value by means of R_{1}.

Frequency-Shift Keyers

The keyburd contants of the teletypewriter actuate a direreroment cimuit that operates the printer magnets, and a pair of terminals is provided at which a keved d.e. signal of the order of 100 volts is availathle. (Wome mathiues, suth as the Model 12, require an external dic. power supply for this purpose: others have self-contained power supplies.) In the "resting" or nonoperating comdition the contacts are elosed (mark) and the voltage at the terminals, which are in parallel with the contacts, is zero. In operation, the contarts open for "space" and the full voltage appeas across the terminals, As normally connerted, the sparing signal is of positive polarity.

This keved d.e. voltage may he used to operate a kever circuit for the radio tramsmitter, provided it is not "loaded" to such an extent that it atfeets the operation of the printer. Alternatively, the keved current, rather than the voltage, mat be used for external keving. This an be done by using an auxiliary keving relay with its eoil connected in series with the printer magnet or relay rircuit, I fist-acting relay must be used, and the coil must be one that will operate satisfactorily on the curvent available in the printer circuit. This will usually be either 20 or 60 milliamperes, depending on the type of machine.

F.S.K. with Variable-Frequency Oscillators

lerhaps the simplest satisfictory circuit for frequence-shift keying a v.f.o. is the one shown in Fig. 12-14A. This operates from the voltage available at the keyoard contact terminals and uses a reactance tube to obtain the required frequeney shift.

The frequency shift is obtained by changing the plate resistance of the reatance tule, l_{2}, so that in effect the variahle eapacitor C_{2} is alternately diseomected or eonnerted in parallel with the tuning capacitor in the v.f.o. tatnk cireuit. With no voltage applied to the grid, V_{2} is hiased so that the plate current is low and the offect of Con on the oseillator frequency is small. When a positive voltage from the keyboard contants is applied to the grid the plate resistanee is low and the oseillator frequener becomes lower beatase of the greater effect of C_{2}. The amount of frequeney shift depends on the capabitane of fa and the amplitude of the positive voltage applied to the grid of V_{2}. The latter san be controlled by R_{1}.
C_{1}, the associated 20,000 -ohm resistor, and the neon bulb, V_{1}, constitute a filter for removing clicks generated at the keybord contacts. The value of C_{1} depends somewhat on the machine,

Radioteletype

and values up to 0.25μ i, can be used, if necensary, without objectionable distortion of the keving pulses. The capacitance should be adjusted for rlickless keying.

The frequeney-shift circuit should be initially adjusted at the lowest radio frequency to be used, since the shift will be smallest in this case. If C_{2} is set so a shift of 850 cycles is obtained at this frequency, further adjustment of the shift may be made be means of R_{1}. If the transmitter output is on a higher-frequeney band than that on which the v.f.o. operates, the shift at the vilio. fundamental frequency must be redneed aecordingly.

F.S.K. With Crystal Oscillators

Fig. 12-1413 is a circuit which has been foumi to give a frequency shift of 850 creles or more with crostals of the type ordinarily used for frerumencies of the order of 3.5 Me. and higher. This is an oseillator of the "grid-plate" type discussed in Chapter 6 on transmitters, with the addition of a variable eaparitor, C_{3}, in series with the erystal. ('3 reduces the total capacitance across the cristal and thus raises the oscillation frequency. When it is shorted out the capacitance aross the crystal is higher and the resulting frequence is lower.

Although relay contacts could be used for shorting the eapacitor, the diode arrangement shown in Fig. 12-14B is more reliable in practice. With the contacts of K_{1} open there is no d.c. path through $C R_{2}$ and it acts simply as a small capacitance (ahout $1 \mu \mu \mathrm{f}$.) in parallel with C_{3}. When the contacts of K_{1} are closed there is a d.c. eircuit through $C R_{1}, C R_{2}$ and the 1000 -ohm resistor. Thus there is a path for direct current
flow as a result of rectification of the r.f. voltage arross Cha. Because of the d.e. hias the resistance of $C R_{2}$ drops to a low value and C 3 " is effertively. shorted out.

Adjustment of the circuit consiste simply of determining the setting of C_{3} at which the operating frequency is 850 cycles (or the desired shift) higher with the contacts of K_{1} ouen than the frequency when the relay contacts are elosed. A normally closed relay is used in order to make the mark frequenty lower than the space frequency, in aceordance with usual practice.

Frequency Adjustment

The frequeney shift, whatever the trpe of circuit, should he made as nearly exact is available equipment will permit, since the shift must match the frequency difference between the filters in the receiving converter if the signals are to be usable at the receiving end. An accurately calibrated audio oscillator is useful for this purpose. To cherk, the mark frequeney should be tuned in on the station receiver, with the b,f.o, on, and the receiver set to exact zero beat (see Chapter 21 on measurements for identification of exact zero beat). The space frequeney should then he axdjusted to exactly the desired shift. This may he done by adjusting for an auditory zero beat between the heat tone from the receiver and the tone from the audio oscillator. If an oscilloscope is available, the frequency adjustment may be accomplished by feeding the receiver tone to the vertical plates and the audio-oscillator tone to the horizontal plates, and then adjusting the space frequency for the elliptical pattern that indicates the two frequencies are the same.

Transmission Lines

The place where r.f. power is generated is very frequently not the phace where it is to be utilized. A transmitter and its antemna are a good example: The antema, to radiate well, should he high above the ground and should be kept clear of trees, buildings and other objeets that might absorb energy, but the transmitter itself is most conveniently instatled indoors where it is readily aecessible.

The means by which power is transported from point to point is the r.f. transmission line.

At radio frequencies a transmission line exhithits entirely different characteristios than it does at commereial power frequencies. This is bectase the speed at which electrical energy (ravels, while tremendonsly high as compared with meehanical motion, is not infinite. The perulintities of r.f. transmission lines result from the fare that a time interval comparable with an ref. cerele must elapse before chergy leaving one point in the circuit ean reach another just a short distance away.

Operating Principles

If a source of e.m.f. - a hattery, for example - is commerted to the ends of a pair of insulated parallel wires that extemel outward for an infinite distance, electric currents will immediately hecome deteretable in the wires near the battery terminals. The electric field of the battery will canse free clectrons in the wire eonnerted to the positive torminal to be attracted to the battery, and an equal mumber of free clectrons in the wire comeeted to the negative terminal will be repelled from the battery 'lhese eurrents do not flow instantaneously throughout the length of the wires; the electric field that causes the electron movement camot travel faster than the speed of light, so a measurable interval of time elapses before the eurrents become evident even a relatively short distance away.

For example, the currents would not become deteetable 300 meters (nearly 1000 feet) from the battery until at least a microsecond (one millionth of a serond) after the conneetion was made. By ordinary standards this is a very short length of time, hit in terms of radio frequency it represents the time of one complete cyele of a bom-kilacyele eurrent - a frequency considerably lower than those with which amateurs communicate.

The current flows to charge the capacitance betwern the two wites. However, the eonductors of this "linear" capacitor also have apprectiable inductance. The line may be thought of as being

Fig. 13-1 -Equivalent of a transmission line in lumped circuit constants.
composed of a whole series of small inductances and capacitances connected as shown in Fig. 13-1, where each eoil is the inductance of a very short section of one wire and each capacitor is the eapacitance between two such short seetions.

Characteristic Impedance

An infmitely long chain of coils and capacitors conneeted as in Fig. 13-1, where the small inductances and eapuritaneres all have the same values, respertively, has an important property. To an electrical inupulse applied at ome cul, the combination appears to have an impedance called the characteristic impedance or surge impedance - approximately equal to $\sqrt{ } / J /{ }^{\text {i }}$ where L and C are the inductance and catpacitance per unit length. This impedance is purely resistive.

In defining the characteristic impedance as $\sqrt{L / C}$, it is assumed that the eronductors have no inherent resistane - that is, there is no $1^{2} R$ loss in them - and that there is no power loss in the dielectric surrounding the conductors. There is thus no power lose in or from the line no matter how great its longth. 'This may not seem consistont with calling the charateristic, impedance a pure resistance, which implies that the power supplied is all dissipated in the line. But in an infinitely long line the effect, so far as the source of power is concerned, is exactly the same as though the power were dissipated in a resistance, bocause the power leaves the souree and travels outwatd forever along the line.

The charaterist ic impedance determines the amount of current that can flow when a given voltage is appliod to an infinitcly long line, in exactly the sume way that a definite value of artual resistance limits current flow when a voltuge is applied.

The inductance and capacitance per unit length of line depend upon the size of the eonductors and the sparing between them. The closer the two conductors and the greater their diameter, the higher the capacitance and the lower the inductance A line with large eonductors closely spaced will have low impedance, while one with small conductors widely spaced will have relatively high impedance.

"'Matched' Lines

Actual transmission lines do not extend to infinity but have a definite length and are connected to, or terminate in, a load at the "output"

Standing Waves

end, or end to which the power is delivered. If the load is a pure resistance of a value equal to the characteristic impedance of the line, the line is sutid to be matched. To current traveling along the line surh a load just looks like still more transmission line of the same characteristic impediner.

In other words, a short line terminated in a purely resistive load equal to the rhararteristio impedance of the line acts just as though it were infinitoly lomg. In a matched transmission line, power travels ontward along the line from the souree until it reaches the load, where it is comphetely absorbed.

R.F. on Lines

The principles diseussed above, although based on direct-enrrent flow from a battery, also hold when tul r.f. voltage is applied to the line. The difference is that the altermating voltage coanses the amplitute of the current at the input terminals of the line to vary with the voltage, and the direetion of curvent flow also periodically reversess when the polanity of the applied voltage reverses. The current at a given instant at any point along the line is the result of a voltage that was applied at some corlier instant at the input terminals. Sinee the distance traveled by the electromagnetie ficlds in the time of one cycle is equel to one wavelength (Chapter 2), the instantaneous amplitude of the current is different at all points in a onewavelongth section of line. In fact, the aurrent flows in opposite directions in the same wire in sureressive half-wavelength sections. However, at any given point along the line the current goes through similar variations with time that the current at the input terminals did.

Thus the eurrent (and voltage) travels along the wire as a series of waves having it length equal to the speed of travel divided by the frequency of the a.c. voltage. On an infinitely long line, or one properly matched by its load, an ammeter inserted anywhere in the line will show the same curront, because the ammeter averages out the variations in current during a eycle. It is only when the line is not properly matched that the wave motion beeomes apparent through observations made with ordinary instruments.

STANDING WAVES

In the infinitely long line (or its matched counterpart) the impedance is the same at any point on the line because the ratio of voltage to current is always the same. However, the imipedance at the end of the line in Fig. 13-2 is zero - or at least extremely small - because the line is short-rirenited at the end. The outgoing power, on meeting the short-circuit, reverses its direetion of flow and goes back along the transmission line toward the input end. There is a large current inthe short-circuit, but substantially no voltage across the line at this point. We now have a voltage and current representing the power going outward (incident power) toward the short-circuit,
and a second voltage and current representing the reflected power travehing back toward the source.

The reflected current travels at the same speed as the outgoing current, so its instantaneous value will be different at every point along the line, in the distance represented by the time of one evele. It some points along the line the phase of the incident and reflected curvents will be such that the currents cancel each other while at others the amplitude will be doubled. At inbetween points the amplitude is between these two extremes. The points at which the currents are in and out of phase depend only on the time required for them to travel and so depend only on the distance along the line from the point of reflection.

In the short-circuit at the end of the line the two current components are in phase and the total current is large. It a distance of one-half wavelength back along the line from the shortcireuit the outgoing and reflected eomponents will again be in phase and the resultant current will again have its maximum value. This is also
(A)
(B)

Fig. 13.2-Standing waves of voltage and current along short-circuited transmission line.
true at any point that is a multiple of a half wavelength from the short-circuited end of the line.

The outgoing and reflected currents will cancel at a point one-quarter wavelength, along the line, from the short-circuit. At this point, then, the current will be zero. It will also be zero at all points that are an odd multiple of one-quarter wavelength from the short-cireuit.

If the current along the line is measured at successive points with an ammeter, it will be found to vary about as shown in Fig, 13-2B. The same result would be obtained by measuring the current in either wire, since the ammeter cannot measure phase. However, if the phase could be checked, it would be found that in each successive half-wavelength section of the line the currents at any given instant are flowing in opposite directions, as indicated by the solid line in Fig. 13-2C. Furthermore, the current in the second wire is flowing in the opposite direction to the current
in the adjacent section of the first wire. This is indicated by the broken curve in Fig. 13-2C. The variations in curvent intensity along the transmission line are referred to as standing waves. The point of maximum line current is called a current loop or current antinode and the point of minimum line current is called a current node.

Voltage Relationships

Since the end of the line is short-rireuited, the voltage at that point has to be zero. This can only be so if the voltage in the outgoing wave is mot, at the end of the line, by a reflected voltage of equal amplitude and opposite polanity. In other words, the phase of the voltage wave is reversed when reflection takes place from the short-circuit. This reversal is equivadent to an extra half cerce or half wavelength of travel. As a result, the outgoing and returning voltages are in phase a quarter wavelength from the end of the line, and again out of phase a half wavelength from the end. The standing waves of voltage, shown at D in Fig. 13-2, are therefore displaced by one-quarter wavelength from the standing waves of current. The drawing at bishows the voltages on both wires when phase is taken into arrount. The polarity of the voltaga oll (atch wire reverses in each half wavelength section of tamsmision line. A voltage maximum is catled a voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the end of the line is open-circuited instead of short-circuited, there can be no current at the end of the line but a large voltage can exist. Again the incident power is reflected back toward the source. The incident and reflected eomponents of current must be equal and opposite in phase at the ofen riveuit in order for the total current at the end of the line to be zero. The incident and reflereted components of voltage are in phase and add together. The result is again that there are standing waves, but the conditions are reversed as compared with a short-circuited line. Fig. 13-3 shows the open-cireuited line case.
(A)

Fig. 13.3-Standing waves of current and valtage along an open-circuited transmission line.
(A)
(B)
(C)

Fig. 13-4-Standing woves an a transmission line terminated in a resistive laad.

Lines Terminated in Resistive Load

Fig. 1:3-4 shows a line terminated in a resistive load. In this case at least part of the incident power is absorbed in the load, and so is not available to be reflected back toward the source. Beratuse only part of the power is reflected, the reflected components of voltage and current do not have the same magnitude as the incident components. Therefore neither voltage nor current cancel completely at any point along the line. Ilowever, the speed at which the incident and reflected components travel is not affected by their amplitude, so the phase relationships are similar to those in open- or shorteriruited lines.

It was pointed out earlier that if the load resistance, Z_{R}, is equal to the charateristic impedance, Z_{0}, of the line all the power is ahsorbed in the load. In such a case there is no reflected power and therefore no standing waves of current and voltage. This is a special case that represents the change-over point between "short-circuited" and "open-circuited" lines. If Z_{R} is less than Z_{0}, the current is largest at the load, while if Z_{R} in greater than Z_{11} the voltage is largest at the lome. The two conditions are shown at B and (', respertively, in Fig. 13-4.
The resistive termination is an important pratical case. The termination is soldom an attual resistor, the most common terminations being resonant circuits or resonant antenna systems, both of which have essentially resistive impedances. If the load is reactive an well as resistive, the operation of the line resembles that shown in Fig. 13-4, but the presence of reatemer in the load causes two modifiations: The loops and nulls are shifted toward or away from the load: and the amount of power reflected back toward the source is increased, as compared with the amount reflected by a purely resistive load of the same total impedance. Both effects become more pronounced as the ratio of reactance to resistance in the load is made larger.

Standing-Wave Ratio

The ratio of maximum current to minimun current along a line, Fig. 13-5, is called the standing-wave ratio. The same ratio holds for maximum voltage and minimum voltage. It is a measure of the mismateh between the load and the line, and is equal to 1 when the line is per:

Standing Waves

fectly matched. (In that case the "maximum" and "minimum" are the same, since the current and voltage do not vary along the line.) When the line is terminated in a purely resistive load, the standing-wave ratio is

$$
\begin{equation*}
S . W . R .=\frac{Z_{\mathrm{R}}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{\mathrm{R}}} \tag{13-A}
\end{equation*}
$$

Where S.W.R. = Standing-wave ratio

$$
Z_{\mathrm{R}}=\underset{\text { Impedance of load (must be }}{\text { phre restance) }}
$$

$Z_{0}=$ Characteristic impedance of line

Example: A line having a characteristic impedance of 300 ohms is terminated in a resistive load of 2.5 olims. The s.w.r. is

$$
S . W^{\prime} \cdot R .=\frac{Z 0}{Z_{16}}=\frac{300}{25}=12 \text { to } 1
$$

It is customary to put the larger of the two quantities, Z_{R} or Z_{0}, in the numerator of the fraction so that the s.w.e. will be expressed by a number larger than 1 .

It is easier to measure the standing-wave ratio than some of the other quantities (such as the

Fig. 13.5-Measurement of standing.wave ratio. In this drawing, $I_{\text {man }}$ is 1.5 and $I_{\text {min }}$ is 0.5 , so the s.w.r. $=I_{\text {max }} /$ $I_{\text {mis }}=1.50 .5=3$ to t.
impedance of an antenna) that enter into trans-mission-line computations. (onsequently, the s.w.r. is a convenient basis for work with lines. The higher the s.w.r., the greater the mismatch between line and load. In practical lines, the power loss in the line itself increases with the s.w.r., as shown later.

INPUT IMPEDANCE

The input impedance of a transmission line is the imperdace seen looking into the sending-end or input terminals; it is the impedance into which the sonte of power must work when the line is connected. If the load is periectly matched to the line the line appears to be infinitely long, as stated earlier, and the input impedance is simply the characteristic impedance of the line itself. However, if there are standing waves this is no longer true; the input impedance may have a wide range of values.

This can be understood by referring to ligs. 13-2, 1:3-3, or 1:3-4. If the line length is such that standing waves cause the voltage at the input terminals to be high and the current low, then the
input impedance is higher than the Z_{0} of the line, since impedance is simply the ratio of voltage to current. Conversely, low voltage and high current at the input terminals mean that the input impedance is lower than the line Z_{0}. Comparison of the three drawings also shows that the range of input impedance values that may he encountered is greater when the far end of the line is open- or short-circuited than it is when the line has a resistive load. In other words, the higher the s.w.r. the greater the range of input impedance values when the line length is varied.

In addition to the variation in the absolute value of the input impedance with line length, the presence of standing waves also causes the input impedance to contain both reactance and resistance, even though the load itself may be a pure resistance. The only exceptions to this orcur at the exact current loops or noder, at which points the input impedance is a pure resistance. These are the only points at which the outgoing and reflected voltages and currents are exactly in phase: It atl other distances along the line the current cither leads or lags the voltage and the effect is exactly the same as though a capacitance or inductance were part of the input impedance.

The input impedance can be represented either by a resistance and a capacitance or by a resistance and an inductance. Whether the impedance is inductive or capacitive depends on the characteristies of the load and the length of the line. It is possible to represent the input impedance bey an equivalent circuit having resistance and reactance either in serides or parallel, so long as the total impedance and phase angle are the same in cither casc.
The magnitude and character of the input impedance is quite important, since it determines the method by which the power source must be coupled to the line. 'The calculation of input impedance is rather complicated and its measurement is not feasible without sperial equipment. Fortunately, in amaterur work it is ummeressary either to calculate or measure it. The proper coupling can be achieved by relatively simple methods described later in this chapter

Lines Without Load

The input impedance of a short-circuited or open-circuited line not an exact multiple of onequarter wavelength long is practically a pure reactance. This is because there is very little power lost in the line. Such lines are frequently used as "linear" inductances and caparitances.

If a shorted line is less than a quarter-wave long, as at X in Fig. 13-2, it will have inductive reactance. The reactance increases with the line length up to the quarter-wave point. Beyond that, as at Y, the reactance is capacitive, high near the quarter-wave point and becoming lower as the half-wave point is approached. It then alternates between inductive and capacitive in successive quarter-wave sections. Just the reverse is true of the open-erircuited line.

At exact multiples of a quarter wavelength the impedance is purely resistive. It is apparent, from

13-TRANSMISSION LINES

examination of B aud D in Fig. 13-2, that at points that are a multiple of a half wavelength i.e., $1 / 2,1,1 / 2$ wavelengths, etc. - from the short-circuited end of the line the current and voltage have the same values that they do at the short circuit. In other words, if the line were an exact multiple of a half wavelength long the generator or source of power would "look into" a short circuit. On the other hand, at points that are an odd multiple of a quarter wavelength i.e., $1 / 4,3 / 4,1 \frac{1}{4}$, etc. - from the short circuit the voltage is maximum and the current is zero. since $Z=E / I$, the impedance at these points is theorotically infinite. (Actually it is very high, but not infinite. This is because the current does not actually go to zero when there atre losses in the line. Losses are always present, but usually are small.)

Impedance Transformation

The fact that the input impedance of a line depends on the s.w.r. and line length can be used to advantage when it is necessary to transform a given impedance into another value.

Study of Fig. 13-4 will show that, just as in the open- and short-circuited cases, if the line is onehalf wavelength long the voltage and current are exactly the same at the input terminals as they are at the load. This is also true of lengths that are integral multiples of a half wavelength. It is also true for all values of s.w.r. Hence the input impedance of any line, no matter what its Z_{0}, that is a multiple of a half wavelength hong is exactly the same as the load impedance. Such a line can be used to trinsfer the impedance to a new location without changing its value.

When the line is a quarter wavelength long, or an odd multiple of a quarter wavelength, the load impedance is "inverted." That is, if the curront is low and the voltage is high at the load, the input impedance will be such as to require high current and low voltage. The relationship between the load impedance and inpat impedance is given by'

$$
\begin{equation*}
Z_{\mathrm{S}}=\frac{Z_{0}^{2}}{Z_{\mathrm{R}}} \tag{13-B}
\end{equation*}
$$

where $Z_{s}=$ Impedance looking into line (line length an odd multiple of onequarter wavelength)
$Z_{\mathrm{R}}=$ Impedance of load (must be pure resistance)
$Z_{0}=$ Characteristic imperlance of line
Example: A quarter-wavelength line having a characteristic impedance of 500 ohms is terminated in a resistive loarl of 75 ohms. The impedance looking into the input or sending end of the line is

$$
Z_{\mathrm{S}}=\frac{Z_{0} 0^{2}}{Z_{\mathrm{R}}}=\frac{(500)^{2}}{75}=\frac{250,000}{75}=3333 \mathrm{ohm}
$$

If the formula above is rearranged. we have

$$
\begin{equation*}
Z_{0}=\sqrt{Z_{\mathrm{S}} Z_{\mathrm{R}}} \tag{13-C}
\end{equation*}
$$

This means that if we have two values of impedance that we wish to "match," we can do so if we connect them together by a quarter-wave transmission line having a characteristic imped-
ance equal to the square root of their product. A quarter-wave line, in other words, has the characteristics of a transformer.

Resonant and Nonresonant Lines

The input impedance of a line operating with a high s.w.r. is eritically dependent ou the line length, and resistive only when the length is some integral multiple of one-quarter wavelongth. Lines cut to such a length and operited with a high s.w.r. are called "tuned" or "resonant" lines. On the other hand, if the s.w.r. is low the input impedance is close to the Z_{0} of the line and does not vary a great deal with the line length. Such lines are called "flat," or "untuned," or "nonresonant."

There is no sharp line of demarcation between tuned and untuned lines. If the s.w.r. is below 1.5 to 1 the line is essentially flat, and the same input coupling method will work with all line lengths. If the s.w.r. is above 3 or 4 to 1 the type of coupling system, and its adjustment, will depend on the line length and such lines fall into the "tuned" category.

It is usually advantageous to make the s.w.r. as low as possible. A resonant line becomes necessary only when a considerable mismatch between the load and the line has to be tolerated. The most important practical example of this is when a single antenna is operated on several harmonically related frequencies, in which case the antenna impedance will have widely different values on different harmonics.

RADIATION

Whenever a wire carries alternating current the electromagnetic fields travel away into space with the velocity of light. At power-line frequencies the field that "grows" when the current is increasing has plenty of time to return or "collapse" about the conductor when the current is decreasing, because the alternations are so slow. But at radio frequencies fiedds that travel only a relatively short distance do not have time to get back to the conductor before the next cycle commences. The consequence is that some of the clectromagnetic energy is prevented from being restored to the conductor: in other words, energy is radiater into space in the form of electromagnetic waves.

The lines previously considered have consisted of two parallel conductors of the same diameter. lrovided there is nothing in the system to destroy symmetry, at every point along the line the current in one conductor has the same intensity as the current in the other conductor at that point, but the currents flow in opposite directions. This was shown in Figs. $13-2 \mathrm{C}$ and $13-3 \mathrm{C}$. It moans that the fields set up about the two wires have the same intensity, but opposite directions. The consequence is that the total field set up about such a transmission line is zero; the two fields "cancel uot." Hence no energy is radiated.

Practically, the fields do not quite cancel out because for them to do so the two conductors

Practical Line Characteristics

would have to oceupy the snme space, whereas they are actually slightly separated. However, the cancelation is substantially complete if the distance between the ronductors is very small compared to the wavelength. Transmission line ratdiation will be negligible if the distance bet ween the conductors is 0.01 wavelength or less, provided the currents in the two wires are batanced.

The amount of radiation also is proportional to the current flowing in the line. Because of the way
in which the current varies along the line when there arc standing waves, the effective current, for purposes of radiation, becomes greater as the s.w.r. is increased. For this reason the radiation is least when the line is flat. However, if the conductor spacing is small and the currents are balanced, the radiation from a line with even a high s.w.r. is inconsequential. A small unbalance in the line currents is far more serious - and is just as serious when the line is flat as when the s.w.r. is high.

Practical Line Characteristics

The foregoing discussion of transmission lines has been based on a line consisting of two parallel cenductors. The parallel-conductor line is but one of two general types, the other locing the coaxial or concentric line. The coaxial line consists of a conductor placed in the center of a tube. The inside surface of the tube and the outside surface of the smaller inner conductor form the two conducting surfaces of the line.

In the coaxial line the fields are entirely inside the tube, because the tube acts as a shield to prevent them from appearing outside. This reduces radiation to the vanishing point. So far as the electrical behavior of coasial lines is concerned, all that has previously been said about the operation of parallel-conductor lines applies. There are, however, practieal differences in the construction and use of parallel and coaxial lines.

PARALLEL-CONDUCTOR LINES

A typor parallel-conductorlinesometimes used in amaterur installations is one in which two wires (ordinarily No. 12 or No. 11) are supported a fixed distanece apart be means of insulating rods called "spacers." The sparings used vary from two to six inches, the smaller spacings being necessary at frequencies of the order of 28 Ne. and higher so that ratliation will be minimized. The construction is shown in Fig. 1:3-6, such a line is said to be air-insulated. Typical spacers are shown in Fig, 13-5. The characteristic imperlance of such "open-wire" lines is between 400 and 600 ohms, depernding on the wire size and spacing.

Pamallol-roudurtorlinesalso areoceasionally constructed of metal tubing of a diameter of $1 / 4$ to $1 / 2$

Fig. 13-6-Typical construction of open-wire line. The line conductor fits in a groove in the end of the spacer, and is held in place by a tie-wire anchored in a hole near the groove.
inch. This reduces the characteristic impedance of the line. Such lines are mostly used as quarterwave transformors, when different values of impedance are to be matehed.

Prefalbricated parallel-eonductor line with air insulation, developed for television reception, cam be used in transmitting applications. This line consists of two conductors separated one-half to one inch by molded-on spacers. The characteristic impedance is 300 to 450 ohms, depending on the wire size and spacing.

A convenient type of manufactured line is one in which the parallel conductors are imbedded in low-loss insulating material (polyethylene). It is commonly used as: a TV lead-in and has a charac-

Fig. 13.7-Typical manufactured transmission lines and spacers.
teristic impedance of about 300 ohms. It is sold under various names, the most romumon of which is "Twin-Lead." This twpe of line has the advantages of light weight, close and uniform conduct or spacing, flexibility and neat appearame, However, the losses in the solid dielectric tre higher than in air, and dirt or moisture on the line temds to change the charact erist ic impedaner. Noisture effects can be reduced by coating the line with silicone grease. A special form of 300 -ohm Twinfead for transmitting uses a polyethylene tube with the conductors molded diametrieally opposite; the longer dielectric path in such line reduces moisture troubles.

In addition to 300 -ohm line, Twin-Tead is obtainable with a characteristic impedance of 75 ohms for transmitting purposes. Tight-wright 75and 150 -ohm 'Twin-T, ad also is available.

Characteristic Impedance

The characteristic impedance of an air-insulated parallel-conductor line is given by:

$$
\begin{equation*}
Z_{0}=276 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$h=$ Center-to-ecenter distance between conductors
$n=$ Radius of conductor (in same units as b)
It does not mateor what units are used for n and h solong as they are the same units. Both quantities may he measured in centimeters, inches, etc. Since it is necessary to have a table of common lagarithms to solve practical problems, the solution is given in graphical form in Fig. 13-8 for : number of common conductor sizes.
In solid-dielectric parallel-conductor lines such as Twin-Lead the characteristic impedance cannot be calculated readily, because part of the electrie fichd is in air as well as in the dielectric.

Unbalance in Parallel-Conductor Lines

When installing parallel-conductor lines care should be taken to avoid introducing electrical unbalance into the svitem. If for some reason the current in one eonductor is higher than in the other, or if the currents in the two wires are not exactly out of phase with each other, the electromagnetic fields will not cancel completely and a considerable amount of power may be radiated by the line.

Maintaining good line balance requires, first of all, a balanced load at its end. For this reason the antenna should be fed, whenever possible, at a point where each conductor "sees" exactly the same thing. Tsually this means that the antenna system should be fed at its electrical center. However, even though the antenna appears to be symmetrical, physially, it can be unbulanced elec:trically if the part connected to one of the line

Fig. 13-8-Chart showing the characteristic impedance of spaced-conductor parallel transmission lines with air dielectric. Tubing sizes given are for outside diameters.
condurtors is compled to somothing (such as house wiring or a metal pole or roof) that is not. duplicated on the other part of the inticnna. İvery effort should be made to keop the antenna as far as possible from other wiring or sizable metallic objects. The transmission line itself will cause some unhalance if it is not brought away from the antemma at right angles to it for a dietance of at least a cuarter wavolength.

In installing the line ronductors take aure to see that they are kept away from metal. The minimum separation between either conductor and all other wiring should be at least four or five times the conductor spacing. The shunt apacitance introduced by close proximity to metallic objects can drain off enough current (to ground) to unbsuance the line currents, resulting in increased radiation. A shunt caparitance of this sort also constitutes a reactive load on the line, casing an impedance "bump" that will prevent making the line actually flat.

- COAXIAL LINES

The most common form of comsial line consists of either a solid or stranded-wire inner conductor surrounded by polyethylene dielectric. Copper braid is woven over the dielectric to form the outer conductor, and a waterproof vinyl covering is placed on top of the briald. This cable is made in a number of different diameters. It is moderately flexible, and so is convenient to install. Some different types are shown in Fig. 13-8. This solid coaxial cable is commonly available in impedances approxinating 50 and 70 ohms.
Air-insulated coaxial lines have lower losses than the solid-dielectric type, hut are rarely used in amateur work because they are expensive and difficult to install as compared with the flexible cable. The common type of air-insulated coaxial line uses a solid-wire conductor inside a copper tube, with the wire held in the center of the tube by means of insulating "beads" placed at regular intervals.

Characteristic Impedance

The characteristic impedance of an air-insulated coaxial line is given ly the formula

$$
\begin{equation*}
Z_{0}=138 \log \frac{b}{a} \tag{13-E}
\end{equation*}
$$

where $\%_{10}=$ Characteristic impedance
$b=$ Inside diametcer of outer conductor
$a=$ Outside diameter of inner conductor (in same units as b)
The formula for coavial lines is approximately correct for tines in which bead sparers are used. provided the beads are not too closely spared. When the line is filled with a solid dielecetrice the characteristic impelance as given by the furmula should be multiplied by $1 / \sqrt{K}$, where K is the dielectric constant of the material.

ELECTRICAL LENGTH

In the discussion of line operation earlier in this chapter it was assumed that currents trav-

Transmission-Line Data

TABLE 13-1 Transmission-Line Data				
Type	Description or 'l'ype Number	Charac. teristic Inped. ance	Velocity Factor	```Capaci- tance per foot; \muf,```
Coaxial		$50-100$ 53 53 75 73 3	0.85 0.66 0.66 0.66 0.66	29.5 -28.5 20.5 21.0
Parallel. Conduc. tor	dir-insulated $214-1880^{3}$ $214-023^{3}$ $214-079$ $214-056$ $214-0766^{3}$ $214-0223$	$200-600$ 75 75 150 300 300 300	$0.96 .5^{2}$ 0.68 0.71 0.72 0.82 0.84 0.85	19.0 20.0 10.0 5.8 3.9 3.0
${ }^{1}$ Average figure for small-diameter lines with ceramic beads. ${ }^{2}$ Average figure for lines insulated with ceramic spacers at intervals of a few feet. ${ }^{3}$ Amphenol type numbers and data. Line similar to 214-0.56 is made by several manufacturers, but rated loss may differ from that given in Fig. 13-11. Types 214-023, 214-1)76, and 214-022 are made for transmitting applications.				

eled along the condurtors at the speed of light. Actually, the velority is somewhat less, the reason heing that electromagnetic fields travel more slowly in material dielectrics than they do in free space. In air the velority is practically the same as in empty sparc, but a practical line always has to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down; the currents travel a shorter distance in the time of one cycle than they do in space, and so the wavelength along the line is less than the wavelength would be in free space at the same frequency.

Whenever reference is made to a line as being so many wavelengths (such as a "half wavelength" or "quarter wavelength") long, it is to be understood that the electrical length of the line is meant. Its actual physical length as measured by a tape always will be somewhat less. The physical length corresponding to an electrical wavelength is given by

$$
\begin{equation*}
\text { Length in feet }=\frac{981 \mathrm{~V}}{f} \tag{13-F}
\end{equation*}
$$

where $f=$ l'requeney in megacycles

$$
V=\text { Velority factor }
$$

The velocity factor is the ratio of the actual volocity along the line to the velocity in free space. Values of V for several common types of lines are given in Table 13-I.

Example: A 75-foot length of 300 -ohm TwinLead is used to carry power to an antenna at a frequency of 7150 kc . From Table 13-I, V is 0.82 . At this frequeney (7.15 Me) a wavelength is

$$
\begin{gathered}
\text { Length }(\text { feet })=\frac{984 V}{f}=\frac{984}{7.15} \times 0.82 \\
=137.6 \times 0.82=112.8 \mathrm{ft}
\end{gathered}
$$

The line length is therefore $75 / 112.8=0.665$ wavelength.

Because a quarter-wavelength line is frequently used as a linear transformer, it is convenient to calculate the length of a quarter-wave line directly. The formula is

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246 \mathrm{~V}}{f} \tag{13-G}
\end{equation*}
$$

where the symbols have the same meaning as above.

Fig. 13.9-Attenuatian data for common types of transmission lines. Curve A is the nominal attenuation of 600 -ohm openwire line with No. 12 conductors, not including dielectric loss in spacers nor possible radiation losses. Additional line data are given in Table 13-1.

13-TRANSMISSION LINES

LOSSES IN TRANSMISSION LINES

There are three ways by which power may be lost in a transmission line: by raliation, by heating of the conductors ($I^{2} R$ loss), and by heating of the dielectric, if ang: Radiation losses are in general the result of "antennet currents" on the line, resulting from undesired eoupling to the radiating antennat. They cammot readily be estimated or measured, so the following diseusssion is based only on conductor and diolectric lossers.

Ileat losses in both the conductor and the dielectric inerease with frequence: Conductor losses also are greater the lower the characteristic impedance of the line, because a higher current flows in a low-impedance line for a given power input. The converse is true of dieleetric losses because these increase with the voltage, which is greater on high-impedance lines. The dielectric loss in air-insulated lines is negligible (the only loss is in the insulating spacers) and such lines operate at high efficiency when radiation losses are low.

It is conveniont to express the loss in a transmission line in deribels per unit length, since the loss in dh. is directly proportional to the line length. Losses in various types of lines operated without standing waves (that is, terminated in a resistive load equal to the characteristic impedance of the line atre given in graphical form in Fig. 13-4. In these curves the radiation loss is assumed to be negligible.

When there are standing waves on the line the power loss increases ats shown in Fig. 1:3-10. Whether or not the increase in loss is serious depends on what the original loss would have been if the line were perfertly matched. If the loss with perfect matehing is very low, a large s.w.r. will not greatly affere the rificiency of the line-i.e.,
the ratio of the power delivered to the load to the power put into the line.

Example: A 150 -foot length of $\mathrm{RG}-11 / \mathrm{L}^{\circ}$ cable is operating at 7 Mc, with a is-to-1 s.w.r. If perfeetly matched, the loss from Fig. 13-9 would be $1.5 \times 0.4=0 . f \mathrm{db}$. From Fig. $13-10$ the additional loss because of the s.w.r. is 0.73 db . The total loss is therefore $0.6+0.73=1.33 \mathrm{db}$.
In appreciable s.w.r. on a solid-dielectric line may result in excessive loss of power at the higher frequencies. Such lines, whether of the parallel-conductor or coaxial type, should be operated as nearly flat as possible, particularly when the line length is more than 50 fect or so.

Fig. 13-10-Effect of standing-wave ratio on line loss. The ordinates give the additional loss in decibels for the loss, under perfectly matched conditions, shown on the horizontal scale.

Loads and Balancing Devices

The most important pratical load for a transmission line is an antenat which, in most cases. wilh be "hataned" - that is, symmetrically constructed with respert to the foed point. Aside from considerations of matching the actual impedanere of the anterma at the feed point to the characteristic impedane of the line (if such matching is attempted) a balaneed antemna ahould be foed through a balaneed transmission line in order to preserve s.mmetry with respeet to ground and thus avoid difficulties with unbalanced euments on the line. surh currents, as pointed out carlicr in this chatpter, will result in undesiralde radiation from the transmission line itsolf.

If, ats is ofion the case, the antemmatis to be fed through conxial line (which is inherently unbalaneed) some method should be used for connecting the line to the antenna without upsetting the symmetry of the antema itself. 'This requires a circuit that will isolate the balanced load from the unbalanced line while providing efficient power transfer. Devices for doing this are called
baluns. The types used between the antenna and transmission line are gencrally "lincar," eonsisting of transmission-line sections as described in Chapter 14.

The need for batuns also arises in coupling a transmitter to a balaneed transmission line, since the output circuits of most transmiters have one side grounded. (lhis type of output eireuit is desirable for a number of reasons, including TVI reduction.) The most flexible type of balun for this purpose is the indurtively coupled matehing network deseribed in a suiseguent seretion in this chapter. This combines impedance matching with balaneed-to-mbabaneed operation, but has the disadvantage that it uses resonant cirenits and thas ran work over only a limited band of frequencies without madjustment. However, if a fixed impedance ratio in the batim can be tolerated, the eoil balun deseribed below ean be used without adjustment over a frequence ringe of about 10 to $1-3$ to 30 Me., for example. Alternatively, a similarly wide band can be covered by a properly designed transformer (with the

Baluns

same impedance limitation) but the design prineiples and materials used in such transformers are quite specialized. Their construction is beyond the scope of this Handbook.

Coil Baluns

The type of halun known as the "coil balun" is hased on the prinejples of a linear transmissionline bathen as shown in the upere drawing of lig. 13-11. Two transmission lines of equal lengeth having a chatactoristic impedance Z_{0} are connerted in seriers at one and and in paralled at the wher, It the series-romeeted end the lines are batanced to ground and will mateh an impedance crpall to $2 Z_{0}$. At the parallel-comected end the lines will be matehed by an impedanee erpal to Z_{0} / \geq. One side may be conneded to ground at the paralled-ommected end, provided the two lines have a length such that, considering each line as a single wire, the balaned end is effectively decoupled from the parallel-connected end. This reguire's a length that is an odd multiple of 1/4 wavelongth. The impedance transformation from the serids-connerted end to the paralleleomered cond is +101

A definite line length is required only for deeoupling purposes, and so long as there is adequate decoupling the system will act as a t-to-1 impedance transiomer regardless of line length. If earch line is wound into a coil, as in the lower drawing. the inductanes so formed will act as choke coils and will tend to isolate the seriesconnerted end from any ground connertion that may be phated on the parallel-eonneded end. Bahun coils made in this way will operate over a wide frequency range, since the choke induetance is not aritical. The lower frequency limit is where the eoils are no longer effective in isolating one end from the other: the length of line in cach coil should the about equal to a quarter wavelength at the lowest frequency to be used.

The principal appliation of such coils is in going from : : 300 -ohm halaneed line to a $\overline{\mathrm{F}} \mathrm{j}$-ohm

Fig. 13-11-Baluns for matching between push-pull and single-ended circuits. The impedance ratio is 4 to 1 from the push-pull side to the unbalanced side. Coiling the lines as shown in the lower drawing increases the frequency range over which satisfactory operation is obtained.
coaxial line. This requires that the $\%_{0}$ of the lines forming the coils lee 150 ohms. Hesign data for winding the coils is not available: howevor, Equation J3-1) arn be used for determining the approximate wire sparing. Alhowane should the made for the fart that the effertive dieleetric constant will be somewhat greater than 1 if the roil is wound on a form. The proximity effect betwern turns can be wedued by making the turn spacing somewhat larger than the ronductor spacing. For operation at 3.5. . We, and higher frequendies the length of eath anduetor should be about 60 feet. The ronductor spacing can be adjusted to the proper value by torminating cach line in a noninductive boohm resistor and adjusting the spacing until atn impodanee bridge at the input end shows the line to be matehed to 150 ohms.

A balun of this type is simply a fixed-ratio transtormer, when matelied. It camot compernsate for inacourate matching elsowhere in the system. With a "300-ohm" line on the balaneed end, for example, a 75 -ohm coax rable will not be matrhed unless the 300 -ohm line actually is terminated in at 300 -ohm load.

NONRADIATING LOADS

Typical examples of nouradiating loads for a transmission line are the grid cirenit of a power amplifier (considured in the chapter on transmitters), the input circuit of a recoiver, and another transmission line. This hast vase includes the "antenna tuner" - a misnomer beeanse it is actually a deviec for coupling at trasmission line to the transmitter. Berause of its importance in amateur installations, the antemba coupler is considered separately in a later part of this chapter.

Coupling to a Receiver

A good match between an antemna and its transmission line does not guarantere a low stand-ing-wave ratio on the line when the antenna system is used for receriving. The s.w.r. is determined wholly by what the line "sees" at the reediver's antenna-input terminals. For minimum s.w.r. the rereiver input cirruit must be matched to the line. The rated input impedance of a recelver is a nominal value that varies over a considerable range with freduency. Mothods for bringing about a proper mateh are discessed in the rhapter on recoivers.

The most desirable condition is that in which the reeciver is mathed to the line Z and the line in turn is matehed to the antenna. This transfers maximum power from the antenna to the reediver with the least loss in the transmission line.

Coupling the Transmitter to the Line

The type of coupling sy:stem that will be needed to transfor power adequately from the final r.f. amplifier to the tramsmisson line depends almost entirely on the input impedance of the line. As shown carlier in this chapter, the input impedane is determined by the standing-wave matio and the
line length. The simplest ease is that where the line is terminated in its characteristio impedane so that the s.w.r. is 1 to 1 and the input impedance is egpual to the Z_{0} of the line, regardless of line length.

Coupling systems that will deliver power into a

13-TRANSMISSION LINES

flat line are readily designed. For all practical purposes the line can he considered to be flat if the s.w.r. is no greater than about 1.5 to 1 . That is, a coupling system designed to work into a pure resistanere equal to the line Z_{0} will have enough leway to take care of the small variations in input impedance that will ocrur when the line longth is changed, if the s.w.r. is higher thatn Ito 1 hat no greater than 1.5 to 1 .

Current practice in transmitter design is to provide an ontput dircuit that will work intos such a line, usually a coaxial line of 50 to 75 ohms chanacteristic impodance. The design of surth output circuits is disensed in the chapter on high-frequency transmitters. If the input impedance of the transmission line that is to be connected to the transmitter differs appreciably from the value of impedance into which the trimsmitter output circuit is designed to operate. an impedance-matehing network must be inserted botween the transmitter and the line input terminals.

IMPEDANCE-MATCHING CIRCUITS FOR PARALLEL CONDUCTOR LINES

As shown carlier in this chapter. the input impedance of a line that is operating with a high standing-wave ratio can vary over quite wide limits. The simplest type of circuit that will mateh such a range of impedances to 50 to 75 ohms is a parallel-tuned cirenit approximately resonant at the operating freguency. In its ordinary form. such a circuit will be comected to a short lengt of coaxial line or "link" bev inductive eoupling as shown in lig. 13-12, the other end of the cable being attached to the output terminals of the transmitter. The cable may be any ronvenient length if the imperimene that it "seres" at the matching rireuit is equal to its own wharateristic impedance. This method has the further advantage that the roasial link offers an ideal sot for the insertion of a low-pass filter for preventing hamonic interference to television and f.m. reception.

Fig. 13.12-Matching circuits using a coaxial link, for use with parallel-conductor transmission lines. Adjustment setup using an s.w.r. bridge is shown in the lower drawing. Design considerations and method of adjustment are discussed in the text.

The eonstants of the tuned circuit $C_{1} L_{1}$ are not particuatry eritical; the principal requirement is that the circuit must be (apable of being tuned to the oporating frequency. Constinns similar to those used in the plate tank rireuit will be satisfactory: "The comstruction of L_{1} must be such that it can be tapped at least every tume L_{2} must be tightly coupled to L_{1}. and the inductance of L_{2} shonid be approximately the value that gives a reactance erpual to the Z_{0} of the romerting line at the frechemey in use. An average reatance of about bo ohms will sullice

The most satisfactory waty to sit up the system initially is to rommet a coaxial sow. budge in the link as shown in Fig. 1:3-12. The ". Donimatch" type of bridere. which "am handle the full transmitter power and mas be left in the line for continuous monitoring is exceplont lor this purpose. However, a simple resistance bridge surh as is deseribed in the chapter on measumements is: perforetly adequate muming only that the transmitter output In redured to a very low value so that the bridge will not be overlowded. 'lo adjust the rimenit, take a firial position of the lime taps on L_{1}, kereping them explidistant from the center of the coil, and adjust ('1 for minimum sw.r' as indicated by the bridge. If the s.w.r. is not close to 1 to 1 , try new tap positions and adjust c_{1} argan, contiming this procedure until the s.w. m . practically 1 to 1 . The setting of C_{1} and the tap positions may then be loged for future reforenere It this point, wherk the link s.w.r. over the frefuener range normally used in that band, without -hanging the selting of r^{\prime}. No rearljustment will be required if the s.w.r. dexs 1 not exeered l.os to 1 over the range, but if it gexes higher it is advisable to mote as many settings of Cif as maty be neessary to kerep ther.w.r. helow $1 . i$ to 1 at ane part of the hand. Changes in the link s,w.r. are camsed chiefly by changes in the s.w.r. on the main transmission hine with freguence, and matively litthe be the roupling cirentit itself. I single setting of Ci at mid-frecurney will suffiere if the anternat itsall is hroud-tuning.

If it is impossible to get a $1-t 0-1$ s.w.r. at athy settings of the taps or C 1 , the sew.r. on the main tramsmission line is high and the lime length is probably unfavorable. Orelinarily there should tre no difficulty if the tramsmission-line sw.r. is not more than ibout 3 to 1 , hut if the line s.w.e. is higher it mag not be possible to bring the link s.w.r. down except by using the methods for reactaner compensation dericribed in a subserquent seretion of this chapter.

The matehing adjustment can be considerably fatrilitated by using a variable capacitor in serices with the matehing-cirenit coupling coil as shown in Fig. 13-13. The additional adjustment thus provided makes the tap setting: on L_{1} much less critical since varying ('2 has the effect of varying the coupling betweren the two circuits, for optimum control of coupling, L_{2} should be somewhat larger than when ("2 is not used - perhaps twice the reactance recommended above - and the reactance of C_{2} at maximum capacitance

Fig. 13.13-Using a series capacitor for control of coup. lling between the link and line circuits with the coaxcoupled matching circuit.
should bo the same as that of L_{2} at the operating frequency. L_{1} and (1 are the same as before. The mothod of adjustment is the same, except that for each trial tap position C_{1} and C_{2} are alternately adjusted, a little at a time, until the s.w.r. is brought to its lowest possible value. In generai, the adjustment sought should be the one that keeps Co at the largest possible capacitance, since this broadens the frequency response. Nso, the taps on L_{1} shouh be kept as far apart as possible, while still permitting a match, since this also broadens the frequency response of the circuit.

Once the matching circuit is properly adjusted, the s.w.r. bridge may be removed, if neecssary, and full power applied to the transmitter. The power input should be adjusted by the cotupling or lowding control built into the transmitter, not by making any changes in the matching-eircuit adjustments. if an amplifier having a paralleltuned tank circuit will not load properly, tumed coupling should be used into the coax link.

It is possible to use a circuit of this type without initially setting it up with the s.w.r. bridge. In such a case it is a matter of cut-and-try until adequate power transfer between the amplifier and main transmission lme is socured. However, this methorl frequently results in a high s.w.r. in the link, with conseguent power loss, "hot spots" in the coaxial cable, and tuning that is eritieal with freguence. The bridge method is simple and gives the optimum operating conditions quickly and with rertainty.

Untuned Coupling

A simple coil can be used for coupling to a line having a high standing-wave ratio providing the line length is adjusted so there is a current loop noar the point whare it comberts to the pick-up coil. The roupling will he maximum, for a given degree of separation between the pirk-up eoil and the amplifier tank coil, if the line is pruned to a length such that the input impedance is just sufficiently capacitive to cancel the inductive reactance of the pick-up coil. This can be done by eut-and-try. The higher the s.w.r, on the line the easier it beromes to load the amplifier with loose coupling between the two coils. The sharper the antenna and the higher the line sw.r. the more difficult it becomes to operate with this system over a band without progressively ehanging the line length.

Series and Parallel Tuning

Lines classified as "tuned" or "resonant" i.e., cut to lengths approximately equal to integral
multiples of one-quarter wavelength, and operating with a high standing-wave ratio - are charaeterized by having either very high or very low input impedances. Also, the input impedances of such lines are essentially resistive.

Under these conditions the circuit arrangements shown in Fig. 13-1 \& will work satisfactorily. Their advantage over the cireuit of Fig. 13-12 is that it is not necessary to provide for taps on the matching-cirenit eoil. L_{0}. "Sories" tuning is used when a current loop occurs at or near the input end of the line: i.ce, when the input impedance is low, "Parallel" tuning is used when there is a voltage loop at or near the input end; i.e., when the input impedance is high.

In the series case, the circuit formed $\mathrm{b}_{\mathrm{y}} L_{1}$, ('1 and C_{2} with the line terminals short-circuited should tune to the operating frequency. ('1 and ' " $_{2}$ should be maintained at equal caparitance. In the parallel case, the circuit formed by L_{1} and ('1 should tune to resonance with the line diseonneeted.

The L / C ratio in either eircuit depends on the transmission line \boldsymbol{Z}_{0} and the standing-wave ratio. With series tuning, a ligh $L_{i} C$ ratio must be used if the s.w.r. is relatively low and the line Z_{0} is high. With parallel tuning, a low L, C ratio must be used if the s.w.r. is relatively low and the transmission-line Z_{0} also is low. With either series or parallel tuning the L / C ratio becomes less eritical when the s.w.r. is high. As a first approximation. ail and rapacitor values of the same order as those used in the plate tank circuit may be tried, The coupling eoil, L_{2}, should have a reactance about equal to the Z_{0} of the consial line, just as in the case of the eircuit of Fig. 1:3-14. The coupling between L_{1} and L_{2} should be eontinuously adjustable.

A batanced capacitor is used in the parallel cireuit, in preference to a single unit. An alternative scheme to maintain balance is to use two single-ronded capacitors in parallel. but with the frame of one comerted to one side of the line and the frame of the other connected to the other side of the line. The same two capacitors may be switched in series when series tuning is to be used.
As an alternative to adjustable coupling between L_{1} and L_{2}, fixed coupling may be used and a variable capacitor conneeted in series with L_{2} as shown in Fig. 13-13.

Fig. 13.14-Link-coupled series and parallel funing.

13-TRANSMISSION LINES

These circuits should be set up, and adjusted in the same way as the tapped matching circuit. Fig. 13-12. That is, an s.w.r. bridge should be used to indicate the imperlance mateh, which is brought about by alternately adjusting C_{1} and the conpling between L_{1} and L_{2} until the bridge shows a null.

In the event that there is difficulty in bringing the s.w.r. down to 1 to 1 in the coaxial link, the probable cause is that the input impedance of the transmission line is neither very high nor very low. In sucla a case, if series tuning does not work it may pay to try parallel tuning, and vice versa. If a mateh camnot be secured with either. the circuit should be changed to that of Fig. 13-14.

Adjustment Without the S.W.R. Bridge

Use of the s.w.r. bridge with the circuits described above is the only certain way of arriving at optimum :adjustments. However, if a bridge is not available, the transmitter usnally can be made to take the proper boad be a cut-and-try methed of adjustment. In the ease of Fig. 13-12, take a trial position of the taps fairly close to the center of L_{4}. With loose coupling between L_{1} and L_{2} (this may be controlled either by adjustment of the mutual inductance or by means of the series (aparitor (${ }_{2}$) and with the amplifier plate tank cirenit tuned to resonatuce as indicated loy the plate-current dip, vary (ch until a setting is fomed that causes the plate current to rise to a paak. This peak should be less than the experted normal loaded plate current. Then increase the coupling betwen L_{1} and L_{2}, readjust ('i for maximum plate current, and readjust the amplifier tank for the plate-current dip. Continue until the amplifier is fully loaded at the phatc-rurrent dip, increasing the coupling between the transmitter tank and the coas line if necessary to ohtain full loading. Them spreat the taps on L_{1} a little farther apart and go through the same procedure. The objeet is to use the widest spread botweon taps that will permit proper hading of the transmitter.
The procedure with series or parablel tuning is similar excent that there are no taps to adjust. If full loading cannot be secored with cither, the cirenit should be changed to Fig. 13-12.

Although this cut-ind-try method generally. will lead to adeplate transmitter lowating, the adjustmonts seldom are optimum from the standpoint of low s.w.r, in the coas link. This nay lead to excessive power dissipation in the link. with overheating the result. Also. the loading may change more rapidly with stmall fregueney changes than would be the case with a mateching circuit adjusted for optimum performance with the atid of the s.w.r, Wrielge.

Lines of Random Length

Sories or parahlel tuning will always work satisfactorily with lines having a high standingwave ratio so loug as cither a current loop or node oceurs at the input end of the transmission line. This will be the ease if the antema is resonant and the line length is a multiple of one-guarter
wavelength. However, it is not always possible to couple satisfactorily when intermediate line lengths are used. This is beetuse at some lengths the input impedance of the line has a considerathle reactive component, and because the resistive component is too large to be connceted in series with a tuned circuit and too small to be connected in paralled.

The coupling system shown in Fig. 1:3-12 is capable of handling the resistive component of the input impedance of the transmission lines used in most amateur installations, regarelless of the standing-wave ratio on the line. ('onsequently, it can generally be used wherever either series or parallcl tuning would normally be called for, simply $\begin{aligned} & \text { betting the taps properly on the }\end{aligned}$ coil. (α possible exerption is where the s.w.r. is considerably higher than 10 to 1 and the line length is such as to bring a current loop at the input end. In such a case the resistance maty be only a few ohms, which is difficult to match by means of taps on at coil.)
Within limits, the same circuit is capable of being adjusted to eompensitte for the reactive component of the input impedince: this merely means that a 1-to-1 s.w.r. in the link will be of tained at a different setting of ('1 tham would be the case if the line "looked like" a pure resistince. Sometines, however, ('s dues not hate enough range available to give complete compensation, particularly when (as is the case with some line lengths when the s.w.r. is high) the inpat impedance is principally reartive.

Linder such conditions it is neecessary, if the line length camnot be changed to a more satisfactory value, to provide additional means for compensating for or "canceling out" the reative component of the input impedance. As deseribed earlier in this chapter, the input impedance ean be eonsidered to be equivalent to a cirenit eonsisting either of resistance and inductance or resistance and capacitane. It is generally more convenient to consider these elements ats a parallel combination. If the line appears inductive, a suitable capacitance in parallel will resonate the circuit. The resistive impedance that remains can casily be matchen to the coux link by means of the circuit of Fig. 13-12.

Fig. 13-15-Reactance cancellation on random-length lines hoving a high standing-wave ratio.

Matching to Coaxial Lines

The practical application of this principle is shown in Fig. 13-15, where L and C are the reactances required to cancel out the line reactance, L for cases where the line is capacitive, C for lines having inductive reactance. The amount of either inductance or capacitance required is casily determined by trial, using the s.w.r. bridge in the coax link. First disconnect the main transmission line from L_{1} and connect a noninductive resistor in its place. A 1-watt carbon resistor of about the same resistance as the line Z_{0} will do, if a low-power bridge of the resistance type is used. With the "Monimatch" bridge, a suitable load may be made by connecting carbon resistors in parallel; for example, five 1500 -ohm 2 -watt resistors in parallel will make a 300 -ohm load capable of handling 10 watts of r.f. Adjust the coil taps and C_{1} for a 1-to-1 standing-wave ratio in the link, as described carlier. This determines the proper setting of C_{1} for a purcly resistive load. Then take off the resistor and comect the line, again adjusting the taps and C_{1} to make the s.w.r. as low as possible, and compare the new setting of C_{1} with the original setting. If the capacitance has increased, the line reactance is induetive and at capacitor must be conneeted at C in Fig. 13-15. The amount of capacitance needed to bring the proper setting of C_{1} near the original setting can be determined by trial. On the other hand, if the capacitance of (' 1 is less than the original, an inductance must be connected at L. Trial vahus will show when the proper tuning conditions have been reached.

It is not necessary that C_{1} be at exactly the original setting after the compensating reactance has been adjusted; it is suflicient that it be in the same vicinity.

Using this procedure practically any length of line can be coupled properly to the transmitter, even when the line s.w.r. is quite high. Unfortumately, no specific values man be suggested for L and C, since the vary widely with Z_{0}, line length and s.w.r. 'Their values usually are comparable with the values used in the regular coupling circuits at the same frequency.

matching to coaxial lines

Coaxial transmission tines usually are (or at least should be) operated at a low-enough stand-ing-wave ratio so that no special matching circuits are needed; the line simply may be connected to the transmitter output terminals. A properly designed transmitter output circuit (see chapter on high-frequency transmitters) will be

Fig. 13-16-inductively coupled matching circuit for cou. pling between coaxial lines. The principles are the same as in Fig. 13-12; the secondary circuit is simply made single-ended for use with a coaxial transmission line.
capable of handling variations in s.w.r. that are acceptable from the standpoint of line losses.

However, there are cases where it becomes necessary to provide some frequency selectivity between the trinsmitter and antenna system in order to prevent undesirable radiation of harmonies. A matching circuit of the same general type as those discussed above can provide a considerable degree of selectivity in addition to matching the input impedance of the transmission line to the Z_{0} of the couxial link. The difference in the circuit arrungement is simply that the secondary or output side need not be balanced with respect to ground.

Fig. 13-16 shows a typical circuit. Except for the fact that there is only one coil tap, the design considerations and adjustment procedure are the same as described for Fig. 13-12. Also, the series capacitor, C_{2}, shown in Fig. 13-13 may be used with this cireuit for fine variation of the effective coupling between L_{1} and L_{2}. Constants for the circuit $L_{1} C_{1}$ are not critical; any convenient values that will tune to the operating frequency may be used. The Q of this circuit, and hence the selectivity, is controlled principally by the position of the line tap. As the tap is moved farther up the coil the () and selectivity decrease.

The practical mateling circuits described in the following section may he used with coaxial line simply by connecting the outer conductor of the line to the center of the coil and tapping the imner conductor along one side. The balanced circuit may still be used, although if the coupler is to be used only with coaxial line the cireuit may be made single-ended as shown in Fig. 13-16.

"Half-wave" Filters for Harmonic Suppression

If impedance matching is not a consideration

Fig. 13-17-Half-wave filter for harmonic suppression. The two sections of the filter shauld be shieided from each other as indicated by the dashed line, and the whole filter should be constructed in a shield enclosure to insure effecfive operation. A separate filter is required for each amateur band. All capacitors have the same value, as do all inductors, for a given band. Suggested constants are as follows:

Band	Capacitance	Inductance
3.5 Mc.	$820 \mu \mu \mathrm{f}$.	$2.2 \mu \mathrm{~h}$.
7 Mc.	$390 \mu \mu \mathrm{f}$.	$1.3 \mu \mathrm{~h}$.
14 Mc.	$220 \mu \mu \mathrm{~F}$.	$0.57 \mu \mathrm{~h}$.
21 Mc.	$150 \mu \mu \mathrm{f}$.	$0.375 \mu \mathrm{~h}$.
28 Mc.	$100 \mu \mu \mathrm{f}$.	$0.3 \mu \mathrm{~h}$.

Design is based on standard values of fixed mica capacitors. Larger capacitances may be made up by using smaller-capacitance units in parallel, if necessary. See text for voltage ratings. Inductances may be adjusted to proper value by resonating to center of band with the capacitance value given in the above table.
-.e. , the tranmission line to the antema is operating at a low s.w.r. - but harmonic suppression is desirable, the circuit of Fig. 13-17 may be used as an altemative to Fig. 13-16. This is a "hall-wave" filter circuit, so called because it has similar properties to a half-wave transmission line. When inserted in a line, the impedance at the input terminals of the filter is the same impedance that the filter "sees" at its output terminals. Thus if the line input impedance is a pure resistance of 50 ohms, the impedance at the filter input terminals also will be 50 ohms.
Just as in the half-wave line case. the characteristic impedance of the filter can be any value withont altering its performance with respect to input and output impedance. However, it is desirable in the interests of broad-band operation to make the filter characteristic impedance approximately the same as the Z_{0} of the line. The constiants given in Fig. 13-17 will serve for rither 50- or 75 -ohm line. The filter can be used
without adjustment at any frequency within the amateur band for which it is designed.

The capacitance values required are fairly large, but under the assumed ronditions (low s.w.r. on the line, filter Z_{0} approximately equal to line Z_{0}) the voltages across the capacitors are low. Mica capacitors having a voltage rating suitable for the power level are satisfactory, The peak rating required is equal to $\sqrt{2 P Z_{0}}$, where P is the r.f. power and Z_{0} is the characteristic impedance of the line. This value should be doubled for 100 per eent amplitude modulation, and it is advisable to allow a safety factor in addition. A rating of 1500 volts d.c. will be sufficient for a kilowatt a.m. transmitter if the line is well matched by the antenna.

The attenuation of a filter of this type is about 30 db . at the second harmonic and greater at higher harmonics, until linuted by selfresonances at high frequencies that occur in the inductors. These usually are not important at harmonics below the fourth.

Coupler or Matching-Circuit Construction

The derign of matching or "antenna coupler" circuits has leen covered in the preceling section, and the adjustment procedure also has been outlined. Since cireuits of this trpe are most frequently used for tramsering power from the transmitter to a parallel-onductor transmission line, a principal point requiring attention is that of maintalining good balanee to ground. If the coupher cireuit is appreciatby unhalaned the curents in the two wires of the trammission line will also tre unbalanced, resulting in radiation from the line.

In most rases the matehing circuit will be built on a motal chassis, following common practice in the construction of tramsmitting units. The chassis, bectuse of its relatively large area, will tend to cstablish al "ground" - even though not actually grounded - particularly if it is assembled with other units of the transmitter in a ratek or calhinet. The eomponents used in the coupler, therefore, should be phaced so that they are clectrically symmetrical with respect to the

chassis and to each other.
In general, the construction of a coupler cireuit should physically resemble the tank layouts used with push-pull amplifiers. In parallel-tuned circuits a split-stator capacitor should he used. The capacitor frame should m^{2} insulated from the chassis because, depending on line length and other factors, harmonic reduction and line balance may be improved in some cases by grounding and in others by not grounding. It is therefore advisable to adopt construction that permits either. Provision also should be made for grounding the center of the coil, for the samer reason. The coil in a parallel-tuned eircuit should be monnted so that its hot ends are symmet rically placed with respect to the chassis and other components. This equalizes stray capacitances and helps maintain good balance.

When the coupler is of the type that can be shifted to series or parallel tuning as required, two separate singlemoded caparitors will be satisfactory. As described earlier, they should be connected so that both frames go to eorresponding parts of the circuit - i.e., either to the coil or to the line - for series tuning. and when used in parallel for parallel tuning should be comected frame-to-stator.

A coupler designed and adjusted so that the connecting link acts as a matehed tramsmission line may be placed in any ronvenient location. Some amateurs prefer to install the coupler at the point where the main tramsmission line enters the station. This helps maintain a tidy station lay-

Fig. 13-18-Matching circuit for coupling balanced line to a cooxial link, It may alsa be used between twa caaxial lines as described in the text. The cail of the left is simply "stared" on the chassis as a convenience far changing between two favorite bands. A "Manimatch" bridge is maunted under the $7 \times 11 \times 3$ inch chassis.

Coupler Construction

Fig. 13-19-Circuit of the coax-coupled matching circuit of Fig. 13-20. The s.w.r. bridge, a highly useful aid in adjustment, may be omitted if de. sired, in which case points A and B are simply connected together. See text for dato on modified line.

$C_{1}-100 \mu \mu \mathrm{f}$. per section variable, 0.075 -inch spacing (Johnson 154-505).
$C_{2}-700$ to $800 \mu \mu$.; dual-section 365- to $400-\mu \mu \mathrm{f}$. broadcost-receiver type capacitor with sections in parallel.
out when an air-insulated paralleleronductor transmission line is used. With soljd-didectric line, which lend themselves well to neat installston indoors, it is probably more desirable to install the coupler where it can be reade rel easily for adjust mont and band-changing.

COAX -COUPLED MATCHING CIRCUIT

The matching unit shown in Fig. $13-18$ is construtted according to the design primeiples outlined readier in this chapter. It uses a paralleltuned circuit with taps for matching a parallelconductor line through a link coil to a coaxial line to the transmitter. It will handle about 500 watts of ref. power and will work, without nodifixation, into lines of any length if the s.w.r. is below 3 or 4 to 1 . If the s.w.r. is high, it may be neeresary to compensate for the reactive part of the input impedance of the line, at certain tine lengths, by using an additional coil or capacitor as discussed earlier. The necessity for such compensation cam Ire avoided, on lines having a high s.w.r., by making the electrical length of the linn a multiple of a quarter wavelength.

As shown by the circuit diagram, Fig. 13-19, the link circuit is adjusted by means of a variable (apacitor, ('2, to facilitate matching between the main transmission line from the antenna and the roan line to the transmitter. The coils are construtted from commercially available coil material, and the link (L_{2}) inductanees are chosen to provide adequate coupling for flat lines. The link
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.001-\mu \mathrm{f}$. disk ceramic. $C R_{1}, C R_{2}-1 N 34 A$ or equivalent. J_{1}-Coax receptacle, chossis-mounting type. L_{1}, L_{2}-See coil table.
R_{1}-See text.
coil. of smaller diameter than the tank roil $/ 2$, is mounted inside the latter at the center. Duce cement is used to hold the coils together at their hot tom tie strips. The coils are mounted on Allen type $40: 305$ plugs and require no other support than the stiffness of the short lengths of wire going into the end prongs of the plug from the tank coil. Short lengths of spaghetti tubing are slipped over the leads to the link coil where they go between the tank coil turns to reach the plug.

Taps on the tank coil for connection to a para-Inl-conductor transmission line are made by means of Johnson type 2:35-860 clips. If coils are changed frequently it will be convenient, after finding the proper tap points for each land, to bend ordinary soldering lugs around the wire and solder them in place so they project radially from the coil. The (lips can then be adjusted to fit singly over the lugs when pushed on sidewise. Used this way, the clips provide an rasp and rapid method of connecting and diseomecting the line.

Monimatch

The circuit as shown in Fig. 13-19 includes a bridge or directional coupler of the Monimateh type to assist in adjusting the circuit to match the coax line. It is constructed from a 24 -inch length of either R(i-8/U or R(i-11/U (depending on the $\%_{0}$ of the coax line between the transmitter and the matching circuit) as described in the section on measurements. The pickup line, to

Coil Data for Fib. 13-10								
Band, Mc.	Turns	Wire Size	Bia., In.	Turns/ In.	Turns	Vire Size	Dian., In.	Turns/ In.
3.5	44	16	$21 / 2$	10	10	16	2	10
7	18	12	$21 / 2$	6	6	16	2	10
14	10	12	$21 / 2$	6	3	16	2	10
$21-28$	6	12	$21 / 2$	6	2	16	2	10

Fig. 13-20-Below-chassis view of the matching circuit, showing Monimatch made from a section of coox cable. The crystal rectifiers are mounted on dual tie-point strips, with R_{1} between them.
which R_{1} and the crystal rectifiers are connected, is a length of No. 30 enameled wire iuserted between the insulation and the shield-braid outer conductor of the coax cable. In constructing this line section be careful not to scrape the rinamel from the wire, and after the braid has beon smonthed out to its original length cherk betwern it and the pickup wire with an ohmmeter to make sure the two are not short-circuited. The cable is formed into a double turn so that the center, where R_{1} connerets to the piekup wire, is close to the ends. This keens the ground paths to minimum length and helps in obtaining proper balane in the bridge. The braided outsides of the turns are spot soldered together at several points to reduce the effect of mwanted currents on the surface, and also to improve the assembly mechanically.

Bridge Adjustment

Adjusting the bridge is simply a matter of fincting the value of R_{1} that gives a good null reading with the indicating meter connereted to the "reflected" position when the output end is terminated in a resistive load of either 52 or 75 ohms. depending on whether IRG-8/U or IRG-11/U is used. If a suitable dummy load is available (see chapter on measurements) the wiring to L_{2} should be disconnected at B in lig. 13-19 and the dummy load connected between B and ground (that is, to the output terminals of the Monimatch), R_{1} may be set to the proper value by trying several values of half-watt carbon resistors, or combinations in parallel, to find the resistance that gives the dor(9)est mull. A value of about 35 ohms proved to be optimum with RG-8/L in the bridge shown in the photograph.

Alternatively, a dummy load may be connected to the balanced line terminals, and the Monimatch disconnected at B. If a suitahle bridge can be borrowed, it can be connected at B and r.f. power fed through it to the matehing circuit, which should then be adjusted to match the coax line. This establishes a load of known value which may then be used for adjustment of the built-in Monimatch as described above, after the connection at B has been restored.

A suitable indicator unit, including meter, variable resistor, and forward-reflected switch, is described in the chapter on measurements.

Matching-Circuit Adjustment

The method of adjusting a matching circuit of this type has been described earlier in this chapter in comection with Figs, 13-12 and 13-13. The ronstruction is such that rither the center tap of L_{1} or the rotor of C_{1} may be grounded to the chassis, since C_{1} is mometed on sinall stand-off insulators. Insofar as normal balaneed-line operation is concerned, it makes no differener which is grounded (or neither). Grounding will, however, affeet any parallel or "antenma" currents on the line. In general, the effect of such eurrents will be minimized if the ground comection showing the least r.f. current is chosen. This test should also be tried with and without an actual earth comertion to the matching-civeuit chassis.

The coupler may be used between coaxial lines by grounding the center tap of L_{1} and connecting the outer braid of the roax line to the chassis and the inner conductor to a single tap on the coil. The mothod of adjustment is otherwise the same as for balanced lines.

The matching eirenit should be adjusted with the aid of an s.w.r. bridge, as desiribed earlier in this chapter. In general. the tuning will be less critical, and the circuit will work over a wider freguency range without readjustment, if the taps are kept as far toward the ends of the coil as possible and C_{2} is set at the largest capacitance that will permit bringing the s.w.r. in the coax link down to 1 to 1 .

ANTENNA MATCHING CIRCUIT FOR HIGH OR LOW IMPEDANCE

The unit shown in Figs. 13-21 and 13-23 can be used to mateh the coaxial-line output of a transmitter to either a high- or low-impedance load. To facilitate tuning it includes an s.w.r. indicator that can be set for a wide range of power levels. The power-handling ability of a circuit of this type will depend to some extent upon the imped-

Coupler Construction

Fig. 13-21-Antenno coupler out of its case. The large dial controls a $100-\mu \mu \mathrm{f}$. tuning capacitor, and the smaller dial (bottom center) turns a $320-\mu \mu \mathrm{f}$. coupling capacitor. Two knobs control the sensitivity and direction of the s.w.r. bridge. Simple band switches on top of the aluminum arch are made from banana plugs and insulated jacks

ance of the loal, but as shown the matching circuit will handle up to 300 or 400 watts under practicatly any eondition. If higher power is involved, the circhit can be "sealed upward" with heavier inductances and greater capamitor sparings.

Roferring to the cireuit in Fig. 13-22, a soriestunded circuit, $L_{3}\left({ }^{(} 1\right.$. is coupled to a halanced circuit, ros $L_{2} L_{4}$. This hatter eircuit is soris-stumed if the load is connerted to terminals $A-1$ and par-allel-tuned if a jumper is used thetween . $1-\mathrm{A}$ and the load is commerted at B-IB. Low-impedance boats (high-eurrent) call for series tuning, and hightimpedanore loads (high voltagre) comple better with parallel tuning.

A simple version of the "Monimateh" s.w.r. indicator is included by wrapping the meresary longth of R(i-58/U around the indicating meter (ser Fig. 1:3-2:3).

The unit shown here was built on a $7 \times 9 \times 2$ inch aluminum chassis, but dimensions are not eritical so long as the inductance is not erowded against the metal parts of the chassis or housing. (:aparitor (2,2 is insulated from the chassis and panel be using small stand-off insulators for its support and a ceramic insulating shaft coupling.
The switches S_{1} and S_{0} are made from nyloninsulated banama jacks (Johmson 108-901) mounted on an arch ol $3 / 32$-inch sheret aluminum. In each switch one jack serves as the rotor

Fig. 13.22-Circuit diagram of the antenna coupler.
$\mathrm{C}_{1}-320 . \mu \mu \mathrm{f}$, midget variable (Hammarlund MC-325-M).
$\mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. tuning, 077 -inch spacing (National TMC100).
J_{1}-Coaxial receptacle, type SO-239.
L_{1}-Wire inside coaxial line. See text.
$\mathrm{L}_{2}, \mathrm{~L}_{2}, \mathrm{~L}_{4}$-See Fig. 13-26.
$M_{1}-0-1$ milliammeter (Triplett 227-PL).
$\mathrm{R}_{1}-25,000$ - ohm volume control (Mallory $\mathrm{U}-28$).
$\mathrm{R}_{2}-33$ ohms, $1 / 2$ watt. Must be composition, not wirewound.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$-See text.
S_{3}-D.p.d.t. rotary switch (Centralab 1462).
S_{1}-Tap on L_{3}, shorted to end of coil by copper test clip (Mueller 45C).

Fig. 13-23-Rear view of the coupler shows the coaxial line of the s.w.r. indicator wrapped around the meter. The test clip of S_{4} is parked on one of the feedthrough insulators for L_{3}. Shorting bar in B-B (center) only for photograph; it is used only in A-A.
terminal and the others serve as the contacts. A shorting bar of aluminum with two banana plugs: (Johnson 108-6in0) mounted on it at the proper distance is used as the switch arm. The shorting bar for the $1-1$ commertion is made similarty. Two foedthough insulators at the rear of the rabinet (l3ud ($-1 / 16$) are used as antemna terminals: flexible leads connected to them have banama plugs at the other end to comnect to A-A or 13-13 as required.
The inductors L_{2}. L_{3} and L_{4} ate made from at length of "-ineh diameter transmitting coil stock, as indicated in F"ig. 1:3-2.t. While the over-all sizes of the coils will suffice for practioally any installation, it is suggested that the taps he mate temporarily until the unit can be tesed with the antemat to lo nsed. The taps as indieated will he correct for most cases, hut variations in antemna systems will areolut for some discrepanders. The induetors are supported bey their leads from the banama jarks. switeh S_{4} is merely two solder lugs on the proper wires: they can be shorted together by chipping them with a copper test clip. (It is reroommended that serews and hardware be tested with a magnet before using hear the coils; iron will get hot in the fiedds surrounding the coils.)
The s.w.r. bridge is made ling first peeling the

 center and opeol the shiek braid slightly with a pointed tool. Thread a length of insulated wire (No, $2!$ or 2) in one hole and out the other, being eareful not to serateh off the insulation of the wire: test with an ohmeter to make sure, Smooth out the shied braid on the $\mathrm{la}\left(\mathrm{i}-5 \mathrm{~s} / \mathrm{C}^{\circ}\right.$ and wrap the coaxial line for two turns around the moter housing. The coasial line can then be thereded through a rubber grommet in the chassis
and led to J_{1} and the feedthrough from L_{3}. both at the rear of the chassis. The length of insulated wire, L_{1}, will have its ends conveniently situated for soldering to S_{3}.

In operation, the antenna feed line can be connereted for serios tuming if coasial line is used and for parallel tuning if open-wire line is used. This is not an iron-rlad rule, however, particularly when a high s.w.r. exists on the line to the antema. Capacitors (${ }_{1}$ and (2 are then adjusted for minimum reflected reading and maximum forward reading of M_{1}. If the maximum reading temels to send the meter off sable, incrase the rosistanere at R_{1}. If the reflecterd reading camot be brought down to a very low value, it may be nereasary to try the opposite series/paralled conneco tion or, as mentioned earlior, to change the location of the taps on L_{2} and L_{4}.

Fig. 13-24-Details of coil tapping. Material is No. 16 wound 10 t.p.i. on 2 -inch diameter (B\&W 3907-1). Half turns peeled off between $L_{2}-L_{3}$ and $L_{3}-L_{4}$ to give one-turn separation. Jap placement may vary somewhat with antenna system.

CHAPTER 14

Antennas

An antenna system can be considered to include the antenna proper (the portion that racliates the r.f. energ r), the feed line, and any coupling devices used for transferring power from the transmitter to the line and from the line to the antenna. Some simple systems may omit the transmission line or one or both of the coupling devices. This chapter will describe the antema proper, and in many cases will show popular types of lines, as well as line-toantenna couplings where they are required. However, it should be kept in mind that any antenna proper can be used with any type of feedline if a suitable coupling is used between the antenma and the lime. Changing the line does not change the type of antenna.

Selecting an Antenna

In selecting the type of antenna to use, the majority of amateurs are somewhat limited through space and structural limitations to simple antemat systems, except for v.h.f. operation where the small space requirements make the use of multielement beams readily possible. This chapter will consider antemnas for frequencies as high as 30 Mc. - a later chapter will desmibe the popular types of v.h.f. antennas. Llowever, even though the available space may be limited, it is well to consider the propagation characteristics of the frequency band or bands to be used, to insure that best possible use is made of the available facilities. The propagation characteristies of the amateur-band frequencies are deseribed in Chapter Fifteen. In general, antemat construction and location become more eritical and important on the higher frequencies. On the lower frequencies (3.5 and 7 Ml .) the vertical angle of radiation and the plane of polarization may be of relatively little importance; at 28 Me, they may be all-important.

Definitions

The polarization of a straight-wire antenna is tetermined by its position with respect to the earth. Thus a vertical antema radiates vertically polarized waves, while a horizontal antenna radiates horizontally polarized waves in a direction broadside to the wire and vertically polarized waves at high vertical angles off the ends of the wire. The wave from an antenna in a slanting position, or from the horizontal antenna in directions other than mentioned above, contains components
of hoth horizontal and vertical polarization.
The vertical angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna, its height above ground, and the nature of the ground. The angle is measured in a vertical plane with respect to a tangent to the earth at that point, and it will usually vary with the horizontal angle, except in the case of a simple vertical antenna. The horizontal angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna.

The impedance of the antema at any point is the ratio of the voltage to the current at that point. It is important in connection with feeding power to the antenna, since it constitutes the load to the line offored by the antemat. It can be cither resistive or complex, depenting upon whether or not the antenna is resonant.

The field strength produced by an antenna is proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greater radiating effect. All resonant antennas have standing waves - only terminated types, like the terminated rhombie and terminated "Y"," have substantially uniform eurrent along their lengths.
"The ratio of power required to produce a given field strength with a "comparison" antema to the power required to produce the same field strength with a sperified type of antenna is called the power gain of the latter antenna. The field is measured in the optimum direction of the antemat under test. The eomparison antenna is generally a half-wave antenna at the same height and having the same polarization as the antema under consideration. Gain usually is expressed in decibels.

In unidirectional beams (antennas with most of the radiation in onty one direction) the front-to-back ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for maximum response to the opposite direction. Front-to-back ratio is usually expressed in aceihels.

The bandwidth of an antemat refers to the fraqueney range over which a property falls within acceptable limits. The gain bandwidth, the front-to-back-ratio bandwidth and the standing-wave-ratio bandwidth are of prime interest in amateur work.

Ground Effects

The radiation pattern of any antenna that is many wavelengthe distant from the ground and all other objects is called the free-space pattern of that antema. The free-space pattorn of an antenna is almost impossible to obtain in practice, except in the $v . h . f$ and u.h.f. ranges. Below 30 Me ., the height of the antenata above ground is a major factor in determining the radiation pattern of the antenna.

When any antenna is near the ground the free-space pattern is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-spare pattern and ground reflections. This resultant is dependent upon the height of the antenna, its position or orientation with respect to the surface of the ground, and the electrical characteristies of the ground. The effect of a perfectly reflecting ground is such that the

Fig. 14.1-Effect of ground on radiation of horizontal antennas at vertical angles for four antenna heights, This chart is based on perfectly conducting ground.
original free-space field strength may be multiplied by a factor which has a maximum value of 2, for complete remforcement, and having all intermediate values to zero, for complete cancellation. These reflections only afferet the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.
lig. 14-1 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas, Is the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it oceurs at a vertieal angle of 15 degrees. At still greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation is of primary importance, especially at the higher
frequencies. It is advantageous, therefore, to erect the antenma at a height that will take advantage of ground reflection in such a way as to reinforce the spare radiation at the most desirable angle. Since low angles usually are most effective, this generally means that the antenna should be high - at least onn-half wavelength at 14 Me, and preferably thresequaters or one wavelongth. and at least one wavelength, and preferably higher, at 28 Me. The phesiral height recpuired for a given height in wavelengt hs decreases as the frequency is increased, so that good heights are not impracticable: a hatl wavelength at It Mr. is only 3 , foet, alpproximately, while the same height represents a full wavelength at 28 Mr . At 7 Mr and lower frequencies the higher ratiation angles ame effertive, so that again a useful antemat height is not difficult of attainment. Heights betweon 35 and 70 feet are suitable for all bathds, the higher figures being preforabie.

Imperfect Ground

lig. 14-1 is based on ground having perfert conductivity, whereas the actual earth is mot a perfect eonductor. "the principal effect of actual ground is to make the curves inaceurate at the lowest angles; appreciable high-froquency radiation at angles smaller than a fow degrees is practically impossible to obtain over horizontal ground. . Dhove 15 degrees, howerer, the curves are aceurate enough for all pratical purposes, and may be taken as indicative of the result to be expereted at angles betwern $\begin{gathered}\text { and } \\ 1.5 \\ \text { degrees. }\end{gathered}$

The effective ground plane - that is, the plane from which ground reflections ran be considered to take place - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are reflected directly upward from the ground induce a current in the ant-

Fig. 14.2-Theoretical curve of variation of radiation resistance for a very thin half-wave horizontal antenna as a function of height in wavelength above perfectly reflecting ground.

Half-Wave Antenna

tenna in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as either to increase or clecrease the total current in the antenna. For the same power input to the antenna, an increase in current is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the antenna varies with height. The theoretical curve of variation of radiation resistane for a very thin half-wave antenna above perfectly reflecting ground is shown in Fig. 14-2. The imperdance approanhes the free-spate value as the height becomes large, but at low heights maty differ considerably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between
3.5 and 30 Mc. However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons. A vertical halfwave or quarter-wave antenna will radiate equally well in all horizontal directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points.

The vertical angle of radiation also will be affected by the position of the antemna. If it were not for ground losses at high frequencies, the vertical half-wave antenna would be preferred because it would concentrate the radiation horizontally.

The Half-Wave Antenna

A fundamental form of antemna is at single wire whose length is approximately equal to half the fransmitting wavelength. It is the unit from which many more-complex forms of antemats are constructed. It is known as a dipole antenna.

The length of a half-wave in space is:

$$
\begin{equation*}
\text { Length }(\mathrm{feet})=\frac{492}{\text { Freq. }(\text { Mc. })} \tag{14-A}
\end{equation*}
$$

The actual length of a half-wave antenna will not be exactly equal to the half-wave in space, but depends upon the thickness of the conductor in relation to the wavelength as shown in Fig. 1.t-3, where K is a fartor that must be multiplied be the half wavelongth in free space to obtain the resonant antenna length. An additional shortening effect occurs with wire antennas supported by insulators at the ends because of the capacitance added to the system by the insulators (end effect). The following formula is sufficiently aceurate for wire antennas at frequencies up to 30 Mc .

$$
\begin{align*}
& \text { Length of half-uave antenna (ieet) }= \\
& \frac{492 \times 0.95}{\text { Freq. }(\text { Me. })}=\frac{468}{\text { Freq. }(\mathrm{Mc.})} \tag{14-B}
\end{align*}
$$

Example: A half-wave antenna for 7150 kc . (7.15 Mc .) is $\frac{468}{3.15}=65.45$ feet, or 65 feet 5 inches.
Above 30 Mc . the following formulas should be used, particularly for antennas constructed from rod or tubing. K is taken from Fig. 14-3.

$$
\begin{gather*}
\text { Length of half-urave antenna (feet) }= \\
\frac{492 \times K}{\text { Freq. }(\mathrm{Mc})} . \tag{14-C}\\
\text { or length (inches) }=\frac{5905 \times K}{\text { Freq. }} \frac{(\mathrm{Mc} .)}{}
\end{gather*}
$$

(14-D)

Example: Find the length of a half wavelength antenna at $2!$ Mc., if the antenna is made of 2 inch ditameter tubing. At 29 Me., a half wavelength in space is $\frac{492}{29}=16.97$ feet, from Eq. 14-A. Ratio of half wavelength to conduetor diameter (ahanging wavelength to inches) is $\frac{16,97 \times 12}{2}=101.5$. From Fig. $14-3, k=0.903$ for this ratio. The leneth of the antenna, from Eq. $14-\mathrm{C}$, is $\frac{492 \times 0.963}{29}=16.34$ feet, or 16 feet 4 inches. The answer is obtained directly in inches by substitution in Eq. 14-D: $\frac{5905 \times 0.963}{2!}$ $=196$ inches.

Fig. 14-3-Effect of antenna diameter on length for half-wave resonance, shown as a multiplying factor, K, to be applied to the free-space half wavelength (Equotion 14-A). The effect of conductor diameter on the center impedance also is shown.

Current and Voltage Distribution

When power is fed to :un antema, the eurrent and voltage vary along its length. The enrent is maximum (loop) at the center and noarly zero (node) at the ends, while the opposite is true of the r.f. voltage. The current does not actually reach zero at the current nodes, berause of the end effect; similarly, the voltage is not

Fig. 14.4-The above scoles, based on Eq. 14-B, can be used to determine the length of o holf-wave ontenna of wire.
uniform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions perpendicular to the wire and zero along the direction of the

Fig. 14-5-The free-space radiation pattern of o halfwave antenna. The antenna is shown in the vertical position, and the actual "doughnut" pattern is cut in half to show how the line from the center of the antenna to the surface of the pattern varies. In practice this pattern is modified by the height above ground and if the antenna is vertical or horizontal. Fig. 14-1 shows some of the effects of height on the vertical ongle of rodiation.
zero at its node because of the resistance of the antenmb, which consis's of both the r.f. resistance of the wire (ohmic resistance) and the radiation resistance. The radiation resistance is an equivalent resistance, a convenient conception to indicate the radiation properties of an antemna. The radiation resistance is the equivalent resistance that would dissipate the power the antenna radiates, with a current flowing in it equal to the antenna current at a current loop (maximum). The ohmic resistance of a half wavelength antenna is ordinarily small enough, compared with the radiation ressstance, to be negleeted for all practical purposes.

Impedance

The radiation resstance of an infinitelythin half-wave antenna in free space is about 73 ohms, The value under practicad comditions is commonly taken to be in the neighborhood of 60 to 70 ohms, although it varies with height in the mamer of Fig. 14-2. It increas's toward the ends. The adolat value at the ends will depend on a mumber of factors, such as the height, the physieal construction, the insulators at the ends, and the position with resperet to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation to the watrelongin, is indicated in Fig. 11-3. If the dimmeter of the conductor is increased the capacitance per unit length increases and the inductance per unit length derreases. Since the radiation resistance is affected relatively little, the decreased $L / /^{\prime}$ ratio causes the () of the antenna to decrease, so that the resonance curve becomes less sharp. Hence, the antema is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.

Radiation Characteristics

The radiation from a dipole antenna is not
wire, with intermediate vatues at intermediate ingles. This is shown by the sketcle of rig. 1-t-5, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the renter of the figure to the perimeter. If the antemat is vertioal. as shown. then the field strougth will be uniform in all horizontal dirertions: if the

Fig. 14.6-Illustrating the importonce of vertical angle of radiation in determining antenna directional effects. Off the end, the rodiotion is greoter af higher angles. Ground reflection is neglected in this drawing of the freespace pattern of a horizontal ontenna.
antenna is horizontal, the relative field strength will depend upon the direetion of the rerefiving point with respere to the direetion of the antemat wire. The variation in radiation at various vertical angles from a half wavelength horizontal antenna is indieated in Figs. $11-1 i$ and $1+7$.

FEEDING A DIPOLE ANTENNA

Direct Feed

If possible, it is advisable to locate the antemar at least a half wavedength from the tramsmitter and use a transmission line to carry the power from the transmitter to the antenna. However, in many eases this is imposible, particularly on the lower frequencies, and direct feed must be used. Three cxamples of direct feed are shown in lig. If-8. In the method shown at A, C_{1} and (${ }^{\circ}$ should be about $150 \mu \mu \mathrm{f}$, eath for the 3.5-Mt, band, $5 \mu \mu \mathrm{f}$. eath at 7 Mr ., and proportionately smaller at the higher frequencies. The antenna coil comected between them should resonate to 3.5 Me with athout 60 or $70 \mu \mu \mathrm{f}$., for the 80 meter band, for 40 meters it should resente with 30 or $35 \mu \mu \mathrm{f}$., and so on. The circuit is adjusted by using loose coupling between the antenna coil and the transmitter tank coil and adjusting C_{1} and C_{2} until resonance is indi-

Fig. 14.7-Horizontal pattern of a horizontal half-wave antenna at three vertical radiation angles. The solid line is relative radiation of 15 degrees. Dotfed lines show deviation from the 15 -degree pattern for angles of 9 and 30 degrees. The patterns are useful for shape only, since the amplitude will depend upon the height of the antenna above ground and the vertical angle considered. The patterns for all three angles have been proportioned to the same scale, but this does not mean that the maximum amplitudes necessarily will be the same. The arrow indicates the direction of the horizontal ontenna wire.
cated by an increase in plate current. The coupling between the coils should then be increased until proper plate current is drawn. It may be necessiary to re-resonate the transmitter tank circuit as the coupling is increased, but the change should be small.

The rircuits in Fig. 14-8B and C are used when only one end of the antonna is accessible. In B, the coupling is adjusted by moving the

Fig. 14.8-Methods of directly exciting the half-wave antenno. A, current feed, series tun. ing; B, voltage feed, copacitive coupling; C, voltage feed, with inductively coupled antonno tonk. In A, the coupling circuit is not included in the effective electrical length of the ontenno system proper. Link coupling con be used in A and C.
tap toward the "hot" or plate end of the tank coil - the series capacitor may be of any convenient value that will stand the voltage, and it doesn't have to be variable. In the circuit at C, the antenna tuned circuit (C_{I} and the antenna coil) should be similar to the transmitter tank circuit. The antenna tuned circuit is adjusted to resonance with the antemna connected but with loose coupling to the transmitter. lleavier loading of the tube is
then obtained by tightening the coupling between the antenna coil and the transmitter tank coil.
()f the three systems, that at A is preferable because it is a symmetrical system and generally results in less r.f. power "floating" around the shack. The system of 13 is undesirable because it provides practically no protection against the radiation of harmonics, and it should ouly be used in emergencies.

Transmission-Line Feed for Dipoles

Since the impedance at the eenter of a dipole is in the vicinity of $\overline{7}) \mathrm{ohms}$, it offers a good match for 75 -ohm two-wire transmission lines. Several types are available on the market, with different power-handling capabilities. They can be connected in the center of the antenna, across a small stain insulator to provide a convenient connection point. Coaxial line of 75 ohms impedance can also be used, but it is heavier and thus not as

Fig. 14.9-Construction of a dipole fed with 75 -ohm line. The length of the antenna is calculated from Equation 14.B or Fig. 14.4.
convenient. In either case, the transmission line should be run away at right angles to the antannai for at least one-quarter wavelength, if possible, to avoid current unbalance in the line caused by pick-up from the antenna. The antenna length is calculated from Equation 14-B, for a half wavelength antenna. When No. 12 or No. 14 enameled wire is used for the antenna, as is generally the case, the length of the wire is the over-all length measured from the loop through the insulator at each end. This is illustrated in Fig. 14-9.

The use of 75 -ohm line results in a "flat" line over most of any amateur band. However, by making the half-wave antenna in a special manner, called the two-wire or folded dipole, a good match is offered for a 300 -ohm line. Such an antenna is shown in Fig. 14-10. The open-wire line shown in Fig. 14-10 is made of No. 12 or No. 14 enameled wire, separated by

Fig. 14-10-The construction of on open-wire folded dipole fed with 300 -ohm line. The length of the antenno is calculated from Equation 14-B or Fig. 14.4.
lightweight spacers of Lacite or other material (it doesn't have to be a low-loss insulating material), and the spacing can be on the order of from 4 to 8 incher, depending upon what is convenient and whet the operating frequency is. It $1+$ Me., tinch separation is satisfactory, and 8 -inch sparing fan be used at $3 . \overline{5} \mathrm{Mc}$.
'The hall wavelength antemat (ath also be made from the proper length of 300 -ohm line, opened on one side in the center and connected to the feedline. Sfter the wires have been soldered together, the joint ran be strengthened by molding some of the execos insulating material (polvethylene) around the joint with a hot iron, or a suitable lightweight clamp of two pieces of lucite can be devised.

Fig. 14-11-The construction of a 3-wire folded dipole is simitar to that of the 2 -wire folded dipole. The end spacers may have to be slightly stronger than the others because of the greater compression force on them. The length of the antenna is obtained from Equation 14-B or Fig. 14-4. A suitable line can be made from No. 14 wire spaced 5 inches, or from No. 12 wire spaced 6 inches.

Similar in some respects to the two-wire folded dipole, the threr-wire folded dipole of Fig, 14-11 offers a good mateh for a 600 -ohm line. It is favored by amateurs who prefer to use an open-wire line instead of the 300 -ohm insulated line. The three wires of the antema proper should all be of the same diameter.

Another method for offering a mateh to a (600-ohm opern-wire line with a hall wavelength tutenna is shown in Fig. 11-12. The system is ralled a delta match. The line is "famned" as it approaches the antema, to have a gradually increasing impedance that equals the antemna impedance at the point of connection. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is necessary. The length of the antenna, L, is calcu-

Fig. 14-12-Delta-matched antenna system. The dimensions C, D, and E are found by formulas given in the text. It is important that the matching section, E, come straight away from the antenna without any bends.
lated from Equation 14-B or Fig. 1.1-t. The length of section (' is computed from:

$$
\begin{equation*}
\left(f_{\mathrm{e} \cdot \mathrm{ot})}\right)=\frac{11 \mathrm{~S}}{\text { Freq. (Me.) }} \tag{14-E}
\end{equation*}
$$

The feeder clearance, E, is found from

$$
\begin{equation*}
E^{\prime}(\text { feet })=\frac{14 S}{\text { Freq. }(\mathrm{Ic} .)} \tag{14-F}
\end{equation*}
$$

$$
\text { Examule: F'or : frequency of } 5.1 \text { Mc., the length }
$$

$$
\begin{aligned}
& L=\frac{468}{7.1}=6.3 .91 \text { feet, or } 05 \text { feet } 11 \text { inches. } \\
& C=\frac{118}{7.1}=10.022 \text { feet, or } 10 \text { feet } 7 \text { inches. } \\
& E=\frac{148}{7.1}=20,44 \text { feet, or } 20 \text { feet } 10 \text { inches. }
\end{aligned}
$$

Since the equations hold only for 600-ohm line, it is important that the line be elose to this value. This requires \bar{b}-inch spated No. 14 wire, 6 -inch spaced No. 12 wire, or $3 / 4$-inch spaced No. 16 wire.

If a half wavelength antemat is fed at the center with other than 7 -ohm line, or if a two-wire dipole is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the transmitter may become awkward for some line lengths, as deseribed in Chapter 13. However, in many eases it is not convenient to feod the half-wave antemat with the correct line (as is the rase where multiband operation of the same antoma is desired), and sometimes it is not convenient to fred the antemat at the center. Whore multiband operation is desired (to be discussed later) or when the antemat must be fed at one end by a trans-

Fig. 14-13-The half-wave antenna can be fed at the center or at the end with an open-wire line. The antenna length is obtained from Equation 14-B or Fig. 14-4.
mission line, an open-wire line of from 450 to 600 ohms imperdane is generally used. The impedance at the ond of a half wavelongth antenat is in the vicinity of several thousand ohms. and hence a standing-wave ratio of 4 or 5 is not cmusual when the line is commeted to the end of the antemat. It is advistble, therefore, to keep the loses in the line as low as possible. This requires the use of remamic or Micalex feeder spacers, if any appreciable power is used. For low-power installations in dry elimates, dry wood spacers boiled in paraflin are satisfuctory. Mechanical details of half wavelength antennas fed with open-wire lines are given in Fig. 1+13. Regardless of the power level, solid-dielectric Twin-Lad is not recommended for this use.

Long Wires

Long-Wire Antennas

An antenna will be resonant so long as an integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half watrelength. When the antenna is more than a half-wave long it usualty is called a long-wire antenna, or a harmonic antema.

Current and Voltage Distribution

Fig. 14-It shows the current and voltage distribution along a wire operating at its fundamental frequency (where its length is
 D

4TH HARMONIC (2-WAVE)
Fig. 14-14-Standing-wave current and voltage distribution along an antenna when it is operated at various harmonics of its fundamental resonant frequency.
(c)fual to a half watelength) :and at its serond, third and fourth harmonics. For example, if the fundamental frequency of the antenna is 7 Me., the current and voltage distribution will be as shown at A. The same antema excited at 14 Mc. would have current and voltage distribution as shown at B. At 21 Mc., the third harmonic of 7 Mc ., the current and voltage distribution would be as in C ; and at 28 Mc., the fourth harmonic, as in D. The number of the harmonic is the number of half waves contained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antema (taken as a zero reference line), to indirate that the polarity reverses when the rurrent or voltage goes through zero. Currents
flowing in the same direction are in phase; in opposite directions, out of phase.

It is evident that one antemat may be used for harmonically-related frequencies, such as the various amateur bands. "The long-wire or harmonic antemna is the basis of multiband operation with one antenat.

Physical Lengths

The length of a long-wire antema is not an exact multiple of that of a half-wave antema because the end effects operate only on the end sections of the antema; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent portion of the wave in space. The formula for the length of a long-wire antenna, therefore, is

$$
\text { Length }(\text { feet })=\frac{492(N-0.05)}{\text { Freq. }(\mathrm{Me})}
$$

14-G
where N is the number of half-waves on the antenna.

$$
\text { Example: An antenna } 4 \text { half-waves long at } 14.2
$$

$$
\text { Me, wonld be } \frac{402(4-0.05)}{14.2}=\frac{40.2 \times 3.35}{14.2}
$$

$$
=136.7 \text { feet, or } 136 \text { feet } 8 \text { inches. }
$$

It is apparent that an antenna cut as a halfwave for a given frequeney will be slightly off resonance at exactly twice that frequency (the second harmonie), because of the decreased influence of the end effects when the antenna is more than one-half wavelength long. The effect is not very important, except for a possible unbalance in the feeder system and consequent

Fig. 14.15-Curve A shows varialion in radiation resistance with antenna length. Curve B shows power in lobes of maximum radiation for long-wire antennas as a rotio to the maximum radiation for a half-wave antenna.

Fig. 14-16-Horizontal patterns of radiation from a full-wave antenna. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. All three patterns are drawn to the same relative scale; actual amplitudes will depend upon the height of the antenna.
radiation from the feedline. If the antemna is fed in the exact center, no unbatance will occur at any frequency, but end-fed systems will show an ubalane on all but one frequeney in each harmonic range.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes higher as the antenna length is increased. Also, a long-wire antema radiates more power in it, most favorable direction than does a half-wave antema in its most favorable direction. This power gain is secured at the expense of radiation in other

Fig. 14-17-Horizontal patterns of radiation from an antenna three half-waves long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30
degrees. Minor lobes coincide for all three angles.
directions. Fig. 14-15 shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antenna length.

Directional Characteristics

As the wire is made longer in terms of the number of half wavelengthe, the direetional efferts change. Instead of the "doughnut" pattern of the half-wave antenna, the directional characteristic splits up into "hobes" which make various angles with the wire. In general, as the length of the wire is increased the direction in which maximum radiation occurs tends to approach the line of the antemna itself.

Directional chatracteristic* for antemats one wavelength, three half-wavelengths, and two wavelengths lang are given in Figs. 14-16, $14-17$ and $14-18$, for three vertical angles of radiation. Note that, as the wire length in-

Fig. 14-18-Horizontal patterns of radiation from an antenna two wavelengths long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. The minor lobes coincide for all three angles.
creases, the radiation along the line of the antenna becomes more pronomeced. still longer antennas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Methods of Feeding

In a long-wire antenna, the currents in adjacent half-wave rections must be out of phase, as shown in Fig. 14-14. The fecder system must not upset this phase relationship. This is satisfied by feeding the antenna at aither end or at any current loop. 1 two-wire feeder cellmot be insertod at a current node, however, because this invariably brings the currents in two adjacent half-wave sections in phase. A long wire antenna is usuadly made a half wavelength at the lowest frequency and fed at the end.

Multiband Antennas

Multiband Antennas

As suggested in the preceding section, the same antenna may be used for several bands by operating it on harmonies. When this is done it is necessary to use thened fecders, since the impedance matching for nonresonant feeder operation can be accomplished only at one frequency unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it.

A dipole antenna that is center-fed by a soliddielectric line is useless for even harmonic operation; on all even harmonics there is a voltage maximum of curring right at the fred point, and the resultant impedance mismatch causes a large standing-wave rat in and conserpently high losses arise in the solid dielertric. It is wise not to attempt to use on its even harmonics a half-wave antenna center-fod with coaxial cable. (On odd harmonies, as between 7 and 21 Me.. a current loop will appear in the center of the anteman and a fair match can be obtained. Wigh impedance solid-diclectric lines such as 300 ohm Twin-Lead may be used in an emorgoner, provided the power does not exeed a few hundred watts, but it is an inefficient feed method.

When the same antemna is used for work in several hands, the directional characteristics will vary with the hand in use.

Simple Systems

The most practical simple multiband antenna is one that is a half wavelength long at the lowest frequency and is fed either at the center or one end with an open-wire line. Although the standing wave ratio on the feedline will not approach 1.0 on any band, if the losses in the line are low the system will be efficient. From the standpoint of reduced feedline radiation, a center-fed system is superior to one that is end-fed, but the end-fed arrangement is often more convenient and should not be ignored as a posibibity. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, except on frequencies where the length of the antemar is a hall waverugth. 'I he chidfed abltenna acts like a long-wire antema on all bands (for which it is longer than a hall wavelength), but the center-fed one acts like two antemas of half that length fed in phase. For example, if a full-wavelength antenm is ferl at one end, it will have a radiation pattern as shown in Fig. 14-16, hut if it is fed in the remter the pattern will be somewhat similar to lig. 14-7, with the maximum radiation broadside to the wire. lither antema is a good radiator, but if the radiation pattern is a factor, the point of feed must be considered.

Since multiband operation of an antenna does not permit matching of the feedline, some attention should be paid to the length of the feedline if convenient transmitter-coupling ar-
rangements are to be olstained. Table 14-I gives some suggested :untenna and feeder lengths for multiband operation. In general, the length of the feedline can be other than that indieated, but the type of coupling circuit mare change.

Open-wire line feed is recommended for an antenna of this type, since the losses will run too high in solid dieleetric line. For low-power applications up to a few hundred watts, open-wire TV line is convenient and satisfactory to use. However, for high-power installations up to the kilowatt limit, an open-wire line with .No. 14 or No. 12 conductors should he used. This c:un be built from soft-drawn wire and ceramic or other suitable spacers, or it can be bought ready-made.

Antennas for Restricted Space

If the space available for the antenna is not large enough to accommodate the length necessary for a half wave at the lowest frequency to be used, quite satisfactory operation can be secured be using a shorter antemna and making up the missing length in the feeder system. The antemon itsolf may be as short as a quarter wavelength and will radiate fairly well, although of course it will not be as effertive as one a half wave long. Novertheless. such a system is useful where operation on the desired band otherwise would be impossible.

Tuned feeders are a practioal necessity with such an antonnal system, and a center-fed antenna will give best all-around performance.

TABLE 14-I Multiband Tuned-Line-Fed Antennas			
Antenna Length (F t.)	Feeder Length (Ft.)	Band	Type of Coupling Circuit
With end feed:			
135	45	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Series Parallel
67	45	$\begin{gathered} 7-21 \\ 28 \end{gathered}$	Series Parallel
W'ith center jeed:			
135	42	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Parallel Series
135	$771 / 2$	3.5-28	l'arallel
67	421/2	$\begin{gathered} 3.5 \\ 7-28 \end{gathered}$	Series l'arallel
67	651/2	$\begin{gathered} 3.5,14,28 \\ 7,21 \end{gathered}$	Parallel Series
Antenna lengths for end-fed antennas are approximate and should be cut to formula length at favorite operating frequency. Where parallel tuning is specified, it will be neeessary in some cases to tap in from the ends of the coil for proper loading - aee Chapter 13 for examples of antenna couplers.			

Fig. 14-19-Practical arrangement of a shortened antenna. When the total length, $A+B+B+A$, is the same as the antenna length plus twice the feeder length of the center-fed antennas of Table 14-1, the same type of coupling circuit will be used. When the feeder length or antenna length, or both, makes the sum different, the type of coupling circuit may be different but the effectiveness of the antenna is not chonged, unless $A+A$ is less thon a quarter wavelength.
With end feed the feeder currents become badly unbalanced.

With renter feed, practically any convenient length of antemnat can be used. If the total length of antenna plas twire feedline is the same as in Table $14-I$, the type of tuning will be the same as stated. This is illustrated in lig. 14-19. If the total length is not the same, different tuning conditions can be expeeted on some bands. This should not be intorpreted as a fault in the antonna, and any thang sustem (sorics or paralled) that works wrell without any trace of heating is guite satisfactory. Heating may result when the taps with parallel tuming are mate too alose to the erenter of the coil - it can often be correeted by using less total inductane and more capacitance.

Bent Antennas

Sinee the find strength at al distance is proportional to the eurrent in the antemat, the high-ewrent part of a dipole anternat (the center (puarter wave, approximately) does most of the radiating. Advantage can be taken of this fact when the space available does not permit buiding an antema a half-wave long. In this (ase the ends may be bent, either horizontally or vortically, so that the total length equals a half wave, cenen though the straghtaway horizontal length may be as short as a quarter wave. The operation is illustrated in Fig. 14-20. Such an antemat will be a somewhat better radiator than a quarter wavelength antemm on the lowest fre-

Fig. 14-20 -Folded arrongement for shortened antennas. The total length is a half-wave, not including the feeders. The horizontal part is made as long as convenient and the ends dropped down to make up the required length. The ends may be bent back on themselves like feeders to cancel radiation partially. The horizontal section should be at least a quarter wave long.
quence, but is not so desimable for multiland operation beranse the ends play an increasingly important part as the froGueney is raised. The performance of the sustem in such a case is difforult to predied. esperially if the ends are vertical (the most convenient arrangement) berause of the complex combination of horizontal and vortical polarization which results as well as the dissimilar directional charateteristies. However, the fare that the radiation pattern is incapable of predietion dors not detrate from the gemeral usefulness of the antennat. For one-band operation. and-loading with coils ($\overline{5}$ fect or so in from (earh ond) is prational and efficient.

"Windom' or Off-Center-Fed Antenna

A multiband automat that enjoved considerable popularity in the 1930s is the "off-center feed" or "Windom," named after the amateur who wrote a comprehensive article alout it. Shown in Fig. 14-21.A, it consists of a half wavelength antenna on the lowest-frequency band to be used. with a single-uire feeder connerted 14% off center. The antema will operate satisfactotily

Fig. 14-21 - Two versions of the off-center-fed antenna,
(A) Single-wire feed shows approximately 600 ohms impedance to ground and is most conveniently coupled to the transmitter as shown. The pi-network coupling will require more capacity at C_{1} than at $C_{2} . L_{1}$ is best found by experiment-an inductance of about the same size as that used in the output stage is a good starting point. The parallel-tuned circuit will be a tuned circuit that resonates at the operating frequency with L and C close to those used in the output stage. The tap is found by experiment, and it should be as near the top of L as it can and still give good loading of the tronsmitter.
(B) Two-wire off-center feed uses 300 -ohm TV line. Although the 300 -ohm line can be ccupled directly to some transmitters, it is common practice to step down the impedance level to 75 ohms through a pair of "balun" "coils.

Trap Antennas

on the even-harmonic frequencies, and thus a single antenna can be made to serve on the 80 -, 10-, 20-, and 10 -meter bands. The single-wire feeder shows an impedance of approximately 600 ohms to ground, and consequently the antenna coupling system must be capable of matching this value to the transmiter. I tapped parallel-tuned cirenit or a properly-proportioned pi-network coupler is generally used. Where TVI is a problem, the antennat coupler is required, so that a low-pass filter can be used in the connecting link of coaxial line.

Although theoretically the feed line can be of any length, some lengths will tend to give trouble with "too much r.f. in the shack," with the consequence that r.f. sparks can be drawn from the transmitter's metal cabinet and/or v.f.o. notes will develop serious modulation. If such is found to be the case, the feeder length should be changed.

A newer version of the off-center-feed antenna uses 300 -ohm TV Twin-Lead to feed the antenna, is shown in Fig. $14-21 \mathrm{~B}$. It is claimed that the antenna offers a good match for the 300 -ohm line on four bands and, although this is more wishful thinking than actual truth, the system is widely used and does work satisfactorily. It is subject to the same feed line length and "r.f.-in-the-shack" troubles that the single-wire version enjoys. However, in this case a pair of "balun" coils can be used to step down the impedance level to 75 ohms and at the same time alleviate some of the feed line troubles. This antenna system is popular among amateurs using multiband transmitters with pi-network-tuned output stinges.

With either of the off-center-fed antenna systems, the feed line should run away from the antenna at right angles for as great a distance as possible before bending. No sharp bends should be allowed anywhere in the line.

Multiband Operation with Coaxial Line Feed

The proper use of coaxial line requires that the standing-wave ratio be held to a low value, preferably below $2: 1$. Since the impedance of an ordinary antemma changes widely from band to band, it is not possible to feed a simple antenna with coaxial line and use it on a number of bunds without trieks of some kind. The single exception to this is the use of 75 -ohm coaxial line to feed a 7-Mc. half-wave antema, as in Fig. 14-19; this antenna can also be used on 21 Mc. and the s.w.r. in the line will not run too high.

One multiband antenna system that can be used by anyone without much trouble is shown in Fig. 14-22. Here separate dipoles are connected to one feedline. The $\mathbf{7 - M e}$. dipole also serves on 21 Mc. A low s.w.r. will appear on the feedline in each band if the dipoles are of the proper length. The antema system cau be built hy suspending one set of elements from the one above, using insulator-terminated wood spreaders about one foot long. In alternative is to let one antenna droopseveral feet under the other, bring ropes attarhed to the insulators back to a common sup-

Fig. 14-22-An effective "all-band" antenna fed with a single length of coaxial line can be constructed by joining several half wavelength antennas at their centers and feeding them at the common point. In the example above, a low s.w.r. will be obtained on $80,40,20$ and 15 meters. (The 7 -Mc. antenna also works at 21 Mc .) If a $28-\mathrm{Mc}$. antenna were added, 10 -meter operation could also be included.

The antenna lengths can be computed from formula 14-B. The shorter antennas can be suspended a foot or two below the longest one.
port point. It has been found that a separation of only an inch or two between dipoles is satisfactory. By using a length of the Twin-Lead used for folded dipoles (one Copperweld conductor and one soft-drawn), the strong wire can be used for the low-frequency dipole. The soft-drawn wire is then used on a higher band, supported by the solid dielectric.

A vertical antenna can be operated on several bands and fed with a single length of coaxial line provided the antenna is no longer than 0.6 wavelength at the lighest frequency and that a suitable matching ne work for each band is used at the base. A good radial or ground system is reguired. The matching sections can be housed in a weatherproof box and changed manually or by stepping relays; their form will vary from parallel-tuned eircuits to L sections. (See MeCoy, QST, December, 1955, for description of L -section coupler.)

Multiband "Trap"' Antennas

Another approach to the problem of multiband operation with a single untuned ferd line is the use of parallel-tuned circuits installed in the antenna at the right points to "divorce" the remainder of the antenna from the center section (part fed by coaxial line) as the transmitter is changed to a higher-frequency band. This principle of the divoreing circuits is utilized in a commercial "all-bund" vertical antenna, and a 5 -band kit for horizontal antemas is also available commercially. The divorcing circuits are also used in several commercial multiband beams for the 14 -, 21- and 28-Me. bands.

The multiband antenna system shown in Fig. 14-23 may be of interest to the ham who wishes to work on several bands but doesn't have sufficient space for an 80 -meter antenna and consequently is limited to 40 meters and below. (A five-band antenna requires more than a 100 -foot span; see Greenberg, QডT', October, 1956.)

On 40 meters the traps serve as inductors to load the system to 7 Mc . On 20, the traps (resonant to 14.1 Mc.) divorce the B sections from the

14 - ANTENNAS

Fig. 14-23-Sketch showing dimensions of a trap dipole covering the 40-, 20 - and 10 -meter bands. The fotal span is less than 60 feet.
antenna proper. On 28 Me. the entire antemat becomes approximately a $5 / 2$-radiator.

As shown in lig. 14-23, cach trap is literally built around :m "egg' or "strain" insulator. In this type of insulator, the hole at one end is at right angles to the hole at the other end, and the wires are liastened as in lig. $11-25$. These insulators have greater compressive strength than tensile strength and will not permit the antenna to fall should the insulator break, since the two interlooped wires prevent it. There is ample space within the inductor for looth the insulator and capacitor. The plastice covers are not essential but are considered desirable begase they provide mechanical protection and prevent the arcumuhation of ioce or soot and tars which maty not wash off the traps when it rains.

Electrically, each trap consists of a $25-\mu \mu$ f. capacitor shunted by $4.7 \mu \mathrm{~h}$. of inductance. A Centralal) ceramic transmitting eapacitor 857$25 \%$, rated at 15,000 volts d.c., is shown and will safely handle a kilowatt. Other ceramic caparitors rated at approximately bote0 volts would be satisf:ctory, ats well ats chmorer. The inductors are made of No. 12 wire, $21 /$ inches in diameter, 6

One may wish to choose a different irecpuemey in the 20 -meter band for which optimum results are desired; for example, 14.05 Me. for c.w. operation, 1.4 .25 Mc. for phone opration, or perhaps 14.175 Mc . for general coverage. In any ease, the number of inductor turns is adjusted areordingly.

Trap Adjustment

As a preliminary step, loops of No. 12 wire are fitted to one of the egg insulators in the normal manmer (see Fig. 14-25), exept that alfor the wraps are made, the and leads are snipped off close to

the wraps. I capacitor is then placed in position and bridged with short leads aross the insulator and soldered sufficiently to provide temporary support. The combination is then slipped inside about 10 turns of the inductor, one end of which should be soldered to an insulator-capacitor lead. Adjustment to the resonant frequency can now proceed, using a grid-dip neter.

Coupling between the g.d.o. and the trap should be very lonse. To insure accuracy, the stition receiver should be used to cheek the g.d.o. frequency. The inductance should be reduced $1 / 4$ turn at a time. If one is careful, the resonant frequeney ean easily be set to within a few kilocyeles of the chosen figure.

The reison for snipping the cand leads elose to the wraps and the inclusion of the loops through the egg insulator soon becomes apparent. The resonant frepueney of the eapacitor and inductor alone is reduced about 20 ke . per inch of end lead lengt h and about 350 ke . by the insulator loons. The latter add approximately $2 \mu \mu$ f, to the fixed capacitor value and account for the total of 27 $\mu \mu \mathrm{f}$. shown in Fig. 14-23.

Assembly

Having determined the exact number of induetor turns, the trap is taken apart and reassembled with leads of any convenient length. One maty, of course, comneet the entire lengths of sections A and B to the trap at this time, if desired. But, if more convenient, a foot or two of wire can be fastened and the remaining lengths soldered on just before the antema is raised.

The protective covers are most reatily formed by wrapping two turns (plus an overlap of $1 / 2$ inch) of $0.02(0$-inch polystyrene or lucite sheeting around a 3 -inch plastic disk held at the center of the cylinder so formed. The length of the eover should be about 4 inches. A very small amount of plastie solvent (a cohesive cement that aetually softans the pastie surfaeses) should then be applied under the edge of the overlap and the joint held firmly for about

Fig. 14-24-The $14 . \mathrm{Mc}_{\mathrm{c}}$ trap is enclosed in a weatherproof cover made of plastic sheel. The ceramic capacitor and strain insulator are inside the coil.

Vertical Antennas

Fig. 14-25-Method of connecting the antenna wire to the strain insulator. The antenna wire is cut off close to the wrap before checking the resonant frequency of the trap.
two minutes to insure a strong, tight seal. The disk is pushed out and the inner seam of the sheeting sealed.

The trap) is then plared in the plastic cylinder and the end disks marked where the antemna wires are to pass through. After drilling these holes, the disks are slipped over the leads, pressed into the ends of the cylinder and a small amount of solvent applied to the periphery to ohtain at good seal. Some air can flow in and out of the trap through the antenna-wire hokes, and this will prevent the accumulation of condensation.

Length Adjustment

Standing-watve ratios are not uniform throughout the band or bands for which an antenna is designed. In a trap antemat, the choice of frequencies for hest performance is a compromise. After making the traps resonant at $1+1$ Mc., sections A are adjusted for resonance. Sections

B are then adjusted for resonance at approximately 7.2 Mc. For the dimensions shown, with the antenna about 250 ft . above street level and 35 ft . ahove electrical gromm, an s.w.r. of virtually 1 to 1 was obtained at 7.2 Me., with maximums of 1.3 and 1,1 at 7.0 and $7.3 \mathrm{Mc} \cdot$., respertively. In the 20 -meter band, the s.w.r. was also 1 to 1 at 14.1 Mc ., 1.1 at 14.0 Mc .and 1.3 at 14.3 Me. In the 10 -meter band. the s.w.r. was 1.3 to 1 at 28.0 Ma., 1.1 at $28.4 \mathrm{Mr} \cdot, 1.5$ at 29 Mc. and only 2.4 at the upper extreme of the hand. The s.w.r. on '21 Mr. will be high berause the ant muta is not resonant in that band.

R(i-5!/[C 7 B-ohm coaxial rable forms the transmission line and is connecterd to the antenna through : Continental Electronies \& Sound Co. "Dipole Dri-lit Connector." . Ifter connecting the cable and antemna wires, the connector should be coated with several layers of insulating varnish to make rertain that the junction is watertight.

Vertical Antennas

A vertical quarter-wavelength antenna is often used in the low-frequency amateur hands to obtain low-angle radiation. It is also used when there isn't enough room for the supports for a horizontal antenna. For maximum effectiveness it should the located free of nearhy objects and it should be operated in conjunction with a good ground system, but it is still worth trying where these ideal conditions cannot be obtained.

Four typical examples and suggested methods for feeding a vertical antenna are shown in Fig. 1+26. The anterma may be wire or tubing supported by wood or insulated guy wires. When tubing is used for the antenna, or when guy wires (broken up by insulators) are used to reinforce the structure, the length given by the formula is likely to the long by a few por cent. A cheek of the standing-wave ratio on the line will indicate the frequency at which the s.w.r. is minimum, and the antenna length can be adjusted accordingly.

A good ground connection is necessary for the most effective operation of a vertical antenna (other than the ground-plane type). In some cases a short connection to the cold-water sustem of the house will the adequate. But maximum performance usually demands a separate ground system. A single 4 - to 6 -foot ground rod driven into the earth at the base of the antenna is usually not sufficient, unless the soil has exceptional conductivity. A minimum ground system that can be depended upon is 6 to 12 quarter wavelength radials laid out as the spokes of a wheel from the base of the antenna. These radials can
be made of heavy aluminum wire, of the type used for grounding 'l'V antennas, buried at least

Fig. 14-26-A quarter-wavelength antenna can be fed directly with 50 -ohm coaxial line (A) with a low standingwave ratio, or a coupling network can be used (B) that will permit a line of any impedance to be used. In $(B), L_{1}$ and C_{1} should resonate to the operating frequency, and L_{1} should be larger than is normally used in a plate tank circuit at the same frequency. By using multiwire antennas, the quarter-wave vertical can be fed with (C) 150 - or
(D) 300 -ohm line.
(inches in the ground. This is normally done by slitting the earth with a spade and pushing the wire into the slot, after which the earth can be tamped down.

The examples shown in Fig. 14-26 all require an antemna insulated from the ground, to provide for the feed point. A grounded tower or pipe can be used as a radiator by employing "shunt ferd," which consists of tapping the inner conductor of the coaxial-line feed up) on the tower until the best mateh is obtained, in murh the same mamer as the "gamma match" (described later) is used on :t horizontal element. If the antenna is not an electrical quarter wavelength long, it is mecessary to tune out the reactance by adding capacity or inductance between the coaxial line and the shunting conductor. A metal tower supporting as TV antenna or rotary beam can be shunt-fod only. if all of the wires and leads from the supported antenna run down the center of the tower and underground away from the tower.

THE GROUND-PLANE ANTENNA

A ground-plane antenna is a vertical quarerwavelength antema using an artificial metallic ground, usually consisting of four rods or wires perpendicular to the antenna and extending radially from its base. Cnlike the quarter-wavelength vertical antennas without an artificial ground. the ground-plane antenna will give low-anglo radiation regardless of the height above act.ual ground. However, to be a true ground-plane antenna, the plane of the radials shonld be at least a quarter wavelength above ground. Despite this one limitation, the antenna is useful for DX work in any band below 30 Mc .

The vertical portion of the ground-plane antenna can be made of self-supported aluminum tubing, or a top-supported wire depending upon the necessary length and the available supports. The radials are also made of tubing or heavy wire depending upon the available supports and necessary lengths. They need not be exactly symmetrical about the base of the vertical portion.

The radiation resistance of a ground-plane antenna varies with the diameter of the vertical element. Since the radiation resistance is usually in the vicinity of 30 to 32 ohms the antenna can be fed with 75 -ohm coaxial line if a quarter wavelength matching section of 50 -ohm coaxial line is used between the line and the antenna. (See "(Quarter-Wave "Transformers" in this chapter.)

For multiband operation, a ground-plane antenna can be fed with tuned open-wire line.

Three-Band Ground-Plane Antenna

A three-band ground-plane antenna using wire
elements and fed with coaxial line is shown in Fig. $14-27$. The builder ($15.41^{\circ} \mathrm{J}$) elected to mount it on top of a 34 -foot length of galvanized iron pipe, since a ground-plane antenna close to the ground is not a ground-plane antenna at all. Four 17 -foot "drooping radials" form the ground plane and double as guy wires. These four wires are fastened to a pipe flange at the top of the mast. At one point on the mast the pipe sections are joined by a I fitting, which provides a convenient point for bringing out the R(i-8/U feed line. If it is more convenient to bring out the coas at the base of the mast, one can eliminate the " 1 fitting and use an ordinary coupling.

A cane fishing pole supports the three separate vertical elements. These elements, made of No. 12 wire, are taped to the pole every three inches with Scotch electrical tape. The bottom end of the pole is jammed tight into the upper end of the support pipe and the coaxial line is brought out of the pipe through a small hole just below the bottom of the flange. The inner eonductor of the coavial line is soldered to the junction of the three vertical elements and the braid of the coaxial line is connected to the pipe flange. Anyone worrying about the insulating ability of a cane pole can forget it; it is being used at a low-impedance point.

Fig. 14.27-The 14., 21- and 28-Mc. ground-plane antenna uses wire elements. Vertical elements are taped to a cane pole; the four radials also serve as guy wires. The radials "droop" a little, making a 40 -degree angle with the supporting 1 -inch pipe.

Antennas for 160 Meters

Results on 1.8 Mc. will depend to a large extent on the antenna system and the time of day or night. Alroost any randorn long wire that can be
tuned to resonance will work during the night but it will generally be found very ineffective during the day A rertical antenna - or rather an an-

Antennas for 160 Meters

tenna from which the radiation is predominantly vertically polarized - is probably the best for $1.8-\mathrm{Me}$. operation. A horizontal antenna (hori-zontally-polarized radiation) will give better results during the night than the day. The verti-cally-polarized radiator gives a strong ground wave that is effective day or night, and it is to be preferred on 1.8 Me.

The low-angle raditition from a horizontal antenna $1 / 8$ or $1 / 4$ wavelength above ground is almost insignificant. Any reasonable height is small in terms of wavelength, so that a horizontal antema on 160 meters is a poor radiator at angles useful for long distances ("long," that is, for this band). Its chief usefulness is over relatively short distances at night.

Bent Antennas

Since ideal vertical antennas are generalty out of the question for practical amateur work, the best compromise is to bend the antenna in such a way that the high-current portions of the antenna run vertically. It is advisable to place the antenna so that the highest currents in the antemna occur at the highest points above actual ground. Two antenna systems designed along these lines are shown in Fig. 14-28. The antenna of Fig. 14-28B uses a full half wavelength of wire but is bent so that the high-eurrent portion runs vertically. The horizontal portion running to $L_{1} C_{1}$ should run 8 or 10 feet above ground.

Grounds

A good ground connection is generally important on 160 meters. The ideal system is a number of wire radials buried a foot or two underground and extending 50 to 100 feet from the central comnection point. The use of any less than six or eight radials is inadvisable.

If the soil is good (not roeky or sandy) and generally moist, a low-resistance connection to the cold-water pipe system in the house will often serve as an adequate ground system. The connection should be made close to where the pipe enters the ground, and the surface of the pipe should be scraped elean before tightening the ground clamp around the pipe.

A 6- or 8 -foot length of 1 -inch water pipe, driven into the soil at a point where there is considerable natural moisture, can be used for the ground eonnection. Three or four pipes driven into the ground 8 or 10 feet apart and all joined

Fig. 14-28-Bent antenna for the 160 -meter band. In the system at A, the vertical portion (length X) should be made as long as possible. In either antenna system, $\ell_{1} C_{1}$ should resonate at 1900 kc ., roughly. To adjust l_{2} in antenna A, resonate $L_{1} C_{1}$ alone to the operating frequency, then connect it to the antenna system and adjust l_{2} for maximum loading. Further loading can be obtained by increasing the coupling between ℓ_{1} and the link.
together at the top with heavy wirr are more effective than the single pipe.
The use of a counterpoise is recommended where a buried system is not practicable or where a pipe ground eannot be made to have low resistance because of poor soil conditions. A counterpoise consists of a number of wires supported from 6 to 10 feet above the surface of the ground. Generally the wires are spaced 10 to 15 feet apart and lorated to form a square or polygonal configuration under the vertical portion of the antenna.

Long-Wire Directive Arrays

As the length (in wavelengths) of an antenna is inereased, the lobes of maximum radiation make a more acute angle with the wire. Two long wires ean be combined in the form of a horizontal " V ", in the form of a horizontal rhombus, or in parallel, to provide a long-wire directive array. In the " V " and rhombie antennas the main lobes reinforce along a line bisecting the acute angle between the wires; in the parallel antenna the reinforcement is along the line of the lobe. This reinforcement provides both gain and directivity along the line, since the lobes in other directions tead to caucel out. In general, the power gain
depends upon the length in wavelengths of the wires, assuming that the proper configuration for a given length and height above ground is used.

Rhombie and "V" antennas are normally bidirectional along the bisector line mentioned above. They can be made unidirectional by terminating the ends of the wires away from the feed point in the proper value of resistance. When properly terminated, " V " and rhombir antennas of sufficient length rook well over a three-to-one or four-to-one frequeney range and hence are useful for multiband operation.
Antenna gains of the order of 10 to 15 db . can
be obtained with properly-constructed long-wire arrays. However, the pattern is rather sharp with gains of this order, and rhombie and " V " beams are not used by amateurs as commonly as
they were, having been displaced hy the rotatable multi-element Yagi beam. Further information on these antennas can be found in The ARRL Antenna Book.

Beams with Driven Elements

By combining individhal half-wave antennas into an array with suitable spuring betwern the antennas (called elements) :ind ferding power to them simultancously, it is possible to make the radiation from the elements add up along a single direction and form a heam. In ot her dirertions the radiation tends to cancel, so a power gain is obtained in one direction at the expernse of rathation in other directions. There are several methods of arranging the elements. If they are strung end to end, so that all lie on the sane straight line, the elements are satid to be collinear. If they are parallel and all lying in the stme plane, the cloments are said to be broad-side when the phase of the current is the same in all, and end-fire when the currents are not in phase.

Collinear Arrays

Simple forms of collinear arrays, with the current distribution, are shown in Fig. 14-29.

Collinear arrays may be mounted either horizontally or vertically, Ilorizontal mounting gives incrased horizontad diretivity, while the vertional directivity remains the same as for at single element at the samo height. Vertical mounting gives the same horizontal pattern as a single element, but concentrates the radiation at low angles.

Broadside Arrays

Parallel antemat clements with currents in phase maty be combined as shown in lig. 14-30 to form a broadside array, so named berausu the direction of maximm radiation is broadside to the plane comtaning the antemats. Igain the gain :und dirertivity depend upon the sparing of the elements.

Broadside arrats may be suspended either with the eloments all vertical or with them horizontal and one abowe the or her (stacked). In the former case the horizontal pattern beromes quite sharp,

The two-dement array at A is popularly known as "two half-waves in phatse" or a double Zepp antroma. It will be reerognized as simply a centerfed dipole operated at its serond harmonie.

By extending the antemat, as at B , the additional gain of an extended double Zepp antema can be ohtained. Catrying the length beyond that shown will result in an " X "-shaped pattern that no longer has the maximum radiation at right angles to the wire.
while the vertical pattern is the same as that of one chement alone. If the array is suspended horizontally. the horizontal pattern is equivatent to that of one element while the vertieal pattern is sharpened, giving fow-angle radiation.

Broadside arrats may be fed cither bey tumed opro-wire lines or through quarter-wave matehing sertions and flat lines. In Fig. 14-3013, note the "eresing over" of the phasing section, which is necessary to bring the clements into proper

Fig. 14-30-Simple braadside array using harizantal elements. By making the spacing S equal to $3 / 8$ wavelength, the antenna at A can be used at the corresponding frequency and up to twice that frequency. Thus when designed for 14 Mc . it can also be used on 21 and 28 Mc . The antenna at \mathbf{B} can be used on only the design band. This array is bidirectional, with maximum radiation "braadside" ar perpendicular ta the antenna plane (perpendicularly through this page). Gain varies with the spacing S, running from $21 / 2$ to almost 5 db . (See Fig. 14-32).

(A)

Beams with Driven Elements

Fig. 14.31-Tap view of a harizantal end-fire array. The system is fed with an apen-wire line at x and y; the line can be of any length. Feed points x and y are equidistant from the two insulators, and the feed line shauld drap down vertically fram the antenna. The gain of the system will vary with the spacing, as shawn in Fig. 14-32, and is a maximum at $1 / 8$ wavelength. By using a length of 33 feet and a spacing af 8 feet, the antenna will wark on 20,15 and 10 meters.
phase relationship.

End-Fire Arrays

Fig. 14-31 shows a pair of parallol half-wave elements with curronts out of phase. This is known as an end-fire array beeause it radiates best along the plane of the antennas, as shown.

The end-fire array may bo used aither vertirally or horizontally (elements at the same hoight), and is woll adapted to amateur work because it gives maximum gain with relatively close clement spacing. Fig. 1+-32 shows how the gain varios with spacing. End-fire eloments may be combined with additional collinear and broadside elements to give a further increase in gain and directivity.

Fither tuned or untuned lines maty be used with this type of array. ('utuned lines preferahly are matched to the antemna through a quarter-wave

Fig. 14-32—Gain vs. spacing for two parallel half-wave elements combined as either broadside ar end-fire arrays.
matching seetion or phasing stub).

Combined Arrays

Broadside, collinear and end-fire arrays may be combined to give both horizontal and vertical dirertivity, as well as additional gain. The lower angle of radiation resulting from starking elements in the vertical phane is desirable at the higher frequencies. In general doubling the mumber of eloments in an armoy by stacking will raise the gain from 2 to 4 dl .

Although arrays can be fed at one end as in Fig. 14-3013, it is not esperially desirable in the case of large arrays. Better dist ribution of energy between elements, and hence better over-all performance will result when the feeders are att:uhed as nourly as possible to the center of the arras.

A four-element array, known as the "lazy-H" antema, has been quite frequently used. This arrangement is shown, with the feed point indicated, in lig. 14-3:3. (Compare with Fig. 14-3013). For best results, the bottom section should be at least a half wavelength above ground.

Fig. 14-33-A four-element combination broadsidecallinear array, popularly known as the "lazy- H " antenna. A clased quarter-wave stub may be used at the feed paint ta mateh into an untuned transmission line, or tuned feeders may be attached at the point indicated. The gain aver a half-wave antenna is 5 to 6 db .
It will usually suffice to make the length of each element that given by Equations 14-B or 14-C. The phasing line between the parallel elements should be of open-wire construction. and its fength can be calculated from:

Length of half-rave line (feet) =

$$
\begin{equation*}
\frac{480}{\text { Freq. (Ne.) }} \tag{14-H}
\end{equation*}
$$

Example: A bulf-wavelength phasing line for
28.8 Mc , would be $\frac{480}{28.8}=16.66$ feet $=16$ feet

8 inches.
The spacing between elements ean be made equal to the length of the phasing line. No special adjustments of line or clement length or spacing are noeded, provided the formulas are followed closely.

Directive Arrays with Parasitic Elements

Parasitic Excitation

The antenna arrays previously doscrihed are bidirectional; that is, they will ridiate in directions both to the "front" and to the "back" of the antenna system. If radiation is wanted in
only one direction, it is necessary to use different element arrangements. In most of these arrangements the additional elements receive power by induction or radiation from the driven element generally called the "antenna," and reradiate it

Fig. 14-34-Gain vs. element spacing for an antenna and one parasitic element. The reference point, 0 db ., is the field strength from a half-wave antenna alone. The greatest gain is in direction A at spacings of less than 0.14 wavelength, and in direction B at greater spacings. The front-to-back ratio is the difference in db. between curves A and B. Variation in radiation resistance of the driven element also is shown. These curves are for a self resonant parasitic element. At most spacings the gain as a reflector can be increased by slight lengthening of the parasitic element: the gain as a director can be increased by shortening. This also improves the front-to-back ratio.
in the proper phase relationship to arhieve the desired effert. These elements are called parasitic elements, as combrasted to the driven elements which poredve power directly from the transmitter through the tramsmission line

The paratitie plement is ralled a director when it reinforeres radiation on a line pointing to it from the antema, and a reflector when the reverse is the case. Whether the parasitic element is a director or reflector depends upon the para-sitic-dement tuning, which usually is adjusted by changing its longth.

Gain vs. Spacing

The gain of an antenna with parasitir elements varies with the spacing and toning of the elemonts and thas for any given spacing there is a tuning condition that will give maximum gain at this spacing. The maximum front-to-back ratio seldom if ever, oreors at the same condition that gives maximum forward gain. The impedance of the drivers element also varies with the tuming and spacing, and thus the antema system must be tumed to its dinal condition bofore the mateh betwern the line and the antenna can be eompleted. However, the tuning and matching may
interlock to some extent, and it is usually neerssary to run through the adjustments several times to insure that the best possible tuning has been obtained.

Two-Element Beams

A 2-element beam is useful where spare or other considerations prevent the use of the larger structure required for a 3 -rement beam. The general practiee is to tune the parasitic element as a reflector and space it about 0.15 wavelength from the driven element, although some successful antemas have bren built with 0.1wavelength spacing and director tuning. (iain es. element spacing for a 2 -element antenna is given in Fig. 14-34, for the special case where the parasitic element is resonant. It is indicative of the performance to be expected under maximumgain tuning conditions.

Three-Element Beams

A theoretical investigation of the 3-element case (director, driven element and reflector) has indicated a maximum gain of slightly more than 7 db . A number of experimental investigations have shown that the optimum spacing between the driven element and reflector is in the region of 0.15 to 0.25 wavelength, with 0.2 wavelength representing probably the best over-all choice. With 0.2 wavelength reflector spacing. Fig. 14-35 shows the gain variation with director spacing. It is olvious that the director spacing is not especially eritical, and that the over-all length of the array (hoom length in the case of a rotatable antenna) ran be anywhere betwern 0.35 and 0.45 wavelength with no approciable difference in gain

Wide spacing of both elements is desirable not only berause it results in high gain but also becanse adjustment of tuning or element length is less critical and the input resistance of the driven element is higher than with close spacing. The latter feature improves the afficiency of the antenna and makes a greater band width possible. However, a total antemia length, director to reflector, of more than 0.3 wavelength at frequencies of the order of 14 Me . introduces considerable diffienlty from a constructional standpoint, so lengths of 0.25 to 0.3 wavelength are frequent.ly used for this bund, even though they are less than optimum.

In general, the gain of the antema drops off less rapidly when the reflector length is increased bevond the optimum value than it does for a corresponding decrease below the optimum value The opposite is true of a director. It is therefore

Fig. 14-35-Gain of 3-element Yagi versus director spacing, the reflector spacing being fixed at 0.2 wavelength.

advisable to err, if neressary, on the long side for a reflector and on the short side for a director. This also tends to make the antenna performance loss dependent on the exareb frequency at which it is operated, berebse an increase ahove the design fregueney has the same offert as increasing the length of hoth parasitic coments, while a doercase in frequency has the same effert as shortening both eloments. By making the diecetor slightly short and the reflector slightly long, there will be a greater spread betwen the upper and lower froquencios at which the gain starts to show a rapid derroase.

Fig. 14-36-Element lengths for a 3-element beam. These lengths will hold closely for rubirg elements supported at or near the center.

When the over-all length has been decided upon, the element lengths can be found be reforring to figg. 1+-36. The lengths determined bex these eharts will vary slightly in artual practiere with the element diameter and the mothod of supporting the elements, and the tuning of a beam should always be checked after installation. Mowever, the lengths obtained by the use of the charts will he close to correct in practically all cases, and they can be used without ehecking if the beam is difficult of arcess.

The preferable method for ehecking the beam is by mans of a field-strength meter or the

S-meter of a communications receiver, used in conjunction with a dipole antenna located at least 10 wavelengths away and as high as or higher than the beam that is being rherked. A fow watts of power fed into the antennat will give a uselul signal at the ohsorvation point, and the power input to the transmitter (and hene the antenna) should be held constant for all ol the readings. Beams tumed on the ground and then lifted into plate are subjeet to tuning errors and eamot be depended upon. The impedance of the drivern element will vary with the height above ground, and grod practice dictates that all final matching let ween antenna and line be done with the antemat in place at its normal height above ground.

Simple Systems: the Rotary Beam

Two- and 3-element systems are popular for rotary-beam antemnas, where the entire antenna system is rotated, to permit its gain and directivity to be utilized for any connpass direction. They may be mounted either horizontally (with the plane containing the elcments parallel to the earth) or vertically.

A 4-element beam will give still more gain than a 3 -element one, provided the support is sufficicnt for about 0.2 wavelength spacing betwern clements. The tuning for maximum gain involves many variables, and complete gain and tuning data are not available.

The elements in close-spared (less than one(quarter wavelength elemont spacing) arrays preferably should be made of tubing of onehalf to one-inch diameter. A conductor of large diameter not only has less ohmie resistance but also has lower Q; both these factors are important in close-spaced arrays berause the impedance of the driven element usually is quite low compared to that of a simple dipole antemna. With 3- and 4 -element close-spaced arrays the radiation resistance of the driven element may be so low that ohmic losses in the conductor ean consume an appreciable fratetion of the power.

Feeding the Rotary Beam

Any of the usual methods of feed (deseribed hater under "Matrhing the Antemna to the Line") can be applied to the driven element of a rotary beam. Tuned freders are not recommended for lengths groater than a half wavelength unless open lines of copper-tubing conductors are used. The popular choices for feeding a beam are the gamma match with series caparitor and the ' 1 ' match with series capacitors and a half-wavelength phasing section, as shown in lig. 1+37. These mothods are proforred over any others beciuse they permit adjustment of the mateding and the use of coaxial line feod. The variable caparitors can he housed in smatl plastic cups for weatherproofing; receiving types with close spacing can be used at powers up to a few hunNrod watts. Maximum caparity required is usually $1.10 \mu \mu \mathrm{f}$, at 14 Mr . and proportionately less at the highor frequeneics.

Fig. 14.37-The most popular methods of feeding the driven element of a beam antenna are (A) the gamma match and (B) the T match. The aluminum tubing or rod used for the matching section is usually of smaller diameter than the antenna element; its length will vary somewhat with the spacing and number of elements in the beam. The coaxial line in the phasing section can be cciled in a
2- or 3-foot diameter coil instead of hanging as shown.
If physially possible, it is better to adjust the matching device after the antenna has been installed at its ultimate height, since a match made with the amtenna near the ground may not hold for the same antenma in the air.

Sharpness of Resonance

Peak performance of a multielement parasitic array depends upon proper phasing or tuning of the elements, which can be exact for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2 per cent of the resonant frequency, or up to about 500 kc . at 28 Me . However, the antenna
can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to give maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wider frequency range.

The use of large-diameter conductors will broaden the response curve of an array because the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably wider frequency range than is the case with wire conductors.

Combination Arrays

It is possible to combine parasitic elements with driven elements to form arrays composed of collinear driven and parasitic elements and combination broadside-collinear-parasitic elements, Thus two or more collinetur elements might be provided with a collinear reflector or director set, one parasitic element to each driven element. Or both directors and reflectors might be used. A broadside-collinear array can be treated in the same fashion.

THE "QUAD" ANTENNA

The "cubieal quad" or, simply, "quad" antema consists of a pair of sfuare loops, one-quarter wavelength on a side or one-wavelength around the periphery, one loop boing driven and the other used as a parasitie reflector. The separation between the two is usually of the order of 0.15 to 0.2 wavelength, with the planes of the loops parallel.

Fig. 14-38 shows typical guad arrangements. that at 13 being the more frequently used. The reflector is timed by means of a stubl, to a lower frequency than the one at which the fed loop is driven, just as is done with the conventional straight elements in a driven olement-reflector array of the parasitic type. With the reflector in place and properly tuned the imperdance of the driven element at the feed print is of the same order as the characteristic impedance of coaxial

Fig. 14-38-The cubical quad antenna, consisting of two square loops one of which is driven and the other is used as a parasitic reflector. The planes of the loops are parallel, and the loops are coaxial although shown offset in these drawings for clarity. Note the difference in feed points in A and B_{i} the shift in feed point is necessary if both loop orientations are to transmit signals of the same polarization (horizontal in both cases shown here).

Quad Antenna

Fig, 14-39-End and side views of a quad. Upper insert shows methot of fastening antenna wire to support arms. Center insert shows construction of support-arm mounting bracket. Lower insert shows method of attaching feed line and stub to the center insulators. Two small egg insulators are used, fastened to end of lower boom as shown with a small nail.

$$
\text { The length of one side is found from } L \text { (feet })=\frac{251}{f(M c .)}
$$

cable, so ordinarily the standing-wave ratio on the transmission line will be low enough so that no sperdat means need be included for matehing.

A low moasurements on the quad have indicated that its gain is rolghly comparable with that of a threcoedemont liagi of ordinary design. A number of attempts have been made to use the parasitio coloment as a director instead of as a reffector, and to use both a reflector and director in a threeselement arrangement, these have not generally been suceresful: hence the driveneme-ment-reflertor rombination is the one universalls: used.
The quad is a more rumbersome struefure than an ordinary parasitic beam, but is light in woight and relatively inexpensive. Diagonal spraders, usually of hamboo, are used to support the corners of the loop, the loop itself being made of ordinary antenna wire. The spreader nmaal y are mounted on a boom which in general is similar to the booms used with lagi antemas and is also similarly mounted on the mast or tower aid rotated. The light weight permits rotation by a TV rotator. (onstructional details of a typieal quad are given in Fig. 1 1-39.

If the fishing poles are well treated with a weatherproofing compound they will last several years. Weathorproofing compounds are atvailable at all lumber deabers (iet straight poles with no splits in them. No insulators are neeressary, the poles themselves acting as long insulators. The

Fig. 14-40—A 15/10-meter quad. Tuning stubs for the reflectors are looped back along the tie bors. Totol weight of this assembly, not including the mast, is 13 pounds.

Easiest way to mount the antemna wire on the arms is to lay a long length of wire on the ground and mark it at the approximate quarter-wave intervals, and use these marks to indicate where the wire fistens to the pole.

Dual and triple quads can be built lor the bands 20 through 10 meters. One such antemat is shown in Fig $1+-40$, a duall quad for 15 and 10 meters. The same supporting structure is used for the two antennas, making the boom length equal to 0.15 to 0.2 wavelengths at the lower-frequency band. Separate coaxial cable feed lines are brought down from the two driven elemonts. In a twoband guad ($20 / 15$ or $15 / 10$) the length of one side is ohtained from

$$
L \text { (feet })=250 \div(\mathrm{Mc} .)
$$

In the case of any quat or combination of

quads, cach quad should be tunced up sepurately. for maximum forward gain he adjusting the stub length on the refleretor element and checking the field strength with a nearty ham. If accessible, the reflector clement can be resonated with a grid-dip moter to a frequence just below the lowest to be used; this is a good starting plate for further adjustment. The resonanee of the antema
system can be checked by finding the frequency that gives the lowest s.w.r. on the fered line; this lowest s.w.r. is not necersarily 1.0. If the reionant frequency is higher than the desired freguener, lengthen the driven element: shorten the clement if the resonant frequeney is too low. In the duad antennas that have been constructed, there hats beren little or no evidence of interartion of tuning.

Matching the Antenna to the Line

The load for a transmission line may be any device capable of dissipating r.f. power. When lines are used for transmitting applications the most common type of loud is an cutema. When a transmission line is connected between an anteman and a receiver, the receiver input rireuit (not the antenna) is the load, because the power taken from a passing wave is delivered to the receiver.

Whatever the appliention, the eonditions existing at the load, and anly the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the eharateteristic impedance of the line, there will be no standing waves. If the load is not purely resistive. and/or is not equal to the line Z, there will be standing waves. No adjustments that can be made at the input end of the line can ehange the s.w.r., nor is it affected by ehanging the line length.

Only in a few special cases is the load inherently of the proper value to mateh a practicable transmission lime. In ath other eases it is neressary either to operate with a mismatch and areept the s.w.r. that results, or clse to take steps to hring about a proper mateh between the line and load by means of transformers or similar deviecs. Imperdaner-matehing transormers may take a variety of physieal forms. depending on the circumstances.

Note that it is cosential, if the sw.w. is to be made as low as possible, that the load at the point of conneretion to the tramsmission line be purely resistive. In general, this requires that the load be tuned to resonance. If the load itself is not resonant at the operating frequency the tuming sometimes can be accomplished in the matching sustem.

- THE ANTENNA AS A LOAD

Every antemna system, no matter what its physital form, will have a definite value of impedance at the point where the line is to be connereded. The problem is to tramsform this antenna input impedance to the proper value to mateh the line. In this respect there is no one "best" trpe of line for a particular antema system, because it is possible to transform imperances in any desired ratio. Consequently, any type of line may be used with any type of antenna. There are frequently reasons other than impedance matching that dictate the use of one type of line in preference to another, such as ease of instadlation. inherent loss in the line, and so on, but these are not considered in this section.

Although the input impedance of an antemma sustem is seddom known very areurately, it is often possible to make a reasonably chose estimate of its value. The information earlier in this chapter can be used as a guide.

Matching circuits maty be constructed using ordinary coils and rapacitors, but are not used very extensively berause they must be supported at the antenna and must be weathorproofed. The systems to be deseribed use linear transformers.

The Quarter-Wave Transformer or " Q " Section

As described carlier in this chapter, a quarterwave tranmission line may be used as an imperanee transformer. Kinowing the antenna inpedance and the characteristic impedance of the

Fig. 14.41 - "Q" matching section, a quarter-wave impedance fransformer.
transmission line to be matched, the reduired characteristic impedance of a matehing section such as is shown in l"̈g. 13-1:3 is

$$
\begin{equation*}
Z=\sqrt{Z_{1} Z_{0}} \tag{14-I}
\end{equation*}
$$

where Z_{1} is the antenna impedance and Z_{0} is the characteristic impedance of the line to whish it is to be matched.

> Example: To match a fol-ohn line to an antenna presenting a 72 -ohm load, the guarterwave matching section would require a charactoristic impedance of $\sqrt{32 \times 600}=\sqrt{43.200}$ $=208$ ohns.

The spacings between conductors of various sizes of tulsing and wire for different surge impedanees are given in graphical form in the chatper on "7ruthsmission Lincs." (With $1 / 2$-inch tubing, the spacing in the extmple above should be 1.5 inches for an impedance of 208 ohms.)

The length of the quarter-wave matching section may le calculated from

$$
\begin{equation*}
\text { L.ength }(\text { feet })=\frac{2461}{f} \tag{14-J}
\end{equation*}
$$

where $V=$ Velocity factor

$$
f=\text { Frequency in Mc. }
$$

Example: A quarter-wave transformer of KG -11/[' is to be used at 28.7 Mc . From the table in Chapter

Folded Dipoles

$$
\text { Thirteen, } \begin{aligned}
V & =0.60 \\
\text { Length }=\frac{246 \times 0.66}{28.7} & =5.67 \text { feet } \\
& =5 \text { feet } 8 \text { inches }
\end{aligned}
$$

The antenna must be resonant at the operating frequency: setting the antemna length by formula is amply aceurate with single-wire antennas, but in other systems, particularly chose-spaced arrays, the antenna should be adjusted to resonance before the matching section is comnected.
When the antema input imperdance is not known aceurately, it is advisable to construet the matching sertion so that the spacing between conductors can be changed. The spacing then may be adjusted to give the lowest possible s.w.r. on the transmission line.

Folded Dipoles

A half-wave antenna element can be mate to match various line impedances if it is split into two or more parallel conductors with the transmission line attached at the renter of only one of them. Various forms of such "folded dipoles' are shown in lFig. 14-12. ('urrents in all conduetors are in phase in a folded dipole, and since the conductor sparing is small the folded dipole is equivalent in radiating properties to an ordinary single-eonductor dipole. However, the current flowing into the input terminals of the anterma from the line is the current in one conductor only, and the entire power from the line is delivered at this value of current. This is equivalent to saying that the input impedance of the antenna has been raised by splitting it up into two or more conductors.

Fig. 14-42-The folded dipole, a method for using the antenna element itself to provide an impedance transformotion.

The ratio by which the input mpedance of the antenna is stepped up depends not only on the number of conductors in the folded dipole but also on their relative diameters, since the distribution of eurrent between conductors is a function of their diameters. (When one conductor is larger

Fig. 14.43-Impedance transformation ratio, two-conductor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the insel drawing. Curves show the ratio of the impedance (resistive) seen by the transmission line to the radiation resistance of the resonant antenna system.
than the other, as in Fig. $14-42 \mathrm{C}$, the larger one carrics the greater current.) The ratio also depends, in general, on the spacing between the conductors, as shown by the graphs of Figs. $14-43$ and $14-44$. An important special case is the 2 -conductor dipole with conductors of equal diameter; as a simple antenna, not a part of a directive array, it has an input resistance close enough to 300 ohms to afford a good match to 300-ohm Twin-Lead.

The required ratio of conductor diameters to give a desired impedance ratio using two conductors may he obtained from Fig. 14-43. Nimilar information for a 3 -conductor dipole is given in Fig. 14-4. This graph applies where all three conductors are in the same plate. The two conductors not connected to the trinsmission line must be equally spaced from the fed conductor, and must have equal diameters. The fed conduetor may have a different diameter, however. The unequal-conductor method has been found particularly useful in matching to low-impedance antemas such as directive arrays using closespaced parasitic elements.

The length of the anteuna element should be such as to be approximately self-resonant at the median operating frequency. The length is usually not highly critical, because a folded dipole tends to have the characteristics of a "thick" antemna
and thus has a relatively broad frequency-response curve.

Fig, 14.44-Impedance transformation ratio, three-conductor folded dipole. The dimensions d_{1}, d_{2} and s ore shown on the inset drawing. Curves show the ratio of the impedance (resistive) seen by the transmission line to the
radiation resistance of the resonant antenna system.

" T "' and "Gamma" Matching Sections

The method of matching shown in Pig. $14-4 \mathrm{iA}$ is based on the fare that the impedance between any two points along a resonant antemat is resistive, and has a value which depends on the spacing hetween the two points. It is therefore possible to choose a pair of points betwere which the impedance will have the right value to mateh a transmission line. In practice. the line camot be connected directly at these points because the distance between them is murh greater than the conductor spacing of a practicable transmission line. The "T" arrangement in liig. 14-45A overcones this difficulty by using a second condurtor paralleling the antenna to form a matching section

Fig. 14.45-The "T" match and "gamma" match.
to which the line may be connected.
The "T" is particularly suited to use with a paralled-conductor line, in which case the two points along the antenna should be equidistant from the center so that electrical balanec is maintained.
The operation of this system is somewhat eomplex. liach " T " conductor (y in the drawing) forms with the antenna conductor opposite it a short section of transmission line. Wiath of these transmission-line sections can be considered to be terminated in the impedance that exists at the point of commetion to the antemat Thus the part of the antema between the two points carries a transmission-line current in addition to the normal antanal current. The two transmission-line matuhing soctions are in series, as sem by the main tramemission line.

If the antema by itself is resonant at the operating frequency its impedance will be purely resistive, and in such ease the matehing-sertion lines are terminated in a resistive load. However, since these sections are shorter than a quarter waveluggh thrir input impedaner - i.r.. the impedinne seren by the main transmission line looking into the matching-section terminals - will be reartive as well as resistive. This prevents a perfect match to the main transmission line, since its load must be a pure resistance for perfect matrhing. The reactive component of the input imperlance must be tuned out before a proper mateh can be secured.

One way to do this is to detune the antenna just enough, by changing its length, to cuase reactance of the opposite kind to be reflected to the input terminals of the matching section, thus canceiling the reactane introduced by the latter. Another method, which is considerably easier to adjust, is to insert a variable caparitor in series with the matching sertion where it connects to the transmission tine, as shown in Fig. 14-37. The eapacitor must be protected from the weather.

The method of adjustment commonly used is to eut the antemna for approximate resonance and then make the spacing x some value that is convenient ronstruetionally. The distance y is then adjusted. while maintaining symmetry with respeet to the center, until the s.w.r. on the transmission line is as low as possible. If the s.w.r. is not below? to 1 after this adjustment, the antenna length should be changed slightly and the matehing-sertion taps adjusted again. This proccss may be continued until the s.w.r. is as close to 1 to 1 as possible.

When the series-rapacitor method of reactance compensation is used ($1 \mathrm{ig} .1+-3 \overline{7}$), the antenna should be the proper length to be resonant at the operating frequency. Trial positions of the matrh-ing-section taps are taken, each time adjusting the (:aparitor for minimum s.w.r., until the standing waves on the transmission line are brought down to the lowest posible value.

The unbalanced ("gamma") arrangement in Fig. $14-45 \mathrm{I} 3$ is similar in principle to the " T ," but is adapted for use with single coax line. The method of adjustment is the same.

Balancing Devices

- BALANCING DEVICES

An antenna with open ends, of which the halfwave type is in example, is inherently a balanced radiator. When opened at the center and fed with a parallel-conductor line this balance is maintained throughout the system, so long as the causes of unhalaner disenssed in the transmissionline chapter are avoided.

If the antemas is fed at the center through a coasial line, as indieated in Fig. 14-46A, this batance is upsot beratuse one side of the radiator is connereded to the shiold while the other is connected to the inmer eonduetor. ()n the side connected to the shied. a rement ran low down over the outside of the comisial line. and the fiedes thus set up amnot be auneded be the fiedds from the immer eonductor heranse the fields inside the line cannot eseune through the shichling atforded by the outer comductor, 1 lemee these "antemas" currents flowing on the outside of the line will be responsible for radiation.

Linear Baluns

Linn radiation ran be prevented by a number of devieres whose purpose is to detune or derouphe the line for "antema" currents and thas greatly reduee their amplitude. Such deviere generally are known as baluns (a contraction for "babanced to
 rangemont, known as a bazooka, which uses a sleeve over the tramsmission line to form, with the outside of the outer line eonductor, a shorted quarter-wave line sertion. Is desurbed earlier in this chapter, the imperdance looking into the open end of such a section is very high, so that the end of the outer conductor of the coasial line is effectively insulated from the part of the line below the sleeve. The length is an electione quarter wave, and maly be physically shorter if the insulation betwern the sleeve and the line is other than air, The latzooka has no effere on the impedance relationships betwere the antematand the coaxial linc.

Amother method that gives an equivalent effeet is shown at (\%. Since the voltages at the antomat terminals are equal and opposite (with reforener to ground). erpanal and opposite currents flow on the surfares of the line and serond ronductor. Busond the shorting point, in the diresetion of the transmitter, these currents combine to cancel out. The balameing sertion "looks like" an open cireuit to the antemat. since it is at quarterwave parallel-eonductor line shorted at the far end, and thus has no effect on the normat antema operation. However, this is not essential to the line-balancing fumetion of the device, and bathans of this type are sometimes made shorter than a quarter wavelength in order to provide the shomt inductive reactance required in certain types of matching systems.
Fig. 14-46D shows at third balun, in which equal and opposite voltages, balanced to ground, are taken from the inner conductors of the main transmission line and half-wave phasing section. Since the voltages at the balanced end are in series while the voltages at the unbalanced end are in

Fig. 14-46-Radiator with coaxial feed (A) and methods of preventing unbalance currents from flowing on the outside of the transmission line (B and C). The half-wave phasing section shown at D is used for coupling between an unbalanced and a balanced circuit when a 4 -to-1 impedance ratio is desired or can be accepted.
parallel, there is a t-to-1 step-down in impedance from the balanced to the unbalanced side. This arrangement is useful for coupling between a batanced 300 -ohm line and a 75 -ohm coaxial line, for example.

RECEIVING ANTENNAS

Nearly all of the properties possessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution, impedance, resistance and directional characteristics are the same in a receiving antenna as if it were used as a transmitting antema. This reciprocal behavior makes possible the design of a receiving antenna of optimum performance based on the same considerations that have been discussed for transmitting antennas.

The simplest receiving antenna is a wire of random longth. The longer and higher the wire, the more energy it abstracts from the wave. Becatuse of the high sensitivity of modern refeivers, sometimes only a short length of wire strung around the room is used for a receiving antemat, but such an antenna camot be exprected to give good performance, although it is adequate for loud signals on the 3.5 - and 7 -Me, bounds. It will serve in emergencies, but al longer wire outdoors is alw:ths better.

The use of a tumed antema improves the operation of the receiver, because the signal strength is greater than with a wire of random length. Where heal electrical noise is a problem. as from ath electrical applianes, a measure of relief eatn often be obtained by lorating the atntemna ats high ahove and as far as possible from the noise sourere and power lines. The leat-in wire, from the center of the antemat. should be it costrial line or shiedded twin-conductor cable (RG-62 ('). If the twin-conduct or cable is used, the conductors comece to the antennat hinding prosts and the shield to the ground binding post of the reeciver.

Antenna Switching

Switching of the antenna from receiver to

Fig. 14-47-Antenna changeover for receiving and transmitting in two-wire line (A) and coaxial line (B). The lowpass filter for TVI reduction should be connected between switch or relay and the fransmitter.
transmitter is commonly done with a changeover relay, connected in the antenna leads or the coupling link from the antenna tuner. If the relay is one with a 115 -volt a.c. coil, the switeh or relay that controls the transmitter plate power will also control the antenna relay. If the convenience of a relay is not desired, porcelain knife switches can be used and thrown by hand.

Typical arrangements are shown in lig. 14-17. If coaxial lime is used, a coaxial relay is recommended, although on the lower-frequeney hands a regular switeh or change-over rolay will work almost as well. The relay or switeh contacts should be rated to handle at least the maximmom power of the transmitter.

An additional refinement is the use of an electronic transit-receive switch, which permits full break-in operation even when using the transmitting antenna for receiving. For details and (ireuitry on t.r. switehes, see Chitpter Eight.

Antenna Construction

The use of good materials in the antema system is important, since the antenna is exposied to wind and woather. To kerp) eloretrical losses low, the wires in the antema and feeder system must have good conductivity and the insulators must have low dielectric loss and surfaco leakage, particularly when wet.

For short antennas, No. 14 gauge hard-drawn enameled copper wire is a satisfactory conductor. For long antennas and directive arrays, No. 14 or No. 12 enameled copper-clad steel wire should be used. It is best to make feeders and matching stubs of ordinary soft-drawn No. 14 or No. 12 enameled copper wire, since harddrawn or copper-clad steel wire is difficult to
handle unless it is under considerable tension at all times. The wires should be all in one piece; where a joint cannot be avoided, it should be carofully soldered. Open-wire TV line is exeellent up to several hundred watts.

In building a two-wire open line, the spacer insulation should be of as good quality as in the antenna insulators proper. For this reason, good ceramic spacers are advisable. Wooden dowels boiled in paraffin may be used with untuned lines, but their use is not recommended for tuned lines. The wooden dowels can be attached to the feeder wires by drilling small holes and binding them to the feeders.

At points of maximum voltage. insulation is

Antenna Construction

most important, and Pyrex glass or ceramic insulators with long leakage paths are recommended for the antema. Insulators shond be cleaned once or twice a year, especially if they are subjected to much smoke and soot.

In most cases poles or masts are desirable to lift the antenna clear of surrounding buildings, although in some locations the antenna will be sufficiently in the clear when strung from one chimney to another or from a housetop to a tree. Small trecs usually are not satisfactory as points of suspension for the antema beatuse of their movement in windy weather. lf the antema is strung from a point near the renter of the trunk of a large tree, this difficulty is not so sorious. Where the antemna wire must be strung from one of the smaller branches, it is best to tie a pulley firmly to the branch and run a rope through the pulley to the antenna, with the other end of the rope attachod to a counterweight near the ground. The eommerwaght will keep the tension on the antenna wire reasonably constant even when the branches sway or the rope tightens and stretches with varving elimatio conditions.

Telephone poles, if they can be purchased and installed reomomically, make exerllent supports because they do mot ordinarily reguire guving in heights up to 40 fert or so. Many low-rost telovision-ithtenna supports are now available, and they should not be overlooked as possible amtemata aids.

"A"-FRAME MAST

The simple and inexpensive mast shown in Fig. $14-48$ is satisfactory for heights up to 35 or 40 feet. Clear, sound lumber should be selected. The completed mast may be protected by two or three coats of house paint.

If the mast is to be erected on the ground, a couple of stakes should be driven to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastoning the guys with the mast vertical all the while. It is entirely practicable, therefore, to erect this type of mast on any small, flat area of roof.

By using 2×3 s or $2 \times 4 \mathrm{~s}$, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 40-FOOT MAST

The mast shown in Fig. 14-49 is relatively strong, easy to construct, readily dismantled, and costs very little. Like the "A"-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of 2×3 s with an

Fig. 14-48-Details of a simple 40-foot "A"-frame mast suitable for erection in locations where space is limited.
overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two legs are bolted to a length of 2×4 which is set in the ground. A short length of 2×3 is paced between the two legs about halfway up

the bottom section, to maintain the sparing,
The two baek gnys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 sertion should be set in the ground so that it faces the proper direction, and then made vertical by lining it up with a plumb bob. The holes for the bolts should be drilled beforehand. With the lower section laid on the ground, bolt A should be slipued in pare through the three pieces of wood and tightened just enough so that the section can turn freely on the bolt, Then the top section may be bolted in phace and the mast pushed up, using a latder or another 20 -foot 2×3 for the job. As the mast goes up, the sark in the guys can he taken up so that the whole struature is in some measure continually supported. When the mast is vertical, bolt $i 3$ should be slipped in place and both A and B tightened. The lower guys ean then be given a final tightening, leaving those at the top a little sack until the antenna is pulled up, when the y should he adjusted to pull the top section into line.

GUYS AND GUY ANCHORS

For masts or poles up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire material, Ileavier wire or stranded cable may be used for taller poles or poles installed in locations where the wind velocity is likely to be high,

More than three guy wires in any one set usually are unnecossary. If a horizontal antenna is to be supported, two guy wires in the top set will be sullicient in mosi cases. These should run to the rear of the mast about 100 degrees apart to offeet the pull of the antemna. Intermediate guys should be used in sots of three, one running in a direction opposite to that of the antenna, while the other two are spaced 120 degrees either side. This leaves a clear space under the antenna, The guy wires should be adjusted to pull the pole slightly back from vertical before the antennax is hoisted so that when the antenna is pulled up tight the mast will be straight.

When raising a mast that is big enough to tax the available facilities, it is some advantage to know nearly examely the length of the guys. Those on the side on which the pole is lying can then be fastened temporatily to the anchors beforehand, which assures that when the pole is raised, those holding opposite guys will be able to pull it into nealy vertical position with no danger of its getaing ont of control. The guy lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equall to the square of the hypotenuse." In other words, the distance from the base of the pole to the anchor should be measured and squared. 'To this should be added the square of the pole length to the point where the guy is fastemed. The square root of this sum will be the length of the guy.

Guy wires should be broken up by strain
insulators, to avoid the possibility of resonance at the transmitiong frequeney. Common practiee is to insert an insulator near the top of cach guy. within a few feer of the pole, and then eut bach sertion of wire between the insulators to a length which will not be resomathe cither on the fundamental or harmonies. An insulator every 25 feet will be satisfactory for frequencies up to 30 Mc . The insulators should be of the "egg" type with the insulating material under compression, so that the guy will not part if the insulator breaks.
"Twisting guy wirs onto "egy" insulators may be a tedious joh if the guy wires are long and of large gange. A simple time- and finger-saving

Fig, 14-50-Using a lever for twisting heavy guy wires,
devion (piece of heary iron or steel) can be made by drilling a hoke about twier the diameter of the gay wire alont a half ineh from one end of the piece. The wire is passed through the insulator, given a singlo turn by hand, and then hedd with a pair of pliders at the point shown in Fig. $14-50$. 3.5 passing the wire through the hole in the iren and rotating the iron as shown, the wire may lo quickly and neatly twisted.

Guy wires maty be anchomed to a tree or building when they happen to be in convenient spots. For small poles, a 6 -foot length of 1 -inch pipe driven into the ground at an angle will suffice.

- halyards and pulleys

llalyards or ropes and pulleys are important items in the antenna-supporting system. Particular attention should be directed toward the choice of a pulley and halyards for a high mast since replacememt, once the mast is in position, maty be a major undertaking if not entirely imposible.
(batranzed-iron pulless will have a life of only at bar or so. Fesperiatly for coastal-area installations, marinmepe pullers with hatrowod boreks and hronze whores and heanings should he used.

For short antemas and temporary installations, heavy clothesline or window-sash cord may be used. However, for more permanent jobs, 3 s-inch or to-inch waterproof hemp rope should be used. Even this should be replaced about once a vear to insure aganst breakage.

Fig. 14-51 - An antenna lead-in panel may be placed over the top sash or under the lower sash of a window. Substituting a smaller height sash in half the window will simplify the weatherproofing problem where the sash overlaps.

It is advisable to carry the pulley rope back up to the top in "endless" fashion in the mamer of a flag hoist so that if the antenna breake close to the pole. there will be a means for pulling the hoisting rope bate down.

BRINGING THE ANTENNA OR FEED LINE INTO THE STATION

The antenna or transmission line shoukd be anchored to the outside wall of the building. as shown in Jig, $1 \cdot 4-52$, to removest rain from the lead-in insulators. Holes cut through the walls of the building and fitted with feed-through insulators are undoubtedly the best means of
bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines that develop high voltages. Probably the best place to go through the walls is the trimming board at the top or bottom of a window frame which provides flat surfaces for lead-in insulators. ('ement or rubher gaskets may' be used to waterproof the exposed joints.

Where such a procedure is not permissible, the window itseif usually offers the best opportunity. One satisfaetory method is to drill holes in the glass near the top of the upper sash. If the glass is replaced by plate glass, a stronger job will result. Plate glass may be obtained from automobile junk yards and drilled before placing in the frame. The glass itself provides insulation and the transmission line may be fastened to bolts fitting the holes. Rubber quskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-hengt hereen, the scheme shown in lig. $1+-\sigma^{2}=13$ maty he used.

As a less permanent method, the window maty be raised from the bottom or lowered from the top to permit insertion of a board which carries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, as shown in ligg. 14-í), or by using weatherstrip material where necessary.

Coaxial line can be brought through elearance holes without additional insulation.

Fig. 14-52-A-Anchoring feeders takes the strain from feed-through insulators or window glass. B-Going through a full-length screen, a cleat is fastened to the frame of the screen on the inside. Clearance holes are cut in the cleat and also in the screen.

Rotary-Beam Construction

It is a distinct advantage to be able to shift the direction of a beam antenna at will, thus socuring the benefits of power gain and directivity in any desired compass direction. A favorite method of doing this is to construct the antenna so that it ean be rotated in the horizontal plane. The use of such rotatable antemas is usually limited to the higher frequencies - 14 Mc. and above - and to the simpler antenna-chement combinations if the structure size is to be kept within practicable bounds. F'or the 1t-, 21- and 2S-Mc. binuls such antemnas usually consist of two to four elements and are of the parasitic-array type described earlier in this chapter. At 50 Me. and
higher it becomes possible to use more elaborate arrays because of the shorter wavelength and thus obtain still higher gain. Antennas for these bands are described in another chapter.

The problems in rotary-beam construction are those of providing a suitable mechanical support for the antemna elements, furnishing a means of rotation, and attaching the transmission line so that it does not interfere with the rotation of the system.

Elements

The antenna clements usually are made of metal tubing so that they will be at least partially self-supporting, thus simplifying the

Fig. 14-53-Details of telescoping tubing for beam elements.
supporting structure. The large diameter of the conductor is beneficial also in reducing resistance, which becomes an important romsideration when close-spaced elements are userl.

Ahuminum alloy tubes are generally used for the elements. The element: frequently are constructed of sertions of telesooping tubing making length adjustments for thming quite easy. lole er rician's thin-walled comduit also is suitable for motar-heem elements. Remardess of the tebing usen, the ends should be plugged up with rorks scaled with glyptal varnish.

The element lengthe are made adjustable by salwing at ti to 12 -inch slot in the emps of the larer-diameter tubing and elamping the smatler tubing inside. Homemate elamps of ahminum can be built, or hose clamps of suitable size can
be used. An example of this construetion is shown in Fig. 14-53. If steel elamps are used, they should be cadmium- or zinc-plated before installation.

Supports

Wetal is commonly used to support the olements of the rotary leam. For 28 Mr., a piece of -2-inch diameter duraluminum tuhing makes a good "boom" for supporting the chements. The elements can be made to slide through suitable holes in the boom, or sperial clamps and brackets can be fashioned to support the elements, FFittings for TV antennts can often be used on 21- and 28-Nt. be:ams. "Irrigation pipee" is a good soure of aluminum thbing up to diametors of 6 inches and bongths of ? 0 fert. Nuffler clamps atu be used to hold betm clements to a hoom.

Most of the TV antemmat rotators are satislactory for turning the smaller beams.

With all-metal construetion, delta, "gamma" or "1""-mateh are the only pratitesl matehing methods to use to the lime, sinde anything wse requites opening the driven ehement at the center, and this complieates the support problem for that element.

"Plumber's-Delight" Construction

The lightest beam to build is the sorealled "phamber's delight", an array constructed antirely of motal, with no insulating members tretwern the elements: and the supporting structure. Nome suggestions for the construstional details
 show portions of a ledement lo-meter bean, but the stane prinaples hold for 15 and 20 -meter lx:atms.

Bowm material cath be the irrigation pipe suggosted earlier (avalable from Sears Roxburk). Muffler colmus and homomade brackets (alumimum or cadmium-phated steed) can be used to hold the parasitic elements to the boom, as

Fig. 14.54-Muffler clamps can be used to hold beam elements to the boom. The angle con be aluminum angle or angle iron; if iron is used it should be cadmium plated. This exomple shows o $3 / 4$-inch-diameter element held to o 2 -inch diometer boom.
shown in Fig. $1+-5$. The muftler clamps and all hatedware should be cudmiumbeplated to forestable corrosion: the platinge ean be done at at plating shop and will not he very expensive if it is all done at the same time.

Fig. 14-55- The boom can be tied to the mast with muffler clamps ond o steel plate. The coaxial line from the driven element is taped to the boom and mast.

Muffler clamps and a sterl plate ain be used to hold the boom to the supporting mast, as shown in Fig. $1+$-jom, For maximum strength, the mast soction should be a lengeth of gatwaized iron pipe. The plate thiceneses shond run from $3{ }^{16}$ inch for at 10 -meter beatul to ${ }^{1} 2$ inch or more for a $2(1$-meter beam. siten plates of this thickites are best eut in a wedding shop, where it can be done quickly for a nominal lee. Jiter the plate has been cut and the muffererelamp holes drilled, the plate, rlamps and hardware should be plated.

The photograth in lFig. 1 -5ef shows one way

Fig. 14-56-Details of a coaxial-line termination board and T-match support for a 10 -meter beam. The balun of a half-wavelength of coaxial line is coiled and then fastened to the boom with tape.

The speed of rotation should not be too great - one or $11 / 2$ r.p.m. is about right. This requires a considerable gear reduction from the usual 17.50-r.p.m. speed of small induetion motors; a large reduction is advantageous because the gear train will prevent the beam from tuming in weather-vane fashion in a wind. The usual beam dors not reguire a great deal of power for rotation at slow speed, and a 1/8-hp. motor will be ample. I reversible motor should be used. Witur-surphlas "prop pitch" motors have found wide application for rotating $11-\mathrm{Me}$. beams, white TV rotators can be used with many 28-Ne lightweight beams.

Driving motors and gear housings will stand the weather better if given acoat of almminum paint followed hy two coats of enamed and a coat of glyptal varnish. Even commercial units will last longer if treated with glyptal varnish. Be sure that the surfaces are clean and free from grease bofore painting. Grease can be removed hy brushing with kerosene and then squirting the surfaer with a solid stream of water. The work can then be wiped dry with at rag.

The power and control leads to the rotator should be run in electrical conduit or in lead eovering, and the metal should be grounded.

A Compact 14-Mc. 3-Element Beam

A 20 -meter beam no larger than the usual 10 -meter beam can be made by using centerloaded elements and close spacing. Such an antenna will show good directivity and can be rotated with a 'I'-antenna rotator.

Constructional details of the elements are shown in Figs. 14-57 and 14-58. The loading (roils are spare-wound by intorwinding phumb) line (sometimes known as chalk line) with the No. 12 wire eoils. The coil ends are secured by drilling small boles through the polystyrene bar, as shown in Fig. 14-60. The coils should be sprayed or painted with lirylon before installing the protective Lueite tubes.

The beam will require 4 -foot lengths of the
tubings indieated in Fig. 14-57.A. For good telescoping, element wall thickness of 0.058 inch is recommended. 'lhe ends of the tubing sections should be slotted to permit adjustment, and seeured with elamps, so that the joints will not work loose in the wind. l'erforated ground clamps can the used for this purpose. The boom is a 12 -foot length of $1 \frac{1}{2}-$-inch od. $61 \mathrm{~S}^{\circ}{ }^{\circ}$ aluminum tubing, with $0.125-$ inch wall.

The line is coupled and matehed at the center of the driven element through adjustment of the link wound on the outside of the Lueite tubing. To check the adjustment of the elements, first resonate the driven element to the desired frequency in the $14-\mathrm{Mc}$. band with a grid-dip oscil-

(A)

Fig. 14.57-Dimensions of a compact 14. Mc, beam, A-Side view of a typical element, TV-antenna " U " clamps hold the support arms to the boom. Birnbach 4176 insulators support the elements. B-Top plan of the beam showing element spacing and loading-coil dimensions. Elements are made of aluminum fubing. Construction of the loading coils and adiustment of the elements are discussed in the text. End-section lengths of 41 inches for the reflector, 40 inches for the driven element, and 10 inches for the director will be close to optimum.
lator. Then resonate the director to approximately 14.8 Me., and the reflector to approximately 13.6 Me. This is not critical and only serves ats a rough point for the final tuning, which is done by use of a conventional field-strength indicator. Check the transmitter loading and readjust if necessary, Adjust the director for maximum forward gain, and then adjust the reflector for maximum forward gain. At this point, check the driven element for resonance and readjust if necessary. Turn the reflector toward the fieldstrength indicator and adjust for back eut-off.

This must be done in small steps. Do not expect the attentation off the sides of a short beam to be as high as that obtained with full-length elements. 'The s.w.r. of the line feeding the antenna ean be checked with a bridge, and after the elements have been tuned, a final adjustment of the s.w.r. can be made by adjusting the coupling at the antenna loading coil turns and spacing. Is in any beam, the s.w.r. will depend upon this adjustment and not on any that can le made at the transmitter. Transmitter coupling is the usual for any coaxialline.

Fig. 14.58-Detailed sketch of the loading and coupling coils at the center of the driven element, and its mounting. Similar loading coils (see text) are used at the centers of the director and reflector.

A "One-Element Rotary" for 21 Mc.

The directional properties of a simple halfwavelength antenna berome more apparent at higher frequencies, and it is possible to take advantage of this fact to build a "one-element rotary" for 21 or 28 Mc. To take advantage of the directional properties of the antenna, it is only necessary to rotate it 180 degrees. It can be rotated by hand, as will be describod, or by a
small 'TV' antemaa rotator. A 28-Mr, antenna should be made full size ($14-\mathrm{C}$) and fod at the conter with RG-1I/U.
The $2 l-$ Mc antema is marle from two pieces of 1/2-inch diameter electrical thin-wall steel tubing or conduit. This tubing is readily a vailable at any electric supply shop. It comes in 10-foot lengths am, while 20 feet is short for a half-wave antena

Rotary Beam Construction

Fig. 14-59-(A) Diagram of the $21-\mathrm{Mc}$. an. tenna and mounting. The U -bolts that hold the 2 by 2 to the floor flange are standard 2 -inch TV mast type bolts. (B) A more detailed draw. ing of the coil and coax-fitting mountings. The $1 / 4$-inch spacing between furns is not critical, and they can vary as much as $1 / 18$ inch without any apparent harm to the match.

at 21-Mc., with loading the length is just about right for teohm line feed. (A half-wavelength antenna would normally be fed with 72 -ohm cable, since the antenna offers a good mateh for this inpedance value. In this antennal system, the shorter elements, plus the small coil, offer a good match for 52 -ohm cable.) If ahminum tubing is available, it can be used in place of the eonduit, and the antenna will be lighter in weight. As shown in Figs. $11-59$ and $1+60$, the two pieces of tubing are supported by four stand-off insulators on a four foot long 2 by 2 . The coas fitting for the feed line is mounted on the end of one ot the lengths of tubing, A mounting point is made by flattening the end of the tubing for a length of about $1 \frac{1}{2}$ inches. The tubing ean be flattened by squeezing it in a vise or by laying the end of the tubing on a hard surface and then hammering it flat. This will provide enough space to accommodate the coax fitting (Amphenol type 8:3-1 IR). A $5 / 8$-inch hole will the needed in the flat section to clear the shell of the coax fitting.

The coil, L_{1}, is made from $1 / 8$-inch diameter copper tubing. It consists of 5 turns spaced $1 / 4$ inch apart and is 1 inch inside diameter. The coil is connected in series with the inner conduetor pin on the coax fitting and the other half of the antenna. To secure a good conncetion at the coax fitting, the coil lead should be wound around the inner-conductor pin and soldered. The other end of the coil can be connected with a screw and nut.

Mounting

The antenna can be mounted on a 1 -inch floor flange and held in place by two 2 -inch bolts, as shown in Fig. 14-61. The floor flange can be eonnected to a 12 -foot length of 1 -inch pipe which will serve as a mast. Television antenna wall mounts can be used to support the mast.

In the installation shown in Fig. 1t-61, 19-inch wall mounts were used in order to clotu the eaves of the house. A 2 -inch long piece of $1 / 1 / 4$-inch pipe was used as a sleeve, and it was clamped in the U bolt on the bottom wabl mount. A $1 / 4$-inch hole

Fig. 14-60-A close-up of the coil and coax fitting mountings. Be sure that the coil doesn't short out to the outer conductor when soldering the coil end to the inner conductor pin on the coax fitting.

14-ANTENNAS

Fig. 14-61-Over-all view of the antenna and mounting. The feed line comes out of the bottom of the mast and through the wall info the shack.
was drilled through the mast pipe approximately 6 inches from the bottom. Then a $11 / 2$-inch bolt was slipped through the hole and the mast was then mounted in the sleeve on the bottom wall mount. The bolt acted as a bearing point against the top of the sleeve. Another $1 / 4$-iuch hole was drilled through the mast about three feet above the bottom wall mount. A piece of $1 / 4$-inch metal rod, six inches long, was foreed through the hole
so that the rod projected on each side of the mast. To turn the mast, a piece of rope wha attacherd to each end of the rod and the rope was brought into the shark, so that the antenna could be rotated by the "arm-strong" method. Uhviously, one could speud more money for a "de luxe" version and use a TV antenna rotator and mast.

RG-8 U 52-ohm coax cable is recommended to feed the antenma. For power inputs up to 100 watts, the smaller and less expensive RG-58 U can be used. Howner, when you buy $\operatorname{IR}\left(i-58^{\prime} \mathrm{U}\right.$, he sure that the line is made by a reputable manufacturer (such as Amphenol or Belden). Some of the line mate for IV installations is of inferior quality and is likely to have higher losses. The feedline was fed up throngh the mast pipe and through a $3 / 4$-inch hole in the 2 by 2 . An Amphenol 8:3-1S1' fitting on the end of the coatx line connects to the female fitting on the antenmat

Coupling to the Transmitter

It may be found that, when the feed line is coupled to the transmitter, the antenna won't take power. Since the line is terminated at the antenna in its charactoriatio impedance of 52 ohms, the output of the tinal r.t. amplifier must bo adjusted to couple into a $5 \mathbf{5}$-ohm load. Where the output coupling device is a variable link, all that may be needed is the correct setting of the link. If the link is fixed, one end of the link ean be grounded to the transmitter chassis and the other end of the link commeeted in series with a small variable capacitor to the imner conductor of the feed line. The outer conductor of the rows is grounded to the transmitter chassis. The eapacitor is tuned to the point where the final amplifier is properly loaded. For transmitters having a pi-network output cireuit, it is merely a matter of adjusting the network to the point where the amplifier is properly louded.

Wave Propagation

Much of the appoal of amateur communication lios in the faet that the results are not always predictable. Transmission conditions on the same frequency vary with the year, season and with the time of day. Although these variations usually follow certain establishod patterns, many perculiar effects can be observed from time to time. Revery radio amateur should have some understanding of the known facts about radio wave propagation so that he will stand some chance of interpreting the unusual conditions
when they oreur. The observant amateur is in an exedlent position to make worthwhile contributions to the seience, provided he has suffieient background to understand his results. He may discover new facts about propagation at the voryhigh frequencies or in the microwave region, as amateurs have in the past. In fact, it is through amateur efforts that most of the extended-range possililities of various radio frequencios have been discovered, both by accident and by long and careful investigation.

Characteristics of Radio Waves

Radio waves, like other forms of electromagnetie radiation such as light, travel at a speed of $3(O),(M)(O),(K) O$ meter: per second in free space, and can be reflected, refracted, and diffracted.

An electromagnetic wave is composed of moving fields of electric and magnetic force. The lines of force in the electric and magnetic fichls are at right angles, and are mutually perpendicular to

Fig. 15.1-Representation of electric and magnetic lines of force in a radio wave. Arrows indicate instantaneous directions of the fields for a wave traveling toward the reader. Reversing the direction of one set of lines would reverse the direction of trovel.
the direction of travel. A simple representation of a wave is shown in Fig. 15-1. In this drawing the electric lines are perpendicular to the earth and the magnetic lines are horizontal. They could, however, have any position with respect to earth so long as they remain perpendicular to each other.

The plane containing the continuous lines of electric and magnetice force shown by the grid- or m ash-like drawing in lig. 15-1 is called the wave front.

The medium in which electromagnetic waves travel has a marked influence on the speed with
which they move. When the medium is empty space the speed, as stated above, is $300,000,000$ meters per second. It is almost, but not quite, that great in air, and is much less in some other substances. In dielectrics, for example, the speed is inversely proportional to the square root of the dielectric constant of the material.

When a wave meets a good conductor it eannot penetrate it to any extent (although it wils travel through a dielectric with case) berause the electric lines of fore are practically shortcircuited.

Polarization

The polarization of a radio wave is taken as the direetion of the lines of force in the electric field. If the electric lines are perpendicular to the earth, the wave is said to be vertically polarized; if parallel with the earth, the wave is horizontally polarized. The longer waves, when traveling along the ground, usually maintain their polarization in the same plane as was generated at the antenna. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapidly.

Spreading

The field intensity of a wave is inversely proportional to the distance from the source. Thus if in a uniform medium one receiving point is twice as far from the transmitter as another, the field strength at the more distant point will be just half the field strength at the nearer point. This results from the faret that the energy in the wave front must be distributed over a greater area as the wave moves away from the source. This inverse-distance law is based on the assumption that there is nothing in the medium to absorb energy from the wave as it travels. This is not the ease in practical communication along the ground and through the atmosphere.

Types of Propagation

According to the altitudes of the paths along which they are propagated, radio waves may

15 - WAVE PROPAGATION

be classified as ionospheric waves, tropospheric waves or ground waves.

The ionosplerie wave or sky wave is that part of the total radiation that is directed toward the ionosphere. Depending upon variable conditions in that region, as well as upon transmitting wave length, the ionospheric wave may or may not be returned to earth by the effects of refraction and reflection.
The tropospheric wave is that part of the total radiation that undergoes refraction and reflection in regions of abrupt change of dielectric constant in the tropmeshere, such as may occur at the boundaries between air masses of differing temperature and moisture content.

The ground wave is that part of the total radia-

Fig. 15-2 - Showing how both direct and reflected waves may be received simultaneously.
tion that is direetly affected by the presence of the earth and its surfare features. The ground wave has two components. One is the surface wave, whith is an earth-guided wave, and the other is the space wave (not to be confused with the ionospheric or sky wave). The space wave is itself the resultant of two components - the direct wave and the ground-reflected wave, as shown in Fig. 15-2.

Ionospheric Propagation

PROPERTIES OF THE IONOSPHERE

Except for distances of a few miles, nearly all amateur communication on frequencies below 30 Me. is by means of the sky wave. Upon leaving the transmitting antenna, this wave travels upward from the earth's surface at such an angle that it would continue out into space were its path not bent sufficiently to bring it back to earth. The medium that causes such bending is the ionosphere, a region in the upper atmosphere, above a height of almut 60 miles, where frec ions and electrons exist in sufficient guantity to have an appreciable effect on wave travel.
The ionization in the upper atmosphere is believed to be caused by ultraviolet radiation from the sun. The ionosplere is not a single region but is composed of a series of layers of varving densities of ionization oceurring at different heights. Barh layer consists of a central region of relatively dense ionization that taljers off in intensity both above and below.

Refraction

The greater the intensity of ionization in a layer, the more the path of the wave is bent. The bending, or refraction (often also called refleetion), also depends on the wavelength; the longer the wave. the more the path is bent for a given degree of ionization. Thus low-frequene waves are more readily bent than those of high frequency. For this reason the lower frequencies - 3.5 and 7 Me. - are more "reliable" than the higher frequencies - 11 to 28 Mc.: there are times when the ionization is of such low value that waves of the latter frequeney range are not bent enough to return to earth.

Absorption

In traveling through the ionospliere the wave gives up some of its energy by setting the ionized particles into motion. When the moving ionized particles collide with others this energy is lost. The absorption from this canse is greater at lower frequencies. It also increases with the intensity of
ionization, and with the density of the atmosphere in the ionized region.

Virtual Height

Although an iomopharic layer is a region of eonsiderable depth it is convenient to assign to it a definite height, called the virtual height. This is the height from which a simple reflection would give the same effect as the gradual bend-

fig. 15.3-Bending in the ionosphere, and the echo or reflection method of determining virtual height.

Ing that actually takes place, as illustrated in Fig. 15-3. The wave traveling upward is bent bate over a path having an appreciable radius of turning, and a measurable interval of time is consumed in the turning process. The virtual height is the height of a triangle having equal sides of a total length proportional to the time taken for the wave to travel from T to R.

Normal Structure of the Ionosphere

The lowest useful ionized layer is called the E layer. The average height of the region of maximum ionization is ahout 70 miles. The air at this height is sufficiently dense so that the ions and electrons set free by the sun's radiation do not travel far before they meet and recombine to form neutral particles, so the layer can maintain its normal intensity of ionization only in the presence of continuing radiation from the sun. Hence the ionization is greatest around local noon and practically disappears after sundown.

In the daytime there is a still lower ionized

Sky-Wave Propagation

area, the D region. D-region ionization is proportional to the height of the sum and is greatest at noon, The lower amatemr-band frecuencies (1.8 and 3.5 Me.) are almost completely absorbed be this layer, and only the high-angle radiation is reflected by the E laver. (Lower-angle radiation travels farther throngh the D) region and is absorbed.)

The second principal laver is the F layer, which has a lieight of alout $17 \overline{5}$ miles at night. At this altitude the air is so thin that recombinattion of ions and electrons takes place very slowly. The ionization decreases after sumdown, reathing at minimum just before sumpe. In the datime the F layer splits into 1 wo parts, the F_{1} and F_{2} layers, with average virtual heights of, respertively, 140 miles and 200 miles. These layers are most highly bonized at about logal noon, and merge again at sunset into the \mathcal{F} layer.

- SKY.WAVE PROPAGATION

Wave Angle

The smatler the angle at which a wave leaves the earth, the lass the bending required in the ionosphere to bring it back. Also, the smaller the angle the greater the distance betwen the point where the wave leaves the earth and that at which it returns. This is shown in Fig. 15-1. The vertical angle that the wave makes with a tangent to the carth is called the wave angle or angle of radiation.

Skip Distance

More bembing is required to return the wave to earth when the wave angle is high, and at times the bending will mot be sufficient unless the wave angle is smaller than some critical value. This is illustrated in Fig. 15-4, where . 1 and smaller angles give useful signals while waves sent at higher angles penetrate the laver and are not returned. The distance letween T 'and R_{1} is, therefore, the shortest possible distance, at that particular frequency, over whirh communication by ionospheric refraction can be acemplished.

The area between the end of the aseful ground wave and the beginning of ionospheric-wave reception is called the skip zone, and the distance from the transmitter to the nearest point where the sky wave returns to earth is called the skip distance. The extent of the skip zone depends upon the frequency and the state of the iomosphere, and also upon the height of the laver in which the refraction takes place. The higher layers give longer skip, distances for the same wave angle. Wiave angles at the transmitting and receiving points are usually, although not always, approximately the same for any given wave path.

Critical and Maximum Usable Frequencies

If the frequeney is low enough, a wave sent vertically to the iono-
sphere will be reflected back down to the transmitting point. If the frequency is then gradually increased, eventually a frequency will be reached where this vertical reflection just fails to occur. This is the critical frequency for the laver under consideration. When the operating frequency is below the eritical value there is no skipzone.

The critical frequeney is a useful index to the highest frepuener that can be used to transmit over a specified distance - the maximum usable frequency (m.u.f.). If the wate leaving the transmitting point at angle A in lי̈ig, $15-4$ is, for example, at a frequency of 14 Ma., and if a higher freguency would skip over the receiving point R_{1}, then $1+$ Mc. is the m.u.f. for the distance from ' l ' to R_{1}.

The greatest possible distance is covered when the wave leaves along the tangent to the earth; that is, at zero wave angle. Under average conditions this distance is about 4000 kilometers or 2500 miles for the F_{2} layer, and 2000 km . or 1250 miles for the E layer. The distances vary with the laver height. Frequencies above these limit ing m. u.f.'s will not the retmen to earth at any distance. The $4000-\mathrm{km}$. m.n.f. for the F_{2} laver is approximately 3 times the eritical frequency for that layer, and for the E layer the $2000-\mathrm{km}$. m.u.f. is about 5 times the critical trequency:

Absorption in the ionosphere is least at the maximum usable frequency, and increases very rapidly as the frequency is lowered bolow the m.n.f. Consequently, best results with low power always are serured when the frepuency is as close to the m.u.f. as possible.

It is readily possible for the ionospheric wave to pass through the E layer and be refracted hack to earth from the F, F_{1} or F_{2} layers. This is because the eritical frequencies are higher in the lat ter layers, so that a signal too high in frequeney to be returned by the E laver can still come back from one of the others, depending upon the time of day and the existing conditions.

Multihop Transmission

On returning to the earth the wave can be reflected upward and travel again to the ionosphere. There it may once more be refracted, and

Fig. 15-4-Refraction of sky waves, showing the critical wave angle and the skip zone. Waves leaving the transmitter at angles above the critical (greater than A) are not bent enough to be returned to earth. As the angle is decreased, the waves return to earth af increasingly greater distances.

15-WAVE PROPAGATION

again bent back to earth. This process may be repeated several times. Multihop propagation of this nature is necessary for transmission over great distances because of the limited heights of the layers and the curvature of the earth, which restrict the maximum one-hop distance to the values mentioned in the preceding section. However, ground losses absorb some of the energy. from the wave on each reflection (the amount of the loss varying with the type of ground and being least for reflection from sea water), and there is also absorption in the ionosphere at each reflection. Hence the smaller the number of hops the greater the signal strength at the receiver, other things being equal.

Fading

Two or more parts of the wave may follow slightly different paths in traveling to the rereiving point, in which case the difference in path lengths will cause a phase difference to exist between the wave components at the rereiving antenna. The total field strength will be the sum of the components and may be larger or smaller than one component alone, since the phases may be such as either to aid or oppose. Since the paths change from time to time, this causes a variation in signal strength called fading. Fading can also result from the combination of single-hop and multihop waves, or the combination of a ground wave with an ionospheric or tropospheric wave.

Fading maty be either rapid or slow, the former type usually resulting from rapidly-changing conditions in the ionosphere. the latter occurring when transmission conditions are relatively stable.

It frequently happens that transmission conditions are different for waves of slightly different frequencies, so that in the case of voice-molulated transmission, involving sidebands differing slightly from the carrier in frequency, the carrier and various side band components may not be propagated in the same relative amplitudes and phases they had at the transmitter. This effect. known as selective fading, causes severe distortion of the signal.

Back Scatter

Even though the operating frequency is above the m.u.f. for a given distance, it is usually possible to hear signals from within the skip zone. This phenomenon, called back scatter, is caused by reflections from distances beyond the skip, zone. Such reflections can occur when the transmitted energy strikes the earth at a distance and some of it is reflected back into the skip zone to the recciver. Such scatter signals are weaker than those normally propagated, and also have a rapid fade or "flutter" that makes them easily recognizable.

A certain amount of scattering of the wave also takes place in the ionosphere because the ionized region is not completely uniform. Scattering in the normal propagation direction is called forward scatter, and is responsible for extending
the range of transmission beyond the distance of a regular hop, and for making communication possible on frequencies greater than the actual m.u.f.

OTHER FEATURES OF IONOSPHERIC PROPAGATION

Cyclic Variations in the Ionosphere

Since ionization depends upon ultraviolet radiation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, seasonal changes result in higher critical frequencies in the E layer in summer, averaging about 4 Mc. as against a winter average of 3 Mc. The P layer critical frequency is of the order of 4 to 5 Me. in the evening. The F_{1} layer, which has a critical frequency near 5 Mc . in summer, usually disappears entirely in winter. The daytime maximum critical frequencies for the F_{2} are highest in winter (10 to 12 Me .) and lowest in summer (around 7 Mc.). The virtual height of the F_{2} layer, which is about 185 mikes in winter, averages 250 miles in summer. These values are representative of latitude 40 deg . North in the Western hemisphere, and are subject to considerable variation in other parts of the world.

Very marked changes in ionization also oceur in step with the 11-year sunspot cycle. Although there is no apparent direct correlation between sunspot activity and critical frequencies on a given day, there is a definite correhation between average sunspot activity and critical frequencies. The critioal frequencies are highost during sunspot maxima and lowest during sunspot minima. During the period of minimums sunsjot activity the lower freauencies - 7 and 3.5 Mc - frequently are the only usable bands at night. At such times the 28-Nic. band is seldom useiul for long-distance work, while the If-Mc. band performs woll in the daytime but is not ordinarily useful at night.

Ionosphere Storms

Certain types of sunspot activity cause considerable disturbances in the ionosphere (ionosphere storms) and are accompanied by disturbances in the earth's magnetic field (magnetic storms). Ionosphere storms are characterized by a marked increase in absorption, so that radio conditions become poor. The critical frequencies also drop to relatively low values during a storm, so that only the lower frequencies are useful for communication. Ionosphere storms may last from a few hours to several days. Since the sun rotates on its axis once every 28 days, disturbances tend to recur at such intervals, if the sunspots responsible do not become inactive in the meantime. Absorption is usually low, and radio conditions therefore good, just preceding a storm.

Sporadic-E Ionization

Scattered patches or clouds of relatively dense ionization occasionally appear at heights approximately the same as that of the E layer, for rea-

Prediction Charts

sons not yet known. This sporadic-E ionization is most prevalent in the equatorial regions, where it is substantially continuous. In northern latitudes it is most frequent in the spring and early summer, but is present in some degree a fair pereentage of the time the year 'round. It accounts for a gond deal of the night-time short distance work on the lower frequencies (3.5 and 7 Mc .) and, when more intense, for similar work on 14 to 28 Mc . Exceptionally intense sporadic- E ionization is responsible for work over distances exceeding 400) or 500 miles on the $50-\mathrm{Mc}$. band.
There are indications of a relationship between sporadic- E ionization and average sunspot activity, but it does not appear to be directly related to daylight and darkness since it may occur at any time of the day. However, there is an apparent tendency for the ionization to pak at mid-morning and in the early evening.

Tropospheric Propagation

Changes in temperature and humidity of air masses in the lower atmosphere often permit work over greater than normal ground-wave distances on 28 Mc. and higher frequencies. The effect can be observed on 28 Mc., but it is generally more marked on 50 and 144 Mc. The subject is treated in detail later.

PREDICTION CHARTS

The Central Radio l'ropagation Laboratory of National I3ureau of Standards offers prediction charts three months in advance, by means of which it is possible to predict with considerable accuracy the maximum usable frequency that will hold over any path on the earth during a monthly period. The charts can be obtained from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. for 10 cents a copy or $\$ 1.00$ per year. They are called "('RPL-D Basic Radio I'ropayation Predictions." The use of the charts is explained in Circular 462, "Ionospheric Radio Propagation," available for $\$ 1.25$ from the same address. This publication also contains much information of value to those who wish to pursue the subjeet of ionospheric propagation in more detail.

PROPAGATION IN THE BANDS BELOW 30 MC

The $1.8-\mathrm{Mc}$., or " 160 -meter," band offers reliable working over ranges up to 25 miles or so during daylight. On winter nights, ranges up to several thousand miles are not impossible. Only
smal! sections of the band are currently available to amateurs, because of the presence of the loran (navigation) service in that part of the spectrum.

The 3.5 -Mc., or " 80 -meter," band is a more useful band during the night than during the daylight hours. In the daytime, one can seldom hear signals from a distance of greater than 200 miles or so, but during the darkness hours distances up to several thousind miles are not unusual, and transoceanic contacts are regularly made during the winter months. During the summer, the statie level is high.

The 7-Mc., or " 40 -meter," band has many of the same characteristics as 3.5 , except that the distances that can be covered during the day and night hours are increased. During daylight, distances up to a thousand miles can be covered under good conditions, and during the dawn and dusk periods in winter it is possible to work stations as far as the other side of the world, the signals following the darkness path. The winter months are somewhat better than the summer ones. In general, summer static is much less of a problem than on 80 meters, although it can be serious in the semitropical zones.

The $14-\mathrm{Mc}$., or " 20 -meter," band is probably the hest one for long-distance work. During the high portion of the sumspot cycle it is open to some part of the world during practically all of the 24 hours, while during a sumspot minimum it is generally useful only during daylight hours and the dawn and dusk periods. There is practically always a skip zone on this band.

The 21-Mc., or "15-meter," band shows highly variable characteristies depending on the sunspot cycle. During sunspot maxima it is useful for long-distance work during a large part of the 24 hours, but in years of low sunspot activity it is almost wholly a daytime band, and sometimes unusable even in daytime. However, it is often possible to maintain communication over distances up to 1500 miles or more by sporadic- E ionization which may occur either day or night at any time in the sunspot cycle.

The 28-Mc. (" 10 -meter") band is generally considered to be a DX band during the daylight hours (except in summer) and good for local work during the hours of darkness, for about half the sumspot cyele. At the very peak of the sunspot cycle, it may be "open" into the late evening hours for DX communication. At the sunspot minimum the band is usually "dead" for longdistance communication, by means of the F_{2} layer, in the northern latitudes. Nevertheless, sporadic- H propagation is likely to occur at any time, just as in the case of the $21-\mathrm{Mc}$. band.

Propagation Above 50 Mc .

The importance to the amateur of having some knowledge of wave propagation was stressed at the beginning of this chapter. An understanding of the means by which his signals reach their destination is an even greater aid to the v.h.f.
worker. Each of his bands shows different characteristics, and knowledge of their peculiarities is as yet far from complete. The observant user of the amateur v.h.f. assignments has a good opportunity to contribute to that knowledge, and
his enjoyment of his work will be greatly enhaned if he knows when to expect unusual-propagation conditions.

CHARACTERISTICS OF THE V.H.F BANDS

An outstanding feature of our bunds from 50 Mr. up is their ability to provide consistent and interference-fre communication within a limited range. All lower frequencies are subject to varving ronditions that impair their effectiveness for work over distances of 100 miles or less at least part, of the time, and the heaby oceupancy they support results in severe interference problems in areas of dense population. The v.h.f. bands, being much wider, can handle many times the amateur population without crowding, and their fhatactaristics for local work are more stable. It is thus to the advantage of amateur radio as a whole to make use of 50 Me , and higher bands for short-range communication wherever possible.

In addition to reliable local roverage, the v.h.f. bands also exhibit several forms of longdistance propagation at times, and use of 50 and 144 Me, has been taken up in recent years by many isolated amateurs who must depend on these propatgation pereulitutities for all or most of their contacts. It is partieularly important to these operators that they understand common propagation phenomena. The material to follow supplements information presented earlier in this chapter, but deals with wave propagation only as it affects the oecupants of the world above 50 Mc . First let us consider the bands individually.

50 to 54 Mc .: This band is borderline territory between the DX frequencies and those normatly employed for local work. Thus just about every form of wave propagation found throughout the radio spectrum appears, on occasion, in the $50-$ Me. region. This has contributed greatly to the popularity of the 50-Mc. band.
During the peak years of a sunspot cyde it is occasionally possible to work 50-Me. DX of world-wide proportions, by reflection of signals from the F_{2} layer. Sporadic- E skip provides contacts over distances from 400 to 2500 miles or so during the early summer months, regardless of the solar cycle. Reflection from the aurora regions allows 100 - to 1000 -mile work during pronounced ionospheric disturbances. The ever-changing weather pattern offers extension of the normal eoverage to as much as 300 to 500 miles. This develops most often during the warmer months. but maty oecur at any season. In the absence of any favorable propagation, the average wellequipped $50-M$ e. station should be able to work regularty over a radius of $\overline{7} 5$ to 100 miles or more, depending on local terrain.

1 年 to $148 \mathrm{~N} / \mathrm{c}$.: Ionospheric effects are greatly reduced at $1+4 \mathrm{Me}$. F_{2}-layer reflection is unlikely, and sporadic- E skip is rare Aurora DX is fairly common, but signals are generally weaker than on 50 Mc . Tropospheric effects are more pro-
nouncerl than on 50 Me., and distances covered during favorable weather eonditions are greater than on hower hands. Air-mass boundary Dending has been responsible for communication on $1 / 4$ Mr. over distances in exeess of 2,00 miles, and 50)-mile work is fatirly eommon in the warmer months. The reliable range under normal conditions is slightly less than on 50 Me.. with comparathe equipment.

220 . Mc. and Hiether: lonospheric propagation is unlikely at 220 Me. and up, but tropospherie bending is more prevalent than on lower bands. Amateur experience on 220 and 420 Mc . is showing that they can be as useful as 141 Me., when comparable equipment is used. Under minimum conditions the range may be slightly shortor, but when signals are good on $1+4$ Me., they may be better on 220 or 420 . Even above 1000 Mc . there is evidence of tropospherie D.N.

PROPAGATION PHENOMENA

The various known means by which v.h.f. signals may be propagated over umusual distances are discussed bolow.
Fo-Layer Reflection: Most contarts made on 28 Me. and lower frequencies are the result of reflection of the wave by the F_{2} layer, the ionization density of which varios with solar activity, the highest frequencies boing reflected at the prak of the 11-year solar cyele. The maximum usable frequency (m.u.f.) for F_{2} reflection also follows other well-defined cyeles, daily, monthly, and seasonad, all redated to conditions on the sun and its position with resperet to the earth.

At the low point of the 11-vear cyole, such as in the early '50s, the m.u.f, may reach 28 Mc. only during a short period each spring and fall, whereas it may go to 60 Mc . or higher at the peak of the evede. The fall of 1946 saw the first authentic instances of long-distance work on 50 Me. by F-layer reflection, and as late as 1950 contacts were made in the more favorable areas of the world by this medium. The rising eurve of the current solar eyole again made $F_{2} \mathrm{DX}$ on 50 Mc. possible in the low latitudes in the winter of 1955-6. 1). was worked over much of the earth in the years 1956 through 1950 , falling off in 1900). Loss of the 50-Mc. band to television in some countries will limit, the scope of 50-Mc. $1) \mathbb{N}$ in yars to come.

The F_{2} m.u.f. is readily determined by obsorvation, and it maty be estimated quite accurately for any path at any time. It is predictable for months in advance, enabling the v.h.f. worker to arrange test schodules with distant stations at propitious times. As there are mumerous commercial signals, both harmonics and fundamental transmissions, on the air in the range betwern 28 and 50 Mc ., it is possible to determine the approximate m.u.f. by eareful listening in this range. Daily observations will show if the m.u.f. is rising or falling. and onee the patk for a given month is determined it can be assumed that another will oceur about 27 days later, this cycle eoineiding with the furning of

Miscellaneous Phenomena

Fig. 15-5-The principal means by which v.h.f. signals may be returned to earth, showing the approximate distances over which they are effective. The F_{2} layer, highest of the reflecting layers, may provide $50-\mathrm{Mc}$. DX at the peak of the 11-year sunspot cycle. Such communication may be world-wide in scope. Sporadic ionization of the E region produces the fomiliar "short skip" on 28 and 50 Mc . It is most common in early summer and in late December, but may occur at any time, regardless of the sunspot cycle. Refraction of v.h.f. waves also takes place at air-mass boundaries, making possible communication over distances of several hundred miles on all v.h.f. bands. Normally it exhibits no skip zone,
the sun on its axis. The working range, via F_{2} skip, is roughly comparable to that on 28 Mc., though the minimum distance is somewhat longer. Two-way work on 50 Mc. by reflection from the F_{2} layer hats been accomplished over distances from 2200 to 12,000 miles. The maximum frequency for F_{2} reflection is believed to be about 70 Mc .
Sporadic-E Skip: Patehy concentrations of ionization in the E-layer region are often responsible for reflection of signals on 28 and 50 Mc. This is the popular "short skip" that provides fine contacts on both bands in the range between 400 and 1300 miles. It is most common in May, June and July, during morning and carly evening hours, but it may orcur at any time or season. Multiple-hop effects may appear, when ionization develops simultaneously over large areas, making possible work over distances of more than 2500 miles.

The upper limit of frequency for sporadic- E skip is not positively known, but scattered instances of $144-\mathrm{Mc}$. propagation over distances in excess of 1000 miles indicate that E-layer reflection, possibly aided by tropospheric effects, may be responsible.

Aurora Effect: Low-frequency communication is oceasionally wiped out by alsorption in the ionosphere, when ionospheric storms, assoriated with variations in the earth's magnetie field, oocur. During such disturbances, however, v.h.f. signals may be reflected back to earth, making communication possible over distances not normally workable in the v.h.f. range. Nagnetie storms may be accompanied by an aurora-horealis display, if the disturbance occurs at night and visibility is good. diming a directional array at
the auroral curtain will bring in signals strongest, regardless of the true direction to the transmitting station.

Aurora-reflected signals are characterized by a rapid flutter, which lends a "dribbling" sound to $28-M c$. carriers and may render modulation on 50- and 144-Mc. signals completely unreadable. The only satisfactory means of communication then becomes straight c.w. The effect may be noticeable on signals from any distance other than purely local, and stations up to about 1000 miles in any direction may be worked at the pak of the disturbance. Unlike the two methods of propagation previously described, aurora effect exhibits no skip zone. It is observed frequently on 50 and 144 Mc . in northeastern U. S. A., usually in the carly evening hours or after midnight. The highest frequency for auroral reflection is not y ot known, but pronounced disturbances have permitted work by this medium in the $220-\mathrm{Mc}$. band.

Tropospheric Bending: The most common form of v.h.f. 1 NX is the extension of the mormal operating range associated with easily observed weather phenomena. It is the result of the change in refractive index of the atmosphere at the boundary between air masses of differing temperature and humidity characteristios. Such airmass boundaries usually lie along the western or southern edges of a stable slow-moving area of high barometric pressure (fair, calm weather) in the period prior to the arrival of a storm.

A typiral upper-air sounding showing temperature and water-vapor gradients favorable to v.h.f. DX is shown in lig. 15-6. An increase is temperature and a sharp drop in water-vapor
gradient are seen at about 4000 feet, in comparison to the U. S. Standard Atmosphere curves at the left.

Such a favorable condition develops most often in the late summer or carly fall, along the junction between air masses that may have come together from such widely separated points as the Gulf of Mexico and Northern Canada. Under stable weather conditions the two air masses may retain their original character for several days at a time, usually moving slowly eastward
wave range, and there is good evidence to indicate that our assignments in the u.h.f. and s.h.f. portions of the frequency spectrum may someday support communication over distances far in excess of the optical range.
Scatter: Forward scatter, both ionospheric and troposphe:ic, may be used for marginal communication in the v.h.f. bands. Both provide very weak but consistent signals over distances that were once thought impossible on frequencies bigher than about 30 Mc .

fig. 15-6-Upper-air conditions that produce extended-range communication on the v.h.f. bands. At the left is shown the U.S. Standard Atmosphere temperature curve. The humidity curve (dotted) is that which would result if the relative humidity were 70 per cent from the ground level to 12,000 feet elevation. There is only slight refraction under this standard condition. At the right is shown a sounding that is typical of marked refraction of v.h.f. waves. Figures in parentheses are the "mixing ratio"-grams of water vapor per kilogram of dry air. Note the sharp break in both curves at about 4000 feef. (from Collier, "Upper-Air Conditions for 2-Meter DX," QST, September, 1955.)
across the country. When the path between two v.h.f. stations separated by fifty to several hundred miles lies along such a boundary, signal levels run far above the average value.

Many factors other than air-mass movement of a continental character provide increased v.h.f. operating range. The convection along coastal areas in warm weather is a good example. The rapid cooling of the earth after a hot day in summer, with the air aloft cooling more slowly, is another, producing a rise in signal strength in the period around sundown. The early morning hours, when the sun heats the air aloft, before the temperature of the earth's surface begins to rise, may be the best of the day for extended v.h.f. range, particularly in clear, calm weather, when the barometer is high and the humidity low.

The v.h.f. enthusiast soon learns to correlate various weather manifestations with radiopropagation phenomena. By watching temperature, barometrie pressure, changing cloud formations, wind direction, visibility, and other easilyobserved weather signs, he can tell with a reasonable degree of accuracy what is in prospect on the v.h.f. bands.

The responsiveness of radio waves to varying weather conditions increases with frequency. The $50-\mathrm{Mc}$. bund is more sensitive to weather variations than is the 28-Mc. band, and the $141-\mathrm{Mc}$. band may show strong signals from far beyond visual distances when lower frequencies are relatively inactive. It is probable that this tendency continues on up through the micro-

Tropospheric scatter is prevalent all through the v.h.f. and microwave regions, and is usable over distances up to about 400 miles. Ionospheric seatter, augmented by meteor bursts, brings in signals over 600 to 1300 miles, on frequencies up to about 100 Mc . Either form of scatter requires high power, large antennas and c.w. technique to provide effective communication.

Back scatter, of the type heard on lower bands, is also heard occasionally on 50 Mc ., when F_{2} or sporadic- E skip is present.

Refections from Meteor Trails: Probably the least-known means of v.h.f. wave propagation is that resulting from the passage of meteors across the signal path. Reflections from the ionized meteor trails may be noted as a Doppler-effect whistle on the carrier of a signal already being received, or they may cause bursts of reception from stations not normally receivable. Ordinarily such reflections are of little value in communication, since the increases in signal strength are of short duration, but meteor showers of considerable magnitude and duration may provide fluttery signals from distances up to 1500 miles or more ou both 50 and 144 Mc .

As meteor-burst signals are relatively weak, their detection is greatly aided if high power and high-gain antennas are used. 'lwo-way communication of sorts has been carried on by this medium on 50 and 144 Mc . over distances of 600 to 1300 miles, through the use of short c.w. transmissions and frequent repetition.

V.H.F. Receivers

Good receiving facilities are all-important in v.h.f. work. High sensitivity, adequate stalility and good signal-to-noise ratio, necessary attributes in a receiving system for 50 Mc . and higher frequencies, are most readily attained through the use of a converter working into a communications receiver designed for lower frequencies. Though receivers and converters for the v.h.f. bands are available on the amateur market, the amateur worker can build his own with fully as good results, usually at a considerable saving in cost.

Basically, modern v.h.f. receiving equipment is little different from that employed on lower frequencies. The same order of selectivity may be used on all amateur frequencies up to at least 450 Mc. 'l'he greatest practical selectivity should be employed in v.h.f. reception, as it not only allows more stations to operate in a given band, but is an important factor in improving the signal-to-noise ratio. The effective sensitivity of a receiver having "communication" selectivity can be made much better than is possible with broadband systems.

This rules out converted radar-type receivers and others using high intermediate frequencies. The superregenerative receiver, a simple but broadband deviee that was popular in the early days of v.h.f. work, is now used principally for portable operation, or for other applications where high sensitivity and selectivity are not of prime importance. It is capable of surprising performance, for a given number of tubes and components, but its lack of selectivity, its poor signal-to-noise ratio, and its tendeney to radiate a strong interfering signal have eliminated the superregenerator as a fixed-station receiver in areas where there is appreciable v.h.f. aetivity.

R. F. AMPLIFIER DESIGN

The noise generated within the receiver itself is an important factor in the effectiveness of v.h.f. receiving gear. At lower frequencies, and to a considerable extent on 50 Mc., external noise is a limiting factor. At 144 Mc . and higher the receiver noise figure, gain and selectivity determine the ability of the system to respond to weak signals. Proper seleetion of r.f. amplifier tubes and appropriate circuit design aimed at low noise figure are more important in the v.h.f. reeeiver "front end" than mere gain.

Triode or Pentode?

Certain triode tubes have been developed with this end in view. Their supcriority over pentode types is more pronounced as we go
higher in frequency. Because of the limitation on sensitivity imposed by external noise at that frequency, triode or pentode r.f. amplifiers give about the same results at 50 Mc . 'l'hus the pentode types, which offer the advantages of better selectivity and simpler circuitry, are often used for 50 -Mc. work. But at 144 Mc., the newer triodes designed for r.f. amplifier service give fully as much gain as the pentodes, and with lower internal noise. With the exception of the simplest unit, the equipment described in the following pages incorporates low-noise r.f. amplifier techniques.

Neutralizing Methods

When triodes are used as r.f. amplifiers some form of neutralization of the grid-plate capaeitance is required. This ean be eapacitive, as is commonly used in transmitting applications, or inductive. The alternative to neutralization is the use of grounded-grid technique. Circuits for v.h.f. triode r.f. amplifier stages are given in Figs. 16-1 through 16-4.

A dual triode operated as a neutralized push-pull amplificr is shown at 16-1. This ar-

Fig. 16-1-Schematic diagram of a push-pull r.f. amplifier for v.h.f. applications. This circuit is well-suited to use with antenna systems having balanced lines. Coil and capacitor values not given depend on the frequency at which the amplifier is to be used. Neutralizing capacitance, C_{N}, may be built up by twisting ends of insulated leads together.
rangement is well adapted to v.h.f. preamplifier applications, or as the first stage in a converter, particularly when a balanced transmission line such as the popular 300 -ohm Twin-Lead is used. It is relatively selective and may require resistive loading of the plate circuit, when used as a preamplifier. The loading effect of the following circuit may be sufficient to give the required band width, when the push-pull stage is inductively coupled to the mixer.

A triode amplifier having exeellent noise figure and broadband characteristics is shown in Fig.

16 - V.H.F. RECEIVERS

Fig. 16-2-Circuit of the cascode r.f. amplifier. Coupling capacitor, C_{1}, may be omitted if spurious receiver responses are not a problem. Neutralizing winding, I_{N} should resonate af the signal frequency with the gridplate capacitance of the first tube. Base connections are for 417A and 6AJ4, but other small triodes may be used.

16-2. Commonly ealled the cascorle, it hers it triode or triode-conneded pentode followed by a triode grounded-grid stage, 'This circuit is: extremely stable and uncritian in adjustment. At 50 Mr . and higher its over-all gitu is at least equal to the best single-stage pentode amplifier and its noise figure is far lower.

Neutralization is accomplished by the arol L_{s}, whose value is such that it resonates at the signal frequency with the grid-phate capacitane of the tube. Its inductance is not eritical: it may be omitted from the circuit without the stage going into dicillation, but neutralization results in a lower noise figure thath is possible without it. Any of several v .h.f. tubes may be used in the cascorle circuit. The ex:mple shown in lig. 16-2 uses the +17A, followed hy it bidJ. Two 6.dJts would work almost equally well, as would the biAM, 6.ANt and GBCH. Pin connertions in Fig. 16-2 should be changed to suit the tubes selerted.

A simplified version of the cascode, using a dual triode tube designed especially for this application, is shown in Fig, li-3. By reducing stray capacitance, through direct coupling between the two triode sections, this ciratuit makes for improved performance at the frequencies above 100 Me. The two sections of the tube are in series, as far is plate voltuge is eoncerned, so

Fig. 16-3-Simplified cascode circuit for use with dual triodes having separate cathodes. Coil and capacitance values not given depend on frequency. Bifilar r.f. chokes are occasionally used in heater leads.
it requires higher voltatge thatn the other eireuits shown.

The meutralization process for the easeole and neutralized-triode :mplifiers is somewhat similar. With the circuit operating normally the noutralizing adjustments (eapacitance of $C x$ in Fig. 1ti-1: inductance of $L \times$ in Figs. 16-2 and 1ti-3) eat be set for best signal-to-moise ratio. The best results are ohtained using a noise generator. adjusting for lowest moise figure. but careful adjustment on a weak signal provides a fair approximation. Noise generators and their use in whif. receiver adjustment are treated in July, 195:3, QST, p. 10, and in this Hemalbook, Chapter 21 .

Girounded-grid r.f. amplitier teednique is illustrated in Figs. 16-4 and Ifi-14. Here the input is in the rathode load, with the grid of the tube grounded, to are ats a shield hetwern cathode and plate. The grounded-grid circuit is stable and easily adjusted. and is well andipted to broadhand applieations. The gain per stage is low, so that two or more stages may be required.

Tubes well-suited to grounded-grid amplifior service include the 6.J. GidN't. bid.j. BidMl. tillCt, 417.1 and H6B3. Disk-seal thhers such as the "lighthouse" and "permeil tube" types aro often used as r.f. amplifiers above 500 Xe. and the new reramie tubes show great posibilitios for r.f. amplifier morvice in the u.h.f. range.
(ireat care should be used in adjusting the r.f. portion of a v.h.f. receiver, whatever circuit is used. If it is working properly it will control the nose figure of the entire system.

Reducing Spurious Responses

In atreats where there is at high level of v.h.f. antivity or extensive use of other freguencies in the v.h.f. range, the ability of the recoiver to operate properly in the presinne of strong signals may be an important consideration. Fpercal tuhe types, otherwise similar to older numbers, have been developed for low owerloatd and crossmodulation susceptibility. The GBC8, which maty
 is one of these.

Modification of the converter design cath also improve performance in these resperts. In general. the gatin thead of the mixer stage should be made no more than is necessary to athicve good noise figure charatereristics. The plate voltage on the r.f. amplifier should be kept as high ats priotiaal. to prevent easy overlading.

Rajecetion of signals outside the desired frequency range can be improved be the use of high-Q tunced "ircuits aheal of the first r.f. amplifier stage " Television tramsmitters are partionlitrly troublesome in this resperet, and one or more cosxial-type circuits inserted in the leid from the antemat to the romverter maty be neressary to kerep such signals from interforing with normal rereption.

Ifommon ratuse of unwathed signals appearing in the thang ratuge is the preselue of oscillator harmonies in the cerrey being fed to the mixer of a crystal-controlled converter. "lhis may be pre-

Fig. 16.4-Grounded-grid amplifier. Position of tap on plate coil should be adjusted for lowest noise figure. Low gain with this circuit makes two stages necessary for most applications. R.f. choke and coil values depend on frequency.
vented by using a high oscillator frequence, to keep down the number of multiplieations, and by shielding the osdilator and multipher stages from the rest of the converter.

Signals at the intermediate frequence maty ride through seonverter. This can be prevented by kepong down capacitive interstage eoupling in the r.f. cireuitry, and by shidding the converter and the recodere antenna lemminals. The problem of reerever respomses is doalt with in (as") for

MIXER CIRCUITS

The miver in it v.h.f. convertor maty be either a pentade or a trionde tube. Pentodes give generally ligher output, and may require hess injecetion. When used without a preceding r.f. amplifier stage, the triode mixer maty provide thetter noise figure. With either tube, the grid circuit is tuned to the signal frequener, and the plate ciredit to the intermediate frequenere

A simple triode mixer is shown in Fig. $16-$ - A, with a pentorle mixer at B . A dual-triode version (push-push miver) is shown at C. The push-push mixer is well adapted to use at 420 Me., and may, of course, be used at :my lower frequency. Dual tubes maty be used as both mixar and oscillator, combining the circuits of Figs. 16-5 and 16 - 3 . A $00^{\circ} 8$ could tior its pentode as as mixer ($16-5 \mathrm{~B}$) : thd the oscillator portion ($16-6 \mathrm{~A}$) would he a triode. Dual-triode tubes (i.Jo, 12AT7 and miny others) would combine $16-5 \mathrm{~A}$ and 16-6iA. In dual triodes having separate eathodes some external coupling maty be required, but the common cathode of the b.Jis will provide sufficient injection in most cases. If the injeretion is more than neecesary it can be redued lyy dropping the oscillator plate voltage, either directly or by increatsing the value of the dropping resistor.

A pentole mixer is less subject to oseillator pulling than a triode, and it will probathly require less injection voltage. In a pentode miser with no r.f. amplifier, phate current should be held to the lowest usable value, to reduce tube noise. This may be controlled by varying the mixer screen
voltage. When a grood r.f. amplifier is used the mixer plate current may he run higher, for better operation with strong signals.

Orcasionally oseillation near the signal frequency maty be encountered in v.h.f. mixurs. This usually results from stray lead inductance in the mixer plate circuit, and is most common with triode mixers. It may be corrected by comeeting a smatl capuritance from plate to cathode, directly at the tube sorket. Tren to 25 $\mu \mu \mathrm{f}$. will be suffieient, depending on the sigmal frequener.

OSCILLATOR STABILITY

When a high-selectivity i.f. system is employed in v.l.f. reception, the statitity of the oseillator is extremely important. Slight variattions in oscillator frequency that would not be notiered when a broudband i.f. amplifier is used berome intolerable when the passband is redued to erystal-filter proportions.

Once satisfactory solution to this problem is the use of a crystal-controlled oscillator, with frequenes multipliars if needed, to supply the injoertion voltage. Sum a converter usathly employs one or more broadhand r.f. amplifier stages, athd tuning is done by tuning the receiver with whirh the converter is used to cover the desired intermediate frequency range.

Fig. 16.5-Typical v.h.f. mixer circuits for triode (A), pentode (B) and push-push triode (C). Circuits A and B may be used with one portion of various dual-purpose tubes. Plate current of pentode (B) should be held at lowest usable value if no r.f. stage is used.

16 - V.H.F. RECEIVERS

Fig. 16-6-Recommended oscillotor circuits for tunable v.h.f. converters. Duol-triode-version (B) is recommended for 220 or 420 Mc. R.f. choke coil and copocitor values not given depend on frequency.

(A)
widely different performance. If the receiver has an S-meter, its adjustment may be left in the position used for lower frequencies, and the converter gain set so as to make the meter read normally on v.h.f. signals.

Where reception of wide-band f.m. or unstable signals of modulated oscillators is desired, a converter may be used ahead of an f.m. broadeast receiver. A superregenerative detector operating at the intermediate frequeney, with or without additional i.f. amplifier stages, also may serve as an i.f. and detector system for reception of wideband signals. By using a high i.f. (10 to 30 Mc . or so) and by resistive loading of the i.f. transformers, almost any desired degree of bandwidth can be secured, providing good voice quality on all but the most unstable signals. Any of these methods may be used for reception in the microwave region, where stabilized transmission is extremoly difficult at the eurrent state of the art.

THE SUPERREGENERATIVE RECEIVER

The simplest type of v.h.f. receiver is the superregenerator. It affords fair sensitivity with fow tubes and elementary circuits, but its weaknesses. listed carlier, have relegated it to applications where small size and low power consumption are important considerations.

Its sensitivity results from the use of an alternating quenching voltage, usually in the range between 20 and 200 kc ., to interrupt the normal oseillation of a regenerative detector. The regeneration can thus be increased far beyond the amount usable in a straight regenerative circuit.

Fig. 16-7-Superregenerotive detector circuit for selfquenched detector. Pentode tube may be used, varying screen voltoge by means of the potentiometer to control regenerotion.
The detector itself can be made to furnish the quenching voltage, or a separate oscillator tube ean be used. Regeneration is usually controlled by varying the plate voltage in triode detectors, or the sereen voltage in the case of pentodes. A typical cireuit is shown in Fig. 16-7.

Crystal-Controlled Converters

Crystal-Controlled Converters for 50 , 144 and 220 Mc .

The three convertors and their power supply, shown below, were designed to meet the special requirements of euch of the v.h.f. bands. insofar as possible. They offer high stability and reasonably low noise figure, and special attention was paid to the reduction of spurious responses, particularly in the converters for 50 and 220 Mr. bach unit plugs into the power supply, which also includes the i.f, output circuitry. Anyone interested in one or two of the bands can thus build for his own purposes and omit the other band or bands. The i.f. tuning range is 7 to 11 Mc, for $50-$ and $144-M c$ coverage, and $7-12$ Mc. for the $220-\mathrm{Mc}$. band.

THE 50-MC. CONVERTER

A pentode r.f. amplifier stage is used in the $50-$ Me. converter, Figs. $16-9$ and $16-10$. With proper design and adjustment such a stage will have a noise figure sufficiently low that it will respond to the weakest signals that can be heard with other and more complex stages. The tube shown is a 6 CB ; but other pentodes such as the $6 . \ K 5$ may be substituted.

A gain control is incheded in the cathorle circuit. Normally this is run all-ont, for optimum noise figure and gain, but in the presence of strong local signals it can be cut in to reduce overloading. This causes some impairment of the noise figure, but may still make possible reception of distant signals through the locals.

Note the double-tuned coupling circuits in the r.f. input and between the r.f. amplifier and the mixer. The capacitors C_{1} and C_{2} are kept as small as possible, and the coils are not coupled together otherwise. A value of 1 to $2 \mu \mu \mathrm{f}$. gives sufficient coupling at the desired frequency, but the system responds only very slightly to lower frequencies. This helps to prevent interference from signals on the intermediate frequency:

The mixer is also a 6 CB 6 . Its operating conditions are set up for resistance to overloading and cross-modulation from strong signals, rather than for optimum noise figure, as the latter is taken care of by the r.f. amplifier. Note that the plate circuit of the mixer is omitted from the converters. It is built into the power unit, and thus only one coil need be made for all the converters.

The oscillator is a GAFt triode. Any other small triode could be substituted. Input is held to a low level (nute 47,000 -ohm resistor in series with L_{7}) in the interest of stability. The oscillator rircuitry is isolated from the rest of the converter, so that injection can be controlled readily. Finergy from the oscillator is carried to the mixer grid eirenit through a shielded link.

Mechanical Features

Eaeh converter is built on a flat plate, which screws onto a stindard aluminum chassis. Con-
nection to the power unit is made through a t-pin plug momited on the side of the case. This carries the heater voltage, the plate voltage, the mixer plate lead and the common chassis connection. The plug on the converter is the mate type. It may be fistened to the chassis conveniently by soldering t-40 nuts to the back of the flanges used for mounting the plug. Flat-head matchine screws in countersunk holes, in both the converter and the power supply unit allow the two to fit snugly together. This is important in preventing pickup of signalls in the i.f. range.

In the bottom view, Fig. 16-9), the antenna connector is seen at the lower right. Just to the left, separated by a small shield, are the two r.f. coils, L_{1} and L_{2}. The coupling capacitor, C_{1}, made of two wires twisted together, is on the low side of the shield, its lead to L_{2} rumning through a hole in the shield.

The lead from L_{2} to the amplifier grid pin runs through the main lengthwise shield. This lead was made of shielded wire, with the shielding removed from the part of the lead that is in the coil compartment. The portion of the wire in the tube compartment must be shielded to prevent feedback between the plate coil, L_{3}, and the grid circuit. The coupling capacitor, C_{2}, the gain control, the plate coil and all other amplifier components are in this section, upper right.

Mixer components are at the upper left, with the oscillator section below. The coupling link between L_{55} and L_{6} is marde of shiclded wire, rumning through the main shied partition.
The leads from the mixer to the plug, J_{2}, and all power leads, are made with shielded wire. The common comection for ground and heater lead is the shichling over the other three wires. These leads should be long enough so that the convertur cim be lifted from the box without removing the plug. A length of vinyl sleeving slipped over the leads will help to prevent shorts. Transparent sleeving wis used, so it does not show in the

Fig, 16.8-Converters for the three v.h.f. bands, with their power supply and i.f. output unit. The 220-Mc. converter is shown plugged into the power unit. At the left is the $50-\mathrm{Mc}$. converter. The one for 144 Mc . is af the right.

Fig. 16-9-Bottom view of the $50-\mathrm{Mc}$. converter. R.f. input circuit is of the lower right, with the omplifier itself obove. Crystol oscillotor components of lower leff; mixer ond output coble obove.
photographs.
The main shield is 6 by $1^{15} / 16$ inches in size, with : $1 / 4$-inch lip folded over for monnting to the plate. The two shields perpendicular to it are $17 / 8$ by 1 10 6 inches, with lips folded over on the bottom and one end. The isolation shich bet ween the r.f. coils is $13 / 4$ by $1^{15} 16$ inches, and is mounted 3 inch in from the lower edge of the eross shield.
The pharing of the parts otherwise is not partieularly critical. except that bypass capacitors shonhd be connected with the shortest possible leads. Lese of the smallest size disk coramic type is reommended.

Adjustment

Tuning up the converter is a simple matter. Check the wiring to be sure that no errors have been made. Apply a.c. and see if all heaters come on. Then apply plate voltage by closing S_{2} on the power supply unit. If the converter output is

16 - V.H.F. RECEIVERS

eonnected to a rommunications receiver tumed to the $\overline{\mathrm{F}}$-Mc. range there should be a considerable increne in moise as plate voltage is applied, even with circuits out of tume.

First check the oscillator. This can be done bey listening in the 43-Mc. range, if a receiver is available for that frequencer, or a grid-dip meter maty he used as a wavemeter. Output should appear on 13 Mr., ambl on that freguency only. Adjust $L_{\text {a }}$ for maximum output indieation, with the urid-dip, eoil coupled to L_{7}. Check around 14.3 and 28.6 . 1 c . to be sure that no output is in evidence on these frequancies. Should there be energy on these frequencios it means that the crystal is oscillating on its fundamental frequency and showing output on its various harmonies. Oscilhation on the fundamental indicates that the phate circuit is not properly tuned.

If the converter is wired eorrectly it should now be possible to receive strong signals, even before the circuits have been resonated. A calibrated signal generator is helpful, but it is by no means necessary. A test signal should be fed into the antennat connector and the core serews in all coils :djusted for maximum signal strength.

The response of the converter will not he flat across the entire +000 ke . of the $50-\mathrm{Me}$. band, hat it will work over : wider frequence range than most directive antenna systems. The setting of the cores in L_{3} and L_{4} cam be varied to give uniform response across the desired pass band. The input cireuit should be adjusted for best signal-to-noise ratio at the middle of the desired frequency range.

The value of the small coupling capacitors, C_{1} and (2 , will have some effect on the bundwidth of the r.f. portion of the converter. Few directive antennas will work over more tham about 1500

Fig. 16-10-Schemotic diogram of the 50 -Mc. converter. Copocitors ore ceromic; volues. 001 ond up ore in $\mu \mathrm{f}$. Resistors $1 / 2$-wott unless specified.

[^6]t_{2}-Some os L_{3}, but 9 furns.
$L_{5}-2$ turns insuloted hookue wire of low end of L_{4}.
L_{0}-Some os L_{5}, but of low end of t_{i}.
$\mathrm{L}_{\text {i }}$-Some os L_{3}, but 16 furns.
J_{1}-Cooxiol connector, femole.
$J_{2}-4$-pin power connector, mole. Must mount flush with chossis surfoce.

144-Mc. Converter

kc . of the bind, so there is seldom much point in making the front end of the converter broader than this. If optimum performance is needed at the opposite end of the band it is merely neeessary to repeak the core studs for best results at the desired frequences. Adjustment of the i.f. exil in the power unit also atferts the bondwidth. It man be jeaked somewhat above the middle of the tuning range if it is desired to extend the coverage of the eonverter-antennat mombination.

When the converter is tumed for best results it may be desirable to cheek the oscillator in jection. This is best done with the aid of a noise generator, though a signal generator or weak signals may he used if care is taken to obsorve optimum signal-to-noise ratio, rather than mere gain. The value of the dropping resistor in sories with L_{7} can be varied, the idea being to use the highest value that will not affeet the signal-to-moise ration adversely.

A simple check on performance that can be made in a location free of manmade noise is as follows: Cunnect a $50-0$ hom resistor in phace of the antenna coax. Observe the noise level, either ly ear or as indicated on an output meter or the receiver s-meter. Now put the antenna back on. If the r.f. stage is free of regenematom, a rise in noise bevel when the antema is eomected shows that externat noise ean bo hard. This noise is the limiting factor in weak-signal reereption, and further reduction in receiver moise figure will serve no useful purpose.

THE 144-MC. CONVERTER

In the eonverter for $1+4$ Me.. Figs. Ith-II and 16-12, triode r.f. amplifiers are used, the they give better noise figure thim pentodes at this frequeney and higher. The tubes shown are $6 B C t s$, but comparable results ean be aehieved with the
 sion of the pin eomections. Noise figure obtainable with any of these tubes is about $\overline{5} \mathrm{db}$.. which is about the level at which external noise begins to limit receiver sensitivity. A moise figure of 3 db . or lower ean be had with 417 A , or even one 417 A and one less expensive tube but there may be no observable difference in weak-signall pariormance.
Tho anseodo eircuit (seo begimning of chapter) is used, with the cireuit of Fig. $16-2$ in preference to that of 16-3. The latter, operating at lower plate voltage per stage, may be slightly more susceptible to overtoading. The 6 CB 36 mixer is also operated under conditions devigned to keep down overloading and cross-modulation troublas.

The crystal oscillator is operated at the highest fregueney that is possible with simple circuitry. This holds down the number of unwanted frequencies appearing in the multipher outpat, which eadd beat in signalls from outside the intended lixquiency range. The erystial useillates son 45.667 . Me., using the triode portion of a des. The pentode portion is a tripler to 137 Me.

The oscillator-tripler portion is isolated from the rest of the comverter by : enperer shicld rumning down the middle of the 5 by 5 -inch plate.

The grid circuit of the first r.f. amplifier stage is adjacent to the tripler, but is as far awity from it as possible and the coils are positioned for minimum coupling. The lower sertion of the converter, as shown in Fig, 16-11, is the portion in question, the antemat connertion and grid eoil being at the lower right.

Nhowe the shield may be seen the first r.f. stage, right, the second stage, with a shield down through the middle of its socket. center, and the mixer at the far left. To provide effective isolation and bypassing, feed-through capacitors are mounted in the eopper shidel to carry power leads from one compartment to the other. Three are used for the B-plus line and two for the heater leads.
R.f. cirmits and the tripher plate cirenit are tuned by menths of small TV-type trimmers. Four of these are shown in the photograph, but the one that is comected to the first r.f. plate coil, L_{3}, maty be omitted, ats the circuit tumes very broatly: The r.f. plate eoil. L_{4}, and the mixar grid eoil, L_{5}, are 3_{4} inch apart, center to denter. Coupling between the two stages is mamly through the twisted-wire capacitor, ('in. The ref. input roil, L_{1}, is rommerted to the grid pin of the I' he a lead that runs through a $1 / 4$-inch hole in the shield.

Both shiolds atre made of flashing copper. The larger is 53_{4} by 13_{4} inches. with folded-over edges for mounting. and for rigidity. The smaller is 11 by 13 inches. It is hed in place by soldering to lugs under the mounting serews of the bibct socket. This shied turned out to be required to provent oscillation in the gromender-grid stage. It crosses the middla of the tube socket.

Comenctions for the power are made in the sume manner as for the 50-Me, eonverter, and latas should be long anough to permit removal of the converter from the box without unsoldering any leads. The shields are bonded together and anchored to a lug bolted to the main shided, near the left end.

Note that wafer-type sockets are used. This is
Fig. 16-11-Bottom view of the 144 -Mc. converter. Crystal oscillator and tripler occupy lower left side of the assembly. Antenna input circuit is at the right. Above the partition, right to left, are the cathode trimmer, the first r.f. omplifier socket, the r.f. plate coll, the second amplifier socket, with shield across its center, the plate coil, mixer grid coil and mixer tube socket.

Fig. 16-12-Wiring diagram and parts information for the 144-Mc. converter. Parts specified as in Fig. 16-10.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-8-\mu \mu \mathrm{f}$. plastic trimmer (Erie No. 532-10). $\mathrm{C}_{4}-3-30 \cdot \mu \mu \mathrm{f}$. mica trimmer. Set at tight position initially. $C_{3}, C_{6}, C_{7}, C_{8}, C_{9}-500-\mu \mu \mathrm{f}$. feed-through bypass (Centralab MFT-500).
$\mathrm{C}_{10}-1-6 \cdot \mu \mu \mathrm{f}$. See text.
$L_{1}-41 / 2$ turns No. 18 tinned, $1 / 4$-inch inside diam., $1 / 2$ inch long, tapped at $11 / 2$ turns.
$\iota_{2}-14$ furns No. 24 enam., $3 / 6$-inch diam., $1 / 2$ inch long.
$\mathrm{l}_{3}-5$ turns $\mathrm{N}_{\mathrm{o}} .18$ linned, $1 / 4$-inch diam., $1 / 4$ inch long.
$\mathrm{L}_{4}-5 \frac{1}{2}$ turns like L_{3}.
$\mathbf{L}_{5}-3 / 1 / 2$ turns like \mathbf{L}_{3}.
$L_{0}-13$ turns No. 24 enam. closewound on $1 / 4$-inch diam. iron-slug form (North Hills F-1000).
$\mathrm{t}_{7}-8$ furns like $l_{3}, 3 / 4$ inch long.
Ls-1 turn insulated hookup wire between first two turns of t_{7}.
L_{9}-Same as L_{8}, inserted in L_{5}.
J_{1}-Cooxial connector, female.
$J_{2}-4$-pin power connector, male flush mounting.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-1.8 \mu \mathrm{~h}$. solenoid r.f. choke (Ohmite Z-144).
more than an economy measure; shorter ground leads are possible with this type of socket. Where socket terminals are to be grounded, they are bent down flush with the bottom of the plate. Then a hole is drilled adjacent to the lug and it can then be secured to the plate under a washer and nut. This method of grounding is superior, at these frequencies, to the more commonly used lead-and-lug arrangement.

Adjustment

The first step in putting the $144-M c$. converter into service is to be sure that the oscillator is working correctly, as described in connection with the $50-\mathrm{Mc}$. converter. This may be done with the plate and sereen voltages disconnected from the pentode portion of the 6 U 8 , if desired, by lifting tripler plate coil and the screen resistor from the 13 -plus line temporarily. Be sure that the oscillator is on the right frequency, and no other, as deseribed earlier.

Now comect the tripler plate coil and sereen resistor to the B -plus line and eheck the tuning of the tripler capacitor, C_{3}. Set it for maximum output on 133 Mc., as indicated by a grid-dip meter coupled to $L 7$. The output required from the tripler may be checked after the r.f. section is tuned properly. It may be controlled by varying the value of the screen dropping resistur, which is $47,(0) 0$ ohms in the original. The tripler may be run at the lowest input that will give
satisfactory signal-to-noise ratio. Above that point the injection is not critical.

The r.f. circuits may now be adjusted. Set the trimmer, C_{4}, across the r.f. cathode resistor, at maximum at first. Then on a test signal tune ('i and C_{2} for maximum response. The spacing between the turns of the r.f. plate ecils, L_{3} and L_{4}, should also be adjusted for highest signal level.

If a noise generator is available, it should be used to set up the r.f. input circuit, the inductance of the neutralizing coil, and the value of the cathode bypass, C_{4}. If signals or a signal generator are used, the criterion should be greatest rise over noise for a given signal, rather than maximum si -meter reading or loudest volume. Adjustment of the neutralizing coil, and setting of the cathode bypass value are all but impossible without a noise generator. Lacking one, it is best to use a fixed bypass of about $100 \mu \mu$ f. for C_{4}, and leave the neutralizing winding at the specification given in the cut label. Changes in the neutralizing coil affect the tuning of the grid circuit. Recheck the setting of C_{1} after altering L_{2}.

The coupling capacitor, C_{10}, is not critigal, but for best rejection of i.f. signals it shontd be as low as will give satisfactory performance on 141-Mc. signals. Insulated wires twisted together provide a convenient adjustment method.

As the band is nearly three times as high in frequency as the $50-\mathrm{Mc}$. band, there will be less

220-Mc. Converter

difficulty in getting miform response across the entire band. Tuning of the second r.f. and mixer circuits can be staggered to develop the desired bandwidth, and the value of C_{10} will have some effect on it as well.

THE 220-MC. CONVERTER

In the converter for 220 Mc., Figs. 16-13 and $16-14$, an additional r.f. amplifier stage is used ahead of the cascode-and-mixer combination. This is required because the gain per stage is lower at this frequency. It is also desirable because of the added selectivity it affords. This may be very helpful in areas where interference from other services adjacent to the band may be bothersome.

The additional stage is a grounded-grid amplifier, using a modified coavial-line plate circuit for high Q and selectivity. It is not a broadband device and must be retuned in covering the band. The tube shown is a 6AM4. Nimilar results were aehieved with the 6 BCt , and nearly identical performance is possible with other u.h.f. triodes. The 417A and $416 B$ should be superior. Noise figure is about 6 db .

A series cascode using a 6BC8 dual triode follows. This type of amplifier is easily adjusted and tends to deliver superior results as the upper limit of frequency is approached. The mixer is a $6.1{ }^{-5} 5$. Its output circuit is, of course, the coil assembly in the power unit.

The r.f. amplifier is similar to the one described separately later in the chapter, except that the output is taken off through the bottom of the assembly, with a tuned link, instead of through a coaxial fitting on the side. In the diagram, Fig. $16-14$, the plate line and coupling loop are shown as if they were coils, it being cumbersome to express a trough-line circuit schematically.

Mechanical Details

A somewhat different method of construction is employed in the $220-$-Mc. converter, in order to insure the most effective grounding and bypassing. A plate of aluminum is used, as in the other converters, but only for appearance and rigidity. The plate used for actual electrical grounding is a sheet of flashing copper. Wafer sockets are used, and wherever a terminal is grounded it is bent down flat and soldered direetly to the copper plate. This makes for less lead and more effective grounding than where socket mounting screws and lugs are used ground connections. It also allows shield partitions of copper to be soldered directly to the base plate.
The $220-\mathrm{Mc}$. converter requires more space than the others, so a 7 by 9 -inch chassis and plate are used. The lengthwise partition $11 / 8$ by 7 inches in size, after folding over $1 / 8$ inch on each side for mounting and rigidity. The smaller is $11 / 8$ by 4 inches. The large shicld is centered on the plate $23 / 8$ inches in from the long edge. The smaller is $41 / 4$ inches in from the left edge.
The oscillator is similar to the $144-\mathrm{Mc}$. unit, except that an air-wound coil and a variable capacitor are used instead of a slug-tuned coil. The pentode section of the 6U8 is a quadrupler to 213 Mc . from a crystal frequency of 53.25 Mc . A sories-tuned link feeds energy to the mixer grid circuit through a shielded-wire line. Oscilatormultiplier components are in the left portion of Fig. 16-13.
At the rightare the mixer (upper socket) and the serics cascode r.f. :amplifier, below. Note that power wiring is made with shielded wire, laid close to the shields. IPate voltage is fed into the oscillator-multiplier and r.f.-mixer compartments on feed-through bypasses. Heater voltage for the r.f. amplifier goes through the plate on shielded wire at the lower left, and plate voltage at the
fig. 16-13-Interior of the $220-\mathrm{Mc}$. converter. Botlom plate and partitions are of flashing copper, for effertive grounding. Oseillatormultiplier circuilry is of the left; mixer and cascode r.f. amplifier at the right. Groundedgrid amplifier is above the chassis.

Fig. 16-14-Schematic diagram and parts information for the 220.Mc. converter.
lower right. The mica trimmer at the lower right is C_{2}, in series with the low side of the coupling loop, L_{2}. The other end of the loop comes out on a feed-through bushing, National Type Tl'B. Its lead to $L_{\delta z}$ is shielded wire, running through the partition.

In working with flashing copper parts the metal work should be completed, up to the point where the parts are ready to assemble. The copper parts may then be polished with steel wool and given a fine spray coat of clear larquer. This will help to keep them clean and bright, and it will not affect the soldering operations to be done later.

Adjustment

The oscillator and multiplier stages should be adjusted as outlined for the other converters, making sure that the

\ll

$C_{1}-5-\mu \mu$ f. miniature variable (Hammarlund MAC-5).
$\mathrm{C}_{2}-3$-30- $\mu \mu \mathrm{f}$. mica trimmer.
$\mathrm{C}_{3}-\mathbf{2 0}-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAC-20).
$\mathrm{C}_{4}-10-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAC-10).
C_{5}-7-45- $\mu \mu \mathrm{f}$. ceramic trimmer (Centralab 822.BN).
$C_{8}, C_{7}, C_{8}, C_{9}-500-\mu \mu$. feed-through bypass (Centralab MFT 500).
L_{1}-Inner conductor of trough line- $1 / 4$-inch copper tubing, $61 / 4$ inches long, $1 / 4$-inch diam. C_{1} connects $13 / 4$ inches from plate end. See Fig. 16-22 and text.
\mathbf{L}_{2}-Coupling loop-insulated hookup wire 3 inches long. Loop portion lays close to cold end of l_{1} for 2 inches. Hot end comes through chassis on National Type TPB feed-through bushing.
$L_{3}-3$ furns No. 18 finned, $1 / 4$-inch diam., $1 / 4$ inch long, center-tapped.
$L_{4}-4$ turns like $L_{3}, 1 / 8$ inch long.
$L_{5}-81 / 2$ turns like $\mathrm{t}_{3}, 5 / 6$ inch long, centertapped.
$\mathbf{L}_{6}-2$ furns insulated hookup wire at center of L_{3}.
$L_{z}-6$ turns No. 20 tinned $1 / 2$-inch diam., $1 / 2$ inch long. (B \& W No. 3003).
Ls-2 turns No. 18 tinned, $3 / 2$-inch diam., spaced $1 / 8$ inch.
$\mathbf{L}_{9}-2$ furns insulated hookup wire between furns of ts.
J_{1}-Coaxial filting, female.
$\mathrm{J}_{2}-4$-pin power connector, male. Must mount flush with surface of chassis.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-18$ turns No. 24 enam., close-wound, $1 / 8$-inch diam.

220-Mc. Converter

coneet frequencios are obtained. Next a signal may be ferl into the bl3C stage through the shiedded lime to L_{3}. This may be diseonneeted from L_{2} temporarily and wan-fed antemat or a $50-\mathrm{ohm}$ signal generator termination maty be comneetod arous it. Now adjust the spacing ol the turns in L_{3} and L_{5} for best performance. Maximum gatn will ber a goodernough indiention hede, so a noise generator is not noeded.
Sow the ($A, 1 / t$ amplifiar may be hooked up and tuned. It will be quite selective and will have to be retumed several times across the hand. With the plate tuning caparitor tapped down the line as it is, the tuning range in megacyrles is not great. Be sure, therefore that it actually does tume the entire way, and does not hit maximum or minimum eapacitance inside the band.

Adjustments may be made all along the line using maximum signal level as the basis for achicving the optimum setting, but only a noise gencrator will show if the monverter is delivering the best sensitivity of which it is rapable. It should be possible to get the noise figure down to about 6 dh. using the didat if everything is working properly.

If any doubt exists that the coils L_{3} and L_{55} are tuning properly, small twisted-wire capacitors maty be conneeted from the gridend of L_{3} and the plate end of h_{5} to ground, and gradually inereased in value. If the gain drops when the caparitor is commeted, the coil is too large. If at smatl amount of added capacitance inereases the gain, squeze the roil turns choser together and try again. The inductance of L_{4} should not be particularly rritical. It should he as large as ean be used without causing instalsility.

Injection from the quadrupler may be controlled by varying the position of either link winding, L_{6} or L_{9}, with respeet to its eoil, and by adjusting ('s. Coupling should be increased until

Fig. 16-15-Bottom view of the power supply and i.f. output circuitry for the v.h.f. converters. A.c. switch is above power transformer, right. Next are the filter capacitor and the rectifier socket. The switch at the lower left cuts off the high voltage. The i.f. plate coil and the output fitting are in the upper left of the picture.
there is no improvement in signal-tu-noise ratio. Injection bevond that point is not aritical. though it will affect the over-all gain somewhat. Fairly low injection is desirable as it will keop down the level of spurious responses.

POWER SUPPLY AND I.F. OUTPUT

Though it may be possible to run a v.h.f. eonverter from the power supply of the receiver with which it is to be used, as supply for the converters is desirable. The one shown in lig. 16-15 and $16-16$ is inexpensive and eonvenient. It thelivers the heater and plate power required by the eonverters, and in addition carries the mixer plate circuit and the provision for coupling into the receiver.

Construction is not eritical. Parts are assembled on a 5 by 7 -inch plate and this fastens to at similarly sized chassis that matches the converters. The ano- and $1+4$-Me. units plug into the

Fig. 16-16-Schematic diagram of the converter power supply and i.f. output unit. Capacitors with polarity marked are electrolytic; others ceramic.
C_{1}, C_{2}-Dual $.005-\mu f$., 125 volts a.c. disk ceramic (Sprague 125L-2D50).
$\mathrm{C}_{3}-.01-\mu \mathrm{f}$. disk ceramic. Mount at plug end of cable. $\mathrm{R}_{1}-50,000$ ohms, 2 watts 12100,000 ohm 1-watt resistors in parallei).
$\mathrm{L}_{1}-10$-hy. $50-\mathrm{ma}$. filter choke.
$\mathrm{L}_{2}-$ No. 28 enam. closewound $1 / 2$ inch long on $3 / 8$-inch iron-slug form. Wind near upper end.
J_{1}-Coaxial filting, female.
$J_{2}-4$-pin power connector, female. Must mount flush with surface of chassis.
S_{1}, S_{2}-S.p.p.t. loggle switch.
T_{1}-Power transformer, 480 v. a.c., c.t., 40 ma ., 5 v . $2 \mathrm{amp} ., 6.3 \mathrm{v}$. 2 amp . (Thordarson TS-24ROO).
P_{1}-A.c. plug on cord.
power unft through matching fittings on the sides. The larger $220-\mathrm{Mc}$. converter has the plug mounted on the end wall of the chassis, so that tts 7 -inch dimension is aligned with that of the supply.

Arrangement of parts should be clear from the photographs, and parts loeation is in no way critical. Note that the a.c. connection is bypassed on both sides of the line. The capacitors C_{1} and ('2 are a dual unit designed for this purpose. The bypass on the B-plus line, C_{3}, should be at the plug end of the cable, with as short leads as possible. It is important in preventing piekup of signals in the i.f. tuning range, as are C_{1} and C_{2}.
Switches are provided for turning on the a.c., and for breaking the flow of plate current. This feature is helpful during adjustment when it may be desirable to remove the converter from its case. Plate voltage may be cut off for safety in handling, and then turned on again without loss of the time needed to warm up the tubes.

Contact between the converter case and the power supply case may be important in preventing signal pickup at 7 Mc. If i.f. signals are bothersome, try putting a spring elip under one of the screws that holds the power supply plate down. Place this so that it will make contact with the converter case or top plate when the two units are plugged together. It also may be necessary to bond the converter and power supply combination to the frame of the commumications receiver with which they are to be used. This should be
done with a short heavy copper strap or braid.
Connection between the i.f. unit and the recciver should be with coaxial line, and it is highly desirable to install a coavial fitting on the receiver in place of the usual terminal strip. The connections should the removed from the back of the strip, or the terminals may still allow some i.f. pickup.

Using Other Intermediate Frequencies

The i.f. tuning range begimning at 7 Mc. was selected as the most desirable for most receivers. Other ranges may be preferred, and the i.f. can be altered easily enough. The injection frequener is lower than the signal frequency by whatever i.f. you intend to use. For example, a 50-Mc. converter with a 14-Mc. i.f. would have a crystal and injection frequency of $50-14$, or 36 Mc . The 144-Mc. converter would have a li30-Mc. injection frequener, and the crystal would be onethird of this, or 43.33 MIc.

Generally speaking, single-conversion communications receivers (most inexpensive types, and all older receivers) work best with low intermediate frequencies, such as 7 Mc . or lower. Double-conversion receivers will be satisfactory in the 14 -Nc. range in almost every case, and some are stable enough to do well around 30 Mc. At least one communications receiver, the NC-300, has a range designed especially for v.h.f. converter use, starting at 30.5 Mc .

Preamplifier for 220 Mc .

The amplifier shown in Figs. 16-17 to 16-19 will improve the gain and noise figure of a $220-M c$. converter that is not operating at maximum effectivenoss. It also provides some additional selectivity, which may be helpful in areas where signals from outside the band are troublesome. The plate circuit has high Q, so it must be retuned in covering the band.

The schematic diagram is the same as the first stage of the 220-Mc. converter, Fig. 16-14. The signal is fed into the cathode of the grounded-grid amplifier. The plate circuit is a trough line. Any
of the small u.h.f. triodes may be used, though a 6AN4 is shown. Check pin comections and cathode resistor values for other types.

Construction

The outer conductor of the line, which also sorves as the chassis, is made of flashing copper. If the details of Fig. 16-18 are followed, it may be made from a single piece. A smatl copper shield is placed across the tube socket to isolate the input and plate circuits. Just where this shield is loeated depends on the tube used, as various

Fig. 16-17-220-Mc. trough-line preomplifier. Construction is similar to that used with the $220-\mathrm{Mc}$. converter, Fig. 16-8, except that provision is made for cable connection to o remote receiver or converter.

420-Mc. Receiver

Fig. 16-18-Details of the outer conductor and chassis for the $220-\mathrm{Mc}$. preamplifier.
tubes have different grid pin arrangements. All grid terminals are bent flat against the copper case, and soldered in plawe.

The left end (bot tom view, Fig, 1(i-19) contains the coaxial fitting for the intemas connertion, the r.f. chokes and other components of the input circuit. The plate line tuming capacitor, ontput coupling loop and coax fitting, and the B-plus feed-through capacitor mount in the large portion, A bottom cover for the line can be made of copper 8 inches long and $21 / 4$ inches wide. Bend over a quarter inch on each side, and slip the cover over the edges of the case.

The inner conductor is $1 / 4$-inch copper tubing. Start with a piece $6 \frac{1}{4}$ inches long. Siaw the ends lengthwise to depths of $1 / \frac{1}{4}$ and $\frac{1}{2}$ inch. Cut off one half at each end. The remaining portions are used to make commections. The half-inch end is bent down to solder to the phate lugs of the socket. The quarter-inch end solders to the feedthrough eapacitor.
The tuning e:apacitor, C_{1}, is mounted with its stator bars toward the tube end of the line. The inmer cunductor will rest between these burs and they can be soldered to it readily. Plate voltage
is fed through C_{6}, heater voltage through C_{9}. Ontput is taken off through the coupling loop. L_{2}, visible in Fig. 16i-19. The series eatacitor. fore wa omitted from the preamplifier, though it might be useful if the amplifier works into a converter with an untuned input cirenit.

Adjustment

The preamplifier may be comnected to the contverter through a masiat lite of any eonvenient length. but the eonverter input should be a coaxial fitting. To put the preamplifier into service, adjust the phate line for maximum signal strength. Then cheek the position of the compling loop. adjusting for maximum response. Readjust the tuming of the line as the coupling is changed.

The tuning range of ' $^{\prime}$ is not wide. so be sure that it actually thmes the line at both emeds of the band. some aljastmont of tuning range can be hat by rotating the momating of the eabacitor 180 degrees. If this dons not bring the tuning within ringe, the monnting herle can be elongated and the position of the trimmer adjusted as required.

Fig. 16.19-Bottom view of the preamplifier

Receivers for 420 Mc .

For best signal-to-noise ratio, receivers for any frequency should have the highest degree of selectivity that can be used successtully at the frequency in question. With erystal control or its equivalent in stability accepted as standard practice on all bands up through 148 Mc., there is little point in using more bandwidth in receivers for these frequencies than is necessary for satisfac-
tory voice reception, a maximum of about 10 kc . Such conmunication selectivity is now being used surecessfully by most workers on 220 and 420 Mc., too, but it imposes several problems not encountered on lower bands.

First is the matter of oscillator instability in the converter. Even the best tunable oscillator at 420 Mc. suffers from vibration and hand-capacity

effects sufficiently to make it difficult to hold the signal in a 10 -ke. i.f. hand width.

Then, there are still some unstable transmitters being used in work on 220 and 420 .Mr. It is out of the question to copy these on a selective receiver.

Last, searching a band 30 megacyeles wide is excessively time-consuming when communica-tions-receiver selectivity is used in the i.f. system.

There is no single solution to these problems, but the best approach appears to the that of breaking up of the hand into segments for different types of operation. This is being done be mutual agreement among 420-Mc. operators at present, as follows: $\mathbf{4 2 0}$ to $\mathbf{4 3 2}$ Mc. - modulated oseillators and wide-hath f.m., 432 to 436 Me. -crystal-controlled c.w., a.m. and natrow-band f.m.: 436 to 150 - television.

The tirst sugment can be covered with a superregenerative receiver, a superheterodyne having a widehand i.f. system, or a converter used ahead of an f.m. hroadrast rereiver. The high selectivity required for best use of the middle portion makes a crystal-rontrolled or otherwise highly stable converter and communications receiver combination almost mandatory. Amateur TV is usually received with at converter ahead of a standard TV receiver, tuned to some channel that is not in use locally.

Miny of the tubes used on the v.h.f. bands are useless at 120 Mc., and the performance of even the best u.h.f. tubes is down compared to lower bands. Only the lighthouse or peneil-triode tubes and a few of the miniatures are usable. and these require modifications of conventional circuit technigue to produce satisfatory resulas.

Crystal diodes are often used as mixers in $420-$ Mc. receivers, as in this frequency range they work nearly as well as vacuum tubes. The over-all gain of a converter having a crystal mixer is ahout 10 db . lower than one using a tuhe, so this difference must be made up in the i.f. amplitier. The noise figure of a receiver having a erystal miser and nor.f. stage includes the noise figure of the i.f. amplifier following the mixer, so best results require that the i.f. amplifier employ low-noise terhniques discussed earlier in this chapter. If the i.f. is 50 Me. or higher it is particularly important that a low-noise triole be used for the first i.f. stage.
Crystal diodes of the type used in radar mixers, such as the 1×21 series, are well suited to $420-\mathrm{Mc}$. mixer service, though care must be taken to avoid damage from transmitter r.f. energy. Other types of erystal diodes such as the 1×72 and $C K 710$

16 - V.H.F. RECEIVERS

Fig. 16.20-A highly effective r.f. amplifier for 420 Mc. The tank circuit is a half-wave line made of floshing copper. Coaxial fittings are for input and output connections. Heater and plate voltages are brought in on feed-through bypass capacitors just visible on either side of the GAJ4 rube.
will stand higher values of erystal curient, and their use is recommended.

Few conventional varuum tubes work well as mixers at 420 Mr. and higher. The 6.56 is useful where a balancel input circuit is desired, as in Fig. $16-5 \mathrm{C}$. For single-ended circuitry the 6A.M4 and $6 A N 4$ are recommended. They may be used in grounded-grid or grounded-cathote circuits.

For high-selectivity coverage of the 432 - to 4:36-Me. segment of the band, a common practice is to use at crystal-controlled converter working into another converter for either the 50) or $14+$ Me. band. tuning the latter for the four-megaeycle tuning range.

A 420-MC. R.F. AMPLIFIER

The r.f. amplifier shown in Figs, 16-20 through $16-22$ is capable of a gain or more than 15 dt . and its noise figure can be as low as 6 db . with c:ureful adjustment. It will make a large improvement in the sensitivity of any converter or receiver that has no r.f. stage. or one that is working poorly.

The design shown is for either the 6.d.J 4 or G.1.M4, but with suitable socket and pin-connection changes the $117.1,613 \mathrm{C}$ t or 6.1N+t will work equally well. It is a grounded-grid amplifier with

Fig. 16.21-Schematic diagram of the $\mathbf{4 2 0}$-Mc. r.f. amplifier.
$C_{1}-500 \cdot \mu \mu$ f. ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-1000+\mu \mu \mathrm{f}$. ceramic feedthrough (Erie style 2404).
C_{4}-Copper tabs, $/ 8$-inch diam.; see text and photographs.
$R_{1}-150$ ohms, $1 / 2$ watt.
$R_{2}-470$ ohms, $1 / 2$ watt.
$L_{1}-1 / 4$-inch copper rubing, $73 / 6$ inches long, tapped $23 / 8$ inches from plate end.
l_{2}-loop of insulated wire adjacent to L_{1} for $3 / 4$ inch. J_{1}, J_{2}-Coaxial fitting.
RFC $_{1}$, RFC $_{2}$, RFC $_{3}-9$ turns No. 22, 3/b-inch diam., spaced one diam.

420-Mc. R.F. Amplifier

Fig. 16-22-Bottom view of the 420-Mc. r.f. amplifier, with the slip-on cover removed. The inner conductor of the tank circuit is held in place by a block of polystyrene, mounted near the low-voltage point on the line. The platevoltage feedthrough and output coupling loop may be seen at the left of this support. Heater, cathode and antenna-circuit components are in a separate compartment at the tube end of the assembly. The line is tuned at the opposite end by a handmade copper-tab capacitor.
a half-wave line in the plate cireuit The antenna is connected to the cathode of the tube through a coupling caparitor. As the input impedance of the gromoded-grid stage is low, nothing is gatimed by the use of a tuned rircuit in the cathode lead. Output is taken off through a roupling loop at the point of lowest r.f. voltage along the line.

The amplifier is huilt in at frame of flashing copper that serves as the outer conductor of the tank cireuit. The whole assembly is 10 inches long and $11 / 4$ inches square, exeppt for the bottom, which is alout $13 / 4$ inches wide. lidges are folded over with lips $\frac{1}{4}$ inch wide which slide into a bottom cover made from copper shoet $2, \frac{1}{4}$ by 10 inches in size, with its edges hent, up ${ }^{1 / 4}$ inch wide oll each side.

The plate circuit is made of $1 / 4$-inch ropper tubing tuned by a eopper-tab eapberitor at the far end from the tube. Plate woltage is fad in at the point of minimum r.i, voltage, which in this mstance is ahout $\overline{5}$ inches from the open end. The antemna is comerted to the eathode through a coupling capacitor. The input impedance of the grounded-grid amplifier is so low that nothing is gained by using a thated circuit at this point. The cathode and heater are maintaned above ground potential by smatl arir-wound r.f. chokes.

The tube sorket is two inches in from the end of the trough, and is so oriented that its plate eonnection, l'in b , is in the proper position to connest to the line with the shortest possible lead. A copmer shiolding fin is monnted aeross the interior of the trough $21 / 8$ inches from the end, dividing the sorket so that l'ins 3, 4, 5 and 6 are on the plate side of the partition.

Minimum grid-lead inductane is important. This was insured by bending all the grid prongs down against the ceramice body of the socket, and then making the mounting hole just hig enough to pass this part of the socket and the prongs. They were soldered to the wall of the trough.

Input and output connestions are coaxial fittings mounted on the side wall of the trough. l3-plus and heater voltage are brought into the assembly on feed-through capacitors mounted on the same side of the trough as the tabe. Connection to the imer conductor of the line is made with a gridelip, so that the point of connertion can be adjusted for optimum results.

The copper tubing is shoted at the plate end with a hark satw to a depth of about $1 / 4$ inch, and a strip of fathing eopper soldered into this slot to make the phate connertion. A copper tab about the size of a one-rent piece is soldered to the other

end of the tubing to provide the stationary plate ol' ('4. The line is supported noar the low-voltage point by a $1 / 4$-inch-thiek hock of polystyrne. This is rentered at a point $5 \frac{1}{4}$ inches in from the tulse end of the trough assembly. The hole for the 13 -plus feodthrough is $4^{1} \frac{1}{4}$ inches from the same end.

The movable plate of C_{4}^{2} is soldered to a serew ruming through a nut soldered to the upper surface of the trough at a point $3 / \frac{6}{8}$ inch in from the open end. If a fine-thread sorew is avalable for this parpose it will make for easier tuning, though a 6 - 32 thread was used in this model. This made a wobbly contact. so at coil spring was installed between the top of the trough and the knob, to keep some tension on the aljusting seren.
. Aljustment of the 420 - Mre amplifier is made e:tsier if a moise gemerator is used, though it is not as important ats in the case amplifiers with tuned input cirruits. If the amplifier is working property there will be an apprectiahle rise in noise as the plate circuit is tuncd through resomanee, and it may break into oscillation if operated without load. When connerted to a following stage, with a reasonably matehed antema plugged into J_{1}, the amplifier should not osidiate unless the coupling loop, L_{2}. is much too far from the imer conductor.

When the amplifier is operating stably and tuned to a test signal (or to a peat of response to a noise genorator', the next step is to locate the optimum position for feeding the plate voltage into the line. This may be done by running a pencil lead slowly up and down the imer eonductor, until a spot is found where touching the lead to the line has little or no effect on the operation of the anyplifier. The plate voltage alip should he placed at this point and the process repeated, moving the clip slightly until it is at the minimmvoltage point preaisely. This adjustment should be made at the midpoint of the tuning range over which the amplifier is to be used.

The position of the coupling loop should then be adjusted for best signal-to-noise ratio. This will probably turn out to be with the insulated wire lying against the inner conductor for a distance of about $3 / 4$ to 1 inch, starting at the minimum-voltage point just loested.

A CRYSTALCONTROLLED CONVERTER FOR 432 MC.

The eonverter shown in Figs. 16-23 through $16-26$ is designed to provide high sensitivity and

Fig. 16-23-A crystal-controlled converter for 432 to 436 Mc. R.f. and mixer stages are in copper subassemblies af the right. Oscillator, multiplier and i.f. amplifier are on the left side.
signal-to-noise ratio in reception of signals in the $4: 32-$ to 433 -Me. rangr. It uses a grounded-grid r.f. amplifior stage similar to the one shown in Fig. 16-20, working into a revstat-diode mixer. The intermediate frequener, with the design constants given, is 50 to 51 Mr., though lower froquencies eould be used by suitable modification of the injertion chain.

Crystal-controlled injection on 382 Mre. is provided by two 6Jtis operating as overtone oscilla-tor-tripler and tripler-doubler, respectively. As only a small amount of r.f. is required at 382 Me., this line-up is not difficult to build or adjust. An inexpensive 7 -Me. erystal is used. An i.f. preamplifier stage follows the crystal mixer. This may or may not be needed, depending on the performance of the receiver or converter that will serve as the tumable i.f. Low-noise amplifieation in the i.f. stage is a factor in the over-all prormance of the system, so use of the built-in i.f. stage is recommended.

Construction

The converter is built on a $7 \times 11 \times 2$-inch aluminum chassis, with the r.f, and mixer portions in a copper subassembly that mounts on the top of the chassis, at the right side as seen in Fig. 16-23. The oscillator-tripler and triplerdoubler 6.Jos are at the left front, with the 6BQ7. 1 i.f. amplifier at the rear. The mixer line is the short portion of the eopper assembly, with the r.f. amplifier line at the right. In the bottom view, Fig. 16-25, the injection-chain and i.f. amplifier components are visible.

Fig. 16-2 1 is an interior view of the r.f. and mixer lines. These are made as two separate assemblies, joined by short length of copper tubing that is visible in the top view. Both tank cirmits are $11 / 4$ inches stuare, with $1 / 4$-inch copper tuhing inner conductors. They are made from sheets of flashing copper $41 / 4$ inches wide. The mixer compartment is $51 / 2$ inehes long and the r.f. portion is 10 inches long.

The r.f. amplifier is similar structurally to the one desmibed previously, except for the method of coupling between it and the erestal mixer. This is done with a grid elip on eath line and a ceramic coupling caparitor. The lean from the capacitor, inside the amplifier line, is brought through a half-inch length of copper tuthing that is soldered into the walls of both lines. The lead is insulated with spaghetti sleeving.

The d3-plus feed to the r.f. stage should be at the point of minimum r.f. voltage, $17 / 8$ inches from the plate end of the copper tuhing. The coupling tap is one inch out from the l3-plus feedpoint. The coupling point on the mixer line is 1 inch from the ground end. The cristal diode is inserted in a smatl hole in the mixer inner conductor, $13 / 4$ inches from the ground end. The imner ronductors of the r.f. and mixer lines are $73 / 16$ and 5 inches long, respectively. Mixar tuning is done with a small plastic trimmer, C_{10}, while the r.f. plate cireuit is fund with a handmade tab) capacitor, C_{9}, similar to C_{4} in Fig. 16-21.

Noto the r.f. hypass, C_{8}, on the outside of the mixer line. This is made from a piece of ropper $7 / 8$ inch in diameter, insulated from the line housing by a piece of vinyl plastic. Two thicknesses of the material commonly used for small parts envelopes are satisfactory. The erystal, which mathe any of the u.h.f. diodes, is slipped through a close-fit hole and is held in place by the wire soldered to its outside terminal.
llate and filament voltares are fed into the assembly on feed-through bypass capacitors, visible in the top-view photograph. Antenna connertion is made through a eoaxial fitting on the end of the r.f. assembly. A crystal-current jark, a t-pin power fitting and two i.f. comentors are on the end wall of the chassis. The serond coaxial comnector was installed so that tests could be made with and without the i.f. amplifier stage.

Wiring in the power circuits is done with shieded wire, in case that TVI might result from the ospillator or multiplier stages. The addition of a bottom plate and power-leal filtering would then breffertive. Injection and i.f. conpling leads are also made of shielded wire this serving in phare of coax line that is harder to handle.

The output of the injection chain is eoupled into the mixer line by means of a loop, L_{8}, that

Fig. 16-24-Interior view of the r.f. amplifier and mixer assemblies. The r.f. circuit is a half-wave line. The shorter assembly is the quarter-wave line using a
erystal diode mixer.

Crystal-Controlled Converter for 432 Mc .

Fig. 16-25-Wiring diagram and parts list for the 432-Mc. crystal. controlled converter. Values given are for an i.f. of 50 to 54 Mc .
$\mathrm{C}_{1}-75-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC.75).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-20-\mu \mu \mathrm{f}$. miniature trimmer (Johnson 20M11).
$\mathrm{C}_{5}-25-\mu \mu \mathrm{f}$. minialure trimmer (Hammarlund MAPC-25).
$C_{6}, C_{7}-500-\mu \mu$ f. feed-through ceramic (Centralab MFT-500).
C_{8}-Handmade copper-lab bypass; see text.
C_{9}-Handmade copper-tab variable; see text.
$\mathrm{C}_{10}-0.5$ - to $5-\mu \mu \mathrm{f}$. plastic trimmer (Erie style 532-08OR5).
$\mathrm{L}_{1}-131 / 2$ turns No. 20 tinned, $5 / 8$-inch diam., $7 / 8$ inch long, tapped at $41 / 2$ turns (B \& W Miniductor No. 3007).
$\mathrm{L}_{2}-5$ turns No. 20 tinned, $1 / 2$-Inch diam., $3 / 8$ inch long (B \& W Miniductor No. 3003).
$L_{3}-23 / 4$ furns similar to L_{2}.
$L_{4}-2$ turns No. 12 tinned, $1 / 4$-inch diam., $1 / 4$ inch long.
$L_{5}-1$ turns ins. wire between turns of L_{4}. May be inner conductor of shielded wire, with braid removed.
Lo-Half-wave line, $1 / 4$-inch copper tubing, $73 / 16$ inches long.
L_{7}-Quarter-wave line, $1 / 4$-inch copper tubing, 5 inches long.
L8-Loop of insulated wire 1 inch long and $1 / 2$ inch high projecting through base plate on which line assemblies are mounted. May be made from inner conductor of shielded wire, with braid removed from last two inches.
$L_{9}-2$ turns No. 22 enam. around cold end of L_{10}.
$L_{10}-6$ furns similar to L_{2}.
$L_{11}-11$ turns No. 22 enam. close-wound on $3 / 6$-inch slugfuned form (National XR-91).
$\mathrm{L}_{12}-4$ turns No. 28 silk or enamel wound over cold end of L_{11}.
J_{1}, J_{2}-Coaxial fitting.
J_{3}-Closed-circuit jack.
J_{4}-4-pin male chassis fitting.
RFC- 10 turns No. 22 tinned, $1 / 8$-inch diam. Space turns diam. of wire.

Is not visible in the photographs. This loop is mounted on the copper base plate that is under the mixer and r.f. assembly. Its size and proximity to the mixer inner conductor are not particularly critical, as there is a surplus of injection under ordinary conditions of operation.

Adjustment

The first step in putting the converter into operation is to tume up the oscillator and multiplier stages. This process is similar to the adjustment of a transmitter and will not be detailed here. Check to see that the proper frepuencies appear as indicated on the schematic diagram. Only enough power at 382 Mc. is needed to develop
about 0.5 ma . of crystal current. Anything from 0.2 to 1.0 ma. is satisfactory. Adjustments should be made with no plate voltage on the r.f. stage.

Now connert the converter to a $50-\mathrm{Mc}$. receiver or converter and peak the i.f. amplifier eircuits at about 52 Mc . on noise. Next apply plate voltage and feed a signal into the r.f. stage. Peak the r.f. and mixer capacitors for maximum response at about 434 Mc. These adjustments can be made on noise also, if the circuits were close to resonance originally. If a noise generator is not available, the margin of signal over receiver noise that is obtained on a received signal is also usable, if adjustments are made with care.

The points of connection for the B-plus and the

Fig．16－26－Bollom view of the 432－Mc． converter，showing the oscillator，multiplier and i．f．amplifier circuits．
（eoupling tap）on the ref．and mixer lines are criti－ cal adjustments，but if the dimensions given above are followed carefully the points should be （r）ose to optimum．Whastmento can he mate and
checked readily if the r．f．－mixer assembly is mounted in place temporarily with a few self－ tapping serews．（Originally deseribed in January， 1！妇，（2NT，p．24．）

A Crystal－Controlled Converter for 1296 Mc．

The comerter described is the roxult of an affort to simplify rireuits and construction of at converter for 1296 Ma ，to at perint where if could be duplicatod with a minimum of（ffort，and at limiterl amonat of equipment．

Only fire tulas atre used，atme one of these is a
voltage regulator for the crystal oseillator．Une hadif of a $12 \mathrm{AT} 7, V_{1,}$ ，is an overtone oscillator at approximately sis．t Me．The second hatf，I 1 ab． doubles to lot．8 Mr．A ACY ，V_{2} douhles to $21: 6 \mathrm{M}$ Me，and drives a GAK゙ラ doubler to 427 Mc ． The output of V_{3} drives a I IR：30：3 diode multiphior

Fig．16－27－From the top，the 1296 －Mc．converter looks much like conventional designs for the v．h．f．bonds．Across the lower portion of the chossis are the cascode i．f．amplifier stage and its output jack，left，the power connectians shielded by means af an aluminum film can，the voltage regulator tube，and the 12 AT7 crystal oscillator．In the upper right are the 6CY5 and 6AK5 frequency multipliers．The black nuts，left center，ore used for
tension on the adjusting screws for the u．h．f．circuits．

Crystal-Controlled Converter for 1296 Mc.

Fig. 16-28-Circuit diagram and parts information for the 1296-Mc. converter. Decimal values of capacitors are in $\mu \mathrm{f}$.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-0.5$. to $5 . \mu \mu$. plastic trimmer (Erie 532.08 .
OR5).
$\mathrm{C}_{4}, \mathrm{C}_{5}$-Cavity funing screws; see text.
$C_{6}-$ U.h.f. bypass: $13 / 4 \times 3 / 4$-inch brass plate, insulated
from end of r.f. ossembly with .005 -inch plostic
film. See Figs. 16-29 ond 16-31.
$\mathrm{C}_{7}, \mathrm{C}_{8}-0.001-\mu \mathrm{f}$. feed-through byposs (Centralab FT. 1000).

CR1 - Multiplier diode, DR 303 or 1 N82.
CR2-Mixer diode, $1 \mathrm{~N} 21 \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, or MA 421B.
J_{1}, J_{2}-Coaxial fitting, BNC type.
to $128:$ Mc. The $1282-$ Mc. energy is coupled to the mixer crystal along with the input signal, and the 14-Mc. difference frequency is ampiified by a (6I)J8 cascode i.f. stage and coupled with a link to the output jack.

The Injection System

The crystal oseilhator is operated at low voltage and with a regulated plate supply to improve stability, a critical factor in operation at 1296 Mc. Variations in oscillator frequency that would go unnoticed at lower frequencies become disturbing at 1296 Me, for even though the oscillator frequeney is high to start with, it is being multiplied twenty-four times. ()scillator stability is improved if the ervital is not subjected to large and sudden changes in temperature. It was found that mounting the crystal inside the chassis, where it is protected from drafts, resulted in much better stability than mounting above the chassis. The three multiplier stages are quite conventional and need very little comment, with one possible execption: Pins 2 and 7 of the $6 A K 5$ should be grounded as directly as possible. Any stray inductance in the cathode lead seems to have a large effect on the output power of this stage.
J_{3}-Closed-circuir jack.
L_{1} - 11 turns No. 22 enam. close-wound on $1 / 4$-inch slug. funed form (CTC PLS-6 or LSM).
$\mathrm{L}_{2}-4$ turns like L_{1}.
$\mathrm{L}_{3}-6$ turns No. 22 tinned, $1 / 4$-ineh diam., $5 / 8$ inch long. center-topped.
$L_{4}-3$ turns like L_{3}, $5 / 6$ inch long.
$L_{5}-1$ turn insulated hookup wire at center of L_{4}.
$\mathrm{L}_{6}, \mathrm{~L}_{7}-25$ turns like L_{1}.
$L_{x}-4$ furns insulated hookup wire around $B+$ end of t_{7}.
$\mathrm{RFC}_{1}-11$ t. No. 22 spacewound on 1-watt resistor.
Crystal diode multipliers may be new to some, but they provide a very simple way to get small amounts of r.f. at this frequeney. Several types of crystal diodes may be used. When the converter was first construeted, various types were tried, and 1×82 diodes gave the best performance. Later, a I)R30:3 was tried, and it gave about twiee the output.

U.H.F. Circuitry

The tuned cireuits at 1282 and 1296 Mc. are halfwave coaxial lines, shorted at each end and tuned capareitively at their conters. The outer conductors are formed of thin brass sheet, soldered at the joints. Dimensions are not critical, except for length, and the circuit will probably work if the length is within phus or minus $1 / 8$ inch. The center conductors are $1 / 4-\mathrm{inch}$ brass rod, drilled and tapped at each end. The lines are tuned by 8-32 screws which provide a small variable capaeitanee to ground at the center of carll line. A nut is soldered on the inside of each trough to provide threads, and a nylon nut (or short length of nylon rod tapped 8-32) is used on top of the chassis as a jam nut. This provides tension on the screw to give smooth tuning. The mixer erystal holder is made hy soldering a

Fig. 16-29-Defails of the sheet-metal parts of the trough-line tank circuits. The small plate at the left is insulated from the end of the trough assembly with thin sheet teflon. Slot in the partition, upper portion of drawing, provides space for the mixer crystal, as shown in Figs. 16-30 and 16-31.

1/4-inch length of $1 / 4$-inel $i . d .{ }^{5}$ 16-ineh o.d. brass tubing in the "in-inch hole in the mixer bypass pate. then making two saw cuts aroms the end of the thbing at ! (0-rogree angles to form fingers. These are bent in until they grip the large end of the erystal firmly. The mixer bypass plate is insulated by covering the side away from the erveral holder with cellophate tape, and is mounted on the and of the erough lines with 4-10 screws and insulating shouldor wathers. The holder for the small end of the erystal is a contact remowed from an oetal tube sorket.

The antenna input connector is a $\mathrm{C}^{\prime}\left(\mathrm{i}^{2} 109 \mathrm{~A} / \mathrm{U}\right.$ BNC fitting. It must be spaced up with a fow 3 -inch i.d. washers so that the threads will just reach through the chassis and the trough line with enough length for the nut. The center con-
nection of the fitting should be cut down so that it cloars the $1 / 4$-inch rod that is the trough line renter conductor. If desired, a type N litting could be used by drilling out the hole for the largor fitting. The ingut loop is soldered to the end of the trough line about 3 is inch up from the bottom, and run straight over tos the input fitting. The coupling loop to the mixer erystal is soldered to the end of the trough line botween the mixer crystal and the center conductor. The entire u.h.f. portion of the converter can le silver plated, if means are available, but this is not mandatory.

Filtering

The power to the converter should be filtered to prevent signals in the i.f. range from getting into the converter and back into the receiver.

Fig. 16.30 -Bottom view of the 1296 -Mc. converter. Oscillator multiplier components ore at the right. Note the diode multiplier in the lower right corner of the $1282-\mathrm{Mc}$. tank circuit. The mixer crystal is of the left end of the tank circuits.

Crystal-Controlled Converter for 1296 Mc.

Fig. 16.31-Close-up view of the u.h.f. circuits. These are halfwave lines, funed at their midpoints. The mixer crystal is held in place by a slotted brass sleeve, soldered to a capacitor plate on the outside of the trough. Though it is not visible in the picture, the capacitor plate is insulated from the trough end with a thin film of plastic. Screws that hold the inner conductors in position are insulated from the capacitor plate by fiber washers.

This is accomplished hy bringing in $13+$ through a 47 -ohm resistor and a foed-through bypass aphacitor. The filament powrer comes through a choke wound on a l-watt resistor and through a feed-through hypass. To cover the exposed terminals on top of the converter, an aluminum can that $35-\mathrm{mm}$. film is packaged in was used. The top was flattened by placing the top over a
large down and hammering out the bulge. The top is then drilled for the feed-through eapacitors and the terminal strip mounting screw. The top is held in place on the top of the chassis with there components. The porser cable is brought in through a grommet in the bottom of the film can. The paint can be removed from the film can with lacquer thinner.

16 - V.H.F. RECEIVERS

Adjustment

The oscillator and multiplier stages can be checked out as in any converter, using a grid-dip meter to tune circuits, up to the 213-Mc. stage. The output of the $427-\mathrm{Mc}$. stage can le checked by temporarily disconnecting the multiplier diode where it connects to the side of the trough line and putting a meter in series with the diode to ground. Current here should be 6 ma . or more. The diode should then be reconnected and a 0-1-ma. meter connected to the mixer current jack. The tuning screw in the $128^{2} 2-$ Mc. trough line should be adjusted until erystal current is obtained. If the crystal current is less than 0.2 ma., solder a $1 / 2$-inch long piece of wire to the contact at the small end of the mixer erystal and bend the other end near the center conductor of 1282-Mc. line, and readjust the tuning.

Next, adjust the tuning of the 1296 -Mc. line until the crystal current dips. This indicates that the input circuit is tuned to 128°. Mr. Back the sorew out slightly, and you will be near 1204 Me. Connect the converter to a reveiver tuned to 14 Me. and adjust the i.f. amplifier coils for maximum noise in the reodiver. It this point you can listen for the harmonic of a $1+4$ - or $4: 3$-Ne. transmitter and peak up the imput on that signal. For further improvement a crystal diode noise

- generator will be required.

With a noise generator, experiment with size and shape of input corpling and mixer coupling loops, and local oscillator injection. It may be worthwhile, also, to try different taps on the i.f. imput coil. When changing mixer crystals, do not decide which is best until you have optimized these adjustments for the particular crystal in question. A $1 N 21 \mathrm{E}$ may seem no better than the 1×2113 you started with, until things are peaked up for the new crystal. Then there is a difference.

It is important that the shortest possible feedline be used at this frequency. RGC-8/U is commonly used, but has about 9-db. loss per 100 feet. The converter has a BNC input connector as IRG-55/U cable is used between the converter and the antenna relay, a distance of three feet. From the relay to the antenna, $\mathrm{RGG}-8 / \mathrm{U}$ is used. D ouble-shielded cables such as RC - $71 / \mathrm{U}$ 93-ohm or IR(i-55/U 53 -ohm cable should be used between converters and the receiver to keep signals at the intermediate frequency from leaking to the receiver.

K6AXN provided a drawing of the converter top plate which can be used as a template for drilling. Copies of this template will be sent free of charge upon receipt of a stamped self-addressed envelope. Address ARRL Technical Dept., West Hartford 7, Conn.

CHAPTER 17

V.H.F. Transmitters

Transmitter stability regulations for the 50Me. band are the same as for lower hands, and proper design may make it possilne to use the same rig for $50,28,21$, and even 14 Mr., but incorporation of $14+$ Mc. and higher in the usual multiband transmittor is generally not feasible. Rather, it is usually more satisfactory to combine 50 and 14 . Mc., since the two hands are close to a third-harmonic relationship. At least the expiter portion of the transmitter may be made to cover both bands very readily.

Though no stability restrictions are imposed by law on amateur operation at IHI Mc. and higher, the use of stabilized narrow-hand systems pays off in improved effectiveness in hoth transmitter and roceiver. It is this fartor, more than the interference potentialitios of the wide-band systems, which makes it desirable to rmploy arvanced techuiques at 144,220 anul 420 Mc.

The low-power stages of a transmitter for the v.h.f. bands need not be greatly different in design from those used for lower lounds, and the techniques of Chapter Six can be used. The constructor has the elonec of starting at some lower frequency, usnally around 6,8 or 12 Mc., multiplying to the operating frequency in one or more additional stages, or he can use a high initial frequency and thus reduce the number of multiplier stages. The first approach has the virtue of using low-rost errstals, but h.f. crystals may effeet an economy in power consumption, an important factor in portable or emergency-powered gear.

- CRystal oscillators

Crystal oseillator stages for v.h.f. transmitters may make use of any of the circuits shown in Chapter Six when ervstals up to Iㅇ Mr. are used, hout certain variations are helpful for higher frequencies. (rystals for 1: Mc. or higher are usually of the overtone varioty. Their frequency of oscillation is an approximate odd multiple of some lower frequency, for which the erystal is artatly ground. Thus 2t-Mc. errsals commonly used in 14t-Mr. work are 8-Mc. euts, suecially treated for owortone charameristics. The overtone arystals eurrently being supplied are nearly as stahde as those designed for fundamental opration, and they are easy to handle in properly designed circuits.

Best results are usually obtained with overtone crystals if some regeneration is added. This makes for casy starting under load and greater output than would be oldtanable in a simple triode or tetrode circuit. Ragenerative cireuits, with constants for 8- or el-Mc. crystals, are shown in Figs. 17-20 and $17-24$. Trioles are shown, but the same arrangement may be tused with tetrode or pentolde tubes. The important point in cither case is the amount of regeneration, controlled by the
number of turns below the tap in L_{1} of lig. 17-20 or $17-2$. There should the only enough feedback to assure casy crystal starting and satisfactory opration under load: too much will result in oscillation not under the control of the erystal.

Overtone operation is possible with standard fundamental-type erystals, using these cireuits. l'ractically all will oscillate on their thind overtones, and fifth and higher ohd overtones may be possible. Adjustment of regeneration is more critical, however, if the ervatals are not ground for orertone characteristics. The frequeney may not be an exact multiple of that marked on the crystal holder, so care should be used in working with crystals that are near a band edge.

Crystak ground for overtome service can be mate to oseillate on other overtones than the one marked on the holder. For more disenssion of overtone oscillator technigures see QST for April, 1951, page 56, and March, 1950. page 16.
(rristals are now available for frequencies up) to around 100 Me . They are somewhat more expensive and more critical in operation than those for 30 Me . and lower, howevor. Eise of $50-$ Me, crostals is mate occasionally as a motas of preventing radiation of the harmonies from lower frequency crystals that might cause TVI.

- FREQUENCY MULTIPLIERS

Frequency multiplying stages in a v.h.f. transmitter follow standard practier, the principal procaution being arrangemont of components for short lead hength and minimum stray caparitanere. This is particularly important at Ift Me. and higher. To redure the possibility of radiation of oscillator harmonics on frequencies that might interfere with television orother serviess, the lowest satisfartory power level should be used. Low-powered stages are ceasior to shield or filter, in case such steps become neerssary.

Common practice in v.h.f. exciter design is to make the tuned circuits capable of operation over the whole range from 48 to is Me., sis that the ontput stage can drive cither an amplifier at 50 to 51 Mc. or a tripler from 48 to 144 Mr. Tripling is often done with push-pull stages. partioularly when the output frequency is 10 be 144 Mc , or higher.

AMPLIFIERS

Nost transmitting tubes now used by amatrurs will work on 50 Mc ., but for 144 Mc. and higher the tube types are limited to those having low input and output capacitances and comparet physicall structure. Lads must be as short as possibhe, and soldered connections should be avoided in high-powered eireuits, where heating may be great enough to melt the solder.

Plug-in coils and their assoriated sockets or
jack hars are generally unsatisfactory for use at 144 Mc. and higher because of the stray inductance and capacitance they introduce. One way around this trouble is the use of a dual tank cirruit in which the inductor for 144 Mc, is a conventional tuned line, with its shorting har made as a removable plug. When the stage is to be used on another band the short is removed and a coil is plugged into the jack, the line then serving as a pair of plate leads. Such an arrangement will operate as efficiently on 144 Mc . as if it were designed for that hand alone.

At 220 Mc . and higher it may be necessary to employ half-wave lines as tuned circuits, as shown in Fig. 17-28 (P_{1} in place).

Neutralization of triode amplifiers for 50 and 1.44 Mc. can follow standard practice, but the stray inductance and capacitance introduced by the neutralizing circuits may be excessive for $2: 20 \mathrm{Mc}$. and higher. In such instances groundedgrid amplifiers may be used. Driving power is applied to the cathode circuit, with the grid arting as a shield. Some of the drive appears in the output, so both the driver and amplifier must be molulated when a.m. is used. For this reason the grounded-grid amplifier is used mainly for f.m.

Instability shows up frequently in tetrode amplifiers as the result of ineffective screen bypassing. The solution lies in series-resonating the screen circuits to ground, as shown in Figs. 17-13 and $17-24$. The r.f. choke and capacitor values vary with frequency, so screen neutralization is essentially a one-hand device.

FREQUENCY MODULATION

Though f.m. has not enjoyed great popularity in v.h.f. operation, probably because of lack of suitable receivers in most v.h.f. stations, its possibilitios should not be overlooked, particularly for ! the higher bands. At 420 Mc ., for instance, the efficiency of most amplifiers is so low that it is often difficult to develop sufficient grid drive for proper a.m. service. With f.m. any amount of grid drive may be used without affecting the audio quality of the signal, and the modulation process adds nothing to the plate dissipation. Thus considerably higher power can be run with f.in. than with a.m. before damage to the tubes develops or the signal is of poor quality.

Frequency modulation also simplifies transmitter design. The principal obstacle to greater use of f.m. in v.h.f. work is the wide variation in selectivity of v.h.f. receivers, making it difficult for the operator to set up his deviation so that it will be satisfactory for all listeners.

V.H.F. TVI PREVENTION AND CURE

The principal causes of TVI from v.h.f. transmitters are as follows:

1) Adjacent-channel interference in Channel 2 from 50 Mc .
2) Fourth harmonic of 50 Mc . in Chamnels 11 , 12 or 13 , depending on the operating frequency.
3) Radiation of unused harmonics of the oscillator or multiplier stages. Examples are 9 th harmonic of 6 Mc ., and 7 th harmonic of

8 Mc . in Channel 2; 10th harmonic of 8 Mc . in Channel 6; 7 th harmonic of $25-M c$. stages in Channel 7; 4th harmonic of $48-\mathrm{Mc}$. stages in Channel 9 or 10; and many other combinations. This may include i.f. pickup, as in the cases of $24-\mathrm{Mc}$. interference in receivers having $21-\mathrm{Mc}$. i.f. systems, and 48-Mc. trouble in 15-Mc. i.f.'s.
4) Fundamental blocking effects, including modulation bars, usually found only in the lower channels, from 50 - Mc. equipment.
5) Image interference in Channel 2 from 144 Mc., in receivers having a 45 - Mc. i.f.
6) Sound interference (picture clear in some cases) resulting from r.f. pickup by the audio circuits of the TV receiver.

There are many other possibilities, and u.h.f. TV in general use will add to the list, but nearly all can be corrected completely, and the rest can he substantially reduced.

Items 1, 4 and 5 are receiver faults, and nothing can be done at the transmitter to reduce them, except to lower the power or increase separation between the transmitting and TV antenna systems. Item 6 is also a receiver falt, but it can be alleviated at the transmitter by using f.m. or c.w. instead of a.m. phone.

Treatment of the various harmonic troubles, Items 2 and 3, follows the standard methods detailed elsewhere in this IIandbook. It is suggested that the prospective builder of new v.h.f. equipment familiarize himself with TVI prevention techniques, and incorporate them in new construction projects.

Use as ligh a starting frequency as possible, to reduce the number of harmonics that might cause trouble. Select crystal frequencies that do not have harmonics in TV channels in use locally. Example: The 10th harmonic of 8-Mc. erystals used for operation in the low part of the 50 - Mc. band falls in Channel 6, but 6-Mc. crystals for the same hand have no harmonic in that channel.

If TVI is a serious problem, use the lowest transmitter power that will do the job at hand. Much interesting work can be done on the v.h.f. bands with but a few watts output, particularly if a good antenna system is used.

Keep the power in the multiplier and driver stages at the lowest practical level, and use link coupling in preference to capacitive coupling.

Plan for complete shiclding and filtering of the r.f. sections of the transmitter, should these steps become necessary.

Use coaxial line to feed the antenna system, and locate the radiating portion as far as possible from TV receivers and antenna systems.
Some v.h.f. TV tuners have removable strips that can be replaced with double-conversion inserts for u.h.f. reception. For a number of channels the first conversion frequency may then fall in or near the $14+$-Mc. band. Where this method is employed for u.h.f. reception the receiver is very sensitive to 144 -Nc. interference. The cure is to replace the strips with others having a different conversion frequency, or use a conventional u.h.f. converter for reception of the channels from 14 up.

A High-Power Transmitter

High-Power Transmitter for 50 and 144 Mc .

The gear described in the next several pages shows how transmitting equipment for two v.h.f. bands can be coordinated in design so as to work from a single expiter. If the builder so desires, the station may be operated from one set of power supplies and spereh equipment, with a single set of meters measuring the important currents in boh transmitera. Farch item ran be used by itsolf, or they combine readily to cover both 50 and 144 Mr., at a power level appoaching the logal limit.

In order of their description they are an exeiter (aupable of delivering up to 40 watts output at 48 10 Et Mr., a companion amplifier for the 50 - Me. band, a tripler-driver-amplifier for 144. Te., and a dual antema conpler for feeding 5 ()- and $144-$ Me, antennas having lalamed lines. Their physiral appearanere is such that they combine neatly for rack momoting, as sem in lige 17-1.

THE EXCITER

Though it is shown mounted on the same panel as the $50-\mathrm{M}$ e, amplifier in Fig. 17-2, the exciter unit might well be used alone, as a versatile $50-$ Mc. transmitter capable of running up to about

(iá watts input. Provision is made for taking ali 48-Mc. out put at 1 wo power levels, through d_{3} or J_{2}, the latter being used for driving the $1+1$ Mre tripler to be described later.

The exciter is completely shielded, and its power latals are filtered to prevent radiation of harmonirs by the power cable. In addition, there are built-in traps to absorb unwanted oscillaton harmonies that might otherwise be passed on to the amplifier, or to the antemat. Harmonies of this kind are particularly troublesome when thes fall in Chamel 2, which is so close to the operating frequency that a filter in the sutenna line is relatively ineffective against them.

The interstage coupling circuits are of bandpass design. Once they are properly adjusted they require no further tuming, when the frequency is changed over a t-Mc. range. Thus only the crystal switch and the output plate cirromit need be: adjusted when changing frequeney.

Circuit Details

 8, 12, or 24 Mc . for $144-\mathrm{Me}$. poration, or $15.2 \overline{5}$, $8.34,12.5$ or 25 Me. for 50 Me. Its plate cirmuit tunes 24 to 27 Mc., quadrupling, tripling or doubling the rrystal frequency. (Crystals at 24 to 27 Xe are overtone cuts that oscillate at one-third the marked froquency in this rimenit.) A scries-tumed tratp, $L_{1} C_{1}$, in the oscillator plate rircuit absorts the third harmonie of d-Mre. rrystals. This 18-Mc. enorgy otherwiso would pass on to the next stage, where it would be tripled to a fregueney in Channel 2. This harmonic has berm found to be a common canse of Bo Na. TVI in Channel 2 areats.

The doubler is also : 5 3763. A seromal trap, (${ }_{4} L_{4}$, in the grid cirenit, is tumed to the \bar{t} th harmonic of 8-Mc. cerstals. The two traps thus prevent ratialiun of encrgy in Chennel 2, the most rritical transmitler prohlema : 6-meter man ia likely to encounter in eorrecting TVI. They cati loe modified for other fies-

Fig. 17-1-A high-power r.f. section for a 50 - and 144 -Mc. station. Equipment includes a band-pass exciter for both bands, a 50-Mc. r.f. amplifier built on the same panel, a tripler-driver-amplifier for 144 Mc., and a dual antenno coupler for both frequencies. Units can be operoted with a single set of power supplies, and with common speech equipment and meters,

Fig. 17-2-The 50-Mc. r.f. unit. Exciter, left portion on the assembly, also serves on 144 Mc . Amplifier utilizes a 4-125A, 4-250A or 4.400A.

quencies to suit local problems. In example is the 10th hamonic of 8-Mre, revstals, that falls in Chamel 6. A trap for the 5th hamonie of the erystal fredmene should take eare of this.

The 6146 amplifier stage has a shumt-fed pinetwork plate circuit. For best stability over the entire operating range the stage is neutralized. The choke, RP' ('s, is provided to short out the d.e. voltage that would appear on the output cirruit if C_{9} should break down. The choke in the phate lead, $R P^{\prime}\left({ }^{\prime}\right.$, is for parasitic oscillation suppression. Note that earh of the three rathode leads is bypased separately at the sorket. The exriter may be keyed in the 6146 cathode jark, J.

Doublo-tuned band-pass eireuits betwern the oscillator and doubler, and betwern the doublar and final, provide essentially flat response from 48 to 52 Mr ., or $\overline{\mathrm{a}} 0$ to $\overline{\mathrm{a}} \mathrm{M}$ M. A potentiometor in the doubler soreen circuit provides exaitation control for the 6146 , and may be used to compensate for variations in drive that may apmar at some spots in the band.

The link winding on the doubler plate rireuit, L_{6}, is for the purpose of taking off low-level tsMe. output to drive the tripler in the 141 -Mr. r.f. unit. Note that the keving jack in the $61 / 46$ cathode cireuit is the open-rireuit type. Removing the key thus disables the 6146 stage, when the first two stages are being used in this way. Separate heater and filament switehes on all units allow them to be operated separately. lighvoltage supplies maty be left comeeted to all r.f. units, energizing only the filaments and heators in the ones being used.

Construction

The exoiter is built on a $5 \times 10 \times 3$-inch aluminum chassis, with a bottom plate and : perforated aluminum eage to complete the shiehding. The small knotes at the lower left of the front view are for the erystal switch and the exertation control. The erystal swit ch has 12 positions. Tren are for the erystals on the multiple erystal sorket
(Johnson No, 126-120-1). One more erystal position is prowided on the front panel faconvenience if gon want to use a freguener mot covered ly the 10 crystals in the multiple socket), and the $12 t h$ switch position is for an extermal r.f.o. It commets the satize ged to the coasiall v.f.n. imput fitting, and shots out $R P P^{\prime}$, and its parallel rapacitor. The stage then functions as a froqueney multiplier. The output frequency of the vifo. could thus be in the 6-, 8 - or 12-Mr. mange. Ahove the exedtation control may he seen the knobs for the dilf plate and output coupling raparitors.

Three eoaxial comentors atre on the rear wall of the exeiter. The one at the outside edge is for v.f.o. input. The others are the doubler and ia 16 output fittings. Two t-terminal steatite strips handle the various power and motering loads. Adjarent to each terminal exerept the ground ronneetion is a feed-through bypass eapacitor to take the power lead through the chassis,

TVI that might result from radiation of harmonies by the power leads is provented by filtering of earch lead. The feed-through hypasses atre connerted to the exriter cirenits through ref. chokes, the imner ends of whirh are again berpased with small disk coramir rapmeitors. dill power leads are made with shideled wirr, honded at intervals to the chassis.

The side view shows the mult iple erystal sorket at the front of the chassis. sepatate crystal sorkats may ln^{2} used if desired. The uscillator and doubler tubes are in the foreground. The trap rapacitors, C_{1} and C_{4}, are adjacent to theso tubes, while C_{2} and C_{3} are betwern them, a bit off their renter line. To the rear of the sitio3 doubler are C $_{5}$ and C_{7}. The grid thaning eapacitor for the eifti, ("6. is just visible inside the amplifier rompart mont.

A separate lead is provided for eath power circuit. Fixed bias for the 6146 is brought in from the bias smpuly that is part of the high-power amplifier assembly. This bias is desirable to prevent the plate current from rising too high when

Exciter Construction

the excitation is backed off. If the exciter is used alone, fixed bias is umecessary. External meters can be connected in any of the circuits at the terminal strips.
The sides, back and top of the amplifier cage are Reynolds "Do-lt-Yourself" perforated aluminum sheet, now available in many hardware stores. The pieces are joined together at the corners with lengthe of $3 / 8$-inch aluminum angle which can be bought or bent up from sheet stock. The tuning and loading capacitors are mounted on the front of the cage, so this part should the a piece of solid sheet stork rather than the perforrated material. The limensions of the age are not eritical. The original is $53 / 4$ inches deep, $25 / 8$ inches arross, and $41 / 4$ inches high. Make provision for removing the top and outside sheets of perforated stock for convenience in serviring, when the expiter is monnted ag:anst the amplifier unit. Extension shafts and couplings bring out the amplifier controls to the panel.

Inside the eage, the 6146 can be seen with its socket mounted above the chassis on $1 / 2$-inch metal sleeves. The cathode and screen bypasses should comert to separate ground lugs on the top of the chassis, with the shortest possible leads. This wiring can be done conveniently before the socket is mounted on the chassis if nuts are used temporarily to hold the gromed lugs in place over the socket momuling srrews. The nemtralizing adjust ment, C_{s}, is moment on the rear wall of the cage, and wired to the $61+6$ plate clip, and the feed-through bushing with $3 / 8$-inch wide strips of thin copper. A coramic insulator mounted on the wall near the $61+6$ plate cap supports the junction of $R P^{\prime} C_{5}, R P^{\prime} C_{3}$, and C_{9}. An ordinary t ie point supports the uther end of $R F^{\prime} C_{3}$ and the shieded power lead. The plate eoil, LAx, wan be seen in back of the 5a(i:3 doubler tube, wired between the stators of 'ro and ('11. C_{12} and IIPC_{4} are mountel near ('in, and hooked betwern its stat or bar and a ground lug. A short length of 126i-58/U coax runs down through a hole in the chassis from C_{11} over to J_{3}.

Most of the parts visible in the chassis view ran be identified from our description of the panel, rear, and topside liyouts. The oscillator cathode choke, $R F C_{1}$, cim be sten momented upright near the oscillator tube and crystal sockets. Both 576.3 sockets should be oriented so that Pins 4 and 5 are adjanent to the outside chassis wall. L_{1} is visible between C_{1} and the oscillator tube socket. L_{2} and L_{3} rumbetween this socket and that of the doubler. These

Fig. 17-3 - Side view of the exciter, with cover removed. Band-pass coupling circuits eliminate front-ponel tuning controls excepl for crystal switch and oulpul stage tuning.

coils are made from a single length of Miniductor st ock with the specified number of turns removed to provide spacing between them. The same applies to L_{5} and L_{7}. These are to the left of the 6140 socket. L_{4} is between the doubler socket and C_{4}. The trap coils are mounted with their axes vertical, to minimize coupling to the band-pass coils. L_{6} is wound around and cemented to the bypassed end of L_{5}.

The power lead r.f. chokes are mounted between single-terminal tie points on the rear lip of the chassis and the feed-through capacitors. The disk ceramic bypasses are then applied to the tie points. A single-terminal tie point mount ed under $R P^{\prime} C_{1}$ holds one end of the $3: 300$-ohm doubler screen resistor and the lead over to the terminal strip) at the rear. A double tie point is mounted between the two $576 ; 3$ sockets to support the bypassed ends of L_{2} and L_{3}. Another over nearer the rear of the chassis supports the colle end of L_{5} and the hottom of the doubler grid resistor.

Wiring will be simplified by the following procedure. Before mounting the crystal switeh, ground one terminal of earh crystal sorket through a bus wire. Connect short lengths of timmed wire to the other terminal of eabls socket that will be under the switeh. Then when the latter is installed, the wires can be run to the proper contucts and soldered in place. Note that the front wafer of the switch is used for shorting out $R P^{\prime} C_{1}$, while the errstal socket connections are made to the rear wafer, which is more accessible. The v.f.o. input socket is connected to the proper switch contact with a length of RG-58/U coax.

In assembling the power lead filtering compo-

Fig. 17.4-Schematic diagram of 48-54-Mc. exciter. All capacitances less than . $001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. All . 001 - $\mu \mathrm{f}$. capacitors are disk ceramic. All resistors are $1 / 2$ watt unless otherwise specified.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-35-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC-35).
$\mathrm{C}_{4}-10 \cdot \mu \mu \mathrm{f}$. minialure variable (Hammarlund MAC-10).
$\mathrm{C}_{5}, \mathrm{C}_{6}-20-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAC-20).
$\mathrm{C}_{7}-50-\mu \mu \mathrm{f}$, miniature trimmer (Hammarlund MAPC-50).
$\mathrm{C}_{8}-15-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC-15).
$C_{2}, C_{13}-.001-\mu f, 3000$-volt disk ceramic.
$\mathrm{C}_{10}-35-\mu \mu \mathrm{f}$. miniature variable (Hammarlund HF-35).
$\mathrm{C}_{11}-100-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAPC. 1008).
$\mathrm{C}_{12}-100-\mu \mu \mathrm{f}$. 1000-volt mico.
$C_{14}-C_{20}-.001-\mu \mu f$. feedthrough-type ceramic ($C_{e n t r a l a b}$ FT-1000).
L_{1} - 16 furns No. $24,5 / 8$-inch diam., 32 t.p.i. (B \& W Miniductor No. 3008).
$\mathrm{L}_{2}, \mathrm{~L}_{3}-12$ furns each No. 20, 5/8-inch diam., 16 t.p.i (B \& W Miniductor No. 3007). Make from one piece of Miniductor with 5 turns removed between coils. Cold ends are adjacent.
L_{4} - 10 furns No. $20,1 / 2$-inch diam., 16 t.p.i. (B \& W Miniductor No. 3003).
nents at the rear of the chassis, the disk ceramic bypasses can most easily be mounted on the tie points betore the latter are fastened inside the chassis. Wiring up the power leads should be done before the r.f. chokes are mounted in paree.

THE 50-MC. AMPLIFIER

Though the exciter and amplifier are pictured on a single pancl, the possibility of using either by itself should not be overlooked. The exriter will make a fine low-powered transmitter, and the final amplifier may be used with any exriter delivering 1.5 watts or more.

It will take up to the legal limit of porer with a 4 -400 A tube, 750 watte with a $4-250 \mathrm{~A}$, or 400 watts with at 1-125.
L.5, L7-6 turns No. 20, 1/2-inch diam., 16 t.p.i. (B \& W Miniductor No. 3003). Make from one piece of Miniductor with 3 turns removed between coils.
$L_{6}-2$ furns hookup wire wound around cold end of L_{5} and cemented in place.
L8-4 turns No. 18, 3/4-inch diam., 8 t.p.i. (B \& W Miniductor No. 3010).
J_{1}, J_{2}, J_{3}-Coaxial chassis fitting (Amphenol 83-1R).
\mathbf{J}_{4}-Open-circuit phone jack.
$R_{1}-25,000$-ohm 4-watl pot.
R_{2}-33,000-ohm 3-watt (3 100,000-ohm 1-watt in parallel).
$R_{1} C_{1}$ 2.5-mh. r.f. choke (National R-100S).
RFC $_{2}$, RFC $_{3}$, RFC R $_{4}-7-\mu \mathrm{h}$. solenoid v.h.f. choke (Ohmite Z-50).
RFC $_{5}-6$ turns No. 22 finned wire, $1 / 4$-inch diam., spaced one-wire diam.
RFC $C_{6}-$ RFC $_{12}-15$ turns No. 24 enam. close-wound on high value 1 -watt resistor.
S_{1}-2-pole 12 -position miniature ceramic rotary (Cenfralab PA-2005).

The plate circuit is a larger version of the one used in the 6146 stage of the exciter, a shumt-fed pi-net work. Operation is completely stable without neutralization, probably because the natural neutralized frequence of the tuhers is alose to at Mc. Provision was originally made for nentralization, but it was found to be unneressary: Farasitic suppression devices were not required, but if the layout is varied appreciably from that shown, the builder should cheek for both types of instability with grat rare.

The jack in the filament renter-tap lead is for keving, or for insertion of a grid-bias modulator. A bias supply that delivers about 50 volts negative for the 6146 and 150 for the final amplifier is included in the final stage assembly. Filament transformers for the exciter and finat are also part

50-Mc. Amplifier

of this unit. Separate filament switches are included; one for the exititer and the other for the final tube and the blower motor. Power leads exeept the high voltame, are brought in on an spin plug.

Building the Amplifier

A $12 \times 10 \times 3$-inch aluminum rhassis is uscol for the amplifier unit. Thus, it maty he combined with the exciter on : $100^{1} 2$-inch rack panel, if desired. The amplifier rontrols monnterd near the pancel bottom are, left to right, the imput link reatance catberitor, \boldsymbol{C}_{1} : the gridtaning raparitor, ('2: and s_{1} and \mathfrak{s}_{2}, s_{1} applies ate. to the framsformer for the exciter heaters and to the hias supplies. seaplies a.ce to the filamont transformer of the amplifier and starts the cooling fand Above the swite hes on the panel are the amplifier plate tuning and loading controls.
On the rear of the chassis, coixial connere tors for r.f. input and output are mounted at cither end. Betwem them are the high-voltage comnector for the plate supply, the eathode rirruit jack, and a fitting for the remaining power and moter louds.
Above the chassis, the $4-250 \mathrm{~A}$ tube is som near the front of the chassis. Note that its socket is mounted on $1 / 2$-inch sleceres. Holes 3 z inch in ditumeter are drilled in the ehassis diredtly undermoith those provided in the socket for the passitge of cooling air. Holes arre also drilled adjaeent to the eathode, grid, and wirren pins to pass their leads. Bypassing of cathode and sereerel is done al wowe the chassis. The heat radiating plate commertor for the $1-250 \mathrm{a}$ was cut down to four fins to reduce the ower-all height recturement. The filamont transformer, T_{3}, and the sereen modulation choke, $h_{\text {a }}$ are also topside.

The amplifier plate virenit components are to the left of the tulbe. The tuning
 'aplaritor, is momented on the wite wall of the shieldind assombly: Two modifications should be mate to the nent ralizing unit before mountinus. 'Thererimular plates supplied should the reallated with larger gheg, 3 inthes in diatheter, 10 intereaso the availathe tuming ramgr, Tho haring assembly of the rotor disk must be temporarily removed, and a strap of copper run betwern the screw holding the bearing in place and the opposite (grounded) end of the stuater reramie

Fig. 17-5-Bottom view of the 50Mc. exciter, showing bond-poss circuits and TVI protective measures.
insulating pillar, grounding the capacitor rotor. Two copper straps must be inserted between the stator disk and its insulutor, to conneet the stator with the blocking capacitor, C_{5}, athl with $L_{\text {a }}$.

The blocking rapanitos, the shuntifed r.f.
 are assembled into one unit belore mounting in the amplifier. This is done with the aid of the hardware supplied with the TV-t ype high voltage capacitors. The bypass capacitor, on the bottom of the stitek, is equipped with one ferminal thresaded and ond tapped. The latter is on the fottom and, for fastening the assembly to the -hassis. The threaded terminal serews into the $2^{2}{ }^{2}$-inch reramic insulator upon which $K F^{\prime}(2$ is wound. The ends of the choke winding are serured by luge at earhend of the insulator. C'5 should be fitted with a thaceded torminal at the lowere end for serewing into the top of the insulator. This also somers to fastem the $\frac{3}{4}$-inch wide strip of copper which runs up to the $1-250.1$ plate (ap). Finally, the longer of the two copper strips coming from the stator of C_{7}^{7} is s.rewed to the top of 'ra. A ${ }^{1}$-zinch feedthrough bushing brings the high-voltage up to the hot side of (${ }_{6}$. The loading capawitor, C_{4}, is mounted on the chassis directly moderneath ('z. The plate coil, L_{3}, gets rather warm when the rig is operated at high power level, so both of its ends must be bolted in plare rather than soldered. One end is bent around and fistened under a

Fig. 17-6-Interior of the $50-\mathrm{Mc}$. final amplifier. Plate luning copacitor is modified neutralizing unit, left.

nut provided on the stator of C_{8}. The other is bolted to the short length of eopper strap previously fastened to the stator of ('r. A length of IR(i-8 U coowiab cable is run between C_{8} and J_{2}. It the capacitor end, this cable is eonnerted to lugs under the stator and frame mounting screws.

Solid sheet :utumimum is used for the enclosure of this unit, as it must be reasomable airtight exrept for holes directly above the tule itself. The side that supports (77 must be of farly heavy stoek for rigidity. Home-bent $3 / 4$-inch angle stock was used to hold the assembly together. If the over-all height of the unit is kept to just about that of the $101 \frac{1}{2}$-inch ratck panel, there will be enough clearance above the tube plate connector.

Most of the under-chassis components are visible in the bottom view. The grid cireuit is near the front edge of the chassis. Cupper strap conneerts the tube socket grid pin with the stator of $C_{2} . L_{2}$ then is soldered between this strap and a tie point. L_{1} is slid inside the cold end of L_{2}, and remented light ly in place.

The cooling fan sucks air in from the side of the amplifier near the back corner. The motor is mounted on an aluminum bracket. The fan as supplied will blow, rather than suck, so the bades must be bent back to reverse their pitch. A small piece of aluminum window sereening shields the hole cut in the chassis side for the fan.

Bias supply eomponents occupy the lower left
quarter of the bottom view. Layout and wiring of this portion of the rig is anything but ritiont. Shielded wire was used for atl power leads. Bypassing at the power comnector should be done with very short leads, and ('14 should be mounted as elose as possible to the high-voltige connector.

Adjustment and Operation

An initial setting of the excitor controls can be made hefore power is :uplied, if a grid-rlip meter is avaikable. The series trat)s, $L_{1} C_{1}$ and $L_{4} C_{4}$, introdure varying amounts of reartance across the tuned circuits when they are adjusted, so some further adjustment will be needed after these are set up finally, but the following procedure will result in a close appoximation.

Disconnect one end of L_{33}. Fig, 17-4. Couple the gridedip meter to L_{2} and tune it with C_{2} to about 24.5 Mr. Leaving the setting of r_{2} at that position, lift one end of L_{2}. Recomeret L_{3} and resonate $C_{3} L_{3}$ to alout 25.j) Mr. Reconnert L_{2}. and the rireuits should be set for operation con 48 to 52 Me. For 50 to 54 Mr., the frequeneides shoukd be 25.5 and 26.5 . Mc 。

Proredure for the second bund-pass circuit is similar except for the frequencies involved. For 48 to 52 Dr', discomenet L_{47} and thene (${ }_{5} L_{55}$ to 49 Me. Reconnect L_{-a} and disconneret L_{5}, tuning $L_{7} C_{6}$ to 51 M . Recomnect L_{5}. For the 50- 10 $5 t$-Mr. ringe these frequencies wouk be about 51 and 53 Mc.

50-Mc. Amplifier

Fig. 17-7-Schematic diagram and parts list for the 4-250A amplifier. All capacitors marked $.001 \mu \mathrm{f}$. are 600 -volt disk ceramic.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. miniature variable (Hammarlund HF-50).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$. miniature variable, double-spaced (Hammarlund HF-15X).
$C_{2,} C_{4}, C_{13}-.001-\mu \mathrm{f} .1000$-volt disk ceramic.
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{14}-500-\mu \mu \mathrm{f} .20,000$-volt ceramic (Cornell. Dubilier MMI 20T5).
$\mathrm{C}_{\bar{i}}$-Disk-type capacitor with 3 -inch diam. plates (made from Millen 150111.
$\mathrm{C}_{x}-\mathbf{2 5 0}-\boldsymbol{\mu \mu}$. variable, double-spaced (Johnson 250-F20). $\mathrm{C}_{3}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}-12-\mu \mathrm{f}$. 250-volt electrolytic.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial chassis fitting (Amphenol 83-1R). J_{3}-Closed-circuit phone jack.
$C R_{1}-65-\mathrm{ma}$. selenium rectifier (Federal 1002A).
CR_{2} - 20 -ma. selenium rectifier (Federal 1159).
$\mathrm{L}_{1}-5$ turns No. 24, $1 / 2$-inch diam., 32 t.p.i. (B \& W Miniductor No. 3004).
$\mathrm{t}_{2}-4$ furns No. 18, $3 / 4$-inch diam., 8 i.p.i. (B \& W Miniductor No. 3010).
Comneet a source of 6.3 volts a.e. at 2.5 amperes or more between the ground and heater termiuals, and a low-range meter from the doubler grid return terminal to ground. Insert crystals for the desired frequency range. Apply about 20 o volts d.e. to the oscillator plate-sareen terminal through a 50 or or lon-ma. meter. Current should be 20 to 30 ma ., and grid current in the following stage should be about 0.5 mat, when the voltage is increased to the normal 300 volts. Touch up the tuning of the band-pass circuit, if necessary, to get uniform response arross the desired range.

The trap cireuits ram le adjusted at this peoint, tuning for minimum signal at the fregueney to be attenuted in earh case. A rereiver tuning to the harmonir frequencies is helpful. These will be about 18 to 20.25 Me. for the first trap and 56 t.o (i) Me. for the secoml, if they are for Chanmel 2. A TV receiver on the rhammels to be protereted may also be used, meroly thoning the traps for minimum TVI. some slight readjust ment of the
$\mathrm{L}_{3}-6$ furns No. 12 tinned wire, 1 -inch diam., spaced twice wire diam.
L_{4}-Filter choke, about $10-$ hy. 100 -ma. (Triad C-10X).
B_{1}-Blower motor and fan (Allied cat. No. 72P715).
$\mathrm{R}_{1}-20,000$ ohms 10 watts.
R_{2} - 500 ohms 2 watts (21000 -ohm 1 -watt resistors in parallel).
$\mathrm{RFC}_{1}, \mathrm{RFC}_{3}-7-\mu$ h. sole noid choke (Ohmite Z-50).
RFC_{2}-Solenoid choke, 42 turns No. 24 d.c.c. closewound on $1 / 2$-inch diam., $21 / 2$-inch long insulator (National GS-2).
$\mathrm{S}_{1}, \mathrm{~S}_{3}$-Single-pole single-throw loggle switch.
T_{1}-Power transformer, 135 volts at 50 ma . (Triad R-30X). T_{2}-Filament transformer, 6.3 volts at 3 amp . (Triad F-16X).
T_{3}-Filament transformer, 5.2 volts c.t. at 15 am . (Triad F.!lu).
band-pass cirenit may be needed after the final trap tuning is done.
Now remove the grid eurrent meter and ground the metering terminal in the doubler grid cireuit. Connect a meter (0 to 5 ma . or more) between the terminals provided for measuring the 6146 grid current. Set the sereen potentiometer, R_{1}, to about the middle of its range and apply about 200 volts to the doubler plate-sereen input terminal. Adjust the band-pass circuit, $L_{5} C_{5}, L_{7} C_{6}$ for ne:rrly uniform response across the desired rangre, using the 6146 grid current as the output indie:ttion. There should be at least 2 ma. across a 4 -Me. range when the doubler plate voltage is raised to 300. Note that the sereen potentiometer controls the input to the doubler, and through it the exertation to the 6146.
The 48-Me. output coupling adjustment, $L_{6}{ }^{\prime}{ }^{7} 7$, may be cherked at this time. The line to a $14.4-$ Me. tripler stage shoukd be connected to J_{2}, and the series caparitor, C_{7}, adjusted for maximum
grid current in the driven stage. Recheck the adjustment of the band-pass circuit after this is done.

The 6146 amplifier stage had to be neutralized for stable operation. Its adjustment was not eritical, however, and ('y could be set anywhere near minimum capacitance with good results. Start out with its plates meshed about $1 / 8$ inch. With grid drive applied but no plate or sereen voltage, tune the 6146 plate circuit through resonance, trying various settings of C_{8} until there is no grid current dip at resonance.

A load for the 6146 output circuit is now required. This (an be a 10- or (0)-watt lamp, with ain $0-\mu \mu \mathrm{f}$. capaceitor in series to tune out its reartance. Adjust it for minimum reflected power, as indicated on ans.w.r. bridge. With the load connected and grid drive on, apply 300 to 400 volts to the amplifier plate and sereen terminal. Tume Gio for maximum indicated output. hoading can be adjusted by varying C C_{11}, retuning (${ }_{10}$ after each novement of C_{11}.

Reeheok for nentralization at this point, working for a setting of C_{8} at which minimum plate current, maximum grid current, and maximum output all oceur at the same setting of the plate tuning eapacitor, C Cob The input can be rum up to about ($6 ;$ watts with plate modulation and $35-40$ watts output should be ohtained. Higher input ran be run on c.w. Plate voltage should not exeved about $f(0)$ with plate modulation, though it ran be some what more for c.w.

Now make a final check on the trat eireuits, if noeressary. In case TVI is experieneed, adjust the traps while someone watehes the TV sereen, and see whether any improvement is possible. Remember that the traps shown were designed primarily to reduer Channel 2 interference. Where the trouble is with other chanmels, the traps an be molified to reduce the offending harmonie as required. A low-pass filter or a th harmonir trap will be needed if there is harmonic: interference in Channels 11-13.

The amplifier as shown furnishes heater voltage and protective bias for the exciter. Hook together the 6.3 -volt and ground terminals of the two units, and connect the bias output pin on the amplifier to the 6146 grid return in the exeiter.

Apply 115 volts a.ce. to the appropriate pins on the amplifier power plug. When s_{1}, loig. 17-7, is closed, the exriter heaters and the hias supplies are energized. The hias voltages are about 50 and 1.50 negative for the driver and amplifier, resperetively. Closing x_{2} lights the amplifier filament. and starts the fan motor.

For the initial testing of the amplifier disconneet its fixed hias supply, be lifting the comertion between R_{1} and R_{2}, so that instability will be more evident. Connect the output of the exciter through a length of coaxial cable to J_{1}. Hook : 0-25- or 0-50-ma meter to the terminals provided for measuring grid enrrent. Tum on the exeiter and adjust the driver output and amplifier input for maximum grid current. Set this current between 10 and 15 mat. with the exaitation control, R_{1}, in the exciter. To insure proper adjustment of the amplifier grid cireuit, insert an s.w.r. bridge unit such as a Mieromateh in the coas comeeting the driver and amplifier, and tume ('is and ('2 in the amplifier alternately for minimum reflected power. Adjust the driver tuning for maximum forward power.

Never apply soreen voltage without having the plate voltage on also, and do not operate the amplifier without load. Either will result in exassive soreen dissipation, and almost certain tube failure if continued for any length of time. I usable dummy load for testing can be made by comnerting two or more lou-watt lamps in parallel. I variable series eaparitor, $50 \mu \mu$. or more, will be helpful in making the lamp load something like 50 ohms, resistive, at this froquelley.

It is well to start with something less than maximum voltages in testing. If the phate voltage is under 1000 and the sareen voltage alout 200 to $3(1)$ volls, little harm can result if something is not quite right. With the dummy load comneded, apply plate and sareen voltages. set ('s near the mithle of its range and tune f^{\prime} ' for maximum out put. If this oeceuts at or alose to the end of the
 in the plate coil accordingly. Aljast ${ }^{\prime}$'s for maximum output, returning (; as requited. If the grid current dropped helow 10 ma. under load,

Fig. 17.8-Battam view of $50-\mathrm{Mc}$. exciter and amplifier. Nate that the twa units are buill separately, though they mount tagether an a single panel. Amplifier unit includes bias and filament supplies for bath.

144-Mc. Driver-Amplifier

inerease the drive with the doubler sereen potentiometer in the exciter.

Check now for stability. Briefly cut off the drive and see if the amplifier grid current drops to zero. If it doesn't, the amplifier either needs neutralization, or it has a parasitic oscillation. If no grid current shows with drive removed, note whether, when drive is applied and the amplifier is tuned properly, maximum output, minimum plate current and maximum grid current all occur at the same phate tuning. If they do, the amplifier is operating satislactorily.

If oscillation does show up, eheck its fregrency. If it is much higher than the operating frequency (probably over 150 Mr .) v.l.f. parasitie suppression measures are in order. If it is in the 50 -Mc. region, neutralization will be required. These troubles are most eommon in multiband designs, and unlikely in a layout of this sort. Neutralization of the eapancity-bridge type, like that in the exeiter, can be incorporated readily, and parasitic suppression is covered in detail elsewhere in this Handlook, Neutralization may reduire adlitional grid-plate caparitance in some layouts. Provision wats made for neutralization in the origimal layout (explaining the phaged hole in the front panel), but it was found to be unneressary.

When the amplifier is operating stably, the plate and streen voltages maty he increased in atecordance with the tube manufacturer's ratings, for the type of opration intended. Gperating conditions are different for the three tabes which can be used and they should follow the manufacturer's recommendations. This is not to say that variations from the published data are unsate or undesirable. Any of the values ran be varicol over quite a range if the maximum rating for eneh tube element roneremed is not execeded. In this comnertion, it is highly desirathe to provide continuous motering for the grid, sereon, and plate eurrents. 'This, with a knowledge of the applied voltages, will help insure proper operation and make correct adjustment a simple matter.

A 144-MC. DRIVER-AMPLIFIER

The unit shown in Figs. 17-9 through 17-14 is a three-stage tripler-driver-amplifier that may be used with the exciter just described, Driving power at 48 Mc. may be taken from the doubter stage (hy comecting to J_{2} in Fig. 17-4) or from the output stage, rumning at low power. Almost any 50-Mc. transmitter of 3 to 5 watts output could be used by sulstituting a suitable erystal and retuning the stages for operation at 48 to 4!. 3 Me. If a small $1+4-$ Me, transmitter is available, the tripler stage may be dispensed with, in which case about 5 watts drive on 144 Mc. is required.

This section of the station is built in two parts. The tripler and driver stages are in the small portion at the right of Fig. 17-9, with the final stage at the loft. All are push-pull stages, the tripler and driver using dual tetrodes. The tripler is an Amperex 6360, followed by an IRCA 6524 straight-through amplifier. This drives a pair of $4-125 . A s$ in the final stage.

Input to the $4-125.1 s$ can be up to 600 watts on a.m. phone, or 800 watts on c.w. or f.m. By suitable adjustment of sereen and plate voltages the power can be dropped as low ats 150 watts input and still mantain good efliciency, Some means of reducing power is highly desirable, as most operation on 1 H 4 . Mc. can be carried on satisfactorily with low power.

The Driver Portion

'The tripler' and driver stages, Figs. 17-11 and 1-12, both operate well below their maximum ratings. Solf-tumed grid circuits are used in each stage. This simplifies construction, and in the case of the driver stage, reduces the possibility of self-oscillation. With a surplus of drive available the grid circuit of the $6.52 t$ may be resonated as low as 1:30 Mr. There is little tendeney to thmed-plate tumed-grid oseillation, therefor, and neutralization is not required.

Tripler and driver are built on a standard $5 \times 10 \times 3$-inch aluminum chassis, with the tripler at the back. Its plate cireuit is tuned from the front panel by an extension shaft. Omission of the soroon bypass on the tripler is intentional as the stage works satisfactorily without sereen bypassing.

The fin2! is easily over driven. This maty be corrected by squeezing the driver grid coil turns

Fig. 17.9-The high-power 2 -meter rig, with shielding enclosures in place. The small unit af the right houses the tripler and driver stages.
closer together, lowering the resonant frequency until the desired 2.5 to 3.5 ma. is oltataned across the band. The farther it can be resonated bolow 144 Mc . the less likelihood there is of self-oscillation in the driver stage.

The 6524 is mounted horizontally, and holes are drilled in the chassis under the tube to allow for air circulation. l'late leads are made of thin phosphor bronze or eopper, bent into a semicircle, connecting the butterfly cabacior and the heatdissipating connectors. This allows the lattor to be removed for changing tubes, without putting undue strain on the plate pins. The eonnertors have to be sawed or filed down on the insides to fit on the 6524 pins. The coupling link at the driver plate circuit is tuned, to provide efficient transfer of energy to the amplifier grids.

Smatl feedthrough bypasses are used in the driver screen circuit. (55 is mounted in the aluminum plate that supports the 6524 socket, and C_{6} is in the rhatssis surface.

Amplifier Features

Design of the +125.1 grid circuit is important in achieving efficient transfer of energy from the driver stage. The input capacitance of the large tetrodes is so high that a tuned grid circuit of conventional design cannot be used at 144 Mc., so a half-wave line is sulstituted, as shown in Figs. 17-1:3 and 17-14. The input coupling link is series tuned, permitting adjustment for minimum standing wave ratio on the coaxial line connecting it to the driver stage output link. The grid line, $L_{1} L_{2}$, is made of $1 / 4$-inch copper tubing, to redure heat lossis.
Maintaining the $4-125 . \mathrm{A}$ screens and filament leads at ground potential for r.f. is neressiury for stability. To this end, the tube sockets are mounted above the chassis, rather than below. They are elevated only enough to allow the socket contacts to elear the chassis, and are mounted corner to corner, with the inner comers almost touching. The grid line is brought up through lo-inch rhassis holes and soldered directly to the grid contacts. This determines the line spacing, about $11 / 2$-inches center to center.

The inncr filament terminals on each socket are grounded to the chassis. The others connect to feedthrough bypasses with the shortest possible leads. These are joined under the chassis with a shielded wire and tied to the filament transformer. The r.f. chokes in the screen leads are under the chassis, their wire leads coming up through Nillen type 32150 fcedthrough bushings inserted in chassis holes under the screen terminals. The two sereen terminals on each socket are strapped together with a $3 / 8$-inch wide strip of flashing eopper. The screen neutralizing caparitor is mounted as close to the sockets as possible and still leave ronm for the shaft coupling on its rotor. Leads to its stators are about one half inch long.

More compart and symmetrical design is possible if a modified single-section capacitor is used for C_{6}. It should be the type having supports at both ends of the rotor shaft. The Nillen 19140 and Hammarlund XC-140 are suitaible units for the purpose. The stator hars are sawed at each side of the center stator plate. The front rotor plate is removed, making is split-stator variable with 4 plates on each stator and 8 on the rotor, This procedure may not be applicable to all $140-\mu \mu$ f. capacitors, but any method that results in a balaneed unit having about $50 \mu \mu$ f. per section should do.

Construction of the final plate circuit should be clear from Fig. 17-10. Tuning is done with ports of a disk-type neutralizing capacitor (Millen 15011) mounted on ceramic stand-offs $31 / 2$ inches ligh. These are made of one 1 -inch and one $21 / 2$-inch stand off earh, fastened together with a threaded insert. Connection to the lines is made with eopper or silver strap, $41 / 2$ inches from the plate end. Silver plating of all tank circuit parts is a worth-while investment, though it should not be considered a necessity. A shaft coupling designed for high-voltage service is attached to the threaded shaft of the movable plate, and this is rotated with a shaft of insulating material brought out to the front panel.

A word about the extension shafts is in order at this point. If they are of metal they may have a serious detuning effect in some circuits, even though they are conneetcd through insulating couplings. Bakelite rod is fine, but since the insulating qualities are of no importance, $1 / 4$-inch wooden doweling will do the job just as well. Lucite or polystyrene rod will

Fig. 17-10-Rear view of the 4-125A final stage. The split-stator capacitor near the middle of the picture is the screen neutralizing adjustment. The plate line is tuned with a capacitor mode from parts of a neutralizing unit, mounted on ceramic stand offs.

Fig. 17.11-Schematic diagram of the tripler and driver stages of the high-powered 2-meter transmitter.
$C_{1}, C_{2}-10.5 \mu \mu \mathrm{f}$.-per-section butterfly variable (Johnson 10LB15).
$\mathrm{C}_{3}-\mathbf{2 5}-\mu \mu \mathrm{f}$. serewdriver-adjustment variable (Hammarlund APC-25).
$\mathrm{C}_{1}-25-\mu \mu \mathrm{f}$. miniature variable (Bud LC-1642).
$\mathrm{C}_{5,} \mathrm{C}_{6}-500-\mu \mu \mathrm{f}$. feed-through bypass (Centralab FT. 500).
R_{1} - 11,000 ohms 2 watts (two 22,000-ohm 1-watt resistors in parallel.)
$\mathrm{R}_{2}-50,000$ ohms 2 watts (two 100,000-ohm 1-watt re. sistors in parallel).
L_{1} - 2 furn insulated wire around center of L_{2}. Twist leads to J_{1} and C_{3}.
L2-13 turns No. 20, 5/8-inch diam., 7/8-inch long, center lopped (B \& W Miniductor No. 3007).
not stand the heat and should not be used.
The final chassis is aluminum, 10 by 12 by 3 inches, matching up with the driver ehassis to fit into a standard $101 / 2$-inch rack panel. Complete enclosure is a must for TVI prevention, and it pays dividends in improved stability by providing effoctive isolation of circuits that tend to give trouble in open lavouts.
The enclosures were made ly mounting ! 2-inch aluminum angle stoek around the edges of the chassis of both units and cutting the sides and covers to fit. It was not intended to cool the driver unit originally, so the enclosure "as mate of perforated aluminum. The blower for the final provided plenty of air, however, so three holes are made

Fig. 17.12-Side view of the tripler and driver stages. Coil adjacent to the 6360 tripler tube is the grid coil for the 6524 driver. Plate leads for the driver tube are flexible copper straps, to permit removal of the tube from its socket. Screwdriver adjustment at the lower right is the reactonce funing copacitor for the tripler input link.
$L_{3}-3$ turns No. 14 enamel, $3 / 4$-inch diam., spaced $1 / 16$ inch center-tapped.
L_{4}-2 turns No. 18 enamel, same as L_{3}, inserted af center. $L_{s}-2$ turns No. 18 enamel, same as L_{6}, inserted af center.
Ls - 4 furns No. 14 enamel, $1 / 2$-inch diam., turns spaced wire diameter.
Li-2 turns No. 14 enamel, 1 -inch diam., spaced $1 / 4$ inch. L8-1 furn No. 14 enamel between furns of L_{i}.
J_{1}, J_{2}-Cooxial fitting, female (Amphenol 83-1R).
J_{3}, J_{4}, J_{5}-Closed-circuit jack. Insulate J_{5} from panel and chassis.
MAt-External meter not shown in photo, 200 ma . S_{1}-Toggle switch.
T_{1}-Filament transformer, 6.3 volts, 3 amp . (UTC S-55).
in the walls of the two chassis to allow some of the air flow to go through the driver enclosure as well. The chassis are bolted together where the vent holes are drilled. The main flow is II) through the amplifier chassis, around the $4-125 \mathrm{~A}$, and out through the $1 / 4$-ineh holes drilled in the top cover above the tubes. Holes in the amplifier chassis are drilled to line up with the wentilating holes in the $1-125.5$ soekets. All other holes and eracks are soaled with honsehold cement to contine the air to the desired paths, and bottom covers are fitted tightly to both units.

17 -V.H.F. TRANSMITTERS

The somewhat random appearance of the front panel is the result of the development of the unit in experimental form. A slight rearrangement of some of the noneritieal components could be made to achieve a symmetrical panel hayout readily enough.

Operation

The two units have their own filament transformers. Plate supply requirements are 300 wolts at 50 ma . for the tripler, 400 volts at 100 ma . for the driver, 300 to 400 volts at 75 ma. for the final sereens and 1000 to 2500 volts at $f(0)$ mat. for the final plates. The driver plates and final screens may be run from the same supply, but more flexibility is possible if they are supplied separately. A variable-voltage supply for the final screens is a fine way to control the power level.

In putting the rig on the air the stages are fired up separately, begimning with the tripler. A jack (J_{3}, in Fig. $1 \overline{7}-11$) is provided on the front panel for measuring the 63360 grid eurrent. About 1 ma, through the 150,000 -ohm grid resistor is plenty of drive. The series rapacitor, C_{3}, in the link can be used as a drive adjustment, if more than neressary is available.

Next plug the grid meter into the 6524 grid current jack, J_{4}, and tune the 6360 plate circuit for maximum grid eurrent. If it is higher than 3 to 4 ma . increase the inductance of the grid coil, L_{6}, by squeczing its turns closer together. Now apply plate and sereen voltage to the 6524 , and check for sigus of self-oscillation. If the plate circuit is tuned down to the same frequency as that at which the grid coil resonates with the tube caparitance, the stage may oscillate, but if it is stable atoross the intended tuning range there should be no operating difficulty resulting from a tendency to oscillate lower in frequeney, and no neutralization should be needed.

Comect a coaxial line between the driver output and the final grid input preferably with a standing-wave bridge conneeted to indicate the standing-wave ratio on this line. Tune the driver plate circuit and its series-tuned link for maximum grid current in the final amplifier. Adjust the final grid tuning, C_{1}, for maximum grid current., and the series capacitor, C_{3}, in the link for minimum reflected power on the s.w.r. bridge. Adjust the coupling loop position for maximum transfer of power, using the least coupling that will archiove this rnd.

Fig. 17-13-Schematic diagram of the 4-125A amplifier for 144 Mc .
$\mathrm{C}_{1}-30-\mu \mu \mathrm{f}$.-per-section split-stator variable (Hammarlund HFD-30X).
C_{2}-Plate funing capacitor made from Millen 15011 neutralizing unit; see text and photo.
$\mathrm{C}_{3}-25-\mu \mu \mathrm{f}$. miniature variable (Bud LC-1642).
$\mathrm{C}_{4}, \mathrm{C}_{5}-500-\mu \mu \mathrm{i}$, feedthrough bypass (Centralab FT-500).
C_{6}-Approx. $50-\mu \mu \mathrm{f}$.-per-section split-stator variable. Make from Millen 19140 or Hammarlund MC. 140; see text.
$\mathrm{C}_{7}-25-\mu \mu \mathrm{f}_{\text {, variable ((Johnson 25L15). }}$
$\mathrm{C}_{8}-0.25-\mu \mathrm{f}$. tubular.
$\mathrm{R}_{1}-5000$ ohms, 10 walts.
$L_{1}, L_{2}-1 / 4$-inch copper fubing, 12 inches long, spaced $1 / 2$ inches center to center. Bend around $11 / 2$-inch radius, 1 inch from grid end.
L_{3}-Loop made from 5 inches No. 14 enamel. Portion coupled to line is 1 inch long each side, about $3 / 8$ inch from line.
$L_{1}, L_{5}-1 / 2$-inch copper tubing 12 inches long, spaced $1 / 2$ inches center to center. Bend around 2 -inch radius to make line 4 inches high. Attach $C_{2} 41 / 2$ inches from plate end.
L_{6} —Loop made from 7 inches No. 14 enamel. Sides spaced $11 / 4$ inches.
$\mathrm{L}_{7}-5$-h. (min.) $100-\mathrm{ma}$. rating filter choke.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Cooxial fitting, female (Amphenol 83-1R).
$M A_{1}, M A_{2}, M A_{3}$-External meters, not shown; 100, 200 and 500 ma .
M—Motor-blower assembly, 17 c.f.m. (Ripley Inc., Middletown, Conn., Type 8433).
RFC-V.h.f. solenoid chake (Ohmite Z-144). Four required.
S_{1}-Toggle switch.
\mathbf{S}_{2} —Rotary iock-type switch (Mallory 720).
T_{1} - Filoment transformer, 5 -volt 13 -amp. (Chisago FO-513).

144-Mc. Amplifier

Adjust the screen neutralizing capacitor, C_{B}, for maximum final grid current, with the plate and screen voltages off. Do not attempt to run the final stage without load. With a fixed screen supply the screen dissipation goes very high when the plate load is removed or made too light. It is important to meter the sereen current at all times. With $4-125$ is danger to the plates can be detected by their color, but the screen current is the only indication of possible damage to that element.

There is no suitable inexpensive dummy load for testing a v.h.f. rig of this power level. The best load is probably an antema. This can be an indoor gamma-matched dipole, fed with coax. Its series capacitor should be adjusted for a standing-wave ratio close to $1: 1$. The Micromatch can be used in this operation, but adjustments should be made at less than full power. Watch for any sign of heating in the bridge unit.

The position of the coupling loop, L_{6}, should be adjusted for maximum trinsfer of energy to the antenna, kecping the coupling as loose as possible. The series capacitor, C_{7}, can be used as a louding adjustment thereafter. If the sereen voltage is continuously variable it will be found that there is an optimum value around 325 to 350 volts .

Below are some conditions under which the rig has been operated experimentally:

Stnge	$E_{\text {口 }}$	I_{1}	E.e	$I_{\text {sc }}$	I_{8}
Tripler	300 v .	35 ma.	-	-	1.5 ma .
Iriver	400 v ,	92 แа.	-	8 tua.	3-1 ma.
Final	1000 v .	300 ma .	400) v .	60 ma,	22 ma,
Final	2000 v.	3 soc ma.	3300 v .	4.5 ma.	$\because 0$
Final	2.000 v .	400 ma.	30) v.	40 ma .	18 ma

The first and third conditions given for the final stage represent extremes, both exceeding the tubes' ratings in some way, so they are not recommended. At low plate voltages the screen has to be run above recommended ratings to make the tubes draw their full rated plate current and operate efliciently. At high plate voltages the screen dissipation drops markedly. The use of $4-125$ As at a full kilowatt input exeecds the manufacturer's maximum ratings, and is done at
the user's risk. To operate safely, the maximum plate voltage for voice work at 144 Mc. should prohably not go over 2000. At this level the tubes will handle 600 watts input on voice. and 750 watts on c.w. easily.

Modulation and Keying

Keving is done in the screen eircuit of the driver stage, and in the screen and plate circuits of the tripler. Cathode keying of the driver was attempted, but it cansed instability tronbles, so was abandoned. The sereen method makes the key hot, so an insulated key or a keying relay must be used in the interest of safet 5 . The keving jack must be insulated from the pand.

Fixed bias for the final amplifier is provided by the VR-tube method. When the tube ignites at the application of drive, the capacitor C_{8} charges. Removing excitation stops the flow through the VIR tube and leaves the negative charge in the capacitor applied to the amplifier grids. The effectiveness of this system requires a low-leakage capacitor for C_{5}.

Modulation is applied to the plates only. A choke of about 10 henrys is comnected in the screen lead, or the modulation can be supplied through a screen winding on the modulation transformer. The hypass value in the sereen cireuit should be low enough to avoid affecting the higher audio frequencies. Occasionally andio resonance in the screen choke maty coluse a singing effect on the modulation. If this develops, the choke may be shunted with a resistor. Use the highest value that will stop the singing.

In neutralizing the $4-125 \mathrm{~A}$ it maty for foud that what appears to be the best setting of the screen capacitor will result in a very large drop in grid current when plate voltage is applied. The setting may be altered slightly, mising the full-load grid current, without adversely affecting the stability of the amplifier. The final cheok for neutralization is twofold. There should the no oreillation when drive is removed; and maximum grid eurrent, minimum plate current and maximam output should all show at one setting of the plate tuning capacitor. The latter condition

Fig. 17.14-Under-chassis view of the $2-m e t e r$ transmitter. Tripler grid and plate circuits are at the upper left. Only two of the three jacks on the front panel show in the lower left. The halfwave line used in the 4-125A grid circuit is the main item of interest in the amplifier section. Both units are fitted with bottom covers, to provide shielding and confine the flow of cooling air to the desired areas.

Fig. 17-15-Antenna couplers for 50 and 144 Mc . designed for use with the high-power transmitters on the previous pages.
may be observed only when the amplifier is operated without fixed tias.

ANTENNA COUPLERS FOR 50 AND 144 MC.

The antenna couplers shown in Figs. 17-15, and at the top of Fig. 17-1, can be used with 52ohm or $\mathbf{7} 5$ ohm roaxial line, and with balanced lines of any impedane from 200 to 600 ohms or more. They were designed for use with the highpower transmitters described previously, but may. be used at any power level.

Construction

The two couplers are identical eireuitwise. They are built inside a standard 3 by 4 by 1 -inch aluminum chasis, with a bottom plate to complate the shiclding. The panel is $31 / 2$ inches high. If only one coupler is required, a 3 by 4 by (i-inch utility box can be used. Terminals on the back of the chassis include a coaxial input fitting and a two-post output fitting for each coupler. The eircuit diagram, Fig. 17-16, serves for both.

The 50-Mc. coils are cut from commercially avaitahle stock, though they can be made by hand if desired. The coupling winding, L_{1}, is inserted inside the tuned sircuit. The polyethylene strips on which the coils are wound keep the two coils from making electrical contact, so no support other than the wire leads is needed.

Lcads to L_{1} are brought out between the tarns of I_{2}, and are insulated from them by two sleeves of spaghetti, one inside the other. Do not use the soft vinyl type of sleeving, as it will melt too readily if, through an aecident to the antenna system, the coil should run hot. In the $114-\mathrm{Mc}$. coupler the positions of the coils are reversed, with the tuned circuit, L_{2}, at the center, and the coupling coil outside it.

Similar tuning capacitors are used in both couplers, but some of the plates are removed from the one in the $14+$-Mr. cireuit. This provides easier tuning, though it has little effect on the minimum raparitance, and therefor on the size of the coil.

Adjusting the Couplers

An antenna coupler can be adjusted properly only if some form of standing-wave bridge is connected in the line between the transmitter and the coupler. If it is a power-indicating type, so much the better, as it then ean be used for adjusting the transmitter loading, and the work can be done at normal transmitter power.

With the bridge set to read forward power, adjust the coupler capacitors and the transmitter tuning roughly for maximum indication. Now set the bridge to read reflected power, and adjust the antenna coupler capacitors, first one and then the other, until minimum reffeeted power is

Fig. 17-16-Circuit and parts information for the v.h.f. antenna couplers.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{f}$. variable for 50 Mc ., $50-\mu \mu \mathrm{f}$. for 144 Mc . (Hammariund MC- 100 and MC-50).
$\mathrm{C}_{2}-35-\mu \mu \mathrm{f}$. per-section split-stator variable, 0.07 -inch spacing (Hammarlund MCD-35SX). Reduce to 4 stator and 4 rotor plates in each section in 144 -Mc. coupler for easier tuning; see text.
J_{1}-Coaxial fitting, female.
J_{2} —Two-post terminal assembly (National FWH).
$\mathrm{L}_{1}-50 \mathrm{Mc}$.: 4 turns No. 18 tinned, 1 inch diameter, $1 / 8$-inch spacing (Air-Dux No. 808t).
114 Mc.: 2 turns No. 14 enam., 1 inch diameter, $1 / 8$ inch spacing. Slip over L_{2} before mounting.
$L_{2}-50$ Mc.: 7 turns No. 14 tinned, $1 / 2 / 2$ inch diameter, $1 / 4$ inch spacing (Air Dux No. 1204). Tap $11 / 2$ turns from each end.
144 Mc.: 5 turns No. 12 tinned, $1 / 2$ inch diometer, $7 / 8$ inch long. Tap $11 / 2$ furns from each end.
achieved. Unless the line input imperdance is veryhighly reactive, it should be possible to get the reflected power down to zero, or very rlose to it. Adjustment of the coupler is now romplete. Tuning for maximum transfer of power from the transmitter is done entively at the transmitter.

Simple Transmitters

Simple Transmitters for 50 and 144 Mc.

The two transmitters shown in Fig, 17-17 are designed to fill several needs. They can be used as complete r.f. sections for 50 and 144 Mc., or they serve well as exeiters for higher-powered amplifiers. Depending on the final amplifier tubes chosen, the power level can be anything from under 10 to as much as 50 watts input. At low power they are well suited to mobile and portable applications. Provision is included for c.w. operation. Modulation equipment for the tansmitters can be found elsewhere in this Handlook.

The designs are as similar as possible, mechanically and electrically, the tubes and many of the parts being interchangeable. They are built on standard 5 by 10 by 3 -inch aluminum chassis, with shield covers of perforated aluminum over their output stages. These shields are an aid to TVI prevention, and they provide protection for the tuned cireuits mounted topside.

Circuitry

Both transmitters employ third-overtone erystal oscillators of simple design. Crystals should be in the range between 8.34 and 9 Me , or 25 and 27 Mc . for $50-\mathrm{Mc}$. operation. For 14 t - Me, work
 If the feedback in the oscillator circuit is industed to make conventional S-Mc. erystals oscillate on their third overtone, crystals in the $24-t o \stackrel{2}{7}-\mathrm{Me}$. range will also work. If only the latter (third overtone) type crystals are used, the feedback can be set at a lower level. This is controlled by the position of the tap on the coil, L_{1}. Crystals in the 8-Mc. range that multiply out (lose to a band edge should he eheeked carefully under actual operating conditions in the equipment, as the oscillation frequency may not be exactly three times that marked on the holder.

The oscillator is the triode portion of a 6US triode-pentode. The pentole section is a frequency multiplier, doubling to 50 Mc . in the
(j-meter transmitter and tripling to 72 Mc . in the $1+-\mathrm{-M}$., one. The doubler section drives the output stage in the $50-M \mathrm{Me}$. rig. An extra stage is recquired to reach $14+\mathrm{Mc}$. This is a $6 \mathrm{BC}+$ triode used as a doubler from 72 to 14 Mc . The output stage is a 2 E 26 , where the input power is to be under 25 watts. A 6146 may be used at higher power levels. There is substantially no difference in the driving power required hy these tubes, and they can be interchanged with only slight readjustment of the tuned circuits.
When the exciters are to drive an amplifier using an 82913 or a 5894 , the output tube should he a $2 F: 26$. The plate supply voltage need be no more than 300 volts, and as little as 200 may suffice. When the units are used alone the final plate voltage should be 300 for a $2 E 26$, or 400 to 500 for the 6146 . If the latter tube is used in exciter service the output will be sulficient to drive tetrode amplifiers of up to I kilowatt input.

Construction

Arrangement of parts is not particularly critical, though it would be well for the inexperienced constructor to follow the layouts shown closely in all mincipal details, Layout drawings, Figs. 17-21 and $17-25$ are provided for those who may wish to make exact duplicates. The dimensions given apply only when identical parts to those of the original are purchased. Check sockets, particularly, for mounting dimensions before following the layouts in complete detail.

The shield covers of the two transmitters were made in slightly different ways, to illustrate differing techniques. The method used in the 50 -Mc. unit may be the easier of the two for amateurs not well equipped with metal working tools. The front and back plates are 5 inches wide and $41 / 2$ inches high. The bottom half inch of each plate overlaps the main chassis, and is fastened

Fig. 17-17-Transmitters for 50 (right) and 144 Mc . Designs are similar and many parts are interchangeable. Power ratings may be varied from under 10 to more than 50 watts input, depending on tube used in the output stoge.

17 - V.H.F. TRANSMITTERS

to it with self-tapping serews. The cover is made of perforated aluminum, available in many hardware stores. This coan be cut and bent with simple tools. The box thus made is 4 inches high, 5 incbes wide and 5 inches deep. The perforated cover is made larger than these dimensions by about 3/8 ineh on all sides. The extra material is bent over so that the front and back plates can be fastened to it with self-tapping serews.

In the 1ti-Me, transmitter the edges of the front and back plates are bent over, so that the cover need be only a plate bent into an inverted U. The enclosure is $\&$ by 4 hy 5 inches in size. The bent-over edges of the front and back walls show plainly in the top view, Fig. 17-22.

Building the 50.Mc. Transmitter

Looking at the bottom view of the $50-\mathrm{Mc}$. transmitter, lig. 17-19, we see the oscillator tuning capacitor, C_{1}, and the plate coil, L_{1}, at the right. Next to the beft is the 6U8 socket. The doubler phate coil, L_{2}, and the amplifier grid coil, Las are between the tube sookets. Note that these coils are mounted side ly side, with their axes vertical. Their position with respect to each other is adjusted for maximum grid drive, with the optimum sparing being about one coil diameter. The amplifier screen-dropping resistor (4 l-watt resistors in parallel) is just above the 3 Eid socket. Jarks tor cathode keving and grid-current measurement oernpy the left side of the front wall, as stym in Fig. 17-19.

Arrangement of parts inside the shield compartment ran be sean in lig. 17-18. The amplifier thber, a 6146 in this instance, is at the left side of the box. The phate tuning caparitor, C_{4}, is near the middle of the front wall. The antenna loading caparitor, ("3. and the coaxial output fitting. J_{1}, are on the rear wall. The power comertor strip, is centered on the rear wall of the chassis. Note the parasitic choke, I_{4}, between the tube and the plate coil. This is wound on the resistor in paralled with it. The plate coil, IF $_{5}$ is mounted with its axis vertical. The output compling roil, L_{6}, is close against the hot tom of L_{5}, and insulated from it by spaghetti sleeving.

The type of socket used for the amplifier tube is important. Ino not use the eommon moulded socket with an elevated grounding ring having \& lugs spaced around its circumference. These lugs maty introdure coupting between the circuits grounded or bypassed thereto, causing instability that cannot be neutralized out. A Millen ceramis; socket was used in the original, hut any trpe that does not have the separate grounding lugs and ring is suitable. (irounding should be done to lugs under the muts used for mounting the sorket. It is imperative that bypass capacitor connestions be made with virtually no leads at all, particularly in the amplifier circuits. Note that each cathote lead is hypassed separately. This is important where the cathole is keved, as in this instance.

The neutralizing eapacitor, C_{3}, is a type intended for mounting with one side grounded, so another mounting method must be provided in this application. A small tab of copper about $3 / 8$ by 1 inch in size supports the rapacitor, the end of the tab being soldered to a lug on the 3-lug tie-point strip nearest the sorket. The 150- $\mu \mu \mathrm{f}$. bepass at the low end of L_{2} connerets from that point to the ground lug at the middle of the terminal strip. The lead from the sleeve of C_{3} is a stiff wire that passes up through a $3 / 8$-inch holo in the chassis to the lower stator terminal of the plate tuning capasitor, ("4. The latter is mounted with ite stator terminals one above the other.

Adjustment and Operation

For initial tests a power supply eapable of helivering 200 to 300 volts d.e. at about 100 ma., and 6.3 volts a.e. or d.e. at $1 . \overline{6}$ amperes maty be used. (Only 1.25 amp . will be needed if a 2.26 is used.) The negative side of the plate supply and one side of the heater supply are connected together. The oscillator is tested first. This is done by feeding plate power to the 4700 -ohm resistor in the oseillator plate lead only, discomereting the doubler plate-screen lead temporavily.

Apply heater voltage only, and allow the tubes to warm ip, for 30 seronds or more. Conmeet a 100 milliampere meter in the lead to the plate sup-

Fig. 17-18-Looking down inside the amplifier shield. The plate tuning capacitor, C_{1}, is on the front wall, with the looding odjustment, C_{5}, on the rear wall. Parasitic suppressor and plate coil connect to top stator bar of C_{4}. Black lead, lower left, runs through a rubber grommet to the neutralizing capacitor, below the chassis.
fig. 17.19-Botlom view of the 50Mc. transmitter. Note positions of the various coils, particularly those in the doubler plate and amplifier grid circuits, near the middle of the assembly.

ply, and apply power. Swing the oscillator tuming eapactior, C_{1}, through its rathe. There will be a sharp dip in current to about 10 ma as the crustal starts oscillating.

Check the frequency of oscillator with a griddip meter or wavemeter. If you have a receiver that thes the $25-$ or $50-\mathrm{Me}$. region, listen for the oscillator to determine if it is crystal controlled. The freguency will change only slighty, if at all. when the "irenit is tuned throngh resonamee. Listen to the note with the reerover beat oseillator on, and plawe a serewdriver or other metal objeet near the thened cireuit. There should be very little change in frequency. Should the frequemes change more than a few hundred cyeles under those tests the oscillator may not he controlled by the crystal.

Self-ospillation is the result of too much feedback. This ran be corrected by moving the tap

Iower on the coil. Too little feedback may prevent the oseillator from working at all, or it may drop out of oseillation when louded appreciably hy the following stage. The cure is to raise the tap position on the coil.

When the oscillator is working correctly, remove the milliammeter from its power lead and comert it between the high-voltage source and the junction of the sereen resistor and 1000 -ohm resistor at the low end of the plate coil. Plug a low-range milliammeter, preforably 5 or 10 ma., into the grid current jack, J_{2}, of the amplifier. Apply plate voltage to the first two stages and tune the doubler plate cireuit for maximum grid current, as read on the moter in J_{2}. This should be at least 2 ma.. with a oso-volt phate supply. Try varving the separation between L_{2} and L_{3}. leaving sparing at the point that yields greatest grid current. Retume the doubler plate circuit as the

OVERTONE DOUBLER OSC

Fig. 17.20-Schematic diogram and parts information for the $50-\mathrm{Mc}$. transmitter. Capacitors are ceramic unless specified. Values under .001 are in $\mu \mu \mathrm{f}$. Resistors $1 / 2$ watt unless specified.

[^7]$L_{3}-71 / 4 t_{\text {., }} 1 / 2$-inch long, similor to L_{2}.
$L_{4}-5 \mathrm{t}$. No. 20 wound on ond spaced to fill 100 -ohm 1watt resistor.
$L_{5}-31 / 2$ t. No. 14 tinned, $3 / 4$-inch i.d., $1 / 2$-inch long.
$L_{6}-2$ t. No. 14 , similar to and at cold end of L_{5}. Cover with spaghetti sleeving.
$\mathrm{R}_{1}-37,500$ ohms, 4 watts (4150,000 -ohm 1 -watt resistors in parallell.
$R F C_{1}$-Single-layer v.h.f. choke, 2 to $7 \mu \mathrm{~h}$. (Ohmite \mathbf{Z}. 50 or National R.60).

Fig. 17-21-Loyout drowing of the $50-\mathrm{Mc}$. chossis top. Precise duplicotion is not importont, though the generol ports loyout should be followed. Hole sizes moy vory with different types of sockets.
spacing is changed.
Next comes neutralization of the amplifier. With drive on, but no plate or sereen voltage, tume the amplifier plate circuit through its range. watching the grid curent meter. There may be a downward dip in grid current when the plate eircuit is resonated. Adjust the mentralizing capacitor, C_{3}, a turn or two and cheek the grid current dip again. If there is less change than before, the auljustment was in the right direction. Continue in this way until no downward movement can bre seen in the grid current as the plate circuit is tuned through resonance.

If neutralization cumot be achieved, a different value of bypass will be required at the low end of L_{3}. If the neutralizing eapacitor is at minimum setting when neutralization is approached, a larger value of bypass will be needed. Try $2: 20$ $\mu \mu$ f. as a next step.

Power may now be applied to the final amplifier. This can be from the same source as has bern used for the earlier tests, for the time being. The meter may be removed from the doubler power lead and connected betwern the junction of the r.f. choke, $R P^{\prime} C_{1}$, and sireen resistor and the terminal on the bark of the transmitter. This will measure the combined plate and sereon aurrent drawn by the amplifier. The meter may also be plugged into the cathode jack, where it will read combined plate, sereen and grid current.

A light bulb of about 95 watts or more can be connected to a coaxial fitting and used as a dummy load in place of an antenna. This will not represent a 50 -ohm lowd, so the tuning of the stage will not be the same as when a matehed antenna system is used. but it will do for initial tests, and it will give a rough indication of power output.

Apply plate-sereen power to all stages, and tume the plate circuit of the amplifier to the point where plate current dips the lowest. Now adjust the series capacitor, retuming the plate caparitor, until maximum brilliance is seen in the load lamp. Check carefully for any sign of oscillation in the amplifier. Ikemove the crystal from its socket briefly, while watehing the amplifier grid current. This current and the amplifier output should drop to zero, and remain there regardless of the tuning of any of the transmitter circuits. Should grid current appear with the oscillator inoperative,
recheck neutralization. The grid-current dip may be only an approximate indication of neutralization, so the adjustment may have to be touched up after power is applied to the amplifier. Turn off power is a safety measure when this is done. With perfect meutralization, maximum grid current, minimum plate current and maximum output will all orear at the same setting of the amplifier plate circuit tuning. Perfection in this respect may not be possible, but there should be no sign of oscillation (grid current in the amplifier when the drive is removed) at any setting of the tuning controls.

When the rig is operated with a properly designed antenna the settings of the amplifier plate and antemma louling adjustments may be somewhat different from those obtained with a lamp boad. Both should be adjusted for maximum power delivered to the antenna. This can be recorded on a field-strength meter, giving a relative indication of the power radiated hy the antenna. Better than this is a power-indicating standingwave bridge, which may be left connerted in the line to the antenna at all times.

Final operating conditions for the transmitter will depend on the supply voltage and fanal tube used. With a 300 -volt supply the oscillator plate curent will run ahout 10 ma , with the oseillator operating properly, and 17 mat. with the crystal out of oseillation. The doubler plate-srreen current is about 12 ma. Amplifier grid current will he at least 3 ma . without plate and sereen voltage, and around 2.5 ma , with the amplifior operating under load. These values will be slightly lower with a 250 -volt supply. Plate-sereen current to the amplifire will depend on the power level and tube. With a 2 bet at 300 volts the current will be ahout 20 mat, at resonance, with no load, and 95 ma. off resonance. Ioaded for maximum efficieney the '2E26 plate and screen current will be about ti0 ma. With at 6146 at 450 volts the louled plate and sereen current will be about 120 ma .

The 50-Me. tramsmitter was deseribed originally in QST for Oetolser, 1958.

The 144-Mc. Transmitter

Layout and testing of the $11+-\mathrm{M}$ (, unit are very similar to the $50-$ Me model already described, so only the points of difference will be covered in this part of the text. Looking at the hottom view,

Fig. 17-22-Top view of the $144-\mathrm{Mc}$. transmitter with shield cover removed. A 2E26 is shown in the amplifier socket.

Fig. 17-23, the oseillator tuned eircuit is at the far right. The tripler plate capacitor, C_{2}, is next on the front wall. The GU8 socket is between these two capacitors, on the center line of the chassis. The 6BCt doubler socket is approximately in the middle of the chassis. The coil mounted vertically at the right and slightly below the 6BC 4 socket is the tripler plate coil, L_{2}.

The doubler plate coil, L_{3}, and the amplifier grid coil. L_{4}, are mounted on a common center line and close together, making them appear as one coil in the photograph. The top end of L_{3}, as seen in the sehematic diagram, Fig. 17-24, is toward the back of the chassis. The grid end of L_{4} is toward the front. Capacitors C_{3} and C_{4} are cylindrical plastic trimmers. They are at either side of and just above the upper end of L_{3}.

The amplifier soeket is at the left. The sereen

Fig. 17-23-Bottom of the $144 \cdot \mathrm{Mc}$. transmitter, with oscil-lator-tripler at the right. Doubler stage is near the middle of the chassis and amplifier at the left.
tuning capacitor, C_{7}, is mounted across the socket. Screen voltage is fed through the r.f. choke just above the sooket. The switch for shorting out the grid leak when c.w. is used is in the upper left comer of the photograph. The two jacks on the front wall are for keying (far left) and grid current measurement.

Circuit differenees between the two units, aside from the inclusion of the extra multiplier stage in the $1 H-M c$. model, arise mainly from the efferts of tube and circuit caparitanes at the higher frequency. Tube capacitances load the tuned circuits heavily, so series-tuned circuits are used in the amplifier stage, It will be seen that the keying jack is connected in the cathole of the doubler stage instead of in the amplifier cathode lead. It is difficult to bypass the amplifier cathode completely at $1+4 \mathrm{Mc}$., and the insertion of the keying jack in that position would cause ostilla-

Fig. 17-24-Schematic diagram and parts information for the $144 . \mathrm{Mc}$. transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{6}-50-\mu \mu \mathrm{f}$. variable (Johnson 157-4).
$\mathrm{C}_{2}, \mathrm{C}_{5}-15-\mu \mu \mathrm{f}$, variable (Johnson 157-2).
$\mathrm{C}_{3}, \mathrm{C}_{4}-1-8-\mu \mu \mathrm{f}$. plastic trimmer (Erie 532-10).
J_{1}, J_{2}-Closed-circuit jack.
$\mathrm{J}_{3}-$ Coaxial chassis filting.
$\mathrm{L}_{1}-14$ turns No. 20 tinned, $1 / 2$-inch diam., $1 / 2$ inch long tapped at 4 turns from crystal end (B \& W No. 3003).
$\mathrm{L}_{2}-53 / 4$ turns No. 18 enam., $7 / 6$-inch diam., $5 / 2$ inch long. $\mathrm{L}_{3}-21 / 4$ turns No. 18 enam., $/ 76$-inch diam., $1 / 4$ inch long.
L.-6 turns No. 18 enom., $7 / 6$-inch diam., $5 / 8$ inch long,
center tapped.
L:-4 turns No. 14 tinned, $3 / 4$-inch diam., turns spaced 2 diameters. Make extra space at center for Lo; see Fig. 17-22.
$L_{0}-1$ turn No. 14 enamel, $3 / 4$-inch diam. Cover with insulating sleeving and insert at center of L_{s}.
$\mathrm{R}_{1}-33,000$ ohms, 3 watts (3 100,000-ohm 1-watt resistors in parallel).
$\mathrm{RFC}_{1}-7$ - $\mu \mathrm{h}$. solenoid choke (Ohmite Z-50).
$\mathrm{RFC}_{2}-1.8$. $\mu \mathrm{h}$. solenoid choke (Ohmite Z-144).
S_{1}-S.-p.s.I. switch, any type.

17 - V.H.F. TRANSMITTERS

Fig. 17-25-Layout drawing of the 144 -Mc. chossis.
preferably not below 1.5 mat. under full loud. Should it be lass than 1.5 ma. rumning the amplifier at slightly less than full loading may make it possible to get satisfartory output and still retain
tion. Sereen bypassing is a similar problem, as conventional bepassing methods are ineffective at this and higher frequencies. Bringing the sereen to ground potential requires a critieal value of (aparitance, so a trimmer $\left(C_{7}\right)$ is connected from sereen to ground.

Adjustment Procedure

The power supply for testing the $1+4-\mathrm{Mr}$. transmitter should deliver 6.3 volts at 1.6 amperes if a 2122 cm amplifier tube is used. With a 6116 it should be capable of supplying \geq amperes. Initially 250 to 300 volts at 150 ma. will do for the plate supply. Final plate voltage for a $61+6$ may be as high as 500 volts.

Testing the first two stages is similar to that outlined for the $50-\mathrm{M}$ e. transmitter, except for the frequencies involved. Make sure that the oscillator is between 24 and 24.66 Me., and that the pentorde section of the 6U8 multiplies this frequency by 3. Tune the tripler plate circuit, $L_{2}-\mathrm{C}_{2}$, for maximum output, as indicated by a 2 -volt 60 -ma. pilot lamp roupled to the cold end of L_{2} with a single-turn loop of insulated wire about the diameter of the coil.

Next apply bate voltage to the $12 . \mathrm{AT}^{\mathrm{T}}$ doubler, and tune it for maximum amplifier grid curent. Adjustment of ${ }^{*}: 3$ and C_{4} will interlock to some extont, lut be sure that each is tumed for maximum grid current, as read in J_{2}. The switeh S_{1} can be in either position for this adjustment, though the grid current will be much higher if it is in the closed prosition.

Neutralization is done similarly to the mamer outlined for the 50-Me, transmitter, except that the set ting of the sereen capacitor, C_{7}, is the means by which it is achieved. If stability is appoached as ('7 reaches maximum capacitance, a larger trimmer will be needed. Experimentation with the value of the r.f. choke in the screen lead may also be helpful. A variation of the neutralization sustem shown is the use of a critical value of inductance in the serem lead, and the elimination of C_{7}. (irid current, when neutralization is completed, should he at lase 1.5 ma. with S_{1} in the open position, (io over all adjustments carefully; and exprement with the spacing between L_{3} athi L_{4} if the grid drive is low.

The balance of the testing is similar to the 50-Me. procedure. Mate current for the 1 BATt doubler will be about 25 ma. Amplifier grid current should be all that ran be obtained, but
good modulation eharacteristics.

Amplifire plate current at resonance with no load will be higher than on 50 Mc ., and the output will be lower. Efficiency will be lower with a 61t6 than with a 2E26, but the higher plate dissipation rating of the 61.16 may make its use desirable if more output is needed than can be obtained with the $2 \mathrm{E}: 6$. Either transmiter can be used in mobile service. For 6 -volt cars the tubes can be as shown. Twelve-volt equivalents of all the tube types are now available for cars with 13-volt systems.

Modulation and Keying

For voire work a molulator is required. This should have a power output of approximately half the imput to the final amplifier. Several suitable modnlators are shown in other chatpters of this Ifambook. The plate and sereen current of the amplifier are run through the secondary of the modulator output transformer. If the transmitter is to run at low power, a single 300 -volt supply can be used for all stages, including the monlulator, if it has a sufficiently high eurent rating.

Keying mothods differ for the two r.f. units. The $50-\mathrm{Mc}$. transmitter is keyed for $r \cdot w$. by braking the eathode lead. This would cause instability if applied to the $1+4-$-Nc. transmitter. so the latter is keyed in the eathode of the doubler stage. Fixed bias must be applied to the final amplifier grid, to keep the plate current to a satio value. The voltage required will depend on the plate voltage applied to the final. The plate current nead not be eut completely off, but morrely hold to less than the plate dissipation rating for the tube used. $1221 / 2$ volt battery is suffieient for plate voltages up to 400 . The simplest way to apply bias, for occasional e.w. use, is to plug it into the grid current jack. The positive terminal of the hias battery should connect to the ground
side of the plut side of the plug.

The switch S_{1} euts out the $27,000-0$ hm grid resistor, so that the grid hias will not be exeressive when fixed bias is applied. The rig can be operated in this mamer (fixed bias phas the smatler of the two grid resistors) on voier, if it is desirable or convenient to do this. The grid current is so low that the bias battery will last almost indefmitely. and a small hearing aid size is suitable. It can bo mounted inside the chassis and wired into the circuit pormanently, where more frequent cow. operation is experted.

A Simple Transmitter

Simple Transmitter for 220 and 420 Mc.

The transmitter in kigs. 17-20-17-29) is for the newomer who wants to start with simple gear, going on to something better when he has gained monstruction and operating experionee. lt is built in two units. with the idea that the modulator ean be retained when the r.f. portion is disotrded.

The r.f. section is a simple oscillator with two GAl't or 6.JT't tubes in push-pull. Its plate
penting an the plate voltage and whether a 6V'6 or 6 L 6 tule is used. It may be considered as a long-term investment that will be suitable for use with any r.f. section of up to 20 watts input that may be constructed at a later date.

Construction

The two units are built on identieal 5 by 7 by 2 -inch aluminum chassis, connecting by

Fig. 17.26-The simple transmitter for 220 and 420 Mc . is mode in two parts. The modu. lotor, left, moy be retained for use with more odvanced r.f. sections than the simple oscillotor shown of the right. The two units moy be plugged together or conne cled by a cable.

circuit is changed from a quarter-wave line at 220 Mc , to a half-wave line at 420 Mc . beplugging in suitable terminations at the end of the tuned circuit.

Beratuse the oscillator is modulated directly it will hatve considerable frequeney modulation. and the signal will not be readable on selective receivers unless the modulation is kept at a very low level. Where a brouler receiver is in use at the other end of the path a higher modulation level can be employed.

The modulator is designed for a crystal microphone. It delivers 3 to 10 watts output, de-
means of a plug on the oscillator and a socket on the modulator. Power is fed through it similar plag on the back of the molubator. Arrangement of parts in the modulator is not aritical, but the oscillator should be exactly as shown.
sorkets for the tubes are one inch apart center to center, 23 , 6 inch in from the end of the chassis. C_{1} is at the exact conter of the chassis, with $J_{2} 11 / 2$ inches to its left, as soen in lig. 17-27. At the far left is a erystal socket, used for the antenna terminal, J_{1}. One-inch ceramic standoffs are mounted on the serews that hold J_{2} in platere There support the antemna coupling lonp, L_{2}.

Testing and Use

A power suphly delivering about 200

Fig, 17-27-Bottom view of the oscillator unit, showing the two-band tank circuit. The line terminations, with their protecting cops removed, ore in the foreground. At the left is the $220-\mathrm{Mc}$. plug, with the 420 -Mc. cne at the right.

Fig. 17-28-Schematic diagram and parts information for the two-band oscillator and modulator.
$\mathrm{C}_{1}-10.5-\mu \mu \mathrm{f}$.-per-section butterfly variable (Johnson 10(B15).
$\mathrm{L}_{1}-231 / 2$ inch pieces No. 12 tinned, spaced $1 / 2$ inch. Bend down $3 / 4$ inch at tube end and $1 / 2$ inch at socket end. R.f. chokes connect $5 / 8$ inch from bend at tube end. Connect C_{1} at 1 inch from bend at sockel end.
L_{2}-Hairpin loop $21 / 4$ inches long and $1 / 2$ inch wide, No. 16 , covered with insulating sleeving.
J_{1}-Crystal socket used for antenna terminal.
$\mathrm{J}_{2}-5$-contact ceramic sockel (Amphenol 49-RSS5).
volts d.e. at 50 mat. or more and 6.3 volts at 1 amp. or more is needed. Plug the units together or eonnect them by a cable. With a eable, a milliammeter may be connected between the No. 4 pins to measure the oscillator plate current. Otherwise the meter should be connected temporarily between l'in 4 of J_{3} and Pin 3 of J_{2} in place of the wire shown in lig. 17-28.

Plate current should he about 25 to 30 ma . If the stage is oseillating there will be a fluctuation in eurrent as the plate line is touched with an insulated metal objeet. Do not hold the metal in the hands for this test! The frequency is best checked by means of Lecher wires, a technique that is covered in the chapter on measurements.

With the dimensions given the range with P_{1} plugged in should be alout 405 to 450 Mr . With P'a phagged in the frequency should fall within the 220-Mc. band with C_{1} set in the same position

Fig. 17.29-Looking al the underside of the modulator.
$\mathrm{J}_{3}, \mathrm{~J}_{5}-4$-contact maie fitting (Ampher.ol 86-RCP4).
$\mathrm{J}_{4}-4$ contact female chassis fitting (Amphenol 78-54 or RS4).
J_{θ}-Microphone connector (Amphenol 75-PCIM).
$\mathrm{P}_{1}-5$-contact male cable connector (Amphenal 86-PM5) with Pins 2, 3 and 4 joined logether.
P_{2}-Same as P_{1}, but with Pins 1 and 5 joined. Connect 100 -ohm resistor between these and Pin 3.
RFC (6 required)- 12 furns No. 28 enamel close-wound on high-value 1 -watt resistor.
T_{1}-10-watt modulation trans. (Merit A-3008).
as it was for the middle of the $420-\mathrm{Mc}$. band. Some alteration of the romection point for C om L_{1} may be necessary to achieve this

In using the transmitter it is well to stay between 221 and 224 Mr. to avoid ont-of band operation. On 420 , keep the trinsmitter below 432 Mc. to avoid interference with the highselertivity work that is done bet ween 432 and 433 Ne. (Further details on this transmitter in QS'I' for Deeember, 1954.)

A $\mathbf{4 0}$-Watt Transmitter for $\mathbf{2 2 0} \mathbf{~ M c}$.

The erystal-controlled transmitter shown in Figs. $17-30$ and $17-32$ will rum 30 to 10 watts at 220 Mc. IReferring to Fig. 17-31, a simple overtone oscillator circuit uses one half of a 12AT7 dual triode. The erystal may be between 8.15 and 8.33 Mc. or 24.45 and 25 Mc. In either case, the frequeney of oscillation is in the latter range, as the crystal works on its third overtone. The serond half of the $1, \Delta \mathrm{AT}$ is a tripler to $\overline{3} 3$ to $\overline{\mathbf{5}}$ Mc. This stage has a halanced plate eircuit, so that its output may be capacitively coupled to the grids of a second $12 \mathrm{AT}^{7}$, working as a push-pull tripler to 220 Mc . The low side of the first tripler plate rircuit has a halancing capacitor, (${ }_{3}$. so that a ropacitance equal to the output capacitance of the 12 AT 7 can be added to that side of the circuit. Without this the two halves of the push-pull tripher may receive mequal drive, and one half of the tube will run hotter than the other.

The plate circuit of the push-pull tripler is indurtively coupled to the grid circuit of an Amperex 6360 dual tetrode amplifier that runs straight through on 290 Me. Similar inductive coupling transfers the drive to the grid circuit of the final amplifier stage, an Amperex 625:2 dual tetrode. This tube is a somewhat more efficient outgrowth of the $83: 3$, which nay also be used, though with lower efficience and output. Base connertions are the same for both tubes.

The grid return of the (0252 is brought ont to the terminal strip on the back of the amit, to allow for comection of a grid meter. Both this point and the tip jark in the 0.360 grid return have 1000 -ohm resistors completing the grid returns to ground, so that operation of the stagos is unaffected if the meters are removed.

Instability in tetrode amplifiers for v.h.f. service may develop as a result of the ineffertive bypassing of the screen. In the case of the 6360 stage stable operation was obtained with no bypassing at all, while on the (025: a small mica trimmer was eonnerted directly from the screen terminal to ground. It is operated near the minimum setting.

Construction

The transmitter is hilt oll an aluminum plate 6 by 17 inches in size. This serews to a standard chassis of the same dimensions, which serves an
both shiehl and case. Cut-outs about three inches square are made in the chassis and base plate, above and below the tubr, to allow for ventilation. These openings are fitted with perforated aluminum or screening to preserve shiehling. The rase should be equipped with ruhber feet, to avoid marring the surface it rests on, and to allow air circulation around the tube.

The tube sockets and all the controls except the tuning capacitor of the oscillator are mounted along the center line of the rover plate. The 2.20-Mc, stages are inductively coupled, using hairpin loop tank cireuits the dimensions of which are given in Fig. 17-33. The tuning range of therese circuits is affected by the widths of the loops ats wroll as their length, so some variation can be had by squeezing the sides together or spreading them apart.

It is important that the method of mounting the 625:2 socket be followed closely. An aluminum bracket about $27 / 8$ inches high and 4 inches wide supports the socket. Note that the socket and tule are on the same side of the plate. Holes are drilled in the plate in line with the control grid terminals to pass the grid leads. These holes arn $3 / 8$-inch diameter, and are equipped with rubber grommets to prevent accidental shorting of the grid leads to ground. The shape of the grid inductance should be such that its leads pass through the renters of the holes. The socket is supported on $5 / 16$-inch metal pillars. It may be neressary to bend the sorket lugs slightly to keep them from shorting to the mounting plate. The heater lead comes to the top of the plate, and the rathode lead bends around the bottom of it.

Power leads are made with shielded wire, and are brought out to a terminal strip on the back of the chassis. These leads and the coax to tire output connector should be long enough so that the plate on which the transmitter is built can be lifted off the chassis and inverted as shown in the photograph.

Adjustment

Initial tests should be made with a power supply that dolivers no more than 950 volts, and as little as 100 to 900 volts cair le used. If the voltage is more than 250 , insert a 5000 -ohm 10-watt resistor in series with the power lead

Fig. 17.30-Top view of the $220-\mathrm{Mc}$. transmitter. Final amplifier tube is inside the chassis, below the screened ventilation hole. Power connections, keying jack and output terminal are on the back of the chassis.

17 -V.H.F. TRANSMITTERS

Fig. 17-31-Schematic diagram and parts information for the 220.Mc. transmitter. Capacitor values below $0.001 \mu \mathrm{f}$. are in $\mu \mu$. Resistors $1 / 2$ watt unless specified.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. miniafure variable (Hammorlund MAPC-50-B).
$\mathrm{C}_{2}, \mathrm{C}_{1}, \mathrm{C}_{5}-8-\mu \mu \mathrm{f}$. miniature butterfly variable (Johnson 160-208).
$\mathrm{C}_{3}, \mathrm{C}_{6}-3-30-\mu \mu$. mico trimmer.
C_{i}-Butterfly variable, 1 stator and 1 rotor (Johnson 167-21, with plates removed).
$\mathrm{C}_{8}-15-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MAPC-15-B).
J_{1}-Tip jack, insulated.
J_{2}-Closed-circuit phone jack.
J_{3}-Coaxiol chassis fitting, SO-239.
$L_{1}-15$ t. No. 20 tinned, $1 / 2$-inch diam., 1 inch long (B \& W Miniductor No. 3003). Tap at 4 turns from crystol
end; see text.
$\mathrm{t}_{2}-12 \mathrm{f}$. No. 18 tinned, $1 / 2$-inch diam., 1 inch long, centertapped.
$\mathrm{L}_{3}, \mathrm{~L}_{1}, \mathrm{~L}_{5}, \mathrm{~L}_{6}-\mathrm{U}$-shaped loops No. 18 enam., center-topped. Dimensions given in Fig. 17-33.
$l_{7}-2 \mathrm{f}$. No. 14 enam., 1 -inch, 1 -inch diom., leods $5 / 8$ inch long. Center-tapped, space furns $1 / 2$ inch apart.
$L_{8}-1$ f. No. 18 enam., inserted between furns of L_{7}. Cover with insulating sleeving.
R_{1}-23,500 ohms, 2 watts. (Two 47,000-ohm l-watt resistors in parallel.)
RFC $C_{1}-25$ i. No. 28 enam. on 1-watt high-value resistor.
temporarily. Plate voltage should be applied to the various stages separately, starting with the oseillator, making sure that earh stage is working eorrectly before proceding to the next.

A milliammeter of $50-$ to $100-\mathrm{ma}$. range should be connected temporarily in series with the $1000-\mathrm{ohm}$ resistor in the oscillator plate lad. When power is applied the current should be not more than about 10 ma. Rotate C_{1} and note if an upward kick occurs, probably near the middle of the range of ('1. It this point the stage is oscillating. Lack of oscillation indicates too low feedback, or a defective crystal. Listen for the note on a communications receiver tuned near $24 \mathrm{M} \cdot$., if one is available. There should be no more than a slight change in frequency when a metallic tool is held near the tuned circuit, or when the circuit is tuned through its range. The note should be of pure crystal quality. If there is a rough sound, or if the frequeney changes with mechanieal vibration, the oscillator is not controlled by the crystal. This indieaters too much feedback, and the tap on the eoil, L_{1}, should he moved near the crystal end.

The proper amount of feedback is the lowest tap prition that allows the oscillator to start
readily under load. If $2 t-2 l$ e. erystals are used the tap can be lower on the coil than with 8-Mc. crystals. When 8 -Mc. crystals are operated on the third overtone, as in this ease, the frequency of oscillation may not be exactly three times that marked on the erystal holder.

Now apply plate voltage to the serond half of the $10 \mathrm{Al}^{-7}$, again using a temporary plate meter connected in series with the 100 -ohm decoupling resistor that feeds plate power to $/ \mathrm{La}$. Current will be ahout 10 ma ., as with the oseillator. Tune (2 for maximum output. This can be determined hy brilliance indication in a 2 -volt $60-\mathrm{ma}$. pilot lamp connected to a 1 -turn loop of insulated wire compled to L_{2}. Cheek the frequeney of this stage with a wavemeter.

Now conned a low-range milliammeter (not more than 10 ma.) between the test point, J_{1}, and ground. Apply power to the push-pull tripler, again using a temporary milliammoter connected in the lead to the plate coil, I_{33}. Tume the plate circuit for maximum indication on the grid meter. Plate current will be about '20 mas. Adjust the position of L_{3} with respeet to L_{4} for maximum grid current. Now go back over all previous adjustments and set them carefully for maximum

220-Mc. Transmitter

Fig. 17-32-Interior view of the 220.Mc. transmitter. A!l r.f. components are mounted on an aluminum plate, which is screwed to the top of a standard 6×17-inch chassis. Screen trimmer capacitor C_{6} mounts on the tube socket mounting plate.
The crystal socket and the oscillator coil and capacitor are at the far right. Next is the first 12AT7 socket. Next to the left is the first tripler plate coil, mounted over its trimmer, with the mica balancing padder, C_{3}, above. The 12AT7 tripler, the test point, J_{1}, the tuning capacitor C_{4}, the tripler plate and amplifier grid loops, L_{3} and L_{4}, the 6360 socket, the 6360 plate and amplifier grid loops, the 6252, and its funed circuits follow in that order. The series capacitor, C_{8}, and the coaxial lead to the output connector, J_{3}, are at the far left.
grid current. Adjust the balancing padder, ('3, retuning C_{2} each time this is done, until the combination of C_{2} and C_{3} that gives the highest grid eurrent is found. Check the frequency to be sure that the stage is tripling to $220 \mathrm{Mc}{ }^{\circ}$
Now apply power to the 6.360 plate circuit, again using the temporary meter to check the current. Connect the low-range milliammeter hetween the grid-metering terminal on the connector strip and ground. Set the screen trimmer, (${ }_{6}$, near minimum, and tune the 6360 plate circuit for maximum grid current. With 300 volts on the preceding stages, it should be possible to get at least 4 ma. Adjust the spacing between L_{5} and L_{6} carefully for maximum grid current, retuning C_{5} each time this is done. Plate current should not exceed 55 ma .

Check for neutralization of the final amplifier by tuning C_{7} through resonance while watching the grid-current meter. If there is no change, or only a slight rise as the circuit goes through resonance, the stage is near enough to neutralization to apply plate power. The 6252 has built-in cross-over capacitance, intended to provide neutralization in the v.h.f. range, so it is likely to be stable at this frequency. If there is a downward kick in the grid current at resonance, adjust the sereen trimmer until it disappears. If best neutralization shows at minimum setting of the screen trimmer it may be desirable to climinate the trimmer.

With an antenna or dummy load connected at J_{3}, final plate voltage can be applied. Tune the final plate circuit. for maximum output, with a meter of 100 ma . or higher range connected to read the combined plate and screen current. This meter may be connected in the power lead, or it can be plugged into the cathode jack. In the latter position it will read the combined plate, screen and grid currents. Tune for maximum output and note the plate current. If it is much over 100 ma., loosen the coupling between L_{7} and L_{8}. The input should not be over 50 watts at this frequency.

A final check for neutralization should now be made. Pull out the erystal or otherwise disable the early stages of the transmitter. The grid current and output should drop to zero. If they do not, adjust the screen trimmer until they do. Make this tust only very briefly, as the tubes

will draw excessive current when drive is removed. When perfect neutralization is achieved, maximum output will be found at a setting of C_{7} at which plate current is at a minimum and grid current at maximum.

Operation

All stages should be rum as lightly as possible, for stable operation and long tube life. No more than 300 volts should he run on the exciter stages, and if sufficient grid drive can be obtained, lower voltage is desirable. The 6360 stage runs with rather low drive, and its efficiency is consequently poor, but it delivers enough power to drive the 6252 , even when run at as low as 250 volts, if all stages are operating as they should.
Observe the plates of the tubes when the transmitter is operated in a darkened room. There should be no reddening of the plates. If one side of any of the last three stages shows red and the other does not it is evidence of unbalance. This can usually be corrected by adjustment of the balaneing trimmer, C_{3}, in the first tripler plate circuit. Lack of symmetry in lead lengths or unbalanced capacitance to ground in any of the r.f. circuits may also lead to lopsided operation.

Though the 6252 is rated for up to 600 volts on the plates, it is recommended that no more than 400 be used in this application, particularly if the stage is to be modulated for voice work.
For voice work the plate-screen current of the 6252 is rum through the secondary of the output transformer on the modulator. The latter should have an output of 20 watts or so.

Fig. 17.33-Details of the hairpin lsops used in the 220-Mc. transmitter.

A Tripler-Amplifier for $\mathbf{4 3 2} \mathbf{~ M c}$.

Only tubes designed especially for u.h.f. servier will work satisfactorily at 420 Mc. and higher. The various small receiving triodes made for u.h.f. TV use will work well in low-powered frequency multipliers and r.f. amplifiors for transmitting, but the trend is to tetrodes. Several of the latter are now available.

The tripler-amplifier shown in ligs. 17-31 to $17-37$ delivers up to 20 watts output on 432 Me .

Fig. 17-34-A ripler-amplifier for 432 Mc. using dual tetrodes. Shielded construction and forcedair cooling are employed.
holes in the top cover. Holes are drilled in the chassis under the amplifier tube, and in the eover over it. With a bottom plate fitted to the chatsis there should be enough air flowing through toth top vents to lift a paper briskly when the fim is started.

Hall-wave lines are used in all 432 - Me, cirruits, The grid eircuit of the amplifier is eaparitively coupled to the tripler plate line, the two over-

lapping about $11 / 4$ inches. The spacing between thrm must be adjustred rarefolly for maximum grid drive, plate voltage is fod to the limes through small resistors. These should be ronnereted at the point of lowest r.f. voltage on the lines. The amplifier griil r.f. chokess are conneetad at the tube sooket.

Note that the plate line capacitors, C_{1} and C_{2}, have their rotors foating. This is important. Grounding the rotors, or use of capacitors having metal end plates, may introduce multiple r.f. pathe and cireuit unbabance. The eapacitors have small metal mounting brackets that are not connerted direetly to the rotors, but even so it Was neeressary to resort to polystyreme mounting plates for best cirruit balane and efficiency. Holes $3 / 4$ inch in diamoter are punched in the front wall to pass the rotor shafts.

Testing

The tripler-amplifier is designed to operate in conjunction with a $1+1$-. Me transmither such as
when driven on 144 Me, by any 2 -meter unit delivering 10 watts output or more. In phatesmodulated serviere the output is 12 watts. Tubes are RC'A diñ2t dual tetrodes, hat with slight modification Amperex 6252 s or 5 Sthe maty be used. With tie:2es the output will bre ahont the same as with the 6is2t. The $58.9+$ will deliver up to 40 watts with higher plate voltages. The $8: 32.1$ may also be used, but the output will be no more than tor 5 watts. Forced-air cooling and shielding are recommended.

The tripher tube is mounted vertic:ally, at the left, with its socket $1 \frac{1}{2}$ inches below the chassis. There is just room under the sorket for the self. resonint input rireuit, L_{2}. The :mplifier is horizontal, with its socket mounted in back of a plate that is 8 inches from the left edge of the $3 \times+\times 17$-inch aluminum chassis, The shichding endosure is $3 \frac{1}{4}$ inches wide $b, 5: 31 / 2$ inches high. A cooling fitn is mounted on the rear wall of the chassis. Air circulates around the tripler tule through its 2 -inch hole, flowing out through

Fig. 17.35-Looking into the tripler-amplifier with the top cover and front plate removed.

A Tripler-Amplifier

Fig. 17-36 — Schematic diagram for the 432-Mc. tripler-amplifier.
$C_{1}, C_{2}-10-\mu \mu \mathrm{f}$.-per-section split stator, double spaced (Bud LC-1664). Do not use metal end-plate or grounded-rotor types.
$R_{1}, R_{2}-23,500$ ohms, 2 watts (two 47,000-ohm 1-walt resistors in parallel).
$\mathrm{L}_{1}-2$ furns No. 20 enam., $1 / 2$-inch diam. Insert between furns of L_{2}.
Le-4 furns No. 16 enam., $1 / 2$-inch diam., $1 / 2$-inch long, center-fopped.
L_{3}-Copper strap on heat-dissipating connectors, $31 / 2$ inches long. Twist 90 degrees $1 / 2$ inch from plate end. Space $3 / 4$ inch.
\mathbf{L}_{4}-Copper strap $27 / 3$ inches long, soldered to grid termi-
the 21:26 rig shown in Fig. 1-17. A plate supply of 300 volts at 200 ma . is needed (400 volts may be used with 5894s). Apply power to the 144-Mc. driver stage and adjust the spacing of the turns in L_{2} and the degree of coupling between L_{1} and L_{2} for maximum tripler grid current. This should be about 3 ma.

Next apply plate and sereen voltage to the tripler and tune C_{1} for maximum grid current in the amplifier, with no plate or sereen voltage to the latter. Adjust the position of the grid lines with respect to the plate circoit, readjusting C_{1} whenever a change is made, until at least 4 ma. grid current is obtained.

Now connect a lamp load across the output terminal, J_{2}. Ordinary house lamps are not suitable. A fair load ean be made by connecting 6 or more blue-bead pilor lamps in parallel. This can be done by wrapping a $1 / 4$-ineh copper strap
nals. Space about $1 / 2$ inch.
L_{5}-Copper strap $31 / 2$ inches long, fastened to heat-dissipating connectors. Space $3 / 4$ inch. All tank circuits of flashing copper $1 / 2$ inch wide.
$\mathrm{L}_{0}-$ Coupling loop, No. 20 enam. U-shaped portion is 1 inch long and $5 / 8$ inch wide. Mount on 3 -inch ceramic stand-offs.
J_{1}-Coaxial input fitting (Amphenol 83-1R).
J_{2}-Crystal socket used for antenna terminal. $\mathrm{J}_{3}, \mathrm{~J}_{4}$-Closed-circuit jack.
$\mathrm{J}_{5}-5$-pin male chassis connector (Ampher.ol 86-RCP5).
M-Motor-blower assembly, 17 c.f.m. (Ripley Inc., Middletown, Conn., Type 8433).
around the brass bases and soldering them all together. Them another stratp should be soldered to the lead terminals. Apply plate and screen voltage and tune (\% for maximum lamp brilliance. It :hould be possible to develop a very bright glow in the 6 -lamp bad with a plate current of about 100 mat. at 300 volts.

Cut drive very bridfly to check for oscillation in the final stage. (irid current should drop to zero. The sercen and grid resistors shown are for operation with plate modulation. More input ean be run if the sereen or grid resistance is decreased, but this should be done only when the rig is to be used for f.m. or cow, sorvice.

Operating conditions are about as follows: tripler grid curvent - 2 to 3 mat.; :mplifier grid current - 3 to 4 ma.; triplor plate and sereen current - 90 mat.; :mplifiei plate and acrecti current - 110 ma.; output -12 watts.

V.H.F. Antennas

While the basie primeiples of antemat design remain the same at all frequencies where conventional elements and transmission lines are used, eertain asperets of v.h.f. work retll for changes in antennat terhnigurs above 50 Me. Here the physieal size of arretys is redued to the point where some form of antenna hatving gatin over a simple halfwave dipole ean be used in almost any location, and the rotatable high-gain divertional array has become a standard feature of all well-equipped v.h.f. stations. The importanee of antenna gain in v.h.f. work ramot be overemphasized. By no other means aun so latge a return be oltatined from a suatl investmont as results from the erection of a good directional array.

DESIGN CONSIDERATIONS

At 50 Me. and higher it is usuatly important to have the antenna work well over all or most of the band in question, and as the bands are wider than at lower frequencies the attention of the designer must be forused on hroad frequency response. This maty be attamed in some instanes through sabrificing other qualities such as high front-toback ratio.

The loss in a given length of tramsmission line rises with freguener. V.h.f. feedlines should be krpt as short as possible, therefor. Matching of the impedandes of the antennat and transmission line should be done with care and in open locattions a high-gain antemat at relatively low height maty he preferable to a low-gain system at great height. Wherever pussible, however, the v.h.f.

Fig. 18-1-Combination tuning and matching stub for v.h.f. arrays. Sliding short is used to tune out reactance of the driven element or phasing system. Transmission line, either balanced or coax, is connected at the point of lowest standing-wave ratio. Adjustment procedure is outlined in text.
array should be well above heavy foliage, buildings, power lines or other obstruetions.

The physical size of a v.h.f. array is usually more important than the number of elements. id t-element array for 432 \Ic. may have as much gain over a dipole as a similarly desigued array for 144 Mc., but it will intercept only one-third as
much energy in receiving. Thus to be equal in communication, the $\$ 32-$ Me. array must equal the $14+-M c$. antenn: in capture area, requiring three times as many elements, if similar element configurations are used in both.

Polarization

lenty v.h.f. work was done with simple antennats, and sinee the vertical dipole gave as good results in all directions as its horizontal counterpart offered in only two diredions, vertical polarization boame the acoepted standard. Later when high-gain antennas came into use it was only natural that these, too, were put up vertiral in areas where v.h.f. antivity was ahready well est:hlished.
When the discovery of various forms of longdistance propatgation stirred interest in v.h.f. operation in areas where there wats no previous experience, many neweomers started in with horizontal arrays, these having been more or lass standard practice on frequencies with which these operators were fimiliar. As use of the same polarization at both ends of the path is necessary for best results, this lack of standardization resulted in a conflict that, even now, has not been completely resolved.

Tests have shown no large difference in results over long paths though evidence points to a slight superiority for horizontal in certain kinds of terrain, but vertical hats other factors in its favor. Horizontal arrays are generally easier to build and rotate. Where ignition noise and other forms of man-made interference are present, horizontal systems usually provide better signal-to-noise ratio. Simple 3 - or 4-element arrays are anore effective horizontal than vertical, as their radiation patterns are broad in the plane of the elements and sharp in a plane perpendicular to them.

Vertical sustems can provide uniform coverage in all directions, a feature that is possible only with fairly complex horizontal arrays. (ain ean be built up without introducing directivity, an important feature in net operation, or in lorattions where the installation of rotatable systems is not possible, Mobile operation is simpler with vertical antennas. Fear of inereased "Tl has kept v.h.f. men in some densely populated areas from adopting horizontal as a standard.

The factors favoring horizontal have been predominant on 50 Mc ., and today we find it the standard for that band, except for emergeney net operation involving mobile units. The slight atvantage it offers in D. work has :cecelerated the trend to horizontal on 144 Mc. and higher bands, though vertical polarization is still widely used. The picture on 144,220 and 420 Me. is still confused, the tendency being to follow the local
trend. The newcomer should eheck with local amateurs to see whieh polarization is in general use in the area he expects to cover. Eventual standardization should be a major objective, and to this end it is reommended that horizontal polarization be established in areas where activity is developing for the first time.

IMPEDANCE MATCHING

Because line losses increase with frequency it is important that v.h.f. antenna systems be matched to their transmission lines carefully. Lines commonly used in v.h.f. work include open-wire, usually 300 to 500 ohms impedance, spared $1 / 2$ to two inches; polyethylene-insulated flexible lines, available in 300,150 and 72 ohms impedance; and coaxial lines of 50 to 90 ohms impedance.

The various methods of matching antenna and line impedance are deseribed in detail in Chapter 14. Mateling devices commonly used in v.h.f. arrays fed with balanced lines include the folded dipole in its various forms, lig. 14-42, the " T " Match, Fig. 14-45, the "Q" section, Fig. 14-41, and the adjustable stub, Fig. 18-1. The gamma match, useful for feeding the driven element of a parasitic array with coaxial line, is shown in schematic form in lig. 14-45. Balaneed loads such as a split dipole or a folded dipole can be fed with coax through a bitum, as shown in lig. $14-16$. Fractical examples of the use of these devices are shown in the following pages. The principles upon which their operation depends are explained in Chapter 14, with the exception of the adjustable stub of Fig. 18-1.

The Corrective Stub

The adjustable st ub shown in Fig. 18-1 provides a means of matching the antenna to the transmission line and also tuning out reactance in the driven element. It is, in effect, a tuning device to which the transmission line may be connected at the point where impedances match. Both the shorting stub and the point of connection are made adjustable, though once the proper points are found the connections may be made permanent.

For antenna expriments the stub may lee made of tubing, and the comections made with sliding clips. In a permanent installation a stub of open-wire line, with all comections soldered, may be more satisfactory mechanically. The transmission line may be open-wire or Twin-Lead, connected directly to the stub, or coaxial line of any impertance, which should be connected through a balum.

To adjust the stub start with the short at a point about a half wavelength below the antenna, moving the point of connection of the transmission line up and down the stub until the lowest stand-ing-wave rat io is achieved. Then move the shorting stabb a small amount and readjust the line connection for lowest s.w.r. again. If the minimum s.w.r. in lower than at the furst point checked the short
was moved in the right divection. Continue in that direction, readjusting the line connection each time, until the s.w.r. is as close to $1: 1$ as possible. When adjustments are eompleted the portion of the stub below the short can be cut off, if this is desirable meehanically.

TYPES OF V.H.F. ARRAYS

Directional antenna systems commonly used in amateur v.h.f. work are of three general types, the collinear, the Yagi, and the plane refleetor

Fig. 18-2-Inserts for the ends of the elements in a v.h.f. array provide a means of adjustment of length for optimum performance. Short pieces of the element material are sawed lengthwise and compressed to fit inside the element ends.
array. Collinear systems have two or more driven elements end to end, fed in phase, usually backed up by parasitie reffectors. The Yagi has a single driven element, with one or more parasitic elements in front and in back of the driven element, all in the sume plane. The plane-reflector array hats a large reflecting surfuce in back of its driven element or elements. This may be a sheet of metal, a metal sercen, or elosely spaced rods or wires. The reflector may be a flat plane, or it can be bent into several forms, such as the corner and the parabola.

Examples of all three types are described, and each has points in its favor. The collinear systems such as the 12-and 16 -element arravs of Figs. 1814 and $18-15$ require little or no adjustment and they present few foed problems. They work well over a wide band of frequencies. Y'agi, or parasitic arrays, ligs. $18-5$ to $18-10$, depend on fairly precise tuning of their elements for gain, and thus work over a narrower frequency range. They are simple mechanically, however, and usually offer more gain for a given number of elements than do the collinear systems. Planeand corner-reflector arrays are hroadband devices, having broad forward lobes and high front-to-back ratio. They are easily adjusted, but somewhat cumbersome mechaniaally.

ELEMENT LENGTHS AND SPACINGS

Designing a v.h.f. array presents both mechanical and electrical problems. The electrical problems are basic, and their solution involves choosing the type of performance most desired. Mechanical design, on the other hand, can be sulbject to almost endless variations, and the form that the array will take can usually be decided by the materials and tools available. One common

TABLE 18-1						
Dimensions for V.H.F. Arrays in Inches						

source of materials for amateur arrays is commereially built TV antennas. They can often he revamped for the amateur v.h.f. bands with a minimum of effort and expense.

Dimensions for Yagi or collinear arrays and thoir matehing deviers can be taken from Table 18-I. The driven element is usually eut to the formula:

$$
\text { Length (in inches) }=\frac{5540}{\text { Freq. (Me.) }}
$$

This is the betsis of the lengths in Table 18-I, which are suitable for the tubing or rod sizes commonly used. Arrays for 50 Me. usually have 16 to 1 -inch elements. For $144 \mathrm{Mc} .1 / 4$ to $1 / 2$ inch stock is common. Rod or tubing $1 / 8$ to $3 / 8$ inch in diameter is suitable for 220 and 420 Mc. Note that the eloment lengths in the tabie are for the middle of the band coneerned. For peaked performaner at ot her frequencies the element lengths
should be altered according to the figures in the third line of the table.

Reflector elements are usually about 5 per cent longer than the driven element. The director nearest the driven element is 5 per cent shorter, and others are progressively shorter, as shown in the table. Parasitic elements should also be adjusted according to line 3 of the table, if peak performance is desired at some frequency other than midband.

Parasitic element lengths of Table 18-I are based on element spacings of 0.2 wavelength. This is most often used in v.h.f. arriays, and is suitable for up to 4 or 5 elements. Other spacings can be used, however. If the element lengths are adjusted properly there is little difference in gain with reflector spacings of 0.15 to 0.25 wavelength. The closer the reflector is to the driven element,

Fig. 18-3-Omnidirecfional vertical array for 144 Mc. Elements of aluminum clothesline wire are mounted on ceramic standoff insulators screwed to a wooden pole. Feedline shown is 52 -ohm coax, with a balun af the feedpoint. Twin-Lead or other 300 -ohm balanced line may also be used, but it should be brought away horizontally from the support. ing pole and elements for af least a quarter wavelength. Coax may be taped to the sup. port.

the shorter it must be for optimum forward gain, and the greater will be its effect on the driven element impedance.

Dirertors may also be spaced over a similar range. Closer spacing than 0.2 wavelength for arrbys of two or three elements will require a longer director than shown in Table 18-1. Thus it can be seen that close-spaced arrays tend to work over a narrower frequency range than widespaced ones, when they are tumed for best performance. They also result in lower drivenelement impedance, making them more difficult to feed properly. Spacings less than 0.15 wavelength are not commonly used in v.h.f. arrays for these reasons.

Practical Designs for V.H.F. Arrays

The antemis systems pictured and described Inrewith are examples of ways in which the information in Table 18-I can be used in arravs of proven purformance. Dimensions can be taken from the table, exept where otherwise noted. If
the builder wishes to experiment with element adjustment, a simple method is shown in Fig. 18-2. With elements 1 ex-inch or larger diameter a piece of the elrment material can be used. It is sawed lengthwise and then compressed to make

Practical Designs for V.H.F. Arrays

Fig. 18.4-Dimensions and supporting method for the 144-Mc, vertical array.
a tight fit inside the end of the element.
A readily available material often used for elements in arrays for 144 Me, and higher is aluminum chothesline wire. This is a stiff harddrawn wire about $1 / 8$ inch in diameter. It should be used in preference to a similar-appearing wire commonly sold for TV grounding parposes. The latter is too soft to make sutisfactory elements if the length is more than about two feet.

A Collinear Array for 144 Mc.

Where a vertically-polarized array having some gain over a dipole is needed, yet directivity is undesirable, collinear halfwave elements may be mounted vertically and fed in phase, as shown in Figs. 18-3 and 18-4. Such an array may have 3 clemente, as shown, or 5 . The impadance at the enoter is approximately 300 ohms, permitting it to he fed direetly with TV-type line, or through a coaxial balun, as in the model shown. Either 52 - or 72 -ohm line may be omployed without serious mismateh

The array is made from two picees of aluminum clothesline wire about 97 inches long overall. These are bent to provide a 38 -inch top section, a folded-back 10 -inch phasing loop, and a 19 -inch eenter seetiun. These elements are mounted on ceramic pillars, which are fustened to a round wooden pole. Small clamps of sheet aluminum are wrapped around the elements and screwed to the stand-offs. A cheaper but somewhat less desirable method of mounting is to use TV serew-eye insulators to hold the elements in plate.

Feeding the array at the center with a coaxial balun makes a neat arrungement. The balun loop may be taped to the vertical support, and the
coaxial line likewise taped at intervals down the mast. The same type of construction can be applied to a $220-$. Me, vertical collinear array, using the langthe for that band given in Table 18-I.

PARASITIC ARRAYS

Single-hay arrays of 2 to 5 clements are widely used in 50-Me, work. These may be built in many different wats, using the dimensions given in the table. Probably the strongest and lightest structure results from use of ahuminum or dural tubing (usually $11 / 4$ to $11 / 2$ inches in diametor) for the boom, though wood is also usable. If the clements are mounted at their midpoints there is no need to use insulating supports. Csually the elements are rum through the boom and clamped in place in a manner similar to that shown in Fig. 18-12. Where a metal hoom is used the joints between it and the elements must be tight, as any movement at this point will result in noisy reception.

2-Element 50.Mc. Array

The 2-element antenna of Fig. 18-5 was designed for portable use, but it is also suitable for fixed-station work with minor modification, The 2-meter array above it is deseribed later. The elements are made in three sections, for portability, using inserts similar to that shown in Fir. 18-2. The driven element is gamma matched for coax feed, and the parasitic element is a 0.15 -wavelength spaced dircetor. Details of

Fig. 18.5-Two-element $50-\mathrm{Mc}$. and four-element 144 Mc. arroys designed for portable use. Support is sectional TV masting clamped to car door handle. Elements of 50 Mc. array are made in three sections, for stowing in back of car. Antenna for 144 Mc . is cut-down TV array. Both use gamma match, as shown in Fig. 18-6.

Fig. 18-6-Details of the gamma match for the 50.Mc. portable array. In a permanent installation the variable capacitor should be mounted in an inverted plastic cup or other device lo protect it from the weather. The gamma arm is about 12 inches long for 50 Mc ., 5 inches for 144 Mc .
the gamma section, the boom and its supporting clamp are shown in l"ig. 18-6. The arm is about 12 inches long, and the caparitor is a $50-\mu \mu$, variable. Clean, tight conneetions between the arm andelement are important. Where the array is to be mounted permanently outdoors the capacitor may be protected from the weather by mounting it in an inverted plastic cup. More details on this array are given in Iugust, 1055 , QNT.

3-Element Lightweight Array

The 3-clement 50-Mc. array of Fig. 18-7 weighs only 5 pounds. It uses the closest spaeing that is practical for v.h.f. applieations, in order to make an antenna that could be used individually or stacked in pairs without requiring a cumbersome support. The elements are half-inch ahuminum tubing of $1 / 10$-inch wall thickness, attached to the $11 / 4$-inch dural borm with aluminum castings made for the purpose. (Dick's, 62 Cherry Ave., Tiffin, Ohio, Type H.ASL.) By limiting the element spacing to 0.15 wavelength the boom is only 6 feet long. Two booms for a stacked array (ligg, 18-II) can thus be cut from a single 12 -foot length of tuling.

The folded-dipole driven element has No. 12 wire for the fed portions. These are mounted on $3 / 4$-inch cone standoff insulators and joined to the outer ends of the main portion by means of metal pillars and 6-32 screws and nuts. When the wires are pulled up tightly and wrapped around the screw, solder should be sweated over the muts and screw ends to seal the whole against weather corrosion. The same treatment should be used at each standoff. Mount a soldering lug on the ceramic cone and wrap the end of the lug around the wire and solder the whole assembly together. These joints and other portions of the arriy may be sprayed with clew lacguer as an additional protection.

The inner ends of the folded dipole are $11 / 2$ inches apart. Slip the dipole into its almminum casting, and then
drill through both element and casting with a No. 30 drill, and tap with ($6-32$ thread. Suitable inserts for momting the stand-offs ean be made hy cutting the heads off 0 - 32 serews. Taper the cut end of the screw slightly with a file and it will screw into the standoff readily.

Cut the dipole length according to Table 18-I, for the middle of the frequency range you expect to use most. The reflector and director will be approximately 4 per cent longer and shorter, respectively. The closer spacing of the parasitic elements (0.15 wavelengt h) makes this deviation from the dimensions of the table desirable.
The single 3 -clement array has a feed impelance of about 200 ohms at its resonant frequeney. Thus it may be fed with 52 -ohm conx and a balun. A gamma-matched dipole may also be used, as in the 2-element, array. If the gamma match and $\bar{z} 2$-ohm coax atre used, a balum will convert to 300 -ohm balanced feed, if Twin-Lead or 300 -ohm open-wire TV line feed is desired. If the dimensions are selected for optimum performance at 50.5 Mc. the array will show good performance and fairly low standing-wave ratio over the range from 50 to 51.5 Mc .

A closeup of a mounting method for this or any other array using a round boom is shown in Fig. 18-8, Four TV-type U bolts clamp the horizontal and vertical members together. The metal plate is about f inches square. If $1 / 4$-inch sheet aluminum is available it may be used atone, though the photograph shows a sheet of 1 16inch stock backed up by a piece of wood of the same size for stiffening.

High-Performance 4-Element Array

The telement array of lig. 18-9 was designed for maximum forward gatin, and for direct feed with 300 -ohm balanced transmission line. The parasitic elements may be any diameter from $1 / 2$ to 1 inch, but the driven element should be made as shown in the sketch. The same general arrangement may be used for a 3 -element array, except that the solid portion of the dipole should

Fig. 18-7-Lightweight 3 -element $50-\mathrm{Mc}$. array. Feedline is 52 -ohm coax, with a balun for connection to the folded-dipole driven element. Balun may be coiled as shown or taped to supporting pipe.

Parasitic Arrays

be $3 / 4$-inch tubing instead of 1 -inch. With the element lengths given the array will give nearly uniform response from 50 to 51.5 Mc ., and usable gain to above 52 Mc . It may be peaked for any portion of the band by using the information in Table 18-I.

If a shorter boom is desired, the reflector spacing can be reduced to 0.15 wavelength and both

Fig. 18-8-Closeup photograph of the boom mounting for the $50-\mathrm{Mc}$. array. A sheet of aluminum 6 inches square is backed up by a piece of wood of the same size. TV-type U clamps hold the boom and vertical support together at right angles. At the left of the mounting assembly is one of the aluminum castings for holding the beam elements.
directors spaced 0.2 or even 0.15 wavelength, with only a slight reduction in forward gain and bandwidth.

5.Element 50.Mc. Array

As aluminum or dural tubing is usually sold in 12 -foot lengths this dimension imposes a practical limitation on the construction of a 50-Mc. beam. A 5-element array that makes optimum use of a 12 -foot boom may be built according to Table 18 -I. If the aluminum casting method of mounting elements shown for the 3 -element, array is employed the weight of a 5 -element beam can be held to under 10 pounds. The gamma match and coaxial line are recommended for feeding such an array, though a balun and 72 -ohm coax can be used for the rotating portion of the line, converting to balanced feed at the anchor point.

Elements should be spaced 0.15 wavelength, or about 36 inches. With 5 or more elements, good bandwidth can be secured by tapering the element lengths properly. A dipole 110 inches long, with a 116 -inch reflector, and directors of 105, 103 and 101 inches respectively will work well over the first two megacyeles of the band, provided that the s.w.r. is adjusted for optimum at 51 Mc .

Long Yagis for 50 Mc .

With boom lengths greater than about 12 feet and with more elements than 4, somewhat

Fig. 18-9-Details of a 4 -element $50-\mathrm{Mc}$. array designed for 300 -ohm balanced feed. Element lengths and spacings were derived experimentally for optimum performance over the first 1.5 megacycles of the band.
better performance can be obtained by using gradually increasing spacing between the directors. The 6-element array in Fig. 18-10 is an example of this approach. It also employs a variation of the gamma match that has mechanical advantages. The long boom and wide-spaced elements give a sharpness of horizontal pattern that is not obtainable with the same number of elements in a stacked array.

The long Yagi is not a broadband device. This one works well over the first megacyele of the band with the following dimensions. Subtract 2 inches from each clement for each megacycle

Fig. 18-10-A 6 -element long Yagi for 50 Mc . and a 16 element collinear array for 144 Mc . Both are all-metal construction. Each has its own vertical member, which is clamped to the rotating vertical pipe that runs down through the tower bearing.

18 - V.H.F. ANTENNAS

higher. Reflector - 116 inches. Driven element - 110.5. First director - 105.5. second diredor - 104. Third director - 102.75. Fourth director - 101.5. spacings are. from bank forward: : th. $36,42,5!$ and 70 inches. If at lourer :utay is to be built each additional director should be ofo inches from the last.

Construction

The long Yagi is built similar to the 3 -element array of Fig. 18-7 and 18-8, using those same rastings for mounting the elements. The gusset plate for fastening the boom to the vertieal support is made larger, and four l bolts are used on each member instead of two. The arraty is mounted at its center of gravity. rather than at its physical eenter. The boom is braced to prevent drooping, at points about \boldsymbol{b} fect out from the mounting point. Braces are aluminum tubing. flattened at the ends, and elamped to the boom and the vertiabl member, suspension bracing, ats shown in Fig. 18-10, provides strongth with light weight supports.

The dimensions given require a boom slightly more than 20 fect long. This was made up by splicing, but if a 20 -foot length is available in one piere the sparings of the two forward directors e:m be moule slightly less. in order to avoid splicing, likement spacing is not partientarly aritical, but lengths are faily so.

The Gamma Match

The gammat mateh is ideal for matehing arrats fed with coox. The arrangement shown in Fig. 18-11 combines the adjustable arm with the series capacitor, and provides a rugged assembly that can be weather-proofed readily. The main arm is cut from the same material as the elements, 15 inches long. It is supported parallel to the driven dement by means of two 1 -inch ceramic standotts and sheet-aluminum clips. Its inner end is comnected to the inner conductor of a coaxial fitting, mounted on a small bracket serewed to the boom.

The series captaitor, for tuning out the reactance of the matching arm and making connertion to the driven element, is $1 / 1-\operatorname{inch}$ rod or tubing $1+$ inches long. It is maintained coavial with the main arm by two polystyrene bushings. One is force-fitted to the end of the rod and the
wher is fitted tightly inside the main arm to art as a bearing. These ean be made from 38-inch rod stock. or National Type PRC-1 forms can be adapted reatily to the purpose. A clip of shert aluminum conneets the rod and the driven element. Be sure that at dean tight eontact is made at this point.

Adjustment

Matching requires an sw.r. bridge. It can be done properly in no other wity. Momt the beam at least a hadf wavelength above ground and clear of trees and wires ber at least the same distance. set the trunsmitter at a frequency in the middle of the ringe you want to work (50.3 is a good spot for low-end operation) and adjust the position of the clip and the length of the rod outside the main tum for minimum sur. Move first one variable and then the other until zero reflected power is indicated. Tighten the clip solidly, tape over the junction between the arm and the rod with waterproof tape, and the array is ready for use.

144-MC. PARASITIC ARRAYS

The main features of the armas described above can be adapted to $1+1-$ Mc antennas, but the smatl physical size of arrays for this frequeney makes it possible to use larger numbers of elomonts with ease. Few 2-meter antemas have less than 4 or \mathbf{a} elements, and most stations use more, wither in a single bay or in stacked systems.
P^{2} arasitic arratys for 111 Mc . cim be made readily from TV intennas for Chamels 4,5 or 6 , 'The relatively close spacing normatly used in TV arratys makes it possible to approximate the recommended 0.2 wavelengt at 114 Me., though the element spacing is not a eritical factor. A t-element array for $14+\mathrm{Mc}$. made from a Chammel (; TV Yugi is shown in Fig. 18-5. It is fed with : gamma match and 52-ohm cois, and w:ts designed primarily for portable work. As most TV antennas are designed for 300 -ohm feed the stme feed system can be employed for the 2meter array that is made from them.

If one wishes to build his own Yagi antennas from available tubing sizes, the boom of a 2 meter antenna should be $3 / 4$ to 1 inch aluminum

Fig. 18.11-Details of the gamma match used on the 6element 50 -Mc. array, Series capacitor is formed by sliding a rod or fube inside the main arm.

144-Mc. Parasitic Arrays

or clural. Elemonts can be $1 / 4$ to $1 / 2$-inch stock, fastened to the hoom as shown in Fig. 18-12. Recommended sparing for up to 6 elements is 0.2 wavelength, though this is not too aritical. Gamma match feed is recommended for coas, or a folded dipole and balun may be used. If balanced line is to be used the folded dipole is

Fig. 18.12-Madel shawing methad of assembling allmetal arrays for 144 Mc . and higher frequencies. Dimensians of clamps are given in Fig. 18-16.
recommended. the 4 to 1 ration of ronductor sizes being about right for most designs.

Vory high gain ean be oltained with long Yagitype armas for 114 Me, and highor frequencies, though the bandwidth of such antemas is considerably narrowar than for those hatwing up to 4 or 5 elements. The first two dieretors in long Yagie are usually spaced ahout 0,1 wavelength. The third is spaced about 0.2 , increasing to 0.1 wavelength or so for the forward direotors. Highest gain is ohtained when all directors are made the same length, but better front-to-back ratio and lower sido lobe content results if the direetor lengths are tapered $1 / 8$ to $1 / \frac{1}{4}$ inch per director. Tapering the element lengt hs also widens the effertive handwidth. There is more on long Yagis in QST for January and September, 1956.

STACKED YAGI ARRAYS

The gain (in power) obtainable from a single lagi array can be more than doubled by stacking two or more of them vertically and feeding them in phase. This refers to horizontal systems, of course. Vertimally-polarized hays are usually stacked side by side. The principles to follow apply in either case.

The spacing between bays should be at least one-half wavelength, and more is desirable. For dipoles or Yagis of up to three elements optimum spacing hetweon hars is about $5 / 8$ warelongth, but with longer Yagis the spating can be increased to one wavelength or more. Bays of 5 elements or more, spaced one wavelength, are commonly used in antemas for 111 Mr. athl higher frequencies. Optimum spacing for long Yagis is ahout two wavelengths.

Where half-wave stacking is to be employed, the phasing line betweon bays can be treated as a double " $($?" sertion. If two batys, each designed for : 300 -ohm ferd, are to be stacked a hatlf wavelength apart and fed at the midpoint between them, the phasing line should have an impedance of about :380 ohms. No. 12 wire spaced one inch will do for this purposes. The midpoint then can be fed cither with 300-ohm line, or with $/ 2$-ohm coax and a balum.

When a spacing of $5 / 8$ wavelengt het ween hatys is employed, the phasing lines eatn be eoax. (The velocity factor of coax makes a full wavelength of line actually about $5 / 8$ wavelength physically.) The impedance at the midpoint betwern two bays is slightly less than half the impedanee of either bay alone, due to the coupling betwern buys. This effee dereases with incerased spacing.

When two bits are spaeed a full wavelength the coupling is relatively slight. The phasing line can be any open-wire line, and the imperlane at the midposint will be approximately half that of the individual bats. Predieting what it will be with a givenset of dimensions is difficult, as mang factors come into play. It will usmally be of a value that can be fed through the eombination of a " Q " section and a transmission line of 300 to 450 ohms impedance. An adjustable "(Q^{\prime} section, or an adjustable stub tike the one shown in Fig. 18-1, may be used when the antenna impedance is not known.

Fig. 18-13-Stacked array far 50 Mc . using twa of the 3 -element bays of Fig. 18-7. Phasing system and flexible sectian far ratatian are af caaxial line. A "Q" sectian matches this to 450 -ahm open-wire line for run to the station.

The stacked 3-over-3 for 50 Mc., Fig. 18-13, uses a coaxial phasing line and an additional section of coax to provide for the flexible portion of the feedline. Each bay is fed with a balun and halfwave section of RG-8/U cable. These are joined at the center between bays with a Tee fitting. As each bay has an impedance of 200 ohms, two 50 -ohm leads are paralleled at the center, resulting in an impedance of about 20 ohms, when the coupling effect between bays is included. A flexible section of 50 -ohm coax one wavelength long, with a balun at the end, steps this up to about 80 ohms. A " Q " seetion of $1 / 4-$ inch tubing $3 / 4$ inch center to center steps this up to the point where it can be fed with 450 -ohm open-wire TV line.

The 'Twin-Five" for 144 Mc .

A popular stacked array for 144 -Mc, work is the Twin-Five, originally developed by W2PAU ${ }^{1}$. In this design two 5 -element arrays of standard desigu are stacked a full wavelength apart. If the folded-dipole driven elements are constructed so that the individual bays have a feed impedance of about 400 ohms the midpoint of the open-wire phasing line can be fed with 52 -ohm coax and a halun. Where open-wire line is desired, the impedances can be matched through a " Q " section of about 300 ohms imperdance. If the constructor is in doubt as to the actual feed impedance to be mattehed, the stub arrangement of Fig. 18-1 will take care of a wide range of impedances and lines to be matched. Dimensions can be taken from Talble 18-I.

An effective 20 -element array can be made by using two of these arrays side by side, with fullwave sparing horizontally also. The impedance at the midpoint of the horizontal phasing line will then be about 100 ohms, which is still well within the range of " Q " sections of practical dimensions.

large collinear arrays for 144 MC. AND HIGHER

High gain and very broad frequency response are desirable characteristics found in curtains of half-wave elements fed in phase and backed up by reflectors. The reflector can be made up of parasitic elements, or it can be a soreen extending approximately a quarter wavelength beyond the ends of the driven elements. There is not a large difference between the two trpes of reflectors, exeept that higher front-to-back ratio and somewhat broader frequency response are achieved with the plane reflector.

12. and 16.Element Arrays

Two collinear systems that may be used on 141,220 or 420 Me , are shown in Figs. 18-14 and 18-15. Fither may be fed directly with 300 -ohm transmission line, or through coaxial line and a balun. In the 12 -element array, Fig. 18-14, the reflectors are spaced 0.15 wavelength in baek of

[^8]the driven elements, while the 16 -element arraty, Figs. 18-15 and 18-10, uses 0.2 wavelength spacing. Dimensions may be taken from Table 18-I, and figures for the middle of the band will give good performance across either band.

Fig. 18-14-Element arrangement and feed system of the 12 -element array. Reflectors are spaced 0.15 wavelength behind the driven elements.
The supporting frame for either array may be made of wood or metal. Jetails of a metal support for the 12-element array are shown in Figs. 18-16 and 18-17. Note that all elements are mounted at their midpoints, and that no insulators are used. The elements are mounted in front of the supporting frame, to keep metal out of the field of the array. This method is preferable to that wherein mechanical balance is maintained

Fig. 18-15-Schematic drawing af a 16 -element array. A variable " Q " section may be inserted at the feed paint if accurate matching is desired. Reflector spacing is 0.2 wavelength.

Fig. 18-16-Defail drawings of the clamps used to assemble the all-metal 2 -meter array. A, B and C are before bending into " U " shape. The right-angle bends should be made first, along the dotted lines as shown, then the plates may be bent around a piece of pipe of the proper diameter. Sheet stock should be ${ }^{1 / 16 \text {-inch or heavier aluminum. }}$
through mounting the driven elements in front and the reflectors in back of the supporting structure.

Two 12-element arrays may be mounted one above the other and fed in phase, to form a 24 element array. This is done in the 420 -Mc. array of Fig. 18-18. The two midpoints are comected

Fig. 18-17-Supporting framework for a 12-element 144-Mc. array of all-metal design. Dimensions are as follows: element supports (1) $3 / 4$ by 16 inches; horizontal members (2) $3 / 4$ by 46 inches; vertical members (3) $3 / 4$ by 86 inches; vertical support (4) $11 / 2$-inch diameter, length as required; reflector-to-driven-element spacing 12 inches. Parts not shown in sketch: driven elements $1 / 4$ by 38 inches; reflectors $1 / 4$ by 40 inches; phasing lines No. 18 spaced 1 inch, 80 inches long, fanned out to $31 / 2$ inches at driven elements (franspose each half-wave section).
through a phasing line one wavelength long, and the center of this phasing line fed through a " Q " section. The impedance at the midpoint is about 150 ohms, requiring a 255 -ohm " Q " section for feeding with find-ohm open-wire line.

Combination of collinear arrays may he carried further. Pairs of 16 -element systems fed in phase are common, and even 61 -element arrays (416 element beams fed in plase) are used in some leading stations on $144 . \mathrm{Ic}$. Configurations of 32 to 64 elements are not difficult to build and support at 220 or 420 Mc . Examples of 16 - and 24 -element arrays for 220 and 420 Mc . are shown mounted back to back in Fig. 18-18.

ARRAYS FOR 220 AND 420 MC.

The use of high-gain antenna systems is almost a necessity if work is to be done over any great distance on 220 and 420 Mc. Experimentation with antennat arrays for these frequencies is fascinating incleed, as their size is so small as to permit trying various element arrangements and feed systems with ease. Arrays for 420 Mc., partieularly, are convenient for study and demon-

Fig. 18-18-A 24-element array for 420 Mc . and a 16 element for 220 mounted back-to-back on a single support.
stration of antenna principles, as even high-gain systems may be of table-top proportions.

Any of the arrays deseribed previously may be used on these bands, but those having large numbers of driven elements in phase are more readily adjusted for maximum effectiveness.

A 16 -element array for 220 Mc. and a 24 -
element array for 420 Mc. are shown mounted back-to-back in Fig. 18-18. The 220-Mc. portion follows the 16 -element design already described. It is fed at the center of the system with 300 -ohm tubular Twin-Lead, matched to the center impedance of the array through a " $($ " section of 7/a-inch tubing, spared about $1 \frac{1}{2}$ inches senter to center. This spacing was adjusted for minimum standing-wave ratio on the line.

Elements in the array shown are of $7 / 16$-ineh aluminum fuel-line tuling. which is very light in woight and easily worked. The supporting structure is dural tuhing, using the clamp assembly methods of Fig. 18-16i,

The 120-Ne, array uses two 12 -element assemblies similar to Fig. 18-14, mounted one above the other, about one half wavelength separating the hot tom of one from the top of the other. The two sets of phtaing lines are joined by one-wavelength sections of Twin-Lead at the midde of the arris. This junction, which has an impedance of around 150 ohms, is fed with 300 -ohm tubular Twin-Leud through an adjustable " Q " section.

Eilements in the $420-$ Mc. array are cut from thin-walled $1 / 4$-inch tubing. Their supports are the 716 -inch stork used for the 220-Ne. elements. Slots were cut in the ends of these supports to take the elements, and a $4-10$ screw was run through both pieces and drawn up tightly with a nut. The horizontal supports were fastened in holes drilled in the vertical members, and were also held in place with a $6-32$ screw and nut. The small size and light weight of the 420 -Me. array require no clumps to make a strong assembly,
The two one-wavelength sections of 300 -ohm line are $213 / 4$ inches long, taking the propagation factor into account. The " $(2$ " sertion maty be any convenient size tubing, $1 / 4$ to $1 / 2$ inch diameter. It should be made adjustable, as matching is important at this frequency. Dimensions for both arrays ean be taken from Table 18-I.
(Fior an example of stacking several eommercial $230-$ Mc. beams, see Tilton, "A 6i-Element Stacked-Y'agi Array for 2:20 Mc,", QS'", January, 195!.)

MISCELLANEOUS ANTENNA SYSTEMS

Coaxial Antennas

At v.h.f. the lowest possible radiation angle is essential, and the coaxial antenna shown in Fig. 18-1! was developed to eliminate feeder radiation. The center conductor of a 70 -ohm concentric (coaxial) line is extended one-quarter wave bevond the end of the line, to act as the upper half of a half-wave antenna. The lower half is provided by the quarter-wave sleese. the upper end of which is connected to the outer conductor of the concentric line. The sleeve acts as a shield about the tranmission line and very little current is indured on the outside of the line by the antemna field. The line is non-resonant, since its characteristic impedance is the same as the center impedance of the half-wave antema. The sleeve may he made of copper or inass tub-
ing of suitable diameter to clear the transmission line. The coavial antenna is somerhat difficult to const ruct, but is superior to simpler systems in its performance at low radiation angles.

Broadband Antennas

Certain types of antemnas used in television are of interest beeause they work arross a wide band of frequencies wilh relatively uniform response. At very-high frequencies an antenna made of small wire is purely resistive only over a very small frequency range. Its Q, and therefore its solectivity, is sufficient to limit is optimum performance to a narrow frequeney range, and readjustment of the length or tuning is required for eath narrow sliee of the spectrum. With tumed transmission lines, the effective length of the antenna can be shifted by retuning the whole system. However, in the case of antennas fed by matehed-impectance lines, any appreciable frequency change requires an actual mechanical adjustment of the system. Otherwise, the resulting mismateh with the line will be suflierent to caluse significant reduction in power input to the antenna.
A properly designed and constructed wideband antenna, on the other hand, will exhibit very nearly constant input impedance over several megacyeles.

The simplest method of obtaining a broadband characteristic is the use of what is temed a "eylindrical" antema. This is no more than a conventional doublet in which large-diameter tubing is used for the elements. The use of a relatively large diameter-to-length ratio lowers the () of the antenna, thus broadening the resonamee characteristic.

As the diameter-lo-length matio is increased, end efferts also inerease, with the result that the antenna must be made shorter than thin-

Miscellaneous Antenna Systems

sire antenna resonating at the same frequency. The reduction factor may be as much as 20 per cent with the tubing sizes commonly used for amateur antennas at v.h.f.

Plane-Reflector Arrays

At 220 Mc , and higher, where their dimensions become practicable, plane-reflector arrays are widely used. Exeept as it affects the impedance of the system, as shown in lig. 18-20, the spacing between the driven elements and the reflecting phane is not particularly critieal. Maximum gain oceurs around 0.1 to 0.15 wavelength, which is also the region of lowest impedance. Highest impedance appears at about 0.3 wavelength. A plane reflector spaced 0.22 wavelength in bark of the driven elements has no effect on their feed impedance. As the gain of a plane-reflector array is nearly constant at spacings from 0.1 to 0.25 wavelength, it may be seen that the spacing may be varied to achieve an impelance match.

An advantage of the plane reflector is that it may be used with two driven element systems, one on each side of the plane, providing for twoband operation, or the incorporation of horizontal and vertical polarization in a single strueture. The gain of a plane-reflector array is slightly ligher than that of a similar number of driven clements backed up by parasitie reflectors. It also has a broader frequency response and higher front-to-back ratio. To achieve these ends, the rellecting plane must be lager than the area of the driven elements, extending at least a quarter wavelength on all sides. Chicken wire on a wood or metal frame makes a good plane reflector. Closely spaced wires or rods may be substituted, with the spacing between them running up to 0.1 wavelength without appreciable reduction in effectiveness.

Cone Antennas

From the cylindrical antenna various specialized forns of broadly resonant radiators lave been evolved, including the ellipsoid, spheroid, cone, diamond and double diamond. Of these, the conical antemna is perhaps the most interesting. With large angles of revolution, the variation in the characteristic impedance with changes in frequency can be reduced to a very low value, making such an antema suitable for extremely wide-band operation. The rone may be nade up either of sheet metal or of multiple wire spianes. A variation of this form of conical antenna is widely used in TV reception,

Corner Reflectors

In the corner reflector two plane surfaces are set at an angle, usually between 55 and 90 degrees, with the antenna on a line bisecting this angle, Maximum gain is oltained with the antemaa 0.5 wavelcugth from the vertex, but compromise designs can be built with closer spacings. There is no for:al point, as would be the case for a paraholic refleetor. Comer angles greater than 90 degrees can be used at some sacrifice in gain. At
less than 90 degrees the gain increases, but the size of the reflecting sheets must be increased to realize this gain.

At a spacing of 0.5 wavelength from the vertex, the impedance of the driven element is approximately twice that of the same dipole in free space. The impedance decreases with smaller spacings and corner angles, as shown in Fig. 18-20. The gain of a corner-reflector array with a 90 -degre angle, 0.5 wavelength spacing and sides one wavelength long is approximately 10 db . Principal advantages of the corner reflector are broad frequency response and high front-to-back ratio.

Fig. 18-20-Feed impedance of the driven element in a corner-reflector array for corner angles of 180 (flat sheet), 90,60 and 45 degrees. " D " is the dipole-to-vertex spacing.

Parabolic Reflectors

A plane sheet may be formed into the shape of a parabolic curve and used with a driven radiator situated at its focus, to provide a highly directive antenna system. If the paralolic reflector is sufficiently large so that the distanee to the focal point is a number of wavelengths, optical conditions are approached and the wave across the mouth of the reflector is a plane wave. However, if the reflector is of the same order of dimensions as the operating wavelength, or less, the driven radiator is appreciably coupled to the reflecting sleet and minor lobes occur in the pattern. With tul aperture of the order of 10 or 20 wavelengths, sizes that may be practical for microwave work, a beam width of approximately 5 degrees may te achieved.
A reflecting paraboloid must be carefully designed and constructed to obtain ideal performance. The antenna must be located at the focal point. The most desirable focal length of the parabolat is that which places the radiator along the plane of the mouth; this length is equal to one-lalf the mouth radius. At other focal distances interference fields may deform the pattern or cancel a sizable portion of the radiation.

Mobile and PortableEmergency Equipment

The amateur who goes in for mobile operation will find plenty of room for exercising his individuality and developing original ideas in equipment. Wach installation has its special problems to be solved.

Most mobile recciving systems are designed around the use of a h.f. converter working into a standard car broadeast receiver tuned to 1500 kc . which serves as the i.f, and audio amplifiers. The ear receiver is modified to take a noise limiter and provide power for the eonverter.

While a few mobile transmitters may run an input to the final amplifior as high as 100 watts or more, an input of about 30 watts normally is considered the practical limit unless the car is equipped with a special battery-charging system. The majority of mohile operators use phone.

In eontemplating a mobile installation, the car should be studied carcfully to determine the most suitable spots for mounting the equipment. Then the various units should be built in a form that will make best use of that space. The location of the converter should have first consideration. It should be placed where the controls can be operated conveniently without distracting attention from the wheel. The following list suggests spots that may be found suitable, depending upon the individual car.

On top of the instrument panel
Attached to the steering post
Inder the instrument panel
In a unit made to fit between the lower lip of the instrument panel and the floor at the center of the car

The transmitter power control can be Wared close to the receiver position, or included in the converter unit. This control normally operates rolays, rather than to switch the power circuit directly. This permits a
minimum length of heavy-current battery circuit. Frequeney within any of the phone bands sometimes is changed remotely by means of a stepping-switeh system that switches crystals. In most cases, however, it is necessary to stop the car to make the several changes required in changing bands.

Depending upon the size of the transmitter unit, one of the following places may be found convenient for mounting the transmitter

In the glove compartment
Under the instrument panel
In a unit in eombination with or without the converter, built to fit between the lower edge of the instrument panel and the floor at the center
On the ledge above the rear seat
In the trunk
Most mobile antennas consist of a vortical whip with some system of adjustable loading for the lower froquencies. Power supplies are of the vibrator, motor-generator, or transistor type operating from the car storage battery.

Units intended for use in mohile installations should be assembled with greater than ordinary care. since they will be subject to considerable vibration. Soldered joints should be well made and wire wrap-arounds should be used to avoid dependence upon the solder for mechanical strength. Self-tapping screws should be used wherever feasible, otherwise lock-washers should be provided. Any shafts that are normally operated at a permanent or semi-permanent setting should be provided with shaft looks so they cannot jar out of adjustment. Where wires pass through metal, the holes should be fitted with rubber grommets to prevent chafing. Any cabling or wiring hetween units should be securely clamped in place where it cannot work loose to interfere with the operation of the car.

Noise Elimination

likectrical-nomise interference to reception in a car maty arise from several different sources. As examples, tronble maty be experieneed with ignition noise, generator and voltage-regulator hash, or wheel and tire static.

A noise limitor added to the car broadeast recoiver will go far in reducing some types especially ignition mose from passing ears as woll as your own. But for the satisfintory reception of weaker signals, some investigation and treat-
ment of the car's cleetrical system will be necessary.

Ignition Interference

Fig. 19-1 indieates the measures that may be taken to suppress ignition interference. The capacitor at the primary of the ignition coil shonld te of the coaxial type; ordinary types are not effertive. It should be placed as close to the coil terminal as possible. In stubborn cases, two

Noise Elimination

of these cupacitors with an r.f. choke between them mat provide alditional suppression. The size of the choke must be determined experimontally. The winding should be made with wire heavy enough to carry the coil primary current. A 10,000 -ohm suppressor resistor shonld he inserted at the center tower of the distributor, a 0000 -ohm suppressor at each spark-plug tower on the distributor, and a 10,000 ohm suppressor at caeln spark pluy. The latter may be built-in or extemal. A good suppressor element should be molded of maturial having low eapacitance. Sioveral concerns manufacture satisfactory suppressors. In extreme cases, it may be needssury to use shichled ignition wire. suppressor ignition wire kits having the resistance distributed throughout the length of the wire are available from some automobile supply dealers. Distributed resistance of this type is somewhat superior to lumped resistance and maty be used if the lead lengths are right to fit your car. They should not be cut, but used as they are sold.

Fig. 19-1-Ignition syslem with recommended suppression methods.

Generator Noise

Genorator hash is mased hy sparking at the commutator. The pitch of the noise varies with the spered of the motor. This type of noise may be climinated by using a 0.1 - to $0.25-\mu \mathrm{f}$. coaxial capacitor in the generator armature circuit. This capateitor should be mounted as near the armature torminal as possible and directly on the frame of the generator.

To reduce the noise at 28 Mr., it may be neerssary to insert a parallel trap, tumed to the middle of the band, in series with the generator output lewd. Tho coil should have about 8 tums of No. 10 wire, spare-wound on a 1 -inch diameter and should be shunted with a $30-\mu \mu$ f. mica trimmer. It can be pretumed ber putting it in the antenua lend to the home-station receiver tuned to the middle of the band, and adjusting the trap to the point of minimum noise. The tuning may need to he peaked up after installing in the car, since it is fairly eritical.

Voltage-Regulator Interference

In eliminating voltage-regulator noise, the use of two eonxial eapuitors, and a resistor-micticapacitor combination, as shown in Fig. I! -2, are effective. A (0.1 - to 11.25 - μ. emaxial capactor should be placed het weon the battere terminat of the regulator and the battery, with its case well
grounded. Another eapacitor of the same size and type should be placed bet ween the generator terminal of the regulator and the generator. A $0.002-\mu \mathrm{f}$. mica capacitor with a 4 -ohm carbon resistor in series should be connected betwern the field terminal of the regulator and gromed. Never use a capatitor across the field eontacts or between field and ground without the resistor in series, since this greatly reduces the life of the

Fig. 19.2-The right way to install bypasses to reduce interference from the regulator. A capacitor should never be connected across the generator field lead without the small series resistor indicated.
regulator. In some cases, it may be nemsary to pull double-braid shiedding over the leads betwen the generator and regulator. It will be advisable to run new wires, grounding the shiolding well at Joth ends. If regulator noise persists, it maty be necessary to insulate the regulator from the car body. The wire shielding is then connerted to the regulator case at one cod and the generator frame at the other.

Wheel Static

Wheel static shows up as a steady popping in the receiver at speeds over ahout 15 m .p.h. on smooth dry strents. leront-wher static colleetors are available on the market to chiminate this variety of interference. They fit inside the dust cap and bear on the end of the axle, effectively grounding the wheel at all times. Those designated particularly for your car are preferable, since the universal type does not always fit well. They are designed to operate without lubrication and the end of the axle and dust cap should be eleaned of grease before the installation is made. These collectors require replacement about every 10,000 miles.

Rear-wheel collectors have a brush that bears agatinst the inside of the brake drum. It maty be necessary to order these from the factory through your dealer.

Tire Static

This sometimes sonmds like a leaky power line and can be very troublesome aven on the broadeast band. It can be remedied byinjecting an antistatic powder into the inmer tubes through the valve stem. The powder is marketed by Ceneral Cement and possibly others. (iemeral Cement dealers can also supply a convenient injoetor for inserting the powder.

Tracing Noise

To determine if the recciving antenna is picking up all of the noise, the shiclded lead-in Ghould be diseonnected at the point where it comberes to the antema. The motor should be started with the receriver gain rontrol wide apern. If no moise is heard, all noise is being pioked up via the antemma. If the noise is still hoard with the antemna disomnerted, even though it mas beredured in strongth, it indicater that some signal from the ignition system is being picked up by the antemat transmission

Fig. 19-3-Diagrams showing addition of noise limiter to car receiver. A-Usual circuit. B-Modification.
$\mathrm{C}_{1}, \mathrm{C}_{3}-100-\mu \mu \mathrm{f}$, mica.
$C_{2}, C_{1}, C_{6}-0.01-\mu \mathrm{f}$. paper.
$\mathrm{C}_{s}-0.1-\mu \mathrm{f}$. paper.
$\mathrm{R}_{1}-47,000$ ohms.
$\mathrm{R}_{2}, \mathrm{R}_{10}-1$ megohm.
$R_{3}-1 / 2$ megohm.
$R_{7}, R_{s}, R_{9}-0.47$ megohm.
R.1- 10 megohms.
$R_{s}-1 / 4$ megohm.
$\mathrm{R}_{\mathrm{n}}-0.1$ megohm.
T_{1}-I.f. fronsformer.
V_{1}-Second detector.
lines. The headin may not la sulficiontle-wedl shichled, or the shield not property grounded. Xoine mata also be picked up through the battery "irruil. athough this does mot normally happorn if the reoriver is provided with the u*ual

It base of mose from this soures ab dirent wite from the "hot" hattery terminal to the recomer is reerommended.

Ignition noise varies in repetition rate with engine speed and usually can be reeognized by that charactoristie in the early stages. Jater, howerer, it maty resolve itself into a popping moise that doses not always rorrospond with rengine sperd. In such at case, it is a gool ideat to remove all leads from the generator so that the only source left is the ignition system.

Regulator and generator noise may be detexted by raring the engine and cutting the ignition switeh. This eliminates the ignition moise. (immator moise is chataterized by its musical whine contrasted with the ratged raspy irregular noise from the regulator.

With the motor ruming at itling sperd, or slightly faster, wherks should be made to try to determine what is bringing the moise into the field of the antemat. It should be assumed that any control rod, metal tubre, stecring post, atc., passing from the motor compartmont through an insulaterl bushing in the firewall will carry noise to a point where it ran be radiated to the antemat. All of these should be bonded ten the firmadl with heave wire or braid. Jnsulated wires can be stripeed of r.f. by hypassing them to ground with $0, \bar{t}-\mu$, metaleme rape rators. The following should not be overlooked: battery lead at the ammetar. gasoline gage. ignition switeh. headlight, backup and taillight leads and the wiring of any accossories ruming from the motor compartment to the instrument pand or outside the car.

The firewall should be bonded to the frame of the car and alsu to the motor bloek with heave brail. If the exhanst pipe athd mutler are insulated from the frame by rubber mountings, they should likewise be gromeded to the frame with flexible eropper brad.

Noise Limiting

Fig. J!-3 shows the alterations that may be made in the existing rar-rerover rimolit to provide for a noise limiter. The usual diodetriode second deteetor is replated with a type having an extra independent diode. If the car receiver uses octal-hase tuber, a fisscit may he substituted. The 7 X 7 is a suitable rephacement in reorivers using loktaltype tuber, while the 67'8 may be used with miniatures.

The switch that ruts the limiter in and out of the circuit maty be located for ronvenience on or hoar the comserter pancl. Regardless of its pharemont, however, the leads to the switeh should be shielded to prevent hum piek-up.
several other moise limiter cireuits are desoribed in ARRLA's publication. The Mobile . Mamual For Romio itmatemes. 'l'le o Mohile Manmal also deseribers an andionsumeh swistem. The latter is a simple circuit denigned to suppress receiver hatckround noise in the absence of at sigasil. It dows not. howerer. function as a moise limiter when the remerer is fund to a signal.

If hast ond mambarturer (Gomsed) produces an (omplete noine limiter unit. The unit is mounted extrinal to the main chassis and takes operating voltages from the receiver.

A Mobile Converter for 3.5 through 28 Mc.

Figures 19-4 through 19.7 show a crystal-controlled eonverter covering 3.5 through 28 Mc. without complex band switehing or gang-tuned circuits. Plug-in coil assemblies provide rapid band changing and allow construction for either single-band or multiband operation. The converter uses the car broadenst receiver as a tunable i.f. amplifier.

Plate power requirements for the converter are approximately 20 milliamperes at 200 to 250 volts. This means that the unit can be supplied from the ear-receiver power pack without overloading it.

The Circuit

The circuit diagram of the converter is shown in Fig. 19-5. A 613/6 is used in the r.f. amplifier, and at 12 AT 7 operates as a mixer-oseillator. The oscillator is crystal-controlled and works on the low-frequeney side of the signal frequency. J_{1}, J_{2}, and J_{3} are the antenna-input, mixer-output and power jacks, respectively. S_{1} performs the switching in changing over from ham-band to broadeast input. $S_{1 A}$ and $S_{1 B}$ shift the antenna from the eonverter input cireuit to the car receiver, and S_{10} is the heater on-off switch.

Since the tuning of the converter is fixed, the circuits of the r.f. amplifier and the mixer must be broadbanded to pass all frequencies in any ham band. A slug-tuned coil, L_{3}. is used in the amplifier plate circuit, and $R F C_{1}$ provides a broad-band plate load for the mixer tube V_{2} as The grid eircuit of the amplifier also uses a slugtuned coil and includes a trimmer capacitor, C_{1}, that permits peaking the input for the antema in use, or in tuning completely across a band. A slug-cored coil is used at L_{4} to facilitate resonating the circuit near the crystal frequency.

The frequency of the oscillator must differ from the frequency of the received signal by the frequency of the tunable i.f. amplifier. With the car broadeast receiver following the converter, the i.f. range will be from approximately 550 to 1550 kc . Since the tunable i.f. range is thus limited to a band 1000 kc . wide, the tuning range

Fig. 19.4-The aluminum case for the converter measures $3 \times 4 \times 5$ inches (Bud CU- 3005 or Premier AMC1005). Amphenol type 86-CP4 mole jacks mounted on the front of the box mate with MIP 4-prong sockets mounted on the rear of the coil compartment shown in the foreground, Knobs for C_{1} and $\$ 1$ are to the left and right, respectively, of the pilot lamp. The coil box measures $21 / 4 \times 21 / 4 \times 5$ inches (Bud CU. 3004 or Premier AMC-1004). Slug-adjustment screws for L_{2}, L_{3} and L_{4} protrude through rubber grommets mounted on the front wall of the plug-in coil assembly.
of the system with any single crystal will be restricted to 1 Mc. This is sufficient for all except the 28 -Me. band. Two erystals are required to cover the entire 10 -meter bind. The first of these gives a tuning range of 28 to 28.9 Me. and the second permits tuning 28.8 to 29.7 Me. An accompanying frequency chart lists the erystal frequencies and the ranges over which the broadeast receiver must be tuned to cover the amateur bands.

Construction

The input-tuning capacitor, C_{1}, the pilot lamp and the switch are in line aeross the pancl of the converter as shown in Fig. 10-4. Each of these components is centered $3 / 4$ inch down from the top of the ease and each is separated from the other in horizontal plane by $13 / 4$ inches. The male jacks for the grid, plate and oscillator eoils are below C_{1}, I_{1} and S_{1} in that order. Each jaek is centered $1 / 1 / 8$ inches $u p$ from the bottom of the cabinet.

The chassis, shown in Fig. 10-7, may be made of thin aluminum sheet and should be fastened to the side walls of the cabinet with homemade brackets, or angle stock. The sockets for V_{1} (at the right as sem in the rear view) and l? are centered $15 / 8$ inches in from the right and left edges of the ehassis, respectively. J_{3} is centered on the rear wall of the chassis with J_{1} and J_{2} to the right and left.

A bottom view of the converter clearly shows the components mounted below deck.

The exterior and the interior of the eoil hox are shown in Figs. 19-4 and 19-7. Wind the antenna coupling coils, L_{1} in Fig. 19-5, around the ground ends of the grid coils hefore the latter are soldered in place. Wind the eonpling eails rather snugly but not so tightly as to prevent adjustment of the coupling to i_{2} during testing of the converter.

Fig. 19.5-Circuit diagram af the crystal-controlled mobile converter. Unless otherwise indicated, capacitances are in $\mu \mu \mathrm{f}$., resistances are in ohms, resistars are $1 / 2$ wott.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable (Hammarlund MAPC. 35-8).
$\mathrm{C}_{2}, \mathrm{C}_{3}-100-\mu \mu \mathrm{f}$. ceramic tubular.
$C_{4}, C_{5,} C_{f_{1}} C_{7}-1000-\mu \mu \mathrm{f}$. disk ceramic.
$\mathrm{C}_{8}-0.01-\mu \mathrm{f}$. disk ceramic.
1_{1}-Pilot-light assembly (Johnson 147-503 with No. 44 (6-valt) or Na. 1815 (12-volt) lamp].
J_{1}, J_{2}-Motorola-type shielded jack (ICA 2378).
$\mathrm{J}_{3}-4$-prang male chassis connector (Cinch-Jones P. 304-AB).
$L_{1}, L_{2}, L_{3}, L_{4}$-See coil chart.
An a.c. transtomer may be used for the titaments while testing the converter, The phate supply should deliver 20 milliamperes at 200 to 250 volts. A modulated-signal genemator covering the bands for which the eonverter has been constructed is extremely helpful. To be most effective, the generator should have a 50 -ohm output termination. A grid-dip meter for preliminary adjustment of the shug-tumed coils is useful, but not essential to aligmment. If at all possible, the car receiver that is to be used as the tumable i.f. should be used during the testing.

Lsing coaxial-cable keuls, conneet the signal generator and the broadeast receiver to I_{1} and J_{2}, resperetively. Switeh x_{1} to the ham-band position, and apply heater power. The receiver need not be turned on at this time, and plate
$\mathrm{R}_{1}-180 \mathrm{ohms}, 1 / 2$ watt.
$\mathrm{R}_{2}-22,000$ ohms, $1 / 2$ wott.
R_{3} - 2200 ohms, $1 / 2$ watt.
$R_{1}-1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{i}}=0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{0}-33,000 \mathrm{ahms}, 1 / 2$ watt.
$\mathrm{RFC}_{1}-10$-mh. r.f. chake (National R-100S).
S_{1}-3-pole 3 -position lused as 3 p.d.t.) selector switch (Centralab PA-1007).
Y_{1}-See text and frequency chart (International Crytals type FA-9).
power for the ronverter does not have to be applied. Now, rotate ('1 to approximately half maparitance and then adjust L_{2} to rewonamer (use the gridedip meter as the indieator) at the low end of the band. Move the grid-dipper over to the plate circuit of the amplifier and peak L_{3} at the center of the hamd. Next. conple the meter to L_{4} of the osillator and tume the coil to the fremencry of the crystal in use.

After thase initial aljustments. plate power may beaplied to the converter and a freguenevindiatang deviere used to detert oseillation of Fas. If the gridedip moter is the sellorectilying type it may be used for the eheek. An absorptiontepe watemeter with indicator or a receriver tumed to the errestal frequeney (with the b.f.o, on) may also be used for the purpose. In any

Fig. 19-6-A bottom view of the mobile converter. The amplifier tube sacket at the right is mounted with Pin 7 facing toward the rear wall of the chassis. R_{1} and R_{2} are to the right and left of the sacket, respectively. The socket for V_{2} is mounted with Pins 4 and 5 facing toward the rear of the unit. C_{2} is to the lower left of R_{2}, and $R F C_{1}$ is mounted on the front wall of the housing. C_{i} and R_{i} are to the left of the base of the choke. $C_{F_{i}}$. C_{8} and R_{3} are to the right of $R F C_{1}$. The output coupling capacitor C_{3} is supported between Terminal 4 of J_{3} and Pin 6 of the socket for V_{2}, R_{4} and R_{5} are partially visible to the right and lefi, respectively, of the V_{2} socket.

A Converter

Coml Chart for the Mobile Converter							
Banal	Turns	Ind．Ratule，μ h．			Tyue Jo．		
Mr．	L_{1}	L_{2}	L_{3}	14	L2	L_{3}	L_{4}
3．5－4	14	$36-61$	6．1－105	105－200	120－5	120－G	120－II
7－7．3	7	9－18	18－36	36－6．4	120－1）	120－1：	$120-\mathrm{F}$
14－14．35	4	3－5	$5-9$	9－18	1：0－13	$120-\mathrm{C}$	120－1）
$21-21.45$	3	2－3	$3-5$	3－5	120－： 1	$120-13$	120－13
28－28．9	3	1－1．6	1．6－2．7	2.74 .5	1000－． 1	1000－－ 3	1000－（）
$28.8-29.7$	3	1－1．6	1．6－2．7	$2.7-4.5$	1000－． 1	1000－B	1000－C

Note：L_{1} is wound with No． 28 d．c．e．wire at grounded end of $L_{22} . L_{2}, L_{43}$ and L_{4} are slug－tuned coils manufartured ley North Hills Electric Co．，Inc．（Mincola，L．1．）
event，L_{4} sloould be tuned through resonance to the high－frequency side of the crystal frequency until the erystal oscillates reliably as indicated hy rapid starting whon plate powor is turned on．

With the converter and the i．f．amplitier both turned on，and with the signal generator tuned to the center of the band，tune the receiver until the test signal is hourd．Deak L_{3} and L_{4} for best response and then peak L_{2} with C_{1} set at half eaparitanee．＇The couphing between L_{1} and L_{2} may now be adjusted for optimum performanee．

If the aforementioned tost equipment is not available，the convorter may be aligned while using a strong local of known frequency as the signal source．Of course，the signal frequeney must be in the hand for which the converter is to be aligned．In using this system，first set the broadeast receiver as closely as possible to the proper i．f．frequoncy（see the frequeney chart） and then tume L_{4} until the crystal oseillates．It is atvisable to tune the receiver through a narrow range as the oscillator coil is being aldusted to arsure that the test signal will be heard as soon as the erystal breaks into oscillation，After the signal is deterted，the grid，plate and oseillator eircuits may be adjusted for maximum over－all gain．

The mohile antenna should be resonant and tightly coupled to the converter．Trups for sup－ pressing interference cause by strong local broad－ cast signals that feed in through the converter to the tumable i．f．have not been included in the converter because the need for them will be entirely dependent on boal broadeast－station power and frequency assigmments．
（Originatly deseribed in（2STT，Nov，1957）．

Fig．19．7－Homemade L－shaped chassis，mounted on small brackets fastened to the side walls of the converter housing，is $415 / 16$ inches long， 2 inches wide and $11 / 2$ inches deep．V_{1} is mounted on the chassis to the right of V_{2} as seen in this rear view．J_{1}, J_{3} and J_{2} ore in line in that order from right to left across the rear wall of the chassis． An interior view of a coil compartment is shown in the foreground．Terminals af the coils ore soldered directly to the socket terminals．Notice that the crystal for the oscillator is mounted adjacent to L_{4} ．

Frequevey Chint for the Mobhe Convererer		
Band $1 / \mathrm{C}$ ．	Crystal Preq．，．／／c．	I．F．Range に゙。
$3.5-4$	2.9	（950－1100
7－7．3	6． 4	（600）－90）
14－14．35	13．4	（500）－950
21－21．45	20.	600－1050
28－28．9	27.4	（60）－ F 500）
28．8－29．7	28.2	600－150）
Note：I．i．range indicates broadeast recoiver tuning range neerssary for cover－ ing the associated amateur frequencies．		

（For a description of a bandswitching erystal－ controlled converter．see QST，Jinuary，1955，or The Mobile Manual for Rudio Amateurs．）

19-MOBILE EQUIPMENT

Transistor Mobile Converter

The crystal-controlled converter shown in Fig. $19-8$ is a compact, fixed-tuned converter which exhibits exeellent performanee when used with the automobile receiver. It is designed for one-band operation but may be constructed for any amateur band between 80 and 10 meters.

All of the components, including the power supply for the converter, are honsed in a $5 \frac{1}{4} \times$ $3 \times 21 / 8$-inch Minibox that can be momeded under the dashboard of the car. The unit is built in one half of the box so that it may be "dropped" for servicing or adjustment while the other half remains mounted to the dash.
Only two external comections to the converter are neerssary. A coax lead from the antema must go to the antema input of the unit, and an output coax connection to the car radio.

The circuit for the converter is shown in Fig. 19-9. The oscillator circuit is a transistorizel version of the triode Pierce. Injection for the miser is taken from a small link women over the cold eud of the collector tank coil. The emitter of the mixer transistor is returned to gromd through this link. The mixer circuit corresponds to a triode vacuum-tube mixer utilizing cathode injection from the oscillator, the major difference being the low input impedance of the transistor base as compared with the relatively high input imperlance of a vac-uum-tube grid.

The erystal frequency used in the oscillator portion of the converter is given in the tuned circuit data table. On 30 and 21 Me., the crystal is operated at its third overtone and on the lower bands the fundamental mode is used.
The inductances are wound on shag-tuned forms and shunted with the capacitances shown in the tuned circuit data table.
The circuit shows a cerstal diode connected from the high impedance end of L_{1} to cell B_{3}, This gives a measure of protection for the mixer transistor in the event that an excessive amount of r.f. energy is introduced into the converter. When a signal greater in voltage than B_{2} appears across L_{1}, the diode will conduct and short the excess r.f. to ground.

Power Supply

The converter requires about 8 volts d.e. fin
operation and takes on the order of 3 ma . of current. A built-in battery supply serves two important purposes. First, it eliminates one of the prime sources of ignition interference, since varions noises from the electrical system of the car can be carried into the converter via the leads from the car battery. Also, with a self-

TUNED CIRCUIT DATA FOR
THE TRANSISTOR CONVERTER

Band	Coil	$\begin{gathered} C_{1} \\ \mu \mu \mathrm{f} . \end{gathered}$	$\begin{gathered} C_{2} \\ \mu \mu \mathrm{f} . \end{gathered}$	Crystal Freq.	$\begin{gathered} \text { l.F. } \\ \text { Range } \end{gathered}$
$\begin{aligned} & 28 \\ & \text { Mc.* } \end{aligned}$	L1, 12 turns No. 20 enam. Tap at th turn. L. 2,2 turns No. 20 enam. L3. 12 turns No. 20 enam. L_{4}. 2 turns No. 24 enam,	15	15	$\begin{aligned} & 27.85 \\ & \text { Mc. } \end{aligned}$	$\begin{aligned} & 650-1600 \\ & \text { ke. } \end{aligned}$
$\begin{aligned} & 21 \\ & \text { Mc. } \end{aligned}$	L. 15 turns No. 20 enam. Tap at 5th turn. $L_{2}, 3$ turns No. 20 enam. L_{3}. 15 turns No. 20 enam. I.4, 2 turns No. 24 enam.	15	15	$\begin{aligned} & 20.35 \\ & \text { Mc. } \end{aligned}$	$\begin{aligned} & 650-1100 \\ & \text { ke. } \end{aligned}$
$\begin{aligned} & 11 \\ & \text { Me. } \end{aligned}$	$L_{1}, 23$ turns No. 24 enam. Tap at 6th turn. L_{2}, 5 turns No. 24 enam. $L_{3}, 26$ turns No. 24 enam, $L_{4}, 3$ turns No. 24 enam.	15	15	$\begin{aligned} & 13.35 \\ & \text { Me. } \end{aligned}$	$\begin{aligned} & 650-1000 \\ & \text { ke. } \end{aligned}$
$\begin{aligned} & \mathrm{T} \\ & \mathrm{Me} . \end{aligned}$	$L_{1}, 35$ turns No. 28 enam. Tap at 10th turn. $L_{2}, 6$ turns No. 28 enam, $L_{3 .} t 0$ turns No. 28 mam. L4. 4 turns No. 28 enam.	33	33	$\begin{aligned} & 63.50 \\ & \mathrm{kc.} \end{aligned}$	$\begin{aligned} & 650-950 \\ & \mathbf{k} \mathbf{c}^{\prime} . \end{aligned}$
$\stackrel{4}{\mathrm{Mc}}$	$L_{1}, 52$ turns No. $3 t$ enam. Tap at 13th turn. $L_{2}, 8$ turns No. 34 enam. $L_{3}, 72$ turns No. 34 enam. I.4. 5 turns No. 31 enam.	40	40	$\begin{aligned} & 2850 \\ & \text { kc. } \end{aligned}$	$\begin{aligned} & \text { 650-1150 } \\ & \text { ke. } \end{aligned}$

* 28.5 to 29.15 Mc .

All roils close-wound on $1 / 2$-inch diam, slug-tuned (iron slug) forms. Tap on L_{1} to be made near cold end of coil. L_{2} wound over cold end of L_{1}.

Fig. 19-8-View of the transistorized converter. The va riable output capacitor C_{4} is mounted on the right front panel. Directly behind C_{4} is the 8.4 volt mercury battery B_{1} held in place by a bracket which is sold in most hardware stores as a broom holder. The two transistors are the round black objects in the center. They are supported by their own leads which are soldered to tie points. The converter shown here operates on 10 meters.

Transistor Mobile Convertor

Fig. 19-9-Circuit of the transistorized converter.

$\mathrm{B}_{1}-8.4$ volt mercury transistor battery (RCA VS312).
$8_{2}-1.5$ volt penlite cell.
$C R_{1}$ - High back-resistance crystal diode (IN54A)
C_{1}, C_{2}-Silver mica or NPO ceramic; see the funed circuit data table for values.
$\mathrm{C}_{3}-.005 \mu \mathrm{f}$. ceramic.
$\mathrm{C}_{4}-365 \mu \mu \mathrm{f}$. variable capacitor (Allied Radio Co. 61.H-009).
J_{1}, J_{2}-Automobile type antenna connectors.
L_{1}, L_{1}, inc. -See coil table.
L:- \mathbf{L} 320.500 $\boldsymbol{\mu}$ h. slug tuned coil (Miller 4514).
$L_{i}-10$ turns No. 30 enam. close-wound over $L_{\text {is }}$.
$\mathrm{Q}_{1}, \mathrm{Q}_{2}-2 \mathrm{~N} 247$ transistors.
$R_{1}-0.47$ megohms, $1 / 2$ watt (value may require slight ad. justment for individual transistors).
S_{1}-Three pole two position rotary switch (Centraiab PA-2007).
Y_{1}-Crystal linternationai Crystal Co. type FA-5 for miniature socket, FA-9 for standard socket). See table for frequencies.
contamed battery it is ummeressary to make any powersupply connertions aither to the car receiver or car battory. This saves considerahle time during installation and makes the unit radily adaptable to portable operation.

Wiring

No. 30 wire is adeduate for wiring beranse of the small rurrent and voltage requirements of the ronverter. Spargetti should be used over exposed leads that might come in contart with other parts because of the vibration that occurs in mobile opration. For the same reason, it is essential that good soldered connedions be made.

The intormation given in the tumelorirenit data table applios to $1 / 2$-inch coil forms. Readywound slug-tuned roils, such as the Miller 4500 sories or the ('TC ISt3 series, can also be used with the links shown in the chart. L_{1} is tepped about $1 / 3$ up from the rold end. ('1 and ('2 shoukl be chosen to resonate, in a given amateur band, with the induetance of the partienar coil used; the $L_{/} / \mathrm{C}^{\prime}$ ratio is not aritical.

Construction

The converter is assemblent in one half of a $51 / 4 \times 3 \times 21 / 8$-inch Minibox. The hox tover (with the lips) is mounted permanently under the automobile dash. The only front-panel con-
trols are the convorter-hroadcast switeh S_{1} and the output peaking control C_{4}. Mount S_{1} so that the leals roming from the antema conneetors will line up with the proper switeh terminals. Two 5 -terminal tie points are mountod in the conter of the chassis for supporting the errstal socket, tramsistors and other small components. The threre slug-tuned inductances are supported on the rear wall of the chassis, as are the two antemna comectors.

After the major components have been installed, only a fow wiring oomections inemain. Be sure to lave long leads on the indurtaness after winding them so that the la ds may be directly comeeted to their proper points.

In the cireuit, erell β_{2} has its negative terminal grommed. A lug soldered to the rell case and bolted to the chassis will make a sturdy support for the cell.

Adjustment and Testing

Ifter the unit is wired, the first test should be to make rertain that the oscillator is funetioning. Turn on the eonverter, Tume a communirations rereiver to the ervstal frequener and adiost the shig in L_{3} until the signal is heard. The os cillator will not function umless the eollector tank (${ }^{\prime \prime}{ }_{2} L_{3}$) is resonant,

After the oscillator is operating properly, install the unit in the ear and turn it on. With the broadeast radio turned on, adjust the slug in L_{3} for maximum background noise. Next, adjust the slug in L_{1} for maximum noise, or select a weak signal and peak it up for maximum gain. Then set the car radio at the high end of the i.f. band and aljust the slug in L_{5} for maximum
gain with ('a at minimum capacity. The low end of the i.f. band should peak when C_{4} is set near maximum. If only one segment of a particular band is going to be used, additional gain can be had loy peaking the roils for that portion of the band. If, for example, 5 -meter phone operation is desired, peak the converter for 3800 to 4000 ke. rather than 3500 to 4000 ke.

Crystal-Controlled Converters for 50 and 144 Mc.

The molite ronverters shown in Figs. 19-10 through 19-1:3 combine simplicity with good v.h.f. design practice. Although only two tubes are used in each, the converters include a stage of r.f. amplification plus erystal-controlled oscillators. Ten meters was chosen as the i.f. because when the broaleast reeciver is used as the tunable i.f. for v.h.f. converters images are a problem, and only 1 Me , at a time could be tuned. The converters described here, therefore, are designed to work into a 10 -meter converter or receiver. This can be a tunalle converter which in turn works into the broadrast receiver, or a complete self-contained 10 -meter receiver.

The SO.Mc. Unit

The cirenit diagram for the $50-\mathrm{Mc}$ e. unit is shown in Fig. 19-11, A tidhē is used as an r.f. amplifier. The same gain with lower noise ran be obtainell with a cascode-type dual-trionde amplifier, but the performance of this pentode stage is satisfactory and its design is considerably simpler than the triode amplifier.

The erystal oscillator makes use of a 22-MIc. overtone erystal. A erystal on the repuired injertion freguency climimates the need for multiplier stages, and makes possible the use of a simple ossillator circuit. The 10 -meter receiver or "onverter is tuned from 28 to 30 Mc ", in eovering 50 to 52 Me . If a general coverage receiver covering 26 to 30 Mr , is used, a 24 -2he erystal in the osecilator will allow tuning 50 to 54 Me . However, any injextion fredurency may be used to cover a desimed portion of the band.
The pentode half of the bu8 tube is used as
a mixar. The oseillator and mixer sections are in the same tulse envelope so there is enough stray coupling between the two for adequate oscillator injection.

The diagram shows the heaters eomected for 12 volts. If 6 -volt operation is desired, the heaters are conneeted in parallel and h_{1} is disregarded.

The converters are built in a $51 / 4 \times 3 \times 21 / 8$ inch Minibox. All of the parts are mounted on the bottom half of the box while the upper halt (the one with lips) is fastened under the car dash. The bottom half containing all the eomponents can be slid in and out for easy servicing.

Fig. 19-10 shows the placement of most of the components. The output peaking control i_{1} and switeh S_{1} are mounted on one side of the chassis to form the front panel. The tubes, slug-tuned inductanees, erystal sorket and anfonna comertors are mounted direetly opposite on the batck wall. Two tie-points are bolted to the base of the box for connecting and supporting leads and components. When wiring, make the r.f. leads as short and direct as possible.

The 144-Mc. Unit

The eirenit diagram for the $1+1-\mathrm{Me}$. converter is shown in Fig. 10-13. Two 60'S tuhes are used with the pentole section of one tube acting as the r.f. amplifier followed by the triodeasection miver. The other 6 U 8 is used as an overtone crystal oseillator and pentode frequency multiplier. By combining all the features of a t-tube arwatal-controlled eonverter in a two-tube model space-saving simplicity is achieved.

The same basie circuit used in the $50-\mathrm{Mc}$.

Fig. 19-10-View of the $50-\mathrm{Mc}$. converter. The inductances are from left to right: (bottom) L_{i}, (top) $L_{5} L_{i}, L_{3} L_{1}$, $L_{1} L_{2}$. The top of erystal Y_{1} can be seen between the tubes. The 22 -ohm 2 -wott resistor in the center of the chassis is the heater current compensating resistor, used for 12 -volt operation. input and output antenna connectors ore mounted on opposite ends of the back wall. Power is fed to the unit through the twisted power coble running in from the left side of the photograph.

Crystal-Controlled Converters

Fig. 19-11-Schematic diagram for the $50-\mathrm{Mc}$. mobile converter. All resistors $1 / 2$ watt unless otherwise specified. Capacitor values below 0.001μ f. are in $\mu \mu \mathrm{f}$. All $0.001 \mu \mathrm{f}$. capacitors ore disk ceramic.

Other fixed capacitors are tubular ceramic.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund MAPC-35-B).
J_{1}, J_{2}-Automobile type antenna connectors.
$L_{1}-3$ turns No. 20 insuloted wire, close-wound over cold end of L_{2}.
$\mathrm{L}_{2}-9$ turns No. 20 enam. wire, close-wound on $1 / 2$ inch slug tuned coil.
L3-16 turns No. 20 enam. wire, close-wound on $1 / 2$ inch slug tuned coil form.
$L_{1}-6$ turns No. 20 insulated wire, close-wound over cold end of t_{3}.
$\mathrm{L}_{5}-14$ furns No. 20 enam. wire, close-wound on $1 / 2$ inch
model is followed in the $1: 4-\mathrm{Mc}$. unit except for the addition of a multiplier stage following the ervstal oscillator. The oscillator operates at $38.6 i 6 \mathrm{Mc}$. and is multiplied to 116 Me . in the tripler stage. As in the 50-Mc. converter, this unit is designed to work into a 10 -meter receiver or converter. If the i.f. tunes from 27 to 30 Me ., the converter will tune from 144 to 147 Me. However, any segment of the band may be
slug funed coil form.
$\mathrm{L}_{6}-2$ turns No. 20 insulated wire, close-wound over cold end of t_{2}.
$\mathrm{L}_{7}-28$ turns No. 30 enam. wire, close-wound on $1 / 2$ inch slug tuned coil.
R_{1}-22-ohm 2-watt resistor (used for 12-volt heater operation only).
S_{1}-Three-pole two-position rotary switch (Centralab PA-2007).
$Y_{1}-22 \mathrm{Mc}$. overtone crystal. (International Crystal type FA. 5 for miniature socket, FA-9 for standard socket).
tumed by choosing the proper erystal fredurney.
Unlike the 50-Me. converter, the oseillatormultiplier stages of the $1+t-$. Ic. converter are physically separated from the mixer stage. It is necessary, therefore, to conple the $116-\mathrm{Mc}$. energy from the multiplier stage to the grid of the mixer. Caparitor (${ }_{2}$ is used for this purpose. It consists of a pair of twisted hook-up wires with one end of one lead connected to the mixer

Fig. 19-12-View of the $144-\mathrm{Mc}$. converter The inductances from left to right are: (top) $l_{1} l_{2}, l_{3} l_{4}, l_{i} l_{10}$ (bottom) l_{7} and l_{8}. All components except S_{1} and C_{1} are mounted on the back wall of the chassis. A single tie point in the bottom of the channel supports various leads and provides junctions for sundry connections. The input and output antenna connectors are placed near the bottom right and left of the back panel. The crystol Y_{1} is between the two tubes. Converter power is fed through the twisted cable which passes through a hole and grommet in the back wall of the chassis.

19-MOBILE EQUIPMENT

Fig. 19-13-Schematic diagram for the 144 -Mc. converter. All resistors $1 / 2$ watt unless otherwise specified. Capacitor values below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. All $1000-$ $\mu \mu \mathrm{f}$. capacitors are disk ceramic. Other fixed capacilors are tubular ceramic.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable capacitor (Hammariund MAPC-35-B).
C_{2}-Oscillator inje ction capacitor (see text).
$\mathrm{J}_{1}, \mathrm{~h}_{2}$-Automobile type antenna connectors.
$\mathrm{L}_{1}-2$ furns No. 18 enam., $3 / 8$ inches long, on $1 / 2$ inch slug tuned coil form.
$\mathrm{L}_{2}-2$ turns No. 20 insulated wire, close wound over cold end of t_{1}.
$L_{3}-2$ furns No. 18 enam., $3 / 8$ inches long, on $1 / 2$ inch slug tuned coil form.
grid and the end of the other lead connevted to the multiplier phate.

The cireuit diagram shows the hoaters connected for 1%-volt operation. For 6 volts, the heaters should be connected in parallel.

The same basie outline of construction used in the 50-Mc, converter is followed in the 14-Mc. unit. Fig. 19-12 shows how output peaking control (' 1 and the control switch S_{1} are mounted on the front wall of the chassis while most of the remaining parts are secured to the rear surface. A single tir point is mounted on the bottom of the chassis for comnecting and supporting various leads. The input and output antenna connectors are mounted at opposite ents of the back wall of the chassis.

Testing the Converters

The $50-\mathrm{Mc}$. converter requires 0.625 ampere at 6 volts (or 0,45 ampere at 12 volts) for the
$L_{4}-2$ turns No. 20 insulated wire, close wound over cold end of ι_{3}.
L5-9 turns No. 24 enam., close wound on $1 / 2$ inch slug funed coil form.
$\mathrm{L}_{6}-2$ turns No. 20 insulated wire, close wound over cold end of L_{5}.
$L_{i}-10$ turns No. 24 enam., close wound on $1 / 2$ inch slug funed coil form.
Ls-5 furns No. 18 enam., $1 / 2$ inches long, on $1 / 2$ inch slug luned coil form.
S_{I}-Three-pole two-position rotary switch (Centralab PA-2007).
$Y_{1}-38.666$ Mc. overtone crystal (International Crystal Co. type FA-5 for miniature socket, FA-9 for standard socket).
hreaters, and approximately 17 ma . at 150 volts for the plate supply. If the car radio delivers in exerss of 180 volts, the plate voltage on the ronverter should be limited by a dropping resistor.

The $14-$ Me. converter requires 0.9 ampere at (6 volts (or 0.45 ampere at 12 volts) for the heators. A plate voltage of 150 volts is required at about 30 ma .

All tuned cireuits should be checked for resonance with a grid-dipper. The proper frequen y for cath cireuit is given in Figs, 19-11 and 19-13. Apply power to the converter under tost, and adjust the osecillator circonit matil it goos into oseillation. This can be confirmed by tuning the home reepiver to the oseillator fregioney, Tune the osollator imberame until the maximmon os illator sighal is obtained. Now feed a 50 or 1H-Mt. signal into the converter under test. This signal may come from a signal generator'

20-Watt Mobile Transmitter

or a grid-dip meter, or may be an actual signal from the antenna. Go through the eonverter stage by stage, adjusting the inductances for peak output. Sfter the first run of peaking is completed the converter should be spot-rherked
through the eutire band to make sure the over-all response is fairly flat. Output capacitor ('1 is used to peak the output circuit. L_{5} is athjusted so that C_{1} peaks at mid-eapparitance in the center of the i.f. tuning range.

A 20-Watt High-Frequency Mobile Transmitter

Figures 19)-14 through 19-17 illustrate a consplete 20 -watt tramsmitter that may be operated on any band from 80 to 10 meters. The design avoids the complication, expense and difficult ronstruction assoriated with the average multifand transmitter, but does not confine its application to any one band. (hanging from one hand to another as operating interest varies is a simple matter of unsoldering a pair of readily-accessible roils and replacing them with others for the new hand.

Circuits

The eircuit of the transmitter is shown in Fig. 1015. A 5763 crestal oscillator drives a $21: 26$ fintal amplifier. Quadrupling frequency in the output of the grid-plate oscillator from a 7 - Me. crystal will provide adequate drive for the final on 10 meters. Sufficient capawitance is provided in the plate tank of the 2 L 26 for a Q of 10 or more on all hands except 80 meters. On 80 meters, the tank () will drop to about 1 , but there is little danger of apprectable harmonic output when foeding a high-() antenna such as the usual hoded whip. Adequate output coupling on this hand is assured by tuning the output link line. Parallel plate feed is used in hoth stages.

The audio circuit is equally simple. One triode unit of a $12.1 l^{7} 7$ is used as a grounded-grid amplifier. This provides low-impedance input for a carbon mierophone without the need for a mirrophone transformer. The second triode unit of the 12.SU7 is used in conventional fashion to drive a $16: 35$ Class 13 modulator. This tube operates at zero bies with an idling current of only 10 ma . 1). e. voltage for operating the carbon microphone is obtained by connecting the microphone in series with the two speech-amplifier cathodes and ground.
The 1 -ma. meter J_{1} may be switehed ateross appropriate multiplier shunts to read amplifier grid or plate current, or modulator plate current. A d.p.d.t. whange-over relaty, K_{1}, artuated by the
mierophone push-to-t:alk switeh, is also provided. One pole shifts the antemna from receiver to transmitter, while the other mutes the receiver by shorting the voice coil of the sreaker. St removes sereen voltage from the 2 l 26 t and disables the relay so that the oscillator may be tuned up before the amplifier is put on the air.

Construction

A $5 \times 6 \times$ 0-inch steel utility how (Niddletown Mfg. Co., Diddletown, Comm.) is used as the cabinet for the transmitter. The chassis is bent up) from aluminum sheet approximately $1 / 16$ inch thick. The chassis is $83 / 4$ inches wide, 6 inches deep and has 2 -inch lips along the front and rear edges.
C_{3} and C_{4} are mounted on the front wall of the partition with their shaft centers $13 / 8$ inches above the chassis. The shaft of cis is centered $11 / 4$ inches from the open edge of the shield, white the shaft of C_{3} is centered :3 inches in. The shafts of these capacitors are comected to panel-bearing units be rigid metal shaft couplers.
The socket for the $21: 26$ is submounted on $3 / 4-$ inch spacers, beneath a $11 / 4$-inch clearance hole centered 1 inch from the rear edge of the chassis and 2 inches in from the side. $R F^{\prime} C_{4}$ is mounted horizontally from the front wall of the partition, below and between C_{3} and C_{4}.
The output tank eoil, L_{2}, is cemented to a 1-inch cone insulator and soldered between a rear stator terminal of (" 3 and a grounding lug on the chassis. The bottom end of L_{3} is connerted to at rear stator termina! of C, , while the other end goes through a small feed-through point in the chasis to a relay terminal immediately below. The 5 Tif:3 is centered between the partition and the front pancl, and between the shafts of C_{3} and C_{4}.
Fig. 19-16 slows the mondulation thasformer in the upper right-hand corner of the chassis. The secondary taps of T_{2} should be set for 7500 ohms. The $12 . \mathrm{L}^{-7}$ and $16: 35$ sockets are centered

Fig. 19.14-A panel-illuminating lamp is mounted to the right of the meter, along with the amplifier.tank and antenna-link tuning controls. Along the bottom, from left to right, are the microphone jack, meter switch, filament s witch, fune-operate switch, oscillator tuning control and the crystal.

19-MOBILE EQUIPMENT

Fig. 19-15-Circuit of the single-band mobile transmitter. All resistors are $1 / 2$ watt unless otherwise specified. All capacitances less than $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. All 0.001 - $\mu \mathrm{f}$. capacitors are disk ceramic. Fixed capacitors of smaller value may be mica or NPO ceramic. Capacitors marked with polarity are electrolytic.
C_{1}-Mica or ceramic trimmer.
C_{2}-Air variable (Hammarlund HF-50).
C_{3}-Air variable (Johnson 167-4).
C_{4}-Air variable (Hammarlund MF-140).
C_{3}-Paper ceramic.
$\mathrm{I}_{1}-6,3$-volt $250-\mathrm{ma}$. dial lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial connector (SO-239).
J_{3}-Push-to-talk microphone jack.
J_{4} - Power connector (octal tube socket).
K_{1}-D.p.d.t. 6 -volt or 12 -volt d.c. relay (Guardian Series 200).
$L_{1}, L_{2}, L_{3}-$ See coil table.
on a line about halfway between the rear of the meter and the molulation transformer. The socket for the $12.4{ }^{\circ} 7$ is centered $1 / 8$ inch from the end of the rhassis. Then the worket for the 1635 is spareed sufficiently from the $12 \mathrm{Al}^{-7}$ socket so that the driver transformer, T_{1}, can be mounted between the two sockets, underneath the chassis.

The two coaxial connectors, J_{1} and J_{2}, are mounted on the rate lip of the chassis, spaced to avoid the 21220 socket. An ortal socket sorves as the power-supply comector J_{4}, and the changeover relay is centered between this socket and the nearest coaxial comector.

Testing

The unit will operate from any supply delivering 300 to 400 volts at 125 ma . or more.

While the 2 E 26 might be used as a doubler if necessary, straight-through operation is recommended. Crystals in the 80-meter band will provide adequate drive for the final on all bands up to and including the $1+$-Me, band. Crystals in the $\overline{\mathrm{T}}$-Ne. band are needed for 21- and 28-Mc. output. Coils should be selerted from the coil
$\mathrm{M}_{1}-0-1$ d.c. milliammeter, $23 / 8$-in. (Triplett 227-T).
$R_{1}-10$ times shunt for $M_{1}(6.1$ ohms for 55 -ohm meter.)
$R_{2}, R_{3}-100$-times shunt for M_{1}. 10.5 ohm for 55 -ohm meter.)
S) -D.p.d.t. rotary switch (Centralab PA-1002).
S_{2}-S.p.s.t. toggle switch.
S_{3}-2-pole 3-position rotary switch (Centralab PA1003).
T_{1} —Driver transformer, 2.5:1 primary to $1 / 2$ secondary (Merit A-2920).
T_{2}-10-watt modulation transformer (Merit A-3008),
table to suit the band desired.
The owillator is adjusted with S_{1} in the tune position, and the meter switch turned to read amplifier grid eurrent. With power supplied, C_{2}

Table of Coil Dimensions							
L_{1}							
Bind	$L_{\mu} \mu$.	Turns	Dirtm. In.	$\begin{aligned} & \text { Length } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { Ifire } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { B\&W } \\ \text { No. } \end{gathered}$	$\begin{gathered} .1 \mathrm{irdux} \\ \mathrm{No.} \end{gathered}$
80	29	4	1	18/8	24	3016	832
40	6.3	28	5/8	7/8	24	3008	532
20	2.8	16	5/8	1	20	3007	516
15	0.9	9	5/8	918	20	3007	516
10	0.5	6	5/8	8/8	20	3007	516
L_{2}							
80	32	80	$3{ }^{3}$	21\%	24	3012	632
40	8	41	$3 / 8$	$21 / 2$	20	3011	616
20	3.5	20	3 i	11/4	20	3011	616
15	1.6	16	3.	2	18	3010	608
10	1.1	12	${ }^{3}$ i	$11 / 2$	18	3010	fio8
$L_{1}-3$ turns No. 20, 1 -ineh diam., " ${ }^{3}$ inch long, over ground end of L_{2} (B\& \mid W 3015, Airdux 816) for 80,40 and 20 meters; 2 similar turus for 15 and 10 meters.							

20-Watt Mobile Transmitter

Fig. 19-16-Botrom view of the 20 -walt mobile tronsmitter. The driver transformer is placed between the two audio-tube sockets. Along the front lip of the chassis, from left to right, are the microphone jack, meter switch, filament switch S_{2}, fune-up switch S_{1}, oscillator tank eapacitor C_{2} and the crystal socket. C_{2} is spaced back of the panel, and mounted behind the 5763 socket. L_{1} is soldered across the terminals of the capacitor. All power and control wiring is dane with shielded wire:

shoud be adjusted for maximum grid current. The tuning should the rheoked with a wavemeter to make sure that the oseillator output circuit is tuned to the dewired frequener. Then C C_{1} should be adjusted for maximum grid current. The reading should be at least 3 or 4 ma.

A pair of (i,fi, trje 1820, 28-volt, 1-amp, miniature lampes connected in series makes a good dummy load for testing the final. With S_{1} thrown to the operate position, the meter switrhed to read 2 E26 plate current, and power applied, adjust C_{3} for a dip in plate current, Cheok the frequency with a wavemeter coupled to the output tank. Then adjust C_{4} until the meter reads $50 \mathrm{ma}_{\mathrm{a}}$. Retune C_{3} for the plate-current dip. It maty take a little juggling back and forth bet ween (${ }_{3}$ and C_{4} before an adjustment is reached where the meter reads 50 ma, at the plate-current dip. The load lamps will not light to full brilliance, but it should be possible to determine the adjustment that gives maximum output. With the amplifier fully loaded, the grid current should still remain at 3 to 4 ma.

The meter should now be turned to read modulator plate current. Without voice, the meter should read ahout 10 mat. When speaking into the microphone, a kick of the meter reading up to 40 or 50 mat. on peaks should indicate 100 per cent modulation. The r.f. amplifier plate current should remain essentially steady under modulation, but the lamps lin the dummy luad should show some increase in brilliance.

Adjustment when an antemat is sulstituted for the dummy load should be done in a similar manner. The antenna must, of course, be chereked for resonance in advance with a g.d.o. or low other means. (Originally described in QST, Jan., 19.0.). (For a description of a handswitching mobile transmitter with v.f.o., see QST, August and Sept., 1957).

Fig. 19-17-Interior view of the single-band mobile transmitter. The output components are separated from the other components by on L-shaped aluminum partition which measures $4 \frac{1}{2}$ inches along the front and 4 inches along the side. It is $21 / 4$ inches high with $1 / 2$-inch lips along the bottom edges for fastening to the chassis.

473

Mobile Transmitters for 50 and 144 Mc.

Figs. 19-1s through 19-2:; show rircuits and constructional details of rompart transmiters rovering the i - and 2 -meter bands. The units are only 3 inches deep and therefore are suitable for under-the-dash mounting.

Ohtput on in- Mre. is ohtained by using exptals in the so-Me. range. This eliminates any necessity for multiplier stages and greatly simplifies the eircuit. In the two-meter unit, a 48-Me. arstal is used which is multiplied to 141 Mre by at triplor stame.

Athough the r,f, amplifier wed in the transmitters will operate at higher voltages, the unit: are designed primarily to work from a $300-$ wolt, 100-mat sulply, a transistor modulator ran be used with the units with a saving in total furrent drain.

The 50-Mc. Unit

The circuit of the i0-Mre traminter is shown in Fig. 19-20, A sides ($16+17$ when using 12 -volt heraters) is trioderemmeded in ath overtomesper (ryat maillator. Feedhark winding L_{2} helpe to sastain brd-owertome oscillation and may reguire some slight adjustment for optimum output in its placement with respert to I_{1}. The \quad on- Mre signat from the owillator is ratacitively coupled to the wrid of the 2 lige (6 sis) 3 when using le-volt heators) atmplifier. I jack I_{1} on the rear of the dramsmitter allows the grid rurrent to be measured.

Fig. 19-18-View of the $50-\mathrm{Mc}$. transmitter showing the r.f. amplifier tank circuits and output loading control. C_{3} is on the top right of the panel with C_{2} just below it. Output indicator t_{1} is below C. This view also shows the two antenna connectors, power plug and grid current jack which are mounted on the rear surface.

Fig. 19-19 - The $50-\mathrm{Mc}$. mobile transmitter is built into a $7 \times 5 \times 3$-inch aluminum Minibox (Bud CU-3008). Oscillator coil $L_{1} L_{2}$ is near the top left. The jack on the right rear panel is the grid-current meter jack. One-inch holes are punched in both halves of the Minibox for ventilation. Perforated hole plugs can be used for neater appearance. In actual use, the transmitter would sit with the tubes horizontal. The half of the box at left is mounted under the car dash so that the transmitter half can be easily pulled in and out of position for servicing or adjustment.

The amplifier plate tank rireuia, $C_{2} I_{3}$, is tuned to resoname by variathe ratuation C's.

The 144-Mc. Unit

The 14t-Mre, circuit is shown in Fig. 1:9-2:2. The aseiltator is similar to the one used in the $50-$ Mc. tramsmitur. The 48-Me, sighal from the osidilator is caparitively roupled to the pentode multipher which is ofremted as at frequency tripler. From the triplor, the signal is indurtiveli coupled to the grid of the ref. amplifier. Since this stage comtains a fixed eapacitor, it is thmed be"pinching" or "spreading" the furns of $L_{\text {娄 }}$ As in the $\bar{\delta}()-$ Mre unit, provision is mate for measuring grid current (jatek I_{1}).

The amplifier tank rireuit in the $1+4+$ - Me. motel is series tuned. (Jutput compling is through :1 single-turn link, L_{66}. Neputralization is required in this unt: the meutralizing caparitor comsists: of a $2^{1}{ }_{2}$-ineh length of So. 12 wire with one end commertal to pin $\overline{\text { o }}$ (eontrol grid) of the amplifier tuloe, athl with the other emed run up Ineside the amplifier tule atter pasing through the rhassis (see the photograph in Fig. 1:1-21). A piere of shaghetti is used to insulate the newtratizing wire from the chas in.

Construction

A $7 \times$ in \times imeh Minibux is used its the

6- and 2-Meter Mobile Transmitters

Fig. 19-20-Schematic diagram of the 50-Mc. mobile transmitter. Unless otherwise indicated, capacitances are in $\mu \mu \mathrm{f}$., resistances are in ohms, resistors are $1 / 2$ watt unless specified otherwise.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund MAPC-35-B).
$\mathrm{C}_{2}-15-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund HF-15).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund MAPC-50-B).
C_{4}-Coupling capacitor for output indicator (see text).
K_{1}-Midget antenna relay s.p.d.t. (Advance $A M / 2 C$ /12 VD . Note: the last four figures in the number indicate the coil voltage. For 6 volts d.c. it should read /6VD).
$L_{1}-3$ turns No. 20, 5/B-inch dia., $5 / 16$ inches long (B \& w 3006).
$\mathrm{L}_{2}-2$ turn link No. 20 insulated wire, close wound over cold end of L_{1}.
chassis for the trimsmitters. A single bracket supports the tubes and assoriated parts. The braeket has a single bend and is fastened to the Dinilox with machine serews.

The 6- and 2-meter tramsmitters are almost identical meghanically. The only real difference between the two is that the 2-meter model has an additional multiplier tube, mounted in line with the oscillator tube on the bracket.

All parts should be mounted before wiring is begun. Since both ends of the r-hassis are open, wiring and mounting of parts is a simple job. The photographs show the relative position of most of the components. Try to keep rif. leads as short as possible. The relay, antemat connectors, power plug and grid current jack are all mounted on the rear panel.

The output indicator I_{1} is coupled to the output rircuit through a small rapacitor. This capace-

Fig. 19-21-The 144-Mc. transmitter with the r.f. amplifier lube removed to show the neutralizing lead CN . Except for the 6BJ6 multiplier tube in the foreground, the same basic layout is used here as in the $50-\mathrm{Mc}$. unit.
$\mathrm{L}_{3}-4$ turns No. 16, 1 -inch dia., 1 -inch long (B \& W 3013)
$L_{4}-2$ turn link No. 20 insulated wire, close-wound over cold end of L_{3}.
It-Neon bulb (NE-2).
J_{1}-Circuit-closing jack.
$J_{3}-3$-conductor mike jack.
$\mathrm{J}_{3}, \mathrm{~J}_{4}$-Automobile type ontenno connectors.
RFC1, RFC 2 -Single-loyer v.h.f. choke, 2 to 7μ h. (Ohmite Z-50 or National R-60).

\mathbf{S}_{1}-S.p.s.t. slide switch.

$\mathrm{V}_{1}-5763$ for 6 volts, 6417 for 12 volts.
$V_{2}-2 E 26$ for 6 volts, 6893 for 12 volts.
$\mathrm{Y}_{1}-50-\mathrm{Mc}$. 3rd overtone crystal (International Crystal Co. type FA-9).
itor is actually a [ew turns of hook-up wire wound over a picee of insulated wire that is

$\mathrm{C}_{1}-35-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund MAPC-35-BI.
$\mathrm{C}_{2}, \mathrm{C}_{3}-15-\mu \mu \mathrm{f}$. midget variable capacitor (Hammarlund HF-15).
$\mathrm{C}_{1}-50-\mu \mu$. midget variable capacitor (Hammarlund MAPC-50-B).
C_{5}-Coupling capacitor for output indicator (see text).
$\mathrm{C}_{n 1}$-Neutralizing capacitor (see text).
$\mathrm{K}_{1}-$ Midget antenna relay s.p.d.t. (Advance AM/2C). 12 VD . Note: the last four figures in the number indicate the coil voltage. For 6 voits it should read 6VD.)
$L_{1}-4$ turns No. 20, $5 / 8$ inch diam., $5 / 6$ inches long (B \& W 3006).
$\mathrm{L}_{2}-2$ furn link No. 20 insulated wire, close wound over cold end of t_{1}.
$\mathrm{L}_{3}-2$ turns No. 20 insulated wire $1 / 2$-inch diam.
L-1 furn No. 20 insulated wire $1 / 2$-inch diam.
comnected to the final tank cireuit. If the lamp fails to ignite, a few more turns may be needed.

Testing Notes

An a.c. power supply delivering 300 volts at 100 ma . can be used during testing of the transmitter. Heater-current requirements for the $50-$ Mc. unit are 1.55 ampere for 6 -volt operation and 0.775 ampere for 12 volts. The $1+1-$.lle. unit requires 1.1 ampere at $;$ volts and 0.55 ampere at 12 volts. Do not connect the plate supply to the r.f. amplifier power terminal (marked " 300 mod." in the circuit diagram) at this time. The correct crystal and a dummy load should be kept on hand for the test.
To test the driver stage, plug a grid-current moter ($0-5 \mathrm{ma}$.) in J_{1}, and apply heater voltage. Plug in the proper crystal and turn on the plate voltage (exriter stages only). As quickly as possithe adjust capacitor C_{1} until the oscillator goes into oscillation. This will be indicated by a downward kick in the plate current. (irid current should hegin to show when oscillation occurs.

Li-3 furns No. 16, 1 -inch diam., $3 / 4$ inches long, center tapped (B \& W 3013).
Lo-l furn link No. 20 insulated wire wound in the center of L_{5}.
I_{1}-Neon bulb (NE-2).
J_{1}-Circuit closing jack.
$J_{2}-3$ conductor mike jack.
J_{3}, J_{4}-Automobile type antenno connector.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}$-Single-loyer v.h.f. choke, 2 to $7 \mu \mathrm{~h}$. (Ohmite Z-50 or National R-60).
S_{1}-S.p.s.s.t. slide switch.
$V_{1}-6 C 4$.
V_{2}-6BJ6.
$V_{3}-2 E 26$ for 6 volts, 6893 for 12 volts.
$Y_{1}-48 \mathrm{Mc} .3$ rd overtone crystal. Crystal frequency found by dividing desired output frequency by 3 (International Crystal Co. type FA-9).

In the $14+\mathrm{Me}$, unit, adjust for maximum grid current by "pinch-tuning" I_{3}, L_{4} once oscillation has begun. Adjust C_{1} for maximum grid current. If there is difficulty in obtaining grid drive, try adjusting the position of L_{2} with respect to L_{1}. In the 2 -meter model, some rearrangement of L_{3} and L_{4} may be needed in order to achieve maximum grid drive.

Before testing the $14+$ Mc, amplifier it will be necessary to neutralize it. With power applied to the exciter portion, slowly rotate the output tuning control C_{3} through its full range. If the amplifier neutralized, there will be no fluctuation in the grid current. If there is such a fluctuation, adjust the neutralizing wire to a new position with respect to the amplifier tube and swing the plate-tuning control again. Repeat until the grid current remains steady, showing that the amplifier is neutralized.

Connect a dummy load to the output antenna connector, close the antemat relay and apply plate power to the entire transmitter. As quickly as possible, tune C_{3} for minimum phate current.

Fig. 19-23-View of the 144-Mc. transmitter. The coil and link near the top left rear are $L_{1} L_{2}$. In the foreground are coils $L_{3} L_{4}$.

It is necessary to perform this operation rapidly because the amplifier may draw excessive plate current when not tuned to resonance. When tuned to resonance, the output indicator bulb I_{1} will light. This r.f, indicator is not
 only a tuning aid in the ear but also acts as a continuous monitor to show that the transmitter is in operation. Capacitor C_{4} is the loading eontrol and should be adjusted for maximum plate current after the amplifier is resonated.

A microphone jack J_{2} is included on the trans-
mitter chassis to simplify the control circuits. Leads from the microphone (marked "sw" and "mie" in the diagram) go to the power connector at the rear of the transmitter.

Mobile Modulators

Vacuum-tube molulators for mobile operation are in general similar to those used in fixedstation installations. Equipment shown in the suction on modulators may be modified for use with almost any mobile transmitter. As in fixed
station work, the molile modulator must be capable of supplying to the plate modulated r.f. stage sine-wave audio power equal to 50 per cent of the d.e. plate input for 100 percent modulation.

- a lo-watt mobile modulator

Fig. 19-24 shows a modulator that can be used with any mobile a.m. transmitter whose input does not cxceed 20 to 25 wats. A resistaneocoupled speech amplifier using a single 12S.NT drives a Class A 6NO which in turn drives a Class B 6N7. The 6.N7 uses the two triode sections in parallel, to obtain sufficient alriving power.

Aso shown in lig. 19-2 4 are the changes in the specech-amplifier rireuit necessary to adapt it for use with a carbon microphone. 1).e. voltage for the carbon microphone is obtained by contnerting the microphone in series with the sperechamplifier cathodes.

The modulator requires 300 volts at about 90 ma. for plate power, and 6 volts at 1.9 amperes or 12 volts at .95 amperes for the heaters. Heater connertions are given for both voltages. The plate
supply shoulh hise a large mpacitanco ($100 \mu \mathrm{f}$. or more) in the output, to serve as a reservoir for the hasy peak-current demands.

The main constructional precaution to be observed when buikling the modulator is that the output transformer T_{2} should not be mounted too close to the speech amplifier circuits. Separation will reduce the chance of feedback through stray coupling. A tube shield over the 12 ANT will serve to hold it in the socket over bumpy roads; good octal sockets will normally need no tube clamps to retain the 6N7s.

In any mobile installation, the modulator may be separated from the r.f. assombly by any convenient distance. The rable romoreting the modulator to the r.f. section should be made with individually, shiolded leads.

A 25-WATT TRANSISTOR MODULATOR

Figs. 10-25 through 19-27 show at complote transistor modulator that obtains its power dirertly from the automobile's 12 -volt storage battery. It requires only a fraction of the space required by a comparable vacuum-tube unit, and it allows full use of the high-voltage power supply for the r.f. section.

The unit is based on a design orignatly puhlished by belco Radio ${ }^{1}$; it is a $1 \times$-volt ${ }^{5} 5$-watt (lass B modulator. Among the advantages of a modulator of this type are the comparthess (2i)
watts of audio in approximately : 0 eubic inches), high over-all efficiency, no warm-up time, and low idling current when not modulating. It will modulate an r.f. stage input of betwern 45 and 50 watts, at an impedance level of 4000 ohms with the output transformer listed (about 150 volts and 110 ma .). Suitable $1:$-volt heater tuhno for the modulated output stage inclute the 162^{2}

[^9]Fig. 19-25-A $3 \times 4 \times 5$-inch utility box is sufficient to house the modulation transformer and all of the smaller components of the 25 -watt transistor modulator.

Transistor Modulator

Fig. 19-26-Circuit of the 25 -watt tronsistor modulotor. Resistonces ore in ohms. Capocitors ore electrolytic.

MK1-Single-button corbon microphone.
$Q_{1}, Q_{2}-2 N 190$ (GE) or 2N109 (RCA).
$Q_{3}, Q_{4}-2 N 278$ (Delco DS-501).
$\mathrm{R}_{1}-100$-ohm 2 -wott potentiometer.
$\mathbf{T}_{1}-150$ ohms c.l. (c.t. not used) to 490 ohms c.t. (Thordarson TR-5).
$T_{2}-400$ ohms c.t. to 16 ohms, c.t. (see text), Stancor TA-41).
T_{3}-6.3-voit c.t., 3 -omp, filoment tronsformer used os modulation transformer (see text) (Stancor P-5014).

A four-lug terminal box is located on top of the utility box to provide for the 12 -volt and output comections of the modulator. Although wiring of the unit may appear difficult, it becomes a relatively simple job if the internal wiring is done separately, before putting on the front cover.

IBe careful to apply as little heat as possible when soldering any transistor connections. Lither G.E. UN190 or RCA $2 N 109$ can be used for the input transistors. Although several other types could he used for the output transistors, the spereified $2 . \sqrt{27} 8$ (Deloo I)S-501) should be casier to obtain than some since it is sold as a replarement in car-radios service.

It is not likely that a 0.1 -ohm 1-watt resistor (see Fig. 19-26) call be purchased at any radio store. I satisfictory substitute is to wind a suitable length of resistance wire over a 2 -watt resistor used as a form, or three 0.333 -ohm 16 -watt resistors can be wired in parallel to obtain a value suffieiently close.

Testing

After wiring and construction of the unit is completed, testing for proper operation can be done in several ways. One methot is simply to connere a 4000 -ohm 10 -watt resistor across the modulation transformer output connections and then place a d.e. ammoter in series with the 12volt line, and wateh the eurrent variation while talking into the microphone. The idling current should be around $\mathbf{7 0 0}$ ma., kiching up to above ? amperes on peaks. Ito not, under any circumstances. try to oprorate the unit without a load of some sort on the output terminals as this may damage the output transistors.

Another mothod of testing is to place another

Fig. 19.27 -The front cover of the modulator unit serves as a heat sink. The driver transformer and microphone jack are af the bottom, the microphone transformer and potentiometer control af the center, and the two power transistors at the top.

6,3-volt filament transformer back-to-hack with the modulation transformer, to loring the impedance down to a low level, and then conmet at p.m. speaker to the 6.3-volt winding.

A scope tost can be made after the unit is connected to the transmitter. The Class C load level can be adjusted for impedance matching.

An F1 earbon microphone is suitable for use with this unit. Athough not shown in Fig. 19-26, the unit should be comeeted so that it is turned on only while the transmit-receive switch is in the transmit position. An inexpensive 12 -volt automobile-horn relay (e.g., E'chlin HR 101), availahle at most filling stations or automobile parts distributors, should be used to close and open the circuit. The relay arm and contact shoud be comnected in the +12.6 -volt lead from the battery and fuse. If exerssive sparking is noted at the relay contacts it may be reduced by moving the $50-\mu$. 25 -volt capacitor to the fuse side of the relay contacting circuit.

Concerning placement of the unit in the car: Try to find a location away from high-temperature spots and in a well-ventilated area. The trunk is not recommended since there is little ventilation; this area can become quite hot in the summertime and damage to the transistors could result. The engine compartment makes a convenient place to mount the unit but this spare is not adequately ventilated except possibly while the car is in motion. The most favorable spot is on the fire wall in the passenger compartment, or under the front seat. These areas are usually well ventilated, or at least cooler than any other enclosed section of the car. As in any molile installation where the modulator is some distance from the r.f. section, the audio leads from the secondary of the modulation transformer to the modulated r.f. stage should be made with individually-shiclded leads.
(Original description appeared in QST for November, 1959.)

The Mobile Antenna

For mobile operation in the range letween 1.8 and 30 Me , the vertical whip antemn is almost universally used. Since longer whips present mechanical difliculties, the length is usually limited to a dimension that will resonate as a quarterwave antenna in the 10 -meter band. The car body serves as the ground connection. This antenna length is approximately 8 feet.

With the whip length adjusted to resonanee in the 10 -meter band, the impedance at the feed
point, X, Figg 13-28, will appear as a pure resistance at the resonant frequency. This resistance will be composed almost entirely of radiation resistance (see index), and the efficiency will be ligh. However, at frequencies lower than the resonant frequency, the antema will show an incroasingly large caparitive reactance and a derreasingly smadl radiation resistance.

The equivalent circuit is shown in Fig. 10-29. For the average $8-\mathrm{ft}$. Whip, the reactance of tho

Fig. 19-28-The quarterwave whip at resonance will show a pure resistance of the feed point X.
eapacitance, C_{A}, may range from about 150 ohms at 21 Mc . to as high as 8000 ohms at 1.8 Mc ., while the radiation resistance, R_{R}, varies from about 15 ohms at 21 Mc. to as low as 0.1 ohm at 1.8 Mc. Since the resistance is low, considerable current must flow in the circuit if any appreciable power is to be dissipated as radiation in the resistance. Yet it is apparent that little current can be made to flow in the circuit so long as the comparatively high series reactance remains.

Fig. 19-29-At frequencies below the resonant frequency, the whip antenna will show capacitive reactance as well as resistance. R_{a} is the radiation resistance, and C_{A} represents the capacitive reactance.

Eliminating Reactance

The caparitive reatance can be canceled out by connecting an equivalent inductive reactance, L_{1}, in series, as shown in Fig. I9-30, thus tuning the system to resonance.

$$
\begin{aligned}
& \text { Fig. 19-30-The capacitive } \\
& \text { reactance of frequencies lower } \\
& \text { than the resonant frequency } \\
& \text { of the whip can be canceled } \\
& \text { out by adding an equivalent } \\
& \text { inductive reactance in the form } \\
& \text { of a loading coil in series with } \\
& \text { the antenna. }
\end{aligned}
$$

Unfortunately, all coils have resistance, and this resistance will the added in series, as indicated at R e in lig. 1! 1 -31. While a large coil may radiate some energy, thus adding to the radiation resistance, the latter will usually be negligible

Fig. 19.31-Equivalent circuit of a loaded whip antenna. $C_{\text {a }}$ represents the capacitive reactance of the antenna, L_{L} an equivalent inductive reactance. R_{c} is the loadingcoil resistance, R_{G} the ground-foss resistance, and R_{1} the radiation resistance.
compared to the loss resistance introduced. However, adding the coil makes it possible to feed power to the circuit.

Ground Loss

Another element in the circuit dissipating power is the ground-loss resistance. Fundamentally, this is related to the nature of the soil in the area under the antenna. Litile information is available on the values of resistance to be expected in practice, but some measurements have shown that it may amount to as much as 10 or 12 ohms at 4 Mc. At the lower frequencies, it may constitute the major resistance in the circuit.
lig. 19-31 shows the circuit including all of the elements mentioned above. Assuming C_{A} lossless

Fig. 19-32-Graph showing the approximate capacitance of short vertical antennas for various diameters and lengths, at 3.9 Mc . These values should be approximately halved for a center-loaded antenna.
and the loss resistance of the coil to be represented by Rc, it is seen that the power output of the transmitter is divided among three resistances R_{c}; the coil resistance; $R_{(}$, the ground-loss resistance; and R_{R}, the radiation resistance. Only the power dissipated in R_{R} is radiated. The power developed in R_{C} and R_{G} is dissipated in heat. Therefore, it is important that the latter two resistances le minimized.

MINIMIZING LOSSES

There is little that can be done about the nature of the soil. However, poor electrical contact between large surfaces of the car body, and esperially between the point where the feed line is grounded and the rest of the boly, can add materially to the ground-loss resistance. For example, the feed line, which should be grounded as close to the base of the antenna as possible, may be connerted to the bumper, while the bumper may have foor contact with the rest of the body because of rust or paint.

Loading Coils

The arrompanying tables show the approximate loading-coil inductance required for the various bands. The graph of Fig. 19-32 shows the approximate capacitance of whip antennas of

TABLE 19-I

Approximate Values for B-ft. Mobile Whip						
Base Loading						
fko.	$\begin{aligned} & \text { Londing } \\ & L_{\mu \mathrm{h}} \text {. } \end{aligned}$	$\begin{gathered} R \mathrm{c}(Q 50) \\ \text { Ohms } \end{gathered}$	Rc (Q300)	R_{R} Ohms	Feed l^{*} Ohms	$\begin{gathered} \text { Matching } \\ L_{\mu \mathrm{h}}{ }^{*} \end{gathered}$
1800	345	77	13	0.1	23	3
3800	77	37	6.1	0.35	16	1.2
7200	20	18	3	1.35	15	0.6
14,200	4.5	7.7	1.3	5.7	12	0.28
21,250	1.25	3.4	0.5	14.8	16	0.28
29.000 \cdot.	36	0.23
Center Loading						
1800	700	158	23	0.2	34	3.7
3800	150	72	12	0.8	22	1.4
7200	40	36	6	3	19	0.7
14,200	8.6	15	2.5	11	19	0.35
21,250	2.5	6.6	1.1	27	29	0.29
$R_{\mathrm{c}}=$ Loading-coil resistance; $R_{\mathrm{l}}=$ Radiation resistance. * Assuming loading coil $Q=300$. and including estimated ground-loss resistance. Sughested coil dimensions for the required loading inductances are shown in a following table.						

various average diameters and lengths. For 1.8, 4 and 7 Me., the londing-coil inductance required (when the loading coil is at the base) will be approximately the inductance required to resonate in the desired band with the whip raparitance taken from the graph. For 11 and 21 Mc., this rough caleudation will give more than the required inductance, hut it will serve as a starting point for final experimental adjustment that must always be made.

Also shown in table 19-1 are approximate vahues of radiation resistane to be expected with an 8 -ft. whip, and the resistances of loading coils - one group having a Q of 50 , the other a Q of 300 . A comparison of radiation and coil resistanes will show the importance of redueing the coil resistame to a minimum, especially on the three lower-frequency lands.
To minimize loading-coil loss, the coil should have a high ratio of reactance to resistance, i.e., high (). A 4-Me lowling coil wound with small wire on a smatl-diameter solid form of poor quatity and enelosed in a motal protector, may have a Q as low as 50 , with a resistance of 50 ohms or more. High-() coils require a large conductor, "air-wound" construction, turns spaced, the best insulating material available, a diameter not less than half the length of the coil (not abway merhanically foasible), and a minimum of metal in the fielli. Surh a coil for 4 Me, may show a Q of 300 or more, with a resistance of 12 ohms or l'ss. This reduction in loading-coil resistance may be equivalent to inereasing the
transmitter power by 3 times or more. Most low-loss transmitter phug-in coils of the $100-$ watt size or larger, commercially produed, show a Q of this order. Where larger inductance values are required, lengths of low-loss spaec-wound coils are available.

TABLE 19-II

Suggested Loading-Coil Dimensions					
Req"d $L_{\mu \mathrm{L}}$.	Turns	Hire Size	Diam. In.	Lengeh In.	Form or B\& W Type
700	190	22	3	10	Polystyrene
\$40	135	18	3	10	Polystyrene
150	100	16	23/2	10	Polystyrenc
77 77	75 29	14	$\begin{aligned} & 21 / 2 \\ & 5 \end{aligned}$	10 $41 / 4$	Pulystyrene 160 T
$\begin{aligned} & 40 \\ & 40 \end{aligned}$	28 34	16 12	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 41 / 4 \end{aligned}$	$\begin{aligned} & 80 \mathrm{~B} \text { less } 7 \mathrm{t} \text {. } \\ & 80 \mathrm{~T} \end{aligned}$
20	17 22	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$21 / 2$ $21 / 2$	11/4	80 B less 18 t. 80 T less 12 t .
8.6 8.6	16 15	14	$\stackrel{2}{21 / 2}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	4013 less 4 t. 40T less 5 t .
4.5	10	14	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 4013 less } 10 \mathrm{t} \text {. } \\ & 40 \mathrm{~T} \end{aligned}$
2.5	8	12	28/8	2 $41 / 2$	$\begin{aligned} & 15 \mathrm{~B} \\ & 15 \mathrm{~T} \end{aligned}$
$\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$	6	12	18/8	2 4122	$\begin{aligned} & 10 \mathrm{~B} \\ & 10 \mathrm{~T} \end{aligned}$

Mobile Antennas

Center Loading

The radiation reaistance of the whip can be approxinately doubled by placing the lowing coil at the center of the whip, rather than at the Dase, as shown in Fig, 1!-: :3: (The optimum position varies with ground resistance. The renter is optimum for averuge ground resistance.) Jowever, the inductance of the loading coil must be

Fig. 19-33-Placing the loading coil of the center of the whip artenna, instead of at the base, increases the radiafion resistance, olthough a larger coil must be used.

Fig. 19.34-The top-loaded 4-Mc. antenna designed by W6SCX. The loading coil is a B \& W transmitting coil. The coil can be funed by the variable link which is connected in series with the two halves of the coil.
high-Q eircuit, making it necessary to retune for relatively small changes in freguency. While many methods have been devised for tining the whip over a bund. one of the simplest is shown in Fig. 19-35. In this case, a standard IS \& W plug-in coil is used as the loading coil. A longth of largediameter polvestyrene rod is drilled and tapped to fit between the upper and lower sections of the antema. The assembly also serves to clamp a pair of metal brackets on each side

Fig. 19.35-W8AUN's adjustable capacity hat for funing the whip antenna over a barid. The coil is a B \& W type B 160 -meter coil, with a turn or two removed. Spreading the rods apart increases the capacitance. This simple top loader has sufficient capacitance to permit the use of approximately the same loading-coil inductance of the center of the antenna as would normally be required for base loading.

19-MOBILE EQUIPMENT

of the polystyrene block that serve both as support and connections to the loading-roil jack bar.

A $1 / 8$-inch steel rod, ahrout 15 inches long, is brazed to each of two large-diameter washers with holes to pass the threaded end of the upper section. The rods form a loading eaparitance that varies as the upper rod is swung away from the lower one, the latter being stationary, linough variation in tuning can be obtained to cover the 80 -meter band. (Original description appeared in QST, September, 195̄3.)

REMOTE ANTENNA RESONATING

Fig. 19-36 shows circuits of two remote-control resonating systems for mobile antennas. As shown, they make use of surphis d.c. motors driving a loading coil removed from a surplus ARC-5 transmitter. A standard coil and motor may be used in either installation at inereased expense.

The control circuit shown in Fig. 19-30-A is a threewire system (the car frame is the fourth eonductor) with a double-pole double-throw switch and a momentary (normally off) singlepole single-t hrow switch. δ_{2} is the motor reversing switch. The motor rums so long as S_{z} is closed.

The circuit shown in Fig. 19-36ib uses a latehing relay, in conjunction with microswitches. to antomatically reverse the motor when the roller reaches the end of the coil. S_{3} and S_{5} operate the relay; K_{1}, which reverses the motor. S_{4} is the motor ontoff switch. When the tuning eoil roller

Fig. 19.36-Circuits of the remote mobile-whip funing systems.
$K_{1} \rightarrow$ D.p.d.t. latching relay.
$S_{1}, S_{3}, S_{4}, S_{3}$-Momentary-contact s.p.s.f., normally open. $S_{2}-$ D.p.d.t. foggle.
$S_{r}, S_{7}-$ S.p.s.t. momentary-contact microswitch, normolly open.
reaches one end or the other of the coil, it closes S_{6} or S_{7}, as the case may be, operating the relay and reversing the motor.

The procedure in setting up the system is to prune the center loading coil to resonate the antenna on the highest frequency used without the base loading coil. Then, the base loading coil is used to resonate at the lower frequeneies. When the eireuit shown in Fig. 19-36. A is used for control, S_{1} is used to start and stop the motor. and S_{2}, set at the "up" or "down" position, will determine whether the resonant frequency is raised or lowered. In the circuit shown in lig. 19-36B S_{4} is used to control the motor. S_{3} or S_{5} is momentarily closed (to activate the latching relay) for raising or lowering the resonant freguency. The broadeast antema is used with a wavemeter to indicate resonance.
(Originally deseribed in QST, Dec., 195.3.)
Several compunies offer motor tuning for getting optimum performance over a bow-frequency band. (For a complete description of the commereially available remotely-tuned systems, see Goodman, "Frequency Changing and Mobile Antennas," QST, Dec., 1957.)

Automatic Mobile Antenna Tuning

A somewhat more complex antenna tuning system for 75 and 40 meters is one that automatically tumes the antenna as the transmitter frequency is shifted. After initial adjustments, the radiator is kept in resonance without attention from the operator. (For a description of the automatic system, see Hargrave, "Automatic Mobile Antenna Tuning, QST', May, 1955.)

FEEDING THE ANTENNA

It is usually found most convenient to feed the whip antema with coax line. Untess very low-Q louding coils are used, the feed-point impedance will ahays be appreciably lower than 52 ohms - the characteristic impedance of the commonly-used coax line, RG-8/U or RG-58/U. Since the length of the transmission line will seldom exceed 10 ft ., the losses involved will be negligible, even at 29 Mc ., with a fairly-high s.w.r. However, unless a line of this length is made reasonably flat, difficulty may be encountered in obtaining sufficient couphing with a link to load the trinsmitter output stage.

One method of obtaining a match is shown in Fig. 19-37. A small inductance, L_{m}, is inserted at the base of the antenna, the loading-coil inductance being reduced correspondingly to maintain resonance. The line is then tapped on the coil at a point where the desired loading is obtained. Table 19-I shows the approximate inductance to be used between the line tap and ground. It is advisable to make the experimental matching coil larger than the value shown, so that there will be provision for varying either side of the proper position. The matehing coil can also be of the plug-in type for changing bames.

Adjustment
For operation in the bands from 29 to 1.8 Mc.,

Fig. 19-37-A method of matching the looded whip to 52-chm caax cable. $L I$, is the laading cail and lat the motching cail.

the whip should first be resonated at 29 Mc . with the matching coil inserted, but the line disconnected, using a grid-dip oscillator coupled to the matching coil. Then the line should be attached, and the tap varied to give proper loading, using a link at the transmitter cond of the line whose reactance is appoximately 52 ohms at the operating frequency, tightly coupled to the output tank circuit. After the proper position for the tap has hem found, it may be neressary to readjust the antemat length slightly for resonance. This can be checked on a fichl-strongth meter several feet away from the car.

The same procedure should he followed for each of the other bands, first resonating, with the g.l.o. coupled to the matching roil, be adjusting the louding coil.

After the position of the matching tap has been found, the size of the matrhing coil can be reduced to only that portion between the tap and ground, if desired. If turns are removed here, it will be neressary to reresonate with the loading coil.

If an entirely flat line is desired, a s.w.r. indicator should be used while adjusting the line tap. With a good match, it should not be necessary to reatljust for resonance after the line tap has been set.

It should be emphasized that the figures shown in the table are only approximate and may be altered considerably depending on the type of car on which the antemma is mounted and the spot at which the antenna is placed.

ANTENNAS FOR 50 AND 144 MC.

A Simple Vertical Antenna

The most convenient type of antenna for mobile v.h.f. work is the quarter-wave vertical radiator, fed with 50 -ohm coaxial line. The antemna, which may be a flexible telescoping "fish pole," can be mounted in any of several places on the car. An ideal mounting spot is on top of the car, though rear-derk mounting presents a better spot for esthetic reasons. Tests have shown that with the car in motion there is no ohservable difference in average performanere of the antennas, regardless of their mounting positions. There may be more in the way of direetional efferts with the rear-deck mount, but the over-all advantage of the roof mount is slight.

A good match may be obtained by feeding
the simple vertical with 50 -ohm line. However, it is well to provide some means for tuning the system, so that all variables can be taken catro of. The simplest tuning arrathgement consists of a variable caparitor connerted between the low side of the transmitter coupling coil and ground, as shown in Fig. 19-38. This capacitor should

have a maximum capacitance of 75 to $100 \mu \mu$ f. for 50 Me., and should be adjusted for maximum lowding with the least coupling to the transmitter. Some method of varying the coupling to the transmitter should be provided.

Horizontal Polarization

Iorizontally polarized antemnas have a considerable advantage over the vertical whip under usual conditions of mobile operation. This is partieularly true when horizontal polarization is used at both ends of a line-of-sight circuit, or on a longer circuit over reasonably flat terrain. An aduitional advantage, especially on 6 meters. is a marked reduction in ignition noise from neighboring cars as well as from the station car.

A Horizontally Polarized Two-Band Antenna for V.H.F.

One type of horizontally-polarized antenna, called the "halo," is shown in Fig, 19-39. It is a dipole bent into a circle, with the ends capacitively loaded to reduce the circumference. Since the $50-$ and $144-\mathrm{Mc}$, bands are almost in third harmonic relationship, it is possible to build a single halo that will work on both bands. The antenna is changed from one band to another by changing the spacing between the end loading plates and adjusting the matching mechanism.

Mechanical Details

The hato is made of $7 / 16$-inch aluminum fuelline tubing. This material is both strong and very light, but any tubing of about $1 / 2$-inch diameter could be used equally well. The loop is 67 inches in circumference and the capacitor plates are $21 / 4$ inches square, with the corners rounded off.

To fasten the capacitor plates to the ends of the tubing, aluminum rod stock is turned down on a lathe to make a tight fit into the ends. This is tapped for 6-32 thread, and then forced into the tubing ends. Holes are drilled through tubing and inserts, at each end of the halo, and a serew run through each to keep the inserts from turning around or slipping out. The binding-head screws that hold the plates to the inserts are equipped

Fig. 19-39-The 2-band halo as it appears when set up for $50-\mathrm{Mc}$. operation. Changing to 144 Mc . involves decreasing the plate spacing by swapping cone insulators, and resetting the gamma matching clip and series capacitor.
with lock washers. The hol's for mounting the ceramic cone spacer are drilled directly below the center, midway between the center and the edge of the capacitor plates.

The halo is sot into a slot cut in the vertical support. This slot slould be just big enough to permit the halo to be forced into it. The halo has to be stiffened, so cut it at the eenter and insert about 2 inches of alumimum rod, again turned down on a lathe to fit tightly inside the tubing. The two pieres of tubing are then pushed together, over the insert, and drilled aach side of eenter to pass $6-32$ serews. The hato and insert are also drilled at the midpoint, to pass the mounting screw. This is an $8-32$ serew, 1 年 inches long. If lathe facilities are not available, the momenting of the caparitor plates and the: securing of the halo to the vertioal support can be handled with angle brackets.

Mechanical statility is important so straps of aluminum $1 / 2$ inch wide are wrapped around the halo either side of the mounting post. These are bent at right angles and the ends pulled together with a bolt.

The matching arm is $14^{1} \frac{1}{2}$ inches long, of the same material as the halo itself. It is mountod below the hato on two $3 / 4$ ind cone standoffs. For convenience in detaching the feed line a coaxial fitting is momnted on an I, bracket bolted to the vertical support. The stator har of the $2 \overline{5}-\mu \mu \mathrm{f}$. variable capacitor (Johnson 167-2) is soldered directly to the coaxial fitting. The rotor of the caparitor is eonnected to the gamma amm through a pieer of stiff wire. For further stifferning an aluminum angle bracket is serewed to the lower momenting stad of the capacitor and the other end monnted under the serew that holds the first cone stamboff in place. Contart between the arm and the halo proper is made througha stap of 1 sinel wide aluminum bent to form : sliding elip. Be sume that a chean tight contact is made between the tubing and the clip, as high eurrent flows at this point. A poor or varying contaet will ruin the efferetiveness of the antenna.

Adjustment

The eapacit y-loaded halo is a ligh- Q deviee so
it must be tuned on-the-nose, or it will not work properly. The only reliable method for adjusting a halo is to use a standing-wave bridge, making tuning and matching adjustments for minimum reflected power. Lising a field-strength meter and attempting to adjust for maximum radiated power can give confusing indications, and is almost certain to result in something less than maximum offertiveness.
The adjustment process with this design can be simplified if the halo is first resonated approximately to the desired frequency ranges with the aid of a grid-dip moter. Set the elip at about one inch in from the end of the arm, and the series (eipacitor at the middle of its range. Check the resonant frepuencr of the loop with the gridedip meter, with the $3 / 4$-inch spacer between the eapacitor phates. It should be close to 50 Me . If the frequeney is too low, trimming the eorners of the plates or putting shims under the ceramie spacer will raise it somewhat. If the frequeney is too high already, make new and slightly larger capacitor plates.

Next, insert an s.w.r. bridge between the antenna and the transmission line. Apply power and swing the capacitor through its range, noting whether there is a dip in reflected power at any point. If the reflected power will not drop to zero, slide the rlip along the gamma arm and retume the capacitor, until the lowest realing possible is obtained. If this is still not zero, the halo is not resonant. If the halo capacitanee is on the low side, moving the hands near the phates will cause the reflected power to drop. Closer spacing of the phates, larger plates or a longer hato loop are possible solutions.

These adjustments should be made on a frequency near the middle of the range you expect to use. Alljusting for optimum at 50.25 Mc., for example, will result in usable operation over the first 500 kc . of the band, and a good match (helow 1.5 to 1) from 50.1 to 50.4 . The s.w.r. will rise rapidly either side of this range.

To tune up on $1+1$ Me., insert the $1 / 2$-inch cone between the eapacitor plates. Slide the elip back on the gammat arm about 3 to 4 inches and repeat the adjustment for minimum reflected power,

Field-Strength Meter

using a frequeney at the middle of a "-Mc. range. Tuning up at 145 Mc, for example, will give quite satisfactory operation from the low end to 146 Me, the halo being much broader in frequeney response when it is operated on its third harmonie. In this model the series caparitor in the gamma arm was at about the middle of its range for 50 Mc., and near minimum for $14 t$ Me. Slight differences in mechanieal construetion may change the value of caparitance required, so these settings should not be taken as important.

The photograph, lig. 19-3!, shows a method used to avoid ruming the chance that the second ceramie cone would be missing when a band change was to the made. The head was eut from a 6 32 serew, loaving a threaded stud about $1 / 2$ inch long. This is serewed into one of the ceramie: cones. The other cone then serves as a nut, to tighten down the caparitor plate. In changing bands merely swap cones. (O)riginal deseription appeared in QS'T', Sopt., 1958.)

Bibliography

Swafford, "Improved Coax Feed for Low-Frequeney Mobile Antennas," QST, I ecember, 1951 .
Roberge MeConnell, "Let's Go High Mat!," QST, January, 1952.

Belrose, "Short Antennas for Molile Operation," QST, September, 1953.
Dinsmore, "The 'Ifot-Rod" Mobile Antenna," QST, September, 1953.
Picken \& Wambsganss, "Remote Mohile-Antenna Resonating." ()ST, December, 10.33.
Webster, "Molile Loop Antennas," QST, June, 19.1.
Tilton, "Have You Tried V.ll.F. Mobile?" QST, September, 19.)!.
Hargrave, "Automatic Mobile Antenna Tuning," QST, May, 19.3.
Morgan, "luning the Mobile Antenna from the Driver's Seat," (S.ST, October, 19.5\%.
Braschwitz, "Directional Antenna for the Transmitter IHunter," QST, April, 19 ifif.
Tilton, "lolarization Effects in V.II.F. Mobile," QST, I لecemier, 19.56.
Breetz, "A Simple Halo for 2-Meter Mobile Use," QST, August. 16 (3) 7.
llarris, "('ontinuously Loaded Whip Antennas," QST, May, 1938.

A Field-Strength Meter for Portable-Mobile Use

The field-strength meter of rigs. 19-40 through 19-4: can be used in a molile station as an antema-resonance indicator or as a continuous output indicator showing that the tranmitting sustem is a foally radiating. It is designed to be inserted betwern the automolile broadeast roceiving antenna, which acts as the r.f. pick-up,

Fig. 19-40-A front view of the field-strength meter. Sensitivity control R_{1} is to the right of the 0^{-1} indicating meter. Antenna input and oulpul connectors are mounted on the right end of the box.

Fig. 19-42-Inside view of the meter. The back plate shown in the photograph is used as a cover for the box.
and the bromdeast receiver. Small matgots or rubber surtion cups on the bark plate will hold the moter securely on top of the car dash. Although in this position the meter will be fare up in most (asas, it (an nevertheless usually be read from the driver position.

Fig. 19.41-Circuit of the field-strength meter. $C R_{1}$-Crystal diode (1N34A).
J_{1}, J_{2}-Automobile type antenna connectors.
$R \mathrm{RC}_{1}-2.5 \mathrm{mh}$. r.f. choke.
R_{1} - 500 ohm potentiometer (Mollory U-2).
S_{1}-S.p.d.t. switch for above potentiometer.

A handle can be mounted on the meter box so that the meter can easily be carricd about for portable measurements. The same basic layout less the handle can be used if the box is to be mounted under the dash or in the glove compartment.

The circuit for the field-strength meter is shown in Fig. 19-41. The values shown are not critical. Nearly any type of crystal detector can be used and the meter movement can be anything from $100 \mu \mathrm{a}$. to 2 ma. or more, depending upon the size and phacement of the antenna and the power output of the transmitter. All components, inchuding the 3 -inch indieating meter, are housed in a! $2 \times 6 \times 1$-inch aluminum chassis.

If a smaller meter is used, the box could be reduced in size accordingly. However, in mobile operation a large meter is more convenient to read while in motion. An illuminated meter could be substituted for the one shown in the photograph for use at night. A switch, S_{1}, is used in the circuit to switch the antenna to the field-strength meter position or straight through to the broadeast set. For portable or temporary mobile operation, a short pick-up wire can be used instead of the automobile rereiving antema. The pick-up antenna lead comes into a connector mounted on one end of the box. There is a second connector for attaching the lead to the broadeast receiver.

Conelrad Monitoring

The conelrad rules discussed in the chapters on high-frequency receivers and operating a station must be observed by amateurs who operate mobile. (One eonvenient form of compliance is by means of a separate tunable converter covering the broadcast band, and converting to the same i.f. as the i.f. used by the ham-band converter. This type of converter may also be used when the car radio is used as the tunable i.f. for a broad-band converter, providing that the receiver is tuned to the converter i.f. at tenminute intervals. This can be accomplished most conveniently by setting one of the push buttons to tume the recoiver to the monitor output frequency:

The circuit of a broadeast-band converter is shown in Fig. 19-43. The input circuit $C_{1 A} L_{2}$ covers the broadeast band. The oscillator circuit $C_{113} L_{3}$ tunes the range of 2050 to 3000 kc . to produce in i.f. of 1500 kc . A type 6 s .17 may be used in the circuit ind, of course, cither a 12 BIE 6 or a 12 S A 7 should be used for 12 -volt operation.
llates must be removed from C_{113} to provide the required tuming range. The oscillator section of the dual unit is the one having the smaller number of plates. starting at the rear, all rotor plates except five should he removed. It isn't necessury to remove the unused stators. Be very careful to make sure that there are no shorted
plates after the modification is complete.
L_{2} is a ferrite-core loopstick. This coil usually comes with a length of wire attached to the ungrounded end and wound around the loopstick. When unwound, the short length of wire is intended to provide additional pickup if needed. Disconnect this wire from L_{2} and, without unwinding it, use it for L_{1}.
L_{3} is close-wound with 60 turns No. 30 enamcled, and either tapped at about one third of the way up from the ground end, or with a separate eathode coil consisting of about one third the number of turns on L_{3}, wound over the ground end of L_{3}, and wound in the sume direction. The bottom end of this winding should be grounded.

Power for the converter maty be taken from the car rudio supply sinee the current requirement is negligible. With 150 volts at the positive B terminal of the converter, the converter draws approximately 4 mat. and the drop across R_{2} is alout 100 volts. The converter will work well at supply voltages up to 350 or more without ehange in the resistance value of P_{2}. The current drain will, of course, be higher at the higher supply voltages, and the wattage rating of the resistor may have to be increased. If current drain is an important consideration, the resistance value of R_{2} can be increased in proportion to the inerease in supply volt:uge.

Fig. 19-43-Circuit of the conelrad converter for mobile use.

Conelrad

Fig. 19-44—Block diagram showing a switching system for the conelrad converter. K_{1} represents a spare set of contacts on the change-over relay. S_{1} is a s.p.d.t. toggle. With K_{1} in the receiving position as shown, power from the broadcast receiver may be applied to either the b.c. converter or the ham-band converter. With K_{1} in the fransmitting position, power is applied to the broadcast converter for conelrad monitoring during transmitting periods.

The oscillator can be checked for proper frequency range by the use of a grid-dip meter before power is applied or, after power has been turned on, by listening on a communications: receiver covering the 2 -to- 3 Mc. range.
Now comnect an antemna to the input of the converter and conneet the converter to the broadcast receiver. Set the broadeast reeciver at $1: 000$ ke. (or to the frequency nomally used with the ham-band converter). Turn on the power and adjust ('4 and the slug of L_{4} for a peak in noise (if you can't find a signal). Then adjust the slug of L_{2} for maximum response.

Fig. 19-14 shows how the converter can be comnected into a convenient switch system. (Originatly deseribed in Qs'T', June. 1957).

Mobile Power Supply

By far the majority of amateur mobile installations depend upon the car storage battery as the source of power. The tube types used in equipment are chosen so that the filaments or heaters may be operated directly from the battery. Iligh voltage may be obtained from a supply of the vibrator-transformer-rectifier type, a small motor generator or a transistor-transformer-rectifier system operating from the car battery.

Filaments

Because tubes with directly heated cathodes (filament-type tubes) have the advantage that they can be turned off during reeeiving periods and thereby reduee the average load on the battery, they are preferred by some for tatasmitter applieations. However, the choice of types with direct heating is limited and the saving may not always be as great as anticipated, hecause directly heated tubes may require greater filament power than those of equivalent rating with indirectly heated cathodes. In most cases, the power required for transmitter filaments will be quite small compared to the total power consumed.

Plate Power

Under stoady running eonditions, the vi-brator-transformer-rectifier system and the motor-generator-type plate supply operate with approximately the same efficiency. IIowever, for the same power, the motor-generator's over-all efficiency may be somewhat lower because it draws a heavier starting eurrent. On the other hand, the output of the generator requires less filtering and sometimes trouble is experienced in climinating interference from the vibrator.

Transistor-transformer-rectifier plate supplies currently available operate with an elficiency of approximately 80 per cent. These compact. light-weight supplies use no moving parts (vibr:ttor or armature) or vacuum tubes, and draw no starting surge eurrent. Most transistorized supplies are designed to operate at 12 volts d.c.
and some units deliver 125 watts or more.
Converter units, both in the vibrator and rotating types, are also available. These operate at 6 or 12 volts d.c. and deliver 115 volts a.ce. This permits operating standard a.e,-powered equipment in the car. Although these systems have the advantage of flexibility, they are less efficient than the previously mentioned systemes beatuse of the additional losses introblued by the transformers used in the equipment.

Mobile Power Considerations

Since the car storage battery is a low-voltage source, this means that the current drawn from the battery for even a moderate amount of power will be large. Therefore, it is important that the resistance of the battery circuit be held to a minimum by the use of heavy conductors and good solid connections. A heatryduty relay should be used in the line between the hattery and the plate-power unit. An ordinary toggle switch, located in any convenient position. may then be used for the power control. A second relay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery (in the trunk, for instance) the 6 - or 12 -volt cable should be of the heavy military type.

A complote mobile installation may draw 30 to 40 amperes or more from the (i-volt battery or better than 20 amperes from a 12 -volt battery. This requires a considerably increasel demand from the car's battery-eharging generator. The voltage-regulator systems on cars of recent vears will take care of a moderate increase in demand if the ear is driven fair distanees regularly at a speed great enough to insure maximum charging rate. Ilowever, if much of the driving is in urban areas at slow speed, or at night, it may be necessary to modify the charging system. Speeial commu-nications-type generators, such as those used in police-rar installations, are designed to charge at a high rate at slow engine speeds. The eharging rate of the standard system can be ineretsed within limits by tightening up

19-MOBILE EQUIPMENT

slightly on the voltage-regulator and currentregulator springs. This should be done with caution, however, checking for excessive generator t.emperature or abnormal sparking at the commutator. The average b -volt car generator hats a rating of 35 :amperes, but it may be possible to adjust the regulator so that the gener:ator will at least hold even with the trinsmitter, receiver, lights, ete., all operating at the same time.

If higher transmitter power is used, it may be necessary to install an a.e. charging system. In this system, the generator delivers a.c. and works into a rectifier. A charging rate of 75 amperes is easily obtained. Commutator trouble often experienced with d.e. generators
at high current is avoided, but the cost of such a system is rather high.

Some mohile operators prefer to use a separate battery for the ralio equipment. Such a system can be arrathged with aswiteh that cuts the auxiliary battery in parallel with the car battery for charging at times when the car battery is lightly louded. The auxiliary battery can also be charged at home when not in use.

I tip: many mobile operators make a habit of carrying a pair of heavy cables five or six feet long, fitted with elips to make a connection to the battery of another car in case the operator"s battery has been allowed to run too far down for starting.

The Automobile Storage Battery

The success of any mobile installation depends to a large extent upon intelligent use and mantenance of the car's battery.

The storage battery is made up of units consisting of a pair of coated lead plates immersed in a solution of sulphuric acid and water. Cells, cach of which delivers about 2 volts, can be connected in series to obtain the desired battery voltage. A 6 -volt battery therefore has three rells, and a 12 -volt battery has 6 cells. The average stock car battery hats a rated capacity of 600 to 800 watt-hours, regardless of whether it is a 6 -volt or 12 -volt battery.

Specific Gravity and the Hydrometer

As power is drawn from the battery, the acid content of the electrolyte is reduced. The acid rontent is restored to the electrolyte (meaning that the battery is recharged) by passing a current through the battery in a direction opposite to the direction of the discharge current.
sinee the acid content of the electrolyte varies with the charge and discharge of the battery, it is possible to determine the state of charge by measuring the specifice gravity of the electrolyte.

In inexpensive device for checking the s.g. is the hydrometer which can be obtained at any automobile supply store. In checking the s.g., enough electrolyte is drawn out of the cell and into the hydrometer so that the calibrated bulb floats freely without leaning against the wall of the glass tube.

While the readings will vary slightly with battories of different manufacture, a reading of 1.275 should indicate full charge or nearly full charge, while a reading below 1.150 should indicate a battery that is close to the discharge point. Nore specific values can be obtained from the car or battery dealer.

Readings taken immediately after adding water, or shortly after a heavy discharge period will not be reliable, because the electrolyte will not be uniform throughout the cell. Charging will speed up the equalizing, and some mixing can he done by using the hydrometer to withdraw and return some of the electrolyte to the cell several times.

A battery should not be left in a discharged condition for any appreciable length of time. This is esperially important in low temperatures when there is dianger of the electrolyte freazing and ruining the batters. A battery discharged to an s.g. of 1.100 will start to freeze at about 20 degrees F., at about 5 degrees when the s.g. is 1.150 and at 16 below when the s.g. is 1.200 .

If a battery has been rum down to the point where it is nearly discharged, it can usually be fast-charged at a battery station. Fast-charging rates may te ats high as 80 to 100 amperes for a ob-volt battery, Any 6 -volt battery that will accept a charge of 75 amperes at 7.75 volts during the first 3 minutes of charging, or any 12 -volt battery that will accept a charge of 40 to 15 amperes at 15.5 volts, may he safely fast-charged up to the point where the gassing becomes so excessive that electrolyte is lost or the temperature rises above 125 degrees.

A normal battery showing an s.g. of 1.150 or less may be fast-charged for 1 hour. (One showing an s.g. of 1.150 to 1.175 may be fastcharged for 15 minutes. If the s.g. is 1.175 to 1.200, fast-charging should be limited to 30 minutes.

Care of the Battery

The battery terminals and mounting frame should be kept free from corrosion. Any corrosive accumulation may be removed by the use of water to which some household ammonia or baking soda has been added, and a stiff-bristle brush. Care should be taken to prevent any of the corrosive material from falling into the cells. Cell caps should be rinsed out in the same solution to keep the vent holes free from ohstructing dirt. Battery terminals and their cable clamps should be polished bright with a wire brush, and coated with mineral grease,

The hold-down clamps and the battery holder should be checked oceasionally to make sure that they are tight so the battery will not be damaged by pounding when the car is in motion.

Voltage Checks

Although the readings of s.g. are quite reliable as a measure of the state of charge of a normal
battery, the necessity for frequent use of the hydrometer is an inconvenience and will not always serve as a conclusive check on a defective battery. Cells may show normad or almost normal s.g. and ret have high internal resistance that ruins the usefulness of the battery under load.

When all cells show satisfactory s.g. readings and yet the battery output is low, service stations check each cell by an instrument that measures the voltage of each cell under a heavy foad. Under a heatvy load the rell voltages should not differ bey more than 0.15 volt.

A load-voltage test can also be made by measuring the voltage of each cell while closing the starter switch with the ignition turned off. In many cars it is necessary to pull the central dis-
tributor wire out to prevent the motor starting.

Electrolyte Level

Water is evaporated from the clectrolyte, but the acid is not. Therefore water must be added to each cell from time to time so that the plates are alwius completely covered. The level should be checked at least once per week, especially during hot weather and constant operation.

Distilled water is preferred for replenishing, but elear drinking water is an acceptable substitute. Too much water should not be added, since the gassing that accompanies charging may force electrolyte out through the vent holes in the caps of the cells. The electrolyte expands with temperature. (From QST', August, 1955.)

Emergency and Independent Power Sources

Emergency power supply which operates independently of a.e. limes is a valable, or can be built in a number of different forms, depending upon the requirements of the service for which it is intended.

The most practical supply for the average individual amateur is one that operates from a cat storage battery. Such a supply may take the form of a smadl motor generator (often called a dynamotor), a rotary converter, a vibrator-transformer-rectifier combination, or transistor supply.

Dynamotors

A dynamotor differs from a motor generator in that it is a single unit having a double armatture winding. One winding serves for the driving motor, while the output voltage is taken from the other. Dynamotors usually are operated from 6-, 12 -, 28- or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.

Sucecessful operation of dynamotors requires heavy diredt leads, merhanieal isolation to reduce vibration, and thorough r.f. and ripple filtration. The shafts and bearings should be thoroughly "run in" before regular operation is attempted, and thereafter the tension of the bearings should be checked occasionally to make certain that no looseness has developed.

In mounting the dynamotor, the support should be in the form of rubber mounting bocks, or aquivalent, to prevent the transmission of vibration mechanieally. The frame of the dynamotor should be grounded through a heavy flexible connector. The brushes on the high-voltage end of the shaft should be bypassed with $0.002-\mu$ f. mica capacitors to a common point on the dynamotor frame, preferably to a point inside the end cover close to the brush hodders. Short leads are essential. It may prove desirable to shield the entire unit, or even to remove the unit, to a distance of three or four fret from the receiver and antema lead.

When the dynamotor is used for receiving, a filter should be used similar to that described
for vibrator supplies. A (0.01- $\mu \mathrm{f}$. 600-volt ((1.c.) paper capacitor should be connected in shunt across the output of the dynamotor, followed by a $2.5-\mathrm{mh}$. r.f. ehoke in the positive ligh-voltage lead. From this point the output should be run to the receiver power terminals through a smoothing filter using 4 - to $8-\mu$ f. capacitors and a 15 - or 30 -henry choke having low d.e, resistance.

Vibrator Power Supplies

The vibrator type of power supply consists of a special step-up transformer combined with a vibrating interrupter (vibrator). When the unit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformer. The circuit is made and reversed rapidly by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic field which induces a voltage in the secondary. The resulting squarewave d.c. pulses in the primary of the transformer cause an alternating voltage to be developed in the secondary. This high-voltage a.c. in turn is reetified, either by a vacuum-tule rectifier or by an additional synchronized pair of vibrator contacts. The rectified output is pulsating d.e., which may be filtered by ordinary means. The smoothing filter ean be a single-section affair, but the output capacitance should be fairly large - 16 to $32 \mu \mathrm{f}$.

Fig. 19-15 shows the two types of eircuits. At A is shown the nonsynchronous type of vibrator. When the battery is disconnected the reed is midway between the two contacts, touching neither, On closing the battery circuit the magnet coil pulls the reed into contact with one contact point, causing current to flow through the lower half of the transformer primary winding. Simultaneously, the magnet coil is short-circuited, deënergizing it, and the reed swings back. Inertia carries the reed into contact with the upper point, causing current to flow through the upper half of the transformer primary. The magnet coil again is energized, and the cycle repeats itself.

19-MOBILE EQUIPMENT

(A)

(B)

Fig. 19-45-Basic types of vibrator power-supply circuits. A-Nonsynchronous. B-Synchronous.

The synchronous circuit of Fig. 19-45B is provided with an extra pair of contacts which rectify the secondary output of the transformer, thus eliminating the need for a separate rectifier tube. The secondary center-tap. furnishes the positive output terminal when the relative polarities of primary and secondary windings are correct. The proper connections may be determined by experiment.

The buffer eapacitor, C_{2}, across the transformer secondary, absorbs the surges that occur on breaking the current, when the magnetic field collapses practically instantancously and hence causes very high voltages to be indueed in the secondary. Without this capacitor excossive sparking occurs at the vibrator contacts, shortening the vibrator life. Correct value's usually lie between 0.005 and $0.03 \mu \mathrm{f}$., and for 250 -300-volt supplics the capacitor should be rated at 1500 to 2000 volts d.e. The exact capacitance is critical, and should be determined experimentally. The optimum value is that which results in least battery current for a given rectified d.e. output from the supply. In practice the value can be determined by observing the degree of vibrator sparking as the capacitance is changed. When the system is operating properly there should be practically no sparking at the vibrator contacts. A 5000 -ohm resistor in series with C_{2} will limit the secondary current to a safe value should the capacitor fail.

Vibrator-transformer units are available in a variety of power and voltage ratings. Representative units vary from one delivering 125 to 200 volts at 100 ma . to others that have a 400 -volt output rating at 150 ma . Most units come supplied with "hash" filters, but not all of them have built-in ripple filters. The requirements for ripple filters are similar to those for a.c. supplies. The usual efficiency of vibrator packs is in the vicinity of 70 per cent, so a 300 -volt $200-m a$. unit will draw approximately 15 amperes from a 6 -volt storage battery. Special vibrator transformers are also available from transformer manufacturers so
that the amateur may build his own supply if he so desires. These have d.e. output ratings varying from 150 volts at 40 ma , to 330 volts at 135 ma .
librator-type supplies are also available for operating standard a.c. equipment from a 6 - or 12 -volt storage battery in power ratings up to 100 watts continuous or 125 watts intermittent.

"Hash" Elimination

Sparking at the vibrator contacts causes r.f. interference ("hash," which can be distinguished from hum by its harsh, sharper piteh) when used with a receiver. To minimize this, r.f. filters are incorporated, consisting of $R F C_{1}$ and C_{1} in the battery cireuit, and $R F^{\prime} C_{2}$ with C_{3} in the d.e. output circuit.

Eigually as important as the hash filter is thorough shielding of the power supply and its connecting leads, since even a small piece of wire or metal will radiate enough r.f. to cause interference in a sensitive amateur receiver.

The power supply should be built on a metal chassis, with all unshielded parts underneath. A bottom plate to complete the shielding is advisable. The transformer case, vibrator cover and the metal shell of the tube all should be grounded to the chassis. If a glass tube is used it should be enclosed in a tube shield. The battery leads should be evenly twisted, since these leads are more likely to radiate hash than any other part of a well-shicked supply. Experimenting with different values in the hash filters should come after radiation from the battery leads has been reduced to a minimum. Shielding the leads is not often found to be particularly helpful.

UNIVERSAL VIBRATOR POWER SUPPLY

A vibator-type power supply may be designed to operate from a storage battery only, or from either a battery or 115 volts a.c. Most late-model ears use 12-volt batteries, but there are still many cus with (i-volt systems in operation - a point that should be given due consideration where emergency operation is an objective.

The eirenit of a universal power supply for emergenery, mobile, or homo-station use is shown in Fig. 1!3-46. The unit furnishes a d.e. output of 300 volts at 160 ma , and can be operated from any of the abovementioned sources. Shifting from one power soure to another is arromplished ly plugging P_{1} or P_{2}, connected to the selected soluree, into one of the two chassis connectors J_{1} or J_{2}. The vibrator-primary current is 11.6 amperes with 6 -volt input under loaded conditions, and 6.8 amperes with 12 -volt input.

Heater Connections

To alapt equipment for optional fi- or 12-volt operation, 6-volt tulus must be used with their heaters in series-parallel. Fig, 19-17 shows a typical example of conneretions. The lulues in the

Fig. 19-46-Circuit of the universal power supply. All capacitances are in μ f.
C_{1}-Buffer capacitor, fubular plastic.
$\mathrm{C}_{2}, \mathrm{C}_{3}$-Hash-filter capacitor, paper.
C_{4}-Hash-filter capacitor, disk ceramic.
$\mathrm{C}_{5}, \mathrm{C}_{6}$-Ripple-filfer capacitor, $5 \mu \mathrm{f}$. or more, 600 -volt oil-filled or electrolytic.
F_{1}-3-amp. cartridge fuse (Littlefuse type 3AG) in extractor-post mounting (Littlefuse 341001).
F_{2}-20-amp. cartridge fuse (Littlefuse type SFE) in in-line fuse retainer (Littlefuse 155020).
I_{1}-Neon pilot lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}-12$-contact male chassis connector (Cinch-Jones P-312-AB).
$J_{3}, J_{4}-6$-contaci female chassis connector (Cinch-Jones S-306-AB).
L_{1}-5-h. 200-ma. 80-ohm filter choke (Merit C-1396, Stancor C-1411).
$\mathrm{P}_{1}, \mathrm{P}_{2}$-12-contact female cable connector (Cinch-Jones S-312-CCT).
$P_{3}, P_{4}-6$-contact male cable connector (Cinch-Jones P-306-CCT).
P_{5}-Cigor-lighter plug (Mollory R-675).
equipment should be divided into two groups whose heater-curent ratings total as closely as possible the same value. The heaters in each group should be connected in parallel, and the two groups then connected in series. If it is impossible to arrive at a grouping that will have cxactly the same total current, a resistor may be connected in parallel with the group drawing the smaller current as shown. The value of this resistor should be such that it will draw enough
R_{1}-Buffer resistor.
R_{2}-Series voltage-dropping resistor for receiver, slider adjustable.
RFC $_{1}-30$ turns No. 14 enam., $1 / 2$-inch diam., close-wound.
$\mathrm{RFC}_{2}-1$-mh. r.f. choke (National R-300-U, Millen 34106).
$S_{1}-S$. p.s.t. toggle switch.
S_{2}-S.p.d.t. toggle switch.
$S_{3}-S$. .p.d.t. toggle, or other, at transmitter.
T_{1}-Combination power transformer: 6-volt d.c. vibrator or 115 v. a.c. input; 300 volts, 160 ma.; 6.3 volts 3 amp ; 6.3 -volt 4.5 -amp. tap on vibrator primary (Merit P-3176). Numbered terminals are color-coded as follows: 1 -heavy green; 2-yellow; 3-light green; 4—black; 5-brown; 6-blue; 7-white; 8-red; 9-red-yellow; 10-red; 11 and 12-black.
X_{1}-4-prong tube socket for 6 -volt vibrator (Mallory 4501 vibrator).
X_{2} - 4 -prong tube socket for 12 -volt vibrotor (Mallory G4501 vibrator).
current at 6 volts to make up the difference between the two totals. One side of one group may be grounded to chassis but the other side of this group and both sides of the second group must be insulated.

Switching Circuits

Battery input connections are made through P_{5} which phugs into a rigar-lighter sorket in mobile serviee, F_{2} is a fuse which is inserted in the

Fig. 19-47-Circuit showing typical seriesparallel healer connections for 6 -volt and 6,12-volt tubes. Resistor R_{1} is used when necessary to balance the currents in the two branches as described in the lext. The dashed line shows how the switching system connects all tubes in parallel for 6-volt operation by grounding.
cord between P_{5} and P_{1}.
For 6 -volt operation P_{1} is plugged into J_{1}. For 12 -volt operation I_{1} is plugged into J_{2}. For 115 -volt a.c. operation P_{2} is plugged into J_{2}.

Positive high-voltage output from the supply is fed to Pins 3 on output connertors J_{3} and J_{4}. The three heater connections are made through l'ins 1, 2 and 6. The cable for transmitter plug I_{3} has provision for connerting to a transmitreceive switch $\left(S_{3}\right)$ at the transmitter. In the transmit position the plate voltage is fed to the transmitter. In the receive position the switeh feeds the plate voltage, via I'in 4, through series voltage-tropping resistor R_{2} to l'in 4 on the other ontput jack and thence to the receiver. It will be noticed that the same circuit results with P_{3} and P_{4} in either output jack.

Construction

The unit is constructed on a $7 \times 12 \times 3$-inch chassis, with only the transformer and output connectors J_{3} and J_{4} above eleck. The two rectifier tubes and both vibrators are mounted below deek for comparthess and shickting. This leaves a clear area on top of the chassis for mounting a receiver or small transmitter. Adequate ventilation is provided by patterns of $1 / 4$-ineh holes in the top of the chassis, directly over the rectifier tubes, and along the bottom edge of the chassis on both sides.
The pilot lamp, a.c. power switch and filter switch S_{2} can be mounted on the front end of the chassis, with fuse F_{1} and the input jacks at the other and. Shielding should be completed with a chassis bottom plate.

Operation

Although the cireuit is arranged so that no damage will occur if a mistake is made, the input connectors should be plainly marked to avoid plugging a cable into the wrong socket.

Original description appeared in QST, Oet., 1957.)

- TRANSISTOR POWER SUPPLIES

A mobile or portable power supply using transistors has high over-all effieieney at its
rated power output. Since there are no moving parts there are few maintenance problems. Capacitors and resistors may occasionally need replacement, but if the transistors are operated within their electricol and thermal ratings, their life expectancy is in terms of years rather than hours.

In a transistor power supply, the transistors operate as electronic switrhes to interrupt the d.c. through the primary of the power transformer much like the mechanical vibrator do's in a vibrator supply.

When voltage is applied to the power supply circuit, current will flow through the transistors: however, since no two transistors are precisely alike elertrically, initially one will conduct a little more current than the other. This difference current or "starting" current will cause a small voltage to be induced in the transformer winding eonneeted to the bases of the transistors. The polarity is surh that the conducting transistor is biased to conduct even more heavily while the base of the other transistor is biased to cutoff. This process continues until the increasing current causes magnetic saturation of the transformer core, at which time the induced voltage drops to zero and there is no longer enough base' bias to maintain the collector current. When this happens the current decreases, causing an induced voltage of opposite polarity. The process then reverses so that the previously nonconducting transistor starts to conduct and the previously conducting transistor becomes cut off. The result is an alternating current of square-wave form through the transformer primary. This in turn induces a stepped-up voltage in the li.v. secondary of the transformer.

The transistor supply is self-protecting against overload because if a short circuit or heavy overload oceurs oscillations cease and the input current drops to a low value. The output voltage regulation is extremely good making the transistor supply especially useful as a source of plate or screen power for a single-sideband mobile or portable rig.

Transistor power transformers are available in both conventional and torodal construction, with outputs ranging up to 150 watts. The circuit shown in lig. 19-48, a typical transistor power supply, has an output of about 350 volts at 160 ma . It uses eight selenium rectifiers in a bridge circuit but four silicon-type power dions having an inverse jeak voltage rating of 800 volts or more could be substituted with a substantial saving in space. The center-tapped secondary of T provides a half-voltage source that may be used simultaneously with the high voltage.

In a transistor power supply circuit that has not been projerly designed, small spikes may appear on the leading edges of the equare wave generated in the transistor power oscillator. liven though the spikes are of short duration they can cause punch-through of the transistor junction if the total voltage exceeds the transistor collector-to-emitter rating. The amplitudes

Fig. 19-48 - Circuit of the Iransistor power supply. Resistances are in ohms.
$\mathrm{C}_{1}-2000 \quad \mu \mathrm{f}$., 15 volts 12 paralleled 1000μ. electrolytics, Sprague TVA 1 163).
$C R_{1}$ through $C R_{8}-150$ ma. selenium rectifier (Sarkes-Tarzian 150).
$F_{1}-10$. amp. fuse.
$\mathrm{Q}_{1}, \mathrm{Q}_{2}-2 \mathrm{~N} 278$ (Delco DS501).
T_{1}-Transistor power transformer lSunair Electronics type 14-450-12. Available from Sunair Electronics, Inc., Broward County International Airport, Ft. Lauderdale, Fla.)

of these spikes can be held to a safe value if the primary and secondary coils on the power transformer are tightly coupled (bifilar wound) and a large capacitor (C_{1} in Fig. 19-48) is connected aeross the low voltage supply.

It is very important to provide good heat transfer from the mounting bases of the transistors to the chassis. The transistor junction temperature must not be allowed to exceed the manufacturer's ratings or thermal runaway will occur and the transistors will become useless. Lavout of the parts is not critical. A conventional box type chassis may be used; the larger the surface area the better, since that means more rapid heat transfer from the transistors.

Since heat is the prime limiting factor in transistor power supply operation, placement of the unit in the car should have special consideration. Try to find a location away from hightemperature spots and in a well-ventilated area.

gasoline-engine driven generators

For higher-power installations, such as for communications control centers during emergencies, the most practical form of independent power supply is the gasoline-engine driven generator which provides standard 115 -volt 60 -cycle supply.

Such generators are ordinarily rated at a minimum of 250 or 300 watts. They are available up to ten kilowatts, or big enough to handle the highest-power amateur rig. Most are arranged to charge automatically an auxiliary 6- or 12 -volt battery used in starting. Fitted with self-starters and adequate mufllers and filters, they represent a high order of performance and efficiency. Many of the larger models are liquid-cooled, and they will operate
continuously at full load.
The output frequency of an engine-driven generator must fall between the relatively narrow limits of 50 to 60 cycles if standard 60 -cycle transformers are to operate efficiently from this source. A 60 -cycle electric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the generator and the second hand is checked closely against the second hand of a watch. The speed of the engine is adjusted until the two second hands are in synchronism.

Output voltage should be checked with a volt meter since a standard 115 -volt lamp bulb, which is sometimes used for this purpose, is very inaccurate.

Noise Elimination

Electrical noise which may interfere with recoivers operating from engine-driven a.c. generators may be reduced or eliminated by taking proper precautions. The most important point is that of grounding the framo of the generator and one side of the output. The ground lead should be short to be effective, otherwise grounding may actually increase the noise. A water pipe may be used if a short connection can be made near the point where the pipe enters the ground, otherwise a good separate ground should be provided.

The next step is to loosen the brush-holder locks and slowly shift the position of the brushes while checking for noise with the receiver. Usually a point will be found (almost always different from the factory setting) where there is a marked decrease in noise.

From this point on, if necessary, bypass capacitors from various brush holders to the frame, as shown in Fig. 19-19, will bring the hash down to within 10 to 15 per cent of its

19-MOBILE EQUIPMENT

TABLE 19-III Service life of some typical zinc-carbon cells and batteries					
Cell or Battery	ASA Cell Size	Continuous service		4 hours per day service	
		ma.	hrs.	ma.	hrs.
1.5 v . pen light cell	AA	30		20 130	33
1.5 v. flash light rell 1.5 v ignition cell	$\underset{46}{ }$	160 500	9 43	130 500	21 80
	F30	18	9	16	14
45 v v. 67.5 v., 90 v.	F40	19	15	17	24
B-battery	F70	20	35	24	47

original intensity. if not entirely eliminating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cut out and a pair of headphones is connected into the second detector.

Fig. 19.49-Connections used for eliminating interference from gas-driven generator plants. C should be $1 \mu \mathrm{f}$., 300 volts, paper, while C_{2} may be 1μ. with a voltage rating of twice the d.c. output voltage delivered by the generator. X indicates an added connection between the slip ring on the grounded side of the line and the generator frame.

POWER FOR PORTABLES

Dry Cell Batteries
Dry-cell batteries are a practical source of power for supplying portables or equipment which must be transported on foot. However, they are costly and have limited current capa-
bility. The zinc-carbon cells lose their power even when not in use, if allowed to stand idle for periods of a year or more. This makes them uneconomical if not used more or less continuously.
The mercury cell has a much higher ratio of ampere-hour capacity to volume at higher current densities than are obtainable from the conventional dry cell. Mercury batteries are well suited for emergency portable operation even after many months of storage.

Typical service life data for several types of zinc-carbon cells and batterics is given in Table 19-III. The figures show length of service time before the cell terminal voltage drops to 1.0 volt (in B-batteries, when individual cells reach 1.0 volt).

Mercury batteries and cells are available in several sizes and shapes. Some may be operated at current drains up in the ampere range and others are available in potentials in the hundreds of volts. A typieal 1.35 -volt mercury cell measuring only $21 / 4 \times 21 / 4 \times 23 / 4$ inches, has a capacity of 43 ampere hours (maximum current 3 amperes). Cells of this type would he useful for filament or heater applications. A representative mercury 13 -battery has a voltage of 67.5 volts and a capacity of 3.6 ampere hours (maximum current 250 ma .). It measures about $33 / 8 \times 11 / 2 \times 101 / 6$ inches.

Construction Practices

TOOLS AND MATERIALS

While an easier, and perhaps a better, job can be done with a greater variety of tools available, by taking a little thought and care it is possible to turn out a fine piece of equipment with only a few of the common hand tools. A list of tools which will be indispensable in the construction of radio equipment will be found on this page. With these tools it should be possible to perform any of the required operations in preparing

INDISPENSABLE TOOLS

Long-nose pliers, 6 -inach.
Diagonal cutting miers, 6-ineh.
Wire stripper.
Screwdriver, 6- to 7 -inch, $1 / 4$-inch blade.
Serewdriver, 4 - to $\overline{5}$-inch, 5 -inch blade.
Serateh awl or scriber for marking lines.
('ombination square. 12 -itrh, for laying out work.
Hand drill. 1/-iuch chuck or larger, 2-speed type preferable.
Electric soldering iron, 100 watte, $1 / 4$-in. tip.
llack saw, 12 -inch blades.
(enter punch for marking hole centers.
Haminer, ball-peen, 1-lb. head.
Heavy knife.
Yardstick or other straightedge.
Carpenter's brace with adjustable bole cutter or socket-hole punches (see text).
Large, coarse, flat fle.
Large round or rat-tail file, $1 / 3$-inch diameter.
Three or four small and medium fles-flat, round, half-round, triangular.
Drills, particularly $1 / 4$-inch and Nos. 18, 28, 33, 12 and 50.
Combination oil stone for sharpening tools. solder and soldering paste (noncorroding). Medium-weight machine oil.

ADDITIONAL TOOLS

Beneh vise, 4-inch jaws.
Tin shears, 10 -ineh, for cutting thin sheet metul. Taper reamer, $1 / 2$-inch, for enlarging small holes.
Taper reamer, 1 -ineh, for enlarging holes.
Countersink for brace.
Carpenter's plane, 8- to 12 -inch, for woodworking.
Carpenter's saw, crosscut.
Motor-driven emery wheel for arinding.
Long-shank serewdriver with screw-holding clist for tight places.
Set of "Spintite" soeket wrenehes for hex nuts. Set of small, flat, open-end wrenches for hex nuts. Wood chisel, $1 / 2$-inch.
Cold chisel, 1/2-inch.
Wing dividers. 8-inch, for geribing circles.
Set of machine-screw tape and dies.
Dusting brush.
Socket punches, esp. 5/8", 8/4", $11 / 8^{\prime \prime}$ and 11/4"
panels and metal chassis for assembly and wiring. It is an excellent idea for the amateur who does constructional work to add to his supply of tools from time to time as finanees permit.

Several of the pieces of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, especially the drill press, grinding head, hand and circular sams, and jointer. Although not essential, they are desirable should you be in a position to acquire them.

Twist Drills

Twist drills are made of either high-speed steel or rarbon steel. The latter type is more common and will usually be supplied unless specific reguest is made for high-speed drills. The carbon drill will suflice for most ordinary equipment construction work and costs less than the high-speed type.

While twist drills are available in a number of sizes those listed in boll-faced type in Table 20-I will be most commonly used in construction of amateur equipment. It is usually desirable to purehase several of cach of the commonly used sizes rather than a standard set, most of which will be used infrequently if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the annoyance which may be avoided by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it easier to maintain the rather critical surface angles required for best cutting with least wear. Occasional oilstoning of the cutting edges of a drill or reamer will extend the time between grindings.

The soldering iron can be kept in good condition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is not being used. After each period of use, the tip should be removed and cleaned of any scale which may have accumulated. An oxidized tip may be cleaned by dipping it in sal ammoniac while
hot and then wiping it clean with a rag．If the tip becomes pitted it should be filed until smooth and bright，and then tinned immedi－ ately by dipping it in solder．

Useful Materials

Small stocks of various miscellianeous ma－ terials will be required in constructing radio apparatus，most of which are available from hardware or radio－supply stores．A representa－ tive list follows：

Sheet aluminum，solid and perforated， 16 or 18 gauge，for brackets and shiedding．
$12 \times 1 / 2$－inch aluminum angle stock．
$1 / 4$－inch diameter round brass or aluminum rod for shaft extensions．
Marhine screws：Round－head and flat－head， with nuts to fit．Most useful sizes：4－36， 6－32 and $8-32$ ，in lengths from $1 / 4$ inch to $11 / 2$ inches．（Nickel－plated iron will be found satisfactory except in strong r．f． fields，where brass should be used．）
Bakelite，lucite and polystyrene scraps．
Soldering lugs，panel bearings，rubber grommets，terminal－lug wiring strips，var－ nished－eambric insulating tubing．
Slielded and unshielded wire．
Timed bare wire，Nos．22， 14 and 12 ．
Machine screws，nuts，washers，soldering lugs，ete．，are most reasonably purchased in quantities of a gross．

CHASSIS WORKING

With a few essential tools and proper pro－ cedure，it will be found that building radio gear on a metal chassis is no more of a chore than building with wood，and a more satisfac－ tory job）results．Aluminum is to be preferred to steel，not only because it is a superior shielding material，but because it is much casier to work and to provide good chassis contacts．
The placing of components on the chassis is shown quite clearly in the photographs in this Handbook．Aside from certain essential dimensions，which usually are given in the text， exart duplication is not necessary．
Much trouble and energy can be saved by spending sufficient time in planning the job． When all details are worked out beforehand

Fig．20－1－Method of measuring the heights of capacitor shafts，etc．If the square is adjustable，the end of the scale should be set flush with the face of the head．

TABLE 20－1 Numbered Drill Sizes			
Number	$\begin{gathered} \text { Diameler } \\ (\text { mils }) \end{gathered}$	Will Clear Screw	Drilled for Tappino Iron， Sleel or Brass＊
1	228.0	－	－
2	221.0	12－24	－
${ }_{4}^{3}$	213.0	－	14－24
${ }_{5}^{4}$	209.0 205.0	$\stackrel{12-20}{ }$	二
${ }^{6}$	204.0	－	－
7	201.0	－	－
${ }_{9}^{8}$	199.0 1996.0	－	二
10	193.5	10－32	－
11	1919.0 184.0	10－24	＝
${ }_{13}^{12}$	189.0 185.0	二	二
14	182.0	－	－
15	180.0	－	
16	177.0	－	12－24
${ }_{18}^{17}$	173.0 169.5	8－32	－
19	166.0	－	12－20
${ }_{21}^{20}$	161.0 159.0	－	$\stackrel{-}{10-32}$
22	1：77．0	－	－
23	154.0	－	－
24	152． 0	－	
25 26	149.5 147.0	二	$\stackrel{10-24}{ }$
27	144.0	－	－
${ }^{28}$	143.0	6－32	－
29 30	138.0	－	$8-32$
30 31	128.5 120.0	二	二
32	116.0	－	－
33 34	113.0 111.0	4－86，4－40	－
35	110.0	－	6－32
36	1106.5	－	
37 38	104.0	－	－
39	${ }_{0}^{109.5}$	3－48	二
40	098.0	－	－
41	${ }^{0969.0}$	＝	
43	093.5 089.0	2－50	4－36，4－40
4	086.0 082.0	二	－-48
46	${ }^{081.0}$	－	－
＋88	078.5 076.0	三	－
49	073.0	－	2－56
50 51	070.0 067.0	＝	二
52	063.5	－	－
53	0.59 .5	－	
54	0 0э5． 0	－	－
＊Uye oue size larger for tapping bukelite and hard rubber．			

the actual construction is greatly simplified．
Cover the top of the chassis with a piece of wrapping paper or，preferably，cross－section paper，folding the edges down over the sides of the chassis and fastening with adhesive tape． Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has been found，keep－ ing in mind any parts which are to be mounted underneath，so that interferences in mounting may be avoided．Place capacitors and other parts with shafts extending through the panel first，and arrange them so that the controls will

Metal Work

form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front. Locate any partition shields and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole renters of each accurately on the paper. Wateh out for capacitors whose shafts are off center and do not line up, with the mounting holes. Do not forget to mark the centers of socket holes and holes for leads under i.f. transformers. ete., as well as holes for wiring leads. The small holes for socket-mounting screws are best located and center-punched, using the socket itself as a template, after the main center hole has been cut.

By means of the square. lines indicating arcurately the centers of shafts should be extended to the front of the chassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling, the parts which require mounting underncath inay be located and the mounting holes drilled, making sure by trial that no interferences exist with parts mounted on top. Mounting holes along the front edge

Fig. 20-2 - To cut rectangular holes in a chassis corner, holes may be filed out as shown in the shaded portion of B, making it possible to start the hack-saw blade along the cutting line. A shows how a single-ended handle may be constructed for a hack-saw blade.
of the chassis should be transferred to the panel. by once again fastoning the panel to the chassis and marking it from the rear.

Next, mount on the chassis the capacitors and any other parts with shafts extending to the panel, and measure accurately the height of the eenter of each shaft above the chassis, as illustrated in Fig. 20-1. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacenent can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Holes for any other panel equipment coming above the chassis line may then be marked and drilled, and the remainder of the apparatus mounted. Holes for terminals etc., in the rear erlge of the chassis should be marked and drilled at the same time that they are done for the top.

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch, so that the drill point will not "walk" away from the center when starting the hole. When the drill starts to break through, special care must be used. Often it is an advantage to shift a two-speed drill to low gear at this point. Holes more than $1 / 4$ inch in diameter may be started with a smaller drill and reamed out with the larger drill.

The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible. The center may then be knocked out with a cold chisel and the edges smoothed up with a file. Taper reamers which fit into the carpenter's brace will make the job easier. A large rattail file rlamped in the brace makes a very good reamer for holes up to the diameter of the file, if the file is revolved eounterclockwise.

For socket holes and other large round holes, an adjustable entter designed for the purpose may be used in the brace. Occasional apptiration of machine oil in the cutting groove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the correct diameter. The most convenient device for cutting socket holes is the socket-hole punch. The best type is that which works by turning a take-up screw with a wrench.

The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file. or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small holes as previously deseribed, but is more casily done by drilling a 1 -inch hole inside cach corner, as illustrated in Fig. 20-2, and using these holes for starting and turning the hack saw. The sockethole punch and the square punehe: which are now a vailable also may be of considerable assistance in cutting out large rectangular openings.

CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension, as well as eleetrical contact for safety, can be provided by means of a metal panel hearing made for the purpose. These can br ohtained singly for use with existing shafts, or they can be bought with a captive extension shaft included. In either case the

20-CONSTRUCTION PRACTICES

panel hearing gives a "solid" feel to the control.
The use of fiber washers between ceramic insulation and metal brackets, screws or nuts will prevent the ceramic parts from breaking.

STANDARD METAL GAUGES			
Gauge No.	$\begin{aligned} & \text { American } \\ & \text { or B. © } S .{ }^{1} \end{aligned}$	U. S. Standard ${ }^{2}$	$\begin{aligned} & \text { Birmingham } \\ & \text { or Stubs } \end{aligned}$
1	. 2803	. 28125	. 300
2	. 2376	. 265025	. 284
3	. 2294	. 25	. 259
4	. 2043	. 234375	. 238
5	. 1819	. 21875	. 220
6	. 1620	. 203125	. 203
7	. 1443	. 1875	. 180
8	.1285	. 171875	. 165
9	.1144	. 13025	. 148
10	. 1019	. 140025	. 134
11	. 09074	. 125	. 120
12	. 08081	. 109375	. 109
13	. 07196	. 09375	. 095
14	. 06408	. 078125	. 083
15	. 05707	. 0703125	. 072
16	.0.5082	. 0025	. 065
17	. 04526	. 03625	.058
18	. 04030	. 05	. 049
19	. 03589	. 04375	. 042
20	. 03196	. 0375	. 035
21	. 02846	.03.4375	. 032
22	. 02535	.03125	. 028
23	.02257	. 028125	. 025
24	. 02010	. 025	. 022
25	. 01790	. 021875	. 020
26	. 01094	. 01875	. 018
27	. 01420	. 0171875	. 016
28	. 01264	. 015625	. 014
29	. 01126	. 0140625	. 013
30	. 01003	.0125	. 012
31	. 008928	. 0109375	. 010
32	. 007950	. 01015025	. 009
33	. 007080	. 009375	. 008
34	. 0063350	. 00859375	. 007
35	. 005615	. 0078125	. 005
30	.005000	. 00703125	. 004
37	. 0044.33	.006640626	. . .
38	. 003965	. 00625	
39	.003531 ${ }^{\text { }}$
40	. 003145

${ }^{1}$ Used for aluminum, ropper, brass and nonferrous alloy sheets, wire and rods.

2 Used for iron, steel, niekel and ferrous alloy sheets, wire and rods.
${ }^{3}$ ("sed for seamless tubes; also by some manufacturers for copper and brass.

Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut conveniently with a hack saw, it may be marked with scratches as deep as possible along the line of the cut on both sides of the sheet and then clamped in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break begins to weaken; otherwise the edge of the whet may become bent. A pair of iron bars or pieces of heary angle stock, as long or longer than the width of the sheet, to hold it in the vise will make the job easier. "C"-clamps may
be used to keep the bars from spreading at the ends. The rough edges may be smoothed up with a file or by placing a large piece of emery cloth or sandpaper on a flat surface and running the cdge of the metal back and forth over the sheet.

Bends may be made similarly. The sheet should be scratched on both sides, but not so deeply as to cause it to break.

Finishing Aluminum

Aluminum chassis, panels and parts may be given a sheen finish by treating them in a caustic bath. An enamelled container, such as a dishpan or infant's bathtub, should be used for the solution. Dissolve ordinary household lye in cold water in a proportion of $1 / 4$ to $1 / 2$ can of lye per gallon of water. The stronger solution will to the job more rapidly. Stir the solution with a stick of wood until the lye crystals are complete dissolved. Be very careful to avoid any skin contact with the solution. It is also harmful to clothing. Sufficient solution should be prepared to cover the piece completely. When the aluminum is immersed, a very pronounced bubbling takes place and ventilation should be provided to disperse the escaping gas. A half hour to two hours in the solution should be sufficient, depending upon the strength of the solution and the desired surface.

Remove the aluminum from the solution with sticks and rinse thoroughly in cold water while swabhing with a rag to remove the back deposit. Then wipe off with a rag soaked in vinegar to remove any stubborn stains or tingerprints.

Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain sufficient temperature. Enough heat should be applied so that the solder will melt when it comes in contact with the wires being joined, without tourhing the solder to the iron. Always use rosin-eore solder, never atid-core. Except where ahsolutely neressary, solder shouk never be depended upon for the merhanical strength of the joint; the wire should be wrapped around the terminals or champed with soldering terminals.

When soldering crystal diodes or carbon re-

Soldering

Fig. 20-3-Cable.stripping dimensions for Jones Type P. 101 plugs. Smoller dimensions ore for $1 / 4$-inch plugs, the lorger dimensions for $1 / 2$-inch plugs. As indicoted in C , the remoining copper broid is wound with bore or tinned wire and then tinned, to moke 0 snug fit in the sleeve of the plug. Hold o hot iron to the sleeve ofter the cable is inserted to solder the sleeve to the broid.
sistors in place, experially if the leads have been cut short and the resistor is of the small ! watt size, the resistor lead should be gripped with a pair of pliers up elose to the resistor so that the heat will be comducted away from the resistor. Overheating of the resistor while soldering can cause a permanent resistance chatuge of as much as 20 per cent. Also, mechanical stress will have a similar effed, so that a small resistor shond be mounted so that there is no appreciable mechanical strain on the leads.

Trouble is sometimes experienced in soldering to the pins of ail-forms or male cable plugs. It helps first to tin the inside of the pins by applying soldering paste to the hole, and then flowing solder into the pin. Then imenediately dear the solder from the hot pin by a whipping motion or by blowing through the pin from the inside of the form or plag. Before inserting the wire in the pin, file the nickel plate from the tip. After soldering, round the solder tip off with is file.

When soldering to the pins of polsstyrene coil forms, first clean the inside ol each pin with a suitable twist drill. Then hold the pin to be sol-

Fig. 20-4-Dimensions for stripping $1 / 2$-inch cable to fit Amphenol Type 83-1SP (PL-259) plug.

Fig. 20-5-Method of ossembling $1 / 4$-inch cable, Amphenol Type 83-1SP (PL-259) plug and adapter.
dered with a pair of he:ver piors, to form a "heat sink" and insure that the pin does not heat enough in the coil form to loosen and become misaligned.

Wiring

The wire used in connecting up amateur equipment should be selected considering both the maximum current it will be called upon to handle and the voltage its insulation must stand without breakdown. Also, from the consideration of TVI, the power wiring of all transmitters should be done with wire that has a braided shied ding eover. Receiver and atudio circuits maty also require the use of shielded wire at some points for stability, or the elimination of hum.

No. 20 stranded wire is commonly used for most reeeiver wiring (excep)t for the high-

Fig. 20.6-Stripping dimensions for Amphenol 82.830 and $82-832$ plug-in connectors. The longer exposed braid is for the first type.

20-CONSTRUCTION PRACTICES

Fig. 20.7-Methods of lacing cables. The method shown at C is more secure, but takes more time than the method of \mathbf{B}. The latter is usually adequate for most
amateur requirements.
trequency eireuits) where the current does not exceed 2 or 3 ampercs. For higher-current heater circuits, No. 18 is available. Wire with cellulose acetate insulation is good for voltages up to about 500. For higher voltages, thermoplastic-insulated wire should be used. Inexpensive wire strippers that make the removal of insulation from lionk-up wire an easy job are available on the market.
In cases where power leads have several branches in the chassis, it is convenient to use fiber-insulated tie peints or "lug strips" as anchorages or junction points. Strips of this type are also useful as insulated supports for resistors, r.f. ehokes and calpators. High-voltage wining should have exposed points held to a minimum, and those which cimot be aroided should be rendered as inacressible ats possible to acecidental eontact or short-eireuit.

Where sliedded wire is called for and capanitance to ground is not it factor, Belden type 8885 shielded grid wire may be used. If capratance must be minimized, it may be neressury to use a piece of car-radio fow-raparitance lead-in wire, or coaxial cable.
for wiring high-frequency circuits, rigid wire is often used. Batre soft-drawn timned wire, sizes 22 to 12 (depending on mechanical requirements), is suitable. lönks can be removed by stretching it piece 10 or 15 feet long and then cutting into short lengtles that can be handed conveniently. R.f. wiring should be run directly from point to point with a minimum of sharp bends and the wire kept well spaced from the chassis or other grounded metal surfices. Where the wiring must pass through the chassis on a partition, a clearance hole should be cut and lined with a rubber grommet. In case insulation becomes necessary, varnished cambric tuhing (spaghetti) can be slipped over the wire.

In transmitters where the peak voltage does not exceed 2500 volts, the shielded grid wire mentioned above should be satisfactory for power eircuits. For higher voltages, Belden type 8656 , Birnbach tepe 1820, or shielded ignition eable can be used. In the case of filament circuits carrying heavy current, it may be necessary to use No. 10 or 12 bare or enameled wire, slipped through sparghetti, and then covered with copper braid pulled tightly over the spaghetti. The chapter on TVI shows the manner in which shielded wire should be applied. If the shied ling is simply slid back over the insulation and solder flowed into the end of the braid, the braid usually will stay in place without the necessity for cutting it back or linding it in place. The braid should be burnished with sandpaper or a knife so that solder will take with a minimum of heat.
R.f. wiring in transmitters usually follows the method described above for receivers with due respect to the voltages involved.
Where power or control leads run together for more than a few inches, they will present a better appearance when bound together in a single cat)le. The correct teehnique is illustrated in Fig. ${ }^{2} 0-\overline{7}$: hoth plastic and waxed-linen lacing cords are availahle for the purpose.

To give a "commercial look" to the wiring of any unit. run any cabled leads along the elge of the chassis. If this isn't possible, the eabled leads should then run parallel to an edge of the chassis. Further, the generous use of bakelite tie points (mounted parallel to an edge of the chassis), for the support of one or both ends of a resistor or fixed capacitor, will add to the appearance of the finishod unit. In a similar manner, "dress" the small components so that they are parallel to the panel or sides of the ehassis.

Winding Coils

Close-wound coils are readily wound on the specified form be anchoring one end of a length of wire (in a vise or to a doorknob) and the other end to the coil form. Straighten any kinks in the wire and then pull to keep the wire under slight tension. Wind the coil to the required number of turns while walking toward the anchor, always maintaining a slight tension on the wire.

To space-wind the coil, wind the coil simultancously with a suitable spacing medium (heavy thread, string or wire) in the manner described above. When the winding is complete, secure the end of the coil to the coil-form terminal and then carefully umind the spacing material. If the coil is wonind under suitable tension, the spacing material can be casily renoved without disturbing the winding. Finish the space-wound coil by judicious applications of Duco cement, to hold the turns in place.

COMPONENT VALUES

Values of composition resistors and sunall capacitors (mica and ceramic) are specified throughout this IIandbook in terms of "preferred values." la the preferred-uumber sys-

TABLE 20-1IStandard Componant Valuas		
$\begin{gathered} 20 \% \\ \text { Triferance } \end{gathered}$	10% Tolerance	5% Tolerance
10	10	10
	12	11
		13
15	15	15
		16
	18	18
		20
22	22	22
		24
	27	27
		30
33	33	33
		36
	39	39
		43
47	47	47
		51
	56	56
		62
68	68	68
		75
	82	82
		91
100	100	100

tem, all values represent (approximately) a constant-percentage increase over the next lower value. The base of the system is the number 10. Only two significant figures are used. Table 20 -II shows the preferred values based on tolerance steps of 20,10 and 5 per cent. All other values are expressed by multiplying or dividing the base figures given in the table by the appropriate power of 10 . (For example, resistor values of 33,000 ohms, 6800 ohms, and 150 ohms are obtained by multiplying the base figures by 1000,100 , and 10 , respectively.)
"'Tolerance" means that a variation of plus or minus the percentage given is considered satisfactory. For example, the actual resistance of a " 4700 -ohm" 20 -per-cent resistor can lie anywhere between 3700 and 5600 ohms, approximately. The permissible variation in the same resistance value with 5 -per-cent tolerance would be in the range from 4500 to 7900 ohms, approximately.

Only those values shown in the first column of Table 20 - 1 I are available in 20 -per-cent tolerance. Additional values, as shown in the second column, are available in 10 -per-cent tolerance; still more values can be obtained in 5 -per-cent tolerance.

In the component specifications in this Handbook, it is to be understood that when no tolerance is specified the largest tolerance available in that value will be satisfactory.

Values that do not fit into the preferrednumber system (such as $500,25,000$, etc.) easily can be substituted. It is obvious, for example, that a $5000-\mathrm{ohm}$ resistor falls well within the tolerance range of the 4700 -ohm 20-per-cent resistor used in the example above.

It would not, However, be usable lf the tolerance were specified as 5 per cent.

- color codes

Standardized color codes are used to mark values on small components such as composition resistors and mica capacitors, and to identify leads from transformers, etc. The resistor-caparitor number color code is given in Table 20-1II.

Fixed Capacitors

The methods of marking "postage-stamp" mica capacitors, molled paper caparitors, and tubular ceramie capacitors are shown in Fig. 20-8. Capacitors made to American War Standards or Joint Army-Navy specifications

Fig. 20.8-Color coding of fixed mica, molded paper and tubular ceramic capacitors. The color code for mica and molded paper capacitors is given in Table 20-11I. Table 20-IV gives the color code for tubular ceramic capacitors.

20-CONSTRUCTION PRACTICES

are marked with the 6 -dot code shown at the top. Practically all surplus capacitors are in this category. The 3-dot EIA code is used for eapacitors having a rating of 500 volts and $\pm 20 \%$ tolerance only; other ratings and tolerances are covered by the 6-dot EIA code.

Examples: A capacitor with a \mathbf{f}-dot code has the following markings: 'Ton, row, left to right, black, vellow, violet: bottom row, right to left, brown, silver, red. Since the first color in the top row is black (significant figure zero) this is the AWS code and the capacitor has miea dielectric. The significant figures are 4 and 7 . the decimal multiplier 10 (brown. at right of second row), so the capacitance is $470 \mu \mu$. The tolerance is $\pm 10 \%$. The final color, the chararteristic, deals with temperature coefficients and methods of testing (see Table $20 . V$ on page $\mathbf{5}(0.5$).

A capacitor with a 3 -dot code has the following colors, left to right: brown, black, red. The significant figures are 1,0 (10) and the multiplier is $\mathbf{1 0 0}$. The capacitance is therefore $1000 \mu \mu$.

A capacitor with a 6 -dot code has the following markings: Top row, left to right, brown. black. back; bottom row, right to left. black, gold. blue. Since the first color in the top row is neither black nor silver, this is the LIA code. The signifieant figures are 1. 0.0 (100) and the decimal moultiplier is 1 (black). The capacitanec is therefore $1(0) \mu \mu$. The gold dot shows that the toleranee is $\pm 5 \%$ and the blue dot indicates 600-volt rating.

Ceramic Capacitors

Conventional markings for ceramir capacitors are shown in the lower drawing of Fig. 20-8. The eolors have the meanings indieated in Table 20-IV. In practice, dots may be used instead of the narrow hands indirated in lig. 20-8.

Example: A ceramic capacitor has the following markings: Broad baud, violet; narrow bands or dots, green, brown, thaek, green. The signifieant figures are 5, 1 (51) and the derimal maltiplier is 1 , so the capacitance is $51 \mu \mu$. The temperature cocficient is -750 parts per million per degrec C., as given by the broad bathd, and the capacitance tolerance is $\pm \mathbf{5} \%$.

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in eases identical with the composition type) are color-coded as shown in Fig. 20-9. Colored bands are used on resistors having axial leads: on radial-lead resist ors the

Color	TABLE 20-1II Resistor-Capacitor Color Code			
	Significant Figure	t Decimal Multiplier	Tolerance $\left(r_{i}\right)$	Vollegle Rating*
Blaek	0	1	-	-
Brown	1	10	1*	100
Red	2	100	2*	$2(M)$
Orange	3	1000	3*	300
Yellow	4	10,000	4*	40)
Green	5	100,000	5*	5\%1
Blue	6	1,000,000	6^{*}	600
Violet	7	10,000,000	7*	700
Gray	8	100,000,000	8*	800
White	91	1,000,000,000	$9 *$	900
Gold	-	0.1	5	1000
Silver	-	0.01	10	2000
No color	-	-	20	500
* Apjlies to capueitors only.				

Fig. 20.9-Color coding of fixed composition resistors The color code is given in Toble 20-1II. The colored oreos hove the following significonce:
A-First significont figure of resistonce in ohms.
B-Second significont figure.
C-Decimol multiplier.
D-Resistonce toleronce in per cent. If no color is shown the toleronce is $\pm 20 \%$.
colors are placed as shown in the drawing. When bands are used for color coding the booly color has no significance.

Examples: A resistor of the type shown in the lower drawing of lig. 20-9 has the following color hands: A. red; 13, red; C, orange; D. no color. The significant ficures are 2, 2 (22) and the decimal multiplier is 1000 . The value of resistance is therefore 22.000 ohms and the tolerance is ± 20

A rasistor of the type shown in the upper drawing has the following eolors: body (A), blue: end (B). gray; dot, red; end (D), gold. The signifieant figures are 6, 8 (68) and the decimal multiplier is 100 , so the resistance is 6800 ohms. The tolerance is $\pm 5 \%$.

I.F. Transformers

Blue - plate lead.
Red - " 13 " + lead.
Green - grid (or diode) lead.
Blark - grid (or diode) return.
Note: If the secondary of the i.f.t. is centertapped, the seeond diode plate lead is green-and-black striped, and black is used for the center-taplead.

TABLE 20.IV Color Code for Ceramic Capacitors					
			Capacitance	Tolerance	
Color	Significant Figure	Decimal Multiplier	More than $10 \mu \mu f$. (in ${ }^{c}$ c)	Less than $10 \mu \mu f$. (in $\mu \mu f$.)	Temp. Coeff. p.p.m./deg C.
Biark	0	1	± 20	2.0	0
Brown	1	10	± 1		-30
Red	2	100	± 2		-80
Orange	3	1000			-150
Yellow	4				-290
Green	5		± 5	0.5	-330
Blue	6				-470
Violet	7				-750
Gray	8	001		0.25	30
White	9	0.1	± 10	1.0	500

PILOT-LAMP DATA					
$\begin{gathered} \text { Lamp } \\ \text { No. } \end{gathered}$	Bead Color	Base (.Miniature)	$\begin{aligned} & \text { Bulb } \\ & \text { Type } \end{aligned}$	Rating	
				Volts	Amp.
40	Brown	Screw	T-31/4	6-8	0.15
$40{ }^{1}$	Brown	Bayonet	T-31/4	6-8	0.15
41	White	Strew	T-31/2	2.5	0.5
42	Greet	Strew	T-31/4	3.2	**
43	White	Bayonet	T-31/4	2.5	0.\%
44	Blue	Bayoumt	T-31/4	6-8	0.2.)
45	*	Bayonet	T-31/4	3.2	**
462	Blue	Screw	T-31/4	6-8	0.25
47^{1}	Brown	Bayonet	T-31/4	6-9	0.1.
48	Irink	Screw	P-31/4	2.0	0.06
493	Pink	Bayonet	T-31/4	2.0	0.06
,	White	Screw	T-31/4	2.1	0.12
49A ${ }^{\text {3 }}$	White	Bayonet	T-31/4	2.1	0.12
50	White	Screw	G-31/2	6-8	0.2
51^{12}	White	Bayonet	G-31/2	6-8	0.2
-	White	Screw	G-11/2	6-8	0.4
55	White	Bayonet	G-41/2	6-8	0.4
2923	White	Sirew	T-31/4	2.9	0.17
292A ${ }^{\text {s }}$	White	Bayonet	T-31/4	2.9	0.17
1455	Brown	Screw	G-5	18.0	0.25
1455A	Brown	Bayonet	G-5	18.0	0.25

140 A and 47 are interchangeable.
2 Ilave frosted bulb.
349 and 49 A are interchangeable.

- Replace with No. 48.
- I'se in 2.5 -volt sets where regular bulb burns out too frequently.
* White in G.E. and Sylvania; green in National Union, Raytheon and Tung-Eol.
** 0.35 in G.E. and Svlvania; 0.5 in Nationa! Únion, Raytheon and Tung-Nol.

TABLE 20-V Capacitor Characteristic Code		
$\begin{aligned} & \text { Color } \\ & \text { Sixth } \\ & \text { Dot } \end{aligned}$	Timperature Coefficient p.p.m. $/$ dcg. C.	$\begin{gathered} \text { Capacitance } \\ \text { Drift } \end{gathered}$
Black	± 1000	$\pm 3 \%+1 \mu \mu \mathrm{f}$,
Brown	± 500	$\pm 3 \%$ + $1 \mu \mu \mathrm{f}$,
Red	+200	$\pm 0.5 \%$
Orange	$+100$	$\pm 0.3 \%$
lellow	$-2010+100$	$\pm 0.15+0.1 \mu \mu \mathrm{f}$
Green	0 to +70	$\pm 0.05 \%+0.1 \mu \mu \mathrm{f}$.

A.F. Transformers

Blue - plate (finish) lead of primary.
Red - "B" + lead (this applies whether the primary is plain or center-tapped).
Brown - plate (start) lead on center-tapped primaries. (Blue may be used for this lead if polarity is not important.)
(rreen - grid (finish) lead to secondary.
Black - grid return (this applies whether the secondary is plain or center-tapped).
Ycllow - grid (start) lead on center-tapped secondaries. (Creen may be used for this lead if polarity is not important.)

Cote: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker Voice Coils

Green - finish.
Bluck-start.

Loudspeaker Field Coils

Bluck and Red - start.
Yellow and Red - finish.
slute and hed - tap (if any).

Power Transformers

1) Primary Leads Black

If tapped:
Common. Black Tap. Black and Yellow Striped Finish. Black and Red Striped
2) High-Voltage Plate Winding. Red Center-Tap., Red and Yellow Striped
3) Rectifier Filament Winding Yellow Center-Tap. . Yellow and Blue Striped
4) Filament Winding No. 1..........Green Center-Tap. . Green and Yellow Striped
5) Filament Winding No. 2......... Brown Center-Tap. Brown and Yellow Striped
6) Filament Winding No, 3, Slate Center-Tap. . Slute and Yellow Striped

$\begin{gathered} \text { Wire } \\ \text { Size } \\ \text { A. W. } G \text {. } \\ (B \& \&) \end{gathered}$	Diam. in Mits ${ }^{1}$	$\begin{aligned} & \text { Circular } \\ & \text { Mil } \\ & \text { Area } \end{aligned}$	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb,		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{ft} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current Carryino ('apacilys at 700 ('... per Aup.	Diam. in $m m$.	Neareat Britiah S.W.G, No.
			Enamel	S.S.C. ${ }^{4}$	$\begin{gathered} \text { D.S.C. }{ }^{5} \\ \text { or } \\ \text { S.C.C. } \end{gathered}$	I.C.C. ${ }^{7}$	S.C.C.	Enamel s.c.e.	D.C.C.	Bare	D.C.C.				
1	2811.3	83690	-	-	-	-	-	-	-	3.947	-	.1264	110.6	7.348	1
2	257.6	(6037\%	-	-	-	-	-	-	-	4.977	-	. 1593	94.8	6.544	3
3	229.4	52640	-	-	-	-	-	-	-	6.276	-	. 2 (x):	75.2	5.827	4
4	204.3	41740	-	-	-	-	-		-	7.914		.25.33	59.6	5.189	5
5	181.0	3314	-	-	-	-	-		-	0.980	-	. 3195	47.3	4.621	7
6	162.0	26250	-	-	-	-	-	-	-	12.88	一	-4028	37.5	4.115	8
7	144.3	20820	-	-	-	-	-	-	-	15.87	-	. 5080	29.7	3.065	9
8	128.5	16:510	7.6	-	7.4	7.1	-	-	-	20.01	19.6	. 6405	23.6	3.264	10
9	114.4	13040	8.6	-	8.2	7.8	-	-	-	25.23	24.6	. 8077	18.7	2.906	11
10	101.9	10380	9.6	-	9.3	8.9	87.5	84.8	80.0	31.82	30.1	1.018	14.8	2.588	12
11	90.74	8:34	10.7	-	10.3	9.8	110	10.5	97.5	40.12	38.8	1.284	11.8	2.305	13
12	80.81	6.330	12.0	-	11.5	10.9	136	131	121	50.50	48.9	1.610	0.33	2.05%	14
13	71.96	5178	13.5	-	12.8	12.0	170	162	151	63.80	61.5	2.042	7.40	1.828	15
14	64.08	4107	$16.0{ }^{\circ}$	-	14.2	13.8	211	198	183	80.44	77.3	2,575	5.87	1.628	16
15	67.17	32.57	16.8	-	15.8	14.7	262	2:0	223	101.4	97.3	3.247	4.65	1.450	17
16	50.82	2.583	18.9	18.9	17.9	16.4	321	300	271	127.9	119	4.094	3.69	1.291	18
17	45.26	2048	21.2	21.2	19.9	18.1	397	372	329	161.3	150	5.163	2.93	1.150	18
18	40,30	$16 i 24$	23.6	23.6	22.0	19.8	493	45.4	399	203.4	188	6.510	2.32	1.024	19
19	35.89	1288	26.4	26.4	24.4	21.8	592	$5: 3$	479	256.5	237	8.210	1.84	. 9116	20
20	31.96	1022	29.4	29.4	27.0	23.8	775	725	62.5	323.4	298	10.35	1.46	. 8118	21
21	28.46	810.1	33.1	32.7	29.8	26.0	940	80.5	75.4	407.8	370	13.05	1.16	. 7230	22
22	25.35	642.4	37.0	36.5	34.1	30.0	1150	1070	910	514.2	461	16.46	. 918	. 6438	23
23	22.57	509.5	41.3	40.6	37.6	31.6	1400	1300	1080	648.4	584	20.76	. 728	. 5733	24
24	$\underline{20.10}$	404.0	46.3	45.3	41.5	35.6	1700	1570	1260	817.7	745	26.17	. 577	. 5106	25
25	17.90	320.4	51.7	50.4	45.6	38.6	2060	1910	1510	1031	903	33.00	. 458	. 4547	26
$2{ }^{6}$	15.94	254.1	58.0	55.6	50.2	41.8	2500	2300	17.0	1300	1118	41. Ci_{2}	. 313	. 4049	27
27	14.20	201.5	64.9	61.5	55.0	45.0	3030	2780	2020	1639	1422	52.48	.288	.3606	29
28	12.64	1:9.8	72.7	68.6	60.2	48.5	3670	3380	2310	2067	1759	66.17	.228	. 3211	30
29	11.26	126.7	81.6	74.8	65.4	51.8	4300	3400	2700	2607	2:07	8:3.44	. 181	. 2859	31
30	10.03	100.5	90.5	83.3	71.5	55.5	5040	46650	30:0	3287	2534	105.2	. 144	. 2516	33
31	8.928	79.70	101	92.0	77.5	59.2	$5!20$	5280	,	4145	2768	$1: 32.7$. 114	. 2268	34
32	7.950	63.21	113	101	83.6	62.6	7060	6250	-	5227	3137	167.3	. 010	. 2019	36
33	7.080	50.13	127	110	90.3	66.3	8120	7360	-	6591	4697	211.0	. 072	. 1798	37
34	6.305	39.75	143	120	97.0	70.0	9600	883	-	8310	6168	2066.0	. 057	.1601	38
35	5.615	31.52	$1: 8$	132	104	73.5	10900	8700	-	10480	6737	335.0	. 04.5	. 1426	38-39
36	5.000	25.00	175	143	111	77.0	12200	10700	-	13210	7877	+23.0	. 036	. 1270	39-40
37	4.453	19.83	198	154	118	80.3	-	-	-	16660	9309	533.4	. 028	. 1131	41
38	3.906	15.72	224	166	126	83.6	-	-	-	21010	10666	672.6	. 022	.1007	42
39	3.531	12.47	248	181	133	80.6	一	-	-	26.500	11907	848.1	. 018	. 0897	43
40	3.145	9.88	282	194	140	89.7	-	-	-	33410	14222	1069	. 014	. 0799	44

${ }^{1}$ A tnil is $1 / 1000$ (one-thousandth) of an inch. ${ }^{2}$ The figures given are approximate only, since the thickness of the insulation varies with different manufacturers. ${ }^{3} 700$ circular

Measurements

It is practically impossible to operate an amateur station without making measurements at one time or another. Although quite crude measurements often will suffire, more refined equipment and methods will yield more and better information. With adequate information at hand it becomes possible to adjust a piece of equipment for optimum performance quickly and surely, and to design circuits along established principles rather than depending on cut-and-try.

Measuring and test equipment is valuable during eonstruction, for testing components bofore installation. It is practically indispensable in the initial adjustment of radio gear, not only for establishing operating values but also for tracing possible crors in wiring. It is likewise needed for locating breakdowns and defective components in existing equipmont.

The basic measurements are those of current, voltage, and frequeney. Determination of the values of circuit elements - resistance, inductance and capacitance - are almost equally im-
portant. The inspection of waveform in audiofrequency circuits is highly useful. For these purposes there is available a wide assortment of instruments, both complete and in kit form; the latter, particularly, compare very favorably in cost with strictly home-built instruments and are freguently more satisfactory both in appearance and calibration. The home-built instruments described in this chapter are ones having fratures of particular usefulness in amateur applications, and not ordinarily available commercially.

In using any instrument it should always be kept in mind that the accuracy depends not only on the inherent accuracy of the instrument itsolf (which, in the ease of commercially built units is usually within a few per cent, and in any event should be specified by the manufacturer) but also the conditions under which the measurement is made. Large errors can be introluced by failing to recognize the existence of conditions that affert the instrument readings. This is particularly true in certain types of r.f. measurements, where stray effeets are hard to eliminate.

Voltage, Current, and Resistance

D.C. MEASUREMENTS

A direct-current instrument - voltmeter, ammeter, milliammeter of microammeter - is a device using elertromagnotic means to defleet a pointer over a calibrated scale in proportion to the current flowing. In the D'Arsonval type a eoil of wire, to which the pointer is attached, is pivoted between the poles of a permanent magnet, and when current flows through the coil it causes a magnetic tield that interacts with that of the magnet to eause the coil to turn. The design of the instrument is usually such as to make the pointer deflection directly proportional to the current.

A less expensive type of instrument is the moving-vane type, in which a pivoted soft-iron vane is pulled into a coil of wire by the magnetic field set up when current flows through the coil. The farther the vane extends into the coil the greater the magnetic pull on it, for a given change in current, so this type of instrument does not have "linear" deflection - that is, the seale is cramped at the low-current end and spread out at the high-current end.

The same basic instrument is used for measuring either current or voltage. Good-quality instruments are made with fairly high sensitivity -
that is, they give full-scale pointer deflection with very small currents - when intended to be used as voltmeters. The sensitivity of instruments intended for measuring large currents can be lower, but a lighly sensitive instrument can be, and frequently is, used for mestsurement of currents much greater than needed for full-scate deflection.
Panel-mounting instruments of the D'Arsonval trpe will give a smaller deflection when mounted on iron or steel panels than when mounted on nonmagnetic material. Readings may be as much as ten per cent low. Suecially ealibrated meters should be oltatined for mounting on such panels.

VOLTMETERS

Only a fraction of a volt is required for fullspale deflection of a sensitive instrument ($1 \mathrm{mil}-$ liampere or less full scale) so for measuring voltage a high resistance is comected in series with it, Fig. 21-1. Knowing the current and the resistance, the voltage can easily be calculated from (ohm's Law. The meter is calibrated in terms of the voltage drop across the series resistor or multiplier. Practically any desired full-scale

21 - MEASUREMENTS

Fig. 21-1-How voltmeter multipliers and milliammeter shunts are connected to extend the range of a d.c. meter,
voltage range can be ohtained by proper choice of multiplier resistance, and voltmeters frequently have several ranges selected by a switch.

The semsitivity of the voltmeter is usually expressed in "ohms per volt." A sensitivity of 1000 olms per volt means that the resistance of the voltmeter is 1000 times the full-scale voltage. and be (hm's Law the current required for fullseale deflection is 1 milliampere. A sensitivity of 20,000 ohms per volt, another commonly used value, means that the instrument is a $5(0)$ mieroampere meter. The higher the resistance of the voltmeter the more accurate the measurements

Fig. 21-2-Effect of volimeter resistance on accuracy of readings. It is assumed that the d.c. resistance of the screen circuit is constant at 100 kilohms. The actual current and voltage without the voltmeter connected are 1 ma. and 100 volts. The voltmeter readings will differ because the different types of meters draw different amounts of current through the 150 -kilohm resistor.
in high-resistance circuits. This is because the current flowing through the voltmeter will cause a change in the voltage between the prints across which the meter is comnected, compared with the voltage with the meter absent, as shown in J̈g. 21-2.

Multipliers

The required multiplier resistance is found by dividing the desired full-scale voltage by the eurrent, in ampores, required for full-scale deffertion of the meter alone. Strictly, the internal resistance of the meter should be subtracted from the value so found, hut this is seldom neressary (exeept perhaps for very low ranges) hecause the meter resistance will be negligihly small compared with the multiplier resistance. An exception is when the instrument is already provided with an internal multiplier, in which case the multiplier resistanee reguired to externd the range is

$$
R=R_{\mathrm{m}}(n-1)
$$

Where R is the multiplier resistance, R_{m} is the total resistanee of the instrument itself, and n is the factor by which the sale is to be multiplied. For example, if a 1000 -ohms-per-volt voltmeter having a calibrated range of 0 - 10 volts is to be externded to 1000 volts, h_{m} is $1000 \times 10=$ 10,000 ohms. n is $1000 / 10=100$, and $R=$ $10,000(100-1)=990.000$ ohms.

If a milliammeter is to be used as a voltmeter, the value of series resistance can be found be ()hmi: Law:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-scate voltage and I the full-scale reading of the instrument in milliamperes.

Accuracy

The accuracy of a voltmeter depends on the calibration aceurace of the instrmment itself and the accuracy of the multiplier resistors. Good quality instruments are generally rated for an accuracy within phus or mimus 2 per cent. This is also the usual aceuray rating of the basic meter movement.

When extending the range of a voltmeter or converting a low-range milliammeter into a voltmeter the rated acearacy of the instrument is retained only when the multiplier resistance is precise. Precision wire-wound resistors are used in the multipliers of high-quality instruments. These are relatively expensive, but the home constructor can do quite well with $1 / \%$ tolerance composition resistors. Ther should be "derated" when used for this purpose - that is, the actual power dissipated in the resistor should not be more than $1 / 4$ to $1 / 2$ the rated dissipation - and care should be used to avoid overheating the body of the resistor when soldering to the leads. These preautions will help prevent permanent ehange in the resistance of the mit.

Ordinary composition resistors are gencrally furnished in 10% or 5% tolerance ratings. If possible errors of this order ean be accepted, resistors of this type may be used as multipliers. They should be operated below the rated power dissipation figure. in the interests of long-time stability.

MILLIAMMETERS AND AMMETERS

A microammeter or milliammeter can be used to measure currents larger than its full-scale reading by connecting a resistance shunt across its terminals as shown in Fig. ?1-1. Part of the current flows through the shunt and part through the meter. Khowing the meter resistance and the shme resistance, the relative currents can easily be calculated.

The value of shunt resistance required for a given full-salo current range is given by

$$
R=\frac{R_{\mathrm{m}}}{n-1}
$$

where R is the shunt. R_{m} is the internal resistance of the meter, and u is the factor by which the

Milliammeters and Ammeters

original meter scale is to be multiplied. The internal resistance of a milliammeter is preferably determined from the manufacturer's catalog, but if this information is not available it can be measured by the method shown in lig. 21-3. Do not attempt to use an ohmmeter to measure the internal resistance of a milliammeter; the instrument may be ruined bey doing so.
Homemade milliammeter shunts can be constructed from any of the various special kinds of resistance wire, or from ordinary copper wire if no resistance wire is available. "The Copper Wire Table in this IIandhook gives the resistance per 1000 feet for various sizes of copper wire. After computing the resistance required. determine the smallest wire size that will carry the full-scale current (250 cireular mils per ampere is a satisfactory figure for this purpose).

Fig. 21-3-Determining the internal resistance of a milliammeter or microammeter. R_{1} is an adjustable resis. for having a maximum value about twice that necessary for limiting the current to full scale with R_{2} disconnected; adjust it for exactly full-scale reading. Then connect R_{2} and adjust it for exactly half-scale reading. The resistance of R_{2} is then equal to the internal resistance of the meter, and the resistor may be removed from the circuit and measured separately. Internal resistances vary from a few ohms to several hundred ohms, depending on the sensitivity of the instrument.

Measure off enough wire to provide the required resistance. Accuracy can be checked by cansing enough current to flow through the meter to make it read full scale without the shunt; connecting the shunt should then give thr correat reading on the new range.

Current Measurement with a Voltmeter

A current-measuring instrument should have very low resistance compared with the resistance of the eireuit being measured; otherwise, inserting the instrument will cause the current to differ from its value with the instrument out of the circuit. (This may not matter if the instrument is left permanently in the circuit.) However, the resist:nce of many cirenits in radio equipment is quite high and the circuit operation is affected little, if at all, by adding as much as a few hundred ohms in series. In such cases the voltmeter methol of measuring current, shown in Fig. 21-4, is frequently convenient. A voltmeter - or low-range milliammeter provided with a multiplier and operating as a voltmeter - having a full-scale voltage range of a few volts, is used to measure the voltage drop across a compara-

Fig. 21-4-Voltmeter method of measuring current. This method permits using relatively large values of resistance in the shunt, standard values of fixed resistors frequently being usable. If the multiplier resistance is 20 (or more) fimes the shunt resistance, the error in assuming that all the current flows through the shunt will not be of consequence in most practical applications.
tively high resistance aeting as a shunt. The formula previously given is used for finding the proper value of slumt resistance for a given scale-multiplying factor, R_{m} in this case being the multiplier resistance.

D.C. Power

Power in direct-current circuits is determined by measuring the current and voltage. When these are known, the power is equal to the voltage in volts multiplied by the current in amperes. If the current is measured with a milliammeter, the reading of the instrument must be divided by 1000 to convert it to amperes.

resistance measurements

Measurement of d.c. resistance is based on measuring the current through the resistance when a known voltage is applied, then using Ohm's Law. A simple circuit is shown in Fig. 21-5.

Fig. 21-5-Measuring resistance with a voltmeter and milliammeter. If the approximate resistance is known the voltage can be selected to cause the mitliammeter, MA, to read about half scale. If not, additional resistance should be first connected in series with R to limit the current to a safe value for the milliammeter. The set-up then measures the total resistance, and the value of R can be found by subtracting the known additional resistance from the total.
The internal resistance of the ammeter or milliammeter, $M . A$, should be low compared with the resistance, R, being measured, since the voltage read by the voltmeter, V, is the voltage aeross .$/ A$ and R in series. The instruments and the d.c. voltage should be chosen so that the readings are in the upper half of the scale, if possible, since the percentage error is less in this region.

An ohmmeter is an instrument consisting
fundamentally of a voltmeter (or milliammeter, depending on the circuit used) and a small dry battery as a source of d.c. voltage, calibreted so the value of an unknown resistance can be read directly from the scale. Typical ohmmeter circuits are shown in Fig, 21-6. In the simplest type, shown in lig. 21-6., the meter and battery are connected in series with the unknown resistance. If a given deflection is obtained with terminals $A-B$ shorted, inserting the resistance to be measured will cause the meter reading to decrease. When the resistance of the voltmeter is known, the following formula can be applied:

$$
R=\frac{e R_{\mathrm{m}}}{E}-R_{\mathrm{m}}
$$

where R is the resistance under measurement, e is the voltage applied ($1-B$ shorted), E is the voltmeter reading with R connected, and
R_{m} is the resistance of the voltmeter.
The circuit of Fig. 21-6.1 is not suited to measuring low values of resistance (below a hundred ohms or so) with a high-resistance voltmeter. For such measurements the circuit of Fig. 21-6B can be used. The milliammeter should be a $0-1$ ma. instrument, and R_{1} should be equal to the battery voltage, e, multiplied by 1000 . The unknown resistance is

$$
R=\frac{I_{2} R_{\mathrm{m}}}{I_{1}-I_{2}}
$$

where R is the unknown,
R_{rn} is the internal resistance of the milliammeter,
I_{1} is the current in ma. with R disconnected from terminals $A-B$, and
I_{2} is the current in ma. with R connected.
The formula is approximate, but the error will be negligible if e is at least 3 volts so that R_{1} is at least 3000 ohms.

A third circuit for measuring resistance is shown in Fig. 21-6C. In this case a high-resistance voltmeter is used to measure the voltage drop across a reference resistor, R_{2}, when the unknown resistor is connected so that eurrent flows through it, R_{2} and the battery in series. By suitable choice of R_{2} (low values for low resistance, high values for high-resistance unknowns) this circuit will give equally grood results on all resistance values in the range from one ohm to several megohms, provided that the voltmeter resistance, R_{m}, is always very high (50 times or more) compared with the resistance of R_{2}. A 20,000 -ohms-per-volt instrument ($5(0$ - μ amp. movement) is generally used. Assuming that the current through the voltmeter is negligible compared with the current through R_{2}, the formula for the unknown is

$$
R=\frac{e R_{2}}{E}-R_{2}
$$

(日)

(c)

Fig. 21.6-Ohmmeter circuits. Values are discussed in the text.
where R and R_{2} are as shown in Fig. 21-6C,
e is the voltmeter reading with $A-B$ shorted, and
E is the voltmeter reading with R connected.
The "zero adjuster," R_{1}, is used to set the voltmoter reading exactly to full scale when the meter is calibrated in ohns. A 10,0000 -ohm variable resistor is suitable with a 20,000 -ohms-per-volt meter. The battery voltage is usually 3 volts for ranges up to 106,000 ohms or so and 6 volts for higher ranges.

A. C. Measurements

Several types of instruments are available for measurement of low-frequency alternating currents and voltages. The better-grade panel instruments for power-line frequencies are of the dynamometer type. This compares with the b'Arsonval movement used for d.e. measurements, but instead of a permanent magnet the dynamometer movement has a field coil which, together with the moving coil, is connected to the a.ce. source. Thus the moving coil is urged to turn in the same direction on both halves of the a.c. cycle.

Dloving-vane type instruments, described earlier, also are used for a.c. measurements. This is possible because the pull exerted on the vane is in the same direction regardless of the direction of current through the coil. The calibration of a moving-vane instrument on a.c. will, in general, differ from its d.e caliłration.

For measurements in the audio-frequency range, and in applications where high impedance is required, the rectifier-type a.c. instrument is

Resistance Measurements

generally used. This is essentially a sensitive d.c. meter, of the type previously described, provided with a reetifier for converting the a.c. to d.e. A typical rectifier-type voltmeter cireuit is shown in Fig. 21-7. The half-wave meter rectifier, $C R_{1}$, is frequently of the eopper-oxide type, hat crystal diodes can be used. Such a rectifier is not "perfect" - that is, the application of a voltage of reversed polarity will result in a small current flow - and so $C R_{2}$ is used for climinating the effert of reverse current in the meter eircuit. It does this by providing a low-resistance path across $C R_{1}$ and the meter during the a.c. alternations when $C R_{1}$ is not conducting.

Fig. 21.7-Rectifier-type a.c. volmeter circuit, with "linearizing" resistor and diode for back-current correction.
Resistor R_{2} shunted across K_{1} is used for improving the linearity of the circuit. The effective resistance of the reetifier derereises with inereasing current, leading to a ealibration scale with nonumiform divisions. This is overcome to a considerable extent by "hleeding" several times as murh current through R_{2}^{2} as flows through.M_{1} so the rectifier is always carrying a fairly large current.

Because of these expedients and the fact that with half-wave rectification the average current is only $0 . t 5$ times the r.m.s. value of a sine wave produeing it, the impedance of a rectifier-type voltmeter is rather low compared with the rosistance of a d.e. voltmeter using the same meter. Values of 1000 ohms per volt are representative, when the d.c. instrument is a $0-300$ mieroammeter.

The d.c. instrument responds to the average value of the rectified alternating current. This average eurrent will vary with the shape of the a.c. wave applied to the rectificr, and so the meter reading will not be the same for different wave forms having the same maximum values or
the same r.m.s. values. Hence a "wave-form error" is always present unless the a.c. wave is very closely simusoidal. The actual ralibration of the instrument usually is in terms of the r.m.s. value of a sine wave.

Modern rectifier-type a.c. voltmeters are eapatble of good accuracy, within the wave-form limitations mentioned above, throughout the audio-frequency range.

COMBINATION INSTRUMENTS THE V.O.M.

Since the same basic instrument is used for measuring current, voltige and resistaneo, the three functions can readily be combined in one unit using a single meter. Various models of the "v.o.m." (volt-ohm-milliammeter) are availathle commercially, both completely assembled and in kit form. The less expensive ones use : 0-1 milliammeter as the basie instrument, providing voltmeter ranges at 1000 ohms per volt. The more elaborate moters of this type use a mireroammeter - 0-50 micromperes, frequently with voltmeter resistanes of 20,000 ohms per volt. With the more sensitive instruments it is possible to make resistance measurements in the megohms range. A.e voltmeter scales also are frequently inchuded.

The v.o.m., even a very simple one, is among the most useful instruments for the amateur. Besides current and voltage measurements, it (an be used for cherking continuity in circuits. for finding defortive components before installattion - shorted capacitors, open or otherwise defective resistors, ete. - shorts or opens in wiring. and many other chereks thet, if applied during the construction of a piece of equipment, save much time and trouble. It is cqually useful for servicing, when a component fails during operation.

THE VACUUM-TUBE VOLTMETER

The usefulness of the vacuum-tube voltmeter (v.t.v.m.) is based on the fact that a vacum tube can amplify without taking power from the souree of voltage applied to its grid. It is therefore possible to have a voltmeter of extremely high resist-
$C_{1}, C_{3}-0.002 \cdot$ to $0.005 \cdot \mu \mathrm{f}$. mica.
$\mathrm{C}_{2}-0.01 \mu \mathrm{f}$, 1000 to 2000 volts, paper or mica.
R_{1}-I megohm, $1 / 2$ wath.
R_{2} to R_{5}, inc. - To give desired voltage ranges, totaling 10 megohms.
$\mathrm{R}_{6}, \mathrm{R}_{7}-2$ to 3 megohms.
$R_{8}-10,000$-ohm variable.
$R_{0}, R_{10}-2000$ to 3000 ohms.
$\mathrm{R}_{11}-5000$ - to 10,000 -ohm control.
$R_{12}-10,000$ to 50,000 ohms.
R_{13}, R_{14}-App. 25,000 ohms. A 50,000 -ohm slider-lype wire-wound can be used.
$\mathrm{R}_{15}-10$ megohms.
$\mathrm{R}_{18}-3$ megohms.
R_{17}-10-megohm variable.
$\mathrm{M}-0.200 \mu \mathrm{mp}$. to 0.1 ma . range.
V_{1}-Dual triode, 6SN7 or 12AU7.
V_{2}-Dual diode, 6H6 or 6AL5.

Fig. 21-8-Vacuum-tube volmeter circuit.

21 - MEASUREMENTS

ance, and thus take negligible current from the circuit under measurement, without using a d.e. instrument of exceptional sensitivity.

The v.t.v.m. has the disadvantage that it requires a source of power for its operation, as eompared with a regular d.c. instrument. Also, it is susceptible to r.f. pick-up when working around an operating transmitter, unless well shielded and filtered. The fact that one of its terminals is grounded is also disadvantageous in some cases, since a.c. readings in particular may be inacurate if an attempt is made to measure a circuit having both sides "hot" with respert to ground. Nevertheless, the high resistance of the v.t.v.m. more than compensates for these disadvantages, especially since in the majonity of measurements they do not apply.

While there are soveral possible circuits, the one commonty used is shown in Fig. 21-8. A dual triode, V_{t}, is arranged so that, with no voltage applied to the left-hand grid, equal currents flow through both sections. Under this condition the two cathodes are at the same potential and no current flows through.M. The currents can be adjusted to balance by potentiometer R_{11}, which takes care of variations in the tube sections and in the valurs of cathode resistors R_{9} and R_{10}. When a positive d.c. voltage is applied to the left-hand grid the current through that tube section increases, so the current balance is upent and the meter indicates. The sensitivity of the meter is regulated by R_{8}, which serves to adjust the calibration. R_{12}, common to the cathodes of both tube sections, is a feed back resistor that stabilizes the system and makes the readings linear. R_{6} and C_{1} form a filter for any a.c. component that may be present, and R_{6} is balanced by R_{7} connected to the grid of the second tube section.

To stay well within the lincar range of operation the scale is limited to 3 volts or less in the average commereial inst rument. Itigher ranges are obtained by means of the voltage divider formed by R_{1} to R_{5}, inclusive. As many ranges as desired can be used. Common practice is to use 1 megohm at R_{1}, and to make the sum of R_{2} to R_{5}, inclusive, 10 megohms, thus giving a total resistance of 11 megohms, constant for all voltage ranges. R_{1} should be at the probe end of the d.c. lead to minimize copacitive loading effects when measuring d.c. voltages in r.f. cireuits.

Values to be used in the circuit depend considerably on the supply voltage and the sensitivity of the meter, $M . R_{12}$, and $R_{13}-R_{14}$, should be adjusted he trial so that the voltmeter circuit (an be brought to babance, and to give full-scale deflection on.$/ /$ with about 3 volts applied to the left-hand grid. The meter connections ean be reversed to read voltages that are negative with respect to ground.

A.C. Voltage

For measuring a.c. voltages up to \ddagger Me., the rectifier circuit in the lower left of Iig. 21-8 is used. Whe diode of l_{2} is a half-wave rectifier and
the other acts as a balancing deviee, adjustable by R_{17}, against contact potential effects that would cause a residual d.e. voltage to appear at the v.t.v.m. grid.

The rectifier output voltage is proportional to the peak amplitude of the a.c. Wave, rather than to the average or r.m.s. values. Since the positive and negative peaks of a complex wave may not have equal amplitudes, a different reading may be obtained on such wave forms when the voltmeter probe terminals are reversed. This "turnover" effect is inherent in any peak-indicating device, but is not necessarily a disadvantage. The fact that the readings are not the same when the voltmeter connections are reversed is an indication that the wave form under measurement is unsymmetrical. In some measurements, as in audio amplifiers, a peak measurement is more usoful than an r.m.s. or average-value mosurement because amplifier eapabilities are based on the peak amplitudes.
The scale calibration usually is based on the r.m.s. value of a sine wave, R_{b} being set so that the same seale can be used either for a.c. or d.c. The r.m.s. reading can easily be converted to a peak reading by multiplying by 1.41 .

INSTRUMENT CALIBRATION

When extending the range of a d.c. instrument, calibration usually is neecessary-although resistors for voltmeter multipliers often can be purchased to close-enough toleranees so that the new range will be aecurately known. However, in calibrating an instrument such as a v.t.v.m. a known voltage must be available to provide a starting point. Fresh dry eells have an open-circuit terminal voltage of approximately 1.6 volts, and one or more of them may be connected in series to provide several calibration points on the low range. Cias regulator tubes in a power supply, such as the UC:3, 0ID 3 , ete., also provide a stable source of voltage whose value is known within a few per cent. Once a few such points are determined the voltmeter ranges may be extended readily by adding multipliers or a voltage divider as appropriate.
Shunts for a milliammeter may be adjusted by first using the meter alone in series with a source of voltage and a resistor selected to limit the current to full scale. For example, a 0 - 1 milliammeter may be connected in sories with a dry cell and a 2 (从) $)$-ohm variable resistor. the latter being adjusted to allow exactly 1 milliampere to flow. Then the shunt is added across the meter and its resistance adjusted to reduce the meter reading by exartly the scale factor, n. If n is 5 , the shumt would be adjusted to make the meter read 0.2 milliampere, so the full-scale current will be 5 ma. Lising the new scale, the second shunt is added to give the next range. the same procedure being followed. This can be carried on for several ranges, but it is advisable to check the meter on the highest range against a separate meter used as a standard, since the errors in this process tend to be cumulative.

Measurement of Frequency

ABSORPTION FREQUENCY METERS

The simplest possible frequency-measuring device is a resonant circuit, tunable over the desired frequency range and having its tuning dial calibrated in terms of frequency. It operates by extracting a small amount of energy from the oscillating circuit to be measured, the frequency being determined by the tuning setting at which the energy absorption is maximum (Fig. 21-9).

Such an instrument is not capable of very high

Fig. 21-9-Absorption frequency meter and a typical application. The meter consists simply of a calibrated resonant circuit LC. When coupled to an amplifier or oscillator the tube plate current will rise when the frequincy meter is tuned to resonance. A flashlight lamp may be connected in series at X to give a visual india. timon, but it decreases the selectivity of the instrument and makes it necessary to use rather close coupling to the circuit being measured.
accuracy, because the Q of the tuned circuit cannot be high enough to avoid uncertainty as to the exact dial setting and because any two coupled circuits interact to some extent and change each others' tuning. Nevertheless, the absorption frequency meter or "wavemeter" is a highly useful instrument. It is compact, inespensive, and requires no power supply. There is no ambiguity in its indications, as is frequently the case with the heterodyne-type instruments described later.
When an absorption meter is used for checking a transmitter, the plate current of the tube connected to the circuit being checked can provide the necessary resonance indication. When the frequency meter is loosely coupled to the tank circuit the plate current will give a slight upward flicker as the meter is tuned through resonance. The accuracy is greatest when the loosest possible coupling is used.
A receiver oscillator may be checked by tuning in a steady signal and heterodyning it to give a beat note as in ordinary cow. reception. When the frequency meter is coupled to the oscillator coil and tuned through resonance the beat note will change. Again, the coupling should be made loose enough so that a justperceptible change in heat note is observed.
An approximate calibration for the meter, adequate for most purposes, may be obtained by comparison with a calibrated receiver. The usual receiver dial calibration is sufficiently
accurate. A simple oscillator circuit covering the same range as the frequency meter will be useful in calibration. Set the receiver to a given froquency, tune the oscillator to zero beat at the same frequency, and adjust the frequency meter to resonance with the oscillator as described above. This gives one calibration point. When a sufficient number of such points has been obtanned a graph may be drawn to show frequency $v s$. dial settings on the frequency meter.

INDICATING FREQUENCY METERS

The plain absorption meter requires fairly close coupling to the oscillating circuit in order to affect the plate current of a tube sufficiently to give a visual indication. However, by adding a rectifier and dec. microammeter or milliammeter, the sensitivity of the instrument can be increased to the point where very loose coupling will surfie for a good reading. A typical circuit for this purpose is given in Fig. 21-10, and Figs. 21-11 and 21-12 show how such an instrument can be construtted.
The rectifier, a crystal diode, is coupled to the tuned circuit $L_{1} C_{1}$ through a coupling coil, L_{2}, having a relatively small number of turns. The step-down transformer action from L_{1} to L_{2} provides for efficient energy transfer from the highimpedance tuned circuit to the low-impedance rectifier circuit. The number of turns on L_{2} can be adjusted for maximum reading on the d.c.

Fig. 21-10-Circuit diagram of indicating frequency meter. $\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. variable (Johnson 50R12).
$\mathrm{C}_{2}-0.002-\mu \mathrm{f}$. disk ceramic.
$\mathrm{CR} \mathrm{R}_{1}$-General purpose germanium diode (1 N 34 , etc.) J_{1}-Phone jack.
J_{2}-Closed-circuit phone jack.
M_{1}-D.c. microammeter or 0.1 milliammeter.

All except $90-225-$ Mc. coil wound with No. 24 enam. wire on 1 -inch diameter 4 -prong forms (Mullen 45004). L_{2} interwound af bottom of L_{1}, using smaller wire where necessary. The $90-225-\mathrm{Mc}$. coil consists of a hairpin loop of No. 14 tinned wire just clearing the bottom of the coil form, which is cut to $3 / 8$-inch length. L_{2} is a similar hairpin of No. 16 wire bent over so it almost touches L_{1}.

Fig. 21-11-The indicating frequency meter, plug-in coils, and pick-up cables. The meter is built in a bakelite meter case measuring $61 / 4 \times 33 / 4 \times 2$ inches. The 3 -inch dial is cut from a piece of aluminum and has a paper handcalibrated scale cemented an. Hairline indicators are clear plastic maunted an small metal pillars. A 2 -inch d.c. instrument is used. Pick-up loops ore one turn of Na. 14, spaghetti covered, soldered to the ends of the cobles, The longer cable (5 feet) is useful to 30 Mc.; the sharter (13 inches) can be used
for the full frequency range.
Bath are RG-58/U.
milliammeter; when doing this, use a fixed value of rouphing between L_{1} and the source of energy. The proper number of turns for this purpose will depend on the sensitivity of.H_{1}. The coil dimensions given in Fig. $21-10$ are for a $0-500$ misoammeter but will also the satisfactory for a $0-1$ millianmeter. less than optimum coupling is proferable, in most cases, since heavy loiding lowers the Q of the tuned cirenit $L_{1} C_{1}$ and makes it less selective. The compling is reduced by reducing the number of turns on L_{2}.

The meter can be used with a pick-up loop and coaxial line conneded to J_{1}. linergy pieked up he the loop is fed through the eable to L_{2} and thenere compled to $L_{1} C_{1}$. This is a convenient method of coupling to cirenits where it would be physically diffieult to serare inductive conpling to Las. The pick-up cable should not be self-resonant, as a transmissiom-line section, at any frequency within the range in which it is to be used, so two cable lengths are provided. The longer one is useful up to 30 Me, and the shorter at all frequencies up to the maximum usoful frefueney of the instrument (255 Mo .) .

L3y plugging : heodset into the ontput jack (phones having 2000 ohms or greater resistance should be used for greatest sensitivity) the fre-
quency meter can be used as a monitor for modulated transmissions.

The bakelite case is a desirable feature since the instrument can be brought close to cireuits being checked without the danger of shortcirroiting any of their wiring. 'This conld oreur with a metal-eased unit.

In addition to the uses mentioned earlier, a motor of this type may be used for final adjustnent of neutralization in r.f. amplifiers. For this purpose the piek-up loop may be loosely coupled to the plate tank coil. In this rase L_{1} maty be remowed from its socket and the meter used as an matuned reotifior. This redures the sonsitivity and insures that the r.f. pieknp, is only from the tink eoil to which the loop is elosely coupled.

THE SECONDARY FREQUENCY STANDARD

The secondary frequency standard is a highly stable low-power oseillator generating a fixed frequency, wisually 100 ke . It is nearly alwats erystal-rontrollod, and inexpensive 100-ke, revstals are avalable for the porpsese Sine the harmonis are multiples of 100 kr . theoughont the spectrom, some of them can be compared di-

Fig. 21.12-Inside the wave. meter. Only the milliammeter and phone jack are mounted an the remavable panel. The tuming capacitor is mounted vertically an an aluminum bracket fastened to the battom of the cass. The srystal diade is maunted between a cail-sacket prang and a tie point. The phono jack for the pick-up cables is at the lower right.

514

A Frequency Standard

rectly with the standard frequencies transmitterd by WWV.
The edges of most amateur bands also are exact multiples of 100 kc ., so it becomes possible to determine the band edges very areurately. This is an important consideration in amateur frequency measurement, since the only regulatory refuirement is that an amateur tranmiswion be inside the assigned hand, not on a sperific frequency.

Frequency Standard with Harmonic Amplifier

The frequence standard cireuit shown in Fig. 21-13 includes a tmed amplifier to increase the strength of the higher harmonies, and incorporates a crystal-diode satwooth generator to make the harmonic strongth reasonably miform throughout the usable frequeney speretrum of the instrument. It will produce iseful aulibration signals at 100-ke. intervals up to about tio Me. The strength of a particular harmonic may be peaked up by selecting the proper amplifier touning range with So and adjusting (" ${ }_{4}$.

The 100-ke. oscillator uses the triode section of a bAN8, while the amplifier uses the pentode section of the same tuhe. Power required for the unit is 150 volts at 10 ma . athel 6.3 volts at 0.45 amp. This may be taken from the acerssory socket of a receiver, or a special supply easily can be madde using a TV' "booster" transformer (such as the Merit P-304t or equivalent).

The standard is built in a $4 \times 5 \times 6$ inch chassisistype box (Fig. 21-1t). R_{2} and s_{2} are mounted on the panel, with the amplifier plate coils mounted on S_{2}. The remaining components are mounted on the chassis, (4 boing insulated from it became its plates are above ground for d.c. For the same reason, an insulated shaft extension is used for front-panel control of C_{4}.

Connection between the standard and the receiver can be made through a wire from the hot terminal of J_{1} to the antenna input post on the receiver. Depending on how well the receiver is shielded, such a wire may not be neoded tat the lower-freguency end of the range.

Adjusting to Frequency

The frequency can be adjusted exactly to 100 kc . hy making use of the WWV transmissions tabulated later in this chapter. Select the Wll' frequency that gives a good signal at your bocation at the time of day most convenient. Tune it in with the receiver b.f.o. off and wait for the period during which the modulation is alsent. Then switch on the $100-\mathrm{ke}$. oscillator and adjust its frequency, by me:ans of (' 1 , until its harmonic. is in zero beat with WWV. The exact setting is easily found by observing the slow pulsation in background noise as the harmonic comes close to zero beat, and adjusting to where the pulsation disappears or occurs at a very slow rate. The pulsation ean be observed even more readily by switching on the receiver's b.f.o., after approximate zero beat has been serured, and observing the rise and fall in intensity (not frequency) of the beat tone. For best results the WWY signal and the signal from the 100 ke . oscillator should tre about the same strength. It is alvisable not to try to set the $100-\mathrm{ke}$. oscoillator during the periods when the WIVV signal is tone-modulated, since it is difficult to tell whether the hammonie is being adjusted to zero beat with the carrier or with a sideband.

Using the Standard

Basically, the $100-\mathrm{kc}$. standard provides a moans for indicating the exact receiver dial settings at which frequencies that are multiples of 100 kc . are to be found. The harmonics of

Fig. 21-13-Circuit of the 100 - kc . crystal calibrator. Unless otherwise indicated, capacitances are in $\mu \mathrm{f}$, resistances are in ohms, resistors are $1 / 2$ watt.
$\mathrm{C}_{1}-50-\mu \mu$. midget variable (Hammariund MAPC-50). $\mathrm{C}_{4}-100-\mu \mu \mathrm{f}$. variable (Hammarlund HF -100).
$\mathrm{CR}_{1}, \mathrm{CR}_{2}-1 \mathrm{~N} 34 \mathrm{~A}$.
J_{1}-Phono jack.
$\mathrm{L}_{1}-3.5-7 \mathrm{Mc},. 10 \mu \mathrm{~h}$. (National R-33 r.f. choke).
$\mathrm{L}_{2}-6.5-14 \mathrm{Mc} ., 4.7 \mu \mathrm{~h}$. (IRC type CL-1 r.f. choke).
L_{3} - $15-30 \mathrm{Mc}$., $1.0 \mu \mathrm{~h}$. (IRC type CL- 1 r.f. choke).
$\mathrm{L}_{4}-30-60 \mathrm{Mc} ., 0.22 \mu \mathrm{~h} . ; 4$ turns No .20 plastic-insulated wire, $3 / 8$-inch diam.
R_{2}-5000-ohm potentiometer (Mallory U-14).
S_{1}-S.p.s.t., mounted on R_{2} (Mallory US-26).
S_{2}-1-section, 1-pole, 4 -position miniature phenolic rotary switch (Centralab PA-1000).
$\mathrm{Y}_{1}-100$-kc. crystal.

Fig. 21.14-A 100-kc. frequency standard and harmonic amplifier. The crystal in this unit is in the metal-tube type envelope. Power and r.f. output connections are taken through the rear chassis lip.
The crystal diodes, $C R_{1}$ and $C R_{2}$, are mounted on a tie-point strip underneath the chassis. The shaft of C_{1} can be seen in front of the vacuum tube.
the standard ean thus be used to check the dial calibration of a receiver, and many of the bettergrade communications receivers cither include a 100 -kc. oscillator for this purpose or have provision for installing one as an accessory. The actual frequency of at least one 100 -ke. point in a given amateur band must be known, of course, but this is generally an easy matter since the activity in amateur bands usually makes identification of the band-edge "marker signal" quite simple. After one frequency is known, the consecutive 100 -ke. harmonic signals are simply counted off from it.

Although the 100 -ke. standard does not make possible the exart measuremont of a frequency, it is readily possible to determine whethor or not the signal is in a particular $100-\mathrm{ke}$, segment. If the unknown signal tumes in between, say, 21,200 and $21,300 \mathrm{ke}$, as indicated by the marker signals in the receiver, its frequency obviously lies between those two figures. For purposes of complying with the amateur regulations it is usually sufficient to know that the signal is above, or below, some specified $100-\mathrm{kc}$. point, since the edges of the amateur bands or subbands usually are at such points. If a closer measurement is desired a fairly good estimate usually can be made by counting the number of dial divisions between two $100-\mathrm{kc}$. points and dividing the number into 100 to find how many kilocycles there are per dial division

In using the receiver to check one's own transmitting frequency it is necessary to take special precautions to reduce the strength of the signal from the transmitter to the point where it does not overload the receiver nor create spurious responses that could be taken for the actual signal. This invariably moans that the receiving antenna must be disconnected from the receiver,
and it may be necessary, in addition, to shortcircuit the recciver's antenna input terminals. Try to reduce stray pickup to such an extent that the transmitter's signal is no stronger than normal incoming signals at the regular gaincontrol settings. With some receivers this may require additional shielding around the signalfrequency circuits, and perhaps filtering of the atc. and speaker leads where they leave the (hassis, to prevent energy picked up on these laads from getting into the front end of the receiver.

More Precise Methods

The methods described above are quite adequate for the primary purpose of amateur frequeney measurements - that is, determining whether or not a transmitter is operating inside the limits of an amateur band, and the approximate frequency inside the band. For measurement of an unknown frequeney to a high degree of accuracy more advanced methods can be used. Accurate signals at closer intervals (an be ob)tained by using a multivibrator in conjunction with the $100-\mathrm{kc}$. standard, and thus obtaining signals at intervals of, say, 10 ke . or some other integral divisor of 100 . Temperature control is frequently used on the $100-\mathrm{kc}$. oscillator to give a high order of stability (Collier, "What Priee Precision?", QST', September and (October, 1952). Aso, the secondary standard can be used in conjunction with a variable-frequency interpolation oscillator to fill in the standard intervals (Woodward," A Linear Beat-Frequency Oscillator for Frequencr Measurement," QST, May. 1951). An interpolation oscillator and standard can be combined in one instrument. One application of this type was described in QST for May, 1949 (Grammer, "The Additive Frequency Meter").

STANDARD FREQUENCIES AND TIME SIGNALS

The Central Radio Propagation Laboratory of the National Bureau of Standards maintains two radio transmitting stations, WWV near Washington, D.C., and WWVH at Puunene, T.H., for broadeasting standard radio frequencies of high accuracy. WWV broadcasts are on $2.5,5,10,15,20$ and 25 megacycles per second, and those from WWVH are on 5,10 , and 15 Mc . The radiofrequency signals are modulated by pulses at 1 cycle per second, and also by standard audio frequencies alternating between 440 and 600 cycles per second as shown by the accompanying chart.
Transmissions are continuous, with the following exceptions: The WWV transmissions are interrupted for a 4 -minute period beginning at approximately 45 minutes after the

hour, as indicated above; the IWWVH transmissions are interrupted for a 3 -minute period beginning approximately 10 seconds after the hour and each 15 minute interval thereafter. WWVH is also silent each day for a 34 -minute period beginning at 1900 Universal Time.

Accuracy

Transmitted frequencies are accurate within 1 part in 100 million. The WWV transmissions are generally stable to 1 part in a billion in any given day, although this is not guaranteed. Frequencies are based on an atomic standard, and daily corrections to the transmitted frequencies are subsequently published each month in the Proceedings of the Institute of Radio Engineers.

Time Signals

The 1 -c.j.s. modulation is a 5 -millisecond pulse at intervals of precisely one second, and is heard as a tick. The pulse transmitted by WWV consists of 5 eyrles of 1000 cycle tone; that transmitted by WWVH consists of 6 cycles of 1200 -cycle tone. On the WWV transmissions, the 440 - or 600 -cycle tone is blanked out beginning 10 milliseconds before and ending 25 milliseconds after the pulse. On the WWVH transmissions, the pulse is superimposed on the tone. The pulse on the 59th second is onfitted, and for additional Identifleation the zero-speond pulse is followed by another 100 milliseeonds later.

Propagation Notices

During the announcement intervals at $191 / 3$ and $491 / 3$ minutes after the hour, propagation notices applying to transmission paths over the North Atlantic are transmitted from WWV on $2.5,5,10,15,20$, and 25 Mc . Similar forecasts for the North Pacific are transmitted from WWVH during the announcement intervals at 9 and 39 minutes after the hour.

These notices, in telegraphic code, consist of the letter N, W, or U followed by a number. The letter designations apply to propagation conditions as of the time of the hroadeast, and have the following significance:

W-Ionospheric disturisance in progress or expected.
\mathbf{U} - Unstable conditions, but communication possible with high power.
\mathbf{N} - No warning.
The number designations apply to expected propagation couditions during the subseguent 12 hours and have the following significance:

Digit	Forecast
1	Impossible
2	Very Poor
3	Poor
4	Fair to Poor
5	Fair
6	Fair to Good
7	Good
8	Very Good
9	Execllent

Special Transmissions During the International Geophysical Year

The special broadcasts instituted during the International Geophysical lear may be continued through part or all of 1961. These broadcasts include information on IGY "Alerts" and "Speeial World Intervals." The broadcasts from WWV are at $41 / 2$ and $341 / 2 \mathrm{~min}-$ utes past the hour and thcse from WWVII are at 14 and 44 minutes past the hour. Each such transmission is prereded by the letters "AGI" in International Morse

Code. The eode used for the information is as follows: 5 A's - State of alert.
5 E's - No state of alert.
5 S's - Special World Interval begins at 0001Z the following day,
5 T's - Speeial World Interval terminates at 23597.
3 long dashes - Special World Interval in progress.

21 - MEASUREMENTS

Test Oscillators and Signal Generators

THE GRID-DIP METER

The grid-dip meter is a simple vacuum-tube oscillator to which a microammeter or low-range milliammeter has been added for reading the oscillator grid current. A 0-1 milliammeter is sensitive enough in most cases. The grid-dip meter is so called because if the oscillator is coupled to a tuned circuit the grid current will show a decrease or "dip", when the oscillator is tuned through resonance with the unknown circuit. The reason for this is that the external circuit will absorb energy from the oscillator when both are tuned to the same frequency; the loss of energy from the oscillator cireuit causes the feedback to decrease and this in turn is accompaniced by a decrease in grid current. The dip in grid current is quite sharp when the eircuit to which the oscillator is coupled has reasombly high Q.

The grid-dip meter is most useful when it covers a wide frequency range and is compactly constructed so that it can be coupled to circuits in hard-to-reach places such as in a transmitter or receiver chassis. It can thus be used to check tuning ranges and to find unwanted resonances of the type described in the chapter on TVI. Since it is its own souree of r.f. energy it does not require the cirenit being checked to be energized. In addition to resonance cheeks, the grid-dip meter also can be used as a signal source for receiver aligmment and, as described later in this

Fig. 21-15-Circuit diagram of the grid-dip meter. $\mathrm{C}_{1}-50 . \mu \mu \mathrm{f}$. midget variable (Hammarlund HF.50). $\mathrm{C}_{2}-100-\mu \mu \mathrm{f}$. ceramic.
$C_{3}, C_{1}, C_{6}-0.001-\mu$ f. disk ceramic.
$\mathrm{C}_{5}-0.01-\mu \mathrm{f}$. disk ceramic.
$\mathrm{R}_{1}-22,000$ ohms, $1 / 2 \mathrm{waH}$.
Coil Data, L_{3}

- Turns from ground eud.
\ddagger B. \& W. Miniductor or equivalent mounted inside coil form.
chapter, is useful in measurement of induetance and capaeitance in the range of values used in r.f. circuits.

The circuit of Fig. 21-15 is representative, although practically any oseillator circuit that will operate over the desired frequency range may be used. An instrument to cover both low and very high frequencies must be constructed with short, direct r.f. leads. With ordinary care in this respect there should be little difficulty in getting satisfactory operation up to 150 Me ,

The power supply for the grid-dip meter may be ineluded with the oscillator, but since this increases the bulk and weight a separate supply is often desirable. The power supply shown in Fig. $21-16$ uses a miniature power transformer with a selenium reetifier and a simple filter to give approximately $1 \because 0$ volts for the oscillator plate. The potentiometer R_{2} is for adjustment of plate voltage. This is desirable because in any griddip meter the grid current may vary over wide limits in different parts of the frequeacy range, with fixed plate voltage.

Fig. 21-16-Circuit diagram of the power supply for the grid-dip meter.
$C_{1}, C_{2}-16-\mu \mathrm{f}$. electrolytic, 150 volts.
$R_{1}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-0.1$-megohm polentiometer.
T_{1}-Power transformer, 6.3 volts and 125 to 150 volts
(Merit P-3046 or equivalent.)
$C R_{1}-20 . \mathrm{ma}$, selenium rectifier.
$\mathrm{M}_{1}-0-1$ d.c. milliammeter.
The instrument may be calibrated by listening to its output with a calibrated receiver. The calibration should be as accurate as possible, although "frequenev-meter accuracy" is not required in the applications for which a grid-dip meter is useful.

The grid-dip meter may be used as an indicat-ing-type absorption wavemeter by shutting off the plate voltage and using the grid and cathode of the tube as a diode. IIowever, this type of eircuit is not as sensitive as the crystal-detector type shown earlier in this chapter, because of the highresistance grid leak in series with the meter.

In using the grid-dip moter for checking the resonant frequency of a circuit the coupling should the set to the point where the dip in grid current is just perecetible. This reduces interaction between the two circuits to a minimum and gives the highest accuracy. With too-close

Grid-Dip Meter

Fig. 21-17-Transisfor circuit-checker or "grid-dip meter" covering 3 to 40 Mc . in five ranges. The circuit ond battery power supply are contained in the $21 / 4 \times 21 / 4 \times 5$ inch aluminum box (Bud CU-3004) so the instrument is completely independent of the o.c. line. The diol is white cardboard with on inked-on calibration; the harline indicotor is on a Lucite disk cemented to the tuning knob. The d.c. meter is a miniature type, but the box is large enough to take a standard 2 -inch instrument. The control on the near edge is $R 2$, for setting the d.c. meter reading to a suitable on-scale value.
coupling the oscillator frequency may be "pulled" by the circuit being checked, in which case different readings will be obtained when resonance is approached from the high side as compared with approaching from the low side.

Transistor "Grid-Dip" Oscillator

The transistor oscillator is particularly con-

Fig. 21-18-Circuit of the transistorized grid-dip meter. Capacitonces are in $\mu \mu$ f. except where specified otherwise; fixed resistors are $1 / 2$ wott. Fixed capacitors are ceramic.
venient in the applications for which the griddip meter is useful, since it lends itself to very compact construction with freedom from dependence on the a.c. line for power. The principal drawback at the present time is that there are no low-eost transistors that will oseillate well in the v.h.f. range. However, it is possible to build an oscillator that will operate at least through the ordinary communication frequencies, as shown by Figs. 21-17 to 21-19, inelusive.

The oscillator circuit in Fig. 21-18 is basically of the Colpitts type. Since there is no d.e. current in the transistor oscillator that compares with grid current in the tube oscillator, :n equivalent effect is obtained by using (R_{1} to rectify some of the r.f. energy, and then measuring the rectified current. To enable the use of a relatively inexpensive d.e. instrument, a seceond transistor is used as a d.c. amplifier following the rectifier. Omitting Q_{2} would require M_{1} to be a sensitive mieroammeter, since the power in the r.f. oscillator is extremely low. h_{2} provides a means for setting the meter reading to the desired point on the scale.

The optimum value of bias resistor, R_{1}, varies with frequency, so the proper resistor is mounted in the roil form for each range. Any convenient pin arrangemont can be used for the coil and resistor terminals. Mount the coils near the open ends of the forms so they can be tightly coupled to the cireuit being checked. The resistors should be placed near the bottom so they will be as far as possible from the coils.

The instrument is used in the same way as a tube gridedip moter in checking unknown circuits, and may be calitrated by the same mothod.

AUDIO-FREQUENCY OSCILLATORS
A useful accessory for testing audio-frequency
$B T_{1}$ - 8.4-volt mercury transistor battery (RCA No. VS312).
$B T_{2}-1.5$-volt mercury cell (RCA VS 313).
$C_{1}-100-\mu \mu$. midget vorioble (Hammerlund MAPC. 100-B).
$C R_{1}-1$ N34 or equiv.
L1-3.5 Mc.: 72 furns No. 28 enom., $1 / 2$-inch diom., 1 inch long, close-wound.
5.10 Mc.: 43 turns*
10.17 Mc.: 17 turns*
17.30 Mc.: 7 furns*
28.40 Mc.: 3 turns*
$M_{1}-0.1$ milliammeter.
$Q_{1}-2 N_{2} 47$.

Fig. 21-19-Inside the case of the transistor oscillator. All components are mounted on the flanged section of the two-piece box. The ascillator is at the right in this view, with connections anchored to tie points placed on eilher side of the coil socke $l_{1} Q_{1}$ is visible just below the funing capacitor. $C_{R_{1}}$ is mounted on the tie-point strip above the coil socket. The d.c. amplifier circuit is to the left of the mercury battery; the 1.5 -volt cell is mounted beside the variable resistor, using a lug soldered to the + terminal for
 support.
amplifiers and modulators is an audio-frequency signal generator or oscillator. Checks for distortion, gain, and the troubles that occur in such amplifiers do not require elaborate equipment: the principal requirement is a source of one or more audio tones having a good sine wave form, at a voltage level adjustable from a few volts down to a few millivolts so the oscillator can be substituted for the type of microphone to be used.
An easily constructed oscillator of this type is shown in Figs. 21-20 to 21-22, inclusive. Three audio frequencies are available, approximately 200,900 and 2500 cycles. These three frequencies are sufficient for testing the frequency response of an amplifier over the range needed for voice communication.
The circuit uses a double triode as a cathodecoupled oscillator, the second section of the tube providing the feedback necessary for oscillation through the common cathode connection. The 3-watt lamp in this feedback loop acts as a variable resistance to control the oscillation amplitude and thus maintain the operating conditions at the point where the best wave form is generated. This operating point is set by the "oscillation control," R_{1}. The frequency is de-

Fig. 21-20-Botlom view of the audio oscillator, show. ing the power-supply components and amplitude-control lamp, I_{1}. The lamp is mounted by wires soldered to its base. The selenium rectifier is supported by a tie-point strip. Placement of resistors, which are hidden by the other components, is not critical. The unit fits in a $4 \times 5 \times 6$ inch box.
$C R_{1}$-20-ma. selenium rectifier.
It-3-watt, 115 -volt lamp (G.E. 3S6).
L-8 henrys, 40 ma. (Thordarson 20C52).
R_{1}, R_{2}-Volume controis.
S_{t}-2-pole 5 -position (3 used) rotary switch.
S_{2}-S.p.d.t. toggle.
$S_{3}-$ S.p.s.t. loggle (mounted on R_{1}).
T_{1}-Power transformer, 150 volts, 25 ma .; 6.3 volis 0.5 amp . (Merit P-3046).

Fig. 21-21-Circuit diagram of the audio oscillator. Capacitances below $0.001 \mu \mathrm{f}$. are in $\mu \mu$ f. Fixed resistors are $1 / 2$ watt unless otherwise indicated.

Audio Oscillator

Fig. 21-22-Inside view of the audio oscillator. The o,c. switch. S_{3}, is mounted on the output control at the left on the panel. The ceramic capacitors in the frequencydetermining circuits are mounted on the rotary switch, S_{1}, at the right. S_{2} is above the tube, and T_{1} is on the near edge of the chossis, which is a U-shaped piece of aluminum $31 / 2$ inches deep with $11 / 2$ inch lips, R_{1} is mounted on the near lip at the left.
the coupling circuit between the first-section plate and second-section grid. Various values of capacitance can be selected by means of S_{1} to sot the frequency. The actual frequencies measured in the unit shown in the photographs are given on the diagram. They may be either increased or deereased by using smaller or larger capacitanors, respectively.

Output is taken from the cathode of the second triode section. Wither the full output, 1.5 volts, or approximately one-tenth of it can be selected by \mathcal{S}_{2}. On cither of these two ranges smooth control of output is provided by R_{2}.

The built-in power supply uses a small transformer and a selenium reetifier to develop approximately 150 volts. Hun is reduced to a nogligible level by the filter consisting of the 8-henry choke and 20- μ, capabitors.

An oscilloscope is useful for preliminary checking of the oscillator sinee it will show wave form. R_{1} should be set at the point that will ensure oserllation on atl three freduencies when switching from one to the other.

- NOISE GENERATORS

A noise generator is a device for creating a controllable amount of radio-frequency noise ("hiss"-type noise) evenly distributed throughout the frequency spectrum of interest. The simplest type of noise generator is a diode, either vacuum-tube or erystal, with direct current flowing through it. The current is also made to
flow through a load resistance which in general is chosen to equal the characteristic impedance of the transmission line to be connected to the receiver's input terminals. The resistane then substitutes for the line, and the amount of r, f. noise fed to the input terminals of the receiver is controlled by controlling the d.c. through the diode.
The usefulness of the noise generator in amateur work lies in the fact that it provides a means for adjusting the "front-end" circuits of a receiver for optimum signal-to-noise ratio (see sections on receiver dasign). Although it can be built at little expense, it is actually more effective for this purpose than costly laboratory-type signal generators. A simple circuit using a crystal diode is shown in Fig. 21-23. Fig. 21-24 illus-

Fig. 21-23-Circuit of a simple crystal-diode noise generator.
$B T_{1}$-Dry-cell battery, any convenient type.
$C_{1}-500-\mu \mu \mathrm{f}$, ceramic, disk or tubular.
CR1—Silicon diode, 1 N21 or IN23. Diodes with "R's suffix have reversed polarity. (Do not use ordinary germanium diodes).
P_{1}-Coaxial fitting, cable type.
R_{1}-50,000-ohm control, counterclockwise logarithmic taper.
$\mathrm{R}_{2}-51$ or 75 ohms, $1 / 2$-watt composition.
S_{1}-S.p.s.t. toggle (moy be mounted on R_{1}).
trates the construction, the principal requirement being that R_{2} should be mounted right on the terminals of the coaxial fitting and that lead lengths should be as short as possible in the circuit formed by $C_{1}, C R_{1}$ and R_{2}. If these lead lengths are negligible the instrument should give uniform performance up to at least 150 Mc. l_{2} should match the particular line and input impedance for which the receiver is designed.

To use the generator, screw the coaxial fitting on the recoiver's imput fitting, open S_{l}, and measure the noise vitput of the receiver ising an a.c. vacuum-tube voltmeter or similar a.f. voltage indirator. Make sure that the receiver's r.f. and audio gain controls are set well within the linear range, and do not use a.g.c. Then turn on the noise generator and set R_{1} for an appreciable increase in output, say twice the original noise voltage, and note the dial setting. Receiver front-end adjustmonts may then be made with the object of attaining the same noise increase with the lowest possible direct current through the diode - that is, with the largest possible resistance at R_{1}.

The instrument may be used for comparing different receivers or different front-end arrangemonts, since this type of measurement is independent of receiver bandwidth (which has a marked effect on the actual signal-to-noise

Fig. 21-24-Crystol-diade noise generator mounted in a $15 / 8 \times 21 / 8 \times 4$-inch box. Most of the space is occupied by the miniature 6 -volt dry-cell battery. The coaxial fitting (PL-259) can be mounted to the box by culting a hole in a small square sheet-copper plate to make a snug fit over the end of the body of the connector and then soldering it in place. Holes can be drilled in the plate for mounting screws. The diade can be mounted in improvised clips, the larger being a small-size grid-grip and the smaller a miniature socket contact.
ratio). For consistent measurements the battery voltage should be ehecked to make sure that it 'does not change with the setting of R_{1}.
(Further information on noise generators, with additional references, may be found in QST for July, 1953.)

R.F. Measurements

R.F. CURRENT

R.f. current-mosaring deviecs use a thermocouple in conjumetion with an ordinary d.c. instrument. The thermocouple is made of two dissimilar metals which, when heated. generate a small d.e. voltage. 'The thermorouple is heated by a resistance wire through which the r.f, current flows, and since the d.e. voltage developed is proportional to the heating, which in turn is proportional to the power used by the heating element, the deflections of the d.c. instrument are proportional to power rather than to current. This causes the calibrated scale to be eompressed at the low-current end and spread out at the highcurrent end. 'lhe useful range of such an instrument is about 3 or 4 to 1 ; that is, an r.f. ammeter having a full-ecale reading of 1 ampere can be read with satisfactory accuracy down to about 0.3 ampere, one having a full scale of 5 amperes can be read down to about 1.5 amperes, and so on. No single instrument can be made to handle at wide range of currents. Neither can the r.f. ammeter be shunted satisfactorily, as can be done with d.c. instruments, because even a very small amount of reactance in the shunt will cause the readings to be highly dependent on frequence:

Fig. 21-25 shows a convenient way of using an r.f. ammeter for measuring current in a cotxial line. The instrument is simply mounted in a metal box with a short lead from each torminal to a coaxial fitting. The shunt capacitance of an ammeter mounted in this way has only a

Fig. 21-25-R.f. ammeter mounted for connecting into - coaxial line for measuring power. A " 2 -inch" instru. ment will fit into a $2 \times 4 \times 4$ metol box.
negligible effect on accuracy at frequeneies as high as 30 Mc . if the instrument has a bakelite case. Metal-wased moters should be mounted on a bakelite panel which in turn can be mounted behind a cut-out that clears the meter case by $1 / 4$ inch or so.

R.F. VOLTAGE

An r.f. voltmeter is a rectitier-type instrument in which the r.f. is converted to d.c.. which is then measured with a d.e. instrument. The best type of rectifier for most applications is a crystal diode. such as the $1 N 34$ and similar types, because its capacitance is so low as to have little effect on the behavior of the r.f. cireuit to which it is connereted. The principal limitation of these rectifiers is their rather low value of safe inverse peak voltage. Vacuum-tube diodes are considerably better in this respect, but their size,

R.F. Measurements

shunt capacitance, and the fact that power is required for heating the eathode constitute sorious disadvantages in many applications.

One of the principal use for such voltmeters is as null indicators in r.f. bridges, as deseribed later in this chapter. Another useful application is in measurement of the voltage between the conductors of a coaxial line, to show when a transmitter is adjusterl for optimum output. In either case the voltmetor impedance should be high compared with that of the cirenit under measurement. to avoid taking appreciable power, and the relationship betwen r.f. voltage and the reading of the d.e. instrument should be as linear as possible - that is. the d.e. indication should be directly proportional to the r.f. voltage at all points of the scale.

All reetiliers show a variation in resistance with applied voltage, the resistance being highest when the applied voltage is small. These variations can be fairly well "swamped out" he using a high value of resistance in the d.e. eirenit of the reatifier. I resistance of at least 10,000 ohms is necessary for reasomably good lincarity with a 0-1 milliammeter. Iligh resistance in the d.e. circuit also raises the impetante of the r.f. voltmeter and reduces its power consumption
The hasic volmeter circuit is shown in Fig. 21-26. It is simply a half-wave rectifier with a meter and a resistor, R_{1}, for improving the linearits. The time constant of $C_{1} R_{1}$ should be large compared with the period of the lowest radio frepuency to he measured - a condition that can easily he met if l_{1} is at least 10,000 ohms and C_{1} is $0.001 \mu \mathrm{f}$. or more - so C C $_{1}$ will stay charged near the peak value of the r.f. voltage. The radiofrequency choke may be omitted if there is a low-resistance d.e. path through the circuit heing measured. c_{2} provides additional r.f. filtering for the d.e. rircuit.

Fig. 21-26-R.f. voltmeter circuit using a crystal rectifier and d.c. microammeter or $\mathrm{O}-1$ milliammeter.
The simple eireuit of Fig. 21-2(s is useful for voltages up to about 20 volts, a limitation imposed by the inverse-paak voltage ratings of crystal diodes. A dual range voltmeter circuit. (0-20) and $0-100$ volts, is shown in Figg. 21-27. A voltage divider, R_{1} / \Re_{2}. is used for the higher range. An instrument using this cireuit is shown in Fig. 21-28. It is designed for connertion into a coaxial line. The principal constructional precantions are to keep leads short, and to mount the components in such it wity is to minimize stray conpling between them and to keep them fairly well separated from metal surfaces.

For accurate calibration (the power method deseribed below may be used) R_{3} should be adjusted, by selection of resistors or using two in series

Fig. 21-27-Dual-range r.f. voltmeter circuit. Capacitances are in $\mu \mu \mathrm{f}$.; capacitors are disk ceramic.
$C R_{1}-1 N 34$ or equivalent.
J_{1}, J_{2}-Coaxial connectors, chassis-mounting type.
$\mathrm{R}_{1}-1000$ ohms, 1 watt.
$\mathrm{R}_{2}-3300$ ohms, 2 watts.
R3-App. 22,000 ohms (see text), $1 / 2$ watt.
S_{1}-S.p.d.t. rotary switch (Centralab 1460).
to olitain the desired value, so that the meter reads full seale, with S_{1} set for the low range, with 20 volts r.m.s. on the line. A frequener in the vicinity of 14 Me should he used. Then, with s_{1} sot for the high range. various resistors should be tried at R_{1} or R_{2} until with the same voltage the meter reads 20 per cent of full seale. The resistance variations usually will be within the range of 10 per cent tolerance resistors of the values specified. The readings at various other voltages should be observed in order to check the linearity of the scale.

Calibration

Calibration is not nererssary for purely comparative mensurements. A calibration in actual voltage requires a known resistive load and an r.f. ammeter. The sotup is the same as for r.f. power measurement as deseribed later.

Fig. 21-28-Dual-range r.f, voltmeter for use in coaxial line, using a $0-1$ d.c. milliammeter. The voltage-divider resistors, R_{1} and R_{2} (Fig. 21-27) are at the center in the lower compartment. The bypass capacitors and R_{3} are mounted on a tie-point strip at the right. The unit is built in a $4 \times 6 \times 2$ inch aluminum chassis, with an aluminum partition connecting the two sides of the box to form a shielded space. A bottom plate, not shown, is used to complete the shielding.

V.T.V.M. R.F. PROBE

IR.f. up to abrout 30 volts prak and a frequency of 200 Ml e, is most conveniently measured with a v.t.v.m. (l'ig. $21-8$) and an r.f. probe. An r.f. prohe is merely a rectifier that uses a v.t.v.m. to indicate the magnitude of the rectified voltage.

21 - MEASUREMENTS

Fig. 21-29-The r.f. probe is used in conjunction with a vacuum-tube volimeter. The case of the probe is constructed from a 7 -pin ceramic tube socket and a $21 / 4$-inch fube shield. A half-inch grommet at the top of the tube shield prevents the output lead of the probe from chafing. The flexible copper-braid grounding lead and alligator clip provide a low-inductance return path from the test circuit. The d.c. output of the probe goes to the phone plug. which plugs into the d.c. input jack of the v.l.v.m.

The resultant d.e. voltage is very nearly equal to the peak value of the r.f. voltage.

The unit shown in Figs. 21-29 and 21-31 and schematically in Fig. 21-30 is similar in circuitry to most of the conventional peak-indicating, shunt-type commercial r.f. probes. However, it can be constructed for considerably less than the rost of a commereial unit. If all parts, inchoding the shiclded wire, alligator clip, tie point, resistor, phone plug, tube socket, tube shield, caparitor, and diode are purchased now, the total cost of the unit is approximately $\$ 2.25$.

The isolation capacitor, crystal diode, and resistor are mounted on a bakelite 5 -lug terminal strip, as shown in Fig. 21-32. One and lug should be rotated 90 degrees so that it extends off the end of the strip. All other lugs should be cut off flush with the edge of the strip. Where the inner condurtor connects to the terminal lug, unravel the shield three-quarters of an inch, slip a piece of spaghetti over it, and then solder the braid to the ground lug on the terminal strip. Remove the spring from the tube shichl, slide it over the cable, and erimp it to the remaining quarter inch of shiek braid. Solder both the spring and at 1 inch length of flexible ropper braid to the shicld.

Next, eut off the pins on a seven-pin miniature coramic or mica shich-hase tube socket. Use a socket with a cylindrical eenter post, such as the Johnson $120-276$. Crimp the terminal lug previonsly bent out at the end of the strip and insert

Fig. 21.30-The r.f. probe circuit.
it into the ceitter post of the tulse socket from the top. Insert the end of a phone tip or a pointed piece of heavy wire into the bottom of the tube socket center post, and solder the lug and tip to the center post. Insert a half-inch grommet at the top of the tube shield, and slide the shield over the cable and flexible braid down onto the tube socket. The spring should make good contact with the tube shieh to insure that the tube shield (probe case) is grounded. Solder an alligator clip to the other end of the flexible braid and mount a phone plug on the free end of the shielded wire.

Mount components close to the terminal strip, (0) keep lead lengths as short as possible and minimize stray capacitance. Use spaghetti over all wires to prevent accidental shorts. When soldering the crystal diode, hold the end to be soldered with a pair of long-nose pliers, to conduct damagingheat away from the diode.

Fig. 21-31-Close-up of the inside of the probe. The IN34A crystal diode rectifier, calibrating resistor, and input capacitor are mounted tight to the terminal strip with shortest leads possible. Spaghetri fubing is placed on the diode leads to prevent accidental short circuits. The tube-shield spring and Rexible-copper grounding lead are soldered to the cable braid (the cable is RG-58/U coax). The tip can be either a phone tip or a short pointed piece of heavy wire,

Using the Probe

The a.c. input voltage that the prote can handle safely is limited to about 21 volts r.m.s. or 30 volts paak, as a result of the 60 -volt peakinverse rating of the 1 Ni34.A crystal diode. The phone plug on the probe cable plugs into the d.c. input jack of the v.t.v.m., and r.m.s. voltages are read on the vacumm-tube voltmeter's negative d.c. scale. When using the probe be sure that any d.e. voltage on the circuit being checked does not exceed the d.e. voltage rating of C_{1}.

The accuracy of the probe is approximately

Fig. 21-32-Component mounting details.

Inductance and Capacitance

± 10 per cent from 50 ke, to 250 Mc . For example, if the error of the v.t.v.m. used with the probe is ± 5 per cent, then the over-all error of the moasuring system is ± 15 per cent. At low values of imput voltage, below a volt or so, the accuracy of the prohe is somewhat poorer because of the nonlinearity of the 1 Ni34A crystal diode. At these lower input voltages the output of the probe more closely approarches a square-law relationship than a linear one.

The approximate input impedance of a probe of this type is 6000 ohms shunted by $1.75 \mu \mu$. (at 200 M..), and the amount of error introduced berause of circuit loading ly the probe is dependent on the impedance of the source of the a.c. voltage being measured. If peak values are desired rather than r.m.s., the r.m.s. values can be multiphed by 1.41 or the prak scales on the v.t.v.m. can be read clirectly if so calibrated.

- R.F. POWER

Measurement of r.f. power requires a resistive load of known value and either an r.f. ammeter or a calibrated r.f, voltmeter. The power is then either $I^{2} R$ or E^{2} / R, where R is the load resistance in olims.

The simplest method of ohtaining a load of known resistance is to use an antenna system with coax-roupled matching riveuit of the type described in the chapter on transmission lines. When the circuit is aljustenl, by means of an s.w.r. bridge, to bring the s.w.r. down to 1 to 1 the load is resistive and of the value for which the bridge was designed (52 or 75 ohms).

The r.f. ammeter should be inserted in the line in place of the s.w.r. bridge after the matehing has been completed, and the tramsmitter then adjusted - without touching the matching circuit - for masimum current. A 0 - 1 ammeter is useful for measuring the approximate range $5-50$ watt in 52-ohm line. or $7.5-75$ watts in $7 \overline{0}$-ohm line; a 0-3 instrument can be used for 1:3-450 watts in 52 -ohm line and $20-675$ watts in 75 -ohm line. The accuracy is usually greatest in the upper hidf of the seale.

An r.f. voltmeter of the type described in the preceding section also can be used for power mensurement in a similar sotup. It has the addvantage that, heranse its scalo is gubitantially linear, a much witer range of powers ean be measured with a single instrument

INDUCTANCE AND CAPACITANCE

The ability to measure induetance and capacitance saves time that might otherwise be spent in cut-and-try. A convenient instrument for this purpose is the grid-dip oscilator, described carlice in this chapter.

For measuring inductance, use is made of a eapacitance of known value as shown at A in Fig. 21-33. With the unknown roil comerted to the standard rapatritor. coupthe the grid-dip meter to the coil and adjust the oseillator frequency for the grid-enrent dip, using the lonsest coupling that gives a detectable indication. The

Induetance is then given by the formula

$$
L_{\mu \mathrm{h} \cdot}=\frac{25,330}{C_{\mu \mu \mathrm{f} .} f_{\mathrm{Mc}}^{2}}
$$

The reverse procedure is used for measuring caparitance - that is, a coil of known inductance is used as a standard as shown at B. The unknown caparitance is

$$
C_{\mu \mu \mathrm{f} .}=\frac{25,330}{L_{\mu l \mathrm{l} .}, f_{\mathrm{Mc}}^{2}}
$$

The accuracy of this method depends on the accuracy of the grid-dip meter calibration and the accuraey with which the standard values of L and C arc known. l'ostage-stamp silver-mica
(A)

(8)

Fig. 21.33-Setups for measuring inductance and capacitance with the grid-dip meter.
capacitors make satisfactory capacitance standards, since their rated toleramee is ± 5 per cent. liqually good inductance standards can be made from commerdial mathine-wound coil material.

A single pair of standards will serve for measuring the L and C values commonly used in amateur equipment. A good choice is $100 \mu \mu \mathrm{f}$. for the capacitor and $5 \mu \mathrm{~h}$. for the coil. Based on these values the chart of Fig. 21-35 will give the unknown directly in terms of the resonant frequency registered by the grid-dip meter. In measuring the frequency the coupling between the grid-dip, meter and resonant riteuit should be kept at the smallest value that gives a definite indication.

A correction should be applied to measurements of very small values of L and C to include the effects of the shunt capacitance of the mount-

Fig. 21-34-A convenient mounting, using binding-post plates, for L and C standards made from commerciallyavailable parts. The capacitor is a $100-\mu \mu \mathrm{f}$. silver mica unit, mounted so the lead length is as nearly zero as possible. The inductance standard, $5 \mu \mathrm{~h}$., is 17 turns of No. 3015 B \& W Miniductor, 1 -inch diameter, 16 turns per inch.

Fig. 21-35-Chart for determining unknown values of L and C in the range 0.1 to $100 \mu \mathrm{~h}$. and 2 to $1000 \mu \mu \mathrm{f}$., using standards of $100 \mu \mu \mathrm{f}$. and $5 \mu \mathrm{~h}$.
ing for the coil, and for the inductance of the leads to the capacitor. These amount to approximately $1 \mu \mu \mathrm{f}$. and $0.03 \mu \mathrm{~h}$., respertively. with the method of mounting shown in lig. 21-34.

Coefficient of Coupling

The same equipment can be used for measurement of the coefficient of coupling between two coils. This simply reguires two measurements of inductance (of one of the coils) with the coupled roil first open-cireuited and then short-circuited. Connert the $100-\mu \mu$. standard caparitor to one roil and measure the indurtance with the terminals of the second coil open. Then short the terminals of the second coil and again measure the inductance of the first. The coefficient of coupling is given by

$$
k=\sqrt{1-\frac{L_{2}}{L_{1}}}
$$

where $k=$ coefficient of coupling
$L_{1}=$ inductane of first coil with terminals of second coil open
$L_{2}=$ inductance of first coil with terminals of second coil shorted.

R.F. RESISTANCE

Aside from the bridge methods used in trans-mission-line work, described later, there is relatively little need for masurement of r.f. resist-
ance in amateur practice. Also. measurement of resistance by fundamental mothods is not prarticable with simple equipment. Where surh measurements are made, they are usuallv based on known characteristics of available resistors used as standards.

Most types of resistors have so murh inherent reactance and skin effect that they do not aet like "pure" resistance at radio frequencies, but instead their effective resistance and impedance vary with frequency. This is especially true of wirc-wound resistors. Composition (rartion) resistors of 25 ohms or more as a rule have negligible indurtance for frequencies up to 100 Mr . or so. The skin effert also is small, but the shunt eapacitance camot be neglected in the higher values of these resistors, since it redures their impedance and makes it reactive. However, for most purposes the eaparitive efferts can be considered to be nepligible in composition resistors of values up to 1000 ohms, for frequencies up to 50 to 100 Mr , and the r.f. resistance of surh units is practically the same as their d.e. resistance. Hence they can be considered to be prartically pure resistance in such applications as r.f. bridges, ete., provided they are mounted in surh a way as to avoid magnetio roupling to other riscuit eomponents, and are not so close to grounded metal parts as to give an appreciable increase in shunt eapacitance.

Antenna and Transmission-Line Measurements

Two prineipal types of measurements are marle on antenna systems: (1) the standing-wave ratio on the transmission line, as a moans for detormining whether or not the antenna is propery matehed to the line (alternatively, the input ro-
sistane of the line or antenma may be measured); (2) the comparative radiation fiold strength in the vieinity of the antemna, as a means for chereking the diredivity of a beam antenna and is an aid in adjustment of element tuning and
phasing. Both types of measurements can be made with rather simple equipment.

FIELD-STRENGTH MEASUREMENTS

The radiation intensity from an antenna is measured with a device that is essentiatly a very simple recerver equipped with an indicator to give a visual representation of the comparative signal strength. Such a field-strength meter is used with a "pick-up antemn:" which should alwats have the same polatization as the antemat bemtechecked - e.g., the pirk-up antema shout de horizontal if the transmitting antenna is horizontal. Care should be taken to prevent stray pickup by the fiold-strength meter itself or by any transmission line that may connect it to the pick-up antenna.

Field-strength mcasurements prefcrably should be made at a distance of several wavelengths from the transmitting antenna being tested. Measurements made within a wavelength of the antema may be misleading, because of the possibility that the measuring equipment may be responding to the combined induction and radiation fields of the antenna, rather than to the radiation diehd alone. Ilso, if the pirk-up antennt has dimensions comparable with those of the antemat under test it is likely that the compling between the two antemas will be great enough to eanse the pick-up antenma to tend to become part of the radiating system and thus result in misleading field-strength readings.

Fig. 21-36-Transistor d.c. amplifier applied to the wavemeter of Fig. 21-10 to increase sensitivity. Components not listed below are the same as in Fig. 21-10, B_{1}-Small flashlight cell.
$M_{1}-0-1$ d.c. milliammeter (see text).
$Q_{1}-2 N 107$, CK722, etc.
R_{1} - 10,000-ohm control.
A desirable form of pick-up antenna is a dipole installed at the same height as the antenma being tested, with low-impedance line such as 75 -ohm Twin-Lead connected at the center to transfer the r.f. signal to the fiedd-strength meter. The length of the dipole need only be great enough to give adequate meter readings. A half-wave dipole will give high sensitivity, but surh length will not be needed unless the distance is several wavelengths and a relatively insensitive meter is used.

Field-Strength Meters

The crystal-detector wavemeter described carlier in this chapter may be used as a field-
strength meter. It may be coupled to the transmission line from the pick-up antenna through the coaxial-cable jack, J_{1}.
The indications with a crystal wavemeter connerted as shown in Fig. 21-10 will tend to be "spuare law" - that is, the meter rearling will be proportional to the square of the r.f. voltage. This exaggerates the effect of relatively small adjustments to the antenna system and gives a false impression of the improvement secured. The moter rading can be made more linear by comerting a fairly large resistane in series with the milliammeter (or midroammeter). About 10,000 ohms is required for good linearity. This considerably reduces the sensitivity of the meter, but the lower sensitivity can be compensated for by making the pick-up antema sufficiently large,

Transistorized Wavemeter and Field-Strength Meter

A sensitive field-st reugth meter can be made by using a transistor as a doe amplifier following the crystal rectifier of a wavemeter. A circuit of this type is shown in Fig. 2l-3.3. Depending on the characteristias of the partioular transistor used, the amplification of current may be 10 or more times, so that a $0-1$ milliampere d.e. instrument beromes the equivalent of a sensitive mierotummeter.
The circuit to the left of the dashed line in Fig. $21-36$ is the same ats the wavemeter circuit of Fig. . $21-10$, and the transistor amplifier can easily be accommodated in the case shown in Figs. 21-11 and 21-12.

The transistor is connected in the commonemitter circuit with the rectified d.c. from the crystal diode flowing in the base-emitter circuit. Since there is a small residual current in the collector civeuit with no current flowing in the baseemitter circuit, the d.c meter is connected in a bridge arrangement so the residual current can be balanced out. This is accomplished, in the absence of any signal input to the transistor base, by adjusting R_{1} so that the voltage drop across it is equal to the voltage drop from colleetor to emitter in the transistor. R_{2} and R_{3}, being of the same resistance, have equal voltage drops across them and so there is no difference of potential across the meter terminals until the collector current increases because of current fluw in the base-emitter circuit.

The collector current in a circuit of this type is not strictly proportional to the base current, particularly for low values of base current. The meter readings are not directly proportional to the field strength, therefore, but tend toward "square law" response just as in the case of a simple diode with little or no resistance in its d.c. circuit. For this reason the d.c. meter, M_{1}, should not have too-high sensitivity if reasonably linear response is desired. A $0-1$ milliammeter will be satisfactory.

The zero balance should be checked at intervals while the instrument is in use, since the residual current of the transistor is sensitive to temperature changes.

IMPEDANCE AND STANDING.WAVE RATIO

Adjustment of antemat matching systems requires some means cither of metsuring the input impedane of the antennat or transmission line, or measuring the standing-wave ratio. "Bridge" mothods are suitable for either measurement.

There are many varioties of bridge circuits, the two shown in lig. 2 l -3: heing among the most popular for amateur purposes. The simple

fig. 21-37-Basic bridge circuits. (A) Resistance bridge; (B) resistonce-capocitance bridge. The latter circuit is used in the "Micromatch," with R_{s} a very low resistance (l ohm or less) and the ratio $\mathrm{C}_{1} / \mathrm{C}_{2}$ adjusted accordingly for a desired line impedance.
resistance bridge of Fig. 21-37. A consists essentially of two voltage dividers in parallel aross a source of voltage. When the voltage drop across R_{1} equals that arooss $R_{\text {s }}$ the drops aross R_{2} and R_{1} are likewise equal and there is no difference of potential between points A : wnd B, Hence the voltmeter reading is zoro and the bridge is satid to be "balanced." If the drops across R_{1} and R_{s} ane not equal. points A and B are at different potentials and the voltmeter will read the difference. The operation of the circuit of Fig. $21-3$-3 is similar, exeept that one of the voltage dividens is caparitive insteal of resistive.

Because of the eharateristies of pratical components at radio frequencies, the circuit of Fig. $21-37 \mathrm{~A}$ is berst suited to applications where the ratio R_{1} / R_{2} is fixed: this type of bridgre is partieularly well suited to measurement of standingwave ratio. The cireuit of Fig. $21-37 \mathrm{~B}$ is well adapted to applications where a variable voltage divider is essential (since C_{1} and C_{2} may reatily be made variable) as in measurement of unknown values of R_{1}.

S. W.R. Bridge

In the circuit of Fig. $21-37 \mathrm{~A}$, if R_{1} and R_{2} are made equal, the bridge will be balanerd when $R_{L}=R_{\text {s }}$. This is true whether R_{1} is an antual resistor or the input resistance of a perfectly matched transmission line, provided $R s$ is chosen to equal the eharacteristie impedance of the line. Even if the line is not properly matched, the bridge will still be batameed for power traveling outuard on the line, since outward-going power sees only the Z_{0} of the line until it rearhes the
load. However, power reflected baek from the load does not "see" a bridge eireuit and the reflected voltage registers on the voltmeter. From the known rolationshif between the outgoing or "forward" voltage and the reflected voltage, the sw.r. is easily malculated:

$$
\text { S.W.R. }=\frac{V_{0}+V_{r}}{V_{\mathrm{o}}-V_{\mathrm{r}}}
$$

where V_{0} is the forward voltage and V_{r} is the reflected voltage. The forward voltage is equal to $E 2$ sinee R sud R_{1}. (the Z_{0} of the line) are equal. It maty be measured either by diseonneeting R_{1}, or shorting it.

Measuring Voltages

For the s.w.r. formula above to apply with reasonable arcuracy (particularly at high stand-ing-wave ratios) the eurrent taken by the voltmeter must be inappreeiable compared with the currents through the bridge "arms." The voltmetor used in bridge circuits employs a crystal diode rectifier (see discussion eatier in this ehapter) and in order to meet the above requirement - ats well as to have linear response, which is equally neressary for catibration purposes should use a resistance of at least 10,000 ohms in series with the milliammeter or mieroammeter.

Nince the voltage applied to the lime is measured by shorting or diseomecting R_{L} (that is, the line imput terminals), while the refleeted voltage is measured with R_{L} commerted, the load on the source of voltage E is different in the two meatsarements. If the regulation of the voltage soure is not porfert, the voltage \mathscr{E} will not remain the same under these two conditions. This can lead to large errors. Such errors can he avoided hy using a seeond voltmeter to maintain a check on the voltage applied to the bridge, readjusting the

Fig. 21-38-Bridge circuit for s.w.r. measurements. This circuit is intended for use with a d.c. voltmeter, range 5 to 10 velts, having a resistance of 10,000 ohms per volt or greater.
$C_{1}, C_{2}, C_{3}, C_{4}-0.005-$ or $0.01-\mu f$, disk ceramic.
$R_{1}, R_{2}-47$-ohm composition, $1 / 2$ or 1 watt.
$\mathrm{R}_{3}-52$ - or 75 -0hm (depending on line impedance) composition, $1 / 2$ or 1 watt; precision type pre. ferred.
$R_{1}, R_{5}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial connectors.
Meter connects to either 'input" or "bridge" position as required.

Fig. 21-39-A simple bridge circuil useful for impedance. matching in coaxial lines.
$C_{1}, C_{2}-0.005$ - or 0.01 - μ f. disk ceramic.
$\mathrm{R}_{1}, \mathrm{R}_{2}-47$-ahm composition, $1 / 2$ watt.
$\mathrm{R}_{3}-52$ - or 75 -ohm (depending on line impedance) com. position, $1 / 2$ watt; precision type preferred.
$R_{4}-1000$-ohm composition, $1 / 2$ watt.
J_{1}, J_{2}-Coaxial connectar.
The meter moy be o 0.1 milliammeter or d.c. voltmeter of any type having a sensitivity of 1000 ohm per volt or greater, and a full-scale range of 5 ta 10 valts. Negative side of meter connects to ground.
coupling to the voltage source to maintain constant applied voltage during the two measurements. Since the "imput" voltmeter is simply used ats a reference, its linoarity is not important, nor does its realing have to bear any definite relationship to that of the "bridge" voltmeter, exrept that its range has to be at least twice that of the latter.

A practieal circuit incorporating these features is given in Fig. 21-38.

If the bridge is to be used merely for antenna adjustment, where the object is to secure the lowest possible s.w.r. rather that to measure the s.w.r. sucurately, the voltmeter requirements are not stringent. In this case the objoet is to get as close to a "null" or balance (that is, zero reating) as possible. At or near exact balance the voltmeter impedance is not important. Neither is it neeressary to maintan eonstant input voltage to the bridge. This simplifies the bridge eireuit considerably, Fig. 21-39 leing atpractical example. The construetion of a bridge of this type suitable for antemat and transmission line adjustments is shown in Fig. 21-40

Bridge Construction

A principal point in the construction of an 8.w.r. bridge is to avoid coupling between the resistors forming the bridge arms, and between the arms and the voltmeter circuit. This can be done by keeping the resistance arms separated and at right angles to each other, and by placing the erystal and its eonnecting leads so that the loop so formed is not in inductive relationship with any loons formed by the bridge arms. Shichding let weon the bridge arms and the cristal circuit is helpful in reducing such couplings, althourh it is not ahwers necessary. The two resistors forming the "ratio arms." \dot{R}_{1} and R_{2}, should have identical relationships with metal parts, to keep the shunt capacitances
equal, and also should have the same lead lengths so the inductances will balance. Leads should be kept as short as possible.

Testing and Calibration

In a bridge intemed for s.w.r. moasurement (Fig. 21-38) rather than simple matching. the first check is to apple just emough r.f. voltage, at the highost fregueney to be used, so that the bridge voltmeter reads full sable with the load terminals open. Observe the imput voltage, then short-circuit the lowd terminals and readjust the imput to the stme voltare. The bridge voltmeter should tugain registor full scable. If it does not, the ratio ams, A_{1} and R_{2}. probably are not exactly equal. These two resistors should be carefully matched, although their atual value is not critical. If a similar tost at a low frequency shows better babance, the probable eause is stray inductance or caparitance in one arm not balanced by equal strays in the other.

After the "short" and "open" readings have been equalized, the bridge should be whereded for null balance with a "dumme" resistance, equal to the line impedance, commerted to the load terminals. It is convenient to mount a half- or 1-watt resistor of the proper value in a coax connetor, keeping it contered in the eomertor and using the minimum lead bength. The bridge voltmeter should read zoro at abll freguencios. A reading above zoro that romains constant at all frequencies indicates that the "dummy" resistor is

Fig. 21.40-An inexpensive bridge for matching ad. justments using the circuit of Fig. 21-39. It is built in o $15 / 8 \times 21 / 8 \times 4$-inch "Channel-lock" box. The standard resistor, $R_{i,}$ bridges the two coox connectors. A pin jack is provided for connection to the d.c. meter, $0-1 \mathrm{mo}$. or $0.500 \mu \mathrm{a}$.; the meter negative con be connected to the case or to one of the coox fittings.
not matched to R_{3}, while readings that vary with frequency indicate stray reactive effects or stray coupling between parts of the bridge.

When the operation is satisfactory on the two points just described, the null shouli be checked with the dummy resistor conne ted to the bridge through several different lengths of transmission line, to ensure that R_{3} actually matches the line imperdanes. If the null is not complet" in this test both the dummy resistor and lis will have to be adjusted until a good match is ohtained. With care, composition resistors can be filed down to raise the resistance, so it is best to start with resistors somewhat low in value. With each change in R_{3}, adjust the dummy resistor to give at grod null when connerted directly to the bridge, then try it at the end of severail different lengths of line, continuing until the null is sat isfactory under all conditions of line length and frequeney.

With a high-impedance voltmoter, the s.w.r. readings will closely approximate the theoretjeal curve of Fig. 21-41. The calibration can be eherked by using composition resistors as loals.

Fig. 21-41-Standing-wave ratio in terms of meter reading (relative to full scale) after setting forward voltage to full scole.

Adjust the transmitter coupling so that the bridge voltmeter reads full scale with the output terminals open, and then check the input voltage. Connect various values of resistance across the output terminals, making sure that the input voltage is readjusted to be the same in each case, and note the reading with the meter in the bridge position. This check should he made at a low frequency such as 3.5 Mc . in order to minimize the effect of reactance in the resistors. The s.w.r. is given by

$$
S . W . R .=\frac{R_{\mathrm{L}}}{R_{0}} \text { or } \frac{R_{0}}{R_{\mathrm{L}}}
$$

where R_{0} is the line impedance for which the bridge has been adjusted to null, and R_{L} is the resistance used as a load. Use the formula that places the larger of the two resistances in the numerator. If the readings do not correspond exactly for the same s.w.r. when appropriate
resistors above and below the line impedance for which the bridge is designed are used, a possible reason is that the current taken by the voltmeter is affecting the measurements.

Using the Bridge

The operating procedure is the same whether the bridge is used for matehing or for s.w.r. meatswement. Apply power with the load terminals cither opern or shorted, and adjust the iuput until tho bridge voltmeter reals full sate. Because tho bridge operates a very low power level it may be nocessary to couple it to a low-power driver stage rather than to the final amplifier. Alternatively, the plate voltage and exeitation for the final amplifier may be redued to the point where the power output is of the order of a few watts. Then comect the load and observe the voltmeter realing. For matehing, adjust the matching network until the best possible null is obtained. For s.w.r. measmrement, note the r.f. input voltage to the bridge alter adjusting for full-scale with the load termmals open or shorted, then connect the load and readjust the transmitter for the same input voltage. The bridge voltmeter then indicates the standing-w:ave ratio as given by Fig. 21-41.

Antemma systems are in general resonant systems and thus exhibit a purely-resistive impedanee at only one frecuency or over a small band of frequencies. In making bridge measurements, this will cause errors if the r.f. energy used to oprate the bridge is not free from harmonics and other spurious components, such as frequencies lower than the desired operating frequency that maty be fed through the final amplifier from a frequency-doubler stage. When a good null cannot be secured in, for example, the course of adjusting a matching section for l-to-1 s.w.r., a check should be made to ensure that only the desired moasurement frequency is presont. An indicating-type absorption frecuency meter couphed to the load usually will show whether energy on undesired frecuencirs is present in signifieant amounts. If so. additional solectivity must be used between the source of power and the measuring circuit.

Bridge for Monitoring S.W.R.

The low power level at which resistance-type bridges must operate is a disadvantage when the bridge is used as on operating adjunct - e.g., for the :adjustment of matching circuits when changing bands, or for readjustment of such circuits within a band. For this purpose a bridge is needed that will carry the full power output of the transmitter without absorbing an appreciable fration of it.

The "Monimatch" shown in Figs, 21-42 to $21-14$, inclusive, is such a device. It makes use of the combined effeets of indurtive and caparitive coupling between the center condurtor of a coaxial line and a length of wire paratlel to it. When the couphed wire is properly terminated in a resistance, the voltage induced in it by power travelling along the line in one direction will be balanced out in the crystal-rectifier r.f. voltmeter

Fig. 21-42-The Manimatch, an s.w.r. monitar that can be left in the line of all times. The unit shown here will handle a kilowatt.
eircuit, but power travelling thong the line in the opposite direction will caluse a voltmeter indication. If the bridge is adjusted to match the Z_{0} of the eoaxial line loing used, the voltmeter will respond only to the reflected voltage, just ats in the ease of the resist ance-type bridges. The power consumed in the bridge is below one watt, even at the maximum power permitted amateur trinsmitters.

The circuit of Fig. 21-4;3 uses a d.p.d.t. switch to exchange the voltmoter and the terminating resistance, so that either the forward or refleeted voltage can be metsured. The sensitivity of this type of bridge is proportional to frequency, so higher power is required for a given voltmeter deflection at low than at high frequencies. The monsitivity also increases with an increase in piekup length, but this should not be longer than ahout $1 / 20$ wavelength, to avoid standing-wave effects in the piek-up circuit. For higher frequenries the length should be decreased in proportion to the wavelength. This reduces the sensitivity considerably at the lower frequencies, so it is advisathle to make separate units for v.h.f. and the frequencies bolow :30 Mc.

The additional conductor in the bridge shown in the photographs is a length of No. 20 enameled wire running under 8 inches of the RG-8/U shield. The length of the R(i-S/L is 14 inches. To insert the No. 20 wire under the calbe shiedd. first loosen the baid by bunching it from the ends toward the center. Punch the two small holes for the wire and then suake the wire through one hole, under the brad, and out the other hole.

Next, smooth out the braid to its original length, being careful not to apply so much pressure that the cramel on the wire is seratehed. Check with an ohmmeter to make sure the wire and brad arre not short cireuited. There are several types of enameded wire (c.g., Formvar, Nolelad) that have an extremely tough covering, and the use of one of these is recommended. The eovering is somewhat dificult to remove for soldering, but the use of the wire will insure against an inadvertent short-cireuit to the outer conductor of the coasial line.

It is important when assembling and wiring the Monimatth that good symmetry be maintained. Each end of the length of RG-8/U should be connected in the same way, with at least two connections made between the outer conductor and the coaxial connectors (see Fig. 21-44). The ground connection for R_{1} and for the $0,001-\mu \mathrm{f}$. capacitor should be the midpoint on the outer conductor of the $\mathrm{KG}-8 / \mathrm{U}$. The outer conductor is connerted to the chassis only at J_{1} and J_{2}; the cable is stiff enough to be self-supporting and can be dressed away from the chassis at other points.

A dummy antenna of the same resistance as the Z_{0} of the line should be used to adjust R_{1} (Fig. 21-1:3). Make the conneeting leads as short as possible. Only 30 or 40 watts will be required at 21 and 28 Me. to give elose to full-seale deffection, and a dummy load capable of handling this power for a short time can be made from 13680 -ohm 1-watt resistors in parallel. (See "V.H.F. Dummy Loids," (QS'T', March, 19(60.) Try several different $3: 3$-ohm resistors (with slightly different d.c. resistaners) at R_{1}, and use the one that gives a minimum reading with S_{1} at "rep" when nearly a full-scale reading ean be obtained with S_{1} at For. A final test on the Monimateh is to reverse the transmitter and load connections; a good minimum should be obtained with s_{1} at for.

Fig. 21-43-Wiring diagram of the Monimatch. $\mathrm{J}_{1}, \mathrm{~J}_{2}-$ SO. 239 cooxial receptacle. R_{1} - Nominally 33 ahms. See text for adjustment procedure. $\mathrm{S}_{1}-4$. . .d.t. rotory switch (2 poles used). (Centralab 1409) $\mathrm{W}_{1}-14$-inch length of RG-8/U with length of No. 20 enam. inserted under outer conductor. See text.

21-MEASUREMENTS

Fig. 21-44-Rear view of Monimatch with cane-metal cover removed. To maintain symmetry, the terminating resistor R_{1} and the crystal diode are connected to the midpoints of the leads between $S_{1,1}$ and S_{11}, and R_{1} and C_{1} are grounded to the center of the coaxial-line outer conductor via the heavy wire running across the variable resistor. The outer conductor of the coaxial line is connected to the chassis only of J_{1} and J_{2}, and iwo connections are made in each case.

It is possilhe to gencrate hamonies in the woltmoter of sullieiont intonsity to canse TVI. If 'TVI is a problem, a low-pass filter should the connered in the line betwern the Monimateh and the antema eompler or antemat In many rases an antemon emupler will have suffieiont sole tivity to rejoert the harmonies.

Impedance Bridge

The bridge shown in Figs. 21-15 to 21-47, inrlusive, uses the lasie circuit of Fig. 21-37B and incorperates a "differential" capacitor to obtain an adjustahle ratio. Whem a resistive load of unknown value is romerted in place of R_{L}, the (A_{1} / C_{2} ration may he variod to attain a balanere, as incticated he a mull reading. The (a)paritor settings can be calibrated in terms of resistance at R_{L}, so the unkmow value ratm be read off the catihration.

The differential cibpation consists of two identical rapuritors on the sume shaft. arranged so that when the shaft is rotated to inserase the c:apacitanere of onfe unit, the caparitance of the
 bridge is giver in Fige 21-16. Sitisfatory operation hinger on ohsorving the same romstrubtionabl precations as in the case of the s.w.r. brichere. Although a high-impedince voltneter is not

Fig. 21-45-An RC bridge for measuring unknown values of impedance. The bridge operates at an r.f. input voltage level of about 5 valts. The aluminum box is 3 by 4 by 5 inches.

essential, since the bridge is always adjusted for a null, the use of such a voltmeter is advisable because its better linearity makes the actual null settings more accurately observable.

With the circuit arrangement and capacitor shown, the useful range of the bridge is from about 5 ohms to 400 ohms. The calibration is such that the percentage accuracy of reading is approximately constant at all parts of the seale. The midscate value is in the range $50-75 \mathrm{ohms}$, to correspond to the Z_{0} of comxial cable. The reliable frequency range of the bridge ineludes all amateur bands from 3.5 to $5 \pm$ Me.

Checking and Calibration

A bridge constructed as shown in the photographs should show a eomplete null at all frequencies within the range mentioned above when a 50 -ohm "dummy" load of the type deseribed earrier in connection with the s.w.r. bridge is eonnected to the load terminals. The bridge may be calibrated by using a number of $1 / 2$-watt 5% tolerunce composition resistors of different values in the $5-400$ ohm range as loads, in each case balaneing the bridge by adjusting C_{1} for a null reading on the meter. The leads between the test resistor and J_{2} should be as short as possible, and the ralibration preferably should be done in the :3.5-Me. hand where stray inductance and eapacitance will have the least effect.

Using the Bridge

Strictly speaking, a simple bridge can measure mily purely resistive impedanese When the load is a pure resistance, the bridge can be balaneed to a good null (meter reading zero). If the load has a reatance component the null will not be complete; the higher the ratio of reactance to resistance in the load the poorer the null reading. The operation of the bridge is such that when an exart mull cannot be secured, the readings approximate the resistive component of the load for very low values of impedance, and approximate the total impedance at very high values of impedance. In the mid-range the approximation to either is poor, for loads having considerable roatance.

In using the bridge for adjustment of matehing networks (${ }_{1}$ is set to the desired value (usually the Z_{0} of the coaxial line) and the matching network is then adjusted for the best possible uull.

Fig. 21.46-Circuit of the impedance bridge. Resistors are composition, $1 / 2$ walt except as noted. fixed capacitors are ceramic.
C_{1}-Differential capacitor, 11.161 $\mu \mu \mathrm{f}$. per section (Millen 28801).

CR1-Germanium diode (1N34, 1N48, etc.)
J_{1}, J_{2}-Cooxial connectors, chassis type.
$M_{1}-0.500$ microammeter.

PARALLEL-CONDUCTOR LINES

Bridge measurements made directly on paral-lel-conductor lines are frequently subject to considerable error because of "antema" eurrents floning on such lines. These eurrents, whieh are either induced on the line by the field around the antenna or coupled into the line from the transmitter by stray caparitance, are in the same phase in both line wires and hence do not balance out like the true transmission-line currents. They will nevertheless actuate the bridge voltmeter, eausing an indication that has no relationship to the standing-wave ratio.

S.W.R. Measurements

The effect of "antenna" currents on s.w.r.

Fig, 21.47-All components except the meter are mounted on one of the removable sides of the box. The variable capacitor is mounted on an L-shaped piece of aluminum (with half-inch lips on the inner edge for bolting to the box side) 2 inches wide, $21 / 4$ inches high and $21 / 4$ inches deep, to shield the copacitor from the other components. The terminals project through holes as shown, with associated components mounted directly on them and the load connector, J_{2}. Since the rotor of C_{1} must not be grounded, the capacitor is operated by an extension shaft and insulated coupling.

The lead from J_{1} to $C_{1 A}$ should go directly from the input connector to the capacitor terminal (lower right) to which the 68 -ohm resistor is attached. The 4700 -ohm resistor is soldered across h_{1}.
measurements can be largely overcome by using a coaxial bridge and coupling it to the paralledeonductor line through a properly designed impedance-matching circuit. A suitable circuit is given in Fig. 21-48. An antenna conpler can be used for the purpose. In the balaned tank cireuit the "intema" or parallel eomponents on the line tend to balance out and so are not passed on to the s.w.r. bridge. it is assential that L_{1} be coupled to a "cold" point on L_{2} to minimize capareitive coupling, and also desirable that the renter of L_{2} be grounded to the chassis on which the circuit is mounted. Vabues should be such that $L_{2} \mathrm{C}_{2}$ can be tuned to the operating frequener and that L_{1} provides sufficient coupling, as described in the trans-mission-line chapter. The measurement procedure is as follows:
('onnect a noninductive ($1 / 2$ - or 1 -watt carbon) resistor, having the same value as the charartoristic impedance of the parallel-conductor lina, to the "line" terminals. Apply r.f. to the bridge, adjust the taps on L_{2} (keeping them equidistant

Fig. 21.48-Circuit for using coaxial s.w.r. bridge for measurements an parallel-canductar lines. Values af circuit components are idential with thase used for the similar "antenno-coupler" circuit discussed in the chapter an transmissian lines.
from the center), while varving the caparitance of C_{1} and C_{2}, until the bridge shows a null. Ifter the null is obtained, do not touch any of the cirruit ardustments. Next, short-cireuit the "line" torminals and adjust the r.f. input until the bridge voltmeter reads full scale. Remove the shortcireuit and test resistor, and connere the regular transmission line. The bridge will then indieate the standing-wave ratio on the line.
The cireuit requires rematching, with the test resistor, whenever the frequency is changed appreciably. It can, however, be used over a portion of an amateur band without readjustment, with negligible error.

Impedance Measurements

Measurements on paraltel-conductor lines and other babaned loads can be made with the impelance bridge previously described by using a batur of the trope shown shematically in Fig. 21-4!). This is

Fig. 21-50-Balun canstructian (W2ZE). 150-chm Twin-Lead may be used for the bifilar winding in place of the ardinary wire shown. Symmetrical canstruction with tight caupling between the twa cails is essential ta gaad perfarmance.

Capacitars in unit shawn in Fig. 21-50 are NPO disk ceramic. Units may be paralleled ta abtain praper capacitance.
an autotransformor having a 2 -to-l turns ratio and thus provides a 4 -to-1 step-down in imperlance from a balaneed load to the ouput eireuid of the bridge, one side of which is gromnded. L_{1} and L_{2} must be as tightly coupled as possible, and so should ix eronstrueted as a bifilar winding. The circuit is resonated to the operating frequency by r_{1}, and r_{2} serves to tune out any residual reatetaner that maty be present because the coupling between the two eoils is not quite perfert.
Fig. 2t-50) shows one method of eonstructing such a balum. The two interwound coils are made as nearly identical as possible, the "finish" end of the first lacing "omuected to the "start" end of the second through a short lead romning under the winding inside the form. The renter of this lead is tipped to give the eommertion to the shell side of the cows eonncetor. (1 should be chosen to resonate the cirmit at the eenter of the band for which the halum is designed with J_{1} open, and C_{2} should resonate the circuit to the same frequenry with hoth J_{1} and the "load" terminals shorted. The freepuence cherks may be made with a grid-dip) moter. (For further details, see OST for Augist, IG5.)

S.W.R. Measurements

With the balun in use the bridge is operated in the same way as previously described. except that all impedance readings must be multiplied by 4. The balun also may be used for s.w.r. measurements on 300 -ohm line in conjunction with a resistance bridge designed for 75 -ohn coaxial linc.

The "Twin-Lamp"

A simple and inexpensive standing-wave Indicator for 300 -ohm line is shown in Fig. 21-51. It consists only of two flashlight lamps and a short piece of 300 -ohm line. When laid flat against the line to be checked, the coupling is such that outgoing power on the line causes the lamp nearest to the transmitter to light, while reflected power lights the lamp nearest the load. The power input to the line should be adjusted to make the lamp nearest the transmitter light to full brilliance. If the line is properly matched

Fig. 21-51-The "twin-lamp" standing-wave indicator mounted on 300 -ohm Twin-Lead. Scotch tape is used for fastening.

Fig. 21-52-Wiring diagram of the "twin-lamp" stand-ing-wave indicator.
and the reflected power is very low, the lamp toward the antenna will be dark. If the s.w.r. is high, the two lamps will glow with practically equal brilliance.

The length of the piece of 300 -ohm line needed in the twin-lamp will depend on the transmitter power and the operating frequency. A few inches will suffice with high power at high frequencies, while a foot or two may be needed with low power and at low frequencies.

In constructing the twin-lamp, cut one wire in the exact center of the piece and peel the ends back on either side just far enough to provide leads to the flashlight lamps. Remove about $1 / 4$ inch of insulation from one wire of the main transmission line at some convenient point. Use the lowest-current flashlight bulbs or dial lamps available. Solder the tips of the bulbs together and connect them to the bare point in the transmission line, then solder the ends of the cut portion of the short piece to the shells of the bulbs. Figs. $21-51$ and -52 should make the construction clear.

The twin-lamp will respond to "antenna" currents on the transmission line in much the same way as the bridge circuits discussed earlier. There is therefore always a possibility of error in its indications, unless it has been determined by other means that "antenna" currents are inconsequential compared with the true transmission-line current.

The Oscilloscope

The cathode-ray oscilloscope gives a visual representation of signals at both audio and radio frequencies and can therefore be used for many types of measurements that are not possible with instruments of the types disolussed eirlier in this chapter. In amateur work, one of the principal uses of the srope is for displaying an amplitudemodulated signal so a phonc transmitter can be adjusted for proper modulation and continuously monitored to keep the modulation percentage within proper limits. For this purpose a very simple circuit will suflice, and a typical circuit is described later in this section.

The versatility of the scope ean be greatly increased by adding amplifiers and linear deflection circuits, but the design and adjustment of such circuits tends to be complicated if optimum performance is to be secured, and is somewhat outside the field of this scetion. Special components are generally required. Oscilloscope kits for home assembly are available from a number of suppliers, and since their cost compares very favorably
with that of a home-built instrument of comparable design, they are recommended for serious consideration by those who have need for or are interested in the wide range of measurements that is possible with a fully-equipped scope.

CATHODE-RAY TUBES

The heart of the oseilloscope is the cathoderay tube, a vacuum tube in which the electrons emitted from a hot cathode are first accelerated to give them considerable velocity, then formed into a beam, and finally allowed to strike a special translucent screen which fluoresces, or gives off light at the point where the beam strikes. A beam of moving electrons can be moved laterally, or deflected, by electric or magnetic fields, and since its weight and inertia are negligibly small, it can be made to follow instantly the variations in periodically-changing fields at both audio and radio frequencies.

The electrode arrangement that forms the electrons into a beam is called the electron gun.

Fig. 21-53-Typical construction for a cathode-ray tube of the electrostatic-deflection type.

In the simple tube structure shown in Fig. 21-53, the gun consists of the cathode, grid, and anodes Nos. 1 and 2. The intensity of the electron beam is regulated by the grid in the same way as in an ordinary tube. Anode No. 1 is operated at a positive potential with respect to the cathode, thus accelerating the electrons that pass through the grid, and is provided with small apertures through which the electron stream passes. On emerging from the apertures the electrons are traveling in practically parallel straight-line paths. The electrostatic fields set up by the potentials on anode No. 1 and anode No. 2 form an electron lens system which makes the electron paths converge or focus to a point at the fluorescent screen. The potential on anode No. 2 is usually fixed, while that on anode No. 1 is varied to bring the beam into focus. Anode No. 1 is, therefore, called the focusing electrode.

Electrostatic deflection, the type generally used in the smaller tubes, is produced by deflecting plates. Two sets of plates are placed at right angles to each other, as indicated in Fig. $21-53$. The fields are created by applying suitable voltages between the two plates of each pair. Usually one plate of each pair is comected to anode No. 2, to establish the polarities of the vertical and horizontal fields with respect to the beam and to each other.

Formation of Patterns

When periodically-varying voltages are applied to the two sets of deflecting plates, the path traced by the fluorescent spot forms a pattern that is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. Fig. 21-54 shows how one such pattern is formed. The horizontal sweep voltage is assumed to have the "sawtooth" waveshape indicated. With no voltage applied to the vertical plates the trace simply sweeps from left to right across the screen along the horizontal axis $X-X^{\prime}$ until the instant H is reached, when it reverses direetion and snaps back to the starting point. The sine-wave voltage applied to the vertical plates similarly would trace a line along the axis $Y-Y^{\prime}$ in the absence of any deflecting voltage on the horizontal plates. However, when both voltages are present the position of the spot at any instant depends upon the voltages on both sets of
plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage has similarly moved it upward, so that it reaches the actual position B^{\prime} on the screen. The resulting trace is casily followed from the other indicated positions, which are taken at equal time intervals.

Types of Sweeps

A sawtooth sweep-voltage wave shape, such as is shown in Fig. 21-54, is called a linear sweep, because the deflection in the horizontal direction is directly proportional to time. If the sweep were perfect the fly-back time, or time taken for the spot to return from the end (I) to the beginning (I or A) of the horizontal trace, would be zero, so that the line $H I$ would be perpendicular to the axis $Y-Y^{\prime}$. Although the fly-back time cannot be made zero in practicable sweep-voltage generators it can be made quite small in comparison to the time of the desired trace $A I I$, at least at most frequencies within the audio range. The line $1 I^{\prime} l^{\prime}$ is called the return trace; with a linear sweep it is less brilliant than the pattern, because the spot is moving much more rapidly during the fly-back time than during the time of the main trace.

The linetr sweep shows the slape of the wave

Oscilloscopes

in the same way that it is usually represented graphically. If the period of the a.c. voltage applied to the vertical plates is considerably less that the time taken to sweep horizontally across the screen, several cycles of the vertical or "signal" voltage will appear in the pattern.

For many amateur purposes a satisfactory horizontal sweep is simply a 60 -cycle voltage of adjustable amplitude. In modulation monitoring (described in the chapter on amplitude modulation) audio-frequency voltage can be taken from the modulator to supply the horizontal sweep. For examination of audio-irequency wave forms, the linear sweep is essential. Its frequency should be adjustable over the entire range of audio frequencies to be inspected on the oseilloseope.

Lissajous Figures

When simusoidal a.c. voltages are applied to the two sets of deflecting plates in the ascilloscope the resultant pattern depends on the relative amplitudes, frequencies and phase of the two voltages. If the ratio between the two frequencies is constant and can be expressed in integers a stationary pattern will be produred. This makes it possible to use the oscilloscope for determining an unknown trequeney, provided a variable frequency standard is available, or for determining calibration points for a variablefrequency oscillator if a few known frequencies are available for comparison.

The stationary patterns obtained in this way are called Lissajous figures. Examples of some of the simpler Lissajous figures are given in lig. 21-55. The frequency ratio is found by counting the number of loops along two adjatcent edges. Thus in the third figure from the top there are three loops along a horizontal edge and only one along the vertical, so the ratio of the vertical frequency to the horizontal frequency is 3 to 1 . Similarly, in the fifth figure from the top there are four loops along the horizontal edge and three along the vertical edge. giving a ratio of 4 to 3. Assuming that the known frequency is applied to the horizontal plates, the unknown frequency is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

where $f_{1}=$ known frequency applied to horizontal plates,
$f_{2}=$ unknown frequency applied to vertical plates,
$n_{1}=$ number of loops along a vertical edge, and
$n_{2}=$ number of loops along a horizontal edye.
An important application of Iissajous figures is in the calibration of audio-frequency signal generators. For very low frequencies the 60 -cycle power-line frequency is held accurately enough to be used as a standard in most localities. The medium audio-frequency range can be covered by comparison with the $440-$ and 600 -cycle modulation on the WWV transmissions. An oscilloscope having both horizontal and vertical

Fig. 21.55-Lissajous figures and corresponding frequency ratios for a 90 -degree phase relationship between the voliages applied to the two sets of deflecting plates.
amplifiers is desirable, since it is convenient to have a means for adjusting the voltares applied to the deflection plates to secure a suitable pattern size. It is possible to calibrate over a 10 -to- 1 range, both upwards and downwards, from each of the latter frequencies and thus cover the audio range useful for voice communication.

Basic Oscilloscope Circuit

The essential oscilloscope circuit is shown in

Fig. 21-56-Oscilloscope circuit for modulation monitoring. Constants are for 1500 - to 2500 -volt h.v. supply. For 1000-1500 volts, omil R_{8} and connect the bottom end of R_{7} to the top end of R_{9}.
$C_{1} \cdot C_{5}$, inc. -3000 -volt disk ceramic.
$\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{0}, \mathbf{R}_{11}$-Volume-control type, linear taper.
$R_{3}, R_{4}, R_{5} R_{6,}, R_{10}-1 / 2$ wett.
$R_{7}, R_{8}-1$ watt.
V_{1}-Electrostatic-deflection cathode-ray tube, 2- to 5inch. See tube tables for base connections and heater ralings of type chosen.
lig. 21-56. The minimum requirements are supplying the various electrode potentials, plus conirols for focusing and centering the spot on the face of the tube and adjusting the spot intensity: The circuit of Fig. 21-56 can be used with electro-static-deflection tubes from two to five inches in face diameter, with voltages up to 2500 . This includes practically all the types popular for small oscilloscopes.

The circuit has provision for introducing signal voltages to the two sets of deflecting plates. Either set of deflecting electrodes ($D_{1} D_{2}$, or $D_{3} D_{4}$) may be used for either horizontal or vertical deflection, depending on how the tube is mounted.

The high voltage may be taken from a transmitter power supply if desired. The current is only a milliampere or so. The voltage preferably should be constant, such as is obtained from : supply having a constant load - e.g., the supply for the Class \mathbf{C} amplifier in an a.m. transmitter.

In the circuit of Fig. 21-56 the centering comtrols are at the full supply voltage above ground and therefore should be carefully insulated by being mounted on bakelite or similar material rather than directly on a metal panel or chassis. Insulated couplings or extension shafts should be used. The focussing control is also several humdred volts above ground and should be similarly insulated.

The tube should be protected from stray magnetic fields, either by enclosing it in an iron or steel box or by using one of the specital (.r. tube shields available. If the heater transformer (or other transformer) is mounted in the same cabinet, care must be used to place it so the stray fiele around it does not deflect the spot. The spot cannot be focussed to a fine point when influenced by a transformer field.

Modulation Monitoring

The addition of Fig. 21-57 to the basic circuit of Fig. 21-56 provides all that is necessary for modulation checking. The r.f. from the transmitter is applied to the vertical plates through a tuned circuit $L_{1} C_{1}$ and link L_{2}. When adjusted to the transmitter operating frequency the tuned circuit furnishes imple deflection voltage even from a low-power transmitter, and C_{1} can be used to control the pattern height.

Deflection voltage for the horizontal plates can be taken from the modulation transformer secondary of an it.m. transmitter, or 60 -evele deflection can be used to give a wave-envelope type pattern. In either case a maximum of about 200 volts r.m.s. will give full-width deflection. This voltage is almost independent of the size of c.r. tube used. Methods of using such a scope for modulation checking are deseribed in the ehapter on amplitude modulation.

Fig. 21-57-Circuits for supplying r.f., oudio, ond o.c. voltoges to oscilloscope deflection plotes for modulotion monitoring.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{f}$. vorioble, receiving type.
$L_{1}-1.75$ Mc.: 30 enom. close-wound on 1 -inch form, coil length $3 / 4$ inch.
3.5.8 Mc.: 30 turns No. 22 enom., close-wound on 1 -inch form.
13.30 Mc.; 7 turns No. 22, spreod to $3 / 4$ inch length on 1 -inch form.
L_{2}-2 or more furns, os required for sufficient coupling, at cold end of L_{1}.
R_{1}-Volume control, 0.25 megohm or more.
S_{1}-D.p.d.t. switch.
T_{1}-Interstoge oudio tronsformer, ony type. Use second-ory-to-primory turns rotio of 1-to-1 to 2 -to-1.

Frequency Limitations of Oscilloscopes

Most commercial or kitted oscilloscopes include vacuum-tube amplifiers between the input terminals and the deflection plates, to increase the sensitivity and usefulness of the instrument. Depending upon the construction of the amplifiers, their useful frequency range may be only as high as several hundred kc., although more expensive instruments will include amplifiers that work in the megacyele range. The operator should accuaint himself with the frequency limitations of the 'scope through study of the sperifications, since attempts to pass, e.g., a $4 \overline{50}$-kc. i.f. signal through an amplifier that cuts off at 100 kc are doomed to failure. No such frequency limits apply when the connection is made directly to the deflection plates, and consequently r.f. at 20 to 30 Me. can be applied hy the method shown in Fig. 21-ī7. A practical limitation will be found when r.f. from the vertical plates is (stray) capacitively coupled to the horizontalaleflection plates: this will show as a thickening of the trace. In some instances it can be reduced by r.f. bypassing of the horizontal deflection plates.

Assembling a

Station

The actual location inside the house of the "shack" - the room where the transmitter and receiver are located - depends, of course, on the free space available for amateur activities. Fortunate indeed is the amateur with a separate room that he can reserve for his hobber, or the few who (ean have a sperial smatl building separate from the main housr. However, most amateurs must share a mom with other domestic activitios, and amateur stations will be found tucked away in a corner of the living room, a bedroom, a large closet, or even under the kit chen stove? A spot in the cellar or the attir cam almost be classed as a separate room, although it may lack the "finish" of a normal room.

Regardless of the location of the station, however, it should be designed for maximum operating convenience and safety. It is foolish to have the station arranged sos that the throwing of several switches is required to go from "receive" to "transmit," just as it is silly to have the equipment arranged so that the operator is in an uncomfortable and cramped position diring his operating hours. The reason for building the station as safe as possible is obvious, if you are interested in spending a number of years with your hobby!

CONVENIENCE

The first consideration in any amateur station is the operating position, whtch includes the operator's table and chair and the pieces of equipment that are in constant use
(the receiver, send-receive switch, and key or microphone). The table should be as large as possible, to allow sufficient room for the receiver or receivers. frequency-measuring equipment, monitoring equipment, control switches. and keys and microphones, with enough space left over for the logbook, a pad and pencil, and perhaps a large ash tray. Suitable space should be included for radiogram blamks and a call book, if these accessories are in frequent use. If the table is small, or the number of pieces of equipment is large, it is often neeressary to build a shelf or rack for the auxiliary equipment, or to mount it in some less convenient loration in or under the table. If one has the facilities, a semicireular "console" can be built of wood, or a simpler solution is to use two small wooden cabincts to support a table top of wood or Masonite. A flush-type door will make an excellent table top. Home-built tables or consoles can be finished in any of the available oil stains, varnishes, paints or lacquers. Many operators use a large piece of plate glass over part of their table, since it furnishes a good writing surface and can cover miscellaneous charts and tables, prefix lists, operating aids, calendar, and similar accessories.

If the major interests never require frequent band changing, or frequency changing within a band, the transmitter can be located some distance from the operator, in a location where the meters can be ubserved from time to time (and the color of the tube plates noted!). If frequent band or frequency changes are a part

Here's one way to build a console. Use a 4 -foot $\times 4$-foot $\times 1 / 2$-inch piece of plywood for a center section, and a couple of 3 -drower chests for the end sections. This gives plenty of operating space in a small area. (W SKSE, El Paso. Texas)

of the usual operating procedure, the transmitter should be mounted close to the operator, either along one side or above the receiver, so that the controls are easily accessible without the need for leaving the operating position.

A compromise arrangement would place the v.f.o. or crystal-switched oscillator at the operating position and the transmitter in some convenient location not adjacent to the operator. Since it is usually possible to operate over a portion of a band without retuning the transmitter stages, an operating position of this type is an advantage over one in which the operator must leave his position to make a clange in frequency.

Conirols

The operator has an excellent chance to exercise his ingenuity in the location of the operating controls. The most important controls in the station are the receiver tuning dial and the send-receive switch. The receiver tuning dial should be located four to eight inches above the operating table, and if this requires mounting the receiver off the table, a small shelf or bracket will do the trick. With the single exception of the amateur whose work is almost entirely in traffic or rag-chew nets, which require little or no attention to the receiver, it will be found that the operator's hand is on the receiver tuning dial most of the time. If the tuning knob is too high or too low. the hand gets cramped after an extended period of operating, hence the importance of a properly located receiver. The majority of c.w. operators tune with the left hand, preferring to leave the right hand free for copying messages and handling the key, and so the receiver should be mounted where the knob can be reached by the left hand. Phone operators aren't tied down this way, and tune the communications receiver with the hand that is more convenient.

The hand key should be fastened securely to the table, in a line just outside the right shoulder and far enough back from the front edge of the table so that the elbow can rest on the table. A good location for the semiautomatic or "bug" key is right next to the handkey, although some operators prefer to mount the automatic key in front of them on the left, so that the right forearm rests on the table parallel to the front edge.

The best location for the microphone is directly in front of the operator, so that he doesn't have to shout across the table into it, or run up the speech-amplifier gain so high that all manner of external sounds are picked up. If the microphone is supported by a boom or by a flexible "goose neck," it can be placed in front of the operator without its base taking up valuable table space.

In any amateur station worthy of the name, it should be necessary to throw no more than one switch to go from the "receive" to the
"transmit" condition. In phone stations, this switch should be located where it can be easily reached by the hand that isn't on the receiver. In the case of c.w. operation, this switch is most conveniently located to the right or left of the key, although some operators prefer to have it mounted on the left-hand side of the operating position and work it with the left hand while the right hand is on the key. Either location is satisfactory, of course, and the choice depends upon personal preference. Some operators use a foot-controlled switch, which is a convenience but doesn't allow too much freedom of position during long operating periods.
If the microphone is hand-held during phone operation, a "push-to-talk" switch on the microphone is convenient, but hand-held microphones tie up the use of one hand and are not too desirable, although they are widely used in mobile and portable work.
The location of other switches, such as those used to control power supplies, filaments, phone/c.w. change-over and the like, is of no particular importance, and they can be located on the unit with which they are associated. This is not strictly true in the case of the phone/c.w. DX man, who sometimes has need to change in a hurry from c.w. to phone. In this case, the change-over switch should be at the operating table, although the actual clange-over should be done by a relay controlled by the switch.

If a rotary beam is used the control of the be:m should be convenient to the operator. The direction indicator, however, can be located anywhere within sight of the operator, and does not have to be located on the operating table unless it is included with the control.

Frequency Spotting

In a station where a v.f.o. is used, or where a number of crystals are available, the operator should be able to turn on only the oscillator of his transmitter, so that he can spot accurately his location in the band with respect to other stations. This allows him to see if he has anything like a clear channel, or to see what his frequency is with respect to another station. Such a provision can be part of the "send-receive" switch. Switches are available with a center "off" position, a "hold" position on one side, for turning on the oscillator only, and a "lock" position on the other side for turning on the transmitter and antenna relay. If oscillator keying is used, the key serves the same purpose, provided a "send-receive" switch is available to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oscillator frequencs.
For phone operation, the telegraph key or an auxiliary switch can control the transmitter oscillator, and the "send-receive" switch can then be wired into the control system so as to control the oscillator as well as the other circuits.

Fig. 22-1 - Power circuits for a high-power station. A shows the outlets for the receiver, monitoring equipment, speech amplifier and the like. The outlets should be mounted inconspicuously on the operating table. B shows the transmitter filament circuits and control-relay circuits, if the latter are used. C shows the plate-transformer primary circuits, controlled by the power relay. Where 230 - and 115 -volt primaries are controlled simultaneously, point " X " should connect to the "neutral" or common. A heavy-duty switch can be used instead of the relay, in which case the antenna relay would be connected in circuit C. If 115 -volt pilot lamps are used, they can be connected as shown. Lower-voltage lamps must be connected across suitable windings on transformers. With "push-to-talk" operation, the "send-receive" switch can be a d.p.d.t. affair, with the second pole controlling the "on-off" circuit of the receiver.

Comfort

Of prime importance is the comfort of the operator. If you find yourself getting tired after a short period of operating, examine your station to find what causes the fatigue. It may be that the chair is too soft or hasn't a straight back or is the wrong height for you. The key or receiver may be located so that you assume an uncomfortable position while using them. If you get sleepy fast, the ventilation may be at fault. (Or you may need sleep!)

POWER CONNECTIONS AND CONTROL

Following a few simple rules in wiring your power supplies and control circuits will make it an easy job to change units in the station. If the station is planned in this way from the start, or if the rules are recalled when you are rebuilding, you will find it a simple matter to revise your station from time to time without a major rewiring job.

It is neater and safer to run a single pair of wires from the outlet over to the operating table or some central point, rather than to use a number of adapters at the wall outlet.

Interconnections

The wiring of any station will entail two or three common circuits, as shown in Fig. 22-1. The
circuit for the receiver, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to an inconspicuous point on the operating table, where it terminates in a multiple outlet large enough to handle the required number of plugs. A single switch between the wall outlet and the receptacle will then turn on all of this equipment at one time.

The second common circuit in the station is that supplying voltage to rectifier- and trans-mitter-tube filaments, bias supplies, and anything else that is not switched on and off during transmit and receive periods. The coil power for control relays should also be obtained from this circuit. The power for this circuit can come from a wall outlet or from the transmitter line, if a special one is used.

The third circuit is the one that furnishes power to the plate-supply transformers for the r.f. stages and for the modulator. (See chapter on Power Supplies for high-power considerations.) When it is opened, the transmitter is disabled except for the filaments, and the transmitter should be safe to work on. However, one always feels safer when working on the transmitter if he has turned off every power souree.

With these three circuits established, it becomes a simple matter to arrange the station for different conditions and with new units. Anything on the operating table that runs all the time ties into the first circuit. Any new
power supply or r.f. unit gets it. filament power from the second circuit. Since the third circuit is controlled by the send-receive switeh (or relay), any power-supply primary that is to be switched on and off for send and receive connerts to cirmuit C .

Break-In and Push-To-Talk

In c.w. operation, "break-in" is any system that allows the transmitting operator to hear the other station's signal during the "key-up" periods between characters and letters. This allows the sending station to be "broken" by the receiving station at any time, to shorten calls, ask for "fills" in messages, and speed up operation in general. With present techniques, it requires the use of a separate receiving antema or a "t.r. box" and, with high power, some means for protecting the receiver from the transmitter when the key is "down." Several mothods, applicable to high-power stations, are described in Chapter Eight. If the transmitter is low-powered (50 watts or so), no special equipment is required except the separate rereiving antenna and a receiver that "recovers" fast. Where break-in operation is used, there should be a switch on the operating table to turn off the plate supplies when adjusting the oscillator to a new frequency, although during all break-in work this switeh will be closed.
"Push-to-talk" is an expression derived from the "push" switch on some microphones, and it means a phone station with a single control for all change-over functions. Strictly speaking, it should apply only to a station where this single send-receive switch must be held in place during transmission periods, but any fast-acting switch will give practically the same effect. A control switch with a center "off" position, and one "hold" and one "lock" position, will give more flexibility than a straight "push" switch. The one switch must control the transmitter power supplies, the receiver "on-off" circuit and, if one is used, the antenat change-over relay. The reeciver control is necessary to disable its output during transmit periods, to avoid acoustic feedback.

Switches and Relays

It is dangerous to use an overlonded switch in the power circuits. After it has been used for some time, it may fail leaving the power on the (ircuit even after the switch is thrown to the "off" position. For this reason, large switches, or relays with adequate ratings, should be used to control the plate power. Relays are rated by coil voltages (for their control cireuits) and by their contact current and voltage ratings. Any switch or relay for the power-control circuits of an amateur station should be conservatively rated; overloading a switch or relay is very poor economy. Switehes rated at 20 amperes at 125 volts will handle the switehing of cirenits at the kilowatt level, but the small toggle switches rated 3 amperes at 125 volts should be used only in cirenits up to about 150 watts.

When relays are used, the send-receive switch closes the circuits to their coils. The energized relays close the heavy-duty relay contacts. Since the relay contacts are in the power circuit being controlled, the swith handles only the relaycoil current, As a consequence, this switch can have a low current rating.

SAFETY

Of prime importance in the layout of the station is the personal safety of the operator and of visitors, invited or otherwise, during normal operating practice. If there are small children in the house, every step must be taken to prevent their accidental contact with power leads of any voltage. A locked room is a fine idea, if it is possible, otherwise housing the transmitter and power supplies in metal cabinets is an excellent, although expensive, solution. Lacking a metal cabinet, a wooden cabinet or a wooden framework covered with wire screen is the nextbest solution. Alany stations have the power supplies housed in metal cabinets in the operating room or in a closet or basement, and this cabinet or entry is kept locked - with the key out of reach of everyone but the operator. The power leads are rum through conduit to the transmitter. using ignition cable for the high-voltage leads. If

This neat "built-in" installation features separate finals and exciters for each band, along with room for receiver, frequency meter, oscilloscope, Q multiplier and v.h.f. converter. All units are mounted on the three large panels; the panels are hinged af the bottom so that they can be lowered for service work on the individual units. A common power supply is used, and band-changing consists of furning on the filaments in the desired r.f. section.
(W9OVO, Sturgeon Bay, Wisc.)

Safety

the power supplies and transmitter are in the same cabinet, a lock-type matin switch for the incoming line power is a good precaution.

A simple substitute for a lock-type main switeh is an ordinary line plug with at short comerting wire betwern the two pins. By wiring a femate receptacle in sories with the main power line in the transmittor, the shorting plug will art as the main safety lock. When the plug is removed and hidden. it will be impossible to energize the transmitter, and a stranger or chikd isn't likely to spot or suspert the open recoptacle.

An (essential adjunct to any station is a shorting stick for discharging any high voltage to ground before any work is done in the transmitter. Even if interlocks and power-supply bloeders are used, the failure of one or more of these components may leave the transmitter in a dangerous condition. The shorting stick is made by monting a small metal hook, of wire or rod, on one end of a dry stick or bakelite rod. A piece of ignition cable or other well-insulated wire is then rim from the hook on the stick to the chassis or common ground of the transmitler, and the stick is hung alongside the transmitter. Whenever the power is turned off in the tramsmitter to permit work on the rig, the shorting stick is first used to touch the several high-voltage leads (plate r.f. rhoke. filter rapamitor, tube phate connertion, ete.) to insure that there is no high voltage at any of these points. This simple deviee has saved many a life. Use it!

Fusing

A minor hazard in the amateur station is the possibility of fire through the falure of a component. If the failure is complete and the component is large, the house fuses will generally blow. However, it is unwise and inconvenient to depend upon the house fuses to protere the lines rumning to the ratio equipment. and every power supply should have its primary circuit individually
fused, at about 150 to 200 per cent of the maximum rating of the supply. Cireuit breakers can be used instead of fuses if dowired.

Wiring

Control-cireuit wires running between the operating position and a transmitter in another part of the room should be hidden, if possible. This can be done by running the wires under the floor or behind the base molding, bringing the wires out to terminal boses or regular wall fixtures. Such construction, however, is gencrably onty possible in elaborate installations. and the average amatrur must content himself with trying to make the wires as inconspicuous as possible. If several pairs of leads must be run from the operating table to the transmitter, as is gencrally the case, a single piece of rubber- or vinyl-covered multiconductor cable will always book neater than several pieces of rubber-covered lampeord, and it is much easier to sweep around or dust.

The antenna wires always present a problem, unless conxial-line feed is used. Open-wire line from the point of entry of the antenna line should always he arranged neatly, and it is generally best to support it at several points. Many operators profor to mount any antenna-tuming assemblies right at the point of entry of the feedline, together with an antema ehangeover relay (if one is used), and then the link from the tuning assembly to the transmitter can be made of inconspicuous eoaxial line. If the transmitter is mounted near the point of entry of the line, it simplifies the problem of "What to do with the feeders?"

Lightning and Fire Protection

The National Flectrical Code (NFPA No. 70) adopted by the Nationall lire Protection Association, although purely advisory as far as the NFPA is concerned, is of interest because it is widely used in law and for legal regulatory pur-

A neat operating bench can be built from wood and covered with linoleum. There is enough room an the table shown here to house the transmitter, receiver, and numerous odjuncts and accessories. Interconnecting wiring is run behind the units or underneath the table. (W3AQN, York, Pa.)

BCI and TVI

Every amateur has the obligation to make sure that the operation of his station does not, because of any shortcomings in equipment, cause interference with other radio services. It is unfortunately true that much of the interference that amateurs cause to broadcast and television reception is directly the fault of b.c. and TV receiver construction. Nevertheless, the amateur can and should help to alleviate interference even though the responsibility for it dons not lie with him.

Successful handling of interference cases requires winning the listener's cooperation. Here are a few pointers on how to go about it

Clean House First

The first step obviously is to make sure that the transmitter has no radiations outside the bands assigned for amateur use. The best check on this is your own a.m. or TV receiver. It is always convincing if you can demonstrate that you do not interfere with reception in your own home.

Don't Hide Your Identity

Whenever you make equipment changes - or shift to a hitherto unused band or type of emission - that might be expected to change the interference situation, check with your neighbors. If no one is experiencing interference, so much the better; it does no harm to keep the neighloorhood aware of the fact that you are operating without bothering anyone.

Should you change location, announce your presence and conduct occasional tests on the air, requesting anyone whose reception is being spoiled to let you know about it so steps may be taken to eliminate the trouble.

Act Promptly

The average person will tolerate a limited
amount of interference, but the sooner you take steps to eliminate it, the more agreeable the listener will be; the longer he has to wait for you, the less willing he will be to cooperate.

Present Your Story Tactfully

When you interfere, it is natural for the complainant to assume that your transmitter is at fault. If you are certain that the trouble is not in your transmitter, explain to the listener that the reason lies in the receiver design, and that some modifications may have to be made in the receiver if he is to expect interference-free reception.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference. If at all possible, enlist the help of another amateur and lave him operate your transmitter while you see for yourself what happens at the affected receiver.

In General

In this "public relations" phase of the problem a great deal depends on your own attit ude. Most people will be willing to meet you half way, particularly when the interference is not of long standing, if you as a person make a good inpression. lour personal appearance is important. So is what you say about the receiver - no one takes kindly to hearing his possessions derided. If you discuss your interference problems on the air, do it in a constructive way one calculated to increase listener cooperation, not destroy it.

Interference With Standard Broadcasting

Interference with a.m. broadeasting usually falls into one or more rather well-defined eategories. An understanding of the general types of interference will avoid much cut-and-try in finding a cure.

Transmitter Defects

Out-of-band radiation is something that must be cured at the transmitter. Parasitie oscillations are a frequently unsuspected source of such radiations, and no transinitter can be considered satisfactory until it has been thoroughly checked for both low- and highfrequency parasitics. Very often parasities show up only as transients, causing key clicks in c.w. transmitters and "splashes" or "burps" on modulation peaks in a.m. transmitters. Methods for detecting and eliminating para-
sitics are discussed in the transmitter ehapter.
In e.w. transmitters the sharp make and break that occurs with unfiltered keying causes transients that, in theory, contain frequency components through the entire radio spectrum. Practically, they are often strong enough in the immediate vicinity of the transmitter to cause serious interference to broadcast reception. Kiey clicks can be eliminated by the methods detailed in the chapter on keying.

A distinction must be made between clicks generated in the transmitter itself and those set up by the mere opening and closing of the key contacts when current is flowing. The latter are of the same nature as the clicks heard in a receiver when a wall switch is thrown to turna light on or off, and may be more troublesome nearby than the clicks that actually go

Causes of BCI

out on the signal. A filter for eliminating them usually has to be installed as close as possible to the key contacts

Overmodulation in a.m. phone transmitters generates transients similar to key clicks. It can be prevented either by using automatic systems for limiting the molulation to 100 per cent, or by continuously monitoring the modulation. Methods for both are described in the chapter on amplitude modulation.

BCI is frequently made worse by radiation from the power wiring or the r.f. transmission line. This is becanse the signall causing the interference, in such cases, is radiated from wiring that is nearer the broadeast receiver than the antenma itself. Much depends on the method used to couple the transmitter to the antemma, a subject that is discussed in the chapters on transmission lines and antemas. If it is at all possible the antenna itself should be placed so that it is not in close proximity to house wiring, telephone and power lines, and similar conductors.

Image and Oscillator-Harmonic Responses

Most present-day broadeast receivers use a built-in loop antenna as the grid cirenit for the mixer stage. The selectivity is not especially high at the signal freduency. Furthermore, an appreciable amount of signal pick-up usually oceurs on the a.c. line to which the receiver is comnected, the signal so pieked up being fed to the mixer grid by stray mouns.

As a result, strong signals from nearby transmitters, even though the transmitting frequency is far removed from the broadcast band, can force themselves to the mixer grid. They will normally be climinated by the i.f. selectivity, except in cases where the transmitter frequency is the image of the broadcast sigual to which the reeeiver is tuned, or when the transmitter frequency is so related to a harmonic of the broadeast receiver's local oscillator as to produce a beat at the intermediate frequency.

These image and oscillator-harmonic responses tune in and out on the broadcast receiver dial just like a broadcast signal, except that in the case of harmonic response the tuning rate is more rapid. Since most receivers use an intermediate frequency in the neighborhood of 455 kc ., the interference is a true image only when the amateur transmitting frequency is in the 1800 -ke. band. Oscillator-harmonic responses oecur from 3.5 - and 7 -Mc. transmissions, and sometimes even from higher frequencies.

Since images and harmonic responses occur at definite frequencies on the receiver dial, it is possible to choose operating frequencies that will avoid putting such a response on top of the broadcast stations that are favored in the vicinity. While your signal may still be heard when the receiver is tuned off the local stations. it will at least not interfere with program reception

There is little that can be done to most receivers to cure interference of this type exeept to reduce the amount of signal getting into the set
through the a.c. line. A line filter such as is shown in Fig. 23-1 often will help accomplish this. The values used for the coils and capacitors are in general not critical. The effectiveness of the tilter may depend consideratly on the ground connection used, and it is advisable to use a short ground lead to a cold-water pipe if at all possible. The line eord from the set should be bunched up. to minimize the possibility of pick-up on the cord. It may be necessary to install the filter inside the receiver, so that the filter is connected between the line cord and the set wiring, in order to get satisfactory operation.

Cross-Modulation

With phone transmitters, there are ocewsionally cases where the voice is heard whenever the broadcast receiver is tuned to a b.e. station, but there is no interference when tuning between stations. This is cross-modulation, a result of rectification in one of the early stages of the receiver. Reccivers that are susceptible to this trouble usually also get a similar type of interference from regular broadcasting if there is a strong local b.e. station and the receiver is tuned to some other station.

The remedy for cross-modulation in the receiver is the same as for images and oscillatorharmonie response-reduce the strength of the amateur signal at the receiver by means of a line. filter.

The trouble is not ahways in the receiver, since cross modulation can occur in any nearby reptifying cireuit - such as a poor contact in water or steam piping, gutter pipes, and other conductors in the strong field of the transmitting antenna - exterual to both receiver and transmitter. Locating the eunse may be difficult, and is best attempted with a battery-operated portable broadeast receiver used as a "probe" to find the spot where the interierence is most intense. When such a spot is located, inspection of the metal structures in the vicinity shouhd indicate the cause. The remedy is to make a good electrical bond between the two conductors having the poor contact.

Audio-Circuit Rectification

The most frequent cause of int erference from operation at 21 Me. and higher frequencies is rectification of a signal that by some means gets into the audio system of the receiver. In the milder cases an amplitude-molulated signal will be heard with reasonably good quality, but is not tumable - that is, it is present no matter what the frequency to which the receiver dial is set. An ummodulated carrier may have no observable effeet in such cases bevond causing a little hum. However, if the signal is very strong there will be a reduction of the audio output level of the receiver whenever the carrier is thrown on. This causes an annoying "jumping" of the program when the interfering signal is keyed. With phone transmission the change in audio level is not so objectionable because it occurs at less frequent intervals. Rectification orlinarily gives no
audio output from a frequency-modulated signal, so the interference can be made almost unnoticeable if f.m. or p.m. is used instead of a.m.

Fig. 23.1-"Brute-force" a.c. line filter for receivers. The values of C_{1}, C_{2} and C_{3} are not generally critical; capacitances from 0.001 to 0.01μ f. can be used. t_{1} and L_{2} can be a 2 -inch winding of No. 18 enameled wire on a half-inch diameter form. In making up such a unit for use external to the receiver, make sure that there are no exposed conductors to offer a shock hazard.
Interference of this type usually results from a signal on the power line being coupled by some means into the audio circuits, although the piekup also may occur on the set wiring itself. A "brute-force" line filter as described above may or may not be completely affective, but in any event is the simplest thing to try. If it does not do the job, some modification of the recciver will be necessary. This usually takes the form of a simple filter connected in the grid circuit of the tube in which the rectification is occurring. Usually it will be the first audio amplifier, which in most receivers is a diode-triode type tube.

Filter cirenits that have proved to be effective are shown in Fig. 23-2. In A, the value of the grid leak in the combined deteetor/first audio tube is reduced to 2 to 3 megohms and the grid is bypassed to chassis by a $250-\mu \mu$ f. mica or ceramic (apacitor. A somewhat similar method that does not require changing the grid resistor is shown at $13 . \operatorname{In} \mathrm{C}$, a 75,000 -ohm (value not critical) resistor is comected between the grid pin on the tule socket and all other grid connections. In combination with the input capacitance of the tube this forms a low-pass filter to prevent r.f. from reaching the grid. In some cases, simply bypassing the heater of the detector/first audio tube to chassis with a $0.001-\mu \mathrm{f}$. or larger capacitor will suffice. In all cases, check to see that the a.c. line is bypassed to chassis; if it is not, install bypass capacitors (0.001 to $0.01 \mu \mathrm{f}$.).

Handling BCI Cases

Assuming that your transmitter has been whecked and found to be free from spurious radiations, get another amateur to operate your station, if possible, while you make the actual check on the interference yourself. The following procedure should be used.

Tune the receiver through the broadeast band, to see whether the interference tunes like a regular b.c. station. If so, image or oscillator-harmonic response is the cause. If there is interference only when a b.c. station is tuned in, but not between stations, the cause is cross modulation. If the interference is heard at all settings of the tuning dial, the trouble is pickup in the audio circuits. In the latter case, the receiver's volume control maty or may not affect the strength of the interference, depending on the means by which your signal is being rectified.
llaving identified the cause, explain it to the set owner. It is a good idea to have a line filter with you, equipped with enough cord to replace the set's line cord, so it can be tried then and there. If it does not eliminate the interference, explain to the set owner that there is nothing further that can be done without modifying the receiver. Recommend that the work be done by a competent service technician, and offer to advise the service man on the cause and remedy. Don't offer to work on the set yourself, but if you are asked to do so use your own judgment about complying; set owners sometimes complain about the over-all performance of the receiver afterward, often without justification. If you work on it, take it to your station so the effect of the changes you make can be observed, and return the receiver promptly when you have finished.

Miscellaneous types of INTERFERENCE

The operation of amateur phone transmitters occasionally results in interference on telephone lines and in audio amplifiers used in public-antdress work and for home music reproduction. The cause is rectification of the signal in an autio circuit.

Telephone Interference

Telephone interference can be cured by connecting a bypass capacitor (about $0.001 \mu \mathrm{f}$.) across the microphone unit in the telephone handset. The telephone companies have capacitors for this purpose. When such a case occurs, get in touch with the repair department of the phone company, giving all the particulars. Do not attempt to work on the telephone yourself.

Hi-Fi and P. A. Systems

In interference to public-address and "hi-fi" installations the principal sources of signal pick-up are the a.c. line or a line from the power amplifier to a speaker. All amplifier units should be bonded together and connerted to a good ground such as a cold-water pipe. Make sure that the a.c. line is

Fig. 23-2-Methods of eliminating r.f. from the grid of a combined detector/first-audio stage. At A, the value of the grid leak is reduced to 2 or 3 megohms, and a bypass capacitor is added. At B , both
grid and cathode are bypassed.
bypassed to chassis in each unit with capacitors of about 0.01μ, at the point where the line enters the chassis. The speaker line similarly should be bypassed to the amplifier chassis with about $0.001 \mu \mathrm{f}$.

If these measures do not suffice, the shielding on the amplifiers may be inadequate. I shield
cover and bottom pan should be installed in such cases.

The spot in the system where the rectification is occurring often can be localized by sceing if the interference is affected by the volume control setting: if not, the cause is in a stage following the volume control.

Television Interference (See also Chap. 17)

Interference with the reception of television signals usually presents a more difficult problem than interforence with a.m. broadeasting. In 13 Cl cases the interference almost always can be attributed to deficient selectivity or spurious responses in the boc, receiver. While similar deficiencies exist in many television receivers, it is also true that amateur transmitters generate harmonies that fall inside many or all television
channels. These spurious radiations cause interference that ordinarily cannot be eliminated by anything that may be done at the receiver, so must be prevented at the transmitter itself.

The over-all situation is further complicated by the fact that television broadcasting is in three distinct bands, two in the v.h.f. region and one in the u.h.f.

V.H.F. Television

For the amateur who does most of his transmitting on frequencies below 30 Me . the TV hand of principal interest is the low v.h.f. band bet ween 54 and 88 Mc. If harmonic radiation can be reduced to the point where no interferenee is caused to Channels 2 to 6 , inclusive, it is almost certain that any harmonic troubles with chamels above 174 Mc, will disappear also.

The relationship between the v.h.f. television channels and harmonies of amateur bands from 14 through 28 Me. is shown in Fig. 23-3. Itarmonies of the 7 - and 3.5-Mc. bands are not shown because they fall in every television channel. Ilowever, the hammies above 5t Mc. from these bands are of such high order that they are usually rather low in amplitude, although they may be strong enough to interfere if the television receiver is quite close to the amateur transmitter. Low-ortor harmonics - up to about the sixth - are usually the most difficult to climinate.

Of the amateur v.h.f. bands, only 50 Me. will have harmonies falling in a v.h.f. television channel (channels 11, 12 and 13). However, a transmitter for any amateur vih.f. band may eauso interference if it has multiplior stages either operating in or having harmonies in one or more of the v.h.f. TV channels. The r.f. energy on such frequencies can be radiated directly from the transmitting circuits or coupled by stray means to the transmitting antenna.

Frequency Effects

The degree to which transmitter harmonics or other undesired radiation artually in the TV channel must be suppressed depends principally on two factors, the strength of the TV sig-
nal on the channel or channels affected, and the relationship between the frequeney of the spurious radiation and the frequencies of the TV picture and sound carriers within the channel. If the TV signal is very strong, interference can be climinated by comparatively simple methods. However, if the TV sigual is very weak, as in "fringe" areas where the received picture is visibly degraded be the appearance of set noise or "snow" on the screen, it may be necessary to go to extreme measures.

In either case the intensity of the interference depends very greatly on the exact frequency of the interfering signal. Fig. $2: 3-4$ shows the placement of the picture and sound carriers in the standard TV channel. In Channel 2, for example, the picture carrier frequency is $5 t+1.25=$ 55.25 Mc . and the sound carrier frequency is

Fig. 23-3-Relationship of amateur-band harmonics to v.h.f. TV channels. Harmonic interference from transmitters operating below 30 Mc . is most likely to be serious in

Fig. 23-4 - Location of picture and sound carriers in a monochrome television channel, and relative intensity of interference as the location of the interfering signal within the channel is varied without changing its strength. The three regions are not actually sharply defined as shown in this drawing, but merge into one another gradually.
$60-0.25=59.75 \mathrm{Mc}$. The second harmonic of $28,010 \mathrm{kc}$. $\mathbf{5 6}, 020 \mathrm{kc}$. or 56.02 Mc .) falls $56.02-$ $54=2.02 \mathrm{Mc}$. above the low edge of the channel and is in the region marked "Severe" in ligg $23-4$. On the other hand, the second harmonie of $29,500 \mathrm{kc}$. $(59,000 \mathrm{kc}$. or 59 Mc .) is $59-5 t=5$ Mc. from the low edge of the channel and falls in the region marked "Mild." Interference at this frequency has to be ahout 100 times as strong as at $56,020 \mathrm{kc}$. to cause effects of equal intensity. Thus an operating frequency that puts a harmonic near the picture carrier requires about 40 db . more harmonic suppression in order to avoil interference, as compared with an operating frequency that puts the harmonic near the upper edge of the channel.

For a region of 100 kc . or so either side of the sound carrier there is another "Severe" region where a spurious radiation will interfere with rereption of the sound program, and this region also should be avoided. In general, a signal of intensity equal to that of the pieture carrice will not cause noticeable interference if its frequency is in the "Mild" region shown in Fig. 23-4, but the same intensity in the "Severe" region will utterly destroy the pieture.

Interference Patterns

The visible effects of interference vary with the type and intensity of the interference. Complete "blackout," where the picture and sound disappear completely, leaving the screen dark, occurs only when the transmitter and receiver are quite close together. Strong interference ordinarily causes the picture to be broken up, leaving a jumble of light and dark lines, or turns the picture "negative" - the normally white parts of the picture turn black and the normally black

Fig. 23-5-"Cross-hatching," caused by the beat between the picture corrier ond on interfering signol inside the TV chonnel.
parts turn white. "Cross-hatching" - diagonal bars or lines in the picture - accompanies the latter, usually, and also represents the most common type of less-severe interference. The bars are the result of the beat between the harmonic frequency and the picture carrier frequency. They are broad and relatively few in number if the beat frequency is comparatively low - near the picture carrier - and are numerous and very fine if the beat frequency is very high - toward the upper end of the chamnel. Typical crosshatching is shown in Fig. 2:3-5. If the frequency falls in the "Mild" region in Fig. 2:3-4 the crosshatching may be so fine as to be visible only on close inspection of the picture, in which case it may simply cause the apparent brightness of the screen to change when the transmitter carrier is thrown on and off

Whether or not cross-hatching is visible, an amplitude-modulated transmitter may cause

Fig. 23-6-"Sound bars" or "modulation bars" accompanying amplitude modulotion of an interfering signal. in this case the interfering carrier is strong enough to destroy the picture, but in mild cases the picture is visible through the horizontal bars. Sound bars may occompany modulatiun even though the unmoduluted carrier gives no visible cross-hatching.
"sound bars" in the picture. These look about as shown in Fig. 2:3-6. They result from the variations in the intensity of the interfering signal when modulated. Under most circumstances modulation bars will not occur if the amateur transmitter is frequeney- or phase-modulated. With these types of modulation the cross-hatching will "wiggle" from side to side with the modulation.

Wixeept in the more severe cases, there is seldom any effect on the sound reception when interference shows in the picture, unless the frequency is quite close to the sound carrier. In the latter

Reducing Harmonic Generation

event the sound may be interfered with even though the picture is clean.

IR ferenee to Fig. 2:3-3 will show whether or not harmonies of the frequency in use will fall in any television channels that can be recrived in the locality. It should be kept in mind that not only harmonics of the final frequency may interfere. but also harmonies of any frequencios that may be present in buffer or frequeney-multiplier stages. In the case of $14-\mathrm{Mr}$. transmitters, fre-quener-multiplying combinations that require a doubler or tripler stage to operate on a frequency actually in a low-hand v.h.f. chamel in use in the locality should be avoided

Harmonic Suppression

Effective harmonie suppression has three separate phases:

1) Reducing the amplitude of harmonics generated in the transmitter. This is a matter of eircuit design and operating conditions.
2) Preventing stray radiation from the transmitter and from associated wiring. This requires adequate shielding and filtering of all circuits and leads from which radiation can take place.
3) Preventing harmonics from being fed into the antenna.

It is impossible to build a transmit ter that will not generate some harmonics, but it is obviously advantageous to reduce their strength, by circuit design and choice of operating conditions, by as large a fuctor as possible before attempting to prevent them from being radiated. Harmonic radiation from the transmitter itself or from its assoriated wiring obviously will cause interference just as readily as ratiation from the antema, so measures taken to prevent harmonics from reaching the antenna will not reduce TVI if the transmitter itself is radiating harmonics. But once it has been found that the transmitter itself is free from harmonir radiation, devices for preventing harmonics from reaching the antenna can be expected to produce results.

REDUCING HARMONIC GENERATION

Since reasonably efficient operation of r.f. power amplifiers always is accompanied by harmonic generation, good judgment calls for operating all frequencer-multiplier stages at a very low power level - plate voltages not exreerling 250 or 300 . When the final output frequency is reached, it is desirable to use as few stages as possible in building up to the final output power level, and to use tubes that require a minimum of driving power.

Circuit Design and Layout

Harmonic currents of considerable amplitude flow in both the grid and plate circuits of r.f. power amplifiers, but they will do relatively little harm if they can be effectively bypassed to the cathode of the tube. Fig. 23-7 shows the paths followed by harmonic currents in an amplifier
circuit ; because of the high reactance of the tank coil there is little harmonic current in it, so the harmonic; currents simply flow through the tank raparitor, the plate (or grid) blocking capacitor, and the tube caparitances. The lengths of the leads forming these paths is of great importance, since the indurtance in this circuit will resonate with the tube caparitance at some frequency in the v.h.f. range (the tank and blocking caparitances usually are so large compared with the tube caparitance that they have little effect on the resonant frequency). If such a resonance happens to ocrur at or near the same frequency as one of the transmitter harmonics, the effect is just the same as though a harmonic tank circuit had lreen deliberately introduced; the harmonic at that frequency will be tremendonsly increased in amplitude.

Fig. 23-7-A v.h.f. resonant circuit is formed by the fube capacitance and the leads through the tank and blocking capacitors. Regular tank coils are not shown, since they have little effect on such resonances. C_{1} is the grid tuning capacitor and C_{2} is the plate funing capacitor, C_{3} and C_{4} are the grid and plate blocking or bypass capacitors, respectively.

Such resonances are unavoidable, but by keeping the path from plate to cathode and from grid to cathode as short as is physically possible, the resonant freguency usually can be raised above 100 Mc . in amplifiers of modium power. This puts it between the two groups of television channels.

It is easier to place grid-circuit v.h.f. resonances where they will do no harm when the amplifier is link-coupled to the driver stage, since this gencrally permits shorter leads and more favorable conditions for bypassing the harmonies than is the case with capacitive coupling. Link coupling also reduces the coupling between the driver and amplifier at harmonic frequencies, thus preventing driver harmonics from being amplified.

The industance of leads from the tube to the tank capacitor can be reduced not only by shortening but loy using flat strip instead of wire conductors. It is also better to use the chassis as the return from the bocking capacitor or tuned cirenit to cathode, since a chassis path will have less inductance than almost any other form of connection.

The v.h.f. resonance points in amplifier tank circuits can be found by coupling a grid-dip meter covering the 50-250 Mc. range to the grid and plate leads. If a resonance is found in or near a TV chamel, methods such as those described above should be used to move it well out of the TV range. The grid-dip, meter also should be used to check for v.h.f. resonances in the tank coils, because coils made for 14 Mc . and below usually will show such resonances. In making the check, disconnect the coil entirely from the transmitter
and move the grid-dip meter coil along it while exploring for a dip in the $5 \mathbf{4}-88 \mathrm{Mc}$. band. If a resonance falls in a TV channcl that is in use in the locality, changing the number of turns will move it to a less-troublesome frequency.

Operating Conditions

Grid bias and grid current have an important effect on the harmonic content of the r.f. currents in both the grid and plate circuits. In general, harmonic output increases as the grid bias and grid current are increased, but this is not necessarily true of a particular harmonic. The third and higher harmonies, especially, will go through fluctuations in amplitude as the grid current is increased, and sometimes a rather high value of grid current will minimize one harmonic as compared with a low value. This characteristic can be used to advantage where a particular harmonic is causing interference, remembering that the operating conditions that minimize one harmonis, may greatly increase another.

For equal operating conditions, there is little or no difference between single-ended and pushpull amplifiers in respect to harmonic generation. l'ush-pull amplifiers are frequently trouble-makers on even harmonies because with such amplifiers the even-harmonic voltages are in phase at the ends of the tank circuit and hence appear with equal amplitude across the whole tank coil, if the center of the coil is not grounded. Under such circumstances the even harmonies can be coupled to the output circuit through stray capacitance between the tank and coupling coils. This does not occur in a single-ended amplifier having an inductively coupled tank, if the coupling coil is placed at the cold end, or with a pi-network tank.

Harmonic Traps

If a harmonic in only one TV channel is particularly bothersome - frequently the case when the transmitter operates on 28 Mc . - a trap tuned to the harmonic frequency may be installed in the plate lead as shown in Fig. 23-8. At the harmonic frequency the trap represents a very high impedance and hence reduces the amplitude of the harmonic current flowing through the tank circuit. In the push-pull cireuit both traps have the same constants. The L / C ratio is not critical but a high- C circuit usually will have least effect on the performance of the plate circuit at the normal operating frequency.

Since there is a considerable harmonic voltage across the trap, radiation may oceur from the trap unless the transmitter is well shielded. Traps should be placed so that there is no coupling between them and the amplifier tank circuit.

A trap is a highly selective device and so is useful only over a small range of frequencies. A second- or third-harmonic trap on a $28-M c$. tank circuit usually will not be effective over more than 50 kc . or so at the fumdamental frequency, depending on how serious the interference is without the trap. Because they are critical of adjustment, it is better to prevent TVI by other means, if possible, and use traps only as a last resort.

Fig. 23-8-Harmonic traps in an amplifier plate circuit. L and C should resonate of the frequency of the harmonic to be suppressed. C may be a 25 - to $50-\mu \mu \mathrm{f}$. midget, and L usually consists of 3 to 6 turns about $1 / 2$ inch in diameter for Channels 2 through 6. The inductance should be adjusted so that the trap resonates at about half capacitance of C before being installed in the transmitter. The frequency may be checked with a grid-dip meter. When in place, the trap should be adjusted for minimum interference to the TV picture.

PREVENTING RADIATION FROM THE TRANSMITTER

The extent to which interference will be caused by direet radiation of spurious signals depends on the operating frequency, the transmitter power level, the strength of the television signal, and the distance between the transmitter and TV receiver. Transmitter radiation can be a very serious problem if the TV signal is weak, if the TV receiver and amateur transmitter are close together, and if the transmitter is operated with high power.

Shielding

Direct radiation from the transmitter circuits and components can be prevented by proper shielding. To be effective, a shield must completely enclose the circuits and parts and must have no openings that will permit r.f. energy to escape. Unfortunately, ordinary metal boxes and cabinets do not provide good shiehling, since such openings as louvers, lids, and holes for rumning in connections allow far too much leakage.

A primary requisite for good shielding is that all joints must make a good electrical connection along their entire length. A small slit or crack will let out a surprising amount of r.f. energy; so will ventilating louvers and large holes such as those used for mounting meters. On the other hand, small holes do not impair the shielding very greatly, and a limited number of ventilating

Preventing Radiation

holes may be used if they are small - not over $1 / 4$ inch in diameter. Also, wire screen makes quite effective shielding if the wires make good electrical connection at each crossover. Perforated aluminum such as the "do-it-yourself" sold at hardware stores also is good, although not very strong mechanically. If perforated material is used, choose the variety with the smallest openings. The leakage through large openings can be very much reduced by covering such openings with screening or perforated aluminum, well bonded to all edges of the opening.

The intensity of r.f. fields about coils, capacitors, tubes and wiring decreases very rapidly with distance, so shiehding is more effective, from a practical standpoint, if the components and wiring are not too close to it. It is advisable to have a separation of scveral inches, if possible, between "hot" points in the circuit and the nearest shielding.

For a given thickness of metal, the greater the conductivity the better the shiehding. Copper is best, with aluminum, brass and steel following in that order. llowever, if the thickness is adequate for structural purposes (over 0.02 inch) and the shield and a "hot" point in the circuit are not in close proximity, any of these metals will be satisfartory. Greater separation should be used with steel shichling than with the other materials not only because it is consiterably poorer as a shield but also because it will catuse greater losses in near-by circuits than would copper or aluminum at the same distance. Wire sereen or perforated metal used as a shield should also be kept at some distance from high-voltage or high-current r.f. points, since there is considerably more leakage through the mesh than through solid metal.

Where two pieces of metal join, as in forming a corner, they should overlap at least a half inch and be fastened together firmly with screws or bolts spaced at close-enough intervals to maintain firm contact all along the joint. The contact surfaces should be clean before joining, and should be checked occasionatly - especially steel, which is almost certain to rust after a period of time.

The leakage through a given size of aperture in shiedding increases with frequency, so such points as good continuous contact, screening of large holes, and so on, become even more important when the radiation wo suppressed is in the high band - 174-216 Mc. Hence 50- and 144Mc. transmitters, which in general will have frequency-multiplier harmonics of relatively bigh intensity in this rogion, rectuire special attention in this respeet if the possibility of interfering with a channel received locally exists.

Lead Treatment

Wen very good shichding can be made completely useless when connections are run to external power supplies and other equipment from the cirenits inside the shidd. Wevery surh eonductor leaving the shielding forms a path for the escape of r.f., which is then radiated by the con-
necting wires. Hence a step that is essential in every case is to prevent harmonic currents from flowing on the leads leaving the shielded enclosure.

Harmonic currents always flow on the d.c. or a.c. leads connecting to the tube circuits. A very effective means of preventing such currents from being coupled into other wiring, and one that provides desirable bypassing as well, is to use shiclded wire for all such leads, maintaining the shielding from the point where the lead connects to the tube or r.f. circuit right through to the point where it leaves the chassis. The shield braid should be grounded to the chassis at both ends and at frequent intervals along the path.

Good bypassing of shielded leads also is essential. Bearing in mind that the shield braid about the conductor confincs the harmonic currents to the inside of the shichled wire, the object of bypassing is to prevent their escape. Figs. 23-9 and 2:3-10 show the proper way to bypass. The smalltype $0.001-\mu \mathrm{f}$. ceramic disk capacitor, when mounted on the end of the shielded wire as shown in Fig. 23-9, actually forms a series-resonant circuit in the $54-88-$ Mc, range and thus represents practically a short-circuit for low-band TV harmonics. The exposed wire to the comnection terminal should be kept as short as is physically possible, to prevent any possible harmonic pickup exterior to the shielded wiring. Disk capacitors of this capacitance are available in several voltage ratings up to 3000 volts. loor higher voltages, the maximum capacitance available is approximately 50k) $\mu \mu$ f., which is large enough for good bypassing of harmonics. Alternatively, mica capacitors may be used as shown in lig. 23-10, mounting the capacitor flat against the chassis and grounding the end of the shield braid directly to chassis, keeping the exposed part as short as possible. Either 0.001- $\mu \mathrm{f}$. or $470-\mu \mu \mathrm{l}$, ($500 \mu \mu \mathrm{f}$.) capacitors should be used. The larger capacitance is series-resonant in Chamel 2 and the smaller in Chamel 6.

Fig. 23.9-Proper method of bypassing the end of a shielded lead using disk ceramic capacitor. The 0.001 . μ f. size should be used for 1600 volts or less; $500 \mu \mu \mathrm{f}$. at higher voltages. The leads are wrapped around the inner and outer conductors and soldered, so that the lead length is negligible. This photograph is about four times actual size.

Fig. 23-10-Bypassing with a mica capacitor the end of a high-voltage lead. The end of the shield braid is soldered to a lug fastened to the chassis directly underneath. The other ferminal of the capocitor is similarly bolted directly to the chassis. When the bypass is used at a terminal connection block the "hot" lead should be soldered directly to the terminal, if possible, but in any event cannected to it by a very short lead.

These bypasses are essential at the connectionblock terminals, and desirable at the tube ends of the leads also. Installed as shown with shielded wiring, they have been found to be so effective that there is usually no need for further harmonie filtering. However, if a test shows that additional filtering is required, the arrangement shown in Fig. 2:3-11 may be used. Such an r.f. filter should be installed at the tube end of the shielded lead, and if more than one circuit is filtered care should be taken to keep the r.f. chokes separated from each other and so oriented as to minimize coupling between them. This is necessary for preventing harmonics present in one circuit from being coupled into another.

In difficult cases involving Channels 7 to 13 i.e., close proximity between the transmitter and receiver, and a weak TV signal - additional leadfiltering measures may be needed to prevent radiation of interfering signals by 50 - and $144-$. He . transmitters. A recommended method is shown in Fig. 23-12. It uses a shielded lead bypassed with a ceramic disk as described above, with the addition of a low-inductance feed-through type capacitor and a small r.f. choke, the capacitor being used as a terminal for the external connection. For voltages above 400, a capacitor of compact construction (as indicated in the caption) should be used, mounted so that there is a very minimum of exposed lead, inside the chassis, from the capacitor to the connection terminal.

As an alternative to the series-resonant bypassing described above, feed-through type capacitors such as the Sprague "Hypass" type may
be used as terminals for external connections. The ideal method of installation is to mount them so they protrude through the chassis, with thorough bonding to the chassis all around the hole in whieh the capacitor is mounted. The principle is illustrated in Fig. 23-13.

Meters that are mounted in an r.f. unit should be enclosed in shielding covers, the connections being made will shiclded wire with each lead bypassed as described above. The shield braid should be grounded to the panel or chassis immediately outside the meter shield, as indicated in Fig. 23-14. A bypass may also be connected across the meter terminals, principally to prevent any fundamental current that may be present from flowing through the meteritself. As an alternative to individual meter shielding the meters may be mounted entirely belind the panel, and the panel holes needed for observation may be covered with wire screen that is carefully bonded to the panel all around the hole.

Care should be used in the selection of shielded wire for transmitter use. Not only should the insulation be conservatively rated for the d.c. volt-

Fig. 23-12-Additional lead filfering far harmonics or other spurious frequencies in the high v.h.f. TV band (174-216 Mc.).
$C_{1}-0.001-\mu \mathrm{f}$. disk ceramic.
$\mathrm{C}_{2}-0.001-\mu \mathrm{f}$, feed-through bypass (Erie Style 326). (For 500-2000-volt lead, substitute Plasticon Glass mike, LSG-251, for C_{2}.)
RFC-14 inches No. 26 enamel close-waund on $3 / 6$-inch diam. form or resistor.
age in use, but the insulation should be of material that will not easily deteriorate in soldering. The r.f. characteristics of the wire are not especially important, except that the attenuation of harmonics in the wire itself will be greater if the

Fig. 23-11-Additional r.f. filtering of supply leads may be required in regions where the TV signal is very weak. The r.f. choke should be physically small, and may consist of a 1 -inch winding of Na. 26 enameled wire on a $1 / 4$-inch form, close-wound. Manufacfured single-layer chokes having an inductance of a few microhenrys also may be used.

Preventing Radiation

Fig. 23-13-The best method of using the "Hypass" type feed-through capacitor. Capacitances of 0.01 to 0.1μ f. are satisfactory. Capacitors of this type are useful for high-current circuits, such as filament and 115 -valt leads, as a substitute for the r.f. choke shown in Fig. 23.11,
in cases where additional lead filfering is needed.
insulating material has high losses at radio frequencies; in other words, wire intended for use at d.c. and low frequencies is preferable to cables designed expressly for carrying r.f. The attenuation also will increase with the length of the wire: in general, it is better to make the leads as long as circumstances permit rather than to follow the more usual practice of using no more lead than is actually necessary. Where wires cross or run parallel, the shields should be spot-soldered together and commected to the chassis. For high voltages, automobile ignition cable covered with shielding braid is recommended.
l'roper shielding of the transmitter requires that the r.f. circuits be shielded entirely from the external connecting leads. A situation such as is shown in Fig. 23-1;, where the leads in the r.f. chassis have been shielded and properly filtered but the chassis is mounted in a large shield, simply invites the harmonic currents to travel over the chassis and on out over the leads outside the chassis. The shielding about the r.f. eircuits should make complete contact with the chassis

Fig. 23.14-Meter shielding and bypassing. It is essential to shield the meter mounting hole since the meter will carry r.f. through it to be radiated. Suitable shields can be made from 21/2- or 3 -inch diameter metal cans or small metal chassis boxes.
on which the parts are mounted.

Checking Transmitter Radiation

A check for transmitter radiation always should be made before attempting to use low-pass filters or other devices for preventing harmonics from reaching the antenna system. The only really satisfactory indicating instrument is a television recciver. In regions where the TV signal is strong an indicating wavemeter such as one having a crystal or tube detector may be useful; if it is possible to get any indication at all from harmonics either on supply leads or around the transmitter itself, the harmonics are probably strong enough to cause interference. Ilowever, the absence of any such indication does not mean that harmonie interference will not be caused. If the techniques of shielding and lead filtering described in the

Fig. 23-15-A metal cabinet can be an adequate shield, but there will still be radiation if the leads inside can pick up r.f. from the transmitting circuits.
preceding section are followed, the harmonic intensity on any external leads should be far below what any such instruments can detect.

Radiation checks should be made with the transmitter delivering full power into a dummy antenna, such as an incandescent lamp of suitable power rating, preferably installed inside the shielded enclosure. If the dummy must be external, it is desirable to connect it through a coaxmatehing circuit such as is shown in lig. 23-16. Shielding the dummy antenna circuit is also desirable, although it is not always necessary.

Nake the radiation test on all frequencies that are to be used in transmitting, and note whether or not interference patterns show in the received picture. (These tests must be made while a TV signal is being received, since the beat patterns will not be formed if the TV picture carrier is not prosent.) If interference exists, its source can be detected by grasping the various external leads (by the insulation, not the live wire!) or bringing the hand near meter faces, louvers, and other possible points where harmonic energy might escape

23 - BCI AND TVI

Fig. 23-16-Dummy-antenno circuit for checking hormonic radiation from the transmitter and leads. The matching circuit helps prevent harmonics in the output of the transmitter from flowing back over the transmitter itself, which may occur if the lamp load is simply connected to the output coil of the final amplifier. See trans-mission-line chapter for details of the matching circuit. Tuning must be adjusted by cut-and-try, as the bridge method described in the transmission-line chapter will not work with lamp loads because of the change in resistance when the lamps are hot.
from the transmitter. If any of these tests cause a change - not necossarily an increase - in the intensity of the interference, the presence of harmonies at that point is indicated. The location of such "hot" spots usually will point the way to the remedy. If the TV receiver and the transmitter can be operated side-by-side, a length of wire connerted to one antenna terminal on the receiver can lee used as a probe to go over the tranmitter enclosure and external leads. This device will very quickly expose the spots from which serious leakage is taking place.

As in final test, comect the tramsmitting antemat or its transmission line terminals to the outside of the transmitter shichling. Interference created when this test is applied indicates that weak currents are on the outside of the shied and can be conducted to the antemat when the normal antennat connections are used. Currents of this nature represent interference that can be conducted over low-pass filters, ete., and which therefore cannot be eliminated ly such filters.

PREVENTING HARMONICS FROM REACHING THE ANTENNA

The third and last step in reducing harmonie TVI is to keep the spurious energ. generated in or passed through the final stage from traveling over the transmission line to the antenna. It is seldom worthwhile even to attempt this until the radiation from the transmitter and its comecting leads has been reduced to the point where, with the transmitter delivering full power into a dummy antenna, it has been determined by actual testing with a television receiver that the radiation is below the level that can cause interference. If the dummy antenna test shows enough radiation to be seen in a TV picture, it is a practical certainty that harmonies will be coupled to the antema system no matter what preventive measures are taken.

In inductively coupled output systems, some harmonic energy will be transferred from the final amplifier through the mutual inductance between the tank coil and the output coupling coil. Ilarmonies of the output frequeney transferred in this way can be greatly reduced by providing
sufficient selectivity between the final tank and the transmission line. A good deal of selectivits, amounting to 20 to 30 db . reduction of the scond harmorite and much higher reduction of higher-order hamonies, is furnished by a matehing eircuit of the type shown in Fig. 23-16 and described in the chapter on transmission limes. An "antema coupier" is therefore a worthwhile addition to the transmitter.

In $50-$ and $14+$-Mc. transmitters, particularly, harmonies not direetly asson iated with the out put frequency - such as those gererated in low-frequeney early stages of the tramsmittor - may get coupled to the antema by stray means. For example, a $1+1$-. If. transmitter might have an oscillator or frequency multiplier at 48 Me., followed by a tripler to $14+$ Me. Some of the 48-Mc. energy will appear in the plate circuit of the tripler, and if passed on to the grid of the final amplifier will apperr as a 48 - Me. modulation on the $14-$ Mc. signall. This will cause a spurious signal at 192 Me., which is in the high TV b:und, and the solertivity of the tank cirmits may not be sufficient to prevent its being coupled to the antenna. Spurious signals of this type can be reduced by using link coupling between the driver stage and final amplifier (and between earlier stages as well) in addition to the suppression afforded by using an antema coupler.

Capacitive Coupling

The upper drawing in Fig. 2:3-17 shows a parallel-conductor link as it might be used to couple into a parallel-conductor line through a matching circuit. Inasmuch as a coil is a sizable metallic object, there is capacitance between the final tank coil and its associated link coils and betwen the matching-circuit coil and its link. Finergy coupled through these capacitanes travels over the link circuit and the tranmission line as though these were merely single conductors. The tumed circuits simply act as masses of metal and offer no seleetivity at all for capaci-tively-coupled energy. Although the actual (eaparitances are small. they offer a good coupling medium for frequencies in the v.h.f. range.

Capacitive coupling can be reduced by coupling

Fig. 23-17-The stray capacitive coupling between coils in the upper circuit leads to the equivalent circuit shown below, for v.h.f. harmonics.

Keeping Harmonics From the Antenna

Fig. 23-18-Methods of coupling and grounding link circuits to reduce capocitive coupling between the tank and link coils. Where the link is wound over one end of the tank coil the side toward the hot end of the tank should be grounded, as shown af B.

to a "cold" point on the tank coil - the end connected to ground or cathode in a single-ended stage. In push-pull cireuits having a split-stator capacitor with the rotor grounded for r.f., all parts of the tank coil are "hot" at even harmonics, but the center of the eoil is "eold" at the fundamental and odd harmonies. If the center of the tank coil, rather than the rotor of the tank capacitor, is grounded through a bypass capacitor the center of the coil is "cold" at all frequencies, but this arrangement is not very desirable because it causes the harmonic currents to flow through the coil rather than the tank capacitor and this inereases the harmonic transfer by pure inductive coupling.

With either single-ended or balanced tank eircuits the coupling coil should be grounded to the chassis by a short, direct comection as shown in Fig. 23-18. If the coil feeds a balaneed line or link, it is preferable to ground its center, but if it feeds a cous line or link one side maty be grounded. Conxial output is much proferable to balanced output, because the harmonies have to stay inside a properly installed coax system and tend to be attemuated by the cable before raching the antennic coupler.

At high frequencies - and possibly as low as 14 Mc. - capacitive coupling can he greatly reduced by using a shielded coupling coil as shown in Fig. 23-19. The inner conductor of a length of coaxial cable is used to form an on-turn coupling coil. The outer conductor serves as an open-cireuited shield around the turn, the shield being grounded to the chassis. The shielding has no effect on the inductive coupling. Because this construction is suitable only for one turn, the coil is not well adapted for use on the lower frequencies where many turns are required for good coupling. Shimfled coupling coils having a lauger number of turns are available commercially. A shielded coil is particularly useful with push-pull amplifiers when the suppression of even harmonics is important.

A shielded coupling coil or coaxial output will not prevent stray capacitive coupling to the antomna if harmonie currents can flow over the outside of the coas line. In Fig. 23-20, the arrangement at either A or C will allow r.f. to flow over the outside of the cable to the antenna system. The proper way to use coaxial cable is to shield the transmitter completely, as shown at 13 , and make sure that the outer eonductor of the cable is a continuation of the transmitter shielding. This prevents r.f. inside the tramsmitter from getting out by any path except the inside of the cable. llarmonies flowing through a coax line can be stopped from reaching the antenna system by an

Fig. 23-19-Shielded coupling coil constructed from coaxial cable. The smaller sizes of cable such as RG-59/U are most convenient when the coil diameter is 3 inches or less, becouse of greater flexibility. For larger coils RG-8/U or RG-1I/U can be used.
(A)

(B)

(c)

Fig. 23-20-Right (B) and wrong $(A$ and $C)$ ways to connect a coaxial line to the transmitter. In \mathbf{A} or C , harmonic energy coupled by stray capacitance to the outside of the cable will flow without hindrance to the antenna system. In B the energy cannot leave the shield and can flow out only through, not over, the cable.
antenna coupler or by a iow-pass filter installed in the line.

Low-Pass Filters

A low-pass filter properly installed in a coaxial line, feeding either a matching circuit (antenna coupler) or feeding the antenna directly, will provide very great attenuation of harmoniss. When the main transmission line is of the parallel-conductor type, the conx-roupled matching-circuit arrangenent is highly recommended as it means for using at coax low-pass filter.

A properly designed low-pass filter will not introduce appreciable power loss at the fundamental frequeney if the coaxial line in which it is inserted is terminated so that the s.w.r. is low. (The s.w.r. can easily be measured by means of a simple bridge as described in the chapters on measurements and transmission lines.) Such a filter has the property of passing without loss all frequencies below its "cut-off" frecpuency, but simultaneously has large attenuation for all frequencies alove the cut-off frequency.

Low-pass filters of simple and inexpensive construction for use with transmitters operating below 30 Mc. are shown in Figs. 2:3-21 and 2:3-23. The former is designed to use mica capacitors of readily avaihable capacitance values, for compactness and dow cost. Both use the same circuit, Fig. $23-22$, the only difference being in the L and C values. Technically, they are three-section filters having two full constant- k sections and two m-derived terminating half-sections, and their attenuation in the $5.4-88-\mathrm{Mc}$. range varies from over 50 to nearly 70 db ., depending on the frequency and the particular set of values used. Ahove $17 i^{\circ}$. Mc, the theoretical attenuation is better than 85 db ., but will depend somewhat

Fig. 23-21-An inexpensive low-pass filter using silvermica postoge-stamp copacitors. The box is 02 by 4 by 6 aluminum chossis. Aluminum shields, bent ond folded at the sides ond bottom for fastening to the chossis, form shields between the filter sections. The diogonal orrangement of the shields provides extra room for the coils and makes it easier to fit the shields in the box, since bending to exact dimensions is not essential. The bottom plote, made from sheet aluminum, extends a holf inch beyond the ends of the chassis ond is provided with mounting holes in the extensions. It is held on the chossis with sheetmefal screws.

Fig. 23-22-Low-poss filter circuit for ottenuating harmonics in the TV bands. J_{1} and J_{2} ore chossis-type coaxiol connectors. In the toble below the letters refer to the following:
A-Using 100 - ond $70 . \mu \mu \mathrm{f}, 500$-volt silver mico capocitors in porollel for C_{2} and C_{3}.
B-Using 70 - ond $50-\mu \mu \mathrm{f}$. silver mico copocitors in parallel for C_{2} and C_{3}.
C-Using 100- and $50-\mu \mu$ f. mica copocitors, 1200 -volt (case-style CM-45) in porallel for C_{2} and C_{3}.
D and E-Using voriable oir copocitors, 500. to 1000. volt rating, adjusted to volues given (see meosurements chapler for doto on measuring capocitance).

	A	B	c	D	E	
Z_{0}	52	75	52	52	75	ohms
f_{c}	36	35.5	41	40	40	Mc.
f_{∞}	44.4	47	54	50	50	Mc.
f_{1}	25.5	25.2	29	28.3	28.3	Mc.
f_{2}	32.5	31.8	37.5	36.1	36.1	Mc.
$\mathrm{C}_{1}, \mathrm{C}_{4}$	50	40	50	46	32	$\mu \mu \mathrm{f}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}$	170	120	150	154	106	$\mu \mu \mathrm{f}$.
L_{1}, L_{5}	$51 / 2$	6	4	5	61/2	furns*
L_{2}, L_{4}	8	11^{1}	7	7	$91 / 2$	turns*
43	9	13	8	81/2	$11 \frac{1}{2}$	turns*

*No. 12 or No. 14 wire, $1 / 2$-inch inside diameter, 8 turns per inch.
${ }^{1}$ A 9 -turn coil whith closer furn spacing to give the same inductonce is shown in Fig. 23-21.
on internal resonant conditions associated principally with the lead lengths to the ripacitors These leads shouhd be kept as short as is physically possible.

The power that filters using mica capucitors can handle safely is determined by the voltage and current limitations of the capacitors. The power capacity is least at the highest frequency. The unit using postage-stamp silver mica cuparitors is camable of handling approximately 50 wats in the 28-Mc. band, when working into a prop-arly-mat ched line, but is good for about 150 wat ts at 21 Mc . and 300 watts at $1+\mathrm{Mc}$. and lower frequencies. A filter with larger mica capacitors (case type (. $1-45$) will (arry about 250 watts safely at 28 Me., this rating increasing to 500 watts at 21 Mc, and a kilowatt at 14 Mc. and lower. If there is an appreciable mismatch between the filter and the line into which it works, these ratings will be considerably decreased, so in order to avoid capacit or failure it is highly essential that the line on the output side of the filter be carefully matched by its load. This can be done with an s.w.r. bridge,

Fig. 23-23-Law-pass filter using variable air capacitars. The bax is a 2 by 5 by 7 aluminum chassis, fitted with a battam plate of similar canstruction ta the ane used in Fig. 23-21.
and the matching is easy to control if the line from the filter terminates in a matching circuit of the type described in the chapter on transmission lines

The power capacity of these filters can be increased considerably by substituting r.f. type fixed capacitors (such as the Centrahab 850 series) or variable air capacitors, in which event the power capability will be such as to handle the maximum amateur power on any band. The construction can be modified to accommodate variable air capacitors as shown in Fig. 2:3-23.
Using fixed capacitors of standard tolerances, there should be little difficulty in getting proper filter operation. A grid-dip meter with an accurate calibration should be used for adjustment of the coils. First, wire up the filter without L_{2} and L_{4}. Short-cireuit J_{1} at its inside end with a screwdriver or similar conductor, couple the grid-dip meter to L_{1} and adjust the inductance of L_{1}, by varying the turn spacing, until the eireuit resonatos at f_{∞} as given in the table. Do the same thing at the other end of the filter with L_{5}. Then couple the meter to the circuit formed by L_{3}, ('y and C_{3}, and adjust L_{3} to resonate at the frequency f_{1} as given by the tahle. Then remove L_{3}.

Fig. 23-24 - Low-pass filter for use with 50-Mc. transmitters and 52-ahm line. It uses variable air capacitars adjusted to the proper capacitance values and is suited ta pawers up to a kilawatt.
install L_{2} and L_{4} and adjust L_{2} to make the circuit formed by L_{1}, L_{2}, C_{1} and C_{2} (without the short across f_{1}) resonate at f_{2} as given in the table. Do the same with L_{4} for the circuit formed by L_{4}, L_{5}, C_{3} and C_{4}. Then rephive L_{3} and check with the grid-dip meter at any coil in the filter: a distinct resonance should be found at or very close to the cut-olf frequency, f_{c}. The filter is then ready for use

The filter constants suggested at D and E in Fig. 2:3-22 are based on the optimum design for good impedanec characteristics - that is, with $m=0,6$ in the end sections -- and a cut-olf frequency below the standard i.f. for television receivers (sound carrier at 41.25 Mc .: picture carrier at 45.75 Mc .). This is to avoid possible harmonic interference from 21 Mc . and below to the receiver's intermediate amplifier. The other designs similarly cut off at 41 Me . or below, but m in these cases is neecessarily based on the capacitances available in standard fixed capacitors.

Filters for 50- and 144-Mc. Transmitters

Since a low-pass filter must have a cut-off frequency above the frequency on which the transmitter operates. a filter for a v.h.f. transmitter cannot be designed for attenuation in all television channels. This is no handicap for v.h.f. work but means that the filter will not be effective when used with lower-frequency transmitters, unless it happens that no TV channels in use in the locality fall inside the pass band of the filter.

Fig. 23-24 shows a filter for 52-ohm coax suitable for a 50 - Me. transmitter of any power up to the authorized limit. The circuit diagram is given in Fig. 2:3-25. If the values of inductance and capacitance can be measured (see chapter on measurements) the components can be preset and assembled without further adjust ment. Alternatively, the grid-dip meter method described earlier may be used. The resonant frequencies are:

$\left.\begin{array}{l}L_{1} C_{1}\left(J_{1} \text { shorted, } L_{3} \text { disconnected }\right) \\ L_{5} C_{4}\left(J_{3} \text { shorted, } L_{4} \text { disconnected }\right)\end{array}\right\}$ $L_{3} C_{2} C_{3}$ (L_{2} and L_{4} disconnected) $L_{1} L_{2} C_{1}^{\prime} C_{2}^{\prime}\left(L_{3}\right.$ disconnected) $\}$ $L_{4} L_{5} C_{3} C_{4}$ (L_{3} disconnected) $\}$
 46 Me. 58.5 Mc . The cut-off frequency is approximately 65 Mc .

Fig. 23-25-Circuit diagram of the low-pass filters for 50 - and $144-\mathrm{Mc}$. transmitters. Values on the drawing are for the $50-\mathrm{Mc}$. filter. Partifions are not used in the 144-Mc. unit.
$\mathrm{C}_{1}, \mathrm{C}_{4}-50 \mathrm{Mc.;} 50-\mu \mu \mathrm{f}$. variable, shatt-mounted, set to middle of funing range (Johnson 50L15). 144 Mc.: $11-\mu \mu \mathrm{f}$. ceramic ($10-\mu \mu \mathrm{f}$. usable).
$\mathrm{C}_{2}, \mathrm{C}_{3}-50 \mathrm{Mc}$: $100-\mu \mu \mathrm{f}$. variable, shaft-mounted set with rotor $1 / 4$ inch out of stator (Bud MC-905). 144 Mc.: $38-\mu \mu \mathrm{f}$. stand-off bypass (Erie Style 721A).
50-Mc. coil data:
$L_{1}, L_{5}-31 / 2$ turns $s / 8$ inch long. Top leads $3 / 4$ inch, bottom leads $1 / 4$ inch long
$L_{2}, L_{4}-41 / 2$ furns $5 / 8$ inch long. Leads $1 / 2$ inch long each end.
$\mathrm{L}_{3}-51 / 2$ furns $7 / 8$ inch long. leads 1 inch long each. All $50-\mathrm{Mc}$. coils No. 12 finned, $1 / 2$-inch diam., coil length measured between right-angle bends where leads begin
144-Mc. coil data:
$L_{1}, L_{5}-3$ turns $1 / 4$ inch long. Leads $1 / 4$ inch long each end. $\mathrm{L}_{2}, \mathrm{~L}_{4}-2$ turns $1 / 8$ inch long. leads 1 inch long each end. $\mathrm{L}_{3}-5$ furns $3 / 4$ inch long. Leads $5 / 8$ inch long each end. All 144-Mc. coils No. 18 tinned, $1 / 4$-inch diam., lengths measured as for $50-\mathrm{Mc}$. coils
J_{1}, J_{2}-Coaxial fitting.
The case for the 50 -Mc. filter is a standard aluminum slip-cover type box measuring $31 / 8$ by 13 hy $25 / 8$ inches. The two end capacitors, C_{1} and C_{4}, are mounted with their two stator posts toward the ends of the filter. The two larger units are mounted in the center compartment with their rotor shafts toward the middle. The top leads from eoils L_{1} and L_{5} are wrapped around the stator terminals of C_{1} and C_{4}, and the bottom leads fit directly into the coaxial input and output.
fittings. The outer ends of coils L_{2} and L_{4} are soldered to the coaxial fitting terminals, and their inner ends are soldered to lugs supported on oneinch ceramic stand-off insulators. Leads from the stand-offs go through holes in the partitions to the bottom stator lugs on C_{2} and $C_{3} . L_{3}$ is soldered to the two upper lugs on these two capacitors, thus completing the filter eircuit. Lead lengths for the coils given in the parts list are the total lengths to be left when the winding is completed, including the portions that will be used in soldering operations.
This filter will give high attenuation in Channels 1-6 and all the high-band ehannels, and thus will take care of most of the spurious signals generated in a $50-\mathrm{Me}$. transmitter.

A filter for low-power $1+4-\mathrm{Mc}$. transmitters is shown in Fig. 2:3-26. It is designed for maximum attenuation in the $190-21 . \overline{3}$. Mc. region to suppress the spurious radiations in that range that frequently occur with $1+4-M e$. transmitters, but also has good at tenuation for all frequencies above 170 Mc. Optimum capacitance values are given in Fig. 2:3-25. If possible, several units of the nearest standard values available should be measured and those having values closest to the optimum used. The inductance values are too small to be measured with sufficient aceuracy, so the filter should be adjusted as follows:

First, mount L_{1} and C_{1}, short J_{1} temporarily at its inner terminals, and adjust L_{1} until the combination resonates at 200 Mc . as shown by a griddip meter. Next, remove the short from J_{1} and connect L_{2} and C_{2}, adjusting L_{2} until the eireuit formed by $L_{1} L_{2} C_{1} C_{2}$ resonates at $144 . \mathrm{Me}$. Then disconnect L_{2} and mount L_{3} between C_{2} and C_{3}. Adjust L_{3} until the eireuit $L_{3} C_{2} C_{3}$ resonates at 112 Mc . Next, disconnect L_{3} and follow a similar procedure starting from the other end with L_{5} and C, 4 . Finally, reconnert all coils and a cheek at any point in the filter should show resonanee at 160 Me., the approximate cut-off frequency.

The case for the $1+4-$ Mc. filter is made from Hashing copper and is $11 / 4$ inches square by $71 / 8$ inches long. The main portion of the case is cut from a single piece with the end tabs folded down and soldered to the sides. Flanges are folled over at the bottom, and a cover is made to slip over these.

Filter Installation

In order to give the harmonic atteuuation of

Fig. 23-26-A 52-ohm low-pass filter for 144-Mc. transmitters.

Low-Pass Filters

which it is capable, a low-pass filter must be installed in such a way that all the output of the transmitter flows through it. If harmonic currents are permitted to flow on the outside of the connecting coaxial cables, they will simply flow over the filter and on up to the antenna, and the filter does not have an opportunity to stop them. That is why it is so important to reduce the radiation from the transmitter and its leads to negligible proportions.

Fig. 23-27 shows the proper way to install a filter between a shielded transmitter and a matching circuit. Note that the coas, together with the shields about the transmitter and filter, forms a continuous shield to keep all the r.f. inside. It is thus forced to flow through the filter and the harmonies are attenuated. If there is no harmonie energy left after passing through the filter, shielding from that point on is not necessary; consequently, the matching circuit or antema coupler does not need to be shielded. Ilowever, the antenna-coupler chassis arrangement shown in Fig. 23-27 is desirable because it will tend to prevent fundamental-frequency energy from flowing from the matching circuit back over the transmitter; this helps eliminate feed-back troubles in audio systems.

If the antenna is driven through coaxial line the matching circuit shown in Fig. 23-27 may be omitted. In that case the line goes directly from the filter to the antenna.

When a filter does not seem to give the harmonic attenuation of which it should be capable. the probable reason is that harmonies are bypassing it because of improper installation and inadequate transmitter shiclding, including lead filtering. However, oceasionally there are cases where the circuits formed by the cables and the apparatus to which they connect become resonant at a harmonic frequency. This greatly increases the harmonic output at that frequency. Such troubles can be completely overcome by substituting a slightly different cable length. The most critical length is that connecting the transmitter to the filter. Checking with a grid-dip meter at the final amplifier output coil usually will show whether an unfavorable resonance of this type exists.

SUMMARY

The methods of harmonic elimination outlined in this chapter have been proved beyond doubt to be effective even under highly unfavorable conditions. It must be emphasized once more, however, that the problem must be solved one step at a time, and the procedure must be in logical order. It cannot be done properly without two items of simple equipment: a grid-dip meter and wavemeter covering the TV bands, and a dummy antenna

The proper procedure may be summarized as follows:

1) Take a critical look at the transmitter on
the basis of the design considerations outlined under "Reducing Harmonic Generation".
2) Check all circuits, particularly those conneeted with the final amplifier, with the grid-dip meter to determine whether there are any resonances in the TV bands. If so, rearrange the circuits so the resonances are moved out of the critical freguency region.
3) Connect the transmitter to the dummy antenna and check with the wavemeter for the presence of harmonies on leads and around the trinsmitter enclosure. Seal off the weak spots in the shielding and filter the leads until the wavemoter shows no indication at any harmonic frequency.
4) At this stage, check for interference with a TV receiver. If there is interference, determine the cause by the methods described previously and apply the recommended remedies until the interference disappears.
5) When the transmitter is completely clean on the dummy antenna, connect it to the regular antenna and check for interference on the TV receiver. If the interference is not bad, an antenna coupler or matching circuit installed as previously described should clear it up. Alternatively, a lowpass filter may be used. If neither the antenna coupler nor filter mikes any difference in the interference, the evidence is strong that the interference, at least in part, is being caused by receiver overloading because of the strong funda-mental-frequency field about the TV antenna and receiver. (See later section for identification of fundamental-frequency interference.) A coupler and or filter, installed as described above, will invariably make a difference in the intensity of the interference if the interference is caused by transmitter harmonics alone.
6) If there is still interference after installing

Fig. 23-27-The proper method of installing a low-pass filter between the transmitter and antenna coupler or matching circuit. If the antenna is fed through coax the matching circuit may be omitted but the same construction should be used between the transmitter and filter. The filter should be thoroughly shielded.
the coupler and/or filter, and the evidence shows that it is probably caused by a harmonic, more attenuation is needed. A more elaborate filter may be necessary. IIowever, it is well at this stage to assume that part of the interference may be caused by receiver overloading, and take steps to alleviate such a condition before trying highlyelaborate filters, traps, etc., on the transmitter.

HARMONICS BY RECTIFICATION

Even though the transmitter is completely free from harmonic output it is still possible for interference to occur because of harmonics generated outside the transmitter. These result from rectification of fundamental-frequency currents
induced in conductors in the vieinity of the transmitting antenna. Rectification can take place at any point where two conductors are in poor electrical contaet, a condition that frequently exists in plumbing, downspouting, I3. eables crossing each other, and numerous other places in the ordinary residence. It also can oecur in any exposed vacuum tubes in the station, in power supplies, speeeh efuipment, etc., that may not be enclosed in the shielding about the r.f. circuits. Poor joints anywhere in the antenna system are especially bad, and rectification also may take place in the contacts of antemma ehangeover relays. Anotiner common cause is overloading the front end of the communications receiver when it is used with a separate antennat (which will radiate the harmonics generated in the first tube) for break-in.
Rectification of this sort will not only cause harmonic interference but also is frequently responsible for cross-modulation effects. It can be detected in greater or less degree in most locations, but fortunately the harmonies thus generated are not usually of high amplitude. Ilowever, they can cause considerable interference in the immediate vieinity in fringe areas, especially when operation is in the 28 -Mc. band. The amplitude decreases rapidly with the order of the harmonic, the second and third being the worst. It is ordinarily found that even in cases where destructive interference results from 28-Mc. operation the interference is comparatively mild from 1.1 Mc., and is negligible at still lower frequencies.

Nothing can be done at either the transmitter or reeciver when rectification occurs. The remedy is to find the source and eliminate the poor contact either by separating the conductors or bonding them together. A erystal wavemeter (tuned to the fundamental frequency) is useful for hunting the source, by showing which conductors are carrying r.f. and, comparatively, how much.

Interference of this kind is frequently intermittent since the rectification efficiency will vary with vibration, the weather, and so on. The possibility of corroded contacts in the TV receiving antenna should not be overlooked, especially if it has been up a year or more.

TV RECEIVER DEFICIENCIES

Front-End Overloading

When a television rcceiver is quite close to the transmitter, the intense r.f. signal from the transmitter's fundamental may overload one or more of the receiver circuits to produce spurious responses that cause interference.

If the overload is moderate, the interference is of the same nature as harmonic interference; it is caused by harmonies generated in the early stages of the receiver and, since it oecurs only on channels harmonically related to the transmitting frequency, is difficult to distinguish from harmonics actually radiated by the transmitter. In such cases additional harmonic suppression at the transmitter will do no good, but any means taken
at the receiver to reduce the strength of the amateur signal reaching the first tube will effect an improvement. With very severe overloading, interference also will occur on channels not harmonically related to the transmitting frequeney, so such cases are easily identified.

Cross-Modulation

Under some circumstances overloading will result in cross-modulation or mixing of the amateur signal with that from a local f.m. or TV station. For example, a 14-Mc. signal can mix with a $92-$ Ic. f.m. station to produce a beat at 78 Mc . and cause interference in Channel 5 , or with a TV station on Channel 5 to cause interference in Channel 3. Neither of the channels interfcred with is in harmonic relationship to 14 Mc. Both signals have to be on the air for the interference to occur, and eliminating either at the TV rereiver will eliminate the interference.

There are many combinations of this type, depending on the band in use and the local frequency assignments to f.m. and TV stations. The interfering frequency is equal to the amateur fundamental frequency either added to or subtracted from the frequency of some local station, and when interference occurs in a TV channel that is not harmonically related to the amateur transmitting frequency the possibilities in such frequency combinations should be investigated.

I. \boldsymbol{F}. Interference

Some TV receivers do not have sulficient selectivity to prevent strong signals in the intermedi-ate-frequency range from foreing their way through the front end and getting into the i.f. amplifier. The once-standard intermediate frequency of, roughly, 21 to 27 Mc ., is subject to interference from the fundamental-frequency output of transmitters operating in the 21-Mc. band. Transmitters on 28 Mc . sometimes will cause this type of interference as well.

A form of i.f. interference peculiar to $50-\mathrm{Mc}$. operation near the low edge of the band occurs with some receivers having the standard " 41 -Mc." i.f., which has the sound carrier at 41.25 Mc . and the picture carrier at 45.75 Mc . A 50-Mc. signal that forces its way into the i.f. system of the receiver will beat with the i.f. pieture carrier to give a spurious signal on or near the i.f. sound carrier, even though the interfering signal is not actually in the nominal passband of the i.f, amplifier.

There is a type of i.f. interference unique to the 14-Mc. band in localities where certain u.h.f. TV channels are in operation, affecting only those TV receivers in which doublc-conversion type plug-in u.h.f. tuning strips are used. The design of these strips involves a first intermerliate frequency that varies with the TV channel to be received and, depending on the particular strip design, this first i.f. may be in or close to the $1+4-$ Mc. amateur band. Since there is comparatively little selectivity in the TV signatfrequency circuits ahead of the first i.f., a signal from a $144-M c$. transmitter will "ride into" the

TV Receiver Deficiencies

i.f., even when the receiver is at a considerable distance from the transmitter. The channels that can be affected by this type of i.f. interference are:

> Receivers with
> $21-M c$.
> second i.f.

Channels $14-18$, inc.
Channels 41-48, inc.
Channels 69-77, inc.

Receirers with
41-1/c.
second i.f.
Channels 20-25, inc.
Channels 51-58, inc.
Channels 82 and 83.

If the receiver is not close to the transmitter, a trap of the type shown in Fig. 2:3-30 will be effective. However, if the separation is small the 14-Mc. signal will be picked up directly on the receiver circuits and the best solution is to readjust the strip oscillator so that the first i.f. is moved to a frequency not in the vicinity of the 144 -Mc. band. This has to be done by a competent technician.
I.f. interference is easily identified since it occurs on all channels - although sometimes the intensity varies from channel to channel - and the cross-hatch pattern it causes will rotate when the receiver's fine-tuning control is varied. When the interference is caused by a harmonic, overloading, or cross modulation, the structure of the interference pattern does not change (its intensity may change) as the fine-tuning control is varied.

High-Pass Filters

In all the above cases the interference can be eliminated if the fundamental signal strength can be reduced to a level that the receiver can handle. To aceomplish this with signals on bands below 30 Me., the most satisfactory device is a highpass filter having a cut-off frequency between 30 and 54 Me., installed at the tumer input terminals of the receiver. Circuits that have proved effective are shown in lיigs. 23-28 and 23-20. Fig. 23-29 has one more section than the filters of Fig. 23-28 and as a consequence has somewhat better eut-off characteristics. All the circuits given are designed to have little or no effeet on

Fig. 23-28-High-pass filters for installation at the TV receiver antenna terminals. A-balanced filter for 300 ohm line, B-for 75 -ohm coaxial line. Important: Do not use a direct ground on the chassis of a transformerless receiver. Ground through a $0.001-\mu \mathrm{f}$. mica capacitor.
the TV signals but will attenuate all signals lower in frequency than about 40 Mc . These filters preferably should be constructed in some sort of shiekling container, although shickling is not always necessary. The dashed lines in Fig. 23-2! show how individual filter coils can be shielded from each other. The capacitors can be tubular ceramic units centered in holes in the partitions that separate the coils.

Simple high-pass filters cannot always be applied successfully in the case of $50-$ Mc. transmissions, because they do not have sufficiently-sharp cutoff characteristics to give both good attenuation at 50-5 4 Mc . and no attenuation above 54 . Mc. A more elaborate design capable of giving the required sharp cut-off has been described (Ladd, " $50-\mathrm{Mc}$. TVI - Its Causes and Cures," QST, June and July, 1954). This article also contains

Fig. 23-29-Another type of high-pass filter for 300ohm line. The coils may be wound on $1 / 8$-inch diameter plastic knitting needles. Important: Do not use a direct ground on the chassis of a transformerless receiver. Ground through a 0.001- ff . mica capacitor.
other information useful in eoping with the TVI problems peculiar to 50-.Mc. operation. As an alternative to such a filter, a high-(? wave trap tuned to the transmitting frequency may be used, suffering only the disadvantage that it is quite selective and therefore will proteret a receiver from overloading over only a small range of transmitting frequencies in the 50-Me. band. A trap of this type using quarter-wave sections of Twin-Lead is shown in Fig. 23-30. These "suck-out" traps, while absorling energy at the frequency to which they are tuned, do not affect the receiver operation otherwise. The assembly should be slid along the TV antenna lead-in until the most offeotivo position is found, and then fastened securely in place with Scotch Tape. An insulated tuning tool should be used for adjustment of the trimmer capacior, since it is at a "hot" point and will show considerable body-caparitance effect.

ITigh-pass filters are available commercially at moderate prices. In this connection, it should be understood by all parties concerned that while an a mateur is responsible for harmonic radiation from his transmitter, it is no part of his responsibility to pay for or install filters, wave traps, etc. that may be required at the receiver to prevent interference caused by his fundamental frequeney. The set owner shouhl be advised to get in touch with the organization from which he purchased the receiver or which services it, to make arrangements for proper installation. Proper in-

23-BCI AND TVI

Fig. 23.30-Absorption-type wave trap using sections of 300 ohm line funed to have an electrical length of $1 / 4$ wavelength af the transmitter frequency. Approximate physical lengths (dimension A) are 40 inches for 50 Mc . and 11 inches for 144 Mc ., allowing for the loading effect of the capacitance of the open end. Two traps are used in parallel, one on each side of the line to the receiver.
stallation usually requires that the filter be installed right at the input terminals of the r.f. tumer of the TV set and not merely at the external antenna terminals, which may be at a considerable distance from the tuner. The question of cost is one to be settled between the set owner and the organization with which he deals.

Some of the larger manufacturers of TV receivers have instituted arrangements for cooperating with the set dealer in installing high-pass filters at no cost to the receiver owner. FCCsponsored TVI Committers, now operating in many cities, have all the information necessatry for effectuating such arrangements. To find out whether such a committee is functioning in your community, write to the ICCC field office having jurisdiction over your location. A list of the field offices is contaned in The Ratio Amateur's License Manual, published hy ARLRL.

If the fundamental signal is getting into the receiver by way of the line cord a tine filter such as that shown in lig. 2:3-1 may help. To be most effective it should be installed inside the receiver chassis at the point where the cord enters, making the ground commections dire tly to chassis at this point. It maty not be so helpfal if placed botween the line plug and the wall sorket unless the r.f. is actually picked up on the house wiring rather than on the line cord itself.

Antenna Installation

Usually, the transmission line between the TV receiver and the actual TV antenna will piek up a great deal more energy from a nearby transmitter than the television receiving antenna itself. The currents induced on the TV transmission line in this case are of the "parallel" type, where the phase of the eurrent is the same in both conductors. The line simply acts like two wires connected together to operate as one. If the receiver's antenna input eireuit were perfectly balanced it woukd reject these "parallel" or "unbatance" signals and respond only to the true tramsmissionline ("push-pull") currents; that is, only signals picked up on the actual antenna would cause a recciver response. However, no receiver is perfert in this respect, and many TV receivers will respond strongly to such parallel currents. The result is that the signals from a nearby amateur transmitter are much more intense at the first stage in the TV receiver than they would be if the receiver response were confined entirely to energy picked up on the TV antenna alone. This situation can be improved by using shielded transmission line - coax or, in the balanced
form, "twinax" - for the receiving installation. For best results the line should terminate in a coas fitting on the receiver chassis, but if this is not possible the shied should be grounded to the chassis right at the antenna terminals.

The use of shielded transmission line for the receiver also will be helpful in reducing response to harmonics actually being radiated from the transmitter or transmitting anterna. In nust recciving installations the transmission line is very much longer than the antenna itself, and is consequently far more exposed to the harmonic fields from the trimsmitter. Much of the harmonic pickup, therefore, is on the recciving trinsmission line when the trinsmitter and receiver are quite close together. Shielded line, plus relocation of either the transmitting or receiving antenna to take alvantage of directive effects, often will result in reducing overloading, as well as harmonie pickup, to a level that does not interfere with reception.

U.H.F. TELEVISION

Harmonic TVI in the u.h.f. TV band is far less troublesome thim in the v.h.f. band. Ilarmonies from transmitters oprating below 30 Me, are of such high order that they would normally be expected to be quite weak; in addition, the romponents, circuit conditions and construction of low-frequency transmitters are such as to tend to prevent very strong hamonies from being generated in this region. Ilowever, this is not true of amateur v.h.f. transmitters, particularly those working in the $144-\mathrm{Mc}$. and higher bands. ITere the problem is quite similar to that of the low v.h.f. TV hand with respect to transmitters operating below 30 Mc .

There is one highly favorable factor in u.h.f. TV that does not exist in the most of the v.h.f. TV band: If hamonics are radiated, it is possible to move the transmitter frequency sufliciently (within the amateur band being used) to avoid interfering with a chamel that may be in use in the locality. By restricting operation to a portion of the amateur band that will not result in harmonic interforence, it is possible to avoid the necessity for taking extraordinary precautions to prevent harmonic radiation.

The frequeney assignment for u.h.f. television consists of seventy 6 -megacyele channels (Nos. 14 to 83 , inclusive) beginning at 470 Me , and ending at 890 Mc . The harmonies from amateur bands above 50 Mc. span the u.h.f. channels as shown in Table 23-I. Since the assignment plau

Amateur Band 144 Mc .	$\begin{gathered} \text { Harmonic } \\ 4 \text { th } \end{gathered}$	aic Relationship	$\begin{array}{r} \text { TAI } \\ \text { P-Amateur } \end{array}$	23-1 F. Bands	U.H.F.	Channel.	U.II.F.TV Channel Aflected
		$\begin{array}{cc} & \text { C.II.F.TV } \\ \text { Fundamental } & \text { Channel } \\ \text { Freq, Range } & \text { Ifecled } \end{array}$		Amateur Band	Harmonic	Fundamental Freq. Range	
		$\begin{aligned} & 144.0-141.5 \\ & 144.5-146.0 \\ & 146.0-147.5 \\ & 147.5-148.0 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$	220 Mc.	3rd	$220-220.67$ $220.67-222.67$ $222.67-224.67$ $224.67-225$	$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \end{aligned}$
	51.	14.0-144.4	55 56		4th	$\begin{aligned} & 220-221 \\ & 221-222.5 \end{aligned}$	$\begin{aligned} & 82 \\ & 8: 3 \end{aligned}$
		145.6-146.8	57	420 Mc	2nd	420-421	75
		146.8-148	58			421-4:4	76
						4:4-4:7	77
	6th	144-144.33	79			427-430	78
		$144.33-145.33$	80			430-4:33	79
		145.33-147.33	81			433-436	80
		147.33-148				436-439	81
						439-442	82
						442-4:48	83

calls for a minimum separation of six channels between any two stations in one locality, there is ample opportunity to choose a fundamental frequency that will move a harmonic out of range of a local TV' frequency.

COLOR TELEVISION

The color TV signal ineludes a subcarrier spaced 3.58 megareycles from the regular picture carrier (or 4.83 Me. from the low edge of the chamel) for transmitting the eolor information. Ilarmonies whieh fall in the eolor subcarrier region can be expected to cause break-up of color in the rereived pirture. This modifies the chart of Fig. 23-3 to introduce another "severe" region centering around 4.8 Mc . measured from the low-frequency edge of the ehamel. Hence with color television reception there is less opportunity to avoid harmonic interference by choice of operating freguency. In other respects the problem of eliminating interference is the same as with black-and-white television.

INTERFERENCE FROM TV RECEIVERS

The TV picture tube is swept horizontally by the electron beam 15,750 times per second, using a wave shape that has very high harmonic content. The harmonies are of appreeiable amplitude even at frequencies as high as 30 Me, and when radiated from the receiver can cause considerable interference to reception in the amateur bands. While measures to suppress radiation of this nature are required by FCC in currently manufactured receivers, many older sets have had no such treatment. The interference takes the form of rather unstable, a.c.-modulated signals spaced at intervals of 15.75 kc .
Studies have shown that the radiation takes place principally in three ways, in order of their importance: (1) from the a.c. line, through stray coupling to the sweep circuits; (2) from the antenna system, through similar coupling; (3) directly from the picture tube and sweep-cireuit
wiring. Line radiation often can be reduced by bypassing the a.c, line eord to the ehassis at the point of entry, although this is not completely effective in all cases since the coupling mayy take place outside the chassis bevond the point where the by passing is done. Radiation from the antenna is usually suppressed by installing a high-pass filter on the receiver. The direct radiation requires shichding of high-potential leads and, in some rececivers, additional bypassing in the sweep cireuit; in severe cases, it may be necessary to line the calinet with sereening or similar shielding material.
Incidental radiation of this type from TV and broadeast receivers, when of suffieient internsity to cause serious interference to other radio services (such as amateur), is covered by lart 15 of the FCC rules. When such interference is caused, the user of the receiver is obligated to take steps to climinate it. The owner of an offending reeciver should be advised to contact the source from which the receiver was purchased for appropriate modification of the receiving installation. TV receiver dealers can obtain the neeessary information from the set manufacturer.

It is usually possible to reduce interference very consideraldy, without modifying the TV receiver, simply by having a good amateur-band receiving installation. The principles are the same as those used in reducing "hash" and other noise - use a good antemna, sueh as the transmitting antenna, for reception; install it as far as possible from a.c. cireuits; use a good feeder system such as a properly balanced two-wire line or eoax with the outer conductor grounded; use coax input to the receiver, with a matehing circuit if nesessary; and check the reeeiver to make sure that it does not pick up signals or noise with the antenna disconnected. These measures not only reduce interference from sweep radiation and acc line noise, but also build up the strength of the desired signal, so that the overall improvement in signall-to-interference ratio is very much worth-while.

Operating a Station

The enjorment of our hobby comes mostly from the operation of our station once we have finished its construction. L'pon the station and its operation depend the communication records that are made. The standing of individuals as amateurs and respect for the capabilities of the whole institution of amateur radio depend to a considerable extent on the practical communications established by amateurs, the aggregate of all our station efforts.

An operator with a slow, steady, clean-cut method of sending has a big advantage over the poor operator. The technique of speaking in comected thoughts and phrases is equally important for the voiec operator. Good sending is partly a matter of practice but patience and judgment are just as important qualities of an operator as a good "fist."

Operating knowhedge embracing standard procedures, development of skill in employing c.w. to expand the station range and operating offectiveness at minimum power levels and some net know-how are all essentials in aehieving a triumphant amateur experience with top station reeords, personal results, and demonstrations of what our stations can do in practical communications.

- OPERATING COURTESY AND TOLERANCE

Normal operating interests in amateur radio vary considerably. Some prefer to rag-chew, others handle traffic, others work DX, others concentrate on working certain areas, countries or states and still others get on for an oceasional contact only to cheek a new transmitter or antenna.

Interference is one of the things we amateurs have to live with. However, we ean conduct our operating in a way designed to alleviate it as much as possible. Before putting the transmitter on the air, listen on your ourn frequenry. If you hear stations engaged in communication on that

frequency, stand by until you are sure no interference will be caused by your operations, or shift to another frequency. No amateur or any group of amateurs has any exclusive claim to any frequency in any band. We must work together, each respecting the rights of others. Remember, those other chaps can cause you as much interference as you cause them, sometimes more!

In this chapter we'll recount some fundamentals of operating success, cover major procedures for successful general work and include proper forms to use in message handling and other fields. Note also the sections on special artivities, awards and organization. These permit us all to develop through our organization more success together than we could ever attain by separate uncoordinated efforts that overlook the precepts established through operating experience.

C.W. PROCEDURE

The best operators, both those using voice and c.w., observe certain operating procedures regarded as "standard practice."

1) Calls. Calling stations may call efficiently by transmitting the call signal of the station called three times, the letters DE, followed by one's own station call sent three times. (Short calls with frequent "breaks" to listen have proved to he the best method.) Repeating the call of the station called four or five times and signing not more than two or three times has proved excellent practice, thus: WøBY Wø日Y WOBY W@BY WØBY DE W1AW W1AW AR.
$C Q$. The general-inquiry call (CQ) should be sent not more than five times without interspersing one's station identification. The length of repeated calls is carefully limited in intelligent amateur operating. (CQ is not to be used when testing or when the sender is not expecting or looking for an answer. Never send a CQ "blind." Listen on the transmitting frequency first.)

The directional CQ: To avoid useless answers and lessen QRM, every CQ call should be made informative when possible. Respect, do not answer, such calls not applicable to you.

> Examples: A United States station looking for any Hawaiian amateur calls: CQ Kll CQ KII6 CQ KH6 DE W4IA WHIA WHIAK. A Western station with traffic for the East Const when looking for an intermediate relay station ealls: CQ EAST CQ EAST CQ EAST DE W5IGW W5IGW W5igw K. A station with messages for points in Massachusetts calls: CQ MASE CQ MASS CQ M.ASS DE W7CZY W7CZY W゙7CZY K

llams who do not raise stations readily may find that their sending is poor, their calls ill-timed or their judgment in error. When eonditions are

C.W. Procedure

right to bring in signals from the desired locality, you can call them. Short calls, at about the same frequency, with breaks to listen, will raise stations with minimum time and trouble.
2) Answering a Call; Call three times (or less); send Dle; sign three times (or less); after contact is established decrease the use of the call signals of both stations to once or twice. When a station receives a call but does not receive the call letters of the station calling, QRZ? may be used. It means "By whom am I being called"." QRZ should not be used in place of CQ.
3) Ending Signals and Sign-Off: The proper use of $\overline{\mathrm{AR}}, \mathrm{K}, \overline{\mathrm{KN}}, \overline{\mathrm{SK}}$ and CL ending signals is as follows:

AR - End of transmission, Recommended after call to a specific station before contact has been established

Example: W6ABC W6ABC W6ABC W6ABC W6.ABC DE W9L.IN W9L.IN AR. Also at the end of transmission of a radiogram, immediately following the signature, preceding identification.
K after CQ and at the end of each transmission during QSO when there is no objection to others breaking in.

Example: CQ CQ CQ DE W1ABC W1ABC K or W9NYZ DE WIABCK.

KN - Go ahead (specific station), all others keep out. Recommended at the end of each transmission during a QSO, or after a call, when calls from other stations are not desired and will not be answered.

Example: W4FGII DE XU6GRL $\overline{K N}$.

$\overline{\text { SK }}$ - End of QSO. Recommended before signing last transmission at end of a QSO.

Example: $\overline{S K}$ W8LMN DE W5BCD.
CL، - I am closing station, Recommended when a station is going off the air, to indicate that it will not listen for any further calls.

Example: SK W7HIJ DE W2JKL CL.

4) Testing. When it is necessary for a station to make test signals they must not continue for more than 10 seconds and must be composed of a series of VVV followed by the call sign of the station emilling the lest siginals. Always listen first to find a clear spot if possible, to avoid causing unwarranted QRM of a QSO in progress.
5) Receipting for conversation or traffic: Never reccipt for a transmission until it has been entirely received. " R " means "transmission received as sent." Use R only when all is received correetly.
6) Repeats. When most of a transmission is lost, a call should be followed by correct abbreviations to ask for repeats. When a few words on the end of a transmission are lost, the last word received correctly is given after ?AA, meaning "all after." When a few words at the beginning of a transmission are lost, "AB for "all before" a stated word should be used. The quickest way to ask for a fill in the middle of a transmission is to send the last word received correctly, a ques-
tion mark, then the next word received correctly, Another way is to send "?BN [word] and [word]."

Do not send words twice (QSZ) unless it is requested. Send single. Do not fall into the bad habit of sending double without a request from fellows you work. Ion't say "QRM" or "QRN" when you mean "QRS." Don't CQ unless there is definite reason for so doing. When sending CQ, use judgment.

General Practices

When a station has receiving trouble, the operator asks the transmitting station to "QsV." The letter " I " is often used in place of a decimal point (e.g., " 3 R5 Mc.") or the colon in time designation (e.g., "2R30 PM"). A long dash is sometimes sent for "zero."

The law concerning superfluous signals should be noted. If you must test, disconnect the antenna system and use an equivalent "dummy" antenna. Send your call frequently when operating. Pick a time for adjusting the station apparatus when few stations will be bothered.

The up-to-date amateur station uses "breakin." For best results send at a medium speed. Send evenly with proper spacing. The standardtype telegraph key is best for all-round use. Regular daily practice periods, two or three periods a day, are hest to acquire real familiarity and proficiency with code.

No excuse can be made for "garbled" copy. Operators should copy what is sent andrefuse to acknowledge a whole transmission until every word has been received correctly. Good operators do not guess. "Swing" in a fist is not the mark of a good operator. Unusual words are sent twice, the word repeated following the transmission of "?". If not sure, a good operator systematically asks for a fill or repeat. Sign your call frequently, interspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an operator has learned sending properly, and comes up with a precision "fist" - not fast, but clean, steady, making wellformed rhythmical characters and spacing beautiful to listen to - he then becomes subject to outside pressures to his own possible dotrimont in everyday operating. IIe will want to "speed it up" because the operator at the other end is going faster, and so he begins, unconsciously, to run his words together or develops a "swing."

Perhaps one of the casiest ways to get into bad habits is to do too much playing around with special keys. Too many operators spend only enough time with a straight key to acquire "passable" sending, then subject their newlydeveloped "fists" to the entirely different movements of bugs, side-swipers, electronic kevs, or what-have-you. All too often, this results in the ruination of what might have become a very good "fist."

Think about your sending a little. Are you satisfied with it? You should not be-ever. Nobody's sending is perfect, and therefore every
operator should continually strive for improvement. Do you ever run letters together - like (Q) for MA, or P for AN - especially when you are in a hurry? Practically everybody does at one time or another. Do you have a "swing'? Any recognizable "swing" is a deviation from perfection. Strive to send like tape sending; copy a W1AW Bulletin and try to send it with the same spacing using a local oscillator on a subsequent transmission.

Check your spacing in characters, between characters and between words occasionally by making a recording of your fist on an inked tape recorder. This will show up your faults as nothing else will. Practice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecessarily long calls, prevents (QRM, gives more communication per hour of operating. Brief calls with frequent short pauses for reply can approach (but not equal) break-in efficiency.

A separate receiving antenna facilitates breakin operation. It is only necessary with break-in to pause just a moment with the key up (or to cut the carrier momentarily and pause in a phone conversation) to listen for the other station. The click when the carrier is cut off is as effective as the word "break."
C.w. telegraphy break-in is usually simple to arrange. With break-in, ideas and messages to be transmitted can be pulled right through the holes in the QRMI. Snappy, efficient amateur work with break-in usually requires a suparate receiving antenna and arrangement of the transmitter and receiver to eliminate the necessity for throwing switches between transmissions.

In calling, the transmitting operator sends the letters "BK" at intervals during his call so that stations hearing the call may know that hreak-in is in use and take advantage of the fact. He pauses at intervals during his call, to listen for a moment for a reply. If the station being called does not answer, the call can be continued.

With a tap of the key, the man on the receiving end can interrupt (if a word is missed). The other operator is constantly monitoring, awaiting just such directions. It is not necessary that you have perfect facilities of take advantage of break-in when the stations you work are hreak-inequipped. After any invitation to break is given (and at each pause) press your key - and contact can start immediately.

voice operating

The use of proper procedure to get best results is just as important as in using code. In telegraphy words must be spelled out letter by letter. It is therefore but natural that abbreviations and shortcuts should have come into widespread use. In voice work, however, abbreviations are not necessary, and should have less importance in our operating procedure.

Voice-Operating Hints

1) Listen before calling.
2) Make short calls with breaks to listen, Avoid long CQs; do not answer over-long CQs.
3) Use push-to-talk or voice control. Give essential data concisely in first transmission.
4) Make reports honest. Use definitions of strength and readability for reference. Make your reports informative and useful. Honest reports and full word description of signals save amatcur operators from FCC trouble.
5) Limit transmission length. Two minutes or less will convey much information. When three or more stations converse in round tables, brevity is essential.
6) Display sportsmanship and courtesy. Bands are congested . . . make transmissions meaningful . . . give others a break.
7) Check transmitter adjustment . . avoid a.m. overmodulation and splatter. On s.s.b, check carrier balance carcfully. Do not radiate when moving v.f.o. frequency or checking n.f.m. swing. L'se receiver b,f.o, to check stability of signal. Complete testing before busy hours?

The letter "K" has been agreed to in telegraphic practice so that the operator will not have to pound out the separate letters that spell the words "go ahead." The voice operator can sa! the words "go ahead" or "over," or "come in please."

One laughs on c.w. by speling out HI. On phone use a laugh when one is called for. Be natural as you would with your family and friends.

The matter of reporting realability and strength is ats important to phone operators as to those using code. With telegraph nomenclature, it is necessary to spell out words to describe signals or use abbreviated signal reports. But on voice, we have the ability to "say it with words." "Readability four, Strength eight" is the best way to give a quantitative report. Reporting can be done so much more meaningfully with ordinary words: "You are weak but you are in the clear and I can understand you, so go ahead," or "Your signal is strong but you are buied under local interference." Why not saty it with words?

Voice Equivalents to Code Procedure		
Voice	Code	Meaning
Cio ahead; over	5	Self-explanatory
Wait; stand by	is	Self-explanatory
leceived	R	Ireceipt for a cor-
		rectly-transcribed
		"solid" transmission
		with no missing por-
		tions

Phone-Operating Practice

Efficient voice communication, like good c.w. communication, demands good operating. Adherence to certain points "on getting results" will go a long way toward improving our phoneband operating conditions.

Use push-to-talk technique. Where possible arrange on-off switehes. controls or voice-controlled break-in for fast back-and-forth exchanges that emulate the practicality of the wire telephone.

Voice Operating

This will help reduce the length of transmissions and keep brother amateurs from calling you a "monolognist" - a guy who likes to hear himself talk!

Listen with care. Kicep noise and "backgrounds" out of your operating room to facilitate good listening. It is natural to answer the strongest signal, but tale time to listen and give some consideration to the best signals, regardless of strength. Every amateur cannot run a kilowatt, but there is no reason why every amateur cannot have a signal of good quality, and utilize uniform operating practices to aid in the understandability and ease of his own communications.

Interpose your call regularly and at frequent intervals. Three short calls are better than one long one. In calling CQ, one's call should certainly appear at least once for every five or six CQs. Calls with freduent breaks to listen will save time and be most productive of results. In identifying, always transmit your own call last. Don't say "This is W1ABC standing by for W2DEF"; say "W2DIEF, this is W1ABC, over." FCC regulations show the call of the transmitting station sent last.

Include country prefix before call. It is not correct to say "9RIRX, this is 1BDI." Correct and legal use is "W!IRIRX, this is W1BIDI." FCC regulations require proper use of calls; stations have been cited for failure to comply with this requirement.

Monitor your own frequency. This helps in timing calls and tramsmissions. Transmit when there is a chance of being copied suceessfully - not when you are merely "more QRM." Timing transmissions is an art to cultivate.

Keep modulation constant. By turning the gain "wide open" you are subjecting anyone listening to the diversion of whatever noises are present in or near your operating room, to say nothing of the possibility of feedback, echo due to poor acousties, and modulation excesses due to sudden loud noises. Speak near the microphone, and don't let your gaze wander all over the station causing sharply-varying input to your speech amplifier; at the same time, keep far enough from the microphone so your signal is not modulated by your breathing. Change distance or gain only as necessary to insure uniform transmitter performance without overmodulation, splatter or distortion.

Make connected thoughts and phrases. Don't mix discomnected subjeets. Ask questions consistently, Pause and got answers.

Have a pad of paper handy. It is convenient and desirable to jot down questions as they come in the course of discussion in order not to miss any. It will help you to make intelligent to-thepoint replics.

Steer clear of inanities and soap-opera stuff. Our amateur radio and also our personal reputation as serious communications workers depend on us.

Avoid repctition. Don't repeat back what the other fellow has just said. Too often we hear a conversation like this: "Okay on your new antenna there, okay on the trouble you're having
with your recciver, okay on the company who just came in with some ice cream, okay . . . [etc.j." Just say you reccived everything O.K. Don't try to prove it.

Use phonctics only as required. When clarifying genuinely doubtful expressions and in getting your call identified positively we suggest use of the ARIRL Phonetic List. Limit such use to really-necessary clarification.

The speed of radiotelephone transmission (with perfect accuracy) depends almost entirely upon the skill of the two operators involved. One must learn to speak at a rate allowing perfect understanding as well as permitting the receiving operator to copy down the message text, if that is necessary. Because of the similarity of many English specch sounds, the use of alphabetical word lists has been found necessary. All voiceoperated stations should use a standard list as needed to identify call signals or unfamiliar expressions.

Round Tables. The round table has many advantages if run properly. It clears frequencies of interference, cspecially if all stations involved are on the same frequency, while the enjoyment value remains the same, if not greater. By use of push-to-talk, the conversation can be kept lively and interesting, giving each station operator ample opportunity to participate without waiting overlong for his turn.
Round tables can become very unpopular if they are not conducted properly. The monologuist, off on a long spiel about nothing in particular, cannot be interrupted; make your transmissions short and to the point. "Butting in" is discourteous and unsportsmanlike; don't enter a round table, or any coniact betweert two olher umateurs, unless you are invited. It is bad enough trying to copy through prevailing interference without the added difficulty of poor voice quality; check your transmitter auljustments frequently. In gencral, follow the precepts as hereinbefore outlined for the most enjoyment in round tables as well as any other form of radiotelephone communication.

WORKING DX

Most amatcurs at one time or another make "working DX" a major aim. As in every other phase of amateur work, there are right and wrong ways to go about getting best results in working foreign stations, and it is the intention of this section to outline a few of them.

The ham who has trouble raising DX stations
readily may find that poor transmitter efficiency is not the reason. He may find that his sending is poor, or his ealls ill-timed, or his judgment in error. When conditions are right to bring in the $10 \times$, and the receiver sensitive enough to bring in several stations from the desired locality, the way to work DN is to use the appropriate frequency and timing and call these stations, as against the common practice of calling " CQ DK."
'The call CQ DX means slightly different things to amateurs in different bands:
a) On v.h.f., CQ IDX is a general call ordinarily used only when the band is open, under liavorable "skip" conditions. For v.h.f. work, such a eall is used for looking for new states and countries, also for distances beyond the eustomary "line-of-sight" range on most v.h.f. bands,
b) CQ 1DX on our 7-, 14-, 21- and 28-Mc. binds may be taken to mean "General call to any foreigin station." The term "foreign station" usually refers to any station in a foreign continent. ($E x$ periencerl amateurs in the U.S. A. and Canada do not use this eall, but answer such calls made by foreign stations.)

DX OPERATING CODE (For W/VE Amateurs)

some amateurs interested in DX work have atused considerable confusion and QRM in their efforts to work 15 N stations. The points below, if observed by all W/VE amateurs, will go a long way toward making DN more enjovable for everybody.

1. Call DX only after he calls CQ, QRZ?, signs $\overline{\text { SK, or phone equivalents thereof }}$
2. 3) not call a DX station:
a. On the frecuency of the station he is working until you are sure the QSO is over. This is indicated by the ending sipnal $\overline{\mathrm{SK}}$ on c, w, and any indication that the operator is listening, on phone.
b. Because y ou hear someone else calling him.
c. When he signs $\overline{\mathrm{KN}}, \overline{\mathrm{Al}}, \mathrm{CL}$, or phone equivalents
d. Exactly on his frequency.
e. After he calls a directional (Q, unless of course you are in the right direction or area.
1. Keep, within frequency-band limits. Some 1)X stations operate outside. Perhaps they can get away with it, but you cannot
2. Observe calling instructions of DX stations. " 101 " means call ten ke, up from his freguenes, " 15 D " means 15 kc , down. etc,
3. Give honest reports. Many foreign stations depend on W and ${ }^{W} E$ reports for adjustment of station and equipment.
4. Keep your signal clean. Key clicks, chirps. hum or splatter give you a bad reputation and may get you a citation from FCC.
5. Listen for and call the station you want. Callinge CQ DN is not the best assurance that the rare 1)X will reply
6. When there are several W or VE stations wait. ing to work a 1NX station, avoid asking him to "Listen for a friend." Let your friend take his ehances with the rest. Also avoid engaging DX stations in rag-chews against their wishes
c) CQ DX used on 3.5 Mc . under winter-night conditions may be used in this same manner. At other times, under average 3.5-Mc. propagation conditions, the call may be used in domestic work when looking for new states or countries in one's own continent, usually applying to stations located over 1000 miles distant from you.

The way to work DX is not to use a CQ call at all (in our continent). Instead, use your best tuning skill-and listen - and listen - and listen. You have to hear them before you can work them. IIear the desired stations first; time your calls well. Use your utmost skill. A sensitive receiver is often more important than the power input in working foreign stations. If you can hear stations in a particular country or area, chances are that you will be able to work somene there.

One of the most effective ways to work IDX is to know the operating habits of the DX stations sought. Doing too much transmitting on the DX bands is not the way to do this. Again, listening is effective. Once you know the operating habits of the DX station you are after you will know when and where to call, and when to remain silent waiting your chance

Some 1)X stations indicate where they will tune for replies by use of " $10 \mathrm{C}^{-}$" or " 15 D ." (See point 4 of the DN Operating Code.) In voice work the overseas operator may say "listening on $14,225 \mathrm{kc}$." or "tuning upward from 28,500 ke." Many a DX station will not reply to a call on his exact frequency.

ALRRL has reconmended some operating procedures to DX stations aimed at controlling some of the thoughtless operating practices sometimes used by W/V1: amateurs. A copy of these reeommendations (Operating Aid No. 5) can be ohtained free of charge from AIRRL Ileadquarters.

In any band, particularly at line-rf-sight frequencies, when directional antennas are used, the directional $C^{\circ} Q$ such as $C^{\circ} Q$ WO, CQ north, ete., is the preferatile type of call. Mature amateurs agree that (Q DN is a wishful rather than a practieal type of call for most stations in the North Americas looking for foreign contacts. Ordinarily, it is a cause of unnecessary QIRM.

Conditions in the transmission medium often make it possible for the signals from low-powered transmitters to be received at great distaneres. In general, the higher the frequeney band the less important power considerations become, for oecasional 11 X work. This accounts in part for the relative popularity of the 14-, 21- and 28-Mc. bands among amateurs who like to work DX.

	${ }^{\text {ctataiou }}$	Cabiso	$\xrightarrow{\text { Hitic. }}$	-	-14.utic	"mico		\%	\%osmo	otnea data
$11-16-53$										
6:15Pm	W¢TQD	x	3.65	589	$569 x$	3.5	AL	250	$6: 43$	If -recid 6, aent 10
7:20	CQ	x				7				forec b, Aen
7:21	\times	W4TWI	7.16	369	579				7:32	Vy, heary QRM on me
9:25	W8UKS	\times	3.83	59	47	3.9	A3	100	10:05	giam
7:05m	VK4EL	x	14.03			14	A1	250		Answered a W6
7:09	ZL2ACV	\times	14.07	339	$559 x$				7:20	
$7: 21$	x	KA2KW	14.07	$469 \times$	349				7:33	First KA
7:36	$C Q$	\times								
7:37	\times	W6TI	14.01	589	5890				8:12	

KEEP AN ACCURATE AND COMPLETE STATION LOG AT ALL TIMES! F.C.C. REQUIRES IT.
A page from the official ARRL log is shown above, answering every Government requirement in respect to station records. Bound logs made up in accord with the above form can be obtained from Headquarters for a nominal sum or you can prepare your own, in which case we offer this form as a suggestion. The ARRL \log has a special wire binding and lies perfectly flat on the table.

KEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to keep a complete station operating record. It may also contain records of experimental tests and adjustment data. A stemographer's notebook can be ruled with vertical lines in any form to suit the user. The Federal Communieations Commission requirements are that a $\log \mathrm{lo}$ maintained that shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input
power to the last stage of the transmitter, (4) the frequency band used, (5) the time of ending each QSO and the operator's identifying signature for responsibility for each session of operating. Messages may be written in the log or separate records kept - but record must be retained for one year as required by the FCC. For the eonvenience of amateur station operators AIRIRL stocks both logbooks and message blanks, and if one uses the official log he is sure to eomply fully with the Government requirements if the precautions and suggestions included in the log are followed.

Message Handling

Amateur operators in the United States and a few other countrics enjoy a privilege not available to amateurs in most countries - that of Itandling third-party message traffic. In the early history of amateur radio in this country, some amateurs who were among the first to take advantage of this privilege formed an extensive relay organization which became known as the Imerican Radio Relay Leaguc.

Thus, amateur message-handling has had at long and honorable history and, like most services, has gone through many periods of development and change. Those amateurs who handled traffic in 1914 would hardly recognize it the way some of us do it today, just as equipment in those days was far different from that in use now. Progress has been made and new methods have been developed in step with advancement in communication techniques of all kinds. Amateurs who handled a lot of traffic foumd that organized operating schedules were more effective than random relays, and as techniques advanced and messages increased in number, trunk lines were organized, spot frequencies began to be used, and there sprang into existence a number of traffic nets in which many stations operated on the same frequency to effect wider cov-
erage in less time with fewer relays; but the old methods are still avaibable to the amateur who handles only an oceasional message.

Although message handling is as old an art as is amateur radio itself, there are many amateurs who do not know how to handle a message and have never done so. As each amateur grows older and gains experience in the amateur service, thore is bound to oome a time when he will be called upon to handle a written message, during a communications emergency, in casual contact with one of his many acquaintances on the air, or as a result of a request from a nonamateur friend. Regardless of the occasion, if it comes to you, you will want to rise to it! Considerable embarrassment is likely to be experienced by the amateur who finds he not only doos not know the form in which the massage should be prepared, but does not know what to do with the message once it has been filed or received in his station.

Traffic work need not be a complicated or time-consuming activity for the casual or occasional message-handler. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then to becoming a part of organized traffic systems.

This chapter explains some principles so the reader may know where to find out more about the subject and may exercise the message-handling privilege to best effect as the spirit and opportunity arise.

Responsibility

Amateurs who originate messages for transmission or who receive messages for relay or delivery should first eonsider that in doing so they are accepting the responsibility of clearing the message from their station on its way to its destination in the shortest possible time. Fortycight hours after filing or receipt is the generallyaccepted rule among traffic-landing amateurs, but it is obvious that if every amateur who relayed the message allowed it to remain in his station this long it might be a long time reaching its destination. Traffic should be relayed or delivered as quickly as possible.

Message Form

Once this responsibility is realized and accepted, handling the message becomes a matter of following generally-accepted standards of form and transmission. For this purpose, each message is divided into four parts: the preamble, the address, the text and the signature. Some of these parts themselves are subdivided. It is necessary in preparing the message for transmission and in actually transmitting it to know not only what each part is and what it is for, but to know in what order it should be transmitted, and to know the various procedure signals used with it when sent by c.w. If you are going to send a message, you may as well send it right.

Standardization is important! There is a great deal of room for expressing originality and individuality in amatcur radio, but there are also times and places where such expression can only cause confusion and inefficiency: Recognizing the need for standardization in message form and message transmitting procedures, ARRL has long since recommended such standards, and most traffic-interested amateurs have followed them. In general, these recommendations, and the various changes they have undergone from year to year, have been at the request of ama-

Here is an example of a plain-language message in correct ARRL form. The preamble is always sent as shown: number, station of origin, check, place of origin, time filed, date.
teurs participating in this activity, and they are completely outlined and explained in Operating an Amateur Radio Station, a copy of which is available upon request or by use of the coupon at the end of this chapter.

Clearing a Message

The best way to clear a message is to put it into one of the many organized traffic networks, or to give it to a station who can do so. There are many amateurs who make the handling of traffic their principal operating artivity, and many more still who participate in this activity to a greater or lesser extent. The result is a system of traffic nets which spreads to all comers of the United States and covers most U. S. possessions and Canada. Once a message gets into one of these nets, regarilless of the net's size or coverage, it is systematically routed toward its destination in the shortest possible time.

Amateurs not experienced in message handling should depend on the experienced mossagehandler to get a message through, if it is important; but the average amateur can enjoy operating with a message to be handled either through a local traffic net or by frec-lancing. The latter may be accomplished by careful listening for an amatcur station at desired points. directional CQs, use of the National Calling and Emergency frequencies, or by making and keeping a schedule with another amateur for regular work between specified points. He may well aim at learning and enjoying through doing. The joy and accomplishment in thus developing one's operating skill to top perfection has a reward all its own.

If you decide to "take the bull by the horns" and put the message into a traffic net yourself (and more power to you if you do!), you will need to know something about how traffic nets operate, and the special Q signals and procedure they use to dispateh all traffic with a maximum of eflipiency. Reference to net lists in QST' (usually in the November and January issurs) will give you the frequency and operating time of the net in your section, or of other nets into which your message can go. Listening for a few minutes at the time and frequency indicated should acquaint you with enough fundamentals to enable you to report into the net and indicate your traffic. From that time on you follow the instructions of the net control station, who will tell you when and to whom (and on what frequency, if different from the net frequency) to send your message. Since most nets use the special "QN" signals, it is usually very helpful to have a list of these before you (list available from ARRL Hq., Operating Aid No. 9).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more about it and increase your proficiency. Many amateurs are happily "addicted" to tralfic handling after only one or two briof exposures to it. Much traflic is at present being conducted by e.w., since this mode of com-

Emergency Communication

munication seems to be popular for record purposes - but this does not mean that high code speed is a necessary prereguisite to working in traffic networks. There are many nets organized specifically for the slow-speed amateur, and most of the so-called "fast" nets are usuahly glad to slow down to accommodate slower operators, especially those nets at state or section level.

It is a significant operating fact that code sueed or word speed alone does not make for afficieney - sometimes the contrary! A highspeed operator who does not know procedure cun "foul up", a net much more completely and more quickly than can a slow operator. It is a proven faet that a bunch of high-speed operators who are not "savvy" in net operation cannot accomplish as much during a specified period as an equal number of slow operators who know net procedure, Don't let low rode speed deter you from getting into traffic work. Given a little time, your speed will reach the point where you can compete with the best of them. Concentrate first on learning net procedure, for most traffic nowadays is handled on nets.

Much traffic is also handled on phone. This mode is exceptionally well suited to short-range traffic work and requires knowledge of phonetics and procedure peculiar to voice operation. Procedure is of paramount importance on phone, since the public may be listening. The major problem, of course, is (QRM.

Teamwork is the theme of net operation. The net which functions most efficiently is the net in which all participants are thoroughly familiar with the procedure used, and in which operators refrain from transmitting except at the direction of the net control station, and do not occupy time with extruneous comments, even the exchange of pleasantries. There is a time and place for everything. When a net is in session it should concentrate on handling traffic until all traffic is cleared. Before or after the net is the time for rag-chewing and diselission. Some details of net operation are included in Operating an Amateur Radio Station, mentioned earlier, but the whole story cannot be told. There is no substitute for actual participation.

The National Traffic Systern

To facilitate and speed the movement of message traffie, there is in existence an integrated national system by means of which originated traffie can normally reach its destination area the same day the message is originated. This system uses the local section net as a basis. Each section net sends a representative to a "regional" net (normally covering a call area) and each "regional" net sends a representative to an "area" net (normally covering a time zone). After the area net has cleared ill its traffic, its members then go back to their respective regional nets, where they clear traffic to the various section net representatives. By means of conneeting schedules between the area nets, traffic can flow both ways so that traffic originated on the West Coast reaches the East Coast with a maximum of dispateh, and vice versa. In general local section nets function at 1900 , regional nets at 1915, area nets at 2030 and the same or different regional persomel again at 2130 . Some section nets conduct a late session at 2200 to effect traffic delivery the same night. Local standard time is referred to in each case.

The NTs plan somewhat spreads traffic opportunity so that casual traffic may be reported into nets for efficient handling one or two nights per week, early or late; or the ardent traffic man can operate in both carly and late groups and in between to roll up impressive totals and speed traffic reliably to its destination. Old-time traffic men who prefer a high degree of organization and teamwork have returned to the traffic game as a result of the new system. Beginners have shown more interest in becoming part of a system nationwide in scope, in which anyone can participate. The National Traffic System has vast and intriguing possibilities as an amateur service. It is open to any amateur who wishes to participate.

The above is but the briefest résumé of what is of necessity a rather complicated arrangement of nets and schedules. Complete details of the System and its operation are available to anyone interested. Just drop a line to ARRL Ileadquarters.

Emergency Communication

One of the most important ways in which the amatcur serves the public, thus making his existence a national asset, is by his preparation for and his participation in communications emergencies. Every amateur, regardless of the extent of his normal operating activities, should give some thought to the possibility of his being the only means of communication should his community be cut off from the outside world. It has happened many times, often in the most unlikely places; it has happened without warning, finding some amateurs totally unprepared; it can happen to you. Are you ready?
There are two principal ways in which any amateur can prepare himself for such an eventuality. One is to provide himself with equip-
ment capable of operating on any type of emergency power (i.e., either a.c. or d.c.), and equip-

24-OPERATING A STATION

ment which can readily be transported to the scene of disaster. Mobile equipment is especially desirable in most emergency situations.
such equipment, regardless of how elaborate or how modern, is of little use, however, if it is not used properly and at the right times; and so another way for an amateur to prepare himself for emergencies, by no means less important than the first, is to learn to operate efficienlly. There are many amateurs who feel that they know how to operate elliciently but who find themselves considerably handicapped at the crucial time by not knowing proper procedure, by being unable, due to years of casual amateur operation, to adapt themselves to smappy, abbreviated transmissions, and by being unfamiliar with message form and procedures. It is dangerous to overrate your ability in this; it is better to assume you have things to learn . . . and it makes you a respected communicator to know them.

In general it can be said that there is more emergeney equipment available than there are operators who know properly how to operate during emergency conditions, for such conditions require clipped, terse procedure with complete break-in on c.w. and fast push-to-talk on phone. The casual rag-chewing asperet of amateur radio, however enjoyable and worth-while in its place, must be forgotten at such times in favor of the business at hand. There is only one way to gain experience in this type of operation, and that is by practicing it. During an emergency is no time for practice; it should be done beforehand, as often as possible, on a regular basis.

This leads up to the necessity for emergeney organization and preparedness. AIRIRL. has long recognized this necessity and has provided for it. The seretion (ommunications Manager (whose
address appears on page 6 of every issue of $Q S T$) is empowered to appoint certain qualified amateurs in his section for the purpose of coordinating emergency communication organization and preparedness in specified areas or communitios. This appointee is known as an Emergency Coordinator for the city or town. One is specified for each community. For coordination and promotion at section level a Section Emergeney Coordinator arranges for and recommends the appointments of various limergency Coordinators at activity peints throughout the section. Emergency Coordinators organize amateurs in their communities according to local needs for emergency communication facilities.

The community amateurs taking part in the local organization are members of the Amateur Radio Emergency Corps (ALREC). All amateurs are invited to register in the ARLEC, whether they are able to play an active part in their local organization or only a supporting role. Application blanks are available from your EC, SleC, SCM or direct from ARIRL Headpuarters. In the event that incuiry reveals no Emergency Coordinator appointed for your community, your SCM would welcome a recommendation either from yourself or from a radio club of which you are a member. By holding an amateur operator license, you have the responsibility both to your community and to amateur radio to uphold the traditions of the service.

Among the Laague's publications is a booklet entitled Emergency Communications. This booklet, while small in size, contains a wealth of information on AlRLC organization and functions and is invaluable to any amateur participating in emergency or civil defense work. It is free to AREC members and should be in every ama-

Before Emergency

PLEPARE yourself by providing a transmitter-receiver setup together with an emergeney power souree upon which you can depend.
TEST both the dependability of your emergency equipment and your own operating ability in the annual ARRL Simulated Emergency Test and the several annual on-the-air contests, especially Ficld Day.

RECISTER your facilitios and your availability with your local ARRL Emergency Coordinator. If your eommunity has no E(', contact your local civic and relief agencies and explain to them what the Amateur Servien offers the community in time of disaster.

In Emergency

LISTEN before you transmit. Never violate this principle
REPORT ut once to your Emergency Coordinator so that he will have up-to-the-minute data on the fucilities a vailable to him. Work with local civic and relief agencies as the EC suggests, offer these agencies your services directly in the absence of an EC.

RESTRIC'T all on-the-air work in accordance with FCC regulations. See. 12.156, whenever FCC" deelares" a state of communications emergency.
QRRR is the official ARIL "land SOS," a distress call for emergency only. It is for use only by a station seeking assistance.

IRESPECT the fact that the success of the amateur effort in emergency depends largely on eircuit discipline. The established Net Control Station should be the supreme authority for priority and traffie routing.

COOPERATE with those we serve. Be ready to help, but stay off the air unless there is a speeific job to be done that you ean handle more efficiently than any other station.

COPY all bulletins from WIAW. During time of emergency speeial bulletins will keep you posted on the latest developments

After Emergency

REPORI to AHRL Headquarters us soon as possible and as fuliy as possible so that the Amateur Service can REPORT to ARRL Headquarters us soon as possing and as full credit. Amatemr Radio has won glowing public tribute in many major disasters since 1919. Mainain this record

ARRL Operating Organization

teur's shack. Drop a line to the ARRL Communications Department if you want a copy, or use the coupon at the end of this chapter.

The Radio Amateur Civil Emergency Service

In order to be prepared for any eventuality, FCC and the Office of Civil and Defense Mobilization (()Cl)M), in collaboration with ARRIRL, have promulgated the Radio Amateur Civil Emergeney Service. RACLS is a temporary amateur service, intended primarily to serve civil defense and to continue operation during any extreme national emergency, such as war. It shares certain segments of frequencies with the regular Amateur Service on a nonexelusive basis. Its regulations have been made a sul-part of the familiar amateur regulations; that is, the original regulations have become sub-part A, the RACES regulations being added as sub-part B. Copies of both parts are included in the latest edition of the AIRRL License .Manual.

If every amateur participated, we would still be far short of the total operating personnel required properly to implement RACES. As the service which bears the responsibility for the successful implementation of this important function, we face not only the task of installing (and in some cases building) the necessary equipment, but also of the training of thousands of additional people. This can and should be a function
of the local unit of the Amateur Radio Emergency Corps under its EC and his assistants, working in close collahoration with the local civil defense organization.

The first step in organizing IRACES locally is the appointment of a Radio Officer by the local civil defense director, possibly on the recommendation of his conmunieations officer. A complete and detailed communications plan must be approved surcessively by local, state and OCDM regional directors, by the OCDM Na tional office, and by FCC, Once this has been accomplished, applications for station authorizations under this plan can be submitted direct to FCC. QST carries further information from time to time, and ARRL , will keep its fiold officials fully informed by bulletins as the situation requires. A complete bibliography of OST' articles dealing with the subject of civil defense and RACES is available upon request from the ARRL Communications Department.

In the event of war, civil defense will place great reliance on RACLS for radio communications. RACES is an Amateur Sorvice. Its implementation is logically a function of the Amateur Radio Emergency Corps - an additional function in peacetime, but prohably an exclusive function in wartime. Therefore, your best opportunity to be of service will be to register with your local EC, and to participate arlively in the local AREC/RACES program.

ARRL Operating Organization

Amateur operation must have point and constructive purpose to win public respect. Each individual amateur is the ambassador of the entire fraternity in his public relations and attitude toward his hobby. ARRL field organization adds point and purpose to amateur operating.

The Communications Department of the League is concerned with the practical operation of stations in all branches of amateur activity. Appointments or awards are available for rag-chewer, traffic enthusiast, phone operator, DX man and experimenter.

There are seventy-three ARRL Sections in the League's field organization, which embraces the United States, Canada and certain other territory, Operating affairs in each Section are supervised by a Section Communications Manager elected by members in that section for a twoyear term of office. Organization appointments are made by the section managers, elected as provided in the Rules and Regulations of the Communications Department, which accompany the League's By-Laws and Articles of Association. Section Communications Managers' addresses for all sections are given in full in each issue of QST. SCMs welcome monthly activity reports from all amateur stations in their jurisdiction

Whether your activity embraces phone or telegraphy, or both, there is a place for you in the League organization.

LEADERSHIP POSTS

To advance each type of station work and group interest in amateur radio, and to develop practical communications plans with the greatest success, appointments of leaders and organizers in particular single-interest fields are made by SCMs. Wach leadership post is important. Wach provides activities and assistance for appointee groups and individual members along the lines of natural interest. Some posts further the general ability of amateurs to communicate efficiently at all times, by pointing activity toward networks and round tables, others are aimed specifieally at establishment of provisions for organizing the amateur service as a stand-by communications group to serve the public in disastrer, rivil defense need or emergeney of any sort. The SCM appoints the following in accordance with section needs and individual qualifieations:
PAM Phone Activities Manager. Organizes activities for Ol'Ss and voice operators in his section. Promotes phone nets and recruits OPSs.
RM Route Manager. Organizes and coordinates c.w traffic activities. Supervises and promotes nets and recruits ORSs.
SEC Section Emergency Coordinator. Promotes and administers section emergency radio organization. EC Emergency Coordinator. Organizes anateurs of a community or other local area for emergency radio service; maintains liaison with officials and agencies served, also with other local communication facilities. Sponsors tests, recruits for AREC and encourages alignment with RACES.

STATION APPOINTMENTS

ARRL's field organization has a place for every active amateur who has a station. The Communications Department organization exists to increase individual enjoyment and station effectiveness in amateur radio work, and we extend a cordial invitation to every amateur to participate fully in the activities, to report results monthly, and to apply to the SCM for one of the following station appointments. ARRL membership and the General Class license or VE equivalent is prerequisite to appointments, except OES is available to Novice/Technician grades.

OPS Official Phone Station. Sets high voice operating standards and procedures, furthers phone nets and traffic.
ORS Official Relay Station. Traffic service. operates c.w. nets: noted for 15 w.p.m. and procedure ahility. Official Bulletin Station. Transmits ARRL and FCC bulletin information to amateure.
OES Official lixperimental station. Collects and reports \because,h.f.u.h.f.-s.h.f. propagation data, may engage in facsimile, 'ITT, 'I'V, work on 50 Mc . and/or above. Takes part as feasible in v.h.f. traffic work, reports same. supports v.h.f. nets, observes procedure standards.
00
Official Observer. Sends conperative notices to amateurs to assict in frequency observance, insures high-quality signals. and prevents FCC trouble.

Emblem Colors

Members wear the ARRL emblem with blackenamel hackground. A red hackground for an emblem will indicate that the wearer is SCM. SECs, ECs, RMs, and PAMs may wear the emblem with green background. Observers and all station appointees are entitled to wear blue emblems

SECTION NETS

Amateurs gain experience and ploasure and add much accomplishment to the credit of all of amateur radio, when organized into effective nets interconnecting cities and towns.

The successful operation of a net depends a lot on the Net Control Station. This station should be chosen carefully and be one that will not hesitate to enforce each and every net rule and set the example in his own operation.

A progressive net grows, obtaining new members both directly and through other net members. Bulletins may be issued at intervals to keep in direct contact with the members regarding general net activity, to keep tab on net procedure,
make suggestions for improvement, keep track of active members and weed out inactive ones.

A National Traflic System is sponsored by ARRL to facilitate the over-all expeditious relay and delivery of message traffic. The system recognizes the need for handling traffic beyond the section-level networks that have the popular support of both phone and c.w. groups (0)PS and ORS) throughout the League's field organization. Area and regional provisions for NTS are furthered by IHeadquarters correspondence. The ARRL Net Directory, revised in December earh year, includes the frequencies and times of operation of the hundreds of different nets operating on amateur band freguencies.

Radio Club Affiliation

ARRL, is pleased to grant affiliation to any amateur society having (1) at least 51% of the voting club membership as full members of the League, and (2) at least 51% of members govern-ment-licensed radio amateurs. In high school radio clubs bearing the school name, the first above requirement is modified to require one full member of ARRL in the club. Where a soriety has common aims and wishes to add strength to that of other club groups and strengthen amateur radio by afliliation with the national amateur organization, a request addressed to the Communications Manager will bring the necessary forms and information to initiate the application for affiliation. Such chubs receive field-organization bulletins and special information at intervals for posting on club bulletin boards or for relay to their memberships. A travel plan providing communications, technical and secretarial contact from the IIeadquarters is worked out seasonally to give maximum henefits to as many as possible of the twelve hundred active affiliated radio clubs. Papers on club work, suggestions for organizing, for constitutions, for radio coursea of study, etc., are available on request.

Club Training Aids

One section of the ARRL Communications Department handles the Training Aids Program. This program is a service to ARRL affiliated clubs. Material is aimed at education, training and entertainment of club members. Interesting quiz material is availatle.

Training Aids include such items as motionpicture films, film strips, slides, audio tapes and lecture outlines. Bookings are limited to ARRIaffiliated clubs, since the visual aids listings are not sufficiently extensive to permit such services to other groups.

All Training Aids materials are loaned free (except for shipping charges) to ARRL affiliated clubs. Numerous groups use this ARRL service to good advantage. If your club is afliliated but has not yet taken advantage of this service, you are missing a good chance to add the available features to your meeting programs and general club activities. Watch club bulletins and QST or write the ARRL Communications Department for TA-21 and TA-32.

Operating Activities and Awards

Wlaw

The Maxim Memorial Station, WIAW, is dedieated to fraternity and service. Operated by the League headquarters, W1AW is located about four miles south of the Headguarters offires on a seven-acre site. The station is on the air daily, except holidays, and available time is divided between different bands and modes.
 Telegraph and phone transmitters are provided for all hands from 1.8 to $1+1 \mathrm{Mc}$. The normal frequencies in each band for c.w. :and voice transmissions are as follows: $18.30,3.5 \overline{5} 5$, $3945,7080,7255.1+100,11,280.21,0-\overline{5}, 21.3330$, $28,080,29,000,50,9(1)$ and $1 \cdot 45,801$ ke. Operatingvisiting hours and the station sechedule are listem every other month in Qs.
Operation is roughly propertional to amatcur interest in different hands and modes, with one kw. except on 1 (io) and v.h.f. hands. Wl.AW's daily bulletins and code prative aim to give operational help to the largest number.
All amateurs are invited to visit WIAW, as well as to work the station from their own shacks. The station was established to be a living memorial to lliram Percy Maxim and to carry on the work and traditions of amateur radio.

operating activities

Within the ARRLL field organization there are several special activities. During six months of the year, the first week end is an occasion for ARRLD officials, officers, and directors to get t ()gether over the air. This activity is known to the gang as the LO (League officials) party. For all appointees, quarterly CD parties are schedulecl additionally to develop operating alility and a spirit of fraternalism.
In addition to those for appointees and officials. ARRL, sponsors various other artivities open to all amateurs. The 1)X-minded amateur may participate in the Annual ARRRL, luternational INX Conpetition during Felbuary and March. This popular contest may lring you the thrill of working new countries and building up your 1 NCC totals; certificate awards are offered to top scorers in earh country and ARRL section (see page is of any $\left(Q S^{\prime} T\right.$) and to club leaders. Then there is the ever-popular Swerpstakes in November. Of domestic scope, the sis affords the opportunity to work new states for that 1 Wh award. A Novice activity is planned annually. The interests of v.h.f. enthusiasts are also provided for in contests held in January, June and Septomber of each year. Where enough logs (three) are received to constitute minimum "competition" a certificate in spot activities, such as the "Ss" and v.h.f. party, is awarded the leading neweomer for his
work considered only in competition with other newcomers.
As in all our operating, the idea of having a good time is combined in the Amual Field Day with the more serious thought of preparing oursclves to render public service in times of emergency. A premium is plated on the use of equipment without connection to eommercial power sources. Clubs and individual groups always enjoy themselves in the "FI)," and learn much aliout the requirements for operating under knock:aloout conditions afield.
ARRL, contest artivities are diversified to appeal to all operating interests, and will be fond anmunced in detail in issues of QST preceding the different events.

AWARDS

The League-sponsored operating activities heretofore mentioned have uscful objectives and provide nuch enjoyment for members of the fraternity. Achicvenent in amateur radio is recognized by various certificates offered through the League and detailed below.

WAS Award

WAS means "Worked All States." This award is available regardless of affiliation or nomaffiliation with any organization. Here are the simple rules to follow in going after your WAS:

1) Two-way communication must be established on the amateur bands with each of the states; any and all anateur

bands may be used. A card from the District of Columbia man' be submitted in lieu of one from Maryland.
2) Contacte with all states must be nade from the same location. Within a given enmmunity one location may he defined as from places no two of which are more than 25 miles apart.
3) Contacts may be made over any period of years, pucvided only that all contarts are from the same lopation, and except that only contarts with Alaska dated January 3. 1959, or later count. and only contacts with Hawaii dated August 21, 195: or later count.
4) QSL pards, or other written communications from stations worked confirmitug the necessary twoway eontacts, must be submitted by the applicant to ARRL headquarters.
5) Sufficient postage must be sent with the confirmations to finance their return. No correspondence will be returned unless sufficient postage is furnished.
(i) The W.Is award is avalable to all amateurs. It is required that the confirmations subnitted be placed alphabefically in order bystates.
6) Address all applications and confirmations to the Commmnications Department, ARRL, 38 La Salle Road, West Hartford, Conn.

DX Century Club Award

Here are the rules under which the DX Cen-

24-OPERATING A STATION

tury Club Award will be issued to amateurs who have worked and confirmed contact with 100 countries in the postwar period.

1) The DX Century Club Award Certificate for confirmed contacts with 100 or tuore eountries is available to all anateurs everywhere in the world.
2) Confirmations must be submitted direct to ARRL headquarters for all countriss elaimed. Claims for a total of 100 countries must be included with first application. Confirmation from foreign contest logs may be refuested in the case of the ARIRL International DX Competition only, subjere to the following eonditions:
a) Sulficient confirmations of other types must be submitted so that these, plus the 1)X Contest confirmations, will total 100 . In every rase, Contest confirmations tmast not be requested for any comntries from which the applicant has regular confirmations. That is, contest confirmations will the granted ouly in the case of countrics from which applicants have no regular confirmations
b) Look up the contest results as published in QST to see if your man is listerd in the foreign scores. If he isn't, he did not send in a log and no confirmation is possible.
c) Give year of contest, date and time of Q SO.
d) In future 1) X Contests do not request eonfirmations until after the final results have been published, usually in one of the early fall iswins. Requests before this time must be ignored.
3) The ARRL Countries List, printed periodically in QST, will be used in determining what constitutes a "country." This ehapter eontains the Postwar ('onntries List,
4) Confirmations must be accompanied by a list of clainsed countries and stations to aid in checking and for fiture reference.
5) Confirmations from additional countries may be submitted for credit each time ten additional confirmations are available. Endorsements for affixing to eertificates and showing the new ronfirmed total (110, 120, 130, etc.) will be awarded as additional eredits are granted. AlRIRL, 1)N Competition logs from foreign stations may be utilized for these endorsements, subject to conditions stated under (2).
(i) All eontacts must be made with amateur stations working in the anthorized amateur bands or with other stations lifensed to work amateurs.
6) In cases of countries where amateurs are licensed in the normal manner, credit may be elaimed only for stations using regular govermuent-assigued call letters. No credit may be clamed for contacts with stations in any countries in which amateurs have been temporarily closed down by special government edict where amaten licenses were forsuerly issued in the normal manner.
7) All stations contacted must be "land stations"
contacts with ships, anchored or otherwise, and aircraft, cannot be counted.
8) All stations must be contacted from the same call area, where sueh areas exist. or from the same country in cases where there are no eall areas. One exception is allowed to this rule: where a station is moved from one call area to another, or from one country to another, all contacts must be made from within a radius of 150 miles of the initial location.
9) Contacts may be made over any neriod of years from November 15,1945 , provided unly that all contacts be made under the provisions of Rule $\mathrm{O}_{\text {, }}$ and by the sime station licensee; contacts may have been made under different eall letters in the same area (or country), if the licensec for all was the same.
10) Any altered or forged confirmations submitted for CC eredit will resuit in disquanifieation of the applieant. The eligibility of any DXCC applieant who was ever barred from IIXCC to reapply, and the eonditions for such application, shall be determined by the Awards Committee, Any holder of the Century Club Award submitting formed or altered confirmations must forfoit his right to he ronsidered for further endoremenent-
11) Operating ethics: Fair play and good sportsmanship in operating are required of all amateurs working toward the I)X Century Cluh Award. In the event of specilic objertions relative to continued poor operating ethies an individual may be disqualified from the 1$) \mathrm{X}$ (' (' by action of the ARRL Awards Committce.
12) Sufficient postage for the return of confirmations must be forwarded with the application. In order to insure
the safe return of large batches of confirmations, it is suggested that enough postage be sent to make possible their return liy first-class mail, registered.
13) Decisions of the ARRL Awards Committee regarding interpretation of the rules as here printed or later amended shall be final.
14) Address all applications and confirmations to the Communications Department, ARRL, 38 La Salle Road, West Hartford 7. Conn.

WAC Award

The WaC award, Worked All Continents, is issued by the International Amateur Radio Union (IARU) upon proof of contart with each of the six continents. Amatenrs in the U.S.A.. lossessions and Camada should apply for the award through ARIRL, headquarters society of the IARU. Those elsewhere must submit direct to their own IARU member-society. Residents of countries not represented in the Union may apply directly to ARRL for the award. Two basic types of WAC certificates are issume One contains no endorsements and is awarded for cew. or a combination of $\mathbf{c} \cdot \boldsymbol{w}$. and phone contarts; the other is awarded when all work is done on phone. There is a special endorsement to the phone WAC when all of the confirmations submitted elearly indieate that the work was done on two-way s.s.b. The only special band emorsements are for 3.5 and 50 Mc.

Code Proficiency Award

Many hams can follow the general idea of a contact "by ear" but when prossed to "write it. down" they "muff" the copy. The Code Proficiency Award permits each amateur to prove himself as a profirient operator, and sets up a system of awards for step-by-step gains in eopying proficiency. It enables every amateur to cheek his code proficiency, to better that proficiency, and to receive a certifieation of his recoiving speed.

This program is a whate of a lot of fun. The League will give a certificate to any licensed radio amateur who demonstrates that he can copy perfectly, for at loast one minute, plain-language Continental code at $10,15,20,25,30$ or 35

words per minute, as transmitted during special monthly transmissions from W1. 1 W and $\mathrm{WGO} \mathrm{WD}^{\prime}$.

As part of the ARRLI, Code Proficiency program W1AW transmits plain-language practice

Awards

material each evening at speeds from 5 to 35 w.p.m. All amateurs are invited to use these transmissions to increase their code-copying ability. Non-amateurs are invited to utilize the lower speeds, $5,71 / 2$ and 10 w. p.m., which are transmitted for the benefit of persons studying the code in preparation for the amateur license examination. Refer to any issue of QST for details of the practice schedule.

Rag Chewers Club

The Kag Chewers (hub) is designed to encourage friendly contarts and discourage the "hello-good-by" type of (2st). It furthers fratermalism through amateur radio. Membership certificates are awarded.

How To Get in: (1) Chew the rag with a member of the club for at least a solid half hour. This does not mean a half hour spent in trying to get a message over through bad QRNI or QRS, but a solid half hour of conversation or message handling. (2) Report the conversation by card to The Rag Chewers Club, ARRL. Communications Department, We:t Hartford. Conn., and ask the member station you talk with to do the same. When both reports are received yon will the sent a membership certificate entitling you to all the privileges of a Rag Chewer.

How Tho Stay in: (1) Be a conversationalist on the air instead of one of those tongue-tied infants who don't know any words except "cuagn" or "cul." or "QIRC" or "nil." Talk to the fellows you work with and get to know them, (2) Operate your station in accordance with the radio laws and ARRL practice. (3) Observe rules of courtesy on the air. (4) Sign " RCC" after each call so that others may know you can talk as well as call

A. 1 Operator Club

The A-1 Operator Club should include in its ranks every good operator. To become a member, one must be nominated by at least two operators who already belong. General keving or voice technique, procedure, copving ability, judgment and courtesy all count in rating candidates under the dub rules detailed at length in Operating an Amateur Radio Station. . Iim to make yourself a fine oprator, and one of these davs you may be pleasantly surprised by an invitation to belong to the A-1 Operator Club, which carries a worth-while certificate in its own right.

Brass Pounders League

Every individual reporting more than a speci-
fied minimum in official monthly traffic totals is given an honor place in the QST listing known as the Brass Pounders League and a certificate to recognize his performance is furnished by the SCM. In addition, a BPL Traffic Award (medallion) is given to individual amateurs working at their own stations after the third time they "make BPL," provided it is duly reported to the SCMI and recorded in QS゙T.

The value to amateurs in operator training, and the utility of amateur message handling to the members of the fraternity itself as well as to the general publie, make message-hatnding work of prime importance to the fraternity. Fun, enjoyment, and the feeling of having done something really worth while for one's fellows is accentuated by pricle in message files, recorls, and letters from those served.

Old Timers Club

The Old Timers Club is open to anyone who holds an amateur call at the present time, and who held an amateur license (operator or sta(ion) 20 -or-more years ago. Lapses in activity during the intervening years are permitted.

If you can qualify as an "Old Timer." send an outline of your ham career. Indicate the chate of your first amateur license and vour present call. If eligible for the oTC, you will be added to the roster and will receive a membership certificate.

INVITATION

Amateur radio is capable of giving enjoyment, self-training, social and organization benefits in proportion to what the individual amateur puts into his hobby. All amateurs are invited to become ARRL members, to work toward awards, and to accept the challenge and invitation offered in field-organization appointments. Drop a line to ARRL. Headquarters for the booklet Operating an Amateur Radio Station, which has detailed information on the field-organization appointments and awards. Accept today the invitation to take full part in all League activities and organization work.

CONELRAD COMPLIANCE

The FCC rules for the Amateur Service concerned with requirements in the event of enemy attack are contained in the ARRL License Mamual as part of the amateur regulations, Sections 12.190) through 12.196. These are the rules for control of electromagnetic radiation, conelrad, to minimize radio navigational aids to an enemy. Read and follow these rules. They concern you.

Amateurs are required to shut down when a Conelrad Radio Alert is indicated. FCC requires monitoring, by some means, of a broadcast station while you operate. By use of proper equipment, each amateur can make his conelrad compliance routine and almost automatic. You will find descriptions of such devices, most of them quite simple, in this Handbook and in QS'T.

24-OPERATING A STATION

Operating Abbreviations and Prefixes

Q SIGNALS

Given below are a number of Q signals whose meanings most often need to be expressed with bevity and rearness in amateur work. (Q abbreviations take the form of questions only when cach is sant followed by a question mark.)

QRG Will you tell ine my exact frequency (or that of.......)? Your exact frequency (or that of.) is.......ke.
QRII Docs my frequeney vary? Your frequency varies.
QRI How is the tone of thy transmission? The tone of your transmission is. . . . (1. Good; 2. Variable; 3. Isad).

QRK What is the readability of my signals (or those of......)? The readability of your signals (or those of. . . .) is. (1. U'nreadable; 2. Readable now and then; 3. Readable but with difficulty; 4. Readable; 5. Perfectly readable).
QRI. Are you busy? I arn busy (or I am busy with). Please do not interfere.
QRM Are you being interfered with? I am interfered with.
(\&KN Are you troubled by static? I am being troubled by static.
QRO Must I increase power? Increase power.
QRP Must I decrease power? Decrease power.
QRQ Shall I send faster? Send faster (. words per min.).
QRS Shall I send more slowly? Send more slowly (.... w.p.m.).

QR'I Shall I stop sending? Stop sending.
QRU Ilave you anything for me? I have nothing for you.
QIRV Are you ready? I ain ready.
QRII Shall I tell.....that you are calling him on .kc.? Please inform.... .that I ain calling him onke.
QRX When will you call me again? I will call you again at.hours (on.kc.).
QRZ Who is calling me? You are being called by..... (on.kc.).
QSA What is the strength of $m y$ signals (or those of)? The strength of your signals (or those of.....) is...... (1. Scarcely perceptible; 2. Weak; 3. Fairly good; 4. Good; 5. Very good).
QSI3 Are my signals fading? Your signals are fading.
QSD Is my keying defective? Your keying is defective.
QSG Shall I send..... messages at a time? Send..... messages at a time.
QSL Can you acknowledge receipt? I am acknowledging reccipt.
QSM Shall I repeat the last message which I sent you, or some previous message? Repeat the last message which you sent me [or inessage(s) number(s).
Can you communicate with. . . . direct or by relay? I can communicate with..... direct (or by relay through.....).
QSP Will you relay to.....? I will relay to.....
QSV Shall I send a scries of Vs on this frequency (orke.)? Send a serics of Vs on this frequency (or.ke.).
QSW Will you send on this (requency (or on....kc.)? I am going to send on this frequency (or on kc.).
QSX Will you listen to..... on..... ke.? I am listening to. on.

QSY Shall I change to transmission on another frequency? ('hange to transmission on another frequeney (or on. ...ke.).
Qs\% Shall I sem each word or kroup more that once? Send each word or group twice (or . . . tianes).
QI'A Shall I cancel inessage number. . . as if it had not been sett? ('ancel message number. . . . as if it had not been sent.
QII3 Do you agree with my counting of words? I do not agree with your counting of words: I will repeat the first letter or digit of each word or group.
QTC Ilow many messages have you to send? I have. . . . messages for you (or for.).
QTH What is your location? My location is.....
QTIR What is the exact time? The time is......
Special abbreviations adopted by ARRL;
(ぶT) Gencral call preceding a message addressed to all amateurs and ARRI members. This is in effect "CQ AIRIRL."
QRRR Official ARRL "land SOS." A distress call for emergency use only by a station in an emergency situation.

THE R-S-T SYSTEM

 READABILITY1 - Unreadable.
2 - Barely readable, occasional words distinguishable.
3 - Readable with consideralle difficulty.
4 - Readable with practically no difficulty.
5 - Perfectly readable.

SIGNAL STRENGTH

1 - Faint signals, barely perceptible.
2 - Very weak signals.
3 - Wieak signals.
4 - Fair signals.
5 - Fairly goorl signals.
6 - Good signals.
7 - Moderately strong signals.
8 - Strong signals.
9- Extremely strong signals.

TONE

1 - Extremcly rough hissing note.
2 - Very rough a.e note, no trace of musicality.
3 - Rough low-pitched a.c. note, slightly nusical,
4 - Rather rough a.c. note, moderately nusical.
5 - Musically-modulated note.
6 - Modulated note, slight trace of whistle.
7 - Near d.c. note, smooth ripple.
8 - Good d.c. note, just a trace of ripple.
9 - Purest d.c. note.
If the signal has the characteristic steadiness of erystal control, add the letter X to the RST report. If there is a chirp, the letter C may be added to so indicate. Similarly for a click, add K. The above reporting system is used on both c.w. and voice. leaving out the "tone" report on voice.

COUNTRIES LIST •（Use A．R．R．L．Op．Aid 7 for DXCC purposes．）

AC3 ．．．．．．．．．．．．．．．．．．Sikkim	İC4．．．．．．．．．．．．Navassa Island	go
	ISC6．．．．．．Eastern Caroline Islands	YPa゙．．．．．．．．．．．．．Cayman Islands
AC5．．．．．．．．．．．．．．．．．．．Bhutan	KC6．．．．．．Western Caroline Islands	V＇P5．．．．．．．．．．．．．．．．．．Jamaica
AP．．．．．．．．．．．．．．．．．．．Pakistan	KG1．．．．．．．．．．．．．．．．（See OX）	VP5．．．．．．Turks \＆Caicos Islands
BV，（C3）．．．．．．．．．．．．．．Formosa	K＇i4．．．．．．．．．．Guantanamo Bay	VP6．．．．．．．．．．．．．．．．．Marbados
BY，（C）．．．．．．．．．．．．． （＇hina	K （65．．．．．．．．．．．．．．．Mareus Island	YP7．．．．．．．．．．．．．．Bahama Islands
C9．．．．．．．．．．．．．．．．Manchuria		YP8 ．．．．．．．．．．．．．．．（see CE9）
CE，	Kifil－．．．．．．．．．．．．．（See Kidg）	YP8．．．．．．．．Fulkland Islands
	K166．．．．．．．．．．．．Hawaiian Islands	VP8，LU－\％．．．．．．．．．Nouth（icorgia
VP＇s．ZJa，ete．．．．．．．．Antaretica	kilf ．．．．．．．．．．．．Johnston Island	VP8，LC－Z．．．South Orkney Islands
CE4．．．．．．．．．．．．．．．．．．．（sce VIP8）	KL．7．．．．．．．．．．．．．．．Alaska	VP8，L．U－Z．South Sandwich Islands
CRot－．．．．．．．．Raster Island	K．16．．．．．．．．．．．．．Midway Islands	V1＇8，Ll－\％，C＇E！．
	KP4．．．．．．．．．．．．Puertorico	South Shetland Islands
CM，CO．．．．．．．．．．．．．．．Cuba	If P＇．．．Palmyra（iroup，Jarvis Island	V19．．．．．．．．．．．．．Bermuda Islands
CN2，8，4．．．．．．．．．．．．．Morocco	KR6．．．．．．．．．．Ryukyu Islands	VQ1．．．．．．．．．．．．．．．．／anzibar
CP．．．．．．．．．．．．．．．． 3 俍ivia	LS 4 B．Nerrana Bank \＆lioncalor Cay	V42．．．．．．．．Northern rhodesia
CR4．．．．．．．．．．．．Cape Verde Islands	list．．．．．．．．．	Ve3．．．．．．．Tanganyika Territory
CRS．．．．．．．．．．．Portuguese Gunea	Kıf．．．．．．．．．．American Samoa	VQt．．．．．．．．．．．．．．．．．Kenya
Cr6．．．．．．．．．．．．．．．tre．．a Angola	kifg．．．．．．．．．．．．．．．．Wake limands	VQ5．．．．．．．．．．．．．．．．．Uganda
	KXti．．．．．．．．．．．．．．．．．${ }^{\text {anarshall Islands }}$	Y08．．．．．．．． Crgados Carajos
CR8．．．．．．（ioa（Portuguese India）	K\％5．．．．．．．．．．．．．．．．．．（anal Zone	VQ8．．．．．．．．．．．．．Chagos 1 slands
CR9．．．．．．．．．．．．．．．．．．Macao	L．A．．．．．．．．．．．．．．．．．．．dan Mayen	VQ8．．．．．．．．．．．．．．Rodriguez Island
ClR16．．．．．．．．．．Jortuguese Timor	L．A．．．．．．．．．．．．．．．．．．．．．．Norway	VQ9．．．．．．．．．．．．．．．．．．．．Seychelles
（11．．．．．．．．．．．．．．．．．．Portugal	I．1．．．．．．．．．．．．．．．．．．．．．．．s．alluard	VR1．．．．．．．．ibritish Phmenix Islands
（12．．．．．．．．．．．．．．．．．．．．Azores	1．1．．．．．．．．．．．．．．Arcentina	
C13 ．．．．．．．．．．．．Madeira Islands	1．1\％\％．．．．．．．．．．． （sper（1\％VP8）	\＆Oecan Island
CX ．．．．．．．．．．．．．．．！ ruguay	1．X．．．．．．．．．．．．．．．．axembourg	VR2．．．．．．．．．．．．．．．Fiji Islands
	1．／．．．．．．．．．．．．．．．．．．．Binlgaria	VR3．．．Fanning \＆Christmas Islands
以U゙ ．．．．．．．．．．Philippine Islands	M1．．．．．．．．．．．．．．san Marino	VR4．．．．．．．．．．．Solomon Islands
EA．．．．．．．．．．．．．．．．．．．．．．Spair	MP4．．．．．．．．．．．．．．．．Bahrcin	VR5．．．．．．．．．．．．．．longa Islands
EA6．．．．．．．．．．．．．Balcaric Islands	MP4．．．．．．．．．．．．．．．．．Qatar	VR6．．．．．．．．．．．．liteairn Island
EA8．．．．．．．．．．．．Canary Islands	MP4．．．．．．．．．．．．Trucial（man	Sl．．．．．．．．．．．．．．．Singapore
	OA．．．．．．．．．．．．．．．．．${ }^{\text {Peru }}$	V．4．．．．．．．．．．．．．．．．．．．．Sarawak
EAS ．．．．．．．．．．．．．．．．．Rtio de Oro	OD，．．．．．．．．．．．．．．．．．．．ebanon	Vi．j．．．．．．．．．．．．．．．．． Brunei
EA9．．．．．．．．．．．Spanish Morocco	O1：．．．．．．．．．．．．．．．．．Anstria	Vs6．．．．．．．．．．．．．．．．． Ilong liong
EAU．．．．．．．．．．．．spanish Guinea	O1I．．．．．．．．．．．．．．．．．．．．．．．Finland	W9．．．．．．．．．．．．．Aden \＆Socotra
E1．1．．．．．．．．．．．Republic of Ireland	OH6．．．．．．．．．．．．Aland lalands	V89．．．．．．．．．．．．Maldive Islands
kL．．．．．．．．．．．．．．．．．．．．．iberia	OK ．．．．．．．．．．．．（zer hoslowakia	＇s9．．．．．．．．．Sultanate of Oman
EP．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 ．${ }^{\text {anan }}$	OX4 ．．．．．．．．．．．．．Belrium	l^{L}－．Andaman and Nicohar Islands
E1＇2．．．．．．．．．．．．．．．．．．．．Britrea	OX，KG1．．．．．．．．．．．．．．（ireenland	t $\mathrm{t}^{\text {a }}$ ．．．．．．．．．．．．．．．．．．．India
E1＂3．．．．．．．．．．．．．．．．．．．Ethiopia	OY ．．．．．．．．．．．．．．．．．Facroes	$1{ }^{\text {c }}$ ．．．．．．．．．．．Laccadive Islands
France	OZ ．．．．．．．．．．．．．．．．．．．．．Denmark	W ．．．．．．．．．．．．．．．（See K）
FA．．．．．．．．．．．．．．Algeria	PAb，PII．．．．．．．．．．Notherlands	XE，XF ．．．．．．．．．．．．．．．．Mexico
F138．Amsterdam \＆St．Paul islands	PJ．J．．．Netherlamds West Indies	XE4 ．．．．．．．．．．．．．．．．．Revilla（igedo
1038．．．．．．．．．．．．Comoro Islands	P．J2i－．．．．．．．．．Nint Marter	X148．．．．．．．．．．．．．．．．．．．．．．．．Laos
F138．．．．．．．．．．．． licrguelen Islands	PX ．．．．．．．．．．．．．．Andorra	XZ2．．．．．．．．．．．．．．．．．．．．．．．．．Burma
F138 ．．．．．．．．．．．Malagass Rep．		YA．．．．．．．．．．．．．．．．Afghanistan
F138．．．．．．．．．．．Tromelin Island	PYo．．．．．．．Fernando de Naronla	Y1．．．．．．．．．．．．．．．．．．．．． 1 raq
FC（unoficial）．．．．．．．．．．．．Corsica	I＇y I＇rindade \＆Martim Vaz Islands	YJ．．．．．．．．．．．．．．．．．．．．． （See FU8）
1×1 ．．．．．．．．．．．．．．．．．．．．．Togo	［＇\％1 ．．．．．．．Netherlands Giuiana	YK．．n．．．．．．．．．．．．Syria
FPE8 ．．．．．．．．．．．Cameroons	SL．，SM ．．．．．．．．．．．．．．．．．．．sweden	YN，Y¢ ．．．．．．．．．．Nicaragua
1×1.	Sp，．．．．．．．．．．．．．．．．．．．．．．． Poland	Yo，No．．．．．．．．．．．．．．．．．．．Ricaragua
FF．．．．．．．．．．．．Mali Federation	ST2 ．．．．．．．．．．．．．．．．．．．．．．sudan	YS．．．．．．．．．．．．．．．．．．．．． Salvador
FF．．．．．．．．．．．．．．．．．． $\mathrm{Viger} \mathrm{İep}$.	st．．．．．．．．．．．．．．．．．．．．Egypt	YU．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {Y }}$＇ugoslavia
FF．．．．．．．．．．．．．．．．．．Voltaic Rep．	SV．．．．．．．．．．．．．．．．．．．．Crete	YV．．．．．．．．．．．．．．．．．．．．Venezuela
rep．．．．．．．．．．．．．．．Ivory Coast		Yg．．．．．．．．．．．．．．．．．Aves Island
F17．．．．．．．．．．．．．．．Mauritania	sy．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {areere }}$	ZA．．．．．．．．．．．．．．．．．．．．．．．．．．．Albania
FG7 ．．．．．．．．．．．．Guadeloupe	TA ．．．．．．．．．．．．．．．．．．．．．．．．Turkey	ZB1 Malta
F188．．．．．．．．．．．New Caledonia	TF．．．．．．．．．．．．．．．．．．．．．．． 1 Imeland	ZB2．．．．．．．．．．．．．．．．．．．．． （iitraltar
FL8．．．．．．．．．．French Somaliland	IG ．．．．．．．．．．．．．．（inatemala	ZC4．．．．．．．．．．．．．．．．．．．．．．．．．．．．Cyprus
FM7．．．．．．．．．．．．．．．Martinique	T1．．．．．．．．．．．．．．C＇osta Rica	ZC5．．．．．．．．．Britisl North Borneo
FO8 ．．．．．．．．．．．（lipperton Island	719．．．．．．．．．．${ }^{\text {coeos island }}$	Z¢ソ．．．．．．．．．．．．．．．．．．．．${ }^{\text {alalestine }}$
FO8．．．．．．．．．．．French Oceania		ZD1．．．．．．．．．．．．．．．．．．Sicrra Leone
F1P（．）．st．Pierre \＆Mipuclon Islands	Socialist Federated Soviet Republie	Z1）2．．．．．．．．．．．．．．．．．．Nigeria
F（2．．．．．．．．．Central African Rep．	UA1．．．．．．．．．．Franz Josef Land	
FQ．．．．．．．．．．．．．．Chad Rep．	LA！，B．．．Asiatie Russian s．f．s．R．	Z166．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {Ny }}$ ysaland
F＇Q．．．．．．．．．．．．．．．Congo Rep．	U135．．．．．．．．．．．．．${ }^{\text {a }}$ Ukraine	K137．．．．．．．．．．．．．．．．．．．．St．Mclena
FQ ．．．．．．．．．．．．（ialon Rep．	LC2 ．．．．．．．White Russian s．s． 1 ．	Z158．．．．．．．．．．．．．．．．．．．．．．．．Ascension Island
F177．．．．．．．．．．．．Reunion Island	U126．．．．．．．．．．．．．．．Azerlnajan	ZID9 ．．．．．．．．．Tristan da Cunha de
IS7．．．．．．．．．．．．．．．Saint Martin	UF6．．．．．．．．．．．．．．．．．． （icorgia	Gough Islands
FU8，YJ1 ．．．．New Hebrides	U66．．．．．．．．．．．．．．．．．．Armenia	ZE ．．．．．．．．．．．Southern Rhodesia
FW8．．．．．．Wallis \＆Futuna Islands	C118．．．．．．．．．．．．．．．Turkoman	ZK1．．．．．．．．．．．．．．Cook islands
FY7 ．．．．．．French Guiana \＆Inini	118．．．．．．．．．．．．．．．．．Lzbek	ZK1．．．．．．．．．．．．Maniliki Islands
G．．．．．．．．．．．．．．．．．．．．．England	158．．．．．．．．．．．．．．．．．．Tadzhik	
GC．．．．．．．．．．．．Chanuel Lelands	ULT．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	ZL ．．．．．Auck latid d Campbeli Ist．
GD ．．．．．．．．．．．．．．Isle of Man	1－18．．．．．．．．．．．．．．．．．．．．	ZL．．．．．．．．．．．．．Chatham Islands
G1．．．．．．．．．．．．Northern 1reland	C05．．．．．．．．．．．．．．．．Moldavia	ZL．．．．．．．．．．．．．．． kermadec Islands $^{\text {a }}$
GM．．．．．．．．．．．．．．．．Scotland	Cr²．．．．．．．．．．．．．．．．．． 1 ithuania	ZL．．．．．．．．．．．．．．New Zealand
GW．．．．．．．．．．．．．．．．．．．Wales	CQ2 ．．．．．．．．．．．．．．．．．．．Latvia	ZL5．．．．．．．．．．．．．．．．．．（see CE9）
HA．．．．．．．．．．．．．．．．．．．Hungary	C12 ．．．．．．．．．．．．．．．．．Mstonia	
IIB ．．．．．．．．．．．．．．．．Switzerland	VE，vo．．．．．．．．．．．．．Canada	ZA17．．．．．．Tokelau（tnion）Islands
IIC．．．．．．．．．．．．．．．．．．．Ecuador	YK．Australia（including Tasmania）	ZP．．．．．．．．．．．．．．．．．．．．．D＇araguay
HC8．．．．．．．．．．Galapagos Islands	YK．．．．．．．．．．．．Lorel Howe Island	\％S1．2，4，5，6．Union of Southafrica
HE．．．．．．．．．．．．．．．．Liechtenstein	VK．．．．．．．．．．．．．．Willis Islands	ZS2．P＇rince Pdward \＆Marion Islands
IHH．．．．．．．．．．．．．．．．．．．．． 1 Iaiti	V19．．．．．．．．．．．．Christmas island	ZS3．．．．．．．．．．．．．Southwest Africa
HI：．．．．．．．．．Dominican Republic	YK！．．．．．．．．．．．．Creos Islands	Zx7．．．．．．．．．．．．．．．．．．．．swaziland
IK K ．．．．．．．．．．．．Colombia	V9．．．．．．．．．．．．．．．Nauru Island	Zs8．．．．．．．．．．．．．．Basutoland
H1R0．．．san Andres and I＇rovidencia	VK9．．．．．．．．．．．．Norfolk Island	\％S9．．．．．．．．．．．．．．．．．．${ }^{\text {bechuanaland }}$
I11．．．．．．．．．．．．．．．．．．．．．Fiorea	Vk9．．．．．．．．．．Papua Perritory	3．．．．．．．．．．．．．．．．．．．．．Mionaco
IIP ．．．．．．．．．．．．．．．．．．．l＇anama	＇k9．．．．．Ferritory of New Gininea	3v8．．．．．．．．．．．．．．．．．．．．．．．Tunisia
HR ．．．．．．．．．．．．．．．．．．．Ionduras		3W8．．．．．．．．．．．．．．．．．．．．．Vietnam
HL，．．．．．．．．．．．．．．．．．．＇Mhailand	Vko．．．．．．．．．．．．．．Heard Island	4\＄7．．．．．．．．．．．．．．．．．．．Ceylon
IV．．．．．．．．．．．．．．．．．．．．Vatican	Vky．．．．．．．．．．．Maequaric Istand	＋Wi．．．．．．．．．．．．．．．．．．．．．．． Yemen $^{\text {a }}$
IIK．．${ }^{\text {a }}$ ．．．．．．．．．．．．Saudi Arabia	VO ．．．．．．．．．．．．．．．．．．（see VE）	
11，IT1．．．．．．．．．．．．．．．．．．Italy	VP1 ．．．．．．．．．．．．British Honduras	
Isi．．．．．．．．．．．．．．．．Sardinja	VP2．．．．．．．．．．．．．．．．．Anguilla	
JA，KıA ．．．．．．．．．．．．．．．．Japan	YP2．．．．．．．．．．Antigua，Barbuda	7G1．．．．．．．．．．．．．．Rep，of Guinea
JT1 ．．．．．．．．．．．．．．．．．．Mongolia	YP2．．．．．．．．British Virgin Islands	9G1．．．．．．．．．．．．．．．．．．．．．．（ihana
J V．．．．．．．．．．．．．．．Jordan	YP2．．．．．．．．．．．．．．． 1 mominica	9k2．．．．．．．．．．．．．．．．．．．
JK6．，．．．．Netherlands New Guinea	VP²．．．．．．Granada \＆Depeudencies	
K．W Cinited States of America	YP2．．．．．．．．．．．．．．．．．．Mlontserrat	9N1．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Kad，KG6I Bonin \＆Volcano Islands	VP．．．．．．．．．．．．．．t．Kitts，Vevis	9Q5 ．．．．．．．．Rep．of Congo
KB6．．Baker，Howland \＆American	VP2．．．．．．．．．．．．．．．．．St．Lueia	905．．．．．．．．．．．Ruandr－Urundi
Phoenix Islands	VP2．．．．St．Vineent \＆Dependencies	Aldabra Islands
KC4．．．．．．．．．．．．．．．．（See CE9）	VP3．．．．．．．．．．．．．．．．．British Guiana	Cambodia

INTERNATIONAL PREFIXES

A．AA－ALK
AMA－AOZ
ATA－AW\％
AXA－AXV
Al＇A－AZ\％
B．AA－BZZ／
（＇AA－CK\％
（1RA－（K\％
（NA－N\％
（0． $\mathrm{A}-\mathrm{CO} \%$
（PA－CD＇／
（ $2 \mathrm{~A}-\mathrm{CR} / \mathrm{R}$
（VACCV）
－－－$\%$
（ A－C
1）．A－1＂\％
1） A －IV\％
NAA－FII\％

Eビイービに\％
ELA－EL\％
WMA－EO\％
EPA－FQ／
ER．A－CRZ
EA－WNZ
TA－ETM
CCA－EN／
EXA－EZZ
FAA－${ }^{-} Z \%$
FAA－1 F / Z
HAA－HAZ
HAS－11B\％
1以゙A－H1）
IEA－IEZ
HFA－11F\％
HGi．A－IIC：
111．－1111\％
HAA－II\％
11．5－11K
HALA－HM／
HLA－HMZ
MNA－11
HOA
II（2A－H1R2
115．1－1IS\％
HTA－MT＇Z
HI 1 －11＂\％
HVA－HV\％
H1：－HVZ
11ZA－HZZ
IAA－1\％\％
JA」ーぶ
JTA－J\％
JITA－JN\％
J A－IV／
J\％A－1\％\％
KAA－KZ！
LOt－1以\％
LNA－LN\％
LYA－LY
L L －LDZ，
MAA－M1Z\％
NAA－NK／
NAA－N\％
OAA－OC\％
ODA－ODZ
OFA－OF：／
OHA－0．
OK．A－OMZ
oNA－OT\％
OUA－（Y\％
OUA－OK\％
PRA－1．J\％
redi－piz\％
Plid－poz
PPA－1＇\％／

QAA－（QZZ
SAXージメ
SNはードR\％
SSA－scil
SxA－scm
SSA－sTZ
SUA－SC／
TAA－T $1 /$
TAA－I＇
TDA－1D／
TEA－TEZ
T11－TF
T（i．1－T（i\％
THA－IIIZ
TLA－TIZ
「JA－ITR\％
ToーTはM
15A－TsM
UAA－$Q /$

Inited States of America
Spara
Pakistan
India
（＇onmonwealth of Australiu
Argentine Republie
China
Connada
Cumad
Morneco
Cuba
Bulivia
P＇orturuese Overseas Provinces
Portural
triznay
Camada
Germans
Republie of the Ploilippines
Sbain
Irelatud
［nion of Soviet Nocialist Republies
Liberia
Inton of Soviet Sowis．list Rejublies
1ran
（Thion of Soviet Sorialist Repmblies listonia

Fitoma

Rielorussian soviot sucialist Republie
Inion of Soviet surialist Republies
France and Fremel！Commmaty
France and Fr
Cireat Rritain
Cireat Britait
Hungarian P＇
switzerland ople＇s Republic
Demador
Switzerland
People＇s Republic of I＇oland
Homgarian Peonle＇s Republie
Remblibe of Haiti
Dominican Repmblic
Republie of Colombia
liorea
Irall
Republic of Panama
Republic of Ilomburas
Tlailand
Xicarapua
Republic of EL salvador
VatimanCity State
Frame and Frems Community
samdi Arabia
Italy and Manelated＇I＇erritories Japan
Mongolian People＇s Republie
Norway
Jordan
Netherlands New（iuinea
I＇nited States of America
Norway
Arapntine Requblic
Lluxembonirg
Lithataia
I^{\prime}（woule R Romble of Bulgaria
Great Britain
Inited States of Ameriea
Peril
Lebanon
Alisitriat
Finland
（zechoshorakit
Belpinim
Demmark
Otheriands．
vetherlands Antilles
Requblie of Indonesia
Brazil
Surinatm
（rervice abbreviations）
Thim of Soviof Sucinlist Republies
swatry
Prople＂s Republie of Poland
giplt
Fsynt（C．．A．R．）
Cirere
「urkey
Gitatenala
Costa IRica
lceland
Cinatenala
France and French Community
Costa Rica
France and frencl，（ommunity
Tunisia
Fance and French Community
Union of Soviet soeialist Republics

प18A－＂T\％
しせA－CZZ
VAA－V（iZ
VIIA－VI\％
VOA－NO\％
VPA－VE\％
VTA－VW／
VXA－V「\％
YZA－V\％
W：AA－IV\％\％
され．1－XI\％
NJA－N0\％
XPA－NP／
$\mathrm{XQ} A-\mathrm{XRZ}$
－TAージッ
ヘビィ－ベ\％
XVA－ツ
NW：A－N\％
NXA－NX\％
NYA－N\％\％
YAA－YAZ
yB． 1.11%
11．1－11\％
1．J．t－Y゙J\％
FAA－Yに
YMA－YM\％
YホーVジ
1OA－YR\％
－
1sA－1s\％
VMA－Y゙\％
YZA－YZ\％
\％A1－\％ 1%
Z $1.1 .2 .1 \%$
そだースぶ\％
\％NA－ZOV

70．－7， 2%
ZRA－Z！\％
ZVA－\％\％\％
2AA－2\％\％
2AA－2Z\％
3AA－ 3 A\％

3II．土～31\％
3VA－SV\％
3UC．A－3W\％
$3 \times \pm-3 \pm \%$
3）
32 －3VZ
3／4－3／2
4AA－1（＂／4
$41) A-41 \%$
4．I． $1-41 . \%$
4．11．4－1．11\％
4）－ $1-10 \%$
4 D － 4 K
$4^{\prime} \mathrm{I}^{\prime} \mathrm{A}-\mathrm{q}^{\prime} \mathrm{I}^{\prime} / 2$
$412-11 \%$
$4 \mathrm{Cl}-1 \mathrm{~V}$
$4 W^{6}-4 \mathrm{~V} / 4$
$4 \div \mathrm{A}-\mathrm{H} /$
4NA－4シ\％
4 YA－4 $\%$
$4 /-A-4 Z / 2$
$5 A A-2 A Z$
$5 \mathrm{C} A-\overline{\mathrm{J}} \mathrm{B} / 2$
5．J A－i3K\％
5LA－5．M\％
51） $1-5()^{2}$
5R．- － $\mathrm{V} \%$
（ $.1 . A-1317 /$
6C：A－r ${ }^{\circ} \%$
（GDA－（i．5\％
6DA－（i．5
K．A－i．N\％
6OA－6iOZ
iPA－1is\％
（＇I＇A－fiU＂／
7A． 1 － $5 / \%$
7J． J － NK
78．$-7 \times \%$
7 Z － 7%
$8.1 .1-81 \%$
8．1． $81 / 2$

8T $1-8 \mathrm{Y} / 4$
$8 Z A-8 \% Z$
9A．1－4．1\％
$913.1-91) \%$
13．－91）\％
1．A－91\％
$9(\mathrm{~A}-9 \mathrm{Ci} \mathrm{\%}$
$9 \mathrm{~N}-9 \mathrm{~K} \%$
9MI－GMI\％
9NA－9N\％
90A－YしZ

CKrainian Soviet Soeialist Republie
Union of Soviet Socialist Republies
Canada
Commonwealth of Australia
Canada
British Overseas T＇erritories
India
Cuntada
C＇ommonwealth of Australia
Inited states of America
Mited
Mexien
C＇amadia
Denmark
（＇hile
（blima
FFance and Frencll Community
（＇ambodia
Vict－Nim
Lions
Portuguese Overseas I＇rovinees
Portugh
Burtua
Afrhanistan
Repmblic of Indonesia
Irall
New Hebrides
syria（U．A．R．）
Latvia
＇Turkes
iRoutuanian People＇s Republie
Republic of El Salvador
Republe of
lugoshavia
Vreqsisuyia
Fenezuela
Yiggslavia
Albania
Britishl，Overseas＇Marritories
Sew／ealand
Britiml Overseas＇lerritories
Parmguay
British Oversuas＇Merritories
Enion of Soutly Arien
Brazil
Great Britain
Nonaco
Canada
Chilo
China
T＂unisia
Gininea
Norway
Peoplo＇s Republie of l＇oland
Mexien
Repmblie of the Phalippines
Vnion of Soviet Soeialist Republies
Venezuela
logomataria
Ceylon
Peris
Enited Nations
Republic of Haiti
Yerten
Sitate of Israel
International Civil Aviation Organization
State of Israel
libya
Moroceo
Colombia
Liberia
Jonnuark
France and Freneh Community
Ligspt（E．A．R．）
syria（U．A．R．）
Mexiro
Korea
Aomalia
Pakistan
Sudan
Indonesia
Jajan
sweden
Sandi Arabia
Indonesia
Jupan
sweden
India
saudi Arabia
san Marino
Iran
Ithiopia
Ghana
liuwat
Malaya
Nepal
Belgian Congo and Ruanda－Urundi

Abbreviations

ABBREVIATIONS FOR C．W．WORK

Abbreviations help to cut down unnecessary transmission．However，make it a rule not to abbreviate unnecessaril when working an operator of unknown experience．			
AA	All after	OB	Old boy
AB	All before	OM	Old man
AB＇	About	OP－OPl	Operator
Al）］	Address	OSC	Oscillator
AGN	Again	OT	Old timer；old top
ANT	Antenna	PBL	Preamble
BCI	Broadeast interference	PSE－PLS	Please
B6．1．	13 roadcast listener	PWR	Power
131	Mreak；break me；break in	יス	1 ＇ress
13N	All between；been	12	Received as transmitted；are
B． 1	l3efore	RAC	Rectified alternating current
（	Yes	RCD	Received
CFA	Confirm；I confirm	REF	Refer to；referring to；reference
Cl	Cheek	R19T	Repeat；I repeat
Cl，	I am closing my station；call	SED	Said
ClLD－CLG	Called；calling	SEZ	Says
CU1）	Could	SIG	Signature；signal
CUL．	See you later	SINE	Operator＇s personal initials or nickname
（ UM	Come	ぶじい	Schedule
CW	Continuous wave	Sll	Sorry
DLD－DLVI）	l elivered	SV C	Service；prefix to service message
DX	1）istance	TFC	Traffic
ECO	Electron－coupled oscillator	TMW	Tomorrow
FB	Fine busincss；excellent	TNX－TES	Thanks
GA	（io ahead（or resume sending）	TT	That
（il3	Good－by	${ }^{1} \mathrm{~T}$ C	Thank you
GBA	（iive better address	TVI	＇lelevision interference
GE：	Good evening	$\cdots \mathrm{l}$	Television listener
G（	Cioing	TXT	Text
（iM	（iood norning	UR－URS	Your；you＇re；yours
GN	（iood night	VFO	Variable－frecquency oscillator
GND	（iround	VY	Very
（iL＇）	（iood	W．A	Word after
11 I	The telegraphic laugh；hich	WH	Word before
1112	Here：hear	W1）－WDS	Word；words
11V	Have	WK゙）－W゙だ「	Worked；working
IIW	How	WL	Well；will
LII）	A poor operator	WUD	Would
MILS	Millianmeres	WX	Weather
MSG	Message；prefix to radiogram	XMTR	Transmitter
N	No	XTAL	Crystal
ND	Nothing doing	IF（XYL）	Wife
NIL	Nothing；I have nothing for you	YL	Young lady
NR	Number	73	Rest regards
NW	Now；I resume transmission	88	Love and kisses

W／K CALL AREAS BY STATES

24-OPERATING A STATION

- Operating an Amateur Radio Station covers the details of practical amateur operating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, "Q" Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.
\rightarrow Emergency Communications is the "bi. ble" of the Amateur Radio Emergency Corps. Within its eight pages are contained the fundamentals of emergency communication which every amateur interested in public service work should know, including a complete diagrammatical plan adaptable for use in any community, explanation of the role of the American Red Cross and FCC's regulations concerning amateur operation in emergencies. The Radio Amateur Civil Emergency Service (RACES) comes in for special consideration, including a table of RACES frequencies on the front cover.

The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

AMERICAN RADIO RELAY LEAGUE 38 La Salle Road
West Hartford 7, Connecticut, U. S. A.

Please send me, without charge, the following:
OPERATING AN AMATEUR RADIO STATION
EMERGENCY COMMUNICATIONS

Name
(Please Print)
Address

Vacuum Tubes and Semiconductors

For the convenience of the designer, the re-reiving-type tubes listed in this chapter are grouped by filiment voltages and construetion types (glass, metal, minature, etre). For example, all miniature tubes are listed in Table I, all metal tubes are in Table II, and so on.

Transmitting tubes are divided into triodes and tetrodes-bentodes, then listed arrording to rated plate dissipation. This permits direct comparison of ratings of tubes in the same power rassitication.

For quick reforence, all tubos are listed in mumerimal-alphabetical order in the index. Troes having no talbe reference are either obsolete or of little use in amateur equipment. Base diagrams for these tules are listed, however.

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating voltages and currents for the electrodes, hased on inherent limiting factors such as promissible rathode temperature, emission, and power dissipation in clectrodes.

In the transmitiong-tube tables, maximum ratings for electrode voltage, current and dissipation are given scparately from the typical operating conditions for the reommended classes of operation. In the reediving-tube tables, because of spare limitations, ratings and operating data are combined. Where only one set of operating conditions appears, the positive electrode boltages shown (plate, serven, ete.) are, in general, also the maximum rated voltages.

For rertain air-rooled transmitting tubes, there are two sets of maximum values, one designated as CCs (Continuous Commercial Service) ratings, the orher ICAS (Intermittunt Commorriad and Amateur Sorvior ratings. Continuous Commeriald sembere is defined as that type of servied in which long tube life and reliability of performane under eontinuous operating
conditions are the prine consideration. Intermittent Commercial and Amatenr Service is defined to include the many applications whore the transmitter design factors of minimum size, light weight, and maximum power ontput are more imporiant than long tube life. IC.As ratings are considerably highor than C('s ratings. They permit the handing of greater power, and although such use involvos some Sarrifice in tube life, the period over which tubes give satisfapory performane in intermittent servier ran be extremely long.

The plate dissipation values given for transmitting tubes should not be exceeded during normal operation. In plate modulated amplifier applieations, the maximum allowathe carrier-condition plate dissipation is approximately (iff pereent of the value listed and will rise to the maximmm value under 100-per-cent sinusoidal modulation.

Typical Operating Conditions

The typical oprating conditions given for transmitting tubes reprosent, in gemeral, maximum ICAS ratings where such ratings hate been given by the manufaeturer. They do wot represent the only possible method of operation of a particular tube type. Wher values of plate voltage, phate current, grid bias, cote., may be used so long as the maximum ratings for a particula voltage or current are not exereded.

Equivalent Tubes

The equivalent tubes listed in Table VIll are used occasionally in amateur servico. In uddition to the types listed, other equivalents are available for special purposes such as series-heater string operation in TV receivers. These types require unusual values of heater voltage (3.15, 4.2 , etc.), and have controlled wamiop tinne characteristics to minimize voltage unbalance during starting. Except for heator design, these types correspond electrically and merhanically to i -wolt prototypre.

INDEX TO TUBE TABLES

1 - Miniature Receiving Tubss
11-6.3-Volt Metal Rereiving Tubes.
II - in.3-Volt (ilass Tubes withoctad Bases
IV - (3,0 - Yolt Loek-In Base Tubes.
V - $1 . \bar{i}$ - Volt Battery Tubes
MI - lligh-Voltage Heater Tuhes. . . Vel
VII -Special Rereiving Tubes............ . . 22
VIII - Bdquivatent Tubes. V 22
$\sqrt{15}$
V19
120
121
V21
V21

1N - Control and Regulator Tubes. V2:
X - Rectifiers . V24
XI - Triode Transmitting Tubes. V25
XII — Tetrode and Pentode Transmitting
Tubes. V 28
XIII - Felectrostatic Cathode-Ray Tubers V:30
XIV - Transistors. V3I
XV - ('rystall liodes. V:32

INDEX TO VACUUM-TUBE TYPES

Jasediagram section pages $\mathbf{V} 5.115$. Classified data pages $\mathbf{V 1 5}-\mathrm{V} 32$,

VACUUM-TUBE DATA

CHAPTER 25

T"ype	Pape	Type
$1 \sim 213$	V8	1×66
IN21C.	V:32	1×67
I N2:3C.	V:32	1N67A
1×25	132	1 N6s
$1 N 34$	12	1 N65.
1 N 34 A	132	$1 N 69$.
1×35	43	1N704
1 N38	V32	1×77
1 N38.1.	V32	1×81
1×391.	V13	1N82
1×48	V32	1NSPA
1 N 52 A	V73	1 Ns 9
1N54.1.	V32	1.150
IN55A	V32	1×91
1 N56A.	V32	1.195
1 N5SA.	132	$1 N 0 \%$
1×60	132	1×97
1 N6.3	1:32	1×98
1×64	W\%	1N99
1×65	$V: 32$	1N1010

rave	Tupe
132	1N116
V32	1N1\%
Vi32	1N118
V32	1N126A
V32	15127A
V32	1×128
V32	1×15
V32	1 N 15
V32	1 N15:3
V"32	1N158
132	1 N191
V:32	1 N192
132	$1 \times 19 \mathrm{~N}$
V:2	1×279
132	1 N 2 CB
1:32	1×29
V:32	1 N295
$1 ; 32$	1×44
	I N6.34
V:32	1 N6i36

SEMICONDUCTORS

stave	T'ype
V32	2×34
132	2 N 35
V32	2 N 43
132	2 N 4
V:32	2×78
V32	2×94
V32	$2 N 944$
V:32	2 N 107.
V:32	2 N 109.
V'32	2 NL 33.
v:32	2×139
V'3:	2×140
v'32	2N150.
V:32	2×167.
vis	2×169.
V:32	$2 N 175$
132	2N218.
V132	2×219
V32	2N23:
$1: 32$	2 N 24.

Jage	Tupe	Jage
131	2×15	V31
V31	3×25.	V11
V31	3 N:36	V31
V:31	3×37	V:31
V31	(11)-1	V31
V:31	Ck722	81
V31	Ch768.	1
V31	1131	V32
V31	H132	132
V'31	1133	V22
V31	H134	132
V:31	11135	132
V:31	1136	V32
31	M150.	$\because 32$
1	MEO)	1332
V'31	sil3100.	V:31
Vi31	T1832.	131
V:31	T1838	V31
V:3	T1859.	Vi31

right to bring in signals from the desired locality, you can call them. Short calls, at about the same frequeney, with breaks to listen, will raise stations with minimum time and trouble.
2) Answering a Call: Call threc times (or less); send DLi; sign three times (or less) ; after contact is established decrease the use of the call signals of both stations to once or twice. When a station receives a call but does not receive the call letters of the station calling, QRZ? may be used. It means "By whom am I heing called?" QRZ should not be used in place of CQ.
3) Ending Signals and Sign-Off: The proper use of $\overline{\mathrm{AR}}, \mathrm{K}, \overline{\mathrm{KN}}, \overline{\mathrm{SK}}$ and CL ending signals is as follows:
$\overline{\mathrm{AR}}$ - End of transmission. Recommended after call to a specific station before contact has been established

Example: W6ABC W6ABC WGABC W6ABC
WGABC DE W9LME WOLMN AR. Also at the end of transmission of a radiogram, immediately following the signature, preceding identification.
\mathbf{K} - Go ahead (any station). Recommended after $C Q$ and at the end of each transmission during QSO when there is no objection to others breaking in.

Example: CQ CQ CQ DE W1ABC W1ABC K or W9IVZ DE WIABC K.

$\overline{\mathrm{KN}}$ - Go ahead (specific station), all others keep out. Recommended at the end of each transmission during a QSO, or after a call, when calls from other stations are not desired and will not be answered.

Example: W4FGII DE XU6GRL KN.

$\overline{\text { SK }}$ - End of QSO. Recommended before signing last transmission at end of a QSO.

$$
\text { Example: } \overline{\mathrm{SK}} \text { W8LMN DE W5BCD. }
$$

CL-I am closing station. Recommended when a station is going off the air, to indicate that it will not listen for any further calls.

Example: SK W7HIIJ DE W2JKL CL.

4) Testing. When it is necessary for a station to make test signals they must not continue for more than 10 seconds and must be composed of a series of VVV followed by the call sign of the station emitting the test signals. Always listen first to find a clear spot if possible, to avoid causing unwarranted QIRM of a QSO in progress.
5) Receipting for conversation or traffic: Never receipt for a transmission until it has been entirely received. " R " means "transmission receivel as sent." Use R only when all is received eorrectly.
6) Repeats. When most of a transmission is lost, a call should be followed by correct abbreviations to ask for repeats. When a few words on the end of a transmission are lost, the last word received correctly is given after ?AA, meaning "all after." When a few words at the beginning of a transmission are lost, "AB for "all before" a stated word should be used. The quickest way to ask for a fill in the middle of a transmission is to send the last word received correctly, a ques-
tion mark, then the next word received correctly, Another way is to send "?BN [word] and [word]."

Do not send words twice (QSZ) unless it is requested. Send single. Do not fall into the bad habit of sending double without a request from fellows you work. Don't say "QIRM" or "QlRN" when you mean "QRS." Don't CQ unless there is definite reason for so doing. When sending CQ, use judgment.

General Practices

When a station has receiving trouble, the operator asks the transmitting station to "QSV." The letter " R " is often used in place of a decimal point (e.g., "3R5 Mc.") or the colon in time designation (e.g., "2lR30 PM"). A long dash is sometimes sent for "zero."

The law concerning superfluous signals should be noted. If you must test, disconnect the antenna system and use an equivalent "dummy" antenna. Send your call frequently when operating. lick a time for adjusting the station apparatus when few stations will be bothered.

The up-to-date amateur station uses "breakin." For best results send at a medium speed. Send evenly with proper spacing. The standardtype telegraph key is best for all-round use. Regular daily practice periods, two or three periods a day, are hest to acquire real familiarity and proficiency with code.

No excuse can be made for "garbled" copy. Operators should copy what is sent and refuse to acknowledge a whole transmission until every word has been received correctly. Good operators do not guess. "Swing" in a fist is not the mark of a good operator. Unusual words are sent twice, the word repeated following the transmission of "?". If not sure, a good operator systematically asks for a fill or repeat. Sign your call frequently, interspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an operator has learned sending properly, and comes up with a precision "fist" - not fast, but clean, steady, making wellformed rhythmical characters and spacing beautiful to listen to - he then becomes subject to outside pressures to his own possible detriment in everyday operating. He will want to "speed it up" because the operator at the other end is going faster, and so he begins, unconsciously, to run his words together or develops a "swing."

Perhaps one of the easiest ways to get into bad habits is to do too much playing around with special keys. Too many operators spend only enough time with a straight key to acquire "passable" sending, then subject their newlydeveloped "fists" to the entirely different movements of bugs, side-swipers, electronic kevs, or what-have-you. All too often, this results in the ruination of what might have become a very good "fist."

Think about your sending a little. Are you satisfied with it? You should not be - ever. Nobody's sending is perfect, and therefore every
operator should continually strive for improvement. Do you ever run letters together - like Q for MA, or P for AN - especially when you are in a hurry? Practically everybody does at one time or another. Do you have a "swing"? Any recognizable "swing" is a deviation from perfection. Strive to send like tape sending; copy a W1AW' Bulletin and try to send it with the same spacing using a local oscillator on a subsequent transmission.

Check your spacing in characters, between characters and between words occasionally by making a recording of your fist on an inked tape recorder. This will show up your faults as nothing else will. Practice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecessarily long calls, prevents (QRMI, gives more communication per hour of operating. Brief calls with frequent short pauses for reply can approach (but not equal) hreak-in efficiency.

A separate receiving antenna facilitates breakin operation. It is only necessary with break-in to pause just a moment with the key up (or to cut the carrier momentarily and pause in a phone conversation) to listen for the other station. The click when the carrier is cut off is as effective as the word "break."
C.w. telegraphy break-in is usually simple to arrange. With break-in, ideas and messages to be transmitted can be pulled right through the holes in the QRMI. Suappy, efficient amateur work with break-in usually requires a separate receiving anterna and arrangement of the transmitter and receiver to eliminate the necessity for throwing switches between transmissions.

In calling, the transmitting operator sends the letters "BK" at intervals during his call so that stations hearing the call may know that break-in is in use and take advantage of the fact. He pauses at intervals during his call, to listen for a moment for a reply. If the station being called does not answer, the call can be continued.

With a tap of the key, the man on the receiving end can interrupt (if a word is missed). The other operator is constantly monitoring, awaiting just such directions. It is not necessary that you have perfect facilities o take advantage of break-in when the stations you work are break-inequipped. After any invitation to break is given (and at each pause) press your key - and contact can statt immediately.

VOICE OPERATING

The use of proper procedure to get best results is just as important as in using code. In telegraphy words must be spelled out letter by letter. It is therefore but natural that abbreviatious and shortcuts should have come into widespread use. In voice work, however, abbreviations are not necessary, and should have less importance in our operating procedure.

Voice-Operating Hints

1) Listen before calling.
2) Make short calls with breaks to listen. Avoid long CQs; do not answer over-long CQs.
3) Use push-to-talk or voice control. Give essential data concisely in first transmission.
4) Make reports honest. Use definitions of strength and readability for reference. Make your reports informative and useful. Honest reports and full word description of signals save amateur operators from FCC trouble.
5) Limit transmission length. Two minutes or less will convey much information. When three or more stations converse in round tables, brevity is essential.
6) Display sportsmanship and courtesy. Bands are congested . . . make transmissions meaningful . . give others a break.
7) Check transmitter adjustment . . . avoid a.m. overmodulation and splatter. On s.s.b. check carrier balance carefully. Do not radiate when moving v.f.o. frequency or checking n.f.m. swing. Use receiver b.f.o. to clieck stability of signal. Complete testing before busy hours!

The letter "K" has been agreed to in telegraphic practice so that the operator will not have to pound out the separate letters that spell the words "go ahead." The voice operator can say the words "go ahead" or "over," or "come in please."

One laughs on c.w. by spelling out HI. On phone use a laugh when one is called for. Be natural as you would with your family and friends.

The matter of reporting readability and strength is as important to phone operators as to those using code. With telegraph nomenclature, it is necessary to spell out words to describe signals or use abbreviated signal reports. But on voice, we have the ability to "say it with words." "Realability four, Strength eight" is the best way to give a quantitative report. Reporting can be done so much more meaningfully with ordinary words: "You are weak but you are in the clear and I can understand you, so go ahead," or "Your signal is strong but you are buied under local interference." Why not say it with words?

Voice Equivalents to Code Procedure		
Voice	Corde	Meaniny
Gu ahead; over	$\underline{1}$	Self-cxplanatory
Wait; stand by	IS	Sulfexplanatory
leceived	18	Receipt for a cor-rectly-transcribed
		message or for "solid" transmission with no missing portions

Phone-Operating Practice

Efficient voice communication, like good c.w. communication, demands good operating. Adherence to certain points "on getting results" will go a long way toward improving our phoneband operating conditions.

Use push-totalk technique. Where possible arrange on-off switehes. controls or voice-cont rolled break-in for fast back-and-forth exchanges that emulate the practicality of the wire telephone.

Voice Operating

This will help reduce the length of transmissions and keep brother amateurs from calling you a "monologuist" - a guy who likes to hear himsolf talk!

Listen with care. Kicep noise and "backgrounds" out of your operating room to facilitate good listening. It is natural to answer the strongest signal, but take time to listen and give some consideration to the best signals, regardless of strength. Every amateur cannot run a kilowatt, but there is no reason why every amateur cannot have a signal of good quality, and utilize uniform operating practices to aid in the understandability and case of his own communications.

Interpose your call regularly anul at frequent intervals. Three short calls are better than one long one. In calling CQ, one's call should certainly appear at least once for every five or six CQs. Calls with frequent breaks to listen will save time and be most productive of results. In identifying, always transmit your own call last. Don't say "This is W1ABC standing by for W2DEF"; say "W2DEF, this is W1ABC, over." FCC regulations show the call of the transmitting station sent last.

Include country prefix before call. It is not correet to sily "9RIRX, this is 1 BDDI ." Correcet and legal use is "W9RRIX, this is WIBDI." FCC regulations require proper use of calls; stations have been cited for failure to comply with this requirement.

Monitor your own frequency. This helps in timing calls and transmissions. Transmit when there is a chance of being ropied suceressfully - not when you are merely "more QRM." 'Timing transmissions is an art to cultivate.

Keep modulation constant. By turning the gain "wide open" you are subjecting anyone listening to the diversion of whatever noises are present in or near your operating room, to say nothing of the possibility of feedback, echo due to poor acoustics, and modulation excesses due to sudden loud noises. Speak near the microphone, and don't let your gaze wander all over the station causing sharply-varying input to your speech amplifier; at the same time, kerp far enough from the microphone so your signal is not modulated hy your breathing. Change distance or gain only as necessary to insure uniform transmitter performance without overmodulation, splatter or distortion.
Make connected thoughts and phrases. Don't mix disconnected subjects. Ask questions consistently. Pause and got answers.

Have a pad of paper hanuly. It is convenient and desirable to jot down questions as they come in the course of diseussion in order not to miss any. It will help you to make intelligent to-thepoint replies.
Steer clear of inanities and soap-opera stuff. Our amateur radio and also our personal reputation as serious communieations workers depend on us.

A void repetition. Don't repeat back what the other fellow has just said. Too often we hear a conversation like this: "Okay on your new antenna there, okay on the trouble you're having
with your receiver, okay on the company who just came in with some ice cream, okay . . . [etc.j." Just say you received everything O.K, Don't try to prove it.

Use phonetics only as required. When clarifying genuincly doubtful expressions and in getting your call identified positively we suggest use of the ARRL Phonetic List. Limit such use to really-necessary clarification.

The speed of radiotelephone transmission (with perfect accurary) depends almost entirely upon the skill of the two operators involved. One must learn to speak at a rate allowing perfect understanding as well as permitting the receiving operator to copy down the message text, if that is necessary. Because of the similarity of many English speech sounds, the use of alphabetical word lists has been found necessary. All voiceoperated stations should use a standard list as needed to identify call signals or unfamiliar expressions.

AD.AM	JOHN	SCSAN
BAKER	kING	Tllomas
CHARLIE	LEWIS	UNION
DAVII)	MARY	VICTOR
EDWARD	NANCY	WILLJAM
FRANK	OTTO	X-1RA5
GEOIRGE	PETER	YOUNG
IIENRY	QUEliN	ZEBRA
IDA	ROBERT	

Round Tables. The round table has many advantages if run properly. It clears frequencies of interference, especially if all stations involved are on the same frequency, while the enjoyment value remains the same, if not greater. By use of push-to-talk, the conversation can be kept lively and interesting, giving each station operator ample opportunity to participate without waiting overlong for his turn.

Round tables can become very unpopular if they are not conducted properly. The monologuist, off on a long spiel about nothing in particular, cannot be interrupted; make your transmissions short and to the point, "Butting in" is discourteous and unsportsmanlike; don't enter a round table, or any contact between two other amateurs, unless you are invited. It is bad enough trying to copy through prevailing interference without the added difficulty of poor voice quality; check your transmitter adjustments frequently. In general, follow the precepts as hereinbefore outlined for the most enjoyment in round tables as well as any other form of radiotelephone communication.

WORKING DX

Most amateurs at one time or another make "working DX" a major aim. As in every other phase of amateur work, there are right and wrong ways to go about getting best results in working foreign stations, and it is the intention of this section to outline a few of them.

The ham who has trouble raising DX stations
readily may find that poor transmitter efliciency is not the reason. He may find that his sending is poor, or his calls ill-timed, or his judgment in error. When conditions are right to bring in the DX, and the recriver sensitive enough to hring in several stations from the desired locality, the way to work D. is to use the appropriate frequency and timing and call these stations, as against the common practice of calling "CQ DX."

The call CQ DX means slightly different things to amateurs in different bands:
a) On v.h.f., CQ DX is a general call ordinarily used only when the band is open, under favorable "skip" conditions. For v.h.f. work. such a call is used for looking for new states and countries, also for distances beyond the customary "line-of-sight" range on most v.h.f. bands.
b) CQIDX on our 7-, 14-, 21- and 28-Mc. binds may be taken to mean "General call to any foreign station." The term "foreign station" usually. refers to any station in a foreign continent. ($E \dot{x}$ perienced amateurs in the U. S. A. and Canada do not use this call, but answer such calls made by foreign stations.)

DX OPERATING CODE (For W/VE Amateurs)

some amateurs interested in INX work have eatused considerable confusion and QRM in their efforts to work In stations. The points below, if observed by all W/VE amateurs, will go a long way toward making DX more enjoyable for everybody.

1. Call DX only after he calls CQ, QRZ?, signs $\overline{S K}$, or phone equivalents thereof
2. Do not call a loX station:
a. On the frequency of the station he is working until you are sure the QSO is over. This is indicated by the ending signal $\overline{\mathrm{SK}}$ on c.w. and any indication that the operator is listening, on phone
b. Becanse you hear someone else calling him.
c. When he signs $\overline{\mathrm{KN}}, \overline{\mathrm{AR}}, \mathrm{CL}$, or phone equivalents
d. Exactly on his frequency.
e. After he calls a directional CQ, unless of course you are in the right direction or area.
3. Keep within frequeney-band limits. Some DX stations operate outside. lerhaps they can get away with it, but you cannot
4. Observe ralling instructions of DX stations. "10U" means call ten kc. up from his frequency, " 15 J " means 15 kc , down, etc.
万. Give honest reports. Many foreign stations depend on W and VE reports for adjustment of station and equipment
5. Keep your signal clean. Kev clicks, chirps, hum or splatter give you a bad reputation and may get you a citation from FCC
6. Listen for and call the station you want. Callinge CQ DX is not the best assurance that the rare DX will reply
7. When there are several W or VE stations waiting to work a 1$) \mathrm{X}$ station, avoid asking him to "listen for a friend." Let your friend take his chances with the rest. Also a void engaging DX stations in rag-chews against their wishes
e) CQ DX used on 3.5 Mc . under winter-night conditions may be used in this same manner. At other times, under average $3.5-$ Mc. propagation conditions, the call may be used in domestic work when looking for new states or countries in one's own continent, usually applying to stations losated over 1000 miles distant from you.

The way to work DX is not to use a CQ call at all (in our continent). Instead, use your best tuning skill - and listen - and listen - and listen. You have to hear them before you can work them. IIear the desired stations first; time your calls well. Use your utmost skill. A sensitive receiver is often more important than the power input in working foreign stations. If you can hear stations in a particular country or area, chances are that you will be able to work someone there.

One of the most effective ways to work DX is to know the operating halits of the DX stations sought. Doing too much tramsmitting on the DX bands is not the way to do this. Again, listening is effective. Once you know the operating hathits of the DX station you arc after you will know when and where to call, and when to remain silent waiting your chance

Some IDX stations indicate where they will tune for replies by use of " 10 l " or " 15 D ." (Sere point 4 of the DX (Operating Code.) In voice work the overseas operator may say "listening on $14,225 \mathrm{kc}$." or "tuning upward from 28,500 ke." Many a DX station will not reply to a call on his exact frequency.

AIRIRL has recommended some operating procedures to D.N stations aimed at controlling some of the thoughtless operating practices sometimes used by W/V1: amateurs. A copy of these recommendations (Operating Aid No. 5) can be obtained free of charge from ARIRL IIeadquarters.

In any band, particularly at line-of-sight frequencies, when directional antennas are used, the directional CQ such as CQ W5, CQ north, ete., is the preferable typre of call. Mature amateurs agree that C Q DN is a wishful rather than a practical type of eall for most stations in the North Americas looking for foreign contacts. Ordinarily, it is a cause of unnecessary QIRM.

Conditions in the transmission medium often make it possible for the signals from low-powered transmitters to be received at great distances. In gencral, the higher the frequency band the less important power considerations become. for occasional 1IN work. This accounts in part for the relative popularity of the $11-, 21-$ and $28-\mathrm{Mc}$. bands among amateurs who like to work DX.

\% ${ }_{\text {Pram }}$	${ }^{\text {aratiot }}$	Cabiso		- \%inc	-akix	mas.	ami	apur	cosem	otmen oata
6:15Pm	W WTQD	x	3.65	589	$569 x$	3.5	A1	250	6:43	Tfc-recid 6 sent 10
7:20	CQ	x				7				
7:21	\times	W4TWI	7.16	369	579				7:32	Vy, heavy QRM on me
9:25	W8UKS	x	3.83	59	47	3.9	A3	100	10:05	gfam
$11-18.53$										
7:05M	VKK EL	x	14.03			14	A1	250		Answered a W6
7:09	ZL2ACV	\times	14.07	339	$559 x$				7:20	
7:21	X	KA2KW	14.07	$469 \times$	349				7:33	Firat $K A$
7:36	$C Q$	\times								
7:37	\times	W6TI	14.01	589	5890				8:12	

KEEP AN ACCURATE AND COMPLETE STATION LOG AT all TIMES! F.C.C. REQUIRES IT.
A page from the official ARRL log is shown above, answering every Government requirement in respect to station records. Bound logs made up in accord with the above form can be oblained from Headquarters for a nominal sum or you can prepare your own, in which case we offer this form as a suggestion. The ARRL log has a special wire binding and lies perfectly flat on the table.

KEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to keep a complete station operating record. It may also contain records of experimental tests and adjustment data. A stenographer's notebook can be ruled with vertical lines in any form to suit the user. The Federal Communications Commission requirements are that a log be maintained that shows (1) the date and time of ench transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input
power to the last stage of the transmitter, (4) the frequency band used, (5) the time of ending each QSO and the operator's identifying signature for responsibility for each session of operating. Messages may be written in the log or separate records kept - but record must be retained for one year as required by the FCC. For the convenience of amateur station operators ARRL stocks both logbooks and message blanks, and if one uses the official log he is sure to comply fully with the Government requirements if the precautions and suggestions included in the log are followed.

Message Handling

Amateur operators in the United States and a few other countries enjoy a privilege not available to amateurs in most countries - that of handling third-party message traffic. In the early history of amateur radio in this country, some amateurs who were among the first to take advantage of this privilege formed an extensive relay organization which became known as the Amerlcan Radio Relay League.

Thus, amateur message-handling has had a long and honorable history and, like most services, has gone through many periods of development and change. Those amateurs who handled traffic in 1914 would hardly recognize it the w:ty some of us do it today, just as equipment in those days was far different from that in use now. Progress has been made and new methods have been developed in step with advancement in communication techniques of all kinds. Amateurs who handled a lot of traffic found that organized operating schedules were more effective than random relays, and as techniques advanced and messages increased in number, trunk lines were organized, spot frepuencies began to be used, and there sprang into existence a number of traffic nets in which many stations operated on the same frequency to effect wider cov-
erage in less time with fewer relays; but the old methods are still available to the amateur who handles only an ocrasional message.

Although message handling is as old an art as is amateur radio itself, there are many amateurs who do not know how to handle a message and have never done so. As each amateur grows older and gains experience in the amateur service, there is bound to come a time when he will be called upon to handle a written message, during a communications emergency, in casual contact with one of his many acquaintances on the air, or as a result of a request from a nonamateur friend. Regardless of the occasion, if it comes to you, you will want to rise to it! Considerable embarrassment is likely to be experienced by the amateur who finds he not only does not know the form in which the message should be prepared, but does not know what to do with the message once it has been filed or received in his station.

Traffic work need not be a complicated or time-consuming activity for the casual or occasional message-handler. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then to becoming a part of organized traffic systems.

24-OPERATING A STATION

This chapter explains some principles so the reader may know where to find out more about the subject and may exercise the message-handling privilege to best effect as the spirit and opportunity arise.

Responsibility

Amateurs who originate messages for transmission or who receive messages for relay or delivery should first consider that in doing so the y are accepting the responsibility of clearing the message from their station on its way to its destination in the shortest possible time. Fortyeight hours after filing or receipt is the generallyaceepted rule among traffic-handling amateurs, but it is obvious that if every amateur who relayed the message allowed it to remain in his station this long it might be a long time reaching its destination. Traffic should be relayed or delivered as quiekly as possible.

Message Form

Once this responsibility is realized and aceepted, handling the message becomes a matter of following generally-aceepted standards of form and transmission. For this purpose, each message is divided into four parts: the preamhle, the address, the text and the signature. Some of these parts themselves are subdivided. It is necessary in preparing the message for transmission and in aetually transmitting it to know not only what each part is and what it is for, but to know in what order it should be transmitted, and to know the various procedure signals used with it when sent by c.w. If you are going to send a message, you may as well send it right.
Standardization is important! There is a great deal of room for expressing originality and individuality in amateur radio, but there are also times and places where such expression can only cause confusion and inefficience: Recognizing the need for standardization in message form and message transmitting procedures, ARIRL has long since recommended such standards, and most traffic-interested amateurs have followed them. In general, these recommendations, and the various changes they have undergone from year to year, have been at the request of ama-

Here is an example of a plain-language message in correct ARRL form. The preamble is always sent as shown: number, station of origin, check, place of origin, time filed, date.
teurs participating in this activity, and they are completely outlined and explained in Operating an Amateur Radio Station, a copy of which is available upon request or by use of the coupon at the end of this chapter.

Clearing a Message

The best way to clear a message is to put it into one of the many organized traffic networks, or to give it to a station who can do so. There are many amateurs who make the handling of traffic their principal operating activity, and many more still who participate in this activity to a greater or lesser extent, The result is a system of traffic nets which spreads to all corners of the Cnited States and covers most C. S. possessions and Canada. Once a message gets into one of these nets, regardless of the net's size or coverage, it is systematically routed toward its destination in the shortest possible time.

Amateurs not experienced in message handling should depend on the experienced messagehandler to get a message through, if it is important ; but the average amateur can enjoy operating with a message to be handled either through a local traffic net or by frec-lancing. The latter may be accomplished by careful listening for an amateur station at desired points. directional CQs, use of the National Calling and Emergeney frequencies, or by making and keping a schedule with another amateur for regular work between specified points. He may well aim at learning and enjoying through doing. The joy and aceomplishment in thus developing one's operating skill to top perfection has a reward all its own.

If you decide to "take the bull by the horns" and put the message into a traffic net yourself (and more power to you if you do!), you will need to know something about how traflic nets operate, and the special Q signals and procedure they use to dispatel all traffic with a maximum of efficieney. Reference to net lists in QST (usually in the November and January issues) will give you the frequency and operating time of the net in your section, or of other nets into which your message can go. Listening for a few minutes at the time and frequency indicated should acquaint you with enough fundamentals to enable you to report into the net and indicate your traffic. From that time on you follow the instructions of the net control station, who will tell you when and to whom (and on what frequency, if different from the net frequency) to send your message. Since most nets use the special "QN" signals, it is usually very helpful to have a list of these before you (list available from ARRL H_{l}, Operating Aid No. 9).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more about it and increase your proficiency. Many amateurs are happily "addicted" to traffic handling after only one or two brief exposures to it. Much traflic is at present being conducted by c.w., since this mode of com-

Emergency Communication

munication seems to be popular for record purposes - but this does not mean that high code speed is a necessary prerequisite to working in traffic networks. There are many nets organized specifically for the slow-speed amateur, and most of the so-called "fast" nets are usually glad to slow down to accommodate slower operators, especially those nets at state or section level.

It is a signifieant operating fact that code speed or word speed alone dons not make for efficiency - sometimes the contrary! A highspeed operator who does not know procedure can "foul up" a net much more completely and more quickly than can a slow operator It is a proven fact that a bunch of high-speed operators who are not "savvy" in net operation cannot accomplish as mueh during a specified period as an equal number of slow operators who know net procedure. Don't let low code speed deter you from getting into traffic work. Given a little time, your speed will reach the point where you can compete with the best of them. Concentrate first on learning net procedure, for most traffic nowadays is handled on nets.

Much traffic is also handled on phone. This mode is exceptionally well suited to short-range traffic work and requires knowledge of phonetics and procedure peculiar to voiee operation. Procedure is of paramount importance on phone, since the public may be listening. The major problem, of course, is (2IRM.

Teamworh is the theme of net operation. The net which functions most efliciently is the net in which all partieipants are thoroughly familiar with the procedure used, and in which operators refrain from transmitting except at the direction of the net control station, and do not occupy time with extraneons comments, even the exchange of pleasantries. There is a time and place for everything. When a net is in session it should concentrate on handling traffic until all traflic is cleared. Before or after the net is the time for rag-chewing and discussion. Some details of net operation are included in Operating an Amateur Radio Station, mentioned earlier, but the whole story camot be told. There is no substitute for actual participation.

The National Traffic System

To facilitate and speed the movement of message traffic, there is in existence an integrated national system hy means of which originated traffie ean hormally reach its destination area the same day the message is originated. This system uses the local section net as a basis. Each section net sends a representative to a "regional" net (normally covering a eall area) and each "regional" net sends a representative to an "area" net (normally covering a time zone). After the area net has cleared all its traffic, its members then go back to their respective regional nets, where they clear traffic to the various section net representatives. By means of connerting schedules between the area nets, traffic can flow both ways so that trafic originated on the West Coast reaches the East Coast with a maximum of dispateh, and viee versa. In general local section nets function at 1900 , regional nets at 1915 , area nets at $20: 30$ and the same or different regional persomel again at 2130 . Some seetion nets conduet a late session at 2200 to eftect traffie delivery the same night. Local standard time is referred to in each case.
The NTS plan somewhat spreads traffic opportunity so that casual traffic may be reported into nets for efficient handling one or two nights per week, early or late; or the ardent traffic man can operate in both early and late groups and in between to roll up impressive totals and speed traffic reliably to its destination. Old-time traffic men who prefer a high degree of organization and teamwork have returned to the traflic game as a result of the new system. Beginners have shown more interest in becoming part of a system nationwide in scope, in which anyone can participate. The National Traffic System has vast and intriguing possibilities as an amateur service. It is open to any amateur who wishes to participate.

The above is but the briefest résumé of what is of necessity a rather complicated arrangement of nets and schedules. Complete details of the System and its operation are available to :uyone interested. Just drop a line to ARRL IIeadquarters.

Emergency Communication

One of the most important ways in which the amateur serves the public, thus making his existence a national assot, is by his preparation for and his partieipation in communications emergencies. Every amateur, regardless of the extent of his normal operating activities, should give some thought to the possibility of his being the only means of communication should his community be cut off from the outside world. It has happened many times, often in the most unlikely places; it has happened without warning, finding some amateurs totally unprepared; it can happen to you. Are you ready".

There are two principal ways in which any amateur can prepare himself for such an eventuality. One is to provide himself with equip-
ment capable of operating on any type of emergency power (i.e., either a.c. or d.c.), and equip-

ment which can readily be transported to the scene of disaster. Mobile equipment is especially desirable in most emergency situations.
such equipment, regardless of how elaborate or how modern, is of little use, however, if it is not used properly and at the right times; and so another way for an amateur to prepare himself for emergencies, by no means less important than the first, is to learn to operate efficiently. There are many amateurs who feel that ther know how to operate efficiently but who find themselves considerably handicapped at the crucial time by not knowing proper procedure, by being unable, due to years of casual amateur operation, to adapt themeslyes to suappy, abbreviated transmissions, and by being unfamiliar with message form and procedures. It is dangerous to overrate your ability in this; it is hetter to assume you have things to learn . . . and it makes you a respected communicator to know them.

In general it can be said that there is more emergoncy equipment available than there are operators who know properly how to operate during emergency conditions, for such conditions require clipped, terse procedure with complete break-in on c.w. and fast push-to-talk on phone. The casual rag-chewing aspect of amateur radio, however enjoyahle and worth-while in its place, must be forgotten at such times in favor of the business at hand. There is only one way to gain experience in this type of operation, and that is by practicing it. During an emergency is no time for practice; it should be done beforehand, as often as possible, on a regular basis.

This leads up to the necessity for emergency organization and preparedness. ARIRL, has long recognized this necessity and has provided for it. The secetion Communications Manager (whose
address uppears on page 6 of every issue of $Q S T$) is empowered to appoint certain qualified amateurs in his section for the purpose of coordinating emergency communication organization and preparedurss in specified areas or communitics. This appointee is known as an Emergency Coordinator for the city or town. One is sperified for each community. For coordination and promotion at section level a Section Emergency Coordinator arranges for and recommends the appointments of various Emergency Coordinators at activity points throughout the section. Emergency Coordinators organize amateurs in their eommunities according to local needs for emergency communication facilities.

The community amateurs taking part in the local organization are members of the Amateur Radio Eimergency Corps (ALREC), All amateurs are invited to register in the AREC, whether they are able to play an aetive part in their local organization or only a supporting role. Application blanks are available from your LEC, SEC, SCM or direct from ARRL, IIeadquarters. In the event that inguiry reveals no Emergeney Coordinator appointed for your community, your SCM would welcome a recommendation either from yourself or from a radio cluh of which you are a member. By holding an amateur operator license, you have the responsibility both to your community and to amateur radio to uphold the traditions of the service.

Among the League's publications is a booklet entitled Emergency Communications. "This booklet, while small in size, contains a wealth of information on ARLEC organization and functions and is invaluable to any amateur participating in emergency or civil defense work. It is free to AREC members and shoukl be in every ama-

Before Emergency

PIREPARE yourself by providing a transmitter-receiver setup together with an energeney power source upon which you can depend.

TEST both the dependability of your emergency equipment and your own operating ability in the annual ARRL Simulated Emergency Test and the several annual on-the-air contests. especially Field Day.

REGISTER your facilities and your availability with your local ARRL Emergency Coordinator. If your community has no E_{C} : contact your loeal civic and relicf agencies and explain to them what the Amatemr Sorvien offers the community in time of disaster.

In Emergency

LISTEN before you transmit. Never violate this principle
REPORT at once to your Emergency Coordinator so that he will have up-to-the-minute data on the facilities available to him. Work with local civic and relief agencies as the EC suggests, offer these agencies your services directly in the absence of an EC.

RESTRIC'T all on-the-air work in accordance with FCC regulations, Sec. 12.156, whenever FCC "declares" a state of communications emergency.

QRRR is the official ARHL " land SOS," a distress call for emergency only. It is for use only by a station seeking assistanee,

RESPECI' the fact that the success of the amateur effort in emergency depends largely on circuit discipline. The established Net Control Station should be the supreme authority for priority and traffic routing.

COOPERATE with those we serve. Be ready to help, but stay off the air unless there is a specific job to be done that you can handle more efficiently than any other station.

COPY all bulletins from WIAW. During time of emergency special bulletins will keep you posted on the latest developments

After Emergency

REPORI to ARRL Headquarters as soon as possible and as fuliy as possible so that the Amateur service can receive full medit. Amateur Radio has won glowing public tribute in many major disasters since 1919. Maintain this record

ARRL Operating Organization

teur's shack. Drop a line to the ARRL Communications Department if you want a copy, or use the coupon at the end of this chapter.

The Radio Amateur Civil Emergency Service

In order to be prepared for any eventuality, FCC and the Office of Civil and Defense Mobilization (OC1)MI), in collaboration with ARRL, have promulgated the Radio Amateur Civil Emergency Service. RACES is a temporary amateur service, intended primarily to serve civil defense and to continue operation during any extreme national emergeney, such as war. It shares certain segments of frequencies with the regular Amateur Service on a nonexclusive basis. Its regulations have been made a sul-part of the familiar amateur regulations; that is, the original regulations have become sub-part A, the RACES regulations being added as sub-part B. Copies of both parts are included in the latest edition of the ARRLL License Manual.

If every amateur participated, we would still be far short of the total operating personnel required properly to implement RACES. As the service which bears the responsilility for the successful implementation of this important function, we face not only the task of installing (and in some cases building) the necessary equipment, but also of the training of thousands of additional people. This can and should be a function
of the local unit of the Amateur Radio Emergency Corps under its EC and his assistants, working in close collahoration with the local civil defense organization.

The first step in organizing RACES locally is the appointment of a Radio Officer by the local civil defense director, possibly on the recommendation of his communications officer. A complete and detailed communications plan must be approved successively by local, state and OCDM regional directors, by the OCDM Na tional office, and by FCC. Once this has been accomplished, applications for station authorizations under this plan can be submitted direct to FCC. QS'T' carries further information from time to time, and ARRL will keep its field officials fully informed by bulletins as the situation requires. A complete bibliography of QS'I articles dealing with the subject of civil defense and RACES is available upon request from the ARRL Communications Department.

In the event of war, civil defense will place great reliance on RACES for radio communications. RACES is an Amateur Service. Its implementation is logically a function of the Amateur Radio Emergency Corps - an additional function in peacetime, but probably an exclusive function in wartime. Therefore, your best opportunity to be of service will be to register with your local EC, and to participate adively in the local AREC/RACES program.

ARRL Operating Organization

Amateur operation must have point and constructive purpose to win public respect. Each individual amateur is the ambassador of the entire fraternity in his public relations and attitude toward his hobby. ARRL field organization adds point and purpose to amateur operating.
'l'he Communications Department of the League is concerned with the practical operation of stations in all branches of amateur activity. Appointments or awards are available for rag-chewer, traffic enthusiast, phone operator, DX man and experimenter.

There are seventy-three ARRL Sections in the League's field organization, which embraces the United States, Canada and certain other territory. Operating affairs in each Section are supervised by a Section Communications Manager elected by members in that section for a twoyear term of office. Organization appointments are made by the section managers, elected as provided in the Rules and Regulations of the Communications Department, which accompany the League's By-Laws and Articles of Association. Section Communications Managers' addresses for all sections are given in full in each issue of QST. SCMs welcome monthly activity reports from all amateur stations in their jurisdiction

Whether your activity embraces phone or telegraphy, or both, there is a place for you in the League organization.

LEADERSHIP POSTS

To advance each type of station work and group interest in amateur radio, and to develop practical communications plans with the greatest success, appointments of leaders and organizers in particular single-interest fields are made by SCMs. Each leadership post is important. Each provides activities and assistance for appointee groups and individual members along the lines of natural interest. Some posts further the general ability of amateurs to communicate efficiently at all times, by pointing activity toward networks and round tables, others are aimed speciffeally at establishment of provisions for organizing the amateur service as a stand-by communications group to serve the public in disaster, civil defense need or emergeney of any sort. The SCM appoints the following in accorlance with section needs and individual qualifications:
PAM Phone Activities Manager. Organizes activities for OPSs and voice operators in his section. Promotes phone nets and recruits OPSs.
RM Route Manager. Organizes and coordinates c.w. traffic activities. Supervises and promotes nets and recruits ORSs.
SEC Section Emergency Coordinator. Promotes and administers section emergency radio organization. EC Emergency Coordinator. Organizes amateurs of a community or other local area for emergency radio service; maintainsliaison with officials and agencies served, also with other local communication facilities. Sponsors tests, recruits for AREC and encourages alignment with RACES.

STATION APPOINTMENTS

ARRL's field organization has a place for every active amateur who has a station. The Communications Department organization exists to increase individual enjoyment and station effectiveness in amateur radio work, and we extend a cordial invitation to every amateur to participate fully in the activities, to report results monthly, and to apply to the SCM for one of the following station appointments. ARRL membership and the General Class license or VE equivalent is prerequisite to appointments, except OES is available to Novice/Technician grades.

OPS Official Phone Station. Sets high voice operating standards and procedures, furthers phone nets and traffic.
ORS Official Relay Station. Traffic service, operates c.w. nets; noted for $15 \mathrm{w} . \mathrm{p} . \mathrm{m}$. and procedure ability. Official Bulletin Station. Transmits ARRL and FCC bulletin information to amateure
OES Official Experimental Station. Collects and reports v.h.f.-u.h.f.-s.h.f. propagation data, nay engage in farsimile, TT, TV, work on 50 Me. and/or above. Takes part as feasible in v.h.f. traffic work, reports same, supports v.h.f. nets, ohserves procedure standards.
00
Official Observer. Sends cooperative notices to amateurs to assist in frequency observance, insures high-quality signals, and prevents FCC trouble.

Emblem Colors

Nembers wear the ARRL cmblem with blackenamel background. A red background for an emblem will indicate that the wearer is SCM. SLCe, ECs, RMs, and PAMs may wear the emblem with green background. Observers and all station appointees are entitled to wear blue emblems

SECTION NETS

Amateurs gain experience and pleasure and add much accomptislment to the credit of all of amateur radio, when organized into effective nets interconnerting cities and towns.
The successful operation of a net depends a lot on the Net Control Station. This station should be chosen carefully and be one that will not hesitate to enforce each and every net rule and set the example in his own operation.

A progressive net grows, obtaining new members both directly and through other net members. Bulletins may be issued at intervals to keep in direct contact with the members regarding general net activity, to keep tab on net procedure,
make suggestions for improvement, keep track of active members and weed out inactive ones.

A National Traffic System is sponsored by ARRL to facilitate the over-all expeditious relay and delivery of message traffic. The system recognizes the need for handling traffic beyond the section-level networks that have the popular support of both phone and c.w. groups (OPS and ORS) throughout the League's field organization. Area and regional provisions for NTS are furthered by IIeadquarters correspondence. The ARRL Net Directory, revised in December each year, includes the frequencies and times of operation of the hundreds of different nets operating on amateur band frequencies.

Radio Club Affiliation

ARRI is pleasel to grant affiliation to any amateur society having (1) at least 51% of the voting elub membership as full members of the League, and (2) at least 51% of members govern-ment-licensed radio amateurs. In high school radio chubs bearing the school name, the first alove requirement is modified to require one full member of ABRL, in the club. Where a society has common aims and wishes to add strength to that of other club groups and strengthen amateur radio by affiliation with the national amateur organization, a request addressed to the Communications Manager will bring the necessary forms and information to initiate the application for affiliation. Such clubs receive field-organization bulletins and special information at intervals for posting on club bulletin boards or for relay to their memberships. A travel plan providing communications, technical and secretarial contact from the Headquarters is worked out seasonally to give maximum benefits to as many as possible of the twelve hundred active affiliated radio clubs. Papers on club work, suggestions for organizing, for constitutions, for radio courses of study, etc., are available on request.

Club Training Aids

One section of the ARRL Communications Department handles the Training Aids Program. This program is a service to ARRL affiliated clubs. Material is aimed at education, training and entertainment of club members.Interesting quiz material is available

Training Aids include such items as motionpicture films, film strips, slides, audio tapes and leeture outlines. Bookings are limited to ARRLaffiliated clubs, since the visual aids listings are not sufficiently extensive to permit such services to other groups.
All Training Aids materials are loaned free (except for shipping charges) to ARRL affiliated clubs. Numerous groups use this ARLRL service to good advantage. If your club is affiliated but has not yet taken advantage of this service, you are missing a good chance to add the available features to your meeting programs and general club activities. Watch club bulletins and QST or write the ARRL Communications Department for TA-21 and TA-32.

Operating Activities and Awards

- WlA W

The Maxim Mcmorial Station, W1AW, is dedicated to fraternity and service. Operated by the league headquarters, WIAW is located about four miles south of the Headquarters offices on a scven-arre site. The station is on the air daily, except holidays, and avaibable time is divided between different bands and modes.
 Telegraph and phone transmitters are provided for all b:unds from 1.8 to 144 Me. The normat frequencies in each band for c.w. :und voice transmissions are as follows: $1800,355 \%$, $3945,7040,725.5,14,100,14,280,21.075,21,330$,
 visiting hours and the station sohedule are listed every other month in Qst
Operation is roughly proportional to amateur interest in different bands and modes, with one kw. except on 1 (io and v.h.f. hands. WIAW's daily bulletins and code pratice am to give operational holp to the largest number.
All amateurs are invited to visit $W^{\circ} 1 \mathrm{AW}$, as well as to work the station from their own shacks. T'he station was established to be a living memorial to liram Perey Maxim and to carry on the work and traditions of amatcur radio.

Operating activities

Within the ARLRI, ficld organization there are several special activities. During six months of the year, the first week end is an occasion for ARIRI, officials, officers, and directors to get togother over the air. This antivity is known to the gang as the LO (League officials) party. For all appointees, quarterly (DD parties are schedulod additionally to develop operating ability and a spirit of fraternalism.

In addition to those for appointecs and oflieials, ARRL, sponsors various other activities open to all amateurs. The JN-minded amateur may participate in the Annual ARIRI. International IOX Competition during February and March. This popular contest may bring you the thrill of working new countries and building up your I)NCC totals: certificate awards are offered to top scorers in earch country and ARRLI, sertion (sce page is of any $Q S T$) and to clab, leaders. Then there is the ever-popular Swepstakes in November. of domestic scope, the sis affords the opportunity to work new states for that W.IS award. A Noviece activity is planned annually. The interests of v.h.f. ent husiasts are also provided for in contests held in January, June and September of each year. Where enough logs (threr) are received to constitute minimum "competition" a certificate in spot artivities, such as the "Ss" and v.h.f. party, is awarded the leading newomer for his
work considercd only in compctition with other newcomers.

As in all our operating, the idea of having a good time is combined in the Ammal Field Day with the more serious thought of preparing ourselves to render public service in times of emergencer. A premium is placed on the use of equipment without connection to commercial power soures. Cluts and individual groups always enjoy themselves in the "FI)," and learn much about the requirements for operating under knockabout conditions afield.

ARIRL contest artivities are diversified to appeal to all oporating interests, and will be found amonneed in detail in issues of QST preceding the different events.

AWARDS

'The Jeague-sponsored operating activitics heretofore montioned have uscful objectives and provide much enjoyment for members of the fratornity. Achiovement in amateur radio is recognized by various cortificates offered through the league and detailed below.

WAS Award

WAS means "Worked All States." This award is available regarelless of affiliation or nonaffiliation with any organization. Ilere are the simple rules to follow in going after your WAS:

1) Two-way communication must be established on the amateur bands with each of the states; any and all amateur

bunds may be used. A card from the District of Columbia may be submitted in lieu of one from Maryland.
2) Contaets with all states must be nade from the same location. Within a given community one location may be defined as from places no two of which are more than $2 ;$ miles apart.
3) Contacts may be made over any period of years, provided only that all contarts are from the same location, and except that only contacts with Alaska dated Jantary 3, 1959, or later count. and only contacts with Hawaii dated August 21, 195\%, or later count.
4) QSL, eards, or other written communieations from stations worked confirming the necessary two-way eontacts, must he submitted hy the applieant to ARMR headquarters.
5) Sufficient postage imust be sent with the confirmations to finance their return. No correspondence will be returned unless sufficient postage is furnished.
ii) The Wha award is avalable to all anateurs. It is required that the confirmations submitted be placed alphabetically in ordes bus stales.
6) Address all applications and confirmations to the Communications Department, ARRL, 38 La Salle Road, West Ilartford, Conn.

DX Century Club Award
Here are the rules under which the D.X Cen-

24-OPERATING A STATION

tury Club Award will be issued to amateurs who have worked and confirmed contact with 100 countries in the post war period.

1) The DX Century Club Award (ertificate for confirmed contacts with 100 or more countries is available to all amateurs evervwhere in the world.
2) Confirmations must be submitted direct to ARRL headquarters for all countries claimed. Claims for a total of 100 countries must be included with first application. Confirmation from foreign contest logs may be refuested in the case of the ARRL International DX Competition only, subjeet to the following conditions:
a) Suficient confirmations of other types must be submitted so that these, plus the 1 DX Contest confirmations, will total 100 . In every ease, Contest confirmations must not be requested for any countries from which the applicant has reqular confirmations. That is, contest confirmations will be granted only in the case of conntries from which applicants have no regular confirmations.
b) Look up the contest results as published in Q.ST to see if your man is listed in the foreign scores. If he isn't, he did not send in a log and no confirmation is possible.
c) Give year of contest, date and time of Qso.
d) In future IDX Contests do not request confirmations until after the final results have been published, usually in one of the early fall issues. Requesta before this time must be ignored.
3) The ARRL Countries List, printed periodically in QST, will be used in determining what constitutes a "country." This ehapter contains the l'ost war ('ountries List.
4) Confirmations must be accompanied by a list of clained countries and stations to aid in checking and for future reference.
5) Confrmations from additional countries may be submitted for credit cach time ten anditional confirmations are available. Endorsements for aflixing to rertificates and showing the new confirmed total (110, 120, 130, etc.) will the awarded as additional credits are granted. ARRI, DX Competition logs from foreign stations may be utilized for these endorsements, subject to conditions stated under (2).
6) All contacts must be made with amateur stations working in the authorized amateur bands or with other stations licensed to work amateur:
7) In cases of conntries where amateurs are licensed in the normal manner, credit may be claimed only for stations using regular government-assigned call letters. No oredit may be claimed for contacts with stations in any countries in which amateurs have been temporarily closed down by special government edict where amateur licenses were formerly issued in the normal manner.
8) All stations contacted must be 'land stations" eontacts with ships, anchored or otherwise, and aircraft, cannot be counted.
9) All stations must be contacted from the same call area, where such areas exist, or from the same country in cases where there are no call areas. One exception is allowed to this rule: where a station is moved from one call area to another, or from one country to another, all contacts must be made from within a radius of 150 miles of the initial loeation.
10) Contacts niay be made over any beriod of years from November 15,1945 , provided only that all contacts he made under the provisions of Rule ?, and by the same station licensee; contaets may have been made under different eall letters in the same area (or country), if the lieensee for all was the same.
11) Any altered or forge. 1 confirmations subuitted for CC eredit will result in disquaification of the applicant. The eligibility of any DXCC applicant who was ever harred from I)XCC to reapply, and the eonditions for sueh application. shall be determined by the Awards Committee. Any holder of the Century Club Award submitting forged or altered eonfirniations nust forfeit his right to be consideren for further endorsements
12) Operating ethics: Fair play and good sportsmanship in overating are restuired of all anateurs working toward the DX (entury (Club Award. In the event of specitic objertions relative to continued poor operating ethics an individual may be disoualified from the 1$) \mathrm{X}$ ('(' by action of the ARRL Awards Committee.
13) Sufficient postage for the return of confirmations must be forwarded with the application. In order to insure
the safe return of large batches of confirmations, it is suggested that enough postage be sent to make possible their return by first-class mail, registered.
14) Decisions of the ARIRL, Awards Committee regarding interpretation of the rules as here printed or later amended shall be final.
15) Address all applications and confirmations to the Communications Department. ARRL, 38 La Salle Road, West Hartford 7, Conn.

WAC Award

The WAC award, Worked All Continents, is issued hy the International Amateur Radio Union (IARU) upon proof of contact with each of the six continents. Amatenurs in the U.S.A. possessions and Camada should apply for the award through ARIRL, headquarters society of the IARU. Those elsewhere must submit direct to their own IARU member-society. Residents of countrics not represented in the Union may apply directly to ARRRL for the award. Two basic types of WAC certificates are issurd. One comtains no endorsements and is awarded for c.w.. or a combination of e, w, and phone contacts; the other is awarded when all work is done on phone. There is a sperial endorsement to the phone WAC when all of the confirmations submitted dearly indicate that the work was done on two-way s.s.b. The only special hand endorsements are for 3.5 and 50 Mc .

Code Proficiency Award

Many hams can follow the general idea of a contact "by ear" but when pressed to "write it down" they "mulf" the copy. The Code Proficiency Award permits each amateur to prove himself as a proficient operator, and sets up a system of awards for step-hy-step gains in copying proficiency. It enables every amateur to check his code proficiency, to better that proficiency, and to receive a certification of his rereiving speed.
This program is a whale of a lot of fun. The League will give a cortificate to any licensed radio amateur who demonstrates that he can eopy perfectly, for at least one minute, plain-language Continental code at $10,15,20,25,30$ or 35

words per minute, as transmitted during special monthly transmissions from $W 1.1 W$ and $W 60 W \mathrm{P}$.

As part of the ARIRL Code Proficiency program W1AW transmits plain-language practice

Awards

material each evening at speeds from 5 to 35 w.p.m. All amateurs are invited to use these transmissions to increase their code-copying ability. Non-amateurs are invited to utilize the lower speeds, $5,71 / 2$ and $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$., which are transmitted for the benefit of persons studying the code in preparation for the amateur license examination. IRefer to any issue of QST for details of the practice schedule.

Rag Chewers Club

The IRag (hewers Chb is designed to ent courage friendly contacts and discourage the "hollo-goo(l-hy" type of (as'). It furthers fraternalism through amateur radio. Membership certifieates are awarded.

How To Get in: (1) Chew the rag uith a member of the club for at least a solid half hour. This does not mean a half hour spent in trying to get a message over through bad QRM or QRN, but a solid half hour of conversation or message handling. (2) Report the conversation by card to The Rag Chewers Club, ARRI, Communications Department, West liartford. Conn., and ask the member station you talk with to do the same. When both reports are received you will be sent a membership certificate entitling you to all the privileges of a liag Chewer.

How To Stay in: (1) Be a conversationalist on the air instead of one of those tongue-tied infants who don't know any words except "cuagn" or "cul." or "QRE" or "nil," Talk to the fellows yon work with and get to know them, (2) Operate your station in accordance with the radio laws and AlRRL, practice. (3) Observe rules of courtasy on the air. (4) Sign " RCC" after each call so that others may know you can talk as well as call.

A. 1 Operator Club

The A-1 Operator Club should include in its ranks every good operator. To become a member, one must be nominated by at least two operators who already belong. General keving or voice terhnique, procedure, copying ability, judgment and courtesy all count in rating candidates under the club rules detailed at length in Operating an Amateur Radio station. Aim to make yourself a fine operator, and one of these days you may be pleasantly surprised by an invitation to belong to the A-1 Operator Club, which carries a worth-while rertificate in its own right.

Brass Pounders League

Every individual reporting more than a speci-
fied minimum in official monthly traffic totals is given an honor place in the QST listing known as the Brass Pounders League and a certificate to recognize his performance is furnished by the SCMI. In addition, a BPL Traffic Award (medallion) is given to individual amateurs working at their own stations after the third time they "make BIPL" provided it is duly reported to the SCAI and recorded in QST'.

The value to amateurs in operator training, and the utility of amateur message handling to the members of the fraternity itself as well as to the general publice, make message-handling work of prime importance to the fraternity. Fun, enjoyment, and the feeling of having done something really worth while for one's fellows is accentuated by pride in message files, records, and letters from those served.

Old Timers Club

The Old Timers Club is open to anyone who holds an amateur call at the present time, and who held an amateur license (operator or sta(ion) 20 -or-more sears ago. Lapses in activity during the intervening years are permitted.

If you can qualify as an "Old Timer." send an outline of your ham career, Indicate the date of your first amateur license and your present eall. If eligible for the (0TC, you will be added to the roster and will receive a membership certificate.

INVITATION

Amateur radio is capable of giving enjoyment, self-training, social and organization benefits in proportion to what the individual amateur puts into his hobby. All amateurs are invited to become ARRI, members, to work toward awards, and to accept the challenge and invitation offured in field-organization appointments. Drop a line to ARIRL. Headquarters for the booklet Operating an Amateur Radio Station, which has detailed information on the field-organization appointments and awards. Accept today the invitation to take full part in all League activities and organization work

CONELRAD COMPLIANCE

The FCC rules for the Amateur Service concorned with requirements in the event of enemy attack are contaned in the AIRIRL License Manual as part of the amateur regnlations, Sections 12.190 through 12.196. These are the rules for control of electromagnetic radiation, conelrad, to minimize radio navigational aids to an enemy. Read and follow these rules. They concern you.

Amateurs are required to shut down when a Conelrad Radio Alert is indicated. F(C requires monitoring, by some means, of a broadcast station while you operate. By use of proper equipment, each amateur can make his conelrad rompliance routine and almost automatic. You will find descriptions of such devices, most of them quite simple, in this Handbook and in QST'.

Operating Abbreviations and Prefixes

Q SIGNALS

Given below are a number of Q signals whose meanings most often need to be expressed with brevity and clearness in amateur work. (Q abbreviations talke the form of questions only when each is sent followed by a question mark.)

QLGG Will you tell me my exact frequency (or that of.......)? Your exact frequency (or that of.) is.ke.
QRII Does my frequency vary? Your frequency varies.
QRI How is the tone of thy transmission? The tone of your transmission is. (1. Good; 2. Variable; 3. 13ad).

QIRK What is the readability of my signals (or those of)? The readability of your signals (or those of.) is (1. Unreadable; 2. Readable now and then; 3. Readable but with difficulty; 4. Readable; 5. Perfectly readable).
QIRL. Are you busy? I am busy (or I am busy with). Please do not interfere.
QIRM Are you being interfered with? I an interfered with.
QiNN Are you troubled by statie? I am being troubled by static.
QIRO Must I increase power? Increase power.
QRP Must I decrease power? Decrease power.
QRQ Shall I send faster? Send faster (. words per min.).
QRS Shall I send more slowly? Send more slowly (.... w.p.m.).

QI'I Shall I stop sending? Stop sending.
QRU Have you anything for me? I have nothing for you.
QRV Are you ready? I am ready.
QIRW Shall I tell.....that you are calling him onke.? Please inform.....that I ain calling him on.....ke.
QRX When will you call me again? I will call you again at. hours (on.ke.).
QRZ Who is calling me? You are being called hy..... (on.kc.).
QSA What is the strength of my signals (or those of)? The strength of your signals (or those of.) is....... (1. Searcely perceptible; 2. W'cak; 3. Fairly good; 4. Good; 5. Very good).
QS13 Are my signals fading? Your signals are fading.
QSD Is my keying defective? Your keying is defective.
QSG Shall I send. messages at a time? Send. messages at a time.
QSL. Can you acknowledge receipt? I am ack nowledging receipt.
QSM Shall I repeat the last message which I sent you, or some previous message? Repeat the last message which you sent me [or message(s) number(s). J.
QSO Can you comniunicate with.... direct or by relay? I can communicate with.... .direct (or by relay through.).
QSP Will you relay to.....? I will relay to.....
QSV Shall I send a series of V's on this frequency (or (or. kc.)? Send a series of V's on this frequeney (or. . . . ke.).
QSW Will you send on this frequency (or on....ke.)? I am going to send on this frequeney (or onke.).
QSX Will you listen to.....on......ke.? I am listening to.on.ke.

QSY Shall I change to transmission on another frequency? ('hange to transmission on another frequeney (or on....ke.).
QSZ Shall I send each word or group more than onec? Send each word or group twice (or. . . times).
QTA Shall I cancel inessage number. . . as if it had not been sent? ('ancel message number. as if it had not been sent.
QCB Do you agree with my counting of words? I do not agree with your eonnting of words: I will repeat the first letter or digit of each word or group.
QTC Ilow many messages have you to send? I have. . . . messages for you (or for.).
QTII What is your location? My location is.....
QTR What is the exact time? The time is......
Special abbreviations adopted by ARRL:
QST General call preceding a message addressed to all amateurs and ARRL inembers. This is in effect "CQ ARRL.".
QRRR Official ARRI. "land SOS." A distress eall for emergency use only by a station in an emergency situation.

THE R-S-T SYSTEM
 READABILITY

1 - Unreadable.
2 - Barely readahle, occasional words distinguishable.
3 - Readable with considerable difficulty.
4 - IReadable with practically no diffieulty.
5-Perfectly readable.

SIGNAL STRENGTH

1 - Faint signals, harely perceptible.
2 - Very weak signals.
3 - Weak signals.
4 - I'air signals.
5 - Fairly good signals.
6 - Good signals.
7 - Moderately strong signals.
8 - Strong signals.
9 - Extremely strong signals.

TONE

1 - Extremely rough hissing note.
2 - Very rough a.c. note, no trace of musicality.
3 - Rough low-pitched a.e. note, slightly musieal.
4 - Rather rough a.e, note, moderately nusieal.
5 - Musically-modulated note.
6 - Modulated note, slight trace of whistle.
7 - Near d.e. note, smooth ripple.
8 - Good d.e. note, just a trace of ripple.
9 - Purest d.e. note.
If the signal has the characteristic steadiness of crystal control, add the letter X to the RST report. If there is a ehirp, the letter C may be added to so indicate. Similarly for a elick, add K. The above reporting system is used on both e.w. and voice. leaving out the "tone" report on voice.

INTERNATIONAL PREFIXES

A．1A－A1．\％
AMA－AOZ
Ald－AS\％
ATA－AW゙
ANA－ACZ
AIA－AV\％
BAA－BZZ
（＇AA－CHZ
（FA－CN\％
（NA－CN\％
（0A－（0）\％
（PPA－＇1＇／
COA－CIR
（SA－CIK
（1）A－CX／
（）A－
BAA－1）T\％
1以A－1）Z\％
FAA－1EIK
1UA－FNK
ENA－Eに\％
1EA－E：LZ
EMA－HO\％
WPA－EGZ
ERA－ER\％
EAS－NK
HTA－E1＂\％
EUA－ETW\％
MNA－BZZ
FAA－PKZ
riAA－（iZ\％
HAA－11A\％
11BA－1113\％
［1VA－H1］
11EA－1IE\％
1FA－114
111A－H1\％
M1A－AHM／ MA－MIK．
HLAA－HAI\％
IINA－IIN\％
HOA－H1＂／
11QA－11RZ
HNA－HS\％
11TA－11T\％
IIC．A－H1＂\％
15VA－115
IIIIA－112\％
11ZA－11\％\％
1AA－1 $Z \%$
JAA－JN／
JTA－IV\％ JWA－IX\％ JIA－1\％
JKA－JTZ
KAA－KZ\％
LOA－10
LOA－1．IV
1．A－1．XV
12 A－1，
MAA－MZ\％
NAA－NK\％
OAA－O（＂\％
ODA－（）I）Z
OEA－OEZ
OFA－（）I\％
OKA－OMZ
ONA－OT\％
OAA－OTZ
O1 A－（）Z／
PAA－PIZ
PJA－PJZ
1以に1－एOZ
PPA－P「\％
1
（2AA－（ $2 \% /$
RAA－RZZ
SAA－S．I\％
SNARKZ
s．A－sky
SSA－SM
SSN－EIZ
sta－sCZ
NAA－s゙Z
＇11）A－1＇D\％
TEA－TEZ
TFA－TF\％
TCA－MC
THA－＇IIZ
＇TA－TVZ
MA－
MA－TR
TSA－TSM
UAA－YQZ

Inited States of America
Spain
Pakistan
India
（ommonwealth of Australia
Argentinc Republic
China
（＇hile
（＇unada
Cuba
Maroceo
（cuba
Bolivia
P＇ortuguese Overscas Provinces
Portugal
C＇ruguay
（＇anada
Republic of the Philippines
Repain
Ireland
Inion of Sovict Socialist Republics
liberia
Inion of Soviet suris．List Republics
Iran
Frion of Suviet surialist Republics
Estonia
Ethiopia
bielorussian soviet Socialist Republic
Trion of Soviet Surialist Republics
France and Freneh Community
Gireat Britain
Hungarian P＇cophe＇s Republic
Switzerland
Eciador
switzerland
Proplet：Republic of I＇oland
Humarian Peoplés Republic
Republic of IIaiti
Ibominisan Republia
Republic of（＇olombia
Forea
Irall
Republic of l＇anama
Republic of IIondiras
Thailand
Nicaragna
Republie of El Sulvador
Vatican（＂ity State
France and French（＇ommunity
Siandi Arabia
Italy and Mamdated Perritorics Jiapan
Mongolian People＇s Remablic
Norway
Jordan
Netherlands New（iuinea
finted states of America
Norway
Argentine Resuhlic
Laxembsarg
Lithnania
Bople＇s Republie of Bulgaria
ireat Mritain
Inited States of Ancrica
l＇rina
libbanon
linstria
（zedhoslovakia
Belginul
1 ）enmark
Netherlands
Vetherlands Antilles
Repablice of Indonesia
Brazil
surinam
（Service abbreviations）
Chon of Noviet Nocialist Republics
weden
Petule＇：Republie of Poland
Lisypt
ligypt（I．A．R．）
ireece
lurkey
Guatemala
Costa Rica
I celand
（inatemala
France and French Community
Costa lival
France and French（＇ommunity
Tunisia
France and French Community
Enion of Soviet Socialist Republics

CRA－1＂\％
CUA－UZZ
MA－V（：Z
Vlla－v̌
－OA－1OZ
1PA－V®\％
TA－IWZ
VA－VYZ
VAA－VZZ
WAA－ $11 \% \%$
NAA－XI\％
NA－NO\％
NPA－NPZ
XQA－XRZ
「＇A－X＇I＂／
ヘli－N1＂
－ $11-\mathrm{A}=$
－$-1-2$
－1A－N
riA－YAZ
Y13A－Y1I／
IIA－II\％
\％．J．t－1．J\％
リKA－VにZ
re．t－rLZ
1MA－VML／
1NA－VN／
1O．1－1 $\mathrm{H} /$
rist－r\％
NA－YRK
－VA－17\％
I／A－IZZ
ZAA－Z． 1%
K 1 A－K．IK
Wに1－ZM7
ZNA－ZOZ
Z1＇A－Z1＇／
\％（2A－70\％
hida－hiv
／RA－KL $/$
／A－K／A
2A $1-2 / / 2$
$3 A-6-3 /$
$3 A A-3.1 \%$
$3 \mathrm{BA}-3 \mathrm{~F} / 2$
3H．A－3F\％
311．A－31\％
$35.1-317$
311．－3WV\％
3．NA－3．
3）$-1-317$
$3 / A-3 / 7 /$
4－1－1
41． $1-11 \%$
$4.51-11 / 7$
$4 N A-4 N Z$
$4 M A-4 M Z$
4NA－10\％
$4 \mathrm{PA}-1 \approx \%$
$4^{\prime} \mathrm{T}^{\circ} \mathrm{A}-4^{\prime} \mathrm{I}^{\prime} / 2$
$40 A-4 \%$
$41.1-1{ }^{\prime} 7$
$41^{2}+-11 y^{\circ} Z$
$411+-11 \% 2$
4 A－4NZ
4）A－1
$4 Z A-1 / Z /$
$5 A 1-5 \lambda Z$
$5 C^{\circ} A-50 \%$
5．JA－̇にV
51A－EMZ
5IPA－iか（27
DRA－iv\％
GAA－GIM
6（•A－6C＇\％

DIA－lim
6liA－liNZ
6OA－6iOZ
HPA－6が／
6＇TA－61／
7A1－71\％
7J．1－Tズス
TSA－ホNZ
7／A－ $7 / \%$
8A1－8IK
8．1．81／2
8．J．$-8 .{ }^{\circ} Z$
8心1－8s\％
8＇TA－81\％
8ZA－8\％
9AA－9．A\％
9B． $1-91$ \％
GE－ $9 \mathrm{~F} Z$
9（iA－4）i \％
$9 \mathrm{KA}-9 \mathrm{KZ}$
9．1．A－9DIZ
9NA－9NZ
$90 .-9 L^{2} Z$
l＂kruinian Soviet Socialist Republic
Union of Suviet Socialist Republics
Canada
Commonwealth of Australia
Canaua
British Orerseas I＇erritories
India
Cunada
（＇ommonnealth of Australis
initcd sitates of America
Mexico
Canada
Dennark
（＇hile
（＇hina
F＇ranee and French Community
（＇ambordia
Vict－Nim
Laos
Portugucse Overscas Provinces
Burma
Afglanistan
Repmblic of Indonesia
1 rag
New Hebrides
Syria（C．A．R．）
latria
＇Turkey＇
Nicaragua
Rommanian People＇s Republic
Republic of El Salvador
Yugoslavia
Yenezuela
Yugosla via
Albania
British Overscas Perritories
Sew Zouland
13ritish Oversois＇lerritories
Paraguay
British Overseas I＇crritories
Enion of south Africa
Brazil
Great Britain
Monaed
canada
Chile
China
T＇unisia
fict－van
Norway
Pcople＇s Republic of Poland
Mexiros
Republic of the Inilippines
Enion of Sovict Socialist Republics
Venezucla
Yugoslavia
（ex＂on
Perli
Cnited Nations
Republic of Ha ati
lemen
State of Israel
International Civil Aviation Organization
State of Isracl
Libya
Moroceo
Colombia
Liberia
Denmark
Franceand French Community
ligant（l．A．R．）
Suria（lu．A．R．）
Dexim
Forea
Somalia
Pakistan
Sudan
Indonesia
Japan
Sweden
saudi Arabia
Indonesia
Japan
Sweden
India
Nuadi Arabia
San Marino
Iran
Ethiopia
（ihana
Kuwait
Malaya
Neual
Belgian Congo and RuandarUrundi

Abbreviations

Abbreviations help to cut down unnecessary transmission．However，make it a rule not to abbreviate unnecessarily when working an operator of unknown experience．			
AA	All after	Ol	Old boy
AB	All before	OM	Old man
ABT	About	OP－OPR	Operator
Aldr	Address	OSC	Oscillator
AGN	Again	O＇T	Old timer；old top
ANT	Antenna	PHL	Preamble
BC＇I	Broadcast interference	PSEPPLS	Please
HCI．	Broadcast listener	PWR	l＇ower
やに	Hreak；break me；break in	PX	Press
13N	All between；been	IR	leceived as transmitted；arc
131	Hefore	RAC	Rertified alternating current
（	Y＇es	R（PD）	lieceived
CFM	Confirm；I confirm	REF	Refer to：referring to：reference
Oに	Cheek	1R1PT	Lepent；I repmat
（ 12	1 am closing my station；mall	S1：1）	Said
CLD－CLG	Calied；ealling	S1\％\％	Says
（UI）	Could	SIC	Signature；signal
CUL	See you later	SINE	Operator＇s personal initials or nickname
（ ${ }^{\text {UM }}$	Come	ぶぐい	Schedule
CW	Continuous wave	SlıI	Sorry
1）LD－DIND	$1)$ elivered	SvC	Service；prefix to service message
1）X	Distance	TFC	Traffic
ECO	Electron－coupled oscillator	TMW	Tomorrow
FB	Fine business；excellent	＇TNX－TKS	Thanks
C．A	（io ahead（or resume sending）	T＇T＇	That
（iB	Good－by	16	Thank you
GBA	Giive better address	1以1	Television interference
GI：	Grood evening	TVL	Television listener
GG	Gioing	TXT	Text
（iM	Cood morning	UR－URS	Your；you＇re；yours
GiN	（iood night	VFO	Variable－freguency oscillator
GND	（iround	V	Vers
（iL＇I）	（iood	W．A	Word after
111	The telegraphic laugh：high	WH	Word before
112	Here：hear	Wい－WDS	Word；words
IIV	Have	Wにし）－Wに，	Worked；working
IIW	How	WL	Well；will
LID	A poor operator	WUD	Would
MILS	Milliamperes	WX	Weather
MSG	Message：prefix to radiogram	XMTR	Transmitter
N	No	XTAL	Crystal
ND	Nothing doing	YF（XYL）	Wife
NIL	Nothing；I have nothing for you	YL	Young lady
NR	Number	73	Hest regards
NW	Now；I resume transmission	88	love and kisans

W／K CALL AREAS BY STATES

24-OPERATING A STATION

Operating an Amateur Radio Station covers the details of practical amateur operating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, " Q " Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.

- Emergency Communications is the "bi. ble" of the Amateur Radio Emergency Corps. Within its eight pages are contained the funda. mentals of emergency communication which every amateur interested in public service work should know, including a complete diagrammatical plan adaptable for use in any community, explanation of the role of the American Red Cross and FCC's regulations concerning amateur operation in emergencies. The Radio Amateur Civil Emergency Service (RACES) comes in for special consideration, including a table of RACES frequencies on the front cover.

The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

american radio relay league
38 La Salle Road
West Hartford 7, Connecticut, U. S. A.

Please send me, without charge, the following:
OPERATING AN AMATEUR RADIO STATIONEMERGENCY COMMUNICATIONS

Name

Address

Vacuum Tubes and Semiconductors

For the convenieme of the designer, the re-ceiving-type tubes listed in this chapter are grouped hy filament voltages and construction typers (glass, metal, miniature, ote,). For example, all miniature tubes are listed in Table I, all metal tubes are in Table II, and so on.

Transmitting tubos are divided into triodes and tetrodes-pentodes, then listed abcording to rated plate dissipation. This permits direct comparison of ratings of tubes in the same power classifiration.

For quick reference, all tubes are listed in numerical-alphabetical order in the index. Trpes having no table reference are cither obsolete or of litt le use in amaterur equipment. Base diagrams for these tubes are listed, however.

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings atre the maximum safe operating voltages and currents for the electrodes, hased on inherent limiting factors such as permissible cathode temperature, emission, and power dissipation in chertrodes.

In the transmitting-tube tables, maximum ratings for eleetrode voltage, current and dissipation are given soparately from the typical operating eonditions for the recommended classes of operation. In the rereriving-tube tables, hecause of space limitations, ratings and operating data are eombined. Where only one sat of operating conditions appars, the positive electrode voltages shown (plate, screch, ete.) are, in general, also the maximum rated voltages.

For mertain air-coolod transmitting tubes, there are two sets of maximum values, one designated as CC's (Continuous Commereial service) ratings, the other ICAS (Intermittent Commeraial and Amatenr Sorviore) ratings. Continuous Commerreall serviere is defined as that type of service in which long tube life and reliability of performance under continuous operating
conditions are the prime consideration. Intormittent Commereial and Amateur Sorvier is defined to include the many applications where the transmitter design factors of minimum size, light weight, and maximum power output are more important than long tule life. ICAs ratings are considerably higher than (CO ratings. They permit the handling of greater power, and although such use involves some sueritice in tube life, the period over which tubes give satisfactory performance in intermittent serviee can be extremely long.

The plate dissipation values given for transmit ting tubes should not be exceeded during normal opreation. In plate modulated amplifier applicat tions, the maximum allowahle carrier-womition plate dissipation is approximately bif pereent of the value listed and will rise to the maximum value under 100 -per-eent sinusoidal modulation.

Typical Operating Conditions

The typieal operating conditions given for transmitting tubes represent, in gemeral, maximum lCaS ratings where such ratings have been given by the manufacturer. They do not represent the onty possible method of operation of a particular tube type. ()ther values of plate voltage, plate current, grid bias, cter, may be used so long as the maximum ratings for a particular voltage or current are not exereded.

Equivalent Tubes

The equivalent tubes listed in Table VIII are used occasionally in amateur service. In addition to the types listed, other equivalents arr available for special purposes such as sories-heater string operation in TV receivers. These types require unusual values of heater voltage (3.15, 4.2 , ete.), and have eontrolled warm-up the charateristies to minimize voltage unbalance during starting. Except for heater design, these types correspond electrically and mechanically to (i-wolt prototypes.

INDEX TO TUBE TABLES

I- Miniature Receiving Tubes	115	1. - Control and Regulator Tubes .	V23
11-6.3-Volt Motal Rereiving Tubrs	119	N-Roetifiers	V24
	V20	N1- Triode Transmit ting. Tubes.	V25
IV - 6.3 -Volt Lock-In Base Tubes	121	XII - Tetrode and Pentode Transmitiong	
V - 1.j)-Volt Battery Tubes.	\} 2 1	Tubes	V28
VI - High-Voltage Heater Tubes	V21	N 111 - Electrostatic Cathorle-Ray Tubes	V'30
VII - Sperial Receiving Tubes	V'22	XIV-Transistors	1:31
VIII - Eqpuivalent Tubes	$1 \cdot 22$	X' - (rystal I)ioders	1:32

INDEX TO VACUUM-TUBE TYPES
I Baserliagram section pages V5-V15. Classified data pages V15.V32.

VACUUM-TUBE DATA

Type	Paje	Base
6082.	V21	8131)
6083		Fla.
6084		9 BJ
6085		9 A
6086		9131
6087		51.
6101	V23	7BF
6132	V23	913A
6135		6136
6136	V23	7BK
6137		8
6140		9 BY
6141		9132
6146	V28	7CK
6155	V29	51 K
6156	V29	513 K
6157		Fig. 36
6158		
6159	V28	7CK
6173	V22	F1g. 34
6197		913 V
6201	V23	9A
6211		9A
6216		F1g. 37
6218		90 (1)
6227		911.
6252	V28	Flg. 7
6263	V25	
6264	V25	
6265	$V 23$	7CM
6287.		9 CT
6308	V24	8EX
6350	123	$9 \mathrm{C} / 2$
6354	V24	Fig. 12
6360	V28	Fig. 13
6374		9BW
6386	V19	8 CH
6417	V28	91
6443		913W
6485	123	73K
6524	V28	Flg. 76
6660	V23	704
6661	V23	7CM
6662	$\checkmark 23$	7CM
6063	V23	615
6669	$V 23$	7132
6677	V23	913 V
6678	$\stackrel{1}{23}$	9AE
6679	V23	9A
6680	V23	9 A
6681	$V 23$	9 A
6816	V29	Flg, 77
6829	V23	
6850.	V2s	Fig. 76
6883.	V28	
6884	V129	77
6887	$V 19$	6H5
6893	V28	7CK
6897	V23	
6907		Fik. 7
6939	$V 28$	Fig. 13
6973	V19	9 F C
7000	V23	7R
7025	V20	9A
7027	V21	\H1
7034	V29	Fig. 75
7035	$V 29$	Flis. 75
70.54	V23	9 Bl
7055	V23	615
7056	123	6CM
7057	V23	9.1J
7058.	V23	9 A
7059.	V23	9.1r:
7060	V23	91)
7061	V23	9 EU
7077	V22	
7091	V29	Flw 8 :
7137	V23	7B0
7167	V23	7 EW
7189	$V 19$	90V
7258	VI!	91)
7270	V29	Fig. 84
7271	V29	Fig. 84
7360	V22	9ks
7363	Ch. 11	9K心
7543	V23	7 BK
7551	$\checkmark 28$	91/K
7558	V2x	91. K
7700	V23	6 F
8000	V27	2N
8001.	V29	713.M
8010,3		3 N
8005	V26	3 C
8008		Flg. 8
8012		Flg.
8013-A		4 P
8016		3 C
8020		4 P
8025	V25	4 Al
9001	+19	7131
9002	Y19	713s
9002	V10	7BS

$\begin{aligned} & \text { Type } \\ & \text { kYzi. } \end{aligned}$	I_{24}	base
NU2(35.		Fig. 23
PE340		
PL172	-29	
PL6549	129	Fig. 14
PL6569	V27	Fig. 3
PL65s0	V27	5BK
RK10		41
RK11		3G
RK12	-	30
RK15		41)
RK16		5 A
RK17		5 F
RK1×		36
12 K 19		$4.4 T$
RK20		Flg. 61
RK20A		F'lg. 61
RK21.	-	
RL22		Flg. 5
RK23		6BM
R124	-	41)
12K2:3	-	63.
RK2513		633 M
1 KK 28	-	$6 J$
RK28A	-	5 J
12630	-	21
RK31		36
RK32		21
RK33		Fig. 69
12K34	V25	Fig. 70
12K35	-	2 D
12K36		21
12 k 37		2 D
12638	-	21
12 K 39	-	5AW
RK41		5 AW
RK42		4 D
12 K 43	-	6
RK44.		613 M
12 k 46		Fig. 6
12K47		Flg.
RK48	-	Fig. 64
RK48A	-	Fig. 64
1 K 49	-	
RK51		3 C
RK52	-	36
12K5	-	5AW
1kK57	-	3N
12K58		3 N
RK59		Flg.
12K61	V24	
RK62	-	$41)$
R 663	-	2 N
RK63A		2 N
12k64	-	5AW
RK65	-	Fig. 48
18K66		F"ig.
RK75		F\%ig. 6
RK100		Flw. 6
RK705A	-	Fily.
RK8tit	-	4 P
'120	$\checkmark 25$	36
H21		6 A
'1'40	V24	36
$\cdots 55$	V26	3 i
T'60	-	21)
T100		21
T125		2 N
'T200	V27	2 N
T300	V'27	
1814		3N
T'822		$3 . \mathrm{N}$
T1335		Flg.
114F20		2 T
'l'V75		21
TW150	-	$2 . \mathrm{N}$
TZ20.	125	36
Tz40.	126	36
[15100		21
CEH68	-	Fig.
LH35.	-	3 B
(1150		$21)$
U1551		213
V70.		3N
V70A	-	3 N
$\checkmark 701$	-	36
v700		34 ;
'7013	V2t	3 i
V1275	V23	4AJ
V1290	V23	4AJ
V12105	V23	+AJ
VR150	V23	tAJ
-152.	-	413
VrichA	V26	Fig. 5
V'191.	V25	
W E304A		21)
$\times 6030$	-	F1g. 2
-XH.	-	Fig. 6
XXV.	V23	8AC
XXL		5 AC
XXFM	-	813%
$71360 .$	二	2 D

SEMICONDUCTORS

V4

VACUUM-TUBE BASE DIAGRAMS

 buttom viens are shown throughout. Terminal degignations are as follows:

$\mathrm{A}=$ Anode	I) $=$ I eflerting Plate	IS	$=$ Internal Shield	RC: = Ray Control Eiperimde	
$\\|=$ Bram	$\mathbf{F}=\mathrm{Fib}$ amtent	К	$=$ Cathorde	Hrf $=$ Reflector	
$\underline{13} \mathbf{V}^{\prime}=$ Bayonet ${ }^{\text {S }}$ 'in	$\mathbf{r} \mathbf{H}=$ Focus lileet.	NC.	$=$ No Conntelion	S $=$ Shell	
$B E=$ Base Slorve	f ($=$ irid	!	$=$ Plate (Amode)	'1' = 'armet	
C $=$ Fxa, Coating	$\\|$ = Heater	11	= starter -inode	1 = Init	
CiL = Collicetor	IC. $=\operatorname{Internal}$ Con.	I'ıro	$=$ Ibramillates	- = Gas-l'ylu 'luhe	

 bait tybens. Sintmeript (.I mobicates filament or heater tap.

E.I.A. (R.E.T.M.A.) TUBE BASE DIAGRAMS

2AG

20

2 N

$2 T$

22

3C

3G

$3 N$

$3 T$

4AA

$4 A B$

4AC

4AD
NC(3)
4AH
SUMPER
4AM

4AQ

4AT

48

46

$4 F$

4P

42

4BB

4CB

4G

4R

5A

4 H

45

$4 J$

4 V

4 K

4 M

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

					58

TUBE BASE DIAGRAMS

6 H

6R

6 J

6K

6S

6L

$6 T$

6M

60

6RA

TUBE BASE DIAGRAMS
Rotton viewn are shown. 'lerntibal designations on sockets are siven on page V.

(2):

(4) (4)

7DC

7DE

7DF
(2) (3) (3) (1)

TUBE BASE DIAGRAMS

Bottom virws are shown. Terminal designations on socketr are piven on page V. ${ }^{\text {B }}$.

TEW

$7 F 0$

7 G

7 L

70

7 V

$7 W$

BAN

(1)- (B)N:
8AV

BAW

BAY
(3)
88
(2) (4) (5) (3)
38A

TUBE BASE DIAGRAMS

Bothon , iens are shown. Terminal designations on soekets are given on page V5.

TUBE BASE DIAGRAMS

TUBE BASE DIAGRAMS

Bethon views are shown. Terminal dreignations on sorekets are given ou pame V:

	9ES				
		9F G			
9 T					
			$9 K$		

TUBE BASE DIAGRAMS

Bottom views are shown. Terninal designations on sockets are given on page 15.

TUBE BASE DIAGRAMS

Rontom view: are shown. 'lerminal designations on forkets are given on page Vh,

(2)

TUBE BASE DIAGRAMS
Bentom views are shown．lirminal designations on seckets are given on page $V 5$.

FIG． 77

FIG． 79

FJG． 80

FIG． 82

FIG． 83

FIG 84

FIG 8 ：

TABLE I－MINIATURE RECEIVING TUBES

Typ＊	Name		Base	Fil．or Healer		Copacitances $\mu \mu$ ．			$\begin{array}{r} > \\ \frac{2}{2} \\ \frac{2}{2} \frac{2}{3} \end{array}$	흔:	$\begin{aligned} & \text { E } \\ & 0_{4}^{0} \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { c } \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	亮京			$\frac{\dot{0}}{2}$		$\begin{aligned} & \text { 膏 } \\ & \frac{0}{5} \\ & 30 \end{aligned}$	
			V．	Amp．	Cm	Cout	$C_{p r}$												
143	H．1．Diode			SAP	1.4	0.15		－	－	Mox．a c voltage per plate－117．Max，output current $\mathbf{- 0 . 5} \mathrm{ma}$ ．									
1AF4	Sharp Cut－olf Pent．		GAR	14	0.025	38	7.6	0.009	90	0	90	055	1.8	1.8 meg．	1050	－	－		
114	Sharp Cur－off Pent．		6AR	1.4	0.05	3.6	7.5	0.008	90	0	90	2.0	45	350K	1025	－	－		
116	Pentogrid Conv．		7DC	1.4	0.05	7.5	120	0.3	90	0	45	0.6	0.5	650K	300	－	－		
1R5	Pentagrid Cony．		7AT	1.4	0.05	7.0	12.0	0.3	90	0	67.5	3.5	1.5	400k	280	Grid No． 1 look			
154	Pentagrid Pwr．Amp．		TAV	1.4	0.1	－	－	－	90	-7.0	67.5	1.4	7.4	100k	1575	－	8 K	0.270	
155	Diode－Pentod	A_{1} Amp	6AU	1.4	005	－	－	－	675	0	67.5	0.4	1.6	600k	625	－	－	${ }^{--}$	
		R．f．Amp．							90	0	90	Screen Resistor 3 meg．grict 10 meg．					1 meg ．	0.050	
174	Vorioble－μ Pent．		6AR	1.4	0.05	36	7.5	0.01	90	0	675	1.4	3.5	500 K	900		－	\square	
144	Sharp Cut．olf Pent．		6AR	1.4	005	3.6	7.5	001	90	0	90	05	16	1 meg．	900		－		
145	Diode Pentode		68W	1.4	0.05	－	－	－	67.5	0	67.5	0.4	1.6	600 K	625	－	－	－	
$2 E 30$	8eam Pwr． Pent．	A Amp．	7CO	60	0.65	9.5	66	0.2	250	450＊	250	3．3，7．4	44^{2}	63K	3700	405	4.5 K	4.5	
		A1 Amp．${ }^{3}$							250	225＊	250	6614.8	887	－	－	805	9 K	9	
		$A B_{1} A_{\text {mp }}{ }^{3}$							250	－25	250	313.5	82^{2}	－	－	48^{3}	$8 \mathrm{~K}{ }^{\text {c }}$	12.5	
		AB_{2} Amp．3							250	-30	250	420	120^{7}	\cdots	－	40^{5}	$3.8{ }^{6}$	17	
2EAS＊	Sharp Cut－off Pent．		7EW	2.4	0.60	3.8	23	0.06	250	－1	150	－－	0	150k	8000	－	－	－	
2EN5：	Duol Diode		7FL	2.1	0.45	－	－	－－	Max．a．c．voltage per plate－200 Max output current－ 50 ma．										
3 A． 4	Pwr．Amp．Pent．		$78 B$	1.4	0.2	48	42	0.34	135	-7.5	90	2.6	14.92	90 K	1900	－	8 K	0.6	
			2.8	0.1	150				－8．4	90	2.2	14.12	100K	0.7					
345	H．i．Dual Triode ${ }^{10}$			78 C	1.4	0.22	0.9	1.0	3.2	90	-2.5	．	\cdots	3.7	8．3K	1800	15	－	－
			2.8		0.11														
3DK6	Shorp Cut．ell Pent．		7 CM	3.15	0.6	63	1.9	0.02	300	－6．5	150	38	12		9800	－	－	－	
304	Pwr．Amp Pent．		7BA	1.4	0.1	5.5	3.8	0.2	90	-4.5	90	2.1	9.5	100K	2150		10k	0.27	
			2.8	0.05	1.7							7.7	120K	2000	10K		0.24		
354	Pwr．Amp．Pent，			78A	1.4	0.1	－．	－－	－	90	-7	67.5	1.4	7.4	100K	1575	－	8 K	0.27
			2.8		0.05	1.1							6.1	1425		0.235			
4EW6：	Sharp Cutolt Pent．		7 CM	42	0.6	10.0	24	0.04	300	－3．5	180	3.2	11	－	1400	－	－	－	
GAB4	U．h f．Triode		5CE	63	0.15	2.2	0.5	1.5	250	$200{ }^{*}$		－	10	10．9K	5500	60	－	－	
6 AD8	Dual Diode－Pent．		97	63	0.3	4.0	46	0.002	250	－2	85	23	6.7	1 meg ．	1100	－	－	－	
6AF4A	U．h．）－ Triode	A Amp．	70K	6.3	0.225	22	0.45	1.9	80	150＊	－	\cdots	16	227 K	6600	15	－	－	
		Osc 950 Mc ．							100	10k！！		0.49	22		－	－	－	－	
6AG5	Shorp Cur－oil Pent．				03	65	18	0.03	250	180%	150	2.0	65	800k	5000	－	－	－	
			7BD	6.3	0.3	6.5	1.8	0.03	100	$180 *$	100	1.4	4.5	600K	4550	－	－	－	
6AH6	Sharp Cut－olf Penl．	Pent Amp．	78 K	6.3	0.45	10.0	20	00.3	300	160＊＊	150	2.5	10	500K	9600	－	－	－	
		iploue Amp．							150	1000^{4}	－	－－	12.3	3.6 K	114	4 U	－	－	
6AJ4	U．h．f．Triode		98 X	6.3	0.225	4.4	018	2.4	125	$68 *$	－	－－	16	4.2 K	10K	42	－	－	
6AK5	Sharp Cut－olf Pent．		780	6.3	0.175	4.0	28	0.02	180	200＊	120	2.4	7.7	690K	5100	－	－	－	
			150						$330 *$	140	2.2	7	420 K	4300	－	－	－		
			120						$200{ }^{*}$	120	2.5	7.5	340K	5000	－	－	－		
6AK6	Pwr．Amp．Pent．			78K	6.3	0.15	36	4.2	0.12	180	－9	180	2.5	15	200K	2300	－	10K	1.1
6AL．5	Pur．Amp．Pent．			687	6.3	0.3	－	－	－－	Max．r．m．s．valtoge－187．Max．d．c．oulpul current－9 ma．t									
6AM4	U．h．f．Triode		9 BX	6.3	0.225	4.4	016	2.4	150	100^{*}	－	－	75	10K	9000	90	－	－	
GAMBA：	Diode－Sharp Cul－off Pent．		9 Cr	6.3	0.45	6.0	26	0.015	200	120^{*}	150	2.7	11.5	600 K	7000	－	－	－	
GANA	U．h．f．Triode		70K	6.3	0.225	28	028	1.7	200	100＊＊	－	－	13	－－	10K	70	－	－－	
GANS	Beam Pwr．Pent．		780	6.3	0.45	90	4.8	0.075	120	120＊	120	120	35	12．5K	8000		2.5 K	1.3	
CANBA ${ }_{\text {＋}}$	Medium μ Triode		9 DA	63	0.45	20	2.7	1.5	200	－6	－		13	5．75K	3300	－	－	－	
	Sharp Cut－off Pent．					7.0	2.3	0.04	200	180^{*}	150	2.8	9.5	30 K	6200	－	－	－	
6AOSA ${ }^{\text {a }}$ 8eam Pwr．Pent．	8eam Pwr．Pent．		782	6.3	0.45	8.3	82	0.35	180	－8．5	180	3／4	30^{7}	58K	3700	295	5．5＊	2.0	
			250						-12.5	250	4．5／7	47^{7}	52K	4100	45°	5K	4.5		

Type	Nome	Bate	IABLE I-MINIATURE RECEIVING TUBES-Continued										V17													
			Fil, or Heater		Capacitonces $\mu \mu$ f.			$\begin{array}{r} > \\ \frac{2}{2} \frac{2}{2} \\ \frac{2}{2} \\ \hline 1 \end{array}$	흔 .	$\stackrel{c}{c}$	曾				$\frac{\dot{C}}{E}$		$\begin{aligned} & \frac{0}{3} \\ & \frac{1}{0} \frac{0}{3} \\ & 3 \end{aligned}$									
			v.	Amp.	c.	Cout	C_{9}																			
6CM8:	High. μ Triode	9FZ	6.3	0.45	1.6	0.22	1.9	250	-2	-	--	1.8	S0K	2000	100	-	-									
	Sharp Cut-oft Pent.				6	2.6	002	200	180^{*}	150	2.8	9.5	300k	6200	-	-	-									
	Dup Diode Hughy		6.3	0.3	1.5	0.5	18	100	-1	--	-	0.8	54 K	1300	70	-	-									
6CN7\%	Dual Diode - Migh. μ Triode	9EN	3.15	0.6				250	-3	-	-	I	58k	1200	70	-										
	Medium. μ Trade	9GE	6.3	0.45	2.7	0.4	1.8	. 125	56^{*}		-	15	5K	8000	40	-										
$6 \mathrm{CO}{ }^{\text {\% }}$	Sharp Cutoll Teltode				5	2.5	0.019	125	-1	125	4.2	12	140 K	5800	-											
6CR6	Diode--Remote Cut-bil Pent.	7EA	6.3	0.3			-	250	-2	100	3	9.5	200 K	1950	-	-	--									
6CRE:	Triode	9 GJ	6.3	0.45	2	1.4	1.6	125	-2			12	5.5 K	4000	22											
	Pentode				6	2.8	0.018	125	55°	125	3	13	300 K	7700	-	\cdots										
6Css	Bearn Pwr. Hert	9 CK	6.3	1.2	15	9	0.5	200	180°	125	22	472	28K	8000	-	4 K	38									
6 C56	Pentagrid Arrip.	7 CH	6.3	0.3	5.5	7.5	0.05	100	-1	30	1.1	0.75	1 meg	950	E_{6}	OV.										
	Medium- μ Triode NO. 1	9EF	6.3	0.6	1.8	0.5	2.6	250	-8.5	-	-	10.5	7.7K	2200	17	.	-									
6C57	Dual Triode Triode No. 2				3.0	0.5	2.6	250	-10.5	-	-	19	3.45 K	4500	15.5	-	-									
6Cus	Beam Pwr, Pent	7CV	6.3	1.2	13.2	8.6	0.7	120	-8	110	48.5	50^{2}	10K	7500	-	25 K	23									
6CW4	Triode	Fig. 85	6.3	0.13	4.1	1.7	0.92	70	0	-	-	8	5.44 K	12.5k	68	-	-									
6CW5	Pentode	9 CV	63	0.76	12	6	0.6	170	-125	170	5	70	-	-	-	2.4 K	56									
${ }^{6} \mathrm{CX} 8$	Medium. μ Triode	90X	6.3	0.75	2.2	0.38	4.4	150	150^{*}	--	-	9.2	8.7 K	4600	40	-										
	Sharp Cur-off Pent.				9	4.4	0.06	200	$68 *$	125	5.2	24	70k	10K	-	-										
6CY5	Sharp Cul-ofl Tetrade	7EW	6.3	0.2	4.5	3	0.03	125	-7	80	1.5	10	100 K	8900	\%	-										
	Dissimilar -				1.57	$0.3{ }^{\text {P }}$	1.8	2507	-37	-	-	1.27	52k ${ }^{\text {\% }}$	13007	${ }^{687}$	-										
$6 \mathrm{Cr7}$	Dual Triode	9EF	6.3	0.75	50	18	4.46	1500	620%	-	--	30	9208	54000	50											
6CZ5	Beom Pwr. Amp. $\frac{A_{1} \text { Amp. }}{\text { AB, Amp, }{ }^{\text {a }} \text {, }}$	9HN	6.3	0.45	8	8.5	0.7	250	-14	250	4.6,8	487	73K	4800	46^{3}	5 K	5.4									
								350	-23.5	280	313	1032			46^{3}	7.5 K 6	1.5									
6DBS	Beam Pwr. Amp.	9GR	6.3	1.2	15	9	0.5	200	180°	125	2.28 .5	4647	28K	8000		4 K	3.8									
6 6B6	Shard Cut-off Pent.	7 CM	6.3	0.3	6	5	0.0035	150	-1	150	6.6	5.8	50k	2050	$E_{63}=$	-3v.	-									
6DC6	Semiremore Cutoilf Pent.	7 CM	6.3	0.3	6.5	2	0.02	200	180^{*}	150	3	9	500 K	5500	--	-	-									
6DE6	Sharp Cut.ofl Pent.	7 CM	6.3	0.3	6.3	1.9	0.02	200	180^{*}	150	2.8	9.5	600 K	6200	-	-	-									
6DE7	Dissimilar-	9HF	6.3	0.9	$2.2{ }^{\text {² }}$	0.527	4^{7}	2507	-11^{17}			5.57	$8.75 \mathrm{~K}=$	20007	17.5	--										
	Dual Triode				$5.5{ }^{\circ}$	18	8.56	$150{ }^{\circ}$	-17.50	-	-	359	925	65000	64	-										
6DJ8	Twin Triode	9AJ	6.3	0.365	3.3	1.8	1.4	90	-1.3	-	-	15	-	12.5K	33	-	-									
6DK6	Sharp Cut olf Pent.	7 CM	6.3	0.3	6.3	1.9	0.02	300	-6.5	150	3.8	12	-	9800	-	-	-									
					2.2	0.34	4.5	330	- 3	-	-	1.4	-	1600	68^{7}	-										
6DR7	Oual Iriode	9HF	63	0.9	5.5	1.0	8.5	275	-175		\cdots	35	-	6500	6^{6}	-										
								250	-8.5	200	3/10	32.	28K	5800	32^{5}	8 K	3.8									
6D55	; Beain Pwr. Amp.	732	6.3	0.8	9.5	6.3	0.19	250	270°	200	3/9	25^{2}	28 K	5800	278	8k	3.6									
60.5	Pwr. Amp. Pent.	9CV	6.3	0.76	10.8	6.5	0.5	300	-7.3	200	10.8	49.52	38k	15	-	5.2 K	17									
6DT6	Shatp Cur-all Pent.	TEN	6.3	0.3	5.8	-	0.02	150.	560°	100	2.1	1.1	150 K	615	-	-										
6078	High- μ Dual Triode ${ }^{10}$	90 E	6.3	0.3	2.7	1.6	1.6	250	$200 *$	--	-	10	109K	5500	60	-										
6DW5	Beam Pwr. Amp.	9CK	6.3	1.2	14	9	0.5	200	-22.5	150	2	55	15K	5500		-										
6EAB:	Triode	9AE	6.3	0.45	3	0.3	1.7	330	-12		-	18	5K	8500	40											
	Sharp Cut.olf Pent				5	2.6	0.02	330	-9	1330	-	12	80K	6400	--	-										
6EB5	Dual Diode	687	6.3	03	Max P.IV. $550, \mathrm{Max}$ D.C Output current 55 mu.																					
	High- μ Trode	90X	6.3	0.75	2.4	. 36	4.4	330	-5	I	-	2	37 K	2700	100	-										
6EB8	Sharp Cut-oft Pent				11	4.2	0.1	330	-9	\cdots	$?$	25	75K	12.5K	-	-										
6EH5	Power Pentode	7CV	6.3	1.2	17	9	0.65	135	0	117	14.5	42	IIK	14.6K	-	3K	1.4									
SEHE	Triode	9 JG	6.3	045	2.8	1.7	1.8	125	-1	-	-	13.5	-	7500	40	-	-									
	Pentautid Conv				48	2.4	0.02	125	-1	125	0	12	170k	6000		-	-									
GERS	ISemiremiote Cut-ofi Pent	7FN	6.3	0.18	4.4	3.0	0.38	200	-1.2	0	0	10	8 K	105 K	80	-	-									
6ESS	\| Triode	7FP	6.3	0.20	3.2	3.2	0.5	200	-1	-	-	10	8K	9000	75	-	-									
6ES8	Dual Iriode	9DE	6.3	0.365	34	1.7	1.9	130	-12			15		12 SK	34											
6 6U7	Twin 1rode	915	6.3	0.3	1.6	0.2	15	100	-1	-	-	05	80K	1250	100	-	-									
6EUS	Triode	9JF	6.3	0.45	30	2.6	0.02	150	-	-	-	18	5k	8500	40	-	-									
	Pentode				3.0	1.6	1.7	125	-1	125	4	12	80K	6400	-	-	-									
6EVS	Sharp Cur-oll Tel	7EW	6.3	0.2	4.5	29	0.035	250	-1	80	09	115	150k	8800	--	-	-									
6EZ8		9KA	6.3	0.45	2.6	$\frac{1.4}{1.2}$	1.5	330	-4	--	- -	42	13.6K	4203	57	--										
6FGS	Pentode	7GA	6.3	0.2	4.2	2.8	0.02	250	-02	250	42	13	250 K	9500	-	-	-									
	Triode	96F	6.3	0.45	3.0	1.3	1.8	125	-1	-	-	13	5700	750	43	-	-									
6FG7	Pentode				5.0	2.4	0.2	125	-1	125	4	11	180k	6000	-	-	-									
6FH5	Troode	7 PP	6.3	0.2	3.2	0.2	0.6	138	1	-	-	11	56×19	9000	50	-	-									
6FME	Duplex	9 KR	6.3	0.45	2.4	-	-	Max. a.c. voltage $=20 \mathrm{c}$. Max. dc output current $=5 \mathrm{mo}$.																		
	Diode				2.2	0.16																				
6FQ5	Iriode	7FP	6.3	018	4.8	40	04	135	-12	-	-	115	5500	lik	60	-	-									
6 6V6	Sharp Curofl Tetrode	7FO	6.3.	02	4.5	3	0.03	125	-1	80	1.5	10	100 K	8000		-	-									
	Triode	$9 F A$	63	0.45	28	15	1.8	330	-1	-		14	5k	8000	40	-										
6FVE	Pentorle				5	2	0.02	330	-1	125	4	12	200 K	6500												
6FYS	Triodo	7FN	8.3	02	475	33	050	135	-1	-	-	11	-	13 K	9	-	-									
$6 \mathrm{GJ8}$	Irode	9AE	63	On	34	16	2 t	12^{4}	- 1	-	-	134	4 k	8500	30	-	-									
	Pentode				${ }_{8}$	24	:03k	125	-1	125	15	12	150k	1780	-	-	-									
6GK6	Powir Pentor	9 GK	6.3	076	-10	10	014	24	73	24	55	$4{ }^{4}$	38%	113	-	42 K	57									
6 GM6	Peninde	7CM	6.3	04	10	2.4	0038	12.5	-	129	34	14	200 K	1.3 K	-	-	-									
						1.8	13	63	0	-	-	09	5 K	2600	14	-	-									
6 GME	Twin Triode	9DE	63	0.33	3	1.8	13	126	0	-	-	25	34 K	4800	-	-	-									
6GN8	High. μ Triode	90 x	63	075	24	036	44	250	-2	-	-	2	37K	2700	100	-	-									
	Shatp Cut-off Pent				11	42	01	200	-	150	55	25	60K	113 K	-	-	-									
6G58	Twin Pentode	9tw	6.3	030	6.0	3.2	-	100	-10	67.5	36	2.0	-	-	-	-	-									
6 Gra	ITriple Triode	9 MB	63	045	-	-	-	125	-1	-	-	45	14 K	4500	63	-	-									
674	Grounded.Grid Triode	780	6.3	0.4	7.5	3.9	0.12	150	100°	-	-	15	45 k	12K	55	-	-									
6J6A:	Medium- μ A \quad Al Amp ${ }^{10}$	7BF	6.3	0.45	2.2	0.4	1.6	$\frac{100}{150}$	50^{*}	-	-	8.5	7.1K	5300	38	-	-									
CJom.	Dual Triode Mixer							150	810^{*}	-	-	48	10.2 K	1900	Osc. peak voltage em 3 V											
6R8	Triple Diode-Triode	$9 E$	6.3	0.45	1.5	1.1	24	250	-9	\because	-	9.5	8.5 K	1900	16	10K	03									
654 A	Medium $-\underline{\mu}$ Triode	9AC	6.3	0.6	4.2	0.9	2.6	250	-8	-	-	26	3.6 K	4500	16	-	-									
614	U.h. Triode	70K	63	0225	2.6	025	17	80	150°	-	-	18	186 K	7000	13	-										

Type	Nome	Base	Fil，of Heater		Capacitances $\mu \mu \mathrm{f}$ ．				$\frac{75}{5} .$	$\begin{aligned} & \varepsilon \\ & \frac{y}{6} \frac{\pi}{5} \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ y_{n} \\ \hline \end{gathered}$	竔定			E		$\begin{aligned} & \text { M } \\ & \frac{3}{6} \\ & 3 \\ & 3 \\ & 3 \end{aligned}$
			v．	Amp．	c．	cor	c．										
673A：	Triple Diode－High－μ Triode	$9 E$	6.3	0.45	1.6	1	2.2	100	－1	－	－	0.8	54K	1300	70	－	－
								250	－3	－	－	1	S8K	1200	70	－	－
SUEA；	Medium－μ Triode	9AE	6.3	0.45	2.5	0.4	1.8	150	56^{*}	－	－	18	5K	8500	40	－	－
	Sharp Cut．oll Pent．				5	2.6	0.01	250	$68{ }^{\circ}$	110	3.5	10	400k	5200	－	－	－
6 V	Triple Diode－Triade	9AH	6.3	0.45	－	－	－	100	－1	－	－	0.8	54k	1300	70	－	－
								250	－3	－	－	1	S8K	1200	70	－	－
6X8A：	Medium $\mu \mu$ Triade	9AK	6.3	0.45	2.0	0.5	1.4	100	100°	－	－	8.5	6.9 K	－	40	－	－
	Shatp Cut－aff Pent．				4.3	0.7	0.09	250	200^{*}	150	1.6	7.7	750K	－	－	－	－
		9AG	12.6	0.3	4.9	0.9	5.6	250	－9	－	－	23	2．5k	8000	20	－	－
1244	Medium．μ Triade	9AG	6.3	0.6				250	－12．5	－	－	4.4	－	－	－	－	－
12AB5	Beam Pwr．Amp	PEU	12.6	0.2	8	8.5	0.7	250	－125	250	4．5／7	472	50k	4100	45^{5}	5K	4.5
	Beam Pwr．Amp							250	－15	250	5／13	792	60K1	3750	70^{5}	10K＊	10
12AB6	Pentode	7CC	12.6	0.15	5.5	5	0.004	250	－	100	4.2	11	1 meg ．	4400	－	－	－
12AC6	Remote Cul－aff Pent．	78K	12.6	0.15	4.3	5	0.005	12.6	0	12.6	0.2	0.55	500k	730	－	－	－
12AD6	Pentagrid Canv．	7 CH	12.6	0.15	8	，	0.3	12.6	0	12.6	1.5	0.45	1 meg ．	260	Grid Na． 1 Res． 33 K		
$12 \mathrm{AD7}$	Dual Migh．μ Triade ${ }^{10}$	9 A	12.6	0．225	1.6	0.9	1.8	250	－2	－	－	1.25	62．5K	1600	100	－	－
			6.3	0.45	$\frac{1.68}{18}$	$0.45{ }^{8}$	$1.8{ }^{\circ}$								15	－	－
12AE7	Dual Diade－Medium μ Triode	787	12.6	0.15	1.8 4.7	$\frac{1.1}{0.75}$	2	12.6 16	－	－	－	0.75	15K	1000	15	－	－
	Low－μ Dissimiliar Double Triade	9A	12.6	0.45	$\begin{array}{\|l} \hline 4.7 \\ \hline 4.2 \end{array}$	0.75	3.9 1.4	16	－	－	－	1.9	31．5K 985	4000	13 6.4	－	－
12AFS	R．i．Pent．	7BK	12.6	0.15	5.5	4.8	0.006	12.6	0	12.6	0.35	0.75	300K	1150	－	－	－
12A16	Dual Diode－Migh．μ Triode	785	12.6	0.15	2.2	0.8	2	12.6	0	－	－	0.75	45K	1200	55	－	－
12ALE	Medium．μ Triade	9GS	12.6	0.45	1.5	0.3	12	12.6	－0．9	－	－	0.25	27 K	550	15	－	－
	Telrode				8	1.1	0.7	12.6	－0．8	$12.6{ }^{\circ}$	50＊＊	25	1 K	8000	－	－	－
12 AOS	Beam Pwr．Amp．$\frac{A_{1} \text { Amp．}}{\text { AB1 }{ }^{\text {Amp．}} \text { ，}}$	782	12.6	0.225	8.3	8.2	0.35	250	-12.5	250	4．5／7	472	52K	4100	45^{5}	5k	4.5
								250	－15	250	5／13	792	60K1	37501	70^{3}	10K＊	10
12AT7	Migh．μ Dual Triode ${ }^{10}$	9A	12.6	0.15	22^{7}	0.57	1.57	100	270^{*}	－	－	3.7	15K	4000	60	－	－
			6.3	0.3	$2.2{ }^{\circ}$	0.41	1.58	250	200^{*}	－	－	10	10．9K	5500	60	－	－
12AU7A	Medium．μ Dual Triade ${ }^{10}$	94	12.6	0.15	1.8	0.57	1.57	100	0	－	－	11.8	6.25 K	3100	19.5	－	－
			6.3	0.3	1.64	0．35 ${ }^{\text {d }}$	1.58	250	－8．5	－	－	10.5	7.7 K	2200	17	－	－
12avt	Mediun．μ Dual Triode ${ }^{10}$	94	12.6	0.225	3.17	0.57	1.97	100	120°	－	－	9	6.1 K	6100	37	－	－
			6.3	0.45	31.10	$0.4{ }^{4}$	1.96	150	$56 *$	－	－	18	4.8 K	8500	41	－－	－
12AWG	Sharp Cut－afl Pent．	7 CM	12.6	0.15	6.5	1.5	0.025	250	200°	150	2	7	800k	5000	42	－	－
$12 A \times 7$		9 9	12.6	0.15	1.67	$0.46{ }^{7}$	1.77	250	－2	－	－	1.2	62．5K	1600	100	－	－
	Dual Triode Class B		6.3	0.3	1.60	$0.34{ }^{\circ}$	1.76	300	0	－	－	402	－	－	143	16K＊	7.5
	$\text { Medium } \cdot \mu \quad \text { A } 1 \text { Amp. }$		12.6	0.15	1.3	0.6	1.3	250	－4	－	－	3	－	1750	40	－	－
12AY7	Dual Triode＇0 ${ }^{\text {a }}$ low－lovel Amp．	94	6.3	0.3				150	2700^{*}	Plate resistor $=20 \mathrm{~K}$ ．Grid resistor $=0.1$ meg．V．G．$=12 \mathrm{5}$							
12A27A才	Migh－μ Dual Triode ${ }^{10}$	9 A	126	0.225	3.17	0.57	1.97	100	270°	－	－－－	3.7	15K	4000	60	－	－
			6.3	0.45	$3.1{ }^{10}$	0.44	1.94	250	200°	－	－	10	10．9K	5500	60	二	－
12B4A：	Low．μ Triode	9AG	12.6	0.3	5	1.5	4.8	150	－17．5	－	－	34	1．03K	6300	6.5	－	－－
			6.3	0.6				250	－10．5	－							
128H7A ${ }^{\text {＋}}$	Medium－μ Dual Triode ${ }^{10}$	94	$\begin{array}{r}12.6 \\ \hline 6.3\end{array}$	0．3	$3.3{ }^{3} 8$	0.57	$\frac{2.67}{} 2.6{ }^{\circ}$				－	11.5	5．3K	3100	16.5	－	－
12816	Sharp Cut－aff Pent．	78K	12.6	0.15	5.5	4.8	0.008	12.6	－0．65	12.6	0.0005	1.35	500k	1350	－	－	
128R7A ${ }_{\text {＋}}$	Oual Diode－Medium．μ Triode	9CF	12.6	0.225	2.8	1	1.9	100	270°	－	－	3.7	15K	4000	60	－	－
			6.3	0.45				250	200°	－	\cdots	10	10．9K	5500	60	－	－
128v7	Shorp Cut off Pent．	98F	12.6	0.3	11	3	0.055	250	68°	150	6	25	90K	12K	1100	－	－
128×6	Pentode	9 Aa	12.6	0.15	7.5	3.3	0.007	200	－2．5	200	2.6	10	550k	7100	－	－	－
12BY7A	Sharp Culoff Pent．	98F	12.6	0.3	11.1	3	0.055	250	$68 *$	150	6	25	90K	12 K	1200	－	－
			6.3	0.6					8					$12 \times$	1200	\cdots	－
12827	Migh－m Dual Triade ${ }^{10}$	9A	12.6	0.3	6.57	0.78	2.57	250	－2	－	－	2.5	31．8K	3200	100	－	－
12CN5	Pentode	7CV	12.6	0.45	－	－	0.25	12.6	0	12.6	0.35	4.5	40K	3800	－	－	－
12CT	Medium－μ Triode Sharp Cut．off Pent．	9DA	12.6	0.3	2.4	0.19	2.2	150	－6．5	－	－	9	8．2k	4400	40	二	－
					7.5	2.4	0.044	200	－8	125	3.4	15	150K	7000	－	－	－
12 Cx	Sharp Cut．off Pent．	78K	12.6	0.15	7.6	6.2	0.05	12.6	0	12.6	1.4	3	40K	3100	－	－	－
12DE8	Diode－Remote Cul．off Pent．	Fig． 11	12.6	0.2	5.5	5.7	0.008	12.6	-0.8	12.6	0.5	1.3	300 K	1500	－	－	－－
12017	Dual Diode－Tetrode	9 Hz	12.6	0.5	－	－	－	12.6	0	12.6	1	6	4K	5000	－	3.5 K	0.01
12018	Dual Diode－Teltrode	9HR	12.6	0.55	12	1.3	\cdots	12.6	－0．5	12.6°	75＊＊	40	480	15K	7.2	－	－
120MT	Twin Triode	9 A	12.6	0.13	1.6	0.39	1.7	100	－1．0	－	－	0.5	80K	1250	100	－	－
12007	Bram Pwr．Pent．	98F	$\begin{array}{r} 12.6 \\ \hline 6.3 \end{array}$	$\frac{0.3}{0.6}$	10	3.8	0.1	330	－	180	5.6	26	53K	10．5K	－	－	－－
	Dual Diode		12.6	0.4			Max．a．c．	voliag	＝16．Mo	d．e．out	tput co	I $=5 \mathrm{~m}$					
120s7a	Pwr．Tetrode	95	12.6	0.4	－	－	－	16	－	16	75	40	480	15K	7.2	800	04
12076	Pentade	7EN	12.6	0.15	－	－	－	150	－4．5	100	2.1	1.1	150k	－	－	－	－
12077	High．－μ Dual Triode	94	12.6 6.3	$\frac{0.15}{0.3}$	1.6	0.45 0.34	1.7 1.7	300	－2	－	－	1.2	62．5K	1600	100	－	－
	Dual Diode			0.275			ox．ove	age dio	－current	$=1.0 \mathrm{mo}$							
12007	Terrode	9Jx	12.6	0.275	11	3.6	0.6	16	－	16	1.5	12	6 K	6200	－	2．7K	． 025
	Dual Diode						ax．ave	age dio	e currant	$=1.0$ mo							
120 V 7	Triode	9Y	12.6	0.15	1.3	0.38	1.6	16	－	－	－	0.4	19K	750	14	－	－
120ve	Duol Diode－Tetrode	9HR	12.6	0.375	9.0	1.0	12	12.6	18°	－	－	6.82	－	－	7.6	1250	． 005
			12.6	0.15	1.6	0.44	1.7	250	－2	－	－	1.2	62．5K	1600	100	－	－
120w7	Double Triade	94	6.3	0.30	1.7	0.4	1.5	250	－8．5	－	－	10.5	7.7 K	2200	17	－	－
	Diode				$1 .{ }^{7}$	0.7	18	16	0	－	－	1.97	－	2700	9.5	－－	－
120w：	Dissimiliar Dual Triode	c	12.6	0.45	$4.4{ }^{4}$	07	3.2	16	0	－	－	7.9	－	6500	6.4	－	
	Sharp Cut－off Triode	910	126	0.35	2	2	15	16	0	－	－	1.2	10K	2000	20	－	
120r8	Tarrode	－J0	12.6	0.35	I！	3	074	16	－	12.6	2	14	5K	6000	－	－	
12026	Pwr．Amp．Pent．	78K	12.8	0.175	12.5	8.5	0.25	12.6	－	12.6	2.2	4.52	25K	3800	－	－	－
İEA6	R．F．Pent．	78K	12.6	0.175	11	4	0.04	12.6	－3．4	12.6	1.4	3.22	32K	3800	－	－	－
	Medium．μ Triade				26	（4）	1.7	16	－22	－	－	2.4	6 K	4700	25	－	－
12EC：	Pent．	$9 F A$	126	0225	4.6	2.8	． 02	16	－1．6	12.6	－	0.66	750K	2000	－	－	－

Trpe	Name	Base	Fil，or Heater		Capacitances $\mu \mu$ ．			$\begin{gathered} > \\ \frac{2}{6} \frac{2}{2} \\ \frac{2}{2} \end{gathered}$	号品		${ }^{E_{0}}$	量呈			$\begin{aligned} & i \\ & i \\ & i \\ & i \end{aligned}$		$\begin{aligned} & \text { \& } \\ & \frac{5}{0} \\ & \frac{\pi}{3} \\ & 30 \end{aligned}$
			V．	Amp．	$\mathrm{C}_{\text {m }}$	Con	C_{80}										
12EDS	Pwr．Amp．Fant．	7 CV	12.6	0.45	14	8.5	0.26	150	－4．5	150	11	367	14K	8500	－	－	Is
12EG6	Dual Control Maplode	7 CH	12.6	0.15	－	－	－	30	－－	126	2.4	0.4	150K	800	－	－	
12EK6	R．F．Pent．	7BK	12.6	0.2	10	5.5	0.032	12.6	－4．0	12.6	2	4.4	40K	4200	－	－	－
12E16	Dual Diode－High $-\mu$ Triode	7FB	12.6	0.15	2.2	1	18	12.6	0	－	－－	0.75	45K	1200	55	－	－
12EM6	Diode－Tetrode	9 HV	12.6	0.5	－．	－	－	12.6	0	12.6	1	6	4K	5000	－	—	
12F8	Dual Diode－Remote Cut－oll Pent．	9FH	12.6	0.15	4.5	3	0.06	12.6	0	12.6	0.38	1	333K	1000	－	－	－
12FK6	Dual Diode－low－μ Triode	787	12.6	0.15	1.8	0.7	1.6	16	0	－－	－	1.3	6.2 K	1200	7.4	－	
12FM6	Dual Diode Med．μ Triode	787	12.6	0.15	2.7	1.7	1.7	30	0	－	－	1.8	5.6 K	2400	13.5	－	－
12FQ8	Twin Double Plate Triode	9 KT	12.6	0.15	1.7	0.27	0.9	250	-1.5	－	－	1.5	76K	1250	95	－	－
12FR8	Pentode Triode－Diode	9 KU	12.6	0.32	8.5	5.5	0.15	12.6	－0．8	12.6	0.7	1.9	400K	2700		－	－
					2.6	20	17	126	－0．6	－	－	1.0	－	1200	10	－	－
12F76	Dual Diode－Triode	787	12.6	0.15	1.8	1.1	2.0	30	0	－	－	2	7.6 K	1900	15	－	\cdots
12FX8	Triode Heptode	9KV	12.6	0.27	2.2	0.25	1.3	12.6	－	－	－	0.29	－	1400	10	－	－
					－	－	－	126	1.6	－	－	1.3	500K	－	－	－	－
12GA6	Heprode	7 CH	12.6	0.15	5.0	13	005	12.6	0	12.6	0.80	0.30	1 meg ．	140	－	－	－
12 H 4	General Purpose Irrode	70W	12.6	0.15	2.4	0.9	3.4	90	0	－	－	10	－	3000	20	－	－
			6.3	0.3				250	－8	－	－	9	－＇	2600	20	－	－
12.8	Dual Diode－Tetrode	9GC	12.6	0.325	10.5	4.4	0.7	12.6	0	12.6	1.5	12^{3}	6 K	5500	－	2.7 K	0.02
12K5	Tetrode（Pwr．Amp．Driver）	7EK	12.6	0.45	－	－	－	12.6	－2	12．6＊＊	85＊＊	8	800	7000	5.6	800	0.035
12R5＊	Beam Pwr．Pent．	7 CV	12.6	0.6	13	9	0.55	110	－8．5	110	3.3	40	13K	7000	－	－	－
12 V	Dual Medium－μ Triode ${ }^{10}$	9 A	12.6	0.15	$1.6^{7} .1$	0.47	1．57．	12.6	0	－	－	1	12．5K	1600	20	－	－
18FW6	Remote Cut－ofl Pent．	7CC	18	0.1	5.5	5	0.0035	150	－	100	4.4	11	250k	4400	－	－	－
18FX6	Dual Control Heptode	7 CH	18	0.1	－	－	－	150	－	－	－	2.3	400k	－	－	－	－
18 FY 6	High．μ Triode－－Diode	787	18	0.1	2.4	0.22	1.8	150	－1	－	－	0.6	77K	1300	100	－	－
$25 F 5$	Beam Pwr．Pent．	7CV	25	0.15	12	6	0.57	110	－7．5	110	37	36．37	16 K	5800	－	2．5K	1.2
$32 \mathrm{ET5}$	Beam Pwr．Pent．	7CV	32	0.1	12	6	0.6	150	－7．5	130	－	－	21．5K	5500	－	2.8 K	1.2
3585	Beam Pwr．Amp．	782	35	0.15	11	6.5	0.4	110	-7.5	110	3／7	412	－	5800	40^{5}	2．5K	1.5
5085	Beam Pwr．Amp．	782	50	0.15	13	6.5	0.5	110	－7．5	110	4／8．5	50^{2}	14K	7500	493	2．5K	1.9
5686	Beam Pwr．Pent，	96	6.3	0.35	6.4	8.5	0.11	250	－ 12.5	250	33	273	45K	3100	－	9 K	2.7
5687	Medium－μ Dual Triode ${ }^{10}$	9H	12.6	0.45	4^{7}	0.67	4^{7}	120	－2	－	－	36	1.7 K	11k	18.5	－	－
			6.3	0.9	$4{ }^{4}$	0．5＊	41	250	-12.5	－	－	12.5	3 K	5500	16.5	－	－
5722	Norse Generaling Diode	SCB	6.3	1.5	－	2.2	－－－	200	－	－	－	35	－	－	－	－	－
$\begin{aligned} & 5842 / \\ & 417 \mathrm{~A} \end{aligned}$	High－μ Triode	9 V	6.3	0.3	9.0	1.8	0.55	150	$62 *$	－	－	26	1．8K	24K	43	－	－．
5879	Sharp Cut－ofl Pent．	940	6.3	0.15	2.7	2.4	0.15	250	－3	100	0.4	1.8	2 meg．	1000	－	－	－
6386	Medium－μ Dual Triode ${ }^{10}$	CJ	6.3	C．35	2	1.1	1.2	100	200^{*}	－	－	9.6	4．25K	4000	17	\cdots	－
6887	Dual Diode	687	6.3	0.2	Max．peak inverse plate voltage $=360 \mathrm{~V}$ ．							Max．d．e．plate current eoch diode $=10 \mathrm{ma}$ ．					
6973	Pwr．Pentode	9EU	6.3	0.45	6	6	0.4	440	－15	330	－	－	73K	4800	－	－	－
$\overline{7189}$	Pwr．Pentode	9 CV	6.3	0.76	10.8	6.5	0.5	250	－7．3	250	5.5	48	40K	11．3K	－	－	－
7258	Shorp Cul．oll	90 A	12.6	0.195	7	24	0.4	330	－	125	3.8	12	170K	7800	－	－－	－
	Med．μ Triode				2	0.26	1.5	330	－3	－	－	15	4．7K	4500	21	－	－
9001	Sharp Cut－oll Pent．	780	6.3	0.15	3.6	3	0.01	250	－3	100	0.7	2	1 meg ．	1400	－	－	－
9002	U．h．f．Triode	785	6.3	0.15	1.2	1.1	1.4	250	－7	－	－	6.3	11．4K	2200	25	－	－
9003	Remote Cur－off Pent．	780	6.3	0.15	3.4	3	0.1	250	－3	100	2.7	6.7	700K	1800	－	－	－－
9006	U．h．I．Diode	68 H	6.3	0.15						ax．o．c．	volioge	270．Mox	x．d．c．ou	put curre	5 mo		

\＃Controlled heater warm－up charocreristic．
I：Oscillator gritleak or screen－dropping resistor ahms．
－Cothode resistor ohms
＊Spoce－charge grid．

Per Plate．
2 Maximum－signal current for full－power outpul．
3 Values ore for iwo tubes in push－pull．
－Unless otherwise noied．

No signal plate mo．
－Ellective plate．to－plate
Triode No． 1.
－Oscillator grid current mo．
10 Volues for each section．
＂Misromhos．
12 Through 33K．

TABLE II－METAL RECEIVING TUBES
Characteritics given in this table apply to all tubes having type numbers shown，including metal pubes，slast tubes with＂G＂suffix，and bantam fubes with＂GT＂tuffix
For＂G＂and＂GT＂tubes not listed（not heving metel ceunterpants），see Jebles III，V，VI and VIII．

Type	Name	Bas＊	Fil．of Meator		Capacitonces uif．				品范			关家			$\frac{e^{\circ}}{\frac{2}{6}}$		$\begin{aligned} & \text { 言 } \\ & 0 . \frac{2}{3} \\ & 300 \end{aligned}$									
			V．	Amp．	cm	$C_{\text {an }}$	C_{p}																			
6 A8	Pentagrid Cony．	A	6.3	0.3	－	－	－																			
			6.3																							
$\begin{aligned} & \hline 6 A C 7 \\ & 1852 \\ & \hline \end{aligned}$	Sharp Cut－off Pent．	${ }^{\mathbf{8}} \mathrm{N}$	6.3	0.45	11	5	0.15	300	160^{*}	150	2.5	10	1 meg．	9000	－	－	－									
								300	160＊＊	60k：	2.5	10	1 meg．	9000	－	－	－									
6AG7	Pwr．Amp．Pent．	8 Y	6.3	0.65	13	7.5	0.06	300	－3	150	7／9	30／31	130k	11k	－	10K	3									
688	Dual．Diode－Pent．	8 8	6.3	0.3	6	9	0.005	250	－3	125	2.3	10	600k	1325	－	－	－									
$6 \mathrm{C5}$	Medium．μ Triode Af Amp． Btosed Detector	60	6.3	0.3	3	11	2	250	-8-17	Plate current adjusted to 0.2 mo ．with no signol．																
								250																		
6 65	High．μ Triode	5M	6.3	0.3	5.5	4	2.4	250	－2	－	－	0.9	66 K	1500	100	－	－									
$6 F 6$		75	6.3	0.7	6.5	13	0.2	250	－20	20^{10}	－	31／34	2.6 K	2600	6.8	$4 k$	0.85									
								350	730＊	132＇1	－	50／60	－	－	－	10k7	9									
								350	-38	12311	－	48／92	－	－	－	$6{ }^{6} 7$	13									
								250	－16．5	250	6／11	34／36	80K	2500	－	7 K	3.2									
								285	-20	285	7／13	38／40	78 K	2500	－	7 K	4.8									
								375	－26	250	5／20	34／82	－	－－	$82^{\prime \prime}$	$10 \mathrm{~K}{ }^{7}$	18.5									
								375	340^{*}	250	8／18	54／77	－	－	$94 \div 1$	10k7	19									
6H6	Dual Diode	79	6.3	0.3	－	－	－		Mox．	c．volro	per p	$=150$	s．Max．	utput cu	ent 8.0	．d．c										
$6 \sqrt{5}$	Medium．μ Triode	60	6.3	0.3	3.4	3.6	3.4	250	－8	－	－	，	7．7k	2600	20	－	－									
6.7	Sharp Cut．A1 Amp．	72	63	03	7	12	0.005	250	－3	100	0.5	2	1 mag ．	1225	－	－	－									
637	off Pent．Biosed Detectior	78	63	0.3	7	12	0.005	250	10k＊	100		signal	ode cur	nt $=0.4$	mo．	0.5 meg										
$6 \mathrm{K7}$	Voriable．$\mu \quad$ R．I．Amp．	$7 R$	6.3	0.3	7	12	0.005	250	－3	125	2.6	10.5	600 K	1650	990	－	－									
6×7	Pent． Mixar	78	6.3	0.3	γ	12	0.005	250	-10	100					peok	＝7										

Characteristics given in this table apply to all tubes having type numbers shown，including matal tubes，glass tubes with＂G＂suffix，and bantam tubes with＂GT＂suffix． For＂G＂and＂G T＂tubes not listed（not having metal counterparts），see Tables IL，V，VI and VIII．

Type	Nome	Base	fil．or Heater		Capacirances $\mu \mu$ ．			$\begin{array}{r} > \\ \frac{2}{2} \\ \frac{2}{2} \frac{2}{2} \\ 3 \\ 3 \end{array}$			穿	者定				$\begin{array}{r} \stackrel{\bullet}{E} \\ \frac{8}{6} \\ \stackrel{y}{8} \dot{8} \end{array}$	$\begin{aligned} & 5 \\ & \frac{5}{3} \frac{2}{3} \\ & 30 \end{aligned}$
			V．	Amp．	$C_{\text {in }}$	$C_{0 v 1}$	C_{80}										
6K8	Triode－ Hexode Conv． Hexode	8K	63	0.3	－	－	－	250	－3	100	6	2.5	600K	350	－	－－	－
								100	50 K	－	－	3.8	$\mathrm{lg}_{\mathrm{g}} 10 \mathrm{se} .1=0.15 \mathrm{mo}$ ．				
616－G82	A，Amp．${ }^{1}{ }^{3}$	TAC	63	09	11.5	95	0.9	250	-20	2010	－	40／44	1．7K	4700	8	5K	1.4
								250	167＊	250	5．4／7．2	75／78	－	－	1410	2.5 K	6.5
								300	218＊	200	3／4．6	51／55	－	－	12.710	4．5K	6.5
								250	－14	250	5／7．3	72／79	22．5K	6000	1410	2.5 K	6.5
								350	－18	250	2．5／7	$54 / 66$	33K	5200	1810	4.2 K	10.8
								250	125＊	250	10／15	120／130	－	－－	35.611	$5 K^{7}$	13.8
								270	125°	270	11／17	134／145	－	－－	$28 .{ }^{11}$	$5 K^{7}$	18.5
								250	－16	250	10／16	120／140	24．53．	$5500{ }^{5}$	32^{11}	$5 K^{7}$	14.5
								270	－17．5	270	11／17	134／155	23.55	$5700{ }^{3}$	$35{ }^{11}$	$5 K^{7}$	17.5
								360	$270{ }^{*}$	270	5／17	88／100	－	－	40.611	$9 \mathrm{K7}$	24.5
								360	－22．5	270	5／11	88／140	－	－	45^{11}	$3.8 K^{7}$	18
								360	－22．5	270	5／15	88／132	－	－	45^{11}	$6.6 K^{7}$	26.5
								360	－18	225	3．5／11	78／142	－	－	52^{11}	6 K 7	31
								360	－22．5	270	5／16	88／205	－	－	72 \％	$3.8 \mathrm{~K}^{7}$	47
617	Pentogrid－Mixer Amp． \quad Al Amp．	$7 T$	6.3	0.3	－	－	－	250	－3	100	6.5	5.3	600 K	1100	-3^{14}	－	－
								250	－6	150	9.2	3.3	1 mec ．	350	－1514	－	－
6N7GT	Closs－B BAmp．＇	6B	6.3	0.8	－	－		300	0	－	－	35／70	－	－	82^{11}	$8 K^{7}$	10
								250	－5	－	\sim	6	11.3 K	3100	－	－	－
607	Duol Diode－High μ Triode	7V2	6.3	0.3	5	3.8	1.4	250	－3	－	－	1	58 K.	1200	70	－	－
687	Dual Diode－Triode	7 V 2	6.3	0.3	4.8	3.8	2.4	250	－9	－	－	9.5	$8.5 K$	1900	16	10K	0.28
65A7GTP	Pentogrid Conv．	$88{ }^{\text {8 }}$	6.3	0.3	9.5	12	0.13	250	03	100	8	3.4	800K	Grid No． 1 resistor 20K．			
65B7Y	Pentogrid Conv．	tik	6.3	0.3	9.6	9.2	0.13	100	－1	100	10.2	3.6	\＄0K	900	－	－	－
								250	－1	100	10	3.8	1 meg ．	950	－	－	－
								250	22 K	12Ks	12／13	6．8／6．5	Osc．Section in $88-108$ Mc．Service．				
$65 \mathrm{C7}$	Migh．μ Qual Triodes	85	6.3	0.3	2	3	2	250	－2	－	－	2	53 K	1325	70	－	－
$65 F 5$	High．μ Triode	6A ${ }^{2}$	6.3	0.3	4	3.6	2.4	250	－2	－	－	0.9	66 K	1500	100	－	－
6577	Diode－Vorioble－μ Pent．	7AZ	6.3	0.3	5.5	6	0.004	250	－1	100	3.3	12.4	700K．	2050	－	－	－
6567	H．f．Amp．Pent．	8 BK	6.3	0.3	8.5	7	0.003	250	－2．5	150	3.4	9.2	1 meg ．	4000	－	－	－
$65 \mathrm{H7}$	H．f．Amo．Pent．	8BK	6.3	0.3	8.5	7	0.003	250	－1	150	4.1	10.8	900 K	4900	－	－	－
65174．	Sharp Cut－off Pent．	8 N	6.3	0.3	6	7	0.005	250	－3	100	0.8	3	1 meg ．	1650	－	－	－
65 K 7	Variable－μ Pent．	8 N	6.3	0.3	6	7	0.003	250	－3	100	2.6	9.2	800K	2000	－	－	－－
$65076 T$	Dual Diode－High－μ Triode	80	6.3	0.3	3.2	3	1.6	250	－2	－	－	0.9	91 K	1100	100	－	－
$65 R 7$ D	Dual Diode－Triode	80	63	0.3	3.6	28	2.4	250	－9	－	－	9.5	8．5K	1900	16	一	－
6V6GTA	Beam Pwr．Amp．$\frac{\text { A，Amp．＇}}{}$	7AC	6.3	0.45	10	11	0.3	180	－8．5	180	$3 / 4$	29／30	50K	3700	8.510	5.5 K	2
								250	－12．5	250	4．5／7	45／47	50 K	4100	12.510	5K	4.5
								315	－13	225	2．2／6	34／35	80 K	3750	1310	8.5 K	5.5
								250	－15	250	5／13	70／79	60 K ．	3750	30^{11}	$10 K^{7}$	10
								285	－19	285	4／13．5	70／92	70K－	3600	3811	$8 \mathrm{~K}^{7}$	14
1620	Sharo Cut－off Pent．	7R	6.3	0.3	7	12	0.005	250	－3	100	0.5	2	1 meg ．	1225	－	－	－
5693	Sharp Cut－olf Pent．	8 N	6.3	0.3	5.3	6.2	0.005	250	－3	100	0.85	3	İmeg．	1650	－	－	－
＊Cathode resistor－ohms． －Screen lied to plate． 2 No connection 10 Pin No 1 for 6l6G．6Q7G，6R7GT，G． 6SJG．6SA7GT＇G and 6SF5－GT． 3 Grid bios $=2$ volts if separate oscillator excitation is used．					－Also rype 6SI7Y． s Values are for single tube or section． －Values are for two rubes in push．pull． 7 Plate－ro－plate volue．						－Osc．grid leok－Sern．ies． －Values for two units． 10 Peak a．f．grid voltage． ＂Peok o．f．G．G voltage．			${ }^{12}$ Mieromhos． ${ }^{13}$ Unless otherwise noted ${ }^{14}$ Gi volloge． ${ }^{15}$ Units connected in parallel．			

TABLE III－6．3－VOLT GLASS TUBES WITH OCTAL BASES
（Fop＂G＂and＂GT＂－type lubes not listed here，see equivalent type in Tables II and VIIf；charactaristics end cennectians will be similiar）

Type	Nome	Base	Fil．op Heater		Capacilances $\mu \mu$ ．			$\begin{gathered} > \\ \frac{2}{2} \\ \frac{2}{6} \\ \frac{2}{2} \end{gathered}$	荢高	$\begin{aligned} & 8 \\ & \frac{8}{5} \frac{9}{0} \\ & \hline \end{aligned}$	昜	音定安			家它	$$	
			V．	Amp．	$\mathrm{C}_{\text {m }}$	Cout	C_{8}										
6AL7GT	Electron－Ray Indicator	8CH	6.3	0.15	－	－	－	Outer edge of any of the three illuminated areas displaced $1 / 4 \mathrm{in}$ ．min．Outward with +5 vols to its electrode．Similar inward disp．with -5 volts．No pottern with -6 volts grid．									
6A07GT	Dual Diode－Miah．μ Triode	BCK	6.3	0.3	2.8	3.2	3	250	－2	－	－	2.3	44K	1600	70	－	－
6AR6	Beom Pent．	680	6.3	1.2	11	7	0.55	250	－22．5	250	5	77	21 K	5400	－	－	－
6AR7GT	Dual Diode－Remore Pent．	708	6.3	0.3	5.5	7.5	0.003	250	－2	100	1.8	7	1.2 meg.	2500	－	－	－
6AS7GA	Low－μ Twin Triode－DC Amp．${ }^{1}$	880	6.3	2.5	6.5	22	7.5	135	$250{ }^{*}$	－	－	125	0.28 K	7000	2	－	\cdots
6AU5GT	Beom Pwr．Amp．S	6CK	6.3	1.25	11.3	7	0.5	115	－20	175	6.8	60	6 K	5600	－	－	－
6AV5GA	Beom Pwr．Amp．${ }^{\text {c }}$	6CK	6.3	1.2	14	7	0.5	250	－22．5	150	2.1	55	20K	5500	－	－	－
6805GT	Beam Pwr．Amp．？	6CK	6.3	0.9	－	－	－	310	-2007	310	－	90	－	－	－	－	－
6BG6GA	8eom Pwr Amp．${ }^{\text {b }}$	581	6.3	0.9	11	6	0.8	250	－15	250	4	75	25 K	6000	－	－	－－
6B17GTA	Medium－μ Dual Triode ${ }^{1}$	88 D	6.3	1.5	4.4	0.9	6	250	－9	－	－	40	2.15 K	7000	15	－	－
$\begin{aligned} & 6806 G T 8 \\ & 6 \mathrm{CU6} \end{aligned}$	Beom Pwr．Amp．${ }^{\text {E }}$	6AM	6.3	1.2	15	7	0.6	250	－22．5	150	2.1	57	14．5K	5900	－	－	－
68×767	Dual Triodal	8BD	6.3	1.5	5	3.4	4.2	250	390^{*}	－	－	42	1.3 K	7600	10	－	－
6CB5A	Beom pwr．Amp．${ }^{\text {d }}$	860	6.3	2.5	22	10	0.4	175	－30	175	6	90	5 K	8800	－	－	－
6CD6GA	Beam Pwr．Amp．＇	587	6.3	2.5	24	9.5	0.8	175	－30	175	5.5	75	7．2K	7700	－	－	－
6 CK 4	Low－at Triode	88	6.3	1.25	8	18	6.5	550	－26	－	－	55	1．0K	6500	6.7	－	－
$6 \mathrm{CL5}$	Beam Pwr．Amp．	8 80	6.3	2.5	20	11.5	0.7	175	－40	175	7	90	6K ${ }^{\text {r }}$	6500	－	－	－
$6 \mathrm{CU6}$	Beam Pwr．Amp．${ }^{\text {a }}$	6AM	6.3	1.2	15	7	0.55	250	－22．5	150	2.1	55	20 K	5500	－	－	－
60G6GT	Beam Pwr．Amp．	75	6.3	1.2	－	－	－	200	180＊	125	8.5	477	28K	8000	－	4 K	3.8
6DN6	Beam Pwr．Pent，${ }^{\text {E }}$	581	6.3	2.5	22	11.5	0.8	125	－18	125	6.3	70	4 K	9000	－	－	－
	Dissimilar				2.2	0.7	4	350	－8	－	－	8	9 K	2500	22	－	－
$60 N 7$	Dual Triode	880	6.3	0.9	4.6	1	5.5	550	－9．5	－	－	68	2 K	7700	15	－	－

TABLE III－6．3－VOLT GLASS TUBES WITH OCTAL BASES—Continued
（For＂G＂and＂GT＂－type tubes not listed here，see equivalent type in Tables II and VIII；characteristics and connections will be similar）

Type	Name	Basa	Fil，of Hecter		Capacitences $\mu \mu$ f．			$\begin{array}{r} > \\ 2 \\ \frac{2}{2} \\ \frac{0}{2} \frac{a}{2} \end{array}$	姣品	$\begin{aligned} & 5 \\ & \text { 娄 } \\ & \text { un } \end{aligned}$	$\frac{5}{5}$	$\frac{0}{\alpha} \frac{0}{2}$			$\begin{aligned} & \text { CO } \\ & \text { E } \\ & \text { Q } \end{aligned}$		$\begin{aligned} & \text { 咅高 } \\ & \frac{0}{5} \\ & 3 \end{aligned}$
			V．	Amp．	$\mathrm{C}_{\text {in }}$	Cowt	$\mathrm{C}_{\text {g }}$										
6005	Beam Pwi Amp．	8 JC	6.3	2.5	23	11	0.5	175	－25	125	5	110	5．5K	10.5 K	－	－	
6DO68	Beam Pwr．Amp．＇	6AM	6.3	1.2	15	7	0.55	250	－22．5	150	2.4	75	20K	6600	－	－	－
6 E5	Electron Ray－Triode	6R	63	0.3	－	－	－	250	－	－	－	－	－	－	－	－	－
6EAT	Dissmulior Dual Triode	88D	6.3	1.05	22	06	4	350	－3	－－	－	1.5	34K	1900	65	－	
					6	13	8	550	－25	－	－－	95	770	6500	5		
GEF6	Beam Pwr．Amp．${ }^{11}$	75	6.3	0.9	11.5	9	08	250	－18	250	2	50	－	5000	－		
GEY6	Beam Pwr．Pent．	7AC	63	0.68	8.5	7	0.7	350	-175	300	3	44	60K	4400	－		
6E25	Beam Pwr．Pent．	7AC	6.3	0.8	9	7	0.6	350	-20	300	3.5	43	50K	41 CO	－	－	
6FH6	Beam Pwr．Pent．	SAM	63	1.2	33	8	0.4	770	－22．5	220	1.7	75	12K	6003	－	－	
6K6G7	Pwr．Amp．Peni．	75	63	0.4	5.5	6	05	315	－21	250	49	25／28	110K	2100	－	9 K	4.5
658GT	Triple－Diode－Triode	8 CB	6.3	0.3	1.2	5	2	250	－2	－		－	91K	1100	100	－	－
650767	Semi．Remate Pent．	8 N	63	0.3	9	7.5	0.0035	250	－2	125	3	9.5	700K	4250	－	－	
651701	High．μ Dual Triodel	88D	63	0.3	3.4	3.8	28	250	－2	－	－	2.3	44K	1600	70	－	－
6SN7GTB	Medium $\cdot \mu$ Dual Tfiode ${ }^{1}$	88D	6.3	0.6	3	1.2	4	250	－8	－	－	9	7．7K	2600	20	－	－
6W6GT	Beam Pwr．Amp．	75	6.3	1.2	15	9	05	200	180＊	125	2／8．5	46／47	28K	8000	－	4 K	3.8
6Y6GA	Beam Pwr．Amp．	75	6.3	1.25	15	1	0.7	200	－14	135	2．2／9	61／66	18．3K	7100	－	2.6 K	6
1635	High．μ Dual Triode	8 B	6.3	0.6	－	－	－	300	0	－	－	6．6／54	－	－	－	12K5	10.4
7027	Beam Pwr．Amp．	8 HY	6.3	0.9	10	7.5	1.5	450	－30	350	19.2	194	－	8000	－	6K ${ }^{3}$	50
＊Cathode resistor－ohms． 1 Porsection． ${ }^{2}$ Screen tied to plole．		3 Values are lor singla rube． 4 Values are for two rubes in push．pull． s Plate－to－plate value．						－No signal current． 7 Max．value． －Horz．Deflection A．mp．				－Cathode current． 10 Mieromhos． II Veri．Deflection Amp．					

TABLE IV－6．3－VOLT LOCK－IN－BASE TUBES
For other lock－in－base types see Tables V ，V ，and $V I I$

TABLE V－1．S．VOLT FILAMENT BATTERY TUBES

Type	Name	Buse	Fil．or Heater		Copocitances $\mu \mu$ ．			$\begin{aligned} & > \\ & \frac{2}{2} \\ & \frac{2}{6} \frac{0}{a} \\ & \frac{1}{2} \\ & 3 \end{aligned}$	흔。	$\stackrel{c}{6}$		$\frac{0}{2} \frac{0}{2}$					
			V．	Amp．	Cm	Cevi	C_{90}										
TA7GT	Pentagria Conv．	72	1.4	0.05	7	10	0.5	90	0	45	0.7	0.6	600 K	Ebt	ode－g	$=90$	olts．
1H5GT	Diode High－μ Triode	52	1.4	0.05	1.1	4.6	1	90	0	\square	－	0.15	240K	275	85	－	－
TLN5	Sharp Cut－off Pent．	740	1.4	0.05	3	8	0.007	90	0	90	0.35	1.6	1.1 meg．	800	－	一	－
INSGT	RI．Pentode	$5 Y$	1.4	0.05	3	10	0.007	90	0	90	0.3	1.2	1.5 meg ．	750	－	－－	－
3E6	Sharp Cut．olf Pent．	7CJ	2.81	0.05	55	8	0.007	90	0	90	1.2	2.9	325K	1700	－	－	－

TABLE VI－HIGH－VOLTAGE HEATER TUBES
See also Table VIII．

Typ＊	Nome	Base	Fil．or Heater		Copacitances $\mu \mu$ ．			$\begin{gathered} > \\ \frac{2}{2} \\ \frac{2}{2} \frac{2}{2} \\ 2 \end{gathered}$	릉。	$\begin{aligned} & c \\ & \text { © } \\ & \text { in } \\ & \text { in } \end{aligned}$	密	竜这	$\begin{array}{r} \stackrel{\ddot{E}}{E} \\ \frac{5}{0} \\ \frac{\partial}{2} \dot{\alpha} \\ \hline \end{array}$	$\begin{aligned} & ⿺_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { E } \end{aligned}$	$\begin{array}{r} \stackrel{\rightharpoonup}{E} \\ \stackrel{5}{\circ} \\ 0.0 \\ \hline 0.0 \end{array}$	$\begin{aligned} & \text { 言 } \\ & \frac{6}{3} \\ & 30 \end{aligned}$
			V．	Amp．	$\mathrm{C}_{\text {in }}$	Cow	C_{g}										
12A6	Beam Pwr．Amp．	75	12.6	0.15	8	9	0.3	250	－125	250	3．5／55	3032	70K	3000	－	7．5K	34
12EN6：	Beam Pwr．Amp．	75	12.6	06	14	8	0.65	200	－9．5	110	2.2	50	28 K	8000	－	－	－
						10	06	110	－7．5	110	4／10	49／50	13K	8000	－	2 K	2.1
1218674	Beam Pwr．Pent．	75	12.6	06	15	10	0.6	200	180＊	125	2．2／8．5	46／47	28K	8000	－	4K	3.8
21EX6	Beam Pwr．Pent．	587	21.5	0.6	22	8.5	1.1	－	－30	195	． 3	67	8．5K	7700	－	－	－
50C66A	Beam Pwr．Amp．	75	50	0.15		－	－	200	－14	135	2．2／9	61／66	18．3K	7100	－	2.6 K	6
117N76T	Rect：－Beam Pwr．Amp．	BAV	117	0.09	－	－	－	100	－6	100	5	51	16K	7000	－	3K	1.2
5824	Beam Pwr．Pent．	75	25	03	－	－	－	135	－22	135	2．5／14．5	61／69	15K	5000	\cdots	1．7K	4.3
6082	Low μ Dual Triode＇	880	26.5	0.6	6	2.2	8	135	$250 *$	－	－	125	0．28K	7000	2	－	－

－Cathode resistor－ohms．
＇Each section．
${ }^{2}$ Micromhos．
＊Controlled heater warm－up characteristic．

V22
table vil-special receiving tubes

TABLE VIII-EQUIVALENT TUBES
The equivalent fubes listed in this table are, in general, designed far industrial, militory and ather special-purpase opplications. These tubes are generolly nas directly inferchangeable becouse of mechanical and/ar electrical differences invalving basing, heater chasacteristics, maximum rafings, inferelectrade capocitances, etc.

Type	Equivalent and Table	Base	E, 1	$1,{ }^{2}$	Type	Equivalent and Table	Base	$\mathbf{E}_{4}{ }^{1}$	11^{2}
IK3	113 - x	3 C	1.25	02	128N6	$6 \mathrm{BN} 6 \ldots$	70 E	126	01.5
14.44	IHSGI	5AG	1.4	0.05	12B06GA	6BQ6GIB	GAM	126	06
3EA5	2 A AS	7EW	29	0.45	12B06GT*	6BQ6G78 131	GAM	126	0.6
3LF4	3Q5GT .ll	688	2.8	0.05	128Q6GTB	6HQ6GTB - III	GAM	126	0.6
3V4 ${ }^{3}$	$3 \mathrm{Q4} 1$	6 BX	28	0.05	12876	${ }_{6} 816$	7 BT	126	015
40K6	3DK6	7 CM	4.2	0.45	12BU6	68U6 I	7BT	126	015
5EA8	6EAB I	9AE	47	0.6	12BW4	6BW4	9 DJ	126	045
5FV8	6FV8 I	$9 F A$	47	0.6	128Y7	12BY7A: ${ }^{3}$	$9 \overline{B F}$	126	03
6 A6	6N7 II	7 B	6.3	08	12B26:	$6 \mathrm{ZZ6} \ldots \ldots$	$7 \bar{C} M$	126	015
647	6AB II	7 C	6.3	0.3	12C5	$50 \overline{85} \cdots 1$	7 CV	126	06
6AES	6 KB	BDU	6.3	0.3	12CB	$6 \mathrm{B8}$-11	8 E	128	0.15
6AU7:	12AU7A -	9 A	3.15	0.6	12CA5 ${ }_{\text {+ }}$	$6 \mathrm{CA} \bar{\square}$	7 CV	126	06
$6 \times \overline{\times 7}{ }^{+3}$	$12 \mathrm{AK7}$ -	9 A	6.3	0.3	12 CM 6	6CM6 1	9 CK	126	0225
6C6	617 -11	6 F	6.3	0.3	12CR6	6CR8	7EA	176	015
$6 \overline{C S 8}$	6CR8 -	9 FZ	6.3	0.45	$12 \mathrm{CS5}$	6CS5 -	$9 \overline{\mathrm{CK}}$	128	06
6CUs	SAN8 - -	9GM	6.3	0.45	$12 C 56$	$6 \mathrm{CS} 6-1$	7 CH	126	015
6EWS	4EW6 -1	7 CM	6.3	0.4	12CU5*	$6 \mathrm{Cu5}$-1	7 CV	126	06
6SU7GTY	6SITGT III	380	6.3	03	12CU6	6CU6 _ 111	6AM	-126	06
6YOGT	6Y6CA	75	6.3	1.25	12DB5*	6DBS -	9 GR	126	06
744	6 S S	5AS	6.3	03	12DF7 ${ }^{3}$	12A×7 1	94	126	015
746	$6 \mathrm{H6}$. 11	7 AJ	6.3	0.15	12DQ6A*	60Q6B - 11	6 AM	126	0.6
747	$65 \mathrm{K7}$-11	BV	6.3	03	$12 \mathrm{DT5}$	6 D 15	9 HN	126	06
$7 \mathrm{B4}$	6SFS -	$5 A C$	6.3	0.3	12078	6018	9DE	126	015
785	6K6GT	6AE	6.3	0.4	120W5*	6DWS	9CK	126	0.6
786	$6507-11$	8w	6.3	03	12EF6*	6 EF6 III	75	126	0.45
788	648	8 B	6.3	0.3	1264	615	6 BG	126	015
$\overline{7 C 5}$	$616 \ldots$	6AA	6.3	0.45	12M6	6116	70	126	015
7EY6:	6Ev6 - III	7AC	7.2	0.6	12J5GT	$\overline{6.5} \ldots$	60	126	0.15
787	6S17GT _ll	BAC	6.3	0.3	$12 \mathrm{J7GT}$	6.17	7 T	126	015
7H7	6SG7 -	8 B	6.3	03	$12 \mathrm{K7GT}$	$6 \mathrm{K7}$ - 11	7R	126	015
7N7	6 SN7G ${ }^{+}$	BAC	63	0.6	12 K 8	6 K 8 - 11	BK	126	015
707	$65 \overline{A 7}$	8AL	6.3	03	125*6T	658GT - III	8 CB	126	015
10EB8	6E88	9 DX	10.5	0.49	12547	6547	8 R	126	015
12A8GT	$6 \overline{A B}$	8 A	126	0.13	$125 C 7$	6 SC 7	ES	126	015
12AL5	6AL5 -	6 BT	126	0.15	125F5	6SF5 _ ${ }^{16}$	6 AB	126	015
12 AT6	6ATS -	781	12.6	015	125F7	6SF7 - 11	$7 A \bar{Z}$	126	0.15
12 AU6	6АŬ6A	78 CK	12.6	0.15	12567	6567 If	8BK	126	015
12AVSGA	6 AVSCI	6 CK	12.6	06	125H7	$6 \mathrm{SH7}$	8BK	126	015
12AV6	6AV6 - 1	$7 B 7$	126	0.15	$125 \mathrm{J7}$	$6537 \ldots 11$	8 N	12.6	0.15
12B4	$1284 A^{3}-1$	$9 A G$	12.6	0.3	125K7	$65 \mathrm{K7}$-11	BN	126	015
$12 \mathrm{BA6}$	$6 B A B-1$	7BK	126	0.15	12SL7GT	6517 GT 181	880	126	015
12BA7	$68 \overline{A 7}$ I	8CT	126	0.15	12SN7GT	65N7GTB IIt	880	126	0.3
12856	$6 \mathrm{BD6}$-1	7 BK	12.6	0.15	12SN7GTA	65N7G1B	BBD	126	03
12BE6	6BE6 1	7 CH	12.6	0.15	12507	650711	80	126	0.15
12856	6 BF 6 C	7 BT	12.6	0.15	12SR7	6 SR7	80	126	0.15
12BK5:	6BKS	98 C	12.6	0.6	12W6GT*	6W6GT III	75	12.6	06
$128 \mathrm{K6}$	6 KK 6	787	12.6	015	1447	6SK7 II	8 V	12.6	015

Typ*	Equivolent and Table		Bose	E. ${ }^{1}$	1,2	Type	Equivalent	Table	Base	E, ${ }^{1}$	11^{2}
14 AF7	$7 \mathrm{FA7}$	IV	8 AC	12.6	0.15	5915	6 BY6	1	7 CH	6.3	0.3
1486	6SQ7	II	8W	12.6	0.15	59633	12AU7A	1	9A	12.6	0.15
1457	6S17GT	III	AAC	12.6	0.15	5964	6J6A	1	78F	6.3	0.45
14N7	6SN7GT8	III	BAC	12.6	0.6	59653	$12 \mathrm{AV7}$	1	9A	12.6	0.225
1407	6547	II	8 Al	12.6	0.15	6046	126GT	VI	7AC	25	0.3
19CLBA	6CI8A	1	9FX	18.9	0.15	60573	12AX7	1	9A	12.6	0.15
258066A	68Q6GTB	III	6AM	25	0.3	6058	6AL5	1	685	6.3	0.3
258966T	6BQ6GTB	HII	6AM	25	0.3	6059	6.77	11	9 BC	6.3	0.15
25896GTE!	6BQ6GTB	III	6AM	25	0.3	6060]	12AT7	1	9A	12.6	0.15
$25 \mathrm{C5}$	S0C5	VIIII	7CV	25	0.3	6061	6V8GTA	1	9AM	6.3	0.45
2SCAGA	50C6GA	Vill	75	25	0.3	6064	6AM6	1	708	6.3	0.3
25CA5	6CA5	1	7CV	25	0.3	6065	6 BH 16	1	708	6.3	0.2
25CD6G	6CD6GA	III	5BT	25	0.6	6066	6AT6	1	78T	6.3	0.3
25C06GA!	6CD6GA	III	581	25	0.6	6067 ${ }^{\text {\% }}$	12AU7A	1	9 A	12.6	0.15
25C06GB:	6CD6GA	III	5BT	25	0.6	6080	6AS7G	III	88 D	6.3	2.5
25Cu6	6CU6	III	6AM	25	0.3	6101	616 A	1	7BF	6.3	0.45
250N6:	6DN6	III	5BT	25	0.6	6132	${ }^{6} \mathrm{CH} 6$	1	98 A	6.3	0.75
25EC6	25CD6G8	Vill	5BT	25	0.6	6136	6AU6A	1	7BK	6.3	0.3
25 EH5	6 EH 5	1	7 CV	25	0.3	6159	6146	XII	7CK	26.5	0.3
2516GT	1216GT	VI	75	25	0.3	62013	12AT7	1	9A	12.6	0.15
155A7GT	6SA7GT	11	8 AD	-	-	6265	$68 \mathrm{H6}$	1	7CM	6.3	0.175
25W6GT	6W6GT	III	75	25	03	63503	$12 \mathrm{Bm7A}$	1	9 CZ	12.6	0.3
$35 \mathrm{C5}$	35B5	1	7CV	35	0.15	6485	6AH6	1	78K	6.3	0.45
3516GT	3585	1	75	35	0.15	6660	6 6A6	1	7CC	6.3	0.3
41	6K6GT	III	6 B	6.3	0.4	6661	6BHO	1	7CM	6.3	0.15
42	6 F 6	11	68	6.3	0.7	6662	6B.6A	1	7 CM	6.3	0.15
50A5	1216GT	VI	6AA	50	015	6663	6Al5	1	685	6.3	0.3
S0BK5	88K5	1	980	50	0.15	6669	6AQ5A	1	782	6.3	045
$50 \mathrm{C5}$	5085	1	7 CV	50	0.15	6677	6 Cl 6	1	98 V	6.3	0.65
50C6G	50C6GA	VI	75	50	0.15	667 \%	6U8A	1	9AE	6.3	0.45
50l6GT	1216GT	VII	7AC	50	0.15	66793	12AT7	1	9 A	12.6	0.15
75	6SQ7	11	66	6.3	0.3	66803	12AU7A	1	9 A	12.6	0.15
78	$6 \mathrm{K7}$	11	$6 F$	6.3	03	66813	$12 \mathrm{AX7}$	1	9 A	12.6	0.15
417A	5842	1	9 V	6.3	0.3	68291	5965	VIII	9A	12.6	0.225
1221	637	II	$6 F$	6.3	0.3	6897	2 C 39	XI	-	6.3	1.05
1223	617	11	78	6.3	03	7000	617	11	7 R	6.3	0.3
1631	81.668	11	7 AC	12.6	0.45	70253	12 AX 7	VII	9 A	12.6	0.15
1632	1216GT	VI	75	12.6	0.6	7054	12 BY 7	1	98F	13.5	0.275
1634	$65 C 7$	11	85	12.6	0.15	7055	SAl5	1	6BT	13.5	0.155
5591	6 GAK5	1	780	6.3	0.15	7056	6C86	1	7 CM	13.5	0.150
5654	6AK5	1	780	6.3	0.175	7057	6827	1	9AJ	13.5	0.180
5670	2 C 51	1	8 CJ	6.3	0.35	7058	12AX7	1	9 A	13.5	0.155
5679	$6 \mathrm{H}_{6}$	II	7CX	63	0.15	7059	608	1	9AE	13.5	0.193
5691	6517 GT	III	8 BD	6.3	0.6	7060	6 AUB	1	9 OX	13.5	0.280
5692	6SN7GT	III	8 BD	6.3	0.6	7061	12AB5	1	9EU	13.5	0.210
5725	6AS6	1	7 CM	6.3	0.175	7137	6 J 4	1	789	6.3	0.4
5716	6Al5	1	6BT	6.3	0.3	7167	6 CV5	1	7EW	13.5	0.09
5749	6BAO	1	78K	6.3	0.3	7543	GAUS	1	78K	6.3	0.3
5750	68E6	1	7CH	6.3	0.3	7700	6.7	11	$6 F$	6.3	0.3
57513	$12 \mathrm{~A} \times 7$	1	9A	12.6	0.175	EEC8 13	12AT7	1	94	12.6	0.15
$5814 A^{3}$	12SN7GT	VIII	9A	12.6	0.175	EEC323	12AU7A	1	9A	12.6	0.15
5871	6V6GTA	11	7AC	6.3	0.9	[ECB3)	124×7	1	9 A	12.6	0.15
5881	616GB	11	7AC	6.3	0.9	KT-664	61668	11	7AC	6.3	1.27
5910	10^{4}	1	6AR	14	0.05	XX0	7A\&7	IV	EAC	12.6	0.15
$\begin{aligned} & \text { Contre } \\ & \text { Filam } \\ & \text { Filam } \end{aligned}$	heater worm phacter volto or heater curre		stics.			${ }^{3}$ Heater at half - British	fapped for shown. of 616.				

TABLE IX-CONTROL AND REGULATOR TUBES

Trpe	Nome	Bose	Cothode	Fil, or Heater		Peak Anode Voliage	Max. Anode Me.	Minimum Supply Volioge	Operoting Vollage	Operating Me.	Grid Resistor	Tube Voltoge Drop
				Volis	Amp.							
$\begin{aligned} & \text { OA2 } \\ & 6073 \end{aligned}$	Valrage Regulator	5BO	Cold	- -	-	-	-	185	150	5-30	-	-
OA3/VR75	Volrage Requlator	4AJ	Cold	-	-	-	--	105	75	5-40		
$\begin{aligned} & \overline{\text { OA } 4 G} \\ & 1267 \end{aligned}$	Gos Triode Starter.Anode Type	$\begin{aligned} & 4 V \\ & 4 V \end{aligned}$	Cold	-	\longrightarrow	With 105-120-volt a.c. anode supply, peak slarter-anode a.c. voltage is 70 peok P.l. voltage S5. Peak d.c. $\mathrm{mo}=100$. Average d.c. $\mathrm{ma}=25$.						
OA5	Gas Pentode	Fig. 19	Cold	-	\cdots	Plote -750 V . Screen -90 V ., Grid +3 V . Pulse -85 V .						
$\begin{aligned} & 082 \\ & 6074 \end{aligned}$	Voltage Regulator	5BO	Cold	\cdots	\cdots	-	-	133	108	5-30	\longrightarrow	-
083/VR90	Voltage Regulator	4A」	Cold	-	-	-	-	125	90	5-40	-	-
OC2	Voltage Regulator	5 BO	Cold	-	-	-	--	105	75	530	-	-
OC3/VR105	Volrage Regulator	4AJ	Cold	-	-	-	-	135	105	5-40	-	-
OD3/VR150	Voltage Regulator	4AJ	Cold	-	-	-		185	150	5-40	0.1-104	8
2021	Grid-Controlled Recufier	7BN	Hir.	6.3	0.6	650	500	-	650	100	$\frac{0.1-104}{1.04}$	8
	Relay Tube					400	G		--			
6D4	Control Tube	5AY	Hir,	6.3	0.25	$E_{p}=350$: Grid volts $=-50$: Avg. Mo. $=25$: Peak Ma. $=100$: Voltage drop $=16$.						
90 Cl	Votrage Regulator	580	Cold	-	-	-	-	125	90	1-40	-	
						300	300	-	-	2	25000	-
884	Gos Trode Grid Tyce	60	Hir.	63	0.6	350	300	-	-	75	25000	-
967	Grid-Controlled Rectifiep	36	F_{1}	25	5.0	2500	500	-57		-	-	10-24
1265	Voltage Regulator	4AJ	Culd	-	-	-	-	130	90	5-30	\square	-
1266	Volrage Regulator	4AJ	Cold		-	-	\cdots	-	70	5-40	-	
1267	Reloy Tube	AV	Culd	-	-	Characreristics some as OAAG						
2050	Grid.Controlled Rechifier	ABA	Hir.	63	06	650	500	-	-	100	0.1-104	8
5651	Voltoge Regulator	580	Cold		-	115		115	87	1.5-3.5		
5662	Thyrolron-Fuse	Fig. 79	Hir.	6.3	1.5	2001	It to luse -150 Amp., 60 cycle, half.wove					50 V.
5696	Relay Service	7 BN	Hir.	6.3	0.15	5003	100 ma. peak cuerent; 25 -ma. average.					
5727	Gas Thyrotron	78N	Hirs.	63	06	650	--					

Type	Name	8 cse	Cathode			Peak	Max.	Minimum	Oper-	Opar-		Tube
				Volts	Amp.	Voltage	Ma.	Voltage	Voltage	Ma.	Resistor	Drop
5823	Relay or Trigger	4CK	Cold	-	-		ax. peak	volis $=20$	Feak Ma,	= 100: A	g. Ma. $=25$	
5890	Shunt Regulator	12J	Hir.	6.3	06		$\begin{aligned} & E_{G 1}= \\ & E_{p}=300 \end{aligned}$	6 voits: EG2 volts; $\left.\right\|_{\mathbf{G 2}}=$	200 volts: Ma.; I, M	$\begin{aligned} & \mathrm{E}_{\mathrm{GJ}}=55 \\ & \mathrm{ox}=0.5 \end{aligned}$	$10 \text { volis. }$ $\mathrm{Ma} .$	
5962	Voltage Regulator	2AG	Cold	--.	-	-	-	730	700	5559	-	-
5998	Series Regulatior	880	Hir.	6.3	2.4	250	125	-	110	100	3504	-
6308	Voltoge Regulator	BEX	Cold	-	-	-	35	115	87	-	-	- -
6354	Voltoge Regulator	Fig. 12	Cold	-	ー	-	-	180	150	5-15	--	-
KY21	Grid.Controlled Rechitier	-	F.l	2.5	100	-	-	-	3000	500	-	-
RK61	Radio-Controlled Relay	$\square 1$	Fil.	14	0.05	45	15	30	-	05-15	34	30
i No base Tinned wire leads. 2 At 1000 anode volts.		${ }^{3}$ Peak inverse voltage. 4 Megohms.				5 Values in μ amperes - Cathode resistor-ohms						

TABLE X-RECTIFIERS-RECEIVING AND TRANSMITTING
See Also Table IX—Control and Regulatar Tubes

See Also Table IX-Control and Regulator Tubes

Type	Name	Base	Cothode	fil, or Heater		Max, A.C. Per Plole	$\begin{aligned} & \text { D.C. } \\ & \text { Oulput } \\ & \text { Current } \\ & \text { Mo. } \end{aligned}$	Max. Inverse Peek Voltoge		Type
				Volts	Amp.					
856 Jr .	Holf. Wave Rectriciar	48	${ }_{5} .1$	25	2.5	1250	2502	--	-	MV
872A/872	Holl-Wave Rectitiet	4AT	Fi.	50	75	-	1250	10000	5000	MV

- Tapped for pilor lamps.
${ }^{3}$ Copocilar inout.
5 Using only one half of filoment.
- Choke inpu:

TABLE XI-TRIODE TRANSMITTING TUBES

Type	Maximum Ratings						Cathode		Copacilances			Buse	Typical Operation							
							$\begin{aligned} & \frac{y}{0} \\ & > \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { E } \\ & \frac{0}{E} \\ & \hline \end{aligned}$	C $\mu \mu \mathrm{f}$.		Com $\mu \mu \mathrm{f}$.			$\frac{8}{0}$						
$958-\mathrm{A}$	0.6	135	7	1.0	500	12	1.25	01	0.6	26	08	58D	C.T.O	135	-20	7	10	0.035	-	0.6
6J6A ${ }^{+2}$	1.5	300	30	16	250	32	63	045	22	16	04	78F	C.T	150	-10	30	16	0.35	-	3.5
9002	1.6	250	8	2.0	250	25	6.3	0.15	1.2	1.4	1.1	785	C.T.O	183	-35	7	1.5	-	-	0.5
955	1.6	180	8	20	250	25	6.3	0.15	1.0	14	06	58 C	C.TO	189	-35	7	1.5	-	-	0.5
HYI148	1.8	180	12	30	300	13	1.4	0.155	10	1.3	10	21	C.T.O	180	-30	12	2.0	0.2	-	1.43
													C.P	180	-35	12	2.5	0.3	-	1.41
6 64	2.0	150	20	8.0	500	17	6.3	0.225	2.0	1.9	0.6	78R	C.TO	150	$\begin{gathered} -15 \\ 550^{*} \\ 20004 \end{gathered}$	20	7.5	0.2	-	1.8
12AU7A ${ }^{\text {a }}$	$2.75{ }^{6}$	350	12^{8}	3.58	54	18	6.3	0.3	15	1.5	0.5	9A	C.T.O	350	-100	24	7	-	-	6.0
6026	3.0	150	30	10	400	24	6.3	0.2	2.2	1.3	038	Fig. 16	C.T.O	135	13004	20	9.5	-	-	1.25
HY615	3.5	300	20	4.0	300	20	6.3	0.175	1.4	1.6	1.2	Fig. 71	C.T.O	300	-35	20	2.0	0.4	-	$4.0{ }^{3}$
HY-E148	3.5	30	2	4.0	30	20	6. 3	0.175	1.4	1.6	1.2	Fig. 71	C.P	300	-35	20	3.0	0.8	-	3.59
$6 \mathrm{C4}$	5.0	350	25	8.0	54	18	6.3	0.15	1.8	1.6	1.3	68 G	C.T.O	300	-27	25	7.0	0.35	-	5.5
2 C 36	5	1500^{3}.	-	-	1200	25	6.3	0.4	1.4	2.4	0.36	Fig. 21	C.TO10	$1000{ }^{\text {a }}$	0	9005	-	-	-	2005
2C37	5	350	-	-	3300	25	6.3	0.4	1.4	1.85	0.02	Fig. 21	C.T.012	150	30004	15	3.6	-	-	0.5
5764	5	15005	11.5	-	3300	25	6.3	0.4	1.4	185	0.02	Fig. 21	$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}^{16}$	$1000{ }^{3}$	0	13005	-	-	-	2003
5675	5	165	30	8	3000	20	6.3	0.135	23	13	0.09	Fig. 21	G.G.O	120	-8	25	4	-	-	0.05
6N7GT2	5.56	350	30°	5.06	10	35	6.3	0.8	-	-	-	88	C.T.OII	350	-100	60	10	-	-	14.5
$\underline{2 C 40}$	65	500	25	-	500	36	6.3	0.75	2.1	13	0.05	Fig. 11	C.T.O	250	-5	20	0.3	-	-	0.075
5893	80	400	40	13	1000	27	60	033	2.5	1.75	007	Fig. 21	C. ${ }^{\text {P }}$	350	-33	35	13	2.4	-	6.5
						2	60	-3J	2.5	1.75	00	fig. 21	C. ${ }^{\text {P }}$	300	-45	30	12	2.0	-	6.5
GL-6442	80	350	35	15	2500	47	63	0.9	50	23	0.03	-	C. ${ }^{\text {c }}$ P	350	- 50	35	15	-	-	-
													C.P	275	- 50	35	15	-	-	-
${ }_{\text {RK342 }}$	10	300	80	20	250	13	6.3	08	34	2.4	05	Fig. 70	C.T.O	300	-36	83	20	1.8	-	16
${ }_{2} \mathrm{Cl}^{3}$	12	500	40	-	1250	48	6.3	0.9	29	17	005	Fig. 11	C.TO	470	-	387	-	-	-	97
6263	13	400	55	25	500	27	63	028	2.9	1.7	008	-	C. ${ }^{\text {C }}$	350	- 58	40	15	3	-	10
													C. ${ }^{\text {P }}$	320	-52	35	12	2.4	-	8
6264	13	400	50	25	500	40	63	0.28	295	175	007	-	C. T	350	-45	40	15	3	-	8
HY75A	15	450	90	25	175	96	63	26	18	26	10	2 T	CT	450	-140	90	20	5.2	-	26
							6			2		21	C. ${ }^{\text {c }}$	400	-140	90	20	5.2	-	21
													C. ${ }^{\text {c }}$	600	-150	65	15	4.0	-	25
801-A/801	20	600	30	15	60	8.0	7.5	125	4.5	6.0	1.5	40	C.P	500	-190	55	15	4.5	-	18
													8^{7}	600	-75	130	320^{9}	3.00	10K	45
T20	20	750	85	25	60	20	7.5	1.75	49	5.1	0.7	36	C-T	750	-85	85	18	3.6	-	44
	2	70	8	2	∞	2	. 5	1.8	4	5.1	0.	36	C-P	750	-140	70	15	3.6	-	38
													C. 1	750	-40	85	28	3.75	-	44
T220	20	750	85	30	60	62	7.5	1.75	5.3	5.0	0.6	36	C.P	750	-100	70	23	4.8	-	38
													B^{7}	800	0	40136	1609	$1.8{ }^{6}$	12K	70
15E14	0	-	-	-	600	25	55	4.2	1.4	1.15		Fig. 51		2000	-130	63	18	4.0	-	100
											0.3		C.TO	1500	-95	67	13	2.2	-	75
3-25A3	ns	8000	is	25	<0	24	d3	3.0	25	1.5		30		1 mm	-70	73	9	13	-	17
													${ }^{3}$	2000	-80	16801	270^{9}	0.78	55.5K	110
					100				21	18	01	Fig. 31		2000	-170	63	17	4.5	-	100
$3 \mathrm{C34}{ }^{18}$	25	2000	75		60				2.5	1.7	04	36	C.T.O	1500	-110	67	15	3.1	-	75
$\begin{aligned} & 3-2503 \\ & 24 \mathrm{G} \end{aligned}$	25	20×1	75	25		23	6.3	30	20	16	02	20		1000	-80	72	15	2.6	-	47
									17	15	03	20	8^{8}	2000	-85	16801	2909	1.18	55 5K,	110
	25	2000	75										C. T	2000	-130	63	18	4	-	100
3 C 24	17	1600	6^{7}	7^{13}	80	24	63	30	1.7	1.6	02	20	C^{P}	1600	-170	53	11	3.1	-	88
	25	2000	75										$\mathrm{AB}_{2}{ }^{\text {P }}$	1250	-42	$24130 \mid$	270°	340	21.4K	112
HK24	25	2000	15	30	60	25	63	30	2*	17	04	36	C. 1	2000	-140	56	18	4.0	-	90
											04	36	C.P	1500	-145	50	25	5.5	-	60
	30		65	-									G.M.A	1000	-135	50	4	3.5	-	20
8025	20	1000	65	20	500	18	6.3	1.92	27	28	0.35	4AO	$C^{\text {P }} \cdot$	800	-105	40	10.5	1.4	-	22
	30		80	20									C-T	1000	-90	50	14	1.6	二	35
HY3172	30	500	150	30	60	45		3.5	5.0	55	1.9	Fig. 60	C. ${ }^{\text {c }}$	500	-45	150	25	2.5	-	56
HY12312²	3	500	15	3	60	45	126	1.7	5.0	55	1.9	Fig. 60	C.P	400	-100	150	30	3.5	-	45
316A VT-191	30	450	83	12	500	6.5	2.0	3.65	1.2	1.6	0.8	-	C. ${ }_{\text {C }}$	450	-	80	12	-	-	7.5
													C. ${ }^{\text {P }}$	400	-	80	12	-	-	6.5
													C. ${ }^{\text {P }}$	1000	-75	100	25	3.8	-	75
809	30	1000	125	-	60	50	6.3	2.5	5.7	67	0.9	36	C.P	750	-60	100	32	4.3	-	55
													${ }^{8}$	1000	-9	40200	155°	2.7	11.6 K	145
													C.TO	1000	-90	100	20	3.1	-	75
1623	30	1000	100	25	60	20	63	25	57	6.7	0.9	3G	C.P	750	-125	100	20	4.0	-	55
													8	1000	-40	30200	$230{ }^{\circ}$	$4.2{ }^{\text {a }}$	12K	145

- See page v27 for ke, to Closs of Sarv ce abbreviat ons.

	Maximum Ratings						Cothode		Capacitances			Base	Typical Operation							
Type		$\frac{8}{6}$					$\frac{6}{6}$		$C_{\mu \mu}^{C_{i}}$	$\begin{aligned} & \mathbf{C}_{\text {gp }} \\ & \mu \mu \boldsymbol{i} . \end{aligned}$	Cout ниI.									
													C.7.O	1500	-140	150	28	9.0	- 1	158
140	40	1500	150	40	60	25	7.5	2.5	4.5	4.8	0.8	36	C. ${ }^{\text {P }}$	1250	-115	115	20	5.25	-	104
T240	40	1500	150	45	60	62	7.5	2.5	4.8	5.0	0.8	36	C.T.O	1500	-90	150	38	10	-	165
													C.P	1250	-100	125	30	7.5	-	116
													B^{7}	1500	-9	250^{8}	$285{ }^{\circ}$	$6.0{ }^{4}$	12K	250
3-50A4	50	2000	150	50	100	39	5.0	4.0	4.1	1.8	0.3	3G	C.T	2000	-135	125	45	13	-	200
											04	20	C.P	1500	-150	90	40	11	-	105
$\begin{aligned} & 3-5004 \\ & 35 T G \end{aligned}$									2.5				B^{2}	2000	-40	4/167	2559	4.04	27.5K	235
HK54	50	3000	150	30	100	27	50	5.0	1.9	1.9	0.2	20	C.T	3000	-290	100	25	10	-	250
													$C \cdot P$	2500	-250	100	20	8.0	- 2	210
													8^{7}	2500	-85	$20 / 150$	3609	5.0	40K	275
													C.T	1500	-170	150	18	6.0	二	170
T55	55	1500	150	40	60	20	7.5	3.0	5.0	3.9	1.2	3 G	$\mathrm{C}^{\text {C }}$ P	1500	-195	125	15	5.0	-	145
826	55	1000	140	40	250	31	7.5	4.0	3.0	2.9	1.1	780	$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}$	1000	-70	130	35	5.8	-	90
													C.P	1000	-160	95	40	11.5	-	70
													G.M.A	1000	-125	65	9.5	8.2	-	25
$\begin{aligned} & 330 \mathrm{~B} \\ & 930 \mathrm{~B} \end{aligned}$	60	1000	150	30	15	25	10	2.0	5.0	11	1.8	36	C.T.O	1000	-110	140	30	7.0	-	90
													C. \cdot	800	-150	95	20	5.0	-	50
													B^{7}	1000	-35	20,280	2700	6.01	7.6 K	175
$811-A^{19}$	65	1500	175		60	160	6.3	4.0	5.9	5.6			C.T	1500	-70	173	40	7.1	-	200
				50							0.7	36	C.P	1250	-120	140	45	10.0	-	135
													B^{7}	1500	-4.5	32313	1700	4.48	12.4K	340
812-A	65	1500											C.T	1500	-120	173	30	6.5	-	190
			175	35	60	29	6.3	4.0	5.4	5.5	0.77	36	C.P	1250	-115	140	35	7.6	-	130
													${ }^{8}$	1500	-48	28,310	$270{ }^{\circ}$	5.0	13.2K	340
5514	65	1500											C.T	1500	-106	175	60	12	-	200
			175	60	60	145	7.5	3.0	7.8	7.9	1.0	480	C.P	1250	-84	142	60	10	-	135
													B^{3}	1500	-4.5	3509	88	6.50	10.5K	400
$\begin{aligned} & 3-75 A 3 \\ & 75 \mathrm{TH} \end{aligned}$	75					20	5.0	6.25					C. ${ }^{\text {P }}$	2000	-200	150	32	10	-	225
		3000	225	40	40				2.7	2.3	0.3	2D	C.P	2000	-300	110	15	6	-	170
													B^{7}	2000	-90	50, 225	$350{ }^{\circ}$	30	19.3 K	300
$\begin{aligned} & 3.75 A 2 \\ & 75 \mathrm{TL} \end{aligned}$	75	3000	225	35	40	12	5.0	6.25	2.6	2.4	0.4	20	C. ${ }^{\text {P }}$	2000	-300	150	21	8	-	225
													C.P	2000	- 500	130	20	14	-	210
													$\mathrm{AB}^{\text {P }}$ '	2000	-190	50250	6009	5	18K	350
8005	85	1500	200	45	60	20		3.25	6.4	5.0	1.0		C.T	1500	-130	200	32	7.5	-	220
							10					36	C. ${ }^{\text {P }}$	1250	-195	190	28	9.0	-	170
													${ }^{3}$	1500	-70	40310	$310{ }^{\circ}$	40	10K	300
V.70-D	85	1750	200											1750	-100	170	19	3.9	-	225
													C.	1500	-90	165	19	3.9	-	195
				45	30	-	7.5	3.25	4.5	45	1.7	36		1500	-90.	165	19	3.7	-	185
													C.P	1250	-72	127	16	2.6	-	122
													C.T	3000	-200	165	51	18	-	400
$\begin{aligned} & 3-100 \mathrm{~A} 4 \\ & 100 \mathrm{TH} \end{aligned}$	100	3000	225	60	40	40	5.0	6.3	2.9	2.0	0.4	20	${ }_{\text {C }} \cdot \mathrm{P}$	3000	-65	40215	3350	50	31 K	650
													C.T	3000	-400	165	30	20	-	400
												20	C. ${ }^{\text {c }}$	300	-40	16	3	70	-	
$100 \mathrm{TL}$	100	3000	225	50	40	14	50	6.3	2.3	2.0	0.4	20	GMA	3000	-560	60	2.0	7.0	-	90
													8^{7}	3000	-185	40,215	640°	6.08	30k	450
													C.T	2000	-340	210	67	25	-	315
VT127A	100	3000	-	-	150	15.5	5.0	10.4	2.7	2.3	0.35	Fig. 53	3	1500	-125	242	44	7.3	3K	200
											5.5		C-T	1250	-225	150	18	7.0	-	130
211	100	1250	175	50	15	12	10	3.25	8.0	14.5	5.5	4 E	C-P	1000	-260	150	35	14	-	100
311	100	1250	175	so	15	12	10	3.25	6.0	9.25	5.0		${ }^{8}$	1250	-100	20320	4100	80°	9 K	260
													C.T	3000	-245	165	40	18	-	400
	100	4000	225	60	-	25	5.0	7.5	2.5	2.7	0.4	2N	C-P	2500	-360	168	40	23	-	335
254	100	400											8	2500	-80	40240	460°	25	25.2K	420
													G.G.A	800	-20	80	30	6	-	27
3Cx100A515	$\frac{10}{70}$	600	10014	50	2500	100	6.0	1.05	7.0	2.15	0.035	-	C.P.	600	-15	75	40	6	-	18
$\begin{aligned} & 3 \times 100 A 11 \\ & 2 \mathrm{C39} \end{aligned}$	100	1000	60	40	500	100	6.3	1.1	6.5	1.95	0.03	-	G.tc	600	-35	60	40	50	-	20
	100								6.5	1.9	0.035		C. 10	900	-40	90	30	-	-	40
Gl2C3981s		1000	12514	50	500	100	6.3	1.0	7.0	1.9	0.035	-	C.P	600	-150	10014	50	-	-	-
													C.TO	1250	-150	180	30	-	-	150
Gl146	125	1500	200	60	15	75	10	3.25	7.2	92	3.9	Fig. 56	${ }^{\text {C. }}$ P	1000	-200	160	40	-	-	100
													${ }^{\text {B }}$	1250	0	34320	-	-	8.4 K	250
													C.T.O	1250	-150	180	30	-	-	150
GL152	125	1500	200	60	15	25	10	325	7.0	88	4.0	Fig. 56	C^{\cdot}	1000	-200	160	30	-	-	100
Glis2	12	150	200										${ }^{3}$	1250	-40	16320	-	-	8.4 K	250
													C.T	1500	-105	200	40	85	-	215
		1500	210	70	30	4060	10	3.25	85	6.5	10.5	3N	${ }^{\text {C }} \cdot{ }^{\text {P }}$	1250	-180	160	60	16	-	140
805	125	1500	210	7	3	4080	10						${ }^{8}$	1500	-16	84400	2800	7.04	8.2 K	370
													C.T	2500	-200	200	40	16	-	390
AX9900/	135	2500	200	40	150	25	6.3	5.4	5.8	5.5	0.1	Fig. 3	C.P	2000	-225	127	40	16	15.88	204
5866^{13}	135	250	200	4									B^{3}	2500	-90	80330	3500	148	15.68 K	560
													C.T	3000	-300	250	70	27	-	600
3-15043	150	3000	450	85	40	20	5.0	12.5	5.7	4.8	0.4	4BC	C•P	2500	-350	200	30	15	-	400
152TH	150	300		85	4	2	10	6.25					8^{7}	2500	-125	40340	390°	16^{6}	17K	600

[^10]| Typ＊ | Maximum Ratings | | | | | Cothode | | | Copacitonces | | | Base | Typical Operotion | | | | | | | |
| :---: |
| | | $\frac{8}{6} \frac{0}{6}$ | 京 | | | | $\frac{\stackrel{y}{\circ}}{>}$ | $\begin{aligned} & \stackrel{y}{6} \\ & \frac{2}{E} \\ & E \end{aligned}$ | $\underset{\mu f_{i} .}{C_{i}}$ | $\underset{\mu \mu \mathrm{f}}{\mathbf{C}_{\mathrm{af}} .}$ | $C_{\mu \mu}$ | | $\begin{aligned} & \text { \%o } \\ & \text { 曾 } \\ & \text { 号 } \end{aligned}$ | 荲 | $\begin{aligned} & \frac{8}{5} \\ & \hline 5 \end{aligned}$ | 定 | $\begin{aligned} & \text { 푼 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | | | |
| $\begin{aligned} & 3.150 \mathrm{~A} 2 \\ & 152 \mathrm{TL} \\ & \hline \end{aligned}$ | 150 | 3000 | 450 | 75 | 40 | 12 | 5 | 12.5 | 4.5 | 4.4 | 0.7 | 48 C | C． 1 | 3000 | －400 | 250 | 40 | 20 | － | 600 |
| | | | | | | | 10 | 6.25 | | | | | B | 3000 | －260 | 65／335 | 675 | 30 | 20.4 K | 700 |
| HF201A | 150 | 2500 | 200 | 50 | 30 | 18 | 10－11 | 4.0 | 8.8 | 7.0 | 1.2 | Fig． 15 | C．T | 2500 | －300 | 200 | 18 | 8 | － | 380 |
| | | | | | | | | | | | | | C．P | 2000 | －350 | 160 | 20 | 9 | － | 250 |
| | | | | | | | | | | | | | ${ }^{\text {B }}$ | 2500 | －130 | 60／360 | 460° | 8 | 16K | 600 |
| 572 | 150 | 2500 | 200 | － | － | 170 | 6.3 | 4.0 | － | － | | | | 1500 | 0 | 60／350 | － | 5.5 | 12．5K | 380 |
| 572 | 150 | 2500 | 20 | － | － | 170 | 6.3 | 4.0 | － | － | － | 3G | ${ }^{3}$ | 2000 | 0 | 80／360 | － | 5 | 16．SK | 530 |
| 810 | 175 | 2500 | 300 | 75 | 30 | 36 | 10 | 4.5 | 8.7 | 4.8 | 12 | 2N | C．T | 2500 | －180 | 300 | 60 | 19 | － | 575 |
| | | | | | | | | | | | | | C．P | 2000 | －350 | 250 | 70 | 35 | － | 380 |
| | | | | | | | | | | | | | G．M．A | 2250 | －140 | 100 | 2.0 | 4 | － | 75 |
| | | | | | | | | | | | | | ${ }^{\text {B }}$ | 2250 | －60 | 70／450 | $380{ }^{\circ}$ | 130 | 11．6K | 725 |
| 8000 | 175 | 2500 | 300 | 45 | 30 | 16.5 | 10 | 4.5 | 5.0 | 6.4 | 3.3 | 2N | C．T．O | 2500 | －240 | 300 | 40 | 18 | － | 575 |
| | | | | | | | | | | | | | C．P | 2000 | －370 | 250 | 37 | 20 | － | 380 |
| | | | | | | | | | | | | | G．M．A | 2250 | －265 | 100 | 0 | 2.5 | － | 75 |
| | | | | | | | | | | | | | $8{ }^{3}$ | 2250 | －130 | 65／450 | $560{ }^{\circ}$ | 7.9 | 12K | 725 |
| T200 | 200 | 2500 | 350 | 80 | 30 | 16 | 10 | 5.75 | 9.5 | 7.9 | 1.6 | 2N | C．T | 2500 | －280 | 350 | 54 | 25 | － | 685 |
| 1200 | 200 | 2500 | 350 | 8 | 3 | 16 | 1 | 5．75 | 9.5 | 7.9 | 1.6 | 2 | C．P | 2000 | －260 | 300 | 54 | 23 | － | 460 |
| $\begin{aligned} & 592 / 15 \\ & 3.200 \mathrm{~A} 3 \end{aligned}$ | 200 | 3500 | 250 | 2513 | 150 | 25 | 10 | 5.0 | 3.6 | 3.3 | 0.29 | Fig． 28 | C．${ }^{\text {P }}$ | 3500 | －270 | 228 | 30 | 15 | － | 600 |
| | 130 | 2600 | 200 | 2513 | | | | | | | | | C．P | 2500 | －300 | 200 | 35 | 19 | － | 375 |
| | 200 | 3500 | 250 | 2513 | | | | | | | | | ${ }^{8}$ | 2000 | －50 | 120／500 | 520 | 200 | 8．5K | 600 |
| $\begin{aligned} & \text { 4C34 } \\ & \text { HF300 } \end{aligned}$ | 200 | 3000 | 275 | 60 | 60 | 23 | 11－12 | 4.0 | 6.0 | 6.5 | 1.4 | 2N | C．\cdot T | 3000 | －400 | 250 | 28 | 16 | － | 600 |
| | | | | | 20 | | | | | | | | C．P | 2000 | －300 | 250 | 36 | 17 | － | 385 |
| | | | | | | | | | | | | | 8 | 3000 | －115 | 60／360 | 450 | 130 | 20 K | 780 |
| T－300 | 200 | 3000 | 300 | － | － | 23 | 11 | 6.0 | 6.0 | 7.0 | 1.4 | － | $C \cdot T$ | 3000 | －400 | 250 | 28 | 20 | － | 600 |
| | | | | | | | | | | | | | C．P | 2000 | －300 | 250 | 36 | 17 | － | 385 |
| | | | | | | | | | | | | | 8 | 2500 | -100 | 60／450 | － | 7.56 | － | 750 |
| 806 | 225 | 3300 | 300 | 50 | 30 | 12.6 | 5.0 | 10 | 6.1 | 4.2 | 1.1 | 2N | C．T | 3300 | －600 | 300 | 40 | 34 | － | 780 |
| | | | | | | | | | | | | | C．P | 3000 | －670 | 195 | 27 | 24 | － | 460 |
| | | | | | | | | | | | | | B | 3300 | －240 | 80／475 | 930° | 350 | 16 K | 1120 |
| $\begin{aligned} & \text { 3.250A4 } \\ & \text { 250TH } \end{aligned}$ | 250 | 4000 | 350 | 40^{13} | 40 | 37 | 5.0 | 10.5 | 4.6 | 2.9 | 0.5 | 2N | C．T．O | 2000 | －100 | 357 | 94 | 29 | － | 464 |
| | | | | | | | | | | | | | CTO | 3000 | －150 | 333 | 90 | 32 | － | 750 |
| | | | | | | | | | | | | | | 2000 | －160 | 250 | 60 | 22 | － | 335 |
| | | | | | | | | | | | | | C．P | 2500 | －180 | 225 | 45 | 17 | － | 400 |
| | | | | | | | | | | | | | | 3000 | －200 | 200 | 38 | 14 | － | 435 |
| | | | | | | | | | | | | | $A B C{ }^{\prime}$ | 1500 | 0 | 220／700 | $460{ }^{\circ}$ | 468 | 4．2K | 630 |
| $\begin{aligned} & \text { 3.250A2 } \\ & \text { 250TL } \end{aligned}$ | 250 | 4000 | 350 | 35^{13} | 40 | 14 | 5.0 | 10.5 | 3.7 | 3.0 | 0.7 | 2N | C．T．O | 2000 | －200 | 350 | 45 | 22 | － | 455 |
| | | | | | | | | | | | | | C．ro | 3000 | －350 | 335 | 45 | 29 | － | 750 |
| | | | | | | | | | | | | | | 2000 | －520 | 250 | 29 | 24 | － | 335 |
| | | | | | | | | | | | | | C．P | 2500 | －520 | 225 | 20 | 16 | － | 400 |
| | | | | | | | | | | | | | | 3000 | －520 | 200 | 14 | 11 | － | 435 |
| | | | | | | | | | | | | | ${ }^{\text {A }}{ }^{\text {P }}$＇ | 1500 | －40 | 200／700 | 7809 | 380 | 3．8K | 580 |
| $\begin{aligned} & 5867 \\ & \text { AX-.9901 } \end{aligned}$ | 250 | 3000 | 400 | 80 | 100 | 25 | 50 | 14.1 | 7.7 | 5.9 | 0.18 | Fig． 3 | C．${ }^{\text {P }}$ | 3000 | －250 | 363 | 69 | 27 | － | 840 |
| | | | | | | | | | | | | | C．P | 2500 | －300 | 250 | 70 | 28 | － | 482 |
| | | | | | | | | | | | | | 87 | 3000 | －180 | 5708 | $465{ }^{\circ}$ | 32 | 14.2 K | 1280 |
| PL－656919 | 250 | 4000 | 300 | 120 | 30 | 45 | 5.0 | | | | | | | 2500 | －70 | 300 | 85 | 7520 | － | 555 |
| | | | | | | | | | | | | | | 3000 | －95 | 300 | 110 | ${ }^{8520}$ | － | 710 |
| | | | | | | | | 14.5 | 7.6 | 3.7 | 0.1 | Fig． 3 | G．G．A | 3500 | －110 | 285 | 90 | 8570 | － | 805 |
| | | | | | | | | | | | | | | 4000 | －120 | 250 | 50 | 7020 | － | 820 |
| | | | | | | | | | | | | | | 1500 | －125 | 665 | 115 | 25 | － | 700 |
| | | | | | | | 5.0 | 25 | | | | | C．1．O | 2000 | －200 | 600 | 125 | 39 | － | 900 |
| | | | | | | | | | | | | | | 1500 | －200 | 420 | 55 | 18 | － | 500 |
| $304 \mathrm{TH}$ | 300 | 3000 | 900 | 6013 | 40 | 20 | | | 3.5 | 10.2 | 0.7 | 486 | C．P | 2000 | －300 | 440 | 60 | 26 | － | 680 |
| | | | | | | | 10 | 12.5 | | | | | | 2500 | －350 | 400 | 60 | 29 | － | 800 |
| | | | | | | | | | | | | | $\mathrm{AB}_{2}{ }^{\text {\％}}$ | 1500 | －65 | 1065 | 3300 | 25° | 284k | 1000 |
| | | | | | | | | | | | | | C．T．O | 1500 | －250 | 665 | 90 | 33 | － | 700 |
| | | | | | | | | | | | | | | 2000 | －300 | 600 | 85 | 36 | － | 900 |
| | | | | | | | 5.0 | 25 | | | | | | 2000 | － 500 | 250 | 30 | 18 | － | 410 |
| | | | | | | | | | | | | | | 2000 | － 500 | 500 | 75 | 52 | － | 810 |
| 3047L19 | 300 | 3000 | 900 | 5013 | 40 | 12 | | | 12.1 | 8.6 | 0.8 | 44^{6} | C．P | 2360^{-1} | －525 | 200 | 16 | 11 | － | 425 |
| | | | | | | | | | | | | | | 2500 | －550 | 400 | 50 | 36 | － | 830 |
| | | | | | | | 10 | 12.5 | | | | | | 1500 | －118 | 270／572 | 236 ${ }^{\circ}$ | 0 | 254K | 258 |
| | | | | | | | | | | | | | $A^{\prime} B_{1}{ }^{\prime}$ | 2500 | －230 | 160／483 | 4609 | 0 | 8．5K | 610 |
| | | | | | | | | | | | | | $A^{\text {A }}{ }^{\prime}$ | 1500 | －118 | 11400 | $490{ }^{\circ}$ | 390 | 275K | 1100 |
| | | | | | | | | | | | | | C．T．O | 2250 | －125 | 445 | 85 | 23 | － | 780 |
| | 350 | 3300 | | | 30 | | | | | | | | cro | 3000 | －160 | 335 | 70 | 20 | － | 800 |
| 333 A | | | 500 | 100 | | 35 | 10 | 10 | 12.3 | 6.3 | 8.5 | Fig． 41 | C．p | 2500 | -300 | 335 | 75 | 30 | － | 635 |
| | 45015 | | | | 2013 | | | | | | | | C．P | 3000 | －240 | 335 | 70 | 26 | － | 800 |
| | | | | | | | | | | | | | B | 3000 | －70 | 100／750 | $400{ }^{\circ}$ | 200 | 9．5K | 1650 |
| | | | | | | | | | | 3.9 | | | | 4000 | －110 | 350 | 92 | 10530 | － | 1080 |
| PL－658019 | 400 | 400013 | 350 | 120 | － | 45 | 5.0 | 14.5 | 7.6 | 3.9 | 0.1 | 5BK | G＇G．A | 2500 | －70 | 350 | 95 | 85 | － | 660 |
| －Cothode
 I KEY TO
 A）
 $A B_{1}$
 $A_{4} \boldsymbol{E}_{1}$
 $\stackrel{6}{C}$
 $C \cdot \mathrm{C}$
 C．\cdot T
 $\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}=$
 G．G•A $=$
 $\mathrm{G} \cdot \mathrm{G} \cdot \mathrm{O}=$ | istor in oh
 ASS－OF．S
 Class－A，
 Class$-A B_{1}$
 Class－8 pus
 requency
 Closs－C plo
 Class－C
 Grounded
 Grounded | hms．
 SEVICE
 ．1．modu push－pu
 sh pull multiph legroph． mplifier －grid clo －grid os | ABBRE
 ulator．
 到路．
 ll al
 al．Mod
 er
 dulated
 osc．
 loss．C o
 s． | VIA IIO
 nodulat nudulu dululur． telepho mp． | | | | $=\mathrm{G}$
 mode．
 ces，or
 of 11
 volves．
 stion．
 signal
 a．l．grid
 pulerst | －isolatio Vaives， for both Mc． for in ol lue． o－gred OOM Mc | on circ tod a xcepl sectio ms．
 os in
 olts．
 osc | p． interelec ns in push
 ush．pull． | ctrode cap h－pult． | aci． | | Class．B 000．Mc Max．grid Mox．co Hato－pul 900 M No Cla sidebo cludes nower． | data in To
 c．w．ose
 hode cur
 ir cooling sad 3300
 C．w．OBC
 －B dato mplifier and in Tob bias loss． | ble it．
 on in w rent in requir Mc．OsC vailable． ube－ope le 11－1 grid dis | walts．
 nus．
 d．
 eration
 sipation， | | or sing＇o d．through |

	Maximum Ratings					Cathode		Capacitances			Base	Typical Operation										
Type		$\begin{array}{r} 8 \\ \frac{8}{0} \frac{9}{9} \\ 2 \end{array}$		$\begin{aligned} & \varepsilon 8 \\ & 8 \\ & 6 \\ & 4 \\ & \hline \end{aligned}$		$\frac{\vdots}{9}$	$\begin{aligned} & \text { \% } \\ & \frac{6}{6} \\ & E \end{aligned}$	Cin $\mu \mu$ F．	$\mathbf{C}_{\boldsymbol{*}}$	Cout $\mu \mu$ f．		$\begin{aligned} & \text { 흥 } \\ & \text { 音荡 } \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{8} \\ & \frac{0}{2} \frac{9}{0} \end{aligned}$			$\begin{array}{r} 8 \\ \frac{8}{5} \frac{8}{9} \end{array}$	$\begin{array}{r} \frac{0}{2} \\ 0 \\ 0.0 \\ 205 \\ \hline \end{array}$		$\begin{array}{r} \sum_{0}^{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \text { suom } 20 \mathrm{mod} \text { 6u! } \\ & \text {-A!g } \times \text { Poddty } \end{aligned}$		
69393	7.5	275	3	230	500			6.6	0.15	1.55	Fig． 13	C．T	200	200	－	－20	60	13	2	1.0	－	7.5
						6.3	0.75					C．P	180	180	－	－20	55	11.5	1.7	1.0	－	6
						12.6	0.375					C．M	200	190	－	68K1	46	10	2.2	0.9	－	－
	10	250	2.5	250	160	6	0.7	10	0.5	4.5	7 CO	C．T	250	200	－	－50	50	10	2.5	0.2	－	7.5
2E30												$\mathrm{AB}_{2}{ }^{\text {a }}$	250	250	－	－30	40120	420	2.37	0.2	3．8k	17
												C．T	500	200	40	－70	80	15	4.	0.4	－	28
037	12	500	8	300	20	12.6	0.716	16	0.2	10	68M	C．P	400	140	40	-40	45	20	5	0.3	－	11
$\begin{aligned} & 7551 \\ & 7558 \end{aligned}$	12	300	2	250	175	12.6	0.38	10	0.15	5.5	9 LK	C．T	300	250	－	－55	80	5.1	1.6	1.5	－	10
						6.3	$0^{0.8}{ }^{10}$					C．P	250	250	－	－75	70	3.0	23	1.0	－	$\frac{7.5}{12}$
	13.5	350	2	250	50	$\frac{6.3}{12.6}$	$\frac{0.75}{0.375}$	9.5	0.3	4.5	9K	C．t．	350	250	－	－28．5	48.5	6.2	1.6	0.1	－	$\frac{12}{10}$
$\frac{5763}{6417}$												C－P	300	250	－	－42．5	50	6	2.4	0.15	－	10
												C． M^{2}	300	250	－	－75	40	4	1	0.6	－	2.1
												C． M^{4}	300	235	－	－100	35	5	1	0.6	－	$\frac{1.3}{18}$
						6.33	0.65	8.5	0.11	6.5	7 CL	C．P	500	180	－	－45	54	8	2.5	0.16	－	18
$2 E 24$	13.5	600	2.5	200	125							C．T	600	195	－	－50	66	10	3	0.21	－	27
2E26．3	13.5	600	25	200	125	6.3	08	12.5	0.2	7	7CK	C．T	600 500	185 180	－	-45 -50	66	10	2.5	0.17	－	$\frac{27}{18}$
6893	13.5	60				12.6	0.4					$A B 3{ }^{\text {b }}$	500	125	－	-15	22150	32^{7}	－	$0.36{ }^{7}$	8 K	54
63603	14	300	2	200	200	$\begin{array}{r} 6.3 \\ \hline 12.6 \end{array}$	$\frac{0.82}{0.41}$	62	0.1	2.6	Fig． 13	C．T	300	200	－	－45	100	3	3	0.2	－	18.5
												C．${ }^{\text {P }}$	200	100	－	15k＇	88	3.1	3.3	0.2	－	9.8
												C． M^{11}	300	150	－	－100	65	3.5	3.8	0.45	－	4.8
												AB_{2}	300	200	－	－21．5	30100	111.4	64^{2}	0.04	6.5 K	17.5
$2 \mathrm{E25}$	15	450	4	250	125	6	0.8	85	0.15	67	5BJ	C．T．O	450	250	－	－45	75	15	3	0.4	－	24
												C－P	400	200	－	－45	60	12	3	0.4	－	16
												$A^{\prime} B_{2}$	450	250	－1	－30	44150	1040	3	0.97	6 K	40
						6.3	1.6				78P	C．T	750	200	－	－65	48	15	2.8	0.19	－	26
$83243^{\text {a }}$	15	750	5	250	200	12.6	08	8	007	38	78 P	C．P	600	200	－	－65	36	16	2.6	0.16	－	17
1619	15	400	3.5	300	45	2.5	2	10.5	035	125	Fig． 74	C．T	400	300	－	－55	75	10.5	5	0.36	－	19.5
												C．P	325	285	－	－ 50	62	7.5	2.8	0.18	－	13
												$\mathrm{AB}_{2}{ }^{\text {b }}$	400	300	0	－16．5	75150	6.511 .5	－	0.47	6 K	36
5516	15	600	5	250	8 C	6	0.7	85			7 CL	C．${ }^{\text {P }}$	600	250	－	－60	75	15	5	0.5	－	32
									012	65		C．P	475	250	－	－90	63	10	4	0.5	－	22
												$\mathrm{AB}_{2}{ }^{\text {d }}$	600	250	－	－25	$36140 \mid$	124	47	0.16	10．5K	67
$\begin{aligned} & 6252 / \\ & 4 \times 9910^{3} \end{aligned}$	20	750	4	300	300			65	－	25	Fig． 7	C．T	600	250	二	－60	140	14	4	2.0	－	－
						6.3	1.3					C－P	500	250	－	－80	100	12	3	4.0	－	－
						12.6	0.65					，	500	250	－	－26	2573	0.716	52°	－	20K	23.5
1614	25	450	35	300	80	6.3	0.9	10	0.4	125	7AC	C．T	450	250	－	－45	100	8	2	0.15	－	31
												C．P	375	250	－	－ 50	93	7	2	0.15	－	24.5
												$A B_{1}{ }^{\circ}$	530	340	－	－36	60160.	20^{7}	－	－	7．2K	50
8153	25	500	4	200	125			133	0.2	85	889	C．T．O	500	200	－	－45	150	17	2.5	0.13	－	56
						63	1.6					CP	400	175	－	－45	150	15	3	0.16	－	45
						12.6	0.8					AB_{2}	500	125	－	－15	22150	32^{7}	－	$0.36{ }^{7}$	8K	54
1624	25	600	35	300	60	25	2	11	0.25	75	Fig． 66	C．T	600	300	－	－60	90	10	5	0.43	－	35
												C．P	500	275	－	－ 50	75	9	3.3	0.25	－	24
												$\mathrm{AB}_{3}{ }^{\text {b }}$	600	300	－	1－25	42180	515	1061	1.2	7.5 K	72
	25	750	3	250	60								500	170	－	－66	135	9	2.5	0.2	－	48
614613						6.3	1.25					C．T	750	160	－	－62	120	11	31	0.2	－	70
												$C \Gamma^{12}$	400	190	－	1－54	150	10.4	2.2	3.0	－	35
													400	150	－	｜－87	112	7.8	34	0.4	－	32
6883						12.6	0.625	135	022	85	7 CK	C ${ }^{\text {P }}$	600	150	－	［－87	112	78	3.4	0.4	－	52
													600	190	－	－48	28270	1.220	2^{7}	0.03	5 K	113
6159						26.5	0.3					$\mathrm{AB}_{7}{ }^{6}$	750	165	－	－46	｜22 240	0320	2.67	0.04	7.4 K	131
												$A B_{1}{ }^{\text {a }}$	750	195	－	－ 50	，23 220	126	1004	0	8 K	120
												C．T	600	200	－	－44	120	8	3.7	0.2	－	56
65243	25	600	－	300	100		1.25	7	011	34	Fig． 76	C．\cdot	500	200	－	－61	100	7	2.5	0.2	－	40
6850	2	60				12.6	0.625					$A^{\prime} B_{2}$	500	200	－	－26	20116	01／10	2.6	0.1	11．1K	40
												C．T	750	250	－	－45	100	6	3.5	0.22	－	50
$807 \mathrm{~W}$						6.3	0.9				5aw	C．${ }^{\text {P }}$	600	275	－	－90	100	6.5	4	0.4	－	42.5
5933	30	750	35	300	60			12	0.2	7		$A B_{2}{ }^{\text {b }}$	750	300	－	－32	60240	510	924	$0.2{ }^{7}$	6.95 K	120
162513						12.6	045				5A2	810	750	－	－	0	15240	－	5554	5.37	6．65K	120
$\underline{2 E 22}$	30	750	10	250	－	6.3	1.5	13	0.2	8	$5 J$	C．T．O	750	250	225	－60	100	16	6	0.55	－	3
AX－						6.3	1.8					C．T	600	250	－	－80	200	16	2	0.2	－	80
$\begin{aligned} & 99033 \\ & 5894 \mathrm{~A} \end{aligned}$	40	600	7	250	250	12.6	09	6.7	0.08	21	Fig． 7	$\mathrm{CP}^{\text {P }}$	600	250	－	－100	200	24	8	1.2	－	85
												C	500	200	－	－45	240	32	12	0.7	－	83
$\begin{aligned} & 8293 \\ & 3 E 293 \end{aligned}$	40	750	7	240	200		$\frac{2.25}{1.125}$	145	0.12	7	78P	C．P	425	200	－	－ 60	212	35	11	0.8	－	63
												－	500	200	－	－18	27230	－	56°	0.39	4．8K	76
$3 \mathrm{D24}$	45	2000	10	400	125	6.3	3	65	02	24	Fig． 75	C．T．O	2000	375	－	－300	90	20	10	4.0	－	140
$3 \mathrm{D24}$	45	2000	10	4	125	6.3	3	65	02	24	Fig． 75	CTO	1500	375	－	－300	90	22	10	4.0	－	105
												C．T	750	300	－	－100	240	26	12	1.5	－	135
$4 \mathrm{D22}$						25.2	08				Fig． 26	$C \cdot$	600	300	－	－100	215	30	10	1.25	－	100
	50	750	14	350	60			28	027	13			600	－	－	－ 100	220	28	10	1.25	－	100
4032						6.3	3.75				Fig． 27	CP	550	－	－	－ 100	175	17	6	0.6	－	70
4032						6.3						$A B 2^{6}$	600	250	－	－25	100365	26^{7}	701	0.45	3K	125
												C．${ }^{\text {P }}$	1500	300	－	－90	150	24	10	1.5	－	160
814	65	1500	10	300	30	10	325	135	01	13.5	Fig． 64	C^{P}	1250	300	－	－150	145	20	10	3.2	－	130
													1500	250	－	－85	150	40	18	32	－	165
												CTO	3000	250	－	－100	115	22	10	1.7	－	280
4.65413	65	3000	10	600	150	6	35	8	008	21	Fig． 25		1500	250	－	－125	120	40	16	3.5	－	140
												Cp	2500	250	－	－135	110	25	12	2.6	－	230
												${ }^{4} \mathrm{~B}_{2}{ }^{\text {a }}$	1800	250	－	－ 50	50250	30^{7}	1804	26^{7}	20K	270

[^11]| Typ* | | Maximum Ratings | | | | Cathode | | Capacitancos | | | Base | Typical Operetion | | | | | | | | | | |
| :---: |
| | | | | | | $\frac{2}{5}$ | $\begin{aligned} & 8 \\ & \frac{0}{6} \\ & \frac{8}{E} \\ & \hline \end{aligned}$ | C. $\mu \boldsymbol{\mu}$. | C* usf. | Cow $\mu \mu$. | | | $\begin{array}{r} 0 \\ 0 \\ 0.9 \\ 6 \\ 0 \end{array}$ | | | | | | 荌 | | | |
| $\begin{aligned} & \hline 4227 / \\ & 8001 \end{aligned}$ | 75 | 4000 | 30 | 750 | 75 | 5 | 7.5 | 12 | 0.05 | 6.5 | 780M | C-T | 2000 | 500 | 60 | -200 | 150 | 11 | 6 | 1.4 | - | 230 |
| | | | | | | | | | | | | C-P | 1800 | 400 | 60 | -130 | 135 | 11 | 8 | 1.7 | - | 178 |
| $\begin{aligned} & \text { HK257 } \\ & \text { HK2578 } \end{aligned}$ | 75 | 4000 | 25 | 750 | 7510 | 5 | 7.5 | 13.8 | 0.04 | 6.7 | 789 | ${ }^{\text {C. }}$ T | 2000 | 500 | 60 | -200 | 150 | 11 | 6 | 1.4 | - | 230 |
| | | | | | | | | | | | | C.P | 1800 | 400 | 60 | -130 | 135 | 11 | 8 | 1.7 | - | 178 |
| PL-6549 | 75 | 2000 | 10 | 600 | 175 | 6 | 3.5 | 7.5 | 0.09 | 3.4 | Fig. 14 | C. ${ }^{\text {P }}$ | 2000 | 400 | 70 | -125 | 150 | 12 | 5 | 0.8 | - | 270 |
| | | | | | | | | | | | | C.P | 2000 | 400 | 70 | -140 | 125 | 15 | 4 | 0.7 | - | 200 |
| | | | | | | | | | | | | $\mathrm{AB}_{3}{ }^{4}$ | 2000 | 400 | 70 | -85 | 30/225 | 0.1/10 | 1800 | 0.057 | 19 K | 325 |
| 828 | 80 | 2000 | 23 | 750 | 30 | 10 | 3.25 | 13.5 | 0.05 | 14.5 | 5. | C.T | 1500 | 400 | 75 | -100 | 180 | 28 | 12 | 2.2 | - | 200 |
| | | | | | | | | | | | | C.P | 1250 | 400 | 75 | -140 | 160 | 28 | 12 | 27 | - | 150 |
| | | | | | | | | | | | | $A B_{1}{ }^{4}$ | 2000 | 750 | 60 | -120 | 50/270 | 2,60 | 240 | 0 | 18.5K | 385 |
| $\begin{aligned} & 7270 \\ & 7271 \end{aligned}$ | 80 | 1350 | - | 425 | 175 | 6.3 | 3.1 | 8 | 0.4 | 0.14 | Fig. 84 | C.T | 850 | 400 | - | -100 | 275 | 15 | 8 | 10 | - | 135 |
| | | | | | | 13.5 | 1.25 | | | | | ${ }^{\text {A }}$, | 665 | 400 | - | -119 | 220 | 15 | δ | 10 | - | 85 |
| 68169 | 115 | 1000 | 4.5 | 300 | 400 | | | 14 | 0.085 | 0.015 | Fig. 77 | C.T.O | 900 | 300 | - | -30 | 170 | 1 | 10 | 3 | - | 80 |
| | | | | | | 6.3 | 2.1 | | | | | C.P | 700 | 250 | - | - 50 | 130 | 10 | 10 | 3 | - | 45 |
| 6884 | | | | | | | | | | | | $A B_{1}{ }^{6}$ | 850 | 300. | - | -15 | 80/200 | 0/20 | $30 \cdot$ | 0 | 7 K | 80 |
| | | | | | | 26.5 | 0.52 | | | | | $\mathrm{AB}^{4}{ }^{4}$ | 850 | 300 | - | -15 | 80/355 | 0/25 | 46° | 0.3 | 3.98K | 140 |
| 81313 | 125 | 2500 | 20 | 800 | 30 | 10 | 5 | 16.3 | 0.25 | 14 | 58A | C.T.O | 1250 | 300 | 0 | -75 | 180 | 35 | 12 | 1.7 | - | 170 |
| | | | | | | | | | | | | | 2250 | 400 | 0 | -155 | 220 | 40 | 15 | 4 | - | 375 |
| | | | | | | | | | | | | | 1250 | 300 | 0 | -160. | 150 | 35 | 13 | 2.9 | - | 140 |
| | | | | | | | | | | | | C'P | 2000 | 350 | 0 | -175 | 200 | 40 | 16 | 4.3 | - | 300 |
| | | | | | | | | | | | | $A^{4} \mathrm{~B}^{6}$ | 2000 | 750 | 0 | -90 | 40,315 | 1.5/58 | $230{ }^{\circ}$ | 0.17 | 16 K | 455 |
| | | | | | | | | | | | | | 2500 | 750 | 0 | -95 | 35/360 | 1.255 | 235* | 0.35 | 17K | 650 |
| $\begin{aligned} & 4-125 A^{13} \\ & 4021 \\ & 6155 \end{aligned}$ | 125 | 3000 | 20 | 600 | 120 | 5 | 6.5 | 10.8 | 0.07 | 3.1 | 58K | C.T.O | 2000 | 350 | - | -100 | 200 | 50 | 12 | 2.8 | - | 275 |
| | | | | | | | | | | | | | 3000 | 350 | - | -150 | 167 | 30 | 9 | 2.5 | - | 375 |
| | | | | | | | | | | | | | 2000 | 350 | - | -220 | 150 | 33 | 10 | 3.8 | - | 225 |
| | | | | | | | | | | | | C.P | 2500 | 350 | - | -210 | 152 | 30 | 9 | 3.3 | - | 300 |
| | | | | | | | | | | | | $A_{8}{ }^{\text {b }}$ | 2500 | 350 | - | -43 | 93/260 | $0 / 6$ | 178 | 1.0 | 22K | 400 |
| | | | | | | | | | | | | $A B_{1}{ }^{\text {b }}$ | 2500 | 600 | - | -96 | 50232 | . 38.5 | 1920 | 0 | 20.3 K | 330 |
| | | | | | | | | | | | | GG | 2000 | 0 | - | 0 | 10/10517 | 3017 | 5517 | 16^{17} | 10.5 K | 145 |
| 4E27A/ | | | | | | | | | | | 78M | C.T | 3000 | 500 | 60 | -200. | 167 | 5 | 6 | 1.6 | - | 375 |
| 5-1258 | 125 | 4000 | 20 - | 750 | 75 | 5 | 7.5 | 10.5 | 0.08 | 4.7 | 78 m | C.T | 1000 | 750 | 0 | -170 | 160 | 21 | 3 | 0.6 | - | 115 |
| | | | | | | | | | | | | C.T | 2000 | 500 | 40 | -90 | 160 | 45 | 12 | 2 | - | 210 |
| 803 | 125 | 2000 | 30 | 600 | 20 | 10 | 5 | 17.5 | 0.15 | 29 | 5 | C. ${ }^{\text {P }}$ | 1600 | 40 | 100 | -80 | 150 | 45 | 25 | 5 | - | 155 |
| 7094 | 125 | 2000 | 20 | 400 | 60 | 6.3 | 3.2 | 9.0 | 0.5 | 1.8 | Fig. 82 | ${ }^{\text {C-T }}$ | 1500 | 400 | - | -100 | 330 | 20 | 5 | 4 | - - | 340 |
| | | | | | | | | | | | | C.P | 1200 | 430 | - | -130 | 275 | 20 | 5 | 5 | - | 240 |
| | | | | | | | | | | | | ${ }^{\text {A }} \mathrm{B}_{1}$ | 2600. | P\% | - | -65 | 60400 | - | $120{ }^{\circ}$ | 0 | 12 K | 560 |
| | $150{ }^{\circ}$ | 1250 | 12 | 400 | 500 | 6 | 2.6 | 15.5 | 0.03 | 4.5 | Fig. 75 | C.T.O | 1250 | 40 | - | -90 | 200 | 20 | 10 | 0.8 | - | 195 |
| 4×150A | | | | | | | | | | | | C.P | 1000 | 250 | - | -105 | 200 | 20 | 15 | 2 | - | 140 |
| $4 \times 150{ }^{15}$ | | | | | | 2.5 | 6.25 | 27 | 0.035 | 4.5 | | 488^{4} | 1250 | 300 | - | -44 | 475 | $0 / 65$ | 1000 | 0.15 | 5.6K | 425 |
| $\begin{aligned} & \text { 4-250A } 13 \\ & \text { 5D22 } \\ & 6156 \end{aligned}$ | 250 ${ }^{\circ}$ | 4000 | 35 | 600 | | | | | | | | C.T.O | 2500 | 500 | - | -150 | 300 | 60 | 9 | 1.7 | - | 575 |
| | | | | | | | | | | | | cro | 3000 | 500 | - | - 180 | 345 | 60 | 10 | 2.6 | - | 800 |
| | | | | | | | | | | | 58K | C.P | 2500 | 400 | - | -200 | 200 | 30 | 9 | 2.2 | - | 375 |
| | | | | | 110 | 5 | 14.5 | 12.7 | 0.12 | 4.5 | $5 . \mathrm{K}$ | CP | 3000 | 400 | - | -310 | 225 | 30 | 9 | 3.2 | - | 510 |
| | | | | | | | | | | | | $A B 3^{\text {a }}$ | 2000 | 300 | - | -48 | $510^{\prime \prime}$ | 0/26 | $198{ }^{\circ}$ | 5.57 | 8K | 650 |
| | | | | | | | | | | | | $A B_{1}{ }^{\text {c }}$ | 2500 | 600 | - | - 110 | 4307 | 0.3/13 | $180{ }^{\circ}$ | 0 | 11.4K | 625 |
| | | | | | | | | | | | | C.I.O | 2000 | 250 | - | -90 | 250 | 25 | 27 | 2.8 | - | 410 |
| 4×2508 | 250* | 2000 | 12 | 400 | 175 | 6 | 2.1 | 18.5 | 0.04 | 4.7 | Fig. 75 | C.P | 1500 | 250 | - | -100 | 200 | 25 | 17 | 2.1 | - | 250 |
| | | | | | | | | | | | | $A B_{1}{ }^{\text {c }}$ | 2000 | 350 | - | -50 | 5007 | 30^{7} | 1008 | 0 | 8.26 K | 650 |
| 7034/9 | | | | | | | | | | | | C.T.O | 2000 | 250 | - | -88 | 250 | 24 | 8 | 2.5 | - | 370 |
| $4 \times 150 A$ | 250 | 2000 | 12 | 300 | | 6 | 2.6 | 16 | 0.03 | 4.4 | | C.P | 1600 | 250 | - | - 118 | 200 | 23 | 5 | 3 | - | 230 |
| 7035/13 | | | | | 150 | | | 16 | 0.03 | 4.4 | Fig. 75 | $A B^{4}{ }^{6}$ | 2000 | 300 | - | - 50 | 100/500 | U/36 | 100° | 0.2 | 8.1 K | 630 |
| 4×1500 | 250 | 2000 | 12 | 400 | | 26.5 | 0.58 | | | | | $A B_{1}{ }^{\text {d }}$ | 2000 | 300 | - | - 50 | 100/470 | 0/36 | $100{ }^{\circ}$ | 0 | 8.76 K | 580 |
| | | | | | | | | | | | | C. T | 2000 | 250 | - | -90 | 250 | 25 | 27 | 28 | - | 410 |
| 4CX- | 300* | 2000 | 12 | 400 | 500 | 6 | 2.75 | 29.5 | 0.04 | 4.8 | - | C.P | . 1500 | 250 | - | -100 | 200 | 25 | 17 | 2.1 | - | 250 |
| | | | | | | | | | | | | $A B_{1}{ }^{\text {b }}$ | 2000 | 350 | - | -50 | 5007 | 30^{7} | $100{ }^{\circ}$ | 0 | 8.26K | 650 |
| | | | | | | | | | | | | C.T.C.P. | , 4000 | 300 | \cdots | -170 | 270 | 22.5 | 10 | 10 | - | 720 |
| 4-400A | $40{ }^{\circ}$ | 4000 | 35 | 600 | 110 | 5 | 14.5 | 12.5 | 0.12 | 4.7 | 56K | GG | 2500 | 0 | - | 0 | 80/27017 | 5517 | 10017 | 3817 | 4.0K | 325 |
| | | | | | | | | | | | | C.T | 3000 | 509 | - | -150 | 700 | 146 | 38 | 11 | - | 1430 |
| | | | | | | | | | | | | C.P | 3000 | 500 | - | -200 | 600 | 145 | 36 | 12 | - | 1350 |
| 4-1000A | 1000 | 6000 | 75 | 1000 | - | 7.5 | 21 | 27.2 | . 24 | 7.6 | - | $A B_{2}$ | 4000 | 500 | - | -60 | 300/1200 | 0/95 | - | 11 | 7K | 3000 |
| | | | | | | | | | | | | GG | 3000 | 0 | - | 0 | 100/70017 | 10517 | 17017 | 13017 | 2.5K | 1475 |
| | | | | | | | | | | | | | 2000 | 325 | - | -55 | 500:2000 | -4/60 | - | - | 2.8 K | 2160 |
| 4CX1000A | 1000 | 3000 | 12 | 400 | - | 6 | 12.5 | 35 | . 005 | 12 | - | $A B_{1}$ | 2500 | 325 | - | - 55 | 500/2009 | -4/80 | - | - | 3.1K | 2920 |
| | | | | | | | | | | | | | 3000 | 325 | - | - 55 | 500'1800 | -4 60 | - | - | $3.85 k$ | 3360 |
| | | | | | | | | | | | | | 2000 | 400 | 75 | -150 | 725 | 44 | 22 | 4.1 | - | 1110 |
| | | | | | | | | | | | | C.T | 2500 | 500 | 75 | -175 | 960 | 64 | 31 | 6.8 | - | 1870 |
| | | | | | | | | | . 09 | 18 | - | | 3000 | 500 | 75 | -175 | 900 | 56 | 24 | 4.8 | -- | 2170 |
| PL- 172 | 1000 | 3000 | 35 | 600 | - | 6 | 7.8 | 38 | . 09 | 18 | - | | 2000 | 500 | 75 | - 110 | 400/1600 | 20/90 | 210 | - | 2.65 K | 1820 |
| | | | | | | | | | | | | $A B_{1}$ | 2500 | 500 | 75 | - 110 | 440/1600 | 2085 | 2100 | - | 3.5K | 310 |
| | | | | | | | | | | | | | 3000 | 500 | 75 | -115 | 440/1509 | 10/75 | 200° | - | 4.6K | 2680 |

1 Grid.resistor.
2 Doubler to 175 Mc .
3 Duol tube. Volues for both sections, in push-pull. Interelectroda copacitances, however, ore for eoch section.
Tripler 10175 Mc
${ }^{5}$ filoment limited to intermitrent operation.

- Volues ore for twa tubes in push-pull.

7 Max.-signol value.

- Pook grid-to-grid ol. volts.
- Forced-oir cooling required.
${ }^{10}$ Two tubes triode connected, G_{2} to G_{1} through 20 K al. input to G_{2}.
11 Tripler to 200 Mc .
${ }^{12}$ Typical Operation of 175 Mc .

13 Lineor-omplifier tube-operotion dato for single-sideband in
Chop. 11.
$1 \& \mathrm{KEY}$ TO CLASS. Of-SERVICE AbBreviations
$A B_{1}=$ Closs-A B_{1} push-pull o.f. modulotor.
$A B_{2}=A B_{2}$ push-pull o.f. modulotor-
$\mathrm{B}=$ Closs -B push.pull of. modulotor.
C- $\mathrm{M}=$ Frequency multiplier.
$C \cdot P=$ Closs $-C$ plote-moduloted telephone.
$\mathrm{C}-\mathrm{T}=$ Closs-C teiegraph.
$\mathrm{C} \cdot \mathrm{T} \cdot \mathrm{O}=$ Closs-C omplifier-ose.
GG $=$ Grounded-grid lgrid \& scraon connected togatherl.
is No Closs 8 data ovailable.
14 HK 2578120 Mc . full roting.
17 Single tone.

Type ${ }^{4}$	Healer		Base	Anode No. 2 Voltage	Anode No. 1 Volfege'	Anode No. 3 Voltage	Cut-off Grid Voltage ${ }^{2}$	$\begin{aligned} & \text { Deflection } \\ & \text { Avg. Volts } D C / \text { Inch } \end{aligned}$	
	Volts	Amp.						$\mathrm{D}_{1} \mathrm{D}_{\mathbf{2}}$	D ${ }_{3} \mathrm{D}_{4}$
1EP1-2-11	6.3	0.6	117	1000	100/300	-	-14/-42	210/310	240/350
2AP1A	6.3	0.6	111	1000	250	-	$-30 /-90$	230	196
2BP1-11	6.3	0.6	12 E	2000	300/560	-	-135	270	174
3ACP1-7-11	6.3	0.6	141	2000	545	4000	-45/-75	180/220	. $133 / 163$
3AP1A	2.5	2.1	7CE	1500	430	-	-25/-75	114	109
3EP1-4-11	6.3	0.6	14A	2000	575	-	$-30 /-90$	200	148
3BP1A			146						
3 FP7	6.3	0.6		2000	575	4000	$-30 /-90$	250	180
3FP7A			14.						
3罒1-4-5-11	6.3	0.6	11A	1500	350	-	-25/-75	120	105
3GP1A-3GP4A	6.3	0.6	11N	1500	245/437	-	-25/-75	96/144	84/126
3JP1-2-4-7-11-12	6.3	0.6	145	2000	400/690	4000	$-30 /-90$	170/230	125/270
3JP1A-7A-114	6.3	0.6	141	2000	400/690	4000	-45/-75	180/220	133/163
3KP1-4-11	6.3	0.6	11 M	2000	320/600	-	-0/-90	100/136	78/104
$3{ }^{3}{ }^{\text {3P13 }}$	6.3	0.8	12F	2000	400/700	-	-126	230/290	220/280
3RP1-4-3RP1A	6.3	0.6	12E	2000	330/820	-	-135	146/198	104/140
3SP1-4.7	6.3	0.6	12E	2000	330/620	-	$-28 /-135$	146/198	104/140
3UP1	6.3	0.6	12F	2000	320/620	-	-126	240/310	232/296
3WP1-2-11	6.3	0.6	12T	2000	330/620	-	-60/-100	83/101	57/70
5ABP1-7-11	6.3	0.6	148	2000	400/690	4000	-52/-87	26/34	18/24
5ADP1-7-11	6.3	0.6	145	1500	300/515	3000	$-34 /-56$	40/50	30.5/37.5
SAJP1	6.3	0.8	Fig. 78	500	400/900	6000	$-30 /-60$	230	230
SAMP I	6.3	0.6	14 U	2500	0/300	-	-34/-56	40/50	20/25
SAOP1	6.3	0.6	146	2500	0/300	-	-34/-56	40/50	31.5/38.5
SATP1-2-7-11	6.3	0.6	14V	6000	0/700	-	$-34 /-56$	94/116	34/42
5BP1-1802-P1-2-4-5-11	6.3	0.6	11A	2000	425	-	-20/-60	84	76
5BP1A	6.3	0.6	11 N	2000	450	-	$-20 /-60$	84	76
58P7A	6.3	0.6	11 N	2000	375/560	-	$-20 /-60$	70/98	63/89
5CP1-2-4-5-7-11	6.3	0.6	148	2000	575	4000	$-30 /-90$	92	78
SCP1A	6.3	0.6	143	200			-30/-9		
5CP1B-28-78-118	6.3	0.6	148	2000	400/690	4000	-45/-75	$83 / 101$	70/86
5CP7A-11A-12	6.3	0.6	141	2000	575	4000	$-30 /-90$	92	74
5GP1	6.3	0.6	11A	2000	425	-	-24/-56	36	72
5HP1-4	6.3	0.6	11A	2000	425	-	-20/-60	84.8	77
5HP1A	6.3	0.6	11N	2000	450	-	-20/-60	84	76
5JP1A-4A	6.3	0.6	115	2000	333/630	4000	-45/-105	77/115	77/115
5LP1A-4A	63	0.6	118	2000	376/633	4000	$-30 /-90$	83/124	72/108
5MP1-4-5-11	2.5	2.1	7AN	1500	375	-	-15/-45	66	60
5NP1-4	6.3	0.6	11A	2000	450	-	$-20 /-60$	84	76
$5 \overline{\text { 5P1A-4A }}$	6.3	0.6	14P	2000	362/695	20000	$-30 /-90$	140/210	131/197
5SP1-4	6.3	0.6	14K	2000	363/695	4000	$-30 /-90$	74/110	62/94
SUP1.7-11	6.3	0.6	12E	2000	340/360	-	-90	56/77	46/62
5VP7	6.3	0.6	11N	2000	315/562	-	-20/-60	70/98	63/89
5XP1	6.3	0.6	14P	2000	362/695	20000	$-30 /-90$	140/210	46/68
5XP1A-2A-11A	6.3	0.6	14 P	2000	362/695	12000	-45/-75	130/159	42/52
5YP1	6.3	0.6	140	2000	541/1040	6000	-45/-135	108/162	36/54
7EP4	6.3	0.6	11 N	3000	546/858	-	$-43 /-100$	106/158	91/137
$7 \mathrm{GP4}{ }^{3}$	6.3	0.6	14G	3000	810/1200	-	-36/-84	93/123	75/102
7JP1-P4-P7	6.3	0.6	14R	6000	1620/2400	-	$-72 /-168$	186/246	150/204
7VPI	6.3	0.6	14R	3000	800/1200	-	-84	93/123	75/102
24XH	6.3	0.6	Fig. 1	600	120	-	-60	$0.14{ }^{5}$	0.16^{5}
$902-\mathrm{A}$	6.3	0.6	8CD	600	150	-	$-30 /-90$	139	117
908 -A	2.5	2.1	7CE	1500	430	-	-25/-75	114	109
2002	6.3	0.6	Fig. 1	600	120	-	-	0.16^{5}	$0.17{ }^{5}$
2005	2.5	0.6	Fig. 14	2000	1000	200	-35	0.55	$0.56{ }^{5}$
18 ogey value for focus. Voltage should be adjustable about value shown. 28 ios for visual extinction of undeflecred spor. Voltage should be adjustable from 0 to the higher value shown. ${ }^{2}$ Discontinuad. - Cothode connected to Pin 7. 3 In mm . /volt d.e. - Phosphor characteristics lsee next columnl.				Desig		persiston dium. \qquad n medium dium. short. short. . ng.	Applicalion Oscilloscop Special osci Television. Pholographi Radar indica Oscilioscop Radar indica	ding of high	traces.

No.	Type	Maximum Ratings				Characteristics			Typical Operation Common Emitter Cirsuit					
		Diss. Mw.	Collector Ma.	Volts	Emiller Ma.	Noise Figure Db.	Input Res. Ohms	Freq. Cutoff Mc.	Use	Collector		Power Gain Db.	Output Load R. Ohms	Power Oulput Mw.
										Mo.	Volts			
2N34	PT ${ }^{\text {P }}$	50	50	-25	10	18	1000	0.6	Audio ${ }^{2}$	-1.0	-6	40	30k	125
2N35	NPIN	50	100	25	-10	16	1000	08	Audio ${ }^{\text {a }}$	1.0	6	40	30k	125
2N43	PNP	1.55	-50	-45	50	6	-	1.3	Audio	-1.0	-5	39	-	-
2N44	PNP	155	- 50	-45	50	6	-	1.0	Audio	-1.0	-5	43	-	-
2N78	NPN	75	20	15	-20	12	-	6.0	I.F.-R,F.	-	-	30	-	-
2N94	NPN	50	50	20	-	-	-	2.0	I.F.	0.5	6	24	100k	-
2N94A	NPN	50	50	20	-	15	-	5.0	1.F. R.F.	0.5	6	30	100k	-
2N107	PNP	50	-10	-12	10	22	700	0.6	-	-1.0	-5	38	30K	-
2N109	PNP	50	-35	-12	35	-	750	-	Audio ${ }^{2}$	-350	-4.5	30	200	75
2 N 123	PNP	100	-150	-20	150	-	-	7.5	Switching	-5.0	-15	-	-	-
2N139	PNP	35	-15	-16	15	4.5	500	-	I.f.	-1.0	-9	30	30K	-
2N140	PNP	35	-15	-16	15	-	700	7.0	I.F. R.F.	-0.4	-9	27	75K	-
2N155	PNP	8500	-3000	-30	-	--	20	0.3	Audio ${ }^{2}$	-360.0	-14	30	-	93
2N167	NPN	65	75	30	-	-	-	8.0	T.F.R.R.	-	-	-	-	-
2N169A	NPN	55	20	25	-20	-	500	5.0	I.F. R.F.	1.0	5	27	15k	-
2N175	PNP	20	-2	-10	2	6	3570	-	Audio	-0.5	-4	43	-	-
2N218	PINP	35	-15	-10	15	45	500	-	1 IF.	-1.0	-9	30	30k	-
2N219	PNP	35	-15	-16	15	--	700	7.0	I.F. R.F.	-0.4	-9	27	75K	-
2N233	NPN	50	100	10	-	-	-	2.0	I.F.	-	--	21	-	-
2N247	PNP	35	- 10	-35	10	8	\cdots	30.0	R.F.	-1.0	-9	24	-	-
2N255	PAPP	1500	-3000	-15	-	-	-	0.2	Audio ${ }^{2}$	- 500.0	-6	27	-	53
2N156	PNP	1500	-3000	-30	-	-	-	0.2	Audio ${ }^{2}$	- 500.0	-12	27	-	103
2N170	PNiP	150	-75	-12	-75	-	-	-	Audio ${ }^{\text {a }}$	-	-12	32	-	500
2N174	PNP	35	-10	-35	10	8	-	30.0	R.F.	-1.0	-9	45	-	-
2N178	PNP	-	-13000	- 50	13000	-	-	. 004	Audio ${ }^{2}$	-	-12	24	-	-
2N292	NPN	65	20	15	-	-	-	6.0	I.F. . R.F.	-	-	25	-	-
2N301	PNP	7500	-1000	-20	1000	-	-	$-$	Audio ${ }^{\text {a }}$	-	-14.4	30	-	123
2N301A	PNP	7500	-1000	-30	1000	-	\cdots	-	Audio ${ }^{2}$	-	-14.4	30	-	12^{3}
2N306	NPN	50	-	20		-	-	0.6	Audio	-	-	-	-	-
2 N 307	PNP	10000	-1000	-35	-	-	-	0.3	Audio	-	-	30	-	-
2N331	PT. P	200	-200	-30	200	9	-.	1.0	Audio	-1.0	-6	44	-	-
2N351	PNP	10000	-3000	-40	3000	-		-	Audio ${ }^{2}$	-3000	-40	-	-	-
2N370	Prisp	80	-10	-20	10	-	1750	30.0	R.F.	-1.0	-12	12.5	-	-
2N371	Pfovp	87	-10	-20	10	-	-	30.0	R F.	-1.0	- 12	-	-	-
$2 \mathrm{N372}$	Pr d $P^{\text {P }}$	80	-10	-20	10	-	100	300	Maxer	-1.0	-12	17	IIK	-
2N373	Prid P	83	-10	-25	10	-	2200	300	I.F.	-1.0	- 12	40	-	-
2N374	PNP	80	- 10	-25	10	-	2600	30.0	Conv.	-1.0	- 12	40	-	-
2N376	PNP	10000	-3000	-30	3000	-	-	-	Audio ${ }^{2}$	-3000	-40	--	-	-
2N384	PNP	120	-10	-30	10	\sim	30	100.0	R.F.	-1.5	-12	15	-	-
2 N 407	PTr ${ }^{\text {Pr }}$	150	-70	-20	70	-	-	-	Audios	- 40	-9	33	800	160
2N411	Pris	80	-15	-13	15	\cdots	700	10.0	1.F.R.F.	-0.6	-9	32	-	-
2 N 412	PNP	80	-15	-13	15	-	700	10.0	I.F.-R.F.	-06	-9	32	-	-
2N428	PITP	150	-400	- 30	400	-	-	17.0	R.F.	-	\cdots	-	\cdots	-
2N441	PNP	-	13000	- 40	13000	-	-	. 005	Audıo ${ }^{2}$	-	-12	23	-	-
2N442	PT, P	-	13000	- 50	13000	-	-	. 005	Audio ${ }^{2}$	-	-12	23	-	-
2N499	PNP	75	-50	-30	50	-	-	250.0	R.F.	-	--	-	-	-
2N544	Pr.sp	80	-10	-18	10	-	2100	30.0	RF.	1.0	-12	30	-	-
2NS54	μ	-	-3000	-30	3000	-	-	-	Audio	--		-	-	-
2N561	H	59000	- 10000	-83	10000	\cdots	-	-	Audios	500	-28	35	150	10^{2}
2N586	Pr ${ }^{\text {P }}$	250	-250	-45	250	-	-	-	Switchiny	-	-	--	-	-
2 N 588	Frip	89	- 50	-18	50	-	-	200.0	RF.	--	*-	-	-	-
2N677	Pror	50000	-15000	- 50	-	-	-	-	Switching	-	-	60	-	-
2 N 1014	P! ! ${ }^{\text {P }}$	52000	-10000	-100	10000	-	-	-	Audio	--	-	-	-	-
2N1 102	TJPPV	18)	100	40	-100	-	500	-	Audio	-	-	-	-	-
2N1143	PNT	750	- 100	-30	100	-	-	480.0	R F	-	-	-	-	-
2N1225	PNP	120	-10	-30	10	-	30	1000	RF.	-1.5	-12	15	-	-
2N1266	PNP.	83	-	-10	-	-	-	-	I.F.	-	-	22	-	-
2N1396	PNP	120	-10	-30	10	-	30	100.0	RF.	-1.5	-12	is	-	-
2N1516	PNP	83	-10	-20	10	8	-	70	R.F.	-	-9	22	-	-
2N1517	PTNP	83	-10	-20	10	8	-	100	RF.	-	-6	10	-	-
$3{ }^{1} 25$	fti	23	-2	15	2	-	-	3 mog	PF	$=$	-	-	-	-
3N36	TET	30	30	7	-	\cdots	-	50.0	R.F.	-	-	-	-	-
3N37	TET	30	20	7	-	-	-	90.0	R.F.	-	-	-	-	-
A0.1	SB	10	-5	-45	-	-	-	30.0	R.F.	-	\cdots	-	-	-
CK722	Pr, P	18.	-10	-22	10	25	800	-	-	-1.0	-6	39	20K	-
CK768	Prap	--	-5	-10	\cdots	.	-	3.5	I.F. . R.F.	-1.0	-6	-	-	二
58100	S8	10	-5	-4.5	-	-	-	30.0	R.F.	-0.5	-3	-	25K	-
T-1832	PNP	60	-	-15	-	-	二	1000.0	V.HF AMP.	-	-	-	-	-
T-1833	PNP	60	-	-15	-	-	-	1000.0	VHF MIX.	-	-	-	-	-
T-1859	PNP	30	-	-15	-	-	-	600.0]VH.F.OSC.	-	-	-	-	-
		Commo	mitter circuid			Iwo tron	ers in Clos			Power 0	put wats			

- A bar, plus sign, or color dot denote the cathode end of cystal liodes Diode color code rings are grouped toward the cathade enct.
${ }^{3} \mathrm{Al}_{1}+1$ Volt
$3 A_{1}+4$ Volts.
4 Polority is such that the base is the oncde and the tip is the cathode, R-types have opposite polarity.

Jhe

Catalog Section

* 认 ふ

In the following pages is a catalog
file of products of the principal manufacturers and the principal distributors who serve the radio field: industrial, commercial, amateur. All firms whose advertising has been accepted for this section have met The American Radio Relay League's rigid standards for established integrity; their products and engineering methods have received the League's approval.

*
 38th EDITION 1961 * INDEX OF ADVERTISERS

CATALOG SECTION

The Radia Amateurid Handlaok

Page
Johnson Co., E. F. 16-19
Alden Products 54
Allied Radio Corp 49
American Radic Relay League 43-46
Amperex Electronics Corp. 40,41
Amphenol-Borg Electronics 83
Arrow Electronics, Inc. 69
Barker \& Williamson, Inc. 28, 29
Belden Mfg. Co. 38, 39
Birtcher Corp., The 84
Bonn Co., Lew 75
Burstein-Applebee Co 79
Collins Radio Co. 21-25
Communications Co., Inc. 80
Cosmos industries, Ins 66
Editors \& Engineers, LId. 77
Eico. 53
Eitel-McCullough, Inc. 33
Electro-Voice, Inc. (RME) 57
Elmar Electronics 73
E-Z Way Towers, Inc. 52
General Electric Co 62
Gonset Division 34, 35
Hallicrafters Co., The 3-9
Hammarlund Mfg. Co., Ine 55
Harrison Radio Corp 86
Harvey Radio Co. 63
Heath Co., The 32
Henry Radio Co. 67
Hy-Gain Antenna Products Co. 42
Illinois Condenser Co. 85
Illumitronic Engineering 81
Instructograph Co. 74
International Crystal Mig. Co., Inc. 36, 37
International Rectifier Corp. 48

Very Hot News from hallicrafters

Two great new kits... a complete, high-performance AM/CW station, from the world's most experienced designers of short wave equipment

HALLIKITS, we call them-a completely new concept of kit engineering that brings to your workshop, for the first time, these two outstanding advantages:
First, the unparalleled design experience of Hallicrafters' communications labora-

HT-40 TRANSMITTER, $\$ 79.95$
A perfect match for the handsome SX-140, both in quality and appearance. Hallicrafters' transmitter leadership is evident in every precisionengineered feature of this crystal-controlled 75 -watt beauty-features as important to oldtimers as they are to novices.

- FEATURES: You get excellent CW performance as well as AM. Full band switching, 80 through 6 meters. Enjoy easy tune-up and crisp, clean styling that has efficient operation as well as appearance in mind. Unit is fully metered, TVI filtered.
- SPECIFICATIONS: Maximum D.C.powerinput: 75 watts. Power output in excess of 35 watts CW, 30 wat ts peak AM phone.(Slightly less on 6 meters.) Frequency bands: 80,40 , $20,15,10$ and 6 meters.
- TUBES AND FUNCTIONS: 6DQ5 power output; 6CX8 crystal oscillator and driver; 12AX7 speech amplifier; 6 DE 7 modulator; silicon high voltage rectifiers.
- FRONT PaNEL: Function (AC off, tune, standby, AM, CW); Band Selector (80, 40, 20, 15, 10, 6); Drive control; Plate tuning, plate loading, Crystal-Y.F.O.; Grid Current; Meter; AC indicator light; RF output.
- REAR CHASSIS: Microphone gain; antenna co-ax connector; remote control terminals; AC power cord.

halli-kits tom (hallirafters
 Chicago 24, Illinois

tories; and second, production-line proof of "Constructability" before you buy.

Have a wonderful time! Save a bundle of money! End up with a station the most experienced amateur would be proud to call his own.

SX-140 RECEIVER, $\$ 94.95$
Doesn't it make sense to team up your skill with the experience of a company who has designed and built more high-performance receivers than any ot her in the world? Especially when the result is the lowest-priced amatear band receiver arailable?

- FEATURES: You get complete coverage of all amateur bands 80 through 6 meters, with extremely high sensitivity and sharp selectivity. Unit has RF stage; S-meter; antenna trimmer; and XTAL calibrator. Tuning ratio is 25 to 1 .
- CONTROLS: Tuning; Antenna Trimmer; Cal. Resel; Function (AC off, standby, AM, CW-SSB); Band Selector; Cal. on off; RF Gain; Auto Noise Limiter on/off; Selectivity /BFO; Audio Gain; phone jack; S-meter Adj.
- TUBES AND FUNCTIONS: 6AZ8 tuned RF amplifier and crystal calibrator; 6U\& oscillator and mixer; 6BA6 1650 kc . IF amplifier and BFO; 6 T δ 'A and detector, A.V.C., ANL and 1st audio; 6AW8A audio power amplifier and S-meter amplifier; (2) silicon high voltage rectifiers.

Both units are arailable fully uired, and tested. $S X-140$, $\$ 109.95$. HT-40, \$99.95.

New Standards of Performance FOR AM and CW and SSB Operation

Whichever mode you choose...
you speak with power, and authority, and clarity unmatched by any other amateur station...

Rugged as a boxer

SX-101A Receiver: Today's heavyweight champion, with technical features way ahead of its time. FEATURES: Complete coverage of $80,40,20.15$. 10 meter bands plus a 2 and 6 meter conv, band: Dual scale S-meter functions with AVC off. Special 10 Mc . position for WWV. Dual conversion. Exclusive Hallicrafters upper-lower sideband selection. Tee-notch filter. Full gear drive from tuning knob to gang condensers. $40: 1$ tuning knob ratio. 100 kc . evacuated marker crystal. Five steps of se. lectivity from 500 cycles to 5000 cycles, Direct coupled series noise limiter for improved noise reduction. Sensitivity-one microvolt or less on all amateur bands. 52 ohm antenna input. Antenna trimmer, Relay rack panel. Double spaced gang condenser.
FRONT PANEL CONTROLS: Main tuning knob.

Pointer reset, antenna trimmer, tee-notch frequency, tee-notch depth, sensitivity, band selector, volume, selectivity. BFO, response - (upper-lower-sideband AM-CW). AVC on/off, AVC fast/slow, ANL Cal. Rec./standby.
TUBES AND FUNCTIONS: 6DC6, R.F, amplifier6BY6. lat converter-1213Y7A. high frequency os-cillator-6BA6, 1650 kc . i.f. amplifier-12AT7. dual crystal controlled 2 ind conversion oscillator-6BA6. 2nd converter-61)C6 50.75 kc . i.f. amplifier-6BJ7. AM detector, A.N.I.. A.V.C.-6BY'6 SSB/CW de-tector-6SC7 |st audio amplifier \& B.F.O.-6K6, audio power output-6BA6. S-meter amplifier-6AU6, 100 hc crystal oscillator-OA2, voltage regulator5 Y3. rectifier.
PHYSICAL DATA: $20^{\prime \prime}$ wide, $1012^{\prime \prime}$ high and $16^{\prime \prime}$ deep-Pancl size $83 / 4^{\prime \prime} \times 19^{\prime \prime}$-weight approximately 7. Ibs. (Conforms to F.C.D.A. specificitions.)

World's cleanest signal,
 and three big new features!

HT-32B Transmitter: Now - Hallicrafters" famous "32" offers a major innovation in SSB generation, the heam-switching modulator, with greater carrier suppression stability than ever before. All other timeproven features of previous models plins C.T.O. direct reading in kc . and complete 10 -meter coverage miake the HT-32B the outstanding choice of experienced amateurs
FEATURES: Beam-deflection, high level sideband modulator for low-noise. high-stability signal, Hallicrafters' exclusive 5.0 mc . quartz crystal filter with sideband rejection of $50 \mathrm{~d} /$. or more: С.Т.О. direct reading in kilocycles to within / ke.: (0)-meter covcrage in four band-switched segments (calibration accuracy same as lower bands): It watts plate input (P.E.P. two-tone). Five band output (80, 40, 20, 15, 10 meters). All modes of transmission-CW. AM, S.S.B. Unwanted sideband down 50 db , or more. Both sidebands transmitted on A.M. Precision gear driven C.T.O. Exclusive Hallicrafters patented sideband selection. Logarithmic meter for accurately tuning and carricr level adjustment. Ideal CW keying and break-in operation. Push To Talk and full voice control system built in. Keying circuit brought out for teletype keyer.

FRONT PANEL CONTROLS, FUNCTIONS AND CONNECTIONS: Operation - power off, standby, Mox., Cal., Vox.-P.T.T. Audio level 0-10 R.F. Ievel 0-10. Final tuning 80, 40, 20, 15, 10 meters. Func-tion-Upper sideband, lower sideband. DSB. CW. Meter compression. Calibration level 0-10. Driver tuning 0,5 . Band selector-80, 40. 20, 15, 10 meters. High stability. gear driven V.F.O. Micro-phone Key, and Headphone monitor jacks.

TUBES AND FUNCTIONS: 2-6146 Power output amplifier. 6CB6 Variable frequency oscillator, 12BY7 R.F. driver. 6AHG 2nd Mixer. 6AH6 3rd Mixer, 6AB4 Crystal oscillator. 12AX7 Voice control. Audio Amp. 1?2 47 Audio Amp. and Carrier oscillator. 7360 Modulator, 12AT7 Sideband seleeting oscillator. 6AHG ist Mixer. $6 \wedge H 64.95 \mathrm{Mc}$. Amp. 6^U6 9.00 Amp. 5R4GY HV Rectificr, 5 V4G LV Rectifier. OA2 Voltage Regulator.

REAR CHASSIS: Co-ax antenna connector. FSK jack A.C. accessory outlet. Line fuse. Control connector ground stud AC power line cord. Cabinet $20^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high. and $17^{\prime \prime}$ decp. Approximate shipping weight 86 lbs . (Conforms to F.C.D.A. specifications.)

Big signal- effortless performance!

HT-33B Linear Amplifier: Bcautifully engineered with extra-heavyduty components, the HT-33B is conservatively rated at the maximum legal limit. You are guaranteed one of the big signals on the band, plus the effortless performance that means so much to efficiency and long life. (Conforms to F.C.D.A. specifications.)

FREQUENCY COVERAGE: Complete coverage of amateur bands; $80,40,20,15,10$ meters.
FEATURES: Rated conservatively at the maximum legal input. Third and fifth order distortion products down in excess of 30 db . Built-in r.f. output meter greatly simplifies tune-up. All important circuits metered. Maximum harmonic suppression obtained through pi-nctwork. Variable output loading. Protection of power supply assured by circuit breaker. HT-33B is a perfect match to Hallicrafters' famous HT-32 in size, appearance and drive requirements. CIRCUIT DETAILS: This power amplifier utilizes a PL-172A high efficiency pentode operating in class ABI. The tube is grid-driven across a non-inductive resistor, thus assuring the maximum stability under
all possible conditions. Band switching is accomplished by one knob which selects the proper inductance value for each band. The output circuit is a pi-network with an adjustable output capacitor, accommodating loads from 40 to 80 ohms. 2 pancl meters are provided: one is circuit switched to measure Grid current, screen current, plate voltage and R.F. output voltage. A second meter continuously monitors cathode current of the PL-172A.

TUBES: (1) PL-172A high power pentode; (2) 31328 rectifiers; (6) OA2 screen regulators.
FRONT PANEL CONTROLS: Meter selector; Filament switch; High Voltage switch; Bias adjustment; Band switch; Plate tuning; Plate loading.
PHYSICAL DATA: Gray and black steel cabinet (matches HT-32) with brushed chrome knob trim. Size: $83 / 4$ " $\times 19^{\prime \prime}$ (rclay rack panel). Shipping wt. approx. 130 lbs .
REAR CHASSIS: Co-ax input; co-ax ouput; filament and bias fuse; cutoff bias relay terminals; screen fuse; ground terminal.

R-47 Speaker

Specially designed for voice and SSB. Flat response from 300 to 2850 c.p.s. Input impedance: 3.2 ohms. Size: $51 / 2^{\prime \prime} \mathrm{x}$ $51 / 4^{\prime \prime} \times 31 / 2^{\prime \prime}$. Wt: $2^{1 / 2} \mathrm{lb}$.

HA. 1 T.O. Keyer

The "Stradivarius" of electronic keyers. Employs digital techniques; provides constant ratio of dot-to-space-to-dash over entire speed range. All timing circuits electronic. Plugin, vacuum-sealed, mercury-whetted keys transmitter and sidetone signal-dot speeds up to $100 / \mathrm{sec}$., life span over 10 billion operations. Monitor or sidetone may be heard via built-in speaker or receiver audio.

Hallicrafters brings you an entirely new class

The engineering team that developed the incomparable SX-101 and HT-32 now offers a precision rig that puts single sideband within reach of all

HT-37 Transmitter

The heart of the now-famous HT-32-the needed, basic performance charactertistics-is yours in this precision-engineered new AM/CW/SSB transmitter-and at a price we did not believe possible when we began designing it! Same power. Same rugged VFO construction, and identical VOX. You'll be amazed at the smooth. distinctive speech quality that's yours for the first time at moderate cost.

FEATURES: 144 watts plate input (P.E.P. twotone); five band output ($80,40,20,15.10$ meters); all modes of transmission-CW. AM. S.S.B.; unwanted sideband down 40 db . at 1 KC ; distortion products down 30 db . or more: carrier suppression down 50 db .; modern styling; instant CW Cal. from any mode; both sidebands transmitted on AM; precision V.F.O.; rugged heavy duty deluxe chassis: 52 ohm pi network output for harmonic suppression; dual range meter for accurate tuning and carrier level adjustment: ideal CW keying; full voice control system built in.
FRONT PANEL CONTROLS, FUNCTIONS, CON.

NECTIONS: Operation-(power off, standby, mox, cal, vox); Audio gain; R.F. level; Final tuning; Function-(upper sideband, lower sideband, DSB. CW); carrier balance; Calibration level; Driver tuning; Band selector V.F.O.; Microphone connector; Key jack.
TUBES AND FUNCTIONS: (2)-6146 Power output amplifiers; 6CB6 Variable frequency oscillator; 12BY7 R.F. driver; 6AH6 1st Mixer; 6AH6 2nd Mixer: 6AB4 Crystal oscillator; 12AX7 Voice control; 12AT7 Voice control; 6AL5 Voice control; 12AX7 Audio Amplifier; 12AT7 Audio amp and carrier Oscillator; 12AT7 Audio Modulator; (2)-12AT7 Balanced Modulators: 5R4GY HV Rectifier; 5V4G LV Rectifier; OA2 Voltage Regulator.
REAR CHASSIS: Co-ax antenna connector; Line fuse: Control connector; AC power line cord.

PHYSICAL DATA: Matching unit for SX-111; cabinet is gray steel with brushed chrome trim and knobs. Size: $9^{\prime \prime}$ high $\times 191 / 4^{\prime \prime}$ wide $\times 151 / 2^{\prime \prime}$ deep. Shipping weight: approximately 80 lbs .

SX-111 Receiver

Here's the receiver you've been waiting for-a real thoroughbred that retains the essential performance characteristics of the renowned SX101, but at a price that can put it in your shack tomorrow! Rugged . . . dependable . . . beautifully styled, the new SX-111 is outstanding evidence that Hallicrafters aim is always to bring you the finest equipment at the lowest possible price.
FREQUENCY COVERAGE: Complete coverage of $80,40,20,15$ and 10 meters in five separate bands. Sixth band is tunable to 10 Mc . for crystal calibrator calibration with WWV.
FEATURES: AM/CW/SSB reception. Dual conversion, Hallicrafters' exclusive selectable sideband operation. Crystal-controlled 2 nd converter. Tee-notch filter. Calibrated S-meter. Electrical calibration adjustment. Series noise limiter. Builtin crystal calibrator. Exceptional electrical and mechanical stability. Large slide-rule dial. Envelope detector for AM and product detector for SSB/CW.
SENSITIVITY: One microvolt on all bands, with 5 steps of selectivity from 500 to 5,000 c.p.s. TUNING MECHANISM: New friction-and-gear type with 48:1 tuning ratio. Virtually eliminates backlash.
CONTROLS: Tuning; CAL Reset; Antenna Trimmer; T-notch Frequency; RF Gain; Audio Gain; Band Selector; Function (off/on, standby, upper or lower sideband, calibrate); AVC off/on; BFO off/on; ANL off/on; Selectivity.
TUBES: 12 tubes plus voltage regulator and rectifier. 6DC6 RF Amplifier; 6BY6 1st converter; 6C4 Oscillator; 6BA6 2nd converter; 12AT7 Dual crystal controlled 2nd conversion oscillator; 6DC6 1650 kc . i.f. amplifier; 6DC6 i.f. amplifier (50 kc .) ; 6BJ7 AVC-noise limiter AM detector; 12AX7 1 st audio and BFO; 6AQ5 Power output; 6BY6 Product detector; 6AU6 Crystal calibrator; 5 Y 3 Rectifier; OA2 Voltage regulator.
POWER SUPPLY: $105-125$ volts, $50-60$ cycle AC. PHYSICAL DATA: Size: $183 / 4^{\prime \prime}$ wide x $101 / 4^{\prime \prime}$ deep $\mathrm{x} 83 / 4^{\prime \prime}$ high. Attractive gray steel cabinet with brushed chrome trim. Shipping wt. approximately
40 lbs . 40 lbs.

R-48 SPEAKER (See photo with HT-37 and SX-111). Latest design, eliptical assembly. 3.16 oz. Alnico V magnet. Fidelity switch for music or voice. 3.2 ohm input impedance. $61 / 2^{\prime \prime} \times 131 / 4^{\prime \prime}$ x $8 \frac{1}{4} 4^{\prime \prime}$.

The last word in features and design!

SX-110 Receiver

Never before have so many outstanding, wanted features been incorporated in an all-purpose re-ceiver-features developed originally for the highest-priced scts.
FREQUENCY COVERAGE: Broadcast Band 5401680 kc plus three short wave bands covers 1680 $\mathrm{kc}-34 \mathrm{mc}$.
FEATURES: Slide rule bandspread dial calibrated for $80,40,20.15$ and 10 meter amateur bands and 11 meter citizens' band. Separate bandspread tuning condenser, crystal filter, antenna trimmer. " S " Meter, one r-f, two i-f stages.
INTERMEDIATE FREQUENCY: 455 kc .
TUNING ASSEMBLY AND DIAL DRIVE MECH-
ANISM: Ganged, 3 section tuning capacitor assembly with electrical bandspread. Circular main tuning dial is calibrated in megacycles and has $0-100$ logging scale.
AUDIO OUTPUT IMPEDANCE: 3.2 and 500 ohms. TUBE COMPLEMENT: Seven tubes plus one rectifier: 6SG7. r-f amplifier - 6SA7. converter 6SG7. 1st i-f amplifier-6SK7. 2nd i-f amplifier$6 \mathrm{SC7}$, BFO and audio amplifier-6K6GT. Audio output-6H6, ANL-AVC-detector-6Y3GT, rectifier.

AUDIO POWER OUTPUT: 2 watts.

POWER SUPPLY: 105/125 V., 50/60 cycle AC. -PHYSICAL DATA: Gray steel cabinet with brushed chrome trim. Size $183 / 4^{\prime \prime}$ wide $\times 8^{\prime \prime}$ high $\times 101 / 4^{\prime \prime}$ deep. Shipping weight approximately 32 Jbs.

S-108 Receiver

Same basic performance as SX-110 (above) but eliminates S-Meter, antenna trimmer and crystal filter, This outstanding new receiver serves many needs, has a built-in speaker.

The "look" of performance is written all over it!

The clean, compact beauty of this new, precisionengineered receiver is more than skin deep! Newly designed throughout. the S-120 brings you superlative performance on three short wave bands plus standard broadcast, and a new three-way antenna system for maximum flexibility. The finest buy available in a low-cost receiver!
FEATURES: Coverage of $540-1650 \mathrm{kc}$. plus short wave from 1650 kc . through 31 mc .; Electrical bandspread; slide-rule dial with imprinted guide to frequencies of foreign, gov't., aviation, etc.; Threeway antenna system-built-in, high-gain ferrite loop for AM, $45^{\prime \prime}$ collapsible whip, plus terminals for long wire or doublet antenna, all bands; Front panel
B.F.O./sensitivity control; built-in $5^{\prime \prime}$ speaker; frontpanel headphone jack automatically disables speaker.
FRONT PANEL CONTROLS: Main Tuning: Bandspread Tuning; Band Switch; Audio Vol. AC Off; B.F.O./Sensitivity.

TUBES AND FUNCTIONS: 12BE6 converter; 12BA6 I.F. amplifier/B.F.O.; 12AV6 1st audio, AVC and detector; 50C5 power amplifier. Selenium rectifier. Thermistor heater regulator. Two dial lamps. 105 125 V AC/DC at 30 watts. U/L listed.
PHYSICAL DATA: Gray steel cabinet with bright chrome trim. black dial. Size: $13 \frac{1}{2 \prime \prime}$ " wide by $57 / 8^{\prime \prime}$ high by $83 / 4^{\prime \prime}$ deep. Shipping wt.: $11^{3 / 4}$ lbs.

SX-100 Most versatile receiver of all!

FREQUENCY COVERAGE: $540 \mathrm{kc} .-34 \mathrm{Mc}-$ Band 1 :
$538 \mathrm{kc} .-1580 \mathrm{kc}$.-Band 2: $1720 \mathrm{kc} .-4.9 \mathrm{Mc}-$ Band 3 : 4.6 Mc-13 Mc-Band 4: $12 \mathrm{Mc}-34$ Mc. Bandspread dial is calibrated for the $80,40,20,15$ and 10 meter amatcur bands. Intermediate frequency: 1650 kc . and 51 kc .
TYPE OF SIGNALS: AM-CW-SSB.
FEATURES: Selectable side band operation. "TeeNotch" Filter. Notch depth control. Antenna trimmer. 100 kc . crystal calibrator. Logging dials. Full precision gear drive. Second conversion oscillator crystal controlled - temperature compensation of high frequency oscillator. Phono jack. Socket for D.C. and remote control.

CONTROLS: Pitch control, reception, stand-by, phone jack, response control (upper and lower side band selector), antenna trimmer, notch depth, calibrator on/off, sensitivity, band selector, volume,
tuning, AVC on/off, noise limiter on/off, bandspread. selectivity.
AUDIO OUTPUT IMPEDANCE: 3.2/500 ohms: AUDIO POWER OUTPUT: 1.5 watts with 10% or less distortion. POWER SUPPLY: $105 / 125$ V., 50/60 cycle AC.
TUBE COMPLEMENT: 6CB6 R.F. amplifier; 6BY6, 1st convertor; 6AH6. H.F. oscillator; 6BA6. 2nd converter: 12AT7, Dual crystal second converters; (2) $6 \mathrm{BA} 6,50 \mathrm{kc}$. and 1650 kc . i.f. amplifiers: 6 BJ 7 , AVC-DET-ANL: 6SC7, 1 st audio and BFO; 6K6, Power output: 5Y3. Rectifier; OA2, Voltage regulator; 6 C 4 , i-f amplifier-(51 kc) ; 6AU6, 100 kc . XTAL marker.
PHYSICAL DATA: Gray black steel cabinet with brushed chrome knob trim, patterned silver back plate and red pointers. Piano hinge top. Size $183 / 8^{\prime \prime}$ wide $\times 81 / 2^{\prime \prime}$ high $\times 105 / 8^{\prime \prime}$ deep. Shipping weight approximately 42 lbs . (U.L. approved).

World's most popular short wave receiver!

MODEL S-38E

Latest model of Hallicratters' most popular of all short wave receivers! Beautiful new, modern cabinet styling. improved circuitry for superior performance and utmost dependability.
FREQUENCY COVERAGE: Standard broadcast from $540-1650 \mathrm{kc}$., plus three short wave bands from 1650 kc . through 32 mc . Intermediate freq.: 455 kc .
FEATURES: Two-section tuning gang with electrical bandspread; easy-to-read, sliderule overseas dial; oscillator for code reception; built-in 5" speaker, universal output for headset; rear switch for speaker or headset selection.(U.L. approved)
CONTROLS: Tuning dial. Separate electrical bandspread dial with $0-100$ scale. Receive/standby switch. On/off/volume. AM, CW switch. Band selector.
POWER SUPPLY: I watt audio power output. $105 / 125$ volts. $50-60$ cycle $\mathrm{AC} / \mathrm{DC}$. Line cord (S7D 1566) for 220 volt AC/DC available.
TUBE COMPLEMENT. Four tubes plus one rectifier: 35W4 rectifier: 50C5 audio output; 12AU6 amplifier; 12BA6 IF amplifier and B.F.O.; 12BE6 converter.
AUDIO OUTPUT: Five inch PM speaker and universal output for headset.
EXTERNAL CONNECTIONS: Phone tip jacks and terminals for single wire or doublet antenna, switch for speaker or headphones on rear. External antenna provided.
PHYSICAL DATA: Available in gray steel cabinet with silver trim, or blond or mahogany finish with gold trim. Size $127 / 8^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 91^{\prime \prime}$ " deep. Shipping weight approximately 14 lbs .

New beauty ... new standards of performance! MODEL S-107

COVERAGE: Standard Broadcast from 540-1630 kc. plus four short wave bands over 2.5-31 and 48-54.5 me. Intermediate fiequency; 455 kc . CONTROIS: Main tuning. Separate electrical bandspread with $0-100$ logging scale plus calibration for $48-54.5 \mathrm{mc}$ band, receive/standby switch, band selector 540$1630 \mathrm{kc}, 2.5-6.3 \mathrm{mc}, 6.3-16 \mathrm{mc}, 14-31 \mathrm{mc}$, and 48 $54.5 \mathrm{mc}, \mathrm{AM} / \mathrm{CW}$ switch, sensitivity/ext. phono input/a.f. output switch (for use with external audio system). noise limiter switch, on/off/volume, two-position tone switch. BAND CHANGE MECHANISM: Five position rotary wafer switch. TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Separate 2 -section tuning capacitator assemblies for main tuning and band spread tuning. Slide rule dial. Phonograph jack, headphone tip jacks. Bandspread tuning calibrated for 48-54.5 mc. ANTENNA INPUT IMPEDANCE: Balanced/ unbalanced. 50-300 ohms. HEADPHONE OUT. PUT IMPEDANCE: Universal impedance. AUDIO OUTPUT: Five inch PM speaker and universal
impedance output for headset. TUBE COMPLEMENT: Seven tubes plus one rectifier; 6C4, Osc.6BA6. Mixer-(2) 6BA6, i-f amplifier-6H6, Det. AVC and $\mathrm{ANL}-6 \mathrm{SC} 7 . \mathrm{BFO}$ and AF amp. -6 AQ 5 , Output-5Y3GT, rectifier, EXTERNAL CONNECTIONS: headphone jack and terminals for doublet or single wire antenna on rear. AUDIO POWER OUTPUT: One watt, POWER SUPPLY: $105 / 125$ V., 50-60 cycle. AC. PHYSICAL DATA: Sturdy gray hammertone steel cabinet with brushed chrome trim. Size $133 / \mathbf{g}^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 87 / 8^{\prime \prime}$ deep. Shipping weight approximately $181 / 2 \mathrm{lbs}$. (U.L. approved)
hallicrafters

Company

4401 Wost Fitth Ayenue. Chicano 24, tllingis

MILLEN NO. 90651 GRID DIP METER

The No. GOdjl MILLEN GRID DIP METER is campact and completely self contoined. The $A C$ power supply is of the "transformer" type. The drum dial has seven cot; broted uniform lengin scales from 1.7 MC to 300 MC with generous over laas plus on arbilrory scale for use with special application inductors. Internal terminal strip permits bottery operation for untenno medasurement. No. 9065!, with tube

Additional Inductors for lower frequencies
No. $46702-925$ to 2000 KC
No. 46703 - 500 to 1050 KC Na. 46704 - $32510 \quad 600$ KC No. 46705 - 220 to 350 KC

TONE MODULATOR __ The No. 90751 Tone Modulator is a small package contoining a transistor audio oscillator and its mercury bottery, which plugs into the phone jack of o Grid Dip Meter to madulate the signal at approximately 800 cycles for opplications requiring a modulated signal. Dimensions: only $23 \times 15 / 10 \times 1$ \% 18 im
Na. 90751, less battery
AUDIO CLIPPER - The No. 75016 Audio Clipper is a small plug-in symmetrical type clipper with self-contoined mercury batteries. If may be used to clip noise for C-W reception as well as for A.M or SSB, or it may be used to clip a sine wave input to form a square wave outpul. Dimensions: only $23 / 4 \times 1 / 16 \times 15 / 16$ in
No. 75016. less botteries
ANTENNA BRIDGE _ The Milien 90572 Antenna Bridge is an occurate and sensitive bridge for measuring impedances in the ronge of 5 to 500 ahms (or 20 to 2000 ohms with balun) at radio frequencies up to 140 mc . The varioble element is an especiolly designed differential vorioble capocifor capable of high accuracy and permanency of colibrotion. Reodily driven by No, 90851 Grid Dipper.
No.. 90672
BALUNS - The No. 46672 (I for each omoteur bond) wound Bolun is on accurate 2 to 1 furns ratio, high Q auto transformer with the residual reactonces tuned out and with very tight coupling between the two halves of the total winding. The points of series and parollel resononce ore selected so that each Balun provides on accurote 4 to 1 impedance ratio over the entire band of frequencies for which it was designed. Suitable for use with the No. 90672 Antenna Bridge or medium power transmitters.
No. 46672.80/40/20/15/10

HIGH VOLTAGE POWER SUPPLY - The No. 90281 high voltage power supply hos a d.c. output of 700 volts, with moximum current of 235 mo . In oddition. o.c. filoment power of 6.3 volts at 4 amperes is also ovailable so that this power supply is an ideal unit for use with transmitters, such as the Millen No. 90801 , as well as generol laboratory purposes. The power supply uses two Na. 816 rectifiers. The ponel is stondord $83 / 4 \times 19^{\prime \prime}$ rack mounting.
No. 90281 , less tubes
REGULATED POWER SUPPLY - A compoci, uncosed, regu. lated power supply, either far table use in the loboratory or for incorporation as an infegrol part af larger equipment. 250 v.d.c unregulated at 115 ma . 105 v.d.c. regulated of 35 ma . Minus 105 v.d.c. regulated bias at 4 ma .6 .3 v . a.c. at 4.2 amps .

No. 90201, with tubes
HIGH FREQUENCY RF AMPLIFIER - A physically small unit copable of o power output of 70 to 85 wotts on Phone or 87 to 110 watts on C.W on $20,15,10,6$ or 2 meler amoteur bonds. Pro. vision is made for quick band shift by means of the No. 48000 series VHF plug in coils. The No. 90811 unit uses either on $829 . \mathrm{B}$ or 3 E29. No. 90811 with 10 meter bond coils, less tube

PHASE-SHIFT NETWORK - A complete and loboratory aligned poir of phase-shift networks in o single compoct $2^{\prime \prime} \times 1 / 16^{\prime \prime} \times 4^{\prime \prime}$ case with choracteristics so as to provide a phase shift between the two netwarks of $90=1.3$ over a frequency range of 225 cycles to 2750 eycles. Well odopted for use in either single sideband tronsmitter or receiver. Possible to obtoin o 40 db suppression of the unwonted sidebond. The No. 75012 precision odiusted phase-shift network elimi nates necessity of complicated lob equipment for network odiustment. No. 75012

MALDEN. MASSACHUSETTS

The No. 90923 oscilloscone is on extremely compoct $131 / 2$ inches hight rock ponel general purpose oscilloscope utilizing the type $3 \times P-3^{3} \times 1 \frac{1}{2}$ inch rectongulor foce tube. The No. 90923 is complete with verticol and harizontal amplifiers for bolonced defection ond a very lineor sweed generotor.
Minioture inpul terminols ore on both the front ponel ond the rear for verticol omplifier input, horizontol omplifier input ond synchronizing input. The lineor sweed generotor covers two cycles per second to 30 kcs . per second in seven overlonping ronges. The troce is unusuolly shorp ond bright due to 2040 volts occeletating potentiol.

The No. 90923 is ideally cuited for many applisotions, ond in porticulor, for production test. Its small ponel uses up very little spoce in o test rock ond the mu-metol shield oround the cothode ray lube shields it ogoinst mognetic fields so that the oscilloscope may be used occurataly in locations with strong stroy mognetic fields. The cothode roy tube is of the mono-occelerotor type in which the electron beom is occeleroted of the electron gun so thot field distortions ore minimized and excellent defection lineority is ochieved os well os o very uniform spot size over the entire oreo which the beom scons.

MILLEN NO. 90923 RACK MOUNTED OSCILLOSCOPE

MILLEN ONE INCH MODULE OSCILLOSCOPES - Minio.
turized, pockoged ponel mounting sothode ray oscilloscope designed for use in instrumentation in ploce of the conventional "pointer pype" moving coil meters uses the 1 " lube. Ponel berel motches in size ond type the standara 2 'sauare meters. Mognilude, phose displacement, wove shope, elc. ore constontly visible on scope.
No. 90901 , 1 CP1, less tube No. 90911 . IEPI, less tube
FLAT FACE OSCILLOSCOPE - 90905.8 5.inch Rock Mounting Bosic Oscilloscope feotures include: bolonced deflection, front pone input terminols, reor ponel input terminols, ostigmotism control, blonk. ing input terminols, fot foce precision toleronce Dumont SADPI tube.
BASIC OSCILLOSCOPES - The No. 90902 , No. 90903 ond No. 90905 Rock Ponel Oscilloscopes, for two, three ond five inch tubes, respectively, ore inexpensive bosic units comprising power sup. ply, brillioncy and centering controls, sofety feotures, mognelic shield. ing, switches, etc. As o tronsmitter monitor, no odditionol equipment or occessories ore required. By the oddition of such units os sweeps. pulse generotors. amplifiers, servo sweeps, etc., all of which can be constructed on componion rock ponels, the scope unit may be exponded to serve ony conceivoble industriat or loboratory opplicotion.
'SCOPE AMPLIFIER - SWEEP UNIT _- Verticol and horizon. 101 omplifiers olong with hordfube, sow tooth sweep generotor. Com. plete with power supply mounted on O stondord $51 / 4^{\prime \prime}$ rock ponel. No. 90921 , with tubes
POWER SUPPLY FOR OSCILLOSCOPE __ 750 volls d.c. of 3 ma. and 6.3 valts o.e. of 600 mo. 117 volts 50.60 cycle input. Designed especially for use with No. 90901 ond No. 90911 one inch instrumentation oscilloscopes. $4 \mathrm{~s} / \mathrm{in}$. high $\times 17 / 8 \times 21 / \mathrm{s}$. Octol plug for input ond output. Entire ossembly including rectifier is encopsuloted. No. 90202, Power Supply (complete)

BEZELS FOR CATHODE RAY TUBES - Stondord iypes ore of sorin finish block nlostic. 5 size hos neoprene support cushion ond green lucite filter. $3^{\prime \prime}$ ond $2^{\prime \prime}$ sizes hove integral cushioning No. 80075 (5") 80073 (3") 80072 (2") 80071 (1") WORM DRIVE UNIT - Cost oluminum trame moy be ponel ot bose mounted. Spring looded splif geors to minimize bock losh. stondord retio 16/1. Also in $48 / 1$ on request.
No. 10000 - (stole rotio)
RIGHT ANGLE DRIVE - Extremely compoct, with provisions for mony methods af mounting. Ideal for operoting potentiometers. switches, elc., thot must be locoled. for short leods, in remote ports of chossis. No. 10012

AMATEUR BAND MONITOR OSCILLOSCOPE

- A.M or SSB 3.5 to 54 Mc . Blanks out on Standby Individual coil for each band SCOPE - No. 90932 is o complete oscilloscope for monitoring the modu loted i.f output of o tronsmitter. Buils. in link-coupled tuned circuits cover oll omoleur bonds 3.5 to 54 mc . Alf circuits and occessories ore built.in. The monifor will disploy the f f envelope ond/or the tropezoidol monitoring pottern of single side bond tronsmitters or ampli. tude moduloted tronsmitters. It shows the lineority or non lineority of Closs-B t-f amplifiers. the porositic oscillo. fion, neutralization, and r.f output.

TUBE SOCKETS DESIGNED FOR APPLICATION - MODERN SOCKETS for MODERN TUBESI lang floshover poth to chassis per. mits use with transmilling tubes. B66 rectifiers, etc. Lang leakage path between contacts. Cantocts are type proven by hundreds of millions already in government, commercial and broadcast service, to be extremely dependable. Sockets moy be mounted either with or without metol flonge. Mounts in stondard size chassis hole. All lypes hove barrier between contoc's and chossis. All but octol and erystal sockets also have barriers between individual contacts in addition
Voltage regulator dual confact bayonet socke1, 33991 black phenolic insulation and 33992 with low loss mica filled phenolic insulation.

MILLEN TUBE SOCKETS

No. Description	No. Deseription
33002—Crystol Sockel $3 / 4{ }^{\prime \prime} \times$ 125"	33004-4 Pin Tube Socket
33102 -Crystal Socket 487" $\times .095^{\prime \prime}$	33005-5 Pin Tube Socket
33202-Ciystol Socket $1 / 2^{\prime \prime} \times 125^{\prime \prime}$	33006-6 Pin Tube Socket
33302 -Crystal Socket . $487^{\prime \prime} \times .050^{\prime \prime}$	33008-8 Pin Tube Sockel
33407-Minioture Socket only, ceromic	33991 -Socket for 991....
33409 - Noval Sacket only, ceramic	33992 -Socket for 991
33307-Miniature Socket, Shield, ceramic	33207-829 Socket
33309 - Noval Socket, Shield, ceramic	33305 Acarn Sockel
33405-5 Pin Socket Eimos	

33102—Crystal Socket 487" $\times .095^{\prime \prime}$ 33202-Crystol Socket $1 / 2^{\prime \prime} \times .125^{\prime \prime}$. 33302 -Ciystal Socket $487^{\prime \prime \prime} \times .050^{\prime \prime}$ 33407 -Miniolure Socket only, ceromic 33409 - Noval Sacket only, ceramic 33309 -Noval Socket, Shield, ceramic 33405-5 Pin Socket Eimor

FLEXIBLE COUPLINGS - The No. 39000 series of Millen "De. signed for Application" flexible coupling units include, in oddition to improved versions of the conventional types, also such exclusive orig. inal designs as the No. 3900; insuloted universal ioint and the No. 39006 "slide-action" coupling (in both steatite ond bokelite insulation). The No. 39006 "slide-oction" coupling permits longifudinal shaft motion, eccentric shoft motion ond out-of-line operation, os well os onsular drive without bocklash.
The No. 39005 and $39005 \cdot \mathrm{~B}$ (high torque) ore similor to the No. 39001 , but are not insulated. The steatite insulated No. 39001 hos a special onti-bocklosh pival ond socket grip feature. All of the obove illus. traled units are for $1 / 4$ " shoff ond ore standard production type units. The No. 39016 incorporotes feotures which have lang been desired in o flexible coupling. No Bocklosh - Higher Flexibility - Higher Brakdown Voltoge - Smaller Diometer - Shorter length - Higher Alignment Accurocy - Higher Resistonce ta Mechonicol Shock - Solid Insuloting Borrier Diophrogm - Molded os O Single Unit.
CERAMIC PLATE OR GRID CAPS - Soldering lug ond contoct one-piece. Lug ears onneoled and soider dipped to focilitate eoch combinotion "mechonicol plus soldered" connection of coble.

No. 36001 - $10^{\prime \prime}$ "....... No. 36002- $1 / \mathrm{g}^{\prime \prime}$...... No. 36004 - $1 / 4 "$

SAFETY TERMINAL - Combination high voltoge terminol ond thru-bushing Topered contoct pin fits firmily into conicol socket providing lorge oreo, low resistonce connection. Pin is swivel mounted in cop to prevent iwisting of lead wire.
No. 37001 , Block or Red
No. 37501 , Low loss

STEATITE TERMINAL STRIPS _ Terminal ond lug ore one piece. lugs ore furret type and ore free floating so as not to stroin la ceramic on wide temperature variotions. Eosy to mount with series of round holes. 1400 valt and 3500 voll series.
POSTS, PLATES, AND PLUGS - The No. 37200 series, in. cluding both insuloted and non-insulated binding posts with ossociated plotes and plugs, provide various combinotions to meet most require. ments. The pasts hove coptive heods and keyed mounting
The No. 37291 and No. 37223 are standard in black or red with other colors on speciol order. No. 37201, No. 37202, ond No. 37204 and No. 37222 are ovoifable in block, red, or low loss. The No. 37202 is olso ovoilable in steotite.
No. Description No. Deseription
37201-Single plotes, pr. 37212—Dual plug
37291 - Single plates (lopered), pr. 37222 - Non-insuloted binding posi 37202 -Duol plotes, pr....37223-Insulated binding posts.
37204-Double dual plotes, pr.
DIAL LOCK - Compoct, eosy to mount, positive in oction, does not olter diol setting in operotionl Rototion" of knob " A " depresses finger " 8 " and " C " without importing ony rotary mation to Dial. Single hale mounted.
No. 10050 .
TUBE CLAMP - No. 33087 is easy to use, eosy to install, effec tive in function. Availoble in special sizes for alf types of tubes. Single hole mounting. Spring steel, cadmium plated.

12000 and 16000 SERIES TRANSMITTING CONDENSERS

- Rigid heavy chonneled aluminum end plates. Isolantite insulation, polished or ploin edges. One piece rator zontact spring and cannec. tion lug. Campast, easy to mount with connectar lugs in canvenient locatians. Same plate sizes os 11000 series abave.
The 16000 series has same plate sizes as 04000 series. Alsa has constant impedance, heavy current, multiple finger rotor cantactar of new design. Boith 12000 and 16000 series available in single and double sections and many capacities and plate spacing

28000-29000 SERIES VARIABLE AIR CAPACITORS "Designed for Application," double bearings, stealite end plotes, codmium or silver plated brass plates. Single or double section $.022^{\prime \prime}$ or $.066^{\prime \prime}$ air gop. End plate size: 1 " $16^{\prime \prime} \times 11 / 18^{\prime \prime}$. Rotor plate radius: $3 / 4^{\prime \prime}$. Shaft lack, rear shaft extension, special mounting rodius; $\mathrm{brackets}, \mathrm{etc.} ,\mathrm{to} \mathrm{meet} \mathrm{your} \mathrm{requirements}$.The 28000 series has brackets, etc., ta meet your requirements. The 28000 series has
semi-circular ratar plate shape. The 29000 series has appraximately stiaigh: frequency line rotar plate shope. Prices quated on request. Many stock sizes.
NEUTRALIZING, CAPACITOR - Designed ariginally for use in our own No. 90881 Power Amplifier, the Na. 15011 disc neutral. izing capacitor has such unique features as rigid channel frame, harizontal or vertical mounting, fine thread over-size lead screw with stop to prevent sharting and rotor lock. Heavy rounded-edged polished aluminum plates are $2^{\prime \prime}$ diameter. Glazed steatite insulation. No. 15011

04000 and 11000 SERIES TRANSMITTING CONDENSERS

 - Anather member of the Designed for Applicatian" series al trans. mitting varioble air capacitars is the 04000 series with peak voltage ratings of 3000 , 8000 , and 9000 valts. Right angle drive, 1.1 ratio. Adiustable drive shaft angle for etther vertical or slaping ponets. Sturdy canstruction, thick, round-edged, polished alumlnum plates with $13 / 4$ " radius. Constont impedance, heovy current, multiple finger rotor contoctor af new design. Available in aft normal copocities.The 11000 series has $10 / 1$ ratio center drive and fixed angle drive shaft.

PERMEABILITY TUNED CERAMIC FORMS - In addition to the papular shielded plug-in permeability funed farms, 74000 series, the 09040 series of ceramic permeability tuned unshielded forms are available as standard stack items. Winding diameters ovailable from $710^{8 \prime} 101 / 2^{\prime \prime}$ ond winding spoce from $11 / 3 z^{\prime \prime}$ to $11 / 2^{\prime \prime}$
No. 69041-(Copper Slug)......... No. 69052-(Iron Core)

No. 69042 -(Iron Core)
No. 69043-(Copper Slug)
No. 69044 -(Iron Core). No. 69045 -(Copper Slug) No. 69040-(Iron Care) No. 69047 -(Copper Slug) No. 69048 - (Iron Core) No. 69051-(Copper Slug)

No. 69052 -(Iron Core)
No. 69054 -(tron Care)
No. 69055-(Copper Slug)
No. 69056-(Iron Core) No. 69057-(Copper Slug) No. No. 69058 - (Iron Core) No. 69058 -(Iron Core)
No. 69061 -(Copper Slug) Na. 69062-(Iron Core)

MINIATURIZED HIGH RELIABILITY VARIABLE CAPACITORS

MACHINED FROM SOLID BARS OF EXTRUDED BRASS

Madern demands for miniature precision, high Q variable oir dielectric copacitors with high reliobility require that oll of the stator plates be mochined from o solid block of brass and that all of the rotar plates be machined from a solid black of brass. Staked, soldered, or washer-spaced types of construction are adequate for larger copacitor; with wider air gops but ore entirely inodequate for minia. fure high reliability sopacitors for use of high frequencies: The stator terminal is on integral part of the stotor. This result from extruding the enact shope required. The poter shaft is on integral part of the rotor, thus alignment of shoft with rotor is perfect ond there ore no pins of press fits.
Special capositors which con be monufoclured using all or part of the toaling for standard capocitors are designed and manufactured to order.

TRANSMITTING TANK COILS - A full line - all nopular wattoges for oll bonds, Send for special colalag sheet.
Nos. 42000, 43000, 44000, 48000

TUNABLE COIL FORA - Stondord octal bose of low lass mica. filled bakelite, polystyrene '?" diameter cail form, heory aluminum shield, iron tuning slug of high frequency type, suitable for use up to 35 mc . Adiusting screw protrudes through center hole of siondord octal socket.
No. 74001 , with iron core
Na .74002 , less iran con

RF CHORES - Many have copied, few have equalled, and mane hove surpassed the genuine ariginat design Millen Designed fas Applicotion series of midget RF Chakes. The more papular styles now in canstant production ate illustrated herewith. Special styles and varia. tions to meet unusual requirements quickly furnished.
Na. $34100-2.5 \mathrm{mh} ., 250 \mathrm{mo} \quad \mathrm{No} .34105-1.0 \mathrm{mh} .300 \mathrm{ma}$ No. 34101 - $2.5 \mathrm{mh} ., 250 \mathrm{ma} \quad$ Na. $34100-1.0 \mathrm{mh} ., 300 \mathrm{mo}$ No. 34102 - $2.5 \mathrm{mh} .250 \mathrm{mu} \quad \mathrm{No}$.34107 - 1.0 mh .300 ma No. $34103-2.5 \mathrm{mh}$., $250 \mathrm{mo} \quad$ No. $34108-1.0 \mathrm{mh} ., 300 \mathrm{ma}$ No. $34104-2.5 \mathrm{mh}, 250 \mathrm{mog}$ No. $34109-1.0 \mathrm{mh}$., 300 ma

MILLEN COIL FORMS - Made of low lass mico filled brawn bakelite Guide funnel makes for easy threading of leads through pins.
No. 45000
No. 45004
No. 45005

SPECIAL RF CHOKES - Figures 1 and 4 illustrale speciol iypes of RF chokes available on order. The popular 34300 ond 34200 series are shown in figutes 2 and 3 respectively.
OCTAL BASE AND SHIELD - Law lass phenolic base with octol socket plug and oluminum shield con $10 \times 1 / 8 \times 3^{12} 16$ No. 74400

MINIATURE POWDERED IRON CORE RF INDUCTANCES -

The No. J300 - Minioture powdered iron core inductances. 0.107 in dia. $\times 3 / 0 \mathrm{in}$. Iong. Inductonces from 3.3 microhenries to 2.5 millihenries 5%. EIA standard values plus $25,50,150,250,350,500$, and 2500 micrahenties. Thiee layer solenoids fram 39 to 350 micro. herries. $1 / 4$ in. Wide single pi from 360 to 2500 mictahenties, Spesial coils an arder
PHENOLIC FORM RF INDUCTANCES - The No. 34300 Im . ductunces - Phenolic cail form with axial leads. Inductances fram 0.15 micrahenry to 2.5 miltihenries -5%. ElA slandard values plus $25,50,150,250,350,500$, and 2500 microhenries. Solenaids fram 0.15 to 10 micrahenties. Single pi from 18 to 300 microhenries. Multiple pi for higher inductonces. Forms $7 / 33^{\prime \prime}$ dia, $\times 1 / 10 \ln$. long, $3 / 40^{\prime \prime} \times 5 / 0^{\prime \prime}$. $1 / 4^{\prime \prime} \times 3 s_{s}$ ", and $1 / 4^{\prime \prime} \times 1^{\prime \prime}$. Speciol coils on order.

MINIATURE IF TRANSFORMERS - Exfremely high Q appraximulely 200 - Variable Coupling - (under, crifical, and over) with all odiustments on top. Small size $1 / 1 s^{\prime \prime} \times 1 \% 0^{\prime \prime} \times 1 / \mathbf{a}^{\prime \prime}$ Malded terminal base. Air capocitor funed. Cails completely enclased in cup cores. Tapped primary ond secondary. Rugged construction. High electricol stobility.
No. $01455,455 \mathrm{kc}$. Universal Trons
No. $01453,455 \mathrm{kc}$. BFO
No. $81100,1000 \mathrm{kc}$. Universal Trans
No. $61103,1000 \mathrm{kc}$. BFO

MINIATUIBITEID

DESIGNED for APPIICX'ION miniaturized components developed for use in our own erfuipment such as the 900)l Oseilloreope, are now available for separate sale. Ilany of these parts are similar. in most details except size, to their equivalents in our slandard component parts group. In certain devices where complete miniaturization is not paramount, a combination of atandard and miniature componenta may possibly be used to advantage For convenience, we liave also listed on this page the extremely small rized coil forms from our standard catalog.

CODE
 DESCRIPTION

AOO1 Bor knob for $1 / 6^{\prime \prime}$ shaft, $1 / 2^{\prime \prime}$ high by $3 / 4^{\prime \prime}$ long.
A006 Fluted black plastic knob with brass insert for $1 / \mathrm{s}^{\prime \prime}$ shaft. $1 / 2^{\prime \prime}$ high by $3 / 4$ diameter.
A007 $1 / 4^{\prime \prime}$ block plastic dial knob with brass insert for $1 / \mathbf{1 月}^{\prime \prime}$ shaft. "/" dlameter dial. "h" high.
A008 $1 / 4^{\prime \prime}$ black plastic knob. Same as no. A007 exsept for style.
AOI 2 Right angle drive for $1 / \mathrm{s}^{\prime \prime}$ shafts. Single hole mounting.
A014 $1^{\prime \prime}$ bar dial for $1 / 1^{\prime \prime}$ shaft. $1 / 2^{\prime \prime}$ high. 180° or 280° dials for clockwise or counter-clockwise rotation
A015 1"fluted knob dial for $1 / 3^{\prime \prime}$ shaff. $1 / 2^{\prime \prime}$ high. Same dial plates as no. AOl 4.
A017 $11 / \mathbf{s}^{\prime \prime}$ diameter fluted black plastic inob for $1 / 0^{\prime \prime}$ shaft.
A018 Knob, same as no. A007 except with $3 / 8^{\prime \prime}$ diameter skirt.
A019 Knob, same as na. A007, but without dial.
A021 Miniature metal Index for miniature dials.
A050 Minature dal lock
A050 Minlature dlal lack. A061 Shaft lock for $1 / 2^{\prime \prime}$ diameter shaf!, $14^{\prime \prime} .32$ bushing. Niskel plated brass.
A062 Shaft lack with knurled locking nut.
A066 Shaft bearing for $1 / 1^{\prime \prime}$ diameter shafts. Nickel plared brass. Fits ' ${ }^{17}$ an' ${ }^{\prime \prime}$ dlameter hole.

CDMPDNENTS

CODE
E001
Steatite ceramic stondoff or tie-point. Integral mounting eyelet. $0.205^{\prime \prime}$ overall diameter,
E201 Black or red plastic binding post plates for No. E222.
E202 Black or red plostic plotes for twa binding posis spoced $1 / 2^{\prime \prime}$
E212 8lack or red plostic plug for two binding pasts spaced $1 / 2^{\prime \prime}$
[222 Metol binding post with jack top.
E302A to E306A Steatite ceramic ferminal srips. 3/6" wide. Terminals sposed $3 / 6^{\prime \prime}$ on centers. Screw type or solder type thru-terminols.
J300-3.3 to J300-2500 Complete line of miniature Inductances 3.3 to 2500 mierohenries. $3 / 8^{" l}$ long. Diameter $0.115^{\prime \prime}$ to $0.297^{\prime \prime}$
M001 Insulated unlversal ioint style flexlble coupling for $1 / \mathbf{p}^{\prime \prime}$ dia. shatis.

M004 Universal iolnt style flexible coupling for $1 / 0^{\prime \prime}$ diameter shafts m004 Inverted hubs for short length. Nat insulated
M005 Universal folnt style flexlble coupling for $1 / s^{\prime \prime}$ diameter shafts, External hub for maximum flexibilliy. Nat insulated
M006 Universal joint styte flexible coupling far $1 / s^{\prime \prime}$ dlameter shafts. Universal joint style flexible coupling far
Spring finger. Steatie ceramic insulation,
M008 Plastic insulated coupling with ntckef ploted brass inserts for $1 / \mathbf{a}^{\prime \prime}$ diameter shafls.
M017 Plastic insulated flexiblo coupling for $1 / 1^{\prime \prime}$ diameter shafts. $17 / s^{\prime \prime}$ long by $15 / 6^{\prime \prime}$ diameter. Bronze yoke.
M023 Insulated shaft extension for $1 / 4^{\prime \prime}-32$ bushing and $1 / \mathbf{i n}^{\prime \prime}$ shaft.
For maunting sub-miniature patentiometer.
MO24 Locking insulated shaft extensian simillor to no. MO23.
69043 Sieatite ceramic coll form. Adjustable core. Winding space $1 / 4$ " diometer by $13 / \mathbf{g}^{\prime \prime}$ " long. Mounting 4-40 hole,
69044 Steatite ceramie coll form. Adlustable core. Winding space $0.187^{\prime \prime}$ diameter by ${ }^{3} /{ }^{\prime \prime}$ "lang. No, 10-32 mauning.

Pick your features and power from the popular TRANSMITTER LINE

"ADVENTURER"

" 6 N2"

"ADVENTURER" TRANSMITTER

Self-contained . . . 50 watts CW input . . . rugged 807 transmitting tube ... instant bandswitehing 80 through 10 neters. Crystal or external VFO control-wide range pi-network output-limed sequence keying. With tubes. less crystals.
Cat. No. 240-181-1 . Kis
Amoteur Nei \$54.95

"CHALLENGER" TRANSMITTER

70 watts phone input 80 through 6: 120 watts CW input 80 through 10 . . 85 watts CW on 6 meters. Two 6DQ6A final amplitier tubes. Crystal or external VFO controlTVI suppressed-wide range pi-network output. With tubers, less crystials.
Cat. Na, 240-182-1 . . Kit
A mateur Net $\$ 114.75$
Cof. No, 240-182-2 . Wired
Amoteur Ne: $\$ 154.75$

"NAVIGATOR" TRANSMITTER/EXCITER

40 watts CW input . . . also serves as a flexible VFO Exciter. 6146 tinal amplifier tube-bandswitehing 160 through 10 meters. Built-in VFO or erystal control. With tubes, less crystals.
Cat. No. 240-126-1 . Kip
Amateur Net $\$ 149.50$
Amateur Net $\$ 199.50$

" 6 N2" TRANSMITTER

Rated 150 watts $C W$ and 100 watts phone-offers instant bandswitching cowerage of both 6 and 2 meters. Fully TVI suppressed - may be used with the Viking I. II. "Ranger", "Valiant" or similar power supply/modulator combinations. Operates by erystat control or external VFO with $8-9$ me. output. With tubes, less erystals.
Cat. No. 240-201-1 . Kit
Amateur Net \$129,50
Cat. No. 240-201.2. . Wired.
Amateur Net $\$ 169.50$

10-METER "MESSENGER" TRANSCEIVER

Complete 10 -tube (including rectifier) crystal-controlled transceiver. 10 watts input-pre-tuned for 29.4 to 29.7 ness -covers any 5 frequencies within a 300 kc segment of 10 -meter band. Excellent receiser sensitisity and selectisity. ANL, AVC, and positive-acting Squelch. With tubes, push-to-talk microphone, and erystals for national calling and emergency frequency ($29,640 \mathrm{kc}$).

"RANGER" TRANSMITTER/EXCITER
This popular 75 watt CW or 65 watt phone transmitter will also serve as an RF/audio exciter for high nower cauinment. Completely self-con-tained-instant bandswitching 160 through 10 meters! Operates by built-in VFO or crystal control. High gain audio-timed sequence keying TVI suppressed. Pi-network antenna load matching from 50 to 500 ohms. With tubes, less crystals.
Cat. No. \quad Amateur Net
$240-161-1 \ldots$ Kit................ $\$ 229.50$
$240-161-2$. Wired and tested. . $\$ 329.50$

"VALIANT" TRANSMITTER

275 watts input (W and SSB (P.E.P. with auxiliary SSB exciter) 200 watts phone. Instant bandswitching 160 through 10 meters-built-in Vf() or crystal control. Pi-network output matches antenna loads from 50 to 600 ohms. TV'I suppressed-timed sequence keying-built-in low pass audio lilter-self-contained power supplies. With tubes, less crystals.

[^12]
"FIVE HUNDRED" TRANSMITTER
Full 600) watts CW - 500 watts phone and SSB. (P.E.P. with auxiliary SSB exciter.) Compact RF unit designed for desk-top operation. All exciter stages ganged to VFO tuning-may also be operated by crystal control. Instant bandswitching 80 through 10 meters-TVI suppressed-high gain push-to-talk audio system. Wide range pi-nctwork output. With tubes, less crystals.
Cot. No.

Amateur Net

240-500-1 Kit $\$ 749.50$

"COURIER" AMPLIFIER
Rated a solid 500 watts P.E.P. input with auxiliary SSB exciter as a Class B linear amplifier: 500 watts CW or 200 watts A $\$ 1$ linear. Self-contained desk-ton package-continuous covcrage 3.5 to 30 mes. Drive requirements: 5 to 35 watts depending on mode and frequency desired. TVI suppressed. With tubes and built-in power supply.
Cat. No. Amateur Nel
240-352-2. Wired ond tested. . $\$ 289.50$

"THUNDERBOLT" AMPLIFIER
The hottest linear amplifier on the market-2000 watas P. F. P', (twice awerage DC) input SSB: IOOO watts CW: 800 watts AM linear. Continuous coverage 3.5 to 30 mes. -instant bandswitching, Drive requirements: approx. 10 watts Class AB: linear, 20 watts Class C contimuous wave. With tubes and built-in power supply,
Cat. No,
Amateur Net
240-353-1 . Kit $\$ 524.50$
240-353-2. . Wired and tested.. . $\$ 589.50$

"6N2 THUNDERBOLT" AMPLIFIER
1200 watts (twice average DC) input SSB and DSB, Class AB1;1000 watts CW. Class C; and 700 watts input AM linear. Continuous bandswitched coverage on 6 and 2 meters. TV1 suppressed. Drive requirements: approx. 5 watts Class ABı lincar, 6 watts Class C CW. With tubes and built-in nower supply.

Cat. No.

Amateur Net
240-362-1 . Kit. $\$ 524.50$
240-362-2. . Wired and tested. . $\$ 589.50$

The world at your fingertips!

VIKING "KILOWATT" AMPLIFIER

The only transmitter that provides maximum legal power in all modes-SSB, CW, and plate modulated AM. Two $4-400$ A tubes in Class AB.2 casily deliser 2000 watts P.E. P'. (twice average D() in SSB mode- 1000 watts input ANI with two push-pull 810 tubes in Class 8 modulator service- 1000 watts input Class C CW. High eflicency pi-network outpul cilcuit. Excitation requirements: 30 watts RF and 10 watts audio for $A M: 10$ watts peak for SSB. Pedestal contains complete unit. With tubes.
Cal, No. 240-1000 Wired ond tested.
Amateur Net $\$ 1595.00$
Matching desk top and three-drawer pedestal.
Cat. No. 251-101-1.
FOB Corry, Pa. $\$ 132.00$

The very finest SSB equipment you can buy!

INVADER

The tranmmiter you've been waiting for-with more evelusive features than any other Transmitter/Ixciter on the market loday! Instant bandswitching 80 through 10 meters-no extra crystals to huy-no retuning necessary. Rated 200 watls CW and SSB input: 90 watts input on AM. Unwanted sidehand and carrier suppression is 60 d or better! Wide range pi-network ouput cirenit. Fully TV'L suppressed. Self-contained heary-duty nower supply. Wired and tested with tubes and crystals.
Cat. No. Amateur Nel
240-302-2 $\$ 619.50$

INVADER-2000

Here are all of the fine features of the "Insader", plus the added power and flevihility of an integral linear amplifier and remote controlled power supply. Rated a solid $2(4) 0$ watts P.E.P. (twice average I)(') input on SSB: 1000 watts, $(W$: and 800 watts input AM! Wide range output circuit (40 to 600 ohms adjustable). Final amplifier provides exceptionally uniform " Q ". Exclusive "push-pul|" cooling system. Heavy-duty multi-section power supply. Wired and tested with power supply, tubes and crystals.
Cat. No.
Amateur Ne 240-304-2 $\$ 1229.00$

HI-POWER CONVERSION

Take the features and performance of your "Invader". . . add the power and flexibility of this unique Vihing "Ifi-Power Conversion" system . . and sou're "on the air" with the "Intader-2000"-a solid 2000) watts P. I. P. (twice aterage DC) input SSB, 1000 watts (CW and 800 watts input $\mathbf{A M}$. Completely wired and lested-includes ererything you need-no soldering necessary-complete the entire conversion in one evening!
Cat. No. 240-303-2. . Hi-Power Conversion, complete. Amoteur Net $\$ 619.50$

Free Catalog
 Write for your free copy of our

 newest omoteur equipment cot. olog-complete specificotions, illustrotions ond schemotics on Viking omoteur equipment.

Boost your performance... add convenience with

$V_{\text {ifinen }}$

 ACCESSORIES tubes and power cable.
Cat. Na, 240-133-1. . Nit
Cal. Na. 240-133-2. Wired and tested Cat. No. 250-43 Wired ing sections. 3 elements, boom and balun. Col. No. 138-410-3. 10 Meters Col. No. 137-102 . Pre-funed.

"6N2" VFO-Replaces 8 to 9 mc . crystals in frequency multiplying 6 and 2 meter transmitters. Output range: 7.995 to 9.010 mc . With

Amateur Net $\$ 34.95$ Amateur Nel $\$ \mathbf{\$ 4 . 9 5}$
"6N2" CONVERTER-.Instant front pand switching from nommal receiver operation to 6 or 2 meters. Available in following ranges: 26 to $30 \mathrm{mics}$.28 to 30 mcs ., 14 to 18 mes., or 30.5 to 24.5 mes. With tubes.
 Amoteur Net $\$ 89.95$ PRE-TUNED BEAMS-Rugged, semi-wide spaced with balun match-
 Amoteur Net $\$ 79.50$
"MATCHSTICK"-Fully automatic, pre-tuned vertical antenna system. Bandswitching $80-10$ meters. Remolely motor driven. With 35^{\prime} mast.

Amoteur Net $\$ \mathbf{1 2 9 . 5 0}$

250-28

250-25

250-30-3

VIKING AUDIO AMPLIFIER - Self-contained 10 watt speech amplifier, with power supply and tubes.
Cot. No. 250-33-1 Kit
Amoteur Net $\$ 73.50$
Cat. No. 250-33-2 Wired and tested Amateur Net $\$ 99.50$
LOW PASS FILTER - Wired and pre-tuned.
Cof. No. 250-20 52 Ohms impedance Amateur Net $\$ 14.95$ Cot. No. 250-35 . 72 Ohms Impedance...... Amateur Net $\$ 14.95$
CRYSTAL CALIBRATOR - Provides accurate 100 ke check points to 55 mc . With tube and erystal.
Cat. No, 250-28 Wired and tested.
A moteur Nel \$17.95
"SIGNAL SENTRY"-Monitors CW or phone signals up to 50 mc . With tubes.
Cat. No. 250-25 Wired and tested
Amoteur Nel $\$ \mathbf{2 2 . 0 0}$
T-R SWITCH-Instantancous break-in on SSB, DSB, CW or AM. With tube, power supply and prosision for RF probe.
Cat. No. 250-39. Wired. Amateur Net $\$ 27.75$
"MATCHBOXES"-Completely integrated antenna matching and switching systems for kilowatt or 275 -watt transmitters. Bandswitehing 80 through 10 meters.
Cot. No.
$250-23-3.275$ Watts, with directianal caupler and indicatar $\$ 86.50$
Amateur Net
$250-23.275$ Watts, less directianal coupler and indicatar. \$54.95 $250-30-3$ Kilawati, with directional caupler and indicatar $\$ 149.50$ 250-30 . Kilawatt, less directianal caupler and indicatar \$124.50
DIRECTIONAL COUPLER AND INDICATOR-Provides continuous reading of SWR and relative power in transmission line.

ATTENUATORS-Provide 6 db attenuation with required power dissipation to enable various units to serve as exciters for Viking "Thunderboli".
Cot. No.
Amateur Net
Cot. No.
250-42-3. Far use with HT-32 or similar unit................... $\$ 21.50$

KEYS AND PRACTICE SETS - The E. F. Johnson Company also manufactures a complete line of special and deluxe semi-atutomatic keys: heasy duty, high sped, and standard keys; practice keys: pratice sets: learner sets; telegraph sounders; and key accessories. See them at your nearest Johnson distributor.

Free Catalog
 Write for your free capy of our

 newest amateur equipment cat-olag-camplete specifications, illustrations and schematics an E. F. JIHNSIN COMPANY Vikina amateur equipment.

Build it yourself... with

Johnson ELECTRONIC COMPONENTS

8 MAJOR COMPONENT LINES...

The E. F. Johnson Company manufactures a complete line of electronic components for those of you who prefer to design and build your own transmitting equipment and accessories. See your local Authorized E. F. Johnson Distributor, or write for the catalog described below.

Complete Catalog

The complete line of Iohnson components is described in derail in Catalog 978 . . . write for your free copy today!

PILOT LIGHTS-A complete selection of standardized pilot lights. Faceted jewel or wide-angle lucite lens types; enclosed or open body styles: standard bayonet, candelabra. or miniature screw pypes. and a wide sariety of mounting brackets and assemblies. Jewels a vailable in clear. red, green. amber. blue. and opal. Alt Johnson pilot lights are described in detail in Pilot Light Catalog 750a-send for your cony!

INDUCTORS-Widely used for commercial and amateur applications, this line includes: swinging itrik; $\mathrm{Hi}^{-1} \mathrm{Q}^{\prime \prime}$: and rotary inductors; fixed coils and RF contactors. Available in a wide range of sizes and ratings. For complete information, write for Industrial and Broadcast Catalog 535A.
VARIABLE CAPACITORS -13 basic capacitor series available in a wide selection of single section, dual section. butterfly and differential types. Units range from diminutive sub-miniature Tupe " \mathbf{U} " capacitors, requiring less than 0.2 square inch of mounting space. 10 large, rugged heavy duty types. Plate spacing, capacity per section. breakdown ratings, and finishes 10 meet many military. commercial, and amateur equipment applications.
TUBE SOCKETS - A high quality line, available in Standard. Industrial and military grades. Includes kel-F sockets for high power transmitting tubes, plus a wide group of steatite and porcelain Bayonet. Wafer. Septar, Miniature, and Special Purpose types. For specifications. write for Sochet Standardization Book let 536.

E.F.JOHNSONCOMPANY

BEAMI POWER for All Powers

Whether boure on SSB. All, or (W QRP or QRO-blares an RCA beam power labe for elers amateor transmiter posed lesel and for frequencies to fio Ne and besond.

Bean power tuber mahe if practical to buide compactacs into sour rig. Thes do the joh whth fener viager. lews expencibe componens, feser comtrols. KC I beam power whes deliser the power with relatisel low plate bolases. Thomands of

for more liseable "tamsmitle wath for your dollam. "Sochet-up" win RC I heam poner tuber. (hech the chatt at the right for the typer son need and order direet from sour KC A Industrial I ube I Distributur

tralcerivir

Collins KWM-2 Mobile SSB Transceiver provides superior single sideband performance in a variety of installations. Engineered for the amateur who desires an 80 through 10 meter mobile transceiver, the KWM-2 incorporates time-proven and advanced communication concepts.

The KWM-2 Transceiver offers outstanding frequency stability on fourteen 200 kc bands between 3.4 and 29.7 mc . With 175 watts PEP input on SSB, or 160 watts on CW, the KWM-2 provides ample power for dependable amateur communication. Filter-type SSB generation, Collins permeability-tuned variable oscillator, crystal-controlled HF double conversion oscillator, VOX and anti-trip cir-
cuits, and exclusive ALC and RF inverse feedback are among the features of the KWM-2. The Collins Mechanical Filter, RF amplifier, tuned circuits, and several tubes perform the dual role of transmitting and receiving. CW break-in and monitoring sidetone circuits are built-in, and all four plugs in the mobile mount connect the KWM-2 automatically. A connector on the rear provides for antenna selection or loading coil selection for mobile operation.

The Collins KWM-2 Mobile Transceiver weighs 18 lbs. 3 oz . and measures $73 / 4^{\prime \prime} \mathrm{H}$ (including legs), $143 / 4^{\prime \prime} \mathrm{W}$, and $131 / 4^{\prime \prime} \mathrm{D}$. Mounts, accessories, and power supplies are available for 12 v dc, and 115 v ac operation. Adding the $312 \mathrm{~B}-5,399 \mathrm{C}-1$ or $312 \mathrm{~B}-4$ and $30 \mathrm{~S}-1$ to the KWM-2 provides a complete fixed station installation. The PM-2 Power Supply and Carrying Case make the KWM-2 a portable station.
'THE KWM-2A MOBILE TRANSCEIVER has all of the features of the KWM-2 plus a front panel switch which allows selection between the standard crystal board and an additional 14-crystal board.

10 REASONS FOR COLLINS

 ADVANCED SSB PERFORMANCE1. FREQUENCY STABILITY - achieved through low'frequency variable oscillotor. The effects of temperature variotion on frequency is minimized by indjvidual PTO tempera. mized by indjvidual
ture compensation.
2. MECHANICAL FILTER - produces a signal with two steep-sided skirts and a $2: 1$ bandwidith ratio of the 60:6 db points.
-3. ONE KC DIVISIONS ON ALL BANDS - eliminate frequency searching. Now you con meet on schedule without retuning.
3. DUAL OR SINGLE PTO COMTROL - provides a single contral for tronsceiver operation with the flick of a switch, or permits the operator to fronsmit and receive by ator torate control.
4. AUTOMATIC LOAD CONTROL keeps the signal level af its rated PEP automatically.
5. NEGATIVE RF FEEDBACK-improves linearity, gives maximum tube output and efficiency, yet keeps a put and efficiency, yef keeps a
clean signal. Eliminates 90% of distortion products' energy.
6. LIGHTWEIGHT - makes Collins amateur equipment ideal for field days, weekends and vacations.
7. MORE QSO's PER KC - due to the steep-skirted frequency response on both sides of the selectivity, curve which strictly limits the bandwidth to only the required amount of the spectrum.
8. SIMPLICITY OF OPERATION AND PANEL - planetary $20-\mathrm{kc}$-per -furn knob allows more accurate funing, The dial being used lights up for identification and readability.
9. COMPLETELY COMPATIBLE STATION - comprised of distinctively designed desk top cabinets system engineered into a high powered amateur radio station.

The $\mathrm{S} /$ Line is a complete station, system engineered for the advanced amateur. The $32 \mathrm{~S}-1$ Transmitter and 75S-1 Receiver may be operated separately or as a transceiver in which the receiver controls the transmitter frequency. The 312B-4 Speaker Console integrates the two units further with over-all station control. For the amateur desiring the clearest and cleanest signal, the 30S-1 Linear Amplifier provides maximum legal input on CW or SSB with greatly simplified operation.

325-1 Transmitter

The $32 \mathrm{~S}-1$ is an SSB or CW transmitter with a nominal output of 100 watts on the amateur bands between 3.4 and 29.7 mc . Input power is 175 watts PEP on SSB or 160 watts on CW.

Crystal sockets, crystals and bandswitch position are provided for ten 200 kc bands, with the standard amateur configuration: $3.4-3.6,3.6-3.8,3.8-4.0$; 7.0-7.2,
7.2-7.4; 14.0-14.2, 14.2-14.4; 21.0-$21.2,21.2-21.4,21.4-21.6$; 28.528.7. Two additional crystal sockets are also provided for any other two 200 kc bands between 28 and 29.7 mc . Complete coverage from 3.4 to 5.0 mc and 6.5 mc to 29.7 can also be obtained. A fourteenth position, corresponding to the WWV position on the receiver, can be used for an additional 200 kc band in the 9.5-15.0 me range, if desired.

Features incorporated into the 32S-1 include Mechanical Fil-ter-type sideband generation; stable, permeability-tuned VFO; crystal-controlled HF oscillator; RF inverse feedback for better linearity; automatic load control for higher average talk power and for protection against flattopping.

For ac operation, the 516F-2 Power Supply is used with the 32S-1; for 12 v dc operation, the $516 \mathrm{E}-1$ may be used with minor modification.

312B-4 Speaker Console

The 312B-4 (pictured between $75 \mathrm{~S}-1$ and $32 \mathrm{~S}-1$ below) houses a
speaker, an RF directional wattmeter with 200 and 2000 watt scales, and switches for station control functions.

75S-1 Receiver

The 75S-1 provides SSB. CW and $A M$ reception. It is capable of coverage of the entire HF spectrum between 3.4 and 29.7 me by selection of the appropriate HF heterodyning crystals.

The standard amateur configuration includes crystal sockets, crystals and bandswitch positions for: 3.4-3.6, 3.6-3.8, 3.8-4.0; $7.0-7.2, \quad 7.2-7.4 ; \quad 14.0-14.2, \quad 14.2-$ $14.4 ; 21.0-21.2, \quad 21.2-21.4, \quad 21.4-$ 21.6. Two additional crystal sockets are also provided for any other two 200 kc bands between 28.0 and 29.7 mc . Complete coverage from 3.4 to 5.0 mc and 6.5 to 29.7 mc can also be obtained. A crystal and bandswitch position is also provided for 14.8 15.0 mc for reception of WWV and WWVH for time and frequency calibration data.

Features incorporated in the $75 \mathrm{~S}-1$ include dual conversion with a crystal-controlled first

heterodyning oscillator; bandpass first IF; stable, permeabili-ty-tuned VFO; amplifier designed to minimize cross modulation products; Mechanical Filter; excellent AVC characteristics; and both product and diode detector.

The advanced design of the $75 \mathrm{~S}-1$ includes the use of only 150 volts on vacuum tube plates; use of silicon diodes in lieu of a conventional high vacuum rectifier; and the choice of three degrees of selectivity (with optional CW filter).

A power connector at the rear of the $75 \mathrm{~S}-1$ chassis provides for disabling the internal ac power supply so that the 12 v dc power supply for the KWM- 2 may power the receiver as well as the transmitter.

30S-I Linear Amplifier

The $30 \mathrm{~S}-1$ is a completely selfcontained, single tube, grounded grid linear amplifier. Requiring 70 to 100 watts driving power (from the $32 \mathrm{~S}-1$ or KWM-2), it provides the full legal power input for SSB and CW. The tube used is the Eimac 4CX1000A.

The 30S-1 covers all amateur bands between 3.4 and 29.7 mc .
The 30S-1 may be loaded into an antenna without exceeding the legal dc input of 1 kw during tune-up. Front panel switching makes two different power levels immediately available for SSB operation: 100 watts from the exciter alone or the full 1 kw meter average input for SSB. The air blower for the 4CX1000 A is barely audible in a quiet room. The power supply for the $30 \mathrm{~S}-1$, which is housed in the lower portion of the cabinet, provides cathode bias voltage, screen voltage and plate voltage for the 4CX1000A. Space is provided in this compartment for the 516F-2 Power Supply.

Extended Frequency Versions of the $\mathrm{S} /$ Line

The $32 \mathrm{~S}-1$ and $75 \mathrm{~S}-1$ are available in extended frequency versions, designated the $75 \mathrm{~S}-2$ and $32 \mathrm{~S}-2$. The two differ from the original in that an additional crystal board has been added beneath the chassis. In this board is placed the standard
complement of ham band crystals normally received with the equipment. The upper board is available for the operator to place whatever additional crystals he may desire up to a total of 14. A front panel switch is added to allow switching between the two crystal boards.

> 10 REASONS WHY COLLINS SSB IS BEST ...
> - Frequency Stabilify
> - Mechanical Filter SSB Generation
> - One KC Divisions on All Bands
> - Duel or Singla PTO Ccaitrol
> - Automatic Load Control
> - Riegative RF Feodback
> - Lightwaight
> - More QSO's Per KC
> - Simplicity of operation and panel
> - Complataly Compatible Station

302C. 3 DIRECTIONAL WATTMETER - The 302C-3 measures forward and reflected power on 200 and 2000 watt scales. Coupler unit mounts separate from indicator-control box. Power loss and mismatch introduced by the instrument are negligible.
B312.1 DIRECTIONAL COUPLER - The coupler unit from the 302C-3 for operators who desire to use an optional meter and switch for a customized fixed installation or for a mobile installation.
351E TABLE MOUNTS - For mounting the S/Line and KWM-2 on airplanes, boats, etc. May be fastened to any flat surface. Front clamps attach to the feet of the units to hold them securely. $351 \mathrm{E}-1$ for $32 \mathrm{~S}-1,75 \mathrm{~S}-1$: $351 \mathrm{E}-2$ for $312 \mathrm{~B}-4,516 \mathrm{~F}-2$; $351 \mathrm{E}-3$ for 312B-3, 351E-4 for KWM-2.
$3510-2$ mobile mount-Provides secure mounting for KWM-2 in most automobiles. Cantilever arms fold out of the way when KWM-2 is removed.

Mating plugs connect power, receive-transmit antenna, noise blanker, antenna, speaker, and antenna control as KWM-2 slides into place. Cables included with this mount.
312B.5 SPEAKER CONSOLE AND EXTERNAL PTO-Used with KWM-2 in fixed station operation to provide separate receiving and transmitting control, also includes a directional wattmeter.

399C.I SPEAKER AND EXTERNAL PTOContains speaker and external PTO for separate receiver and transmitter control of KWM-2.

1368-2 NOISE BLANKER-Designed for use with the KWM-2 under mobile operating conditions. This noise blanker provides effective reduction of impulse-type noise, particularly ignition noise.
3128.3 SPEAKER-Contains a $5^{\prime \prime} \times 7^{\prime \prime}$ speaker and connecting cable.

516F-2 AC POWER SUPPLY - Operates from 115 v ac, $50-60$ cps. Provides all voltages for the 32S-1.
516E-1 POWER SUPPLY-Operates from 12 v dc. Provides all required voltages for the KWM-2 or 32S-1 and 75S-1.
MM-I MOBILE MICROPHONE-A dynamic microphone designed to fit your hand comfortably. An eleven inch length of Koiled Kord (5^{\prime} extended) is supplied with the 22 ounce microphone.
MM- 2 BOOM MICROPHONE-A high impedance reluctance microphonesingle earphone combination which may be used in either a fixed station installation or with a mobile unit. Output level of the MM-2 is -50 db .
MM. 3 BOOM MICROPHONE - Has the same characteristics as the MM2 except that there is no earphone built into the headset of the MM-3.

SM. 1 DESK TOP MICROPHONE - A high impedance, dynamic mike with satin finish and shock-resistant base. Output level: - 58 db .
SM- 2 MICROPHONE-A slender, gray and chrome dynamic desk top microphone. Excellent for ham transmission or for high fidelity recording because of its wide frequency response range of $50-$ $13,000 \mathrm{cps}$. The SM-2 has an output level of -60 db .

Now the KWM-2 goes anywhere with the new Collins PM-2 Portable Power Supply

Callins PM-2 Partable Power Supply, with its built-in auxiliary speaker, provides all voltoges needed for the KWM-2. It quickly slides inta place and cannects ta the back of the KWM-2; ready to aperate in minutes from either 115 v ac or 220 v ac of 50.400 cps as a completely partable SSB and CW station. The PM-2 matches the design and finish of the KWM-2.

The PM- 2 and KWM. 2 are carried in a rugged, shock resistant Samsanite Ultralite suitcase. Yet, cambined they weigh less than 50 lbs.

SEE THE

MM-I

MM-2

MM-3

SM-1
SM-2

For further information and complete specifications on the entire Collins S/Line, KWM-2 and accessories, see one of the following Collins authorized distributors.

ALABAMA
Birmingham Ack Radio Supply Co.
ALASKA
Anchorage Yukon Radia Supply, Inc. ARIZONA

Phoenix Southwest Whsle, Radia, Inc.
Tucson Ellioft Electranics, Inc.
ARKANSAS
DeWitt Moory's Whsle. Radio \& App,Ca. Texarkana Lavender Radio \& TV Supply Co., Inc.
CALIFORNIA
Burbank Valley Electranic Supply Ca.
Burlingame Amrad Supply, Inc.
Los Angeles Henry Radio, Inc.
Radio Praducts Sales, ins.
Oakland Elmar Electronics
San Diego Western Radia \& TV Sup. Co.
San Jose Quement Industrial Electranics
colorado
Denver Radio Products Sales Co.
CONNECTICUT
Hartford Corky's of Hartford, Inc.
Now Haven Radia Shack Corp. af Cann.
DELAWARE
Wilmingion Willard S. Wilsan, Inc.
DISTRICT OF COLUMBIA
Washington Electronis Wholesalers, Inc. FLORIDA
Jackzonvillo Peard Flectronic Supply Co.
Melbourne Electronic Supply Ca.
Miami Amateur Radio Center, Inc. Electronic Supply Ca.
Pensacola Grice Electranics, Inc.
St. Petersburg Braad Radia
Tampa Kinkade Radia Supply, Inc.
GEORGIA
Atlanta Ack Radio Supply Ca,
Specialty Distributing Co., Inc.
HAWAII
Honolulu Kaimuki Radio Company, Lid. ILLINOIS

Chisago Allied Radio Corp.
Newark Electranics Carparatian
Peoria Klaus Radia \& Electric Campany

INDIANA
Fort Wayne Brown Electronics, Inc. Indionapolis Graham Electronics Sup., Inc.
South Bend Radio Distributing Co., Inc.
IOWA
Council Bluffs World Radia Lab., Inc. Des Moines Bob and Jack's, Inc. Radia Trade Supply Ca.
KANSAS
Topaka The Overton Electric Ca., Inc. KENTUCKY
Lexington Radia Equipment Company
LOUISIANA
Naw Orleans Radio Parts, Inc.
MASSACHUSETTS
Boston DeMambra Radia Supply, Inc. Rodia Shack Corporation

MICHIGAN

Ann Arbor Purchase Radio Supply
Detroit M. N. Duffy \& Company
Kalamazoo Warren Radio Company
MINNESOTA
Minneapolis Electronic Center, Inc Lew Bonn Company
5t. Paul Stark Radio Supply Company
MISSISSIPPI
Jackson Swan Distributing Ca., Inc.
MISSOURI
Butler Henry Radia Company
Kansas City Burstein-Applebee Campany
St. Lavis Wolter Astie Radia Cumpany

MONTANA

Greal Falls Electric City Radia Supply
NEW HAMPSHIRE
Concord Evans Radio
NEW JERSEY
Mountainside Federated Purchaser, Inc.
Newark Hudsan Radia \& Television Corp. of N.J.
NEW YORK
Albany Ft. Orange Radio Distr. Co., Inc. Amsterdam Adirandack Radia Supply Buffalo Genessee Radia \& Parts Co., Inc. New York Harrisan Radio Corp. Harvey Radia, Inc.

NORTH CAROLINA

Asheville Freck Radio \& Supply Co. Winston-Salem Daltan-Hege Radio Supply Co., Inc.
ОНIO
Cincinnati Steinberg's Inc.
Cleveland Pioneer Electronic Sup. Co.
Columbus Universol Service
Dayton Custom Electronics, Inc.
Toledo Selectronic Supplies, Inc.
OKLAHOMA
Oklahoma City General Electranics, Inc. Tulsa Radio, Inc.
OREGON
Portland Portland Radio Supply Co.

PENNSYLVANIA

Philadelphia Radia Electric Service Compony of Pa.e Ine.
Pitrsburgh Cameradia Company
RHODE ISLAND
Providence W. H. Edwards Ca., Inc.
SOUTH DAKOTA
Watertown Burghardt Radia Supply
TENNESSEE
Memphis W. \& W. Distributing Company
Nashville Electra Distributing Campany
TEXAS
Abilene Howard Radio Campany
Austin Hargis-Austin, Inc.
Corpus Christi Electronic Equipment \& Engineering Company
Dallas Amateur Electranics, Inc. Central Electranics Crabtree's Whalesale Electranics
El Paso McNical Inc.
Houston Busacker Electronic Equipment Company, Inc.
Son Antonio Madern Electronics Ca.
Radio \& Television Parts Company
WASHINGTON
Spokane Northwest Electranics Distr. Tacoma C \& G Rodio Electronics Co.
WISCONSIN
Fond du Lac Harris Radia Carparatian
Madison Satterfield Electranics, Inc.
Milwaukee Amateur Electranics Supply

HRO-60

Features widest frequency cover. age of any receiver available, 50 kc to $54 \mathrm{mc} .$. the world's most famous receiver.

NC-400
National's newest general coverage receiver. Covers 540 kc to 31 mc in 7 bonds. 18 tubes (including rectifier) AM-CW-SSB. May be used in fixed channel or diversity operation.

NC-66

AC/DC.Battery Portable. Covers 150 kc to 23 mc in 5 bands... only receiver at its price with calibrated coverage of CONSOLAN. Exclusive RDF-66 Direction Finder Accessory provides accurate navigation for small boats.
and CW versatility. 10 separate dial scales cover 160 to $11 / 4$ meters. Dual conversion... 5 -position "IF Shift ${ }^{\prime \prime}$ for selectable sideband.

NC-303

All 'ham band' receiver with highest mechanical stability, lowest thermal drift and maximum SSB, AM

NC-270

"COSmic blue"
National's newest! Dual conversion "ham band" receiver . . . 6 meter coverage; features the exclusive Ferrite Filter ${ }^{* k}$ for instant upperlower SSB, CW and AM selectivity; it provides an average " Q " of 500 at $230 \mathrm{kc} .$. . in new duo-tone Cosmic Blue cabinet; plus Flip Foot for maximum operating convenience.

* Patent pending

NC-60

Shecial
...First all-new low-priced shortwave/standard broadcast receiver in over 10 years! Covers 540 kc to 31 mc in 4 bands. 110 volts $A C / D C$. Built-in speaker.

NATIONAL RECEIVERS AND ACCESSORIES ARE SOLD ONLY BY FRANCHISED DISTRIBUTORS. MOST OF THESE DISTRIBUTORS OFFER TRADE-IN AL. LOWANCES AND LIBERAL BUDGET TERMS.

Natiomal paplo co.,IIC. MELROSE 76, MASS.

A wholly owned subsidiary of National Co., Inc.
Export: AD AURIEMA, INC. 85 Broad St., New York, N.Y., U.S.A in Canada: CaNAOIAA MARCONi CO, 830 Bayview Ave,, Toronto, Ont.

Specifications subject to change without notice.

Send for this FREE National Catalog to meet your Component Requirements

 termand issemblith and ather elesirpoc and ebe tro-mellimeil eani

General CATALOG

MIL-SPEC KNOBS
Type KMS. Complete line of standard plastic control knobs made in conformance with MS-91528. Four basic types (with or without skirts), three shaft sizes, gloss or matte finishes, or to your color specifications . . . in all Mil-Spec sizes.

CHOKES

R-45 SERIES: Ferrite bead chokes for frequencies from 5 to 200 mc . R-40 SERIES : Ferrite-core chokes, extremely high Q for small size. Fungus-proof varnish impregnation per MIL-VI37A. R-25 SERIES MIL-inductance chokes for high frequency circuits. Inductance per MIL-C15305A, coil forms per MIL-P-14, impregnation per MIL-V-173A. R-33, R-50, R-60 SERIES: RF coils molded on phenolic forms per MIL-P-14.

"FLUSH MOUNT" CAPTIVE NUTS

National Exclusive! Flush fit on both sides of aluminum sheet provides permanent tapped holes. Stainless steel 303 as per MIL-S-853A, passivated finish as per MIL-P12011. Additional types to meet MIL SPECS P-11268, E-5400, and E-16400. Captive studs also available.

PRECISION RIGHT ANGLE, VERNIER DRIVES
TYPE PRAD: Right angle drive remote operation of low torque units. TYPE RAD Right angle drive for ganging capacitors, potentiometers or other parts in inaccessible locations. TYPE AN: Vernier mechanism for use with any $3 / 16^{\prime \prime}$ National knobs and others. TYPE AVD: Vernier mechanism similar to type AN except that the output shaft is non-insulated.

UNIVERSAL CERAMIC COIL FORMS For military and commercial applications. Available in five standard sizes with or without terminal collars. Terminal collars accept up to four terminals per collar. All materials are in accordance with applicable MIL-SPECS. Preassembled forms to your prints quoted upon request.

HR KNOBS
TYPE HRS: Molded Tenite knobs, grey, black or to specifications. TYPE HRT : Large deLuxe knobs designed for National's receivers, now available by popular request. TYPE HRB: Band switching knob or other applications where switch is turned to several index positions. TYPE HRM: Small brass knurled knobs. TYPE HRK: Fluted, large black Bakelite knobs. TYPE HRP: Chip resistant black Bakelite knob without pointer. TYPE HRP-P: Same as HRP but with pointer.

SOCKETS, CAPS, TERMINALS

TYPE CIR: Tube sockets of grade L-4 ceramic materials (JAN-1-10 spec.) in four models. TYPE CS: Crystal mounting sockets for crystal holders (JAN-1-10 spec.).
TYPES XM-10, XM-50: Heavy-duty, metal shell sockets for four-pin tubes. TYPES XLA-7 Low-loss socket for 674 and 950 series acorn tubes. TYPES SPP-3, SPP-9: Plate caps of grade L-4 steatite (IAN-1-10 spec.) with silver or tin plated beryllium copper grips. TYPES GG-8, 12, 24: Grid grips made in two types, three sizes, variety of materials .. clip grip, or loop grip ... other specifications also. TERMINAL/ASSEMBLIES: TYPE FWC: Insulators molded of mica-filled Bakelite. TYPE FWE: Nickel plated brass jacks. TYPE FWA: Nickel plated brass binding posts. TYPE FWT:
 Plugs for stacking. TYPES FWH, FWI: Terminal assemblies.

Specifications subject to change without notice.

For your SPECIAL design or development applications problems, write or call:

PRESENTS 1960's TOP PRODUCTS IN

QUALITY AND PERFORMANCE

Grounded Grid Linear Amplifier

(Faclory Wired or in Kif Form)

 thent neoded for fool-prof, reliable uperation. This
 more tathe space thath areeder. ('ath he driven be commeraid! and home-haile waters in the lok-watl output
 filatment and hias supply and optional input matching unit P'i-network ontput rimuit lor ! provise tuming amel lowding on $\mathrm{s}(1)-10-2(0)-15-110$ mataro

 fier, insures mavimum innot drive on all hands Jondel
 inpul matrhing to the final is areomplishod antomationally

 Bomels $1 .-1(0) 0$ - .1 and $1 .-1001-1$. Lssembled, ready for installalion with instructions abd fittinus.

Medium Powered Transmitter 5100-B

 L'PO. Bathewitehing on the 80-10-20-15-10 meter hames.

 hathds ind lading 10 moters. Bias s-atem provides romplate.

 well regulated driver for at grouded grid class " 3 " linear. with output to Enare.

Transistorized Converters and Inverters 12 to 14 VDC Input

 radios, marion radio-telephomes, and aireraft radios. Itaperters are suitablo for shyoher pasition indiators, gyro
 horizons, ramote imblating eombassos and other ajraralt

 120 watts, Model TP(-12011 and the 400 cyele 25 watt inverter, Model Tll-25W.

B\&W

 BARKER \& WILLIAMSON, INC. Bristol, Pennsylvania

Pi-Network Inductor Assemblies

Intugral bambwindud lizactwork indurtors for single or pataillol fale operation wo through 10

 rather. Wodel siald Consomatively rated at 1 K゙W On ('W'-sils amd IM with lok', mondulation.

 dium powerod with rating of 2.0 watt: on C W

Grid Dip Meter

 athorption wavement Five color-anded phaz-in coils

 at platios. Mand bitn.

T-R Switches

 tramsmither tor reweiver and vide versat. Ideat for
 safe design eliminatres risk of transmitar damage if

 mangin. Solentabla hamdewithhing, so thromgh io metrors. for hish sishat-to-moise ratis athe minimum intermondulation eflow from lowal hroadeast and

 combitims mot experding 1.5 fol using 72 dhm coans
lime, and hisher power with 52 ohm line. Joulel FOM-B is desighol for medium power appliations. Has horadhatul riveritor which eliminates toming and adjustment.

Multi-Position Coax Switches

 Handles up to I Kill modulated power. Max. amss-
 Mondel ǟl. 2 -pole. 2-position switeh.

Low Pass Filter

For 'Pranmittors to 1 K゙N'. Minimum 85 dh athenuation throughout TY bands. I'ses exdusive Batll patented wavergide design in noved mulli-sedional construction giving grater attromation in less spare at lower cost. Nondry 425 for in ohms impedane Nodel 124 for $\overline{2}$ ohims

Matchmaster

 as dummer load for transmitter tosko sill lamenare

 powersher sampling. Integralsill hodge formatehing antemats and of her lozads to transmitter. Maded

R. F. Filament Chokes

l'sed with standand libament transformers in groumbed grid amplifier rireuitry. Broalland design requires no toming 80 through 10 metars. Parkaned
 - For une of two tubes recpuring not more than 15
 tubes of up to: 30 amps fil. current.

$\mathrm{HF}|\boldsymbol{\prime}| \boldsymbol{I F}$ communications

 it's 「10-ISB•CW •MCW •AM•FS

VOX($0.330 \mathrm{~A} / \mathrm{FR}) \ldots$ a direct reading, high stability, Variable Frequency Oscillator providing continuously variable output over the frequency range of 2-64 mcs.

Bullotin 134A
XFL-2... The TMC Frequency Shift Exciter System, Model XFL-2 is combined low and high frequency shift system. The system combines the TMC Low Frequency Adapter, Model LFA with TMC Frequency Shift Exciter, Model XFK to provide versatile operation over a wide range of frequencies-1 to 6.9 mcs, and 50 to 500 Kcs................................Bulletin 154 SBT-350 (... Compact, rugged Radio Transmitter capable of at least 350 watts PEP from $2-32$ mcs. SSB-ISB-DSB CW-MCW-FS low level AM-completely bandswitchedfive models available.. \qquad Bulletin 220 PTE-1 (AN/GRM-33) . . . SSB Analyzer designed for the specific purpose of tuning and aligning single sideband exciters and transmitters permitting a visual analysis of intermodulation distortion products, hum and noise. The PTE-1 consists of 3 basic TMC units: Spectrum Analyzer Model FSA (AN/URM116): A VFO TMC Model VOX ($0-330 / F R$) and a Two-tone Generator TMC Model TTG (C.579/URT)..........Bultetin 231 GPT-TOMAN/FRT-39A) . . . is a conservatively rated general purpose radio transmitter capable of at least 10 KW PEP output from 4-28 mcs. All power amplifier stages are linear and the final incorporates a ceramic tube for greater efficiency and reliability. All components housed within a single attractive enclosure including sideband exciter-VFO, spectrum analyzer, F.S. Exciter and complete "on the air"' resting circuitry.

Bullefin 207B

The TECHNICAL MATERIEL CORP.
MAMARONECK, NEW YORK
in CANADA: Otrawa, Ontario, Canada

New Heathkit Transceivers

for VFF Nomads

- 6 Meter and 2 Meter Models
- Tracked VFO and Exciter Stages for single knob tuning
- Up to 10 watts RF output to antenna
- Built-in Low Pass Filter
- Built-in 3-way Power Supply for 117 V. AC, 6 V. DC or 12 V. DC operation
- Push-to-talk Ceramic Element Microphone

$$
\text { only } \$ 19095
$$

"SHAWNEE" 6-METER AND "PAWNEE" 2-METER TRANSCEIVER KITS

Mobile or fixed, these new transceivers bring you unprecedented VHF performance, for each is a romplete AM d'W transmitter-reccicer combination with features unmatched at this low price. Just connect an antenna and you're in business! The transmitters feature a buill-in VFO with all frequency determining components mounted on a "heat sink" plate for temperature stability, plus four suitchsclected crystal positions for net, novice, CAP and Mars operation. VFO and all exciter stages are tracked for convenient single knob luming over any 500 KC band segment (greater excursions require simple re-peaking of final), A VFO spol-suitch is provided for zeroing-in signals with transmitter off.

A 6360 dual totrode final RF amplifier provides up to 10 uoults of poucr output to the antenna and a buill-in low pass filter is incorporated to suppress harmonics and other spurious radiation which might reach the antenna. The dual purpose modulator provides a full 10 watts of audio for high level plate modulation of the final RF amplifier or 15 watts of audio for public address operation, selectable with a push-pull switch.

The receiver is a superheterodyne using double conversion with the first oscillator crystal coutrolled for high stability. All oscillators are collage regulated.

The large, slide-rule type dial with vernier tuning provides ample bandspread for both receiver and VFO tuning. Also featured is an RF gain control, BFO. ANL, squelch, AVC on/off switch and front pernel tuning meter. Meter is automatically switched to read received signal strength or relative power output. Meter and tuning dial are edge illuminated for high visibility.

A unique built-in 3-way power supply allows 117 VAC fixed station operation or 6 or 12 VDC mobile operation simply by using either AC or DC power cables furnished. The power supply uses heavy-duty vibrator system with silicon type rectifiers in bridge circuit configuration. All sections of the unit are completely shielded for maximum stability and noise free operation.

Both units come complete with built-in speaker, two nower plugs (AC \& DC), heavy duty power cables, primary fused relay for mobile installation, mounting bracket and push-to-talk ceramic element microphone with coil cord and mounting clip. Cabinet measures $6^{\prime \prime} \mathrm{H} \times 12^{\prime \prime} \mathrm{W} \times 10^{\prime \prime} \mathrm{D} .34 \mathrm{lbs}$.

HEATHKIT* by \mid DAYSTROM

FREE CATALOG

Send today for your Free Catalog describing over 200 different Heathkit products in Hi-Fi, Test, Amateur Radio, Marine and General consumer fielas.

HEATH COMPANY

Benton Harbor 9, Michigan

Please send my Free copy of the complete Heathkit Catalog.

NAME

ADDRESS

CITY
ZONE STATE
Order Direct by Mail or see your Heathkit Dealer.

4.4000

$4 \times \times 1000 \mathrm{~A}$

EIMAC FIRST... for all band transmission

4-65A Radial-Beam Power Tetrode
Smallest of the Eimac internal-anode tetrodes, the 4.65 A has a plate-dissipation rating of 65 watts and is ideal for deluxe mobile as well as fixed-station service.

	CW	AM	SSB
Plate Voltage	3000 v	2500 v	3000 v
Driving Power	1.7 w	2.6 w	0
Input Power	345 w	275 w	195 w

4-400A Radial-Beam Power Tetrode
Ideal for high power amateur rigs, it will easily handle a kilowatt per tube in CW, AM or SSB application. Forced-air cooling is required.

	CW	AM	SSB
Plate Voltage	3000 v	3650 v	4000 v
Driving Power	6 w	4 w	0
Input Power	1000 w	1000 w	1000 w

4E27A / 5-125B Radial-Beam Power Pentode

The Eimac 4E27A/5.125B is intended for use as a modulator, oscillator or amplifier. The driving-power requirement is very low, and neutralization problems are simplified or eliminated entirely.

Plate Voltage	3000 v	2500 v	4000 v
Driving Power	1 w	2 w	0
lnput Power	500 w	380 w	360 w

4CX1000A Ceramic Power Tetrode

Specifically designed for SSB operation, the ceramic-metal 4 CX1000A Class AB, line ar amplifier tube achieves maximum rated output power with zero grid drive.

Plate Voltage	3000 v
Driving Power	0
Input Power	2700 w

Input Power
2700w
4CX250B Ceramic Power Tetrode A compact, rugged tube unilaterally interchangeable in nearly all cases with the famous $4 \times 150 \mathrm{~A}$, with the advantages of higher power and easier cooling. sSa

Plate Voltage	2000 v	1500 w	2000 v
Driving Power	2.8 w	2.1 w	0
Input Power	500 w	300 w	500 w

4-125A Radial-Beam Power Tetrode
The versatile tube that made screen grid transmitting tubes popular. This favorite for commercial, military and amateur use is radiation cooled.

	CW	AM	SSB
Plate Voltage	3000 v	2500 v	3000 v
Driving Power	2.5 w	3.3 w	0
Input Power	500 w	380 w	315 w

4-250A Radial-Beam Power Tetrode
A high power output tube with low driving requirements. A pair of Eimac $4-250$ A's easily handle a kilowatt input in AM, CW or SSB service.

	CW	AM	SSB
Plate Voltage	3000 v	3000 v	4000 v
Driving Power	6 w	3.2 w	0
Input Power	1000 w	675 w	660 w

4CX300A Ceramic Power Tetrode
A new ceramic-metal high power tetrode designed for rugged service. Will withstand heavy shock and vibration and operate with envelope temperatures to 250* Centigrade.

Plate Voltage	2500 w	1500 w	2500 v
Driving Power	2.8 w	2.1 w	0
Input Power	625 w	300 w	625 w

Information on these popular tubes for amateur applications is available from our Amateur Service Department.
EITEL-McCULLOUGH, INC.

The World' Largest Manufacturer of Tranemiting Tubee

4 4×250B

on your

 desk top...
or on wheels

You can take this G-76 out of your car, use it - with matching AC power supply and speaker assembly - for excellent 6 band fixed station operation. Here's opportunity to add new enjoyment -and DX - with operation on another lively amateur band, 6 meters. G-76 is a full-blown, star performer on 6 as well as the other five widely used $10,15,20,40$ and 80 meter bands.

While G .76 is properly called a transceiver because of some common audio circuitry, transmitter and receiver are separately tunable. Receiver can be set to out-of-band DX, transmitter VFO anywhere within the band. Transmitter VFO is intended to be spotted on receiver dial. Frequency control may be either by VFO or quartz crystal. (Except on 6 meters which is crystal controlled only.) Transmitter and receiver oscillators are both compensated so that drift with temperature is negligible. Oscillator circuit has very low drift even with exceptionally wide excursions in both plate and filament supply voltages.

HIGHLIGHTS: Iransmitter power input 100 watts AM, 120 watts CW pi network output for 52 ohms - Dual conversion receiver. $B F O$ for $\mathrm{CW} / \mathrm{SSB}$ reception - Automatic noise limiter . Sensitivity: approx. 1 microvalt at 50 ohms for $6 \mathrm{db} \mathrm{S}+\mathrm{N} / \mathrm{N}$ ratio . Selectivity: 3 to 3.5 kc bandwidth at 6 db down, 14 kcs or less at 60 db down.
G.76 less power supply and speaker, 33338 . 376.25
G-76 transistorized 12V DC power supply (neg. ground), $3350 \ldots$.
G-76 power supply for 117V AC w/speaker, $=3349$. 145.00

COMMUNICATOR IV. -Blue-chik Snvestment.

Many of the thousands of Communicators on the air today were purchased a number of years ago. A substantial number of these units have changed hands several times over the years. Basically well designed and constructed, they continue to perform . . . retain their resale value. Any Communicator owner can find a good market for his old gear whenever he decides to step-up to a newer, more advanced model. And COMMUNICATOR IV gives any VHF man the best of reasons for taking this step . . . today.
Now . . . higher input power . . . greater "Talk" power. A fine modern-design receiver using the latest VHF frame-grid, front-end tubes for a noise figure of 4-5! Triple conversion with first concersion quartz crystal controlled ... your assurance of high stability of the frequency range where stabilization is most importantand usually most difficult to obtain. Receiver is continuously tunable, 143.7-148.3 mes.

Add other "dividend" features: adjustable "squelch", noise limiter, " s " meter, earphone jack, 6 -switchable crystal positions plus provisions for external VFO ... transistorized universal power supply built-in, no strappingmerely use proper plug/cable supplied to change from AC to DC.

All-in-all, features for greater range and flexibility ... for a new high order of operating pleasure and convenience. From any viewpoint . . . a bluc-chip investment. 369.5

OTHER MODELS:
COMMUNICATOR IV IS CERTIFIED FOR OCDM SPECS WHEN SUPPLIED WITH =3361 C-D KIT.

```
    COMMUNICATOR IV
``` MODELS FOR CAP


FOR DEPENDABILITY IN COMMUNICATIONS SELECT INTERNATIONAL CRYSTALS

AMATEUR CRYSTALS
Types FA-5, FA-9, FM-8 1000 kc to \(137 \mathrm{mc} .01 \%\) Tolerance Wire mounted plated crystals for the Amateur or Experimenter whe tolerances of \(.01 \%\) are permissible and wide range temperatures a not encountered.
Designed to operate into a load capacitance of 32 mmf on the fundamental between 1000 kc and 15 mc , Designed to operate anti-resonance on 3rd overtone modes into grid circuit without additional capacitance load. Fifth overtone crystals and seventh overtone crystals operate at series resonance.

HOLOERS: Metal, hermelically sealed. FA. 5 and FA 9 are HC \(6 U\) pin type. fM 9 is HC 18 U pin type.
CALIBRATION TOLERANCE: - \(01 \%\) of nominal at 30 C .
\(70 \mathrm{C} .-01{ }^{\circ} \mathrm{o}\) of trequency at 30 C. ORIVE LEVEL: Recommended, maximum 3 milli:atts for o.ertones: up to 80 mulasialts for fundamentals, depending on frequencr
FREQUENCY RANGE: FA 5 and FA- 9 1000 to 20.000 kc fundamental: 10 mc to 60 m : inir: o.erione, 60 mc to 137 mc fifth and seventh overtone. Fivi 98000 he to 20.000 b fundamental; 20.000 kc to 60 mc third overtone, 60 ms to 110 mc pith o.estone.

COMMERCIAL CRYSTALS 70 kc to 137 mc - Type F- 6 Wire mounted, plated crystals for use in commercial equipme where close tolerances must be observed. All units are calibrat for specific load presented by equipment. Crystals are available for all major two-way equipment and in most cases the necessary correlation data is on file. Prices on request.

CRYSTALS FOR USE IN MILITARY EQUIPMENT CAN BE SUPPLIED TO MEET SPECIFICATIONS OF MIL-C-3098B.

DESCRIPTION ANO DATA: LO \(\therefore\) drift AT ut blanks are used in these units abore \(500 \%\) and \(10 \%\) crift DT and CT.cut blanks are used in units belo:: 500 hc any crastal can be supplied for owerstion \(\therefore\) sh or \(\therefore\) 1thou: un osen. TEMPERATURE TOLERANCE:
\(\mathrm{AT}-005^{\circ} \circ\) from 35 to 90 C. OT.CT 0 \(00^{\circ}\) from 20 to
CALIBRATION TOLERANCE:
AT \(0025^{\circ}\) of nominal 31 . 30 C . DT-CT - \(01^{\circ}\) o of nominal at 30 C . DRIVE LEVELS:
Wiaximum. Al
-0 milli.3t's 500 : \(=10999\) to
millinatts 10.000 + C to 24,000 kC
2 militatts 25 mc to \(!37 \mathrm{mc}\)
\(\mathrm{I}-2\) muli. 31 s DT CI - 2 mili::3lts

FM-9

F-605

International Complete Cat log Free. Ser For Yours

\title{
QUALITY ELECTRONIC EQUIPMENT FROM INTERNATIONAL
}

FO-1L 100 kc Oscillator Printed circui oscrilasor fur band oure ralibratrant frequency standard. Po:er 500 boe (m) 8 min, 6. 3 .al (e) Kit complete - it tube and crystal
\(\$ 12.95\) Whred and Tested

Fo-1A F0-1B Oscillators F0-1A (fundamental operdion) 200 क to \(15,000 \cdot \mathrm{C}\) Tolerances of \(.01^{\circ} \mathrm{O}\) - anj \(005^{\circ}\) o \(\therefore\) ith 3plro Friate FX 1 - rystal Tolerances of \(.0025 \%\) anes \(0010^{\circ}\) o aualable surat an tested Po:.er 210 vd \(1 / 15 \mathrm{ma}\) 6.3 var lif 150 ma Tube 6ВН6. FO-1B covertone oneration . \(5 \mathrm{~m} \quad+0 \mathrm{mr}\) in \(\mathrm{ft} . \mathrm{e}\) tanges. Pover 150 wir in \(8 \mathrm{ma}, 6.3 \mathrm{vac}\) (ll \(1 / 5\) ma lube baks
kit (Iess tube and cryst.al)

FRA-1
RF Converter Crystal controlled
RF con.erter
fil mir if output
A.alable for h. 10, 11, i5, an: 20 meters Po: er 250., mall 10 mf . 3 or 12 ws Tubes. hißafs. 12 AT7 16 nieters - GAKs ri amplifier Prined
crocult, presired
\(\$ 14.00\)

FRB-1 IF Unit Printed Pinted pre-:.res If pre-ires if
Unit Norer on: Unit Wreer ons feeding a ibs l if staze Noise limiter controiled. Parer 250 vac e \(15 \mathrm{ma}, 6.3\) :as

FRC-1 Audio Unit Compact ausio ulist für irams mitief desien Tubes: 6 ANB spe amplifier audio. 6AW5 00 icp aml ifiep 6.3 yac

F0-11 Crystal Oscillator Compart crystal oscillator Ferquency range 2 mr to \(15^{-}\) Fundaren'al mone cystals. Uses miep national F.605 or Fa Crystals Po:.er 210 . plate (e) 5 ma. 6.3 rac (is) 150 ma Tube 6BH6. Wired and Jested vilth tube less crystal

 hort wave reception. covering the Amateur bands 75 through 6 meters, the Citizens band and WWV. Complete ready to install. (Specify frequency).......... \(\mathbf{2 2 2 . 9 5}\) 2 Meter Model.

INTERNATIONAL
CRYSTAL MFG. CO.; INC.

MODEL C-12 Alignment Oscillator Crystal controlled for peneratinz standard signals in alagnment of IF ar: RF ciruits. Accommodates FX ! teystals from 200 be to 15.000 ki . SDe isl oxillators for frequencres to \(60 \mathrm{~m}^{-}\)Conrete with po:ier supply for 115 var. Osrillator with

\section*{Wire and Cable for every Ham Application}

\section*{Ham Transmission Lines-RG/U Type}

Belden 72-ohm RG/U Cables are designed for lowest losses, longer service life, and maximum dependability. Cables are essentially flat with no peaks in attenuation to reduce signal on either high or low frequencies.

8241 Type RG-59/U

8238 Type RG-11/U

\section*{Ham Transmission Lines- \\ Parallel Type}

Belden transmission line cables are made with brown virgin polyethylene for best weather resistance and lowest losses. Uniform quality control prevents standing waves and mismatches.

8235
300 Ohm-1 KW (RF) Rated

8210
72 Ohm-1 KW (RF) Rated

\section*{Power Supply Cables}

Provide dependable service as power supply cords, interconnecting cables on electronic equipment, remote control circuits, special press-to-talk microphone circuits, and other ham applications. Designed for long service life with excellent mechanical and electrical characteristics, and uniform quality. Special jacket offers maximum resistance to abrasion and ozone.

Shielded Power
Supply Cable

\title{
Service RatedQuality Controlled-Easy-to-UsePackaged Lengths
}

\title{
electron
}

HELPFUL CHARTS \& LITERATURE FREE: Write for CONDENSED TUBE CATALOG, information at a glance, rapid tube data reference tabies, 31 pages of condensed information arranged for quick reference. Address your distributor or Amperex direct.
\begin{tabular}{|c|}
\hline COMMUNICATION \\
\hline INDUSTRIAL \\
\hline RECTIFICATION \\
\hline SPECIAL PURPOSE \\
\hline RADIATION DETECTION \\
\hline AMATEUR \\
\hline ELECTRO-MEDICAL \\
\hline
\end{tabular}

Detailed Data Sheets on any of these tubes, and applications engineering service are yours for the asking.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{RADIATDR CREDIT FDR FORCED AIR-COOLED TUBES} \\
\hline Tübe Type & Users & Allowance \\
\hline 889RA & & \$20.0C \\
\hline 891R, 892R & & 30.0 C \\
\hline 5604 & & 75.0 C \\
\hline 5667 & & 20.0 C \\
\hline 6445 & & 30.0 C \\
\hline 6447 & & 30.0 C \\
\hline 6757 & & 75.0 C \\
\hline 6801 & & . 0 C \\
\hline
\end{tabular}
**Price on request.
\(\ddagger\) Price includes \(10 \%\) Fed. Excise Tax ALL PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

\section*{ask Amperex}

\section*{about AMPLIFRAME tubes}
*AMPLIFRAME, a new concept ir electron tubes, designed and mas: produced exclusively by Amperex incorporates the unique FRAME GRII ..the closest approach to the idea "'Physicists' grid"-electrical charac teristics but no.physical dimensions The FRAME GRID results in: - highe transconductance per milliampere tighter \(\mathbf{G}_{\mathrm{m}}\) and plate current toler ance - low transit time - low capaci tances - lower microphonics - rugget construction

ELECTRONIC CORP.
HICKSVILLE, L. I., N. Y.
in canada: rogens electronic TUBES \& COMPONENTS, 116 VAN. DERHOOF AVE., TORONTO 17, ONT.

COUNTER, DECADE
\(6370 / E I T\). . . \(\$ 16.50\)

DIODE, DAMPER
\$6R3/EY81 \$1.40
TWIN DIODE
\(\ddagger 5726 /\) E91AA . . \(\$ 1.90\)
DIODE, VTV!
6923/EA52 • . \$11.00
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{IGNITRUNS} \\
\hline 5551A/652 & \$ 65.00 \\
\hline \(55524 / 651\) & \\
\hline \(5553 \mathrm{~B} / 655\) & 245.00 \\
\hline 5555/653B & \\
\hline 5822A & 11 \\
\hline
\end{tabular}

\section*{TUNING INDICATORS}
\begin{tabular}{|c|c|c|}
\hline 11M3/ & DM70 & \$.98 \\
\hline \({ }^{\ddagger 6885}\) & /EM80 & 1.23 \\
\hline \(\pm 6 \mathrm{t}\) ¢085 & EM34 & 1.48 \\
\hline 16FG6 & /EM84 & 1.48 \\
\hline \multicolumn{3}{|c|}{KLYSTRONS} \\
\hline \multicolumn{3}{|l|}{Dx122} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Dx123}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{KLYSTRON, REFLEX} \\
\hline 2K25 & \$39.5 \\
\hline \multicolumn{2}{|r|}{MAGNETRONS} \\
\hline 2142 & \$160.0 \\
\hline 2148 & 250.00 \\
\hline 4 4 547 & \\
\hline 4.558 & ** \\
\hline
\end{tabular}

Type No. Price MAGNETRONS (Con't)

\section*{PENTODES}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
\(\ddagger G A \cup 6\) \\
¥GAU6 \(B\)
\end{tabular} & \[
\$ \begin{aligned}
& 1.05 \\
& 1.30
\end{aligned}
\] \\
\hline +6CA7 EL34 & 2.88 \\
\hline 士6CW5/EL86 & 1.43 \\
\hline \(\pm 6 \mathrm{EH7} \mathrm{E.F183}\) & 1.45 \\
\hline 16EJ7 F.F184 & 1.45 \\
\hline 18BQ5 XL84 & 1.30 \\
\hline 828 & 27.60 \\
\hline \(\ddagger 45 \mathrm{B5}\) UL8. & 1.45 \\
\hline 5654 E95F & 2.85 \\
\hline *5847, E182F & 14.90 \\
\hline 6007/5913 & 1.25 \\
\hline 60085911 & i. 25 \\
\hline 6083 & 14.25 \\
\hline 608.4/E80F & 3.00 \\
\hline 6227 /E80L & 3.05 \\
\hline 16267/EF86 & 1.38 \\
\hline 6375 & 8.40 \\
\hline 6686/E81L & 4.10 \\
\hline \(6687 / \mathrm{E91H}\) & 1.30 \\
\hline 6688 E180F & 6.80 \\
\hline *6688A & 6.86 \\
\hline 6689 E83F & 3.60 \\
\hline 17189 & 1.80 \\
\hline 769.3 EgoF & 3.25 \\
\hline E99F & 3.25 \\
\hline EFP60 & 7.50 \\
\hline \(\ddagger\) EL37 & 2.88 \\
\hline
\end{tabular}

\section*{PENTODE, DUO-DIODE}
\$6DC8 EBF89 . . \$1.60
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TRIODE•PENTODES} \\
\hline ¢6BL8/ECF80 & \$1.70 \\
\hline \(\ddagger 6 \mathrm{MM8} \mathrm{ECL82}\) & 1.60 \\
\hline & \\
\hline T508M8 & \\
\hline
\end{tabular}

\section*{PHOTOMULTIPLIERS}
\begin{tabular}{|c|c|}
\hline 52AVP & \$120.00 \\
\hline S7AVP & 850.00 \\
\hline 58AVP & 850.00 \\
\hline 150AVP & 62.00 \\
\hline 50AVP-SP & 78.00 \\
\hline \(150 A V P-S P\) & 76.00 \\
\hline 150CVP & 84.00 \\
\hline 51 UVP & 308.00 \\
\hline 53UVP & 462.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{RECTIFIERS} \\
\hline \#152A DY87 & \$ 1.38 \\
\hline J5AR4/GZ34 & 2.10 \\
\hline \$5R4G-Y & 1.90 \\
\hline \(\ddagger 6 \mathrm{CA4}\) EZ81 & 1.05 \\
\hline \(16 \mathrm{~V} 4 \mathrm{EZ80}\) & . 75 \\
\hline 575A & 22.15 \\
\hline 673 & 22.15 \\
\hline 80204X & 24.00 \\
\hline
\end{tabular}

RECTIFIERS. MERCURY

Type No.
Price VOL'TAGE REGULATORS
\begin{tabular}{lll}
OA2 \(\ldots . . .\). & \(\$ 1.26\) \\
OB2 & \(\ldots . . .\). & 1.32 \\
\(90 C 1\) & \(\ldots .\). & 2.25 \\
\(6354 / 150 B 2\) &.. & 2.55 \\
\hline
\end{tabular}

TETRODES
\begin{tabular}{|c|c|}
\hline R5 & \$ \\
\hline * \(\ddagger\) ER5 & 40 \\
\hline 4-125A & 36.00 \\
\hline 4-250A & 46.50 \\
\hline 4-400A & 48.00 \\
\hline \(4 \mathrm{CX250B}\) & 45.00 \\
\hline * + 4ER5 & 1.40 \\
\hline \(4 \times 1504\) & 33.15 \\
\hline \(4 \times 1500\) & 33. \\
\hline 4 X 250 B & 42.5 \\
\hline 4 X 250 F & 42.50 \\
\hline \(4 \times 500 \mathrm{~A}\) & 128.50 \\
\hline +6ER5. EC95 & 1.40 \\
\hline 6075 & 250.00 \\
\hline 6076 & 305.00 \\
\hline 6079 & 60.00 \\
\hline 6155 & 36.00 \\
\hline 156 & 46.5 \\
\hline 883 & 5.00 \\
\hline 6979 & 42.5 \\
\hline 7527 & 48. \\
\hline
\end{tabular}

THYRATRONS
\begin{tabular}{|c|c|}
\hline 2 D 21 & \$ 1.22 \\
\hline 3 C 23 & 11.98 \\
\hline 632B & 36.00 \\
\hline 5632 C3J & 15.50 \\
\hline 5684 C3JA & 19.80 \\
\hline 5685 'C6JA & 29.30 \\
\hline 5727 E91N & 2.50 \\
\hline AX260 & 150.00 \\
\hline \multicolumn{2}{|l|}{THYRATRONS, HYDROGEN} \\
\hline 6268 & \$32.50 \\
\hline 6279 & 45.00 \\
\hline \multicolumn{2}{|l|}{THYRATRONS, MERCURY} \\
\hline \[
\begin{gathered}
5557 \text { FG17/ } \\
967 / 1701
\end{gathered}
\] & \$ 9.50 \\
\hline 5559 & 23.00 \\
\hline 5560 FG95 & 33.00 \\
\hline 5869 & 25.00 \\
\hline 5870 & 100.00 \\
\hline 6786 & 200.00 \\
\hline AX105/FG105 & 53.33 \\
\hline
\end{tabular}

\section*{THYRATRONS, XENON}
\begin{tabular}{rrr}
2050 & \(\ldots .\). & \(\$ 1.85\) \\
5544 & \(\ldots .\). & 30.50 \\
5545 & \(\cdots .\). & 29.30 \\
\hline
\end{tabular}

\section*{TRIODES}
\begin{tabular}{|c|c|}
\hline *2FY5 & \$ 2.90 \\
\hline *3FY5 & 2.90 \\
\hline *6FY5 & 2.90 \\
\hline 16GM8 6GM8 & 2.28 \\
\hline \(\ddagger 604\) EC80 & 3.00 \\
\hline 16R4, EC81 & 2.55 \\
\hline 350 & 660.00 \\
\hline 450TH & 77.00 \\
\hline \(450 T \mathrm{~L}\) & 77.00 \\
\hline 501R/5759 & 225.00 \\
\hline 502/5760 & 210.00 \\
\hline 502R/5761 & 235.00 \\
\hline 504 R & 245.00 \\
\hline 805 & 20.10 \\
\hline 810 & 25.65 \\
\hline 811 A & 6.90 \\
\hline 812A & 6.90 \\
\hline 933A & 47.90 \\
\hline 834 & 19.30 \\
\hline \(838 \ldots\) & 20.00 \\
\hline
\end{tabular}

Type No. Price TRIODES (COn't)
\begin{tabular}{|c|c|}
\hline 845 & 20.80 \\
\hline 849 & 185.00 \\
\hline 849A & 185.00 \\
\hline 880 & 595.00 \\
\hline 889A & 221.00 \\
\hline 889RA & 347.00 \\
\hline 891 & 275.00 \\
\hline 891 R & 430.00 \\
\hline 892 & 270.00 \\
\hline 892 R & 425.00 \\
\hline 5604 & 570.00 \\
\hline 5619 & 423.00 \\
\hline 5658 & 565.00 \\
\hline 5666 & 280.00 \\
\hline 5667 & 370.00 \\
\hline 5771 & 660.00 \\
\hline 5823/Z900T & 1.95 \\
\hline *5842 & 14.90 \\
\hline 5866 & 20.00 \\
\hline 5867 & 30.00 \\
\hline 5868 & 55.00 \\
\hline 5923 & 165.00 \\
\hline 5924 & 231.00 \\
\hline 5924A & 275.00 \\
\hline 6333 & 290.00 \\
\hline 6445 & 45.50 \\
\hline 6446 & 305.00 \\
\hline 6447 & 465.60 \\
\hline 6756 & 383.00 \\
\hline 6757 & 535.00 \\
\hline 6758 & 173.00 \\
\hline 6759 & 206.00 \\
\hline 6800 & 350.00 \\
\hline 6801 & 505.00 \\
\hline 6960 & 150.00 \\
\hline 6961 & 210.00 \\
\hline 7092 & 125.00 \\
\hline 7237 & 180.00 \\
\hline 7459 & 230.00 \\
\hline HF200 & 49.50 \\
\hline HF201A/468 & 34.50 \\
\hline HF300 & 40.50 \\
\hline ZB3200 & 395.00 \\
\hline
\end{tabular}

TRIODE, INDICATOR
6977/DM170 . . \(\$ 2.50\)

\section*{TWIN TRIODES}
\begin{tabular}{|c|c|}
\hline \[
58
\] & \\
\hline 6AQ8 ECC85 & 1.45 \\
\hline 6DJ8/ECC & 2.28 \\
\hline +6ES8/ECC & 2.23 \\
\hline 6, 6 /ECC91 & 1. \\
\hline AQ8 / PCC8 & 1. \\
\hline 2AT7 ECC81 & 1.53 \\
\hline 2AU7 'ECC82 & . 2 \\
\hline AX7 'ECC83 & . 2 \\
\hline 7EW8 HCC85 & 3.5 \\
\hline 920 'E90CC & 2.40 \\
\hline 6085 'E80CC & 3.0 \\
\hline 6201 E81CC & \\
\hline 6211 & \\
\hline 6463 & 2.9 \\
\hline 922 F & 4.75 \\
\hline 62 E180CC & 2. \\
\hline 7119/E182CC & 2. \\
\hline 7316 & 1. \\
\hline CC & \\
\hline
\end{tabular}

\section*{TRIGGER TUBES COLD CATHODE}
\begin{tabular}{|c|c|}
\hline 2507 & \$1.75 \\
\hline 2.70U/7710 & 1.56 \\
\hline z300T & 4.00 \\
\hline 2804 -7713 & 3.4 \\
\hline
\end{tabular}

\section*{HEPTODE}

6687 E91H . . . \(\$ 1.30\)
BEAM DEFLEETION TUBE
6218/E80T . . . \(\$ 15.00\)

\section*{ARRL WORLD MAP}

Printed in eight colors on heavy map paper with 267 countries clearly outlined. Continental boundaries, time zones, amateur prefixes, plainly marked. Size: \(30 \times 40\) inches. \(\$ 2.00\).

\section*{LIGHTNING CALCULATORS}

Quick and accurate answers with ARRL Lightning Calculators! Type A for problems involving frequency inductance, capacity. Type 8 for resistance, voltage, current and power. \$1.25 each.
* QST Although primarily a ham magazine, QST is found on the desks of engineers, technicians and just about everyone in the electronics field. There is something for everyone in QST, from the Novice to the Old Timer. QST and ARRL membership \(\$ 5.00\) in U.S.A., \(\$ 5.25\) in Canada, \(\$ 6.00\) elsewhere.

THE RADIO AMATEUR'S HANDBOOK Internationally recognized, universally consulted. Packed with information essential to the amateur and professional alike. Hundreds of photos, diagrams, charts and tables. \(\$ 3.50\) U.S.A., \(\$ 4.00\) U.S. Poss. and Canada, \(\$ 4.50\) elsewhere; Buckram Edition, \(\$ 6.00\) everywhere.
A COURSE IN RADIO FUNDAMENTALS A complete course of study for use with the Radio Amateur's Handbook. Applicable to individual home study or class use. \(\$ 1\) U.S.A. proper, \(\$ 1.25\) elsewhere.

HOW TO BECOME A RADIO AMATEUR Tells what amateur radio is and how to get started in this fascinating hobby. Emphasis is given to the needs of the Novice licensee, with three complete simple amateur stations featured. 50 c .

THE RADIO AMATEUR'S LICENSE MANUAL Complete with typical questions and answers to all of the FCC amateur exams-Novice, Technician, General and Extra Class. Continually kept up to date. 50 c
LEARNING THE RADIOTELEGRAPH CODE For those who find it difficult to master the code. Designed to help the beginner. Contains practice material for home study and classroom use. 50 c .
the ARRL ANTENNA BOOK Profusely illustrated, the Antenna Book includes information on theory and operation of antennas for all amateur bands; simple doublets, multi-element arrays, rotaries, long wires, rhombics, mobile whips, etc. \(\$ 2.00\) U.S.A. proper, \(\$ 2.25\) elsewhere,
SINGLE SIDEBAND FOR THE RADIO AMATEUR A digest of the best SSB articles from QST. Includes discussions of theory and practical "how-io-build-it" descriptions of equipment. \(\$ 1.50\) U.S.A. proper, \(\$ 1.75\) elsewhere.
THE MOBILE MANUAL FOR RADIO AMATEURS It's a collection of articles on tried and tested equipment that have appeared in QST. A "must" for the bookshelf of anyone interested in the installation, maintenance and operation of mobile stations. \(\$ 2.50\) U.S.A. proper, \(\$ 3.00\) elsewhere
HINTS AND KINKS If you build equipment and operate an amateur radio station, you'll find this a mighty valuable book in your shack and workshop. More than 300 practical ideas. \(\$ 1\) U.S.A. proper, \(\$ 1.25\) elsewhere.

\section*{QST BINDERS}

No need to let your copies of QST rest in a disordered pile. A QST binder will keep them neat and orderly. Each holds a one-year file. \(\$ 3.00\) (available in U.S. and Possessions only).

\section*{SUPPLIES}

Active amateurs need these supplies: ARRL Logbook, 50c U.S.A., 60' elsewhere. Minilog, 30; U.S.A., 35 elsewhere. Radiogram blonks, 354 per pad postpaid. Message delivery cards, \(5 \notin\) each stamped, \(2 \phi\) each unstamped. Members' stationery, 100 sheets \(\$ 1.00 ; 250\) sheets \(\$ 2.00\); 500 sheets \(\$ 3.00\).

\title{
American Radio Relay League
}

\author{
Administrative Headquarters: West Hartford, Connecticut, U. S. A.
}

\author{
Mmerican Radio Rfiay League. \\ West Harthord 7 (iomn. U. S. A.
}

Being gemuinely interested in Amateur Ravlio. I herebs apply for membership in the Smerican Radio Retay Leagoe and enchese \(\$ 5.00^{*}\) in payment of one yars dues. \(\$ 2 . \overline{50}\) of which is for a subseription to osct for the same period. Subscription w ost atone eamon be entered for one year for \(\$ 2.30\), since membership and shbeription are inseparable. Please beeg ms subseription with the issur.
'The call of my station is

The chass of my operator's license is \(\qquad\)
I belong to the following radio societics

Send my (Eertilicate of Membership) \(\square\) or Membership Card \(\square\) (Indicate which) to the address below:

Name \(\qquad\)
voping membershlp is granted only to lleensed radlo amateurs of the
United States and Canada. Therefore, If you have alleense,
please be sure to indicate it above.
" \(\$ 5.00\) in the U'nited States and Possessions.
\(\$ 5.25\). (". S. linnd. in Canada.
Se.on, \(1^{\circ}\). S. funds. in all other comentes.

How does the experienced Ham select his antenna? He investigates before he invests!
Asking other Hams which antenna they have and how they like it is a very effective way to investigate the relative merits of amateur antennas.
Hams who own Mosley TrapMaster Antennas will tell you that theirs performs as well, or better, than advertised. They may even brag a bit of their DX success. Certainly they will mention that their clean-line designed TrapMaster antenna is pleasing to the eye... and completely acceptable to their neighbors. They'll say that their Mosley antenna is sturdy . . . built to take wind and storm; that getting it on the air was easy, uncomplicated.

\section*{MOSLEY TRAPMASTER ANTENNAS}

MODEL TA-36- Wide spaced six element beam rated to full KW. Employs three operating elements on 20M, three operating elements on \(15 M\) and four operating elements on \(10 M\). Low SWR with high gain and front-to-back ratio. Traps are weather and dirt proof offering frequency stability in all weather. Maximum element length is 29 feet. Boom length is 24 feet. Turning radius 19'3''. Shipping weight 76 lbs. All heavy-wall 606I-T6 aluminum construction. Boom is 2 'OD by 24 ' by \(1 / 8^{\prime \prime}\) wall and requires no bracing. Truly the finest beam in its price class.
Net Each

MODEL TA-33- World famous three element beam built for operation at maximum legal power. Provides outstanding performance on 10,15 and 20M. Maximum element length 28 '. Boom length 14'. 'Turning radius 1512 '. Shipping weight 53 lbs .

Nel Each
\(\$ 99.75\)
MODEL TA-32 - Two element version of the famed Mosley TrapMaster Model TA-33. Broadband design provides peak efficiency on each band - 10,15 or 20M. Naximum element length 28 '. Boom length \(7^{\prime}\). Turning radius \(14^{\prime} 5^{\prime \prime}\). Shipping weight 32 lbs .
Net Each
\(\$ 69.50\)
MODEL V-3- 10,15 and 20 M Vertical rated to full KW. Electrical quarter wave on each band. Hequires only short radials. ll'6" from base to tip. Complete with base mount, guy line and all necessary hardware. Shipping weight. 8 lbs.
Net Each \$22.95

These Antennas are but a few from the complete Trapilaster line. Catalog axailable upon request.
Mosley slim-profile trap assemblies are the truly proven, fail-proof, 1 KW rated traps - a fact attested by the thousands of Amateurs in the U.S.A. and almost every corner of the globe - who are glad they bought a Masley TRAPMASTER!

\section*{If You're a One-Band Man, Be Sure to See the Mosley POWERMASTER Line}

\section*{Mosley Electionica Onc.}

4610 N. Lindbergh
Bridgeton, Missouri

\title{
International Rectifiers SELENIUM -GERMANIUM • SILICON
}

Ratings: \(\mathbf{2 5}\) to 156 volts \(A C, 50\) to \(\mathbf{1 , 2 0 0}\) ma. DC The widest range in the industry! Designed for Radio. Television. TV booster, UHF converter and experimental applications. Input ratings from 25 to 156 volts AC \& and up. DC output information, Bulletin ER-178-A

\section*{Ratines: © of 1000,200 PIV DC}

Semicap"s small size, light weight, high reliability and low power requirements make it ideal for automatic frequency control, frenetworks. All-welded hermetically sealed, shock-proof housing. Request Bulletin SR-20s.

Ratings: \(\mathbf{2 0}\) to 160 volts - \(100 \mu\) a to 11 ma. Ideal components for bias supplies, sensitive relays, computers etc. High resistance, \((10\) megohms and higher at -10 volts). Excellent linear forward characteristics. Extremely small, low in cost. Encapsulated to resist adverse environmental extremes. Specify Bulletin \(\mathbf{5 0 - 1 8}\).

All.purpose silicon replacement kit of fers radio-TV men simple means of replacing all existing silicon rectifler 1spes. Hermetieally sealed diode can be wired in or plugged Into fuse clip To 100 C ; needs no heat sink.

Bulletin JB 505.

Atines: 85 to 500 ma - 1500 to 6000 PNY Highly reliable series of tube replacement rectifiers
 the ST. 7 replacement for the \$66 Tube') offer the supe. rior characteristics of silicon on a wide range of high viltage applications. Complete data: Bullatin SR-209.

Ratings: From 600 milliwatts 1010 watts A complete series in 6 types. Miniature single junction types, multiple junction types and double anode units. 750 milliwatt and 1 watt types: Bulletin SR-251, 3.5 and 10 watt types: sultetin SR-252, Multiple junction 5 watt types: SR. 253 , Double anode types: SR. 254

A direct and undversal replacement for all existing selenium stacks up to 500 ma. Eyelet comstruction. No "special socket," conversion kit or drilling required. Especially suited to the elevated operating temperatures inherent in most TV sets Bullefin TV-500.

Ratings : From 100 ma . to 50 Amps .
Low fonward voltage drop and low leakage characteristics make this series ideal for a wide variety of power applications. For details request Bullatin \(C-439,(26\) voit cells): aullatin \(\$ \mathrm{R}-152\), on high current density cells.

(Wide range of silicen and selenium types.) Self-generating cells available in standurd and custon sizes, mollnted or unmounted. For details on wide selection of selenium typer, request Bulletin PC.649A. Silicon solar cells with efficiencies as high as \(10 \%\). Designed to ruiged military specifcations. Bulletin SR-27SA

For bulletins on products described write on your letterhead

\section*{the most widely used}

\section*{Amateur Supply Catalog} KEEP IT HANDY...
get everything from our largest stocks of station gear and electronic supplies immediate delivery at lowest prices...

\section*{ALIIED}

\section*{gives you every buying advantage}

HIGHEST TRADES: Get the absolute most for your old equipment. Tell us what you've got and what you want-we'll come up fast with the best deal anywhere.

RECONDITIONED GEAR: Large selection, new set guarantee. Ask for latest list of top reconditioned equipment at lowest prices.

EASIEST TERMS: Available on all orders over \(\$ 20\); only \(\$ 2\) down up to \(\$ 50 ; \$ 5\) down from \(\$ 51-200\); only \(\$ 10\) down from \(\$ 201\) up; up to 24 months to pay. Extra: 15-day trial on all ham gear.

\section*{HAM-TO-HAM HELP}

Our staff of over 30 Amateurs goes all-out to give you all the help you want. You'll like the kind of personal attention Amateurs have enjoyed at Allied for so many years. Get to know:

W8CZE
Jack Schneider (Allied's "Mr. Ham'")

W9BHD Jae Huffman (in the Ham Shack)

\section*{W9WHF}

Jim Sommerville (write to him for that best deal)

WOHIA
Joe Gizzi (in the Ham Shack)

\section*{Laboratory Standards}

Harry W. Houck at key of his original 1909 Spark Transmitter

\section*{HIS MORE THAN 50 YEARS}
of Radio Experience Stands Behind MEASUREMENTS INSTRUMENTS

Measurements "FANIOUS FIISTS" include:
- First commercial signal generator with built-in luning motor
- First commerciall! produced clectronic peak rollmeter
- First commerciall!! built palse generalor
- World famous Megactucle Meter, covering lo0 Kc to 940 Mc.
- First commercially successfuc Fil testing equipment designed especially for Mobile Commmicalions
- And nor a completely new concept of frequency measurements

Write for complete catalog

> Labocatory Stardardir

\section*{MEASUREMENTS}

A McGraw-Edison Division BOONTON, NEW JERSEY

\section*{FOR EVERY APPLICATION IMMEDIATELY AVAILABLE-FROM STOCK}

Over 1,000 items to cover virtually every elẹctronic application. . . . 400 Hermetic items, proved to EIL-T-27A, eliminate costly test delays. . . Highest reliability in the field. Immediately availatele from your local distributor: Write for catalog.

TAANSISTOR POWER

LINE ADAPTORS

COMMERCIAL GAADR

\section*{And Special Units to Your Specifications}

\section*{UNITED TRANSFORMER GORPORATION \\ 130 Varick Strear, Now York 13, N. Y.}

PACIFIC MFG. dIVISION: 400: W. JEfferson alvo., los angeles 16, calif. EXPORT DIVISION: 13 EAST 4Oth STREET, NEW YORK 1h. N. Y. CABLES: "ARLAE"

E-Z Way Tower is tried ond proven by years of testing ond service.

Continuous diagonal bracing with solid steel rod, resists twist and torque caused by constant starting and stopping of rotor and beam. We refer to this as "ITQ" (Inert Torsionol Quolity)... a built-in feature in every E.Z Way Tower.

Design again - Crank Up or Down and Till Over, also E.Z Way features the "Wonder Ground Post'"...never requires concrete...Towers never need guys!

Structurally sound, built with high tensil strength steel legs....electrically orc welded throughout. All towers ovioilable with choice of finish, Hot Dipped Galvanize or painted with rust resistant Goodyear Pliol ite S-5. When ordering tower, specify make and model of rotor used.

\section*{- CRANKS UP AND DOWN - NO GUY WIRES}
- PUTS YOUR BEAM WHERE YOU WANT IT
- tilts over for easy access to array

\section*{the Worder Ground Post}

The "Wonder" Ground Post" provides fast, simple installation with emphasis on easy access to beam. Unique design eliminates the need of concrete, yet requires a hale no larger than I ft . in diameter. Radial fins placed near ground level and of lower end af post eliminate ony movement when corth is tamped firmly araund post. The E-Z Way "Wonder" Ground Post remains plumb with tower in ony masition. In most coses, guys ore not required when Ground Post is wed. Pat. App. For

40 FT. TOWER
quality. Accents light 1tnts when cranked up, 105 muh winds, E. \(Z\) Way Model RBD 10 P
 E. Z Way Model RBD \(\operatorname{HoG}\) Touswr why, how dip calvanized after fabrication. \(\$ 134.50\)
 E. \(Z\) way Model BAK.D THE "MEDALIST FORTY" 41 FT. TOWER
解E.Z way Model RESAOP Frower only: dippaimed tinish and paltamized\({ }^{\$} 169^{50}\)
E.Z Way Model RBS-10G \(\$ 209.50\)
E. \(Z\) way Modet GPK-S 10 \$7500 unten mio \(5^{\circ 0}\)
E.z Way Model bak.sio baiblimestandoed parnatin: \(k\)
altamizeil him \(\$ 10.50\)
THE "MEDALIST FIFTY" 51 FT . TOWER
E. \(z\) Way Model RBS 50 P Thwer onty. dip pameal hinish with gallanized\$224.50
E. \(z\) Way Model RBS.50G \(\$ 279.50\)
E.z Way Modet GPK.sso \(\$ 90^{00}\)
E.Z Way Model BAK-S BullimgatmethollTHE "SATELLITE SIXTY" 60 FT. TOWER
\(\$ 335^{.00}\)
E. \(z\) Way Model RBX6036 \(\$ 410.00\)
E \(Z\) Way Model GPK.X60.3 Whander\({ }^{5} 120^{00}\)
E. \(z\) Way Model bak.X fhalding:all ham towers freight prepaid in usa except alaska and hawall
E-Z WAY

\section*{from FlHO CITIZENS BAND TRANSCEIVER}
*EICO premounts, prewires, pretunes, and seals the ENTIRE transmitter oscillator circuit to conform with FCC regulations (Section 19.71 subdivision d). EICO thus gives you the transceiver in kit form that you can build and put on the air without

 incl. mtg. bracket (Pat. Pend.)
\(\$ 99.95\)
NEW! 60-WATT CW TRANSMITTER \#723 Kit \(\$ 49.95\) Ideal for novice or Wired \(\$ 79.35\) needing low-power, advanced ham \(60 \mathrm{WCW}, 50 \mathrm{~W}\) external plate rig. ulation. 80 through 10 meters.
90-WATT CW TRANSMITTER* \#720 Kit \(\$ 79.95\) Wired \(\$ 119.95\) *U. S. Pat. No. D-184,776 "Top quality" - ELECTRONIC KITS GUIDE. Ideal for veteran or novice. 90W CW, 65W external plate modulation. 80 through 10 meters.
that mets FCC regulations*

HIGH-LEVEL UNIVEPSAI MODULATOR-DRIVER \#730 Kit \$49.95 Wired \$79.95 Delivers 50W undistorted audio. Modulates transmitters having RF inputs up to 100 W . Unique over-modulation indicator. Cover E-5 \$4.50.
GRID DIP METER \#710 Kit \(\$ 29.95 \quad\) Wired \(\$ 49.95\) includes complete set of coils for fult band coverage. Continuous coverage 400 kc to 250 mc 500 ua meter.
red \(\$ 79.95\)
vanced ham
plate rig.
0 meters.
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& .95 \\
& \text { NIC } \\
& \text { or } \\
& \text { nal } \\
& 10
\end{aligned}
\] & \(\left\{\begin{array}{l}\text { - } \\ 0 \\ 86\end{array}\right.\) \\
\hline
\end{tabular}

1

PEAK-TO-PEAK
VTVM \#232 \& UNI.PROBET Kit \(\$ 29.95 \quad\) Wired \(\$ 49.95\)
*U. S. Pat. No. 2,720,051 VACUUM TUBE VOLTMETER \#221 Kit \(\$ 25.95\) Wired \(\$ 39.95\)
COLOR \& MONO DC.5MC LAB \& TV 5" OSC ILLOSC OPE \#460 Kit \(\$ 79.95 \quad\) Wired \(\$ 129.50\) 5" PUSH-PULL OSCILLOSCOPE \#425 Kit \(\$ 44.95\) Wired \(\$ 79.95\)
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{l}
HIGH-LEVEL UNIVERSAL MODULATOR-DRIVER \#730 \\
Kit \$49.95 \\
Wired \(\$ 79.95\) \\
Delivers 50W undistorted audio. Modulates transmitters having RF inputs up to 100W. Unique over-modulation indicator. Cover E. 5 \$4.50.
\end{tabular} & \[
\left|\begin{array}{cc}
0 & 0 \\
8 & 0 \\
10 & 0
\end{array}\right|
\] & \begin{tabular}{l}
RF SIGNAL GENERA (150kc. 435 mc) \\
Kit \(\$ 26.95\) \\
TV-FM SWEEP GEN \% MARKER \#368 Kit \(\$ 69.95\)
\end{tabular} & \begin{tabular}{l}
TOR \#324 \\
Wired \$39.95 ERATOR \\
Wired \(\$ 119.95\)
\end{tabular} \\
\hline & \begin{tabular}{l}
GRID DIP METER \#710 \\
Kit \(\$ 29.95\) \\
Wired \(\$ 49.95\) \\
Includes complete set of coils \\
for fult band coverage. Continu- \\
ous coverage 400 kc to 250 mc . \\
500 ua meter.
\end{tabular} & & \begin{tabular}{l}
DYNAMIC CONDUCT \\
\& TRANSISTOR TEST \\
Kit \$ 69.95 \\
TUBE TESTER \#625 \\
Kit \$34.95
\end{tabular} & \begin{tabular}{l}
Tance tube TER \#666 Wired \$109.95 \\
Wired \(\$ 49.95\)
\end{tabular} \\
\hline 33-00 Northern Blvd., Long Island City 1, N. Y. & \begin{tabular}{l}
EICO, 33-00 N. BIvd., L.I.C. 1, N.Y. \\
Show me how to save 50\% on 72 \\
models of top-quality: \(\square\) Ham \\
Gear \(\square\) Test Instruments \(\square \mathrm{Hi}\) - \\
Fi \(\square\) Send free Short Course for Novice License. Send free catalog and name of neighborhood EICO distributor. Send 36 -page
\end{tabular} & \begin{tabular}{l}
Name \\
Address \\
City \\
O-Hi-Fi Guidebook
\end{tabular} & \begin{tabular}{l}
State \\
losed for posta
\end{tabular} & \begin{tabular}{l}
RAH. 61 \\
handlin
\end{tabular} \\
\hline
\end{tabular}

RF SIGNAL GEN
(150kc.435mc)
(\(150 \mathrm{kc} \cdot 435 \mathrm{mc}\)) Kit \$26.95 Wired \(\$ 39.95\) TV-FM SWEEP GENERATOR 8. MARKER \#368 Kit \(\$ 69.95\)

Wired \(\$ 119.95\)

\section*{built-in power and communication facilities}

Bring your hant shack up to date with this modern bench that's loaded with fealures. It inteqrates with the Fanous Adren Plug-in Packaging Sy-lem giving yon. at lass. the ideal means for housing your home brew copuipment making it available for instant servicing or adjustment. Ser how neatly the Aleten Uni-Rack blends with the handsome styling of this functional unit neatly organizing equipment and cables.

The basie bench imelutes a mique power channel that safely cucloses all interconnecting wiring - and contains eight grounded outlets with fuerd"big" switch and detachable hiree wire line cord. Has massive \(26^{\prime \prime} \times 60^{\prime \prime}\) top and legs that adjust to comfortable operating position. Ileavy qauge sleed construction with haked enanel finish. In outstanding piece of equipment that will never le outdated.

> Deluxe Station Facility - complete with white formica top, vinyl trimmed ends, shelf, two tone gray finish, antenna cannectors, plus all electrical and mechanical features described. Approx. shipping weight 190 lbs. F.O.B. Brockton, Mass.

> ONLY
> Part Number 5203-2DSFA
> \(\$ 139^{95}\)
> AMATEUR NET
> Standard Station Facility or Work Bench - complete with brown masonite tap, standard steel ends, gray finish, plus all electrical and mechanical features described. Approximate shipping weight 160 lbs. F.O.B. Brockion, Mass.

> ONLY
> Part Number 5203-2SSFA
> amATEUR NET

If not available at your dealer order direct from factory. Write for camplete specifications.

BUILD HOME BREW EQUIPMENT THE ALDEN PLUG-IN WAY -
 Complete Circuit Reody for 'Packaging' - Alden's ter. minal cord mounting system gives the hom everything he needs for greater flexibility in laying out and wiring terminals, prepunched terminal cards, sockets, layout sheets

Alden Plug-In Basic
Chassis - House your equipment in Alden's Plug-in Basic Chassis. Extra rugged. Includes Serve.AUnit Locks, front panel, chossis, and bock connectors. Standard widths \(2^{\prime \prime}\), \(4^{\prime \prime}, 8^{\prime \prime}\) and \(17^{\prime \prime}\). Heights: \(7^{\prime \prime}\) and \(83 / 4^{\prime \prime}\).

For complete list of equipment ond prices WRITE TODAY FOR ALDEN QUICK ORDER GUIDE:

3 "Picture frame" 3 Rack Adoptor \& Alden Uni-Rock "Picture Frome" Rack odaptor, for mounting Alden Basic Chassis, mounts in any standard rack, or in any standord rack, or Alden Uni-Racks. Uni-Racks
furnished in 2 basic heights, mobile or stationory.

Pre-Engineered Instrument Case - Portabie Instrument Coses - House Alden Plugin Basic Chassis. Rugged, construction with hooded styling to protect front panel controls. Available in \(2^{\prime \prime}, 4^{\prime \prime}\) and \(8^{\prime \prime}\) chossis width's. Ideal for test widths. Ideal for test

PRODUCTS COMPANY
 184 N. Moin St. Brockton, Moss.

HX-500
Advanced design SSB transmitter offer. ing the best features of all...... \(\$ 695.00\)

HQ-145
An old favarile (HQ-129) Unuught up fo date with modern engineering concepts
\(\$ 269.00\)

World's most popular SSB amateur bands recelver offering outstanding selectivity …….................... \(\$ 359.00^{\circ}\)
\[
3359.00
\]

HQ-110
A luw-lust, athaleur lands itetivel offering operational advantages found in recelvers costıng far more \(\$ 249.00\)

A fine quality general-coverage, SSB receiver offering commercial performance at amateur price \(\$ \mathbf{\$ 2 9 . 0 0}\)

HQ- 100
Thie best buy for a generalocuverage, quality communications receiver
\(\$ 189.00\)
(Clock-timer \$10 extra)
\(\gamma\)

Establishard 1910

\section*{ telechrome}

HAMMARLUND MANUFACTURING COMPANY, INC., 460 W. 34th ST., N. Y. 1, N. Y.

\section*{INSIST ON PENTA TUBES FOR LONG LIFE, HIGH QUALITY}

The reputation of Penta power tubes for uniformly high quality, adherence to specifications, and exceptionally long life is the reason major electronic equipment manufacturers, amateurs and broadcast engineers insist upon them. Exacting quality control and life testing under conditions simulating actual use assure you of maximum performance and durability. Whether your require. ments are for the new beam pentodes - for applications where superior linearity and low distortion at high efficiency are critical requirements - the new miniaturized hydrogen thyratrons - or the older conventional types - Penta is your logical source.
\begin{tabular}{l|l|c}
\hline \multicolumn{1}{c}{ ACCESSORIES } & \\
\hline \multicolumn{1}{c}{ Type } & \multicolumn{1}{c}{ (Description } & Price \\
\hline PL-Cl & \begin{tabular}{l}
Glass Chimney for PL-4-400A and PL-175A \\
PL-184 \\
Socket for PL-172, including chimney, built-in screen-grid \\
and suppressor-grid by-pass capacitors \\
Socket for PL-172. including chimney and built-in screen-grid \\
by-pass capacitors. Suppressor-grid grounded. \\
Plastic chimney. only. for PL 172
\end{tabular} & \begin{tabular}{l}
6.00 \\
PL-C184A
\end{tabular}
\end{tabular}

\section*{PENTA LABORATORIES, INC.}

312 North Nopal Street, Santa Barbara, California
Sales Representatives in Principal Cities
56

\title{
THE \\ NEIN RIIIE 9900
}

The design and production of communications receivers today is considerably different than in past years for two principal reasons. Costs have risen precipitously; to manufacture a receiver in the face of this and keep the price reasonable requires good tooling, long runs, and little allowance for error. Secondly, there are greater demands placed on receiver operation than ever before, versatility ... handling ease ... yes, amateurs have come to ask for parameters of performance almost unheard of in past years.

RME in announcing the new 6900 states without equivocation that this receiver performance is unmatched by anything near its price class. The 6900 is engineered to give optimum service for all modes of amateur communications - not merely one. Engineered under the supervision of Russ Planck, W9RGH, the 6900 has as many advanced pioneering features as its extraordinary namesake, the world famous RME69, which was the first band-switching communications
receiver ever produced - over 20 years ago and still widely used today.
What makes the 6900 so Hot? First, meticulous attention to details so that every circuit is performing in an optimum manner. Second, an ingenious function selector, the Modemaster. Every circuit in the 6900 is designed to provide high selectivity; frequency stability, sensitivity and low internal noise. Finally, inclusion of cll function controls necessary for a modern communications receiver ... vernier control knob with overide clutch for fast tuning; RF gain; AF gain; antenna trimmer; band selector, stand-by receive/calibrate transmit; ANL; Tnotch filter; calibrate adjust ment; band selector. Whether you operate CW; SSB; or AM, you will have the almost uncanny feeling the 6900 was designed solely for you - this is the test of a modern communications receiver that we believe only ours can meet on the operating desk.

\footnotetext{
- CONTROLS: \(11 \frac{1 / 2}{}{ }^{\prime \prime}\) Single Slide Rule Tuning Dial; Logging Scale.
- COVERAGE: 80, 40, 20, 15 and 10 on 5 bands plus 10 to 11 me for WWV or WWVH.
- Peak Selectivity plus tunable "T" Notch.
- Internal 100 ke Hermetically Sealed Crystal Calibrator.
- 500 and 4 ohm Outputs.
- Noise Limiter for SSB and CW, AM.
- Separate Detector for Single Sideband.
- S Meter Calibrated in 6 db Steps Above 59 for Better Reading.
- Improved Fast Atrack AVC Circult.
- Selectable Sideband.
- Panel of Attractive Grey "Clad-Rex" Vinyl Bonded to Aluminum with Charcoal Trim.
- Front Ponel Controls Re-Grouped for Ultimate Operating Ease and Convenience.
- SENSITIVITY: 1 mv . \(\mathbf{3 0 \%}\) Modulation for 100 mw output.
- S-N-R: 10 db at 1 mv Input.
- SELECTIVITY: 500 eps, \(\mathbf{6}\) db down, in CW mode.
}

U.S. Representatives of:

\author{
－BEST BUYS
}

Radio Shack carries the complete line of Hallicrafter＇s receivers and transmitters for their amateur radio customers．

\section*{－BEST TRADES}

Radio Shack＇s tremendous volume allows us to give the＂Biggest Trades＇in the electronic equipment industry．

\section*{－BEST TERMS}

Radio Shack＇s Easy Budget Plan lets you spread your cost over 18 to 24 months，with low payments of \(\$ 2\) to \(\$ 24\) monthly．
Choice of The Following：
\begin{tabular}{|c|c|c|c|c|c|}
\hline Cat．No． & Model & Type & Down Payment & Monthly & Amount \\
\hline 450×313 & S－38E & Receiver & \＄ 2.00 & \＄ 5.00 & \＄ 59.95 \\
\hline 450×325 & SX－111 & Receiver & 10.00 & 11.50 & 249.95 \\
\hline 45DX349 & HT－37 & Transmitter & 10.00 & 21.00 & 450.00 \\
\hline 450×322 & S－107 & Receiver & 5.00 & 5.00 & 94.95 \\
\hline 45DX323 & S－108 & Receiver & 5.00 & 7.00 & 129.95 \\
\hline 45DX324 & SX－110 & Receiver & 5.00 & 7.50 & 159.95 \\
\hline
\end{tabular}

\section*{AINT TRADESI U．e pore of emprem as down payment．}

\section*{NOW 5 StORES} RADIO SHACK

167 Washington St．，Boston 8，Mass． 730 Commonwealth Avenue，Boston 17，Mass． 230 Crown St．，New Haven 10，Conn． 29 High Ridge Road， Stamford，Conn．
39 So．Main St．
West Hartford 7，Conn．

\section*{RADIO SHACK CORPORATION，Dept．R－61}

730 Commonwealth Avenue，Boston 17，Mass．
－Please＂QUO＇TE BIG＂on my model
I would like to trade－in toward
\(\square\) Send
Name
Address．
City \(\qquad\) Zone \(\qquad\) State \(\qquad\)
－ －\(\square\) Check口 M．O． ロC．O．D

\section*{SYLVANIA SMALL POWER TUBES}

No magic, no secrets, no foolin'. Conservatively rated Sylvania small power tubes have plenty in reserve, the kind of "reserve" that provides long-life expectancy and reduced maintenance time requirements. gives maximum assurance of on-the-air continuity.
Your Sylvania Industrial Tube Distributor has plenty up his sleeve . . . one of the most comprehensive lines of tubes available for broadeasting stations, amateur and commercial rigs. No hocus-pocus, try SYLVANIA SMALL POWER TU'BES and see the improvements for yourself! Electronic Tubes Division, Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y.

POPULAR SYLVANIA SMALL POWER TURES MAXIMUM PLATE DISSIPATION (CCS) WATTS

Values given are for Class Coscillator, RF power amplifier

JUST THESE TWO METERS-WITH NO ADDITIONAL CRYSTALS OR FACTORY ADJUSTMENTSWILL CHECK FREQUENCY AND FM MODULATION ON HUNDREDS OF TRANSMITIERS. LAMPKIN METERS ARE PREFERRED TEST EQUIPMENT-BY MUNICIPALITIES, 46 OUT OF 50 States, by most 2. Way radio manufacturers, and by thousands of indepen. GENT mobile-scrvice enelneers.

FREE BOOKLET—uith facts and figures-send for "IIOWTO) MUE MONEY IS MOBILERADIO MANTENANCE".

> MAIL COUPON TODAY!
 ACCESSORY FOR THE TYPE
ACCURACY BETTER THAN 0.00010 -
AMPLE ACCURACY BETER IHAN
FOR SPLIT-CHANNEL FREQUENCY CHECKS.

Charles M. Dibrell, W.SBI.W, of Ardmore, Oklahoma has been a ham since 1929, and now works the 2 and 80 meter bands. W'ith his falher. C:. C. Dibrell, he =larted a G:E Service tiation 7 years ago known as Hibrell Radio Service. Mr. Dibrell uses hiv amatenr radio experipnce in selling and maintaining two-way radio syalems, as shown by his commaintaining tho-way radio sanema, as
manding position in the Ardmore area.

\section*{Turn your skills into profit installing and} maintaining G-E Two-Way Mobile Radio

Thousands of new mohile radio systems are being installed every yearfor delivery services, salesmen. taxis. gas and electric utilities, industrial and construction vehicles, and many other uses. All these systems require service - service your unique background and knowledge can be easily adapted to provide.
Servicing two way radio can be a full-time vocation, or a profitable sideline. Many highly successful General Electric mohile radio service stations were founded by licensed radio amateurs, and many now utilize the skills of hams such as yourself on a part-time hasis as well as full-time. Working in an authorized c.E. Service Station is also an ideal way in which to prepare for the second or first class Commercial Radio Operator's licenst. required for commercial mobile radio sersicing.
C.1: two way radio equipment is designed and built with the serviceman in mind. Ceneral tlectric's famous l'rogress line. for example. features interchangeable rack-mounted transmitter. receiver and power supply for fast servicing. C, \(\%\) : new line of transistorized portable and mobile equip. ment offers even greater service advantages.
Find out how you can become an atuhorized G.E serviceman. Write National Service Manager, General Electric Conipany, Commmication Prombets Dept., Section 31, Mountain View Road, Lynchburg, Virginia.

Progress /s Our Most Important Product GENERAL ELECTRIC

\section*{haruey}

> HARVEY's line of RCA tubes is so complete, that HARVEY can fill virtually any requirement . . right from stock . . and deliver at almost a moment's notice.
> This is particularly important to AM, FM, and TV Broadcasters, Industrial and Commercial users, Anateurs, and Service.Technicians, all of whom depend on tubes for sustained operation of important electronic equipment.

\section*{Write, Wire or Phone for} PROMPT HARVEY SERVICE
 dion Cienter. Ther lutest and bess in ham gern is allays: on displey.

\section*{With SPRACUE CAPACITORS and RESISTORS you build reliability into your equipment:}

TWIST-LOK \({ }^{\text {® }}\) ELECTROLYTICS Hermetically sealed in aluminum cans. W'ithstand high temperatures (\(85^{\circ} \mathrm{C}\)), high surge voltages, high ripple currents.

\section*{BLACK BEAUTY TUBULARS}

Dual dielectric (Mylar and paper), combines best features of both. Solid impregnant, nothing to leak or drip. Molded case. Withstand high temperatures, high humidity.

\section*{CERA-MITE* CERAMICS}

Silvered flat-plate design for high by-pass efficiency, high self-resonant frequency. Tough moisture-proof coating. Available in general application, high-K, temperature-stable, and temperature-compensating types.

ATOM ELECTROLYTICS
Tiny, dependable tubulars. Have low leakage, long shelf life. Metal case construction with outer Kraft tube.

ORANGE DROPD TUBULARS
Dual dielectric (Mylar and paper), with solid impregnant. Double dipped in epoxy resin. Radial leads, ideal for printed wiring boards. Outperform all other dipped tubulars.

\section*{BUTTONHEAD CERAMICS}

Flat-disc capacitor element sealed in top of hex head for easy screw-mounting. Low selfinductance, high self-resonant frequency. Available for by-pass or feed-thru application.

RECTANGULAR OIL CAPACITORS
For transmitter power supplies and other high voltage applica. tions. Hermetically sealed in rugged metal cans. Oil-im. pregnated, oilfilled. High insulation re. sistance.

HYPASS CAPACITORS
Exclusive 3-terminal feed-thru units which effectively by-pass vhf currents. Suppress TVI from transmitters, diathermy, line-conducted radiation, etc,

\section*{transmitting micas}

Voltage ratings to 2500 WVDC . 5000 V Test. R-F current tested before and after molding.

SCREWBASE OILS
Cylindrical screwbase can for easy single hole mounting. Oil-impreg. nated, oil-filled. Small-size, will fit tight spaces.

\section*{KOOLOHM \({ }^{3}\) RESISTORS}

Insulated shell power resistors wound with ceramic-insulated wire. "Tropicalized" for complete moisture protection. Available in ratings to 120 watts in inductive and non-inductive types.

For complete data on these and other Sprague components, get Catalog C- 613.1 from your Sprague Distributor, or write to Sprague Products Company, North Adams, Alassachusetts.

\title{
You Asked For It . . . Here It Is! cosmorione " 1000 "
}

A A True Table-top Station with NO Sacrifice of Performance

\section*{SPECIFICATIONS}

\section*{TRANSMITTER}

INPUT: Full 1 kw on Voice Peaks (Meters Read 2500 V at 400 ma) into a pair of \(4 \times 300 \mathrm{~A}\) 's
UNWANTED SIDEBANO: 42 db down
DISTORTION (SSB): Third order products approx. 32 db down
FREQUENCY STABILITY: Drift less than 100 cycles
CALIBRATION: Built-in 100 kc marker
AUDIO CHARACTERISTICS: 200-3100 cps
MIKE INPUT: High impedance
VOX: Built-in
LEVEL: Automatic level control
METERING: Screen, plate, and grid current, plus RF output
RF OUTPUT: 52 ohms
VFO's: Dual VFO's permit transmitting on the receive or any other frequency
CONTROLS: Vox, Qt, ALC, Grid Tuning, Plate Tuning, Antenna Loading, Audio Gain, Band Switch, Meter Switch

\section*{RECEIVER}

SENSITIVITY: 1 microvolt for 6 db S/N
SELECTIVITY: 3.1 kc mechanical filter plus a T-notch filter
STABILITY: Drift less than 100 cycles from a cold start at room ambient
TUNING KNOBS: Coarse gear ratio of 20:1, fine gear ratio of 100:1 gives a 1 kc dial reading per division CALIBRATION: Built-in 100 kc marker
IMAGE AND IF REJECTION: Better than 50 db
AUDIO DETECTOR: Balanced detector for SSB and CW. diode detector for AM
MOOE SWITCH: Selects up or low SSB, or up low AM, or CW
DUAL RECEPTION: Two VFO's permit reception of any two frequencies on one band with the flick of a switch
BFO: Crystal controlled
METERING: S-meter
CONTROLS: T-notch filter, audio gain, RF gain, antenna trimming, tune selector, phone jack, tune A and B

> "The COSMOPHONE 1000 "-a complete Station, Receiver, and Transmitter. Dimensions: 17 inches wide, 12 inches high, and 15 inches deep. Power Supplies packaged separately, can be placed under operating desk. Price: "The COSMOPHONE 1000 " with Power Supplies... \(\$ 1,550.00\).

\section*{If If's Shown} In This Handbook

\section*{Henry}

Has It!

\section*{HENRY gets the new equipment first yoU get the world's best Terms!}

Low Terms You get the best terms anywhere because Henry finances all the terms with his easy time payment plan. \(10 \%\) down (or your trade-in accepted as down payment). 20 months to pay.

Long Trades
Henry wants to trade and he trades big. YOU get truly liberal allowances on your equipment. Tell us what you want to trade. We also pay cash for used equipment.

Complete Stocks
Henry has everything in the amateur equipment field, new or used ...transmitters or receivers, and Henry has the NEW equipment FIRST.

Low Prices Henry's large purchasing power means low prices to you. You just can't beat our wholesale prices.

100\% Satisfaction \(\begin{aligned} & \text { Henry gives you a guarantee of " } 100 \% \text { satisfaction" or your } \\ & \text { money back at the end of a } 10 \text { day trial. }\end{aligned}\)
Write, wire, phone or visit any one of these three stores today.

'World's Largest Distributors of Short Wave Receivers."

\section*{when you specify Ohmite components..}

\section*{you build reliability into your product}

\section*{OHMITE}

\section*{INDUSTRY-PREFERRED COMPONENTS}

TAP SWITCHES

VARIABLE TRANSFORTALRS

GTRMANIUM DIODES

RHEOSTATS-insure permonently smooth, close control. All-ceramic, vitreaus-enameled: \(121 / 2,25,50\), \(75,100,150,225,300,500,750\), and 1000 -wotl sizes.

OHMITE RELAYS-Faur stack mad-els-DOS, DO, DOSY, and CRU, in 67 different types, two of which ore enclased. At 115 VAC or 32 VDC, noninductive lood, Madels DOS and DOSY have a contact rating af 15 amp ; Madel DO, 10 amp; Madel CRU, 5 amp. Wide range of cail operating valtoges.
tantalum capacitors - Units are available in three types: subminiature, insulated, wire-type, in 13 sizes. All 5 MIL sizes of failtype. Four sizes af slug-lype tontalum capacitars. All feoture high performance in minimum space and o wide range of copacitonce and voltage rotings.

Write for Stock Catalog

POWER RESISTORS-Wire-waund, vitreaus-enameled resistars. Stack sizes: \(25,50,100,160,200\) walls; volues 1 ta 250,000 ahms. "Brown Devil" fixed resistors in 5,10 , and 20 -watt sizes; values fram 0.5 to 100,000 ohms. Adjustoble power resistars; quickly adjustable ta the value needed. Adjustable lugs can be oltached for multitap resistors and vollage dividers. Sizes 10 to 200 waths, to 100,000 ahms.
R. F. CHOKES-Single-layerwaund an low pawer factar cares with maistureproaf caoting. Seven stock sizes, 3 to 520 mc . Two units roted 600 ma ; athers, 1000 ma .

TAP SWITCHES-Campact, high current ratary selectars for o-e use. All-ceramic. Self-cleaning, silver-to-silver cantacts. Rated af \(10,15,25,50\), and 100 amperes.

PRECISION RESISTORS-Four lypes available: malded silicaneceromic, vacuum-impregnated, encopsulated, ar metal film. Talerances ta \(\pm 0.1 \%\) in \(1 / 3,1 / 4,1 / 2\). \(3 / 4,1\), and 2 -wall sizes, fram 0.1 1o \(2,000,000\) ohms.

VARIABLE TRANSFORMERS-Madel VT2, \(1 \frac{1}{2}\) omp rating, oufput volloge, \(0-120 / 132 \mathrm{~V}\); Madel VTA, \(31 / 2\) amp rating, autput valtage \(0-120 / 140 \mathrm{~V}\); Model VT8, \(71 / 2 \mathrm{amp}\) roting, output valtage \(0-120 / 140 \mathrm{~V}\); Model VT \(20,20 \mathrm{omp}\) rafing, outpul valtage, \(0.120 / 140 \mathrm{~V}\). Also 36 -vall units. Input valtage all madels, \(120 \mathrm{~V}, 60\) cycles. Thirty-nine stock models, cosed and uncosed.
OHMITE MANUFACTURING COMPANY 3608 Howard Street, Skakie, Illinois

Complete kit.
specify 6 or 12 n al
Wired \& tested.
specify 6 or 12 r nl
TX-86, ONE OF THE MOST VERSATILE HAM XMTRS EVER MADE 90 W. CIV, 90 W' peak thone 80 through' 6 ineters, easily adjusted for novice use
Moblle or fixed use. size: \(5^{\prime \prime} \times 7^{\prime \prime} \times 7^{\prime \prime}\) Xial controlled or can take vion Find 6146 runs straight through on
Pi-net output ckt. TVl suppressed

MODEL PS. 3 AC POW, SUPPLY FOR TX•86
Completely wired and tested
s84s
'109"s
\(\$ 44.95\)

\section*{AC-1, NOVICE} CW XMTR Xial controlled for 40 and 80 meters CW
Pb-net output ckt. TVI sup. pressed
Includes heary duty AC Power Supply 15 w. Input: 6V6 osc., 6X5 Mod. AC. I complete kit for any 1 band
Extra coil kit for other band

\section*{2 \& 6 METER CONVERTERS \& POWER SUPPLY}

Features included on both models:
Crystal Controlled
1t5゙ Mejection: over io dh spurious d image
Galn : over 30 db
1F Hejection: over 100 db
Nolse flgure: better than 1 dh
Tube Linewp: ". miter "onerter has new, imported bitise high
 6 meter conserter has bSSR Cuscode \(12 F^{*}\) Amp and
GE8. Miner and Osc

6 meter 2 meter
Model Model
Converter complete with tubes and xtal

lit form with instructions
Wired and tested
lit or W"ired models for any other output
frequencies (\(30.5-31.5\) me, \(2 \mathrm{~N}^{2}-30\) me, etc.)
CB-6 CB-2
\(\$ 19.95 \$ 23.95\)

Power Supply for CB. 6 or CB. 2
Mod. PS.IK. Kit
\(\$ 27.50 \$ 33.95\)

Mod. PS.IW, Wired and Tested

\section*{Trade-ins Welcomed}

Your old equipment is worth money at Arrow. Get Arrow's deal before you buy.

\section*{we're trading high at Newark}

Your old gear brings top dollar when you trade for

\section*{hallicrafters}

Now Available

\section*{. . .}

\section*{2 GREAT NEW KITS}

\section*{HT-40K. TRANSMITTER KIT}

Excellent CW and AM performance. Full band switching, 80 through 6 meters. Unit is fully metered, TVI filtered. Maximum DC power input: 75 watts. Power output in excess of 35 watts CW, 30 watts peak AM phone. (AM slightly less on 6 meters). Frequency bands: \(80,40,20,15,10\) and 6 meters. Built-in AM modulation. Perfect match for SX. 140 K in styling and band coverage.
98F070. Kit. NET
98F071. Wired, NET ... 99.95

\section*{SX-140K. RECEIVER KIT}

Complete coverage of all amateur bands 80 through 6 meters, with extremely high sensitivity and sharp selectivity. Has RF stage, S-meter, antenna trimmer and XTAL calibrator. Tuning ratio is 25 to 1. Built-in Crystal Oscillator Circuit for IF alignment; Electrical Calibration Reset; Automatic Noise Limiter. Matches HT-40K Transmitter in styling and size.
98F072. Kit, NET
S 94.95
98F073. Wired, NET 109.95

And...Get Newark's Top Dollar Trade on these two favorites or any unit in the Hallicrafter line, completely assembled, factory wired and tested.

\section*{FREE!}

Newark's All.New Cata\(\log\) No. 71 ! See the very latest in Ham Equipment featured in Newark's extensive stock! Order your copy today!

Write Dept. HB-61.

\section*{SX-101A. 7 BAND AMATEUR RECEIVER}

Covers 80, 40, 20, 15 and 10 meters plus converter input band for 6 and 2 meters. One microvolt or less on all bands. Dual conversion, upper lower side band selection. Tee notch filter, full gear drive from tuning knob to gang condensers. Separate AM and SSB-CW detectors. 50/60 cPs. AC power supply.
98F037. NET
\(\$ 399.50\)
SX-100. GENERAL COVERAGE AND AMATEUR RECEIVER
4 band communications receiver incorporating temperature compensation of the HFO circuits and crystal control of second conversion oscillator. Band spread calibrated for 80, 40, 20. 15,11 and 10 meters. Gear driven dials; 50 kc selective i.f system plus tee-notch filter. \(50,60 \mathrm{cps}\). AC power supply. 98F034. NET
\(\$ 295.00\)

FOR THE BEST IN TRADE-INS, WRITE HAM SHACK, CHICAGO

223 West Madison Street STate 2-2944 - TWX: CG 1401
4747 West Century Boulevard - Inglewood, California ORegon 8.0441 - ORchard 4.8440 - TWX: INGL 4043

\title{
VIBROPLEX
}
the pioneer and always the leader
WORLD'S NO. 1 KEY
SEMI-AUTOMATIC
Never tires the arm

\section*{New Super Deluxe VIBROPLEX}

\section*{Presentation}

 est \(\$\) pext withut chatling weiglus.

Piumphex has FIRM SIMCE a wery

 plater! late top, malisluerl thrmminum Ha

ALL LABOR TAKEN OUT OF SENDING

SEND BETTER - \ibrondex thakes miformily gool signals at any sineel. Theyare sharpathe easy tor read. Vou will like them.

SEND EASIER - Vibroplex is a perterty balathed kig. Sou are reliever of all mervous and muscalar tension.

\section*{Vibroplex Original}

Praiseol by its many thonsathls of satisfied lisers for case of olmationt, sharth clear sig.

Vibroplex Blue Racer
 for being ouly half the size, woight 2 llas. 8

Avond inmeathons
The "Mbliv" Mrathe Mark idertifies the Accept to manstilute

SEND FASTER - Vibroblex gives yon greater shemat. Nore spert than yon bath ever use. Rut it's there if som neerl it.

SEND I.ON(iER - Vibromex kerw lact longer. Many key are still in use after 30 or more vears. Xothing to get out of order.
 all its ambathers wath all imborad NEW V̈Brolrorix. Finjoy anding as mever before, thome yours from those illustratel here.
NEW SPECIIM. ENI.IR(BED Edition of PIIILIIPS (:ODE, \(\$ 2.75\) Postpaid Alsu inm-luedere Katio ('side vignals Ame-ricath Barse Kussian, Greatk, Aratis Turkish and JatbatheMorse ("infex World Tinme (hart
Get \(\qquad\) . Veronatutial "- "xk
 Hons t"*がl interna. athe sul ravin *hbmarine
 opy today:

\section*{Prices subject to change without notice}

Vibroplex Lightning Bug
Improsed tesign with slotted weights that cant work lowse. A bridgesl flamprr frame
 removerd whhont dist urloitus speed weighte
 justablo to athy qumed stambaral wind at cuit elosser. gray base attd chemthe tob parts. priced at \(\$ \$ 18.95\). DeLuxe model.
pricel at \(\$ 22.95, *\)

Vibroplex Carrying Case Keers key like new Hlack simulated mororco. Flexible axatist dust. dirt and mois. ture. Insures sifferkeepins when mot in use. With lock and key. \$6.75.

THE VIBROPLEX CO., Inc., 833 Broadway, New York 3, N. Y. W. W. ALBRIGHT, Prenident

IF YOU SEND YOU SHOULD USE THE VIBROPISX tiuy vibeoplex for che easient sending of your itfe

\section*{PANORAMIO}

\section*{SSB and Communications Systems Analyzers}

. . . proven performers for
amateur, laboratory and production use
From the makers of the time-honored Panadaptors

\(2 \mathrm{mc}-40 \mathrm{mc} .100 \mathrm{cps}-40 \mathrm{mc}\) with Optional REC-1.
Set up, odjust, monitor and trouble shoot SSB and \(A M\) tronsmitters and receivers... with one convenient, compact and comprehenslve pockoge. Uniform sensitivity over entire ronge.
Quick, occurote measurement and disploy of
- 2-Tone distortion tests
- Vestigial corrier omplitude
- Dynamic transmission bondwidth - Out-of-hand radiations, etc.
- Residuol hum siclebands

MODEL
**easurement theory and opplicotions ore discussed in THE PANORAMIC ANALYZER. Get on our mailing list for this free, helpful publication.

> PANADAPTORS
for use with communications receivers having IF's from 455 kc through 30 mc . Panadapter resolution capabilities: to 50 cps .

\section*{PANADAPTORS provide}
1. Continuous monitoring to find \& anolyze interference \{splatter, harmonics), if parasitics, intermittent, irregular and off-frequency transmissions.
2. Tuning aid for SSB and telemetry signals.

2 models, SA-8b and SA-3, in many lypes.
Please specify receiver IF when inquiring or ordering.
mproved Model PR-I Panadaptor for hams.

\(3^{\prime \prime}\) CRT. Campensation adjustable to your receiver.

\section*{PANALYZORS}

Low cost RF spectrum analysis to 1000 mc (higher with external mixers).
- Analyze AM, FM, SSB transmitters
- Investigate pulsed RF signals
- Spol spurious ascillations and modulation

3 models, SB-3, SB-8b, and SB-12a, in many types for narrow and broad band monitoring and analysis,
Write today for detailed specifications and applications of these versatile, economicol Panoramic instruments... and NEW CATALOG DIGEST.

Atroctive professional capeer opportunities ovoilable.
PANORAMIC RADIO PRODUCTS, INC.
576 So. Fulton Ave., Mi. Vernon, New York
OWens 9-4600 - TWX:MT-V-NY-5229
Cables: Panoramic, Mt. Vernon, N. Y. Siate

\title{
NORTHERN CALIFORNIA'S FOCAL POINT
} for the newest and finest equipment for the radio amateur

Courteous, friendly service by our staff which includes over fifteen licensed radio amateurs. . .

A complete, well staffed department to give you excellent service on your mail orders.

\title{
Learn Code the EASY Way
}

> Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.

Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

\section*{MAY BE PURCHASED OR RENTED}

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting you should decide to buy the equipment the first three months rental may be applied in full on the purchase price.

\section*{ACQUIRING THE CODE}

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

\section*{BOOK OF INSTRUCTIONS}

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acguire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

\section*{ACCOMPLISHES THESE PURPOSES:}

FIRST: It teaches you to receive telegraph symbols, words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

\section*{Postal Card will bring full partic. ULARS IMMEDIATELY}

\section*{THE INSTRUCTOGRAPH CO.}

4707 SHERIDAN ROAD 4700 S. CRENSHAW BLVD.

CLEAR-PLASTIC CASES: One look will make every ham en. thusiastic about the modern, expensive looking 850 series... and you will be pleased to find the meters cost only 20 more than the equivalent metal cased meter. Equally good news will be the longer, more visible scale arc... the removable front ... and the availability of zero adjusters on all \(A C\) or \(D C\) ranges.

ATTRACTIVE METAL CASES: In certain applications-for panel appearance or specialized service conditions, you may prefer to seled from the long-time metal favorites, the basic Models 550 or 950 as illustrated. Although all have been modernized in appearance recently, each continues to fit \(25 / 32^{\prime \prime}\) mounting hole. See Catalog 94 covering all types, including many with zero adjuster.

CHOICE OF MANY TYPES: AC and DC Ammeters, Milliameters, Voltmeters and Resistance Meters. AC meters are double-vane repulsion type with jeweled bearing. \(D C\) are polarized-vane solenoid type, or moving magnet construction. Well over 200 ranges and types. Among the most popular are a \(0-3\) DC Milliammeter with 500 ohms internal resistance and built in zero adjuster, and a 0.1 DC Milliammeter with 1,000 ohms internal resistance and zero adjuster.

NEW EDGEWISE METER: The 350 series provides an ideal we to dress up a panel. The clear jewel-like plastic front is ve rich looking ond gathers light for easy reading of its long seal Yet it takes very little panel space and costs much less the you would expect.
DEPENDABLE PERFORMANCE: By for the best forque-fo-weig ratio in its field gives you a sturdy meter with fast responst and ability to duplicate readings. Accuracy well within tl standard \(5 \%\).
REASONABLE PRICES: Typical of the exceptional values a the meters illustrated. 0.150 DC Ma, \(\$ 2.00\) in the 550 or \(9:\) series, \(\$ 2.20\) in the 850 series; \(0-10 \mathrm{DC} \mathrm{Ma}\) in the 350 serie \(\$ 3.45 ; 0-1\) DC Ma (with zera adjuster), \(\$ 3.60\) in 550 or \(9!\) series, \(\$ 3.80\) in the 850 series; 0.150 AC Volts \(\$ 3.70\) in 550 950 series, \(\$ 3.90\) in the 850 series. Other meters are correspon ingly low in price. You get the benefit of low costs made po sible by large quantity production.

GUARANTEED: For one year against defective workmansh and material. Will be repaired or replaced if sent postpaid the factory with \(40 \&\) handling charge.
WIDELY AVAILABLE: Stocked by leading electronic pa distributors for prompt deliveries.

\section*{Complete Outfitters} FOR THE

\title{
- Ham - Communications
} - Electronic Engineers

\title{
Eugene G. Wile
} 218-220 South 11th St. Philadelphia 7, Pa. WAlnut 3-1343

\section*{Distributors of}

Nationally Advertised Lines of RADIO, TELEVISION and ELECTRONIC Parts

\section*{N \\ MinniE connectors}

Complete new family of miniature "E's"-altitude-moisture resistant. Sizes 12 to 22-3 to 48 contacts.

\section*{PRIN-CIR CONNECTORS}

Receptacles, plugs and adapters with super-reliable gold-plated contacts. From 6 to 22 contacts.

Relied upon since 1939. Latest design advancement is new "Stub E" construction-shortest lightest "E."

\section*{RF CONNECTORS}

All RF series available, including remarkable Subminax. New Quick-Crimp BNC's cut assembly time in half.

\section*{RACK \& PANEL CONNECTORS}

Sevenfamilies available for every R\&Papplication. Patented crimp Poke-Homecontacts in \(93 \& 94\) series.

ALL STANDARD AMPHENOL COMPONENTS STOCKED IN DEPTH BY YOUR AUTHORIZED AMPHENOL DISTRIBUTOR...
* ask for your copy of catalog iec!

DISTRIBUTOR DIVISION
BROADVIEW. ILLIINOIS
Amphonol-Borg Electronics Corporation

\section*{Index}

\begin{tabular}{|c|c|}
\hline Suroral Reflection & Prae \\
\hline Autodyne Reception & 86, 11 \\
\hline Automatic Gain Conrol & 101, 10: \\
\hline Automohile Storage Batery & +61 \\
\hline Autatransformer & 40 \\
\hline Averame-Current Malue & 17 \\
\hline Awards & 577-579 \\
\hline
\end{tabular}

But1on, Mierophone.
Bypassing 53, 553" ('" 13attery. 62
(' (r'apacitance) 23
CC 154
C L Computation \(5 \geq 5\)
(\(/ R\) and \(L / R\) 'lime Constants 30-31
(able lacing
510
501
(iable stripping
(a ilibrator Cry'stal 515,514
(all Areas \(58: 3\)
(apacitance and Capacitors \(23-25\)(aparitance:
Distributed 51
lealback 60
Formula 24
(irid Trank 157
luductance, and Frequency Charts 45
haterelertrome \(68-79,162\)
Measirement 525
Parallel 20.
Plate T'ank 150
Neries 25
Snecific Inductive 23
Tube Input (i8 69
Tuhe Output \(6!\)
(ap)adance-lkesistance Time Constant 30-31
('apacitive Coupling \(.46,15 x, 55 t j\)
Reatotunce 33,45
(amacitor-Imput Filter. \(2: 2\)Band-settin1) 2
Bandspread 12
l3uffer 419
Bypass 53, 170
(ramile 5()\(\cdot 4\)
Colar ciode 504,505
Finetrolytic \(\because-1\)
Filter 222, 205-2:26
(irid Tank 34
Man-Tuning 169
Ventralizing 1(i)
Palding \(13: 3\) 10.3
Phasing
Phasing
Plate Blocking 170
Pate Spacing 169
late Tank Voltace \(16 i\)
latilus 10)
Gemiconductor Voltage-Variable S1, 1:3:
Trimmer ! 3
Virjable 2425
(arbon Mierophone 25
(:arrier 58, 2x
(arrier siuppression 30.3
('arriers, Nemiconductor 79
('ascade Implifiers (it)
(ascorle R.F'. Inmplifiers \(3!4\)
Catcher 5!-40)
(athoule-lias \(7 \cdot 1\)
(athorde 13ymas caparitors \(26-4,265\)
(athode-(Bupled ('lipuer
(athode-(Bupled ('lipuer 76
60

\section*{INDEX}

\section*{INDEX}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{M} \\
\hline M.C'F. (see \({ }^{\text {c Maximum }}\) Usable Frequ & ency ';') \\
\hline Magnetic Storms . . . & . . 392,395 \\
\hline Mannetizing Current & \\
\hline Magnetrons & 78 \\
\hline Majority Carriers & 79 \\
\hline Marker Frenuencies & 515 \\
\hline Masts & 381 \\
\hline Matehed Lines & \\
\hline Matching, Antenna & 371, 449, 481 \\
\hline Mat ching-Cireuit Construction & 350 \\
\hline Maximum Average Rectified Current & 81 \\
\hline Maximum Safe Inverse Voltage & 81 \\
\hline Maximum Usable l'requency & 391, 39) \\
\hline \multicolumn{2}{|l|}{Measurements:} \\
\hline Antenna & \\
\hline Capacitance & \(5 \times 5\) \\
\hline Current & 508, 52 \\
\hline F'ield strength & 487, 520 \\
\hline Frequency & 51.3 \\
\hline Impedance & 5332, 533 \\
\hline Inductance & \\
\hline Keving & \(24 ?\) \\
\hline Mordulation & 2x0, 295 \\
\hline Phase & 32 \\
\hline Power & 509,525 \\
\hline Radio Freguency & 522-526 \\
\hline Resistance & 5109 \\
\hline Standing-Wave Ratio & 528 \\
\hline Transmission Line & 522i-535 \\
\hline Voltage & .507,511,520 \\
\hline Measuring Instruments & \\
\hline Medium of Propagation & 389 \\
\hline Medium- \(\mu\) Tubes & \\
\hline Megarycle & \\
\hline Megohm. & 20 \\
\hline Mercury-Vajor Rectifiers & 220124 \\
\hline Message Form & 572 \\
\hline Message Handling & 571-573 \\
\hline Metal Gauges, Standard & 500 \\
\hline Metal, Resistivity of & 18 \\
\hline Meteor Trails & 390 \\
\hline Mrtoring & 16G-167 \\
\hline Maters, Volt-()hm-Milliampere & 511 \\
\hline Meter Accuracy & 508 \\
\hline Meter Installation & 166 \\
\hline Meter Multiplier & \\
\hline Meter Switching & 166-167 \\
\hline Mho & 19, 62 \\
\hline Microampere & \\
\hline Microfarad and Mieromierofarad & \(\underline{24}\) \\
\hline Microhenry & 27 \\
\hline Mirromho & 19,62 \\
\hline Microphones & \\
\hline Mirrovolt & \\
\hline Miprowaves & 76 \\
\hline Miller Effeet & 68 \\
\hline Milliammeters & 508 \\
\hline Milliampere & .17,20 \\
\hline Millihenry. & 26 \\
\hline Millivolt & 20 \\
\hline Milliwatt & 22 \\
\hline Minority ('arriers & 70 \\
\hline Mixers 03, & 94-95, 321, 399 \\
\hline Mixers, Transistor & \\
\hline \multicolumn{2}{|l|}{Mobile:} \\
\hline Antemas & .480-487 \\
\hline Mobile Mondulators & 477 \\
\hline Power Suphly & 489 \\
\hline
\end{tabular}

\(N\)

\section*{INDEX}

\begin{tabular}{|c|c|}
\hline PIGE & PAGE \\
\hline Bonus 21－Mc．Converter ．．．．．．．．．．．1：5 & Resonant Transmission Lines ．．．．．．．．．．．．．340 \\
\hline Clipper／Filter for C．W．or Phone ．．．．．1：31 & Resonator，（avity ．．．．．．．．．．．．．．．．．．．．． 57 \\
\hline IDCs－ō00 Double－Conversion Superhet ．．1：3：3 & Response，l－lat ．．．．．．．．．．．．．．．．．．．．48，ti8 \\
\hline ＂Fail－Proof＂Conelrad Alarm ．．．．．． 142 & Respmense，l＇requency ．．．．．．．．．．．．．．48，6x，205\％ \\
\hline Regenerative P＇reselector for 7 to 30 Mc ．． \(1: 3\) & Restrieted－sparer Antemmas．．．．．．．．．．．． \(3603-368\) \\
\hline & Restriction of Fremuency Response．．．．．． 26 （ri，323 3 \\
\hline ＂Selectoject＇＂．．．．．．．．．．．．．．．．．．．．． 10 亿 & Return Trace ．．．．．．．．．．．．．．．．．． \(\mathbf{5} 36\) \\
\hline SimpleX Super ．．．．．．．．．．． 114 & Rhombic Antennat ．．．．．．．．．．．．．．．．．．．．． 369 \\
\hline Transistorized Q Multiplier ．．．．．．．．．． 140 & \\
\hline \(2 \times 4+1\) Superhet ．．．．．．．．．．．．．． 118 & Ripple l＇requency and Voltage ．．．．．．221，22：3， 225 \\
\hline Converters ．．．．．．．．．．．．．．．．．．．．．．． \(94-96\) & \\
\hline 1）etertors ．．．．．．．．．．．．．．．．．．．．．．．sis－91 & Rochelle silts（rystals．．．．．．．．．．．．．．．．． 51.255 \\
\hline Iligh－Frequency Oscillator ．．．．．．．．．．．．． \(\mathrm{Hi}_{\mathbf{4} \text {－17 }}\) & Rotary Antematas ．．．．．．．．．．．．．．．．．．．．．．．．． 371 \\
\hline lmproving Performatner of ．．．．．．．．．．．． \(11: 3\) & Rotary Antenmas，Feedlines for ．．．．．．．．．． \(3^{7} 3\) \\
\hline Noise Reduction ．．．．．．．．．．．．．．．．．．102 & Rotary－Heam（onnsturtion ．．．．．．．．．．．．．．．3xi3 \\
\hline Radio－l＇reruencx Inplifier ．．．．．．．．．．． 107 & Route Mintuger ．．．．．．．．．．．．．．．．．．．．． 575 \\
\hline Regenerative 1etcrtors ．．．．．．．．．．．． 0 （1） 1 & \\
\hline Selectivity ．．．．．．．．．．．．．．．．．．．N6，кī，105\％ 107 & \\
\hline Sensitivity ．．．．．．．．．．．．．．．．．．．．nti，109） 110 & \\
\hline Superheterodyne ．．．．．．．．．．．．． & \(\mathbf{S}\) \\
\hline Superregenerative ．．．．．．．．．．．．．．．．．． 400 & \\
\hline Tuning ．．．．．．．．．．．．． \(92-93,1111-111,3: 31\) & S－Meters．．．．．．．．．．．．．．．．．．．．．．．．．．104－105 \\
\hline Reception，A．M．and（．W．．．．． 110 －111 & S Scale ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5 580 \\
\hline Reception，N．F．M．，ド．M．and P．M．．．．．．． \(3: 2\) ！ & S，心．lV，Exaiters ．．．．．．．．．．．．．．．．．．．．．． 3005 \\
\hline Reception，single－Nidelsuml ．．．．．．．．．．．．．3： 3 ：3 & Safety ．．．．．．．．．．．．．．．．．．．． \(3.41,542-545\) \\
\hline Rectification ．．．．．．．．．．．．．．．．．．．．．．．．it）－6il & Safety Conde，Noutional Electrie ．．．．．．．． 544 －545 \\
\hline In Non－Iinear Comductors ．．．．．．．．．． \(\mathbf{0}\)（il & Saturation ．．．．．．．．．．．．．．．．．．．．．．．．．． 288,226 \\
\hline Rertified A．C．．．．．．．．．．．．．．．．．．．．．．fil & Saturation Point ．．．．．．．．．．．．．．．．．．．．．．．60） \\
\hline Rectifiers ．．．．．．．．．．．．218，23N， \(242,124, \mathrm{~V} 32\) & Sawtooth Sweep ．．．．．．．．．．．．．．．．．．．．．．．．536 \\
\hline Rectifiers，Mercurv－Vituor ．．．．．．．．．．． \(2=0\)（），V： 24 & Schematir siymhols ．．．．．．．．．．．．．．．．．．．． 2 \\
\hline Rectifiers，Ratings ．．．．．．．．．．．．．．．．．． 2 20， & Sereen l3ppass（tapacitor ．．．．．．．．．．．．．．．． 73 \\
\hline & Screen（irenits，＇luned ．．．．．．．．．．．．．．．．．． 420 \\
\hline Rectifier－Type Voltmeter ．．．．．．．．．．．．．．． 510 & Screen 1）issipation ．．．．．．．．．．．．．．．．．．．．． 150 \\
\hline Reflerted Power ．．．．．．．．．．．．．．．．．．．．．． \(3: 37\) & Screen 1）roppiny Resistor ．．．．．．．．．．．．．．．73， 99 \\
\hline Reflertion of Rudio Whaves ．．．．．．．．337，30－4－3！\％； & Screen－Grid Keving ．．．．．．．．．．．．．．．．．．．． 245 \\
\hline Reflection from Meteor Trails ．．．．．．．．．．．． 36 （ & Sereen－Grid Modulation ．．．．．．．．．．．．．．．．． 290 \\
\hline Reflection，Gromud ．．．．．．．．．．．．．．．．38j， 390 & Screen－Girid Veutrilization ．．．．．．．．．．．．．． 160 \\
\hline Reflector，Antemua ．．．．．．．．．．．．．．．．．． 3 \％is & Screen－（irid l＇ube l＇rotection ．．．．．．．．．．．．． 150 \\
\hline Refraction of Radio Waves ．．．．．．．．．390，345－3：306 & Screen－（irid Tubus ．．．．．．．．．．．．．．．．．．．．． 69 70 \\
\hline Regeneration ．．．．．．．．．．．．．．．． 67 －ix， 116,110 & Screen Voltage ．．．．．．．．．．．．．．．．．．．．．． 155 \\
\hline Regenerative Detertors ．．．．．．．．．．．．．．．（H） 91 & Screen－Voltage Siupply ．．．．．．．．．．．．．．．．．． 73 \\
\hline Regenerative I．F．．．．．．．．．．．．．．．．．．．． 100 & Second 1 betertor ．．．．．．．．．．．．．．．．．93，100－101 \\
\hline Regulation，1）river ．．．．．．．．．．．．．．．．．．．． 3183 & Secondary（oil ．．．．．．．．．．．．．．．．．．．．．．． 37 \\
\hline Regulation，Voltage ．．．．．．．．．．．．221，2：20， 230 & Seeondary limission ．．．．．．．．．．．．．．．．．． 69 \\
\hline Regulations，Amateur ．．．．．．．．．．．．．．．．．13－14 & Seeondary Freduency Standard ．．．．．．．．．．\(\overline{\text { S }} 4\) \\
\hline Regulations，（omelrad．．．．．．．．．．．．142，4x4，ind & Section（ommmaications Manarer ．．．．．．．574， 575 \\
\hline Regulator，Itigh Vol：age ．．．．．．．．．．．．．． 232 & Section limmrgency（onordinator．．．．．．．． 57 t， 575 \\
\hline Regulator Tubes ．．．．．．．．．．．．．．．．．．．．． 2.30 & Section Nets ．．．．．．．．．．．．．．．．．．．．． \\
\hline Regulator，Voltage ．．．．．．．．．．．．．．．．．．． 230 ，\2：3 & \\
\hline Reluys ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 54.2 & Selectivity ．．．．．．．．．．．．．．．42，47－44，84， 87 \\
\hline Reperforator ．．．．．．．．．．．．．．．．．．．．．．．．．．． 331 & Selectivity，1．F．．．．．．．．．．．．．．．．．10．5 136， 107 \\
\hline Resistance ．．．．．．．．．．．．．．．．．．．．．．．．．．．．1x－202 & Selectivity，Receiver ．．．．．．．．．．．．81i，xi，111；－107 \\
\hline Resistance，Back ．．．．．．．．．．．．．．．．．．．．80 & \\
\hline Resistance，lorward ．．．．．．．．．．．．．．．．．．8il & Self－lias ．．．．．．．．．．．．．．．．．．．．．．．．． 105 \\
\hline Resistance－13ridge Standing－Wive Indicator ． \(5: 8\) & Self－（ontrolled（3sillators ．．．．．．．．．．144， 1 Hi－149 \\
\hline Resistance－（ apacitunce＇lime Constont ．．．．30－－31 & Self－luductance ．．．．．．．．．．．．．．．．．．．．．． 26 \\
\hline Resistance－Coupled Amplifier I）ata（Chart）． 250 & Self－（）scillation ．．．．．．．．．．．．．．．．．．．．． 69 \\
\hline Resistance in Series and l＇arallel ．．．．．．．．． 20 －202 & Semiconductors ．．．．．．．．．．．．．．．．．．．． 79 －85 \\
\hline Resistive Impedame ．．．．．．．．．．．．．．．．．．．．．． 44 & \\
\hline Resistivity of Metals ．．．．．．．．．．．．．．．．．．．． 18 & Sensitivity，Rereiver ．．．．．．．．．．．．．．．Ni，109－110 \\
\hline Resistor ．．．．．．．．．．．．．．．．．．．．．．．．． 19 & Series Antenn：1 「uning ．．．．．．．．．．．．．．．． 347 \\
\hline Resistor Conor Conde ．．．．．．．．．．．．．．．．．．． 50.4 & Series Cabateitances ．．．．．．．．．．．．．．．．． 25 \\
\hline Rosistor Wattage ．．．．．．．．．．．．．．．．．．．． & Series Sirmuits ．．．．．．．．．．20 20，25，2！，34， 36 \\
\hline Resonance ．．．．．．．．．．．．．．．．．．．．．．．．．41－46 & Series lreed ．．．．．．．．．．．．．．．．．．．．．．．． 53 \\
\hline Resonance Curve ．．．．．．．．．．．．．．．．42，44，48，87 & Series Indurtimmes ．．．．．．．．．．．．．．．．．．．． 29 \\
\hline Resontmare，F｀ilter ．．．．．．．．．．．．．．．．．．．． & Series－1＇arallel Rexistances ．．．．．．．．．．．．．．．20－2．22 \\
\hline Resonance，Sharphess of ．．．．．．．．．．．．．．．42， 374 & Series Renctinmes ．．．．．．．．．．．．．．．． \(34-35\) \\
\hline Resonant（ircuits，（oupled ．．．．．．．．．．．．．．． 47 & Series Ressistances \\
\hline Resonant Frequency ．．．．．．．．．．．．．．．．．．．．40 & Series Resimither ．．．．．．．．．．．．．．．41－43 \\
\hline Resomant－Line（ircolits ．．．．．．．．．．．．．．．．． & \\
\hline
\end{tabular}

\section*{INDEX}

\section*{U}

Ultra-Hiph-lirequencies:
Cavity Resonators . 57
\(\begin{array}{ll}\text { Circuits . } \\ \text { Klystrons } & \text { i7 } \\ \text { K7 }\end{array}\)
"Lighthouse" Tubes. 76 ; 3! 38
Magnctrons . 7 - 8
I'encil Tubes. 3! 37
Tank ('ircuits . 5 . 57
Transmission-Line Tanlis \(5 \mathbf{5}-50\)

Tubes .
Velocity Mordulation 6 6-77
Waveguides . 5 55-57
Unbabance in Transmission Lines. 312
"urlerwriters' (inde . 541 -545
Unsymmetrical Modnhation \(\quad 284\)
Untuned Transmission Lines 340
Upward Modulation \(2 \times 4\)

\section*{\(V\)}

Crystal-Controlled Comserter for 50
(rystal-(ontrolled Converters for 50, 1.44 and \(2=2 \mathrm{Ml}\).401
ile.411
Preamplifier for 220 Me 410
2.l: Ampliter for too sle41
Superreremerative 1)
Transmitters416
434Antenma (ionplers Me.421
144-גı. Driver-Amplifier \(42!\)
Simple 'Iransmitter for 220 and 420 Mc. 44
\(4 \cdot 4\)
41) II att Tratumiter for \({ }^{\circ \cdot 0} 0\) 44
V.F. \({ }^{(1)}\) 213V signals5)
Virtual Ilcioght 30)
Foike-entrmad break-la5b
Voice Operating17
olt-Ampere-Reactive 36
Voltare Amplifieation(15)
(oture Brentodow31, 31
hatase Divider 3 id
Coltage I)ron64,257
Voltare loonlis
Voltare Maltiphicr Cireats 238
oltare-Turns Ratio, Trimsformer 3sVoltare-lRequlator Interference46143
Coltare-stabilized Power Supplies 522
Vohme Comuression5x:3
III. W 50
W.IS iward 577
Watt-Homr 23
Wive Angle\(2 \times 5,2462.3\)
\begin{tabular}{|c|c|c|c|}
\hline & page & & Page \\
\hline Wave Front & \(3 \times!\) & Working Voltage, Capacitor & \\
\hline Wave, Ground & 390 & Workshop Practice & 497-506 \\
\hline Wave Guide Dimensions & 5t 57 & WWV and WWVII schedules & . 517 \\
\hline Wave Guides & 5\% & & \\
\hline Wavemeters. & 51:3 & & \\
\hline Wave Propagation & 3801-3!1\% & & \\
\hline Wave, sine & 17.32 & X & \\
\hline Wave, sky & 361 & & \\
\hline Wave Form & 17 & X (Reactance) & 33 \\
\hline Wavelength & 17-18 & & \\
\hline Wavelength-Frequency Conversion & 18 & & \\
\hline Wavelengths, Amateur & 14 & & \\
\hline Waves, Complex & 17,:37 & \(\boldsymbol{\chi}\) & \\
\hline Waves, Distorted & 63:3 & & \\
\hline Waves, Electromagnetic & 1.5 & "Yiagi" Antennas. & 440, 455 \\
\hline Wave Traps. & 252, 514 & & \\
\hline Wheel static & 461 & & \\
\hline Wide-Band Antennas, V.H.F. & 458 & & \\
\hline "Windom"' Antenna & 364 & 2 & \\
\hline Wire Tahle, Copper & \(50 \%\) & & \\
\hline Wiring Diarrams, Symbols for & 2 & 7 (Impedance) & 36 \\
\hline Wiring, station & 543-544 & Zener Diodes & 80-81, V:32 \\
\hline Wiring. Transmitter & 501-502 & Zener Knee & 81 \\
\hline Word Lists for Accurate Transmission & 569 & \%ero Beat & 91 \\
\hline Working DX.... & 569-570 & Zero-Bias Tubes . & 66 \\
\hline
\end{tabular}

SZLON

```


[^0]:    Where it is necessary or desirable to identify the elcctrodes or capacitors, the curved element represents the outside electrode (marked "outeide foil," "ground," etc.) in fixed naper- and ceramic-dielcetric capacitors, and the negative electrode in electrolytic capacitore.
    In the modern symbol, the curved line indicates the moving element (rotor plates) in variable and adjustable air. or mica-dielectric capacitors.

    In the case of switches, jacks, etc., only the basic combinations are shown. Any combination of these symbols may be assembled as required, following the elementary forms shown,

[^1]:    Example: A $0.01-\mu f$. capacitor is charged to 150 volts and then allowed to discharge through a 0.1 -megohm resistor. How long will it take the voltage to fall to 10 volts? In percentage, $10 / 150=6.7 \%$. From the chart, the factor corresponding to $6.7 \%$ is 2.7 . The time constant of the circuit is equal to $R C=0.1 \times 0.01=$ 0.001 . The time is therefore $2.7 \times 0.001=$ 0.0027 second, or 2.7 nilliseconds.

[^2]:    1 Power transformers salvaged from old TV receiver ehassis usually have two such windings. As old chassis with perfectly good power transformers usually wan be picked up at TV service shops for five dollars or so, this is an eronomical source of parts for a power supply, The filter choke and filter capacitors can be salvaged, too, along with miscellaneous small eomponents such as disk capacitors.

[^3]:    ＊Insulated hoxkip wire，whmal over Cof and of $/ 2$.

[^4]:    A - Federal. B - International. C-Mallory. D-Radio Receptor. E - Sarkes-Tarzian. F Sylvania.

[^5]:    Voltage across next－stage grid resistor at grid－current point．
    2 At 5 volts r．m．s．output．
    ${ }^{3}$ Cathode－resistor values are for phase－inverter service．

[^6]:    $C_{1}, C_{2}$-Approx. 1 to $2 \mu \mu$ f. Moke from two pieces of plostic-covered No. 18 wire twisted together about 1 inch.
    $\mathrm{C}_{3}-10-\mu \mu$. ceromic. Connect of plote terminol.
    $L_{1}, L_{3}, L_{4}-11$ furns No. 24 enom. of top end of $1 / 4$-inch iron-slug form (North Hills Type F-1000). $L_{1}$ topped of 3 turns.

[^7]:    $\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. variable (Johnson 157-4).
    $\mathrm{C}_{2}-25-\mu \mu \mathrm{f}$. variable (Johnson 157-3).
    $\mathrm{C}_{3}-0.5$ to $3 \mu \mu \mathrm{f}$. ceromic Irimmer (Erie 3139D).
    $\mathrm{C}_{4}-25-\mu \mu \mathrm{f}$. variable (Johnson 167-2).
    $\mathrm{C}_{5}-75 \mu \mu \mathrm{f}$. (Johnson 157-5).
    $\mathrm{J}_{1}$-Cooxial chassis fitting.
    $J_{2}, J_{3}$ - Closed-circuit jack.
    $L_{1}=14$. No. 20 tinned, $1 / 2$-inch diam., $7 / 8$ inch long, tapped at $41 / 2 \mathrm{t}$. from crystal end (B \& W No. 3003).
    $t-61 / 2 \mathrm{f}$., $7 / / \mathrm{n}$ inch long, similar to $t_{1}$.

[^8]:    ${ }^{1}$ Brown - "The Wide-Spread Twin-Five" CQ, March, 1950.

[^9]:    ${ }^{1}$ Transistor Application Note 6- $B$, Deleo IRadio Division, General Motors Corp, Liokomo, Indiana.

[^10]:    See page V27 for Key 10 Class-of.Service abbreviations.

[^11]:    14 See page V29 ior Key to Class－of－Service abbreviahons．

[^12]:    Cat. No.
    Amateur Net
    240-104-1. . Kit . . . . . . . . . . . . . . $\$ 349.50$
    240-104-2. Wired and tested. . $\$ 439.50$

