Official

Radio Service Manual

and
 Complete Directory of all Commercial Wiring Diagrams of Receivers

PREPARED ESPECIALLY
FOR THE
RADIO SERVICE -MAN

Hugo Gernsback Editor

Clyde Fitch
Managing Editor

Gernsback Publications, inc. PUBLISHERS 96.98 PARK PLACE

New York

OFFICIAL RADIO SERVICE MANUAL

TABLEOFCONTENTS
Page
INDEX TO COMERCIAL DIAGRAMS $3,4,5,6,7$
INTRODUCTION 8,9
CHAPTER I - SERVI CE EQUI PNENT 10
CHAPTER II - GENERAL SERVICE PROCEEDURE 15
CHAPTER III - POVER SUPPLY SYSTEMS 21
CHAPTER IV - VACUOM TUBES 31
CHAPTER V - THE LOUD SPEARER 38
CHAPTER VI - THE ANTENNA SYSTEM 45
CHAPTER VII - RADIO FREQUENCY AMPIIFIERS 50
CHAPPER VIII - DETECTORS 56
CHAPPER IX - AUDIO FREQUENCY MMPLIFIERS 60
CHAPPER X - EXTRANEOUS NOISES AND THEIR ORIGIN 65
CHAPTER XI - RADIO PHONOGRAPH COMBINATIONS 71
SHORT TAVE RECEIVERS 73
SERVICING AUTGOTIVE RADIO 74
STANDARD RADIO SYNBOLS 76
PORMULAS FOR DETERMIHING RESISTANCE VALUES 76
GOMERCIAL WIRING DIAGRAMS 77-352
***** INDEX TO COMMERCIAL WIRING DIAGRAMS *****
A.C.DAYTON CO. A
XL-20; XL-25, XL-30 77
XL-61; AC-66 78
AC-63; AC-65 79
XL-5; Navigator, Navigator Power P. - 80
ACE ELBCTRIC CO.
model S.G. 88; A.C.7 81
ALL AMERICAN MOHAFK CORP.
6 and 8 tube A.C. "IN" Power Pack --e-- 82
Lyric modela 60, 61, 62, 55 and 66 -- 82
Lyric model: 80, 83, 84, 85, 86, 88 - 82
70,73 , and 75 83
No. 90 chassis, 60 cycle 83
Ho. 90 chassis, 25 cyole 84
No. 96 ohassis, 60 cycle 84
Mohank one dial battery and A.C. 226-227 85
AMERICAN BOSCH MAGNETO CORP.
15 Amborola; 27 Amborada; 46 The Little
Six; 57 and 87 86
Cruiser, Royal Cruiser, and Imperial Cruiser model 35 battery sets 87
Models 66, 76, and 76L the Cruiser: models 66AC, 96, 116,136 for A.C.; Model 107 for A.C.; Models 126, 146, 88
Model 96 D.C. 110 V. Cruiser; Model 156 Cruiser: Model 28; Model 825 Super Dynamic Power Pack 89
Models 48 and 49 ; rype BAN edition 2 Nobattery; lype ban edition 3 and 4 Nobattery; rypes ohn edition 5 and 6 Nobattery ------------------------1
Model 54 receiver; sosch motor Car rocelver 91
AMERICAN TRANSFORAER CO. PF 250 Power Auplifler 334
ABC Hi Power Bex 26
2-AP amplifier and 21-D Hi power box 342
AMRAD CORPORATIOH
Neutrodyne A.C.-5; Kodel D.C.-6;
Model A.C.-6 Concerto Nocturno 92
Model D.C.-7; Model A.C.-7 93
Model 80, 82, and 83; No. 7100; No. S-522 94
3500-2; 3500-1
unit: No. 3590 96
Amrad model 81 (Bel Canto Sories) - 96
APEX RADIO CO.
See U.S.Radio and relevision Co.
ARGUS RADIO CORP.
B 195; B 125326
ATHATER KENT MNUFACTURING CO
paot; Model 12; model 19; Model $20-97$
Model 21 dry cell; Model 32; Model 36
36 with resistance volume control --- 98
Models 30, 33, 35, 48 and 49 99
Models 40,42 and 52; Model 44 ; and porer unit 101
Medel 41; Model 43 102
model 41; 3rd. type power unit for model 41; 2nd. type power unit for model 44 ------ 103
3rd. type Model 80-C 328
AUTOMATIC RADIO AND MFG. CO.
"r'om Thumb" Portable 340
B
BALKITE PRODUCTS COAPANY Model C; Model F =-----
Models $A-3, A-5$ and A-7 105 352
BREMER-TULLY NPG. CO. B.T. Sounterphase 6; Counterphase 8;
6-40 power converter 106
6-40 circuit diagram; 8-20 A 107
$7-70$ and 7-71 108
BRONNIEG DRAKE CORP.
Model 34, 36 and 38 350
BRUNSHICK BALKE CULLENDFR CO. Modals 14,21 and 31 S.P. $\quad . \quad-$
Model 31 conbination radio and Panatrope 110
RPA-1: RPA- 265
Models 3 and 10 267
BUCKIAGHAM RADIO CORP
Model 80 348
BUSH AND LANE PIANO CO.
No. 10 Deluxe: No. 12 S.G. 111 C
CAFEHART CORP.

CLEARTONE RADIO CORP.
Goldcrest Model 60; Model 80 112
Clearedyne Model 70; Cleartone Series 100 113
Model 110 compact; Model 112 114
COLONIAL RADIO CORP.
Model 31 A.C. 115
31 and 32 D.C 116
32 A.C. 117
$33 \& 34$ A.C. Remote control 330
CULUMBIA PHONUGRAPH CO. (see Kolster) 6 tube A.C. set; 7 tube A.C. set 118Columbia $\mathrm{C}-5$ and $\mathrm{Kolster} \mathrm{K}-24$;
c-5 Substitute 119
Models 930-300; Model 931 120
Model 902; Type 950 radio and phono- graph combination 121
Models 900-901; Model 961 122
Power rack for model 980; 6 tube D. \mathbf{C}
aot C6-C7 123
type 980 radio and phonograph comb 124
Sareen Grid - 8 125
CONPINENTAL RADIO CORP. Hodels Ten 29-A and B with 171-L
Power Unit; Model 9 126
Slagel 29-C; Slagel 29-A and B 127
Ten 29-D and C with 250-L power unit- 128
All Models 129 129
GROSLEY RADIO CORP.
AC-7 and $A C-7$ 130
Yodel SB and 3C; Trirdyn 3R3; 5-38;
Type V; Model 51; 2-stage A.F. amp-
lifier for type V; Model XI 131
Model 4-29; Models 30S, 31S, 33S,
34S; yodels 40S, 41S, 42S, $82 \mathrm{~S}-\infty--132$models $40 \mathrm{~S}, 41 \mathrm{~S}, 42 \mathrm{~S}, 82 \mathrm{~S}$, arrangedfor M type speaker; Model 401;
Medel 608 133
Models 60S, 61S, 62S, 63S;
Jewelber 704-A 134
Model 601 135
Jewelbax 704-B; Showbax 706 136
Jewelbox 704; Gembox, Gemchest
610-609 A.C.: 804 A.C. 137
Jewelbax 705; Models 20,21,22;
Model RFL-90 138Mode1s 41-A and 42-AC; 6- 602 Bandb ax;Buady and Chum140
D

DAY-FAN ELECTRIC CO.
See General Motors Radio Corp.

E

EARL RADIO CURP.
See Chas. Preshman. Inc.

THOMAS A. EDISON, IMC.
R-4, R-5 and $C-4$
$R-1, R-2$ and $C-2$ Chassis $J r$ and Jo;Rt-1, $\mathrm{R}-2$ and $\mathrm{C}-2$ chas sis Jr andCr (25 cycle)143
(Also see Splitdorf)
F
P.A.D.ANDREA, INC.
Fada 10, 11, 30 and 31 - 60 cycle;
10Z, 11Z, $30 Z$ and 312 - 25 cycle;
16, 17 and 32 - 60 cycle;
16Z, and 32 Z - 25 cycle 144
Fada 18 D.C.; Fada 22 battery 145
Fada 20 A.C. - 60 cycle; $20 Z$ A.C.25 oycle; 25 A.C. - 60 cycle;
252 A.C. - 25 cycle 146
25 and $25 Z$ with $M-250$ and $M-250 Z$
Eleetric Units; 35 A.C. - 60 cycle;
352 A.C. - 25 cycle 147
Fada 40 A.C. 60 cycle using P-250
Elec. Unit and 7-A speaker; Fade$50,70,71$ and 72148
E-420 Electric unit; E-180 klectricUnit; 192-A roceiver, 192-S and192-BS Units149
" $7^{\text {" A.C. }} 75$ and 77 A.C. 60 cycle 150
Special model 265-A and rada "7"
model 475-A 151
460-A receiver and R-60 unit; R-80-A unit, 480-A and SF 50/80-A $-\infty$ 152
"Special" A.C. receiver 265UA or CAand RP-55-UA or CA; 262-UA or $O A$ andRP-62-UA or CA; $480-1$ and SF 50/80-B-153"ABC" 6 rolt supply types $66-0$ and$62-R$; "ABC" 6 voit supply types $86-V$and 82-F; rype J unit; type "C unitused with "Special" and 7 AC -------- 154
FEDERAL RADIO CORP
Ortho-Sonio type D; Series Filament type D; 155
Model K 156
Series Filament type F; Ortho- Sonic type H 157
Series Filament type F ; Type 1 158
FRRED-BISEMANN RADIU CORP.
Model NR-6; Model NR-7; Model
MR-9 - 9A 159
Model 10; Model NR11; Model NR12 160
Model FK-15; FE-18; NR-20; HR-60 161
Models 30 and 40 ; Models $30 \mathrm{~N}, 40 \mathrm{~N}$ and48N; Model 50162
Model 130; Model NR-215, NR-400;
English long and short wave set ----- 163
Model 457 Power Unit; Model NR-80DC - 164
Model 90S AC; Model NR-95 AC; 470 _-- 165
Model HR-85; Model 53; Model 800 -... 166
CHAS. FRESHMAN CO.. INC.
Earl models 21 and 22; Earl models
31 and 32167
QD-16S; Model H 168
Model G; Model G. power pack; Model
G with G60-S power supply 169
Earl model 4l; wreshman model withM-60-S Power Supply170
New and Improved masterpiece;
Equaphase; Model H-9 171
Combination K and $K-60-S$; QD-15S; 172
$\mathrm{Q}-15$ and $\mathrm{Q}-16 ; 2 \mathrm{~N}$ and $2 \mathrm{~N}-60-\mathrm{S}$ 173
21AC and 22AC; 2Q-15 and $3 Q-16$ 174
Model 121; Model 21 D.C.; Earl modele 33, 31 and 24 DC ---------------------- 17531 and 32 AC; $31-S A C$ and 32-SAC andEarl 33-SAC; 41AC176
G
GENERAL YOTORS RADIO CORP.
Day Fan OEM-11; OEM-7; OEM-7 super eolective; 5 -tube 1925 model 177
Day Fan rive "5044" 178
Day Fan rive rwenty Seven 5-tube;
Six - 6-tube; Seven - 7-tube 179
Day ran 6-61 - 6-tube; 68 - 6-tube;
6 Juni or 6-tube; 6AC - 6-tube -- 180
5AC - 5-tube; model 35 7-tube; GAC
Power Set; 6 Junior AC Power Set;110 volt D.C. 6-tube; Motor Gen-erator Set181
32 volt D.C. set 6-tube; motor Gen-erator and Filter; Power Supply for5-tube AC set; Power Supply for
6-tube AC set; y and C Power Supply;
B Power Supply for \#5524 and \#5525-
8-tube Model 5077; 8-AC Power Set;
8-tube Model 5080; 8-AC Power Set
183
183General Motors Model "A" chassis;
Delco Autanotive Radio 184
GILFILLAN BROS.. INC.
A.C. Model 60; A.C. Model 100 185
GRAYBAR RLECIRIC CO. 338
Model 311
A.H.GREBE \& CO.R.F. Amplifier type RORA; " 13 " Regen-orative Receiver; Short Wave type
CR-18; Short Wave type CR-6 186
Synchrophase type MU-1; Brcadcast 187
Recoiver
Super Synchrophase type SK-4.
Synchrophase 7-AC 188
Synchrophase 7 189

GRIGSBY-GRUNOW CO.

GRIGSBY-GRUNOW CO.

GRIGSBY-GRUNOW CO.

GRIGSBY-GRUNOW CO.

GRIGSBY-GRUNOW CO.

GRIGSBY-GRUNOW CO.

GRIGSBY-GRUNOW CO.
Majestic Models 60-70-80; 7BP3 Power

Model 90; 9P3 Power Unit; 9P6 Power
Model 90; 9P3 Power Unit; 9P6 Power
Model 90; 9P3 Power Unit; 9P6 Power
Model 90; 9P3 Power Unit; 9P6 Power
Model 90; 9P3 Power Unit; 9P6 Power
Model 90; 9P3 Power Unit; 9P6 Power
Model 90; 9P3 Power Unit; 9P6 Power
Tuit vocel 70B chassis in 72 Set .
Tuit vocel 70B chassis in 72 Set 190 190 190 190 190 190 190
Model 100; 90-B
Model 100; 90-B 191 191 191 191 191 191 191
Yodel 100; 90-B
Yodel 100-B; 180 and 181
Yodel 100; 90-B
Yodel 100-B; 180 and 181 192 192 192 192 192 192 192 193 193 193 193 193 193 1937 P6 and 7P3 Power Unit (old wiring):7P6 and 7P3 Power Unit -----------0-- 1948P6 and 8P3 Power Unit; P.U.Systorein 130-A Super Screen Grid chassiseo- 195Super Screen Grid chassis in model130-A; in Model 230-A196
GULBRANSEN CUPANY.9 in Line, old and new models197
1
IISULIAE CORP. ON ANEKICA C. Short Wave Set 340
K
KELLCGG STITCHBCARD AND SUPPLY CO.6 rube Set; A.C. 7-tube set induc-
Power Unit $\mathrm{K}-50$ for sets \#524, 525,527, 528; Chassis "B"199
623 and 526 with power unit H245 200
Wave Master; RFL 7-tube Cascade 201
COLIN B. KENNEDY CORP.
Model 281; 110; 220 $20 ?$
Model 6 type 420; 430 and 431: 203
7 Cornet D.C.; rype 435; Model 20 type440; Model 521 and 525204
Model 10; Model 11 205
EING MANUPACTURIMG CORPModel 10X1 Neutrodyne; 25 Neutrodyne;71 Neutrodyne; 3C I.R.F.; 61 T.R.F.;206
62 T.R.F. 207
Model F; Model 82 and power pack 208
Model J; Model H 209
Kodel 97; Model 98; King Monarah …-- 210Imperial, and Monaroh211
KOLSTER RADIO CORP.Columbia type 930; Kolster 6K212
Kolster 6-tube receiver; 7-tubeA.C. set (Brandes)213
Kolster $8 \mathrm{~A}-\mathrm{BC}$; 6K; 7A and 7B 214
K-44; K-43 215
K-45 216
Brandes B10; Bl6; B16 217
runing chassis for 7 -tube sets use$\mathrm{K}-21, \mathrm{~K}-23, \mathrm{~K}-24$ and $\mathrm{K}-28$; 4 -tubechassis used in $\mathrm{K}-20, \mathrm{~K}-22, \mathrm{~K}-25$ andK-27; Power supply and amplifier unitin K-24
C.R.LEOHZ, INC.

Irans-Oceanic: "Seven Seas" console - 33

NATEARIEL BAIDWIN CO.
Screen Grid Model 80 324
HATIONAL CARBON CO., IMC. 山veready models 1, 2 and 3; Series 50- 220Eveready series $30,30-C$ and 40 221
P
PHILADELPHIA STORAGE BATTERY CO. Philco Model 40; Model 41 222
Model 65; Model 76 223
Models $77 \& 77 \mathrm{~A}$; $86 \& 82$ 224
Model 87 225
$96 \& 96-A ; 296 \& 296-A$ 226
Models 511, 512, 513, 514, 515, 531,551. 571; Model 95227
PIERCE AIRO, INC. AC-24-45 352
PILOT RADIO AND IUBE CORP.
PE6; K-113 power amplifier; PilotoneElectric 6-tube; Super Hasp228
Pilot Automotive Radio; Grimes
110-Volt D.C. New Yorker; Twin S.G.8-- 229
K-106; K-108; S..G.-105 230
RRCA - VICTOR CO. (Victor Division)Alhambra I (7-1); Electrola Cranvell;Electrola 9-25; Electrola 9-40231
Electrola Hyperion; Alhambra II andPlorenza; Radiola 25 Catacamb forAlhambra II 9(7-2) and Florenz10dela (9-1)-233Models 7-3, 7-30 and R-20; ElectrolaRadiola 7-26; Victor Radiola 1610-70; AP-777C; Catacomb, Radiola 28;12-15; 12-25
AP-952 and AP-997; Victor Radiola 18;$A P-974-A ; 951-A$ and $997-A ; 12-15-\ldots$
Victor Radiola 17 (in model 7-25);
9-15
AP-736; AP-997C; Model 9-55 237 237
Electrola Radiola 9-54; Autanatic
Electrola 10-69; and power wiring$\mathrm{R}-32, \mathrm{R}-42$, $\mathrm{RE}-45$, $\mathrm{RE}-75$; 10-69;
P-947(RPA-1A); AP-952 and AP-997 240
(RPA-5 and RPA-5 special);
ileotrola Radiola 9-18. 241
-26; Radiola 9-54; Electrola 10-70 242
RADIOLA DIVISION
Fadiola Senior: Radiola RS; Radiola
III; Radiola AC; Radiola AR; BalancedAmplifier, Radiola VII243
Radiola V; VII; II; IV 244
Radiola IIIA; IX; Superheterodyne;Radiola Grand245
Radiola 16; AP-937; VIIB 246
Radiola 20; Radiola 30 - 247
67 248
Super VIII (AR-810), "semi-portable"
(AR-812), 24 and 26 249
Radiola 25 250
46 D.C.; 33 251
Radiola 17 252
33 D.C 253
28 (battery operated); Loudspeaker 104 RPA unit 254
47 255
Padiola 64; AP-951; AP-935 256
Radiola 41; Sterling SPU; Receptor SPU; Loudspeaker 105 257
Radiola 67 258
Radiola 47 259
Radiola 50; 51 260
41 D.C.; 51 D.C 261
18 D.C.; 62 262
Radまola 66 263
30-A 25 cycle; $21 \& 22$; 30A RPA Unit.- 264
Brunswick RPA-4 with Panatrope and
panel connections (8-tube panel);
RPA-1 with Panatrope and panel conn.-- 265
Radiola 44 chassis; 32 RPA Unit $-\infty-\infty 266$
Radiola 44; Models 3 \& 10 (Brunswick)- 267
REMLER RAD10 CORP.
45 KC Superheterodyne 340
S
SILVER-MARSHALL, INC.
Models 30 (chassis), 60 Lowboy, 95
Highboy and 75 Concert Grand
268
268
720 A.C
59
59
S.M. 690 Public Address System 340
SONORA PHONOGRAPH CO., INC.
Model 2RP-25
269
269
$3 R$ and 4R
270
270
3 RP
271
271
$5 R$
$7 P$
272
272
B-31 (25 cycle); Phonograph automatic 273274
SPARKS-RITHINGTON CO. Spart on Model 39; 89A
275
275
49; 9-30
49; 9-30
276
276
931 and 301 D.C.
277
277
6-26, 6-16; A.C.62-63 \& A.C. 7 278
A.C.-89; DeLure 109 279
Sparis Ensemble 280
5-26, 5-15; Model 110 281
SPIEGEL, MAY, STHRN CO.
"Melrose" - same as Apex 41 306
SPLIrDORF ELECTRIC MHG. CO. R-200; PAD-4; ABBEY (with volume control) 322
AbBey Model 171 324
SIAANDARD RADIO CORP.
A.C. Model 29 342
STEINITE RADIO COMPANY
50-A \& 102-A --............ 282
991. 992, 993; $261 \& 262$ 283
StERLING MANUFACTURING CO.
No. 4 ; No. 4 chassis, power unit,
and speaker 284
No. 4 speaker; No. 4 power unit;no. 3A chassis285
STETART-WARNER CORP.$305=315-320 ; 300 ; 310-325$; 330;$335-340$; $345-350-355-360$;
385-390 286
$500-520-525 ; 700-705-710 ;$ Power unit models 530-535 = 715 -720; Power unite models 801 - 801 -811 - 811A - series B; Model 806
series B 288
Model 750; 950 series battery S.G 289
950 D.C.; 95025 \& 60 cycle A.C. 290
Series 900 291
STkUMERG-CARLSON MFG. CO.
Cirouit D-968; $523 \& 524$ 635 \& 636-292
641 \& 642 293
638 D.C.; $652 \& 654$ 294
846 295
403 AA audio power unit; 404RA and
404 RAC SPU; 403B audio bower unit 296
635 D.C.; $601 \& 602$ battery 297
No. 1-B; 403 \& 403 A power pack;
No. 10 and 11 receivers 298
NO. 704-B; $501 \& 502$ 299
№. 734-B; 633 \& 534 300
T
tEMPLE CORPORATION
$8-60,8-80,8-90$ 301
8-61, 8-81, 8-91 302
TRANSFORMER CORP. OF AMERICA
Clarion AC-53, AC-55, 25,51-25,5325,55328
TRAV-LER MFG. CO.
Model 6 \& 7; DC \& AC Power Packs 332
UNITED AIR CLEANER CO.
Sentinel 660 9-tube 346
Sentinel 666-C 9-tube ohassis forphonograph combination346
Model 444 7-tube S.G. 348
UNIIED STATES RADIO AND TELEVISION CO.Model 80; Apex 48 - 60 cycle,48А - 25 cycle ------------------------- 305Aper 41 - 60 cycle, $43-25$ cyole;
42 - 60 cycle, 44 - 25 cycle 306
Apex 46 \& 47 - 60 cycle, 46 \& 47 A
25 cycle; Model 30 Autonotive 307
UNIIED RFPRODUCERS CURP.(Peerless) Courier " 65 " chassis;Series K-70303
Series 20 klectrostatic (Xylectron)-- 304
Z
ZENITH RADIO CORP.
11E \& 14E; 11-12-14 308
17-saries filament: 4R; ZEIO power
supply; ZE-5 power supply f.33X \& 362X 6-tube electric;$34 \mathrm{P} \& 342 \mathrm{P}$ 6-tube electric310
Model 27; 31 \& 32 311
ZE4 "B" Power supply; ZE3 "A" power
supply; Models 33-34-35-35A-342-352- 352A-362 312
35P-35AP-352P-352AP; 37A 313
ZE14 power supply; ZE11 power supply;
2E13 power supply; ZEl5 power supply-e 314 35PX-35APX-352PX-352APX-37A; 333-353A
0.tub D C Ot 6-tube D.C. set 316
2E17 power supply; 2kil8 power supply;
Models 60, 61, 62, 602, 612, \& 622without loop; 64, 67, 642, \& 672with loop317
15 \& 16; 15E, 15EP, 16E, 16EP;
42 \& 422 318
ZEl6 power supply; ZE12 power supply;Models 41 \& 412319
Models 52 \& 53; 54 320
Model 70 ($71,72,73 \& 7760$ cycle. 712, 722, 732, \&772 25 cycle) 321
MSCBLLAREOUS CIRCUITS
Aerodyne 344
Ambessador Four 344
Magnavox TRF-5 and TRF-50 344
Continental Wireless and Supply Co.
"Voice of the Road" Automotive 344
Magnaformer 9-8 Superheterodyne 352
Blair TRF 6-tube receiver 342
St. James Superheteradyne 336
Madison Moore Superheterodyne 336
Victoreen Superheterodyne 336
Wells Gardner Co. Nine in Line -
same as Gulbransen - see page 197

IRTRODUCTION

THIS book has been campiled in an attempt to give the radio Service Man as complete and concise a compendium of practioal data and instruction concorning radio installation, maintenance and repair as could be selscted from the hosts of material already written on the subject. It is evident that a book of this type, to be entirely complete, would cover virtually all phases of radio and include complete diagrams and speoifications of every radio set that hes over been built - an enoracra: undertaking wich would give the book a stupendous size. Thile such a volume wald be of value for reference, it would be too olunsy to be handied by the busy radio Servioe Man who wants practioal information, suggestions, and data in few words at his finger tips, with diagrams and specifiaations of the more popular types of sets in active service that daily require his attention. Therefors, only the salient features of radio serviaing are given, and information on the serviaing of battery sets, whioh are daily becoming obsolete, is covered more in general than in detail. In all instances where poasible, speoifications are given in conneotion with the diagrams, which were obtained through the kind assistance of the various manufaoturers. More up-to-date information on later sets can be supplied from time to time as the material becames available, for whioh purpose the loose-legf form of this book has been adopted. In conneotion with RADIO-CRAFT Magazine (which supplies the latest important news on the subject in proper page size to fit in this book) the book oan be kept alive and up-to-date and be of inestimable value to the active Service Man.

No attompt is made to delve into the theory of radio, since this is not within the soope of a book of this type. There are many teohnical books covering the theory and practice of radio, fram which the would-be Service Man can get a good elementary grounding on the subjeot. Therefore, it is here assumed that the reader has an adequate teahnical knowledge of the subject, although technicalities are avoided as much as possible and simple language is used throughout, covering mainly the practioal rather than the theoretical aspect of the subject. For, after all, the Servioe Man is practioal. Ho must go out in the field, diagnose the troubles in radio sets from the symptoms, and in a few minutes' time oorreot the defects. A man of theoretical knowledge only is at sea when up against a set, apparently in perfect order, but wioh does not work; and $a 11$ his theory is of no avail without some background of praotice. All the boaks in the world cannot give as much knowledge in this line of wark as oan be obtained by installing, servioing, and repairing a hundred sets of different types. Highly-trained enginoers have been known to labor for hours on a set that would not work, only to find out later that the antenna was disconnected; a condition which would be instantly notioed by a less-technical but practically-trained Service Nan. He who can give the quickest and best service will have the greatest number of satisfied oustomers and will build up the greatest reputation and monetary inoome. He who bluffs his way through and makes only temporary repairs in hopes of obtaining future work on the same sets, will soon find that his best customers have left him. A thorough knowledge of the work, backed by a few months practice, together with a data book of this type containing information one cannot reliably oarry in his head, should be the foundation of a successful servicing business, provided it is conduoted in an honest manner. We hope that the reade ers will find this book as valuable as we are trying to make it.

Aside Prom his theoretical and practioal knowledge of radio, the Service yan, like a practicing doctor, should be sonewhat of a psychologist. Hot that his psyohology will have any effect upon the subjeot on whioh he is working, as in the oase of the doctor, but he will come in contaot with all kinds of people, the vast aray of radio set owners, same of whom will look upon him with suspicion and presume that they are being swindled, no matter how fairly he treats them. He will be oslled upon to explain in detail everything conneoted with the work, and must not only repair the set, but give the highly-
opinionated set owner a still higher opinion of his mnowledge of radio. of course, such cases should be handled tactfully, but fust how is beyond the soope of this book, which makes no attempt to toach psyohology. This oan be learned better out in the field than from books. "Trouble-shooting" in radio has many interesting and peouliar aspoots.

The first seotion of this book is devoted to pointing out the weak spots in all Finds of radio sets and showing where trouble is likely to oocur, how it can be looated, isolated and repaired. Of course, the first and greatest symptom of a faulty radio set manifests itself in the loud speaker, which does not speak very pleasantly, or refuses to talk at all. This symptom is notioed by the set owner, who immediately telephones for the Service Man. From the owneris report of the set's beharior, the experienced Servioe Man can usually point his finger to the cause, sinoe there is a cause for every effect. From this, he can seleot the neoesaary tools for making repairs, if any ars required, and also any tubes, batteries, eto., which may be needed, and the job is shortly completed. The inexperienoed Service han, however, not being so keen at diagnos ing fram the meagre symptans, mast necossarily oarry all hia tools, testing apparatus, and spare parts, and make a longer job of it at greater expense to the owner. By making the tests systematioally, the beginner can offect repairs quicker and soon aoquire that apparently psyohic insight into radio sets that the expert enjoys. The more profioient he becones, the fewer tools he requires and the fewer teats he has to make. Therefore, we have endeavored to present, in a concise manner, a desoription of the varicus testing devices and tools that are indispensable to the beginner, as well as of great aid to the expert, and show how they are used in diagnosing set troubles. While many writings on trouble shooting trace cause to effect, we have attempted to trace offeot to cause, which is the necessary procedure of the Service man out on the job. As a conorete example, it is a simple matter to tell someone through the medium of a book that an open audio-transformer winding will stop the set from funotioning, but it is an entirely different matter to trace the oause of a defective set back to the open transformer winding, when there are many other reasons why a set might stop functioning.

We believe that the vast colleorion of diagrams, forming the main bulk of the book, will be of help to all radio Service Men, and consequently we have made it as camplete as posible without including diagrams known to be of little value. In modern manufactured radio receivers of sanewhat inacossible nature, an authentio diagram is almost indispensable in making tests, such as voltage and curront readings and resistanoe measurements, for the difference in internal connections of various reoeivers is not apparent from the outside, and without the diagram mistakes are likely to be made.

We shall be pleased to receive suggestions and ariticisms from those who are out in the field, and at the same time we wish to extend our thanks for the manv suggesti ons submitted to RADIO-CRAFT by so many prastioul Service Men, which have been of great aid in preparing this book, and also to the manufacturers who have generously subaitted data and diagrams conoerning their products.

THE EDITORS

Sometimes the Service Man's money comes easy

CHAPTER I

SERVICE EQUIPITSTIT

SFBED and accuracy in set installation and servicing depend upon the skill of the Service man and the tools and testing equipment at his command the greater the skill, the less equipment required, and vice versa. Practice will strike for each his own balanoe between akill and equipnent, and he can be judged aocordingly. Good teating equipment will instil confidence into the customer and help largely to allevlate dissatisfaction. The noture of the work and type of set also diotates to sone extent the equiprent required. If a car is used, one can naturally carry a wellanigh ocaplete set of tools and testing apparatus, but without the oar, only the most necessary paraphernalia should be carried, the rest remaining at the shop for work too cose plex to be done at the oustomer's hane. The list below gives the tools, supplies and instruments that every Servioe Nan should have available:
(2) Iools:

```
            One pair diagonal pliers
                        pair long-nose pliers
                        pair side-cutting wire nippers or pliers
                        jaokknife
                        sooket-wrenoh set
                        pair test prods
    combination noutralizing and aligning tool
    automatio blow toroh
    soldering iron
    oan flux
    short, heavy serewdriver
    long thin sorewdriver
    roll friotion tape
    hand drill with assorted drills
    reaser
    coarse file
    * sheet emery oloth
    * fine file
    * Plashlight
    " large pieoe of cloth
```


This illustration shows the radio Service Man's ideal tool and testing equipment. Note the convenience of the carrying case. Photo courtesy The Grenpark Co.

Fig. 1. - The Supreme Diagnometer is one of the most completely equipped testing apparatus available to the Service Man.
(3) Iiscellaneous Parts: Assorted grid suppressors; center-tapped filament resistors; by-nass and sller condensers; variable high resistors; grid leaks; replacement A.F. transformer; phonograph pick-up adapter; rheostats; hook-up Fire; a roll of bell wire; milenite tacks; insulated staples; replacement sockets; tube shield; trimming condensers; neutralizing condensers; tube adapters; R.F. choke; R.F. transformer; open and olosed circuit jacks; filament switohes; S.P.D.T. switohes; phone plug; binding posts; soldering lugs; look washers; assorted screws; aerial insulators; le:t-in screweyes, hooks and insulators; lead anchors; filament ballasts; pilot lights; ground clamps; lead-in strips; lightning arrester; phone cord; 6 or 7 -wire battery cable; battery clips, large and small; small knobs; cone apexes; complete set of various tubes; dumy neutralizing tubes; 45-volt " $B^{\prime \prime}$ batteries; " C " battery.
(4) Instruments: One radio set analyzer, one hydrometer, one speaker unit, one headset or single recoiver, one audio-modulated R.F. oscillator, one resonance indisator.
(5) The Radio Set Analyzer. This is one instrument that every Service Man should have, as it phin pernit the complete analysis of any type of radio set. There are several set analyzers or testers on the market, among which we find the Jewell, Hickok and Weston, and the Supreme Radio Diagnometer. Complete instructions on the operation and use of these instruments are furnished by the manufacturers and therefore we will desoribe their use here briefly.
(6) Each of the se analyzers is in the form of a portable earrying case, as illustrated in Fig. 1, with a small compartment for oarrying tools and miscellaneous parts for making minor repairs. They are more or less complete, having measuring instruments with multiple scales whereby, through switohing arrangements, a rapid diagnosis of a radio set can be made. The analyzer oan be used for measuring plate current of each individual tube, plate voltage, grid voltage, filament voltage, screen-grid voltage, pomer supply voltage, approximate resistance values, approximate capacity values, continuity tests.
(7) These measurements can be made with the tube in or out of the oircuit. For example, by removing a particular tube from the set and placing it in the socket of the analyzer, and placing the plug connection of the analyzer in the empty socket of the set, measurements of actual operation conditions can be made while the set is in operation. Such a test on each tube of the set will soon reveal any defect.
(8) The Supreme Diagnometer. In addition to the above, this hnstrument contains a modulated radio-frequenoy oscillator for use in balanoing R.F. anplifier cirouits and also a resonance indioator. In effect, it is virtually a complete portable radio laboratory. This instrument was fully desoribed in the February, 1930, istue of RADIO-CRAFT.
(9) Charts. Charts are furnished by the makers of the varicus instruments on which oomplete readinga can be recorded and analyzed as a whole, after which oorreotive measures can be made if necessary. A copy of the ohart should be left with the oustomer and the original filed for future reference. Fig. 2 shows a typical chart, giving readings taken on an Amrad Model 81 Receiver with a Jewell IO. 199 analyzer.
(10) Continuity Tests. One of the most cormon tests is the continuity test, for determining the condition of cirouits or instruments. This test is usually made with 4 意volt "C" battery connected in series with one of the voltmeters of the analyzer, with long flexible leads for connecting to the instrument or circuit under test. If the cire cuit is open, the meter reading will be zero; if closed, the reading will be full soale, or partially full, depending upon the resistance of the cirouit - the soale reading giving a measure of the resistance of the circuit. Thus open cirouits or short cirouits can be easily located and values of resistances measured. This test will instantly show you if a by-pass condenser is shorted, or a resistance or coil is open. With the aid of the wiring diagram of the set being analyzed, troible can quickly be located and the defective part repaired or replaced. We will have ocasion to refer to continuity tests quite often in subsequent chapters. Fig. 3 shows a simple circuit for a continuity test.
(11) Capacity Tests. Large ondensers having capaoities from 0.1 mf . up are measured by connecting them in series with the llo-volt 60 -oyole line and measuring the ourrent. The current flow through the condenser is proportional to its capacity. Charts giving the capacity values for different current readings are usually furnished with the analyzers. This test is very useful for testing "B" eliminator, filter and by-pass condensers.
(12) Modulated Oscillator. A modulated oscillator (whioh is simply a miniature radio
 broadcast station may serve the purpose of balancing, when no oscillator is available, the oscillator is more reliable and should be part of every Service man's equipment. A simple modulated oscillator can be constructed by following the diagram. Fig. 4. This is a Hartley oscillator, whioh is self-modulated by the grid condenser and grid leak;

Meter-Jewell 0-3 voltmeter D-C. Type 54. Battery-3 Volt C Battery.
 the oondenser building up a charge and discharging through the leak at audio frequency. The parts osn be mounted in a suitable case with the coll so placed that it can be closely coupled to the first grid oircuit coil of the set being adjusted.

Fig. 3 - Cirouit for Continuity Test.
(13) Rescnance Indicator. While the fineness of tuning and balsncing can be fairiy well determined by ear, a more accurate method is to employ a resonance indicator. Suoh a device is indicated diagramatically in Fig. 5. It consists of a low-range D.C. millia. mmeter for measuring the reotified output of the radio set. The output of the set is rectified by means of a type 199 tube with the grid and plate tied together, sa shown. A variable resistor is shunted acroes the input to protect the meter fron excessive currents, likely to be encountered when testing roceivers that do not employ a dynamic spesker. The input should be equipped with a two-oonduotor telephone cord with clips for conneoting to the set output.
(14) Dummy Tubes. Balanoing a set requires the use of a dummy tube or balancing tube, which shoulc. be of the same type as those used in the set, in good condition and perfeotly normal, except that one of the filament prongs is cut off and the internal filament wire resoldered to the shortened prong. This allows the tube to be inserted into the set without lighting its filament. An assortment of dumias for all types of tubes should be part of the Service Mar's equipment, the most common being types 1014, 126 , and 27. It is important that the elements inside are not jarred out of their normal

Fig. 4 - Socket-Powered. Audio-Modulated Oacillator.
position, or the internal aapacity of the tube will change and $1 t s$ usefulness in balancing will be impaired. The tubes should be distinctly marked, to avoid mistakes.
(15) Balancing a Set. The receiver to be balanced should be connected up in normal operating condifion, and either headphones or a resonance indicator used; either of which can be connected to the set output at the speaker or set chassis. The receiver should then be tuned to about 300 meters, or in between interfering stations if they are on the air. The oscillator is now put in operation, and its tuning condenser varied until it is in resonance with the set, as indicated by a reading of the resonance indicator or by sound in the headphones. The oscillator should be placed a distance from the receiver, so that the intensity is about equal to that of normal reception, and the set tunes sharply. The filament rheostat of the resonance indicator should be adjusted, together with changes in the distance between the receiver and the oscillator, so that the meter reads about two-thirds scale deflection. Meximum deflection, while tuning the oscillator, indicates maximum resonance between oscillator and receiver.
(16) The dummy tube is now placed in the last R.F. stage of the set, near the detector, in place of the tube formerly in that socket, and the neutralizing condensers are adjusted until there is no deflection on the resonance indioator, or no sound in the phones. This operation is then repeated with each R.F. stage, and when it is complated, the set is balenoed. Note that the trimming oondensers should be adjusted for maximum response and the neutralizing oondensers for minimum response.
(17) It is well to balance the set at three or more points on the tuning dial, to insure a fine degree of balancing. To test the degree of balancing, replace the regular tube in the set and tune to a very low wavelength, then try foraing the set to oscillate by rocking the antenna trimming condenser or the volume control. If the set is well balanoed, it will not oscillate.
(18) Condition of Set. The condithon of the radio set should always be taken into account when looking for trouble, as many commercial sets have been tampered with by the set orner or by Service Men who have worked on it previously. We cannot always assume that the set is exactly in accordance

Fig. 5 - Resonance Indicator, Fleming Valre Type. with the specifications and circuit diagram given. Defective parts may have been replaced with others of incorreot values. A Fisual examination will usually reveal any discrepanaies and they should be compared with the diagram and corrected before relying on test measurements. This is another important reas on why an accurete history of service calls should be kept.

Testing a Circuit for Continuity. Note the use of the Test Prods. The Set shown is an Atwater Kent Model.

CHAPTER II

GENERAL SERVICE PROCEDURE

17HETHER installing or servicing, it is of utmost importance to please the custamer, and all complaints should be attended to immediately. At the first complaint of trouble, inquiry should be made of the customer as to the type of set, the nature of the trouble, the behevior of the set before and after the trouble started, the age of the tubes, batteries and set, the condition and type of aerial used, and any further questions that the answers to these questions might involve. This information, together with the shop records of other servioe calls if any have been made on the same set, may reveal the cause of the trouble and enable a quick and immediate repair. The importance of this phase of the work oannot be too strongly stressed, sinoe it may save much time and many unnecessary trips.
(2) Type of Set. Tracing trouble is always perforzed, consciously or unconsciously, by a classixying process, and the most general classification is in the type of set, there being four general types, namely:

```
Battery sets,
Battery sets with eliminators,
D.C. Electric sets,
A.C. Electric sets.
```

(3) Contrary to general opinion, eleotric sets are usually much simpler to service than battery sets, because they are inherently more compact and consequently of sturdier construction, and less vulnerable to mechanical injury. Battery sets, on the other hand, beoause of corrosion of battery connections, discharged "A" batteries, old "B" batteries, and frequent alterations and replacing of batteries by the inexperienced owner, are a sour oe of many service calls. However, the battery type of set will first

Fig. 6 - Typiozl 5-Tube Raned R.F. Battery Receiver.
be described, in a general way, and we will take for our example a standard 5-tube tuned R.F. set. The cirouit of Fig. 6 is typical of this type of set. Let us assune that the owner of this set olaims that it will not work, and that is all the information that we have; we will proceed systemationlly to trace the source of the trouble.
(4) General Survey. The experienced man can often tell, by the nature of the sounds emanating from the speaker, the cause of the trouble and make repairs immediately; but we will assume that there is no sound in the speaker. The first thing to do is make a general survey of the layout, and look for simple things first. Things so simple that they are overlooked have caused much trouble and unnecessary labor on the

Fig. 7 - Troubls Chart for Battery Type Sets.
more canplex parts of the set. For example, in one case a man worked nearly an hour on a set that failed to receive any stations, only to find later than an "S.0.S." aall was on the air. Sometimes a tube loose in a sooket, or in a dirty corroded socket, will cause trouble. The most common simple fault enoorntered is a disconnected or loose wire in some part of the battery, aerial, or speaker cirouits, which may produce a dead, noisy, or weak set.
(5) Main Sources of Trouble. Further classification reveals that there are seven min sources wiere trouble may exist in the battery set. These are represented graphfoally in the chart of Fig. 7. Listing them in order of their importance, they are:
(a) "A" battery or sircuit,
(b) "B" battery or aircuit,
(c) Tubes,
(d) Speaker or cirouit.
(e) Electrical system,
(f) Mechanical system,
(g) Aerial system.

Further classification of each of these seven sources are indicated in the illustration, but the first procedure is to localize the trouble in one, or possibly more, of these main branches, after which it may be traced down to one or more of the subbranches. This is usually done by a process of elimination.
(6) "A" Battery or Circuit. A glance at the tubes will show whether they light up brighty, or not, after the set is turned on. If they light brightly, the "A" battery connections should be examined to see that they are not reversed, for a reversed "A" battery will produce a very weak set. If the connections are correct, and the tubss light, we can eliminate branoh (a) of cur chart. If the tubea fail to light or are very
dim, we must examine this branch and test the "A" battery with a hydrometer or quickly short the " A " battery and note if a porerful sperk is produced. If the battery tests fully charged, exanine the battery olips, whioh may be corroded; also the filament switch, rhoostats, and ballast resistors (if any are in the cirouit.) If the battery is discharged, oxamine the battery charger. See that it is not reversed and that it is charging properiy and well connected to the lighting line. Note the amount of electrolyte and add distilled water if necessary. If the charger is in good condition, examine the " A " battery cirouit for shorts, or failure to turn completely "off" by the filament switoh or rheostats. The age and care of the battery will also give some indication of its condition. If beyond salvation, replace it. If branch (a) is found in good condition, examine branoh (b).
(7) The "B" Battery or Circuit. A quick oheok of the "B" battery is to disconnect the high-roikngo lead and listen for a loud click in the speaker when it is re-connected with the set turned on. A strong olick indicates a good "B" battery, and vice versa - assuming the speaker is in good condition. The age of the "B" battery will indicate if it needs replacing or not, but if it is fairly new, measure the voltage with the set turned on. If the voltage is low, examine the set before installing a new set of batteries, for a shorted by-pass condenser in the set has ruined many a new set of "B" batteries.

Usually the battery nearest the negative or filament side of the circuit runs down first, beoause of the greater drain placed on it by the detector tube. Temporary operation can sometimes be obtained by exchanging it with the last one. A large bypass condenser, about 2 mf , connected acrols the "B" battery, also helps.

With the "B" batteries in good condition and all the connections examined and tested to make sure that the roltage is applied to the tubes, we can pass on to branch (c).
(8) Tubes. Tubes often cause trouble, but the trouble is easy to rectify. If they are burned out from old age or damaged by mechanical jar, they must be replaced with new ones. Otherwise, the ciscuit should be examined before inserting new tubes, as the fault may be in the connections. The socke䓪s should be cleaned by forcing the tubes in and out. Sometimes the tubes light nomally but the filaments have lost their ability to emit sufficient electrons, or are "deactivated." A couple of good spare tubes should be used for coraparing them by trying them in one sooket after another, 28 it is seldom that all tubes in a set become weak at the same time, and the one or more weak tubes can be found. Of course, a set analyzer will instantly indicate the condition of a tube; if the plate current is low with the proper plate, grid, and filament voltages applied, the tube should be discarded, or reactivated, if possible, in a tube reactivator. Study Chapter IV for further information on tube analysis and tests.
(9) Speaker or Cirouit. Disconnecting and connecting the " B " battery lead (as desoribed in connection with the "B" battery or circuit) should give a click in the speaker if the speaker is in good condition. Otherwise, disconnect the speaker and test it for continuity, or quickly touch $i+s$ terminals acrosis a portion of the " B " battery and listen for a click. If the speaker is found impaired in any way, test it in accordance with the directions given in Chapter V. Otherwise, eliminate this branch of the system and examine the next one. Tapping the deteotor tube with the finger should give a clear ringing sound in the speaker, if the audio amplifier and speaker are in good condition. Comparing the speaker with one known to be good will also reveal its condition.
(10) The Electrical System: The electrial system of the set comprises the radiofrequency amplifier, Ehe detector, and the audio-frequency amplifier; the most cammon source of trouble being an open winding in one of the audio-frequency transformers (usually caused by soldering flux employed in their manufa ture, which eats away the
fine wire) a burnt-out resistor, or a short-circuited by-pass condenser. The lastnamed may ruin the "B" batteries, as mentioned before under the "B" battery heading. Contimuity tests across all the transformer windings, ohokes and condensere, will instantly reveal any trouble from these sources. Defective parts should be repleoed with new ones. A headset connected in the plate cirouit of the detector, will show that the radio-frequenoy mplifier and detector are in good condition if stations are heard, and thereby looalize the trouble in the audio amplifier.

If stations are not heard in the phones, and tapping the detector tubs produces a ringing sound, in the spaker, the trouble will probably be found in the radiofrequency amplifier or aerial system. Continuity tests should then be sade on the R.F. transformera for opens, and the tuming condensers examined and cleaned if necessary. If trouble is found in this branch, e detailed analysis can be de in accordanos with the instructions giren in Chapters VI and VII.
(11) The Yechanioal Systen. This part of the set receives all the mechanical wear and somstines gets out or orber. The trouble being of a mechanical nature, rather than an oleotrical one, is casily oocrected. Under this heading we bave the tuning condensers. dials, volum control, rheostats. filanent witoh, loud-speaker cord, and any other part that undergoes mochanical woar. A visual examination will usually reveal trouble frori these sources. Electrical continuity test, of the manually-operated instruments 111 also reveal defects. It is better practice to replace defective instruments of this nature than to try to repair them.
(12) The Aerial System. While we analyze this branch of the system last, a hasty examination of the aerial and its associated components should be made before thoroughly going over the entire set. At least one can tell whether the aerial is down or not, without making elaborate test. Having eliminated the other branches of the system, and traced the trouble to the input or aerial and ground connections, we can make a detailed analysis of this branch by following the instructions given in Chapter VI under aerials.
(12) Battery Sets with Eliminators. The same general procedure for testing battery set employing "A or "BTbetery eliminators, or both, should be followed as just described in connection with battery sets. In fact, the same chart of Fig. 7 may be used. If trouble is looated in branoh. (a) comprising the "A battery or dircuit, testing methois described in Chapter III should be followed. Likewise, if trouble is located in brench (b), covering the "B" battery system, instruations on "B" battery eliminators ahould be studied. Sinoe this information is fully covered in separate chapters, we will not go into it in detail here.
(13) D.C. Electric Receivers. These receivers differ from the battery type mainly in the manner by which the plate and filament supply voltages are obtained, and consequently the same testing prccedure can be follored as with the battery type. In these receivers, the filaments are connected in series and supplied direotly from the D. C. lighting line through a auitable resistor. Since the maximun roltage obtained from the
line is from 115 to 12.5 volts, a number of output tubes conmected in push-pull or parallel are usually employed in the ampli ier to get sufficient undistorted output.
(14) Filament Wiring. As an illustrativa epample, Fig. 8 shows the filament riring of the SEromberg-Carlscn "No. 638" Art Consol receiver for D.C. operation. In this receiver the first, second, and third R.F. amplifier tubes, the detector and first audio amplifier tubes, are of the coLA typ and connected in series with the pilot light and resistance; the whole being conn cted to the line through a filter system. The output stage consists of four type 71 tubes with filaments connected in parallel and connected across the line throngh a 90 ohm resistor, 8.8 shown.
(15) Testing Filament Wiring. In testing the filament circuit of the D.C. receiver, it is obvious the $\frac{1}{2}$ one of the series filamint tubes of the icla type in the diagram, Fig. 8, burns out, the oircuit will be ope and the others will go out; roplacing the burnt-out tube will cause all the others tiplight. It is well to test the line volt. age at tho filament terminals to make sure that the series resistors, choke and pilot lamp are in good condition. Voltages at th set sockets can be measured with a set analyzer, but only while the set is in operating condition with all tubes lit. If the tuhe is burnt-out, from excessive line vol"pge, the "Hi-L0" switch, shown in the diagram, should be opened, thus placing an adifitional lo-ohns in series with the set with consequent voltage reciuotion.
(16) Power Tube Filaments. The four !TII power tube filaments in this set are connected in parallel and. since they are all fed through one series resistor, if one of these tubes burns out or is removed from the socket, the voltage across the others will rise to a dangerous value and burn out all the others unless the set is immediately turned off. Therefore, it is very important to turn the set off before renoving any of these tubes; furthermore, do not turn the set on again until good tubes have been ply gives further information of value in this
(17) Plate Supply. Fig. 9 shows a sohemati Note the all tubes are fed by the maximun age reduction caused by the filter choke.) indicate whether there is failure in the p the choke, series resistor and switch, wit the cause. A shorted filter condenser may be tested and replaced if necessary before may be found in Chapter III under D.C. "B"
(18) A.C. Electric Sets. These sets diffe the type of tubes employed and the method in these sets are heated by means of a ste line, and it is consequentiy a simple mattir to trace failure of any part of the filament circuits. Two methods are employed; ih one; the filanents are heated by the alternating current and the grid returns find their way back to the electrical center of the filament, by means of a center-tapppdresistor placed across the filament, or

by a oenter tap on the filament transformer winding. If the tap is not at the exact electrioal center, hum will be introduced. The type 126 A.C. tube is used in this manner for both radio and audio-frequency amplifiers. The various power tubes for the output stages in the radio anplifier are also conneoted in this way.

In the other method, a heating element is used to heat a cathode which is not in electrical contact with the heater, but is brought by the heater to a sufficient temperature to cause electrons to be emitted from it; the cathode serves as a filament and is considered as such in the various cirouit diagrams. This type of tube, the 127, is used for the detector in virtually all A.C. sets, and in many cases also used for the radio- and audio-frequency amplifierb. The reader is referred to the special Chapter IV on tubes for more detailed information.
(19) Plate Supply. The plate supply of A.C. sots is obtained by the same basic method as in batery sets employing "B" eliminators; the main difference being that, in the A.C. set, the "eliminator" is usually an integral part of the set and cannot as easily be isolated, removed and repaired.
(20) A.C. Power Supply. A typical example of the power supply system for an A.C. set is illustrated in the schematic diagram of Fig. 10, which shows the power supply of the Stromberg-Carlson "Yos. 635 and 636^{n} receivers. If the initial tests reveal a failure in the power supply, as indicated by absence of plate roltage, the trouble may be caused by a defective reotifier tube, burnt-out filter ohoke, punctured filter condensers, or open voltage divider. This latter device, indicated as a group of resistanoes at the extreme lower right of the diagram (Fig. 10) may cause excessive plate voltage on some of the tubes, should the lower or negative end of it be open. This is a frequent cocurrence and, if the resistance values and current oarrying capacities of the voltage divider are known (as indioated on the diagram of the specific set) a new resistor of the same value should be inserted. Further reference to power supply equipment will be found in Chapter III.
(21) 25 - and 60 -Cyele Sets. It is well to check the frequency of the power supply, ospecanly when making installations, and make sure that the set is designed to operate on the frequency available. While 60-cycle supply is the most common, in sowe localities (especially near Buffalo, N.Y., and in many parts of Canada) 25-cycle and sometimes 40 -cycle current is in general use. It is ruinous to attempt to operate a 60 -cycle set on a 25 - or 40 -cycle line, but a 25 - or 40 -cycle set may be safely operated on a 60 -cycle line. The 25 -cycle set may be operated on a 40 -oyole line, but not vice versa.

CHAPTER III

PGNER-SUPFLY SYSTEMS

$]$$N$ the course of time the service man will encounter a wide variety of socket-power-supply systems - both filament "A" supply, plate "B" supply and "C" supply units as indicated by the various diagrams in this book. While the circuits difier widely, and the apparatus employed and combinations also differ, trouble shooting in each system is essentially the same, end can be boiled down to a few simple tests of the varicus parts. Sets employing batteries for the "A", "B" and "C" supply were sufficiently covered in the seconc chapter of this book, and will not be included in this chapter; only power-supply systems in connection with the rouse-lighting line, both A.C. and D.C., will be included. These may be diviced into:
(a) Eliminators for battery sets,

(b) Power-Supply Systems for A.C. Electric Sets.

Fig. 12- (left) Charging a 6-volt battery from a llov. D. C. Ine using a variable resistance.
Fig. 13 - (center) Charging a 6-vait battery using a lamp bank resistance. Fig. 14 - (right) Testing the polarity of the D.C. line with salt water.

The first group will include battery chargers as well as eliminators, both A.C. and D.C. types, for use with battery sets. The second group will inolude power packs and porer supply systems for A.C. electric sets. Both groups will be subdivided as we proceed with the discussion. A voltage measurement on any of these devioes will reveal an abnomal condition. Current cutput measurement will show whether the fault is in
 the set or in the power-supply device. In this chapter we will assume the defect, if any, to be in the power-supply device.

Fig. 15 (left) Tungar charger. Fig. 16 - (center) Vibrating reed charger. Fig. 18 - (right) Dry diso oharger.

(3) 110v. A.C. Battery Chargers. These chargers may be of the tungar-tube type, the vibratingoreed Eype, the electroytic rectifier type or the dry-diso rectifiler type; the latter two being used mainly for trickle chargers. The illustrations of Figs. 15, 16,17 and 18 show these types of chargers. Figs. 19, 20 and 21 show the connections, respeatively. In addition to the aauses of troublos mentioned in conneotion with D.C. battery chargers, we have a likely source of trouble in the rectifying device. In the tungar type, the filanent may burn out, or a defective tube may be encountered. The life of this type of tube is unoertain, even though its filament may be intact. This is true also of dry-disc rectifiers and vibrating rectifiers, which in time require new contact points. Failure in charging may also be due to an open transformer winding, or a dirty or loose tube socket. Some chargers have connections for charging storage " B " batteries, with consequent troubles from oor roded connections to the battery.
(4) 110y. D.C. "A Eliminators. These consist merely of a networt of resistors designed to give the required voltege drop, together with a choke coil and condensers for filtering purposes, as indicated in Fig. 22. In some cases the tubes are wired in series, as was illustrated in Fig. 8. In this case, the ourrent drain fran the line is much less than when lighting the tubes in parallel. In the latter -ase (Fig. 22) an output voltage of 6-volts is usually desired; but the voltage remains at this value only when the set is turned on and all tubes lit; because the least change

Pig. 22 - Circuit of llov. D.C. "居" battery eliminator.

Fig. 19 - Diagram of Tungar Charger.
Fig. 23 - Diagram of Philco Socket Power "A" supply.
Fig. 24 - Diagram of Balkite socket Power "A" supply.
RESISTANCES

in current drain charges the resultant voltage drop, causing the output terminal voltage to fluctuate widely, and endanger the tubes. For this reason, no tubes should be removed from the set without first turning of f the switch, and the switoh should not be turned on again until all good tubes are in the set. However, the variable resistors give a wide range of voitage control, and should be carefully adjusted. Simple continuity tests will indicate the condition of this device. If a fuse blows, because of a short in the eliminator, test the filter condensers for continuity before connecting the outfit in service again.
(5) IlOV. A.C. "A" Eliminators. Such a device is naturally more complex than the D.C. type, since it comprises a power transformer, a rectifier, a filter system and, in some cases, a storage battery. The last arrangement cannot be considered a real battery eliminator, but is merely a cambined storage battery and trickle charger. Fig. 23 shows the diagram of the Philco Sooket Power " A ", which is representative of this type in which no filter system is employed, the storege baitery serving for this purpose. In the other types, no battery is used. Fig. 24 shows the diagram of the Balkite " A " Socket Power Unit, which is typical of this. Both of these employ eleotrolytio rectifiers. We shall describe each in detail.
(6) "A" Power Jnits With Battery. Troubles in this unit are similar to those ocourring in reguar batteries anc chargers. In these, a comparatively smaller battery is ußed (about 40 -ampere-hour), and it is continually being charged while the set is in operation. Hum may be produced if the battery is operated near or in a discharged condition; in which case the condition of the battery and rectifier should be examined. If the rectifier electrolytic has evaporated, more should be added. Loose binding posts and connecting cables are also a source of trouble. The control resistor also may became loose, dirty, or worn, and require cleaning or replacing. Electrolytio or dry-diso rectifiers are usually employed in these units. These need replacing in time, depending upon the length of time they have been in service.
(7) "A" Power Units Without Battery. As shown in Fig。 24, these units comprise a step-dom transiormer, controi resistance, rectifier, ohoke coil and filter condenser. Since the output voltage is low (about 6 volts) and the current high, the condenser may be designed for low voltage, but it should have an enormous capacity to produce any appreciable filtering effect. The output voltage in these units may vary because of a defective rectifier or leaky filter condenser. The resistance-control allows for adjustment over wide limits, however, and a slight readjustment is usually sufficient.
(8) Series-Fi Iament "A" Supply. If type if9 tubes are used and connected in series, 2 current or 60 miliamperes is sufficient to light them, and this may be obtained from the " B " supply. If rola tubes are used in series, a current of $\frac{1}{4}$ ampere is
required, which is too great to be taken from the usual "B" supply, so a separate rectifier is necessary. These systems are not in general use (except for lloV D.C. systems) and need not be described in detail. Trouble shooting resolves itself merely into testing the rectifier and oontinuity of the circuits, remembering that "C" voltages are obtained by returning the grid-circuit leads to different points of the filament cirouit; each point, of oourse, being at a different potential.

Fig. 25 - "B" Power Supply using halfwave filament type rectifier.
(9) "B" Battery Eliminators. We shall limit this discussion to "B" battery eliminators operating from the A.C. line, as the D.C. type were covered sufficiently in Chapter II. So far we have talked about rectifiers, but made no distinction between half-wave and full-wave ones. In the former, every other half-cycle of the alternating current wave is used, resulting in a D.C. output with a 60 -cycle puisation, which is smoothed out by the filter. In the latter (which is in effect two half-wave rectifiers operating alternately or "out of phase") each half-cyole is used; every other one being in effect reversed, giving a l20-cyole pulsation in the D.C. output. The 120cycle pulsation is easier to filter than the 60 -oycle pulsation and a smaller filter system may be used; however, the sound reproducer is more sensitive to the 120-oycle tone than to the 60-cycle one, and the amount of hum produced is about the same in each case. Filament-type, gas-type, and dry-disc type rectifiers are most generally used.
(10) Filament-Type Rectifiers. Figs. 25 and 26 show typical cirouits of half-wave and full-wave mament rectikiers, the latter consisting of two half-wave rectifiers so connected as to obtain full-wave rectification. The type 81 tube is a typical halfwave rectifier. Fig. 27 shows a full-wave rectifier circuit employing a full-wave rectifier, such as the type-180 tube. A comparison of these three circuits will give a fundamental idea of the basic principles involved, as they are all fundamentally the same and subject to the same defects. Like defects or troubles produce like symptoms in all.
(11) Gas Rectifiers. These are more generally used for cormercial "B" eliminators. The Raytheon "B" and "BH" tubes are typical examples. Fig. 28 shows circuits of the

Fig. 26 - "B" Power Supply using two Half-Wave Filament Type Rectifiers for Full-Wave Rectification.
Fig. 27 - (right) Full-Wave Rectifier Circuit for "B" Supply using Filament Type of Tube.

Majestio " $B^{\prime \prime}$ eliminators employing a full-wave gas-type rectifier. Analysing these, we find thern composed of input transformer, buffer condensers, rectifier, filter condensers and chokes, and voltage-control resistors. A condenser, connected between one side of the 110 -volt lint and ground, is also indicated. The two buffer condensers, conneoted across each half of the transformer secondary, have a capacity of

GROSS SECTION Of CONDENSER OANK -ABOVE LONMECTIONS CONNECT TO OTHER APPARATUS ACCORDINGTO NUMGER OLSIGNASTER. 2- N SPECJAL MASTER CONDENSER STRAP "A"-B"IS NOT SHOWN OR USED LEADCIS CONNECTED TO LEADD: LEADE IS REMOVED AND WIRING TO THESE TWO UNITS IS THEN MADE
AS SHOWH BY DOTTEO WIRING AS SHOWH BY DOT TEO WIRING 78 R 3 INALLOTHER MODELS USE
STRAPA BVAND ALL WIRING SHOWNAS SOLID. (NOT DOTTED).
"NOTE"
THE WIRING ON CONDENSER EANK AS SHOWN ON CROSS SECTION VIEW IS ALL CONEEALED WITHIN THE BANK

Fig. 28 - Diagram of Majestic "B" Eliminators.
$0.1-m f$ each. They are used to absorb or prevent any high-frequency parasitic oscillations across the rectifier tube and are used only with gas-type rectifiers.
(12) Dry-Disc Rectifiers. These can be obtained to plug into the regular socket of the conmercial elimnator, without any changes in the internal wiring. Therefore, special circuits will not be given showing their use.
(13) "B" Eliminator Troubles. The most common cause of trouble in a "B" eliminator that Falls to worc is a shorted filter condenser. Therefore the first thing to do is to turn off the current, open the case, and test each condenser for shorts. The shorted condenser can be clipped out of the circuit and the eliminator put back in service again for temporary use, with only a possible slight increase in hum. It is important, however, to replace the condenser with a new one as soon as possible. The next source of trouble is usually found in the control resistors. If the detector voltage is high, the resistor connecting the detector tap to the negative side of the circuit is open. By measuring the output voltages with a high-resistance voltmeter, s defective resistor can easily be located. Continuity tests will indicate the condition of the choke coils and transformer windings. Slow starting, irregular operation or low voltage output, indicates a defective rectifier tube. The Raytheon should give about 4000 hours service,

Fig. 29 - Philco AB Socket Power Types AB-656 and AB-652. after which the voltage output will gradually drop off. By readjustment of the resistors, the voltage can be brought back and the tube used a considerable length of time before dis. carding it. "Fum" incicates a shorted filter coil or buffer condenser.
(14) Motorboating. Notorboating is a common ocurrence when using " B " eliminators, fiers, it is best to remove the first
stage and insert in its stead an audio transformer. Sometimes a large by-pass condenser added to the eliminator output (especially the detector output) will prevent it.
(15) Combined "A" and "B" Eliminators. A combined "A" and "B"eliminator is merely the conbination of the subjeots we hiave just discussed, and a detailed analysis need not be given. Circuit diagrams, Figs. 29 and 30 , showing the Philoo and Balkite "AB" socket-power units, are given, however; the illustrations being self-explanatory.
(16) Power Packs. Power packs are made in many forms to suit different set conditions, but they are all fundamentally the same and have the same inherent characteristics. The power paok is a combination of parts designed to furnish the set with plate, grid, and filament voltages for A.C. tubes and is built in a unit separato from the set. It is thus distinguished from electric sots in which the power-supply system is an integral part of the set. We might appropriately call them heavy-duty " $B^{\prime \prime}$ eliminators. In addition to furnishing plate, grid and filament voltages for A.C. tubas, some power packs also contain a stage of audio-frequency amplification - the output stage - of

Fig. 32 - Atwater Kent Model 43 Set and Power Unit.
type 171, 10, '45 or 150 , singly or in push-null. A power pack of this type may be connected to the output from the first audio stage of any broadcast reoaiver and deliver a high-quality output of sufficient power to operate a dymamio speaker. "Since servicing of power packs is identical with servicing power-supply systems in A.C. sets, we will describe this phase of the subject collectively at the end of this chapter. Fig. 31 shows the connections of the Amertran "ABC fi-Power Box." Note that two audio stages are included, alloring the pack to be connected to the detector output of the receiver. A half-wave, type 181 rectifier tube is used. Note the connection between the two filter chokes to obtain the high-voltage plate supply for the two type 110 push-pull tubes.
(17) "Glow" Tube. It seems fitting to briefly describe the type 174 glow tube employed in many power packs to maintain a constant voltage output of 90 volts for the tubes of the set requiring this voltage. This tube will remedy much trouble from unstable A.C. supply. It is connected between the " B " negative and intermediate (90-volt) terminals, usually in series with a ballast resistor to maintain a constant current flow of 60 milliamperes through it. Characteristics of this tube are given in the tube chart, elsewhere in this book.
(18) Power Supply Systems. There are slight differences in the methods of obtaining plate and grid-blas voltages in the sets whose diagrans are included in this book. These differences, or rather methods, should be understood when making measurgments, especially voltmeter readings, in order to be sure that the desired voltage supply leads will be found. Fundamentally, these power-supply systems are the same as those employed in " $B^{\prime \prime}$ eliminators and power packs described previously. However, we shall point out a few of the variations in them, as designed by different set manufacturers.
(19) Plate-Supply Power. The main differences in plate supply appear in the voltage divider, or resistance network system. For example, Fig. 32 shows the diagram of the Atwater Kent "Model 43 " set and power unit. Note that separate resistors (R1, R2 and R3) are used to obtain plate voltages for the first audio, detector, and R.F.amplifier tubes respectively. The resistances are by-passed by the condensers C1, C2 and c3.

With this arrangement, the only drain on the plate supply system is that due to the current consumption of the tubes. This method has certain advantages; if one resistor burns out it will not greatly affect the others. In this set, the field coil of the dynamic speaker serves as a filter choke; this is clearly indicated in the diagram. Series-resistance voltage dividers are more generaily used, as indicated in the various diagrams of "B" eliminators and power packs; Fig. 33 shows the Steinite "Model $40^{\prime \prime}$ power paok which is representative of this method. In this case the voltage divider may be considered as one resistance, with taps taken off at the required voltage points. In this caso the dynamic speakeris field winding is also used as a filter choke. The arrangement of chokes and condensers in the iilter also varies in different sets - another reason why the diagram of the set should be studied before making measurements.
(20) Grid-Bias Voltage. The method of obtaining grid-bias voltage for the varicus tubes is fundamentaily the same in all electric sets. Use is made of the veltage urop caused by the plate current of the tube flowing through a resistance. Knowing the plate current of the particular tube, the resistance can be calculated to give the desired drop. The "C" bias resistor is connected between the tube filament (or the center-tapped resistance connected across the filament, in the case, of the 26 tube or power tubes; or the oathode in heater-type tubes) and the extreme negative end of the power-supply system. This is shown in the simplified diagram of Fig. 34. In the diagram of Fig. 32 the bias voltage for the power tubes is obtained by the drop across the grid resistance Gl: that for the first audio and the R.F. stages is obtained by means of the resistance G2. In the diagram of Fig. 33 the 1190-ohm resistance furnishes the grid bias for the 71 power stage. These bias resistorsare sometimes in the power pack and sometimes in the set (or in both) and they should be located before taking grid voltage measurements; although the bias voltage may be obtained by connecting the voltmeter between the grid terminal of the set and the centeratap in the filament circuit of the same tube, or the cathode in heater-type tubes. An

interesting departure is illustrated in Fig. 35; this simplified circuit shows how the second A.F. bias voltage in the Atwater Kent"Model $66^{\prime \prime}$ is obtained from the drop across the speaker's field coil, in the negative side of tho filter circuit. It is imperstive that the grid-bias resistance is by-passed by a suitable condenser to prevent feed-back, howling and hum.
(21) Filament Voltage. Regardiess or the type of tubes used, the filament supply system is very simple; raw alternating current be-
ing used on all filaments.
The correct voltage and ourrent outputs are taken from secondary windings on the main power transformer or, in some cases, from a separate filament transformer. Connections are made to the electrical centers of the filament windings by means of center taps on the windings or center-tapped resistors connected across the windings. In many cases. hum is caused by not having the correct center tap; this center-tapped resistor or potentiometer should be carefully adjusted until minimum hum is heard in the loud speaker.
(22) Power-Supply Troubles. Troubles in power-supply systems are not very difficult to locate if we proceed in a systematic manner. Knowing the main sources of troubles and their corresponding symptoms, we can trace back and find the detailed faults probably in less time than it takes to read this paragraph. Therefore a complete detailed analysis is deemed unnecessary and we limit ourselves to generalizations only. Faults in power-supply systems manifest themselves in producing either:-
(a) A.C. Hum,
(b) Wrong Supply Voltage,
or both; one usually accompanying the other. Many things can happen to the system that will produce the abore effects. By testing each part of the apparatus in turn, the fault is soon located.
(23) A.C.Fum It is taken for granted that previous tests on the set show that the trouble exists somewhere in the eliminator. If the hum is slight, it may be caused by poor shielding, or praximity of the power transformer to the set, or induction from some part of the A.C. Iine into the set. Sometimes reversing the A.C. line plug will reduce hum slightly. A general cause of hum is found in wrong "C" bias voltages, poor adjustment of the center-tapped filament potentioneters, or open or shorted by-pass condensers across these resistors. In the

Fig. 35 - In the Atwater Fent 66 the drop across the speakor field coil gives the grid bias voltage of the 2nd A.F. tube.
type ' 26 tube used for radio and audio amplifiers, an accurate center tap on the filament cirouit is important. An open filter condenser or a shorted choke ooil will also oause poor filtering with a resuitant hum. A poor reotifier tube will produce hum. Mechanical hum may be produced by vibration of the transformer core. Continuity tests on the coils and condensers, and voltmeter readings of the different output voltages, wll looate the trouble.
(24) Wrong Supply Voltage. In this case, the line-voltage should be checked, adjusted if necessary by the line ballast resistance or taps on the transformer primary. After this is ascartained, the trouble may be found in an open resistor in the voltage divider. This is a comen occur rence. The next most likely place is in the filter condensers; the one conneoted directly aoross the reotifier output usually punctures first, as it is under the influence of the hightest voltage. Of oourse a wrong loed on the sygtem will upset the various voltages; since we are assuning that the set is all right, this may be oaused by a short oircuit. In making voltage readings, it is important to use a highmresistanoe meter, otherwise the load placed on the system by the current oonsumed by the meter will upset the system and give orroneous values. A shorted filter coil, or an open coil. will cause too much voltage or give no output at all. Continuity tests will indicate the condition of the various parts. It is almays well to compare the rectifier tube with a new one; as these tubes have a limited life. The resistance, condenser, and choke values should be compared with those specified by the manufacturer, to make oertain that someone hasn't inserted wrong parts.
(25) Motor Generators. A.C. slectric sets are sometimes operated on D.C. lines by means of motor generatiors or rotary converters, whioh change the 110-volt direct current to 110-volt, 60-cycIe A.C. form. Aside from the additional cost and noise incurred by the use of the machine, the results obtained are superior to those obtained from D.C. sets. The rotary converter type, although very quiet in operation, should be installed in a closet or some distant place where it cannot be heard. These machines ars furnished with a filter for eliminating commatator or line noises, the final result being quieter operation than is usually obtained on the normal llo-rolt A.C. line. Both input and output sides of the motor generator or converter should be filtered, as shown in the illustration, Fig. 36. Troubles in these machines are those inherent to any motor or generator. Barring abuse, they should last a long time with only an occasional oiling of the bearings.

The brushes also need repair and replacing occasionally. In one instance, a Service Man reported trouble from brushes whioh wers completely worn down to the brush holders - and these caused excessive grooves in the commutator. The commutator had to be removed and turned down on a lathe before the machine could be placed in serviae again.

Fig. 36 - At the left is shown the "ESCO" motor generator. The illustration at the right is that of the "JANETTE" rotary converter. Note the size of the filters used in connection with these machines. These instruments supply 110 volts A.C. from the 110 volt $D . C$. line.

Type C-13.F

CHAPTER IV

VACUUM TUBES

THE vacuum tube is the heart of the radio set, and one must understand vacuum tubes to understand radio. Since the beginning of radio broadoasting, improvements in sets have followed improvements in tubes. The theorstioal analysis of vacuum tubes is beyond the scope of this book, whish aims mainly to give the praotioal side only; one can measure tube voltages and characteristics without a profound understanding of the theory. A deeper insight into vacuum-tube action should be sought, howevar; but this should be obtained from a book devotad to the subjeot. Not oniy is the vacuum tube a source of many set failures, as vell as successes, but it offers a means of diagnosing virtually all set troubles. The first procedure of the experionced Service Man is to measure quickly the currents and voltages of the different tubes in the set with a set analjzer and record the values. Any great discrapancy fran normal values, as given by the manufacturer of the set, is instantiy detected and in almost all cases as easily curad: whether it is caused by the tube or sone other part of the set.
(2) Types of Vacuum Tubes. We are fiving herewith a chart, Fig. 38, showing the average characteristics of the various types of vacuum tubes used in receiving sets, the ratings given being those recomended by the tubs manufacturer. Tubes of different makes may vary slightly from these, but this list is representative of the majority. This chart is very helpful as a guide, but it should not be adhered to too closely. for many set manufacturers operate tubes at voltages differing widely from those specified in this list. For example, the Majestic "Modsl 90 " receiver, employing power detection, operates the type 27 detector on a plate voltage of 270 volts, with a grid bias of 30 voits - values mach higher than those given for this type of tube in the ohart. In the following paragraphs, only the more pppular types of tubes of widely different characteristios will be described in detail, whioh should sufficiently cover the entire field for all practical purposes.

Fig. 39 - Static Characteristic curves of 3 -element vacuum tube. Fig. 40 (right) The type IOlA vacuum tube.

(3) Basic Principles. The basic principles of vacuumatube action should be understood, at least in an elementary way, in order to facilitate set diagnosis. For exampla, in the thrae-element tube comprising filament, grid and plate, in understanding of the interdependenca of one on the other should be known while taking measurements. Although the plate current will give much information regarding the set's condition, we must not forget that the plate ourrent in a normal tube depends upon the plate voltage, the grid voltage and the filament current - the latter in turn depending upon the filament voltage. The graph of Fig. 39 shows the dependence of plate current on grid voltage, using a fixed plate voltages of $22 \frac{1}{2}, 45$ and 90 volts. With different

Fig. 38 - The characteristios given in this chart may be considered typical of all makes of receiving tubes. Characteristics of the types of tubes used in the majority of radio sets are given. Average characteristics of additional tubes not included ir this chart will be found on page 37. These tubes made their appearance after publication of the above chart. Characteristics of special tubes such as the pentode shown on page 35, are not given in this chart.
fixed plate voltages, different curves result, as show. For undistorted reception in audio amplifiers the tube can be operated only on the straight portion of the currs, which portion is longer with higher plate voltages, theroby affording greater undistorted output. The grid voltage should be held normally at a definite average value indicated by the center of the straight portion of the surve. This allows the plate current to swing equally above and below this point, and cover the entire straight portion. Since the curve is different with different plate voltages, the normal grid voltage or bias will likewise be different; the higher the plate voltage, the greater the negative grij bias voltage roquired. In other words, within practical limits, a tube may be operated at any plate voitage, provided the corresponding proper grid voltage is employed. For example, the correct grid bias voltrges for use with the plate voltages shom in Fig. 39 are indicated at the bottom of the graph; they are, approximately, plus 1, minus $\frac{1}{4}$, and minus $2 \frac{1}{4}$, for the $22 \frac{1}{2}, 45$ and 90 volt curves, respectively.
(4) Battery-Operated Tubes. The type IOIA tube is widely used in battery and D.C. electric sets and may be considered in this elementary disoussion as typioul of all three-element battery operated tubes, the difference being mainly in the ratings. This tube is used for detector, radio, and audio-frequency amplifiers. From our ohart we find that this particular tube operates from a 6-volt storage battery and has a terminal voltage of 5 ; one volt being lost in the filament-control rheostat and connecting leads. At this voltage the filament current is 0.25 mapere. Plate voltages of 45 , 90 or 135 may be employed depending upon the circuit in which it is used; corresponding grid-bias voltages are given in the chart. Fig. 40 shows the internal construotion of this type of tube. Defects are usually traced to the filament which, through age or abuse beoomes impotent and loses its power to emit electrons. Such a defect is aosompanied by general weakness of the set and lack of sensitivity. It has almost human qualities. Very low plate current, with proper applied voltages, is another sympton of low electronic emission. It is best to replace such tubes with new ones. In any event, it is advisable to check the filament voltage, especially in D.C. electric sets, as this is one value Fhich shouli remain normal and constant. Fxoescive filament voltage will shorten the life of the tube; less than normal filament voltage will give the tube longer life, as a general rule; but for over-all efficiency the rated filament voltages should be athered to.
(5) Battery-Operated Power Tubes. The types 112 A and 171 A tubes are commonly used in the output stages or batcery sets, and differ mainly from the iOlA type in that they allow a much greater undistorted output; the same general information given in regard to the $101 A$ tube may be applied to them.
(6) A.C. Tubss. The type 26 tube is extensively employed in A.C. sets for both radion anc audio-frequency amplifiers; it is not suited for detection purposes, on account of the excessive A.C. hum produoed. This tubs is similar to the told type, except that its filament is designed for a much lower voltage and higher current; namely, 1.5 volts and 2.05 amperes. The reason for this is to give the filament sufficier.t mass to hold the heat longor and not rise and fall in temperature with the rise and fall in each half-cycle of alternating current; thereby reducing hum. It has a four-prong base and connections similar to those of the 101 A type. In an amplifisr stage employing this tube, the grid return leads connect to a center-tapped resistor connected across the filament. If excessive hum is produced in the set, these resistors should be examined and adjusted for minimum hum. This tube is not suited for the output stage on account of its limited output; for this purpose, the type 171, 110, '45, or 150 fower tubes are ampioyed, connected singly, in parallel or push-pull, with filaments lit by A.C. and having center-tapped resistors for the grid returns. Sometines center-tapped resistances are eliminated by connecting the grid returns to a center tap on the secondary winding of the filament transformer.
(7) The A.C.Heater Tube. The type 127 A.C. heater tube is used as a detector in

Pig. 41 - Vacuum tubes most generally used in modern receivers.
all A.C. eləctric sets; and also as radio-frequency and first-stage audio-frequency amplifiers in many sets. The filament of this tube draws 1.75 amperes at 2.5 volts; it consists of a fine tungsten wire threaded through two holes in a porcelain-like tube. Around this tube is an axide-coated metal cylinder, the cathode, which emits electrons when heated to redness. Its heat is obtained by its praximity to the whitehot tungsten filament. Since the cathode is elsotrically insulated from the A.C.fila. ment, no A.C. hum is introduced into the radio circuits. It takes an appreciable time for the heater filament to heat the cathode to redness. from 15 to 45 seconds elapse before the set gets into action. Some of the early makes of these tubes are known as "blinkers;" a poor weld at the heater causes the circuit to open after the heater becomes hot, and close again after it 0001 s down, making the reception rise and fall in volume. In the cirsuits in which heater type tubes are used, the tungsten filament is maintained at a positive potential with respect to the cathode, thereby preventing any emission of electrons from the A.C. filament into the cathode with a consequent introduction of hum. These tubes employ a five-prong or "Ur" base; having two prongs for the filament or heater, one for the cathode, one for the grid and one for the plate.
(8) Screcn-Grid Tubes. In addition to the regular filament, grid, and plate elements of the ordinary tube, the soreen-grid tube employs a fourth element, which is a metal. lic network interposed between the grid and plate, and used mainly as an electrostatic shield for shielding the plate from the grid and preventing electrostatic feed-back. This allows much greater amplification in radio-frequency amplifiers without oscillation. Neutralization is therefore unnecessary. A positive potential of from 70 to 90 volts is applied to the soreen. Although this type of tube is used mainly in radiofrequency amplifiers, it may be employed as a detector or a resistance- or impedancecoupled audio amplifier; or as a "space-charge" tube in an audio amplifier. In this case the inner grid is connected to a positive potential of about $22 \frac{7}{2}$ volts, to neutralize the space charge within the tube. The screen is employed as the controlgrid. In radio-frequenoy amplifiers, the value of the positive voltage applied to the screen, determines the amplification, and this effect is made use of as a volume control. The screen-grid tube is made in the heater type, the type 124, in which a standard 5-prong base is used and the control gridis connected to a terminal at the top of the tube, as illustrated in Fig. 41. The type 122 is also a soreen-grid tube, but is not the heater type.
(9) Gas Rectifier Tubes. The gas-rectifier tube is largely employed in "B" eliminators, of which the Raythe on type "BH", illustrated in Fig. 42 , is a typical example. These rectifiers depend upon ionization of gas for their action and take adrantage of the difference in size of their electrodes for "unilateral" (oneway) conductivity. In the one illustrated, the two small electrodes connect to the 350 -volt output termine
als of a transformer ssoondary baving a centor tap. A direct-current output of 125 milliamperes may te dram from the hat-shaped electrodo and the center tap. Failure in thess reotifiers is usually due to gge or internal breakdown, in which case sparking can be observed. Chapter III gives further information in connection with this tube, as used in a "B" eliminator.
(10) The Pentode. A new tube to make its appoarance on the market is known as the five-element pentode. Wile not in general use, it is fast becoming popular, and a brief description may not be amiss. It is somewhat similar to the four-element screengrid tube described above, but with the addition of a "space-charge" grid surrounding the cathode; the conneotion to this extra grid being brought out to a terminal on the side of the tuive base. The remaining teminals are similar to those of the '24 type seraen-grid tube. A very high amplification factor is claimed, one stage beling sufficient in the audio amplifier. An amplification factor as high as 750 may be obtained with a plate voltage of 250 , scroen-grid voltage of 135 (positive) and space-chargergrid voltage of 20 (positive). The heater filament is similar to that of the 24 type. An illustration of this tube is also shown in Fig. 42.
(11) Filament Rectifier Tubes. The half-wave 181 and full-wave 180 rectifiers are in raely empioyed in A.C. recoivers, and in somo cases to supplying field current foi dyranic speaker. Characteristios of these tubes are given in the chart. Failure is usually due to intemal braakdown, manifesting itself in the form of a blue glow within the tube. When this takes place, the tube may be operated successfully at a lower voltage, but it is usually best to replace it. Circiit comeetions are shom in Chapter III as well as in many of the diagrans of this book.
(12) Vacuum-Tube Tests. Vacuum-tube tests on ary radio set should be conducted systematfcally. Suppose we arrange our tests in the foliowing order:

(a) Plate-current tests,
(b) Plate-voltage tests,
(c) Grid-voitage tests,
(d) Filament-vcitage tests.

A knowledge of these four functions will give a fairiy complete indication of the condition of tre tubes and assceiated oircuits.
(13) Plate-current Testa. The milliampere reading of the plate current of each tube in the set tells us a very complete story, but we cannot rely on it

Fig. 42 - The Pentcde, Raytheon Type "BH," and the types 180 and 181 rectifiers are shown in this illustration.
too much, since the plate current of different tubes in the different sets varies widely and the figures given in the tube ohart cannot be rigidly adhered to. Only where the readings deviate very far fram those given should we look for real trouble. It is best to follon the ratings given by the set manufacturer, wherever possible. Causes of excessive plate current and of insufficient plate current are given below, which caus. es should be further checked to find the guilty ones, after which they can be corrected.

Excossive Plate Current may be due to:
(a) Excessive plate voltiage,
(b) Insuffioient or incorrect gria voltage,
(c) Excessive filament voltage,
(d) Defective tubes,
(e) Leaky condenser, or poor insulation of circuit.
(15)

Insufficiont Plate Current may be due to:
(a) Insufficiert plate voltage,
(b) Excessive negative grid bias,
(c) Low filament voltage,
(d) Defective tube.
(16) Plate Voltage Tests. If the foregoing measurements indicate that the trouble lies in excessive or insufificient plate voltage, the causes of an erratic plate voltage may be traced to the following:
(17) Exoessive plate voltage may be due to:
(a) Open in the negative end of voltage
divider in the power-supply system,
(b) Excessive negative grid bias,
(c) Low filament voltage,
(d) Defective tube.
(18) Insufficient plate roltage may be due to:
(a) Failure in power-supply system,
(b) Low negative or ever a positive grid bias,
(c) Excessive filament voltage,
(d) Defective tube.
(19) Grid-Voltage tests. Should the erratio plate voltage or plate current readings be traced to figh, low or reversed grid biss, we may look for the following defects:
(a) Shorted by-pass condenser aoross "C" battery or grid-bias resistor,
(b) Open "C" battery or grid-biss resistor,
(c) Leakage in insulation or blocking condenser between grid and plate-supply circuit,
(d) Open transformer winding in grid circuit,
(e) Defective tube sooket.
(20) Filament-Voltage Tests. If our erratic plate current and voltage readings are traced to wrong illament-supply voltage, we have but to trace the filament-supply circuit and find the cause. In battery sets the filament voltage may be too low, because of poor conneotions or a weak battery. If an "A" eliminator is used, itis adjustment should be checked. In A.C. electric sets, the filament transformer may be
overlasded by a partial short across the filament circlit. The line-voltage should be checked also.
(21) Defective Tube. A defective tube may cause erratic readings due to a deactivatod filament, loss of vacuum (causing the tube to emit a blue glow); or a short circuit bstween the elements within the tube. In this latter case, the grid may touch the flate or filament, thereby upsetting its bias potential and kiliing the normal tube action. Some tubes have a very detrimental microphonic effect producing a loud how in the speaker; the detector tube is the worst offender. It skould be replaced or exohanged with one of the other tubes.

RCA Radiotron 232 - is particularly recomm a radio frequency amplifier signed especially for it. It are: Filament Voltage Filament Current Plate Vollage, Max. Grid Voltase ' (C-Eiass) Screen Voliage, Max.

Fig. 43 - Average characteristics of three types of 2-volt tubes are given in this illustration.

RCA 231
(22) Tube Reactivation. When a tube has lost its electron-emitting ability and passes a very small plate cutrent, it can often be restored by reactivation. This is true of thoriated filaments such as are in nearly all tubes now in use. The coating of thorium or the surface gradually gives out and the tube loses its sensitivity. By reactivating, the thorium inside of the filament is brought to the surface, thus permitting the tube to function normally again. One simple method to restore tubes that are only slightly weak is to burn them for $\frac{1}{2}$ to $1 \frac{1}{2}$ hours with the plate supply disconnected. ihis "boils" out the thorium from the inside of the filament and provides a new layer on the surface. d'ubes that are very weak can ofter be restored by "flashing" the filaments from 10 to 20 seconds at a filament voltage of approximately three times the normal filament voltage. After this process, the filament must be burred for about 30 minutes at a filament voltage about 25% above normal. The plate supply should be dis. connected while this is being done. While reactivation is not always possible, and there is also danger of burning out the tube filament, the process may cone in handy to the Service han in cases of emergency or for temporary set operation to please a dissatisfied customer. Of course, reactivation of heater type A.C. tubes is impractical, especially "flash" method. Holding a tube over a gas flame will sometimes reactivate it

CHAPTER V

THE LOUD SFFAKER

THE loud speaker or sound reproducer forms a very important part of every radio set; for, with a poor reproducer, good results cannot be expected; no matter har good the set may be. Since the reproducer is partly mechanical and it is in continuous use during reception, it is subject to wear and disintegration due to the, excessive continuous vibration. Furthermore, it receives the greatest eleotrical strains of any part of the set, being connected to the extreme output and subjected to the total amplified output of the set. The importance of good speaker operation, as rogards satisfied customers, cannot be too strongly urged.
(2) Speaker Tests. The nature of the sound coming from the speaker usually tells exactly the condrzion of the speaker; but we are not endowed with ears subtle enough to completely diagnose the trouble by sound alone. Only by much experience can we approach this skill. A dead, weak, noisy, or distorted set may be the effect of trouble either in the set or in the speaker system; and it can easily be localized in either by ocnnecting a speaker known to be in good condition to the set output terminals in place of the questionable speaker, and comparing the two. We will assume, in the following paregraphs of this section, that the set output is of excellent quality and that trouble lurks in the speaker or its associated circuits. There are a variety of speakers in operation, each with its own group of inherent weaknesses, if we may use this term, where trouble may brew. We will describe them in the order of the follawing classification:
(a) Electrodynamic cone speakers,
(b) Magnetic cone speakers,
(c) Eorn-type speakers,
(d) Electrostatic speakers.

Fig. 44 - Front and rear views of the Stromberg Carlson P-I8870 dymamic speaker
(3) Electrodynamic cone speakers. Nearly all the more recent sets empioy this form of reproucer. A typical exampie is show in Fig. 44. The diagramatic illustration, Fig. 45, shows that it is composed of a powerful electromagnet and a moving coil or "voice coil." which is attached to the apex of a cone and arranged for free movement within the magnetic gap of the electromagnet. In addition to these, the speaker system comprises the source of direct-current supply for energizing the electromarnetic field coil, and the output choke, filter or transformer adapting the voice
coil to the set output. Trouble may arise in any of these places, but we will first consider the main elements of the speaker shown in the illustration of Fig. 45.
(4) The Field Coil. Very weak, raspy, reproduction with almost complete absence of bass notes indicates failure of the field supply. It is best to remore the speaker from the cabinet before making tests; after which a clean knife blade or other iron tool. held near the center magnetic pole of the voice coil, should be strongly attracted when the fielc current is turned on. If no magnetism exists there is an open somewhere in the line, and a continuity test across the field winding should be made, after disconneoting it from the set. In many sets, the field coil serves as a filter choke in the power supply, in which case it is merely plugged into a jack in the rear of the set chassis. In such installations, the field coil has a resistance of several thousand ohms, which should be indicated by the continuity tester. The voltage supply to the ccil should be measured at the field-coil jack, with the speaker in circuit and the set turned on, to make sure that there is no failure fron that source. Ir some speakers, supplied with low-voltage direct-current obtained from the A.C. line by the use of dry rectifiers, a loweresistance field winding is emplcyed, and this should be noted when making continuity tosts ir the field.
(5) The Voice Coil. The voiae coils of different makes of dynamio speakers vary widely in number of turns and, consequently, in resistance. The resistances are too low to be accurately indicated on a continuity tester, making it difficult to detect a shorted turn. Often a loss of bass in the reproduction is caused by a shorted portion of the voice coil, due to rubbing on the iron field. This is best determined by removing the cone and coil and examining it. While an open circuit will kill reception, sometimes a high-resistance connection to the voice-ooil terminals will cause much trouble. In one particular instance, a customer was well pleased with the radio reception, but the results from the phonograph pickup were not much to brag about, and the customer threatened to return the set after several attempts to rectify the trouble failed. It was later found, howerer, that this particular speaker employed a singleturn voiog coil of heavy copper ribbon connected to a similar copper strip forming the secondary of the output transformer. The coil was obviously of very low ohmic resistance, and it was found that the resistance of one of the connections to the coil, although low, was appreciable when camparod with the coil's resistance. This connection was thoroughly cleaned with steel wool and soldered. This not only brought the quality of the phonograph reproduction up to normal, but also improved the radio reception, and the custamer was well pleased. The radio reosption previously had been sufficiently powerful to give fairly good quality.
(6) The Magnetic Gap. This part of the speaker is more important than it appears, as it has a very bad havit of picking up bits of iron filings and holding them in the path of the moving coil, causing a raspy sound. In bad cases it will be necessary to disconnect the field, dismantle the speaker and wipe the gap with a piece of clean oloth. Sometines bits of iron may be removed with a sharp-pointed iron tool; the magnetized iron particles will cling to the iron tool and are easily removed.
(7) Cone. The paper or composition cone sometimes becomes dameged by ill treatment, and sometlmes it is shattered or broken near the apex by excessive volume. In either
case, it is best to replace it with a new one. It is important to center the cone accurately so that the coil does not touch the iron field and cause chattering. Loose parts on any part of the speaker or cabinet in which it is mounted are likely to cause rattling or extraneous vibration, and should be corrected.
(8) Field Supply. Field current for dynamics, in addition to the method proviously described, In which the field coil forms part of the filtor system of the set, is sometimes contained separately by rectified alternating-ourrent from the lio-volt D.C. line in D.C. installations, or from a storage battery. It is obvious that the rectifier-A.c. method is likely to cause the most trouble. In some cases the current is rectified by means of a vacuum tube such as the 80 , giving a comparatively high voltage, and sometimes by means of dry-disc rectifiers, giving a low voltage. These two methods are shown in Figs. 46 and 47. Of the two methods, the vacuum-tube type of rectifier usually causes the least trouble. Sometimes the field is connected across the voltage divider of the set's power supply, as in the Atwater Kent "Model 55" set, as shown in Fig. 48. A filter is required in either case to reduce A.C. hum. Fig. 49 shows a typical speaker installation.
(9) Vacuum-Tube Reotifier. Fallure in field supply on speakers using this type of rectilior may be due to a poor rectifier tubo, a punctured filter condenser, an open transformer winding or line connection. Continuity tests will soon locate the trouble. As shown in the illustration, Fig. 46, a $2-\mathrm{mfd}$. condenser is sufficient for filtering purposes.
(10) Dry Rectifiers. A dynamio speaker with a 6-volt field connected to the rectified output of a frickle charger forms the basis of this type of A.C. dynamio speaker, except that the whole is assembled as one unit. The schematic diagram, Fig. 47, shows the usual oonnections. Fig. 50 shows the Radiola 41 A.C. speaker. Failure of fjeld current is usually caused by the dry-disc rectifiers reaching the end of their useful life, especially if A.C. Veltage is found across the secondary of the step-down transformer. Should this be the case, the rectifiers must be replaced. Excessive hum, caused by the pulsating direct current delivered to the field, may be reduced by conneoting a low-voltage high-capacity condenser across the field. A condenser of 1000 to 2500 mf . rating is usually employed for this purpose. Short circuits of ten occur in this type of condenser, making it another source of trouble for the service man.
(11) Hum. Fum in dynamic speakers is sometimes reduced by means of a short-circuited ring around the center pole, which produces a bucking effect on any magnetic changes in the field and holis the flux steady. (see Fig. 44). In some speakers, part of the pulsating field current is fed into the voice-coil circuit through a variable resistance in order to balance out any hum. In these speakers the hum is under control and

Figa. 46 and 47, showing filament rectifier field current supply and dry-dise rectifier field supply. Illustrations courtesy of Stromberg Carlson.

Fig. 88 - The Atwater Kent Early-Type Model 55 Set.
the control resistor should be carefully adjusted. A stationary bucking coil on the center field pole, connected in seriez with the voice coil and shunted by a variable resistance, is also employed in some speakers, as in Fig. 47.
(12) Speech-Input Transformer. This transformer may be part of the set or part of the speakor, but in any case its purpose is to tch the output impodanae of the power tube or tubes to the impedance of the voice coil of the speaker. The seoondary of this tranaformer conneots directly to the voico coil, as shown in Fig. 47 and its primary to the sot output; sonetimes through an output choke and by-pasis condenser. In pushpull amplifiers, the primary may have a center conneotion to the high-voltage plate supply, the two ends connecting to the tube plates. An open speech-transformer windinf will cause failure in the speaker. The connection to the transformer should be removed and continuity tests made on all the windings. Also, test betweon the windings and core to see that they are not grounded.
(13) Audio filters. Same sets employ a combination of chokes and condensers to filter the audlo output by making a definite predetermined frequency cut-off and an improved quality of reproduction. Fig. 51 shows the type of filter used in the Federal "Kodel $\mathrm{K}^{\prime \prime}$ receiver. It is obvious that an open choke or shorted condenser will interrupt reception, and the components of the filter should be tested separately.

Fig. 49 - Rear view of \#846 Stromberg Carison Receiver.
(15) Troubles in Magnetio Speakers. Weak, Einny sounds may be caused by a damaged or crushed cone near the apex. The cone paper can be strengthened with collodion, which should be allowed to soak in and dry, but it is better to replace the cone. Loud chattering sounds ars the result of the armature striking the pole tips, and the unit then requires adjustment. See Figs. 53, 54 and 55. Raspy sounds may be due to iron filings or dirt in the narrow magnetic gaps; these may be removed with pieces of stiff paper forced between the armature and pole tips. Rattling sounds denote looseness in some part of the driving system; either a loose drive pin or a loose cone attachment. Lack of volume may be due to a weak magnet, or poor insulation in the connecting cord, or open coil winding.

(16) Types of Magnetic Speakers.

The ilustrations, Figs. 56 and 57 , show two magnetic units of different
(14) Magnetic Cone Spaakers. The testing of magnetlo cono speakers is aimil. ar to that of dynamic speakers, the main difference being that the magnetic instruments employ permanent magnets and have no field supply, making the localizing of trouble oasier. Since these speakers employ a highimpedance coil wound in a small space with many turns of fine wire, open coils are a frequent occurrence. A continuity test at the coil terminala will reveal the condition of the coil. It is best to disconnect the flexible connecting cord, as this may be shorted from dampness or open circuited. The cord should then be tested separately. Speech-input transformers are sometimes employed with these speakers, but usually there are an output choke and condenser, arranged to prevent the D.C. oomponent of the plate current from flowing through the speaker unit winding and destroying it or unbalancing the unit or weakening the permanent magnet. Tests on this apparatua are described in connection with dynamio speakers. Fig. 52 shows the coils, armature and driving mechanism of the R.C.A. Model 100 A speaker.
types; the latter called the Inductor Dynamic; in action and sound resembles the dynamic speaker. The armature and cone are free to move a comparatively great distance without hitting the pole tips.

(17) Horn-Type Speakers. These speakers exist with both

Fig. 51 - An Audio Filter for improved quality.
dynamic and magnetio units, the former being used largely in talking-picture houses in which a large exponential horn is employed. The latter type was used extensively in radio reception a few years ago but is fast becoming obsolete. Diagnosing trouble in these speakers is similar to that just described and need not be repeated here.
(18) Electrostatic Speakers. These speakers are not in general use as yet, although the Peerless Kylectron employs one. They consist essentially of a condenser, one plate of which is free to vibrate under the influence of electrostatic attraction and repulsion. A high positive biasing potential is employed across them, being taken from the power supply of the set or from a separate rectifier tube. Since only the current leakage need be supplied by the biasing potential, little current is used; thereby eliminating any trouble from hum. The main trouble may arise due to excessive vibration, together with the high voltage accompanying it, causing a short circuit, or intermittent sparking across plate. This either kills reception or produces annoying rattling sounds.
(19) Microphonic Hum. When a microphonic detector tube is in the set, a hum or ringing sound will be produced in the speaker whenever the tube is jarred. It is evident, therefore, that if the sound from the speaker causes the set and microphonic tube to vibrate, a continuous hum will be produced, which will reinforoo itself as soon as it sets up its orm vibrations in the speaker. The result will be a continuous howl. It is entirely an acoustical effect. Holding the detector
Fig. 52 - Speaker- driving mechanísm.

Fig. 53-Correct

Fig. 55-Incorrect
tube tightly in most cases will prevent it. A "howl arrester" placed over the detector tube also may be used. In bad cases, it may be neoessary to change the location of the speaker, or insulate it from the cabinet with felt. Resonance within the cabinet may set up an excessive vibration, which will reinforoe this effect and mar the tonal quality. Moving the cabiret away from the wall, or cutting openings in the cabinet, or padding it with felt, may remedy the trouble.

Fig. 56, at the left, shows the Fright-DeCoster Hy-Flux magnetic cone speaker. Note the audio filter mounted neax the unit for improved tone quality.
Fig. 57, at the right, shows a cross-sectional view of the Farrand Inductor Dynamic speaker. In this unit the armature is attracted in between the pole tips, thus allowing a large movement without chattering.

CHAPTER VI

THE ANTENNA SYSTEM

THE antenna system comprises the aerial and lead-in, with its lightning arrester, and the ground connection. While a good sensitive modern receiver will operate after a fashion on any kind of a haphazard aerial system if the location is fair, remember that a well-constructed antenna system is imperative for permanent sat operation and satisfied customers.
(2) Types of Aerials. The busy Service Man will encounter various types of aerials, but the general Sorm comprises a single stranded wire, bare or enameled, about 100 feet long, suspended between insulators from 20 to 50 feet above ground or higher When installed on the roof of a tall building. Attached to this is the lead-in connecting it to the set, with an attachment to a lightning arrester which is conneoted to ground. There are special types of aerials, such as lamp-socket aerials, indoor

Fig. 60 - Typical Aerial Installations.
aerials, underground aerials, multiple aerials and loop aerials, but these will be discussed subsequently under their proper headings. Trouble shooting in the various types is basically the same procedure. We will concern ourselves mainly with the general type of single-wire aerial first mentioned.
(3) Aerial Installation. The subject of aerials comes more under set installation than servioing; but, in oither case, care should be taken to see that the aerial is well constructed to insure permanent operation. See the illustrations of Fig . 60. It should be erected as far from other aerials or wires as possible, strung as nearly at right angles as possible to other wires, and placed neither under or over highvoltage lines, which is not only dangerous in case of breakage of a wire but is likely to produce a 60 -cycle hum in the set. With a good soldered connection between the lead-in and the aerial (scraping each strand of the aerial wire separately if it is enamelled) little trouble should be experienced with it from thereafter. Many installers don't take the trouble to solder the lead-in connection to the aerial, and in time corrosion takes place, causing an imperfect connection which is swayed by the wind and produces "static" in the set. In cases when it is temporarily impossible to form a good soldered connection, the joint should be tightly bound with tape to protect it from the weather.
(4) Aerial Location. The location of the aerial depends largely upon enviromment, and one phase of environment usually overlooked and likely to cause trouble is that of the so-called "dead spots," more noticeable in the vicinity of large steel buildings than elsewhere. In such installations, when the set fails to function properly and stations are very weak, changing the direction of the aerial (say 90 degreas or at right angles to its former position) will rectify the trouble. Sometimes it will be
necessary to shift the aerial considerably, and if possible support its free end on some near-by building. Sometimes better results are obtained by eliminating the aerial entirely and making conneotion to the steel window framework of the building instead. Troubles of this nature are encountered mainly in large cities.

The inverted "L" type of aerial, as this type is oalled, is slightly directional, and will receive better from a direction nearest the leadein. This effect may be taken advantage of, especially when long aerials are used, either to improve reoeption from a certain direction, or to reduoe reception fram certain near-by powerful interfering stations.
(5) Aerlal Tests. A reliabl aerial test can be mado by disconnecting the aerial from the set and conneoting, in place of it, a wire 30 or 40 feet long strung along the room or cutside of the window. A comparison of the two will usually indicate if the regular aerial is defective. This test is not always possible, but the efficiency of an aerial can usually be detected by simply disoonnecting it from the set. If the set is noisy when it is known that there is no excessive natural statio, and the noise ceases with the aerial disconnected, the trouble will probably be found in a loose connection in the aerial or in a near-by aerial in inductive relation with it. Possibly some wire has fallon in contact with the aerial and is rubbing against it; the aerial system should be thoroughly examined. A contimuity test between aerial and ground terminals will indiaate whother the aerial is grounded or not. A grounded aerisl will sometimes work, especially if the ground is at the further end of the wire; in which case it may act as a large closed-loop antenna. If no defects can be observed in the aerial, yet it appears to be noisy, examine the lightning arrester.
(6) Lightning Arrester. The lightning arrester, Fig. 61, may be grounded or partially granded, by intermal defects, and cause a noisy set or kill reception entirely. Try disconneoting the arrester. If the trouble ceases, replace the arrester with a new one.
(7) Length of Aerial. The seleotivity of many sets depends largely upon the aerial length, and in many osses where complaints of poor selectivity are received it will be found necessary to shorten the aerial and thereby reduce its fundamental period of eleotrical vibration to a point below the broadcast band. This shortening also reduces the input to the set and gives the effect of greater selectivity. Usually the same reaults can be obtained by connecting a condenser of about.00025 mf. in series with the aerial.

Some unstable sets may oscillate furiously with a short aerial and cease to oscillate on a long one, by reas on of the greater radiation resistanoe of the long one, which absorbes more energy from the set. Aerial resistance likewise causes broadness of tuning and poor selectivity. Bare copper wire, which has been exposed to the weather and is corroded, has a greater high-frequency resistanoe than enamelled wire.

The "absorption" type of wavetrap; to eliminate poneertill local interfercince it may be necessary to increaise, to 15 or 18 , the number of turns in coil 1.
Fig. 62

The "rejector" wavetrap is e.stremedy effective if reducing signal interfacrence; but it also causes a reduction in the stringtle of desired signals.
Fig. 63

Abstract

Broadness of tuning on a near-by local station may be reduced by the use of a wavetrap, tuned to the interfering station, and connected as shown in the illustrations Figs. 62 and 63.

(8) Lead-In Strip. The lead-in from the aerial is usually connected outside the window to a lead-in strip. This is a flexible-copper, insulated strip with spring-alip connections on each end. The wind ow is fammed down against this strip, forming a convenient entry to the inside where connection is made to the set. The connections to the strip should be soldered or thoroughly taped to prevent corrosion. See Figs. 54 and 65. If the set loses sensitivity during rainy weather, this strip should be examined, as well as other outside aerial or lead-in supports, such as the lightning arrester and aerial insulators. Leakage through wet insulation may cause a grounded aerial, especially if the wot lead-in-strip enters through a steel window casament. This is a frequent trouble in many set installations.
(9) Aerial Length. The length of the aerial to be installed depends largely upon the location. As a general rule, the shorter the aerial employed, if it gets the desired stations, the better the results obtained from the set. Many sets have two or more aerial connections, for short aerial, medium aerial, or long aerial. A 30-foot wire may be considered a short aerial; a 60-foot one a medium aerial, and a 100- to 200-foot one a long aerial. In congested distriots, a short aerial is recommended.
(10) Counterpoise. Where it is impossible to obtain a good ground connection, a counterpoise may be used. This consists of a wire similar to the aerial and suspended benesth the aerial or in its vicinity, and insulated from the ground. It proves very effective in many installations. In some cases it roduces hum.
(11) The Ground Connection. In many installations the ground connection is made to the radiator pipe. This $1 s$ usually the most convenient, and often serves very well. But an additional connection to a cold-water pipe is recommended, especially when the installation is made in one of the upper floors of an apartment house or hotel containing noisy elevators and ice machines. This will not only improve signal strength but reduce interference from noisy motors as well;for these motors are also grounded and the long path to earth from both radio and motor ground connections causes induction between the two. It is important that the pipe be thoroughly cleaned with a file before attaching the ground olamp.
(12) Testing The Ground Connection. A continuity test between the ground wire and a metal pipe in the building will indicate the condition of the ground connection. In some D.C. installations, an insulating condenser is placed in the ground lead, and care should be taken to make the test fran the ground side of the condenser to the pipe, otherwise a short circuit is likoly to ocur, as in Fig. 66. If set noises cease after

A common form of lead-in installation, which is very good until the exposed connections corrode.

If the insulated lead-in wire is brought inside
and a good connection made, if zoill last. and a good connection made, if will last.

Dircct-current house supplies are a source of much grief in these days of altcrnating-current standards. Particularly when the tyro starts experimenting is there apt to be trouble-cucn the simple one of polarity.
disconneoting the ground wire, examine the ground connection thoroughly, or run an extra temporary ground wire to some other pipe in the building.
(13) Lamp-Socket Aerial. In some congested districts permission for the erection of an outcocr aerial cannot be obtained and some alternative method must be employed. The electric-]ight lines are sometimes used, by means of a lamp-sooket aerial plug. This contains isolating condensers to prevent the lighting current from entering the set. Good results are sometimes obtained, but sometimes noises are introduced, which are difficult to filter out without reducing the signal intensity. It is dangerous to employ this aerial on some electric sets, as a dangerous short circuit is likely to occur.
(14) Indoor Aerials. A wire strung around the room behind the picture molding, or in some other concealed place, serves as an efficient aerial in many locations, but in steel buildings poor results may be expected. It may be used in combination with a lamp-socket gerial.
(15) Underground Aerials. In outlying districts, where space permits, underground aerials may be employed for the reduction of various kinds of interference. While no exact data as to the efficiency of this type of aerial can be given at this time, we have received many satisfactory reports from various experimenters.
(16) Multiple Aerials. The tangled maze of unsightly copper wires, strung in all directions on the roofs of some apartment houses, should inspire all Service men to recommend some form of multiple aerial to the owner of the building. The illustration, Fig. 67, shows how neat this arrangement can be made (Amy, Aceves and King, Inc.) One well-erected aerial feeds all sets in the building through special coupling devices, thereby simplifying set installation and insuring satisfactory set operation with virtually no trouble from this source. A defective coupling unit will seldom occur, and in this case, it can easily be replaced.
(17) Centralized Radio System. This apparatus, made by R.C.A \%ill be lound in many hotels and apartment buildings. Fig. 68 shows the circuit diagram. It couples a single aerial to as many as 80 receiving sets, without mutual interference, and comprises an RFC unit shown at the left in Figs. 68 and 69, which is mounted on the roof or near the aerial. This unit feods as many as 8 RFX units (showm at the right of the above illustrations) by means of a twisted three-wire radio-frequency transmission line. Each RFX unit will feed up to 10 radio sets. The amplification gained in these units compensates for any transmission losses.

In other systems one aerial feeds one master radio set usually located in the basement of the building. this set feeds audio power to the various room outlets. Each room, therefore, has only a loud speaker and volume control, with a switch that will select any one of about four stations.
(18) Loop Aerials. The superheterodyne receiver is the most comm on type thet employs a loop aerial. Lack of sensitivity in the set may be traced to poor location in the room; in

Fig. 67 - One aerial supplies many sets.
a steel building, moving the set a few feet sometimes makes considerable difference. If it is located near a steel column, the directional effect of the loop is usually impaired, the loop receiving its energy directly from the column by induction effect.

In homemade receivers employing an external loop one sometimes finds a neat-looking flexible telephone cord connecting the loop to the set. The electrostatic capacity of this cord is so great that it is virtually impossible to tune the loop and tuning appears broad. To remedy, connect the loop to the set with two short separate wires.
often the simplest things ause the most trouble, and one should first make sure that the aerial and ground are connected to the set before making elaborate testa on the latter.

Fig. 69 - at the left is shown the "RFC," or first unit of the system which supplies plate current also for the coupling units.

- at the right is shown the "RFX" or outlet unit which feeds the individual receivers. The "RFT" unit show in the diggram of Fig. 68, appears only n the last "RFX" on the line.

CHAPTER VII

RADIOFREQUENCT AMPLIFIERS

FROM the viewpoint of the set owner, the radio-frequency amplifier may be oonsider ed as consisting of the tuning dial and the volume control and he will detect the least fault in either. The Service Nan, however, must know the insides of the particular set in order to localize the trouble and make repairs. The various commercial set diagrams in this book display the almost unlimited forms in which the above two constituents may exist. Each manufacturer, testing the methods of the others, changes or adds to them in attempted improvements, and a now breed of sets finds its way into the hones of the lay public. Otherwise all sets would be alike. Basically they are alike, but vary in details. These details are important, however, and to point out same of the more salient ones, we shall classify the different types of sets and, in turn, the different elements of which the radio-frequency amplifiers in them are composed. We can first classify sets into those -
(a) without screen-grid tubes,
(b) with sorcen-grid tubes;
and make a further classification of those using -
(c) conventional tuned circuits.
(d) band selector circuits.

In addition we have superheterodyne circuits. The different methods of volume control, both manually-operated and automatic, will also be included in this chapter.
(2) Conventional Tuned circuits. In the ordinary tuned-R.F. amplifier illustrated in Fi . 6 of Chapter II, three tuned oircuits are employed; the first couples the aerial circuit to the first tube, the second couples the first and second tubes, and the third couples the second tube to the detector. When all three cirouits are in resonunce, amplification takes place; this means that the three tuning condensers mast be accurately adjusted. In modern sets the three condensers are all mounted on one shaft and tuned collectively. For marimum efficiency, the circuits and condensers must be identical; otherwise one circuit will be out of resonance and the over-all amplification will be reduced. Slight mechanical Tariations in manufactured condensers do exist, however, so "trimmer" condensers (or aligning condensers, as they are sometimes called) are connected in parallel with the main tuning oondensers, as illustrated in the diagram mentioned above. These condensers are of small size and small capacity. They are adjusted for resonance at two or three points on the dial and left in the best average position. This adjustment can be done by ear through tuning in stations and adjusting the trimmer condensers for maximum volume; but the method described in Chapter I, Paragraph 15, for balancing, in which a resonance indicator is employed, is more accurate.
(3) Neutralizing; It is evident that, in a radio-frequency amplifier, the output circuits contaln radio-frequency currents identical with those in the input circuits, but of a mach greater value; therefore, if the slightest degree of coupling exists between the output and input circuits, the amplifier will be thrown into violent osoillation, resulting in decreased amplification and whisting, squealing, and howling everytime a station is tuned in. To reduce this disastrous coupling, the coils and condensers are enclosed in metal shield-cans. But even then coupling exists within the tube itself in the form of electrostatic coupling between the grid, which is part of the input circuit, and the plate, which is part of the output cirouit. Various circuit arrangements have been devised to "neutralize" this capacity coupling within the tube. All these circuits depend upon some form of "Wheatstone bridge" arrangement, whereby an equal amount of capacitative coupling of opposite sign is

Fig. 70 - Hammarlund "Hi-Q 30"A.C. Receiver.
introduced between the input and output circuits, thus nullifying the effect of the tube-capacity coupling. These various arrangements will not be described in detail here, as the diagrams of the various sets show them. The Service fan is interested only in the neutralizing condenser employed to obtain this balancing effect and hor it should be adjusted. These condensers are clearly indicated in the diagram of Fig.6, and the method of adjusting them is described in Chapter I, Paragraph 15. Without instruments, a fair degree of adjustment can be obtained by tuning in a station, insert ing a durmy tube in one socket after the other, and adjusting the neutralizing condenser in each case for minimum or zero sound; at the same time adjusting the trimmer condensers for maximum sound. When correctly adjusted, it should be impossible to make the set oscillate at any point on the dial, with any volume-control adjustment.
(4) The Screen-Grid Tube. Having just described the cause and cure of oscillation in the ordinary tuned R.F. circuits employing three-electrode tubes, it seems fitting at this place to point out the effect which the advent of the four-electrode or screengrid tube has had on circuit design. The use of metal shields to prevent coupling between the output and input circuits has been described; in screen-grid circuits, the shielding is extended until it exists within the tube itself, in the form of a metal network, entirely encompassing the plate, which is called the soreen-grid. This fourth electrode is grounded but maintained at a proper positive-bias voltage, so that it does not interfere with normal tube action. It is evident, therefore, that the input and output circuits are entirely shielded, and feed-back coupling cannot exist. The circuit will not osoillate, and neutralizing is not necessary. In practice, the entire tube or the most vulnerable part of it, is enclosed in a metal shield. A very high degree of amplification is obtained, but the characteristics of the tube are different. It has a much higher impedance, requiring special design of the R.F. transformers. These tubes are made in the ordinary battery type (122) and A.C. heater type ('24.) See Fig. 41 in Chapter IV.
(5) Band-Seleotor Circuits. Band-selector circuits are becoming more and more popular, especialxy since the advent of the screen-grid tube with which they are mainly used.

Fig. 71 - The 10,000-ohm resistance is the volume control.

The band selector, or band-pass filter as it is also called, oonsists essentially of two or more tuned circuits loosely coupled together. This gives a flat-topped resonance curve which, by proper design, can be made to have a flat top 10-kilocyoles wide, thereby accopting the entire program, sidebands and all, giving a high degree of selectivity without distortion. The band-selector cirouits may be found ahead of the R.F. amplifier, at the input side; they may be part of the amplifier circuit, or may be placed between the amplifier and the detector. Various combinations are possible. In many sets, as in the Sparton "Model 49," (a diagram of which will be found in the back of this book) the band selector will be found between the aerial and the R. F. amplifier, and an untuned or aperiodic R.F. amplifier is employed. That is, the R.F. transformers are of special design to cover the entire broadoast band without tuning. Incidentally, three-electrode tubes are employed in this set. In the Hamarlund "Hi-Q 30 A.C:" receiver, a diagram of which is reproduced in Fig. 70, band-selector tuning is employed between the aerial and the amplifier, as well as tuned stages in the amplifier, giving six tuned circuits in all. The six tuning condensers, illustrated in the upper left side of the diagram, are controlled simultaneously by one dial. The six trimer condensers are also shown. Note the R.F. ohokes in the plate-supply leads of the screen-grid tubes; these leads, as well as the grid return leads and screen-grids, are by-passed to the filament through large condensers.
(6) Grid-Bias Volume Control. Various methods of controlling the volume in different circuits are employed. In the old tuned-R.F. sets, it was customary to control the volume by changing the bias voltage on the grids of the tubes. This was effected by the use of a potentiometer conneoted aoross the filament circuit; the variable tap connecting to the grid return leads. Thus a bias. voltage from zero (at the negative side of the filament) to plus 6 volts (at the positive side) could be obtained. This positive bias on the grids caused excessive plate current, resulting in short-lived tubes and batteries. Also, tuning was broadened because of the R.F. oirouit drain from the tuned circuits.
(7) Filament-Current Volume Control. Another simple method of oontrolling volume was by means of the inament rieostats of the R.F. amplifiar tubes. While this is effective, it is not very satisfactory.
(8) Plate-Current Volume Control. A high variable resistor in the R.F. plate leads is comonly emplayed to control the volume, by controlling the plate current. These resistors are, of course, by-passed by large condensers. This method lengthens the tube and battery life and is quite satisfactory; it is used in the Sparton No. 49 above mentioned.
(9) Absorption Methods of Volume Control. Variable resistors are sometimes inserted in the RoF. aroults to oortrol volume. Grid-suppressor resistors, connected in series with the grids, are also used to prevent oscillation in unstable sets; about 800 ohms
is sufficient. A variable resistor in the input circuit is also common. An example is illustrated in the diagram of Fig. 71, showing the method employed in the Majestic "70" or "708" sets. Sometimes two variable resistors are employed; Fig. 72, shows how this is done in the Stromberg carlson No. 638 D.C. receiver. Here two $10,000-0 \mathrm{hm}$ resistors, mounted on one shaft, are used; one to control the input to the R.F. amplifier, and the other to control the input to the detector.
(10) Screen-Grid Control. Controlling the positive bias voltage on screenogrid tubes makes a very efficient volume control in sets employing these tubes. This is the method employed in the Famarlund receiver shom in Fig. 70. It is indicated at V.
(11) Automatic Volume Control. Modern sets are so sensitive, and capable of giving such great volume, That it is annoying to tune for a weak station and suddenly have a powerful local raar in. To avoid this, some sets employ automatic volume controls, which limit the volume automatically. Fig. 73 shows the circuit used in the Stromberg Carlson "No. $246^{\prime \prime}$ receiver, which employs a type 27 tube, the grid circuit of which is coupled through a . CCO25-mf. condenser to the output of the R.F. amplifier. A 2megohm grid leak is used to prevent blocking of the tube and to hold the grid bias at the proper value. The plate is connccted to ground through two $100,000-0 \mathrm{hm}$ resistors; but, since the cathode is at a lower potential than ground, plate current will pass through these resistors. The drop across both of them serves to bias the grid of the first R.F. stage, and the drop across one to bias the second R.F. stage. thus, when the received R.F. signal reaches a certain intensity, current through the resistors decreases; resulting in less negstive bias on the amplifiar tubes and reducing the amplification. An equilibrium is soon established, in which the volume is maintained at a constant limited value. It seems needless to add that all resistors are thoroughly by-passed to prevent any radio-frequency feed-back; only the voltage drop aoross the two $100,000-\mathrm{hm}$ resistors, resulting from the average signal-intensity value, is instantaneously and automatically fed back to the R.F. amplifier grids. Many other sets use similar controls, such as the Kellogg 523 and 526 shown in the diagram section of this book.
(12) Radio-Frequency Amplifier Trouble. Trouble in R.F. amplifiers resolves itself into:
(a) lack of sensitivity,
(b) broad tuning,
(c) oscillation,
(d) noise,
(e) lack of control.

All of these symptoms may be due to poor tubes or wrong supply voltages; but, since we ho.ve described voltage tests and tube tests in chapters III and IV, we will 1imit this chapter to searching for trouble within the remaining parts of the system.
(13) Lack of Sensitivity. This may be attributed to: poor alignment of the tuning condensers, an open circuit in the input or some part of the system, shorted coils, an open or shorted by-pass condenser. In fact, any default in the circuit may contribute to decrease sensitivity or kill reception entirely. It is probably simpler to test the coils and condensers than to read about all the things that might happen. Even damp weather
is detrimental, as shown in Fig. 74. This shows the results of an actual test. A usual fault in R.F. amplifiers is an open coil winding. The windings should be tested for contimuity; a full reading indicates either good coil or a shorted coil. The latter is difficult to detect but, fortunately, is not a common occurrence. A visual examination will usually reveal any damaged condition. Lack of plate voltage at the tube sookets may indicate an open primary winding, or an open choke-coil winding in same sets in which the plate current does not pass through the R.F.T. primary (such as the Stewart Warner "Series 900 " receivers.) It may be difficult to solder an open-circuited winding together; the best method is to rewind the coil, making note of the number of turns, size of wire, directions of winding, and external connections. So far as the tuming condensers are concerned, a visual exanination is usually sufficient; they should be thoroughly cleaned and the pig-tail oonnections examined. The method of aligning them for maximum resonance has already been explained in Chapter I.
(14) Broad Tuning. Lack of sensitivity and broad tuming usually go hand in hand. The troubles Just desoribed in the preoeding paragraph apply here also. Unless some previous Service Man has left a soldering iron or screwdriver inside of one of the shield cons, we may find the cause of broad tuning in the aerial system, to which a separate ohapter has been devoted; or in an incorrect "C" voltage on the tubes, or in some defeat in the circuit or volume control. The usual complaint from this trouble is

Fig. 74 - The effect of damp weather on R.F. amplifiers. found to be due to the closeness to some broadcast station; the fault is not in the set then, and the Service man is not expected to improve the set far beyond its original abilities. Extreme sensitivity, like a powerful telescope, has the effect of bringing the stations nearer, and also results in complaints of broad tuning. In these cases a shorter aerial is recomnended or a wavetrap may be required, as described in Chapter VI. Damp weather causes broad tuning in many sets, due to moisture impregnating the insulation of the coils. If complaints spring up during the damp season, it is well to bear this in mind. See Fig. 74.
(15) Oscillation. Either the shielding is poor, the connecting leads are lying in the wrong positions, or the set is not neutralized. In some sets a defective volume control may cause oscillation. This trouble manifests itself by penetrating squealing, howling and whistling sounds while tuning in a station. There is feed-back coupling somewhere in the set to cause oscillation. Perhaps the antenna lead is too near the detector output region. cheok the tubes, tube shields and supply voltages.
(16) Noise. Moise is invariably caused by loose connections, either within the ciroult or near to it; as in the case of loose shield-oan joints that reflect noises into the circuit, due to their absorbing of energy from it. Loose sooket contacts are a conmon ocourrence; also, loose soldered connections to the coils and loose pigtail conneotions to the oondensers. Rubbing contacts on the condensers are also noisy. Condenser plates which touch cause noise, as well as fine metal burrs on the plates, or dirt between them. The volume oontrol is a frequent source of noise; it should be cleaned with alcohol and oiled with Nujol. (This applies to filament rheostats also.) Sometimes a soft lead pencil rubbed on the resistance wire will give sufficient lubrication, due to the graphite, without interfering with the contact.
(17) Lack of Control. Lack of control of the set indicates a defective volume control. In virtually all cases the volume control is a variable resistor of some sort, and it is apt to be worn out from mechanical usage rather than electrically destroyed. Knowing its approximate resistance from the circuit diagram, it may be intelligently testod with a continuity tester, and preferably replaced rather than repaired, if defective. If the set has an automatic volume control, the tube may be at fault and should be tested. By-pess condensers may be shorted, or resistors open; with a continuity tester, almost all faults can be found. Hum may be introduced into the R.F. amplifier, due to electrostatic induction from some nearby high-voltage A.C. line.
(18) Superheterodyne Receivers. A whole volume could be written on the servicing of super heterodynes; but we only have space for the high spots, and let the reader's imagination dip into the valleys wherever it is indicated that he should do this. Owing to the comparative complexity of the superheterodyne, many things can happen to interrupt its service; but, if we segregate it into its main components and test each separately, we may find that the servicing of one superheterodyns is like servicing two ordinary sets. In the superheterodyne we have:
(a) oscillator,
(b) radio-frequency amplifier (in some sets),
(c) first detector,
(d) intermediate-frequency amplifier,
(e) second detector,
(f) audio-frequency amplifier.

Parts e and f are considered in chapters VIII and IX. Various superheterodyne cirouits appear in the diagram section of this book. No matter how complicated the set, if we test one thing at a time we can't help but find the fault if it exists. With all parts of the proper values and properly connected, the set will work, because it did'work before the trouble started. Knowing the circuit diagram.and the values of the parts, it won't take long to make the tests and make repairs or substitute new parts.
(19) Servicing Supers. Since there are a variety of superheterodyne circuits in use the greatest variety boing the home-built ones assembled from "kits" - it is virtually impossible to list all the causes and cures of troubles that may oocur in them. of the comercial supers, the Radiola is probably the most numerous, and a detailed analysis of the. "Radiola $25^{\prime \prime}$ Superheterodyne appears in the Radio Data Service Sheet in the diagram section of this book.

CHAPTER VIII

DETECTORS

TEB detector plays a very important part in every radio receiver - it is the pivot on which the radio-frequency amplifier and the audio-frequency amplifier hinge. Linking the two amplifiers, it could well be described in connection with either, but, since it plays such an important part in radio reception, we will devote a separate chapter to it.
(2) Function of Detector. The function of the detector in the ordinary broadcast receiver is to convert the form of the energy delivered to it by the radio-frequency amplifier to a form suitable for amplification by the audio-frequency amplifier and for sound reproduction by the loud speaker. In other words, in the input or gridcircuit side of the detector we have modulated radio-frequency currents and in the output or plate side, audio-frequency currents. Both forms of current may exist in both input and output circuits, in which case trouble results in some sets, while in others, employing regeneration, this phenomenon is utilized to advantage. In the superheterodyne receiver, two detectors are used, but their basic action is the same. One links the radio with the intermediate-frequency amplifier and the other links the intermediate with the audio-frequency amplifier. In the first case, the highest frequency is wiped out, leaving the intermediate frequency; in the second case the intermediate frequency is wiped out, leaving the audio frequency. Since the detector converts the radio energy into audio energy, it sliould do this work without distorting the audiofrequency wave shape or discriminating between high and low audio frequencies; it should effect this conversion without great loss of energy, and should introduce no extraneous noises in the set.

Fig. 77 - (left) Grid Leak and Condenser Method of Detection. Fig. 78 - Porrer Detection using a "C" Battery.
(3) Simple Detector Circuit. A simple detector circuit employing a three-element tube (such as the गOH) $\frac{1}{8}$ shown in Fig. 77. In this cirouit, the modulated R.F. current is impressed on the grid of the tube through a grid condenser. The rectifying action of the grid and filament portions of the tube will allow the positive half cycles to pass through to the filament or return side of the input circuit; but the negative halves will be trapped and will accumulate on the grid. The intensity of this accumulation varies in accordance with the intensity of the input, whiche we knors, varies at audio frequencies; resulting in similar audio plate-current variation. The grid leak resistance of several megohms allows the acoumalating negative charge to loak off slowly. This holds the mean grid potential at a constant value and prevents an excessive accumulation which would block the tube action. It is evident, therefore, that the values of the grid condenser, grid leak and the plate voltage are important factors in determining detector efficiency.
(4) Grid-Bias Detector. This method is called "plate detection" and makes use of the mend"an the lower portion of the "characteristic curve" of the tube for its effect.

Pig. 79 - The 127 type tube detector using a condenser and leak.

See Fig. 39 on page 31. To operate the tube on this bend, a negative grid-bias voltage is necessary. This may be obtained from a "C" battery or from the voltage drop across a resistance. No grid condenser or leak is used, as shown in Fig. 78. Such a detector works by virtue of the fact that one side of the R.F. alternations is suppressed, allowing the A.F. modulations of the other side only to produce A.F. current variations in the plate circuit. As a rule, this method is not as sensitive as grid-leak detection, but the audio quality output is considered better. It is important that a very acourate adjustment of the grid-bias voltage and plate voltage be maintained. The grid-bias resistance or "C" battery must be by-passed by a condenser of at least. $0.5-\mathrm{mf}$. capacity.
(5) The A.C.Detector. Both the detector methods just described were used in battery sets, but the same methods are used with the heater-type tubes in A.C. sets. Fig. 79 shows the grid condenser-and-leak method used with the type 127 tube, and Fig. 80 the grid-bias method, or plate detection. A " C " battery is seldom used in an A.C. set, as grid voltages are easily obtained from drops across resistors through which the plate current flows. Note the by-pass condenser across the bias resistor in Fig. 80.
(6) Power Detection. The sensitivity of a detector to weak signals depends upon the values of the plate voltage, the grid condenser and the leak, or grid-bias, voltage. Usually $22 \frac{1}{2}$ to 45 volts is sufficient for the plate. A detector designed for weak signals would be unsatisfactory for operation where camparatively large amounts of radiofrequency energy is encountered - as in some of the modern high-powered sets. In these, power detection is used. The basic action is the same, as shown in the schematic circuit of the power detector used in the Stromberg-Carlson "No. 846 " receiver illustrated in Fig. 81. The main difference is that a plate voltage of 250 volts is employed with a grid-bias voltage of about 28 volts. Where these detectors are used it is seldom that more than one stage of audio-frequency amplification is required; the detector feeds directly into the push. pull power stage, resulting in very quiet operation with excellent quality. The values of the parts are given in the illustration.
(7) Regenerative Detectors. Regenerative detectors are seldon used in modern multitube radio sets, and we will not desoribe them in detail. It is sufficient to state that the circuits are similar

Fig. 80 - The 127 type tube using power detection and grid-bias resistor.

Fig. 81 - Linear Power Detector.

Fig. 83 - A resistor and condenser eliminates audio regeneration.
part of the audio-frequency energy existing in the plate circuit is transferred back to the grid circuit by means of a "tickler" coil connected directly in the plate lead. This reinforoes the grid current and builds up the signal strength.
(8) Microphonic Howl. Microphonic howl is one common sairce of trouble in detectors, especially those employing battery-type tubes. The heater-type A.C. tubes give practically no trouble fran this source. In extreme cases, it is necessary to exchange the tube in order to eliminate the howl, or use a cushioned socket or "howl arrestor." See Fig. 82. Since the detector is connected to the input side of the audio-frequency amplifier, it is extremely susceptible to audio vibrations or current variations, whioh explains the excessive tendency to microphonic howl in this particular tube. The grid-bias or plate-detection type is less susceptible; as far as audiofrequency currents are concerned, the grid may be considered as connected directly to the filament or cathode, thereby preventing the detector from acting as an audio-frequency amplifier, which it is when a grid condenser and leak are used.
(9) Audio-Frequency Oscillation. This is partially due to the audio-irequency amplifier, but may be eliminated in many cases by correcting the detector. Audio oscillation manifests itself usually in a high-pitched squeal, caused by feed-back coupling in the " B " battery or supply circuit, from the output of the audio amplifier to the detector input. A $2-m f$ by-pess condenser connectedsbetween the detector "B plus" lead and the filament will usually prevent it. An audio choke or high variable resistor connected between the power-supply lead and the condenser also

Fig. 82 - Howl Arrestor. helps and proves very beneficial in many cases. See Fig. 83. Changing from grid condenser - leak detection to grid-bias detection also helps in extreme cases.
(10) Sensitivity. Lack of sensitivity in the detector is usually due to a poor tube, or to wrong plate or filament voltages. An open grid leak or condenser is a contributing cause.
(11) Noise. In addition to microphonic howl, noise is caused by a poor or loose grid-leak resistor or dirty socket connections.
(12) Fum. Hum is usually caused by induction from near-by A.C. oirouita, due to poor shielding or lack of proper by-pass condensers in the grid and plate circuits.
(13) Overloading. In modern powerful sets using power detection, the detector is sometimes overioaded, oausing distortion or "dead spots" on the tuning dial. The latter produces the effect of double resonance. The station may be slowly tuned in, approaching a maximm of volume as the set approaches resonance, until the datector is overloaded, causing a decrease in volume with the set tuned to resonance. Tuning beyond resonance removes the overload from the detector and the volume increases again. one may be deceived by this and think that the tuning systom is out of order, when in fact the detector is at fault. In this case, the plate voltage should be adjusted to suit the particular location of the set, depending upon its proximity to broadcast stations and the particular stations that the customer desires. The grid leak or "c" bias voltage should be correspondingly changed.
(14). Filter Circuits. The radio-frequency energy that passes through the detactor would cause havoo In the audio-frequenoy amplifier if it were not filtered; noisy. ohoked, distorting sounds would result. Usually a single . $0005-\mathrm{mf}$. by-pass condenser, conneoted between the plate and filament of the detector, or aoross the primary of the first stage audio transformer (or the plate resistor in a resistance coupled amplifier) Will suffice. A better filter is illustrated in the circuit of Fig. 81. Here two condensers of $.0005-\mathrm{mf}$. each and a $10-\mathrm{mh}$. choke, connected as shown, are used. A filter of this kind could with advantage be easily added to a set having the above trouble. It will not interfere with the normal audio quality.

Fig. 84 - Diagram of the Silver-Marshall 720 A.C. screen grid receiver is show above. This set employs a screen grid power detectior, $S 4$, with a 60,000 ohm grid bias resistor, a "B" voltage of 170 volts, and a plate resistor of 300,000 ohms; the first audio stage being resistance coupled. The curves at the left show the comparison of the screen grid power detector with the type 127 tube detector circuit. Excellent audio quality at hish volume is reported by users of this set.

CHAPTER $1 \times$

AUDIO-FREQUENCY AMPLIFIERS

SINCE the audio-frequency amplifier determines the tone quality of the set, other things being norms, it is important that this part of the set be kept in the utmost of condition and that the tubes, transformers or other coupling devices and parts, as well as the supply voltages, be maintained in accordance with the specifications supplied by the manufacturer of the set. Good tone quality pleases the set owner. Poor tone quality pains him and breeds trouble for the Service man - or may we call it pleasure, if he enjoys his work?
(2) Types of Audio Amplifiers. Audio amplifiers vary in the forms of interstage coupling and the types of fubes employed. There are many varieties in the thousands of sets in everyday use. The most comon employs transformer coupling between stages. Others employ impedance coupling. Then there are the troublesame resistance-coupled ones, quite popular a few years ago and now not so camon, yet again coming to the foreground in the form of direct-coupled amplifiers; to wit, the Loftin-Mhite amplifier. With these three main groups, and from one to three stages in each amplifier, together with a wide variety of tubes, it is evident that many combinations can be produced, and such is the case. Yet trouble shooting is comparatively easy if we centralize our efforts on the coupling devices, tubes, connections and the supply voltages; the latter are assumed to be correct since we have already attended to them in Chapter III; and tubes we have tested and corrected in Chapter IV, leaving our present work limited to the coupling device and connections. Therefore, with the connections and coupling device correct, the amplifier will work. Of course, improvements may be made in the general tone quality and volume of many sets by changing the form of the audio amplifier, but the Service Man is not usually called upon to do this work.

Fig. 85 = above. Standard 2-stage audio amplifier. Fig. 86 - below. A push-pull audio amplifier circuit. Both circuits are for use on A.C. electric sets.
(3) Transformer-Coupled Amplifier. A twostage transrormer coupled amplifier is most generally used and, in many csses, the second stage is of the push-pull type (illustrated in Fig. 86, as compared with the ordin. ary type of Fig. 85.) Push-pull arrangement. gives greater output which is demanded by eleotrodynamic speakers. Paral lel tubes cannected in the last stage give greator output than a single tube, but two tubes in parallel are not equal to two in push-pull. In almost all cases, an cutput transformer or cutput choke coil-and-condenser is employed as shown, to couple the amplifier to the speaker; matohing their electrical character istics and eliminating the D.C. plate current from

Fig. 88 - Thordars on 150 push-pull amplifier. A single and two push-pull stages are employed. The power supply is at the top. Note the output transformer in the lower left.
the speaker windings. In sets not employing power tubes, the speaker may be connected directly in the plate circuit without the use of an output couplin€ device, but in all push-pull amplifiers the coupling device is necessary, because of the circuit arrangement, unless the speaker winding has a center tap (which few have) or two speakers are used. Further reference to speaker coupling devices will be found in Chapter ∇. Some modern sets employ only one stage of audio amplification; the output from the power detector feeding directly into the push-pull audio power stage. See Chapter VIII. Tone quality with a minimum of hum is thereby obtained, at the expense of sensitivity, which must be compensated for in the radio-frequency amplifier.
(4) Transformer Tests. Lack of plate voltage at the tube socket indicates an open trans former primary winding, or a plate circuit open somewhere in the connections. Lack of grid-bias voltage indicates an open transfarmer secondaryminding, or a grid circuit open somewhere in the connections. A continuity test on the transformer windings will reveal their condition. If the meter of the continuity tester reads full, the winding is short circuited; if the reading is zero, the winding is open or burnt out. The latter is a common occurrence in transformer primaries, which carry the plate current. If only a partial reading is obtained, the winding is intact. These windings have a rather high resistance which is indicated by the partial reading of the contimuity meter. When a damaged transformer is located in a set, it should be replaced with one of the same type. Tests should also be made between the primary and secondary windings and between the windings and the core; in these tests the readings should be zero. A full reading indicates a short, and the transformer should be replacod. After the transformer has been disconnected from the set, the wiring in the set should be testsd as the short may be in the external wiring to the transfomer. Noise in transformers is comm, and is due to a poor or loose conneotion within the instrument. To test, connect a $4 \frac{1}{2}$-volt "C" battery, in series with a headset, to the winding under test and listen for noise. No sound except the initial click will be heard if the
transformer is in good condition.
(5) Special Circuits. Some transformers employ a core of special alloy which is more susceptible to magnetic influonces than iron. When continually subjected to the magnetizing effect of the plate current of the tube, the core loses its qualities and the resultant tone quality of the set is impaired; bass notes are lacking. When other faults cannot be found in the amplifier, it is well to replace the transformers. Special circuits have been developed to prevent this trouble. In the circuit of fig. 31 (shown on page 26), methods known as "series plate feed" and "parallel plate feed"are employed. The former is shown in the connections of the first-stage transformer. A series resistor, Rl, by-passed by the l-mf. condenser, limits the plate current to a safe value. The parallel plate feed method is represented in the second or push-pull stage connections; here the D.C. Plate current passes through a choke coil, the audiofrequency component of the current passing through the l-mf. coupling condenser to the primary of the input transformer. Note the 50,000 -ohm resistors R 2 in the grid return circuit of the input push-pull transformer. These are to suppress any cross-current "parasitic" oscillations that might develop in the push-pull tube circuit and introduce distortion and noise.
(6) Resistance-Coupled Amplifiers. Ordinary resistance coupling does not give as much amplification per stage as can be obtained from transformer-coupled amplifiers, consequently when it was first irtroduced, three stages were used. With present receivers, having more efficient radioofrequency amplifiers, more than two stages are seldom employed, with a consequent reduction in sources of troubles. Usually a combination of transformer and resistance coupling is encountered, as in the Atwater Kent "Model 55" and "55c" receivers; here the first stage is resistance coupled and the second stage push-pull transformer coupled. Fig. 48, page 41, shows the first (resistance) stage in this set. The detector and first audio tubes are indicated, together with the " C " bias resistors and detector-plate filter system. The coupling unit comprises a plate resistor, a blocking condenser and a grid-leak resistor. The audio-frequency current passing through the plate resistor causes voltage variations across it, which are applied to the grid of the following tube by means of the condenser. The purpose of the blocking condenser is to prevent the positive potential of the plate circuit from direct contact with the following grid, which would place a positive bias on it and kill the tube aotion. Resistor and condenser values vary, in accordance with the requirements of the tubes used.
(7) Troubles in Resistance-Coupled Amplifiers. Many things can happen to a resistance coupled amplffier to throw it out or kilter; the most common faults are wrong plate voltages and wrong resistance values. Some resistors change with age. Power supply leads to the plate circuits should be thoroughly by-passed, to prevent motorboating, as indicyted by the "detector filter condenser" of Fig. 48. A leaky blocking condenser is disastrous, resulting in excessive plate current in the following tube. On the other hand, an open or disconnected blocking condenser will prevent the transfer of voltage variations (signals) from one tube to the next, but will not effect voltage and current readings at the tube sockets. Since the condensers are seldom over 0.1 -mf. in capacity, a continuity test or crude capacity measurement will not reveal the open. A quick check is to connect another condenser in parallel with the questionable one and note the results. Aside from checking the resisturs and all condensers in the circuit, as well as the supply voltages, there is little to do in the resistancecoupled amplifier. It is well to remember that special "High-Mu" tubes (such as the type '40) have been developed especially for resistance- and impedance-coupled amplifiers and should not be used in transformer-coupled stages. Therefore, check all tubes.
(8) Impodance-Coupled Amplifiers. The oircuit arrangements of these are identioal to those of resistance-coupled amplifiers, choke coils being used instead of resistors. This makes possible the use of lower plate voltages, as we do not have the excessive voltage drop inevitable with resistors. Combinations of chokes and resistors are also

Fig. 89 - The Electrad-Loftin White direct-coupled amplifier.
Fig. 90 - (right) Shows the wiring on the bottom of the instrument.
possible, such as a plate resistor and grid-leak choke, or vice-versa. In either case, a coupling or blocking condenser is required. Tapped chokes or impedances are sometimes used, giving the device an auto-transformer action. Testing impedance-ccupled amplifiers will not be considered separately, as it involves only testing the coils and condensers in a manner similar to that described in connection with transformers.
(9) Direct-Coupled Amplifiers. The elimination of the coupling or blocking condenser in a resistance-coupled ampifier gives us what is called a direct-coupled amplifier, but certain precautions must be taken before this can be effected. Some means must be employed to maintain the grid-hias voltages at the proper values. This has been well accomplished in a practical manner in the Loftin-White amplifier, the circuit of which is given in Fig. 91.

This circuit was designed specifically for use as a phone amplifier, the phonograph pick-up being connected directly to the input terminals. However, with the addition of a suitable coupling device many interesting combinations of this system with various R.F. tuners can be obtained. A simple receiver can be constructed by coupling the input terminals to an antenna and ground through a conventional tuning coil and condenser. In the diagram of Fig. 91, P is \& 200 ohm potentiometer; Rl a tapped divider resistence; R5, 25000 ohm metallic resistor; R3, 50,000 ohm metallic resistor; R6, 100,000 ohm metallic resistor; $\mathrm{RC}, 500,000$ ohm resistor; the tubes used are e type 180 rectifier, a 145 amplifier, and a 124 screen grid tube for the first stage. The resistances and connections are such that the correct bias voltages are obtained only when using the correct tubes.

Fig. 91 - Diagram of direct-coupled amplifier.
prevalent in many poor audio amplifiers, especially transformer-coupled ones. Sometimes placing the fingers across the secondary terminals of the first- or seoond-stage transformer will eliminate this, showing that a high resistor of from 10,000 to 50,000 ohms will do the same thing. This reduces volume, however, and should not be resorted to unless absolutely necessary. A condenser of about . $0005-\mathrm{mf}$. capacity will also be a relief; but this method is likely to absorb high notes and produce distortion and a muffled tone. By-passing the plate-supply power leads or "B" batteries will also help. A condenser across the first primary, or an equivalent filter system in the detector plate circuit, is essential. For resistance-coupled amplifiers, a supply of resistors should be on hand, so that these can be interchanged.
(11) Audio Amplifier Comparisons. Transformer-coupled amplifiers have limited frequency characteristics; thet is, they do not respond equally to all musical frequencies, especially at the extreme high and low ends of the scale, where they are less efficient than in the middle. Also, the magnetic qualities of the core distort the wave shape, introducing foreign frequencies into the tone. But modern transformers are good enough for all ordinary requirements, and are very reliable and practical. Resistance-coupled amplifiers have possibilities of giving extremely wide undistorted frequency-characteristics, resulting in better quality; but, generally speaking, they are less reliable and practical than transformer-coupled amplifiers. Impedance coupling may be placed somewhere between the two in merit. Therefore, in sets employing two or more resistance stages, it is sometimes advisable to substitute a transformer of modern make for one of the resistance stages. This will give more constant, reliable, dependable, prectical, operation; with ultimate satisfaction on the part of the set owner. In making the change, it is usually necessary to change to the proper tube, and plate voltage, for transformer operation.

Fig. 92. - A typical resistance-capacity coupled amplifier is shown above. In amplifiers of this type absolute constant operating conditions are necessary. Changes in voltages or resistance values impair the quality and destroy the amplification factor. At the right are shown resistors of small size and high capacity suitable for cirouits of this type. The illustrations are full size. The upper one has a rating of two watts and the lower one $\frac{1}{2}$ watt. They are furnished in various resistance values. Illustrations courtesy International Resistance Co. As regards constancy in voltage control, Amperites, (automatic voltage controls) are indicated in the filament circuits of the various tubes. The illustration at the lower left shows a full size
 amperite. As the current which passes through it increases, the resistance wire in it becomes heated and its resistance increases -- thus tending to reduce the current or hold it at a constant value. Devices of this kind are also furnished to maintain a constant input voltage for electric sets.

CHAPTER X

EXTRANEOUS NOISES AND THEIR ORIGIN

COMMONLY known as "interference," we may classify everything that comes under the above heading as sounds coming from the speaker that interfere with the program we desire to hear. This covers a broad field. However, we can group these pests into those originating outside the receiver, and those originating within the receiver. When the customer says, "My set is noisy; come and fix it," only the experienced Service Man knows the full significance of that simple sentence. His first procedure is to turn on the set and listen to the noise; if his ears have been trained by long experience, he knows exactly where to find the origin of the noise. Knowing the source, however, does not solve the problem. The difficulty lies in eliminating the noise; and this difficulty has prevented the sale of many electric sets.
(2) External sounds. Suppose we let this cover all sounds originating from electrical disturbances external to the set. We can tell whether the set or lighting line is noisy by disconnecting the aerial; if everything is quiet, we know that the interference comes through the aerial. If the aerial is examined and tested and found to be in gpod shape, we know that the interference is received in the form of radio waves originating at some external place. We can classify this form of interference into:
(a) Interference caused by broadcast stations,
(b) Interference from some oscillating receiving set,
(c) "Man made" static,
(d) Natural static.

Of the four types, "d" is probably the most annoying from the Service Man's viewpoint.
(3) Interference from Broadcast Stations. This form of interference in one case manifests itself in actual reception of the program of the interfering station, in which case the trouble is in the receiving set. It tunes too broadly and should be corrected, as desoribed in Chapters VI and VII. In the other case, this interference manifests itself in a continuous squeal, due to the heterodyne effect of the interfering waves. Sometimes the squeal, is "scrambled" by the audio program, giving rise to a very peculiar mess of squealing sounds; ir this case the trouble is caused by the transmitting station, which is not using its allocated wave. This is more noticeable among the low wave length stations. Since the Service Man's field of action is limited to the receiving set, he can't correct troubles in the brodcast stations and the set owner will have to be content with what he gets until other corrective measures are taken.
(4) Interference from Oscillating Receiving sets. A ree日nerative set in the state of oscillation will radiate waves, just like a broadcast station, though not so powerful. These waves heterodyne with those of the broadcast station being tuned in, setting up whistling and squealing sounds which run up beyond and down below the audible musical scale, creating disturbance in all other sets within a half-mile radius. One has a desire to

Fig. 96 - The Fleohtheim condensers are ideal for filtering line noises.

clip the offender's aerial, if it can be located. Fortunately, this form of inter ference is not as common as it used to be, as few modern sets oscillate.
(5) "Man-Made" Static. This Torm of interference can usually be distinguished from natural static, in that it has a more orderly arrangment of disordered, cacophonous, annoying, noises. To tabulate the various forms of man-made static seems unnecessary. Just keep in mind that every electrical device, from the simple electric light up to electric railways and down to door bells - in fact, the whole gamut of electrical appliances gives birth to disturbances that affect the sensitive receiving set. These disturbances travel over three routes, and we can explain all of them by describing the origin of the simple click heard in a radio set when a light is turnod of f.
(a) We have the low-frequency surge, or impulse, due to interrupting the current when the light is turned off. This upsets the equilibrium of the line voltage, giving rise to an impulse that finds its way into all sets connected to the line.
(b) There is the radio-frequency wave, generaced by virtue of the electrostatic oapacity and inductance of the line in the immediate vicinity of the circuit interruption where sparking occurs. This exists, though the sparking is ever so slight. This wave travels over the line in the form of "wired wireless"; finding its way into the input or radiofrequency amplifier side of all sets connected to the line.
(c) The radio-frequency wave, generated as described above, radiates from the light-circuit wires, as waves radiate from a broadcast aerial. These waves find their way into all sets in the vicinity, whether connected or disconnected from the line.

It is evident that any electrical device that interrupts the current causes interference, In addition, we have devices, such as arc lights and mercuryarc battery chargers, that give what we may call "continuous interruption" and produce very annoying noises. The nature of the noise may indicate the source. Low sputtering sounds like

Fig. 93 - A common source of "static."

Fig. 94 - To completely filter line noises both audio and radio-frequency filters should be used.

Fig. 95 - Various forms of filter arrangements. Both audio- and radio-frequency coils should be tried.
a rush order of brcon and eggs, indicate 60-cycle sparking,
 which may be due to a loose street lamp, or leakage in wet power lines, or loose transformer cutouts. See Fig. 93. Continuous clicking or buzzing may be due to ringing door, bells or electric vibrators, or a radio station sending out code signals. Continuous semimusical noises, that rise and fall in pitch, are caused by commutator-type motors that speed up and slow down, as in a trolley car. Short-wave sets sem to enjoy picking up the spark-plut noises from motor cars. "Super-Hets" have this habit also, as those who have operated them in motor boats know.
(6) Eliminating Men-Made Static. Various methods have been devised to eliminate manmade static; aII use some form or filter system. For example, we can connect radiofrequency chokes in the line circuit supplying our set. As the name implies, these will choke out the radio-frequency currents existing in the line in the form of "wiredwireless." Then we can connect condensers across the line or between each side of the line and ground, to absorb radio-frequency currents. In addition, we must connect large iron-core chokes and large condensers in a similar fashion to the line to filter out all audio- or low-frequency impulses or surges. A camplete filter of this type is illustrated in Fig. 94. Fig. 95 shows various types of filters. If the origin of the noise is definitely located, a filter should be connected there also, as indicated by the various illustrations of Fig. 97. This will block all three routes over which interference travsls. Just. a single l-mf. condenser will helpalot.

A good grade of condensar should be used - one that will stand the terminal voltages of the machines being filtered. Fig. 96 shows two types, mainly employed in "B" supply systems, but suitable for filter systems also. Note that the larger one shown has a $2-\mathrm{mf} .5000 \mathrm{~V}$. D.C. rating. The smaller one, measuring $11 / 8^{\prime \prime}$ square by $2^{\prime \prime}$ high, has a capacity of $1-m f$. and will stand a working voltage of 1000 D.C. The unusually small size of this instrument explains why it is favored by many Service Men.

Various filter devices now on the market are available to the Service Man and will facilitate his work in this line. The "Filtervolt" line noise eliminators, two forms of which are shown in Fig. 98, can quickly be applied to any set.
(7) Locating Disturbances. A noisy street light, or other outside interference, may be locuted by the use of a simple portable regenerative set and a loop aerial. A good way is to ride around in a car with the set until the disturbance is found. The loop is directional, and will point to the direction of the disturbance. This is clearly illustrated in Fig. 99. The neighbors may think that you are looking for a lost radio program, but you will find that the search will be well worth the trouble.
(8) Natural Static. Natural static cannot as yet be eliminated or effectively reduced in any way, but the Service Man should recognize it, not to waste time trying to find trouble elsewhere when static exists. The most common souroe of static is the lightning discharge, and since there are some two hundred lightning discharges per minute taking place within the receiving area of a sensitive radio set, and more in the tropical regions, we hear a continuous grinding roar when we adjust our set to extreme sensitivity while tuning in a distant station. This is called "the noise level! If we could eliminate it, our receiving range would encircle the globe. Static, or "atmospherics," as it is also called, is more prevalent in the summer months, especially during local thunderstorms.
(9) Noises Originating within the Set. The most likely sourses of noise within the set are loose or poor connections in the circuit; such noise sounds for all the world like static. In addition, there are noises from microphonic tubes, weak batteries, oscillating cirouits and mechanioal vibration caused by the speaker or loose parts adjoining it or within its acoustical range. In the latter case there are instances when a picture on the opposite side of the room was set into vibration and chattered against the wall. Perhaps the best way to diagnose troubles from the resultant sound would be to list all the various sounds and give all the possible sources of trouble that could produce such sounds. The futility of doing this completely makes one hesitate to start. In the first place, we cannot spell all the various discordant sounds with the 26 letters available, and even if we could we couldn't pronounce them. In the second place, after investigating all the reasons given, the practical Service man may find that the real trouble is due to a drop of solder spilled into the set by some previous Service man - a condition that we could not possibly predict in advance. If one understands the function of each part in the set, as well as the electrical coordination of the whole ensemble, he can make a complete test of the set in the time it takes to read a printed diagnosis. Therefore, we will limit the following to the most outstanding symptoms.

Fig. 99 - above. Showing how a loop aerial is employed to locate the source of man made static. The greatest response is heard when the loop points in the direction of the interference, as shown in the upper illustration. The illustrations at the right show common sources of trouble, and how they were subdued by means of condenser type of filter circuits. Sign flashers, as shown above, always produce noises. Worn out or old comutator type motors, are also noisy.

Fig. 100 - above. This illustration shows an electrolytic condenser. Its small size and large capacity make it ideal for all kinds of filters.
(10) Dead set, no 3 ound at 9II. No tube noise when jarring set, or background statie hiss.
(11)

Low volume.
(12)

Poor selectivity.
(13) Poor tone quality.
(14) Sharp cracking sounds.
(15) Soueals and howls.
(16) Gradually increasing. ringing sounds.
(17) Intermittent squeaks, Inke sound of wag on Wheel or cold, squesky snow.

Probably due to a broken cirouit or poor tubes. Examine the aerial circuit, battery or power conmections and loud speaker.

If the volume gradually decreases when the set is turned on, examine the batteries and tubes. If the volume is unsteady, test the line-voltage. Examine the aerial for swaying and "leaks" in wet weather.

Note the set's location with respect to local stations. Try shorter aerial, wavetrap or rebalance set in the shop.

- Check supply voltages. Look for trouble in the speaker, or wrong "C" - bias voltages on the tubes. Examine grid leak on detector.
- Probebly static, or outside line interference. If followed by set going dead, look for loose connection. Examine all soldered joints.
- If not very loud, probably due to neighboring set. If very loud and varying in pitch while tuming, due to oscillations in set. Test by-pass condersers and adjust trimming and neutralizing condensers. Examine by-pass condensers on audio trsnsformers.
- Due to microphonic tube - probably in detector socket. Try new tube or howl arrester.
- In battery set, look for run-down storage battery or corroded connections.
(18) A.C. Hum.
(19) Fading.
(20) Rattling sounds.
- Cn A.C. sets, try reversing line plug. Try connecting one side of line to set chassis through a 2- to $4-m f$. condenser. Examine rectifier supplying dynamic field current. Examine filter system and A.C. Wiring or leads near set. Test "C" bias resistors and voltage divider. On D.C. sets, lock for open grid circuit.
- This may be due to a natural atmospheric condition or poor aerial installation, or nearness to some other receiving set. Check line voltage for variations.
- Probably mechanical vibrations. Tighten all parts near speaker and cabinet. Examine speaker and re-center voice coil if necessary.
(21) Fuses "blow" when turning on sot.
- Examine filter condensers on A.C. input and in power supply. Test rectifiers supplying dynamic field current.
(22) In describing sounds indicating radio interference, we cannot improve on those given in "Filterette," a booklet published by the Tobe Deutschmann Corporation.
(23) Whirring, crackling, buzzing, humming, droning, whining.
(24) Rattles, Buzzes. Machine-gun Fire.
(25) Violent heavy buzzing or rusining sound.
(26) Crackling, sputtering, snapping, short buzzes or scraping.
(27) Clicking.
(28) Heavy violent, buzzing, usually short.
(29) Steady humning.
- Indicate interference caused by electric motor; sometimes, when the motor starts and stops, the sound will start low and rise in pitch until the motor reaches full speed; when the whine will remain at a steady pitch, usually rather high. Especially true of commutator motors.
- Sounds of this sort generally indicate interference caused by telephone dialing, buzzers, or door bells. It is not generally steady, but stops and starts.
- Sounds of this sort generally indicate interference caused by high-frequency apparatus. Such noises will usually be heard over a large area, a whole town, even; and often are so loud that they drown out the radio program completely.
- Sounds of this sort generally indicate interference which is being caused by one or more loose connections in the set, or electrical wiring in the vicinity. Sometimes the sounds are especially noticeable when the room is jarred or shaken by footsteps, street cars or traffic.
- Sounds of this sort generally indicate interference which is being caused by some sort of make-and-break connection, such as a thermostat; especially if it comes at fairly steady intervals.
- Sounds of this sort generally indicate radio interference which is being caused by arcing of a spark across a gap. This may occur as a short noise or a steady one.
- Sounds of this sort generally indicate interference which is being caused by improperly filtered alternating current. Such humming is often a fault of your set or eliminator. Look for dynamic speakers improperly filtered; faulty construction of set or eliminator: filter condensers blown or shorted; ground on set poor; improper wiring;poor tubes; wiring parallel with power line.

GHAPTER XI

RADIO-PHONOGRAPH COMBINATIONS, SHORT-WAVE SETS, AUTOMOTIVE INSTALIATI ONS.

RADIO-Phonograph Combinations. Many radio sets have phonograph combinations, and the Service lan is often called to make repairs on them. These phonograph combinations employ some kind of elsctromagnetic pickup device, consisting of parts similar to those in a magnetic speaker unit, except that the armature has an attachment for a phonograph needle. This rides in the groove of the record, causing the armature to vibrate, thereby inducing corresponding electrioal vibrations in a coil surrounding the armature. The armature, of course, is mounted between the poles of a small permanent magnet. All that remains to do is to amplify these currents induced in the armature coil; various methods are employed. Part or all of the audio-frequency amplifier of the radio set is used to amplify these currents, the sound being reproduced by the regular loud speaker. The phonograph attachment is usually connected to the set by a plug connection; a switch on the set connects either radio or phonograph to the amplifier.
(2) Phono-Pickup Circuits. Connections of the phono-pickup cirouits are included in the regular diagrams in the back of this book on the sets employing phonograph combinations. But a few words describing some of the circuits may not be amiss here. Fig. 102 shows a typical method as employed in the Stromberg Carlson "No. 654" A.C. receiver. In this set the phonograph motor is operated by the A.C. line and drives the turntable at a rate of 78 revolutions per minute; the output of the magnetic piokup is connected to a potentiometer volume control which, in turn, connocts to the input transformer as shown. The secondary of the input transformer is led by means of a plug connection to the set, to the grid and filament of the detector tube, thus employing the detector as a stage of audio-frequency amplification. Arrangement for obtaining the proper "C" bias on the detector is included. In many other sets, the pickup connects to the primary winding of the first audio-frequency transtormer, as shown in the diagrams of the Brunswick-Balke-Collendor sets.
(3) Phonograph Motors. Special electric motors are employed for driving the turntable. In the Sonora sets a slow-speed series-wound comutator type is used; the motor armature revolves at the same speed as the turntable. A centrifugal-ball governor and brake disc maintain constant speed. It is operated by the llOV. 60.cycle line. Noises which the motor might produce in the radio set are filtered out as shown in the diagrand of Fig. 103. Other types of motors run at high speed and have gear-reducing devioes.

TYPE 2M MOTOR

(4) Automatic Stops. Arrangements are provided to automatically stop the phonograph motors at the end or the record, by an arm projecting underneath the motor board carried by the pickup arm. This arm opens the motor circuit, at the same time applying a brake, so that the motor stops within 8 to 10 revolutions.
(5) Troubles in Radio Phonograph Combinations. One of the simplest tests of a "dead" radio is to try the phonograph combination. \bar{P} this works, it shows that the audiofrequency amplifier and speaker are in good condition, and that the trouble is in the radio-frequency amplifier or aerial system. So far as electrical trouble is concerned, in the pickup device, this can easily be tested by a continuity test, as well as all the associated parts. Mechanically, the pickup should be examined and the armature adjusted and cleaned if necessary. Loose parts and dirt will cause rattles. If it is "dead," examine the plug connections to the set. Test the volume control for opens and noise, and clean if necessary. Use new steel needles only for each rendition, or Tungstone needles.
(6) Motor Troubles. The speed should be measured and adjusted by timing with a watch. The turntable should turn 39 times in 30 seconds. In case of a stalled motor, test all the electrical circuits for continuity, and also remove the turntable and try turning the shaft with the fingers to see if it binds; this test is applicable to slow speed motors that run at the same speed as the turntable. Low torque may be due to a shorted portion of some of the motor windings, or binding in the mechanical system. Examine the governor. Shorted windings also cause a loud A.C. hum and commatator sparking. Open windings also cause excessive comutator sparking. Clean the commutator with fine carborundum paper. Fluctuations in speed are probably due to the governor, or to an open or loose connection, which should be corrected. Oil all parts indicated, with a good grade of sewing-machine oil. In cases of real difficulty, it is best to take the complete phonograph equipment to the shop for a thorough overhauling, taking care to follow the explicit instructions given by the manufacturer of the apparatus.

Fig. 101 - At the left is shown the magnetic and electric circuits of the Audak "tuned" phonograph pick-up. The right illustration shows the pick-up being tested for magnetic balance by tapping the needle with the finger. It can be balanced centrally by means of the thumb screw adjustment. An unbalanced condition means distorted reproduction.

SHORT -WAVE RECEIVERS.

The same general methods of testing broadcast receivers apply to short-wave receivers. There are outstanding differences in design, however, which we will briefly point out. In the first place, the short-wave receiver employs plug-in coils, so that the entire range may be covered; secondly, regeneration is used, the station usually being tuned in by the heterodyn whistle, after which the set is left on the verge of oscillating, for phone reception. Regeneration is controlled by a rotating tickler ooil, a variabls condenser, or a variable high resistor. A typical short-wave circuit of wide popularity is that of the Pilot "Super Wasp," illustrated in Fig. 1C4. This is an A.C. receiver, which required special design, as will be pointed out later. The battery-type short-wave set is more common and of simpler design. The Service Man cannot account for or explain all the vagaries of short-wave reception, but he can test the set and see that it is in working order, and trust to the elements whether Holland, fustralia, or the next-door neighbor is tuned in.
(2) Troubles in Short-Wave Sets. In addition to many of the troubles encountered in broadcest sets, the short-
 wave set has troubles all its own. Perheps the most oormon complaint is due to fading of the signals; this, however, is due to external agencies beyond the control of the Service Man. The reflection and refraction of waves by the Heaviside layer some 60 to 200 miles above the earth (depending upon the time of day) influences short whyes of different frequencies differently. The waves "skip" around the earth and are apt to be heard at any place on the globe. Foreign stations roan in at certain times and locals fade away. All we can suggest is the use of three or four aerials of different lengths and locations, and switching arrangements whereby any one, or any combination, can quickly be connected for operation.
(3) A.C.Hum. In the short-wave A.C. set shown in Fig. 104, hum was successfully eliminated by special methods. Two classes of hum were encountered; one existed with the tuning dials at any position; the other seemed to be "tuned in," like a radio station. The former was found to be due to the tube construction; the A.C. magnetic field about the filament reacted on the electron flow and hence the plate current, causing it to vibrate in unison. A special Pilot type 127 tube was subsequently developed, in which the heater filament doubled back on itself, like a hairpin, thus neutralizing its own magnetic field and eliminating this source of hum. The second type of hum was very prominent in regions between 14 and 50 meters and was found to be caused by parasitic oscillations existing in the heater-cathode combination and center-tapped resistor across the filament of the detector. These were modulated by the 60 -cycle filament current, producing the hum. A .006-mf. condenser, connected across one side of this resistor, as shown, wiped them out and eliminated the hum. Other forms of troubles are similar to those in broadcast sets and need not be repeated again.

SERVICING AUTOMOTIVE RADIO

The popularity of this type of radio set makes a few words describing it necessary While the set proper is similar to that of hundreds of other broadcast sets, certain precautions had to be taken in the design of it, to make it adaptable to the car. For example, the size of aerial and "counterpoise" (ground) is limited. The aerial must be small enough to be contained within the car; the ground is a counterpoise consisting

The "Transitome" installation: 1, acrial; 2, reproducer; 3, car floor; 5, output filter; 7, aerial lead; 9, interference filter condensers; 12, "ground"; 13, distributor; 14 ignition coil; 15, generator. See illustrations below.

Fig. 105 - A typical auto installation. system; the set is installed under the instrument panel, the tubes being inverted. Flexible control shafts extend from the set to the control dials on the instrument board. The aerial consists of wire netting in the top of the car. The regular 6-volt car storage battery supplies the filaments, and the " $\mathrm{B}^{\prime \prime}$ batteries installed under the front seat supply the plate current. In limousines the magnetic reproducer is mounted above the windshield, and in open cars, below the instrument panel. The layout of the "Bosch" equipment is illustrated in Fig. 106. But the Service Man is more interested in the eloctrical problems than the mechanical layout.
(3) Interference Problems. A 25,000-0hm resistor is placed in series with each spark-plug lead to suppress high-frequency oscillations. See Fig. 107. A similar resistor is placed in the hightension lead between the coil and the distributor. These have negligible effect on the action of the ignition system. In all types of ignition coils a certain amount of "kickback" voltege is impressed on the primary winding by the high-tension side. This finds

Fig. 107 - Resistors on spark plugs to reduce noise.
its way back to the storage battery and thence to the receiver, and is therefore filtered out by means of a 1 -mf. condenser connected between the battery terminal of the coil and ground. If the ignition coil is mounted on the instrument board, it is necessary to shield the high-tension, and the leads going to the breaker points, at the point where they pass through the engine partition. Remember, in some cars the positive terminal of the storage battery is grounded, and in others, the negative side is grounded.
(4) Type of Circuit.

In the Transitone Model TRIO6 set," a schematic diagram of which is shown in Fig. 108, three stages of tuned P.F. amplification are employed, using type '01A tubes, with grid-suppressor resistances to stabilize the circuit. Two tuning-control dials are used. A "soft" (type 1∞) detector tube is employed, and a two-stage audio-frequency amplifier; the last or output tube being a type 112A. Trouble shooting in the set, therefore, can be in accordance with the instructions outlined elsewhere in this book.
(5) Fig. 109 shows the schematic circuit of the "NRIOS" set developed by the Automobile Radio Corp. The receiver and detector is in one unit (NR107) and the audio amplifier in another unit (NRIO8). A single-control dial is used, and the volumecontrol knob is mounted on the center of the dial. The output tube is a type '71A. This set is used on all Chrysler cars which are radio equipped at the factory.

"Model NR. 107" tuning unit, left; "Model $N R .108^{\prime \prime}$ amplificr above. Either R^{7} or R8, or both, may be used. Observe resistance. capacity filters in grid and plate leads. Part values are not given.

Fig. 109 - This is a later type of circuit used in the auto installation. The circuit is neutralized and is thereby made more sensitive.

* STANDARD RADIO SYMBOLS *

In the various diagrams the parts of the sets which they represent are shown by means of symbols. While there is no standardized set of symbols in rigid use, they are

canewhat similar. Therefore, in this list are given only the ones more in general use. Since the diagrams in nearly all cases are reproduced exactly as they appear in the service manuals furnished by the manufacturers, the publishers cannot be held responsible for any damage resulting fran the use of the information contained in them.

FORMULAS FOR DETERMINING BRSISTANCE VALUES AND TYPES

Voltage in Volits	Current in Ma	Resistance in Ohms	Power in Watts	These formulas are fur nished by the INTER-
KNOWN	KNOWN	$\frac{1000 \times \text { Volts }}{\mathrm{MA}}$	$\frac{\text { Volts } \times \mathrm{MA}}{1000}$	NATI ONAL RESISTANCE CO To use, find the hori-
KNOWN	$\frac{1000 \times \text { Volts }}{\text { Ohms }}$	KNOWN	$\frac{\text { Volts } \times \text { Volts }}{\text { Ohms }}$	the two known values
KNOWN	$\frac{1000 \times \text { Watts }}{\text { Volts }}$	$\frac{\text { Volts } \times \text { Volts }}{\text { Watts }}$	KNOWN	for either of the tro remaining values will
$\frac{\text { MA } \times \text { Ohms }}{1000}$	KNOWN	KNOWN	$\frac{\text { MA } \times \text { MA } \times \text { Ohms }}{1,000,000}$	be found in the proper colum. These equasions
$\frac{1000 \times \text { Watts }}{\mathrm{MA}}$	KNOWN	$\frac{1,000,000 \times W_{\text {atts }}}{M A \times M A}$	KNOWN	include correction fact tors where necessary
$\sqrt{\text { Ohms } \times \text { Watts }}$	$1000 \sqrt{\frac{\text { Watts }}{\text { Ohms }}}$	KNOWN	KNOWN	may be substituted in milliamperes

A.C. DAYTON CO.

ALL AMERICAN MOHAWK CORP.

The diagrams on this page are taken fran the Wurlitzer Service manual in which the circuit diagrams are identically the same with the exception that the power pack is split into two parts instead of one complete unit as used in the Lyric Models.

60-61-62-65 AND 66

NOTE: ABOVE INICATED PART NUMBERS ARE THE
ELECTRICAL PART AND ASSEMBLY NUMBERS OF ITEMS USED IN CIRCUIT.
WHEN ORDERING PARTS OR ASSEMBLIES SPECIFY THIS NUMBER RS WELL RS NRMEOF ITEM.

ALL AMERICAN MOHAWK CORP.

NO. 90 CHASSIS 60 CYCLE

ALL AMERICAN MOHAWK CORP.

ALL-AMERICAN "MOHAWK" ONE-DIAL RECEIVERS BATTERY AND A.C. 226-227

Above. Battery model of the "Mohacek" One-Dial recciver. If the original switching system for cutting $V 6$ into the circuit is to be retained, special connections must be employed, as described in the text. At right: Modifications in later models; this standard arrangement of the output stage provides for the use of a power tube at V6.

> There are two principal variations in the battery-model Mohawk receiver. The first circuit, shown above does not make provisions for a power tube at V6; six type '01. tulies are required. A 5 -wire cable is used. An odd arrangement of the A.F. output circuit, to select two or three stages of A.F., by means of tipjacks and a plug, necessitates placing the additional battery required for power-tube operation on the plate side of the A.F. output, at the point marked X2 (otherwise, this supplementary potential would be added to the plate supply of V5). The corresponding " C " potential is added at X1.
> In later models, provisions were made for a power tube; and the usual connections are shown at the right of the main diagram. The color code of the (7 -wire) cable is then as follows: Green, "A-"; red, "A+"; white (connected to redt), "B-"; slate, " $\mathrm{B}+$ " $221 / 2$ or 45 volts; Chlue, $\bar{m}+$ " $-671 / 2$ or 90 volts; pink, " $B+$ " 90 , - 135 or 180 volts jullack, "C-" $41 / 2$ volts; brown, "C-" $41 / 2,9,221 / 2$ or 45 volts; yellow (connected to green), "C+".

> The available constants for this receiver are as follows: L1, L2, L3, shielded R.F. transformers; volume control R1 is a 500,000 -ohm variable resistor which turns off the set by operating switch SW when R1 is turned to extreme left; R2, 2 megs.; R3, $11 / 4$-amp. filament ballast; R4, 1 -ohm resistor; $\mathrm{C} 4, .00025-\mathrm{mf}$.; $\mathrm{C} 5, .002-\mathrm{mf}$. .; C6, $0.5-\mathrm{mf}$. In some sets, R 3 is a 10 -ohm rheostat.
> In later production a selectivity control was incorporated. This was in effect a single-pole, single-throw switch arranged to select either all, or half, the primary of L1.
> The circuit of this receiver will oscillate; but is controlled by R1. Trimming plates are provided on the condenser gang.

The tube layout shown is the same for A.C. and battery models.

Lavout of parts in reccizers of the AllAmerican "Mohand" line.

The A.C. model requires four ' 26 s for V 1 , V2, V4, V5; a'27 for V3; and a'71.1 for V6. The constants of the A.C. model are as follows: C4, . $00025-\mathrm{mf}$. ; C5, .002-mf.; C6, C7, C8, C15, 0.5 -mf.; C $9, .003$-mf.; C10, C11, $1.0-$ mf.; C12, 6 -mf ; C13, 3 -mf.; C14, 2 -mf.; R1, 650 ohms; R2, 850 ohms; R3, 2 to 3 megs.; R4, R7, R8, 20 ohms; R5, R9, 1,000 to 1,200 ohms; R6, 0.5 -ohm; R10, 2,000 ohms.
The heater of $\sqrt{ } 3$ is held at 45 volts positive. If this positive tap open-circuits, there will be a noticeable increase in hum.
Resistor R6 varies the heater current to V1 and V2. It has a value from 0.5 - to 0.75 -ohm. Lack of volume control may be due to a short in this unit; while a ground will result in hum. Transformers T1, T2, T3 have a ratio of $33 / 4$ to $1 ; \mathrm{T} 4,1$ to 1 .
Uncontrollable circuit oscillation will result if R1 or R2 becomes shorted, and may be the result if R1. and R2 are interchanged. If the
set cannot be made to oscillate on medium to high wavelengths, try changing the R.F. tubes; though this may be due to C15 being open. A particularly high noise level may be an indication of C 9 being open.
The "Mohawk" receivers carry further desig. nating names, such as "Navajo," "Iroquois," "Cortes," "Hiawatha," "Seminole." Some of these are table models, others consoles with or without speakers. One of the early models was designed to use Keliogg tubes, with their side connections for the heater leads.
The voltage divider of the current-supply unit used in the electric model calls for these resistor values: R11 ("B-" to "B+" 45) 6,500 ohms; R12 ("B+" 45 to " $\mathrm{B}+$ " 110) 6,000 ohms; R13 (" $B+$ " 110 to " $B+$ " 220) 1,600 ohms.
Attention is called to the fact that, althoughsome of the circuit sheets which have been issued do not show a ground, there is a return circuit to ground for the power unit, as shown in the diagram at the bottom of this page.
The color-code of the Jones cable used in this receiver to couple the receiver to the power pack is as follows: Pink (2), $11 / 2$-volt filament supply for R.F. tubes F 1 and V2 (the output of secondary S3); yellow (2), $11 / 2$-volt filament supply for A.F. tulees V/4 and V5 (the output of secondary S5); black (2), 5 -voit filament winding for power tube V6 (the output of secondary S6); purple and gray leads; the $21 / 2-$ volt supply leads (from secondary S4) for the filament of detector tube $V 4$; green, "B+" 45 volts; white, "B+" 110 to 150 volts; red, "B+" 220 to 250 volts; brown, the " B -" lead, is to be grounded.
Most receivers require a good ground connection; but this is particularly true of the "Mohawks," if hum is to be held at a minimum level.

Schematic circwit of the A.C. design of the All-American "Mohawk" radio sct. The color codes of its Jones cable and the voltage divider do not appcar in the regular manual, but are given in the text of this shect.

AMERICAN BOSCH MAGNETO CORP.

Models 57 and 87 Receivers

Radio Service Data Sheet

BOSCH "CRUISER," "ROYAL CRUISER,"AND "IMPERIAL CRUISER" MODEL 35 BATTERY SETS

An unusual method of obtaining neutralization is observed in these popular "Cruisers." Windings (A) in coils L2 and L3 are in the negative filament leads of $V 1$ and $V 2$, for this purpose, and function in conjunction with condensers C 7 and C 8 .

Resistor RI is a master control to maintain the filament potential at five volts. Tolume is further controlled through R2 (marked "Amplifier") which, at its position of highest resistance, operates switch SWI. Selectivity is governed by SW2 (marked "Clarifier") and C10. A nine-wire cable connects the current supply to the set.

As this model of the Bosch receiver is not provided with an output transformer, or choke coil and condenser, trouble may be experienced from de-polarized magnets in nagnetic-type reproducers, if the leads of the reproducer have been accidentally reversed.
The location of the main rheostat, R1, is in dicated in the top and bottom views of this receiver. The slot in the top of the control will be parallel with the front of the set for the five-volt setting.
Four '01A tubes and a '12A or '71.1 tube are recommended for this set

Top ricw of parts layout of Bosch "Cruis-
crs." The coupling devices for C2, C3 are clearly shown.

Nearest to the panel is the knob that controls C2 and C3, the settings of which are indicated on the upper or "Main Tuning Scale." The other knob controls the antenna for tuning condenser Cl , with its position indicated on the lower or "Antenna Tuning Scale." The reading on the lower scale depends, in part, on the length of the antenna.

This receiver is balanced like a regular neu trodyne receiver, a "dummy" or open-filament tube (or similar expedient) being used in place of the regular tube; first, in place of $V 2$, and then as a sulstitute for V1. Adjustments of C7 and C8 are made for minimum signal. Condenser C9 resonates the detector circuit for maximum signal.

Schematic circuit of "Type BAN (Edition 3) Nobattry" climinator.

If either of the above adjustments cannot be made, check the R:F. circuit for faults. Remove the shields from $\mathrm{C} 1, \mathrm{C} 2$ and C 3 , and note whether, at the zero setting of the dial, all the condenser rotors align perfectly straight at the tapered ends of the stators. Adjustment of the stators is accomplished through the bolts which join two end plates (if it is desired to change the spacing between interleaved rotor and stator plates); and the proper spacing here, for minimum setting, is easily obtained by adjustment of the screws on the condenser-shaft couplings.
If the condenser shafts lose their alignment the condensers may be loosened and reset to the correct positions. Condenser C2 may be shifted for proper alignment after removing the coil assembies.
With all condensers set at maximum capacity the dial should indicate 100 . If this reading is not olbtained, compensation may be secured by adjustment of two stop screws provided for this purpose.
A six ohm rheostat may be used as replacement for R1; R2 has a resistance of alout 30 ohms; R3 is the usual 2 -meg. leak; C1, C2, C3 are the tining condensers; C4 is .00025 mf .; C5, C6, 1.0 mf . each; C7, C8, C9, 100 mmf . maximum (approx.) ; Ci0 125 mmf, (approx.); C11 .006 mf .

The "Type BAN" (Edition 3) "Nobattry" eliminator is usually used with this model of the "Cruiser" line. (Other models of the "Cruiser" embodying somewhat the same general features but varying in details are the "Model $96 \mathrm{DC}, 110$ volts"; "Model 156," (for direct current); "Models 66, 76, 76L" (battery-operated); "Models 66AC. 96, 116, 136 " (for A.C. operation).
Constants for the alrove "Nobattry" unit are as follows: C12, C13 0.1-mf.; C14, 3 mf ; C 15. 2 mf .; C16, C17, 2 mf .; R4, 4,000 ohms (or a variable 5,000 -ohm unit); R5, 15,000 ohms; R6, 25,000 ohms. V6 is a gaseous rectifier; SW3 the power switch. The principal choke unit in the filter system is a "double" choke.
Although the circuit diagram does not indicate that there is a mechanical connection between $\mathrm{C} 2, \mathrm{C} 3$, and antenna condenser C 1 , there is a slip coupling which permits Cl to turn readily when the other two tuning condensers

Underside appearance of "Model 35" recoivers. Cnits R1, C7, C8, C9, showen here, adjust from abovc.
are adjusted or to be operated independently of these two. More complete control of, the dial reading designated "Antenna Tuning Scale" wi:l be secured by making C10 one of the compact adjustable units now available. Then, by varying C10 and SW2, it will be possible to obtain nearly identical readings on both scales for any average antenna conditions.
If it is found that circuit oscillation cannot be stopped, test windings \hat{A} for reversed connections; checking L3 first and L2 last.

Schematic circuit of the "Cruiscr," "Royal Cruiscr," and "Imperial Cruiscr," desigus of the Bosch "Model 35" battery sets. The arrangement of the newtralizing circuit is such that the respective grids are connected to the prounded "A-" lcad if the neutralizing condensers short, cethout affecting any of the batterics in the set.

AMERICAN BOSCH MAGNETO CORP. MODEL 48 RECEIVER (MODEL 49 FOR 25~)

${ }^{\text {RTM }}$ T3-Adio

.
R2-Volume Comentat sy...000)

AMERICAN BOSCH MAGNETO CORP.

L 1-Variometer
L 2-2nd R. F. coil
L. 3-3rd R. F. coil

L 4-Detector coil
L 5-Detector choke coil

1. 6-Detector filter choke
I. 7-Main filter choke
2. 8-Line filter choke
L. 9-Line filter choke
(1-Ground condenser 005
C 2-Antenna condenser . 001
C 3 -Trimming condenser
C. 4-Antenna condenser . 00025 mfd .

C 5-2nd R. F. tuning condenser
C $6-3 \mathrm{rd}$ R. F. Tuning condenser
C 7-Detector tuning condenser
C 8-2nd R. F. alignment condenser
C 9-3rd R. F. alignment condenser
$\mathrm{C} 10-$ Detector alignment condenser
C11-Ist R.F. cathode by-pass condenser .5 mfd
R. 6-3rd R. F. grid resistor 250 ohms R 7-2nd R. F. bias resistor 1500 ohms R 8-3rd R. F. bias resistor 1500 ohms R 9-Detector bias resistor 40,000 ohms R10-1st A. F. bias resistor 1500 ohms R11-1st A. F. grid resistor 1 megohm R12-Dial light resistor .75 ohms R13-Voltage divider resistor 25000 olms. R14-voltage divider resistor 15000 ohnms R15-2nd A. F. filament resistor 5 ohms R16-Filament resistor 20 ohms R17-Filament resistor 20 ohns R18-Filament resistor 20 ohms R19-2nd A. F. filament resistor 22 ohms

TP -Terminal plate
S 1-Main switch

T 1-Audio input transformer
T 2-Audio output transformer

C12-2nd R. F. cathode by-pass condenser .5 mfd . $\mathrm{C} 13-3 \mathrm{rd}$ R. F. cathode by-pass condenser .5 mfd . C14-Detector cathode by-pass condenser 1. mfd. C15-1st A. F. cathode by-pass condenser 1. mfd. C16-1st R. F. screen by-pass condenser .5 mfd . C17-2nd R. F. screen by-pass condenser .5 ṇfd. C18-3rd R. F. screen by-pass condenser . 5 mfd . C19-Plate by-pass condenser .5 mfd .
C20-Plate by-pass condenser .5 mfd .
C21-Detector plate by-pass condenser . 001 mfd . C22-Detector plate by-pass condenser .001 mfd . C23-1st A. F. coupling condenser .005 mfd . C24-Filter condenser 4. mfd.
C25-Filter condenser 4. mfd.

R 1-Volume control 5000 ohms
R 2-Volume control 5000 ohms
R 3-Screen resistor 500 ohms
R 4-Screen resistor 25000 ohms
R 5-2nd R. F. grid resistor 250 ohms

The schematic circuit of the Bosch Motor Car Radio recciver, made by the American Bosch Magneto Corp.; it includes four tuned-input, battery-operated, '24-type screen grid tubes, as R.F. and detector stages, and a single audio output tube, operating the built-on magnetic speaker.

AMRAD CORPORATION

The Schematic Wiring Diagram of The Amrad Neutrodyne Receiver. AC-5 Type and Power Unit

AMRAD CORPORATION

AMRAD CORPORATION

SHOWINGINTERNAL WIRNG OF DETECTOE 2 STAGE AMPLIFIER 2634 ANO
SPOAO GAST TUNER JTBO AS HEWED FROM FRONT OF INSTRUMENTS

3500-1
SHOWING INTERNAL WIRING OF DETECTOR 2 STAGE AMPLAIFR 2634 \& \mathcal{B} ROADCAST TUNER 3475 AS VIEWED FROM FRONT OF INSTRUMENT

Schematic Circuit of the Amrad Type 7191 Power Unit designed for the Model 7100 receiver The

RECEIVER № 3590 .

Radio Service Data Sheet

swon AMRAD MODEL 81 ("BEL CANTO"SERIES) RECEIVER

The tubes required for this recesier are as follows: V1, V2, V3, '24s; V4, V5, '27s; V6, V'7, '45s; V8, '80; V9, 2.5-volt bulb.
R1 is the volume control and varies the voltage applied to the screen-grids of V1, V2, V3.
Further constants for this receiver may be obtained from the following list. $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$, C4 constitute the four-gang tuning condenser; C5 has a capacity of $.00025-\mathrm{mf}$. C6, C7, C9, $\mathrm{C} 11, \mathrm{C} 12$, are contained in "by pass block condenser No. 8113" (which may have either lug or wire terminals, connected as shown in the accompanying illusitrations), and the values are: C6, C7, C12, 1.0 mf ., C9, C11, $0.5-\mathrm{mf}$. C8 has a capacity of 1.0 mf ; C10, 0022 mf .; C13, $0.25-\mathrm{mf}$. The four units of the electrolytic condenser have the following ratings (the four terminals are the positive leads and the copper case is the common, grounded, negative side of the circuit): M1, 18 mf ., M2, 8 mf ., M3, $18 \mathrm{mf} ., \mathrm{M} 4,8 \mathrm{mf}$.

The resistors have the following values: R1 50,000 ohms; R2, 21,000 ohms; R3, 1.5 megs.;

One type of filter-block terminals.

R4, 12,500 ohms; R5, 100,000 ohms; R6, 2,250 ohms; R7, 20 ohms; R8, 200,000 ohms; R9, 5,000 ohms; R10, 60 ohms; R11, 31 ohms; R12, 860 ohms; R13, 1,500 ohms. The resistor cartridges are colored as follows: R2, green; R4, triages are colollow 25 f6, orange; R9, brown; R13, purple.
The Model 81 chassis is fused at three amperes. The "antenna compensating control" is the 10 -plate variable condenser marked C1A;

while the remaining trimming condensers are adjustalle, through the shield can, with a screwdriver. Binding posts at the rear of the chassis permit selection of the correct tap on the antenna input inductance L .1 , for the required degree of selectivity and sensitivity. When the tube is renewed at V4, it will probably be necessary to readjust the setting of R8. If circuit oscillation should appear in the receiver, it may usually be traced to a defective ' 24 tube, which should le replaced.
The cord which operates the tuning dial is kept in tension by an adjustment which compensates for stretching: this is regulated hy putting a screwdriver through 3 hole cut in the edge of the dial drum.
Each of the R.F. transformer primaries (L1, as well as P in 1.2. L3 and L4) consists of a winding of about 200 turns on a bobbin at the grid end of the secondiary; it has a direct-current resistance of alnut 80 ohms. Ch1 has a resistance of alout 100 ohms.
The 1).C. resistance values of T1, between ground and the three higher-potential ends, are as follows: to phono tap, 20 ohms; to detector tap, 2,000 ohms; to grid lead, 12,000 ohms. The primary of T2 has a D.C. resistance of 1,610
ohms; the secondlary has an over-all resistance value of 10,600 ohms, divided into 4,800 and 5,800 ohms for the grid circuits of $V 6$ and V7. Transformer T3 has a primary D.C. resistance of 190 ohms on one side of the tap, and 220 ohms in the other; the secondary has a D.C. resistance of 0.8 -ohm (approx.) to match the voice coil of an RCA "Type 106" dynamic reproducer. The field coil of this instrument has a D.C. resistance of 7000 ohms. As most Service Men know, the voice coil is easily centered by first loosening the center machine screw that clamps the cone-spider to the iron core. (The voice-coil leads of the "106" are marked " B " and the field-coil leads are lettered "C.").
Correct operating conditions for the "Model 81" Amrad are as follows: V1, V2 and V3, plate voltage 180, control-grid bias 1.5 , plate current 4 ma.; V4, plate voltage 30 (with tube out of socket, 140 volts), grid bias 0.0 , plate current 1.5 ma ; V5, plate voltage 160 , plate

Another form of condenser connections.
current 4.1 ma., grid bias 10.5 ; V6, plate voltage 250 , plate current 28 ma ., grid voltage 50 , filament voltage 2.25 ; 17 , same; 188 , plate output 110 ma., filament voltage 4.65 . (All the other tubes have a filament voltage of 2.25 ; at the socket with the tube out, $2: 32$.) These values were obtained with the set adjusted for a 120 -volt line supply, and the volume control full "on." The "C" bias figure of 10.5 volts for V's will not be obtained unless the hum control R7 is turned to the ground side.

MODEL 10 SET No. 4700.

The Atwater Kens "Model 10B," a very early "breadboard" receiver. The circuit is and the controls numarous. It is designed for storage-battexy tubes, and has potemtiometer
R.F. control. It may be readily altered to use a fower tube. R.F. control. It may be readily altered to kse a fower tube.

Schematic Wiring Diagram of Model 20 Compact Set.

Schematic arrangement of the Atwater Kent Model 12 receiver; this set is populariy referred to as the "breadboard" type of construction.
The Model 12 set was one of the very first ones to incorporate "grid suppressors" to prevent circuit oscillation. The most usual complaint by owners of this receiver is that the tubes will not light. A check-up would indicare that one of the rheostats had burned out; because someone in the family had connected one side of the storage battery to ground. This put the full storage-battery current across the rheostat controlling the first two

MODEL 20 SET No. 4640.

MODEL 21 DRY CELL SET No. 7780.

Wiring Diagram of Model 36 With Condenser Type Volume Control and Cable Connection Panel for Early Model "Y" Power Unir. (Note that the +B 1st $\mathrm{A}: F$. cable lead is green with a yellow tracer. In some Model 36 sets, and in all other Atwater Kent A.C. receivers, a black-red tracer is used for this connection.)

Wiring Diagram of Model 36 With Resistance Type Volume Control and Cable Connection Panel for Later Model "Y" Power Unir. (Note that the red and the black cable keads feed the R.F. filaments as well as the 1st A.F. filament. In some Model 36 sets. the $+B$ ist $A . F$. cable lead is green with a yellow tracer.)

Radio Service Data Sheet

anas ATWATER KENT MODELS 30, 33, 35, 48 AND 49

These receivers are six-tube sets of the single dial, battery-operated type. They are often referred to by their factory catalog numbers, to wit: Model 30, No. 8000; Model 35, No. 8100; Model 48, No. 9840; Model 33, No. 8930 Model 49, No. 9860.
The models 33 and 49 have a tuned input (four tuned circuits); the models 30,35 and 48 have an untuned input (three tuned circuits). Models 48 and Models 49 are code number showing that a gold-finished panel is used Models 33 and 49 are so wired that R5 limits the current to 15 and 16 only while V_{4} is controlled by the additional variable resistor Rx. $\quad R$ in the first stage of these two circuits has the same value as equivalent resistors R1 and R2. C is the regular tuning condenser, in shunt to which is the circuit-balancing variable condenser Ca .
The purpose of the untuned antenna input of the 30,35 and 48 , shown in the larger diagram, is to eliminate the detuning effects of gram, is to eliminate the
aerials of different constants.
If it becomes necessary to change a variable condenser bank, make certain that the pulleys turn easily on the shafts; if they do not be cause of a damaged condenser shaft, replace the entire condenser group.
Each belt must be arranged with the eyelets, which clamp the two ends together, at the bottom of the belt loop. Each belt has two small holes; one to fit over a pin on the dial-condenser pulley and the other to fit over the pin on the pulley which is controlled by that beit.
Loowen screws in the outer condensers and move them toward the dial-condenser, so that the belts will fit easily over the pulleys. In moving condensers, hold them by the heavy frame of the stator plates, as this avoids strain on the different parts of the condenser assembly.
To arrange the belts on the 30,35 and 48 , first put on the belt which fits over the inner of the two pins on the dial-condenser pulley, and over the pulley of the third (right) condenser. Then, put on the belt that fits over the outer of the two pins on the dial-condenser pulley, and over the pulley of the first (left) condenser.
A bit different procedure must be followed in arranging the belts on the 33 and 49 . Put on the belt that fits over the inncr of the two pins on the dial-condenser pulley, and over the third pulley, as the first step. Then, put on the belt that fits over the inner of the two pins on dial-condenser pulley (this will bring it on on dial-condenser pulley (this will bring it on
top of the first belt) and continue on over the top of the first belt) and continue on over the
pulley of the fourth right condenser. The last step is to put on the belt that fits over the outer one of the two pins on the dial condenser pulley and over the pulley of the first or left condenser.

After the belts are in position the next step is to adjust the belt tension. See that the three
screws holding the dial-condenser to chassis are tight, and that the three screws in each of the other variable condensers are slightly loosened. Note that the holes through which these latter screws pass are slotted, allowing the condenser to be moved horizontally a fraction of an inch toward or away from the dial condenser. Two pins projecting from the front of the condenser fit into two horizontal slots and serve to keep the condenser properly aligned. It is important to see that the pins of the condenser are not jammed outside but are in the slots. The frame of the metal-frame variahle condensers will be found to partly cover a hole (on the side of the condenser nearest to the dial-condenser) that is provided in the front of the chassis and at the edge of each condenser for the purpose of tightening the belts. By inserting the blade of a screwdriver in this hole and twisting the blade, the conclenser may be moved away from the dial-condenser; this motion tightens one belt. A little dexterity is required when the correct belt tension has been obtained; for the next step is to keep the condenser in the correct position while, with the right hand, a second screwdriver is used to tighten the three screws that pull the condenser to the chassis. Screws must be pulled up tight as soon as the tension is such that the variable condensers all move at the same instant, forward or hackward, when the dial is adjusted, without any slack in the belts.

Following are a fey details that relate specifically to the 30,35 and 48 . Adjust right-hand belt first; insert the blade of a screwdriver in the chassis hole at the left-hand edge of the third condenser and twist the blade, slowly. This will force the third condenser toward the right and increase the tension on the belt. When it seems to be at about the right tension, as judged by pressing the belt, tighten the three screws with a second screwdriver.
Special notes in connection with the 33 and 49 are as follows: the dial-condenser and third condenser belt should be adjusted first. Following this is the adjustment of the belt passing over the pulleys of the dial-condenser and fourth condenser. (Tension is tested by pressing down the belt between the third and fourth pulleys.) The left-hand beit is the last to adjust.

As it is necessary, in making certaln replacements, to know the general classification of the R.F. inductance group of each model as regards its serial number, these data are included here with. The identifying washer is found under the nut on the second R.F. transformer mount ing; the colors of the washers are as follows: Model 30, 635,001 to 644,351, black; above 644,351 , red. Model 35, below 900,000 , no washer; 900,001 to 955,700 , yellow or amber; above 955,701 , gray. Model 33 , Unit No. 9220 : antenna coil has five leads (one red), L1 has one
green lead. L2 has one yellow lead, and I3 has one blue lead
To reduce inter-stage coupling to a minimum, the three R.F. inductances L1, L2 and L3 in the 30,35 and 48 are so arranged that the axis of each is at right angles to that of the others, (The R.F. choke Ch is only about $1 / 2$ in. long and has a negligible field); however, the 33 and 49 incorporate four tuned circuits and, to reduce interstage coupling, the coil design was entirely changed to "binocular" or "astatic" (non-inductive) windings. If, after carefully balancing the variable condensers, it is found that the variable condensers cannot be kept in tuning alignment throughout the tuning range, it is probable that one or more of the R.F. inductances is out of balance; it is then advisable to replace the entire set with a new unit.
The A.F. output of any of these sets may be fed to a Weston "Model 424" thermocouple galvanometer, through an addlitional, or third, stage of A.F. amplification, to determine the alignment of variable condensers when the A.F. modulated output of an R.F. oscillator is picked up by the set. The oscillator should be coupled to the set to a degree which results in an approximate réading of 50 on the galvanometer, at about 50 on the tuning dial (as each stage is brought into resonance the meter reading will rise, and the oscillator coupling should be reduced to compensate for this.) First, resonate all the circuits for maximum deflection at about 40 on the dial; repeat performance at 80 ; then drop to 20 on the dial. After the condensers have been locked in position, the meter readings at 20 and 80 should not drop more than 30% below the reading at 40 ; a lower reading shows either a defective condenser gang or defective R.F. inductance bank. Inspection of both should then enable a decision to be made.
These sets are wired for a power tube in the last A.F. socket except for early types of the 30. To change the wiring of these, determine by continuity test the grid return lead of T? which connects to the blue lead in the cable. Break this grid return lead, and attach a length of wire sufficient to reach the " C " battery Then, connect the positive lead of the speaker (hlack and red, for Atwater Kent models) to the highest " $\mathrm{B}+$ " instead of the connction post on the set.
The A.F. transformers have the following color code for the leads: green to plate; yellow to "B" plus; black to grid; blue to "A-" or "C-". T1 has a ratio of $4: 1$; T2, $21 / 2: 1$.
Approximate values for the parts used in these radio sets are as follows: $\mathrm{C} 4,0.5$-mf.; C 5 , 0.00025 .mf.; C6, .006.mf.; R1, R2, R3, R, 800 ohms; R4, 20 ohms; R5, 4 ohms; R6, 30 ohms, center-tapped; Rx, 20 ohms.
In the earlier diagrams "A + " is connected to "B-"; in later models, " A -" to " B -." This is purely external, however.

Left panel: R.F. input circuit of "Models 33 and 49"; right panel, their A.F. filament aircuit. They are otherzuise as shown in the large diagram.

ATWATER KENT

Wiring Diagram of model 37. (A 2nd A.F. filament shunt resistance is used before Serial No. $1,385,000$, in which case speaker post No. 2 connects to the centre-tap of this resistance, and the green-yellow tracer lead is not used. The R.F. plate circuit resistance is used after Serial No. 1,385,000. Note that the red and the black cable leads feed the R.F. filaments as well as the 1st A.F. filament.)

Wiring Diagram of Model 38
A 2nd A. F. filament shunt resistance is used before Serial No. 1,752,000 and the green-yellow tracer cable lead is not used. Connections for this resistance are shown in dotted lines in the diagram on page 71. Note that the black and the red cable leads feed the R. F. filaments as well as the 1st A. F. filament. A schematic diagram of the volume control is shown in Fig. 60.

Diagram of Power Unit in Models 37 and 38
The diagram of the power unit in Models 40, 42, 44 and 52 is similar to that shown above with the following exceptions: A regulating resistance is connected in series with the primary circuit in Models 42, 44 and 52. A filter condenser is connected between Fi and ground. The junction point of the bias resistance is connected to the lower instead of the upper ground eyelet. The color scheme is different and is shown in Fig. 77.

ATWATER KENT

Wiring Diagram of Models 40,42 and 52
Model 52 does not have the shielded antenna lead, but is provided with two twenty-foot leads which are connected to the volume control, black for antenna and black-green tracer for ground.

Wiring Diagram of Model 44

ATWATER KENT

Diagram of Model 43 Set and Power Unit. The output transformer is sealed in the power unit.

Radio Service Data Sheets
ATWATER KENT MODEL 55 AND 55 C

The Model 55 receiver is a 6 -rube (and rectifier) A.C. outfit representing a distinct departure in de-
sign from previous models. The screen -grid R.F. tubes. furnish a high degree of amplification, and as the various units, including
the tubes of the R.F. circuits are shielded, the selecthe rubes of the R.F. circuits are shielded, the selec-
tivity and sensitivity are excellent. The resistance tivity and sensitivity are excellent. The resistance
coupled audio stage assures that signals are passed into the push-pull audio output stage with minimum distortion where they are further greatly amplified
with maximum fidelity. Among the other distinct adwith maximum fidelity. Among the other distinct ad-
vantages of this type receiver may be mentioned the following: (1) The various units of the power pack are mounted in separate metal containers, simplifying
replacement. (2) An illuminated dial graduated in replacement. (3) The volume control operates by regulating the voltage on the "screen. grid" in the R.F. tubes, this
voltage "being continuously variable from zero to the voltage "being continuously variable from zero to the
maximum of about 75 volts. This gives quieter and smoother operation than previous designs which had the control in the antenna circuit. (4) The Model F-4 electro-dynamic speaker which can be used with entire ' \mathbf{B} '" current supply, same as furnished to plates of all tubes. (5) Tube socket contracts, resistors,
and overt parts are of new, more rugged and eff. ficienr design. (6) The use of hearer type tubes in the R.F. stage, detector and first audio stage, and
the method of connecting the speaker field coil rethe method of connecting the speaker held coll re. practically no hum. As in the other Atwater Kent
single dial receivers, if one R F transformer is de. fective, the entire group must be replaced. Likewise if one variable condenser is defective, all three condeniers must be replaced. It is necessary to remove transformers. Care must be taken to avoid scratch. ing or otherwise injuring the coils when replacing the shields. Also note that a lead from the sec-ror-rerminal on each variable condenser should pass under a slot at the base of the shield and must not be caught between the shield and the metal baseplate. To aid the installer it is pointed out that the
Model 55 is very sensitive and does nor require a large antenna. Two antenna posts are provided on the set, marked "Long Antenna" and "Short An-
rena." The Long-Antenna post will give greater selectivity and should be used if the aerial is 30 feet or more in length. The Short-Antenna post should be used if a very short (inside) antenna is
employed. If extreme selectivity is desired use a short antenna connected to the Long-Antenna post. Indoor aerials for Model 55 should be erected as far as possible away from grounded metal, such as pipes, electric wiring, enc. Ground connection must
be used with Model 55 . This set will also not operate (as some A.C. sets do) with either antenna post connected to the ground. The two A.F. output tubes used rester, otherwise the ser may hum. Do not use any other model of Atwater Kent
speaker with Model 55, than the type P-4 or F-4C. speaker with Model D not remove speaker plug from socket when set is in operation. The ser should be operated with the "Local-Distance" switch in the local position when receiving nearby stations. Feature tube, which may result in overloading of the detector tub, volume at
will be evidenced by a decrease of output vol the resonant point on the tuning dial, as well as a
slight ragged type of distortion on strong stations.

The "Local-Distance" switch controls the number of turns in the plate circuit of V1. In later Model
SS receivers, the tubular resistors are made with
 VOLTAGE REQUIREMENTS

Filament
-F to +F contacts on $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ and V_{4} Filament contacts on V_{7}
Cathode to plate, $\mathrm{V}_{1} \underset{(\mathrm{~m})}{\text { Plate }}$
Ditto, V2 (m)
Ditto
V3
Ditto, V4
Filament to plate, Vs and V6
Cathode to control $\begin{aligned} & \text { Control } \\ & \text { grid, } \\ & V_{1}\end{aligned}(\mathrm{~m})$
Ditto, V_{2} (m)
Ditto, V3
Ditto, V4
Filament to grid, Vs and V6,
Cathode to screen grid, V1 Green V2 (m)
Additional Test Information
Use high resistance D.C. volumeter (about 0.50-250) to measure plate and grid voltages; and an A.C. voltmeter to measure filament potentials. Tests
made with set in operation, all tubes and speaker plugged in sockets. Tests made in order listed. Low plate or grid voltages may indicate a partially shorted bypass or filter condenser: V3 plate voltage
will be low, and V3 grid voltage high, if either of the double "phone" condensers are shorted, (m) denotes volume control set at maximum. NO READING indicates: (a) open filament Winding or
connection; (b) open high voltage winding, open speaker magnet coil, open filter choke, open primary of 2 nd R.F.T., or RS open; (c) open primary of
ard R.P.T.; (d) open V3 filter resistor (black) R6, coupling resistor (black) R1, R.F. choke CH, or V3 bias resistor (blue) R7; (e) open V4 filter resister (gray) R9, primary of TR1, or va bias re-
sister R8 (mounted under maroon and yellow, bias resistors R10 and R11; (f) open TR2 primary; (g) open secondary of pst R.F.T.; (h) open secondary (i) open V4 4 resistor (blue) R2; (k) open V5.V' bias resistor (yellow) R11, or open secondary of TR1 (if bias resistor $R 10$ is open V3 grid potential
will be approximately 85 volts) ; (1) open con nection to slider of volume control R3, open R3 or open bleeder resistor (purple) R4. Make all voltage tests first to get a general idea of the trouble, then disconnect the set and rest the suspected parts for opens, shorts and grounds. A condenser, not shown in schematic, by-passes the sereen-grids.
cast metal caps or contacts, which have a compare. tively low melting temperature. Accordingly it necessary in replacing these units to exercise considerable care when soldering in order not to melt in place only long enough to insure a good electrical connection between the cap and the lug to which it is to be fastened. A few experiences in soldering is to be fastened. A few experiences in soldering
these new tubular resistors will quickly show the
correct method required for good results every time. Whenever a tubular resistor of this type is replaced, the soldered connections should be tested for mechanical strength by endeavoring to push the resistor away from the contact lugs. For continuity testing, all of the socket contacts may be ex. posed by inverting the set and removing the plate.
Separate parts may be tested for continuity with a volumeter and battery in the usual way. If there is any doubt as to whether a part is shorted, grounded, or open, it is advisable to remove al y
connecting leads to that part and rest it separately. When synchronizing the condensers, connect the ing post, and place the local-distance switch in the ing distance position. Adjust the volume control to give about half scale reading on the output meter, Owing to the design of the R.F. amplifying circuit in Model 55, it is necessary to use a top shielding plate when synchronizing the variable condensers, and in order to make the rotor of No. I condenser a hole in the top-shield over the rotor of No. condenser. This hole should be about $11 / 2$ inches in diameter, with its center $21 / 4$ inches from the left edge of the Shield and ab or No. 1 condenser may then be adjusted with one finger through this hole. No. 2 condenser rotor may be adjusted by rurning the che right-hand side of the chassis, as will be seen. Connections to the various units may be found by use of the color code: First R.F.T., black to chassis (held under one of coil mounting bolts), antenna post, red to long-antenna post; second R.F.T., black to chassis (held under one of coilmounting bolts), blue (with lug) to stator of varyable condenser, green to place (without lug) to dis trance switch ; third R.F.T., black to chassis (held under one of coil mounting bolts), blue (with lug) to stator of variable condenser, green to . Plate of transformer assembly-rectifier fill. winding, thin leads with black sleeving; primary winding, thick brown sieving: fill. winding leads so V1, V2, V3 and V4 are thick leads with black sleeting. Push-pull input and output A.F.T. assembly, (input pei.-black with red tracer and other lead is green, secondary center is red, the output primary, center cap is black with White tracer and the two plate fields are both brown, the secondary leads which connect to the voice coil af e the receiver, the parts Ilayous-is as follows: Rear left corner, "long antenna" post; to the right, "short antenna"; next, "ground." The four prong re-
ceptacle in front of the antenna posts is for the dynamic reproducer; in front of that is the rectibier receptacle. The fully shielded unit in front left corner is the first R.F.I. The socket for V1 V_{2}; third R.F.T.; V3; V4 (front right corner) : right corner). Going left along rear we find: the Are corner). Going left along rear we find: filter Are.t.assembly: filter condenser assembly; filter choke assembly: and, next so ante

BALKITE PRODUCTS COMPANY

Figure 1

C-1	Tuning Condenser		
C-2	Neutralizing Condenser		
C-3	R. F. Grid Bias Condenselr	. 25	MF
C-4	R. F. Plate By-Pass Condenser	. 25	MF
C-5	Antenna Condenser	. 00025	MF
C-6	Primary By-Pass Condenser	. 00025	MF
C-7	Grid Bias Condenser	1.0	MF
C.8	1st Audio Coupling Condenser	0.1	MF
C-9	Detector Plate Condenser	. 002	MF
C-10	By-Pass Condenser	. 25	MF
C-11	Filter Condenser	2	MF

C-12	Filter Condenser	2. MF	R-5	R. F. Grid Bias Resistance 2,000 Ohms
C. 13	Filter Condenser	2 MF	R-6	Volume Control $\quad 15,000$ Ohms
C-14	Filter Condenser	$1 . \mathrm{MF}$	R-7	Hum Control 20 Ohms
J	Phonograph Jack		R.8	Loss Current Resistance $\quad 3,600$ Ohms
L-1.	Filter Choke		R-9	245 Grid Bias Resistance $\quad 770$ Ohms
L2	Filter Choke		R-10	R. F. Plate Rsistance
L-3	Speaker Field		R-11	1st Audio Grid Resistance . 5 Megohn
R-1	Detector Grid Bias Resistance	25,000 Ohms	T-1	Antenna Transformer R. F. Interstage Transformer
R-2	1st Audio Grid Bias Re. sistance	1,750 Ohms	T-3	Input Push-Pull Transformer Power Transformer
R-3	1st Audio Coupling Resistance	. 1 Megohn	B-1	HI-LO S.P.D.T. Toggle Switc S.P.S.T. Toggle Switch
R-4	Mid-Tap Resistance	20 Ohms	D	Dial Lamp

Figure 1
C_{1} Tuning Condènser.
C, Neutralizing Condenser.
C 3 R.F. Grid Bias Condenser . 25 MF
C4 R.F. Plate By-Pass Condenser 25 MF .
C_{5} Antenna Condenser .00025 MF .
C. Det. Padding Condenser.
C_{7} Det. Screen Grid Bias Condenser . 25 MF
C_{3} Det. Control Grid Condenser 0001 MF .
C, Det. Plate Condenser 0005 MF .
C_{30} 1st Audio Coupling Condenser 0.1 MF.
C_{11} 1st Audio Grid Condenser 0.5 MF.
C_{12} Filter Condensers 8.0 MF Each
I. Filter Choke

L: Speaker Field 2500 Ohms.
J Phonograph Jack.
D Dial Lamp.
\mathbf{R}_{1} Volume Control 15,000 Ohms.
R $_{2}$ R.F. Grid Bias Resistance 620 Ohms.
R_{2} Det. Control Grid Resistance .5 Megohm.
$R_{\text {, }}$ Det. Screen Grid Resistance .5 Megohm. R_{3} list Audio Coupling Resistance 1 Megohm.
R. Ist Audio Grid Resistance . 5 Megohm.
R_{7} 1st Audio Grid Bias Resistance 1750 Ohms.
R_{s} Hum Control 20 Ohms.
R, Loss Current Resistance 4500 Ohms.
$\mathrm{R}_{10} 245$ Grid Bias Resistance 650 Ohms .
T_{t} Antenna Transformer.
T_{2} R.F. Inter stage Transformer.
T_{3} Input Audio Transformer
T. Гower Transformer.
B_{1} Fi-I o S.P.D.T. Toggle Switch.
B_{2} S.P.S.T. Toggle Switch.

BREMER-TULLY MFG.CO.

The B. T. Counterphase circuit using six tubes; three stages of R. F.
amplification, detector and two stages of A. F. amplification. amplifcation, detector and two stages of A. F. amplification.

B.T 6-40 Power Converter

BREMER-TULLY' MFG. CO.
B.T 6-40 Circuit Diagram

Radio Service Data Sheet

enianas

BREMER-TULLY MODEL 7.70 AND 7.71

This receiver includes three stages of tuned radio-frequency amplification, neutralized in the "Counterphase" manner. To test this part of the circuit, a continuity tester is used to check the counections which include, (in the circuit V1, tor example), L2N, C5, and a few turns at the grid end of L1S. The "micro-mikes" or aeutralizing condensers C5, C6 and C7 are located at the Fright of the respective tube sockets. The procedure of balancing a receiver using the Counterphase neutralizing method will be described. Usually it is convenient to use a vacuum tule with one of the fflament prongs shortened so that the filament circuit is open when the grid, plate and ore side of cure filament are making contact. Now, tune in a loud signal, adjusting all tuning controls very carefully for exact resanance. Replace V3 with the ispecial tube. (Always start with the R.F. stage next to the detector). Retune all controls until naximum volume is obtained. The "micro-mikes" are now adjusted. The best tool for this purpose is a piece of bakelite rod whicl has been shaped to a screw-driver edge. The correct position for The "snicro-mike" of any stage is beteecen the point Where the signal disappears and that where it is again hcard. Now replace the dummy tube by V3, retune set carcfully, and proceed to the next stage; working toward the aerial. "Micro-mikes" C5, C6 and C7 are located underneath the chassis, clirectly beneath the holes in the aluminum plates For shieids. Condensers C1A and C8 are circuit Ebalancers; C8 is another "micro-mike" adjusted (for maximum wolume) with the insulated screwdriver. C1A is opcrated from the pancl as. a "river.

0			O
v_{5}			
v_{4}	$v 3$	$v 2$	$v 6$
O	O	O	O

Tube layout of the B-T "7-70" and "7.71."

This receiver is designed to operate at a line potential of 115 volts, and the résulting tube voltirges at this line value are given in a table below. If the line potential is below 100 volts, the power prack will not function properly and hum will result; the plate reading of $\mathrm{V} 1, \mathrm{~V} 2$ and V 3 will about 135 volts.
The electrical values of the units in this receiver c listed below:
Resistors R2 and R3, 40 ohms; R4, 8 ohms; R5, 7,10 ohms; R6, 4,000 ohms; R7, 1,700 obms; R8,
34,100 ohms; R9, 1,125 ohms; R10, 3 meg.; R11,

1,540 ohms. Condenser C9, 0.25 -mf.; C10, $0.25 \cdot \mathrm{mf}$; C11, 0.5 -mf.; C12, .006-mf.; C13, 0.5 -mf.; C14, . 00025 -mf.; C15, .003 -mf.; C16, 01 -mf.; C17, $.00025-\mathrm{mf}$. ; C18, 1 mf ., (400 V) ; C19, 2 mf , (400 V.) ; C20, 2 mf., (400 V.); C21, $1 \mathrm{mf.}$, (160 V.) ; C22 1 mf., (400 V.) ; C23, $1 \mathrm{mf}$. , (400 V.); C24, $1 \mathrm{mf}$. , (400 V); ${ }^{\text {C } 25, ~ . ~} 00025 \cdot \mathrm{mf}$. .

A special design is followed in the construction of A1/T1; the prinary is tapped, the smaller portion having the corrcct. impedance for the phonograph pick-up.
Terminals for the reproducer are indicatcd in he schematic circuit as LS.
AFT1, AFT2, AFT3 and C16 are housed in

C9, C10 and C11 in one case and C13 in another (C9 and C10 have blue leads and C11 has brown leads, and C13 has a yellow lead), are mounted on AFT shield can, above lugs 9,10 and 11 .
The "resistance network" of the "Power Con:erter," as the current supply unit is called, has its return circuit to "B-" completed through the internal resistance of the tubes, instead of through an external resistor.
If a magnetic reproducer or separately-excitedfield dynamic is used, "jumper" connects posts Λ and B in power pack; when a high-resistance-field dynamic reproducer is used its field coil may be eriergized by connection to posts A and B , "jumper" then shorting CH 2 by being connected to posts A and C .

The Color Code
1-Green, V1, V2 and V3 filament supply, 1.5 volts; 2-Green, same as above;
3-Red, Filament supply for V4, V5 and V9;

- Red, same as above;

5-Y'cllow, filament of V 6 and $\mathrm{V7}$;
6-Yellow, same as above;
7-White, "B+" power;
8-Green, "B+" fower;

10-Blue, "B+" for V4 (detector);
11-Yellow, " B -" and chassis ground.

	Typical Voltage Readings					
Tube	Tube		Voltages		Plate	urrent (Ma.)
No.	Type	" Λ "	"B"'	'"'"	Norma	(Grid Test)
V1	'26	1.4	150	9	5	${ }_{12}{ }^{\text {a }}$
V2	'26	1.4	150		5	12
V3	'26	1.4	150	9	5	12
V4	'27	2.1	60	0	2	12
V5	${ }^{2} 27$	2.1	15θ	8	5	8
V6	'71A	4.9	150	30	18.	41
V7	'71A	4.9	150	30	18	41

single shield can, the connections being brought to soldering lugs. They are represented in these soldering lugs. They are represented in these
columns by the numerals one to fourteen in small circles.
The panel switch marked "Tone Control" functions by shunting the secondary of AFT1 with C15 and the primary of AFT2 with C16. Normally, there is a shunt capacity of $.00025-\mathrm{mf}$. connected to the secondary of AFT1; it is C14. One side of the secondary of AFT2 is shunted by C17, the

purpose of which is to eliminate oscillation of the push-pull circuit due to variations in tubes when purchased or during the life of the power tubes. R10 and R11 are tubular resistors connected a

BRUNSWICK BALKE COLLENDER CO.

The Brunswick Models 14, 21 and 31 employ identically the same R.F. chassis and essentially the same socket power unit. In the Model 31 S.P.U. the pickup jack has been replaced with a radio-record switch, cable and input transformer. The input transformer is necessary in order that the low impedance pickup as used on this model may be matched with the relatively high input impedance existing in the primary of the first audio frequency transformer. Commercially available pickups such as can be purchased for use with Models 14 and 21 are of the high impedance type and therefore do not require the use of this extra input transformer.

Radio Service Data Sheet

BRUNSWICK MODEL 31 COMBINATION RADIO AND PANATROPE

In this receiver a radio-record switch, Sw2, cable and input transformer, $T 4$, are used, in order that the low-impedance of the pick-up may be matched with the relatively high input impedance existing in the primary of $T 1$.

Referring to the parts layout sketch, uthits TC1, TC2, TC3 and TC4 are trimmer condensers in shunt to the tuning condensers but not shown in the schematic circuit.

This receiver is" in three sections: The R.F. chassis, the "SPU" (socket-power-unit) chassis and the dynamic reproducer. Field current for the latter is supplied by the SPU. Note that operation of the receiver should not be attempted unless either the field coil of a dynamic or a 600 ohm resistor is connected across the terminals for the two "field" leads; this resistor must be capable of carrying 100 ma .
To facilitate service, the R.F. chassis and SPU chassis are bolted to a single mounting board which, in turn, may be removed from the cabinet by removing retaining bolts at the rear of the mounting board.
For hum control, two filament shunt resistors, R9, R10; with variable center taps, are provided on the SPU chassis. R9 is adjusted first and then R10. If R10 appears unresponsive, try other '27s at V'4 and V5. Abnormal hum may be due to one or more of the following causes: (1) One or more R.F. stages oscillating; (2) low-emission tube, particularly a ' 45 or the ' 80 ; (3) open filter or by-pass condenser; (4) open grid lead in R.F. or audio amplifier; (5) center arms of R9 or R10 not grounded or poorly grounded.
Abnormal hum, which appears usually on a strong local or nearby station and cannot be balanced out with R9 or R10, may be due to condition (1), above, and must be remedied hefore further adjustment of R9 or R10. At the factory, these receivers are neutralized for standard tubes, and the neutralizing screws then sealed with collodion to maintain adjustment. Before attempting to re-neutralize the receiver, it is advisable to test the tubes or try others; as an abnormal one may be the cause of circuit oscillation.
Additional checks on the possibility of R.F. circuit oscillators are these indications: Distorted reception of any or all stations-usually on the lower wavelengths; a whistle or squeal preceding the station being tuned in and not due to a two-station carrier heterodyne; motor-boating on all portions of carrier heterodyne;

Standard practice in neutralizing this receiver is as follows: Adjust an audio-miodulated oscillator for 1400 kc . and couple it to the "long antenna" post of the receiver with a five-foot wire, one end of which should be wrapped two or three times about the oscillator coil. Tune in the oscillator signal on the radio to maximum volume, using both the tandem-condenser control and C 5 .

Then allow the receiver and oscillator to operate for about a minute (in order that the tubes may become thoroughly warmed up and "stable") and replace the first R.F. tube with a tube of average characteristics which is known not to cause oscillation in a receiver which has previously been

neutralized; this tube must have an open filament circuit. A fault into which some service men fall is to neutralize with one make of tube and then, after neutralizing insert a different make-the circuit may then oscillate more than before.

Adjust C6 (see parts layout) for minimum signal. The signal intensity will be so great that an entirely silent point cannot be found.
Replace the neutralizing tube with the standard tube, and repeat performance for tubes V2 and V3; in each instance allowing

about a minute for the oscillator and receiver tubes to become stabilized.
If any difficulty is experienced in the neutralizing process, check supply potentials and the by-pass condensers. An open con-
denser may allow sufficient R.F. feed-back to the previous stage to make it impossible to find a good signal minimum. Also, a dummy tube that does not have quite the necessary constants may make it difficult to balance the circuits.
The normal line-current drain of this receiver is approximately 115 watts. The average voltages in dicated at the terminals of the tubes are given in an accompanying table.

Tube	Type		Voltage-		Plate Ma "Normal"
No.	Tube	" ${ }^{\text {a }}$	"B"	"C"	
V1	'27	2.5	150	12	5.5
V2	'27	2.5	150	12	5.5
V3	'27	2.5	150	12	5.5
V4	'27	2.5	45	0	3.4
V5	'27	2.5	145	9	3.6
V6	'45	2.4	240	27	30.0
V7	'45	2.4	240	27	30.0
V8	'80	5.0	

The values of the parts in this receiver are as follows: R1, 25,000 ohms; R2, 800 ohms; R3, 35,000 ohms; R4, 2 megohms; R5, 35,000 ohms; R6, 100,000 ohms; R7, 3,500 ohms; R8, 100,000 ohms; R9, 25 ohms; R10, 25 ohms; R11, 4,005 ohms; R12, 70 ohms. The capacities used are as follows: C9, $00015 \cdot \mathrm{mf}$; C10, $0.2-\mathrm{mf}$.; C11, $0.2-\mathrm{mf}$. C12, 0.02 -mf.; C13, .002-mf.; C14, 1.5-mf.; C15, 1 -mf.; C16, $0.25-\mathrm{mf}$. ; C17, 0.5-mf.; C18, . $00025-\mathrm{mf} . ;$ C19, $1.75-\mathrm{mf}$; C20, 1.0 -mf. The positions of L 1 , L2, L3, L4, L5, L6, L7, L8 and L9 are obvious.

Trouble with the Panatrope portion of the receiver may usualiy be classed as: (1) Magnetic pickup MP out of adjustment; (2) $\mathrm{S}_{\mathrm{W} 2}$ out of adjustment; (3) motor speed irregular.

There are four points on the turntable unit which require lubrication: (1) Upper turntable bearing; (2) lower turntable bearing; (3) governor bearing, weight end; (4) governor bearing, worm-gear end. To operate noiselessly and at constant speed it is necessary that the motor be kept in good condition. To remove the motor for oiling, proceed as follows: (1) Remove the record turntable by pulling it upward; (2) remove the four motor-securing bolts; (3) detach the motor leads from the cable in the cabinet and lift motor from cabinet. After this, all parts should be cleaned. Then, using a lightgrade oil, proceed to lubricate the motor at the points mentioned above This lubrication at the should be followed every six months.
A noisy turntable motor may usually be traced to: (1) Governor shaft bearings loose; (2) lamina tion loose in one or more of the four coils; (3) coil loose on its core; (4) defective spring in gov ernor. If the speed is not constant, it may be due to (1) or (4), above. To tighten governor bearing, loosen set screw, push bearing gently toward center of motor and tighten screw. Do not force bearing in too far, or it may bind the governor shaft. (Be sure set screw of opposite bearing is tight.) Laminations may be pressed together by tightening the retaining bolts. If a coil is found loose on its core, force a small wedge of soft wood between coil and core, to prevent the coil from vibrating, and thus stop the noise. A bent or broken governor spring should be replaced.

BUSH AND LANE PIANO CO.

No. 10 De Luxe

301-Four-gang Tuning Condenser.
302-Filter Condenser Block.
303-Double By-pass Condenser, $1 / 2$ Mfd. and , Mra.
305-. 00025 Mfd . Grid Condenser (included with 4-socket panel also).
306-. 002 Mfd . Detector Plate By-pass Con- denser.

402-550 ohm Bias Resistol for the three R. F. stages.
103-1500 ohm Bias Resistor for the first audio stage.
$10 \pm$-Grid Leak, 2 megohms.
405 -Hum Control, 20 ohm potentiometer:
406 -Volume Control 10,000 ohm potentio-
meter.

409-Volume Control Insulating Washer, flat.
410-Volume Control Insulating Washer, extruded.

107-Voltage Divider Resistor, 5,250 ohm total $\mathrm{A}-3,000$ ohms.
$\mathrm{B}-1,500$ ohms.
$\underset{\mathrm{C}}{\mathrm{B}-1,500}$ ohms

No. 12 Screen Grid

4174-Ten Section By-Pass Condenser, C1, C2, C3, C4.
4173-10,000 Ohm Detector Bias Resistor.
4215- 5,000 Ohm R.F. Bias Resistor
4172-3,000 Ohm R.F. Bias Resistor \} R1, R2, or R3 4175-1,500 Ohm R.F. Bias Resistor

4405-20 Ohm Center-Tapped Hum Balance Resistor.
4158-Voltage Divider Resistor 5750 Ohms, Total.
406 - 10,000 Ohm Volume Control.
317-Electrolytic Filter Condenser Assembly.

CLEARTONE RADIO CORP.

$\nabla_{\text {ant }}$.

CLEARTONE RADIO CORP.

COLONIAL. RADIO CORP.

POWER UNIT WIRING
Model 31 AC
5002

$C O D E$	COLOR	TYPE
$A-7 E_{3}$	GREEN + YELLOW TRAD.	AC AB.
$B-1 X_{1}$	RED	
$C-7 E_{4}$	MAROON	
$D-6 E_{4}$	GREEN	
$E-6 E_{3}$	BLUE	
$F-7 E_{2}$	YELLOW	
$G-2 R$	BLUE + RED WRAC.	.
$H-7 E_{1}$	DAVIS BROWN	
$1 X_{1}-1 C$	RED	
$I X_{2}-2 C$	RED \& BLUE TRAD.	

Complete schematic circuit of the Colonial 31 D.C. recciver. The filament wiring is shownin in simplificd form below.

The Colonial " 31 D.C." which has had very wide distribution, incorporates a number of unusual design features. For instance, volume is controlled by varying condenser C4; with the middle plate centered the signal is balanced out. An absorption loop (L1C) improves the tuning characteristic.

The cable color code is as follows: 7, yellow; 1 , maroon; 5, black; 2 , blue; 6 , red; 12 , gold with black tracer; 9 , black with red tracer; 10 red with black tracer; 3, green; 4, 8 and 11 are not used.
V1, V2, V3, V4 and V5 are '26 tubes; V6, V7, are '71As; while V8 is a 110 V . "miniature base" 15 -watt lamp.
The following parts are contained in the power pack: F, 5 amp. fuses; C19, 2 -mf.; AFC2, AFC3, $11 / 2$ henry chokes; T2, A.F. pushpull input transformer; T3, A.F. push-pull output transformer; AFC4, 18 -ohm reproducer field; R11 100,000 ohms; R12 9.1 ohms; R13 20 -ohm power rheostat; R14 60 ohms; radio-frequency chokes RFC2 and RFC3; and the tubes V6 and V7.
Following are the constants for the receiver chassis: RFC1, R.F. choke; C5, C6, C7, C8, C_{10}, 002-mf.; C11, C13, 0.5-mf.; C9, C12, C18, 0.1-mf.; C14, C15, C16, 0.4-mf.; C17. 1 mf.; C19, $2 \mathrm{mf} . \mathrm{Rl}, \mathrm{R4}, \mathrm{R} 6,2.5$ ohms; R2, R7, R10, 100,000 ohms; R3, 200 ohms; R5, 100 ohrns; R8, 30.0 hm potentiometer; R9, 10,000 ohms. Jack J is the connection in the plate circuit of detector tube V4 for a phonograph pickup.
A variation of 25% from the following aver. age operating current values is permissible: Grid potential, V1, V2, V3, V4, 3 volts; V5, 2.25 volts; V6, V7, 14 volts. Filament potential, V1, V2, V3, 1.5 volts; V4, V5, 1.4; V6, V7, 4.7 volts. Plate potential, V1, 70 volts; V2, 98 volts; V3, V6, V7, 95 volts; V4, 55 volts; V5, 85 volts. Plate current, V1, 3.5 ma.; V2, V3, 7.5 ma.; V4, 0.3 -ma.; V5, 4 ma.; V6, V7, 14 ma.

The following are the values for the chassis parts of the Colonial " 32 D.C." screen-grid receiver. Condensers: C1, C2, C3, C4, . 00035 mf.; C5, .00025-mf.; C6, C7, C8, C9, 5 mmf.; C10, 0.2 -mf.; C11, C12, C14, C15, C16, C18, C19, C21, C22, C23, C32, C33, C35, 0.1-mf.; $\mathrm{C} 13, \mathrm{C} 17, \mathrm{C} 20,0.25-\mathrm{mf} . ; \mathrm{C} 24, \mathrm{C} 25, .00025-\mathrm{mf}$. ; $\mathrm{C} 13, \mathrm{C} 17, \mathrm{C} 20,0.25-\mathrm{mf} ; \mathbf{C} 24, \mathrm{C} 25$,
$\mathrm{C} 26, \mathrm{C} 34,1.0$
$\mathrm{mf} . ; \mathrm{C} 31, .05-\mathrm{mf}$.
Resistors: R2, 10,000 ohms (volume control); R3, 35,000 ohms (pink); R4, 65,000 ohms (orange); R7, R8, R9, R12, 750,000 ohms (red); R10, 10,000

ohms (blue); R11, 250,000 ohms (white); R15, 50,000 ohms (black); R20, 200 ohms (black, wire-wound); R21, 75,000 ohms.
The following units are mounted in the power pack: condensers C27, 1.0 mf ; C 28 , power pack: condensers $\mathrm{C} 27,1.0 \mathrm{mf}$. ; 0.5 mf ; $\mathrm{C} 29,0.1 \mathrm{mf}$; resistors R1, 5.7 ohms, (vitreous) ; R5, 20 ohms (vitreous); R6,

200 ohms (black, wire wound); R13, 34.9 ohms ("chimney" type); R14, 1.43 ohms (vitreous); R16, 100,000 ohms (green); R17, 50,000 ohms (black); R18, R22, 100,000 ohms (green); R19, 2,000 ohms (red, wire-wound).

The chokes RFC7 and RFC8 are 930 micro henry; AFC1, AFC2, AFC3, AFC4, 50 henry; AFC5, 11.7 ohms. V8 ity the pilot light. Fuses are 3. to $5-\mathrm{amp}$. rating.
The meter readings for the "Model $32 \mathrm{D}, \mathrm{C}$." are approximately as follows: plate current, V ,

Schematic circuit of the Colonial 32 D.C. Notc chassis is insulated from ground and acrial.

COLUMBIA PHONOGRAPH CO.

COLUMBIA PHONOGRAPH CO.

COLUMBIA PHONOGRAPH CO.

COLUMBIA PHONOGRAPH CO.

COLUMBIA PHONOGRAPH CO.

COLUMBIA PHONOGRAPH CO.

COLUMBIA RADIO CORP．

8－ロİの NヨヨコวS＊I8Wก70）

CONTINENTAL RADIO CORP.

CONTINENTAL RADIO CORP.

CONTINENTAL RADIO CORP.

Ten 29-D and C with 250-L Power Unit

Models 29-A, 29-B, 29-C and 29-D

Circuit Diagram Specifications

C-9	Cathode By-Pass Condenser.	71	0.5 M.F.D
C-10	Fixed Condenser	166	. 0001 M.F.D.
C-11	Fixed Condenser	168	00028 M.F.D.
C. 12	Cathode By-Pass Condenser.	71	0.5 M.F.D.
C-13	Fixed Condenser	166	-0001 M.F.D.
C-14	Fixed Condenser	168	. 00028 M.F.D.
C. 15	Plate By-Pass Condenser	64	1 M.F.D.-1 M.F.D.
C-16	Fixed Condenser	166	. 0001 M.F.D.
C-17	Fixed Condenser	167	. 00025 M.F.D.
C-18	Grid Condenser	167	. 00025 M.F.D.
C-19	Plate By-Pass Condenser	951	:002 M.F.D.
C-20	Plate By-Pass Condenser	951	. 002 M.F.D.
C-211			[2 M.F.D.
C. 221	Filter Condenser Block	177	$\{4$ M.F.D.
C. 23	Filter Condenser Block	177	$\{2$ M.F.D.
C-24			$13 \mathrm{MF.D}$.
C. 25	Cathode By-Pass Condenser.		0.5 M.F.D.
C. 26	By-Pass Condenser		1 M.F.D.
C.271			(2 M.F.D.
C-28	Filter Condenser Block	252	$\{4$ M.F.D.
C. 29 C. 30		252	$\left\{\begin{array}{l}2 \text { M.F.D. } \\ 3 \text { M. }\end{array}\right.$

R- 11	Tapped Resistor.	108
R- ${ }_{\text {R }} \mathbf{2}$		
R- 4	Tapped Resistor	108
R- 5	Tapped Resistor	109
R-6	Tapped Resistor	
R-7	Resistor	112
R-8	Resistor	115
R-. 9	Resistor	116
R-io	Resistor	110
R-11	Resistor	113
R-12	Resistor	117
R-13	Resistor	111
R-14	Hum Adjuster.	92
R-15	Grid Leak .	169
R-16	Phonograph Volume Control.	156
R-17	Resistor 178
R-18	Resistor	114

[^0]

Radio Service Data Sheet

rorer

This receiver employs one (first) stage of tuned "push-pull" R.F., a second stage of R.F amplification (in which circuit oscillation is prevented by a "losser" resistor R12 of 750 ohms and the reversed tickler winding T of $L 2$), a regenerative detector, and the usual two stages of transformer-coupled A.F. amplification.
The tubes used are as follows: V1, 12, V3, V4 and V5, X-'99s; V6, '12; V7, BH-type gaseous rectifier. (The specified tubes must be used.) The filaments of the amplifier and detector tubes are connected in parallel, and the filament current is obtained from the rectifier V7 and high-voltage winding $S 1$ of the power transformer PT. The manner of obtaining grid bias for these tubes is indicated in the detail circuit.

The constants of the components are as follows: R1, 700 ohms (variable); R2, 49 ohms; R3, 1,500 ohms; R4, 63 ohms; R5, 750 ohms; R6, 76 ohms; R7, 500 ohms; R8, 88 ohms; R9, 375 ohms; R10, 1000 ohms; R11, 500 ohms (cen-ter-tapped); R12, 750 ohms; R13, 8,750 ohms; R14, 90,000 ohms; R15, 2,400 ohms; R16, 500 obms (variable). C6-R17 constitute the usual grid-condenser-and leak combination; Cl_{1} and $\mathrm{C} 2, .00042$-mf. (variable); C3, . $00046-\mathrm{mf}$. (variable); C4, 06 - to 1.0 mf .; $\mathrm{C} 5, \mathrm{C} 8$ and C 9 , 1.0 mf ; $\mathrm{C} 7, .003$-mf.; C 10 and $\mathrm{C} 12,15 \mathrm{mf}$.; C11, 5 mf.; C13 and C14, 0.2 -mf. A.F. choke Ch1 is rated at 50 henrys; $\mathrm{Ch} 2,15 \mathrm{~h}$; Ch3, 100 h . T1 and T2 have a ratio of four-to-one. Condensers C10, C1I and C12 are contained in a single case and constitute the Mershon electrolytic condenser in one corner of the "ABC Supply Unit."
An insulating film on the plate of the Mershon condenser is built up at the factory; but this gradually breaks down if the receiver is not in use for some time. To build up a film on the plates the receiver is put into operation with all tubes in their respective sockets. At the start of the re-conditioning process, resistor R16 should be turned to extreme left, and resistor R1 set mid-way. Operate the set for ten minutes to balf an hour, noting the current reading on the milliammeter MA; the value for correct operation of the set is between 55 and 60 milliamps. As the current increases, R16 should be adjusted to maintain this reading. A greater length of time than fifteen minutes is seldom required before the set begins to play well. If $\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$ is defective, the Mershon unit should be replaced.
As the filament supply of V6 is alternating, there is no polarity for the (white) supply leads.
Meter MA is polarized and each of its connection posts must be connected to the lead wire, from the set, directly below it.
The tertiary (third) winding T of $L 2$ is a fixed negative feed-back coil used to prevent oscillation in the circuit of V3, while the wind-

Approximate position of certain R.F. and A.F., whits in the Crosley "AC-7" and "AC $7 C^{\prime \prime}$ receivers. $L 3 T$ is a tickler coil ar ranged for variable coupling to the primary and secondary inductances of L3. In this set, the flament supply for the battery-type tubes is obtained from the high-voltage out
put of the power pack.
ing T of $L 3$ is a variable positive feed-back or regeneration coil; the latter is' called the "Cres cendon" control. CI and C2 are shunted by the balancing condensers C 1 A and C 2 A , which are controlled from the panel and termed the "Acuminators"; C3A, in shunt to C 3 , is adjusted from the bottom of the chassis

R2, R4, R6, R8 and R10 are biasing resistors. If the A.C. line voltage is low, the fuse should be changed over from the pair of clips at the right (in which position it is shipped) to the left pair (as seen from the control-knob

First, bowever, determine whether the leads to the electrolytic condenser are making sood contact.
Special care must be taken to insure that the proper tubes are in the sockets designated for bem.
Ch1 and Ch 2 are mounted above the electro lytic condenser in the power unit. With the electrolytic condenser at the left and V7 at the right, Ch 1 is at the rear and Ch 2 is mounted in front of it. The buffer condensers are mounted below V7.

Since the arrangement of the circuit of thi receiver is unusual, it is necessary to give care and attention to details when servicing. A wrong value for a replacement unit will chang the voltages across the various resistors. The line-voltage should be determined if Ma seems to read too high.
A '71 tube should not be substituted at V6 or the rectifier will be overloaded. However this or a larger tube may be used if it is in cluded in a separate power unit; an adapter, or a change in circuit wiring, is then required in order to transfer the output of V5 to the external power tube.

The power unit, contained in a metal case, is designed to supply "A" current only for type '99 tubes-except at V6, which is marked "UX 112"-and only in the manner shown in the diagram. For this reason it must not be con nected to a set in which the tubes are wired differently; or where the filament requirements are different.

If the " A " current drops to 20 to 35 milliamps, despite all adjustments, and consider-

Grid-bias voltages for one type of Crosley receiver are derived from resistors the " A " circxit, as this illustration show's. The milliammeter Ma is provided to indicate when, throxgh adjustment of $R 1$, the correct current is being supplied to the filaments of the twbes.
end of the power unit.)
Condenser $\mathbf{C} 4$ completes the R.F. circuit, while at the same time it insulates the D.C. circuits of V1 and V2, If $\mathrm{C} 1, \mathrm{C} 1 \mathrm{~A}$, or C4 short-circuit, the filament of V1 will not light.
Hum in the "AC.7". receiver may be due to an open in one side of hum-balancer R11, or to an open in one or both buffer condensers (C13:C14).
able hum is noticed, try another tube in place of V7.

Ch3 together with C8, is designed to eliminate interference due to line pick-up of oatside disturbances.
The shunts across the filaments of V1, V3, V4 and V5 help to by-pass the "B" current, which must go through the filament circuit in completing the " B " current supply circuit.

Schematic circxit of the Crosley "Models AC-7" and "AC-7C", radio receivers. A novel arrangement may be woited in the push-pwll R.F. input; L1 (although in two sections mechanically) is equivalcnt to a center-tapped indxctance. In fact, if it were desired to obtain grid bia's from a separate battery, it would not be nccessary to wse other than a centcr-tapped coil. The circuit of y 3 is mantralimed, tohile detector $V 4$ is arranged to be regenerative.

CROSLEY RADIO CORP.

Above, the schematic of the Crosley "Model 3B" and $3 C$," which, like the "Type V," uses a variocoupler in the two-circuit regenerative detector stage.

The famous Crosley "Trirdyn" (Model 3R3) which incorporates a reflexed stage of R.F. and first A.F. Unlike earlier models, this receiver used a condenser with meshing rotor plates.

The Crosley " $5-38$ " tuned radio-frequency receiver, battery model, at one time a very popular
receiver, obtained exceptronal through $R F T 2$, instcad of RFT3, as with most regenerative circuits, Dotted lines indicate thy grid
returns of early-production
returns of early-production models of the set wherein a "C", battery was not used.
 The single-tube
Crosley "Typp V"; the red tickler lead runs to the plate of the

The Crosley two-tube "Model 51," in which there is a "C" lead for the single stage of A.F. amplification. Replacing Cl with a .00Q5mf . condenser will increase the tuning range.

This two-stage Crosley A.F. amplifier wes designed This two-stage Crosley A.F. amplifier wes designed
for use with the single-tube "Type V " tuncr diagrammed at the left. double post of the tuner affords a connection with

Crosley" "Model $\begin{array}{r}\text { In,the } \\ \text { Kl }\end{array}$ (and "XI") a of impedance-coupled $\stackrel{R}{R} . F$. amplification precedes the non-regencrative detector. Note that the antenna coupler $L 1$ is without the adjust. able coupler of previous models.

CROSLEY RADIO CORP.

CIRCUIT, MODEL 401

CROSLEY RADIO CORP.

Radio Service Data Sheets

cso

CROSLEY MODEL 601

6×9

The circuit used in this receives incorporates the Hazeltine neutralization system. Tubes V1 to V5 are '01As; V6 may be either a ' 12 A or '71A, the later being preferable. To rake chassis from "can," remove the three knobs; remove the escutcheon by taking out the drive screws; remove two cap screws in front and two in -rear, using socket wrench or pliers; raise rear of case until is clears coil shields; then slide the case forward until it clears the shafts of the tuning controls; and lift off. A total an-renna-and-lead-in length of so to 100 feer is recommended, excepr where a shorter'length reduces iaterference. For best results, grouad must be connected to only one point, the ground binding pose. Connection to the " A ", battery may result in burning our a resistor; if set is being rested in the service shop, care must be taken that only one ground connection is made to the set. Study of the schematic circuit will show why this is necessary. The vol ume control regulaces the filament current of the first three tubes; the "acuminators," or crimming condensers, resonate the secondary circuits of V_{2} and V3; the variable capacity in shunt with the tuning capacity in the grid circuit of V4 is an "align. ing' coadenser which is adjusted as the factory and has no panel control. To balance receiver, leave bottom attached, balancing with case on or off. Tune to a strong signal near 210 mecers (using head phones at output) and insulate filament of V3. Inseit long-shank No. 4 socket wrench (insulated handle) through balance-condenser bole in chassis (chird from left, as seen from front). Tune set for loudest response and balance for minimum signal with wrench remoyed. Repeat operation with V2, using second balance condenser from lefr; following to V1 and balance condenser at extreme leff. The "aligning" condenser is directly in frone of V4. To adjust, tune to strong local with "acuminators" at about middle setting; remove V 3 and tune receiver until maximum signal is heard, adjusting right acuminator as required. Insert socker wrench on aligning condenser and adjust for maximum signal, with wrench removed. Replace tube and adjusr right acuminator for maximum signal, slightly changing setting of station selector if necessary. Acuminator should then be at or slightly above middle position. To replace R.F. transformer, remove case and bottom from receiver. With set upside down, remove the two nuts holding copper can to chassis over coil to be replaced, and lift off can. Unsolder R.F.T. leads and remove two nuts holding R.F.T. to chassis. Solder leads to lugs and replace can. If necessary to replace a runing condenser, remove case as described, also underside chassis nuts holding condenser shield to bottom of chassis, and remove two screws on front panel holding shield in place. Press shield gently back until it clears the top edge of the front panel, raise vertically, and remove. Unsolder leads and loosen screw which controls belt tension. Remove belt from condenser pulley and remove pulley. Take our three screws attaching condenser to front panel, and remove condenser. Attach new one to front panel by three screws provided and replace pulley and belt, tightening latter. Solder leads and replace shield. Nore
that it is necessary to remove indicator dial, pulley and both belcs if center condenser must be replaced. To remove this indicator dial, or to replace belts, take our three screws attaching indicator dial to cencer pulley and remove dial. Loosen screws which

Color Code
Black "A-", "B-", "C+"
Blue " $B+45$ ", ",
Red "B+Power"
Brown "C-41/2"
Green "C-Power";
Yellow " $\mathbf{A}+$."

control tension of belts and take off belts. Put new belts in position with drive pins on pulleys through holes in belts. Tighten tensioning screws. To replace detector by-pass condenser, or grid-leak-and-

Continuity Test
(Two test prods and a 10 w . lamp in series with the 110 v. circuit.)

Comact
Gnd-A
Gnd-V1G
Gnd-V2G
Gad-V3G
Gad-V3G
Gnd-V4G Gnd-bk.
Gnd-whi-
Whi-V1P
Whi-V2P
Whi-V3P
Whi-VsP
Blae-V4F
Correct
light
ight
no light
light
no ligh
light

Blk-V4F

Ofberwise
Open wire or L1B
Open L1A or wiring
Open wire or L4
Open wire or L 7
Open ire RI or
Shorred C3
Open wire or L2
Open wire or Ls
Open wire or L8
Open wire or T 2 pri.
Open wire or T1 pri.
Open wire or R3
(With Headphone and Battery.)

Connect:

Gnd-V2G ; rotate station selector ; if click C7 shorted
adjust left acuminator; if click C8 shorred.
Gnd-V3G; duplicate above. Clicks show shorted C9 or C10.
Gnd-V4G; Clicks show shorted C11 or C12. Green-V6G; no click shows open wire or T2 sec. Brown-VSG; no click shows open wire or T 1 sec :

condenser mounting, unsolder leads, remove sup. porting screws, place new unit in position and resolder leads. A 3 -megohm grid leak is recom. mended.

This set is not critical to antenna lengths, and will give good results with a short indoor antenna. A total length of from 50 to 100 feet for the antenaa and lead-in combined is recommended for average conditions. If locals cause interference, an aerial of 25 to 50 feet, including lead-in, may give better results. The recommended lengths may be exceeded, of course, in many instances with excellenr results. Local conditions must govern the choice of antenna length. A good ground should be used.
There are four binding poscs on the ser, two for the reproducer, one for the zerial. one for the ground. Battery connections are made to the cable attached to the set, in accordance with the color code in the preceding column.
The use of '01As throughout is recommended by the manufacturer, with a '71 'power tube; though a 12 may be used to economize batteries. A separate $\mathrm{C}^{\prime \prime}$ batrery is recommended for the first audio (brown lead) stage.
Lack of sensitivity, critical operation, motorboating, distorted reception, may often be checked to an open R4 leak. (Mast of these effects may be experienced if the leak has too high a resistance; replace it with a leak of two to three megs. resistance.) The tube layout of this receiver is as follows: Looking at front of ser, first R.F. rube socket is in left corner, front; second R.F., left, reat; third R. F. is next, followed by the detector, first A.F. socker is right rear and second A.F. or power stage is front right socket. Note that a wavelength of abour 210 merers is recommended for neutralizing the receiver: bur that one of abour 300 meters is recommended for balancing the aligning condenser. If condensers C1, C2 and C4 should short-circuit, there is no danger of shorting "B" batteries or burning out tube filaments (as would be the case with sets using neutralizing circuits which obtain the neutralizing potential by tapping to a point on the plate-circuit coil) ; for the neurralizing potential in this receiver is obtained from the plate cirouir inductively by means of coils L3, L6 and L9. The effect of a low-resistance short in $\mathrm{C} 1, \mathrm{C} 2$ or C 4 will be broad tuning, circuit oscillation and weak reception. If the leads to L3, L6 or L9 are reversed; ir will be impossible to neutralize the receiver; this fault will occur only if the receiver was partly re-wired during servicing, and is readily localized by following through the neutralizing process. Start from the de tector tube and work toward the antenna; the suage upon which a "zero point" or silence-poin cang be obtained is the faulty one. Noisy operation during manipulation of R1 indicates poor contact (Instead of the variation of resistance being smooth it is being effected in relatively large bumps.) The remedy is to clean the resistor ands sliding.) The remedy is to clean the resistor ands sliding. contact
with sandpaper. This must be done carefully, to prevent taking out the spring tension of the slide arm, when the arm will no longer make contact with the wire. A short in condenser C6 will cause the set to "go dead," as far as broadcast reception is concerned; in this casè, a rest from dètector plate to filament will show a lower resistance than if the resistance of the primaty of Tl were effective, in stead of shorted out.

C2
-

C4

CROSLEY RADIO CORP.

CROSLEY RADIO CORP.

MODELS 6-60 AND 6-85 CIRCUIT

Radio Service Data Sheets

 EDISON R-4, R-5 AND C-4In the Edison Receiver, Modeis R-4, R-S and C-4,
the R.F. the R.F. amplifying circuit employed is a form of used in gain circuit, wherein two primaries are resonared below and one above the broadcast fre quency. spectrum. The four R.F. transformers employed are identical with each other and their sec. ondaries are tuned by identical tuning condenser sections. Referring to the Schematic wiring diagram L1, L2, L3 and L4 are low frequency primaries. resonated to approximately 450 kilocycles by means of the condensers C5. C6, C7 and C8; LS, I6, L7 and Ls are high frequency primaries, not shunted by any condenser; L9, L10, L11 and L12 are secondaries tuned by the variable condenser sections $\mathrm{C}_{1}, \mathrm{C}_{2}$, C3 and C4, which are shunted by the trimming
capacities C1A, C2A, C3A and C4A. Stabilization of the R.F. amplifier is accomplished by the use of grid circuit neutralization; i.e., the employment of
neutralizing
condensers, C_{10}, C_{11} and C12, conneutralizing condensers, C10, C11 and C12, connected from the plate of each R.F. amplifying tube
to 2 coil tightly coupled to the secondary of the to 2 coil tightly coupled to the secondary of the
inpur transformer of that tube. These coils in the inpur transformer of that tube. These coils in the
diagram are $\mathrm{L}, 16$ and L 7 , which are at the same time the high frequency primaties of the first, second of the first R.F. input circ. Substantial resonance quency of the second and third $R E$ resonant frequency of the second and third R.F. and detector input circuits is maintained by holding the effective micromicrofarads. Antennas of value less than 100 city are ro be conpected of less than this capa"Antenna," while antennas of binding post marked pacity are to be antennas of greater than this cabaciting post. This denser $\mathrm{C} Q$ in. series latter connection places the conreducing the effective yalue of the ground capacity, than 100 micromicrofarads for the latter to less up to 500 micromicrofarads. Self-bias of capaciries R.F. amplifying tube is secired by the of the first sistor R1, by-passed by the capaciry C20. Isol of the R.F. component of the plate C20. Isolation tube is accomplished by the use of resisror capaciry. C19. Self-bias of the second and third R \mathbf{F} amplifying tubes in common is effected by the re. sistor R3 and the section A of the volume control by-passed by the capacity C 23 . Isolation of the R components of the plate currents of thase the R.F. in common results from the use of the two tube and the capaciry C22. The volume control operates to reduce volume in the following manner: As the contact shown in the diagram is moner: As the from the extreme right-hand end position, the ra sistance B, lying across the primary system of the hirst R.F. transformer, is reduced in value following a special resistance taper. After approximately mid
position has been reached, this resistance B bas be- of the control from a fraction of a milliampere to come and is maintained at substantially zero value. between 3 and 4 milliamperes. When minimum position rems at zero value until approximately mid- volume setting of the control has been reached, 2 afrer increases in ralue noiformly with tion of the control knob. Resistance Λ forming part diagram position: i.e., from radio to phonograph of the bias resistance for the second and third R.F

IDENTIFICATION OF PARTS

$\mathrm{C}_{1}, \mathrm{C}_{2}, 2$-gang, . 000355 mf. each; C3, C4, ditto $\mathrm{C} 10, \mathrm{Cl11}, \mathrm{C} 12,40$ to 80 mm each; $\mathrm{C9}, .000125 \mathrm{mf}$.; $\mathrm{mf} . \mathrm{C}_{14}, \mathrm{C}_{12}, 40$ to 80 mmf ., variable; $\mathrm{Cl}^{2}, .0001$
 C 20 and C 21 in same can): C22 0.1 . $\mathrm{Cl} \mathrm{Cl}^{2}$ C23, $1.0 \mathrm{mf}, 150 \nabla_{\text {., (}} \mathrm{C}_{22}$ and C23 in same can) $\mathrm{C} 24,1.0 \mathrm{mf} ., 300 \mathrm{v} . ; \mathrm{C} 25,0.5 \mathrm{mf},. 300 \mathrm{v}$. ; C26. $1.0 \mathrm{mf},. 150^{\circ} \mathrm{\nabla}^{2}$, (C24, C25 and C26 in same can) C27, 2 mf., 600 v.: C28, dirto; C29, 1.0 mf ., 300 v.; C1A, C2A, C3Á and C4A trimmers on side of variable condenser section which each shunts.
R1, 1000 ohms, 1 watt; R2, ditto; R3, 400 ohms R6, 20 ohms ; R7, 15 mes 1 ; ; R5, 400 ohms, 1 w.; 1 w.; R9, 25,000 ohms, i w.; R10, 250000 ohms, W.; R11, 2,000 ohms, 1 w.; R12, 20 ohms; R13 200 ohms; R14, 780 ohms, 5 W.; R15, 10,000 ohms, 5 .
$\mathrm{LI}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ and L4, 500 mbys., each; L5, L6, 17 and $\mathrm{L8}, 71 / 2$ turns, each; 19 , Lio, L11 and L12, 245 mhys, each (measured in shield); L13, 50 to 65 millihys.; I 14 and 115, 4-to-1 A.F.T.; L16. L17 and L18, s-to-1 ratio A.F.T. with separate Recondaries connected in series by variable resistance R13: L19, L20, speaker input transformer (mounted in speaker frame) having center-tapped primary: L21, secondary, speaker input transformer: L22, dyhamic reproducer field coil, 4,500 ohms; L23, voice coil for above; L24, inside third of filter choke, 20 Si 375 ohms; L25, outside two thirds of choke. S1, radio-phozograph swirch, S.P.D.T. toggle. S.P.S.T. toggle: Lontrol shaft: S2. Line switch dial S.T. toggle; Light-O-Maric switch, located in dial mechanism, operating Light-O-Matic pilot light.

amplifying rubes, a leftward motion of the contact of the volume control after approximately mid-posidion been passed increases the bias on these fis. The resistor R4 limits the necessary amount by increasing the current at minimum volume setting
position, this being the sole means provided for the throw of this switch. The derector "B" is obtained from the plate supply for the R.F. and first A.F. am plifying tubes through a two-srage resistance. and-con denser filter, consisting of R9, C25, R8 and C24. This filter serves a criple purpose: it effects the necessary reduction of plate voltage, the isolation and a reduction of ripple in the derector plate circuit A positive bias is placed on the dencer plate supply tube with respect io is of the variable concts cathode by the connection the carhode of concact of the hum adjuster R6 to high frequency cut-off is provided bying rube. A C15 shunting the secondary I1s of the capacit fying transformer the prim, of we A.F. ampli as L14. Hum due to residual 120cucle show. the plare supply for the firt A F . in elime supply for the first A.F. amplifying rube R10, connected between of the series circuir C21, supply and the cathode of this positive of the plat of this circuit is arraged to be 9 (the mupecance ube) times the impedance of the parall. C26 R11, and the phase angles of paralle circuit o be the same. This resulos ine impresircuits the grid of this tube of a voltace propression on phase and amplitude 10 courreract phe pere in bort residual ripple of the plate supply. The sect of the ransformer bas a piace supply. The second A.F. half-secondaries, I 17 and 118 These balf-secoparate re separate in order to permis the inserion betaries their low porential ends of the resistor ${ }^{\prime}$ R13. Beween the center-tap of the filament winding for the scoen stage amplifying rubes and the fixed center second R 13 is connected the self-bis resistor center tap of variable contact operating on R 13 is connetid the negative of the plate supply. The function $R 13$ is to permit the increase of the bias on eith of the two second A.F. wubes at will by the amount necessary with any two given rubes to bal ance our esidual hum. L32 part of the power transforme primary, is designed for use from 100 to 110 vols 232 and L33 together from 110 to 120 volts. and 32 and L34 together from 130 to 140 rolts. R15 is a bleeder or "loss-current" resistor the function of which is to build up to the required value the excitiz tion current flowing through L22 and to sexbilize the plate voltage on the R.F and firt A P for varying values of plate current in the second and third R.F. amplifying tubes.

W
RECEIVER
TYPE 7 -R Pilot lights

> 훌

Cis

THOMAS A.EDISON, Inc.

THOMAS A.EDISON.INC.

F.A.D. ANDREA INC.

Fada 10, 11, 30 and 31 Receivers- 60 cycles Fada 10Z, 11Z, 30Z and 31Z Receivers- 25 cycles

(20)

F.A.D. ANDREA, INC.

Fada 22 Battery Model Receiver

F.A.D. ANDREA.Inc.

Fada 25 -AC 60° cycles
Fada 25-Z -AC 25 cycles

F.A.D. ANDREA.INC.

F.A.D. ANDREA,INC.

F.A. D. ANDREA, INC.

CONNET H2S.MS 25 MEO GONDENSER

TROAN ANE CNMTCY ACROSS ZOOCHCKI

"E-180" Electric Unit-For Fada 50 and 70 Receivers

F.A.D. ANDREA, INC.

Radio Service Data Sheet
FADA "SPECIAL" MODEL 265-A AND FADA "7" MODEL 475-A

Circusit connections in the "Special" Fada "Model 265-A" receiver, battery-operated.

The following is the procedure to be followed for neutralizing the Fada "Model 265-A" battery set: the neutralizing condensers C7, C8, C9 are located from left to right in the set. Balance V3, V2,.V1, in the same order, using a tube with an open filament. Adjust on a wavelength between 250 and 300 meters. To neutralize this receiver it is recommended that a type '01A tube be used in the detector position, V4; , replacing, when balanced, with a type '00A tube.
The compensating condenser C3A is located at the right of the third tuning condenser and is adjusted with a long screwdriver.

In the Fad: "Model $475-\lambda$ " receiver, C7 is accessible through the left hole (facing front of set) in terminal board in first can; and the second neutralizing condenser C8 through the

Note: 'I'he FADA model

 265-A receiver shown above is used with the RP65 Unit. I'he FADA 475A battery operated loop set shown below is used with the SF 45/75 receivers.
right hole. Condenser C 9 is reached through the right-hand hole in the second can; and C10, through the right-hand hole in the third can. Fach of these condensers is numbered according to the stage it balances. It is recommended that headphones be used to obtain a null point when balancing the receiver. Tune for a strong signal on a wavelength of 250 to 300 meters,
when balancing this set, using the loop for signal pick-up.
The input circuit compensator C1A is the thumb screw marked "antenna adjuster" on the terminal board in the first can. Condensers $\mathrm{C} 2 \mathrm{~A}, \mathrm{C} 3.4$ and C4A are accessible through holes in their respective shield cans.
Wavelength compensation in the various tuned
stages is obtained by tuning to a strong local station (using the loop) on a wavelength be. tween. 250 and 300 meters. After obtaining the loudest signal at a single point, remove the loop plugs and connect an aerial and ground to the set. Without moving left-hand dial, turn antenna adjuster screw to left or right to point of maximum signal.
The following values are used in this set: C1, C2, C3, C4, . $00035-\mathrm{mf}$, ; C5, .001-mf.; C6, C12, C13, C14, C15, C16, 0.5-mf.; C11, .00015to .00025 -mf.; C17, 1.mf. Resistors R1, R2, R3, R4 are 1,000 ohms; R5, 250,000 ohms; R6, 500,000 ohms; R7, 125,000 ohms; R8, 500,000 ohms; R9, 6 to 20 ohms. Type '01A tubes are used as V1, V2, V3, V4, V5 (or a type '00A may be used here) and V6; and a '71A for V7. Unit L2 is an untuned R.F. transformer.

When servicing the "475-A" check for open resistors R1, R2, R3 or R4; also for an open output condenser C17. If it is difficult to stop circuit oscillation, determine whether a lowresistance ground is being used; and whether any of the by-pass condensers are open.
In both the " $265-\mathrm{A}$ " and the " $475-\mathrm{A}$ " re. ceivers the filament rheostat and off-on switch are combined in one unit. Both of these sets are two-dial control.
In the "high gain" Fada "475-A," the R.F. chokes RFC1, RFC2, RFC3, RFC4, RFC5 are inserted in the positive " A " leads of the first five tubes to prevent circuit oscillation due to this common lead.

The battery cable for the " $4755-4$ " connects to terminal strips on the unit comprising $T 1$, T2 and AFC. These strips are shown in an accompanying illustration.
Note the connections and values of R5, R6, R7. An open R1, R2, R3, or R4 resistor may indicate a short in $\mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10$.
\qquad

460-A Receiver and R-60 Unit

F.A.D. ANDREA,Inc.

The FADA "A-B-C" Power unit shown at the right uses three Elkon. 1500-mf. "dry" condensers in the "A" filter system. If a very bad hum is heard in installations using this power unit, check the "dry" condensers, C1, C2, C3. The trouble is most conveniently checked by disconnecting one condenser after the other, until the hum suddenly drops. As the hum is less with all of the condensers out of the circuit than with a single defective condenser in circuit, the location of the defective unit is simple.

Type " 5 " unit for 25 cycle current is aimilar: except that a 1706 X power transformer is used instead of the 1696 X transformer as indicated on the type " C " unit for 60 cycles.

" $1 B C$ " sitwolt tube-supply unit of Fada types " $86-V$ " and "82-H"," illustrating an arplication of the
Fada types " $86-\mathrm{V}$ " and "82-H",
$1500-\mathrm{mf}$. dry " A " condenscrs.

Type "C" Electric Unit, used with "Special" and "7" AC

FEDERAL RADIO CORP.

FEDEKAL ORTHO-SONIC RECEIVER
TYPE - D

Condenser C1, 100 mmif.; C3, $0005 \mathrm{mf}_{\text {; }} ; \mathrm{C} 2,42$ mmf ; C $6,1.0 \mathrm{mf} . ; \mathrm{C} 4,200 \mathrm{mmf}$; C $5, .001 \mathrm{mf}$; The grid-plate capacity of about 9 mmf. has been represented in dotted lines: C7, . 05 mf ; ; R1, 1 meg.; L1, 165 mh .

Radio Service Data Sheets

Oxo

In the Model K receiver the volume control is ${ }^{2}$ 700,000 -ohm variable resistor R6, in shunt to the secondary of T6. The plate-supply resistors are mounted in the set chassis, instead of the power unit.

The first consideration is the line-voltage. Having noted its value, plug the 3 -amp. fuse F into the pair of clips marked with the nearest corresponding voltage. Continuity tests are made with cable disconnected from the power unit and all rubes removed from receiver. The terminal blocks of the receiver chassis and power pack are illustrated. When resting connections on latter, remove all cable leads from the chassis and also the fuse, and plug into the A.C. line. Connect a 0.150 V., A.C. meter between 1 and 7, or berween 1 and 16 (note in some units 7, 8 and 9 are the incoming common terminals, in others 16,17 and 18 are common). The meter should read the A.C. line voltage, or the cord is defective. Next, replace the fuse in the proper clips and, if the meter reads the same between 1 and both sides of the fuse, fuse is good. Short posts 1 and 2 with a piece of wire, and put the type ' 80 tube in the socket. Immediately take the readings between the following posts on a $0.250 \mathrm{\nabla}$. high-resistance D.C. volmeter: 14 to 6,14 to 15 . Both readings should be off scale. (Note 14 is the negative post.) Using a 0.5 A.C. meter, check the filament voltages. 3 to 12 , approx. 3.3 volts A.C.; 4 to 13 off scale Shut off power by pulling the plug as soon as the readings are taken; because this rest subjects the condensers to very high voltages. If the power unit fails to deliver the rated voltages the entire unit should be exchanged.
When checking the receiver chassis, make sure cable is properly connected; then rurn receiver switch "on." Contact to socket rerminals is easily obtained as the heads of the spring-holding eyelets are above-panel.
Special note: operating voltage of screen-grid to frame should not rise above 70 volts. A defective screen-grid tube can be easily identified by the fact that its low emission causes the screen-grid potential to frame to rise above 70 volts.
The troubles that are found from the sequence test must be located with the aid of the schematic circuit. Remove the cable from the power unit, and follow through any faulty circuits with the aid of a high-resistance voltmeter (50 -volt connection) and a $221 / 2$-volt batery in series. Shors in the plate circuits will shay up as readings on the volumerer when one lead is touched to frame and one to the plate.' If opens are indicared by previous voltage readings, the circuit must be traced and each piece checked until fault is located. If VC rotors and checked unt set will operate on low wavelengths stators rub, set will operate on High hum level when plates come out ' 27 V3 or V4. Hum conusually due to defective 27, , 3 or V^{2}. Hum con fuse slips. trol is located in power unit and between fuse slips. Keep the two cables to "On-Off" switch far from V3.
In the K41 type, high hum in isolated cases may be due to loose srep-down rransformer laminations in dynamic reproducer assembly; rap laminations lightly with hammer to reset them and reduce hum level.
In rare instances, high hum may be occasioned by high-frequency radiations originating in the dry rectifier in the reproducer power assembly. To-check this, disconnect the reproducer leads and amach 2

FEDERAL MODEL K
separate reproducer. If hum is heard through the separter disconnect A.C. leads to the dynamic reproducer at the power unit. If hum disappears it may be assumed that the rectifier is defective and should be replaced. Looking at chassis from front, VC3 is at left. Use middle VC as pilor when reganging,

though rarely necessary. Turn volume control ${ }^{-}$Full On" and loosen two locking screws on left-hand VC. reaching through the slor left in the VC shield. Turn eccentric back and forth until weak signal is loudest and cighten VC1 has panel vernier and loudest and cighten.
If changing rubes, and all other efforts, does not stop circuit oscillation, tune in station near 210 meters and, with a non-metallic screwdriver adjust NC1, NC2 and NC3. NC2 (upper left-hand) adjusment not critical. Re-check on 360 merers and seal. Under load, rectifier transformer secondary

(dynamic reproducer) should read close to 11 volts: rectifier output should be 9.5 to 6 volts.

	Continuity Test		
Terminals	Correct	Cawse if Wrong	
24-frame	full	Open in cable	
V3F-22 or 19	full	Do. .	
V3P-25	17.5	Do., T1 pri. or R8	
V3G-fr.	0.5	Open or shored R7	
V3K-fr.	full	Open Gnd. lead	

V3K.fr.
full Open Gnd. lead

V4F-22 or 19
V4P-25
V4G-fr.
V2F-22 or 19
V2P-25
V2CG.fr.
V2SG-25
V2K-fr.
VSF-23 or 20 VSP-21 VSG.fr.

Vip-22 or 19
V1P-2S
V1G-fr.
V1K-fr.
V6F-23 or 20
V6P-21
V6G-frame
Any rotor-fr.
VC1 stator-fr.
VC2 stator-fr.
VC3 stator-ft.
Ant. post-fr.
L.S.-L.S.

V8F-23 or 20
Any Plate
prong-fr.
V1F orV2F-fr.
V3F-fr.
Vif.fr.
V. F or V 6F-fr

Shorted fil. lead
Open R10 or R11
*(Tubes and dial lamp out of sockers.)
Transformer Tests

	Transformer Tests	Open pri.
T1 P1-P2	full	Open sec.
T1 S1-S2	full	Open pri.
T2 P1-P2	full	Open sec.
T2 S1-S2	full	open pri.
T3 P1.P2	full	Open sec.

Operating Voltages of Set
(Turn volume control to off position.)
V3F-F. 2.3 A.C.: V3P-fr., 65.0 D.C.: V3G-K, below 1 D.C.; V4F-F, 2.5 A.C.; V4P-fr., 135.0 D.C.; V4G-K, 7.5 D.C., V.2F-F, 2.5 A.C.; V2P-fr., 110.0 D.C.; V2CG-K, 1.5 D.C.; V2SG-fr., 60.0 D.C.; VSF and V6F-F, s.0 A.C.; VSPP and V6P-fr., 205.0 D.C.; Vs and V6G-F, 40.0 D.C.; V1F-F. 29. A.C.: V1P.fr., 120.0 D.C.; V1G-K, 7.5 D.C.

Values of Parts

Receiver: Cl_{1} to C 9 , inclusive, 0.25 -mf.; $\mathrm{C} 10, \mathrm{C12}$, R002; C11, . 001 ; C13, . 0001 : R1, R9, R10, 1,500 , R2, 6,000; R3, 300; R4, 40,000; Rs, 6,000; ohms; R2, 6,00, R3, 2-meg.; R8, 13,000 ohms; R11, R12, 40 ohms.
Power unit: R, 1,300 ohms; L1, 15-henry, 285 hmm L2, 60 -henry, 1,570-ohm; C16, C17, 1-mf. C18, 2 mf.; C19, 0.1-mf.

FEDERAL RADIO CORP.

$\sum^{0} \|^{c_{2 x}}$

C26 = .001 山f
$C_{57}=50 / 35 \mu \mu f$.

FEDERAL RADIO CORP.

FREED-EISEMANN RADIO CORP.

FREED-EISEMANN RADIO CORP.

FREED-EISEMANN RADIO CORP.

BOTH WINDINGS IN SAME DIRECTION

FREED-EISEMANN RADIO CORP.

FREED-EISEMANN RADIO CORP.

FREED-EISEMANN RADIO CORP.

b: ARCTURUS-071 A

CHAS. FRESHMAN CO., Inc.

Schematic circuit of the Freshman "QD-16S" screctsgrid recciver: correct conpling betzecn L3 and L4 is ant important selectizity factor in this set. Values not shown above are: C1, 35 mmf .; C4, C5, $0.25-m f$. (1500 v.); C6, $2 \mathrm{mf}$. ; C14, C11, 1 mf . (2000 v.); C7, C8, C12, 1 mf . (1000 v.); C9, $C 10,0.25-m f$. (500 г.). R1, R2, R3, R4, R5 arc $40,000,25,000,12,500,12,500$, and 10,000 olims, respectively

The Freshman "Model $N^{\prime \prime}$ and its power pack; the numbering of the terminals shown here may be compared with that in the diagram of the layout at the right. The capacities and ratings of the condensers in the power unit are shown opposite each, respectively, at the left. Note the special 1800-ohm resistor lead shown here.

CHAS. FRESHMAN CO, Inc.

Wiring of Model " G " power pack. The values of the condensers are as follow's: A, $2 \cdot \mathrm{mf}$. (2,000) ; B, 2 -mf. (2,000) ; C. 6 -mf. (2,000) ;D, $4-\mathrm{mf} .(1,000)$; E, 2-mf. (1,000); F, 1-mf. (1,000). The

Schematic diagram of Model "G" Chassis and Model G-60-S Power Supply,
Note the one choke coil in Power Supply Circuit.

CHAS. FRESHMAN CO., Inc.

Ereshman ~ Model M Receiver and M-60-S Power Supply Circuit

CHAS. FRESHMAN CO., Inc.

CHAS. FRESHMAN CO., Inc.

CHAS. FRESHMAN CO., Inc.

CHAS. FRESHMAN CO., Inc.

FRESHMAN MODELS-31-5AND 32-5, AC.

a-arcturus type 127

GENERAL MOTORS RADIO CORP.

DAY-FAN FIVE - 5-Tube -1925 Model

Radio Service Data Sheets

ब1)
The circuit used in this receiver is reflexed. Thus, V2 functions as an amplifier of both radio. and audio-frequency currents. With $S W_{1}$ in position on 1, the audio outpur of V_{2} is fed to the reproducer, in position 2, $V S$ is introduced as a third stage of A.F. amplification.

Units R.F. Choke 1 R.F. Choke 2 and R.F.T. 2 are iron-core instruments in radiofrequency circuiss.
A Continuity Test of the receiver should check as indicated below. The reference numbers appear on the "Tube Layout."

Terminals Correct Cause if Wrong Plus $90.2 \quad$ High resis. Open or shorted R.F. Choke 1 or apen lead
Plus 90.6
High resis. Open or shorted R.F. Choke 2 or

Plus $22 \frac{1}{2} \cdot 11 \quad$ High resis. Open or shorred pri. of AFT1 or open lead
Plus $90.15 \quad$ High resis.
Open or shorted
AFT2 or open lead
Plus 90-19

High resis. (Reproducer

plugged in and SW 1 on 2.) Open or shorted reproducer or lead
Minus "A"-1 Dead short Open RFTi sec. or Minus " A ".s

Dead short open lead

$$
\text { Plus " } \mathrm{A}^{\prime} \text { " }-\mathrm{C} 3
$$

Dead short
stator
Minus " $\Lambda^{\prime \prime}$-16 High resis. lead (SW2 closed.) Open lead
Open or shorted RFT2 sec., AFT1 sec. or open lead.
Minus " A "- 20 High resis, Open or shorted AFT2 or open lead

Minus "A"-2 Open

Minus " \mathbf{A} "-tap Dead short 3 of RFAT3
Minus "A"'-1s Open
Plus " A " " tap
3 of RFAT4
Dead short
Plus " $\boldsymbol{\Lambda}$ "-6 Open
Minus " A " ${ }^{-11}$ Open

DAY-FAN FIVE "5044"
ces
pointer to approximately the cortect point for that station, and tightening the lock-nut. The condenser adjusment may require centering the rotor plates in relation to the stator plates. A lock-nut on the end of the rotor shaft is available for this purpose; it is

signed for selectivity conditions not as stringent as those of the present day, and it is not as easy now to obtain interference-free reception in congested districts as formerly.) A suggestion for obtaining additional selectivity is to connect a compact air. dielectric variable condenser from 6 to 11 , adjusting it to cause regeneration. It may be mounted at a convenient point on the panel. If regeneration on the longer waves is insuffi. cient, it may be necessary to reduce to . 001 . mf. the capacity of the by-pass condenser. connected from the plate of V4 to "A -." Still stronger regeneration may be obtained by connecting a radio-frequency choke coil be tween the plate and AFT1 primary lead of V4. A safery measure recommended for these receivers when operating from " B " batteries is the insertion of a fixed condenser of $.01-\mathrm{mf}$. capacity in series with the variable regenerarion condenser mentioned above A caution regarding this installation is to keep leads as short as possible, and to shield these new leads. The voltage tests of this particular model receiver were obtained with a Weston Student Galvanometer Model 375. With a
loosened. the rotor an dstator plates are centered, and then tightened. If one or two of the plates remain out of alignment, they may be centered by careful bending of the plates. If difficulty is experienced in getting distant stations while locals are on, it will be well to check the length of battery leads. Those which are too long will pick up sufficient energy from the locals to cause these signals to "ride in" on rop of distant station programs. The solution is to keep battery leads as short as possible.

A peculiarity of this particular receiver is that an antenna length of less, than sixty feet will not (contrary to usual practice) result in grearer ease of tuning through local stations; a length of more than 100 feet is also inadvisable. The explanation lies in the "selector coil" of this receiver. With $2 n$ antenna shorter than sixty feet, sufficient energy is not received from the distant station to allow the selector to be rurned to a point where the local station is cut out, and at the same time the distant station is brought in. In other words, a strong signal from the distant station as well as from the local allows the user to select either station by proSecal alectivity in this receiver per use of teh selector. Selecivity depends to a major extent on the setting of the RFT1 primary coil P in relation to S; reduced coupling increases the selectivity but at the same time
the sensitivity, within certain limits. However, the the sensitivity, within certain limits. However, the
service man may install a small variable condenser of the mica-dielectric rype, inside the cabinet, and connect it in series with the antenna lead to the RFT1 primary. By adjustment of this unit and of the inductive coupling, a point of optimum selectivity and
sensitivity may be obrained. (This receiver was de-
"Off logging" may be due to the pointers having slipped, or to the rotor and stator plates of the tuning condenser not being in correct register. The former may be corrected by tuning to a particular station, loosening the pointer lock-nut, setting the

41/2-vole battery supply, a 7,000 -ohm series resistor is used. (An approximation of this value is secured by the use of the secondary of a "replacement" A.F. ransformer.) "Sw 1 " is the "Speaker Switch."

The Reflex Circuit

An explanation of the paths which the varying R.F. and A.F. currents follow may be an aid to deterfining the faults which may be encountered in receivers of this type.
The R.F. input is amplified by V1; R.F. Choke forces the R.F. signal to pass through RFT2 to V_{2}; here another plate-circuit impedance (AFT2 pri. or the reproducer) keeps back the R.F., which con cinues to V3 via RFAT3, and then to V4, being (inues block by R choke 2. The A.F. output of $V 4$ is "refiexed" through AFTI back to V2 I 4 is F erpur of V_{2} either actuates the and the A.F: output of V2 AFT to Vs the reproducer or is passed on through AFI consequently option being determined by N. . Consequenty \mathbf{V}_{1} is the first R.F. tube; V_{2} is second R.F. Ind first A.F.; V3 is third R.F.; V4 is the detector; and V5 is the second A.F.
Other reflex receivers made by Day-Fan are the "OEM-11" 3-tube: "OEM-7" 4-tube; "OEM-7" 4 tube "Super-Selective;" and "OEM-12" 4-tube. A word picture distinguishing one from the other fol lows. The OEM- 21 receiver has two stages of tuned R.F. and two of A.F. amplification.

The "OEM-7" receiver has one T.R.F. stage fol lowed by l. F . T another T.R.F. stage separate rube. The "Super-Selective" varies from this model only in super-selective looser coupling, through the R.F. transformer the looser coupling, through the R.F. trans as does the "OEM-12" from the "OEM-11."

GENERAL MOTORS RADIO CORP.

Day-Fan Five Twenty-Seven-5-Tube

Day-Fan Seven-7-Tube

GENERAL MOTORS RADIO CORP.

GENERAL MOTORS RADIO CORP.

GENERAL MOTORS RADIO CORP.

DELCO AUTOMOTIVE RADIO
$\begin{aligned} & \text { (above) } \\ & \text { The circuit of the Del. }\end{aligned}$. co automotive receiver. The variometer tuning arrangemem and other noveltics are obvous.

(right)

Appcarante of the DelApprarance of erith cables
co chassis, with co chassis, whi couitch
connected. The sait and zoolume control arc scen in the forcground, separately

GILFILLAN BROS, Inc.

-Circuit of the Glliflan A. C. Model 60 Reotiver.

A.H. GREBE \& Co.

```
GREBE SYNCHROPMASE RECEIVER TYPEMU-I A. H. GREBE CO., INC. RICHMONO HILL, N.Y.
```


GREBE BROADCAST RECEIVER ~ 1923.

A.H. GREBE \& Co.

Radio Service Data Sheets

Cs

Several models of Grebe instruments are available under the name of "Synchrophase"; the 7 -tube receiver is described and diagrammed this month. In the coupling chain controlling the left-hand dial there is play to permit condenses variation, to compensate for differences in antenna capacities. This should be about two or three degrees. Between center and right-hand dials, only one-half degree is allowed as compensation for variation in parts and tube manufacture.
Condenser Cl has a capaciry of .00022 -mf. Units a, b, c, d and e ("Tonecolor") have a capacity of $1750,1450,950,600$ and $175 \mathrm{mmf} .$, respectively. Resistors $\mathrm{R} 1,2,3,4$, are 400 ohms: X is a "dumray" cartridge having a copper wire in place of a high resistance. Resistors R5, 6, 7, 8 and 9 are 5 to 7 megohms.

CONTINUITY TEST
Beneath Aluminum Deck

Beneath Aluminum Deck		
Test Leads	Correct	Fault, if Otherwise
1-39	full	L1 open
1-2	none	CI shorted
3-39	none	CI4 shorted
4.39	none	C13 shorted
5-6	about $1 / 3$	Ti sec. open
7.8	about $3 / 4$	T1 pri. open
7.39 5	none	Ti pri. grounded
5-39	none	T1 sec. grounded
5.7	none	Ti pri. short to sec.
9.10	about 1/3	T2 sec. open
11.12	about $3 / 4$	T2 pri. open
11-39	none	T2 pri. grounded
9-39	none	T2 sec. grounded
9-11	none	Ti pri. short to sec.

Test of Cable Leads

39."180v.".	none	Lead grounded
$13-" 180 v, "$	full	Lead open n9."90v."
none	Lead or R.F. pri grounded.	

GREBE SYNCHROPHASE-7

39. "C41/2" 41." 90 v ." 19-"C41/2" 39. "C40" $20-40 \mathrm{v}$. 20-39 (rotate 'Tonecolor') 39-"A-"

none	"C4 $1 / 2 "$
grounded	
about $3 / 4$	Lead or $T 2$ pri. open
about $1 / 3$	Lead or T1 sec. open
none	"C40" grounded
about $1 / 3$	T2 sec., or lead open
none	"Tonecolor" grounded
full	Lead open

BOTTOM VIEW: Set turned on its back, bottom panel facing operator.

Inside Receiver
C8, C9. C10.
$\mathrm{C} 11, \mathrm{C12}$, to 30, 31, 32, 33. 34, respeccively $30-35$
$31-36$ Almost full R1 open Almost full R2 open

Shorted C2, C3, C4, none $\mathrm{C}, \mathrm{C}, 6$ respectively

21, 22; 23, 24,
$25,26,27$, res.
pectively, so
full "A" circuir open $\begin{array}{ll} & 32-37 \\ 33-38\end{array}$
full " A " circuit open

Almost full R3 open Almost full R4 open

full

$\begin{array}{ll}\text { none } & \text { Shorted } C 7 \\ \text { full } \\ \text { "B_" open }\end{array}$

42, 43, 44, 45, 46 to "A-"
$39-" A+"$ 28-" 1 +" (rota
stat)
$29-$ " $1+$ +"
$4+4+4+4+24+4+4+4+4+4+4+4+4+4+4$
The heavy black bas at the left of the unit marked V_{5} is the dummy bus referred to in these columns. Each block comprises a coupling condenser, grid leak, and grid suppressor.
full
L2, L4, L6, L8 or L10, respectively, open
none Lead grounded
full Rheostat or contact bad

In 2ay receiver it may occur that an audio transformer primary open-circuits. The service man may conveniently apply to $T 1$ and $T 2$ the same test used in production. Referring to bottom view of chassis, the north-seeking pole of a compass placed over 5-6-7.8 or 9-10-11-12 should point to the right (with plate current flowing). Both primaries and secondaries may be rested through use of the carrent in the average continuity-test kit; provided the polarity of the prods is known. With "plus"" test lead to 7 or 11 and "minus" lead to 8 or 12 , the compass should swing to the right; and also to the right when " + " lead of prod is connected to 6 or 10 and " - " to 5 or 9

GRIGSBY-GRUNOW CO.

NOTE: In some models of the "70," the center-tap of the deteotor fllament connects to the center-tap of the R.F. tube filaments, and the detector plate potential is then only about 30 volts.

SCHEMATIC DIAGRAM OF $\left\{\begin{array}{l}\text { 7BP3 POWER UNIT } \\ 7 B P 6 \text { POWER UNIT }\end{array}\right.$

NOTE:-
SEPARATE TRANSFORMERS ON MODEL $78 P 6$

GRIGSBY-GRUNOW CO.

The constants are as follows: V1, V2, V3, V4, V5, type '27 tubes; V6, V7, '45s; V8, 3-volt pilot lamp; R1, 75,000 ohms, variable (volume control); R2, adjustable resistor, 500 to 2500 ohnas; R3, noninductive, center-tapped, 1.6 ohms total; R4, 1800 ohms (blue); R5, 35,000 ohnis (green); C6, . 004 mif.; C10, . $001-\mathrm{mf}$. ; C11, . 0001 -mf.; C12, C13, C14, C15, $0.5-\mathrm{mf}$. ; C16, 1.0 minf . Ch1, Ch2 and Ch3 are R.F. chokes.

Volume is controlled by varying the grid bias of $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3$.
The voltage readings for this set should be as follows: filaments of $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4, \mathrm{~V} 5,2.35$; of V6, V7, 2.45 ; plates of $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4,130$; of V5, 270; of V6, V7, 250; grid biases of V1, V2, V3,. 8 volts; V4, 9 volts; V5, 30 ; V6 and V7, 50 . The plate current of $V 1, V 2, V 3$ is 5.5 milliamperes; V4, 5 ma.; V5, 1 ma.; V6, V7, 32 ma. These readings are exact only when the receiver is readings are exact only when the receiver is
tuned to 550 kc , the volume control is set at tuned to 550 kc , the volume control is set at
maximum, and the line potential is 115 volts A.C.

R2 is secured to, and rotated by, the gang condenser shaft. It varies the grid bias of V1, V2 and V3 from 9 to 32 volts. This serves automatically to maintain even amplification throughout the tuning range. (This equalizer should have a resistance of 500 ohms at 550 kc , 1,500 ohms at $1,000 \mathrm{kc}$., and $2,500 \mathrm{ohms}$ at $1,500 \mathrm{kc}$.)

"9P3"-4MFD.

MAJESTIC "9P6" CONDENSER PACK FORMODEL 90 RECEIVER~

WHEN testing the power pack in the denser bank, a reading will be ohtained (in the earlier models) between the second and the fifth talps. This is due to in choke coil, which is mounted inside the conctenser can, and connected between these two taps.

In the later models, this choke has heen wplaced hy a resistor. In case of an open in this choke or resistor, there will be no plate voltage at the detector tap.

The schemalic circuit of the earlier Majestic "9P6" procer puck, showing the choke betescen detector and porecrammlifier tap.

MODEL 70-B CHASSIS IN 72 RECEIVER -

"Schematic circuit of the Majestic 70-B chassis used in the model 72 receiver. In contrast with most neutrodyne arrangements it is noticed that the neu cralizing potential is obtained from the grid circuit; the coil being part of the tuned secondary circuit. The service man must remember this important-point should occasion arise for servicing one of these modern radio sets. Two adjustable 20 -ohm "hum balancers" are used in this set

GRIGSBY-GRUNOW CO.

SCHEMATK DIAGRAM FOR MODEL 100 MANESTTC RECEIVER

SCHEMATIC DIAGRAM FOR MOOEL $90-B$ MAUESTIC CHASSIS

GRIGSBY-GRUNOW CO.

SCHEMATIC DIAGRAM FOR MOOEL $100-B$ MAIESTIC CHASSIS

SCHEFMATIC DIAGRAM POR MODEL $\left\{\begin{array}{l}180 \\ 181\end{array}\right.$ MAJESTIC RECEIVERS

GRIGSBY-GRUNOW CO.

SCHEMATIC DIAGRAM OF 7P6-7P3 POWER PACK (OLD WIRING)

SCHEMATIC DIAGRAM OF 7PG-7P3 POWER PACK

SCHEMATIC OIAGRAM OF POWER UNIT ANO VOLTAGE DIVIOER SYSTEM
MODEL $30-A$ MAJESTIC SUPEP SCPEEN MODEL $130-A$ MAJESTIC SUPER SCREEN GRID CHASSIS

CONDENSER BANK

```
50-60 EYCLE 25-40 EVCLE
A=2 MFO }\quadA=4\textrm{MFD
S=2 MFO 
```


GRIGSBY-GRUNOW CO.

SCHEMATIC DIAGRAM of MAJESTIC SUPER SCREEN GRID Moorl $130-\mathrm{A}$ Chass/s 25.10 | 50.60 CYCLE

SCHEMATIC DIAGRAM of MAJESTIC SUPER SCREEN GRID RECEIVER

Radio Service Data Sheet

oror

These two models differ only in the power supply to which they are adapted: their R.F. chasses are identical. The " 523 " is designed for standard 60 -cycle alternating current; the " 526 " for operation on a Lower frequency- 25 cycles up-and is recommended for even 50 cycle supply. The receiver proper has three stages of '24-type screen-grid amplification, with '27-type detector and firsf audio; and employs a ' 27 type tube in a special circuit as an autoa 27 type tube in a special circuit as an auto-
matic volume control, described later. The push-pull '45-type power stage and power supply is a separate unit, different in the two models. This unit is accompanied by a dynamic reproducer, built into the console; its field-coil resistance is 2000 ohms.
The complete circuits are shown in schematic diagram below: the values of the parts shown are as follows:

Resistors: R1, the manual volume control (operated by lower right-hand knob) 50,000 ohms; R2, R4, R6, each 2 megohms; R3, R5, R7, R15, R18, R19, each 1000 ohms; R8, 10,000 ohms; R9, 2,000 ohms; R10, 100,000 ohms; R11, 50,000 ohms; R12, 500 ohms; R13, 130 ohms; R14, 200 ohms; R16, 1,500 ohms; R17, 3,000 ohms; R21, 30 ohms center-tapped; R22, 750 ohms. Capacities are as follows: C2, C4, C6, each . $0005-\mathrm{mf}$.; C 8 , .001 -mf.; C 9 , $\mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 15, \mathrm{C} 16, \mathrm{C} 17, \mathrm{C} 19, \mathrm{C} 20$, each 0.3 -mf.; $\mathrm{C} 10, \mathrm{C} 14, \mathrm{C} 18, \mathrm{C} 23$, each $0.5-\mathrm{mf} . ;$ C21, C22, C25, C27, (high-voltage), C28, each 2.0 -mf.; C26 (high-voltage), 5.0 -mf.; C24,.0005mf.; C29, C30, each . 07 -mf.; C31, . 025 -mf. R20 has a value of 3,300 ohms, with a ' 45 tube; and the "Strap", illustrated replaces a resistor used with '50 amplifiers.
The plate circuit of V3 is coupled through C24 to the grid circuit of V6, the automatic volume-control tube, which automatically governs the amplification of V1 and V2 by changing the grid bias of these tubes; and thus maintains a constant R.F. voltage output. R14, adjusted by the knob at lower left, is the manual control for correct regulation of this tube; at its extreme setting, in a counter-clockwise di-
rection, the magnetic pick-up is connected to the A.F. amplifier linding posts, while the detector is disconnected by Sw1.

V6 is located in the round shield can and may require replacing. To check the operaman of this tube, turn the automatic volume control on full and remove the tube. The volume should remain approximately the same. Now replace the tube and (after it has again be-

KELLOGG 523 AND 526

A bottom view of connections at the right of the chassis: showing positions of ter. minals at top and in the center. The figures at the right edge show the positions of the terminals in the circuit; the voltages at the left, the respective readings between them and ground. "B-" or No. 5 terminal, is below ground potential. The sequence of tubes in the set is from left to right, with V6 between V4 and V5.
come sufficiently heated) change the volume control setting to low volume. If the tube should now be removed, the volume will he restored to approximately the same level as with the volume control turned on full. If the volume increases during the first test, the tube is over-controlling and should be changed. (Such a tube will operate exceptionally well as a detector or first audio tube.) If the volume does not increase during the second test, or if the not increase dur reduce the volume to whisper control does not reduce the volme to a whisper, the volume-control tube is under-controlling and should be replaced. Such a tube may be found defective for operation in any other position.
R.F. choke Ch1 (located on a single mounting on the lower side of the sub-panel) is catalog

No. P55516. Ch2 has a D.C. resistance of about 325 ohms. The primaries of T 1 and T2 have resistances of about 800 ohms each. The voltages shown in the illustration are the The voltages shown in the illustration are the
operating potentials obtained with a 115 -volt operating potentials obtained with a 115 -volt
supply. Accidental grounding of a high-potential lead, during test, may burn out resistors, damage V9, or blow fuses.
The aligning condensers, mounted on the front of each unit of the gang condenser, are reached by removing the chassis and adjusting through the four round holes in the front of the upper shield. This operation is to be performed while the set is tuned to a weak signal, of a frequency below $1,300 \mathrm{kc}$. (230 meters); or, since the volume of a station is continually varying, an A.F.-modulated R.F. oscillator may advantageously be used instead. Start the alignment process with the circuit of V1. The maximum capacity of $C 7$ is not the same as for C1, C3 or C5; hence the "apparent'" selectivity at high frequencies (low wavelengths, and due to the increased number of dial-scale-divisions per station-carrier position) will not be as great as in the other stages.
To change the drum dial lamp, turn the drum dial so that the opening is on top. The bulb may then be reached with the fingers.
The sensitivity of this set is so great that the antenna binding post will pick up sufficient energy, in certain localities and under certain conditions, to give loud-speaker reproduction of the signal without antenna or ground being connected to the set. If this energy is in the form of interference from radiating electrical form of interference from radiating etation, it equipment or a powerful broadcast station, may cause disturbance with $R 1$
justed for maximum volume.

Oscillation or squealing, if not due to a station heterodyne, is almost certain to be due to a defective by-pass condenser or faulty tube. ${ }^{\text {a }}$ Resistors R11, R10, R9, R8, R13, R15, R16, and R17 are placed in this order and underneath the sub-panel; the last four are of derneath the $\mathbf{R 1 2}$ and R18 use a double the vitreous R12 and R18 use a double mounting, inside the base. R19
singly inside the pase at the
singly inside the pase at the rear.
The rating of a replacement fuse is 3 amps .
The chassis is held by four large machine screws through the bottom of the cabinet.
The output transformer T3 is held by four screws and covered by a steel protector, held by two wood screws.
This receiver works best with a good ground connection.

Power Unit Type 245 is used with the 523 and 526 receivers.

KELLOG S'W'ḂD. \& SUPPLY CO.

R.F.L.- 7-Tube Cascade Receiver

COLIN B.KENNEDY CORP.

COLIN B. KENNEDY CORP.

COLIN B. KENNEDY CORP.

COLIN B. KENNEDY CORP.

KING MFG. CORP.

KING MFG.CORP.

KING MFG.CORP.

KOLSTER RADIO CORP.

KOLSTER RADIO CORP.

KOLSTER RADIO CORP.

KOLSTER RADIO CORP.

Schersic of the four tube as uned with six tube sets.

Power Supply and Power Amplifier Unia.
(USED WITH K-24)
$\underbrace{\infty}_{\infty} \underbrace{\infty}_{\infty}$

OFFICIAL RADIO SERVICE MANUAL

MC MILLAN RADIO CO.

McMILLAN 8-A. C. POWER SET
Use this circuit diagram for all receivers equipped with a sealed power transformer block, Use this circuit diagram for all receivers equape brown or slate colored leads.

-YELSOW WITHBLACN E-BLACN WITH YELCOW 2-BLACA WITH YLL A-BLUE
$\frac{5-B C A C \pi}{6-\operatorname{RED}}$
$\frac{5-\operatorname{ecE}}{7-\gamma C L}$
$\frac{7-\gamma C L \angle O W}{B-G R E E N}$
9-SLATE
10.BROWN

Use this circuit diagram for' receivers equipped with power transformer block having removable cover, or condenser block having one brown and one slate colored lead in addition to the colors used for circuit diagram shown above.

Radio Service Data Sheet

EVEREADY/SERIES 30, SERIES 30-C AND SERIES 40 RECEIVERS

Changes in the audio chassis and reproducer Changes the only things that distinguish the "Series 40 " circuit from the "Series 30 ;" the former uses type ' 45 tubes in push-puli, the latter type uses type ' 45 tubes in push-pulf, the '45s, (S4 71Λ. To supply the power for the 45 s , wound to deliver 2.5 volts and S1, 2460 (YT) the No. 2708 unit must repiace No. 2460 (Y) a higher-voltage-rating condenser bank, No. 2707 , replaces No. 2295 (C19); correct bias is obtained across a $900-\mathrm{ohm}$ resistor No 2705, instead of No. 2339 (R8); tube socket No. 2704 (designating '45 tules) replace sock ets No. 2252 for V6 and V7; the output trans former No. 2463 (T3) used in "Series $30 \cdot \mathrm{C}$ and "Series 40" receivers for Eveready dynamic reproducers has a ratio of 25 -to 1 ; while this dynamic unit has a field resistance of 5,000 ohms. "Model 30 " (table model) has a No. 2293 A.F. transformer unit, T3, with a ratio of 1 -to- 1 . Jensen D-5 or Newcombe- No. NH-7 reproducers may be used with the No. 2463 transformer in the " $30-\mathrm{C}$ "; the field current available from the receiv
An unusual feature of the design of these receivers is the use of a variometer, L1, which is ganged to the variable condensers $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$. The tubes used in the " 30 ," " $30 \cdot \mathrm{C}$," and " 40 ," are as follows: V1, V2, V3, V4, V5, type ' 27 ; V6, V7, type ' 71 A or type ' 45 , as explained above; V8, type ' 80 ; V9 is a 2.5 volt pilot light.

Additional data on the remaining units is given below: Condenser C1, in shunt with L1, is operated from the panel and serves as an antenna trimming unit; $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$ have common shaft and, if the rotor platield drive it is necessary to cable, and variometer, and then three-gang condenser with another No. 2192 assembly; C5, C6, C7, in shunt with C2, C3, C 4 , are aligning units, each mounted on one end of the respective tuning unit; $C 8$ has a capacity of $.00025-\mathrm{mf} . ; \mathrm{C}, .0001 \cdot \mathrm{mf}$. C10 C11, C12 are neutralizing condensers, mounted on a hard rubber strip in the R.F. sub-panel and reached through three holes in the rear of the chassis; C13, C14 are $0.5-\mathrm{mf}$; C 15 is 2 mf.; C16, 1 mf ., C17, C18, $1 \mathrm{mf} ., \mathrm{C} 19,2 \mathrm{mf}$., and C20, 4 mf ., constitute filter bank No. 2295, and the capacities are tapped in this order; C20 being nearest to the mounting base of the bank; The can is the common, grounded side. C21 has a capacity of $.0002-\mathrm{mf}$.

Grid leak R1 (red stripe) has a resistance of 2 meg.; hum-balancing potentiometer R2 is 10 ohms; R3, 1,750 ohms; R4 (green stripe) 17,500 ohms; R5, 3,500 ohms; R6, volume control potentiometer, 600 ohms; R7, 175 ohms R8, 1,000 ohms; R9 is the usual center-tapped resistor (which may be 15 or 20 ohms). R10, of $2,500 \mathrm{ohms}$, takes the place of the reproducer's

Under view of the receiver chassis of the Evercady " 30 ," " 30 C ," and " 40 " receivers; the variometcr, mounted on the top of the chassis is on the same shaft quith the tur iny condensers.
field coil in models in which the dynamic speaker is not used.)

Voltage compensation in PT is obtained by putting the "plug" into the bole marked with the line-voltage figure which is nearest to the measured value of the power supply.

To facilitate shop service, Service Part No. 2715 , an extension cable with terminals to fit over the connector strips on the R.F. and A.F. chasses, is available for the purpose of making external substitution of an R.F. or A.F. chas sis; which enables checking by the substitution method, without removing either cabinet chassis. Volume control R6 varies the positive poten tial of the cathodes of $\sqrt{ } 1, \sqrt{ } 2, \sqrt{ }$, in relation to ground: inversely, this varies the negative bias on the grids of these tules, the grid re turns of which are grounded. Defects in this part of the circuit may occur as a short o the movable arm of R6 to ground (chassis) broken wire in winding of R6; short leads to R6.
If, for any reason, the braided-copper drive cable around the tuning drum becomes too loose to grip the drum dial properly, a new cable (unit No. 2257) or spring should be in. stalled.
It is recommended that, to neutralize the set, a dummy tube be used in conjunction with set, a dummy tube be used in conjunction with adjustment be made for zero indication, start ing with C 12 (V3).
To align the circuits, the same oscillator and meter are recommended; adjustment being made of C5, C6, C7 (in this order). Align for maximum meter reading of A.F. output To adjust the variometer, tune the receiver and oscillator to resonance at about 40 on the dial; loosen the two screws holding the variometer bracket to the gang condenser cradle, and rock variometer for maximum signal;
tighten the two screws. Repeat this procedure at 75 and 25 on the dial. If the tuning circuits do not tune as sharply as normal, o ignal strength is not at par, make certain before aliguing that the condenser plates are not out of position
For aligning and neutralizing, an insulated wrench is required.
The R.F. inductances are matched in one The voltage drop across the portion group. The IIum oftel may be eliminated by changing Hum etector The voltages normally foun below:
eady receivers are as " A ", " A " " " C " " K " Ma. $1 \mathrm{Ma.2}$
$\begin{array}{cccccccc}T u b e & & A \text { " " } B \text { " " } A \text { " " } B \text { " " } C \text { " " } K \text { "' Ma. } & \text { Ma. } \\ \text { V1 } & 2.5 & 109 & 2.45 & 100 & 6.0 & 6.0 & 2.5 \\ 6.0\end{array}$
$\begin{array}{lllllllll}\text { V1 } & 2.5 & 109 & 2.45 & 100 & 6.0 & 6.0 & 2.5 & 6.0 \\ \text { V2 } & 2.5 & 109 & 2.45 & 100 & 6.0 & 6.0 & 2.5 & 6.0\end{array}$
$\begin{array}{lllllllll}\text { V2 } & 2.5 & 109 & 2.45 & 100 & 6.0 & 6.0 & 2.5 & 6.0 \\ \text { V3 } & 2.5 & 109 & 2.45 & 100 & 6.0 & 6.0 & 2.5 & 6.0\end{array}$
$\begin{array}{lrrrrrrrr}\text { V3 } & 2.5 & 109 & 2.45 & 100 & 6.0 & 6.0 & -2.5 & 6.0 \\ \text { V4 } & 2.5 & 109 & 2.45 & 50 & 0.0 & 0.0 & 3.0 & 3.2\end{array}$
$\begin{array}{llllllllll}V 4 & 2.5 & 109 & 2.45 & 50 & 0.0 & 0.0 & 3.0 & 3.3 \\ \text { V5 } & 2.5 & 109 & 2.45 & 100 & 4.5 & 4.5 & 3.0 & 4.3\end{array}$
$\begin{array}{llllllllll}\mathrm{V} 6 & 5.2 & 192 & 5.10 & 175 & 37.5 & - & 20.0 & 24.0\end{array}$
$\begin{array}{lllllllllllll}V 6 & 5.2 & 192 & 5.10 & 175 & 38.0 & -20.0 & 24.0\end{array}$
V8 - 5.10 - -44.0 -
These tests were made with a line voltage of 119 , "plug" in the 115 -volt tap, and the volume control turned full on. The second and third columns, "A" and "B," are readings with the tube not yet placed in tester; Ma. 1 indicates normal plate current and Ma2, plate current upon grid test.

The circuit shown in the diagram is an "R.F.L." (Radio Frequency Laboratories) hook up; all Eveready receivers in the " 30 " series are identical as respects the chassis,

The response characteristic of a circuit tuned by a variometer is exactly the reverse of on tuned by a condenser; that is, the circuit be comes more sensitive as it is tuned to the higher wavelengths. The two methods are com bined in the design of this receiver to obtain even amplification throughout the tuning range.

Volume control R6 is a wire-wound unit
Directly below the field terminal jacks on the Table Model is a snap switch (SW3) which is thrown one way for dynamic, and the other for magnetic, speaker operation. The field coil of the reproducer plugs into pin jacks located on the rear face of the power plant; and the voice coil into two pin jacks mounted between the power tubes.
The insulated terminal board, for adjustment to compensate line-voltage conditions, is mounted on top of the power plant between the power tubes and the rectifier; the removable plug is to be inserted in one of the three holes in the top of this board.
The "Model 30 " chassis is designed for easy servicing by separate removal of either the set hassis or the power chassis. When the two units are reconnected, care should be taken to see that the busses are tightly bolted.

PHILADELPHIA STORAGE BATT.,CO.

NOTE Switch I Right-Hand Terminals aro shortod inlocal position. Left-Hand Terminals are shorted in distance position.
Resistor (3) is mounted at bottom of cabinet.

RESISTORQ IS MOUNTED AT BOTTOM OF CABINET

PHILADELPHIA STORAGE BATT.,CO.

Philco Model 65

PHILADELPHIA STORAGE BATT.,CO.

Radio Service Data Sheet

conoso

This receiver is of the neutralized, tuned-radio-frequency type. For local reception, in certain localities, good results will be obtained when the light-line is used as the antenna., To do this, connect a juraper from "Loc." to "Ant."; coupling to the line is then obtained through the series condenser C21 in the filter block. The receiver is shipped with this connection already made.
High selectivity in this receiver has been achieved by the use of four tuned stages, ganged, with compensating condensers for balancing the tuning of each stage, in addition to the panelmounted compensating condenser, VC, which carries a spring contact. This last contro resonates the antenna stage of R.F.; when thi condenser is rotated counter-clockwise the grid of the first tube V1 is disconnected from the input circuit and grounded. his is the shar range position, used for strong siguals. For weak signals the knob should be rotated clock wise, to reconnect the grid of 1 to the input circuit. Further adjustment to the right allows finer tuning of the antenna circuit.
When using the light socket as an antenna it is advisable to reverse the light-socket plug to determine the best connection for maximum signal strength and minimum hum..
The tubes used in this receiver are: four ${ }^{\prime} 26 \mathrm{~s}$, V1, V2, V3, V5; one '27, V4; two '45s, V6, V7; one '80, V8.
A good ground connection should always be used with the "Model 87 " receiver, which uses the Hazeltine neutralizing system.
The tuning scale used on this set is numbered from 55 to 150 . The numbers represent the 96 authorized broadcast channels, and by adding a cipher after each, give the kilocycles. For example, 85 on the scale represents channel number 85 and a frequency of 850 kilocycles.
cycles. Lack of sufficient voltage on the R.F. tubes may be due to a grounded hum adjuster R6. The "Loc." connection is convenient for testing the general efficiency of the outside antenna. If signals are not heard with the outside antenna connected, but good reception is obtained when the "Loc." terminal is connected to "Ant.", the outside antenna system should be checked.
The efficiency of the ground connection may bg checked by removing the ground connection while weak signals are being received. There should be a reduction of the volume if the ground connection is good; no reduction denot ing a poor ground. (This reduction in volume will not be noticed if the test is made on strong signals.)

PHILCO 87

Tube layoxt of the Philco "Model 87."
If the neutralizing condensers ($\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$) should short-circuit the plate voltage of the R.F. tubes will be increased, in addition to the circuit's "going dead" so far as sigual strength is concerned. A grounded neutralizing con denser will result in very weak signals.

If the circuit tunes broadly, after care has been taken to balance the tuning of each stage, one of the R.F. transformers may be at fault. These are readily replaceable and interebange able; the constants all being standardized.

Under-chassis arrangement of the " 87 ." In the open or local position of $V c$, the neutralizing condenser C1 becomes a conpler to V2, which is then the first R.F. tube.

A caution is issued by the manufacturer with regard to the tuning-condenser gang. If it has been positively determined that the trouble lies in the alignment of the condenser plates, remove the entire condenser and return it for adjustment. The screws holding the stator plates of the tuning condenser in place, and those holding the rotor bearings, should never be loosened. The compensating condensers CS C7 and C10 may be adjusted with a wrench to equalize the tuned circuits. Replacement R.F. transformers of standard values are
separately obtainalile.
separately obtainable.
reproducer, a check with a voltmeter across
the field coil should show approximately 135 volts drop.

With a line-voltage of 125 , the "Model 87 " draws 95 watts from the power line, and the correct set voltages are as follows stages, fila-

Three R.F., and the first A.F; stid bias 6 ments 1.5 (windig A) plasistance and do not R2, R3, R4 are
reduce plate voltage 2.5 (winding B); plate 30 ; grid bias 0 .
Second A. (and pilot lamp) filaments 2.5 Second A.F. (and pilate grid bias 45 .
Rectifier filament, 5 volts; across secondary 700.

The code used in wirling the receiver is Leads from

Colors A.C. SupplyGreen rubber covered A C. SupplyBlack rubber covered A.C. Supply to C21..........Blue, white tracer "Loc" post to C21............Black
Winding A ('26 fila-
ments)White, black tracer Winding A ('26 fila-
ments) A (racer Winding B ('27 heater).. Yellow, green tracer Winding B ('27 heater).. Yellow, plain
Winding C ('45 fila-
Ninding
ments) (...........................Green, yellow tracer
Winding C ('45 fila-
Winding C (45 fia- Gireen, plain
Winding \mathbb{C} center tap......Green, black tracer
Rectifier winding center Yellow, rubber covered
tap (o............................. Yellow
Ch 1 (high-voltage side)..
Ch 1 (low-voltage side)
Push.Pull plate lead
and Field Coil, high Black yellow tracer
Ch 2 (high-voltage side)
and Field Coil, low Blue plain
Ch 2 (low-voltage side)
and amplifier plate leadsYellow, green .tracer
leads
R7 (low-voltage side)
and "B+" on A.F
transformer (detector
plate)Yellow.
Values of parts are given as follows: R1, 10,000 ohms; R6, 6 ohms. C4, C6, C8 (units include R2, R3, R4), each 0.1 -mf.; C11, 001 mf.; C19, C20, $0.5-\mathrm{mf}$. The following are included in the filter block; C12, 0.1-mf.; C13, C15, 1-mf.; C14, C16, C18, 2 -mf.; C17, C21, 0.15 -mf. R7, 70,000 ohms; R8, 4,582 ohms tapped at 157, 640 and 3.785 ohms.

PHILADELPHIA STORAGE BATT., CO.

PHILADELPHIA STORAGE BATT.,CO.

PILOT RADIO \& TUBE CORP.

The circwit diagram of the Pilor "P. E. 6" broadcant recriver, at the left; the dotted square at the right encloses the "iK-111"s power pack, designed
for push-pwll '71.1 operation. Circuit valxes and constants are given in the text and list of parts.

K-113 POWER AMPLIFIER
 K-113 POWER AMPLIFIER

The complete schematic diagram of the Super-Wasp. The various ground symbols

PILOT RADIO \& TUBE CORP.

(20,
 audio, and a ' 45 power tube, in place of the ' 12 commonly uscd; its use improzes output and simplifics the circuit.

PILOT RADIO \& TUBE CORP.

R.C.A:VICTOR CO. (VICTOR DIV.)

Wiring Diagram Alhambra I (7-1)

Wiring Diagram for Borgia II

R.C.A.-VICTOR CO. (victor div.)

Wiring Diagram for Electrola 12-25

R.C.A.-VICTOR CO. (VICTOR DIV.)

Wiring Diagram of Power-Amplifier Units (Used in 9-25 and 9-55) AP-974-A, 951-A and 997-A Wiring Diagram of Power-Ampliner Units

R.C.A=VICTOR CO. (VICTOR DIV.)

(As Used in Model 7-25)

Wiring Diagram for $9-15$

R.C.A.-VICTOR CO.
 (Nictor div.)

Cable Wiring Diagrame Actomatic Electrola Radiola 9-54 above Serial Ne. 6401

Cable Wiring Diagran Autmatic Electrola 10-6s, above Serial No. 5001

A. C. Power Wiring Diagram Automatic Electrola No. 10-69

Schematic Wiring Diagram Electrola Radiola 9-54

Wiring Diagram-Electrola 10-70

R.C.A-VICTOR CO.

R.C.A-VICTOR CO.

R.C.A.-VICTOR CO.

$4+3$ deop

Radio Service Data Sheet

RADIOLAS "SUPER VIII"(AR-810), "SEMI-PORTABLE"(AR-812), 24 AND 26

These four Radiola superheterodynes use the same 6-tule catacomb, the first of this type put on the market by the Radio Corporation of rangement of the units outside the catacomb, and in the electrical and artistic design.
The " 812 ," to which most of this material specially applies, is, an entirely self-contained semi-portable table cabinet set with a battery compartment at each end. The A.F. output is olstained at a jack; a plug-operated switch
changes the circuit from one A.F to two. Anchanges the circuit from one A,F, to two. An is a master rheostat ("Battery Setting"), R3 is a master rheostat ("Battery Setting'), R3 in the diagram on this page, and also a vernier controls I.E. amplifier V. A. A fixed loop an tenna is located in the rear of the calinet. Phones or speaker may be used.
The "AR-810", or "Super VIII", has a highboy cahinet, with a large rotable loop and a loud speaker. The flament circuit is controlled by a door-operated switch instead of SWl, which is replaced on the panel by a knob that controls the loop.

Radiola 24 , is a black-leather-covered portable with a built-in loud speaker and a rotable loop Kadiola 26, the well-known portable so often used for locating interference, is extremely compact, includes a loud speaker and batteries, and has a rotable loop that comprises part of one door. A "home battery box" is used for economical operation at a fixed post. Tip jacks are provided for headphones.
Six UV-99-type (or UX.'99s with adapters) tubes are required; to use the UX-20-type tube at "6 an adapter is required (such as the permit the 20 to assume the horizontal position permit the in to assume the horizontal position an additional 45 -volt " B " battery and a $221 / 2$ volt " "C" battery.
To prevent repetition of details, reference should be made to Data Sheet No. 16, "Radiola
25 Superheterodyne," April, 1930, issue of 25 Superheterodyne," April, 1930, issue of
Radio-Craft. The same sequence of signals is followed through the catacomb.

Looking at the rear or catwhisker side of the catacomh, and at the terminal strip, 11 is at the left and V6 at the right.
Selstation Selector No. 1"' is C1, and "Station Selector No. 2" is C2. The rotor side is indicated below by R two loud speakers are used; in others, one. The connections, in the "810," are shown in dotted lines. C13 may have a capacity of about .006 -mf.
Arrangement of the tube-socket contact springs is shown at the lower left of the schematic, and the correct connections for the oscillator coils directly above. The numbers on the mounting plate correspond with the circuit connections;
if one coil is reversed, the set will be made inoperative.

The loop connects to a terminal board on the back of the cabinet. The normal position for link" is shown in dotted lines; in the second position shown, an external loop may be led to directional 2 , for increased pick-up or more used on post No. 2 or a longer one on No. 1 , with either loop in use. A standard '•R.F transformer" designed for $0005-\mathrm{mf}$. condensers may be used instead of the loop; aerial and ground being connected to the primary, and the secondary leads to posts 4 and 2 , with "link" open. This is usually unsatisfactory near strong stations. If the location is particularly shielded, good operation can sometimes be obtained by connecting post No. $\frac{1}{}$ to ground... Any external slightly the readings of Selector No. 1 . A convenient method of obtaining just the right degree of signal input to the set is to make a
coil of magnet wire, any size, about 30 to 50 coil of magnet wire, any size, about 30 to 50 turns bunched, with a diameter of about six inches, and connect it between aerial and ground; this loop is brought as close to the back of the cabinet as necessary for good coupling.
Absence of signal may be due to open loop or broken pigtail on C1. An open loop may
be caused by wires twisting loose from the col. be caused by wires twisting loose from the collector rings. Dirty or loose rings may cause noisy operation. (In later sets of the Super VIII struction.) A rattling sound in the reproducer may be due to the catacomb springs touching the loop shaft.
Wrong jack-switch circuit change may be due to dirty or bent switch springs, or loose
knob knob.
be heard working properly, distant stations can be heard in either of two positions of C 2 ; local stations may come in at three or four places.
A wave trap or relocation of the set may be necessary.
A cause of trouble may be one of the strands of one of the catwhiskers touching either an adjacent terminal lug or grounding to the can. Occasionally an "oscillating catacomb" will
be found, and the only remedy is to change the be found, and the only remedy is to change the
catacomb; for no manner of adjusting will stop catacomb; for no manner of adjusting will stop the oscillations, which
on all station settings.
on al it is necessary to turn R3 up high, even with new batteries, check the tubes and the " C " lattery's polarity. (The " C " is at the rearinside the loop.) lighted after switch $S W 1$ has been turned to "off" is an indication that the filament is touching the grid. Tulie requirements for V2 seem to be more critical than the others, and tubes subnormal in any way will show up markedly in this position. Reartange tubes with this in mind. Failure of tubes in the Super VIII to light may be due to failure of switch operated by desk fall to make contact; bend
the spring contacts.

Weak or noisy reception, with C1 tuning considerably below C2, may be due to one or more shorted loop turns; inspect loop carefully. springs; clean only with sandpaper and pull up springs. To do this without removing batteries or all tubes necessitates an insulated tool to prevent short circuits. The loop of the SemiPortable is easily removed for inspection after catacomb, battery cable, by-pass condenser, "C,' catch, and handle are out.
"Using phones or a meter with a $41 / 2$-volt forttery, the following table may be used for making continuity tests on the catacomb of Radiola $24, \mathrm{AR} \cdot 810$ and AR-812, without removing it, when the battery cable is dis connected; and tubes are removed:

From	To		Test
1	$V^{1} 1$ grid		Open
4	$V 2$ plate		Closed
5	V2 grid		Closed
6	V1 plate		Open
6	V1 grid		Closed
6	V3 grid		Closed
6	$\checkmark 5$ grid		${ }^{*}$ Closed
6	${ }^{1} 6 \mathrm{grid}$		*Closed
7	$13 \mathrm{~F}-$		Closed
8	V_{1}, V2,	V4, V5, V6 F-	Closed
10	$V 4$ plate		Open
10	Catacomb	can	Closed
10	All		Closed
10	V4 grid		Open
11	$V 4$ plate		Closed
12	Terminal	3	Closed
12	$V 1$ plate		Closed
12	$V 3$ plate		Closed
12	Terminal	14	Closed
13	V'5 plate		Closed
15	${ }^{6} 6$ plate		Closed

* With hcadphones, a weak click should be heard.

The figures in the left column refer to the connection lugs on the terminal strip, to which the whiskers of the catacomb are connected; counting from left to right, and looking at the catacomb from the rear-

Catwhisker No. 2 does not appear on the catacomb; and terminal lug No. 2 is not used. the catacomb, nor No 16 ; their connections to the catacomb, nor No, 16; their connections to
To replace $\mathrm{C1} 2$ a fixed $.0001-\mathrm{mf}$ unit will usually serve. The value of C 10 is $.006-\mathrm{mf}$. C11 (rear of cabinet) may be replaced with a 1.0. or $2-\mathrm{mf}$. unit.

The catacomb of Radiola 26 is mounted differently, and the connections thereto are reversed. As a stage-change switch is not used, the built-in loud speaker is at all times connected to the second audio stage, and the phone-
tip pin jacks to the first stage.

Above "Socket Dctail", at lower Ioacer left, the oscillator coils, their terminal strif, and C2; upper left, loop connections; lower right, "Super VIII" speaker connections. All " $F+$ " leads ($9-10$) ground to cam Lead to center spring of $J 1$ jumps over lower (sleeve), or " $B+$ "' contact C6. within "cat.," comes adjusted for avcrage '99s. Numbers in squatcs refer to catwhiskers; in circles to to terminal liggs. Loop has 14 turns of No. 18 wire, spaced $3 / 16-i n$., on a frame $9{ }^{*} x 181 / 2 "$. Bafteries are in position for the " 812. ."

Radio Service Data Sheet

cran

RADIOLA 25 SUPERHETERODYNE

anorer

This circuit is one of the variations of the "Second-H:rmonic" Radiola Superheterodyne in which the lirnt tabe is reflexed for the first stage of intermediate frequency amplitication The "sequence" of signals in this circuit is as follows: V1 may be considered as both the first stage of R.F. amplification at the broadcast wavelengths, and the first stage of intermediate frequency amplilication at 45 Rc.; $V 2$ is the oscillator and first detector; $V 3$ is the second intermediate-frequency an plitier; V4 is the second detector; V5 is first A.F.; and V6 is second A.F. The desired signals are selected by the loop and C . Snne L1A has a high impedance to the broadeast frequencies, the signal, having passed thro.ght C5, is amplitied by $V 1$ and the output fed to the grid of oscillator $V 2$ through put fed to the grid of oscinator 2 through
the aperiodic R.F. transformer L3-L4. (The the aperiodic R.F. transformer L3-L4. (The
grid circuit of $V 2$ is tuned by I.10.C2.) prevent circuit oscillation in $V 1$, neutraliza tion has been effected through the use of 1.11-4.3-C6. C6 is contained inside the cata comb, and adjustment of this unit is made at the factory.) The intermediate-frequency component in the plate circuit of $V 2$ is coupled by L.? to L.A and then amplified by V1. The amplified output of $V 1$ at this frequiacy is coupled by L5-L6 to the second IFF. amplifier V3: and then, after amplification, by 1.7-I. 8 to the second detector V4. The A.F. output of this tube is amplified by V5 and $V 6$ iu tit usual manner.
The alits that comprise the "catacomb" are contained within a metal can, represented in the diagram as a dotted outline, and sealed with resin.
1.9-1.1u are mounted on a bakelite plate under (?. L10 is the upper and 1.9 is the lower coll (see detail at extreme left); while 5 and 4 are the outside leads, connected as shown in the schematic circuit.
A continnity test of LiA is completed by touching the brass stator-tube of (6 ; which is accomplished hy gently prodding through the small hole, in the lop plate, betwcen the suckets for V1 and V2 ("CT," in the diagram).

If one of the two connected phosphor-bronze contact springs in the loup socket breaks, contact springs in the X in detail at extreme left of diagrami) may lie used as a replacement. These springs drop into the reccptacle and lock into position; they are removed by pushing a snall serewdriver into the holes
in the side of the bakelite receptacle. If the contact springs on the end on the loop, become flattened because of misuse, they may be sprung out again by using a screwdriver placed underneath (this must be done very carefully, else the insulating shell will be split by the excessive pressure).
sulit by the excessice pressure).
If the loop is so jarred as to lose its upright position, it may be re-located by loosening the four machine screws that lock the socket-collar in position, moving it around until the loop is again vertical, and then tightening the screws.
Since both sides of the loop are at a different potential from the " A " battery, a "dead" "C" battery may be an indication that one side of the loop circuit has become grounded; the loop may ground if it is carelessly inserted into the receptacle.
$\forall 7$ is a protective lamp (No. UV-8\%). It s a double-himment lnilb of the "doublecontact" bayonet-lase type; either or both filaments light or burn out if a short-circuit occurs. In some models of the " 23 " this litup and its $1.0-\mathrm{mf}$. by-pitss condenser Cl: have been eliminated. If a replacement lamb is mot available, temporary operation may be obtained by twisting together its three leads olitaned by twisting together
1 (not nambered), 2 and 3 ,
lpon removing from the cabinet the chassis and looking at its rear, there will be sem a bakelite connection strip containing 20 con necting lags; the loop connects to No. 1 : the extreme left, while No. 29 at the extrem. right is not connected to anything. Seventeen black wires are seen to leave the catacoml, and connect to the lugs shown in the schematic circuit as numbers within circles. ly rocking the caticomb on its spring-cradle By rocking the caticunti on its spring-crade
it will be pessible to discern figures, stamped it will be pessible to discern figures, stamped
on a hakejile plate underneath the top of on al lakijite plate underneati the top of the rat." numbering from 1, at left, to 17 (right) which appear in the diagram as numbers within squares. These stranded leads may short, in a few instances, between two connecting lugs; or between a lug and the case of the "cat." which is grounded to "A + "; or, they may break.
Also at the rear of the "cat." is a connec tion-pancl called a "hus har" which wires the filaments either in parallel (as shown in the circuit) or in series, when the con-nection-panel is the special one included in the "A.C. package" required fur A.C. operat-
tionl of this set. Enlighted tubes or noisy operation may be due to loose screws holding and connecting this IB.C. bus bar to the specially-provided filament connections of the tube sockets.
Looking at the front of the set, the looptuning condenser $C l$ is at the left; the oscillator condenser (2 at the right. Noisy or no reception may be due to the rotor pigtail of Cl or C? touching the stator.
As will be noted from consideration of the diagram, the output of the detector may be connected to an external power amplitier through tap 19; or this tap may be connected to a phonogripll pick-up to utilize the A.F. amplifier alone.
Looking at the "cat." from the front, and counting from right to left, tulses 1 to 5 are type 99 tubes marked 11 to $V 5$ in the dialgran; V6 (the left and sixth tube), is a type ' 30 . If a single tube is much be!ow par, it is necessary to overload the remaining tubes to bring reception up to standard, and then the tubes cleteriorate rapidly; whereas normal life may well be a year and over. The filanient potential should never cxceed 3.3 volts, and to determine aecurately when this voltag. has been obtained, a good voltmeter should be connected to the two tip jacks provided on the front vertical panel, just above the filament switch, and shown in the schematic fiament switch, and shown in the schemat.c
diagram tip jachs 1 and 2 . R3 is the left and master control ("Battery Setting") of these filanent potentials; while R2 (right, or "Volume Control") still further reduces the voltage applied to V3.
Batteries of the correct size for the compartments of this set are as follows: C1, Burgess No. 5156 BP or Fveready No. 768; C2, Burgess No. 2370 or Eveready No. 771; A3, Burgess No. 2370 or Eveready No. 71; A3,
6 Burgess No. 6 or Eveready No. 7111 dry cells; B4, 2 45-volt Burgess No. 10308 or Eveready No. 770 ; B5, 2 22 $1 / 2$-volt Burgess No. 2156 (or 2158) or Eveready No. 779.
By plusging into the socket of V5 or V6 a dummy tube base, to the grid-prong of which is soldered a lead wire, it is possible to couple through T1 or T2 the output of $V 4$ or $\backslash 5$ to an external power amplifier of any type. such as push-pull '45s.
The fixed condensers shown in the schematic cireuit are, except for C13. within the "cat." non-replaceable, and have values which are not available here.

R.C.A:VICTOR CO.

(Below) Schematic Circult Diagram of Radiola 60

R.C.A.-VICTOR CO.

LOUD SP'K'R. 104 RPA UNIT.

R.C.A:VICTOR CO.

R.C.A.-VICTOR CO.

Schematic diagram of the Badiola 64. A. C. Auper-Eteterodine Receiver.

R.C. A. VICTOR CO.

R.C.A.- VICTOR CO.

R.C.A:-VICTOR CO.

Schomatic circuit diagram of the receiver assembly of KC. 4 Radioda 50

Schematic circuit diagram of the Socket Power Unit of RCA Radiola 50

Schematic circuil diagram of the receiver and socket power unit of Radiola 51

R.C. A.-VICTOR CO.

R.C.A.-VICTOR CO.

R.C.A.-VICTOR CO.

R.C.A.- VICTOR CO.

SILVER RADIO MODELS 30 (CHASSIS), 60 LOWBOY, 95 HIGHBOY AND 75 CONCERT GRAND

This chassis utilizes ' 24 type sereen-grid tubes in the first four stages: an aperiodic antenna coupler feeds V1, which is connected to V2 through the band selector L2-L3-L4. V3 is the third R.F. stage, and V4 a power detector which is followed, however, by a '27-type first audic stage V5. In the push-pull power stage, V'6 and V7 are '45s

The volume control in this receiver is the 10,000 -ohm potentiometer P 1 ; while the lowresistance instrument $P 2$ is the hum balancer, P1 is a metal-frame component ("PP No. 4477" -Yaxley "Type 510,000 ") and must not, under any circumstances, be replaced with one of the earlier bakelite frame type. When inserting a new unit, drop a fiber washer over the shaft bushing; the lock-nut should be removed and a fiber spacing washer used to insulate the potentiometer shaft from the metal chassis. After replacing the front panel, which is fastened by the lock-nuts of the power switch SW1 and the "overtone switch" Sw2, a second fiber spacing washer is dropped over the shaft of P1, and its nut tightened. A test for a ground to the chassis should be made before soldering the connecting leads of P1.
While the low-note amplification of this receiver is high, and the normal operating hum faintly discernable, if this becomes excessive try other tules in the detector and audio sockets. The power tubes should be selected for matched characteristics.
In the earlier models of this receiver, the cathode resistor R 8 was connected to the white lead of the condenser bank C13, and thus bypassed by 1 mf . capacity; while both red leads of C12. ran to the cathode of $14 . \mathrm{I}_{12}$ these receivers, prolnced before July 8. 1929, it will be found desirable, for the reduction of hum, to rearrange the connections as shown in the diagram below.
The receivers with a serial number above 12,907 contain the "Type 30 filter"-comprising L12 and C14; in the 25 -cycle models, C14 is connected as indicated in dotted lines; in 60 -cycle receivers, as shown by full lines.
In receivers of a lower number, it may be desirable to add this unit to reduce hum. Without it, plate potential readings taken from these sets will be found about 10 volts higher than the figures shown below; in later models, the resistance of the choke coil L12 ("No. 339U") causes this drop.
The following figures represent the average reädings obtained on a Jewell "Model 199" set analyzer, with the line-voltage at 114 and the volume control set at maximum:

Tube	Screcn	"A"	" ${ }^{\prime}$ "	"C"	K	Plate Ma
V1	60	2.25	142	1.0	1.0	2.6
V2	58	2.25	140	1.4	1.4	2.3
V3	58	2.25	140	1.2	1.2	3.2
V4	40	2.25	55	5.4	10	0.2
「5	-	2.30	176		12	6.5
16	\div	2.30	205	40	-	28
$\because 7$	--	2.30	205	40	--	28

In normal operation, this receiver may be tested for noise by shorting the antenua and ground posts, and turning P1 to the full "on" position. Practically no background noise should then be heard at 550 kc .; no appreciable hiss becoming evident until the "Selector" drum has been turned to 1500 kc . Excessive noise may be due to tubes, wiring, or parts. Interchange the ' 24 s until a quiet one has been ob tained for $\mathrm{V}^{\prime} 4$, and another for V1 (the righthand or first R.F. socket). V2 is the least critical ' 24 position.
Inability to receive stations between 200 and 214 meters (1400 and 1500 Kc .), or crystalcontrolled transmissions below 230 meters (above 1300 Kc .), at their designated positions on the "Selector" drum, indicates the need for realignment of the tuning condensers. The correct procedure is: first, remove the chassis from the cabinet, and put it in operation with the shield-can cover resting over only the first three (R.F.) compartments. Next, tune in a weak signal between 240 and 230 meters (1250 and 1300 Kc .), and start with the aligning condenser in shunt with C 4 ; then, in succession, align C3, C2, C1. To align C2 for loudest signal, it will be necessary to unsolder the red wire from the rear stator soldering lug of C1. Then re-solder the red wire to the stator lug of C1 and unsolder both wires (bxt leave them conrected to each other) from the stator lug of C 2 ; and align C 1 for loudest signal. Re-solder the wires to stator lug of C 2 . When they are properly adjusted, the aligning screw of C 4 will be practically all the way in; those of C3 and C2 nearly all in; while that of C 1 will be nearly all out and with frame and spring separated about $1 / 8-\mathrm{in}$. It is absolutely essential that the drum dial and volume control settings remain unchanged during the above operations, which must be carried out in the order specified. If the receiver will not tune down to 200 meters (1500 Kc .), the aligning process has been çarried out with the aligning condensers screwed too -tight.
If the loud-speaker frame becomes ungrounded
and "floats," the receiver will usually oscillate; as, also, if the ground lead is unconnected, poor tubes are in use, the R.l. plate leads incorrectly located, or tube shields not firmly in position. It is vitally important that the three red R.F. plate leads (leading from lugs of sock ets of $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3$, through and under chassis partition to their respective inductors) be pushed down carefully into the angle between the chassis and the partitions, where they run from the socket lug up to the slot in the partition. If, during previous servicing, these leads have been allowed to straggle through the set, and are not placed exactly as specified, the circuits will invariably oscillate. An infrequent cause of circuit oscillation is a short of L10, or a defective C5 or C8.
If the "overtone" switch SW1 fails to change the timbre of programs, carefully check the values of $\mathrm{C} 5, \mathrm{C}_{7}$ and C 8 .
A tension screw on the hub of the dial, which is, held by a lock-nut, permits the drive cord to be tightened when necessary.
If it becomes necessary to replace an R.F. coil, the replacement coil must have upon its end the same crayon identifying number as the defective coil.
The following values are used in the Silver "Model 30" chassis: C5, C7, . $00015-\mathrm{mf}$.; C6, .006-mf.; C8, . 001 -mf.; C9, C10, C11, C12, 0.1 -mf.; P1, 10,000 ohms; R1, R2, R3, 400 ohms; R4, R5, R6, 2600 ohms; R7, 60,000 ohms (blue); R8, 2,000 ohms (white); R9, 10,000 ohms (green); R10, 300,000 ohms (yellow); R11, 3500 ohms (brown) ; R12. R13, one 8001500 ohm tapped resistor; R14, 2 megs. (red); C14, 2. mf. L1, L7, L8, L9, L10 are "Type 274 U' R.F. chokes.
A screen antenna is contained inside the cabinet top.
To readjust the gang condenser bearings, if they are too tight, loosen the dial set screws sufficiently to free the dial, after removing the chassis. Adjust the condenser so that the rotor turns freely. First release all rotor spring tension screws. If the condenser is still tight, or if end-play exists, the thrust screw must be carefully adjusted. The rotor spring bearings should be adjusted one by one, so they do not press the rotor shaft upward. Otherwise, the screw should be completely removed and the upper spring so bent as to bear down upon the rotor shaft (as the screw is tightened) before the lower rotor spring forces the shaft upward: The proper adjustment of the rotor springs is when they are not loose enough to cause vertical play, but permit side play.

SONORA PHONOGRAPH CO., Inc.

SONORA PHONOGRAPH CO., Inc.

SONORA PHONOGRAPH CO.,InC.

SONORA PHONOGRAPH CO., Inc.

SONORA PHONOGRAPH CO., Inc.

SPARKS-WITHINGTON CO.

Schematic Drawing of the Sparton Equasonne Circuit

Radio Service Data Sheet

SPARTON "EQUASONNE" MODELS 931 AND 301 D.C.

Although grounds are shown in, the schematic circuit of this sct, no ground should be connected to this set. The reason is that one side of the D.C. line is grounded at the power house; consequently, if, for example, with the line pligg connections reversed the set should be connected to an external gronnd in any mamner a short-circuit would result. In some J.C. sets fixed condensers will be found in both ground and antemina leads; in this receiver accidental gronnding of the antennal (which usually results, when the lead in insulation of poorly installed acrial is rubbed, through pernitting the lead to touch metal on the buildyernitting the lead to touch metal on the buific ing) is prevented by the antennator in the shown. An additional safety factor in the
D.C. "Equasome" is a 3-anp. fuse in the negative side of the line.

All tuming is obtained before the input of $\ 1$, a band-sclector circuit being used to sccure the desired selectivity. The signal is then amplified successifely by V1, V3, V3, Vt and V5 (V6 is the "power" detector); the signal transfer leeing made through "aperiodic" (broadly-resonant) R.F. transformers. In (broadly-resonant) R.F. cransforaters. series with a sjecial R.F. coll arrangement in shinted hy it fixed condenser of very smal! capacity.

The bank of three 15 -ohm resistors in series with the reproducer's field coil limits the current consumption to approximately the correct amount; more aceurate adjustmeut for bighor low-line supply is ohtaincd through the 7 .ahm resistor which is controlled by the short. intr switch marked "Hi-Io." ("Lo." below 115 switch "Hi " $115.1 ?$ rolts.) It his been 11. molts; "Hi," $115 \cdot 125$ volts.) It his been fonnd that the "llo-velt" D.C. supply in some districts may rise to a ralue of 135 volts; and the rematy in this case is to and to the threeresistor hank a fourth resistor, also of 15 ohms.

The service Min is recommended to check first the 15 -olna resistors in the 45 -ohm bank. There is no other outstanding point for test, in the event of trouble, in this set; the dynamic reproducer requires usually no attention.

Che volume control in this receiver has a resistance of 50,000 ohms
it few cautions must be observed with regard to the filament circuit of this receiver. If the pilot light should burn ont, replace it at once;

Tubc arranncment of the "Equasonnc"

D.L: mudebs.
this will bring back to normal the increased roltage aeross the filaments of the Pype-182 (Sparks-Withington Co's.) power tubes V7.V8 (eytuivalent to the standard 71Λ). The dial light, with a bjolum resistor in series, is shonterl across the filaments of the R, F. amplifiers and the power detector 16 . Therefore, if the lila neut of one of the type "48+" tules should hurn out, V9 will act as a fuse and also burn out; this should be to the Service Man an indication of the tronble. For this reason, too, tubes should le removed from their sockets ouly when the set is discounceted from the line, to when the set is discounceted (If the heater [filaprevent huming ont $V 9$. (If the heater [fila-
ment] of one of the $484 s$ shouk burn out, the ment] of one of the 484 s shoukl barn out, the
remaining tulses in the series will not light until the circuit is completed through a replacement tube or an equivalent resistor.)

As the Sparten tubes carry a 90 - lay guarantee, the Service Man shond acquaint himself with the limitations of this guarantee. The specifications set by the manufacturer for thbes subject to replacenent and bearing the proper sticker, dated. ate as follows: low amproper sticher, dated. ate as follows: how am-
plification; low emissim; loose bases; defective plification; low emissimn; loose bases; defective
welds; unsoldered terminals; gasis; open heaters; one element shorted to another; loose pins; low mutual conductance; no plate current; loose elements; open filament. Thbes having loose tops; broken glass; broken stems; broken bases, or dated ontside the time limit cannot be replaced.

An external "(") battery supplies the bias for the power tubes.

V'9 may be a 3.8 -volit atazda 13 , type G3.
'he current in the filament-heater-resistor
circuit is approximately 1.5 amperes under cor rect conditions. All continuity tests of the apparatus should the made with the set off the line.
Absence of plate voltage on the detecter V6 may be due to: lack of line voltage; an open R.F. choke CH; open push-mull-input A.F. ransfornier primary; or a gromul in the R.F. amplitier.
Operating voltages for this set are as follows: Plate voltage, 17 and $V 8,115$; $V 6$ (volume (on"), 100-108; V1, V2, V3, V4 and V5, (volume "on"), 112.
Grid voltage, V1, V2, V3, V4 and V5 (vol ame "on"), 2 to $3 ; V 6,8$ to $10 ; V 7$ and $V 8$, 321/2:
lilament voltage, Vi, V2, V3, V4, V5 anc -6, (across the six tubes in series) 18; $\^{\prime} 7$ and V8 (across the two tubes in parallel), 4 to 4.5 .
For reference, the characteristics of Sparton ules are given in the accompanying table: in which $S N$ is the Sparton tule-type desiguation FV, filament volts; Fid, filament amps.; (il gid volts; PV, plate volts; PMa, plate milli mips; PR plate resistance. Ju amplitication factor.

SN	FV	FA	GV	PV.	PMa	PR	Mu
$48+$	3.0	1.25	3	90	6.0	16,000	12.5
585	7.5	1.25	45	250	55.0	2,000	3.8
18213	5.0	1.25	29	200	18.0	2,400	
181	3.0	1.40	29	200	12.0	1,500	
401	3.0	1.40	3	90	6.0	7,000	
226	1.5	1.05	3	90	6.0	7,000	
227	2.5	1.75	9	135	6.0	9,000	.0
686	3.0	1.25	3	90	\ldots.	2,000	3.8
182	5.0	0.90	45	200	18.0	2,000	3.0

The Sparton tubes numbered 171, 373, and 201A have been discontinued. The 401 is a "side-heater" tube similar to the Kellogg tule of the same characteristics. The 585 has a wire mesh plate, the 686, also a high-nower tube, has a solicl plate. 'The 182 has a slightly larger output thin the standard " 71 A . The +84 is a hi-mu tube with a 3 -volt filament. The 182 L is a special 5 -volt tube with slightly higher output than the standard ' 45 . Type 280 anse 281 tubes arc similar to the standard 80 and 81.

SPARKS-WITHINGTON CO.

Schematic Drawing of the Sparton Equasonne Circuit

Schematic Drawing of the Sparks Ensemble

SPARKS-WITHINGTON CO.

Schematic Drawing Sparton Equasonne Receivers Model 110

Radio Service Data Sheet

on

On the terminal strip of this receiver are ounted: the power-cable lugs; the grid leak and fondenser; the detector-plate by-pass condenser; the wo center-tap resistors; and the 600 -ohm and 2500 hm "C-bias" resistors.
A special input circuit is used on the Steinite eceivers, for the purpose of obtaining sensitivity The circuit acts as an autotransformer when the antenna lead is connected at the junction between LI and Cl . The purpose of R 1 is to complete the D.C. path for the grid bias.

STEINITE 50-A AND 102-A

ononor

clockwise position cuts in 75,000 ohms additional The resulting liasing potential is sufficient to reduce the plate current to nil; and even powerful local signals are cut out.
The output transformer matching V6 and V7 to the moving coil of the dynamic reproducer is huilt into the reproducer. The primary winding bas a resistance of 285 ohms between center. tap and resistance of 285 ohms between center tap and
each ent. The secondary winding matches the loweach end. The secon
resistance voice-coil.
The power pack of this receiver is built on the

Power-pack parts layout and reproducer connections of the Steinite "50-A" and "102-A."

Each unit of the four-gang condenser has a eapacity of 380 mmf ., maximum, and 30 mmf ., minimum. The secondaries L3, L6, L9 consist each of $873 / 4$ turns of No. 30 enameled wire on tube $11 / 4$-inch in diameter. They are connected in series with the balancing coils (L4, L7, L10) which are wound with 32 turns of the same size vire; they are placed at the low-potential ends of the secondary coils, and in non-inductive relation. The primary coil, placed inside the main secondary, tonsists of 24 turns of space-wound No. 38 adcance wire.
vance wire. volume control R4 is turned entirely "on" in a clockwise direction the bias on the R.F. stages is normal (600 ohms in the cathode eads) ; turning this control to its maximum counter-
unit plan; whereby, if one unit is defective, it can be easily removed and another substituted in its place. Some difficulty may be experienced in removing the chassis from the Model 102 unless removing the chassis from the Model First, remove the following procedure is followed. First, remove"
the two serews with which the "Radio-Phono" the two screws with which the "Radio-Phono"
escutcheon is beld in place. Sufficient slack has escutcheon is held in place. sulficient slack has
been provided in the leads so that it is possible to raise the escutcheon assembly, turn it on edge and pass it down through the hole into which it fits, permitting its removal as an integral part of the receiver chassis. Second, no attempt should be made to remove the receiver chassis from the shelf to which it is attached until the shelf has shelf to which it is attached until the shelf has been removed from the cabinet. The shelf with
chassis attached can be readily removed by with-
drawing the four screws which secure it to the calinet, permitting the entire assembly to be pulled out from the back of the cabinet and making easy access to the six bolts which secure the chassis to its supporting-shelf.
If the volume control does not function, con sideration of the schematic circuit indicates tha the trouble may be due to a shorted C2 or C3.
If the transformer's filament windings for 1 V'5 「8-V9 are making contact or flashing over esistor R2 (situated under the terminal strip and cod bill be burnt out and consequently how be burat out and consequents open circuit, or no "C. voltage on the of 15 . The remedy for this condition is renove the transformer from the power pack an substitute another. Only early models should re quire this repair.
The phonograph turntable should rotate at tho standard speed of 78 r.p.m.
Any hum which may develop is ordinarily trace able to the detector; particular care taken in the election of a detector tube when first setting up te receiver will result in best operation over an extended period.
$l^{\text {rariation }}$ from the standard circuit to include connections for the phonograph-radio switching ar rangement on the $102 \cdot \mathrm{~A}$ is illustrated; the schem atic is laid out to correspond with the view of the switch escutcheon, which is a rear one.
The aligning condensers of this receiver, shown in the parts layout, are not shown in the schematic circuit.
Line voltage tap colors of pack are: red, 90 white, 100 ; blue, 110; green, 120.

The average voltage readings (as shown by a standard set analyzer) for the $50-\mathrm{A}$ and $102-\mathrm{A}$ are given in the table which follows:
Readings of Tester with Test Plag in Socket of Set Tube oxt
of Tester Txbe in Tester (Volts) Tube Tube (Volts)
No. Type " A " " B " " A " " B " " C " $\left.\begin{array}{c}\text { Nor- Grid } \\ \text { mal Test }\end{array}\right]$ Milliamperes $\begin{array}{lllllllll}\text { V1 } & 27 & 2.75 & 134 & 2.45 & 125 & 6.5 & 4.25 & 13.0\end{array}$ $\begin{array}{lllllllll}\text { V2 } & \text { '27 } & 2.75 & 134 & 2.45 & 125 & 8.7 & 5.0 & 14.0\end{array}$ $\begin{array}{lllllllll}\text { V3 } & \text { '27 } & 2.75 & 134 & 2.45 & 125 & 8.7 & 4.8 & 13.6\end{array}$ $\begin{array}{rrrrrrrrr}\text { V4 } & \text { '27 } & 2.65 & 92 & 2.40 & 32 & \ldots . & 2.5 & \cdots . . . \\ \text { V5 } & \text { '27 } & 2.65 & 144 & 2.40 & 118 & 8.2 & 3.6 & 9.0\end{array}$ $\begin{array}{rrrrrrrrrr}\text { V5 } & 27 & 2.65 & -144 & 2.40 & 118 & 8.2 & 3.6 & 9.0 \\ \mathbf{V} 6 & , 50 & 7.7 & 355 & 7.40 & 310 & 51.0 & 36.0 & 98.0\end{array}$

These values were determined with a line-voltage of 110 and with the line-voltage tap on the power transformer set at 110 V. (Volume Contral posi tiqn "Max.")

STEINITE RADIO CO.

STERLING MFG.,CO.

Complete Schematic Diagram of the No. 4 Circuit

Circuit Diagrams nono. 4 Chassis, Power Unit and Speaker

STERLING MFG., CO.

No. 4 Speaker (Part No. 7450)

No. 4 Power Unit (Past No. 7383A)

Circuit Diagrams-ono. 3A Chassis, Power Unit and Speaker

No. 3 Yower Unit (Part No. 7348A)

STEWART-WARNER CORP.

STEWART-WARNER CORP.

Circuit Diagram of Stewart-Warner 950 Series D. C. Receiver
950 Sories 25 and 60 Cycle A. C. Radio Reesivers

Radio Service Data Sheet

conor

STEWART.WARNER SERIES 900

-

This receiver is so designed as to permit the use of aerials of widely differing characteristics. In addition to being adaptable to aerials of the usual type, it makes provision for use of the light-line, if satisfactory operation results when the R.F. input is taken from the light-line through C13. (Sw. 1 on tap L.). If the light-line is being used as the aerial, reversing the line plug may improve reception.

Colume control is effected ly varying R2. This varies the grid-bias potential on tubes V1, V2 and '3. The first tule V1 has a tuned input and its synchronism in relation to the other tuned circuits, is accomplished through a trimming condenser, C5, controlled from the panel.
The detector output of this receiver may be tapped to any external equipment, by connection to posts provided on the rear of the receiver. Specifically, it is intended to make convenient the operation of television equipment by connecting to hinding posts BP1 and BP3. Also, the detector input may be tapped for operation of a phonograph pickup, by comection to posts BP1 and BP2. There is no switching device for disconnecting the pick-up: for its leads would introduce a capacity that would impair the "phase" conditions, (resonance of the stages) of the set; consequently, the pick-up connections must be removed from the receiver when only radio reception is desired. The amplification of the detector tulse is obtained when the pick-up is connected to posts BP1 and BP2.
The circuit used in this receiver is of a neutralized type, and is specifically calleci a "halancedbridge" comnection. (Changing tubes of the same type does not disturb the circuit balance.) Before attempting to re-balance the R.F. circuits, in the event of circuit oscillation, it is adrisable to make certain that the ground is a satisfactory one. It is convenient to do this by connecting a voltmeter hetween the ground wire and one sitle of the $110-$ volt light-line. The maximum voltage reading obtained in this manner should le practically the same as the reading obtained by contrecting the meter across the light-lines. Connection to aerial and ground is obtained through two leads; one black, for ground, and one blue, for aerial. Compensation for aerial variation is obtained by adjustment of switch Sw. 1; which taps the primary of the input R.F. transformer L1.
In the earlier sets of this series, condenser C26 (next R9) was omitted, and a fixed center-tap re. sistor used instead of the variable R7. These two changes were made to reduce hum. Shoulld one of the earlier receivers produce an objectionable hum, the set may be brought up-to date by installing the variable resistor and condenser. (A "No. 66058" bracket is used for holding this unit.)

This receiver is designed to use either a magnetic or a dynamic reproducer; the field winding of the Stewart-Warner dynamic has winding of the Stewart-Warner dynamic has
a D.C. resistance of approximately 1,800 ohms. There is uo transformer in this dynamic reproducer; the secondary of the output unit T3 matches the constants of the (12 -ohm) speaker voice coil. A 4-connection

receptacle is provided for the dynamic reproducer; but magnetic reproducers connect in stead to .tip-jacks. The "B" voltages, which are disturbed when the dynamic reproducer field coil is removed from the circuit are equalized loy load resistor R8; which is placed in shunt with the high voltage D.C. when the "link" is connected to the two binding posts shown at the upper right of the

schematic circuit. Magnetic, and other makes of dynamic, reproducers connect, as shown, from plate to plete of the power tubes. At a line voltage of 110 , the primary of PT should receive alrout 88 volts. When making any changes in the receiver connections or parts, it is well to watch the regulator R12. If it heats to a visible red. the plug should be pulled and circuit checked.

The parts of this receiver may be duplicated for service replacements by using the code numbers included in the following data: Units C1, C2, C3, $\mathrm{C} 4, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10$ and Cil constitute a complete assembly, No. 61,055 -complete with bracket, No. 61,933; C5 is No. 60,955; C12, 38,261; C13 of :0001-mf. capacity is included in the shield can of PT; C14, C15 and C16, of .006-mf., are each 61,469 ; C17, . 002 -mf., 61,470 ; C18, 1.5 mf ., 600 -volt rating and C19, 2 mf., 400 -volt rating are 61,303; C20, 0.5 -mf., 400 -volt; C21, $1.0-\mathrm{mf}$., 400 volt; C22, $0.5-\mathrm{mf} ., 400$-volt, C23, C24 and C25, $0.25-\mathrm{mf}$., 200 volt, constitute, with two ,choke coils, filter bank 61,729; C26, 1.5-mf., 66,059. The resistors are. R1, 800 ohms, 61,830 ; R2, 60,000 ohms (max.), 61,557; R3, 1 meg. 61,590; R4, 2,400 ohms-R5, 850 ohms-constituting unit 61,839; R6, 20 ohms, 61,648; R7, 20 ohms, 66,060; R8, 10,000 ohms and R9, 5,500 ohms constitute unit 61,665; R10, 75,000 ohms, 61,559; R11, 7,000 ohms, 61,833; R12, line ballast, 61,868 . Power trans former PT is 61,888; L1, 61,803; L2, 61,804; $\mathrm{L} 3,61,805$; L4, 61,806; Ch1, Ch2, and Ch3, 61,405; T1, 61,914; T2, 61,915; T3, 61,916. For the pilot light V9, a 2.5 -volt lamp is used.
All connections in this receiver are gold-plated; copper is used for shielding. The line-voltage ballast R12 is designed to equalize line voltages between the limits of 100 and 130 volts. The R.F. trans formers are checked at three wavelengths from the output of a crystal-controlled oscillator at the fac tory; little likelihood that they are not in exact balance with each other, should the tuning circuits not "phase" exactly.
In this receiver the plate D.C. supply for the set is fed through R.F. chokes, Ch1 Ch2 and Ch3 Resistors R4 and R5 are wound on one form.

Units which might be subject to occasional re placement are easily removable from the set chassis Filament leads are twisted pairs.

The grid bias on the '27s is limited to a minimum value by R1; but R? makes possible a maximum bias which is sufficient to give full control of the amplification obtainable from the receiver. TABLE
(Readings with Jewell "Pattern 199")

Tubes				Milliamps.	
	Volts	Volts	Volts	Plate	Grid
		"B"	"C"	Normal	Test
V1	2.2	132	8.5	3,8	7,0
V2	2.2	138	8.5	3.2	5.8
V3	2.15	132	8.5	3.9	6.8
V4	2.10	32	0.0	2.8	2.8
V5	2.2	132	7.5	5.4	6.5
V6	2.25	226	47.5	26.0	30.0
V7	2.25	226	47.5	26.0	30.0
V8	4.7	\ldots

*523 A"S24 D.C. RADIO RECEIVER CIRCUIT

Schematic Circuit Diagram of Stromberg-Carison Receivers Nos. 635 \& 636.

Radio Service Data Sheets

As will be seen in the photograph of the as. sembled units, all operating parts are enclosed. All transformers, inductances and capaçities are mounred in metal boxes; and filled with moisture proof compound. The power transformer leads are laced to the main cable. To insure good connection for the grounding leads, the chassis of steel has been copper plated. The 641 is a small model in a cabinet known as the "Treasure Chest." The 642 is the same chassis, nearly, in an art console. A removable panel is provided on the cabinet botrom to allow ready access to the apparatus and wiring on the under side of chassis base without dismantling the cabinet. (In the case of the 641.) The receiver chassis and reproducer are bolted to a removable structure; as is also the front panel. This renders servicing easy. The items shown io the photograph are numbered as follows: 1, Output transformer assembly; 2 , audio amplifier socket (45); 3, A.F.T.; 4, "gnd." post; 5, "ant." post; 6. cover over tubes (one nearest dial, '27; next three. 24's) ; 7, filter condenser bank; 8, cover over highlow switch; 9, power supply cord; 10, rectifier tube ('80) socket; 11, power transformer; 12, choke coil assembly; 13, volume control and switch; 14, dial; 15, selector control; 16, on-off switch; 17, pilot lamp socket and bracket. Pin jacks for loud speaker cord are at rear, left, (and consequently not visible) ; while the pickup jack, power outlet, and power supply cord are grouped ar rear right. The volume control is double and operates by varying the biasing potentials on the control grids of the first and second radio amplifier tubes as well as the voltage supplied to radio amplifier from the antenna. The two controls are simultaneously operated trom one knob. The grid bias control does not begin to operate until the volume is partially reduced by the antenna control; this' prevents distortion due to overloading the radio amplifier when the volume is turned down on very strong local signals. This rype of volume control does nor cause detuning when it is varied. A '27 is used as a "linear" power detector with automatic bias. This derector operates at high radio frequency voltages provided by the R.F. amplifier and is not subject to the ordinary distortion to which the "square law" de. tector is heir. The grid bias is auromatically adjusted to the proper value for the strength of signal received to obtain this linear characteristic. The
value of the R.F. input to the detector is so high that the outpur R.F. input to the detector is so high that stage of amplification shown in the diagram. The output transformer secondary connects to pin jacks, in the model 42 receiver; in the 41 , a fixed condenser connects one pin jack capacitatively to the primary of the output transformer, while the other pin jack is then connected to the center tap on the 10 ohm resistor which shunts the power tube fila.
ment. A jack has treen placed in the rear of the through use of rype 24 tubes. (These receivers give chassis for plugging in a pickup. By rurning the an amplification from anterina to the grid of detector volume control completely "Off" (counter-clock" zube of approximately 259000 and an overall ampliwise) the pickup is connected in the grid circuit of the detector tuhe. This tube then acts as an amplifier, making a two stage amplifier for the pickup energy. To energize an A.C. rype dynamic reproducer an outler has been supplied in the model 41 : it is sutomatically cut off when the set is dis. fication from antenna to mutput of approximately $2,350,000$. Comparing this with a good receiver using the same number of tuning stapes with '27 ubes and employing A.F. stages which gives an amplification from the antenna to the detector grid of apptoximately 12.500 ,

connected at the panel. In the 42 this outlet is used to supply the A.C. needed for the built-in dynamic reproducer. Hum due to this circuit arrangement of the reproducer is nullified by careful design; including the use of a "shading ring." Rust flakes and filings in the air gap will result in distorted reception. To reduce as much as possible this cause of poor operation, the pole pieces have been heavily zinc plated. Very complete shielding is necessitated by the high amplification obtained
and from the antenna to the output of approximately s75,000, it will be observed that the Nos. 641 and 642 receivers have approximately 20 times more ampli. fication between the antenna and the detector. This allows the use of a linear power detector, the omitting of the first audio stage and still gives an overall amplification of approximately four times hat of the other receiver. Instead of the dynamic reproducer field a foor lamp may be connecred to the A.C. output jack mentioned above.

STROMBERG CARLSON MFG.CO.

NO. 638 D.C. RADIO RECEIVER SCHEMATIC DIAGRAM

Nos. 652 and 654 Receivers

STROMBERG-CARLSON MFG.,CO.

STROMBERG-CARLSON MFG.,CO.

STROMBERG-CARLSON MFG., CO.

Schematic Circuit of Chassis for Nos. 10 and 11 Receivers

STROMBERG-CARLSON MFG.CO.

STROMBERG-CARLSON MFG.CO.
№. 633 \& 634

Radio Service Data Sheets

(8) TEMPLE-Models 8-60-8-80-8-90

In this receiver A.F. transformer TR1 has a ratio of 4-to-1; TR2, 3-to-1. Cases are octasionally reported where, when a loud signal is tuned into the set, the receiver will suddenly go dead but immediately start again if it has been retuned. This condition is due to fine metallic dust which collects berween the condenser plares and causes an electro static short at irregular plotervals. Every precarcion static short at irregala plas precaution to overcome this difficulty has been taken and it is not found in receivers bearing serial numbers over 8000. (Pipe cleaners make excellent condenser plate cleaners.) The small carbon resistors on the bortom of the chassis have been color coded (to prevent substitution of wrong values), as follows: 750,000 ohm resistor, either all red or natural color with a blue dot. The 2 meg. leak is natural with yellow dor and the $43,000 \cdot 0 \mathrm{hm}$ resistor (derector plate lead and also in phonograph pickup lead), all black or black with dark green dot or all black with red end. In case a carbon resistor is substituted in place of the wirewound grid suppressor these will be light
in the filament-to-ground circuic of the '45's or a shorted by-pass condenser across the 900 ohm portion of the large resistor. The UX280 or the CX380 is recommended by the manufacturers for the reason that some makes of tubes pass 200 milliamperes in stead of the required 125 milliamps, at 350 volts. This would cause (a) the A.C. input fuse to blow: (b) rectifer tube burnout; or, (c) power transformer to heat to a dangerous point. In instances of excessive hum (a rare condition, as unusual precautions have been taken to prevent this, as a study of the schematic will, in part, show , check the characteristics of the detector and fitst audio tube. All receivers bearing serial numbers under 7,500 have the pilot light in pratlel with the 27 filaments. Beginning with serial numbers approximately 7,600 the pilot light light is parallel with the filaments of the ' 45 tubes. This change was made due to the fact that many of the $21 / 2$-volt pilot lights supplied by the lamp maker would show a decided flicker when their source of powcr was from the
moist, will be satisfactory. In some instances high resistance in the water meter where sets are grounded to the water pipe will cause oscillation or impaired reception due, ofren, to excessive regeneration. Cases of this kind are easily remedied. Simply fasten a ground clamp on each side of the water meter and connect a No. 14 wire "jumper" across the meter, attaching to the two ground clamps. The 14 inch dynamic reproducer is designed particulatly for this receiver. Tuning is of the singlecontrol rype. With every stage balanced at the factory extreme sensitiviry and selectiviry result. This excellent operation is obtained through proper ase of 1000 ohm grid suppressors; and volume is adequately governed by the 6000 ohm unit. Under exceptional conditions it may be desitable to shumt the low resistance R.F. transformer in the plate circuit primary of the second stage (second rabe), with a 10 ohm resistance. This unit bas been provided; and is controlled by the switch indicated in the schematic circuit. As the field coil of the

green in color. The voltages indicated in the table "Set Analysis," for 112 volts; any other than this requiring due allowance for the different values which will be indicated. Wide plate voltage variance denores poor rectifier tube or defective power pack; great milliammeter variation, unsatisfactory tubes. No reading oa the filaments shows that either there is ao A.C. iaput, that a fuse has blown, or tiere is an open primary in the power transformer. Before making further test be sure that the A.C. line to which the set has been connected is alive. (To test your A.C. line the easiest way is to simply insert any 110 volt lamp in the socket to be used for the fadio line connection.) No "C"' voltase on the '27's denotes either defective resistors in the cathode return or shorted resistor by-pass condensers. No return or shorted resistor by-pass condensers. No

TYPICAL SET ANALYSIS

Tubes
Tubes Out
Tubes In

Tubes		Tubes Our		Tube					
Type	Use	Voltage		Voltage			Normal	Plate	Plate
		" A "	'B"	" ${ }^{\text {A }}$ "	"B"	"C"		Test	Change
'27	R.F. 1	2.10	136	2.05	124	7	4.8	6.9	2.1
'27	R.F. 2	2.10	136	2.00	122	6	4.6	6.8	2.2
'27	R.F. 3	2.15	136	2.00	122	7	4.7	6.8	2.1
'27	R.F. 4	2.15	136	2.05	121	7	5.0	7.2	2.2
'27	Det.	2.15	140	2.10	48	0	2.5	3.0	0.5
'27	1st A.F. 1	2.15	164	2.10	140	8	4.2	5.8	1.6
'45	Out.	2.45	260	2.25	240	43	26.0	32.0	6.0
'45	Out.	2.45	260	2.25	240	44	22.0	28.0	6.0
'80	Rect.	5.40	AC	4.80	AC	0	*50.0	0.0	0.0

Line Voltage 112. Volume Control Position Full On. *Reading on meter, one anode only; actual current twice this value. Note: Cathode voltages show a reversed reading.
' 27 filament fine. Changing pilor lights usually ternedied this trouble but it was found far mote satisfactory to make the change of filament wiring and thereby entirely do away with the ficker. If is suggested that service men working on sets having serial aumbers below 7,500 make this filament wiring change while the chassis is out of the cabinet, as a matter of standard practice toward increased customer satisfaction. In spite of the fact that most A.C. sets apparently work almost as well withour a ground as they do with, the installer should in no case make an installation where the set is not connected to a good ground. This can be either a cold water pipe or if necessary a steam radiator. In installations where neither are available a sixfoot iton pipe driven in the ground outside of the
dynamic reproducer constitutes part of the main filter, any defect in this winding will become manifest in the receiver performance, and plate porentials will not be obtainable; with the exception of the supply to the '45 tubes, which does not go through the reproducer feld coil. The first choke coil is contained in the power pack carrying on top of it fuse connections for the 110 volt primary. This winding is tapped for 110 and 125 rolt supplies and change is made by reversing the position of the 2 ampere prorective fuse. Both the first audio trans. former and the input transformer of the ' 45 push pull stage are mounted in the metal can located nearest to the condenser drive. In case of open A.R.T. windings, replace both transformers (the entire can) thus insuring a perfectly matched audio amplifier at thus insur
all times.

TEMPLE CORPORATION

U.S.RADIO \& TELEVISION CO.

The schematic circuit and zeiring connections of the C. S. Radio "Model 30 " screen-grid automotive recciver. When the positive side of the car's storage battery is grounded, the red lead connects to terminal "A" of the "unction box, from which one side of all voltage readings is then taken. If the battery's negative is gronnded. the red lead connects to "ground" on the screw " B " which mounts the junction box.

ZENITH RADIO CORP.

ZENITH RADIO CORP.

ZENITH RADIO CORP.

ZENITH RADIO CORP.

年

ZENITH RADIO CORP.

ZE-S A-POWER SUPPLY

ZENITH RADIO CORP.

ZENITH RADIO CORP.

ZENITH RADIO CORP.

ZENITH RADIO CORP.

ZENITH RADIO CORP.

ZENITH RADIO CORP.

ZENITH RADIO CORP.

ZENITH RADIO CORP.

ZENITH RADIO CORP.

SPLITDORF ELEC., MFG., CO.

Don't spend your life waiting for $\$ 5$ raises in a dull, hopeless job. Now . . . and forever . . . say good-bye to 25 and 35 dollars a week. Let me show you how to qualify for jobs leading to salaries of $\$ 50, \$ 60$ and up, a week, in Electricity -NOT by correspondence, but by an amazing way to teach, RIGHT HERE IN THE GREAT GOYNE SHOPS. You become a practical expert in 90 days!

Lack of experience-age, or advanced education bars no one. I don't care if you don't know an armature from an air brake-I don't expect you to! I don't care if you're 16 yearsold or 48 -itmakes nodifference!Don'tletlack of money stopyou. Most of the men at Coyne have no more money than you have.

Binileond Fare Allowed

I will allow your railroad fare to Chicago, and if you shouldneed part-timework I'll assist you to it. Then, in 12 brief weeks, in the great roaring shops of Coyne, I train you as you never dreamed you could be trained on a gigantic outlay of electricul apparatus. . . costing hundreds of thousands of dollars . . . real dynamos, engines, power piants, autos, switchboards, transmitting stations . . . everything from doorbells to farm power and lighting . . . full-sized . . . in full operation every dayl

NoBooks-NoPrinted Lessoris

No books, no baffling charts . . . all real actual work... right here in the great Coyne school . . . building

NowinOur New Home This is ournew, fireThis is ournew, modern home wherein is installed thousands of dollars' worth of the newest and most modern Electrical Equi pmentofallkinds, Every comfort and
convenience has been arranged to make you happy and contented during your training.
ELECTRICAL SCHOOL異. C. LTWIS, Pres. Established 1899
500 S. Paulina Street - Dept. BO-69 - Chicago, Illinois
employment bareau gives you a lifetime service. Two weeks after graduation, Clyde F. Hart got a position as electrician for the Great Western Railroad at over $\$ 100$ a week. That's not unusual. We can point to Coyne men making up to $\$ 6$ (rui a month. $\$ 60$ a week is only the beginning of your opportunity. You can go into radio, battery, or antomotive electrical busidess for yourself and make up to $\$ 15,000$ a year.

GEI THE RACIS

Coyne is your one great chance to getinto electricity. Every obstacle is removed. This school is 30 years old-Coyne training istested-proven beyond all doabt-endorsed by many large electrical concerns. You can find out everything absolutely free. Simply mail the coupon and let me send you the big, free Coyne book of 150 photographs. . . facts. . . jobs. . . salaries \ldots opportunitides. Telle you hom manyearn expenneewhile train-
ing and how we assist ourgrading and how fe assistour grad-
uates in the field. This does not oblligate you. So net atonce. Just mall coupon.

Get This EREE Book

Mx. EL, C, IEwIQ, Preaident

1 500 8. Pindian Stog Chicnge, Iit.

Dear Mr. Lewis:

Without obligation gend meyour big free catalog and all details of Railroad Fare to Chicago, Free Employment Service, Radio, Aviation Electricity, and Autoe motive Courses, and how I can "earn while bearning"
\qquad
\qquad

SPLITDORF ELEC,MFG., CO.

NATHANIEL BALDWIN CO.

SCHEMATIC DIAGRAM OF BALDWIN SCREEN GRID RECEIVING SET

means

Built to PERFORM!

SINCE the birth of the radio industry, the ELECTRAD organization has built radio resistors of superior engineering refinement, quality manufacture and perfect adaptability to existing radio requirements.

The success of this policy is shown by the universal use and endorsement of ELECTRAD Resistors by radio experts all over the world..
ELECTRAD Resistors in the radio you build, buy or sell will pay you the dividends that come from perfect operation and long efficient service.
ELECTRAD engineers are specialists in resistors and voltage controls. Your problems are their problems and you are invited to ask for their advice and cooperation whenever you desire it.
The radio service man is doing an important work in insuring radio owners satisfaction and the ELECTRAD organization welcomes the opportunity to be service men to service men.
The ELECTRAD line of stock resistors and voltage controls covers practically every radio need. It will pay you to familiarize yourself with all Electrad products.

Mail the Convenient Coupon for general literature, of wite us a letter about special problems.

ELECTRAD TRUVDLT Resistors
 (Illustrated)

TRUVOLT Resistors are accepted the world over as the standard of accuracy, dependability and long life.
They are built on a distinctive, patented principle that insures maximum air-cooling and convenience of adjustment.
The resistance wire is wound first around an asbestos core, having a flexible, enamelled copper center.
This winding is then in turn wound around a grooved fireclay base and firmly anchored at each terminal.
TRUVOLTS are made in all usual sizes and valués and are ideal for eliminator and powerpack use.
TRUVOLT ADJUSTABLE has the same basic construction as the fixed types, but the resistance can be conveniently varied by knob control. There is a protective ventilating shield around the unit and provision is made for baseboard or panel mounting. The resistance element has unusually long life and gives smoother variation, as the contact travels endwise over the wire. 22 stock sizes, $\$ 2.50$.

SLIDING CLIP

A Great Convenience in Repair Work

The fixed type TRUVOLTS are really semi-variable, on account of one or more sliding adjustable clips in between the main terminals (seeillustration). This is an exclusive feature of great value in experimental work, or in making repairs where exact resistance values are desired.
No other type resistance affords this convenience.
Mail Coupon for Data

175 Varick St., New York, N.Y.

ARGUS RADIO CORP.

The numerals followed by letter "R"e indicate soldered points in numeridal order on the row on heft hathd of the radio sub-panel (when facing the recoiver) and counting from front towards rat.

WITH RADIO PROGRESSI

Radio is one of the real marvels of this modern age. Its development has been phenomenal. It is growing, changing, evolving new principles which require constant study. The demand is for technically trained men-men who keep pace with the unfolding revelations of this mighty and promising industry.

The International Correspondence Schools Course in Radio, prepared and constantly supplemented by outstanding authorities in the field, is specifically designed to meet the requirements of the radio industry for technically trained radio men. The manufacturer, the distributor, the dealer, Communication and Steamship Companies, the U. S. Government, all insist upon up-todate, expert training. Recognized for its completeness and practicability, an I.C.S. Radio Course provides this training.

Authorities responsible for the preparation of the I.C.S. Radio Course include: H. H. Beverage, Radio Corporation of America; George C. Crom, American Transformer Company; Keith Henney, author of "Principles of Radio;" Malcom E. Gager, instructor at the Massachusetts Institute of Technology; E. V. Amy, consulting radio engıneer, formerly with R.C.A.; H. F. Dart, authority on radio tubes; Julius C. Aceves, consulting radio engineer, formerly of Columbia University, and others.

The I.C.S. Radio Course is complete, from the foundational principles of radio to the most advanced stages, thoroughly and scientifically covering every department of this vast industry. It is a modern education in radio, a valuable guide of advancement for men engaged professionally in the radio business. It also outlines the principles and possibilities of television.

Mark and mail the coupon. We will send you all details. This act may be the real beginning of your career in radio!

INTERNATIONAL CORRESPONDENCE SCHOOLS, Box 2326 Scranton, Penna.

Without cost or obligation, please tell me all about the NEW RADIO COURSE

[^1]ATWATERKENT MFG.CO.

Fig. 202. Schematic Diagram of 3kd Type of Model 60-C.
 a few of these modeis, the quality condenser is connected actoon the primary of the outgut eransformer. the
In these sets, the output traneformer has five lead instean of veven.

TRANS. CORP. OF AMERICA

Schematic Diagram of Chassis and Power Pack
A.C. -51, A.C. -53, A.C. $-55,25,51-25,53-25,55$.

Iver on the alert for new ways of helping our members make more money out of Radio, the Radio Training Association of America now offers ambitious men an intensified training course in Radio Service Work. By taking this training you can qualify for Radio Service Work in 30 days, earn $\$ 3.00$ an hour and up, spare time; prepare yourself for full-time work paying $\$ 40$ to $\$ 100$ a week.

More Positions Open Than There Are Trained Men to Fill Them

If you were qualified for Radio Service Work today, we could place you. We can't begin to fill the requests that pour in from great Radio organizations and dealers. Members wanting full-time positions are being placed as soon as they qualify. 5,000 more men are needed quick/ If you want to get into Radio, earn $\$ 3.00$ an

We furnish you with all the equipment you need to become a

Radio Service Man!
hour spare time or $\$ 40$ to $\$ 100$ a week full time, this R.T. A. training offers you the opportunity of a lifetime.

Radio Service Work a Quick Route to the Big-Pay Radio Positions

Radio Service Work gives you the basic experience you need to qualify for the big $\$ 8,000, \$ 10,000$ to $\$ 25,000$ a year Radio positions. Once you get this experience, the whole range of rich opportunities in Radio lies open before you. Training in the Association, starting as a Radio Service Man, is one of the quickest, most profitable ways of qualifying for rapid advancement.
If you want to get out of small-pay, monotonous work and cash in on Radio quick, investigate thisR.T.A.training and the rich money-making opportunities it opens up. Nospecial education or electrical experiencenecessary. Thewill to succeed is all youneed.

Mail Coupon for No-Cost Training Offer

Cash in on Radio's latest opportunity! Enroll in the Association. For a limited time we will give to the ambitious man a No-Cost Membership which need not . . . should not. . . cost you a cent. But you must act quickly. Filling out coupon can enable you to cash in on Radio within 30 days, lift you out of the small-pay, noopportunity rut, into a field where phenomenal earnings await the ambitious. You owe it to yourself to investigate. Fill out coupon NOW for details of NoCost Membership.
The Radio Training Association of America 4513 Ravenswood Ave. Dept. ORS-7, Chicago, Ill.

[^2]
COLONIAL RADIO CORP.

I will train you

 If you are earning a penny less than $\% 50$ a week，send for my book bo information on the opportunities in Redio．

 You can build over 100 cir

ssee 费 week
＂My earnings in Radio are many times greater than I ever expected they
would be when I enrolled． They seldom fall under They seldom fall under course cost four or five course cost four or five
times more I would still consider it a good invest－ ment．＂

E．E．WINBORNE
1414 W．48th St．，
Norfolk，Va．

Jumped Erom 835 to

 \＄100 a week＂Before I entered Radio I was making $3{ }^{3} 5$ a week． Last week 1 earned $\$ 110$ servicing and selling Radios．I owe my success to N．R．I．You started， J．A．VALGHN 8715 S．Kingshighway， St．Louis，Mo．

Sceo entra in monthe ＂In looking over my records I find I made $\$ 300$ my spare time．My best week brought me \＄107． I have only one regret
reparding your course reparding your course it long ago．＂

HOYT MOORE
R．R．3．Box 919 ， Indianapolis，Ind．，

It is free．Clip the coupon Now．Why be satisfied with $\$ 25$ S30 or $\$ 40$ a week for longer than the short time it takes to
get ready for Radio．

Redio＇s growth opentag hundrede of \＄50，§列5， \＄100 week lobe every yen

In about ten years Radio has grown from a $\$ 2,000,000$ to a $\$ 1,000.000 .000$ industry．Over 300,000 jobs have been cre ated．Hundreds more are being opened every year by its continued growth．Men and young men with the right train－ ing－the kind of training I give you－are needed continually：

You have jobs to choose froms

Broadcasting stations use engineers，operators，station managers and pay $\$ 1,800$ to $\$ 5,000$ a year．Manufacturers continually need testers，inspectors，foremen，engineers．service men，buyers，for jobs paying．up to $\$ 15,000$ a year．Shipping companies use hundreds of Radio operators，give them world wide travel at practically no expense and a salary of $\$ 85$ to $\$ 200$ a month．Dealers and jobbers employ service men， salesmen，buyers，managers，and pay $\$ 30$ to 8100 a week． There are many other opportunities too．My book tells you about them．
 45 to \＄25 a woek while leamiting

The day you enroll with me I＇ll show you how to do 10 jobs．common in most every neighborhooc，for spare time money：Throughout your course I send you information on servicing popular makes of sets；I give you the plans and ideas that are making $\$ 200$ to $\$ 1.000$ for hundreds of N．R．I． students in their spare time while studying．

Talking Movies，軍elevision，Wired Radio Heriaded Radio principles as used in Talking Movies，Television and home Television experiments，Wired Radio，Radlo＇s use in Aviation，are all given．I am so sure that I can train you satisfactorly that I will agree in writing to refund every penny of your tuition if you are not satisfied with my Lessons and Instruction Service upon completing．

Get your copy today．It tells you where Radio＇s good jobs are，what they pay，tells you about my course，what others who have taken it are doing and making Find out what Radio offers you，with－ out the slightest obligation．ACT NOW．

J．E．SMITH，PResitdent
National Redio Institute Dept．，00．92 Washington，D．C．

our Own Reane

Pioneer and World＇s Largest Home－Study Ra－ dio training organization devoted entirely to train－ ing men and young men for good jobs in the Radio industry．Our growth has paralleled Radio＇s growth． We occupy three hundred times as much tloor space now as we did when or－
ganized in 1914． cuits with these outfits，You build and experiment with the circuits used in Crosley， Atwater－Kent，Eveready popular sets．You learn how popular sets．You learn how work，how to make them work，This makes learning at home easy，fascinating．

J．E．SMITH，President
National Radio Institute，Dept．oG－92 Washington，D．C．

Dear Mr．Snith：Send me your book．This request does not obligate me．

Name
Address
City ．．．．．．．．．．．．．．．．．．．．．．．．State

OFFICIAL RADIO SERVICE MANUAL

Radio needs you... That's why the entire Radio industry is calling for trained men ... That's why thousands of men who answered these advertisements are now earning from $\$ 2,000$ and up a year. Radio is highly interesting work ... with opportunities that are yet unlimited. Manufacturers and broadcasting stations are now eagerly seeking trained RCA Institute men... Aviation and radio in the movits also provide innumerable opportunities . . . Millions of sets need servicing. . . thousands of ships require experienced operators...Never before was there an opportunity like this in Radio.

This is the Only Course Sponsored by

 Radio Corporation of AmericaRCA sets the standards for practically the entire Radio industry... The RCA Institutes' Home Laboratory Training Course enables you to learn more than the mere ABC's of Radio...In your spare time, in only an hour or so a day, you can obtain a thorough, practical education in Radio... You get the inside inforrration, too, because you study right at the source of all the latest, up-to-the-minute developments. RCA, the world's largest Radio organization, sponsors every single detail in this course.
You learn Radio tv actual experience with the remarkable outlay of apparatus given to every student. You learn the "How" as well as the "Why" of every Radio problem, such as repairing, instaining and servicing fine sets. That's why every graduate of RCA Institutes has the experience, the ability and the confidence to hold a worthwhile Radio job.

Practical Instruction for You to Study in Your Own Home

RCA Institutes offers four different courses ...certainly instruction that you need. A complete serviceman's and repairman's technical course . . . advanced course . . . complete course without code . . . and a complete course including code. And practical instruction with each course. Courses that teach construction, repairing, service, broadcasting and ship operating.

Graduates of RCA Institutes Find It Easier to Get Good Jobs

They are closest to the source of Radio's greatest achievements because so much of the progress of Radio is measured by the accomplishments of the great engineers in the huge research laboratories of the Radio Co:poration of America.

Students of RCA Institutes get first-hand knowledge, get it quickly and get it complete. Success in radio depends upon training and that's the training you get with RCA Institutes. That's why every graduate who desired a position has been able to get one...That's why graduates are always in big demand.

Study Radio at the Oldest and Largest Commercial Training Organization in the World

Send for our Free Book...it will explain our practical methods of training that has prepared hundreds of men for success in Radio. Remember that you, too, can be succes ful... can speed up your earning capacity . . . can earn more money in Radio than you ever earned before. The man who trains today will hold down the worthwhile Radio job of the future. Come in and get our free book or send for it by mail. Everything you want to know about the opportunities in Radio. Forty fascinating pages, packed with pictures and descriptions of brilliant opportunities in: this gigantic, world-wide profession.

See for yourselt why graduates of RCA In. stitutes now occupy thousands of well-paid positions. These positions are usually avail. able in from 3 to 10 days after graduation for men who can qualify. RCA Institutes will back you up to the limit. Our catalogue is yours free...,SEND FOR IT TODAY!

Clip this
 Coupon NO W:

 RCA INSTITUTES, Inc. Dept. ORSM. 75 Varick St., N: Y.Gentlemen: Please send me your FREE 40-page buok which illustrates the brilliant opportunities in Radio and describes your laboratory-method of instruction at home!
Name...

AMERICAN TRANSFORMER CO.

(P.F. 250 POWER AMPLIFIER)

Statement by McMurdo Silver Hresident, Silver-Marshall, Inc.

It has always been our policy to publish the full technical details of all SilverMarshall Receivers, for we fully realize that the success of our sets depends not only on careful, painstaking manufacturing, but on the ability of the ultimate consumer to obtain satisfactory service.

We maintain a technical service information department and will be happy to give any legitimate service men or organization complete technical information on any Silver-Marshall Receiver they may be called on to service.

S-M Radiobuilder

The RADIOBUILDER, Silver-Marshall's official publication, is edited by McMurdo Silver with the thought in mind of giving the service man detailed news from the great S-M laboratories before it is given to the world.
Mr. Silver has earned a reputation of knowing what
the public wants, and by regularly reading the RADIO-
BUILDER, thousands of service men keep IN
ADVANCE of the industry. This is proven by the
many "scoops" that Silver-Marshall has to its credit:
screen-grid circuits, power detection, tuned audio
transformers, A.C. screen-grid short-wave receivers.
the utilization of FOUR A.C. sereen-grid tubes, high-
frequency cut-off transformers, and a dozen others.
The subscription rate is 50 cents for twelve issues.
Don't miss the July issuel

S=M Datas Sheets

A Silver-Marshall Data Sheet, giving complete, detailed information, is published on all S-M parts equipment. They are freely supplied to service men and accredited service organizations for a small part of the handling costs-2 cents each. Recent Data Sheets are listed below:

No. 16-712 Tuner (Development from the SargentRayment

No. 18-722DC Band-Selector Six Receiver
No. 19-692 Power Amplifier ('50 Push-Pull)
No. 20-677. Power Amplifier ('45 Push-Pull)
No. 21-737 Short-Wave Bearcat
No. 22-770 Screen-Grid Auto-Set

Mount the adapter or socket at any convenient place inside the cabinet. Insert the proper AMPERITE Line Voltage Control tube and the receiver is ready for operation. When making the above connections, first disconnect the house line plag.

GRAYBAR ELECTRIC CO.

Schematic circuit diagram of receiver and socket power unit-all grounds are connected to frame and metal cabinet

C.R.LEUTZ INC.

Circuit diagram of the Leutz Universal Trans-Oceanic recelver. By means of a voltmeter and nine-polnt switch all A. B
and C voltages from 0 to 500 are read directly
 in service work.. use DURHAM metallized and insure satisfied customers

REMLER RADIO CORP.

Schematic Wiring Diagram of the Remler 45 K. C. Super-Heterodyne Receiver, Using the Rice Split-Loop to Obtain Regeneration.
SILVER MARSHALL, Inc.

Schematic Diagram of the SM 690 Public Address Amplifier.

AUTOMATIC RADIO AND MFG. CO. ("TOM THUMB" PORTABLE)

STANDARD RADIO CORP.

BLAIR RADIO CO.

AMERICAN TRANSFORMER CO.

The Amertran Type 2-AP Audio
Amplifier and Type 21-D "Hi-Power Box."

"Supreme by Comparison"

Simplify your choice of testing instruments . . . enjoy the profits and prestige of "Supreme" standards ... standardize on Supreme Testing Instruments . . . "Supreme by Comparison."

Makes every, test on any Radio Set-

In every competition and comparison Model 400-B Supreme Diagnometer is acknowledged "Supreme by Comparison"-without a rival in its field. Amazingly complete in its testing facilities... providing analysis of Pentode, Screen Grid and Auto Receivers in addition to its countless circuit combinations, Model $400-\mathrm{B}$ is admittedly the marvel of the radio servicing industry. Endorsed and recommended by practically every ;ervicing authority.
Put your service on a par with 1930 proficiency . . . Modernize with the Supreme Diagnometer. It pays for itself. in a few months ... Faster and more accurate servicing means greater profits. So far ahead in its field that it will be modern years from now!

A REVOLUTIONARY SET ANALYZER

Size $31 / 4 \times 97 / 8 \times 1 / 16$. Weight 6 lbs Dealers' Net Price, F.O.B. GreenCounter Type Port

A sensational valus in a counter or port able Tube Checker. Tests all tubes, including Pentode, Screen Grid. Sll Second
plate 280 and 2 -voit 30 series, all without adapters. $\mathbf{8}$ mil scale prorides easy and accurate reading. Simple in opera-tion-sturdy in construction
provides accuracy and speed in tube test-
mol ing at an exceptionally low price. Large $31 /{ }^{\prime \prime}$ D'Arsonyal meters - all readings $_{\text {plainly marked on panel. Line switch }}^{\text {m }}$,

SUPREME TUBE TESTER
MODEL 50

Dealers' Net Price, $\$ 9850$ F.O. B.

A super efficiency instrument invatuable to technicians, laboratories, public address syith automatic voltage regulator. Manufactured under license from Ward-Leonard
Electric Co. The finest in tube-testing Electric Co.
equipment.

SUPREME

OHMMETER
MODEL 10

Dealers'
Fet Price, $\$ \$ \$ 50$
Fiss.
Greenwood, $\$ \$ \$ 0$
Eiss.
Embodying most advanced features in
Olmmeter design. ohmmeter design. Directly calibrated in 0 to 10,000 olims. Porket size for Scale ability. Extremely Pandy and useful for continuity checking.

25 TESTING INSTRUMENTS IN ONE
All Readings on One Meter
Only One Meter to Read
SUPREME SET ANALYZER MODEL 90

Dealers' Wet Price, F.O.B. Green- $\$ 7850$
 It provides 79 pishibs.
It provides 79 possible analytical readings
It furnishes A.C. and D.C. Voltage and Current readings on ONE METER
Voltage readings up to 900 volts
Current readings to 300 Milliamperes
Resistance 1000 Ohms per volt A.C. or D.C.
External pin jack connections
High and low resistance measurements
Polarity indication
Pentode Testing - Auto Receiver Testing
IT DOES MORE THAN ANY THREE OR FOURMETER Set Analyzer on the Market
QUICKER, SIMPLER and with a higher degree ON accuracy - plus the advantage of ONLY
"SUPREME BY COMPARISON"

Most good distributors carry the complete line of Supreme Instruments in stock. If yours cannot supply yon, write direct to

Supreme Instruments Corp.

373 Supreme Building :: Greenwood, Miss.
Distributors in All Primcipal Cities
Service Depots in New York, Philadelphia, Pittsburgh, Chicago, Kansas City, Seattle, Toronto, San Francisco

AERODYNE SIX

The "Acrodynal Six" zuas in its day a very good recciver; with cortain refinements introduccd, it will serve those whose meeds are satisfied by a battcry-operated set. A-fcw simple changes are shown by the doticd lines and X s in the original circxit, above; and the recommended "parallelflate fecd" detcctor circuit is giz'cn at the lower left; the plate should be by-passed to grownd by C10 in erither case.

AMBASSADOR FOUR

At the right, the ". 1 mbossado Fonr" reccircr as originally desipned. Its first R.F. stage, indicated by a dofted square, may be replaced by the serecngrid stage shosen in the dotted panel at the left.

MAGNAVOX CO.

Circuit arrangement of the Magnavox Types TRF-5 and TRF-90 receivers; Nore that this single-dial set is tuned by variable inductances variable condensers. Servicing one of these receivers requires treatment different from that which would
obtain when the more usual type of receiver is being serviced.

CONTINENTAL WIRELESS \& SUPPLY CO.

Latest circuit of "The Voice of the Road" automobile recrivicr.
The amplification protided is high in both radio and audio channcls, giving scnsitivity zeith the small acrial system achich can be accommodated in a car. Note the serics filament connections and the separate cunthection for A.F. screcn-grid bias.

INCREASING

of

RADIO SERVICE MEN, CUSTOM SET BUILDERS, EXPERIMENTAL LABS., BROADCAST STATIONS, SCHOOLS, COLLEGES, UNIVERSITIES, AMATEURS, HIGH-POWER AMPLIFIER

CONSTRUCTORS, TECHNICIANS, AIR TRANS. PORT LINES, SHORT. WAVE FANS, ETC.

Transmitting 1500 to $5000-\mathrm{v}$. D.C.

R. T. I. training is so closely linked with the development of Radio-past, present and future-that it deserves your consideration for what it can do for you or someone you know wno wants to step up in the field. It is time-tested (being founded upon a course of training started early in 1922) and hundreds of successful Radio Servicemen, dealers, salesmen, broadcast station operators, special set builders, etc., give the training full credit fo- their success.

Today, R. T. I. training constantly revised and amplified, is as near perfect as time, money, brains and experience can make it. It is endorsed by leading radio men and radio trade associations.

Complete Training for "SERVICE MEN"

SUPERVISED BY WELL

 KNOWN RADIO MENThe ${ }^{\text {Droblem of }}$ of training men for Radto servicing is solved
b) R. T. I. Everythlng that comes up in a service man's
daily work is covered from the minute he rings the customer's
ithor bell until he leaves her (or him) with a satisfled smile.
is practical, thorough and complete. An R. T. I. service man
ering the sets of 25 prominent manufacturers-pictures-wiring
$\begin{gathered}\text { diagrams-installation-" "trouble-shooting", repalr, etc. it goes } \\ \text { along with the course and is very valuable belng kept up- }\end{gathered}$ R. T. I. Home Training is practical and up-to-date It is prepared by experts. Both lessons and training methods are continually supervised by a board of men who are actively engaged in Radio as executives with prominent concerns - manufacturing, jobbing, retailing, servicing, broadcasting, enginecring, etc.

ALL BRANCHES COVERED Television and Talking Pictures, Too

R. T. I. training is so complete there is hardly a subject that is not well
corered. It includes the latest in Telerision, Talking Pletures, Public rovered. It includes the latest in Telerision. Talking Pletures, Public nformation

LIFETIME CONSULTATION
 Free of Extra Cost to Everyone Who Enrolls

In addition to the regular training Work Sheats which are constantly revised, every R. T. I. student is kept up-to-the-minute with bulletins of latest information right out ,
(onsultalion sirvire is illso supplied on problems of engineering, installation, etc.

LET F. H. BOHNELE AND R: T. ${ }^{\text {ANARD }}$ HELP YOU
Mr. Schnell, Chief of the R. T. I. Staf of one of the ablest end best known radio men
in Americe. He has in Americs. He has oxperience. First to ess tablish two-way amateur communication with Europa.

- Former traflo manAger of American Radio ant Oemmender of the U. S. N. R. Inventos and designer of Radio apparatus. Consultant dio manufacturers.
F. T. I. Adrisory Board F. T. I. Adrisory Board composed of men prom inent in the Radlo in durstry.

The Booklet tells how

Inquiries Indited

We shall be glad to send you our booklet and answer any inquiries about the value of R. T. I. training for you.

RADIO \& TELEVISION INSTITUTE Dept. I15B, 4806 St. Anthony Ct., Chicago

RADIO \& TELEVISION INSTITUTE

Dept. 1158, 4806 St. Anthony Court, Chicago.
sernd me. Free and prepaid you: booklet and full details of your three-in-one Home Training (without obligating me in any way).
THE R. T. I. ADVISORY BOARD of men actively engaged in the Radio Industry, supervises the preparation, revision and rendering of training service. The R. T. I. booklet tells you who these men are.

Name

Address

City...

UNITED AIR CLEANER CO

BUCKINGHAM RADIO CORP.

ANY RADIO SERVICE MAN WILL MAKE MORE MONEY FOR HIMSELF OR HIS EMPLOYEES

as soon as he realizes that a thoroughly satisfied radio set owner is his best advertisement and endorsement.
Successful service men are always carefully building up an ever-increasing patronage of thoroughly satisfied set owners, thereby securing a continually growing all-the-yearround income.

Thousands of successful service men have already discovered that a home demonstration with a set of EVEREADY RAYTHEONS helps them make more money because these tubes completely satisfy the most critical set owner.

Everyready Raytheon 4-Pillar Tubes incorporate ALL of the latest developments in the tube art. In addition to their superior electrical design, they have a patented 4 Pillar type of mechanical construction and die spacing which insures that the uniformly excellent characteristics built into the tubes at the factory will be unimpaired by shipping or handling.

EVEREADY RAYTHEON 4-PILLAR TUBES

ARE

QUICK ACTING

The listener hears the program in a few seconds because of the perfected space insulated heater and high emission cathode.

HUMLESS

because of the patented non-inductive heater and electrostatic shielding system.

NOISELESS

because all metallic joints in the structure and shielding system are spot welded.

LONG LIVED

because of careful selection of materials, rigid inspection in manufacturing and the use of a patented continuously active "getter" for maintaining a high vacuum throughout the life of the tube.

VERY UNIFORM

because of the patented 4-pillar construction and die spacing of the heater, cathode, grid and plate elements.

GUARANTEED TO GIVE COMPLETE SATISFACTION

All Eveready dealers are authorized to replace defective tubes.
A very complete chart showing the electrical characteristics and required operating voltages of all receiving tubes will be sent free of charge to all service men upon request.

NATIONAL CARBON CO., Inc.
 General Offices: New York, N. Y.
 Branches:

Chicago - Kansas City - New York - San Francisco
Unit of Union Carbide Iㅏㅁ and Carbon Corporation

BROWNING DRAKE CORP.

WEBSTER ELECTRIC CO.

Discriminating Service Men Follow the Choice of Well-known Engineers ?nd Specify

Polymet Products

These finely built parts are used by practically all leading radio receiver manufacturers, following thorough and successful laboratory tests,
ENGINEERS DO NOT GUESS-THEY KNOW!

FIXE䁶 RESISTORS

Wire-wound Tubular Flat Strip-Flexible Grid Leaks

VARIABLE HESISTORS
Carbon Volume Controls
Wire-wound Volume Controls

Rheostats-Potentiometers

TRANSFORMERS
Audio Transformers Power Transformers Standard Choke Units

COILHINDINGS

All types of coils, except redio frequency. built to specification

MAGNET WIRE

Enameled Wire
Sizes, 18 to 42-in case lots

> A copy of Special Service Men's Catalog of POLYMET RADIO ESSENTIALS will be sent on request.

POLYMET MANUFACTURING CORP.

World's Largest Manufacturers of Radio Essentials 833-S East 134th Street :-: :-: :-: New York City

[^3]BALKITE PRODUCTS CO.

PIERCE AIRO INC.

MAGNAFORMER 9-8 SUPER-
heterodyne

[^0]: 1500 obms
 1200 ohms.
 1500 ohms
 1200 ohm
 475 ohms.
 1500 ohms.
 4100 ohms.
 4100 ohms.
 8330 ohms.
 15.250 ohms.
 15.250 ohms
 156 ohms.

 156 ohms.
 4250 ohms
 16,665 ohms.
 180 ohms.
 6 -ohm Potentiometer.
 1 Megohm.
 50,000 ohms variable.
 100 ohms.
 21,000 ohm

[^1]: Name
 Street Address
 City
 State
 n to International Correspondence Schools
 Led., Montreal, Canada

[^2]: The Radio Training Association of America 4513 Ravenswood Ave., Dept. ORS-7 Chicago, Ill.

 Gentlemen: Please send me details of your No-Cost training offer by which I can qualify for RadioService Work within 30 days. This does not obligate me in any way.

 Name.
 Address

 City

[^3]:

