

GENERAL ELECTRIC TRANSISTOR MANUAL

fourth edition

CONTRIBUTORS:

E. Gottlieb
F. W. Gutzwiller
D. V. Jones
H. R. Lowry
G. E. Snyder
R. A. Stasior
T. P. Sylvan

APPLICATION ENGINEERING

EDITED BY:

Semiconductor Products Department
Advertising and Sales Promotion
General Electric Company
Charles Building
Liverpool, New York

The circuit diagrams included in this manual are included for illustration of typical transistor applications and are not intended as constructional information. For this reason, wattage ratings of resistors and voltage ratings of capacitors are not necessarily given. Similarly, shielding techniques and alignment methods which may be necessary in some circuit layouts are not indicated. Although reasonable care has been taken in their preparation to insure their technical correctness, no responsibility is assumed by the General Electric Company for any consequences of their use.

The semiconductor devices and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of semiconductor devices by General Electric Company conveys any license under patent claims covering combinations of semiconductor devices with other devices or elements. In the absence of an express written agreement to the contrary General Electric Company assumes no liability for patent infringement arising out of any use of the semiconductor devices with other devices or elements by any purchaser of semiconductor devices or others.

Copyright 1959
by the General Electric Company

contents

Page

1. BASIC SEMICONDUCTOR THEORY 5
2. TRANSISTOR CONSTRUCTION TECHNIQUES 12
Metal Preparation 12
Junction Formation 13
Lead Attachment 17
Encapsulation 20
Reliability 21
3. SMALL SIGNAL CHARACTERISTICS 25
4. LARGE SIGNAL CHARACTERISTICS 32
Parameters 32
Basic Equations 33
Collector Leakage Current (Icmo) 33
Collector Leakage Current (Ices) 33
Collector and Emitter Leakage Current -
Collector and Emitter Junctions Reverse Biased 34
Collector Leakage Current (I Icer) 34
Collector Leakage Current - Silicon Diode in Series with Emitter 34
Collector to Emitter Voltage - Collector Open Circuited 35
Base Input Characteristics 35
Voltage Comparator Circuit 35
5. BIASING 36
Thermal Runaway 40
6. AUDIO AMPLIFIERS 43
Single Stage Audio Amplifier 43
Two Stage R-C Coupled Amplifier 43
Class B Push-Pull Output Stages 44
Class A Output Stages 45
Class A Driver Stages 46
Design Charts 46
Amplifier Circuit Diagrams 54
7. "HI-FI" CIRCUITS 58
Preamplifiers 58
Power Amplifiers 63
Stereophonic System 65
8. RADIO RECEIVER CIRCUITS 67
Autodyne Converter Circuits 67
IF Amplifiers 68
Automatic Volume Control Circuits 69
Detector Stage 71
Reflex Circuits 72
Complete Radio Receiver Circuit Diagrams 73
9. TRANSISTOR RADIO SERVICING TECHNIQUES 84
10. SWITCHING CHARACTERISTICS 89
Temperature Effects on Switching Circuits 91
Power Dissipation 95
Saturation 95
Transient Response Time 100
11. BASIC COMPUTER CIRCUITS 106
Flip-Flop Design Procedures 106
Triggering 117
Special Purpose Circuits 122
12. LOGIC 125
Binary Arithmetic 136
13. UNIJUNCTION TRANSISTOR CIRCUITS 138
Theory of Operation 138
Parameters - Definition and Measurement 139
Relaxation Oscillator 141
Sawtooth Wave Generator 142
Staircase Wave Generator 143
Time Delay Relay 143
Multivibrator 144
Hybrid Timing Circuits 145
14. SILICON CONTROLLED RECTIFIER 148
15. TETRODE TRANSISTORS 152
16. POWER SUPPLIES 156
Complete Power Supply Circuits 158
17. TRANSISTOR SPECIFICATIONS 160
How to Read a Specification Sheet 160
Explanation of Parameter Symbols 162
G-E Transistor Specifications 164
Registered JEDEC Transistor Types with Interchangeability Information 204
Abbreviations 218
G-E Outline Drawings 219
18. RECTIFIER SPECIFICATIONS 223
Notes on Rectifier Specification Sheet 223
Condensed Rectifier Specifications 224
19. NOTES ON CIRCUIT DIAGRAMS 226
20. READING LIST 227

1. BASIC SEMICONDUCTOR THEORY

In the few years since its introduction, the junction transistor has played a steadily increasing part in every branch of electronics. First applied in hearing aids and portable radios, the transistor now sees service in such diverse applications as industrial control systems, digital computers, automatic telephone exchanges, and telemetering transmitters for satellites. The next few years promise an equally spectacular growth since a "second generation" of semiconductor devices is now being introduced which will complement the junction transistor and extend the capabilities of semiconductor electronics. The frequency range of transistors will be extended into the UHF range by such devices as the tetrode transistor and the "mesa" transistor. The power range will be extended by new devices such as the Silicon Controlled Rectifier which will make possible control circuits capable of operating to over 50 amperes, 400 volts, and 20 kilowatts. Devices such as the PNPN diode and the unijunction transistor will make possible simpler and more economical timing and switching circuits. Figure 1.1 lists the names and symbols for most of the semiconductor devices which are commercially available at the present time.
(1) NPN transistor

(2) PNP transistor
(3) NPN tetrode transistor
(4) PNP tetrode transistor
(5) PN unijunction transistor
(6)(7) silicon controlled rectifier
(NPNP transistor)

| (8) rectifier or diode |
| :--- | :--- |
| (9) zener or breakdown diode |
| (10) symmetrical zener diode |

A complete understanding of semiconductor physics and the theory of transistor operation is, of course, not necessary for the construction or design of transistor circuits. However, both the electronics engineer and the hobbyist can obtain practical benefits from a general understanding of the basic theory of semiconductors. Such an understanding will often aid in solving special circuit problems and will prove of great assistance in the successful application of the newer semiconductor devices which become available. This chapter is concerned with the terminology and theory of semiconductors as it pertains to rectifiers and junction transistors. The theory and characteristics of other types of semiconductor devices such as the silicon controlled rectifier, the unijunction transistor, and the tetrode transistor are discussed in later chapters of this manual.

The basic materials used in the manufacture of transistors are the semiconductors materials which lie between the metals and the insulators in their ability to conduct electricity. The two semiconductors now being used are germanium and silicon. Both of these materials have four electrons in the outer shell of the atom (valence electrons). Germanium and silicon form crystals in which each atom has four neighboring atoms with which it shares its valence electrons to form four covalent bonds. Since all the valence electrons are required to form the covalent bonds there are no electrons free to move in the crystal and the crystal will be a poor electrical conductor. The conductivity can be increased by either heating the crystal or by adding other types of materials (impurities) to the crystal when it is formed.

Heating the crystal will cause vibration of the atoms which form the crystal. Occasionally one of the valence electrons will acquire enough energy (ionization energy) to break away from its parent atom and move through the crystal. When the parent atom loses an electron it will assume a positive charge equal in magnitude to the charge of the electron. Once an atom has lost an electron it can acquire an electron from one of its neighboring atoms. This neighboring atom may in turn acquire an electron from one of its neighbors. Thus it is evident that each free electron which results from the breaking of a covalent bond will produce an electron deficiency which can move through the crystal as readily as the free electron itself. It is convenient to consider these electron deficiencies as partisles which have positive charges and which are called holes. Each time an electron is generated by breaking a covalent bond a hole is generated at the same time. This process is known as the thermal generation of hole-electron pairs. If a hole and a free electron collide, the electron will fill the electron deficiency which the hole represents and both the hole and electron will cease to exist as free charge carriers. This process is known as recombination.

The conductivity of a semiconductor material can also be increased by adding impurities to the semiconductor crystal when it is formed. These impurities may either be donors such as arsenic which "donate" extra free electrons to the crystal or acceptors such as aluminum which "accept" electrons from the crystal and produce free holes. A donor atom, which has five valence electrons, takes the place of a semiconductor atom in the crystal structure. Four of the five valence electrons are used to form covalent bonds with the neighboring semiconductor atoms. The fifth electron is easily freed from the atom and can move through the crystal. The donor atom assumes a positive charge, but remains fixed in the crystal. A semiconductor which contains donor atoms is called an n-type semiconductor since conduction occurs by virtue of free electrons (negative charge).

An acceptor atom, which has three valence electrons, can also take the place of a semiconductor atom in the crystal structure. All three of the valence electrons are used to form covalent bonds with the neighboring atoms. The fourth electron which is needed can be acquired from a neighboring atom, thus giving the acceptor atom a negative charge and producing a free hole in the crystal. A semiconductor which con-
tains acceptor atoms is called a p－type semiconductor since conduction occurs by virtue of free holes in the crystal（positive charge）．

$\begin{array}{l}\text { ELEMENT } \\ \text {（SYMBOL）}\end{array}$	$\begin{array}{c}\text { GROUP IN } \\ \text { PERIODIC } \\ \text { TABLE }\end{array}$	$\begin{array}{c}\text { NUMBER } \\ \text { VALENCE } \\ \text { ELECTRONS }\end{array}$	$\begin{array}{c}\text { APPLICATIONS IN } \\ \text { SEMICONDUCTOR DEVICES }\end{array}$
$\begin{array}{l}\text { boron（B）} \\ \text { aluminum（Al）} \\ \text { gallium（Ga）} \\ \text { indium（In）}\end{array}$	III	3	$\begin{array}{l}\text { acceptor elements，form p－type } \\ \text { semiconductors，each atom } \\ \text { substitutes for a Ge or Si atom } \\ \text { in the semiconductor crystal } \\ \text { and can take on or accept an } \\ \text { extra electron thus producing a } \\ \text { hole }\end{array}$
$\begin{array}{l}\text { germanium（Ge）} \\ \text { silicon（Si）}\end{array}$	IV	4	$\begin{array}{l}\text { basic semiconductor materials，} \\ \text { used in crystal form with con－} \\ \text { trolled amounts of donor or } \\ \text { acceptor impurities }\end{array}$
$\begin{array}{l}\text { phosphorus（P）}\end{array}$		5	$\begin{array}{l}\text { donor elements，form n－type } \\ \text { arsenic（As）} \\ \text { antimony（Sb）}\end{array}$
semiconductors，each atom			
substitutes for a Ge or Si atom			
in the semiconductor crystal			
and can give up or donate an			
extra electron to the crystal			

MATERIALS USED IN THE CONSTRUCTION OF TRANSISTORS AND OTHER SEMUCONDUCTOR DEVICES

FIGURE 1.2

To summarize，conduction in a semiconductor takes place by means of free holes and free electrons（carriers）in the semiconductor crystals．These holes or electrons may originate either from donor or acceptor impurities in the crystal or from the thermal generation of hole－electron pairs．During the manufacture of the crystal，it is possible to control the conductivity and make the crystal either n－type or p－type by adding controlled amounts of donor or acceptor impurities．On the other hand，the thermally generated hole electron pairs cannot be controlled other than by varying the tempera－ ture of the crystal．

One of the most important principles involved in the operation of semiconductor devices is the principle of space charge neutrality．In simple terms，this principle states that the total number of positive charges（holes plus donor atoms）in any region of a semiconductor must equal the total number of negative charges（electrons plus acceptor atoms）in the same region provided that there are no large differences in voltage within the region．Use of this principle can frequently result in a simpler and more accurate interpretation of the operation of semiconductor devices．For example，in explaining
the characteristics of an n-type semiconductor it is usually stated that the function of the donor atoms is to produce free electrons in the crystal. However, using the principle of space charge neutrality it is more accurate to say that the function of the donor atoms is to provide positive charges within the crystal which permit an equal number of free electrons to flow through the crystal.

Carriers can move through a semiconductor by two different mechanisms: diffusion or drift. Diffusion occurs whenever there is a difference in the concentration of the carriers in any adjacent regions of the crystal. The carriers have a random motion owing to the temperature of the crystal so that carriers will move in a random fashion from one region to another. However, more carriers will move from the region of higher concentration to the region of lower concentration than will move in the opposite direction. Drift of carriers occurs whenever there is a difference in voltage between one region of the semiconductor and another. The voltage difference produces a force on the carriers causing the holes to move toward the more negative voltage and the electrons to move toward the more positive voltage. The mechanism of drift is illustrated in Figure 1.3 for both n-type and p-type semiconductors. For the n-type material, the electrons enter the semiconductor at the lower electrode, move upwards through the semiconductor and leave through the upper electrode, passing then through the wire to the positive terminal of the battery. Note that in accordance with the principle of space charge neutrality, the total number of electrons in the semiconductor is determined by the total number of acceptor atoms in the crystal. For the case of the p-type semiconductor, hole-electron pairs are generated at the upper terminal. The electrons flow through the wire to the positive terminal of the battery and the holes move downward through the semiconductor and recombine with electrons at the lower terminal.

CONDUCTION IN N-type and p-type semuconductors FIGURE 1.3

If a p-type region and an n-type region are formed in the same crystal structure, we have a device known as a rectifier or diode. The boundary between the two regions is called a junction, the terminal connected to the p-region is called the anode, and the terminal connected to the n-region is called the cathode. A rectifier is shown in Figure 1.4 for two conditions of applied voltage. In Figure 1.4A the anode is at a negative voltage with respect to the cathode and the rectifier is said to be reverse biased. The holes in the p-region are attracted toward the anode terminal (away from the junction) and the electrons in the n-region are attracted toward the cathode terminal (away from the junction). Consequently, no carriers can flow across the junction and no current
will flow through the rectifier. Actually a small leakage current will flow because of the few hole-electron pairs which are thermally generated in the vicinity of the junction. Note that there is a region near the junction where there are no carriers (depletion layer). The charges of the donor and acceptor atoms in the depletion layer generate a voltage which is equal and opposite to the voltage which is applied between the anode and cathode terminals. As the applied voltage is increased, a point will be reached where the electrons crossing the junction (leakage current) can acquire enough energy to produce additional hole-electron pairs on collision with the semiconductor atoms (avalanche multiplication). The voltage at which this occurs is called the avalanche voltage or breakdown voltage of the junction. If the voltage is increased above the breakdown voltage, large currents can flow through the junction and, unless limited by the external circuitry, this current can result in destruction of the rectifier.

In Figure 1.4B the anode of the rectifier is at a positive voltage with respect to the cathode and the rectifier is said to be forward biased. In this case, the holes in the p-region will flow across the junction and recombine with electrons in the n-region. Similarly, the electrons in the n-region will flow across the junction and recombine with the holes in the p-region. The net result will be a large current through the rectifier for only a small applied voltage.

CONDUCTION IN A PN JUNCTION RECTIFIER

FIGURE 1.4

An NPN transistor is formed by a thin p-region between two n-regions as indicated in Figure 1.5. The center p-region is called the base and in practical transistors is generally less than .001 inch wide. One junction is called the emitter junction and the other junction is called the collector junction. In most applications the transistor is used in the common emitter configuration as shown in Figure 1.5 where the current through the output or load (R_{L}) flows between the emitter and collector and the control or input signal (V_{BE}) is applied between the emitter and base. In the normal mode of operation, the collector junction is reverse biased by the supply voltage Vcc and the emitter junction is forward biased by the applied base voltage V_{BE}. As in the case of the rectifier, electrons flow across the forward biased emitter junction into the base region. These electrons are said to be emitted or injected by the emitter into the base. They diffuse through the base region and flow across the collector junction and then through the external collector circuit.

CONDUCTION IN A NPN JUNCTION TRANSISTOR (COMMON EMITTER CONFIGURATION)

 FIGURE 1.5If the principle of space charge neutrality is used in the analysis of the transistor, it is evident that the collector current is controlled by means of the positive charge (hole concentration) in the base region. As the base voltage V_{BE} is increased the positive charge in the base region will be increased, which in turn will permit an equivalent increase in the number of electrons flowing between the emitter and collector across the base region. In an ideal transistor it would only be necessary to allow base current to flow for a short time to establish the desired positive charge. The base circuit could then be opened and the desired collector current would flow indefinitely. The collector current could be stopped by applying a negative voltage to the base and allowing the positive charge to flow out of the base region. In actual transistors, however, this can not be done because of several basic limitations. Some of the holes in the base region will flow across the emitter junction and some will combine with the electrons in the base region. For this reason, it is necessary to supply a current to the base to make up for these losses. The ratio of the collector current to the base current is known as the current gain of the transistor $\mathrm{h}_{\mathrm{FE}}=\mathrm{I}_{\mathrm{c}} / \mathrm{I}_{\mathrm{B}}$. For a-c signals the current gain is $\beta=\mathrm{h}_{\mathrm{f}}=\mathrm{i}_{\mathrm{c}} / \mathrm{i}_{\mathrm{b}}$. The ratio of the a-c collector current to a-c emitter current is designated by $a=h_{f b}=i_{c} / \mathrm{i}_{\mathrm{e}}$.

When a transistor is used at higher frequencies, the fundamental limitation is the time it takes for carriers to diffuse across the base region from the emitter to the collector. Obviously, the time can be reduced by decreasing the width of the base region. The frequency capabilities of the transistor are usually expressed in terms of the alpha cutoff frequency (f_{ab}). This is defined as the frequency at which a decreases to 0.707 of its low frequency value. The alpha cutoff frequency may be related to the base charge characteristic and the base width by the equations:

$$
\mathrm{T}_{\mathrm{E}}=\frac{\mathrm{Q}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{E}}}=\frac{\mathrm{W}^{2}}{2 \mathrm{D}}=\frac{0.19}{\mathrm{f}_{\mathrm{ab}}}
$$

where T_{E} is the emitter time constant, Q_{B} is the base charge required for an emitter current $\mathrm{I}_{\mathrm{E}}, \mathrm{W}$ is the base width, and D is the diffusion constant which depends on the semiconductor material in the base region.

As evident from Figure 1.5, the NPN transistor has some similarity with the vacuum tube triode. Positive voltage is applied to the collector of the transistor which corresponds to the plate of the tube, electrons are "emitted" by the cathode and are "collected" by the plate of the tube, and the control signal is applied to the base of the transistor which corresponds to the grid of the tube. One important difference between transistors and tubes is that the input impedance of the transistor is generally much lower than that of a tube. It is for this reason that transistors are usually considered as current controlled devices and tubes are usually considered as voltage controlled devices. Another important difference between transistors and tubes is the existence of complementary transistors. That is, a PNP transistor will have characteristics similar to a NPN transistor except that in normal operation the polarities of all the voltages and currents will be reversed. This permits many circuits which would not be possible with tubes (since no tube can operate with negative plate voltage). Examples of complementary circuits can be found in other parts of this manual.

The operation of the transistor has been described in terms of the common emitter configuration. The term grounded emitter is frequently used instead of common emitter, but both terms mean only that the emitter is common to both the input circuit and output circuit. It is possible and often advantageous to use transistors in the common base or common collector configuration. The different configurations are shown in Figure 1.6 together with their comparative characteristics in class A amplifiers.

CIRCUIT CONFIGURATION		CHARACTERISTICS*	
COMMON EMITTER (CE)		moderate input impedance moderate output impedance high current gain high voltage gain highest power gain	$\begin{array}{r} (1.3 \mathrm{~K}) \\ (50 \mathrm{~K}) \\ (35) \\ (-270) \\ (40 \mathrm{db}) \end{array}$
$\begin{aligned} & \text { COMMON } \\ & \text { BASE } \\ & \text { (CB) } \end{aligned}$		lowest input impedance highest output impedance low current gain high voltage gain moderate power gain	$\begin{array}{r} (35 \Omega) \\ (1 \mathrm{M}) \\ (-0.98) \\ (380) \\ (26 \mathrm{db}) \end{array}$
$\begin{gathered} \text { COMMON } \\ \text { COLLECTOR } \\ \text { (CC) } \\ \text { (EMITTER } \\ \text { FOLLOWER) } \end{gathered}$		lighest input impedance lowest output impedance high current gain unity voltage gain lowest power gain	$\begin{gathered} (350 \mathrm{~K}) \\ (500 \Omega) \\ (-36) \\ (1.00) \\ (15 \mathrm{db}) \end{gathered}$
*Numerical values are typical for the 2 N 525 at audio frequencies with a bias of 5 volts and 1 ma., a load resistance of 10 K , and a source (generator) resistance of 1 K .			

2. TRANSISTOR CONSTRUCTION TECHNIQUES

The knowledge of many sciences is required to build transistors. Physicists use the mathematics of atomic physics for design. Metallurgists study semiconductor alloys and crystal characteristics to provide data for the physicist. Chemists contribute in every facet of manufacturing through chemical reactions which etch, clean and stabilize transistor surfaces. Mechanical engineers design intricate machines for precise handling of microminiature parts. Electronic engineers test transistors and develop new uses for them. Statisticians design meaningful life test procedures to determine reliability. Their interpretation of life test and quality control data leads to better manufacturing procedures.

The concerted effort of this sort of group has resulted in many different construction techniques. All these techniques attempt to accomplish the same goal - namely to construct two parallel junctions as close together as possible. Therefore, these techniques have in common the fundamental problems of growing suitable crystals, forming junctions in them, attaching leads to the structure and encapsulating the resulting transistor. The remainder of this chapter discusses these problems and concludes with their bearing on reliability as illustrated by examples.

METAL PREPARATION

Depending on the type of semiconductor device being made, the structure of the semiconductor material varies from highly perfect single crystal to extremely polycrystalline. The theory of transistors and rectifiers, however, is based on the properties of single crystals. Defects in a single crystal produce effects much the same as impurities and are generally undesirable.

Germanium and silicon metal for use in transistor manufacture must be so purified that the impurity concentration ranges from about one part in 10^{3} to one part in 10^{11}. Then a dominant impurity concentration is obtained by doping. Finally, the metal must be grown into a single highly perfect crystal.

The initial purification of germanium and silicon typically involves reactions which produce the chemical compounds germanium and silicon tetrachloride or dioxide. These compounds can be processed to give metallic germanium or silicon of relatively high purity. The metal so prepared is further purified by a process called zone refining. This technique makes use of the fact that many impurities are more soluble when the metal is in its liquid state, thus enabling purification to result by progressive solidification from one end of a bar of metal.

In practical zone refining a narrow molten zone is caused to traverse the length of a bar. A cross-sectional view of a simplified zone refining furnace is shown in Figure 2.1. High purity metal freezes out of the molten zone as the impurities remain in solution. By repeating the process a number of times, the required purity level can be reached. During the process it is important that the metal be protected from the introduction of impurities. This is done by using graphite or quartz parts to hold the metal, and by maintaining an inert atmosphere or vacuum around it. The heating necessary to produce a narrow molten zone is generally accomplished by induction heating, i.e., by coils carrying radio frequency energy and encircling the metal bar in which they generate heat.

The purified metal is now ready for doping and growing into a single crystal. A common method for growing single crystals is the Czochralski method illustrated in Figure 2.2. In it a crucible maintains molten metal a few degrees above its melting point. A small piece of single crystal called a seed is lowered into the molten metal and then slowly withdrawn. If the temperature conditions are properly maintained a single crystal of the same orientation, i.e., molecular pattern as the seed grows on it until all the metal is grown into the crystal. Doping materials can be added to the molten metal in the crucible to produce appropriate doping. The rate at which doping impurities are transferred from the molten metal to the crystal can be varied by the crystal growing rate, making it possible to grow transistor structures directly into the single crystal. This is discussed in detail in the next section.

The floating zone technique for both refining and growing single crystals has recently been introduced. It is quite similar in principle to zone refining except that the graphite container for the bar is eliminated, reducing the risk of contamination. In place of it, clamps at both ends hold the bar in a vertical position in the quartz tube. The metal in the molten zone is held in place by surface tension. Doping agents added at one end of the bar can be uniformly distributed through the crystal by a single cycle of zone refining. This technique has had much success in producing high quality silicon metal.

JUNCTION FORMATION

A junction may be defined as the surface separating two parts of a semiconductor with different properties. P-type or N-type doping usually defines the different properties. Transistors generally utilize PN junctions; however, metal to semiconductor junctions are used to manufacture point contact and surface barrier transistors. A transistor can be defined as a structure with two junctions so close together that they interact with one another. For example, the collector junction is close enough to the emitter to collect the current that diffuses into the base region.

Techniques for forming junctions may be subdivided into two basic types, impurity contact or grown junction. The impurity contact method involves treating a homogeneous crystalline wafer with impurities to generate the different properties which form the junction. The grown junction technique involves incorporating into the crystal during its growth the impurities necessary to produce junctions. Alloy transistors, surface barrier transistors, as well as transistors using surface diffusion are examples of

the impurity contact process. Rate grown, meltback and grown diffused transistors are examples of the grown process. These processes, illustrated in Figure 2.3, are discussed below.

MELTBACK
(GROWN)

GROWN
(GROWN)

	INITIAL CONDITIONS	INTERMEDIATE STAGE	FINISHED STRUCTURE
ALLOY (IMPURITY CONTACT) DIFFUSION (IMPURITY CONTACT)	DOTS APPLIED GASEOUS DOPING AGENTS APPLIED	HEAT MELTS DOTS \square DOUBLE DIFFUSION COMPLETED	DOTS RECRYSTALLIZE ETCHING EXPOSES BASE
RATE GROWING (GROWN) MELTBACK (GROWN) GROWN DIFFUSED (GROWN)	CYCLE JUST COMPLETED DOUBLE DOPED PELLET MOLTEN METAL DOPED WITH EMITTER AND BASE IMPURITIES	"ftik HEAT REMOVAL GIVES RAPID GROWTH HEAT MELTS TIP BASE IMPURITY DIFFUSES RAPIDLY INTO COLLECTOR	HEAT REAPPLIED TO FORM JUNCTIONS TIP FREEZING FORMS JUNCTIONS EMITTER REGION ALONE CONTINUES TO GROW

IMPURITY CONTACT AND GROWN JUNCTION TECHNIQUES

FIGURE 2.3

The alloy transistor process starts with a wafer of semiconductor material doped to a desired level. Alloying contacts or dots containing impurities are then pressed on either side of the wafer. Heat is applied to the assembly, melting the dots which dissolve some of the wafer, giving an alloy solution. Heat is removed and the solution allowed to freeze. Due to the behavior of impurities during recrystallization, a heavy concentration of donors or acceptors is left at the alloy-semiconductor material boundary. The boundaries are the emitter and collector junctions. The larger dot is the collector. Indium, an acceptor type impurity, when alloyed to antimony doped germa-
nium results in PNP alloy transistors such as the 2N123, 2N396 and 2N525. The final structure of surface barrier and microalloy transistors is similar to that of the alloy transistor. The difference lies in initial etching of the wafer to minimize its thickness followed by plating of the emitter and collector dots. Microalloy transistors melt the dots, generating a recrystallized region which results in normal semiconductor to semiconductor junctions. Surface barrier transistors do not melt the dots and therefore have metal to semiconductor junctions.

In diffusion processes, a wafer of semiconductor material is inserted into a capsule containing one or more impurity elements. The starting material has an impurity concentration suitable for the collector of the transistor. Heat is applied to this system with the result that the impurity elements diffuse into the semiconductor material. If only one impurity element is used, it generates a diffused base region. Subsequently, an emitter region must be added to the structure to form a complete transistor. If two impurity elements are used with germanium wafers, the donor elements will diffuse faster than the acceptor elements and a PNP structure will result. If silicon wafers are used, the acceptor element will diffuse faster than the donor element, resulting in a NPN structure. After the diffusion cycle, proper cutting and etching of the wafer yields transistor structures.

The rate grown process has been applied successfully to germanium yielding transistors such as the 2N78 and 2N167. The molten metal in the crucible contains both donor and acceptor elements. The donor element is sensitive to growth rate so that the amount of this impurity being deposited in the crystal varies as the growing conditions are varied. While a single crystal is being grown from the molten metal, the power is turned off and the crystal is permitted to grow very rapidly. Then excessive power is applied. Growth stops and the crystal starts to remelt. Again the power is turned off. As the metal cools, melting stops and the crystal begins to grow. At the point where the growth rate is zero, the acceptor element predominates and a P region is established across the germanium crystal. Repeating this process, it is possible to grow multiple NPN structures in a single crystal.

In the meltback process, a single crystal doped with both donor and acceptor elements is grown. The crystal is then waferized and diced into small pellets or bars. Each pellet has both donors and acceptors in it. Heat is applied to the tip of the pellet, producing a small drop of molten metal held on by surface tension. Heat is removed and the drop recrystallizes. By taking advantage of the differences in the rate of deposition of the donor and acceptor elements in the drop, a very thin base region is formed. The meltback process yields NPN transistors such as the germanium 2N1289.

The grown diffused process is started by growing a crystal which is doped to the desired collector resistivity. Donor and acceptor elements are added to the molten metal at the same time. Growth continues, but the concentration of impurities has vastly increased. During the growing period, advantage is taken of the different diffusion rates of donor and acceptor elements. In silicon the more rapid acceptors generate diffused base NPN transistors such as the 2N335 and 2N338.

Figure 2.4 lists some of the attributes of junction formation processes. It is seen that the grown processes yield bar shaped transistor structures. Also, all but the now obsolete double-doped process give accelerating base fields to enhance high frequency performance. The rate grown process alone gives more than one wafer from each crystal. Grown diffused and double-doped processes give one wafer per crystal while the meltback process requires melting of each individual bar. Among the limitations of the grown processes is the fact that complimentary types generally are not possible. Also, the bar structure is relatively difficult to heatsink. However, the introduction of the fixed bed construction has resulted in thermal impedances lower than those of many alloy transistors.

Transistors utilizing a surface diffused region have a flat collector surface facilitating heatsink attachment. Because theoretically diffusion can be applied in a variety of ways, great design flexibility is possible. Practically, however, process complexity has limited the number of types being made.

Alloy and microalloy transistors yield two-sided structures which most nearly approximate ideal switches in DC characteristics. Both types have been combined with diffused bases to enhance high frequency performance.

It is seen that many of the structures give similar resistivity profiles and therefore are capable of similar results. For example, both meltback and microalloy diffused transistors have a sharp emitter to base emitter junction, an accelerating field in the base and a low resistivity collector. This results in excellent high frequency characteristics while maintaining relatively high voltage ratings and a moderate saturation resistance. Comparing these with the grown diffused transistor, the latter has the same abrupt emitter junction and graded base resistivity for good high frequency performance, but it does not have a low saturation resistance. Therefore, it is best suited for amplifier applications. On the other hand, the combination of grown diffused bars and fixed bed construction has led to respectable NPN silicon switching transistors such as the G-E 2N338.

The diffused alloy and alloy diffused structures differ in that the former is essentially a conventional alloy transistor with the addition of a diffused base region on the emitter side. The alloy diffused structure, however, has a wafer doped to the required collector resistivity and generates the base region by diffusion out of the emitter dot which has initially been doped with both donor and acceptor impurities.

The diffused base and diffused emitter-and-base structures have the same profiles. However, the former has the emitter junction formed by microalloying a semiconductor junction onto the surface of the base; the latter has the emitter already formed by diffusion.

Generally uniformity in transistor characteristics is attributed to processes capable of forming a large number of transistor structures simultaneously, but this uniformity can only be exploited if there is corresponding uniformity in pellet mounting and lead attachment.

LEAD ATTACHMENT

Both ohmic and semiconductor type contacts are required for attaching leads to a transistor structure. Ohmic contacts, i.e., normal non-rectifying contacts, are used to attach leads to exposed regions such as the emitter and collector dots of an alloy transistor or the emitter and collector portions of grown transistor bars. The connection between the mounting base or header leads, and the leads from the transistor structure should also be ohmic. Unless care is taken, leads may form additional PN junctions. If the PN junction is in the collector a PNPN structure results. The same structure is found in the Silicon Controlled Rectifier and therefore it may cause the transistor to turn on regeneratively either at high temperatures or at high collector currents. If the PN junction is in the base lead, it results in a higher base to emitter input voltage, which is a strong function of temperature. This additional junction also affects the base turn off drive in switching circuits and will increase storage time and fall time beyond that of a normal transistor.

On the other hand, semiconductor contacts, i.e., PN junctions, can be useful. They make possible contact with the base region when overlapping the emitter or collector region by the base lead is unavoidable. Grown transistors have extremely narrow base regions so that rugged base leads generally overlap adjacent regions. By doping the base lead heavily with the same impurity as the base, an ohmic type contact is formed

PROCESS DESIGNATION	GEOMETRICAL SHAPE $B=$ Bar D = Double Sided Wafer $\mathrm{S}=$ Single Sided Wafer	CROSS-SECTIONAL VIEW SHOWING JUNCTIONS (Not to scale)	RESISTIVITY* PROFILE (Horizontal line is intrinsic resistivity and separates regions. Emitter always on the left.)
RATE GROWN	B		
MELTBACK	B		
MELTBACK - DIFFUSED	B		
GROWN DIFFUSED	B		$-\sqrt{------}$
DOUBLE DOPED	B		$-7--\sqrt{-----}$
ALLOY	D		
DIFFUSED ALLOY (DRIFT)	D		
ALLOY DIFFUSED	S		
DIFFUSED BASE (MESA)	S		
DIFFUSED EMITTER-BASE (MESA)	S		
SURFACE BARRIER	D	56	
MICRO ALLOY	D	80	
MICRO ALLOY DIFFUSED	D		

*Profiles are typical and not necessarily to the same scale since processing details can alter profiles considerably.
\dagger Diffused alloy and alloy diffused are capable of identical profiles.

ACCELERATING BASE FIELD	TYPES THEORETICALLY POSSIBLE (Bracketed Types Unavailable Commercially)		```NUMBER OF STRUCTURES FORMED SIMULTANEOUSLY```	REPRESENTATIVE TRANSISTOR TYPES
	GERMANIUM	SILICON		
YES	NPN	-	MULTIPLE	2N167
YES	NPN	(NPN) (PNP)	INDIVIDUAL	2N1289
YES	PNP	NPN	INDIVIDUAL	\square
YES	PNP	NPN	multiple	2N335
NO	(NPN) (PNP)	$\begin{aligned} & \text { NPN } \\ & \text { (PNP) } \end{aligned}$	MULTIPLE	903
NO	PNP NPN	PNP NPN	INDIVIDUAL	2N525
YES	$\begin{aligned} & \text { PNP } \\ & \text { (NPN) } \end{aligned}$	(PNP) (NPN)	INDIVIDUAL	2N247
YES	PNP	(NPN)	INDIVIDUAL	-
YES	$\begin{gathered} \text { PNP } \\ \text { (NPN) } \end{gathered}$	$\begin{aligned} & \text { (PNP) } \\ & \text { (NPN) } \end{aligned}$	MULTIPLE	2N695
YES	(PNP) (NPN)	PNP NPN	MULTIPLE	\square
NO	$\begin{aligned} & \text { PNP } \\ & \text { (NPN) } \end{aligned}$	(PNP) (NPN)	INDIVIDUAL	2N344
NO	$\begin{aligned} & \text { PNP } \\ & \text { (NPN) } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { (NPN) } \end{aligned}$	INDIVIDUAL	2N393
YES	$\begin{aligned} & \text { PNP } \\ & \text { (NPN) } \end{aligned}$	NPN (PNP)	INDIVIDUAL	2N501

to the base region while semiconductor contacts are simultaneously made to the emitter and collector. With normal transistor biasing, the collector to base PN junction so formed is normally reverse biased. Its primary effect is to increase the collector capacitance. The emitter junction, however, is forward biased, permitting a portion of the base current to be shunted through the overlap diode rather than to be injected into the base region. However, emitter overlap can be completely eliminated by electrolytic etching as in the 2N1289. Mesa-like transistors can also use advantageously heavily doped base leads to permit deep penetration of the base region.

Many materials are suitable for leads, especially if they are doped appropriately. Aluminum, gold, indium, nickel have been used successfully. Gold, which is readily doped P or N -type, is used successfully with both germanium and silicon.

Leads of circular and rectangular cross sections are common. Circular leads offer ease of handling; rectangular, offer a lower base resistance. With rate grown transistors, a circular lead is placed along the full length of the base region to combine the low base resistance of a ribbon contact with the advantages of the circular cross-section.

Alloying, soldering, welding and thermo compression bonding (TCB) are used for attaching leads to header terminals and to the transistor structure. Gold and aluminum are alloyed with germanium and silicon. In some cases, fluxless soldering is the preferred method, for example, in attaching leads to the indium dots on PNP alloy transistors. Welding finds an application primarily in attaching leads to the header terminals. Thermo compression bonding (TCB), which forms contacts by crushing the leads into the transistor structure at elevated temperatures, is of interest since it permits the very shallow surface penetration by the leads which is essential in extremely high frequency transistors. TCB also minimizes potential damage to the junctions because the leads are attached at relatively low temperatures. Close process control is necessary, however, since a precise balance between plastic and elastic deformation must be held to prevent contact failure during thermal cycling.

ENCAPSULATION

The term encapsulation is used here to describe the processing from the completion of the transistor structure to the final sealed unit. The primary purpose of encapsulation is to ensure reliability. This is accomplished by protecting the transistor from mechanical damage and providing a seal against harmful impurities. Encapsulation also governs thermal ratings and the stability of electrical characteristics.

The transistor structure is prepared for encapsulation by etching to dissolve the surface metal which may have acquired impurities during manufacture. Following etching, a controlled atmosphere prevents subsequent surface contamination. The transistor now is raised to a high temperature, is evacuated to eliminate moisture and is refilled with a controlled atmosphere. Then the cap, into which a getter may be placed, is welded on.

In some respects the design of the case, through its contribution to transistor reliability, is as important as that of the transistor structure. Mechanically, users expect to drop transistors, snap them into clips or bend their leads without any damage. Thermally, users expect the header lead seals to withstand the thermal shock of soldering, the junctions to be unaffected by heating during soldering, and the internal contacts to be unchanged by thermal cycling. Considerable design skill and manufacturing cost is necessary to meet the users expectations. Within the transistor structure, coefficients of expansion are matched to prevent strain during thermal cycling. Kovar lead seals withstand the shock of soldering and do not fatigue and lose their effectiveness after thermal cycling. Hard solders and welds maintain constant thermal impedance with time, avoiding possible crystallization of soft solders.

For the stability of electrical characteristics, hermetic seals cannot be over-
emphasized. They not only preserve the carefully controlled environment in which the transistor is sealed but they exclude moisture which causes instability. While some transistors can tolerate pure water vapor, water makes possible the ionization and migration of other harmful contaminants. Moisture can be responsible for slow reversible drifts in electrical characteristics as operating conditions are changed. Also, while a transistor is warming up after exposure to low temperatures, moisture may precipitate on the transistor surfaces, causing a large temporary increase in I_{co}. Kovar-hard glass lead seals are used in transistors designed for reliability. Kovar does not have the low thermal impedance or ductility of copper, however, and therefore seal integrity is paid for by a lower dissipation rating and a lower tolerance to lead bending.

The case design governs the transistor's thermal impedance, which should be as low as possible and consistent from unit to unit. Very small cases minimize the junction to case impedance while increasing the case to air impedance. Larger cases such as the JEDEC 370 mil TO-9 combine a lower case to air impedance, with a lead configuration and indexing tab permitting automatic insertion of transistors into printed circuit boards.

RELIABILITY

Transistors have no known failure mechanism which should limit their life expectancy. Sufficient data has been collected to date to show that with careful construction techniques, transistors are capable of operation in excess of 30,000 hours at maximum ratings without appreciable degradation. Since transistors can perform logical operations at very low dissipation and amplify at high efficiency, the resulting low dissipation reduces the ambient temperature for other components, enhancing their reliability as well. The transistor's small physical size and its sensitivity to small voltage changes at the base, results in low circuit capacitances and low power requirements, permitting large safety factors in design. The variety of manufacturing processes being used by the industry permits choosing the optimum transistor for any circuit requirement. For example, rate grown transistors offer low I_{co} and low C_{c} for applications requiring low collector current. Alloy transistors offer high peak power capabilities, great versatility in application, and are available in both PNP and NPN types. Meltback or mesa transistors give high speed at high voltage ratings while microalloy transistors give high speed and good saturation characteristics in lien of high voltages.

Reliability is a measure of how well a device or a system satisfies a set of electrical requirements for a given period of time under a specified set of operating conditions. Because reliability involves the element of time, only life tests can provide data on reliability. Life tests, however, indicate what the transistor was and how much it has changed during the life test, but they are only a measure of reliability if correlations have been established between the deterioration during life tests and reliability. Life tests alone are inadequate in guaranteeing reliability because they cannot check all potential causes of failure. For example, they will not detect intermittent contacts or the excessive moisture which may cause erratic low temperature performance. Fortunately, other tests detect such conditions, but these problems have led to the adage that reliability cannot be tested in.

While it is true that reliability must be built in, it has seldom proved practical in the past to make an absolute measurement of a specific transistor's reliability. Transistors currently are sufficiently reliable that huge samples and considerable expense in manpower, equipment, and inventory are necessary to get a true measure of their reliability. However, tests can readily show if a transistor falls far short of the required reliability; therefore, they are useful in assigning ratings, in obtaining rate of degradation measurements, and as a measure of quality control or process variability. Figures $2.5,2.6,2.7$ show some of the considerations in designing reliable transistors.

(1) KOVAR METAL FOR BEST HERMETIC SEAL
(2) RIDGE ASSURES BETTER PRECISION IN WELDING
(3) COPPER CLAD STEEL FOR STRAIN FREE FABRICATION, SALT SPRAY RESISTANCE AND MECHANICAL STRENǴTH
(4) WELDED CONTACTS BETWEEN COLLECTOR AND EMITTER TABS, AND HEADER LEADS
(5) SPECIAL ALLOYS AND PROCESSING TO PREVENT POOR WETTING AND CONSEQUENT INTERMITTENT CONTACT

TiNG WINOOW TO CONTROL STRESSES DUE TO THERMAL EXPANSION, TO GET GOOD WETTING BETWEEN WINDOW AND WAFER' RE DUCING THERMAL IMPEDANCE AND SERIES BASE RESISTANCE, TO GET PURELY OHMIC CONTACT
(7) CRYSTAL ORIENTATION CHOSEN TO PREVENT DOT SPREADING
(8) COLLECTOR DOT CENTERED EXACTLY OPPOSITE EMITTER DOT FOR HIGH CURRENT GAIN
(9) THICK WINDOW TO MINIMIZE THERMAL IMPEDANCE TO CASE
(10) TWO LARGE WELDS PROVIDE HEAT PATH FROM WINDOW TO CASE
(II) SHOULDER ON SEAL FOR STRENGTH
(12) KOVAR TO HARD GLASS MATCHED COEFFICIENT SEAL
(13) KOVAR LEADS HELP REDUCE JUNCTION HEATING DURING SOLDERING
(14) GASEOUS ATMOSPHERE AVOIDS THE MIGRATION OF IONS POSSIBLE WITH FLUID TYPE FILLERS
GETTER TABLET TO PERMANENTLY ABSORB ANY MOISTURE DUE TO OUTGASSING
(16) SPECIAL ETCHING AND SURFACE TREATMENT RESULTS IN STABLE I CO AT ALL TEMPERATURES, VERY LOW NOISE FIGURE, AND SMALL Ico variation with collector voltage.

DESIGN FOR REUABIUTY (TYPES 2N43, 2N396, 2N525)

FIGURE 2.5

While a transistor's design must be inherently reliable to yield a reliable product, the design must be coupled with vigorous quality control in manufacturing and accelerated life tests to verify that the process is truly under control.

There are a number of tests which appear to correlate with reliability; however, their significance and applicability to any specific transistor type will vary and must be assessed on this basis.

Storage of transistors at their maximum rated temperature can be a measure of process cleanliness, since chemical activity doubles approximately every ten degrees centigrade. Caution should be used since some organic fillers decompose if the rated temperature is exceeded.

（1）kovar metal header for best hermetic seal
（2）raised glass bead to prevent possible OCCLUSION OF CONTAMINANTS
（3）CERAMIC DISK WITH COEFFICIENT OF THERMAL EXPANSION MATCHING THAT OF SILICON
（4）GOLD STRIPS BONDED TO CERAMIC BY TECHNIQUES perfected for ceramic tube
（5）SLIT IN DISK CUT TO ± 0.001＂TOLERANCE
6）base region placed close to collector contact for low thermal impedance and low saturation RESISTANCE
（7）HARD SOLDER PREVENTS THERMAL FATIQUE PROBLEMS
（B）SPECIAL NON－POROUS CERAMIC IS IMPERVIOUS TO processing chemicals
（9）DISK DIAMETER SMALL ENOUGH TO PREVENT ANY contact with case
（10）base lead attached to gold strip

FIXED BED MOUNTING
DESIGN FOR REUABILTY
（TYPES 2N335，2N337，2N491）
FIGURE 2.6

When operating transistors under dissipation，it is preferable to turn the transistors off for approximately ten minutes every hour in order to induce thermal cycling． Thermal cycling will tend to fatigue compression seals，will detect intermittent contacts or poor welds and，by establishing thermal gradients，will accelerate migration of any impurities that may be present．

Some transistors find operation at high voltages and high junction temperatures simultaneously most deleterious．Thermal runaway can be avoided without invalidat－ ing the test by applying a collector to base potential and disconnecting the emitter．

To determine the safety factor in the manufacturer＇s dissipation rating，life tests at 20% over－rating should detect marginal units．Caution should be exercised with tran－ sistors using organic fillers such as greases or oils，since the cases may rupture if the transistors overheat．

With some transistors，a drift in Ico at room temperature is believed to correlate with reliability．In germanium transistors，a drift of more than $1 \mu \mathrm{a}$ in 15 seconds after power is applied is considered excessive where reliability is of paramount importance．

A transistor may pass the high temperature tests readily even though it will malfunction at low temperatures due to moisture. Moisture can be detected by monitoring Ico while a transistor warms up after being cooled to dry ice temperatures. A significant increase in Ico while the transistor is warming up is indicative of moisture. Care should be taken, however, that vapor condensation on the outside of the transistor case is not responsible for the increase in I_{co}. Two tests of hermetic seal which are widely used in the industry are the detergent pressure bomb and the Radiflo test. The former involves pressurizing transistors in water to which a small quantity of detergent has been added. On penetrating leaky seals, the detergent contaminates the junctions. To be significant, the test should use a relatively high pressure for a long period of time, particularly if organic fillers are used which might protect the junction temporarily. The Radiflo test forces a gas with a radioactive tracer into the transistor through leaky seals. A Geiger counter detects the presence of the radioactive gas within the leaky transistors.

Another measure of potential reliability are the distribution curves of the major parameters. Except where screening has been done to narrow limits, the distribution curves should be approximately Gaussian, indicating that the transistors represent good process control and statistically will ensure non-critical circuit performance.

The above tests can be made more significant by selecting the samples from several sources over a period of time. This permits a realistic appraisal of the manufacturing process control.

(1) KOVAR HEADER RESEMBLES THAT FOR $2 N 335$
(2) STEP ETCH REVEALS BASE REGION PREVENTING EMITTER OVERLAP
(3) THE HEAT SINK IS A METAL TAB WELDED TO THE header lead and alloyed to the emitter of melteack bar
(4) CANTILEVER CONSTRUCTION MINIMIZES MECHANICAL AND THERMAL STRAINS ON BAR
(5) GOLD RIBBON BASE LEAD FOR DUCTILITY, LOW ELECTRICAL RESISTANCE AND LINE CONTACT TO BASE REGION
(6) COLLECTOR LEAD

3. SMALL SIGNAL CHARACTERISTICS

A major area of transistor applications is in various types of low level a-c amplifiers. One example is a phonograph preamplifier where the output of a phonograph pickup (generally about 8 millivolts) is amplified to a level suitable for driving a power amplifier (generally 1 volt or more). Other examples of low level or small signal amplifiers include the IF and RF stages of radio and TV receivers and preamplifiers for servo systems.

As described in Chapter 4 on large signal characteristics a transistor can have very nonlinear characteristics when used at low current and voltage levels. For example, if conduction is to take place in an NPN transistor the base must be positive with respect to the emitter. Thus, if an a-c signal were applied to the base of an NPN transistor, conduction would take place only during the positive half cycle of the applied signal and the amplified signal would be highly distorted. To make possible linear or undistorted amplification of small signals, fixed d-c currents and voltages are applied to the transistor simultaneously with the a-c signal. This is called biasing the transistor, and the $\mathrm{d}-\mathrm{c}$ collector current and $\mathrm{d}-\mathrm{c}$ collector to emitter voltage are referred to as the bias conditions.

The bias conditions are chosen so that the largest a-c signal to be amplified is small compared to the d-c bias current and voltage. Transistors used in small signal amplifiers are normally biased at currents between 0.5 and 10 ma . and voltages between 2 and 10 volts. Bias currents and voltages below this range can cause problems of distortion, while bias currents and voltages above this range can cause problems of excessive noise and power dissipation.

A typical circuit for a single stage low level a-c amplifier is shown in Figure 3.1. Resistors R_{1}, R_{2}, and R_{3} form the biasing circuit, the design of which is described in Chapter 5. The capacitors serve to block the d-c voltages, but offer a low impedance path to the a-c signal voltages. Thus, as far as the a-c signals are concerned, the circuit of Figure 3.1 is equivalent to the much simpler circuit of Figure 3.2. Resistor $\mathbf{R}_{\mathbf{A}}$ represents the parallel resistance of R_{1} and R_{2}, while v and i designate the values of the a-c voltage and current.

For the purpose of circuit design any amplifier，whether a single transistor stage or a complete circuit，can be considered as a＂black box＂which has two input terminals and two output terminals as indicated in Figure 3．3．The circuit designer，knowing the electrical characteristics of the＂black box＂，can calculate the performance of the ampli－ fier when various signal sources are applied to its input and various loads are connected to its output．

BLACK BOX REPRESENTATION OF AN AMPLFIER CIRCUIT FIGURE 3.3

Network theory tells us that the complete electrical characteristics of a＂black box＂ such as Figure 3.3 can be specified in terms of four parameters．The parameters which are frequently used for specifying the characteristics of transistors and in the analysis of transistor circuits are the＂hybrid＂or＂h＂parameters．The＂h＂parameters are defined by the equations：

$$
\begin{align*}
& v_{1}=h_{11} i_{1}+h_{12} v_{2}=h_{1} i_{1}+h_{r} v_{2} \tag{1}\\
& i_{2}=h_{21} i_{1}+h_{2 ⿰ ⿺ 乚 一 匕} v_{2}=h_{f} i_{1}+h_{0} v_{2} \tag{2}
\end{align*}
$$

where

$$
\begin{array}{ll}
\mathrm{h}_{11} \equiv \mathrm{~h}_{1} & \begin{array}{l}
\text { is the input impedance with the output a-c short circuited (ohms) } \\
\mathrm{h}_{12} \equiv \mathrm{~h}_{\mathrm{r}}
\end{array} \\
\begin{array}{ll}
\text { is the reverse voltage transfer ratio with the input a-c open cir- } \\
\text { cuited (dimensionless) }
\end{array} \\
\mathrm{h}_{21} \equiv \mathrm{~h}_{\mathrm{r}} & \begin{array}{l}
\text { is the forward current transfer ratio with the output a-c short } \\
\text { circuited (dimensionless) }
\end{array} \\
\mathrm{h}_{22} \equiv \mathrm{~h}_{\mathrm{o}} & \begin{array}{l}
\text { is the output admittance with the input a-c open circuited (mhos) }
\end{array}
\end{array}
$$

The letter and numerical subscripts for the＂h＂parameters are completely equiva－ lent and may be used interchangeably．Common practice is to use the numerical subscripts for general circuit analysis and the letter subscripts for specifying the char－ acteristics of transistors．Since transistors can be measured and used in either the common base，common emitter，or common collector configuration an additional sub－ script（ b, e, or c ）is added to the＂h＂parameters to indicate the particular configuration involved．For example，the forward current transfer ratio in the common emitter con－ figuration is designated by either $h_{f e}$ or $h_{\text {rie }}$ ．

It is frequently advantageous to use equivalent circuits for transistors to aid in circuit design or to gain understanding of transistor operation．The equivalent circuit for the＂h＂parameters in the common base configuration is shown in Figure 3．4．In this circuit the voltage transfer ratio，$h_{r b}$ ，appears as a voltage generator in the input circuit and the current transfer ratio，h_{rb} ，appears as a current generator in the output circuit． Figure 3.5 shows another form of equivalent circuit for the transistor，the＂T＂equiva－ lent circuit．This equivalent circuit is of interest since it approximates the actual
transistor structure. Thus r_{e} and r_{c} represent the ohmic resistances of the emitter and collector junction while r_{b} represents the ohmic resistance between the base contact and the junctions. The current generator aio represents the transfer of current from the emitter junction to the collector junction across the base region.

"r" Eauvalent cricur

FIGURES 3.4 AND 3.5

If the " h " parameters are measured or specified for one configuration (e.g., common emitter) the values of the " h " parameters for the other configurations or the values of the parameters in the " T " equivalent circuit may be calculated. Figure 3.6 gives simple conversion equations for all possible cases. Also given in Figure 3.6 are typical values for all the parameters of the 2 N 525 transistor biased at 1 ma and 5 volts. The " h " parameters are dependent upon the biasing conditions and it is important in circuit design to correct the values of the parameters from the bias conditions under which they are specified to the bias conditions under which the transistors are used. The correction factors can be obtained from a graph such as Figures 3.7 and 3.8.

APPROXIMATE CONVERSION FORMULAE
H PARAMETERS AND T EQUIVALENT CIRCUIT
(NUMERICAL VALUES ARE TYPICAL FOR THE 2N525 AT IMA, 5V)

SYMBOLS		COMMON EMITTER	COMMON BASE	COMMON COLLECTOR	T EQUIVALENT CIRCUIT
IRE	OTHER				
$h_{i 0}$	${ }^{\text {nlle }}$, $\frac{1}{r_{\text {lle }}}$	1400 OHMS	$\frac{h_{i b}}{1+h_{i b}}$	$\mathrm{n}_{\text {ic }}$	$r_{b}+\frac{r_{e}}{1-a}$
hre	$h_{12,} \mu_{\text {bc }}$	3.37×10^{-4}	$\frac{h_{i b} h_{o b}}{1+h_{f b}}-h_{r b}$	I- $\mathrm{hrg}^{\text {c }}$	$\frac{\mathrm{re}}{(1-a) \mathrm{ra}_{\mathrm{c}}}$
$h_{\text {fe }}$	${ }^{\mathrm{h}}$ 2le. $\cdot \mathrm{B}$	44	$-\frac{h_{f b}}{1+h_{f b}}$	$-\left(1+h_{\text {fc }}\right)$	$\frac{a}{1-a}$
hoe	$h_{22 e} \frac{1}{222 e}$	$27 \times 10^{-6} \mathrm{MHOS}$	$\frac{h_{o b}}{1+h_{f b}}$	hoc	$\frac{1}{(1-a) r_{c}}$
$h_{\text {ib }}$	$n_{11}, \frac{1}{r_{11}}$	$\frac{h_{\text {ie }}}{1+h_{\text {fe }}}$	31 OHMS	$-\frac{h_{\text {ic }}}{h_{\text {fc }}}$	$r_{b}+(i-a) r_{b}$
$h_{r b}$	${ }^{\mathrm{h}} 12, \mu_{\text {ec }}$	$\frac{h_{\text {ie }} h_{\text {oe }}}{1+h_{\text {fe }}}-h_{\text {re }}$	5×10^{-4}	$h_{r c}-1-\frac{h_{i c} h_{\text {c }}}{h_{\text {fc }}}$	$\frac{r_{b}}{r_{c}}$
$h_{f b}$	${ }^{h_{21}, a}$	$-\frac{h_{f e}}{1+h_{f e}}$	-0.978	$-\frac{1+h_{f b}}{h_{f b}}$	-a
hob	$n_{22} \cdot \frac{1}{z_{22}}$	$\frac{h_{\text {oe }}}{1+h_{\text {oe }}}$	$0.60 \times 10^{-6} \mathrm{MHOS}$	$-\frac{n_{\text {oc }}}{h_{\text {f }}}$	$\frac{1}{r_{c}}$
$h_{\text {ic }}$	$\mathrm{n}_{\text {IIC }}, \frac{1}{Y_{\text {IIc }}}$	$\mathrm{h}_{\text {i }}$	$\frac{h_{i b}}{1+h_{f D}}$	1400 OMMS	$\mathrm{r}_{\mathrm{b}}+\frac{\mathrm{re}}{1-\mathrm{a}}$
$h_{\text {rc }}$	${ }^{\prime} 12 \mathrm{c}, \mu_{\text {be }}$	I-hre	1	1.00	$1-\frac{r_{e}}{(1-a)_{c}}$
$h_{\text {fc }}$	${ }^{\text {2lc }}$, $a_{\text {eb }}$	$-\left(1+h_{\text {fe }}\right)$	$-\frac{1}{1+h f b}$	-45	$-\frac{1}{1-a}$
$h_{\text {Oc }}$	$n_{22 c}, \frac{1}{z_{22} c}$	hoe	$\frac{n_{o b}}{1+h_{f b}}$	$27 \times 10^{-6} \mathrm{MHOS}$	$\frac{1}{(1-a) r_{c}}$
	a	$\frac{h_{f e}}{1+h_{f e}}$	- $\mathrm{hfo}^{\text {b }}$	$\frac{1+h_{f c}}{h_{f c}}$	0.978
	${ }^{\text {r }}$	$\frac{1+h_{\text {fe }}}{h_{\text {oe }}}$	$\frac{1-h_{\text {rb }}}{n_{\text {ob }}}$	$-\frac{h_{f c}}{h_{o c}}$	1.67 MEG
	re	$\frac{h_{\text {re }}}{n_{\text {oe }}}$	$n_{i b}-\frac{n_{r b}}{n_{O D}}\left(1+h_{\text {fb }}\right)$	$\frac{1-h_{\text {P }}}{n_{O c}}$	12.5 OHMS
	${ }^{1} \mathrm{~b}$	$n_{\text {ie }}-\frac{h_{\text {re }}}{n_{\text {oe }}}\left(1+h_{\text {fe }}\right)$	$\frac{h_{\text {rb }}}{n_{\text {Ob }}}$	$h_{i c}+\frac{h_{f c}}{h_{\text {oc }}}\left(1-h_{\text {re }}\right)$	840 OHMS

CHARACTERISTICS VS COLLECTOR VOLTAGE

VARIATION OF "H" PARAMETERS WITH BIAS CONDITIONS FIGURE 3.7
 FIGURE 3.8

For example, suppose that it is desired to find the typical value of h_{ob} for the 2 N 525 at 0.5 ma and 10 volts. From Figure 3.6 the typical value of h_{bb} at 1 ma and 5 volts is 0.6×10^{-6} mhos. From Figure 3.7 the correction factor at 0.5 ma is 0.6 and
from Figure 3.8 the correction factor at 10 volts is 0.75 . The value of $h_{u b}$ is then calculated from:

$$
\begin{aligned}
\mathrm{h}_{\mathrm{cb}}(0.5 \mathrm{ma}, 10 \mathrm{v}) & =0.60 \times 10^{-4} \times 0.6 \times 0.75 \\
& =0.27 \times 10^{-8} \mathrm{mhos}
\end{aligned}
$$

Once the " h " parameters are known for the particular bias conditions and configuration being used, the performance of the transistor in an amplifier circuit can be found for any value of source or load impedance. Figure 3.9 gives the equations for determining the input and output impedance, as well as the current, voltage, and power gain of a transistor amplifier stage directly from the " h " parameters. The particular " h " parameters used in these equations must correspond to the particular circuit configuration used. For example, if it is desired to calculate the voltage gain of a common emitter amplifier stage the values $h_{1 e}, h_{\text {re }}, h_{f e}, h_{0 e}$ must be used in equation 8.

With the exception of equation 9 all of the equations in Figure 3.9 are valid at any frequency provided that the values of the " h " parameters at that particular frequency are used. At the higher frequencies " h " parameters become complex and the low frequency " h " parameters are no longer valid. The matched power gain given by equation 10 requires that both the input and the output of the amplifier stage be tuned and the input and output resistances be matched to the generator and load resistance respectively. This situation is seldom met exactly in practice, but it is generally met closely enough to permit accurate results from equation 10 .

If the voltage feedback ratio, h_{r}, is very small or is balanced out by external feedback the circuit is said to be unilateral. This means that no signal transmission can take place from the output of the circuit to the input. Under these conditions the input impedance of the circuit will be equal to h_{1} and the output impedance will be equal to $1 / h_{0}$. The power gain under matched, unilateral conditions is given by equation 11. This power gain is a good figure of nerit for the transistor since it is independent of circuit conditions and transistor configuration. It represents the maximum power gain that can be obtained from a transistor under conditions of absolute stability.

As an example of the use of these equations suppose that it is desired to design a tuned amplifier using the 3N37 operating at 150 mc . What power gain can be obtained and what input and output impedances should be used for the matching transformer? From the 3 N37 specifications (converting from polar to rectangular form when necessary): $\mathrm{a}_{\mathrm{ie}}=80, \mathrm{a}_{\mathrm{re}}=0.00187$, $\mathrm{a}_{\mathrm{re}}=-0.191, \mathrm{a}_{\mathrm{ee}}=5.5 \times 10^{-4}, \mathrm{~b}_{\mathrm{te}}=-10$, $\mathrm{b}_{\mathrm{re}}=0.0179, \mathrm{~b}_{\mathrm{re}}=-1.08, \mathrm{~b}_{\mathrm{oe}}=12.5 \times 10^{-1}$. Putting these numbers into the equations in Figure 3.9 gives:

$$
\begin{aligned}
& \mathrm{C}=-0.062 \\
& \mathrm{D}=0.75 \\
& \mathrm{~F}=0.43 \\
& \mathrm{G}_{\mathrm{m}}=8.75 \\
& \mathrm{Z}_{\mathrm{im}}=60-\mathrm{j} 5.0 \text { ohms } \\
& \mathrm{Y}_{\mathrm{om}}=(4.15+\mathrm{j} 12.8) \times 10^{-4} \mathrm{mhos}
\end{aligned}
$$

In a tuned circuit the reactive part of the output admittance would be tuned out so that:

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{1}}=60 \text { ohms } \\
& \mathbf{R}_{\mathrm{o}}=2400 \text { ohms } \\
& \mathbf{G}_{\mathrm{m}}=10 \log (8.75)=9.43 \mathrm{db}
\end{aligned}
$$

INPUT IMPEDENCE

$$
\begin{equation*}
z_{i}=\frac{v_{i}}{i_{i}}=h_{i}-\frac{h_{f} h_{r} z_{L}}{1+h_{o} z_{L}} \tag{3}
\end{equation*}
$$

MATCHED INPUT IMPEDANCE*
$z_{i m}=a_{i}[D-j C]+j b_{i}$

OUTPUT ADMITTANCE

$$
\begin{equation*}
Y_{0}=\frac{i_{0}}{v_{0}}=h_{0}-\frac{h_{f} h_{r}}{h_{i}+Z_{g}} \tag{5}
\end{equation*}
$$

MATCHED OUTPUT ADMITTANCE $* \quad Y_{o m}=o_{0}[D-j C]+j b_{0}$

CURRENT GAIN

$$
\begin{equation*}
A_{i}=\frac{i_{0}}{i_{i}}=\frac{h_{f}}{1+h_{0} Z_{L}} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
A_{v}=\frac{v_{0}}{v_{i}}=\frac{1}{h_{r}-\frac{h_{i}}{Z_{L}}\left(\frac{1+h_{0} Z_{L}}{h_{f}}\right)} \tag{8}
\end{equation*}
$$

VOLTAGE GAIN

OPERATING POWER GAIN (LOW FREQUENCY ONLY, $Z_{g}=R_{g}, Z_{L}=R_{L}$)
$G=\frac{\text { POWER INTO LOAD }}{\text { POWER INTO TRANSISTOR }}=A_{V} A_{i}=\frac{\left(\frac{h_{f}}{1+h_{0} R_{L}}\right)}{h_{r}-\frac{h_{i}}{R_{L}}\left(\frac{1+h_{o} R_{L}}{h_{f}}\right)}$
MATCHED POWER GAIN *

$$
\begin{equation*}
G_{m}=\frac{a_{f}^{2}+b_{f}^{2}}{a_{i} a_{0}\left[(1+D)^{2}+C^{2}\right]} \tag{10}
\end{equation*}
$$

MATCHED UNILATERAL POWER GAIN ($h_{r}=0$)

$$
\begin{equation*}
G_{m u}=\frac{a_{i}^{2}+b_{f}^{2}}{4 a_{i} a_{0}}=\frac{\left|h_{f}\right|^{2}}{4 a_{i} 0_{0}} \tag{II}
\end{equation*}
$$

$Z_{g}=R_{g}+j x_{g}=$ OUTPUT IMPEDANCE OF GENERATOR
$Z_{L}=R_{L}+j X_{L}=$ IMPEDANCE OF LOAD

* FOR MATCHED CONDITIONS

$$
\begin{array}{ll}
z_{i m}=R_{g}-j x_{g} & C=\frac{a_{r} b_{f}+a_{f} b_{r}}{2 a_{i} a_{o}} \\
z_{o m}=R_{L}-j x_{L} & F=\frac{a_{r} a_{f}-b_{r} b_{f}}{a_{i} a_{o}} \\
h_{i}=a_{i}+j b_{i} & \\
h_{r}=a_{r}+j b_{r} & D=\sqrt{1-F-C^{2}} \\
h_{f}=a_{f}+j b_{f} &
\end{array}
$$

4. LARGE SIGNAL CHARACTERISTICS

The large signal or d-c characteristics of junction transistors can be described in many cases by the equations derived by Ebers and Moll (Proc. IRE, December, 1954). These equations are useful for predicting the behavior of transistors in bias circuits, switching circuits, choppers, d-c amplifiers, etc. Some of the more useful equations are listed below for reference. They apply with a high degree of accuracy to germanium alloy junction transistors operating at low current and voltage levels, but are also useful for analyzing other types of transistors.

PARAMETERS

The parameters used in the following large signal equations are listed below and indicated in Figure 4.1.

$\mathrm{I}_{\mathrm{co}} \equiv \mathrm{I}_{\text {cro }}$	Collector leakage current with reverse voltage applied to collector and emitter open circuited (Ico has a positive sign for NPN transistors and a negative sign for PNP transistors)
$\mathrm{I}_{\text {EO }} \equiv \mathrm{I}_{\text {EbO }}$	Emitter leakage current with reverse voltage applied to emitter and collector open circuited (I_{Eo} has a positive sign for NPN transistors and a negative sign for PNP transistors)
$\alpha_{N} \equiv \boldsymbol{\alpha}$	Normal alpha, small signal common base forward current transfer ratio from emitter to collector with output a-c short circuited, low current and voltage levels (α has a positive sign for NPN transistors and PNP transistors)
a_{1}	Inverted alpha, same as α_{i} but with emitter and collector interchanged
$\mathbf{R}_{\mathbf{B}}, \mathbf{R}_{\mathbf{E}}, \mathbf{R}_{\mathrm{C}}$	Ohmic resistance internal to transistor in series with base, emitter and collector leads respectively
$\mathrm{I}_{\mathrm{B},} \mathrm{I}_{\mathrm{E}}, \mathrm{I}_{\mathrm{C}}$	D-C currents in base, emitter and collector leads respectively, positive sense of current corresponds to current flow into terminals
ϕ_{C}	Bias voltage across collector junction, collector to base voltage exclusive of ohmic drops (across $\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{c}}$), forward bias is positive polarity
ϕ_{E}	Bias voltage across emitter junction, emitter to base voltage exclusive of ohmic drops (across $\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{E}}$), forward bias is positive polarity
$\mathrm{V}_{\mathrm{Eb}}, \mathrm{V}_{\mathrm{Cb}}, \mathrm{V}_{\mathrm{ce}}$	Terminal voltages, emitter to base, collector to base, collector to emitter
$\boldsymbol{\Lambda}=\frac{\mathrm{q}}{\mathrm{KT}}$	$1 / \Lambda=26$ millivolts at $25^{\circ} \mathrm{C}$

BASIC EQUATIONS

$$
\begin{align*}
& a_{\leqslant} \mathrm{I}_{\mathrm{E} 0}=a_{\mathrm{I}} \mathrm{I}_{\mathrm{C} 0} \tag{4a}\\
& I_{E}=-\frac{I_{k o}}{1-a_{N} a_{1}}\left(\mathrm{e}^{\mathrm{I}} \phi_{\mathrm{E}}-1\right)+\frac{a_{1} \mathrm{I}_{\mathrm{Co}}}{1-a_{\mathrm{N}} a_{\mathrm{I}}}\left(\mathrm{e}^{\Lambda \phi \mathrm{C}}-1\right) \tag{4b}
\end{align*}
$$

Under normal operating conditions, the collector is reverse biased so $\phi \mathrm{c}$ is negative. If the collector is reverse biased by more than 0.10 volts, then e ${ }^{\Lambda \phi c} \ll 1$ and can be eliminated from equations $4 b$ and $4 c$. The equations given below are derived from equations $4 a, 4 b$ and $4 c$.

COLLECTOR LEAKAGE CURRENT (Iceo)

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CEO}}=\frac{\mathrm{I}_{\mathrm{Co}}}{1-\boldsymbol{a}_{\mathrm{N}}} \tag{4d}
\end{equation*}
$$

$I_{\text {cko }}$ is the collector leakage current with the base open circuited and is generally much larger than Ico.

COLLECTOR LEAKAGE CURRENT (Ices)

$$
\begin{equation*}
\mathbf{I}_{\mathrm{CEs}}=\frac{\mathbf{I}_{\mathrm{Co}}}{1-a_{\mathrm{N}} a_{1}} \tag{4e}
\end{equation*}
$$

$I_{\text {Ces }}$ is the collector leakage current with the base shorted to the emitter and equals the leakage current the collector diode would have if the emitter junction was not present. Accurate values of a_{N} and a_{1} for use in the equations in this section are best obtained by measurement of $I_{\text {co, }} I_{\text {ceo }}$ and $I_{\text {ces }}$ and calculation of a_{N} and a_{1} from equations $4 d$ and 4 e . The value of $\mathrm{I}_{\mathrm{E} o}$ may be calculated from equation 4 a .

$$
\begin{align*}
& \mathrm{I}_{\mathrm{c}}=\frac{\mathrm{I}_{\mathrm{CO}}\left(1-a_{\mathrm{I}}\right)}{1-a_{\mathrm{N}} a_{\mathrm{I}}} \tag{4f}\\
& \mathrm{I}_{\mathrm{E}}=\frac{\mathrm{I}_{\mathrm{EO}}\left(1-a_{\mathrm{N}}\right)}{1-a_{v} a_{\mathrm{i}}} \tag{4~g}
\end{align*}
$$

Equation $4 f$ indicates that if both the emitter and the collector are reverse biased the collector leakage current will be less than I_{co} and the emitter leakage current will be less than I_{Eo}. The reverse base current will be greater than I_{co}, but will be less than $\mathrm{I}_{\mathrm{co}} / a_{\mathrm{N}}$. For example, if $a_{\mathrm{s}}=0.99$ and $a_{\mathrm{I}}=0.90$ then $\mathrm{I}_{\mathrm{C}}=0.92 \mathrm{I}_{\mathrm{co}}, \mathrm{I}_{\mathrm{E}}=0.09 \mathrm{I}_{\mathrm{ko}}$ and $\mathrm{I}_{\mathrm{B}}=-1.004 \mathrm{I}_{\mathrm{co}}$. This relationship indicates the advantage of using transistors in the inverted connection (collector and emitter interchanged) when a low leakage current is desired in switching circuits.

COLLECTOR LEAKAGE CURRENT (IcER)

Icrer is the collector leakage current measured with the emitter grounded and a resistor R between base and ground. The size of the resistor is generally about 10K. From equation 4 h , it is seen that as R becomes very large $I_{\text {crar }}$ approaches $I_{\text {cro }}$ (Equation 4 d). Similarly as R approaches zero, $I_{\text {cer }}$ approaches $I_{\text {ces }}$ (Equation 4e).

COLLECTOR LEAKAGE CURRENT SILICON DIODE IN SERIES WITH EMITTER

This circuit is useful in some switching applications where a low collector leakage current is required and a negative supply voltage is not available for reverse biasing the base of the transistor. The diode voltage V_{D} used in the equation is measured at a forward current equal to the $I_{c o}$ of the transistor. This equation holds for values of I_{c} larger than Ico.

COLLECTOR TO EMITTER VOLTAGECOLLECTOR OPEN CIRCUITED

$$
\begin{equation*}
\mathrm{V}_{\mathrm{CE}}=\mathrm{I}_{\mathrm{k}} \mathrm{R}_{\mathrm{E}}+\frac{1}{\Lambda} \ln \frac{1}{a_{\mathrm{I}}} \tag{4j}
\end{equation*}
$$

The second term in equation $4 j$ indicates that the value of $V_{\text {ce }}$ for small values of I_{B} is determined by the value of a_{1}. As a_{1} approaches unity, the second term in equation 4 j will approach zero. This indicates the advantage of using a transistor in the inverted connection if a low voltage drop in a switching circuit is desired. Equation 4j also indicates that the series emitter resistance may be obtained by measuring the a-c resistance $\mathrm{R}_{\mathrm{r}}=\Delta \mathrm{V}_{\mathrm{cz}} / \Delta \mathrm{I}_{\mathrm{n}}$. The series collector resistance can be measured in the same manner if the transistor is inverted.

BASE INPUT CHARACTERISTICS

for $\mathrm{V}_{\mathrm{ct}}>0.1$ volt:

A comparison of equations 4 k and 4 l indicates that they are approximately equal if R_{E} is small and a_{s} is smaller than $a_{1}\left(1-a_{N} \gg 1-a_{1}\right)$. For this condition, the base input characteristic will be the same whether the collector is reverse biased or open circuited.

VOLTAGE COMPARATOR CIRCUIT

$$
\begin{gathered}
\text { for } V_{\mathrm{o}}=V_{\mathrm{ce}} \\
\mathbf{I}_{\mathrm{B}}=\frac{V_{\mathrm{re}}}{\mathbf{R}_{\mathrm{l}}}\left[1+\left(\frac{a_{\mathrm{s}}}{a_{\mathrm{I}}}\right)\left(\frac{1-a_{\mathrm{I}}}{1-a_{\mathrm{N}}}\right)\right](4 \mathrm{~m})
\end{gathered}
$$

If an emitter follower is overdriven such that the base current exceeds the emitter current the emitter voltage can be made exactly equal to the collector voltage. For example, if a square wave with an amplitude greater than $\mathrm{V}_{\text {ec }}$ is applied to the base of the transistor the output voltage V_{o} will be a square wave exactly equal to $V_{c e}$. Equation 4 m gives the base current required for this condition and inclicates that the transistor should be used in the inverted connection if the required base current is to be minimized. This circuit is useful in voltage comparators and similar circuits where a precise setting of voltage is necessary.

5. BIASING

One of the basic problems involved in the design of transistor amplifiers is establishing and maintaining the proper collector to emitter voltage and emitter current (called the biasing conditions) in the circuit. These biasing conditions must be maintained despite varations in ambient temperature and variations of gain and leakage current between transistors of the same type. The factors which must be taken into account in the design of bias circuits would include:

1. The specified maximum and minimum values of current gain (h_{Fs}) at the operating point for the type of transistor used.
2. The variation of hes with temperature. This will determine the maximum and minimum values of $h_{\text {fe }}$ over the desired temperature range of operation. The variation of $h_{\text {Fe }}$ with temperature is shown in Figure 10.7 for the 2N525 transistor.
3. The variation of collector leakage current (I_{co}) with temperature. For most transistors, I I o increases at approximately $6.5-8 \% /{ }^{\circ} \mathrm{C}$ and doubles with a temperature change of $9-11^{\circ} \mathrm{C}$. In the design of bias circuits, the minimum value of $I_{c o}$ is assumed to be zero and the maximum value of $I_{(c)}$ is obtained from the specifications and from a curve such as Figure 10.6. If silicon transistors are used, it is best to use the specified high temperature $I_{c o}$ for estimating the maximum Ico.
4. The variation of base to emitter voltage drop ($\mathrm{V}_{\text {re }}$) with temperature. Under normal bias conditions, $V_{b e}$ is about 0.2 volts for germanium transistors and 0.7 volts for silicon transistors and has a temperature coefficient of about -2.5 millivolts per ${ }^{\circ} \mathrm{C}$. Figure 5.1 shows the variation of V_{be} with collector current at several different temperatures for the 2 N 525 . Note that for some conditions of high temperature it is necessary to reverse bias the base to get a low value of collector current.
5. The tolerance of the resistors used in the bias networks and the tolerance of the supply voltages.

Two of the simpler types of bias circuits are shown in Figures 5.2 and 5.3. These circuits can be used only in cases where a wide range of collector voltage can be tolerated (for Figure 5.2 at least as great as the specified range of $h_{r z}$) and where $\mathrm{h}_{\mathrm{F}} \mathrm{max}^{\text {max }}$ times $\mathrm{I}_{\mathrm{c}}{ }^{\text {max }}$ is less than the maximum desired bias current. Neither circuit can be used with transistors which do not have specifications for maximum and minimum h_{Fe} unless the bias resistors are selected individually for each transistor. The circuit of Figure 5.3 provides up to twice the stability in collector current with changes in h_{p} : or $I_{c o}$ than the circuit of Figure 5.2. However, the circuit of Figure 5.3 has a-c feedback through the bias network which reduces the gain and input impedance slightly. This feedback can be reduced by using two series resistors in place of \mathbf{R}_{2} and connecting a capacitor between their common point and ground.

TRANSISTOR BIAS CIRCUITS
FIGURE 5.2
FIGURE 5.3

In cases where more stability is desired than is provided by the circuits of Figure 5.2 or 5.3 , it is necessary to use a resistor in series with the emitter of the transistor as shown in Figure 5.4. There are several variations of this circuit, all of which may be obtained by the general design procedure outlined below.

BASIC TRANSISTOR BIAS CIRCUIT
FIGURE 5.4
For the circuit of Figure 5.4, the following equations apply:

$$
\begin{align*}
& \mathrm{I}_{\mathrm{E}}=\left(\mathrm{h}_{\mathrm{FE}}+1\right)\left(\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{CO}}\right) \tag{5a}\\
& \mathrm{V}_{\mathrm{B}}=\left[\frac{\mathrm{R}_{\mathrm{B}}}{\left(\mathrm{~h}_{\mathrm{F}}+1\right)}+\mathrm{R}_{\mathrm{E}}\right] \mathrm{I}_{\mathrm{E}}+\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{CO}} \mathrm{R}_{\mathrm{B}} \tag{5b}
\end{align*}
$$

Considering bias conditions at the temperature extremes, at the minimum temperature, I_{E} will have its minimum value and the worst conditions would occur for $\mathrm{h}_{\mathrm{FE}}=\mathrm{h}_{\mathrm{FE}}{ }^{\mathrm{m}}{ }^{\mathrm{n}}, \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE}}{ }^{\mathrm{max}}, \mathrm{I}_{\mathrm{CO}}=0$ or
at lowest temperature: $\quad V_{B}=\left[\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{h}_{\mathrm{F} \varepsilon^{\text {min }}}+1}+\mathrm{R}_{\mathrm{E}}\right] \mathrm{I}_{\mathrm{E}}{ }^{\text {min }}+\mathrm{V}_{\mathrm{BE}}{ }^{\text {max }}$
and at the highest temperature of operation I_{E} will have its maximum value and the worst conditions would occur for $\mathrm{h}_{\mathrm{FE}}=\mathrm{h}_{\mathrm{PE}}{ }^{\text {max }}, \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE}}{ }^{\mathrm{mln}}, \mathrm{I}_{\mathrm{Co}}=\mathrm{I}_{\mathrm{Co}}{ }^{\text {max }}$.

from these two equations the value of R_{B} can be calculated:

As an example, consider the following bias circuit design:

1. Select the transistor type to be used (2N525).
2. Determine the required range of temperature

$$
0^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C}
$$

3. Select the supply voltage and load resistance

$$
\mathrm{V}_{\mathrm{cc}}=20 \text { volts } ; \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{~K}
$$

4. Determine $I_{c o}{ }^{\text {max }}$:

From the specifications the upper limit of I_{co} is $10 \mu_{\mathrm{a}}$ at $25^{\circ} \mathrm{C}$ and from Figure $10.6 \mathrm{I}_{\mathrm{c} \%}$ will increase by a factor of 10 at $55^{\circ} \mathrm{C}$, thus $\mathrm{I}_{\mathrm{co}}{ }^{\text {max }}=10 \times 10=$ $100 \mu \mathrm{a}$.
5. Determine the values of $h_{F E}{ }^{m 1 n}$ and $h_{F s}{ }^{\text {max }}$

From the specifications, the range of h_{Fs} at $25^{\circ} \mathrm{C}$ is 34 to 65 . From Figure 10.7 hre can change by a factor of 0.75 at $0^{\circ} \mathrm{C}$ and by a factor of 1.3 at $+55^{\circ} \mathrm{C}$.

6. Determine the allowable range of I_{z} :

In general, the variation of the circuit performance with emitter current determines the allowable range of emitter current. In some cases the allowable range of emitter current is determined by the peak signal voltage required across R_{L}.

Assume that the minimum current is .67 ma which gives a minimum voltage of 5 volts across R_{t} and the maximum emitter current is 1.47 ma which gives a maximum voltage of 11 volts across R_{L}. The allowable range of emitter current must be modified to take into account the tolerance of the bias resistors. Assuming a bias network using three 5% resistors, then

$$
\begin{aligned}
& \mathbf{I}_{E^{m I n}}=(1+3 \times .05)(0.67)=0.77 \mathrm{ma} \text { and } \\
& \mathbf{I}_{\mathrm{E}}^{\max }=(1-3 \times .05)(1.47)=1.25 \mathrm{ma}
\end{aligned}
$$

7. Estimate the values of $V_{b E^{m i n}}$ and $V_{b E^{\text {max }}}$

From Figure $5.1 \mathrm{~V}_{\mathrm{HE}}{ }^{\mathrm{min}}$ at $55^{\circ} \mathrm{C}$ and $\mathrm{I}_{\mathrm{E}}=1.47 \mathrm{ma}$ is about 0.08 volt, $\mathrm{V}_{\mathrm{RE}}{ }^{\text {max }}$ at $0^{\circ} \mathrm{C}$ and $\mathrm{I}_{\mathrm{E}}=0.67$ ma is about 0.17 volt.
8. Calculate the value of R_{B} from equation 5 e

$$
\mathrm{R}_{\mathbf{R}}=4.15 \mathrm{R}_{\mathrm{E}}-1.30 \mathrm{~K}
$$

9. Using the equation from (8), choose a suitable value of \mathbf{R}_{B} and \mathbf{R}_{E}. This involves a compromise since low values of R_{E} require a low value of R_{15} which shunts the
input of the stage and reduces the gain. A high value of R_{k} reduces the collector to emitter bias voltage which limits the peak signal voltage across R_{L}.

Choose $\mathrm{R}_{\mathrm{E}}=2.7 \mathrm{~K}$ for which $\mathrm{R}_{\mathrm{B}}=9.9 \mathrm{~K}$. This gives a minimum collector to emitter voltage of $20-(2.7+7.5) 1.47=5$ volts.
10. Calculate V_{R} using equation $5{ }^{\circ}$

$$
\mathrm{V}_{\mathrm{B}}=2.56 \text { volts }
$$

11. If the bias circuits of either Figures 5.5 or 5.6 are to be used, the values of the bias resistors can be calculated from the values of $\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{B}}$ and V_{B} obtained in the preceding design by the use of the conversion equations which are given. In these figures R_{s} represents a series resistance which would be present if transformer coupling were used in which case Rs would be the $\mathrm{d}-\mathrm{c}$ resistance of transformer secondary. In cases where capacitor coupling is used R_{s} will usually be equal to zero. A comparison of Figures 5.5 and 5.6 indicates that the circuit of Figure 5.6 is superior in that for a given bias stability, it allows a lower value of the emitter resistor or larger values of the base resistors than the circuit of Figure 5.5. On the other hand, the circuit of Figure 5.6 gives a-c feedback through the bias circuits which may be a disadvantage in some cases.

For the circuit of Figure 5.5, assume $\mathrm{R}_{\mathrm{s}}=0$. Then $\mathrm{R}_{3}=\mathrm{R}_{\mathrm{E}}=2.7 \mathrm{~K}$, $\mathrm{R}_{1}=77 \mathrm{~K}$ or, choosing the next lowest standard value, $\mathrm{R}_{1}=68 \mathrm{~K}$. Using this valne, calculate $\mathrm{R}_{2}=10 \mathrm{~K}$. For the circuit of Figure 5.6 as before $\mathrm{R}^{\prime}{ }_{1}=68 \mathrm{~K}$ and $\mathrm{R}_{2}^{\prime}=10 \mathrm{~K}$. Resistor R_{3}^{\prime} is calculated as 1.73 K or, using the next highest standard value, $R_{s}^{\prime}=1.8 \mathrm{~K}$.

VOLTAGE DIVIDER TYPE bIAS CIRCUIT
FIGURE 5.5

THERMAL RUNAWAY

When a transistor is used at high junction temperatures (high ambient temperatures and/or high power dissipation) it is possible for regenerative heating to occur which will result in thermal run-away and possible destruction of the transistor. In any circuit the junction temperature (T_{J}) is determined by the total power dissipation in the transistor (P), the ambient temperature $\left(\mathrm{T}_{\Delta}\right)$, and the thermal resistance (K).

$$
\begin{equation*}
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{KP} \tag{5f}
\end{equation*}
$$

If the ambient temperature is increased, the junction temperature would increase an equal amount provided that the power dissipation was constant. However, since both h_{FE} and I_{co} increase with temperature, the collector current can increase with increasing temperature which in turn can result in increased power dissipation. Thermal runaway will occur when the rate of increase of junction temperature with respect to the power dissipation is greater than the thermal resistance ($\triangle T_{J} / \triangle P>K$).

Thermal run-away is generally to be avoided since it can result in failure of the circuit and possibly in destruction of the transistor. By suitable circuit design it is possible to ensure either that the transistor can not run away under any conditions or that the transistor can not run away below some specified ambient temperature. A different circuit analysis is required depending on whether the transistor is used in a linear amplifier or in a switching circuit.

In switching circuits such as those described in Chapter 10, it is common to operate the transistor either in saturation (low collector to emitter voltage) or in cutoff (base to emitter reverse biased). The dissipation of a transistor in saturation does not change appreciably with temperature and therefore run-away conditions are not possible. On the other hand, the dissipation of a transistor in cutoff depends on I_{co} and therefore can increase rapidly at higher temperatures. If the circuit is designed to ensure that the emitter to base junction is reverse biased at all temperatures (as for the circuit of Figure 5.7) the following analysis can be used:

FIGURE 5.7
The transistor power dissipation will be,

$$
\begin{equation*}
\mathrm{P}=\mathrm{I}_{\mathrm{co}} \mathbf{V}_{\mathrm{ce}}=\mathbf{I}_{\mathrm{co}}\left(\mathrm{~V}_{\mathrm{cc}}-\mathbf{I}_{\mathrm{c} v} \mathrm{R}_{\mathrm{t}}\right) \tag{5g}
\end{equation*}
$$

The rate of change of power dissipation with temperature will be,

$$
\begin{equation*}
\frac{\mathrm{dP}}{\mathrm{dT}}=\left(\mathrm{V}_{\mathrm{cc}}-2 \mathrm{I}_{\mathrm{co}} \mathrm{R}_{\mathrm{L}}\right) \frac{\mathrm{dI}_{\mathrm{co}}}{\mathrm{dT}}=\left(\mathrm{V}_{\mathrm{cc}}-2 \mathrm{I}_{\mathrm{co}} \mathrm{R}_{\mathrm{L}}\right) \delta \mathrm{I}_{\mathrm{co}} \tag{5~h}
\end{equation*}
$$

where $\delta \cong 0.08$ is the fractional increase in I_{co} with temperature. The condition for run-away occurs when $\mathrm{dP} / \mathrm{dT}=1 / \mathrm{K}$ or,

$$
\begin{equation*}
\left(\mathrm{V}_{\mathrm{cc}}-2 \mathrm{I}_{\mathrm{com}} \mathrm{R}_{\mathrm{I}}\right) \delta \mathrm{I}_{\text {cos }}=1 / \mathrm{K} \tag{5i}
\end{equation*}
$$

where $\mathrm{I}_{\text {coss }}$ is the value of $\mathrm{I}_{\text {ro }}$ at the run-away point. Solving for Icon gives,

$$
\begin{equation*}
I_{\text {com }}=-\frac{V_{\mathrm{CC}} \pm \sqrt{\left(\mathrm{V}_{\mathrm{CC}}\right)^{2}}-\left(8 \mathrm{R}_{\mathrm{L}}\right) /(\delta \mathrm{K})}{4 \mathrm{R}_{\mathrm{L}}} \tag{5j}
\end{equation*}
$$

In this equation the solution using the negative sign gives the value of $\mathrm{I}_{\text {cou }}$, while the solution using the positive sign gives the value of Ico after run-away has occurred. It is
seen from the equation that the value of I_{Co} after run-away can never be greater than $\mathrm{V}_{\mathrm{cc}} / 2 \mathrm{R}_{\mathrm{L}}$ so that the collector voltage after run-away can never be less than one half of the supply voltage V_{cc}. If the term under the square root sign in the above equation is zero or negative, thermal run-away cannot occur under any conditions. Also, if thermal run-away does occur it must occur when the collector voltage is greater than $0.75 \mathrm{~V}_{\mathrm{cc}}$. Once the value of $\mathrm{I}_{\text {com }}$ is determined from Equation (5j) the corresponding junction temperature can be determined from a graph such as Figure 10.6. The heating due to $\mathrm{I}_{\text {coss }}$ is found by substituting $\mathrm{I}_{\text {coss }}$ for I_{co} in Equation (5g). Finally, the ambient temperature at which run-away occurs can be calculated from Equation (5f).

In circuits which have appreciable resistance in the base circuit such as the circuit of Figure 5.8 the base to emitter junction will be reverse biased only over a limited temperature range. When the temperature is increased to the point where the base to emitter junction ceases to be reverse biased emitter current will how and the dissipation will increase rapidly. The solution for this case is given by:

$$
\begin{equation*}
I_{\text {cos }}=\frac{\left(V_{c c}-2 R_{\mathrm{L}} h_{\mathrm{fe}} \mathrm{I}_{\mathrm{x}}\right) \pm \sqrt{\left(\mathrm{V}_{\mathrm{cc}}-2 \mathrm{R}_{\mathrm{t}} \mathrm{~h}_{\mathrm{fe}} \mathrm{I}_{\mathrm{x}}\right)^{2}-\left(8 \mathrm{R}_{\mathrm{L}}\right) /(\delta \mathrm{K})^{-}}}{4 \mathrm{R}_{\mathrm{L}} \mathrm{~h}_{\mathrm{fe}}} \tag{5k}
\end{equation*}
$$

where $I_{x}=V_{B} / R_{r}$.
In the analysis of run-away in linear amplifiers it is convenient to classify linear amplifiers into preamplifiers and power amplifiers. Preamplifiers are operated at low signal levels and consequently the bias voltage and current are very low particularly in stages where good noise performance is important. In capacitor coupled stages a large collector resistance is used to increase gain and a large emitter resistance is used to improve bias stability. Accordingly, thermal run-away conditions are seldom met in preamplifier circuits.

In contrast, power amplifiers invariably require transistors to operate at power levels which are near the run-away condition. The conditions are aggravated by the use of biasing networks of marginal stability which are required for power efficiency and by the use of transformer coupling to the load which reduces the effective collector series resistance. Since thermal run-away in power stages is likely to result in destruction of the transistors, it is wise to use worst case design principles to ensure that thermal run-away cannot occur. The worst case conditions are with $\mathrm{h}_{\mathrm{re}} \rightarrow \infty, \mathrm{V}_{\mathrm{BE}}=0$, $\mathrm{R}_{\mathrm{L}}=0$, and $\mathrm{I}_{\mathrm{Co}}=\mathrm{I}_{\mathrm{Co}}{ }^{\text {max }}$. If these conditions are applied to a transistor in the general bias circuit shown in Figure 5.9 the total transistor dissipation is given by:

$$
\begin{equation*}
P=V_{C E} I_{C}=\left(V_{C C}-V_{B}-I_{C o} R_{B}\right)\left(I_{C O}+\frac{V_{B}+I_{C o} R_{B}}{R_{E}}\right) \tag{5l}
\end{equation*}
$$

Equating $\mathrm{dP} / \mathrm{dT}$ with $1 / \mathrm{K}$ and solving for $\mathrm{I}_{\text {com }}$ as before,

$$
\begin{equation*}
\mathbf{I}_{\text {cos }}=\frac{\left(\mathrm{V}_{\mathrm{cc}}-\mathbf{R}_{1} \mathrm{~V}_{\mathrm{B}}\right) \pm \sqrt{\left(\overline{\mathrm{V}}_{\mathrm{cC}}-\mathrm{R}_{1} \mathrm{~V}_{\mathrm{B}}\right)^{2}-\left(\mathrm{R}_{2}\right) /(\delta \mathrm{K})^{-}}}{4 \mathrm{R}_{\mathrm{B}}} \tag{5~m}
\end{equation*}
$$

where

$$
\mathrm{R}_{\mathrm{I}}=\frac{\mathrm{R}_{\mathrm{E}}+2 \mathrm{R}_{\mathrm{B}}}{\mathbf{R}_{E}+\mathrm{R}_{\mathrm{B}}} \quad \quad \mathbf{R}_{\underline{z}}=\frac{8 \mathrm{R}_{\mathrm{E}} \mathbf{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{E}}+\mathrm{R}_{\mathrm{B}}}
$$

As before, the solution of Equation (5 m) using the negative sign gives the value of $\mathrm{I}_{\text {cos, }}$, while the solution using the positive sign gives the final value of I_{C} after run-away has occurred. If the quantity under the square root sign is zero or negative, run-away cannot occur under any conditions.

In class-B power amplifiers the maximum transistor power dissipation occurs when the power output is at 40% of its maximum value at which point the power dissipation in each transistor is 20% of the maximum power output. In class-A power amplifiers on the other hand, the maximum transistor dissipation occurs when there is no applied signal. The maximum power dissipation is obtained by substituting I Icos in Equation (51) and the maximum junction temperature is obtained from Equation (5f).

In the design of power amplifiers the usual procedure is to design the circuit to meet the requirements for gain, power output, distortion, and bias stability as described in the other sections of this manual. The circuit is then analyzed to determine the conditions under which run-away can occur to determine if these conditions meet the operating requirements. As a practical example, consider the analysis of the class-A output stage of the receiver shown in Figure 8.16. The transistor is the 2N241A for which $\mathrm{K}=250^{\circ} \mathrm{C} /$ watt and $\mathrm{I}_{\mathrm{co}}{ }^{\text {max }}=16 \mu \mathrm{a}$ at $25^{\circ} \mathrm{C}$ and 25 volts. Calculating the circuit values corresponding to Figure 5.9 and Equation (5m):

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=9 \mathrm{v}, \quad \mathrm{R}_{\mathrm{E}}=100 \Omega \\
& \mathrm{~V}_{\mathrm{B}}=\frac{(1000)(9)}{1000+4700}=1.58 \mathrm{v} \\
& \mathrm{R}_{1}=\frac{100+2(825)}{100+825}=1.89
\end{aligned}
$$

$$
V_{B}=\frac{(1000)(9)}{1000+4700}=1.58 \mathrm{v} \quad \mathrm{R}_{\mathrm{B}}=\frac{(1000)(4700)}{1000+4700}=825 \Omega
$$

$$
\mathrm{R}_{z}=\frac{8(100)(825)}{100+825}=713 \Omega
$$

Calculating Icou from Equation (5m),

$$
\mathrm{I}_{\mathrm{Coss}}=\frac{6 \pm \sqrt{0.47}}{3300}=1.61 \mathrm{ma} \text { or } 2.02 \mathrm{ma}
$$

Since the quantity under the square root is positive, thermal run-away can occur. The two solutions give the value of $I_{\text {con }}\left(1.61 \mathrm{ma}\right.$) and the value of $I_{\text {co }}$ after run-away has occurred (2.02 ma). The fact that these two currents are very nearly equal indicates that the change in power dissipation when run-away occurs will not be very large. Using the value $I_{\text {con }_{n}} / I_{C_{0}}{ }^{\max }=100$ the junction temperature at run-away from Figure 10.6(A) is about $92^{\circ} \mathrm{C}$. The dissipation at run-away, calculated from Equation (51), is about 187 milliwatts. The rise in junction temperature due to this power dissipation is $(0.25)(187)=46.7^{\circ} \mathrm{C}$. The ambient temperature at run-away is then calculated to be $92-46.7=45.3^{\circ} \mathrm{C}$. The above value of maximum transistor power dissipation is calculated under the assumption that the series collector resistance is zero. In the circuit under consideration the transformer primary will have a small d-c resistance (R_{T}) which will reduce the transistor power dissipation by approximately $\left(I_{c}\right)^{2} R_{T}$ where I_{c} is given by the second term in Equation (51). Assuming that the d-c resistance of the transformer is 20 ohns the reduction in power dissipation for the case just considered will be 18.8 milliwatts and the ambient temperature at run-away will be increased to $50.0^{\circ} \mathrm{C}$.

6. AUDIO AMPLIFIERS

SINGLE STAGE AUDIO AMPLIFIER

Figure 6.1 shows a typical single stage audio amplifier using a 2 N 190 PNP transistor.

SINGLE STAGE AUDIO AMPUFIER
FIGURE 6.1
With the resistance values shown, the bias conditions on the transistor are 1 ma of collector current and six volts from collector to emitter. At frequencies at which C_{1} provides good by-passing, the input resistance is given by the formula: $\mathrm{R}_{\mathrm{In}}=\left(1+\mathrm{h}_{\mathrm{fo}}\right) \mathrm{h}_{\mathrm{Ib}}$. At 1 ma for a design center 2 N 190 , the input resistance would be 43×29 or about 1250 ohms.

The a-c voltage gain $\frac{\mathbf{e}_{\text {out }}}{\mathbf{e}_{\mathrm{In}}}$ is approximately equal to $\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{h}_{10}}$. For the circuit shown this would be $\frac{5000}{29}$ or approximately 172.

The frequency at which the voltage gain is down 3 db from the 1 Kc value depends on r_{g}. This frequency is given approximately by the formula:

TWO STAGE R-C COUPLED AMPLIFIER
The circuit of a two stage R-C coupled amplifier is shown by Figure 6.2. The input impedance is the same as the single stage amplifier and would be approximately 1250 ohms.

FIGURE 6.2

The load resistance for the first stage is now the input impedance of the second stage. The voltage gain is given approximately by the formula:

$$
A_{V} \approx h_{f e} \frac{R_{L}}{h_{i b}}
$$

More exact formulas for the performance of audio amplifiers may be found in Chapter 3 on small signal characteristics.

CLASS B PUSH-PULL OUTPUT STAGES

In the majority of applications, the output power is specified so a design will usually begin at this point. The circuit of a typical push-pull Class B output stage is shown in Figure 6.3.

FIGURE 6.3
The voltage divider consisting of resistor, R and the 47 ohm resistor gives a slight forward bias on the transistors to prevent cross-over distortion. Usually about $1 / 10$ of a volt is sufficient to prevent cross-over distortion and under these conditions, the no-signal total collector current is about 3.0 ma . The 8.2 ohm resistors in the emitter leads stabilize the transistors so they will not go into thermal runaway when the junction temperature rises to $60^{\circ} \mathrm{C}$. Typical collector characteristics with a load line are shown below:

FIGURE 6.4

It can be shown that the maximum a-c output power without clipping using a pushpull stage is given by the formula:

$$
P_{\text {out }}=\frac{I_{\max } V_{C E}}{2}
$$

Since the load resistance is equal to
Where Vies = collector to emitter voltage at no signal.

$$
\mathbf{R}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{C}_{\mathrm{e}}}}{\mathrm{I}_{\max }}
$$

and the collector to collector impedance is four times the load resistance per collector, the output power is given by the formula:

$$
\begin{equation*}
P_{o}=\frac{2 V_{0}}{R_{r-c}} \tag{6a}
\end{equation*}
$$

Thus, for a specified output power and collector voltage the collector to collector load resistance can be determined. For output powers in the order of 50 mw to 850 mw , the load impedance is so low that it is essentially a short circuit compared to the output impedance of the transistors. Thus, unlike small signal amplifiers, no attempt is made to match the output impedance of transistors in power output stages.
The power gain is given by the formula:

$$
\text { Power Gain }=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{1 \mathrm{n}}}=\frac{I_{0}{ }^{2}}{\mathrm{I}_{1 \mathrm{n}}{ }^{2}} \quad \mathbf{R}_{\mathrm{I}_{\mathrm{i}}} \quad \mathrm{R}_{1 \mathrm{n}}
$$

Since $\frac{I_{0}}{I_{0}}$ is equal to the current gain, Beta, for small load resistance, the power gain $\mathrm{I}_{1 \mathrm{n}}$
formula can be written as:

$$
\begin{equation*}
\text { P. G. }=\beta^{2} \frac{\mathbf{R}_{\mathrm{c}-\mathrm{e}}}{\mathbf{R}_{\mathrm{t}-\mathrm{b}}} \tag{6b}
\end{equation*}
$$

where $\mathbf{R}_{\mathrm{c}-\mathrm{r}}=$ collector to collector load resistance.
$\mathrm{R}_{\mathrm{t}-\mathrm{b}}=$ base to base input resistance.
$\beta=$ grounded emitter current gain.
Since the load resistance is determined by the required maximum undistorted output power, the power gain can be written in terms of the maximum output power by combining equations (6a) and (6b) to give:

$$
\begin{equation*}
\text { P. G. }=\frac{2 \beta^{2} V_{\mathrm{C}^{2}}{ }^{2} \mathrm{E}}{\mathbf{R}_{\mathrm{b}-\mathrm{b}} \mathrm{P}_{\text {out }}} \tag{6c}
\end{equation*}
$$

CLASS A OUTPUT STAGES

A Class A output stage is biased as shown on the collector characteristics below:

The operating point is chosen so that the output signal can swing equally in the positive and negative direction. The maximum output power without clipping is equal to:

$$
\mathrm{P}_{\mathrm{out}}=\frac{\mathrm{V}_{\mathrm{ce}} \mathrm{I}_{\mathrm{t}}}{2}
$$

The load resistance is then given by the formula:

$$
\mathrm{R}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{CF}}}{\mathrm{I}_{\mathrm{c}}}
$$

Combining these two equations, the load resistance can be expressed in terms of the collector voltage and power output by the formula below:

$$
\begin{equation*}
\mathbf{R}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{c}}{ }_{2}{ }_{\mathrm{F}}^{\mathrm{E}}}{} \tag{6d}
\end{equation*}
$$

For output powers of 10 mw and above, the load resistance is very small compared to the transistor output impedance and the current gain of the transistor is essentially the short circuit current gain Beta. Thus for a Class A output stage the power gain is given
by the formula:

$$
\begin{equation*}
\text { P. G. }=\frac{\beta^{2} \mathrm{R}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{tn}}}=\frac{\beta^{2} \mathrm{~V}_{c}{ }^{2} \varepsilon}{2 \mathrm{R}_{\mathrm{tn}} \mathrm{P}_{\mathrm{o}}} \tag{6c}
\end{equation*}
$$

CLASS A DRIVER STAGES

For a required output power of 250 mw , the typical gain for a push-pull output stage would be in the order of 23 db . Thus the input power to the output stage would be about 1 to 2 mw . The load resistance of a Class A driver stage is then determined by the power that must be furnished to the output stage and this load resistance is given by equation (6 d). For output powers in the order of a few milliwatts, the load resistance is not negligible in comparison to the output impedance of the transistors, therefore, more exact equations must be used to determine the power gain of a Class A driver stage. From four terminal network theory, after making appropriate approximations, it can be shown that the voltage gain is given by the formula:

$$
\begin{equation*}
A_{V}=\frac{R_{L_{1}}}{h_{1 b}} \tag{6f}
\end{equation*}
$$

The current gain is given by the formula:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{I}}=\frac{a}{1-a+\mathrm{R}_{\mathrm{L}} \mathrm{~h}_{\mathrm{ob}}} \\
& \text { where } \mathrm{h}_{\mathrm{ob}}=\text { grounded base output conductance. }
\end{aligned}
$$

The power gain is the product of the current gain and the voltage gain, thus unlike the formula for high power output stages, there is no simple relationship between required output power and power gain for a Class A driver amplifier.

DESIGN CHARTS

Figures 6.6 through 6.16 are design charts for determination of transformer impedances and typical power gains for Class A driver stages, Class A output stages, and Class B push-pull stages. The transformer-power output charts take into account a transformer efficiency of 75% and therefore may be read directly in terms of power delivered to the loudspeaker. Power gain charts show the ratio of output power in the collector circuit to input power in the base circuit and therefore do not include transformer losses. Since the output transformer loss is included in the one chart and the design procedure used below includes the driver transformer loss, it can be seen that the major losses are accounted for.

The charts can best be understood by working through a typical example. Assume a 500 mw output is desired from a 9 v amplifier consisting of a driver and push-pull output pair. Also the signal source has an available power output of $156 \mathrm{~m} \mu \mathrm{w}$ (156×10^{-9} watts). Overall power gain required then is:

$$
\text { P.G. }=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{500 \mathrm{mw}}{156 \mathrm{~m} \mu \mathrm{~W}}=\frac{500 \times 10^{-3}}{156 \times 10^{-0}}=3.2 \times 10^{\circ}
$$

or approximately 65 db .
To obtain 500 mw in the loudspeaker, the output pair must develop 500 nw plus the transformer loss.

$$
P_{\text {col lect or }}=\frac{P_{\text {out }}}{\text { transformer eff. }}=\frac{500 \mathrm{mw}}{.75}=667 \mathrm{mw}
$$

From Figure 6.10, a pair of 2 N 321 's in Class B push-pull has a power gain of approximately 24.5 db at 667 mw . This is a numerical gain of 280 so the power required by the output stage is:

$$
P_{\mathrm{In}}=\frac{P_{\text {out }}}{\text { Gain }_{\text {ain }}}=\frac{667 \mathrm{n} \mathrm{w}}{280}=2.38 \mathrm{mw}
$$

If the driver transformer is 75% efficient, the driver must produce:

$$
P_{\mathrm{driver}}=\frac{P \text { into output stage }}{75 \%}=\frac{2.38 \mathrm{mw}}{.75}=3.18 \mathrm{mw}
$$

The remaining power gain to be obtained from the driver is $65 \mathrm{db}-24.5 \mathrm{db}=40.5 \mathrm{db}$. From Figure 6.15 the 2 N 322 has a power gain of 40.5 db at a power output of 3.18 mw .

The output transformer primary impedance is obtained from Figure 6.6, on the 9 volt supply line at 500 mw output, and is 212 ohms or approximately 200 ohms. The secondary should, of course, match the loudspeaker. From Figure 6.12 the driver transformer primary impedance is 7000 ohns. Therefore, a 7000 ohm or even a 5000 ohm transformer can be used. The secondary must be center-tapped. Typical values of impedance run from 1200 ohms to 4000 ohms. See the specification sheet of the specific output type used for the exact value of input impedance. When this procedure is used for commercial designs it must be remembered that it represents full battery voltage, typical power gain and input impedance, and therefore does not account for end-limit points.

FIGURE 6.6

FIGURE 6.7

FIGURE 6.8

FIGURE 6.9

FIGURE 6.11

FIGURE 6.12

FIGURE 6.13

FIGURE 6.14

FIGURE 6.15

FIGURE 6.16

AMPLIFIER CIRCUIT DIAGRAMS

SIMPLE AUDIO AMPUFIER
FIGURE 6.17

R SHOULD BE ADJUSTED FOR OPTIMUM RESULTS

DIRECT COUPLED "BATTERY SAVER" AMPUFIER
FIGURE 6.18

LOUDSPEAKER AUDIO AMPUFIER
FIGURE 6.20

MAXIMUM POWER OUTPUT * . 35 WATTS MAXIMUM POWER OUT AT $10 \dot{\%}$
HARMONIC DISTORTION 25 WATTS HARMONIC DISTORTION 25 WATTS SENSITIVITY FOR 50 MILLIWATTS REFERENCE POWER OUTPUT : . 2 VOLTS FOR USE WITH MAGNETIC GARTRIOGE OWIT RI, IN THIS CONOITION SENSITIVITY 5 MILLIVOLTS

ALL RESISTORS .SW

THREE TRANSISTOR PHONO AMPUFIER
FIGURE 6.21

MAXIMUM POWER OUTPUT: . 75 WATTS MAXIMUM POWER OUT AT 10% HARMONIC OISTORTION : . 45 WATTS DISTORTION AT IOO MILLIWATṪS

AT $100 \mathrm{C} / \mathrm{S}: 5 \%$
AT $5000 \mathrm{C} / \mathrm{S}$: 5%
SENSITIVITY FOR 50 MILLIWATTS REFERENCE POWER OUTPUT: CRYSTAL CARTRIDGE: I5OMV. MAGNETIC PICK UP 2 MV .
$R_{13},-47 \mathrm{OHM}$
$R_{14}, R_{15}=8.2 \mathrm{OHM}$
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{7}, \mathrm{C}_{8},-5 \mathrm{O}_{\mu} \mathrm{fd}, 12 \mathrm{~V}$
$\mathrm{C}_{2}, \mathrm{C}_{6},-5 \mathrm{O}_{\mu} / \mathrm{d}, 3 \mathrm{~V}$
C_{4},
 $15 \mu \mathrm{fd}, 12$
TR $_{1}, T R_{2},-G . E .2 N 191$ OR 2N323 TR3,TR4,-G.E. 2N188A OR 2N32O ${ }^{*} \mathrm{~T}_{1}$, $\mathrm{T}_{2}-200 \Omega$ C.T./V.

* FOR FURTHER COMPONENT INFORMATION SEE PAGE 226

* for further information see page 226

7. "HI-FI" CIRCUITS

Transistors are ideally suited for high fidelity amplifiers since there is no problem with microphonics or hum pick-up from filaments as there is with tubes. Transistors are inherently low impedance devices and thus offer better matching to magnetic pick-ups and loudspeakers for more efficient power transfer.

Transistor circuits with negative feedback can give the wide frequency response and low distortion needed in hi-fi equipment. In general, the distortion reduction is about equal to the gain reduction for the circuit to which negative feedback is applied. The input and output impedances of amplifiers with feedback are either increased or decreased, depending on the form of feedback used. Voltage feedback, over one or several transistor stages, from the collector decreases the output impedance of that stage; whereas current feedback from the emitter increases the output impedance of that stage. If either of these networks are fed back to a transistor base the input impedance is decreased, but if the feedback is to the emitter then the impedance is increased. The feedback can be applied to the emitter for effective operation with a low generator impedance, whereas the feedback to the base is effective with a high impedance (constant current) source. If the source impedance was low in the latter case then most of the feedback current would flow into the source and not into the feedback amplifier. The feedback connections must be chosen to give a feedback signal that is out-of-phase with the input for negative feedback.

Care must be used in applying feedback around more than two transistor stages to prevent high frequency instability. This instability results when the phase shift through the transistor amplifiers is sufficient to change the feedback from negative to positive. The frequency response of the feedback loop is sometimes limited to stabilize the circuit. At the present time, the amount of feedback that can be applied to most audio power transistors is limited because of the poor frequency response in the common emitter and common collector connections. The common collector connection offers the advantage of local voltage feedback that is inherent with this connection. Local feedback (one stage only) can be used on high phase shift amplifiers to increase the frequency response and decrease distortion.

PREAMPLIFIERS

Preamplifiers have two major functions: (1) increasing the signal level from a pick-up device to 1 or 2 volts rms, and (2) providing compensation if required to equalize the input signal for a constant output with frequency.

The circuit of Figure 7.1 meets these requirements when the pick-up device is a magnetic phono cartridge (monaural or stereo), or a tape head. The total harmonic distortion of the preamp is less than $1 / 2 \%$.

This preamp will accommodate most magnetic pick-up impedances. The input impedance to the preamp increases with frequency because of the frequency selective negative feedback to the emitter of TR1. The impedance of the magnetic pick-ups will also increase with frequency but are below that of the preamp.

The first two stages of this circuit have a feedback bias arrangement for current stabilization of both stages at ambient temperatures less than $40^{\circ} \mathrm{C}\left(105^{\circ} \mathrm{F}\right)$. R2 from the emitter of TR2 provides this DC current feedback to the base of TR1. R2 should be adjusted to give 2 volts at the collector of TRI. The output stage is well stabilized with a 5 K emitter resistance.

The AC negative feedback from the collector of TR2 to the emitter of TR1 is frequency selective to compensate for the standard NARTB recording characteristic

PHONO－TAPE PREAMPUFIER
FIGURE 7.1
for tape or the standard RIAA for phonograph records．The flat response from a stand－ ard NARTB pre－recorded tape occurs with the Treble Control（R12）at mid－position or 12 K ohms（see Figure 7．2）．There is about 8 db of treble boost with the Control at 25 K maximum position，and approximately 20 db of treble cut with R12 $=0$ ．Mid－position of the Treble Control also gives flat response from a standard RIAA recording．

FIGURE 7.2

The voltage feedback from the collector of TR2 decreases at low frequencies because of the increasing reactance of the feedback capacitor in series with the Treble Control. Each of the two feedback networks give the desired increase in gain at the lower frequencies to accomplish the correct compensation. If this feedback capacitor were shunted by an electrolytic capacitor, the preamplifier would give constant gain at all frequencies (in the "Tape" switch position) and the gain will decrease as R12 is decreased. With this flat preamp response a tuner may be connected to the preamp input with a variable attenuator network. This network might consist of a 50 K potentiometer in series with a 1 K resistor across the tuner output to ground, connect the preamp input across the 1 K resistor which has one side on ground.

The RIAA feedback network (with Treble Control at mid-position) has a net feedback resistance of 6 K to decrease the gain because of the higher level input. This resistance has a $.01 \mu \mathrm{f}$ capacitor in parallel for decreasing the amplifier gain at the higher frequencies in accordance with RIAA requirements. This eliminates the need to load a reluctance pick-up with the proper resistance for high frequency compensation. If it is desirable to build the preamplifier for phonograph use only, the compensating feedback network would consist only of a $.04 \mu \mathrm{f}$ feedback capacitor in series with a 6 K resistor (or a 10 K Treble Control) which has a $.01 \mu \mathrm{f}$ capacitor in parallel.

The emitter-follower output stage of the preamp gives a low impedance output for a cable run to a power amplifier (transistor or tube) and acts as a buffer so that any preamp loading will not affect the equalization characteristic.

The Treble Control should have a linear taper and the Level Control an audio taper. Two 9 volt batteries will give good life in this application since the total supply drain is approximately 3.5 ma DC. This 18 volts may also be obtained by suitable decoupling from a higher voltage supply that is available.

The preamplifier of Figure 7.1 may be altered to compensate for tapes recorded at $33 / 4$ inches per second by setting R12 at 25 K ohms and making the feedback capacitor $.02 \mu \mathrm{f} \pm 20 \%$. In addition, the 47 ohm resistor from the emitter of TR1 to ground may be shunted with $.5 \mu \mathrm{f}$ to attain a relatively flat response to 10 Kc . The value needed for this shunt capacitor will depend somewhat on the high frequency response of the tape head that is used, since this capacitor contributes to increased circuit gain above 3 Kc .

BASS BOOST CIRCUIT

The bass boost circuit of Figure 7.3 operates on the output of the preamp (Figure 7.1). With this addition, the operator now has the necessary treble and bass control

BASS BOOST CIRCUIT
FIGURE 7.3
to compensate for listening levels, or deficiencies in program material, pick-up, speakers, etc. This bass boost circuit gives the operator independent control of the level, or amount of bass boost desired, or the level control can be used as a loudness control.

It is usually desirable to have some method of boosting the level of the lower portion of the audio spectrum as the overall sound level is decreased. This is to compensate for the non-linear response of the human ear as shown in the Fletcher-Munson curves that are often referred to in the audio industry. The ear requires a higher level for the low frequency sound to be audible as the frequency is decreased and also as the overall spectrum level is decreased.

Figure 7.4 shows the frequency characteristics of this bass boost circuit. With the level control set for zero attenuation at the output there is no bass boost available, but as the output level is attenuated, the available bass boost increases.

FIGURE 7.4

Figure 7.4 shows the frequency response (lower dashed curve) when the output is attenuated 40 db and the Bass Boost Control is set for minimum (50 K ohms). The solid curve immediately above represents the frequency response when the Bass Boost Control is set at maximum (zero ohms). Thus a frequency of 30 cycles can have anything from zero to 27 db of boost with respect to 1 KC , depending on the adjustment of the Bass Boost Control.

The Fletcher-Munson contours of equal loudness level show most of the contour changes involve a boost of the hass frequencies at the lower levels of intensity. Therefore, this circuit combination fulfills the requirements of level control, bass boost and loudness control. This boost circuit operates with the preamp (Figure 7.1) Level Control performing the same function as the Level Control in Figure 7.3. The Bass Boost Control may be a standard 50 K potentiometer with a linear taper. The desired inductance may be oltained by using the green and yellow leads on the secondary of Argonne transistor transformer \#AR-128.

HYBRID PREAMPLIFIER

The lybrid preamplifier circuit of Figure 7.5 uses a similar feedback equalization technique to that of Figure 7.1 and therefore will accommodate most magnetic piek-up
impedances. There is a small amount of treble boost above 10 KC due to the $.01 \mu \mathrm{f}$ capacitor from the 12AX7 cathode to ground. The Treble Control is set near midposition for a compensated output from a standard RIAA recording or an NARTB recorded tape.

HYBRID PHONO-TAPE PREAMPUFIER
FIGURE 7.5

The 2 N 508 transistor is biased at approximately .6 ma from a constant current source for good current stability with temperature and transistor interchangeability. R1 and R2 bias the base for the desired $\mathrm{V}_{\mathrm{ce}} . \mathrm{V}_{\mathrm{CE}}$ is in the range of .5 to 5 volts. This voltage varies with leakage current of Cl , also with h_{FE} and I_{Co} for different transistors. This range of $\mathrm{V}_{\text {ce }}$ bias has little effect on the operation of the preamplifier. V_{ce} may reach saturation at ambient temperatures above $55^{\circ} \mathrm{C}$.

The standard reference level for S / N (signal-to-noise) measurements in tape recording is the maximum level at which a 400 cycle signal can be recorded at 2% harmonic distortion. The hybrid preamplifier of Figure 7.5 is capable of a S / N of 60 db . The signal output from this reference level is approximately 1.5 volts and the total harmonic distortion of the preamp at this level is under 1%.

A dual preamp for a stereophonic disc or tape system could be built with two identical preamps as in Figure 7.5, using only one tube (12AX7) and two transistors (2N508).

In vacuum tube circuitry there is a problem in maintaining high S / N ratio at low audio frequencies because of the lower signal transfer from a magnetic pickup (tape, phono, or microphone) to the tube grid.

The lower input impedance of the transistor more nearly matches the source at low frequencies for a better signal transfer and thus improved S / N ratio. The input signal level at 100 cps has about 40 db of amplification in Figure 7.6 before it reaches the tube grid.

This circuit has a constant collector bias current that is independent of transistor parameters. The collector to emitter voltage, V_{cr}, is biased with a DC feedback network from the collector which helps to stabilize $V_{c s}$. This circuit should operate to about $50^{\circ} \mathrm{C}$ ambient temperature with the 2 N 169 and to $60^{\circ} \mathrm{C}$ with the 2 N 167 .

NPN PREAMPUFIER FOR MAGNETIC PICKUPS
FIGURE 7.6

The circuit has an input impedance of about 3 K ohms, and frequency compensation of the input signal may be accomplished in a following stage.

POWER AMPLIFIERS

A great deal of effort has gone into developing transformerless push-pull amplifiers using vacuum tubes. Practical circuits, however, use many power tubes in parallel to provide the high currents necessary for direct driving of low impedance loudspeakers.

The advent of power transistors has given new impetus to the development of transformerless circuits since the transistors are basically low voltage, high current devices. The emitter follower stage, in particular, offers the most interesting possibilities since it has low inherent distortion and low output impedance.

Figure 7.7 is a direct coupled power amplifier with excellent low frequency response, and also has the advantage of a feedback arrangement for current stabilization of all stages. The feedback system also stabilizes the voltage division across the power output transistors TR4 and TR6 which operate in a Class B push-pull arrangement. TR3 and TR5 also operate Class B in the Darlington connection to increase the current gain. Using an NPN for TR5 gives the required phase inversion for driving TR6 and also has the advantage of push-pull emitter follower operation. TR4 and TR6 have a small forward bias to minimize crossover distortion. This bias is set by the voltage drop across the 100 ohm resistors that shunt the input to TR4 and TR6. TR3 and TR5 are biased for the same reason with the voltage drop across the 1 N 91 . A 68 ohm resistor would serve the same function as the 1 N 91 except there would be no temperature compensation. Thermistors have also been used to compensate for the temperature variation of the emitter-base resistance, but they do not track this variation as well as a germanium junction diode which has temperature characteristics similar to the transistor.

TR2 is a Class A driver requiring a very low impedance drive which is accomplished by an emitter follower TR1. TR1 needs a current source for low distortion, thus R1 and the Level Control supply the desired drive impedance. The Level Control should be set for a value of approximately 2 K ohms when this amplifier is driven by the preamplifier of Figure 7.1. This will permit the amplifier to be driven to full output. TR1 has an emitter current of 1 to 1.5 ma , and TR2 has a 2 to 3 ma bias.

SEVEN WATT POWER AMPUFIER
FIGURE 7.7

The bias adjust R2 is set for one-half the supply voltage across TR6 and can be trimmed for symmetrical clipping at maximum power output. TR4 and TR6 have a beta cut-off at approximately 7 Kc . The phase shift and drop in beta gives rise to a decline in transistor efficiency which causes an elevation of junction temperature. The $.001 \mu \mathrm{fd}$ feedback capacitor from collector to base of TR2 aids in stabilizing this circuit by reducing the phase shift and high frequency gain of this stage. The $220 \mu \mu \mathrm{fd}$ capacitor shunting the bias notwork further aids the stabilization with high frequency negative feedback from output to input. This circuit has approximately 15 db of overall voltage feedback with the 27 K resistor from load to input. The speaker system is shunted by 22 ohm in series with $.2 \mu \mathrm{fd}$ to prevent the continued rise of the amplifier load impedance and its accompanying phase shift beyond the audio spectrum.

The overall result, from using direct-coupling, no transformers, and ample degeneration, is an amplifier with output impedance of $1 / 2$ ohm for good speaker damping, and very low total harmonic distortion. The frequency response at average listening levels is flat over the audio spectrum.

When checking for maximum power out at the higher frequencies, a sinewave can be applied only for a short duration before sufficient heating for runaway results as indicated above. To protect the power transistors, a current meter should be used in series with the voltage supply for quick, visual indication of runaway while checking power output above approximately 2 Kc . There is not sufficient sustained high fre-
quency power in regular program material to precipitate this instability. Thus the actual performance of the amplifier does not suffer since the power level in music and speech declines as the frequency increases beyond about 1 Kc .

This amplifier is capable of a 7 watt output with less than 1% harmonic distortion into a 4,8 or 16 ohm speaker when used with the power supply of Figure 16.5, page 158.

The power transistors TR4 and TR6 should each be mounted on an adequate heat radiator such as used for transistor output in an automobile radio, or mounted on a $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 32^{\prime \prime}$ aluminum plate that is insulated from the chassis.

STEREOPHONIC SYSTEM

A complete semiconductor, stereophonic playback system may be assembled by using the following circuits in conjunction with a stereophonic tape deck or phono player.

BLOCK DIAGRAM OF STEREOPHONIC SYSTEM
FIGURE 7.8

Two identical preamplifier circuits can use a common 18 volt battery supply. The circuitry of Figure 7.1 may be used with the switch and RIAA network eliminated if the preamps are to be used for tape only.

The output of each preamp is fed to a power amplifier as indicated in Figure 7.8. Two identical power amplifiers with circuitry as in Figure 7.7 can use a common power supply as shown in Figure 16.6, page 159. The output of each amplifier fed to its respective speaker completes the stereo system as shown in Figure 7.8.

DUAL 10 WATT STEREO SYSTEM

A dual 10 watt stereo system consists of two identical amplifiers with circuitry of Figure 7.9 using the common power supply of Figure 16.7, page 159. This power supply has separate decoupled outputs for each amplifier. The 1 N1115 rectifiers should be mounted on a metal chassis with the electrically insulating mounting kit provided with each unit. The stereo system uses the same preamplifiers as that of Figures 7.1 and 7.3.

The power amplifier of Figure 7.9 is similar to that of Figure 7.7. Figure 7.9 uses transistors with a higher voltage rating, and also the 2N553 transistor has a beta cut-off frequency of approximately 25 Kc . Thus the 2N553's in Figure 7.9 give increased

"HI-FI"CIRCUITS

efficiency and thus better stability at the higher frequencies. This amplifier with power supply of Figure 16.7, page 159, is capable of a 10 watt output with less than 1% distortion into an 8 or 16 ohm speaker.

TEN WATT POWER AMPUFIER
FIGURE 7.9

AUTODYNE CONVERTER CIRCUITS

The converter stage of a transistor radio is a combination of a local oscillator, a mixer and an IF amplifier. A typical circuit for this stage is shown in Figure 8.1.

FOR AOOITIONAL INFORMATION SEE PAGE 226

AUTODYNE CONVERTER

FIGURE 8.1
Redrawing the circuit to illustrate the oscillator and mixer sections separately, we obtain Figures 8.2 and 8.3.

FIGURE 8.2
The operation of the oscillator section (8.2) is as follows:
Random noise produces a slight variation in base current which is subsequently amplified to a larger variation of collector current. This A.C. signal in the primary of L_{2} induces an A.C. current into the secondary of L_{2} tuned by C_{B} to the desired oscillator frequency. C_{2} then couples the resonant frequency signal back into the emitter circuit. If the feedback (tickler) winding of L_{2} is properly phased the feedback will be positive (regenerative) and of proper magnitude to cause sustained oscillations. The secondary of L_{2} is an auto-transformer to achieve proper impedance match between the high impedance tank circuit of L_{2} and the relatively low impedance of the emitter circuit.
C_{1} effectively bypasses the biasing resistors R_{2} and R_{3} to ground, thus the base is A.C. grounded. In other words, the oscillator section operates essentially in the grounded base configuration.

The operation of the mixer section (8.3) is as follows:
The ferrite rod antenna L_{1} exposed to the radiation field of the entire frequency spectrum is tuned by C_{Δ} to the desired frequency (broadcast station).

The transistor is biased in a relatively low current region, thus exhibiting quite non-linear characteristics. This enables the incoming signal to mix with the oscillator signal present, creating signals of the following four frequencies:

1. The local oscillator signal.
2. The received incoming signal.
3. The sum of the above two.

4. The difference between the above two.

The IF load impedance T_{1} is tuned here to the difference between the oscillator and incoming signal frequencies. This frequency is called the intermediate frequency (I.F.) and is conventially $455 \mathrm{KC} / \mathrm{S}$. This frequency will be maintained fixed since C_{Δ} and C_{B} are mechanically geared (ganged) together. R_{4} and C_{8} make up a filter to prevent undesirable currents flowing through the collector circuit. C_{2} essentially bypasses the biasing and stabilizing resistor R_{1} to ground. Since the emitter is grounded and the incoming signal injected into the base, the mixer section operates in the "grounded emitter" configuration.

IF AMPLIFIERS

A typical circuit for a transistor IF amplifier is shown by Figure 8.4.

FIGURE 8.4
The collector current is determined by a voltage divider on the base and a large resistance in the emitter. The input and output are coupled by means of tuned IF transformers. The .05 capacitors are used to prevent degeneration by the resistance in the emitter. The collector of the transistor is connected to a tap on the output transformer to provide proper matching for the transistor and also to make the performance of the stage relatively independent of variations between transistors of the same type. With a rate-grown NPN transistor such as the 2N293, it is unnecessary to use neutralization to obtain a stable IF amplifier. With PNP alloy transistors, it is necessary to use neutralization to obtain a stable amplifier and the neutralization capacitor depends on the collector capacitance of the transistor. The gain of a transistor IF amplifier will decrease if the emitter current is decreased. This property of the transistor can be used to control the gain of the IF amplifier so that weak stations and strong stations will produce the same audio output from a radio. Typical circuits for changing the gain of an IF amplifier in accordance with the strength of the received signal are explained in the A.V.C. section of this chapter.

AUTOMATIC VOLUME CONTROL CIRCUITS

A.V.C. is a system which automatically varies the total amplification of the signal in a radio receiver with changing strength of the received signal carrier wave.

From the definition given, it would be correctly inferred that a more exact term to describe the system would be automatic gain control (A.G.C.).

Since broadcast stations are at different distances from a receiver and there is a great deal of variation in transmitted power from station-to-station, the field strength around a receiver can vary by several orders of magnitude. Thus, without some sort of automatic control circuit, the output power of the receiver would vary considerably when tuning through the frequency band. It is the purpose of the A.V.C. or A.G.C. circuit to maintain the output power of the receiver constant for large variations of signal strengths.

Another important purpose of this circuit is its so-called "anti-fading" properties. The received signal strength from a distant station depends on the phase and amplitude relationship of the ground wave and the sky wave. With atmospheric changes this relationship can change, yielding a net variation in signal strength. Since these changes may be of periodic and/or temporary nature, the A.V.C. system will maintain the average output power constant without constantly adjusting the volume control.

The A.V.C. system consists of taking, at the detector, a voltage proportional to the incoming carrier amplitude and applying it as a negative bias to the controlled amplifier thereby reducing its gain.

In tube circuits the control voltage is a negative going DC grid voltage creating a loss in transconductance (Gm).

In transistor circuits various types of A.V.C. schemes can be used:
EMITTER CURRENT CONTROL
As the emitter current of a transistor is reduced (from 1.0 ma to .1 ma for instance) various parameters change considerably (see Figure 8.5).

FIGURE 8.5
The effect of these changes will be twofold:

1. A change in maximum available gain and
2. A change in impedance matching since it can be seen that both $h_{\text {on }}$ and $h_{i b}$ vary radically.
Therefore, a considerable change in power gain can be obtained as shown by Figure 8.6.

FIGURE 8.6
On the other hand, as a result of I_{co} (collector leakage current) some current always flows, thus a transistor can be controlled only up to a point and cannot be "cut-off" completely. This system yields generally fair control and is, therefore, used more than others. For performance

FIGURE 8.7

AUXILIARY A.V.C. SYSTEMS

Since most A.V.C. systems are somewhat limited in performance, to obtain improved control, auxiliary diode A.V.C. is sometimes used. The technique used is to shunt some of the signal to ground when operating at high signal levels, as shown by Figure 8.8.

FIGURE 8.8
In the circuit of Figure 8.8 diode CR_{1} is back－biased by the voltage drops across R_{1} and R_{v} and represents a high impedance across T_{1} at low signal levels．As the signal strength increases，the conventional emitter current control A．V．C．system creates a bias change reducing the emitter current of the controlled stage．This current reduction coupled with the ensuing impedance mismatch creates a power gain loss in the stage． As the current is further reduced，the voltage drop across R_{2} becomes smaller thus changing the bias across CR_{1} ．At a predetermined level CR_{1} becomes forward biased， constituting a low impedance shunt across T_{1} and creating a great deal of additional A．V．C．action．This system will generally handle high signal strengths as can be seen from Figure 8．7．Hence，almost all radio circuit diagrams in the circuit section of this manual use this system in addition to the conventional emitter current control．

DETECTOR STAGE

In this stage（see Figure 8．9），use is made of a slightly forward biased diode in order to operate out of the square law detection portion of the I－E characteristics．This stage is also used as source of AGC potential derived from the filtered portion of the signal as seen across the volume control（R9）．This potential，proportional to the signal level，is then applied through the AGC filter network C4，R7 and C5 to the base of the 1st IF transistor in a manner to decrease collector current at increasing signal levels． R8 is a bias resistor used to fix the quiescent operating points of both the 1st IF and the detector stage，while $\mathbf{C 6}$ couples the detected signal to the audio amplifier．（See Chapter 6 on Audio Amplifiers．）

FIGURE 8.9

REFLEX CIRCUITS

"A reflex amplifier is one which is used to amplify at two frequencies - usually intermediate and audio frequencies."*

The system consists of using an I.F. amplifier stage and after detection to return the audio portion to the same stage where it is then amplified again. Since in Figure 8.10,

BLOCK DIAGRAM OF RECENER
FIGURE 8.10
two signals of widely different frequencies are amplified, this does not constitute a "regenerative effect" and the input and output loads of these stages can be split audio - I.F. loads. In Figure 8.11, the I.F. signal ($455 \mathrm{Kc} / \mathrm{s}$) is fed through T2 to the detector circuit CR1, C3 and R5. The detected audio appears across the volume control R5 and is returned through C 4 to the cold side of the secondary of T 1 .

FIGURE 8.11
Since the secondary only consists of a few turns of wire, it is essentially a short circuit at audio frequencies. Cl bypasses the I.F. signal otherwise appearing across the parallel combination of R1 and R2. The emitter resistor R3 is bypassed for both audio and I.F. by the electrolytic condenser C2. After amplification, the audio signal appears across R4 from where it is then fed to the audio output stage. C5 bypasses R4 for I.F. frequencies and the primary of T 2 is essentially a short circuit for the audio signal.

The advantage of "reflex" circuits is that one stage produces gain otherwise requiring two stages with the resulting savings in cost, space, and battery drain. The disadvantages of such circuits are that the design is considerably more difficult, although once a satisfactory receiver has been designed, no outstanding production difficulties should be encountered. Other disadvantages are a somewhat higher amount of playthrough (i.e. signal output with volume control at zero setting), and a minimum volume effect. The latter is the occurrence of minimum volume at a volume control setting slightly higher than zero. At this point, the signal is distorted due to the balancing out of the fundamentals from the normal signal and the out-of-phase playthrough component. Schematics of complete radios are on pages 73 through 83.

[^0]
COMPLETE RADIO RECEIVER CIRCUIT DIAGRAMS

DIRECT COUPLED

 VEST POCKET RADIO FIGURE 8.12

SIMPLE RADIO RECEIVER
FIGURE 8.13

TWO TRANSISTOR
RADIO RECEIVER
FIGURE 8.14

* for further component information see page 226

n_{1},	1500 о\%m
$\mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{Ra}_{3}$.	10.000 omm
H_{3}.	47,000 0 Wm
n_{4},	2700 mm
${ }^{6} 5$	330 chm
${ }^{1} 7$.	330,000 014
$\boldsymbol{n}_{10,000 \mathrm{ONL}}$	VOLUME CONTROL 1/2w Avovo TAPER
n_{10}.	000 mm
n_{11}.	0 omm
m_{12}	1000 mm

NOMIWAL SEMSITIVITY: 600 MICROVOLTS/METER
(MEASURED WITH 5 MILLIWATTS REFERENCE POWER OUTPUT)
maximum pomer oulpur: 75 milliwatts
selectivity at -bit: $10 \mathrm{ke} / \mathrm{s}$
selectivity ar -60d : $120 \mathrm{ke} / \mathrm{s}$
TOTAL BATTERY DHAIN : 17.5 MILLIAMPS

THREE TRANSISTOR REFLEX RECEIVER
FIGURE 8.16

$R_{1}, R_{7}, R_{9},-190000+1 \mathrm{~m}^{2}$
R_{12}, -VOLUME CONTROL $10,000 \mathrm{OHM}$ 1/2w AUDIO TAPER R_{2}.- $27,000 \mathrm{OH}$
,000 OHM

$$
R_{0}
$$ $\mathrm{R}_{3}-1500 \mathrm{OHM}$

rex ent
$\mathrm{R}_{4}, \mathrm{R}_{11},-470$ OHM
$R_{5},-39,000$ OH
R_{6}. - 330 OHM
R_{8}. - 1800 OHM
$\mathrm{R}_{10,}$ - 68,000 OH1
$\begin{array}{r}R_{13} \\ \times \mathrm{R}_{14}-1000 \mathrm{OHM} \\ \hline\end{array}$

* $\mathrm{R}_{14}=5600 \mathrm{OHM}$
* R_{15},- 68 OHM
* $\Delta C_{1,-190}$ -
$\left.\begin{array}{l}* \Delta C_{1}-190.6 \\ * \Delta C_{2}-89.3\end{array}\right\}$ R/C MODEL 242

$$
\begin{aligned}
& c_{1}-.02 \mu \mathrm{~d} \\
& C_{2}, c_{3},-.01 \mu f d
\end{aligned}
$$

TR1,-G.E. 2Nioat CONVERTER
TR 2 , TR 3 , -G.E. 2N293 IST A 2NO I.F.

$$
* L_{1},-435 \mu h, \pm 10 \%
$$

$$
\begin{aligned}
& * L_{1}-435 \mu h, \pm 10 \% \\
& 250 \mu h_{1} \pm 10 \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } L_{2}, C_{1} 250 \mu h_{1} \pm 10 \% \\
& C R_{1}, C_{2}, \text { DRIIT, W64G,OR CKTO6A OR EQUIV. }
\end{aligned}
$$

NOMINAL SENSITIVITY : 500 MICROVOLTS / METER (MEASURED WITH 5 MILLIWATTS REFERENCE POWER OUTPUT) MAX MNM POWER OUTPUT SELECTIVITY AT $-6 d \mathrm{~b}$ | SELECTIVITY AT -60db |
| :--- |
| TOTAL BATTERY ORAIN |
| TR |

* for further component information see page 226

FOUR TRANSISTOR SUPERHETERODYNE BROADCAST RECEIVER

FOUR TRANSISTOR SUPERHETERODYNE BROADCAST RECEIVER

FOUR TRANSISTOR SIX VOLT REFLEX RECEIVER
FIGURE 8.19

FIVE TRANSISTOR SUPERHETERODYNE BROADCAST RECEIVER
FIGURE 8.21

NOMINAL SENSITIVITY: 250 MICROVOLTS / METER (MEASURED WITH 5 MW REFERENCE POWER OUTPUT) MAXIMUM POWER OUTPUT: 100 MILLIWATTS. | SELECTIVITY AT -6 db |
| :--- |
| SELECTIVITY AT -60 db |
| $65.0 \mathrm{KC} / \mathrm{S} / \mathrm{S}$ |

ZERO SIGNAL BATTERY DRAIN: 7.0 MILLIAMPS.

* for further component information see page 226

SIX TRANSISTOR THREE VOLT BROADCAST RECEIVER CAN EE POWERED EY SUN OR FLASHLIGHT BATTERIES FIGURE 8.22

SIX TRANSISTOR SIX VOLT BROADCAST RECEIVER

* 4 ———— $435 \mu \mathrm{~h} \pm 10 \%$
$\mathrm{R}_{18}, \mathrm{R}_{19},-8.2 \mathrm{OHM}$
$\mathrm{C}_{1},-\mathrm{C}_{2}-.02 \mu \mathrm{fd}$
$\mathrm{C}_{2}, \mathrm{C}_{3},-01 \mu \mathrm{fd}$
$\mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8},-05 \mu \mathrm{fd}$
$\mathrm{C}_{5}, \mathrm{C}_{10}-6 \mu \mathrm{fd}, 12 \mathrm{~V}$
$\mathrm{C}_{9},-.05 \mu \mathrm{fd}$
${ }^{\mathrm{C}_{9}}$, $.003 \mu \mathrm{fd}$
$\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14},-50 \mu \mathrm{fd}, 12 \mathrm{~V}$
$\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14},-50 \mu$ -
TR R_{1}, NiOB
CONVERTER
TR2.

TR
TR2.
TR3.
TR \qquad G.E. 2N293 IST IF
TR_{4}. \qquad G.E. 2NI69 OR 2NH2। 2MOIF

TR, G.E. 2NI92 OR 2N 324 ORIVER
TR $\mathrm{R}_{5}, \mathrm{TR}_{6}$, - G.E. 2NIB8A OR 2N32O AUDIO

* T_{1}, - $5,000 / 26000 \mathrm{CT}$
* T_{2} - $2500 \mathrm{CT} / \mathrm{V}$. C .
* L 2 - $250 \mu \mathrm{H}+10 \%$

CR1, CR2, - DRIIT, IN64G, OR CK706A OR EQUIV.
$\left.\begin{array}{l}* \Delta C_{1},-190.6 \\ * \Delta C_{2}-89.3\end{array}\right\}$ R/C MODEL 242

* for further component information see page 226

SIX TRANSISTOR NINE VOLT SUPERHETERODYNE BROADCAST RECEIVER
FIGURE 8.24

9. TRANSISTOR RADIO SERVICING TECHNIQUES

The major function of a radio receiver is to pick up modulated electromagnetic energy and transform its intelligence (modulation) into acoustical energy. Most modern receivers are of the "Superheterodyne" type, and consist of an Autodyne Converter or Oscillator-Mixer, one or two stages of IF Amplification, a Detector (which also provides a source of Automatic Volume Control power), and finally, one or more stages of Audio Amplification.

The components making up the AC circuitry of these stages include the antenna, oscillator coil, IF and audio transformers, tuning, coupling or bypass capacitors, and the speaker. Troubles in these components can usually be spotted by a DC test after the trouble area has been located by using signal tracing techniques.

Since the transistor is probably the most reliable component in the receiver, it should be the last component to be suspected. This is contrary to the long established rule of thumb used in tube radios, where the tubes are normally checked first. This is especially true in personal portable receivers using subminiature components, i.e., coils using extremely fine wire, electrolytics of extremely small dimension with low voltage ratings, etc. Because of their reliability, transistors are generally soldered into the circuit in printed circuit transistor radios. Removing and testing each transistor, as usually done in a tube set, will not only unnecessarily subject the transistor to high peak heating, but will probably damage some other component, particularly the printed circuit board.

Now that the ground rules are laid for a trouble-shooting procedure, proceed with it in a logical sequence.

First determine whether the battery voltage under load is high enough to operate the receiver. Although most receivers are designed to operate down to one-half the battery voltage, severe distortion, low sensitivity and reduced power output, as well as possible "motorboating", may result from a low supply voltage. Also make a quick visual inspection to locate possible loose, dirty, or intermittent battery, speaker, or antenna connections. The set can now be analyzed further.

The fastest trouble-shooting technique is to inject an appropriate signal into each transistor base going from speaker to antenna. Starting at the audio stages (the volume control, for instance), apply a 400 or 1000 cycle audio signal. If a clean sine-wave with adequate power output appears at the speaker as indicated by an oscilloscope presentation or listening test, both audio circuits and speaker are in operating condition. In this event take an RF/IF generator and apply a $455 \mathrm{Kc} / \mathrm{s}$ signal (30% modulation 400 or $1000 \mathrm{c} / \mathrm{s}$) to the high frequency section of the receiver. As soon as the applied signal is not passed by a stage of amplification, this stage should be investigated on a DC basis. Note: Care must be taken that the generator's leads have a series DC blocking condenser in order not to change the bias condition in the circuit under investigation.

As a first check, it should be determined that both the magnitude and polarity of the supply voltage are appropriately applied. If NPN transistors are used, the collector will be positive with respect to emitter and base. The latter two will be very close voltage-wise, the base being somewhat more positive than the emitter. The opposite polarity applies to PNP transistors.

Figure 9.1 shows collector current vs. base to emitter bias voltage. Notice that a very small increase in $V_{b e}$ produces a large increase in collector current. Thus, there will generally be from .1 to .2 volts between the base and emitter. Either the positive or negative side of the battery may be grounded, especially in sets using both NPN and PNP transistors.

FIGURE 9.1

The next step is to determine bias current. Since base, emitter and collector current are dependent on each other, it generally suffices to measure only one, the collector current for instance. This should be almost equal to the emitter current while the base current, being the difference between the two ($\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{E}}-\mathrm{I}_{\mathrm{c}}$), will generally be very small. Looking at Figure 8.6, it appears that since power gain is maximum between 1.5 and 3.0 ma , most stages will operate in this region. Actually, most RF/IF stages may have operating points down to .5 ma without serious loss of gain. An easy way to measure emitter current in most circuits is to measure to voltage drop across either the emitter resistor or possibly a collector resistor and calculating the current by Ohm's law. For example, if the emitter resistor is 1000 ohms and the measured voltage drop is 1.0 volt then the emitter current is $\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}}=\frac{1.0}{1000}=.001$ ampere $=1.0 \mathrm{milliamp}$. The insertion of a milliammeter into the emitter circuit will change the bias in the stage and is not a satisfactory testing technique.

If a stage (with the exception of the output stages) operates considerably below .5 ma or above 3.0 ma , it is fairly certain that the stage is operating improperly. Note: Care should be taken to measure these currents in the absence of signal since in AVC controlled stages, current will vary with signal strength.

In an improperly biased circuit, an ohmmeter check of the resistors and capacitors is in order next. If this fails to isolate the problem, the transistor can be replaced. Since it normally takes highly specialized equipment to test transistors (especially high frequency types) it is more practical to test by substitution.

If the trouble is located in the oscillator section of the converter, an IF signal can be passed through the mixer but an RF signal will not produce the necessary IF to get a signal through. In this case it should be determined at once whether the oscillator is operating at all. In the case of the autodyne converter in Figure 8.1, any AC VTVM, such as the Hewlett-Packard $400 \mathrm{C}, \mathrm{D}$, or H , or the Ballantine Models 310-A or 314, is sensitive enough to measure down to 50 mv and cau be connected to the emitter of the converter transistor. If these instruments are not available, use a Vacuum Tube Voltmeter such as the Heathkit Model V-7A on the lowest AC-RMS Scale.

Since the local oscillator operates from $.99-2.075 \mathrm{Mc} / \mathrm{s}$, this VTVM should be provided with an RF probe (Heathkit Model 309C or equivalent). The presence or absence
of oscillator injection voltage can, however, be determined even without the use of such a probe.

The proper magnitude of oscillation should be somewhere between 50 and 500 mv rms, and oscillation must be present over the entire broadcast band. (This can easily be checked by rotating the variable condenser from end to end.) No voltage at this point indicates the absence of oscillator injection, and an ohmmeter check of the oscillator coil should prove it faulty.

To trouble-shoot or align a transistor radio, it is generally helpful to know how much signal strength should be applied at a given stage in order to evaluate the gain of the receiver. The following is a measurement procedure useable for this purpose.

1. An AC VTVM should be connected across the speaker terminals (speaker remaining connected).
2. Applying the signal at any test point, the generator attenuator should be adjusted to get .13 or .4 volts rms reading on the output VTVM. (Since most speaker voice coil impedances are 3.2 ohms, this means that the "reference power output"* is either $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{Z}} \cong \frac{.13^{2}}{3.2} \cong 5 \mathrm{mw}$ or $\mathrm{P}=\frac{.4^{2}}{3.2}=50 \mathrm{mw}$

In various subminiature sets, however, the voice coil impedance is about 16 ohms** * in which case the reference AC voltage becomes $\mathrm{V}=\sqrt{5 \times 10^{-8} \times 16}$ $\approx .28$ volts rms for 5 mw reference and $V=\vee 50 \times 10^{-3} \times 16 \approx .89$ volts rms for 50 mw reference.
3. The signal can then be applied to any base as shown in Figures 9.2 and 9.3.

AUDIO STAGE MEASUREMENT
 FIGURE 9.2

[^1]By having a reference power output, it is now possible to read the input voltage at the generator and obtain the receiver sensitivity at this point. The sensitivity, the operational condition, and the quality of the receiver under test can now be assessed. This assumes the use of audio and RF generators having calibrated and metered attenuators (like Heathkit Model LG-1). In the absence of this type of equipment, two very simple attenuators can be built for RF/IF and for audio. See Figures 9.4 and 9.5. The attenuation will permit the injection of small signal into any circuit under test while the relatively unsensitive VTVM measures RMS voltages 10 or 100 times larger.

RF/IF DECADE ATTENUATOR
FIGURE 9.4

aUdIo decade attenuator FIGURE 9.5

TYPICAL INPUT VOLTAGES FOR REFERENCE OUTPUT

	Audio Output Base	Audio Driver Base	Detector Base	2nd IF Base	1st IF Base	Converter Base
6 Transistor Radio\#	150 mv	2.5 mv	50 mv	2.5 mv	$50-100 \mu \mathrm{v}$	$5-10 \mu \mathrm{v}$
5 Transistor Radio	20 mv	5.0 mv	50 mv	2.5 mv	$50 \mu \mathrm{v}$	$5-10 \mu \mathrm{v}$
4 Transistor Radio	20 mv	.5 mv	$5-10 \mathrm{mv}$	-	$200 \mu \mathrm{v}$	$10-20 \mu \mathrm{v}$
\#Reference output is 50 mw . all others 5 mw.						

It will be found that sensitivities will vary from set to set because this measurement is only an indication of the order of magnitude of appropriate sensitivities. Even a 5/1 deviation at times can be normal. Deviations larger than $10 / 1$ are strong indications of trouble.

Broadcast Receiver Alignment Procedure:
A conventional set-up procedure is as follows:
a) Connect the output of the IF/RF generator to a radiating loop (Hazeltine \#1150 or equivalent).*

[^2]b) The output meter (AC VTVM) should be connected across the voice coil terminals, the speaker remaining connected.
c) The receiver should be placed one to two feet away from the radiating loop in a plane that optimizes the coupling between the receiving and radiating antennas.
d) Set the volume control of the receiver at maximum volume.
e) Turn the Variable Condenser to the high frequency end of the dial (Gang wide open).
The set is now ready to be aligned.

1. Set the signal generator to $455 \mathrm{Kc} / \mathrm{s}$ and at maximum signal output. At this point there should be considerable output from the receiver.

If the set is operative but does not show enough output, reduce the distance between the receiver antenna and radiating element.

If the output is much larger than the standard reference value (. 4 volts across $3.2 \mathrm{ohms} \approx 50 \mathrm{mw}$), reduce the output of the signal generator.
2. Peak the last IF transformer, then the interstage IF transformer, and finally the 1st IF transformer while maintaining an output voltage close to the reference value by gradually reducing the signal generator output voltage.
3. Repeat the same operation going from the 1st IF to the last IF this time. The IF strip is now aligned.
4. Set the generator frequency to $1630 \mathrm{Kc} / \mathrm{s}$. The variable condenser in the receiver should still be tuned to the high frequency end. Adjust the oscillator "trimmer" for maximum output at this point.
5. Now set the variable condenser to its lowest frequency point (gang fully meshed) and tune the signal generator until output is observed from the set (this should be around $530-540 \mathrm{Kc} / \mathrm{s}$).

Should the low frequency fall below $520 \mathrm{Kc} / \mathrm{s}$ or above $540 \mathrm{Kc} / \mathrm{s}$, the oscillator coil slug should be adjusted to move the low frequency end to $530 \mathrm{Kc} / \mathrm{s}$. If this is done, operation number 4 must be repeated. This means that the set was thoroughly misaligned and it may require repeating operations 4 and 5 two or three times before a full frequency range is obtained.
6. Set the generator to $1400 \mathrm{Kc} / \mathrm{s}$ and tune the receiver in very carefully. Now peak the antenna trimmer. The set is now "tracked" $*($ fully aligned) at $1400 \mathrm{Kc} / \mathrm{s}$.
7. Since it should also be "tracked" at $600 \mathrm{Kc} / \mathrm{s}$,** set the generator to this frequency, tune in the set, and observe whether the sensitivity of the receiver is close to its $1400 \mathrm{Kc} / \mathrm{s}$ value. If this is not the case, then peak the oscillator coil slug (providing the coil is slug tuned) while rocking the gang back and forth around $600 \mathrm{Kc} / \mathrm{s}$. Although this procedure will somewhat reduce the frequency range of the set, it will yield the greatest sensitivity at the tracking points.
8. In case the oscillator coil is not tunable, the variable condenser will have to be "knifed", a procedure of bending the plates on the RF section of the air capacitor, plus realignment, that requires a high degree of experience and is not generally recommended.

[^3]
10. SWITCHING CHARACTERISTICS

A switch is characterized by a high resistance when it is open and a low resistance when it is closed. Transistors can be used as switches. They offer the advantages of no moving or wearing parts and are easily actuated from various electrical inputs. Transistor collector characteristics as applied to a switching application is shown in Figure 10.1. The operating point A at which $\mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{co}} / 1-\alpha$ indicates the transistor's high resistance

COLLECTOR CHARACTERISTICS

FIGURE 10.1
when $I_{B}=O$. Since $1-a$ is a small number, I_{c} may be many times greater than $I_{c o}$. Shorting the base to the emitter results in a smaller I_{c}. If the base to emitter junction is reversed biased by more than .2 v , I_{c} will approach Ico. Reverse biasing achieves the highest resistance across an open transistor switch.

When the transistor switch is turned on, the voltage across it should be a minimum. At operating point B of Figure 10.1, the transistor is a low resistance. Alloy transistors such as the 2 N 525 have about one ohm resistance when switched on. Grown junction transistors, such as the 2 N 167 have approximately 80 ohms resistance which makes them less suitable for high power switching although they are well suited for high speed computer applications. In order that a low resistance be achieved, it is necessary that point B lie below the knee of the characteristic curves. The region below the knee is referred to as the saturation region. Enough base current must be supplied to ensure that this point is reached. It is also important that both the on and off operating points lie in the region below the maximum rated dissipation to avoid transistor destruction. It is permissible, however, to pass through the high dissipation region very rapidly since peak dissipations of about one watt can be tolerated for a few microseconds with a transistor rated at 150 mw . In calculating the I_{B} necessary to reach point B, it is necessary to know how $h_{\text {fe }}$ varies with I_{c}. Curves such as

Figure 10.2 are provided for switching transistors. Knowing $h_{\text {res }}$ from the curve gives $I_{B m!n}$ since $I_{B m \mid n}=\frac{I_{C}}{h_{F B}}$. Generally I_{B} is made two or three times greater than $I_{B m \mid n}$ to allow for variations in $h_{F E}$ with temperature or aging. The maximum rated collector voltage should never be exceeded since destructive heating may occur once a transistor breaks down. Inductive loads can generate injurious voltage transients. These can be avoided by connecting a diode across the inductance to absorb the transient as shown in Figure 10.3.

D. C. BASE CURRENT GAIN ($h_{F E}$) VS COLLECTOR CURRENT

FIGURE 10.2

DIODE USED TO PROTECT TRANSISTOR FROM INDUCTIVE VOLTAGE TRANSIENTS.

FIGURE 10.3

Lighted incandescent lamps have about 10 times their off resistance. Consequently, I_{B} must be increased appreciably to avoid overheating the switching transistor when lighting a lamp.

A typical switching circuit is shown in Figure 10.4. The requirement is to switch a

200 ma current in a 25 volt circuit, delivering 5 watts to the load resistor. The mechanical switch contacts are to carry a low current and be operated at a low voltage to minimize arcing. The circuit shown uses a 2 N 525 . The 1 K resistor from the base to ground reduces the leakage current when the switch is open. Typical values are indicated in Figure 10.4.

TEMPERATURE EFFECTS ON SWITCHING CIRCUITS

At high junction temperatures, Ico can become a problem. In the off condition, both the emitter and collector junctions are generally reverse-biased. As a rule, the bias source has an appreciable resistance permitting a voltage to be developed across the resistance by $I_{c o .}$. The voltage can reduce the reverse bias to a point where the base becomes forward biased and conduction occurs. Conduction can be avoided by reducing the bias source resistance, by increasing the reverse bias voltage or by reducing I_{co} through a heat sink or a lower dissipation circuit design.

The $I_{C o}$ of a transistor is generated in three ways. One component originates in the semiconductor material in the base region of the transistor. At any temperature, there are a number of interatomic energy bonds which will spontaneously break into a hole-electron pair. If a voltage is applied, the hole and electron drift in opposite directions and can be seen as the Ico current. If no voltage is present, the hole and electron eventually recombine. The number of bonds that will break can be predicted theoretically to double about every $10^{\circ} \mathrm{C}$ in germanium transistors and every $6^{\circ} \mathrm{C}$ in silicon. Theory also indicates that the number of bonds broken will not depend on voltage over a considerable voltage range. At low voltages, $I_{c o}$ appears to decrease because the drift field is too small to extract all hole-electron pairs before they recombine. At very high voltages, breakdown occurs.

A second component of Ico is generated at the surface of the transistor by surface energy states. The energy levels established at the center of a semiconductor junction cannot end abruptly at the surface. The laws of physics demand that the energy levels adjust to compensate for the presence of the surface. By storing charges on the surface, compensation is accomplished. These charges can generate an I_{co} component; in fact, in the processes designed to give the most stable $I_{c o}$, the surface energy levels contribute much Ico current. This current behaves much like the base region component with respect to voltage and temperature changes. It is described as the surface thermal component in Figure 10.5.

A third component of I_{co} is generated at the surface of the transistor by leakage across the junction. This component can be the result of impurities, moisture or surface imperfections. It behaves like a resistor in that it is relatively independent of temperature but varies markedly with voltage. Figure 10.5(A) shows the regions which contribute to the three components. Figure 10.5(B) illustrates how the components vary with voltage. It is seen that while there is no way to measure the base region and surface energy state components separately, a low voltage Ico consists almost entirely of these two components. Thus, the surface leakage contribution to a high voltage Ico can be readily determined by subtracting out the low voltage value of Ico.

FIGURE 10.5
Figure $10.5(\mathrm{C})$ shows the variation of I_{co} with temperature. Note that while the surface thermal and base $I_{\text {co }}$ components have increased markedly, the leakage component is unchanged. For this reason, as temperature is changed the high voltage Ico will change by a smaller percentage than the low voltage I_{c}.

Figure 10.6 shows the variation of $I_{c o}$ with temperature and voltage for a number of transistor types. Note that the three curves for the 2 N 396 agree with the principles above and show a leakage current less than one microampere.

The variation of current gain at high temperatures is also significant. Since $h_{F E}$ is defined as $I_{c} / I_{B}, h_{F E}$ depends on $I_{C o}$ since $I_{C} \approx h_{f o}\left(I_{B}+I_{c o}\right)$. If $I_{B}=0$ i.e., if the base is open circuited, a collector current still flows, $I_{c}=h_{f_{t}} I_{c o}$. Thus $h_{r e}$ is infinite when $I_{B}=0$. As base current is applied, the ratio I_{c} / I_{B} becomes more meaningful. If $h_{F E}$ is measured for a sufficiently low I_{c}, then at a high temperature $h_{{ }_{f}} I_{c o}$ will become equal to I_{c}. At this temperature $h_{F E}$ becomes infinite since no I_{B} is required to maintain

Ic. The AC current gain $h_{\text {fe }}$, however, is relatively independent of $I_{c o}$ and generally increases about $2: 1$ from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

(B)

(C)

FIGURE 10.6

The different electrical properties of the base, emitter and collector regions tend to disappear at high temperatures with the result that transistor action ceases. This temperature usually exceeds $85^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ in germanium and silicon transistors respectively.

When a transistor is used at high junction temperatures, it is possible for regenerative heating to occur which will result in thermal run-away and possible destruction of the transistor. For the maximum overall reliability, circuits should be designed to preclude the possibility of thermal run-away under the worst operating conditions. The subject of thermal run-away is discussed in detail in Chapter 5.

In accordance with theory the collector saturation voltage, $\mathrm{V}_{\mathrm{CE}}{ }^{(\mathrm{SAT})}$, decreases linearly with temperature for most transistors. In the case of alloy transistors, this is a result of the increase of I_{co} with temperature which increases the effective base charge at high temperatures. However, transistors which have an appreciable ohmic resistance in series with the collector or silicon transistors which have a low I_{co}, generally exhibit a positive temperature coefficient for $\mathrm{V}_{\mathbf{C E}}{ }^{(S A T)}$.

The base to emitter voltage, V_{BE}, has a negative temperature coefficient which is about 2.0 millivolts per degree Centrigrade for both silicon and germanium transistors. Figure 5.1 shows the emitter to base characteristics of the 2 N 525 at several different temperatures. The series base resistance and emitter resistance ($\mathrm{rb}^{\prime}{ }^{\prime}, \mathrm{re}_{\mathrm{e}}{ }^{\prime}$) have a positive temperature coefficient so that the IR drops across these resistances can offset the normal variation of V_{BE} at high values of base current.

The increase in $\mathrm{V}_{\mathrm{cE}}{ }^{(s A T)}$ and the decrease in V_{BE} at high temperatures can lead to instability in DCTL circuits such as shown in Figure 10.9 and result in operation closer to saturation in circuits such as those shown in Figure 10.11.

A major problem encountered in the operation of switching circuits at low temperatures is the reduction in both the a-c and d-c current gain. Figure 10.7 shows the variation of h_{FE} with temperature for the 2 N 525 and indicates that at $-55^{\circ} \mathrm{C}$ the value of h_{FE} drops to about 50% of its value at $25^{\circ} \mathrm{C}$. Most germanium and silicon transistors show approximately this variation of h_{FE} and h_{fe} with temperature. In the design of switching circuits the decrease of $h_{\text {FE }}$ and the increase of V_{BE} at the lower temperatures must be taken into account to guarantee reliable circuit operation.

POWER DISSIPATION

As with most electrical components, the transistor's range of operating conditions is limited by the transistor power dissipation.

Because the transistor is capable of a very low VCE when it is in saturation it is possible to use load lines which exceed the maximum rated dissipation during the switching transient, but do not exceed it in the steady state. Such load lines can be used safely if the junction temperature does not rise to the runaway temperature during the switching transient. If the transient is faster than the thermal time constant of the junction, the transistor case may be considered to be an infinite heatsink. The junction temperature rise can then be calculated on the basis of the infinite heatsink derating factor. Since the thermal mass of the junctions is not considered, the calculation is conservative.

In some applications there may be a transient over-voltage applied to transistors when power is turned on or when circuit failure occurs. If the transistor is manufactured to high reliability standards, the maximum voltages may be exceeded provided the dissipation is kept within specifications. While quality alloy transistors and grown junction transistors can tolerate operation in the breakdown region, low quality alloy transistors with irregular junctions should not be used above the maximum voltage ratings.

Quality transistors can withstand much abuse. In experimental work, a 2 N 43 was operated at a peak power of 15 watts and a peak current of 0.5 amperes with no change in characteristics. 2N396 Transistors in an avalanche mode oscillator were operated at peak currents of one ampere. 3N37 Tetrodes rated at 50 milliwatts and 25 milliamperes maximum were operated at a peak power of one watt and a peak current of 200 milliamperes without change in characteristics. Standard production units however should be operated within ratings to ensure consistent circuit performance and long life.

It is generally desirable to heatsink a transistor to lower its junction temperature since life expectancy as well as performance decreases at high temperatures. Heat sinks also minimize thermal fatigue problems, if any exist.

SATURATION

A transistor is said to be in saturation when both junctions are forward biased. Looking at the common emitter collector characteristics shown in Figure 10.8(A) the saturation region is approximately the region below the knee of the curves, since h_{FE} usually falls rapidly when the collector is forward biased. Since all the characteristic curves tend to become superimposed in the saturation region, the slope of the curves is called the saturation resistance. If the transistor is unsymmetrical electrically and most transistors are unsymmetrical - then the characteristics will not be directed towards the zero coordinates but will be displaced a few millivolts from zero. For ease of measurement, generally the characteristics are assumed to converge on zero so that the saturation resistance is $\mathrm{r}_{\mathrm{n}}=\frac{\mathrm{V}_{\mathrm{Cr}}^{(\mathrm{sAT})}}{\mathrm{I}_{\mathrm{C}}}$.

While the characteristic curves appear superimposed, an expanded scale shows that $V_{C E}{ }^{(S A T)}$ depends on I_{B} for any given I_{c}. The greater I_{B} is made, the lower $V_{C E}{ }^{(S A T)}$ becomes until I_{B} is so large that it develops an appreciable voltage across the ohmic emitter resistance and in this way increases $\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$. In most cases the saturation voltage, $\mathrm{V}_{\mathrm{cr}}{ }^{(\mathrm{sAT})}$, is specified rather than the saturation resistance. Figure 10.8(B) showing the collector characteristics in the saturation region, illustrates the small voltage off-set due to asymmetry and the dependence of r_{s} on I_{B}. Note also that r_{s} is a low resistance to both AC and DC.

FIGURE 10.8(A)

FIGURE 10.8(B)

Some circuits have been designed making specific use of saturation. The direct coupled transistor logic (DCTL) flip-flop shown in Figure 10.9 utilizes saturation. In saturation $\mathrm{V}_{\mathrm{CE}}{ }^{(S A T)}$ can be so low that if this voltage is applied between the base and emitter of another transistor, as in this flip-flop, there is insufficient forward bias to cause this transistor to conduct appreciably. The extreme simplicity of the circuit

is self evident and is responsible for its popularity. However, special requirements are placed on the transistors. The following are among the circuit characteristics:

First, the emitter junction is never reverse biased permitting excessive current to flow in the off transistor at temperatures above $40^{\circ} \mathrm{C}$ in germanium. In silicon, however, operation to $150^{\circ} \mathrm{C}$ has proved feasible.

Second, saturation is responsible for a storage time delay, slowing up circuit speed. In the section on transient response we see the importance of drawing current out of the base region to increase speed. In DCTL, this current results from the difference between $\mathrm{V}_{\mathrm{CE}}{ }^{(S A T)}$ and V_{BE} of a conducting transistor. To increase the current, $\mathrm{V}_{\mathrm{CE}}{ }^{(\mathrm{SAT})}$ should be small and r_{b} should be small. However, if one collector is to drive more than one base, r_{b}^{\prime} should be relatively large to permit uniform current sharing between bases since large base current unbalance will cause large variations in transient response resulting in circuit design complexity.

Third, since $\mathrm{V}_{\mathrm{CF}}{ }^{\text {(SAT) }}$ and V_{BE} differ by less than .3 volt, in germanium, stray voltage signals of this amplitude can cause faulty performance. While stray signals can be minimized by careful circuit layout, this leads to equipment design complexity. Silicon transistors with a .7 volt difference between $V_{C E}{ }^{(\mathbb{C A T})}$ and V_{BE} are less prone to being turned on by stray voltages but are still susceptible to turn off signals. This is somewhat compensated for in transistors with long storage time delay since they will remain on by virtue of the stored charge during short turn-off stray signals. This leads to conflicting transistor requirements - long storage time for freedom from noise; short storage time for circuit speed.

Another application of saturation is saturated flip-flops of conventional configuration. Since $\mathrm{V}_{\mathrm{CE}}{ }^{\left({ }^{(s)}{ }^{(T)}\right)}$ is generally very much less than other circuit voltages, saturating the transistors permits the assumption that all three electrodes are nearly at the same potential making circuit voltages independent of transistor characteristics. This yields good temperature stability, and good interchangeability. The stable voltage levels are useful in generating precise pulse widths with monostable flip-flops. The section on flip-flop design indicates the ease with which saturated circuits can be designed.

In general, the advantages of saturated switch design are: (a) simplicity of circuit design, (b) well defined voltage levels, (c) fewer parts required than in non saturating circuits, (d) low transistor dissipation when conducting, and (e) immunity to short
stray voltage signals. Against this must be weighed the reduction in circuit speed. Speed is affected in a number of ways: (a) much higher trigger power is required to turn off a saturated transistor than an unsaturated one, (b) since $V_{C E}{ }^{(S A T)}, h_{F E}$ and $V_{\text {re a }}$ all vary markedly with temperature, circuit speed also depends on temperature.

DIODE COLLECTOR CLAMPING CIRCUIT TO AVOID SATURATION

COLLECTOR CHARACTERISTICS SHOWING LOAD LINE AND OPERATING POINTS

Collector voltage clamp
FIGURE 10.10

A number of techniques are used to avoid saturation. The simplest is shown in Figure 10.10. The diode clamps the collector voltage so that it cannot fall below the base voltage to forward bias the collector junction. Response time is not improved appreciably over the saturated case since I_{C} is not clamped but rises to $h_{F E} I_{B}$. With typical variations of I_{B} and h_{FE} with temperature and life for a standard transistor, I_{C} may vary by as much as $10: 1$. Care should be taken to ensure that the diode prevents saturation with the highest I_{c}. When the transistor is turned off, I_{c} must fall below the value given by $\left(\mathrm{E}_{\mathrm{cc}}-\mathrm{E}_{\mathrm{D}}\right) / \mathrm{R}_{\mathrm{L}}$. before any change in collector voltage is observed. The time required can be determined from the fall time equations in the section on transient response. The diode can also have a long recovery time from the high currents it has to handle. This can further increase the delay in turning off.

Collector current clamp without bias
supply
FIGURE 10.11(A)

A much better way of avoiding saturation is to control I_{B} in such a way that I_{G} is just short of the saturation level. This can be achieved with the circuit of Figure $10.11(\mathrm{~A})$. The diode is connected between a tap on the base drive resistor and the collector. When the collector falls below the voltage at the tap, the diode conducts diverting base current into the collector, preventing any further increase in I_{c}. The voltage drop across R_{2} is approximately $I_{C} R_{2} / h_{F E}$ since the current in R_{2} is I_{B}. Since the voltage drop across the diode is approximately the same as the input voltage to the transistor, V_{ce} is approximately $\mathrm{I}_{\mathrm{C}} \mathrm{R}_{2} / \mathrm{h}_{\mathrm{FE}}$. It is seen that if the load decreases (I_{C} is reduced) or $h_{\text {fe }}$ becomes very high, Vce decreases towards saturation. Where the change in $h_{F E}$ is known and the load is relatively fixed, this circuit prevents saturation.

Collector current using bias supply FIGURE 10.11(B)

To avoid the dependence of V_{Cr} on I_{C} and $\mathrm{h}_{\mathrm{FE}}, \mathrm{R}_{3}$ may be added as in Figure 10.11 (B). By returning R_{3} to a bias voltage, an additional current is drawn through R_{2}. Now $V_{C E}$ is approximately $\left(\frac{I_{C}}{h_{F E}}+I_{3}\right) R_{2} . I_{3}$ can be chosen to give a suitable minimum $V_{C E}$.

Collector current clamp using silicon and germanium diodes FIGURE 10.11 (C)

The power consumed by R_{3} can be avoided by using the circuit of Figure 10.11(C). The silicon diode replaces R_{2}. Since the silicon diode has a forward voltage clrop of approximately .7 volts over a considerable range of current, it acts as a constant voltage source making VCE approximately .7 volts. If considerable base drive is used, it may be necessary to use a high conductance germanium diode to avoid momentary
saturation as the voltage drop across the diode increases to handle the large base drive current.

In applying the same technique to silicon transistors with low saturation resistance, it is possible to use a single germanium diode between the collector and base. While this permits $V_{C E}$ to fall below V_{BE}, the collector diode remains essentially nonconducting since the .7 volt forward voltage necessary for conduction cannot be reached with the germanium diode in the circuit.

The diode requirements are not stringent. The silicon diode need never be back biased, consequently, any diode will be satisfactory. The germanium diode will have to withstand the maximum circuit V_{CE}, conduct the maximum base drive with a low forward voltage and switch rapidly under the conditions imposed by the circuit, but these requirements are generally easily met.

Care should be taken to include the diode leakage currents in designing these circuits for high temperatures. All the circuits of Figure 10.11 permit large base drive currents to enhance switching speed, yet they limit both I_{B} and I_{c} just before saturation is reached. In this way, the transistor dissipation is made low and uniform among transistors of differing characteristics.

It is quite possible to design flip-flops which will be non-saturating without the use of clamping diodes by proper choice of components. The resulting flip-flop is simpler than that using diodes but it does not permit as large a load variation before malfunction occurs. The design procedure for an unclamped non-saturating flip-flop can be found in Transistor Circuit Engineering by R. F. Shea, et al (Wiley).

Stored charge neutralization by capacitor FIGURE 10.12

Another circuit which is successful in minimizing storage time is shown in Figure 10.12. If the input is driven from a voltage source, it is seen that if the input voltage and capacitor are appropriately chosen, the capacitor charge can be used to neutralize the stored charge, in this way avoiding the storage time delay. In practical circuits, the RC time constant in the base necessary for this action limits the maximum pulse repetition rate.

TRANSIENT RESPONSE TIME

The speed with which a transistor switch responds to an input signal depends on the load impedance, the gain expected from the transistor, the operating conditions just prior to the input signal, as well as on the transistor's inherent speed. The following discussion will assume that the collector load resistance is sufficiently small that $2 \pi R_{L} C_{c} f_{a} \ll 1$ where C_{c} is the collector capacitance. If this is not the case, the rise and fall time equations must be multiplied by the correction factor ($1+2 \pi \mathrm{R}_{\mathrm{L}} \mathrm{C}_{\mathrm{C}} \mathrm{f}_{\mathrm{a}}$).

(a) TYPICAL CIRCUIT
$I_{B 1}=I_{B 2} \approx 0.5 \mathrm{ma}$
$I_{C}=10 \mathrm{ma}$
$I_{C} / I_{B 1}<h_{F E}$
(b) WAVEFORM GENERATED AT A BY SWITCH
(c) WAVEFORM AT B SHOWING FORWARD BIAS ON BASE DURING SATURATION
(d) BASE CURRENT WAVEFORM NOTE REVERSE CURRENT I B2 DUE TO BASE BIAS dURING SATURATION
(e) COLLECTOR WAVEFORM SHOWING STANDARD DEFINITIONS OF RESPONSE TIMES

Transient response
FIGURE 10.13

Consider the simple circuit of Figure 10.13(a). Closing and opening the switch to generate a pulse as shown in Figure 10.13(b), gives the other waveforms shown in the figure. When the switch closes, current flows through the 20 K resistor to turn on the transistor. However there is a delay before collector current can begin to flow since the 20 K must discharge the emitter capacitance which was charged to -10 volts prior to closing the switch. Time must also be allowed for the emitter current to diffuse across the base region. A third factor adding to the delay time is the fact that at low emitter current densities current gain and frequency response decrease. The total delay from all causes is called the "delay time" and is measured conventionally from the beginning of the input pulse to the 10% point on the collector waveform as shown in Figure $10.13(e)$. Delay time can be decreased by reducing the bias voltage across the emitter capacitance, and by reducing the base drive resistor in order to reduce the
charging time constant. At high emitter current densities, delay time becomes negligible. Figure 10.14 shows typical delay times for the 2 N 396 transistor.

FIGURE 10.14

The rise time refers to the turn-on of collector current. By basing the definition of rise time on current rather than voltage it becomes the same for NPN and PNP transistors. The collector voltage change may be of either polarity depending on the transistor type. However, since the voltage across the collector load resistor is a measure of collector current, it is customary to discuss the response time in terms of the collector voltage. The theoretical analysis of rise time suggests that a single exponential curve as defined in Figure 10.15 fits the experimental results.

GRAPHICAL ANALYSIS OF RISE TIME
SYMBOLS DEFINED IN FIGURE 109
THE INTERCEPT OF I C AND THE CURVE GIVES IT.
FIGURE 10.15

If the load resistor R_{L} in Figure 10.13(a) is small enough that a current, $\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B}}$, through it will not drive the transistor into saturation, the collector current will rise exponentially to $h_{\mathrm{fe}} \mathrm{I}_{\mathrm{B} 1}$ with a time constant, $\mathrm{h}_{\mathrm{FE}} / 2 \pi \mathrm{f}_{a}$. However, if R_{L} limits the current to
less than $\mathrm{h}_{\mathrm{Fr}} \mathrm{I}_{\mathrm{Bt}}$, the same exponential response will apply except that the curve will be terminated at $I_{C}=\frac{V_{c c}}{R_{L}}$. Figure 10.15 illustrates the case for $I_{C} \approx h_{F E} I_{H} / 2$. Note that the waveform will no longer appear exponential but rather almost linear. This curve can be used to demonstrate the roles of the circuit and the transistor in determining rise time. For a given $h_{F E}$ and f_{a}, it is seen that increasing $h_{F E} I_{B i} / I_{C}$ will decrease rise time by having I_{c} intersect the curve closer to the origin. On the other hand, for a given $I_{B 1}$ and I_{C}, speed will be proportional to f_{a} but nearly independent of $h_{F E}$ since its effect on the time constant is balanced by its effect on the curve amplitude. A useful expression for rise time is $t_{r}=I_{C} / I_{B_{1}} 2 \pi f_{\text {g }}$. It is valid for $I_{C} / I_{B}<h_{F E} / 5$. Since this analysis assumes that $h_{F E}$ and f_{a} are the same for all operating points the calculated results will not fit experimental data where these assumptions are invalid. Figure 10.16 shows that the rise time halves as the drive current doubles, just as the expression for t_{r} suggests. However the calculated value for t_{r} is in error by more than 50%. This shows that even though the calculations may be in error, if the response time is specified for a circuit, it is possible to judge fairly accurately how it will change with circuit modifications using the above equations.

FIGURE 10.16

Storage time is the delay a transistor exhibits before its collector current starts to turn off. In Figure 10.13, R_{B} and R_{L} are chosen so that R_{L} rather than h_{Fs} will limit the collector current. The front edge of the collector waveform, Figure 10.13(e), shows the delay time followed by the nearly linear risetime. When the collector voltage falls below the base voltage, the base to collector diode becomes forward biased with the result that the collector begins emitting. By definition, the transistor is said to be in saturation when this occurs. This condition results in a stored charge of carriers in the base region. Since the flow of current is controlled by the carrier distribution in the base, it is impossible to decrease the collector current until the stored carriers are removed. When the switch is open in Figure 10.13, the voltage at A drops immediately to -10 volts. The base voltage at B however cannot go negative since the transistor is kept on by the stored carriers. The resulting voltage across R_{B} causes the carriers to flow out of the base to produce a current $\mathrm{I}_{\mathrm{B} 2}$. This is illustrated in Figure 10.13 (c) and 10.13 (d). As soon as the stored carriers are swept out, the transistor starts
to turn off; the base voltage dropping to -10 volts and the base current decreasing to zero. The higher $I_{B_{1}}$ is, the greater the stored charge; the higher $I_{B_{2}}$ is, the faster it is swept out. Since both junctions are forward biased during storage tine, the inverse characteristics of the transistor are involved. The inverse characteristics are obtained by interchanging the collector and emitter connections in any test circuit. They are identified by the subscript I following the parameter, e.g., h_{FE} is the inverse DC beta. Figure 10.17 shows a curve which is useful for calculating storage time graphically. The maximum value is $h_{F E}\left(\mathrm{I}_{\mathrm{B} 1}+\mathrm{I}_{\mathrm{B} 2}\right)$ where $\mathrm{I}_{\mathrm{B} 2}$ is given the same sign as $\mathrm{I}_{\mathrm{B} 1}$, ignoring the fact it flows in the opposite direction. The time constant of the curve involves the forward and inverse current gain and frequency cut-off. The storage time corresponds to the time required to reach the current $\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{BI}}-\mathrm{I}_{\mathrm{c}}$. It can be seen that for a given frequency response, high h_{F} gives long storage time. The storage time also decreases as $\mathrm{I}_{\mathrm{B} 2}$ is increased or $\mathrm{I}_{\mathrm{B} 1}$ is decreased.

FIGURE 10.17

The time constant for a very unsymmetrical transistor is approximately $\frac{h_{F E I}+1}{2 \pi f_{a i}}$. It is seen that the generally specified normal $h_{\text {FE }}$ and f_{a} are of little use in determining storage time. For a symmetrical transistor, the time constant is approximately $\frac{h_{F E}+1}{2 \pi f_{a}}$. It is possible for a symmetrical transistor to have a longer storage time than

FIGURE 10.18
an unsymmetrical transistor with the same h_{FE} and f_{a}. Figure 10.18 shows the dependence of storage time on I_{BI} and $\mathrm{I}_{\mathrm{B} 2}$ for the 2 N 396 transistor.

GRAPHICAL ANALYSIS OF FALL TIME THE INTERCEPT OF IC AND THE CURVE GIVES i_{f}.

FIGURE 10.19

The collector current fall time can be analyzed in much the same manner. Figure 10.19 indicates the exponential curve of amplitude $\mathrm{I}_{\mathrm{C}}+\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B} 2}$, and a time constant, $h_{F E} / 2 \pi f_{a}$. The fall time is given by the time it takes the exponential to reach I_{c}. If $\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B} 2} \gg \mathrm{I}_{\mathrm{C}}$, fall time is given by the expression,

$$
t_{F}=\frac{1}{2 \pi f_{a}} \frac{h_{F E} I_{c} / I_{B 2}}{h_{F E}+I_{c} / I_{B 2}}
$$

As $h_{r E}$ becomes large, this expression reduces to,

$$
t_{\mathbf{F}}=\frac{1}{2 \pi f_{a}} \frac{I_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}
$$

which is identical to the expression for t_{r} except that $I_{B 2}$ replaces $I_{B 1}$. Figure 10.20 shows typical fall time measurements for a 2 N396.

FIGURE 10.20

11. BASIC COMPUTER CIRCUITS

Computers are generally classified as either analog or digital. An example of an analog computer is the slide rule where the numerical values involved in the calculations are represented by the distance along the scales of the slide rule. For the slide rule, distance is the analog of the numerical values. In an electronic analog computer the voltage or current in the circuit is used as the analog of the numerical values involved in the calculation. Analog computers are used primarily in cases where minimum cost is important and high accuracy is not required.

In a digital computer the numerical values change in discrete steps rather than continuously as in an analog computer. An example of a digital computer is the ordinary desk calculator or adding machine. In an electronic digital computer numerical values involved in the calculation are represented by the discrete states of flip-flops and other switching circuits in the computer. Numerical calculations are carried out in digital computers according to the standard rules of addition, subtraction, multiplication and division. Digital computers are used primarily in cases where high accuracy is required such as in standard accounting work. For example, most desk calculators are capable of giving answers correct to one part in one million, but a slide rule (analog computer) would have to be about $1 / 6$ of a mile long to be read to the same accuracy.

The transistor's small size, low power requirements and inherent reliability have resulted in its extensive use in digital computers. Special characteristics of the transistor such as low saturation resistance, low input impedance, and complementary NPN and PNP types, have permitted new types of digital circuits which are simple, efficient and fast. Computers operating at speeds of 5 megacycles are a commercial reality, and digital circuits have been proved feasible at 160 megacycles.

This chapter offers the design engineer practical basic circuits and design procedures based on proven techniques and components. Flip-flops are discussed in detail because of their extensive use in digital circuits.

FLIP-FLOP DESIGN PROCEDURES

SATURATING FLIP-FLOPS

The simplest flip-flop possible is shown in Figure 10.9, however, for standard transistor types the circuit in Figure 11.1(A) is preferable at moderate temperatures. We shall refer to the conducting and non-conducting transistors as the on and off

SATURATED FUP-FLOPS
transistors respectively. For stability, the circuit depends on the low collector to emitter voltage of the saturated on transistor to reduce the base current of the off transistor to a point where the circuit gain is too low for regeneration. The 220Ω emitter resistor can be removed if emitter triggering is not used. By adding resistors from base to ground as in Figure 11.1(B), the off transistor has both junctions reverse biased for greater stability. While the 33 K resistors divert some of the formerly available base current, operation no longer depends on a very low saturation voltage consequently less base current may be used. Adding the two resistors permits stable operation beyond $50^{\circ} \mathrm{C}$ ambient temperature.

SATURATED FUP-FLOP
 FIGURE 11.1 (C)

The circuit in Figure $11.1(\mathrm{C})$ is stabilized to $100^{\circ} \mathrm{C}$. The price that is paid for the stability is (1) smaller voltage change at the collector, (2) more battery power consumed, (3) more trigger power required, (4) a low I_{co} transistor must be used. The capacitor values depend on the trigger characteristics and the maximum trigger repetition rate as well as on the flip-flop design.

By far, the fastest way to design saturating flip-flops is to define the collector and emitter resistors by the current and voltage levels generally specified as load requirements. Then assume a tentative cross-coupling network. With all components specified, it is easy to calculate the on base current and the off base voltage. For example, the circuit in Figure 11.1(B) can be analyzed as follows. Assume $\mathrm{V}_{\mathrm{BE}}=.3$ volt and $\mathrm{V}_{\mathrm{cr}}=$.2 volt when the transistor is on. Also assume that $V_{E B}=.2$ volts will maintain the off transistor reliably cut-off. Transistor specifications are used to validate the assumptions.
I. Check for the maximum temperature of stability.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}}=\frac{\mathrm{R}_{1} \mathrm{~V}_{\mathrm{CC}}}{\mathrm{R}_{1}+\mathrm{R}_{+}}=\frac{220}{2200+220}(25)=2.3 \text { volts } \\
& \mathrm{V}_{\mathrm{C} \text { on }}=\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{CE} \text { on }}=2.3+.2=2.5 \text { volts }
\end{aligned}
$$

Assuming no Ico, the base of the off transistor can be considered connected to a potential,

$$
\begin{aligned}
\mathrm{V}_{\mathrm{B}}^{\prime} & =\mathrm{V}_{\mathrm{C} \text { on }} \frac{\mathrm{R}_{3}}{\mathrm{R}_{-}+\mathrm{R}_{3}} \text { through a resistor } \mathrm{R}_{\mathrm{B}}^{\prime}=\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{2}+\mathrm{R}_{3}} \\
\mathrm{~V}_{\mathrm{B}}^{\prime} & =\frac{(2.5)(33 \mathrm{~K})}{(42 \mathrm{~K}+33 \mathrm{~K})}=1.1 \text { volts } \\
\mathrm{R}_{\mathrm{B}}^{\prime} & =\frac{(33 \mathrm{~K})(42 \mathrm{~K})}{75 \mathrm{~K}}=18.5 \mathrm{~K}
\end{aligned}
$$

The $I_{c o}$ of the off transistor will flow through R_{b} reducing the base to emitter potential. If the I_{co} is high enough, it can forward bias the emitter to base junction causing the off transistor to conduct. In our example, $\mathrm{V}_{\mathrm{E}}=2.3$ volts and $\mathrm{V}_{\mathrm{Eb}}=.2$ volts will maintain off conditions. Therefore, the base potential can rise from 1.1 volts to 2.1 volts ($2.3-.2$) without circuit malfunction. This potential is developed across \mathbf{R}_{B} by $\mathrm{I}_{\mathrm{co}}=\frac{2.1-1.1}{18.5 \mathrm{~K}}=54 \mu \mathrm{a}$. A germanium transistor with $\mathbf{I}_{\mathrm{co}}=10 \mu \mathrm{a}$ at $25^{\circ} \mathrm{C}$ will not exceed $54 \mu \mathrm{a}$ at $50^{\circ} \mathrm{C}$. If a higher operating temperature is required, R_{2} and R_{3} may be decreased and/or R_{\star} may be increased.
II. Check for sufficient base current to saturate the on transistor.

$$
\mathrm{V}_{\mathrm{B} \text { on }}=\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{BE} \text { on }}=2.3+.3=2.6 \text { volts }
$$

The current through $\mathrm{R}_{3}=\mathrm{I}_{3}=\frac{2.6 \mathrm{v}}{33 \mathrm{~K}}=.079 \mathrm{ma}$
The current through R_{1} and R_{2} in series is $I_{2}=\frac{V_{C C}-V_{B \text { on }}}{R_{1}+R_{2}}=\frac{25-2.6}{42 K+2.2 K}$

$$
=.506 \mathrm{ma}
$$

The available base current is $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{2}-\mathrm{I}_{3}=.43 \mathrm{ma}$
The collector current is $I_{c}=\frac{V_{c c}-V_{c} \text { on }}{R_{1}}=\frac{25-2.5}{2.2 \mathrm{~K}}=10.25 \mathrm{ma}$
The transistor will be in saturation if h_{FE} at 10 ma is greater than

$$
\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{B}}}=\frac{10.25}{.43}=24
$$

If this circuit were required to operate to $-55^{\circ} \mathrm{C}$, allowance must be made for the reduction of hes at low temperatures. The minimum allowable room temperature $h_{F E}$ should be 50% higher or $h_{\text {FE } \mathrm{min}}=36$.

Generally it is not necessary to include the effect of $I_{c o}$ flowing through R_{1} when calculating I_{2} since at temperatures where I_{co} subtracts from the base drive it simultaneously increases $h_{\text {Fe. }}$. If more base drive is required, R_{2} and R_{3} may be decreased. If their ratio is kept constant, the off condition will not deteriorate, and so need not be rechecked.
III. Check transistor dissipation to determine the maximum junction temperature. The dissipation in the on transistor is

$$
V_{\mathrm{BE} \text { on }} I_{\mathrm{B}}+\mathrm{V}_{\mathrm{CE} \text { on }} \mathrm{I}_{\mathrm{C}}=\frac{(.3)(.43)}{1000}+\frac{(.2)(10.25)}{1000}=2.18 \mathrm{mw}
$$

The dissipation in the off transistor resulting from the maximum I_{CO} is

$$
\mathrm{V}_{\mathrm{CB}} \mathrm{I}_{\mathrm{CO}} \approx-\frac{(25)(55)}{10^{4}}=1.4 \mathrm{mw}
$$

Generally the dissipation during the switching transient can be ignored at speeds justifying saturated circuitry. In both transistors the junction temperature is within $1^{\circ} \mathrm{C}$ of the ambient temperature if transistors in the $2 \mathrm{~N} 394-97$ or $2 \mathrm{~N} 524-27$ series are used.

NON-SATURATED FLIP-FLOP DESIGN

The abundance of techniques to prevent saturation makes a general design procedure impractical if not impossible. While it is a simple mattcr to design a flip-flop as shown above, it becomes quite tedious to check all the worst possible combinations of component change to ensure manufacturability and long term reliability. Often the job is assigned to a computer which calculates the optimum component values and tolerances. While a number of flip-flop design procedures have been published, they generally make simplifying assumptions concerning leakage currents and the voltages developed across the conducting transistors.

CIRCUIT CONFIGURATION FOR NON-SATURATING
FLIP-FLOP DESIGN PROCEDURE
Characteristics:
Trigger input at points E
Trigger steering by D_{2} and R_{5}
Collector clamping by D_{1} and R_{3}
Connect points A, B, C, D, E as shown in Figure 11.3 to get counter or shift register operation
C 1 and C2 chosen on basis of speed requirements

FIGURE 11.2 (A)
The design procedure described here is for the configuration in Figure 11.2(A). No simplifying assumptions are made but all the leakage currents and all the potentials are considered. The design makes full allowance for component tolerances, voltage fluctuations, and collector output loading. The anti-saturation scheme using one resistor (R3) and one diode (D1) was chosen because of its effectiveness, low cost and simplicity. The trigger gating resistors (R5) may be returned to different collectors to get different circuit functions as shown in Figure 11.3. This method of triggering offers the trigger sensitivity of base triggering and the wide range of trigger amplitude permissible in collector triggering. The derivation of the design procedure would require much space, therefore for conciseness, the procedure is shown without any substantiation. The procedure involves defining the circuit requirements explicitly then determining the transistor and diode characteristics at the anticipated operating points. A few astute guesses of key parameters yield a fast solution. However, since the procedure deals with only one section of the circuit at a time, a solution is readily reached by cut and try methods without recourse to good fortune. A checking procedure permits verification of the calculations. The symbols used refer to Figure 11.2(A) or in some cases are used only to simplify calculations. A bar over a symbol denotes its maximum value; a bar under it, its minimum. The example is based on polarities associated with NPN transistors for clarity. The result is that only E_{2} is negative. While the procedure is lengthly, its straightforward steps lend themselves to computation by technically unskilled personnel and the freedom from restricting assumptions guarantees a working circuit when a solution is reached. The circuit designed by this procedure is shown in Figure 11.2(B).

NON-SATURATED FUP-FLOP
FIGURE 11.2 (B)

The same procedure can be used to analyze existing flip-flops of this configuration by using the design check steps.

(A) FLIP-FLOP

INPUT

(B) INTERCONNECTION AS COUNTER

(C) INTERCONNECTION AS SHIFT REGISTER

STEP	DEFINITION OF OPERATION	SYMBOL	SAMPLE DESIGN FOR 2N396 TRANSISTOR
(A)	Circuit Requirements and Device Characteristics		
1	Assume maximum voltage design tolerance	Se	Let $\Delta_{\mathrm{e}}= \pm 5 \%$
2	Assume maximum resistor design tolerance	Δ_{r}	Let $\Delta_{r}= \pm 7 \%$ (assuming $\pm 5 \%$ resistors)
3	Assume maximum ambient temperature	$\mathrm{T}_{\text {A }}$	Let $\mathrm{T}_{\mathrm{s}}=40^{\circ} \mathrm{C}$
4	Assume maximum load current out of the off side	Io	Let $\mathrm{I}_{0}=1 \mathrm{ma}$
5	Assume maximum load current into the on side	I_{1}	Let $\mathrm{I}_{\mathbf{1}}=0.2 \mathrm{ma}$
6	Estimate the maximum required collector current in the on transistor	I_{1}	Let $\mathrm{I}_{1} \leq 17.5 \mathrm{ma}$
7	Assume maximum design I_{co} at $25^{\circ} \mathrm{C}$		From spec sheet $\mathrm{I}_{\text {co }}<6 \mu \mathrm{a}$
8	Estimate the maximum junction temperature	Ts	Let $\mathrm{T}_{\mathrm{J}}=60^{\circ} \mathrm{C}$
9	Calculate I_{co} at T_{J} assuming I_{co} doubles every $10^{\circ} \mathrm{C}$ or 	I_{2}	$\mathrm{I}_{2}=6 \mathrm{e}^{.07 \mathrm{~T}_{1}}=71 \mu \mathrm{a}$; Let $\mathrm{I}_{2}=100 \mu \mathrm{a}$
10	Assume the maximum base leakage current is equal to the maximum I_{co}	I_{3}	Let $\mathrm{I}_{3}=100 \mu \mathrm{a}$
11	Calculate the allowable transistor dissipation		2N396 is derated at $3.3 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$. The junction temperature rise is estimated at $20^{\circ} \mathrm{C}$ therefore 67 mw can be allowed. Let $\mathrm{P}_{\mathrm{c}}=67 \mathrm{mw}$
12	Estimate $h_{\text {Fs }}$ minimum taking into account low temperature degradation and specific assumed operating point	$\beta_{\text {mi }}{ }^{\text {n }}$	Let $a_{\mathrm{m} \text { in }}=0.94$ or $\beta_{\mathrm{min}}=15.67$
13	Estimate the maximum design base to emitter voltage of the "on" transistor	V_{1}	Let $\mathrm{V}_{1}=0.35$ volts
14	Assume voltage logic levels for the outputs		Let the level separation be ≥ 7 volts

NON-SATURATING FLIP-FLOP DESIGN PROCEDURE (CONTINUED)

STEP	DEFINITION OF OPERATION	SYMBOL	SAMPLE DESIGN FOR 2N396 TRANSISTOR
24b	Calculate $\mathrm{V}_{8}+\mathrm{V}_{6}$	V_{13}	$0.1+0.8=0.9$ volt
25	Calculate $\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{0}$	V_{14}	$0.1+0.1=0.2$ volt
(B) Cut and Try Circuit Design			
1	Assume E2	E.	Let $\mathrm{E}_{2}=-16$ volts $\pm 5 \% ; \overline{\mathrm{E}_{2}}=-15.2 \mathrm{v} ; \underline{\mathrm{E}_{2}}=-16.8 \mathrm{v}$
2a	$\text { Calculate } \frac{\left(1+\Delta_{r}\right)}{\left(1-\Delta_{r}\right)}$	K_{1}	$\frac{1.07}{0.93}=1.15$
2b	Calculate $\frac{(1+\Delta \mathrm{e})}{(\mathrm{l}-\Delta \mathrm{e})}$	K_{2}	$\frac{1.05}{0.95}=1.105$
2c	Calculate $\frac{\mathrm{I}_{1}}{\beta_{\mathrm{m} \text { In }}}$	K_{3}	$\frac{17.5}{15.67}=1.117 \mathrm{ma}$
2 d	Calculate $\mathrm{I}_{2}+\mathrm{Io}_{0}+2 \mathrm{I}_{4}$	K4	$0.1+1.0+0.08=1.18 \mathrm{ma}$
2 e	$\text { Calculate } \frac{V_{8}-V_{\theta}}{V_{\mathrm{B}}+V_{\theta}-\overline{E_{2}}}$	K_{5}	$\frac{0.8-0.1}{0.1+0.1+15.2}=0.0454 \text { volts }$
3	$\text { Calculate } \overline{\mathrm{R}_{4}} \leq \frac{1}{\mathrm{~K}_{3}}\left[\frac{\mathrm{~V}_{10}-\mathrm{V}_{1}}{\mathrm{~K}_{1} \mathrm{~K}_{5}}-\mathrm{K}_{1}\left(\mathrm{~V}_{1}-\underline{\mathrm{E}_{2}}\right)\right]$		$\frac{1}{1.117}\left[\frac{2.2-0.35}{(1.15)(0.0454)}-1.15(0.35+16.8)\right]=14.03 \mathrm{~K}$
4	Choose R1	R4	Let $\mathrm{R}_{4}=13 \mathrm{~K} \pm 7 \% ; \overline{\mathrm{R}_{4}}=13.91 \mathrm{~K} ; \underline{\mathrm{R}_{4}}=12.09 \mathrm{~K}$
5	Calculate $\underline{R}_{3} \geq K_{5} \overline{R_{4}}$		$(0.0454)(13.91 \mathrm{~K})=0.632 \mathrm{~K}$
6	Choose R_{3}	R_{3}	Let $\mathrm{R}_{3}=0.68 \mathrm{~K} \pm 7 \% ; \overline{\mathrm{R}_{3}}=0.7276 \mathrm{~K} ; \underline{\mathrm{R}}_{\mathbf{3}}=0.6324 \mathrm{~K}$
7	$\text { Check } R_{3} \text { by calculating } \overline{R_{3}} \leq \frac{R_{4}\left(V_{10}-V_{1}\right)}{V_{1}-\underline{E_{2}}+K_{3} \underline{R_{4}}}$		$\frac{(12.09 \mathrm{~K})(2.2-0.35)}{0.35+16.8+(1.117)(12.09)}=0.730 \mathrm{~K} \text {; choice of }$
8	$\text { Calculate } \frac{\overline{R_{4}}}{-V_{5}-\overline{E_{2}}-I_{5} \overline{R_{1}}}$	K_{8}	$\frac{13.91 \mathrm{~K}}{-0.5+15.2-\overline{(0.14)} \overline{(13.91)}}=1.091 \mathrm{~K} / \mathrm{V}$

NON-SATURATING FLIP-FLOP DESIGN PROCEDURE (CONTINUED)

STEP	DEFINITION OF OPERATION	SYMBOL	SAMPLE DESIGN FOR 2N396 TRANSISTOR
9	Calculate $\underline{\mathrm{R}_{2}} \geq \frac{\mathrm{K}_{6}\left(\mathrm{~V}_{2}+\mathrm{V}_{5}\right)-\underline{\mathrm{R}_{3}}}{1-\mathrm{K}_{6} \mathrm{I}_{4}}$		$\frac{(1.091)(2.0+0.5) \mathrm{K}-0.632 \mathrm{~K}}{1-(1.091)(0.04)}=2.19 \mathrm{~K}$
10	Choose R_{2} - If there are difficulties at this point, assume a different $E_{\text {\& }}$.	R_{2}	Let $\mathrm{R}_{2}=2.7 \mathrm{~K} \pm 7 \% ; \overline{\mathrm{R}_{2}}=2.889 \mathrm{~K} ; \underline{\mathrm{R}_{2}}=2.511 \mathrm{~K}$
11	$\text { Calculate } \frac{\mathrm{K}_{1}{ }^{2}\left[V_{8}-V_{12}+K_{4} \underline{R_{2}}\right]}{V_{4}-V_{11}}$	K7	$\frac{(1.15)^{2}[9.0-0.3+(1.18)(2.511)]}{13.0-2.8}=1.51$
12	$\text { Calculate } \overline{E_{1}} \leq \frac{K_{7} V_{1}-V_{s}}{K_{7}-1 / K_{2}}$		$\frac{(1.51)(13.0)-9.0}{1.51-1 / 1.105}=17.63$
- 13	Choose E_{1}	E_{1}	Let $\mathrm{E}_{1}=16$ volts $\pm 5 \% ; \overline{\mathrm{E}_{1}}=16.8$ volts; $\underline{\mathrm{E}_{1}}=15.2$ volts
± 14	$\text { Calculate } \overline{R_{1}} \leq \frac{\left(E_{1}-V_{3}\right) \underline{R_{2}}}{V_{3}-\overline{V_{12}}+\overline{K_{1}} \underline{R_{2}}}$		$\frac{(15.2-9.0)(2.511)}{9.0-0.3+(1.18)(2.511)}=1.335 \mathrm{~K}$
15	Calculate $\underline{R_{1}} \geq \frac{\left.\overline{\left(E_{1}\right.}-V_{4}\right) \overline{\left(\overline{R_{2}}\right)}}{\mathrm{V}_{4}-V_{11}}$		$\frac{(16.8-13.0)(2.889)}{13.0-2.8}=1.077 \mathrm{~K}$
16	Choose R_{1}	R_{1}	Let $\mathrm{R}_{1}=1.2 \mathrm{~K} \pm 7 \% ; \overline{\mathrm{R}_{1}}=1.284 \mathrm{~K} ; \underline{\mathrm{R}_{1}}=1.116 \mathrm{~K}$

(C) Design Checks

1 Check "off" stability. Reverse bias voltage is given by:
$\left.\mathrm{V}_{\mathrm{EB}} \leq \overline{\mathrm{E}_{2}}+\frac{\overline{\mathrm{R}_{4}}}{\overline{\mathrm{R}_{4}}+\underline{\mathbf{R}_{3}}+\underline{\mathbf{R}_{2}}}\left[\mathrm{~V}_{2}-\overline{\mathrm{E}_{2}}+\mathrm{I}_{4} \underline{\mathrm{R}_{2}}+\mathrm{I}_{5} \underline{\left(\mathrm{R}_{2}\right.}+\underline{\mathrm{R}_{3}}\right)\right]$
$\mathrm{V}_{\mathrm{EB}} \quad-15.2+\frac{13.91}{17.05}$
$[2+15.2+(0.04)(2.511)+(0.14)(3.14)]=-0.7$ volts
The design value of V_{5} was 0.5 volts. Therefore, the "off" condition is stable.

The non-saturating flip-flop design procedure just discussed has been extended to the circuit in Figure 11.4. This circuit is identical to that in Figure 11.2(A) except that a diode clamp ($\mathrm{D}_{3} \mathrm{E}_{3}$) determines the collector off voltage. A number of design solutions which have been calculated for a nominal 10 ma flip-flop and 5 volt logic level are shown in Figure 11.5. The standard conditions chosen are wide enough to include diode and transistor parameter variations from $-55^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ junction temperature. The solutions use only standard RTMA resistor values which are permitted to change up to $\pm 10 \%$ during life.

$\begin{aligned} & \mathbf{I}_{\mathbf{c}\left(\mathrm{I}_{4}\right)} \\ & \max \\ & \operatorname{ma} \end{aligned}$	$\underset{\text { ma }}{\mathrm{I}_{\text {LiNAD }}}$	Deviation from STD Conditions	$\mathrm{se}_{\mathrm{e}}= \pm 5 \% \quad \mathrm{sr}_{\mathrm{r}}= \pm 7 \%$				$\lambda_{\text {e }}= \pm 5 \% \quad \Delta_{r}= \pm 10 \%$				$\Delta \mathrm{e}= \pm 10 \%$		$\mathrm{s}_{\mathrm{r}}= \pm \mathbf{7 \%}$	
			R_{1}	R_{2}	R_{3}	R.	R_{1}	R_{2}	R_{3}	R.	R_{1}	R	Rs	R.
10	1.0	-	2.7	2.4	. 32	11	2.2	2.0	. 68	9.1	2.4	2.2	. 75	10
10	1.5	-	2.4	2.4	. 82	11	2.2	2.2	. 68	9.1	2.2	2.4	. 75	10
15	1.0	-	1.8	1.5	. 56	7.5	1.5	1.2	. 47	6.2	1.8	1.5	. 51	6.8
15	1.5	-	1.8	1.5	. 56	7.5	1.5	1.3	. 47	6.2	1.8	1.5	. 51	6.8
10	1.25	$V_{n}=.2 v_{\text {max }}$	3.0	3.0	. 91	13	2.2	2.0	. 68	9.1	2.2	2.2	. 75	10
10	1.25	$V_{1}=.5 v_{\text {max }}$	2.7	2.7	. 91	12	2.4	2.7	. 82	11	2.4	2.7	. 82	11
10	1.25	$V_{\mathrm{s}}=.4 v_{\text {max }}$	3.3	3.6	1.1	15	2.4	2.7	. 91	12	2.7	3.0	1.0	13
10	1.25	$V_{\mathrm{a}}=.6 \mathrm{v}$ max	4.7	8.2	1.3	24	4.3	7.5	1.20	22	4.3	9.1	1.3	24

PRACTICAL CIRCUITS, BASED ON FUP-FLOP CONFIGURATION IN FIGURE 11.4 (SYMEOLS DEFINED IN NON-SATURATING FLIP-FLOP DESIGN PROCEDURE)
 FIGURE 11.5

The high on voltage (V_{CE} ast, V_{2}) when the transistor is conducting is primarily the result of the assumed forward voltage of the diode. It is seen that raising the minimum collector to emitter voltage $\left(\mathrm{V}_{\mathrm{s}}\right)$ from 0 to 0.2 volts has a minor effect on the solutions. $\mathrm{V}_{\mathrm{s}}=0.1 v$ gave identical solutions to $\mathrm{V}_{\mathrm{s}}=0.2 \mathrm{v}$.

The last solution in Figure 11.5 shows that a high conductance diode permits more efficient design.

The capacitors in the circuit are determined by the frequency response of the transistor or by the maximum trigger pulse repetition rate.

Type Number	Ambient Temperature Range in Degrees Centigrade Assuming Worst Case I_{co} and h_{Fe}	Potential Switching Speed	Type
2N43	-55 to 45	low	PNP
2N123	-55 to 60	med	PNP
2N396	-55 to 60	med	PNP
2N397	-55 to 60	high	PNP
2N404	-10 to 75	med	PNP
2N450	-55 to 60	med	PNP
2N524	25 to 55	low	PNP
2N525	-55 to 55	low	PNP
2N526	-55 to 55	low	PNP
2N527	-55 to 55	low	PNP
2N634	25 to 60	low	NPN
2N635	-55 to 60	med	NPN
2N636	-55 to 60	high	NPN
2N1289	-55 to 60	high	NPN

TRANSISTORS SUITABLE FOR FUP-FLOP SOLUTIONS IN FIGURE II. 5

FIGURE 11.6

Figure 11.6 lists a number of military and industrial transistors which meet the conditions of the solution. In all cases the maximum ambient temperature is limited by Ico while the minimum ambient temperature is limited by $h_{\text {FE }}$. No switching speeds are given because they depend on the trigger power available as well as on the inherent transistor speed.

TRIGGERING

Flip-flops are the basic building blocks for many computer and switching circuit applications. In all cases it is necessary to be able to trigger one side or the other into conduction. For counter applications, it is necessary to have pulses at a single input make the two sides of the flip-flop conduct alternately. Outputs from the flip-flop must have characteristics suitable for triggering other similar flip-flops. When the counting period is finished, it is generally necessary to reset the counter by a trigger pulse to one side of all flip-flops simultaneously. Shift registers, and ring counters have similar triggering requirements.

In applying a trigger to one side of a flip-flop, it is preferable to have the trigger turn a transistor off rather than on. The off transistor usually has a reverse-biased emitter junction. This bias potential must be overcome by the trigger before switching can start. Furthermore, some transistors have slow turn on characteristics resulting in a delay between the application of the trigger pulse and the actual switching. On the other hand, since no bias has to be overcome, there is less delay in turning off a transistor. As turn-off begins, the flip-flop itself turns the other side on.

A lower limit on trigger power requirements can be determined by calculating the base charge required to maintain the collector current in the on transistor. The trigger source must be capable of neutralizing this charge in order to turn off the transistor. It has been determined that the base charge for a non-saturated transistor is approximately $\mathrm{Q}_{\mathrm{B}}=1.22 \mathrm{I}_{\mathrm{c}} / 2 \pi \mathrm{f}_{a}$. The turn-off time constant is approximately $\mathrm{h}_{\mathrm{FE}} / 2 \pi \mathrm{f}_{\text {a }}$. This indicates that circuits utilizing high speed transistors at low collector currents will require the least trigger power. Consequently, it may be advantageous to use high speed transistors in slow circuitry if trigger power is critical. If the on transistor was in saturation, the trigger power must also include the stored charge. The stored charge is given by

$$
\mathrm{Qs}=\frac{1}{2 \pi}\left(\frac{1}{\mathrm{f}_{a}}+\frac{1}{\mathrm{f}_{a \mathrm{I}}}\right)\left(\frac{1}{1-a_{\mathrm{N}} a_{1}}\right)\left(\mathrm{I}_{\mathrm{B} 1}-\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~h}_{\mathrm{FE}}}\right)
$$

where the symbols are defined in the section on transient response time.
Generally, the trigger pulse is capacitively coupled. Small capacitors permit more frequent triggering but a lower limit of capacitance is imposed by base charge considerations. When a trigger voltage is applied, the resulting trigger current causes the charge on the capacitor to change. When the change is equal to the base charge just calculated, the transistor is turned off. If the trigger voltage or the capacitor are too small, the capacitor charge may be less than the base charge resulting in incomplete turn-off. In the limiting case $C=\mathrm{Q}_{\mathrm{B}} \mathrm{V}_{\mathrm{T}}$. The speed with which the trigger turns off a transistor depends on the speed in which Q_{B} is delivered to the base. This is determined by the trigger source impedance and r^{\prime}, .

In designing counters, shift registers or ring counters, it is necessary to make alternate sides of a flip-flop conduct on alternate trigger pulses. There are so-called steering circuits which accomplish this. At low speeds, the trigger may be applied at the emitters as shown in Figure 11.7. It is important that the trigger pulse be shorter than the cross coupling time constant for reliable operation. The circuit features few parts and a low trigger voltage requirement. Its limitations lie in the high trigger current required.

At this point, the effect of trigger pulse repetition rate can be analyzed. In order that each trigger pulse produce reliable triggering, it must find the circuit in exactly the same state as the previous pulse found it. This means that all the capacitors in the circuit must stop charging before a trigger pulse is applied. If they do not, the result is equivalent to reducing the trigger pulse amplitude. The transistor being turned off presents a low impedance permitting the trigger capacitor to charge rapidly. The capacitor must then recover its initial charge through another impedance which is generally much higher. The recovery time constant can limit the maximum pulse rate.

Steering circuits using diodes are shown in Figures 11.8 and 11.9. The collectors are triggered in 11.8 by applying a negative pulse. As a diode conducts during triggering, the trigger pulse is loaded by the collector load resistance. When triggering is accomplished, the capacitor recovers through the biasing resistor \mathbf{R}_{T}. To minimize

EMITTER TRIGGERING
MAXIMUM TRIGGER RATE EXCEEDS 500 KCS WITH TRIGGER AMPLITUDE FROM 2V TO I2V

FIGURE 11.7
trigger loading, $\mathbf{R}_{\mathbf{T}}$ should be large; to aid recovery, it should be small. To avoid the recovery problem mentioned above, R_{T} can be replaced by a diode as shown in 11.10. The diode's low forward impedance ensures fast recovery while its high back impedance avoids shunting the trigger pulse during the triggering period.

FIGURE 11.8

MAXIMUM TRIGGER RATE EXCEEDS : MC WITH TRIGGER AMPLITUDE FROM 0.75 TO 13 VOLTS.

FIGURE 11.9

Collector triggering requires a relatively large amplitude low impedance pulse but has the advantage that the trigger pulse adds to the switching collector waveform to enhance the speed. Large variations in trigger pulse amplitude are also permitted.

In designing a counter, it may be advantageous to design all stages identically the same to permit the economies of automatic assembly. Should it prove necessary to increase the speed of the early stages, this can be done by adding a trigger amplifier as shown in Figure 11.11 without any change to the basic stage.

FIGURE 11.10

COLLECTOR TRIGGERING WITH TRIGGER AMPLIFIER
FOR IMC TRIGGER RATE LESS THAN I VOLT TRIGGER AMPLITUDE REQUIRED.

FIGURE 11.11

Base triggering shown in Figure 11.9 produces steering in the same manner as collector triggering. The differences are quantitative with base triggering requiring less trigger energy but a more accurately controlled trigger amplitude. A diode can replace the bias resistor to shorten the recovery time.

Hybrid triggering illustrated in Figure 11.12 combines the sensitivity of base triggering and the trigger amplitude variation of collector triggering. In all the other steering circuits, the bias potential was fixed, in this one the bias potential varies in

FIGURE 11.12
order to more effectively direct the trigger pulse. By returning the bias resistor to the collector, the bias voltage is V_{cb}. For the conducting transistor, V_{cb} is much less than for the off transistor, consequently, the trigger pulse is directed to the conducting transistor. This steering scheme is particularly attractive if V_{CB} for the conducting transistor is very small as it is in certain non-saturating circuits such as shown in Figure 10.11.

Care should be taken that the time constant $\mathrm{C}_{\mathbf{T}} \mathrm{R}_{\mathrm{T}}$ does not limit the maximum counting rate. Generally R_{T} can be made approximately equal to R_{E} the cross-coupling resistor.

To design a shift register or a ring counter, it is only necessary to return R_{T} to the appropriate collector to achieve the desired switching pattern. The connections for the shift register are shown in Figure 11.3(A) and (B). A ring counter connection results from connecting the shift register output back to its input as shown in Figure

FIGURE 11.13 (A)

TRIGGER TRANSISTORS SMMLTTANEOUSLY SUPPLY CURRENT TO TURN OFF ONE SIDE OF FLIP-FLOP ANO TO DEVELOP A VOLTAGE ACHOSS THE COLLECTOR LOAD ON THE OTHERSIDE.

FIGURE 11.13 (B)

CIRCUIT OF FIGURE IIJ3(B) WITH TRIGGER STEERING ADOED FOR COUNTER APPLICATION

TRIGGER CIRCUITS
USing trigger power to increase switching sped FIGURE 11.13 (C)

By using transistors as trigger amplifiers, some circuits superpose the trigger on the output of the flip-flop so that an output appears even if the flip-flop is still in the transient condition. Figure 11.13(A) shows a symmertical transistor used for steering. The transistor makes the trigger appear in opposite phase at the flip-flop collectors speeding up the transition. The circuit in Figure $11.13(B)$ can have R_{c} and R_{k} so chosen so that a trigger pulse will bring the collector of the transistor being turned on to ground even though the transistor may not have started conducting. The circuit in 11.13(B) may be converted to a steering circuit by the method shown in 11.13(C).

SPECIAL PURPOSE CIRCUITS

SCHMITT TRIGGER

A Schmitt trigger is a regenerative bistable circuit whose state depends on the amplitude of the input voltage. For this reason, it is useful for waveform restoration, signal level shifting, squaring sinusoidal or non-rectangular inputs, and for DC level detection. Practical circuits are shown in Figure 11.14.

FREQUENCY RANGE O-500KC
OUTPUT AT COLLECTOR HAS 8V MINIMUM LEVEL CHANGE
O_{\mid}always conducts if input IS MORE NEGATIVE THAN-5V
Q_{2} ALWAYS CONDUCTS IF INPUT IS MORE POSITIVE THAN -2V
AMBIENT TEMPERATURE $-55^{\circ} \mathrm{C}$ TO $71^{\circ} \mathrm{C}$

FREQUENCY RANGE O TO IMC OUTPUT AT COLLECTOR HAS $2 V$ MINIMUM LEVEL CHANGE
Q, ALWAYS CONDUCTS IF INPUT EXCEEDS 6.8 V
Q_{2} ALWAYS CONDUCTS IF INPUT is BELOW 5.2 V
AMBIENT TEMPERATURE $0^{\circ} \mathrm{C}$ TO $71^{\circ} \mathrm{C}$

SCHMITT TRIGGERS
FIGURE 11.14
Circuit operation is readily described using Figure 11.14(B). Assuming Q1 is nonconducting, the base of Q 2 is biased at approximately +6.8 volts by the voltage divider consisting of resistors $3.3 \mathrm{~K}, 1.8 \mathrm{~K}$ and 6.8 K . The emitters of both transistors are then at 6.6 volts due to the forward bias voltage required by Q 2 . If the input voltage is less than 6.6 volts, Q1 is off as was assumed. As the input approaches 6.6 volts, a critical voltage is reached where Q1 begins to conduct and regeneratively turns off Q2. If the input voltage is now lowered below another critical value, Q 2 will again conduct.

ASTABLE MULTIVIBRATOR

The term multivibrator refers to a two stage amplifier with positive feedback. Thus a flip-flop is a bistable multivibrator; a "one-shot" switching circuit is a monostable
multivibrator and a free-running oscillator is an astable multivibrator. The astable multivibrator is used for generating square waves and timing frequencies and for frequency division. A practical circuit is shown in Figure 11.15. The circuit is symmetrical with the transistors DC biased so that both can conduct simultaneously. The cross-coupling capacitors prevent this, however, forcing the transistors to conduct alternately. The period is approximately $T=\frac{C_{T}+100}{40}$ microseconds where C_{T} is measured in $\mu \mu$ f. A synchronizing pulse may be used to lock the multivibrator to an external oscillator's frequency or subharmonic.

FREQUENCY RANGE ICPS TO 250KCPS BY CHANGING C_{T}
OUTPUT AT COLLECTOR MAS B VOLT MINIMUM LEVEL CHANGE
AMBIENT TEMPERATURE $-55^{\circ} \mathrm{C}$ TC $71{ }^{\circ} \mathrm{C}$ SYNCHRONIZING PULSES PERMIT GENERATING SUBHARMONICS
SYNC PULSE AMPLITUDE MUST EXCEED
I.5V POSITIVE; RISETIME MUST BE LESS THAN $1 . O_{\mu}$ SEC.

ASTABLE MULTIVIBRATOR
 FIGURE 11.15

MONOSTABLE MULTIVIBRATOR

On being triggered a monostable multivibrator switches to its unstable state where it remains for a predetermined time before returning to its original stable state. This makes the monostable multivibrator useful in standardizing pulses of random widths or in generating time delayed pulses. The circuit is similar to that of a flip-flop except that one cross-coupling network permits AC coupling only. Therefore, the flip-flop can only remain in its unstable state until the circuit reactive components discharge. Two circuits are shown in Figure 11.16 to illustrate timing with a capacitor and with an inductor. The inductor gives much better pulse width stability at high temperatures.

INDICATOR LAMP DRIVER

The control panel of a computer frequently has indicator lamps to permit monitoring the computer's operation. The circuit in Figure 11.17 shows a bistable circuit which permits controlling the lamp by short trigger pulses.

A negative pulse at point A turns on the lamp, which remains on due to regenerative feedback in the circuit. A positive pulse at A will turn off the lamp. The use of complementary type transistors minimizes the standby power while the lamp is off.

(A)

OUTPUT AT COLLECTORS HAS 8 VOLT LEVEL CHANGE
OUTPUT PULSE DURATION 2μ SEC TO I SEC MAXIMUM INPUT FREQUENCY 250KC
MAXIMUM REQUIRED INPUT PULSE IS 5 VOLTS
DUTY CYCLE EXCEEDS 60%
AMBIENT TEMPERATURE $-55^{\circ} \mathrm{C}$ TO $71{ }^{\circ} \mathrm{C}$

OUTPUT AT COLLECTOR MAS 5 VOLT LEVEL CMANGE
OUTPUT PULSE DURATION APPROX 600 MICROSECONDS
MAXIMUM INPUT PULISE REOUIRED 3 VOLTS
AMBIENT TEMPERATURE $\mathbf{- 5 5 ^ { \circ }} \mathrm{C}$ TO $71^{\circ} \mathrm{C}$

MONOSTABLE MULTIVIBRATOR

FIGURE 11.16

TRIGGER PULSE REQUIREMENT 2 VOLTS MAXIMUM.
AMBIENT TEMPERATURE $-55^{\circ} \mathrm{C}$ TO $71^{\circ} \mathrm{C}$
RESISTOR TOLERANCE $\pm 10 \%$ AT END OF LIFE.
BISTABLE INDICATOR LAMP DRIVER
FIGURE 11.17

12. LOGIC

Large scale scientific computers, smaller machine control computers and electronic animals all have in common the facility to take action without any outside help when the situation warrants it. For example, the scientific computer recognizes when it has completed an addition, and tells itself to go on to the next part of the problem. A machine control computer recognizes when the process is finished and another part should be fed in. Electronic animals can be made to sense obstructions and change their course to avoid collisions. Mathematicians have determined that such logical operations can be described using the conjunctives AND, OR, AND NOT, OR NOT. Boolean algebra is the study of these conjunctives, the language of logic. A summary of the relations and operations of Boolean algebra follow the example of its use below.

Transistors can be used to accomplish logic operations. To illustrate this, an example from automobile operation will be used. Consider the interactions between the ignition switch, the operation of the motor and the oil pressure warning light. If the ignition is off, the motor and light will both be off. If the ignition is turned on, but the starter is not energized the warning lamp should light because the motor has not generated oil pressure. Once the motor is running, the ignition is on and the lamp should be off. These three combinations of ignition, motor and lamp conditions are the only possible combinations signifying proper operation. Note that the three items discussed have only two possible states each, they are on or off. This leads to the use of the binary arithmetic system, which has only two symbols corresponding to the two possible states. Binary numbers will be discussed later in the chapter.

	I	M	L	Result	
1	0	0	0	\checkmark	$\begin{aligned} & I=I G N I T I O N \\ & M=M O T O R \end{aligned}$
2	0	0	1	x	$L=L A M P$
3	0	1	0	x	R = RESULT
4	0	1	1	X	$\begin{aligned} & I=O N \\ & 0=O F F \end{aligned}$
5	1	0	0	X	$v=A C C E P T A B L E$
6	1	0	1	v	$X=$ UNACCEPTABLE
7	1	1	0	v	$N=3=$ NO. OF VARIABLES
8	I	1	1	X	$2^{N}=8$

Table of all possible combinations of ignition, motor and lamp conditions FIGURE 12.1

To write the expressions necessary to derive a circuit, first assign letters to the variables, e.g., I for ignition, M for motor and L for lamp. Next assign the number one to the variable if it is on; assign zero if it is off. Now we can make a table of all possible combinations of the variables as shown in Figure 12.1. The table is formed by writing ones and zeros alternately down the first column, writing ones and zeros in series of two down the second; in fours down the third, etc. For each additional variable, double the number of ones or zeros written in each group. Only 2^{N} rows are written, where N is the number of variables, since the combinations will repeat if more rows are added. Indicate with a check mark in the result column if the combination represented in the row is acceptable. For example, combination 4 reads, the ignition is off and the motor is running and the warning light is on. This obviously is an unsatisfactory
situation. Combination 7 reads, the ignition is on and the motor is running and the warning light is off. This obviously is the normal situation while driving. If we indicate that the variable is a one by its symbol and that it is a zero by the same symbol, with a bar over it and if we use the symbol plus (+) to mean "OR" and multiplication to mean "AND" we can write the Boolean equation $\overline{\mathrm{I}} \overline{\mathrm{M}} \overline{\mathrm{L}}+\mathrm{I} \overline{\mathrm{M}} \mathrm{L}+\mathrm{IM} \overline{\mathrm{L}}=\mathrm{R}$ where R means an acceptable result. The three terms on the left hand side are combinations 1,6 , and 7 of the table since these are the only ones to give a check mark in the result column. The plus signs indicate that any of the three combinations individually is acceptable. While there are many rules for simplifying such equations, they are beyond the scope of this book.

FIGURE 12.2

FIGURE 12.3

To express this equation in circuitry, two basic circuits are required. They are named gates because they control the signal passing through. An "AND" gate generates an output only if all the inputs representing the variables are simultaneously applied and an "OR" gate generates an output whenever it receives any input. Our equation translated into gates would be as shown in Figure 12.2. Only if all three inputs shown for an "AND" gate are simultaneously present will an output be generated. The output will pass through the "OR" gate to indicate a result. Note that any equation derived from the table can be written as a series of "AND" gates followed by one "OR" gate.

It is possible to rearrange the equation to give a series of "OR" gates followed by one "AND" gate. To achieve this, interchange all plus and multiplication signs, and remove bars where they exist and add them where there are none. This operation gives us,

$$
(\mathrm{I}+\mathrm{M}+\mathrm{L})(\overline{\mathrm{I}}+\mathrm{M}+\overline{\mathrm{L}})(\overline{\mathrm{I}}+\overline{\mathrm{M}}+\mathrm{L})=\overline{\mathrm{R}}
$$

In ordinary language this means if any of the ignition or motor or lamp is on, and simultaneously either the ignition is off or the motor is on or the lamp is off, and simultaneously either the ignition is off or the motor is off or the lamp is on, then the result is unacceptable. Let us apply combination 4 to this equation to see if it is acceptable. The ignition is off therefore the second and third brackets are satisfied. The first bracket is not satisfied by the ignition because it requires that the ignition be on. However, the motor is on in combination 4, satisfying the conditions of the first bracket. Since the requirements of all brackets are met, an output results. Applying combination 7 to the equation we find that the third bracket cannot be satisfied since its condi-
tions are the opposite of those in combination 7. Consequently, no output appears. Note that for this equation, an output indicates an unacceptable situation, rather than an acceptable one, as in the first equation. In gate form, this equation is shown in Figure 12.3.

Table 12.1 summarizes the definitions used with the Boolean equations above and indicates some of the rules which were used to convert the equation represented in Figure 12.2 to that of Figure 12.3. The more conventional symbols a, b, care used in place of I, M, and L.

DEFINITIONS	
a, b, c, etc. ab or $\mathrm{a} \cdot \mathrm{b}$ or (a)(b) $\frac{a}{a}+b$	Symbols used in equations Reads as "a and b" Reads as "a or b" Reads as "not a" Reads as "true" or "on" Reads as "false" or "off"
LAWS	
$\begin{aligned} & \frac{\text { Cominutative Laws }}{a+b=b+a} \\ & a b=b a \\ & \text { Associative Laws } \\ & (a+b)+c=a \\ & (a b) c=a(b c) \end{aligned}$	Distributive Law $a(b+c)=a b+a c$ Special Distributive Law $(a+b)(a+c)=a+b c$ De Morgan's Theorem $\overline{\mathrm{a}+\mathrm{b}}=\overline{(\overline{\mathrm{a}})} \quad \overline{\mathrm{ab}}=(\overline{\mathrm{a}}+\overline{\mathrm{b}})$
RELATIONSHIPS	
$\begin{aligned} & 1=\overline{0} \\ & a+a=a \\ & a+\frac{1}{2}=1 \\ & a+\bar{a}=1 \\ & \bar{a}=a \end{aligned}$	$\begin{aligned} & 0=\overline{1} \\ & a \cdot a=a \\ & a \cdot \frac{1}{1}=a \\ & a \cdot \bar{a}=0 \\ & a+a b=a(l+b)=a \end{aligned}$

TABLE 12.1

Methods for using transistors in gate circuits are illustrated in Figure 12.4. The base of each transistor can be connected through a resistor either to ground or a positive voltage by operating a switch. In Figure 12.4(A) if both switches are open, both transistors will be non-conducting except for a small leakage current. If either switch A or switch B is closed, current will flow through R_{L}. If we define closing a switch as being synonymous with applying an input then we have an "OR" gate. When either switch is closed, the base of the transistor sees a positive voltage, therefore, in an "OR" gate the output should be a positive voltage also. In this circuit it is negative, or "NOT OR". The circuit is an "OR" gate with phase inversion. It has been named a "NOR" circuit. Note that if we define opening a switch as being synonymous with applying an input, then we have an "AND" circuit with phase inversion since both switch A and switch B must be open before the current through R_{L} ceases. We see that the same circuit can be an "AND" or an "OR" gate depending on the polarity of the input.

(A) GATE USING NPN TRANSISTORS
IF CLOSING A SWITCH IS AN INPUT, THIS IS AN "OR" GATE IF OPENING A SWITCH IS AN INPUT, THIS IS AN "AND" GATE NOTE: PHASE INVERSION OF INPUT

(B) GATE USING PNP TRANSISTORS
IF CLOSING A SWITCH IS AN INPUT THIS IS AN "AND" GATE IF OPENING A SWITCH IS AN INPUT THIS IS AN "OR" GATE
NOTE: PHASE INVERSION OF INPUT
BASIC LOGIC CIRCUITS USING PARALLEL TRANSISTORS

FIGURE 12.4

The circuit in Figure 12.4(B) has identically the same input and output levels but uses PNP rather than NPN transistors. If we define closing a switch as being an input, we find that both switches must be closed before the current through R_{L} ceases. Therefore, the inputs which made the NPN circuit an "OR" gate make the PNP circuit an "AND" gate. Because of this, the phase inversion inherent in transistor gates does not complicate the overall circuitry excessively.

Figure $12.5(\mathrm{~A})$ and (B) are very similar to Figure $12.4(\mathrm{~A})$ and (B) except that the transistors are in series rather than in parallel. This change converts "OR" gates into "AND" gates and vice versa.

(A) GATE USING NPN TRANSISTORS IF CLOSING A SWITCH IS AN INPUT THIS IS AN "AND" GATE IF OPENING A SWITCH IS AN INPUT THIS IS AN "OR"GATE NOTE: PHASE INVERSION OF INPUT

(B) GATE USING PNP TRANSISTORS
IF CLOSING A SWITCH IS AN INPUT THIS IS AN "OR" GATE IF OPENING A SWITCH IS AN INPUT THIS IS AN"AND"GATE NOTE: PHASE INVERSION OF INPUT

BASIC LOGIC CIRCUITS
 using series transistors

FIGURE 12.5

Looking at the logic of Figure 12.3, let us define an input as a positive voltage; a lack of an input as zero voltage. By using the circuit of Figure 12.4(A) with three
transistors in parallel, we can perform the "OR" operation but we also get phase inversion. We can apply the output to an inverter stage which is connected to an "AND" gate of three series transistors of the configuration shown in Figure 12.5(A). An output inverter stage would also be required. This is shown in Figure 12.6(A).

By recognizing that the circuit in Figure 12.4(A) becomes an "AND" gate if the input signal is inverted, the inverters can be eliminated as shown in Figure 12.6(B).

(A) inverters compensate for phase inversion of gates

(B) Phase inversion utilized to achieve "ano" and "or" functions from the same circuit.

$$
\begin{gathered}
\text { Circuits representing }(\mathrm{I}+\mathrm{M}+\mathrm{L})(\overline{\mathrm{I}}+\mathrm{M}+\overline{\mathrm{L}})(\overline{\mathrm{I}}+\overline{\mathrm{M}}+\mathrm{L})=\overline{\mathrm{R}} \\
\text { FIGURE } 12.6
\end{gathered}
$$

If the transistors are made by processes yielding low saturation voltages and high base resistance, the series base resistors may be eliminated. Without these resistors the logic would be called direct-coupled transistor logic DCTL. While DCTL offers extreme circuit simplicity, it places severe requirements on transistor parameters and does not offer the economy, speed or stability offered by other logical circuitry.

The base resistors of Figure 12.6 relax the saturation voltage and base input voltage requirements. Adding another resistor from each base to a negative bias potential would enhance temperature stability.

Note that the inputs include both "on" and "off" values of all variables e.g., both I and \bar{I} appear. In order that the gates function properly, I and \bar{I} cannot both be positive simultaneously but they must be identical and oppositely phased, i.e. when I is positive \bar{I} must be zero and vice versa. This can be accomplished by using a phase inverter to generate \bar{I} from I. Another approach, more commonly used, is to take I and $\overline{\mathrm{I}}$ from opposite sides of a symmetrical flip-flop.

"NOR" logic is a natural extension of the use of resistors in the base circuit. In the circuit of Figure 12.7, if any of the inputs is made positive, sufficient base current results to cause the transistor to conduct heavily. The "OR" gating is performed by the resistors; the transistor amplifying and inverting the signal. The logic of Figure 12.3 can now be accomplished by combining the "NOR" circuit of Figure 12.7 with the "AND" circuit of Figure 12.5(A). The result is shown in Figure 12.7. In comparing the circuits in Figure 12.6(A) and 12.8, we see that the "NOR" circuit uses one-fourth as many transistors and one-half as many resistors as the brute force approach. In fact if we recall that the equation we are dealing with gives $\overline{\mathrm{R}}$ rather than R , we see that we can get R by removing the output phase inverter and making use of the inherent inversion in the "NOR" circuit.

(B)

Nor logic using inversion for "and" gate

Nor logic using series transistors for
"and" gate
FIGURE 12.8

Because of the fact that a generalized Boolean equation can be written as a series of "OR" gates followed by an "AND" gate as was shown, it follows that such equations can be written as a series of "NOR" gates followed by a "NOR" gate. The low cost of the resistors used to perform the logic and the few transistors required make "NOR" logic attractive.

Circuit used for design of NOR circuitry
FIGURE 12.9

A detailed "NOR" building block is shown in Figure 12.9. The figure defines the basic quantities. The circuit can readily be designed with the aid of three basic equations. The first derives the current I_{k} under the worst loading conditions at the collector of a stage.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{K}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BR}}-\mathrm{I}_{\mathrm{cou}} \mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{K}}+\ldots \ldots \text { where } \mathrm{I}_{\mathrm{cox}}} \tag{12a}
\end{equation*}
$$

is the maximum $I_{c o}$ that is expected at the maximum junction temperature. The second equation indicates the manner in which I_{k} is split up at the base of the transistor.

$$
\begin{equation*}
I_{K}=I_{B}+\frac{M\left(V_{C E M}-V_{C E N}+V_{B E}-V_{E B}\right)-\left(V_{B E}-V_{C E N}\right)}{R_{K}}+I_{C O M} \tag{12b}
\end{equation*}
$$

where $V_{\text {cen }}$ is the minimum expected saturation voltage, $V_{\text {Cem }}$ is the maximum expected saturation voltage and V_{EB} is the reverse bias required to reduce the collector current to $I_{C o} . V_{e b}$ is a negative voltage. The third equation ensures that $V_{e b}$ will be reached to turn off the transistor.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{COM}}+\frac{\left(\mathrm{V}_{\mathrm{CEM}}-\mathrm{V}_{\mathrm{EB}}\right) \mathrm{M}}{\mathbf{R}_{\mathrm{K}}}=\mathrm{I}_{\mathrm{T}} \tag{12c}
\end{equation*}
$$

Knowing I_{T} and choosing a convenient bias potential permits calculation of R_{T}. In using these equations, first select a transistor type. Assume the maximum possible supply voltage and collector current consistent with the rating of the transistor and the maximum anticipated ambient temperature. This will ensure optimization of N and M. From the transistor specifications, values of $I_{c o s,}, V_{b e}, V_{c e s}$, and I_{18} (min) can be calculated. $I_{B}(\min)$ is the minimum base current required to cause saturation. R_{c} is calculated from the assumed collector current. In equation (12a) solve for I_{k} using the desired value of N and an arbitrary value for R_{k}. Substitute the value for I_{k} in equation (12b) along with a chosen value for M and solve for I_{B}. While superficially I_{B} need only be large enough to bring the transistor into saturation, increasing I_{B} will improve the rise time.

(A)

CAPACITORS REDUCE STORAGE TIME TO INCREASE SPEED

FIGURE 12.10

Circuit speed can also be enhanced by using a diode as shown in Figure 12.10(A) to prevent severe saturation or by shunting \mathbf{R}_{K} by a capacitor as in 12.10(B). The capacitors may cause malfunction unless the stored charge during saturation is carefully controlled; they also aggravate crosstalk between collectors. For this reason it is preferable to use higher frequency transistors without capacitors when additional speed is required.

Table 12.2 lists the characteristics of common logic systems employing transistors.

Name	rempeat cracur
$\frac{\mathrm{RTL}}{\substack{20}}$	
$\begin{aligned} & \frac{\mathrm{RCTL}}{2-5} \\ & =0 \end{aligned}$	
$\begin{gathered} \text { Du } \\ \substack{\text { nu } \\ \hline} \end{gathered}$	

TABLE 12.2

BINARY ARITHMETIC

Because bistable circuits can be readily designed using a variety of components from switches to transistors, it is natural for counters to be designed to use binary numbers, i.e., numbers to the base, or radix, 2 . In the conventional decimal system, a number written as 2904 is really a contraction for $2 \times 10^{3}+9 \times 10^{2}+0 \times 10^{1}+4 \times 1$. Each place refers to a different power of 10 in ascending order from the right. In the binary system, only two symbols are permitted, 0 and 1 . All numbers are constructed on the basis of ascending powers of 2 . For example, 11011 means $1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 1$. This is 27 in the decimal system.

This notation applies also to decimal fractions as well as integers. For example, the number 0.204 is a contraction of $2 \times 10^{-1}+0 \times 10^{-2}+4 \times 10^{-3}$. Similarly, the binary number 0.1011 is a contraction of $1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-8}+1 \times 2^{-4}$. Using this construction, a table of equivalent binary and decimal numbers can be obtained as shown below.

Binary	Decimal	Binary	Decimal
0	0	0.000	0.000
1	1	0.001	0.125
10	2	0.010	0.250
11	3	0.011	0.375
100	4	0.100	0.500
101	5	0.101	0.625
110	6	0.110	0.750
111	7	0.111	0.875

Arithmetic operations can best be described by comparative examples.

Addition		Subtraction		
42	101010	44	101100	
+18	10010	-18	10010	
60	111100	26	11010	

During addition, the digits in a column are added to the carry from the previous column. The result is expressed as a sum digit which is recorded and a carry digit which is applied to the next column. The term digit generally refers to the figures in a decimal number; the term bit (an abbreviation of binary digit) is used with binary numbers. If the digit being subtracted is the larger of the two in the column, the techniques used to handle this situation in decimal subtraction are also applicable in the binary system.

Multiplication		Division	
42	101010	1.35	1.0101
$\frac{21}{42}$	10101	$5 \sqrt{6.7500}$	$101 \sqrt{110.11000}$
$\frac{84}{882}$	101010	$\frac{5}{17}$	$\frac{101}{111}$
	$\frac{101010}{1101110010}$	$\frac{15}{25}$	$\frac{101}{1000}$
		25	$\frac{101}{110}$

Multiplying a binary number by two is equivalent to adding a zero to its right hand
side, just as multiplying a decimal number by 10 adds a zero. This is equivalent to shifting the number one place to the left. In computers, this operation is done by a shift register. Division can be readily understood since it involves the operations of additions, subtraction and multiplication only.

Computers generally employ circuits called adders which can perform the operation of addition. Adders can also perform other arithmetic operations besides addition. For example, an adder can perform subtraction by the use of a number's complement. The complement is obtained numerically by interchanging all ones and zeros. In equipment the complement can be obtained by taking the output from the opposite side of flip-flops.

The manner in which subtraction with an adder is accomplished is given by the following example:

Problem:	Calculate $1101-1001$
Complement of	$\begin{aligned} & 1001 \text { is } 0110 \\ & (1111-1001=0110) \end{aligned}$
Add:	$1101+0110=1001$
Add 1	$10011+1=10100$
Omit left hand	it to obtain $1101-1001=100$

Flip-flops can be connected in series so that the first flip-flop will alternate states with each input pulse, and successive flip-flops will alternate states at half the rate of the preceding flip-flop. In this way the flip-flops assume a unique configuration of states for a given number of input pulses. The flip-flops actually perform the function of binary counting. A practical circuit of a binary counter is shown in Figure 11.3(B) The count in a binary counter can be determined by noting whether each stage is in the 1 or 0 condition, and then assigning the appropriate power of 2 to the stage to reconstruct the number as in the examples above.

If it is required to count to a base other than 2 , a binary counter can be modified to count to the new base.

The rules for accomplishing the modification will be illustrated for a counter to the base 10 .

Rule

1) Determine the number of binary stages (N) required to count to the desired new base (M)
2) Subtract M from 2^{*}
3) Write the remainder in binary form
4) When the count reaches 2^{N-1}, feed back a one to each stage of the counter having a one in the remainder shown in 3)

Example

$\mathrm{M}=10$
$2^{3}<10<2^{4}$
$\mathrm{N}=4$
$2^{4}-10=6$
$6=110$
$2^{N-1}=2^{3}=1000$
Feedback added gives
1110

As additional pulses are added beyond the count $2^{\mathrm{N}-1}$, they will count through to M and then recycle to zero. This method is based on advancing the count at the point $2^{\mathrm{N}-1}$ to the extent that the indicated count is 2^{N} when M input pulses are applied. The feedback is applied when the most significant place becomes a one but it is imperative that feedback be delayed until the counter settles down in order to avoid interference with the normal counter action.

13. UNIJUNCTION TRANSISTOR CIRCUITS

The unijunction transistor is a three-terminal semiconductor device which has electrical characteristics that are quite different from those of conventional two-junction transistors. Its most important feature is its highly stable negative resistance characteristic which permits its application in oscillator circuits, timing circuits and bistable circuits. Circuits such as sawtooth generators, pulse generators, delay circuits, multivibrators, one-shots, trigger circuits and pulse rate modulators can be greatly simplified by the use of the unijunction transistor.

THEORY OF OPERATION

The construction of the unijunction transistor is shown in Figure 13.2. Two ohmic contacts, called base-one (B1) and base-two (B2) are made at opposite ends of a small bar of n-type silicon. A single rectifying contact, called the emitter (E), is made on the opposite side of the bar close to base-two. An interbase resistance, R_{BB}, of between 5 K and 10 K exists between base-one and base-two. In normal circuit operation, base-one is grounded and a positive bias voltage, V_{BB}, is applied at base-two. With no emitter current flowing, the silicon bar acts like a simple voltage divider (Figure 13.3) and a certain fraction, η of V_{BB} will appear at the emitter. If the emitter voltage, V_{E}, is less than $\eta \mathrm{V}_{\mathrm{BB}}$, the emitter will be reverse-biased and only a small emitter leakage current will flow. If V_{E} becomes greater than $\eta V_{B B}$, the emitter will be forward biased and emitter current will flow. This emitter current consists primarily of holes injected into the silicon bar. These holes move down the bar from the emitter to base-one and result in an equal increase in the number of electrons in the emitter to base-one region. The net result is a decrease in the resistance between emitter and base-one so that as the emitter current increases, the emitter voltage decreases and a negative resistance characteristic is obtained (Figure 13.5).

Symbol for unijunction transistor with indentification of principle voltages and currents
FIGURE 13.1

Construction of unijunction transistorcross sectional view

FIGURE 13.2

The operation of the unijunction transistor may be best understood by the representative circuit of Figure 13.3. The diode represents the emitter diode, $\mathrm{R}_{\mathrm{B}_{1}}$ represents the resistance of the region in the silicon bar between the emitter and base-one and $\mathrm{R}_{\mathrm{B} 2}$ represents the resistance between the emitter and base-two. The resistance $\mathrm{R}_{\mathrm{B} 1}$ varies with the emitter current as indicated in Figure 13.4.

$\begin{aligned} & I_{E} \\ & (M A) \end{aligned}$	$\begin{gathered} \mathrm{R}_{\mathrm{BI}} \\ (\mathrm{OHMS}) \end{gathered}$
0	4600
1	2000
2	900
5	240
10	150
20	90
50	40

Variation of $\mathrm{R}_{\mathrm{B}_{1}}$ with I_{E} in representative circuit (typical 2N492)

FIGURE 13.4
The large signal properties of the unijunction transistor are usually given in the form of characteristic curves. Figure 13.5 gives typical emitter characteristic curves as plots of emitter voltage vs. emitter current for fixed values of interbase voltage. Figure 13.6 gives typical interbase characteristic curves as plots of interbase voltage vs. basetwo current for fixed values of emitter current. On each of the emitter characteristic curves there are two points of interest, the peak point and the valley point. On each of the emitter characteristic curves the region to the left of the peak point is called the cutoff region; here the emitter is reverse biased and only a small leakage current flows. The region between the peak point and the valley point is the negative resistance region. The region to the right of the valley point is the saturation region; here the dynamic resistance is positive and lies in the range of 5 to 20Ω.

Typical emitter characteristics (type 2N492)
FIGURE 13.5

Typical interbase characteristics (type 2N492)
FIGURE 13.6

PARAMETERS-DEFINITION AND MEASUREMENT

1. R_{Br} - Interbase Resistance. The interbase resistance is the resistance measured between base-one and base-two with the emitter open circuited. It may be measured with any conventional ohmmeter or resistance bridge if the applied voltage is five volts or less. The interbase resistance increases with temperature at about $0.8 \% /{ }^{\circ} \mathrm{C}$. This temperature variation of R_{BB} may be utilized for either temperature compensation or in the design of temperature sensitive circuits.
2. η-Intrinsic Stand-off Ratio. This parameter is defined in terms of the peak point voltage, V_{I}, by means of the equation: $\mathrm{V}_{\mathrm{P}}=\eta \mathrm{V}_{\mathrm{BB}}+\mathrm{V}_{\mathrm{D}} \ldots$ where V_{D} is about 0.70 volt at $25^{\circ} \mathrm{C}$ and decreases with temperature at about 3 millivolts/ ${ }^{\circ} \mathrm{C}$. It is
found that η is constant over wide ranges of temperature and interbase voltage. A circuit which may be used to measure η is shown in Figure 13.7. In this circuit $\mathrm{R}_{1}, \mathrm{C}_{1}$ and the unijunction transistor form a relaxation oscillator and the remainder of the circuit serves as a peak voltage detector with the diode automatically subtracting the voltage $\mathrm{V}_{\mathfrak{p}}$. To use the circuit, the voltage V_{1} is set to the value desired, the "cal." button is pushed and \mathbf{R}_{3} adjusted to make the meter read full scale. The "cal" button is then released and the value of η is read directly from the meter (1.0 full scale). If the voltage V_{1} is changed, the meter must be recalibrated.
3. I_{P} - Peak Point Current. The peak point current corresponds to the emitter current at the peak point. It represents the minimum current which is required to fire the unijunction transistor or required for oscillation in the relaxation oscillator circuit. I_{P} is inversely proportional to the interbase voltage. I_{P} may be measured in the circuit of Figure 13.8. In this circuit, the voltage V_{1} is increased until the unijunction transistor fires as evidenced by noise from the loudspeaker. V_{1} is then reduced slowly until the unijunction ceases to fire and the current through the meter is read as I_{P}.

TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (n)
FIGURE 13.7

test circuit for peak point emutters CURRENT (IP)
FIGURE 13.8
4. $V_{P}-$ Peak Point Emitter Voltage. This voltage depends on the interbase voltage as indicated in (2). V_{P} decreases with increasing temperature because of the change in V_{D} and may be stabilized by a small resistor in series with base-two.
5. V_{E} (sat) - Emitter Saturation Voltage. This parameter indicates the forward drop of the unijunction transistor from emitter to base-one when it is conducting the maximum rated emitter current. It is measured at an emitter current of 50 ma and an interbase voltage of 10 volts.
6. $\mathrm{I}_{\mathrm{B} 2}$ (mod) - Interbase Modulated Current. This parameter indicates the effective current gain between emitter and base-two. It is measured as the base-two current under the same condition used to measure V_{E} (sat).
7. I_{EO} - Emitter Reverse Current. The emitter reverse current is measured with 60 volts between base-two and emitter with base-one open circuit. This current varies with temperature in the same way as the $I_{c o}$ of a conventional transistor.
8. V_{v} - Valley Voltage. The valley voltage is the emitter voltage at the valley point. The valley voltage increases as the interbase voltage increases, it decreases with resistance in series with base-two and increases with resistance in series with base-one.
9. Iv - Valley Current. The valley current is the emitter current at the valley point. The valley current increases as the interbase voltage increases and decreases with resistance in series with base-one or base-two.

RELAXATION OSCILLATOR

The relaxation oscillator circuit shown in Figure 13.9 is a basic circuit for many applications. It is chiefly useful as a timing circuit, a pulse generator, a trigger circuit or a sawtooth wave generator.

bASIC RELAXATION OSCILLATOR WITH TYPICAL WAVEFORMS FIGURE 13.9

Conditions for Oscillation.

$$
\frac{\mathrm{V}_{1}-\mathrm{V}_{\mathrm{r}}}{\mathrm{R}_{1}}>\mathrm{I}_{\mathrm{p}}, \quad \frac{\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{v}}}{\mathrm{R}_{1}}<\mathrm{I}_{\mathrm{V}}
$$

It is found that these conditions are very broad permitting a 1000 to 1 range of R_{1} from about 2 K to $2 \mathrm{M} . \mathrm{R}_{2}$ is used for temperature compensation, its value may be calculated from the equation:

$$
\mathrm{R}_{2} \cong \frac{0.65 \mathrm{R}_{\mathrm{BB}}}{\eta \mathrm{~V}_{1}} \text { (units are ohms, volts) }
$$

The maximum and minimum voltages of the emitter voltage waveform may be calculated from:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}}(\max .)=\mathrm{V}_{\mathrm{P}}=\eta \mathrm{V}_{\mathrm{BB}}+0.7 \text { volt } \\
& \mathrm{V}_{\mathrm{E}}(\min .) \cong 0.5 \mathrm{~V}_{\mathrm{E}}(\mathrm{sat})
\end{aligned}
$$

The frequency of oscillation is given by the equation:

$$
f \cong \frac{1}{R_{1} C \ln \left(\frac{1}{1-\eta}\right)}
$$

and may be obtained conveniently from the nomogram of Figure 13.10.

Nomogram for calculating frequency of relaxation oscillation FIGURE 13.10

The emitter voltage recovery time, tre, is defined as the time between the 90% and 10% points on the emitter voltage waveform. The value of tve is determined primarily by the size of the capacitor C in Figure 13.9 and may be obtained from Figure 13.11.

Recovery time of unijunction transistor relaxation oscillator vs. capacity FIGURE 13.11

The pulse amplitude at base-one or base-two may be determined from the equations:

$$
\begin{aligned}
& I_{\text {E(pest) }} \cong \frac{\left[V_{\mathrm{P}}-1 / 2 \mathrm{~V}_{\mathrm{E}}(\mathrm{sat})\right] \mathrm{C}}{\mathrm{t}_{\mathrm{VE}}} \quad\left\{\begin{array}{l}
\text { Units are ma, }
\end{array}\right. \\
& \mathrm{I}_{\mathrm{Hz}(\text { реан })} \cong \frac{\mathrm{I}_{\mathrm{B} \pm}(\bmod)}{7} \sqrt{\mathrm{I}_{\mathrm{E}(\text { peait })}}\{\text { volts, } \mathrm{m} \mu \mathrm{f}, \mu \mathrm{sec} .
\end{aligned}
$$

SAWTOOTH WAVE GENERATOR

The circuit of Figure 13.12 may be used as a linear sawtooth wave generator. The NPN transistor serves as an output buffer amplifier with the capacitor \mathbf{C}_{2} and resistor \mathbf{R}_{2} serving in a bootstrap circuit to improve the linearity of the sawtooth. R_{1} and C_{1} give integrator type feedback which compensates for the loading of the output stage. Optimum linearity is obtained by adjusting R_{1}. Linearity is 0.3% or more depending on h_{FE} of the NPN transistor.

STAIRCASE WAVE GENERATOR
Figure 13.13 shows a simple staircase wave generator which has good stability and a wide operating range. The unijunction transistor Q_{1} operates as a free running oscillator which generates negative pulses across R_{2}. These pulses produce current pulses from the collector of Q_{2} which charge capacitor C_{1} in steps. When the voltage across C_{1} reaches the peak point voltage of Q_{s} this transistor fires and discharges C_{1}.

Resistor R_{1} determines the frequency of the steps and resistor R_{2} determines the number of steps per cycle. The circuit shown can be adjusted for a step frequency from 100 cps to 2 KC and the number of steps per cycle can be adjusted from one to several hundred. This circuit can also be adapted to a frequency divider by cascading stages similar to the stage formed by Q_{2} and Q_{3}.

TIME DELAY RELAY
Figure 13.14 shows how the unijunction transistor can be used to obtain a precise delay in the operation of a relay. When the switch SW1 is closed, capacitor C_{T} is

TIME DELAY CIRCUIT WITH RELAY
FIGURE 13.14
charged to the peak point voltage at which time the unijunction transistor fires and the capacitor discharges through the relay thus causing it to close. One set of relay contacts hold the relay closed and the second set of contacts can be used for control functions. To be used in this circuit, relays must have fast operating times, low coil resistance and low operating power.

The time delay of this circuit is determined by R_{T}, about one second of delay is obtained for each 10 K of resistance, R_{T}. The time delay is quite independent of temperature and supply voltage.

MULTIVIBRATOR

Figure 13.15 shows a unijunction transistor multivibrator circuit which has a frequency of about 1 Kc . The conditions for oscillation of this circuit are the same as for the relaxation oscillator. The length of time during which the unijunction transistor is off (no emitter current flowing) is determined primarily by \mathbf{R}_{1}. The length of time during

UNIUNCTION TRANSISTOR MULTIVIBRATOR WITH TYPICAL WAVE FORMS

FIGURE 13.15

Unijunction transistor multivibrator used to drive NPN transistor
FIGURE 13.16
which the unijunction transistor is on is determined primarily by R_{2}. The periods may be calculated from the equations:

$$
\begin{aligned}
& \mathbf{t}_{1}=\mathrm{R}_{1} \mathrm{C} \ln \left[\frac{\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{E}}}{\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{p}}}\right] \\
& \mathbf{t}_{2}=\mathrm{R}_{2} \mathrm{C} \ln \left[\frac{\mathrm{~V}_{1}+\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{E}}}{\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{p}}}\right]
\end{aligned}
$$

Where V_{E} is measured at an emitter current of $I_{E}=\frac{V_{1}\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}$ and may be obtained from the emitter characteristic curves.

An NPN transistor may be direct coupled to the multivibrator circuit by replacing the diode as shown in Figure 13.16. This circuit has the advantage that the load does not have any effect on the timing of the circuit.

HYBRID TIMING CIRCUITS

The unijunction transistor can be used in conjunction with conventional PNP or NPN transistors to obtain versatile timing circuits such as symmetrical and unsymmetrical multivibrators, one-shot multivibrators, variable frequency oscillators and time delay circuits. The advantages of these circuits include: (1) The output at the collector of each transistor is very nearly an ideal rectangular waveform. (2) The circuits will tolerate large variations in h_{FE} or I_{Co} of the transistors as compared to conventional circuits. (3) The circuits are not prone to "lock-up" or non-oscillation. (4) The timing stability is excellent. (5) A single small timing capacitor C_{r} can be used, avoiding the use of electrolytic capacitors in many applications.

The hybrid timing circuits can use either germanium or silicon transistors as desired. The basic circuits for PNP or NPN transistors are shown in Figures 13.17 and 13.18. In both of these circuits, the junction transistors form a conventional flip-flop with the unijunction transistor serving the timing and triggering functions. Each time the unijunction transistor fires the discharge current from the capacitor C_{T} develops a pulse across R_{A} which triggers the flip-flop from one state to the other.

The basic circuits as shown in Figures 13.17 and 13.18 will operate at frequencies from about 1 cps to 500 cps and at temperatures above $75^{\circ} \mathrm{C}$. Frequencies from 1 cycle per minute to 100 KC can be obtained by proper choice of $\mathrm{C}_{\mathbf{T}}$ and R_{A} and suitable flipflop design. The operating temperature range may be extended to $150^{\circ} \mathrm{C}$ by the use of silicon transistors.

BASIC HYBRID TIMNNG CIRCUITS USING PNP AND NPN TRANSISTORS
FIGURE 13.17
FIGURE 13.18

The basic hybrid timing circuits in Figures 13.17 and 13.18 can be adapted to perform desired functions by connecting resistors or potentiometers between the points in the circuit ($\left.\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{E}, \mathrm{G}\right)$ as indicated below.
(A) Symmetrical Multivibrator - Square Wave Generator

Connecting the resistor between points E and G in the basic circuits gives a square wave generator which has perfect symmetry. By the use of a 2 megohm potentiometer the frequency may be varied continuously from 1 cps to 500 cps . The frequency is $f=1 / 2 \mathbf{R}_{\mathbf{T}} \mathrm{C}_{\mathrm{T}}$.
(B) One-Shot Multivibrator

The collector of Q_{2} will be positive in the quiescent state. A positive pulse at the base of Q_{2} in Figure 13.17 or a negative pulse at the base of Q_{1} in Figure 13.18 will trigger the circuit. At the end of the timing interval, the unijunction transistor will fire and cause the circuit to revert to its quiescent state. This circuit has the advantage of a fast recovery time so it may be operated at a high duty ratio without any loss of accuracy.
(C) Non-symmetrical Multivibrator

(VARIABLE)

$$
\begin{aligned}
& t_{1} \cong\left(R_{T 1}+R_{1}\right) C_{T} \\
& t_{2} \cong\left(R_{T 2}+R_{1}\right) C_{T}
\end{aligned}
$$

$$
\begin{aligned}
& T_{1} \cong R_{1} C_{T} \\
& T_{2} \cong \frac{R_{1} R_{2} C_{T}}{R_{1}+R_{2}}
\end{aligned}
$$

The timing capacitor C_{T} will be charged through the resistor $\mathrm{R}_{\mathrm{T}_{1}}$ or $\mathrm{R}_{\mathrm{T}_{2}}$ which is connected to the positive collector. The diodes will isolate the other resistor from the
timing capacitor. The two parts of the period ($\mathrm{t}_{1}, \mathrm{t}_{2}$) can thus be set independently by $\mathrm{R}_{\mathrm{T}_{1}}$ and $\mathrm{R}_{\mathrm{T}_{2}}$ and may differ by as much as 1000 to 1 .
(D) Non-symmetrical Multivibrator - Constant Frequency

This configuration gives a multivibrator which has a constant frequency but a variable duty cycle.
(E) Variable Frequency Oscillator

$f=\frac{I_{i}}{2 \eta V_{B B} C_{T}}$

$$
\Delta f \tilde{=} \frac{0.8 \Delta V_{i}}{R_{T} C_{T} V_{B B}}
$$

In the equations $V_{b s}$ is the voltage between base-one and base-two of the injunction transistor. These circuits give a variable frequency square wave output. For the first two circuits the frequency is proportional to the input current. The first circuit has a higher effective current gain than the second circuit, but the temperature stability is not as good. The third circuit is useful if only a small range of frequency variation is desired. The variation of frequency with input voltage is linear only for small changes in input voltage.

Further information on the characteristics and circt.at applications of the unijunction transistor is given in application note ECG-380, "Notes on the Application of the Silicon Unijunction Transistor". Available on written request.

14. SILICON CONTROLLED RECTIFIER

The Silicon Controlled Rectifier (SCR) is a PNPN device structure which is the semiconductor equivalent of a gas thyratron. It is constructed by making both an alloyed PN junction and an ohmic contact to a diffused PNP silicon pellet as shown in Figure 14.1 along with the circuit diagram for an SCR.

FIGURE 14.1
This basic structure is made in two general sizes having average current ratings of 16 and 50 amperes. SCR's are also classified within any basic size by the maximum voltage they can block.

The electrical characteristics of the SCR are shown by Figure 14.2.

FIGURE 14.2
With reverse voltage impressed on the device (cathode positive), it will block the flow of current until the avalanche voltage is reached as in an ordinary rectifier. With positive voltage applied to the anode, the SCR also blocks the flow of current until the forward breakover voltage ($\mathrm{V}_{\text {во }}$) is reached. At this point the SCR goes into a highconduction state and the voltage across the device drops to one or two volts. In the high conduction state, the current flow is limited only by the external circuit impedance and supply voltage. At anode to cathode voltages less than the breakover voltage, the SCR can be switched into the high conduction mode by a small pulse (typically 1.5 volts and 30 ma) applied from gate to cathode. This method of "turning-on" the SCR by means of the gate is used in the majority of applications since it permits the control of large amounts of power from low power signal sources. Once the SCR is in the high conduction state, it will continue conduction indefinitely after removal of the gate signal until the anode current is interrupted or diverted for about 20 microseconds after which the SCR will regain its forward-blocking capabilities.

The gate pulse needed to turn-on an SCR varies with temperature and also from
unit to unit so in order to achieve precise firing, it is desirable to use a short ($10 \mu \mathrm{sec}$) gate pulse with an amplitude of about 6 volts and 300 ma . A simple and economical source of these pulses is the unijunction relaxation oscillator circuit shown in Figure 14.3.

FIGURE 14.3
This circuit will produce pulses spaced roughly $0.2 \mathrm{R} \mu \mathrm{sec}$ apart and is the basis for SCR firing circuits in DC to AC inverters or other equipment operating from DC supplies. A major advantage of the unijunction circuit is that the interval between pulses depends primarily on the values of R and C and is essentially invariant with changes in supply voltage or temperature.

When SCR's are used in a-c circuits, it is necessary that the firing pulses have a precisely determined relationship with the zero crossing of the supply voltage. This is achieved by the circuit of Figure 14.4.

FIGURE 14.4
The UJT supply voltage is a full-wave rectified AC voltage that is clipped by the breakdown diode so that the maximum voltage is about 30 volts. The $0.2 \mu \mathrm{fd}$ capacitor begins charging at the start of the AC wave and will produce a pulse after a time interval depending on the value of the UJT emitter resistor. At the end of the halfcycle of a-c, the base-to-base voltage of the UJT drops to zero and the $0.2 \mu \mathrm{fd}$ capacitor discharges to ground through the emitter. Therefore, the timing of the UJT pulses is always synchronized with the a-c supply voltage.

If a small current is injected into the base of the NPN transistor, a much larger current will flow from collector to emitter thus diverting some charging current from the $0.2 \mu \mathrm{fd}$ capacitor. Reducing the charging current to the capacitor will delay the firing of the UJT and SCR and less average current will flow in the load. The power gain from the base of the NPN transistor to the output of the SCR is over 10 million
so that this basic circuit can be adapted for high performance regulated power supplies, temperature controls and other similar applications.

Figure 14.5 is the circuit of a simple phase controlled AC switch suitable for controlling the intensity of incandescent lights.

FIGURE 14.5
It uses a UJT as a source of pulses which are synchronized to the AC supply by the full-wave bridge composed of diodes CR-1 through CR-4. One SCR conducts during the positive half cycle of AC and the other conducts during the negative half cycle. By varying resistor R_{2}, the firing point can be varied from 0° to 180°. With type C-35B Controlled Rectifiers, this circuit can control up to 4.2 KW of power.

By using two SCR's and two conventional rectifiers in a full-wave bridge circuit, it is possible to obtain a continuously variable DC output.

FIGURE 14.6

Figure 14.6 is the circuit of a regulated power supply that will maintain the output DC constant within $1 / 2$ percent for wide variations of load or supply voltage. By making the feedback voltage to Q_{1} proportional to current rather than voltage, a constant current supply will result. Figure 14.7 is the circuit of parallel type inverter suitable for converting DC to AC or else DC at a higher voltage level.

FIGURE 14.7
UJT_{1} is the primary oscillator and UJT_{2} is synchronized to UJT_{1} through the common 150Ω resistor in their base two circuits so UJT_{2} fires at exactly half the rate of UJT_{1}. Since UJT_{1} produces the first pulse, SCR_{1} will turn on first and SCR_{2} will remain in a blocking condition. The current from the supply V_{B} will then flow through the right hand side of the transformer Tl . The transformer action will produce a voltage of approximately $2 \mathrm{~V}_{\mathrm{B}}$ at the anode of SCR_{2} and across the capacitor C . When the next trigger pulse is applied to the gate of SCR_{2}, it will turn on and the voltage at the anode of SCR_{2} will fall to a value equal to the forward conducting drop. The voltage at the anode of $S C R_{1}$ will fall to approximately $-2 \mathrm{~V}_{\mathrm{B}}$ because of the action of the commutating capacitor C . The capacitor C will maintain a reverse bias across SCR_{1} long enough for $S C R_{1}$ to recover to the blocking state. The next trigger pulse will occur at the gate of SCR_{1} and cause the circuit to revert to the original state. In this manner, the current from the supply V_{B} will flow alternately through the two sides of the transformer primary and produce an AC voltage at the load.

The inductance L_{1} serves as a ballast to prevent excessive current flow during switching. During the switching interval opposing currents can flow in both halves of the transformer primary to the commutating capacitor and to the anode of the SCR which has been turned on. If this current is not limited, the charging time for the commutating capacitor will be very short and the SCR which is to be turned off will not be reverse biased long enough for it to recover. Large values of L_{1} on the other hand will prevent the supply from adjusting to rapid changes in the load. For example, if the load is suddenly decreased, a voltage will be generated across L_{1} which will also appear at the anode of the SCR which is in the blocking condition. If this transient is greater than the breakover voltage, it will cause this SCR to turn on and the inverter will fail. This condition can be prevented by placing a rectifier in parallel with L_{1}.

Additional information on Silicon Controlled Rectifiers and details on the design of inverters, motor drives, and other SCR circuits can be obtained by writing for ECG-371-1, "Notes on the Application of the Silicon Controlled Rectifier."

15. TETRODE TRANSISTORS

Transistor types 3N36 and 3N37 are grown germanium NPN tetrodes manufactured by the meltback process. The 3 N 36 is generally used between 30 MC and 90 MC while the 3 N 37 is used from 90 MC to 200 MC . Primarily intended for high frequency use as RF amplifiers, IF amplifiers, mixers and oscillators, these transistors are also excellent for wide band video amplifiers. The use of base-two for AGC control is also attractive in that very little detuning of the collector circuit results.

Formerly designated by the development number $\mathrm{ZJ}-22$, these types are now in quantity production. The case dimensions of these transistors conform to the JEDEC TO-5 package. They are electrically isolated from the case, which may be grounded by the indexing tab, if required for shielding purposes. The design is suitable for automatic insertion into printed circuit boards.

It has long been recognized that smaller bar size will improve high frequency transistor performance. In particular, small cross section base regions will reduce the base spreading resistance, r^{\prime}, , (or high frequency base resistance). High r^{\prime} b is the most degradating high frequency parameter and is almost always the performance-limiting factor. One approach to reducing r^{\prime} ' is to use physically minute bars. While this solves the electrical problem and is technically possible, the cost of manufacture is high and mechanical reliability is low. To overcome these problems, G.E. uses a reasonable size bar and obtains the high frequency performance by electrical means. With the addition of a second base lead and the application of a suitable cross-base bias, an electric field is established which "compresses" the active base region and thereby brings about a significant reduction in the high frequency base resistance. See Figure 15.1.

Effect of base-two bias on current distribution FIGURE 15.1

Improvements in base resistance of the order of 10 to 1 are achieved by the tetrode over the triode. Since the collector-base junction is normally biased in the inverse direction, the addition of base-two bias has relatively little effect on the collector junction. It merely increases the average bias by $\mathrm{V}_{\mathrm{B}_{1} \mathrm{~B}_{2}} / 2$ which at any collector bias over a few volts has practically no effect.

Operation in the common emitter configuration is generally recommended for several reasons. Operation is more stable and is less likely to be regenerative. Power gain is higher except at the upper frequency limits. The effect of collector capacity on
internal feedback is approximately halved when base-two is connected to a-c ground. See Figure 15.2 for a simplified equivalent circuit.

Approximate equivalent circuit of tetrode FIGURE 15.2

As can be seen, half the collector capacity is across the load and can be tuned out. Thus, it does not contribute to the internal feedback. Output impedance is increased by a factor of 2 , with a corresponding improvement in high frequency available power gain. Figure 15.3 shows the typical power gain variations of a 3 N 36 at 60 MC with collector voltage, emitter current and base-two bias. Curves for the 3 N 37 at 150 MC have the same general shape.

Power gain variations with bias FIGURE 15.3

Typical d-c biasing methods are shown in Figures 15.4 and 15.5. Recommended conditions are:

Collector to emitter voltage, $\mathrm{V}_{\mathrm{Cr}}=5$ volts; base-one to base-two voltage, $\mathrm{V}_{\mathrm{B}_{1} \mathrm{~B}_{2}}=2$ volts; base-one to base-two current, $\mathrm{I}_{\mathrm{B}_{1} \mathrm{~B}_{2}}=$.5 ma ; emitter current, $\mathrm{I}_{\mathrm{E}}=1.5 \mathrm{ma}$.

Typical biasing methods
FIGURE 15.4

COMMON BASE
Typical biasing methods
FIGURE 15.5
Typical circuit configurations utilizing tetrode transistors are shown in Figures 15.6, 15.7, and 15.8.

CRYSTAL CONTROLLED OSCILLATOR
FIGURE 15.6

TV VIDEO AMPLIFIER (FOR HIGH Gm PICTURE TUBES)

FIGURE 15.8

16. POWER SUPPLIES

Both silicon and germanium cells can be used in the types of power supplies illustrated in Figures 16.1, 16.2, 16.3, and 16.4. All four of these power supplies are designed for low ripple output and high reliability at minimum expense. However, they are limited to Class A types of load in which the average load current does not vary with the amplitude of the impressed signal.

OUTPUT VOLTAGE	OUTPUT CURRENT	RI	Cl	R2*	APPROX. RIPPLE
12 VOLTS	1 MA.	43K, 1/2 w	$\begin{aligned} & 250 \mu \mathrm{f} \\ & 15 \text { VOLT } \\ & \text { ELECTROLYTIC } \end{aligned}$	180K 1/2w	0.1\%
12 VOLTS	2 MA .	22K, 1/2w	$\begin{gathered} 250 \mu \dagger \\ 15 \mathrm{VOLT} \\ \text { ELECTROLYTIC } \end{gathered}$	100K 1/2w	0.1\%
25 VOLTS	2 MA.	16K,1/2w	$\begin{aligned} & 250 \mu \dagger \\ & 30 \text { VOLT } \\ & \text { ELECTROLYTIC } \end{aligned}$	180K I/2w	0.1\%

PRE-AMP POWER SUPPLY FIGURE 16.1

* to adjust voltage output for other output currents,
adjust r2.

GENERAL PURPOSE
TRANSISTOR
POWER SUPPLY
FIGURE 16.2

[^4]

$\begin{gathered} \text { OUTPUT } \\ \text { VOLTAGE } \\ V \end{gathered}$	OUTPUT CURRENT	R1	R2	Cl	C2	RECT. 1	APPROX RIPPLE
40 VOLTS	1 AMP	$\begin{gathered} 3 \Omega \\ 10 \text { WATTS } \end{gathered}$	20Ω	$300 \mu \mu^{\dagger}$ ELE VOLT ELECTROLYTIC	$1000 \mu \mathrm{f}$ 50 VOLT ELECTROLYTIC		1\%

TI - U.I.C. R-43 AUTOTRANSFORMER OR EQUAL 2:1 WINDING RATIO

POWER SUPPLY FOR HIGH POWER CLASS A TRANSISTOR AMPUFIERS FIGURE 16.3

To prevent possible damage to the filter capacitors and rectifiers, it is essential that these power supplies always be operated with the rated load across the output terminals. Absence of this load will apply excessive voltage to the components. Class B loads require a stiffer voltage source than the resistance-capacity combinations of the illustrated power supplies can provide. For Class B and other loads that require good voltage regulation, it is recommended that the line voltage be reduced through transformers rather than series resistance or capacitance, and that chokes be substituted for the series resistance in the filter elements. Alternately, a regulated power supply such as shown in Figure 16.8 can be used.

This circuit uses a step-down transformer and full-wave rectifier as a source of unregulated DC. A power transistor acts as a series regulator and mercury batteries are used for the voltage reference. The battery drain is very small so battery life is essentially equal to the shelf life.

When a semiconductor rectifier feeds a capacity-input filter such as in Figures 16.1 through 16.4, it is necessary to limit the high charging current that flows into the input capacitor when the circuit is energized. Otherwise this surge of current may destroy the rectifier. Resistor R1 is used in Figures 16.1 through 16.4 to limit this charging current to safe values.

As shown, the four power supplies do not isolate the load circuit from the 117 volt AC line. In Figures 16.1 and 16.2, the load circuit may be grounded provided a polarized plug is used on the AC line cord to ensure that the grounded side of the AC line is always connected to the grounded side of the load. Figures 16.3 and 16.4 utilize what is called a single phase bridge rectifier circuit to achieve full wave rectification, and hence, lower ripple. Since ground cannot be carried through on a common line to the load in this type of circuit, it is necessary to insulate the load "ground" from accidental

* to adjust voltage output for other output currents, ADJUST R3.

POWER SUPPLY FOR HIGH POWER CLASS A TRANSISTOR AMPUFIER FIGURE 16.4
contact with true ground, or to insert an isolation transformer ahead of the power supply to isolate the two systems. Careful attention to these factors is of particular importance when supplying DC to high gain amplifiers to eliminate hum.

As illustrated, Figures 16.1 and 16.2 develop a negative output voltage with respect to ground as required when supplying P-N-P transistors with grounded emitters. To develop a positive voltage with respect to ground, it is only necessary to reverse the rectifiers and electrolytic capacitors in the circuit.

The power supply of Figure 16.3 uses an autotransformer to reduce the line voltage to one-half normal value before applying to the rectifiers. Provided the additional heat dissipation is not objectionable, Figure 16.4 provides a cheaper means of achieving the same objective by using resistor R2 to reduce the voltage to the desired value.

COMPLETE POWER SUPPLY CIRCUITS

POWER SUPPLY FOR SEVEN-WATT AMPUFIER
FIGURE 16.5

POWER SUPPLY FOR DUAL SEVEN-WATT AMPUFIERS
FIGURE 16.6

$\mathrm{Cl}-1500 \mu \mathrm{f}, 50$ VOLTS
C2- $1500 \mu \mathrm{f}, 50$ VOLTS
C3- 1500 رf, 50 VOLTS
C4-1500 $\mu \mathrm{f}, 50$ VOLTS
SILICON BRIDGE - FOUR-INIII5

POWER SUPPLY FOR DUAL TEN-WATT AMPUFIERS

FIGURE 16.7

TR - POWER TRANSISTOR (MOUNT ON HEAT SINK) C.B.S. 2N256, 2NI56 OR EQUIVALENT
S_{1} - D.P.S.T.
T_{1} - STANCOR P-6469 117 VAC TO 25.2 OR EQUIVALENT
$\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \mathrm{D}_{4}$-GENERAL ELECTRIC IN9। GERMANIUM RECTIFIERS
$\mathrm{C}_{1}, \mathrm{C}_{2}-50 \mu \mathrm{fd}, 50$ VOLT
$8_{1}-3,4$ VOLT MERCURY CELLS IN SERIES, MALLORY TR-233R OR EQUIVALENT

FIGURE 16.8

TRANSISTOR SPECIFICATIONS

HOW TO READ A SPECIFICATION SHEET

Semiconductors are available in a large variety of different types, each with its own unique characteristics. At the present time there are over 2200 different types of diodes and rectifiers and over 750 different types of transistors being manufactured.

The Characteristics of each of these devices are usually presented in specification sheets similar to the ones represented on page 161 and page 223 respectively. These specifications, particularly the transistor specification on the next page, contain many terms and ratings that are probably new to you, so we have selected several of the more important ones and explained what they mean.

NOTES ON TRANSISTOR SPECIFICATION SHEET

(1) The lead paragraph is a general description of the device and usually contains three specific pieces of information - The kind of transistor, in this case a silicon NPN triode, - A few major application areas, amplifier and switch, - General sales features, electrical stability and a standard size hermetically sealed package.
(2) The Absolute Maximum Ratings are those ratings which should not be exceeded under any circumstances. Exceeding them may cause device failure.
(3) The Power Dissipation of a transistor is limited by its junction temperature. Therefore, the higher the temperature of the air surrounding the transistor (ambient temperature), the less power the device can dissipate. A factor telling how much the transistor must be derated for each degree of increase in ambient temperature in degrees centigrade is usually given. Notice that this device can dissipate 125 mw at $25^{\circ} \mathrm{C}$. By applying the given derating factor of lmw for each degree increase in ambient temperature, we find that the power dissipation has dropped to 0 mw at $150^{\circ} \mathrm{C}$, which is the maximum operating temperature of this device.
(4) All of the remaining ratings define what the device is capable of under specified test conditions. These characteristics are needed by the design engineer to design matching networks and to calculate exact circuit performance.

(5)
Current Transfer Rotio is another name for beta. In this case we are talking about an a-c characteristic, so the symbol is h_{re}. Many specification sheets also list the d-c beta using the symbol $h_{\text {Fe }}$. Beta is partially dependent on frequency, so some specifications list beta for more than one frequency.
(6) The Frequency Cutoff $f_{a b}$ of a transistor is defined as that frequency at which the grounded base current gain drops to .707 of the 1 kc value. It gives a rough indication of the useful frequency range of the device.

(7)
The Collector Cutoff Current is the leakage current from collector to base when no emitter current is being applied. This leakage current varies with temperature changes and must be taken into account whenever any semiconductor device is designed into equipment used over a wide range of ambient temperature.
(8) The Switching Characteristics given show how the device responds to an input pulse under the specified driving conditions. These response times are very dependent on the circuit used. The terms used are explained in the curves at right.

The General Electric Types 2N337 and 2N338 are high-frequency silicon NPN transistors intended for amplifier applications in the audio and radio frequency range and for high-speed switching circuits. They are grown junction devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. For electrical reliability and parameter stability, all transistors are subjected to a minimum 160 hour $200^{\circ} \mathrm{C}$ cycled aging operation included in the manufacturing process. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment.
(2)- ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

Voltage
Collector to B
Emitter to Base
V'bo
Vebu

Current
Collector
If

Pc
Temperature
Storage
Operating
Tstis

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ (Unless otherwise specified; $\mathrm{V}_{\mathrm{fr}}=2 \mathrm{Vv}_{\mathrm{V}} \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}$; $\mathbf{f}=\mathbf{1} \mathbf{k c}$

Small-Signal Characteristics

Currer Tranter Ratio
Current Transfer Ratio
Input Impedance
Reverse Voltage Transfer Ratio
Output Admittance
High-Frequency Characteristics

(6)-

Alpha Cutoff Frequency
Collector Capacitance ($\mathrm{f}=1 \mathrm{mc}$) Common Emitter Current Gain ($\mathrm{f}=2.5 \mathrm{mc}$)

D-C Characteristics

Common Einitter Current Gain $\left(V_{C E}=5 \mathrm{v} ; \mathrm{l}_{\mathrm{c}}=10 \mathrm{ma}\right)$
Collector Breakdown Voltage $\left.\left(\mathrm{I}^{\prime} \cdot \mathrm{Rn}\right)=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{E}}=0\right)$
Emitter Breakdown Voltage (Iero $=-50 \mu \mathrm{a} ; \mathrm{l}_{\mathrm{c}}=0$)
Collector Saturation Resistance ($\mathrm{I}_{\mathrm{r}}=1 \mathrm{ma} ; \mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma}$) $\left(I_{\mathrm{b}}=.5 \mathrm{ma} ; \mathrm{l}_{\mathrm{c}}=10 \mathrm{ma}\right)$

Cutoff Characteristics

Collector Current
$\left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{l}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \quad \mathrm{I}(\mathrm{Bo}$
Collector Current
$\left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{CBO}}$
-65 to 200
-6.5 to $150{ }^{\circ} \mathrm{C}$
100-20,

Switching Characteristics
Rise Time
Storage Time
Fall Time

tr_{r}	.02
ts_{5}	.02
tr	.04

mw

.002	1	.002	1	$\mu \mathrm{a}$
	100		100	$\mu \mathrm{a}$

.002
100
2N338

Min.	Typ.	Max.	Min.	Typ.	Max.	
19	55		39	99	80	
30	47	80	30	47	80	ohms
	180	2000		200	2000	$\times 10^{-6}$
	.1	1		.1	1	μ mho

$\mathrm{fab}_{\mathrm{c}}$	10	30		20	45		mc
Cob		1.4	3		1.4	3	$\mu \mu \mathbf{f}$
hie	14	24		20	26		

hFe	20	35	55	45	75	150	
BVebo	45			45			volts
BVero)	1			1			volt
$\begin{aligned} & \text { Rss } \\ & \mathrm{l}_{\mathrm{sc}} \end{aligned}$		75	150		75	150	ohms ohms

*Derate $1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$

EXPLANATION OF PARAMETER SYMBOLS

SMALL SIGNAL G HIGH FREQUENCY PARAMETERS (at specified bias)

Symbols	Abbreviated Definitions
hob	Com. base - output admittance, input AC open-circuited
hib	Com. base - input impedance, output AC short-circuited
hrb	Com. base - reverse voltage transfer ratio, input AC open-circuited
hib	Com. base
hre	Com. emitter $\}$ forward current transfer ratio, output AC short-circuited
hre	Com. collector
hoe, hie	Examples of other corresponding com. emitter symbols
fab	Com. base \quad the frequency at which the magnitude of the small-
$\mathrm{fas}^{\text {o }}$	
fmax	Maximum frequency of oscillation
Cob	Collector to base $\}$ Capacitance measured across the output terminals
Coe	Collector to emitter \quad with the input AC open-circuited
$\mathrm{r}^{\prime} \mathrm{b}$	Base spreading resistance
G.	Com. emitter Power Gain (use Gb_{b} for com. base)
CGe	Conversion gain
NF	Noise Figure

SWITCHING CHARACTERISTICS (at specified bias)

td	These depend on both transistor and circuit parameters
t_{r}	
t	
tr	
Vce (SAT.)	Saturation voltage at specified Ic and Is. This is defined only with the collector saturation region.
$\mathrm{hrig}^{\text {l }}$	Com. emitter - static value of short-circuit forward current transfer ratio, hre $=\frac{\mathrm{Ic}}{\mathrm{Is}}$
hri (INV)	Inverted hre (emitter and collector leads switched)

UNIJUNCTION TRANSISTOR MEASUREMENTS

$\mathrm{I}_{\mathrm{B} 2}$ (MOD)	Modulated interbase current
$\mathrm{I}_{\mathbf{P}}$	Peak point emitter current
$\mathrm{IV}_{\mathbf{V}}$	Valley current
$\mathrm{R}_{\mathrm{BBO}}$	Interbase resistance
V_{BB}	Interbase voltage
$\mathrm{V}_{\mathbf{V}}$	Valley voltage
η	Intrinsic stand-off ratio. Defined by $\mathrm{VP}_{\mathbf{P}}=\eta \mathrm{V}_{\mathrm{BB}}+\frac{200}{\mathrm{~T}_{J}}$ (in${ }^{\circ}$ Kelvin)

DC MEASUREMENTS

Ic, $I_{E,}, I_{B}$	DC currents into collector, emitter, or base terminal
VCb, $V_{E B}$	Voltage collector to base, or emitter to base
VCe	Voltage collector to emitter
VBm	Voltage base to emitter
BVcbo	Breakdown voltage, collector to base junction reverse biased, emitter open-circuited (value of Ic should be specified)
Vceo	Voltage collector to emitter, at zero base current, with the collector junction reverse biased. Specify Ic.

BVceo	Breakdown voltage, collector to emitter, with base open-circuited. This may be a function of both " m " (the charge carrier multiplication factor) and the h fb of the transistor. Specify Ic.
Vcer	Similar to Vceo except a resistor of value " R " between base and emitter.
Vces	Similar to Vceo but base shorted to emitter.
Vpt	Punch-through voltage, collector to base voltage at which the collector space charge layer has widened until it contacts the emitter junction. At voltages above punch-through, $V_{r t}=V_{C b}-V_{E b}$
Vccb Vcce Vbbe	$\left.\begin{array}{l}\begin{array}{l}\text { Supply voltage collector to base } \\ \text { Supply voltage collector to emitter } \\ \text { Supply voltage base to emitter }\end{array}\end{array}\right\} \quad$NOTE - third subscript may be omitted if no confusion results.
Ico, Ісво	Collector current when collector junction is reverse biased and emitter is DC open-circuited.
Ieo, Iero	Emitter current when emitter junction is reverse biased and collector is DC open-circuited.
Iceo	Collector current with collector junction reverse biased and base open-circuited.
Ices	Collector current with collector junction reverse biased and base shorted to emitter.
Iecs	Emitter current with emitter junction reverse biased and base shorted to collector.
Rsc	Collector saturation resistance

OTHER SYMBOLS USED

Pcm	Peak collector power dissipation for a specified time limit
Pcav	Average maximum collector power dissipation
P_{0}	Power output
$\mathrm{Z}_{\mathbf{1}}$	Input impedance
Z_{0}	Output impedance
$\mathrm{T}_{\mathbf{A}}$	Operating Temperature
T_{J}	Junction Temperature

Tste

Storage Temperature

NOTE: In devices with several electrodes of the same type, indicate electrode by number. Example: $\mathrm{I}_{\mathrm{H} 2}$. In multiple unit devices, indicate device by number preceding electrode subscript. Example: I I_{2}. Where ambiguity might arise, separate complete electrode designations by hyphens or commas. Example: Vic1-2C1 (Voltage between collector \#1 of device \#l and collector \#1 of device \#2.)

NOTE: Reverse biased junction means biased for current flow in the high resistance direction.

GENERAL ELECTRIC TRANSISTOR SPECIFICATIONS

2N43

Outline Drawing No. 1

The General Electric Type 2N43 Germanium Alloy Junction Transistor Triode is a PNP unit particularly recommended for high gain, low power applications. A hermetic enclosure is provided by use of glass-to-metal seals and welded seams.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltoge

Collector to Base	Vcb	-45	volts
Collector to Emitter	V ce	-30	volts
Emitter to Base	Veb	-5	volts
Current			
Collector	Ic	-300	ma
Power			
Total Transistor Dissipation	$\mathrm{Pam}_{\mathbf{M}}$	240	mw
Temperature			
Storage	$\underset{\text { Tsta }}{\text { Tsta }}$	-65 to 100	${ }^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Small Signal Characteristics
($\mathbf{V C B}_{\mathrm{cb}}$ or $\mathbf{V}_{\mathrm{ce}}=-5$ volts, $I_{\mathrm{E}}=1 \mathrm{ma}$;
$f=270$ cps unless otherwise specified)
Common base output admittance
(input A-C open circuited)
Forward current transfer ratio
(output A-C short circuited)
Common base input impedance
(output A-C short circuited)
Common base reverse voltage transfer
ratio (input A-C open circuited)
Common base output capacity (input
A-C open circuited; $f=1 \mathrm{mc}$)
Noise Figure ($\mathrm{f}=1 \mathrm{Kc} ; \mathrm{BW}=1$ cycle)
Frequency cutoff (Common Base)

	Min.	Design Center	Max.	
hob	. 1	. 8	1.5	$\mu \mathrm{mhos}$
hee	30	42		
$h_{1 s}$	25	29	35	ohms
hri,	1	5	15	$\times 10^{-4}$
$\begin{aligned} & \mathrm{C}_{\mathrm{ob}} \\ & \mathrm{NF} \\ & \mathrm{f}_{a \mathrm{~b}} \end{aligned}$	20 .5	$\begin{array}{r} 40 \\ 6 \\ 1.3 \end{array}$	60 20 3.5	$\begin{aligned} & \mu \mu \mathrm{f} \\ & \mathrm{db} \\ & \mathrm{mc} \end{aligned}$
$\begin{aligned} & \text { IIc } \\ & I_{E} \end{aligned}$		$\begin{aligned} & -8 \\ & -4 \end{aligned}$	$\begin{array}{r} -16 \\ -10 \end{array}$	$\mu \mathrm{amps}$ $\mu \mathrm{amps}$
$\left.\mathrm{VCE}^{(\mathrm{Sat}}\right)$	65	90	130	mv
Vbe	-180	-230	-280	mv
has	34	53	65	
hre	30	48		
$\begin{aligned} & \mathrm{V}_{\mathrm{CER}} \\ & \mathrm{~V}_{\mathrm{PT}} \end{aligned}$	$\begin{aligned} & -30 \\ & -30 \end{aligned}$			volts volts
			$\begin{aligned} & 0.25 \\ & 0.11 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{mw}$ ${ }^{\circ} \mathrm{C} / \mathrm{mw}$

The 2N43A is identical to the 2 N 43 except that $h_{\text {re }}$ is guaranteed to be between 30 and 66 . It is therefore electrically identical to the USAF 2N43A.

2N43A
Outline Drawing No. 1

Per MIL-T-19500/18

USAF 2N43A

Outline Drawing No. 1

The General Electric Type 2N44 Germanium Alloy Junction Transistor Triode is a PNP unit particularly recommended for medium gain, low power applications. A hermetic enclosure is provided by use of glass-to-metal seals and welded seams.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
 Voltage

Coliector to Base
Collector to Emitter
Emitter to Base

$\begin{aligned} & V_{C B} \\ & V_{c k} \\ & V_{E B} \end{aligned}$	

Current

Coilector

Power

Total Transistor Dissipation

Temperature

Storage
Operating Junction
Tstg

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Small Signal Characteristies
Min.

$$
\text { (Vces or } V_{C s}=-5 \text { volts, } 1 \mathrm{~s}=1 \mathrm{ma}
$$

$f=270$ cps unless otherwise specified)
Common base output admittance
(input A-C open circuited)
Forward current transfer ratio
(output A-C short circuited)
Common base input impedance
(output A-C short circuited)
Common base reverse voltage transfer ratio (input A-C open circuited)
Common base output capacity (input A-C open circuited; $f=1 \mathrm{mc}$)
Noise Figure ($\mathrm{f}=1 \mathrm{Kc} ; \mathrm{BW}=1$ cycle)
Frequency cutoff (Cominon Base)

hob	. 1
hre	
hib	27
hrb	1.0
$\begin{aligned} & \text { Cob } \\ & \text { NF } \\ & \mathbf{f}_{a b} \end{aligned}$	20 .5

D-C Characteristics

Collector cutoff current ($\mathrm{Vcra}=-4.5 \mathrm{v}$)

Ico	
Imo	
V/esent	55
Vbe	-200

Collector Saturation Voltage
($\mathrm{Ic}=-20 \mathrm{ma}$; $\mathrm{I}_{\mathrm{s}}=-2 \mathrm{ma}$)
Base input voltage, common emitter
Common emitter static forward current transfer ratio (VCe $=-1$ volt; $\mathrm{Ic}=-20 \mathrm{ma}$)
Common emitter static forward current transfer ratio (Vce $=-1$ volt; $\mathrm{I}_{\mathrm{c}}=-100 \mathrm{ma}$)
Collector to emitter voltage (10 K ohms resistor base to emitter; $\mathrm{I} \cdot=-0.6 \mathrm{ma}$)
Punch-through voltage

2N44

Outline Drawing No. 1

Outline Drawing No. 1

2N78

Outline Drawing No. 3

The General Electric 2 N 78 is a rate grown NPN high frequency transistor intended for high gain RF and IF amplifier service and general purpose applications. The exclusive G-E rate-growing process used in the manufacture of the 2N78 enhances the stable and uniform characteristics required for military and inclustrial service. The $2 \mathrm{~N} 78^{\circ}$ s low collector cutoff current and controlled D-C Beta simplifies bias stabilization. In order to achieve the high degree of reliability necessary in industrial and military applications, the 2 N 78 is designed to pass 500 G 1 millisecond drop shock, $10,000 \mathrm{G}$ centrifuge, 10 G of vibration fatigue and 10 G variable frequency vibration, as well as temperature cycling, moisture resistance, and operating and storage life tests as outlined in MIL-T-19500A.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltage
Collector to Emitter (base open)
Collector to Base (emitter open)

Vceo
VCbo
Collector to Base (emitter open) Vсво

Current

Collector
$\mathrm{If}_{\mathrm{If}}$
Emitter $\quad \mathrm{Ic}$
15

volts

 volts| 20 | ma |
| ---: | ---: |
| $-20 \quad \mathrm{ma}$ | |

65
mw
${ }^{\circ} \mathrm{C}$
*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Low Frequency Characteristics (Common Base)
$\left(V_{C B}=5 v_{j} I_{e}=-1 \mathrm{ma} ; ~ f=270 \mathrm{cps}\right)$
(See Note)
Input Impedance (output short circuited)
Voltage Feedback Ratio
(input short circuited)
Current Amplification.
(output short circuited)
(output short circuited)
Output Admittance (input open circuited) hit
hob
High Frequency Characteristics (Common Base)
$\left(V_{C R}=5 \mathrm{~V} ; \mathrm{i}_{\mathrm{E}}=1 \mathrm{ma}\right)$
Alpha Cutoff Frequency
Output Capacity ($\mathrm{f}=1 \mathrm{mc}$)
Voltage Feedback Ratio ($\mathrm{f}=1 \mathrm{mc}$)
Noise Figure
$\left(V_{C R}=1.5 v ; I_{E}=-0.5 \mathrm{ma} ; \mathrm{f}=1 \mathrm{kc}\right) \quad \mathrm{NF}$
Power Gain in Typical IF Test Circuit (4.55 kc)

Ge

Min.	Nom.
25	55
.8	2
.97	.983
.1	.2

Max

82	ohms
10	$\times 10^{-4}$
.995	
.7	μ mhos

D-C Characteristics
Collector Cutoff Current (Vcb $=15 v$)

6	mc 12 $\mathrm{\mu} \mathrm{\mu f}$ $\times 10^{-3}$ db db

db

Typical Operation (Common Emitter)

$\left(\mathrm{Vee}=5 \mathrm{v} ; \mathrm{Im}_{\mathrm{E}}=1 \mathrm{ma}\right)$
IF Amp. IF Amp. RF Amp.
Input Frequency
Input Impedance (resistive) Output Impedance (resistive)
Matched Power Gain

300	350
30	15

1600 kc

37

Note: The Low Frequency Characteristics are design limits within which 98% of production normally falls.

The General Electric type 2 N 107 is an alloy junction PNP transistor particularly suggested for students, experimenters, hobbyists, and hams. It is available only from franchised General Electric distributors. The 2N107 is hermetically sealed and will dissipate 50 milliwatts in $25^{\circ} \mathrm{C}$ free air.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: (25 ${ }^{\circ}$ C)

Voltoge

Collector (referred to base) VCB $\quad-12$ volts
Current
Collector
$\begin{array}{rr}-10 & \mathrm{ma} \\ \mathbf{1 0}\end{array}$
Emitter I

Temperature
Junction
$60{ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

(Common Base, $f=270 \mathrm{cps}$

$\left.\mathrm{V}_{\mathrm{cr}}=-5 \mathrm{v}, \mathrm{Ie}=1 \mathrm{ma}\right)$

Collector Voltage
Emitter Current
Output Admittance (input open circuit)
Current Amplification (output short circuit)
Input Impedance (output short circuit)
Voltage Feedback Ratio (input open circuit)
Collector Cutoff Current
Output Capacitance
Frequency Cutoff
Vcb
$\underset{\text { lig }}{\mathrm{I} \text { hob }}$
heb
hib
hib
hrb
ICO
Cob
fab

-5.0	volts
1.0	ma
1.0	$\mu \mathrm{mhos}$
-.95	
32	ohms
3	$\times 10^{-4}$
10	$\mu \mathrm{a}$
40	$\mu \mu \mathrm{f}$
0.6	mc

hee
20

2N123
Outline Drawing No. 7

The General Electric Type 2 N 123 is a PNP alloy junction high frequency switching transistor intended for military, industrial and data processing applications where high reliability at the maximum ratings is of prime importance.

SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS: $\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$
Voltage
Collector to Emitter
Collector to Base

Vaeo	-15	volts
V(ba)	-20	volts
Verio	-10	volts
I.	-125	ma
If. ${ }^{\text {d }}$	-500	ma
It:	125	ma
Pram	500	mov
Par	150	miv
Tsitic	-55 to 85	${ }^{\circ} \mathrm{C}$

Current
 Collector

Peak Collector ($10 \mu \mathrm{~s}$ max.)
Emitter
Power
Peak Collector Dissipation ($10 \mu \mathrm{~s}$ max.) *
Total Transistor Dissipation**
Temperature
Storage
Operating Junction Temperature
TJ
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

D-C Chorocteristics

Common Emitter Current Gain $\left(\mathrm{V}_{\mathrm{c}} \mathrm{E}=-1 \mathrm{v} ; \mathrm{I}_{\mathrm{C}}=-10 \mathrm{ma}\right)$	hre	Min. 30	Typ. 75	Max. 150	
Common Emitter Current Gain ($\mathrm{Vec}=-1 \mathrm{~V} ; \mathrm{IE}=-10 \mathrm{ma}$) hre:(x)					
Saturation Voltage $\left(\mathrm{I}_{\mathrm{B}}=-.5 \mathrm{ma} ; \mathrm{lc}=-10 \mathrm{ma}\right)$ Collector Cutoff Current (V cbo $=-20 \mathrm{v}$)	Viei ${ }^{(\text {(xat) }}$		-. 15	-. 2	volts
	I 10		-2	-6	$\mu \mathrm{a}$
Collector to Emitter Voltage $(\mathrm{Ic}=-600 \mu \mathrm{a})$ Reach-through Voltage	Lew		-2	-6	$\mu \mathrm{a}$
	Vaceo	-1.5	-25		volts
	Vat	-20	-35		volts

High Frequency Characteristics (Common Bose)
$\left(V_{c h}=-5 y ; I_{\mathrm{t}}=1 \mathrm{ma}\right)$
Alpha Cutoff Frequency
Collector Capacity ($\mathrm{f}=1 \mathrm{mc}$)
Voltage Feedback Ratio ($\mathrm{f}=1 \mathrm{mc}$)
Base Spreading Resistance
Low Frequency Choracteristics (Common Bose)
($\mathrm{Ven}_{\mathrm{cs}}=-5 \mathrm{v} ; \mathrm{Ite}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{f}=270 \mathrm{cps}$)
Input Impedance
Voltage Feedback Ratio
Forward Current Transfer Ratio
h_{14}
Output Admittance
Switching Characteristics

$$
\left(1 \mathrm{c}=-10 \mathrm{ma} ; i_{\mathrm{B} 1}=\mathrm{l}_{\mathrm{B} 2}=1 \mathrm{ma}\right)
$$

Delay Time
Rise Time
Storage Time
Fall Tine

ohms $\times 10^{-4}$
$\mu \mathrm{mho}$
$\mu \mathrm{sec}$
$\mu \mathrm{sec}$
$\mu \mathrm{sec}$
$\mu \mathrm{sec}$
*Derate $8 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$. **Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

Outline Drawing No. 7

2N135, 2N136. 2N137

Outline Drawing No. 7

The General Electric types 2N135, 2N136 and 2N137 are PNP alloy junction germanium transistors intended for RF and IF service in broadcast receivers. Special control of manufacturing processes provides a narrow spread of characteristics, resulting in uniformly high power gain at radio frequencies. These types are obsolete and available for replacement only.

SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
2N135
$\begin{array}{ll}\text { Voltoge } & \\ \text { Common Base (emitter open) } & \text { Vcbo } \\ \text { Common Emitter (RBE }=100 \text { ohms) } & \text { VCRR } \\ \text { Common Emitter (RBE }=1 \text { megohm) } & \text { VCriR }\end{array}$

Yoltage

Common Emitter ($\mathrm{RbF}_{\mathrm{BE}}=100 \mathrm{ohms}$)
Common Emitter ($\mathrm{RaE}=1$ megohm)
-20
-20
-12

Current Collector Emitter	$\begin{aligned} & \text { Ir } \\ & \mathbf{I}_{E} \end{aligned}$	-50 50	-50 50	-50 50	$\mathrm{ma}_{\mathrm{ma}}$
Dower Collector Dissipation	P(3)	100	100	100	mw
Temperature Storage	Tste	85	8.5	85	${ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS: Design Center Values (Common Base, $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=5 \mathrm{v}, \mathrm{i}_{\mathrm{E}}=1 \mathrm{ma}$)					
Voltage Feedback Ratio (input open circuit, $f=1 \mathrm{mc}$)	$\mathrm{hrb}^{\text {b }}$	7	7	7	$\times 10^{-3}$
Output Capacitance ($\mathrm{f}=1 \mathrm{mc}$)	Cob	12	12	12	$\stackrel{\mu}{\mu} \mathbf{f}$

The General Electric Type 2N167 is an NPN germanium high frequency, high speed switching transistor intended for industrial and military applications where reliability is of prime importance. In order to achieve the high degree of

2N167

Outline Drawing No. 3 reliability necessary in industrial and military applications, the 2 N 167 is designed to pass 500 G l millisecond drop shock, $10,000 \mathrm{G}$ centrifuge, 10 G of vibration fatigue and 10G variable frequency vibration, as well as temperature cycling, moisture resistance, and operating and storage life tests as outlined in MIL-T-19500A.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltoge
Collector to Base
Collector to Emitter
Emitter to Base
Current
Collector
Emitter
Power
Collector Dissipation $\left(25^{\circ} \mathrm{C}\right) *$
Total Transistor Dissipation $\left.\left(25^{\circ} \mathrm{C}\right)\right)^{* *}$
Temperature
Storage
ELECTRICAL CHARACTERISTICS: $\quad\left(25^{\circ} \mathrm{C}\right)$

D-C Characteristics		Min.	Typ.	Max.	
Base Input Voltage 8 Ve 90					
${ }^{\left(1 I_{P}\right.}=.47 \mathrm{ma}$; $\mathrm{Ic}=8 \mathrm{ma}$)	Vbe	.3*	. 41		*volts
Collector to Emitter Voltage					
Saturation Voltage ($\mathrm{I}_{\mathrm{B}}=.8 \mathrm{ma}$; $\mathrm{Ic}=8 \mathrm{ma}$)	Vees (sat)		. 35		volts
Cutoff Characteristics					
Collector Current ($\mathrm{Im}=0 ; \mathrm{Vcr}=15 \mathrm{v}$)	Ico		. 6	1.5	
Emitter Current ($\mathrm{Ic}=0 ; \mathrm{Ver}_{\text {er }}=5 \mathrm{v}$)	Ieo		. 35	5	${ }_{\mu \mathrm{a}}$
High Frequency Characteristics (Common Base)					
$\left(\mathrm{V}_{\mathrm{Cr}}=5 \mathrm{v} ; \mathrm{l}_{\mathrm{E}}=1 \mathrm{ma}\right)$					
Alpha Cutoff Frequency	fab	5.0	9.0		mc
Collector Capacity ($\mathrm{f}=1 \mathrm{mc}$)	Cob		2.5	6	
Voltage Feedback Ratio ($\mathrm{f}=1 \mathrm{mc}$)	hrb		7.3		$\times 10^{-5}$
Low Frequency Characteristics (Common Base)					
($\mathrm{Vch}=5 \mathrm{v} ; \mathrm{IE}=-1 \mathrm{mo} ; \mathrm{f}=270 \mathrm{cps}$)					
Forward Current Transfer Ratio	hrb	. 952	. 985	.995*	
Output Admittance	hob	.1*	. 2	.7*	$\mu \mathrm{mhos}$
Input Impedance	hib	25*	55	82*	ohms
Reverse Voltage Transfer Ratio	hrb		1.5		$\times 10^{-6}$

Switching Characteristies

$\left(I_{c}=8 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 1}=.8 \mathrm{ma} ; I_{\mathrm{B} 2}=.8 \mathrm{ma}\right)$ Turn-on Time Storage Time Fall Time
$\mathrm{V}_{\mathrm{V}} \mathrm{f}$
Vcre
Veb

Ic

I_{F}	$\mathbf{7 5}$	ma
I	$\mathbf{7 5}$	ma

Pc 65 mw

P_{M}	75	mw
mw		

Tsta
85
${ }^{2} \mathrm{C}$
$\underset{\text { volts }}{\text { volts }}$
$1.5 \quad \mu \mathrm{a}$
$\mu \mathrm{a}$

Low Frequency Characteristics (Common Base)
 Forward Current Transfer Ratio
$\dot{55}$
1.5
$\times 10^{-6}$
Reverse Voltage Transfer Ratio

a

.4	$\mu \mathrm{sec}$.7
.2	$\mu \mathrm{sec}$ $\mu \mathrm{sec}$

[^5]
2N168A

Outline Drawing No. 3

The 2 Nl 168 A is a rate-grown NPN germanium transistor intended for mixer/oscillator and IF amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity so that neutralization in many circuits is not required. The 2N168A has a frequency cutoff control to provide proper operation as an oscillator or autodyne mixer. For IF amplifier service the range in power gain in controlled to 3 db . This type is obsolete and is not recommended for new designs. For new designs we recommend type 2N1086.

CONVERTER TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

Voltage

Collector to Emitter ($\mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}$)
Collector to Base (emitter open)

Current

Collector

$\begin{aligned} & \text { Visar } \\ & \text { Vinas } \end{aligned}$	15	volts volts
Ic	-20	ma
Pcm	65	mw
TA, Tstu	-55 to 85	${ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Converter Service
Maximum Ratings
Collector Suppiy Voltage
Vec
12
volts

Design Center Characteristics

$\begin{array}{lr}\left.\text { Input Impedance (} \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{PE}}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}\right) \mathrm{Z}_{\mathrm{i}} & 400 \\ \text { Output Impedance }\left(\mathrm{IE}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}\right) \mathrm{Z}_{0} & 12\end{array}$
Output Impedance ($\mathrm{Ie}=1 \mathrm{ma}$; $\mathrm{VCE}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$) Z 。
Voltage Feedback Ratio
($\mathrm{IE}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; f=1 \mathrm{mc}$)
Collector to Base Capacitance
($\mathrm{Ie}_{\mathrm{e}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{cb}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$)
Frequency Cutoff ($\mathrm{Ir}=1$ ma; $\mathrm{Vcb}=5 \mathrm{v}$)
Minimum Frequency Cutoff (Ie $=1 \mathrm{ma}$; $\mathrm{V}_{\mathrm{Cb}}=5 \mathrm{v}$)
Base Current Gain ($\mathrm{I}_{\mathrm{b}}=20 \mu \mathrm{a} ; \mathrm{Vce}_{\mathrm{C}}=1 \mathrm{v}$)
Minimum Base Current Gain
Maximum Base Current Gain

Conversion Gain

IF Amplifier Performance
Collector Supply Voltage
Collector Current
Input Frequency
Available Power Gain
Minimum Power Gain in typical IF circuit
Power Gain Range of Variation in typical IF circuit

Cutoff Characteristics

Collector Cutoff Current ($\mathrm{VCB}_{\mathrm{cb}}=5 \mathrm{v}$)
Collector Cutoff Current ($\mathrm{Vcb}=15 \mathrm{v}$)

Cob
fab
fab
hfe
hre
hre
CGe

Vcc
Ic
$\stackrel{f}{\mathrm{G}} \mathrm{Ge}^{\mathrm{G}}$
G_{e}
G,
Ge
2.4

8
5
40
23
135
25
db

volt
ma
39
28
3
ohms
K ohms
$\times 10^{-8}$
$\mu \mu \mathrm{f}$
me
me min

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

The General Electric Type 2N169 transistor is a rate-grown NPN germanium device, intended for use as an IF amplifier in bruadcast radio receivers. The collector capacity is controlled to a uniformly low value so that neutralization in

2N169
Outline Drawing No. 3 most circuits is not required. Power gain at 455 KC in a typical receiver circuit is restricted to a 2.5 db spread. The uniformity provided by the controls of collector capacity and power gain allows easy and economical incorporation of this type into receiver circuits. The 2N169 has special high beta characteristics required in the final stage of reflex IF circuits where large audio gain is desired.

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\mathbf{1 2 5}^{\circ} \mathrm{C}$)			
Valtoge			
Collector to Emitter ($\mathrm{Rre}_{\mathrm{R}}=10 \mathrm{~K}$) Collector to Base (emitter open)	$\begin{aligned} & \text { Vater } \\ & \text { Vararo } \end{aligned}$	15	voits velts
Current Collector	Current		na
Power			
Collector Dissipation at $2.5{ }^{\circ} \mathrm{C}$ *	Pas	6.5	mw
Temperature			
Operating and Storage	TA. Tivi	-55 to 85	${ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS:** $\left(25^{\circ} \mathrm{C}\right)$			
Reflex IF Amplifier Service			
Maximum Rotings			
Collector Supply Voltage	Vre	9	volts
Design Center Characteristics			
($\mathrm{Im}=1 \mathrm{ma} ; \mathrm{VCe}=5 \mathrm{v} ; \mathrm{f}=4.55 \mathrm{KC}$ except as noted)			
Input Impedance	Z_{1}	700	whms
Output Impedance	Z	7	K nhms
Voltage Feedback Ratio ($\mathrm{Vcs}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$)	hr_{t}	10	$\times 10^{-3}$
Collector to Base Capacitance ($\mathrm{Vcs}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$)	Con	2.4	$\mu \mu \mathrm{f}$
Frequency Cutoff ($\mathrm{Vcr}_{\text {cr }}=5 \mathrm{v}$)	$\mathbf{f a l}_{1}$	8	mc
Base Current Gain ($\mathrm{Ic}=1 \mathrm{ma}$; Ver $=1 \mathrm{l}$)	hre	72	
Minimum Base Current Gain	hre:	32	
Reflex If Amplifier Performance			
Collector Supply Voltage	Vrr	5	volts
Collector Current	$1{ }^{\text {c }}$	2	ma
Input Frequency	f	455	KC
Minimum Power Gain in Typical IF Circuit	G.	29.5	db
Power Gain Range of Variation in Typical IF Circuit	G.	2.5	db
Cutoff Characteristies			
Collector Cutoff Current (Vcr $=5 \mathrm{v}$)	I(\%)	. 5	$\mu \mathrm{a}$
Collector Cutoff Current ($\mathrm{Vcr}_{\text {cr }}=15 \mathrm{v}$)	Ie:	5	$\mu \mathrm{a}$ max

[^6]**All values are typical unless indicated as a min. or max.

2N169A

Outline Drawing No. 3

The General Electric type 2N169A is a rate-grown NPN germanium transistor recommended for high gain RF and IF amplifier service and general purpose industrial applications where high beta, high voltage, low collector capacity and extremely low collector cutoff current are of prime importance.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage					
Collector to Base	Vab			25	volts
Collector to Emitter	Vere			25	volts
Emitter to Base	Veb			5	volts
Current Collector	Ic			-20	ma
Power Collector Dissipation*	Pc			65	mw
Temperature Storage Operating Junction	$\mathrm{Tstg}^{\text {T }}$			$\begin{aligned} & -5.5 \text { to } 85 \\ & -55 \text { to } 85 \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS: $125^{\circ} \mathrm{C}$ DC Chorocteristics			Design		
Collector to Emitter Breakdown Voltage $\left(\mathrm{RBE}_{\mathrm{B}}=10 \mathrm{~K} ; \mathrm{Ic}=.3 \mathrm{ma}\right)$	BVeer	Min. 25		Max.	
Punch-through Voltage	$\mathrm{V}_{\text {PT }}$	25			
Forward Current Transfer Ratio ($\mathrm{Ic}=1 \mathrm{ma}$; VCe $=1 \mathrm{~V}$)	$\mathrm{hrem}_{\mathrm{VE}}$	34**	. 12		
Base Input Voltage ($\mathrm{Ic}=1 \mathrm{ma}$; $\mathrm{VCE}=1 \mathrm{lv}$)		.13**	. 23	. ${ }^{\text {4*** }}$	
Saturation Voltage ($(1 \mathrm{n}=.5 ; 1 \mathrm{lc} \equiv 5 \mathrm{ma})$	Vce		.23 .9	5**	$\mu \mathrm{a}$
Emitter Current ($\mathrm{Ic}=0$; Ver $=5 \mathrm{v}$)	IEO		. 9		$\mu \mathrm{a}$
Low Frequency Characteristics (Common	mitter)				
Forward Current Transfer Ratio Output Admittance					
Output Admittance Input Impedance	hob		$\stackrel{2}{5}$		${ }_{\text {ehmhos }}$
Reverse Voltage Transfer Ratio	hrb		2		$\times 10^{-4}$
High Frequency Characteristics (Comman	Emitter)				
Base Spreading Resistance Output Capacity	$\mathrm{C}_{\text {Cob }}^{\text {¢ }}$		250 2.4		
Output Capacity	Cob		140		${ }_{\mu \text { mhos }}$
Input Impedance	hi.		700		ohms
Reverse Voltage Transfer Ratio	$\mathrm{hrb}^{\text {b }}$		10		$\times 10^{-3}$
Noise Figure ($\mathrm{Bw}=1$ cycle) ($\mathrm{f}=1 \mathrm{KC} ; \mathrm{VCB}_{\mathrm{CB}}=1.5 \mathrm{v} ; \mathrm{Ie}_{\mathrm{E}}=-0.5 \mathrm{ma}$) (Common Emitter)	NF		12		db
Power Gain (Typical IF Test Circuit)	Ge	27	28		db
Available Power Gain	fab		99		me

[^7]Outline Drawing No. 3

The 2N170 is a rate grown NPN germanium transistor intended for use in high frequency circuits by amateurs, hobbyists, and experimenters. The 2 N 170 can be used in any of the many published circuits where a low voltage, high frequency transistor is necessary such as for regenerative receivers, high frequency oscillators, etc. If you desire to use the 2N170 NPN transistor in a circuit showing a PNP type transistor, it is only necessary to change the connections to the power supply.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Volfage
Collector to Emitter ($\left.\mathrm{R}_{\mathrm{BL}}=10 \mathrm{~K}\right) \quad$ V(ER $\quad 9 \quad$ volt
Current
Collector
Power
Collector Dissipation*

VCER	9	volts
If.	20	ma
Pi’s	25	mw
TA. Tsti	-.5 .5 to 8.5	${ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)

High Frequency Characteristics

($\mathrm{Ir}_{\mathrm{r}}=1 \mathrm{ma} \mathrm{V}_{(\mathrm{cs}}=5 \mathrm{v} ; \mathbf{f = 4 5 5 \mathrm { KC } \text { except as noted) }) ~}$
Input Impedance (Common Emitter)

Z1	800	ohms
$\mathrm{Zn}^{\text {n }}$	1.5	K ohms
Cob	2.4	$\mu \mu \mathbf{f}$
$\mathrm{Gab}^{\text {a }}$	4	mc
Ge	22	db

Output lmpedance (Common Emitter)
K ohms
Collector to Base Capacitance ($\mathrm{f}=1 \mathrm{mc}$)
db
Powe
db
Low Frequency Characteristics
($\mathrm{Iv}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{cE}}=5 \mathrm{v} ; \mathrm{f}=270 \mathrm{cps}$)
Input Impedance

hin	55	ohms
hrb	4	$\times 10^{-4}$
hab	. 95	
hol,	20	mhos

Current Gain
Output Admittance
hol
$\times 10^{-6} \mu \mathrm{mhos}$
Common Emitter Base Current Gain
hre

Cutoff Choracteristics

Collector Cutoff Current ($\mathrm{V} \cdot \mathrm{s}=5 \mathrm{v}$)
Ico
3 ma max
*Derate $1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

The $2 \mathrm{~N} 186 \mathrm{~A}, 2 \mathrm{~N} 187 \mathrm{~A}$, and 2 N 188 A are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to

2N186A, 2N187A 2N188A

Outline Drawing No. 1 200 ma . This linearity of current gain provides low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits. These types may be substituted for Types $2 \mathrm{~N} 186,2 \mathrm{~N} 187,2 \mathrm{~N} 188$ respectively.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

[^8]
2N189, 2N190. 2N191, 2N192

Outline Drawing No. 1

The $2 \mathrm{~N} 189,2 \mathrm{~N} 190,2 \mathrm{~N} 191$, and 2 N 192 are alloy junction PNP transistors intended for driver service in transistorized audio amplifiers. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage Collector to Emitter ($\mathrm{Reb}=10 \mathrm{~K}$ ohm)	Verr	-25	volts
Current Collector	Ic	-50	ma
Power Collector Dissipation ($25^{\circ} \mathrm{C}$)*	Pcs	75	mw
Temperature Operating Storage	$\mathrm{T}_{\text {TSTG }}$	-55 to 60 -55 to 85	${ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Audio Driver Class A Operation
2N189 2N190 2N191 2N192

(Values for one transistor driving a transformer coupled output stage)						
Maximum Class A Ratings (Common Emitter)						
Collector Supply Voltage	Vec	-12	-12	-12	-12	volts
Design Center Characteristics						
Input Impedance base to emitter ($1 \mathrm{r}=1 \mathrm{ma}$)	hie	1000	1400	1800	2200	ohms
Base Current Gain ($\mathrm{VCE}=-5 \mathrm{v}$; $\mathrm{Im}_{\mathrm{m}}=1 \mathrm{ma}$)	hie	32	42	67	90	
Collector Capacity (Vea $=-5 v ; \mathrm{Ie}=1 \mathrm{ma}$)	Cols	40	40	40	40	$\mu \mu \mathrm{f}$
Frequency Cutoff ($\mathrm{Vcbs}^{\mathrm{cb}}=-5 \mathrm{v} ; \mathrm{Im}_{\mathrm{e}}=1 \mathrm{ma}$)	fab	. 8	1.0	1.2	1.5	mc
Noise Figure (Vcb $=-5 v ; I_{e}=1 \mathrm{ma}$; $\mathrm{f}=1 \mathrm{KC} ; \mathrm{BW}=1 \mathrm{cycle}$)	NF	15	15	15	15	d
Audio Circuit Performance (Common Emitter)						
Collector Supply Voltage	Ver	-12	-12	-12	-12	volts
Emitter Current	IE	1	1	1	1	ma
Minimum Power Gain at 1 mw power output	$G^{\text {e }}$	40	42	44	45	min db
Small Signal Characteristics (Common Base)						
Input Impedance	hib	29	29	29	29	ohms
Voltage Feedback Katio	hrb	4	4	4	4	$\times 10^{-4}$
Current Amplification	hes	$-.97$	$-.977$	$-.985$	$-.989$	
Output Admiltance	hob	1.0	. 8	. 6	. 5	$\mu \mathrm{mhos}$
Cutoff Characteristics						
Maximum Collector Cutoff Current $\left(V_{\vee} \cdot \mathrm{B}=-25 \mathrm{v}\right)$	Ico	-16	-16	-16	-16	max $\mu \mathrm{a}$

*Derate $2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature within range $25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.

2N241, 2N241A

Outline Drawing No. 1

The 2N241 and 2N241A are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By special process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain insures low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits. The 2 N 241 is now obsolete and the 2 N 241 A should be specified in new designs.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Yoltage
Collector to Base (emitter open)
Collector to Emiter (REB = 10 K ohm)
Emitter to Base (collector open)
Current
Collector
Power
Collector Dissipation
Temperature
Operating
Storage

	2N241	2N241A	
VCBo	-25	-25	volts
VCER	-25	-25	volts
VEBO	-5	-5	volts
IC	-200	-200	ma
Pcm	100^{*}	$200^{* *}$	mw
TA	-55 to 60	-55 to 75	${ }^{\circ} \mathrm{C}$
TSTG	-55 to 85	-55 to 85	${ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Closs B Audio Amplifier Operation
(Values for two transistors. Note that matching
is not required to hold distortion to less than
5\% for any two transistors from a type)
Maximum Class B Ratings (Common Emitter)
2N241 2N241A
$-12 \quad-12$
-12 volts
Power Output (Distortion less than 5\%)
V'C

300
750
mw

Design Center Characteristics

Input Impedance large signal base to basa

$\left(\triangle I^{\prime}=100 \mathrm{ma}\right)$	hio	4000	4000	ohins
Base Current Gain (Vck $=-1 \mathrm{v}$; Ic $=-100 \mathrm{ma}$)	hFe	73	73	
Collector Capacity ($\mathrm{Vcr}=-5 \mathrm{v} ; \mathrm{IE}=1 \mathrm{ma}$; $\mathrm{f}=1 \mathrm{mc}$)	Cob	40	40	$\mu,{ }^{\text {f }}$
Frequency Cutoff (VCe $=-5 \mathrm{v}$; $1 \mathrm{~s}=1 \mathrm{ma}$)	$f_{a b}$	1.3	1.3	me
Class B Circuit Performance (Common Emitter)				
Collector Voltage	Vec	-12	-12	volts
Minimum Power Gain at 100 mw power output	Ge	31	31	min (b)
Class A Audio Amplifier Operotion (Common Emitter)				
$\left(V_{c c}=-12 v_{j} I_{E}=10 \mathrm{ma}\right)$ Power Gain at 50 mw power output	Ge	40	40	db
Cutoff Characteristics				
Maximum Collector Cutoff Current ($\mathrm{V}_{\mathrm{cb}}=-25 \mathrm{v}$)	Ico	-16	-16	111ax $\mu \mathrm{at}$
Maximum Emitter Cutoff Current (Veb $=-5 v$)	Ifeo	-10	-10	max $\mu \mathrm{a}$

*Derate $3 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature within range $25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
$* *$ Derate $4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature within range $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.

The 2N265 is an alloy junction PNP transistor intended for driver service in transistorized audio amplifiers. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special

2N265
Outline Drawing No. 1 processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage Collector to Emitter (Ren $=10 \mathrm{~K}$ ohm)	Vcer	-25	volts
Current Collector	Ic	-50	ma
Power Collector Dissipation ($\left.25^{\circ} \mathrm{C}\right)^{*}$	Pcar	75	mw
Temperature Operating Storage	$\underset{\text { Tstg }}{\text { TA }}$	-55 to 60 -55 to 85	${ }^{\circ} \mathrm{C}$
TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ Audio Driver Class A Operation			
(Values for one transistor driving a transformer coupled output stage)			
Maximum Class A Ratings (Common Emitter)			
Collector Supply Voltage	Vac	-12	volts
Design Center Characteristics			
Input Impedance base to emitter ($\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$)	hie	4000	ohms
Base Current Gain (Vce $=-5 \mathrm{v}$; Im $=1 \mathrm{ma}$)	hee	115	
Collector Capacity (Vcs $=-5 \mathrm{v} ; \mathrm{Is}=1 \mathrm{ma}$)	Cob	40 15	$\mu \mu \mathrm{f}$
Frequency Cutoff ($\mathrm{V}_{\mathrm{CB}}=-5 \mathrm{v}$; $\mathrm{I} \mathrm{s}=1 \mathrm{ma}$) Noise Figure ($\mathrm{VCB}_{\mathrm{Cu}}=-5 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{f}=1 \mathrm{KC} ; \mathrm{BW}=1$ cycle)	fab NF	1.5 8	mc db
Audio Circuit Performance (Common Emitter)			
Collector Supply Voltage	VCc	-12	volts
Emitter Current	IE	15	
Minimum Power Gain at 1 mw power output	Ge	45	min db
Small Signal Characteristics (Common Base)			
(V'¢ Input lmpedance		29	ohms
Voltage Feedback Ratio	$\mathrm{hrb}^{\text {r }}$		$\times 10^{-4}$
Current Amplification	heb	-. 991	
Output Admittance	hob	. 5	$\mu \mathrm{mhos}$
Cutoff Characteristics			
Maximum Collector Cutoff Current (Veb $=-25 v$)	Ico	-16	$\max \mu \mathrm{a}$

2N292, 2N293
Outline Drawing No. 3

Types 2N292 and 2N293 are rate grown NPN germanium transistors intended for amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity so that neutralization in many circuits is not required. The type 2 N 293 is intended for receiver circuits where high gain is needed. In IF amplifier service the range in power gain is controlled to 2.5 db .

IF TRANSISTOR SPECIFICATIONS

${ }^{*}$ Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.
**All values are typical unless indicated as a min. or max.

2N319, 2N32O. 2N321

Outline Drawing No. 2

The $2 \mathrm{~N} 319,2 \mathrm{~N} 320$, and 2 N 321 are miniaturized versions of the 2 N186A series of G-E transistors. Like the prototype versions, the $2 \mathrm{~N} 319,2 \mathrm{~N} 320$, and 2N321 are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma. This linearity of current gain provides low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$			
Voltage			
Collector to Emitter ($\mathrm{Res}=10 \mathrm{~K}$) Collector to Base	Verar	-20 -30	volts volts
Emitter to Base	Vemo	-3	volts
Current Collector	14	-200	ma

2N332
Outline Drawing No． 4

The General Electric Type 2N332 is a silicon NPN transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits． They are grown junction devices with a diffused base and are manufactured in the Fixed－Bed Mounting design for extremely high mechanical reliability under severe conditions of shock，vibration， centrifugal force，and temperature．These transistors are hermetically sealed in welded cases．The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment．All tran－ sistors are cycle－aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability．

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS：$\left(25^{\circ} \mathrm{C}\right)$
Voltoge
Collector to Base（Emitter Op
Emitter to Base（Collector Op
Current
Collector

Power
Collector Dissipation $\left(25^{\circ} \mathrm{C}\right.$ ）
Collector Dissipation $\left(100^{\circ} \mathrm{C}\right)$
Collector Dissipation $\left(150^{\circ} \mathrm{C}\right)$
Vcro
Vero

Ic
Pc
PC_{C}

Temperature
Storage
Operating
Tsta
Ta

ELECTRICAL CHARACTERISTICS：$\left(25^{\circ} \mathrm{C}\right)$
（Unless otherwise specified $V_{1} \cdot \mathrm{~B}=5 \mathrm{v}$ ；
$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathbf{f}=\mathbf{1} \mathrm{kc}$ ）

Small Signal Characteristics		Min．	Nom，	Max．	
Current Transfer Ratio	hee	9	15	22	
Input Impedance	his	30	43	80	ohms
Reverse Voltage Transfer Ratio	hrb	． 25	1.5	5.0	$\times 10^{-4}$
Output Admittance	hob	0.0	． 25	1.2	μ mhos
Power Gain （ $\mathrm{Vce}=20 \mathrm{v} ; \mathrm{Ie}_{\mathrm{e}}=-2 \mathrm{ma} ; \mathrm{f}=1 \mathrm{kc}$ ； $\mathrm{Rg}_{\mathrm{i}}=1 \mathrm{~K}$ ohms； $\mathrm{RL}_{\mathrm{L}}=20 \mathrm{~K}$ ohms）	Gf		3.5		db
Noise Figure	NF		20		db

High Frequency Characteristics
Frequency Cutoff

	fab
Collector to Base Capacity f（mc）	
（ $\mathrm{Ver}=5 \mathrm{v} ; \mathrm{IE}_{\mathrm{s}}=-1 \mathrm{ma} ; \mathrm{f}=1 \mathrm{mc}$ ）	$\mathrm{Cob}^{\text {b }}$
ower Gain（Common Emitter） $\left(V_{c b}=20 \mathrm{v} ; \mathrm{Ie}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\right.$ ）	Ge

D－C Characteristics

Common Emitter Current Gain （VCE $=5 \mathrm{v} ; \mathrm{Ic}_{\mathrm{C}}=1 \mathrm{ma}$ ）
Collector Breakdown Voltage
$\left(1\right.$ сио $=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{a}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ）
Collector Cutoff Current （ $\mathrm{V}_{\mathrm{C}^{\prime} \mathrm{B}}=30 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ）
（ $\mathrm{V}_{\mathrm{G}} \cdot \mathrm{B}=5 \mathrm{v} ; \mathrm{IE}=0 ; \mathrm{T}_{\mathbf{A}}=150^{\circ} \mathrm{C}$ ）
Collector Saturation Resistance
（ $\mathrm{In}_{\mathrm{h}}=1 \mathrm{ma} ; \mathrm{I}_{\mathrm{C}}=5 \mathrm{ma}$ ）
Switching Characteristics

$$
\left(I_{\mathrm{B}_{1}}=0.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{p}_{2}}=-0.5 \mathrm{ma} ;\right.
$$

$\mathrm{I} \cdot=5.0 \mathrm{ma})$
がなき

hre	14			
BVcbo	45			volts
Icro		． 002	2	$\mu \mathrm{a}$
I＇bo			50	$\mu \mathrm{a}$
Rsc		90	200	ohnıs

The General Electric Type 2N333 is a silicon NPN transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits. They are grown junction devices with a diffused base and

2N333

Outline Drawing No. 4 are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment. All transistors are cycle-aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Valtage

Collector to Base (Emitter Open)
Emitter to Base (Collector Open)
Current
Collector

Power

Collector Dissipation $\left(25^{\circ} \mathrm{C}\right.$)
Collector Dissipation ($100^{\circ} \mathrm{C}$)

Pc	
Pc	$\mathbf{1 5}$
PC	$\mathbf{1 0}$

Collector Dissipation ($150^{\circ} \mathrm{C}$)
Temperature
Storage
Operating
Virbo
Vebo

I' P_{C}
P_{C}

150
100
50
$\begin{array}{ll}-65 \text { to } 200 & { }^{\circ} \mathrm{C} \\ -65 \text { to } 175 & { }^{\circ} \mathrm{C}\end{array}$

ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)
(Unless otherwise specified $\mathrm{V}_{1 \cdot \mathrm{~A}}=5 \mathrm{v}$; Ie $=-1 \mathrm{ma} ; \mathrm{f}=1 \mathrm{kc}$)

Smail Signal Characteristics

Current Transfer Ratio
Input Impedance
Reverse Voltage Transfer Ratio
Output Admittance
Power Gain
($\mathrm{Vce}=20 \mathrm{v} ; \mathrm{Im}_{\mathrm{e}}=-2 \mathrm{ma} ; \mathrm{f}=1 \mathrm{kc}$;
$R_{\mathrm{G}}=1 \mathrm{~K}$ ohms; $\mathrm{R}_{\mathrm{L}}=20 \mathrm{~K}$ ohms)
Noise Figure

High Frequency Characteristics

Frequency Cutoff
$\left(\mathrm{VCH}_{\mathrm{C}}=5 \mathrm{v} ; \mathrm{Ie}_{\mathrm{e}}=-1 \mathrm{ma}\right)$
Collector to Base Capacity
($\mathrm{V}_{\mathrm{c}}^{\mathrm{B}}=5 \mathrm{~V} ; 1_{\mathrm{E}}=-1 \mathrm{ma} ; \mathrm{f}=1 \mathrm{mc}$)
Power Gain (Common Emitter)
$\left(\mathrm{V}_{\mathrm{c}} \mathrm{h}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\right)$
fab
Coh
G.

D-C Characteristics

Common Emitter Current Gain
$\left(\mathrm{VCE}=5 \mathrm{v} ; \mathrm{l}_{\mathrm{C}}=1 \mathrm{ma}\right)$
hfe
Collector Breakdown Voltage
$\left(\mathrm{I}\right.$ (но) $=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Collector Cutoff Current
($\mathrm{V}_{\mathrm{Cb}}=3\left(0 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)
$\left(\mathrm{V}_{\wedge} \mathrm{H}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right.$)
Collector Saturation Resistance
$\left(\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=5 \mathrm{ma}\right.$)
Switching Characteristics

$$
\begin{aligned}
& \left(\mathrm{I}_{1}=0.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{R}_{2}}=-0.5 \mathrm{ma} ;\right. \\
& \mathrm{Ic}=5.0 \mathrm{ma})
\end{aligned}
$$

Delay Time
Rise Time
Storage Time
Fall Time

	Min.	Nom.	Max.	
hre	18	30	44	
$h_{\text {hb }}$	30	43	80	ohms
$h_{\text {hb }}$	2.5	2.0	10.0	$\times 10^{-4}$
hob	0.0	.2	1.2	μ mhos
G_{f}		39		db
NF		15		db

2N334

Outline Drawing No. 4

The General Electric Type 2N334 is a silicon NPN transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits. They are grown junction devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment. All transistors are cycle-aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left.\mathbf{(2 5}{ }^{\circ} \mathrm{C}\right)$
Voltage

Collector to Base (Emitter Open) Emitter to Base (Collector Open)	$\begin{aligned} & V_{\text {Cro }} \\ & \text { Vкво } \end{aligned}$	45	volts
Current			
Collector	Ic	2.5	ma
Power			
Collector Dissipation ($25^{\circ} \mathrm{C}$)	Pr	150	mw
Collector Dissipation ($100^{\circ} \mathrm{C}$)	Pc	100	mw
Collector Dissipation ($150{ }^{\circ} \mathrm{C}$)	Pc	50	mw
Temperature			
Storage Operating	$\mathrm{Tsin}^{\text {Tin }}$	-6.5 to 200 -6.5 to 17.5	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)

(Unless otherwise specified $V_{C R}=5 v$; $\mathbf{t a}_{\mathrm{k}}=-1 \mathrm{ma} ; \mathbf{f}=1 \mathrm{kc}$)

Small Signal Characteristics

Current Transfer Ratio
Input Impedance
Reverse Voltage Transfer Ratio
Output Admittance
Power Gain
(V คe $=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2$ ma; $\mathrm{f}=1 \mathrm{kc}$; $\mathrm{R}_{\mathrm{f}}=1 \mathrm{~K}$ ohms; $\mathrm{RL}_{\mathrm{L}}=20 \mathrm{~K}$ ohms)
Noise Figure

High Frequency Characteristics

```
Frequency Cutoff
    \(\left(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{k}}=-1 \mathrm{ma}\right)\)
Collector to Base Capacity
        ( \(\mathrm{V}_{\mathrm{C}} \cdot \mathrm{R}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{e}}=-1 \mathrm{ma} ; \mathrm{f}=1 \mathrm{mc}\) )
Power Gain (Common Emitter)
    ( \(\mathrm{V} \mathrm{c}_{\mathrm{b}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{s}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\) )
```

fab 8.

Cob

Ge 13

D-C Characteristics

Common Emitter Current Gain
hre
Collector Breakdown Voltage

$$
\left(\mathrm{I} \text { คи }=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\Delta}=25^{\circ} \mathrm{C}\right)
$$

Collector Cutoff Current

$$
\begin{aligned}
& \text { olector } \left.=30 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{A}=25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{V} \cdot \mathrm{~B}=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Collector Saturation Resistance
$\left(\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{I}^{\circ}=5 \mathrm{ma}\right)$

Switching Characteristics

$\left(\mathrm{I}_{1}=0.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}_{2}}=-0.5 \mathrm{ma} ;\right.$ $I \mathrm{C}=5.0 \mathrm{ma}$)
Delay Time
Rise Time
Storage Time
\approx

BVero	45			volts
I \cdot ' Bo		. 002	2	$\mu \mathrm{a}$
I/bo			50	$\mu \mathrm{a}$
Rsc		75	00	ohms

The General Electric Type 2N335 is a silicon NPN transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits. They are grown junction devices with a diffused base and

2N335

Outline Drawing No. 4 are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibrazion, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment. All transistors are cycle-aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage

Collector to Base (Emitter Open) Emitter to Base (Collector Open)	V('ro Vero	45	volts
volt			

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
 (Unless otherwise specified $\mathbf{V}_{\mathrm{CB}}=5 \mathrm{v}$; $\left.\mathrm{It}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathbf{f}=\mathbf{1} \mathbf{k c}\right)$

Small Signal Characteristics

Current Transfer Ratio
lnput Impedance
Reverse Voltage Transfer Ratio
Output Admittance
T_{A}
-65 to 200
-6.5 to 175
${ }^{\circ} \mathrm{C}$

Power Gain

(Vet $=20 \mathrm{v} ; \mathrm{Im}_{\mathrm{f}}=-2 \mathrm{ma} ; \mathrm{f}=1 \mathrm{kc} ;$
$\mathrm{Rg}_{\mathrm{g}}=1 \mathrm{~K}$ ohms; $\mathrm{Re}_{\mathrm{c}}=20 \mathrm{~K}$ ohms)
Noise Figure

	Min.	Nom.	Max.	
	37	60	90	
$h_{\text {re }}$	30	43	80	ohms
$h_{1 b}$	0.5	3.0	10.0	$\times 10^{-6}$
$h_{r b}$.15	1.2	μ mhos
$h_{\text {ob }}$				
		42		db
G_{f}		12		db

High Frequency Choracteristics

Frequency Cutoff

$(\mathrm{Vcb}=5 \mathrm{v} ; \mathrm{IE}=-1 \mathrm{ma})$	fab	14	mc
Collector to Base Capacity			
	Cob	7	$\mu \mu \mathrm{f}$
Power Gain (Common Emitter) $\left(\mathrm{V}_{\mathrm{Cb}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\right.$)	Ge	13	db

D-C Characteristics

Common Emitter Current Gain
$(\mathrm{VCr}=5 \mathrm{v} ; \mathrm{Ic}=1 \mathrm{ma})$
hre 56
Collector Breakdown Voltage
(Ісво $=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Collector Cutoff Current
($\mathrm{V}_{\mathrm{CB}}=30 \mathrm{v} ; \mathrm{IE}_{\mathrm{E}}=0 ; \mathrm{TA}=25^{\circ} \mathrm{C}$)
BVcbo
45
volts
$\left(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right)$
Collector Saturation Resistance
($\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{L}_{\mathrm{c}}=5 \mathrm{ma}$)
Icbo
ICBo
$\mu \mathbf{a}$

Switching Characteristics
$\left(I_{\mathrm{B}_{1}}=0.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}_{2}}=-0.5 \mathrm{ma}\right.$
$\left.\mathrm{IC}_{\mathrm{C}}=5.0 \mathrm{ma}\right)$

Delay Time
Rise Time
Storage Time
Fall Time

2N336

Outline Drawing No. 4

The General Electric Type 2N336 is a silicon NPN transistor intended for amplifier applications in the audic and radio frequency range and for general purpose switching circuits. They are grown junction devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment. All transistors are cycle-aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltage

Collector to Base (Emitter Open) Emitter to Base (Collector Open)
Current
Collector
Power
Collector Dissipation ($25^{\circ} \mathrm{C}$)
Collector Dissipation ($100^{\circ} \mathrm{C}$)
Collector Dissipation ($150{ }^{\circ} \mathrm{C}$)
Temperature
Storage Operating

Small Signal Characteristics

Current Transfer Ratio
Input Impedance
Reverse Voltage Transfer Ratio
Output Admittance
Power Gain
$\left(V \operatorname{Ve}=20 \mathrm{v} ; \mathrm{Ie}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=1 \mathrm{kc}\right.$;
$\mathrm{R}_{\mathrm{G}}=1 \mathrm{~K}$ ohms; $\mathrm{R}_{\mathrm{L}}=20 \mathrm{~K}$ ohms)
Noise Figure
High Frequency Characteristics

```
Frequency Cutoff
\(\left(\mathrm{Vcb}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}\right)\)
Collector to Base Capacity
( \(\mathrm{VCB}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; f=1 \mathrm{mc}\) )
Power Gain (Common Emitter)
( \(\mathrm{VCB}=20 \mathrm{v} ; \mathrm{IE}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\) )
```


D-C Characteristics

Common Emitter Current Gain (Vce $=5 v ;$ Ic $=1 \mathrm{ma}$)
Collector Breakdown Voltage (Ісво $=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\Delta}=25^{\circ} \mathrm{C}$)
Collector Cutoff Current $\left(\mathrm{VCa}=30 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$) $\left(\mathrm{VCb}_{\mathrm{cb}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right)$
Collector Saturation Resistance $\left(I_{B}=1 \mathrm{ma} ; I_{c}=5 \mathrm{ma}\right.$)
hFE 100

Switching Characteristics

$$
\left(I_{B_{1}}=0.5 \mathrm{ma} ; I_{B_{2}}=-0.5 \mathrm{ma}\right.
$$

$$
\mathrm{Ic}=5.0 \mathrm{ma})
$$

$\begin{array}{ll}\text { Delay Time } & \mathbf{t}_{1} \\ \text { Rise Time } & \mathbf{t}_{r} \\ \text { Storage Time } & \mathbf{t}_{n} \\ \text { Fall Time } & \mathbf{t}_{t}\end{array}$

BVcro	45		volts
Icro	. 002	2	$\mu \mathrm{a}$
Iсbo		50	$\mu \mathrm{a}$
Rsc	70	200	ohms

The General Electric Types 2N337 and 2N338 are high-frequency silicon NPN transistors intended for amplifier applications in the audio and radio frequency range and for high-speed switching cir-

2N337, 2N338

Outline Drawing No. 4 cuits. They are grown junction devices with a

for insertion in printed boards by automatic assembly equipment.
 SPECIFICATIONS

 diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. For electrical reliability and parameter stability, all transistors are subjected to a minimum 160 hour $200^{\circ} \mathrm{C}$ cycled aging operation included in the manufacturing process. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitableABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Volfage

Collector to Base	Vabo Vebo	45 1	volts volt
Current			
Collector	Ic	20	ma
Power			
Collector Dissipation*	Pc	125	mw
Temperature			
Storage Operating	$\begin{aligned} & \text { Tsti; } \\ & \text { Tint } \end{aligned}$	-65 to 200 -65 to 150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
(Unless otherwise specified;
$\mathrm{V}_{\mathrm{Cb}}=20 \mathrm{v} ; \mathrm{l}_{\mathrm{E}}=-1 \mathrm{ma}$;
$f=1$ kel
2N337
Small-Signal Characteristics
Current Transfer Ratio
Input Impedance
Reverse Voltage Transfer Ratio
Output Admittance

High-Frequency Characteristics
Alpha Cutoff Frequency Collector Capacitance ($\mathrm{f}=1 \mathrm{mc}$) $(f=2.5 \mathrm{mc})$

D-C Characteristics
Common Emitter Current Gain ($\mathrm{V}_{\mathrm{Cz}}=5 \mathrm{v} ; \mathrm{I} \mathrm{C}=10 \mathrm{ma}$)
Collector Breakdown Voltage $\left(\right.$ Ісво $\left.=50 \mu \mathrm{a} ; \mathrm{If}_{\mathrm{z}}=0\right)$
Emitter Breakdown Voltage (Inвo $=-50 \mu$; ; Ic $=0$)
Collector Saturation Resistance ($\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}$) $\left(I_{\mathrm{B}}=.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}\right)$

hfe	20	35	55	45
BVCbo	45			4
BVEbo	1			
Rsc		100	150	
RsC				

Cutoff Characteristics

Collector Current $(\mathrm{V} C \mathrm{~B}=20 \mathrm{v} ; \mathrm{IE}=$ Collector Current

Switching Characteristics

Rise Time	tr	. 02
Storage Time	t_{8}	. 02
Fall Time	t	. 04

2N394

Outline Drawing No. 2

The General Electric Type 2N394 is a germanium PNP alloy junction high frequency switching transistor intended for military, industrial and data processing applications where high reliability at the maximum ratings is of prime importance. As a special control in manufacture, all 2N394 transistors are subjected to a high pressure detergent test to enhance reliable hermetic seals and are also aged at a temperature of $100^{\circ} \mathrm{C}$ for 96 hours minimum.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltage

Collector to Base	V1'B	-30	volts
Collector to Emitter	Vere	-10	volts
Emitter to Base	$\mathrm{VEB}^{\text {er }}$	-20	volts
Current Collector	Ie	-200	ma
Power Dissipation	Pav	150	mw
Temperoture Storage	Tstg	-65 to 85	${ }^{\circ} \mathrm{C}$
Operating Junction	TJ	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
D-C Characteristies

	Min.	Typ.	Max.	
hres	20	70		
hre:	10	40		
Vcesats		-. 04	-. 15	volts
Vbe		$-.27$	$-.35$	volts
BV(bo)	-30			volts
BVebo	-20			volts
BVcer	-15	-26		volts
Ico	-10	-2.5 -2.0 -25	-6 -6	$\mu \mathbf{a}$ $\mu \mathbf{a}$ volts

High Frequency Characteristics (Common Base)

Alpha-Cutoff Frequency
Collector Capacitance ($\mathrm{f}=1 \mathrm{mc}$)
Base Spreading Resistance

$\mathrm{fab}^{\text {b }}$	4	9
Cob		12
$\mathbf{r}^{\prime} \mathbf{1}$		50

20

Thermal Resistance
Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ for temperatures over $25^{\circ} \mathrm{C}$

2N395
Outline Drawing No. 2

The General Electric type 2N395 is a PNP alloy junction high frequency switching transistor intended for military, industrial, and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Cutoff Characteristics

Collector Cutoff Current

$\mathrm{V}_{(} \cdot \mathrm{B}=-1.5 \mathrm{v}$)	Ico		-2.5	-6	$\mu \mathrm{amps}$
mitter Cutoff Current ($\mathrm{V}_{\mathrm{kb}}=-10 \mathrm{v}$)	IEO		-2.0	-6	jamps
unch-through Voltage	Vpr	-15	-30		volts

Punch-through Voltage

-15
High Frequency Characteristics (Common base)
($\mathrm{V} \cdot \mathrm{B}=-5 \mathrm{~V} ; 1 \mathrm{I}=1 \mathrm{ma}$)
Alpha Cutoff Frequency
Collector Capacity ($\mathrm{f}=1 \mathrm{mc}$)
Voltage Feedback Ratio ($f=1 \mathrm{mc}$)
fab
Cob

Base Spreading Resistance
f_{Cb}
Cob
hrb

3

Switching Characteristics

(lc $=-10 \mathrm{ma} \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{ma}$)
Delay Time
t_{d}
Rise Time
tr
Storage Time
t_{s}
Fall Time
Thermal Characteristics
Derate $3.33 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$

The General Electric type 2N396 is a PNP alloy junction high frequency switching transistor intended for military, industrial, and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

2N396

Outline Drawing No. 2
-65 to 100
${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: (25 ${ }^{\circ}$)
D-C Choracteristics
D-C Base Current Gain

$$
\begin{aligned}
& \text { (Vce }=-1 \mathrm{v} ; \mathrm{Ic}=-10 \mathrm{ma}) \\
& \text { (Vcr }=-0.35 v ; \mathrm{Ic}=-200 \mathrm{ma}) \\
& \text { Saturation Voltage } \\
& \quad \text { (In }=-3.3 \mathrm{ma} ; \mathrm{Ic}=-50 \mathrm{ma})
\end{aligned}
$$

$\mathrm{hFE} \quad 30$
VCE ${ }^{(S A T)}$

Cutoff Characteristics

Collector Cutoff Current

$$
(V C B=-20 v)
$$

Emitter Cutoff Current (Ves $=-10 v$)
Punch-through Voltage
High Freqency Characteristics (Common base)
(V's $=-5 \mathbf{y}$; Ir: $=1 \mathrm{ma}$)
Alpha Cutoff Frequency
Collector Capacity ($f=1 \mathrm{mc}$)
Voltage Feedback Ratio ($f=1 \mathrm{mc}$)
Base Spreading Resistance
f_{ab}
C_{ob}
$\mathrm{hrb}^{\prime} \mathrm{b}$
$\mathrm{r}^{\prime} \mathrm{b}$

Switching Characteristics

($\left.1 \mathrm{c}=-10 \mathrm{mo} ; \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{mo}\right)$
Delay Time
t
t
t
Rise Time
Storage Time
Fall Time
Min.

30
15

Min. Typ. Max.

15
$-0.08 \quad-0.2$
volts

Thermal Characteristics

Derate $3.3 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$

Outline Drawing No. 2

2N397
Outline Drawing No. 2

The General Electric type 2N397 is a PNP alloy junction high frequency switching transistor intended for military, industrial, and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage
Collector to Emitter $\quad V_{C}$
Collector to Base
V_{CE}
Emitter to Base
Current
Collector
Power
Dissipation
Peak Dissipation
(50μ sec. max. 20% duty cycle)
Temperature
Storage
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
D-C Characteristics
D-C Base Current Gain
(Ves $=-1 \mathrm{lv} ;$ Ic $=-10 \mathrm{ma}$)
(VCE $=-0.35 \mathrm{v} ; \mathrm{Ic}=-200 \mathrm{ma})$
Saturation Voltage
($\mathrm{If}=-2.5 \mathrm{ma} ; \mathrm{Ic}=-50 \mathrm{ma}$)
Cutoff Characteristics
Collector Cutoff Current
($\mathrm{VCb}_{\mathrm{cb}}=-15 \mathrm{v}$)
Emitter Cutoff Current ($\mathrm{Ver}_{\mathrm{er}}=-10 \mathrm{v}$)
Punch-through Voltage
High Freqency Characteristics (Common base)
$\left(V_{C R}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}\right)$
Alpha Cutoff Frequency
Collector Capacity ($f=1 \mathrm{mc}$)
Voltage Feedback Ratio ($f=1 \mathrm{mc}$)
Base Spreading Resistance
Switching Characteristics

$$
\left(\mathrm{Ic}=-10 \mathrm{ma} ;\left.\right|_{\mathrm{B} 1}=\mathrm{i}_{\mathrm{B} 2}=1.0 \mathrm{ma}\right)
$$

Delay Time
Rise Time
Storage Time
Fall Time

Thermal Characteristics

Derate $3.3 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$

2N4O4
Outline Drawing No. 2

The General Electric Type 2 N 404 is a germanium PNP alloy junction high frequency switching transistor, intended for military, industrial and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage Collector to Emitter	Vce	-24
Collector to Base	Veb	-25
Emitter to Base	Veb	-12
Current Collector	Ic	-100
Power Dissipation	Pc	120
Temperature Storage	Tstg	-65 to 85

ELECTRICAL CHARACTERISTICS: $125^{\circ} \mathrm{C}$)

O-C Characteristics

Collector Breakdown Voltage ($\mathrm{Ic}=-20 \mu \mathrm{a} ; \mathrm{It}=0$)
Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{z}}=-20 \mu \mathrm{a} ; \mathrm{Ic}=0$)
Saturation Voltage
($\mathrm{If}=-.4 \mathrm{ma} ; \mathrm{Ic}=-12 \mathrm{ma}$)
($\mathrm{I}_{\mathrm{B}}=-1 \mathrm{ma} ; \mathrm{Ic}_{\mathrm{c}}=-24 \mathrm{ma}$)
Base Input Voltage
($\mathrm{Is}_{\mathrm{s}}=-.4 \mathrm{ma} ; \mathrm{Ic}=-12 \mathrm{ma}$)
(Iв $_{\text {в }}=-1 \mathrm{ma} ; \mathrm{Ic}=-24 \mathrm{ma}$)

	Min.	Typ.	Max.
Vcbo	-25	-4.5	
Vero	-12	-40	
Vele(sat)		-. 1	-. 1.5
Vreisat)		-. 14	$-.20$
$\underset{\text { Vbe }}{\text { Vbe }}$		-. 24.	$-.35$

Cutoff Characteristics

Collector Current
($\mathrm{V}_{\mathrm{cb}}=-12$ volts; $\mathrm{If}=0$)
If(BO
(V © $\mathrm{B}=-12$ volts; $\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$)
Emitter Current
($\mathrm{Veb}_{\mathrm{eb}}=-2.5$ volts; $\mathrm{Ic}=0$)
Punch-through Voltage
I'ro

Ifino

	-2	-5	$\mu \mathrm{a}$
		-90	$\mu \mathrm{a}$
-24	-1	-2.5	$\mu \mathrm{a}$
-40		volts	

High-Frequency Characteristics
Alpha-Cutoff Frequency
($\mathrm{V}_{\mathrm{CB}}=-6$ volts; $\mathrm{IE}=1 \mathrm{ma}$)
Collector Capacitance
($\mathrm{VCB}_{\mathrm{Cb}}=-6$ volts; $\mathrm{IE}=1 \mathrm{ma}$)
Stored Base Charge
($\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma}$; $\mathrm{IC}_{\mathrm{C}}=-10 \mathrm{ma}$)

Cob

4
8
12
Q.b

	mc
20	$\mu \mu \mathrm{f}$

$1400 \mu \mu$ couTombs
$.35{ }^{\circ} \mathrm{C} / \mathrm{mv}=$

The General Electric Type 2N448 transistor is a rate-grown NPN germanium device intended for IF amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector ca-

2N448

Outline Drawing No. 3 pacity so that neutralization in many circuits is not required.
In IF amplifier service, the range in power gain is controlled to 2.5 db .

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

[^9]2N449
Outline Drawing No. 3

The General Electric Type 2N449 transistor is a rate-grown NPN germanium device, intended for use as an IF amplifier in broadcast radio receivers. The collector capacity is controlled to a uniformly low value so that neutralization in most circuits is not required. Power gain at 455 KC in a typical receiver circuit is restricted to a 2.5 db spread. The uniformity provided by the controls of collector capacity and power gain allows easy and economical incorporation of this type into receiver circuits. Type 2 N 449 has special high beta characteristics required in the final stage of refle. IF circuits where large audio gain is desired.

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage

Collector to Emitter ($\mathrm{R}_{\mathrm{RE}}=10 \mathrm{~K}$)
Collector to Base (emitter open)

Current

Collector

Power

Collector Dissipation att $2.5^{\circ} \mathrm{C}^{*}$

Temperature

Operating and Storage
Th, Tste
-5.5 to $8.5{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS:** (25 $\left.{ }^{\circ} \mathrm{C}\right)$

Reflex IF Amplifier Service

Maximum Ratings

Collector Supply Voltage
Vec
9

Design Center Characteristics

$$
\left(I_{\mathrm{E}}=1 \mathrm{ma} V_{\mathrm{Cr}}=5 \mathrm{~V} ;\right.
$$

$f=455 \mathrm{KC}$ except os noted)
Input Impedance
Output Impedance
Voltage Feedback Ratio (Vcb $=5 v ; f=1 \mathrm{mc}$)
Collector to Base Capacitance (VCB $=\overline{5} v ; f=1 \mathrm{mc})$
Frequency Cutoff (Vcr $=5 v$)
Base Current Gain (Ic =1 ma; Vce = lv)
Minimum Base Current Gain

700	ohms
7	Kohms
10	$\times 10^{-3}$
2.4	$\mu \mu \mathrm{f}$
8	mc

Reflex IF Amplifier Performance
Collector Supply Voltage
Collector Current
Input Frequency
Minimum Power Gain in Typical IF Circuit
Power Gain Range of Variation in Typical IF Circuit
volts
voltsvolts
volts
ma
KC
db
$d b$
$\mu \mathrm{a}$ $\mu \mathbf{m a x}$
ohms
K ohms
${ }_{\mu \mu} \mathrm{f}$
me

Collector Cutoff Current ($\mathrm{V}_{\mathrm{cs}}=5 \mathrm{v}$)
Iro
Ico

The General Electric Type 2N450 is a germanium PNP alloy junction high frequency switching transistor intended for military, industrial and data processing applications where high reliability at the maximum ratings is of prime

Outline Drawing No. 7 importance. As a special control in manufacture, all 2 N 450 transistors are subjected to a high pressure detergent test to enhance reliable hermetic seals and are also aged at a temperature of $100^{\circ} \mathrm{C}$ for 96 hours minimum.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voffoge

Collector to Base	Vrro	-20	volts
Collector to Emitter	Vero 2	-10	volts
Emitter to Base	Vriso 2	-12	volts

Current

Collector
Peak Collector Current (50 $\mu \mathrm{Sec} \mathbf{2 0} \%$ Duty Cycle)

Power

Dissipation
Peak Dower Dissipation ($50 \mu \mathrm{sec} 20 \%$ Duty Cycle)

Pas
Prm

150
350

Tste
TJ
-65 to $85{ }^{\circ} \mathrm{C}$

Inw ${ }^{\text {* }}$ mw**

Temperoture

Storage
Operating Junction

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

D-C Charocteristics

1)-C Base Current Gain		Min.	Typ.	Max.	
($\mathrm{V}_{\cdot} \mathrm{B}_{\mathrm{s}}=-1 \mathrm{~V} ; \mathrm{I}^{\cdot} \cdot=-10 \mathrm{ma}$)	hres	30	110		
	hre	1.5			
$\left(\mathrm{VE}_{6} \cdot=-1 \mathrm{~V} ; \mathrm{I}_{5}=-10 \mathrm{ma}\right)$	hrys(ins)		17		
Saturation Voltage $\left(\mathrm{I}_{\mathrm{B}}=-.5 \mathrm{ma} ; \mathrm{I}^{2} \cdot=-10 \mathrm{ma}\right)$	Videsisat		-. 04	-. 2	volts
Base Input Voltage ($\mathrm{Ir}_{\mathrm{s}}=-.5 \mathrm{ma} ; \mathbf{I}^{2} \cdot=-10 \mathrm{ma}$)	Vbiesat)		$-.23$	$-.35$	volts
Collector to Base Voltage ($\mathrm{I}_{\cdot} \cdot=-100 \mu \mathrm{a}$)	V'mo	-20			volts
Emitter to Base Voltage ($\mathrm{I}_{\mathrm{c}} \cdot=-100 \mu \mathrm{a}$)	Vema	-10			volts
Collector to Emitter Voltage $(\mathrm{l}:=-600 \mu \mathrm{a})$	Vieo	-12			volts
Collector Cutoff Current ($1 \mathrm{E}=0$; $\mathrm{V}_{\mathrm{Cb}}=-12 \mathrm{v}$)	$1 \times$			-6	$\mu \mathrm{a}$
Emitter Cutoff Current $\left(\mathrm{Ic}=0 ; \mathrm{V}_{\mathrm{ER}}=-6 \mathrm{v}\right)$	IE,			-6	
Reach-through Voltage	Vitr	-12			rolts

High Frequency Characteristics (Common Bose)
$\left(\mathrm{V}_{\mathrm{CH}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{F}}=1 \mathrm{mo}\right.$)
Alpha-Cutoff Frequency fall
Alpha-Cutoff Frequency Inverse
Collector Capacitance ($\mathbf{f}=1 \mathrm{mc}$)
Base Spreading Resistance ($\mathrm{f}=1 \mathrm{mc}$)
falisw
Coll
Coll
$r^{\prime} \mathbf{b}$

Ic
-125
ma
-350 ма

Operating Junction
$85{ }^{\circ} \mathrm{C}$
*Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
**Derate $5.9 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

2N489-2N494

Outline Drawing No. 5

The General Electric Silicon Unijunction Transistor is a hermetically sealed three terminal device having a stable " N " type negative resistance charactistic over a wide temperature range. A higlı peak current rating makes this device useful in medium power switching and oscillator applications, where it can serve the purpose of two conventional silicon transistors. These transistors are hermetically sealed in a welded case. The case dimensions and lead configuration are suitable for insertion in printed boards by automatic assembly equipment. The Silicon Unijunction Transistor consists of an "N" type silicon bar mounted between two ohmic base contacts with a " P " type emitter near base-two. The device operates by conductivity modulation of the silicon between the emitter and base-one when the emitter is forward biased. In the cutoff, or standby condition, the emitter and interbase power supplies establish potentials between the base contacts, and at the emitter, such that the emitter is back biased. If the emitter potential is increased sufficiently to overcome this bias, holes (minority carriers) are injected into the silicon bar. These holes are swept towards base-one by the internal field in the bar. The increased charge concentration, due to these holes, decreases the resistance and hence decreases the internal voltage drop from the emitter to base-one. The emitter current then increases regeneratively until it is limited by the emitter power supply. The effect of this conductivity modulation is also noticed as an effective modulation of the interbase current.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

 Derate $2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature. *Total power dissipation must be limited by external circuit.

Types 2N489-2N494 are specified primarily in three ranges of stand-off and two ranges of interbase resistance. Each range of stand-off ratio has limits of $\pm 10 \%$ from the center value and each range of interbase resistance has limits of $\pm 20 \%$ from the center value.

2N489. 2N49O

MAJOR ELECTRICAL CHARACTERISTICS:
Interbase Resistance at $25^{\circ} \mathrm{C}$ Junction Temperature
Intrinsic Stand-off Ratio
Modulated Interbase Current $\left(\mathrm{I}_{\mathrm{E}}=50 \mathrm{ma} ; \mathrm{VBb}_{\mathrm{T}}=10 \mathrm{v}\right.$; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Emitter Reverse Current
(B1 open circuit)
($\mathrm{VB}_{2} \mathrm{E}=60 \mathrm{v} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)
$\left(\mathrm{V}_{\mathrm{B}_{2} \mathrm{E}}=60 \mathrm{v} ; \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right)$

2N489
Min. Nom.

$\underset{\mathbf{R R}_{\mathrm{o}}}{\mathbf{R}^{\prime}}$
$\left.\mathrm{IB}_{\mathbf{2}}{ }^{(\mathrm{MOOD}}\right)$
$\begin{aligned} & \text { IEO } \\ & \text { IEO } \end{aligned}$

2N490
Max. Min. Nom.
6.8
6.8
$6.2 \quad 7$

Max.

MINOR ELECTRICAL CHARACTERISTICS: (Typical Values)
Emitter Saturation Voltage ($\mathrm{I}_{\mathrm{e}}=50 \mathrm{ma} ; \mathrm{V}_{\mathrm{Bb}}=10 \mathrm{v}$; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Peak Point Emitter Current $\left(\mathrm{V}_{\mathrm{BB}}=25 \mathrm{v} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)
Valley Voltage
Valley Current
Maximum Frequency of Oscillation
($\mathrm{I}_{\mathrm{B}_{2}}=4.5 \mathrm{ma}$; Relaxation Oscillator)

VESA	2.3	3.1
Ip		4
Vv	1.1	1.9
Iv		

fmax
0.9

RMS EMITTER POWER DISSIPATION < 40 MW

FIGURE I

2N5O8
Outline Drawing No. 2

The 2N508 is an alloy junction PNP transistor intended for driver service in audio amplifiers. It is a miniaturized version of the 2N265 G.E. transistor. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Voltage Collector to Emitter ($\mathrm{R}_{\mathrm{rR}}=10 \mathrm{~K}$) Collector to Base	$\begin{aligned} & \text { Virar } \\ & \text { VCb } \end{aligned}$	$\begin{aligned} & -16 \\ & -16 \end{aligned}$	volts volts
Current Collector	If	-100	ma
Power Collector Dissipation	Рсм	140	mw
Temperature Operating Storage	$\mathrm{T}_{\mathrm{TA}_{\text {ATG }}}$	$\begin{aligned} & -65 \text { to } 60 \\ & -65 \text { to } 85 \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$
TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$			
D-C Characteristics			
Base Current Gain (Ic $=-20 \mathrm{ma}$; $\mathrm{Vce}=-1 \mathrm{v}$) Collector to Emitter Voltage ($\mathrm{Reb}=10 \mathrm{~K}$; $\mathrm{Ic}=-.6 \mathrm{ma}$) Collector Cutoff Current ($\mathrm{VCb}_{\mathrm{C}}=-16 \mathrm{v}$) Maximum Collector Cutoff Current ($\mathrm{Vce}=-16 \mathrm{v}$)	hfe Vcer Ico Ico	125 -16 -10 -16	volts $\mu \mathrm{a}$ μ a
Small Signal Characteristics			
Frequency Cutoff ($\mathrm{VCb}=-5 \mathbf{v} ; \mathrm{Ie}_{\mathrm{c}}=1 \mathrm{ma}$) Collector Capacity ($\mathrm{VCB}=-5 \mathrm{v}$; $\mathrm{IE}=1 \mathrm{ma}$) Noise Figure ($\mathrm{VCB}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$) Input Impedance ($V \mathrm{Ce}=-5 \mathrm{v}$; $\mathrm{Ie}_{\mathrm{l}}=1 \mathrm{ma}$) Current Gain (Vce $=-5 \mathrm{v}$; Ie $=1 \mathrm{ma}$)		3.5 24 6 3 112	me $\mu \mu \mathrm{f}$ db K ohms
Thermal Characteristics			
Thermal Resistance Junction to Air		. 25	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
Performance Data Common Emitter			
Power Gain Driver (Vcc $=-9 v$) Power Output	$\begin{aligned} & \mathrm{Ge} \\ & \mathrm{Po} \end{aligned}$	45 1	db mw

Outline Drawing No. 2 quency range from audio to 100 KC . This series號 high reliability and extreme stability of characteristics are of prime importance. The 2 N 524 and 2 N 525 are equivalent to the 2 N 44 and 2 N 43 respectively and may be directly substituted in most applications. are germanium PNP alloy junction transistors particularly recommended for low to medium power amplifier and switching application in the fre-

The General Electric types 2N524 and 2N525

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$			
Voltage			
Collector to Base	Vcbo	-45	volts
Collector to Emitter	Veer	-30	volts
Emitter to Base	Vebo	-15	volts
Current			
Collector	lcm	-500	ma
Power			
Total Transistor Dissipation	Pay	225	now
Temperoture			
Storage	Tsta	-65 to 100	${ }^{\circ} \mathrm{C}$
Operating	TJ	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Small Signal Characteristics
(Unless otherwise specified $\mathbf{V}_{\mathrm{C} \cdot \mathrm{B}}=-5 \mathrm{~V}$ common base; $\mathrm{I}_{\mathrm{E}}=\mathbf{1} \mathbf{m o} ; \mathbf{f}=\mathbf{2 7 0} \mathbf{c p s}$)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \& \& \multicolumn{3}{|c|}{2N5 24} \& \multicolumn{3}{|c|}{2N525} \& \\
\hline \begin{tabular}{l}
Output Admittance \\
(Input AC Open Circuited)
\end{tabular} \& hob \& \begin{tabular}{l}
Min. \\
.10
\end{tabular} \& Nom.
\[
.65
\] \& Max
\[
1.3
\] \& Min. \& Nom. \& Max.
\[
1.2
\] \& \(\mu\) mhos \\
\hline Input Impedance (Output AC Short Circuited) \& hib \& 26 \& 65
31 \& 36 \& \({ }^{-1}\) \& 6

31 \& 1.2
35 \& ohms

\hline Reverse Voltage Transfer Ratio (Input AC Open Circuited) \& $\mathrm{hrb}_{\text {rb }}$ \& 1 \& 4.0 \& 10 \& 1 \& 5.0 \& 11 \& $\times 10^{-4}$

\hline Forward Current Transfer Ratio (Common Emitter; Output AC Short Circuited) \& hfe \& 16 \& 30 \& 41 \& 30 \& 44 \& 64 \&

\hline Frequency Cutoff \& $\mathrm{fab}^{\text {b }}$ \& . 8 \& 2.0 \& 5.0 \& 1 \& 2.5 \& 5.5 \& me

\hline Output Capacity ($f=1 \mathrm{mc}$; Input AC open circuited) \& Cob \& 18 \& 25 \& 40 \& 18 \& 25 \& 40 \& $\mu_{\text {af }}$

\hline Noise Figure ($\mathrm{f}=1 \mathrm{kc}$; $\mathrm{BW}=1$ cycle) \& NF \& 1 \& 6 \& 15 \& 1 \& 6 \& 15 \& dS

\hline
\end{tabular}

D-C Characteristics

Forward Current Gain
(Comimon Emitter, Ic/Ib)
$\begin{array}{clllllll}(\mathrm{Vce}=-1 \mathrm{~V} ; \mathrm{Ic}=-20 \mathrm{ma}) & \mathrm{hFE} & 19 & 35 & 42 & 34 & 52 & 65\end{array}$
Collector Saturation Voltage ($\mathrm{Ic}=-20 \mathrm{ma}$;
$\{\mathrm{Vce}(\mathrm{sat})$
$\left\{@ \mathrm{IB}_{\mathrm{B}}=\right.$

45	70	110	50	75	110
-2.0	-2.0	-2.0	-1.33	-1.33	-1.33

Base Input Voltage,
Common Emitter
$(\mathrm{Vce}=-1 \mathrm{v}$; $\mathrm{Ic}=-20 \mathrm{ma})$
VBe
$-.220-.255-.320-.200-.243-.300$
Collector Cutoff Current $($ усво $=-30 v)$
Emitter Cutoff Current (Vebo $=-15 v$)

Ico

Collector to Emitter Voltage ($\mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}$ ohms; $\mathrm{Ic}=-.6 \mathrm{ma}$)
Punch-through Voltage

Verr	-30
Vpt	-30

-30
volts
volts
Thermal Resistance (k)
Junction Temperature Rise/
Total Transistor Dissipation:
Free Air
Infinite Heat Sink

.27	.27	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
.11	.11	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
.20	.20	${ }^{\circ} \mathrm{C} / \mathrm{mw}$

2N526, 2N527

Outline Drawing No. 2

The General Electric types 2N526 and 2N527 are germanium PNP alloy junction transistors particularly recommended for low to medium power amplifier and switching application in the frequency range from audio to 100 KC . This series of transistors is intended for military, industrial and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

SPECIFICATIONS

Voltage			
Collector to Base	V (6)	-45	volts
Collector to Emitter	Veer	-30	volts
Emitter to Base	Vebo	-15	volts
Current			
Collector	I'M	-500	ma
Power			
Total Transistor Dissipation	PAV	22.5	mw
Temperature			
Storage	Tstg	-65 to 100	${ }^{\circ} \mathrm{C}$
Operating	Ts	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Small Signal Characteristics

		2N526			2N527			
		Min.	Nom.	Max.	Min.	Nom.	Max.	
Output Admittance (Input AC Open Circuited)	hob	. 1	. 42	1.0	. 1	. 37	. 9	$\mu \mathrm{mhos}$
Input Impedance	hib	${ }^{-1}$	30	33				
(Output AC Short Circuited) Reverse Voltage Transfer Ratio	hib	26	30	33	26	29	31	ohms
(Input AC Open Circuited)	hrb	1	6.5	12	1	8.0	14	$\times 10^{-4}$
Forward Current Transfer Ratio (Common Emitter; Output AC Short Circuited)	hre	44	64	88	60	81	120	
Frequency Cutoff	$\mathrm{f}_{\mathrm{ab}}{ }^{\text {b }}$	1.3	3.0	6.5	1.5	3.3	7	mc
Output Capacity ($\mathrm{f}=1 \mathrm{mc}$; Input AC open circuited)	Cob	18	25	40	18	25	40	$\mu \mu \mathrm{f}$
Noise Figure ($\mathrm{f}=1 \mathrm{kc}$; BW = 1 cycle)	NF	I	6	15	1	6	15	db

D-C Characteristics
Forward Current Gain
(Common Emitter, Ic/Ib)
(Ves $=-1 \mathrm{v}$; $\mathrm{Ic}=-20 \mathrm{ma}$)
$($ Vce $=-I v ; 1 c=-100 \mathrm{ma})$
Collector Saturation Voltage
($\mathrm{Ic}=-20 \mathrm{ma}$;
I_{B} as indicated)
Base Input Voltage,
Common Emitter
($\mathrm{VcE}=-1 \mathrm{~V} ; \mathrm{Ic}=-20 \mathrm{ma}$)
Collector Cutoff Current
$($ Ссво $=-30 v)$ Ic
Emitter Cutoff Current
(Vево $=-15 v$)
IEO
ollector to Emitter Voltage
($\mathrm{Rbe}_{\mathrm{be}}=10 \mathrm{~K}$ ohms;
Ic $=-.6 \mathrm{ma}$)
Vcer
Vit
Thermal Resistance (k)
Junction Temperature Rise/
Total Transistor Dissipation:
Free Air
Infinite Heat Sink
Clip-on Heat Sink in Free Air

The General Electric type 2N634 is an NPN germanium alloy triode transistor designed for high speed switching applications.

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Valtage

Thermal Characteristic
Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

The General Electric type 2 N 635 is an NPN germanium alloy triode transistor designed for high speed switching applications.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltoge		
Collector to Base	Vi*	
Emitter to Base	Veb	
Collector to Emitter	Vre	
Current		
Collector	Id	
Base	In	
Emitter	I_{t}	
Temperature		
Storage	Tsti	
Operating Junction	TA	
Pawer		
Dissipation	Ps	
ELECTRICAL CHARACTERISTICS: $\mathbf{1 2 5}^{\circ} \mathrm{C}$)		
Collector Voltage	Vero	Min. 20
Emitter Voltage ${ }^{\text {a }}$ (${ }^{\text {a }}$		
$\left(\mathrm{If},=10 \mu \mathrm{mp} ; \mathrm{I}_{\cdot} \cdot=0\right)$	Veam	15
Collector to Emitter Voltage		
($\mathrm{I} \cdot=600 \mu \mathrm{amp} ; \mathrm{R}=10 \mathrm{~K}$)	Vier	20
Collector Cutoff Current ($\mathrm{V}_{\mathrm{G} \cdot \mathrm{R}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0$)		
Punch Through Voltage	$\mathrm{V}_{10}{ }^{\text {d }}$	20
D-C Current Gain		
	hre	25
$\begin{aligned} & \text { Alphat Cutoff Frequency } \\ & \left(\mathrm{V}_{\mathrm{c}} \mathrm{ma}=5 \mathrm{v} ; \mathrm{I}:=-1\right. \text { ma } \end{aligned}$	fab	10

Thermal Characteristic

Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

2N636

Outline Drawing No. Ω

The General Electric type 2N636 is an NPN germanium alloy triode transistor designed for high speed switching applications.

SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

2N1O56
Outline Drawing No. 1

The General Electric Type 2N1056 is a germanium PNP alloy junction switching transistor, intended for military, industrial and data processing applications where high voltage, reliability and extreme stability of characteristics are of prime importance. Applications include neon indicator circuits, relay driver circuits and direct indicating counter circuits.

SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS: (25 $\left.{ }^{\circ} \mathrm{C}\right)$
Voltage

Collector to Base
Collector to Emitter
Emitter to Base
Current
Collector
Power
RMS Total Transistor Dissipation

Temperature

Storage
Operating Junction

Veb
Ver
VR
l.

Pav
Tsti
TJ

-70	volts
-50	volts
-15	volts
-300	ma
240	mw
-65 to 100	${ }^{\circ} \mathrm{C}$
85	${ }^{\circ} \mathrm{C}$

	Min.	Design Center	Max.	
Varr	-50			volts
$\mathrm{VPT}^{\text {PT}}$	-60			volts
$\text { t) }{ }_{\mathrm{h}_{\mathrm{FE}}}$	18	32	43	
${ }_{\text {HFE }}$	13	25		
Vbe:		-240	-300	mv
Veresat)		-90	-130	mv

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

D.C Characteristics

Collector to Emitter Voltage
($\left.\mathrm{R}_{\mathrm{be}}=10 \mathrm{~K} ; \mathrm{Ic}=-600 \mu \mathrm{amp}\right) \quad$ VCer
Punch Through Voltage (Vebr $\leq 1 v$)
Forward Current Transfer Ratio (low current) $\left(\mathrm{lc}=-20 \mathrm{ma} ; \mathrm{V}_{\mathrm{ce}}=-\mathrm{lv}\right)$
Forvard Current Transfer Ratio (high current) ($\mathrm{l} \cdot=-100 \mathrm{ma}$; $\mathrm{VCE}=-\mathrm{lv}$)
ase Input Voltage (for low current condition) ($\mathrm{Ic}=-20 \mathrm{ma} ; \mathrm{V}_{(\mathrm{r}}=-1 \mathrm{~V}$)
Saturation Voltage (low level) ($\mathrm{IB}=-2.0 \mathrm{ma} ; \mathrm{Ic}=-20 \mathrm{ma}$)

Cutoff Characteristics

Collector Current ($\mathrm{IE}=0 ; \mathrm{V}_{\mathrm{EB}}=-70$) Emitter Current ($\mathrm{Ic}=0$; Veb $=-15$)	$\begin{aligned} & \text { Ico } \\ & \text { IEO } \end{aligned}$			$\begin{aligned} & -25 \\ & -16 \end{aligned}$	pamps $\mu \mathrm{amps}$
Low Frequency Characteristics					
(Common Base or Common Emitter)					
$\left(V_{C B}=-5 v ; I_{\text {E }}=1 \mathrm{ma} ; f=1 \mathrm{KC}\right)$ ($\mathbf{V C E}_{\mathrm{cs}}=-5 \mathrm{v} ; \mathrm{lc}_{\mathrm{C}}=-1 \mathrm{ma} ; \mathbf{f}=1 \mathrm{KC}$)					
Forward Current Transfer Ratio	hfe		25		
Output Admittance	hob	0.1	0.9	1.5	$\mu \mathrm{mho}$
Input Impedance	hib	27	31	38	ohms
Reverse Voltage Transfer Ratio	hrb	1.0	4.0	13	2×10^{-6}
Noise Figure (Bw $=100$ cycles) (Common Emitter)	NF			20	db
High Frequency Characteristics (Common Base)					
Output Capacity	Cob	20	40	60	$\mu \mu \mathrm{f}$
Cutoff Frequency	fab	0.5	1.0	3.0	me
Thermal Characteristics					
Thermal Resistance from Junction to Mounting Base					
Free Air Thermal Resistance				. 25	${ }^{\circ} \mathrm{C} / \mathrm{mw}$

The General Electric Type 2N1057 is a germanium PNP alloy junction switching transistor intended for low to medium power switching applications at low frequencies. A hermetic enclosure is provided by the use of glass-to-metal seals and welded seams.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$					
Voltage					
Collector to Base	Vcm			-45	volts
Collector to Emitter	Vee			-30	wolts
Emitter to Base	Veb			-5	volts
Current					
Power					
Temperature					
Storage	Tstg			to 100	${ }^{\circ} \mathrm{C}$
Operating Junction	TJ			85	${ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS: $\mathbf{1 2 5}^{\mathbf{\circ}} \mathbf{}$)					
D-C Characteristics		Min.	Design Center	Max.	
Collector to Emitter Breakdown Voltage ($\mathrm{RBE}_{\mathrm{BE}}=10 \mathrm{~K} \cdot \mathrm{Ic}=-600 \mu \mathrm{mp}$)					
	$\mathrm{VPT}^{\text {Prem }}$	-45			volts
Forward Current Transfer Ratio (low current)					
Forward Current Transfer Ratio (high current)					
Base Input Voltage					
(for low current condition) ($\mathrm{I}_{\mathrm{c}}=-20 \mathrm{ma}$; Vce $=-1 \mathrm{v}$)	Ver		-230		nuv
Saturation Voltage (low level)					
(Is $=-1.33 \mathrm{ma}$; Ic $=-20 \mathrm{ma}$)	Vcesats	-60	-80	-130	mv
Cutoff Characteristics					
Collector Current ($\mathrm{Im}=0 ; \mathrm{Vcs}^{\text {c }}=-45 \mathrm{v}$)	Ico			-16	
Emitter Current ($\mathrm{Ic}=0 ; \mathrm{Veb}_{\text {er }}=-5 \mathrm{v}$)	Iso			-10	$\mu \mathrm{amps}$
High Frequency Characteristics (Common Base)					
Output Capacity	Cob	20	40	60	
Cutoff Frequency	fab	. 5		3.0	me
Thermal Characteristics					
Thermal Resistance from Junction to Mounting Base					
Free Air Thermal Resistance				. 25	${ }^{\circ} \mathrm{C} \mathrm{mw}$

2N1086, 2N1086A, 2N1087

Outline Drawing No. 3

The General Electric Types 2N1086, 2N1086A, and 2N1087 are NPN rate grown germanium transistors intended for mixer/oscillator or autodyne converters in radio broadcast receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity. Minimum conversion gain and narrow conversion gain spreads are guaranteed.

CONVERTER TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $125^{\circ} \mathrm{C}$)		2N1086	2N1086A	2N1087	
Voltage					
Collector to Emitler ($\mathrm{Ras}=10 \mathrm{~K}$)	Viefe	9	9	9	volts
Collector to Base (emitter open)	V'mo	9	9	9	volts
Current					
Collector	14	-20	-20	-20	ma
Power					
Collector Dissipation at $25^{\circ} \mathrm{C}$ *	P P	65	65	65	mw
Temperature					
Operating and Storage	Ts	-55 to 85	-55 to 85	-5.5 to 85	${ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS:**					
Converter Service					
Maximum Ratings					
Collector Supply Voltage	V'e	9	9	9	volts
Design Center Characteristics					
Input Impedance					
Output Impedance					
Voltage Feedback Ratio					$\times 10^{-3}$
Collector Capacitance					
Frequency Cutoff ($I_{r}=1 \mathrm{ma} \mathrm{V}_{\text {cr }}=5 \mathrm{~V}$)	fa_{a}	8	8	8	mc
Base Current Gain ($\mathrm{Ic}=1 \mathrm{ma}$, Vex $=1 \mathrm{l}$)	hre	40	40	40	
Minimum Base Current Gain	hre:	17	17	17	
Maximun Base Current Gain	hrys	195	195	195	
Converter Performance (1600 kcls)					
Conversion Gain in Typical Converter Test Circuit	CG:	24	24	26	db
Conversion Gain Range of Variation in Typical Converter Circuit		4	2	2	db)
Cutoff Characteristics					
Collector Cutoff Current (Vcr $=5 \mathrm{v}$)	Ico	3	3	3	$\mu \mathrm{a}$ max.
Collector Cutoff Current ($\mathrm{VCB}=5 v$)	Ieo	. 5	. 5	. 5	$\mu \mathrm{a}$
*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$. **All values are typical unless indicated as a min. or max.					

2N1097, 2N1098

Outline Drawing No. 2
2N322 and 2N323 except for $\mathrm{h}_{\mathrm{r}:}$ limits.

The General Electric Types 2N1097 and 2N1098 are alloy junction PNP transistors intended for low power output and audio driver service in entertainment equipment. These types are similar to the General Electric Types

SPECIFICATIONS

```
ABSOLUTE MAXIMUM RATINGS: \(\left(25^{\circ} \mathrm{C}\right)\)
```


Voltage

Collector to Einitter ($\mathrm{Rem}_{\mathrm{EB}}=10 \mathrm{~K}$)
Collector to Base

The 2 N 1115 transistor is a gernamium PNP switching type intended for highly reliable service in missile and other military equipment.

2N1115

Outline Drawing No. 7

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$

Voltage

Collector to Base
Collector to Emitter

Current

Collector
Emitter
Peak Collector*
Peak Base*
-65 to 85

Temperoture

Storace

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

DC Characteristics

Base Input Voltage (for low current condition)
$\left(I_{r}=-0.25 \mathrm{ma} ; I_{C}=-10 \mathrm{ma}\right)$
Base Input Voltage (for high current condition)
($\mathrm{I}_{\mathrm{s}}=-\mathrm{I} .7 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=-60 \mathrm{ma}$)
Saturation Voltage (low level) $\left(I_{13}=-0.25 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}\right)$
Saturation Voltage (high current)
($\mathrm{Ir}=-1.7 \mathrm{ma} ; \mathrm{l} \cdot=-60 \mathrm{ma}$)

Cutaff Characteristics

Emitter Current Ves $=-10$)
Collector to Emitter Current
$\left(\mathrm{Va}_{\mathrm{e}}=-20 ; \mathrm{K}_{\mathrm{re}}=10 \mathrm{~K} ; \mathrm{V}_{\mathrm{b}}=3\right)$
High Frequency Characteristics (Camman Base)
$\left(\mathrm{VCH}_{\mathrm{Cu}}=-5 \mathrm{v} ; \mathrm{If}_{\mathrm{s}}=1 \mathrm{mo}\right)$
Alpha Cutoff Frequency
Collector Capacity ($\mathrm{f}=1 \mathrm{mc}$)

Switching Characteristics

Storage Time

Min.

Vise		-0.4	volts
Vhe		-0.5	volts
Vcestsat)		-0.15	vilts
Vcentit		-0.35	velts
IEO		-6	$\mu \mathrm{a}$
Icex		-6	$\mu \mathrm{a}$
$\underset{C_{\text {col }}}{\mathbf{f}_{a b}}$	5.0	20	$\mathrm{macs}_{\mu \mu \mathrm{f}}^{\mathrm{n}}$
t.		3.0	$\mu \mathrm{sec}$

Thermal Characteristics

Derate $2.5 \mathrm{mw}^{\circ} / \mathrm{C}$ for temperatures above $25^{\circ} \mathrm{C}$
*Duration of intermittent current peaks is limited by the thermal transient response of of the transistor.

2N1121

Outline Drawing No. 3

The General Electric Type 2 N 1121 transistor is a rategrown NPN germanium device, intended for use as IF amplifiers in broadcast radio receivers. The collector capacity is controlled to a uniformly low value so that neutralization in most circuits is not required. Power gain at 455 KC in a typical receiver circuit is restricted to a 2.5 db spread. The uniformity provided by the controls of collector capacity and power gain allows easy and economical incorporation of this type into receiver circuits. Type 2 N 1121 has special high beta characteristics required in the final stage of reflex IF circuits where large audio gain is desired.

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left.\mathbf{(2 5}{ }^{\circ} \mathrm{C}\right)$

Voltoge
Collector to Emitter (Rer $=10 \mathrm{~K}$)
Collector to Base (emitter open)

Current
 Collector

Power

Collector Dissipation at $25^{\circ} \mathrm{C}$ *
Temperoture
Operating and Storage

$\begin{aligned} & V_{1 \cdot R} \\ & V_{1 \cdot R} \end{aligned}$	15	volts volts
I.	-20	ma
Pcm	65	mw
TA, T**;	-5.5 to 85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS:** $\left(25^{\circ} \mathrm{C}\right)$
Reflex IF Amplifier Service
Maximum Rotings
Collector Supply V
Design Center Chorocteristics
($1 \mathrm{E}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{v} ; \mathbf{f}=455 \mathrm{KC}$ except os noted)
Input Impedance
Output Impedance
Voltage Feedback Ratio ($\mathbf{V c m}_{\mathbf{c}}=\mathbf{5 v} ; \mathbf{f}=1 \mathrm{mc}$)
Collector to Base Capacitance ($V \cdot \stackrel{\beta}{ }=\overline{5} v ; f=1 \mathrm{mc}$)
Frequency Cutoff (Vrb $=5 \mathrm{v}$)
Base Current Gain ($\mathrm{Ic}^{-}=1 \mathrm{ma}$; Vas $=1 \mathrm{v}$)
Minimum Base Current Gain
Reflex IF Amplifier Performance
Collector Supply Voltage
Collector Current
Input Frequency
Minimum Power Gain in Typical IF Circuit
Power Gain Range of Variation in Typical IF Circuit
Vir.
9 volts

Z_{i}	700	ohms
Z_{o}	7	Kohms
$h_{r b}$	10	$\times 10^{-3}$
$C_{o b}$	2.4	$\mu \mu \mathrm{f}$
$\mathrm{f}_{a b}$	8	mc
hrFe	72	

Cutoff Characteristics

Collector Cutoff Current ($\mathrm{Vcr}=5 \mathrm{v}$)
Collector Cutoff Current ($\mathrm{Vcb}=15 \mathrm{v}$)
*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
**All values are typical unless indicated as a min. or max.

2N1144, 2N1145

Outline Drawing No. 1

The General Electric Types 2N1144 and 2N1145 are alloy junction PNP transistors intended for low power output and audio driver service in entertainment equipment. These types are similar to General Electric Types 2N1097 and 2N1098 except for package configuration.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage
Collector to Emitter ($\mathrm{Rm}=10 \mathrm{~K}$)
Collector to Base

Current
 Collector

Temperafure

Storage
Operating Junction

Power

Transistor Dissipation*

Verir V('ho	$\begin{aligned} & -25 \\ & -25 \end{aligned}$	volts volts
I'	-100	ma
Tsti	-65 to 85	${ }^{\circ} \mathrm{C}$
TJ	60	${ }^{\circ} \mathrm{C}$
$\mathrm{PaV}_{\text {a }}$	140	mw

ELECTRICAL CHARACTERISTICS: $\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$

D-C Characteristics

Collector Current (Vi'h $=-2.5 \mathrm{v}$)
Forward Current Transfer Ratio
($\mathrm{H}_{\mathrm{i}}-=20 \mathrm{ma} ; \mathrm{V}_{\mathrm{c}} \mathrm{e}=1 \mathrm{v}$)

	$2 N I 144$	$2 N 1145$	
I/RO)	-16	-16	нa max.
hre	$34-90$	$25-90$	

Law Frequency Characteristics

$$
\left(V_{c}=-5 v_{j} 1 \mathrm{E}=1 \mathrm{ma} ; f=1 \mathrm{KC}\right)
$$

Output Capacity (Typical)
Forward Current Transfer Ratio (Typical)
Col
Coll 40
$40 \quad \mu \mathrm{f}$
*Derate $4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

The General Electric Type 2N1198 is an NPN germanium high frequency, high speed switching transistor intended for industrial and military applications where reliability is of prime importance. In order to achieve

2N1198

Outline Drawing No. 3 the high degree of reliability necessary in industrial and military applications, the 2 N 1198 is designed to pass 500G 1 millisecond drop shock, $10,000 \mathrm{G}$ centrifuge, 10 G variable frequency vibration, as well as temperature cycling, moisture resistance and operating and storage life tests as outlined in MIL-T-19500A. The 2N1198 has the same low collector cutoff current and reliability as the 2N167 and is identical to the 2 N 167 on all parameters except voltage.

SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

3N36

Outline Drawing No. 6

The General Electric Type 3N36 is a germanium meltback NPN transistor designed for high frequency use as an amplifier, oscillator or mixer. It is recommended for use in the frequency range from 30 mc to 100 mc . The 3 N 36 is excellent for wide band video amplifiers from low frequency to 10 mc . All units are subjected to a rigorous mechanical drop test to control mechanical reliability. These transistors are hermetically sealed in welded cases. The case dimensions conform to the JEDEC TO-12 package and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltage
Collector to Base 1 or Base 2
Emitter to Base 1 or Base 2
Vcb
$V_{\text {eb }}$
$V_{c e}$

Collector to Emitter
Vee

Current

Collector	Ic	20	ma
Emitter	IE	-20	ma
Base 2	$\mathrm{I}_{\mathrm{B}_{2}}$	2	ma
Power			
Total Transistor Dissipation	Pm	30	mw
Temperature			
Storage	Tstu	-65 to 85	${ }^{\circ} \mathrm{C}$
Operating Junction	TJ	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
(Unless otherwise specified $\mathrm{VCB}_{1}=+5 \mathrm{v}$;
$\left.\mathrm{IE}_{\mathrm{E}}=-1.5 \mathrm{ma} ; \mathrm{V}_{\mathrm{B}_{2} \mathrm{~B}_{1}}=-2 \mathrm{v} ; \mathrm{f}=\mathbf{6 0} \mathrm{mc}\right)$

Thermal Choracteristic

Derate $.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

The General Electric Type 3N37 is a germanium melthack NPN transistor designed for high frequency use as an amplifier, oscillator or mixer. It is recommended for use in the frequency range of 100 mc to 200 mc . The 3 N 37 is excellent

3N37
Outline Drawing No. 6 for wide band video amplifiers from low frequency to 10 mc . All units are subjected to a rigorous mechanical drop test to control mechanical reliability. These transistors are hermetically sealed in welded cases. The case dimensions conform to the JEISEC TO-12 package and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($\left.25^{\circ} \mathrm{C}\right)$			
Voltage			
Collector to Base 1 or Base 2	Vcb	7	volts
Emitter to Base 1 or Base 2	Veb	2	volts
Coliector to Emitter	Vee	6	volts
Current			
Collector	Ic	20	ma
Emitter	IE	-20	ma
Base 2	IR_{2}	2	ma
Power			
Total Transistor Dissipation	$\mathrm{Pa}_{\mathbf{M}}$	30	mw
Temperature			
Storage	Tste	-65 to 85	${ }^{\circ} \mathrm{C}$
Operating Junction	TJ	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
(Unless otherwise specified $\mathrm{VCB}_{1}=+5 \mathrm{v}_{\text {; }}$
$\left.\mathrm{I}_{\mathrm{E}}=-1.5 \mathrm{ma} ; \mathrm{V}_{\mathrm{B}_{2} \mathrm{~B}_{1}}=-2 \mathrm{v} ; \mathrm{f}=150 \mathrm{mc}\right)$
Small Signal High Frequency Parameters
Min. $\quad \begin{aligned} & \text { Design } \\ & \text { Center }\end{aligned}$
Output Capacity
Noise Figure (Common Base)
Base Spreading Resistance

Common Emitter "h" Parameters

Input Impedance	hie	$80-\mathbf{i 1 0}$	ohms
Reverse Voltage Transfer Ratio	hre	$.018 \angle 84^{\circ}$	
Current Transfer Ratio	hre	$1.1 \angle-100^{\circ}$	
Output Admittance	hoe	$5.5+\mathbf{j 1 2 . 5 1 4}$	$\times 10^{-4}$ mhos
Common Base Cutoff Frequency	fab	$\mathbf{9 0}$	
Common Emitter Power Gain	Ge	7	9

D-C Characteristics

Voltage Collector to Emitter $\left(\begin{array}{l} \left(\mathrm{P}_{\mathrm{BE}}=10 \mathrm{~K} ;\right. \\ \left.\mathrm{V}_{\mathrm{B}_{2} \mathrm{E}}=-2 \mathrm{v} ; \mathrm{IC}_{\mathrm{C}}=25 \mu \mathrm{mp}\right) \end{array}\right.$	Vcer	5			volts
Collector Cutoff Current ($\mathrm{VcB}_{1} \mathrm{~B}_{2}=7 \mathrm{v}$)	Ico		3	10	$\mu \mathrm{amps}$
Cross Base Resistance	$\mathrm{RB}_{1} \mathrm{~B}_{2}$	2.5	4	10	K ohms

Thermal Characteristic

Derate $.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

For explanation of abbreviations, see page 218

JEDEC No.	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS					Closest GE
					Pcmw @ $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{BV} \mathrm{CE}^{\prime} \\ & \mathrm{BVCB}^{*} \end{aligned}$	Ic ma	T ${ }^{\circ} \mathrm{C}$	MIN. hre-hre*@Icma	MIN. fab me	MIN. Gedb	MAX. Ico($\mu \mathrm{a}$)	@ $\mathrm{V}_{\mathbf{C b}}$	
2 N 22	Pe_{P}	WE	Sw		120	-100	-20	55	$1.9 a$					
2N23	$\mathrm{P}_{\mathbf{t}}$	WE	Sw		80	-50	-40	55	$1.9 a$					
2N24	$\mathrm{P}_{\mathbf{t}}$	WE	AF		120	-30	-25	50	2.2α					
2N25	$\mathrm{P}^{\text {'t }}$	WE	AF		200	-50	-30	60	2.5a					
2N26	$\mathrm{P}^{\text {t }}$	WE	Sw		90	-30	-40	55						
2N27	NPN	WE	Obsolete	A	50	35*	100	85	100	1				
2N28	NPN	WE	AF	A	50	30*	100	85	100	. 5				
2N29	NPN	WE	AF	A	50	35*	30	85	100	1		15	30	
2N30	P_{t}	GE	Obsolete		100	30	7	40	2.2a	2 T	17'T			Old Gll
2 N 31	Pt	GE	Obsolete		100	30	7	40		2 T		150	25	Old Gill
2N 32	$\mathrm{P}^{\mathbf{t}}$	RCA	Obsolete		50	-40	-8	40	2.2a	2.7	$21 T$			Old
	$\mathrm{P}_{\mathbf{t}}$	RCA	Obsolete		50	-40	-8	40	2.2α	2.7	21.			
2 N 33		RCA	Obsolete		30	-8.5	-7							
2 N 34	PNP	RCA	Obsolete		50	-25	-8	50	40	. 6	40 T			2N190
2N34A	PNP	RCA	Obsolete		50	-25	-8	50	40	. 6	40 T			2N190
	NPN	RCA	1F		50	25	8	50	40	. 8	40T			
$2 N 36$	PNP	CBS	AF	H	50	-20	-8	50	45 T		40T			2N191
2 N 37	PNP	CBS	AF	B	50	-20	-8	50	30T		36T			$2 \text { N } 190$
2 N 38	PNP	CBS	AF'	B	50	-20	-8	50	15T		32 T			
2N38A	PNP	CBS	AF'	B	50	-20	-8	50	18T		34	-12	-3	2N189
2N41	PNP	RCA	AF	C	50	-25	-15	50	40 T		40 T	-10	-12	$\text { 2N } 190$
2N43	PNP	GE	AF	1	240	-30	-300	100	301	. 5		-16	-45	2N43
2 N 44	PNP	GE	$A F$	1	240	-30	-300	100	$25 \mathrm{~T} \quad 1$. 5		-16	-45	2 N 44
2N45	PNP	GE	Obsolete		155	-25	-10	100	25 T	. 5	34	-16	-45	2N 1056
2N46	PNP	RCA	AF	C	50	-25	-15	50	40T		4 T	-10	-12	2N322
2 N 47	PNP	Phil	AF	D	50	-35*	-20	65	.975			-5	-12	2 N 322 16V
2 N 48	PNP	Phil	AF	D	50	-35*	-20	65	. 970α			-5	-12	2 N 32116 V
2N49	PNP	Phil	AF	D	50	-35*	-20	65	. 975			-5	-12	2N322 16V
2N50	$\mathrm{P}_{\mathbf{t}}$	Cle	Sw		50	-15	-1	50	2α	3 T				
2N51	$\mathrm{Pt}_{\mathbf{t}}$	Cle	Sw		100	-50	-8	50	2.2α			-350	-7	
2 N 52	P 't	Cle	RF		120	-50	-8	50						
2 N 54	PNP	W	AF		200	-45	-10	60	95 ${ }^{\text {a }}$		40 T			2N1098 16V
2N55	PNP	W	AF		200	-45	-10	60	.92a		39 T			2N1047 16V
2 N 56	PNP	W	AF		200	-45	-10	60	.90 α		38T			2 N 32216 V
2N59	PNP	W	AF Out	C	180	-25*	-200	85	90T* ${ }^{\text {* }} 100$		35 T	-15	-20	2N321
2N59A	PNP	W	AF Out	C	180	-40*	-200	85	90T* -100		35 T	-15	-20	2N321
		W			180	-50*	-200	85	90T* - 100		35T	-15	-20	
2N59C	PNP	W	AF Out	C	180	-60*	-200	85	90T* - 100		35T	-15	-20	
2N60	PNP	W	AF Out	C	180	-25*	-200	85	65T* - 100		35T	-15	-20	2N321

JEDEC No.	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS					Closest GE
					Primw @ $25^{\circ} \mathrm{C}$	$B V_{c e}$ $B V_{C B}{ }^{*}$	Ifema	$\mathbf{T} \mathbf{s}^{\circ} \mathrm{C}$	MIN. her-hes:* @ Icma	MIN. fabme	MIN. Gedb	MAX. loo($\mu \mathrm{a})$	@ $\mathrm{VCr}^{\text {ch }}$	
2N146	NIPN	TI	IF	A	65	20	5	75	333		33		9	
2N147	NPN	TI	IF	A	65	20	5	75	36		36	3	9	
2N148	NPN	TI	IF	A	65	16	5	75			32	3	12	2N169
2NT48A	NPN	Tl	IF	A	65	32	5	75						2N169
$\begin{aligned} & 2 N 149 \\ & 2 N 149 \mathrm{~A} \end{aligned}$	NPN NPN	TI	IF	A	65	16	5	75			35	3	12	2N169
2N159A	NPN	TI	IF	A	65	32	5	7.5			35	3	12	2 N 169
$\begin{aligned} & 2 N 150 \\ & 2 N 150 \mathrm{~A} \end{aligned}$	NPN NPN	TI	IF	A	65	16	5	75			38	3	12	2N169
$\begin{aligned} & 2 N 150 A \\ & 2 N 155 \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { PNN } \end{aligned}$	${ }_{\text {CuS }}$	$\stackrel{\text { IF }}{\text { Pwr }}$	A	65 8.5	${ }^{32}$	5	75			38	3	12	2N169
2N156	PNP	CBS	Pwr		8.5 W	-30*	$-3 \mathrm{~A}$	85		15T	30	1 ma	-30	
2N157	PNP	Cl3S	I'wr		8.5 W	-60 *	-3A	85	20*	. 15	3.3	1 ma	-30 -60	
2N157A	PNP	CISS	I'wr		8.5 W	-90^{*}	-3A	85	20^{*}. 5 A	. 1		1 ma	-60 -90	
$2 N 158$	PNP	C13S	Pwr		8.5 W	-60 *	-3A				37			
$\begin{aligned} & 2 N_{158 A} \\ & 2 N 159 \end{aligned}$	$\begin{aligned} & \mathrm{P}^{\prime} \mathrm{NP} \\ & \mathrm{P}_{\mathrm{t}} \end{aligned}$	CIS	I'wr		8.5 W	-80*	-3A	85	21* .5A	. 15		1 ma	-80	
2N160	NPN	Sprague	Sw	A	80	-50	-10		26* . 5	2		5	40	
2N160A	NPN	G1	Si $\mathrm{Si}_{\text {¢ }}^{\text {IF }}$	A	150	40*	25	150	$._{\alpha} \quad-1$	4	347	5	10	2N332
2N161	N1PN	Gi)	Si HF	A	150 150	$40^{*} 4{ }^{*}$	25	150 150		4 T	34T	5	40	2 N 332
2N161A	NPN	(il	Si AF	A	150	40*	25	150	.95a -	5 T	371	5	40	2N33:
2N162	NPN	GP	Si HF	A	150	40*	25	150	.95a - -	8	38^{\prime}	5	40	${ }_{2}^{2 N} \mathbf{N} 333$
2N162A	NIPN	Gil	Si HF	A	150	49*	25	150	.95a -1	8	38 T	5	40	2N335
$\text { 2N } 163$ 2N163A	NPN	GP	Si HF	A	150	40*	25	150	.975 -1		40%	5	40	
2N163A 2N166	NiPN	GP	Si IRF	A	150	40*	25	150	. $9750 \mathrm{~F}-1$	$6{ }^{1}$	40°	5	. 10	2 N 335
2N166	NDPN	GE	Ohsolete	C	25	6	20	50	32 T	59	$24 T$	5	5	2N170
2N168	NiPN	GE)	Sw	3	6.5	30	75	85	17* 8	5		1.5	15	2N167
2N168A	Ni'N	GE	Obsolete	3 3	5.5 6.5	15 15	20	75	20 T	67	28	5	15	2N293
2N169	NIPN	(i)	IF	3	65	15	20	85	23* 1	5	28	5	15	2N1036
2N169A	NPN	GE*	AF		6.5	15	20 20	85	34*	87	27	5	15	2N169
2N170	NPN	(ie)	IF	3	25	1.6	20 20	85 50	3.4*	${ }^{817}$	27	5	15	2N169A
2N172	NPN	TI	IF	A	65	16	5	75	.	\pm	22	3	5	2N170
2 N 173	PND	Dle;	Pwr		10) ${ }^{+}$	-60	-13A	95	85, ${ }^{\circ}$ * 1A	.6T	40 T	$-.5 \stackrel{3}{\mathrm{~m}}$	-40	2N293
2 N 174	PNP	De:	Pwr		40 W	-80	$-13 \mathrm{~A}$	95	H0T* 1A	2'1	39 T	- 10 ma	-60 -60	
	PNP	Dle	Pwr		85 W	-80	$-15 \mathrm{~A}$	0.5	40* 1.2 A	. 1		-8 ma	-80	
$\begin{aligned} & \text { 2N } 175 \\ & 2 N 176 \end{aligned}$	PNP'	RCA	$\underset{\text { Pwr }}{\text { AF }}$	A	20	- 10	-2	85	65 . 5	2	43 T	-12	-25	
2N178	PNP	Motor	Pwr		$3 W$	-12	-600	80			25%			
2N179	PNP	Motor Motor	I'wr		3W	-12	-600	80			29 T			
2N180	PND	Cl3S	AF'Out	13	150	-20 -30	-60 -25	88 75	60%	7	32 T			
2N181	lNI'	Clis	AFOut	13	250	-30	-38	-7.5	$6{ }^{\text {njo }}$					-N188A
2N182	NPN	CHS	Sw	13	100	25*	10	85	$25^{\prime} 0^{*}$	2.5	3.47			2N188A
$2 \mathrm{~N}^{2} 83$	NPN	CISS	Sw	13	100	25*	10	85	$50{ }^{\text {T* }}$	- 5		$3{ }^{3}$	10	2N63t or 2N167

$\begin{aligned} & \text { JEDEC } \\ & \text { No. } \end{aligned}$	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS						Closest GE
					Pcmw @ $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{BYCE} \\ & \mathrm{BVCB}^{*} \end{aligned}$	Ic ma	T $\mathbf{J}^{\circ} \mathrm{C}$	MIN. hee-hre*	@ Icma	MIN. fab mc	MIN. $\mathbf{G e d b}^{\mathbf{d}}$	MAX. lco($\mu \mathrm{a}$)	@ VCR	
2N184	NPN	CBS	Sw	13	100	25*	10	85	100T*		10		${ }^{3} \mathrm{~T}$	10	2N635 or 2N188A
2N185	PNP	TI	AF Out	A	150	-20	-150	75	35	-100		26	15	-20	2N188
2N186	PNP	GE	AFOut	1	100	-25	200	85	24T*	-100	. 8 T	28	-16	-25	Use 2N186A
2N186A	PNP	GE	AF Out	1	200	-25	200	85	24T'*	-100	.8T	28	-16	-25	
2 N187	PNP	GE	AF Out	1	100	-25	200	85	36T*	-100	1 T	30	-16	-25	Use 2N187A
2Ni87A	PNP	(iF)	AF Out	1	200	-25	200	85	36T*	-100	1 T	30	-16	-25	
2N188	PNP	GE	AF Out	1	100	-25	-200	85	54T**	100	1.2 T	32	-16	-25	Use 2N188A
2N188A	PNP	GE	AF Out	1	200	-25	-200	85	54T**	100	1.2 T	32	-16	-25	$2 N 18 B A$
2N189	PNP	GE	AF	1	75	-25	-50	85	24T*	1	.8T	37	-16	-25	
2N190	PNP	(F E	AF	1	75	-25	-50	85	36T*	I	1.0 T	39	-16	-25	2N190
2N191	PNP	GE	AF	1	75	-25	-50	85	54T**	1	1.2 T	41	-16	-25	2N191
2N192	PNP	GE	AF'	1	75	-25	-50	85	75T*	1	1.5 T	43	-16	-25	2N192
2N193	NPN	Syl	Osc	A	50	15		75	3.8	,	2		40	15	2N1086
2N194	NPN	Syl	Osc	A	50	15		75	4.8	1	2	15 T	40	15	2N1086
2N194A	NPN	Syl	Ose	A	50	20	100	75	5	1	2	20	50	18	2N 1087
2N206	INP	HCA	AF	A	75	-30	-50	85	47 T		. 8				2 N 320
2 N 207	PNP	Phil	AF	I)	50	-12	-20	65	35	1	2 T		-15	-12	2 N 324
2N207A	PND	Phil	AF	D	50	-12	-20	65	35	1	2 T		-15	-12	2N324
2N207B2 N 2112 N 212	PNP	Phil	$\overline{\mathrm{AF}}$	D	50	-12	-20	65	35	,	2 T		-15	-12	2N324
	NPN	Syl	Osc	A	50	10	50	75	3.8	1	2		20	10	${ }_{2} \mathrm{~N} 293$
	NPN	Syl	Osc	A	50	10	50	75	7	1	4	22 T	20	10	2N293
2 N 213	NPN	Syl	AF'	A	50	25	100	75	70	1		39	200	40	2N169A
2N213A	NPN	Syl	AF	A	150	25	100	85	100	1	10 Kc	38	50	20	None
2N214	NPN	Syl	AF Out	A	125	25	75	75	50	35	. 6	26	200	40	None
2N215	PNP	RCA	AF'	A	150	-30	-50	85	44		. 7	33T	- 10	-12	2N320
2N216	NDN	Syl	IF	A	50 150	15 -25	50 -70	75	3.5*	1	2	$26 T$ $30 T$	40	15	2N292
2N217	PNP	RCA	AF	A	150	-25	-70	85	75*			30 T			2N321
2N218	PNP	RCA	IF	A	80	-16	-15	85	48	1			-6	-12	
2N219	PNP	RCA	Osc	A	80	-16	-15	85	75	. 4	10	32	-6	-12	2N137
2N220	PNP	RCA	AF	A	50	-10	-2	85	65		. 8	43			2N323
2 N 223	PNP	l'hil	AF	D	100	-18	-150		39 *	-2			-20	-9 -12	
2N224	PNP	Phil	AF Out	D	250	-25*	150	75	60^{*}	-100 -100	.5T		-25 -25	-12 -12	${ }_{2}^{2 N 321}$
2N225	PNP	Phil	AF Out	D	250	-25*	150	75	60*	-100	. 5 T		-25	-12	2N321
2N226	PNP	I'hil	AF Out	D	250	-30*	150	75	35*	-100	.4T		-25	-30	2N321
2N227	PNP	Phil	AF Out	I	250	-30*	150	75	35*	-100	. 4 T		-25	-30	2N321
2N228	NPN	Syl	AFOut	A	50	25	50	75	50	35	. 6	23	200	40	2N169
2N229	NPN	Syl	AF	A	50	12	40	75	.9a	1	. 55		200	5	2N 169
2N230	PNP	Mall	Pwr		15W	-30	${ }^{2 A}$	85	60	. 5 A	12 Kc		- 1.5 ma	-60	
2N231	PNP	Phil	SB RF	D	9	-4.5	-3	55	19	$-.5$	20 fon		-3	-5	
2N232	PNP	Phil	SR RF	I)	9	-4.5	-3	55	9	$-.5$	30 for		-6	-5	
2N233	NPN	Syl	IF	A	50	10	50	75	3.0	1			100	10	2N4.88 2N4t8
2N233A	NPN	Syl	IF	A	50	10	50	75	3.5	1			150	15	2N448

JEDEC No.	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS					Closest GE
					Pc mw (25 $5^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{BVCE} \\ & \mathrm{BV}_{\mathrm{CB}}{ }^{*} \end{aligned}$	Icmo	TJ ${ }^{\circ} \mathrm{C}$	MiN. hre-hFE*@Icma	MIN. fabme	MIN. Gedb	MAX. $\operatorname{lco}(\mu \mathrm{c})$	@ $\mathbf{V C B}_{\mathrm{CB}}$	
2N234	PNP	Bendix	Pwr		25W	-30	$-3 \mathrm{~A}$	90		8 Kc	25	$-1 \mathrm{ma} \mathrm{T}$	-25	
2N234A	PNP	Bendix	Pwr		25 W	-30	$-3 \mathbf{A}$	90		8 Kc	25	-1 ma T	-25	
2N235	PNP	Bendix	Pwr		25W	-40	$-3 \mathrm{~A}$	90		7 Kc		-1 ma		
2N235A	PNP	Bendix	Pwr		25W	-40	$-3 \mathrm{~A}$	90		7 Kc	30			
2N236	PNP	Bendix	Pwr		25W	-40	$-3 \mathrm{~A}$	95		6 Kc	30	$-1 \mathrm{ma}$	-25	
2N236A	PNP	Bendix	Pwr		25W	-40	-3A	95		6 Kc	30	$-1 \mathrm{ma}$	-25	
2N237	PNP	Mar	AF	A	150	-45	-20	85	50	. 5	42	-10	-22.5	2 N 19225 V
2N238	PNP	TI	${ }_{\mathbf{A F P}}^{\text {AF }}$	A	50	-20	- 15	75	5	$\stackrel{5}{ }$	37	- 20	-20	2N191
2N240	PNP	Phil	SB Sw	D	10	-6	-15		$16-.5$	30 fon		-3	-5	
2 N 241	PNP	GE	AFOut	I	100	-25	200	85	73T** 100	1.3 T	35T	-16	-25	2 N 241
2N241A	PNP	GE	AF Out	1	200	-25	200	85	73T* 100	1.3 T	35 T	-16	-25	2N241A
2N242	PNP	Syl	Pwr		20W	-45	$-2 \mathrm{~A}$	85		5 Kc	30	-5 ma	-45	
2N243	NPN	TI	Si AF	A	750	60**	60	150	$9.9-5$		30	1	30	
2N244	NPN	TI	Si AF	A	750	60*	60	150	.961 -5		30	1	30	
2N247	PNP	RCA	Drift RF	A	80	-12	-10	85	60	30	37	-20	-12	
2N248	PNP	TI	RF	A	30	-25	-5	85	20T* . 5	50 T		-10		
2N249	PNP	TI	AF	C	350	-25	-200	85	$30 \quad-100$	50		-25	$\begin{aligned} & -12 \\ & -25 \end{aligned}$	2N320
2N250	PNP	TI	Pwr		12W	-30	$-2 \mathrm{~A}$	80	$30^{*} \quad-.5 \mathrm{~A}$			-1ma	-30	2N30
2N251	PNP	TI	Pwr		12W	-60	$-2 \mathrm{~A}$	80	30* - ${ }^{*}$ -					
2N252	PNP	TI	IF	A	30	-16	-5	55	30-.5A		28	-10	-12	
2N253	NPN	TI	IF	A	65	12	5	75			32	3	9	2N293
2N254	NPN	TI	IF	A	65	20	5	75				3	9	2N293
2N255	PNP	CBS	Pwr		1.5W	-15*	-3	85		. 2 T	19	3	9	2 N 23
2N256	PNP	CBS	Pwr		1.5W	-30*	-3	85		. 2 T	22			
${ }_{2} \mathrm{~N} 257$	PNP	Cle	Pwr		2W	-40*		85	55T .5A	${ }^{7} \mathrm{Kc}$	30	-2 ma	-40	
2N260	PNP	Cle	Si AF	B	200	-10^{*}	-50	150	${ }^{16 \mathrm{~T}}$	1.8T	38 T	. 001 T	-6	2N332
2N260A	PNP	Cle	Si AF	B	200	-30*	-50	150	16 T	1.8 T	38 T	.001T	-6	2N332
2N261	PNP	Cle	Si AF	B	200	-75*	-50	150	10T 1	1.8T	36 T	.001T	-6	2N332
2N262	PNP	Cle	Si AF	B	200	-10^{*}	-50	150	20 T -	6T	40 T	.001T	-6	2N333
2N262A	PNP	Cle	Si AF	B	200	-30*	-50	150	20 T -	6T	40 T	.001T	-6	2 N 333
2N265	PNP	GE			75	-25	-50	85	110T* 1	1.5 T	45	-16	-25	2N265
2N267	PNP	RCA	Drift RF	A	80	-12	-10	85	60	30	37	-20	-12	2N265
2N268	PNP	Cle	Pwr		2W	-80*		85		6 Kc	28	-2ma	-80	
2N268A	PNP	Cle	Pwr		2W	-60		90	20* 2A			-2 ma	-80	
2N269	PNP	RCA	Sw	C	120	-24	-100	85	35	4		-5	-12	2N404
2N270	PNP	RCA	AF Out	A	150	-25	-75	85	70150		35	-10	-25	2 N 321
2N271	PNP	Ray	RF	A	150	-10	-200	85	$45 \mathrm{~T} \quad 1$					
2N271A	PNP	Ray	IF	A	150	-10	-200	85	$45 \mathrm{~T} \quad 1$	10T	39 T	-5	-12	
2N272	PNP	Ray	AF	A	150	-24	-100	85	60	1T	12T	-6T	-20	2N323
2N274	PNP				150	-30	-100		$10 \quad-50$		29	-6T	- 20	2N1098
2N274	PNP	RCA	Drift RF	D	80	-12	-10	85	$60 \mathrm{~T} \quad 1$	30 T	45 T	-20	-12	-N1098
2N277	PNP	Dlco	Pwr		55W	-40	12A	95	$85 \mathrm{~T} \quad 1.2 \mathrm{~A}$. 5 T	34T	$-.5 \mathrm{ma} \mathrm{T}$	-30	

JEDEC No.	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS					Closest GE
					Pc mw © $25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { BV } V_{C E} \\ & B V_{C \cdot}^{*} \end{aligned}$	Ic mo	TJ ${ }^{\circ} \mathrm{C}$	MIN. hre-hre: @ Icma	MIN. fau me	MIN. Gedb	MAX. $\operatorname{lco}(\mu \mathrm{a})$	@ Vcb	
$\begin{aligned} & \text { 2N278 } \\ & \text { 2N279 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \end{aligned}$	Dlco Am	$\begin{aligned} & \text { Pwr } \\ & \mathrm{AF} \end{aligned}$	B	${ }_{125}^{55 \mathrm{~W}}$	$\begin{array}{r} -50 \\ -20 \\ \hline \end{array}$	$\begin{array}{r} 12 \mathrm{~A} \\ -10 \end{array}$	$\begin{aligned} & 95 \\ & 75 \end{aligned}$	$\begin{array}{ll} 85 \mathrm{~T} & 1.2 \mathrm{~A} \\ 20 & .5 \end{array}$	$\begin{aligned} & .5 \mathrm{~T} \\ & .{ }^{3} \mathrm{~T} \\ & \hline \end{aligned}$	$34^{\circ}{ }^{\prime}$	$\begin{gathered} -.5 \mathrm{ma} \\ -12 \end{gathered} \mathrm{~T}$	$\begin{array}{r} -20 \\ -4.5 \\ \hline \end{array}$	2 N 319
2N280	PNP'	Am	AF	B	12.5	-20	-10	75	$30 \quad 3$.3T		-12	-4.5	2N320
2N281	PNP	Am	AF	B		-16	-50	75	45* 10	.35'T		-15	-30	2N321
2N282	PNP	Am	AF	B	167	-16	-50	75	45* 10	. 35 T		-15	-30	2 N 321
2N283	PNP	Am	AF'	B	125	-20	-10	75	30 . 5	.5T		-6	-4.5	2N320
2 N 28.4	PNP	Am	Ose	A	125	-32	-125	75	45* 10	. 35		-10	-10	2N1056
2 N 28.1 A	PNIP	Arn	Ose	A	125	-60	-125	75	45* 10			-10	-10	
2N285	PNP	Bendix	Pwr		25W	-40		95		6 Kc		-1ma		
$2 \mathrm{~N} 285 \mathrm{~A}$	PNP	Bendix	Pwr		25 W	-40	3A	95		6 Kc	38	$\text { - } 1 \mathrm{ma}$	-25	
2N290	PNP	Dlco	Pwr		55 W	-70	$-12 \mathrm{~A}$	95	72'** 1.2A	.4T		- 1 mat	-60	
2 N 291	PNP	TI	AF	A	180	-25	-200	85	30* 100					
2 N 292	NPN	GF	IF	3	65	15	-20	85	81	5T	25.5	5	15	2N292
2N293	NPN	GE:	IF	3	65	15	-20	85	8 1	8 T	28	5	15	2N293
2N297	PNI'	Cle	Pwr		35 W	-50	-5A	95	40* . 5	5 Kc		3 ma	-60	
2N297A	PNP	Cle	Pwr		35 W	-50	$-5 \mathrm{~A}$	95	40* . 5	5 Kc		3 ma	-60	
2N299	PNP	Phil	SB RF	E	20	-4.5	-5	85		90 for	20	-3	-5	
2N300	PNP'	IThil	SBRF	E	20	-4.5	-5	85	11 . 5	85 fos		-3	-5	
2 N 301	PNP	RCA	Pwr		11 W	-20	$-1.5 \mathrm{~A}$	91	70T** 1 A		${ }^{33} \mathbf{T}$	-3 ma	-30	
9 N 301 A	PNP	RCA	Pwr		11 W	-30	$-1.5 \mathrm{~A}$	91	70'T* 1A		3.3 T	-3ma	-30	
2 N 302	PNP	Ray	Obsolete	A	150	-10	-200	85	${ }^{45}$ 'T	7		-1T	-. 12	2N186A
2N303	PND	Ray	Obsolete	A	150	-10	-200	85	${ }^{75}$ T	14		-17	$-.12$	2N186A
2N306	NPN	Syl	AF	A	50	15		75	251	. 6	34	50	20	2N292
$2 \mathrm{~N} 307$	PNP	Syl	Pwr			-35	$-1 \mathrm{~A}$	75	$\stackrel{20}{200}$					
$2 \mathrm{~N} 307 \mathrm{~A}$	PNP	Syl	Pwr		17W	-35	$-2 \mathrm{~A}$	75	20200	3.5 Ke	29	7 ma	-35	
2 N 308	PNIP	TI	IF	A	30	-20	-5	55			39	-10	-9	
2 N309	PNP	TI	IF		30	-20	-5	55						
$2 \text { N310 }$	PND	TI	IF	A	30	-30	-5	55	${ }_{25}{ }^{\text {T }}$		37 T	-10	-9	
2N311	PNP	Motor	Sw	C	75	-15		85	25			-60	-15	2N123
2N312	NPN	Motor	Sw	C		15		85	25			60	15	2N167
$2 \mathrm{~N} 313$	NPN	GE	Obsolete		65	15	20	85	25	5	$36 \max$			Ise 2N292
2 N 314	NPN	GE	Obsolete		65	15	20	85	25	8	$39 \max$			Ine 2N293
2N315	PNI'	GT	Sw		100	-15	-200							2N396
2N316	PNP	G'T	Sw	C	100	-10	-200	85	$20 \quad 200$	12'T		-2	-5	2N397
2N317	PNP	GT	Sw	C	100	-6	-200	85	$20 \quad 400$	20 T		-2	-5	
2N318	PNP	GT	Photo	A	50	-12	-20			.75T				
2 N319	PNP	GE	AF	4	225	-20	-200	85	34T* - 20	2T		-16	-25	2 N 319
2 N 320	PNI	GE	AF	4	225	-20	-200	85	50T* -20	2.5 T		-16	-25	2N320
2N321	PNP	GE	AF	4	225	-20	-200	85	$80{ }^{\prime}{ }^{*}$ - 20	3.0 T		-16	-25	2N321
2N322	PNP	GE	AF	4	140	-16	-100	60	$45^{\prime} \mathrm{T}-20$	2'T		-16	-16	2N322
2 N 323	PNI	GE	AF	4	140	-16	-100	60	68' - 20	2.5 T		-16	-16	2 N 323

JEDEC No.	Type	Mfr.	Use	Dwg. Na.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS						Clasest GE
					Pc mw @ $25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { BYCE } \\ & \text { BYCB* } \end{aligned}$	Ic ma	T ${ }^{\circ} \mathrm{C}$	MIN. hie-hfe*	Icmo	MIN. fab me	MIN. Gedb	MAX. I $\cos (\mu \mathrm{a})$	@ $\mathrm{VCB}^{\text {ch }}$	
2N370	PN1P	RCA	Drift RF	A	80	-24*	-20	85	60T	1	30 T	31 M	-10	-12	
2N371	PNP	RCA	Drift RF	A	80	-24*	-20	85	984T	1	30T	17.6 M	-10	-12	
2N372	PND	RCA	Drift RF	A	80	-24*	-20	85	60 T	1	30T	12.5 M	-10	-12	
2N373	PNP	RCA	Osc	A	80	-24*	-10	85	60T	1	30 T	40 T	-16	-12	
2N374	PNP	IRCA	Drift Osc	A	80	-24*	-10	85	60 T	1	30 T	40 T	-16	-12	
2N375	INP	Motor	Pwr	A	45 W	-60	$-3 \mathrm{~A}$	95	35	1 A	7 Kc	40 T	-3ma	-60	
2N376	PNP	Motor	Pwr		10W	-40*	$-3 \mathrm{~A}$	90	60T	1A	$5 \mathrm{Kc}$	35 T			
2N377	NPN	Syl	Sw	C	150	20	200	100	20^{*}	200	$5 \mathrm{~T}$		20	20	2N634
2N378	PNP	TS	I'wr		50W	-40	-5A	100	15*	2A	5 Kc		-500	-25	
2N379	INIP	TS	Pwr		50W	-80	$-5 A$	100	20*	2 A	5 Kc		-500	-25	
2 N 380	PND	TS	1'wr		50W	-60	$-5 \mathrm{~A}$	100	30^{*}	2A	${ }_{2} \mathbf{4} \mathrm{Kc}$		-500	-25	
2N381	PND	TS	AFOut	C	200	-25	-200	85	50T	20	1.2 T	31 T	-10T	-25	2N320
2N382	PNP	TS	AFOut	C	200	-25	-200	85	75T	20	1.5 T	33 T	-10T	-25	2N321
2 N 383	PNIP	TS	AFOut	C	200	-25	-200	85	100 T	20	1.8 T	35 T	$-10 \mathrm{~T}$	-25	2N321
2 N 384	PNP	RC.A	Drift Osc	C	120	-30	-10	85	60T	1.5	100T		-16	-12	
2N385	NPN	Syl	Sw	C	150	25	200	100	30*				35		2N634
2N386	PNP	Phil	Iwr		12.5 W	. -60	$-3 \mathrm{~A}$	100	20	$-2.5 \mathrm{~A}$	7 Ke		- 5 ma	-60	
2N387	PNP	Phil	I'wr		12.5 W	-80	$-3 \mathrm{~A}$	100	20	-2.5A	6 Kc		- 5 ma		
	NPN	Syl	Sw		150	20	200		60*	30	8T			20	2N635
2N389	NIPN	TI	Si Pwr		85W	60		200	12	1 A			$10 \mathrm{ma} 60$	(1) $100^{\circ} \mathrm{C}$	
2N392	PNP	Dic	I'wr		70W	$-60 *$	-5A	95	60	3A	6 Kc		$-8 \mathrm{ma}$	-60	
2 N 393	PNP	Phil	Sw		50	-6	-50	85	20*	-50			-5	-5	
2N394	PNP	GE	Sw	2	150	-10	-200	85	20**	-10	4		-6	-10	2 N 394
2N395	PNP	GE	Sw	2	200	-15	-200	100	20*	-10	3		-6	-15	2N395
2N396	PNIP	CF	Sw	2	200	-20	-200	100	30*	-10	5		-6	-20	2N396
2N397	PND	GE	Sw	2	200	-15	-200	100	40*	-10	10		-6	-15	2N397
2N398	PND	RCA	Sw	C	50	-105	-110	85	20*	-5 ma			-14	-2.5	
2N399	PNIP	Bendix	Pwr		25W	-40	$-3 \mathrm{~A}$	90			8 Kc	33 T	-1 ma	-25	
2 N 401	PNI'	Bendix	Pwr		25 W	-40	$-3 \mathrm{~A}$	90			8 Kc	30 T	- 1 ma	-25	
2N402	PNP	W	AF	C	180	-20	-150	85	.96aT	1	.6T	37 T	-15	-20	2N188A
2N403	PNP	W	AF	C	180	-20	-200	85	.97aT	1	.85T	32	-15	-20	2N187A
2 N 404	PNP	RCA-GE:	Sw	2	120	-24	-100	85			4		-5	-12	2 N 404
2N405	PND	RCA	AF	A	150	-18	-35	85	35T*	1	.65T	4.3 T	-14	-12	2N188A
2N406	PNP	RCA	AF	C	150	-18	-35	85	35T*	1	.65T	43 T	-14	-12	2N188A
2 N 407	PNP	RCA	AF	A	150	-18	-70	85	65T*	-50		33 T	-14	-12	2N241A
2N408	PNP	RCA	AF	C	150	-18	-70	85	65T*	-50		33 T	-14	-12	2N241A
$2 \mathrm{~N} 409$	PNP	RCA	IF		80	-13	-15	85				38 T	-10	-13	
2 N 410	PNP	RCA	IF	C	80	-13	-15	85	.98a'T	1	6.7 T	$38^{\circ} \mathrm{T}$	-10	-13	2N450
2 N 411	PNP	RCA	Ose	A	80	-13	-15	85	75 T	. 6		32 T	-10	-13	2N450
2N412	PNP	RCA	Osc	C	80	-13	-15	85	75T	. 6		32 T	-10	-13	2N450
2N413	PNP	Ray	RF	C	150	-18	-200	85	30 T	1	2.5 T	32T	-5	-12	2N450
2N413A	PNP	Ray	IF	C	150	-15	-200	85	30 T	1	2.5T	33T	-5	-12	2N450

ABBREVIATIONS

TYPES AND USES:

Si-Silicon High Temperature Transistors (all others germanium)
Pt-Point contact types
AF-Audio Frequency Amplifier and General Purpose
AF Out-High current AF Output
Pwr-Power output 1 watt or more
RF-Radio Frequency Amplifier
Osc-High gain High frequency RF oscillator
IF-Intermediate Frequency Amplifier
lo IF-Low IF (262 Kc) Amplifier
Sw-High current High frequency switch
AF Sw-Low frequency switch

MANUFACTURERS:

Am-Amperex
AR-Advanced Research Associates, Inc.
Bendix-Bendix Aviation Corp.
CBS-CBS-Hytron.
Cle-Clevite Transistor Products.
Dlc-Delco Radio Div., General Motors Corp.
GE-General Electric Company.
GT-General Transistor Corporation.
GP-Germanium Products Corp.
Mall-P. R. Mallory and Company, Inc.
Mar-Marvelco, National Aircraft Corp.

T-Typical Values

M-H-Minneapolis-Honeywell Regulator Co.
Motor-Motorola, Inc.
Mu-Mullard Ltd.
Phil-Philco.
Ray-Raytheon Manufacturing Company.
RCA-RCA.
Sprague-Sprague Electronics Company.
Syl-Sylvania Electric Products Company.
TI-Texas Instruments, Inc.
TS-Tung-Sol.
W-Westinghouse Electric Corp.
WE-Western Electric Company.

DIMENSIONS WITHIN JEDEC OUTLINE TO-5 JEDEC BASE E3-44

MOTE 1: This zone is controlled for auto matic handling. The variation in actual diameter within this zone shall not exceed .010.
nOTE 2: Measured from max. diameter of the actual device.
nOTE 3: The specified lead diameter applies in the zone between .050 and .250 from the base seat. Between 250 and 1.5 maximum of .021 diameter is held. Outside of these zones the lead diameter is not controlled.

DIMENSIONS WITHIN JEDEC OUTLINE....TO-5 JEDEC BASE.......E3-53

MORE I: This zone is controlied for auto. matic handling. The variation in actual diameter within this zone shall not exceed .010.
mOTE 2: Measured from max. diameter of the actual device.
more 3: The specified lead diameter applies in the zone between .050 and .250 from the base seat. Between 250 and 1.5 maximum of 021 diameter is held. Outside

DIMENSIONS WITHIN JEDEC OUTLINE TO-I2
 JEDEC BASE E4-54

mote 1 : This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed .010.
mote 2: Measured from max. diameter of the actual device.
note 3: The specified lead diameter applies in the zone between .050 and .250 from the base seat. Between .250 and .5 maximum of 021 diameter is held. Outside of these zones the lead diameter is not controlled.

[^10]
B

$\bigcirc \stackrel{\circ}{\circ} \stackrel{\circ}{0}$

©
©

18. RECTIFIER SPECIFICATIONS

NOTES ON RECTIFIER SPECIFICATION SHEET

The performance of a rectifier is judged primarily on four key measurements, or parameters. They are always given for specific ambient conditions, such as still air and $55^{\circ} \mathrm{C}$, and are based on a 60 cycles per second ($\mathrm{A}-\mathrm{C}$) input with the rectifier feeding a resistive or inductive load (see (A) below). A capacitive load will increase the Peak Inverse Voltage duty on the rectifier cell and will therefore necessitate a slightly lower set of ratings than shown here. These key parameters are:
(1) Maximum Peok Inverse Voltoge (usually referred to as PIV), the peak a-c voltage which the unit will withstand in the reverse direction; (2) Maximum Allow-

60 CPS (CYCLES PER SECOND)
60 CPS (CYCLES PER SECOND) able D-C Output Current, which varies with ambient temperature; (3) Moximum Allowoble One-cycle Surge Current, representing the maximum instantaneous current which the rectifier can withstand, usually encountered when the equipment is turned on; (4) Moximum Full-lood Forward Voltoge Drop, measured with maximum d-c output flowing and maximum PIV applied. This is a measure of the rectifier's efficiency.

> 1N1692, iN1693 1N1694, 1N1695

RATINGS AND SPECIFICATIONS
(1)-[Max. Allowable Peak Inverse Voltage Max. Allowable RMS Voltage Max. Allowable Continuous Reverse DC Voltage Max. Allowable DC Output $100^{\circ} \mathrm{C}$ Ambient Max. Allowable DC Output $50^{\circ} \mathrm{C}$ Ambient
(3)-5 Max. Allowable One Cycle Surge Current
(4)- - Max. Full Load Forward Voltage Drop (Full cycle average at $100^{\circ} \mathrm{C}$) Max. Leakage Current at Rated PIV (Full cycle average at $100^{\circ} \mathrm{C}$) Peak Recurrent Forward Current Max. Operating Temperature

These alloy junction silicon rectifiers are designed for general purpose applications requiring maximum economy. These rectifiers are hermetically sealed and will perform reliably within the operating specifications.

The other ratings or specifications are additional yardsticks of performance which are more or less critical depending on the operating conditions to be experienced. For instance, the 1 N1692 Series for which specifications are shown, being silicon rectifiers, are able to show a higher range of Ambient Operating Temperatures with higner output than a germanium unit would, and are preferred on this basis for many applications. Maximum Leakage Current refers to the reverse current which will flow when voltage is applied, and here, too, can be a critical measure of performance for specific applications such as magnetic amplifiers.

Sometimes there is confusion as to whether a unit is a Diode or a Rectifier. Actually the word Diode means "two" and both rectifiers and diodes have two elements. However, rectifiers are capable of handling much larger currents than diodes. The term diode is used to describe units used in high frequency, low current, signal applications such as in high frequency circuits of television receivers.

CONDENSED RECTIFIER SPECIFICATIONS

RECTIFIER CELLS

JEDEC or G-E Type No.	PIV	Max. Inc af $T^{\circ} \mathrm{C}$	Max. 1 Cycle (60 cps) Surge	Max. Oper. Temp. ${ }^{\circ} \mathrm{C}$	Max. Storage Temp. ${ }^{\circ} \mathrm{C}$	JEDEC or G-E Type No.	PIV	Max. $l_{\text {de at }} \mathbf{T}^{\circ} \mathbf{C}$	Max. 1 Cycle (60 cps) Surge	Max. Oper. Temp. ${ }^{\circ} \mathrm{C}$	Max. Storage Temp. ${ }^{\circ} \mathrm{C}$
1 N 91	100	150 ma at $55^{\circ} \mathrm{amb}$.	25A	95°	105°	1N606A	600	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°
1 N92	200	100 ma at $55^{\circ} \mathrm{amb}$.	25 A	95°	105°	1 N607	50	800 ma at 135° stud	15A	150°	170°
1 N93	300	75 ma at $55^{\circ} \mathrm{amb}$.	25 A	95°	105°	1 N607A	50	800 ma at 135° stud	15A	150°	170°
USN1N93	300	75 ma at $55^{\circ} \mathrm{amb}$.	25A	55°	85°	1 N608	100	800 ma at 135° stud	15A	150°	170°
						1N608A	100	800ma at 135° stud	15 A	150° 150	170°
$1 N 151$ $1 N 152$	100	500 ma at $5^{5} 5^{\circ} \mathrm{amb}$. 500 ma at $55^{\circ} \mathrm{amb}$.	25 A 2	95°	105°	$1 N 609$ $1 N 609 A$	150 150	800 ma at 135° stud 800 ma at 135° stud	15A	150° 150	170°
1 N15.3	300	500 ma at $55^{\circ} \mathrm{amb}$.	25A	95°	105°	1 N610	200	800 ma at 135° stud	15 A	150°	170°
1 N158	380	500 ma at $55^{\circ} \mathrm{amb}$.	25A	95°	105°	1N610A	200	800 ma at 135° stud	15A	150°	170°
						1N611	300	800 ma at 13.35° stud	15A	150°	170°
1 N253	95	1000 ma at $135^{\circ} \mathrm{stud}$	4 A	150°	$150{ }^{\circ}$	1 N611A	300	800 ma at 135° stud	15A	150°	170°
1 N254	190	400 ma at $135{ }^{\circ}$ stud	1.5A	150°	150°	$1{ }^{1} 612$	400	800 ma at 135° stud	15 A	150°	170°
1 N255	380	400 ma at 135° stud	1.5A	150°	150°	$1{ }^{1} 612 \mathrm{~A}$	400	800 ma at 135° stud	15A	150°	170°
1 N 256	570	200 ma at 135° stud	1.5 A	150°	150°	1 N613	500	600 ma at 135° stud	15 A	150°	170°
1 N315	100	100 ma at $85^{\circ} \mathrm{amb}$.	5A	85°	95°	IN613A IN614	500 600	600 ma at 135° stud 600 ma at 135° stud	15A	150°	170°
USAF1N315	100	100 ma at $85^{\circ} \mathrm{amb}$.	5A	85°	100°	1N614A	600	600 ma at 135° stud	15A	150°	170°
1 N332	400	400 ma at 150° stud	15A	170°	170°						
1 N3.33	400	200 ma at 150° stud	10 A	170°	170°	1 N1095	500	425 ma at $100^{\circ} \mathrm{amb}$.	15A	150 150	175°
1 N 3.34	300	400 ma at 150° stud	15A	170°	170°	IN1096	600	350 ma at $100^{\circ} \mathrm{amb}$.	15A	150°	
1 N335	300	200 ma at 150° stud	10 A	170°	170°						
1N336	200 200	400 ma at 150° stud 200 ma at 150° stud	15 A	170° 170°	170°	$1 N 1100$ 1N1101	100 200	500 ma at $100^{\circ} \mathrm{amb}$. 500 ma at $100^{\circ} \mathrm{amb}$.	15A	$165{ }^{\circ}$	175 $175{ }^{\circ}$ $175{ }^{\circ}$
1 N339	100	400 ma at 150° stud	15A	170°	170°	1N1102	300	500 ma at $100^{\circ} \mathrm{amb}$.	15A	165°	175°
1 N340	100	200 ma at 150° stud	10A	170°	170°	1 N1103	400	500 ma at $100^{\circ} \mathrm{amb}$.	15A	165°	175°
1 N341	400	400 ma at 150° stud	15A	170°	170°	1N1115	100	1.5 A at 85° stud	15A	170°	175°
1 N342	400	200 ma at 150° stud	10A	170°	170°	1N1116	200	1.5 A at 85° stud	15A	170°	175°
1 N343	300	400 ma at 150° stud	15A	170°	170°	1N1117	300	1.5 A at 85° stud	15A	170°	175°
1 N344	300	200 ma at 150° stud	10 A	170°	170°	1N1118	400	1.5 A at 85° stud	15A	170°	175°
1 N345	200	400 ma at 150° stud	15A	170°	170°	1N1119	500	1.5 A at 85° stud	15A	170°	175°
1 N346	200	200 ma at 150° stud	10A	170°	170°	1N1120	600	1.5 A at 85° stud	15A	170°	175°
$1 N 348$	100	400 ma at 150° stud	15A	170°	170°						
1 N349	100	200 ma at 150° stud	10A	170°	170°	1N1487	100	250 ma at $125^{\circ} \mathrm{amb}$.	15A	140°	175°
1 N368	200	100ma at $85^{\circ} \mathrm{amb}$.	10A	65°	85°	1N1489	300	250 ma at $125^{\circ} \mathrm{amb}$.	15A	$140{ }^{\circ}$	175°
						1N1490	400	250 ma at $125^{\circ} \mathrm{amb}$.	15A	140°	175°

1 N44	100	300 mmat at $100^{\circ} \mathrm{amb}$.	15A	$150{ }^{\circ}$	175°
1 N4.4013	100	500 ma at $100^{\circ} \mathrm{amb}$.	15A	165°	165°
1 N 4.11	200	300 ma at $100^{\circ} \mathrm{amb}$.	15A	150°	$175{ }^{\circ}$
1 N4.113	200	500 ma at $100^{\circ} \mathrm{amb}$.	15A	$16.5{ }^{\circ}$	$175{ }^{\circ}$
1 N 442	300	300 ma at $100^{\circ} \mathrm{amb}$.	15A	150°	$175{ }^{\circ}$
1 N 4.42 l	300	500 ma at $100^{\circ} \mathrm{amb}$.	15A	165°	175°
1 N 44	400	300 ma at $100^{\circ} \mathrm{amb}$.	15A	150°	175°
1 N4.313	400	500 ma at $100^{\circ} \mathrm{amb}$.	15 A	$16.5{ }^{\circ}$	175°
1 N4.4	500	$300 \mathrm{matat} 100^{\circ} \mathrm{amb}$.	15 A	150°	175°
1 N4.413	500	425 ma at $100^{\circ} \mathrm{amb}$.	15 A	150°	$175{ }^{\circ}$
1 N 445	600	300 mata at $100^{\circ} \mathrm{amb}$.	15A	150°	175°
1N44.513	600	350 ma at $100^{\circ} \mathrm{amb}$.	15 A	150°	175°
1 N536	50	500 ma at $100^{\circ} \mathrm{amb}$.	15A	165°	175°
1 N5:37	100	500 ma at $100^{\circ} \mathrm{amb}$.	15A	$16.5{ }^{\circ}$	$175{ }^{\circ}$
1 N538	200	500 ma at $100^{\circ} \mathrm{amb}$.	15 A	$16.5{ }^{\circ}$	$175{ }^{\circ}$
USAF1N538	200	500 ma at $100^{\circ} \mathrm{amb}$.	15A	150°	$175{ }^{\circ}$
$1 N 539$	300	500 mat at $100^{\circ} \mathrm{amb}$.	15A	165°	$175{ }^{\circ}$
1N540	400	500 ma at $100^{\circ} \mathrm{amb}$.	15A	165°	175°
USAFIN540	400	500 ma at $100^{\circ} \mathrm{amb}$.	15A	150°	175°
1N547	600	500 ma at $100^{\circ} \mathrm{amb}$.	15A	165°	175°
1 N550	100	800 ma at 135° stud	15A	150°	175°
1 N551	200	800 ma at 135° stud	15A	150°	175°
1 N552	300	800 ma at 1335° stud	15A	150°	175°
1 N553	400	800 ma at 135° stud	15A	150°	175°
1N554	500	600 ma at 135° stud	15A	150°	175°
1 N555	600	600 ma at 135° stud	15A	150°	175°
1 N560	800	250 ma at $100^{\circ} \mathrm{amh}$.	15A	150°	175°
1 N561	1000	250 ma at $100^{\circ} \mathrm{amb}$.	15A	150°	175°
1 N562	800	400 ma at 100° stud	15A	150°	175°
1N563	1000	400 ma at 100° stud	15A	150°	175°
1 N599	50	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°
1 N599A	50	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°
1 N600	100	400 ma at $100^{\circ} \mathrm{arnh}$.	10A	150°	$175{ }^{\circ}$
1N600A	100	400 ma at $100^{\circ} \mathrm{armb}$.	10A	$150{ }^{\text {c }}$	175°
1 N601	150	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°
1 N601A	150	400 ma at $100^{\circ} \mathrm{amb}$.	10A	$150{ }^{\circ}$	175°
1 N602	200	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°
1 N602A	200	400 ma at $100^{\circ} \mathrm{amb}$.	10A	$150{ }^{\circ}$	175°
1 N603	300	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°
1 N603A	300	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°
1 N604	400	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°
1 N 604 A	400	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°
1 N605	500	400 ma at $100^{\circ} \mathrm{amb}$.	10A	1.50°	175°
1 N605A	500	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°
1N606	600	400 ma at $100^{\circ} \mathrm{amb}$.	10A	150°	175°

$\begin{aligned} & 1 N 1491 \\ & \text { IN1.92 } \end{aligned}$	500 600	250ma at $110^{\circ} \mathrm{amb}$. 250 ma at $95^{\circ} \mathrm{amb}$	15 A 15 A	123° 120	$\begin{array}{r} 175^{\circ} \\ 165^{\circ} \end{array}$
1N1692	100	600 max at $100^{\circ} \mathrm{amb}$.	20 A	11.8°	$12.5{ }^{\circ}$
1 N1693	200	600 ma at $100^{\circ} \mathrm{amb}$.	20A	115°	125°
IN169.1	300	600 ma at $100^{\circ} \mathrm{amb}$.	20 A	115°	12.5
1N1695	100	600 ma at $100^{\circ} \mathrm{amb}$.	20 A	115°	125°
1 N215.4	50	25 A at 14.5° stud	300 A	200°	200°
1N2155	100	25 A at 11.5° stud	300A	200°	$200^{\prime \prime}$
1 N2156	200	25 A at 145° stud	300 A	200°	200°
1N2157	300	25 A at 1.45° stud	300 A	200°	200°
1N2158	100	25 A at $1.45{ }^{\circ}$ stud	300 A	$2010{ }^{\circ}$	200°
1 N21.59	500	25 A at 165° stud	3001	200°	200°
1N2160	600	25 A at $11.5{ }^{\circ}$ stud	300A	200°	200°
WA60A*	100	31 A at 120° stud	9001	$200{ }^{\circ}$	200°
WA6013*	200	81 A at 120° stud	900 A	200°	200°
-JA60C*	300	- $81 / \mathrm{A}$ at 120° stud	900A	200°	2010°
4A60D*	100	8.4 A at 120° stud	900 A	$900{ }^{\circ}$	200°
WA601**	50	81 A at 120° stud	900 A	200°	200°
-JA60才;	150	814 at 120° stud	900 A	200°	200°
WA6011*	250	81A at 120° stud	900 A	200°	$200{ }^{\circ}$
[JA60J*	350	H4A at 120° stud	900 A	200°	$200{ }^{\circ}$
-JA62A*	100	40 A at 120° stud	900 A	150°	200°
4JA6213*	200	40 A at 120° stud	900 A	150°	200°
WA62C*	300	40 A at 120° stur	900A	150°	$200{ }^{\circ}$
1JA62 ${ }^{\text {* }}$	400	40A at 120° stud	900A	1.50°	$200{ }^{\circ}$
+JA62F*	50	40 A at 120° stud	900A	150°	200°
+JA62F*	150	40 A at 120° stud	900 A	150°	200°
4JA621I*	250	40 A at 120° stud	900 A	150°	200°
\#JA62J*	350	40 A at 120° stud	900 A	150°	200°

*Also available with reversed polarity

RECTIFIER STACKS

G-E Type	PIV (up to)	Max. Inc at $\mathrm{T}^{\circ} \mathrm{C}$ (up.to)
+JA211	630 V	6 amps at $55^{\circ} \mathrm{amb}$.
1JA411	33601	18 amps at 2.50 amb .
1JA3011	6	48 amps . at $55^{\circ} \mathrm{amb}$.
+JA3511	1800 8.60	653 amps. at $55^{\circ} \mathrm{amb}$.
HA6211	840 V	t30 amps. at $35^{\circ} \mathrm{amb}$.

TRANSF ORMERS

The audio transformers used in these diagrams were wound on laminations of $15 / 8^{\prime \prime}$ by $13 / 8^{\prime \prime}$ and a $1 / 2^{\prime \prime}$ stack size, and having an electrical efficiency of about 80%. Smaller or less efficient transformers will degrade the electrical fidelity of the circuits.

OSCILLATOR COIL

Ed Stanwyck Coil Company \#1265
Onondaga Electronic Laboratories \#A-10047 or equivalent

VARIABLE CONDENSER
Radio Condenser Company Model 242
Onondaga Electronic Laboratories \#A-10053 or equivalent

FERRITE ROD ANTENNA

Onondaga Electronic Laboratories \#A-10067 or equivalent

If you are unable to obtain these components from either your local or a national electronic parts distributor, we suggest you contact:

Onondaga Electronic Laboratories
Box 8
Syracuse 11, N. Y.

20. READING LIST

The following list of semiconductor references gives texts of both elementary (E) and advanced (A) character. Obviously, the list is not inclusive, but it will guide the reader to other references.
Dewitt, D., Rossoff, A. L.,
Transistor Electronics (A), 1957, 381P (McGraw-Hill)
Garner, L., Transistor Circuit
Handbook (E), 1956, 430P (Coyne)
Hunter, L. P., Handbook of Semiconductor Electronics (A), 1956, 633P (McGraw-Hill)
Hurley, R. B., Junction Transistor
Electronics (A), 1958, 473P
(Wiley)
Kiver, M. S., Transistors in Radio and Television (E), 1956, 302P (McGraw-Hill)
Lo, A. W., Endres, R. O., Zawels, J., Waldhauer, F. D., Cheng, C. C., Transistor Electronics (A), 1955, 521P (Prentice-Hall)
Shockley, W., Electrons and Holes in
Semiconductors (A), 1950, 558P (Van Nostrand)
Shea, R. F., et al., Principles of
Transistor Circuits (A), 1953, 535P (Wiley)
Shea, R. F., Transistor Circuit
Engineering (A), 1957, 468P (Wiley)
Spenke, E., et al., Electronic
Semiconductors (A), 1958, 379P (McGraw-Hill)
Turner, R. P., Transistors - Theory and Practice (E), 1954, 160P (Gernsback)

[^0]: * F. Langford-Smith, Radiotron Designers Handbook, Australia, 1953, p. 1140

[^1]: *The "reference power output" is the power output conventionally used to make sensitivity measurements This value is fixed by IRE standard at 5 milliwatts for miniature portable receivers and 50 milliwatts for the larger type portables.
 **To determine the voice coil impedance of a speaker, a DC resistance test should yield a value close to the AC impedance of the voice coil, providing the speaker is measured while disconnected from the output transformer. A 3.2 ohm speaker will measure about 2.7 ohms while a 16 ohm speaker measures around I2 ohms in general.

[^2]: *This loop is a calibrated laboratory loop used for accurate sensitivity measurements. Since the purpose here is only to align rather than measure, either ath air loop or a ferrite rod antenna may be used as a radiating clement. If these are not available either, it often suffices to bring the generator leads close to the receiver's antema and induce a signal through capacitive coupling.

[^3]: *The term "tracking" here applies to the procedure of having the oscillator and antenna circuit tuned to be exactly $455 \mathrm{Kc} / \mathrm{s}$ apart, yielding maximum gain at each tracked point.
 **Most commercial variable condensers are designed to track at three points along the band, 1400 $\mathbf{K c} / \mathrm{s}, 1000 \mathrm{Kc} / \mathrm{s}$, and $600 \mathrm{Kc} / \mathrm{s}$.

[^4]: * to aojust voltage output for other output currents,

 ADJUST R3.

[^5]: *Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature,
 **Derate $1.25 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
 ***These limits are design limits within which 98% of production normally fall

[^6]: *Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

[^7]: *Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
 **These limits are design limits within which 98% of production normally falls.

[^8]: *Derate $4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature within range $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.

[^9]: $*$ Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.
 **All values are typical unless indicated as a min. or max.

[^10]: *

 CUT TO O.200" FOR USE IN SOCKETS.
 LEADS TINNED DIA. .OIB
 MOUNTING POSITION - ANY
 WEIGHT: . 05 OZ
 BASE CONNECTED TO TRANSISTOR SHELL. DIMENSIONS IN INC.HES.

