RCA TUBE HANDBOOK HB-3

GENERAL SECTION

Theinformation in this Scetion, in general, applies to all classes of RCA tubes. It includes such material as the Table of Contents for all Seetions; Index of Tube Types arranged in numerical-alphabeticalnumerieal sequence; list of preferred types; list of not-recommended types; interchangeability list; discussion of ratings; outlines; cap and base drawings; as well as other general information of interest to the equipment designer.

For further Technical Information, write to Commercial Engineering, Tube Division, Radio Corporalion of America, Harrison, N. J.

RCA Electron Tube Handbook HB-3

This Handbook of data on RCA electron tubes has been compiled to meet the requirements of electronicequipment design engineers primarıly but will prove helpful to anyone having need for technical information which can be kept up to date. Its convenient loose-leaf form permits the revision of data on existing types and the addition of data on new types as they are made available. The material is arranged in Sections divided by tabbed separators to facilitate quick reference.

In the event of change of address or transfer of ounership, notification should be forwarded promptly to:

Commercial Engineering, Code HB Electron Tube Division Radio Corporation of America Harrison, New Jersey (U.S.A.)

To facilitate identification in our records, and thereby permit the change to be effected promptly so that service will not be interrupted, be sure to include the Subscription-Registration Number.

The Subscription-Registration Number of your Handbook set is:

No 15577

Tradernark(s) Registered
(a) Marca(s) Regisirada(s)

Printed in U.S.A.

CHANGE OF ADDRESS FORM

Service-Mailing Subscription

SUBSC.RIPTIONREGISTRATION NUMBER ${ }^{\bullet}$

N_{o}.

Imprinted on preceding PREFACE page.

NAME
(Please Print or Type)

NEW ADDRESS

OLD ADDRESS

Return this sheet to:
Commercial Engineering RAIIIO CORPORATION OF AMERICA Harrison, New Jersey (U.S.A.)

Table of Contents

Sheets in the RCA Electron Tube Handbook are arranged in the Table of Contents in order of appearance in each section. The Index of Types, which follows the Table of Contents, lists type numbers in numerical-alphabeticalnumerical sequence.

The Table of Contents and Index of Types may be used to determine:
(1) location of individual sheets
(2) completeness of Handbook
(3) arrangement of Handbook sheets

Reference is to front of sheet only unless otherwise indicated. Date appearing on sheet is identified by mon th and year only (e.g., 4-71).

Preface
Change of Address Form, 11.69
Handbook Binder Order Form (On back of Change of Address Form)

general section

Separator "GENERAL SECTION", 2-57
Table of Contents 1 to 4, 4-71
Index of Types 1 to 14, 4-7|
Rating Systems for Electron Devices, 4-59
Tube Ratings 1 to 8, 6-43
Types of Cathodes \mid to 4, 6-43
Conversion Factors, 4-56
Outlines-Glass Tubes:

> Subminiature-Flexible-Lead Types, Outlines 1, 4-58
> Small-Button Sub-Minar 8-Pin Base
> Types (Om back of Outlines 1)
> Acorn-Radial 5-Pin Base Type, Out lines 2, 5-55
> 5-Pin Base Type with End Terminals
> (On back of Outlines 2)
> 7-Pin Base Type, Outlines 3, 5-55

Table of Contents

GENERAL SECTION (Cont'd)

Outlines-Glass Tubes:
Acorn Types (On back of Outlines 3)
Miniature-Miniature 7 -Pin Base Types, Outlines 4, 10-66
Noval 9-Pin Base Types (Ón back of Outlines 4)
Duodecar-12-Pin Base Types with T9 Bulbs, Outlines 4B, 4-6.
 12-Pin Base Types with T12 Bulb (On back of Outlines 4B)
Novar-9-Pin Base Types with T9 \& T12 Bulb, Outlines 4C, 10-64
Glass Octal-Octal Base Typeswith T9 Bulbs,
Outlines 5, 5-55
Octal Base Types with Tl2 Bulbs,
Outlines 6, 5-55
Octal Base Types with ST Bulbs (On back of Outlines 6)
Lock-In-lock In 8-Pin Base Types, Outlines
7, 5-55
Small 4-, 5-, 6-, and 7-Pin Base Types
(On back of Outlines 7)
Small 4-, 5-, and 6-Pin\&Medium 7-Pin Base
Types, Outlines 8, 5.55
Outlines-Metal Tubes:
Outlines 8 (On back of Glass Tubes Outline 8) Outlines 9, 5-55
Key (On back of Outlines 9)
Bases:
l-Terminal Types (Caps), Caps $] \& \begin{aligned} & 2, \\ & 3,5-57 \\ & 5-54\end{aligned}$
Caps (1-Terminal Types), Caps 4, 10-65
3-Pin Types, Bases 1, 11-54
3-Terminal Types (On back of Bases 1)
4-Pin Types Bases 2, 8-56 \& 3, 1-55 4. \& 4A, 4-57

5-Pin Types, Bases 5 \& 6, 3-55
6-Pin Types (On back of Bases 6)
6-Pin Types, Bases 7, 3-55
6-Terminal Types (On back of Bases 7)
7-Pin Types, Bases $8 \& 9,5-55 ; 10 \& 10 \mathrm{~A}, 4-58$
8-Pin Types, Bases 11, 4-58
8-Lead Types (On back of Bases 11)
8-Pin Types, Bases 11A\& 11B, 6-59

$$
\text { 11C, } 1-62
$$

$$
12,10-56
$$

$$
13,1-62
$$

Table of Contents

GENERAL SECTION (Cont'd)

Bases:

8-Pin Types, Bases	$\begin{array}{ll} 14 \& 14 \mathrm{~A}, & 3-61 \\ 15,10-57 & \\ 16 \& 16 \mathrm{~A}, & 7-58 \\ 17 \& 17 \mathrm{~A}, & 10-57 \end{array}$
$9-P i n ~ T y p e s, ~ B a s e s ~$	18 \& 18A, 7-61
	18B, 2-65
11-Pin Types, Bases	18C, $7-61$
	$\begin{aligned} & 19,7-55 \\ & 109, \\ & 6-56 \end{aligned}$
	19B, 3.62
	20, 7-55
12-Pin Types, Bases	20pA, 1-63
	20qA, 3-62
	20A, 4-58
	21, 9-58
13-Lead Types, Bases	$21 \mathrm{pA}, 10-60$
14-Pin Types, Bases	21A, 9-58
	22, 7-55
20-Pin Types, Bases	23, 4-56
25-Pin Types, Bases	23A, 4-66
29-Pin Types, Bases	24, 4-56
35-Pin Types, Bases	25, 8-57

CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE SECTION

Separator "CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE SECTION", 2-57
RCA Picture Tube Guide 1 to $4,1-68$ Cathode-Ray Tube, Storage Tube, \& Monoscope Classification Chart 1 to 3, 5.69
RCA Picture Tube Interchangeability Guide 1 to 6,8 -70
Features of Fluorescent Screens, 11-58
Spectral-Energy Emission and Persistence ${ }^{\Delta}$
Characteristic of:

Buildup Characteristics of Phosphor P7, 92CM-7019R3 Persistence Characteristics of Phosphor P7,

$$
92 \mathrm{CL}-6804 \mathrm{R} 5
$$

[^0]
Table of Contents

CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE SECTION (Cont'd) Spectral-Energy Emission and Persistence ${ }^{\boldsymbol{A}}$

Characteristic(s) of:
Phosphor No.11, 92CM-6749 \& 92CM-6806R2
P12, $92 \mathrm{CM}-7317$ \& $92 \mathrm{CM}-7318 \mathrm{RI}$
P14, $92 \mathrm{CM}-7675$ \& $92 \mathrm{CM}-7326 \mathrm{RI}$
P15, $92 \mathrm{CM}-6915 \mathrm{Rl}$ \& $92 \mathrm{CM}-8540 \mathrm{RI}$
P16, 92CM-7563R1 \& 92CM-7564R1
P20, 4-66
Group Phosphor P22, 10-60
P22, All-Sulfide Type, 5-61 P22, Rare-Earth (Red), Sulfide (Blue \& Green) Type, 9-65
P22, New Rare-Earth (Red), Sulfide (Blue \& Green) Type, 4-67
Phosphor P24, 92CM-8204R1 \& 92CM-8205R2
Picture-Tube Dimensional Outlines, CRT Outlines 1, 4-65 Dimensional Outlines:

Bulb J67-1/2A, CRT Outlines 1 (back)
1/2 B, CRT Outlines lA, 4-65
J109-1/2 A/C, CRT Outlines lA (back)
Jll2 A/B, CRT Outlines 2, 4-65
Jl25 A, CRT Outlines 2 (back)
B, CRT Outlines 3, 4-65
C2, CRT Outlines 4, 10-65
J129 A/B, CRT Outlines 4 (back)
J132-1/2 A/B, CRT Outlines 5, 10-65
1/2 C/D, CRT Outlines 6, 3-62
J133 B/D, CRT Outlines 7, 3-62
C/E, CRT Outlines 8, 3-62 F/G, CRT Outlines 9, 10-65
Jl49 A, CRT Outlines 9 (back)
B, CRT Outlines 11, 10-65
C, CRT Outlines 11 (back) F, CRT Outlines 12, $10-64$
J161 C/D, CRT Outlines 13, 3-62
J165 Z, CRT Outlines 14, 3.62
J170 A/C, CRT Outlines 15, 3-62
B/D, CRT Outlines 16, 3-62
J171 B/F, CRT Outlines 17, 3-62
D/E, CRT Outlines 18, 3-62
G/K, CRT Outlines 19, 3-62
H/J, CRT Outlines 20, 4-65
Persistence Characteristic, shown on back of Spectral-Energy Emission Curve.

Table of Contents

CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE SECTION (Cont'd)

Dimensional Outlines:
Bulb Jl87 A, CRT Outlines 20 (back)
B, CRT Outlines 22, 4-65
C/F, CRT Outlines 23, 3-62
D/G, CRT Outlines 24. 8-64
F, CRT Outlines 24 (back)
Hi, CRT Outlines 25, 8-64
J, CRT Outlines 25 (back)
K, CNT Outlines 26, $4-65$
1., CRT Outlines 26 (back)

M, CRT Outlines 26A, 10-66
Jl92 A/B, CRT Outlines 26A (back)
C/D, CRT Outlines 27, 8-64
J214-1/2 A, CRT Outlines 27 (back)
MJl35 A, CRT Outlines 28, 8-64
MJ166 A, CRT Outlines 29, 3-62 MJ214 A, CRT Outlines 30, 3-62
Reference-Line Gauge:
JETEC No.G-110, CE-7391R1

$$
\begin{aligned}
& \text { G-116, CE-7896R1 (back) } \\
& \text { G-126, CE-9145R1 }
\end{aligned}
$$

X-Radiation Precautions for Cathode-Ray Tubes, 3-62
Definitions of Cathode-Ray Tube Terms, 3-62
(On back of sheet X-Radiation Precautions for Cathode-Ray Tubes)
For types in Cathode-Ray Tube, Storage Tube, \& Monoscope Section, see types with letter "C" in "Section" column of INDEX OF TYPES starting on back of sheet INDEX OF TYPES 1.

PHOTOSENSITIVE DEVICE SECTION

Separator "PHOTOSENSITIVE DEVICE SECTION", 2-57 RCA Photosensitive Device Guide 1 \& 2, 7-67

Definitions of Photosensitive-Device Terms, 11-58
Phototube Sensitivity and Sensitivity Measurements, 9-50

Spectral Characteristic of:
Human Eye \& of Tungsten Lamp at Color

$$
\text { Temperature of } 2870^{\circ} \mathrm{K}, 92 \mathrm{CM}-6435 \mathrm{Rl}
$$

Table of Contents

Photosensitive device section (Cont'd)

Spectral Characteristic of:
Phototube having S-1 Response, 92CAl-6056R6

> S- 3 Response, $92 \mathrm{CM}-6057 \mathrm{R6}$ (On back of curve $92 \mathrm{CM}-6056 \mathrm{R} 6$)
> S-4 Response, $92 \mathrm{CM}-6152 \mathrm{R9} 9$
> S-5 Response, $92 \mathrm{CM}-6814 \mathrm{R} 2$
> S-8 Response, $92 \mathrm{CM}-6592 \mathrm{R} 3$ (On back of curve $92 \mathrm{CM}-6814 \mathrm{R} 2$)

Photosensitive Device having $\mathrm{S}-9$ Response,
92CM-7274R2
S-10 Response, 92CM-7821R2 (On back of curve 92CM-7274R2)
S-11 Response, 7-63
S. 12 Response (On back of Response

S-11)
Tentative Spectral-Sensitivity Characteristic of:
Photot ube having S-13 Response, 920 M1-9037RI
Photojunction Cell having S-14Response, 92 (M-964?
(On back of curve 92CM-9037R1)
Photoconductive Cell having S- 15 Response, 92(M-9206R1
S-17 Response 92CM-9473RI (On back of curve 92(M-9206R1)
Spectral-Sensitivity Characteristic of Photosensitive Device having $\mathrm{S}-18$ Response, $1-62$
Tentative Spectral-Sensitivity Characteristic of:
Phototube having S-19 Response, 92CM-9582
S-20 Response, 92CM-9779 (On back of curve 92CM-9582)
Photosensitive Device having S-2l Response, 92(M-9980
Spectral Characteristic of $2870^{\circ} \mathrm{K}$ Light
Source and Spectral Characteristic of Light from $2870^{\circ} \mathrm{K}$ Source after Passing
Through Indicated:
Blue Filter, 9201-7811
hed-Infrared Filter, 92(31-7838
(On back of curve 92CM-7811)
Infrared Filter, 92 (M) 9.454
0
Red Filter, $92 \mathrm{CH}-9843(0 \mathrm{n}$ back of curve $92(\mathrm{M}-9454$)

Spectral Energy Distribution:

Blue Filter, 92(M-11081R1, Q-67
Frequency-Response Characteristics of Gas
Spectral Response:
Phototubes, 92CM-6864
RCA Type 11, 92al-11619, 12-68
PCAType 1V, 92LM-2586 (On back of curve 92CM-11619)

Electronic

Table of Contents

PHOTOSENSITIVE DEVICE SECTION (Cont'd)

For types in Photosensitive Device Section, see types with letter " P " in "Section" column of INDEX OF TYPES starting on back of sheet INDEX OF TYPES 1.

THYRATRON, IGNITRON, \& GLOW-DISCHARGE TUBE SECTION
Separator "THYRATRON, IGNITRON, \& GLOWDISChARGE TUBE SECTION", 2-57
RCA Thyratron, Glow-Discharge, Ignitron, \& Vacuum-Gauge Tube Guide 1 \& 2, 7-67
Grid-Controlled Rectifier Circuits:
Rectifier Circuits $1 \& 2,4-5$?
For types in Thyratron, Ignitron \& Glow-Discharge Tube Section, see types with letter " F " in "Section" column of INDEX OF TYPES starting on back of sheet INDEX OF TYPES 1.

RECEIVING TUBE SECTION-Part 1

Separator "RECEIVING TUBE SECTION--PartI", 2-57 Application Guide for RCA Receiving Tubes:

Application Guide 1 to 6, 11-70
RCA Receiving Tube Types:
Supplementary Listing 1 to 7,4.71
RCA Receiving-Tube Data:
Types Not Hecommended for Vew Equipment Design 1 to 13.2-70
X-Radiation Precautions for RCA Receiving Tubes, 4-71
Diode Considerations, 12-47
Diode Considerations, Diode Circuits, 12-47 Resistance-Coupled Amplifiers 1 to 8, 5-65
Grid-No. 2 Input Rating Chart, $1-55$
Heater Warm-Up Time Measurement, 3-55
Diode Nomograph, 7-61
For types in Receiving Tube Section-Part 1 (Type 0Z4 up through Type 6MU8), see types with letter " R " in "Section" column of INDEX OF TYPES starting on back of sheet INDEX OF TYPES 1.

Table of Contents

RECEIVING TUBE SECTION-Part 2

Separator"RECEIVING TUBE SECTION--Part2",2-57
For types in Receiving Tube Section-Part 2(Type 6S4A and beyond), see types with letter " R " in "Section" column of INDEX OF TYPES starting on sheet INDEX OF TYPES 7.

RECEIVING-TYPE INDUSTRIAL TUBE SECTION

Separator "RECEIVING -TYPE INDUSTRIAL TUBE SFCTION", 2-57
RCA Industrial Receiving-Type Tube Application Guide I to 4, 8-69
Prototypes vs RCA "Premium" or Special Types
(On back of application Guide for RCA
Receiving-Type Industrial Tube, Guide 4)
Socket \& Connector Information for RCA
Nuvistor Tubes, Data, 1-64
For types in Receiving-Type Industrial Tube Section, see types with letter " D " in "Section" column of INDEX OF TYPES starting on back of sheet INDEX OF TYPES 1.

TRANSMITTING TUBE SECTION

Separator "transmitting tube Section", 2-57
RCA Power Tube Guide 1 to 4, 7-67
RCA Transmitting-Tube Types, Limited Listing 1 to 8 , 11.69
RCA Transmitting Tube Operating Considerations 1 to 13, 2-65
Transmitting Tube Ratings vs Operating

$$
\text { Frequency } 1 \& 2,9-63
$$

Circuits for Hot-Cathode Mercury-Vapor \& Gas
Rectifier Tubes $1 \& 2,2-52$
For types in Transmitting Tube Section, see types with letter "T" in "Section" column of INDEX OF TYPES starting on sheet INDEX OF TYPES 2.

Table of Contents

 Supplement
ADDITIONS AND REVISIONS

GENERAL SECTION

Table of Contents, Contents Supplement, 2-72
Index of Types, Index Supplement, 2-72

CATHODE-RAY TUBE,STORAGE TUBE, \& MONOSCOPE SECTION

Safety Precautions For Color Picture Tubes, 2-72
JEDEC Phosphor P31, 6-72

RECEIVING TUBE SECTION - PART 1

RCA RECEIVING TUBE TYPES - Supplementary Listing 1 to 9 , 10.71

Safety Precautions (1) For Receiving Tubes, 10-71
Safety Precautions (11) For Receiving Tubes, 10-71

DELETION

RECEIVING TUBE SECTION - PART 1

X-Radiation Precautions For Receiving Tubes, 4-71
\bullet

Index of Types

This Index of Types is arranged in numerical-alphabeticalnumerical sequence of types. The letter in the "Section" column indicates the particular section in which the type will be found. The sections are keyed as follows:

C = Cathode-Ray Tube, Storage Tube \& Monoscope
D = Receiving- Type Industrial Tube
F = Thyratron, Ignitron, \& Glow-Discharge Tube
G = General
P = Photosensitive Device
$R=$ Receiving Tube
T = Transmitting Tube
Supplements, when applicable, will appear immediately following this index.

- See sheet titled RCA RECEIVING TUBE TYPES Supplementary Listing at beginning of Receiving Tube Section.
- See sheet titled RCA RECEIVING TUBE DATA Types Not Recommended for New Equipment Design at beginning of Receiving Tube Section.
* See sheet titled RCA TRANSMITTING-TUBE TYPES Limited Listing at beginning of Transmitting Tube Section.
- Discontinued type. Data retained in Handbook for reference purposes only.

Reference is to front of sheet only unless otherwise indicated. Data appearing on sheet is identified by month and year only (e. g., 4-71).

Index of Types 2AH2 to 3B2

Index of Types 3JP7 to 4ES8

Forkey to symbols, see sheet Index of Types 1

Index of Types 4ES8 to 5HZ6

Index of Types $5 J 6$ to 6AN4

For key to symbols, see sheet Index of Types 1		
Type	$\begin{aligned} & \text { Sheet } \\ & \text { \& Date } \end{aligned}$	Type Sheet \& Date
5.J6	R On back of	6A8 R Data Chart, 2-70
	5GH8A sheet	6AB4 ... R Data, 5-52
5KE8.	R On back of 5GH8A sheet	See also 6664/6AB4
5MO8	R On back of	6AC7 ... R Data Chart, 2-70
5R4GYB	5GH8A sheet D Data 1 to 4, 7-61	6AD10.. Suppl. Listing.
518	R Data, 4-56	EAF 3 ... H Data, 10-59
5U4G	R Data Chart, 2-70	6AF4 ... R Data, 11-54
5U4GB	R Data 1 to 3,7-61	6AF4A . R Data, 5-61
$\begin{aligned} & 5 \cup 8 \\ & 5 \cup P 1 \end{aligned}$	R Data, 3-55	R Curve 92CM-7756
	C Tent. Data, 12-46	$\begin{aligned} & \text { R Curve 92CM- } \\ & 7759 \mathrm{R} 1 \end{aligned}$
	C Circuit	UsF6G 6AF4A/60Z4
	CE-6819	6AF6G .. R Data, 12-44
	C Curve 92CM-	6AF11 .. R Data, 5-65
	6808	6AG5 ... R Data, 1-55
	C Curve 92CM- 6810	R Curve 92CM6399R2
5UP7	C Data, 9-65	6AG7 ... R Data 182, 11-52
5UP11	C On 5UP7 sheet	R Curves
5UP31	C On 5UP7 sheet	
5V3A	R Data, 7-61	CE-6036T 1
	Use 5V3A/	6AH4GT R Data Chart, 2-70 ${ }^{\text {® }}$
	5AU4	6AH6 . . R Data Chart, 2-70 ${ }^{\text {® }}$
5V4GA..	R Tent. Data, 7-58	6AK5 ... R Data, 9-55
	R Outline	R Curve 92CM-6504
	CE-9549R1 \&	Use 6AK5/EF95
	Curve 92Cs-	6AK6 ... D Tent. Data 10-43
	$6110 \mathrm{R1}$	D Curve 92C-6449
5V6GT 5WP1 1	R Data, 7-58	6AL3 ${ }^{\bullet} \ldots \mathrm{R}$ Data, 3-62
	C Tent. Data	6AL ... Use 6AL3/E Y88
$\begin{aligned} & 5 \times 8 \\ & 5 Y 3 G T \end{aligned}$	R Data, 3-55	6AL5 ... R Data, 5-54
	R Data 1\&2, 7-61	R Curve 92CM-6561
5Y4GA.. R	R Data Chart, 2-70 ${ }^{\circ}$	$\begin{aligned} & \text { See also } \\ & 6663 / 6 A L 5 \end{aligned}$
5Y4GT.	R Data Chart, 2-70	6AL7GT. R Data Chart, 2-70 ${ }^{\circ}$
$\begin{aligned} & 5 Z 3 \ldots \\ & 5 Z 4 \ldots \\ & 5 Z P 16 \end{aligned}$	R Data Chart, 2-70	6AL11 .. R Data 1, 10-66
	R Data Chart. 2-70	(${ }^{\text {R Data 2\&3, 8-64 }}$
	C Data 182, 7-58	6AM4 ... R Data Chart, 2-70 ${ }^{\circ}$
	C Out line \& Notes	6AM8A . R Data 1, 10-59
	CE-7574R2	R Curve 92CS.
	C Curve 92CM-	8504R1
	7576R1	R Curve 92CM-
6 A7	R Data Chart,	10244
	2-70	6AN4 ... R Tent. Data, 6-57

Index of Types 6BE6 to 6C5

Type

Sheet \& Date

6BE6 ... R | Data, $5-61$ |
| ---: |
| |
| |
| |
| Curve $92 \mathrm{CM}-$ |
| |
| $6625:-6601$ |

6BF5
6BF6 ... R Data Chart, 2-70 ${ }^{\circ}$
6BF11 .. R Data 1, 10-66
Datá 2 to 4, 4 .66
6BG6G . . R Data Chart, 2.70
6BG6GA* R Data Chart, 2-70
6BH3A .. R Data, 10-64
6BH6
R Data, 9-55
R Curve 92CM6892: -6893
See also 6661/6BH6
6BH8 ... R Data Chart, 2-70
6BJ3.... R Data, 6-64
6BJ6.... R Data, 9-55
Curve 92CM-
6867: -6870
See also
6662/6BJ6
6BJ7.... R Data, 1059
6BJ8.... R Tent. Data 1\&2, 7-58
Curve 92CM-9535
6BK4B .. R Data 1,9.65
R Data 2, 9-67
6BK4C/
6EL4A R Suppl. Listing, 4.71^{4}
6BK5 ... R Data Chart, 2-70
6BK7B .. R Data, 2-59
R Curve 92CM9764

6BL7GTA R Tent. Data, 4.58
R Curve 92CM9526
$6 B L 8^{\bullet} \ldots$ R Data, 5-62 $\begin{aligned} \text { Use 6BL8/ECF80 }\end{aligned}$
6BM8/
ECL82 . . R Data, 5-65
6BN4A . . R Data, 1-62
R Curve 92CM-9941
6BN6 ... R Data 1 to 4, 8-60 Use 6BN6/6KS6

Type		Sheet \& Date
6BN8		Data, 8-59
		Curve CE-9364T
		$\begin{aligned} & \text { Curve } 92 \mathrm{CM} \text { - } \\ & 9365 \end{aligned}$
6805	R	Tent. Data, 6-59
	R	Curve 92CMg9n3
		Use 6805/EL84
6806GT8		
6CU6	R	Data 182, 1-62
6807A	R	Data 182, 1-62
		$\begin{aligned} & \text { Use GBQ7A/ } \\ & 6 B Z 7 / 6 B S 8 \end{aligned}$
6BR8A..	R	Data, 2-67
		Use 6BR8A/ 6F V8A
6BS3A	R	Data, 10-64
6BS8	R	Data Chart, 2-70
$68 \cup 8$	R	Data, 1-62
	R	$\begin{aligned} & \text { Curve 92CM- } \\ & 9428 ;-9433 \end{aligned}$
6 BV 8	R	Data Chart, 2-70
68 V 11	R	Suppl. Listing. 4.71^{4}
6BW4	R	Data Chart, 2-70 ${ }^{\text {n }}$
6BWB	R	Data, 7-61
$68 \times 7 \mathrm{GT}$	R	DataChart, 2-700
6BY5GA	R	Data Chart, 2-70 ${ }^{\text { }}$
6BY6	R	Tent. Data, 3-54
	R	Curve 92CM-8140
	R	Curve 92CM-8138
68 YB	R	Tent. Data 1,9-58
	R	Curve 92CS. 9616
6826	R	Data, 8-59
	R	Curve 92CM. 8508R2
	R	Curve 92CM9485R 1
6827	R	Data 1\&2, 1-62
		$\begin{aligned} & \text { Use 6BQ7AI } \\ & 6 B 27 / 6 B S 8 \end{aligned}$
$6 C 4$	R	Data 1, 11 -54
	R	Curve 92C-6378
6C5	R	Data Chart, 2-70

Index of Types 6C6 to 6DE7

For key to symbols, see sheet Index of Types 1

Index of Types 6DG6GT to 6FQ5A

For key to symbols, see sheet Index of Types 1

Type		Sheet 8 Date	Type	Sheet \& Date
6DG6GT	R	Tent. Data, 12-56	6EH5 ... R	Data Chart, 2-70
60K6.	R	Tent. Data, 4-59	6EH7* . . R	Data, 3-62 Use 6EH7/EF 183
	R	Curve 92CM.	6EJ7* . . R	Data, 3-62
		9851R1	6EL4A . . R	Suppl. Listing. $4.71{ }^{\text {4 }}$
6D	R		6EM5 ... R	Data 1 to 3,5.61
	R	$\begin{gathered} \text { Suppl. } \\ 4-71^{\text {B }} \end{gathered}$	6EM7 ... R	Dota 1 to 3,5 61
6DN3	R	Data 1\&2,5-70	R	Data 4, 8-60
6DN6.	R	Data Chart, 2-70		Use 6EM7/6EA7
6DN7	R	Data, 10-59	6EN4 ... R	Data 1 to 4, 2-71
	R	Outline	6EQ7 . . . R	Data 1\&2, 8-60
		CE-10241	6ER5 ... R	Data, 8-60
6005	R	Data 1, 7-63	6ES5 ... R	Data, 7.61
	R	Outline	6ES8 ... R	Data, 5-61
		CE-9343		Use 6ES8/
	R	Curve 92CM-9309		ECC189
6DR7	R	Tent. Data, 6-59	6EU7 ... R	Data 1\&2,8-60
	R	Data 2, 1-62	6EU8 ... R	Data, 7-61
	R	Curve 92CM-	6EV5 ... R	Data, 7-61
		9913	6EV7 ... R	Data Chart, 2-70
6054	R	Data 1 to 3, 1-63	6EW6 . . R	Data, 10-59
6055	R	Data 1\&2, 8-69		Curve 92CM-9965
	R	Curve 92CM.	6EW7 ... D	Data 1 to 4, 1-62
		9292	6E25 ... D	Data Chart, 2.70
6DT5	R	Data, 10-59	6EZ8 ... R	Data, 7-61
6DT6A	R	Data 1 to 4, 1-61	6F4 R	Tent. Data, 8-44
60T8	R	Tent. Data, 8-57		Curve 92CM-6567
	R	Curve 92CM-9397	6F5 R	Data Chart, 2-70
6 DV 4	R	Data 1 to 3	6F6 R	Data Chart, 2-70
6DW4B	R	Data, 4-65	6F6GT . . R	Data Chart, 2.70 ${ }^{\text { }}$
$60 \times 8{ }^{\circ}$	R	Data, 9-62	6F8G ... R	Data Chart, 2-70 ${ }^{\text {D }}$
		Use 60×8/	6FA7 ... R	Data 1\&2,8.60
		ECL84	6FD7 ... R	Data 1\&2, 9-62
6DZ4	R	Data 1\&2,4-63	6FE5 ... R	Data Chart, 2-70 ${ }^{\circ}$
6 E5 6EA5 GEA7	R	Data, 12-44	6FG7 . . R	Data, 3-62
	R	See 6CY5	6FH5 ... R	Data 1\&2, 8-60
	R	Data,.7-61 Use 6EM7/6EA7	6FH8 ... R	Data 1\&2,10-59
6EA8	R	Data, 7-61	R	Curve 92CM-
	R	Curve 92CM-9866		10221
	R	Curve 92CM-9867	6F J7.... R	Data 182,1-63
6EB8	R	Tent. Data	6FM7 ... R	Data, 5-65
		1\&2, 6-59	6FM8 . . . R	Data, 7-61
	R	Curve 92CM-9908	6FQ5A . . R	Data, 3-62
	R	Curve 92CM-9905		Use 6GK5/6FQ5A

Index of Types 6FQ7 to 6JZ8

For key to symbols, see sheet Index of Types 1				
Type	Sheet \& Date	Type		$\begin{aligned} & \text { Sheet } \\ & \text { \& Date } \end{aligned}$
6FQ7* . . R	Data 1 to 3,5-61	6H86	R	Data, 9-62
	Use 6F07/ 6CG7			Use 6HB6/ $6 \mathrm{HA6}$
		$6 \mathrm{HB7}$	R	Data 1 to 3,3-64
6FS56FV6.	Data, 3-62	6HE5	R	Data, 2-69
	Tent. Data, 6-59	6HF8	R	Data 1 to 4, 3-61
	$\begin{aligned} & \text { Curve 92CM- } \\ & 10058 \end{aligned}$	6HG5	R	Data 1\&2,3-64
6FV8A .. R	Data, 3-64	6HJ8	R	Data, 3-62
6FW5 ... R	Data, 5-62	6HL8	R	Data, 4-64
6FY7... R	Data, 5-65	$\begin{aligned} & \text { 6HM5/ } \\ & \text { 6HA5 } \end{aligned}$	R	Data 182, 10-63
$\begin{aligned} & 6 G 11 \ldots R \\ & 6 G B 5^{\circ} \ldots R \end{aligned}$	Data 182, 8-63	6 HO5		
	Data, 2-66	6 H		Suppl. Listing
	Use 6GB5/E L500	6HR5	R	Suppl. Listing,
6GC5 ... $\begin{array}{r}\text { R } \\ R\end{array}$	Data 1, 9-62			4.714
	Data 28,3, 4-63	6HR6	R	Data 1 \& 2, 5-62
6GE5 ... R	Data, 4-63	6HS6	R	Data 1 \& 2, 5-62
6GF 7A . . R	Data 1 to 3,10-64	6HS8	R	Data 1, 1-63
$\begin{aligned} & \text { 6GH8A . . } R \\ & \text { 6GJ5A } \\ & \text { 6GJ7 } \\ & \hline{ }^{\circ} \ldots \end{aligned}$	Data 1 to 4, 4-63	6H26	R	Data 1 to 4, 1-63
	Data 1\&2, 10-64	6 J 4	D	Tent. Data, 4-44
	Data, 12-65 Use 6GJ7/		D	Curve 92CM-
	ECF801	6J4WA.	R	See 8532/6J4WA
6GK5 . . . R	Data 1\&2, 5-61	6 65, 6J5GT	R	Data Chart, 2-70
	Use 6G K5/	6,6A.	R	Data 1 to 3, 7-61
	6F05A	617	R	Data Chart, 2-700
6GK6 ... R	Data 1 to 3, 7-61	6.10	R	Data 1 to 5, 2-65
6GL7...R	Data 1\&2, 4-63			Use 6210/610
6GM6	Data 182, 8-60	6J86A.	R	Data $182,10-64$
6GN8	Data 1 to 3, 5-61	6UC8	R	Data 1 \& 2, 5-62
6GT5* . . R	Data 1 \& 2, 6-63	6JD6	R	Data 1 \& 2, 4-63
6GT5A . . R	Data 1\&2,10-64	6JF6 ${ }^{\text {GJG6 }}$	R	Datal \& 2, 10-64
$\begin{array}{lll} \text { 6GU5 } \ldots . & R \\ \text { 6GU7 } \ldots . & R \end{array}$	Data, 12-65	6JH6	R	Data 1 to 3,4-63
	Data 182, 4-63	6JH8	R	Data 1,5-62:
$\begin{aligned} & \text { 6GV5 . . . R } \\ & 6 G W 6 * . . R \end{aligned}$	Data, 4-64	6JM6A.	R	Suppl. Listing,
	Data 182, 3-61			4-714
	Use 6GW6/6006B	$6 J 06$	R	Data 1 \& 2,9-67
6GW8/		$6 \mathrm{JR6}$	R	Data 1 \& 2,9-68
ECL86 . . R	Data, 5-65	6JS6C	R	Suppl. Listing,
6GX6... R	Data 1 to 4, 5-61	6JT6A .	R	Data 1 \& 2, 10-64
6GY6 ... R	Data 1 to 3, 5-61	6 W 46	R	Data $182,4-66$
6GY8 ... R	Data Chart, 2-70	6JU8A	R	Data, 3-64
$6 \mathrm{H} 6,$	Data Chart, 270	6 V 8	R	Data 1 to 3,6-63
6H6GT/G*R	Data, 8-42	6 J 28		Data, 4-64
6HA5 ...	See 6HM5/6HA5			

Index of Types 6K6GT to 6X4

Index of Types
6×4 to 10GF7A
For key to symbols, see sheet Index of Types 1

Index of Types 10GN8 to 12CK3

Index of Types 12CL3 to $13 Z 10$

Index of Types 14GT8 to 17KV6

For key to symbols, see sheet Index of Types 1

Index of Types 17KV6A to 22BH3A

For key to symbols, see sheet Index of Types 1

Type	-0	Sheet
		\& Date

17KV6A. R On back of 17J06 sheet
17பP4B. C Data, 1-64 170P4B. C Data, 10-63 18AJ10. R Suppl. Listing. 4.71 ${ }^{4}$
$\begin{array}{lll}\text { 18FWGA } & R & \text { Data1\&2,7-61 } \\ \text { 18FX6A } & R & \text { Data1\&2,7.61 }\end{array}$
18FY6A R Data 1\&2,7-61
18GD6A R Data1\&2,1-62
19ABP4. C Data, 4-63
19AFP4. C Data, 5-62
19A.J4 . C Data, 5-62
19AU4GTAR DataChart, 2-70ㅁ
19AVP4. C Data 1 to 5,10-60
19AYP4. C Data, 5-62
19BDP4. C Data, 5-62
198G6GA R DataChart, 2-70
190G3. R Data, 8-70
19CHP4. C Data, 3-62
19CLBA. R On 19CG3sheet
19CMP4. C Data, 7-65
19CXP4. C Data, 10-65
1900P4. C Data, 1, 12-66
190RP4. C Data, 2, 2-64
1905P4 . C Data, 7-65
19EA8 . . R On 19CG3 sheet
19EBP4 . C Data, 2-67
19EGP4 . C Data, 2-67
19ENP4A C Data, 2-66
19FEP4B C Data, 12-66
19FLPA . C Data, 2-66
19FNP4 . C Data, 10-66
19FX5 . . R On back of 19CG3
sheet
19GEP4A C Data, 7-67
19GIP4A C Data, 12-66
19GVP22 C Data, 4-67
19GWP22 C Data1 to 5,467
19HCP22 C Data 1 to 4,5-68
19HMP22 C Data, 2-70
19HNP22 C Data 1 to 4,968
19HR6. . R Onback of 190G3
sheet
19H56 . . R Onback of 190G3
sheet
19HYP22 C Data 1 to 4,5-69
1966 . RataChart, 2-70 19N8/
19CL8A R Suppl. Listing, 4-714
1978
Data Chart, 2-70

\rightarrow

Index of Types 22BW3 to 25DN6

For key ro symbols, see sheet Index of Types 1

Type		Sheet R Date
238W3.	R	Suppl. Listing, 4.71^{4}
22DE4	R	On 22BH3sheet
221F6	R	On back of 228H3 sheet
22JG6A	R	Data, 8-69
221P22	C	Data 1 to 5, 4-67
22JR6	R	On 22JG64 sheet
22以5	R	Un '2'2J6A sheet
22KM6	R	On 22JG6A sheet
22 KP 22.	C	Data, 4-67
22KV6A.	R	On back of 22JG6A sheet
22 P 22	C	Data 1 to 4, 9-68
22 MP 22.	C	Data, 8-69
23AHP4.	C	Data 1 to5, 3-61
23ARP4	C	Data, 12-65
23ASP4	C	Data, 3-61
238DP4	C	Data, 1-63
238GP4	C	Data, 5-65
238.1P4	C	Data, 3-62
$238 \mathrm{KP4} 4$	C	Data, 5-62
2380 P4	C	Data, 3-62
238TP4	C	Data, 2.65
23CBP4.	C	On 238TP4 sheet
230GP4	C	On 238TP4 sheet
23084	C	Data 1 to 6, 8-60
$23 C 084$	C	Data, 5-65
23DAP4	C	Data, 8-63
23DBP4	C	Data, 8-64
23EKP4	C	Data, 8-64
23ENP4	C	Data, 8-64
23EP4	C	Data 1 to 5,8-60
23EOP4	C	Data, 12-66
23ERP4	C	Data, 12-66
23ETP4	C	Data, 8-64
23EZP4	C	Data, 10-66
23FDP4	C	Data, 8-64
23FMP4	C	Data, 8-64
23FP4A	C	Data, 4-63
23FRP4	C	Data, 2-67
23FSP4	C	Data, 2-67
23G5P4	C	Data, 10-65
23HFP4A	C	Data, 7-65
23HGP4.	C	Data, 12-66
23HUP4A	C	Data, 7-67
23-MP4A	C	Data, 12-66
23P4	C	Data, 4.63
23MP4	C	Data 1 to 6, 10-60
23NP4	C	Data, 4-65
$23 \mathrm{YP4}$	C	Data, 3-62
24AEP4	C	Data. 1-63

Type
Sheet 8. Dite

24AHP4. C Tent. Data1\&2. 6-57
C Raster-
Cutoff-Range Chart 92CS-9349
C Outline CE-9345B
C Raster-
Cutoff-Range
Chart 9'2CS-9350
C Curve92cs-9351
24AUP4. C Tent. Data 1 \& 2,
4-59
C Raster-
Cutoff-Range
Charts92CS-9919 \& 92CS-9918
C Outline CE-9917B
C Curve 92CM-9352
24BEP4 . C Data, 10-64
24BF11. R Suppl Listing, 4-714
24CP4B . C Data, 1-64
24NE6A . R Onback of 22JG6A sheet Use 24LO6/24JE6C
24LO6 . . R On back of 22JG6A sheet
Use 24LO6/24VEC
25AJP22 C Data1to4,9-68
25AV5GA R Data, 10-59
25AX4GT R On 25AV5GA sheet
258CP22 C Data1to4,8-69
25BDP22 C Data1\&2,8-69
25BGP22 C Data, 2-70
25BHP22 C Data, 2.70
25BK5 . . R On 25AV5GA sheet
25BC6GTB/
25CU6 . R On 25AV5GA sheet
25C5 .. R Tent. Data, 7-58
R Curve 92 CM -
8908R2
25CA5 . . R DataChart, 2.70
25CD6GB R Data, 8-70
250G3 . . R On 25CD6GB sheet
25CK3 . . R On 25CD6GB sheet
25CM3. . R On back of 25CD6GB sheet
25CT3 . . R On back of 25CD6GB sheet
25CU6. See 25BO6GTB!
25016
25DN6. . R Tent. Data, 8-57
R OutlineCE-9343

For key to symbols, see sheet Index of Types 1

Index of Types
 833A to 4464

For key to symbols, see sheet Index of Types 1

Type	Sheet R Date	Type	Sheet 2 note
833A . . $\begin{array}{r}\text { T } \\ \\ \\ \\ \\ \\ \\ \\ \hline\end{array}$	Data 1,962	1612 .. D	Data, 1-43
	Data 2 \& 3, 10-56	1616 .. T	Data, 5-42
	Data 4, 2-59	1620 .. D	On back of 1612
	OutlineCE- 4786R5	1621 . . D	Data, 1-43 ${ }^{\text {she }}$
	Curve 92CM-6197	1622 .. D	Data, 8-43
834	DataChart, 11-69*	1624,	
$835^{\circ} \cdot . \cdot T$	Data. 12.42	$\begin{gathered} 1625 \ldots \\ 16^{2} 29 \end{gathered} \mathrm{D}^{\top}$	Data Chart, Data, 6-44
$836 \ldots . .9$ T	On 835 sheet Data Chart, 11-69*	1635 .. D	Data, 4-47
857 B . . T	Data 1\& 2, 7-55	1640 D	Curve 92C-6358
	Shell ${ }^{\text {ce }} 4653 \mathrm{R} 2$	1640	See 6405/1640
860 ${ }^{\circ}$. . T	DataChart, 11-69*	1946 .. F	Tent. Data, 6-47
866A ... T	Data 1 \& 2,8-57	1947 .. F	Tent. Data, 6-47
868.... P	Data, 3-61	$1949 \ldots$ F	Curve92CM-68 Data, 3-54
869B . . T	Data 1 \& 2,11-52 Curve 92CM-7634	$1949 \ldots$..	Curve 92CM-6851
872A .. T	Data 1 \& 2, 8-57	2020 .. P	Data 1 to 6,5-69
$880{ }^{\circ}$... T	Data Chart, 11-69*	2050 .. F	Data, 6-48
884,885 F	Data 1 \& 2, 12.44	F	CurveCE-6540T 1
891R892 T	DataChart, 11-69*	2050A. F	Curve92CM-6274R1 Data 1 to 3,3-61
892R .. T	DataChart, 11-69**	2054 . T	Data 1 to 3, 6-66
902A .. C	Data 1, 7-45	2060 . . P	Data, 10-66
917.... P	Data, 10-56	2061 . . P	Data, 6-66
	Curve 92CM-	2062 . . P	Data, 10-66
	4360R2	2063 . . P	Data 1,6-66
918	Data 1 \& 2, 3-61	2064B. . P	Data 1 \& 2,6-66
919	Data, 10-56	2065 .. P	Data 1 \& 2,6-66
920.... P	Data 1 \& 2, 3-62	4028A. . T	Data 1 to 5, 9.65
921.... P	Data, 12-56	4037A. . T	Data 1 to 4, 7-65
922.... P	Data, 10-56	4041 .. T	Data 1 to 3,12-68
923.... P	Data, 8-47	4053 . ${ }^{\text {. }}$ T	Data 1 \& 2,5-65
925.... P	Data, 1-62	4054 .. T	Data 1 to 3,12-68
	Curve 92CM- 6208R 1	4055 . . T	Data 1 8, 2,9.67
926.... P	Data, 12-56	T	Data 3, 7-65
927. . . . P	Data 1 \& 2,3-62	4058... T	Data 1 to 3, 2-66
929.... P	Data 1 \& 2, 1-62	4062A . T	Data 1 to 3, 7-67
930... . P	Data 1 \& 2, 3-61	4068 .. T	Data 1 \& 2, 2-70
931 A . . P	Data 1 to 6, 11-69	4070,	
934.... P	Data 1 \& 2, 3-62	4071 .. T	Data 1 \& 2, 8-70
935... P ${ }_{\text {P }}$	Data, 5-62	4072... T	Data 1 \& 2,8-70
	Curve 92CM-	4438, P	
	6478R1	4439 . . P	Data $187.5-70$
$955 \ldots$ D	Data, 6-44	4440... P ${ }^{\text {P }}$	Data 1 to 4.8-63
	Curve 92C-5561R1	4441 . . . P	Data 1 to 4, 8-63
959.... D	Data, 6-44	4441A . P	Data, 3-64
	Data, 12-39	4449A. . P	Data 1 to 3, 6-64
1609*. D	Data, 1-43	4459... P	Data 1 to 5, 6-64
1609 - . D	Curve 92C-6355	4460... P	Data 1 to5,6-64
1611 .. D	Data, 1-43 (Onback	4461 . . . P	Data 1 to 5, 5-65
	of 1609 Curve	4463... P	Data 1 to 5, 6-64
	$92 \mathrm{C} \cdot 6355)$	4464... P	Data 1 to 5, 8-64

Index of Types 4465 to 5670

For key to symbols, see sheet Index of Types 1

4465... P	Data 1 to 5, 8-64
4471.	
4472. . P	Data, 5-65
4473 .. P	Data, 5-65
4478 .. P	Data, 2-69
4486 . . C	Data, 12-66
4490 . . C	Data 1,10-66
4491... C	Data 1 \& 2,10-66
4492 . P	Data 1 \& 2,5-70
4493, 4494,	
4495 .. P	Data 1 \& 2, 1-68
4499 .. C	Data, 12-65
4500 .. P	Data 1 to 7, 12-66
4503A. . P	Data 1 to6, 12-68
4510 .. C	Data 1, 4-71
C	Data 2, 10-66

4516,
$4517 \ldots$
4518 .. P Data 1to 9,5-68
4521 .. P Data 1 to 9, 2-70
4522 . . P Data 1 to 9, 12-68
4523, 4524.
4525. . P. Data 1 to 15, 2-67
4536 .. P Data 1 to4, 12-68
4542 .. P Data 1 to5, 12-68
4547 . . P Data 1 to 6, 2-71
4557 .. C Datal to 3, 2-69
4560 .. C Data 1 to 4, 5-69
4589 .. P Data 1 to 4, 8-70
4600A. . T Data 1 to 4,9-62
4604 .. T Data 1, 1-61
Data 2, 1-63
Data3, 1-61
4616 .. T Data 1 to 4, 6-66
4616V1. T Data,6-66
4617 .. T Data 1 \& 2,6-66
4618 .. T Data 1 to 6, 9-67
4621 .. T Data, 9-68
4624 .. T Data 1 to 4, 4-65
4626 .. T Data, 9-68
4628 .. T Data 1 to 5, 12-65
4630 .. T Data, 9-68
4631 .. T Data, 9-68
4632 .. T Data, 9-68
4635 .. T Data, 9-68
4636 .. T Data 18: 2,968
4637 .. T Data, 9-68
4638 .. T Data, 9-68
4651 . . T Data, 2-69
4652/
8042 . T Data 1 \& 2,5-69
4658 .. T Data 1 to 5,471

5552A. F Tent. Data 1\&2,

$$
4.59
$$

F OutlineCE-9772R1A
F Rating Chart 92CM-
9710
$\begin{array}{llll}5556 & \cdots & \text { T } & \text { DataChart, 11-69* } \\ 5557 & \cdots & \text { F } & \text { Data, 4-58 } \\ & & F & \text { Curve 92CM-9301T; }\end{array}$
5558 .. T Data, 4-53; Curve
92CM-7856

5559	F	Data, 3-51
	F	CurvesCE-6704T
		7562T

$5560 \ldots$ F | Data, 3-51 |
| :---: |
| CurvesCE-6705T1. |

5561 .. T Tent. Data, 5-46
5563A. F Data 1 to 3,4-57
F Curve 92CM-8302
F CurvesCE-8300T
-8316T
F Curve $92 \mathrm{CM}-8303$
5581 . . P Data 1 \& 2, 3-61
5582 .. P Data, 12-56
P Curve 92CM-6823
5583 .. P Data 1 \& 2, 3-61
5618 .. T Tent. Data 182,
T Curve 92CM-6881
D Tent. Data 1 to 3 .
6-57
5636 . . D Curve 92CM-9212
D Curve92CM-9210
D Curve92CM-9215
5642 . . D Tent. Data,459
5651A.. F Data 1 \& 2, 8-63
5652 . . P Data, 3-62
P Data 2,9-63
5653 .. P Data, 3-62
5654 .. D Tent. Data, 1-53
5670 .. D Data 1 to 4, 8-63

Index of Types
 5671 to 6073

For key to symbols. see sheet Index of Types 1

Index of Types 6074 to 6550

For key to symbols，see sheet Index of Types 1

Index of Types 6562/5794A to 7025

For key to symbols, see sheet Index of Types 1

Index of Types
 7027A to 7552

For key to symbols, see sheet index of Types 1

Type		Sheet
		\& Date

7027A. . R Datal \& 2,8-59
R Curve92CM-10132
R Curve92CM-10126
R Curve 92CM-9568
7035/

4×1500	Dat
7038 .. P	Data 1 \& 2, 2-65
	Data 3\& 4,4-64
	Curve 92CM-7783
P	Dark Current Range 92CM-9497
7044	Data 1 to 3, 3-62
7054	Data, 5-62
	Seealso 8077/7064
7055	Tent. Data, 11-58
	Curve92CS-9774
7056	Tent. Data 1 \& 2,
	Cure92CM-9789
	Curve 92CM-9789
7057	Tent Data 182

11-58
D Curve92CM-9792
7058

7059

7060

	D	Curve 92CM-9806
	D	Curve 92CM-9811
	D	Curve 92CM-9813
7061	D	Tent. Data 182

7200 .. P Tent. Datal \& 2, 7-58
P Curve 92CM-9577
P Curve92CS-9586

Index of Types 7553 to $8532 / 6 J 4 W A$

Index of Types 8541A to EM84/6FG6

Forkey to symbols, see sheet Index of Types 1			
Type	Sheet \& Date	Type	Sheet \& Date
8541 A. . P	Data 1 to 5, 2-69	8890 ..	Data 1 to 5, 2-71
8552	See 6883B/80324/	8891 .. T	Data 1 to6,4-71
	8552	9001 .. D	Data, 10-43
8567 .. P	Data 1 to 3,4-65	D	Curve 92C-6291
8568 .. T	Data 1 tob, 10-65	9002 .. D	Data, 10-43
8571 .. P	Data 1 to 6, 7-65	9003 . . D	Data, 10-43
8572A. . P	Data 1 to 5, 8-69	D	Curve 92C-6289
8573A. . P	Data 1 to 5, 2-70	9005 .. D	Tent. Data, 12-42
8575 .. P	Data 1 to 10, 2-70	D	Carve 92C-6384
8587 . . T	Data, 6-66	9006 . D	Data, 10-43
8596 .. T	Data, 7-65	C1K/6014 F	Tent. Data, 12-56
8605 N1.		F	Curve CE-9111T
8605N2,		C3/5632 F	Tent. Data, 12-56
8606. . P	Data 1 to 10, 2-71	F	OutlineCE-9109
8627 .. T	Data 1 to 5, 10-65	C3JA5684 F	Tent. Data, 12-56
8628 .. D	Data 1 to 4, 10-65	F	Outline CE-9109
8644.		C3JL	Data 1 \& 2, 1-62
8645 . P	Data 1 to 10, 2-69	O61/5C21	Tent. Data, 12-56
8664 .. P	Data 1 to 8,8-70	F	OutlineCE-9161
8664N1 P	Data 1 \& 2,8-70	CalA/5685	Tent. Data, 12-56
8673 .. P	Data 1 to 5, 12-66		Outline CE-9161
8674 .. P	Data 1 to 5, 12-66	C16/565	Tent. Data, 12-56
8684 .. T	Data 1 to5, 1-68		OutlineCE-9160
8727 .. T	Data 1 to 9,12-68	DR2000,	
8748... P	Data, 4-67	DR2010,	
8749 . . P	Data, 7-67	DR2020,	
8775 . . P	Data 1 to 5,5-68	DR 2030 ,	
8791/V1 T	Data, 2-71	DR2100,	
8792 N 1 T	Data, 2-71	DR2100V	
8793 .. T	Data, 9-68	DR2110.	
8794 . . T	Data, 9-68	DR2110'	
8806 . . T	Data, 2-69	DR2120,	
8807 .. T	Data 2-69	DR2120	
8808 .. D	Data 1 to 4,5-69	DR2130,	
8828 .. T	Data 1 to 5,5-70	DR2130V	C Data 1 to 8,4-71
8850 .. P	Data 1 to 10.5-70	ECL82..	See6BM8/ECL82
8851 . . P	Data, 5-70	ECL86.	See6GW8/ECL86
8857/V1,		EM84/6FG6	R DataChart, 2-70
$\begin{aligned} & 8857 / \mathrm{V} 2, \\ & 8858 . \end{aligned}$	8, 2-71		Use6FG6/EM84

Index of Types

Supplement

ADDITIONS AND REVISIONS

For key to symbols, see shect Index of Types 1.

Type	$s^{2 c c i o n}$	Sheet \& Date	Type S	cion	Sheet \& Date
1AY2.	R	Data Suppl., $10-71$	6EH4A...	R	$\begin{aligned} & \text { Data Suppl., } \\ & 10-71 \end{aligned}$
$14 Y 24$.	R	Data Suppi., 10.71	OEJ4A	A	Data Suppl. 10-71
18 H 2	R	Data Suppl., $10-71$	6LZ6	R	$\begin{gathered} \text { Data } 1 \text { to } 3 . \\ 7.71 \end{gathered}$
1DG3..	R	Data Suppl., $10-71$	6MC6	R	$\begin{aligned} & \text { Data } 1 \& 2, \\ & 6.72 \end{aligned}$
$\begin{gathered} \text { 1S2A/ } \\ \text { DY87. } \end{gathered}$	R		6ME6	R	$\begin{gathered} \text { Data } 1 \& 2, \\ 2.72 \end{gathered}$
	R	10.71	12SN7GTA.	R	$\text { On } 12 \text { SA } 7$
1×2C	R	$\begin{aligned} & \text { Data Suppl., } \\ & 10-71 \end{aligned}$	16LU8A	R	sheet Data Suppl.,
28J2A	R	$\begin{gathered} \text { Data } 1 \& 2, \\ 7-71 \end{gathered}$	19 VANP 22.	C	$\begin{aligned} & 10-71 \\ & \text { Data } 1 \text { to } 6, \end{aligned}$
2BU2/					2.72
2AH2.	R	$\begin{aligned} & \text { Data Suppl., } \\ & 10.71 \end{aligned}$	19VBRP 22.	C	$\begin{aligned} & \text { Data } 1 \text { to } 6, \\ & 2.72 \end{aligned}$
3A2A	R	$\begin{aligned} & \text { Data } 1 \& 2, \\ & 7.71 \end{aligned}$	21VAKP22.	C	$\begin{aligned} & \text { Data } 1 \text { to } 6, \\ & 2-72 \end{aligned}$
3A3B	R	Data Suppl, ,	24LZ6	R	Data, 7.71
		10-71	$25 \mathrm{JZ8}$.	R	Data Suppl.,
$38 Y 6$	R	Data Suppl, $10-71$	25VABP 22.	C	$\begin{aligned} & 10-71 \\ & \text { Data } 1 \text { to } 6 \end{aligned}$
3826	R	$\begin{aligned} & \text { Data Suppl., } \\ & 10-71 \end{aligned}$	26LX6	R	$\begin{aligned} & 2.72 \\ & \text { Data Suppl., } \end{aligned}$
3CA3A.	R	Data 1 \& 2,			10.71
3CB6/		7.71	30KD6...	R	Data Suppl., 10-71
3 CF 6	R	Data Suppl., $10-71$	31LR8...	R	Data Suppl., 10.71
3 C 23 A .	R	$\begin{gathered} \text { Data } 1 \& 2, \\ 7-71 \end{gathered}$	34R3....	R	Data Suppl., 10-71
4GJ7/			36KD6/		
XCF801	. R	$\begin{aligned} & \text { Data Suppl., } \\ & 10-71 \end{aligned}$	40KD6...	R	$\begin{gathered} \text { Data Suppl., } \\ 10-71 \end{gathered}$
6DL3..	R	$\text { Data } 1 \& 2$	36MC6...	R	Data, 6-72

Index of Types Supplement

DELETIONS

$1 \mathrm{~K} 3 / 1 \mathrm{~J} 3$.	Data 1 \& 2, 3-64
2 AH 2	Data, 1-63
3CN3A	Data, 9-68
6 6Y11	Data, 6-64
$6 F V 8 A$	Data, 3-64
6×8	Data, 1 to 3, 8-60
$12 \mathrm{KP4A}$	Data, 9-58
15 KP 22	Data, 7-67
15LP22	Data 1 to 6, 7-67
15 NP 22	Data 1 to 5, 1-68
$16 \mathrm{TP4}$	Data, 9.58
$17 \mathrm{DAP4}$	Data, 4-60
$17 \mathrm{DPP4}$	Data 1 to 5, 8-60
$17 \mathrm{EFP4}$	Data, 10-65
19FNP4	Data, 10-66

C	,
19HCP22. . C	Data 1 to 4, 5-68
19HMP22. . D	Data, 2-70
19HNP22. . C	Data 1 to 4, 9-68
19HVP22. . C	Data 1 to 4, 5-69
4478	Data, 2-69
4634	Data, 9-68
7163	Data 1 to 5, 5-62
7293A	Data 1 \& 3, 1-62 Data 2, 4-66
$8134 \ldots .$.	Data 1 to 4, 6-66
	Data 5, 12-66
8480	Data 1 to 4, 3-64
8134/V1 . . P	Data, 6-66

DISCONTINUED TYPES

$1 A 5-G T$	$3 A T 2$	$6 A L 7-G T$	$6 B Z 7$	$6 L H 6 A$
$1 S 4$	$5 G \times 6$	$6 B S 8$	$6 F Q 5 A$	$23 E Q P 4$

RATING SYSTEMS

for Electron Devices

Three Rating Systems are in use by the Electron-Device Industry. The oldest is known as the Absolute-Maximum System, the next as the Design-Center System, and the latest and newest is the Design-Maximum System. Definitions of these systems have been formulated by the Joint Electron Tube Engineering Council (JFTEC) - now identified as the Joint Electron Device Engineering Council (JFDFC) -and standardized by National Electrical Manufacturers Aseociation (NFMA) nul ГIrirpotic Industries Association (EIA) as follows:

Absolute-Maximum Rating System

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptalle serviceability of the device, taking no responsiLility for equipment variations, environment variations, and the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughout life no Absolute-Maximum value for the intended service is exceeded with any device under the worst proballe operating conditions with respect to supply-voltage variation, equipment-component variation, equipment-control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristics.

Hesign-Center Rating System

Design-Center ratings are limiting values of operating and environmental conditions applicable to a bogey electron device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device inaverage applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation*, equipment-component variation, equipment-control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristics.

The equipment manufacturer should designso that initially no Design-Center value for the intended service is exceeded with a bogey deviceinequipment operating at the stated normal supply voltage*.

[^1]
RATING SYSTEMS

for Electron Devices

Design-Maximum Rating System

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughout life no Design-Maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment-component variation, equipment-control adjustment, load variation, signal variation, and environmental conditions.

Differences Between Systems

The significant differences between the three Rating Systems can be summarized as follows:

Absolute-Maximum System:
Ratings $=\left[\begin{array}{c}\text { Maximum capa- } \\ \text { bilities of } \\ \text { any electron } \\ \text { device of the } \\ \text { type rated }\end{array}\right]$

Design-Center Systen:
Ratings $=\left[\begin{array}{c}\text { Maximum capa- } \\ \text { bilities of } \\ \text { any electron } \\ \text { device of the } \\ \text { type rated }\end{array}\right]-\left[\begin{array}{c}\text { Allow- } \\ \text { ance for } \\ \text { electron- } \\ \text { device } \\ \text { variations }\end{array}\right]-\left[\begin{array}{c}\text { Allowance } \\ \text { for } \\ \text { component } \\ \text { and supply } \\ \text { variations }\end{array}\right]$

Design-Maximum System;
Ratings $=\left[\begin{array}{c}\text { Maximum capa- } \\ \text { bilities of } \\ \text { any electron } \\ \text { device of the } \\ \text { type rated }\end{array}\right]-\left[\begin{array}{c}\text { Allow- } \\ \text { ance for } \\ \text { electron- } \\ \text { device } \\ \text { variations }\end{array}\right]$

DEFINITIONS ${ }^{-}$

Amplification Factor (μ) is a special case of mufactor. It is the ratio of the change in plate voltage to a change in control-electrode voltage under the conditions that the plate current remains unchanged and that all other electrode voltages are maintained constant. It is a measure of the effectiveness of the control-electrode voltage relative to that of the plate voltage upon the plate current. The sense is usually taken as positive when the voltages are changed in opposite directions. As most precisely used, the term amplification factor refers to infinitesimal changes.

1E62
Class A Amplifier:* An amplifier in which the grid blas and the alternating grid voltages are such that plate current in a specific tube flows at all times.

1E69
The ideal class A amplifier is one in which the alternating component of the plate current is an exact reproduction of the form of the alternating grid voltage, and the plate current flows during the 360 electrical degrees of the cycle. The characteristics of a class A amplifier are low efficiency and output.

Class AB Amplifier: * An amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows for appreciably more than half but less than the entire electrical cycle.

1 E70
The characteristics of a class AB amplifier are efflciency and output intermediate to those of a class \mathbf{A} and a class B amplifier. The idle plate current and attendant dissipation may be made substantially less than is possible with class A amplifiers. This amplifier has been called class A prime.

[^2]
DEFINITIONS

(continued from preceding page)
Class B Amplifier: * An amplifier in which the grid blas is approximately equal to the cutoff value so that the plate current is approximately zero when no exciting grid voltage is applied and so that plate current in a specific tube flows for approximately one half of each cycle when an alternating grid voltage is applied.

1E71
The ideal class B amplifier is one in which the alternating component of plate current is an exact replica of the alternating grid voltage for the half cycle when the grid is positive with respect to the blas voltage, and the plate current flows during 180 electrical degrees of the cycle. The characteristics of a class B amplifier are medium efficiency and output.

Class C Amplifier: * An amplifier in which the grid bias is appreciably greater than the cutoff value so that the plate current in each tube is zero when no alternating grid voltage is applied, and so that plate current in a specific tube flows for appreciably less than one half of each cycle when an alternating grid voltage is applied.

1E72
Class C ampliflers find application where high platecircuit efficiency is a paramount requirement and where departure from linearity between input and output is permissible. The characteristics of a class C amplifier are high plate-circuit efficiency and high power output.

Control-Grid-Plate Transconductance (g_{m}) is the name for the plate-current-to-control-grid-voltage transconductance. This is ordinarily the most important transconductance and is commonly understood when the term "transconductance" is used.

1 E5 6
Formerly it was known as mutual conductance. See definition of Transconductance.

Conversion Transconductance $\left(g_{c}\right)$ is the quotient

[^3]
DEFINITIONS

(continugd from wrecedins page)

of the magnitude of a single beat.-frequency component $\left(f_{1}+f_{2}\right)$ or ($f_{1}-f_{2}$) of the output-electrode current by the magnitude of the control-electrode voltage of frequency f_{1}, under the conditions that all direct electrode voltages and the magnitude of the electrode alternating voltage f_{2} remain constant and that no impedances at the frequencies f_{1} or f_{2} are present in the output circuit. As most precisely used, the term refers to infinitesimal changes. 1E60

When the performance of a frequency converter is determined, conversion transconductance is used in the same way as transconductance is used in singlefrequency amplifier computations.

Deflection Factor of a cathode-ray oscillograph tube is the reciprocal of the deflection sensitivity. 3 Ell

Deflection Sensitivity of a cathode-ray oscillograph tube is the quotient of the displacement of the electron beam at the place of impact by the change in the deflecting field. It is usually expressed in millimeters per volt applied between the deflecting electrodes or in millimeters per gauss of the deflecting magnetic field.

3 E 10
Direct Capacitance between two electrodes in a multielectrode tube is the ratio of the charge placed on either electrode to its resulting change in potential above the other electrode when all remaining ($n-2$) electrodes are at the potential of the first electrode, the charge placed on the second electrode being equal to the sum of the charges placed on all the other electrodes.

Electrode Current is the current passing to or from an electrode through the vacuous space.

1 E39
The terms grid current, anode current, plate current, etc., are used to designate currents passing to or from these specific electrodes.

Electrode Dissipation is the power dissipated in the

DEFINITIONS

(continued from preceding page)

form of heat by an electrode as a result of electron and/or ion bombardment.

1E46
Electrode Voltage is the voltage between an electrode and a specifled point of the cathode. 1E40

The terms grid voltage, a node voltage, plate voltage, etc., are used to designate the voltage between these specific electrodes and the cathode.

Gas Amplification Factor of a phototube is the factor of increase in the sensitivity of a gas phototube due solely to the ionization of the contained gas. For a gas phototube having a structure such as to permit saturation to occur at a voltage (approximately 25 volts) less than that causing appreciable ionization, the gas amplification factor at a specified operating voltage is the ratio of the sensitivity measured at that voltage to the sensitivity measured at the saturation voltage.

4 E5
Grid Driving Power is the average product of the instantaneous value of the grid current and of the alternating component of the grid voltage over a complete cycle. This comprises the power supplied to the blasing device and to the grid.

1E42
Input Capacitance of a vacuum tube is the sum of the direct capacitances between the control grid and the cathode and such other electrodes as are operated at the alternating potential of the cathode. This is not the effective input capacitance, which is a function of the impedances of the associated circuits. 1E67

Modulation Factor in an amplitude-modulated wave is the ratio of half the difference between the maximum and minimum amplitudes to the average amplitude.

In linear modulation the average amplitude or the envelope is equal to the amplitude of the unmodulated wave, provided there is no zero-frequency com-

DEFINITIONS

(continued from preceding page)

ponent In the modulating signal wave (as in telephony). For modulating signal waves having unequal positive and negative peaks, positive and negative modulation factors may be defined as the ratios of the maximum departures (positive and negative) of the envelope from its average value to its average value. (Sce Porceutage Monination.)

Mu-Factor (μ-factor) is the ratio of the change in one electrode voltage to the change in another electrode voltage, under the conditions that a specified current remains unchanged and that all other electrode voltages are maintained constant. It is a measure of the relative effect of the voltages on two electrodes upon the current in the circuit of any specified electrode. As most precisely used, the term μ-factor refers to infinitesimal changes. 1E61

Output Capacitance of a vacuum tube is the sum of the direct capacitances between the output electrode (usually the plate) and the cathode and such other electrodes as are operated at the alternating potential of the cathode. This is not the effective output capacitance, which is a function of the impedances of the associated circuits.

1E68
Peak Forward Plate Voltage is the maximum instantaneous plate voltage in the direction in which the tube is designed to pass current.

1E43
Peak Inverse Plate Voltage is the maximum instantaneous plate voltage in the direction opposite to that in which the tube is designed to pass current.

1E44
Peak Plate Current is the maximum instantaneous plate current passing recurrently through the tube in the direction of normal current flow.

Percentage Modulation is the modulation factor expressed in per cent.

1T-40
Plate Resistance is the quotient of the alternating

DEFINITIONS

(continued from preceding page)

plate voltage by the in-phase component of the alternating plate current, all other electrode voltages being maintained constant. This is the effective parallel resistance and is not the real component of the electrode impedance. As most precisely used, the term refers to infinitesimal amplitudes.

Sensitivity of a phototube is basically deflned as the quotient of the current through the tube by the radiant flux received by the cathode. The term "radiant flux" includes both visible radiation (light) and invisible infra-red and ultra-violet radiation. When stated in accordance with this basic deflnition, sensitivity is usually given in terms of microamperes per microwatt of radiant flux.

For convenience, sensitivity is frequently stated in terms of visible radiation only, and is then known as Luminous Sensitivity. When so stated, it is usually expressed in terms of microamperes per lumen of light flux, and depends on the color of the light or the spectral distribution of the radiant flux used to excite the phototube.

2870 Tungsten Sensitivity is the luminous sensitivity when the incident luminous flux is produced by a tungsten-filament lamp at a color temperature of 2870 degrees Kelvin.

When a phototube is used under steady illumination, its luminous sensitivity is known as Static Luminous Sensitivity. This is deflned as the direct anode current produced by the light flux divided by the incident light flux of constant value.

When the light input to a phototube varies, as at audio frequency in sound reproduction, the luminous sensitivity is identified as Dynamic Sensitivity, and may be conveniently defined as the quotient of the amplitude of variation in anode current to the amplitude of variation in light input.

In high-vacuum phototubes, the dynamic sensitivity

DEFINITIONS

(continued from preceding page)

is ordinarily independent of frequency. In gas phototubes, the dynamic sensitivity falls off at the higher frequencies because there is a time lag between the current component produced by the secondary electrons resulting from excited atoms and positive ions arriving at the cathode. As the phase difference between these two components increases with increasing frequency of light variation. the net current variation decreases with consequent reduction in sensitivity. In the application of gas phototubes to audio frequencies, this effect is relatively unimportant but can be compensated for, if desired, in the design of the assoclated amplifier.

In the design of equipment utilizing phototubes, consideration should always be given to the effect of the time constant of the circuit consisting of the phototube and its associated load in reducing the performance capability of the phototube with increasing frequency.

Transconductance from one electrode to another is the quotient of the in-phase component of the alternating current of the second electrode by the alternating voltage of the first electrode, all other electrode voltages being maintained constant. As most precisely used, the term refers to infinitesimal amplitudes.

1E55
Tube Voltage Drop in a gas or vapor-filled tube is the plate voltage during the conducting period.

1 E 45

TUBE RATINGS

AND THEIR SIGNIFICANCE

A rating is a designation, as established by deflnite standards, of an operating limit of a tube. Tubes are rated by either of two systems, i.e., the "absolute maximum" gystem or the "design-center maximum' system. Of the two, the absolute maximum system is the older and dates back to the beginning of tubes. With either system, each maximum rating for a given tube type must be considered in relation to all other maximum ratings for that type, so that no one maximum rating will be exceeded in utilizing any other maximum rating. For convenience in referring to these two systems, the former will hereinafter be called the "absolute system," and the latter, the "design-center system."

In the absolute system,* the maximum ratings shown for each type thus rated are limiting values above which the serviceability of the tube may be impaired from the viewpoint of life and satisfactory performance. Therefore, in order not to exceed these absolute ratings, the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by an amount such that the absolute values will never be exceeded under any usual condition of supply-voltage variation, load variation, or manufacturing variation in the equipment itself.

The equipment should be designed to operate the filament or heater of each tube type at rated normal value for full-load operating conditions under average voltage-supply conditions. Variations from this normal value due to voltage-supply fluctuation or other causes, should not exceed ± 5 per cent unless otherwise specified by the tube manufacturer.

[^4]
TUBE RATINGS

(continued from preceding page)

In the design-center system** adopted by the re-ceiving-tube industry late in 1939, the maximum ratings shown for each type thus rated are working design-center maximums. The basic purpose underlying this system is to provide satisfactory average performance in the greatest number of equipments on the premise that they will not be adjusted to local power-supply conditions at time of installation. In the setting up of design-center ratings, consideration has been given to three important kinds of power supply commonly in use, i.e., a-c and d-c power lines, storage battery with connected charger, and dry batteries.

In the case of a-c or d-c power lines, the maximum ratings for tubes rated according to the designcenter system have been chosen so that the tubes will give satisfactory performance at these maximum ratings in equipment operated from powerline supplies whose normal voltage including normal variations fall within ± 10 per cent of a specified center value. In other words, it is basic to the design-center system of ratings for tubes operated from power-line supplies that filaments or heaters as well as positive- and negative-potential electrodes may have to operate at voltages differing as much as ± 10 per cent from their rated values. It also recognizes that equipment may occasionally be used on power-line supplies outside the normal range, but since such extreme cases are the exception, they should be handled by adjustment made locally.

The choice of ± 10 per cent takes care of voltage differences in power lines in the U.S.A. where surveys have shown that the voltages delivered fall within ± 10 per cent of 117 volts. Therefore, satisfactory performance from tubes rated according to the design-center system will ordinarily be obtained

[^5]
TUBE RATINGS

(continued from preceding page)

anywhere in the U.S.A. in equipment designed so that the design-center maximum ratings are not exceeded at a line-voltage-center value of 117 volts. While 117 volts represents present-day conditions, the design-center system permits the utilization of a new line-center value as new surveys may indicate the necessity for such a chalige.

In the case of storage-battery-with-charger supply or similar supplies, the normal battery-voltage fluctuation may be as much as 35 per cent or more. This fluctuation imposes severe operating conditions on tubes. Under these conditions, latitude for operation of tubes is provided for by the stipulation that only 90 per cent of the design-center maximum values of plate voltages, screen-supply voltages, dissipations, and rectifier output currents is never exceeded for a terminal potential at the battery source of 2.2 volts per cell. While a tube's operating voltages in this service will at times exceed the maximum values, satisfactory performance with probable sacrifice in life will be obtained.

In the cases of dry-battery supply and rectifled a-c supply for 1.4 -volt tubes, recommended design practice is given in RMA Standard M8-210.

RMA Standard M8-210 (Jan. 8, 1940 Rev. 11-40) is reproduced here for the convenient reference of design engineers with permission of the Engineering Department of the Radio Manufacturers Association. Although worded to cover only receiving tubes, it can be applied to any tube having design-centersystem ratings.

It shall be standard to interpret the ratings on receiving types of tubes according to the following conditions:

1. (ATHODE-The heater or flament voltage is given as a normal value unless otherwise stated. This means that transformers or resistances in the heater or fllament circuit should be designed to op-

TUBE RATINGS

(continued from preceding page)

erate the heater or filament at rated value for fullload operating conditions under average supplyvoltage conditions. A reasonable amount of leeway is incorporated in the cathode design so that moderate fluctuations of heater or filament voltage downward will not cause marked falling off in response; also, moderate voltage fluctuations upward will not reduce the life of the cathode to an unsatisfactory degree.
A. 1.4-Volt Battery Tube Types-The filament power supply may be obtained from dry-cell batteries, from storage batteries, or from a power line. With dry-cell battery supply, the filament may be connected either directly across a battery rated at a terminal potential of 1.5 volts, or in series with the filaments of similar tubes across a power supply consisting of dry cells in series. In either case, the voltage across each 1.4 -volt section of filament should not exceed 1.6 volts. With power-line or storage-battery supply, the filament may be operated in series with the filaments of similar tubes. For such operation, design adjustments should be made so that, with tubes of rated characteristics, operating with all electrode voltages applied and on a normal line voltage of 117 volts or on a normal storage-battery voltage of 2.0 volts per cell (without a charger) or 2.2 volts per cell (with a charger), the voltage drop across each 1.4 -volt section of filament will be maintained within a range of 1.25 to 1.4 volts with a nominal center of 1.3 volts. In order to meet the recommended conditions for operating filaments in series from dry-battery. storage-battery, or power-line sources it may be necessary to use shunting resistors across the individual 1.4 -volt sections of filament.
13. 2.0-Volt Battery Tube Types-The 2.0 -volt line of tubes is designed to be operated with 2.0 volts across the filament. In all cases the operat-

TUBE RATINGS

(continued from preceding page)

ing voltage range should be maintained within the limits of 1.8 volts to 2.2 volts.
2. POSITIVE POTENTIAL ELECTRODES - The power sources for the operation of radio equipment are subject to variations in their terminal potential. Consequently, the maximum ratings shown on the tube-type data sheets have been established for certain Design Center Voltages which experience has shown to be representative. The Design Center Voltages to be used for the various power supplies together with other rating considerations are as given below:
A. AC or DC Power Line Service in U.S.A.-The design center voltage for this type of power supply is 117 volts. The maximum ratings of plate voltages, screen-supply voltages, dissipations, and rectifier output currents are design maximums and should not be exceeded in equipment operated at a line voltage of 117 volts.
B. Storage-Battery Service-When storage-battery equipment is operated without a charger, it should be designed so that the published maximum values of plate voltages, screen-supply voltages, dissipations, and rectifier output currents are never exceeded for a terminal potential at the battery source of 2.0 volts per cell. When storagebattery equipment is operated with a charger, it should be designed so that 90% of the same maximum values is never exceeded for a terminal potential at the battery source of 2.2 volts.
C. "B"-Battery Service-The design center voltage for " B " batteries is the normal voltage rating of the battery block, such as 45 volts, 90 volts, etc. Equipment should be designed so that under no condition of battery voltage will the plate voltages, the screen-supply voltages, or dissipations ever exceed the recommended respective maximum values shown in the data for each tube type by more than 10%.

TUBE RATINGS

（continued from preceding page）

D．Other Considerations

a．Class A_{1} Amplifiers－The maximum plate dissipation occurs at the＂Zero－Signal＂condi－ tion．The maximum screen dissipation usually occurs at the condition where the peak－input signal voltage is equal to the bias voltage．
b．Class B Amplifiers－The maximum plate dissipation theoretically occurs at approxi－ mately 63% of the＂Maximum－Signal＂condi－ tion，but practically may occur at any signal voltage value．
c．Converters－The maximum plate dissipation occurs at the＂Zero－Signal＂condition and the frequency at which the oscillator－developed bias is a minimum．The screen dissipation for any reasonable variation in signal voltage must never exceed the rated value by more than 10% ．
d．Screen Ratings－When the screen voltage is supplied through a series voltage－dropping re－ sistor，the maximum screen voltage rating may be exceeded，provided the maximum screen dis－ sipation rating is not exceeded at any signal condition，and the maximum screen voltage rating is not exceeded at the maximum－signal condition．Provided these conditions are ful－ filled，the screen－supply voltage may be as high as，but not above，the maximum plate voltage rating．

3．TYPICAL OPERATION－For many receiving tubes，the data show typical operating conditions in particular services．These typical operating values are given to show concisely some guiding informa－ tion for the use of each type．They are not to be considered as ratings，because the tube can be used under any suitable conditions within its rating limi－ tations．
＊＊＊

TUBE RATINGS

(continued from mreceding page)

RECEIVING TUBES

The ratings of all receiving tubes currently used in new equipment are set up according to the designcenter system. Older and obsolescent types of receiving tubes still have absolute maximum ratings becaupe these types are uned only for renewal purposes and, therefore, design-center values are of no practical value. lieceiving-tube types rated on the design-center system are identified in the leceivingTube section either by a large star in the index corner of each data page or by the statenent "Maximum Ratings Are Design-Center Values" preceding the ratings on each data page.

TRANSMITTING TUBES

The ratings of transmitting tubes grouped in the Transmitting-Tube Section are on the basis of the absolute system. This system enables the transmitter design engineer to choose his design values so as to obtain maximum performance within the tube ratings. Such design procedure has been considered practical for large transmitters where adequate controls are usually incorporated in the design, and ordinarily an experienced operator is present to make any necessary adjustments.

The maximum ratings given for each transmitting type on its data pages apply only when the type is operated at frequencies lower than some specified value which depends on the design of the type. As the frequency is raised above the specified value, the radio-frequency currents, dielectric losses, and heating effects increase rapidly. Most types can be operated above their specified maximum frequency provided the plate voltage and plate input are reduced in accordance with the information given in the table "Transmitting-Tube Ratings vs Operating Frequency" in the front part of the TransmittingTube Section.

For certain air-cooled transmitting tubes, two sets

TUBE RATINGS

（continued from preceding page）
of absolute maximum values are shown to meet di－ versified design requirements．One set is designated as CCS（Continuous Commercial Service）ratings， while the other is called ICAS（Intermittent Com－ mercial and Amateur Service）ratings．

Continnous Commercial service is defined as that type of service in which long tube life and reliability of performance under continuous operating condi－ tions are the prime consideration．To meet these requirements，the CCS ratings have been established．

Intermittent commercial and Anateur Service is de－ fined to include the many applications where the transmitter design factors of minimum size，light weight，and maximum power output are more im－ portant than long tube life．These various factors have been taken into account in establishing the ICAS ratings．

Under the ICAS classification are such applications as the use of tubes in amateur transmitters，and the use of tubes in equipment where transmissions are of an intermittent nature．The term＂intermittent＂ is used to identify operating conditions in all appli－ cations other than amateur in which no operating or＂on＂period exceeds 5 minutes and every＂on＂ period is followed by an＂off＂or standby period of at least the same or greater duration．

ICAS ratings are considerably higher than CCS ratings．They permit the handling of greater power， but tube life under ICAS conditions，of course，is reduced．However，the transmitter designer may very properly decide that a small tube operated with ICAS ratings better meets his requirements than a larger tube operated with CCS ratings．Although such use involves some sacrifice in tube life，the period over which tubes will continue to give satis－ factory performance in intermittent service can be extremely long depending on the exact nature of the service．

TUBE RATINGS

(continued from preceding page)

The choice of tube operating conditions best fitted for any particular application should be based on a careful consideration of all pertinent factors.

RECTIFIER TUBES

Rectifier tubes used princlpally in recciving equipment are rated according to the design-center system, while those used primarily in transmitting and laboratory equipment are rated according to the absolute system. The method of identifying which rating system is used for any rectifier tube in this Handbook is the same as that for other tubes in the particular section of the Handbook in which data for the rectifier tube are given.

The ratings of rectifier tubes are based on fundamental limitations in the operation of the tubes themselves, and in general include the following: maximum peak inverse plate voltage, maximum peak plate current, and maximum d-c output current.

Maximum peak inverse plate voltage is the highest instantaneous plate voltage which the tube can withstand recurrently in the direction opposite to that in which it is designed to pass current. For mercuryvapor tubes and gas-filled tubes, it is the safe top value to prevent arc-back in the tube operating within the specified temperature range.

In determining peak inverse plate voltage on a rectifier tube in a particular circuit, the equipment designer should remember that the relations between peak value of inverse plate voltage, rms value of input voltage, and average value of output voltage, depend largely on the characteristics of the particular rectifier circuit and the power supply. Furthermore, the presence of transients, such as line surges and keying surges, or waveform distortion, may raise the actual inverse plate voltage to a peak higher than that calculated for sine-wave voltages. Therefore, the actual inverse plate voltage on a rec-

TUBE RATINGS

(continued from preceding page)
tifier tube should never exceed the maximum peak inverse plate voltage rating for that tube. The peak inverse plate voltage may be determined with an electronic peak voltmeter of the self-contained battery type.

In single-phase, full-wave rectifler circuits with sinewave input and pure resistance load, the peak inverse plate voltage is approximately 1.4 times the rms value of the plate-to-plate voltage supply. In single-phase, half-wave circuits with sine-wave input and pure resistance load, the peak inverse plate voltage is approximately 1.4 times the rms value of the plate voltage supply, but with condenser input to filter, the peak inverse plate voltage may be as high as 2.8 times the rms value of the plate voltage supply.

Maximum peak plate current is the highest instantaneous plate current that a tube can safely carry recurrently in the direction of normal current flow. The safe value of this peak current in hot-cathode types of rectifier tubes is a function of the electron emission available and the duration of the pulsating current flow from the rectifier tube in each halfcycle.

The value of peak plate current in a given rectifier circuit is largely determined by filter constants. If a large choke is used at the filter input, the peak plate current is not much greater than the load current; but if a large condenser is used at the filter input, the peak current may be many times the load current. In order to determine accurately the peak plate current in any rectifier circuit, the designer should measure it with a peak-indicating meter or use an oscillograph.

Maximum d-c output current is the highest average plate current which can be handled continuously by a rectifier tube. Its value for any rectifier tube type is based on the permissible plate dissipation of that type. Under operating conditions involving a rapidly

TUBE RATINGS

(continued from preceding page)

repeating duty cycle (steady load), the average plate current may be measured with a d-c meter. In the case of certain mercury-vapor tubes where the load is fluctuating, it is necessary to determine the average current over the time interval specified on the data pages for these types.

In addition to the above ratings for rectifier tubes, other ratings may be set up for a rectifier tube when the service in which the tube is to be used makes such ratings essential for satisfactory performance. Such ratings are: maximum surge plate current, and maximum heater-cathode potential.

Maximum surge plate current is the highest value of abnormal peak currents of short duration that should pass through the rectifier tube under the most adverse conditions of service. This value is intended to assist the equipment designer in a choice of circuit components such that the tube will not be subjected to disastrous currents under abnormal service conditions approximating a short circuit. This surge-current rating is not intended for use under normal operating conditions because subjecting the tube to the maximum surge current even only once may impair tube life. If the tube is subjected to repeated surge currents, its life will be seriously reduced or even terminated.

Maximum heater-cathole potential is the highest instantaneous value of voltage that a rectifier tube can safely stand between its heater and cathode. This rating is applied to certain rectifier tubes having a separate cathode terminal and used in applications where excessive potential may be introduced between heater and cathode. For convenience, this rating is usually given as a d-c value.

CATHODE-RAY TUBES

The ratings of some cathode-ray tubes are set up on the absolute system while others are set up on the design-center system. Initially, cathode-ray tubes

TUBE RATINGS

(continued from preceding page)

were all rated according to the absolute system. With the advent of television which presented design conditions similar to those in the receiving-set field, the method of rating popular types of cathoderay tubes was changed to the design-center system. More recently, because of procedure standardized by the RMA Cathode-Ray-Tube Committee, newer types of cathode-ray tubes are being rated on the absolute system. Cathode-ray types rated according to the design-center system are identifled in the Cathode-IRay Types Section by a statement to that effect just ahead of the maxinum ratings on each data page. The data pages of types rated according to the absolute system have either (1) no identifying statement as to the rating system, or (2) an identifying statement that the ratings are according to the absolute system.

PHOTOTUBES

The ratings of all phototubes in the Phototube Section are on the absolute maximum basis. This basis enables the designing engineer to choose design values so as to obtain optimum performance within tube ratings. In the case of gas phototubes, the value to which the plate voltage and the plate current can be raised is abruptly limited by ionization effects. If these are allowed to occur, they may ruin the photosurface almost instantly. While phototubes in general might be rated on the design-center basis, such a procedure, with provision for an adequate factor of safety to take care of all conditions of operation, would impose undue limitations on the use of gas phototubes.

MISCELLANEOUS SPECIAL TUBES

The ratings of some of the various tube types grouped in the Miscellaneous-Types Section are according to the design-center system while others are according to the absolute system. Miscellaneous types rated on the design-center basis are identifled

TUBE RATINGS

(rontinued from preceding page)

by a statement to that effect on the data pages or else refer back for ratings to a receiving-tube type whose rating basis is explained under TLBE RATIN(is-lieceiving Tubes, The data pages of types rated according to the absolute system have either (1) no identifying statement as to the rating system, or ((\underline{z}) an idendifing atatement ehat the ratings are according to the absolute system,

CHARACTERISTICS and TYPICAL OPERATING CONDITIONS

In addition to showing the ratings of each tube type, the data pages for many of the types in this Handbook include "characteristics," such as amplification factor, plate resistance, and transconductance, which help to distinguish between the electrical features of the respective types. Usually, the characteristics shown for any type are obtained for that type in class A service: where class A data are given for the type, the characteristics are included with that data for convenience. Based on a large number of tubes of a given type, the values shown for these characteristics are average values.

Hange of Characteristics-The equipment designer should bear in mind that individual tubes of a given type may have characteristics values either side of the average values shown for the type. He should also realize that these characteristics change during the life of individual tubes. In designing equipment, therefore, he should allow for the maximum cumulative variation of any characteristic from the average value of that characteristic as shown in the tabulated data for the type. The exact percentage of the variation will be different for different types of tubes depending on the design of the tubes and their intended application, but in general the designer should consider a probable plus or minus variation of not less than 30 per cent.

Furthermore, the equipment designer should recog-

TUBE RATINGS

(continued from preceding page)
nize the desirability of designing equipment so that the full range of the operating characteristics of tubes will be utilized. If this practice is not followed, he imposes on the equipment user special replacement problems in that the user will have to select tubes suitable for use in the equipment, and may not be able to obtain the full life capability of such tubes.

Typical Operating Values-Also included on the data pages is information on typical operating conditions for most of the various tubes when used in particular services. These typical operating values are intended to show concisely some guiding information for the use of each type. They must not be considered as ratings because each type can, in general, be used under any suitable conditions within its rating limitations. In referring to these values for transmitting tubes, it should be noted that the power output value is not a rating. It is an approximate tube output, i.e., tube input minus plate loss. Circuit losses must be subtracted from tube output in determining useful output.

Datum loint for Electrole l'otentials-In the data for any type in the Handbook, the values for grid bias and positive-potential-electrode voltages are given with reference to a specified datum point as follows. For types having filaments heated with d.c., the negative filament terminal is taken as the datum point to which other electrode voltages are referred. For types having filaments heated with a.c., the mid-point (i.e., the center tap on the fila-ment-transformer secondary, or the mid-point on a resistor shunting the filament) is taken as the datum point. For types having equipotential cathodes indirectly heated, the cathode is taken as the datum point.

Grid blias vs Filament Excitation-If the filament of any type for which data are given on a d-c basis is to be operated with an a-c supply, the given grid

TUBE RATINGS

(continued from preceding page)

blas should be increased by an amount approximately equal to one half the rated fllament voltage and be referred to the flament mid-point. Conversely, if it is required to use d-c filament excitation on any flament type for which the data are given on an a-c basis, the grid-bias values as given on the data pages should be decreased by an amount approximately equal to one half the rated filament voltage and be referred to the negative flament terminal instead of the mid-point as in a-c operation.

In practice, the necessity for following this rule depends on circuit conditions and operating requirements. If the bias is relatively small compared with the filament voltage and hum is a consideration, adjustment of the grid bias is ordinarily essential. Conversely, if the blas is relatively large compared with the filament voltage, adjustment of the grid blas may be unnecessary.

When filament excitation of tubes used as Audio Amplifiers is changed from d.c to a.c., the grid return should, in general, be shifted to the mid-point of the filament circuit to minimize hum, and the bias adjusted accordingly. When the excitation is changed from a.c. to d.c., blas adjustment depending on the relative values of bias and filament voltage may be required to provide the full signalhandling capability of the tubes.

When filament excitation of tubes used as R-F Amplifiers is changed, bias adjustment is not required unless the change makes the circuit critical as to hum or signal-handling capability. For example, in class C amplifiers, the bias is usually so large in comparison with the filament voltage that adjustment is generally unnecessary.

Grid Current and Driving Power-The typical values of d-c grid current and driving power shown for triodes and tetrodes in class B r-f service and in class C service are subject to variations depending on the impedance of the load circuit. High-impe-

[^6]
TUBE RATINGS

(continued from preceding page)
dance load circuits require more grid current and driving power to obtain the desired output. Lowimpedance circuits need less grid current and driving power, but plate-circuit efficiency is sacrificed. In comparison, the $d-c$ grid current and driving power shown for beam tubes and pentodes in class B $r-f$ service and in class C service are not as critical to variations in load-circuit conditions. In any event, sufficient grid current should be used so that the stage is "saturated," i.e., so that a small change in grid current results in negligible change in power output. Regardless of the type of tube used, the driving stage should have a tank circuit of good regulation and should be capable of delivering power in excess of the indicated power by a factor of several times.

TYPES OF CATHODES

AND THEIR USE

In electron tubes, a cathode is an electrode which is the primary source of electron or ion emission. There are two broad classes of cathodes, i.e., hot and cold. "Hot cathodes" are defined as cathodes which are heated or otherwise operate at elevated temperature (frequently incandescent) in order to function as emitters. In contrast, "cold cathodes" are defined as cathodes which do not rely on heat or on elevated temperature in order to function as emitters.

HOT CATHODES

Hot cathodes commonly in use in electron tubes are classified as directly heated, indirectly heated, and ionic-heated.

A directly heated cathode, or filament-cathode, is a wire or ribbon which is heated by the passage of current through it. It is further classified by identifying the filament material or the electron-emitting material. Such materials in regular use are pure tungsten, thoriated tungsten, and metals coated with alkaline-earth oxides. Each of these materials has distinctive advantages which are utilized in the design of tubes for particular applications.

PURE-TUNGSTEN FILAMENTS are used in certain tubes, especially those for high-voltage transmitting service. Since these filaments must operate at a high temperature of about $2500^{\circ} \mathrm{C}$ (a dazzling white) to emit sufficient electrons, a relatively large amount of filament power is required. The operating life of these filaments is determined by the rate of tungsten evaporation. Their fallure, therefore, occurs through decreased emission or burn-out.

Pure-tungsten filaments give best life performance when they are operated so as to conserve their emitting capability. They are designed with voltage and current ratings in accord with the service expected of the particular tube type. However, in applications where the normal emission at rated voltage is not

(act

- TYPES OF CATHODES

(contInued from preceding page)
required, the filament can be operated at a somewhat reduced voltage. The extent of the reduction depends on the peak emission requirements of the application as well as on the percentage regulation of the filament voltage. When these are known, the correct operating filament voltage for any tungstenfilament type can be calculated from its filamentemission characteristic. The permissible regulation in transmitters may be checked by reducing the filament voltage (with the transmitter under normal operation) to a value such that reduction in output can just be detected. The filament voltage must then be increased by an amount equivalent to the maximum percentage regulation of the filament-supply voltage and then increased further by approximately 2 per cent to allow for minor variations in emission of individual tubes. It follows that the better the regulation, the less the flament operating voltage and, therefore, the longer the filament life.

It should be noted that a reduction of 5 per cent in the filament voltage applied to tubes with pure-tungsten filaments will approximately double their life. A reduction of 15 per cent will increase the filament life almost tenfold.

During long or frequent standby periods, pure-tung-sten-filament tubes may be operated at decreased filament voltage to conserve life. When the average standby time is an appreciable portion of the average duty cycle and is less than 2 hours, it is recommended that the filament voltage of all but the largest types be reduced to 80 per cent of normal; and that for longer periods, the filament power be turned off. For the largest types, such as the 898, it is recommended that the filament voltage be reduced to 80 per cent of normal during standby operation up to 12 hours; and that for longer periods, the filament power be turned off.

For turning on filament power, a filament starter should be used so as to increase the voltage gradually and to limit the high initial rush of current through

TYPES OF CATHODES

(eontinuod from irpereding page)
the filament. It is important that the filament cur rent never exceed, even momentarily, a value of more than 150 per cent of normal, unless the tube data specify otherwise. Similarly, as an added precaution, the filament power should be turned off gradually to prevent cooling strains in the filament.

THORIATED-TUNGSTEN FILAMENTS are now used mainly in certain transmitting and special tubes. Thoriated-tungsten filaments are made from tungsten impregnated with thoria. Due to the presence of thorium, these filaments liberate electrons at a more moderate temperature of about $1700^{\circ} \mathrm{C}$ (a bright yellow), and are, therefore, much more economical of filament power than are pure-tungsten filaments. The operating life of thoriated-tungsten filaments is ordinarily ended by a decrease in electron emission. Decreased emission, however, may be caused by the accidental application of too high filament, screen, or plate voltage. If the over-voltage has not been continued for a long time, the activity of the filament can of ten be restored by operating the filament at its normal voltage for 10 min utes or longer without plate, screen, or grid voltage. The reactivation process may be accelerated by raising the filament voltage to not higher than 120 per cent of normal value for a few minutes. This reactivation schedule is of ten effective in restoring the emission of thoriated-tungsten filaments in tubes which have failed after normal service. Sometimes a few hundred hours of additional life may be obtained after reactivation.

The operating voltage of a thoriated-tungsten filament should, in general, be held to within ± 5 per cent of its rated value. However, in transmitting applications where the tube is lightly loaded, the filament may be operated on the low side-as much as 5 per cent below normal voltage. As conditions require, the voltage should be increased gradually to maintain output. Toward the end of life, addjtional service may be obtained by operating the fila-

TYPES OF CATHODES
(continued from preceding pase)
ment above its rated voltage. It should be noted that a tube having a thoriated-tungsten flament should never be operated under emission-limited conditions since this type of operation may overheat the tube and cause permanent loss of emission.

During standby periods in transmitting service, tho-riated-tungsten filaments may be operated according to the following recommendations to conserve life. For short standbys of less than 15 minutes duration, the filament voltage of all but the largest types should be reduced to 80 per cent of normal; for longer periods, the filament power should be turned off. For the largest types, such as the $827-\mathrm{H}$ and 861 , it is recommended that the filament voltage be reduced to 80 per cent of normal during standby operation up to 2 hours; and that for longer periods, the filanient power be turned off.

COATED FILAMENTS are used in receiving tubes, certain transmitting tubes, most mercury-vapor rectifiers, and some special tubes. Coated filaments employ a relatively thick coating of alkaline-earth compounds on a metallic base as a source of electronic emission. The metallic base carries the heating current. These filaments operate at a low temperature of about $800^{\circ} \mathrm{C}$ (a dull red) and require relatively little power to produce a copious supply of electrons.

For proper performance of these types, rated filament voltage should, in general, be applied at the filament terminals. However, when coated-filament, high-vacuum tubes are used in transmitting service with light loading, the filament voltage may be reduced as much as 5 per cent below normal to conserve life. Then, as conditions require, the voltage should be increased gradually to maintain output. Toward the end of life, the gradual increase may be carried above rated filament voltage to obtain additional service. In the case of gas or vapor tubes, it is important that these types be operated, in general, at rated filament voltage. However, if the line regu-

(10t)

TYPES OF CATHODES

(continued from preceding page)
lation regularly and consistently does not exceed 1 to 2 per cent, it is practical to reduce the filament voltage slightly (not over 5 per cent) with benefit to tube life.

During standby periods of less than 15 minutes, the filament voltage of quict-hexting. high-vacuum types, such as the 1616 and 1624 , should be reduced to 80 per cent of normal; for longer periods, the filament power should be turned off. In contrast, the voltage of coated flaments in gas or vapor tubes should not be reduced during standbys except under conditions explained in the preceding paragraph. In general, the filament voltage of small and medium types, such as the $866-\mathrm{A} / 866$ and $872-\mathrm{A} / 872$, should be maintained at normal rated value during standbys up to 2 hours; for longer periods, the filament power should be turned off. For large types, such as the $857-\mathrm{B}$, the filament voltage should be maintained at normal rated value luring standbys up to 12 hours; for longer periods, the filament power should be turned off.

After having given normal service or after having been operated at excessive voltage, coated flaments lose their emission. When such is the case, their usefulness may be considered as terminated.

An indirectly heated cathole, or heater-cathode, consists of a heater wire enclosed in a thin metal sleeve coated on the outside with electron-emitting material similar to that used for coated filaments. The sleeve is heated by radiation and conduction from the heater through which current is passed. Useful emission does not take place from the heater wire. An important feature of this kind of cathode construction is that the functions of heating and emission can be independent of each other.

HEATER-CATHODES, or unipotential cathodes as they are frequently called, are used in high-vacuum tubes operating at low plate voltage, such as recelv-

TYPES OF CATHODES

(continued from preceding page)
ing tubes, low-power transmitting tubes, and small special tubes. They also find application in mercuryvapor tubes and in cathode-ray tubes. Heater-cathodes, like coated filaments, provide a copious supply of electron emission at low cathode temperature (a dull red).

For proper performance of heater-cathode tubes, rated heater voltage should, in general, be applied at the heater terminals. However, when heatercathode high-vacuum tubes are used in transmitting service and are lightly loaded, the heater voltage may be reduced as much as 5 per cent below normal to conserve life. As conditions require, the voltage should be increased gradually to maintain output. Toward the end of life, the gradual increase may be carried above rated heater voltage to obtain additional service.

During standby periods of less than 15 minutes, the heater voltage of high-vacuum tubes should be maintained at normal rated value; for longer periods, the heater power should be turned off. In the case of vapor or gas tubes, the heater voltage should be maintained at normal during standby periods up to 12 hours; for longer periods, the heater power should be turned off.

An ionic-heated cathode is one which liberates electrons when it is subjected to intense positive ion bombardment. The bombardment may be so intense as to raise the temperature of the cathode, frequently causing it to become visibly hot. The ionicheated cathode in radio tubes has found application in gas rectifiers intended primarily for automobile receiver service.

COLD CATHODES

The designation "cold cathode" is commonly used in referring to those cathodes which emit electrons when they are subjected to bombardment by other electrons, ions, or metastable atoms. Cathodes of

TYPES OF CATHODES

(continued from preceding page)

this type are sometimes designated as secondaryemission cathodes. They are used in certain glowdischarge tubes, and also in multiplier phototubes where they contribute to electron multiplication in the successive dynode stages.

Not customarily referred to as cold cathodes, although they are such, is another group of emitters known as photocathodes. By definition, a photocathode is one which emits electrons when it is energized with radiant flux, such as light, infra-red radiation, or ultra-violet radiation. Such cathodes are used in phototubes. When used in gas phototubes, these cathodes not only emit under the influence of radiant flux but also as a result of bombardment and thus become partial secondary-emission cathodes.

Photocathodes are classified according to the spectral response characteristics of their respective photoactive surfaces. The S1 photosurface gives high response to red and near infra-red radiation. The S2 photosurface is similar to the S1 surface but extends somewhat further into the infra-red region. The S3 photosurface has a spectral response characteristic which is closest to that of the eye. The S4 photosurface has exceptionally high response to blue and blue-green radiation with negligible response to red radiation.

Exposure of photocathodes to intense light, such as direct sunlight, may decrease the sensitivity of the tubes in which they are used, even though there is no voltage applied. The magnitude and duration of the decrease depend on the length of the exposure. Permanent damage to a phototube may result if it is exposed to radiant energy so intense as to cause excessive heating of the cathode.

CONVERSION FACTORS

CONVERSION FACTOR NOMOGRAPH

The Conversion Factor Nomograph shown above may be used to determine the approximate characteristics of an electron tube when all the electrode voltages are changed in the same proportion from the published or measured values.

The conversion factors ottained from the nomograph are applicable to triodes, tetrodes, Dentodes, and ream oower tubes when the plate voltage, grid-No. 1 voltage, and grid-No. 2 voltage are changed simultaneously by the same factor. They may be used for any class of tube operation (class $A, A E$, $A B_{2}, B$, or $\left.C\right)$.

The nomograph may be used to determine the oroper value for each conversion factor for a specified relationstio (Fe)

CONVERSION FACTORS

between published or measured values ($E_{\text {pub }}$) and desired values ($E_{\text {des }}$) of operating voltage. The dashed lines on the nomograph indicate the correct procedure for determining each of these conversion factors when it is desired to reduce the operating electrode voltage from 250 to 200 volts.

EXAMPLE

Published characteristics for a typical pentode are list ed below for a plate voltage of 250 volts. If it is desired to determine the characteristics of this tube for a plate voltage of 200 volts, the voltage conversion factor. Fe , is equal to $200 / 250$ or 0.8 . The values for the other conversion factors are obtained from the nomograph. By use of thesc factors characteristics values at aplate voltage of 200 volts are obtained.
$\left.\begin{array}{lrrrr}\text { Published } \\ \text { Value }\end{array} \begin{array}{c}\text { Conversion } \\ \text { Factor }\end{array} \begin{array}{c}\text { Desired } \\ \text { Value }\end{array}\right]$

LIMITATIONS

Because this method for conversion of characteristics is necessarily an approximation, progressively greater errors will be introduced as the voltage conversion factor $\left(\mathrm{Fe}_{\mathrm{e}}=\right.$ $E_{\text {des }} / E_{p u b}$) departs from unity. In general, it may be assumed that results obtained will be approximately correct when the value of F_{e} is between 0.7 and 1.5 . When F_{e} is extended beyond these limits (down to 0.5 or up to 2.0), the accuracy becomes considerably reduced and the results obtained can serve only as a rough approximation.

It should be noted that this method does not take into account the effects of contact potential or secondary emission in electron tubes. Contact potential, however, may safely be neglected for most applications because its effects are noticeable only at very low grid-No. 1 voltages. Secondary emission mayoccur in conventional tetrodes at low plate voltages. For such tubes, therefore, the use of conversion factors should be 1 imited to regions of the plate characteristic in which the plate voltage is greater than the grid-No. 2 voltage. For beam power tubes, the regions of both low plate currents and low plate voltages should also be avoided.

OUTLINES - Glass Tubes

SUBMINIATURE--Flexible-Lead Types

OUTLINE JETEC No.	DIMENSION	
	A.O6 INCHES	B Max. INCHES
$3-1$	1.075	1.375
$3-2$	1.200	1.500
$3-3$	1.450	1.750
$3-4$	2.700	2.000
$3-8$	1.325	1.625
$3-11$	0.950	1.250

OUTLINES-Glass Tubes

SUBMIMIATURE--Small-Button Sub-Minar 8-Pin Base Types

ACORN--Radial 5-Pin Base Type

JETEC No. 4-1

For additional socket design information, see back of "Outlines 3" sheet

OUTLINES - Glass Tubes

ACORN--Radial 5-Pin Base Type with End Terminals

JETEC No.4-3

For additional socket design information. see back of "Outlines 3 " sheet

OUTLINE S - Glass Tubes
ACORN--Radial 7-Pin Base Type

For adatitional socket lestgn information. see back of this sheet

ACORN TYPES

Outlines Glass Tubes

MINIATURE - Miniature 7-Pin Base Types with T5-1/2 Bulbs

DIMENSIONS. IN INCHES

OUTLINE DRAWING NUMBER\qquad	DIMENSIONS (INCHES)			
	A			C
	Max	Min	Max	Max
-	$\therefore \cdot{ }^{\prime}$	- ${ }^{\text {a }}$	$\therefore .044$	1. ${ }^{\text {P }}$
-			\therefore.	
-:			\cdots	

 and ther montum Edake -hetsht it t.
 ranceaner of 41.13^{7} xath l.|t.

 standarid RS'-204(A).

Outlines Glass Tubes

MINIATURE - Noval 9-Pin Base Types
with T6-1/2 Bulbs

OUTLINE DRAWING NUMBER (JEDEC)	DIMENSIONS (INCHES)			
	A	B		C
	Max	Min	Max	Max
-:	-			
2-:		. 3	. 0.06 :	

OIMENSIONS IM INCHES

OUTLINE DRAWING NUMBER (JEDEC)	DIMENSIONS (INCHES)		
	A	8	
	Max	Min	Max
- -	.. 1	. \cdot	-
1-7.0.	\cdots		
		. 70	2. 20.

DIMENSIONS IN INCHES

[^7]
Outlines
 Glass Tubes

DUODECAR-12-Pin Base Types with T9 Bulbs

OUTLINE	DIMENS IONS (INCHES)			
ORAWING NUMBER	A		B	
(JEDEC)	Min.	Max.	Max.	
$9-55$	1.000	1.250	1.625	
$4-55$	1.750	1.500	1.875	
$y-51$	1.500	$1.7 J 0$	2.125	
$9-58$	1.750	.000	2.375	
$9-59$	2.000	2.250	2.625	
$9-60$	2.250	2.500	2.875	
$9-61$	2.500	2.750	3.125	
$9-62$	2.750	3.000	3.375	

DIMENSIONS IN INCHES

- App!ies io minimum diameter except in area of seal.

Outlines with Top Cap

* Applies to minimum diameter except in area of seal.

OUTLINE ORAWING	DIMENSIONS (INCHES)		
	A		B
(JEDEC)	Min.	Max.	Max.
$9-88$	2.000	2.250	2.625
$9-89$	2.250	2.500	2.875
$9-90$	2.500	2.750	3.125
$9-91$	2.750	3.000	3.375
$9-92$	3.000	3.250	3.625
$9-93$	3.250	3.500	3.875
$9-94$	3.500	3.750	4.125
$9-95$	3.750	4.000	4.375

OUTLINE	DIMENSIONS (INCHES)		
ORAWING NUMBER (JEDEC)	A		Bin.
$9-96$	Max.	Max.	
$9-000$	2.250	2.625	
$9-97$	2.250	2.500	2.875
$9-98$	2.500	2.750	3.125
$9-99$	2.750	3.000	3.375
$9-100$	3.000	3.250	3.625
$9-101$	3.250	3.500	3.875
$9-102$	3.500	3.750	4.125
$9-103$	3.750	4.000	4.375

Outlines
 Glass Tubes

DUODECAR—12-Pin Base Types with T12 Bulbs

Aspliae to min+mut diare*er
exreit in area uf seal.
Outlines with Top Cap

DIMENSIONS IN INCHES

- Applies to minimum diameter except in area of seal.

OUTLINE DRAWING NUMBER (JEDEC)	DIMENSIONS (INCHES)		
	A		B
	Min.	Max.	Max.
12-75	2.000	2.250	2.625
12-76	2.250	2.500	2.875
12-77	2.500	2.750	3.125
12-78	2.750	3.000	3.375
12-79	3.000	3.250	3.625
12-80	3.250	3.500	3.875
12-81	3.500	3.750	4.125
12-82	3.750	4.000	4.375

OUTLINE	DIMENSIONS (IMCHES)		
ORAWING NUMBER	A		B
(JEDEC)	Min.	Max.	Max.
$12-83$	2.000	2.250	2.625
$12-84$	2.250	2.500	2.875
$12-85$	2.500	2.750	3.125
$12-86$	2.750	3.000	3.375
$12-87$	3.000	3.250	3.625
$12-88$	3.250	3.500	3.875
$12-89$	3.500	3.750	$\mathbf{1} .125$
$12-90$	3.750	4.000	4.375

Outlines

Glass Tubes

> NüVAR-9-PIn Bose Typús

OUTLINE	DIMENS IONS (INCHES)		
DRAWIING NUMBER (JEDEC)	A		Bin.
	Max.	Max.	
$12-116$	3.500	3.750	4.130

OUTLINE			
DRAWING			
DIMENS IONS	(INCHES)		
NUMBER			
	A		B
(JEDEC)	Min.	Max.	Max.
$12-95$	2.250	2.500	2.880
$12-96$	2.500	2.750	3.130
$12-99$	3.250	3.500	3.800

OUTLIME DRAWING NUMBER (JEDEC)	DIMENSIONS (INCHES)		
	A		B
	Min.	Max.	Max.
9-107	1.750	2.000	2.380
-	2.375	2.625	3.005

[^8]
Outlines

Glass Tubes

OUTLINES-Glass Tubes
 GLASS OCTAL-Octal Base Types with T9 Bulbs

Fig. 1

OUTLINE			DIMENSIOM	
JETEC No.			$\begin{gathered} \text { A } \\ \text { Max. } \\ \text { IMCHES } \end{gathered}$	$\begin{gathered} B \\ \text { Max. } \\ \text { IMCHES } \end{gathered}$
Fig. 1	Fig. 2	Fig. 3		
-	9-1	-	1-3/4*	2-5/16
-	9-7	-	2-1/2	3-1/16
9-41	9-11	9-12	2-3/4	3-5/16
-	9-13	-	2-13/16	3-3/8
-	9-15	-	2-718	3-7/16
-	9-33	-	3-1/4	3-13/16

IETEC NO.9-17

JETEC NO. 9-18

* For electron-lay tudes, the eated ne 3 ht is $1-1: / 1^{n}+1^{1 / 16^{*}-1 / 4 *}$.

OUTLINES-Glass Tubes

GLASS OCTAL--Octal Base Types
with T9 Bulbs

\square

OUTLINES - Glass Tubes

GLASS OCTAL--Octal Base Types with Tl2 Bulbs

OUTLINES-Glass Tubes

GLASS OCTAL--Octal Base Types

OUTLINES-Glass Tubes
 LOCK-IM--Lock-In 8-Pin Base Types

IETER No.9-32

JETEC NO. 9-30

$$
\text { 1ETFr } N \cap . G-31
$$

OUTLINES-Glass Tubes
SMALL 4-PIN, SMALL 5-PIN,

OUTLINES-Glass Tubes

SMALL 4-PIN, SMALL 5-PIN, SMALL 6-PIN, \& MEDIUM 7-PIN BASE TYPES

OUTLINES - Metal Tubes

RCA
OUTLINES - Metal Tubes
KEY

OUTLINES-Glass Tubes

SMALL-BUTTON SUB-MIMAR BASE TYPE

* MEASURED FROM BASE SEAT TO BULB-TOP LINE AS DETERMINED BY A RING GAUGEDF. $21 D^{\prime \prime}$ I.D.

OUTLINES-Glass Tubes

FLEXIBLE-LEAD TYPE

(RCA)

bases

MINIATURE WITH WAFER

SKIRTED MINIATURE

SMALL

SKIRTED MINIATURE

SKIRTED MINIATURE

SMALL WITH TUBULAR SUPPORT

COMMECTOR SHOULE NOT EXEPT MORF IHAN 7 POUMDS RADIAL COMPRESSIEN AT ANY POINT AROUNT THE CIPCUMFFRFNCF OF THY CAP.

JETEC NO.C 1-34 RCA P1O. 3Gい9

, ETEC NO.C1-5
RC A NO. 3903

MEDIUM
 WITH TUBULAR SUPPORT

COANECTCR SHOULD NOT EXERT MORE THAN :O POUNES KADIAL COMPPESSION AT ANY POINT

SKIRTED MEDIUM

AROUSD THE CIRCUMFERFACE OF THE CAF.

BASES
1-TEP世NAL TYFES (CLPS,

(RA)
 BASES

:-TFWN:|NML TYFES IUMPS)

1-TERMINAL TYPES (CAPS)

BASES

DETAILS OF
 RECESSED SMALL BALL CAP \& BULB ASSEMBLY

ALTERNATE EDGE DESIGN

VARIANT SEAL SHAPES

NOTE: PROTRUSION OF GLASS AROUND CAP ABOVE BULB CONTOUR IS LIMITED TO AREA BOUNDED BY CIRCLE CONCENTRIC WITH CAP AXIS AND HAVING RADIUS OF $3 / 4$ MAX.
FOR AT TACHING OR DETACHING, THE CONNECTOR SHOULD REQUIRE NOT MORE THAN 8 POUNDS TOTAL FORCE PERPENDICUL AR TO THE PLANE OF THE RIM OF THE CAP.

ANGLE BETWEEN PLANE OF THE RIM OF CAP ANO PLANE TANGENT TO ORIGINAL CONTOUR OF BULB AT CENTER OF CAP WILL NOT BE MORE THAN 10°.

92CM-6535R4

Bases

Caps (1-Terminal Types)

> Details of Recessed Small Cavity Cap a Bulb Assembly JEDEC No.JI-2।

VARIANT SFAL SHAPES

$\begin{gathered} \text { DIMEN- } \\ \text { SION } \\ \hline \end{gathered}$	INCHES			Millimeters			NOTES
	Min	Nom	Max	Min	Hom	Max	
\therefore	-	-	'.10)	-	-	'.	
"	. 301	0.322	- 1/	7. 'Jn	. 1.	\%. 6	
5	-	-	- ${ }^{\circ}$	-	兂	$\because:$:	
'	-	-	$\because 3$	4s	-	4.	
	$\cdots r$	-	- 5	- c	-	:.	
	-	-	\cdots	-	-	$\because \cdot$	
${ }^{\prime}$	-	-	.03:	-	-	7. $/$	
\cdot	-	-	. 3	-	-	.	
+	-	-	. $1.1 /$	-	-	1. 29	
"	-	--	- y:	-	-	. N	
\because	-	-	-	-	-	. 7	

star fotes on ipverse side.

Bases

Caps (1-Terminal Types)

 tom (ontaur upt ionas.

BASES
3-PIN TYPES

BASES

3-TERMINAL TYPES

4-PIN TYPES

"SMALL 4-PIN" PIN DIMENSIONS AND ORIENTATION

Base-pin positions are held to tolerances such that entire length of pinswillenter flat-plate gauge (JETEC No.GA4-i) having thickness of $1 / 4^{\prime \prime}$ and four holes, two with diameters of $0.1650^{\prime \prime} \pm 0.0005^{\prime \prime}$ and two with diameters of $0.1340^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.6400^{\prime \prime} \pm 0.0005^{\prime \prime} \mathrm{di}-$ ameter circle that the distance between the adjacent 0.1650^{14} diameterpins is $0.4680^{\prime \prime} \pm 0.0005^{\prime \prime}$ and the distance between the adjacent $0.1340^{\prime \prime}$ diameter pins is $0.4370^{\prime \prime}$ $\pm 0.0005^{\prime \prime}$.

Pin fit in gauge is such that gauge together with supplementary weight totaling 4 pounds will not be lifted when pins are withdrawn.

DWARF-SHELL SMALL 4-PIN

$$
\begin{gathered}
\text { JETEC NO. A4 -26 } \\
\text { RCA NO. } 4: 07
\end{gathered}
$$

SMALL-SHELL
SMALL 4-PIN

JETEC NO.A4-5
RCA No. 4108

Add 0.030° for solder on finished tube.

4-PIN TYPES

MEDIUM- SHELL SMALL 4-PIN

JETEC No. A4-9
RCA No. 4106

MEDIUM - SHELL SMALL 4-PIN WITH BAYONET

JETEC NO.A4-10
RCA No. 4102
MEDIUM - ME TAL-SHELL
SMALL 4-PIN
WITH BAYONET

$$
\begin{aligned}
& \text { JETEC NO. A4-89 } \\
& \text { RCA NO. } 4102-\mathrm{MI}
\end{aligned}
$$

For other dimenstons. see first page of the "Small $4-P_{i n}$ " serzes.

BASES
$\therefore-P \mid N$ TYPES

MEDIUM - METAL-SHELL
 JUMBO 4-PIN WITH BAYONET

SKIRTED MEDIUM-METAL-SHELL JUMBO 4-PIN WITH BAYONET

> JETEC NO. A4-69
> RCA NO. 4260 A

Other dimensions are same as Base JETEC No. Alt-2y above.

* add 0.060° for solder on "inistres ube.

4-PIN TYPES

* Add 0.060" Por solder on finismed tube.

4-PIN TYPES

BASES

4-P|N TYPES

> SUPER-JUMBO 4 -PIN WITH BAYONET
LARGE - SHELL

> JETEC NO. A4-88
> RCA NO. 3982
for other dimensions, see farst fage
of the "Super-fumto" series.

4-PIN TYPES

LARGE - METAL-SHELL SUPER-JUMBO 4-PIN WITH BAYONET

JETEC NO. A4-18
RCA NO. 4310

For other dimensions, see first page
of the "Super-Jumbo" series.

(BG)

BASES
5-PIN TYPES

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plategauge (JETEC NO.GA5-1) having thickness of $1 / 4^{\prime \prime}$ and five holes with diameters of $0.1360^{\prime \prime} \pm 0.0005^{\prime \prime}$ so 100 ated on a $0.7500^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance between centers of the 1our adjacent holes is $0.3750^{\prime \prime} \pm 0.0005^{\prime \prime}$ and the distance between the center of the remaining hole and its adjacent hole centers is $0.5300^{\prime \prime} \pm 0.0005^{\prime \prime}$.

Pin fit in gauge is such that gauge together with supplementary weight totaling 4 pounds wibl not be lifted when pins are withdrawn.

SMALL-SHELL SMALL 5-PIN

> JET:C NO. A5-6

PCA 10. 5108
MEDIUM-SHELL SMALL 5-PIN

JETEC NO. A5-11
RCA NO. 510 C
add 0.030° 'cr solver on finished tube.

5-PIN TYPES

MEDIUM-SHELL GIANT 5-PIN WITH BAYONET

> | JETEC |
| :---: |
| RO. ASA |
| NO. |

SPECIAL METAL-SHELL
GIANT 5-PIN
See Tube Types 4-125A/4D21 and 4-250A/5D22

> SPECIAL METAL-SHELL SUPER-GIANT 5-PIN

See Tube Type 4-1000A

BASES

5-PIN TYPES

SMALL-SHELL DUODECAL 5-PIN
For details of this base, see corresponding DUODECAL 12-PIN type

DWARF-SHELL OCTAL 5-PIN
SHALL-EHELL OCTAL 5-PIN
SMALL-WAFER OCTAL 5-PIN
SMALL-WAFER OCTAL 5-PIN
WITH SLEEVE
INTERMEDIATE-SHELL OCTAL 5-PIN SHORT INTERMEDIATE-SHELL OCTAL 5-PIN SHORT INTERMEDIATE-SHELL OCTAL 5-PIN WITH EXTERNAL BARRIERS MEDIUM-SHELL OCTAL 5-PIN SHORT JUMBO-SHELL OCTAL 5-PIN

For details of above bases, see corresponding OCTAL 8-PIN type

SMALL RADIAL 5-PIN
See OUTLINES--Glass Types

MEDIUM-MOLDED-FLARE
SEPTAR 5-PIN
See Tube Type 4-65A

6-PIN TYPES

> "SMALL 6-PIN"
> PIN DIMENSIONS AND ORIENTATION

Base-pin positions are held to tolerances such that entire length of pins wil! enter flat-plate gauge (JETEC NO.GA6-l) having thickness of $1 / 4^{\prime \prime}$ and six holes, two adjacent with diameters of $0.1650^{\prime \prime} \pm 0.0005^{\prime \prime}$ and four with diameters of $0.1360^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.7500^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance between any two adjacent hole centers is $0.3750^{\prime \prime} \pm 0.0005^{\prime \prime}$.
Pin fit in gauge is such that gauge together with supplementary weight totaling 4 pounds will not be lifted when cins are withyrawn.

SMALL-SHELL SMALL 6-PIN

$-1.136^{\prime \prime}-1175^{\prime \prime}=$

JETEC NO.A6-7
RCA NO. 6108

MEDIUM-SHELL SMALL 6-PIN

JETEC NO. AGーI. RCA No. $61 / 5$

RCA

BASES

6-PIN TYPES

(RGA)
 BASES

6-TERMINAL TYPES

SMALL-BUTTON MINIAT URE 7-PIN

Miniature Base Pin Contour

$$
\text { i:TFG *i. } F^{m}-1
$$

Base-pin zositions are held totolerances such that entire length of pinswill without undue force pass into and disengage from flat-p|ate gauge (part of gauge JETEC No.GE7-1) having thickness of $1 / 4^{\prime \prime}$ and eight holes with diameters of $0.0520^{\prime \prime} \pm \mathrm{C} .005^{\prime \prime}$ so 100 ated on a $0.3750^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centers is $0.1434^{\prime \prime} \pm 0.0005^{\prime \prime}$.
The design 0^{*} the socket should be such that $\begin{gathered}\text { i } \\ \text { incuit }\end{gathered}$ wiring can not impress lateral strains through the socket contacts on the base pins. The point of bearing of the contacts on the base pins should not be closer than $1 / 8^{\prime \prime}$ from the bottom of the seated tube.

This dimension around the peripnery of any undwidual pin may vary within the limits shown.

BASES
7-PIN TYPES

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge \{JETEC No.GA7-I\} having thickness of $1 / 4^{+1}$ and seven holes, two adjacent with diameters of $0.1550^{\prime \prime} \pm 0.0005^{\prime \prime}$ and five with diameters of $0.1360^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.7500^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance between centers of the adjacent $0.1650^{\prime \prime}$ diameter holes is $0.3288^{\prime \prime} \pm 0.0005^{\prime \prime}$ and the distance between centers of the adjacent $0.1360^{\prime \prime}$ diameter holes is $0.3229^{\prime \prime} \pm 0.0005^{\prime \prime}$.
Pin fit in gauge is such that gagge together with supplementary weight totaling 4 pounds will not be lifted when pins are withdrawn.

Add 0.030° for solder on finisned :ube.

BASES

7-PIN TYPFS

"MEDIUM 7-PIN"
 PIN DIMENSIONS AND ORIENTATION

Base-pin positions are held to tolerances such that entire length of pinswillenter flat-plate gauge (JETEC No.GAT-2) having thickness of $1 / 4^{\prime \prime}$ and seven holes, two adjacent with diameters of $0.1650^{\prime \prime} \pm 0.0005^{\prime \prime}$ and five with diameters of $0.1360^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.8550^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance between centers of the adjacent $0.1650^{\prime \prime}$ diameter holes is $0.3748^{\prime \prime} \pm 0.0005^{\prime \prime}$ and the distance between centers of the adjacent $0.1360^{\prime \prime}$ diameter holes is $0.3681^{\prime \prime} \pm 0.0005^{\prime \prime}$.

Pin fit in gauge is such that gauge together with supplementary weight totaling 4 pounds will not be lifted when pins are witndrawn.

MEDIUM-SHELL MEDIUM 7-PIN

> MEDIUM - SHELL
> MEDIUM 7-PIN
> WITH BAYONET

$$
\begin{aligned}
& \text { JETEC NO.AT- } 13 \\
& \text { RCA NO. } 7306
\end{aligned}
$$

$$
\begin{aligned}
& \text { JETEC NO.AT-14 } \\
& \text { RCA NO. } 7302
\end{aligned}
$$

7-PIN TYPES

(BG)

BASES

7-PIN TYPES

7-PIN TYPES

JUMBO-BUTTON SEPTAR 7-PIN MOLDED-FLARE SEPTAR 7-PIN
JETEC NO.[7-21
JETEC NO.[7-21
RCA NO.FSE712
RCA NO.FSE712
MEDIUM-BUTTON
SEPTAR 7-PIN
SMALL-WAFER SEPTAR 7-PIN


```
RCA NO.FSB6014
```

```
RCA NO.FSB6014
```

MEDIUM
JETEC NO.E7-46
FACA NO.FSB603E
For other dimensions of above bases, see first tage of the "Septar" sepies

RGA

BASES

7-PIN TYPES

8-PIN TYPES

SMALL-BUTTON SUB-MINAR 8-PIN

JETEC NO.E8-9

Base-pin positions are held to tolerances such that entire length of pins will without undue force pass into and disengage from flat-plate gauge JETEC No.GEB-I. This gauge contains a flat-plate section having thickness of 13/64" and nine holes with diameters of $0.0240^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.2350^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centers is 0.0804" $\pm 0.0005^{\prime \prime}$.

The design of the socket should be such that circuit wiring can not impress lateral strains through the socket contacts on tho base pins. The point of bearing of the contacts on the base pins should not be closer than 0.050" from the bottom of the seated tube.

8-LEAD TYPES

JETEC NO. E8-10

* The specified lead diameter applies only in the zone detween 0.050° and 0.250° from the base seat. getween 0.250° and 2.500°. a maximum diameter of 0.021° is held. Outslde of these zones, the lead diameter is not controlied.

RCA

BASES

B-PIN TYPES

BASES

g-PIN TYPES

SMALL-BUTTON NEODITETRAR 8-PIN

Neoditetrar-Base Pin Contour

> | JEDEC NO. E8-49 |
| :--- |
| RCA NO. FSBKOO6 |

Aase-pin positions are held to tolerances such that entire length of pinswill, without undue force, pass into and disengage from flat-plate gauge having thickness of $1 / 4^{\prime \prime}$ and nine holes with diameters of $0.0700^{\prime \prime} \$ 0.0005^{\prime \prime}$ so located on a $0.6000^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centers is $0.2052^{\prime \prime} \pm 0.0005^{\prime \prime}$.

(ect

BASES

SMALL-BUTTON DITETRAR 8-PIN

$$
\begin{aligned}
& \text { JEDEC NO. E8-11 } \\
& \text { RCA NO. }\left\{\begin{array}{l}
\text { FSB675" } \\
\text { FSB6015 }
\end{array}\right. \\
& \hline
\end{aligned}
$$

Base-pin positions are held to tolerances such that entire lengthof pins will, without undue force, pass into and disengage from flat-plate gauge having thickness of $1 / 4^{\text {II }}$ and nine holes with diameters of $0.0700^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.6000^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centers is $0.2052^{\prime \prime} \pm 0.0005^{\prime \prime}$. Gauge is also provided with a hole having diameter of $0.300^{\prime \prime} \pm 0.001$ " concentric with the pincircle.

Bases

8-Pin Types

SMALL-BUTTON SUPERDITETRAR

Pin Dimensions and Orientation

Superditetrar-Base-Pin Contour

$$
\begin{aligned}
& \text { JEDEC No.EB-78 } \\
& \text { RCA NO.FSB6055* }
\end{aligned}
$$

> Base-pin positions are heldto tolerances such that entire length of pins will, without undue force, pass into and disengage from a flat-plate gauge having a thickness of

Bases

8-Pin Types

$1 / 4^{\prime \prime}$ and nine holes with diameters of $0.0700^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.9000^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circte that the distance along the chord between any two adjacent hole centers is $0.3078^{\prime \prime} \pm 0.0005^{\prime \prime}$. Gauge is also provided with a hole having diameter of $0.300^{\prime \prime} \pm 0.001^{\prime \prime}$ concentric with the pin circle.

(RA)

BASES

B-PIN TYPES

Base-pin positions are neld to tolerances such that entire length of pins will without undue force pass into and disengage from gauge JETEC NO.GCB-1. This gauge contains a flat-plate section having thickness of $1 / 4^{\prime \prime}$ and eigrt slots located and dimensioned as shown on the following diagram. Flat-plate section is also provided with a hole having diameter of $0.272^{\prime \prime} \pm 0.002^{\prime \prime}$ concentric with slot circle, and with a keyway as shown on the dingram.

8-PIN TYPES

	Hin.	Center	Max.		Mır.	Center	Max.	
A	. $550{ }^{\prime \prime}$. 560"	$.570^{\prime \prime}$	L	-	45°	-	
B	. $490{ }^{\prime \prime}$. 500"	. $510^{\prime \prime}$	N	. 3051	. $312^{\prime \prime}$. 317	
C	. 30011	. $308^{\prime \prime}$. $315^{\prime \prime}$	N	. $075^{\prime \prime}$. $080^{\prime \prime}$. $085^{\prime \prime}$	
D	. $427{ }^{\prime \prime}$. $437{ }^{\prime \prime}$. $447^{\prime \prime}$	P	. $343^{\prime \prime}$. 35311	. $363^{\prime \prime}$	
E	-	-	. 55011	\bigcirc	. $040^{\prime \prime}$.047'	. $055^{\prime \prime}$	
F	. $085^{\prime \prime}$.090'	. $095^{\prime \prime}$	R \\|	-	.031"	-	
G	. 352 "	. $362^{\prime \prime}$. $372^{\prime \prime}$	R_{2}	-	-	. 050 *	
H	-	. $687^{\prime \prime}$	-	R_{3}	-	. 04011	-	
J	.090"	.09311	. $096{ }^{\prime \prime}$	T	$.340^{\prime \prime}$	-	-	
K	-	$22.5{ }^{\circ}$	-	U	-	-	135^{\prime}	

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge (JETEC No. GBB-1) having thickness of $1 / 4^{\prime \prime}$ and eight holes with diameters of $0.1030^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.6870^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centers is $0.2629^{\prime \prime} \pm 0.0005^{\prime \prime}$.
Pin fit in gauge is such that gauge together with supplementary weight totaling 2 pounds will not be lifted when pins are withdrawn.

Bases

8-Pin Types

DWARF-SHELL OCTAL

SMALL-SHELL OCTAL

No. of Pins	Pins	JEDEC No.	RCA
No.			
B-Pin	$1,2,3,4,5,6,7,8$	$88-1$	8529
7-Pin	$1,2,3,4,5,7,8$	$87-2$	7529
6-Pin	$1,2,3,5,7,8$	$86-3$	6529
5-Pin	$1,2,4,6,8$	$85-5$	5529

```
For other dimensions, see first page of the "Octal" series
```


Bases

8-Pin Types

SHORT INTERMEDIATE-SHELL OCTAL

Pins	$\begin{aligned} & \text { JEDEC } \\ & \text { So. } \end{aligned}$	$\begin{aligned} & R C A \\ & \therefore 0 . \end{aligned}$
1, 2, 3, 4, 5, 6, 7, 8	88-46	855 5
1,2,3,4.5. 7, 8	87-47	7555
1.2.3, 5. 7.8	E6-48	6555
1.2, 4, 6. 8	B5-49	5555

SHORT INTERMEDIATE-SHELL OCTAL with external barriers

$\begin{gathered} \text { No. of } \\ P_{i n} \end{gathered}$	Pins	$\begin{gathered} \text { JEDEC } \\ \text { No. } \end{gathered}$	$\begin{aligned} & R C A \\ & \text { No. } \end{aligned}$
8-Pin	$1,2,3,4,5,6,7,8$	B8-58	8565
7-Pin ${ }^{\text {a }}$	$1,2,3,4,5,7,8$	87-59	7565
7 - Pin ${ }^{\text {b }}$	$1,2,3,5,6,7,8$	e7-21	-
6-Pina	$1.2,3,5,7.8$	86-60	6565
6-Pin ${ }^{\text {b }}$	$2,3,4,5,7,8$	86-84	6765
$5-\mathrm{Pi} \mathrm{n}^{\text {a }}$	1.2. 4. 6, 8	85-62	5565
$5-\mathrm{Pin}{ }^{\text {b }}$	$2,3,5,7.8$	85-85	5765
$5-\mathrm{Pin} \mathrm{C}$	2, 4.5. 7.8	85-187	

```
For other dimensions, see first page of the "Octal" series
```


Bases

8-Pin Types

INTERMEDIATE-SHELL OCTAL

No. of Pins	Pins	$J E D E C$ No.	RCA No.
8-Pin	$1,2,3,4,5,6,7,8$	88-6	8537
7-Pin ${ }^{\text {a }}$	1, 2, 3, 4, 5, 7,8	B7-7	7537
$7-\mathrm{Pin}$ b	1,2,3, 5,6,7,8	87-166	39100
6-Pin	1,2,3, 5, 7,8	86-8	6537
6-Pin ${ }^{\text {b }}$	2,3,4,5, 7,8	86-81	6737
5-Pina	$1,2,4,6,8$	85-10	5537
$5-P$ in ${ }^{\text {b }}$	2,3, 5, 7,8	85-82	5737

> For other dimensions, see first page
> of the "Octal" series
arrangement 1.
b Arrangement 2 .

RADIO CORPORATION OF AMERICA
BASES 14
Electron Tube Division
Harrison, N. J.

Bases

8-Pin Types

INTERMEDIATE-SHELL OCTAL
WITH EXTERNAL BARRIERS

$\begin{gathered} \text { No. of } \\ P_{2 \pi s} \end{gathered}$	Pins	JEDEC No.	$\begin{aligned} & \text { RCA } \\ & \text { No. } \end{aligned}$
8-Pin	$1,2,3,4,5,6,7,8$	88-142	8566
7-Pin	$1.2,3,4.5,7.8$	87-143	7566
$6-\mathrm{P}$ in $^{\text {a }}$	$1.2 .3,5.7 .8$	86-144	6566
$6-\mathrm{Pin}{ }^{\text {b }}$	2.3 .4 .5 .7 .8	86-145	6766
$6-\mathrm{Pin}{ }^{\text {c }}$	2.3. 5.6.7.8	86-229	39111
$5-\mathrm{Pin}{ }^{\text {a }}$	1.2 .4 .6 .8	85-146	5566
$5-\mathrm{Pin}{ }^{\text {b }}$	2.3 . 5. 7.8	85-147	5766

For other dimensions, see first page
of the "Octul" series

[^9]
Bases

8-Pin Types

SHORT MEDIUM-SHELL OCTAL
 wIIM EXIERMAL barriers

STYLE A

$\begin{gathered} \text { No. of } \\ P_{i n s} \end{gathered}$	Pins	Style	$\begin{gathered} \text { JEDEC } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { RCA } \\ & \text { No. } \end{aligned}$
B-Pin	$1,2,3,4,5,6,7,8$	A	88-110	39081
8-Pin	$1,2,3,4,5,6,7,8$	B	88-118	8564
7-Pin ${ }^{\text {a }}$	$1,2,3,4,5,7,8$	A	87-111	-
7-Pin ${ }^{\text {a }}$	$1,2,3,4,5.7,8$	8	87-119	7564
$7-\mathrm{Pin}{ }^{6}$	$1,2,3,5,6,7,8$	θ	87-227	39113
$7-P i^{\text {c }}$	1, 2, 3, 4, 6, 7, 8	8	87-235	-
6-P in ${ }^{\text {a }}$	$1,2,3,5,7,8$	A	86-112	-
6-Pin ${ }^{\text {a }}$	$1,2,3,5,7,8$	8	86-120	6564
$6-P$ in ${ }^{\text {b }}$	2,3,4,5, 7, 8	A	86-148	-
$6-\mathrm{Pin}{ }^{\text {b }}$	$2,3,4,5,7,8$	8	86-122	6764
$5-\mathrm{Pin}{ }^{\text {a }}$	1.2, 4, 6, 8	A	85-113	-
5-Pin ${ }^{\text {a }}$	1.2, 4, 6, 8	8	85-121	5564
$5-\mathrm{Pin}{ }^{6}$	2.3. 5, 7.8	A	85-149	-
$5-P i^{6}$	$2,3,5,7,8$	8	85-123	5764
$5-\mathrm{Pinc}$	1,2,3, 5, 7	A	B5-234	-
$5-P i^{c}$	1,2,3, 5, 7	8	85-239	39116
$5-P i^{\text {d }}$	$2.4,5,7,8$	8	85-190	39110

For other dimensions, see first page of the "Octal" series

[^10]
Bases

8-Pin Types

MEDIUM-SHELL OCTAL

No. of	Pins	JEDEC	RCA
Pins	No.	NO.	
B-Pin	$1,2,3,4,5,6,7,8$	$88-11$	8533
$7-$ Pin	$1,2,3,4,5,7,8$	$87-12$	7533
$6-$ Pin	$1,2,3,5,7,8$	$86-13$	6533
$5-P i n$	$1,2,4,6,8$	$85-15$	5533
$5-$ Pin	$2,3,5,7,8$	$85-224$	5733

LONG MEDIUM-SHELL OCTAL

No. of	Pins	JEDEC	RCA
Pins		No.	NO.
日-Pin	$1,2,3,4,5,6,7,8$	$88-65$	8545
5-Pin	$2,3,5,7,8$	$85-80$	5545

For other dimensions of above bases, see first page of the "Octal" series

BASES

B-TIN TYPES

8-PIN TYPES

SMALL-WAFER OCTAL

No. of	Pins	JETEC	RCA	
Pins		No.	No.	
8-Pin	$1,2,3,4,5,6,7,8$	$88-21$	8527	8540
7-Pin	$1,2,3,4,5,7,8$	$87-22$	7527	7540
6-Pin	$1,2,3,5,7,8$	$86-23$	6527	6540
5-Pin	$1,2,4,6,8$	$85-25$	5527	5540

SMALL-WAFER OCTAL WITH SLEEVE

No, of	Pins	JETEC	RCA
Pins		No.	No.
8-Pin	$1,2,3,4,5,6,7,8$	$88-44$	M88527-602

For other dimensions of above bases, see first page of the "Octal" series

8-PIN TYPES

SMALL-WAFER OCTAL WITH " 770 " SLEEVE

No. of Pins	Pins	JETEC No.		$C A$
8-Pin	$1,2,3,4,5,6,7,8$	88-150	v88540-7	M88527-603
7-Pin	$1,2,3,4,5,7,8$	87-151	M87540-4	-
$6-\mathrm{Pin}$	1,2,3, 5, 7.8	86-152	M86540-5	-
6-Pin*	2, 3, 4,5, 7,8	86-153	M86740-1	-
5-Pin	$1,2,4,6.8$	85-154	MB5540-1	-
5-Pin*	2,3, 5, 7,8	85-155	M85740-1	-

SMALL-WAFER OCTAL WITH"843"SLEEVE

- $-1.198^{\prime \prime}-1250^{\prime \prime}-$

No. of Pins	Pins	$\begin{aligned} & \text { JETEC } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { RCA } \\ & \text { No. } \end{aligned}$	
g-uin	1, 2, 3, 4, 5, 6, 7, 8	88-26	MB8521-1	MB8540-5
$7-\mathrm{Pin}$	$1,2,3,4,5,7,8$	87-27	MB7527-1	M87540-1
$6-\mathrm{Pin}$	$1,2,3,5,7.8$	86-28	M86527-1	M86540-3
5-Pin	1,2, 4, 6, 8	85-30	M85527-1	M85540-

For other dimensions of above bases, see first page of the "Octal" serzes

BASES
8-PIN TYPES

(RG)
 BASES

G-PIN TYPES

BASES

B-PIN TYPES

SMALL-WAFER OCTAL

 WITH EXTERNAL BARRIERS AND "950" SLEEVE

$\begin{gathered} \text { No. of } \\ \text { Pins } \end{gathered}$	Pins	$\begin{aligned} & \text { JETEC } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & R C A \\ & N O . \end{aligned}$
8-Pin	1, 2, 3, 4, 5, 5, 7, 8	88-197	M88559-4
7-Pin	1,2.3,4,5, 7,8	87-198	M87559-2
$6-\mathrm{Pin}$	$1.2,3,5,7.8$	86-199	M86559-2
6-Pin	$2,3,4.5,7.8$	86-200	M86759-2
$5-\mathrm{Pin}$	$1.2,4,6.8$	85-201	M85559-2
5-Pin*	2,3. 5. 7,8	85-202	M85759-2

> For other dimensions of above base, see first page of the "Octal" series
Arrangement 1.
A Arrangement 2 .

BASES
8-PIN TYPES

LARGE-WAFER OCTAL

No. of	Pins	JETEC	RCA
Pins	No.	No.	
8-Pin	$1,2,3,4,5,6,7,8$	$88-32$	8534

LARGE-WAFER OCTAL WITH SLEEVE

No. of	Pins	JETEC	RCA
Pins		No.	No.
8-Pin	$1,2,3,4,5,6,7,8$	$88-86$	M88534-601

> For other dimensions of above bases, see first page of the "Octal" series

(RG)
 BASES

8-PIN TYPES

```
LARGE-WAFER OCTAL
    WITH FLARED SLEEVE
```



```
\begin{tabular}{cccc} 
No. of & Pins & JETEC & RCA \\
Pins & & No. & NO. \\
8-Pin & \(1,2,3,4,5,6,7,8\) & B8-188 & M88534-600
\end{tabular}
```

```
For other dumensions, see first page
```

For other dumensions, see first page
of the "Octal" series

```
    of the "Octal" series
```


(RG)

BASES

Bases

SMALL-BUTTON MOVAL 9-PIN Pin Dlmensions and orlentation

Noval-Base-Pin Contour

$$
\begin{array}{|l|}
\hline \text { JEDEC NO.E9-1 } \\
\text { RCA NO. FSD } 6 \mathbf{9}
\end{array}
$$

Base-pin positions are held to tolerances such that entire length of pinswill, without undue force, pass into and disengage from gauge JEDEC No.GE9-1. This gauge contains a flat-plate section having thickness of $1 / 4^{\prime \prime}$ and ten holes with diameters of $0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.4680^{\prime \prime}$ $\pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent holecenters is $0.1446^{\prime \prime} \mathrm{t}$ $0.0005^{\prime \prime}$.
The design of the socket should be such that circuit wiring can not impress lateral strains through the socket contacts on the base pins. The point of bearing of the contacts on the base pins should not be closer than $1 / \mathrm{B}^{\prime \prime}$ from the bottom of the seated tube.

* This dimension around the periphery of any individual pin may vary within the limits shown. The surface of the pin is convex or conical in shape and not brought to a sharp point.

RADIO CORPORATION OF AMERICA

Bases

9-Pin Types

LARGE-BUTTON NEONOVAL 9-PIN Pin Dimensions and Orientation

TO A SHARP POINT

$$
\begin{aligned}
& \text { JEOEC NO. E9-68 } \\
& \text { RCA No. FSO171 } \\
& \hline
\end{aligned}
$$

Base-pin positions are held to tolerances such that entire length of pins will, without undue force, pass into and disengage from gauge JEOEC No.GE9-4. This gauge contains a flat-plate section having thickness of $1 / 4^{\prime \prime}$ and ten holes with diameters of $0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}$ so lacated on a $0.4680^{\prime \prime}$ $\pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centers is $0.1446^{\prime \prime} \pm 0.0005^{\prime \prime}$. The design of the socket should be such that circuit wiring can not impress lateral strains through the socket contacts on the base pins. The point of bearing of the contacts on the base pins should not be closer than $1 / 8^{\prime \prime}$ from the bottom of the seated tube.

* This dimension around the periphery of any individual pin may vary within the limits shown. The surface of the pin is convex or conical in shape and not brought to a sharp point.

Bases

9-Pin Types

SMALL-BUTTON MIMAR 9-PIN
Pin Dimensions and Orientation

Minar-Base-Pin Contour

> JEDEC No.E9-37
> RCA NO.FSE6047

Base-pin positions are held to tolerances such that entire length of pinswill, without undue force, pass into and disengage from gauge JEDEC No.GE9-2. This gauge contains a flat-plate section having thickness of $0.250^{\prime \prime}$ and ten holes with diameters of $0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.4680^{\prime \prime}$ $\pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole conters is $0.1446^{\prime \prime} \pm 0.0005^{\prime \prime}$. Gauge is also provided with a hole 0.281^{11} minimum diameter concentric with the pin circle.

* This dimension around the perophery of any individual pin may vary within the limits shown. The surface of the pin is convex or conical in shape and not brought to a sharp point.

Bases

9-Pin Types

SMALL-BUTTON NIAAR 9-PIN (CONT'D)

The design of the socket should be such that circuitwiring can not impress lateral strains throughthe socket contacts on the base pins. The point of bearing of the contacts on the base pins should not be closer than $1 / 8^{\prime \prime}$ from the bottom of the seated tube.

Bases 9-Pin Types

Fiil Dimensions and orientation

Hovar-Base-Pin Contour

DIMENSIONS IN IMCHES

Base-pin positions are held tototerances such that entire length of pins will, without undue force, pass into and disengage from flat-plate gauge naving a thickness of $0.350^{\prime \prime}$ and ten moles with diameters of $0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $0.6870^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centers is $0.2123^{\prime \prime} \pm 0.0005^{\prime \prime}$. Gauge is also provided with a nole $0.330^{\prime \prime}+0.005^{\prime \prime}-0.000^{\prime \prime}$ diameter concentric with the pin circle.
This dimension applies only to JEDEC Base Nos. E9-88 and E9-89.
Limit of exmaust tube fillet diameter.
Exhaust tube maximum diameter.
This dimension around the periphery of any individual dinmay vary within
tre limits shown. The surface of the pin is convex or conical in shape
and not brought to a sharp point.

Bases

9-Pin Types

top exhaust novar
Small-Button Base

JEDEC No.E9-75
 RCA No. FSE 36

Fits Gauge JEDEC No.GE9-5

JEDEC No. E9-76
RCA NO.FSF 224

Fits Gauge JEDEC No.GE9-6

JEDEC No. E9-89
RCANO.FSE43G

Fits Gauge JEDEC No.GE9-5

Large-Button Base

JEDEC No.E9-88
RCA No.FSE 43 C

Fits Gauge JEDEC .Yo.GE@-6

dIMENSIONS IN INCHES

Bases

11-Pin Types

SMALL-SHELL MEOSUBMAGHAL II-PIM

Pin Dimensions and Orientation

$$
\begin{array}{r}
\text { JEDEC No. BII-I } 04 \\
\text { RCA No. } 11442
\end{array}
$$

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plategauge (JEDEC Group 2, No. GBII-2) having thickness of $1 / 4^{\prime \prime}$ and eleven holes with diameters of $0.1030^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a U.Tyuui \pm $0.0005^{\prime \prime}$ diameter circle that the distance along the chora between any two adjacent hole centers is 0.213" $\pm 0.0005^{\prime \prime}$. Pin fit in gauge is such that gauge together with supplementary weight totaling 3 pounds will not be lifted when pins are withdrawn.

[^11]\bullet

BASES

11-PIN TYPES

11-PIN TYPES

```
    SMALL-SHELL SUBMAGNAL
```



```
\begin{tabular}{cccc} 
No. of & Pins & JETEC & RCA \\
Pins & & No. & No. \\
\(11-P i n\) & \(1,2,3,4,5,6,7,8,9,10.11\) & B11-88 & 11344
\end{tabular}
```

```
For other dimensions, see first page
```

For other dimensions, see first page
of the "Submagnal" series

```
    of the "Submagnal" series
```


REG)
 BASES

11-PIN TYPES

SMALL-BUTTON UNIDEKAR II-PIN

Unidekar Base Pin Contour

JETEC NO. E/I-22
RCA NO. FSB6019

Base-pin positions are held to tolerances such that entire length of pins will without undue force pass into and disengage from flat-plate gauge having thickness of $1 / 4^{11}$ and twelve holes with diameters of $0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}$ so locoated on a $0.6870^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centeds is $0.1778^{\prime \prime} \pm 0.0005^{\prime \prime}$. Gauge is also provided with a hole $0.3750^{\prime \prime} \pm 0.0100^{1 \prime}$ concentric with the pin circle.

11-PIN TYPES

SMALL-BUTTON UNIDEKAR II-PIN (CONT'D)

The design of the socket should be such that circuit wiring can not impress lateral strains through the socket contacts on the base pins. The point of bearing of the contacts on the base pins should not be closer than $1 / 8^{\prime \prime}$ from the bottom of the seated tube.

Bases

LARGE-WAFER ELEVENAR II-PIH WITH RING

Pin Dimensions and Orientation

Elevenar-Base-Pin Contour

JEDEC NO.E|।-8।

Pase-cin positions are held to tolerances such that entire length of fins will, without undue force, pass into and disengage from flat-plate gauge (JEDEC No.GE:1-1) having a thickness of $0.250^{\prime \prime}$ and twelve holes with diameters of $0.0520^{\prime \prime} \pm 0.0005^{1 \prime}$ so located on a $0.6870^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centers is $0.1778^{\prime \prime} \pm 0.0005^{\prime \prime}$. Gauge is also provided with a hole $0.3750^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter concentric with the pin circle.

4 This dimension around the periphery of any individual fin may vary within the limits shown. The surface of the pin is convex or conical in shape and not brought to a sharp point.

BASES

 AND INDEX GUIDE

UNDERSIDE OF BASE

	Min.	Center	Max.		Min.	Center	Max.
A	$.550^{\prime \prime}$	$.560^{\prime \prime}$	$.570^{\prime \prime}$	L	-	$32-8 / 11^{\circ}$	-
8	$.490^{\prime \prime}$	$.500^{\prime \prime}$	$.510^{\prime \prime}$	M	$.305^{\prime \prime}$	$.31^{\prime \prime}$	$.317^{\prime \prime}$
C	$.300^{\prime \prime}$	$.308^{\prime \prime}$	$.315^{\prime \prime}$	N	$.05^{\prime \prime}$	$.080^{\prime \prime}$	$.085^{\prime \prime}$
0	$.427^{\prime \prime}$	$.437^{\prime \prime}$	$.447^{\prime \prime}$	P	$.343^{\prime \prime}$	$.353^{\prime \prime}$	$.363^{\prime \prime}$
E	-	-	$.050^{\prime \prime}$	Q	$.040^{\prime \prime}$	$.07^{\prime \prime}$	$.055^{\prime \prime}$
F	$.05^{\prime \prime}$	$.090^{\prime \prime}$	$.095^{\prime \prime}$	R_{1}	-	$.031^{\prime \prime}$	-
G	$.352^{\prime \prime}$	$.362^{\prime \prime}$	$.372^{\prime \prime}$	R_{2}	-	-	$.050^{\prime \prime}$
H	-	$1.063^{\prime \prime}$	-	R_{3}	-	$.040^{\prime \prime}$	-
J	$.090^{\prime \prime}$	$.093^{\prime \prime}$	$.095^{\prime \prime}$	T	$.340^{\prime \prime}$	-	-
K	-	$16-4 / 1^{\circ}$	-	U	-	-	$.135^{\prime \prime}$

Base-pin positions are held to tolerances such that entire length of pins willenter flat-plate gauge (JETEC No.GBII-I) having thickness of $1 / 4^{\prime \prime}$ and eleven holes with diameters of $0.1030^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $1.0630^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centers is $0.2995^{\prime \prime} \pm 0.0005^{\prime \prime}$.
pin fit in gauge is such that gauge together with supplementary weight totaling 3 pounds will not be lifted when pins are withdrawn.

* add 0.030° Por solder on Pinished tube

11-PIN TYPES

SMALL-SHELL MAGNAL

No. of	Pins	JETEC	RCA
Pins		No.	No.
II-Pin	$1,2,3,4,5,6,7,8,9,10,11$	BII-33	11247

MEDIUM-SHELL MAGNAL

No. of	Pins	JETEC	RCA
Pins		No.	No.
11-Pin	$1,2,3,4,5,6,7,8,9,10,11$	B11-66	11248

```
For other dimensions of above bases, see first
    Bage of the "Magnal" series
```


Bases

12-Pin Types

MEDIUM CERAMIC-WAFER TWELVAR BASE
 Pin Dimensions and Orientation and Index Guide

NOTE: MAXIMUM OUTSIDE DIAMETER OF $0.440^{\prime \prime}$ IS PERMITTED ALONG THE 0.190" LUG LENGTH.

[^12]
Bases

12-Pin Types

Base-pin positions and lug positions shali be held to tolerances such that entire length of pins and lugs witl without undue force pass into and disengage from flat-plate gauge \{JEDE $\left(\right.$ No.GEI2-5) having thickness of $0.250^{\prime \prime}$ and twelve holes of $0.0350^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter locatedon four concentric circles as follows: Three holes located on $0.2800^{\prime \prime} \pm 0.0005^{\prime \prime}$, three holes located on $0.2100^{\prime \prime} \pm 0.0005^{\prime \prime}$, three holes located on $0.1400^{\prime \prime} \pm 0.0005^{\prime \prime}$, three holes located on $0.0700^{\prime \prime} \pm 0.0005^{\prime \prime}$ liameter circles at specified angles with a tolerance of $\pm 0.08^{\circ}$ for each angle. In addition, gauge provides for two curved slots with chordal lengths of $0.2270^{\prime \prime} \pm 0.0005^{\prime \prime}$ and $0.1450^{\prime \prime} \pm 0.0005^{\prime \prime}$ located on $0.4200^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle concentric with pin circles at $180^{\circ} \pm 0.08^{\circ}$ and having a width of $0.0230^{\prime \prime}$ $\pm 0.0005^{\prime \prime}$.

Bases

12-Pin Types

Pin Dimensions and Orientation and Index Guide

MOTE: MAXIMUM OUTSIDE DIAMETER OF $0.440^{\prime \prime}$ IS PERMITTED ALONG THE 0.190" LUG LENGTH.

- Pins 3.5.8.9 are of a length such that their ends do not touch the socket insertion plane. Pin 11 is omitted.
b pins 2.4.8.9 are of a length such that their ends do not touch the socket insertion plane. Pin 11 is omitted.
C pin 7 is of a length such that its end does not touch the socket insertion plane. pins 1.3,5,6,9.11 are omitted.
d Pins $2.3 .5,6.7 .9$ are of a length such that their ends do not touch the socket insertion plane. Pin il is omitted.

Bases

12-Pin Types

Gase-pin positions and lug positions shall be held to tolerances such that entire length of pins and lugs will without undue force pass into and disengage from flat-plate gauge (JEDEC NO. GE12-5) having thickness of $0.250^{\text {1t }}$ and twelve holes of $0.0350^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter located on four concentric circles as follows: Three holes located on $0.2800^{\prime \prime} \pm 0.0005^{\prime \prime}$, three holes located on $0.2100^{\prime \prime} \pm 0.0005^{\prime \prime}$, three holes located on $0.1400^{\mathrm{tr}} \pm 0.0005^{\text {tr }}$, three holes located on $0.0700^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circles at specified anqles with a tolerance of $\pm 0.08^{\circ}$ for each angle. In addition, gauge provides for two curved slots with chordal lengths of $0.2270^{\prime \prime} \pm 0.0005^{\prime \prime}$ and $0.1450^{\prime \prime} \pm 0.0005^{\prime \prime}$ located on $0.4200^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle concentric with pin circles at $180^{\circ} \pm 0.08^{\circ}$ and having a width of $0.0230^{\prime \prime}$ $\pm 0.0005^{\prime \prime}$.

12-FIN TYPES

"DUODECAL"
 PIN DIMENSIONS AND ORIENTATION AND INDEX GUIDE


```
Base-pin positions are held totolerances such that entire
length of pinswill enter flat-piate gauge (JETEC No.GEI2-i)
having thickness of 1/4"'年 and twelve holes with diameters
of 0.1030 't }\pm0.000\mp@subsup{5}{}{\prime\prime}\mathrm{ so located or a 1.0630"'&0.0005"
diameter circle that the distance along the cluord between
any two adjacent hole centers is 0.2751" }\pm0.0005"'
Pin fit in gauge is such that gaure together with sup-
plementary weight totaling z pounds will not be lifted
when pins are withdrawn.
```


BASES

12-PIN TYPES

12-PIN TYPES

SHORT SMALL-SHELL DUODECAL

No. of	Pins	JETEC	RCA
Pins		No.	No.
$12-P i n$	$1.2,3.4,5,6,7.8,9,10,11.12$	$812-207$	12267
6-Pin	1.2.	6,	$10,11.12$
	$86-203$	6267	

For other dimensions, see first page
of the "Duodecal" series
0

BASES

14-PIN TYPES

SMALL-SHELL NEODIHEPTAL

No. of Pins	Pins	$\begin{aligned} & \text { JETEC } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & R C A \\ & \text { No. } \end{aligned}$
14-Pin	$1,2,3,4,5,6,7,8,9,10,11,12,13,14$	814-13	1:553
12-Pin	$1.2,3,4.5,6.7 .9 .11 .12 .13 .14$	B12-131	12560

Base-pin positions are held to tolerances such that ent ire lenqth of pinswill enter flat-plate qauqe (JETEC No.G8I4-2) having thickness of $1 / 4^{\prime \prime}$ and fourteen holes with diameters of $0.1030^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $1.5500^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance alonq. the chord between any two adjacent hole centers is $0.3449^{\prime \prime} \pm 0.0005^{\prime \prime}$.
Pin fit in qauge is such that qauge toqether with supFlementary weight totaling 3 pounds will not be lifted when pins are withdrawn.

* Add 0.030. for solder on finished tude.
\bullet

SMALL-BÜTTTON THIRTEENAR

4 Lead 13 is cut off withln 0.04 inch from the glass button.

BASES

14-PIN TYPES
"DIHEPTAL"
PIN DIMENSIONS AND ORIENTATION
AND INDEX GUIDE

Base-nin positions are nels to tolerances such that entire length of pinswill enter flat-plate gauge (JETEC NO.GBI4-1) having thickness of $1 / 4^{\prime \prime}$ and fourteen holes with diameters of $0.103 C^{\prime \prime} \pm 0 .\left(005^{\prime \prime} 50\right.$ located on a $1.750^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two hole centers is $0.3895^{\prime \prime} \pm 0.0005^{\prime \prime}$.

Pin fit in qauge is such that gauge together with supplementary weight totalirg 3 pounds will not be lifted when pins are withdrawn.

* add 0.030° for solder on finished tube.

No. of	Pins	JETEC	RCA	
Pins		NO.	No.	
$14-\operatorname{Pin}$	$1,2,3,4,5,6,7,8,9,10,11,12,13,14$	$814-38$	14146	
$12-\operatorname{Pin}$	$1,2,3,4,5,7,8,9,10,11,12$,	14	B12-37	12146

SMALL-SHELL BIDECAL

No. of		JETEC.	RCA
$p_{i n s}$	Pins	No.	No.
20-pin	i through 20	$820-102$	20158

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge (JETEC NO.GB2O-1) having thickness of $1 / 4^{11}$ and twenty holes with diameters of $0.1030^{\prime \prime} \pm 0.0005^{\prime \prime}$ so located on a $1.7500^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle that the distance along the chord between any two adjacent hole centers is $0.2738^{\prime \prime} \pm 0.0005^{\prime \prime}$.
Pin fit in gauge is such that gauge together with supplementary weight totaling 3 pounds will not be lifted when pins are withdrawn.
\bullet

Bases
 25-Pin Types

Add 0.030 inch for solder.

BASES

29-PIN TYPES

SMALL-BUTTON TWENTYNINAR (CONT'D)

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge having thickness of $3 / 8^{\prime \prime}$ and iwenty-nine holes with diameters of $0.0700^{\prime \prime} \pm 0.0005^{\prime \prime}$, nineteen of which are located with hole centers corresponding to the specified location of pin centers on a $1.8750^{\prime \prime} \pm 0.0005^{\prime \prime}$ diameter circle, and ten of which are located with hole centers corresponding to the specified location of pin centers on a $0.8750^{\prime \prime} \pm$ $0.0005^{\prime \prime}$ diameter circle concentricwiththe $1.8750^{\prime \prime}$ circle.

Fin fit in gauge is such that entire length of pins will, without undue force, enter into and disengage from the gauge.

35-PIN TYPES

THIRTYFIVAR (CONT'D)

pin centers on a $2.1250^{\prime \prime} \pm 0.0005^{\prime \prime}$ aiameter circle, ar.d fourteen of wh ch are located with hole centers corresponding to the specified location of pin centers on a $1.3750^{\prime \prime} \pm 0.0005^{\prime \prime}$ diareter circle concentric with the 2. $1250^{\prime \prime}$ circle.

Pin fit in gauge is such that entire lengtr of pins will, without undue force, enter into and disengage from the gauge. Gauge is also provided with a Mo'e $1.000^{\prime \prime}$ diameter minimum concentric with pin circtes.

SMALL-BUTTON THIRTYFIVAR

No. of
$P_{i n s}$
$35-P$ in
$33-P$ in
$31-P i n$

21-Pin

$$
1 \text { through } 21
$$

mension as index
pin.
sin.

JETEC
$R C A$
No.
E35-28
E33-29
E31-36
pins 23 and 31 are
trimmed to same di-

For other dimensions of above base, see first

```
page of the "Thirtyfivar" series
efirst
```

 pae of the "Thirtyfivar" series
[^0]: 4 Persistence Characteristic, shown on back of Spectral-Energy Emission Curve.

[^1]: * For an ac power source, 117 volta plus orminus 10 per cent is acrepted USA practice.

[^2]: - Definitions taken from the 1933 Report of the Standards Committee of the I.R.E. are followed by the deflnition number in the report.
 - To denote that grid current does not flow during any part of the input cycle, the suffix 1 may be added to the letter or letters of the class Identiflcation. The suffix 2 may be used to denote that grid current flows during some part of the cycle.

[^3]: - See preceding page.

[^4]: - Types rated according to the abmolute myntem have no identification on their data pages issued prior to April 1, 1942. Sheets issued after that date carry the statement "Maximum Ratings Are Absolute Values" preceding the ratings.

[^5]: * Types rated according to the demign-center mymem are identifled on their data pages either by a large star in the index corner or by the statement "Maximum Ratings Are Design-Center Values' preceding the ratings. This statement is used on sheets issued since April 1, 1942.

[^6]: JUNE 1, 1943

[^7]:

 atundard Re- - (W)

[^8]: Applies to the minimum diameter except in the area of the seat.

[^9]: a Arrangement 1.
 b Arranyement 2.
 c Arrangement 3 .

[^10]: Arrangement 1.
 Arrangement 2.
 Arrangement 3 .
 Arrangement 4.

[^11]: * add 0.030 * por solder on finished tube.

[^12]: a pins 2, 4, 8,9 arecut off to a length such that their ends do not touch the socket insertion plane. Pin 11 is omitted.
 b pin 7 iscut off to alengtn suen that its end does not touch the socket insertion plane. Pins 1,3.5,6,9,11 are omitted.
 C pins 1,3,5,6,7, arecut of to a length such that their ends do not touch the socket insertion plane. Pin 12 is omitted.

