

 EMy Mr ond

TRANSISTOR

MANUAL

- couFzellyys

+ AR-7. $-2 \boldsymbol{A H} \circ \mathrm{HI}=$

+ SFEFOIFlOANIONHE

Progress is Our Most Imporrant Product GENERAL (g) ELECTRIC

GFNFRAI FIECTRIC TRANSISTOR MANUAI_

2ND EDITION

CONTENTS

Page
BASIC SEMICONDUCTOR THEORY 3
TRANSISTOR CONSTRUCTION TECHNIQUES 7.
Rectifier Construction 9
Transistor Specifications 11
TRANSISTOR APPLICATIONS 14
Biasing 14
Single Stage Audio Amplifier 15
Two Stage R-C Coupled Amplifier 16
Class B Push-Pull Output Stages 16
Class A Output Stages 18
Class A Driver Stages 19
Design Charts 19
Hi-Fi Circuits 24
IF Amplifiers 29
Autodyne Converter Circuits 30
Reflex Circuits 31
Transistor Switches 32
Pulse Circuits 34
Simplified Flip-Flop Design 37
POWER SUPPLIES 46
EXPLANATION OF PARAMETER SYMBOLS 49
G-E TRANSISTOR SPECIFICATIONS 50
Test Circuits 68
REGISTERED JETEC TRANSISTOR TYPES 70
Explanation of Symbols 75
Outline Drawings 76
CIRCUIT DIAGRAMS 87
TRANSISTOR RADIO CROSS REFERENCE CHART 111
READING LIST Inside back cover

The Second Edition of the General Electric Transistor Manual has been greatly expanded. Seventeen General Electric Transistor Specifications have been added, including Silicon Transistors, and the Registered JETEC Transistor Type Tables have been brought up to date. The greatest increase in material will be found in the Transistor Applications Chapter and in the Circuit Diagrams. A complete new chapter on Power Supplies has been added along with several power supply diagrams.
This manual has been prepared to assist the service technician, hobbyist, experimenter, and ham in working with transistors. We have attempted to assemble the information necessary for an understandable working knowledge of the fundamentals and applications of transistors.
The information included covers such topics as Basic Theory, Construction Techniques used to obtain the various types of transistors available, Principles of Circuit Design, and Specifications, with outline drawings, of all transistors registered with JETEC. Complete explanations of the parameter symbols used are also given. Several Circuit Diagrams, varying from simple amplifiers to high fidelity amplifiers and radios have been included.

GENERAL ELECTRIC CO. SEMICONDUCTOR PRODUCTS 1224 W. GENESEE ST. SYRACUSE, N. Y.

The outer orbit of a germanium atom contains four electrons and a crystal of pure germanium takes the form of a diamond structure as shown in Figure 1.

FIGURE 1
The four electrons of each atom form covalent bonds with the adjacent atoms and there are no free electrons. Absolutely pure germanium is therefore a poor conductor. If a voltage is applied to a piece of pure germanium, of the size used in transistors, only a few microamps of current will flow. This current is due to electrons which are broken away from their bonds by thermal agitation and this minute current increases exponentially with temperature.

If an atom with five electrons in the outer orbit such as Antimony or Arsenic is introduced into the crystal, a structure is formed as shown in Figure 2. The extra electrons are free to move and under the influence of an electrical field will move toward the positive voltage source. This atom of material other than germanium is called a doping agent and if it results in free electrons in the crystal, the crystal is known as " N " type germanium.

FIGURE 2
If a doping agent is used that only contains three electrons in the outer orbit such as Indium, Gallium or Aluminum, the crystal takes the form of Figure 3 where there is a deficiency of one electron and this deficiency is called a hole.

FIGURE 3
Under the influence of an electrical field, electrons will jump into this hole and the hole will appear to proceed towards the negative terminal. This crystal containing a deficiency of electrons is known as " P " type germanium. As far as the external circuit is concerned, it is impossible to differentiate between electron current and hole current. These two modes of conduction are quite distinct however, and are basic to transistor and rectifier theory. With an electrical field of $1 \mathrm{volt} / \mathrm{cm}$ in germanium, an electron will move at the rate of $3600 \mathrm{~cm} / \mathrm{sec}$ whereas a hole will only move at $1700 \mathrm{~cm} / \mathrm{sec}$.

If a single crystal of germanium is so doped that it changes abruptly from " N " type to " P " type material and a positive voltage applied to the " P " region and a negative voltage to the " N " region, the situation is as shown in Figure 4a.

FIGURE 4A

FIGURE 4B

The holes will move to the right across the junction and the electrons will move to the left with the resultant V-1 curve shown in Figure 4b. If the voltage is applied in the reverse direction, the holes and electrons will both move away from the junction as shown in Figure 5a until the electrical field produced by their displacement counteracts the applied electrical field. Under these conditions almost no current will flow in the external circuit and any current that does flow is caused by thermally generated electron hole pairs. The V-I characteristics of a reversed bias junction are shown in Figure 5b and it will be noted that the reverse leakage current is essentially independent of voltage up to the point where the junction actually breaks down.

FIGURE 5A

FIGURE 5B

An NPN transistor is formed by a crystal of germanium that is changed from "N" type to "P" type and back to "N" type as indicated in Figure 6.

FIGURE 6
With the voltage applied as shown, one N-P junction is forward biased and this is called the emitter junction. The other junction is back biased and this is called the collector junction. The "P" type base region is relatively lightly doped in comparison with the " N " type emitter so that the majority of the current flowing from the emitter to base is electron current and very little of it is hole current. The majority of the electrons that are emitted into the base region diffuse across to the collector junction and pass on to the collector circuit. The ratio of the collector current to the emitter current is called alpha. It is desirable to have alpha as high as possible and this is done by light doping of the base region, using a thin base region on the order of 1 mil, and minimizing the unwanted impurities in germanium that might cause recombination of electrons before they traverse the base region. Alphas of 0.95 to 0.99 are common in commercial transistors. No current (except a small leakage current) will flow in the collector circuit unless current is introduced into the emitter. Since very little voltage (.1 to .5) is needed to cause appreciable current to flow into the emitter, the input power is very low. Almost all the emitter current will flow in the collector circuit where the voltage can be as high as 45 volts. Therefore, a relatively large amount of power can be controlled in an external load and the power gain of a transistor (power out/power in) in the circuit shown is over 1000.

The unijunction transistor's thyratron-like action depends on different principles. The silicon unijunction transistor was originally known as a double base diode. It is similar to the germanium version of the unijunction transistor but differs quantitatively in its characteristics.

The transistor shown in Figure 7 consists of an N type silicon bar with ohmic

FIGURE 7
end connections. A p-n junction is formed along the bar, near the base 2 end. If the emitter is open or back-biased in the circuit of Figure 7, the bar behaves as a resistance and has a nearly uniform voltage gradient along its length. Because the junction is near base 2 , the voltage opposite the emitter will be greater than half the supply voltage. Once the junction is forward biased, the emitter current flows lowering the resistivity of the bar between the emitter and base. Inherent regeneration results in a negative emitter to base 1 impedance. As the emitter current increases the conditions for regeneration eventually cease to exist and the emitter to base diode behaves in a conventional manner. The emitter characteristics in Figure 8 show the peak point (beginning of the negative resistance region) in the first quadrant indicating that a minimum of two or three microamperes of emitter current must flow before regeneration occurs. The valley point (end of negative resistance region) lies between five and twenty milliamperes.

FIGURE 8

The most common type of junction transistor is the PNP diffused alloyed type. This transistor is made by taking a wafer of " N " type germanium, mounting it on a holder and pressing indium dots into each side. The assembly is then heated in a furnace until the indium melts and alloys with the germanium forming a "P" layer within the " N " type germanium. The complete assembly is shown by Figure 9.

FIGURE 9
This type of transistor has good gain at audio frequencies and is suitable for medium power audio amplifiers since it is possible to pass currents of up to one-half ampere through the transistor. This structure is not as well suited for high frequency amplifiers since the large indium dots produce a high capacitance between collector and base making the unit inherently unstable at high frequencies.

The rate grown transistor is produced by an entirely different technique. A bar of germanium is grown from a bath of molten germanium so doped that the material will change from " P " type to " N " type depending on the temperature and rate of pulling. By suitable growing techniques, 10 to 15 thin " P " type layers are formed in a bar about the size of a cigar. This bar is then sawed up into pieces about 10 mils by 10 mils by 100 mils with the thin " P " layer in the center and long " N " regions on each side. About 7 to 10 thousand transistor bars can be cut from each ingot of germanium. The internal appearance of one of these transistors is shown in Figure 10. This transistor has a low collector capacitance and has excellent gain up to several megacycles. It is stable at high frequencies and is ideally suited for the radio frequency section of broadcast receivers. A rate grown transistor also makes an excellent unit for high speed gates and counting circuits.

FIGURE 10
The meltback method of transistor construction starts off with a bar of germanium about $10 \times 10 \times 100$ mils. The end of the bar is melted and allowed to refreeze very quickly. By suitable doping of the original material, the junction between the melted portion and the unmelted portion becomes a thin layer of "P" type material and the melted and unmelted portion of " N " type material remains " N " type material. This transistor is essentially a rate grown transistor, but the rate growing is done on an individual small bar rather than on the large germanium ingot. The appearance of a complete meltback triode is shown by Figure 11. This fabrication technique has the advantage of obtaining very close control over the base thickness and it is possible to obtain good performance at very high frequencies.

FIGURE 11
By the addition of an extra base connection to a triode, a tetrode is formed. If a current is passed through the base region from one base lead to the other, the active portion of the base region is electrically narrowed and high gain is possible up to 200 mc .

The diffused-meltback silicon transistor adds a step to the meltback process. As in the meltback process, a suitably doped silicon crystal is sawed into 4000 to 5000 bars. The end of each bar is then melted and refrozen causing a region of very low impurity concentration. The base region is then made by diffusing the internal impurities by subjecting the bar to high temperature for several hours. This technique of solid-state diffusion allows very fine control over the formation of the base region, and yields base regions as thin as 2 microns with relative ease. After leads have been attached and the device hermetically sealed, each unit is aged at high temperature for over 150 hours. This process makes excellent use of expensive silicon crystals and is capable of mass producing low cost silicon transistors with extreme reliability and stability. These transistors have alpha-cutoffs as high as 200 mc , high base to emitter breakdown voltage, low saturation resistance, and good Beta holdup.

RECTIFIER CONSTRUCTION

Germanium and Silicon rectifiers are two-element semiconductor devices constructed around the single P-N junction described in Figures 4A, 4B, 5A and 5B. Because of their inherently low forward resistance and high reverse resistance, these devices are widely used for converting alternating current to direct current, to block reverse currents in control circuits, and to increase the power gain of magnetic amplifiers through the effects of self-saturation.

Rectifiers are generally designed to handle power rather than small signals, and sizeable currents in addition to high voltages. These capabilities are attained through use of large cross-sectional area junctions and efficient means for dissipating heat losses, such as fins, heat sinks, etc.

SECTIONAL VIEW OF
IN9I SERIES OF GERMANIUM RECTIFIER

FIGURE 12
A section through a typical low power germanium rectifier is shown in Figure 12. The germanium pellet, which is soldered to the base disc, is approximately $1 / 16$ inch square. Yet the junction of this germanium pellet with the indium alloy can rectify over $1 / 4$ ampere at room temperature and block voltages in the reverse direction up to 300 volts peak. This latter rating is called the "Peak Inverse Voltage" of the cell. When this same cell is mounted on a $1-1 / 2$ inch square fin as shown in Figure 13, its current carrying capabilities are increased to over $3 / 4$ ampere at room temperature.

FIGURE 13
Germanium rectifiers of this type offer outstanding advantages over other types of rectifiers:

1. Low forward drop, unexcelled by any other type of rectifier with the same inverse voltage rating.
2. Reverse resistance so high as to be negligible for most applications.
3. No aging, and therefore indefinitely long life. Also, no filament to burn out.
4. No junction forming required . . . it is always ready to function after prolonged idleness.
5. Withstands corrosive atmospheres and fluids . . . the junction is protected by a welded hermetic seal.
6. Wide temperature range, from $-65^{\circ} \mathrm{C}$ to as high as $+85^{\circ} \mathrm{C}$.
7. Ability to withstand shock and vibration . . . no moving parts, flimsy supports, or sensitive filament.

FIGURE 14
When ambient temperatures exceed $85^{\circ} \mathrm{C}$, or when extremely low reverse currents are required, the silicon rectifier shown in cross-section in Figure 14 can be used. In outward appearance, the silicon rectifier looks identical to the germanium rectifier. However, instead of a germanium-indium junction inside, this cell employs the junction of a piece of aluminum wire alloyed into a wafer of the metal silicon. This device can operate in ambients up to $165^{\circ} \mathrm{C}$ and can handle currents up to $3 / 4$ ampere at room temperature. Whereas its forward resistance is approximately 40% higher than a germanium device of the same rating, its reverse leakage current may be several hundred times less than a comparable germanium cell. It too can be mounted on a fin for higher current rating.

TRANSISTOR SPECIFICATIONS:

There are many properties of a transistor which can be specified, but this section will only deal with the more important specifications. A fundamental limitation to the use of transistors in circuits is $\mathrm{BV}_{\text {CER }}$, the breakdown voltage in the grounded emitter connection. The grounded emitter breakdown voltage is a function of the resistance from the base to the emitter and it is necessary to specify this resistance shown as R in Figure 15.

FIGURE 15
Since the breakdown voltage is not sharp, it is also necessary to specify a value of collector current at which breakdown will be considered to have taken place. For example, in PNP audio transistors the collector current is specified to be less than 600μ a with 25 volts applied and the resistance R equal to 10,000 ohms. With NPN transistors, the collector current should be less than 300μ a with 15 volts applied, and the base open-circuited.

The small signal parameters of transistors are usually specified in terms of the " h " or hybrid parameters. These parameters are defined for any network by the following equations:

$$
\begin{aligned}
& e_{1 n}=h_{1} i_{1 n}+h_{r} e_{\text {out }} \\
& i_{\text {out }}=h_{\mathrm{h}} i_{1 n}+h_{\mathrm{o}} \text { eout } \\
& \text { where } h_{\mathrm{h}}=\text { input impedance (ohms) } \\
& h_{\mathrm{r}} \\
&=\text { feedback voltage ratio (dimensionless) } \\
& h_{\mathrm{r}} \\
&=\text { forward current transfer ratio (dimensionless) } \\
& h_{\mathrm{o}}=\text { output conductance (mhos) }
\end{aligned}
$$

For transistors, a second subscript is added to designate which terminal of the transistor is grounded. For example, h_{fe} is the grounded emitter forward current transfer ratio.

The current transfer ratio is equal to the ratio of an a-c variation in collector current to an a-c variation in base current. This current gain can be specified either

FIGURE 16
for small a-c values of base current or for large values of base current in which case it would be known as $h_{\text {FE }}$, the d-c current gain. The current gain is the most important property of a transistor in determining the gain of audio amplifiers.

The small signal " h " parameters of a transistor are a function of frequency and bias conditions. For a P-N-P alloy audio transistor, typical h parameters at 270 cps , and bias conditions of 5 volts (collector to emitter) and 1 ma collector current are:

Grounded Base	
h_{Ib}	30 ohms
h_{rb}	4×10^{-4}
$\mathrm{~h}_{\mathrm{fb}}$	-0.98
$\mathrm{~h}_{\mathrm{ob}}$	$1 \times 10^{-\mathrm{g}}$ mhos

Grounded Emitter	
$\mathrm{h}_{\text {1e }}$	1500 ohms
h_{re}	2×10^{-2}
$\mathrm{~h}_{\mathrm{fe}}$	50
$\mathrm{~h}_{\mathrm{ee}}$	$50 \times 10^{-\mathrm{e}}$

The h parameters at other bias conditions are shown by Figure 17.

FIGURE 17
With transistors used as radio frequency amplifiers, it is necessary to specify a transformer coupled power gain as indicated in Figure 18. The power gain is the ratio of output power to input power under conditions where the input and output impedances are matched by means of the transformers. The input and output impedances must also be specified to select the proper transformer.

FIGURE 18
Another common transistor specification is the alpha cut-off frequency. This is the frequency at which the grounded base current gain has decreased to 0.7 of its low frequency value. For audio transistors, the alpha cut-off frequency is in the region of 1 mc. For transistors used in the if section of radios, the alpha cut-off frequency should be 3 to 15 mcs . Other examples of transistor specifications are shown on the specification sheets starting on page 50.

TRANSISTOR APPLICATIONS

BIASING:

The best method of biasing a transistor is shown in Figure 19.

FIGURE 19
A voltage divider consisting of resistors $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ is connected to the base and the resistance $\mathbf{R}_{\boldsymbol{t}}$ is placed in the emitter. Since the emitter junction is forward biased, the current that flows in the emitter circuit is essentially equal to the voltage at the base divided by \mathbf{R}_{e}. To prevent degeneration of the a-c signal to be amplified, the emitter resistance is by-passed with a large capacitance. Good design practice is to make R_{2} no larger than 5 to 10 times R_{e}. A typical value of R_{8} is $500-1000$ ohms.

When the supply voltage is fairly high and wide variations in ambient temperature do not occur, it is possible to use the method of biasing as shown in Figure 20. In this circuit, the biasing is done with a resistance R_{1} connected from the collector to base. The approximate formula for the collector to emitter voltage is shown in Figure 20, and is seen to depend on $h_{f e}$, the grounded emitter current gain.

FIGURE 20
This method of biasing requires fairly tight production control over the current gain of the transistors to achieve interchangeability.

A method of biasing which is sometimes used is shown by Figure 21. The base is simply connected to the supply voltage through a large resistance which, in essence, supplies a fixed value of base current to the transistor. This method of biasing is

FIGURE 21
extremely dependent upon $h_{f e}$ of the transistor and is not recommended except in circuits where the biasing resistance can be individually adjusted for optimum results

SINGLE STAGE AUDIO AMPLIFIER

Figure 22 shows a typical single stage audio amplifier using a 2 N190 PNP transistor.

The frequency at which the voltage gain is down 3 db from the 1 Kc value depends on r_{g}. This frequency is given approximately by the formula:

$$
\text { low } f_{3 \mathrm{db}}=\frac{1+h_{\mathrm{fe}}}{6.28\left(\mathrm{r}_{\mathrm{g}} \mathrm{C}_{\mathrm{p}}\right)}
$$

TWO STAGE R-C COUPLED AMPLIFIER

The circuit of a two stage R-C coupled amplifier is shown by Figure 23. The input impedance is the same as the single stage amplifier and would be approximately 1100 ohms.

FIGURE 23
The load resistance for the first stage is now the input impedance of the second stage. The voltage gain is given approximately by the formula:

$$
A_{V}=h_{f e} \frac{R_{L}}{h_{i b}}
$$

More exact formulas for the performance of audio amplifiers may be found in the Reading List at the end of this manual.

CLASS B PUSH-PULL OUTPUT STAGES

In the majority of applications, the output power is specified so a design will usually begin at this point. The circuit of a typical push-pull Class B output stage is shown in Figure 24.

FIGURE 24
The voltage divider consisting of resistor, \mathbf{R} and the 47 ohm resistor gives a slight forward bias on the transistors to prevent cross-over distortion. Usually about $1 / 10$ of a volt is sufficient to prevent cross-over distortion and under these conditions, the no-signal total collector current is about 1.5 ma . The 8.2 ohm resistors in the emitter leads stabilize the transistors so they will not go into thermal runaway when the junction temperature rises to $60^{\circ} \mathrm{C}$. Typical collector characteristics with a load line are shown below:

It can be shown that the maximum a-c output power without clipping using a pushpull stage is given by the formula:

$$
P_{\text {out }}=\frac{I_{\max } E_{c}}{2}
$$

Since the load resistance is equal to

$$
\mathrm{R}_{\mathrm{L}}=\frac{\mathrm{E}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{max}}}
$$

and the collector to collector impedance is four times the load resistance per collector, the output power is given by the formula:

$$
\begin{equation*}
P_{o}=\frac{2 \quad E_{c}{ }^{2}}{\mathbf{R}_{\mathrm{c}-\mathrm{c}}} \tag{1}
\end{equation*}
$$

Thus, for a specified output power and supply voltage the collector to collector load resistance can be determined. For output powers in the order of 50 mw to 750 mw , the load impedance is so low that it is essentially a short circuit compared to the output impedance of the transistors. Thus, unlike small signal amplifiers, no attempt is made to match the output impedance of transistors in power output stages.

The power gain is given by the formula:

$$
\text { Power Gain }=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\mathrm{In}}}=\frac{\mathrm{I}_{0}{ }^{2}}{\mathrm{I}_{\mathrm{In}^{2}}{ }^{2}} \quad \mathrm{R}_{\mathrm{L}} \mathrm{R}_{\mathrm{in}}
$$

Since I_{o} is equal to the current gain, Beta, for small load resistance, the power gain $I_{1 a}$ formula can be written as:

$$
\begin{equation*}
\text { P. G. }=\beta^{2} \frac{\mathrm{R}_{\mathrm{c}-\mathrm{c}}}{\mathrm{R}_{\mathrm{b}-\mathrm{b}}} \tag{2}
\end{equation*}
$$

where $\mathbf{R}_{\mathrm{c}-\mathrm{e}}=$ collector to collector load resistance.
$\mathrm{R}_{\mathrm{b}-\mathrm{b}}=$ base to base input resistance.
$\beta \quad=$ grounded emitter current gain.
Since the load resistance is determined by the required maximum undistorted output power, the power gain can be written in terms of the maximum output power by combining equations (1) and (2) to give:

$$
\begin{equation*}
\text { P. G. }=\frac{2 \beta^{2} \mathrm{E}^{2} \mathrm{c}}{\mathbf{R}_{\mathrm{b}-\mathrm{b}} \mathrm{P}_{\mathrm{out}}} \tag{3}
\end{equation*}
$$

CLASS A OUTPUT STAGES

A Class A output stage is biased as shown on the collector characteristics below:

FIGURE 26
The operating point is chosen so that the output signal can swing equally in the positive and negative direction. The maximum output power without clipping is equal to:

$$
P_{\text {out }}=\frac{E_{c} I_{c}}{2}
$$

The load resistance is then given by the formula:

$$
\mathrm{R}_{\mathrm{L}}=\frac{\mathrm{E}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{c}}}
$$

Combining these two equations, the load resistance can be expressed in terms of the supply voltage and power output by the formula below:

$$
\begin{equation*}
R_{L}=\frac{E_{c}{ }^{2}}{2 P_{o}} \tag{4}
\end{equation*}
$$

For output powers of 10 mw and above, the load resistance is very small compared to the transistor output impedance and the current gain of the transistor is essentially the short circuit current gain Beta. Thus for a Class A output stage the power gain is given by the formula:

$$
\begin{equation*}
\text { P.G. }=\frac{\beta^{2} R_{L}}{R_{1 n}}=\frac{\beta^{2} E_{c}^{2}}{2 R_{1 n} P_{o}} \tag{5}
\end{equation*}
$$

. CLASS A DRIVER STAGES

For a required output power of 250 mw , the typical gain for a push-pull output stage would be in the order of 23 db . Thus the input power to the output stage would be about 1 to 2 mw . The load resistance of a Class A driver stage is then determined by the power that must be furnished to the output stage and this load resistance is given by equation (4). For output powers in the order of a few milliwatts, the load resistance is not negligible in comparison to the output impedance of the transistors, therefore, more exact equations must be used to determine the power gain of a Class A driver stage. From four terminal network theory, after making appropriate approximations, it can be shown that the voltage gain is given by the formula:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{V}}=\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{~h}_{1 \mathrm{~b}}} \tag{6}
\end{equation*}
$$

where $h_{1 b}=$ grounded base input impedance.
The current gain is given by the formula:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{I}}=\frac{a}{1-a+\mathrm{R}_{\mathrm{L}} \mathrm{~h}_{\mathrm{ob}}} \tag{7}
\end{equation*}
$$

where $h_{o b}=$ grounded base output conductance.
The power gain is the product of the current gain and the voltage gain, thus unlike the formula for high power output stages, there is no simple relationship between reqtired output power and power gain for a Class A driver amplifier.

DESIGN CHARTS

Figures 27 through 35 are design charts for determination of transformer impedances and typical power gains for Class A driver stages, Class A output stages, and Class B push-pull stages. Their use can be best understood by working through a typical example. It will be assumed that it is desired to design a driver and push-pull amplifier capable of delivering a 250 mw with a 9 volt supply. Using Figure 27, for 250 mw of undistorted output power, the required collector to collector load resistance is 450 ohms. From Figure 29 using a typical 2N187, the power gain is 22.5 db . In numerical terms, a power gain of 22.5 db is 178 . Therefore, the required input power to the driver stage would be:

$$
\mathrm{P}_{\mathrm{tn}}=\frac{250}{178}
$$

or 1.4 mw . Assuming about 70% efficiency in the transformers, the required output power of the driver stage will be 2 mw . From Figure 31, for 2 mw of undistorted output power, the load resistance is slightly over $10,000 \mathrm{ohms}$ so a $10,000 \mathrm{ohm}$ transformer could be used. From Figure 34 assuming a 2 N191 driver transistor, the power gain is 41 db . The typical power gain of the two stages using a 2 N 191 driver and

2N187's in the output would be 63.5 db . The secondary impedance of the driving transformer should be 2,000 ohms center tapped as shown on the specification sheet for the $2 \mathrm{~N} 186,2 \mathrm{~N} 187$ and 2 N 188 . The secondary impedance of the output transformer should be selected to match the impedance of the load.

FIGURE 27

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE 31

FIGURE 32

FIGURE 34

FIGURE 33

FIGURE 35
"HI-FI" CIRCUITS
Transistors are ideally suited for Hi-Fi amplifiers since there is no problem with hum pick-up from filaments as there is with tubes. Transistors are inherently low impedance devices, therefore matching the characteristics of magnetic pick-ups and loudspeakers.

To obtain the wide frequency response and low distortion needed in hi-fi equipment, negative feedback must be used around conventional transistor amplifiers.

PRE-AMPLIFIERS

By using an un-bypassed resistance in the emitter of the second stage of a two stage amplifier, a voltage is obtained which is proportional to the output current of the amplifier. If a resistance and a capacitor are connected to this resistor as shown in Figure 36, a signal is fed back to the input which is proportional to the output current.

If the feedback capacitor is made very large, the frequency response is essentially flat and the gain is determined only by the ratio of $\mathbf{R}_{\mathbf{1}}$ to $\mathbf{R}_{\mathbf{2}}$. If the capacitor is made small, the feedback current will depend upon the frequency being amplified and it is possible to obtain a boost of the low frequencies. With the values shown, the two

FIGURE 36
stage amplifier provides compensation for a General Electric Variable Reluctance Pick-up reproducing from records recorded to the RIAA Standards.

In vacuum tube pre-amplifiers, feedback voltage is usually obtained from the plate of the second stage and applied to a resistor in the cathode of the first stage. This method of feedback is not well suited for an all-transistor amplifier since voltage feedback tends to control the voltage applied to the next stage whereas it would be more desirable in transistor amplifiers to control the current into the next stage by feedback. If a transistor pre-amplifier is to be used with a vacuum tube amplifier, however, voltage feedback can be used successfully.

A very simple one transistor pre-amplifier for the General Electric Reluctance Pick-up is shown by Figure 37.

FIGURE 37
In this circuit, voltage feedback is used from collector to base to give the desired bass boost and the input resistor $\mathbf{R}_{\mathbf{I}}$ in combination with the inductance of the magnetic cartridge gives the proper high frequency roll-off. By using different values of \mathbf{R}_{1}, correct compensation can be obtained for other pick-ups. The 50 volt supply can be obtained from a voltage divider across the B^{+}supply of the tube amplifier.

TONE CONTROLS

Tone control circuits for transistor amplifiers are somewhat different than conventional vacuum tube tone controls since the impedance levels in transistor circuits are lower. A satisfactory bass and treble tone control for use between transistor stages is shown by Figure 38.*

FIGURE 38
The action of the tone controls is easily understood if they are considered as current transfer networks rather than voltage transfer networks as in vacuum tube amplifiers. The output current from the preceding stage goes to the volume control where part of it is shunted to ground and the rest goes to the junction of the $0.02 \mu \mathrm{fd}$ and $0.2 \mu \mathrm{fd}$ capacitors and the center arms of the potentiometers. At 1000 cycles, the equivalent circuit of the tone controls is very simple, as shown in Figure 39(A). At this frequency, the current is divided so that $10 / 11$ ths of the current is shunted to ground

[^0]and $1 / 11$ th goes on to the next transistor. The low-frequency equivalent circuit for the "bass boost" condition is shown in Figure 39(B). With the movable arm of the potentiometer near the top, the $0.02 \mu \mathrm{fd}$ capacitor is bypassed and more of the current is shunted into the 10,000 ohm resistor as the impedance of the $0.2 \mu \mathrm{fd}$ capacitor rises at low frequencies.

The high-frequency equivalent circuit of the tone control is shown in Figure 39(C) for the "treble cut" condition. Depending on the potentiometer setting, most of the higher frequencies will be shunted to ground as compared to a 1000 cycle signal. With the potentiometer arm at the top, the higher frequency current would bypass the 10,000 ohm resistor and a treble boost would be achieved.

The performance of the tone controls is shown by Figure 40.

(A) A I KC EQUIVALENT CIRCUIT. (B) LOW -FREQUENCY EQUIVALENT CIRCUIT, AND (C) THE EQUIVALENT CIRCUIT AT HIGH FREOUENCIES.

FIGURE 39

FIGURE 40

A great deal of effort has gone into developing transformerless push-pull amplifiers using vacuum tubes. Practical circuits, however, use many power tubes in parallel to provide the high currents necessary for direct driving of low impedance loudspeakers.

The advent of power transistors has given new impetus to the development of transformerless circuits since transistors are basically low voltage, high current devices. The emitter follower stage, in particular, offers the most interesting possibilities since it has low inherent distortion and low output impedance.

A very simple emitter follower output stage is shown in Figure 41. The loudspeaker is capacitively connected to a large enough emitter resistance so that essentially all the AC current flows into the load. It is obvious that with bias currents of one ampere,

FIGURE 41
an emitter resistance of any practical value will be extremely wasteful of power. The resistor could be replaced by a choke, but a 1 henry choke capable of carrying one ampere of current is impractical in size.

By using another transistor to replace the 100 ohm resistor in Figure 41 it is possible to make a transformerless, self-phase inverting, push-pull amplifier. This basic circuit, called the followed emitter follower, is shown in Figure 42. By inserting a small resistor, on the order of one ohm, in the collector of T_{1}, a signal is generated propor-

FIGURE 42
tional to the current flowing in T1. If a one ohm resistor is placed in the emitter of T2 and capacitor Cl connected as shown in Figure 42, the same voltage will appear across resistor R2 as appeared across R1. This means that the current flowing in T2 is an exact replica of the current flowing in T1 except it is 180° out-of-phase. These two currents add together and flow into the load so that each transistor only has to carry half of the required AC current. The current in T2 follows the current in T1 (hence the named followed emitter follower) and will clange in accordance with the variations of input impedance with frequency that are experienced in loudspeakers.

The circuit Figure 42 has two disadvantages. The first disadvantage is that for adequate thermal stability, resistor R2 and hence R1 must be several ohms and therefore dissipate considerable power and needlessly increase the required supply voltage. A second disadvantage is that any hum appearing on the supply voltage is coupled almost without attenuation through capacitor C 1 to the base of T 2 and hence appears across the load. These difficulties can be overcome by using the circuit of Figure 43.

FIGURE 43
In this circuit, transistor T3 is in the common base configuration and acts to couple the A.C. signal across R1 to the base of T2 without change in phase. Any A.C. ripple will be applied both to the base and emitter of T3 and hence will not cause any net change in emitter current that would be coupled to T2. A major advantage of this additional transistor is that any change in DC voltage at the collector of T1 is amplified and appears at the base of T2 in such a manner as to return the current in the power transistors to the original value. The loop gain for DC voltage changes is unity and hence the stability of the entire circuit is equal to that of a grounded base transistor even though the transistors are in the grounded emitter configuration.

A practical version of this circuit is shown in Figure 44. Additional transistors are-

FIGURE 44
connected to the power transistors in the Darlington connection to increase the current gain. Resistors R1 and R2 are used to increase the bias current flowing in T4 and T5. This allows the power transistors to be driven to full output at high audio frequencies where the current gain of power transistors begins to decrease. Overall feedback is taken from the loudspeaker to the driver stage to further decrease the distortion. This amplifier is capable of 7 watt output power into an 8 ohm load at $1 / 2$ percent distortion and the distortion at $1 / 2$ power is .25 percent. The maximum output power is limited by the supply voltage which in this case was 30 volts. The AC impedance looking back from the load into the amplifier is only three-tenths of an ohm providing a damping factor of. 25 for an 8 ohm speaker.

The frequency response is flat within $\pm 0.1 \mathrm{db}$ from 20 cps to 20 Kc . The complete schematic diagram of a transistor Hi-Fi amplifier is on pages 97 and 98.

IF AMPLIFIERS:

A typical circuit for a transistor IF amplifier is shown by Figure 45.

FIGURE 45

The collector current is determined by a voltage divider on the base and a large resistance in the emitter. The input and output are coupled by means of tuned IF transformers. The .05 capacitors are used to prevent degeneration by the resistance in the emitter. The collector of the transistor is connected to a tap on the output transformer to provide proper matching for the transistor and also to make the performance of the stage relatively independent of variations between transistors of the same type. With a rate-grown NPN transistor such as the 2 N293, it is unnecessary to use neutralization to obtain a stable IF amplifier. With PNP alloy transistors, it is necessary to use neutralization to obtain a stable amplifier and the neutralization capacitor depends on the collector capacitance of the transistor. The gain of a transistor IF amplifier will decrease if the emitter current is decreased. This property of the transistor can be used to control the gain of the IF amplifier so that weak stations and strong stations will produce the same audio output from a radio. Typical circuits for changing the gain of an IF amplifier in accordance with the strength of the received signal are shown in the circuit section of the manual.

AUTODYNE CONVERTER CIRCUITS

The converter stage of a transistor radio is a combination of a local oscillator, mixer and IF amplifier. A typical circuit for this stage is shown by Figure 46.

FIGURE 46
Transformer T_{1} feeds back a signal from the collector to the emitter causing oscillations. Capacitor C_{1} tunes the circuit so that it oscillates at a frequency 455 Kc higher than the incoming radio signal. This local oscillator signal is injected into the emitter of the transistor. The incoming signal is tuned by means of capacitor C_{2} and after passing through an auto transformer to match the input impedance of the transistor, it is injected into the base. The two signals are mixed by the amplifier and the resultant beat frequency of 455 Kc is selected by the IF transformer and fed into the next stage. For optimum performance the collector current should be 0.6 to 0.8 ma and the local oscillator injection voltage at the emitter 0.15 to 0.25 volts.

REFLEX CIRCUITS

"A reflex amplifier is one which is used to amplify at two frequencies - usually intermediate and audio frequencies."*

The system consists of using an I.F. amplifier stage and after detection to return the audio portion to the same stage where it is then amplified again. Since in Figure 47,

FIGURE 47
two signals of widely different frequencies are amplified, this does not constitute a "regenerative effect" and the input and output loads of these stages can be split audio - I.F. loads. In Figure 48, the I.F. signal ($455 \mathrm{Kc} / \mathrm{s}$) is fed through T2 to the detector circuit CR1, C3 and R5. The detected audio appears across the volume control R5 and is returned through C4 to the cold side of the secondary of T1.

FIGURE 48

[^1]Since the secondary only consists of a few turns of wire, it is essentially a short circuit at audio frequencies. C1 bypasses the I.F. signal otherwise appearing across the parallel combination of R1 and R2. The emitter resistor R3 is bypassed for both audio and I.F. by the electrolytic condenser C2. After amplification, the audio signal appears across R4 from where it is then fed to the audio output stage. C5 bypasses R4 for I.F. frequencies and the primary of T2 is essentially a short circuit for the audio signal.

The advantage of "reflex" circuits is that one stage produces gain otherwise requiring two stages with the resulting savings in cost, space, and battery drain. The disadvantages of such circuits are that the design is considerably more difficult, although once a satisfactory receiver has been designed, no outstanding production difficulties should be encountered. Other disadvantages are a somewhat higher amount of playthrough (i.e. signal output with volume control at zero setting), and a minimum volume effect. The latter is the occurrence of minimum volume at a volume control setting slightly higher than zero. At this point, the signal is distorted due to the balancing out of the fundamentals from the normal signal and the out-of-phase playthrough component. Schematics of complete radios using "reflex" I.F. stages are on pages 99 through 102.

TRANSISTOR SWITCHES

A switch is characterized by a high resistance when it is open and a low resistance when it is closed. Transistors can be used as switches. They offer the advantages of no moving or wearing parts and are easily actuated from various electrical inputs. Transistor collector characteristics as applied to a switching application is shown in Figure 49. The operating point A indicates the transistor's high resistance when $I_{B}=O$. $I_{c}=\frac{I_{\mathrm{co}}}{1-a}$

FIGURE 49
when $I_{B}=O$. Since $I-a$ is a small number, l_{c} may be many times greater than $I_{c o}$. Shorting the base to the emitter results if a smaller Ic. If the base to emitter junction is reversed biased by more than .2 v , Ic will approach I_{co}. Reverse biasing achieves the highest resistance across an open transistor switch.

When the transistor switch is turned on, the voltage across it should be a minimum. At operating point B of Figure 49, the transistor is a low resistance. Alloy transistors. such as the 2N188A have about one ohm resistance when switched on. Grown junction transistors, such as the 2N167 have approximately 80 ohms resistance which makes them less suitable for high power switching although they are well suited for high speed computer applications. In order that a low resistance be achieved, it is
necessary that point B lie beyond the knee of the characteristic curves. The region beyond the knee is referred to as the saturation region. Enough base current must be supplied to ensure that this point is reached. It is also important that both the on and off operating points lie in the region below the maximum rated dissipation to avoid transistor destruction. It is permissible, however, to pass through the high dissipation region very rapidly since peak dissipations of about one watt can be tolerated for a few microseconds with a transistor rated at 150 mw . In calculating the I_{B} necessary to reach point B , it is necessary to know how her varies with I_{c}. Curves such as Figure 50 are provided for switching transistors. Knowing her from the curve gives

$I_{B \min }$ since $I_{B m i n}=\frac{I_{C}}{h_{F E}}$. Generally I_{B} is made two or three times greater than $I_{B m i n}$ to allow for variations in $h_{\text {FE }}$ with temperature or aging. The maximum rated collector voltage should never be exceeded since destructive heating can occur once a transistor breaks down. Inductive loads can generate injurious voltage transients. These can be avoided by connecting a diode across the inductance to absorb the transient as shown in Figure 51.

DIODE USED TO PROTECT TRANSISTOR FROM INDUCTIVE VOLTAGE TRANSIENTS.

FIGURE 51
Lighted incandescent lamps have about 10 times their off resistance. Consequently, I_{B} must be increased appreciably to avoid overheating the switching transistor when lighting a lamp.

A typical switching circuit is shown in Figure 52. The requirement is to switch a

TRANSISTOR APPLICATIONS

FIGURE 52
200 ma current in a 25 volts circuit, delivering 5 watts to the load resistor. The mechanical switch contacts are to carry a low current and be operated at a low voltage to minimize arcing. The circuit shown uses a 2 N 188 A . The 1 K resistor from the base to ground reduces the leakage current when the switch is open. Typical values are indicated in Figure 52.

PULSE CIRCUITS

Feedback makes circuits independent of variations within the feedback loop. Negative feedback is used to ensure undistorted output. Positive feedback stabilizes circuitry in a different manner. In positive feedback circuits the output has precise levels which are largely independent of component variations or input waveforms. Thus the output can be accurately predicted in spite of distortion of the input. It is this characteristic of positive feedback amplifiers that has made electronic computers feasible. Counters, flip-flops and multivibrators in computer and radar circuits are stabilized by the positive feedback inherent in their design.

By applying positive feedback in switching applications, it is possible to ensure that the transistor passes through the high dissipation region quickly even though the triggering input may be applied very slowly. A number of positive feedback circuits are possible. Figure 53 shows a conventional stabilized two stage amplifier with the

BASE WAVEFORM

EMITTER WAVEF ORM

FIGURE 53
output connected to the input giving positive feedback. This circuit will oscillate producing essentially square waves at the collectors and sawteeth at the bases. A varia-

FIGURE 54
tion of this circuit is shown in Figure 54. The stabilizing components of Figure 53 are omitted here since they are not necessary unless transistor interchangeability and operation over a wide temperature range are necessary. To ensure that this circuit starts readily, the base resistors should limit I_{B} to a value such that the collector voltage does not drop below one volt since transistors have low gain in the saturation region. If positive feedback is applied to a D.C. amplifier, a bistable circuit results.

FIGURE 55
In Figure 55, only one transistor conducts at a time. If the transistor which is off has a resistor connected momentarily from its base to the collector supply to make it conduct the other transistor will immediately turn off. A variation of this circuit is

FIGURE 56
shown in Figure 56. Certain transistors, such as the G.E. germanium 4JD1A68 or the G.E. silicon 4JD4A3, are specially selected to work in this very simple circuit. Circuit operation can be easily understood if one transistor is assumed to be non-conducting. The other transistor will be at the operating point B of Figure 49 because both resistors in the circuit are equal. With typical values of collector current (about 2 ma), the collector voltage will be less than 100 millivolts. When this voltage is applied to the base of the non-conducting transistor as shown in the circuit, it is insufficient to cause an appreciable I_{B}, consequently, this transistor is truly non-conducting as was initially assumed. The base voltage on the conducting transistor is about .3 volts using germanium transistors, and .7 volts using silicon transistors. The few components used in the circuit are equal. With typical values of collector current (about 2 ma), the germanium circuits are stable up to about $40^{\circ} \mathrm{C}$, silicon circuits are stable at $125^{\circ} \mathrm{C}$.

In a transistor amplifier, the collector and emitter voltages are in phase so that collector to emitter feedback is positive. Figure 57 illustrates this form of feedback

FIGURE 57
applied to transistor T1. It is impossible to connect the collector and emitter directly together without impedance matching. Transistor T2 can be considered an emitter follower which reduces the feedback impedance making it suitable to drive the emitter of the first transistor. This is the transistor analogue of the tube cathodecoupled flip-flop. Note that the collector of the second transistor doesn't contribute to circuit operation and consequently a load can be introduced there if desired. It turns out that this circuit lends itself to simple design and can be used in a number of applications.

SIMPLIFIED FLIP-FLOP DESIGN

The following is a simplified design procedure, which will quickly yield a working circuit that can be optimized by more complicated techniques if required. Referring to Figure 57, it is assumed that it is required to connect a load R_{L} across a voltage E . The design procedure makes 0.9 E appear across R_{L} which is generally satisfactory, however, it is only necessary to increase the supply voltage by about 10% to get E volts across R_{L}.

1. Choose R_{L} and E.
2. Calculate $\mathrm{I}_{\mathrm{C} 2} \quad \mathrm{I}_{\mathrm{C} 2} \approx \frac{0.9 \mathrm{E}}{\mathrm{R}_{\mathrm{L}}}$
3. Select a transistor rated for E volts and $\mathrm{I}_{\mathrm{c} 2}$ ma. If $\mathrm{I}_{\mathrm{c} 2}<10 \mathrm{ma}$ any good NPN or PNP transistor will do. For $\mathrm{I}_{\mathrm{C}:}>10 \mathrm{ma}$, the alloy junction transistors are best.
4. Select $\mathrm{R}_{1} \approx \frac{\mathbf{R}_{\mathrm{L}}}{10}$
5. Select $R_{z}>R_{L} \quad$ typically $R_{z}=2 R_{L}$

If the input to the base of T1 is applied very slowly, it may be possible to exceed the dissipation ratings of T1 unless $\frac{E^{2}}{4 R_{3}}$ does not exceed the maximum permissible dissipation of T 1 .
The dissipation considerations may limit the minimum value of R_{2} that can be used. In calculating R_{3} and R_{4}, $I_{c o}$ will be neglected since it is generally small compared to the current being switched. This design will assure stable operation, but the switching characteristics will not be precisely determined. It is assumed that a transistor in saturation has approximately .5 v from base to emitter and .2 v from collector to emitter. The measured values"given in Figure 52 justify this assumption.
6. Calculate V_{ra}, the base voltage on $\mathrm{T} 2 . \mathrm{V}_{\mathrm{B}}$ is approximately the emitter voltage plus $.5 \mathrm{v} . \mathrm{V}_{\mathrm{E}} 2 \approx \mathrm{R}_{1} \mathrm{I}_{\mathrm{C} 2}$ therefore $\mathrm{V}_{\mathrm{R} \geqq} \approx \mathrm{R}_{1} \mathrm{I}_{\mathrm{C} 2}+.5$.
7. Determine $h_{F E}$ at I_{c} for $T o$ using published data. Use the minimum value quoted. Call this here.
8. Calculate $\mathrm{I}_{\mathrm{B} 2}$, the base current of $\mathrm{T}_{\mathrm{g} .} \mathrm{I}_{\mathrm{B} 2}=\frac{\mathrm{I}_{\mathrm{C} 2}}{\mathrm{~h}_{\mathrm{FE} 2}}$
9. Allow a current equal to $I_{B 2}$ through \mathbf{R}_{1} for good temperature stability; therefore, $\mathrm{R}_{4}=\frac{\mathrm{V}_{\mathrm{B} 2}}{\mathrm{I}_{3!2}}=\frac{\left(\mathrm{R}_{1} \mathrm{I}_{\mathrm{Cu}}+.5\right)}{\mathrm{I}_{\mathrm{C} 2}} \mathrm{~h}_{\mathrm{FE} 2}$
or
$\mathrm{R}_{\mathbf{4}}=\frac{\mathrm{R}_{\mathrm{L}}}{10}\left(\mathrm{~h}_{\mathrm{FE} 2}\right.$) if .5 is negligible compared to $\mathrm{R}_{1} \mathrm{I}_{\mathrm{C} \text {. }}$.
10. While T_{1} is off, R_{2} and R_{3} in series must supply the current through R_{4} plus the base current of T_{2}, i.e., $2 \mathrm{I}_{\mathrm{Br}}$. Neglecting the .5 volt base to emitter voltage: $\mathrm{R}_{2}+\mathrm{R}_{3}=\frac{\mathrm{R}_{\mathrm{L}} \mathrm{h}_{\mathrm{FE} 2}}{2}$
11. Since R_{u} has been chosen earlier, R_{3} can be determined. $R_{3}=\frac{R_{L} h_{F E 2}}{2}-R_{2}$
12. Check that $R_{3} \geq R_{4}$ in order to assure stability when T_{2} is off. If this condition is not met, decrease R_{g} and repeat the calculations.
If a variable high impedance current source is used to drive the base of T_{1}, a curve showing base voltage vs. base current can be drawn resembling that of Figure 58. The shape of this curve and the impedance connected to the base

FIGURE 58
of T_{1} determine whether the circuit is free-running, monstable or bistable. It is therefore important to determine the coordinates of the peak point and the valley point in order to obtain the desired mode of operation.
13. The peak point current (I_{p}) may be very small if T_{2} has exactly the $h_{\text {FE2 }}$ used in the design. However, since the design used the minimum value of $\mathrm{h}_{\mathrm{FE} 2}$, generally, the actual $\mathrm{h}_{\mathrm{FE} 2}$ will be greater. Calculate $\mathrm{I}_{\mathrm{B} 2}^{\prime}$ as in 7 and 8 using the maximum $\mathrm{h}_{\mathrm{FE} 2}$. This permits calculating

$$
\mathrm{I}_{\mathrm{C}_{1}}=\frac{5 \mathrm{E}}{11 \mathrm{R}_{2}}-\frac{I_{\mathrm{B}_{2}}\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)}{\mathrm{R}_{2}}
$$

where $I_{C 1}$ is the maximum T_{1} collector current possible at the peak point. This gives $I_{p} \max .=\frac{I_{C 1}}{h_{F E 1}}$ where $h_{F E 1}$ is $h_{F E}$ for T_{1} at a current $I_{C 1}$. Therefore the actual I_{p} will lie between O and $\frac{I_{c_{1}}}{h_{F E 1}}$.
14. The peak point voltage $\left(V_{p}\right)$ is reached when $I_{c 2}$ begins to decrease. If T_{2} has the $h_{\dot{F E} 2}$ used in the calculations, $I_{\mathrm{C} 2}$ decreases as soon as T_{1} starts to conduct. Since the emitter voltage of T_{I} is known ($\mathrm{V}_{\mathrm{E}_{1}}=\mathrm{V}_{\mathrm{E}_{2}}$), the peak point voltage is approximately $\mathrm{V}_{\mathrm{p}}=\frac{\mathrm{E}}{11}$.
If $h_{\text {FE2 }}$ is actually greater than the value used in the calculations, T_{1} must conduct appreciably before $I_{c_{2}}$ drops. The upper limit for V_{p} is given by assuming that both $I_{c_{2}}$ and $I_{c_{1}}$ (from 13) flow through R_{1} simultaneously. Then V_{p} max. $=\mathrm{R}_{1}\left(\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{C} 2}\right)+.5$ where .5 volts is the base to emitter voltage. Therefore the actual V_{p} will lie between $\frac{E}{11}$ and $R_{1}\left(1_{\mathrm{C}_{1}}+\mathrm{I}_{\mathrm{C} 2}\right)+.5$.
15. The valley point voltage ($\mathrm{V} v$) is reached when T_{2} just stops conducting, i.e. when $I_{c z}=O$. $I_{c o}$ is neglected. An upper limit on $V v$ is the voltage across R_{1} when T_{1} saturates plus its emitter to base voltage.

$$
\mathrm{Vv}=\mathrm{R}_{1} \mathrm{I}_{\mathrm{C}_{1}}+.5=\frac{\mathbf{R}_{\mathbf{1}} \mathrm{E}}{\mathrm{R}_{1}+\mathrm{R}_{3}}+.5
$$

Since R_{I} was chosen much smaller than R_{L}, V_{p} and $V v$ are simply related.

$$
\frac{V_{p}}{V_{V}} \quad \frac{R_{3}}{R_{L}} .
$$

16. The valley point current (I_{v}) is $I_{V} \approx \frac{I_{\mathrm{CI}_{1}}}{h_{\mathrm{FEI}}}$ where $\mathrm{h}_{\mathrm{FEI}}{ }^{\prime}$ is the current gain of T_{1} for a collector current $I_{C_{1}}=\frac{E}{R_{1}+R_{3}}$.
Now that the coordinates of the peak and valley points are known, in order to get oscillations the input characteristics must be intersected in the negative resistance region only, by a load line such as A in Figure 58. A typical circuit is shown in Figure 59. R_{1} and C determine the frequency of oscillation.

FIGURE 59
Load line B gives only one stable operating point with T_{1} conducting continuously. A negative pulse to the base of T_{1} will turn it off for an interval dependent on $R_{1} C$ after which T_{1} will again conduct. A typical circuit is shown in Figure 60.

FIGURE 60
If R_{i} is made so large that the peak point current cannot be reached, as indicated by load line C of Figure 58, only one stable position will exist with T_{1} essentially off. A positive trigger will cause T_{1} to conduct for a short interval. The same triggering scheme as shown for load line B applies. Finally, if \mathbf{R}_{1} is returned to a voltage between the peak point and valley point potentials, one of two conditions will apply. If R_{1} is large, load line D will result giving similar performance to load line C. If R_{1} is small as in load line E , two stable operating points will be obtained. In the latter case, a positive trigger will cause T_{1} to conduct until a negative trigger arrives turning it off. The flip-flop will stay in either state indefinitely. The bistable circuit is as shown

FIGURE 61
in Figure 61. Here, $R_{1}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$ and the voltage it is returned to is $E \frac{R_{1}}{R_{1}+R_{2}}$.
Since $\mathrm{R}_{\mathrm{L}} \approx 10 \mathrm{R}_{\mathrm{E}}$, then $\mathrm{R}_{2} \approx 10 \mathrm{R}_{1}$, therefore $\mathrm{R}_{1} \approx \mathrm{R}_{1}$, and

$$
\mathrm{E} \frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \approx \mathrm{E} \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}
$$

This circuit can also be triggered by DC. The capacitor would be replaced by a resistor which would inject current into the base of T1. For precise triggering with small trigger signals, it is necessary to adjust \mathbf{R}_{1} and its' return voltage until the load line lies very nearly along the negative resistance part of the input characteristic. A potentiometer in the emitter of T_{2} permits adjustment of the sensitivity. This is shown in Figure 62.

FIGURE 62
The Unijunction transistor (formerly known as the double base diode) has input characteristics similar to those of the circuit just described. This makes it possible with a single transistor to make free-running, monostable and bistable circuits. Its operation is described in the Semiconductor Theory portion of this manual.

A simple oscillator is shown in Figure 63. For typical transistors, if R lies between

FIGURE 63
2,000 ohms and 1 megohm, oscillations are obtained as shown. For $R<2 K$, the transistor will stay on continuously. For $\mathbf{R}>1$ megohm, the transistor stays off continuously. The frequency is readily changed by varying \mathbf{R} or C . This circuit can be readily adapted to a number of applications.

The oscillator can be synchronized to generate sub-harmonics with circuit waveforms resembling those of a blocking oscillator. Figure 64 shows such a circuit.

FIGURE 64
A moderate output audio oscillator is constructed by placing a 3 ohm loudspeaker in the base 1 circuit.

FIGURE 65
By increasing the value of R, the circuit can be used as a highly stable metronome.

FIGURE 66

A temperature sensitive circuit useful as a thermostat or a fire alarm is achieved by using a thermistor as shown in Figure 67.

FIGURE 67°
A variable time delay generator up to 3 or 4 minutes is easily achieved. The circuit of Figure 68 offers high accuracy and a short recovery time.

FIGURE 68
A precise timer can be made by adapting the delay circuit. A variation of the

FIGURE 69
oscillator circuit generates rectangular waveforms. For oscillation \mathbf{R}_{1} should lie be-

FIGURE 70
tween 2 K and 1 megohm for typical transistors. \mathbf{R}_{2} must satisfy the equation $\frac{\mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}}$ $>$ stand-off ratio.

Another positive feedback configuration is made possible by using NPN and PNP transistors. Figure 71 shows a direct coupled NPN-PNP amplifier with positive feed-

FIGURE 71
back. This circuit generates a sawtooth at the base of the NPN transistor.
A variation of this circuit has the amplifier input at the emitter of the NPN transistor and feedback is applied to its base. It is found that the collectors and bases of the transistors are interconnected. This is the well-known hook connection. Figure 72 shows the circuit and the input characteristics. This curve can be used as with the

FIGURE 72
Unijunction Transistor and emitter coupled flip-flop to get free-running, monstable and bistable operation. One of the features of this circuit is that both transistors are on or off together minimizing the amount of standby power required.

Both silicon and germanium cells can be used in the types of power supplies illustrated in Figures 73, 74, 75, and 76. All four of these power supplies are designed for low ripple output and high reliability at minimum expense. However, they are limited to Class A types of load in which the average load current does not vary with the amplitude of the impressed signal. Class B loads require a stiffer voltage source than

PRE-AMP POWER SUPPLY

* to adjust voltage output for other output currents, ADJUST R2.

FIGURE 73

- * to adjust voltage output for other output currents, ADJUST R3.

FIGURE 74

POWER SUPPLY FOR HIGH POWER CLASS A TRANSISTOR AMPLIFIERS

$\begin{aligned} & \text { OUTPUT } \\ & \text { VOLTAGE } \\ & V \end{aligned}$	OUTPUT CURRENT	R1	R2	CI	C2	RECT.	APPROX RIPPLE
40 VOLTS	1 AMP	$\left\|\begin{array}{c} 3 \Omega \\ 10 \text { WARTS } \end{array}\right\|$	20Ω	$=\begin{gathered} 300 \mu \mathrm{f} \\ 150 \text { VOLT } \\ \text { ELECTROLYTIC } \end{gathered}$	$1000 \mu 4$ 50 VOLT ELECTROLYTIC		1\%

TI - U.TC.' R-43 AUTOTRANSFORMER OR EQUAL 2:1 WINDING RATIO

FIGURE 75

POWER SUPPLY FOR HIGH - POWER CLASS A TRANSISTOR AMPLIFIER

OUTPUT VOLTAGE v	output CURRENT	RI	R2	Cl	c2	R3*	$\underset{1}{\text { RECT }}$	APPROX. RIPPLE
40 VOLTS	1 AMP	$\begin{gathered} 5 \Omega \\ 20 \mathrm{~W} \end{gathered}$	$\begin{gathered} 758 \\ 100 \mathrm{w} \end{gathered}$	$100 \mu \mathrm{f}$ 150 VOLTS ELECTROCTTK	$\left\|\begin{array}{c} 300 \mu \mathrm{f} \\ 50 \text { VOLTS } \\ \text { ELECTROLYTK } \end{array}\right\|$	$\begin{gathered} 1000 \Omega \\ 2 w \end{gathered}$		1\%

* to adjust voltage output for other output currents, ADJUST R3.

FIGURE 76
the resistance-capacity combinations of the illustrated power supplies can provide. For Class B and other loads that require good voltage regulation, it is recommended that the line voltage be reduced through transformers rather than series resistance or capacitance, and that chokes be substituted for the series resistance in the filter elements. Alternately, a regulated power supply such as shown on page 95 can be used.

This circuit uses a step-down transformer and full-wave rectifier as a source of unregulated DC. A power transistor acts as a series regulator and mercury batteries are used for the voltage reference. The battery drain is very small so their life is essentially equal to the shelf life.

When a semiconductor rectifier feeds a capacity-input filter such as in Figures 73 through 76, it is necessary to limit the high charging current that flows into the input capacitor when the circuit is energized. Otherwise this surge of current may destroy the rectifier. Resistor R1 is used in Figures 73 through 76 to limit this charging current to safe values.

As shown, the four power supplies do not isolate the load circuit from the 117 volt AC line. In Figures 73 and 74, the load circuit may be grounded provided a polarized plug is used on the AC line cord to ensure that the grounded side of the AC line is always connected to the grounded side of the load. Figures 75 and 76 utilize what is called a single phase bridge rectifier circuit to achieve full wave rectification, and hence, lower ripple. Since ground cannot be carried through on a common line to the load in this type of circuit, it is necessary to insulate the load "ground" from accidental contact with true ground, or to insert an isolation transformer ahead of the power supply to isolate the two systems. Careful. attention to these factors is of particular importance when supplying DC to high gain amplifiers to eliminate hum.

As illustrated, Figures 73 and 74 develop a negative output voltage with respect to ground as required when supplying P-N-P transistors with grounded emitters. To develop a positive voltage with respect to ground, it is only necessary to reverse the rectifiers and electrolytic capacitors in the circuit.

The power supply of Figure 75 uses an autotransformer to reduce the line voltage to one-half normal value before applying to the rectifiers. Provided the additional heat dissipation is not objectionable, Figure 76 provides a cheaper means of achieving the same objective by using resistor R 2 to reduce the voltage to the desired value.

EXPLANATION OF PARAMETER SYMBOLS

SMALL SIGNAL E HIGH FREQUENCY PARAMETERS (at specified bias) Symbols
 Abbrevioted Definitions

OTHER SYMBOLS USED

P_{Ca}	Peak collector power dissipation for a specified time limit
$\mathrm{PCAV}^{P_{0}}$	Average maximum collector power dissipation
Z_{1}	Power output
Z_{0}	Input impedance
T_{Δ}	Output impedance
T_{J}	Operating Temperature
$\mathrm{T}_{\text {STG }}$	Junction Temperature

NOTE: In devices with several electrodes of the same type, indicate electrode by number. Example: IB2. In multiple unit devices, indicate device by number preceding electrode subscript. Example: I2c. Where ambiguity might arise, separate complete electrode designations by hyphens or commas. Example: V1C1-2C1 (Voltage between collector \#1 of device \#1 and collector \#1 of device \#2.)
NOTE: Reverse biased junction means biased for current flow in the high resistance direction.

GENERAL ELECTRIC TRANSISTOR SPECIFICATIONS

2N43
Outline Drawing No. 8

The General Electric Type 2N43 Germanium Alloy Junction Transistor Triode is a PNP unit particularly recommended for high gain, low power applications. A hermetic enclosure is provided by use of glass-to-metal seals and welded seams.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltages

Collector to Base	Vcb	-45 volts
Collector to Emitter	Vce	-30 volts
Emitter to Base	$V_{\text {EB }}$	-5 volts
Collector Current	Ic	-300 ma
Power Total Transistor Dissipation	P_{3}	155 mv
Temperature Storage or Junction Temperature	Tstg-Ta	Max. $+100{ }^{\circ} \mathrm{C}$ Min. $-65{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Small Signal Characteristics

	MIN.	MAX.	DESIGN CENTER	
hob	. 1	1.5	. 8	$\mu \mathrm{mhos}$
hee	30	66	42	
hib	25	35	29	ohms
h_{rb}	1	15	5×10^{-6}	
$\begin{aligned} & \text { Cob } \\ & \text { NF } \\ & \mathbf{f}_{a b} \end{aligned}$	20 .5	60 20 3.5	40 6 1.3	$\begin{aligned} & \mu \mu \mathrm{f} \\ & \mathrm{db} \\ & \mathrm{mc} \end{aligned}$
$\begin{aligned} & \text { Ico } \\ & \text { Íco }^{2} \end{aligned}$		16 10	8	mamps mamps
hre	34		53	
hfe	30		48	
$\begin{aligned} & \mathrm{V}_{\mathrm{cer}} \\ & \mathrm{VPT}^{2} \end{aligned}$	$\begin{aligned} & -25 \\ & -30 \end{aligned}$			volts volts
			-	
			0.33 0.2	${ }^{\circ} \mathrm{C} / \mathrm{mw}$ ${ }^{\circ} \mathrm{C} / \mathrm{mw}$

2N43A
Outline Drawing No. 8

Outline Drawing No. 8

The $2 N 43 A$ is a commercial version of the military type 2N43A per MIL-T-19500, and is tested to the same electrical, mechanical and degradation tests.

Thermal Characteristics
Junction temperature rise/unit collector or emitter dissipation (in free air)
Junction temperature rise/unit collector or emitter dissipation (infinite heat sink)
(Vo'r or $\mathrm{V}_{\text {('e }}=-5$ volts, If $=1 \mathrm{ma}$;
$t=270$ eps unless otherwise specified)
Common base output admittance
(input A-C open circuited)
Forward current transfer ratio
(output A-C short circuited)
Common base input impedance
(output A-C short circuited)
Common base reverse voltage transfer
ratio (input A-C open circuited)
Common base output capacity (input
A-C open circuited; $\mathrm{f}=1 \mathrm{mc}$)
Noise Figure ($\mathrm{f}=1 \mathrm{Kc}$; $\mathrm{BW}=1$ cycle)

Frequency cutoff (Common Base)

D-C Characteristics

Collector cutoff current (Vcво $=-45 v$)
Common emitter static forward current
transfer ratio (VCe $=-1$ volt, Ic $=20 \mathrm{ma}$)
Common emitter static forward current transfer ratio (Vce $=-1$ volt, $\mathrm{Ic}=100 \mathrm{ma}$)
Collector to emitter voltage (10 K ohins resistor base to emitter, $\mathrm{Ic}_{\mathrm{c}}=0.6 \mathrm{ma}$)
Punch-through voltage

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Valtages

Valtages				
Collector to Base	Vcb			-45 volts
Collector to Emitter	Vee			-30 volts
Emitter to Base	Veb			-5 volts
Collector Current	Ic			-300 ma
Total Transistor Dissipation	$\mathrm{P}_{\text {M }}$			155 mw
Storage or Junction Temperature	$\mathrm{TsTa}_{\text {stu }}$		Max.	. $-65^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)		MIN,	MAX.	

(V_{Cr} or $\mathrm{V}_{\mathrm{Ce}}=-5$ volts, $1_{\mathrm{E}}=1 \mathrm{mo}$;
$f=270 \mathrm{cps}$ unless otherwise specified)
Common base output admittance
(input A-C open circuited)

Forward current transfer ratio (output A-C short circuited)
Common base input impedance
(output A-C short circuited)
MIN.
MAX. CENTER

$h_{\text {ob }}$	0.1
$h_{f e}$	20
$h_{f b}$	25
$h_{r b}$	1.0
$\mathrm{C}_{o b}$	20
NF $f_{a b}$	0.5

1.5	0.8	$\mu \mathrm{mhos}$
66	39	
38	30	ohms
15	5×10^{-4}	
60 15	40 6	${ }_{\text {db }}^{\mu \mathrm{f}}$
3.5	1.1	me
16 10	8 4	$\mu \mathrm{mamps}$
	43	
	37	
		volts volts
	0.33	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
	0.2	${ }^{\circ} \mathrm{C} / \mathrm{mw}$

The General Electric Type 2N44 Germanium Alloy Junction Transistor Triode is a PNP unit particularly recommended for medium gain, low power applications. A hermetic enclosure is provided by use of glass-to-metal seals and welded seams.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltages

Collector to Base
Collector to Emitte
Collector to Emitter
Emitter to Base
Collector Current
Total Transistor Dissipation
Storage or Junction Temperature
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Small Signal Characteristics
Vcb
Vce
Veb
Ic
P_{M}
Tstg_Ts
(V_{CB} or $\mathrm{V}_{\mathrm{CE}}=-5$ volts, $\mathrm{I}_{\mathrm{E}}=1 \mathrm{mo}$;
$f=270$ eps unless otherwise specified)
Common base output admittance
(input A-C open circuited)
Forward current transfer ratio
(output A-C short circuited)
Common base input impedance (output A-C short circuited)
Common base reverse voltage transfer ratio (input A-C open circuited)
Common base output capacity (input
A-C open circuited; $f=1 \mathrm{mc}$)
Noise Figure ($\mathrm{f}=1 \mathrm{Kc} ; \mathrm{BW}=1$ cycle)
Frequency cutoff (Common Base)

hob	0.1
hre	
hib	27
$\mathrm{hrb}^{\text {b }}$	1.0
$\begin{aligned} & \text { Cob } \\ & \text { NF } \\ & \mathbf{f}_{\text {fab }} \end{aligned}$	20 0.5

D-C Charocteristics
Collector cutoff current (V cbo $=-45 \mathrm{v}$)
Emitter cutoff current (V ebo $=-5 \mathrm{v}$)
Common emitter static forvard current
transfer ratio (Vce $=-1$ volt,
$I_{C}=20 \mathrm{ma}$)
Common emitter static forward current transfer ratio (Vce $=-1$ volt, $\mathrm{Ic}=100 \mathrm{ma}$)
Collector to emitter voltage (10 K ohms resistor base to emitter, $\mathrm{Ic}=0.6 \mathrm{ma}$)
Punch-through voltage

Thermal Characteristics

Junction temperature rise/unit collector or emitter dissipation (in free air)
Junction temperature rise/unit collector or emitter dissipation (infinite heat sink)

$\begin{aligned} & \mathrm{I}_{\mathrm{I}} \\ & \mathrm{I}_{\mathrm{E}} \end{aligned}$		$\begin{aligned} & 16 \\ & 10 \end{aligned}$	8 4	mamps $\mu \mathrm{amps}$
hre	18	43	31	
hre	13		25	
$\begin{aligned} & \text { Vcer } \\ & \mathbf{V P T}^{2} \end{aligned}$	$\begin{aligned} & -25 \\ & -30 \end{aligned}$			volts volts
			0.33	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
			0.2	${ }^{\circ} \mathrm{C} / \mathrm{mw}$

2N45

Outline Drawing No. 8

The General Electric Type 2N45 Germanium Alloy Junction Transistor Triode is a PNP unit particularly recommended for low gain, low power applications. A hermetic enclosure is provided by use of glass-to-metal seals and welded seams.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Valtages

Collector to Base
Collector to Emitter
Emitter to Base
Callectar Current
Total Transistor Dissipation
Storage or Junction Temperature
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Small Signal Characteristies
$\left(\mathrm{V}_{\mathrm{CB}}\right.$ or $\mathrm{V}_{\mathrm{CE}}=-5$ valts, $\mathrm{I}_{\mathrm{e}}=1 \mathrm{ma}$;
$\mathbf{t}=270 \mathrm{cps}$ unless atherwise specified)
Common base output admittance (input A-C open circuited)
Forward current transfer ratio
(output A-C short circuited)
Common base input impedance
(output A-C short circuited)
Common base reverse voltage transfer ratio (input A-C open circuited)
Common base output capacity (input A-C open circuited $; \mathbf{f}=1 \mathrm{mc}$)
Noise Figure ($\mathrm{f}=1 \mathbf{K} \mathbf{K} ; \mathbf{B W}=1$ cycle)
Frequency cutoff (Common Base)

D-C Characteristics

Collector cutoff Current (Vcво $=-45 v$)
Emitter cutoff current (Vebo $=-5 v$)
Common emitter static forward current transfer ratio ($\mathrm{VCE}_{\mathrm{ce}}=-1$ volt, $\mathrm{I}_{\mathrm{C}}=20 \mathrm{ma}$)
Common emitter static forward current transfer ratio (Vce $=-1$ volt, $\mathrm{I}(:=100 \mathrm{ma}$)
Collector to emitter voltage (10 K ohms resistor base to emitter, $\mathrm{I}_{\mathrm{C}}=0.6 \mathrm{ma}$)
Punch-through voltage

Thermal Characteristics

Junction temperature rise/unit collector or emitter dissipation (in free air) Junction temperature rise/unit collector or emitter dissipation (infinite heat sink)

hob	0.1	1.6	1.1	$\mu \mathrm{mhos}$
hee			15	
$\mathrm{hib}^{\text {b }}$	27	38	31	ohms
hrb	1	10	4×10^{-4}	
$\begin{aligned} & \text { Cob } \\ & \mathbf{N F} \end{aligned}$	20 0.5	60 15 2.5	$\begin{array}{r} 40 \\ 6 \\ 06 \end{array}$	$\begin{aligned} & \mu \mu \mathrm{f} \\ & \mathrm{db} \end{aligned}$
				me
$\begin{aligned} & \text { Ico } \\ & \text { IEO } \end{aligned}$		16 10	8	mamps $\mu \mathrm{amps}$
hre	11	31	20	
hfe			15	
$\begin{aligned} & \mathrm{VCER}_{\mathrm{R}} \\ & \mathrm{VPPT}^{2} \end{aligned}$	$\begin{aligned} & -25 \\ & -30 \end{aligned}$		-	volts volts
			0.33	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
			0.2	${ }^{\circ} \mathrm{C} / \mathrm{mw}$

2N78
Outline Drwg. No. 14

The General Electric 2N78 is a grown junction NPN high frequency transistor intended for high gain RF and IF amplifier service and general purpose applications. The G.E. rate-growing process used in the manufacture of the 2N78 provides the uniform and stable characteristics required for mobile and industrial service.

SPECIFICATIONS

The General Electric type 2N123 is a PNP alloy junction high frequency switching transistor intended for military, industrial and data processing applications where high reliability at the maximum ratings is of prime importance.

2N123

Outline Drwg. No. 8

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:				
Collector to Emitter Voltage (base open),				15 volts
Collector to Base Voltage (emitter open), Vcro				20 volts
				10 volts
Collector Current, Ic.				25 ma
Peak Collector Current ($10 \mu \mathrm{~s}$ max.), Ics				00 ma
Emitter Current, IE.. $\mathrm{I}^{\circ} \mathrm{I}^{\circ} \dot{\mathrm{C}}$)				25 ma
Collector Dissipation ($25^{\circ} \mathrm{C}$)*, Pcav.				00 mw
Peak Collector Dissipation ($10 \mu \mathrm{~s}$ max.; $25^{\circ} \mathrm{C}$) ${ }^{*} *$, Pcm				00 mw
				50 mw
Storage Temperaturc, Tsta . ${ }^{\text {a }}$ - 55 to $85{ }^{\circ} \mathrm{C}$				
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ Switching Characteristics (Common Emitter)	DESIGN CENTER	MIN.	MAX.	
D.C. Base Current Gain (Vce $-1 \mathrm{v} ; \mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma}$) $\mathrm{I}_{\mathrm{c}} / \mathrm{I}_{\mathrm{B}}$ Saturation Voltage ($I_{B}=.5 \mathrm{ma}$; $\mathrm{Ic}_{\mathrm{C}}=10 \mathrm{ma}$), VCE	50	30	150	
	. 15		0.2	volts
Pulse Response Time ($1 \mathrm{c}=10 \mathrm{ma}$)				
Delay \& Rise Time, $\mathrm{tr}_{\mathbf{r}}$. 9			$\mu \mathrm{sec}$
Storage Time, ${ }^{\text {s }}$. 5			$\mu \mathrm{sec}$
Fall Time, tr	. 5			$\mu \mathrm{sec}$

Cutoff Characteristics
Collector Cutoff Current ($\mathrm{V}_{\mathrm{cb}}=-20 \mathrm{v}$), Ico
Emitter Cutoff Current (Veb $=-10 \mathrm{v}$), IEO
Collector to Emitter (Base open, $\mathrm{l}_{\mathrm{c}}=-0.6 \mathrm{ma}$), Vce
2 6

High Frequency Characteristics (Common Base)
($\mathrm{VCB}=-5 \mathrm{v} ; \mathrm{If}_{\mathrm{E}}=1 \mathrm{ma}$)
Alpha Cutoff Frequency
Collector Capacitance ($\ddagger \stackrel{\text { Aab }}{=} 1 \mathrm{mc}$), Cob
Voltage Feedback Ratio ($\mathrm{f}=1 \mathrm{mc}$), h_{rb}
Base Spreading Resistance, r^{\prime} b
15

Low Frequency Characteristics (Common Base)
$\left(V_{c s}=-5 \mathrm{v} ; \mathrm{Ie}_{\mathrm{e}}=1 \mathrm{ma} ; \mathrm{f}=270 \mathrm{cps}\right)$
Input Impedance, h_{hb}
Voltage Feedback Ratio, hrb
Current Amplification, heb
Output Admittance, hob

28
$\times 10^{-4}$
.980
.9
mc
$\mu \mu \mathrm{f}$
ohms
ohms
μ mbos
Derate for increase in ambient temperature:
$* 1.67 \mathrm{mw} /{ }^{\circ} \mathrm{C}$, $\quad * * 8 \mathrm{mw} /{ }^{\circ} \mathrm{C}, \quad * * 2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$

2N135, 2N136, 2N137

Outline Drwg. No. 8

The General Electric types 2N135, 2N136 and 2N137 are PNP alloy junction germanium transistors intended for RF and IF service in broadcast receivers. Special control of manufacturing processes provides a narrow spread of characteristics, resulting in uniformly high power gain at radio frequencies. These types are obsolete and available for replacement only.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Collector Voltage:
Common Base (emitter open), Vcbo
Common Emitter (Rbe $=100$ 'ohms), VCER*
Common Emitter ($\mathrm{Rbe}_{\mathrm{be}}=1$ megohm), VCER*
Collector Current, Ic
Emitter Current, It
Collector Dissipation**, Pcm
Storage Temperature, Tstg
ELECTRICAL CHARACTERISTICS: Design Center Values
(Common Base, $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cb}}=5 \mathrm{v}, 1 \mathrm{~s}=1 \mathrm{mo}$)
Voltage Feed back Ratio (input open circuit, $\mathrm{f}=1 \mathrm{mc}$), hrb
Output Capacitance ($f=1 \mathrm{mc}$), Cob

2N135

-20	-20	-10	volts
-20	-20	-10	volts
-12	-12	-6	volts
-50	-50	-50	ma
50	50	50	ma
100	100	100	mw
85	85	85	${ }^{\circ} \mathrm{C}$

2N164A

Outline Drawing No. 31

The 2N164A is a rate grown NPN germanium transistor intended for mixer/oscillator and IF amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity so that neutralization in many circuits is not required. The 2N164A has a frequency cutoff control to insure proper operation as an oscillator or autodyne mixer. For IF amplifier service the range in power gain is controlled to 3 db . The 2N164A is housed in a glass and metal enclosure which has been designed to be the optimum size in both height and diameter for use in printed circuit boards. The lead arrangement is on a 100 mil grid with .141 in . between leads, which allows direct insertion in the printed circuit boards. An indexing tab is provided on the header for easy location and automatic insertion purposes. The 2N164A may be dip soldered on printed circuit boards if normal precautions are made for solder bridging and provided the boards are not immersed in the solder bath for more than 15 seconds.

CONVERTER TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:
Voltages
Collector to Emitter (Base Open)
Collector to Base (Emitter Open)

Collector Current

Power

Collector Dissipation at $25^{\circ} \mathrm{C}$ *
Temperature Range
Operating and Storage

VCEo	15 volts
VCBo	15 volts
IC	-20 ma
PCM	65 mw
TA-TsTG	-55 to $85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right) \%$
Converter Service
Maximum Ratings

Collector Supply Voltage	Vcc	12 volts
Design Center Characteristics		
Input Impedance ($\mathrm{IE}=1 \mathrm{ma} ; \mathrm{Vce}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$)	- Z_{1}	350 ohms
Output Impedance ($\mathrm{IE}=1 \mathrm{ma}$; $\mathrm{V}_{\text {ce }}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$)	Z。	15 K ohms
Voltage Feedback Ratio ($\mathrm{Ie}_{\mathrm{e}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{cb}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$)	hrb	5×10^{-3}
Collector to Base Capacitance ($\mathrm{Ie}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{Vcb}^{\text {a }}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$)	Cob	$2.4 \mu \mu \mathrm{f}$
Frequency Cutoff ($\mathrm{IE}=1 \mathrm{ma} ; \mathrm{Vcb}=5 \mathrm{v}$)	fab	8 mc
Minimum Frequency Cutoff ($\mathrm{IE}_{\mathrm{E}} \overline{\mathrm{V}} \mathrm{l}$ ma; $\mathrm{V}_{\text {cb }}=5 \mathrm{v}$)	fab	5 me min
Base Current Gain ($\mathrm{I}_{\mathrm{s}}=20 \mu \mathrm{a}$; Vce $=1 \mathrm{v}$)	hre	
Minimum Base Current Gain	hre	23
Maximum Base Current Gain	hre	135
IF Amplifier Performance (See Circuits Poges 68, 69)		
Collector Supply Voltage	Vcc	5 volts
Collector Current	Ic	1 ma
Input Frequency	f	455 KC
Available Power Gain	Ge	39 db
Minimum Power Gain in typical IF test circuit (see circuits Pages 68, 69)	G。	28 db min
Power Gain Range of Variation in typical IF Circuit		3 db
Cutoff Charocteristics		
Collector Cutoff Current ($\mathrm{Vcb}=5 \mathrm{v}$)	Ico	. 5 ¢ ${ }^{\text {a }}$
Collector Cutoff Current ($\mathrm{VcB}^{\text {c }} \mathbf{= 1 5 v}$)	Ico	$5 \mu \mathrm{max}$

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.
**All values are typical unless indicated as a min. or max.
The General Electric Type 2N165 is a rate-grown NPN transistor intended for IF amplifier applications in broadcast radio receivers. The collector capacity is controlled to a uniformly low value so that neutralization in most circuits

2N165

Outline Drawing No. 31 is not required. Power gain at 455 KC in a typical receiver circuit is restricted to a 3 db spread. The uniformity provided by the controls of collector capacity and power gain allows easy and economical incorporation of this type into receiver circuits. The 2 N165 is housed in a glass and metal enclosure which has been designed to be the optimum size in both height and diameter for use in printed circuit boards. The lead arrangement is on a 100 mil grid with .141 in . between leads, which allows direct insertion in the printed circuit boards.

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:

Voltages

Collector to Emitter (Base Open)
Collector to Base (Emitter Open)

Collector Current

Power

Collector Dissipation at $25^{\circ} \mathrm{C} *$
Temperature Range
Operating and Storage
ELECTRICAL CHARACTERJSTJCS: $\left(25^{\circ} \mathrm{C}\right) \%$
IF Amplifier Service

Maximum Ratings

Collector Supply Voltage
Design Center Characteristics
($\mathrm{Ie}=1 \mathrm{ma} ; \mathrm{VCE}_{\mathrm{E}}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$ except as noted)
Input Impedance

Output Impedance
Voltage Feedback Ratio ($\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$) $) ~$
Collector to Base Capacitance ($\mathrm{VCB}=\overline{5} \mathrm{~V} ; \mathrm{f}=1 \mathrm{mc}$)
Frequency Cutoff ($\mathrm{Vcb}=5 \mathrm{v}$)
Base Current Gain ($\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{a} ; \mathrm{VCE}=1 \mathrm{v}$)
Minimum Base Current Gain
Maximum Base Current Gain
IF Amplifier Performance (See Circuits Pages 68, 69)
Collector Supply Voltage
Collector Current
Input Frequency
Available Power Gain
Minimum Power Gain in typical IF circuit
(see circuits Pages 68. 69)
Power Gain Range of Variation in Typical IF Circuit

Cutoff Characteristics

Collector Cutoff Current ($\mathrm{VcB}=5 \mathrm{v}$)
Collector Cutoff Current ($\mathrm{VCb}=15 v$)
*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
**All values are typical unless indicated as a min. or max.

Zis	500 ohms
Zo	15 K ohms
hrb	10×10^{-8}
Cob	$2.4 \mu \mu \mathrm{f}$
fab	5 mc
$\mathrm{hre}^{\text {F }}$	72
hfe	36
hre	220
Vcc	5 volts
Ic	1 ma
f	455 KC
Ge	36 db
$\mathrm{G}_{\text {e }}$	25 db min
Ge	3 db
Ico	. $5 \mu \mathrm{a}$
Ico	5 на max

Vceo	15 volts
Vcbo	15 volts
Ic	-20 ma
Pcm	65 mw
TA-Tstg	-55 to $85^{\circ} \mathrm{C}$

Ico

Outline Drawing No. 31

The 2N166 is a rate grown NPN germanium transistor intended for use in high frequency circuits by amateurs, hobbyists, and experimenters. The 2 N166 can be used in any of the many published circuits where a low voltage, high frequency transistor is necessary, such as for regenerative receivers, high frequency oscillators, etc. If you desire to use the 2 N 166 NPN transistor in a circuit showing a PNP type transistor, it is only necessary to change the connections to the power supply.

SPECIFICATIONS

absolute maximum ratings:
Voltages
Collector to Emitter
Collector Current
Power
Collector Dissipation @ $\mathbf{2 5}^{\circ} \mathrm{C}$ *
Temperature Range
Operating and Storage
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right) * *$
High Frequency Characteristies
($\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$ exeept as noted)
Input Impedance (Common Emitter)
Output Impedance (Common Emitter)
Collector to Base Capacitance ($\mathrm{f}=1 \mathrm{mc}$)
Frequency Cutoff (Vcb $=5 \mathrm{~V}$)
Power Gain (Common Emitter)
Low Frequency Characteristics
($\mathrm{If}_{\mathrm{e}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=\mathbf{5 v} \mathbf{f} \mathbf{f}=270 \mathrm{cps}$)
Input Impedance
Voltage Feedback Ratio
Current Gain
Output Admittance
Common Emitter Base Current Gain

Cutoff Characteristics

Collector Cutoff Current (Vcs $=5 v$)
*Derate $1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
**AIl values are typical unless indicated as a min. or max.
VCE 6 volts
Ic $\quad 20 \mathrm{ma}$

PcM 25 mw
$\mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{STG}} \quad-55$ to $50^{\circ} \mathrm{C}$

Z_{1}	800 ohms
Z_{o}	15 Kohms
Cob 2	$3 \mu \mu \mathrm{f}$
$\mathrm{f}_{\text {ab }}$	5 mc
G_{e}	24 db

hib	55 ohms
$h_{\text {rb }}$	4×10^{-4}
heb	. 97
hob	. $3 \times 10^{-6} \mu \mathrm{mhos}$
heo	32
Ico	$5 \mu \mathrm{max}$

Outline Drwg. No. 14

The General Electric type 2N167 is an NPN high frequency, high speed switching transistor intended for industrial and military applications where reliability is of prime importance.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:

Collector to Emitter Voltage (base open), Vceo. 30 volts
Collector to Base Voltage (emitter open), Vcro. 30 volts
Emitter to Base Voltage (collector open), Vкво
5 volts
Collector Current, Ic 75 ma
Emitter Current,

Collector Dissipation ($25^{\circ} \mathrm{C}$)* ${ }^{\text {P Pcm }}$ 75 mw
Storage Temperature, Tsta.
$85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

DESIGN
D-C Base Current Gain ($\mathrm{VCa}=1 \mathrm{v} ; \mathrm{Ic}_{\mathrm{c}}=8 \mathrm{ma}$), $\mathrm{Ic}_{\mathrm{c}} / \mathrm{I}_{\mathrm{b}}$
Saturation Voltage ($I_{\mathrm{B}}=.8 \mathrm{ma} ; \mathrm{Ic}_{\mathrm{c}}=8 \mathrm{ma}$), Vca
ulse Response Time ($I_{c}=8 \mathrm{ma}$)
Delay \& Rise Time, t_{r}
Storage Time, t_{s}
Fall Time, tt

Cuioff Characteristics

Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=15 \mathrm{v}$), Ico
Emitter Cutoff Current (Ves = 5 v), Ieo
Collector to Emitter Voltage (Base open, Ic $=0.3 \mathrm{ma}$), VCE
High Frequency Characteristics (Common Base)
$\left(\mathrm{V}_{\mathrm{cb}}=5 \mathrm{y} ; 1_{\mathrm{E}}=1 \mathrm{ma}\right)$
Alpha Cutoff Frequency, fab
Collector Capacity ($f=1 \mathrm{mc}$), Cob
Low Frequency Choracteristics (Common Base)
($\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathrm{f}=270 \mathrm{cps}$)
Input Impedance, $h_{1 b}$, $\mathrm{h}_{\mathrm{b}} \quad 40$
Voltage Feedback Ratio, $h_{\text {rb }}$
Base Current Amplification, h fb
Output Admittance, hob

LIMITS

MIN. MAX.
 17

0.35
.6
.6
.8
volts
$\mu \mathrm{sec}$
$\mu \mathrm{sec}$
$\mu \mathrm{sec}$

Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
**Derate $1.25 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

The 2N168A is a rate grown NPN germanium transistor intended for mixer/oscillator and IF amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity

2N168A

Outline Drwg. No. 14 so that neutralization in many circuits is not required. The 2N168A has a frequency cutoff control to provide proper operation as an oscillator or autodyne mixer. For IF amplifier service the range in power gain in controlled to 3 db .

CONVERTER TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:

Converter Service

Maximum Ratings Collector Supply Voltage, Vcc. 12 volts
Design Center Choracteristics Design Center Choracteristics15 K ohms
Voltage Feedback Ratio ($I_{t d}=1 \mathrm{ma}$; VCB $=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$), h_{rb} 5×10^{-8}
Collector to Base Capacitance ($\mathrm{I}_{\mathrm{f}}=1 \mathrm{ma}$ Vcb $=5 \mathrm{v} ; \ddagger=1 \mathrm{mc}$), Cob $2.4 \mu \mu \mathrm{f}$ 8 mc
Frequency Cutoff ($I_{\mathrm{E}}=1 \mathrm{ma}$; $V_{c B}=5 \mathrm{v}$), fab. 5 mc min
Base Current Gain ($\mathrm{Ib}=20_{\mathrm{ma}}$; Vce $=1 \mathrm{~V}$), hpr 40
Minimum Base Current Gain, hfe 135
Maximum Base Current Gain, hFe
25 db
Conversion Goin, CGe
IF Amplifier Performonce
Collector Supply Voltage, Vcc. 5 volts 1 ma455 KC
55 KC
39 db Available Power Gain, Ge
Minimum Power Gain in typical 28 db min
Power Gain Range of Variation in typical IF circuit, \mathbf{G}_{0} 3 db
Cutoff Charocteristics
Collector Cutoff Current (VcB = 5v), Ico. $.5 \mu \mathrm{a}$
 5μ max*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

The 2 N169A and 2 N169 are rate grown NPN germanium transistors intended for use as IF

2N169A, 2N169

Outline Drwg. No. 14 lector capacity is controlled to a low value so that neutralization in most circuits is not required.
The power gain at 455 KC is maintained at a 3 db spread for the 2N169A. The 2N169A is a special high voltage unit intended for second IF amplifier service where large voltage signals are encountered. The 2N169 is also intended for low gain IF amplifier and power detector applications.

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:	2N169A	2N169	
Coltage to Emitter (base open), Veco	25	15	volts
Collector to Base (emitter open), Vcbo	25	15	volts
Current Collector, Ic	-20	-20	ma
Power Collector Dissipation at $25^{\circ} \mathrm{C}^{*}$, Pcm	55	55	m
Temperoture Range Operating and Storage, $\mathrm{T}_{\Delta}, \mathrm{Tsmg}_{\mathbf{s t}}$	-55 to 75	-55 to 75	${ }^{\circ} \mathrm{C}$
TYPICAL ELECTRICAL CHARACTERISTICS: IF Amplifier Service			
Moximum Ratings Collector Supply Voltage, Vcc	12	12	volts
Design Center Characteristics ($\mathrm{Im}_{\mathrm{m}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$ except as noted)			
Input Impedance, Z_{1}	500	500	ohms
	15	15	K ohms
Voltage Feedback Ratio (Vcs $=5 v ; f=1 \mathrm{mc}$), $\mathrm{hrb}_{\text {rb }}$	10×10^{-8}	10×10^{-8}	
	2.4	2.4	$\mu \mu \mathrm{f}$

Base Current Gain ($\mathrm{Ib}_{\mathrm{b}}=20_{\mathrm{ma}}$; Vce $=1 \mathrm{v}$), hre Minimum Base Current Gain, hee Maximum Base Current Gain, her	72 36 220	72 36 220	
$1 F$ Amplifier Performance			
Collcetor Supply Voltage, Vcc		5	volts
Collector Current, $\mathrm{IE}^{\text {e }}$	1	1	ma
	455	455	KC
Minimum Power Gain in typical IF circuit, Ge	36	36	
Power Gain Range of Variation in typical IF circuit, G_{e}	25	25 3	db min
Cutoff Characteristics			
Collector Cutoff Current ($\mathrm{Vcb}_{\text {ce }}=5 \mathrm{5}$) , Ico	. 5		
Collector Cutoff Current ($\mathrm{Vcb}_{\mathrm{cb}}=15 \mathrm{v}$), Ico	5	. 5	$\mu \mathrm{max}$

2N17O

Outline Drwg. No. 14

The 2N170 is a rate grown NPN germanium transistor intended for use in high frequency circuits by amateurs, hobbyists, and experimenters. The 2 N170 can be used in any of the many published circuits where a low voltage, high frequency transistor is necessary such as for regenerative receivers, high frequency oscillators, etc. If you desire to use the 2 N 170 NPN transistor in a circuit showing a PNP type transistor, it is only necessary to change the connections to the power supply.

SPECIFICATIONS

2N186, 2N187, 2N188

Outline Drwg. No. 8

The $2 \mathrm{~N} 186,2 \mathrm{~N} 187$, and 2 N 188 are medium power PNP transistors, intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain provides and permits use of any two transistors from a parlow distortion in Class B circuit
ticular type without matching.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: Voltages

Collector to Base (emitter open), VcBo. $\quad-25$ volts

Emitter to Base (collector open), Vebo.
Collector Current, Is
-5 volts
Power
Collector Dissipation ($25^{\circ} \mathrm{C}$)*, PCM
75 mw

Temperature				
Operating Range, T_{A}				
Storage Range, Tsta. .				
TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ Class B Audio Amplifier Operation	2N186	2N187	2N188	
(Values for twa transistors. Note that matching is not required to hold distortion ta less than 5\% for any two transistors from a type)				
Maximum Class B Ratings (Common Emitter) Collector Supply Voltage, Vcc	-12	-12	-12	volts
Power Output (Distortion less than 5\%), Po	300	300	300	mw
Design Center Characteristics Input Impedance large signal base to base ($\triangle \mathrm{I}_{\mathrm{E}}=150 \mathrm{ma}$) , hie $1200 \quad 2000 \quad 2600$ ohms				
Base Current Gain ('VCe $=-1 \mathrm{v}$; $\mathrm{I}_{\mathrm{e}}=150 \mathrm{ma}$), $\mathrm{hre}^{\text {e }}$	24	36	54	
		35		$\mu \mu \mathrm{f}$
Frequency Cutoff ($\mathrm{Vce}=-5 \mathrm{v}$; $\mathrm{Ie}=1 \mathrm{ma}$), fab	. 8	1.0	1.2	
Class B Circuit Performance (Comman Emitter) Collector Voltage, Vcc	-12	-12	-12	volts
Cutoff Characteristics				
Maximum Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=-25 \mathrm{v}$), Ico	16	16	16	max $\mu \mathrm{a}$
Maximum Emitter Cutoff Current ($\mathrm{Ves}=-5 \mathrm{v}$), 1eo	10	10	10	max $\mu \mathrm{a}$

The $2 \mathrm{~N} 186 \mathrm{~A}, 2 \mathrm{~N} 187 \mathrm{~A}$, and 2 N 188 A are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to

2N186A, 2N187A 2N188A

Outline Drwg. No. 8 200 ma . This linearity of current gain provides low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:				
Collector to Base (emitter open), Vcro. - 25 volts				
Collector to Emitter (Reb = 1 K ohm), VCfr. .				
Emitter to Base (collector open), Vero.. - 5 volts				
Collector Dissipation ($25^{\circ} \mathrm{C}$)*, Pcas				180 mw
Temperature				
Operating Range, TA. -5.5 to $60{ }^{\circ}{ }^{\circ} \mathrm{C}$ Storage Range, Tsta . 55 to $85^{\circ} \mathrm{C}$				
TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ $\begin{array}{lllll}\text { Class B Audia Amplifier Operation } & \text { 2N186A } & \text { 2N187A } & \text { 2N188A }\end{array}$				
(Values far twa transistars. Nate that matching is not required to hald distortian to less than 5% for any twa transistars fram a type)				
Maximum Class B Ratings (Camman Emitter) Collector Supply Voltage VCC	-12	-12	-12	volts
Power Output (Distortion less than 5\%), P。	750	750	750	mw
Design Center Characteristics Input Impedance large signal base to base ($\Delta \mathrm{Ir}=150 \mathrm{ma}$) hie $2000 \quad 2600$				
Base Current Gain (Vce $=-1$ v; Ic = 150 ma), hre $\quad 24 \quad 36$				
$\begin{array}{llllll}\text { Frequency Cutoff (Vcs }=-5 & \left.\mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}\right) \text {, fab } & .8 & 1.0 & 1.2 \mathrm{mc}\end{array}$ Class B Circuit Performance (Cammon Emitter)				
Class B Circuit Performance (Common Emitter) Collector Voltage, Vcc	-12	-12	-12	
Minimum Power Gain at 100 mw power output, Ge	28	30	32	min db
Class A Audia Amplifier Operotion (Camman Emitter)				
($\mathrm{Vec}_{\text {ce }}=12 \mathrm{v} ; \mathrm{I}_{1}=10 \mathrm{ma}$)				
Power Gain at 50 mw power output, Ge_{e}	30	32	34	db
Cutoff Characteristics				
Maximum Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=-25 \mathrm{v}$), Ico	16	16	16	max μ a
Maximum Emitter Cutoff Current (Ver $=-5 \mathrm{v}$), Imo	10	10	10	$\max \mu \mathrm{a}$

2N189, 2N190, 2N191, 2N192

ABSOLUTE MAXIMUM RATINGS:					
Collector to Emitter (Rer $\boldsymbol{=} \mathbf{1} \mathrm{K}$ ohm), Veer. - 25 volts					
Collector Current, Ir . 50 ma					
Power					
TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ Audio Driver Closs A Operation	2N189	2N190	2N191	2N192	
(Values for one tronsistor driving a transformer coupled output stage)					
Maximum Class A Ratings (Cammon Emitter) Collector Supply Voltage, Vcc	12	12	12	12	volts
Design Center Characteristics					
	24	36	54	75	
Collector Capacity ($\mathrm{VCB}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{c}}=1 \mathrm{ma}$), Cob	35	35	35	35	
Frequency Cutoff ($\mathrm{VCB}=-5 \mathrm{v}$; $\mathrm{Im}_{\mathrm{F}}=1 \mathrm{ma}$), $\mathrm{fab}^{\text {a }}$. 8	1.0	1.2	1.5	
Noise Figure ($\mathrm{VCb}=-5 \mathrm{v}$; $\mathrm{I}_{\mathrm{m}}=1 \mathrm{ma}$; $\mathbf{f}=1 \mathrm{KC} ; \mathbf{B W}=1$ cycle $), \mathbf{N F}$	15	15	15		
Audio Circuit Performance (Common Emitter)					
Collector Supply Voltage, Vcc	12	12	12	12	volts
Emitter Current, If	1	1	,		ma
Minimum Power Gain at 1 mw power output, $\mathrm{Ge}_{\text {e }}$	37	39	41		min db
Small Signal Choracteristies (Cammon Base)					
Input Impedance, hib	29	29	29		ohms
Voltage Feedback Ratio, $\mathrm{hrb}^{\text {r }}$	4×10^{-4}	4×10^{-4}	4×10^{-4}	4×10^{-4}	ohms
Current Amplification, $\mathbf{h i b}^{\text {b }}$. 96	. 973	. 98	. 987	
Output Admittance, hob	1.0	. 8	. 6		$\mu \mathrm{mhos}$
Cutoff Characteristics					
Maximum Collector Cutoff Current ($\mathrm{V}_{\mathrm{cb}}=25 \mathrm{v}$), Ico *Derate $1.25 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient t	$\begin{gathered} 16 \\ \text { mperature } \end{gathered}$	$\begin{array}{r} 16 \\ \text { within } \end{array}$	$\begin{array}{r} 16 \\ \text { ange } 25^{\circ} \end{array}$	$\begin{array}{r} 16 \\ C \text { to } 60^{\circ} \mathrm{O} \end{array}$	$\max \mu \mathrm{a}$

2N241, 2N141A

The 2N241, and 2N241A are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By special process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain insures low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:			
Collector to Base (emitter open), Vobo.. . -25 volts			
Collector to Emitter (Rbr $=1 \mathrm{~K}$ ohm), Vcer . - 25 volts			
Emitter to Base (collector open), Vebo........... - 5 volts			
Collector Current, Ir . 200 ma			
Power	2N241	2N241	
Collector Dissipation ($25^{\circ} \mathrm{C}$)*, Рсм	100		
Temperature			
Operating Range, $\mathrm{T}_{\text {A }}$. -55 to $60^{\circ} \mathrm{C}$-55 to $60{ }^{\circ} \mathrm{C}$			
Storage Range, Tsti	-55 to $85{ }^{\circ} \mathrm{C}$	-55 to 85	
TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ Class B Audio Amplifier Operation			
(Values for two transistors. Note that matching is not required to hold distortion to less than 5% for any two transistors from a type)			
Moximum Class B Ratings (Cammon Emitter)			
Collector Supply Voltage, Vcc	-12	-12	volts
Power Output (Distortion less than 5\%), Poe	300	750	mw

Design Center Characteristics			
Input Impedance large signal base to base ($\mathrm{II}_{\mathrm{I}}=150 \mathrm{ma}$), h_{10}	4000	4000	ohms
Base Current Gain ($\mathrm{Vcm}=-1 \mathrm{v}$; $\mathrm{I}_{\mathrm{c}}=150 \mathrm{ma}$) hpm	73	73	
	35	35	$\mu \mu \mathrm{f}$
Frequency Cut off (Vce $=-5 \mathrm{v} ; \mathrm{If}^{\text {a }} 1 \mathrm{l} \mathrm{ma}$), fab	1.3	1.3	mc
Class B Circuit Perfarmance (Common Emitter) Collector Voltage, Vcc	-12	-12	volts
Minimum Power Gain at 100 mw power output, Ge_{e} Class A Audia Amplifier Operation (Common Emitter)	34	34	min db
$\left(V_{c e}=-12 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=10 \mathrm{ma}\right)$ Power Gain at 50 mw power output, Ge_{e} Cutaff Choracteristics		35	db
Maximum Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=-25 \mathrm{v}$), Ico Maximum Emitter Cutoff Current ($\mathrm{VBB}_{\mathrm{BB}}=-5 \mathrm{v}$), Iwo	16	16 10	max

The 2N265 is an alloy junction PNP transistor intended for driver service in transistorized audio amplifiers. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special

2N265
Outline Drwg. No. 8

Abstract

processing techniques and the use of hermetic seals pro-

 vides stability of these characteristics throughout life.
SPECIFICATIONS

(Values far one transistor driving a transformer coupled output stage) Maximum Closs A Ratings (Cammon Emitter) Collector Supply Voltage, Vcc12 voltsDesign Center Characteristics
Input Impedance base to emitter (Ie $=1 \mathrm{ma}$), hie 4000 ohms
Base Current Gain (Vce $=-5 \mathrm{v}$; IE $=1 \mathrm{ma}$), h_{r} 。

Collector Capacity ($\mathrm{V}_{\mathrm{cB}}=-5 \mathrm{v}$; $\mathrm{Im}_{\mathrm{m}}=1 \mathrm{ma}$), Cob
$35 \mu \mu \mathrm{f}$
Frequency Cutoff (Vcb $=-5 \mathrm{v}$; $\mathbf{I}_{\mathrm{w}}=1 \mathrm{ma}$), $\mathbf{f a b} \ldots \ldots . .$.

Audia Circuit Performance (Cammon Emitter)
Collector Supply Voltage, Vcc. 12 volts
Emitter Current, In.
Minimum Power Gain at 1 mw power output, $\mathbf{G}_{\mathrm{E}} . . .$.
Small Signal Characteristics (Common Base)
($\mathrm{VcB}_{\mathrm{cb}}=-5 \mathrm{v} ; 1 \mathrm{E}=1 \mathrm{ma} ; \mathrm{f}=270 \mathrm{cps}$)
Input Impedance, hib.

Cutaff Characteristics
Maximum Collector Cutoff Current (VCB $=25 \mathrm{v}$), Ico....................... 16 max $\mu \mathrm{a}$
*Derate $1.25 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature within range $25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
Types 2N292 and 2N293 are rate grown NPN germanium transistors intended for amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow

2N292, 2N293

Outline Drwg. No. 14
spread in collector capacity so that neutralization
in many circuits is not required. The type 2 N 293 is intended for receiver circuits where high gain is needed. In IF amplifier service the range in power gain is controlled to 3 db .

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS	2N292	2N293	
Collector to Emitter (base open), Vceo	15	15	volts
Collector to Base (emitter open), Vcbo.	15	15	volts
Current Collector, Ic	-20	-20	ma
$\xrightarrow[\text { Power }]{\text { Collector }}$ Dissipation at $25^{\circ} \mathrm{C} *$, РСм .	65	65	mw

Temperature Range
Operating and Storage, T_{Δ}, Tsta . $\mathbf{- 5 5}$ to 85 -55 to $85 \quad{ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS**
IF Amplifier Service

Maximum Ratings Collector Supply Voltage, Vcc.	12	12	volts
Design Center Characteristics			
Input Impedance ($\mathrm{If}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{ce}}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$), Z_{1}	500	350	ohms
Output Impedance ($\mathrm{Im}=1 \mathrm{ma}$; $\mathrm{Vce}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$), Z_{o}.	15	15	K ohms
Voltage Feedback Ratio ($\mathrm{If}_{\mathrm{e}}=1 \mathrm{ma;} \mathrm{Vcb}=5 \mathrm{v} ; \mathrm{f}=\mathrm{mc}$), hrb	10×10^{-8}	5×10^{-8}	
Collector to Base Capacitance ($1 \mathrm{Im}=1 \mathrm{ma}$			
Vcb $=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$), Cob	2.4	2.4	$\mu \mu \mathrm{f}$
	5	8	mc
Base Current Gain ($\mathrm{Ib}_{\mathrm{b}}=20 \mathrm{ma}$; Vce $=1 \mathrm{~V}$), hre	25	25	
Min. Base Current Gain, hre	6	6	
Max. Base Current Gain, hre	44	55	
IF Amplifier Perfarmance			
Collector Supply Voltage, Vcc	5	5	volts
Collector Current, Im.	1	1	ma
Input Frequency, f .	455	455	KC
Available Power Gain, Ge	36	30	
Min. Power Gain in Typical IF Test Circuit, Ge.	25	28	db min
Power Gain Range of Variation in Typical IF Circuit.	3	3	db
Cutaff Characteristics			
Collector Cutoff Current ($\mathrm{VcB}^{\text {c }} \mathbf{5 v}$), Ico	. 5	. 5	
Collector Cutoff Current ($\mathrm{Vcb}=15 \mathrm{v}$), Ico	. 5	. 5	$\mu \mathrm{max}$

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.
**All values are typical unless indicated as a min or max.

2N313, 2N314

Outline Drawing No. 31

The General Electric Types 2N313 and 2N314 transistors are rate grown NPN germanium devices intended for IF amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity so that neutralization in many circuits is not required. The Type 2N314 is intended for receiver circuits where high gain is needed in IF amplifier service, the range in power gain is controlled to 3 db . The Types 2 N 313 and 2 N 314 are housed in a glass and metal enclosure which has been designed to be the optimum size in both height and diameter for use in printed circuit boards. The lead arrangement is on a 100 mil grid with .141 in . between leads, which allows direct insertion in the printed circuit boards. An indexing tab is provided on the header for easy location and automatic insertion purposes. The 2N313 and 2N314 may be dip soldered on printed circuit boards if normal precautions are made for solder bridging and provided the boards are not immersed in the solder bath for more than 15 seconds.

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:

Voltages

Collector to Emitter (Base Open)
Collector to Base (Emitter Open)

Callectar Current

Vceo			15 volts
Vcbo			15 volts
Ic			-20 ma
Pcm			65 mw
$\mathrm{T}_{\Delta-\mathrm{T}_{\text {stg }}}$		-55	$85^{\circ} \mathrm{C}$
	2N313	2N314	
Vcc	12	12	volts
Z_{1}	500	350	ohms
Z。	1.5 K	15K	ohms
$\mathrm{hrb}^{\text {b }}$	10×10^{-8}	5×10^{-8}	
Cob	2.4	2.4	$\mu \mu \mathrm{f}$
$\mathrm{fab}^{\text {b }}$	5	8	mc
hfe	25	25	
hre	6	6	
hfe	44	55	
Vec	5	5	volts
Ic	1	1	ma
f	455	455	KC
Ge	36	39	db

Minimum Power Gain in Typical IF Test Circuit (See Circuits Pages 68, 69) Power Gain Range of Variation in Typical IF Circuit	$\begin{gathered} \mathbf{G}_{\mathbf{G}} \end{gathered}$	25	28	db min db
Cutoff Characteristics				
Collector Cutoff Current ($\mathrm{Vcs}=5 \mathrm{v}$)	Ico	. 5	. 5	
Collector Cutoff Current ($\mathrm{Ver}=15 \mathrm{v}$)	Ico	5	5	$\mu \mathrm{a}$ max

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.
**All values are typical unless indicated as a min. or max.
The $2 \mathrm{~N} 319,2 \mathrm{~N} 320$, and 2 N 321 are miniaturized versions of the 2N186A series of G-E transistors. Like the prototype versions, the 2N319, 2N320, and 2N321 are medium power PNP transistors intended for use as audio output amplifiers in

2N319, 2N32O, 2N321

Outline Drawing No. 29 radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain provides low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:

Voltages					
Collector to Emitter	$V_{\text {ce }}$				20 volts
Collector to Base	$\mathrm{V}_{\text {ch }}$				30 volts
Emitter to Base	Veb				3 volts
Collector Current	Ic				200 ma
Power					
Collector Dissipation	Pcm				200 mw
Temperature					
Operating and Storage Range	$\mathrm{T}_{\text {A-T }}$			-65	$100^{\circ} \mathrm{C}$
TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$					
D.C. Characteristics		2N319	2N320	2N321	
Base Current Gain ($\mathrm{Ic}=20 \mathrm{ma}$;					
Vce $=-1 \mathrm{v}$)	hFe	33	48	80	
Base Current Gain (IC = 100 ma ;					
Collector to Emitter Voltage ($\mathrm{REB}_{\mathrm{EB}}=10 \mathrm{~K}$) ($\mathrm{Ic}=.6 \mathrm{ma}$)					
Collector Cutoff Current ($\mathrm{VEs}^{2}-25 v$)	Iro	8	8	8	
Maximum Collector Cutoff Current $\left(\mathrm{VCB}_{C B}=-25 \mathrm{v}\right)$	Ico	16	16	16	$\mu \mathrm{a}$
Emitter Cutoff Current ($\mathrm{Veb}_{\text {er }}=3 v$)	Izo	2	2	2	$\mu \mathrm{a}$
Small Signal Characteristics (Common Base)					
($\left.\mathrm{V}_{\mathrm{cb}}=-5 \mathrm{v} ; \mathrm{IE}^{\text {e }} 1 \mathrm{ma} ; 3=270\right)$					
Frequency Cutoff (f)	$f{ }_{\text {f }}$	2.5	2.9	3.3	me
Collector Capacity ($f=1 \mathrm{mc}$)	Cob	24	24	24	$\mu \mu \mathrm{f}$
Noise Figure	NF	6	6	6	
Input Impedance	hib	30	30	30	ohms
Thermal Characteristics					
Thermal Resistance					
Without Heat Sink (Junction to Air)		. 33	. 33	. 33	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
With Heat Sink (Junction to Case)		. 2	. 2	. 2	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
Perfarmance Data (Camman Emitter)					
Class A Power Gain (Vcc $=-9 v$)	Ge	30	31	32	db
Power Output	$\mathrm{P}^{\text {o }}$	50	50	50	mw
Class B Power Gain (Vcc $=-9 \mathrm{v}$)	Ge	27	29	31	db
Power Output	Po	100	100	100	mw

The 2N322, 2N323, 2N324 are alloy junction PNP transistors intended for driver service in audio amplifiers. They are miniaturized versions of the 2N190 series of G.E. transistors. By control of transistor characteristics during manufacture, a specific power gain is provided for

Outline Drawing No. 29 each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

SPECIFICATIONS

AbSOLUTE MAXIMUM RATINGS:

Valtages

Collector to Emitter

V_{CE}	-16 volts
V_{CB}	-16 volts
Ic	50 ma

Power.

Collector Dissipation	Pcm				75 mw
Temperature					
Operating and Storage Range	Ta-Tstg			-65 to	$85^{\circ} \mathrm{C}$
TYPICAL ELECTRICAL CHARACTERISTICS	: $25^{\circ} \mathrm{C}$)				
D.C. Choracteristics		2N322	2N323	2N324	
Base Current Gain ($\mathrm{Ic}=20 \cdot \mathrm{ma}$; Vce $=1 \mathrm{l}$)	hfe	48	80	95	
Collector to Emitter Voltage $\left(\mathrm{Reb}^{\prime}=10 \mathrm{~K}, \mathrm{Ic}=.6 \mathrm{ma}\right)$	Vce	16	16	16	volts
Collector Cutoff Current	Ico	10	10	10	$\mu \mathrm{a}$
Max. Collector Cutoff Current	Ico	16	16	16	$\mu \mathrm{a}$
Small Signal Characteristics					
Frequency Cutoff (Vcs $=-5 v ; 1=1 \mathrm{ma}$)	fab	29	33	34	
Collector Capacity ($\mathrm{Vcz}=-5 \mathrm{v} ; \mathrm{I}=1 \mathrm{ma}$)	Cob	24	24	24	$\mu \mu \mathrm{f}$
Noise Figure ($\mathrm{VcB}=-5 \mathrm{v} ; \mathrm{I}=1 \mathrm{ma}$)	NF	10	10	10	
Input Impedance ($\mathrm{Vce}=-5 \mathrm{v} ; \mathrm{Ir}^{=} 1 \mathrm{lma}$)	hie	2200	2600	3300	ohms
Current Gain ($\mathrm{Vce}^{\text {c }}=-5 \mathrm{v}$; $\mathrm{Im}=1 \mathrm{ma}$)	hfe	70	84	112	
Thermal Characteristics Thermal Resistance Junction to Air		. 33	. 33	. 33	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
Performance Data Common Emitter					
Power Gain Driver (Vcc $=9 \mathrm{v}$)	Ge	39	41	43	db
Power Output	Po	1	1	1	mw

2N43O

Outline Drawing No. 30

The General Electric Type 2N430 transistor is a silicon triode intended for low level switching applications. This unit is characterized by low collector saturation resistance and fast transient response. The 2 N 430 is a diffused junction device manufactured by the General Electric diffused meltback process. The transistors are hermetically sealed in a welded case. The case dimensions and lead configuration are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)
Voltages
Collector to Base (Emitter Open)
Collector to Emitter (Base Open
Emitter to Base (Collector Open)

Collector Current

Power
Collector Dissipation $\left(25^{\circ} \mathrm{C}\right) *$
Collector Dissipation ($150^{\circ} \mathrm{C}$)
Temperature Range
Operating
Storage
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Design Center Characteristics

BVcso				10 volts
BVceo				10 volts
BVebo				3 volts
Ic				30 ma
Рсм				150 mw
Рсм				25 mw
$\mathrm{T}_{\mathbf{A}}$			-65 t	$150{ }^{\circ} \mathrm{C}$
Tstg				$200{ }^{\circ} \mathrm{C}$
	MIN.	NOM.	MAX.	
Cob		14		$\mu \mu \mathrm{f}$
$\mathrm{hl}_{\substack{\text { hab }}}$		55		ohms me

Switching Circuit Application*

Collector Saturation Voltage $\left(I_{\mathrm{B}}=0.2 \mathrm{ma}, I_{\mathrm{c}}=2.5 \mathrm{ma}\right)$	Vce(Sat.)			0.175	volts
Base to Emitter Voltage $\left(I_{B}=0.2 \mathrm{ma}, I_{c}=2.5 \mathrm{ma}\right)$	Vbe	0.673	0.693	0.713	volts
Emitter Floating Potential (Vcs=4.5v, Resistance Emitter to base	Vbe			0.2	volts
$\begin{aligned} & \text { Collector Current } \\ & \left(\mathrm{T}=75^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{BE}}=.35 \text { volts forward, } \mathrm{VCB}\right. \\ & =1.5 \text { volts) } \end{aligned}$	tf			100	$\mu \mathrm{mmps}$
Collector Current $\left(\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{Ie}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=5 \text { volts }\right)$	Ic			0.25	$\mu \mathrm{amps}$
Rise Time Storage Time Fall Time	Ico $\mathrm{tr}_{\text {c }}$ $\mathrm{ta}_{\text {a }}$			1.3 0.3 0.4	$\mu \mathrm{sec}$ $\mu \mathrm{sec}$ $\mu \mathrm{sec}$

*Derate $1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in anibient temperature.
**See Typical "On"-"Of" Circuit.
***As measured in the following circuit:

2N431, 2N432

Outline Drawing No. 30

The General Electric Types 2N431 and 2N432 transistors are silicon triodes intended for amplifier application in the audio and radio frequency range. The 2 N 431 and 2N432 are diffused junction devices manufactured by the General Electric diffused meltback process. The transistors are hermetically sealed in a welded case. The case dimensions and lead configuration are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

2N433, 2N434

Outline Drawing No. 30

The General Electric Types 2N433 and 2N434 transistors are silicon triodes intended for amplifier application in the audio and radio frequency range. The 2 N 433 and 2 N 434 are diffused junction devices manufactured by the General Electric diffused meltback process. The transistors are hermetically sealed in a welded case. The case dimensions and lead configuration are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages

Collector to Base			
(Emitter Open)	BVcbo		30 volts
Collector to Emitter (Base Open)	BVceo		15 volts
Emitter to Base (Collector Open)	BVebo		5 volts
Collector Current	Ic		30 ma
Power Collector Dissipation $\left(25^{\circ} \mathrm{C}\right)$ *	Рсм		150 mw
Collector Dissipation ($150^{\circ} \mathrm{C}$)	Рсм		25 mw
Temperature Range Operating Storage	$\mathrm{T}_{\text {T }}$	-65 to	${ }^{150} 0^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

Small Signal Hybrid Parometers (Common Base)
$\left(I_{E}=-1 \mathrm{ma}, \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}, \mathrm{f}=1000 \sim\right)$

	2N433			2N434		
MIN.	NOM.	MAX.	MiN.	NOM.	MAX.	
	[52			${ }_{102}^{52}$		
	3×10^{-4}			$\times 10^{-4}$		
	0.983			0.991		

Input Impedance
Reverse Voltage Transfer Ratio
Current Transfer Ratio
Output Impedance
Current Transfer RatioCommon Emitter ($\mathrm{IE}-2 \mathrm{ma}, \mathrm{VCB}_{\mathrm{Cb}}=5 \mathrm{v}$) hfe

High Frequency Parameters

Collector to base Capacitance $\left(\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}, \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}\right.$, $\mathrm{f}=1 \mathrm{mc}) \mathrm{ma}, \mathrm{V}_{\mathrm{cB}}=5 \mathrm{v}, \quad$ C
Frequency Cutoff Common Base $\begin{array}{llll}\left(\mathrm{IE}=-2 \mathrm{ma}, \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}\right) & \mathrm{f}_{\mathrm{ab}} & 28 & 30\end{array}$
DC Characteristics

These General Electric symmetrical switching transistors are alloy junction PNP types designed for computer circuits where high current gain is required at collector currents up to 500 ma . They

4JD1B3, 4JD1B4

Outline Drawing No. 8 are unique in that the current gain is symmetrical, i.e., the current gain in the inverse direction is controlled to the same minimum level as the current gain in the forward direction. They use the time proven General Electric all-welded metal case, with the internal structure capable of sustaining severe shock and vibration.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Valtages

Collector to Base				
Collector to Emitter	VCb		-45	volts
Emitter to Base	$V_{\text {EB }}$		-45	volts
Callectar Current	Ic		1000	ma
Emitter Current	IE		1000	ma
Base Current	IB		-1000	ma
Pawer				
Total Transistor Power Dissipation $25^{\circ} \mathrm{C}$	PM		200	mw
Temperature Range				
Storage or Junction	Tsrg or Tj		-55 to 85	${ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$				
Switching Characteristics		4JD1B3	4JD184	
Base Current Gain* (Ic $=-200 \mathrm{ma}$; Vce $=-.3 \mathrm{v}$)	hre	15	20	min
Base Input Voltage* ($\mathrm{Ic}=-200 \mathrm{ma}$; $\mathrm{Vce}_{\text {ce }}=-.3 \mathrm{v}$)	Vre	-. 5	$-.5$	max

Base Input Voltage* (Ic $=-200 \mathrm{ma}$; $\mathrm{VCE}=-.3 \mathrm{v}$)
hre
$\begin{array}{rr}20 & \min \\ -.5 & \max \end{array}$
Pulse Response Time*
VRe
($\mathrm{Ic}=-200 \mathrm{ma}$) (Note 1)
$4 \mathrm{JD1B3}$ (IB1 $=13.3 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 2}=13.3 \mathrm{ma}$)
$4 \mathrm{JDlB4}$ ($\mathrm{I}_{\mathrm{B} 1}=10 \mathrm{ma}$; $\mathrm{I}_{\mathrm{B} 2}=10 \mathrm{ma}$)
Delay Time
Storage Time

td	0.6	0.6	μ s typ.
tr	6.0	8.0	$\mu \mathrm{styp}$.
ts_{8}	2.0	2.0	$\mu \mathrm{styp}$.
tr	2.5	3.5	$\mu \mathrm{s}$ typ.
$f_{a b}$ Cob	$.8$	$\begin{array}{r} .8 \\ 45 \end{array}$	me typ. $\mu \mathrm{fd}$ typ.
Ico	20	20	$\mu \mathrm{a}$ max
Ieo	20	20	$\mu \mathrm{a} \max$
BVCer	-30	-30	volts min
Vrt	-30	-30	volts min
BVcbo	-45	-45	volts min
BVEbo.	-45	-45	volts min
$\mathrm{T}_{\mathbf{J}}$	65	65	${ }^{\circ} \mathrm{C}$
	. 2	. 2	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
	. 3	. 3	${ }^{\circ} \mathrm{C} / \mathrm{mw}$

Small Signal Characteristics
($\mathrm{VCB}_{\mathrm{cb}}=-5 \mathrm{v} ; \mathrm{Ie}_{\mathrm{e}}=1 \mathrm{ma}$)
Frequency Cutoff
Output Capacity

Cutaff Characteristics

Collector Cutoff Current ($\mathrm{Vcs}=-30 \mathrm{v} ; \mathrm{Ie}=0$)
Emitter Cutoff Current (Veb $=-30 \mathrm{v}$; Ic $=0$)
Voltage Collector to Emitter (10k ohm
resistance, base to emitter, $\mathrm{Ic}=0.6 \mathrm{ma}$.)
Collector to Emitter Punchthru Voltage
(VBE $\leqq \mathrm{IV} ; \mathrm{I}_{\mathrm{C}} \leqq 20 \mu \mathrm{~L}$)
Collector to Base Voltage ($\mathrm{Ic}=50 \mu a ; \mathrm{Ie}=0$)
Emitter to Base Voltage ($\mathrm{IE}=50 \mu a$; $\mathrm{Ic}=0$)

Thermal Characteristics

Long Term Storage or Junction
Temperature (Note 2)
Junction to Free Air Thermal Resistance typical
Junction to Free Air Thermal Resistance max.

TYPICAL IST I. F AMPL.

TYPICAL 2ND I. F. AMPL.

TYPICAL IF TEST CIRCUIT

TYPICAL AUTODYNE CONVERTER 2N164A

ANTENNA - DELTA COIL *I-IO5A OR EQUIVALENT
OSCILLATOR COIL - E. STANWYCK CO. \#\| 129 (MODIFIED) OR EQUIVALENT
CAPACITOR - RADIO CONDENSER \# 242 OR EQUIVALENT
I E TRANSFORMER - AUTOMATIC 725(EXO-3926) OR EQUIVALENT

REGISTERED JETEC TRANSISTOR TYPES

For explanation of symbols, ratings and mfg. symbols see page 75.

TYPES AND USES:

Si-Silicon High Temperature Transistors (all others germanium)
Pt-Point contact types
AF-Audio Frequency Amplifier-Driver
AF Out-High current AF Output
Pwr-Power output 1 watt or more
RF-Radio Frequency Amplifier
Osc-High gain High frequency RF oscillator
IF-Intermediate Frequency Amplifier
lo IF-Low IF (262 Kc) Amplifier
Sw -High current High frequency switch
AF Sw-Low frequency switch

RATINGS:

$\mathrm{P}_{\mathrm{c}}=$ Maximum collector dissipation at $25^{\circ} \mathrm{C}\left(76^{\circ} \mathrm{F}\right)$ ambient room temperature. Secondary designations are ratings with connection to an appropriate heat sink.
$\mathrm{BV}_{\mathrm{cs}}=$ Minimum collector-to-emitter breakdown voltage. GE transistors measured with Base-to-emitter resistance as follows:

10 K for AF and AF Out PNP
1 Meg for RF, IF, and Osc PNP
Open circuit for NPN
*BV $\mathrm{Cr}_{\mathrm{cr}}=45$ Minimum collector-to-base breakdown voltage (for grounded base applications).
$\mathrm{I}_{\mathrm{c}}=$ Maximum collector current. (Negative for PNP, Positive for NPN.)
$\mathrm{T}_{\mathrm{J}}=$ Maximum centigrade junction temperature. P_{c} must be derated linearily to O mw dissipation at this temperature.
$\mathrm{h}_{\mathrm{fe}}=$ Small signal base to collector current-gain, or Beta (except for Pt Contact types where emitter to collector gain, alpha a, is given).
$\mathrm{f}_{\mathrm{ab}}=$ Alpha cut-off-frequency. Frequency at which the emitter to collector current gain, or alpha, is down to $1 \sqrt{2}$ or .707 of its low frequency audio value. For some power transistors, the Beta or base-to-collector current-gain cutoff-frequency is given as noted.
$\mathrm{G}_{\mathrm{e}}=$ Grounded-emitter Power Gain. AF, AF Out, and Pwr Gain measured at 1 Kc . RF, IF, and Osc Gains at 455 Kc .
(Sw Gain is dependent on circuit and wave-shape.)
(All measured at typical power output level for given transistor type.)
$\mathrm{P}_{0}=$ Maximum Power Output at 5% harmonic distortion, in mw except where noted as watts. Class A single-ended, Class B Push Pull.

MANUFACTURERS:

CBS-CBS-Hytron.
Cle-Clevite Transistor Products.
Dlc-Delco Radio Div., General Motors Corp.
GE-General Electric Company.
GP-Germanium Products Corp.
Mall-P. R. Mallory and Company, Inc.
Mar-Marvelco, National Aircraft Corp.
Motor-Motorola, Inc.
Phil-Philco.
Ray-Raytheon Manufacturing Company.
RCA-RCA.
Sprague-Sprague Electronics Company.
Syl-Sylvania Electric Products Company.
TI-Texas Instruments, Inc.
TS-Tung-Sol.
W-Westinghouse Electric Corp.
WE-Western Electric Company.

NOTE:

Closest GE types are given only as a general guide and are based on available published electrical specifications. However, General Electric Company makes no representation as to the accuracy and completeness of such information.
Where the maximum voltage rating of the GE unit is not equal to or greater than the given transistor, the GE rating is also given. Note that physical dimensions vary considerably among manufacturers and may be the limiting factor in some replacement applications.
Since manufacturing techniques are not identical, the General Electric Company makes no claim, nor does it warrant, that its transistors are exact equivalents or replacements for the types referred to.

7

*
CUT TO O.200" FOR USE IN SOCKETS.
LEADS TINNED DIA. .OIB
MOUNTING POSITION - ANY
WEIGHT: . 05 OZ .
BASE CONNECTED TO TRANSISTOR SHELL. DIMENSIONS IN INCHES.

DIA.

13

BOTTOM VIEW

22

21

26

27

COLLECTOR CONNECTED TO SHELL

CIRCUIT DIAGRAMS

These circuit diagrams are included for illustration of typical transistor applications and are not intended as constructional information. For this reason, wattage ratings of resistors and voltage ratings of capacitors are not necessarily given. Similarly, shielding techniques and alignment methods which may be necessary in some circuit layouts are not indicated.
The description and illustration of the circuits contained herein does not convey to the purchaser of transistors any license under patent rights of General Electric Company. Although reasonable care has been taken in their preparation to insure their technical correctness, no responsibility is assumed by General Electric Company for any consequences of their use.

DIRECT COUPLED VEST POCKET RADIO

DIRECT COUPLED "BATTERY SAVER" AMPLIFIER

CODE PRACTICE OSCILLATOR

> RI (IOOK - 5OOK) SHOULD BE CHOSEN TO MAKE COLLECTOR VOLTAGE 2.5 TO 3.5 VOLTS

CHANGING C2 AND R2 WILL VARY COMPENSATION CURVE. VALUES SHOWN GIVE APPROXIMATE COMPENSATION FOR R.I.A. A. RECORDING CHARACTERISTICS

SIMPLE AUDIO AMPLIFIER

SIMPLE RADIO RECEIVER

LOUDSPEAKER AUDIO AMPLIFIER

MILLER
 LOOP
 STICK
 *6300 OR EQUIV.

TWO TRANSISTOR RADIO RECEIVER

METRONOME

-PERFORMANGE SIMILAR TO
ABOVE EXCEPT THAT DESIGNED
FOR SMALLER LAMP

LIGHT FLASHERS

THE RELAY IS ENERGIZED WHEN A 100 WATT LAMP IS PLACED 5" FROM THE SUN CELL. THE VOLTAGE needed at the sun cell to operate the relay VARIES WITH TEMPERATURE AS FOLLOWS:

TEMPERATURE	VOLTAGE AT INPUT TO FLIP-FLOP	
	RELAY ENERGIZES	RELAY OPENS
	0.14	0.17
$23^{\circ} \mathrm{C}$	0.09	0.13
$40^{\circ} \mathrm{C}$	0.04	0.09
$60^{\circ} \mathrm{C}$		

INPUT

INTER CONNECTION AS COUNTER

INTERCONNECTION AS SHIFT REGISTER

R_{1},	220,000 OHM
R_{2},	VOLUME CONTROL 10,000 OHM
	$1 / 2 \mathrm{~W}$ AUDIO TAPER
R_{3},	$68,000 \mathrm{OHM}$
R_{4},	10,000 OHM
R_{5},	470 OHM
R_{6},	220 OHM
R_{7},	1800 OHM
R_{8},	$330 H M$
$R_{9}, R_{I O}$,	8.2 OHM
$R_{I I}$,	4.7 KOHM

MAXIMUM POWER OUTPUT $\quad .35$ WAT TS
MAXIMUM POWER OUT AT 10% MAXIMUM POWER OUT AT 10% HARMONIC DISTORTION:. 25 WATTS SENSITIVITY FOR 50 MILLIWATTS REFERENCE POWER OUTPUT: . 2 VOLTS FOR USE WITH MAGNETIC CARTRIDGE OMIT RI, IN THIS CONDITION SENSITIVITY: OMIT RI, IN TH
5 MILLIVOLTS

THREE TRANSISTOR PHONO AMPLIFIER

FOUR TRANSISTOR PHONO AMPLIFIER

TRANSISTORIZED HI-FI PREAMPLIFIER

TRI - POWER TRANSISTOR (MOUNT ON HEAT SINK) C.B.S. 2N256, 2 NI56 OR EQUIVALENT.
S_{1} - D.P.S.T.
T_{1} - STANCOR P-6469 IITVAC TO 25.2 OR EQUIVALENT
$D_{1}, D_{2}, D_{3}, D_{4}$-GENERAL ELECTRIC IN9I GERMANIUM RECTIFIERS
$C_{1}, C_{2}-50 \mu \mathrm{fd}, 50 \mathrm{VOLT}$
B1-3, 4 VOLT MERCURY CELLS IN SERIES, MALLORY TR-233R OR EQUIVALENT
HI-FI AMPLIFIER REGULATED POWER SUPPLY

R_{4}
R_{17}

R_{1}, 2700 OHM
$R_{2}, R_{6,}, R_{14,} \mathrm{R}_{18},-150,000 \mathrm{OHM}$
$\mathrm{R}_{3}, \mathrm{R}_{15}$, 15,000 OHM
$\mathrm{R}_{4}, \ldots 2200$ OHM
$\mathrm{R}_{5} \longrightarrow \mathbf{2 2 , 0 0 0 ~ O H M}$
$\mathrm{R}_{7} \longrightarrow \mathbf{8 2 0 0 ~ O H M}$
$\mathrm{R}_{8,}$ — 220 OHM
R_{9} VOLUME CONTROL
$\mathrm{R}_{10}, \mathrm{R}_{13}$ - 50,000 OHM, LIMEAR TAPÉR POT
R_{11}, 1000 OHM
$\mathrm{R}_{12} \mathrm{R}_{19}=10,000 \mathrm{OHM}$

POWER AMPLIFIER

$\mathrm{C}_{2}, \mathrm{c}_{3}, \square .01 \mathrm{pld}$
$\mathrm{C}_{5}, \mathrm{C}_{11},-50 \mu \mathrm{md}, 3 \mathrm{~V}$
$\mathrm{C}_{6},-15 \mu \mathrm{fd}, 12 \mathrm{~V}$
$\mathrm{C}_{7}, \longrightarrow 6 \mu \mathrm{dd}, 6 \mathrm{~V}$
$\mathrm{C}_{9},-50 \mu \mathrm{fd}, 12 \mathrm{~V}$
c_{10}. \qquad $.002 \mu \mathrm{r}$
TR_{1}, \qquad G.E. 2NI6BA OR 2N64A CONVERTER
TR3 \qquad G.E. 2NI6日A OR 2NI64A REFLEX

* for further information see pages 109,110

THREE TRANSISTOR REFLEX RECEIVER

R_{1}, 1500 OHM
$\mathrm{R}_{2}, \mathrm{R}_{9}-10,000 \mathrm{OHM}$
R_{3}.
\qquad
R_{5}, $\quad 56,000$ OHM
R_{3},
R_{7}, \qquad 330 Oнm
R_{7},
R_{8}.
 1800 OHM
R_{16}. \qquad 68,000 ОНल
R_{12}. VOUME CONTROL 10,000 OHM $1 / 2 \mathrm{~W}$ AUOIO TAPER

6 VOLT FOUR TRANSISTOR REFLEX RECEIVER

$$
\left.\begin{array}{l}
L_{1}=435 \mu \mathrm{~h} \pm 10 \% \\
L_{2},-250 \mu \mathrm{~h} \pm 10 \% \\
\left.C R_{1}, \mathrm{CR}_{2}-190.6\right\} \\
\Delta C_{1}=1946 \\
\Delta C_{2}-89.3
\end{array}\right\} \text { R/C MOOEL } 242
$$

NOMINAL SENSITIVITY: 200 MIGROVOLTS/METER
(MEASURED WITH 5 MILLIWATTS REFERENCE POWER OUTPUT) MAXIMUM POWER OUTPUT: 73 MILLIWATTS
SELECTIVITY AT $-6 \mathrm{db}: 8.0 \mathrm{kc} / \mathrm{S}$
SELECTIVITY AT -60 db : $60.0 \mathrm{kC} / \mathrm{s}$
TOTAL BAT TERY ORAIN : 17.0 MILLIAMPS

* for further information see pages los,110

9 VOLT FOUR TRANSISTOR REFLEX RECEIVER

$\mathrm{R}_{1}, \mathrm{R}_{7}, \mathrm{R}_{\mathrm{g}}-10,000 \mathrm{OHM}$
$R_{\text {LR }}$,-VOLUME CONTROL $10,000 \mathrm{OHM}$
I/2W AUDIO TAPER
$\mathrm{R}_{2}-27,000$ OHM
R3,- 1500 OHM
$\mathrm{R}_{4}, \mathrm{R}_{11},-4700 \mathrm{HM}$
R_{5}, - 39,000 OHM
R6: - 330 OHM
$\mathrm{R}_{8},-1800 \mathrm{OHM}$
$\mathrm{RHO}_{1}-68,000$ OHM
$\mathrm{R}_{13},-1000 \mathrm{OHM}$
$* R_{14}$ - 5600 OHM
R15.- 68 OHM

* T1,-500 2 /V.C
$\left.\begin{array}{l}* \Delta C_{1}-190.6 \\ * \Delta C_{2}-89.3\end{array}\right\}$ RA MODEL 242

NOMINAL SENSITIVITY • 500 MICROVOLTS / METER
(MEASURED WITH S MILLIWATTS REFERENCE POWER OUTPUT)
(MEASURED WITH 5 MILLIWATTS REFERENCE
MAXIMM POWER OUTPUT 75 MILLI WATTS
$\begin{array}{ll}\text { MAXIMUM POWER OUTPUT } & 75 \mathrm{MILL} \\ \text { SELECTIVITY AT }-6 \mathrm{db} & 8.0 \mathrm{kc} / 5\end{array}$
SELECTIVITY AT 60d : 650 KCIS
TOTAL BATTERY DRAIN : 200 MILLIAMPS

$\mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9},-\mathrm{O} 5 \mu \mathrm{~d}$
$\mathrm{C}_{5},-15 \mu \mathrm{fd}$, 12 C
$\mathrm{C}_{10},-\quad 6 \mu \mathrm{fo}, 12 \mathrm{~V}$
Cl_{11} :- .14 fd
$\mathrm{Cl}_{12}, \quad 100 \mu \mathrm{fd}, 12 \mathrm{~V}$
$\mathrm{C}_{13},-50 \mu \mathrm{fd}, 12 \mathrm{~V}$
TR1,-G.E. 2NIG8A OR 2NI64A CONVERTER $\mathrm{TR}_{2}, \mathrm{TR}_{3}$, -G.E. 2 N 293 OR 2N314 IST \& 2ND I.F.
TR4, G.E. 2N24IA OR 2N32I AUDIO

* L, $\quad 435 \mu \mathrm{~h}, \pm 10 \%$
* $\mathrm{L}_{2}-250 \mu \mathrm{~h}, \pm 10 \%$
$\mathrm{CR}_{1}, \mathrm{CR}_{2}$, - DRIIT, IN64G,OR CKTO6A
* FOR FURTHER INFORMATION SEE PAGES 109,110

FIVE TRANSISTOR SUPERHETERODYNE BROADCAST RECEIVER

* LI — $435 \mu \mathrm{hh} \pm 10 \%$
* $\mathrm{L} 2-250$ нh $\pm 10 \%$

CR1,CR2,-DRIIT,IN64G, OR CK706A
$\left.\begin{array}{l}* \Delta C 1 \\ * \Delta C 2-89.3\end{array}\right\}$ R/C MODEL 242

NOMINAL SENSITIVITY = 200 MICROVOLTS / METER
(MEASURED WITH 50 MILL I WATTS REFERENCE POWER OUTPUT)
MAXIMUM POWER OUTPUT: 6 WATTS.
SELECTIVITY AT $-6 \mathrm{db}: 8.0 \mathrm{KC} / \mathrm{S}$
SELECTIVITY AT -6db: $8.0 \mathrm{kC} / \mathrm{S}$
ZERO SIGNAL BATTERY DRAIN 7.0 MILLIAMPS

* FOR FURTHER INFORMATION SEE PAGES 109,1IO

$\mathrm{C}_{2}, \mathrm{C}_{3},-.01 \mu \mathrm{fd}$
$\mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}-.1 \mu \mathrm{fd}$
$\mathrm{C}_{5}-\quad-6 \mu \mathrm{fd}, 12 \mathrm{~V}$

$\mathrm{C}_{9},-.05 \mu \mathrm{fd}$
$\mathrm{C}_{10}-$

$\mathrm{ClO}_{10}-6 \mu \mathrm{fd}, 6 \mathrm{~V}$
$\mathrm{C}_{11},-,-.003 \mu \mathrm{fd}$
$\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14},-50 \mu \mathrm{fd}, 12 \mathrm{~V}$
TR1,
CONVERTER
$T R_{2}$, \qquad G.E. 2NiG OT. I.f.
TR4, ——G.E. 2NIG9 OR 2NI65 2ND. I.F
TR5, TR6, —G.E. 2N188A OR 2N320 AUDIO 182
$* \mathrm{~T}_{1}, \longrightarrow-2000 / 2600 \mathrm{CT}$
$* \mathrm{~T}_{2}, \longrightarrow-200 \Omega \mathrm{CT} / \mathrm{VC}$
41.
\qquad $250 \mu \mathrm{~h} \pm 10 \%$
$\left.\begin{array}{l}\Delta \mathrm{C}_{1},-190.6 \\ \Delta \mathrm{C}_{2},-89.3\end{array}\right\}$ R/C MODEL

* FOR FURTHER INFORMATION SEE PAGES 109, IIO

SIX TRANSISTOR, I WATT RECEIVER

$$
\begin{aligned}
& \text { OSCILLATOR COIL } \\
& \text { ED STANWYCK COIL COMPANY \#1265 OR EQUIVALENT }
\end{aligned}
$$

SPECIFICATIONS:

1. Wire To Be \#5/44 Heavy Easysol Bonded
2. Inductance of Primary To Be $250 \mu \mathrm{~h}$ Nom.
3. Core Adjustment Range $\pm 10 \%$
4. Distributed Capacity To Be 7 mmfd Maximum
5. Q at $790 \mathrm{KC} / \mathrm{S}$ To Be $100 \pm 10 \%$
6. Primary To Be Tapped At 6 Turns
7. Secondary Winding To Be 36 Turns ± 1 Turn
8. Coil To Be Wax Impregnated \& Flash Dipped
9. Coil Form To Be Cosmolite Or Appr. Equiv.
10. Collar To Be Cemented Securely To Form
11. All Materials To Be Acid Free

INDEX DETAIL

VARIABLE CONDENSER

RADIO CONDENSER COMPANY. MODEL 242 OR EQUIVALENT

$$
\begin{aligned}
& \Delta C_{R F}=190.6 \quad C_{\text {min } .}=7.6 \\
& \Delta C_{O S C}=89.3 \\
& C_{\text {min }}=6.8
\end{aligned}
$$

TRANSFORMERS

The audio transformers used in these designs were wound on laminations of $15 / 8^{\prime \prime}$ by $13 / 8^{\prime \prime}$ and a $1 / 2^{\prime \prime}$ stack size, and having an electrical efficiency of about 80%. Smaller or less efficient transformers will degrade the electrical fidelity of the circuits.
(Closest GE Replacement Transistors Shown on second line of each listing)

MANUFACTURER © MODEL	V BATT	OSC	CONVERTER	IF	IF	DET	AF	AF	POWER	
RCA 7B' ${ }^{\text {P }}$ J	9 V		$\begin{gathered} 235 \\ \text { GE 2N168A } \end{gathered}$	$\begin{array}{r} 234 \\ 2 \mathrm{~N} 169 \end{array}$	$\begin{array}{r} 234 \\ 2 \mathrm{~N} 169 \end{array}$	$\begin{aligned} & \text { 1N295 } \\ & \text { 1N64 } \end{aligned}$	$\begin{aligned} & \text { 2N109 } \\ & \text { 2N192 } \end{aligned}$		$\begin{aligned} & \text { 2N109 (2) } \\ & \text { 2N188 (2) } \end{aligned}$	
RCA 7BT-10K	9 V		$\stackrel{235}{\text { GE } 2 \mathrm{~N} 168 \mathrm{~A}}$	$\begin{array}{r} 234 \\ 2 N 169 \end{array}$	$\begin{array}{r} 234 \\ 2 N 169 \end{array}$	$\begin{aligned} & \text { 1N60 } \\ & \text { 1N64 } \end{aligned}$	$\begin{aligned} & \text { 2N109 } \\ & \text { 2N192 } \end{aligned}$	$\begin{aligned} & \text { 2N109 } \\ & \text { 2N } 192 \end{aligned}$	$\begin{aligned} & \text { 2N109 (2) } \\ & \text { 2N188 (2) } \\ & \hline \end{aligned}$	
Raytheon T-100	9 V		$\begin{array}{ll} & 2 N 112 / B \\ \text { GE } & 2 N 66 \end{array}$	$\begin{aligned} & \text { 2N112 } \\ & \text { 2N135 } \end{aligned}$		$\begin{aligned} & \text { 1N60 } \\ & \text { 1N64 } \end{aligned}$	2N132		$\begin{aligned} & \text { 2N } 138 \\ & \text { 2N192 } \end{aligned}$	
Raytheon T-150	9 V		$\text { GE } \begin{aligned} & 2 N 112 \\ & 2 N 136 \end{aligned}$	2N112 2N135	$\begin{aligned} & \text { 2N112 } \\ & \text { 2N135 } \end{aligned}$	$\begin{aligned} & \text { 1N295 } \\ & \text { 1N64 } \end{aligned}$	$\begin{aligned} & \text { 2N132 } \\ & \text { 2N192 } \end{aligned}$		$\begin{aligned} & \text { 2N138 (2) } \\ & \text { 2N192 (2) } \end{aligned}$	
Raytheon T-2500	6 V	$\begin{gathered} \text { CK760 } \\ \text { GE135 } \end{gathered}$	CK760 2N136	$\begin{aligned} & \text { CK } 760 \\ & \text { 2N135 } \end{aligned}$		$\begin{aligned} & \text { 1N60 } \\ & \text { 1N64 } \end{aligned}$	$\begin{aligned} & \text { 2N133 } \\ & \text { 2N192 } \end{aligned}$	$\begin{aligned} & \text { 2N130 } \\ & \text { 2N191 } \end{aligned}$	$\begin{aligned} & \text { 2N138 (2) } \\ & \text { 2N192 (2) } \\ & \hline \end{aligned}$	
Raytheon 8 T P 1		$\begin{array}{r} \text { CK760 } \\ \text { GE } 136 \end{array}$	$\begin{aligned} & \text { CK759 } \\ & 2 \mathrm{~N} 135 \end{aligned}$	$\begin{aligned} & \text { CK760 } \\ & \text { 2N135 } \end{aligned}$	$\begin{aligned} & \text { CK760 } \\ & \text { 2N135 } \end{aligned}$	$\begin{aligned} & \text { CK } 721 \\ & \text { 2N } 191 \end{aligned}$	$\begin{aligned} & \text { CK721 } \\ & \text { 2N191 } \end{aligned}$		$\begin{aligned} & \text { CK721 (2) } \\ & \text { 2N188 (2) } \end{aligned}$	
Raytheon FM101A	6 V	GE 2N113/14	$\begin{aligned} & \text { 2N112/13 } \\ & 2 \mathrm{~N} 135 \end{aligned}$	$\begin{aligned} & \text { 2N112 } \\ & \text { 2N135 } \end{aligned}$	$\begin{aligned} & \text { 2N112 } \\ & \text { 2N135 } \end{aligned}$	$\begin{aligned} & \text { 2N112 } \\ & \text { 2N135 } \end{aligned}$	$\begin{aligned} & \text { CK721/22 } \\ & \text { 2N191 } \end{aligned}$		$\begin{aligned} & \text { CK721/22 (2) } \\ & \text { 2N188 } \end{aligned}$	
- Regency TRL	221/2V		$\begin{array}{r} 223 \\ \text { GE } 2 \mathrm{~N} 169 \end{array}$	$\begin{array}{r} 222 \\ \text { 2N169 } \end{array}$	$\begin{array}{r} 222 \\ 2 \mathrm{~N} 169 \end{array}$	$\begin{aligned} & \text { 1N69 } \\ & \text { 1N64 } \end{aligned}$			$\begin{array}{r} 210 \\ 2 N 188 \end{array}$	Note 1
Regency TR-5	9 V		$\begin{array}{r} 2 N 172 \\ \text { GE } 2 N 169 \end{array}$	$\begin{aligned} & \text { 2N145 } \\ & \text { 2N169 } \end{aligned}$	$\begin{aligned} & \text { 2N145 } \\ & \text { 2N169 } \end{aligned}$	$\begin{aligned} & \text { 1N60 } \\ & \text { 1N64 } \end{aligned}$			$\begin{array}{r} 353(2) \\ 2 \mathrm{~N} 188(2) \\ \hline \end{array}$	
ت 完 \quad Sentinel 369P and CR 729AA	4V		$\begin{array}{r} 2 N 172 \\ \text { GE } \begin{array}{r} \text { N } \end{array} \text { 69 } \end{array}$	$\begin{aligned} & \text { 2N146 } \\ & \text { 2N169 } \end{aligned}$	$\begin{aligned} & \text { 2N146 } \\ & \text { 2N169 } \end{aligned}$	$\begin{aligned} & 1 N 295 \\ & 1 N 64 \end{aligned}$	$\begin{array}{r} 310 \\ \text { 2N191 } \end{array}$		2 N 185 (2) or 353 (2) $2 \mathrm{~N} 188 \mathrm{~A}(2)$	
Sonic TR 600 Capri	9 V		GE 2N168A	2N292	2N169	1N64	2N190		2N187 (2)	
Traveler	131/2V		GE 2N136	2N135	2N135	4JD1A26			2N187A	
Westinghouse 7	9 V		$\text { GE } \begin{aligned} & 2 N 172 \\ & 2 N 169 \end{aligned}$	$\begin{aligned} & \text { 2N } 146 \\ & \text { 2N } 169 \end{aligned}$	$\begin{aligned} & \text { 2N146 } \\ & \text { 2N169 } \end{aligned}$	$\begin{gathered} 880 \\ \text { 2N169 } \end{gathered}$	$\begin{array}{r} 310 \\ \text { 2N192 } \end{array}$		$\begin{aligned} & \text { 2N185 (2) } \\ & \text { 2N188A } \end{aligned}$	Note 2
Westinghouse H610PS, H611PS, and H612PS	9 V		$\text { GE } \begin{array}{r} 2 N 252 \\ 2 N 169 \end{array}$	$\begin{aligned} & \text { 2N253 } \\ & \text { 2N293 } \end{aligned}$	$\begin{aligned} & \text { 2N254 } \\ & \text { 2N293 } \end{aligned}$	$\begin{aligned} & \text { 1N295 } \\ & \text { 1N64 } \end{aligned}$	$\begin{aligned} & \text { 2N238 } \\ & 2 \mathrm{~N} 191 \end{aligned}$		$\begin{array}{r} 351 \\ \text { 2N188 } \\ \hline \end{array}$	
Westinghouse H602P7	9 V		GE: $\begin{array}{r}2 N 172 \\ 2 N 169\end{array}$	$\begin{aligned} & \text { 2N146 } \\ & \text { 2N169 } \end{aligned}$	$\begin{aligned} & \text { 2N146 } \\ & \text { 2N169 } \end{aligned}$	$\begin{aligned} & \text { 1N87 } \\ & \text { 1N64 } \end{aligned}$	$\begin{aligned} & \text { 2N217 } \\ & \text { 2N192 } \end{aligned}$	$\begin{aligned} & \text { 2N217 } \\ & \text { 2N192 } \end{aligned}$	$\begin{aligned} & \text { 2N217 (2) } \\ & \text { 2N188 (2) } \end{aligned}$	
Zenith 500	6 V		$\begin{gathered} \text { 2N94 } \\ \text { GE } 2 N 169 \end{gathered}$	$\begin{aligned} & \text { 2N94 } \\ & \text { 2N169A } \end{aligned}$	$\begin{aligned} & \text { 2N94 } \\ & 2 \mathrm{~N} 169 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 1N295 } \\ & \text { 1N64 } \end{aligned}$	$\begin{aligned} & \text { 2N35 } \\ & \text { 2N169A } \end{aligned}$		$\begin{aligned} & \text { 2N35 (2) } \\ & \text { 2N169A } \end{aligned}$	Note 1
Zenith 800	12V		GE 2N168A	2N168	2N169A	1N295	2N190		2N188A (2)	Note 3

*This list includes transistor production radios for which information is currently available. It is primarily for information and is intended only as a general guide for replacements.
The radio battery should be replaced with a fresh unit before checking transistors. If necessary to replace transistors, some selection may be necessary in order to obtain optimum performance since transistors of various manufacturers are made by slightly different processes and are not precisely interchangeable.

NOTES:

1. Remove any neutralization loops around IF circuits before operating with GE NPN transistors.
2. In some radios where the 2 N146 is shown in both IF stages, one 2N145 and one 2 N147 may be found instead in these stages.
3. The 2 N 293 may be used to replace the 2 N 168 in IF stages.
4. The 2 N 169 may be used to replace the 2 N 78 in AF stages.
5. The 2 N 186 A may be used to replace the 2 N 44 in AF output stages.

READING LIST

The following list of semiconductor references gives texts of both elementary and advanced character. Obviously, the list is not inclusive, but it will guide the reader to other references.
Coblenz, A., Owens, H., Transistors and Applications
(McGraw-Hill)
Garner, L., Transistor Circuit Handbook
(Coyne)
Hunter, L. P., Handbook of Semiconductor Electronics (McGraw-Hill)
Krugman, L., Fundamentals of Transistors
(Rider)
Lo, A. W., Endres, R. O., Zawels, J., Waldhauer, F. D., Cheng, C. C., Transistor Electronics (Prentice-Hall)

Shockley, W., Electrons and Holes in Semiconductors (Van Nostrand)
Shea, R. F., et al., Principles of Transistor Circuits (Wiley)
Shea, R. F., Transistor Audio
Amplifiers
(Wiley)
Shea, R. F., et al., Transistor Circuit Engineering
(Wiley)
Turner, R. P., Transistors-Theory and Practice
(Gernsback)

SEMICONDUCTOR PRODUCTS DEPARTMENT GENERAL (\%6) ELECTRIC

ELECTRONICS PARK - SYRACUSE I, N. Y.
(In Canada, Canadian General Electric Company, Lid., Toronto, Ont. Oulside the U.S.A., and Canada, by: Infernational General Electric Company, Inc., Electronics Div., 570 Lexington Ave., Naw York, N.Y., U.S.A.)

[^0]: * "Transistor Electronics", Lo, Endres et al.

[^1]: * F. Langford-Smith, Radiotron Designers Handbook, Australia, 1953, p. 1140

