PRICE: 50 CENTS

TRANSISTOR MANUAL

APPLICATIONS
 CIRCUITS
 SPECIFICATIONS

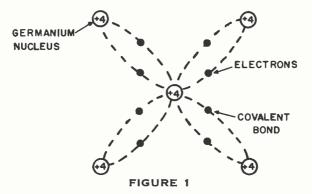
Progress Is Our Most Important Product GENERAL & ELECTRIC

GENERAL ELECTRIC TRANSISTOR MANUAL

CONTENTS

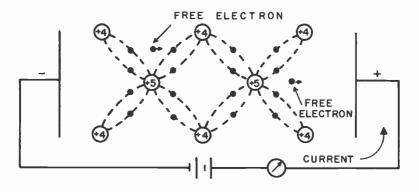
Ĩ	age
BASIC SEMICONDUCTOR THEORY	3
TRANSISTOR CONSTRUCTION TECHNIQUES Transistor Specifications Biasing Power Supplies	6 8 10 11
TRANSISTOR APPLICATIONS Single Stage Audio Amplifier Two Stage R-C Coupled Amplifier Single Stage Class A Output Amplifier Class B Push-Pull Output Stages IF Amplifiers Autodyne Converter Circuits	12 12 13 14 15 16 17
EXPLANATION OF PARAMETER SYMBOLS	18
SPECIFICATIONS OF GE TRANSISTOR TYPES	19
REGISTERED RETMA TRANSISTOR TYPES Explanation of Symbols Outline Drawings	29 33 34
CIRCUIT DIAGRAMS	44
TRANSISTOR RADIO CROSS REFERENCE CHART	60
READING LIST	over

This manual has been prepared to assist the service technician, hobbyist, experimenter, and ham in working with transistors. We have attempted to assemble the information necessary for an understandable working knowledge of the fundamentals and applications of transistors.


The information included covers such topics as Basic Theory, Construction Techniques used to obtain the various types of transistors available, and Principles of Circuit Design, and Specifications, with outline drawings, of all transistors registered with RETMA. Complete explanations of the parameter symbols used are also given. Several Circuit Diagrams, varying from simple amplifiers to high fidelity amplifiers and radios have been included.

Requests for additional information will receive prompt attention if addressed to:

> GENERAL ELECTRIC CO. SEMICONDUCTOR PRODUCTS 1224 W. GENESEE ST. SYRACUSE, N. Y.


BASIC SEMICONDUCTOR THEORY

The outer orbit of a germanium atom contains four electrons and a crystal of pure germanium takes the form of a diamond structure as shown in figure 1.

The four electrons of each atom form covalent bonds with the adjacent atoms and there are no free electrons. Absolutely pure germanium is therefore a poor conductor. If a voltage is applied to a piece of pure germanium, of the size used in transistors, only a few microamps of current will flow. This current is due to electrons which are broken away from their bonds by thermal agitation and this minute current increases exponentially with temperature.

If an atom with five electrons in the outer orbit such as Antimony or Arsenic is introduced into the crystal, a structure is formed as shown in figure 2. The extra electrons are free to move and under the influence of an electrical field will move toward the positive voltage source. This atom of material other than germanium is called a doping agent and if it results in free electrons in the crystal, the crystal is known as "N" type germanium.

FIGURE 2

If a doping agent is used that only contains three electrons in the outer orbit such as Indium, Gallium or Aluminum, the crystal takes the form of figure 3 where there is a deficiency of one electron and this deficiency is called a hole.

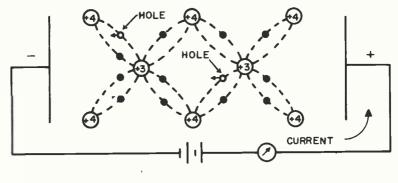
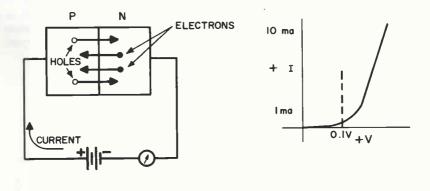



FIGURE 3

Under the influence of an electrical field, electrons will jump into this hole and the hole will appear to proceed towards the negative terminal. This crystal containing a deficiency of electrons is known as "P" type germanium. As far as the external circuit is concerned, it is impossible to differentiate between electron current and hole current. These two modes of conduction are quite distinct however, and are basic to transistor and rectifier theory. With an electrical field of 1 volt/cm in germanium, an electron will move at the rate of 3600 cm/sec whereas a hole will only move at 1700 cm/sec.

If a single crystal of germanium is so doped that it changes abruptly from "N" type to "P" type material and a positive voltage applied to the "P" region and a negative voltage to the "N" region, the situation is as shown in figure 4a.

FIGURE 4A

FIGURE 4B

The holes will move to the right across the junction and the electrons will move to the left with the resultant V-I curve shown in figure 4b. If the voltage is applied in the reverse direction, the holes and electrons will both move away from the junction as shown in figure 5a until the electrical field produced by their displacement counteracts the applied electrical field. Under these conditions almost no current will flow in the external circuit and any current that does flow is caused by thermally generated electron hole pairs. The V-I characteristics of a reversed bias junction are shown in figure 5b and it will be noted that the reverse leakage current is essentially independent of voltage up to the point where the junction actually breaks down.

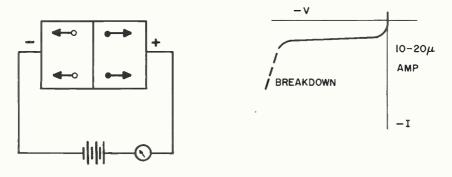
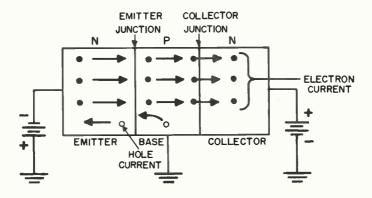



FIGURE 5A

FIGURE 5B

An NPN transistor is formed by a crystal of germanium that is changed from "N" type to "P" type and back to "N" type as indicated in figure 6.

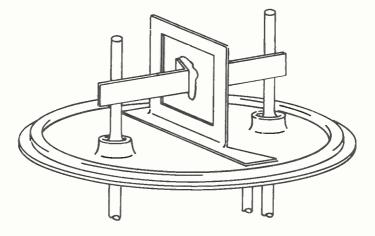


FIGURE 6

With the voltage applied as shown, one N-P junction is forward biased and this is called the emitter junction. The other junction is back biased and this is called the collector junction. The "P" type base region is relatively lightly doped in comparison with the "N" type emitter so that the majority of the current flowing from the emitter to base is electron current and very little of it is hole current. The majority of the electrons that are emitted into the base region diffuse across to the collector junction and pass on to the collector circuit. The ratio of the emitter current to the collector current is called alpha. It is desirable to have alpha as high as possible and this is done by light doping of the base region, using a thin base region on the order of 1 mil, and minimizing the unwanted impurities in germanium that might cause recombination of electrons before they traverse the base region. Alphas of 0.95 to 0.99 are common in commercial transistors. No current (except a small leakage current) will flow in the collector circuit unless current is introduced into the emitter. Since very little voltage (.1 to .5) is needed to cause appreciable current to flow into the emitter, the input power is very low. Almost all the emitter current will flow in the collector circuit where the voltage can be as high as 45 volts. Therefore, a relatively large amount of power can be controlled in an external load and the power gain of a transistor (power out/power in) in the circuit shown is over 1000.

TRANSISTOR CONSTRUCTION TECHNIQUES

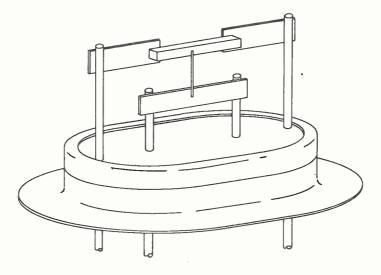
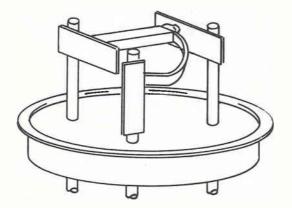

The most common type of junction transistor is the PNP diffused alloyed type. This transistor is made by taking a wafer of "N" type germanium, mounting it on a holder and pressing indium dots into each side. The assembly is then heated in a furnace until the indium melts and the alloys with the germanium forming a "P" layer within the "N" type germanium. The complete assembly is shown by figure 7.

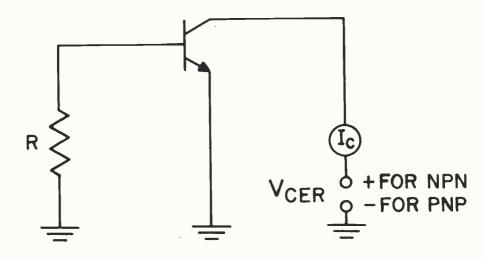
FIGURE 7


This type of transistor has good gain at audio frequencies and is suitable for medium power audio amplifiers since it is possible to pass currents of up to one-half ampere through the transistor. This structure is not as well suited for high frequency amplifiers since the large indium dots produce a high capacitance between collector and base making the unit inherently unstable at high frequencies.

The rate grown transistor is produced by an entirely different technique. A bar of germanium is grown from a bath of molton germanium so doped that the material will change from "P" type to "N" type depending on the temperature and rate of pulling. By suitable growing techniques, 10 to 15 thin "P" type layers are formed in a bar about the size of a cigar. This bar is then sawed up into pieces about 10 mils by 10 mils by 100 mils with the thin "P" layer in the center and long "N" regions on each side. About 7 to 10 thousand transistor bars can be cut from each ingot of germanium. The internal appearance of one of these transistors is shown in figure 8. This transistor has a low collector capacitance and has excellent gain up to several megacycles. It is stable at high frequencies and is ideally suited for the radio frequency section of broadcast receivers. A rate grown transistor also makes an excellent unit for high speed gates and counting circuits.

FIGURE 8

The meltback method of transistor construction starts off with a bar of germanium about $10 \times 10 \times 100$ mils. The end of the bar is melted and allowed to refreeze very quickly. By suitable doping of the original material, the junction between the melted portion and the unmelted portion becomes a thin layer of "P" type material and the melted and unmelted portion of "N" type material remains "N" type material. This transistor is essentially a rate grown transistor, but the rate growing is done on an individual small bar rather than on the large germanium ingot. The appearance of a complete meltback triode is shown by figure 9. This fabrication technique has the advantage of obtaining very close control over the base thickness and it is possible to obtain good performance at very high frequencies.


TRANSISTOR CONSTRUCTION TECHNIQUES

By the addition of an extra base connection to a triode, a tetrode is formed. If a current is passed through the base region from one base lead to the other, the active portion of the base region is electrically narrowed and high gain is possible up to 200 mc.

If a suitably made meltback triode is given an additional heat treatment so that the doping agents undergo a diffusion process in the region of the collector junction, a diffused-meltback transistor is formed. This transistor has better high frequency properties than a straight meltback transistor due to the additional control that can be obtained over the impurity distribution.

TRANSISTOR SPECIFICATIONS:

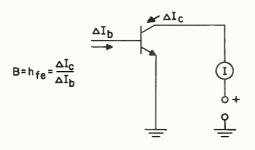

There are many properties of a transistor which can be specified, but this section will only deal with the more important specifications. A fundamental limitation to the use of transistors in circuits is BV_{CER} , the breakdown voltage in the grounded emitter connection. The grounded emitter breakdown voltage is a function of the resistance from the base to the emitter and it is necessary to specify this resistance shown as R in figure 10.

FIGURE 10

Since the breakdown voltage is not sharp, it is also necessary to specify a value of collector current at which breakdown will be considered to have taken place. For example, in PNP audio transistors the collector current is specified to be less than $600 \ \mu a$ with 25 volts applied and the resistance R equal to 10,000 ohms. With NPN transistors, the collector current should be less than $300 \ \mu a$ with 15 volts applied, and the base open-circuited.

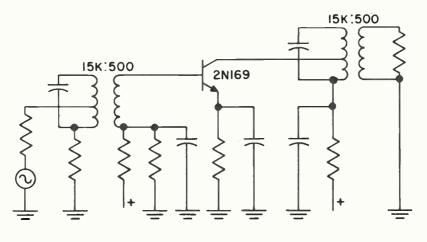

A second fundamental property of transistors is the grounded emitter current gain indicated by figure 11. This current gain is known as beta or h_{t_0} and is equal to the ratio of an a-c variation in collector current to an a-c variation in base current.

FIGURE 11

This current gain can be specified either for small a-c values of base current or for large values of base current in which case it would be known as h_{FE} , the d-c current gain. The current gain is the most important property of a transistor in determining the gain of audio amplifiers.

With transistors used as radio frequency amplifiers, it is necessary to specify a transformer coupled power gain as indicated in figure 12. The power gain is the ratio of output power to input power under conditions where the input and output impedances are matched by means of the transformers. The input and output impedances must also be specified to select the proper transformer.

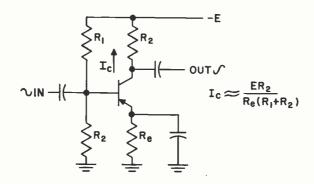


FIGURE 12

Another common transistor specification is the alpha cut-off frequency. This is the frequency at which the grounded base current gain has decreased to 0.7 of its low frequency value. For audio transistors, the alpha cut-off frequency is in the region of 1 mc. For transistors used in the rf section of radios, the alpha cut-off frequency should be 3 to 15 mcs. Other examples of transistor specifications are shown on the specification sheets in the next section of the book.

BIASING:

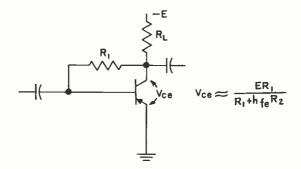

The best method of biasing a transistor is shown in figure 13.

FIGURE 13

A voltage divider consisting of resistors R_1 and R_2 is connected to the base and the resistance R_0 is placed in the emitter. Since the emitter junction is forward biased, the current that flows in the emitter circuit is essentially equal to the voltage at the base divided by R_0 . To prevent degeneration of the a-c signal to be amplified, the emitter resistance is by-passed with a large capacitance. Good design practice is to make R_2 no larger than 5 to 10 times R_0 . A typical value of R_0 is 500-1000 ohms.

When the supply voltage is fairly high and wide variations in ambient temperature do not occur, it is possible to use the method of biasing as shown in figure 14. In this circuit, the biasing is done with a resistance R_1 connected from the collector to base. The approximate formula for the collector to emitter voltage is shown in figure 14, and is seen to depend on h_{f_0} , the grounded emitter current gain.

FIGURE 14

This method of biasing requires fairly tight production control over the current gain of the transistors to achieve interchangeability.

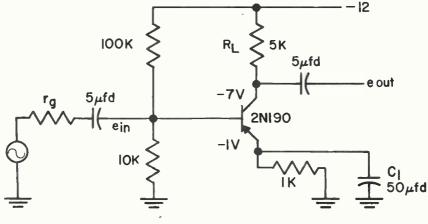
A method of biasing which is sometimes used is shown by figure 15. The base is simply connected to the supply voltage through a large resistance which, in essence, supplies a fixed value of base current to the transistor. This method of biasing is

FIGURE 15

extremely dependent upon h_{to} of the transistor and is not recommended except in circuits where the biasing resistance can be individually adjusted for optimum results.

POWER SUPPLIES:

The low power drain of transistors makes dry batteries practical as a d-c power source for radios and other portable equipment. The necessary d-c voltage can also be obtained from the a-c line with a simple rectifier and filter circuit. An excellent rectifier for this circuit is the 1N92 which is hermetically sealed diffused junction germanium rectifier capable of carrying over 250 ma at room temperature. For a Class A amplifier, a resistor (1K to 10K) in series with the rectifier will reduce


For a Class A amplifier, a resistor (1 \bar{K} to 10K) in series with the rectifier will reduce the line voltage to the proper value and a 50 μ fd capacitor from the rectifier output to ground will give adequate filtering. An extra R-C filter may be necessary for additional decoupling of the first stages of the amplifier.

The current drain of a Class B push-pull amplifier varies with output power and it is necessary to have a low impedance power supply to prevent distortion. If it is desired to operate a Class B amplifier from the a-c line, a voltage regulator circuit can be used to reduce the apparent impedance of the power supply. A 12 volt regulated power supply is shown in the circuits section of the manual. This circuit uses a stepdown transformer and full wave rectifier as a source of unregulated d-c. A power transistor acts as a series regulator and mercury batteries are used for the voltage reference. The battery drain is very small so their life is essentially equal to the shelf life.

TRANSISTOR APPLICATIONS

SINGLE STAGE AUDIO AMPLIFIER

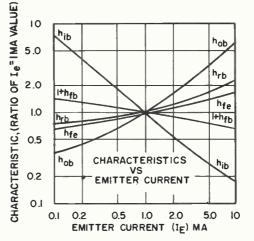
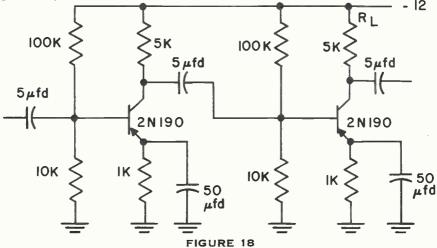

Figure 16 shows a typical single stage audio amplifier using a 2N190 PNP transistor.

FIGURE 16

With the resistance values shown, the bias conditions on the transistor are 1 ma of collector current and six volts from collector to emitter. At frequencies at which C_1 provides good by-passing, the input resistance is given by the formula: $R_{in} \equiv (1 + h_{fe}) h_{ib}$. At 1 ma for a design center 2N190, the input resistance would be 37 x 30 or about 1100 ohms. Figure 17 shows typical variations of the parameters at other emitter bias points.

FIGURE 17

TRANSISTOR APPLICATIONS


The a-c voltage gain $\frac{e_{out}}{e_{in}}$ is approximately equal to $\frac{R_L}{h_{ib}}$. For the circuit shown this would be $\frac{5000}{30}$ or approximately 167.

The frequency at which the voltage gain is down 3 db from the 1 Kc value depends on r_s . This frequency is given approximately by the formula:

$$low f_{3db} \approx \frac{l+h_{fe}}{6.28(r_gC_l)}$$

TWO STAGE R-C COUPLED AMPLIFIER

The circuit of a two stage R-C coupled amplifier is shown by figure 18. The input impedance is the same as the single stage amplifier and would be approximately 1100 ohms.

The load resistance for the first stage is now the input impedance of the second stage. The voltage gain is given approximately by the formula:

$$A_V \approx h_{fe} \frac{R_L}{h_{ib}}$$

More exact formulas for the performance of audio amplifiers may be found in the bibliography at the end of this manual.

By using an un-bypassed resistance in the emitter of the second stage, a voltage is obtained which is proportional to the output current of the amplifier. If a resistance and a capacitor are connected to this resistor as shown in figure 19, a signal is fed back to the input which is proportional to the output current.

If the feedback capacitor is made very large, the frequency response is essentially flat and the gain is determined only by the ratio of R_1 to R_2 . If the capacitor is made small, the feedback current will depend upon the frequency being amplified

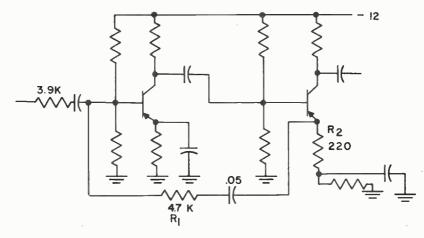
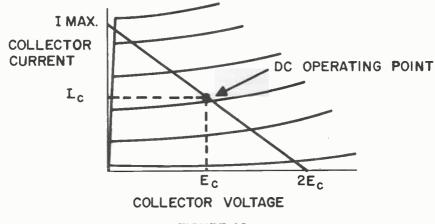
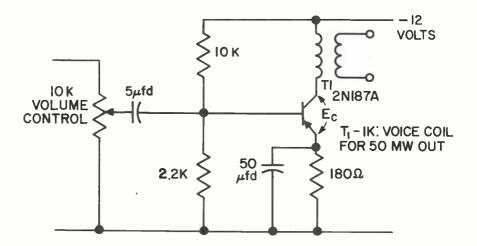



FIGURE 19

and it is possible to obtain a boost of the low frequencies. With the values shown, the two stage amplifier provides approximate frequency compensation for a General Electric Variable Reluctance Pick-up reproducing from records recorded to the RIAA Standards.


SINGLE STAGE CLASS A OUTPUT AMPLIFIER

A Class A output stage is biased as shown on the collector characteristics in figure 20.

FIGURE 20

The operating point is chosen so that the output signal can swing equally in the positive and negative direction. The proper primary impedance of the transformer depends on how much power must be delivered to the load. This impedance is given by the formula $R_p = \frac{E_e^2}{2P_o}$. A typical circuit is shown in figure 21.

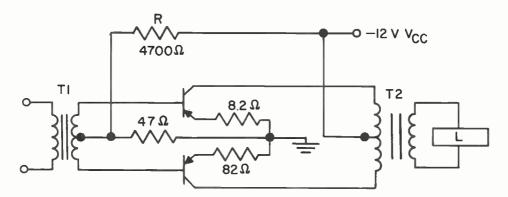


FIGURE 21

The proper collector current bias is given by the formula: $I_c = \frac{2P_o}{E_c}$. In a Class A output stage, the maximum a-c output power that can be obtained is limited to $\frac{1}{2}$ the allowable dissipation of the transistor.

CLASS B PUSH-PULL OUTPUT STAGES

The circuit of a typical Push-Pull Class B output amplifier is shown by figure 22.

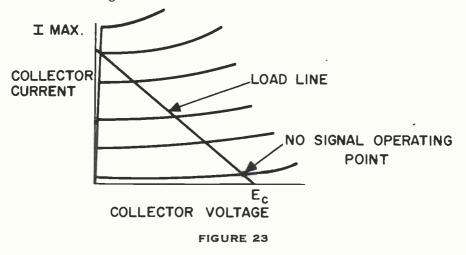


FIGURE 22

The voltage divider consisting of resistance R and the 47 ohm resistor gives a slight forward bias to prevent cross-over distortion. Usually about one-tenth of a volt is sufficient to prevent cross-over distortion and under these conditions the total no signal collector current is about 2 to 3 ma. The 8.2 ohm resistors in the emitter

TRANSISTOR APPLICATIONS

leads stabilize the transistors so that they will not go into thermal runaway when the junction temperature rises to 60°C. Typical collector characteristics with load line are shown in figure 23.

The collector to collector impedance of the output transformer is given by the formula: $R = \frac{2E_e^2}{P}$.

In a Class B Push-Pull transistor amplifier, the maximum a-c power output is approximately equal to 5 times the allowable dissipation of each transistor. Therefore, by using a transistor such as the 2N187A, it is possible to obtain output powers of 0.8 watt. The power drain of a Class B Push-Pull amplifier depends upon the amplitude of the output signal. A Class B amplifier is therefore much less wasteful of battery power than a Class A output amplifier. For these reasons, Class B transistor amplifiers are used in most transistor radios having output powers of greater than 50 mw. Typical circuit diagrams of Class A and Class B output amplifiers in superheterodyne radios may be found in the back of the book.

IF AMPLIFIERS:

A typical circuit for a transistor IF amplifier is shown by figure 24.

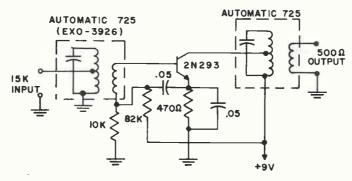
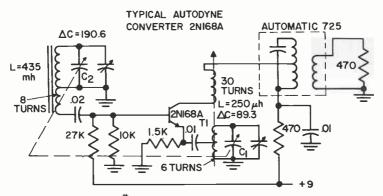



FIGURE 24

The collector current is determined by a voltage divider on the base and a large resistance in the emitter. The input and output are coupled by means of tuned IF transformers. The .05 capacitors are used to prevent degeneration by the resistance in the emitter. The collector of the transistor is connected to a tap on the output transformer to provide proper matching for the transistor and also to make the performance of the stage relatively independent of variations between transistors of the same type. With a rate-grown NPN transistor such as the 2N293, it is unnecessary to use neutralization to obtain a stable IF amplifier. With PNP alloy transistors, it is necessary to use neutralization to obtain a stable amplifier and the neutralization capacitor depends on the collector capacitance of the transistor. The gain of a transistor IF amplifier will decrease if the emitter current is decreased. This property of the transistor can be used to control the gain of the IF amplifier so that weak stations and strong stations will produce the same audio output from a radio. Typical circuits for changing the gain of an IF amplifier in accordance with the strength of the received signal are shown in the circuit section of the manual.

AUTODYNE CONVERTER CIRCUITS

The converter stage of a transistor radio is a combination of a local oscillator, mixer and IF amplifier. A typical circuit for this stage is shown by figure 25.

ANTENNA-DELTA COIL[#]I-IO5A OR EQUIVALENT OSCILLATOR COIL – E. STANWYCH CO.[#]II29 (MODIFIED) OR EQUIVALENT CAPACITOR-RADIO CONDENSER[#]242 OR EQUIVALENT I.F. TRANSFORMER-AUTOMATIC 725 (EXO-3926) OR EQUIVALENT

FIGURE 25

Transformer T_1 feeds back a signal from the collector to the emitter causing oscillations. Capacitor C_1 tunes the circuit so that it oscillates at a frequency 455 Kc higher than the incoming radio signal. This local oscillator signal is injected into the emitter of the transistor. The incoming signal is tuned by means of capacitor C_2 and after passing through an auto transformer to match the input impedance of the transistor, it is injected into the base. The two signals are mixed by the amplifier and the resultant beat frequency of 455 Kc is selected by the IF transformer and fed into the next stage. For optimum performance the collector current should be 0.6 to 0.8 ma and the local oscillator injection voltage at the emitter 0.15 to 0.25 volts.

EXPLANATION OF PARAMETER SYMBOLS

SMALL SIGNAL & HIGH FREQUENCY PARAMETERS (at specified bias)

Symbols

Abbreviated Definitions

hob	Com. base - output admittance, input AC open-circuited
hib	Com. base - input impedance, output AC short-circuited
hrb	Com. base - reverse voltage transfer ratio, input AC open-circuited
hru	Com. base
hfe	Com. emitter forward current transfer ratio, output AC short-circuited
hre	Com. collector
hoe, hie	Examples of other corresponding com. emitter symbols
fab	Com. base the frequency at which the magnitude of the small- signal short-circuit forward current transfer ratio is
fae	Com. emitter) signal short-circlift forward current transfer ratio is 0.707 of its low frequency value.
Сов	Collector to base) Capacitance measured across the output terminals
Coe	Collector to emitter) with the input AC open-circuited
r'b	Base spreading resistance
Ge	Com. emitter Power Gain (use Gb for com. base)
NF	Noise Figure

SWITCHING CHARACTERISTICS (at specified bias)

ta	Ohmic delay time			
tr	Rise time	These depend on both transistor		
ts	Storage time	and circuit parameters		
tr	Fall time			
VCE (SAT.)	Saturation voltage a saturation region.	t specified Ic and IB. This is defined only with the collector		
hre	Com. emitter – static current transfer ratio	value of short-circuit forward , $h_{FE} = \frac{I_C}{I_B}$		
hfe (INV)	Inverse hrg (emitter	and collector leads switched)		
hre	Large-signal value of proper symbol and s	of hie. Large-signal values of parameters are indicated by ubscripts, with addition of a bar over the symbol.		

DC MEASUREMENTS

IC, IE, IB	DC currents into collector, emitter, or base terminal
VCB, VEB	Voltage collector to base, or emitter to base
VCE	Voltage collector to emitter
VBE	Voltage base to emitter
ВУсво	Breakdown voltage, collector to base junction reverse biased, emitter open-circuited (value of Ic should be specified)
VCEO	Voltage collector to emitter, at zero base current, with the collector junction reverse biased. Specify Ic.
BVCEO	Breakdown voltage, collector to emitter, with base open-circuited. This may be a function of both "m" (the charge carrier multiplication factor) and the htb of the transistor. Specify Ic.
VCER	Similar to VCEO except a resistor of value "R" between base and emitter.
VCES	Similar to VCEO but base shorted to emitter.
Vpt	Punch-through voltage, collector to base voltage at which the collector space charge layer has widened until it contacts the emitter junction. At voltages above punch-through, $V_{PT} = Vc_B - V_{BB}$
VCCB	Supply voltage collector to base) NOTE - third subscript
VCCD VBBD	Supply voltage collector to emitter and the supply voltage base to emitter and the supple voltag
Ісо, Ісво	Collector current when collector junction is reverse biased and emitter is DC open-circuited.
ІЕО, ІЕВО	Emitter current when emitter junction is reverse biased and collector is DC open-circuited.
ICEO	Collector current with collector junction reverse biased and base open-circuited.
ICES	Collector current with collector junction reverse biased and base shorted to emitter.
IECS	Emitter current with emitter junction reverse biased and base shorted to collector.

NOTE: Subscripts for multi-electrode devices are developed by numeric additions to the subscripts. Similar electrodes may be numbered in sequence from the intended input to the intended output electrodes. Examples: VEB2, VIB2, VCB2, Ie2, ie2

NOTE: Reverse biased junction means biased for current flow in the high resistance direction.

The General Electric type 2N43 germanium fused junction transistor triode is a PNP unit particularly suggested for high-gain, low-to-medium power applications. A hermetic enclosure is provided by use of glass-to-metal seals and resistance-welded seams. This transistor is capable of dis-sipating 150 mw in 25°C free air.

A DOOL UTE AN AVAILABLE -----

2N43

Outline Drwg. No. 8

SPECIFICATIONS

Collector Voltage (referred to base), VCB. Collector Current, Ic. Emitter Current, Is. Junction Temperature, Tj.	• • • • • • • • • •	· · · · · · · · · ·		-45 volts -50 ma 50 ma 100 °C
AVERAGE CHARACTERISTICS: (Common Base, T1 = 30°C, f = 270 cps)	DESIGN CENTER		TIN	
Collector Voltage Emitter Current Output Admittance (input open circuit), h_{ob} Current Amplification (output short circuit), h_{fb} Input Impedance (output short circuit), h_{fb} Voltage Feedback Ratio (input open circuit), h_{rb} Collector Cutoff Current, Ico Output Capacitance, Ce Noise Figure (Ve, -1.5V; Ie, 0.5 ma; f, 1KC; BW. 1 \sim). NF	$\begin{array}{c} -5.0 \\ 1.0 \\ -0.98 \\ 40 \\ 4 \times 10^{-4} \\ 10 \\ 40 \\ 22 \end{array}$	$\begin{array}{r} 2.0\\ -1.0\\ 50\\ 6\times 10^{-4}\\ 15\\ 50\\ 33\end{array}$	MIN. 0.5 -0.97 30 2×10^{-4} 1.0 30 11	volts ma μmhos ohms μa mmf db
Maximum Power Gain (Common Emitter) Frequency Cutoff, fab* Temp. Rise/Unit Collector Dissipation (in free air) Temp. Rise/Unit Collector Dissipation (infinite heat sink)**	$40 \\ 1.0 \\ 0.5 \\ 0.2$	44 2.5	37 0.5	db mc °C/mw °C/mw

*Frequency at which the magnitude of htb is 3 db down from its 270 cps value. **Temperature rise with transistor clamped to metallic heat sink.

The 2N43A is the commercial version of the first military transistor, Air Force Type USAF 2N43A per MIL-T-25096.

2N43

Many of the stringent mechanical and electrical require-ments of MIL-T-25096 are retained in this specification making it ideally suited to any application requiring superior electrical performance, mechanical ruggedness and high reliability. Current amplification is held to relatively narrow limits by accurate process control rather than by selection. The 2N43A will dissipate 150 mw at 25°C and will operate reliably up to 100°C at reduced ratings.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: Collector Voltage (referred to emitter), VCE Collector Voltage (referred to base), VCB Collector Current, Ic Emitter Current, IE Junction Temperature, Tj	• • • • • • • • • • • •	• • • • • • • • • • • •	•••••	20 volts 45 volts 50 ma 50 ma 100 °C
AVERAGE CHARACTERISTICS: (Common Base, $T_J = 30^{\circ}$ C, f = 270 cps, $V_{CB} = -$				
	DESIGN CENTER		ITS	
Output Admittance (input open circuit), hop	0.5		MIN.	
Current Amplification (output short circuit) has	-0.9775	$^{1.3}_{985}$	0.97	μ mhos
IIIDUL IMDECIANCE (Output short oirouit) hu	-0.3773		0.97	ohms
Voltage Feedback Ratio (input open circuit) has		13×10^{-4}		Ommo
Conector Cutoff Current	/	/(
$(V_c = -45, I_e = 0, T = 25*C), I_{CO}$ Emitter Cutoff Current	-5	-10		μa
$V_e = -5 v., I_c = 0, T = 25^{*}C), I_{EO}$	~			
Output Capacitance, Ce	5	-10		μa
Noise Figure ($f = 1$ kc, $BW = 1$ cycle), NF	40 10	50		mmf
Maximum Power Gain (Common Emitter) 455 KC	15	20	12	dh db
Frequency Cutoff, fab	1.0		.75	me
Temp. Rise/Unit Collector Dissipation (in free air)	0.5			°C/mw
Temp. Rise/Unit Collector Dissipation				07111
(infinite heat sink)*	0.2			°C/mw
*Temperature rise with transistor alamped to	motollin has	A stall.		

emperature rise with transistor clamped to metallic heat sink.

Outline Drwg. No. 8

The General Electric type 4JD1A17 fused junction transistor triode is a PNP unit particularly suggested for highgain, medium-power applications. A hermetically sealed enclosure is provided by use of glass-to-metal seals and resistance-welded seams.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: Collector Voltage (referred to emitter), VCB Collector Voltage (referred to base), VCB Collector Current, IC Emitter Current, IB Collector Dissipation (25°C). Storage Temperature, T ₁ *	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		20 volts 45 volts 50 ma 50 ma 150 mw c. 85 °C 55 °C
AVERAGE CHARACTERISTICS:				
(Common Base, 25° C, f = 270 cps	DESIGN CENTER			
$V_{CB} = -5$ volts, $I_E = 1$ ma)	0.5			μmhos
Output Admittance (input open circuit), hob	-0.975			μinnos
Current Amplification (output short circuit), hrb	28	-0.3030		ohms
Input Impedance (output short circuit), his Voltage Feedback Ratio (input open circuit), his	4×10^{-4} 1			0 20000
Collector Cutoff Current	1/10 1	- //		
$(V_{CB} = -45, I_{E} = 0, T = 25^{\circ}C), 1_{co}$	8	-16		μa
Emitter Cutoff Current				
$(V_{EB} = -5 v., 1c = 0, T = 25^{\circ}C), Ieo$	-5 40	-10		μa
Output Capacitance, Ce	40	50		mmf
Noise Figure ($f = 1$ kc, $BW = 1$ cycle), NF	10	20	10	db
Maximum Power Gain (Common Emitter), 455 KC	$15 \\ 1.0$		$\frac{12}{.75}$	db
Alpha Cutoff Frequency, fab			.15	me
*Derete 9.5 mm /°C increase in ambient tem	nerature.			

Derate 2.5 mw/°C increase in ambient temperature With infinite heat sink, derate 1.0 mw/°C.

Outline Drwg. No. 8

The General Electric type 2N44 germanium fused junction transistor triode is a PNP unit particularly suggested for intermediate-gain, low-to-medium power applications. A hermetic enclosure is provided by use of glass-to-metal seals and resistance-welded seams. This transistor is capable

of dissipating 150 mw in 25°C free air.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: Collector Voltage (referred to base), Vcb Collector Current, Ic Emitter Current, Is Junction Temperature, Tj		•••••		-45 volts -50 ma 50 ma 100 ℃
AVERAGE CHARACTERISTICS:	DESIGN		AITS	
(Common Base, T) = 30° C, f =270 cps)	CENTER	MAX:	MIN.	
Collector Voltage	5.0			volts
Emitter Current	1.0			ma
Output Admittance (input open circuit), hob	1.0	2.0	0.5	μmhos
Current Amplification (output short circuit), hrb	955	97		
Input Impedance (output short circuit), his	40	50	30	ohms
Voltage Feedback Ratio (input open circuit), hrb	3×10^{-4}	5×10^{-4}	1×10^{-4}	
Collector Cutoff Current, Ico	10	15	1.0	μa
Output Capacitance, Ce	40	50	30	mmf
Noise Figure (VCB, - 1.5V, IE, 0.5 ma; f, 1 KC;				
$BW, 1 \sim$). NF	22	33	11	db
Maximum Power Gain (Common Emitter)	39	43	34	db
Frequency Cutoff, fab	1.0	2.5	0.5	me
Temp. Rise/Unit Collector Dissipation (in free air)	0.5			°C/mw
Temp. Rise/Unit Collector Dissipation				
(infinite heat sink)*	0.2			°C/mw
(Ammite near entry)				

*Temperature rise with transistor clamped to metallic heat sink.

2N45

Outline Drwg. No. 8

The General Electric type 2N45 germanium fused junction transistor triode is a PNP unit particularly suggested for medium-gain, low-to-medium power applications. A hermetic enclosure is provided by use of glass-to-metal seals and resistance-welded seams. This transistor is capable of

dissipating 150 mw in 25°C free air.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:

Collector Current, Ic. Emitter Current, IE. Junction Temperature, Tj.				-50 ma 50 ma 100 °C
AVERAGE CHARACTERISTICS:	DESIGN	LIM	ITS	
(Common Base, Tj = 30°C, f = 270 cps)	CENTER	MAX.	MIN.	
Collector Voltage	-5.0			volts
Emitter Current	1.0			ma
Output Admittance (input open circuit), heb	1.0	2.0	0.5	<i>µ</i> mhos
Current Amplification (output short circuit), hrb	-0.92	-0.94	-0.90	<i>p</i>
Input Impedance (output short circuit), his	40	50	30	ohms
Voltage Feedback Ratio (input open circuit), hrb	$2.5 \times 10^{-4} 5.0$	0×10^{-4} 1.		C IIIII
Collector Cutoff Current, Ico	10	15	1.0	μa
Output Capacitance, Cc	40	50	30	mmf
Noise Figure (Vcb, - 1.5V; IE, 0.5 ma; f. 1 KC;		00	00	
BW, $1 \sim$), NF	22	33	11	db
Maximum Power Gain (Common Emitter)	38	43	34	db
Frequency Cutoff, fab	1.0	2.5	0.5	me
Temp. Rise/Unit Collector Dissipation (in free air)	0.5	2.0	0.0	°C/mw
Temp. Rise/Unit Collector Dissipation	0.0			C/ IIIW
(infinite heat sink)*	0.2			°C/mw
*Town or the with transistor alowed t				C/mw

*Temperature rise with transistor clamped to metallic heat sink.

The General Electric 2N78 is a grown junction NPN high frequency transistor intended for high gain RF and IF amplifier service and general purpose applications. The G.E. rate-growing process used in the manufacture of the 2N78 provides the uniform and stable characteristics required for mobile and industrial service.

21	17	8

Outline Drwg. No. 14

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:				
Collector to Emitter Voltage (base open)				15 volts
Confector to base voltage (emitter open).				15 volts
Collector Current		•••••	• • • • • • • • •	20 ma
Emitter Current Collector Dissipation (25°C)*	• • • • • • • • • • •		••••	-20 ma 65 mw
Storage Temperature				85 °C
ELECTRICAL CHARACTERISTICS: (25°C)				
Low Frequency Characteristics (Common Base)	DESIGN		MITS	
$(V_{CB} = 5 V, I_E = -1 ma, f = 270 cps)$	CENTER	MAX.	MIN.	
Input Impedance (output short circuit), hib Voltage Feedback Ratio (input short circuit), hrb	55			ohms
Current Amplification (output short circuit), hrb	2×10^{-4} .983	$.8 \times 10^{-4}$.952	10×10^{-4}	
Surface impandation (output short cheat(), his	$(\beta = 50)$	$(\beta = 20)$		
Output Admittance (input open circuit), hob	.2	(p = 20) .1	.7	μmhos
Noise Figure ($V_{CB} = 1.5$ V, $I_B = -0.5$ ma, $f = 1$ KC	12		20	db
High Frequency Characteristics (Common Base) (V _{CB} = 5 V, I _E = -1 ma)				
Alpha Cutoff Frequency, fab	6	27		
Output Capacity $(f = 2 mc)$, C _c	4	3.7	6	mc μμf
Cutoff Characteristics	-	-	Ŭ	pupus
Collector Cutoff Current (VcB = 15 V), Ico	1		6	μa
Collector Cutoff Current ($V_{CB} = 5 V$), Ico			ž	µa µa
*Derate 1.1 mw/°C increase in ambient tem	perature.			

The General Electric type 2N107 is a diffused junction PNP transistor particularly suggested for students, experimenters, hobbyists, and hams. It is available only from franchised General Electric distributors. The 2N107 is hermetically sealed and will dissipate 50 milliwatts in 25°C free air.

Outline Drwg. No. 8

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: Collector Voltage (referred to base), VCB Collector Current, Ic. Emitter Current, Iz. Junction Temperature, 7j.	10 ma
AVERAGE CHARACTERISTICS: (Common Base, $T_1 = 30^{\circ}$ C, $f = 270 \text{ cps}$ $V_{CB} = -5v$, $I_E = 1 \text{ ma}$)	
Collector Voltage Emitter Current	10 ma
Output Admittance (input open circuit), hob. Current Amplification (output short circuit), hrb. Input Impedance (output short circuit), hrb.	95
Voltage Feedback Ratio (input open circuit), hrb.	3×10^{-4}

Collector Cutoff Current, Ico.	10 μa
Output Capacitance, Ce.	40 μμf
Noise Figure (Vcs = -1.5V; Iz = 0.5 ma; f = 1 KC; BW = 1 cycle), NF.	22 db
Frequency Cutoff, fab.	1.0 mc
Temp. Rise/Unit Collector Dissipation (in free air).	0.5 °C/mw
Temp. Rise/Unit Collector Dissipation (infinite heat sink)*	0.2 °C/mw
*Temperature rise with transistor clamped to metallic heat sink.	

Outline Drwg. No. 8

The General Electric type 2N123 is a PNP alloy junction high frequency switching transistor intended for military, industrial and data processing applications where high reliability at the maximum ratings is of prime importance.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: Collector to Emitter Voltage (base open) Collector to Base Voltage (emitter open) Emitter to Base Voltage (collector open) Collector Current (10 µs max.). Emitter Current (25°C)* Peak Collector Dissipation (25°C)* Total Transistor Dissipation (25°C)*** Storage Temperature				-15 volts -20 volts 125 ma 500 ma 125 ma 100 mw 500 mw 150 mw 0 85 °C
ELECTRICAL CHARACTERISTICS: (25°C)	DESIGN CENTER	LIMIT MIN.	MAX.	
Switching Charocteristics (Common Emitter) D.C. Base Current Gain ($V_{CE} - 1$ v; Ic = 10 ma) Ic/IB		30	150	
Saturation Voltage ($I_B = .5 \text{ ma}$; $I_C = 10 \text{ ma}$), V_{CB} Pulse Response Time ($I_C = 10 \text{ ma}$)	.15		0.2	volts
Pulse Response Time $(1c = 10 \text{ ma})$ Delay & Rise Time, tr	.9			μsec
· Storage Time, ts	.5			μsec
Fall Ťime, tr	.5			μsec
Cutoff Characteristics	0		6	μа
Collector Cutoff Current ($V_{EB} = -20v$), Ico Emitter Cutoff Current ($V_{EB} = -10v$), IEO	$2 \\ 2 \\ 25$		ő	μa μa
Collector to Emitter (Base open, $lc = -0.6$ ma), Vce	$25^{$	15		volts
High Frequency Choracteristics (Common Base)				
$(V_{CB} = -5v; I_E = 1 ma)$ Alpha Cutoff Frequency, f_{ab}	8	5		mc
Collector Capacitance $(f = 1 mc), C_{c}$	15	0		μμf
Voltage Feedback Ratio ($f = 1 \text{ mc}$), hrb	8×10^{-3} 80			ohms
Base Spreading Resistance, r'b Low Frequency Choracteristics (Common Base)	00			Onna
$(V_{CB} = -5v; I_E = 1 \text{ mo; } f = 270 \text{ cps})$				
Input Impedance, his	28			ohms
Voltage Feedback Ratio, hrb Current Amplification, hrb	8×10^{-4} .980	.970		
Output Admittance, hob	.9	.010		μmbos
Derate for increase in ambient temperature:	100			
*1.67 mw/°C, **8 mw/°C, ***2.5 m	W/ U			

2N135,	2N136,
2N	137

Outline Drwg. No. 8

The General Electric types 2N135, 2N136 and 2N137 are PNP alloy junction germanium tran-sistors intended for RF and IF service in broadcast receivers. Special control of manufacturing proc-esses provides a narrow spread of characteristics, resulting in uniformly high power gain at radio frequencies. These types are obsolete and avail-able for replacement only.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: (25°C)	2N135	2N136	2N137	
Collector Voltage: Common Base (emitter open), Vcs Common Emitter (Rbe = 100 ohms), VcE* Common Emitter (Rbe = 1 megohm), VcE* Collector Current, Ic Emitter Current, IE Collector Dissipation**	-20 -20 -12 -50 50 100	$-20 \\ -20 \\ -12 \\ -50 \\ 50 \\ 100$	$-10 \\ -10 \\ -6 \\ -50 \\ 50 \\ 100$	volts volts volts ma ma mw
Storage Temperature	85	85	85	°C
ELECTRICAL CHARACTERISTICS: Design Center Volues (Common Base, 25°C, VCB = 5v, $1E = 1$ ma)				
Voltage Feed back Ratio (input open circuit, f = 1 mc), hrb Output Capacitance ($f = 1 \text{ mc}$), Co	$7 imes rac{10^{-8}}{14}$	$7 imes rac{10^{-8}}{14}$	$7 imes rac{10^{-3}}{14}$	μµf

Alpha Cutoff Frequency, f_{ab} Minimum Alpha Cutoff Frequency, f_{ab} Collector Cutoff Current (VCB = 6 v, emitter open), Ico Base Current Amplification (common emitter.	4.5 3 5	6.5 5 5	$\begin{smallmatrix}10\\7\\5\end{smallmatrix}$	mc mc min μa max
$f = 270 \text{ cps}), \beta$	20	40	60	

*Collector to emitter voltage VCE at which Ic increases to .6 ma with the base connected to the emitter through a resistance Rbe.
 **Derate 1.7 mw/°C increase in ambient temperature over 25°C.

The General Electric type 2N167 is an NPN high fre- quency, high speed switching transistor intended for in-	2N167
dustrial and military applications where reliability is of	
prime importance.	Outline Drwg. No. 14

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:				
Collector to Emitter Voltage (base open) Collector to Base Voltage (emitter open) Emitter to Base Voltage (collector open)				30 volts
Collector to Base Voltage (emitter open)				30 volts
Emitter to Base Voltage (collector open)				5 volts
Collector Current				75 ma
Emitter Current				75 ma
Emitter Current Collector Dissipation (25°C)*				65 mw
Transistor Dissipation (25°C) ^{**}				75 mw
Storage Temperature				85 °C
ELECTRICAL CHARACTERISTICS: (25°C)	DESIGN	LIMI		
Switching Characteristics (Common Emitter)	CENTER	MIN.	MAX.	
D-C Base Current Gain (VCE = 1 v; Ic = 8 ma), Ic/IB	25	17		
Saturation Voltage (IB = $.8 \text{ ma}$; Ic = 8 ma), Vcc	0.35			volts
Pulse Response Time $(I_c = 8 ma)$				
Delay & Rise Time, tr	۰.6			μsec
Storage Time, ts	.6			μsec
Fall Time, tr	.4			μsec
Cutoff Characteristics				
Collector Cutoff Current ($V_{CB} = 15 v$), Ico	.8		1.5	μa
Emitter Cutoff Current (VEB ± 5 v), IEO	1.0		15	μa
Collector to Emitter Voltage (Base open,			-0	pice
Ic = 0.3 ma), Vc		30		volts
High Frequency Characteristics (Common Bose)				
$(V_{CB} = 5y; l_E = 1 m_0)$				
Alpha Cutoff Frequency, fab	8	5		me
Collector Capacity $(f \equiv 1 \text{ mc}), C_e$	4	0	8	μμf
Low Frequency Chorocteristics (Common Bose)			0	poper
$(V_{CB} = 5v; I_E = -1 ma; f = 270 cps)$				
Input Impedance, his	40			ohms
Voltage Feedback Ratio, hrb	1.5×10^{-4}			omins
Base Current Amplification, hrb	.975	.952		
Output Admittance, hob	.2			μmho
*Derate 1.1 mw/°C increase in ambient ten	neroturo			μππο
the state statistic of the state in an inferret ten	iperature.			

**Derate 1.25 mw/°C increase in ambient temperature.

The 2N168A is a rate grown NPN germanium transistor intended for mixer/oscillator and IF amplifier applications in radio receivers. Special manufacturing techniques pro-vide a low value and a narrow spread in collector capacity so that neutralization in many circuits is not required. The 2N168A has a frequency cutoff control to provide proper operation as an oscillator or sutclume mixer. For IF amplifier service the range in power gain in controlled to 3 db.

autodyne mixer. For IF amplifier service the range in power gain in controlled to 3 db.

CONVERTER TRANSISTOR SPECIFICATIONS	
ABSOLUTE MAXIMUM RATINGS:	
Voltoge	
Collector to Emitter (base open), VCB Collector to Base (emitter open), VCB	15 volts
Conector to base (emitter open), VCB	15 volts
Current Collector, Ic	-20 ma
Power	20 ma
Collector Dissipation at 25°C*, Pc	65 mw
Temperoture Ronge	
Operating and Storage, Ts	-55 to 85 °C
TYPICAL ELECTRICAL CHARACTERISTICS:	
Converter Service	
Moximum Rotings	
Collector Supply Voltage, Vcc	12 volts
Design Center Chorocteristics	
Input Impedance ($I_{\mathbb{D}} = 1$ ma; $V_{C\mathbb{D}} = 5v$; $f = 455$ KC), Z_{1n} .	350 ohms
Output Impedance ($I_E = 1 \text{ ma}$; $V_{CE} = 5V$; $f = 455 \text{ KC}$), Z_{out}	15 K ohms

Voltage Feedback Ratio ($I_E = 1$ ma; $V_{CB} = 5v$; $f = 1$ mc), h_{rb} Collector to Base Capacitance ($I_E = 1$ ma; $V_{CB} = 5v$; $f = 1$ mc), C_{ob} Frequency Cutoff ($I_E = 1$ ma; $V_{CB} = 5v$), f_{ab} Min. Frequency Cutoff ($I_E = 1$ ma; $V_{CB} = 5v$), f_{ab} Base Current Gain ($I_B = 20m_8$; $V_{CE} = 1v$), h_{FE} . Minimum Base Current Gain, h_{EE}	$5 \times 10^{-8} \\ 2.4 \ \mu\mu f \\ 8 \ mc \\ 5 \ mc \ min \\ 40 \\ 23 \\ 135 \\ 135 \\ 135 \\ 135 \\ 135 \\ 10^{-8}$
Conversion Gain, CGe	25 db
IF Amplifier Performance	
Collector Supply Voltage, Vcc. Collector Current, Iz Input Frequency, f. Available Power Gain, Ge. Minimum Power Gain in typical IF circuit, Ge. Power Gain Range of Variation in typical IF circuit, Ge.	5 volts 1 ma 455 KC 39 db 28 db min 3 db
Cutoff Characteristics Collector Cutoff Current (Vcs = 5v), Ico. Collector Cutoff Current (Vcs = 15v), Ico. *Derate 1.1 mw/°C increase in ambient temperature over 25°C.	.5 μa 5 μa max

2N169A, 2N169

Outline Drwg. No. 14

The 2N169A and 2N169 are rate grown NPN germanium transistors intended for use as IF amplifiers in broadcast radio receivers. The col-lector capacity is controlled to a low value so that neutralization in most circuits is not required.

The power gain at 455 KC is maintained at a 3 db spread for the 2N169A. The 2N169A is a special high voltage unit intended for second IF amplifier service where large voltage signals are encountered. The 2N169 is also intended for low gain IF amplifier and power detector applications.

IF TRANSISTOR SPECIFICATIONS			
ABSOLUTE MAXIMUM RATINGS:	2N169A	2N169	
Voltage Collector to Emitter (base open), VCB Collector to Base (emitter open), VCE	25 25	$15 \\ 15$	volts volts
Current Collector, Ic	-20	-20	ma
Power Collector Dissipation at 25°C*, Pe	55	55	mw
Temperature Range Operating and Storage, Ts	—55 to 75	—55 to 75	°C
TYPICAL ELECTRICAL CHARACTERISTICS: IF Amplifier Service			
Maximum Ratings Collector Supply Voltage, Vcc	12	12	volts
Design Center Characteristics ($I_B = 1$ ma; $V_{CE} = 5v$; $f = 455$ KC except as noted) Input Impedance, Z_{in} Output Impedance, Z_{out} Voltage Feedback Ratio ($V_{CB} = 5v$; $f = 1$ mc), h_{rb} Collector to Base Capacitance ($V_{CB} = 5v$; $f = 1$ mc), C_{ob} Frequency Cutoff ($V_{CB} = 5v$), f_{ab}	2.4	500 15 10×10^{-8} 2.4 -5	ohms K ohms µµf mc
Base Current Gain (Iz = 20ma; Vcz = 1 v), hff Minimum Base Current Gain, hff Maximum Base Current Gain, hff	72 36 220	72 36 220	
IF Amplifier Performance Collector Supply Voltage, Vcc Collector Current, IE Input Frequency, f Available Power Gain, Ge Minimum Power Gain, Ge Power Gain Range of Variation in typical IF circuit, Ge	5 1 455 36 25 3	5 1 455 36 25 3	volts ma KC db db min db
Collector Cutoff Current (VCB = 5v), Ico Collector Cutoff Current (VCB = 15v), Ico *Derate 1.1 mw/°C increase in ambient temperature.	5 5	.5 5	μa μa max
perate in mw/ o morease in ampoint temperature.			

The 2N170 is a rate grown NPN germanium transistor intended for use in high frequency circuits by amateurs, hobbyists, and experimenters. The 2N170 can be used in

Outline Drwg. No. 14 any of the many published circuits where a low voltage, high frequency transistor is necessary such as for re-generative receivers, high frequency oscillators, etc. If you desire to use the 2N170 NPN transistor in a circuit showing a PNP type transistor, it is only necessary to change the connections to the power supply.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:	
Voltage Collector to Emitter, Vc	6 volts
Current Collector, Ic	20 ma
Power Collector Dissipation @ 25°C*, Pc	25 mw
Temperature Range Operating and Storage, T	-55 to 50 °C
TYPICAL ELECTRICAL CHARACTERISTICS: High Frequency Characteristics (Is = 1 ma; Vcs = 5v; f = 455 KC except as noted) Input Impedance (Common Emitter), Zin. Output Impedance (Common Emitter), Zont. Collector to Base Capacitance (f = 1 mc), Cob. Frequency Cutoff (Vcs = 5V), fab. Power Gain (Common Emitter), Ge.	800 ohms 15 Kohms 3 µµf 5 mc 24 db
Low Frequency Characteristics (Iz = 1 ma; Vcz = 5v; f = 270 cps) Input Impedance, hib. Voltage Feedback Ratio, hrb. Current Gain, hrb. Output Admittance, hob. Common Emitter Base Current Gain, hre. Cutoff Characteristics	55 ohms 4×10^{-4} .97 .3 × 10^{-6} \mu\text{mhos} 32
Collector Cutoff Current (VCB = 5v), Ico *Derate 1 mw/°C increase in ambient temperature.	$5 \mu a max$
Derate 1 mw/ C increase in amplent temperature.	

The 2N186, 2N187, and 2N188 are medium power PNP transistors, intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially con-Stant value for collector currents from 1 ma to 200 ma. This linearity of current gain provides low distortion in Class B circuits, and permits use of any two transistors from a par-

ABSOLUTE MAXIMUM DATINGS

WILLING 84

2N186, 2N187, 2N188

Outline Drwg. No. 8

ticular type without matching.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: Voltages				
Collector to Base (emitter open) Collector to Emitter (REB = 1 K ohm) Emitter to Base (collector open)				-25 volts -25 volts - 5 volts
Collector Current				200 ma
Power Collector Dissipation (25°C)*				$75 \mathrm{mw}$
Temperature Operating Range Storage Range			—55 —55	to 60 °C to 85 °C
TYPICAL ELECTRICAL CHARACTERISTICS: (25°C) Class B Audio Amplifier Operation	2N186	2N187	2N188	
(Values for two transistors, Note that matching is not required to hold distortion to less than 5% for any two transistors from a type)				
Maximum Class B Ratings (Common Emitter) Collector Supply Voltage, Vcc Power Output (Distortion less than 5%), PO.	$-12 \\ 300$	$-12 \\ 300$	$-12 \\ 300$	volts mw
Design Center Characteristics Input Impedance large signal base to base $(\triangle I = 150 \text{ mas})$, his	1200	2000	2600	ohms
Base Current Gain (VCE = -1 v; Ic = 150 ma), hFE Collector Capacity (VCE = -5 v; IE = 1 ma;	24	36	2000	Onnis
$f = 1 \text{ mc}$), C_{ob} Frequency Cutoff ($V_{CE} = -5 \text{ v}$; $I_B = 1 \text{ ma}$), f_{ab}	35 .8	$35 \\ 1.0$	35 1.2	μμf mc
Class B Circuit Performance (Common Emitter) Collector Voltage, Vcc Minimum Power Gain at 100 mw power output, G.	$-12 \\ 28$	$-12 \\ 30$	$-12 \\ 32$	volts min db
Cutoff Characteristics				
Maximum Collector Cutoff Current (VCB = -25 v), Ico Maximum Emitter Cutoff Current (VEB = -5 v), IEO	16 10	16 10	$\begin{array}{c} 16 \\ 10 \end{array}$	max μa max μa
*Derate 1.25 mw/°C increase in ambient tem	perature with	in range 25	"C to 60"	G .

Derate 1.25 mw/°C increase in ambient temperature within range 25°C to 60°C.

2N186A, 2N187A 2N188A

Outline Drwg. No. 8

The 2N186A, 2N187A, and 2N188A are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma. This linearity of current gain provides

200 ma. This linearity of current gain provides low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits.

SPECIFICATIONS

			-25 volts -25 volts - 5 volts
			200 ma
			180 mw
1186A	2N187A	2N188A	
$^{-12}_{750}$	$-12 \\ 750$	$-12 \\ 750$	volts mw
	2000	2600	ohms
24	36	54	onna
35	35	35	μµf
•0	1.0	1.2	mc
$^{-12}_{28}$	$-12 \\ 30$	$-12 \\ 32$	volts min db
30	32	34	db
	1.0		
10	10	10	max μa max μa
		$\begin{array}{c} -12 \\ -12 \\ 750 \\ 24 \\ 36 \\ 35 \\ .8 \\ 1.0 \\ -12 \\ 28 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 31 \\ 10 \\ 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

*Derate 3 mw/°C increase in ambient temperature within range 25°C to 60°C.

2N189,	2N190,
2N191,	2N192

Outline Drwg. No. 8

ABSOLUTE MAXIMUM RATINGS:

The 2N189, 2N190, 2N191, and 2N192 are alloy junction PNP transistors intended for driver service in transistorized audio amplifiers. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

SPECIFICATIONS

Valtages Collector to Emitter (REB = 1 K ohm) Callector Current					-25 volts 50 ma
Power Collector Dissipation (25°C)*					75 mw
Temperature Operating Range Storage Range					60 °C 85 °C
TYPICAL ELECTRICAL CHARACTERISTICS: (25°C) Audia Driver Class A Operation	2N189	2N190	2N191	2N192	
(Values for ane transistar driving a transformer coupled output stage)					
Maximum Class A Ratings (Camman Emitter) Collector Supply Voltage, Vcc	12	12	12	12	volts
Design Center Characteristics Input Impedance base to emitter ($I_{\mathbb{D}} = 1 \text{ ma}$), h_{1e}	1000	1400	1800	2200	ohms

Base Current Gain ($V_{CE} = -5 v$; $I_E = 1 ma$), hre Collector Capacity ($V_{CB} = -5 v$; $I_E = 1 ma$), C_{ob} Frequency Cutoff ($V_{CB} = -5 v$; $I_E = 1 ma$), f_{ab} Noise Figure ($V_{CB} = -5 v$; $I_E = 1 ma$;	24 35 .8	$36 \\ 35 \\ 1.0$	$54 \\ 35 \\ 1.2$	$75 \\ 35 \\ 1.5$	μμf mc
f = 1 KC; BW = 1 cycle), NF	15	15	15	15	db
Audio Circuit Performance (Common Emitter) Collector Supply Voltage, Vcc Emitter Current, Ig Minimum Power Gain at 1 mw power output, Ge	$12\\1\\37$	$12 \\ 1 \\ 39$	12 1 41		volts ma min db
Small Signal Characteristics (Common Base)				-	
$(V_{CB} = 5v; I_E = 1 \text{ ma; } f = 270 \text{ cps})$ Input Impedance, h _{1b} Voltage Feedback Ratio, h _{rb} Current Amplification, h _{rb}	$4 \times 10^{-4}_{-4} 4$	$\times 10^{-4} 4$	29 < 10-4 4 ;		ohms
Output Admittance, hob Cutoff Characteristics	1.0	.973 .8	.98 .6	.987 .5	μmhos
Maximum Collector Cutoff Current ($V_{CB} = 25 v$), I _{CO}	16	16	16	16	max μa

*Derate 1.25 mw/°C increase in ambient temperature within range 25°C to 60°C.

The 2N241, and 2N241A are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By special process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma. This linearity of current gain insures low distortion in both Class A and Class R existing and a marking the sentence.

ABSOLUTE MAXIMUM RATINGS:

2N241, 2N141A

Outline Drwg. No. 8

linearity of current gain insures low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits.

SPECIFICATIONS

Voltages Collector to Base (emitter open) Collector to Emitter (Rgs = 1 K ohm) Emitter to Base (collector open)			-25 volts -25 volts - 5 volts
Collector Current			200 ma
Power Collector Dissipation (25°C)*	2N241 100	2N241A 180 n	aw.
Temperature Operating Range. Storage Range	-55 to 60 °C	-55 to 60 ° -55 to 85 °	С
TYPICAL ELECTRICAL CHARACTERISTICS: (25°C) Class B Audio Amplifier Operation			
(Values for two transistors, Note that matching is not required to hold distortion to less than 5% for any two transistars from a type)			
Moximum Closs B Rotings (Common Emitter) Collector Supply Voltage, Vcc Power Output (Distortion less than 5%), POe	$-12 \\ 300$	$-12 \\ 750$	volts mw
Design Center Characteristics Input Impedance large signal base to base ($\Delta IE = 150 \text{ ma}$), h Base Current Gain ($VCE = -1 \text{ v}$; $Ic = 150 \text{ ma}$) hFE Collector Capacity ($VCB = -5 \text{ v}$; $IE = 1 \text{ ma}$; $f = 1 \text{ mc}$), Cob Frequency Cut off ($VCE = -5 \text{ v}$; $IE = 1 \text{ ma}$), fab	1. 4000 73 35 1.3	4000 73 35 1.3	ohms µµf mc
Class B Circuit Performance (Common Emitter) Collector Voltage, Ver Minimum Power Cec Minimum Power Cec	-12 34	-12 34	volts min db
Class A Audio Amplifier Operation (Common Emitter)			
$(E_{ee} = -12v; I_E = 10 \text{ ma})$ Power Gain at 50 mw power output, Ge		35	db
Cutoff Characteristics			
Maximum Collector Cutoff Current ($V_{CB} = -25 v$), Ico Maximum Emitter Cutoff Current ($V_{EB} = -5 v$), Ieo	16 10	16 10	max μa max μa
*Derate 3 mw/°C increase in ambient temperature	within range 25	°C to 60°C.	

Derate 3 mw/°C increase in ambient temperature within range 25°C to 60°C.

The 2N265 is an alloy junction PNP transistor intended for driver service in transistorized audio amplifiers. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

ABSOLUTE MAXIMUM RATINGS: Voltages Collector to Emitter $(R_{EB} = 1 \text{ K ohm}) \dots$

SPECIFICATIONS

2N265 Outline Drwg. No. 8

Collector Current	50 ma
Power	
Collector Dissipation (25°C)*	75 mw
Temperoture	
Operating Range	55 to 60 °C 55 to 85 °C
TYPICAL ELECTRICAL CHARACTERISTICS: (25°C) Audio Driver Class A Operation	
(Values for one transistor driving a transformer coupled output stage)	
Maximum Class A Ratings (Common Emitter)	
Collector Supply Voltage, Vcc	12 volts
Design Center Characteristics	
Input Impedance base to emitter ($I_{\rm B} = 1$ ma), his	4000 ohms
Base Current Gain ($V_{CE} = -5$ v; $I_E = 1$ ma), hte	110
Collector Capacity ($V_{CB} = -5 v$; $I_{E} = 1 \text{ ma}$), Cob.	$35 \ \mu\mu f$ 1.5 mc
have the infection of the chine $V_{1B} = -5 \text{ v}$; $I_E = 1 \text{ ma}$), h_{fe} . Collector Capacity ($V_{CB} = -5 \text{ v}$; $I_E = 1 \text{ ma}$), h_{fe} . Frequency Cutoff ($V_{CB} = -5 \text{ v}$; $I_E = 1 \text{ ma}$), f_{eb} . Noise Figure ($V_{CB} = -5 \text{ v}$; $I_E = 1 \text{ ma}$), f_{eb} .	15 db
Audio Circuit Performance (Common Emitter)	-0 40
Collector Supply Voltage, Vcc.	12 volts
Emitter Current, Iz	1 ma
Minimum Power Gain at 1 mw power output, Ge	45 min db
Small Signal Characteristics (Common Base)	
$(V_{CB} = -5v; I_E = 1 \text{ ma; } f = 270 \text{ cps})$	
Input Impedance, his	29 ohms
Voltage Feedback Ratio, hrb	
Current Amplification, hrb	.991 .5 μmhos
	· .5 μπποs
Cutoff Characteristics	10
Maximum Collector Cutoff Current ($V_{CB} = 25 v$), Ico	16 max μa

*Derate 1.25 mw/°C increase in ambient temperature within range 25°C to 60°C.

2N292, 2N293

Outline Drwg. No. 14

Types 2N292 and 2N293 are rate grown NPN germanium transistors intended for amplifier ap-plications in radio receivers. Special manufacturing techniques provide a low value and a narrow

spread in collector capacity so that neutralization in many circuits is not required. The type 2N293 is intended for receiver circuits where high gain is needed. In IF amplifier service the range in power gain is controlled to 3 db.

IF TRANSISTOR SPECIFICATION	S	
AXIMUM RATINGS	2N292	2N293
mitter (base open). Vcs	15	15

ABSOLUTE MAXIMUM RATINGS	2N292	2N293	
Voltage Collector to Emitter (base open), Vcs Collector to Base (emitter open), Vcs	15 15	$\begin{smallmatrix} 15\\15\end{smallmatrix}$	volts volts
Current Collector, Ic	-20	-20	ma
Power Collector Dissipation at 25°C*, Pe	65	65	mw
Temperature Range Operating and Storage, T ₈	-55 to 85	-55 to 85	°C
ELECTRICAL CHARACTERISTICS** IF Amplifier Service			
Maximum Ratings Collector Supply Voltage, Vcc	12	12	volts
Design Center Characteristics Input Impedance (Iz = 1 ma; Voz = 5v; f = 455 KC), Zin Output Impedance (Iz = 1 ma; Voz = 5v; f = 455 KC), Zout Voltage Feedback Ratio (Iz = 1 ma; Voz = 5v; f = mc), hrb	$500 \\ 15 \\ 10 imes 10^{-8}$	$350\ 15\ 5 imes 10^{-8}$	ohms K ohms
Collector to Base Capacitance $(I_{\mathbb{D}} = 1 \text{ ma}; V_{CB} = 5v; f = 1 \text{ mc}), C_{ob}$ Frequency Cutoff $(I_{\mathbb{D}} = 1 \text{ ma}; V_{CB} = 5v), f_{ab}$ Base Current Gain $(I_{\mathbb{B}} = 20 \text{ ma}; V_{CB} = 1v), h_{\mathbb{F}}$ Min. Base Current Gain, h_{\mathbb{F}} Max. Base Current Gain, h_{\mathbb{F}}	2.4	2.4 8 25 6 55	μμf mc
IF Amplifier Performance Collector Supply Voltage, Vcc Collector Current, 1s Input Frequency, f Available Power Gain, G. Min. Power Gain in Typical IF Test Circuit, G. Power Gain Range of Variation in Typical IF Circuit	455 36	5 1 455 30 28 3	volts ma KC db db min db
$\label{eq:cutoff Characteristics} \begin{array}{l} \hline Collector \ Cutoff \ Current \ (V_{CB}=5v), \ I_{eo}\\ Collector \ Cutoff \ Current \ (V_{CB}=15v), \ I_{eo}\\ \hline \end{array}$.5	.5 .5	μa μa max
*Derate 1.1 mw/°C increase in ambient temperature o	ver 25°C.		

**All values are typical unless indicated as a min or max.

REGISTERED RETMA TRANSISTOR TYPES

DEC. 1 1956

For explanation of symbols, ratings and mfg. symbols see page 33.

	~					MAX. RA	TINGS —			ד	PICAL VALUE	s —		
RETMA No.	Туре	Mfr.	Use	Dwg. No.	Pc mw @ 25°C	BVCE	la ma	T. 80		£	C (h	Po mw -		
				140.		DVCE	le ma	Tj °C	hre	fab mc	Ge db	<u> </u>	<u> </u>	Closest GE
2N22 2N23	Pt Pt	WE WE	SW SW	$\frac{1}{2}$	120 80	$-100 \\ -50$	$-20 \\ -40$	55 55	1.9α 1.9α					
2N24 2N25	Pt Pt	WE	AF	1	120	-30	-25	50	2.2α					
2N26	Pt	WE WE	AF SW	$\frac{1}{2}$	200 90	$-50 \\ -30$	$-30 \\ -40$	60 55	2.5a					
2N27 2N28	NPN NPN	WE WE	AF AF	1	<u>50</u>	35	100	85	100	1				
2N29 2N30	NPN Pt	WE	AF	ĩ	50	35	30	85 85	100 100	.5 1				
2N30 2N31	Pt	GE GE	Obsolete Obsolete	3	100	30	7	40	2.2a 2.2a	2	17			old G11 old G11A
2N32 2N33	Pt Pt	RCA RCA	RF	555	50 30	-40 -8.5	-8	40	2.2a	2.7	21			old GIIA
2N34	PNP	RCA	AF	6	50	- 25	-8	40	40	50Mc	<u>Osc.</u> 40			2N190
2N35 2N36	NPN PNP	RCA CBS	IF AF	6 4	50 50	$-\frac{25}{20}$	-8	50 50	40 45	.6 .8	40 40		125	2N169A 2N191
2N37 2N38	PNP PNP	CBS CBS	AF AF	4	50	-20	-8	50	30		36			2N190
2N38A	PNP	CBS	AF	4 4	50 50	$-20 \\ -20$		50 50	15 18		32 32			2N189 2N189
2N41	PNP	RCA		7	50	-25	- 15	50	40		40			2N190
2N43 2N43A	PNP PNP	GE GE	AF AF	8	150 150	-20* -20*	- 50 - 50	100 100	50 40	1	40	40		2N43
2N44	PNP	GE	AF	8	150	-20*	- 50	100	20	1	40	40 40		2N43A 2N44
2N45 2N46	PNP PNP	GE RCA	AF	8	150	-20* see 2	N41 - 50	100	12	ī	38	40		2N45 2N190
2N47 2N48	PNP PNP	Phil Phil	AF	13	50	- 35	-20	65	38	8	40			2N190 25V
2N49	PNP	Phil	AF AF	13 13	50 50	$-35 \\ -35$	$-20 \\ -20$	65 65	32 38	8 8	40 40			2N189 25V 2N190 25V
2N50 2N51	Pt Pt	Cle Cle	SW	1	50 100	-15 -50	$-1 \\ -8$	50 50	2α	3	20 20			
2N52	Pt	Cle	RF	ĩ	120	-50	- 8	50			20		_	
2N53 2N54	Pt PNP	Cle W	RF AF	1 9	100 200	-50 - 45	$-8 \\ -10$	50 60	$\frac{2\alpha}{32}$	5 .5	20 40			2N190 25V
2N55 2N56	PNP PNP	W	AF AF	9	200	-45	-10	60	20	.5	39			2N190-25V
2N57	PNP	W	PWR	9 12	200 20W	-45 - 60	-10 8A	60	12 60	.5	38 14	5W		2N189 25V
2N62 2N63	PNP PNP	Phil Ray	Obsolete AF	10	<u> </u>	- 35	$\frac{-20}{-10}$	05	40	6	20	40		0.007
2N64 2N65	PNP PNP	Ray Ray	AF AF	10	100	- 15	-10	85 85	22 45	6	39 41	40 40		2N107 2N191
_21103	LINE.	nay	АГ	10	100	-12	-10	85	90	1.2	42	40	1	2N192

						MAX. RA	TINGS -			т —	YPICAL VAL	UES —		
RETMA	-			Dwg.	Pc mw	-						Po mw -		
No.	Туре	Mfr.	Use	No.	@ 25°C	BVCE	Ic ma	Tj °C	hre	fab mc	Ge db	<u> </u>	B	Closest GE
2N68 2N71 2N72	PNP PNP Pt	Syl W RCA	PWR PWR Obsolete	11 21	2W/4W 1W 50	-25 - 50 - 40	-1.5A -250 -20	70 60 55	40	.25 2.5	23 25	600 400	5W	
2N73 2N74 2N75	PNP PNP PNP	W W W	AF SW AF SW AF SW	9 9 , 9	200 200 200	50 50 50					low leve high leve very low le	el		
2N76 2N77 2N78	PNP PNP NPN	GE RCA GE	AF AF RF	8 19 14	50 35 75	$-20 \\ -25 \\ 15$	$-10 \\ -15 \\ 20$	60 50 85	20 55 50	1 .7 4	38 44 22	50		2N190 2N191 2N169 or 2N168A
2N79 2N80 2N81	PNP PNP PNP	RCA CBS GE	AF AF AF	20 4 8	35 50 50	$ \begin{array}{r} -30 \\ -25 \\ -20 \end{array} $	$ \begin{array}{r} -50 \\ -8 \\ -15 \end{array} $	Hi 100	46 80 30	.7	44	50		2N191 2N192 use 2N189
2N82 2N94 2N94A	PNP NPN NPN	CBS Syl Syl	AF RF Sw RF Sw	15 10 10	35 30 30	-20 20 20	-15 50 50	Hi 75 75	30 30 40	3 6	38 38			{ 2N169A (and 2N123 PNP)
2N95 2N97 2N97A	NPN NPN NPN	Syl GP GP	Pwr IF IF	11 10 10	2.5W/4W 50 50	25 30 40	1.5A 10 10	70 75 85	40 13 13	.4 1 1	$\begin{array}{c} 23\\ 20\\ 20\end{array}$	600	5W	2N169 15V 2N169A 25V
2N98 2N98A 2N99	NPN NPN NPN	GP GP GP	IF IF IF	10 10 10	50 50 50	40 40 40	10 10 10	75 85 75	38 38 38	2.5 2.5 3.5	22 22 22			2N169A 25V 2N169A 25V 2N169A 25V 2N169A 25V
2N100 2N101 2N102	NPN PNP NPN	GP Syl Syl	IF Pwr Pwr	$\begin{array}{c}10\\28\\28\end{array}$	25 1W 1W	$-\frac{25}{25}$	5 - 1.5A 1.5A	$50 \\ 70 \\ 70 \\ 70$	100	5	$23 \\ 23 \\ 23 \\ 23$	600 600	5W	2N170 6V
2N103 2N104 2N105	NPN PNP PNP	GP RCA RCA	Genl IF AF AF	10 20 23	50 70 35	$ \begin{array}{r} 35 \\ -30 \\ -25 \end{array} $	$ \begin{array}{r} 10 \\ -50 \\ -15 \end{array} $	75 70 50	5 44 55	.75 .7 .75	15 41 42			2N170 6V 2N190 25V 2N191
2N106 2N107 2N108	PNP PNP PNP	Ray GE CBS	AF AF AF Out	10 8 16	100 50 50	$-6 \\ -6 \\ -20$	$-10 \\ -10 \\ -15$	85 60	45 20	.8 1	36 38	40	35	2N189 2N107
2N109 2N111 2N112	PNP PNP PNP	RCA Ray Ray	AF Out IF RF	20 10 10	50 100 100	-12 - 6 - 6 - 6	- 35 - 5 - 5	50 85 85	70 40 40	3 5	33 30 32	75	150	2N188-2N192 2N135 2N136-2N135
2N113 2N114 2N117	PNP PNP NPN	Ray Ray TI	RF RF Sw Si	10 10 10	100 100 150	$ -6 \\ -6 \\ 30 $	- 5 - 5 25	85 85 150	$45 \\ 65 \\ 12$	$\begin{array}{c}10\\20\\4\end{array}$	33			2N137 2N137 or 2N123
2N118 2N123 2N124	NPN PNP NPN	TI GE TI	Si RF Sw RF Sw	10 8 10	150 100 50	$-{20\atop 10}{30\atop 10}$	$-125 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ $	150 85 75	$ \begin{array}{r} 24 \\ 50 \\ 18 \end{array} $	5 8 3				2N123 2N168
2N125 2N126 2N127	NPN NPN NPN	TI TI TI	RF Sw RF Sw RF Sw	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \end{array} $	50 50 50	10 10 10	8 8 8	75 75 75	$32 \\ 60 \\ 130$	5 5 5				2N167 2N167 2N167 2N167
2N128 2N129 2N135	PNP PNP PNP	Phil Phil GE	SB Osc SB Osc IF	13 13 _8	30 30 100	-4.5 - 4.5 - 12	-5 -5 -50	85 85 85	$ \begin{array}{r} 35 \\ 20 \\ 20 \end{array} $	60 40 4.5	29			2N135

				1					1					
2N136 2N137 2N138	PNP PNP PNP	GE GE Ray	RF RF AF Out	8 8	100 100 50	$-12 \\ -6 \\ -12$	$ -50 \\ -50 \\ -20 $	85 85 40	40 60 140	6.5 10	31 33 30		50	2N136 2N137 2N192
2N138A 2N139 2N140	PNP PNP PNP	Ray RCA RCA	AF Out 1F Osc	20 20	50 35 35	-45 - 16 - 16	$-100 \\ -15 \\ -15$	85 70 70	10 48 45	4.7	29 29 28	25	100	2N192 2N187 25V 2N136-2N135 2N136
2N141 2N142 2N143	PNP NPN PNP	Syl Syl Syl	Pwr Pwr Pwr	26 26 26	1.5W/4W 1.5W/4W 1W/4W	-30 30 -30	8A .8A 8A	65 65 65	40 40 40	.4 .4 .4	26 26 26	600 600 600	5W 5W 5W	
2N144 2N145 2N146	NPN NPN NPN	Syl TI TI	Pwr IF IF	26 10 10	1W/4W 65 65	30 20 20	.8 5 5	65 75 75	40	.4	26 33 max 36 max	600	5W	2N169 or 2N292 2N169 or 2N292
2N147 2N148 2N148A	NPN NPN NPN	TI TI TI	Osc lo IF lo IF	10 10 10	65 65 65	20 16 32	5 5 5	75 75 75			39 max 35 max 35 max			2N168A or 2N293 2N169 or 2N292 2N169A
2N149 2N149A 2N150	NPN NPN NPN	TI TI TI	lo IF lo IF lo IF	10 10 10	65 65 65	16 32 16	5 5 5	75 75 75			38 max 38 max 41 max			2N169 or 2N292 2N169A 2N169 or 2N292
2N150A 2N155 2N156	NPN PNP PNP	TI CBS CBS	lo IF Pwr Pwr	10 27 22	65 1.5W/5W 1.5W/5W	$ \begin{array}{r} 32 \\ -30 \\ -30 \end{array} $	-3A -3A	75 85 85	48 40	.3 .3	41 max 33 36	2W 2W	9W 9W	2N169A
2N158 2N159 2N160	PNP Pt NPN	CBS Sprague GP	Pwr Sw Si IF	22 10	1.5W/5W 80 150	$ -60 \\ -50 \\ 40 $	-3A -10 25	85 150	40 14	.3 2 4	40 34	2W	17W	
2N160A 2N161 2N161A	NPN NPN NPN	GP GP GP	Si IF Si RF Si RF	10 10 10	150 150 150	40 40 40	25 25 25	150 150 150	14 28 28	4 5 5	34 37 37			
2N162 2N162A 2N163	NPN NPN NPN	GP GP GP	Si RF Si RF Si RF	10 10 10	150 150 150	40 40 40	25 25 25	150 150 150	38 38 50	8 8 6	38 38 40			
2N163A 2N167 2N168	NPN NPN NPN	GP GE GE	Si RF Sw RF	10 14 14	150 65 55	40 30 15	25 75 20	150 85 75	50 36 20	6 8 6	40 39 max			2N167 use 2N293
2N168A 2N169 2N169A 2N170	NPN NPN NPN	GE GE GE	Osc IF IF	14 14 14	65 55 55	15 15 25	20 20 20	85 75 75	40 40 30	8 4 5	39 max 35 max 35 max			2N168A 2N169 2N169A
2N170 2N172 2N173 2N173	NPN NPN PNP PNP	GE TI Dlc	RF IF Pwr	14 10 18	55 65 40W		20 5 -7A	50 75 90	20 100	4 .6	27 28	8	20W	2N170 2N168A
2N174 2N175 2N176 2N178	PNP PNP PNP PNP	Dic RCA Motor	Pwr AF Pwr	18 20 27	40W 20	$ \begin{array}{r} -80 \\ -10 \\ -12 \end{array} $	-7A -2 -600	90 50 80	45 65	.2 .8	4 3 25	20 3W	80W	2N192
2N178 2N180 2N181 2N182	PNP PNP PNP NPN	Motor CBS CBS CBS	Pwr AF Out AF Out	27 4 25	10W 150 250	-12 - 30 - 30	$ -600 \\ -25 \\ -38 $	80 75 75	30 60 60	.7 .7	29 37 34	3W 3W 110	300 600	2N188 2N188A 25V
2N182 2N183 2N184 2N185	NPN NPN PNP	CBS CBS TI	IF Sw Sw	4 4 4	100 100 100	25 25 25	10 10 10	75 75 75	25 40 60	3.5 7.5 12				2N167 2N167 2N167 2N167
2N185 2N186 2N186A	PNP PNP PNP	GE GE	AF AF Out AF Out	10 8 8	150 75 180	-20 - 25 - 25	-150 - 200 - 200	50 60 60	55 24 24	.8	40.5 28 28	2	250 300 750	2N188A 2N186 2N186A

						MAX. RA	TINGS -			—— тү	PICAL VALU	ES —		
RETMA				Dwg.	Pc mw				1			P₀ mw —	Class	
No.	Туре	Mfr.	Use	No.	@ 25°C	BVCR	ic mo	Tj °C	hre	fab mc	Ge db	<u>A</u>	B	Closest GE
2N187 2N187A 2N188	PNP PNP PNP	GE GE GE	AF Out AF Out AF Qut	8 8 8	75 180 75	$-25 \\ -25 \\ -25$	-200 -200 -200	60 60 60	36 36 54	$1\\1\\1.2$	30 30 32		300 750 300	2N187 2N187A 2N188
2N188A 2N189 2N190	PNP PNP PNP	GE GE GE	AF Out AF AF	8 8 8	180 75 75	25 25 25	$-200 \\ -50 \\ -50$	60 60 60	54 24 36	1.2 .8 1	32 37 39	1	750	2N188A 2N189 2N190
2N191 2N192 2N194	PNP PNP NPN	GE GE Syl	AF AF Osc	8 8 10	75 75 50	$-25 \\ -25 \\ 15$	-50 -50 50	60 60 75	54 75 7.5	1.2 1.5 3.5	41 43 15	1 1		2N191 2N192 2N169
2N206 2N211 2N212	PNP NPN NPN	RCA Syl Syl	AF Osc Osc	19 10	75 50 50	- 30 10 10	- 50 50 50	85 75 75	47 30 15	.8 3.5 6	46 22			2N191 2N293 2N293
2N214 2N215 2N216	NPN PNP NPN	Syl RCA Syl	AF Out AF IF	10 19 10	125 50 50	$-{30 \atop 15}^{25}$	$-50 \\ 50 \\ 50$	70 70 75	70 44 15	.8 .7 3	29 41 26		200	2N188 (PNP) 2N191 2N169
2N217 2N218 2N219	PNP PNP PNP	RCA RCA RCA	AF IF Osc	19 19 19	50 35 35	$-25 \\ -16 \\ -16$	$-70 \\ -15 \\ -15$	50 70 70	70 48 45	4.7	33 30 27		160	2N192 2N135 2N136
2N220 2N228 2N229	PNP NPN NPN	RCA Syl Syl	AF AF Out AF	19 10 10	20 50 50	-10 25 12	-2 40	50 75 75	65 70 25	.8 .8 1.6	43 26		100	2N192 2N169 2N169
2N230 2N237 2N238	PNP PNP PNP	Mall NAC TI	Pwr AF AF	27 10	15W 150 50	$ \begin{array}{r} -30 \\ -45 \\ -20 \\ \end{array} $	-2A - 20	85 55 60	83 70	.014 (β) 1	44 42m			2N192 25V 2N191
2N240 2N241 2N241A	PNP PNP PNP	Phil GE GE	SB Sw AF Out AF Out	8 8	10 100 180	- 6 - 25 - 25	-15 - 200 - 200	60 60	16 60 60	$1.2 \\ 1.2$	34 34		300 750	2N241 2N241A
2N242 2N247 2N249	PNP PNP PNP	Syl RCA TI	Pwr Drift RF AF Out	27 24 17	35 350	45 35 25	-2A -10 -200	100 85 60	40 60 45	•	37 @ 1.5Mc) 31	2.5W	500	2N188A
2N250 2N251 2N253	PNP PNP NPN	TI TI TI	Pwr Pwr IF	27 27 10	12W 12W 65	$ \begin{array}{r} -30 \\ -60 \\ 12 \end{array} $	-2A - 2A - 2A 5	80 80 75	50 50	6 Kc 6 Kc	34 34 30	6W 6W		2N293
2N254 2N255 2N256	NPN PNP PNP	TI CBS CBS	IF Pwr Pwr	10 27 27	65 1.5W/6.25W 1.5W/6.25W	$ \begin{array}{r} 20 \\ -15 \\ -30 \end{array} $	-3A -3A	75 85 85	40 40	.2 .2	34 23 26	1W 2W	5W 10W	2N293
2N257 2N260 2N260A	PNP PNP PNP	Cle Cle Cle	Pwr Si Si	27 4 4	2W/25W 200 200	-20 - 10 - 30	$-50 \\ -50$	85 150 150	50 16 16	7 Kc (β 1.8 1.8	38 38	1W		
2N261 2N262 2N262A	PNP PNP PNP	Cle Cle Cle	Si Si RF Si RF	4 4 4	200 200 200	-75 -10 -30	- 50 - 50 - 50	150 150 150	10 20 20	1.8 6 6	36 40 40			
2N265 2N268 2N269	PNP PNP PNP	GE Cle RCA	AF Pwr Sw	8	75 2W/25W 35	-25 - 30 - 20	-50 -100	60 70	110 7 35	1.5 6 Kc (β 4	45 28			2N265 2N123
2N292 2N293	NPN NPN	GE GE	IF RF	14 14	55 55	15 15	20 20	75 75	80 35	6 4	35 max 39 max			2N292 2N293

EXPLANATION OF SYMBOLS

TYPES AND USES:

Si-Silicon High Temperature Transistors (all others germanium)

Pt-Point contact types

AF-Audio Frequency Amplifier-Driver AF Out-High current AF Output

Ar Out–High current AF Output

Pwr-Power output 1 watt or more

RF-Radio Frequency Amplifier

Osc-High gain High frequency RF oscillator

IF-Intermediate Frequency Amplifier

lo IF-Low IF (262 Kc) Amplifier

Sw-High current High frequency switch

AF Sw-Low frequency switch

RATINGS:

 P_e =Maximum collector dissipation at 25°C (76°F) ambient room temperature. Secondary designations are ratings with connection to an appropriate heat sink.

BV_{CR}=Minimum collector-to-emitter breakdown voltage. GE transistors measured with Base-to-emitter resistance as follows: 10K for AF and AF Out PNP 1 Meg for RF, IF, and Osc PNP Open circuit for NPN

- *BV_{CB}=45 Minimum collector-to-base breakdown voltage (for grounded base applications).
- Ic=Maximum collector current. (Negative for PNP, Positive for NPN.)
- T_3 =Maximum centigrade *junction temperature*. P_c must be derated linearily to O mw dissipation at this temperature.
- h_r=Small signal base to collector *current-gain*, or Beta (except for Pt Contact types where emitter to collector gain, alpha a, is given).
- $f_{ab} = Alpha \ cut-off-frequency$. Frequency at which the emitter to collector current gain, or alpha, is down to $\sqrt{2}$ or .707 of its low frequency audio value. For some power transistors, the Beta or base-to-collector current-gain cutoff-frequency is given as noted.
- Ge=Grounded-emitter Power Gain. AF, AF Out, and Pwr Gain measured at 1 Kc. RF, IF, and Osc Gains at 455 Kc.

(Sw Gain is dependent on circuit and wave-shape.)

(All measured at typical power output level for given transistor type.)

Po=Maximum Power Output at 5% harmonic distortion, in mw except where noted as watts. Class A single-ended, Class B Push Pull.

MANUFACTURERS:

CBS-CBS-Hytron.

Cle-Clevite Transistor Products.

- DLc-Delco Radio Div., General Motors Corp.
- GE-General Electric Company.

GP-Germanium Products Corp.

Mall-P. R. Mallory and Company, Inc.

Mar-Marvelco, National Aircraft Corp.

Motor-Motorola, Inc.

Phil-Philco.

Ray-Raytheon Manufacturing Company.

RCA-RCA.

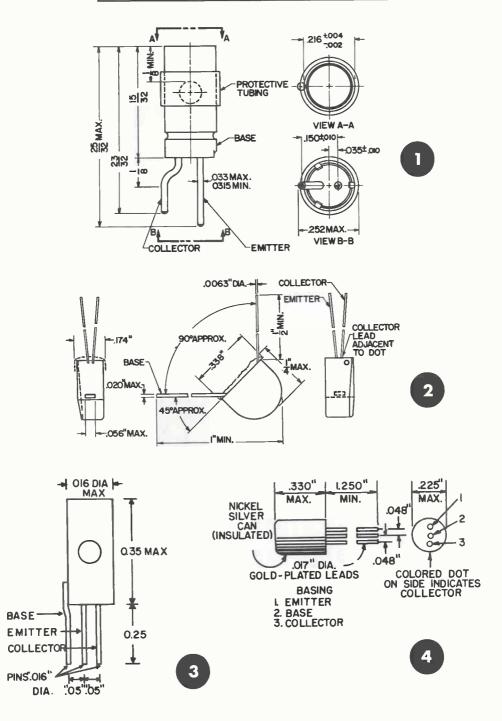
Sprague–Sprague Electronics Company.

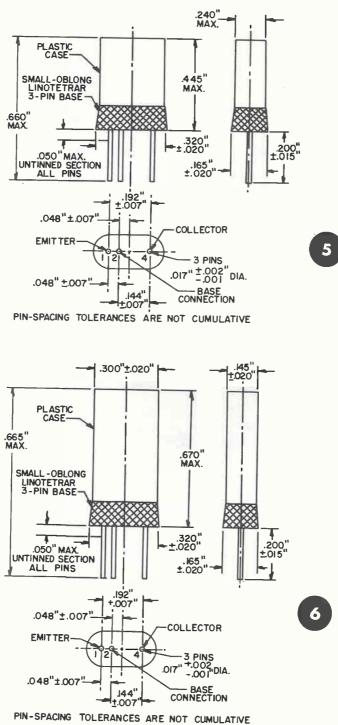
Syl-Sylvania Electric Products Company.

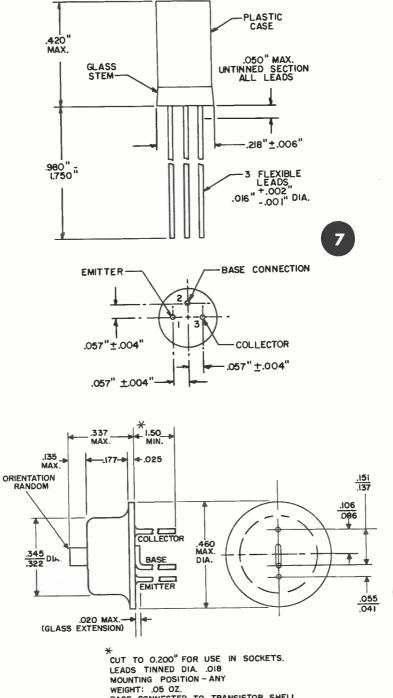
TI-Texas Instruments, Inc.

W-Westinghouse Electric Corp.

WE-Western Electric Company.

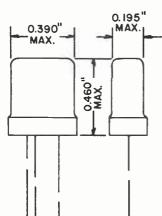

NOTE:

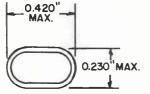

Closest GE types are given only as a general guide and are based on available published electrical specifications. However, General Electric Company makes no representation as to the accuracy and completeness of such information.

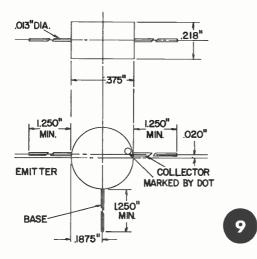

Where the maximum voltage rating of the GE unit is not equal to or greater than the given transistor, the GE rating is also given. Note that physical dimensions vary considerably among manufacturers and may be the limiting factor in some replacement applications.

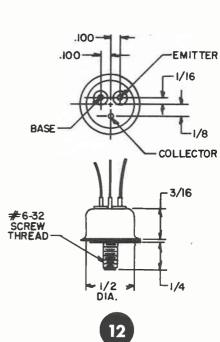
Since manufacturing techniques are not identical, the General Electric Company makes no claim, nor does it warrant, that its transistors are exact equivalents or replacements for the types referred to.

OUTLINE DRAWINGS

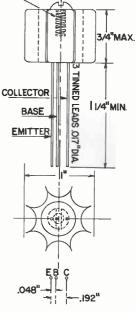


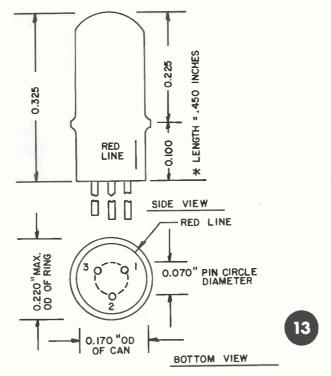


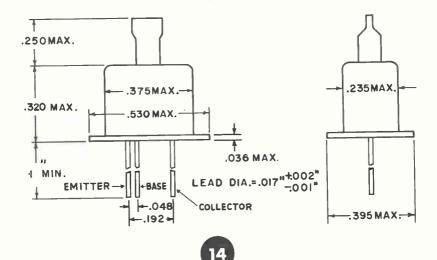

BASE CONNECTED TO TRANSISTOR SHELL. DIMENSIONS IN INCHES.

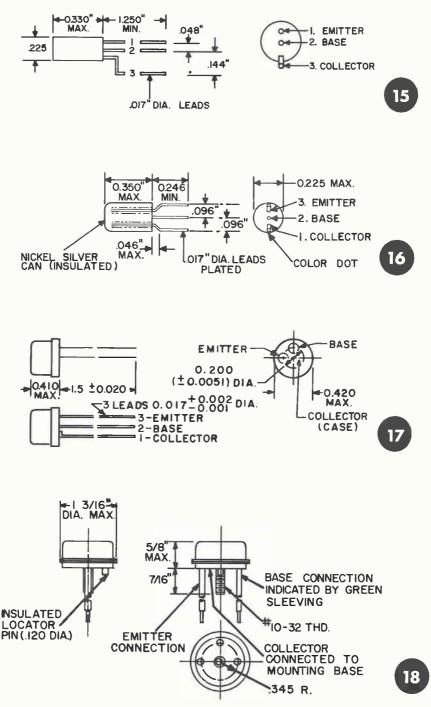

10

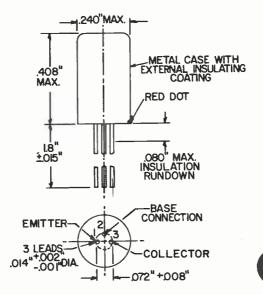
54 I 10016" TINNED FLEXIBLE LEADS. LENGTH: 1.5"MIN. SPACING: LEADS 1-4 0.144" CENTER TO CENTER OTHER LEADS 0.048" CENTER TO CENTER)

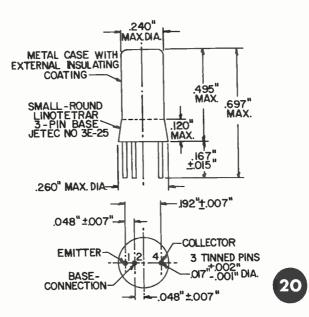


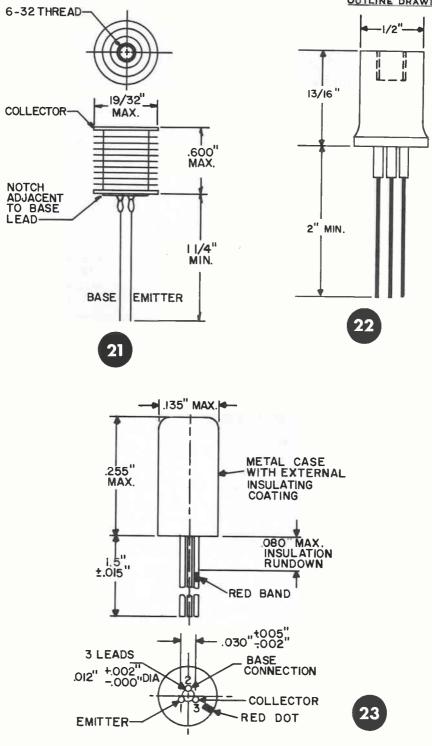


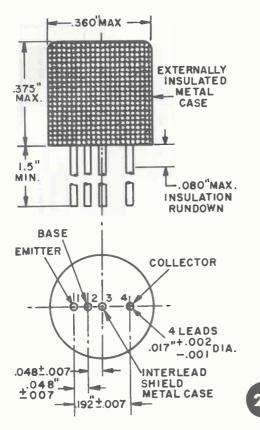


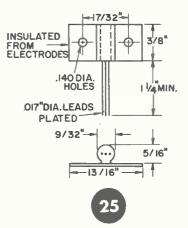


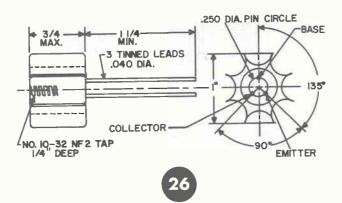

-10-32NF2 TAP 1/4" DEEP

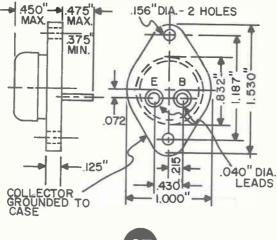

OUTLINE DRAWINGS

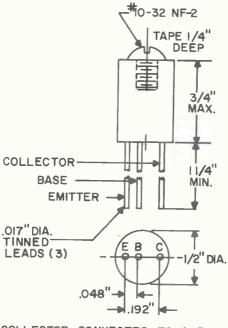


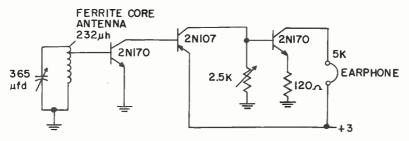


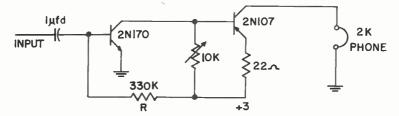






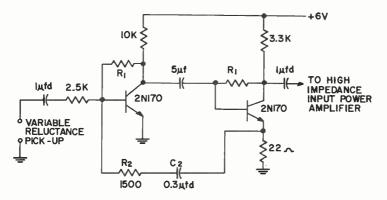






These circuit diagrams are included for illustration of typical transistor applications and are not intended as constructional information. For this reason, wattage ratings of resistors and voltage ratings of capacitors are not necessarily given. Similarly, shielding techniques and alignment methods which may be necessary in some circuit layouts are not indicated.

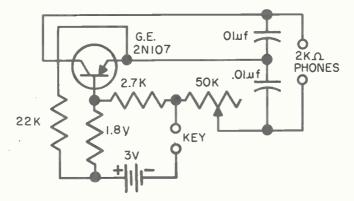
The description and illustration of the circuits contained herein does not convey to the purchaser of transistors any license under patent rights of General Electric Company. Although reasonable care has been taken in their preparation to insure their technical correctness, no responsibility is assumed by General Electric Company for any consequences of their use.



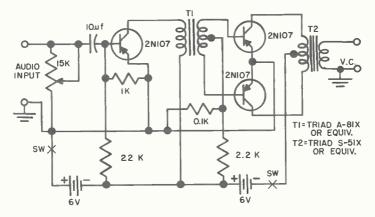
DIRECT COUPLED VEST POCKET RADIO

R SHOULD BE ADJUSTED FOR OPTIMUM RESULTS

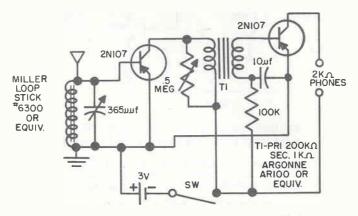
DIRECT COUPLED "BATTERY SAVER" AMPLIFIER

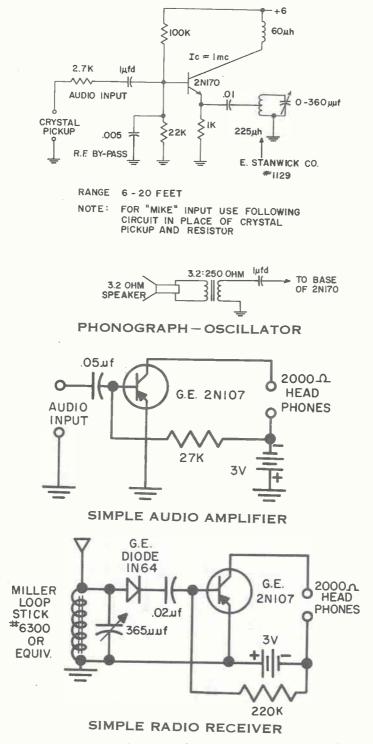


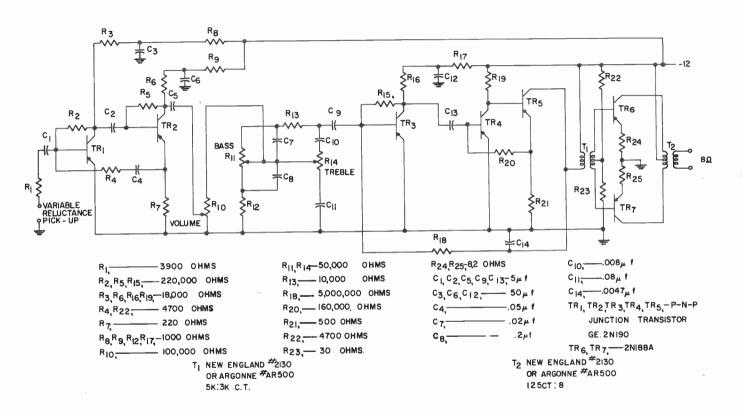
RI (IOOK-500K) SHOULD BE CHOSEN TO MAKE COLLECTOR VOLTAGE 2.5 TO 3.5 VOLTS


CHANGING C2 AND R2 WILL VARY COMPENSATION CURVE. VALUES SHOWN GIVE APPROXIMATE COMPENSATION FOR R. I. A. A. RECORDING CHARACTERISTICS

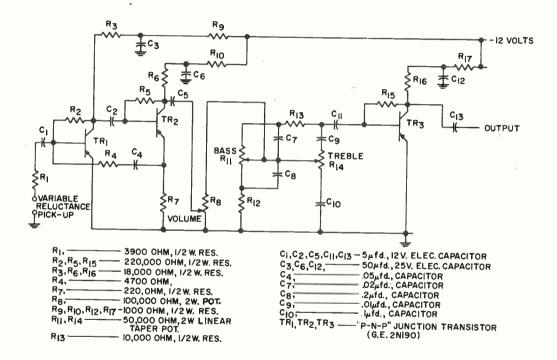
VARIABLE RELUCTANCE


COMPENSATED PRE-AMPLIFIER

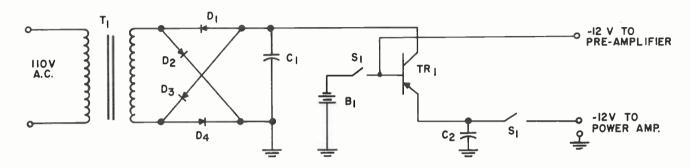

CODE PRACTICE OSCILLATOR



LOUDSPEAKER AUDIO AMPLIFIER

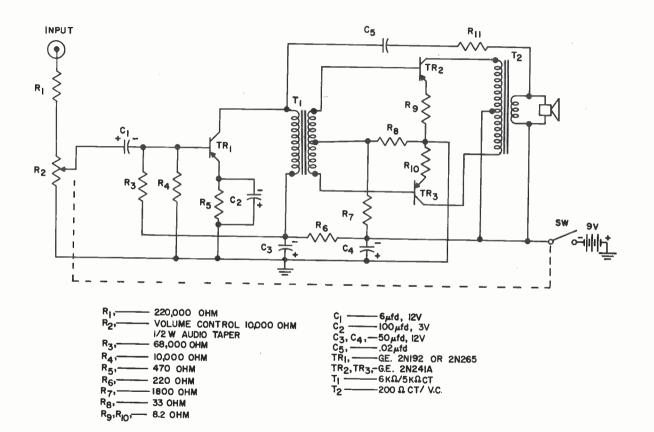


TWO TRANSISTOR RADIO RECEIVER

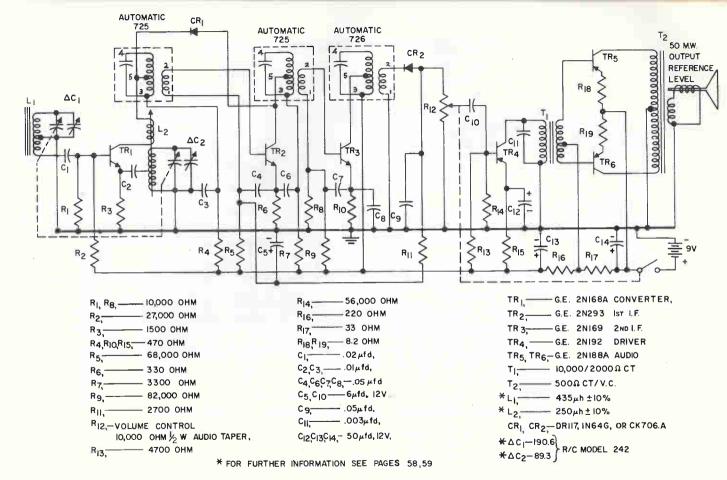


TRANSISTORIZED HI-FI AMPLIFIER

TRANSISTORIZED HI-FI PREAMPLIFIER

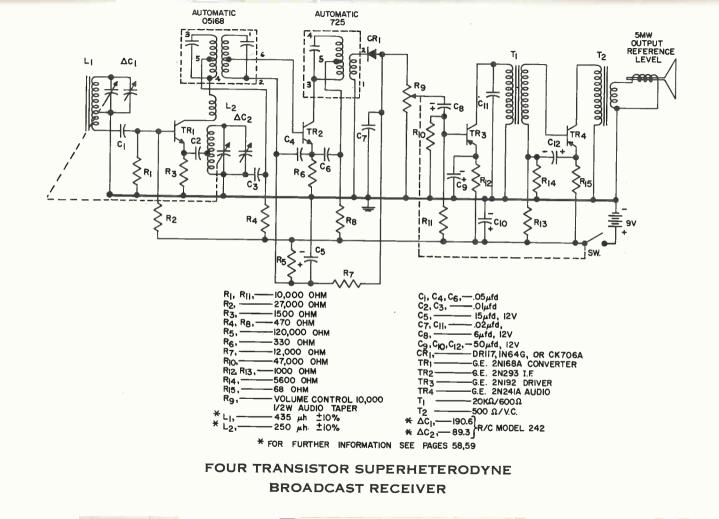

TRI - POWER TRANSISTOR (MOUNT ON HEAT SINK) C.B.S. 2N256, 2N156 OR EQUIVALENT.

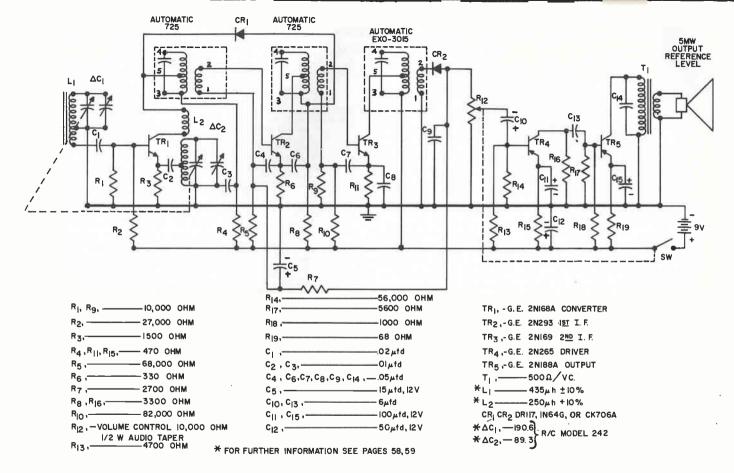
SI - D. P. S.T.


- TI STANCOR P-6469 117 VAC TO 25.2 OR EQUIVALENT
- D1, D2, D3, D4 GENERAL ELECTRIC IN91 GERMANIUM RECTIFIERS
- C1, C2 50 µfd , 50 VOLT

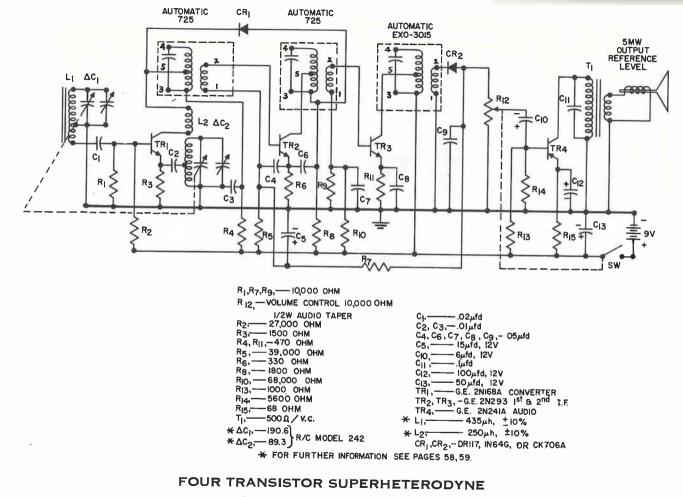
B1 - 3, 4 VOLT MERCURY CELLS IN SERIES, MALLORY TR-233R OR EQUIVALENT

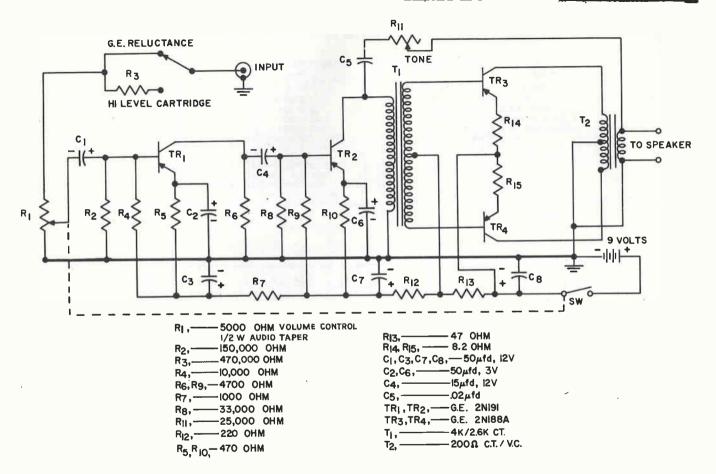
HI-FI AMPLIFIER REGULATED POWER SUPPLY

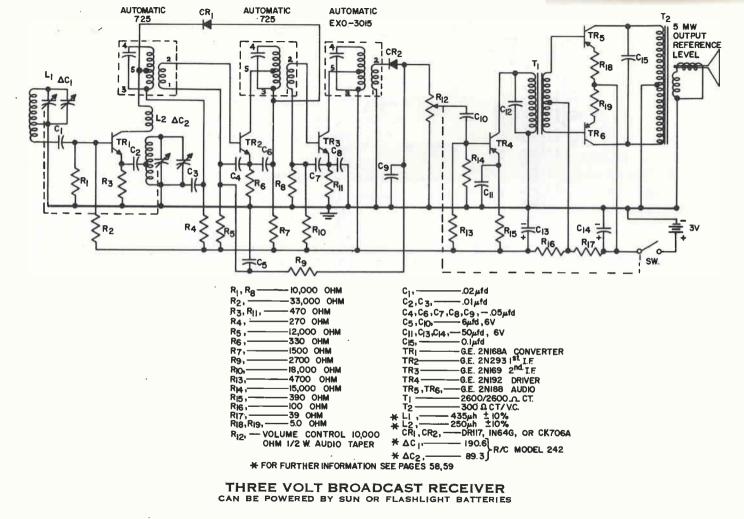

THREE TRANSISTOR PHONO AMPLIFIER

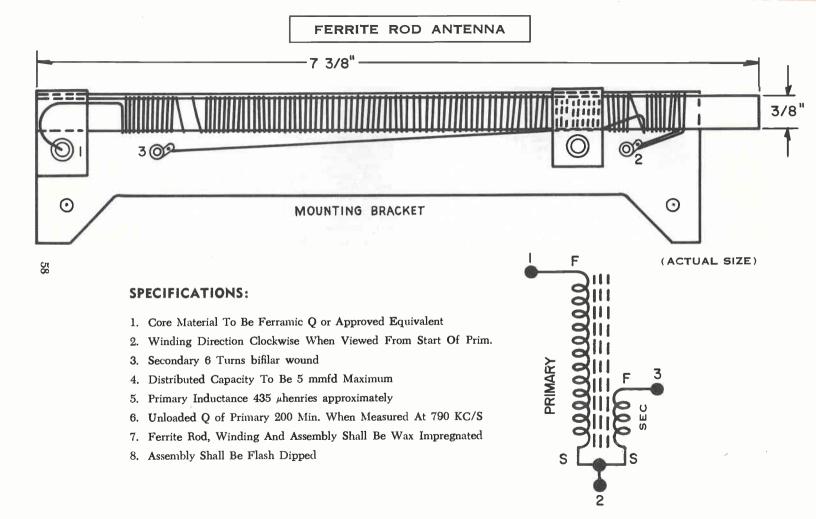

SIX TRANSISTOR SUPERHETERODYNE BROADCAST RECEIVER

52

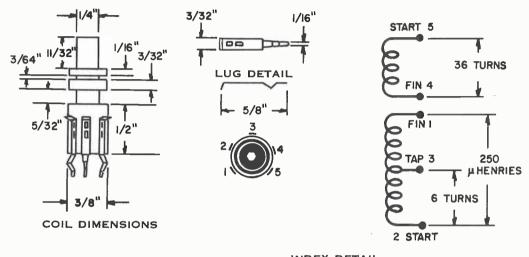

CIRCUIT DIAGRAMS


St C


FIVE TRANSISTOR SUPERHETERODYNE BROADCAST RECEIVER



BROADCAST RECEIVER


FOUR TRANSISTOR PHONO AMPLIFIER

OSCILLATOR COIL

ED STANWYCK COIL COMPANY #1265 OR EQUIVALENT

SPECIFICATIONS: 1. Wire To Be #5/44 Heavy Easysol Bonded

- 2. Inductance of Primary To Be 250 μ h Nom.
- 3. Core Adjustment Range ±10%
- 4. Distributed Capacity To Be 7 mmfd Maximum
- 5. Q at 790 KC/S To Be 100 ±10%
- 6. Primary To Be Tapped At 6 Turns
- 7. Secondary Winding To Be 36 Turns ± 1 Turn
- 8. Coil To Be Wax Impregnated & Flash Dipped
- 9. Coil Form To Be Cosmolite Or Appr. Equiv.
- 10. Collar To Be Cemented Securely To Form
- 11. All Materials To Be Acid Free

INDEX DETAIL

VARIABLE CONDENSER

RADIO CONDENSER COMPANY, MODEL 242 OR EQUIVALENT

 \triangle C_{RF} = 190.6 C_{min.} = 7.6 \triangle C_{OSC} = 89.3 C_{min.} = 6.8

TRANSISTOR RADIOS

SHOWING CLOSEST GE REPLACEMENT TRANSISTORS

MANUFACTURER & MODEL	V BATT	CONVERTER	IF	1 F	DET.	r AF	POWER	
Bulova 270C	9V	CK766 GE 2N136	2N112A 2N135	_	1N295 1N64	2N132 2N192	2N138A 2N241A	
Bulova 270/277	9V	2N112 GE 2N136	2N112 2N135	_	CK706A 1N64	2N132 2N192	2N138 (2) 2N192 (2)	
CBS TR 250	21V/12V	GE 2N136	2N135	2N135	4JD1A26	_	2N44	
CBS TR 260	9V	2N172 GE 2N169	2N146 2N169	2N146 2N169	1N60 1N64	310 2N192	2N189 (2) 2N189 (2)	Note 2 Note 1
Dewald K 701 & 702 Dewald	9V	2N112 GE 2N136	2N112 2N135	2N112 2N135	1N295 1N64	2N109 2N192	2N109 (2) 2N188 (2)	
Dumont 1210	9V	2N168A GE 2N168A	2N168 2N293	2N168 2N293	Diode 1N64	CK882 2N192	CK888 (2) 2N188 (2)	Note 3
Emerson 842	4V	830 GE 2N169	2N146 2N169	2N146 2N169	Diode 1N64	310 2N192	353 (2) 2N188 (2)	Note 2 Note 1
Emerson 855	9V .	2N172 GE 2N169	2N146 2N169	2N146 2N169	1N195 1N64	2N109 2N192	2N109 (2) 2N188 (2)	Note 2
GE 675 Ebony, 676 Ivory 677 Red, 678 Aqua	13½ 13½	Early Prod 2N136 Late Prod 2N135	2N137 2N135	2N135 2N135	2N78 1N87	 2N169	2N44 2N44	Note 4 Note 5
GE P715 Beige, P716 Black	3V	GE 2N168A	2N169	2N169	1N87	2N192	2N241 (2)	
GE P720 Ginger, P721 Champagne	6V	GE 2N168A	2N293	2N169	1N87	2N191	2N188A (2)	
Hallicrafters TR 88 El Diablo	. 6V	2N112 GE 2N136	2N112 or 2N135	2N139 2N135	None None	2N109 or 310 2N192	2N109 (2) or 352 (2) 2N188 (2)	
Magnavox AM2 Companion (CR 729 AA)	4V	2N172 GE 2N169	2N146 2N169	2N146 2N169	1N295 1N64	310 2N192	353 (2) 2N188 (2)	Note 2 Note 1
Motorola 56 T1	9V	2N172 GE 2N169	2N146 2N169	2N146 2N169	R35 2N191	—	354 2N188	Note 2 Note 1

	1 /		4 /	[1	1 1		1
Motorola 6 x 31	6V	GE 2N168A	2N293	2N292	Diode	2N189 or 2N190	2N186 or 2N187	
Motorola 6 x 32	12V	GE 2N293	2N168A	2N169	Diode.	2N191 or 2N192	2N188 or 2N241	
RCA 7BT-9J	9V	235 GE 2N168A	234 2N169	234 2N169	1N295 1N64	2N109 2N192	2N109 (2) 2N188 (2)	
Raytheon 8 T P 1		CK760 CK759 GE 2N136 2H135	CK760 2N135	CK760 2N135	CK721 2N191	CK721 2N191	CK721 (2) 2N188 (2)	Oscillator
Raytheon FM101A	6V	2N113/14 2N112/13 GE 2N136 2N135	2N112 2N135	2N112 2N135	2N112 2N135	CK721/22 2N191	CK721/22 (2) 2N188	Oscillator
Raytheon T—100 Series		2N112/13 GE 2N136	2N112 2N135	2N112 2N135	Diode 1N64	2N132 2N192	2N138 2N192	
Regency TRL	221/2	223 GE 2N169	222 2N169	222 2N169	1N69 1N64	_	210 2N169A	Note 1
Sentinel 369P	4V	2N172 GE 2N169	2N146 2N169	2N146 2N169	1N295 1N64	310 2N192	353 (2) 2N188 (2)	Note 2 Note 1
Sonic TR 700 Capri	9V	GE 2N168A GE 2N168A	2N168 2N293	2N169A 2N169	1N64 1N64	2N191 2N190	2N188A (2) 2N187 (2)	Note 3
Traveler	131/2	GE 2N136	2N135	2N135	4JD1A26		2N187A	<u> </u>
Westinghouse 7	9V	2N172 GE 2N169	2N146 2N169	2N146 2N169	880 2N169	310 2N192	2N185 (2) 2N188A (2)	Note 2
Zenith 500	6V	2N94 GE 2N169	2N94 2N169A	2N94 2N169A	1N295 1N64	2N35 2N169A	2N35 (2) 2N169A	Note 1
Zenith 800	12V	GE 2N168A	2N168	2N169A	1N295	2N190	2N188A (2)	Note 3

*This list includes transistor production radios for which information is currently available. It is primarily for information and is intended only as a general guide for replacements.

The radio battery should be replaced with a fresh unit before checking transistors. If necessary to replace transistors, some selection may be necessary in order to obtain optimum performance since transistors of various manufacturers are made by slightly different processes and are not precisely interchangeable.

NOTES:

- 1. Remove any neutralization loops around IF circuits before operating with GE NPN transistors.
- 2. In some radios where the 2N146 is shown in both IF stages, one 2N145 and one 2N147 may be found instead in these stages.
- 3. The 2N293 may be used to replace the 2N168 in IF stages.
- 4. The 2N169 may be used to replace the 2N78 in AF stages.
- 5. The 2N186A may be used to replace the 2N44 in AF output stages.

NOTES

NOTES

NOTES

READING LIST

The following list of semiconductor references gives texts of both elementary and advanced character. Obviously, the list is not inclusive, but it will guide the reader to other references.

Coblenz, A., Owens, H., Transistors and Applications (McGraw-Hill)

Garner, L., Transistor Circuit Handbook (Coyne)

Krugman, L., Fundamentals of Transistors (Rider)

Lo, A. W., Endres, R. O., Zawels, J., Waldhauer, F. D., Cheng, C. C., *Transistor Electronics* (Prentice-Hall)

Shockley, W., Electrons and Holds in Semiconductors (Van Nostrand)

Shea, R. F., et al., Principles of Transistor Circuits (Wiley)

Shea, R. F., Transistor Audio Amplifiers (Wiley)

Turner, R. P., Transistors-Theory and Practice (Gernsback)

SEMICONDUCTOR PRODUCTS DEPARTMENT

(In Canada, Canadian General Electric Company, Ltd., Toronto, Ont. Outside the U.S.A., and Canada, by: International General Electric Company, Inc., Electronics Div., 570 Lexington Ave., New York, N.Y., U.S.A.)