$$
\begin{aligned}
& \text { RADIO } \\
& \text { REFERENCE } \\
& \text { ANNUAL }
\end{aligned}
$$

Puiblished by

> Dadio faft
> NEW YORK, N Y

1938 RADIO REFERENCE ANNUAL

THIS VOLUME CONTAINS MANY ARTICLES, IMPORTANT DATA AND IDEAS FOR THE EXPERIMENTER, SERVICE MAN AND RADIO "FAN" - A USEFUL BOOK FOR ALL RADIO MEN.

RADCRAFT PUBLICATIONS, INC.
Publishers
99 HUDSON STREET
NEW YORK, N. Y.

CONTENTS

CHAPTER I-RECEIVERS, CONVERTERS, POCKET SETS The Book-End 3 3
A Simplified Converter for Short-Wave Radio Beginners 6
3-Tube Portable Battery Set 8
Pocket-Size Crystal Set for Beginners 10
"Long Arm"-A Remote Set Control 12
Home Broadcaster 14
Hi-Fi P. A. and "Universal" Radio Tuner 16
CHAPTER II-SERVICING
Midget Oscilloscope 19
Mixer Circuits You Should Know 23
Simple Condenser Analyzer 24
How to Use V.T. Voltmeters in Radio and P. A. Servicing 26
Service Man's Audio Oscillator 28
CHAPTER III—GENERAL
Photo Tubes and Cells-When to Use Them 31
Tester for Intermittent Opens in Condensers 33
Short-Wave Coils in a Jiffy 34
How to Get "Long Distance" on Your All-Wave Set 35
CHAPTER IV—INTERPHONES
I-Tube A.C.-D.C. Interphone 37
2-Tube Interphone 40
The Much-Abused Ballasts for A.C.-D.C. Radio Receivers 43
Beat Oscillator for DX Reception 44
Compensation of Amplifier Response 46
The Radio-Craft Tube Tester 47
CHAPTER V
New Radio Tubes for 1937 51
CHAPTER VI
Useful Circuit Ideas from RADIO-CRAFT Readers 61
CHAPTER VII
HANDY INDEX—RADIO-CRAFT 1937 63

CHAPTER 1

Receivers, Converters, Pocket Sets

'The Book-End 3"

TTHE circuit schematic shows 3 tubes-a 6 K 7 R.F. amplifier, a 25 A6 power detector, and a 2526 rectificr-in what, at the first glance, will appear to be a rather complex and unusual lineup, but which on careful inspection will prove itself to be an extremely simplified arrangement.

Let's begin with the rectifier which is connecterl conventionally in an A.C.-D.C. power supply hook-up. Switch Sw.1, ganged to tone control R5, connects the A.C. or ID.C. 110 V. line to the " β " minus lead. The " B " minus is NOT connected directly to chassis ground but through condenser C17. The chassis, therefore, is not "hot." (It is recommended, although not specified by the author, that both sides of the line be fused as shown in the schematic and pictorial diagrams of the power unit. If desired a "fused plug," available from practically any electrical supply house, may be used.-Editor)

Resistor R6 is the 180 -ohm filament dropping resistor in the 3 -lead line cord and connects to the 2526 filament and out to one prong of the powersupply cable for connection to the tuner unit. The rectifier plates are tied together and to the 110 V . line as shown. One output element feeds the 3,000 -ohm speaker field which is filtered by parallel-connected electrolytic condenser C13, and one provides the D.C. voltage for the receiver.
The input circuit of the 25 A 6 is tuned to the desired signal by the C2-C7-L2 combination. Coil L2 is an ordinary shielded midget R.F. transformer, matched to the antenna transformer, L. Capacity Cx , in L 1 and L 2 , is built-in. Condenser C 2 is one section of the 2 gang variable condenser $\mathrm{C} 1-\mathrm{C} 2$. Condenser C 7 is required to complete the I.C circuit; the secondary of L2 is brought to "B-" which is not directly grounded to chassis), while, the variable condenser is mounted on that chassis with rotors grounded via the condenser frame. Condenser C10 is a small bypass across the output to smooth out the tone. ind its use may or may not make R5, the tone control, an unnecessary refinement. Unit C11 bypasses "B plus" to "I minus," and C8 bypasses " B plus" to chassis.

The power detector in this receiver is a sensitive affair. Nevertheless, in order to provide its con-trol-grid with signals strong enough for speaker volume audio output, it becomes advisable to get as much R.F. amplification as possible out of our single R.F. stage. And this is achieved through the use of our old standby, regeneration or feed. back.

Fig. A, The Complete Receiver.
Feedback in the 6K7 circuit increases the strength of the amplified signail directly and effectively, as follows: directly, by reason of the regenerative action itself, and effectively, by reason of the increased selectivity which regeneration gives to an R.F. stage.

Note the connections here carefully. The sup-pressor-grii, ordinarily directly wired to the cathode, is tied to "B-" through the bypassed bias resistor, R3. The suppresson-grid side of R3 is then brought to cathode through a small feedback coil. This arrangement permits the proper biasing of both cathode and suppressor-grid but keeps the R.F. out of the suppressor-grid circuit.

The cathode-coil method of regeneration involves what is known as electron coupling and the builder should remember this admonition: NEVER TIE SUPPRESSOR-GRIDS AND CATHODES DIRECTLY TOGETHER WHEN ELECTRON COUPIIAG IS EM. PLOYED WITII TUBES OF THE TYPES $6 \mathrm{K7}, 6 \mathrm{D} 6, \mathrm{AND} 58$; the suppressor-grid should be always wired as shown, connect:d directly to ground or " $\mathrm{B}-$ "", or tied to the screen-grid. In "EC" circuits for regeneration, direct connection between cathode and suppressor"gril will nullify

Fig. 1, Circuit diagram of "Book-End 3"

Fig. C, Chassis Views
the effect of internal shielding and cause instability.

Condenser C_{1} is the first section of the 2 -gang variable condenser, with C 4 the means of completing the circuit between condenser rotor (chassis connected via the frame) and the " B-" return for the L1 secondary.

Units C5 and $\mathbf{R} \dot{2}$ provide means for controlling feedback and may be eliminated where a fixed adjustment for maximum regeneration and selectivity (without circuit oscillation anywhere in the tuning range) is desired and can be effectively a:tained. Potentiometer R2 might be simply called our sensitivity control.

Potentiometer R1, wired across the L1 primary, shorts the winding; and thus, by varying voltage applied to the control-grid of V1, functions as a volume control.
With R1 at the maximum-right position, tune tor a signal. If signals are heard, back up R1 and align C 1 and C_{2} at both high- and lowfrequencies ends of the tuning range by means of the variable condenser trimmers. If signals are not intercepted, recheck the wiring, and if you have a voltmeter test for "B plus", voltage at the tube plates and the screen-grids. The voltage will be somewhere in the neighborhood of 100 , with the screen-grid readings approximately that of the plates.
If following proper alignment the circuit breaks
into oscillations or shows signs of instability, try increasing the size of R3 by 100 ohms or so. Do not make this resistor too large, however, as sensitivity will suffer-and if squeals and whistles still persist, check over C4 and C7. These two condensers have much to do with stability. Increase their size if necessary, and above all, see that they are tied to the coils right at the secondary-return lugs.

If hum is in evidence, increase the capacity of C14 or C15, or both to 8 mf . If the hum can be traced to the reproducer, similarly increase the size of C13. In the laboratory model, 4 -mi. units at all three points proved entirely adequate, with no hum trouble whatsoever experienced.

If the speaker hums just enough to prove that it is receiving proper excitation, or if about $100{ }^{\circ} \mathrm{V}$., can be measured across its field, and yet no " B " is measurable or the " B plus" output is abnormally low, interchange the 4 -to-8 terminal connections on the 25Z6. If the "B plus" to the receiver jumps to normal and the field excitation disappears or drops off appreciably, the rectifier tube is faulty, one set of its output elements alone giving proper service. The author has found many of the 25 Z 6 s troublesome in this respect.

To install the regeneration feature, first unsolder the temporary connection between the 6 K 7 cathode and suppressor. Bring a lead from the cathode up to one lug of a 4 -point tie strip. Mount C5 conveniently near and follow C5 out to the left-hand-tapper potentiometer, R2. The R2 center arm goes to " B -".
Now for some trial and error experiments.
The L1 coil core is not very large in diameter. As a matter of fact it is only about $1 / 2 \mathrm{in}$. across. Consequently, our feedback coil must have a smaller diameter in order to fit inside. In the laboratory model, here illustrated, such a coil was wound on a small celluloid core not much larger than a lead pencil).
No hard and fast "turns" rules will, nor can, be given for the feedback coil. Begin by winding the maximum possible number of turns along the length of your "tickler" (regeneration-coil) core, dropping the wonnd form into L1, and bringing the leads out to 2 tie points-one connecting to cathode, one to suppressor-grid. Adjust R2 for maximum selectivity (knob turned completely to the right), and turn on line switch Sw. 1. If enough turns have been wound on the feedback form, the circuit will undoubtedly oscillate-a con-

Fig. 2. Power Supply Circuit
dition which we won't exactly want but which will serve at least to show us now that regeneration is being had. If no shrill carricrs on signals are obtained just increase the number of turns. Or reverse either the position of the feedback coil or the lead connections.

With oscillation obtained, back off R2 slightly. The oscillating condition should disappear; if not, remove turns from the feedback coil until the circuit will break into oscillation only when the R2 knob is at extreme right-hand position.

Tune to a signal with R2 adjusted for minimum selectivity or regeneration. Move the variable arm to the right. The signal should grow definitely stronger and sharper. With the R2 knob turned as far to the right as possible and the circuit just under the point of oscillation-as indicated by increased noise level between sta-tions-tune across the band. Signals will come in sharply and clearly.

List of Parts

1-shielded, midget antenna coil, type 2436, L1;
1-shielded, midget R.F. coil, type 2437, L2;
1-Wholesale Radio Service or Allied Radio Corp. 2 -gang variable condenser, 370 mmf . (max.) per section, C1, C2;
1-Aerovox condenser, type 284, . $002 \cdot \mathrm{mf}$. C3;
3-Aerovox condenser, type 284, 0.25 to 1. mf. (not critical), C4, C7, C17;
4-Aerovox condensers, type 284, 0.1-mf., C5, C6, C8, C11;
1-Aerovox mica condenser, 250 mmf ., C9;
1--Aerovox condenser, type 284, $0.006 \cdot \mathrm{mf} . \mathrm{C} 10$;
1-Aerovox condenser, type 484, $0.1 \cdot \mathrm{mf} ., \mathrm{C} 12$;

1--Aerovox single electrolytic condenser, type PHS2, 4-mf., C13
1-Aerovox dual electrolytic condenser, type PHS-2, 4-4 mf., C14, C15;
1-Aerovox condenser, type 284, $0.05-\mathrm{mf}$., C16;
1-Electrad potentiometer, type $20!, 15,000$-ohms, R1;
1-Electrad potentiometer, type 278, 5,000 ohms, R2;
1-Continental resistor, 500 ohms, $1 / 2$-w., R3;
1-Continental resistor, 1. meg., $1 / 2$-w., R4;
1 -Electrad potentiometer, type $241,30,000$ ohms, R5;
1 -resistor-line cord, $\mathbf{1 6 0}$ ohms, R6;
1-switch (on Electrad 241 potentiometer; or rotary S.P.S.T.) Sw. 1 ;
1 -length 4 -wire heavy-duty shielded cable (desired size) ;
1 -5.in. dynamic speaker, equipped with output transformer for 25A6, 3,000 -ohm field;
1-choke, type 466-420, Cli. 1 ;
1-Allied Radio Corp. Aluminum chassis, size $6 \times 8 \times 2$ 1/4 in.
1-National Union type 6 K 7 tube, V_{1};
1-National Union type 25 A6 tube, V2
1-National Union type 25 Z 6 tube, V3;
3-sockets, type S8, for V1, V2, V3;
1-socket, type S4, (used as "output socket");
1-chassis plug, type CP4;
Miscellaneous (direct-drive dial, pointed knob, 2 round knobs, hardware, etc.).

Simplified Converter For Short-Wave Radio Beginners

The Simplified Converter is A.C.D.C. operated and has a 6 K 7 stage of 1.1°., tuned to the lowfrequency end of the broadcast band. It employs separate high-frequency mixer and oscillator tules, for highest possible conductance and a minimum of off-aligument oscillator swing with detector tuning. It obtains best possible signal-to-noise and signal-to-image ratios by using detector re-generation-the only effective substitute for a costly, hard-to-build tuned-R.F. stage; and makes use of a 3 -gang, 6 pole switch for band switching.

The photographs show only one (general coverage) set of coils, all others having been removed for a clear view of the various components. This coil set. by the way, has the widest possible coverage (from approximately 19 to approximately 60 meters-depending umon the adjustinent of the oscillator trimmer) and suggests the construction of a converter for a single high-fregnency band, requiring no costly band switch. Shielding between coils has also been removed to reveal points of physical construction-not to imply that such shielding may be eliminated.

The detector is a 6 L 7 , conventionally connected, but with its cathode-return through the usual re-sistor-filter condenser combination to a tap on the detector coil, rather than to ground. The screen-grid, carefully filtered, is tied to the center arm of a 40,000 -ohm, potentiometer across the power supply which serves as regeneration or input sensitivity control. The cathode tap on the coil is so placed that, with the control adjusted for maximum sensitivity (maximum screen-voltage slightly less than the measured "]s plus") fall regeneration is had without detector-circnit oscillation.

The oscillator voltage is fed through a small capacity to the injector, or No. 3 grid of the 61.7 detector; with a 50,000 -ohm resistor, R5, connected as shown.

The variable condenser is a 2 -gang affair with low mininum capacity, and trimmers removed; although they may le retained for high-frequency alignment where the converter uses but one set of coils. The maximnm capacity may be anything from 360 to 420 mmf . Endeavor to ohtain a condenser whose minimum capacity is not greater than 12 mmf .

By employing a single stage of moderate gain, not only is the instrument described made adaptable to receivers of wide efficiency ringe, but its proper line-1p with these various receivers is facilitated. The converter is built to work at an I. F. of approximately 550 k.c.

The converter is coupled to the receiver by matching the secondary of its output I.F. trans-

Fig. B, The Complete Converter
former to the ligh-impedance primary of the receiver's antenna transformer.
A D.P.-D.T. switching arrangement permits changeover from hroadcast to converter operation. I'he leads from switch to receiver and from oltput transformer to switch are shielded in lowcapacity tubing. (The importance of the former lead should be noted; the lead must not pick up broadcast sigmals, and shielding must necessarily be very effective. Further, the cable should he of true low-capacity type to minimize signal loss.)

The chassis path slould be high enough for installation of the coil switeh; dribl and cut it.

Wire the filaments in series: follow the schematic crofeflly and une farly heave well-insulated cable. Wire up the power circuit; test for filament continuity and for shorts to ground. If an A.C. neter is a wailable. put in all tubes, plug in the A.C. cord on the line and get an over-all filament reading. This should be approximately 44% and the 3 -wire line cord should have a self-contained resistor of 250 ohms.

Wire in all other parts which have been installed. Add tie points, supports soldered to chassis, wherever they may seem necessary. Be sure to have one near the hand switch, so that the return leads of coils may find secure anchorage. Bring a lead from the condenser rotors through the chassis to a short, direct, soldered ground, and then connect bypass condensers from the oscillator and detector coil ground-return tie points to this same ground point. Do not fail to bypass these coil terminals here. If one terminal is used for returns of hoth oscillator and detector coils, one bypass alone will be needed, but don't forget it, even if " R -" is bypassed elsewhere. The complete high-frequency circuits MUST be localized properly.

If you haven't done it before, you must now do some work on the I.F. coils before these are

Fig. 1, Schematic diagram of S.W. Converter
finally installed. Kemove the shield cans, carefully unsolder the leads to the trimmer condensers. and then unwind from each coil (4 in all-2 primaries and 2 secondaries) approximately 60 turns. It will now be necessary to carefully clean the wire of its insulating enamel, and resolder to the trimmer terminals. Every care should be exercised in doing this. Test each coil for continuity; then get a resistance reading. The re sistance for each coil should measure around 12 ohms.

Replace the cans, mount the coils, and wire the 2 I.F, contponents into the recciver, (Red wires to "B plus", blue wires to plates, green wires to grid and output ground. black wires to "B-", and output connection to the IJ.P. D.T. switch.)

However much the coils may track on paper. it will be found that alignment difficulties, even with variable trimmers and padders, will be experienced on actual construction and application. Build and install one set of coils at a time, removing turns from both oscillator and detector units (or adding turns) until both H.F. limit alignment and desired M.F. limit "spotting" are had. If the detector circuit oscillates, connect the cathode to a lower point on the coil. If the 6 C 5 circuit does not oscillate, run the cathode tap up higher on the oscillator coil-selecting a final adjustment which will assure a fairly strong and uniform R.F. for injection into the 6 L 7 's No. 3 grid. Antenma connection loading may throw off H.F. limit tracking, but the variable detector-circuit trimmer should permit easy compensating adjustment. If detector tuning has a frequency "pulling" effect on the oscillator, provide better shielding bet ween coils.

List of Parts

1-Meissner I.F. transformer, type $5712,456 \mathrm{kc}$. (60 T. removed from each winding), I.F.T. 1 ;

1-Meissnct T.F. Transformer, type $5714,455 \mathrm{kc}$. (60 T. renoved from each winding),

- ACCT

1-A.C. 1 I.C. midget choke, app. 400 o. resistance. ch.
1-D.P.D.T. jackswitch, type 60. sw. 1
1-S.P.S.T. rotary line switch, sw. 2.
2-2-gang low-minimum variable condensers, closing right. trimmers removed, max. capacity 360 to 420 mmf . C1, C2.
1-Hammarlund Star midget variable condenser 50 mmf . C 4 .
8-Aerovox condensers, type 284, 0.1 mf . C3, C5, C7, C8, C9, C13, C14, C15;
1 -Aerovox condenser, type $284,0.1 \mathrm{mf}$. C6;
1-semi-variable trimmer. 3 to 25 mmf . or smaller, one for each oscillator coil, C10;
1-Aerovox condenser, type $1468,50 \mathrm{mmf}$. C12
2-Aerovex condenser, type $1468,100 \mathrm{mmf}$. C11;
2-Aerovox dual electrolytic condensers, type PBS 2, 8.8 , or $8-16 \mathrm{mf}, \mathrm{C} 16, \mathrm{C} 17$;

2-Aerovox dual optional condensers, type PBS 2 $4-4$, or $8-8, \mathrm{mf}, \mathrm{C} 18, \mathrm{Cl} 15$;
1 -Aerovox condenser, type $484,0.1 \mathrm{mf}$. C20;
1 -padder condenser, one for each wide-range or medium-frequency oscillater coil. (To consist of Aerovox type 1467 mica pad, 500 mmi. to .005 mf ., paralleled with variable trimmer of widest possible capacity range, total capacity to be variable approximately 20% of estimated required value), Padder capacity ;
1-Continental resistor, 600 ohras, $1 / 2 \cdot \mathrm{w}$ or $1 \cdot \mathrm{w}$ R1':
2-Continental resistors, 5.000 chms, $1 / 2-w$. R2; R6;
2-Continental resistors, 50,000 ohms $3 / 2 \cdot \mathrm{w}, \mathrm{R} 4$ R5;
-Continental resistor, 400 ohms 1 or $1 / 2$-w. R7;
1-Line cord 250 ohms, R8
1-Electrad potentiometer, type 997 or 202. R3;
1 -Centralab 3 -gang 6 -circuit band switch, number points to suit;
1-Micromaster dial, type 318;
1-pointer knob, type 588;
4-small round knobs;
1-2-ft. length low capacity shiel- tubing;
$1-25-\mathrm{ft}$. coil special R.F. wire for grid circuits and coils ;

Fig. C. Underside of Cnassis
1-Blan aluminum, steel or electralloy chassis, $6 \times 10 \times 21 / 2 \mathrm{in}$. high;
2-steatite low-loss octal sockets, type RSS, (for Y1. V2;
2-octal moulded sockets, type S8 (for V3, V4);
1-National Union or Kaytheon type 6 C 5 metal 1;
1-National Union or Raytheon type 6L7 metal V2;
1-National Union or Raytheon type 6 K 7 metal V3;
1-National Union or Raytheon type 2526 metal V4;

Fig. A, A Compact Portable

THE case of this receiver measures only $53 / 4 \times 6 \times$ $91 / 4$ ins. long, including the cover which, when shut fully protects all the controls and the speaker. It would be possible to make the outfit considerably smaller by using smaller batteries, but this is impractical and highly uneconomical. The batteries used will last about 30 hours, if used on the basis of 3 hrs. a day. Naturally, the less they are used the greater will be their useful life. The " B " drain is only about 12 ma., while the filaments work well on 310 ma ., although, if run at the rated 2 v ., the drain is 340 ma .

Of course, some compromises had to be made in design, the main one being the use of the new 1E7G tube. This consists of 2 pentodes in one shell, and is used for both 2nd.-detector and A. F. amplifier. Since both screen-grids are run to one base pin it was necessary to use an A.F. choke through which to supply plate voltage to the 2 nd-detector, as a resistance would have dropped the voltage so much that a lower screen-grid voltage would be necessary, and this in turn would greatly reduce the efficiency of the output section. As finally arranged, both sections use full screen-gricl voltage, and each section takes about 3.5 ma . plate current. The 2 nd detector section plate current might be cut down by application of more "C" bias but this would introduce complications. Naturally, with only 3.5 ma. plate current, the power output of the receiver is not very great. However, it is quite sufficient to work the 3 in . P.M. dynamic reproducer at surprising volume and with good duality.

Another compromise will be fouml in the " C " battery, which comprises 4 gricl-bias cells delivering ahout $4 v^{\prime}$ altogether. This $4{ }^{\circ}$ is used on the control-grids of all tubes and while a little higher than needed, it serves to reduce the plate current somewhat from the value (ahou 17 ma .) obtained with 3 V . bias.
The bias cells all fit in a single holder, but the latter must be cut down in size to fit on the chassis. This is a simple matter and consists only of putting the mounting brackets between the cell holders. Be sure to mount the cells as shown, with the cup, shaped holder next to the tuning condenser. Another precaution! Never short the bias nor try to measure their voltage as this positively will ruin them. li properly treated they will never need replacement, but a current of even a few microamperes will completely spoil them.
A few slight changes are needed in the coils The oscillator coil is removed from its shieh, the shield cut down about $3 / 4 \mathrm{in}$. and the antenna coil mounted therein.

3-Tube Portable Battery Set

A small trimmer, found on the antenna coil is removed as the panel irimmer condenser takes its place. The control-grid lead, which comes from the top of one of the I.F. transformers is run down through the bottom of the transformer instead. This coil feeds the detector. The I.F. transformer used hetween tulees V1 and V2 is unaltered.

Aligument of the circuits is the same as in any other superhet. A test oscillator is of great help. The I.F. transformers are aligned first and the tuning circuits last.

Results are fine, even with a very short antenna and no ground. A 10 ft . piece of wire with a clip on one end is always carried with the set and is quite sufficient for local stations. It may be fastened to any metal object, even a water pipe, The R.F. trimmer will be found quite sharp in tuning and of great help in bringing in weak stations. For DX work a pair of phones may be plugged into the panel jack; this will automatically cut out the speaker. With a fair antenna and ground connection, real DX results equal to those obtained with much larger receivers will be had. The iron-core coils used throughout undoubtedly contribute much to the fine performance of the receiver.

Again let us caution the constructor to gather together all parts and measure them for size before building the case. The writer spaaks from sad experience on this important point.

List of Parts

1-Meissner tuning condenser, 2-gang type 15114;
1-Meissner padding condenser 500 mmf . type 2500;
1-Meissner dial, type 18245;
1- Meissner R.F. clooke 60 mh . type 6844 ;
2 Solar Domino condensers, 0.05 mf ., 200V.;
5--Solar Domino condensers, 0.25 mf ., 200V.;
1-Solar Domino condensers 100 mmf ,
1-Solar Domino condensers, 250 mmf ;
1--Solar Domino condensers, . 004 mf .;

1. Solar Domino Condenser, 002 mf ;

1-Itammarlund trimmer condenser, type APC 100 ;
1-Aladdin antenna courler, 504;
1-Alatdin oscill:ator coil, type 2001;
1-Aladdin J.F. transformer C100 M.. 465 kc .;
1-Aladdin I.F. transformer C101 M., 465 kc .;
4 griel-bias cells;
1-cell holder, No. (ibs;
3-1RC resistors, $1 / 2 \cdot$ W., 50.000 nhms ;
1-IRC resistors $1 / 2-w .$. . 10.000 , olms:

Fig. 1, Wiring diagram of Battery Portable

2-IRC resistors, $1 / 2-\mathrm{w} ., 0.5 \mathrm{Meg}$.
1-IRC resistors, $1 / 2-W ., 0.25$ Meg.
1-IRC IDPDT switch No. 22;
1-IRC volume control 75,000 ohms.;
1-3 in. permanent-magnet dynamic speaker, type 3 AMP with transformer;
2 -portable batteries $45 \mathrm{~V} .$, No. $\mathrm{Z30PX}$;
$2-11 / 2$ V. cells. No. 44 ;
1-L:T.C. midget A.F. choke (output transformer for 1 E 7 G ; will do);
1-10-ohm. midget potentiometer:
1-Raytheon 1I)7G tube;
1-Raytheon 1D5G tube;
1-Raytheon 1E7G tube;
3-Octal sockets;
1-Case ;
Aluminum for chassis and panel ;
Hardware knobs, jacks, etc.

Fig. B. How the Parts are Placed

Pocket-Size Crystal Set For Beginners

Many people would like to try building a radio set but hesitate to do so because of the fear of spending money for equipment and then getting no results. Even a crystal set can run into some money, but of course such a set is the simplest and cheapest for the beginner. Keeping in mind the desire for an inexpensive set, the

Fig. A, Compact Crystal Set
one shown in use in Fig. A was made up. It is quite diminutive, although no particular effort was made to produce an "ultra-midget" set. All the parts being small, the result is a small set that can easily be slipped into a cont pocket.

The case is a piece of tubing, either cardboard or hakelite, $13 / 4$ by $11 / 2$ ins. Two ends are marde, of any convenient matcrial (even cigar box wood!) and one end is glued in. See Fig. 1A for latyout of parts.
The tuning condenser is a, so-called, padding iy.n, and should have a capacity range of 120 to 330 mmf . This condenser is fastened to the end of the case which wis glaed in, 2 smatl serews being used for the purpose. Since the condenser is operated by means of a screw which is too short to fasten a knob to, the screw must be replaced with one about 1 in. long. A small knob is fastened to the outer end.
The coil may now be wound in place. It consists of 100 turns of No. 28 double silk-covered wire. The ends pass through hoies in the tubing to connect to the circuit.

The other end of the case must be removable and may be made simply. a press fit. In it are drilled holes for 2 phone tip-jacks, 2 binding posts. and the crystal detector. The latter consists of a mounted galena crystal. soldered to a bolt that passes through the case end. Another bolt holds a short piece of fine, spring wire that touches the crystal surface lightly, This wire is termed the "catwhisker"
The wiring is vers simple. The phone condenser is connected directly
to the end of the pin-jacks and the other necessary connections made as shown in Fig. 1 B and C; then the end is pushed into place.

Operation is simple and certain if the circuit has heen carefully followed. A good ground and a fairly long antenna are essential if the receiver is to be used more than about 25 miles from a powerful station. If closer, a much shorter antenna will do. To work the receiver it is necessary for the "catwhisker" to make contact with a sensitive spot on the crystal, and this can be ascertained by operitting a door bell, buzzer or ary other spark-producing device near the antenna. If the buzz (or the electrical noise which it produces) can be heard in the headphones, then that particular spot on the crystal is suitable for receiving radio signals. Otherwise reset the "catwhisker" and make the buzzer test over again. If a buzzer is not available than it is a matter of trial and error. Move the wire over the crystal surface until a spot is reached that will tetect the incoming signals.

This little crystal set was first tested in a modern steel building in New York City with a 20 ft . wire dangling from a window as an aerial. The results were remarkable, considering the circumstances. Five different stations were tuned-in with comfortable earphone volume. Several others were also tuned-in, but faintly. With a decent outdoor acrial they would have been much louder.

If upon completing the set you fail to receive any stations, try the following remedies:

1, Check the wiring against the diagrams for possible errors; 2, Clean the erystal detector by wiping the surface with a cloth dipped in ether or cleaning, fluid; 3, File the very tip of the "catwhisker," or snip it with a cutter, to a very fise point to assure good contact; 4, Try resetting the "catwhisker" on various points of the crystal surface in order to find the most sensitive spot; 5, Check the aerial and ground connections and the aerial itself; 6, Try several other pieces of galena-usually there is wide variation in sensitivity; 7, Make sure the headphones are really sensitive-sometimes the pole-pieces are so far from the diaphragm, or the magnets are so weak, that the phones are no longer sensitive to weak signals, althongh they may be quite satisfactory for strong signals.

Fig. 1C, Pictorial Diagram

Fig. 1 A-B. Diagram and Construction Detalls

Crystal scts, of cowrse, have certain inherent disadvantiges. They are by no means as sensitive nor as selective as eren the simplest of singletule regenerators.

Although you may read of "long alistance" crystal sets, take what you read with a grain of salt. Lnaler extraordinarily favorable condition*. such scts will be able to tune-in high-power st-1. tions. Bat the: will ro: afford reception of all
stations within a given area day-in- and dayout, under all sorts of weather conditions and at all times of the day.
White these ficts may be familiar to the reader, they are given here so that those who build the set described in this section will not be disappointed with results.
The sel gives excellent results; excellent results, thar is, for a simple crystal set. Do not expect it to afford tube jerformance.

List of Parts

[^0]Itardware.

"Long Arm" A Remote Set Control

There have been many complicated remotecontrol urits described in the past. Most of them were costly to construct and never quite satisfactory in operation. Here is a simple form of remote-control-a veritable "Long . 1 rm"-that is low in cost, easy to construct and will give years of service with any receiver.

The diagram of Fig. 1, shows the simplicity of the electrical circuit. Two tubes are nsed, one is the 6.18 pentagrid converter tube and the other is the 25 Zt recifier tube used in a halfwave connection.

Due to the fret that all of the circuits involved in the operation of the unit are working at radio frequercies, adequate power supply filtration is obtained without the expense of iron-core chokes and large valurs of filte: capacity. The power supply filter network thus consists of only resistor R3, and condensers C7 and C8.

The circuit of the $\overline{\mathrm{A}} 8$ is conventional, with the triode section ased as the oscillator and the pentode section userl as the molulator or mixer tube. Note that the volume control is of the combination typr, although a simple form of potentiometer K 5 , is ased. When the volume is reduced the bias o- the control-grid? of the pentode section is increased and the primary of the antenna transforme- is shorted. An old, but effective means oi volame eontrol.

This remote control ean he used with any type of receiver either T.R. \vec{F}. or superhet. and due to the inclusion of the extra 2 thenel circuits, phas the conversion gatin of the pentode section one can expect an improvement in the performance of the receirer, Generally fhis improvement will be noter in a slight increane in sensitivity and shatper tuming. There shomld hes mo loss in volume and sharposs in thoniog, if the unit is properly adjusted and installed.

It is not recesmaty to make any internal connections to the radio set when the remote control
unit is used, as, it is self-powered. This is a very important feature, as the average radio set is designed with a power supply adequate only for its own needs, and the addition of extra tubes with the resultant increase in the filament and plate current drain may cause the receiver to overheat or change the plate voltages on the tubes. In many of the present-day receivers a change in the applied plate voltages can cause the circuits to become detuned. Thus, necessitating a re-alignment job that would take time and If the set is of the multi-hand type expensive test equipment may be necessary.

After all of the connections are made and checked according to Fig. 1, and the bottom cover-plate attached to the chassis (to prevent ratliation from the wiring), and the tubes placed in their respective sockets, run 2 wires, in the form of a twisted pair, from the radie set to be controlled, to the remote control unit. Connect one end of one wire to the antenna post and the other wire at this end to the ground post of the receiver. The remote free ends of this 2 -wire cable are connected as follows.

If the ralio receiver has a low-impedance antomat primary, connect the wire from the antenna post of the receiver to the white lead of the aflapter. Connect the ground wire from the receiver to the black lead. Leave the green lead of the remote control unit unconnected.

If the radio receiver has a high-impedance mimary, comect the antenna wire from the set to the green lead and the ground wire to the white and black leads. If impedance is unknown try both connections for best results.

The external antenna formerly connected to the ralio receiver is now connected to the antenma lost of the remote control and the ground lead is connected to the ground post. Plug in the power cord to a convenient receptacle and turn the unit (oll by rotating the volume control knob to the
right. Turn on the radio receiver and tune to the low frequency end of the tuning range (broadcast band) where no local station is being received. Set the volume control of the receiver to the loudest comfortable volume.

With the volume control on the remote unit well up, tune in a station by means of the selector knob on top of the unit. Select a station near the high-frequency end of the scale (lowest wavelength). Adjust the 2 compensators, C1A, C 2 A , on the remote-control tuning condensers by means of a screwdriver inserted through the 2 holes in the side of the chassis, Adjust for maximum volume. Then tane in a station at the low-frequency end of the bend and adjust the padder condenser, C11 through the single hole which is in the rear of the tuning condenser compensators. This setting should be made for
maximum volume. Recheck the tuning condenser compensators at the high-frequency end and the unit is ready for operation,

The remote control herein described is just what is desired by lazy louts (such as the author) who like to sit in their comfortable arm chairs with a good book in one hand and a pipe in the other, while a musical background fills the room. The annoyance of getting up to tine-out unwanted programs almost counter. acts the :elaxation afforded by the radio entertainment.

It is also highly desirable for the use of invalids, who find it a strain to go to the radio, and even more so for those who are bed. ridden.

In fact, the uses of a device of this type are well-nigh innumerable.

Fig. 1, diagram of remote set control unit.

List of Parts

Kit Components

One Meissner output I.F. transformer, L3;
One Meissner I.T.F. with C14, $7-80$ mmf. ;
One Meissner antenna-oscillator coil, L1-L'2;
One $2-g a n g$ tuning condenser (with trimmers), 360 mmf., C1, C2;
One selector dial plate and escutcheon;
One volume control and pawer switch, 25,000 ohms, R5-Sw. 1 ;
Two small bar knobs;
One isolantite padding condenser, 300 to 500 mmf., C11;
One 3-terminal tie lug;
One 3-lug terminal strip;
One 2-lug terminal strip;
One $1 / 2$-in. rubber grommet;
One $1 / 4$-in. rubber grommet;

Two octal 8-prong metal tube sockets, for V1, V2; Miscellaneous Components
One resistor, $500 \mathrm{ohms}, 1 / 2-$ W., R1
One resistor, 50,000 ohms, $1 / 2-W ., \mathrm{R}$?;
One resistor, 20,000 ohms, 1 W., R3;
One resistor, 30,000 ohms, $1 / 2$-W., R4;
One mica condenser, $0.002-\mathrm{mf}$., C 3 ;
One mica condenser, 100 mmf ., C4
One paper condenser, $0.1-\mathrm{mf}$., $200 \mathrm{~V}_{-,} \mathrm{C} 5$;
Three paper condensers, $0.1-\mathrm{mi} ., 400 \mathrm{~V} ., \mathrm{C} 6$, C9, C12;
One electrolytic filter condenser, dual-section, 4-4 mf., C7, C8 :
One power cord, with plug, 290 ohms;
One metal-tube grid shield;
One metal-tube grid clip;
Six lengths of colored hookup wire for all connections;
One lacquered steel base plate;

Will Convert

Any Radio
Set Into a
P. A. System

"Home Broadcaster"

Every owner of a radio set has, at some time or another, wished that he might be able to hook a microphone to said set. The desire is usually prompted by an idea that it might be a lot of fun to imitate some particularly well liked radio program for purposes of amusing friends or guests at a party, or just to "play around" with a "mike" to see what it feels like to be an "an" nouncer."

Sometimes the set owner feels that the set might be pressed into service as a small P. A. system for some neighborhood or school activity. Since the average radio set is capable of pro. ducing a fair amount of volume it stands to reason, argues the set owner, that there is or ought to be, some means of making it do other things than just bringing in a few programs during the week. And if a small P. A. system is needed for only a short length of time, and since the radio receiver originally cost quite a bit of money, well, why not, and how can it be done?

The answer isn't nearly as difficult or as expersive as a lot of people have been led to believe.

First, and simplest is by means of one of the very cheap microphones readily obtainable at most every radio store or supply house. These "mikes" are usually fitted with a small wafer-
type adapter that fits under one of the tubes in the radio set. Such gadgets can be othtained for less than a dollar, and surprising as it may seem they usually work quite well.
The drawbacks to these "home microphones" as they are called is their inability to really make use of the gain and volume of which the radio set is actually capable. It is for this reason that they will always remain more or less of a toy, and not reach any great degree of popularity as a means to satisfying the public demand for a really efficient microphone attachment for the average radio set.

During the past 3 or 4 years the set manufacturers have had a tendency to keep increasing the output volume of their sets in order to get better tonal reproduction at low volume levels. Most of the present-day sets have the ability to turn out volunte ranging from about 3 W . in the smaller sets, up to 30 W . in some of the larger multi-tube sets.
llere is an adapter unit that will permit using a microphone of the double-button carbon type with any radio set. The more powerful the set, the better the results will be.

This unit is easy to build, simple to operate, and most importan-the parts necessary for its construction cost very little. All plate and heater voltages are taken irom the set with which it is

Fig. 1, Diagram of Home Broadcaster

used. To put it into operation insert power cable adapter (See Fig. 1 for hook-up) under the output tube in the receiver, connect the antenna lead from the unit to the receiver antenna terminal, and turn the set on. The signal from the unit is tuned in exactly as you would tune in a regular broadcast program.

Fundamentally the unit consists of a modulated oscillator of low power output, or in other words, a miniature broadcast station. A pentagrid oscil. lator tube, either a type $2 A 7$ or a $6 A 7$ is used, the pentode section being used for the modulator to plate-modulate the output of the oscillator, thus enabling you to hear whatever voice or music is put into the unit to be heard in the radio receiver. The whole radio, from the 1 st. R.F. stage through to the audio output stage is used, resulting in extremely powerful results.
(Early designs of equipment of this type, in which such an R.F. unit feeds into the standard radio set, have been described in the April 1934, and subsequent issues of Radio-CraftEditor).

The diagram, Fig. 1 , is almost self-explanatory and indicates the extreme simplicity of the unit. The total cost, including mike, is under $\$ 10.00$.

The only point in constructing the unit which might require special mention here is the output coupling between the unit and the receiver. This takes the form of a very small capacity, as shown in the circuit diagram. The capacity effect is brought about by taking a short piece of stiff insulated hook-up wire, attaching it to the oscillator plate terminal, and, winding 3 or 4 turns of similar wire tightly around it. The other end of this latter wire is connected to the antenna post on the set. Care must be taken to see that the two wires do not make electrical contact with one another. The capacity thus formed is sufficient to couple a strong signal into the set, without radiating to other sets nearby. If too much capacity is introduced, the oscillator will not oscillate.

The tuning range of the oscillator is approxi. mately 900 to $1,700 \mathrm{kc}$. allowing it to be set to be received at some point on the receiver dial where no other regular broadcast program would normally be received.

List of Parts

One small aluminum or electralloy chassis base, $4 \times 3 \times 2$ ins.

1) ne carbon resistor, 300 ohms, $1 / 2$. W. ;

One carbon resistor, 20,000 ohms, $1 / 2 \cdot \mathrm{~W}$.
One carbon resistor, 30,000 ohms, $1 / 2$.W.
One carbon resistor, 50,000 ohms, $1 / 2-\mathrm{W}$.;
One volume control and switch, 1 meg.;
Two tubular condensers, $0.1-\mathrm{mf}$., 400 V .;
One tubular condenser, $0.05-\mathrm{mf} ., 400 \mathrm{~V}$.;
One mica condenser, 250 mmf .
One double-button microphone transformer ;
One bar knob
One grid clip;
One triple tip jack;
One 7s tube socket;
One trimmer condenser, 220 mmf :
One pentagrid oscillator coil ;
One tube shield;
One hardware kit: consisting of
Eight $5 / 16 \times 6 / 32$-in. machine screws
Six $6 / 3=-i n$, hexagon nuts
Four $1 / 2$-in. rubber grommets
One $12-i n$. length spaghetti tubing
Three solder lugs
Five ft. solid push-back hook-up wire;
Two ft. 4-conductor cable;
One ft. 2 -conductor cable;
One Knight 2 A 7 or 6.47 tube;
One power tube adapter ($4,5,6,7 \mathrm{M}$, or 8 prong) ;
One pair tip jacks. Accessories
One double button carbon microphone;
One microphone desk stand;
One "C" bat., $41 / 2$ V.,
Twenty-five ft. 3 -conductor microphone cable.
This article has been prepared from data supplied by courtesy of Allied Radio Corporation.

Fig. 2, Chassis layout

This Tuner
Can Be Used
With Any
Good P.A.
Unit

HI-FI P. A. and "Universal" Radio Tuner

As can be seen from the photographs, the tuner is compact without being crowded. The parts were laid out so that all "hot" R.F. leads would be very short. For instance, the lead from 6A8 plate to "P" lug on the I.F.T. is barely $1 / 4 \mathrm{in}$. long. The 3 coils are mounted underneath the chassis for several good reasons. The most im portant being that they are, in effect, doubly shielded when mounted this way.
The blank chassis specified should be drilled according to layouts given in Figs. 2A-2B. An ideal tool for the home constructor is the socket punch and circle cutter recommended in the List of Parts. The writer used the $1 / 4 \mathrm{in}$. punch for several of the holes required. The larger size ($13 / 16 \mathrm{in}$.) was used to punch out all the socket holes and also the openings for the filter choke and A.C. receptacle. The circle cutter is needed to cut out the $5 \frac{1}{4}$ in. hole for the dial on the front panel. These tools a-e practically indispens. able to the home constructor for this type of work. Check the accuracy of the holes you drill by trying each part for correct fit and position. A little care at this stage will insure a finished product of precision appearance.
The front panel should not be touched until all parts have been assembled on the chassis. The height of the 3 protruding shafts (volume, tone, and dial) should be measured from their centers to the bottom edge. If all is correct then the front panel markings may be measured-off on the smooth
back. Cut the large circle first, then drill the 3 shait holes. Inasmuch as the front panel is 1 in . higher than we need, it is best to have a tinsmith cut off the excess on a power shears machine. At the same time, have him bend the two edges at 90 deg. angles as shown in the photograph. The finished panel will then be approximately 9 ins. high and 11 ins. wide. The tone and volume in: dicating plates are mounted by means of small escutcheon pins.
The wiring comes next. A good method to follow is to wire one element of each tube at a time. For instance, wire all the shell prongs of the metal tubes to ground. Next, connect all cathodes, and so-on. This method eliminates a lot of checking and jumping back and forth.

The author never takes it for granted that a part is O.K. merely because it is new. So, if an ohmmeter is available, check the following items before mounting them on the chassis.
D. C. RESISTANCE

L1, Primary 20 ohms;
L2, Primary 65 ohms;
L3, Primary 2 ohms;
L4, Primary 8 ohms;
L5, 170 ohms.
Ch., 800 ohms.
P.T., Primary 32 ohms. High-voltage secondary, 1,100 ohms to plate.
Fil. winding ($0.9-\mathrm{A}$), 0.5 ohm . Fil. winding $0.6 \cdot \mathrm{~A}$ 1. ohm.

Fig. 1, Schematic diagram of tuner.

Check all resistors and discard athy that are 20% off their rated value. Nlso check the hypass condensers for shorts or leaks. Clieck the tubes.

When all wiring is complete, follow out the circuit for wrong connections and continuity. Turn the set on, do not use an antema, turn dial to $1,700 \mathrm{kc}$. and volume on full. then check the voltage at each point as indicated below. U'se 1,000 ohms/yolt meter on $500-\mathrm{V}$ scale. All readings to chatsis are given in Table II.

TABLE II

If these voltages are more than 10% ofi, check everything all over again.

Now we come to the subject of alignment. The I.F.T. should be accurately peaked at 456 kc . Upon this adjustment depends a great part of th. sensitivity of the set as a whole. If you haven't the equipment to do this job right, then by all means have it done by a competent technician.
If you have the equipinent, the procedure is as follows: turn the set on, take the grid clip off the 6 as and connect your oscillator to the top cap. The ground lead of the test oscillator should be connected to the tuner chassis. Connect an output meter or oscilloscope to the output tipjacks at the rear of the chassis. The test oscillator should be accurately set on 456 kc . and the attelluator set for $1 / 3$-deflection on the output meter. Peak the 2 air trimmers for maximum re. sponse, attenuating the test sigmal if the meter goes off scale.

Next, set the test oscillator to $1,600 \mathrm{kc}$. re. place the 6 A 8 grid can. Feed the test signal through a small mica condenser 100) mf. to the antenna post. The tuner dial should be set at $1,600 \mathrm{kc}$, and the 3 trimmers on the variable condenser should be screwed it tight all the way.
The antenna and R.F. trimmers should be un screwed a little bit for maximum signal. It may be necessary to use additional capacity across the oscillator trimmer to bring the pointer to the exact line on the dial. The writer added about 3 mmf . by soldering a 4 -in. piece of wire to oscillator stator and wrapping 3 turns around the spacer Bar. This wire may be seen, in Fig. B, upon close inspection of the variable condenser section nearest the panel. This is the item, marked "wire capacitor", shown in Fig. 1, which' is connected to condensers C and Ca . Note that although the other side of this "wire capacitor" is shown grounded, this is only a fictitious or

Fig. B, Rear view.
effective ground and jTRRFC CONNECTION TO GROUND MLST NOT BE MADE.
The low-frequency padder should first be screwed up tight and adjusted for maximum response at 600 kc . Rock the dial pointer slowly up and down while adjusting for the best peak. You will find that the high-frequency end may have shifted 10 or 20 kc . so go over the 3 trimmers again and then check 600 kc . again.

All this may sound bard lut it really isn't. ()ur unit was all peaked in is minutes and rarin' to go.

Jisconnect the test equipment and use cither headphones or an amplifier for the air tryout. Connect an antema not longer than 75 feet to the set. A:s a rule, no ground wire is needed.

List of Parts

()ne Meissner antenna coil, No. 6862, L1;

One Meissner R.F. coil, N゙o. 5864, 1.2
() ne Meissner oscillator coil, No. 4243. L3;

One Meissmer ferrocart I.F. trans ${ }^{\circ} \mathrm{m}$ mer, No. $6643.456 \mathrm{ks} ., \mathrm{J}, 4 ;$
()ne Meissner shielded R.F. choke. No. 5592, 30 myh.. L.5;
One Meissmer 3 -gang variable condenser, No. $1512 \star, 365 \mathrm{mmf}$.
One Meissner 6-in. dial, No. 18240;
One Meisswer palder trimmer, No. 1)2500, 500 mmf., C B ;
One Kenyor jower transformer, No. T249, T1; ()ne Kenyon filter choke. No Tis6, 30 hy,. Ch.;

Fig. 2A, Drilling for chassis

Fig. 2B, Panel details.
Seven derovox tubular bypass condenser, type 484, 0.1 -mf., 400 V., C1, С?, C 3, C6. С7. C8, Clo:
Three Aerovox tubular bypass condensers, type $484,0.5-\mathrm{mf} ., 400 \mathrm{~V} ., \mathrm{C} 4, \mathrm{C} 11, \mathrm{C} 12$;
Two Aerovox tubular bypass conclensers, type 484, $0.01-\mathrm{mi} ., 400$ V., C14, C15;
One Aerovox tubular bypass condenser, type 484 $0.05-\mathrm{mf} ., 400$ V., C16;
One Serovox dual tuhular hypass condenser. $0.05-0.05-\mathrm{mi} ., 400 \mathrm{~V} ., \mathrm{C} 18$;
One Aerovox electrolytic condenser. (iLS 5. S mf., 450 V., C17;
One Aerovox electrolytic condenser, GLS 5. 12 mi., 450 V., C19:

One Atrovox electrolytic condenser, GLS 5. 16 mf., 450 V., C20:
One Aerovox mica condenser. type 1467,500 mmi.. C13;

One Aerovox mica condenser, type 1467, 100 mmi., C5;

One General Electric type 6K7 metal tube. V1; One General Electric type 6A8 metal tube, V2; One General Electric type 6J7 metal tube, V3; One General Electric type 6X5 metal tube, V4; One General Electric molded rubber A.C. line cord;
Four terminal connectors
() ne pair tipjacks, 1-red. 1-black;

One Centralab volume control potentiometer, No. 72-102, 25.000 olms, R1;
One Centralab tone control potentiometer, No. 62-116, with switch, 1 meg., R14;
One Centralab carbon resistor, $2 \mathbf{W}_{\text {., }}$ 15,000 ohms, R11;
One Centralab carbon resistor 1 W., 25.000 ohms, R2;
One Centralab carbon resistor, 1/2-W., 25,000 ohms, R6;
Two Centralab carbon resistors, 1/2-WV., 5,000 ohms, R4, R9;
Two Centralab carbon resistors, $1 / 2 \cdot W$., 1,000 ohms, R5, R10;
One Centralab carbon resistor, $1 / 3.11^{\circ} .1$ meg.. R13;
One Centralab carbon resistor, $1 / 3 \cdot W . .0 .4$ meg.. R15;
One Centralab carbon resistor. 1/3-W., 0.1-meg., R16;
One Centralab carbon resistor, 1/3-W., 50,000 ohms, R7;
One Centralab carbon resistor, $1 / 3$.W., 10,000 ohms, R12;
One Centralab carbon resistor. 1/3-W., 400 ohms. 123;
One Centralab carhon resistor, $1 / 3-\mathrm{W} ., 300$ ohms, 128:
*One antenna ground terminal strip,
*One indicating plate (volume),

* One indlicating plate (tone),
*Two pointer knobs, $11 / 4 \mathrm{in}$.,
*One black round knob,
*Sour octal wafer sockets,
One black wrinkle front panel, $10 \times 14 \times 1 / 16$ ins..
*One blank cadmitrm chassis, $11 \times 71 / 2 \times 21 / 2$ ins.,
*Two socket punches,
*) n e circle-cutter,
*One piece alumnium for coil platform, $3 \times 6 \times$ 1/16 ins.;
* One fuse mounting.

Hookup wire, hardware, etc.

* Names of manufacturers will be supplied upon receipt of a stamped and self-addressed envelone.

CHAPTER 2

-Servicing-

Fig. A,
Complete
Oscilloscope
for
Servicemen

Midget Oscilloscope

TIIS instrument has every fuature of the fullsize instruments as well as several which are not found on most. It can be used for virtually every possible test the Service Matn or exprerimenter wishes to make.

A very novel feature is the fact that the 913 tube may be mounted in either of 2 positions, inside the instrument, or in the "trench mortar" on top. The socket in the latter is commected by a cable to the inside 913 tube socket so that the changeover is quickly accomplished. For nortable use, the inside mounting is to be preferred since the addition of the "mortar" or turret makes the apparatus a little more nnwieddy and monands to carry:

The frequency of the sawtooth swecp owillitor is controlled in 8 rough steps. and in adilion a fine control is provided.

Provision is made by proper switching. io use the horizontal amplifier for either $60-\mathrm{evcle}$ on siwtooth sweep, or it may be used to amplify iny exteraal imput to the horizontal plates. Either amplifier may be cut in or out separately and the amplitule controls for vertical or horizontal plates are avalable for voltage control wherev the amplifiers are in use or not.

An additional control is provided threstry the whe of a single-pole donhle throw switch on the potentiometer which controls vertical implitide. This switch cuts out the potentiomener rntreg when the instrmment is to he used for transmiter R.F. measurements. The R.F. is no ruspecter of potentiometers, as many hams have fonm to their sorrow! Even if the control is "on" fitly, a great deal of hating occurs and the control is
asually ranaed; su the best we cast to is 10 eat t ont. When the potentiometer is tamed fully counterelockwise the switch operates to cut it out. A slight operation must be performed on the resistance element as it is essential that the contact urm be entirely open-circuited when the switch is aperated. It is a a mple matser to =crape sufficient cirlon fro:n the clement so that this is accomplished. The "off" porition is noted on the diagrim.

Through the meslinm of \& switch and a notentio. moter full symedronngathor of patterns is eatsily attatimerl. The switel allow for (1) internal, (2) b0-cyclere or (3) exterrial synchronization. In the latter po-ition a "wohbter" may be conrected for the when tuning-1t) sels or for obersing R.F.

 put circuit is of bigh impublane rather than low
 seoper. If it is imperative to have low-impedance syndoronzatmon comections, this may easily be accomplished hy use of a trantromer with the lighimprebtace winding connedel to the bimbling poita. I microbhone tran-former will give it bery lowimpedaner imout if this in meederl.

Wiriug should atart witd all . I. (', Leans, that s. the jower tramiontmer primary atnal atl heater leats. I good do>al of whikked wire wat-used in the orignal model, all le:t-l- in the inant circuits and "hot" amplifier white eutis leeing so covered.

All resistors excent ilu | wo in the soltage li. viders are of the imsulated. $1 / 2-W$. size.

All fixed conslensers 0° over 0.005 -mf. except electrolyties are J^{r} the newly-developed "molded

Fig. B, Rear view.
paper" type. These are about the size and shape of dominoes and many can be packed into the small space available.

It is suggested that the complete high-voltage circuit for the 913 be hooked up first and the tube tried. If it is possible to obtain a small round spot by manipulation of the focus and britliancy controls, then the rest of the apparatus mat be wired.

If all wiring is correct, the oscilloscope should work perfectly at the first try. It is suggested that the builder connect an A.C. source oi about 2.5 th 5 V . to the " V " input terminals and experiment with the various controls to become acquainted with their action. Do not worry if the controls appear to "interlock" or affect one another This is quite corsect and will be found to he usual in other oscilloscopes as well.

The "trench mortar" or "cannon" mentioned previously is not a necessity, but is a great convenience. The large tube may be of any metal, but steel is to be preferred for its magnetic shield. ing qualities. If a magnifying glass is to be used, the tube may be obtained of a size to fit it. The mounting should be of "universal" joint type; flexible both in a circle and vertically-and may' he made in any convenient manner, the one shown
being built up of aluminum strip. A ball and socket joint (as used on some mike stands) is another good bet.

ADDING 2-IN. TUBE FOR

 LARGER IMAGESIn order to accommodate the large tube it is necessary to build a new top-of-case "cannon," similar to that described originally but of larger size. It should be emphasized here that this new equipment is not intended to entirely supersede the 1 -in, or type 913 tube. The latter still retains the great advantage of small size, and its use means that the technician will have available a tiny portable instrument devoid of any clumsy projections, for the cannon type of mounting is just that. With the 913 inside, the apparatus is idea for portable work. In the laboratory where con venience is of no great consequence, however, the use of the 2 -in, tube in a flexible mounting is a distinct advantage.

The new 24 XH tube is rated at 400 to 600 V . so that with the voltage supplied by the original instrument we can obtain satisfactory patterns. In fact, there are no circuit changes needed whatsoever since the ratings of the 24 XH at 400 V . are very close to those of the 913. Thus the ranges of all controls are adequate and no circuit changes need be made.

Since the new tube is about twice as sensitive ast the 913 , a pattern which will cover the screen of the latter will cover that of the 24 XH so that again no changes are required, and a simple substitution will suffice.

All parts of the original "gun" except the actual tubing itself may be reemployed. A new piece of steel tube $83 / 4-\mathrm{in}$. long by $21 / 4-\mathrm{in}$. dia. will be needed. Steel or iron tubing is required since the 24 XH is not shielded as is the 913 and is very sensitive to external fields, a characteristic common to all cathode-ray tubes of the glass bulb type.

The tubing is cut to size, the ends smoothed and the necessary holes drilled. The same type of socket as used originally is needed. This consists of an aluminum cup about $11 / 2$-in. in dia. and $5 / 8-\mathrm{in}$. high in which the socket is mounted. The socket is removable and the small tongue in the socket hole must be filed-off so that the socket may be turned. This allows the tube to be revolved so that the pattern may be aligned correctly. The socket should be placed so that the groove in the center hole is uppermost. Any slight variations in the tubes may then be corrected by rotating the latter slightly after it has been connected and is in operation.

The aluminum socket cup may be held with 3 screws, placing washers between the cup and the

Fig. 1. Complete diagram and other details.

Fig. C,
Bottom View of
Oscilloscope

tubing so that a firm fit will result. A piece oi 3/16-in. bakelite may be turned to a close fit for the rear of the tubing. This about finiskes the job except for coating and tubing inside and out with flat-black enamel. When this dries, pads of felt may be put in the front end so that the 24 XH will be held away from the walls.

This mount and the new tube will be found to greatly increase the usefulness of the original instrument and if properly interchanged with the 913, a truly versatile apparatns will resuit.

List of Parts

One Kenyon transformer, type T-207;
One Kenyon midget A.C.-I.C. choke;
Two Electrad notentiometers, one with S.P.D.T. switch, 0.5 -meg. ;
One Eilectrad potentiometer, 1 meg. ;
One Electrad potentiometer, 25,000 ohms;
One Electrad patentiometer with S.P.S.'I'. switcl. 10,000 ohms;
One Electrad potentiometer, 0.1-meg.;
One Electrad resistor, 25.000 ohms, 25 W .:
Two IRC resistors, 2 megs., $1 / 2-1$ IV.;
One IRC resistor, 5 niegs., $1 / 2-11$.;
One IRC resistor, 25,000 ohms, $1 / 2 \cdot \mathrm{~W}$. ;
One 1 KC resistor, $1,000 \mathrm{ohms}, 1 / 2-\mathrm{W}$.;
Two 1 RC resistors, $3,000 \mathrm{ohms}$. $1 / 2 \cdot \mathrm{~W}^{3}$;
One 1 RC resistor, $0.5 \cdot$ meg., $1 / 2 \cdot \mathrm{M}^{2}$;
Two IRC resistors, $0.25-\mathrm{meg}_{-, ~ 1 / 2} \cdot \mathrm{~W}$. ;
One IRC resistor, 0.2 -meg.. $1 / 2$. WV.
One IRC resistor, 50,000 ohms, $1 / 2 \cdot \mathrm{~W} . \mathrm{V}$.
One IRC resistor, $50,000 \mathrm{ohms}, 2 \mathrm{~W}$, ;
()ne IRC resictor, 75,000 oims, 2 W .;

One IRC wire-wand resistor, 10 ohms;
One Solar electrolytic conilenser, 4.4 mi.. 450 V .;
()ne Solar electrolyfic condenser. 4 mif., 450 V .;

One Solar electrolytic condenser, $10 \mathrm{mf.}$,25 V .
Six Solar "doming"' condensers, $0.35-\mathrm{mf}$., 200 ن́V.;
Three Solar "domino" condensers, $0.05-\mathrm{mf}$., 400 *
Two Solar "domina", condensers, 0.1-mif., 400 V .;
Three Solar "domino" condensers. $0.05 \cdot \mathrm{mf}$., 400
Two Solar "dlomino" condense-s, $0.005-\mathrm{mf} .400$
One Solar mica condenser, $0.002 \cdot$ nif. ;
One Solar inica condenser, 700 mmf :
One Solar inica condenser, 35 mmf ;
()ne curse, $5 \times 6 \times 9$ ins.;

Eight bar knohs:
T'wo actal sockets;
Two 4-prong sockets :
() ne 5 prong socket:
'J'wo insulated gric caps:
One RCA Radiotron type 913 tube;
One RC. Radiotron type 835 tube:
Two RCi Rarliotron type 1 V tubes:
'Two RCA Radiotroal type $6 I 7$ tubes;
「wo suckets;
Six binding posts;
()ne $8-\frac{\circ}{2}$ t. switch:

One $3-\mathrm{pt}$. switch:
One 3 -position toggle switch;
One pawer cord;
()ne pilot lamp and socke:;

Hardware, wire, ete.

Fig. 2, Complete drilling and mechanical details.

The 2-inch
Tube In
Place, Better
Detail Is
The Result
-

Mixer Circuits You Should Know

This article will greatly help the service man

Fig. 1, Circuits of various mixers.

For testing MIXER CIRCUITS, we desire not only to , have a source of R.F. oscillations, or "waves," but to modulate it, as a transmitting station's carrier wave is modulated. This enables us to tcst the R.F. amplification better, and also the audio stages and the reprolucer of our set.

We may, for instance, take a regenerative set and introdnce into the control-grid circuit an A.F. transformer (Fig. 1D) through the secondary of which we increase and decrease the voltage exist. ing hetween control-grid and plate; superimposing thus A.F. variations on the R.F. oscillations already set up. This is done when we cut a microphone or a phonograph pickup into a control-grid circuit; except that, normally, we do not permit the tube to oscillate when we do this. But a system was worked out, some years ago, rather successfully when receiving sets were of Tess power, to apply the pickup to an oscillating R.F. tulse, and pass a mollulated wave through the whole set, like a station signal.

We do not, however, need a plonograph or a microphone. We may, instead, introduce into the circuit a resistor Rg with a condenser across it Fig. 1I); so proportioning the values that the condenser will continually charge up, and discharge through the resistor. A given pair of values corresponds to a given frequency; as with a con-denser-coil combination, the time lengthens with the increased capacity and increased resistance. (There is an effect of this kind in every gridleak detector circuit; but the value of the usual grid condenser is too low to allow the note this created to disturb the ear of the listener, or to check oscillation, in a tube provided for that purpose.)

However, in a circuit of the voltage-modulated type, just discusscd, the audio modulation of the control-grid voltage changes the bias on the con-trol-grid too much, for good modulation. So, like the tranmitting amatears before him, the Service Man looks for a combination which will maintain the signal at the proper oscillation frefuency, yet give a good, pure aurlio note.

We find for instance, the Heising circuit (Fig. 1E) in which there is a split tuming coil. as in Fig. 113; but, attached to the plate of oscillator tuhe Vl is a source of A.F. bariations, in the form of modulator tube 122 . The high-impedance
choke. La keeps a fairly constant D.C. plate volt age on both tubes. The resistor, Ro, lowering the voltage on the plate of the oscillator, makes the ratio of V2's output to V1's, and thereby the percentage of modulation higher; an important matter in broadcasting, as well as in testing. This circuit, therefore, is much in favor in test apparatus.

However, these methods require changes in the D.C. voltages applied directly to the grids and the plates of the oscillator tube, and these tend to change the freguency and create instability of operation. But. with the introduction of the modern multi-clenment tubes, it became possible to apply the modnating voltage to other elements, located between cathode and plate. and thereby alter the flow of electrons inside the tube, with the minimum of distarbance to the regularity of R.F. oscillation.

The hasic method of Flectron Modulation is shown in Fig. 1F; the audio morlulation may be obtained from a tube circuit oscillating at audio frequency (by the use of a circuit of suitable re-sistance-capacity values) or from any other desired source. The plate and signal-grid circuits of the tube are oscillating at the radio fretuency determined by the grid capacity-inductance of the tuned circuit; but the amount of the current flow is varied, without altering the regularity of the oscillations, by the A.F. voltage introduced between the cathode and the second grid to which the input is connected. This form of electron modulation is preferted for work of great accuracy.
It is to be explained that. just as a high per centuge of modulation is desired in a broadcast station (since it gives more signal in proportion to the power of the station). so it is desirable in a service oscillator used to adjust a receiver for reception of this tyre. By 100% modulation (since the modulation is the proportion of. A.F. current variation to R.F. current variation in the wave) the autio system and reproducer of a receiver may be fully tested without over-loading in the R.F. and I.F. sections. In addition an in. strument operated from an A. C. line may be used to modnlate the output of the oscilator tube at 60 cycles. with a single tube and great simplicity of equipment. (This is a very
low frequency for audio aligning work, however). Since the plate is connected, not to a D.C. source, but to one side of the line which varies in potential, half the time it is negative with respect to the cathode, and no current can flow; but, whenever positive, the tube is functioning, and can even oscillate up to its filament-emission limit at radio frequency. At $1,500 \mathrm{kc}$. for instance, it can be seen that there is time for $12,500 \mathrm{~J}$. F°. impulses in the tube during the positive half of each cycle.

For the sake, also, of economy, oscillators are made whose tumed circhits do not cover all bands ; these depend on harmonics.

Just as a violin does not give off a pure tone. but with it others of higher pitches (which give the instrument timbre, color or quality) called harmonics, so an oscillating circuit, because it is not perfectly simple, has harmonics in its output. These are frequencies which are multiples (and designated by this factor) of the fundamental frequency to which the principal circuit is tuned; and, while they are feeble in comparison with the fundamental, they can be recognized by sensitive apparatus. The 13 th harmonic of a longwave (Furopean) station has been heard on a short-wave set:

For instance. suppose the fundamental of the oscillator is 150 kc . or 2,000 meters: the harmonics could be recognized at: (2) or second harmonic, 300 kc .; (3) at 450 kc ; (4) at 600 kc ; ; (5) at 750 kc . ; (6) at 900 kc . ; (7) at 1050 kc.; (8) at $1200 \mathrm{kc} . ;(9)$ at $1350 \mathrm{kc} . ;(10)$ at 1500 kc ; (11) at 1650 kc .; (12) at 1800 kc . (13) at 1950 kc . ; and so on. The odd harmonics are stronger, proportionately, than the even ones; weakening in strength as the number designating them increases.

In addition to the fentures of frequency control and modulation, another important factor for the service test oscillator is that of its ontput
control; since it is desirable to test receivers on weak signals, as well as on strong ones, to determine the alignment of circuits and the working of A.V.C. etc. Virrious forms of attenuator or voltage-divider controls regulate this, in addition to tightening or loosening the coupling between the oscillator and the set being serviced.

In the selection of test apparatus, cost and fineness of performance must be balanced, one against the other, as with all other measuring equinment, in view of the particular demands of the business.

While mixers are not used in home radio receivers, their application in commercial installations is widespreat. They are used where it is desired to keep a recorded musical program running uninterruptedly from two turn-tables, to switch from one microphone to another, to cut a microphone into a phonograph circuit, to fade from one loud speaker to another, and for similar purposes.

Stripped of all but its essentials, a mixer is merely a means of ittcmuating one output (or input) while increasing another The potentiometer is, perhaps, the simplest form of mixer. lf, for example, its re-istance is connected across the primary of a transformer. it may be used to mix the output of two pick-ups or similar devices. One side oi one pick-up is connected to one side of the clement. one side of the other pick-up to the other side of the element. The two free leads (one from each pick-up) may then be connected together, and to the arm of slider oi the potentiometer. "Thus, as more resistance is cut in across the first pick-lup. there will be less across the second, until the former is at full volume and the latter shorted ont.
()ther means than resistance may be used in mixing. One such is variable capacity, applied to ligh frequency circuits.

Simple

Condenser

Analyzer

Low cost and simplicity are the features of this Condenser Analyzer which checks any filtur or bypass condenser, either paper or electrolytic type, for leakage and capacity.

The 2 meters required are of a type commonly found around many radio shops or readily available on the used-parts market. This particular instrument shown in the photo. Fig. A, was butilt in the case of an old W.E. type 7λ amplifier. but of course any suitable cabinet may be used.

The meter used by the writer for checking ciapacity is described in the List of Parts. Closing switch 1 connects this never to the A.C. line in series with the 2 binding posts, Fig. 1, marked Low Cagracity. Switch 2 is left opers. baper condensers letween the sizes oi $0.01-\mathrm{mi}$. and $0.5-\mathrm{mf}$. will give readings on the meter which are referred to the calibration chart you make up from standards. Do not attempt to check electrolytic condensers on this range, as they would be damaged by the high A.C. voltage.

To prepare the meter for reading higher capacities, it is necessary to open the meter case and bring out 2 leads directly from the movement. These leats attiteh to the junction of the move-

Fig. A. Front view.
ment and the inultiplier coils, of which there is one in einher leg. These leads connect to the High Capacity binding nosts.

To use the high-capacity range, close switches 1 and 2, then any condenser connected across the High-Capacity binding posts acts as a shunt across the meter novement and cinnses the hand 10 drop back to at vilute which may be referrad to the shunt line on the chart to determine the capacity. This range may be used to check the catpacity of electrolytics. since the A.C. voltage across the meter moventent is so miall that it aloes not damage them.
(A convenient paper on which to draw the capacity chart is Kenffel \& Esser No. 258.71 SemiLogarithmic paper. On this paper the capacity "curves" are straight lines.)

The other section of the analyzer consists of a millinmmeter and a neon bulh (one or two watts) connected to an external fower supnly,

0

Fig. 1,
Diagram of
Condenser
Analyzer.

preferably one with several voltage taps such as 25 V., 50 V., 100 V., 200 V.. 300 V., and 450 V .

The neon bulb checks leakage in paper condensers. Insert test prods into tip jacks marked Common and Neon Bulb and touch prods to the terminals of the condenser. A good condenser caused the bulb to flash once and go out; a shorted condenser gives a steady glow; a leaky condenser makes the bulb flash intermittently.

Series and parallel curves.

For checking leakage of electrolytic condensers, the milliammeter used has a scale of 5 or 10 ma. and has thunts for muliplying the range by 10 and 100 . Be sure the rotary switch Sw. 3 is the type that shorts between cantacts. Note that the "Off" position shorts out the milliammeter to provice for the initial surge of current when an electrolytic is connected to the tip-jacks marked Comman and Mils. Aiter the condenser charges, the suitch may be thrown to the other positions for reading leakage current. Electrolytic condensers which show a leakage of morc than about 1 ma. ner, mf are defective.

List of Parts

One Weston Morlel 476 A.C voltmiter, 0.150 scale:
One Weston D.C. milliammeter, 0.5 ma. scale: and multiplier shunts for 50 and 500 ma . ;
One Blan the Radio Man neon lamp. 1 or 2 W .;
One Blan the Radio Mar: rotary swith, 4-point. for 5 HO ., Sw. 3;
Two Blan the Radio Man snap sw:tches, for $110-\mathrm{V}$. line;
Three Insuline tip-jacks;
Two Insuline test prods and leals;
Six binding posts;
One Blan the Radio Man ligent plug and cable, wire, etc :
One cabinet or haseboard for mounting.

How To Use V.-T.

Voltmeters In Radio

And P.A. Servicing

There are 3 gencral classifications of measurements to which is V..T. voltmeter may be applied in the design and servicing of modern electronic circuits:
(A) Meawurment of Root Mean Square or "Eiffective" voltage. This is the reading indicated by ordinary voltmeters less what error occhrs in the cirenit throngh added resistive drop duc to the current dratin added by the introcinction of the voltmeter into the circnit being measured.
(13) Determination of the Value of Voltage Wave Peak. The so-called "slide-back", peak voltmeter has long been a favorite of leading engineers and lathoratories for measmement oi the peak walue of voltage waves, and is now atailable for the first time in a commercial intrinment with an internal source of buck-out po. tential.
(C) Measurement of Direct-Current Volages, . Is in the first classification of meataremems. the indications of the peak voltmeter are securts without drawing current from the circuit under. measurement.
(1) MEASUREMENT OF R.M.S. VOLTAGE
(iencral. The top scale of the instrument i . lustrated, is calibrated directly in r.m.s. or effective voltage, with full-scale deflection indicating 1.2 Y. lotentials as low as 0.1-1. nay easily le reacl with an instrument of this sensitivity.
The r.m.s. (root, mean. square) value of an alternating-corrent voltage wave is, by definition. exactly the same as the value of direct-current volage which will produce an equal amount oi heating in a circuit composed solely of resistance (no capacity or inductance). When considering a pure sine-wave alternating voltage, the r.m.s. value will be equivalent to 0.707 times the peak voltage of the waveform. However, if a wave has other than a pure sine form this relationship will not hold true.
The r.m.s. scale of the vacum-tube voltmeter is very valuable for many measurements of nonsimusoidal voltages, such ats the checking of stage or overall gain of radio -and andio-frequency and high resistance.
It is necessaly that this instrument be connected in such a way that the voltmeter thine

Fig. A, V.-T, voltmeter.
contrelprisd eirenit is conductive to direct current. Dt wo wine the grid may accumulate a charge be indicated.

It it is necessary to take measurments in circuits where there will not be a 11.C. Wath from the votmeter control-grid to groumb, a leakage path Jor the control-grid charge may be estal) linhed either loy leaving the twise prod within the intrureent cance (which has a huilt-in resistor) for low-frefuency measurements or by placing a $3-\mathrm{m} \cdot \mathrm{g}$. resistor from the voltmeter tube controlgrid to the ground, and capacity-coupling the voltmoter tulie control-gricl. to the circuit it is desired to measure, with a 0.01 -mf. (mica) conderneet.

With a connection made to the cirenit from the frec eryl of the comenser. the ins:rument will show either peak A.C. voltage values or r.m.s. voltages. To wenre trie r.m.s. wallues from peak. voltage indications, mnitiply C.70\%. although this neec 7ot be done in measuring gain, as all readings are proportional.
(2) GAIN MEASUREMENTS IN GENERAL

A typice. 1 set-up) is illustra:ed in lig. 1A, wherein a ignal generator is connected to a tube cir. cnit. The came procedure would hold for at multistage circuit if desired to meanure its gain as a unit.
(a) Connections. Fig. 1 A is a typical eircuit and is the basis for the specializel measurements described in later paragraphs. ['nits Kl and $\mathrm{K} \underline{2}$ are resistors. either fixed ard of known valuc, or variahle and of known calibrations. For low' in. termeciate ralio freduencies, these may be small commercial units of the variable or fixed type. For higher intermediate frequencies, broadeast and shor-wave frequeney measurentents, it is necessary to nise resistors of such construction that capacity and induetance effects have fieen reduced to a min num.

Fig. 1. Circuits that can be tested with V.-T. voltmeter.

The effect of the internal capacity and inductance of any resistor may be deternined by applying to the circuit of Fig. 1 A a voltage of the frequency at which it is desired to take the gain measurement, and comparing the value of voltage indicated on the vacuum-tube voltmeter at point I3 with the voltage at point C. This ratio of voltages should correspond accurately with the ratio of resistances $R 1$ and $R 2$ if the capacity and inductance effect is negligible at this frepuency.
resonance with the oscillator, or if untunable, ad just the oscillator to resonance. The measuring procedure will then be identicall to that described above for andio-freguency circuins.

(3)) CHECKING R.F. GAIN IN RECEIVERS

It is not always convenient to remove the interstage transformer or coupling unit in order to check its gain. For this reason the following procedure is fropmently employed. In the case

Fig. 2, More circuits that can be tested.
(b) Audio-Frequency Circuits. For testing such. it is necessary to have as voltage source, an audic signal generator of the contiruously-variable-frequency type. Set this instrument to the desired frequency and the actual gain in the circuit catn be evaluated in two ways. One is to read the voltage at point $A_{\text {. }}$ in which event, the gain of the circuit will be given by the formula.

> (R1 plus R2) (vi)
(i.1IN = -
(R_{2})
(V^{1})
The other methorl is usable only on circuits where it is permissible to vary the value of Rl and R2 without upsetting bias and load matching. In this case, the voltage at point A to the same value. When this has leeen done, the gain of the circuit will be given by the formula.
(R1 plus R2)
CAIN=

$$
\mathrm{R}_{2}
$$

As stated above, these procedures are general in nature and more specific procedures will be out. lined in following paragraphs.
(c) Radio. Frequency Circuits. 1tere a radio frequency signal generator is used as voltage source. If the circuit is tumable. adjust it to
of an intermediate-frequency transformer "T." the operation of which is in cloubt, Fig. 1B may be taken as representing the typical condition,

Connect ath R.F. signal gemerator to the antenna and ground posts of the receiver as shown, and the vacumm-tube voltmeter to the controlgrid of the type preceding the transformer in doubt (at point A, in IFig 1B). Tune the receiver to the test oscillator output frequency and arljust the innut to the receiver by means of the attenuator on the signal gencrator until a small reading. say $0.5-V$. is obtained on the vactumtube voltmeter. If the receiver has antomatic volume control, all operations should be made at a signal l.vel that is below the A.V.C. actuating voltage.

Should point A be located in a tuned circuit of the receiver, and such will usually be the case, it maty be necessary to slightly re-adjust its resonance after the vacumm-tube V.M. is connected to confrensate for input capacity of the vacuum-tabe V.M.

After taking the reading at point A, trathsfor the voltmeler to point If and adjust the trimmers in hoth circuits A and B until the greatest voltage is indicated on the meter. The ratio of the voliage read at point Is to the voltage read at point i. is the gain of the amplifier stage under test.

Rear View
Of Audio
Oscillator

Service Man's Audio Oscillator

Two R.F. oreillators are utilized in this instrument, neither of which is modnlaterl and each producing a continuous wate of R.F. current. When both waves aire of exactly the same frequency they cancel, and this point is known as the zero-lizat.

At every other point, where the variable oseilJator differs in frequency from the fixed oscillator. the phenomenon of beat frequencies appears. Tinus. if we mix (wn waves. one of 465 kc . and the other, 460 kc. , we will ohtain the sunt and diiference beat frequencies; thet is, 465 minus 460 equals 5 kc . Ind 465 plus 460 equals 925 kc . We are not interester in the frequincy o: 925 kc. because it is inaudible when both waves ate rectified by the $6 Q 7$.

The difference of 5 kc ., is the one we want. The essential part of the 2 rectified waves produces a 5 kc . beat which is audible and in our case is applied to the controd-grid of the pentode amplifier.

The actual nseful range of frequencies generated in this manner extends from below 50 cycles to above 20,010 cycles. The lowest frifuency
attamable is zero cycles, which is of no use becatuse there is no audio component wave at this point. It is well known that 2 oscillators operatirg at slightly diferent frequencies have a tendency to fall im step, or interlock.

It can readily lee seen that it takes extremely good design, shiplding and other factors to maintain a defference of only 20 cycles or less between oscillators and still prevent interlocking to zerobeat. For this reason most commercial units are rated from 50 cycles, up. Under test our tanit has "gone down" to 5 cycles per sec. and maintained it for several seconds before blooping out. The apper linit is determinel by the maximum cat pacity of the vernier condenser with the plates fully in whicin in our unit is enough to reach up 10 about 30,000 cycles. The power output available is close to 5 W . with a total of 7% distortion. Ordinarily this amount of power is ased only to determine at what frequencies a dynamic speaker cone starts to rattle or distort.

In the initial calibration it is necessary to obsain zero-beat as close as possible to the extreme ieft-hand point on the "tuning" scale with the

Zisusit iiagram of audio oscillator.
vernier fully ummeshed. If this cannot be done. the next step will be to readjust the beat-fre. quency oscillator trimmers. Each oscillator coil has a pair of trimmers located at the top of the can. Adjusting any one of these 4 trimmers will affect the zero position.

However, this does not mean you should adjust all 4. The $13 F \mathrm{FO}$ coils are accurately adjusted to 465 kc . at the factory. Inasmuch as we are placing a vernier condenser across one of these coils then that coil will be detuned from 465 kc . even though the vernier is fully out. Therefore. it is only necessary to unscrew (left or right) a very slight annount one or both of the trimners on this coil only until zero-beat is obtained.

The rest of the dial may be calibrated against a standard piano keyboard, by striking the notes which are closest in frequency to the dial markings and listening to both the monitor note and piano tone until they match exactly. This operation should be carried ont for about 10 different settings. The highest frequency which the instrument can produce, is entirely inaudible, but can be ohserved and studied on the oscilloscope screen.

Before assembling the BFO coils on the chassis, open both, and replace each $0.1-\mathrm{meg}$. resistor with $30.000-$ ohm, $1 / 3-w$. resistors. On the BFO which is to be used as the variable oscillator, it is necessary to solder a 4 -in. piece of solid hookup wire to the control-grid side of the 2 small trimmers which are wired in parallel. Bring both leads out through the small hole at the top of the can. Enlarge this hole if necessary. The original control.grid lead goes to the ton cap of the 6 J 7 and the new lead goes to vernier stator.

List of Parts

()ne Kenyon power transformer, type T205, PT:

One Kenyon filter choke, type T153, Ch.1;
One Kenyon filter choke, type T155, Ch. 2 :
One Kenyon output transformer, type T104. T1;
One metal cabinet $12 \times 8 \times 7$ ins.;
One chassis, $11 \times 71 / 2 \times 2$ ins.;
One magnet speaker, $31 / 2$ ins. dia.
Two beat-frequency oscillitors, Li, L?:
Four Meissner shielded chokes, No. 5592. R.F.C.1, R.F.C.2, R.F.C.3, R.F.C.4;
() ne Hammarlund midget condenser, type $\ \mathrm{C} 20 \mathrm{~S}$, C1;

Panel view showireg controls
Two Cieneral Electric type 6J7 tabes. V1, V2;
One General Electric type 607 tube, $\sqrt{3}$;
One General Electric type $5 \mathrm{Z4}$ tuhe V4;
One General Electric type 6F6 tulie, V5;
Three Aerovox electrolytic condensers, type Gil.S5, $16 \mathrm{mf} ., 450 \mathrm{~V} ., \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$;
One Aerovox electrolytic condenser type PR50, $50 \mathrm{mf} ., 50 \mathrm{~V} ., \mathrm{C} 5$;
Four Aerovox bypass conclensers, type 484, 0.25 mf., 400 V., C6, C7, C8, Cy :
Four Aerovox bypass condensers, type 484, 0.05 mf., 400 V., C10. C11, C12, C13;
One Aerovox bypass condenser, type 484, 0.001mf., 400 V., C14;
One terovox mici condenser, type 1467, 100 manf.. 400 V., C14;
One Aerovox micit condenser, type 1467, 100 mmf., C15:
Two Aerovox mica cindenser, tybe $1767,5 \mathrm{mmf}$, C16. C17;
Two Aerovox dual condenser, type 484. (1.05-C.05-mf., 400 V゙., C18;

One Acravox resistor, type 930,250 ohms, 5 W. , R1;
One Aerovox resistor, type 931, 17,500 ohms, 10 W., K2;
One Cemtralath volume control and switch. No. -2-105. 0.5-mcg.. R3;
Four Centralab resistors. 50,007 ohms, $1 / 2-W$., K4, R5, K6, R^{-};

Details of chassis.

Scale calibration
One Centralab resistor, 5.000 ohms, 2 W.. R8; One Centralit) resistor, 0.1-meg.. $1 \mathrm{~W} ., \mathrm{K} 9$;
()ne Centralab resistor, 25.000 olums, $1 / 2 \cdot W$.. R10; One Centralab resistor, 0.1-meg., $1 / 2$-W.. 1211 ; One Centralab resistor, 0.5 -meg., $1 / 3$.W., R12: Five octal wafer sockets;
Two brown tip-jacks:
One blick tip.jack;
()ne green tip.jack;

One light blue tip-jack ;
One orange tip-jack:
One yellow tip-jack:
(bne dark blue tip-jack ;
One black twin jack;
I'wo black bar knobs, 1 1/4 in.
()ne black bar knob, $21 / 4 \mathrm{ins}$. ;

Four terminal connectors;
One grid-bins cell ;
One cell holder:
One S.P.S.T. jack switch, No. 10. Sw, 2;

Bottom View
Showing the Many Con-
densers and
Resistors

CHAPTER 3

Photo Tubes and Cells When To Use Them

A PIIOTOEMISSIVE device is a light-sensitive untit which functions by virtue of the enission of electrons from a surface into free space A photovoltaic device is a light-sensitive unit which functions by virtue of the displacement of electrons from a semi-conducting medium into a contiguous conducting medium.

Purely for the sake of brevity, we slall call a photomissive device a "phototube" and a photovoltaic device a "photocell."

We choose also to define in this article) "light" to include rarliant energy in that portion of the spectrum commonly associated with photoelectric phenomena. (Inasmuch as the "electric eye" is susceptible to or, otherwise, will "see" what ordinarily would be referred to as a "radiation."Editor.) Hence, we may consistently refer to not only visible light, but also infra-red "light," or ultraviolet "light."
(Both the latter may be referred-to as the so-called "black light"; but it is the latter that, in contrast with infra-red radiations, due to its property of causing fluorescence in certain materials is commonly called "black-light."-Editor)

Fundamentally, there is no difference in the functioning of plototubes and photocells. In both types the energy of a "light guantum" (a given amount of light) is imparted to an electron which rends itself from its orbit with in excess of kinetic energy to escape in the one catse into free space or, in the other case, into a conductive medium.

To use a crude physiological simile, the surface of a phototube cathode might be likenerl to the raw dermis of animal skin, the electron corpulses bleeding out into the open; while the surface of a dry disk photocell may be likened to the skin complete with epidermis.

As a matter of fact. a phototube will develop an electromotive force on an open circuit when exposed to light, and will also deliver a shortcircuit current, both without aid of an external battery. On the otber hand. a photocell may be used with an external battery to exhibit the characteristics of a phototube shimted by a nonolimic resistance.

The phototube may be regarded as a light actuated eurrent value which is onened by ant amount directly proportional to the incident light flux. The current. small as it may be, can be driven full-strength through any resistance. the maxinum value of which is limited only by the awalable e.m.f. in the external circuit.

The photocell may be regouded as a lightactuated gencrator, the output of which is a direct function of the intensity of the incident light. If it photocell is commected to a lowresintance alevice, and its own internal series resist. ance is low. the corrent delivered will be linearly propertional to the light intencity.

The uncful chatracteristics of the photocell are its low-renistance current sensifivity expreaed in micrampere per hamen, or better. mieroamperes per fonteandle per sp. in.. and espuceially its maximum power output expressed in microwats per foot-c̈tmble per *q. in. Current sensitivity ranges from ahout 100 to 500 microanperes per lumen or ahout 1 to 4 mat. iner foot-cabdle per sq. in. Mnxintum power ontpit panges up to 1 microwatt ber font-candle per sif. in. The logical applieation uf the photocell is first of all to light-metering, in which the cell is associated with
a calibrated meter in a portable unit or in which the cell serves as a light-intensity indicator in an associated circuit, and, secondarily, to certain control devices in which it has been proved feasible to employ a delicate d'Arsonval relay as the fisrt of a sequence of relays.

It does not seem necessary here to reproduce all of the characteristic curves for typical phototubes and photocells, as our present interest is more restricted to their use in measuring light in various parts of the spectrum. IIence we shall limit ourselves to an examination of typical spectral response or "current-color" curves. In order that we may follow some logical principle of

Phototube curves.
division in our procedure, let us begin with the long waves of the infra-red and then proceed toward the regions of shorter wavelength.

There is no photoelectric device which has any appreciable response for wavelengths longer than 2 inicrons. In practice, one need not expect any useful response beyond 1.2 micron in cesiumoxide phototule's.

In Fig. A are given spectral curves for some experiments cosium-oxicle phototubes made by Teves. It appors that these curves illustrate the greatest inira-red response that has been reported to date for phototabes. In the region of 0.7 to 1.4 micion stach can be very conveniently used to measure or to be actuated by infra-red light. A cesium-oxirle tube together with a visibly opaytue, inira-red transmitting filter such as Corning Cilass X゙o. 254 or Jena Glass No. RC-9 or Wratten No. ST, comprises a unit sensitive only to the region just defined. As tungston lamins radiate maximum energy in the same region. in efficient system for an invisible burglar alarm is readily suggested.
Both selenium and copper-oxide photocells can be made to have mear infraterel response. at though generally the selenium cell is more retsensitive as seen in Fig. I), where curves for tepical copper-oxide and sblenium cells are shown together with a thatel curse illustrating the range of sensiluilities for 125 humatn ege

In the visible spectrunt it becomes convenient to evaluate ligh intensities in terms of visibility. Hence it is higlily desirable to employ a light. sensitive device, the sfectral response of which resembles as nearly is possible that of the eye Photocells meet this specification much more mearly than phototubes. as a matter of fact copper-oxide cells can be made with natural response amazingly
close to the average eye curve. In general, cop. per-oxide cells tend to be somewhat shy in red response, while selenium cells have excess sensitivity in hoth red and violet. However, by use of a suitable filter, at the expense of rated sensitivity, the selenium cell can always be made equivalent to the eye.

In devices such as color matchers or color analyzers in which it is necessary to obtain comparable responses in all parts of the visable spectrim, one should have a light-sensitive unit at least as responsive to violet as it is to other colors. In fact, since the tungsten lamps, which serve as sources, are notoriously weak in violet radiation compared to red, it is highly desirable to use a light-sensitive unit more sensitive to violet and blue than to red. In Fig. C it may
is more transparent to ultra-violet, the curve is seen to shift. Such a tube is doubtless the most sensitive device known for measuring ultra-violet light between 2,000 and 3,000 Angstroms.

Typical spectral curves for such tubes, as "photox" or special ultra-violet phototubes developed hy Rentschler. Henry and Smith, are given in Fig. E. It is apparent that practically any desired region may be isolated by suitable choice of metal and envelope. It is feasible to amplify the current from these tubes, many suitable circuits having been published.

The captions for the graphs are hriefed as follows

Fig. A-Spectral curves for several experimental cesium-oxide phototubes showing extent into the infra-red. (After Teves)

Other interesting curves for photo tubes,
be seen that the normal cesium-oxide tube is relatively weak for blue light. Fortunately it is possible to modify the manufacturing schedule so as to obtain a "blue-sensitive" tube which is almost ideal for the application. Superfluous infra-red response can be conveniently removed by means of an infra-red absorbing filter such as Corning Aklo Glass.

It is probably a general impression that cesium. oxide cathodes have a sharp maximum of response in the near ultra-violet. This peak, how. ever, is only apparent as is shown in Fig. C. The sharp cut-off on the short wave-length side is caused by the absorption of the glass envelope. Putting the cathode in a Corex I) envelope, which

Fig. B-Spectral curves for cesium-oxide tube in lime glass and Corex D glass envelopes. The dotted curve illustrates the differential response as a method of measuring intensity in an isolated spectral region.

Fig . C-Spectral curves for "red-sensitive" and "blue-sensitive" cesium-oxide phototubes on ultraviolet response of the "red-Sensitive" type.

Fig. 1 D -Spectral curves (typical) for selenium and copper-oxide cells as compared to the range of sensibility curves for the human eye.

Fig. E-Spectral curves showing change in threshold of frequency in the ultra-violet for various metallic cathodes. (After Rentschler, Henry, and Smith, By courtesy of R.S.I.)

$$
\begin{aligned}
& \text { Tester For } \\
& \text { Intermittent } \\
& \text { Opens In } \\
& \text { Condensers }
\end{aligned}
$$

Photo and Diagram of Condenser Tester

One of the most difficelt condenser troubles to detect is the problem o- opert or "intermittent open** paper condensers. To detect these conditions quicisly and efficirntly a special type of tester has been designed and is in use in a wellknown conflensei factory. Service Den may wish to duplicate it.

The tester consists of a push-pull oscillator circuit that will deliver approximately $\&$ watts of R.F. power. This currers is sufficient to tend to break down any intermittent contact between the condenser terminal, or wire, and the condenser foil. In some cases this break-down will occur immediately, and in others it may he necessary to allow the condenser to "cook" for 5 or 10 mimutes. If such a weak contact is present it is certain that the heavy R.F. current, which passers through the condenser, will produce the desired pernament open and therehy the faulty condensers can be eliminated.

The circuit is so arranged that the condenser under test is placed in a series resomant circuit with the rariable condenser of the tester. By varying the capacity of the variable condenser CV', with the test condenser in the circuit a^{+} termimals TEST, resonanee is indicated by maximum glow of the pilot light. V. Also, it is possible to have a capacioy indicator ly calibrat. ing the voriable condenser with standard condensers of known capacitance. Intermitfent-open condersers catn be detected by the flicker of the pilot hight; and no-glow indicated a completeryopen condition.

In construction of the tester, it may be neces. sary to adjust the coupling coils in the resonant circuit to obtain maximum glow of the pilot light. however, after a few trials this condition can be obtained satisfactorily, (se well-insulated test proals and keep safely away from the R.F. output
of this "lreakdown-test-oscillator" in order to avoid high-irequency burss

Loil consists of 76 turns of No 24 enam. wire woum ion a form (ireferalily, air-core) 1\%.ins. in dia. Coi's XA ame 1.2 each ronsist of 50 inrns of No. : 4 ellam. wite wound on a form 1 -ims. in dia

The follow'rg list of barts is suggested to bublers who may want to try out this idea in a lab. set-ul, Substitutions mis be mave loy the experienced rabio man as necessary to suit individual convenience.

List of Parts

()ne Siandard Transiormer Corp, power trans. former, 150 V ., man. sec and : -3.5 V . sec., T;
One SLandard Transformar Corp, fiter choke, 200 :mál.. Ch. 1 :
Orie Itammarlund R.F. thoke. 150 ma., Ch.;
Ore Hiammarlund varialsle condenser, 350 mmi ., CV:
Two Tung-sol type 45 tubes, V1, V2;

Two Spragre condensers, No. TX. $24-70,70 \mathrm{mmf}$., 1.500 V . ;

One I.K.C. resstor, 25.000 ohms, 5 W . (no less), K;
One Sprague condenser, No. TC'-2: $0.005-\mathrm{mf}$, 400 V., tal 2
One Si,agrie condenser, No. TR-11. 0.01-mf., 800 V., C2:
Two Springue condensers. No. Om-21, 2 mf . 800
One R.F. coll unit (ace text sor construction diata) L, L1, L.?;
One SP.S.'T. toggle switich. X.
One bult, (and socket. 2.5 V' flament, V.;
Three 4 prong sockets.

Short-Wave Coils In Ā Jiffy

The useful chart shown in diagram at the left can be used for almost any desired short-wave coil calculations in receiver and converter construction. Its utility range is confined, therefore, to the frequencies covered in practical short-wave receiver service. Using the chart, the designer may directly and easily find an unknown with 2 known factors, of course, the 2 knowns may be found on the chart scales, and the unknown lies in the straight-line relation range.

With the 2 known spotted, a straight line is drawn between them and the unknown found where the line crosses the 3rd. scale, either in traveling between the points or in extention.

For example, suppose we have a coil of known 5 micro-henries inductance and we wish to know the frequency to which this coil will tune with a capacity of 50 mmf . or $.00005-\mathrm{mf}$.). We check these 2 figures on the capacity and inductance scales, draw a straight line between them, and find that we cross the frequency scale at 10 mc . ($10,000 \mathrm{kc}$. or 30 meters). Or, if we have a variable condenser which we wish to use in a tuned circuit and which at a value of 50 mmf . is to "hit" 30 meters; we draw a straight line between the known frequency and capacity scales, from known point to known point, and extend it to cross the 3 rd scale for inductance at 5 micro. henries. The coil required should have this inductance; to be found by trial and error, and the application of a simple formula found in almost every ratio text book.
The inductance figures are in microhenries and not milli-henries. The frequency figures, for the sake of simplicity, are given in terms of megacycles; the capacity figures in terms of microfarads. These same terms are used in the inductance formula.
The chart may be used to give readings below or above the scale ranges by dividing or multiplying straight-edge figures by 10 , or multiples of 10. If we wish to know the inductance required to tune to 500 meters or 600 kc ., for instance, with a capacity of 400 mmf , we simply draw a straight line between the 50 -meter and $40-\mathrm{mmf}$. points, and extend the line to cross the inductance scale. We find the inductance reading to be approximately 16 . As we divided both capacity and wave-length figures by 10 (inorder to use our limited-range chart), we must now multiply 16 by 10 in order to get the true required inductance.
The chart is fairly accurate and for almost all practical purposes may be relied upon where two factors are known-one desired, one measured. Where one "known" factor (particularly capacity) must be estimated, the results must, of course, be considered a near or approximate reading only. Approximations, however, will be acceptable in designing coils for the converter, accuracy of aligitment to cover desired frequencies being a matter of adjustment. and check-up against the carriers of stations known to be crystal-controlled, with coils built and wired into the circuit.

Courtesy-Crosley Radio Corp.

How To Get
 "Long Distance" On Your All-Wave Set

DXing Still Holds Thrills For Many

A great deal of confusion has been caused by the terms meters, kilocycles and megacycles which are used interchangeably to denote the channels on which various stations operate. Actually they are 3 different ways of saying the same thing. No useful purpose would be served here to go into an involved explanation of the significance of these terms. Simply let it be said that they are units of measurement, somewhat as a foot or yard is a unit of length.
For example, broadcast station WLW in Cincinnati operates on a wavelength of about 428 meters. Another way of saying this is that WLW operates on a frequency of 700 kilocycles. (To translate meters into kilocycles, divide either into 300,000 -which is about the speed in kilometers with which a radio signal travels. The quotient is the desired figure.-Editor).

The kilocycle (or kc.) method of figuring is used more often today because it is more convenient than the meter system. The shorter the wavelength of a given station, the higher its frequency in kc, will be. A station operating in kc . will be. A station operating on 200 meters has a frequency of $1,500 \mathrm{kc}$. while one on 10 meters has a frequency of $30,000 \mathrm{kc}$.!

When dealing with these short-wave stations, the use of kilocycles becomes a nuisance. For example, a certain station operates on 25.53 meters. This is equivalent to $11,750 \mathrm{kc}$. The frequency is a large number. Therefore, it has become the practice when dealing with short-wave stations to give their frequency in megacycles instead of kilocycles. Mega means million, while kilo means thousand. Therefore, a kilocycle is really a thousand cycles and a megacycle is a million cycles. Consequently 1 megacycle equals 1.000 kilocycles or kc. Thus the station whose frequency is $11,750 \mathrm{kc}$. can be identified as operating on $11.75^{5} \mathrm{mc}$. Note that the last figure of the frequency in kilocycles is generally dropped when using megacycles. Megacycles are not used with regular broadcast-band stations because there the kilocycle method is satisfactory since the figures involved are small. Station WLW on 700 kc . could be written as 0.7 mc . if desired. For aid in remembering the difference between these three, a list giving the meters, kc. and mc. of a number of reference points is given, as follows: 50 meters equals $6,000 \mathrm{kc}$. or 6 mc.; 30 meters equals $10,000 \mathrm{kc}$. or 10 mc .; 25 meters equals $12,000 \mathrm{kc}$. or 12 mc .

	LOCATION OF STATIONS	TIME OF OAY IN E.S.T. FOR BEST RECEPTION.
FREQUENCY		

Do not expect to be able to turn on your radio set and tume-in a certain short-wave station at any time of the day. This is impossible. First of all the factors mentioned is the effect of the time of day on reception.

Juring broad daylight the shorter waves or higher freguencies are the only ones capable of providing long-distance reception. Thus the waves from 10 to 20 meters ($30-15 \mathrm{mc}$.) give best results when there is daylight either at the station; at the receiver; or, at both places. The shorter the wave, the better it is for daylight commmication.

The stations operating near 20 meters are heard best in the Fall and Winter when there is daylight over most of the distance between the stiation and the listener. The stations below 15 meters. or above 20 mc . are heard best during these seasons when there is daylight over the whole path. Practically, this means that European stations operating near 15 me , are heard hest in the C.S.A. at this period from 4 to 7 a.m. and $11 \mathrm{a} . \mathrm{m}$. to $4 \mathrm{p} . \mathrm{m}$. The stations above 20 mc . are heard best from 7 to 11 am . Asiatic arnd Australian stations in these bands are heard best from 9 a.m. to 7 p.m.

The stations operating between 25 and 35 meters are heard best when there is darkness over most of the path between the listener and the station. Thus the Europeans in this band are heard best from 4 p.m. to 5 a.m. Asiatic and Australian stations are heard best from midnight until $9 \mathrm{a} . \mathrm{m}$. Wavelengths from 35 to 60 meters give best long-distance reception when the whole area is in darkness. Europeans are heard in this hand from $6 \mathrm{p} . \mathrm{m}$. to 2 a.m. At present this band does not give very good reception of European stations at any time; the higher frequencies are superior for this purpose. However, many South American stations can be heard from 5 p.m. until 6 a.m. in this band and especially near 6 mc . The waves above 60 meters are not slitable for long-distance reception (over 2,000 miles), at present.

In summer the higher freduencies give better results, even at night, while in Winter the lower frequencies are most effective and provide the clearest signals. The various short-wave stations realize this and generally broadcast on 2 or more frequencies. simultaneously, using a high and a low frequency. These stations also change the operating frequencies several times during a day shifting to lower frequencies as darkness ap-
proaches. They also make seasonal changes in frecpuencies used to insure good reception at all times. A great many newsparpers carry daily sclucdules of the best-heard short-wave foreign stations; these station lists give last-minute details as to the exact frequencies being used at any time. There are also a number of magazines which mblish the operating schedules (frequency, and time on the air) of all stations.

There are also a mumber of other points which must be observed in order to get a great deal of distance reception on an all-wave set. Though these are quite obvious, sometimes their very simplicity causes one to overlook them. For this reason. it is essential that they be appended.

First : Do not expect to get as much distance with a cheap all-wave set as your friend gets with a more costly one. Jor should you expect an all-wave set to give results as satisfactory as a set designed for short wave use exclusively. While many of the better all-wave sets are efficient on all the bands they cover, few of them will equal in sensitivity those sets designed to work only on the higher frequencies.

Second: Do not expect to get as much distance with an old all-wave set as with a newer model, other things being equal. Radio sets are being improved continnally, and later models afford better distance than do comparable earlier models.

Third: Make sure that your set is in good condition. If one R.F. or I.F. alignment has shifted, the set will not be as efficient as though the stages are correctly aligned.

Fourth: Have your tubes tested, and replace any which may have deteriorated through servjce. Even one tube that is slightly deactivated can impair distant reception seriously.

Fifth: Have an adequate antenna. The best you can get is the one recommended in the you can get instructions which the manufacturer supplied with instructions which the manufacturer suppled well
your set. He wants your set to work as as possible; follow his suggestions. Should you have not such instruction sheet, your dealer's suggestions are the best substitute. Remember that no set can be better than its antenna, and do not skimp when making the antenna installation. Should your set require a ground, as most sets do. he sure to have a good ground on it.

Sixth: Be patient. Tuning is critical on distant stations. particularly on the short waves. If the controls are turned too rapidly, you will pass stations which you might otherwise hear. Take your time. and tune carefully,

CHAPTER 4

Interphones

1-Tube A.C.-D.C.
 Interphone

In order to understand the principle of operation of the l-tube intercommunicating system, examine the 2 -station type which is shown in simplified block diagram.

In Fig. A station No. 1 and No. 2 are shown in the "stand-by" position ready to reccive messages from each other. In Fig. 13, station No. 1 has thrown its switch to the send position and is talking to station №. 2. When station No. 1 releases the switch, both stations are again in stand-by position and station No. 2 talks to station No. 1 as shown in Fig. C. Notice that during transmission, the 2 amplifiers are in cascade in order to give the required amount of amplification. The total amount of gain is "divided" equally between the 2 stations.

The schematic circuit of a single unit of a 2 . station system is shown in the diagram. In installing the system, a 2 -wite cable (with plug and socket connections) is run from one unit to the other. Each unit uses a 12 A 7 type tube which consists of a half-wave rectifier and a highgain power pentode.

Note that the rectifier system. does not use a choke for filtering. The 2.000 -ohm resistor, R2, provides adequate filtering without causing excessive voltage drop. This is due to the fact that the 12 A 7 draws only 15 ma.

Switch Sw. 1 is a double-pole doublethrow unit of the press-to-talk type. This means that it should contain a spring to return it to the "listen" position. Of course an ordinary D.P.D.'T, toggle switch may be used, but this is more difficult to manipulate than the spring-return type.

Input transformer T1 is designed to feed from a 4 -ohm line into a control-grid. The output transformer, T2, is of the universal type with the full winding used as primary, and taps 2 and 5 for the 4 -ohm secondary. liy shifting the taps of this output transformer, variations in tone may be effected. In general, however, the 2 and 5 taps will be found best.

The complete set-up.

When more than 2 stations are necessary. circuit B in the rliagram should be used. An examination of this circuit shows that a 7 -point switch, Sw. 3, has been added. Also an octaltype socket has heen substituted for the 5 -prong socket. We can now install 7 of these units as a selective-type intercommunicator. The 7-point switch allows us to select any one of the other 6 stations with the last point used as an "off" or "stand-by" position.

The complete interconnecting wiring diagram of the 7 -station intercommunicating system is shown. The materials required consists of an 8 -wire color-coded cable (of sufficient length to pass through all the rooms in which the stations are to be installed), and 7 octal-type plugs.

The 7 octal plugs I's. I'h, Pc, etc., are connected to adequate lengths of :1-wire cable as shown. The color corle of all sheuld be identical and are to correspond to that of the main cable to which the phigs connect. In connecting the plug cables to the main cable. simply skin back the wires, make the proper connection (solder all connections), and tape each individually. These connections are made at the points where slack was left in installing the cable. For the sake of appearance the cable junction should be covered with a small hox. Note that plags l'a and I'g may be connected directly, to the ends of the main cable. The next step is to irsert the 7 plugs into their respective units and plug the line cords of the units into the A.C. or 1).C. line. The system is now ready for operation

The indication of the outlying itations on each unit may be made by studying the various drawings. Thus on station " A ", the pointer knob

Diagram of two station system.

Selective or private circuits.
of switch Sw. 3 indicates as follows:
Point No. 1............"off" or "stand-by" 2...........to station " B " 2............to station " station "C",
3..........to station " D ",
6.......to station " E ", 6..............to station "E",

The dial markings of station " B " are similar, except that Point No. 2 indicates station "A" instead of " B," etc. The operation of the system is as follows: All stations are normally on point No. 1 or "stand-by." If station " A ", wishes to call station "B," the knob of Sw. 1 is pressed for the "call" position. When station " A " is finished talking, station " B " need only press Sw. 1 in order to answer. This feature of the system saves much time because in the usual interphone system "B" would have to know from what station the call had originated in order to reply.
If station " A ", wishes to have a conference with stations " B " and " C " simultaneously, he calls them each individually and asks them to get on his line. A 3 -sided conversation is then possible. This may be also arranged for any number of stations. Even while talking to all 6 outlying stations there is no loss in either volume or quality. This is due to the design whereby the voice is transmitted to a load which absorbs a very small amount of power. In the usual type of intercommunicator, the power delivered is in inverse ratio to the number of speakers on the line.

While the system described was for 7 stations,
any number of stations may be arranged-for by means of slight changes. For instance, if a 3station system is desired, only a 4 -wire cable between stations is necessary. Only that portion which includes $\mathrm{Pa}, \mathrm{Pb}, \mathrm{Pc}$, need be used. For more than 7 stations, the number of points on Sw. 3 must be increased proportionately, and the cable like-wire. Also binding post strips will be necessary instead of the octal sockets used. (The constructor may wish to try the recently-announced type $25 \mathrm{~A} 7 \mathrm{G}, 25 \mathrm{~V}$. tube-not as yet available to the writer-if increased amplification is desired.)

In constructing the units, we first make the chassis. The main part of the chassis is formed from a piece of No. 16 gauge aluminum. All holes are made with a No. 28 drill unless otherwise indicated. Next to, or in between the pairs of holes is indicated the part which is mounted there. Before the parts are mounted, flaps are bent down in order to form the chassis. The small front panel on which the switches are mounted is fastened to the main chassis with two screws. The 3 -in. P.M. dynamic speaker is mounted on the chassis by 2 small angle brackets.

In wiring the unit there are no special precautions except to note as already mentioned, and the " B " minus return does not ground directly to the chassis.

The dimensions shown are for the inside of the box. The front panel should be $1 / 4-\mathrm{in}$. thick, and the sides may be any tbickness desired.

The speaker hole may be either the simple circular type shown, or else the grill type.

Chateis layout of interphone.

After the units are set up, try reversing the line plug while one station is transmitting to the other. The best position as to minimum hum should be noted and maintained. If the units have been wired up correctly there is almost no chance of trouble.

List of Parts

One Sylvania type $12 A 7$ tube, V (see text re 25A7G) :
One Sprague dual electrolytic condenser, 8 mf .,
One Sprague electrolytic condenser, 10 mf ., 25 V., C2;

One Cornell-Dubilier paper condenser, $0.1-\mathrm{mf}$., 200 V., C3;
One Stancor input transformer, 4 ohms to grid, T1;
One Stancor universal output transformer, type A-2855, T2;
One 3 -in, permanent-magnet speaker, P.M.;
One "12A7" type socket;
One 5 -prong socket, S1;
One Centralab D.P.D.T. switch. Sw. I;
One Centralab S.P.S.T. switch, Sw. 2 ;
One I.R.C. resistor, 2,000 ohms, 1 W., RI;
One I.R.C. resistor, 1,000 ohms. 1/2-W., R2;
One Resistor, 360 ohms. R3;
One 5-prong plug, P1, 1'2;
One chassis;
One cabinet.
Additional Parts for Multi-Station Type
One Centralab 7-point switch, Sw.3;
One octal socket, S3;
One octal plug, P-A to P-G;
8 -wire rubber-covered cable.

How circuits line up.

Rear view.

Front panel layout and bottom view.

2-Tube InterPhone

A Perfect Interoffice Wireless

The elements vital to a carrier intercommunication unsit are given in the following paragraph. (1) Radio-frequency oscillator tube this may he used ats the detector when receising. (2) Power nodulator tulse for modiatiang the R.F. This may be used ats a power tule when teceiving. (3) Voltage anmpliner tube to st-p-up the signa! from the microphone (in this case the permanentmagne: dynamic type loudspeakerl. Wher receiving, this is used to amblify the output from the detector. (4) Rectifier tube-to deliver requisite current. (5) Switching swstem-winch will change the above elements to their proper relationship; when sending atad recei."ing.

These points are explained in the block diatgran. This shows graphically how the change. over system works.

The requirentents for the tubes are that ticy shall he of the 0.3 type and that 2 tuhes shati: perform the functions listed above. The cumbination of the rectifier and power tube is atecomplished by the use of the 12 A 7 tube.

The combination of the oscillator and voltage: amplifier tube hats been made easy by the re-cently-tlesigned type 6 CBC t win triskle tube. An
important - for our purpose-design feature of this tube is the fact that it has separate cathodes. This enables us to completely isolate the oscillator(etector section (ats we will use the tube) from the :unplifier section of the tube. The grid (cap) section is used for the voltage amplifier, and the lower section for the oscillator-detector.

Now let us trace the path of the signal when the unit is in the talk position. The "microphone'" (Sju'k'r) picks up the sound and the output voltage is brought to the grid-cap-triode of the 6C8G by the step-up transformer, T2. The amplified signall is sent to the pentode section of the $12 N 7$. This signal which now is of the order of about 50.5 peak is used to modulate the oscillations of the second triode of the $6 \mathrm{C8}(\mathrm{i}$. This modul.ted R.F. signal is patssed to the lowimpenence primary of the R.F. transformer. L. and then on to the line by means of condenser Cl.

The other unit which is in the receive position picks up the signal from the line. Then it is went through the R.F. tratnsformer I., to the grid of the second section of the 6C8G. This tube is now being used as a diode, the real plate of the

Wiring diagram showing switch 2 in talk position,
tube being grounded by the C section of Sw .2 The detected signal then passes through a lowpass filter--R4, C8, which permits only the A.F. component of the signal to pass.
After passing the volume control, R , the signal goes throngh section B of Sw. 2 to the grid anp triode of the 6 C8G. The signal is then amplified by the pentode section of the $12 \Lambda 7$ and finally reproduced (after passing $T 1$ and section 13 of the Sw. 2) by the speaker, Sp'k'r.
The details of the construction of the oscillator coil L are shown in the sketch. Coil L1 includes 300 turns of No. 30 D.S.C. copper wire wound, honeycomb fashion, on a dowel stick $3 / 8-\mathrm{in}$. in dianieter and $3 / 4 \cdot \mathrm{in}$. long. When complete, the winding should be approximately 1 in . in diameter and $3 / 16$-in. wide. A tap-off, T, is taken at 150 turns. Coil 1.2 is composed of 50 turns of No. 26 I.C.C. copper wire wound, straight layer fashion, between two cardboard washers (as shown). The outer end, 0, of L2 goes to ground and the inner end, I goes to condenser C1. The outer end G, of 1.1 goes to the grid and the inner end, I', goes to the switch, Sw.2.
Tunning of the coil is effected by means of condenser C6 and trimmer C5. This trimmer may be omitted if desired as the tuning is quite broad. The frequency of the carrier is approximately 130 kc .
The chassis consists of 2 parts, a front panel and the chassis proper. The photographs indicate how the sections are bolted together. This type of arrangement allows for mounting in a metal box, or if desired in a suitable wooden cabinet. The proper places for mounting the parts are indicated by the letters next to the respective mounting holes. Note that all the parts on the chassis are mounted on top with the exception of a 5 -terminal-lug strip which is mounted directly beneath the trimmer condenser. All other parts are fastened directly in place by soldering. The photographs should give many

Panel and chassis dimentions.

Bottom view.
suggestions as the proper method of wiring. The only shielded lead is the one leading from section B of switch $S w, 2$ to the grid cap of the tube 6C8G.

The installation and operation of the radio-type intercommunicators is the height of simplicity. The units are plugged into the A.C. or D.C. outlets near the places where they are to be installed. The volume control is turned full on and the talk-listen switch is left in the listen position. When either party wishes to talk, the switch is thrown to the talk position and upon completion of a portion of the conversation, the switch is thrown back to the listen position. The other unit may now be thrown to the talk position and the conversation continued.

List of Parts

One R.F. oscillator coil, I,
One A.F. output transformer, $: 4.000$ to 4 ohms, T1;
One S.F', input transformer, 4 ohms to tube grid, T2:
One Aerovox resistor, 400 ohms. 1 W., R1;
One Aerovox resistor, 330 ohms. $30 \mathrm{~W} ., \mathrm{R} 2$;
One Aerovox resistor, 2,000 ohms, 1 W., R3;
One Aerovox resistor, $0.1-\mathrm{meg} ., 1 / 2-\mathrm{W} ., \mathrm{R} 4$;
One derovox resistor, 1,000 ohms, 1 W., R5 ;
()ne Nerovox resistor, 3,000 ohms, $1 / 2 \cdot W ., \mathrm{R} 6$;

One Electrad volume control, 0.4-meg., R1;
One General Eiectric S.P.S.T. switch, Sw.l;
One 4 P.D.'「. switch, Sw. 2;
()te magnetsc speaker, 4 ohmi;

One Sprague dual electrolytic condenser, 8 mf ., $200 \mathrm{~V}_{\mathrm{i}}$ (3 ;
One Cornell-1):bilier paper tubalar condenser, 0.1 mf., to0 V., C1;
One Solar paper tubular condenser, $0.5-\mathrm{mf}$., 200 V.. C 2 :

One Cornell-i)ubilier dual electrolytic condenser, 5 mf . 35 V., C4;
One Inmmarlund trimmer condenser, single plate, C5;
One Cornell Dubilier mica condenser, 500 mmf ., C6;
Three Cornell-1) abilier mica condensers, 0.001. mf., C7;
One Cornell-Dubilier mica condenser, 520 mmf ., C8;
One Cornell-1) 1 bilier mica condenser, $0.004-\mathrm{mf}$., C9
One ICA ciassis;
One cabinet to fit chassis ;
One large poiater knol;
Two small pointer knobs;
One Raytheon type 6C8S tube, V1:
One Raytheou type 12 A 7 tube, V2;
One ICA tabe shield (for V1);
One 5-lug terminal strip, assorted nuts, bolts, wire, sockets, etc.

Rear View

Showing
Parts
Arrangement

While interphones have had their widest acceptance in commercial applications. there is a far wider field which has been toucked but little if at all.

Almost every home, except for small apartments, migit well install equipment of this sort.

It can be used to communicate between the upper and lower floors of houses, from living room to kitchen in the large apartments, between house and garage in country estates, and in a number of other ways.

Even small business can use such equipment to advantage, for transmitting messages between the receptionis!'s desk and the inner offices, between sales counter and stock room, etc.

Schools, too, will find interphones invaluable, for communicating between the executive office and one or more of the class rooms, from a workshop to a laboratory, and for similar uses.

In fact, there are, literally, hundreds of purposes to which interplone is particularly well adapted.

With this in mind, the experimenter may berive profit as well as pleasure from his work with this type of apparatus. Inexpensive to construct, interphone equipment has always commanded reasonably high prices. If neatly and efficiently made, it should sell readily to numerous places which have not hitherto installed it merely becatse it has not been properly brought to their attention.

Coil details
above. Righthow the system works.

The Much-Abused

Ballasts For A.C.-D.C.

Radio Receivers

"Why should there be over 100 types of A.C.D.C. ballasts?" is a question many technicallyinclined Service Men ask themselves.

The answer is, "there is no good reason."
Every time a manufacturer designed a new A.C.D.C. set the ballast supplier thonght he would get all the replacement business by changing the number and specifications of the ballast so that it could not be easily replaced. As a result many ballasts of identical specifications have different numbers-or different prong connections! Some manufacturers have gone so far as to purposely change the prong connections of the ballast so that ballasts now on the market would short across the line or short the line across the pilot light resistors, and in that way burn out some part of the ballast! This is something that Service Men will have to look out for-and the only way out is for them to be guided by a good replacement chart.
If ordinary resistance wire is used in the ballast, the amount of wire must be changed, depending upon the number of tubes in the set. This, therefore, would require approximately 10 different "ballasts" using ordinary resistance wire to take care of the variation in total tube volt. ages.
It is really incorrect to call units using either Nichrome or ordinary resistance wire "ballasts". A real ballast resistance is one whose resistance changes very rapidly with small changes in current.
If a real ballast resistance is used and the sets wired uniformly, the number of ballasts required for A.C.-D.C. sets could be reduced to practically one each for total filament voltages of 15 to 40 V .; 40 to 75 V .; and 75 to 105 V . The resistance of the Amperite automatically varies to make up the variation in line voltages as well as the variation in the number of tubes used. For
Glass
Type Ballast
Tube.

example one such ballast can be used for any set having a total tube filament voltage of 40.75 V. This practically takes care of most A.C.-D.C. sets. As shown in Fig. 1A the voltage drop across the Amperite itseli varies from 30.80 V ., taking care of a variation of 50 V .

Circuit details series A to D show the various arrangements in pilot light combinations used in most A.C.-D.C. sets.

By putting two pilot light resistances in the ballast, as shown in series D, it could be used for either 1 or 2 pilot lights. The same ballast can of course be used without pilot lights. If not used, the small pilot light resistances will make no mate-ial difference in the circuit. The same Amperite could therefore be used for (a) none, (b) 1 o- (c) 2 pilot lights and for a set having a total filament voltage of $40-75 \mathrm{~V}$.

A series of octal-base ballasts are numbered K42A, K42B, L45A, etc. The A, B, C, or D refers to the wiring diagram of pilot lights as shown in the series of diagram. The K refers to $0.150-\mathrm{A}$. pilot light and L to $0.250-\mathrm{A}$. pilot light. Center number refers to the voltage drop across the ballast.

The Amperite KL45 for example is designed as shown at D and will take care of either the A, B, C, or D arrangement, and any set with a total filament voltage drop between 40 to 75 V . It will therefore :eplace any octal base ballast start. ing with K or L, ending with A, V, C, or D and

Curves for various ballast tubes.

Pilot lamp circuits.
haring a center number of anything between 40 and 75.
The unusually low resistance of the 6 V . tubes
causes an unusual surge when the set is first turned ons. In order to eliminate this surge the Amperite regulator (see photo) is equipped with a patented starting resistance which allows only approximately 70 V . on the set when it is first turned on, and is automatically shorted out when the tubes warm up. It is an ideal combination situce it starts the tube at a low voltage, takes care of any voltage variation of the line from 90 to 135 V . and also takes care of variation in the number of tuhes in the set.

Circuit details for KL45 tube.

Designed to enable the shortwave enthusiast to receive, with his standard all-wave set, the interesting code signals which are so numerous, this beat-oscillator unit will assist also in locating weak DX broadcast and S.-W. stations; because it will bring out the carrier wave strongly as an audio whistle, and thus afford apparent sharper tuning.

Radio, as a means of point-to-point communication, depends on the production of a carrier wave which is interrupted at intervals to give a tone; but may be used to produce a steady note by "beating" it, with a locally-generated frequency, to produce an audihle heterodyne or whistle. With the old-fashioned regenerative sets, such reception was easy to obtain by tuning the detector, in a state of oscillation, a kilocycle (1,000 cycles) or less off the received C.W. (continuous-wave) signal.

This new unit, designed for attachment to later sets, performs the same purpose when connected
ahead of the 2nd-detector of any modern superheterodyne. The connections are as simple as those of the older converters or "signal boosters"; the adapter used is plugged into the socke of a 6F7 output pentode, to draw current for energizing a 6C5 tube used as a triode. The parts shown can be mounted in, and shielded by, a metal chassis only $43 / 8 \times 3 \times 1 \mathrm{in}$. high; the gridleak and condenser, mounted on the coil, are covered by its shield. The shielded coupling lead is bared for about $11 / 2$ ins, at the end so that, when placed alongside the control-grid lead of the last I.F. stage in the set, it will couple-in the local oscillation which it generates. The stronger the signal, the closer should be the coupling, but vice versa on weak signals; too much coupling will cause the A.V.C. to take hold and reduce receiver sensitivity. The unit is not furnished complete-being an experimenter's instrumentbut parts may he obtained, with the grid coil tuned to 465 kc ., so that it will beat against the
standard 1.F. signal; 300 to 500 cycles detuming will give is good note. Trimmer condenser C.S is idfusted with a screwdriver when necessary ; the grid coil L2, tuned by contenser unit C2-C3 has a larger impedance-and higher D.C. resistance than L.1. (Since the instrunterit does not radiate it camot cause outside interierence.)

List of Parts

One General Electric oscillator coil. No. R1.207, J, 1, 1.2.
One General Electric carbon resistor. No. RR187, 30,000 ohms, 1/2 WV. R1.
One General Electric carbon resistor, No. RR050, 0,01-meg. $1 / 4 W$, R2.
One General Electric l'aper-dinlectric cond. No. RC-040, $0.01 . \mathrm{mf} .400$ V.. C'1.
One General Electric padding cond., No. RC. 235 , $100 \cdot \mathrm{mmf} . \mathrm{C} 2$.
One General Electric trimmer cond., No. RC. $607,35-\mathrm{mmf}$ max.: C 3 .
One General Electric mica lialectric cond. No. RC-258, $250-\mathrm{mmf}$., C4.
One General Electric mica dialectric cond. No. RC.202, $4-\mathrm{mmf}^{(.)}$C5.
One S.P.S.T. toggle switch. Sw.;
One General Electric coil shieid, 'No. RS.103;
One General Electric wafer-type socket. No RS. 200;
One RCA type 6C5 tube:
One adapter and cable assembly, ㅅo. 9773 ML .

The unit in operation.

Wiring Diagram
of Handy
Beat
Oscillator

Complete amplifier.

It is almost impossible to satisfy everybody with one particular amplifying system. Some prefer low-pitched reproduction - others, high. Then again the speakers as well as the acoustics of various rooms are so different that some compensation device must be used to obtain best results.

In any P.A. installation, it is of paramount im. portance that the reproduction be free from peaks. It is the peaks that tire the listener. A slightly rising characteristic is not at all objectionable. The best method to obtain this result is to start off with a flat microphone and flat amplifier and introduce compensation in the amplifier as required.

In order to create the illusion of hearing the origimal, not only must the frequency response be wide enough but the sound must have its original loudness. In movie and large hall installations, a signal louder than the original is required; in small rooms a signal lower in volume than the original: With a lower signail it is usually more desirable to increase the low-frequency response in order to create the ilfustion of the original. while with the louder signal it is best to increase the higher frequencies.

A system which can introduce a slightly rising characteristic is therefore immediately adaptable to practically any sound installation and can please any taste.

Equalizing devices have been used for a number of years to compensate for the losses in telephone lines. However, that type of equalizing system is not practical, due to its large cost

Compensation Of Amplifier Response

and decrease in overall efficiency. Besides those compensating devices tend to introduce distortion of their own, due to transients. The latter become very objectionable when the equalization amounts to more than 15 db . per octave.

An inexpensive compensating circuit permits gradual compensation of low and high frequencies without any decrease in efficiency, or the introduc. tion of annoying transients. This circuit is used in conjunction with a degenerative amplifier-the latter permitting a larger amount of power with a low per centage of harmonic distortion.

Standard parts are used throughout. All resistors without watts ratings are 1 W . Condensers below 1 mif. should be paper, except those marked mica. The push-pull input transformer is of the split-secondary type and is obtainable in standard makes. Positions M2 and M3 can be added if an electronic mixer is needed-can be omitted if only one input is required. The diagram shows the various curves obtainable with the above compensating device. Any of the 9 curves shown can be obtained by adjusting the controls. For example, a rising low and high-frequency response can be obtained as shown in curve AC. Of if you prefer you can obtain the curves $\triangle \mathrm{F}$, $A D, E C, E D, B C, B F$ or $B D$.

A complete amplifier, with flat-response microphone, is shown in the diagram.

It is quite evident that even the most exacting person can be satisfied by a response following one of the above 9 curves.

In addition to its primary use for public address work, this amplifier may be use for recording, phono playback, or even as the audio section of a radio receiver.

The various curves which it affords make it a true tone control. While a curve such as EF would give excellent response for a speaking

Complete circuit of compensating amplifier.
voice, at low ontput it would not give music as much "color" as might be desirable, in which case it might be adjusted to produce a curve such as AC , or if that proved too "boomy", EC, or even BC. When highs are objectionable, as they are under certain circumstances, they maty be reduced, as the curve at D indicates. Such attenuation of the highs is sometimes desirable in playback work, particularly if the record has considerable surface noise or "needle scratch."

An amplifier as versatile as this one is provirles the greatest possible degree of satisfaction, for it not only provides the most faithful reproduction, but also enables the user to compensate for defects in the original sound, poor transmission. acoustice peculiarities of the room where the installation is made, and even for the individual taste of the listeners.

Curves of amplifier,

The Radio-Craft Tube Tester

One ingenious idea that cut the cost of the tester is the use of a plain aluminum panel. This panel. Was carefully drilled as indicated in the drawing, with a series of beveled $1 / 4$ in, holes, located at each indicator marking position of the selector switches. Four pieces of white cardboard $23 / 8$ in. square with appropriate numbers and letters carefully drawn with india ink provided the scale markings for the various test positions. Transparent celluloid was used to cover the scales for protection from dust and damage.

Every part of the tester can be obtained from radio supply houses even to properly finished 2 . color scales for the meter. If it is desired to make the scales for the meter in the lab. the details as shown can be followed,
The first step in constructing the tester is to lay out the panel very carefully for drilling. Cut the panel to the proper size and center-punch all holes as indicated, especially those holes used as windows for the various identifying switch numbers and letters. Countersink these holes from the top of the panel so that the minimum of shadow will be cast on the letters by the side walls of the holes.

Wire-in the interconnections between the various switch tans before mounting the switches, on the panel. This applies to the several sections of Sw. 1, and Sw. 2, and Sw. 3.

After the switch wiring is finished and checked, start mounting all of the parts on the aluminum panel, including the indicator scales. The proper placement of the parts can be checked from the bottom view photograph and the mechanical drawing. The electrical circuit drawing is so laid out that all of the parts are in their proper mechanical place as well as showing the electrical connections. Test for panel shorts between alive terminals and the insulated jacks with an ohmmeter.

The 2 sections of the dual rheostat R1 are connected in parallel when the tester is used on 110 V. A.C. lines.

Wire-in the 5 tube sockets as indicated to the selector switches. Check each lead at least twice.

Wire-in the leads from the power transformer to the filament and plate supply circuits following the directions furnisled with the particular transformer used.

Check all wiring again so that no connections will be missed and if the final examination shows that the tester has been wired properly then proceed with the calibration which is very simple.

Take new tubes having different switch and shunt setting and adjust the position of the shunt knob on the 20 -ohm rheostat, R5, so that the meter pointer reads 40 on the scale. This is in the GOOD area. Take a screwdriver and reset the bar knob on R5, so that when the meter pointer reats 40 on the scale the bar knob will be pointing to the proper number as given in the third or SHUNT SET, column on Table 1.

A new type 27 tube is a good starting tube. Set the 2 selector switches to A (left-hand Selec. tor Switch) and X (right-hand Selector Switch). Vary the Shunt Control until the meter pointer rearls about 40 . Note the position of the Shunt Control bar knob. If it is at 91 no further changes are necessary. If it is some place else on the scale carefilly reset the bar knob without changing the position of the moving contact arm to 91. Check with other tubes known to be good of the same type and then check tubes having different Shunt and Selector settings. If the tubes are good they will give meter readings of approximately 40 with the proper shunt setting. Thus it will be noted that the hardest part of calibrating is the proper setting of the shunt control bar knob.

Note: After the calibration is set, notice the relationship between the setting of the shunt rheostat contact arm and the actual position of the bar knob pointer. Rotate the knob (slowly) to the left. Ordinarily, it is impossible to bring the bar knob pointer to "()". Do not try to force the " O " position as you" will upset the calibra. tion for tube testing. The instructions for resistor and capacity testing call for a " O " setting of the shunt control. This means a " O " setting of the contact armi and not a "O" set position of the bar knob. When making "()" set adjustment simply turn the bar knob as far to the left as possible without forcing knob.

The R.C. Tube Tester.

Rear view of tester.

It is very important that the following instructions be memor:zed and that the same procedure be carried out every time a tulse is tested.

First, turn all 4 selretor switches to the blank indicator frositions at the bottom of the scales. Connect the line cord to the A.C. circtsit and the tester is ready io work.

When making short and leakage tests the sure that the tube selector switches are at the "Off" position. Turn the short test switch through the various test positions at $2-3,3-4, \mathrm{C} 2$, etc. The neon will glow brightiy when a short octurs at any position of the switch. High-resistance leaks will be indicated by a dim glow of the neen.

Always make the short est first. If the short test is made after the tube has been heated there maty be a glow from the neon for at short period of time even though there is no leakage in the tube. This false glow will rapidly disappear if the tube is tot laky.
Ilot-cathode leakage tests can be made as follows. Set the Short Test switch so $k L$. There should be no indication on the test neter if there is no leakage. Any reading indicates leakage hetween heater and cathode.

After the short tests have been made and the tube tests $O . k^{\circ}$. proced to test the tube in the following manner. Note allow anmple time for the tube to locat and set line Voltage Control so that the pointer on the A.C. meter is at the arrow.
(1) Turn the Short-Fest Switch (Sw. 3) to the "T" position.
(2) Adjust the Filament Selector Switch (Sw. 4) as indicated on the chart.
(3) Keset the Line. Voltage Control so that the pointer is properly set at the arrow
(4) Adjust the Shunt Control, K5, to the mit merical setting indicated on the chart.
(5) Dermit the tube to heat and note reading (:OOD, or I'OOR.

Combination types of tubes with 2 sets of elements are tested individually as indicated in the Keference Chart. The 2 sets of elements are listed as A and B.

Rectifier Tubes are listed as (HW) half-wave (FW) full-wave Diode sections are listed as, (1)). A reading beyond the line marked "Diodes" "OK" indicates a good diode section.

In some cases one setting of the tube selector switches is indicated. When this occurs the second selector switch can be in any position without affecting the test. However, it is best to set the umused selector switch at the "blank" position for such tests. This will help to avoid confusion.

When making Shunt settings be careful not to force the knob as this will upset the calibration of the instrument.

A type 84 tube is used for resistance and capacity measurements. This tube should be tested before it is used and the meter reading should be 40 when the shunt is set at 90 . The Filament Selector Switch setting for this tube is 7 . Do not use a tube that will not give a reading of 40. Do not touch the live ends of the test prods as the voltage across them is more than 100 V . Set the Short Test Switch to the "R2" position and adjust the line voltage meter pointer to the arrow on the dial scale.

Connect the test leads to the top-jacks and short the opposite ends. Adjust the shunt until the meter reids full-scale (50). If the meter will not adjust to full-scale hy varying the shunt, reset the Line Voltage Control until it does.

Reference chart for different tubes.

Wiring diagram of tube tester.

Comnect the test leads to the resistor or circuit to be measured and note the meter reading. Refer to Fig. 3 and note the value of resistance. A reading of 34 on curve " A " indicates a resistance value of 13,000 ohms.

Resistors having a value greater than 50,000 olums can be checked ly setting the shunt to " 0 "'; read meter and refer to curve " β "" to determine the resistance. Renember, "O" setting of the Shunt control will not be the "()" setting of the knob but will be the " O " setting of the contact arm. Do not force the knob as it will upset calibration of the instrument for tube test. ing.
Circuits having a resistance greater than 1 meg and up to 10 megs. can be checked for con-
tinuity by setting the Short Test Switch on "C" and watching the neon tulse. A faint glow will he seen even thongh the resistance of the circuit undier test is 3 megs or more.
leave the 84 -type in the socket and set the Short Testing Switch to "C". The Filament Switch will be set at 7 , aml the Selector Switches at " "EN."

Adust the Line Voltage Control so that the pointer is set at the arrow on the scale. Set the Shunt Control to "()" and connect the test learls to the capacity under test. Electrolytic conrensers can be measured but be sure that the red luad or tip-jack comnects to the positive side of the condenser.

Read meter and note capacity by referring to

Panel drilling and scale marking.

Charts for using tube tester.
the Cajocity Chart. l"se scale " A " if the value is less than $0.25-\mathrm{mf}$. Catpacities greater than $0.65 \cdot \mathrm{mf}$. will caluse the meter pointer to go off scale. Reset the Shunt Control to 90 and check meter reating with the " B " scale on the chart.

Very small values of capacity can be noted by whitching the neon lamp. A faint glow around one of the lamp sections imdicates a good condenser. An open combenser will give no glow at all and a slorted condenser will cause a bright finh and the meter pointer will go off scale.

List of Parts

Ove aluminum panel, $99 / 16 \times 10$ s' $\times 1 / 16$-in.; Ore Dependable 0.5 ma. Milliammeter, $51 / 2 \mathrm{in}$. fan type, M1;
Crie Deprendable 0-25 V. A.C. iron-vane type, M2; Cine Dependable English-reading scale for M1;
One Dependable line-set scale for M2;
Ore Dependable 1-pole, 12-pos. selector, Sw. 4;

One Dependable 3 -pole, 12 -jos. selector, $S w, 1$, Sw. 2;
One Dencudable 4-pole, 12 -pos. selector, Sw. 3;
Ore Dependable fil.-plate transformer, I'.T.;
One Electrad 20 -olim wire-wound rheostat, R5;
One Electrad 1,100-ohm dual rheostat, R1;
Onc 1 W . carbon resistor, 10,000 ohms, R3;
Tuo 1 W , carbon resistors, 20,000 ohms, R2, R8; Two 1 W. carbon resistors, 15.000 olums, R7, R9;
One 2 W. wire-wonnd resistor, 1,000 ohms, R4;
Ore 2 W. wire-wouml resistor, 1.400 ohms. R6;
Five sockets:-one 4 -prong; one 5 -prong; one 6 -prong; one octal; one 7 -prong universal;
One 2-in, etched scale, marked $0-100,270$ deg.;
Six Allied Radio Corp. small lar knobs;
One Allied Radio Corp. 8 ft . Jine cord and plug; One neon lamp;
One universal insulated grid cup;
One candelabra base for neon lamp;
Two insulated tip-jacks-1 Red, 1 I3lack.

CHAPTER 5

Recent New Tubes

THIS crop of new tubes affords the experi menter an opportunity to try out many of lisis pet cirentits.

In this chapter we present a rather complete list of tabes together with their operating characteristics.

6AB6G Dynamic-Coupled Power Tube.
Since the type 635 tube wat developed early in 1935. many manufacturers of into-radio sets have selected this unque tube for their higher priced sets. The unique qualities of the "dynamic conpling", which provide a high power sensitivity, get with lower harmonic distortion than entuivalent pentorle types, added to the remote cut-off thatracteristic, mate it a popalar one.

The new $6 \mathrm{AB6G}$ is a strictly class A tulbe and as such, any of the high-resistance amplifiers may be used to supply the input signal; a grid tesisior of 1 meg. is permissible ander any operat ing conditions. When used in mush-pull, the plate power catt be reduced during periods of nosignal by connecting a self-bias resistor in the cathote lead (80 ohms) to introdnce a $5 \mathrm{~V}^{\mathrm{T}}$. bias This movides a semi-elass $A B$ operation in that plate current is reduced-but no driving power is reg:ilied for this service.

6AB6G Characteristics

Heater voltaye 6.3 A C or $1{ }^{\circ}$ leater current

$0.5 \cdot \mathrm{~A}$.

Amplifier (Class A)

Single	e Push-Pull
250	250 max. ${ }^{\prime \prime}$
250	250 max. 1
0	0 V.
37	68 mat.
5	10 ma .
72	
0.000	ohms
1.800	mmhos
$8,000 \quad 10$	10,000 p-p olims
3.5	8 W.
10	6.5 jer cent
18	42 k-g r.m.s.

Output plate (1P2)
Input plate (P1)
Grid
Plate current (P?)
Plate current (P1)
Amplification factor
Plate resistance
Mutual conductance
Load resistance
Power output
Harmonic distortion
Signall volts for rated power

Harmonic divertion
Signal volts for rated power
10 yer cent
Prabh-pull values are for 2 tubes.

* lirid enrrent does not flow during any part of the imut cycle.
** Common cathode resistor which is not bypassed. If this resistor is adermately bypassed or if a fixed bias of $5 . \mathrm{K}^{\circ}$. is used, the class $A B$ distortion is reduced nearly to that of the class A push-pull.

The total resistance introduced into the grisl circuit by the input coupling device should not excered 1.0 meg.

The characteristics of the new 1 -in. cathoderay tube, to be known as the type 913, are listed below

913 Characteristics

Heater voltage (A.C. or I).C.) $\quad 6.3$
Fleater Current
Flıorescent Screen Material Phosphor No. I
Direct Interelectrode Capacity:
Control Electrode to atl other Electrodes
10.3 max. mmf.
1)eflecting Plate I) to

Jeflecting Plate (J)
3.55 max. mnif.

1) eflecting Plate I)
to Deflecting llate D^{4}
4.25 max. mmf.

High-Voltage Electrode
(Anode No. 2) 1.
$500 \max .1$.
Focusing Elect rode.
(Anode Nio. 1) I.
$125 \max . \mathrm{V}$.
Control Electrode (Cirid) V. Never positive
Crid ${ }^{7}$ oltage for Current C ut-off-50 approx. ${ }^{\text {a }}$.
Peak Voltage hetween Arode No. 2
and any leilecting Plate
250 max. ${ }^{-}$
Fluorescent Screen Inıut
I'ower/sq. cni.
5 max. milli-W.
Typieal Operation:

Ileater Voltage	6.3	6.3	V.
No. 2 Anole Voltage	250	500	V.
No. 1 Anode Voltage	45	90	V.

No. 1 Anode Voltage
Girid Voltage
Adjusted to give suitable luminous sjot
IJeflection Sensitivity
Plates I)' and 1)2 .15 . 07 mm per volt I).C.
Plates D^{3} athd 1$)^{\prime} .21 \quad .10 \mathrm{~mm}$ per volt $\mathrm{D} . \mathrm{C}$.

6AC6G Dynamic-Coupled Tube

Like the $6 A B 6 G$, the new $6 A C 6(i$, also developed by 'riad, is a twin-triode tule, dynamic-ally-coupled within the enveloje of the tulse itself. This tube is similar to the well-known $6 \mathrm{B5}$, but is designed for those small A.C. sets which operate with a low plate voltage (less ilatn 180 V.) in conjunction with a series speatker field.

Output plate (1'2) 245 max. Y.
Input plate (P'1)
Self-bias resistor**
Zero-signal plate current (P2)
Full-signal plate current (P2)
Zero-signal plate current (Pl)
Full-signal plate current (P_{1})
Load resistance
Power output
ohms
tilat.
nait.
111.
nu:i.
13-p ohms
8 IV.

Fig. 1. Socket connections. Notice the complicated construction.

It is expected that a field of 700 to 800 ohms will be used as the filter choke, which will give both ample plate supply filtering and ample field power. A single tube used in this way will provide 4 W . of audio power at 10 per cent overall harmonic distortion.

There will be no difficulty in providing sufficient input signal to the grid of the 6AC6C, if the type 75 or 6 Q 7 voltage amplifier is operated with a plate voltage of 180 . The resistance of the grid circuit may be as high as 1 meg. which is of importance in resistance-coupled A.F. sys. tems. In some cases, the over-all sensitivity will be greater than in systems using a more sensitive output tube which requires a lower value grid resistance, and thus reduces the gain of the preceding stage.
When used in push-pull the 6AG6G will produce 9.5 W . of audio power at a total harmonic distortion of 10 per cent. When necessary to minimize plate current, a bins of 50 ohms which reduces the total plate current to 70 ma . at nosignal. may be used.
6H5 Tuning Indicator. The 6H5 sliffers from the 6G5 and 6E5 tuning indicator tubes in the addition of at current-limiting grid around that portion of the cathotle which furnishes cmission for the target current.
The A.V.C. voltage required to change the shadow from 90 deg. to 0 deg. is 221. Where the A.V.C. voltage in the receiver reaches higher values than 22 V ., a voltage dividing system is necessary to limit the bias applied to the 6H5.

6T7G Duo-Diode High-Mu Triode. This is a new tule baving a filament current of only $0.15-\mathrm{A}$. The tube has characteristics very similar to the 607 G . The triode section operated with a plate voltage of 250 and a plate load resistor of 0.1 - to $0.25-\mathrm{meg}$. should have a negative bias of 2.5 v . on the grid.

6V6G Beam-Power Amplifier. The 6V6G is a beam-power amplifier similar in design fentures to the 6L66, but having a high power sensitivity. high power output, and low percentage of third and higher order harmonics.

The 6 V 6 G should prove very desirable where heater and plate current must be maintained at a minimum. The heater current of $0.43 \cdot \mathrm{~A}$. is rather low for a power tube laving the power capahilities of the type 6 V 6 G .

6V6G Characteristics

Class ABl amplifier (push-pull) Values are for 2 tubes

Heater voltage

Plate voltage
$6.3 \quad 6.3 \mathrm{~V}$
Screen-grid voltage
$300-3005$.
Total plate and screengrid dissipation (per tube)
Control-grid voltage*
Prak input signal (grid to grid)
21.2 28.2ソ'apprx.

Plate current (zero signal)
Plate current (max. signal)

70 is mas.

Screen-grid current (zero signal)
$79 \quad 90$ ma.

Screen-grisl current (max. signal)
doad Resistance (plate to plite)
$10,000 \quad 8.000$ ohms
Total harmonic distortion 4
3rd harmonic
rower output
$8.5 \quad 13.5 \mathrm{~W}$

- Maximum. " 1 " used in conjunction with the terms chass A and class $A B$ indicates that no grid current flows during any part of the input eycle.
*Transformer and impedance coupling devices are recommended and the resistance introduced in the control-grid circuit should be kept as low as possible. For fixed bias this resistance should not exceed 50.000 ohms. The maximum con-trol-grid resistance when self-bias is cmployed may be $0.5-\mathrm{meg}$.

The self-bias resistor should be shunted with a suitable filter network to reduce degeneration.
25A7G Pentode-Rectifier Tube. This tube combines the functions of power amplification and rectification within one envelope. A pentode power-outpht section similar to the type 43 and a half-wave rectifier-somewhat similar to the $12 \mathrm{Z3}$-compose the internal elements.

Designed for small A.C.-D.C. receivers where space is at a premium, this combination tube will produce a power output of $0.77 . \mathrm{W}$. with about 9 per cent distortion and will supply a voltage for the speaker field and the plate supply at a maximum current of 75 ma .

25A7G Characteristics

Heater voltage
Heater current
Operating Conditions

Plate

Screen-grid (grid No. 2)
Control-grid (grid No. 1)
(Grid No. 3 tied to cathode
within tabe)
Plate current
Screen-grid charrent
Amplification factor
Plate resistance
Mutual conductance
Loatl resistance
Total harmonic distortion
Power output
A.C. plate voltage (r.m.c.)
D.C. output current
25.0 V .
0.3-A.

Pentode Section

75 max. ma
25L6 Metal Beam Power Amplifier. The design of the 25 L 6 is similar to that of the 6 L 6 with the difierence that the 25 L 6 is intended for use in the output stage of transformerless rectivers operating from a 115 V . power line, either A.C. or 1).C. According to the data received from RCA, this tube has high sensitivity, high efficiency and high power output. With 110 V . on the plate and screen-grid. the 251.6 is capable of giving an outgut of 2.2 W . with a maximum signal input of only 5.3 V . r.m.s.

25L6 Characteristics

Heatter voltage	25.0 V
1rlate voltage	110 max . Y .
Screen-grid voltage	110 max. V.
Control-grid voltage	-8.1
Zero-signal plate cur.	45 ma .
11 ax.-signal plate cur.	4 x mit.
Zero-signal screen-grid cur.	3.5 mia.
Max.-Signal screen-grid cur.	10.5 ma.
Signal input voltage	$5.65 \mathrm{~V} . \mathrm{r} . \mathrm{mm}, \mathrm{s}$
Plate resist. (Approx.)	10.000 ohms
Tramsconductance	8.000 mmhos
Load resistance	2.000 ohms
1)istortion: 'Total harmonic	11.5 per cent
Power output	2.2 W.

2525 Improved Rectifier. One radlo tulue company* has just released an improved type of $25 \mathrm{Z5}$ rectifier tule which reduces to a minimum the possilility of flash-overs, open cathode tabs, slow heating, shorts and filament burnouts. These improvements should remove some of the headaches which dealers and Servicc Men have encountered with this type of tule.
920 Twin Phototube. This new the announced by the RCA Manufacturing Co. is a gaseoustype photoclectric cell containing 2 separate photocells in one glass envelope. It is designed primarily for use with double-soundtrack film in a system of sound reproduction having a high
signal-to-noise ratio. In this system the light on one unit of the 920 varies from zero to maximum in accordance with the positive half-cycles of the signal recorded on one sound track. The light on the other unit varies from zero to maximum with the negative half-cycles recorded on the other sound track. The outputs of the 2 phototube elements are combined to give a full-wave signal current.
1603 Triple-Grid Detector-Amplifier. This tube is designed for preamplifier equipment which is critical as to noise and microphonics. As a pentode, the 1603 is capable of delivering a large A.F. output voltage with relatively low input voltage. As a triode (that is, with the grids tied together) the tube has a high mutual conductance together with a comparatively high amplification factor. The tube is constructed with an internal shield connected to the cathode.

1603 Characteristics

Heater voltage (A.C. or D.C.)
lleater current
As class A amplifier pentode
Plate voltage 100
Screen-grid voltage
(grid No. 2)
100
).C. grid voltage
(grid No. 1) ${ }^{\text {\# }}$
$\cdot 3$

Suppressor (grid No. 3) tied to cathode at socket
Amplification factor 1,185 greater than 1,500
Plate resistance
Mutual conductance 1.0 Greater than 1.5 mcgs .

1,185 $\quad 1.225 \mathrm{mmhos}$
$\begin{array}{lll}\text { Screen.grid current } & 0.5^{2} & 2 \text { ma. }\end{array}$
As class A amplifier triode ${ }^{0.5} \quad 0.5 \cdot \mathrm{ma}$.
Plate voltage
D.C. grid voltage 180

Amplification fretor
250 max. ${ }^{-}$.

Plate resistance
Mutual conductance
Ilate surrent
late curtant -80
D C $\quad 6.5 \mathrm{ma}$. cutoff.

ULTRA HIGH-FREQUENCY OSCILLATOR

The 316A 0.4-Meter Transmitting Tube. The radio amateur and experimenter in ultra-high frequency equipment will be interested in the new W.E. type 316 A tube which provides approxi. mately 7.5 W . output at frequencies up to 750 megacycles (about 0.4-meter).

The tube is a direct-filament triode made without a base, to eliminate the capacity and losses associated with the insulation and parallel prongs at the very high frequencies. For correct oscilla. tion at the upper frequency limit of the tube it is necessary to provide tuning in the filament to ground circuit. The use of adjustable concentric lines of approx. $1 / 4$-wavelength is probably the most satisfactory arrangement. The grid and plate leads should also be connected at node points, if possible.

316A Characteristics

Amplification factor 6.5
Plate resistance 2,700 ohms
Grid-to-plate transconductance.. 2,400 micromhos

Average Direct Interlectrode Capacities

Plate-to-grid
1.6 mmf .

Grid-to-filament 1.2 mmf .
Plate-to-filament 0.8 mmf .

Maximum Ratings

Max. direct plate voltage................... 450 V
Max. direct plate current $\quad 80 \mathrm{ma}$.
Max. direct grid current 12 ma.
Max. plate dissipation 30 W .
Maximum plate voltage may be used at any frequency if maximum plate dissipation is not exceeded.
R.F. Oscillator or Amplifier-Unmodulated

Max. direct plate voltage 450 V .
Max. direct plate current 80 ma .
Max. direct grid current
12 ma .
Nominal power output
at 500 mc . .. 7.5 W . value for the particular tube.

R. F. Oscillator or Amplifier-Plate Modulated

Max. direct plate voltage 400 V .
Max. direct plate current 80 ma.
Max. direct grid current 12 ma.
Nominal carrier nower
at 500 mc . \qquad 6.5 W .

Grid bias or leak should be adjusted to optimum value for the barticular tube.

VARIABLE-MU ACORN PENTODE

The 956 Acorn. A tiny tube of particular interest to the short wave radio man is the new acorn tube just released hy RCA. This tube, known as the 956, is a companion tube to the 954 pentode, having similar heater characteristics and physical size, but having variable-mu characteristics. This variable mu characteristic makes the tube very effective in reducing cross-talk and modulation distortion. The tube may be used as an K.F. and I.F. amplifier, or as a mixer in receivers operating at wavelength as low as 0.7 . meter:

956 Characteristics

Heater Voltage (A. C. or D. C.)	6.3	V.
Heater Current	0.15	A.
Plate Voitage	250 max.	V.
Screen-grid Voltage	100 max.	V .
Control-grid Voltage		
Suppressor-grid	Connected to	Cathode
Plate Current	5.5	ma.
Screen-grid Current	1.8	ma.
Plate Resistance	0.8	
Amplification Factor	1,440	
Mutual Conductance	1,800	ficromhos
Mutual Conductance (At 45 V . bias)	2	Microm
Grid-Plate Capacity (with shield-baffle)	0.007 max.	
Input Capacity	2.7	I.
Output Capacity	3.5	mmi.
NEW NON-DISTO	$\begin{aligned} & \text { TING OSCIL } \\ & \text { UBE } \end{aligned}$	OSCOP

The 34-XH Oscilloscope Tube. By means of several changes in the design and construction of their 3 -in. type $34 . \mathrm{XH}$ tube the Allen B. Dumont Labs. has been able to effect two outstanding changes in the characteristics.

First, the addition of a corrector electrode, tied internally to the gun and changes in the shape of the gun itself combine to eliminate the "edge distortion" prevalent, up to this time, in all $3-\mathrm{in}$.

New tubes appear from time to time, and it is manifestly impossible for any: thing salve a monthly or weekly periodical to keep abreast of current developments.

Rearlers who are interested in this plase of radio should by all means become regular readers of some technical or trade publication which feature this type of information. Ineidentally, R. I). Washhmrn, managing editor of Radio.Craft Magazine, is an anthority on the subject. ant, his artieles. "The Month's New Tubes" appear regulary in that publication.

Trends in tube design lave been marked. from tine to time. Shortly after the 5 -volt tubes made their appeatrace, there was at trend toward reducing filatment current, followed by a trend toward multijle elements and, subseguently, to highly developed special purpuse tubses. Nore recently came the netal tube trend, and a development of this is scen in the oetal-hase glass tubes, with standardized elements and envelopes, which at least one manufactures is producing.

What the next trend will be can he learned only by keeping abreast of engineering work, through reading varions technical radio publications.
tubes. Tlise corrector electrole (a new term in oscilloseopy) is placed at the (rnd of the deflector plates and sorves to step, up the speed of the cathode stream to the speed att the end of the gun, thas eliminating the retarding atetion of the deilectors.

Secomb. the correction of the image has also permitted increasing the sensitivity of the tubse to just twice the sensitivity of previous tyres:

The combination of these two improvements has resulted in a vastly improved tube in the popular 3 -in. size.

0Z4G Full-Wave Gas Filled Rectifier (Ionic-Heated-Cathode Type). The 0Z4G whs develoned primarily for use in vibrator"type " B " supply units for automobile receivers, according to the Raytheon Production Corp. from which the characteristics were obtainerl. This tube lats the typical characteristics of all gaveous rectifiers (oldtimers will remember the RII and $13 A$ rectifiers of this type) ats regards a constant internal voltage drop and ability to hamelle peak eurrents. In common with the older types of ionic-heated gasfilled tules, the $0 Z+6$ has a tendency to generate R.F. noise. This R.F. interference can be eliminated by proper filtering and by connecting the metal shell to the point giving the best shieliling. The shielding and filtering commonly used to climinate vibrator noise will usually be sufficient.

This tube is available hoth in glass and metal types, both liaving octal bises. In the metat type,
the metal shell serves chefly as a container and electrostatic shield for the glass bulb which is required to insulate the contained gas from the grounded shell.

0Z4G Characteristics
J).C. voltage output

300 max. V.
D.C. output current

Ieak plate current
Starting voltage
Voltage drop (dynamic)
niln. ma. 75 max. ma. 200 max. ma. 300 min. V. $24 \mathrm{arg}:$ (1ucak)
5U4G Rectifier Tube. This revtifier. according to a hulletin from Raytheon l'rodnction Corp., has similar characteristics to the glass rectifiertype 373. It is ernimperl with an octal hase though, instead of the older type.
$6 \mathrm{~A} 8,6 \mathrm{~L} 7$ and 6 K 7 Isolantite Grid Caps. Also roccived from Raytheon is news that the 3 types of tubes mentioned here are now fitted with isolantite insulation hetween the metal shell and the grid cap. This reduces R.F. losses at high frequencies, where the insulation resistance of moit insulating matterials falls off badly. The gain in short-wave and the high-frequency bands of all-wave receivers is definitely improved, according to the enginecring renort.

AMPLIFIER

6C8G (Glass) Twin Triode Voltage Amplifier. The triode units of this tube are indepentent of each other as the elements of this triorle are bronght out to separate frongs. Bevigned for service as a voltage amplifier or phasc inverter. The voltage between heater and cathorle shontal he kept as low as possible for they are not directly connected. Both triodes have heen designed to match each other closely making it possible to buikl an inexpensive high-quality pushpull andio output system. The mechanical design is illustrated in Figs.?

Ratings

Heater voltage	(A.C. or [). (.) 6.3 V.
Heater current	(1.3-A).
Max. plate voltage	250 V

Direct Interelectrode Capacities
Trionle I.
Triode R (triode K to
(triote 1. to
cathode)
cathorle)
Grhl-to-plate 2.5
3.4 2.4 mmf .

Input
2.5 nmf .
(3)tintt
. 3.5
3.9 mmf .

Grid-to-grisl
0.1
1.5

Amplifier-Class A-Each Triode

Plate voltage	250	V.
(irid bias	4.5	V.
Amplification factor	is	

Amplification factor
Plate resistance
26.000 ohms

Transconductatnce
1,450 micromhos
Plate current

Fig. 2. Base connections and bulb styles.

Phase Inverter		
Plate supply voltage	250	250 V.
Control.grid bias	-3	-3 V.
Plate current (per plate)	1.7	.
Plate resistor (per plate)	0.05 -	0.1 megohm
(irid resistor (following tubes)	0.1 .	$0.5 \cdot \mathrm{megohm}$
Maximum ontput voltage r.m.s. (G to G)	60	80 V.
Cathode resistor	900	1,500 ohms

RECTIFIER

6W5G (Glass) Rectifier for Car-Radio Sets, This tube is interchangeable with the tyne $6 \times \mathbf{N}$ and $6 \times 5(\mathrm{y}$, where higher output is desired. The tube was designed primarily for service in carradio receivers and may be used in either vibrator type or A.C. operated power supplies.

Full-Wave Rectifier-
 Condenser-or Choke-Input Filter

Heater voltage (A.C. or D.C.) 6.3 V .
Heater current
Max. A.C. voltage ger plate (r.m.s.) 0.9 d . 350 V. Max. D.C. ontrut current 100 ma.
Max. D.C. voltage between heater and cathode

500 V.

TUNING INDICATORS

6G5/6H5 Remote Cutoff Tuning Indicator. This is an inproved type of thming indicator interchangeable with the old 6G5. This tube affords "almost unbelievably better and more uniform illumination" with both high- and low-voltage supplies than its predecessor, states one mamufiacturer. The most noticeable improvement is that it maintains constant current throughout its normal life and las no tendency to "run away"."
$6 T 5$ Annular-Pattern Tuning Indicator. Instead of "opening" like a fan. the "eve" of this new thbe fills the area nnitormly as shown in Fig. 2. This tube has operating conditions similar to those for the 250 V . rating of the type 6 G 5.

The lighted portion covers only a very narrow region it the periphery of the target when no voltage is applied to the control-grid of the tube. When negative voltage is applied to the controlgrid the width of the flnorescent ring increases until it covers practically all of the target. Changes in annular width, or diameter of the shaded section, are more readity detected than ane changes in the shaded angular sector when the type 60.5 is employed.

In actual circuit use the varying negative voltage for controlling the shatow may be obtaincil from some point in the $\mathbb{A} . V^{\prime} . C$. eircuit, thus giving an indication of resonance when the anlighted portion of the target is at a minimim.

Type 6T5 is mounted in a T.9 bulh on at stanuard small 6 -pin base. The tulbe is not designed for 100 -volt operation.

Characteristics

Ileater voltage A.C. or D.C.
6.3 V.
lleater current
0.3-A.

Operating Conditions and Characteristics

leater voltage
6.3 V.

I'late supply voltage
Target supply volt:ge
I'ate current (triode umit)*
250 V .
250 V.
0.24 -ma., max.

Target current
Control-grid voltage (triode (mit) \ddagger 3.0 ma., approx.

Control-grid voltage (trione unit) $\ddagger \ddagger$
Triode plate resistor
0.0 V .
22.0 V .
1.0 Megohm
*With triode grid voltage of zero volts.
\ddagger For minimum illumination of target.
$\ddagger \ddagger$ For maximum illumination of target.

SPECIAL SERVICE

2-RA-6 Mercury Rectifier Charger Bulb. This is the first in at line line of rectifier tubes being prorluced by a well-known manufacturer of electronie devices. The tube. illustrated in Fig. C, is interehangeable with other lunlhs of the same rating, despite the fact that it incorporates many radical develoments.
(Chief among these is the new and clifferent type of filatment, of non-sitgging construction, which has been designed along the lines of those used in inclustrial tubes where a life expectancy of 5.000 to 10.000 hours must he had ; the life of the 2-RN-6 in practical service considerably excects its factory ratting of 2,000 operating hoitrs.

The universal type of cap connection permits the use of a fahmestock clip. Base commection is welted-on. Designed for ase in battery chargers or any other device where rectified alternating current is tesired.

Characteristics

Filument voltage	2 V.
Filament cu:rent	13 A.
Output	6 A.
liverse peak voltage	300 V.

WL-461 Ultra-H.F. Therapy and Radio Oscilla-tor-Amplifier. Some of the main fiekls of application in which this new tulse will he used. due to its unique chatacteristics, are for therapy, radio, and such other purposes as mity redure an ultra-high frequency oscillator and amplifier.

In therapy wark. in particular, it will permit higher power o:atsunt to be olstatined at the shorter wave lengths than has heretofore been conseniently possible. It can be used equally well in ultra-high freduency tadio transmitters, wherever a 3 -element radio frequenty amplifying tube of its chatmeteristics is reguited.

This tube has a plate dissipation of 160 W . and is capable of delivering 400 W , of useful power up to 50 megaryeles.
The simplification of the internal supporting structure has also made it possible to reduce the size of the tube to the point where only a minimun amount of space need be reserved for it.

Ratings

Max. M.C. plate voltage	2.000 V
Max. A.C. slate voltage	2.500 V .
Mas. plate current	250 mil .
1-ibament voltage	5 V
F*ilament current	11.5.1.

AMPLIFIERS

6V6 Unipotential-Cathode Tetrode

 Power Amplifier.The 61.6 and 616 G (the latter is deseribed elsewhere in this chapter) tubes were designed by one company primarily for use in the oupput stage of auto-radio receivers. Jhoth have similar characteristies, the chief advantages being (1) use of the benm principle introduced first in the 6 L 6 and (2) a relatively low heater train of only 450 milliamperes. Its features permit high ontput power to be realized in the attomobiletype radio recciver withont any appreciable increase in the shain from the storage battery. In fact. some mannfacturers of delnxe athto sets are using two $6{ }^{\circ} 6 \mathrm{C}$ tubes in mash-pull in the output stage of their receivers.

The 6V6 is similar to the 6F6 in size (and the 6V6G compares with the 6 FGC and 42 in size and general appentance).

6J5 Detector and Amplifier Triode. Except for its higher transconductance this tube is similar to the type $60: 5$ tube. More detailed data follow. See Fig. 313.

The 6J5 is a new addition to the line of metal receiving tubes. This new tube, a detector-amplifier triode, has an exceptionally high value of transconductance - 2,600 micromhos. The other characteristics of the tube are similar to those of the 6C5. Because of the high transconductance of the 6J5, the tube makes an excellent oscillator for superheterodyne receivers. The high transconductance also gives the tube advantages for use as the frequency-control tube in A.F.C. circuits.

Characteristics

Heater voltage (A.C. or D.C.)	6.3 V.
Heater current	$0.3-\mathrm{A}$.
Direct interelectrode capacities*	
(approx.)-grid-plate grid-cathode plate-cathorle \#With shell connected to cathode.	3.4 mmf.
As Class A' Amplifier	3.4 mmf.
Plate voltage (max.)	
Control-grid voltage	250 V.
Plate current	-8 V.
Plate resistance	9 ma.
Amplification factor	7.700 ohms
Transconductance	20
	$2,600 \mathrm{mmhos}$.

Screen-grid voltage
135 V.
Control-grid bias
-13.5 V.
Transconductance
No-signal plate current
Max.-signal plate current
No-signal screen-grid current
Load resistance
Power output
2nd-harmonic
3rd-harmonic
7,000 mmhos.
58 ma .
60 ma .
3 ma.
2,000 ohms.
3.6 W'

6V6G (glass)
2.5%
9%
Power Amplifier Unipotential-cathode Tetrode put are recommentransiormer or impedance in-resistance-capacity coupling is used the b.C. If sistance in the control-grid circuit must not exceed 0.5 -ineg. with self-hias, or 0.1 -meg. with fixed-bias. Note that the voltage between heater and cathode should be kept as low as possible. A direct connection is recommended. See Fig. 3D.
Heater Characteristics
Ileater current
6.3 V .

Plate voltage (max.)
0.45-A.

Screen-grid voltage (max.) 300 V .
Plate and screen-grisl dissipation (total)
12.5 W .

Fig. 3 Connections for 6 new tubes.

6Y6G Heater-Type Tetrode Power Amplifier. The usual A.C. radio receiver operates with fairly high plate voltages. The A.C.-I.C. receivers operate at considerably lower voltages. The recent introduction of 2 tulbes, the $25 \mathrm{B6G}$ and 25L6, for A.C.D.C. receivers has made possible receivers giving approximately 2 W . out put at about the same cost as the previous A.C.D.C. receivers which gave about $0.9-W$. output.

The 2 W. A.C.-D.C. receivers are thus giving about the same performance as the small A.C. receivers using a 42 -type output tube with about 220 V . available for plate and bias voltages. It would be necessary, using conventional tubes, to increase the cost of the small A.C. receivers considerably to make them give appreciably better performance than the 2 W . output A.C.-D.C. receivers,

The performance of the small A.C. receivers may be improved in economy as well as power output by using an output tube similar to the 25 B 6 G or 25 L 6 at lower voltages and larger currents than would be the case with the 42 -type output tube

The 6Y6G tube is being introduced to fill the need for an output tube which will give even more output at 135 V . on the plate and screengrid than the type 42 with 250 V . on plate and screen-grid. The high mutual conductance of the 6Y6G results in a fairly low input voltage requirement for full power output, and permits some degeneration to be used where desired. See Fig . 3 C.

Characteristics

Heater voltage (A.C. or D.C.)	6.3 V .
Ifeater current	1.25 A .
Blate voltage (max.)	135 V .
Screen-grid voltage (max.)	135 V.

As Class A^{1} Amplifier
Plate voltace
$135{ }^{\circ}$.

Control-grid voltage
Amplification factor
Plate resistance
Mutual conductance
-12.5 V .
218
52,000 ohms
Plate current
4,100
Screen-grid current
45 ma.
Operating Conditions, Class A Amplifier Plate voltage

250 V .
Screen-grid voltage
250 V.
Control-grid voltage
-12.5 V .
Peak signal
12.5 V .

Plate current (no signal) 45 ma .
Plate current (max. signal) 47 ma .
Screen-grid current (no signal) 4.5 ma .
Screen-grid current (max. signal) 6.5 ma.
Load resistance
5.000 ohms

Power output 4.25 W .
2nd-harmonic $\quad 4.5 \%$
3 rd -harmonic $\quad 3.5 \%$
Operating Conditions, Class AB (2 tubes)
Plate voltage $250 \quad 300 \mathrm{~V}$.

Screen-grid voltage $\quad 250 \quad 300 \mathrm{~V}$.
$\begin{array}{lll}\text { Control-grid (see item in text con- } \\ \text { cerning input systems) } & -15 & -20 \mathrm{~V} \text {. }\end{array}$
Peak signal (grid-to-grid) $30 \quad 40 \mathrm{pk} . \mathrm{V}$.
Plate current (no signal) $70 \quad 78$ ma.
Plate current (max. signal) $79 \quad 90$ ma.
Screen-grid current (no signal)
$5 \quad 5 \mathrm{Ma}$.
Screen-grid current (max. signal)
$12 \quad 13.5 \mathrm{ma}$.
H.oad resistance (plate-toplate)
$10.000 \quad 8.000 \mathrm{ohms}$

1938 RADIO REFERENCE ANNUAL

$$
\begin{array}{cc}
8.5 & 13 \mathrm{~W} . \\
3.5 & 3.5 \% \\
4 & 4 \%
\end{array}
$$

Power output
3rd-harmonic
Total harmonic
G5G Low-Plate Voltage Power Output Pentode. This tube is designed especially for operation from a 90 V . " 13 ", supply and will be used mainly in battery receivers, particularly where current limitations are a factor.

Resistance coupling may be employed and the rated output obtained under class A operation. larger power output is available by employing 2 tubes in push-pull service. (See Fig. 3E)

Characteristics

Filament voltage
Filament current
Over-all length (max.)
Diameter (max.)
Bulb
Base
Medium G Type Octal No. 6.

Operating Conditions and Characteristics

Filament voltage
2-V.
Filament current
$0.12-\mathrm{A}$.
Screen-grid voltage
Plate voltage
Control-grid voltage
Plate current
Screen-grid current
Plate resistance
Mutual conductance
Amplification factor
Load resistance
Power output
Total harmonic distortion
25L6G (Glass) Beam Power Tube. This tube has electrical characteristics that are identical to those of its metal counterpart the 25 LG described in the April. 1937, issue of Radio-Craft. However unlike the 25 L 6 which uses beam deflector plates the newer tube incorporates suppressor grids. See Fig. 3F.)

5-METER "BEAM" TRANSMITTING TUBE

The 8075 -meter Transmitting Tube. The beamtype power tule which has raised such a furor in the audio amplifier and radio receiver circles has now invaded the short-wave transmitting field in the form of an R.F. power amplifier tube having ceramic base, top cap for low interelectrode capacity, and improved shielding to minimize the need for neutralization.

This tube, known as the 807 in the 1RCA line has a maximum plate dissipation of 21 W . and high power sensitivity. The latter claracteristic makes it especially suited for use as a crystal oscillator, frequency doubler or buffer amplifier. Two 807 s in class C for $\mathrm{C} . \mathrm{W}$. operation, will Two 807 s in class 50 W . output. The tube can provide more than 0 . output. be driven at the maximum
on frequencies up to 60 mes . (5 meters , approx.).

807 Characteristics

A.F. Power Amplifier and Modulator-Class AB
$\begin{array}{ll}\text { A.C. plate voitage } & 400 \mathrm{max} . \text { V. } \\ \text { D.C. screen-grid voltage } & 300 \mathrm{max} \text { V. }\end{array}$

Max.-signal D.C. plate current 100 max. ma.
Max.-signal D.C. plate input* 40 max. W.
Plate dissipation*
21 max. W.
3.5 max. W*.

Screen-grid dissipation*
*Averaged over any A.F. cycle

R.F. Power Amplifier-Class B Telephony

(Carrier conditions per tube for use with a max. modulation factor of 1.0)
D.C. plate voltage
D.C. screll voltage $\quad 300$ max. V.
D.C. plate current 80 max. ma.
llate input
32 max. W:
Plate dissipation 21 max. W.
Screen-grid dissipation
2 max. W.

Plate-Modulated R.F. Power AmplifierClass C Telephony

(Carrier conditions per tube for use with a max. modulation factor of 1.0)
D.C. plate voltage
D.C. screen-grid voltage
D.C. control-grid voltage
D.C. plate current
D.C. control-grid current Plate input Plate dissipation
Screen-grid dissipation

325 max. V.
250 max. V.
-200 max. V.
83 max. ma.
5 max. ma.
27 max. W.
14 max. W.
2 max. W.

R.F. Power Amplifier and Oscillator-
 Class C Telegraphy

Key-down conditions per tube without modulation**
D.C. plate voltage
D.C. screen-grid voltage
D.C. control-grid voltage
D.C. plate current
D.C. control-grid current

Plate input
Plate dissipation
Screen•grid dissipation
Typical operation:
Heater voltage
D.C. plate voltage
1.). screen-grid voltage
D.C. coutrol-grid voltage

1'eak R.F. grid voltage
1).C. plate current
D.C. screen-grid current
D.C. coutrol-gril
current approx.)
Driving power (approx.)
Power Output (approx.)
*"Modulation essentially negative 25 W . if the positive peak of the A.F. envelope does not exceed 115 per cent of the carrier conditions.
*Ultra-Violet Phototubes; WL-773, WL-774 and WL-767. These "electric eyes" do what no human eye, can do, namely, "see" in the dark! The "trick" lies in peaking the response characteristics of this type of "light"-sensitive cell in the region just beyond the high-frequency limit of human visibility or the ultra-violet range.

Features of the several types: WL-774, tungsten cathode, range of 2,200 to $2,700 \mathrm{~A}$. U., useful in bactericidal field (measuring ultra-violet light used in killing bacteria, preventing mold and in general food preservation); WL-767 titanium cathole, range of 2,700 to $3,200 \mathrm{~A}$. U., useful in measuring erythema (sunburn) and vitamin 1 irradiation (of milk, for instance); WL.773, thoritram cathode, range of 2,700 to $3,600 \mathrm{~A} . \mathrm{U}^{\prime}$, useful in measuring vitamin A and in making general ultra-violet measurements.

One of the distinctive features of these photo.
tubes is that they may be used without recourse to shielding the tube from radiations in the visible portion of the spectrum, hence they may be used in direct sunlight, with the knowledge that all of the photoelectric current change is due solely to radiations in the particular ultra violet portion of the spectrum to which the phototube is sensitive.
The threshold response value is determined by the particular metal used for the cathode and the cut-off value is determined by the type of glass

Infra-Red, High-Vacuum Type Cartridge-Base Photocell; Type 922. The new double-ended construction (as in the 921) eliminates the conventional base and provides a long insulating path between electrodes. The terminals at either end are in the form of metallic buttons, so designed as to permit inserting each phototube easily and positively in a clip mounting. The features of this construction are lower cont, how interelectrode capacity (for the $922,0.6-\mathrm{mmf}$.), and convenience in circuit arrangement.

Fig. 4, Underside connections of new tubes.
tused for the bulb. These eharacteristics render it unnecessary to use frequency filters.

Optimum response from these tubes requires high input impedance in the amplifier; an electro-meter-tylie tube is ideal.

Infra-Red, Gas-Type Prong-Base Photocell: Type 923. Beciluse of the high sensitivity of this type cell, which can "sec" radiations in the infrated region quite invinible to the naked eye. it is particularly useful in applications where incandescent lamps are employed as light sources. Base comnections are given in Fig. 4.

Cathode is semi-cylindrical. caesium-coatted; anode-supply voltage (max.), 90 ; anode current 20 microamperes; sensitivity, 100 micronmperes/ lumen; cathode window arcet, 0.43 -sq. in. Lould re-i-tance. not over 10 megs. This tube is similar Nectrically and mechanically to the type 918 , hat has a shorter overall length.

Infra-Red. Gas-Type Cartridge-Base Photocell; Type 921. Sulstantially identical characterinties to the type 923 , but with cartridge type base like the type 922 photocell. Noo, the 921 has : window area of only $0.38 \cdot \mathrm{si}$. in. ; input capricity is 1.1 mmf . Load resistance, not over 10 meg . ase connections in Fig. 4.

Characteristics: cathorle. cassium-coated and semi-cylindrical; window. 038-sq-in. Anotesupily voltage, 250 (max.) ; anode current. 30 microamperes (max.) : load resistance, 1 mick.; sensitivity, 20 microamperes /lumen. , J, ight response maty be male matically linear for light inputs up to 1 lumen with proper adjustment oi supply voltage and load resistance. Sce Fig. + fur bite comections.

AUDIO POWER TUBE

Beam Power Tube for A.C.-D.C. Radio Sets; Type 6Y6G. The new tulie is intended for ure in the output stige of A.C. receivers. particnarly those in which the plate voltage for the antput stage is relatively low. With 1.35 V . on the plate and screen-grid it is capable of giveng ath output of 3.6 W . with a maximum signal in. but of 13.5 V . Under these conditions the total dintortion is ahout 9.5%. Additional character. inties follow.
Heater voltage, 6.3 V .; current, 1.25 A.
Plate voltage, 135. thas. ; current (zero-ignti.l), 58 man., and (mitx. sinal), 60 ma .
Screengrid voltage. $1,35 \mathrm{~V}$. (max.) ; curran (yero-signal), 3 mit.
Contiol-gricl voltage. 13.5 V .
Tramsconductance, 7.000 mmlos.
Loall resistance, 2.100 ohms.
Uiatortion. 2.5% 2nd harmonic and 90 . 3 rd
Power output, 3.6 W .
lave connection: a; pear in Fig. 4.

TELEVISION RECEIVING TUBE

Cathode-Ray Kinescope (Television Receiving Tube), 5 -in. Size; Electromagnetic Deflection; Type 1801. Fior the first tinne, experimenters now have available a commercial-built (as compared to the school-buith type now being de scribed in Radio-Craft) cathode-ray tube specifically designed for television-reception experiments! The screen is of modimm-persistence type the fluorescence color is yellow (phosphor No. 3) ; ntax. sereen diameter, $51 / 16$ ins. Base con. nections are given in Fig. 4. Xdditional characteristics follow:

Ileater voltage, 2.5 ; current, 2.1 A.
Direct interelectrode capacity (control-grid to all other electrotes), 12 (max.) mint.
High-voltage electrode (anode No. 2) $3,000 \mathrm{~V}$. (max.)
Focusing electrode (anode No. 1), 1,000 V', (max.)
Control electrode (grid), volnage never positive; grid voltage for current cut-off, -35 V . (approx.)
Fluorescent-screcn input power/su.cm.. 10 milliwatts (mix.).
Typical operation: heater, 2.5 l. ; anode No. 2. 3.000 V : amode No. I. 325 V .; control-gris boltage adjusted to serve suitable luminons spot; control-grid signal.swing voltage, taking peak-to peak value for optimm contrast, 15 V . (Data courtesy RCA Radiotron),

Cathode-Ray Kinescope (Television Receiving Tube), $9-\mathrm{in}$. Size; Electromagnetic Deflection; Type 1800 . Like the type 1801 kinescope this morlel hats a nedinm-jersistence screen; and phosphor No. 3 (yellow). Base connections are given in Fig. 4; and characteristic data follow:

Heater, 2.5 V.; 2.1 A.
1)iret interclectrode capacity (grid No, 1 to all other electrodes), 12 mmf. (max.).
lligh-voltage electrode (anode No. 2), 7,000 V. (inax.).
Focnsing electrode (inode No. 1), 2,000 V. (max.).
Aceolerating electrode (grix No. 2), 250 V . (max.).
(ontrol electrode (grid No. 1). never pos.
Ciricl No. 1 jor current cut-off, -75 V . (appox.).
Fluorescent-screen imput power/su.em., 10 milliwatts (max.).
Typical operating conditions are avalable for anode No, 2 voltages of 3.000 to 4.500 and 6.000 . but sinee the average experimenter probably will get the $9-\mathrm{in}$. size tabe only with the expectittion of getting the miximum possible brilliance in the image, only figures for one voltage will be given here. Heater, 2.5 V.; anorle No. 2,

Fig. 5, Bridge circuit for vacuum-test tube.

Fig. 6, Circuit for anti-surge tube.

6,000 V.; anode No. 1. 1,250 V.; grid No. 2, 250 V.; grid No. 1, adjusted to give suitable luminous spot; grid No. 1 signal voltage (peak-to-peak value for optimum contrast), 25.
(I)ata courtesy RCA Radiotron).

SPECIAL-PURPOSE TUBES

*Superv'sory Control Protector Tube; Type KX642. Wherever protection against overload is desired, ats ior instance in radio transmitting stations for switching operations and wherever remote meter readings are taken, as well as in radio stations as a protection to condensers, transformers. and testing equipment, the "supervisory control tube" may bc commected across the line and the 3 rd connection grounded. as shown in Fig. 6 to sorve as protectinn to equipment and operator in the event of surges exceeding $300^{\circ} \mathrm{V}$.

The device consist of 3 graphite electrodes mounted in a gas filled loulb. The tube may be ased in place of the more fam:liat overload relays whieh remuire re-setting. The protector tube will stand considerable overload, shanting the overload to ground, withont being damaged.

The canneity of this protector, ats the characteristic data indicate, is 50 A . for 2 seconds. Inder these conditions the lath, has a life of many severe clischarges without change in eharacteristics. It is recommented that a resistor of (00 ohms be placed in series with the tube to 1. revent possible short-circhit of the supply soure through the thbe when discharging any disturb ance; also. fuse the line with 10 A . fuses as shown in the diagram. (haracte-istics follow:

Ireakdown voltage, 300 to 500 V.
Max. discharge ($2-\mathrm{sec}$, periods), 50 A ; (10min. period-), 7 A.
Typical operating line voltage. A.C., r.m.s., 115 V.
Average arc irop, 20 to 30 V'.. I).C.
Max. short-circuit current at which thbe will clear at first current zero, at $230 \mathrm{~V}, 10 \mathrm{~A}$; at $115 \mathrm{~V} ., 15 \mathrm{~N}$.

[^1]The "pressure-indicating tube" consists essentially of a long platinum ribloon suitably mounted inside of a glass bulb. The tube is comnected by means of the usual tubing to the vacuum system in which measurements are desired and changes in the heat conductivity between the filament wire and the bulb to the atmosphere can be used to obtain readings indicating the amount of gas remaining in the exhaust system,

One circuit in which this tube, together with a second, may be used to particular advantage is shown in Fig. 5. The supply voltage (or cur. rent) must be kept absolutely constant. Meter M is a 0.10 ma . unit. Item H is a double-stack dry-disc rectifier; meter V monitors the output to obtain about 12 V . Meter M may be calibrated to read atmospheric pressure directly (for instance, down to 1 micron).

The principle of operation of this titue is interesting. At atmospheric pressure there is a definite rate of cooling of the heated filament by the particles of air which carry the heat from filament to the hulh. As the amount of air in the tuhe is reduced the rate of conduction of heat from the filament to the bulb decreases, resulting in ans increase in filament temperature. Hence the resistance of the filament increases, causing the current in the filament circuit to decrease. The increase in resistance continues as the vacuum conditions are improved or as the air pressure and consequently the number of molecules of air are decreased. The same phenomenon occurs if the tube is used in measuring pressure conditions of gases other than air.

Base connections are shown in Fig. 4; the operating current range is approx. 0 to $0.3-\Lambda$.

ULTRA-SHORTWAVE TUBE

U.-H.F. High-Mu and High-Vacuum Transmitting triode; R.F. Amplifier, Oscillator and Class B Modulator; Type 833. A minimum
amount of insulation within the tube, low in. ternal lead inductances, and a post terminal construction which makes bases unnecessary, are features that enable the new type 833 tube to develop high power on 30 to 100 megacycles (10 meters to 3 meters).
As a result of its construction, the 833 provides high plate efficiency at moderate voltages. For example, it is capable of giving in broadcast service a carrier output of 635 W . at $2,500 \mathrm{~V}$. on the plate, and with this carrier output, can be modulated 100%. In other services, such as police transmitters, diathermy apparatus, aviation transmitters, and experimental ultra-high quency transmitters (for experiments with radiocontrolled equipment. ete.), the 833 also provides excellent efficiency.

Terminal connections are shown in Fig. 4 .

RECTIFIER TUBE

*Mercury-Vapor Rectifier; Type 2-RA-15. This heary-rluty rectifier is designed to deliver very high values of polsating direct current; it is thus suitable on a bench " A " supply for testing radio sets without resorting to a storage battery for filament D.C. It also may be used to supply D.C. for energizing field coils in high-grade P.A. systems. Tube life is about 2,000 operating hours. Characteristics follow:

Filament voltage, 2.5 ; current, 16 A ; heating time, 2 to 3 mins.
D.C. average output, 15 A ; crest, 45 A .

Are drop, 5 to 8 V .
Pick-up voltage, 8 to 11 V .
D.C. output voltage, 60 (max.) ; D.C. crest inverse voltage, 200 V . (max.).
*Names of manufacturers will be supplied upon receipt of a stamped and self-addressed envelope

CHAPTER 6

Useful Circuit Ideas

 From Radio Craft's Readers
AN IMPROVED DIODE DETECTION cir-

 cuit that also provides interstation noise suppres sion. I have tried out many of the circuits you have presented from time to time for modernizing old receivers. The diode detectors ($55,2 A 6,2 \mathrm{~B} 7$) have helped very much, and make it easy to add automatic volume control; but they have two main faults-attenuation of low frequencies, and poor quality at low volume.The circuit I submit (Fig. 1) overcomes these faults, and provides additional suppression of noise between stations. I have found the 2 BJ . with screen-grid tied to plate, superior to the other two. None of them are good amplifiers when the bias becomes less than 1 V . By increasing self-bias $\mathrm{R} 1 \cdot \mathrm{Cl}$ in diagram) another volt, this fault is overcome. As they will not detect or amplify signals below 1 V ., the ordinary noise is suppressed; though without loss of sensitivity, ns lower signals would not be heard above the nois level.

Attenuation of low notes at low volume is caused by the low impedance in the control-grid circuit of the amplifier section of the tuhe. This is overcome, in the better modern receivers, by the use of an "L" pad as volume control ; but it is done with less trouble and expense, almost as well. by putting the 01 -meg. resistor (K) in diagram) between the control-grid and the arm of the volume control. The lead to the controlgrid cap should be shielded, and shield grounded : this will also by-pass high frequencies that may get throngh.

Thomas HI. Jasper.
AN OSCILLATOR FOR TESTING LOUD. SPEAKERS. The cost of atn A.F. oscillator, for checking speaker rattles, is saved by this method. ipplied to a superheterodyne with a service R.F. oscillator, which is cut into the cathode-return of the 1st I.F. tube, as shown in Fig. 2. The oscillator is tuned to approximately the I.F.. and then varied to give a beat note of any desired pitch. For instance, if the $1 . \mathrm{F}$, is 175 kc ., the service oscillator at 174 kc . will give a $1.000-\mathrm{cycle}$ andio note. The I.F. transformers should first be lined ur.

Charles Forsch.
OUTPUT METER FROM TESTER. The meter in your tube tester may be used as the output indicator of a set, with the simple add. tion of a type 58 tube. Simply place the tube in the socket, and connect to its control-grid cap the set which is to be balanced, as shown in F'ig. 3. Reduce the bias. and adjust the other element controls for maximum swing. The meter, which is protected from overload, will read down wards for maximum swing.

Walter L. Shearman,
FULL-WAVE RECTIFICATION WITHOUT A POWER TRANSFORMER, llere is a full-wave rectifier for supplying " B " current to A.C.-D.C. sets, energizing speaker fields, and fo rsupplying high volage to test apmaratus, etc. See Fig. 4.

Becatuse of the full-wave action, less filtering is restuired than with half-wave circuits. Also. the voltage is slightly higher and the maximan current drain is much greater than with equivalent half-wase circuits.

If the $25 Z 6$ metal tubes are used it can be made very comnact.

Loren Svobida,

Fig. 1, Improved diode detector.

Fig. 2, For testing speakers.

Fig. 3, Output meter.

Fig. 4, Full wave power-supply.

Fig. 5.

Fig. 6, Audio tester.

Fig. 7, Line voltage booster.

AN A.C.-D.C. "B" SUPPLY USING FILA-MENT-TYPE TUBE AS RECTIFIER. "Necessity is the mother of invention." A small amount of .90 V . "B" wats neeterl. An inventory of the available junk box showed no transformers, not even for flaments. The accompanying diagram shows the exact "B" eliminator that was rigged up. An 01A, 71A. or similar talie that draws if filament current would give more ontput. The less said about the efficiency of this circuit the better, but it is simple and served the purpose. See Fig. 5.

I have never seen a similar hook-up using a filament-type tube.

Oliver II. Smith

TESTING AUDIO AMPLIFIER STAGES WITH A.C. LINE HUM. The A.C. line hum may be used as a quick and convenient method of determining whether the andio amplifier stages of a receiver are operating. Such hum is applied to the various points in the andio circuit through a condenser and test lead as shown in Fig. 6. The prong of the A.C. plug to which the lead is conneeted must be placed in the "hot" or ungrounded sisle of the service outlet.

With the receiver turned on, the terminal of the test lead is touched to the plate of tube No. 1, "13 plus" of tube N゚O. 1, the grids of tubes No. 2 and 3 . or "C minus"; if all parts of circuits included are operating correctly a hum or buzzing sotund will be heard in the speaker. This hum should le lotrler, due to amplification, at the pate of tube No. I than at points on other tubes.

> Joward J. Surbey.

LINE-BOOSTER TRANSFORMER, Such a scheme is shown in Fig. 7. The transformer T shonld have a rating in watts equal to, or greater than, the appliance to which it is connected. The trinsiformer should have a $110 . \mathrm{V}$. primary and a secondary tapped in $5 \cdot \mathrm{~V}$. stepis. The secondary is comnected in series withe the line and the transformer of the appliance. The secondiary must be comected "series aiding" or in other words in phase with the other transformer.

Switch Sw.l is the on-off control for the booster. When turned to the left it cuts in the booster and in the righthand position it removes the booster from the line circuit. When the booster is being used the A.C. voltmeter M. should always be in the circuit to prevent application of excessive voltage. Switch Sw. 2 controls the atmount of booster voltage added to the prinary circuit of the radio set transformer.
W. T. M oore

CHAPTER 7 HANDY INDEX Radio-Craft 1937

Page

January 1937
394 New Iligh-Intensity Cathode-Kiy Tube Ef= fects Television Thentre
395 New Tubes for the New Year-J. H. Circen 396 Cridless vs. (irid Fabes-l'art II-1lenri 1\%. 1)ilpay yrat
398 How to Wake the KADIO.CRAFT 1937 'Television Recciver-l'art I
400 I Simplified Converter for Short-Wave Beginners Part 1 Raymond P. Adams Sun-Sprots and Short-Wave Ridlo Fade-Onts R. F- Richard-on

W'S I'olice-Radio "Noise Detectives"- \mathbf{A}. II. von Struve

403 Llow to Get "Long IDistance" on Your AllWave Set-M. Harvey (iermvanck
404 Modern Short-Wiave Diathermy-Part I I.eon C. Bunkin
looking thead in the Radio Ficld--I'art II I R. 1). Washburne
$\$ 06$ Misild This 12- to 500 . Neter "Bandswitel 5 " - Ciny Stokely

6 Cnele Sam's War Against "lhootleg" "Trans-nitters-John 13. Reynolds
407 Naking a Radio-Controlled Nodel "Sara-toga"-I Part II-George C. Witzgerrell
New "Current-Saver" Circuit for 18-Tube All-Wave Set-Charles Sloan Experiments with a "lli-Fi" Amplifier-Part 1I-Arthur H. I ynch
410 Build This Beat Oscillator for DX Reception and Code-C. P. Mason
410 Masic Oscillator Circuits You Should Know Basic Oscilator Circ
412 A New Transformer Development-J. B. Carter
413 An Fasily-Buit Condenser Analyzer for the Servicing Beginner-Alfred W. Bulkley
413 New Developments in Cathode-Ray Lquip-ment-part 11-Garland W. Archer
RJDIO SFRIICE HATA SHEETS:
+16 Yos. 186 and 187 Whilco Nodel '37.116 (Shadowmeter) and 122 (Dial Tuning)
420 No. 188 -RCA.Victor Models 9 T and 9 K 2 , 5-Band 9-Tube Superheterodyne

Page

February, 1937
462
Features in Radio Sets for 1937
464 The !)ynamic Londspeaker "(ioes Head. phone"-C. 1'. Mason
$465-N \mathrm{BC}-\mathrm{RC} A$ Television "On the Air"!
466 How to Make the RADIO.CCRN'T 1937 Television Receiver- P'art II
468 "Precision" Controls in a $16-1$ nhe 1937 DX Radio Set-Eli Martin
468 A Tube Tester that "Talks"-S. M. Marper
469 Modern Trains are Kadio-Equipled-J. F. Gonld
470 Make This Midget Servicing (Iscilloscope-J . 13. Carter

471 How to Add "V"ariable-Selectivity" to Su-perhets--W. J. Vette
471 Mixer Circuits You Should Know- Alfred A. Ghamadi

474 A New 60.W. Peam Amplifier--Mc.Murdo Silver
474 Ratlio Sets for Expurt and Narine UseNilton 13 . Slerper
475 Modern Short Wave Hiathermy-Part II1.con C. Bunkin

476 The New $60 \cdot$ W'att "F.V.F.B." Beam Power Amplifier-A. C. Shaney
477 A Simplified Converter for the Short-W Wee Beginner-Part II-Raymond P. Adams
RADIO SERRVICE DATA SHEETS
480 Nos. 191 and 192--Grmow Models 1291 and 1297 (Chassis 12 B and 12 W)
484 No. 193 -Sparton Models $517,517 \mathrm{~B}, 517 \mathrm{~W}$, $517 \times$, 557 and 567 Console); Emerson

Models II-130, H.137 (Chassis Model H)

Page

March
527 How to Make a "Junior" Oscilloscope-William Vijller
533 The ABC of A.F.C--C. P. Mason
534 Direct-Compling in a 30-W, Beam-Tube An-plifier!-- Part I-A. C. Slaney
534 The Capacity Meter as a Servicing AidO. J. Morelock, Jr.

536 Interference-Radio's "Old Man of the Sca"" -Frank 1. Carter
537 Ilow to I se V.-T. Voltmeters in Radio and P.A. Servicing Part I-Kendall Clough

537 A 5-Band 11-Tube Rack-and-Panel Receiver -J. 1. McCabe
538 How to Wake the R.IDIO-CR.IF'T Set Amalyzer-Part 11
539 Wike This Pocket-Size Multi-Test U゙nitMilton Rciner
543 The Much-Abused Ballasts for A.C.-D.C. kadio keceivers-Samuel Ruttenberg
RADIO SERVICE NATA SHEETS
544 No. 192-lihlco Morlel 37.604
545 No. 193--Imerican Bosch Model 640 No. 194 -Delco Models R. 3208 (table) and 123209
Page
April
595 Make the RADIO.CRAF゙T Midget Oscillo. scope-l'art I
601 Direct-Coupling in a $30-W$. Berm-Tube Am-plifier!-Part II-A. C. Shaney
601 How to Use V.-T. Voltmeter in Kadio and P.A. Servicing-Part II-Kendall Clough

603 Improvements in the " 12 .Tube $\mathrm{Hi}-\mathrm{Fi}$ Broadcast Receiver"-M. II, Gernsback
604 Making the Ratio Kaleidochrome-Color-Tuner- 'rone Color Adapter-Charles Sicuranza
605 Make "This 1-Tule "Home Broadeanter"-1). L. Warner

605 Ilere Is a General-Purpose Hi-Fi P.A. Am-plifier-Mc.Murdo Silver
Practical Resistance and Capacity Decade Hoxes-William II. Fritz
RAD)IO SERVICE HATA SHEETS:
608 No. 195 -lhilco Nodel $37-620,530 \mathrm{kc}$. to 7.35 mes., 6 tube A.C. Superhet

609 io. 196-Emerson Models 1.117, 1.122. L133, L135, L141, and L150 (Chassis Model L)
612 No. $197-\mathrm{RCA}$. Victor Models $81 \mathrm{~B}^{\circ} \mathrm{T}, 8 \mathrm{BT} 6$, 81 BK , and 8 BK 6
Page
May
656 How to Make an Infinite-Baffle IIfigh-Ficlelity Speaker System-Eli M. Lurie
659 A Stahilized Feedback 6.W. 251.6 A.C.-D.C. Anplifier-l'art I-TRaloh Kenyon
661 A $60 . \mathrm{W}$. Push-Pull Parallel Team Ampli-fier-Jeromse H. Kleker
665 Introducing- A (athode-Drive IIigh-Fidelity $32-W$. Beam Amplifier-I'art $1-A . C$. Shaney
666 Wake the RADIO-CRAFT Mitget Oseillo-scope-loart 11
667 Servicing I'N, with a Mirlget OseilloscopeJ. P. Kennedy

667 Make the "Long Arm"-. 1 Remote Set Control-Clifford E. Denton
RAJIO SERVICE DATA SHEETS:
672 No. 198-1Philco Model 37.84, Code 122; Whilco Model 84-13
1,73 No. 199 - Pilot 304 (INomestic) and 305 (Export)
Page
June
$7 \geq 0$ Car-Radio Sets for 19.3
T2, Introducing $-d$ (athorle Drive IIGh-Fidelity 32-W. Bearn Amplifier-Part II - . C. Shaney

An Electromechanical Oscilloscope Louis J． Fohr．Jr．

HEFTS ：
738 No．200 Silvertone Models 4488 and 4588 （Chassis No． 101412 ）and 4488 A and 4588 A （Chassis No．101412i）
739 No．201－（Continuation of Data Sheet No 200）

July

16 I Universal－Service Tester Speaker－J Abrams

0
Characterist
7 A combination V．RT．and Peak Voltmeter S．Minsker
27 A 20.000 Olims／Volt Analyzer Kit—II．N Beitman
R，IFIO SERVICE D．ITA SHEFTS：
30 No．202 Stromberg－Carlson No． 127 A．C． D．C．
31 No． 203 General Electric Model E－51 Re． ceiver
34 No． 204 Crosley Model C． 510 （Chassis No． 506）
35 No． 205 Chrysler－！hilco＂Custom－Built＂ 1937 Car－Radio Set
36 Direct－Coupling in a $30 \cdot \mathrm{~W}$ ．Beam Tube －Implifier I＇art II I A．C．Shamey

Page

August

79 New Oscilloscopes I＇se 2－In．C．－R．Tube－ Samuel C．Dilhourne
79 Keeping Voltage Constant－Harry F．Dart
83 The Protection Kincscope Makes Its Debut
84 Servicing a Student Television Set－lp J．J．Doyle स J．P．Kennedy
How to Make a 2 Thbe Carsict Interphone Arthur Rlumenfeld
90 How to－Xht a $2 \cdot I n$ ．C．－R．Tulse to the R．DD］O．C＇R．AFT Miclget Oscilloscope
94 The Potentioncter Volimeter A New Ser－ vice Tool（i．V．Morris \＆Bradley Thomp－ son
94 The Ielta－T Pad－Inexpensive P．A．Con trol－W゙m．H．Fritz
RAI）IO SERVICF DMTA SHEETS：
96 No． 206 Ford－l’hilco Cat－Radio Models F゙ $14+0$ and $\mathrm{F}-14+3$
98 No． 207 lloward Model 13.5 （Schaeffer Ratio－Click．Pen lesk Set）；Remler Model 46＂Scoltie＂Radio Receiver No． 208 －Ceneral Electric

Atuto－Radio Models FiA－60 and FSA．61
100 Voltage－Doubling Circuits－Charles Colen－ ［atul

September

138 Ratlio and I＇．．for Touring Cyclists
138 ＂Mutton Tuning＂Is Newest Convenience
144 The ABC of Electrolytic Condensers－I＇aul NcKnight Deeley
144 This．＂Power Level＂，Checker Makes Dv－ namic Tube Tests 11．Harrison
147 The＂H＂Pad Offers Constant Impedance to the J＇ower Soures II．II．Fritz
151 Application of Feedhack to a Beam Power －Implifier J．B．Nichols．
151 An inexpensive Dual Recording and P．A． System M．N．Beitman
154 How to Make an N．C．－D．C．Interphone I＇s． ing Only 1 Tube．．Irthur Blumenfeld
158 Compensation of Amplifier Response for Local Seeds－S．Ruttenberg

159 A 120．Watt＂Cathode－Drive＂Hi．Fi Ampli－ fier－A ．C．Shaney
RADIO SERVICE DATA SHEETS
162 －Nos． 209 and 210－Sentinal Erla Models $76-A$ and $1 C$
166 No． 211 Dictograpl A．C．D．C．＂Silent Ra＂ dio＂Model 91134 Series

Page

－
201 New＂Resolution Tester＂for Cathode•Ray Tubes
New Set Tester Features Low Ohm Scale－ B．O．Burlingame
206 Importance of Modern Test Exuipment－ Glenn H ．Browning
Ituild This＂Optimum－Test＂Tuhe Checker Milton J．Reiner
209 Business－Like＂Silent＂Servicing J．P ． Kennedy
212 How Dependable Are Your Meter Readings？ －Part I－A．A ．Ghirardi
214 How to Make a Class A1 Push．Pull Nega－ tive－Feedback $60-1{ }^{\prime}$ ．Amplificr－lValter J ． Bronson
RAIIO SERVICE DATA SHEET
224 No． 212 Crosley Nodel $1-157$（Fiver Roa－ mio）Auto Radic
225 Build This＂Irtermittent Open＂Condenser Tester－Joseph Mosio
225 New Instrument Speeds Free－Point Testing G．II．Koch
226 Correct Platyack of Spot Recordings－Part I－Ralph L．Power
Page

November

265 Recent Applications of the＂Electric Eye．＂ 1＇art J－バ，（iuenter
＂Snow Static＂Being Reaten by＂Flying Inithoratory＂－Part［－－11．M．Hucke
How to Kuild the＂－\larmolock＂Wall－Radio Set－Par：I－N．H．Lessent
273 Firequency＂Wobblers＂for Service Oscilla－ tors－Edward Lovick，Jr．
274 llow to Make the RADIO－CRAFT Super－ Deluxe 30－Tube set Part IIIA，I，F．Chan－ nels and Automatic Control（iicuits
276 26．WV．Amplifier．with Dual Power Supply， for Electionecring Leonard Werner
Build This Crystal－Speaker 1－Tube Battury Interphone WV．II．Maliord
283 How to Conduct a Sound－on－Film Recording Studio Firt IA－1．Queen
284 Correct playlack for Spot Recordings F＇art $11-$ Ralph 1．Power
287 A．F．I Degeneration Now I＇sed in Modern Ritlio Sets R．（）．1allin
RADIO SERIICE DAT．SIIEFTS
290 Fairbanks－Morse Chassis No．12A（Sales Morlel 12－．\．C． 6 ）
291 Jitto（continuation）
294 Siromlerg•Carlson Nos． 230 and 231 Series
December
330 Short．Wave Radio Lands Army Plane With－
ont Human A id！－Capi＇s C．J．Crone and G．V．Iloll man
334 How to Nake the RADIO－CRAFT Super－ DeLuxe 30－Tube Set Part lllib．I．F．Chan－ nels and Automatic Control Circuits
335 Television Students Letarn by Mikking Cith－ ode－Ray Pubes－Part II U．A．Sanabria
335 New Console Utilizes＂Bass Reflex＂－Lewis Winner
336 Beginners！－Build This＂Tiny Tim＂ 4. Tube Set Raymond I＇．Adams
340 How Ineperdable Are Vour Meter Readings？ －Part 111 Alfred A．Ghirardi
341 New 20 Tulbe Set Introduces I istortionless －F．Fxpanaion－I＇anl P．Smith
344 Itsw to Conduct a Sound－on－Jilm Record－ ing Studio Part 1／3 1．Queen．
346 Introducing－＂Audio－Spectrum Control＂－- － （．Shaney
349 Recent Applications of the＂Electric Eye＂－ Part II K．Guenter
351 How to Build the＂．Harmclock＂Wall－Rad：o Set－Part II－N．II．Lessem
RADIO SERVICE DATA SHEETS：
354 No． 217 Srarton Models 1068 and 1068ホ
355 No．218－1）itto（continuation）

[^0]: 1—Solar patlding condenser, 120 to 330 mmf . (1 ;
 1 -Solar fixed nica condenser, 001 mf . C 2 ;
 2-Ihone tir'-jacks, J;
 1-mounted crystal, C ;
 2-small binding posts, ANT, Gnd;
 Wire and tubing for unit L;

[^1]: *Pressure-Indicating Tube; Type WL-762. Experimenters who are already dabliling in vacuumthle work, or who plath to take up the study either in a sclool lab, or at home, will be inferested to know about the means of ohtaining indications of changes in atmosphoric pressure electronically.

