REAEMDS for transmiting tubes

Far

ENGINEERS

EXPERIMENTERS

Includes

SPECIAL CHART FOR TRANSMITTING TUBES (Air- and Walier-Cooled) PHOTOTUBES, CATHODE RAY AND SPECIAL TUBES Price 35 Cents

POWER

360 WATTS INPUT-LEES TZ.48 A WATT OF DRIVE:

Th How ars team innmiletir why ditern

 =itar entionett then monisatian

PLSSH-IPULLL BEAM NOWFIR ON FaO MC The Fil ia thos tuphettion ef zever ompither do
 drive af hat thas ential wate is wil wherste

1.000 WATMS INPUT AT 20 Me

FOREWORD

On radio communication rests man's destiny. Like the magic of Merlin, it controls airfleets, moves armies, guides convoys, dissolves horizons. It is the coordinator of fighting legions. It controls the destiny of nations.

Power Tubes make radio communication possible. Within their geometric confines evolves the phenomena of electronics on which hinges the complicated functioning of communication equipment. Small wonder then that the need for Power Tubes on the front line of battle is tremendous and that a supreme effort is needed to supply them in the quantities required. That means that Power Tubes for all other purposes may become even more difficult to replace. It is, therefore, a patriotic duty and sound business policy to operate tubes wisely.

We welcome the opportunity to cooperate in helping RCA Transmitting Tube users to extend tube life to the fullest by setting forth the following suggestions. Operate tubes conservatively. Avoid overloading. Follow carefully the instructions and published data outlined in the Instruction Book packed with each tube. Reduce grid, screen and plate dissipation. Use forced ventilation wherever possible. Use adequate fuse and overload-relay protection. Preheat mercury-vapor rectifiers-measure ambient temperatures. Operate tubes having coated cathodes and thoriated-tungsten filaments at rated cathode or filament voltages. Reduce filament voltage of pure tungsten-filament types wherever possible. (A 5% decrease will double tube life when the transmitter can be adjusted for operation closer to maximum permissible distortion). Operate spare tubes occasionally.

In presenting the 1944 RCA GUIDE to radio engineers and technicians in the Services and in the war industries, it is our belief that the up-to-date information contained in this volume will prove most helpful in choosing the right tube for the job and in getting the most from the tubes on the job. Should you desire additional information on any of the tubes described herein, or if you have special tube problems, we invite you to write to the Commercial Engineering Section, RCA Victor Division, Radio Corporation of America, Harrison, N. J. Should you need sales information on RCA tubes or any other RCA product, we invite you to write to the Sales Department, RCA Victor Division, Radio Corporation of America, Camden, N. J.

Prices in this book apply only in the United States of America and are subject to change or withdrawal without notice. Prices are those effective December 15,1943 and are exclusive of all Federal, State and local excise, sales and similar taxes.

LICENSE NOTICE FOR RCA TUBES

Licensed for all uses other than in apparatus and systems for use in the field of public service communication for hire or toll. The sale of this device does not convey any license under patent claims on combinations of the device with other devices or elementa.

OUTSTANDING CONSTRUCTIONAL FEATURES OF THE 813 beam transmititing tube

The 813 is RCA's largest glass air-cooled beam transmitting tube. It is designed for transmitters requiring exceptional overall efficiency. It is a logical choice for the ultra-modern final and intermediate r-f amplifier that needs no neutralizing adjustments and that can switch channels in a flash. Also, it meets the requirements for high-power transmitters having few tuning controls and a minimum of driver equipment. RCA- 813 doubles, triples, and quadruples with unusually high efficiency and high harmonic output. In brief, this exceptional beam tube can handle a greater variety of big-time jobs than any other tube of its size or class.
(1) MEDIUM METAL CAP
(2) SHORT RIBBON PLATE CONNECTOR
(3) filament support springs
(4) MOUNT SUPPORT
(5) TOP CERAMIC MOUNT SUPPORT

6 TOP SHIELD
(7) ALIGNED-TURN CONTROL AND SCREEN GRIDS

8 heavy-duty filament
(9) large sturdy graphite plate
(10) hard-glass bulb
(1) BOTTOM SHIELD DISC

12 ceramic plate-support spacer
(13) DIRECTIVE-TYPE GETTER CONTAINER
(14) DISH-TYPE STEM

15 CERAMIC-Insert glant base
16 beam-forming plate
(17) FILAMENT CONNECTOR
(18) TUNGSTEN-TO-GLASS SEAL

19 BOTTOM CERAMIC MOUNT SUPPORT

CONTENTS

	Page		Page			AGE
0) 4 -(\%	41	837	24	1609		45
1 C 21	44	838	29	1610		42
$1{ }^{1} 21$	14	841	41	1612		45
$2 \mathrm{AP1}$	43	842	41	1613		12
2C21/1642	44	8.43	41	1611		42
2 C 22	14	84.5	41	1616		12
$2 \times 2 / 879$	42	816	11	1619		42
3AP1/906-P1	43	8.19	41	1621		45
3 BP 1	43	850	41	1622		1.5
3EP1/1806-P1	43	852	41	1623		10
41326/2000	44	857-13	42	1621		42
1E27/8001	34	858	11	1625		42
- $\mathrm{SPP}^{\text {P }}$ /1802-P1	43	860	41	1626		42
5BP4/1802-P4	43	861	41	1629		45
5 CP 1	43	862	11	1631		15
$3 \mathrm{CP4}$	43	86.4	45	1632		45
\%HP1	43	865	41	16.33		4.5
5HP4	43	866-A/866	20	16.31		45
-R4-GY	44	868	44	1635		45
6AK6	44	869-1	12	1611		45
7AP4	43	870-A	12	1810		43
7CP1/1811-P1	43	$872-$ I/ $^{\prime} 872$	30	1847		43
9AP4/1804-1	43	874	4.7	1818		43
9C21	41	878	12	1819		43
9 C 22	41	880	41	1850		43
9JP1/1809-P1	43	884	31	1851		45
12A6	44	885	31	1898		43
12AP4/1803-P4	43	889	41	1899		43
12L8-GT	44	889-12	42	20.50		31
VR75-30	44	891	12	2051		31
VR105-30	45	891-R	42	7193		45
VR150-30	45	892	42	8000		33
203-A	41	892-R	42	8003		35
204-A	41	893	42	8005		36
207	41	893-R	42	8012		38
211	41	898	42	$8013-1$		39
217-A	42	902	43	8016		39
$217-\mathrm{C}$	42	904	43	802.5		38
800	41	905	43	9001		10
801 - ${ }^{\text {A }}$	41	907	43	9002		40
802	4	908	43	9003		40
803	5	914	43	9001		45
804	5	917	44	9005		45
805	6	918	44	9006		4.5

806
807
91

GENERAL INFORMATION
Constructional View of a Beam Transmitting Tube
Tube Data Charts 41
Transmitting Circuit 46
Variable Frequency Oscillator

52
Economy Transmitter 57

Single-Control Trans-
mitter Using 813
Plate-Modulated Trans-
mitter $\mathbf{6 7}$
Filter Design Curves 72

For technical information on RCA Tubes, please write to
COMMERCIAL ENGINEERING SECTION RCA VICTOR DIVISION of
RADIO CORPORATION OF AMERICA HARRISON. N. J.
transmiting tube data

TRANSMITTING PENTODE

SPECIAL INTERNAL SHIELD DESIGN 33 WATTIS INPUT
$\$ 3.50$

Features

- EXCELLENT OSCILLATOR

Crystal current extremely low in straight pentode crystal-oscillator connection. Gives high output as electron-coupled oscillator

- EXCEPTIONALLY WELL-SHIELDED TUBE STRUCTURE Tube contains special internal shield.

E.COsillato

LOW DRIVING POWER
23 watts output with only 0.8 watt of grid drive.

- NEUTRALIZATION UNNECESSARY

RCA-802 is a highly versatile transmitting pentode having a maximum plate-dissipation rating of 13 watts (ICAS). It is a handy tube to have around the station because of its adaptability to innumerable uses such as, for example, r-f amplifier, frequency multiplier, oscillator, and suppressor-, grid- or plate-modulated amplifier. It may also be used as a class A pentode amplifier or modulator. Neutralization is unnecessary in adequately shielded circuits. As a crystal oscillator, the 802 may be operated under the conditions shown for class C telegraph service. A small condenser of 2 to $3 \mu \mu \mathrm{f}$ should be connected between control grid and plate to introduce external feed-back. The plate of the tube shows no color at the maximum plate-dissipation rating of 13 watts. The screen should not be allowed to show more than a barely perceptible red color.

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input for High-Frequency Operation

FREQUENCY	30	55	100	Me
CLASS C TELEGRAPHY	100	77	55	Per Cent

802-807 REINARTZ HARMONIC GENERATOR
For harmonic output up to 8 times fundamental frequency
$\mathrm{C}_{1}=2$ to $3 \mu \mu \mathrm{f}(\max),. 600 \mathrm{v}$. $\mathrm{C}=100 \mu \mu \mathrm{f}$, nica
$\mathrm{C}_{8} \mathrm{C}_{4} \mathrm{Ca}_{8} \mathrm{C}_{10}=0.005 \mu \mathrm{f}$, mica $\mathrm{C}_{8} \mathrm{Ce}=1 \mu \mu \mathrm{f} /$ meter
Ci二 $50 \mu \mu \mathrm{f}, 600$ volts
Cu $=100 \mu \mu \mathrm{f}, 600$ volts
$\mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13}=0.005 \mu \mathrm{f}$, mica $\mathrm{K}_{1}=5000$ ohms, wire wound $\mathbf{R}_{2}=20000$ ohms, 10 wat ts $R_{3}=15000$ ohms, 10 watts $R_{H}=15000$ ohms, 5 watts $\mathbf{R}_{6}=10000$ ohms, I watt $R_{0}=200$ ohms, 5 watt $\mathrm{L}_{\mathrm{s}}=$ For $1 / 2$ crystal fred., with C_{2} $\mathrm{I}_{2}=$ Tune to freq. " f " $L_{s}=T$ une to output f reguenoy I. $6=\mathbf{R}$-f choke

X $\mathrm{X}=$ Crystal. frequency " f "

Bottom View
of Socket Connections

803 TRANSMITIING
 RCA'S BIGGEST PENTODE

350 WATTS INIPUT

RCA-803, with its maximum plate dissipation of 125 watts, is the larg est of the RCA transmitting pentodes It is particularly useful as an r-f amplifier, frequency multiplier, oscillator. and suppressor- grid-, or platemodulated amplifier. Neutralization of the tuhe is unnecessary in ade quately shielded circuits, Maximum pate mput for suppressor modulation and urid modulation services is 180 watts, Maximum plate input for mlatemodulated pentode and tetrode services is 250 watfs. Maximum plate input for pentode and fetrode c-w servce is soo watts.
The sumpressor of the 803 is conrected to a separate base-pin ter minal. This permits operation of the uppressor at optimum d-c voltage for maximum nower output of the tube It also makes practical the use of the tube as a suppressor-modulated amolifier.
RCA-803 may be operated at maxi mum ratings at frequencies as high as $20-\mathrm{Mc}$. It employs a hard glass bulb, is equipped with a ceramic base has a graphite anode, and contains a heavy-duty, thoriated-tungsten fila ment.

804 TRANSMITTING

150 WATTS INPUT
RCA-K0\& is a pentode transmittins tube of the thoriated-tungsten fila ment type having a maximum plate dissipation rating of 50 watts (ICAS) r-f amplifier frequency multiplier oscillator and suppressor- multiplier scilator, and suppressor-, grid- or tion of the tube is adequately shiplded circuits. Marimum late input for auppresor modulation olate input for suppressor modulation and (ICAS) Mervice is 75 for plate modulated pam plare input or platesiod is 100 pentode and errode services is 100 walls (ICAS) Maximum plate input for pentode and cerode c-u service is 150 watts (ICAS). As a pentode in any r-f service, RCA-Rn4 requires less than 2 The of tir...ns power
The suppressor of the 804 is connected to a separate base-pin terminal. This permits operation of the suppressor at optimum d-c voltage for maximum nower output of the of the of the tube as a suppressor-modulated amplifier. RCA-K04 may be operated at maximum ratings at frequencies as high as 15 Mc . The tuhe is designed with a MICANOL base.
$C_{1}=100 \mu \mu f$. midget
$\mathrm{C}_{2} \mathrm{C}_{3}=0.001 \mu \mathrm{f}$, mica
$\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{8} \mathrm{C}_{10}=0.005 \mu \mathrm{f}$, mica $C=0.002 \mu \mathrm{f}, 1500$ volts $C_{\kappa}=0.005 \mu \mathrm{f}, 1500$ volt $\mathrm{C} 日=0.5 \mu \mu \mathrm{f} /$ meter $\mathrm{R}_{1}=15000$ ohms, 2 watts $R_{2}=50$ ohms, c.t., wire-wound
Max. Permissible Percentage of Max, IRated Plate Voltage and Plate Input for High-Frequency Operation

FREQUENCY		15	35	80	Mc
CLASS	Telegraphy	100	75	50	Per Cent
	C) Grid-Mod. Telephony	100	88	76	Per Cent
	Sup.-Mod. Telephony	100	88	76	Per Cent
	(Plate-Mod. Telephony	100	75	50	Per Cent

RATINGS
Filament Voltage
Filament Curbent
Transconductance, for plate cur, of 62.5 ma Blrhct intheribetrone Cabacitances
(irid-Plate (with external shielding) Output
Maximum ileight
Maximum
Sockert.

.int $5=. .$.
10.0

5
4000
0.15 max. $\mu \mu$

Volts
Amperes
Micromhos
$\mu \mu \mathrm{f}$

$\mu \mathrm{f}$
type 9927

MAXIMCM CCS RATINGS

As Class C K-F Power Amplifier
Modulation
I)-C Plate Voltage 1600 max.)-C Screen Volitage (Grid No. 2).. D-C Grio Voltage (Grid No. 1) -500 max.)C Grid Cerrent 160 max. -C brid Current 50 max, Plath InPut . 250 max. SUPPRESSOR INPUT 10 max. SCrekn InPUT 20 max. 'late Dissifation

85 max
. 1
000 max. Volts
500 max. Volts
600 max. Volts
500 max. Volts
175 max. Ma.
50 max. Ma.
350 max. Watts
10 max. Watts
30 max. Watts
125 max. Watts
Maximum Permissible Percentage of Maximum Kated Plate Voltaga and Plate Input for High-Frequency Operation

	FREQUENCY	20	40	60	Mc
CI.ASS	¢ Telegraphy	100	77	60	Per Cent
	C $\{$ Grid-Mod. Telephony	100	86	80	Per Cent
	C Suppressor-Mod. Tel'y	100	86	80	Per Cent
	Plate-Mod. Telephony	100	77	60	Per Cent

PENTODE

RATINGS

Filament Voltage (A.C. or D.C.)	7.5	Volts
Filament Current	3	Amperes
Transconductance, for plate cur, of 32 ma	3250	Micromhos
IIrect Interblectrodeg Capacitances:		Micromhos
Grid-Plate (with external shielding)	0.01	
Input ${ }^{\text {Output }}$	16	$\mu \mu \mathrm{f}$
Maximum lipight	14.5	$\mu \mu f$
Maximum Ihameter		

MAXIMUM CCS and ICAS RATINGS
As IR-F Power Amplifier and Oscillator Pentode - Class © Telegraphy

I)	CCS		ICAS		
	1250	max.	1500	max.	Volts
1)-C Screen Voltage (irid No. 2)...	300	max.	300	max max.	Volts
1)-C (irid Volmage (Grid No, 1)	-300	max.	-300	max.	Volts
1)C Plate Current	95	max.		max.	Ma.
1)-C Grid Current	15	max.	15	max.	
lhate Input	120	max.	150	max.	Watts
SUPPRFASSOR Input	5	max.	5	max.	Watts
Screen input	15	max.	15	max.	Watts
linate Dishipation	40	max.	50	\max	Watts

SUPPIRESSOR-MODUIATED PENTODF
Power Output 21 Watts (Approx.)

1.f 803 Sochet Connections

RATINGS

T RANSMITTING
 WITH ENCLOSED ANODE

1000 WATTS INPUT

TRIODE

 List Price ${ }^{\mathbf{5}} 222^{00}$ Two 806 's 1000 W ATTS (ICAS) ON C.W Two 806's take 1200 Watts on 'phone.- BIG ENCLOSED ANODE

This design, a development by RCA, provides more than 75 watts of extra powe

- 50-WATT THORIATED-TUNGSTEN FILAMENT Insures great reserve of emission.
- 30-Mc OPERATION AT FULL RATINGS Up to 100 Mc at reduced ratings.

806

Features

RCA-806 is designed for hard use as a high-power r-f amplifier and class B modulator. A single tube in class C telegraph service can take an input of 1000 watts and requires only 34 watts of driving power! Maximum plate dissipation of the tube is 225 watts (ICAS).

The plate of the RCA-806 shows an orange-red color at its maximum platedissipation ratings. It is normal for the plate to show some color, even at low loads. Forced ventilation is required for continuous key-down conditions in class C telegraph service and is recommended for all classes of service at frequencies of 30 Mc . or higher.

With a c-w carrier power of 780 watts and 460 watts for 'phone, the 806 is one of the most remarkable values ever offered in the "big-tube" class.

MAXIMUM CCS and ICAS RATINGS with TYPICAL OPERATING CONDITIONS

As Plate-Modulated R-F Power Amplifier-Class C Telephony
Carrier conditions per tube for use with a max. modulation factor of

	CCS		ICAS		
D-C Plate Voltage	2500	max.	3000	max.	Volts
D-C Grio Voltage	-1000	max.	-1000	max.	Volts
D-C Plate Current	200	max.	200	mas.	
D-C Grid Current	50	max.	50	max.	Ma.
Plate Input	500	max.		max.	Watts
Plati Dibeipation	110	max.	150	max.	Watts

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input for High-Frequency Operation

| FREQUENCY | 30 | 50 | 100 | Mc |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CLASS CTelegraphy
 Plate-Mod. Telephony | 100 | 80 | 50 | Per Cent |

Bottom View
of Secket Connections

Tobe Mounting Position VERTICAL-Base down only HORIZONTAL-Not recommended
$\mathrm{C}_{1}=0.7 \mu \mu \mathrm{f} / \mathrm{meter} / \mathrm{section}^{*}+$ $\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}=0.005 \mu \mathrm{f}$ mica $\mathrm{C}_{5} \mathrm{C}_{8}=4.0 \mu_{\mu} \mathrm{f}^{*}$, high voltage $\mathrm{C}_{8}=0.002 \mu \mathrm{f}$ mica, 7500 volts $\mathrm{C}_{s}=1 \mu \mu \mathrm{f} / \mathrm{meter} / \mathrm{section} *+$ $\mathrm{R}_{1}=12500$ ohms, 80 watts RFC=R-f choke. 500 ma .
$\mathrm{T}_{1}=$ Filament transformer
$\mathrm{T}_{2}=$ Modulation transformer, 600 watte $L_{1} L_{2}=$ Tune to frequency $\mathrm{L}_{\mathrm{s}}=\mathrm{D}-\mathrm{c}$ overload relay, $600 \mathrm{ma}^{* *}$
$f=$ Operating frequency
*Approximate
+Capacitance in actusl use
\#Maximum value for plate-modulated telephony (ICAS)
**Contacts of 1,3 should break the primary circuit of the high-voltage supply
NOTE: Rotor shaft of Cs is at the d-c plate potential, An insulated coupling shaft must be inserted between the rotor shaft of Ca and its control dial.

Typical Operation : CCS lCAS			
D-C Plate Voltage	2500	3000	Volta
D-C Grid Voltage of	-600	${ }_{-670}$	Volts
From a grid resistor of	15000	25000	Ohma
Peak R-F Grid Voltage	890	970	Volts
D)-C Plate Current	195	195	Ma .
D-C Grid Current (Approx.)	40	27	Ma .
Driving Power (Approx.) .	32	24	Watts
Power Output (Approx.)	390	460	Watts

1200-WATT PLATE-MODULATED R-F AMPLIFIER Power Output 900 Watts (ICAS)*
As R-F Power Amplifier and Oscillator-Class C Telegraphy Key-down conditions per tube without modulation

TRANSMITTING BEAM POWER AMPLIFIER
 "LOWEST GRID-DRIVING REQUIREMENT"
 75 WATTS INPUT
 List Price
 $\$ 2.25$

807

Features

- EXTREMELY LOW DRIVING POWER

75 Watts input with only 0.2 watt grid drive. 60-Mc operation at fuli, ratings

- MINIMIZES NUMBER OF DRIVER STAGES - ELIMINATES NEED FOR NEUTRALIZATION 21.4 WATTS INPUT PER DOLLAR (ICAS) - MICANOL BASE

RCA-807 is a beam power transmitting tube of the heater-cathode type having a maximum plate dissipation rating of 30 watts (ICAS). It is capable of giving full power output with very low driving power. For example, in class C telegraph service, two 807's will deliver 100^{\prime} watts of power with the amazingly small driving' power of less than one-half watt! It is well suited for use in a low-power, portable, storage-battery-operated transmitter; a single $6 J 5$ crystal oscillator will drive it very nicely.

The high power sensitivity of the 807 makes it especially useful as a frequency multiplier where high harmonic output is essential. The tube is also well suited for use as a buffer amplifier in medium-power transmitters, and is ideal as a final amplifier in low-power transmitters. It is an excellent crystal oscillator. Neutralization is unnecessary in adequately shielded circuits. RCA-807 can be operated at maximum ratings at frequencies as high as 60 Mc and at reduced ratings up to 125 Mc . In class $A B_{2}$ service, two tubes are capable of modulating 100% an $r-f$ amplifier having an input of nearly 250 watts.

RATINGS

Macimet
Soct
Standard 5 -contact such as RCA type 9920
MAXIMCD CCS and ICAS RATINGS with TYIPICAL OPERATING CONDITIONS
As R-F Power Amplifier and Oscillator - Class C Telegraphy Key-down conditions per tube without modulation

APPLICATION

An r-f amplifier circuit using the RCA-807 is shown on this page. It is capable of producing a power output of approximately 50 watts as an r-f amplifier and about 25 watts as a doubler, with ICAS ratings. The carrier power output in telephony service (ICAS) is approximately 42 watts.

(Continued on page 9)

Bottom View
of Socket Connections

$\mathrm{C}_{1}=50 \mu \mu \mathrm{f}$ midget
$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{6}=0.005 \mu \mathrm{f}$ mica
$\mathrm{C}_{6}=\mathbf{2 \mu \mu} /$ meter, 1200 v .
$\mathbf{R}_{1}=6000$ ohms, 1 watt
$R_{2}=250$ ohms, 5 watts
$\mathbf{R}_{3}=35000$ ohms, 10 watts
$\mathbf{R}_{4}=20000$ ohms, 10 watts
$\mathrm{L}_{1}=\mathrm{R}$-f choke
$F=1 / 4 \mathrm{a}$ high-voltage fuse
NOTE: For frequency doubling, tune $C_{5} L_{2}$ to frequency "2f." A 50,000 -ohm, 10 -watt series screen resistar can be used in place of \mathbf{R}_{3} and \mathbf{R}_{4}.

Typical Operation :

*The total effective grid-circuit resistance should not exceed 25000 ohms.

Max. Permissable Percentage of Max. Rated Plate Voltage and Plate Input for High Frequency Operation

FREQUENCY	60	80	125	Mc
CI,ASS C	Pelegraphy Plate-Mod. Telephony	100	80	55

BEAM POWER R-F AMPLIFIER OR FREQUENCY DOUBLER

TRITET CRYSTAL OSCILLATOR

$\mathrm{C}_{1}=0.001 \mu \mathrm{f}$, mica
$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}=0.01 \mu \mathrm{f}$, mica
$\mathrm{C}_{6}=100 \mu \mu \mathrm{f}$ midget
$\mathrm{C}_{\mathrm{B}}=1.0 \mu \mu \mathrm{f} /$ meter
$\mathrm{R}_{1}=75000$ ohms, 1 watt
$\mathrm{R}_{2}=2.0-$ Volt, $60-\mathrm{ma}$. pilot lamp
$\mathrm{R}_{3}=100$ Ohms, 5 watts
X $1 .=$ Crystal of fromency " f "
$L_{1}=$ Ste Nute*
$L_{2}=$ Tune for $\mathrm{f}, 2 \mathrm{f}$, or 4 f

* See QST for April 193T. for data on Tritet useiltator design. as described by J. J. Lamb.

PUSH-PLILL BEAM POWER R-F AMPLIFIER
Power Output 100 Watts*-For Class C Telegraph Service

$\mathrm{C}_{1}=1.5 \mu \mu \mathrm{f} / \mathrm{meter} / \mathrm{section}$
$\mathrm{C}_{2}=2 \mu \mu \mathrm{f} /$ meter $/$ section \dagger
$\mathrm{C}_{2}=\mathrm{C}_{8}=0.002 \mu \mathrm{f} / \mathrm{meter} / \mathrm{mecti}$
Cisa
$\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{8} \mathrm{C}_{7}=0.005 \mu \mathrm{f}$
$\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7}=0.005 \mu \mathrm{f}$ mica, 1000 V . $\mathbf{R}_{2} \mathbf{R s}_{3} \mathbf{R}_{4} \mathbf{R}_{5}=50$ watt
$R_{2} R_{5} R_{4} R_{5}=50$-ohm carbon, 0.5 watt parasitic suppressor $\mathrm{R}_{\mathrm{B}}=110$ ohms, 20 watts $R_{7}=42500$ ohms, 20 watts LILI $=$ For desir
RFC=R-f choke RFC=R-f choke
X Approximate
\dagger Capacitance in actual use
NOTES: (1) This circuit is not suitable for keying in the oscillator stage-see text.
(2) Rotor shaft of C_{2} is at d-c plate potential; an insulated coupling must be used between rotor shaft and control dial.

The "Tritet" crystal-oscillator circuit shown on this page has exceptional efficiency when properly designed and adjusted. The plate circuit may be used for "straight-through" operation, frequency doubling, or frequency quadrupling, whichever is desired. In each case, ample excitation is available to fully excite an 807 buffer amplifier. A guide for the cathode and plate coils may be obtained from those designed in Tables 5 and 6 for the Plate-Modulated Transmitter, page 68.

The push-pull 807 circuit shown on this page will deliver approximately 100 watts output. It provides medium output with minimum driver requirements. It is also useful as a buffer to drive a more powerful amplifier such as an $833-\mathrm{A}$, push-pull 806 's, or push-pull 810^{\prime} s. The circuit is designed for cathode keying. If it is desired to key the oscillator stage for break-in operation, the screen voltage should be obtained from a 275volt source having good regulation rather than from the series screen resistor. In addition, the grid leak (R_{1}) should be replaced by a fixed bias source of about - 25 to - 30 volts. If no parasitics are encountered in the circuit, R_{2}, R_{3}, R_{4}, and R_{5} should be omitted. If it is desired to use plate modulation, the following changes should be made: $\mathrm{R}_{1}=7500$ ohms, 1 watt; $\mathrm{R}_{\mathrm{s}}=130$ ohms, 20 watts; $\mathrm{R}_{\mathrm{F}}=25,000$ ohms, 20 watts; $\mathrm{Eb}=600$ volts, maximum; and a $0.01-\mu \mathrm{f}, 600$-volt paper condenser should be shunted directly across R_{7}, in order to compensate for the audio-frequency by-passing of the screen condensers, C_{5} and C. With these changes, the carrierpower output will be approximately 50 watts. The secondary impedance of the modulation transformer should be about 2700 ohms, allowing for modulation of both screen and plate circuits. 100% modulation with excellent linearity can be obtained with a modulator having an a-f power output of about 60 watts.

TRANSMITTING
 ENCLOSED ANODE

200 WATTS INPLT
Features

- ENClosed anode
- EXTREMELY HIGH VACUUM

CONSERVATIVE MAXIMUM RATINGS
RCA-808 is a high-mu transmitting triode having a maximum plate-dissipation rating of 50 watts (CCS). It is excellent for use as an r-f amplifier, frequency multiplier, oscillator, and class B modulator. The anode of the tube almost completely encloses the grid and filament and thus conserves power by eliminating loss from bulb bombardment and stray electrons. No insulation is used within the tube between grid and plate. Wherever uninterrupted service and reliability are required, this rugged triode is a wise choice.

List Price $\$ 7.75$

RATINGS

MAXIMUM RATINGS with TYPICAL OPERATING

 CONDITIONS

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input for High-Frequency Operation

FREQUENCY	30	60	130	Mc
CLASS CTelegraphy Plate-Mod. Telephony	100	75	50	Per Cent

TRANSMITTING

100 WATTS INPUT PER TUBE
List Price
s250
809
809 Features
40 WATTS INPUT PER DOLLAR HIGH EFFICIENCY WITH LOW-VOLTAG
LOW IDRIVING POWER
60-Mc OPERATION AT FULL RATINGS

AND 1623

1623 Features

- EXTREMELY STABLE OSCILLATOR

HIGH EFFICJENCY WITH I,OW-VOITTAGE IPOWER SUIPPIE
 40 WATTS INPUT PER DOLLAR
RCA-809 and RCA-1623 are high perveance transmitting triodes having a maximum plate dissipation of 30 watts (ICAS) each. The 809 has a mu of 50 ; the 1623 , a mu of 20 . Both tubes are designed for use as an r-f power amplifier, frequency doubler, class B modulator, or oscillator. The 809 has the advantage of requiring low grid bias in all services. As a class B modulator it requires only -10 volts bias at a d-c plate voltage of 1000 volts (ICAS). Two 809's in class B a-f service are capable of modulating 100% an $r-f$ stage having a d-c plate input up to 260 watts. As an r-f amplifier, either of these tubes will drive a single plate-modulated 806 , or a p-p stage using 810 's, 203-A's, or 83's. The 1623 is particularly well a uited for self-excited oscillator circuits and performs nicely at $21 / 2$ meters. It is unaffected by ordinary plate-load variations and grid-excitation changes. Both types are equipped with the low-loss "Micanol" base.

RATINGS for 809 and 1623

MAXIMUM ICAS RATINGS AND TYPICAL OPERATING CONDITIONQ

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input

750	Volts
-60	Volts
2000	Ohms
150	Volts
100	Ma.
32	Ma.
4.3	Watts
65	Watts

for High-Frequency Operation
FREQUENCX 60 70 120 Mc CI.ASS CA Telegraphy Plate-Mod. Telephony 100 88 50 Per Cent

Class "B" MODULATOR (Output 145 Watts)

Bottom View of 809 and 1623
Socknt Connections

Tube Mounting Position
VERTICAL-Base down. HORIZONTAL-Piane of electrodes vertical.

$\mathrm{T}_{1}=$ Input transformer
$\mathbf{T}_{2}=$ Output transformer ; primary impedance 11600 ohms, plate-to-plate: 150 -watt rating. $\mathrm{T}_{2}=6.3$ volt, 6.0 ampere, c.t., Alament transformer $\mathrm{F}=1 / 6 \mathrm{a}$. high-voltage fuse

$\mathrm{C}=15 \mu \mu \mathrm{f}$, mpprox.
$\mathbf{R}=1000 \mathrm{ohms}, 5 \mathrm{watts}$
$\mathrm{L}_{1}=\mathrm{T}$ wo 12 -inch lengths of $1 / 2$-inch dia. metal tubing spaced 1 inch between spaced 1 inch between
$\mathrm{I}_{2}=$ Two 12 -inch lengths of OPERATING CONDITIONS

ONS		
	C.W.	Phons
Plate Voltage	500	875 V.
D-C Plate Cur.	200	200 Ma

TRANSMITTING TRIODE

GRAPHITE ANODE, SHIELDED FILAMENT

Features

- HIGH POW'ER WITH REI,ATIVELY LOW PI,ATE VOI,TAGE High tube perveance permits c-w power input of 620 watts (ICAS) at a plate voltage of only 2250 volts.
- LOW IDRIVING POWER

475 watts output on c.w, with 12 watts of drive; 335 watts on phone with only 17 watts of drive!
BIG, SPECIAL-PROCESSED GRAPHITE PI,ATE Assures high thermal radiation; gas-free.

- CLASS B MODUI.ATOR

Two tubes will modulate 100% nearly $11 / 2$ kilowatts of power
SHIEI,IED, HEAVY-DUTY FII,AMENT
End-shields eliminate bulb-bombardment and stray electrons

- 30-mc operation at full ratings

RCA-810 is a high-power transmitting triode with a maximum plate dissipation of 150 watts (ICAS) and a mu of 36 . RCA-810 is designed for use as a radiofrequency amplifier and class B modulator. Because of its high perveance, it can be operated at high plate efficiency with low driving power and relatively low plate voltage. For example, two 810's in class C telegraph service (ICAS) will take a plate input of 1240 watts and require only 24 watts of driving power. In class B modulator service (ICAS) two tubes are capable of plate-modulating 100% an r-f amplifier having a power input of nearly one and one-half kilowatts! Grid-bias requirements are unusually low. At a plate voltage of 2000 volts, a grid bias of only $\mathbf{- 4 5}$ volts will protect the tube against overloading caused by loss of grid excitation.

The filament of the 810 is shielded at each end. This construction increases power output by eliminating losses from bulb bombardment and stray electrons. This tube has a graphite anode, specially processed to insure high thermal radiation and a minimum of gas. Plate and grid leads are brought out to rugged terminals at the top and side of the bulb, respectively. This design provides very low lead inductance and permits compact circuit layout for h-f installations. RCA-810 can be operated at frequencies as high as 30 Mc with maximum ratings.

RATINGS for 810

	RCA-810	
Filament Voltage (A.C. or D.C.)	10.0	Volts
Filammant Currisnt	4.5	Amperes
Amplification Factor	36	
Dirbect interueldctrode Capacitanc		
Grid-Plate	4.8	$\mu \mu \mathrm{f}$
Grid-Filament	8.7	$\mu \mu \mathrm{f}$
Plate-Ftiament	12	$\mu \mu \mathrm{f}$
Maximum height		
Maximum Radius		
Socket Transmittin	uch as the	A type 9936

MAXIMUM CCS and ICAS RATINGS with TYPICAL OPERATING CONDITIONS

As Plate-Modulated R-F Power Amplifier-Class C Telephony

Peak R-F Grid Voltage	3\%0	370	Voita
D-C Plate Current	210	250	Ma.
D-C Grid Current (Approx.)	50	50	
Driving Power (Approx.)	17	17	Watta
Power Output (Approx.)	25:0	335	Watts

As R-F Power Amplifier and Oscillater-Ciass C Telegraphy Key-down conditions per tube without modulation			
	CCS	ICAS	
D-C Plate Voltage	20H0 max.	2250 max.	Volt
D-C Grid Voltage	-540 max.	-500 max.	Volts
D-C Plate Current	2.50 max.	275 max.	Ma.
D-C Grid Current	70 max.	70 max.	Ma.
Plate input	500 max.	620 max.	Watts
Plate Dissipation	125 max.	150 max.	Watts
TYpical Operation:			
D-C Plate Voltage	2000	2250	Volts
D-C Grid Voltage:			
From a fixed supply of.	-150	-160	Volts
or from a grid resistor of.	4000	4000	Ohms
or from a cathode resistor of	550	510	Ohms
Peak R-F Grid Voltage.........	330	330	Volts
D-C Plate Current	250	275	Ma.
D-C Grid Current (Approx.)	40	40	Ma.
Driving Power (Approx.)	12	12	Watts
Power Output (Approx.)	375	475	Watts

* Averaged over any audio-frequency cycle of sine-wave form.
\ddagger Grid voltages are given with respect to the mid-yoint of flament operated on a.c. If d.c. is used, each stated value of grid voltag' should be decreased by one-half the rated filament voltage.

Botiom View of
810 Socket Connections

Tube Mounting Position
VERTICAL-Base down.
HORIZONTAL-Plane of electrodes vertical

\uparrow Grid bias may be obtained from a grid leak, or from a combination of grid leak and fixed supply, or grid leak and cathode resistor. The cathode resistor should be suitably by-passed for both a.f. and r.f. The combination method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by bias-supply compensation.

Max. Permissible Percentage of Max, Rated Plate Voltage and Plate Input for High-Frequency Operation

FIRFQUENCY	30	60	100	Mc
CLASS CTelegraphy IPlate-mod. Telephony	100	70	50	I'er Cent

APPLICATION

A typical single-ended r-f amplifier circuit using the 810 is shown below. Keying is shown in the filament-to-ground return lead. If it is desired to key the oscillator for breakin operation, a partial fixed bias of -45 volts should be used in conjunction with a grid leak (K_{1}) of about 3000 ohms (10 watts). This amount of fixed bias will protect either tube against removal of grid excitation when the key is open. An RCA-809 operated at reduced ratings or an 807 is suitable for the driver stage. For 10 -meter operation with an $8(0$-meter erystal, a practical tube line up is an 807 or filf "Tritet" crystal oscillator-quadrupler, an 807 bufferamplifier and an 809 doubler. The 809 is needed only for 10 -meter operation; it may be omitted for the other bands. With a 10 -meter crystal and a 655 triode oscillator, an 807 can be used to drive the 810 directly, thereby providing a 3-stage, 10 -meier transmitter of respectable power output.

Class h modulator
(CS A-F Power Output 590 Watts*

[^0]Noti 1: With $E_{b}=1500$ v., $E=-80$ v., $Z=6600$ ohms, $1 s=80$ to 500 ma , and the power output is 510 watts.

Note 2: Four 2A3's in push-pull-parallel, Class $A B_{1}$, operating at $E_{b}=300$ v. and $\mathrm{Kc}=-62 \mathrm{v}$. (fixed bias), are recommended for the driver stage.

The r-f amplifier circuit shown on this page may be plate modulated by reducing the d-c plate voltage to 1600 volts and the d-c plate current to 210 ma . The grid current should be increased to 50 ma . These are CCS values.

An important advantage of the RCA-810 is its suitability in application now using tubes of the so-called " 50 -watt" class and where it is desired to increase power without completely re-building the transmitter. In general, these tubes can be used to replace a " 50 -watter" with only minor circuit changes, including re-neutralizing. If the existing plate supply delivers only 1250 volts, but has ample current capacity, the higher plate-current rating of these tubes can be used to increase the plate input from 220 to 310 watts. If the plate supply is changed so that it will deliver 2250 volts at 275 milliamperes, the power input can be increased from 220 to 620 watts in class C telegraphy service! At the higher voltages, some additional driving power will be needed, but this can usually be obtained without any radical changes in the exciter and driver stages.

A class B modulator employing two 810 's is also shown on this page. A recommended driver stage for the modulator employs four 2A3's in class AB1, push-pull-parallel, operating at a plate voltage of 300 volts and at a fixed grid bias of -62 volts.

The plates of these tubes show a dull red color at their maxinum ICAS plate-dissipation ratings. They show only a barely perceptible red color at their maximum CCS platedissipation ratings.

When considering an 810 for high power, you save not orly on initial tube cost, but also on the cost of the final-stage tank condenser, on the high-voltage power supply, and on the number of exciter stages required.

R-F POWER AMPLIFIER
CCS Power Output 375 Watts \ddagger

$\mathrm{C}_{1}=0.0005 \mu \mathrm{f}, \mathrm{miea}, 1500 \mathrm{v}$.
C_{2} to $\mathrm{C}_{8}=0.002 \mu \mathrm{f}$, mica
$\mathrm{C}_{7}=0.002 \mu \mathrm{f}$, mica, 2500 v
$\mathrm{C}_{8}=0.002 \mu \mathrm{f}$, mica, 5000 .
$\mathrm{C}_{8}=4.8 \mu \mu \mathrm{f}$ (approx.), 7500 F .
$\mathrm{C}_{10}=0.75 \mu \mu \mathrm{f} / \mathrm{meter} /$ section \dagger
$\mathrm{R}_{1}=4000$ ohms, 20 watts
$\mathrm{R}_{\mathrm{s}}=50$ ohms, c.t., wire-wound
$\mathrm{L}_{2}=$ Select for band desired
RPC=R-f choke
$\mathbf{X}=$ Insert keying relay here
\ddagger Approximately 475 watts for ICAS.
\dagger Approximate capacitance in actual use at resonance.
\# F'or CCS plate-modulated telephony service, reduce Fs_{s} to 1600 vo , It to 210 ma. , and increase I_{c} to 50 ma . The power output is approximately 250 watis.

TRANSMITTING TRIODE zrkcontum.coatte anood

225 WATTS INPUT

Features

- ZIRCONIUM-COATEI ANODE

Has remarkable heat-dissipating qualities,
Acts as an exceptionally effective getter.

- EXTREMEI,Y HIGH MU OF 160

EXTREMEL, HIGH MU OF 160
Zero-bias operation as class B modulator up to 1250 volts.

- II)EAL FOR BREAK-IN OPERATION
- 60-Mc OPEIRATION AT FULL RATINGS

RCA-811 is a husky high-mu triode having a maximum plate-dissipation rating of 55 watts (ICAS). With a mu of 160 , this tube requires no bias in class B modulator service up to a plate voltage of 1250 volts-and only -4.5 to -9 volts of bias up to 1500 volts.

The remarkable ability of the 811 to "take it" is due in a large measure to its Zirconium-coated plate, an RCA development. This type of anode has very high heat-dissipating qualities and in addition functions to keep the tube hard during its entire life. Thus, the 811 is capable of withstanding heavy temporary overloads without damage to its filament emission. The tube has a rugged, 25 -watt, thoriated-tungsten filament which insures tremendous reserve of emission.

The features of zero-bias operation, 170 watts output on c.w., 120 watts output on 'phone, and 225 watts of audio in class B (2 tubes) make the 811 one of the finest values in transmitting triodes ever presented.

RATINGS

FHAMENT Volitagh (A.C. on D.('.)
FILAMENT CURRENT AMPIAFICATION FACTOB

Grid-Ilate
Grid-Filament
Clate-Filament
Maximim IIEHiAT
Serkey
Standard 4 -contact, such as R('A tyme 9937

MAXIMUM CCS and ICAS RATINGS with TYPICAL OPERATING CONDITIONS

As A-F Power Amplifier and Modulator-Class B			
	CCS	ICAS	
D-C Plate Voltage	1250 max.	1500 max.	Volts
Max.-Signal D-C Plate Current*	125 max.	125 max.	
Max.-Signal Plate Input*	125 max.	150 max .	Watts
Platr Dissipation*	40 max.	50 max.	Watts
Typical Operation : Unless otherwise	necified valu	are for 2 tu	
D-C Plate Voltage	1250	1500	Volts
D-C Grid Voltage	0	-9	Volts
Peak A-F Grid-to-Grid Voltage	140	160	Volts
Zero-Sig. D-C Plate Current	48	20	Ma.
Max.-Sig. D-C Plate Current.	- 200	200	Ma.
Effective Load Resistance (Plate-to-Plate)	. 15000	18000	Ohms
Max.-Sig. Driving Power (Approx.)	. 3.8	4.2	Watts
Max.-Sig. Power Output (Approx.)	.. 175	225	Watts

Bottom View of Socket Connections

Tube Mounting Position VFRTICAL——ase down. HORIZONTAI.-Jlane of plate veltical (on edge).
$\mathrm{C}_{1}=0.0005 \mu \mathrm{f}$ mica, 1000 v .
$\mathrm{C}_{2} \mathrm{C}_{8} \mathrm{C}_{6}=0.005 \mu \mathrm{f}$ mica
$\mathrm{C}_{5} \mathrm{C}_{7}=0.002 \mu \mathrm{f}$ mica, 5000 v .
$\mathrm{C}_{6}=5.5 \mu \mu \mathrm{f},{ }^{*} 6000$ v.
$\mathrm{Cs}=0.6 \mu \mu \mathrm{f} /$ meter $/$ section, $\dagger 2000 \mathrm{v}$.
$\mathbf{R}_{1}=3500$ ohms, 10 watts
RFC=R-f choke
$\mathrm{T}_{1}=$ Filament transformer, 2000 v . insulation
$L_{1}=T$ une to frequency " f "
$\mathrm{f}=$ Operating frequency

* Approximate.
\dagger Capacitance in actual use.
Note: Rotor shaft of C_{3} is at the high d-c plate potential. An insulated coupling shaft must he inserted between the rotor shaft of Cs and its control dial.

List Price $\$ \mathbf{3 . 5 0}$
811

Typical operation:

	CCS	ICAS	
D-C Plate Voltage	1250	1500	Volts
D-C Grid Voltage:			
or from a grid resistor of	-87.5 2500	-113	Volts
or from a cathode resistor	550	3206 610	Ohms
Peak R-F Grid Voltage.	180	225	Vollts
D-C Plate Current	125	150	Ma.
D-C Grid Current (Approx.)	- 35	85	Ma .
Driving Power (Approx.)	7	*	Watts
Power Output (Approx.)	115	170	Wiatts

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input for High-Frequency Operation

FREQUENCY	60	80	100	Mc
CLASS CTelegraphy Plate-Mod. Telephony	100	75	60	Per Cent

APPLICATION

An r-f power amplifier circuit using a single 811 and designed particularly for c-w service is shown below. A single 6L.6, 6I. 6 -G, or 6 V G-GT/G is suitable for the driver stage.
The plate of the 812 shows a dull red color at its maximum plate-dissipation ratings of 50 to 55 watts; it shows no color at a plate-dissipation of 40 watts. If, for any reason, the plate dissipation riges to approximately 150 watts or more (200% overload!) the excessive plate temperature causes the Zirconium coating to alloy with the plate. This action may produce a shiny spot on the plate which, once formed, remains permanently. It seldom affects the performance of the tube in subsequent normal operation.

CW R-F POWER AMPLIFIER
Class C Telegraphy Power Output 170 Watte*

TRANSMITIING TRIODE
 ZIRCONIUM-COATED ANODE

Features
812
ZIRCONIUM-COATED ANODE
Has remarkably high heat-dissipating qualities Acts as an exceptionally effective getter

- low-loss micanol base
- LOW DRIVING POWER

170 watts output with only 6.5 watts of grid drive.
60-Mc OPERATION AT FULL RATINGS
Up to 100 Mc at reduced input
RCA-812 is a high-perveance, easy-to-drive triode having a maximum plate-dissipation rating of 55 watts (ICAS). This tube, with a medium mu of 29 , requires unusually low driving power for class C telegraph and telephone services. Two 812 's in class \mathbf{C} telegraph service will take a plate input up to 450 watts with the exceptionally low driving power of only 13 watts.

With a carrier power of 170 watts for c-w operation and 120 watts for 'phone operation, the RCA-812 is a transmitting triode that is hard to beat on a basis of performance versus cost.

Typical Operation:			
D-C Plate Voltage	1000	1250	Voits
D-C Grid Voltage of \dagger	-100	-125	Volts
From a grid resistor of	4000	5000	Ohms
Peak R-F Grid Voltage.	180	245	Volts
D-C Plate Current	105	125	Ma.
D-C Grid Current (Approx.)	25	25	Ma.
Driving Power (Approx.)	4.5	6	Watts
Power Output (Approx.)	82	120	Watts
As R-F Power Amplifier and	Oscillator-Class CCS	C Telegrap 1CAS	hy
D-C Plate Voltage	1250 max.	1500 max.	Volts
D-C Grid Voltage	-200 max.	-200 max..	Volts
D-C Plate Current	125 max.	150 max.	Ma.
D-C Grid Current	35 max.	35 max.	Ma.
Plate Input	155 max.	225 max.	Watts
Plate Dissipation	40 max.	55 max.	Watts
Typical Operation:			
D-C Plate Voltage	1250	1500	Volts
D-C Grid Voltage:			
From a fixed supply of	-125	-176	Volts
or from a grid resistor of	5000	7000	Ohmm
or from a cathode resistor of	835	1000	Ohms
Peak R-F Grid Voltage.	215	285	Volts
D-C Plate Current.	125	150	Ma.
D-C Grid Current (Approx.)	25	25	Ma.
Driving Power (Approx.)	5	6.5	Watta
Power Output (Approx.).	116	170	Watts

MAXIMUM CCS and ICAS RATINGS with TYPICAI OPERATING CONDITIONS

As Plate-Modulated R-F Power Amplifier-Class C Telephony
Carrier condifions per tube for use with as max. modulation factor of 1.0 CCS ICAS
D-C Plate Voltage 1000 max. 1250 max. Volts D-C Grid Voltage -200 max -200 max Volt D-C Plate Current ... 105 max. 125 max. Ma. D-C GRID Curbent 25 max. 25 max. Ma. D-C Grid Current ... 105 max. 155 max. Wa. Plate lnput ... 27 max. $\quad 155$ max. Wax. 40 max. Watts

CW R-F POWER AMPLIFIER
Class C Telegraphy Power Output 170 Watts*

f Grid bias may be obtained from a grid leak or from a combination of grid leak and fixed supply, or grid leak and cathode resistor. The cathod resistor should be suitably by-passed for both a.f, and r.f. The combina tion method of grid leak and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by bias-supply compensation.

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input for High-Frequency Operation

FREQUENCY	60	80	100	Mc
CI_ASS CTelegraphy Plate-Mod. Telephony	100	75	60	Per Cent

$\mathrm{C}_{1}=0.0005 \mu \mathrm{fmica}, 1000 \mathrm{v}$
$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}=0.005 \mu \mathrm{fmica}$
$\mathrm{C}_{6} \mathrm{C}_{7}=0.002 \mu \mathrm{f}$ mica, 5000 v
$\mathrm{Cs}=5.3 \mu \mu \mathrm{f}$, 6000 v.
$\mathrm{C}_{\mathrm{s}}=0.6 \mu \mu \mathrm{f} /$ meter $/ \mathrm{sec}$ tion, $\dagger 2000 \mathrm{v}$
$\mathrm{R}_{1}=7000$ ohms, 10 watts
RFC=R-f choke
$T_{1}=$ Filament transformer, 2000-v. insulation
$I_{1}=T$ Tune to frequency " f "
$\mathrm{f}=$ Operating frequency

- Approximate.
\dagger Capacitance in actusl use.
Note: Rotor shaft of Cs is at the high d-c plate potential. An insulated coupling shaft must be in serted between the rotor shaft of C and its control dial.

Bottom View of Socket Connections

Tube Meunting Poation
VERTICAL-Base down. HORIZONTAL_Plane of plate vertical (on edge).

transmitilng beam power amplifier

HIGH POWER SENSITIVITY
360 WATTS INPUT
List Price ${ }^{5} \mathbf{2 2 . 0 0}$
Features

- HIGH POWER WITH MINIMUM OF EQUIPMENT

260 watts output with less than one watt of r-f drive. Any crystal oscillator will drive it.

- NEUTRALIZING UNNECESSARY

Ideal as a high-power final amplifier for quick band-change.

- LOW SCREEN CURRENT
- NEW MOLDED CLASS-IDISH TYPE STEM

Provides short, heavy leads and low lead inductance.

- 30-Mc OPERATION AT FULLL RATINGS
- GIANT 7-PIN BASE

Has short shell and wide pin spacing.

RCA-813 is a beam power transmitting tube of extremely high power sensitivity with a maximum plate-dissipation rating of 100 watts. The tube actually requires less than 1 watt of driving power to give 260 watts output on c.w. Neutralization is unnecessary in adequately shielded circuits. RCA-813 makes an excellent power amplifier for the final stage of medium-power transmitters where quick frequency-change without neutralizing adjustments is desirable, and where a minimum of driver equipment is required. The tube requires a very low screen current. RCA-813 is also an excellent fre-
 quency multiplier capable of giving high harmonic output with unusually high efficiency.

RCA- 813 employs the new Molded Glass-Dish type stem structure, which makes practical a compact but powerful tubeonly $71 / 2$ inches high-having very short leads and low lead inductance. Other features of the tube include a heavy-duty (50 watt) thoriated-tungsten filament, over-size graphite plate, dome-top bulb with cushion-mounted supports, and a Giant 7 -pin base having a short shell and wide pin spacings. As a result of its special construction, the 813 can be operated at maximum ratings at frequencies as high as 30 Mc and at reduced ratings as high as 60 Mc .

RCA-813 is conservatively rated at 360 watts input for class C c-w service and 240 watts for plate-modulated service.

Ratings

Filament Voltage (A.C. or D.C.)	10.0		Volts
Filamant Current	10.0		Amperen
Transconductance, for Plate Cur. of 50	3750	approx.	Micromhos
Direct Interrlectrode Capacitances:			
Grid-Plate (with External Shielding)		max.	$\mu \mu \mathrm{f}$
Input .	16.3		$\mu \mu f$
Maxiput He....	14		$\mu \mu \mathrm{f}$
Maximum Herght ${ }_{\text {Maximum Diameter }}$		$7-1 / 2$	
SOCKET			

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

As Plate-Modulated R-F Power Amplifier-Class C Telephony

	CCS				
D-C Plate Vgltage		1600	max.	Volta	
D-C Grin Voltage .		400	max.	Volts	
D-C Plate Current		- 150	max.	Volts	
D-C Grid Current		150	max.	Ma	
Plate Input		240	max.	Watts	
Scrern Input		15	max.	Watts	
Plate Dissipation		67	max.	Watts	
Typical Operation:					
D-C Plate Voltage	1250	1600		Volts	
D-C Screen Voltage \\|	400	400		Volts	
Irom a series screen resistor	53000	60000		Ohms	
D-C Grid Voltage*	-120	-130		Volts	
From a grid resistor of	30000	21600		Ohms	

Bottom View of Socket Connections

Tube Mounting Position
VERTICAL-Base up or down. IOORIZONTAL-Plate in vertical plane (on edge).

Pcak R-F Grid Voltage	195	210	Volts
lseam-Forming Plate Voltag	0	0	Volt
D.C Plate Current	150	150	Ma.
D-C Screen Current	16	20	Ma.
D-C Grid Current (Approx.)	4	6	Ma.
Driving Power (Approx.)	0.7	1.2	Watt
Power Output (Approx.)	135	175	Watta

As R-F Power Amplifier and Oscillator-Clams Celegraphy Key-down conditions per tube without modulation

\dagger Series screen resistor should not be used except where the 813 is employed as a buffer amplifier and is not keyed.
\ddagger Beam-forming plates should be connected to the mid-point of filament circuit operated on a.c., or to the negative end of the filament when a d-c filament supply is used.
IT Supplied preferably from separate modulatod screen-volt:ige source; rolt-age-dropping resistor in series with modulated Flate-voltage supply may be used.

- The total effective grid-circuit resistance should not excved 30000 ohms,

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input
for High-Frequency Operation

FREQUENCY	30	45	40	
CLASS CTelegraphy Plate-Mod. Telephony	100	87	75	Mc

APPLICATION
A circuit employing the 813 in plate-modulated telephony service is shown on this page. In this circuit it will be noted that the plate-circuit by-pass condenser C_{3} is connected to ground in series with screen by-pass C_{6}. This arrangement minimizes the by-passing effect of C_{5} at high

Moulded glass stem assembly showing individual lead seals. audio frequencies and greatly improves the modulation of the screen voltage. Because the screen impedance of the 813 is about 20000 ohms and the series screen resistor required is 60000 ohms, the capacitance ratio of C_{5} to C_{6} should be about 3 to 1 , as indicated in the legend. For operation at 3.5 Mc and lower frequencies, it may be desirable to increase the values of C_{6} and C_{6}, keeping their ratio the same.

In class C telegraph service, where the grid excitation or the cathode circuit of the 813 is to be keyed, it is important that the screen voltage be obtained from a separate, lowvoltage source, or from a tap on a bleeder circuit across the plate supply. It should not be obtained through a series resistor as shown in the plate-modulated-telephony circuit. With the series-resistor method, the d-c screen voltage will rise to the plate potential when the space current is reduced to zero. This voltage, of course, greatly exceeds the maximum screenvoltage rating. When the $d-c$ screen voltage is limited to approximately 400 volts under key-up conditions, a fixed grid bias of -45 or -50 volts is adequate to reduce the plate current to a safe value; partial fixed bias, therefore, is recommended in $\mathrm{c}-\mathrm{w}$ transmitters where the oscillator stage is to be keyed for break-in operation. The remainder of the required grid bias can be conveniently obtained from a grid leak.

PUSH-PULL C-W AMPLIFIER
Power Output 520 Watts (Approx.)

$\mathrm{C}_{1} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{6} \mathrm{C}_{10}=0.002 \mu \mathrm{f}$ mica
$\mathrm{C}_{2}=2 \mu \mu \mathrm{f} / \mathrm{meter} / \mathrm{sec}$ tion
$\mathrm{C}_{6} \mathrm{C}_{9}=0.05 \mu \mathrm{f}$ mica, 1000 volts $\mathrm{C}_{7}=1.5 \mu \mu \mathrm{f} / \mathrm{meter} / \mathrm{section}$ $\mathrm{C}_{s}=0.005 \mu \mathrm{P}$ mica, 2500 volts $L_{1} L_{2}=$ Tune to operating frequency sulated for 2500 volts. Do not use NOTE: Grid circuit should be shielded from or other means.

813 DESIGN FEATURES
1. Medium Metal Cap
2. Short Ribbon Plate Connector
3. Filament Support Springs
4. Mount Support
5. Top Ceramic Mount Support
6. Top Shield
7. Aligned-Turn Control and Screen Grids
B. Heavy-Duty Thoriated-Tungsten Filament
9. Large Sturdy Graphite Plate
10. Hard Glass Bulb with Mount-Aligning Dome
11. Bottom Shield Dise
12. Ceramic Plate-Support Spacer
13. Directive-Type Getter Container
14. Dish Type Stem
15. Ceramiç-Insert Giant Base
16. Beam-Forming Plato
17. Filament Connector
18. Tungsten-to-Glass Seal
19. Bottom Ceramic Mount Support

The RCA-813 may also be operated as a grid-modulated r-f power amplifier (class C). Typical operating conditions are: D-c plate voltage, 2000 volts; d-c screen voltage, 400 volts; d-c grid voltage, -120 volts; peak r-f grid voltage, 120 volts; peak a-f grid voltage, 60 volts; beam-forming plate voltage, $0 ; \mathrm{d}-\mathrm{c}$ plate current, 75 ma ; and d-c screen current, 3 ma . Under these conditions, power output is approximately 50 watts. In grid-modulated service, the grid bias should be obtained from a fixed supply. Screen voltage should be obtained from a separate source or from a voltage divider connected across the plate-voltage supply. Driving power usually is negligible and never more than 2 watts. Audio driving power is generally never more than 1 watt.

Plate-modulated class c r-F power amplifier Power Output 175 Watts (Approx.)

$\mathrm{C}_{1}=2 \mu \mu \mathrm{f} /$ meter
$\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{C}_{4}=0.002 \mu \mathrm{f}$ (or larger) mica $\mathrm{C}_{6}=0.006 \mu \mathrm{f}$ (or larger) mica, $2000 \mathrm{v} . \ddagger$
$\mathrm{C} \mathrm{C}_{6}=0.002 \mu \mathrm{f}$ (or larger) mica,
$5000 \mathrm{v}, \ddagger$
$\mathrm{C}_{7}=1.2 \mu_{\mu \mathrm{f}} /$ meter \dagger
$\mathrm{R}_{1}=22000 \mathrm{ohms}, 2$ watts
$\mathbf{F}=1 / 4 \mathrm{a}$. high-voltage fuse
\ddagger Ratio of C_{s} to Ca should be kept approximately 3 to 1
\dagger Capacitance in actual use.

TRANSMITTING BEAM POWER AMPLIFIER
 CARBONIZED NICKEL ANODE
 225 WATTS INPLTT
 Features
 List Price
 - HIGH POWER SENSITIVITY
 - NEUTRALIZING UNNECESSARY
 30-Me OpEration at filli, ratings - CARBONIZED NICKEL ANODE; MICANOL BASE

RCA-814 is a beam transmitting tube of the thoriated-tungsten filament type with a maximum plate dissipation rating of 65 watts (ICAS). The high power sensitivity of the tube makes it specially suited for use as an r-f amplifier, frequency multiplier, oscillator, or grid or plate-modulated amplifier. For example, a single 814 is capable of giving a power output of 160 watts in class C telegraphy (ICAS) with a driving power of only 1.5 watts. The plate connection of the tube is brought out to a separate seal at the top of the bulb to maintain low grid-plate capacitance.

The 814 may be operated at maximum ratings in all classes of service at frequencies as high as 30 Mc and at reduced ratings as high as 75 Mc . Neutralization is unnecessary in adequately shielded circuits. For those who require moderately high power and desire a minimum number of transmitter stages, the 814 with its carbonized nickel anode and its Micanol base will be found unexcelled.

RATINGS

Fil.ament Voltage (A. C. or D. C.) Fillament Current Transconductance, For plate cur, of 39 ma . GridPlate (Wirode Capacitances:
Grid-Plate (With external shielding) Output
Maximum Height
Maximum Diameter
Socket

10.0		Volts
3.25		Amperes
3300		Micromhos
	max.	$\mu \mu \mathrm{f}$
13.5		$\mu \mu \mathrm{f}$
13.5		$\mu \mu \mathrm{f}$

As Plate-Modulated R-F Power Amplifier - Class C Telephony

CCS

		CCS	ICAS		
D-C Plate Voltage		1000 max.	1250	max.	Volts
D-C Screen Voltage (Grid	No, 2)	400 max.	400	max.	Volts
D-C Grid Voltage (Grid N	1)	-300 max.	-300	max.	Volts
D-C Plate Current		120 max.	150	max.	Ma.
D-C Grid Current		15 max,	15	max.	Ma.
Plate Input		120 max.	180	max.	Watts
Screen Input		6.7 max.	6.7	max.	Watts
Plate Dissipation		34 max.	50	max	Watts
Typical Operation:					
D-C Plate Voltase	900	1000	1250		Volts
D.C Screen Voltage*					
From a fixed supply of	300	300	300		Volts
From a series resistor of	40000	40000	48000		Ohms
D-C Grid Voltage					Oms
From a fixed supply of	-150	-150	-150		Volts
From a grid resistor of	15000	15000	15000		Ohms
Beam-Forming Plate Voltage\#	0	0	0		Volts
Peak R-F Grid Voltage.	215	222	222		Volts
D-C Plate Current ...	120	120	144		Ma.
D-C Screen Current	15	17.5	20		Ma.
D.C Grid Cur. (Approx.)	10	10	10		Ma.
Driving Power (Approx.)	2	2	2		Watts
Power Output (Approx.)	76	87	130		Watts

Plate Input
Screen Input
Plate Dissipation

CCS
180
0 max. max
Typical Operation \qquad
YPICAL OPERATION :

$$
\begin{aligned}
& \text { D-C Plate Voltage } \\
& \text { D-C Screen Voltage }
\end{aligned}
$$

$$
\begin{aligned}
& \text { From a fixed supply of } \\
& \text { From a series regisfor }
\end{aligned}
$$

From a series resistor of
D-C Grid Voltage

From a fixed supply of
From a cathode resistor of
From a grid resistor of
Beam-Forming Plate Voltage\#
Peak R-F Grid Voltage
D.C Plate Current
D.C Screen Current

D-C Grid Current (Approx.)
Driving Power (Approx.)
Power Output (Approx.)
130 Watts
ment circuitg plates should be connected to the mid-noint of the filament circuit operated on a.c., or to the nebative end of the filament When a d-c filament supply is used.
simultaneously with the plate vatained from a fixed supply, modulated simultaneously with the plate voltage. Series voltage-dropping resistor connected to the modulated plate-voltage supply may also be
Series screen resistor should not be used excejt where the 814 is em-
ployed as a buffer amplifier and is not keyed. ployed as a buffer amplifier and is not keyed.

Maximum Permissible Percentage of Maximum Rated Plate Voltage and Plate Input for High-Frequency Operation

FREQUENCY	30	50	75	Mc
CLASS CTelegraphy Plate-Mod, Telephony	$\mathbf{1 0 0}$	$\mathbf{8 0}$	64	Per Cent

$\mathrm{C}_{1}=25 \mu \mathrm{f}$, electrolytic, 50 volts
$\mathrm{C}_{2}=35 \mu \mu \mathrm{f}$, midget
$\mathrm{C}_{3}=0.002 \mu \mathrm{f}$, mica
$\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{Ce}_{e} \mathrm{C}_{7}=0.005 \mu \mathrm{f}$, mica
$\mathrm{C}_{8}=0.6 \mu \mu \mathrm{f} /$ meter
$\mathrm{C}_{8}=0.002 \mu \mathrm{f}$, mica, 2000 volts
$R_{1}=0.5$ megohm, 0.5 watt
$R_{2}=645$ ohms, 2 watts
$\mathrm{R}_{3}=50 \mathrm{ohms}$, c.t., wire-wound
$\mathrm{R}_{4}=1560 \mathrm{ohms}, 20$ watts
$R_{5}=8000$ ohms, 1 watt
$\mathrm{RFC}=\mathrm{R} \cdot \mathrm{F}$ choke
$1=$ Tune to frequency f
$T_{1}=$ Modulation transformer
turns ratio, $\mathbf{P} / \mathbf{S}=1.3$.
primary load impedance $=4000$ ohms
Approximate.
\# The extra 100 volts is to compensate for the voltage drop across cathode resistor R4; grid, screen, and plate voltages are measured to the filament. The screen voltage should be obtained from a separate, fixed-voltage source, or from a voltage divider having good regulation-not from a series resistor.

225 max. Wetts 10 max. Watts 65 max. Watts

1250	1500	Volts
300	300	Volts

\qquad
...........

-80
-80
450
8000
-90
490 \quad Volts
$\begin{array}{ll}490 & \text { Ohms } \\ 9000 & \text { Ohms }\end{array}$
Ohms
Volts
Ma.
Ma.
Ma.
Wa
Watts
Watts

PUSH-PULL BEAM POWER AMPLIFIER
 75 WATTS INPUT TO 2 METERS

Features
815
OPERATES PUSH-PULL WITH 75 WATTS INPIJT ON C.W. THROUGH ALL FREQUENCIES TO 150 Mc

- USES LESS THAN $1 / 2$ WATT OF GRID DRIVE
- EXCELLENT FOR EXPERIMENTAL LOW-POWER FM AND TELEVISION TRANSMISSION
- ONLY 400 TO 500 PLATE VOLTS REQUIRED
- GLASS-BUTTON STEM STRUCTURE PROVIDES SHORT LEADS AND LOW LEAD INIDUCTANCE

RCA-815 is the new, low-cost push-pull beam transmitting tube. It is designed particularly for use at wave lengths as low as 2 meters. It requires little driving power, a minimum of driver equipment, and provides full cutput on only 400 to 500 volts.

The exceptional efficiency of the 815 at the ultra high frequencies is made possible by the balanced and compact structure of the beam units, excellent internal shielding, and close electrode spacing. Internal leads are short in order to minimize lead inductance and resistance. A single 815 operating in push-pull $c-w$ service is capable of handling 75 watts input (ICAS) with less than 0.2 watt of driving power-at frequencies as high as 150 Mc . It may be operated at reduced input up to 225 Mc ($1-1 / 2$ meters). Neutralizing of the tube is usually unnecessary.

RCA-815 is equipped with a big octal-type metal-shell base using low-loss Micanol insulation. The heaters of the tube may be operated either in parallel from a 6.3 -volt supply or in series from a 12.6 -volt supply.

Whether you buy for regular transmitter requirements or with an eye to your new $u-h-f$ and television transmitter, you will find the RCA- 815 just about the biggest value on the market. It provides push-pull operation and yet requires but one socket, one cathode resistor, and one screen resistor.

CHARACTERISTICS and RATINGS

Unless otherwise specified, values are for both units
Heater (A. C. or D. C.) :

Voltage per Unit.	6.3	Volts
Current per Unit	0.8	Ampere
Transconductanea, for plate current of 25 ma .	4000	Micromhos
Gmb-Scrasen Mu-Factor	6.5	
Dimbct Inthrelfictrodh Capacitances (Fach Unit):		
Grid-Plate (With external shielding)		$\mu \mu \mathrm{L}$
Input	13.3	$\mu \mu \mathrm{f}$
Output	8.5	$\mu \mu \mathbf{f}$
Maximum Haget	4-9/16"	
Maximem Diameter	2-1/2"	
Socket. Standard Oc		

MAXIMUM CCS and ICAS RATINGS with TYPICAL OPERATING CONDITIONS

As Grid-Modulated Push-Pull R-F Power Amplifier - Class C Telephony
Carrier conditions per tube for use with a max. modulation factor of 1.0

	CCS	ICAS	
D-C Plate Voltage	400 max.	500 max.	Volta
D-C Screen Voltage (Grid No. 2)	225 max.	225 max.	Volts
D-C Grid Voltage (Grid No. 1)	-175 max.	-175 max.	Volts
D-C Plate Curront	75 max.	75 mas.	Ma.
Plate Infut	30 max.	37.5 max.	Watt
Scrien Input	4 max.	4 max.	Watts
Plate Dissipation	20 max.	25 max.	Watta
Typical Ophration :			
D.C Plate Voltage	400	500	Volts
D-C Screen Voltage	125	125	Volta
D-C Grid Voltage	-40	-40	Volts
Peak R-F Grid-to-Grid Voltage	80	80	Volte
Peak A-F Grid Voltage	19	17	Volte
D.C Plate Current	75	75	Ma.
D.C Screen Current	3	3	Ma.
D.C Grid Current (Approx.)	0.4	0.4	Ma.
Driving Power (Approx.)*	0.32	0.28	Wett
Power Output (Approx.)	10.5	13	Watte

As Plate-Modulated Push-Puil K-F Power Amplifier - Class C Telephong Carrier conditions per tube for use with a max. modulation factor of 1.0

	CCS	ICAS
D-C Plate Voltage	325 max.	400 max. Volt
D-C Screen Volitage (Grid No. 2)	225 max.	225 max. Volts
D-C Grid Voltage (Grid No. 1)	-175 max.	-175 max. Volte
D-C Plate Current	125 max.	150 max. Ma
D-C Grid Current	7 max.	7 max. Ma.
Plate Input	40 max.	60 max. Watt
Scrien Input	4 max.	4 max. Watts
Plate Dissipation	13.5 max.	20 max. Watt
Typical Opmration:		
D-C Plate Voltage	325	400 Volta
D-C Screen Voltage\#		
From a fixed supply of	165	175 Volts

	ccs	ICAS	
From a serics resistor of	10000	15000	Ohms
D-C Grid Voltage of	-45	-45	Volts
From a grid resistor of **	11250	15000	Ohms
Peak R-F Grid-to-Grid Voltage	112	116	Volts
D-C Plate Current	123	150	Ma.
D-C Screen Current	16	15	Ma.
D-C Grid Current (Approx.)	4	3	Ma.
Driving Power (Approx.)	0.2	0.16	Watt
Power Output (Approx.)	30		

	ccs	ICAS	
From a fixed supply of	-45	-45	Volts
From a cathode resistor of	260	265	Ohme
From a grid resistor of**	10000	13000	Ohme
Peak R-F Grid-to-Grid Voltage	116	112	Volts
D-C Plate Current	150	150	Ma .
D-C Screen Current	17	17	Ma
D-C Grid Current (Approx.)	4.5	3.5	Ma,
Driving Power (Approx.)	0.23	0.18	Watt
Power Output (Approx.)	44	56	Watts

- At crest of audio-fremency eycle with modulation factor of 1.0 .
\# Fixed supply, modulated samultaneousty with the plate supply, is recommendar, Series resistor comnerted to modulatid plate-voltage sup
** The sridecireuit resistanco should never axceed 15000 ohnes (total) per tuhe or 310000 ohms per unit. If additional bias is neeessary, a eathode resistos: or at lixed supply should be used.

Driver stage should be capable of sumplying the grids of the class Abs state with the specified driving power at low distortion. The (Afective resistance por grid in the grid circuit of the class Aliz stage highest desired response fropuoncy should not exered foo ohms. at the

Max, Permissible Percentage of Max. Rated I'late Voltage and Plate Input for High-Frequency Operation

	FREQUENOY	150	200	225	Mc
CLASS C	$\begin{cases}\text { Grid Mod, Telephony } & \\ & \text { Telegraphy } \\ & \text { Plate Morl. Telephony }\end{cases}$	100	85	75	Per Cent
	100	80	70	Per Cent	

APPLICATION

In class C r-f telegraph service, the 815 may be supplied with screen voltage from a separate source, from a volt age divider, or from the plate supply through a series resistor. When a series screen resistor is used, the regulation of the plate supply should be good enough so that the plate voltage will not exceed 600 volts under key-up conditions. Grid bias may be obtained by any convenient method, except when a preceding stage is keyed. In this case, sufficient fixed bias should be used to maintain the d-c plate current at a low value when the key is up.

In plate-modulated class C r-f amplifier service the screen voltage for the RCA-815 should preferably be obtained from a fixed supply modulated simultaneously with the plate voltage, although it may also be obtained from a voltage-dropping resistor connected to the modulated plate supply. In any case, the screen voltage must be modulated simultaneously with the plate voltage so that the ratio of screen voltage to plate voltage remains constant. Modulation of a fixed supply can be accomplished by connecting the screen lead to a separate winding on the modulation transformer.

In grid-modulated class C r-f service grid bias for the 815 should preferably be obtained from a fixed supply. The plates of the tube are supplied with unmodulated d-c voltage. The audio power required in this service is very small and need be sufficient only to meet the peak power requirement of the grids of the class C amplifier on the positive
crest of the input signal. The actual peak value is generally never more than 0.5 watt. The screen voltage should be obtained from a separate source or from a voltage divider connected across the plate supply.

A circuit illustrating an application of the 815 as an u-h-f plate-modulated amplifier is shown on this page. In this service the tube is capable of delivering approximately 45 watts output at a plate voltage of 400 volts. The stage requires about one watt of useful r-f power to insure ample grid excitation of the 815 . D-c grid current adjustment may be made by varying the coupling between L1 and L2 and tuning C and C2. Amplifier loading is obtained by adjusting the coupling of the "hairpin" antenna coil to L3. L1 and L2 should be well shielded from L3 by a netal chassis or by a vertical metal baffle plate used to mount the 815 . If desired, a small lumped inductance can be used in place of the grid lines. In this case, grid-circuit tuning is best obtained by varying the inductance of the grid coil rather than by tuning it with a variable condenser.

Additional circuit information on the 815 is given under TRANSMITTER CONSTRUCTION, page 59.

The plates of the 815 show no color when the tube is operated at its maximum plate-dissipation rating.

112-116-Mc PLATE-MODULATED R-F POWER AMPLIFIER Power Output 45 Watta (ICAS)*

- Approzimat
$\mathrm{C}=$ See L_{1}
C_{1} Cz $C_{4}=1^{\prime \prime} \times 112^{\prime \prime}$ copper sheet insulated from chassis by mica sheet $0.002^{\prime \prime}$ thick or $0,0005-\mu \mathrm{f}$ "postage stamp" mica conensers soldered to chassis with shortest practicable leads
$\mathrm{C}_{2} \mathrm{C}_{8}=$ Copper discs, $1^{\prime \prime} \times 11^{\prime \prime}$. Solder dises to $10-32$ brass screws 1 " long. Drill and tap grid and plate lines for $10-32$ screws
$\mathrm{R}_{1}=15000$ ohms, 0.5 watt
$\mathrm{R}_{2}=15000$ ohms, 25 watts, adjustable
$L_{1}=1 / 2^{\prime \prime}$ dia. copper tubing, Length of tubing and capacitance of C depend upon driver tubes employed
$\mathrm{L}_{2}=1 / 2^{\prime \prime}$ dia. copper tubing, $121 / 2^{\prime \prime}$ long and spaced approx. $\% /{ }^{\prime \prime}$ between centers
$L_{s}=1 / 2^{\prime \prime}$ dia, copper tubing, $13^{\prime \prime}$ long and spaced approx. $7 / 6$ " between center

Bottom View
of Socket Connection

Note: Terminals 3 t 6 must be connected together Plane of electrodes of eech unit is parallel to plane through axis of tube and $\mathbf{A A}^{\prime}$
PIN $1=$ Heater
PiN 2 =Grid No. 1 of Unit No. 2
Pin 3 = Cathode, Internal Shield
Pin 4二Screen
Pin 5 =Heater Center Tap
Pin $6=$ Cathode
PIN $7=$ Grid No. 1 of Unit No. 1
PIN $8=$ Heater
Pui AND Pu2 Plate Terminals of Units No, 1

 MERCURY-VAPOR RECTIFIERList Price

Features

\author{

- SMALL AS A RECEIVING TUBE
 - TWO TUBES HANDLE TRANSMITTERS UP TO 400 WATTS INPUT (TOTAL).
 - LONG LIFE
 Assured by (1) 866-A/866 type filament construction and material, (2) plate lead through top of bulb.
 - HIGH RATINGS FOR SIZE OF TUBE 5000 volts, peak inverse voltage $500 \mathrm{ma} .$, peak plate current
}

RCA-816 is the junior transmitting-type rectifier for use particularly in medium power transmitters of 400 watts input (total) or less. Unlike ordinary small halfwave, mercury-vapor rectifiers of this type, the 816 is designed so that the plate lead is brought out through a separate seal at the top of the bulb, a construction which eliminates stem electrolysis and makes it possible for the tube to handle a maximum peak inverse voltage rating of 5000 volts. Two 816 's operating in a full-wave rectifier circuit are capable of delivering to the input of a choke-input type filter a rectified voltage of 1600 volts at 250 ma., with good regulation, with exceptional life-and at a total rectifier tube cost of only $\$ 2.00$!

RATINGS FOR RCA-816
Filament Voltage (A.C Fillament Current
Peak Inverse Voltage*

Peak Plate Current
PEAK Plate Current
500 max. Volts
Average Plate Current
maximum Herght
MAXIMUM DIAMETER

* For supply frequency up to 150 cycles and for a condensed-mercury temperature of 20 to $60^{\circ} \mathrm{C}$.

Unique filament design used in the $866-\mathrm{A} / 866$ and its junior, the 816

HALF-WAVE MERCURY-VAPOR RECTIFIER
 "A RECTIFIER TUBE WITH A LONGER LIFE"
 List Price
 $\$ 1.50$

Bottom View
of $816,866 \mathrm{~A} / 866$ Socket Connections

866-A
866

JONGER LIFE
Assured by (1) radicslly new filament, (2) insulated plate cap

Features

- HIGH RATINGS

10,000 volts, peak inverse voltage 10,000 vols, peak inverse volt

ENORMOUS EMISSION RESERVE

RCA-866-A/866 is a half-wave, mercury-vapor rectifier, strikingly different in design and construction from ordinary 866 types. Secret of the $866-\mathrm{A} / 866$ is its edgewisewound coated ribbon filament, illustrated on this page. This filament has great mechanical strength and provides more emitting area for the same filament power rating. It utilizes a new alloy material that not only has tremendous electron-emitting capabilities but also holds the key to greater tube life.

RCA -866-A/866 supersedes the 866-A and 866 and may be used in equipment designed for the former types. It combines the ability of the 866-A to withstand high peak inverse voltages with the ability of the 866 to conduct at low plate voltage. Thus, at the maximum peak inverse voltage rating of 10,000 volts and a maximum peak plate current rating of 1.0 ampere per tube, two 866-A/860's operating in a full-wave rectifier circuit are capable of delivering to the input of a choke-input filter a rectified voltage of 3200 volts at 500 ma . with good regulation and with exceptional life.

RCA-866-A/866 not only handles more power at lower initial cost, but its long life provides great tube economies. When this type is installed in your equipment you can forget rectifier tube problems for a long time to come.

For circuit information, refer to page 30 under $872-\mathrm{A} / 872$. For design of filters, see page 72.

Tube
Mounting Position
VERTICAL
-Base down only.
HORIZONTAL
-Not recom-
mended.

RATINGS FOR RCA-866A/866
 R

Filament Voltage (A.C
2.5

Filament Current
Peak Inverse Voltage :
(For supply frequencies up to 150 cycles)
Cond. Mercury Temp, 25° to $60^{\circ} \mathrm{C}$.
Cond. Mercury Temp, 25° to $70^{\circ} \mathrm{C}, \ldots . . .$.
(For supply frequencies up to 1000 cycles)
Cond. Mercury Temp. 25° to $70^{\circ} \mathrm{C}$.
peak Plate Current
Average Plate Current
Tube Voltage Drop (Approx.)
Maximum Height
Maximum Diameter
Sockrt pamerer

- Operation of tube at $40^{\circ} \pm 5^{\circ} \mathrm{C}$. is recommended

INDUCTIVE-OUTPUT AMPLIFIER

 60\% EFFICIENCY AT 500 Mc!RCA-825 is a multi-electrode transmitting tube designed for use as a nower amplifier, particularly at frequencies above 300 Mc . It is capable of giving as much as 35 watts output at frequencies up to 500 Mc depend a ing on the band the application.
ploy whed a new principle employed wherein the electron stream is inductively coupled to the output cirthe ordinary tube limitations mancoun tered in ultra hish-frequency encountered in ultra high-irequency operations. Its high transconductance and its adaptability to tank circuits having low effective capacitance makes it especially suited for wideband servmodulation as modulation. The 2. is also useful as an oscillator and harmonic generator in the same way as tubes of more conventional design.

The 825 is an RCA engineering achievement which suggests new possibilities for radio transmission at the ultra-high frequencies. Complete technical information on the tube is

D-C Collector Voltage
D-C Grid No. 4 Voltage
D-C Grid No. 3 Voltage
D-C Grid No, 2 Voltage
D-C Grin No. 1 Voltage
D-C Collector Current
D-C Grid No. 1 Current
Colifetor Input
Grid No. 4 InPut.
Ghid No. 3 Input.
RATINGS
Heater Voltage (A.c. or D.C.)
6.3
0.75
0.75

5500
Ampere Heater Current
Transconductance for plate current of 50 ma...
1.8 max. $\mu \mu \mathrm{f}$
$3.2 \quad \mu \mu \mathrm{f}$
$0.9 \quad \mu \mu \mathrm{f}$
$8-3 / 4^{\prime \prime}$
$2-1 / 16^{\prime \prime}$

RCA type 9918

MAXIMUM CCS RATINGS

. .

2000 max. Volts 1500 max. Volts 3600 max. Volts 3600 max. Volts -100 max. Volts

50 max. Ma.
2.5 max. Ma.

100 max. Watts
max. Watts max. Watts max. Watts 50 max. Watts 0.15 max. Watt

Ghid No. 2 1nput
Collfetor Dissipation
Grid No. 1 Dissipation

U-H-F TRANSMITTING TRIODE

ZIRCONIUM-COATED ANODE; MOLDED GLASS DISH STEM 125 WATTS INIUT

List Price $\mathbf{S}^{19} 90$

RCA-826 is a ruggedly built triode for use as an oscillator, r-f power amplifier, and frequency multiplier at the ultra-high frequencies. It has a maximum plate dissipation rating of 60 watts (CCS) and may be operated with unusual plate-circuit efficiency at frequencies as high as 250 Mc at reduced ratings up to 300 Mc . RCA-826 possesses many mechanical and electrical features. It contains zirconium-coated anode to insure gas-free operation at extremely high temperatures; its grid and plate are casely spaced to increase platecircuit efficiency at the higher freuluencies; it is designed with a doublehelical thoriated-tungsten flament that is center-tapped within the tube to minimize effects of filament inductance; and it is constructed with a molded glass-dish stem which makes possible a compact but powerful tube having very short leads and low lead inductance. Terminal arrangement of the tube permits the use of short and separate leads for neutralizing.
RCA-82, fills that long need for moderately priced triode that delivers the goods at the ultra highs

When the 826 is operated at the ultrahigh frequencies, push-pull operation is recommended. This connection has the advantage of simplifying the bal ancing of high-frequency circuits by providing symmetry of circuit layout In oscillator service, it is desirable to connect the two grid terminals and the two plate terminals of each tube in parallel in order to reduce the respective lead inductances.

RATINGS

Filament Voltage (A.C. or D.C. Filament Current
fication Factor
Drect Interelectrode Capacitances
Grid-Fiat
Grid-Fiament
Maximumament
Maximum LengTh
IAMETPR

IIIM (
MAXIML'M CCS RATINGS and TYPICAL OPERATING CONDITIONS
As Class C R-F Power Amplifier Plate

	Plate Modulation	C.W.	
D-C Plate Voltage	. 800 max.	1000	x. Volts
D-C Grid Voltage	-500 max.	-500	max. Volts
D-C Plate Current	95 max.	125	max. Ma.
D-C Grid Current	40 max.	35	max. Ma.
Plate Input	75 max.	125	max. Watts
Plate Dissipation	40 max.	60	mrx. Watts
Typical Operation :			
D-C Plate Voltage	800	1000	Volts
D-C Grid Voltage: Vols			
From a fixed supply oj	-98	-70	Volts
or from a grid resistor of.	2800	2000	Ohms
or from a cathode resistor of	-	440	Ohms
Peak R-F Grid Voltage	198	183	Volts
D-C Plate Current	94	125	Ma.
D-C Grid Current (Approx.) Driving Power (Approx.)	35	35	Ma.
Driving Power (Approx.) Power Output (Approx.)	6.2 53	5.8	Watts

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input or Hish-Frequency Operation

FREQUENCY	250	300	Mc
CLASS C $\left\{\begin{array}{l}\text { 'relegraphy } \\ \text { Plate-Mod. Telephony }\end{array}\right.$	100	80	PerCent

Bottom View
of 826 Socket Connections

TRANSMITTING TETRODE POWER AMPLIFIER RCA'S MOST POWERFUL TETRODE 1500 WATTS INIUT
 List Price

Features

827-R

GIANT IN POWER: LILIIIPUT IN SIZE

 so0 watts plate dissipation. Tube size less than $5^{\prime \prime} \times 6^{\prime \prime}$- CONSERVATIVE MAXIMUM RATINGS

Two plate-modulated $827-R^{\prime} \cdot \mathrm{s}$ take 2.4 kw . input

- FULL POWER TO 110 Me

Ideal for F.M.. Television, Standard Broadcasting, Communications

- NEUTRAIIZATION UNNECESSARY

Excellent internal shielding. Isolated input and output circuits.
RCA-827-R is a transmitting tetrode of the Air-Radiator type only 6 inches high and less than 5 inches in diameter-yet has a maximum plate dissipation of 800 watts! One $897-R$ is capable of delivering its full power output of 1050 watts at frequencies as high as 110 Mc . For this reason the tube is particularly well suited for use as an r-f power amplifier both in frequency-modulation and television, as well as in general broadcast and communication services.

Outstanding features of the $827-\mathrm{R}$ include its use of (1) thoriated-tungsten filament with special low-resistance, multiple-ribbon leads that handle high current without heating, (2) two multiple-ribbon grid leads that minimize the effect of lead inductance and (3) an entrant metal header-type construction. The header-type design serves not only as a low-inductance terminal for the screen but facilitates isolation of the input and output circuits. As a result, neutralization of the tube is unnecessary except at the very highest frequencies. The plate of the $827-\mathrm{R}$ is air-cooled by means of a highly efficient finned radiator which forms an integral part of the tube. This radiator must be cooled by means of a vertical flow of air from a properly installed air-cooling system.

RCA-827-R is a remarkable tetrode that opens the way for new economies of tube installation and application. It is the answer for dependability of high power at the ultra highs

RATINGS
Filameint Voltaci; (A.C. or D.C.)...

7.5		Volts
25		Amperes
16		
0.18	max.	$\mu \mu \mathrm{f}$
21		$\mu \mu \mathrm{f}$
13		$\mu \mu \mathrm{f}$
	$\begin{gathered} 6^{\prime \prime} \\ 4.21 / 3 \end{gathered}$	

Maximum Diampiter

MAXIMUM CCS RATINGS and TYPICAL OPERATING

MAXIMUM CCS RATINGS and TY
CONDITIONS
Filampant Cubrent
GEID-SCREEN MU-FACTOK
LIRECT Interelfothone Caíacitances:
Grid-llate (with external shielding)
Inpet
Output
Maximum Height (less Multiple Ribbon leadis)

As Plate-Modulated R-F Power Amplifier-Class C Telephony

$C_{1}=35 \mu \mu \mathrm{f} /$ section, $0.070^{\prime \prime}$ spacing
$\mathrm{C}_{4} \mathrm{Cs}_{3} \mathrm{C}_{6} \mathrm{C}_{8}=500 \mu \mu \mathrm{f}$ mica (integral part of socket)
$\mathrm{C}_{4} \mathrm{C}_{7}=1000 \mu \mu \mathrm{f}$ mica
(integral part of socket)
$\mathrm{C}_{8} \mathrm{C}_{8}=$ Neutralizing contensers, $3 / 8{ }^{n \prime}$ dia, disk 1" from plate line $\mathrm{C}_{10}=6 \mu \mu \mathrm{f} /$ section, $8 / \mathrm{u}^{\prime \prime}$ spacing $\mathrm{C}_{11}=0.001 \mu \mu \mathrm{f} 5000$ volt mica $\mathrm{C}_{22} \mathrm{C}_{15} \mathrm{C}_{1}, \mathrm{C}_{15}=0.005 \mu \mathrm{f}$ mica $\mathrm{C}_{22} \mathrm{C}_{15} \mathrm{C}_{14} \mathrm{C}_{15}=0.005 \mu \mathrm{f}$
$\mathrm{R}_{2}=1600$ ohms, 200 watts $\mathrm{R}_{2}=5 \mathrm{~F}$ ohms, 200 watts
$\mathrm{R}_{3}=1 \%$ ohms, 500 watts, adjustable $\mathrm{R}_{4}=9 * 00$ ohms, 750 watts Fis $=54$ ohms, 25 watts, non-industive
l. $=1$-turn coupling link
L.二Tune to operating frequency $L_{:}=1$ " diameter copper tubing spaced 21/n" between centers. Approx. $35^{\prime \prime}$ long (for 60 Mc)
I. 4 =RFC 50 turns 1 " dia. \#14 wire spaced wire diameter
$\mathbf{M}=0-500 \mathrm{ma} . \mathrm{D}-\mathrm{C}$ grid current meter $\mathrm{M}_{2} \mathrm{M}_{3}=0.300 \mathrm{ma}$. D-C milliammeter $\mathbf{M}_{3}=0-2.0 \mathrm{amp}$. D-C milliammeter $\mathrm{M}_{\mathrm{s}}=0-10$ v. A-C filament voltmeter $\mathrm{F}_{3}=0-500 \mathrm{ma} .5000$-volt fuse
$P=1.5 \mathrm{amp}$. overload relay
$S_{1}=$ Mercury switch on air flow interlock
$T_{1}=117$-volt primary 15 -volt secondary 0.5 kva filament transformer

As R-F Power Amplifier-Class C Telegraphs

	CCS		
1)-C Plate Vol.tage.	3500	max.	Volts
1).C Screen Voltage (${ }^{\text {drid }}$ No. 2)	1000	max.	Volts
D-C Grid Voltage (Grid No. 1)	-500	max.	Volts
D) C Plate Curkent	500	max.	Ma.
()-C Grid Curbrint	150	max.	Ma.
Plate Inplet	1500	max.	Watts
Streme 1njut	150	max.	Watta
Plate: Dissipation	800	max.	Watts
Radiatok Temperaturt:	150	max.	${ }^{8} \mathrm{C}$
Typical Operation:			
D-C Plate Voltage 3000	3500		Volts
D-C Screen Voltage:			
From a fixed supply of 900	700		Volto
From a series resistor of 12500	15100		Ohms
D.C Grid Voltage:			
From a fixed supply of 350	-300		Volta
From a cathode resistor of 560	570		Ohms
From a grid resistor of 2800	3000		Ohms
Peak R-F Grid Voltage. 590	520		Volte
D-C Plate Current 500	428		Ma.
D-C Screen Current 165	185		Ma.
L-C Grid Current (Approx.) 125	100		Ma.
Driving Power (Approx.) 66	50		Watts
Power Output (Approx.) 1000	1050		Watts

- Obtained preferably from fixed supply, modulated simultaneously with the plate voltage. Series voltage-dropping resistor connected to modulated plate-voltage supply may also be used.

PUSH-PULL CLASS C R-F POWER AMPLIFIER
Plate-Modulated Power Output Approximately 1650 Watt

TRANSMITTING BEAM POWER AMPLIFIER

Features

- HIGH POWER OUTPUT: LOW DRIVING POWER 270 watts input on c.w. with 2.2 watts grid drive, 200 watts iaput on 'phone with 2.7 watts grid drive.
- NEUTRALIZING UNNECESSARY Makes frequency-shifting easy.
30-Mc OPERATION AT FULL RATINGS $75-\mathrm{Mc}$ operation at reduced ratings.
LOW-IDISTORTION (ILASS AB, MODUILATOR Two 828° s deliver 300 watts output with 1% distortion - LOW-LOSS MICANOL, BASE

RCA-828 is a multi-electrode transmitting tube with a maximum plate-dissipation rating (ICAS) of 80 watts. The tube contains a suppressor and has beam power features. Because of its high power sensitivity, the 828 can be operated in r-f services to give full power output with very little driving power and, consequently, with a minimum of driver equipment. For example, in class C telegraph service, the 828 is capable of delivering 200 watts (ICAS) with only 2.2 watts of driving power? Neutralization is unnecessary in adequately shielded circuits. The tube is well suited for use in r-f applications as an r-f power amplifier, frequency multiplier, oscillator, and grid- or plate-modulated amplifier. It makes an excellent power amplifier for the final stage of medium-power transmitters where quick band-change
 without neutralizing adjustments is desirable. The 828 may be operated at maximum ratings at frequencies as high as 30 Mc and at reduced ratings up to 75 Mc .

RCA-828 is also well suited for use as a class A_{1} modulator and a-f power amplifier. Two tubes in class $A B_{1}, C C S$, are capable of delivering 300 watts of audio power with only 1% distortion!

RCA-828 is equipped with the MICANOL base having excellent insulating qualities at high frequencies, together with a low moisture-absorption characteristic. The plate connection of the tube is brought out through a separate seal at the top of the bulb to provide high insulation. RCA-828 contains a husky 32.5 -watt thoriated-tungsten filament which has a great reserve of filament emission.

RATINGS		
Plament Voltage (A.C. or D.C.).	10.0	Volts
Filament Current	3.25	Amperee
Transconductance, for plate cur. of 43 ma	2800	Micromhos
Dinbct Interelectrode Capacitances:		
Grid-Plate (with external shield)	0.05	$\mu \mu \mathrm{f}$
Input	13.5	$\mu \mu \mathrm{f}$
Output	14.5	$\mu \mu \mathrm{f}$
Maximum Height	7-3/4"	
Maximum Diameter	2-1/16"	
Socket		

MAXIMLM CCS and ICAS RATINGS with TYPICAL OPERATING CONDITIONS

A. Push-Pull A-F Power Amplifier and Modulator-Class AB

	CCS	ICAS	
D-C Plate Voltage	1750 max.	2000 max.	Volts
D-C Suppressor Voltage (Grid No. 3)	100 max.	100 max.	Volts
D.C Screen Voltage (Grid No. 2)	750 max.	750 max.	Volts
Max.-Signal D-C Plate Current*	150 max.	150 max.	Ma.
Max.-Signal Plate Input*	225 max.	270 max.	Watts
Scarien InPUT*	16 max.	23 max.	Watts
Plate Dissipation*	70 max.	80 max.	Watta
Typical Operation:			
Unkess otherwise specified, values are for 2 pubes			
D-C Plate Voltage	1700	2000	Volts
D-C Suppressor Voltage	60	60	Volta
D-C Screen Voltage \ddagger	750	750	Volte
D-C Grid Voltage (Grid No, 1)	-120	-120	Volts
Peak A-F Grid-to-Grid Voltage.	240	240	Volts
Zero-Signal D-C Plate Current.	50	50	Ma.
Max.-Signal D-C Plate Current	248	270	Ma.

D-C Suppressor Current	3	9	Ma.
Zero-Signal D.C Screen Current.	4	2	Ma.
Max.-Signal D-C Screen Current.	43	\& 0	Ma.
Effective Load Resistance (Plate-to-plate)	6200	18500	Ohras
Grid Input Power...	0	0	Watt
Max.-Signal Power Output.	seos	$3: 45$	Watt

As Grid-Modulated R-F Power Amplifier-Class C Telephony Carrier conditions per tube for use with a max. modulakion factor of 1.0

	CCS	ICAS	
D-C Plate Voltage	1250 max.	1500 max.	Volts
D.C Suppressor Voltage (Grid No.3)	100 max.	100 max.	Volts
D.C Scheen Vol.tage (Crid No. 2)....	400 max.	400 max.	Volts
D.C Ghid Voltage (Grid No. 1)	-300 max.	-300 max.	Volts
D.C Plate Curbent	100 max.	100 max.	Ma
Plate input	105 max.	120 max.	Watts
Suppressor Input	5 max.	5 max.	Watts
Screen Input	11 max.	1: max,	Watts
Plate Dissipation	70 max.	80 max.	Watts
Typical Operation:			
D-C l'late Voltage	1250	1500	Volts
D-C Suppressor Voltage	75	$7{ }^{\text {7 }}$	Volta
D-C Screen Voltage	400	409)	Volts
D.C Grid Voltage	-150	-154	Volts
Peak R-F Grid Voltage....	165	165	Volts
Peak A-F Grid Voltage	94	94	Volts
D-C Plate Current	84	80	Ma.
D-C Suppressor Current	4	3.5	Ma.
D-C Screen Current	5	4	Ma.
D.C Grid Current (Appiox.)	1.6	1.3	Ma.
Driving Power (Approx) en	2.5	2.5	Watts
Power Output (Approx.) *.a....	86	41	Watta

As Plate-Modulated R-F Power Amplifier-Class C Telephony Carrier conditions per tube for use with a max. modulation factor of 1.0

	CCS		ICAS		
D-C Phate Voltage	1000	max.	1250	max.	Volts
D-C Suppressok Voltage (Grid No. 3)	100	max.	100	\max.	Volts
D-C Screen Voltage (Grid No. 2)...	400	\max.	400	max.	Volts
D-C Gkil) Voltage (Grid No. 1).	-300	max.	-300	max.	Volts
D-C Plate Current	135	max.	160	max.	Ma.
D-C Grid Current	15	max.	15	max.	Ma.
Plate Input	135	\max.	200	max.	Watts
SUPPRESSOR INPUT	5	max.	5	max.	Watts
Screen Input	11	max.	11	max.	Watts
Plate Dissipation	47	max.	70	max.	Watts
Typical Operation :					
D-C Plate Voltage	1000		1250		Volts
D-C Suppressor Voltage	75		75		Volts
D-C Screen Voltage	400		400		Volts
From a series resistor \dagger	26000		30000		Ohms
D-C Grid Voltagell	-140		-140		Volts
From a grid resistor of	14000		11700		Ohms
Peak R-F Grid Voltage.	230		250		Volts
D-C Plate Current	135		160		Ma.
D-C Suppressor Current	13		15		Ma.
D-C Screen Current	23		28		Ma.
D-C Grid Current (Approx.)	10		12		Ma.
Driving Power (Approx.)	2.1		2.7		Watts
Power Output (Approx.)	100		150		Watts

APPLICATION

In push-pull class $A B_{1}$ service, the 828 may be operated as shown under CHARACTERISTICS. The values are deter mined on the basis that no grid current flows during the most positive swing of the input signal and of cancellation of second-harmonic distortion by virtue of the push-pull circuit. Fixed bias of good voltage regulation is recommended in order to realize the maximum power-output capabilities of the class AB_{1} stage. Two 828's are capable of providing power outputs of 300 to 385 watts with very low distortion when inverse feedback is used.

In grid-modulated class C telephony service, the 828 is supplied with unmodulated r-f grid voltage and with a d-c grid bias which is modulated at audio frequencies. Grid bias should preferably be obtained from a fixed supply. The suppressor voltage should be obtained from a battery or any other d-c source of good regulation. The sereen voltage should be obtained from a separate source or from a voltage divider of good regulation. The audio power required in this service is very small, being sufficient only to meet the peak gridpower requirement of the class C amplifier on the positive crest of the a-f input signal. The actual a-f power is generally never more than 2 watts, depending on circuit conditions.

A circuit illustrating the application of the 828 in cw service is shown on this page. In this service the tube will deliver approximately 200 watts with a d-c plate voltage of 1500 volts. The power output of the driver should be about 5 watts. Thus, almost any small a-f or r-f power a mplifier tube is suitable for the driver stage. A 6V6-GT/G or a 6 L 6 as a "Tritet" crystal oscillator will drive an 828 satisfactorily, even if frequency doubling is used in the oscillator plate circuit.

Although the 828 has a suppressor grid, this new tube is not recommended for suppressor-modulated telephony service. The reason is that the suppressor-voltage/poweroutput characteristic of the tube is not linear when the suppressor is operated with a negative bias.

In class C r-f telegraph service, the 828 should be supplied with screen voltage from a fixed, low-voltage source if the 828 or any preceding stage is keyed. The regulation of this source need only be good enough to prevent the screen voltage, under key-up conditions, from rising higher than twice the maximum screen-voltage rating. Grid bias may be obtained by any convenient method, except when a preceding stage is keyed; in this case, sufficient fixed bias should be used to maintain the d-c plate current at a low value when the key is up.

The plate of the 828 shows a barely perceptible red color at its maximum rated plate dissipation of 80 watts; it shows no color at a plate dissipation of 70 watts or less. The screen should not be allowed to attain a temperature corresponding to more than a barely perceptible red color.

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input for High-Frequency Operation

FREQUENCY	30	50	75	Mc
CLASS C $\left\{\begin{array}{l}\text { Telegraphy } \\ \text { Plate-Mod. Telephony }\end{array}\right.$	100	80	65	Per Cent

Tube Mounting Position
VERTICAL-Base down.
HORIZONTAL-Plane of filament vertical.
$\mathrm{C}_{\mathbf{1}}=50 \mu \mu \mathrm{f}$ midget
$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}=0.005 \mu \mathrm{f}$, mica
Cs $_{5} \mathrm{C}_{8}=0.002 \mu \mathrm{f}$, mica, 5000 v .
$\mathrm{Ce}_{8}=0.01 \mu \mathrm{f}$, mica
$\mathrm{C}_{9}=1.5 \mu \mu \mathrm{f} / \mathrm{meter}^{*}$
$\mathbf{R}_{1}=8300$ ohms, 4 watts
$L_{1}=$ Tune to frequency " \mathbf{f} "
$\mathbf{R F C}=\mathbf{R - f}$ choke
Tı=Filament transformer,
2000-v. insulation
$f=$ Operating frequency
$\mathbf{X}=$ Insert keying relay here

- Capacitance in actual use. Minimum air-gap should be 0.07 ".
Note: Power output of driver stage should be about 5 watts

R-F POWER AMPLIFIER
Class C Telegraph Power Output 200 Watts

PUSH-PULL R-F BEAM POWER AMPLIFIERS 829-B B 36 WATTS \$17.00 INPLT AT 200 Mc

Small enough to lie comfortably in the palm of your hand, yet "big" enough to deliver unusually high outputs for their size, the $829-\mathrm{B}$ and 832 fill a long felt need by engineers and experimenters for a transmitting tube that will "deliver the goods" at the ultra highs without need for neutralization. These two beautifully constructed tubes contain two beam power units within one envelope. Total maximum plate dissipation in Class C telegraph service of the $829-\mathrm{B}$ is 40 watts; and for the $8: 32,15$ watts.

A single $829-\mathrm{B}$ is capable of giving approximately 87 watts output with less than a watt of r-f grid drive, at frequencies as high as 200 Mc . Its smaller brother, the 832 , is capable of giving approximately 26 watts at frequencies as high as 200 Mc . Both tubes may be operated at higher frequencies at reduced inputs.

The unusual efficiency of these tubes at the ultra-high frequencies is made pos-
 sible by the balanced and compact structure of the beam power units, the excellent internal shielding, and the close electrode spacing. Both the $829-\mathrm{B}$ and 832 employ the molded glass dish stem which makes practical a compact but powerful tube having very short leads and low lead inductance. Their terminal arrangements provide excellent insulation and are designed to facilitate symmetry of circuit layout.

Both the $829-\mathrm{B}$ and 833 are of the heater-cathode type. Their heaters are arranged to permit operation from either a 12.6 -volt or a 6.3 -volt supply.

The 829 -B supersedes the older type, 829 . The new type has an improved electrode structure which makes the tube particularly useful in applications subject to vibration.

RATINGS

D-C Grid Current	1.5 max.	6 max.	Ma.
Plate Input	90 max.	22 max.	Watts
Screm Input	7 max,	3.4 max.	Watts
Plate Dissipation	28 max.	10 max.	Watts
Typical Opreation:			
D-C Plate Voltage	600	425	Volts
D-C Screen Voltage of	200	200	Volts
From a series resistor of \dagger	13300	14000	Ohms
D-C Grid Voltage of...	-70	-60	Volts
From a grid resistor of.	5801)*	$25000 \ddagger$	Ohms
Peak R-F Grid-to-Grid Volta	172	140	Volts
D-C Plate Current	1.0	52	Ma.
D-C Screen Current	31	16	Ma.
D-C Grid Current (Approx.)	12	2.4	Ma.
Driving Power (Approx.)	0.9	0.15	Watt
Power Output (Approx.)	70	16	Watts

* The sridecircuit resistance should never exceed 1500 ohms (tutal) per tube. or 30000 ohms per unit. If additional biat is necessary, use a cathorle resistor or a fixed supply.
\dagger Connected to modulated plate-voltage supply.
The gridecircuit resistance should never exceed 25000 ohms (total) pel tube, or 50000 ohms per unit.

Max. Permissihle Percentage of Max. Rated Plate Voltage and Plate Input for High-Frequency Operation RCA-829-B

FREQUENCY	200	250	Mc
CLASS C $\left\{\begin{array}{l}\text { Telegraphy } \\ \text { Plate-Mod. Telephony }\end{array}\right.$	100	89	Per Cent

$R_{1} R_{2}=7500$ to 15000 ohms. 1 watt $\mathrm{R}_{s}=60 \mathrm{ohms}, 10$ watts
$\mathrm{R}_{4}=6400$ ohms, 15 watts
$\mathrm{T}_{1}=$ Modulation Transformer
$\mathrm{C}_{1}=1.2$ to $10 \mu \mu \mathrm{f}$ per section $\mathrm{C} a=25 \mu \mathrm{f}, 200 \mathrm{volts}$
$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{8}=500 \mu \mu \mathrm{f}$, mica
C: $\mathrm{C}_{8}=3$ to $35 \mu \mu \mathrm{f}$

829-13 and 832 Socket Connections

Tube Mounting Position VERTICAL-Plate terminals up or down.
HORIZONTAL-Plane of each plate vertical (on edge).
Pin $1=$ Heater
Pin 2=Grid No. 1 of Unit No. 2
Pin 3=Screen
Pin $4=$ Cathode
Pin 5三 Heater center tap
Pin G=Grid No. 1 of Unit No. 1
Pintind
Puinder
Pu1AND Pu2=Plate terminals of UnIts

RCA-832

FREQUENCY	200	250	Mc
CLASS CTelegraphy Plate-Mod. Telephony	$\mathbf{1 0 0}$	89	Per Cent

ULTRA-HIGH-FREQUENCY PLATE-MODULATED

 PUSH-PULL R-F POWER AMPLIFIER(Operating Frequency Approx. 200 Mc)

ULTRA-MODERN TRANSMITTING TRIODE

2000 WATTS INPUT
(FORCED-AIR-COOLING)

Features
833-A

- RCA'S MOST POWERFUL GLASS-TYPE TRIODE

2000 WATTS MAXIMUM INPUT ON C.W.
1800 Watts Maximum on 'Phone
DESIGNED FOR LONG DEPENDABLE SERVICE
GIANT ZIRCONIUM-COATED ANODE
Maximum dissipation, 450 Watts (with forced-air cooling)

- 100-WATT THORIATED-TUNGSTEN FILAMENT

Filament end-shielding eliminates bulb bombardment.

RCA-833-A is the famous high-power, air-cooled triode with a maximum plate dissipation of 450 watts (ICAS). It is designed for use as an r-f amplifier, class B modulator, and oscillator. RCA-833-A is similar in appearance to its well known predecessor, the 833 , but utilizes a Zirconium-coated anode and inciudes many other processing refinements. In existing equipment using the former 833, the RCA-833-A with forced air cooling can be used to boost power substantially.

Small and compact, the 833-A will handle several kilowatts of power in a tube less than 9 inches high and $4-5 / 8$
inches in diameter. For example, with forced air cooling it will take maximum input of 1800 watts (ICAS) in platemodulated service and 2,000 watts input (ICAS) on c.w.at frequencies as high as 20 Mc . Under CCS ratings with natural cooling, the tube will take a maximum input of 1250 watts at frequencies as high as 30 megacycles!

RCA-833-A is designed with post terminals that provide a rugged structure and make bases unnecessary. The Zirconium-coated anode is supported direct from its post terminal at the top of the bulb. The 100 -watt thoriatedtungsten filament of the 833-A has a tremendous reserve of emission. This filament is shielded by means of a special plate construction to conserve input power by eliminating bulb bombardment and stray electrons.

Designed to meet the specification requirements of commercial high-power, high-frequency applications, RCA-833-A is built to last.

RATINGS

Fildament Vohtaic (A.C. or D.C.)	10	Volts
Filament Cutrest	10	Amperes
Ampirification F'actor	35	
Grid-I'late	6.3	$\mu \mu \mathrm{f}$
Grid-Filament	12.3	$\mu \mu \mathrm{f}$
Plate-rilament	8.5	$\mu \mu \mathrm{f}$
Maximum Height	8-5/8" $\pm 3 / 16^{\prime \prime}$	
Maximum lhametrik	4-19/32"	
Stu'kit	RCA	9928

MAXIMUM CCS and ICAS RATINGS with TYPICAL OIPERATING CONDITIONS

Typical Operation : D-C Plate Voltage 3000 D-C Grid Voltage-200
from a fixed supply of.. -200 From a grid resistor of .. 3500 From a cathode resistor of
Peak R-F Grid Voltage D-C Plate Current
-C Grid Current …….. 415
D-C Grid Cur. (Approx.)..
$\begin{array}{llr}\text { Driving Power (Approx.) } & 20 \\ \text { Power Output (Approx.) .. } & 1000\end{array}$

4000	4000	Volts
-200	-225	Voits
2650	2400	Ohms
380	380	
375	415	Vhms
450	500	Ma.
75	95	Ma.
26	35	Watts
1440	1600	Watta

PUSH-PULL CLASS C R-F AMPLIFIER-PLATE MODULATEI) Power Output 2000* Watts (CCS)

C_{1} to $\mathrm{C}_{4}=0.005 \mu \mathrm{f}$, mica
$\mathrm{C}_{\bar{\sigma}}=1 \mu \mu \mathrm{f} / \mathrm{meter} / \mathrm{section}$
$\mathrm{C}_{6}=0.005 \mu \mathrm{f}, 7500$ volts
$C_{\bar{i}}=1.7 \mu \mu \mathrm{f} /$ meter/section
$\mathrm{C}_{s} \mathrm{C}_{4}=6.3 \mu \mu \mathrm{f}$ (approx.)
$\mathrm{C}_{10}=50 \mu \mathrm{f}, 250$ volts
$R_{1}=1000$ ohms, 50 watts
$R_{2}=130$ ohms, 200 watts
L.) $L_{2}=$ Thane to frequency " f "
$I_{43}=I$-F choke, 1 ampere
L. $4=$ See Note (1)
$\mathrm{T}_{1}=$ Filament transformer
$\mathrm{V}=0-15 \mathrm{v}$, $\mathrm{A}-\mathrm{C}$ voltmeter
NOTE (1) I_{4} is a $12-0 h m$ d-c overload relay set to open the primary circuit of the highvoltage transformer when the d-c cathode current reaches 1.2 amperes.

- These ratings apply when forced-air cooling is used at the rate of N 0 cu . ft. per minut and when maximum bulb surfaee temperature between srid and plate does not exceed $145^{\circ} \mathrm{C}$.

The output transformer of the $833-\mathrm{A}$ in class B modulator service should be designed so that the resistance load presented by the modulated class C amplifier is reflected as the correct plate-to-plate load in the class B a-f stage. For example, for the 3000 -volt condition, a plate-to-plate load of 9500 ohms is required. If an output transformer efficiency of 90% is assumed, two 833-A's operated under conditions shown for a 3000 -volt plate supply, are capable of modulating 100% an input of approximately 2970 watts to a class C r-f power amplifier. Since two 839-A's will modulate 2970 watts, a convenient class C amplifier would be one operating at 6000 volts and 495 milliamperes. These conditions represent a resistance of approximately 12120 ohms. The ratio of the output transformer is then $12120 \div 9500$, or 1 to 1.13, step-up. Grid bias for class B modulator service should be obtained from a battery or other source of good regulation. It should not be obtained from a high-resistance supply
such as a grid resistor, nor from a rectifier, unless the latter has exceptionally good voltage regulation.

When the $833-A$ is used in the final amplifier or a preceding stage of a c-w transmitter designed for break-in operation and oscillator keying, a small amount of fixed bias must be used to maintain the plate current at a safe value. With plate voltage of 4000 volts, a fixed bias of at least -90 volts should be used.

The plate of the 833 -A shows an orange-red color at the maximum plate-dissipation rating for each class of service.

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input for High-Frequency Operation

	NATURAL COOLING			FORCED-AIRCOOLING			
FREQUENCY	30	50	75	20	50	75	Mc
$\text { CLASS C }\left\{\begin{array}{l} \text { Plate-Mod. Telephony } \\ \text { Telegraphy } \end{array}\right.$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 72 \\ & 72 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	83 83	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	Per Cent Per Cent

Tube Mounting Position VERTICAL-Up or down.

833-A End Connections
 HORIZONTAL-Plane of plate vertical.

834 350 Mc at reduced input.

- MOLYBIDENUM PLATE

RCA-834 is a transmitting triode designed particularly for use as an r-f amplifier and oscillator at the ultra-high frequencies. lt has maximum platedissipation rating of 50 watt (CCS) and can be used with maximum ratings at frecuencies up to 100 Mc ? It may be operated at reduced input up to 350 Mc ! RCA- m 34 is conservatively rated at 12 ; watts input for class C telegraph service and 100 watts for plate-modulated service.

The grid and wate of the 834 are supported from the top of the glass bulb by individual tungsten leads which are brought out of the tube through separate seals. This construction minimizes lead inductance, eliminates need for internal insulation, and provides low interelectrode capacitances. The molybdenum plate insures gas-free operation at extremely high temperatures and functions to maintain a high vacuum during the life of the tube. The kit has a husky, 25-watt. thoriated-tungsten filament which insures a tremendous reserve of emission

Filament Voltage (A.C. or D.C. Filament Current amplification factor

List Price
${ }_{512} 2^{50}$

- TUNGSTEN GRID AND

PLATE I,EADS

- HARD-GLASS BUIB

RATINGS

Direct interelecthode Capacitances
Grid-Plate
Grid-Filament
Plate-Filament
Maximum Height
Maximum IDameter

MAXIMCDM CCS RATINGS and TYPICAL OPERATING CONIDITIONS

Bottom View
of 836 Socket Connections

Bottom View
of 834 Socket Connections

Tube Mounting Position
VERTICAL-Base up or down HORIZONTAI- Not recommended
7.5 Volts 8. 1 Amperes

HALF-WAVE HIGH-VACUUM RECTIFIER

THE HIGH-VOLTAGE RECTIFIER WITH A HEATER CATHODE

List Price \$].50

RCA-836 is a half-wave, high-vacuum rectifier tube of the heater-cathode type for use in high-voltage rectifying devices where freedom from r-f disturbances in the output is an important factor. The excellent voltage characteristic of the 836 is due to the close spacing of the cathode and plate and to the use of double cathode construction. In single-phase circuits, fullwave rectification is accomplished by using two 836 's.

ratings

Heater Voltage*
HEater Current
prak Plate Cubita,
Average: Plate Curbent

* Heating time of heater is approximately 40 seconds.

The a-c input voltage (RMS) for two 836's, plate-to-plate in a full-wave, single-phase circuit must not exceed 3530 volts in order to limit the maximum peak inverse voltage to the rated value of 5000 volts. With a sine-wave input and the use of a suitable choke preceding any condenser in the filter circuit, the no-load d-c output voltage from the rectifier is 0.9 of the a-c input voltage per tube. On this basis, the maximum d-c output voltage is 1600 volts when the maximum a-c input voltage of 1765 volts is used. Under the above voltage and filter conditions, the regulation produced by the drop in the tube at full-load current will not be greater than 55 volts, approximately.

The 836 has two separate cathodes each of which is connected to its respective heater. Plate-circuit returns should be made to the center tap of the heater transformer winding,

RCA-837 is a pentode transmitting tube of the 12.6 -volt heater-cathode type for use as an r-f amplifier, frequency-multiplier, oscillator, and suppressor, grid or plate-modulated amplifier, particularly in aircraft. police. commercial, and broadcast equipment. RCA-837 is conservatively rated at a maximum plate dissipation of 12 watts. It may be operated at maximum ratings at frequencies up to 20 Mc -at reduced ratings at frequencies up to 60 Me.

The suppressor of the 837 is connected to an individual base pin to permit suppressor modulation of the tube as well as to provide for the use of a separate suppressor supply voltage for obtaining optimum power output from the tube. RCA-837 contains a special internal shield which also is connected to an individual base pin. Neutralization of the tube is unnecessary in adequately shielded circuits.

The 837 is equipped with a Micanol base.
pentode r-f amplifier
OR FREQUENCY MUITIPLIER
Amplifier Power Output 22 Watts (Approx.)

MAX. CCS RATINGS

As IR-F I'ower Amplifier and OscillatorClass C Telegraphy

D-C Plate Voltage
D-C Suppressor Voltage (Grid No, 3)
D.C Scraten Voltage
(Grid No. 2)
D-C Grid Voltage (Grid No. ${ }^{1)}$ © Plate Cubrent D.C Grid Current Plate Input
Sippressor Input
Screten Input
Plate Dissipation

500 max. Volts
200 max. Volts
200 max. Volts
-200 max. Volts
80 max. Ma.
32 max. Watts
5 mux. Watts
8 max. Watts
12 max. Watts

$\mathrm{C}_{1}=50 \mu \mu \mathrm{f}$ midget
$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{6} \mathrm{C}_{7}=0.005 \mu \mathrm{f}$ mica
mica
$\mathrm{C}_{5}=2 \mu \mu \mathrm{f} /$ meter, 1200 v
$\mathrm{R}_{2}=450$ ohms. 5 watts
$\mathrm{R}_{3}=35000$ ohms, 10 watts
$\mathrm{H}_{1}=\mathrm{R}$-F choke
$\mathbf{F}=1 / 1 /{ }^{2}$ at high-voltage
$R_{1}=10000$ ohms, 1 watt fuse
NOTE: For frequency doubling, tune $C_{5} L_{2}$ to freNOTE: For frequency doubling, tune $C_{5} L_{2}$ to fre-
quency $2 f_{\text {. }}$ A $20000-0 h m$, 10 -watt series screen requency sistor can be used in place of Ra, and No. 3 grid connected to cathode.

TRANSMITTING TRIODE
 ZERO-BIAS CLASS B MODULATOR 220 WATTS INPUT
 List Price \$1.00

838
RCA-838 is a high-mu, 3 electrode transmitting tube particularly well suited for use as a zero-bias class B modulator or a-f power amplifier. Maximum plate dissipation is 100 watts. The grid of the 838 is designed so that the amplification factor of the tube varies with the amplitude of the input signal. This feature facilitates the design of class B amplifier to give high output with low distortion. In class B audio service, two 838 's are capable of giving an output of 260 watts with less than 5% distortion! As an r-f power amplifier, the 838 may be used at maximum ratings at frequencies as high as 30 Mc .

RATINGS

Filambnt Vol.tacie (A.C. oh 1).C.) 10.0 Filament Curbent
Hamot Curn -........ 3.25
Grid-Plate
Grid-Filament
Plate-Filament
Maximum Height
Maximum Diameter
Socket Standard Transmitting such as RCA
type 9936

MAXIMUM CCS RATINGS and TYPICAL

 OPERATING CONDITIONSAs A-F Power Amplifier and Modulator - Class \mathbf{B} D-C Plate Voltage 1250 max. Volts Max.-Signal D-C Plate Cur. Max.-Signal Plate Input* Max.-Signal Plate
Plate Dissipation

175 max. Ma.
220 max. Watts

Volts TyPICAl Operation :
Amperes Unlcss otherwise specified, values are for 2 tubes D-C Plate Voltage $1250 \quad$ Volts D-C Grid Voltage Peak A-F Grid-to-Grid Vol. Zero-Sig. D-C Plate Current Max.-Sig. D-C Plate Current L.oad Resistance (Per tube) Fffective Load Res. (Plate-to-plate)
Max-Sig. Driving Power (Approx.) \cdots.......... (Approx.) \# Averaced over any audi.......... Watts Averaged o
wave form
\# Approximately 4% harmonic distortion.

In special cases wherc it is desirable to keep the audio-frequency distortion of the class B a-f amplifier or modulator to a value lower than 4%, the use of a small amount of grid-bias voltage is advantageous. Typical operating conditions are approximately the same as those for zero-biss operation, with a plate supply voltage of 1250 volts. The exceptions are: grid-bias voltage, -15 volts: peak a-f grid-to-grid voltage, 210 volts; and zero-signal d-c plate current, 50 milliamperes (2 tubes).

Bottom View

HALF-WAVE MERCURY-VAPOR RECTIFIERS 872-A/872 AND
 I'eak Inverse Voltage, 10000 Volts, Maximum

Both are heavy-duty tubes, capable of giving long trouble-free service. The 872-A/872 supersedes both of the older RCA types, 872-A and 872, and combines the ability of the 872 - A to withstand high peak inverse voltages and the ability of the 872 to conduct at relatively low applied voltages. The 8008 has the same electrical characteristics as the $872-\mathrm{A} / 872$ but it is equipped with a heavy-duty base.

RATINGS

Tube Voltage Drop (Approx.)
Standard transmitting 4-contact, such as RCA Type 9936 Sоскет $\left\{\begin{array}{l}\text { RCA-8008 }\end{array}\right.$ Note 1: If the plate return of each tube is not connected to the center-tap of the filamentsupply winding, the return should be made to that side of the filament to which the cathode shield is connected.
Note 2: The filament should be allowed to come up to operating temperature before plate * voltage is applied. For average conditions, the delay is approximately 30 seconds. * For supply frequency up to 150 cycles per second

RECTIFIFR CIRCUITS

Fiz. C
Hottom View of 872-A/872 (upper) and 8008 (lower) Socket Connections

Tube Mounting Position VERTICAL-Base down only. HORIZONTAI. Not recommended.

to three-phase to one phase or SUPPLY

Fig. D

SUMMARY OF CIRCIIT CONDITIONS*

CHRCIIT	FIC.	TRA NSFORMER SECONI)ARY VOI.TAGE EmMS	$\begin{aligned} & \text { IDC OUTPUT } \\ & \text { VOATAGFTO } \\ & \text { FHTEREAV. } \end{aligned}$	PEAK•INVERSE VOLTAGE EINv.	MAX. AVERAGE LOAI) CURRENT PERMITTED
Single- I' hase Full-W ave (2 Tubes)	A	(per tube) $0.353 \times \mathrm{FINv}$. or $1.11 \times \mathrm{F}_{\mathrm{AV}}$.	$\begin{gathered} 0.318 \times \mathrm{F}_{\mathrm{INv}} \\ \text { or } \\ 0.9 \times \mathrm{F}_{\mathrm{RMS}} \end{gathered}$	$\begin{gathered} 3.14 \times \mathrm{E}_{\mathrm{Av}} \\ \text { or } \\ 2.83 \times \mathrm{E}_{\mathrm{RMS}} \end{gathered}$	$2 \times\left\{\begin{array}{l}\text { Max. A verage Plate- } \\ \text { Current Rating per } \\ \text { Rectifier Tube }\end{array}\right.$
Singlo-Thasa Full-Wave Itridge (4 Tubes)	I	(total) $0.706 \times \mathrm{FiNv}$. or $1.11 \times \mathrm{F}_{\mathrm{A}} \mathrm{y}$	$\begin{gathered} 0.636 \times \mathrm{F}_{\mathrm{IN}} . \\ \text { or } \\ 0.9 \times \mathrm{E}_{\mathrm{RMS}} \end{gathered}$	$\begin{gathered} 1.57 \times E_{\mathrm{Av}} \\ \text { or } \\ 1.41 \times \mathrm{F}_{\mathrm{RMS}} \end{gathered}$	(Max. Average Plate$2 \times\{$ Current Rating per Rectifier Tube
Three-l'hase 1Ialf-W ave (3 Tubes)	C	(per leg) 0.40 xx EINv . or $0.855 \times \mathrm{F}_{\mathrm{A}}$.	$\begin{aligned} & 0.478 \times F_{\text {INV }} \\ & \text { or } \\ & 1.17 \times \mathrm{E}_{\mathrm{RMS}} \end{aligned}$	$\begin{aligned} & 2.09 \times \mathrm{E}_{\mathrm{Av}} \\ & \text { or } \\ & 2.45 \times \mathrm{E}_{\mathrm{RMS}} \end{aligned}$	$3 \times\left\{\begin{array}{l} \text { Max. Average Plate } \\ \text { Current Rating per } \\ \text { Rectifier Tube } \end{array}\right.$
Three-lhase Parallel Double Y' (6 Tubes)	D		$\begin{gathered} 0.478 \times \mathrm{E}_{\text {INV. }} \\ \text { or } \\ 1.17 \times \mathrm{E}_{\mathrm{RMS}} \end{gathered}$	$\begin{gathered} 2.09 \times \mathrm{E}_{\mathrm{Av}} \\ \text { or } \\ 2.45 \times \mathrm{E}_{\mathrm{RMS}} \end{gathered}$	(Max. Average Plate$6 \times$ Current Rating per (Rectifier Tube
Threer-Phase Full-Wave (6 Tubes)	F	$\begin{gathered} \text { (per leg) } \\ 0.408 \times \text { Finv. }^{2} \\ \text { or } 0.42 \times x \text { EAv. }^{2} \\ \hline \end{gathered}$	$\begin{gathered} 0.956 \times \mathrm{E}_{\mathrm{TNV}} \\ \text { or } \\ 2.34 \times \mathrm{E}_{\mathrm{RMS}} \\ \hline \end{gathered}$	$\begin{gathered} 1.05 \times \mathrm{E}_{\mathrm{Av}} \\ \text { or } \\ 2.45 \times \mathrm{E}_{\mathrm{RMS}} \\ \hline \end{gathered}$	(Max. Average Plate$3 \times$ \{Current Rating per (Rectifier Tube

* Table is based on sine-wave input and the use of a suitable choke preceding any condenser in the filter
circuit. It does not take into account the voltage drop in the power transformer, the rectifier tubes, nor the filter-choke windings under load conditions.

HOT-CATHODE GAS TRIODE and tetrode data

HOT-CATHODE GAS TRIODES 884
 List Price $\$ \mathbf{1 . 3 0}$
 885
 List Price $\$ 1.35$

RCA-884 and RCA-885 are grid-controlled, gaseous-discharge tubes of the heater-cathode type. They are designed for use as sweep-circuit oscillators in cathode-ray tube circuits.

Operation of the 884 and 885 can be controlled by means of a condenser shunted across the plate circuit and charged through a resistor. When the plate voltage reaches breakdown potential, the condenser discharges through the tube, the plate voltage drops, the grid resumes control and a new cycle starts. This action results in a saw-tooth wave which is essentially linear, and which is especially suited for use as a time base in a cathode-ray oscillograph. The 884 and 885 are characterized by extremely low de-ionization time, the corresponding practicability of operation at high frequency, and stability of operation.

$\mathrm{C}_{2}=0.25 \mu \mathrm{f}, 500 \mathrm{v}$
$\mathrm{Ca}=0.1 \mu \mathrm{f}, 500 \mathrm{v}$. $\mathrm{C}_{5}=0.04 \mu \mathrm{f}, 500 \mathrm{v}$. $\mathrm{C}_{6}=0.015 \mu \mathrm{f}, 500 \mathrm{v}$ $\mathrm{C}_{6}=0.005 \mu \mathrm{f}, 500 \mathrm{v}$ $\mathrm{C}_{7}=0.002 \mu \mathrm{f}, 500 \mathrm{v}$ $\mathrm{C}_{8}=0.0008 \mu \mathrm{f}, 500 \mathrm{v}$.
$\mathrm{C}_{8}=0.5 \mu \mathrm{f}, 250 \mathrm{v}$
$\mathrm{C}_{10}=0.5 \mu \mathrm{f}, 500 \mathrm{v}$
$\mathrm{C}_{12}=8 \mu \mathrm{f}, 200$ v
$\mathbf{R}_{12}=5000$ ohm (Max.) potentiometer $\mathbf{R}_{\mathbf{R}_{2}}=5000$ ohm (Max.) potentiomet $\mathbf{R}_{3}=$ Not greater than 50000 oh
$\mathbf{R}_{3}=2000-3000$ ohms, 0.5 watt $\mathrm{R}_{3}=2000-3000$ ohms, 0.5 wat $\mathbf{R}_{5}=0.3-0.5 \mathrm{ohms}, 0.5$ watt $\mathrm{R}_{5}=0.3-0.5$ megohm, 0.5 watt $\mathrm{R}_{\mathrm{R}}=1$ megohm potentiometer $\mathrm{R}_{\mathrm{i}}=1 \mathrm{megohm}, 0.5$ wat
$\mathrm{C}_{11}=25 \mu \mathrm{f}, 15 \mathrm{v} . \quad \mathrm{Rs}_{\mathrm{s}}=0.5$ megohm potentiometer

RATINGS FOR 88.4 AND 885	
884	88
Heater Voltage... 6.3	2.5 Volts
Ture Voltage	
Drop (Approx.) 16	16 Volts
Socket . . RCA type 9924 RCA type 992	
As a Sweep-Circuit	Oscillator
Pliate Volt. (Instantaneous) 300 max . Volts	
Peak Volt, hetween any 2	
Elfetrodes	350 max. Volts
Peak Plate Current ${ }^{\text {average Plate Curbent }}$: 300 max	
For freq. below $200 \mathrm{c} . / \mathrm{sec}$. 3 max. Ma.	
For frea, above $200 \mathrm{c} / / \mathrm{sec}$.	2 max
Grio Resistor:	
Should be not less than 1000 ohms per max. instantancous volt applied to the grid. Values in excess	

$\mathrm{R}_{0}=850$ ohms, 0.5 watt
$\mathrm{R}_{0}=850$ ohms, 0.5 watt
$R_{10}=0.1$ megohm, 0.5 watt
$R_{11}=1500$ ohms, 0.5 watt
$R_{12}=15000 \mathrm{oms}, 5,5 \mathrm{watt}$
$\mathbf{R}_{12}=25000 \mathrm{~ms}, 1.0 \mathrm{watt}$ $\mathrm{R}_{12}=60000 \mathrm{ohms}, 1.0$ watt $\mathrm{R}_{13}=60000 \mathrm{ohms}, 1.0$ watt $\mathrm{R}_{11}=60000 \mathrm{ohms}, 1.0 \mathrm{watt}$ $\mathrm{R}_{15}=2.0$ megohms, 1.0 wat $\mathrm{S}_{1}=7$-contact S.P. switch $\mathrm{S}_{2}=$ S.P.D.T. switch

Approx. Frequency Range (Cyrles/Sec.)

SWITCH (S ${ }_{1}$) ON	C2	C3	C4	Cs	C	C_{7}	C
Re at Maximum.	20	43	109	280	670	1500	3600
$\mathbf{R e}_{\text {e }}$ at Minimum.	59	132	340	880	2180	4900	11400

HOT-CATHODE
 2050
 List Price $\$ 1.35$
 GAS TETRODES

RCA-2050 and RCA-2051 are sensitive, gas-filled tetrodes of the heatercathode type, designed for grid-controlled rectifier service. Both tubes have a steep control characteristic (high control ratio) which is independent of ambient temperature over a wide range. Because of the special electrode structure employed, the pre-conduction or gas-leakage currents to the anode are extremely small right up to the beginning of the conduction cycle. In addition, grid current is very low (less than 0.1 microampere), so that a high resistance may be used in the grid circuit. This characteristic provides tubes with a high sensitivity and permits their operation directly from a vacuum-type

TYPICAL, LIGHT-OPERATED RELAY CIRCUIT

$\mathbf{R}_{\mathbf{1}}=$ Grid-bias potentiometer $\quad \mathbf{R}_{2}=$ Bleeder resistor $\mathbf{R}_{\mathbf{3}}=$ Anode-current-limiting resistor

[^1]
RATINGS FOR 2050 AND 2051

Heater Volt. (A.C. or D.C.)	6.3	Volts
Heater Current	0.6	Ampere
Grid-Anode Capacitance	0.2	$\mu \mu \mathrm{f}$
SOCKET	Standard (RCA type	Octal 9924)
As Grid-Controlled	Rectifier	
Type 2050	Type 2051	
PEAK FORWARD Anode Voltage 650 max.	350 max.	Volts
Peak Inverse Anode Voltage 1300 max.	700 max.	Volts
Shield Grid (Grid No. 2) Voltage	0	Volts
Peak anone Cur. 500 max.	375 max.	Ma.
Average Anode Current\# 100 max.	75 max.	
Tube Voltage Drop (Approx)	14	Volts
(${ }^{\text {a }}$ (0.01 min.	Megohm
Grid Resistor*... 10 mas.	10 max.	Megohms

U-H-F
Type
954
955
List Prices
$\$ 4.50$
2.75

Type
List Prices
Type
List Prices
956 957
$\$ 4.50$
958 $\$ 3.00$

The RCA Acorn tubes are designed for use by engineers and experimenters particularly at the ultra high frequencies. These remarkable short-wave tubes, assembled with the aid of a microscope, provide unusual r-f gain with remarkable efficiencies at wavelengths as low as 0.7 to 0.5 meter! Operation of the Acorn tubes at such short wavelengths is made possible by the use of an unconventional tube structure having extremely small size, close electrode spacing, and short terminal connections. Maxistructure having extremely small size, close electrode spacing, and short terminal connections. M
mum height of the pentode types is only $17 / 8^{\prime \prime}$; maximum height of the triode types is only $13 / 8^{\prime \prime}$.

RCA-954, 955 , and 956 are the 6.3 -volt heater-cathode types. The 954 is a pentode. As an r-f amplifier, this tube is capable of gains of three or more in circuits of conventional design. It is capable of working at wavelengths as short as 0.7 meter. The 955 is a triode well suited for use as a detector or r-f amplifier in u-h-f receivers. It is also well suited as an oscillator in "fly-power" transmitters operating at frequencies unreachable with ordinary tubes. RCA-955 is capable of giving an output of $1 / 2$ watt at 5 meters and with only moderato reduction in this value for wavelengths as low as 1 meter. The 956 is a pentode of the remote cut-off type for use as a radio and intermediate-frequency amplifier, or a mixer, in receivers operating at wavelengths as low as 0.7 meter. The 956 is capable of giving a gain of 4 or more when it is used as an r-f amplifier in circuits of conventional design.

RCA-957, 958, and 959 are a series of Acorn tubes having low-current filaments of the coated type. Their economy of filament and plate power and small sizes make them particularly useful in compact portable and other battery-operated equipment where minimum size and weight are important features. The filament of each of these three types can be operated without series resistance directly from a single flashlight dry coll. The 957 is a triode having a moderately high amplification factor. It may be used as a detector, amplifier, and oscillator. The 958 is a triode especially designed for transmitting service as an oscillator and r - f amplifier. It may also be used as an audio power output tube. Useful audio output for headphone operation may be obtained with plate voltage down to 45 volts, or lower. The 959 is a sharp cut-off pentode intended for use as an r-f amplifier and detector. It may also be used as a resistance-coupled a-f amplifier having moderate gain.

Tubes Shown Actual Size

954 - 955 - 956
 RATINGS and CHARACTERISTICS
 As an Amplifier-Class A

Heathr Voltage (A.C. or D.C.)
Heater Current
Max. Plate Voltaif
Surpirassor
Max. Screen "Voltagr
Grid Voltage
Plate Curbent
Scheren Current
Plate Resist. (Approx.)
Amplification Factor
Transconductance

Dirbat Intrmelegthone Caparitancris

Grid-Carnode
Plate-Cathode
Input
Output
Thrminal Mounting

${ }^{\prime}$

Connected to cathode at terminal mounting 9925

* Greater than 1.5 megohms.

$954 \quad 955$	956	
6.3 6.3	6.3	Volts
0.150 .15	0.15	Ampere
250250	250	Volts
\dagger	\dagger	Volts
$100 \sim$	100	Volts
-3 min -7	-3 min.	Volts
$2 \quad 6.3$	6.7	Ma.
0.7	2.7	Ma.
11400	700000	Ohms
25		
14002200	1800	Micromhos
Cras:		
$0.007+1.4$	$0.007 \ddagger$	$\mu \mu \mathrm{f}$
1.0	-	$\mu \mu f$
0.6	-	$\mu \mu f$
3.4	3.4	$\mu \mu \mathrm{f}$
3	3	$\mu \mu \mathrm{f}$
CA type 9925		

RCA type 9925
inal mounting. ter

957 - 958 - 959

RATINGS and CHARACTERISTICS

Terminal Mounting

* Connected to minus filament at mounting
* Connected to minus filament at mounting.
\ddagger Maximum, with shield baffle.
\pm Maximum, resistance in grid circuit should not exceed 0.5 meg.

TRANSMITTING TRIODE

FOR HIGH PEAK-VOLTAGE REQUIREMENTS

Features

- HIGH INSULATION RESISTANCE BETWEEN ELECTRODES Enables tube to withstand high peak voltages.
- high power with relatively low plate voltage
- LOWER AMPLIFICATION FACTOR (16.5)

Lower driving power requirements. 475 watts output with 9 watts of grid drive.

- HIG, SPECIAL-PROCESSED GRAPHITE ANODE

Assures hish thermal radiation: gas free.

- SHIELDED. HEAVY-DUTY 45-WATT FILAMENT
electrons.
- 30-me operation at filll ratings $100-\mathrm{Mc}$ Operation at reduced ratings.
RCA-8000 is a high-power transmitting triode with a low mu of 16.5 and a plate dissipation of 150 watts (ICAS). Special feature of the 8000 is its construction which provides high insulation resistance between electrodes. This enables the tube to withstand high peak voltages. RCA-8000 is particularly suitable for use as an r-f amplifier and class B modulator. A single tube in class C telegraph service (ICAS) will take a plate input of 620 watts with a grid drive of only 9 watts. In class B modulator service, two 8000 's will modulate 100% nearly $11 / 2$ kilowatts of power!

In self-rectifying oscillator circuits, such as are used in therapeutic applications, two 8000 's are capable of delivering a useful power output of 550 watts (85% circuit efficiency). In this application, as well as in general radio transmitter applications, the 8000 may be operated at maximum ratings at frequencies as high as 30 Mc and with reduced plate voltage and input as high as 100 Mc . The tube has a large graphite anode, specially processed, to insure high thermal radiation and a minimum of gas. The plate and grid leads are brought out to rugged terminals at the top and side of the bulb respectively.

Priced right, RCA-8000 offers economy not only in initial tube cost but also in substantial savings in final-stage tank condenser, high-voltage power supply, and the number of exciter stages required.

RATINGS

Filament Voltage (A. C. or D. C.)
AMi-LIFICATION Factor

10
46.5
16.5
Dinhet Interelecthone Capacitance.
Grid-Plate ...
Plate-Filament
Maximum Hetght
Maximum Radius

\qquad
Transmitting 4 -contact
$0-1$
 As r-F OPERATING CONIDITIONS

8000

Man. Permissible Percentage of Mar Rated Plate Voltage and Plate Input for High-Frequency Operavion

FREQUENCY	30	60	100	Mc
CLASS CTelegraphy Plate-Mod. Telephony	100	70	$m 0$	Per Cent

R-F POWER AMPLIFIER USING RCA-8000
Power Output 475 Watts, ICAS

$C_{1}=0.0005 \mu \mathrm{f}$, mica, 1500 v
C_{2} to $\mathrm{C}_{6}=0.002 \mu \mathrm{f}$, mica
$\mathrm{C}_{7}=0.002 \mu \mathrm{f}$, mics, $2500 \mathrm{\nabla}$.
$\mathrm{C}_{7}=0.002 \mu \mathrm{f}$, mics, 2500
$\mathrm{C}_{8}=0.002 \mu \mathrm{f}$, mics, $5000 \quad$.
$\mathrm{C}_{\theta}=4.8 \mu \mu \mathrm{f}$ (approx.), 7500
$\mathrm{C}_{10}=0.75 \quad \mu \mu \mathrm{f} /$ meter $/ \mathrm{sec}$ 位
† Approximate capacitance in actual use at resonance.
\# For ICAS plate-modulated telephony service, reduc ${ }^{+}$Fiv $t_{1} 1800$ v., Ib to For mas and decrease le to 20 man. The power output is approximately
250 mat, and
335 watts.

Bottom View of Sucket Connections

Tube Mounting Position

VERTICAL-Base Down
HORIZONTAL-Plane of electrodes vertical

TRANSMITTING BEAM POWER AMPLIFIER

HIGH BEAM POWER FOR THE HIGHER FREQUENCIES
List Price
\$27.50

Features

4E27/ 8001

- 75-MC OPERATION AT FULL RATINGS 150-Mc Operation at Reduced Ratings
- HIGH POWER WITH MINIMUM DRIVER EQUIPMENT 230 Watts Output-I $1 / 2$ Watts Drive
- hard-GLass bulb
- ENCLOSED TANTALUM ANODE Increases Power Output at High Frequencies
- GLASS DISH-TYPE STEM

Provides Extremely Short Leads: Minimizes Internal Lead Inductance

RCA-4E27/8001 is a multi-electrode transmitting tube with a maximum plate dissipation rating of 75 watts. The tube contains a supressor and has beam power features. RCA-4E27 fills the need by engineers, experimenters, and amateurs for a beam tube that will deliver reasonably high power at the higher radio frequencies. For example, one 4E27 will take a maximum plate input of 300 watts at frequencies as high as $75-\mathrm{Mc}$, with only 1.4 watts of driving power-and without neutralization. The tube is particularly well suited as an r-f amplifier, frequency multiplier, and suppressor-, grid-, or plate-modulated amplifier. It may also be used as a class A1 a-f power amplifier or modulator and in this service it is capable of delivering approximately 34 watts of audio power with very low distortion.
Other features of the 4 E 27 are its dish-type stem which makes possible the use of unusually short internal leads, its hard-glass bulb to withstard extremely high temperatures, its enclosed tantalum anode to insure permanent gas-free operation and to eliminate loss of power from electron bombardment of the bulb, a giant 7-pin base having ceramic insulation and wide pin spacing, and a 37.5 -watt thoriated-tungsten filament.

MAXIMCM CCS RATINGS with

 TYPICAL OPERATING CONDITIONSAs Plate-Modulated R-F Power Amplifier-Class C Telephony
Carrier conditions per tube for uae with a max. modulation factor of 1.0
D-C Plate Voltage 3000 max. Volts D-C Screen Voltage (Grid No. 21 D-C Plate Curpent (Grid No. 1) ... 135 max. Ma D-C Grit Current ... 25 max. Ma. Plate Input ... 250 max. Watts SCREEN Input .. 18 max. Watts Plate Dissipation ... 65 max. Watls
TYPICAL Opfration:
D-C Plate Voltage $\ldots3{ }^{1500}$
D-C Suppressor Voltage (Gric No. 3) 60

Bottom View
of Socket Connections

Tube Mounting Position VERTICAL-Base up or down HORIZONTAL-Not recommended

Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input for High-Frequency Operation

| FREQUENCY | 75 | 120 | 150 | Mc |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CLASS C $\left\{\begin{array}{l}\text { Telegraphy } \\ \text { Plate-Mod. Telephony }\end{array}\right.$ | 100 | 75 | 50 | Per Cent |

TRANSMITTING

FOR HIGH PEAK VOLTAGE REQUIREMENTS

330 WATTS INPUT

List Price
S12.00

Features

- WITHSTANDS HIGHER PEAK VOLTAGES THAN ORDINARY 100-WATTERS
- HIGH POWER OUTPUT WITH LOW PLATE VOLTAGE. 250 WATTS OUTPUT AT A PLATE VOLTAGE OF ONLY 1350
- EXCELLENT AS SElf-RECTIfied oscillator such as USED IN THEKAPEUTIC AP. PLICATIONS

VOLTS

- 30-Mc operation at full RATINGS

RCA-8003 is a new transmitting triode with a maximum plate-dissipation rating of 100 watts and a low mu of 12 . RCA-8003 is suitable for use as an r-f power amplifier, class B modulator, and oscillator. In class C telegraph service, it will deliver a power output of 250 watts. In self-rectifying oscillator circuits such as are used in therapeutic applications, two 8003's are capable of delivering a useful power output of 380 watts when the circuit efficiency is 85%. The tube may be operated at maximum ratings at frequencies as high as 30 Mc -at reduced ratings to 50 Mc . RCA-8003 is designed with the standard 32.5 watt thoriated-tungsten filament.

For a thoroughly dependable triode either in standard transmitter installations or in the special application field, the 8003 is a logical choice. It is as rugged as they come.

8003

RATINGS

Sосквт............. . .Transmitting 4-contact, such as the RCA type 9936

MAX. CCS RATINGS with

TYPICAL OPERATING CONDITIONS
As R-F Power Amplifier - Class C Service

	Plate				
D-C Plate Voltage	1100	mit.	1350		Volts
D-C Grid Voltage	-400	max,	-400	max.	Volts
D-C Plate Current	200	max.	250	max.	Ma.
D-C Grid Current	50	max.	50	max.	Ma.
I'late lnput ...	220	mifx.	330	max.	Watts
l'late: Dissipation	67	max.	100	max.	Watts
TYrdocal Oprration:					
D-C Plate Voltage	1100		1350		Volts
D-C Grid Voltage Volts					
From a fixed supply of	-260		-175		Volts
From a grid resistor of	6500		5000		Ohms
From a cathode resistor of			625		Ohms
Peak R-F Grid Voltage	430		350		Volts
D-C Plate Current	200		245		Ma.
D-C Grid Current (Approx.)	40		35		Ma.
Driving Power (Approx.)	15		11		Watts
Power Output (Approx.)	167		250		Watts

As Self-Rectifying Oscillator-With Unfltered Plate Supply

I'ate Voltagess otherwise specified, values are for

Reetified but unfiltered single-phase flali-wave sunply. ${ }^{3 \times 2}$

* Self-rectified a-c supply. 'late voltages are RMS values.

A lypical single-enderl $r-f$ amplitier circhit using the 0003 is shown ont this page. Keying is shown in the filamentoto-ground retu:n lead. If it this page. keying is shown in the filament-to-ground retu:n lead. If it approximately -100 volts should be used in consunction with a grid leak R_{1} of about 2300 ohms (20 watts). This amount of fixed bias will protect the tube against removal of grid excitation when the key in the oscillator or buffer is open. This amplifier may also be plate modulated by reducing the d-c plate voltage to 1100 volts and the d-c plate current 200 ma
Max. Permissible Percentage of Max. Rated Plate Voltage and Plate

FREQUENCY	30	50	Mc
CLASS C $\left\{\begin{array}{l}\text { Telegraphy } \\ \text { Plate-mod. Telephony }\end{array}\right.$	300	83	Per Cent

R-F POWER AMPLIFIER USING RCA-8003 - Power Output 250 Watts (Class C Telegraphy)

Bottom View
of Socket Connections

Tube Mounting Position
VERTICAL-Base down. HORIZONTAL-Plane of electrodes vertical (on єdge).

transmitting triode deluxe

 HARD-GLASS BULB; ZIRCONIUM-COATED ANODE 300 WATTS INPUTList Price

8005

"MINIATURE POWER
HOUSE"

Features

- MOST POWERFLL OF THE SMALL TRIODES

Handles 300 watts input in a tube only $61 \mathrm{~h}^{\prime \prime}$ high and $2 \frac{7^{\prime \prime}}{18}$ in diameter.

- LOW AMPLIFICATION FACTOR (20)
L.ow grid-drive requirements.
- 60-Mc OPERATION AT FULL RATINGS
$100-\mathrm{Mc}$ operation at reduced ratings.

EXCEPTIONAL DESIGN FEATURES

Zirconium-coated anode, 32.5 watt thoriated-tungsten filament. ceramic insulated plate cap. metal-shell base with ceramic insert.

RCA-8005 is a deluxe transmitting tube of the high-perveance type - most powerful of the small triodes. It has a maximum plate cissipation of 85 watts (ICAS) and a low mu of 20. RCA-8005 is designed for use as a radio-frequency amplifier and class B modulator. A single tube in class C telegraph service will handle 300 watts input (ICAS)-deliver about 220 watts of power-with less than 8 watts of grid drive. In plate-modulated service, it will take 240 watts (ICAS) with only 9 watts of grid drive. In self-rectifying oscillator circuits, such as are used in therapeutic applications, two 800:'s are capable of delivering an output of 280 watts when the circuit efficiency is 85% ! In this application, as well as in general radio transmitter applications, the 8005 may be operated at maximum ratings at frequencies as high as 60 Mc ard with reduced ratings up to 100 Mc .

The rernarkable power handling ability of the 8005 is a result of a number of outstanding features not usually

RATINGS

Filamext Vohnatie (A.C. or J.C.).	. 10.0	Volts
Filament Cumbit	3.25	Amperes
Amplification Faitor	20	
Drrect Intbablbettohe (abacitances	(Approx.) :	
Grid-l'late	5.0	$\mu \mu \mathrm{f}$
Grid-Filament	6.4	$\mu \mu \mathrm{f}$
Plate-Filament	1.0	$\mu \mu \mathrm{f}$
Maximum Heitint		6-11/16"
Maximum Diameter	.	$2-7 / 16^{\prime \prime}$
SOCKET.......stathdar	4-contact. sueh as	type 993

MAXIVICM CCS and ICAS RATINGS with TYPICAL OPERATING CONDITIONS As A-F Power Amplifier and Modulator-Class B

	CCS	ICAS
D.C Plate Volitate.	1250 max.	1500 max. Volts
Mis.-Sjeinal. l-C' l'jate Clhrent*	200 max.	200 max. Ma.
Max.-Shinal. "tate lsirtot	225 max.	250 max. Watts
I'math: Disshation*	65 max.	85 max. Watts

found together in a single tube of this size. First, the tube is designed with a hard-glass bulb which is capable of withstanding high temperatures without cracking or collapsing. Second, it contains the famous RCA Zirconium-coated anode having high heat-dissipating qualities and effective getter action that functions to keep the tube hard during its entire life! Third, it is constructed with a ceramic plate cap insulator to minimize corona discharge. Fourth, the metalshell base of the tube employs ceramic insulation to withstand high temperatures, extreme climatic conditions, and to afford adequate grid-circuit insulation at the higher frequencies. Fifth, the tube contains an extra heavy-duty, 32.5-watt, thoriated-tungsten filament having enormous reserve of emission.

RCA-8005 is designed and built for RELIABILITY. It will deliver the goods under the most severe conditions of operation-in all classes of service. RCA-8005 handles more power than any other conventional tube of its size and class.

TYilcal. Opheation :

Unloss otherwise specified, volues are for two tubes			
	Crs	$1 C A S$	
I-C Plate Voltage	1250	1500	Volts
1)-C Grid Voltage	-55	-70	Volts
I'cak A-F Grid-to-firid Voltage....	230	310	Volts
Zero-Signal 1)-C l'late Current....	40	40	Ma.
Max.-Signal D-C Plate Current....	320	310	Ma.
I.oad Resistance (per tube)	2000	2500	Ohms
Effective Load Resistance (Plate-to-Plate)	8000	10000	Ohms
Max.-Signal Driving Power (Approx.)	4	4	Watts
Max.-Signal Power Output (Approx.)	250	300	Watts

As Plate-Modulated R-F Power Amplifier-Class C Telephony
Corrier conditions per tube for use with a max. modulation factor of 1.0

	CCS	ICAS
D-C Plate Voltage	1000 max.	1250 max. Volts
I)-C Grid Voltage	-200 max.	-200 max. Volts
I-C Plate Current	160 max.	200 max. Ma.
I)-C Grid Current	45 max.	45 max. Ma.

TRANSMITIING TUBE DATA

	ccs	ICAS	
plate input	160 max.	240 max .	Watts
Plate Dissipation	50 max.	75 max.	Watts
Typical Operation:			
D-C Plate Voltage	1000	1250	Volts
D-C Grid Voltage:			
From a jixed supply of From a grid resistor of	$\begin{array}{r} -195 \\ 7000 \end{array}$	$\begin{gathered} -195 \\ 7000 \end{gathered}$	Volts Ohms
Peak R-F Grid Voltage.	350	350	Volts
D-C Plate Current	160	190	Ma.
D-C Grid Current (Approx.)	28	28	Ma.
Driving Power (Approx.)	9	9	Watts
Power Output (Approx.)	115	170	Watts

* Averaged over any audio-frequency cycle of sine-wave form.
\# Self-rectified a-c supply. Plate voltages are RMS values.
\#\# Rectified but unfiltered single-phase, full-wave supply.
Max. Permissible Percentage of Max. Rated Plate Voltage and Plate Input for High-Frequency Operation

FREQUENCY	60	80	100	Mo
Class B R.F Telephony	100	90	83	Per Cent
Class C Plate-Mod. Telephony	100	75	60	Per Cent
Class C Telegraphy	100	75	60	Per Cent
Self-Rectifying Oscillator	100	75	60	Per Cent

APPLICATION

A typical push-pull, plate-modulated r-f amplifier circuit using two 8005 's is shown on this page. A single 807 operated as a straight amplifier at its CCS ratings of 600 plate volts is the logical choice for the driver, because it is capable of delivering the 18 watts driving power required for the 8005 's, with power to spare.

For cw service, R_{1} should be changed to 2000 -ohms, T, should be left out of the circuit, and the plate voltage may be increased to 1500 volts, maximum. For oscillator keying, a fixed bias of approximately -70 volts should be used in conjunction with a 750 -ohm, 20 -watt grid resistor. This amount of fixed bias is sufficient to protect the 8005's when the key is up.

Bottom View of Socket Connections

Tube Mounting Position
VERTICAL-Base down. HORIZONTAL-Plane of plate vertical (on edge).

PUSH-PULII, R-F POWER AMPIIIFIER
U'sing 8005's, Class C 'Phone Power Output 340 Watts (Approx.)
$\mathrm{C}_{1}=1.5, \mu \mu \mathrm{f} /$ meter $/$ section ${ }^{*}$
$\mathrm{C}_{1}=1.5 \mu \mu \mathrm{f} /$ meter $/$ sect
$\mathrm{C}_{2} \mathrm{C}_{5}=0.005 \mu \mathrm{f}$ mica
$\mathrm{C}_{5} \mathrm{C}_{0}=5 \mu \mu \mathrm{f} *$ (approx.) 6000 v . C - $0.002 \mu \mathrm{f}$
$\mathrm{Cr}=2 \mu \mu \mathrm{f} /$ meter / section $\mathrm{R}_{1}=3500$ ohms, 20 watts.
$\mathrm{RFC}=\mathrm{R}-\mathrm{F}$ choke, 500 ma.
$\mathrm{T}_{1}=$ Filament transformer
$\mathrm{T}_{2}=$ Modulation transformer, 250 watts
$\mathrm{I}_{11} \mathrm{~L}_{12}=$ Tune to frequency " f "
f - Operating frequency
*Capacitance in actual use.

RATINGS

3012

8025

RCA-8012 and RCA-8025 are uhf triodes designed for use as oscillators, r-f power amplifiers, and frequency multipliers. The 8025 is similar to the 8012 but the grid and plate terminals are equipped with miniature caps and the filament connections are made to a small 4-pin Micanol base. The 8012 supersedes the 1628.

Outstanding engineering features make the 8012 and 8025 unexcelled in their class. They are designed with zirconium-coated plates to insure gas-free operation at extremely high temperatures. Grid and plate are closely spaced to increase plate efficiency at the higher frequencies by decreasing electron transit time between filament and plate. The tubes contain a thoriated-tungsten, double-helical filament having a center tap to which separate connection can be made. By connecting the three external filament leads in parallel through r-f by-pass condensers, it is practical to minimize the effect of filamentlead inductance at ultra-high frequencies. Double grid and plate connections can be connected in parallel to reduce lead inductance.

MAX. RATINGS and TYPICAL OPERATING CONDITIONS

DC Prate Vertagr	Amplifier-Class C		
	Plate Modulation	$\begin{aligned} & \text { C.W. or } \\ & \text { Oscillator } \end{aligned}$	
D-C Plate: Volitage	800 max.	1000 max.	Volts
D-C ginio Voltage	-200 max.	-200 max.	Volts
D-C Plate Cumbent	65 max.	80 max.	Ma.
I)-C Grib Curkent	20 max .	20 max.	Ma.
Plate Infut	33 max.	50 max.	Watts
Plate Dissipation	27 max.	40 max.	Watts
Typtical Operation :			Wats
1)-C Plate Voltage	800	1000	Volts
D.C Grid Voltage:			
from a fixed supply of	-105	-90	Volts
or from a grid resistor of	10000	6400	0 hms
or from a cathode rexistor of	-	1400	Ohms
Peak R-F Grid Voltage	145	130	Volts
1)-C Plate Current	40	50	Ma.
D-C Grid Current (Approx.)	10.5	14	Ma.
Driving lower (Approx.) ..	1.4	1.6	Watts
Power Output (Approx.)	22	35	Watts

Max. Permissible Percentage of Max. Rated Voltage and Plate Input for High-Frequency Operation

FREQUENCY	500	600	Mc
$\text { CLASS C\{\{l} \begin{aligned} & \text { Telegraphy } \\ & \text { Plate-Modulation } \end{aligned}$	100	63	Per Cent

In operation of the 8012 at the higher frequencies, the grid- and platereturn circuits of the tube should be by-passed for r.f. to the center lead return circuits of the tube should be by-passed for r.f. to the center lead
of the filament. The returns should be made to this common connection in of the filament. The returns should be made to this common connection in
order to avoid r-f interaction through common return circuits. It may also be advisable to connect r-f chokes in these returns to form a filter network. All three filament leads should be connected in parallel through r-f by-pass condensers. The center lead of this parallel connection should be by-passed to the center-tap of the filament transformer or to ground. It should not be returned to these points directly.

HALF-WAVE, HIGH-VACUUM

40,000 VOLTS, PEAK INVERSE RATING

Features

- D-C OUTPUT VOLTAGE 18,000 VOLTS AT 20 MA.
- SHIELDED STEM TO PREVENT ELECTRON BOMBARDMENT
- THORIATED-TIJNGSTEN FILAMENT POSSESSES HIGH EMISSION CAPABILITIES

RCA-8013-A is a new high-voltage, half-wave rectifier tube of the high-vacuum type. It is designed particularly for use in rectifying systems to supply d-c currents up to 20 milliamperes per tube at very high d-c voltages. In properly designed equipment, voltages up to approximately 18,000 volts may be obtained at full output current. Outstanding features of the 8013 -A are its 12.5 -watt, thoriated-tungsten filament with high emission capabilities, its shielded stem structure to prevent electron bombardment, its large skirted anode cap with rolled edges to prevent corona discharge and resultant heating and puncture of the bulb, and its highly polished and rolled-edge type anode to minimize cold emission and arc-backs. Smoothing filter requirements for high-voltage, low-current applications of the type requiring the use of $8013-\mathrm{A}$'s can ordinarily be met by the use of a small condenser connected across the output of the rectifier.

RATINGS

Bottom View of Socket Connections

HALF-WAVE, HIGH-VACUUM RECTIFIER

Features

- 0.25-WATT COATED TYPE FILAMENT PERMITS TRANSFORMER ECONOMY, ITSE OF R-F SOITRCE
- D-C OUTPUT VOLTAGE 4500 VOLTS AT 2 MA.
- SHIELDED CONSTRUCTION PREVENTS ELECTRON BOMBARDMENT OF BULB AND STEM
- ANODE CONTAINS APERTURE FOR OBSERVING FILAMENT TEMPERATIVRE

RCA-8016 is a new high-voltage, half-wave rectifier of the high-vacuum type. It is for use in rectifier systems designed to deliver high voltages at low current and in such applications can supply d-c voltages up to about 4500 volts at a current of 2 ma. Outstanding features of the 8016 are its shielded structure and its 0.25 -watt filament, which together, make the tube suitable for supplying ligh-voltage rectified power from an r-f source. Other features of the tube are its highly polished rolled edge type anode to minimize cold emission and arc-backs, and its a node aperture to permit observation of the filament temperature. In voltage doubler service, two 8016's may be connected to deliver approximately twice the $\mathrm{d}-\mathrm{c}$ output voltage obtainable with the half-wave or the fullwave method.

RATINGS

Bottom View of Socket Connertions

RCA-9001, 9002, and 9003 are the special Midget tubes designed for use by engineers and experimenters working in the ultra high frequencies. They are the answer to the need for economical tubes designed particularly for applications requiring high-efficiency, high-gain circuits at unusually high frequencies. Moreover, the tubes have mechanical advantages not to be overlooked since their conventional method of mounting means that they can be inserted and removed from their sockets with ease and that they can be made to fit into just about any space.

The 9001 is a sharp cut-off pentode, the 9002 is a triode, and the 9003 is a remote cut-off pentode. Static electrical characteristics are quite similar to the corresponding Acorn types, the 954,955 , and 956 , respectively. In the Midget tubes, as in the Acorns, transit time loading effect is decreased by closely spacing the electrodes. Interelectrode capacitances are decreased by using small cathodes, grids, and plates. Short, internal leads and low lead inductance are insured through the use of the glass-button stem structure and the single-ended design. In order to reduce the common feedback inductance, each tube has two cathode leads which may be used either in parallel or as separate returns for input and output circuits. The 9002 triode also is designed with two plate leads.

CHARAC'ERISTICS	RATINGS	'	TYIPCAL	OPER	RA'TI	NG CON	DITIONS
	-		9001	9002	9003		
			Sharp Cut-Off Pentode	Super- Control Triode Pentode			
Heater Voltage (A.C. oh D.C.)			6.3	6.3		6.3	Volts
Heater Current			0.15	0.15		0.15	Ampere
Direct Interrlectrone Capacitances:							
Grid-Plate			${ }_{3.6} .01$ max.	1.4		${ }_{3.4} .01$ max.	
Output			3.0	-		3.0	$\mu \mu{ }^{\prime \prime}$
Grid-Cathode			-	1.2		-	$\mu \mu \mathrm{f}$
Plate-Cathode			1	1.1		1	$\mu \mu \mathrm{F}$
Maximum IEngth		1	1-13/16"	1-13/16"		$1-13 / 16^{\prime \prime}$	
Maximum Diameter	.	$\cdots{ }^{3}$	3/4"	$3 / 4$ "		$3 / 4{ }^{\prime \prime}$	
Sоскет All three tubes use RCA type 9914							
Plate Voltage		-	250 max.	250	mas.	250 max.	Volts
Screen Voltage			100 max.	-		100 max.	Volts
Grid Voltage			-3 min.	-		-3 min.	Volts
Typical Operation as Class Al							
Plate Voltage.		90	250	90	250	250	Volts
Screen Voltage		90	100		7	100	Volts
Grid Voltage		-3^{*}	* 3^{*}	2.5	-7	-3	Volts
Grid Voltage for Transconductance							Volts Megohm
Plate Resistance		1	**	14700 25	11400 25	0.7	Megohm
Amplification Factor			1400	25 1700	225	1800	Micromhos
Transconductance Plate Current		1.2	1400 2	1700 2.5	6.3	180.7	Ma.
Screen Current		0.5	0.7	-		2.7	Ma.
* 5 volts (approx.) is minimum for oscillator peak voltage of 4 volts. Value is optin ** Greater than 1 megohm.							

Bottom View
of 9001 and 9003 Socket Conneetions
n application, the Midget tubes may be used in uhf equipment in much the same manner that ordinary tubes are used in standard broadcast receiver application. For example, a typicsl short - wave receiver might employ 9001 's or 9003 's as r-f amplifiers or mixers. The 9002 could be used as an oscillator. The 9001's or 9003 's could also be used in the i-f stages when the i-f frequency is above 100 Mc. Midget tubes may also be used in other applicatio amplifiers and biased audio amplifiers and biased detectors, particulary where there are limits on pace and weight. 9002 employed as on oscillator. Under the conditions as an the oscillator will perform smoothly the oscillator will perform 8 moothly at frequencies as high as 600 Mc with a plate input of 1.6 watts. The tuned ter wave long.

600-Me OSCILLATOR USING MIDGET TRIODE 9002

OTHER PROVEN
 RCA TUBES FOR TRANSMITTING AND SPECIAL APPLICATIONS

TRANSMITTING TYPES

TRANSMITTING TYPES (Continued)

Tube No.	Classification	Plate Dissipati (Watta)		DESCRIPTION	Tube List P	
898	Water- Cooled Triode	100,000	R-F R R Fil Str mi ma ag 100 1.6 Jat	Power Amplifier. Cl odulator. Three-Ph ment. (Voltage d, 17.3 v: Curre 1, 71.5 a .). Max. D20,000 v. Class C 00 w. (approx.). Mc. Mu=44. Uses t. type UT-1289-A		250^{00}
1608	AirCooled Triode	20	R- M 2 42 420 (a $=$ or	Power Amplifier. lator. Filament V Max. D-C Plate v. Class C c-w O rox.). Full Input Uses RCA Socke 19.		$\$ 400$ w. u
1610	AirCooled Pentode	6	Cr M $21 / 2$ 40 10 RC	tal Oscillator. F plier. Filament V v. Max. D-C Plate v. Class C c-w O rox.). Full Input to Socket, type 9920.	uency tage, oltage, put, 5 0 Mc .	$\$ 2^{00}$
1613	AirCooled Pentode Metal Type)	10	R- Os Fil D- c-w Inp typ	Power Amplifier. ator. Frequency M ment Voltage, 6.3 Plate Voltage, 350 Output, 9 w. (ap to 45 Mc . Uses 9924.	rystal iplier. Max. v. Clas ox.). A Soc	$\begin{aligned} & \$ \mathbf{1 5 5} \\ & c \\ & c \\ & \text { Lll } \\ & \text { t. } \end{aligned}$
1614	Air- Cooled cam Tube letal Type)	21	R- Vo Vo Ou to 992	Power Amplifier. ge, 6.3 v . Max. D ge, 375 v. Class ut, 17 w. (approx. Mc. Uses RCA	ament Plate c-w Full I cket.	$\$ 2^{80}$
1619	AirCooled cam Tube Metal Type)	15	R-F Fil D-C C Inp typ Off Of	Power Amplifier. M ment Voltage, 2.5 Plate Voltage, 400 Output, 19.5 w. (a to 45 Mc . Uses 9924. Quick Heati n Operation.	alator. Max. Class rox.). A Soc for	$\$ 2^{20}$
1624	Air- Cooled Beam Tube	25	R-1 AI tip 2.5 Fra Soc	Power Amplifier Modulator. Frequen r. Similar to 807 Filament. Quick Off-On Operation. t, type 9923.	Class Mult has eating Uses A	$\$ 2^{40}$
1625	Air- Cooled Beam Tube	30*	R- AB tip 12. typ crat che	Power Amplifier Modulator. Frequen r. Similar to 807 Heater. Uses 9923. Especially U Transmitters.	Class Mul. t has A Soc ul in	$\$ 2^{25}$
1626	Air- Cooled Triode	5	R-F ap sta vol Vol Vo 4 Mc Mc 992	Oscillator. Design cations requiring u characteristics. e, 12.6 v. Max. ge, 250 v. R-F Po (approx.). Full Mu=5. Uses RCA		$\$ 160$

HALF-WAVE TRANSMITTING AND TELEVISION RECTIFIERS

Tube No.	DESCRIPTION	Filament (or heater) Ratings	Max. Penk Inverse Volts \#	Max. Peal Plate Amperes	Condensed Mercury Temp. Range C	$\underset{\text { D-C }}{\text { Max. }}$ Output Amperes	RCA Socket No.	Tube List Price
$\begin{aligned} & 2 \times 2 / \\ & \hline 879 \\ & \hline \end{aligned}$	High-Vacuum Type. For Cathode-Ray Application	2.5 v., 1.75 a .	12,500	0.1 m .	C	0.0075 a .	9919	\$105
217-A	High-Vacuum Type .--.	10 v., 3.25 a .	3,500	0.6 a.	-	0.2 a.	9936	\$2000
217-C	High-Vacuum Type .-m	10 v .3 .25 m.	7,500	0.6 a.	- ---	0.15 a.	9936	\$2000
867-B	Mercury-Vapor Type. Forced Air-Cooling. Supersedes 857 \qquad	$5 \mathrm{v} 30 a.$.	22,000	40.0 a .	$39-40^{\circ}$	10.0 a .	Special Mounting	\$20000
869-B	Mercury-Vapor Type. Supersedes 869-A \qquad	5 จ., 18 a.	20,000	10.0 2.	$30-40^{\circ}$	2.5 a.	$\begin{gathered} 9938 \\ \text { Assembly } \end{gathered}$	\$12500
870-A	Mercury-Vapor Type. Forced Air-Cooling. Supersedes 870	5 จ., 65 a.	16,000	450.0 e .	$35-40^{\circ}$	75.0 a.	Special Mounting	\$70000
	High-Vacuum Type. For Cathode-Ray Application	2.5 v., 5 a.	20,000	0.02 a.	-	0.005 s .	9919	\$1100
1616	High-Vacuum Type	2.5 v., 5 a.	5,500	0.8	\cdots	0.13 a.	9937	\$575

CATHODE-RAY TYPES (OSCHLOSCOPES, KINESCOPES, ICONOSCOPES, MONOSCOPES, ORTHICON)

PHOTOTUBES

Tube No.	DESCRIPTION	Luminous Sensitivity (Microamp./ Lumen)**	Tube List Price
1 P 21	Electron-Multiplier Type. Similar to 931-A but is 3 times as sensitive. Intended only for scientific research and other specialized applications involving very low light levels.	6×10^{0}	\$4750
868	Gas type. For sound reproduction. Uses RCA type Socket 9919.	90	\$370
917	Vacuum type. For relays and measurements. Has anode cap. Uses RCA type Socket 9919.	20	\$340
918	Gas type. Has high sensitivity for sound reproduction. Uses RCA type Socket 9919.	150	\$230
919	Vacuum type. For relays and measurements. Has cathode cap. Uses RCA type Socket 9919.	20	\$275
920	Gas twin type, For sound reproduction. Uses RCA type Socket 9919.	$\begin{gathered} 75 \\ \text { (each unit) } \end{gathered}$	\$270
921	Gas type. Cartridge design. For sound reproduction and relays. Uses RCA type Socket 9926.	135	5200
922	Vacuum type. Cartridge design. For relays and measurements. Uses RCA type Socket 9926.	20	\$200
923	Gas type. Has high sensitivity, For sound reproduction and relays. For new equipment, the 930 is recommended. Uses RCA type Socket 9919.	135	\$125
924	Gas type. For use with relays. End style with intermediate lamp screw base.	55	\$200
925	Vacuum type. Short design, For use with relayg. Uses RCA type Socket 9924.	15	\$200
926	Vacuum type. Cartridge design. For colorimetry. Uses RCA type Socket 9926.	6.5	\$300
927	Gas type. Miniature design. For sound reproduction. Requires special Pee-Wee 3-pin socket.	125	\$240
929	Vacuum type. Has high sensitivity. For relays and measurements. Uses RCA type Socket 9924.	45	\$300
930	Gas type. Has high sensitivity. For sound reproduction and relays. Uses RCA type socket 9924.	135	S200
931-A	Electron-multiplier type. Has 9 electrically focused stages. Enormous sensitivity. Low noise level. For relays, sound reproduction, and scientific research. Uses RCA type Socket 9915.	2×10^{0}	\$1450
934	Vacuum Tyne. Miniature Construction. For sound remroduction and facsimile equipment. Uses special Pee-Wee 3-Pin socket.	30	\$290
935	Vacuum Tyne. Ultraviolet-Sensitive. Used for absorption measurements. Uses RCA socket Type 9924. Top cap anode connection.	30	\$1800
	** With incandescent light source at $2870^{\circ} \mathrm{K}$,		

VOLTAGE REGULATORS, RELAY TUBES, SPECIAL AMPLIFIERS and RECTIFIERS

$\begin{aligned} & \text { Tube } \\ & \text { No. } \end{aligned}$	DESCRIPTION	Tube List Price
OA4-G	Gas Triode. Cold-Cathode Glow-Discharge Type. For use in line-operated devices and as relay tube. Uses RCA socket Type 9924.	${ }^{5} 095$
1 C 21	Gas Triode. Cold-Cathode Glow-Discharge Type. For use as relay tube. Uses RCA socket Type 9924.	\$165
2C21/1642	Twin Triode Amplifier. Medium Mu. Plate Dissipation per plate, 2.1 watts. Heater volts, 6.3 ; current, 0.6 ampere. Uses RCA socket Type 9924.	${ }^{5} 095$
2 C 22	High-Frequency Triode. Plate dissipation, 3.3 w . Max plate volts, 300. Transconductance, $\mathbf{3 0 0 0}$ micromhos. Heater volts, 6.3 ; current, 0.3 ampere. Uses RCA socket Type 9924.	\$110
4B26 2000	Half-Wave Gas Rectifier. Excellent stability. Especially suited for supplying rectified current to exciter lamps in sound equipment. Max, ratings are: peak inverse volts, 350 ; d-c output volts, 90 ; d-c output amperes, 6. Filament ratings: 2.2 v: 18 a. Tube requires a Mogul screw socket.	\$600
6R4-GY	Full Wave High-Vacuum Rectifier. Maximum Peak Inverse Voltage, 2800 volts; Maximum Peak Plate Current per Plate, 650 ma. Filament Volts, 5 ; current, 2 amperes. Uses RCA socket Type 9924.	\$100
$\overline{\mathrm{GAKG}}$	Miniature Type Power Amplifier Pentode. Power output is 1.1 watts at 180 plate volts. Plate dissipation, 2.75 w . Ileater volts, 6.3 ; current, 0.15 ampere.	\$110
12A6	A-F Beam Power Amplifier, Metal type. Designed particularly for aircraft applications. Heater voltage, 12.6 v , Max. plate voltage, 250 v. Power Output, 3.4 w. Uses RCA type Socket 9924.	5070
12L8-GT	Twin Pentode Power Amplificr. Plate dissipation per plate, 2.5 w . Heater volts, 12.6 ; current, 0.15 ampere. Uses RCA socket Type 9924.	\$150
VR75-30	Voltage Regulator, Cold-Cathode Glow-Discharge Type. D-C Operating Volts, 75; D-C Operating Current, 5 to $30 \mathrm{ma}$. ; D.C Starting Volts, 105 (min.). Uses RCA socket Type 9924.	\$100

Tube No.	DESCRIPTION	Tube List Price
VR108-30	Voltage Regulator. Cold-Cathode Glow-Discharge Type. D-C Operating Volts, 105; D-C Operating Current, 5 to 30 ma.; D-C Starting Volts, 127 (min.). Uses RCA socket Type 9924.	\$100
VR1 60-30	Voltage Regulator. Cold-Cathode Glow Discharge Type. D-C Operating Volts, 150; D-C Operating Current, 5 to 30 ma : D-C Starting Volts, 180 (min.). Uses RCA socket Type 9924.	\$075
864	Low-Microphonic Amplifier Triode. Filament voltage, 1.1 v . Max. plate voltage, 135 v . Uses RCA type Socket 9919.	\$100
874	Voltage Regulator. Cold-Cathode Glow Discharge Type. D-C Operating Volts, 90; D-C Operating Current, 10 to 50 ma . : D-C Starting Volts, 125 (min.). Uses RCA socket Type 9919.	\$150
991	Voltage Regulator. Cold-Cathode Glow-Discharge Type. D-C Operating Volts, 67 to 48 ; D-C Operating Current, 0.4 to 2 ma ; D-C Starting Volts, 87 (min.). Equipped with standard bayonet candelabra, double-contact base.	\$070
1602	Low-Microphonic Triode (special type 10). Useful in a-f and r-f services. Filament voltage, 7.5 v. Max. d-c plate voltage, 450 v. Power output, class A, $1.6 \mathrm{w} . \mathrm{Mu}=8$. Uses RCA type Socket 9919.	\$275
1609	Low-Microphonic Pentode. Companion to 864. Filament voltage, 1.1 v . Max. plate voltage, 135 v . Uses RCA type Socket 9920.	\$160
1612	Low-Microphonic Pentagrid Amplifier. Similar to 6L7. Heater voltage, 6.3 v. Max. plate voltage, 250 v. Uses RCA type Socket 9924.	s200
1621	A-F Power Amplifier Pentode. Metal type. For applications requiring continuity of service. Heater voltage, 6.3 v . In push-pull service, max. plate voltage is 300 v ., a-f power output, 5 watts. Uses RCA type Socket 9024.	\$120
1622	A-F Beam Power Amplifier. Metal type. For applications requiring continuity of service. Heater voltage, 6.3 v . In push-pull service, max. plate voltage is 300 v ., power output, 10 watts. Uses RCA type Socket 9924.	\$140
1629	Electron-Ray tube. Similar to 6E5 but has a 12.6-v. heater. Uses RCA type Socket 9924.	\$075
1631	A-F Beam Power Amplifier. Metal type. Similar to 6 L 6 but has $12.6-\mathrm{v}$. heater and is especially suited for applications requiring uniformity of characteristics. Uses RCA type Socket 9924.	\$200
1632	A-F Beam Power Amplifier. Metal type. Similar to 25 L 6 but has $12.6-\mathrm{v}$. heater and is especially suited for applications requiring uniformity of characteristics. Uses RCA type Socket 9924.	\$200
1633	Twin-Triode Amplifier. Similar to 6SN7-GT but has a $25-\mathrm{v}$. heater and is especially suited for applications requiring matched triode units. Uses RCA type Socket 9924.	\$150
1634	Twin-Triode Amplifier. Single-ended metal type. Similar to 12 SC 7 and is especially suited for applications requiring matched triode units. Uses RCA type Socket 9924.	\$110
1635	Class B Twin Amplifier. Low distortion at low signal levels. Plate dissipation per plate with sustained signal, 3 watts; with variable signal, 4.5 watts. Heater volts, 6.3 ; current, 0.6 ampere. Uses RCA socket Type 9924.	\$115
1644	Twin Pentode Power Amplifier. Similar to Type 12L8-GT but is especially suited for applications requiring matched triode units.	\$150
1851	Amplifier Pentode. Metal type. Features high transconductance of 9000 micromhos. For new equipment, the 6AC7/1852 is recommended.	\$210
7193	High-Frequency Triode, Similar to Type 2 C 22 but is especially suited for applications requiring uniformity of characteristics.	\$120
9004	Acorn Diode. For use as detector, mixer or measuring device in uhf circuits. Resonant frequency is about 850 megacycles. Uses RCA socket Type 9925.	\$200
9005	Acorn Diode. For use as detector, mixer, or measuring device in uhf circuits. Resonant frequency is about 1500 megacycles. Uses RCA socket Type 9925.	\$220
9006	Midget Diode. For use as detector, mixer, or measuring device in uhf circuits. Resonant frequency is about 850 megacycles. Uses RCA socket Type 9914.	\$165

TRANSMITTING CIICUIT FACTS

GENERAL TUBE AND TRANSMITTER DATA

In the following pages, information is given concerning a few fundamental subjects which are of primary interest to amateurs who are designing, building, adjusting, or operating a transmitter. More comprehensive information on these subjects as well as on many others of equal importance can be found in the RCA TRANSMITTING TUBE MANUAL. Additional references which few amateurs can afford to be without, whether they be newcomers or "old timers," are the following excellent handbooks:

"The Radio Amateur's Handbook"
Published by
The A. R. R. L.
West Hartford, Conn.

"Radio Handbook"
Published by
The Editors of RADIO
1300 Kenwood Road, Santa Barbara, Calif.

CHOICE OF TUBE TYPES

In the design of a radio transmitter, the choice of the number and types of transmitting tubes is of paramount importance. Engineers, radio amateurs, and others interested in transmitter design are fortunate in having available a large variety of power tubes with which to work. The very number of tube types may even seem to be a source of confusion, but the problem, if approached logically, represents no great difficulty. The designer can, by the simple process of elimination, reduce the number of tube types suitable for a specific application to a small group from which a final choice can readily be made.

Most modern transmitters are of the crystal-oscillator-power-amplifier type. In almost every case, however, the ultimate design revolves around the final stage-the r-f power amplifier which develops useful r-f energy and supplies it to the radiating system. The following considerations are important in the choice of power tubes for the final amplifier stage: (1) power capability, (2) frequency capability, (3) design suitability, and (4) economic suitability.

Power capability. The tube or tubes used in the r-f power amplifier should be capable of delivering the desired power output when operated (with a practicable value of efficiency) within the maximum ratings. The efficiency of the final stage depends on a number of factors, chief of which are the class of amplification and the operating frequency. Typical efficiencies to be expected in the various classes of amplifier service are as follows:

lass C r-f amplifier	65-75\%
Class C r-f frequency doubler	30-50\%
Grid-modulated class C r-f amplifier	30-35\%
Suppressor-modulated class C r-f amplifier	30-35\%
Cathode-modulated class C r-f amplifier	45-60\%
Class B linear r-f amplifier	30-35\%
Class B a-f amplifier	60-70\%

Frequency capability. The final amplifier tube or tubes should be capable of operating at the desired radio frequency with sufficient d-c plate input so that, with a practicable value of efficiency, the required power output can be obtained. Data for operating frequency versus tube ratings are usually given under each tube type. A tube which can be used at maximum ratings at 60 Mc is obviously a better high-frequency tube than one which can be used with maximum ratings only up to 30 Mc . As the frequency is increased, tube and circuit losses increase rapidly and plate-circuit efficiency
decreases. Almost any tube is capable of operating satisfactorily at frequencies up to 15 Mc . At 30 Mc and higher frequencies, however, a tube should be selected with special attention to its high-frequency capabilities.

Design suitability. Under this broad heading is included a large number of miscellaneous factors which the designer should consider. Some of these are:
(1) Power supply. This factor is important in the choice of tube types. In portable designs, it may be necessary to use tubes which can be operated economically from a heavyduty, low-voltage battery supply. In fixed-station service, where a source of a-c power is available, the problem of d-c voltage supplies is greatly simplified through the use of suitable rectifiers and filters. Even here, however, one tube may be preferable to another because it is better suited for use with an available power-supply voltage and/or current.
(2) Power sensitivity. In those cases where the total number of stages in a transmitter must be kept to a minimum, tubes having high power sensitivity should be employed. Power pentodes and beam power tubes, such as the 804,807 , and 813 , require very little driving power compared to triodes of equivalent power output. For low-power frequency multipliers and intermediate amplifier stages, the 802 pentode and the 807 beam power amplifier are very useful.
(3) Circuit flexibility. Where a transmitter must be capable of operating on a number of widely different frequencies with a minimum of time required for changing frequencies, the use of tetrodes or pentodes (in preference to triodes) is indicated. Because tetrode and pentode amplifiers do not, in general, require neutralization, the problems that are sometimes encountered with neutralized triode amplifiers are avoided.
(4) Mechanical considerations. The size and shape of the tube may be important in some transmitter designs because of space or weight requirements. The arrangement of the electrode terminals is sometimes of importance because it affects circuit wiring and the mounting of circuit components.
(5) Electrical considerations. It is frequently convenient to use certain tube types together because they can be operated from a common filament supply, from a common platevoltage source, or because they make practical other simplifications in design and maintenance.

Economic suitability. This factor includes not only initial tube cost but also the costs of auxiliary equipment, maintenance, and operation. An analysis of these costs will often indicate that it is desirable to modify the design to meet the requirements of a particular installation.

R-F Driving Power

An important problem in transmitter design is the choice of tube types for the intermediate amplifier, multiplier (if any), and oscillator stages. In practice, it is generally convenient to begin with the r-f power amplifier stage and work "backward," toward the master- or crystal-oscillator stage. The driving power necessary for the final tube (or tubes) can be obtained, for a specified class of service, from the tabulated tube data. This power, as shown for triodes and tetrodes in class B r-f service and in class C service, is subject to wide variations, depending on the impedance of the output or load circuit. High-impedance load circuits require more driving power to obtain the desired output. Low-impedance circuits need less driving power, but cause a sacrifice of plate-circuit efficiency.

The driver stage should have a tank circuit of good regulation and should be capable of delivering considerably more than the rated driving power of the final amplifier tube. For example, if the final amplifier has a rated driving power of 10 watts in class C telegraphy service, the driver stage may have to be capable of delivering 15 to 25 watts of r-f power in order to compensate for circuit losses and to have suitable regulation. The actual value will depend on several variable factors, so that some actual experience is frequently necessary before the designer of a transmitter can choose the most logical tube type for the driver stage. In general, however, it is advisable to have available some surplus driving power, because class C amplifiers do not operate efficiently when under-excited. An important advantage of pentodes and beam power tubes is that they require very little driving power, so that the choice of a suitable driver stage for such tubes usually presents no great problem. In most cases, the driver should be operated as an amplifier rather than as a plate-circuit frequency multiplier, bpeause the efficiency and power output of the latter are relatively low.

The choice of tube types for the stages preceding the last intermediate amplifier depends, of course, on considerations of frequency and power. A typical arrangement for a highfrequency, multi-stage transmitter includes a crystal-controlled oscillator and one or more frequency-multiplier stages. Examples of such transmitters are shown in the TRANSMITTER CONSTRUCTION SECTION. The number of multiplier stages (usually frequency doublers) depends on the frequency of the crystal and on the desired operating frequency. In many cases, special oscillator circuits are used so that frequency multiplication initially takes place in the oscillator stage itself. These circuits usually reduce the number of multiplier stages necessary to reach a specified operating frequency with a crystal whose fundamental frequency is a sub-multiple of the operating frequency.

Pentodes and beam power tubes, such as the 802 and 807 , respectively, are very useful as frequency multipliers and low-power intermediate amplifiers. These tubes, when used in properly designed and shielded circuits, ordinarily require no neatralization in r-f amplifier service. This advantage is very worthwhile in multi-stage transmitters which necessarily require numerous controls and adjustments. The intermediate amplifier is often driven by the last frequencydoubler stage. This arrangement is quite satisfactory provided the output of the doubler is sufficient to excite adequately the intermediate amplifier stage.

GRID-BIAS CONSIDERATIONS

There are three general methods of obtaining negative grid bias for vacuum-tube amplifiers. Not all of these methods are suitable for every class of service. The three methods

Fig. 1
are: (1) fixed source, (2) grid-leak resistor, and (3) cathode resistor (self-bias). In some applications it may be desirable to use a combination of two bias methods. Combinations of grid-leak and cathode-resistor and of grid-leak and fixed bias are frequently employed (see TRANSMITTER CONSTRUCTION SECTION).

Fig. 1 illustrates the use of fixed bias in several types of r-f amplifier circuits. The voltage source may be a battery, or a power pack designed to have good regulation. An r-f choke and by-pass condenser serve to exclude the r-f grid voltage from the bias-voltage supply. Where a tuned grid circuit is employed, the r-f choke is often not essential and may sometimes even be detrimental to the operation of the circuit. An r-f choke of the wrong value in the grid circuit may cause trouble from parasitic oscillations, especially where a similar r-f choke is used in the plate circuit. A bias voltage from a fixed source serves to protect the tube against accidental removal of the r-f grid excitation, provided the bias is large enough to reduce the d-c plate current to cutoff, or to a low value.

The connections for a grid-leak-biased stage are the same as those shown in the circuits of Fig. 1, except that a suitable resistor is substituted for the bias battery in each case. The value of the grid leak is determined by Ohm's law, $\mathrm{R}=\mathrm{E} / \mathrm{I}$, where R is in ohms, E is the negative grid bias (in volts) recommended for the particular class of service contemplated, and I is the value of d-c grid current (in amperes) shown under "typical operation" in the tabulated data. For example, the recommended grid bias for an RCA-812 at 1500 plate volts in class C telegraph service is -175 volts; the d-c grid current is 25 ma., or 0.025 ampere. The correct grid leak will have a resistance $R=175 / 0.025$, or 7000 ohms. The power (P) dissipated by this resistor is equal to EI, or $\mathrm{P}=(175)(0.025)=4.38$ watts. A 5 -watt resistor would be operated near its maximum rating and might become quite hot. A 10 -watt resistor would, therefore, be a logical choice. If two tubes are used in parallel or in push-pull, the d-c grid current of both tubes usually flows through a common grid leak. In this case, the resistance of the grid leak will be onehalf that for a single tube.

Fig. 2

The grid-leak bias method has the advantage of simplicity and of automatically biasing the grid in proportion to the excitation voltage available. Because of this automatic action, the bias voltage developed across a grid leak is not critically dependent on the value of the grid-leak resistance. Therefore, considerable variation in the resistance of the leak can usually be tolerated. Special care must be observed when grid-leak bias is used because accidental removal of the r-f grid excitation will cause the grid bias to fall to zero and (in the case of a tube having a low or medium amplification factor) the plate current to rise to an excessive value. The use of a protective device designed to remove the plate voltage (and screen voltage, in the case of tetrodes and pentodes) on excessive rises of plate current will minimize the danger of destructive overloads.

Fig. 2 illustrates the use of cathode-resistor bias. In these circuits, the cathode current flowing through R_{k} builds up a voltage drop which makes the cathode positive with respect to ground. Since the grid is at ground potential with respect to all d-c voltages, the grid is biased negatively with respect to the cathode. The cathode current for triodes is the sum of the d-c plate current and the d-c grid current. For tetrodes and pentodes, the screen current must also be added.

Abstract

Cathode-resistor bias, or self-bias, is advantageous in that it tends to protect the tube against heavy d-c platecurrent overloads; that is, when the plate current increases, the bias voltage across the cathode resistor also increases so that the rise in plate current is automatically opposed. A disadvantage of self-bias is that the effective d-c plate voltage is reduced by the amount of the bias voltage. Thus, the voltage output of the plate supply must equal the de-

 sired plate voltage plus the required bias voltage.The value of cathode resistor R_{k} can be determined by Ohm's law, $R=E / I$, where R is in ohms, E is the required bias in volts, and I is the total cathode current in amperes. For example, assume that the total d-c plate current under normal load is 100 milliamperes (0.1 ampere), that the total d-c grid current is 20 milliamperes (0.02 ampere), and that the required bias is -240 volts. Then, $\mathrm{R}_{\mathrm{k}}=240$ / $0.120=2000$ ohms. The power dissipated by R_{k} is equal to EI, or $(240)(0.120)=28.8$ watts. A 50 -watt resistor is a logical choice.

Where a combination-bias method is used, such as gridleak and cathode-resistor bias, the basic formulas used in determining the resistor values are the same as before. The total bias voltage required is divided into two parts (not necessarily equal parts). For example, an 807 requires a bias of -50 volts in class C r-f service. If we decide to get 20 volts of this bias from a cathode resistor and the remaining 30 volts from a grid leak, the values of 20 and 30 are substituted for " E " in the cathode-resistor and grid-leak formulas given above. In fact, we can see at a glance that the grid leak will be $30 / 50$ or 0.6 of the value required if 100% grid-leak bias were to be employed. Thus, for a plate voltage of 500 volts, the grid leak is (0.6) (25000), or 15000 ohms (see 807 data). The cathode resistor (R_{k}) will then have a value of $20 /(0.095+0.009+0.002)=20 / 0.106=189$ ohms, where the full-load plate, screen, and grid currents are $95 \mathrm{ma} ., 9 \mathrm{ma}$., and 2 ma ., respectively. A 200 -ohm resistor is close enough and would be used. It must dissipate about (20) (0.1) or 2 watts; a 5 -watt resistor is suitable.

INDUCTANCE AND CAPACITANCE FOR TUNED CIRCUITS

The performance of a transmitting tube definitely depends on the characteristics of the circuit in which it is used. Because parallel-tuned circuits are almost universally
employed for the plate, or output, circuit of vacuum-tube r-f amplifiers, except at ultra-high radio frequencies, considerations involving inductance (I) and capacitance (C) are very important in transmitter design.

The resonant frequency of the parallel-tuned circuits used in transmitters is given by the relation,

$$
\begin{equation*}
\mathrm{f}=\frac{1.000,000}{2 \pi \mathrm{~V} \overline{\mathrm{LC}}} \tag{1}
\end{equation*}
$$

where f is frequency in kilocycles per second (kc) L is inductance in microhenrys ($\mu \mathrm{h}$) C is capacitance in micro-microfarads ($\mu \mu \mathrm{f}$)

This relation can be further simplified, so that

$$
\begin{gather*}
\mathrm{f}=\frac{159160}{\sqrt{1 . \mathrm{C}}} \text { (or) } \tag{2}\\
\mathrm{L}=\frac{(1.59160)^{2}}{f^{2} \mathrm{C}}=\frac{25.33 \times 1,000,000,000}{\mathrm{f}^{\circ} \mathrm{C}} . \tag{3}
\end{gather*}
$$

Equation (3) can be used to determine the inductance necessary to tune to a specified frequency " f " with a known value of capacitance "C." The product of L and C is a constant for a given frequency; the frequency of a resonant circuit varies inversely as the square root of the product of inductance and capacitance. Doubling both L and C halves the resonant frequency; reducing both L and C to one-half doubles the frequency. In actual circuits, of course, the effect of stray inductances and capacitances of the circuit wiring and of the tubes must be taken into account, especially at the higher radio frequencies.

The value of L and C should be chosen with considerable care. Because an r-f amplifier tube supplies power only during a fraction of each cycle, the tank circuit must function as a "fly-wheel" to carry on the oscillation to the next plate-current pulse. A measure of this fly-wheel effect is the ratio of volt-amperes in the tank circuit to the power delivered by the tube. This ratio is defined as the operating Q.

It is common practice to employ an operating Q of 10 to 15 for either telegraphy or telephony service. If the value of \mathbf{Q} is much lower, there will be considerable distortion of the r-f waveform with resultant power output at harmonic frequencies. Harmonic output from the power amplifier is very undesirable because it represents wasted power and may lead to radiation at harmonic frequencies which will cause interference to other radio services.
 A value of Q which is too high will result in excessive losses in the tank circuit due to the large circulating r-f current in a high-Q circuit. This condition is evidenced by high plate current even when the tank circuit is not loaded. Other factors being equal, the Q is proportional to the tuning capacitance in the tank circuit. The capacitance needed for the tuned circuit of an r-f amplifier can be determined approximately from the following relation:

$$
\begin{equation*}
\mathrm{C}=\frac{300 \mathrm{QI} \mathrm{~b}}{\mathrm{fEb}} \tag{4}
\end{equation*}
$$

$$
\text { where } Q \text { is constant (about } 10 \text { to } 15 \text {) }
$$

Ib is the total d-c plate current in milliamperes
E_{b} is the frequency in megacyclea
E_{b} is the d-c plate voltage in volts
C is the total capacitance, in micro-microfarads ($\mu \mu \mathrm{f}$), across the tank inductance
This value of C is for an amplifier of the singleended type employing a tank circuit which is not split. It is the capacitance in actual use and not the maximum capacitance of the tank condenser. The value of C determined from equation (4) represents a minimum value; a slightly larger value can usually be used without appreciable reduction in power output.

Where a single-ended stage is used with a split tank circuit, the value of C (the total capacitance across the inductance) should be one-fourth that given by equation (4). The corresponding tank inductance should be approximately four times that employed in a tank circuit which is not split, in order to keep the product of L and C the same. For a push-pull stage of the same power input, the value of C is also but one-fourth that given by the formula. Because the condenser used in a push-pull stage is generally of the splitstator type, each section oi the condenser should have a capacitance equal to one-half that given by equation (4). The factor I_{b} used in the equation is the total d-c plate current of the amplifier stage, regardless of the number of tubes used in parallel or in push-pull.

For amateur-station design purposes, an operating Q of 12 is satisfactory for either telegraphy or plate-modulated telephony service. The chart shown in Fig. 3, based on a Q of 12, presents a simple method of determining the value of C .

Knowing the frequency and the capacitance required, the designer can quickly determine the proper value of inductance in microhenrys from equation (3). In order to determine the approximate design of a single-layer coil to give the desired inductance, the following formula can be used:

$$
\begin{equation*}
L=\frac{R^{2} N^{2}}{9 R+10 B} \tag{5}
\end{equation*}
$$

where L is the inductance in microhenrys ($\mu \mathrm{h}$),
R is the mean radius of the coil in inches,
B is the length of the winding in inches,
N is the number of turns.

NEUTRALIZING

A triode used as an r-f amplifier will oscillate because of r-f feedback through the grid-plate capacitance of the tube, unless the effect of this feedback is eliminated. In tetrodes and pentodes, the grid-plate capacitance is practically eliminated by means of a screen grid placed between the grid and the plate. Feedback between grid and plate in a triode is nullified by a circuit arrangement which takes some of the r-f voltage from one circuit and feeds it back into the other circuit so that it effectively cancels the r-f voltage operating through the grid-plate capacitance of the tube. This procedure, known as neutralization, permits a triode to operate as a stable r-f amplifier without self-excited oscillations. Parasitic oscillations may still occur, but they can be eliminated by proper circuit design and layout. For proper neutralization, the r-f neutralizing voltage must be opposite in phase and equal in amplitude to the feedback voltage between the grid and the plate.

Typical neutralizing circuits are shown in Figures 4, 5, and 6. Fig. 4 illustrates grid neutralization, where the neutralizing condenser CN is returned to the balanced grid

Fig. 4 circuit. Figures 5 and 6 illustrate plate neutralization, where CN is returned to the plate circuit. In balanced circuits of this type, neutralizing condenser CN theoretically should have a capacitance equal to the gridplate capacitance
$B+\left(C_{s p}\right)$ of the tube. Actually, however, the correct value for C_{N} may vary somewhat from the value of C_{cp}, due to the effects of stray capacitance in the circuit. The circuit from
which the neutralizing voltage is obtained is sometimes not of the balanced type. If the tap on the plate coil in Fig. 5 is placed more than half the total number of turns from the "tube end," the capacitance required at CN will increase about in proportion to the relative number of turns in the two portions of the coil. In most cases, it is desirable that CN should have a small range of capacitance which is adequate to extend beyond both sides of the required value, to take care of circuit and tube variations.

Two triodes in a push-pull circuit are neutralized by means of two neutralizing condensers connected in the socalled "criss-cross" circuit. The grid of each tube is connected through a neutralizing condenser to the plate of the other tube. Two illustrations of this arrangement are given in the TRANSMITTER CONSTRUCTION SECTION.

The neutralizing circuits shown in Figs. 5 and 6 are the ones most commonly used in amateur transmitters employing single-tube amplifier stages. They are entirely satisfactory for most transmitting triodes operating at frequencies up to 15 or 20 Mc . These circuits may cause amplifier instability at higher frequencies, however, especially when used with a tube having a relatively large plate-to-filament capacitance (C_{p}). The trouble is due to the fact that C_{p} t tends to upset the neutralizing action of CN , particularly when the operating frequency is changed in a multi-band transmitter. If such trouble is experienced, it is advisable to neutralize the plate-filament capacitance of the tube by means of an additional neutralizing condenser (C_{f}), as shown in Fig. 7 Condenser Cs should have (in a balancedtype plate circuit) a capacitance approximately equal to the plate-filament capacitance of the tube and
 a peak voltage rating equal to that of the grid-plate neutralizing condenser.

Neutralizing Procedure

The technique in neutralizing an r-f amplifier is essentially the same irrespective of the type of tube or circuit employed. As the first step, the positive high voltage should be removed from the amplifier. The filament of the tube should be lighted and the r-f grid excitation (from the driver stage) applied. Next, a fairly sensitive r-f indicator should be loosely coupled to the plate tank coil. Suitable r-f indicators are a neon bulb, a flashlight bulb or a thermogalvanometer connected in series with a one- or two-turn loop of insulated wire, a vacuum-tube voltmeter, or a cath-
ode-ray oscillograph. The simple indicators are usually more convenient to use than the more complicated instruments. The plate tank circuit of the amplifier should be tuned to resonance, which will be shown by a maximum "reading" on the r-f indicator. The neutralizing condenser is now adjusted until the r-f indicator shows a minimum reading. This operation may detune the plate tank of the driver stage slightly, so that the latter should be carefully retuned to resonance. The plate tank of the amplifier should again be tuned to resonance. The r-f indicator will usually show another maximum reading, but one of considerably less magnitude than the original reading. The neutralizing condenser is again adjusted for minimum (or zero) r-f indication. After this procedure has been repeated several times, a setting of the neutralizing condenser should have been found which shows no r-f voltage in the plate tank circuit of the amplifier. As the point of correct neutralization is more closely approached, the coupling of the r-f indicator will usually have to be tightened, because there is less r-f voltage available to operate the indicator. After each adjustment of the neutralizing condenser, the driver tank and the amplifier tank should be retuned to resonance. When the r-f indicator shows zero r-f voltage in the amplifier tank, the stage is properly neutralized.

If a push-pull stage is to be neutralized, both neutralizing condensers should be adjusted simultaneously, or alternately in small steps. They will not, however, always have exactly the same setting when neutralization is reached, because of slight differences in stray capacitances and because the tuned tank circuit may not be electrically symmetrical.

A very sensitive neutralizing indicator is a d-c milliammeter connected in the grid-return circuit of the amplifier which is being neutralized so as to measure rectified grid current. With the plate voltage off as before, the driver tank circuit is tuned until the d-c meter in the amplifier grid circuit shows a maximum reading. If the amplifier is not properly neutralized initially, tuning its plate tank circuit through resonance will cause the $d-c$ grid current to vary, The neutralizing condenser should be adjusted slowly while the plate tank circuit of the amplifier is tuned gradually back and forth through resonance. As the point of correct neutralization is approached, the flicking of the needle of the d-c grid meter will gradually decrease in amplitude. If the amplifier is perfectly neutralized, tuning the plate circuit through resonance will not change the meter reading even slightly. During these adjustments, the driver plate circuit should occasionally be returned to resonance, as indicated by a dip in its d-c plate current or by a maximum in the d-c grid current of the amplifier.

Because the rectified d-c grid current is a measure of the r-f excitation applied to the amplifier, the use of a d-c grid meter is usually advisable. The grid meter is not only useful for neutralizing adjustments, but it also provides a continuous check on the operation of the amplifier and of the driver stage as well.

In some cases it may be found that, while a setting of the neutralizing condenser can be made which will give a definite minimum r-f indication, no adjustment will entirely eliminate r-f voltage from the plate tank circuit. This effect is sometimes due to stray coupling between the amplifier and driver plate tanks or to stray capacitances between various parts of the amplifier which tend to unbalance the neutralizing circuit. Adequate shielding between grid and plate circuits and between stages will often eliminate neutralizing difficulties. Shielding may actually cause trouble, however, if it is placed too close to the tuned circuits or to the neutralizing condensers. It is important that the ground lead from the rotor of a split-stator condenser be made direct (and as short as possible) to the filament circuit.

TUNING A CLASS C R-F AMPLIFIER

In general, the same adjustments are made in tuning different class C r-f amplifiers, irrespective of the type of tube or circuit used. Although the tuning of a triode r-f amplifier is described in the following paragraphs, the procedure applies almost equally well to tetrode and pentode amplifiers. In the following discussion, it is assumed that the triode has been correctly neutralized.

The filament of the amplifier tube is lighted, the positive plate voltage is left off*, and r-f excitation from the driver stage applied. The plate circuit of the driver is tuned to resonsnce, which is indicated by a dip in the driver plate current or by a maximum d-c grid-current reading in the amplifier stage. If the amplifier has a tuned grid circuit, the latter must also be tuned to resonance (indicated by the grid-current reading). The maximum amplifier grid current obtained by these tuning processes may be too low. In this case, the coupling between the driver and the amplifier may be adjusted to give more amplifier grid current, if this can be done without overloading the driver stage. The plate circuit of the driver should be retuned to resonance every time the coupling is changed, because of the interaction between the various circuits.

After the interstage-couplings adjustments have been made, the amplifier plate tank should be set as near resonance as possible. A protective resistance of adequate size should then be placed in series with the positive plate-supply lead. In the case of large, high-power tubes which are protected by d-c overload relays, this protective resistor can be omitted, especially in those installations where the d-c plate voltage can be reduced to about 50 per cent of its rated value by means of taps in the primary circuit of the platesupply transformer. The plate voltage is now applied and the plate tank circuit quickly tuned to resonance (indicated by a sharp dip in the d-c plate current of the amplifier). The plate current at resonance will usually drop to a value between 10 and 20 per cent of the rated full-load value (see Fig. 8), if no load is coupled to the plate circuit. In case

the plate tank condenser does not have an adequate voltage rating, the high r-f voltage developed across the unloaded plate tank circuit may cause the condenser to flash over. This effect should not occur with the d-c plate voltage reduced 50 per cent when the condenser is suitable for the purpose. If it does occur, however, the load circuit can be coupled to the plate tank in order to reduce the r-f voltage developed.

If the plate tank can not be tuned to resonance, the reason will usually be found in improper tuned-circuit constants. Either the tank inductance L, or the tank capacitance C, or both, may have to be increased or reduced, depending on whether the circuit is found to tune higher or lower than the desired frequency. The "off-resonance" plate current of an amplifier may be quite high, even with a protective resistor in the plate-supply lead. For this reason, a tube should not be operated with its plate circuit out of resonance, except for the very short time required to make the proper tuning adjustment. If the plate current does not dip normally with the plate tank unloaded, the trouble may be due to insufficient r-f grid excitation, to excessive tankcircuit losses, or to improper neutralization. Because the minimum plate current under no-load conditions depends on the Q of the tank circuit, on the biasing method used, and on the excitation voltage, the minimum plate-current value

[^2]should not be considered too definite an indication of the efficiency of an amplifier.

When the tuning procedure described has been completed, the load circuit may be coupled to the amplifier. The load may be an antenna, a dummy antenna (for test purposes), or the grid circuit of a following r-f amplifier stage. When the load is applied, the amplifier plate current will rise. The plate circuit of the amplifier should be retuned to resonance to guard against the possiblity that the load has caused detuning. The plate current will still dip, but its minimum value will be considerably higher than under no-load conditions. Full plate voltage should now be applied and the coupling of the load made tighter, until the minimum plate current (at the dip) reaches the normal value given in the typical operating conditions tabulated under the tube type. Of course, if the required power output can be obtained with a lower value of plate current, the load-circuit coupling can be loosened or the d-c plate voltage reduced. In no case should the d-c plate input exceed the value given under MAXIMUM RATINGS for the particular class of service involved.

Pentodes and tetrodes are tuned in the same manner as triodes. Because neutralization is ordinarily not required for these screen-grid tubes, the circuits of these tubes are relatively simple and easy to adjust. It is quite important in a screen-grid r-f amplifier to prevent stray coupling between the input and output circuits. Although the use of a screen grid in a tube substantially eliminates internal feedback within the tube, self-oscillation and unstable operation may be caused by external feedback due to stray capacitances. Complete shielding of the input and output circuits from each other, and in some cases from the tube itself, is generally advisable.

The value of the d-c potential on the screen usually has an important effect on power output; adjustment of this voltage after the circuit has been tuned may result in better efficiency and more power output. Care should be observed, however, that the maximum rated $\mathrm{d}-\mathrm{c}$ power input to the screen is not exceeded.

As the load on an r-f amplifier is increased, the d-c grid current will decrease. After the load has been adjusted to the desired value, the d-c grid current should be checked. If it has dropped substantially lower than the normal value, insufficient r-f grid excitation or excessive d-c grid bias may be the cause.

The methods of tuning other types of amplifiers will vary somewhat, depending on the class of service in which the tubes are used. Further information on the subject of tuning can be found in the two radio handbooks listed earlier in this chapter.

HOW TUBE RATINGS ARE DETERMINED

During the development of an RCA tube, tentative designs are constructed to meet desired ratings. For these designs, the materials chosen, the dimensions used, and the structures employed are based on the chemical and physical properties of materials, our research work, and the experience of our engineers with other tube types, both in the laboratory and in the field. Sample tubes of the new designs are then checked for compliance with the desired ratings and characteristics. Destructive overload tests are made to determine if there is a reasonable margin of safety in the designs. Life tests, however, are most important of all in the selection of the final design and the determination of final ratings. Groups of tubes are placed on life-test racks and operated under maximum rated conditions. At intervals they are removed for electrical measurements, but life testing is continued until the tubes fail. When the life tests indicate that the design is satisfactory for good tube performance at the tentative maximum ratings, these ratings are established for the tube type.

INTERPRETATION OF TUBE RATINGS

A thorough understanding of the significance of published ratings is necessary if optimum results are to be obtained. The following explanation is intended to clarify the meaning of the ratings tabulated under each individual tube type.

The filament or heater voltage given in the tabulations is a normal value unless otherwise stated. Transformers and resistances in the filament circuit should be designed to operate the filament or heater at the rated value for fullload operating conditions with an average line voltage. Variations from the rated value due to line-voltage fluctuations or other causes should not exceed plus or minus 5 per cent, unless otherwise stated under the tube type.

In general, the filament of a transmitting tube may be operated with either an a-c or d-c supply. An a-c source is usually employed because of its convenience and economy, unless a d-c source is necessary to avoid hum. With a-c operation, the grid return and the plate return should be connected to the mid-point of the filament circuit. This point may be the center tap of the filament winding or of a low resistance shunted across the filament circuit. When direct current is used, the return leads should be connected to the negative filament terminal.

Where it is found desirable to use d-c filament excitation on any filament-type tube for which data are given on an a-c basis, the grid-bias values as shown in the tabulated data should be decreased by an amount equal to approximately one-half the rated filament voltage. The grid-bias voltage should be measured from the negative filament terminal.

An entirely new system of ratings for many RCA AirCooled Transmitting Tubes is now in effect. Instead of one set of maximum ratings for a tube, two are available. These ratings are designated CONTINUOUS COMMERCIAL SERVICE (CCS) and INTERMITTENT COMMERCIAL. AND AMATEUR SERVICE (ICAS). CCS ratings are essentially the equivalent of former Maximum Ratings and are based on considerations of long tube life and maximum reliability of tube operation. ICAS ratings are considerably higher than CCS ratings. They permit the handling of much greater power, but tube life under these conditions, of course, is reduced. However, since there are innumerable applications where the design factors of minimum size, light weight, and maximum power output are far more important than extremely long tube life, the transmitter designer may very properly decide that a small tube operated with ICAS ratings better meets his requirements than a larger tube operated with CCS ratings. The choice of tube operating conditions best fitted for any particular application should be based on a careful consideration of all pertinent factors.

In the rating of RCA transmitting tubes, certain tabulated values are given as maximum. These are limiting values which should always be observed in each tube application.

Typical operating conditions are given in the tube data section on many of the types. These values should not be confused with ratings, because a tube can be used under any suitable conditions within its maximum ratings, according to the application. The output value for any operating condition is an approximate tube output-that is, plate input minus plate loss. Circuit losses must be subtracted from tube output in order to determine the useful output. Output values are approximate and should not be considered as being output ratings. The actual output in any case depends on a number of variable factors, important among which are circuit efficiericy and operating frequency.

RCA VARIABLE FREQUENCY OSCILLATOR

- LESS THAN 20-CYCLE DRIFT PER HOUR AFTER 40-MINUTE WARM-UP
- R-F POWER OUTPUT 10 TO 25 WATTS OVER FREQUENCY RANGE OF 1.75 TO 30 Mc
- CHIRPLESS KEYING AND BREAK-IN OPERATION
- HIGH RESET ACCURACY AND WIDE BANDSPREAD
- SELf-CONTAINED POWER SUPPLY

FIG. 9

This thoroughly engineered VFO is designed to meet modern requirements for a master control oscillator and frequency standard having exceptional frequency stability. It has 5 band coverage and high power output with a minimum of tubes. Bandspread extends from approximately 120° on 14 Mc and 3.5 Mc , to 145° on 7 and 30 Mc . Frequency drift of the instrument is less than 400 cycles up to 30 minutes following a cold start. Thereafter, drift is less than 20 cycles per hour! It is practical to reset frequency adjustment to within a few hundred cycles of a marked point (3.5-Mc band).

Uses 802 ECO at Reduced Ratings

An 802 is used as a electron-coupled oscillator at greatly reduced ratings. Operation of this well-screened pentode at low ratings minimizes frequency drift caused by slightly changing interelectrode capacitances while the tube warms up.

Unquestionably, a receiving tube may also be operated as an oscillator to provide equally stable frequency characteristics, but by the time the input of the tube has been reduced sufficiently to obtain the desired stability, its useful output will have dropped nearly to the vanishing point. Then, extra amplifiers are required to make up the loss of power. The 802 in this VFO operates at a plate voltage of approximately 470 volts, at a screen voltage of 105 volts (regulated by a VR-105/30), and at a plate current of only 8 to 10 ma .! Even at these low ratings the tube furnishes enough power to drive an 807 operating as a buffer, doubler, or quadrupler to a fairly respectable output.

The circuit in Fig. 13 shows that a bandswitching arrangement is provided for the 802 grid circuit and that switch S_{1} cuts in three different sets of pre-tuned grid-coil, trimmer, and padder conbinations for practical 5 -band operation having exceptional bandspread. The lowest L/C ratio consistent with reasonable effieiency is used on all bands.

When 160 - or 80 -meter output is desired the 802 grid circuit is tuned to 160 meters (1750 to 2050 kc) by means of $\mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}$, and $\mathrm{L}_{3} \mathrm{C}_{11}$ and C_{12} are zero-temperaturecoefficient condensers. The plate circuit (located beneath the chassis of the 802) is designed to resonate broadly on either 160 or 80 meters by means of a tapped coil Ls, which makes it possible to short out a portion of the inductance by means of switch S_{2} for 80 -meter operation. A separate coil L_{4} is used for 20 -meter output, which also is selected by means of S_{2} 。 Primary reason for using a broadly self-resonant plate circuit is to eliminate a turing control. Secondary benefit is that it eliminates apparent reaction on the oscillator frequency caused by normal tuning adjustments in the oscillator plate circuit. While it is possible to use an ordinary r-f choke in the 802 plate circuit, L_{4} and L_{5} constructed in accordance with the specifications given in the legend of the circuit provide greater useful output and higher circuit efficiency. Output from the 802 is capacitatively coupled to the 807 stage. Power output from the 807 at the desired frequency is dependent on the resosant frequency of L_{0} and C_{10}. L_{c} is of the plug-in variety and cimensions are given in table 1 , page 54.

For 40 -meter operation, S_{1} is set to include the 80 -meter grid circuit of the 802. This circuit includes $\mathrm{L}_{2}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{-}$, $\mathrm{C}_{8}, \mathrm{C}_{8}$ and $\mathrm{C}_{13} . \mathrm{C}_{2}$ and C_{3} are series padding condensers, used for bandspread over the range of 10 to 90 on the dial. S_{2} is set to short out a portion of L_{5} so that 80 -meter output will be obtained from the 802 plate circuit. The 807 is operated as a 40 -meter doubler. Power sensitivity of the 807 is so high that nearly as much output is obtained at this frequency as is obtained on the two lower frequency bands.

For 20 -meter operation, S_{1} and S_{2} are set the same as for 40 -meter operation. The 807 is operated as a frequency quadrupler. Output is still sufficient to drive a pair of 812 's in push-pull to full power output on 20 meters. Bandspread on this band is approximately $2 / 3$ that on 40 meters.

For 10 -meter output, S_{1} is set to include the 80220 meter grid circuit C_{1}, C_{s}, C_{s}, and $L_{1} . C_{8}$ is a zero-temperaturecoefficient condenser. S_{2} is set to include $L_{\text {s, }}$ tuned to resonate the 802 plate circuit broadly on 20 meters. The 807 is operated as a 10 -meter doubler. Bandspread on the 10 -meter band covers 10 to 90 .

Sturdy mechanical construction, proper layout of components to minimize temperature rise in critical tuned circuits, high-quality parts, good voltage regulation, and the proper use of sufficient zero-temperature-coefficient condensers are the essentials of a well-performing ECO. If these important factors are considered from the start, the results are almost always bound to be satisfactory.

As can be noted from the general views of the VFO in Fig. 9, 10, and 11, chassis and panel design is conventional. Choice of dimensions may be left completely to individual needs. In this case the chassis is $17^{\prime \prime}$ long $\times 10^{\prime \prime}$ wide $\times 2^{\prime \prime}$ deep. The panel is $19^{\prime \prime}$ long $\times 83 / 4 "$ high $\times 1 / 8^{\prime \prime}$ thick. The combination provides the necessary solid foundation for the job.

Frequency Stability Considerations

The effective temperature rise of the all-important grid-circuit components has been limited by grouping the grid-circuit components together in one shield box (as shown in Fig. 12) and by isolating this box as far as possible, from all high heat-dissipating units such as transformers, tubes, and bleeder resistors. The grid-circuit shield box is $51 / 2^{\prime \prime} \times 6^{\prime \prime} \times 51^{\prime \prime} 2^{\prime \prime}$ in size. Only heat-dissipating element in this unit is the 802 grid leak R_{1} which may be considered negligible because the grid current flowing through the grid circuit is unusually small. The 802 itself is mounted to the left of the shield box so that the tube projects horizontally away from the box. It is well ventilated-and, what is more important, its heat does not affect the tuned circuits within the box.

As added precautions to minimize the amount of heat reaching the all-important oscillator grid circuit, the 807 , power transformers, rectifier tube, and filter chokes are mounted along the rear and side edges of the chassis so that they are well ventilated and are as far removed from the grid-circuit shield box as is possible. The stability of the d-c screen voltage of an oscillator designed primarily for con-
stant frequency output is of great importance. The use of a voltage divider for supplying a fixed value of screen voltage is of help but is not sufficient for maximum stability. For this reason, a voltage-regulator tube is used in the screen-voltage supply of the 802 . It irons out effects caused by line-voltage variation and reduces oscillator hum. It is particularly helpful in eliminating chirps in the output when the oscillator is keyed.

Temperature Compensation

All of the foregoing features are vital to a smooth performing and stable VFO, but the final results are incomplete without the application of temperature compensation to offset the change in frequency caused by whatever heat does reach the vital 802 grid circuit. Judicious use of zero-tem-perature-coefficient capacitors in parallel with the three gridtank circuits of the oscillator do much to give the oscillator its exceptionally low frequency drift. These capacitors are not a cure-all but they do come into their own where frequency drift is due to reasonably small amounts of heat. The capacitors are mounted within the grid shield box and their installation will be covered later on.

Assembling the Vital Grid Circuit

The shield box has a removable top and bottom. The five air padders, $\mathrm{C}_{5}, \mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{7}$, and C_{10}, and the three grid coils L_{1}, L_{2}, and L_{3} are mounted on the left side of the box. Dimensions of L_{1}, L_{2}, and L_{3} are given in the circuit legend under Fig. 13. The coils are mounted end-on by means of 6-32 spade lugs. C_{13}, the main tuning condenser, is held in place by three sets of mounting screws and studs furnished with it for front mounting. The back of C_{13} is held in place by a

FIG. 10
strip of $1 / 2^{\prime \prime}$ Bakelite, $21 / 2^{\prime \prime}$ wide and $6^{\prime \prime}$ long, solidly bolted to the opposite sides of the box. The zero-coefficient condensers are rigidly held between two additional Bakelite strips. These two strips should first be clamped together and drilled with holes large enough to accommodate the zero-coefficient condensers. The strips should then be separated and the condensers inserted. Since these condensers are in the form of
rather fragile ceramic tubing it is suggested that they be wrapped with several turns of rubber tape to reduce the danger of cracking them. This cushioning also aids in damping any possible vibration. The Bakelite mounting strips are then clamped together and bolted to opposite sides of the grid box, as shown in figure 12. They serve a further purpose by acting as cross-braces to increase the rigidity of the box and of the parts mounted on it. Bandswitch S_{1} is mounted on the right side of the grid circuit shield box. It is held in place by means of a third Bakelite cross-brace. S_{1} selects the critical-tuned grid circuits and its importance cannot be overestimated. It should be of good quality and be designed with ceramic insulation. S_{1} is controlled from the front panel by means of a short, flexible shaft which must make a right-angle bend.

The entire shield-can assembly with the 802 on the side, is then mounted to the chassis by means of four shock-absorbing rubber washer assemblies. A National ACN was chosen for the tuning control and because it has remarkable freedom from backlash and includes a built-in, semi-flexible coupling device which compensates for minor mis-alignment of dial or condenser. The ACN dial permits mounting of the tuning control directly on the grid-circuit shield can so that the whole assembly including the dial is free to float. The white cardboard dial itself is fastened to a sheet-metal backing plate which in turn is mounted solidly to the shield can by means of four $3 / 8^{\prime \prime}$ metal studs. These studs are made about $1^{\prime \prime}$ long to permit the dial to be placed about $1 / 4^{\prime \prime}$ in front of the main VFO panel and the grid-circuit shield box about $5 / 8$ " behind the VFO panel. Clearance holes are made in the VFO panel to allow for suitable clearance of the studs. The studs are drilled and tapped at each end for $6-32$ or $8-32$ screws. The dial-backing plate is fastened to the studs by means of countersunk screws to permit a snug fit of the dial against the plate. Four $5 / 8$ " holes are drilled through the panel behind the dial to clear the mounting studs, and a $21 / 2^{\prime \prime}$ hole should be made around the condenser shaft center to clear the dial mechanism.

In the actual assembly and wiring of the grid shield box, the layout of the large parts should first be determined. Then the ACN dial and C_{13} should be mounted on the shield box and the positions of the panel holes behind the dial deter-

FIG. 11

mined. The bottom cover of the can may be mounted by means of the four rubber washer assemblies. The dial and C_{13} should next be removed from the shield can and with both covers removed from the can, all holes should be drilled, all parts mounted, and all wiring completed. A small "pencil" type soldering iron will prove useful in the wiring of this unit.

Long, flexible leads should be soldered to the 802 socket while the shield can is out in the open. These leads can then be threaded through grommeted holes in the bottom shield cover and the chassis before replacing the shield can of the tube. Several inches of slack should be left in these power leads so that the grid-circuit shield box can be tipped up on edge for servicing later. The 802 plate coils L_{4} and L_{5} and bandswitch S_{2} are mounted beneath the chassis for added shielding. Dimensions of L_{4} and L_{t} are given in the legend of the circuit.

Laying Out the 807 Stage

As can be seen from the illustrations, layout of the 807 is comparatively simple. Plug-in plate coils are used in this stage. The socket for the plate coil, L_{θ}, is mounted above the chassis for convenience in changing coils. Tuning condenser C_{10} is mounted on a bracket beneath the chassis and is connected by a long insulated extension shaft to a control knob on the front panel. The 807 operates at a d-c plate voltage of approximately 470 volts and a d-c plate current of 100 ma . at full load. D-c screen voltage is approximately 150 volts.

Table 1
807 PLATE TANK COIL (Lif

Output Band	Diameter Inches Inches	$\underset{\substack{\text { Length } \\ \text { Inches }}}{ }$	No. Turns	$\begin{aligned} & \text { End } \\ & \text { Eink } \\ & \text { Turn } \end{aligned}$
160	$1{ }^{156}$	$11 / 2$	45	3
${ }_{40}$	(1\%88	17/4	32 18	$\begin{array}{r}3 \\ 2 \\ \hline\end{array}$
20	1%	$2{ }^{23 / 8}$	13	2
10	1\%4	2	8	2

Power Supply Is Simple

An inexpensive 600-0-600 volt power transformer and an 83 mercury-vapor rectifier supply all voltages for the VFO. A double-section filter system is used. L_{7} is of the swinging type. L_{8} is a standard fixed type. Regulation of the power supply is excellent. The 83 with its low voltage drop, L_{τ} and L_{8} with their reasonably low d-c resistance, and the swinging properties of L_{7} all tend to compensate for variations in load. Output ripple voltage of the supply is very low. This fact is important in any ECO.

At this point it should be called to the attention of the constructor that the extra 6.3 -volt filament winding on the power transformer is connected in series with the primary of the transformer so that the high secondary voltage is reduced to $550-0-550$. This is done to prevent application of excessive voltage to the 83 .

A tap on bleeder resistor R4 permits adjustment of the VR-75-30 voltage regulator tube so that it draws about 25 ma . under key-up conditions. A d-c milliammeter may be inserted at " x " during this screen-circuit voltage adjustment. In actual tests, it has been found that use of a VR-75-30
transmitier construction
gives more 807 output from 160 to 20 meters than when the 802 screen is operated at a higher voltage with a VR-105-30. Moreover, the use of the higher screen voltage doubles the 802 plate current and increases frequency drift during warmup periods.

Aligning and Calibrating

This VFO may be considered a precision instrument and as such is deserving of accurate calibration. A frequency standard is invaluable for aligning and calibrating it. First, the 802 grid circuit should be adjusted. Plate and screen voltage of the 807 should be removed by leaving S_{3} open. Set S_{1} to " 160 " and adjust C_{10} with a screwdriver so that the oscillator output tunes exactly to 1900 kc . with C_{13} set at " 50 " on the dial. If the band will not center, use a larger or smaller value of C_{11}. Should the dial not cover the complete range from 1750 to 2050 kc ., remove one or two turns from L_{3} and add to $\mathrm{C}_{10}, \mathrm{C}_{11}$ or C_{12} as needed. This completes the calibration for 160 meters and since this grid tank circuit is also used on 80 meters by doubling in the plate circuit, the calibration is also completed for 80 meters.

FIG. 12

FIG. 13
$\mathrm{C}_{1} . \mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{1}, \mathrm{C}_{10}=140 \mu \mu \mathrm{f}$ air trimmers (Hammariund APC-140)
$\mathrm{C}_{3}, \mathrm{C}=150 \mu \mu \mathrm{f}$ zero-temperature coefficient (Centralab)
$C_{4}, C_{16}=250 \mu \mu \mathrm{f}$ mica
Cs, C $11=350 \mu \mu \mathrm{f}$ zero-temperature coefficient
$\mathrm{C}_{0}=250 \mu \mu \mathrm{f}$ zero-temperature coefficient
$\mathrm{C}_{12}=\mathbf{3 0 0} \mu \mu \mathrm{f}$ zero-temperature coefficient
$\mathrm{C}_{10}=40 \mu \mu \mathrm{f}$ (min.) to $395 \mu \mu \mathrm{f}$ (max.) main tuning condenser (Hammarlund APC-350-C)
$\mathrm{C}_{14}=0.001 \mu \mathrm{f}$ mica
$\mathrm{C}_{18}, \mathrm{C}_{17}, \mathrm{C}_{18}=0.01 \mu \mathrm{f}$ paper, 600 v.
$\mathrm{C}_{19}=100 \mu \mu \mathrm{f}$ variable (Cardwell ZU-100-AS) $\mathrm{C}_{20}, \mathrm{C}_{21}=8-8 \mu^{\mathrm{f}}$ Replacement (Cornell-Dublier \#PE-B)
$\mathbf{J}_{1}=$ Keying Jack
$\mathrm{L}_{1}=6$ turns of \#16 en. wire on $1 / 2^{\prime \prime}$ form, winding length $5 / \mathrm{g}^{\prime \prime}$ in, Cathode tapped 3 turns from ground end
$L_{2}=23 \mathrm{t}$. \#16 en. wire on $1 / 2^{\prime \prime}$ form, close wound. Cathode tapped 8 turns from ground end
$\mathrm{L}_{3}=33 \mathrm{t}$. \#18 DCC wire on $1^{\prime \prime}$ form, close wound. Cathode tapped 15 turns from ground end
$L_{4}=7$ t. \#16 en. wire on $8 / /^{\prime \prime}$ form, winding $3 / 4$ " long
$L_{5}=110 \mathrm{t}$ \#30 en. wire on $1^{\prime \prime}$ form, tapped at 71 turns; close wound
$\mathrm{L}_{6}=$ B. \& W. coils. (See table)
L. $=8-35$ henry. 200 ma . choke (Stancor
$L_{s}=20$ henry, 200-ma. choke (Stancor C-1646) $\mathbf{1}_{1}, \mathbf{P}_{2}=6.3$-volt pilot lights (18 inch)
$R_{1}, R_{2}=25,000 \mathrm{ohms}, 1 \mathrm{w}$.
$R_{3}=17,51100 \mathrm{hms}, 2$ watt
$R_{4}=15,010$ ohms, 50 watt wlider
$R_{5}=250$ ohms, 10 watt
$R_{u}=10.010$ ohms, 10 watt
$\mathrm{S}_{1}=$ TPTT rotary ceramic switch
$\mathrm{S}_{2}=$ DPTT rotary switch
$\mathrm{S}_{3}=$ DPST toggle switch
$\mathrm{S}_{4}=$ SPST toggle switch
$\mathrm{S}_{5}=$ DPDT togele switch
$\mathrm{T}_{1}=600-4-600$ volt, 200 ma . power transformer (Stancor P-6170)
$M=0.150 \mathrm{ma}, 2^{\prime \prime}$ square meter (Triplett or Simpsen)

FIG. 14
Second operation is to calibrate the 802 grid circuit operation on 40 meters. Set S_{2} to the " 80 " position and adjust C_{7} so that the second harmonic of the oscillator tunes exactly to 7300 kc . with C_{13} set at " 10 " (near minimum). Next, turn C_{13} to read " 90 " on the dial (near maximum) and adjust C_{2} so that the oscillator just hits 3500 kc . This completes the calibration for 7.0 Mc and since the 3.5 Mc grid tank circuit is also used by quadrupling in the plate circuit, the calibration is also completed for 14 Mc .

Third operation is to calibrate the 802 grid circuit for operation on 10 meters. Set S_{2} to " 20 " and adjust C_{5} so the second harmonic of the oscillator tunes exactly to $28,000 \mathrm{kc}$. with C_{13} set at " 90 ." Output on 10 meters is obtained by doubling in the 802 plate circuit.

After the 802 grid circuit has been aligned, plate coil L_{s} should be adjusted to give 3 to 5 ma . grid current when S_{1} and S_{2} together are set at " 80 " or " 160 ." L_{4} should then be adjusted to give 1 to 2 ma . when S_{1} and S_{2} together are set at " 20 ." Grid current can be measured by opening the ground end of R_{2} and inserting an 0-5 or 0-10 d-c milliammeter in the 807 grid circuit. The opened end of R_{2} should be by-passed for r.f. to the chassis during the measurement to maintain a short r-f grid circuit return. As discussed earlier, the 807 is protected during key-up conditions by the semi-fixed bias voltage provided by the sum of the 807 cathode current and the bleeder current developed across R_{5}.

Keying Is Crisp and Clean-Cut

Keying of this VFO is done in the oscillator circuit for break-in operation. Oscillation is completely cut off by keying the 802 screen voltage, between the 802 and the volt-age-regulator tube. It is important to note that keying of the screen voltage should not be accomplished between the voltage-regulator tube and the negative side of the voltage supply as shown by " X " in the circuit for this method will produce very bad keying transients. With the circuit shown, keying is clean and crisp and any slight key clicks resulting from making and breaking this low-current circuit can readily be eliminated by means of a simple resistance-capacitance filter across the key contacts. To "spot" a desired station, close J_{1} and swing C_{13} to zero beat with the desired incoming signal. Then flip S_{3} to "on" when ready to transmit.

How VFO Performs

The curves in Fig. 14 show the number of cycles the 802 control grid circuit drifts frem a cold start when operating
at 3.5 Mc . Note that, when using a VR-75-30 regulator in the screen circuit of the 802 , the overall drift is less than 400 cycles and that practically all of this drift occurs within the first 30 minutes of operation. Moreover, after the first 10 minutes of operation, the oscillator drifts only about 150 cycles. When a VR-105-30 is used in place of the VR-75-30, the drift increases, but the results are still exceptional. Various tests were made to check mechanical and electrical stability. When the oscillator grid box was jarred, bumped or twisted, it was found that the signal always returned to within about ± 5 cycles of its original frequency. It was found that wrapping the bulb of the 802 bulb with several turns of rubber tape aided stability by preventing tube movement within its shield can. In a careful check of the stability and accuracy of the instrument, it was found that the oscillator could be reset to a few parts in a hundred thousand. Measured power output from the 807 was approximately 25 watts on 160 meters, 20 watts on 80 meters, 15 watts on 40 and 20 meters and 5 watts on 10 meters. If it is desired to drive a beam tube, such as an 828 or an 813 , it is recommended that a potentiometer be used in plate of the 807 screen series resistor in order to reduce the 807 output by controlling the 807 screen voltage.

Appendix

Tuning-condenser values for an ECO designed to have approximately 100% bandspread may be calculated as follows:

For a given total maximum capacitance (C max.), the net capacitance variation (K) required to give 100% coverage from a low-frequency limit (f low) to a high-frequency limit (f high) can be calculated from the following relation:

$$
K=C_{\max }\left[1-\left(\frac{f_{\text {laxe }}}{f_{\text {maxh }}}\right)^{2}\right]
$$

As an example, for the " 160 " grid-circuit position, assume Cmax $=1185 \mu \mu \mathrm{f}, \mathrm{f}_{\text {low }}=1750 \mathrm{kc}$., and $\mathrm{f}_{\text {high }}=2050 \mathrm{kc}$. Therefore,

$$
K=1,185\left[1-\left(\frac{1750}{2050}\right)^{2}\right]=324 \mu \mu i
$$

For a variable condenser having a total maximum capacitance of $395 \mu \mu \mathrm{f}$, the total shunt padder capacitance should be 1185 $-395=790 \mu \mu \mathrm{f}$ which equals the sum of $\mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}$, and stray capacitances.

If, for example, a tuning condenser having a maximum capacitance of (say) $500 \mu \mu \mathrm{f}$, and a minimum capacitance of (say) $50 \mu \mu \mathrm{f}$ is used, the total K is $500-50 \mu \mu=\mathrm{K}$. For calculation purposes, K can be treated approximately as a fixed capacitance. Using the well-known series-condenser relations we obtain:

$$
\begin{aligned}
& \frac{1}{C_{\text {series }}}=\frac{1}{C_{\text {nem }}} \quad \frac{1}{C_{\text {tunnus }}} \\
& \frac{1}{C_{\text {sereses }}}=\frac{1}{-324}-\frac{1}{450} \\
& C_{\text {serres }}=1340 \mu \mu 5
\end{aligned}
$$

This $1010 \mu \mu \mathrm{f}$ capacitance may be made up of several zero-coefficient condensers in parallel with each other and with a small adjustable padder.

The above calculations are, of course, complicated by the presence of stray tube and circuit capacitances. However, by carefully estimating and allowing for stray tube and circuit capacitances, it is possible to come out fairly closely. Use of partially adjustable padders will make up for reasonable errors. It should be mentioned in passing that, in practice, more error results from inaccurate coil-size calculations, than from inaccurate stray-capacitance allowances.

FIG. 15

RCA ECONOMY

TRANSMITTER

- 40- AND BO-METER C.W OPERATION
- OSCILLATOR KEYING
- 70-WATT C-W OUTPUT
- COMPLETELY SELF-CONTAINED

This transmitter is designed to meet the needs for a mediumpower c-w transmitter stripped of non-essentials. Tube cost is kept low by using a 6L6-G crystal oscillator to drive an 809 to approximately 70 watts output on the $40-$ and $80-$ meter bands. Power-supply cost is kept low by using two 816 mercury-vapor rectifiers for the high-voltage sapply.

Unusual simplicity of operation is obtained by limiting the transmitter to use only a small range of frequencies, Since the oscillator is always used for "straight-through" operation, the number of tuning adjustments are reduced to a minimum. Oscillator keying is employed so that all the well-known advantages of break-in operation can be realized. A meter-switching system enables measurement of grid and plate currents with a single $150-\mathrm{ma}$. meter.

The Circuit

An excellent impedance match is obtained between the 6L6-G plate and the 809 grid by tappirg the excitation lead half-way down the oscillator plate coil. This arrangement can be seen by reference to Fig. 17. Connecting the excitation lead directly to the 6L6-G plate actually has the effect of reducing rather than increasing the 809 grid current. The oscillator tube is afforded considerable protection during tune-up periods by the cathode resistor, R_{1} which places a limit on out-of-resonance plate current. A smail amount of bleeder current is run through R_{7} to furnish ample cut-off bias for the 809 under key-up conditions withaut resorting to cumbersome fixed bias supplies.

Either the oscillator plate current or 809 grid or plate current can be measured by flipping the selector switch, S_{i}, to the appropriate position. Closed circuits are maintained for grid and plate currents regardless of switch position by means of R_{8}, R_{s}, and the upper section of F_{i}. The values of these resistances have been so chosen that they have negligible effect on meter readings, yet do not result in appreciable voltage drop.

Keying is accomplished in the cathode return of the 6L6-G crystal-oscillator tube. With this type of keying, the
cathode tends fo approach the screen voltage when the key is up; therefore, the filament and cathode should be tied together to prevent insulation breakdown, and the filament wiring and transformer secondary should be insulated from ground. This arrangement requires an individual filament winding for the 6L6-G.

Plug-in coils are used in both plate-tank circuits to obtain a desirable value for " Q " on both bands. The use of a swinging link assembly for L_{2} facilitates output loading adjustments.

The high-voltage section of the power supply makes use of two 816 's. These tubes are used because the voltage delivered by T_{2} is considerably in excess of the ratings of receiv-ing-type rectifiers, but not high enough to require the use of the $866-\mathrm{A} / 866^{\prime}: s$. The 816 's fit right into this transmitter design because they are low in cost, have low filament-power requirements, and take up so little space.

The low-voltage requirements of the transmitter are handled by a JU4-G. A single, tapped high-voltage transformer and one filter choke is used to obtain a dual power supply which has good regulation combined with low hum output. In adcition, it weighs less, occupies less space, and costs less than two separate supplies.

Construction

By mounting the power-supply components along the rear half of the chassis, it is practical to place the r-f section next to the panel, so that tuning-condenser shafts are readily access:ble. This arrangement is quite satisfactory with the $10^{\prime \prime} \times 17^{\prime \prime} \times 3^{\prime \prime}$ chassis bolted to the $1 / 8^{\prime \prime} \times 101 / 2^{\prime \prime} \times 19^{\prime \prime}$ steel panel. With lighter panels it may be necessary to install additional angle brackets to prevent sag, if relay-rack mounting is contemplated. Many details of the layout can be seen by reference to Figs. 15, 16. and 17. Therefore, only the less noticeable but nevertheless highly desirable features will be mentioncd here.

The 809 plate-tank condenser, C_{8}, is mounted on four tiny feed- through insulators so that connections to the $B+$ (rotor) can conveniently be made underneath the chassis. A pi-wound $r-c^{-}$choke is mounted above the chassis and connected between the rotor of C_{8} and the centertap of L_{2}. The 809 socket is mounted approximately $1 / 2^{\prime \prime}$ below the chassis

FIG. 16

FIG. 17

PARTS SHOWN IN FIG. 17

$\mathrm{R}_{1}=20,000$ ohms, 2 watts

$\mathrm{R}_{2}=250$ ohms, 2 watts
$\mathrm{K}_{3}=25,000$ ohms, 25 watts (IRC \#DHA)
$\mathbf{R}_{4}=3000$ ohms, 20 watts (IRC DG)
I $:=1500$ ohms, 2 watts
Fis $\mathrm{Rg}_{\mathrm{a}}=50$ ohms, 1 watt
$\mathrm{Rr}_{\mathrm{r}}=500$ ohms, 25 watts, adjustable
$\mathrm{K}_{0}=40,000 \mathrm{ohms}, 50$ watts
$L_{1}=13 \& W$ "Baby" Coils- 40 and 80 meters
La=B \& W BVL Coils- 40 and 80 meters
I: $=12$-henry, 300 -milliampere choke (Thordarson 1-19C43)
top by means of small metal pillars to lower the stray grid-ground capacitance. Short leads to C_{7} are obtained by mounting the 6L6-G plate-coil socket above the chassis. A large hole is cut in the chassis below the coil socket to obtain ample clearance for "hot" r-f and d-c leads brought out beneath the chassis. A workmanlike job is assured by cabling all power leads and tying small parts to Bakelite terminal strips. As can be seen in Fig. 16, the small filament transformers are mounted around the inside edges of the chassis wherever space is available near the tubes they serve.

Tuning Adjustments

Initial tuning adjustments should be made with plate voltage removed from the 809. This can conveniently be done by temporarily removing the plate-cap connectors from the 816 's, or better yet, by disconnecting the high-voltage d-c lead between C_{10} and C_{13}. The plate current of the $6 \mathrm{~L} 6-\mathrm{G}$, in resonance, should be about 30 ma., and the corresponding 809 grid current should be approximately 35 ma ., with no plate voltage on the 809 . The oscillator is exceptionally easy on the crystal, inasmuch as it is used only for straight-through operation. The conventional 60 ma . pilot bulb in series with the crystal is omitted, since it would not indicate excessive crystal current under any condition of tuning or mis-tuning.

After the 809 stage has been neutralized by one of the methods outlined in Transmitting Circuit Facts, plate voltage may be applied to the 809 through a 10000 -ohm, 50 -watt protective resistor. The 809 should now be tuned to resonance and a load applied before boosting plate voltage to the normal value. With 1000 volts on the $809, C_{0}$ will arc over when tuned to resonance unless the tank circuit is kept loaded. For optimum output, the 809 should be loaded until its plate current is 100 ma . maximum at resonance. Grid current should then be approximately 25 ma .

After experience has been obtained in operating the transmitter, it should not be necessary to insert a protective resistor each time it is tuned. By very carefully tuning C_{F} so that the 809 grid current is very low, it is possible to find the resonance point for C_{0} without difficulty, and to keep the 809 out-of-resonance plate current within reason. Then, C- can be tuned for optimum output and C_{9} "touched up".
$T_{1}=6.3$-volt, 1 -ampere filament transformer (Thordarson T19F80)
$T_{2}=6.3$-volt, 3-ampere filament transformer (Thordarson T19F97)
$T_{3}=2.5$-volt, 5.25 -ampere filament transformer (Thordarson T10F88)
$\mathrm{T}_{4}=5$-volt, 5 -ampere filament transformer
4=5-volt, 5-ampere fila
(Thordarson T19F83)
$T_{5}=\{1075-0-1075$ volts at 125 ma .
$507-0-507$ volts at 160 ma .
(Thordarson T19P'57)
$\mathrm{M}=0-200 \mathrm{ma}$. meter Triplett $2^{\prime \prime}$ square
NOTE: A 5000 -ohm, 2 -watt resistor may be shunted across RFC_{2}, if necessary to prevent parasitics.

FIG. 18

RCA-815 U-H - F TRANSMITTER 30 to 45 WATTS OUTPUT $21 / 2$ to 20 METERS

This transmitter has been designed to bridge a definite gap in modern transmitter equipment-the gap between the high and the ultra-high frequencies. It will deliver 30 to 45 watts from $21 / 2$ to 20 meters. It can be used to feed an antenna directly or to drive a separate, high-powered final on one or all of these bands. An 815 push-pull beam tube is employed in the final and the modulator and makes possible efficient u-h-f operation with smal! driver requirements and low cost.

The Circuit

The 815 is employed as a straight push-pull modulated class C r-f amplifier on all four bands. The circuit is given in Fig. 20. The exciter starts out with a 6L6 tritet* crystal oscillator and a 40 -meter crystal. For $20-$ meter operation the oscillator doubles in its plate circuit to drive the 815 directly. Neither of the two 6L6 doublers is used for operation on this band. For 10 meters, one 6L6 doubler is added. For 5 meters, the oscillator quadruples in its plate circuit and drives the single 6L6 doubler, while for $21 / 2$ meters, an additional doubler tube is brought into the circuit. Two crystals are required to cover all four phone bands. One crystal will do for 20,5 and $21 / 2$ meters, while a second crystal will provide harmonic output on 10,5 , and $21 / 2$ meters. Suitable crystal frequencies are listed in Table 3.

Conventional parallel-tuned circuits are used throughout, except in the $21 / 2$-meter doubler plate tank. In this tank, a so-called "series-tuned circuit" is used to make possible a larger physical size of L_{4} and to permit tuning of the circuit without an increase in the total circuit capacitance.

Capacitance coupling is used between the oscillator and first doubler, and between the first and second doublers. The - The "tritet" type of oscillator circuit was originally described by Mr. J. J. Lamb in "QST."

815 grid circuit may be link coupled either to the oscillator or to one of the doublers, depending on the operating band, by mears of switch S_{2}. At the same time, S_{2} removes filament voltage from any unneeded doubler tubes. This method is very convenient for effectively disconnecting a tube from the circuit, as only one switch contact is required. In addition, a tube with a cold cathode presents only a capacative load to its driver, and therefore uses negligible r-f power. This method of switching also makes possible the use of very short r-f excitation leads. When the transmitter is switched from 20 to 10 , or from 5 to $21 / 2$ meters, the 15 or 20 seconds required for filament heating should not unduly delay the band change.

A combination of grid-leak and cathode bias helps to protect the oscillator and doubler tubes during the tune-up periods by limiting both plate voltage and plate current. The 815 obtains its entire bias from a grid leak, however.

Each r-f tube has a separate voltage-dropping resistor for its screen supply to prevent screen-voltage shifts when a doubler is cut into or out of the circuit for band changes. The 815 series screen resistor performs an additional function as well; it permits modulation of the screen simultaneously with the plate without the need for a special, tapped modulation transformer. Modulation of both the screen and plate is necessary in order to obtain 100 per cent modulation with grod linearity.

Provision is made for two meters in the circuit, one for the plate current of any tube, and the other for all grid currents except that of the oscillator. S_{1} controls the grid meter, and S_{3} the plate meter. The principle of the switching circuits is described under the heading RCA ECONOMY TRANSMITTER.

FIG. 19
one plate of each neutralizing condenser. Two No. 10 copper wires, each with a $3 / 8$-inch disc fastened to one end, may be soldered to C_{20}, one on each side, to complete the pair of neutralizing condensers. Each condenser is adjusted by bending the No. 10 wire to obtain the proper spacing between the $3 / 8$ inch disc and the metal top of the insulator. An alternative method of adjusting the condensers is shown in Fig 18. In this arrangement, the $3 / 8$-inch discs are soldered to short copper-tubing sleeves which are free to slide on the No. 10 wire. Since adjustment of C_{22} and C_{3} is not critical, this refinement is optional.

All of the tuning condensers except C_{3} and C_{20} are mounted below the chassis and supported on strips of Micarta. C_{18} and C_{20}

The Layout

A layout has been chosen that makes for very short r-f leads and simplified mechanical construction. The three 6 L 6 oscillator and doubler tubes are grouped closely together so that the r-f leads connecting these tubes can be as short as practicable. With this arrangement, the low-impedance lines connecting $S=$ to the plate circuit links of the 6L6's and the 815 grid circuit are also quite short. These low-impedance lines are made of two No. 14 copper wires spaced about $1 / 4$-inch and held apart by means of sn:all pieces of polystyrene.

The 815 is the only tube in this transmitter that operates as a straight class C amplifier; each 6L6 either doubles or quadruples. Therefore, the 815 is the only tube that requires shielding to prevent oscillation. Shielding of the 815 is obtained by mounting its socket on a vertical baffle plate, with the tube horizontal. Additional shielding is furnished by the chassis itself.

The 815 final must be neutralized for stable operation with high-efficiency circuits on the 5 and $21 / 2$ meter bands. Construction of suitable neutralizing condensers is simple. The grid connections should be crossed over between C_{16} and the 815 socket to permit the neutralizing leads to be run directly between C_{16} and C_{20}. Two No. 14 copper wires are run from C_{18}, one on each side, through $1 / 4$-inch holes in the vertical shield plate. They are supported at their far ends by small standoff insulaters. The metal top of each insulator serves as

PARTS SHOWN IN FIG. 20

$\begin{array}{llllllll}\mathrm{C}_{1} & \mathrm{C}_{4} & \mathrm{C}_{6} & \mathrm{C}_{8} & \mathrm{C}_{9} & \mathrm{C}_{10} & \mathrm{C}_{12} & \mathrm{C}_{15}\end{array} \mathrm{C}_{14} \mathrm{C}_{1}=0.001 \mu \mathrm{f}$ mica $\mathrm{C}_{2}=35 \mu \mu \mathrm{f}$ variable (Cardwell No. ZR-35-AS) $\mathrm{C}_{3}=3-35 \mu \mu \mathrm{f}$ mica trimmer (Hammarlund MEX) $\mathrm{C}_{8}=20 \mu \mu \mathrm{f}$ mica
$\mathrm{C}_{7} \mathrm{C}_{11}=25 \mu \mu \mathrm{f}$ variable (Cardwell No. ZR-25-AS)
$\mathrm{C}_{15}=15 \mu \mu \mathrm{f}$ variable (Cardwell No. ZR-15-AS)
$\mathrm{C}_{10}=75 \mu \mu \mathrm{f} /$ section variable (Cardwell EU-T5-AS)
$\mathrm{C}_{18}=0.0015 \mu \mathrm{f}$ mica
$\mathrm{C}_{19}=0.001 \mu \mathrm{f}$ mica
$\mathrm{C}_{20}=35 \mu \mu \mathrm{f} / \mathrm{section}$ (Hammarlund No. HFBD-35-C)
$\mathbf{C l n}_{\boldsymbol{n}}=0.001 \mu \mathrm{f}$ mica, 1000 v
$\mathbf{R}_{1} \mathbf{R}_{5} R_{10}=100,000$ ohms, 0.5 watt
$R_{2} R_{7} R_{18}=200$ ohms, 1 watt
$R_{3} R_{8} R_{13}=40,000$ ohms, 1 wat
$R_{4} R_{8} \mathbb{R}_{8} R_{11} R_{16} R_{18}=50$ ohms, 0.5 watt
$R_{15}=15.000$ ohms, 1 watt
$\mathrm{R}_{17}=9040$ ohms, 10 watts
$\mathrm{R}_{18}=50$ ohms, 1 watt
L_{1} to L, See Tables No. 2 and 4

FIG. 20

RFC $=25$ Turns No. 28 enameled wire spaced one wire diameter on $3 / 8^{\prime \prime}$ coil form
$\mathrm{M}_{1}=\mathbf{0 - 1 0} \mathrm{ma}$. Grid current meter
$\mathrm{M}:=0-250 \mathrm{ma}$. Plate current meter
$\mathrm{T}_{1}{ }^{*}=$ Filament transformer 6.3v. 8a (Kenyon T-387)
$\mathrm{S}_{1}=$ Single pole, 3 position rotary switch
$\mathrm{S}_{2}=$ Two sections of single pole, 3 position switch and 1 section of 2 pole, 3 position switch ganged on single 8 witch assembly
$\mathrm{S}_{3}=$ Two pole, 4 position rotary switch

* This transformer is located on power supply chassis and supplies all filaments except rectifiers

ADDITIONAL PARTS

1 Chassis $8^{\prime \prime} \times 17^{\prime \prime} \times 3^{\prime \prime}$ steel
1 Bracket $51 / 2^{\prime \prime} \times 8^{\prime \prime}$ plus $1 / 2^{\prime \prime}$ mounting ledge
4 Feed through insulators
6 Sockets. 5 -contact, ceramic, RCA type 9920
4 Sockets. Octal, ceramic, RCA type 9924
2 Standoff ins. $\mathbf{1 "}^{\prime \prime}$ long (National No. GS-1)
4 Standoff ins. $\%$ " long

are mounted on small standoff insulators above the chassis.

The $2^{1 / 2}$-meter doubler plate coil, L_{A}, is mounted directly on C_{15}, in order to obtain the shortest possible leads for this circuit. L_{1} is wired permanently into the circuit because it does not have to be changed when the band is changed. Each link is automatically changed with its coil, so it is not necessary to readjust the positions of the links for band changes, if the optimum positions have been determined at the outset.

Tuning

This transmitter was found to be exceptionally easy to tune up, especially when one considers the high frequencies involved. No "bugs" were encountered in actual operation.

For the initial tuning adjustments, plate and screen voltage should be removed from the 815 by disconnecting the $815+B$ lead. S_{s} should first be set to position A, to prevent overloading the doublers when the oscillator is being tuned. Ten-meter coils should be plugged in for L_{2} and L_{5}, and C_{8} adjusted for maximum crystal-oscillator output as indicated by the 815 grid current. Maximum output should occur when C_{3} is set about one turn less than its maximum capacitance. A lower setting than this may resnlt in the crystal oscillator stage breaking into spurious oscillations. The adjustment of C_{3} is most critical when the oscillator is used to quadruple to 10 meters. The same setting is satisfactory when the oscillator is used to double to 20 meters.

After the optimum setting has been found for C_{3}, the transmitter should be tuned up for optimum performance on the 20 -meter band. Switch S_{2} should be left at position A,
and 20 -meter coils inserted for L_{2}, L_{5}, and L_{0}. Positions of S_{2} and coil numbers are given in Table 2 , while coil dimensions are given in Table 4. The links mounted on L_{2} and L_{5} should be trimmed to one turn and bent away, if necessary, from the coils to limit the 815 grid current to 6 ma . or less. The 815 stage should now be neutralized by one of the methods described under TRANSMITTING CIRCUIT FACTS. The gap between the glates of each neutralizing condenser is about $1 / 2$-inch for the neutralizing arrangenient used in this transmitter; the spacing is not critical and can be the same for all bands.

Once the 815 has been neutralized, plate voltage can be applied and C_{20} quickly tuned to resonance. The no-load plate current of the 815 is about 10 to 20 ma . at resonance. Tuning without load may cause the screen dissipation to go as high as 6 watts, and should therefore be done for short periods of time only. An antenna may now be coupled to $L_{\text {a }}$ and the loading increased until the 815 plate current is 150 ma., the rated maximum. The 815 grid current should be from 3-5 ma.

Tuning the transmitter for 10 and 5 -meter operation is done in the same manner, except that the first doubler is cut into the circuit (See Tables 2 and 4). For 10 meters, the first doubler grid current should be 1 to 2 ma., and for 5

FIG. 23

PARTS SHOWN IN FIG, 23
$\mathrm{C}_{1} \mathrm{Ca}_{2} \mathrm{C}_{3}=0.004 \mu \mathrm{fmica}$ $\mathrm{C}_{6}=5 \mu \mathrm{f}$ electrolytic, 50 v . $\mathrm{C}_{5} \mathrm{Ce}_{6} \mathrm{C}_{10} \mathrm{C}_{11}=4 \mu \mathrm{f}$ electrolytic, 450 v . $\mathrm{C}_{7} \mathrm{C}_{\mathrm{s}}=0.01 \mu \mathrm{f}$ paper, 600 v.
$\mathrm{C}_{\mathrm{p}}=10 \mu \mathrm{f}$ electrolytic, 25 v . $\mathrm{R}_{2} \mathbf{R}_{13} \mathrm{R}_{15}=1$ megohm, 0.5 watt $\mathrm{R}_{2}=5000 \mathrm{oh} m \mathrm{~ms} 0.5 \mathrm{watt}$ $\mathrm{R}_{3} \mathrm{R}_{4} \mathrm{R}_{10} \mathrm{R}_{12}=0.5$ megohm, 0.5 watt $R_{5}=1$ megohm, a-f gain control potentiometer
$\mathrm{R}_{\mathrm{t}} 2000$ ohms, 0.5 watt
$\mathrm{R}_{\boldsymbol{\tau}}=50,000$ ohms, 0.5 watt $\mathrm{R}_{\pi} \mathrm{R}_{\boldsymbol{P}}=250,000 \mathrm{ohms}, 0.5$ watt $\mathrm{R}_{\mathrm{L}}=12,000$ ohms, 0.5 watt $\mathrm{R}_{16}=750 \mathrm{ohms}, 1$ watt
$\mathrm{R}_{16}=10,000$ ohms, 10 watts $\mathbf{R}_{1 ;}=11,000$ ohms, 25 watts adjustable $\mathrm{T}_{1}=$ Driver transformer (Kenyon T-255)
To=Output transformer
(Kenyon T-493)
$\mathrm{J}_{1}=$ Open circuit input jack
$\mathrm{J}_{2}=$ Closed circuit input jack

ADIOITIONAL PARTS

1 'Yassis $8^{\prime \prime} \times 17^{\prime \prime} \times 3$ " steel
4 Sockets 8 -contact
1 Socket 5 -contact
2 lnsulators feed through
and $21 / 2$ meters it should be 0.5 to 1 ma . These values are adequate for full output of this stage.

For $21 / 2$-meter operation the inductance of L_{4} should be adjusted until C_{15} tunes near minimum capacitance, for maximum output. The links on L_{4} and Lo should be adjusted to deliver 2 to 3 ma. grid current to the 815 when the final tank circuit is fully loaded.

The useful power output of the 815 , measured into a lampload, was 46 watts on 10 and 20 meters with a plate input of 60 watts. With this same input the power output on 5 meters was 38 watts and on $21 / 2$ meters, 31 watts. The lowered values of measured power output on 5 and $21 / 2$ meters were largely the result of increased circuit losses at these frequencies. The tube operates within its plate dissipation ratings on all bands.

Modulator Unit

Using the same plate-voltage supply as the 815 final, the 815 modulator delivers the required audio power output with nominal plate current and with low distortion.

The modulator is illustrated in Figs. 21 and 22. A single 6 N 7 with its two triode units connected in push-pull furnishes sufficient drive for the 815. A 6SC7 phase inverter driven by a 6SF5 high-mu triode completes the tube lineup. The circuit is given in Fig. 23.

Provision is made for either a low- or a high-level, highimpedance microphone. A low-level crystal microphone should be plugged into the "low" jack. If it is desired to utilize a carbon or other low-impedance microphone, an input transformer must be used between the mike and the appropriate input jack. Amplifier gain for either input jack is conveniently controlled by means of R_{5}, which is connected after the 6SF5. Placing R_{5} after the first voltage-amplifier tube, rather than before, helps to reduce undesired noises originating in the gain control. The maximum signal input to the low-level jack should not exceed 0.5 volt. Approximately 2 millivolts input to the "low" jack is required for 100 per cent modulation.

Screen-Voltage Stabilization Necessary

It is perhaps not too well known that in order to obtain rated output from a class $A B_{2}$ beam a-f power amplifier, the screen voltage must be held fixed independent of wide variations in the screen current. A voltage-regulator tube, such as a VR105-30, is the logical device for stablizing the screensupply voltage in this instance.

Plate voltage for the 6SC7, 6N7, and 6SF5 are obtained from the 450 -volt supply through separate resistor-capacitor filters which effectively isolate the tubes, reduce hum to a very low value, and, in the case of the 6 N 7 , reduce the platesupply voltage to rated value.

Bias for the 815 is obtained from two midget $71 / 2$-volt "C" batteries strapped underneath the chassis, as shown in Fig. 22, while bias for the other tubes is furnished by conventional cathode resistors. A-f voltage for phase inversion is taken from the 6 N 7 grid circuit. In order to lower the effective internal impedance of the high-mu 6N7 driver, parallel inverse feedback from each 6N7 plate to the corresponding 6 SC 7 plate is used.

Optimum impedance match between the modulator and its class C amplifier load is obtained with a 6000 -ohm primary and a 2500 -ohm secondary. For transformer T_{2} specified in the modulator circuit legend (See Fig. 23), the 815 modulator plates are connected to terminals 1 and 6 ; " +450 " to terminals 3 and 4; and " +400 (No. 2)" and "To 815 RF" to terminals A and D, respectively.

There is nothing tricky about the layout or construction of the modulator unit of this transmitter. Sufficient shielding for most purposes is furnished by the single-ended metal tubes and by the chassis. Shielding problems are greatly simplified by allowing plenty of space between the input and

FIG. 24
output sircuits of the amplifier unit. Both the modulator and the r-f units are built on $8 \times 17 \times 3$ steel chassis.

Power-Supply Unit

The total plate-current requirements of the r-f and modulator units is greater than 500 ma . at 400 to 450 volts. A heavy, three-winding power transformer feeding into two different rectifier and filter systems proves to be an economical design. The unit is illustrated in Figs. 24 and 25; the circuit is given in Fig. 26.

The use of two separate filter systems makes it practical to employ relatively low-cost filter chokes designed for low voltages. By using two separate full-wave rectifier systems, it is possible to avoid circuits involving paralleled rectifier tubes. The use of a three-winding transformer provides two windings in parallel to feed both 815's plus the speech amplifier tubes, and the third winding for the three 6L6's of the exciter. The two high-voltage windings that are paralleled must, of course, be connected with the same polarity in relation to each other. The windings should first be connected temporarily, and then 110 volts a.c. applied to the primary through a 100-watt lamp. If the lamp lights only dimly, the polarity is correct. If, on the other hand, the lamp lights to nearly full brilliancy, the polarity is incorrect and must be reversed.

Two $866-\mathrm{A} / 866$'s deliver a maximum of 350 ma . to the 815 's and the speech tubes. A swinging choke L_{3}, helps to provide excellent regulation. Power for the modulator unit is taken off after T_{3} to improve regulation further and to relieve L_{2} of some of its load. A dropping resistor, R_{i}, is employed to reduce the 815 plate voltage to the rated maximum of 400 volts.

Two 816's handle the exciter current requirements. About 200 ma . is required for the three 6L6's for $21 / 2$-meter operation. For 5 - and 10 -meter operation, the drain is reduced to about 130 ma ., since the $21 / 2$-meter doubler is out of the circuit. For 20 meters, with both doublers out, the drain of this section of the power supply is only about 60 ma .

The power transformer employed in this power supply is quite versatile; in addition to having three different windings, each winding has taps for three different voltages. While a receiving-type rectifier, such as a $5 \mathrm{U} 4-\mathrm{G}$ or 83 can satisfactorily handle the 400 -volt, $200-\mathrm{ma}$. requirements of the three 6L6's of this transmitter, two 816 rectifiers have been employed to permit the use of one of the higher voltage taps for other equipment, if desired.

The power-supply unit is mounted on a $10^{\prime \prime} \times 17^{\prime \prime} \times 3^{\prime \prime}$ chassis No panel is shown, although one can be added if desired.

Table 2-COIL NUMBER AND SWITCH POSITIONS
(40-meter Crystal for all bands)

Operating Band	$\underset{\text { No. }}{\text { No }_{2}}$	$\begin{gathered} \mathrm{L} 3 \\ \text { No. } \end{gathered}$	$\begin{gathered} \mathbf{L}_{\downarrow} \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Ls } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Le }_{8} \\ \text { No. } \end{gathered}$	\mathbf{S}_{2} Position
20	(1)	-	-	(2)	(3)	A
10	(1)	(4)	-	(5)	(6)	B
5	(4)	(7)	(10)	(8)	(9)	13
$2^{1 / 2}$	(4)	(7)	(10)	(11)	(12)	C

Table 3-CRYSTAL FREQUENCY CHART

Crystal Frequency KC.	Phone Band			
	20 Meters	10 Meters	5 Meters	21/2 Meters
7000-7075	CW only	CW only	56000-56600	112000-113200
7075-7125	14150-14250	CW only	56600-57000	113200-114000
7125-7200	CW only	28500-28800	57000-57600	114000-115200
7200-7250	(28800-29000	57600-58000	115200-116000
7250-7300	-	29000-29200	58000-58400	-
$7300-7500$	-	29200-30000	58400-60000	-

Table 4-COIL DIMENSIONS

Operating Ifand Meters	$\begin{aligned} & \text { Coil } \\ & \text { No. } \end{aligned}$	$\text { B } \underset{\text { Soil }}{\&} W$	Length Inches	Dia Inches	Number Turns	Link	
						Turns	Position
20	1	20 MEL*	$11 / 4$	$11 / 4$	13	1	End
20	2	20 MCL	$13 / 8$	$11 / 4$	14	1	Center
20	3	20 JVL	$28 / 8$	$13 / 4$	1.4	3	Center Adj.
10	4	10 MEL	$11 / 4$	11/4	6	1	End
10	5	10 MCL	$11 / 4$	$11 / 4$	6	1	Center
10	6	10 JVL	2	1\%	8	3	Center Adj.
5	7	-	5/8	7/8	3	1	End
5	8	-	8/4	7/8/8	4	1	Center
5	9	-	$18 / 4$	$13 / 4$	4\#	2	Center Adj.
21/2	10	-	5/8		5		Center
$21 / 2$	11	-	1/2	5/8	2	1	Center
$21 / 2$	12	-	1	11/8	$12{ }^{24}$	1	Center
All	L_{1}	-	7/8	1/2	12	-	-

- Two turns removed from coil \# No, 10 Copper Wire \# No, Copper Tubing

PARTS FOR FIG. 26

$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{8} \mathrm{C}_{4}=\mathbf{1 6 \mu} \mu$ electrolytic, $\mathbf{4 5 0}$ v.
$\mathrm{C}_{6} \mathrm{C}_{5}=16 \mu$ felectrolytic, 500 v.
$\mathbf{R}_{1} \mathbf{R}_{2}=8000$ ohms, 20 watts
$R_{s} R_{4}=15,000$ ohms, 20 watts
$\mathrm{R}_{\mathrm{s}} \mathrm{R}_{6}=\mathbf{2 5 0 , 0 0 0}$ ohms 1 watt
$R_{7}=100$ ohms, 20 watts
$\mathrm{L}_{1} \mathrm{~L}_{2}=$ Smoothing choke, 10 henrys, 200 ma . (Kenyon No. T-152)
$L_{s}=S$ winging choke, 6-19 henrys, 300-30 ma. (Kenyon No. T-510)
$\mathrm{T}_{1}=$ Filament transformer, 2.5 v., $5 a$ (Kenyon No. T-379)
$T_{2}=$ Plate transformer
$520-0-520$ v. 175 ma ,
570-0-570 v. 175 ma .
$570-0-570$ v. 175 ma
(Kenyon No. T-658)
Ts=Filament transformer, 2.5 v., 10a
(Kenyon No, T-352)
$\mathrm{S}_{1} \mathrm{~S}_{2}=\mathrm{S} . \mathrm{P} . \mathrm{S} . \mathrm{T} . \operatorname{tog} \mathrm{gle}$ switch
$F=10 \mathrm{a}$ fuse

ADDITIONAL PARTS

1 Chassis $10^{\prime \prime} \times 17^{\prime \prime} \times 3^{\prime \prime}$ steel
4 Sockets 4 -contact, RCA type 9919
1 Socket 5-contact, RCA type 9920
1 Socket 8-contact, RCA type 9924

FIG. 26

RCA SINGLE-CONTROL 360-WATT TRANSMITTER

Real power with simple one-chassis construction, a single tuning control, and high overall efficiency are the outstanding features of the 360 -watt, two-tube transmitter shown in the top and bottom views of Figs. 27, 30, and 31.

This single-control transmitter employs a $6 \mathrm{~V} 6-\mathrm{GT} / \mathrm{G}$ as a Pierce crystal oscillator, and an RCA-813 final amplifier. The transmitter operates "straight-through" with either a 40-, 80 -, or 160 -meter crystal in the oscillator circuit and has a novel arrangement in which need for a low-voltage power supply is eliminated by obtaining the 6V6-GT/G plate and screen voltage through the 813 screen-dropping resistor.

The fixed-tuned, band-switching Pierce oscillator circuit shown in Fig. 29 makes it unnecessary to retune the oscillator when changing crystals. The equivalent d-c circuit showing how the voltage for the $6 \mathrm{~V} 6-\mathrm{GT} / \mathrm{G}$ is obtained is shown in Fig. 28. It will be noticed that the d-c resistance of the $6 \mathrm{~V} 6-\mathrm{GT} / \mathrm{G}$ plate circuit is used to replace part of the 813 series screen resistor. For technical reasons it is desirable to have the equivalent d-c resistance of the oscillator tube high and its plate current low. A 6V6-GT/G was chosen for the oscillator because it can operate on fairly low plate current and still furnish ample dive for the old. ine elimination of a separate low-voltage power supply reduces the cost of this transmitter. Furthermore, since a buffer stage is not required, this transmitter is simpler and can be built for no greater cost than one of the same power using triodes.

Ample shielding for the 813 is obtained by mounting the large 7 -pin socket so that the chassis is flush with the internal shield plate of the tube. A $6 \mathrm{~V} 6-\mathrm{GT} / \mathrm{G}$ is used for the oscillator rather than a metal 6 V 6 because the shell of a 6 V 6 would have to be 400 volts above ground.

The location of the various parts on the chassis is not particularly critical; a convenient and practical layout is shown in the photographs. C_{2} is mounted on two sturdy, metal-base ceramic insulaters each $13 / 8$ inches high; L_{2} is mounted on two inexpensive feed-through insulators equipped with G-R jacks. The 813 is placed immediately behind the tank condenser and has its socket mounted $13 / 4$ inches below the chassis top by means of four angle brackets. The oscillator tube is mounted near the front left corner of the chassis so that the crystal socket, $60-\mathrm{ma}$. pilot bulb, and band switch can conveniently be mounted on the front apron of the chassis. The $60-\mathrm{ma}$. pilot bulb is used to indicate r-f crystal current. Since it also acts as a fuse for the crystal, it should be left in the circuit at all times.

As a safety precaution, the 813 plate-current jack is mounted on a small strip of bakelite recessed $11 / 2$ inches behind the front chassis apron as shown in Fig. 31. Two long 6-32 screws make a rigid support for the bakelite strip. Addition of an insulated coupling between the shaft of C_{7} and the tuning knob is recommended to further reduce shock hazard. The power terminals, including a bakelite safety terminal for the high-voltage lead, a chassis-type 110 -volt connector, and an ordinary binding post for ground, are all mounted on the rear of the chassis. The various circuit components which are listed by the manufacturer's trade name are the parts that were actually used in the construction of this transmitter. In many cases, equivalent parts of other manufacture can be utilized, if desired.

Pierce Oscillator Circuit

By using an untuned Pierce oscillator for the driver, circuit adjustments for band and frequency shifting are reduced to a minimum. Tuning adjustments for the oscillator can be made once and then forgotten.

A tapped, untuned plate coil L_{1} (see Fig. 29) is used in the oscillator so that high output can be obtained with low crystal current. The usual form of Pierce oscillator with a conventional pi-wound r-f choke for the plate tank circuit is quite satisfactory for 160 -meter crystals. However, $40-$ and 80 -meter crystals require critical adjustment of the feedback (grid-ground) capacitance C_{11} to avoid excessive r-f crystal current. Also, any appreciable reduction in crystal current obtained by reducing the value of the capacitance C_{11} has the effect of lowering the output of the oscillator. These disadvantages can largely be overcome by winding an untuned plate inductance of the proper value for a 160 -meter crystal and shorting out portions of this coil for 80 - or 40 -meter crystals. The coil is illustrated in Fig. 32. When the optimum value for L_{1} is used, the oscillator output is at maximum, r-f crystal is at minimum, and the value of C_{11} is not critical. Specifications for L_{1} including the tap locations are given in the legend for Fig. 29. Different circuit layouts, coilform sizes, or whe sizes may require a slight adjustment of the positions. If it is necessary to move one of the taps because of excessive crystal current, it is probable that the inductance of L_{n} is too large; if the crystal is hard to start, L_{1} is probably too small.

All preliminary adjustments to the oscillator should be made with the 813 plate disconnected and the supply voltage reduced to approximately 1000 volts, either by utilizing a different power supply or else by inserting a resistance of 50000 to 100000 ohms in series with R_{b}. With these adjustments, approximately 3 to 6 ma . of grid current can be obtained without the $60-\mathrm{ma}$. pilot bulb showing any color. The 813 plate can now be connected and C_{7} tuned to resonance. Then, a load can be coupled to L_{2} and the plate voltage boosted to the normal operating value. A 300 -watt light bulb clipped across a portion of the plate tank gives a nice visual indication of the output, and is often much more satisfactory for testing purposes than an antenna load. With 2000 volts on the plate of the 813 and 180 ma. plate current, a 300 -watt

FIG. 28
bulb should light up to practically full brilliancy. After satisfactory output has been obtained, the dummy load can be removed and the antenna connected.

It should be noticed that when the 813 plate tank is tuned to resonance, the screen current rises as resonance is approached. The increasing screen current increases the power input to the oscillator because of the series arrangement which in turn increases the oscillator output, crystal current, and 813 grid current. These increases in grid and crystal currents are entirely normal and are not necessarily an indication of regeneration in the 813 stage. It is best to keep the 813 plate tank loaded at all times unless the voltage

FIf. 29

RCA SINGLE-CONTROL 360-WATT TRANSMITTER
$\mathrm{C}: \mathrm{C}_{2} \mathrm{~S} \cdot \mathrm{C} \mathrm{C}_{4} \mathrm{C}_{6} \mathrm{C}: 3=0.005$ mica, 1090%.
$\mathrm{C}_{7}=90 \mu \mu \mathrm{f}, 0.084 \mathrm{in}$. \#spacing (Cardwell XP-90-KS
$\mathrm{C}_{8}=0.002 \mu \mathrm{f}$ mica, 5000 v .
$\mathrm{C} \varepsilon=0.00005 \mu \mathrm{f}$ mica, 1000 v .
$\mathrm{C}_{10}=0.006 \mu \mathrm{f}$ mica, 1000 v .
$\mathrm{C}_{11}=0.0001 \mu \mathrm{f}$ mica, 1000 v .
$\mathrm{C}_{12}=0.001 \mu \mathrm{f}, 2500 \mathrm{v}$.
$L_{1}=155$ turns \#28 enamelled wire closewound on $11 / 3^{\prime \prime}$ dia. form, tapped at 21 and 65 turns, for 40 and 80 meters respectively
$\mathrm{L}_{2}=$ Bud " T " coils for crystal frequency $\mathrm{R}_{1}=20000$ ohms, 1 watt
$\mathbf{R}_{2} \mathbf{R}_{3}=50000$ ohms, 1 watt
$R_{4}=20000 \mathrm{ohms}, 10$ watts (omit for phone)
$\mathbf{R}_{5}=50000$ ohms, 50 watts
$\mathrm{R}_{8}=1000$ ohms, 1 watt
$\mathbf{R}_{\mathbf{y}}=$ Keying relay (Guardian $\mathrm{K}-100$)
$T_{1}=10-\mathrm{v} .5-\mathrm{a}$. filament transformer (Thordarson T-19F96)
$T_{2}=6.3-v .1-a$. filament transformer (Thurdarson T-19F80)
$\mathrm{J}_{1} \mathrm{~J}_{2}=$ Current jacks
$\mathbf{J}_{3}=$ Key jack
$\mathbf{X}=$ Crystal
\# 0.07 in . spacing is adequate for cw operation

* Reduce to 1600 v . for PM-phone

TRANSMITTER CONSTRUCTION
applied to the hot end of R_{0} is reduced to approximately 1000 volts, as mentioned earlier. When filament voltage is applied, sufficient time should be allowed for the $6 \mathrm{VT}-\mathrm{GT} / \mathrm{G}$ heater to warm up before applying high voltage. If this is not done, excessive voltage may appear across the 6VT-GT/G.

Screen-Keying System

The screen-supply circuit is keyed because the small amount of current that must be handled makes it relatively easy to eliminate key-clicks. In addition, break-in operation becomes possible without the use of fixed bias, because the oscillator is keyed simultaneously with the 813. The filter $\mathrm{C}_{12} \mathbf{R}_{8}$ reduces key clicks considerably, and also serves to "blow out" ares across the relay contacts. If the filter is omitted, the relay contact spacing must be nearly $1 / 4$ inch to extinguish the arc. It is absolutely necessary to use a keying relay in this circuit because of the high voltage which is handled. Keying is positive and clean-cut and without clicks or chirps.

For the c-w conditions of 2000 volts on the plate of the $813,180 \mathrm{ma}$. plate current, and 7 to 10 ma. grid current, a useful carrier power output of 275 watts was obtained with an efficiency of better than 75%, the total bleeder current (which is the oscillator plate current) being 25 ma . For 'phone or c-w operation at 1600 volts or less, $\mathrm{R}_{\text {r }}$ should be disconnected in order to supply the correct screen voltage to the 813 .

Arrangement for Modulation

With no change other than a reduction of plate voltage to 1600 volts and omission of \mathbf{R}_{\checkmark}, the transmitter is ready for the modulator. With 1600 volts on the plate of the 813 , 150 ma . plate current, and 7 ma . grid current, a useful carrier power output of 175 watts was obtained with an ef-

FIG. 30
ficiency of better than 70%. Since the screen-bleeder current was slightly less than 20 ma., the modulator must be able to handle $150+20$, or 170 ma . at 1600 volts. A pair of RCA-809's in class B would furnish the 135 watts of audio power required, but a separate 1000 -volt supply would be needed for this combination. If the plate voltage of the 813 is reduced to 1500 volts, a pair of class-B 811's can be operated from the same power supply. A modulator using class-B 811's and an associated supply are described in SPECIAL RCA HAM BULLETIN No. 1. This publication can be obtained on request from the Commercial Engineering Section, RCA Victor Division, Radio Corporation of America, Harrison, N. J.

FIG. 31

RCA 5-BAND PLATE-MODULATED 'PHONE C-W TRANSMITTER

FIG. 33

FIG. 34

- 10-160 METER OPERATION
- 310 WATTS INPUT ON PHONE
- 450 WATTS INPUT ON C.W.
- PUSH-PULL 812 FINAL
- CLASS B 811 mODULATOR

The 10 - to 160 -meter, three-stage transmitter illustrated above is designed for either c-w or plate-modulated-telephony uperation. It has a power output of appraximately 340 watts on c-w and 240 watts on 'phone.

Band changing can be accomplished conveniently and rapidly by means of plug-in coils. Because each oscillator cathode coil can be used on two or more bands, anly four coils have to be changed in most cases.

The transmitter includes 4 separate chassis-panel units mounted on an open, 6 -foot relay rack. These four units will be described in detail, and are as follows: High-voltage power supply, class B modulator, crystal oscillator plus lowvoltage supply, and buffer amplifier plus push-pull 812 final amplifier. The transmitter is complete except for a speech-amplifier-and-driver chassis and an antenna-tuning network. A suitable circuit for the speech equipment is shown in Fig. 47 on page 71. The design of the antenna-tuning unit will, of course, depend on the type of antenna feeder system to be used.

PM Transmitter; Exciter and Low-Voltage Supply Unit

The exciter unit (see Figs. 35, 36, and 37) consists of a standard "Tritet" crystal oscillator using an RCA-6L6. The plate circuit of the oscillator is used for "straight-through" operation, frequency doubling, or frequency quadrupling, which ever may be required. In each case, ample grid excitation is delivered to the 807 buffer stage located on the finalamplifier chassis.

The exciter unit employs a husky 600 -volt power supply, which furnishes plate voltage both to the 6 L 6 oscillator (from a tap on a voltage divider) and to the 807 buffer. A pair of 816 's are used in this supply because the 800 volts delivered by the power transformer is considerably in excess of the voltage rating of rectifiers such as the 83 and $5 \mathrm{Z3}$.

The only trick in getting the "Tritet" oscillator to operate properly on the 2 nd and 4 th harmonics of the crystal is in the design and tuning of the cathode tank ($\mathrm{L}_{2} \mathrm{C}_{4}$) shown in Fig. 36. The fourth-harmonic output is ample to drive the 807 , and the second-harmonic output is several times larger than necessary. Data for the cathode coils and for the plate coils are given in tables 5,6 , and 7 .

A number of variable factors influence the cathode tank capacitance, so that individual adjustment of C_{4} is recommended for each installation. If the tuning adjustment is not correct, the 6L6 may oscillate vigorously, self-excited. If the inductance of L_{2} is too far from the optimum value, any amount of adjustment on C. will not produce satisfactory operation. Self-excited oscillation is highly undesirable; it can usually be detected on a receiver, and also by a relatively broad, slow dip in the oscillator plate current (nominally about 50 ma . when the plate circuit is out of resonance). A true crystal-controlled harmonic oscillation will produce a fast, sharp dip in plate current as C_{0} is passed through resonance. It will also produce, at exact resonance, a decided dip in r-f crystal current, as indicated by pilot bulb "P." Normally, this bulb should glow only a dull red, -never "white."

It is recommended that the oscillator plate voltage be limited to 320 volts and the screen voltage to about 150 200 volts to avoid danger of fracturing the crystal due to circuit misadjustment during tuning. Also, that the cathode tank coils be individually tuned by separate fixed mica trimmers, as indicated in table 5. Thus, once the correct adjustments are made, there is no danger that C, will be mis-tuned. In addition, it is a definite advantage to be able to plug in a correctly tuned cathode tank for each desired operating band, instead of having to re-tune a variable-air condenser-and perhaps having its capacitance pass through a number of values definitely inimical to crystal longevity! One more precaution-do not mistake the 3rd harmonic for the 4 th; for example, with a 10 -meter plate coil, a platecurrent dip can be obtained at 21 Mc as well as at 28 Mc .

The layout of the parts on the exciter chassis is shown in Figs. 35 and 37. The steel panel is $1 / 8^{\prime \prime} \times 10^{1 / 2^{\prime \prime}} \times 19^{\prime \prime}$ and the cadmium-plated steel chassis is $3^{\prime \prime} \times 10^{\prime \prime} \times 17^{\prime \prime}$.

Table 5-OSCILLATOR CATHODE COIL DATA (L2, FIG. 36)

Coil	Xtal	Turns	Wire	Form Diameter	Length	Shunt Capacitance*	$\begin{gathered} \text { Operating } \\ \text { Bands } \end{gathered}$
1	40	8	\#20 DCC	11/2"	1"	10-70 $\mu \mu \mathrm{f}$	40, $20 \& 10$
2	80	11	\#20 DCC	11/2"	1"	10-70 $\mu \mu \mathrm{f}$	80 \& 40
3	160	22	\#28 DCC	$11_{2}^{\prime \prime}$	1/2"	25-100 $\mu \mu \mathrm{f}$	160.80 \& 40

*Use mica trimmers and adjust each one for optimum harmonic operation of the oscillator.

Table 6-OSCILLATOR PLATE COIL DATA
(L_{3}, FIG. 36)

Band	Turns	Wire	Mean Diameter	Length	Taps*
10	5	\# 14 bare	$13 /{ }^{\prime \prime}$	1 "	A
20	10	\#14 bare	13/8"	13/4"	B
40	18	\# 20 DCC	11/2"	7/8"	C
80	31	\# 20 DCC	$11 /{ }^{\prime \prime}$	$1{ }^{\frac{7}{17 \prime \prime}}$	D
160	55	\# 28 1)CC	$12 / 2{ }^{\prime \prime}$	11/4"	A

Taps as follows for 807 excitation lead
$A=$ Center $\quad C=7$ turns from plate end
Table 7-BUFFER PLATE COIL DATA
(L1, FIG. 40)*

Band	Turns	Wire	Mean Diameter	Length	$\underset{\substack{\text { B } \\ \text { (Or } \\ \text { (Ope }}}{ }$
10	7	P/8' C.T.	$11 / 2^{\prime \prime}$	$41 / 23$	10 BL
20	9	B' ${ }^{\text {a }}$ C.T.	21/4"	$41 / 2^{\prime \prime}$	20 BL
40	20	\# 14 bare	2"	21/2"	40 BL
80	28	\#16 bare	$21 / 2$ "	25/8"	80 BL
160	45	\#18 bare	$21_{2}{ }^{\prime \prime}$	2% "	160 BL

*All coils have a 2 -turn link on "cold" end. C.T. indicates copper tubing.

Table 8-FINAL AMPLIFIER GRID COIL DATA (L4, FIG. 40)*

Band	Turns	Wire	Mean Diameter	Length	$\left(O_{r}\right)$ Bud Type
10	6	\#14 bare	11/2"	11/8"	OCL 10
20	12	\# 14 bare	11/2"	$11 / 2{ }^{\prime \prime}$	OCL-20
40	20	\#16 bare	11/2"	13/4"	OCL-40
80	32	\#18 bare	15\%	17/8"	OCL -80
160	55	\# 18 DCC	2"	$23 / 4$	OCL-160

*All coils are center tapped and center linked with a 2 - or 3-turn link.
Table 9-FINAL AMPLIFIER PLATE COIL DATA
(L_{6}, \quad FIG. 40$) \dagger$

Band	Turns	Wire*	Mean Diameter	Length	(Or) B \& W Type
10	6	$3^{3} 8^{\prime \prime}$ C.T.	21/4"	$31 / 2^{\prime \prime}$	10 TL
20	12	$3_{181}^{\prime \prime}$ C.T.	$2 \mathrm{fl}^{\prime \prime}$	41/4"	20 TL
40	22	\# 12 bare	21/4"	$43 / 8{ }^{\prime \prime}$	40 TL
80	28	\# 12 bare	$31 / 2^{\prime \prime}$	43\%"	80 TL
$160 \ddagger$	36	\# 12 bare	$5^{\prime \prime}$	$43^{3 \prime}$	160 TL

\dagger All coils are center tapped and center linked with a 2-turn link.
\ddagger A $75-\mu \mu \mathrm{f}$ padding condenser (not shown) must be shunted across the 160 -meter coil, in addition to C_{16}. A coil of slightly larger inductance can be used with C_{16} alone, although the LC ratio will be somewhat larger than the value required for a " Q " of 12.

- C.T. indicates copper tubing.

FIG. 36

PARTS SHOWN IN FIG. 36
$\mathrm{R}_{1}=50000$ ohms, 1 watt
$\mathrm{R}_{2}=300 \mathrm{ohms}, 1$ watt
$R_{3}=15000$ ohms, 25 watts; tap adjusted to 320 volts from ground
$\mathrm{R}_{4}=10000-\mathrm{ohm}, 4$-watt potentiometer
$\mathrm{R}_{6}=7500$ ohms, 10 watts
$\mathrm{C}_{1} \mathrm{C}_{2}=8-9$ uf dual-section paper, 600 .
(Cornell-Dubilier \#PEB-6808)
$\mathrm{C}_{3} \mathrm{C}_{5} \mathrm{C}_{7}=0.005 \mu \mathrm{f}$ mica
$\mathrm{C}_{4}=$ See text and Table 7
$\mathrm{C}_{8}=100 \mu \mu \mathrm{f}$ variable
(Cardwell \#ZU100AS)
$\mathrm{L}_{1}=15 \mathrm{~h}$., 150 ma . filter choke
(Thordarson \#T-74C29)
$\mathrm{L}_{2} \mathrm{~L}_{3}=$ See Tables 6 and 7
$\mathrm{T}_{1}=$ Plate transformer, $900-800-0-800-900$ v., 225 ma . (Thordarson \#T-19P56) $\mathrm{T}_{2}=$ Filament transformer, 2.5 v., 10 a. (Thordarson \#T-19F90)
$\mathbf{P}=$ Tan bead pilot bulb, $6.3 \mathrm{v} ., 150 \mathrm{ma}$. (Mazda \#40)
$X=40,80$, or 160 meter crystal
$\mathrm{M}=0-100 \mathrm{ma}$. plate meter, $2^{\prime \prime}$ square (Simpson \#127)
$\mathrm{A}=6$-pin wafer socket
FIG. 37

PM Transmitter; Final Amplifier Unit

The r-f power amplifier employs two RCA-812's in push-pull, driven by an RCA 807 buffer mounted on the same chassis, as illustrated in Figs. 38, 39, and 40. Fig. 33 shows the rear view of the transmitter, mounted in a 6 -foot relay rack. The 812 stage will deliver a power output of approximately 340 watts on cw and 240 watts on 'phone. Ample grid excitation is supplied by the 807 buffer on all 5 bands.

For cw operation, the final stage is directly keyed in the filament-return circuit by keying-relay L_{7}. When the key plug is removed from the key jack (J), the relay automatically closes the 812 filament-return circuit, so that the amplifier is ready for plate-modulated operation.

One additional S.P.S.T. switch, not shown in Fig. 40, might well be added to the amplifier panel. This switch should be inserted in series with the +600 -volt lead coming from cable terminal No. 7, so that the plate-and-screen voltage supply to the 807 can be removed while the oscillator stage is being tuned; otherwise, the 807 is likely to be kept out of resonance too long with resultant overheating of the tube. One of the Yaxley ceramic "Hamband" rotary switches will satisfactorily handle the voltage involved.

The mechanical layout of the circuit components on the
chassis and panel is shown in Figs. 38 and 39. The $1 /{ }^{1 / \prime \prime}$ x $171 / 2^{\prime \prime} \times 19^{\prime \prime}$ steel panel is mounted on a cadmium-plated steel chassis $3^{\prime \prime} \times 10^{\prime \prime} \times 17^{\prime \prime}$.

The voltage leads to the amplifier unit are brought in through a cable (see Fig. 40) terminated with a 6 -pin tube base. The tube-socket receptacle (P) has its 6 terminals marked 1-6-7-4-8-9. Each of these terminals must be connected to correspondingly numbered terminals on all of the other chasses. For example, amplifier terminal No. 1 is tied in with terminal No. 1 on the exciter, modulator, and highvoltage power-supply chasses. Amplifier terminal No. 7 is connected to exciter terminal No. 7 , and so on. The same wiring system applies to all other cable connections.

D-c plate current of the 807 should never exceed 100 ma . The two 812's should not be run at more than 300 ma . on cw , or 250 ma . on 'phone. During the initial tuning of the 812 's on each band, a 5000 -ohm, 200 -watt protective resistor should be inserted in the +1250 -volt lead. This resistor can conveniently be connected in series with terminal No. 6 on the modulator chassis. This simple precaution will prevent the r-f tubes and the power supply from being heavily overloaded due to prolonged out-of-resonance operation of the final stage.

PARTS SHOWN IN FIG. 40

$\mathrm{C}_{1}=8-30 \mu \mu \mathrm{f}$ mica trimmer (Hammarlund \#MEX)
$\mathrm{C}_{3} \mathrm{C}_{1} \mathrm{C}_{5} \mathrm{C}_{8} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{13} \mathrm{C}_{51}=0.005 \mu \mathrm{mica}$
C4 $=165 \mu \mu$, $0.05^{\prime \prime}$ air gap (Cardwell \#MO-165-RS)
$\mathrm{C}_{0}=260 \mu_{\mu \mu} /$ /aection, $0.031^{\prime \prime}$ air gap (Cardwell \#MR-260-BD)
$\mathrm{C}_{10} \mathrm{C}_{11}=4-7 \mu \mu \mathrm{f}, 0.140^{*}$ air gap (Cardwell \#ZS7SS)
$\mathrm{C}_{14} \mathrm{C}_{15}=0.002 \mu \mathrm{f}$ mica, 5000 V . (Sangamo \#A50)
$\mathrm{C}_{10}=100 \mu \mu \mathrm{f} / \mathrm{ec}$ ction, $0.070^{\prime \prime}$ air gap (Cardwell \#MT-100-GD)
$\mathrm{R}_{1}=10000$ ohms, 1 watt
$\mathrm{Rs}_{\mathrm{s}}=\mathbf{5 0 0}$ ohms, 10 watts
$\mathrm{R}_{\mathrm{s}}=40000$ ohms, 10 watta
$R_{s}=8500$ ohms, 25 watts
$\mathrm{RFC}_{1} \mathrm{RFC}_{2}=2.5-\mathrm{mh}{ }_{\mathrm{r}} \mathrm{f}$ - choke (National \#R-100)
$\mathrm{L}_{1} \mathrm{~L} 2 \mathrm{I} \mathrm{L}_{4} \mathrm{Is}$ Ls=See Tables 5, 6, and 7
$\mathrm{T}_{1}=$ Filament transformer; 6.3 v., 3 a. (Thordarson \#T-19F97)
$\mathrm{T}_{2}=$ Filament transformer; 6.8 v., 10 a. (Thordarson \#T-19F99)
$\mathrm{M}_{1}=0-10 \mathrm{ma}$ grid meter (Simpson \#127)
$\mathrm{M}_{2}=0-200 \mathrm{ma}$ plate meter (Simpson \#127)
$\mathrm{Ms}_{\mathrm{s}}=0-150 \mathrm{ma}$. grid meter (Simpson \#127)
$\mathrm{M}_{4}=0-500 \mathrm{ma}$. plate meter (Simpson \#127)
$\mathrm{J}=\mathrm{Key} \mathrm{jack}$
$\mathrm{L}_{n}=$ Keying relay, 6.3 V. A.C. (Guardian \#K-100)
$\mathrm{P}=6$-pin ceramic socket
*Reduce Ra to 2500 ohms for plate-modalated telephony service, in order to obtain grid-bias voltage shown in tube data under "Typical Operation."

PM Transmitter; Class B 811 Modulator Unit

The class B modulator unit employs two RCA-811's and is capable of delivering (with a plate voltage of 1250 volts) a useful audio power of 171 watts. Actually, only 155 watts are needed to modulate completely the 310 -watt input to the push-pull 812 final amplifier. At 1250 plate volts, the 811 modulators operate with zero bias, so that no troublesome bias-supply problem is presented.

The modulator unit is illustrated in Figs. 41 and 42 and in Fig. 43. Filament switch S_{1} permits the tube filaments to be turned off when $\mathbf{c w}$ operation is desired. The d-c plate-current meter $\left(M_{1}\right)$ is connecter in the fila-ment-return lead so that it does not create a high-voltage
hazard on the panel. Resistor R2 affects the meter reading very little; its purpose is to keep T_{1} and T_{3} grounded in case the meter circuit should open accidentally. Otherwise, T_{1} and T_{3} would assume the high $\mathrm{d}-\mathrm{c}$ plate potential.

One essential design feature of the modulator purposely has been left for the individual amateur to supply, because there are several designs which can be selected. This feature is the shorting mechanism for the secondary winding of T_{2} the output transformer. It is absolutely essential, of course, that this winding be shorted for cw operation. The most simple method is to shunt a S.P.S.T. high-valtage switch (rated for about 2500 volts) directly across the secondary.

This switch can be mounted on the panel without destroying panel symmetry,

An "elegant" solution is to employ a suitable relay (such as L_{r} in Fig. 40) across the secondary of the modulation transformer. Then, when keying-jack "J" (Fig, 40) is replaced with a suitable 2-circuit jack (1 "open" circuit and 1 "close" circuit), the shorting relay will automatically operate whenever the key plug is inserted in " J ". This convenient arrangement relieves the operator of the necessity for remembering to short T_{2}. The voltage to operate the shorting relay can be obtained from the 807 filament transformer, T_{1} (Fig. 40). It should not be obtained from the 811 filament transformer or from the 812 filament supply.

Data for making cable connections to the modulator chassis are given in the Final Amplifier Section. For convenience in connecting the Kenyon input and output transformers, the following data should be used:

INPUT TRANSFORMER	OUTPUT TRANSFORMER No. T-496	
Primary Secondary	Primary	Secondary (5100 ohms)
Plate=2 Grid= C	(18000 ohms)	
	Plate=1	Connect to
$\mathrm{B}+=4$ \& t^{\prime} C.T. $=\mathrm{D}$ \& D^{\prime}	Plate $=13$	Connect to
(Turns ratio, P to $1 / 2 \mathrm{~S}=6: 1$)	Tie $2 \& 3$	
	Tie 6 \& 14	
	Tie 17 \& 7	
	B+=16	

In operation, the no-signal $\mathrm{d}-\mathrm{c}$ plate curent of the two 811 's is about 50 ma.; the d-c plate voltage is about 1315 volts. With a sine-wave signal modulating the r-f carrier 100%, the modulator current and voltage are about 180 ma . and 1290 volts, respectively.

The steel panel on the modulator unit is $1 / 8^{\prime \prime} \times 10^{1 / 2^{\prime \prime}} \times 19^{\prime \prime}$ The cadmium-plated steel chassis employed is $3^{\prime \prime} \times 10^{\prime \prime} \times 17^{\prime \prime}$.

FIG. 43
PARTS SHOWN IN FIG. 43
$R_{1}=6.3$-volt pilot light (green)
$\mathrm{R}_{2}=50$ ohms, 25 watts
$\mathrm{T}_{1}=18$-watt universal driver transformer (Kenyon \#T-263)
$\mathrm{T}_{2}=300$-watt universal output transformer (Kenyon \#T-196)
$\mathrm{T}_{\mathrm{s}}=6.3$ v., 8 a. filament transformer (Kenyon \#T-387)
$\mathrm{M}_{1}=0.300 \mathrm{ma}$. plate meter (Triplett \#426)
$\mathrm{S}_{1}=$ S.P.S.T. toggle switch; 3 2., 250 v .
$J P=4$-terminal chassis connectors (H. B. Jones \#P-304-AB and \#S-304-FHT
$X=$ Insert $4.5-\mathrm{v}$. bias battery when d-e plate voltage is 1500 volts*
-The 811 's in this transmitter do not need to be operated at more than 1250 volts.

Speech Amplifier and Driver

Although no speech amplifier and driver are shown mounted in the transmitter rack, a recommended design for this equipment is shown in Fig. 47. Two RCA-2A3 triodes, operated with self bias, supply sufficient driving power for the 811 's, provided the power supply is carefully adjusted to the permissible maximum of 360 volts. Best operation under both ICAS and CCS conditions for the 811's will be obtained when the driver transformer is adjusted for a 5 to 1 or a 6 to 1 step-down turns ratio, from primary to one-half secondary.

The 6SJ7 speech amplifier and the 6N7 phase inverter are capable of driving the 2A3's to full output if a microphone having a peak output of 10 to 12 millivolts is employed. This output voltage (or more) is usually available from amateurtype crystal microphones. It is important, of course, to use a standard, shielded microphone cable to prevent r-f pick-up. Circuit details and a parts list for the complete speech amplifier and driver are shown in Fig. 47. The plate-to-plate impedance (5000 ohms) of the 2 A 3 's is low enough so that a short, 3 -wire, shielded line can be run a reasonable distance from their plate circuit to the Jones plug on the modulator chassis. For example, the 2A3's may be located on one side of the operating room and the transmitter rack on the other. A low-impedance line is not recommended, due to the extra driving power which is lost when two a-f coupling transformers are employed. A class B modulator of the type described is not only quite economical on a basis of audio-watts-output-per-dollar, but at the same time is capable of providing a modulating signal of high quality. The measured total harmonic distortion is only 5.8 per cent at a measured a-f power output of 171 watts.

FiG. 41

PM Transmitter; High-Voltage Power-Supply Unit

The 1250 -volt, $500-\mathrm{ma}$. power supply unit is illustrated in Figs. 44 and 45. Safety features include placing of the high voltage transformer terminals next to the panel, insulated plate connectors on the $866-\mathrm{A} / 866$'s, a female cable receptacle, and mounting of several high-voltage components under the chassis. Rubber safety caps (not shown) should
be placed over the terminals of filter chokes L_{1} and L_{2}, as an additional precaution.

For 'phone operation, the Thordarson high-voltage transformer is used with the 1560 -volt secondary taps. The d-c output voltage with the modulator "resting" is approximately 1250 volts when the usual a-c line-voltage regulation is taken

TRANSMITTER CONSTRUCTION
into account. Under full load, the measured ripple in the 812 plate supply is 0.69 per cent (when the carrier is fully modulated).

For c-w operation, the 1875 -volt transformer taps can be used. The key-up voltage is 1660 volts. Under a key-down load of 300 ma ., the final-amplifier plate voltage is about 1500 volts.

The a-c line switches S_{1}, S_{2} and S_{8} are wired in series. S_{1} controls the filaments of all the tubes in the transmitter; S, controls the 600-volt power supply on the exciter chassis; and S_{1} controls the high-voltage power supply. Neither S_{3} nor S_{8} will operate unless filament switch S_{1} is turned on first. Likewise, S_{z} will not operate unless both S_{1} and S_{2} are closed. In normal operation of the rig, S_{1} and S_{1} are left on, so that S_{s} becomes the master plate-supply switch for both low- and high-voltage supplies.

The power-supply unit has fuses in both sides of the a-c line, in order to meet Underwriters' requirements. These fuses should be as small as the peak rectifier load will permit; a value of 15 amperes is satisfactory.

The two filter condensers, the rectifier filament transformer, and the 200 -watt bleeder resistor are mounted beneath the chassis. The resistor is mounted about one inch below the chassis so as to allow free circulation of air. A series of \%/is-inch vent holes (not shown) should also be drilled in the chassis, above the bleeder, in the clear space between the plate transformer and the filter chokes.

The steel panel on the power-supply unit is $1 / 8{ }^{\prime \prime} \times 101 / 22^{\prime \prime} \times$ $19^{\prime \prime}$. The cadmium-plated steel chassis is $3^{\prime \prime} \times 12^{\prime \prime} \times 17^{\prime \prime}$.

$\mathrm{C}_{1}=6-\mu \mathrm{f}$ electrolytic, 25 V . $\mathrm{C}_{2}=0.05 \mu \mathrm{f}, 400 \mathrm{~V}$.
$\mathrm{C}_{\mathrm{a}} \mathrm{C}_{22}=8-\mu \mathrm{i}$ electrolytic, 450 V $\mathrm{C}_{6}=0.002 \mu \mathrm{f}, 400 \mathrm{~V}$.
$\mathrm{C}_{5}=0.002 \mu \mathrm{f}, 400 \mathrm{~V}$. $\mathrm{Cl}^{5} \mathrm{~V}$
 $\mathrm{C} \mathrm{C}_{7}=0.01 \mu \mathrm{f}, 600 \mathrm{~V}$.
= $10-\mu \mathrm{f}$ electrolytic, 150 V . $\mathrm{C}_{0}=1-\mu \mathrm{l}$ paper, 600 V . working $\mathrm{C}_{10}=16-\mu \mathrm{f}$ electrolytic, 450 V $\mathrm{R}_{1}=2$ megohms, 0.5 wat $\mathrm{R}_{2}=1400$ ohms, 0.5 Watt
$R_{4} R_{18}=0.5$ megohm, 0.5 wat $\mathrm{R}_{5} \mathrm{R}_{18}=0.6$ megohm, 0.5 w

- From 6SJ7 grid to 2As grida.

NOTE: The primary of T_{1} should be by-passed by two $0.1 \mu f$ condensers
$R_{0}=1-m e g o h m$ a-f gain-control potentiometer
$\mathrm{R}_{7}=\$ 500$ ohms, 0.5 watt $\mathrm{R}_{\mathrm{s}} \mathrm{R}_{0}=0.25$ megohm, 0.5 watt $\mathrm{R}_{10}=480000$ ohms, 0.5 watt $R_{11}=20000 \mathrm{ohms}, 0.5$ watt $\mathrm{R}_{18}=780$ ohms, 10 watts $\mathrm{R}_{14}=25000$ ohms, 10 watts $\mathrm{T}_{1}=$ Power transformer, as indicated $\mathrm{L}_{1}=12$-henry, $120-\mathrm{ohm}, 100-\mathrm{ma}$. smoothing choke
$\mathrm{L}_{\Omega}=40$-henry, 2000 -ohm, $15-\mathrm{ma}$ smoothing choke
$\mathrm{S}_{1}=$ S.P.S.T. a-c line switch
$\mathrm{AA}^{\prime}=$ Input for crystal microphone
in series, with the mid-point grounded to the chassis.

PM TRANSMITTER:
HIGH-VOLTAGE POWER-SUPPLY UNIT

FIG. 46
$\mathrm{C}_{1} \mathrm{C}_{2}=2 \mu \mathrm{f}, 2000 \mathrm{~V}$. (Cornell-Dubilier \#TJU-20020)
$\mathrm{K}_{1}=25000$ ohms, 200 watts (Ohmite "Dividohm" \#1368)
$L_{1}=5-20$ henry, $75-\mathrm{ohm}, 500-\mathrm{ma}$. swinging choke (Thordarson \#T-10C38)
$1_{s 2}=12-h e n r y, 90-\mathrm{hm}, 400-\mathrm{ma}$. smoothing choke (Thordarson) \#T-19C44)
$\mathrm{T}_{1}=2.5-\mathrm{V} ., 10-\mathrm{A}$, filament transformer (Thordarson \#T-19F90)
$\mathrm{T}_{2}=500-\mathrm{ma}$. high-voltage transformer, 1875-0-1875 and 1560-01560 volts RMS (Thordarson \#T-19P64)
$B_{1} B_{3} B_{3}=115-V$. pilot lights, candelabra base (Drake No. 75 ; color as indicated)
$S_{1} S_{3}=S . P^{\prime} . S . T ., 250-V ., 10-a$. (Cutler-Hammer power toggle switch)
$S_{2}=D . P . S . T ., 250-V_{.,} 10-\mathrm{a}$. (Cutler-Hammer power toggle switch)
$\mathbf{F}^{\mathbf{v}}=\mathrm{A}-\mathrm{c}$ line fuses, 15 a . (Littelfuse \#1075)
$P=5-$ pin ceramic tube socket

SPEECII AMPLIFIER AND DRIVER IVOR CLASS $13811^{\prime} \mathrm{s}$. VOI,TAGE GAIN, 5700*

FIG. 47

The various components which have been mentioned by manufacturers' trade names in each of the units described in this book are the parts which were actually used. Other parts may be substituted with equally good results provided they have similar characteristics.

RECTIFIER FILTER DESIGN

FILTER DESIGN CURVES

FOR FULL-WAVE, SINGLE-PHASE CIRCUITS ONLY-60-CYCLE SINE-WAVE SUPPLY (When the supply is a 50 -cycle source, multiply the selected values of inductance and capacitance by 1.2 . When the supply is a 25 -cycle source, multiply the filter values by 2.4.)

single - section filter

Fig. 48-Curves for choice of filter values for (1) the first section of a double-section filter, or (2) a single-section filter.

DOUBLE-SECTION FILTER

Fig, 49-Curves for choice of filter values for second section of a double-section filter.

Erms=Maximum volts (RMS) per plate applied to rectifier tube.
$R_{\text {L }}=$ Load Resistance.
$\mathrm{ER}_{1}=$ Per cent ripple in d-c output voltage from (1) the first section of a double-section filter, or (2) a single-section filter.
$\mathrm{ER}_{2}=$ Per cent ripple in d-e output voltage from second section of a double-section filter.

GENERAL RULES

FOR SELECTION OF FILTER CONSTANTS

SINGI.E-SECTION FILTER (FIG. 48)
Select Inductance Values
(1) above proper RL Curve
(2) to left of proper Erms Curve
(3) along desired ER1 Curve

For each selected inductance value, use corresponding value of filter capacitance.

DOUBLE-SECTION FILTER (FIG. 49)
(I) Select desired percentage of output ripple voltage Erz on appropriate curve of $E R_{1}$
(2) Read corresponding L, C_{2} product
(3) To satisfy this product, choose convenient values of L_{2} and C_{3}
(4) Check value of selected L_{9} to make sure that it is greater than $3\left(C_{1}+C_{2}\right) \div 2 C_{1} C_{7}$

EXAMPLE No, 1

Problem: Given a d-c output voltage of 3180 volts (corresponds to a peak inverso voltage of 10,000 volts) from a 60 -cycle full-wave rectifer employ-
ing two $866-\mathrm{A} / 866$'s, design a single-section filter of the choke-input type ing two 866-A/866 s, design a single-section filter of the choke-input type Which will limit the ripple voltage to 5% at a load current equal to the combined maximum d-c lioad-current ratitg of the plate current of either tube from ribing higher than still prevent the peak plate current of either tube from riai
the maximum peak plate-current rating of the 866 -A $/ 866$.
he maximum peak plate-current rating of the $866-\mathrm{A} / 866$.
Procedure: Erra is equal to 180 x 1.11 , or 3535 voltg (see Summary of Rectifier Circuit Conditions, page 30), \mathbf{R}_{1} is equal to $3180 / 0.5$ ampere, or 6360 ohms. 866 . 866) Hin shown for the $866-\mathrm{A} / 866$). Hence, any combination of inductance and capacitance along the curve Er1 $=5 \%$ and to the left of the curve Ermi=
3535 will satisfy the requirements. A suitable combination is a filter sec3535 will satisfy the requirementa. A suitable combination employing a 25 -henry choke and a $1-\mu \mathrm{f}$ condenser.

EXAMPLE No. 2

Problam: Given a d-c output voltage of 3180 volts (corresponds to a peak invorse voltage of 10,000 volts) from a 60 -cycle full-wave rectifier employ-
ing two type $866-\mathrm{A} / 866$'s, design a double-section filter which will limit the output ripple voltage to 0.5% at a load current equal to the combined maximum d-c load-current rating of the tubes (500 ma .) and still prevent the peak plate current of either tube from rising higher than its maximum peak plate-current rating. The input choke is to be of the swinging type and the voltage regulation is to be good from no-load to full load.

Procedure: Ermm is equal to 3180×1.11, or 3535 volts. At maximum load, $\mathrm{R}_{1}=3180 / 0.5$ ampere, or 6360 ohms. Therefore, any combination of inductance and capacitance along $E_{r 1}$ and to the left of $E_{r m a}=3535$ will be suitable. A value of 10% ripple at the output of the first filter section will be assumed to be satisfactory. The minimum value of swinging-choke inductance and corresponding value of capacitance for the first-section filter condenser, therefore, may be selected along curve $\mathrm{E}_{\mathrm{r}_{1}}=10 \%$ and to the left of curve $E_{\text {rm }}=3535$ volts (for 866 -A/866). Suitable values are 18.5 henries and $1 \mu \mathrm{f}$. The maximum value of swinging-choke inductance to be used with a condenser having a capacity of 1μ f should be as high as practical. Assume that this value is 40 henries. Then, with a capacitance value of $1 \mu \mathrm{f}$ the maximum value of \mathbf{R}_{1} is approximately 44,000 ohms. Therefore, a bleeder resistance of 44,000 ohms is required to keep the d-c output from "soaring" at transmitter no-load conditions. With a load resistance of $44,000 \mathrm{ohms}$, the bleeder current is $2385 / 44000=0.073$ ampere, or 73 ma . The total useful d-c output current is then $500-73$, or 427 ma .

The design of the second filter section should now be considered. It must be capable of reducing the ripple voltage from 10% in the first section to 0.5% in its own output. From Fig. 49, the value of the product $\mathrm{L}_{3} \mathrm{C}_{3}$ is 37 as read on the curve $\mathrm{E}_{\mathrm{r} 1}=10 \%$ when $\mathrm{E}_{\mathrm{r} 2}=0.5 \%$. If C_{3} is chosen to be $2 \mu \mathrm{f}, \mathrm{L}_{2}=37 / 2$, or 18.5 henries. This value of L_{8} is greater than $3\left(\mathrm{C}_{2}+\mathrm{C}_{2}\right) \div 2 \quad \mathrm{C}_{1} \mathrm{C}_{2}=3(1+2) \div 2 \quad(1 \times 2)$, or 2.25 , and therefore is of ample size to avoid resonance effects.

POPULAR RCA TUBE PUBLICATIONS AND ENGINEERING HELPS

Aruilable from RCA
Transmitting-Tube Distributors or direct from the
Commercial Engineering Section, RCA Victor Division of
Radio Corporation of America, Harrison, New Jersey

4

TECHNICAL INSTRUCTION BOOKLETS

These booklets are the auand Special-Purpose Tubes They contain the technical information required to insure optimum performance These are the days when it is essential to operate tubes with all possible care. If you do not have Instruction Booklets on the RCA tube types us for free conies. Be sure to mention the tube type numbers.

4
 RECEIVING-TUBE CHARACTERISTICS BOOKLET

The sixteen-page ReceivingTulse Characteristics Trooklet. known as the $1275-\mathrm{B}$, now contains a section on with receiving tubes but customarily listed separately. As in past editions, of this booklet, this new edition covers the salient electrical characteristics, socket connections, and a special
clapsification index of all RCA receiving tuber includRCA receiving tubes including the recently-added types.
A vailable on request.

4
 phototube BOOKLET

This sixteen page Phototube booklet contains complete technical data on RCA's line of light-sensitive tubes. In it are included data charts. curves, phototube theory, and circuits for sound reproduction, light-measuring indicators, automatic counters color discriminators, etc. Available on request.
fea manmactunine gampait, ine.

RCA POWER SPECIAL TUBES BOOKLET This beautifully illustrated 100 disto known as the TT100. lists the pertinent data on all RCA Mowr and
Special Tulbes Special Tullees including the Acorn and Midlyet trpes. gas
types, voltake regulators, photo-tubes, cathode-ray chest and mino mee Charts on transmitting tuhes are provided to facili-
tate selection of a tulbe tupe for a particular service or alpplication. A sailahle on re

TUBE HANDBOOKS (All Types HB-3) In wide use throughout the radio engineering and communication field is the RCA Tube Handbook. This loogeleaf publication, bound in aexible rabricoid binders, contains a wealth of data and engineering curves on all the various types. In addition the $\mathrm{HB-3}$ Handbook contains valuable generai mfor definitions of tube terms, base cano outline drawin chart. outline drawings, ree sistance-coupled amplirer charts, etc. Avainale on sub. Commercial Engineering Section for complete descrivsive folder and order form.

RC-14
RECEIVING TUBE MANUAL
The RC-14 Manual is a virtual encyclopedia of receiving tubes. It contains 256 pares of technical data on 333 afferent ty pes. brimful of tube theory, appit is the most complete book. of its kind ever published This is the manual used in many schools and colleges to supplement their radio supplement their radio
courses.

Price, 25 cents each.

HAM TIPS from RCA
Although publication of HAM TIPS has been sus. pended for the duration there is still a wealth of information on circuits and tubes contained in past iesues. A complete set of these news publications is now available in binder form. Have a cony for ready reference.

[^3]
4

RADIOTRON DESIGNER'S HANDBOOK
This 356-page book has par ticular value to those engaged in circuit-design work and to those interested in the fundamental principles of practical radio-circuit design. It ncludes elaborate discussions on audio-frequency consider ations, tests and measuremeory, many illustrations reference many illustrations reference charts, tables, etc Price, 11.00 each

TRANSMITTING TUBES
Praved in Cammunications' Mast Exacting Services

Table 2-COIL NUMBER AND SWITCH POSITIONS
(40-meter Crystal for all bands)

Operating Band	$\begin{aligned} & \text { La } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { L3 } \\ \text { No. } \end{gathered}$	L: No.	$\begin{gathered} \mathbf{L}_{0} \\ \mathbf{N}_{0} . \end{gathered}$	$\begin{gathered} \text { Le } \\ \text { No. } \end{gathered}$	S_{2} Position
20	(1)	-	-	(2)	(3)	A
10	(1)	(4)	-	(5)	(6)	B
5	(4)	(7)	-	(8)	(9)	B
$2^{1 / 2}$	(4)	(7)	(10)	(11)	(12)	C

Table 3 -CRYSTAL FREQUENCY CHART

Crystal Frequency KC.	Phone Band			
	20 Meters	10 Meters	5 Meters	21/2 Meters
7000-7075	CW only	CW only	56000-56600	112000-113200
7075-7125	14150-14250	CW only	56600-57000	113200-114000
7125-7200	CW only	28500-28800	57000-57600	114000-115200
7200-7250	C	28800-29000	57600-58000	115200-116000
7250-7300	-	29000-29200	58000-58400	-
7300-7500	-	29200-30000	58400-60000	-

Table 4-COIL DIMENSIONS

Operating Rand Meters	Coil No.	$\text { B } \underset{\text { Coil }}{\&} W$	Length Inches	Dia Inches	Number Turns	Link	
						Turns	Pasition
20	1	20 MEL *	$11 / 4$	$11 / 4$	13	1	End
20	2	20 MCL	$13 / 8$	$11 / 4$	14	1	Center
20	3	20 J VL	$23 / 8$	$13 / 4$	14	3	Center Adj.
10	4	10 MEL	$11 / 4$	$11 / 4$	6	1	End
10	5	10 MCL	$11 /$	$11 / 4$	6	1	Center
10	6	10 JVL	2	1%	8	3	Center Adj.
5	7	-	5/8	7/8	3	1	End
5	8	-	$3 / 4$	7/8	4	1	Center
5	9	-	$13 / 4$	$1 \% /$	4\#	2	Center Adj.
$21 / 2$	10	-	$5 / 8$	1/2	5	1	Center
21%	11	-	$1 / 2$	5/8	2	1	Center
$21 / 2$	12	-	1	1\%	27	1	Center
All	La	-	7/8	1/2	12	-	-

- Two turns removed from coil \# No. 10 Copper Wire * 3" Copper Tubing

PARTS FOR FIG. 26

$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{Ca}_{3} \mathrm{C}_{4}=16 \mu$ felectrolytic, 450 v.

$\mathbf{R}_{1} \mathbf{R}_{2}=8000$ ohms, 20 watts
$R_{a} R_{4}=15,000$ ohms. 20 watts
$\mathbf{R}_{6} \mathbf{R e}_{\mathbf{e}}=\mathbf{2 5 0 , 0 0 0}$ ohms 1 watt
$\mathbf{R}_{\tau}=100$ ohms, 20 watts
$\mathrm{L}_{1} \mathrm{~L}_{2}=$ Smoothing choke, 10 henrys, 200 ma (Kenyon No. T-152)
Ls=Swinging choke, 6-19 henrys, 300-30 ma. (Kenyon No. T-510)
$\mathrm{T}_{1}=$ Filament transformer, $2.5 \mathrm{v} ., 5 \mathrm{a}$ (Kenyon No. T-379)
$T_{2}=$ Plate transformer
$520-0-520$ v. 175 ma .
$570-0-570$ v. 175 ma .
(Kenyon No. T-658)
Ts=Filament transformer, 2.5 v., 10a (Kenyon No. T-352)
$\mathrm{S}_{1} \mathrm{~S}_{2}=$ S.P.S.T. toggle switch
$F=10 a$ fuse

ADDITIONAL PARTS

1 Chassis $10^{\prime \prime} \times 17^{\prime \prime} \times 3^{\prime \prime}$ steel
4 Sockets 4-contact, RCA type 9919
1 Socket 5 -contact. RCA ty pe 9920
1 Socket 8-contact, RCA type 9924

FIE. 26

FIS. 27

RCA SINGLE-CONTROL 360-WATT TRANSMITTER

Real power with simple one-chassis construction, a single tuning control, and high overall efficiency are the outstanding features of the 360 -watt, two-tube transmitter shown in the top and bottom views of Figs. 27, 30, and 31.

This single-control transmitter employs a $6 \mathrm{~V} 6-\mathrm{GT} / \mathrm{G}$ as a Pierce crystal oscillator, and an RCA-813 final amplifier. The transmitter operates "straight-through" with either a 40 -, 80 -, or 160 -meter crystal in the oscillator circuit and has a novel arrangement in which need for a low-voltage power supply is eliminated by obtaining the 6V6-GT/G plate and screen voltage through the 813 screen-dropping resistor.

The fixed-tuned, band-switching Pierce oscillator circuit shown in Fig. 29 makes it unnecessary to retune the oscillator when changing crystals. The equivalent $\mathrm{d}-\mathrm{c}$ circuit showing how the voltage for the $6 \mathrm{~V} 6-\mathrm{GT} / \mathrm{G}$ is obtained is shown in Fig. 28. It will be noticed that the d-c resistance of the 6V6-GT/G plate circuit is used to replace part of the 813 series screen resistor. For technical reasons it is desirable to have the equivalent d-c resistance of the oscillator tube high and its plate current low. A 6Vf-GT/G was chosen for the oscillator because it can operate on faimy low plate current and still furnish ample ürive for the 813 . Ine elimination of a separate low-voltage power supply reduces the cost of this transmitter. Furthermore, since a buffer stage is not required, this transmitter is simpler and can be built for no greater cost than one of the same power using triodes.

Ample shielding for the 813 is obtained by mounting the large 7 -pin socket so that the chassis is flush with the internal shield plate of the tube. A $6 \mathrm{~V} 6-\mathrm{GT} / \mathrm{G}$ is used for the oscillator rather than a metal 6 V 6 because the shell of a 6 V 6 would have to be 400 volts above ground.

The location of the various parts on the chassis is not particularly critical; a convenient and practical layout is shown in the photographs. C_{7} is mounted on two sturdy, metal-base ceramic insulators each $13 / 8$ inches high; L_{2}, is mounted on two inexpensive feed-through insulators equipped with G-R jacks. The 813 is placed immediately behind the tank condenser and has its socket mounted $13 / 4$ inches below the chassis top by means of four angle brackets. The oscillator tube is mounted near the front left corner of the chassis so that the crystal socket, $60-\mathrm{ma}$. pilot bulb, and band switch can conveniently be mounted on the front apron of the chassis. The $60-\mathrm{ma}$. pilot bulb is used to indicate r-f crystal current. Since it also acts as a fuse for the crystal, it should be left in the circuit at all times.

As a safety precaution, the 813 plate-current jack is mounted on a small strip of bakelite recessed $11 / 2$ inches behind the front chassis apron as shown in Fig. 31. Two long 6-32 screws make a rigid support for the bakelite strip. Addition of an insulated coupling between the shaft of C : and the tuning knob is recommended to further reduce shock hazard. The power terminals, including a bakelite safety terminal for the high-voltage lead, a chassis-type 110 -volt connector, and an ordinary binding post for ground, are all mounted on the rear of the chassis. The various circuit components which are listed by the manufacturer's trade name are the parts that were actually used in the construction of this transmitter. In many cases, equivalent parts of other manufacture can be utilized, if desired.

Pierce Oscillator Circuit

By using an untuned Pierce oscillator for the driver, circuit adjustments for band and frequency shifting are reduced to a minimum. Tuning adjustments for the oscillator can be made once and then forgotten.

A tapped, untuned plate coil L_{1} (see Fig. 29) is used in the oscillator so that high output can be obtained with low crystal current. The usual form of Pierce oscillator with a conventional pi-wound r-f choke for the plate tank circuit is quite satisfactory for 160 -meter crystals. However, 40 - and 80 -meter crystals require critical adjustment of the feedback (grid-ground) capacitance C_{11} to avoid excessive r-f crystal current. Also, any appreciable reduction in crystal current obtained by reducing the value of the capacitance C_{11} has the effect of lowering the output of the oscillator. These disadvantages can largely be overcome by winding an untuned plate inductance of the proper value for a 160 -meter crystal and shorting out portions of this coil for 80 - or 40 -meter crystals. The coil is illustrated in Fig. 32. When the optimum value for L_{1} is used, the oscillator output is at maximum, r-f crystal is at minimum, and the value of C_{11} is not critical. Specifications for L_{2} including the tap locations are given in the legend for Fig. 29. Different circuit layouts, coilform sizes, or whe sizes may require a slight adjustment of the positions. If it is necessary to move one of the taps because of excessive crystal current, it is probable that the inductance of L_{n} is too large; if the erystal is hard to start, L_{4} is probably too small.

All preliminary adjustments to the oscillator should be made with the 813 plate disconnected and the supply voltage reduced to approximately 1000 volts, either by utilizing a different power supply or else by inserting a resistance of 50000 to 100000 ohms in series with \mathbf{R}_{5}. With these adjustments, approximately 3 to 6 ma . of grid current can be obtained without the $60-\mathrm{ma}$. pilot bulb showing any color. The 813 plate can now be connected and C : tuned to resonance. Then, a load can be coupled to L_{2} and the plate voltage boosted to the normal operating value. A 300 -watt light bulb clipped across a portion of the plate tank gives a nice visual indication of the output, and is often much more satisfactory for testing purposes than an antenna load. With 2000 volts on the plate of the 813 and 180 ma . plate current, a 300 -watt

FIG, 28
bulb should light up to practically full brilliancy. After satisfactory output has been obtained, the dummy load can be removed and the antenna connected.

It should be noticed that when the 813 plate tank is tuned to resonance, the screen current rises as resonance is approached. The increasing screen current increases the power input to the oscillator because of the series arrangement which in turn increases the oscillator output, crystal current, and 813 grid current. These increases in grid and crystal currents are entirely normal and are not necessarily an indication of regeneration in the 813 stage. It is best to keep the 813 plate tank loaded at all times unless the voltage

FIf. 29

RCA SINGLE-CONTROI, 360-WATT TRANSMITTER

C: $\mathrm{C} 2 \mathrm{C}, \mathrm{Cr}, \mathrm{C} \mathrm{C}_{23}=0.005$ mica, 1090 v . $\mathrm{C}:=90 \mu \mu \mathrm{f}, 0.084 \mathrm{in} . \#$ spacing (Cardwell XI'-90-Ks
$\mathrm{C}_{n}=0.002 \mu \mathrm{f}$ mica, 5000 v ,
$\mathrm{C}_{\mathrm{v}}=0.00005 \mu \mathrm{f}$ mica, 1000 v .
$\mathrm{C}_{10}=0.006 \mu \mathrm{fmica}, 1000 v$.
$\mathrm{C}_{11}=0.0001 \mu \mathrm{f}$ mica, 1000ν.
$C_{1} \because=0.001 \mu f, 2500 v$.
$L_{1}=155$ turns \#28 enamelled wire closewound on $11 /{ }^{\prime \prime}$ dia. form, tapped at 21 and 65 turns. for 40 and 80 meters respectively
$\mathrm{L}_{2}=$ Bud " T ' coils for crystal frequency
$\mathrm{R}_{1}=20000$ ohms, 1 watt
$\mathrm{R}_{2} \mathrm{R}_{3}=50000$ ohms, 1 watt
$R_{4}=20000$ ohms, 10 watts (omit for phone)
$\mathrm{R}_{5}=50000$ ohms, 50 watts
$\mathbf{R}_{8}=1000$ ohms, 1 watt
$\mathbf{R}_{\mathbf{y}}=\mathbf{K e y i n g}$ relay (Guardian $\mathbf{K}-100$)
$T_{1}=10-\mathrm{v} .5-\mathrm{a}$. filament transformer (Thordarson T-19F96)
$\mathrm{T}_{2}=6.3-\mathrm{v}$. 1-2. filament transformer (Thordarson T-19F80)
$\mathbf{J}_{1} \mathbf{J}_{2}=$ Current jacks
$\mathbf{J}_{3}=$ Key jack
$\mathbf{X}=$ Crystal
\# 0.07 in. spacing is adequate for cw operation

- Reduce to 1600 v . for PM \cdot phone

TRANSMITTER CONSTRUCTION
applied to the hot end of R_{5} is reduced to approximately 1000 volts, as mentioned earlier. When filament voltage is applied, sufficient time should be allowed for the 6VT-GT/G heater to warm up before applying high voltage. If this is not done, excessive voltage may appear across the 6VT-GT/G.

Screen-Keying System

The screen-supply circuit is keyed because the small amount of current that must be handled makes it relatively easy to eliminate key-clicks. In addition, break-in operation becomes possible without the use of fixed bias, because the oscillator is keyed simultaneously with the 813. The filter $\mathrm{C}_{12} \mathrm{R}_{0}$ reduces key clicks considerably, and also serves to "blow out" ares across the relay contacts. If the filter is omitted, the relay contact spacing must be nearly $1 / 4$ inch to extinguish the arc. It is absolutely necessary to use a keying relay in this circuit because of the high voltage which is handled. Keying is positive and clean-cut and without clicks or chirps.

For the c-w conditions of 2000 volts on the plate of the $813,180 \mathrm{ma}$. plate current, and 7 to 10 mat. grid current, a useful car rier power output of 275 watts was obtained with an efficiency of better than 75%, the total bleeder current (which is the oscillator plate current) being 25 ma . For 'phone or c-w operation at 1600 volts or less, R. should be disconnected in order to supply the correct screen voltage to the 813.

Arrangement for Modulation

With no change other than a reduction of plate voltage to 1600 volts and omission of R_{4}, the transmitter is ready for the modulator. With 1600 volts on the plate of the 813 , 150 ma. plate current, and 7 ma. grid current, a useful carrier power output of 175 watts was obtained with an ef-

Fig. 30
ficiency of better than 70%. Since the screen-bleeder eurrent was slightly less than 20 ma., the modulator must be able to handle $150+20$, or 170 ma . at 1600 volts. A pair of RCA-809's in class B would furnish the 135 watts of audio power required, but a separate 1000 -voit supply would be needed for this combination. If the plate voltage of the 813 is reduced to 1500 volts, a pair of class- B 811's can be operated from the same power supply. A modulator using class-B 811's and an associated supply are described in SPECIAL RCA HAM BULLETIN No. 1. This publication can be obtained on request from the Commercial Fingineering Section, RCA Victor Division, Radio Corporation of America, Harrison, N. J.

FIG. 31

FIG. 32

RCA 5-BAND PLATE-MODULATED 'PHONE C-W TRANSMITTER

FIG. 33

FIG. 34

- 10-160 METER OPERATION

- 310 WATTS INPUT ON PHONE
- 450 WATTS INPUT ON C.W.
- PUSH-PULL 812 FINAL
- CLASS B 811 MODULATOR

The 10- to 160-meter, three-stage transmitter illustrated above is designed for either $\mathbf{c - w}$ or plate-modulated-telephony operation. It has a power output of approximately 340 watts on c-w and 240 watts on 'phone.

Band changing can be accomplished conveniently and rapidly by means of plug-in coils. Because each oscillator cathode coil san be used on two or more bands, only four coils have to be changed in most cases.

The transmitter includes 4 separate chassis-panel units mounted on an open, 6 -foot relay rack. These four units will be described in detail, and are as follows: High-voltage power supply, class B modulator, crystal oscillator plus lowvoltage supply, and buffer amplifier plus push-pull 812 final amplifier. The transmitter is complete except for a speech-amplifier-and-driver chassis and an antenna-tuning network. A suitable circuit for the speech equipment is shown in Fig. 47 on page 71. The design of the antenna-tuning unit will, of course, depend on the type of antenna feeder system to be used.

PM Transmitter; Exciter and Low-Voltage Supply Unit

The exciter unit (see Figs. 35, 36, and 37) consists of a standard "Tritet" crystal oscillator using an RCA-6L6. The plate circuit of the oscillator is used for "straight-through" operation, frequency doubling, or freçuency quadrupling, which ever may be required. In each case, ample grid excitation is delivered to the 807 buffer stage located on the finalamplifier chassis.

The exciter unit employs a husky 600 -volt power supply, which furnishes plate voltage both to the 6L6 oscillator (from a tap on a voltage divider) and to the 807 buffer. A pair of 816 's are used in this supply because the 800 volts delivered by the power transformer is considerably in excess of the voltage rating of rectifiers such as the 83 and $5 \mathrm{Z3}$.

The only trick in getting the "Tritet" oscillator to operate properly on the 2 nd and 4 th harmonics of the crystal is in the design and tuning of the cathode tank ($L_{2} \mathrm{C}_{4}$) shown in Fig. 36. The fourth-harmonic output is ample to drive the 807 , and the second-harmonic output is several times larger than necessary. Data for the cathode coils and for the plate coils are given in tables 5,6 , and 7 .

A number of variable factors influence the cathode tank capacitance, so that individual adjustment of C_{4} is recommended for each installation. If the tuning adjustment is not correct, the 6 L 6 may oscillate vigorously, self-excited. If the inductance of L_{2} is too far from the optimum value, any amount of adjustment on C. will not produce satisfactory operation. Self-excited oscillation is highly undesirable; it can usually be detected on a receiver, and also by a relatively broad, slow dip in the oscillator plate current (nominally about 50 ma . when the plate circuit is out of resonance). A true crystal-controlled harmonic oscillation will produce a fast, sharp dip in plate current as C_{8} is passed through resonance. It will also produce, at exact resonance, a decided dip in r-f crystal current, as indicated by pilot bulb "P." Normally, this bulb should glow only a dull red, -never "white."

It is recommended that the oscillator plate voltage be limited to 320 volts and the screen voltage to about 150200 volts to avoid danger of fracturing the crystal due to circuit misadjustment during tuning. Also, that the cathode tank coils be individually tuned by separate fixed mica trimmers, as indicated in table 5. Thus, once the correct adjustments are made, there is no danger that C_{4} will be mis-tuned. In addition, it is a definite advantage to be able to plug in a correctly tuned cathode tank for each desired operating band, instead of having to re-tune a variable-air condenser-and perhaps having its capacitance pass through a number of values definitely inimical to crystal longevity! One more precaution-do not mistake the 3rd harmonic for the 4 th; for example, with a 10 -meter plate coil, a plate current dip can be obtained at 21 Mc as well as at 28 Mc .

The layout of the parts on the exciter chassis is shown in Figs. 35 and 37. The steel panel is $1 / 8^{\prime \prime} \times 10^{1 / 2^{\prime \prime}} \times 19^{\prime \prime}$ and the cadmium-plated steel chassis is $3^{\prime \prime} \times 10^{\prime \prime} \times 17^{\prime \prime}$.

Table 5－OSCILLATOR CATHODE COIL DATA （L2，FIG． 36 ）

Coil No．	$\begin{aligned} & \text { Xtal } \\ & \text { Rent } \end{aligned}$	Turns	Wire	Form Diameter	Length	Shunt Capaci－ tance	Operating Bands
1	40	8	\＃20 DCC	11／2＂	1＂	10－70 $\mu \mu \mathrm{f}$	40， $20 \& 10$
2	80	11	\＃ 20 DCC	11／2＂	1＂	$10.70 \mu \mu \mathrm{~m}$	80 \＆ 40
3	160	22	\＃28 DCC	11／2＂	$1 /{ }^{\prime \prime}$	25－100 $\mu \mu \mathrm{f}$	$160.80 \& 40$

－Use mica trimmers and adjust each one for optimum harmonic operation of the oscillator．

Table 6－OSCILLATOR PLATE COIL DATA
（ L_{3}, FIG． 36 ）

Band	Turns	Wire	Mean Diameter	Length	Taps＊
10	5	\＃ 14 bare	1\％／8＇	1 1＇	A
20	10	\＃ 14 bare	$13 / 8{ }^{\prime \prime}$	$13 / 4 "$	B
40	18	\＃ 20 DCC	$11 / 2 "$	7／8＂	C
80	31	\＃ 20 DCC	11／2＂	$1{ }_{1}^{76}$	D
160	55	\＃ 28 DCC	16＂	14／4＇	A

＊Taps as follows for 807 excitation lead：
$\mathbf{A}=$ Center $\quad \mathbf{C}=7$ turns from plate end
Table 7—BUFFER PLATE COIL DATA
（L1，FIG．40）＊

Band	Turns	Wire	Mean Diameter	Length	$\begin{aligned} & \text { (Or) } \\ & \text { B\&W } \\ & \text { Type } \end{aligned}$
10	7	畐＂С．T．	11／2＂	$41 / 2^{\prime \prime}$	10 BL
20	9	喿＂C．T．	$21 / 4{ }^{\prime \prime}$	41／2＂	20 BL
40	20	\＃14 bare	$2^{\prime \prime}$	21／2＂	40 BL
80	28	\＃16 bare	$21 / 2^{\prime \prime}$	$25 /{ }^{\prime \prime}$	80 BL
160	45	\＃ 18 bare	216＂	$25 / 81$	160 BL

保s have a 2 －turn link on＂cold＂end．C．T．indicates copper tubing．

FIG． 36

Table 8－FINAL AMPLIFIER GRID COIL DATA
（Lis，FIG．40）＊

Band	Turns	Wire	Mean Diameter	Length	（Or） Bud Type
10	6	\＃ 14 bare	11／2＂	11／8＂	OCL－10
20	12	\＃ 14 bare	11／2＂	$112 / 2$	OCL－20
40	20	\＃ 16 bare	11／2＂	13／4＂	OCL－40
80	32	\＃18 bare	$15{ }^{\prime \prime}$	$17 / 8$＂	OCL－80
160	55	\＃ 18 DCC	$2^{\prime \prime}$	21／9＂	OCL－160

＊All coils are center tapped and center linked with a 2－or 3－turn link．

Table 9－FINAL AMPLIFIER PLATE COIL DATA

 （L6，FIG． 40 ）\dagger| Band | Turns | Wire＊ | Mean Diameter | Length | $\begin{gathered} \text { (Or) } \\ \text { B\& } \\ \text { Type } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 6 | ${ }^{3} 180$ C．T． | 21／4＂ | $31 / 2^{\prime \prime}$ | 10 TL |
| 20 | 12 | ${ }^{\frac{3}{16}}{ }^{\prime \prime}$ C．T． | 2H＂ | 41／4＂ | 20 TL |
| 40 | 22 | \＃ 12 bare | 21／2＂ | 43／8＂ | 40 TL |
| 80 | 28 | \＃ 12 bare | $31 /{ }^{\prime \prime}$ | $43 / 8{ }^{\prime \prime}$ | 80 TL |
| $160 \ddagger$ | 36 | \＃ 12 bare | 5＂ | $43 / 8$ | 160 TL ． |

\dagger All coils are center tapped and center linked with a 2－turn link． \＄A $75-\mu \mu$ f padding condenser（not shown）must be shunted across the 160 －meter coil，in addition to C1s．A coil of slightly larger inductance can be used with C_{10} alone，although the LC ratio will be somewhat larger than the value required for a＂Q＂of 12 ．
－C．T．indicates copper tubing．
FIG． 35

PARTS SHOWN IN FIG． 36
$\mathrm{R}_{1}=50000$ ohms， 1 watt
$\mathrm{R}_{2}=300 \mathrm{ohms}, 1$ watt
$\mathrm{R}_{8}=15000$ ohms， 25 watts；tap adjusted to
320 volts from ground
$\mathbf{R}_{4}=10000-\mathrm{ohm}, 4-$ watt potentiometer $\mathrm{R}_{6}=7500$ ohms， 10 watts
$\mathrm{C}_{1} \mathrm{C}_{2}=8-\Omega$ uf dual－section paper， 600 จ．
（Cornell－Dubilier \＃PEB－6808）
$\mathrm{C}_{3} \mathrm{C}_{5} \mathrm{C}_{7}=0.005 \mu \mathrm{f}$ mica
$\mathrm{C}_{4}=$ See text and Table 7
$\mathrm{C}_{8}=100 \quad \mu \mu \mathrm{f}$ variable
（Cardwell $\#$ ZU 100AS）
$\mathrm{L}_{1}=15 \mathrm{~h},, 150 \mathrm{ma}$ ．filter choke
（Thordarson \＃T－74C29）
$\mathrm{L}_{2} \mathrm{~L}_{3}=$ See Tables 6 and 7
$\mathrm{T}_{1}=$ Plate transformer， $900-800-0-800-900$ v．， 225 ma ．（Thordarson \＃T－19P56） $\mathrm{T}_{2}=$ Filament transformer， 2.5 v ．， 10 a ． （Thordarson \＃T－19F90）
$\mathrm{P}=$ Tan bead pilot bulb， $6.3 \mathrm{v} ., 150 \mathrm{ma}$ ． （Mazda \＃40）
$X=40,80$ ，or 160 meter crystal
$\mathrm{M}=\mathbf{0}-100$ ma．plate meter， $2^{\prime \prime}$ square （Simpson \＃127）
$\mathrm{A}=6$－pin wafer socket
FIG． 37
transmitter construction

PM Transmitter; Final Amplifier Unit

The r-f power amplifier employs two RCA-812's in push-pull, driven by an RCA-807 buffer mounted on the same chassis, as illustrated in Figs. 38, 39, and 40. Fig. 33 shows the rear view of the transmitter, mounted in a 6 -foot relay rack. The 812 stage will deliver a power output of approximately 340 watts on cw and 240 watts on 'phone. Ample grid excitation is supplied by the 807 buffer on all 5 bands.

For cw operation, the final stage is directly keyed in the filament-return circuit by keying-relay $L_{\text {r }}$. When the key plug is removed from the key jack (J), the relay automatically closes the 812 filament-return circuit, so that the amplifier is ready for plate-modulated operation.

One additional S.P.S.T. switch, not shown in Fig. 40 , might well be added to the amplifier panel. This switch should be inserted in series with the +600 -volt lead coming from cable terminal No. 7, so that the plate-and-screen voltage supply to the 807 can be removed while the oscillator stage is being tuned; otherwise, the 807 is likely to be kept out of resonance too long with resultant overheating of the tube. One of the Yaxley ceramic "Hamband" rotary switches will satisfactorily handle the voltage involved.

The mechanical layout of the circuit components on the
chassis and panel is shown in Figs. 38 and 39. The $1 / 8^{\prime \prime} \mathrm{x}$ $17^{1 / 2^{\prime \prime}} \times 19^{\prime \prime}$ steel panel is mounted on a cadmium-plated steel chassis $3^{\prime \prime} \times 10^{\prime \prime} \times 17^{\prime \prime}$.

The voltage leads to the amplifier unit are brought in through a cable (see Fig. 40) terminated with a 6 -pin tube base. The tube-socket receptacle (P) has its 6 terminals marked 1-6-7-4-8-9. Each of these terminals must be connected to correspondingly numbered terminals on all of the other chasses. For example, amplifier terminal No. 1 is tied in with terminal No. 1 on the exciter, modulator, and high voltage power-supply chasses. Amplifier terminal No. 7 is connected to exciter terminal No. 7, and so on. The same wiring system applies to all other cable connections.

D-c plate current of the 807 should never exceed 100 ma The two 812's should not be run at more than 300 ma . on cw or 250 ma . on 'phone. During the initial tuning of the 812's on each band, a 5000 -ohm, 200 -watt protective resistor should be inserted in the +1250 -volt lead. This resistor can conveniently be connected in series with terminal No. 6 on the modulator chassis. This simple precaution will prevent the r-f tubes and the power supply from being heavily overloaded due to prolonged out-of-resonance operation of the final stage.

PM Transmitter; Class B 811 Modulator Unit

The class B modulator unit employs two RCA-811's and is capable of delivering (with a plate voltage of 1250 volts) a useful audio power of 171 watts. Actually, only 155 watts are needed to modulate completely the 310 -watt input to the push-pull 812 final amplifier. At 1250 plate volts, the 811 modulators operate with zero bias, so that no troublesome bias-supply problem is presented.

The modulator unit is illustrated in Figs. 41 and 42 and in Fig. 43. Filament switch S_{1} permits the tube filaments to be turned off when cw operation is desired. The d-c plate-current meter $\left(\mathrm{M}_{1}\right)$ is connected in the fila ment-return lead so that it does not create a high-voltage
hazard on the panel. Resistor R_{2} affects the meter reading very little; its purpose is to keep T_{1} and T_{s} grounded in case the meter circuit should open accidentally. Otherwise, T_{1} and T_{3} would assume the high d-c plate potential.

One essential design feature of the modulator purposely has been left for the individual amateur to supply, because there are several designs which can be selected. This feature is the shorting mechanism for the secondary winding of T_{2} the output transformer. It is absolutely essential, of course, that this winding be shorted for cw operation. The most simple method is to shunt a S.P.S.T. high-voltage switch (rated for about 2500 volts) directly across the secondary.

This switch can be mounted on the panel without destroying panel symmetry.

An "elegant" solution is to employ a suitable relay (such as L_{7} in Fig. 40) across the secondary of the modulation transformer. Then, when keying-jack "J" (Fig. 40) is replaced with a suitable 2 -circuit jack (1 "open" circuit and 1 "close" circuit), the shorting relay will automatically operate whenever the key plug is inserted in " J ". This convenient arrangement relieves the operator of the necessity for remembering to short T_{2}. The voltage to operate the shorting relay can be obtained from the 807 filament transformer, T_{1} (Fig. 40). It should not be obtained from the 811 filament transformer or from the 812 filament supply.

Data for making cable connections to the modulator chassis are given in the Final Amplifier Section. For convenience in connecting the Kenyon input and output transformers, the following data should be used:

In operation, the no-signal d-c plate curent of the two 811's is about 50 ma .; the d-c plate voltage is about 1315 volts. With a sine-wave signal modulating the r-f carrier 100%, the modulator current and voltage are about 180 ma , and 1290 volts, respectively.

The steel panel on the modulator unit is $1 / 8^{\prime \prime} \times 10^{1 / 2 "} \times 19^{\prime \prime}$ The cadmium-plated steel chassis employed is $3^{\prime \prime} \times 10^{\prime \prime} \times 17^{\prime \prime}$.

FIG. 43
PARTS SHOWN IN FIG. 43
$\mathrm{R}_{\mathrm{t}}=6.3$-volt pilot light (green)
$\mathrm{R}_{2}=50$ ohms, 25 watts
$\mathrm{T}_{1}=18$-watt universal driver transformer (Kenyon \#T-263)
$\mathrm{T}_{2}=300$-watt universal output transformer (Kenyon \#T-196)
$\mathrm{T}_{\mathrm{s}}=6.3$ v., 8 a. filament transformer (Kenyon \#T-387)
$\mathrm{M}_{1}=0-300 \mathrm{ma}$. plate meter (Triplett \#126)
$\mathrm{S}_{1}=$ =S.P.S.T. toggle switch; 3 a., 250 v.
$J P=4$-terminal chassis connectors (H. B, Jones \#P-304-AB and \#S-304-FHT)
$\mathrm{X}=$ Insert $4.5-\mathrm{v}$. bias battery when d -c plate voltage is 1500 volts*
-The $811^{\prime \prime}$ s in this transmitter do not need to be operated at more than 1250 volts.

Speech Amplifier and Driver

Although no speech amplifier and driver are shown mounted in the transmitter rack, a recommended design for this equipment is shown in Fig. 47. Two RCA-2A3 triodes, operated with self bias, supply sufficient driving power for the 811 's, provided the power supply is carefully adjusted to the permissible maximum of 360 volts. Best operation under both ICAS and CCS conditions for the 811's will be obtained when the driver transformer is adjusted for a 5 to 1 or a 6 to 1 step-down turns ratio, from primary to one-half secondary.

The 6SJ7 speech amplifier and the 6N7 phase inverter are capable of driving the 2A3's to full output if a microphone having a peak output of 10 to 12 millivolts is employed. This output voltage (or more) is usually available from amateurtype crystal microphones. It is important, of course, to use a standard, shielded microphone cable to prevent r-f pick-up. Circuit details and a parts list for the complete speech amplifier and driver are shown in Fig. 47. The plate-to-plate impedance (5000 ohms) of the 2A3's is low enough so that a short, 3 -wire, shielded line can be run a reasonable distance from their plate circuit to the Jones plug on the modulator chassis. For example, the 2A3's may be located on one side of the operating room and the transmitter rack on the other. A low-impedance line is not recommended, due to the extra driving power which is lost when two a-f coupling transformers are employed. A class B modulator of the type described is not only quite economical on a basis of audio-watts-output-per-dollar, but at the same time is capable of providing a modulating signal of high quality. The measured total harmonic distortion is only 5.8 per cent at a measured a-f power output of 171 watts.

FIG. 41

PM Transmitter; High-Voltage Power-Supply Unit

The 1250 -volt, $500-\mathrm{ma}$. power supply unit is illustrated in Figs. 44 and 45 . Safety features include placing of the highvoltage transformer terminals next to the panel, insulated plate connectors on the $866-\mathrm{A} / 866$'s, a female cable receptacle, and mounting of several high-voltage components under the chassis. Rubber safety caps (not shown) should
be placed over the terminals of filter chokes L_{1} and L_{2}, as an additional precaution.

For 'phone operation, the Thordarson high-voltage transformer is used with the 1560 -volt secondary taps. The d-c output voltage with the modulator "resting" is approximately 1250 volts when the usual a-c line-voltage regulation is taken

TRANSMITTER CONSTRUCTION
into account. Under full load, the measured ripple in the 812 plate supply is 0.69 per cent (when the carrier is fully modulated).

For c-w operation, the 1875 -volt transformer taps can be used. The key-up voltage is 1660 volts. Under a key-down load of 300 ma ., the final-amplifier plate voltage is about 1500 volts.

The a-c line switches S_{1}, S_{3} and S_{8} are wired in series. S_{1} controls the filaments of all the tubes in the transmitter; S_{3} controls the 600 -volt power supply on the exciter chassis; and S_{2} controls the high-voltage power supply. Neither S_{2} nor S_{s} will operate unless filament switch S_{1} is turned on first. Likewise, S_{4} will not operate unless both S_{1} and S_{2} are closed. In normal operation of the rig, S_{1} and S_{8} are left on, so that S_{9} becomes the master plate-supply switch for both low- and high-voltage supplies.

The power-supply unit has fuses in both sides of the a-c line, in order to meet Underwriters' requirements. These fuses should be as small as the peak rectifier load will permit; a value of 15 amperes is satisfactory.

The two filter condensers, the rectifier filament transformer, and the 200 -watt bleeder resistor are mounted beneath the chassis. The resistor is mounted about one inch below the chassis so as to allow free circulation of air. A series of \%-inch vent holes (not shown) should also be drilled in the chassis, above the bleeder, in the clear space between the plate transformer and the filter chokes.

The steel panel on the power-supply unit is $1 / 8{ }^{\prime \prime} \times 10^{1 / 2 "} \mathrm{x}$ $19^{\prime \prime}$. The cadmium-plated steel chassis is $3^{\prime \prime} \times 12^{\prime \prime} \times 17^{\prime \prime}$.

$\mathrm{C}_{1}=6-\mu \mathrm{f}$ electrolytic, 25 V . $\mathrm{C}=0.05 \mu$ f. 490 V .
C. $\mathrm{C}_{\mu}=8-\mu \mathrm{f}$ electrolytic, 450 V $\mathrm{C}_{4}=0.002 \mu \mathrm{C}, 100 \mathrm{~V}$.
$\mathrm{C}_{5}=25-\mu \mathrm{f}$ electrolytic, 25 V $\mathrm{C}_{8}=25-\mu \mathrm{f}$ electrolytic.
$\mathrm{C}_{4}=40-\mu \mathrm{f}$ electrolytic, 150 V
$\mathrm{C}_{\mathrm{i}}=1-\mu \mathrm{f}$ paper, 600 V . workin.
$\mathrm{C}_{\mathrm{i}}=1-\mu \mathrm{paper}, 600 \mathrm{~V}$. workin $\mathrm{C}_{10}=16-\mu \mathrm{i}$ electrolytic, 450 $\mathrm{R}_{1}=2$ megohms, 0.5 watt
$\mathbf{R}_{3}=1400 \mathrm{ohms}, 0.5 \mathrm{watt}$ $\mathrm{Rs}_{s}=1400 \mathrm{ohms}, 0.5$ watt $\mathrm{R}_{4} \mathrm{R}_{18}=0.5$ megohm 0.5 wit $\mathrm{R}_{5}=75000$ ohms, 0.5 watt

- From 6SJ7 grid to $2 A 5$ grids.

NOTE: The primary of \mathbf{T}_{1} should be ky-passed by two $0.1 \mu f$ condensers
$\mathrm{R}_{8}=1-\mathrm{megohm}$ a-f gain-control potentiometer
$\mathrm{R}_{7}=\$ 500$ ohms, 0.5 watt
$\mathrm{R}_{\mathrm{s}} \mathrm{R}_{9}=0.25$ megohm, 0.5 watt $\mathrm{R}_{10}=480000$ ohms, 0.5 watt $R_{11}=20000$ ohms, 0.5 watt $\mathrm{R}_{11}=780$ ohms, 0.5 watt $\mathrm{R}_{12}=780$ ohms, 10 watts $\mathrm{T}_{1}=$ Power transformer, as indicated $\mathrm{T}_{1}=$ Power transformer, as indic
$\mathrm{L}_{1}=12$-henry, 120 -ohm, $100-\mathrm{ma}$. LI $=12$-henry, 120 ohm
smoothing choke $\mathrm{L}_{2}=40$-henry, 2000 -ohm, 15-ma. -S P ©T
$\mathrm{AA}^{\prime}=\operatorname{In} p u t$ for crystal microphone

PM TRANSMITTER:
HIGII-VOLTAGE: POWER-SUPPLY UNIT

FIG. 46
$\mathrm{C}_{1} \mathrm{C}_{2}=2 \mu \mathrm{f}, 2000 \mathrm{~V}$. (Cornell-Dubilier \#TJU-20020)
$\mathrm{K}_{1}=25000$ ohms, 200 watts (Ohmite "Dividohm" \#1368)
$L_{1}=5-20$ henry, 75 -ohm, $500-\mathrm{ma}$. swinging choke (Thordarson \#T-19C38)
$\mathrm{I}_{2}=12$-henry, 90 -ohm, $400-\mathrm{ma}$. smoothing choke (Thordarson) \#T-19C44)
$\mathrm{T}_{1}=2.5-\mathrm{V} ., 10-\mathrm{A}$, filament transformer (Thordarson \#T-19F90)
$T_{2}=500-\mathrm{ma}$, high-voltage transformer, 1875-0-1875 and 1560-01560 volts RMS (Thordarson \#T-19P64)
$B_{1} B_{3} B_{3}=115-\mathrm{V}$. pilot lights, candelabra base (Drake No. 75 : color as indicated)
$S_{1} S_{3}=S .1^{\prime} \cdot S .{ }^{\prime} T$., $250-\mathrm{V} ., 10-\mathrm{a}$. (Cutler-Hammer power toggle switch)
$S_{2}=$ D.P.S.T., 250-V., 10-a. (Cutler-Hammer power toggle (witch)
$\mathbf{F}^{\prime}=A-c$ line fuses, 15 a. (Littelfuse \#1075)
$P=5-$ pin ceramic tube socket

SIPEECI AMPLIFIER AND DRIVER JOK CI,ASS B 811 's. VOI,TAGE GAIN, 5700*

FIG. 47

The various components which have been mentioned by manufacturers' trade names in each of the units described in this book are the parts which were actually used. Other parts may be substituted with equally good results provided they have similar characteristics.

FILTER DESIGN CURVES

FOR FULL-W AVE, SINGLE-PHASE CIRCUITS ONLY-60-CYCLE SINE-W AVE SUPPLY When the supply is a 50 -cycle source, multiply the selected values of inductance and capacitance by 1.2 . When the supply is a 25 -cycle source, multiply the filter values by 2.4.)

single-section filter

Fig. 48-Curves for choice of filter values for (1) the first section of a double-section filter, or (2) a single-section filter.

DOUBLE-SECTION FILTER

Fig. 49-Curves for choice of filter values for second section of a double-section
filter.

Erms=Maximum volts (RMS) per plate applied to rectifier tube.
$R_{L}=L$ wad Resistance.
$\mathrm{Er}_{1}=$ Per cent ripple in d-c output voltage from (1) the first section of a double-section filter, or (2) a single-sec-
tion filter. $\mathrm{ER}_{2}=$ Per
$E_{R_{2}}=P$ Per cent ripple in d-c output voltage from second section of a double-sec. tion filter.

GENERAL RULES FOR SELECTION OF FILTER CONSTANTS

SINGLE-SECTION FHLTEIR

 (FIG. 48)Select Inductance Values
(1) above proper Rl Curve
(2) to left of proper ERMS Curve
(3) along desired ER1 Curve

For each selected inductance value, use corresponding value of filter capacitance.

DOUBLE-SECTION FILTER (FIG. 49)

(I) Select desired percentage of output ripple voltage ER_{n} on appropriate curve of ER_{1}
(2) Read corresponding $\mathrm{L}_{3} \mathrm{C}_{2}$ product
(3) To satisfy this product, choose convenient values of L_{2} and $\mathrm{C}_{\text {s }}$
(4) Check value of selected L_{2} to make sure that it is greater than $3\left(\mathrm{C}_{1}+\mathrm{C}_{3}\right) \div 2 \mathrm{C}_{1} \mathrm{C}_{2}$

EXAMPLE No. 1

Problem: Given a d-c putput voltage of 8180 volts (corresponds to a peak inverse voltage of 10,000 volts) from a 60 -cyele full-wave rectifier employ-
ing two $866-\mathrm{A} / 866^{\prime} \mathrm{s}$, design a single-section filter of the choke-input ing two $866-$ A/ 866 's, design a single-section filter of the choke-input type
which will limit the ripple voltage to 5% at a load current equal to the which will limit the ripple voltage to 5% at a load current equal to the
combined maximum d-c load-current rating of the tubes (500 ma .), and combined maximum d-c load-current rating of the tubes (500 ma .), and
atill prevent the peak plate current of either tube from rising higher than atill prevent the peak plate current of either tube from risi
the mazimum peak platecurrent rating of the $866-\mathrm{A} / 866$.

Procedure: Erms is equal to 3180×1.11, or 3535 volts (see Summary of Rectifier Circuit Conditions, page 30). \mathbf{R}_{1} is equal to $3180 / 0.5$ ampere, or 6360 ohms. From Fig. ${ }^{48}$, $R_{1}=6360$ lies below curve $E_{r m e}=8585$ (as shown for the 866-A/866). Hence, any combination of inductance and ${ }_{3535}$ capacitance allong the curve $E_{r x}=5 \%$ and to the left of the curve Ermo $=$ 3535 will satiafy the requirements. A suitable combination is a filter sec-
tion employing a 25 -henry choke and a $1-\mu f$ condenser. tion employing a 25 -henry choke and a $1-\mu f$ condenser.

EXAMPLE No. 2

Problem: Given a d-c output voltage of 3180 volts (corresponds to a peak invorse voltace of 10,000 volts) from a 60 -cycle full-wave rectifier employ-
ing two type $866-\mathrm{A} / 866$ s, design a double-section filter which will limit the output ripple voltage to 0.5% at a load current equal to the combined maximum d-e load-current rating of the tubes (500 ma .) and still prevent the peak plate current of either tube from rising higher than its maximum peak plate-current rating. The input choke is to be of the swinging type and the voltage regulation is to be good from no-load to full load.

Procedure: $E_{\text {rms }}$ is equal to 3180×1.11, or 3535 volts. At maximum load, $\mathbf{R}_{1}=3180 / 0.5$ ampere, or 6860 ohms. Therefore, any combination of inductance and capacitance along $E_{f 1}$ and to the left of $E_{f_{m}=}=3535$ will be suitable. A value of 10% ripple at the output of the first filter section will be assumed to be satisfactory. The minimum value of swinging-choke inductance and corresponding value of capacitance for the first-8ection filter condenser, therefore, may be selected along curve $\mathrm{E}_{\mathrm{r} 1}=10 \%$ and to the left of curve $\mathrm{E}_{\mathrm{rm}}=3535$ volts (for $866-\mathrm{A} / 866$). Suitable values are 13.5 henries and $1 \mu \mathrm{f}$. The maximum value of swinging-choke inductance to practical. Assume that having a capacity of $1 \mu f$ should be as bigh as practical. Assume that this value is 40 henries. Then, with a capacitance vaiue of $1 \mu f$ the maximum value of R_{1} is approximately 44,000 the d-c output from "soaring" at transmitter ohms is required to keep the d-c output from "soaring" at transmitter no-load conditions. With a load resistance of 44,000 ohms, the bleeder current is $2385 / 44000=0.073$ ampere, or 73 ma . The total useful dec output current is then $500-73$, or
427 ma . 427 ma .

The design of the second filter section should now be considered. It must be capable of reducing the ripple voltage from 10% in the first section to 0.5% in its own output. From Fir. 49, the value of the product $\mathrm{L}_{2} \mathrm{C}_{2}$ is 37 as read on the curve $\mathrm{E}_{\mathrm{r} 1}=10 \%$ when $\mathrm{E}_{\mathrm{r} 2}=0.5 \%$. If C_{9} is chosen to be $2 \mu \mathrm{f}, \mathrm{L}_{2}=37 / 2$, or 18.5 henries. This value of L_{2} is greater than $3\left(\mathrm{C}_{2}+\mathrm{C}_{2}\right) \div 2 \quad \mathrm{C}_{2} \mathrm{C}_{2}=3(1+2) \div 2(1 \times 2)$, or 2.25 , and therefore is of ample size to avoid resonance effects.

POPULAR RCA TUBE PUBLICATIONS AND ENGINEERING HELPS

Available from RCA
Transmitting-Tube Distributors

or direct from the
Commercial Engineering Section,
RCA Victor Division of
Radio Corporation of America, Harrison, New lersey

4
TECHNICAL
INSTRUCTION BOOKLETS
Thise booklets are the authority on RCA Transmitting They contain the technical information required to in. information required to in* and long life from each type. These are the days when it is essential to operate tubes with all possible care. If you do not have Instruction Booklets on the RCA tube types as for free copies. Re sure to mention the tube type numbers.

4

RECEIVING-TUBE CHARACTERISTICS BOOKLET
The sixtcen-page ReceivingTube Characteristics Booknow contains a section on syecial-purpose types allied with receiving tubes but customarily listed separately. As in past editions, of this hooklet, this n ew edition covers the salient electrical characteristics, socket connections, and a special RCA receiving tubes including the recently-added typors.
Avalable on reptuct.

4
 PHOTOTUBE BOOKLET

This sixteen page Phototube booklet contains complete technical data on RCA s line are included data charta, curves, phototube theory and circuits for sound reproduction, light-measuring indicators, automatic countera color discriminators, etc Available on request.

RCA POWER SPECIAL TUBES BOOKLET This benutifully illustrated hooklet. known as the TT-
100. Iists the pertinent data Special Tubuc porer and Special Tubes, inclading the Acorn and Midyect ypere, gas
types, voltage ruculators, nhoto-tubes. cathoile-ray Charts on transmitting tubes are providest to facilitate selection of at tuhe tyno application. Alailahb on re-

TUBE HANDBO (All Types HB-3) in wide use throughout the radio engineering and communication field is the RCA Tube Handbook, This loose
leaf publication, bound in leaf publication, bound in flexible fabricoid binders, contains a wealth or data
and engineering curves on all the various RCA tube types. In addition the HB-3 Handbook contains valuable general information, such as definitions of lube terms. base dimensions, types of cathodes. conversion-lactor chart, outline drawings, re-sistance-coupled amplis charts, etc. A valable on bubscrintion basis. Write to Commerchas Chnk ine ring Section for complete descrip-
tive foller and order form.

RC-14 RECEIVING TUBE MANUAL
The RC-14 Manual is a virtual encyclopedia of receiving tubes It contains 256 ${ }_{333}$ different types. It is brimful of tube theory, appication, circuits, and charts. It is the most complete book of its This is the manual used in many schools and colleges to supplement their radio

Price, 25 cents ench.

4
 RADIOTRON DESIGNER'S HANDBOOK

This 356 -page book has particular value to those engaged in circuit-design work and to those interested in the fundamental principles of practical radio-circuit design. It includes elaborate discursions on audio-frequency considerations, tests and measurements, tube data, general theory, many illustrations, reference charts, tables, etc Edited by F. Langsford Smith. Price, $\$ 1.00$ each

HAM TIPS
from RCA
Although publication of IIAM TIPS has been suspended for the duration, there is still a wealth of information on circuits and tubes contained in past issuen A complete set of these new: publications is now availcopy for ready reference

Price, 25 cents per set
Price, 25 cents per set
\qquad

TRANSMITTING TUBES

Proued in Cammunications' Mast Exacting Serwices

[^0]: $\mathrm{T}_{1}=$ Input transformer; plate-to-plate
 impedance, 1500 ohms (Note 2)
 $T_{2}=$ Output transformer, $Z=11,000$
 $T_{3}=c . t$ filament transformer
 =Output transfor
 $F=1 / 2$ A. high-voltage fuse

 - Approximately 725 watts for ICAS.

[^1]: \# Averaged over a period of not more than 30 seconds. When the tube is operated with an a-c anode voltage and a high value of grid resistance, the gridanode capacitance should be made as small as possible by placing the grid resistor directly at the socket terminal, by connecting pins No. 4 and No. 8 together at the socket, and by using a close-fitting bulb shield connected to the cathode terminal.

[^2]: The screen voltage should also be left off, if the tube is a tetrode or a pentode.

[^3]: Price, 25 cents per net
 Price, with binder.

