A RADIO MESSAGE

For Radio Service Men!

From RCA Institutes

AMBRICA'S oldest radio school . . . RCA Institutes . . offars up-to-date instruction to men who may wish to learn such branches of radio as talking pictures, aircraft radio, broadcast station or studio . . . also advanced courses in the servicing of home entertainment equipment. In this instruction, fundamentals have been combined with practical work on actual equipment to provide you with a thorough, basic knowledge. Alert, up-to-date teachers bring you the latest methods and developments. Investigate this unusual training! RCA Institutes operates four resident achools . . . New York, Philadedphia, Boaton and Chicago . . . the
only schools associated with the largest, most complete research laboratory in the radio industry. Founded 22 years ago, for one purpose . . . to train men who seek advancement in radio. For those who cannot attend the resident achools, RCA Institutes offers a series of Extension Courses. You may study at home in your spare time. Tuition costs for either type of study are moderate.
Radio and its allied fields move fast. Only the alert man can hope to keep up with developments. So fill in and mail the coupon TODAY . . we will immediately send you full details about . . . Practical instruction in radio and the associated electronic arts.

AUTOMATIC RADIO COMPANY

RADIO'S NEWEST BOOK"

 AND HOW THEY WORK

 AND HOW THEY WORK}

By ROBERT HERTZBERG

THE vacuum tube is one of the most important single elements in radio work of any kind, yet it is probably the least understood of all radio devices. Most radio experimenters and Service Men have only a hazy idea as to how it functions, and because of this lack of knowledge, they cannot realize the greatest enjoyment or profit from their work.

MODERN VACUUM TUBES, our newest book in the Radio-Craft Library series, will help to make the theory and operation of tubes understandal le to everyone. It is written in clear, simple language, and is devoid of the mathematics that confuses the practical man who has neither the time nor the desire to wrestle with complicated formulas and equations. It describes the fundamental electron theory, which is the basis of all vacuum tube action, and goes progressively from the simplest two-element tubes up to the latest pentodes and thyratrons. It will quickly brush away many misunderstandings about radio tube operation that have been bothering you for years.

The Book contains valuable reference charts and characteristic curves of all the standard tubes and many special ones; detailed "exploded" views of the various types; diagrams of socket and pin connections, etc. These charts alone are worth the price of the book. Slip a copy into your service kit and you will find it useful on almost every job.

MAIL
 COUPON
 TODAY!

AUTOMATIC RADIO COMPANY

GENERAL MOTORS RADIO CORP.

AUTOMATIC RADIO COMPANY

BALKEIT RADIO COMPANY
L, - ANTENNA AND RFF COIL.
L_{I} - OLTECTOR AND OSC. COIL.
l,-rif choke.
i.f-intermedate relquency
1.F-INTERMEDIATE FREGUENCV
TRANGFORMER AGSEMBLY.

BALKEIT RADIO COMPANY

WIRING DAGRAM
MIDGET SCREEN GRID

DELCO APPLIANCE CORP.

DELCO 32.VOLT RADIO RECEIVER CHASSES

Models RB-3 Console, RC-3 Jr. Console and RA-3 Compact

These three cabinct model receivers. desigucal ior farm districts inwered lis 32 -volt suphly sestems, are mannfactured by the leelco . Ippliance (iorn., Rochester, N. l., and employ the same chassis, the schematic eircuit of whieh is hown helow. The 32 -volt or "farm lighting" fower line supplies only the filament potential as shown: the plate potentials must be olitained fiom a block of "li" hatterics or from a Delco Jower Cinit.
Hefore connecting the power mit. thrin the fuwer switch to the "alf" position. The powe pwitch is incorporated in the volume control and is turned off g_{y} turating the lefthand knols to the left or in a connter-clockwise direction as far is it will go. Connect the jower unit (o) tha chassis loy means of the 3 -leat cable accorling to the following color conle: red. "P'lus $135 \quad \because$ commetion on the Delco 1wwer unit maruon, "Plas 67.3 V'," tap; black. the negative lead. 'The ". l^{\prime} " bad on the receiver chassis is plugged into the 32 -volt power line; reversing the position of the plug in some instances may moprove recepition a hittle.
. is indicated in the diagram, this 32 -volt chassis employs four type '36 screellgrid tulres amd two type pentodes; these 38 s ate connected in parallel, plate-toplate, srid-to-grid. ste.
mate, grid-to-grif. cic.
In the tunt with cach of the condensers in the gang is a trimmer. The nuts of these small condensers are accessible for adjustment thrmugh four holes in the tol of the condenser shield. A bakelite aliguing tool numst le used, in order to prevent injury to the inductances within their respective shield cans. The fregutency at which it is recommended that this classsis be aligued is 1400 kc . . Idjust the vol. ume liy means of the volume control until the station siguals can be heard faintly but clearly.

If the pointers on the dial window do not arectl. indicate the frequency of the stations, the dial may lee rotated to the correct position. the dial may lo rotated to the corre will le necesary to remove the To do this, it will lee nt.
chassis from the cabinet.
hassis from the cabmet.
After the chassis is rehoved from the cabinet,
After the chassis is relloved from the cabinet,
measure the vertical distance from the lottom measure the vertical distance from the lottom of the calinet to the indicating points ant the dial windoy (inside the calmet). Tune in a station of known frepuency and loosen the two soluare-head set screws which hold the dial and square-head set to the tuning condenser shaft. Inold the condenser rotor stationary and turn
the selcotor dial on the combenser shaft until the frequency shown on the selector dial ot that marticular station is the same vertical that garticular station is frome the lutton of the chasis as that previously measured from the lontum of the brevionsly neasured from the botum of die cabrinet to the inclicating
wiblow inside the cabinet.
lock the selector dial assenbly on the shaft y tightelling the two square-head screws and reassemble the chassis in the cabinet.
The dial-liglit is rated at 6 volts and has a staulard farith-light base. It can le removed or replaced easity by lifting the dial light, socket and bracket assembly nu and oft the lial light momuting bracket.

A gockl groumb commection is mecessary for liest operation. L'se all approved gromud clamp to make a connection to a coll water pipe or a six-fout iron rod driven into maist gromme. "Ihe antentia may be 100 to 150 feet long.
The knot, at the left of the station selector dial window operates the comblimation volume control and off-on switch. The togyle switch located on the left-hand side of the cabinet is the local-distance switeh shown in the schematic circuit as SW゙.1. The large kinol, at the right is the tuming control and the contral one is the tone selector
Nute that when the local-distance switch is in the up or "distance" position, the receiver is adjusted for manimmo sensitivity. However, when the switcl is in the down or "local" position battery puwer is conserved as described below In this position the volume on distant tation is very ureatly raluced and satidactory tacention is possible ouly from lacal stations reception is possible only better cuntral of Incidentally, this provides ketter will trol of vol une on local stations int. as will ine oliseried by reference to the scliematic circuit, there is conservation of the batter: current
Tubes for these 32 -volt receivers are availathe from the Deloo company, and are somewhat special in their chatacteristics. although, in liet of these, the more stambard types may lee used; they carry the desigmations 1)- 2.36 for the screen grid tipe, and [)-23s for the pentore.

Is will be evident lig refercince to the scliematic circuit. the problem of operating on a 32 . volt supply necessitates the use of a receiver desigu entirely difterent from other thes. To desist this siturion adequately it has been conmeet this sin design of the Delco sidered advisatile,
32 -vol radio set, to limit the line current de-
mands to supplying only the slament current required by a munher of heater or cathode-type tulnes, the ' 36 's and '3s's slown in the schematic circnit. This system of comnection elimimates the need for heavy tilter chokes in the ". 1 " circuit.
There then renams the matter of supplyins "l:" :end "C" potentials to the circuit. The minat satisfactors solution to this probilem. it was decisled. Woult be the use of "In" batteries to suphls: "l:" curreut; anul the principle ni voltage drop across a resistor in serics with the "u"" supuly to furnish the required " C " putential. Uf course. this voltage is suluracted from the wtal ${ }^{-1}$:" voltage available, and the rembinaler constitute the voltave which will lee arailalie fur use at the pilates of the tules.

The "C" potential for thles Rll. R1"2 and R1:3 is the drop across a sixed 250 olmu resistor and that portion of a variable ts. UuO ohm resistor which maty lee in the ci-atit at the time: varia ion of this value constitutes the ouly bulume control in this receiver--except for the change which is elfected when switch SII 1 is operamed, or the tome control is anjusteat. The detecter is of the plate-rectification or power type the high negitive bias required for this form of circlit oncration leeng ohtamed the frop acrois a 15,100 olink resistor in the lromprid letector athole lead bias for peutede tules is oltained from a 750 for the peatude thlies is olitaned from a 750 hill cathote fesinuil the power outpit cir cuit is mut push-pull but is parallel, as pre viomsly stated.
Thie screen-grids of the pentodes are isolated from the phates, as far as .. C. is cont cernel. by means of ath irom-core clowe coil and 1. mif. fived condenser in the high voltage lead common to leoth, as slumw in the schematic circuit. 'The output of the pentoles is trans. former-coupled to the dyamic remodncer voice oil ine whe the usual outhut-tye atide refore the telul cail of which is connected directly across the 32 -volt supply.
To inumere the tuning claracteristics. small conpling condensers are commected to the high putential emls of the R.F. tuning coils
I line-filter. consisting of two, 0.1-mf. fixsi condensers comected in series and the center tap grommed, is commected across the 32 -vol power line. Its use prevellts. surges from atiecting the operation of the set.

Schamatic circuit of the Dido 32-I'olt Recciacrs, Models RB-3 Console, KC.3 Jr. Comsole. and R.t. 3 Compith. The detcitor is resistantc-cafacity

GENERAL ELECTRIC CO.

RADIOTRON SOCKET VOLTAGE Model
110 VOLT D. C. LINE
T-12-D
voltage at which the Radiotrons operate.

Radiotron No:	Cathodo to to Control Grid Volt.	Cathode to Screen Grid Volts	Cathode to Plate Volte	Plate Current M. A.	Heater Volte
1	1.5	62	98	2.0	6.0
2	3.2	54	92	0.2	6.0
3	0.3	99	95	5.5	6.0
4	0.3	99	95	5.5	6.0

GENERAL ELECTRIC CO

SERVICE NOTES

FOR

General Electric Radio Model J-70 and I-75

ELECTRICAL SPECIFICATIONS

Voltage Rating 105-125 Volts
Frequency Rating 50-60 cycles and $25-60$ cycles
Power Consumption
Type of Circuit.

Number of RF of Radiotrons RCA-235, 2 UY-227, 1 UY-224, 1 RCA-247 and 1 UX-280
Number of R.F. Stages. . One
Number of I.F. Stages. .One using one tuned input transformer and one untuned output transformer
Type of Second Detector
Power self biasing

in series with condenser that tunes secondary of interstage transformer at "low" position
Number of Audio Stages.
One-Single Pentode
Type of Rectifier
Full wave, UX-280
Undistorted output
2.25 Watts

PHYSICAL SPECIFICATIONS-J-70
Height .. $16^{\frac{21}{23}}$ inches
Depth.. $93 / 8$ inches
Width... $143 / 4$ inches
Weight alone . $301 / 2 \mathrm{lbs}$.
Weight Packed for Shipment.
37 lbs.
PHYSICAL SPECIFICATIONS-J-75

The General Electric Models J-70 and J-75 are seven tube Super-Heterodyne radio receivers incorporating such features as Super Control Screen Grid Radiotrons in the R.F. and I.F. stages, single Pentode output stage and the inherent sensitivity, selectivity and tone quality of the General Electric Super-Heterodyne. Model J-70 is a table model and J-75 is a small console. Except for the cabinet, speakers and output circuit, both models are identical.

Service work in conjunction with this receiver will be very similar to that of other table type receivers. However, there are several new features of this model which require some consideration.

The second I.F. transformer in this receiver is of the untuned variety, making the set slightly less sensitive and selective than the S-22. This decreased selectivity permits the omission of the 600 K.C. adjustable capacitor used on the S-22, S-132 and other Super-Heterodyne receivers. When aligning adjustments are necessary, it is therefore only necessary to tune one I.F. transformer and the three tuning capacitors. The I.F. transformer is adjusted at $175 \mathrm{~K} . \mathrm{C}_{\text {. and }}$ ane tuning capacitors at 1400 K.C. In the case of the latter, the dial should be set at 1400 as well as the oscillator and the three screws adjusted for maximum output. This will permit the dial to read very accurately.

The schematic diagram, the wiring diagram, the voltage readings and the replacement parts are given in the following pages.

RADIOTRON SOCKET VOLTAGES

120 Volt A. C. Line
VOLUME CONTROL AT MINIMUM
volume control at maximum

								\%						䓂	วuewirnat to
1. R. F.	50	50	60	235	0	0	2.66	1. R. F.	3.0	3.0	65	260	3.0	0.5	2.66
2. Osc.	50	0	--	55	4.5	-	2.66	2. Osc.	3.0	0	-	60	5.0	-	2.66
3. 18t Det.	10	9	100	260	1.0	0.25	2.66	3. 1st Det.	6.0	5.5	60	260	0.75	0.25	2.66
4. I. F.	50	50	60	235	0	0	2.06	4. I. F.	3.0	3.0	65	260	3.0	0.5	2.66
5. 2d Det.	25	10	-	250	1.0	-	2.66	5. 2d Det.	25	10.0	-	250	1.0	-	2.66
6. Pwr.	-	10	290	280	35	-	2.66	6. Pwr.	-	10.0	290	280	35	-	2.66

GENERAL ELECTRIC CO

GENERAL ELECTRIC CO

GENERAL ELECTRIC CO.
 F. A. D. ANDREA INC.

GENERAL ELECTRIC CO.

MODEL H-72

GENERAL ELECTRIC CO.

GENERAL ELECTRIC CO.

GENERAL ELECTRIC CO.

$\stackrel{\mathrm{C}-19}{ }$

Figure 1-Schematic Wiring Diagram S-132
RADIOTRON SOCKET VOLTAGES MODELLS-132 110 VOLT A. C. LINE
(Volume Control Setting Does Not Affect Voltages)

Hadiotron No.	Cathode to Heater Volts, D. C.	Cathode or Filament to Control Grid Voles, D. C.	Cathode or Filament to Sereen Grid Voles, D. C.	Cathode or Filament to Plate Volts, D. C.	Plate Current M. A.	Screen Current M. A.	Heater or Filament Volis. A. C.
1	2	*0.1	75	210	5.0	0.5	2.2
2	8	0	-	60	5.0	-	2.2
3	7	7.0	70	205	0.5	0.1	2.2
4	2	*0.1	75	210	5.0	0.5	2.2
5	0	0	-	30	0	-	2.2
6	20	*8.0	-	185	0.5	-	2.2
7	-	10	210	210	25	-	2.2

*Not true reading due to resistance in circuit.

Figure 2-Wiring Diagram S-132

GRIGSBY-GRUNOW CO.

Schematic Diagram of Mauestic Self Powereo Universal Short Wave converter - Model 10 Chassis.

GRIGSBY-GRUNOW CO.

SCHEMATIC DIAGRAM OF MAJESTIC SCREEN GRID SUPERHETERODYNE AUTOMATIC
25 AND 50-60 crcles.

DOWER REQD.- 120 WATTS

GRIGSBY-GRUNOW CO.

GRIGSBY-GRUNOW CO.

TABLE OF VOLTAGES TO GROUND

Tube Purpose	Type	$\begin{aligned} & \text { Fil. Volts } \\ & \text { A. C. } \end{aligned}$	Plate Volts D. C.	Fil. to Ground D. C.	Cathode Volts D. C.	Plate Current M. A.-D. C.	$\begin{aligned} & \text { Screen Volts } \\ & \text { D. C. } \end{aligned}$	Screen Curren M. A.-D. C.
R. F. Amp. . . .	G-51.S	2.5	260		3	4.2	90	1.2
1st. Det.........	G-51-S	2.5	260	7	1.3	90	. 4
Osc............	G-27	2.5	90			3.5		
I. F............	G-51-S	2.5	260		3	5	90	1.6
2nd. Det.........	G-27-S	2.5	135	16		14		
2nd. Det.........	G-27-S	2.5	135	16		14.		
Power Amp.... ${ }^{\text {. }}$	G-47	2.5	250	16		30	250	7.2
Power Amp......	G-47	2.5	'250	16		30	230	7.2
Rectifier.........	G-80	5		400		120 Total		
First Condenser-400 Volts D. C. Line Voltage-115 Volts Second Condenser-330 Volts D. C. Speaker Field-75 Volts Third Condenser- $\mathbf{2 5 0}$ Volts D. C. Volume Control-Maximum.								
TABLE OF VOLTAGES TO GROUND								
MODEL 35								
Tule Purpose	Type	Fil. Volts	Plate Volts D. C.	Filament to Ground D. C.	Cathode Volts	Plate Current M. A.-D. C.	Screen Current M. A.-D. C.	Screen Volts
R. F. Amp...	(G-51-S	2.5	26.5	4	5	0.5	90
1st Det........	(i-51-S	2.5	26.5	8	1	0.5	90
Osc.	(i-27	2.5	90			4		
lst I. F......	(i-51-S	2.5	265		4	5	0.5	90
2nd I. F.......	(6-51-S	2.5	265		4	5	0.5	90
2nd Det...	C-27-S	2.5	115			12	
2nd Det.........	C-27-S	2.5	115			12		
Power Amp......	G-47	2.5	250	16.5		32	7	260
Power Amp.....	(i-47	2.5	250)	16.5		32	7	260
Reertifier.,......	(i-80)	5.0				130 Total		

[^0]
MODEL 25-B

table of voltages to ground

GRIGSBY-GRUNOW CO.

SChEMATIC DIAGRAM OF MANESTIC SCREEN GRID SUPERHETERODYNE AUTOMATIC VOLUME CONTROL RECEIVER - MODEL 200 CHASSIS

GRIGSBY-GRUNOW CO.

SCHEMATIC DIAGRAM OF MANESTIC SCREEN GRID SUPERHETERODYNE
AUTOMATIC VOLUME CONTROL RECEIVER. MODEL $2 / O$ CHASSIS.

GULBRANSEN COMPANY

GULBRANSEN COMPANY

GULBRANSEN COMPANY
 MODEL 13

ANALYZER CHART

All voltages taken with a 1.000 ohm per volt yoltmeter on the scale indicated in the column headed "Meter Scale." Turn the volume all the way on and connect the antenna and ground leads together The grid, plate, and screen grid voltages are measured to cathode of the ' 24 and ' 35 tubes and to fiament of the 47 tube.
The grid voltage on the 27 oscillator cannot be taken except with a very sensitive, low scale voltmeter. The voltage is approximately .05 volts when the A.C. line voltage is 110 volts.

Tube	Circuit	Meter Scale	90 V .	100 V .	110 V .	120 V .	130 V .
$\begin{aligned} & \hline \text { R.F. } \\ & \text { (Ant.) } \\ & .35 \end{aligned}$	Grid Screen Grid Plate	$\begin{aligned} & 0-1.0 \\ & 0-100 \\ & 0-250 \end{aligned}$	$\begin{gathered} 1.5 \\ 53 . \\ 195 . \end{gathered}$	$\begin{array}{r} 1.7 \\ 58 \\ 210 \end{array}$	$\begin{gathered} 1.9 \\ 63 . \\ 225 . \end{gathered}$	$\begin{array}{r} 2.1 \\ 66 . \\ 238 . \end{array}$	$\begin{array}{r} 2.3 \\ 69 . \\ 250 . \end{array}$
1st Det. '24	Grid Screen Grid Plate	$\begin{aligned} & 0-25 \\ & 0-100 \\ & 0-250 \end{aligned}$	$\begin{array}{r} 14 . \\ 63 . \\ 190 . \end{array}$	$\begin{gathered} 14.3 \\ 64 . \\ 205 . \end{gathered}$	$\begin{gathered} 14.5 \\ 65 . \\ 220 . \end{gathered}$	$\begin{array}{r} 15 . \\ 67 . \\ 233 . \end{array}$	$\begin{array}{r} 16 . \\ 70 . \\ 245 . \end{array}$
$\overline{\text { Int. }}$	Grid Screen Grid Plate	$\begin{aligned} & 0-10 \\ & 0-100 \\ & 0-250 \end{aligned}$	$\begin{gathered} 1.5 \\ 53 . \\ 195 . \end{gathered}$	$\begin{gathered} 1.7 \\ 58 . \\ 210 . \end{gathered}$	$\begin{gathered} 1.9 \\ 63 . \\ 225 . \end{gathered}$	$\begin{array}{r} 2.1 \\ 66 . \\ 237 . \end{array}$	$\begin{gathered} 2.3 \\ 69 . \\ 250 . \end{gathered}$
$\begin{aligned} & \text { 2nd } \\ & \text { Det. } \\ & =24 \end{aligned}$	Grid Screen Grid Plate	$\begin{aligned} & 0-25 \\ & 0-100 \\ & 0-250 \end{aligned}$	$\begin{array}{r} 14 . \\ 63 . \\ 110 . \end{array}$	$\begin{array}{r} 14.3 \\ 64 . \\ 123 . \end{array}$	$\begin{array}{r} 14.5 \\ 65 . \\ 135 . \end{array}$	$\begin{array}{r} 15 . \\ 67 . \\ 145 . \end{array}$	$\begin{array}{r} 16 . \\ 70 . \\ 154 . \end{array}$
$\begin{aligned} & \hline \text { Ose. } \\ & \cdot 27 \end{aligned}$	Grid Plate	$0-100$	76.	78.	80.	82.	84.
Aud. '47 (See Caution Above)	Grid Accelerating Grid Plate	$\begin{aligned} & 0-10 \\ & 0-250 \\ & 0-250 \end{aligned}$	$\begin{array}{r} 2.1 \\ 188 . \\ 170 . \end{array}$	$\begin{gathered} 2.4 \\ 210 . \\ 190 . \end{gathered}$	2.7 225. 205.	$\begin{array}{r} 3 . \\ 240 . \\ 220 . \end{array}$	$\begin{array}{r} 3.3 \\ 250 . \\ 230 . \end{array}$
'80 Rect.	Filament to Ground	$0-1000$	198	215.	233.	250.	263.

Phonograph Conneotion

GULBRANSEN COMPANY

GULBRANSEN COMPANY

MODEL 20

TUBE AND VOLTAGE TESTS

The tubes should be tested in a set analyzer and the voltage readings taken on each tube before servicing the receiver in any other manner. Weak or defective tubes should be replaced.

The measurement of grid bias voltages (except on the ' 47 pentodes) is not recommended, as this causes an abnormal rise in plate current which is injurious to the tube. Further, the measurement of actual grid bias voltages is impossible due to the high resistance in the grid circuits. When the receiver does not function properly and the trouble is apparently due to improper grid bias on any tube or tubes, the cause of the trouble may be determined by applying the proper continuity tests.

CAUTION: IN ORDER THAT THE EFFICIENCY OF EACH TUBE MAY BE COMPARED WITH THAT OF OTHER TUBES OF THE SAME TYPE, THEY MUST NOT BE TESTED IN THE SOCKET IN WHICH THEY ARE USED. TEST ALL' 35 TUBES IN THE SECOND I. F. SOCKET AND TEST THE 27 TUBES IN THE FIRST A. F. SOCKET. TAKE THE VOLTAGE READINGS AT THE SOCKET IN WHICH THE TUBE IS USED.

DO NOT ATTEMPT TO TAKE VOLTAGE READINGS OR TEST THE ' 47 PENTODE TUBES WITH A SET ANALYZER WHICH IS NOT DESIGNED TO TEST THAT TYPE OF TUBE. A SPECIAL ADAPTER IS NECESSARY AND INFORMATION REGARDING SAME MAY BE OBTAINED BY WRITING TO THE MANUFACTURER OF THE ANALYZER. The latest type analyzers only are designed to test pentode tubes. The UY socket in an analyzer which is used to test ' 24 , ' 35 , and ' 27 tubes cannot be used to test ' 47 pentodes. A break-in adapter and the external binding posts of the analyzer may be used to take voltage readings when a set analyzer adapter is not available.

Comparison of the voltage readings taken and those shown in the chart below will show any irregularities. The cause of any variation may be determined by applying the proper continuity tests.

All voltages taken with a 1,000 ohm per volt voltmeter on the scale in the column headed "Meter Scale." Turn the volume all the way on, connect the antenna and ground leads together and turn the gang condenser plates all the way out. CHECK THE LINE VOLTAGE.

NOTE: Voltage readings will vary with different sets of tubes. Unless the voltages are radically different than normal, they may be considered satisfactory.

Tube	Circuit	Meter Scale	90 V .	100 V .	110 V .	120 V .	130 V .
$\begin{aligned} & \text { R.F. } \\ & \hline 35 \end{aligned}$	Screen Grid Plate	$\begin{aligned} & 0-100 \\ & 0-250 \end{aligned}$	$\begin{array}{r} 67 . \\ 136 . \end{array}$	$\begin{array}{r} 75 . \\ 151 . \end{array}$	$\begin{array}{r} 82 . \\ 166 . \end{array}$	$\begin{array}{r} 90 . \\ 181 . \end{array}$	$\begin{array}{r} 97 . \\ 196 . \end{array}$
$\begin{aligned} & \text { 1st } \\ & \text { Det. } \\ & =35 \end{aligned}$	Screen Grid Plate	$\begin{aligned} & 0-100 \\ & 0-250 \end{aligned}$	$\begin{array}{r} 63 . \\ 132 . \end{array}$	$\begin{array}{r} 70 . \\ 147 . \end{array}$	$\begin{array}{r} 77 . \\ 163 . \end{array}$	$\begin{array}{r} 84 . \\ 179 . \end{array}$	$\begin{array}{r} 91 . \\ 194 . \end{array}$
$\begin{aligned} & \text { Oscillator } \\ & .27 \end{aligned}$	Plate	$0-100$	70.	77.	85.	92.	100.
$\begin{aligned} & \text { 1st I.F. } \\ & 35 \end{aligned}$	Screen Grid Plate	$\begin{aligned} & 0-100 \\ & 0-250 \end{aligned}$	$\begin{array}{r} 67 . \\ 136 . \end{array}$	$\begin{array}{r} 75 . \\ 151 . \end{array}$	$\begin{array}{r} 82 . \\ 166 . \end{array}$	$\begin{array}{r} 90 . \\ 181 . \end{array}$	$\begin{array}{r} 97 . \\ 196 . \end{array}$
$\begin{aligned} & \text { 2nd I.F. } \\ & \hline 5 \end{aligned}$	Screen Grid Plate	$\begin{aligned} & 0-100 \\ & 0=1000 \end{aligned}$	$\begin{array}{r} 65 . \\ 227 . \end{array}$	$\begin{array}{r} 72 . \\ 252 . \end{array}$	$\begin{array}{r} 79 . \\ 277 . \end{array}$	$\begin{array}{r} 86 . \\ 303 . \end{array}$	$\begin{array}{r} 94 . \\ 328 . \end{array}$
$\frac{1 \text { st A.F. }}{27}$	Plate	0-100	87.	95.	104.	115.	122.
2nd A.F.	Grid Accelerating Grid Plate	$\begin{aligned} & 0-25 \\ & 0-1000 \\ & 0-1000 \end{aligned}$	$\begin{aligned} & 12.7 \\ & 192 . \\ & 180 . \end{aligned}$	$\begin{array}{r} 14 . \\ 208 . \\ 200 . \end{array}$	$\begin{gathered} 15.4 \\ 235 . \\ 220 . \end{gathered}$	$\begin{gathered} 17 . \\ 252 . \\ 240 . \end{gathered}$	$\begin{gathered} 18.3 \\ 278 . \\ 261 . \end{gathered}$
, 80 Rect. (See below)	Current (Both Plates) Plate to -Plate voltage	$\begin{aligned} & 0-100 \\ & 0-1000 \end{aligned}$	$\begin{aligned} & \text { 89. M.A. } \\ & 547 \text {. } \end{aligned}$	$\begin{aligned} & \text { 98. M.A. } \\ & 568 . \end{aligned}$	108. M.A. $690 .$	118. M.A. $712 .$	128. М.А. $733 .$

The 80 rectifier plate voltages shown are the totals of both plates, measured from each plate to center tap of high voltage secondary.

GULBRANSEN COMPANY

C" USEED WHEN, SHIELDED WIRE

GULBRANSEN COMPANY

MODEL 80A

ANALYZER CHART

All D.C. voltages taken with a 1000 ohm per volt meter on the scale indicated in column headed "Meter Scale." Turn on the volume control all the way on and connect the antenna and ground leads together.
The grid, plate, and screen grid votages are measured to cathode of the heater tubes and to filament of three- element tubes.

Tube	Circuit	Mefer Scale	90 V .	100 V	110 V	120 V .	130 V .
1st two 224 R.F. Amplifier tubes	Grid Screen Grid Plate	$\begin{aligned} & 0-5 \\ & 0-100 \\ & 0-1000 \end{aligned}$	$\begin{array}{r} -2.5 \\ 62 \\ 220 \end{array}$	$\begin{array}{r} -2.9 \\ 70 \\ 240 \end{array}$	$\begin{array}{r} -3.3 \\ 76 \\ 270 \end{array}$	$\begin{array}{r} -9.7 \\ 84 \\ 295 \end{array}$	$\begin{array}{r} 4.1 \\ 90 \\ 310 \end{array}$
2nd 224 R.F. Amplifier tube	Grid	$0-5$	-1.9	-2.3	-2.6	-3.0	-3.4
Detector 227 tube	Grid Plate	$\left\lvert\, \begin{aligned} & 0-10 \\ & 0-100 \end{aligned}\right.$	$\begin{array}{r} 2.4 \\ 21.0 \end{array}$	$\begin{array}{r} 2.7 \\ 24.0 \end{array}$	$\begin{array}{r} -3.0 \\ 26.0 \end{array}$	$\begin{array}{r} -3.3 \\ 29.0 \end{array}$	$\begin{array}{r} -3.6 \\ 32.0 \end{array}$
227 Audio Amplifier tube	Grid Plate	$\begin{aligned} & 0-10 \\ & 0--250 \end{aligned}$	$\begin{array}{r} .3 \\ 90 \end{array}$	$\begin{array}{r} .4 \\ 145 \end{array}$	$.5$	$\begin{aligned} & .55 \\ & 170 \end{aligned}$	$\begin{array}{r} .6 \\ 183 \end{array}$
245 Power tubes	Grid Plate	$\begin{aligned} & 0-100 \\ & 0-1000 \end{aligned}$	$\begin{array}{r} 30 \\ 220 \end{array}$	$\begin{array}{r} 34 \\ 240 \end{array}$	$\begin{array}{r} 39 \\ 275 \end{array}$	$\begin{array}{r} 43 \\ 300 \end{array}$	$\begin{array}{r} 47 \\ 320 \end{array}$
280 Rectifier tube	Plate	0-1000	300	330	360	400	4.15
280 Filament to ground		0-1000	210	230	250	280	300

GULBRANSEN COMPANY

GULBRANSEN COMPANY

GULBRANSEN COMPANY

GULBRANSEN COMPANY

GULBRANSEN COMPANY 8-TUBE CHASSIS

Check your line voltage before taking readings

GAPACITY		
CODE	60 CYCLE	25 CYCLE
A	1.0 MF.C-2	
B	1.0 MF.C.	2.5 MF.C. 1
C	1.5 MF.63	4. MF.C.
\square	1.0 MF.C-9	$1.0 \mathrm{MF.CS}$
E	1.0 MF.C.6	1.0 MF.C. 6
F	0.5 MF.C.7	O.5 MFFV
G	1.0 MF.C. 8	15 M FR8
H	O.5 MF.C.5	O.5 MF.C5
K	1.5 M F.C. 4	2.0 MF.C4
\bar{X}	COMMON	COMMON
Y	COMMON	COMMON

Filter Condenser (60 and 25 cycle receivers).

HAMMARLUND-ROBERTS, INC.

HOWARD RADIO COMPANY

HOWARD MODEL 45 A. V. C. SUPERHETERODYNE WITH MODEL A. V. H. CHASSIS

The values of the components of this receiver chassis are as follows: Resistors R1. R3, R5, 15 -meg. ($1 / 3$-watt); R2, R6, son ohms ($1 / 6$ watt); R4, 6.000 ohms ($1 / 2$-watt); R7. 30,000 chms; R8, volume control. !'-mex.; R9. $1 / 2$-meg. R10. 3,000 ohms; R11, 2.000 ohms; R12, R13. 150.000 ohms ($\%$ watt): R14, 2 megs: ; R15. R16-R17-R18-R19. voltage divider, 9.900 ohms; R20, R21, 10 ohms (center-tapped): R22. 200 ohms.
Condensers C $4, \mathrm{CS}$ CG, C7, I.F. trimmers; C8, C9, C10, C15, C16, 0.1 mf ; $\mathrm{C} 11, .00025$ mf.: C12, $001-\mathrm{mf}$: C C17, C18, $0.25-\mathrm{mf}$; C19 C23. $0.5-\mathrm{mf}$; C $21, .05-\mathrm{mf}, \mathrm{C}(24.1 . \mathrm{mf}$; C 25 , C26. 8 mf . (420 volts) $(27,4 \mathrm{mf}$. (420 volts)
in the interest of ohtaining le:st results with the Automatic Volume Control receiver, it is important that the type $\quad 2 \bar{z}$ control tule 19 be a selected one, with a definite plate current cut-off when tested at 180 voits plate and 20 volts bias on the grinl. This cut-off should be less than S microampueres. If there is no means less than S microamiperes. If there is no means
available for checking the tulbe (in the form of available for checking the tulbe (in the form of
a special tulue tester). an immediate check for a specind tuhe tester). an immediate check for
tulbe performance can be obtained in the set thle
it.elf.
Fur instance. disconnect the antenna and short-circuit the aerial lead, leaving the control tube out of the socket. and note the swing of the tuning meter. Then insert the tulie in the socket and if it is a good automatic volume control tule, there should bc no change in the position of the pointer on the tuning meter. If there is a change in the position of the tuning meter pointer, namely, a swing toward the right, it is an indication that the A.V.C. tule does not have a definite plate cut-off; instead. it is drawing plate current and as a result the it is drawing plate current and as a result the
bias voltage on the regular R.F. and I.F. tules bias voltage on the regular R.F. and I.F. tules
has been raised, with the consequent cutting down in plate current
The Morlel 45 speaker has a 350 -ohm field, and as such it cannot be used with the Models 35 and 40 receivers.
The receiver housed in the regular calinet is the "Model 45"; the chassis is the "Model Alli.'

The automatic volume control functions in
holeling the secomel-detector ingnt voltages at a definite level, a syotem which is different from that in other recejecrs. A reduction of lrackground mises, letween statims, will le noted. The only service met with to date on the Model " 11 " service met with to date on the with the shorting out of thr R.F. plate bypass condenser, the red lead of which may accident. condenser, the red lead of which may accident.
ally become wedged underneath the first I.I. ally lecome wedged underneath the first I.I.
coil can. The insulation does not cut through immediately but, after beiug in service for a number of days, the pressure on the insulation may le such as to kradually cut through it, shorting out the plate bypass condenser, and thus producing zero voltage on the plates of the R.F.. first detector, and I.F. tules.s.
The A.N.C. tulve is so comnected by means of a 2 -megohm resistor. R14, that the grid is at absolute " B-" potential. The cathorle of the tube is connected to a point on the voltage the tube is connected to a point on the voltage
divider which is at 24 volts positive, with redivider which, is at 24 rolts positive, with respect to "1l-" or the grid. There then exists between the cathole and the grid a potential differcuce of 24 volts with the grial negative by this amount. The plate of this tule connects to ground liy means of two 150,000 -ohm re* sistors, R12-K13. Since ground is eomected to 124 volts, positive (with respect to " 13 -"). there cxists between the cathode and the plate a potential difference of 100 volts. In order to hypass any R.F. energy which may apiear on the plate, a non-inductive condenser C22 is connected from the plate of the A.V.C. tube to the cathode.
11 ith the condition of no-signal there exists a lias of 24 volts and a plate potential of 100 a hias of 24 volts and a plate potential of 100
volts. Under these conditions, there is mo volts. Under these conditions, there is no
plate current flowing and the tulse is said to be adjusted to cut-off. Since no plate current is flowing, there exists no voltage drop across the plate circuit resistors and, therefore, there is no bias voltage on the grids of the controlled tules. The only hias on the R.F., first detector, and I.F. is caused by the respective voltage drops across their cathode resistors. These resistors are designed to give the most sensitive operating point

In the casc of a reccived signal, energy passes
through the receiver to the second-detector grid Here the A.V.C. (automatic volume control) tube gritl. and the second-detector grid, are in parallel. The signal voltage is fed to the griml of the A.V.C. tule through a small fixed condenser. C11
It will 1 e secn that during the positive half of the incoming cyele, the peak voltage of the signal swing sulitracts from the original bia. voltage: "luch means that the instantaneou fias on the tulte is less than the original bia and the tule lexins to draw current in its plate circuit. Since this current flows in the resistors in the plate circuit of the A.V.C. tule. there exist a voltase drop across these resistors: alsi, the flow of the electrons is from plate to ground so that the plate l,ecomes negative with respect to ground. Now. since the original potential of the cathode of the R.F., first-detector and I.F. tube is mositive with respect to ground it follows that if the grids of the respective tules are connected to a resistor in the plate circuit of the N.I.C. tule. that any potential existing across this resistor is added to the original bias and makes the grids more negative than the original bias ly the amount of the voltage drop across the resistor in the A.V.C. tule plate.
It is at once apparent that the greater the sigual voltage appearing at the grid of the A.V.C. tube, the more plate current will flow in the plate circuit: an increase in plate current means an increase in hias on the R.F., first-detector, and I.F. tubes: an increased bias on these tules means less amplification and, therefore. less grid swing on the second-detector and A.I.C. tube. This cycle goes on until a constant voltage is obtained across the seconddetector input. or, in other words, until a condition of equilibrium is reached.
Since R8 is located where the tone control is normally connected. it was necessary to relocate the tone control, C13-R9-C14. As less resistance is included between the two condensers. they become more effective in bypassing the higher audio frequencies; at the same time, they resonate the primary of $T 3$ to a lower audio frequency:

COLIN B. KENNEDY CORP.

COLIN B. KENNEDY CORP.

Rear View Model 24 Chassis

 satisfaction at the same time you make a greater .profit out of every sale.

YOU CAN BECOME A TRIAD

 REPRESENTATIVEWhite it 13 the purpose of the Triad Company to cooperate with all Servicemen, ths also desirable to
 Viceman in his Micinity can compote with him Me You Hmit the number of men in any ore sertion whe will
be pernulted to purchee CERTFIED TRIADS on

Wew. mones-makink
derfuit new sales plan. lit has leetn dsalgned for th
 measure up to the TRIAD qualifications Fatery must be the key men in their territorles. Triad has
no place for dead woml Triad wants nien who cas carry on the Triad tradition and who ran render the
same quallis of Serrice that triad is linitur erery one of the thrty different types of takes th
makes. If you think you fan teasure up to that Iantigrd and you want to assure yoursell of a grow
ing. lasting, profitithe bustness. you will find suur odportuntly wailing sor you, below V

TRIAD Manufacturing co.

Pavtueket, R.

Gentlemen

Please send me complete information abont your new Sales Plan for servicemen.

I have been a serviceman for, years I sell.......... tubes per sear.
I belong to the Serriceman's My lettorhead or eard is attarhed.

SUPPLEMENT No. 1

Index and Incidental Information

THE index printed below lists all the set diagrams included with the first suplement to the 1932 OFFICIAL RADIO SERVICE MANUAL. Insert the supplement sheets carefully in your Manual, be ing careful not to disturb the sequence of the present pages. Put page 310A after page 310, and so on. Keep this index page with the other index pages. A completely revised index will be published with the second supplement.

Please look through the index carefully before writirg to us for information on a particular receiver. A great many of the diagrams requested by readers are already included in either the 1932 or the 1931 Manual. Also, be specific in referring to any set. Descriptions such as a 'seventube Philco" or "a late model Zenith with automatic tuning" mean nothing. Mention the full type number and also, if you can find it marked somewhere on the chassis. the serial number. Important changes are sometimes made in receivers during actual factory productior:, and while the type number is not changed, a record is kept of the revisions according to the seria! numbers of the set so altered.

If you are having trouble with a set and want us to help you, please give us some definite information to work on. We are not mind readers or magicians, and cannot guess socket voltages or the condition of tubes if you do not make these tests yourself. A surprising number of letters merely state something like this: "I have a Bloopodyne 8 in for repair. The volume is weak. What's the matter?"

One thing that every user of the Manual must understand is that dozens of onceprominent radio manufacturers have gone out of business without leaving technical service data for the benefit of their former customers. Fortunately we are able to dig many old diagrams out of our files, which are probably the best in the country, but some hook-ups simply cannot be obtained. Even some firms that are still actively ir: business are unable to supply diagrams or manuals of sets a few years old, because records were lost, misplaced or removed during changes in administration or organization. Several companies frankly admit their inability to furnish service data on
some of their older models, and they refer their customers to the OFFICIAL RADIC SERVICE MANUAL because we have been able to obtain many long-lost diagrams.

The names of some sets and manufacturers mentioned in readers' letters are altogether unknown to us and do not appear on any trade lists. Service Men who can supply any information at all on the following receivers will be doing their fellow. workers a great favor.
Heritage, Cambridge, Kempa, Falck, Royal, Mayfair, Case, La Salle, Legionaire, and Detrola.

In the great majority of diagrams appearing in this Manual the values of all resistors and condensers are marked, and voltage readings given for all tubes. Whien this information cannot be obtained we show the bare schematic alone, as we feel that some diagram is better than no diagram at all.

In this supplement you will notice that many tube and chassis drawings are included in addition to the wiring diagrams. We will try to publish such drawings for every set.

A

F. A. D. ANDREA, Inc.

Moilel 49 238 F

AUTOMATIC RADIO
 COMPANY

Model P25 176B
Models P34-35 176D
Models 44, V45, V46,
C45, P46 176F
Tom Thumb Midget. . 176 H

B

BALKEIT RADIO COMPANY
Models L7, LC7. . . . 178A
Midget Screen Grid Six;
Model E . \because. 178B

DELCO APPLIANCE CORP.

RIB3 Console, RC3 jun-
ior Console, LRA3 Com-
pact

B

GENERAL ELECTRIC COMPANY
Model T-12-D238B
Models J-70, J-75,
$238 \mathrm{C}, 238 \mathrm{D}, 238 \mathrm{E}$
Model H-72 . . 238F, 238G
Models J-80, J-85,
$238 \mathrm{H}, 238 \mathrm{I}$
Model S-132 238J

HAMMARLUND.
ROBERTS, Inc.
All-Wave Comet

HOWARD RADIO
 COMPANY

Model 45 258 T
Model SG-T 258 U

COLIN B. KENNEDY CORP.
Model 24 . . . 258 V , 258W
Model $56 \ldots258 \mathrm{X}$
KOLSTER RADIO, Inc.
Models B-15 and 16 . .290A
Models 25B and 35
Analyzer charts . . . 258D
Model 55 258 A
Model 200 chassis . . .258E
Model 210 chassis . . . 258 F

GULBRANSEN COMPANY
Model 13
$258 \mathrm{G}, 258 \mathrm{H}, 258 \mathrm{I}$

Model $80 \mathrm{~A} \ldots 258 \mathrm{M}, 258 \mathrm{~N}$
Model 80A Transformer
and Condenser Data. 258P 5-Tube DC Model

2580, 258P
8-Tube Chassis. 258Q, 258R
PHILADELPHIA STORAGE BATTERY CO.

310A

Models 51, 51A.310B, 310C Models 470, 470A, $310 \mathrm{D}, 310 \mathrm{E}$
Model 490 . . . 310F, 310G,

K

R

REMLER COMPANY, Ltd.
Model 19 310 H

SIMPLEX RADIO COMPANY
Model L 394A
STEWART-WARNER
Model 900 series . . . 394B
Model 950 series battery operated screen grid receivers 394 B
STROMBERG-CARLSON
TELEPHONE MFG. CO.
Model 27434A, 434B

U. S. RADIO \& TELE-
VISION CORP. VISION CORP.
Models 99, 99X434F

KOLSTER RADIO, $\mathbf{H N C}$.

OZARKA, INC.

$$
\left.\begin{array}{l}
\text { MF } \\
-M F . \\
M F .
\end{array}\right\}
$$

$$
\sim \frac{u}{\Sigma} \frac{u}{\Sigma}
$$

PHILADELPHIA STORAGE BATTERY CO.

Model 4 Redeivers are for operation on 115 volt, $50-60$ cycle AC lines

Table 1-Tube Socket Readings-Line Voltage- 115 volts

Tube		FummentVolts	Piate	$\begin{aligned} & \text { Screen } \\ & \text { Grld } \\ & \text { Volt. } \end{aligned}$	$\begin{gathered} \text { Control } \\ \text { Grld } \\ \text { Volt } \end{gathered}$	Cathode
Type	Circult					
27	Oscillstor	2.4	110	.	. 1	0
24	Detector	2.4	25	23	. 3	0
80	Rectifier	5.0	170/170	$4 \times$.	\ldots

NOTE: The above voltage readings were taken from the socket terminals on the underside of the chassis, using a Weaton multi-range voltmeter, 1000 ohms per volt. The radio set teater cannot be used either for voltuge or plate eurrent readings because of the effect of the long leads through the set tester cord.

Table 2-Power Transformer Voltages

Terminals	A. C. Volts		Color
$1-2$	105-125	Primary	White
3-5	2.5	Filament of 24 and 27	Black
$6-7$	5.0	Filament of 80	Light Blue
$8-10$	340	Plates of 80	Yellow with Yellow Tracer
4 9		Center Tap of 3-5 Center Tap of 8-10	Black with Yellow Tracer Yellow with Green Tracer

Table 3-Condenser Data

Nos. on Plde. 1 ind 2	$\begin{aligned} & \text { Capecity } \\ & \text { Mid. } \end{aligned}$	Contalaer
(2)	. 00011	Blue and Golden Yellow
(13)	. 0008	Green and Orange
(10)	. 00125	Blue and Orange
(3)	. 05	Bleck Bakelite Container
(3) ${ }^{(9)}$	6.	Electrolytic

Table 4-Resistor Data

Nos. on Fige. 1 and 2	$\begin{aligned} & \text { Power } \\ & \text { (Watto) } \end{aligned}$	Reajatance (Obms)	COLOR		
			Body	Tlp	Dot
(12)		$\left.\begin{array}{l}4750 \\ 4750\end{array}\right\}$	L. Ong Tubuls ${ }^{\text {r }}$		Orange Orange Yellow Green
(9)	1.	13000	Brown	Orange	
(1)	1. ${ }^{\text {c }}$	99000	White	White	
(3)	5	241,000	Ked	Yellow	
(10)	. 5	2 Megobms.	Red	Black	

PHILADELPHIA STORAGE BATTERY CO. PHILCO MODELS 51 AND 51-A

PHILADELPHIA STORAGE BATTERY CO.

Models 51 and 51-A Receivers

Model 51 Receivers are for operation on 100-130 volt, $50-60$ cycle AC line Model 51-A Receivers are for operation on 100-130 volt, 25-40 cycle AC line

Table 1-Tube Socket Readings Taken with AC Set Tester AC Line- 115 volts

Tube		$\begin{aligned} & \text { Filament } \\ & \text { Volts } \end{aligned}$	Plate Volts	Screen Grid Volts	Control Grid Volts	Cathode Volts	Plate Millamperes
Type	Circuit						
24	Osc. \& 1st Det.	2.2	$220 *$	85^{*}	9.0 *	9.0*	
35	I.F.	2.2	210	85	3.0	3.0	6.2
24	2nd Det.	2.2	75	54^{\prime}	5.2	5.2	0
47	Output	2.2	210**	240**	0.2**		28.**
80	Rect.	5.0	240/Plate				30/Plate

Note--Volume Control on full; Station Selector turned to Low Frequency End.
*These readings must be taken from the underside of the chassis, using a suitable high resistance D.C. voltmeter equipped with test prods and leads.
**These readings must likewise be taken from the underside of the chassis unless the set tester is especially equipped for testing pentode tubes.

Table 2-Power Transformer Voltages

Terminale	A.C. Volts	Connection	Color
$1-2$	105 to 125	Primary	Black (Small Gauge)
$3-5$	2.5		
$6-7$	7.	Filanent of 24,35 and 47	Blaek
$8-10$	\ldots.	Filament of 80	Light Blue
4		Clates of 80	Yeilow
9	Center Tap of 3-5	Black, Yellow Tracer	

Table 3-Condenser Data

Nos. on Figs. 1 and 2	Capacity Mid.	Contalner
	. 00025	Yellow
(10) (30)	.00011	Blue and Golden Yellow
(3) (3)	. 01	Black Bakelite Container
(11)	. 05 15, 25, $9.5(50-60 \mathrm{cy}$)	Black Bakelite Container
(2)	.1, .15, $25,2-.5$ (50-60 cy.)	Mctal Container Metal Container
(4)	6 (50-60 cycles)	Electrolytic
	10 (25-40 cycles)	Electrolytic
(4)	6	Electrolytic

Table 4-Resistor Data

Nos. on Figs. 1 and 2	$\begin{aligned} & \text { Power } \\ & \text { (Watts) } \end{aligned}$	Resistance (Ohms)	Color				
			Body		Tip		Dot
		250 and .05 Mfd .		Bla	ck Hakelite Conta	iner	
(13)		$1,000$	Brown		Black Black		Red
(3)	. 5	$\approx, 000$	(irey		Black Black		Red
(21)	. 5	10,000 $\mathbf{9 5} 000$	Brown		Black Green		Orange
(3)	1.	25,000	Red		Green Red		Orange
(18)	. 5	32,009	Orange		Red		Orange
(0)	1.	32,000	Orange		Red		Orange
(9)	2.	51,00\%	(iren		Brown		Orange
(19) (3)	. 5	99,004	White		White		Orange
(3)	. 5	160,000	Brown		Blue		Yellow
(24) (3) (32)	. 5	490,000	Yellow		White		Yellow

PHILADELPHIA STORAGE BATTERY CO.

PHILADELPHIA STORAGE BATTERY CO.

Models 470 and 470-A Receivers

Table 1-Tube Socket Data taken with AC Set Tester-AC Line 115 Volts

Tube		$\begin{aligned} & \text { Filament } \\ & \text { Volts } \end{aligned}$	PlateVolts	Screen Grid Volts	Control Grid Volts	Cathode Volts	Plate Milliamperes
Type	Circuit						
SHORT WAVE UNIT*							
$\begin{aligned} & 27 \\ & 24 \end{aligned}$	Osc. Det.	$\begin{aligned} & 2.9 \\ & 2.2 \end{aligned}$	$\begin{array}{r} 110 \\ 24 \end{array}$	24	3.3 $5 .$	0 0	\cdots
BROADCAST UNIT							
24 24 27 24 24 47 80	R. F. 1st. Det. Osc. I. F. 2nd Det. Output, Rectifier	2.4 2.4 2.4 2.4 2.4 $2.5 * *$ 4.5	255 260 60 265 116 $205 * *$ 260/Plate	50 60 450 40 $220 * *$	3.5 9 3.5 3 7 $.7 * *$	25 38 25 22 25	$\begin{aligned} & 7.5 \\ & \ddot{2 .} \\ & 3.5 \\ & \dddot{28 * *} \end{aligned}$

*The voltage readings of the short wave unit were taken from the under side of the chassis, using a Weston multi-range voltmeter, 1000 Ohms per volt. The radio set tester cannot be used, either for voltage or plate current readings because of the effect of the long leads through the set tester cord.
**These readings must likewise be taken from the socket terminals on the under side of the chassis unless the set tester is especiatly equipped with an adapter for testing pentode tubes.

All the above readings were taken with volume control at maximum.
Table 2-Power Transformer Voltage

Terminala	A. C. Volte	Circuit	Color
SHORT WAVE UNIT			
4-5	105 to 125	Primary	Black
1-3	2.5	Secondary	Yellow
2		Center Tap 1-3	Green
BROADCAST UNIT			
1-2	105 to 125	Primary	White (Small Gauge)
3-5	2.5	Filament of 47	Dark Green
6-8	2.5	Filament of 24	Black (Heavy Gauge)
9-10	5.	Filament of 80	Light Blue
11-13	700	Plate of 80	Yellow
4	...		Black, Green Tracer
7 12	\cdots	Center Tap of 6-8	Black, Yellow Tracer
12	- .	Center Tap of 11-13	Yellow, Green Tracer

Table 3-Resistor Data

No. on Figs. 1, 2 and 3	Terminal	Power (Watts)	Resistance(Ohms)	Culor		
				Body	Tip	Dot
(4)	(1-2)	\cdots	$\left.\begin{array}{l} 250 \\ \{1060 \end{array}\right\}$		Black Bakelite	\cdots
(6)	2-3]	- .	2300			
(c)	4-5	. . .	\{ 70 \}	-••0.	Long Tuhular	.
(2)	5-6)	1	(240)	Creen	Black	Red
(9)	\therefore	. 5	5,000	(ireen	Black	Red
(3) (4)	,	1	13,(0)0	Brown	Orange	Orange
(38) (30)		1	32,000	Orange	Red	Orange
(1)	(50-60 cyrles)	. 5	45,(0)0)	jellow	(ireen	Orange
(17) (38)	(50-60 cymes)	. 5	51,(0)0	Circen	Brown	Orange
(22)	1	99,000	White	White	Orange
(13) 5	99,000	White	White	Orange
(9)	1	240,00)	Red	Yellow	Yellow
(51) (70) 5	240,000	Red	Yellow	Yellow
(19)	W...	. 5	2,000,000	Red	Black	Green

PHILADELPHIA STORAGE BATTERY CO.

PHILLADELPHIA STORAGE BATTERY CO.

Model 490 Receiver

Table 1-Tube Socket Readings--Line Voltage 115 volts

Tube		$\begin{aligned} & \text { Filament } \\ & \text { Volts } \end{aligned}$	Plate	ScreenGrid Volts	$\begin{aligned} & \text { Control } \\ & \text { Grid } \\ & \text { Volts } \end{aligned}$	Cathode Volts	$\begin{aligned} & \text { Plare } \\ & \text { Milli- } \\ & \text { amperes } \end{aligned}$
Type	Circuit						
SHORT WAVE UNIT*							
27	Osc.	2.2	110		3.3	0	
24	1st Det.	2.2	24	24	5.	0	
BROADCAST UNIT*							
24	R. $\overline{\mathrm{F}}$.	2.1	220	50	6.	15	2.
27	Osc.	2.1	80		6	15	2.3
24	1st Det.	2.1	210	55	5	15	. 5
24	I. F.	2.1	220	60	8	15	0
27	Rect. Det.	2.1				14	
27	Ampl. Det.	2.1	150		0	15	1.3
27	1st Audio	2.1	150		2	15	1.5
47	Output	2.4**	$205^{* *}$	220**	7**		28.**
80	Rectifier	4.5	220/Plate				

The voltage readings of the shurt wave unit were taken from the ander side of the chasais, uaing a Wicston Multi-range whltiniter, bung ohnis per -These readings must bikewise be taked from the socket terminala on the under side of the chassis unless the set tester is especially equipped wit an adapter for teating pentode tubes.

Table 2-Power Transformer Voltages

REMLER COMPANY, LTD.

SIMPLEX RADIO COMPANY

CAUTION: Do not attempt to operate on current other than that noted on instrument.

[^1]
STEWART-WARNER CORP.

CIRCUIT DIAGRAM OF 950 SERIES BATTERY SCREEN-GRID RECEIVER

GIRCUIT DIAGRAM OF 900 SERIES A. C. BALANGED BRIDGE RECEIVERS

STROMBERG-CARLSON TELEPHONE MFG. CO.

STROMBERG-CARLSON TELEPHONE MFG. CO.

STROMBERG-CARLSON TELEPHONE MFG. CO.

Schematic Circuit of No． 29 Recelver．

NORMAL VOLTAGE READINGS

These voltage readings correspond to a line voltage at 120 volts with the fuse in the＂HI＂position or 110 volts in the＂LO＂position．The fuse should be set in the proper position for the line voltage obtained before making measurements．When voltages are measured proper allowance should be made for a difference in line voltage aboye or below 110 or 120 volts．Be sure to make these readings with the Meter and Scale indicated， otherwise the results will not agree with those tabulated．Alternating voltages are indicated by italics．

Volake	Meter	scale	Where Measured	$\begin{aligned} & \text { Value in } \\ & \text { Folts } \end{aligned}$
Heater Voltages No． 227 and No． 235 Tubes	A．C．	$0-4$	Across Heator Terminais of Sockrts	2.48
Filament Voltage Nó． 245 Tubes	A．C．	$0-4$	Across Filament of Aadio Output Sockrt	2.48
Plate Voltage Radis Amplifiers	D．C．	$0-250$	Between Plate Terminal of R．F．Ampliftrr Sockel（ + ）and Chassis Base	170
Plate Voltage Mixer Tube	D．C．	0－250	Between Plate Terminal of Mixer Socket（f）and Chassis Base（ - ）	170
llato Voltage Oscillator Tabe	D．C．	0－280	Bet ween Plate Terminal of Oscillator Tabe Sucket（ + ）and Chassis Raso（一）	87
Plate Voltage I．F．Tabe	b．C．	0－250	Hetween Plate Terminal of First I．F．Socket（ + ）and Chasisis Bage （一）	220
Plate Foltage Firmt Andio Tabe	D．C．	0－250	Between Plate Terminal of First Audio Socket（ + ）and Chaseis Base （一）	192
Plate Voltage Audio Oatput Tabes	D．C．	0－750	Between Plate Terminals of Audin Ontput Sockets（ + ）and Midap 10－Ohm Resistor Midtap（一）	250
＂C＂Voltase R．F． Amplifler	D．C．	0－10	Brtween Cathode Terminal of R．F．Amplifler Socket（ + ）and Chassls Base（－）	8
＂C＂Voltage Mixer Tube	D．c．	0－10	Between Cuthode Terminal of Mixer Socket（ + ）and Chassis Base（ - ）	8
＂C＂Voltage I．F． Amplifier	D．C．	0－10	Betwen Cathode Terminal 1．IF．Socket（ + ）and Chassis Base（ - ）	8
Grid Voltage Oselliator Tabe	D．c．	0－250	Betwren Cathode Terminal of Osclllator Socket（ + ）and Chassia Hase（一）	14－18
Plate Voltage Dfmod－ ulator Tube	1．c．	0－250	Between Voltage Divider Terminal No． 3 （ + ）and Chassis Base（ - ）	12.5
Screen Voltages of R．F． Amplifler，Mixer，and I．F．Amplifier	D．C．	0－250	Between Screen Terminaln on Sockets（ + ）and Chassis Base（ - ）	87
＂B＂Voltage R． I ． Amplifier	D．C．	0－280	Hetween High Bide Voltage Divider（ + ）and Chassis Buse（ - ）	175
＂B＂Voltuge I．F．Amplifier and First Audio Tube	D．c．	0－250	Brewen Midap Flrst Audio Transformer（ + ）and Chassis Rase（ - ）	225
＂B＇Voltage Ontput Tubes	D．c．	0－750	Between Midtap on Output Transformer（ + ）and Chasain Base（ - ）	$30 \overline{0}$
＂（＂）Voltage First A．F． Tube	D．C．	0－10	Hetween Cuthode of First A．F．Tube（ + ）and Chassis．Base（ - ）	3
＂C＂Voltrges Output Tulses	D． \mathbf{C} ．	0－250	Across 750－Oimm Biasing Resistor	80
Speaker Fleld Voltage	D．C．	0－250	Across Small Pins on Speaker Connector Sucket	127.5
Plitte Fortage A．C． Per Anode No． 280 Rectifier Tube	A．C．		Betwern Plate Termimals of No． 280 Rectifier Socket and Chassio Base	310
Filument Voltage No． 230 Rectifier Tube	A．C．	0－8	Between Flumme Terminals of No． 280 Rectifier Socket	4.9

U. S. RADIO AND TELEVISION CORP.

U. S. RADIO AND TELEVISION MODELS 99 AND 99X
 Pentode (5-tube) Superheterodyne Receivers

Perhaps the most simplified commercial Perhaps the most simplified commercial
superbeterodyne receiver as yet developed is the No. 99 chassis, a circuit of which is shown below.
The design includes a combination oscillator and first-detector V 1 , using a type $2+$ screen grid tule; an I.F. amplifier $V 2$, using a type '35 variable-mu tube; a second-detector 13 using a type '24 screen-grid tube; a pentode power output tube 14; and the usual ' 80 rectifier V 5 . Note the absence of a separate oscillator tule. The intermediate frequency is 262 kc . A band-selector precedes the detectoroscillator.
A surge of energy fed into the secondary of the oscillator inductively causes this circuit to legin to oscillate at its resonant frequency, 262 kc . aloove the signal frequency. This oscillator frequency is fed back through the tap in the secondary coil into the grid circuit of the first-detector. There, the oscillating sigual is amplified and fed inductively through the primary system in the plate circuit of the tube back into the secondary, thus sustaining the oscillations at the frequency to which the oscillator secondary circuit is tuned.
Operating voltages for this receiver are as follows: Filament potential, V1, V2, V $3, V_{4} 4$,
 2.25 volts; $V 5,4.9$ volts. Plate potential, V1,
$V 2,165$ volts; $: 3,128$ volts; ${ }^{4} 4,205$ volts. V2, 165 volts; ${ }^{\circ} 3,128$ volts; $1 / 4,205$ volts. Screen-grid potential, $V 1,12,65$ volts; 13,60 volts; Y.4, 235 volts. Plate current, V1, 1.3 ma. ; V2, $6.4 \mathrm{ma}$. ; $13,0.22$-ma; 14,29 ma.; V̄, 27 ma: per plate. Control-grid potential, 11, 4.5 to 5.25 volts; $\sqrt{-2}, 2.5$ volts; 「3, 6.5 volts; ${ }^{14} 4,16$ volts. Screen-grid current. V1
 Cathode potential. V1, 4.5 to 5.25 volts; V-2. 2.5 volts; \「3, 6.5 volts.

Connections to the power transformer as. sembly are given in the illustration of this portion of the receiver.
Ttie bias voltage on the first-detector will vary, depending on the frequency to which the receiver is tuned. The voltage is the highest at the center of the dial and drops off at both ends; The reason for this change in bias voltage is due to the change in the oscillatory current with change of frequency setting.

Power transformer teiminal connctions of the Model 99 Chassis.

Ill plate readings are measured with a 600.000 ohm meter. The second-detector screen-grid potential must also le read with a high-resistance meter owing to the resistance in this circuit. The pentode grid voltage cannot satisfactorily be read at the socket between the grid and filament owing to the higli resistance in the grid circuit. This potential must be read across the 300 -ohm section of the voltage divider resistor at which section the bias voltage for this tube is developed.
Should the circuit oscillate on being connected up, it may be due to type ' 35 or ' 24 tubes whose characteristics vary considerahly from the standard. Mlso, check the ground connection; and note also the line potential.

Parts arrangcment on top of the Model 99 reccizer chassis. To prctent circuit oscillation it if essential to kccp all lcads short and in corrcct location. For good operation, an important itcm is good tubes.

[^2] frcquctucies.

[^0]: LINE VOLTAGid 11.5

[^1]: turned prepaid to the factory, but if the complete instrument is returned a nominal
 charge will be made for such labor as may be necessary to install the defective part.

[^2]: Schematic circmit of the Modcls $9960-c y c l c$, and 99 Y 25 -cycle superketerodyuc reccivers. A band-selector preccdes the first-dctcctor-oscillator, V1. The simal frequcncy settinas of the scrice oscillator must be accuratcly knowen, as the dial is calibratcd to read dircctly in broadcast bond

