(ats,

Rosiatron
REFERENCE

$$
300 \mathrm{k}, 1977
$$

Personal

Name

Residence \qquad

Business Address \qquad

In case of accident, please notify

Telephone \qquad
Accident Ins. Policy No.
Automobile Information:
License No. \qquad
Motor No. \qquad
Model No. \qquad
\qquad
\square
This Book is Vallable
If found, please return to the above.

Vetal Tubes a Boon to Radio Industry

Typical of the leadership maintained by 2CA in all branches of the radio art was the ntroduction in the Spring of 1935 of the AllMetal Radio Tube, the most radical advance in tube design since RCA developed the a-c tube.

Metal Tubes were an immediate success. The public quickly realized that RCA Metal Tubes were modern tubes. They demanded Metal Tube radios. The radio trade recognized Metal Tubes as a powerful stimulant to sales -and they were not disappointed. Within a ew months Metal Tubes had definitely stamped themselves as the new order in tube lesign. Today, an overwhelming majority of $1 l l$ American radio manufacturers use Metal Tubes-a tribute to the pioneering vision and perseverance of RCA in developing radio for the best interests of the public.

Glass has been used as the envelope of radio tubes because of its ability to retain a vacuum and because some of the manufacturing blems of radio tubes were similar to those amp bulbs. Radio tubes, however, did not uire a transparent envelope as did lamp bs but did require far greater precision in spacing of elements.
'he Metal Tube awaited only the solvby the engineers of certain problems olved in quickly making vacuum-tight ds where the shell and base of tubes join, in designing a vacuum-tight seal at the
point where the leads from the internal elec trodes pass through the metal base to the pins

The welding problem was solved by the use of electronic tubes to provide accurate control to a fraction of a second of a welding current as high as 75,000 amperes. An alloy possessing the same coefficient of expansion as glass is used with a small amount of glass to create a tight seal for the leads.

Metal, of course, can be worked with far greater precision than glass, permitting smaller tubes and better shielding. While most of the metal types are less than half the size of their glass counterparts, the reduction in size is a result of compact design and a close-fitting envelope rather than of miniature parts or decreased electrode clearances. Lead wires are much shorter, making a better tube both electrically and mechanically. The metal shell provides almost perfect shielding and is positively grounded to a base pin. Finally, the new Octal base, with its keyed center pin, makes it far easier to insert a Metal Tube in its socket.

It is worthy of note that the manner in which the interests of both the radio trade and the public were protected in the introduction of the new tubes was also tymical of RCA's acceptance of its responsibility as leader of the industry. The world's greatest tube laboratories and factories at the RCA Radiotron plant worked for months before the new tubes were announced so that a thoroughly reliable product might be offered right from the start. The tube characteristics were carefully standardized so that the number of types of Pr Metal Tubes would be kept at the lo figure consistent with progress in radio des Thus the interests of manufacturers, dea and the public were safeguarded. Today, almost two full years of production and behind them, Metal Tubes stand as ano major contribution of RCA to the progre radio and to the prosperity of radio de: and service engineers.

U. S. POPULATION - RADIO SETS

City and state				
ALABAMA	2,646,248	592,530	258,000	44
Birmingham	259,678	64,443	71,518	100
Mobile	68,202	16,909	14,642	73
Montgomery	66,079	17,195	13,524	79
ARIZONA	435,573	106,630	62,500	59
Douglas	9,828	2,397	1,527	64
Phoenix	48,118	12,666	13,869	100
Tueson	32,506	8,266	8,647	10
ARKANSAS	1.854,482	439,408	187,300	43
Fort Smith	31,429	8,200	11,636	00
Little Rock	81,679	20,123	19,757	98
Pine Bluff	20,760	5,549	5,639	100
CALIFORNIA	5,677,251	1,618,533	1,398,900	86
Berkeley	82,109	24,440	24,309	99
Fresno	52,513	14,556	14,131	97
Glendale	62,736	19,324	22,380	100
Long Beach	142,032	47,153	45,556	97
Los Angeles	1,238,048	370,462	358,094	7
Oakland	284,063	83,350	83,916	100
Pasadena	76,086	23,068	22,612	98
Sacramento	93,750	24,886	24,686	7
San Diego	147,995	45,454	44,311 170,000	97 94
San Francisco	634,394	180,346	170,000	100
San Jose	57,651	16,872	17,894	100
COLORADO	1,035,791	268,531	206,600	77
Colo, Springs	-33,237	10,048	10,353	100
Denver	287,861	79,879	73,800	96
Pueblo	50,096	12,360	11,824	96
CONNECTICUT	1,606,903	389,536	372,200	96
Bridgeport	146,716	35,902	35,480	99
Hartford	164,072	40,796	40,922	100
New Britain	68,124	15,568	15,595	100
New Haven	162,655	39,647	38,664	98
Waterbury	99,902	23,125	22,447	97
DELAWARE	238,380	59,295	47.100	79
Dover	4,800	1,200	821	- 68
New Castle	4,131	1,033	750 5	73
Wilmington	106,597	25,694	25,835	- 100
D. COLUMBIA Washington	486,869	126,014	125,800) 99
FLORIDA	1,468,211	377,823	233,900	62
Jacksonville	129,549	32,555	33,552	$2{ }^{2} 100$
Miami	110,637	30,902	31,065	$4{ }^{105}$
St. Petersburg	40,425	12,749	12,094	485
Tampa	101,161	25,111	23,188	892
GEORGIA	2,908,506	654,009	334,500	51
Atlanta	270,366	68,021	65,957	$7 \quad 97$
Augusta	60,342	15,421	11,367	5 81
Macon	53,829	13,938	11,295	$5 \quad 75$
Savannah	85,024	22,495	16,936	675

City and State				
IDAHO	445,032	108,515	75,800	70
Boise	21,544	5.931	6,114	100
Idaho Falls	9,429	2.300	2,096	91
Pocatello	16,471	4,164	4,055	97
ILLINOIS	7,630,654	1.934.445	1.674,300	87
Chicago	3,376,438	845,868	819,201	97
Cicero	66,602	16,276	16,609	100
Decatur	57,510	15,421	16,846	100
E. St. Louis	74,347	19,122	15,941	83
Evanston	63,338	16,472	19,578	100
Oak Park	63,982	17,021	20,828	100
Peoria	104,969	26,627	25,357	95
Rockiord	85,864	22,187	22,518	100
Springfield	71,864	18,799	15,290	81
INDIANA	3,238,503	844,463	616,800	73
Evansville	102,249	25,769	22,854	89
Ft. Wayne	114,946	29,199	30,125	100
Gary	100,426	23,232	20,414	88
Hammond	64,560	15,513	16,661	100
Indianapolis	364,161	98,841	93,071	94
South Bend	104,193	25,682	22,579	88
Terre Haute	62,810	17,612	12,726	72
IOWA	2,470,939	636,905	503,100	79
Cedar Rapids	56,097	15,350	16,216	100
Davenport	60,751	16.706	15.399	92
Des Moines	142,559	38, 190	38,588	100
Sioux City	79,183	20,051	20,026	99
Waterloo	46,191	11,957	11,469	96
KANSAS	1,880,999	488.055	348,000	71
Kansas City	121,857	31,657	31,987	100
Topeka	64,120	17,468	18,586	100
Wichita	111,110	30,021	30.819	100
KENTUCKY	2,614,589	610,288	313,800	51
Covington	65,252	17,271	14,380	83
Lexington	45,736	12,060	13,102	100
Louisville	307,745	80,297	78,181	97
LOUISIANA	2,101,593	486,424	260,000	53
Baton Rouge	30,720	7,600	7,454	98
New Orleans	458,762	112.329	101,123	90
Shreveport	76,655	20,087	21,834	100
MAINE	797,423	198,372	163,600	82
Bangor	28,749	6,906	7,812	100
Lewiston	34,948	7,998	5,154	64
Portland	70,810	17,582	17,566	99
MARYLAND	1,631,526	386,087	320,000	83
Baltimore	804,874	194,491	211,300	100
Cumberland	37,747	8,909	7,553	85
Hagerstown	30,861	7,701	5,667	74
MAS'ACHUS'TS	4,249,614	1,024,527	946,900	92
Boston	781,188	180,451	170,220	94
Brockton	63,797	16,724	16,517	99

U. S. POPULATION - RADIO SETS

City and State				
MASS.-Cont.				
Cambridge	113,643	27,524	25,268	92
Fall River	115,274	27,077	25,466	94
Haverhill	48,710	12,764	10,858	85
Holyoke	56,537	14,010	12,687	91
Lawrence	85,068	20,097	12,879	64
Lown	100,234	23,805	21.841	92
Malden	102,320	26,001	25.048	96
Medford	58,036 59,714	14,187	15,550 17.473	100
New Bedford	112,597	27,982	26,336	94
Newton	65,276	15,350	18,588	100
Pittsfield	49,677	12,093	11,540	95
Quincy	71,983	18,343	23,242	100
Somerville	103,908	25,552	23,509	92
Springfield	149,900	38,188	38,029	99
Worcester	195,311	46,020	43,045	94
MICHIGAN	4,842,325	1,183,157	936,600	79
Bay City	4,87,355	1,11,457	8,540	75
Dearborn	50.358	11,476	10,821	94
Detroit	1,568,662	371,344	345,672	93
Flint	156,492	37,757	36,139	96
Grand Rapids	168,592	43,567	41,657	96
Hamtramek	56,268	11,303	4,703	42
Highland Park	52,959	13,038	13,173	100
Jackson	55,187	14,335	12,725	89
Kalamazoo	54,786	13,867	13,349	96
Lansing	78,397	20,182	18,355	91
Pontiac	64,928	15,189	12,236	81
MINNESOTA	2,563,953	608,398	535,600	88
Duluth	101,463	23,984	23,522	98
Minneapolis	464,356	117,777	113.291	S6
St. Paul	271,606	67,999	76,810	100
MISSISSIPPI	2,009,821	472,354	166,400	35
Jackson	48,282	11,130	11,787	100
Meridian	31,954	8,128	8,666	100
Vicksburg	22,943	6,861	5,573	81
MISSOURI	3,629,367	941,821	708,500	75
Kansas City	399,746	109,242	108,795	99
St. Joseph	80,935	21,065	21,164	100
St. Louis	821,960	215,680	240,200	100
Springfleld	57,527	15,667	9,471	
MONTANA	537,606	137,010	91,700	67
Butte	39,532	10,352	9,850	95
Great Falls	28,822	7,374	6,439	87
Missoula	14,657	3,924	5,548	100
NEBRASKA	1,377,963	343,781	266,800	78
Grand Island	18,041	4,555	4,258	93
Lincoln	75,933	20,229	20,893	100
Omaha	214,006	54,845	50,431	92

City and State				
NEVADA	91,058	25,730	21,700	84
Las Vegas	5,165	1,476	1,429	97
Reno	18,529	5,093	5,220	100
Sparks	4,508	1,288	1,118	87
N. HAMPSHIRE	465,293	119,660	99,700	83
Concord	25,228	6,181	6,289	100
Manohester	76,834	18,832	18,332	97
Nashua	31.463	7,612	6,383	84
NEW JERSEY	4,041,334	987,616	897,500	91
Atlantic City	66,198	16,986	16.876	99
Bayonne	88,979	18,564	15,065	81
Camden	118,700	27,874	26,967	97
E. Orange	68,020	19,077	21,609	100
Elizabeth	114,589	26,772	27,323	100
Haboken	59,261	13,655	10,010	73
Irvington	56,733	15,106	15,892	100
Jersey City	316,715	76,436	74,054	97
Newark	442,337	105,398	106,935	100
Passaic	62,959	14,847	11,221	76
Paterson	138,513	35,556	34,404	97
Trenton	123,356	27,183	14,28,	97
Union City	58,659	16,127	14,464	90
NEW MEXICO	423,317	98,820	48,300	49
Albuquerque	26,570	6,821	7,143	100
Roswell	11,173	2,860	3.012	100
Sante Fe	11,176	2,625	2,748	100
NEW YORK	12,588,066	3,162,118	2,993,100	95
Albany	127,412	34,186	33,894	99
Binghamton	76,662	18,880	19,222	100
Buffalo	573,076	140,215	139,725	- 99
Mt. Vernon	61,499	15,361	18,959	100
New Rochelle	54,000	12,542	15,754	100
New York	6,930,446	1,728,695	$1,730.595$ 17.969	100
Niagara Falls	75,460	17,626	172,185	
Rochester	328,132 95,692	82,205 24,281	82, 2189	97
Syracuse	209,326	53.203	53,372	100
Troy	72,763	19,034	17,060	90
Utica	101,740	24,935	24,633	99
Yonkers	134,646	32,582	32,929	100
N. CAROIINA	3,170,276	- 645,245	341,800	53
Asheville	50, 193	11,762	10,884	93
Charlotte	82,675	19.319	20,289	100
Durham	52,037	11,508	10.728	93
Greensboro	53,569	11,528	11,778	100
Winston-Salem	75.274	17,210	16,461	96
N. DAKOTA	680,845	145,382	100,500	69
Fargo	28,619	6,679	6,428	96
Grand Forks	17,112	4,032	3,567	88
Minot	16,099	3,639	3,948	100

U. S. POPULATION-RADIO SETS

City and State				
TENNESSEE	2,616,556	601,578	328,900	55
Chattanooga	119,798	29,252	27,005	92
Knoxville	105,802	24,381	22,502	92
Memphis	253,143	68,452	62,268	91
Nashville	153,866	39,501	39,558	100
TEXAS	5,824,716	1,383,280	862.100	62
Austin	53,120	12,815	11,089	87
Beaumont	57,732	14,512	11,186	77
Dallas	260,475	67,376	72,421	100
El Paso	102,421	24,564	25,968	100
Ft. Worth	163,447	43,167	45,825	100
Galveston	52,938	13,635	15,200	100
Houston	292,352	75,681	80,123	100
Port Arthur	50,902	12,522	10,528	84
San Antonio	231,542	55,898	52,520	94
Waco	52,848	13,329	12,622	95
UTAH	507.847	116,254	85,000	73
Ogden	40,272	9,971	9,032	91
Provo	14,766	3,204	2,923	91
Salt Lake City	140,267	34,548	33,931	98
VERMONT	359,611	89,439	72,400	
Burlington	24,789	6,028	6,521	100
Montpelier	7,837	1,959	1,850	94
Rutland	17.315	4,374	4,415	100
VIRGINIA	2,421,851	530,092	336,900	64
Iynchburg	40,661	9,357	10,416	100
Norfolk	129,710	31,991	34,331	100
Richmond	182,929	44,929	42,229	94
Roanoke	69,206	15,944	17,246	100
WASHINGTON	1,563,396	426,019	346,900	81
Seattle	365,583	101,794	101,419	99
Spokane	115,514	32,116	31,877	99
Tacoma	106,817	30,686	28,107	92
W. VLRGINIA	1,729,205	374,646	240,000	64
Charleston	1,60,408	14,128	14,236	100
Huntington	75,572	17,975	18,787	100
Wheeling	61,659	15,595	15,419	99
WISCONSIN	2,939,006	713,576	576,600	81
Kenosha	50,262	12,088	11,770	97
Madison	57,899	15,097	18,153	100
Milwaukee	578,249	143,879	145,760	100
Racine	67,542	16,845	15,104	90
W YOMING	225,565	57,218	44,600	78
Casper	16,619	4,663	4,965	100
Cheyenne	17,361	4,590	5,174	100
Sheridan	8.536	2,189	2,171	99
U. S.	122,775,047	29,980,146	22,869,000	76

*Based upon number of radio homes as at Jan. 1, 1936 and number of families per 1930 U. S. census, the latest authentic figures available. This accounts for the large number of citles showing 100% (or better) in this column.

U. S. POPULATION - RADIO SETS

City and State				
OHIO	6,646,697	1,700,877	1,396,900	82
Akron	225,040	62,689	1,30,974	97
Canton	104,906	26,365	25,836	98
Cincinnati	451,160	122,832	123,540	100
Cleveland	900,429	222,131	218,969	99
Cleveland Hts.	50,945	13,271	15,926	100
Columbus	290,564	75,806	76,983	100
Dayton	200,982	52,839	52,459	99
Hamilton	52,176	13,219	11,346	86
Lakewood	70,509	19,656	23,774	100
Springtleld	$\begin{array}{r}68,743 \\ 290,718 \\ \hline\end{array}$	18,237	16,459	90
Toledo	290,718 170,002	74,205 39,101	74,603 39,658	100 100
OKI AHOMA	2,396,040	565,348	335,000	59
Muskogee	32,026	8,391	7,443	89
Oklahoma City	185,389	47,394	45.918	97
Tulsa	141,258	37,156	36,889	99
OREGON	953,786	267,690	216,400	81
Eugene	18,901	5,358	4,299	80
Portland	301,815	87,375	83,800	96
Salem	26,266	6,788	6,774	99
PEN'SYLVANIA	9,631,350	2,239,179	1,938,400	87
Allentown	92,563	22,838	32,718	100
Altoona	82,054	20,005	17,028	85
Bethlehem	57,892	13,570	15,443	100
Chester	59,164	13,579	13,024	96
Erie	115.967	28,252	25,828	91
Harrisburg	80,339	21,652	22,393	100
Johnstown	66,993	15,076	13,060	87
Lancaster	59,949	15,433	15,609	100
McKeesport	54,632	12,484	10,990	88
Philadelphia	1,950,961	459,629	430,300	94
Pittsburgh	669,817	155,519	159,623	100
Reading	1111,171	27,706 32,988	29,146 33,168	100
Wilkes-Barre	86,626	18,752	16,815	90
RHODE ISLA'D	687,497	165,811	150,000	90
Pawtucket	77,149	19,121	19,304	100
Providence	252,981	61.628	57,470	93
Woonsocket	49,376	11,253	9,971	89
S. CAROLINA	1,738,765	366,265	174,600	48
Charleston	62,265	16,746	11,936	71
Columbia	51,581	11,239	10,867	97
Greenville	20,154	7,223	11,168	100
S. DAKOTA	692.849	161,332	107,000	66
Aberdeen	16,465	4,058	3,382	83
Pierre	3,659	851	876	100
Sioux Falls	33,362	8,248	7,442	90

Technical Definitions*

"A" Power Supply A power supply device providing heating current for the cathode of a vacuum tube.
Alternating Current A current, the direction of which reverses at regularly recurring intervals, the algebraic average value being zero.
Amplification Factor A measure of the effectiveness of the grid voltage relative to that of the plate voltage in affecting the plate current.
Amplifier A device for increasing the amplitude of electric current, voltage or power, through the control by the input power of a larger amount of power supplied by a local source to the output circuit.
Anode An electrode to which an electron stream flows.
Antenna A conductor or a system of conductors for radiating or receiving radio waves.
Atmospherics Strays produced by atmospheric conditions.
Attenuation The reduction in power of a wave or a current with increasing distance from the source of transmission.
Audio Frequency A frequency corresponding to a normally audible sound wave. The upper limit ordinarily lies between 10,000 and 20,000 cycles.
Audio-Frequency Transformer A transformer for use with audio-frequency currents.
Autodyne Reception A system of heterodyne reception through the use of a device which is both an oscillator and a detector.
Automatic Volume Control A self-acting device which maintains the output constant within relatively narrow limits while the input voltage varies over a wide range.
"B" Power Supply A power supply device connected in the plate circuit of a vacuum tube.
Baffle A partition which may be used with an acoustic radiator to impede circulation between front and back.
Band-Pass Filter A filter designed to pass currents of frequencies within a continuous band limited by an upper and a lower critical or cut-off frequency and substantially reduce the amplitude of currents of all frequencies outside of that band.
Beat A complete cycle of pulsations in the phenomenon of beating.
Beat Frequency. The number of beats per second. This frequency is equal to the difference between the frequencies of the combining waves.
Beating A phenomenon in which two or more periodic quantities of different frequencies react to produce a resultant having pulsations of amplitude.
Broadcasting Radio transmission intended for general reception.
By-Pass Condenser A condenser used to provide an alternating-current path of comparatively low impedance around some circuit element.

C" Fower supply A power supply device connected in the circuit between the cathode and grid of a vacuum tube so as to apply a grid bias.
Capacitive Coupling The association of one circuit with another by means of capacity common or mutual to both.
Carbon Microphone A microphone which depends for its operation upon the variation in resistance of carbon contacts.
Carrier A term broadly used to designate carrier wave, carrier current, or carrier voltage.
Carrier Frequency The frequency of a carrier wave.
Carrier Suppression That method of operation in which the carrier wave is not transmitted.
Carrier Wave A wave which is modulated by a signal and which enables the signal to be transmitted through a specifie physical system.
Cathode The electrode from which the electron stream flows. (See Filament.)
Choke Coil An inductor inserted in a circuit to offer relatively large impedance to alternating current.
Class A Amplifier A class A amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows at all times.
Class AB Amplifier A class AB amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows for appreciably more than half but less than the entire electrical cycle.
Class B Amplifier A class B amplifier is an amplifier in which the grid bias is approximately equal to the cut-off value so that the plate current is approximately zero when no exciting grid voltage is applied, and so that plate current in a specific tube flows for approximately one-half of each cycle when an alternating grid voltage is applied.
Class C Amplifier A class C amplifier is an amplifier in which the grid bias is appreciably greater than the cut-off value so that the plate current in eacn tube is zero when no alternating grid voltage is applied, and so that plate current flows in a specific tube for appreciably less than one-half of each eycle when an alternating grid voltage is applied.
Note:-To denote that grid current does not flow during any part of the input cycle, the suffix 1 may be added to the letter or letters of the class identification. The suffix 2 may be used to denote that grid eurrent flows during some part of the cycle.
Condenser Loud Speaker A loud speaker in which the mechanical forces result from electrostatic reactions.
Condenser Microphone A microphone which depends for its operation upon variations in capacitance.
Continuous Waves Continuous waves are waves in which successive cycles are identical under steady state conditions.

Lonversion iransconcuctance is the ratio of the magnitude of a single beat-frequency component ($f_{1}+f_{2}$) or ($f_{1}-f_{2}$) of the output current to the magnitude of the input voltage of frequency f_{1} under the conditions that all direct voltages and the magnitude of the second input alternating voltage f_{2} must remain constant. As most precisely used, it refers to an infinitesimal magnitude of the voltage of frequency f_{1}.
Converter (generally, in superheterodyne receivers.) A converter is a vacuum-tube which performs simultaneously the functions of oscillation and mixing (first detection) in a radio receiver.
Coupling The association of two circuits in such a way that energy may be transferred from one to the other.
Cross Modulation A type of intermodulation due to modulation of the carrier of the desired signal in a radio apparatus by an undesired signal.
Current Amplification The ratio of the alternating current produced in the output circuit of an amplifier to the alternating current supplied to the input circuit for specific circuit conditions.
Cycle One complete set of the recurrent values of a periodic phenomenon.
Damped Waves Waves of which the amplitude of successive cycles, at the source, progressively diminishes.
Decibel The common transmission unit of the decimal system, equal to $1 / 10$ bel.

$$
1 \mathrm{bel}=2 \log _{10} \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=2 \log _{10} \frac{\mathrm{I}_{1}}{\mathbf{I}_{2}}
$$

(See Transmission Unit)
Detection is any process of operation on a modulated signal wave to obtain the signal imparted to it in the modulation process.
Detector A detector is a device which is used for operation on a signal wave to obtain the signal imparted to it in the modulation process.
Diaphragm A diaphragm is a vibrating surface which produces sound vibrations.
Diode A type of thermionic tube containing two electrodes which passes current wholly or predominantly in one direction.
Direct Capacitance (C) between two conductorsThe ratio of the charge produced on one conductor by the voltage between it and the other conductor, divided by this voltage, all other conductors in the neighborhood being at the potential of the first conductor.
Direct Coupling The association of two circuits by having an inductor, a condenser, or a resistor common to both circuits.
Direct Current A unidirectional eurrent. As ordinarily used, the term designates a practically non-pulsating current.
Distortion A change in wave form occurring in a transducer or transmission medium when the output wave form is not a faithful reproduction of the input wave form.

Double Modulation The process of modulation in which a carrier wave of one frequency is first modulated by the signal wave and is then made to modulate a second carrier wave of another frequency.
Dynamic Amplifier The RCA Dynamic Amplifier is a variable gain audio amplifier, the gain of which is proportional to the average intensity of the audio signal. Such an amplifier compensates for the contraction of volume range required because of recording or transmission line limitations.
Dynamic Sensitivity of a Phototube The alternat-ing-current response of a phototube to a pulsating light flux at specified values of mean light flux, frequency of pulsation, degree of pulsation, and steady tube voltage.
Electro-Acoustic Transducer A transducer which is actuated by power from an electrical system and supplies power to an acoustic system or vice versa.
Electron Emission The liberation of electrons from an electrode into the surrounding space. In a vacuum tube it is the rate at which the electrons are emitted from a cathode. This is ordinarily measured as the current carried by the electrons under the influence of a voltage sufficient to draw away all the electrons.
Electron Tube A vacuum tube evacuated to such a degree that its electrical characteristics are due essentially to electron emission.
Emission Characteristic A graph plotted between a factor controlling the emission (such as the temperature, voltage, or current of the cathode) as abscissas, and the emission from the cathode as ordinates.
Facsimile Transmission The electrical transmission of a copy or reproduction of a picture, drawing or document. (This is also called picture transmission.)
Fading. The variation of the signal intensity received at a given location from a radio transmitting station as a result of changes occurring in the transmission path. (See Distortion.)
Fidelity The degree to which a system, or a portion of a system, accurately reproduces at its output the signal which is impressed upon it.
Filament A cathode in which the heat is supplied by current passing through the cathode.
Filter A selective circuit network, designed to pass currents within a continuous band or bands of frequencies or direct current, and substantially reduce the amplitude of currents of undesired frequencies.
Frequency The number of cycles per second.
Full-Wave Rectifier A double element rectifier arranged so that current is allowed to pass in the same direction to the load circuit during each half cycle of the alternating-current supply, one element functioning during one-half cycle and the other during the next half cycle, and so on.
Fundamental Frequency The lowest component frequency of a periodic wave or quantity.
Fundamental or Natural Frequency (of an antenna). The lowest resonant frequency of an antenna, without added inductance or capacity.

Gas Phototube A type of phototube in which a quantity of gas has been introduced, usually for the purpose of increasing its sensitivity.
Grid An electrode having openings through which electrons or ions may pass.
Grid Bias The direct component of the grid voltage.
Grid Condenser A series condenser in the grid or control circuit of a vacuum tube.
Grid Leak A resistor in a grid circuit, through which the grid current flows, to affect or determine a grid bias.
Grid-Plate Transconductance The name for the plate current to grid voltage transconductance. (This has also been called mutual conductance.)
Ground System (of an antenna) That portion of the antenna system below the antenna loading devices or generating apparatus most closely associated with the ground and including the ground itself.
Ground Wire A conductive connection to the earth.
Half-Wave Rectifier A rectifier which changes alternating current into pulsating current, utilizing only one-half of each cycle.
Harmonic A component of a periodic quantity having a frequency which is an integral multiple of the fundamental frequency. For example, a component the frequency of which is twice the fundamental frequency is called the second harmonic.
Heater An electrical heating element for supplying heat to an indirectly heated cathode.
Heterodyne Reception The process of receiving radio waves by combining in a detector a, received voltage with a locally generated alternating voltage. The frequency of the locally generated voltage is commonly different from that of the received voltage. (Heterodyne reception is sometimes called beat reception.)
Homodyne Reception A system of reception by the aid of a locally generated voltage of carrier frequency. (Homodyne reception is sometimes called zero-beat reception.)
Hot-Wire Ammeter, Expansion Type An ammeter dependent for its indications on a change in dimensions of an element which is heated by the current to be measured.
Indirectly Heated Cathode A cathode of a thermionic tube, in which heat is supplied from a source other than the cathode itself.
Induction Loud Speaker is a moving coil loud speaker in which the current which reacts with the polarizing field is induced in the moving member.
Inductive Coupling The association of one circuit with another by means of inductance common or mutual to both.
Interelectrode Capacitance The direct capacitance between two electrodes.
Interference Disturbance of reception due to strays, undesired signals, or other causes; also, that which produces the disturbance.

Intermediate Frequency, in Superheterodyne Reception A frequency between that of the carrier and the signal, which results from the combination of the carrier frequency and the locally generated frequency.
Intermodulation The production, in a non-linear circuit element, of frequencies corresponding to the sums and differences of the fundamentals and harmonics of two or more frequencies which are transmitted to that element.
Interrupted Continuous Waves Interrupted continuous waves are waves obtained by interruption at audio frequency in a substantially periodic manner of otherwise continuous waves.
Kilocycle When used as a unit of frequency, is a thousand cycles per second.
Lead-In That portion of an antenna system which completes the electrical connection between the elevated outdoor portion and the instruments or disconnecting switches inside the building.
Linear Detection That form of detection in which the audio output voltage under consideration is substantially proportional to the modulation envelope throughout the useful range of the detecting device.
Loading Coil An inductor inserted in a circuit to increase its inductance but not to provide coupling with any other circuit.
Loud Speaker A telephone receiver designed to radiate acoustic power into a room or open air.
Magnetic Loud Speaker One in which the mechanical forces result from magnetic reactions.
Magnetic Microphone A microphone whose eleotrical output results from the motion of a coil or conductor in a magnetic field.
Master Oscillator An oscillator of comparatively low power so arranged as to establish the carrier frequency of the output of an amplifier.
Megacycle When used as a unit of frequency, is a million cycles per second.
Mercury-Vapor Rectifier. A mercury-vapor rectifier is a two electrode, vacuum-tube rectifier which contains a small amount of mercury. During operation, the mercury is vaporized. A characteristic of mercury-vapor rectifiers is the low-voltage drop in the tube.
Microphone A microphone is an electro-acoustic transducer actuated by power in an acoustic system and delivering power to an electric system, the wave form in the electric system corresponding to the wave form in the acoustic system. This is also called a telephone transmitter.
Mixer Tube (generally, in superheterodyne receivers.) A mixer tube is one in which a locally generated frequency is combined with the carrier-signal frequency to obtain a desired beat frequency.
Modulated Wave A modulated wave is a wave of which either the amplitude, frequency, or phase is varied in accordance with a signal.

Power Detection That form of detection in which the power output of the detecting device is used to supply a substantial amount of power directly to a device such as a loud speaker or recorder.
Pulsating Current A periodic current, that is, current passing through successive cycles, the algebraic average value of which is not zero. A pulsating current is equivalent to the sum of an alternating and a direct current.
Push-Pull Microphone One which makes use of two functioning elements 180 degrees out of phase.
Radio Channel A band of frequencies or wavelengths of a width sufficient to permit of its use for radio communication. The width of a channel depends upon the type of transmission. (See Band of Frequencies.)
Radio Compass A direction finder used for navigational purposes.
Radio Frequency A frequency higher than those corresponding to normally audible sound waves. (See Audio Frequency.)
Radio-Frequency Transformer A transformer for use with radio-frequency currents.
Radio Receiver A device for converting radio waves into perceptible signals.
Radio Transmission The transmission of signals by means of radiated electromagnetic waves originating in a constructed circuit.
Radio Transmitter A device for producing radiofrequency power, with means for producing a signal.
Rectifier A device having an asymmetrical conduction characteristic which is used for the conversion of an alternating current into a pulsating current. Such devices include vacuum-tube rectifiers, gas rectifiers, oxide rectifiers, electrolytic rectifiers, etc.
Reflex Circuit Arrangement A circuit arrangement in which the signal is amplified, both before and after detection, in the same amplifier tube or tubes.
Regeneration The process by which a part of the output power of an amplifying device reacts upon the input circuit in such a manner as to reinforce the initial power, thereby increasing the amplification. (Sometimes called "feedback" or "reaction.")
Resistance Coupling The association of one circuit with another by means of resistance common to both.
Resonance Frequency (of a reactive circuit)-The frequency at which the supply current and supply voltage of the circuit are in phase.
Rheostat A resistor which is provided with means for readily adjusting its resistance.
Screen Grid A screen grid is a grid placed between a control grid and an anode, and maintained at a fixed positive potential, for the purpose of reducing the electrostatic influence of the anode in the space between the screen grid and the eathode.
Secondary Emission Electron emission under the influence of electron or ion bombardment.

Modulation is the process in which the amplitude, frequency, or phase of a wave is varied in accordance with a signal, or the result of that process.
Modulator A device which performs the process of modulation.
Monochromatic Sensitivity The response of a phototube to light of a given color, or narrow frequency range.
Moving-Armature Speaker A magnetic speaker whose operation involves the vibration of a portion of the ferromagnetic circuit. (This is sometimes called an electromagnetic or a magnetic speaker.)
Moving Coil Loud Speaker A moving coil loud speaker is a magnetic loud speaker in which the mechanical forces are developed by the interaction of currents in a conductor and the polarizing field in which it is located. This is sometimes called an Elec-tro-Dynamic or a Dynamic Loud Speaker.
$\mathbf{M u}$-Factor A measure of the relative effect of the voltages on two electrodes upon the current in the circuit of any specified electrode. It is the ratio of the change in one electrode voltage to a change in the other electrode voltage, under the condition that a specified current remains unchanged.
Mutual Conductance (See Grid-Plate Transconductance.)
Oscillator A non-rotating device for producing alternating current, the output frequency of which is determined by the characteristics of the device.
Oscillatory Circuit A circuit containing inductance and capacitance, such that a voltage impulse will produce a current which periodically reverses.
Peotode A type of thermionic tube containing a plate, athode, and three additional electrodes. (Ordily the three additional electrodes are of the -e of grids.)
Pl age Modulation The ratio of half the differ-- between the maximum and minimum amplit. of a modulated wave to the average amplitude, ef_ , essed in per cent.
Phonograph Pickup An electromechanical transducer actuated by a phonograph record and delivering power to an electrical system, the wave form in the electrical system corresponding to the wave form in the phonograph record.
Phototube A vacuum tube in which electron emission is produced by the illumination of an electrode. (This has also been called photo-electric tube.)
Plate A common name for the principal anode in a vacuum tube.
Power Amplification (of an amplifier)-The ratio of the alternating-current power produced in the output circuit to the alternating-current power supplied to the input circuit.

Selectivity The degree to which a radio receiver is capable of differentiating between signals of different carrier frequencies.
Sensitivity The degree to which a radio receiver responds to signals of the frequency to which it is tuned.
Sensitivity of a Phototube The electrical current response of a phototube, with no impedance in its external circuit, to a specified amount and kind of light. It is usually expressed in terms of the current for a given radiant flux, or for a given luminous flux. In general the sensitivity depends upon the tube voltage, flux intensity, and spectral distribution of the flux.
Service Band A band of frequencies allocated to a given class of radio communication service.
Side Bands The bands of frequencies, one on either side of the carrier frequency, produced by the process of modulation.
Signal The intelligence, message or effect conveyed in communication.
Single-Side-Band Transmission. That method of operation in which one side band is transmitted, and the other side band is suppressed. The carrier wave may be either transmitted or suppressed.
Static Strays produced by atmospheric conditions.
Static Sensitivity of a Phototube The direct current response of a phototube to a light flux of specified value.
Stopping Condenser A condenser used to introduce a comparatively high impedance in some branch of a circuit for the purpose of limiting the current ow-frequency alternating current or direct high frequithout materially affecting the flow of
Strays frequency alternating current. tion othertromagnetic disturbances in radio recepsystems.
Superheterodyne Reception-Superheterodyne reception is a method of reception in which the received voltage is combined with the voltage from a local oscillator and converted into voltage of an inand then detected to which is usually amplified wave. (This is sometimes called double detectionnal supersonic reception.)
Swinging The momentary variation in frequency of a received wave.
Telephone Receiver An electro-acoustic transducer actuated by power from an electrical system and supplying power to an acoustic system, the wave form in the acoustic system corresponding to the wave form in the electrical system.
Television The electrical transmission of a succession of images and their reception in such a way as to give a substantially continuous reproduction of the object or scene before the eye of a distant observer.
Tetrode A type of thermionic tube containing a plate, a cathode, and two additional electrodes. (Ordinarily the two additional electrodes are of the nature of grids.)

Thermionic Relating to electron emission under the influence of heat.
Thermionic Emission Electron or ion emission under the influence of heat.
Thermionic Tube An electron tube in which the electron emission is produced by the heating of an electrode.
Thermocouple Ammeter An ammeter dependent for its indications on the change in thermo-electromotive force set up in a thermo-electric couple which is heated by the current to be measured.
Total Emission The value of the current carried by electrons emitted from a cathode under the influence of a voltage such as will draw away all the electrons emitted.
Transconductance The ratio of the change in the current in the circuit of an electrode to the change in the voltage on another electrode, under the condition that all other voltages remain unchanged.
Transducer A device actuated by power from one system and supplying power to another system. These systems may be electrical, mechanical, or acoustic.
Transmission Unit A unit expressing the logarithmic ratios of powers, voltages, or currents in a transmission system. (See Decibel.)
Triode A type of thermionic tube containing an anode, a cathode, and a third electrode, in which the current flowing between the anode and the cathode may be controlled by the voltage between the third electrode and the cathode.
Tuned Transformer A transformer whose associated circuit elements are adjusted as a whole to be resonant at the frequency of the alternating current supplied to the primary, thereby causing the secondary voltage to build up to higher values than would otherwise be obtained.
Tuning The adjustment of a circuit or system to secure optimum performance in relation to a frequency; commonly, the adjustment of a circuit or circuits to resonance.
Vacuum Phototube A type of phototube which is evacuated to such a degree that the residual gas plays a negligible part in its operation.
Vacuum Tube A device consisting of a number of electrodes contained within an evacuated enclosure.
Vacuum-Tube Transmitter A radio transmitter in which vacuum tubes are utilized to convert the applied electric power into radio-frequency power.
Vacuum-Tube Volt-Meter A device utilizing the characteristics of a vacuum tube for measuring alternating voltages.
Voltage Amplification The ratio of the alternating voltage produced at the output terminals of an amplifier to the alternating voltage impressed at the input terminals.
Voltage Divider A resistor provided with fixed or movable contacts and with two fixed terminal contacts;
current is passed between the terminal contacts, and a desired voltage is obtained across a portion of the resistor. (The term potentiometer is often erroneously used for this device.)
Wave a. A propagated disturbance, usually periodic, as an electric wave or sound wave,
b. A single cycle of such a disturbance, or,
c. A periodic variation as represented by a graph.
Wavelength The distance traveled in one period or cycle by a periodic disturbance.
*Most of these definitions are based on I.R.E. Standards.

New RCA Check-Up

A wealth of brand new sales helps-a new 10 -point offer and new window displays are but a few of the many new features of the RCA Check-Up for 1937, Not only does the new Cheek-Up have greater customer appeal, but it enables the service engineer to make attractive combination offers which build up a greater dollar volume for him.

The RCA Check-Up, which now enters its third year of highly successful operation, is a simple means by which a service engineer or radio dealer may get in touch with customers who ordinarily would not call for a radio service engineer. It features a special 10 -point job at a flat price. The job, which has obvious benefits for the customer, nevertheless costs little to perform and opens the way for the sale of tubes, parts or accessories. The service engineer is assured the flat price which more than covers any actual expense. Experience has shown that practically always additional merchandise is sold, all of which makes the RCA Check-Up a valuable, business-building program.

RCA Radio Tube Distributors are now featuring the 1937 RCA Check-Up on a number of attractive plans. They will be glad to show you the many unusual mailing pieces, the new window displays and many other important sales helps. See your distributor at once.

RCA Three-Point Service System

The RCA Three-Point Service System offers the service engineer or radio dealer help in the three fundamental phases of his business-the technical, the promotional and the accounting. These aids are based on actual experience and reach the basic needs of everyone engaged in the radio or service retail field.

The RCA Service Tip File is a collection of service tips, indexed both as to symptoms and set manufacture. Two hundred cards are included with the initial equipment and additional packets of twenty tips each are available for supplementing the file.
"101 Service Sales Ideas" is a unique booklet containing 101 actual selling ideas that have been used successfully in the radio service and retail business. While all the ideas will not apply to all organizations, nevertheless there are many that everyone can use.
"Radio Service Business Methods," by John F. Rider and J. Van Newenhizen, is a 220 -page book that covers every phase of operating a radio business. It shows how to properly arrive at the cost of operation, how to compute overhead, and many other items of selling and service expense. Supplementing this book is a complete series of forms, supplied at low prices and imprinted with your name.

RCA Radio Tube Distributors are now featuring each unit of the RCA Three-Point Service System on unusually liberal terms. See your distributor at once.

Receiver Circuit Analysis

All receivers are built around the vacuum tube used as amplifier, detector, rectifier or oscillator. Whenever an open or short occurs in the filament, plate, grid or screen-grid circuit of a vacuum tube, it will have a definite effect upon the voltage and current readings obtained at these different tube elements with an analyzer.

The analyzer is designed to indicate the variations caused by such opens or shorts, and thus enables the service man to determine in which tube circuit the abnormal condition exists. Having done this the analyzer has done all that it is possible for an instrument to do. It now remains for the service man to decide (by analytic reasoning based on previous experience and thought on trouble shooting problems) in which portion of that particular tube's circuits the trouble is.

On the following pages will be found 4 fundamental, schematic diagrams of the complete filament, grid and screen-grid circuits for:

1. Filament type triodes and screen-grid tubes.
2. Heater-cathode type triodes and screen-grid tubes.
3. Filament type pentodes (voltage or power amplifiers.)
4. Heater-cathode type pentodes (voltage or power amplifiers.)
The various circuits are numbered as:

Example:

$1=$ grid return from grid of tubes to negative C in grid circuit.
$2=$ plate circuit from positive B on voltage divider to plate of tube.
On a following page will be found a chart listing the effects noted (as compared to the normal readings) when the various circuits or parts are open or shorted. By the use of this chart, knowing what normal conditions are, and how the abnormal conditions compare with them, it is possible for a service man to narrow his tracing of the suspected tube circuit, down to the testing of one or two of the parts of that circuit.
Diagrams No. 1 and No. 2 apply equally as well to triodes of the filament and cathode-heater types by omitting circuit No. 13 and condenser No. 7 which apply to screen-grid types only.

It will be noted that circuit No. 14 in diagrams No. 3 and No. 4 applies only to a pentode. It represents the connection between the suppressor grid (located between the space charge or screen-grid and plate) and the cathode, or to a point in the circuit whose potential is more negative than the cathode. Since the suppressor grid serves the same purpose (i. e., to practically eliminate the effects of secondary emission) whether the tube be a radio-frequency pentode, such as the 57 , or whether it be a power-output pentode, such as the 47 ,

Receiver Circuit Analysis

diagrams No. 3 and No. 4 apply equally as well to both types of tubes. The effects upon normal voltage readings when this circuit opens are listed under eircuit No. 14 on the following chart. In certain tube types, such as the 47 , circuit No. 14 is made within the tube, as indicated by the dotted lines in Fig. 3. An open in this internal connection will cause the same analyzer readings as those noted under circuit No. 14 in the accompanying chart.

Diagram No. 4 applies to triple-grid amplifiers, such as the 89 , when used as a pentode power amplifier. When this tube is used as a class A or B amplifier, it would then be classified as a triode, and in this case diagram No. 2 would apply. For information on the operation and connections of the grids of a triple-grid amplifier when used in class A or B amplifier circuits, refer to the set manufacturer's service notes.

Example:

If it is found that the readings at one tube socket show $\mathrm{E}_{c 1}=$ above normal, $\mathrm{I}_{b}=\mathrm{o}, \mathrm{E}_{b}=\mathrm{o}, \mathrm{E}_{k f}=$ above normal; referring to the chart we see that when this condition exists it indicates a short in No. 6-(the plate by-pass condenser) - when its return is connected to positive side of grid-bias resistor No. 4, or it indicates an open in the cathode circuit through conductor No. 3 or grid-bias resistor No. 4.

The meaning of the symbols used in the reference chart are as follows:-
$E_{o t}=$ Grid voltage or control grid on S. G. tubes,
$\mathrm{E}_{k j}=$ Cathode voltage on cathode heater tube.
$\mathrm{E}_{b}=$ Plate voltage.
$\mathrm{E}_{\mathrm{c}} \mathrm{s}=$ Screen grid voltage.
$\mathrm{E}_{c 3}=$ Suppressor grid voltage.
$\mathrm{I} v=$ Plate current.
$\mathrm{S}=$ Shorted.
$\mathrm{L}=$ Leaking.
Op=Open,
$0=$ Zero voltage or current.
Lo=Below normal.
$\mathrm{Hi}=$ Above normal.
Nor = Normal.
$\mathrm{F}=$ Fluatuating.

Note: In servicing modern receivers it is extremely desirable that the service man use the set manufacturer's service notes. These will be found to be of great assistance in locating troubles and applying the correot remedy. Most radio set manufacturers will gladly furnish responsible service men with service notes on any model of their receivers upon a written request to the manufacturer's service department.

Receiver Circuit Analysis

Fig. 1

Receiver Circuit Analysis

Fig. 4

Receiver Circuit Analysis

$\begin{aligned} & \hline \text { Cir- } \\ & \text { cuit } \\ & \text { No. } \end{aligned}$	$\left\|\begin{array}{c} \text { Con- } \\ \text { di- } \\ \text { dion } \end{array}\right\|$	Ec_{1}	Ec_{2}	Ic 2	Ib	Eb	Ekt	Ec_{3}
1	Op	0	Lo	Hi	Hi	Lo	Hi	
* 2	Op	0	Nor	Hi	0	0	0	
$\dagger 3$	Op	Hi	0	0	0	0	Hi	
4	Op	Hi	0	0	0	0	Hi	
5	S	0	Lo	Hi	Hi	Lo	0	
5	L	F or Lo	Nor	Nor	F or Hi	F or Lo	$\overline{\mathrm{F} \text { or Lo }}$	
5	Op	Nor	Nor	Nor	No:	Nor	Nor	
$\ddagger 6$	S	Hi	0	0	0	0	Hi	
6	L	F or Hi	F or Lo	F or Lo	F or Lo	F or Lo	F or Hi	
6	Op	Nor	Nor	Nor	Nor	Nor	Nor	
± 7	S	Hi	0	0	0	Lo	Hi	
7	L	F or Hi	$\overline{\mathrm{F} \text { or Lo }}$	$\overline{\mathrm{F} \text { or Lo }}$	$\overline{\mathrm{F} \text { or Lo }}$	$\overline{\mathrm{F} \text { or } \mathrm{Lo}}$	$\overline{\mathrm{F} \text { or } \mathrm{Hi}}$	
7	Op	Nor	Nor	Nor	Nor	Nor	Nor	
8	Op	Hi	Hi	Hi	Hi	Hi	Hi	
9	Op	0	0	0	0	0	0	
10	S	0	0	0	0	0	0	
11	Op	Nor	Nor	Nor	Nor	Nor	Nor	Hum
12	Op	Nor	Nor	Nor	Nor	Nor	0	Hum
13	Op	0	0	0	0	Hi	0	
14	Op	Nor	Nor	Hi	Lo	Nor	Nor	Hi

Exceptions:

* $\mathrm{Ec}_{1}=0$ when Individual Bias Resistor.
$\mathrm{Ec}_{1}=\mathrm{Lo}$ when Common Bias Resistor, or S. G. Tube.
$\dagger \mathrm{Ec} \mathrm{c}_{1}$ \& $\mathrm{Ekf}=\mathrm{Hi}$ when Individual Bias Resistor.
$E c_{1} \& E k f=$ Lo when Common Bias Resistor.
$\ddagger E c_{1}$ and $\mathrm{Ek}_{\mathrm{k}}=0$ when condenser return is to neg. end No. 4 ol Neg. Rectifier.

How The Cathode-Ray Tube Works

Since the cathode-ray tube is comparatively new in he field of electronic devices, information concerning ts functioning may be of interest. The schematic liagram shows the essential parts of a typical cathodeay tube of the electrostatic-deflection type.

RCA Cathode-Ray Tube

Electrons emitted by the cathode are attracted by the positive voltages on the focusing anode and on the high-voltage anode. Some of these electrons pass through the two anodes, which are hollow cylinders, and flowing down the length of the tube, form a concentrated electron beam. The inner surface of the large end of the bulb is coated with a layer (called the screen) of a material which fluoresces wherever electrons strike it. Hence the beam of electrons flowing down the tube produces a spot of light on the screen at the end of the tube. Focusing of the spot is accomplished by adjusting the ratio of the anode voltages. The brightness of the spot is controlled by the negative voltage applied to the control grid, which regulates the amount of current in the electron beam. The voltages on the focusing anode and on the control grid are usually adjusted simultaneously so that the spot is sufficiently bright and of small size.

The position of the spot on the fluorescent screen is controlled by the voltages on the deflecting plates. When a voltage is connected across one of the sets of deflecting plates so that one plate is positive with respect to the other, the electrons in the beam are attracted toward the positive plate. Hence, the electrons in the beam are deflected and the position of the spot on the screen changes. One set of plates provides horizontal deflection of the beam; the other provides vertical deflection.

When the cathode-ray tube is used to observe an alternating voltage, the voltage under observation is applied to give vertical displacement of the light spot. A "linear sweep" voltage is applied to give horizontal displacement. With this arrangement, the spot traces on the screen a curve which shows the waveform of the voltage being observed.

The Cathode-Ray Oscillograph

A cathode-ray oscillograph consists of a cathode-ray tube and its associated apparatus, conveniently as
sembled with all necessary controls and switches. Thi associated apparatus usually consists of a "saw-tooth oscillator, which provides the linear sweep voltage vertical and horizontal amplifiers for increasing th image size on low input voltages, and the necessar power supply equipment. The RCA Oscillograph is a example of the better types of oseillographs now on th market.

Applications of the Oscillograph

For quickly disclosing the source of trouble in a radi receiver, the cathode-ray oscillograph is ideal. How ever, the service engineer must have an understandin of the use of the oscillograph to be able to take fu advantage of its capabilities.

First, the oscillograph should be recognized as an ir strument that shows effect, rather than cause. Fo example, numerous troubles can be identified an isolated in a particular section of the circuit with th oscillograph, but the actual testing of the parts mus be done with other equipment.

Distortion and Hum. In a receiver having objec tionable distortion, the cause of the distortion can easil be looated with the aid of an oscillograph. One way t do this is to apply the output of a signal generator t the input of the receiver and observe on the oscillograp. the output of successive stages. If, for instanoe, th waveform appears undistorted at the input of the firs audio stage but is distorted at the output of this stage distortion obviously is being produced in this stage Similarly, a method of locating the source of hum in set is to examine the waveform of the output of suc cessive filter sections.

Aligning Receivers. Perhaps one of the most spec tacular uses of the cathode-ray oscillograph is the visua alignment of receivers. In this application, a tes oscillator is controlled by a frequency modulator so tha the output voltage of the oscillator varies in frequency This voltage of varying frequenoy is applied to th input of the stage being checked. The cathode-ray tub is connected to show the curve of gain-vs.-frequency fo

I. F. Curve Showing Double Image Method of Alignment

the stage. With this curve in view, the operator car easily adjust the trimmers to give peak gain at the cor rect frequency in each stage as it is checked. In thi more advanced instruments, the r-f frequency is swep in both directions and a double curve is shown on the screen, adjustment being made with the trimmel capacitors until the curves coincide.

Measuring Percentage Modulation.

Modulation may be quickly checked with the oscillograph, either for percentage or for distortion. This is done by impressing the modulated r-f signal on the vertical plates and the linear timing voltage on the horizontal

R. F. Modulated at 1000 Cycles

Timing Axis Supply: 500-Cycle Saw-Tooth

$$
\text { Per cent Modulation }=\frac{\text { EMax. }- \text { EMin. }}{\text { EMax. }+ \text { EMin. }} \times 100
$$

plates. The true wave shape of the r-f envelope will appear and an appreciable lack of symmetry or other irregularities will be immediately apparent, indicating distortion. The percentage modulation is determined as shown in the illustration.

RCA CATHODE-RAY TUBES	Electrodes	$\underset{\text { Max. }}{\text { Mnode }}$ No. 2 Volts	Cathode Volts
5 in., Electrostatic-			
Magnetic Deflection,			
High-Vacuum	5	4,600	2.5
5 in, Electrostatic-De-			
flection. High-Vacuum	4	2,000	2.5
3 in., Electrostatic Deflection. High-Vacuum	4	1,200	2.5
5 in., Electrostatic De-			
flection, High-Vacuum,			
Short Persistence Screen 3 in. Electrostatic De-	4	2,000	2.5
flection, High-Vacuum,			
Short Persistence Screen	4	1,200	2.5
flection, High-Vacuum,			
3 in., Electrostatic De-	4		
fleetion, High-Vacuum,			
Long Persistance Screen	4	1,200	2.5
3 in., Electrostatic De-			
flection, High-Vacuum, Medium Persistence			
Screen, with Gun Un-			
usually Free from Mag-			
5 in., Electrostatic De- 1,200			
flection, High-Vacuum,			
Medium Persistence			
Screen	4	15,000	2.5

Calculation and Use of Shunts and Multipliers

Primarily, all electric meters of the indicating type having only two terminals are essentially current measuring devices and in fact are ammeters or milliammeters, as it is only the current flowing through the meter that causes mechanical motion and deflection of the needle.

However, we may calibrate the meter scale so that the needle deflection will accurately read ohms, volts, microfarads, ete., or any one of the electrical factors which if varied would ereate a change in current flow provided the other characteristics of the circuit would remain constant.

Let us consider a DC milliammeter (0-1) which gives full scale deflection when 1 milliampere flows through the meter. We desire to use this meter as a multirange voltmeter having scales ($0-10$) ($0-100$) ($0-500$) and ($0-1000$) volts respectively. The resistance of many such meters

FIG. 1 in commercial use ranges from 20 to 50 ohms. In the extreme case considering a meter of 50 ohms resistance the voltage drop across the meter at full scale current would be, according to Ohms Law, $\mathrm{Em}_{\mathrm{m}}=\mathrm{R}_{\mathrm{m}} \times \mathrm{Im}_{\mathrm{m}}$, $\mathrm{Rm}_{\mathrm{m}}=$ resistance of meter $=50$ ohms $\operatorname{Im}=$ full scale current $=1$ milliampere $=.001$ ampere $\mathrm{Em}=$ $50 \times .001=0.05$ volts.
As the maximum voltage drop across the meter is only $1 / 20$ volt under extreme conditions we can disregard this in our calculations as the error will be negligible.

Referring to Figure 1 we see that the meter can be used as a $0-10$ voltmeter if a resistance or multiplier is connected in series with it. The resistance must be of such value that if 1 milliampere of current (which is full scale deflection of the meter) flows through it the voltage across the resistance will be 10 volts. Figure 1.

The multiplier, $R_{1}=\frac{E}{I}=\frac{10}{.001}=10,000$ ohms.
Half scale deflection means that $1 / 2$ milliampere is flowing through the meter, therefore half scale deflection indicates

$$
\mathrm{E}=\mathrm{R} I=10,000 \times .0005=5 \text { volts. }
$$

Accordingly any fractional indication on the $0-1$ mil scale will read the corresponding fraction of 10 volts which means the milliammeter scale is multiplied by 10 to get the actual reading in volts.

Similarly the multiplier for the ($0-100$) volt scale

$$
R_{2}=\frac{E}{I}=\frac{100}{.001}=100,000 \mathrm{ohms} .
$$

and the milliammeter scale readings are multiplied by 100.

Likewise the multipliers for the ($0-500$) and ($0-1000$) volt scales would be 500,000 and $1,000,000$ ohms respectively and the scale multiples would be correspondingly 500 and 1000 .

If a $0-10$ milliammeter was used in place of the $0-1$ the multipliers in each case would of course be only $1 / 10$ of their respective values in the previous example. This would also apply to the scale multiples. However, the 10 milliammeter, would consume appreciable current in itself and may in certain circuits introduce a considerable error particularly where the resistance of the multiplier is not considerably higher than the voltage supply system. More-

FIG. 2 over, the regulation of the voltage supply system may be seriously affected when it is called upon to supply an additional 10 milliamperes to operate the voltmeter which would perhaps introduce a large error.

This emphasizes the importance of a high resistance voltmeter; in the first example the resistance was 1000 ohms per volt while in the second instance it was only 100 ohms per volt. For the proper degree of accuracy in radio work a 1000 ohm per volt voltmeter will be quite suitable.

To use the 0-1 milliammeter as a higher scale milliammeter, it is necessary to provide a shunt as in Figure 2. In this case it is essential to know accurately the resistance of the meter. Assuming that it has a resistance of 27 obms and that we want to have a scale reading of $0-10 \mathrm{mil}(0-50)(0-100)(0-500)$ milliampere.

Referring to Figure 2 it is evident that to use the meter for $0-10 \mathrm{mil}$ measurements the meter would carry $1 / 10$ of the total current and the shunt $9 / 10$ or the shunt resistance would be $1 / 9$ of the meter resistance. If the meter resistance was 27 ohms the shunt resistance would be 3 ohms; correspondingly the shunt resistance for use as an 0-50 milliammeter would be $1 / 49 \times 27=$.551 ohms. For $0-100$ and $0-500$ scales the shunt resistance must be 0.2727 ohms and 0.0541 ohms respectively.
The general formula is

$$
\mathrm{R}=\frac{\mathrm{Rm} \times \mathrm{Im}_{\mathrm{m}}}{\mathrm{I}-\mathrm{Im}}
$$

where $R \Rightarrow$ resistance of shunt in ohms
$\mathrm{R}_{\mathrm{m}}=$ resistance of meter in ohms
$\mathrm{I}_{\mathrm{m}}=$ full scale current for meter
$\mathrm{I}=$ full soale current for new calibration

By having a star or multipole switch as shown in Figure 3, one meter can be used as well as a voltmeter or milliammeter at any desired range. The accompanying the case may be.

Shunt and Multiplier Values 27 Ohm (0-1) Milliammeter

Scale	Use as	Ohms of Resistance in Series or in Shunt with Meter	Multiply old seale by
$0-10$	Voltmeter	10,000	10
$0-50$	$"$	50,000	50
$0-100$	$"$	100,000	100
$0-250$	$"$	250,000	250
$0-500$	$"$	500,000	500
$0-1000$		$1,000,000$	1000
$0-10$	Milliammeter	3	10
$0-50$	$"$	0.551	10
$0-100$	$"$	0.272	50
$0-500$		0.0541	100

35 Ohm (0-1.5) Milliammeter

$0-15$	Voltmeter	10,000	10
$0-150$	4	100,000	100
$0-750$		4	500,000

Grid Bias Resistor Calculations

The radio service man often finds it necessary to replace the grid bias resistor in receivers employing a self-biasing arrangement for obtaining the proper grid voltage. When the resistance value is not known, it may be calculated by dividing the grid voltage required at the plate voltage at which the tube is operating, by the plate current in amperes plus the screen current in amperes times the number of tubes passing current through the resistor.

Under the above rule, the grid bias resistor value is given by the following formula:

$$
R=\frac{E c_{1} \times 1,000}{\left(I B+I c_{2}\right) n}
$$

where: $\mathrm{R}=$ Grid bias resistor value in ohms.
$\mathrm{Ec}_{1}=$ The grid bias required in volts.
$\mathrm{I}_{\mathrm{B}}=$ The plate current of a single tube in milliamperes.
$\mathrm{I}_{2}=$ The screen-grid current of a single tube in
milliamperes.
$\mathrm{n}=$ The number of tubes passing current through the resistor.

Example:

It is desired to determine the value of bias resistor used to obtain the proper value of grid bias on three type ' 35 tubes working in the radio frequency stages of a receiver. First determine the plate and screen voltages employed in this set. Suppose, in this case, it is found that the plate supply voltage is 250 and the screen voltage is 90 . Looking in the characteristics chart, it is found that the proper grid bias for the ' 35 under these conditions is - 3.0 volts. In addition, the plate current is 6.5 milliamperes and the screen current is 2.5 milliamperes. Substituting in the formula,

$$
\mathrm{R}=\frac{3.0 \times 1,000}{(6.5+2.5) 3}=111 \text { ohms. }
$$

The value of grid bias resistors can be calculated in this manner for any type and any number of tubes. In the case of triodes, the screen current term drops out entirely.

Be sure to determine the plate voltage at which the tubes are working, the number of tubes being supplied from the bias resistor, the screen voltage, (if a tetrode or pentode), the correct value of grid bias voltage required (whether the tube cathode is operated from A.C. or D.C. will affect the value of bias voltage), and the plate and screen current for the given plate voltage.

In the case of resistance-coupled amplifiers which employ high resistance in the plate circuit, it must be remembered that the plate voltage is equal to the plate supply voltage minus the voltage drop in the plate load resistance caused by the plate current. The net plate voltage alone determines the correct value of grid bias.

The foregoing methods of calculations cannot be used in connection with receivers employing a bleeder circuit to obtain grid bias.

RMA Standard Color Coding for Resistors

The Radio Manufacturers Association has standardized on the following color coding for resistance value identification:

Ten colors are assigned to the figures as shown in the following table:

Figure	Color	Figure	Color	Figure	Color
0	Black	4	Yellow	7	Violet
1	Brown	5	Green	8	Gray
2	Red	6	Blue	9	White
	Red				

The body (A) of the resistor is colored to represent the first figure of the resistance value. One end (B) of the resistor is colored to represent the second figure, A band, or dot (C) of color, representing the number of ciphers following the first two figures, is located within the body color. The two diagrams illustrate two interpretations of this standard method of coding resistance value.

NOTE: The problem of coding two resistors of the same nominal value when tolerances are different is solved in a practical manner by using the next higher or lower coded value for the unit with the larger tolerance. For example: if the nominal values of two resistors are 2,500 ohms, one with 10% tolerance and the other with 20%. The unit with 10% tolerance will be 2,500 ohms and be coded as such. The unit with 20% tolerance will bo assigned a nominal value of either 2,400 ohms or 2,600 ohms and be so coded. A similar system for coding fixed condensers is in general use. Three colored dots are employed to show the capacity in micromicrofarads. The dots are read from left to right with the condenser held so that the brand name is upright. The correspondence between colors and digits is the same as in the resistance coding.

Series Resisłances, Parallel Capacities

$$
\begin{aligned}
& \mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \text { etc. } \\
& \mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \text { etc. }
\end{aligned}
$$

Where: R and C equal the total resistance or capacity.

Parallel Resistances, Series Capacities Chart

This chart suffees for both resistances in parallel and capacilies in series since the formula for each is the same.
Lay a straightedge from untt desired on the lest oblique line o untt destred on right oblique line. Potnt at which straightedge intersects the vertical line is the resultant value in units.
To increase range of the scale multtply or divide all values by he factor destred, such as one thousandth, one hundredth, one enth; ten, one hundred or one thousand, etc.

DIAMETER, WEIGHTS AND RESISTANCE OF COPPER WIRE

宅完	Diameter Mils	Area, CircularMils	Weight, Bare Wire		Resistance at $25^{\circ} \mathrm{C}$. $\left(77^{\circ} \mathrm{F}\right.$.)		
			$\begin{gathered} \hline \text { Pounds } \\ \text { per } \\ 1000 \\ \text { Ft. } \end{gathered}$	$\begin{aligned} & \text { Pounds } \\ & \text { per } \\ & \text { Mile } \end{aligned}$	$\begin{array}{c\|} \hline \text { Ohms } \\ \text { per } \\ 1000 \\ \text { Ft. } \end{array}$	Ohms per Mile	Feet per Ohm
0000	460.	211,600.	641.	3385.	0.0499	0.2638	20,040.
000	410.	167,800.	508.	2683.	0.0630	0.3325	15,870.
00	364.8	133,100.	403.	2126.	0.0794	0.419	12,590.
	324.9	105,500.	319.5	1687.	0.1003	0.529	9,980.
1	289.3	83,700.	253.3	1337.	0.1262	0.666	7,930.
2	257.6	66,400.	200.9	1061.	0.1591	0.840	6,290.
3	229.4	52,600.	159.3	841.	0.2008	1.062	4,980.
4	204.3	41,700.	126.4	668.	0.2533	1.338	3,950.
	181.9	33,100.	100.2	529.	0.3193	1.685	3,134.
	162.0	26,250.	79.5	419.	0.403	2.127	2,485.
7	144.3	20,820.	63.0	332.6	0.507	2.682	1,971.
8	128.5	16,510.	50.0	264.0	0.640	3.382	1,562.
9	114.4	13,090.	39.63	208.3	0.807	4.26	1,238.
10	101.9	10,380.	31.43	165.9	1.017	5.37	983.
11	90.7	8,230.	24.92	131.6	1.284	6.78	779.
12	80.8	6,530.	19.77	104.3	1.618	8.55	618.
13	72.0	5,180.	15.68	82.8	2.040	10.77	490.
14	64.1	4,110.	12.43	65.6	2.575	13.60	388.2
15	57.1	3,257.	9.86	52.1	3.244	17.13	308.4
16	50.8	2,583.	7.82	41.3	4.09	21.62	244.3
17	45.3	2,048.	6.20	32.73	5.16	27.24	193.9
18	40.3	1,624.	4.92	26.00	6.51	34.34	153.7
19	35.89	1,288.	3.899	20.57	8.20	43.3	121.9
20	31.96	1,022.	3.092	16.33	10.34	54.6	96.6
21	28.46	810.	2.452	12.93	13.04	68.9	76.6
22	25.35	642.	1.945	10.27	16.44	86.9	60.8
23	22.57	509.	1.542	8.14	20.75	109.5	8.2
24	20.10	404.	1.223	6.46	26.15	138.1	38.2
25	17.90	320.4	0.970	5.12	33.00	174.3	30.3
26	15.94	254.1	0.769	4.06	41.6	219.5	4.0
27	14.20	201.5	0.610	3.220	52.4	276.8	$19.0{ }^{\prime}$
28	12.64	159.8	0.484	2.556	66.01	349.2	15.1:

DIAMETER, WEIGHTS AND RESISTANCE OF COPPER WIRE

洔	Diameter Mils	Area, CircularMils	Weight, Bare Wire		Resistance at $25^{\circ} \mathrm{C}$, $\left(77^{\circ} \mathrm{F}\right.$.)		
			Pounds per 1000 Ft.	Pounds per Mile	Ohms per 1000 Ft.	$\begin{aligned} & \text { Ohms } \\ & \text { per } \\ & \text { Mile } \end{aligned}$	$\begin{aligned} & \text { Feet } \\ & \text { per } \\ & \text { Ohmm } \end{aligned}$
29	11.28	126.7	0.3836	2.025	83.4	441.	11.98
30	10,03	100.5	0.3042	1.606	105.4	556.	9.48
31	8.93	79.7	0.2413	1.273	132.6	700.	7.55
32	7.95	63.2	0.1913	1.011	167.2	883.	5.98
33	7.08	50.1	0.1517	0.807	210.8	1113.	4.74
34	6.30	39.75	0.1203	0.636	265.8	1403.	3.762
35	5.61	31.52	0.0954	0.504	335.5	1772.	2.980
36	5.00	25.00	0.0757	0.400	423.0	2232.	2.366
37	4.45	19.83	0.0600	0.3168	533.	2814.	1.877
38	3.965	15.72	0.0476	0.2514	673.	3553.	1,487
39	3.531	12.47	0,03774	0.1991	847.	4470.	1.180
40	3.145	9.89	0.02993	0.1579	1068.	5640.	0.936

ALLOW ABLE CARRYING CAPACITIES OF COPPER WIRE AND CABLE

(Regulations of the National Board of Fire Underwriters)

$\begin{aligned} & \text { No. } \\ & \text { AWG } \end{aligned}$	$\begin{gathered} \text { Circular } \\ \text { Mils } \end{gathered}$	Amperes		Circular Mils	Amperes	
		Rubber Insulation	Other Insulation		Rubber Insulation	Other Insu- lation
18	1,624	3	5	250,000	250	350
16	2,583	6	10	300,000	275	400
14	4,107	15	20	350,000	300	450
12	6,530	20	25	400,000	325	500
10	10,380	25	30	450,000	362	550
8	16,510	35	50	500,000	400	600
6	26,250	50	70	600,000	450	680
4	41,740	70	90	700,000	500	760
2	66,370	90	125	800,000	550	840
1	83,690	100	150	1,000,000	650	1000
0	105,500	125	200	1,250,000	750	1180
00	133,100	150	225	1,500,000	850	1360
000	167,800	175	275	1,750,000	950	1520
0000	211,600	225	325	2,000,000	1050	1670

TEMPERATURE CORRECTIONS FOR COPPER WIRE

(Based on A.I.E.E. Standards)

Temperature Coefficient of Resistance. At a temperature of 25 degrees Centigrade the "constant mass" temperature coefficient of resistance of standard annealed copper, measured between potential points rigidly fixed to the wire is 0.00385 or $1 / 259.5$ per Centigrade degree.

Resistance values of copper wire given in table on preceding pages may be corrected for any temperature by means of the formula given below.

Correction for Chanse in Temperature

$R \mathrm{t}=\mathrm{R}_{25}[1+0.00385(\mathrm{t}-25)]$, where
$\mathrm{Rt}=$ the resistance in ohms at a temperature, t.
$\mathrm{R}_{25}=$ the resistance in ohms at 25 degrees, Centigrade
$\mathrm{t}=$ the temperature of wire in degrees, Centigrade

> Temp. C. $=5 / 9$ (Temp. $\mathrm{F} .-32)$
> Temp. $\mathrm{F} .=9 / 5$ (Temp. C.$)+32$.

SPECIFIC RESISTANCE OF METALS AND ALLOYS AT ORDINARY TEMPERATURES

SUBSTANCE	Specific Resistance Microhms per Cm. Cube	Relative Con-ductance	$\begin{aligned} & \text { SUB- } \\ & \text { STANCE } \end{aligned}$	Specific Resist- ance Mi- crohms per Cm. Cube	Relative Con-ductance
Alumin	2.94	54.		20.8	64
Brass	6-9	26-17	Manganin	43.	3.7
Climax	87.	1.83	Mercury	95.7	1.66
Cobalt	9.7	16.3	Molybdenum	4.8	33.2
Constantan	49.	3.24	Nickel	10.5	11.8
Copper, U.S. std.	1.78	89.5	Nichrome	110.	1.45
Copper, annealed	1.59	100.	Platinum	10.8	14.6
Ger. Silver (18X)	30-40	5.3-4	Silver	1.5	106.
Iron, pure	9.	17.7	Superior 23.	86.	1.85
Iron, wrought	13.9	11.4	Tungsten	5.4	28.9

USEFUL CONVERSION RATIOS

Multiply	by		to obtain
Diam. Circle	3.1416		Circumference Circle
Diam. Circle	0.886	Side Equal Square	
U. S. Gallons	0.8333	Imperial Gallons	
U. S. Gallons	0.1337	Cubic Feet	
Inches Mercury	0.4912	Pounds per Sq. In.	
Feet of Water	0.4335	Pounds per Sq. In.	
Cubic Feet	62.4	Pounds of Water	
U.S. Gallons	8.343	Pounds of Water	
U. S. Gallons	3.785	Liters	
Knots	1.152	Miles	
Inches	2.540	Centimeters	
Yards	0.9144	Meters	
Miles	1.609	Kilometers	
Cubie Inches	16.39	Cubic Centimeters	
Ounces	28.35	Grams	
Pounds	0.4536	Kilograms	

Winding Turns per Linear Inch

Standard American Taps Used in Radio Manufacture

Size of Screw	Outside Dia. in Inches	Pitch Dia. in Inches	Root Dia. in Inches	Tap Drill Steel	Tap Drill Cast Iron	Tap Drill Commercial
$2-56$. 0860	. 0744	. 0628	No. 49 (.0730)	No. 49 (.0730)	No. 50 (.0700)
$3-48$. 0990	.0853	. 0719	No. 44 (.0860)	No. 44 (.0860)	No. 47 (.0785)
4-40	. 1120	. 0958	. 0795	No. 42 (.0935)	No. 43 (.0890)	No. 43 (.08e0)
$5-40$. 1250	. 1088	. 0925	No. 34 (.1110)	No. 35 (.1110)	No. 38 (.1015)
$6-32$. 1380	. 1177	. 0974	No. 32 (.1160)	No. 33 (.1130)	No. 36 (.1065)
8-32	. 1640	. 1437	1234	No. 27 (.1440)	No. 28 (.1405)	No. 29 (.1360)
10-24	.1900	. 1625	. 1359	No. 21 (.1509)	No. 22 (.1570)	No. 25 (.1495)
10-32	. 1900	. 1697	. 1494	No. 19 (.1660)	No. 20 (.1610)	No. 21 (.1590)
12-24	. 2160	. 1889	. 1619	No. 16 (.1770)	No. 17 (.1730)	No. 16 (.1770)
$1 / 4-20$. 2500	2175	1850	No. 7 (.2010)	No. $8(.1990)$	No. 7 (.2010)

Conversion

Factors for conversion - alphabetically arranged.

Multiply	By	To Get
Amperes	$\times 1,000,000,000,000$	micromicroamperes
Amperes	$\times 1,000,000$	microamperes
Amperes	$\times 1,000$	milliamperes
Cycles	\times.000,001	megacycles
Cycles	$\times .001$	kiloeycles
Farads	$\times 1,000,000,000,000$	mioromicrofarads
Farads	$\times 1,000,000$	microfarads
Farads	$\times 1,000$	millifarads
Henrys	$\times 1,000,000$	microhenrys
Henrys	$\times 1,000$	millihenrys
Kilocycles	$\times 1,000$	cycles
Kilovolts	$\times 1,000$	volts
Kilowatts	$\times 1,000$	watts
Megacyeles	$\times 1,000,000$	cycles
Mhos	$\times 1,000,000$	micromhos
Mhos	$\times 1,000$	millimhos
Microamperes	$\times .000,001$	amperes
Microfarads	$\times .000,001$	farads
Microhenrys	$\times .000,001$	henrys
Micromhos	$\times .000,001$	mhos
Micro-ohms	$\times .000,001$	ohms
Microvolts	$\times .000,001$	volts
Microwatts	$\times .000,001$	watts
Micromicrofarads	$\times .000,000,000,001$	farads
Micromicro-ohms	$\times .000,000,000,001$	ohms
Milliamperes	$\times .001$	amperes
Millihenrys	$\times .001$	henrys
Millimhos	$\times .001$	mhos
Milliohms	$\times .001$	ohms
Millivolts	$\times .001$	volts
Milliwatts	$\times .001$	watts
Ohms	$\times 1,000,000,000,000$	micromicro-ohms
Ohms	$\times 1,000,000$	micro-ohms
Ohms	$\times 1,000$	milliohms
Volts	$\times 1,000,000$	microvolts
Volts	$\times 1,000$	millivolts
Watts	$\times 1,000,000$	microwatts
Watts	$\times 1,000$	milliwatts
Watts	$\times .001$	kilowatts

METRIC EQUIVALENTS

Length

```
Cm. = .3937 In.
Meter = 3.28 Ft.
Meter = 1.094 Yd.
Kilom.= . 621 Mile
```

In. $=2.54 \mathrm{Cm}$.
Ft. $=.305$ Meter
$\mathrm{Yd} .=.914$ Meter
Mile $=1.61$ Kilom .

Area

Sq. Cm.	$=0.1550$	Sq. in.	Sq. in. $=6.452 \mathrm{Sq} . \mathrm{Cm}$.
Sq. M.	$=10.764$ Sq. ft.	Sq. $\mathrm{St} .=.0929 \mathrm{Sq} . \mathrm{M}$.	
Sq. M.	$=1.196$	Sq. yd.	Sq. yd. $=.836$
Sq. M.			
Hectare	$=2.47$	Acres	Acre $=0.405$
Hectare			
Sq. Kilom.	$=.386$	Sq. mi.	Sq. mi. $=2.59$
Sq. Kilom.			

Volume

$\mathrm{Cu} . \mathrm{Cm},=.061 \mathrm{Cu}$. in. $\mathrm{Cu} . \mathrm{in} .=16.4 \mathrm{Cu} . \mathrm{Cm}$. $\mathrm{Cu} . \mathrm{M} .=35.31 \mathrm{Cu}$. ft.
$\mathrm{Cu} . \mathrm{M} .=1.308 \mathrm{Cu} . \mathrm{yd}$.
$\mathrm{Cu} . \mathrm{ft} .=.028 \mathrm{Cu} . \mathrm{M}$.
$\mathrm{Cu} . \mathrm{yd} .=\quad .765 \mathrm{Cu} . \mathrm{M}$.

Capacity

Litre $=$	$.0353 \mathrm{Cu} . \mathrm{ft}$.	$\mathrm{Cu} . \mathrm{ft} .=28.32$
Litres		
Litre $=$.2642 Gal, ($\mathrm{U} . \mathrm{S})$.	Gal.
Litre $=61.023 \mathrm{Cu}$. in.	Cu. in. $=3.785$	Litres.
Litre		

Weisht

Gram	$=15.423$	Grains	Grain	=	. 06	Gram
Gram	. 0353	Ounce	Ounce	-	28.3	Gram
Kilogra	2.205	Lb.	Lb .			Kilog' m
Kilogra	$=.0011$	Ton(Sht)	Ton(Sht	=	907.0	Kilog'm
Met. T	$=1.1025$	$\begin{aligned} & \text { Ton (Sht) } \\ & \operatorname{Ton}(S h t)= \end{aligned}$	$\begin{aligned} & \operatorname{Ton}(\mathrm{Sh} \\ = & 2.000 \mathrm{~L} \end{aligned}$			Met. Ton

Pressure

Kilograms per square centimeter $=14.225$ pounds per square inch.
Pounds per square inch $=.0703$ kilograms per square cm .
Kilograms per square meter $=.205$ pounds per square foot. Pounds per square foot $=4.88$ kilograms per square meter. Kilograms per square centimeter $=.968$ atmosphere.
Atmosphere $=1.033$ kilograms per square cm .

Miscellaneous

Kilogrammeter $=7.233$ foot pounds.
Foot pound $=.1383$ kilogrammeter.
Metric horse power $=.986$ horse power.
Horse power $=1.014$ metric horse power.
Litre per second $=2.12$ cubie feet per minute.
Litre per second $=15.85$ U. S. gallons per minute.

METRIC AND DECIMAL EQUIVALENTS OF COMMON FRACTIONS

Fractions of an inch	Decimals of an inch	Millimeters	Fractions of an inch	Decimals of an inch	Millimeters
1/32 ${ }^{1 / 6}$. 0156	0.397	33.64	. 5156	13.097
	. 0313	0.794	17/32	. 5313	13.494
	. 0469	1.191	3564	. 5469	13.891
116	. 0625	1.588	916	. 5625	14.287
$3 / 564$. 0781	1.985	19, 37/64	. 5781	14.684
3/32	. 0938	2.381	19/32	. 5938	15.081
$1 / 8$. 1094	2.778	${ }^{39} 64$. 6094	15.478
	. 1250	3.175	5/8	. 6250	15.875
	. 1406	3.572	$41 / 6$. 6406	16.272
5/32 11	.1563	3.969	21/32	. 6563	16.688
$3 / 1164$. 1719	4.366	113264	. 6719	17.085
$3 / 16$. 1875	4.762	11/16	. 6875	17.462
7. 1364	2031	5.159	45.64	7031	17.859
7/32 15	2188	5.556	$23 / 32$. 7188	18.256
15/64	. 2344	5.953	47/64	. 7344	18.653
$1 / 4$	2500	6.350	$3 / 4$. 7500	19.050
1764	2656	6.747	25.4964	. 7656	19.447
9/32	2813	7.144	25/32	. 7813	19.843
5/16	2969	7.541	51.64	. 7969	20.240
	3135	7.937	13/16	. 8125	20.637
	3281	8.334	16 53 184	. 8281	21.034
11/82	3438	8.731	27/32	. 8438	21.430
$3 / 8{ }^{23} 64$	3594 3750	9.128	7) 5564	. 8594	21.827
3/8	3750	9.525	$7 / 8$. 8750	22.224
13/62	. 3906	9.922	$57 / 84$. 8906	22.621
	. 4063	10.319	29.52	. 9063	23.018
	. 4219	10.716	50664	. 9219	23.415
7/16	. 4375	11.12	15/16	. 9375	23.812
15.2964	. 4531	11.509	31.6164	. 9531	24.209
15/32	. 4688	11.906	31/32	. 9688	24.606
$1 / 2$. 4844	12.303	$63 / 64$. 9844	25.003
	. 5000	12.700		1.0000	25.400

EQUIVALENTS OF ELECTRICAL UNITS

1 kilowatt $=1000$ watts.
1 kilowatt $=1.34 \mathrm{H}, \mathrm{P}$.
1 kilowatt $=44,257$ foot-pounds per minute.
1 kilowatt $=56.87$ B. t. u. per minute.
1 horse power $=746$ watts.
1 horse power $=33,000$ foot-pounds per minute.
1 horse power $=42.41$ B. t. u. per minute.
1 B. t. u. (British thermal unit) $=778$ foot-pounds.
1 B. t. u. $=0.2930$ watt-hour.
1 joule =1 watt-second.

Self-Indicating Resistance Chart

RESISTANCES-IN-OHMS

CURRENT-IN-AMPERES

When volts and amperes are known, inter. section of voltage and current lines gives resist. ance in ohms. To extend scales: When multiplying voltage by any factor with curreni remaining fixed, multiply resistance by same factor. When multiplying current, voltage remaining fixed, divide resistance by same factor. When dividing voltage by any factor, current remaining fixed, divide resistance by same factor. When dividing current by any factor, multiply resistance by same factor.

Capacity, Frequency \& Inductance Chart

Knowing capactty in micromicrofarads and the frequency In kilocycles to be covered by a condenser at maximum capactty the inductance required for a coll may be found by running a straight line from the micromicrofarads column through the kilocycle column, the line intersecting the inductance column.

Knowing the condenser capacity and the inductance of the coll, the frequency to which the coil will tune can be found by running a line from the micromicrofarads column to the microhenrys column, the point of intersection on the killocycle column will be the frequency of coil and condenser.

Knowing the ktiocycles and the inductance, the stze of condenser to be used to cover that frequency can be found on the same manner indicated; extenston of a stratght line from microhenrys through kilocycles will terminate on the micro-

Conversion Table - Frequency to Wavelength

$\left.\begin{array}{c} \text { Wavelength } \\ \text { in } \\ \text { Meters } \end{array}\right\}=$		$\begin{aligned} & \text { Frequency in Kilocyeles } \\ & \text { or } \\ & 300 \end{aligned}$	
		uency in M	acycles
Long-Wave Broadcast Band		Short Waves	
Frequency Kilocycles	Wavelength Meters	Frequency Megacycles	Wavelengt Meters
550	545	1.5	200
600	500	2	150
650	461	3	100
700	429	4	75.0
750	400	5	60.0
800	375	6	50.0
850	353	7	42.9
900	333	8	37.5
950	316	9	33.3
1000	300	10	30.0
1050	286	11	27.3
1100	273	12	25.0
1150	261	13	23.1
1200	250	14	21.4
1250	240	15	20.0
1300	231	16	18.8
1350	222	17	17.6
1400	214	18	16.7
1450	207	19	15.8
1500	200	20	15.0

Frequency Assignments in the High Frequency Radio Spectrum For United States

(Radiophone Stations Only)

Time Signals
NAA, Washington, D.C. $64,113,690,4525,8410$, $9050,12615,16820$
NPG, San Francisco
$42.8,108,8590,12885$
4797

Sales Aids That Help You Sell

Sales aids listed below are only a few of the many designed to tie in your store with RCA Radio Tube advertising and to enable you to share RCA prestige.

Metal Flange Sign
Electric Clock
Tube Test Stickers
New Travel-log
Shop Coats and Shirts
Direct Mail Cards
Guarantee Certificates

Service Order Pads
Business Cards
Repair Tickets
Billheads
Letterheads
and many others

These aids may be obtained through your RCA Radiotron Distributor.

U. S. Broadcasting Stations

Station	Location	$\left\|\begin{array}{cc} 1 \\ 3 & 3 \\ 3 & 3 \\ 3 \end{array}\right\|$	Station	Location	bo
KDKA	Pittsburgh, P	980	KPO	S. Francisco, Calif.	680
KDYL	Salt Lake Cy, Utah	1290	KPRC	Houston, Texas	920
KECA	Los Angeles, Calif.	1430	KQW	San Jose, Calif.	1010
KEX	Portland, Oregon	1180	KRLD	Dallas, Texas	1040
KFAB	Lincoln, Nebr.	770	KROW	Oakland, Calif.	930
KFAC	Los Angeles, Calif.	1300	KSCJ	Sioux City, Iowa	1330
KFBB	Great Falls, Mont.	1280	KSD	St. Louis, Mo.	550
KFBI	Abilene, Kans.	1050	KSFO	S. Francisco, Calif.	560
KFBK	Sacramento, Calif.	1490	KSL	Salt Lake Cy, Utah	1130
KFDY	Brookings, S. D.	780	KSOO	Sioux Falls, S. D.	1110
KFEQ	St. Joseph, Mo.	680	KSTP	St. Paul, Minn.	1460
KFH	Wichita, Kans.	1300	KTAR	Phoenix, Ariz.	620
KFI	Los Angeles, Calif.	640	KTAT	Fort Worth, Texas	1240
KFKU	Lawrence, Kans.	1220	KTBS	Shreveport, La.	1450
KFOX	Long Beach, Calif.	1250	KTFI	Twin Falls, Idaho	1240
KFPY	Spokane, Wash.	890	KTHS	Hot Springs, Ark.	1060
KFRC	S. Francisco, Calif.	610	KTRH	Houston, Texas	1290
KFSD	San Diego, Calif.	600	KTSA	San Antonio, Tex.	550
KFWB	Hollywood, Calif.	950	KTW	Seattle, Wash.	1220
KFYR	Bismarek, N. D.	550	KUOA	Fayetteville, Ark.	1260
KGA	Spokane, Wash.	1470	KVI	Tacoma, Wash,	570
KGB	San Diego, Calif.	1330	KVOO	Tulsa, Okla.	1140
KGBZ	York, Nebr.	930	KVOR	Colo. Springs, Colo.	1270
KGDM	Stockton, Calif.	1100	KWK	St. Louis, Mo.	1350
KGER	Long Beach, Calif.	1360	KWKH	Shreveport, La.	1100
KGGF	Coffeyville, Kans.	1010	KWSC	Pullman, Wash.	1220
KGHL	Billings, Mont.	780	KWTO	Springfield, Mo.	560
KGIR	Butte, Mont.	1340	KXYZ	Houston, Texas	1440
KGNC	Amarillo, Texas	1410	KYA	S. Francisco, Calif.	1230
KGNF	N, Platte, Nebr.	1430	KYW	Philadelphia, Pa.	1020
KGO	S. Francisco, Calif.	790	WAAF	Chicago, Ill.	920
KGVO	Missoula, Mont.	1260	WABC	New York, N. Y.	860
KGW	Portland, Oregon	620	WADC	Tallmadge, Ohio	1320
KHJ	Los Angeles, Calif.	900	WAPI	Birmingham, Ala.	1140
KHQ	Spokane, Wash.	590	WAVE	Louisville, Ky.	940
KIDO	Boise, Idaho	1350	WBAL	Baltimore, Md.	1060
KJR	Seattle, Wash.	970	WBAP	Fort Worth, Texas	800
KLRA	Little Rock, Ark,	1390	WBBM	Chicago, Ill.	770
KLX	Oakland, Calif.	880	WBBR	Brooklyn, N. Y.	1300
KLZ	Denver, Col.	560	WBEN	Buffalo, N. Y.	900
KMA	Shenandoah, Iowa	930	WBOQ	New York, N. Y.	860
KMBC	Kansas City, Mo.	950	WBRC	Birmingham, Ala.	930
KMMJ	Clay Center, Nebr.	740	WBT	Charlotte, N. C.	1080
KMOX	St. Louis, Mo.	1090	WBZ	Boston, Mass.	990
KMTR	Los Angeles, Calif.	570	WBZA	Springfield, Mass.	990
KNX	Los Angeles, Calif.	1050	WCAE	Pittsburgh, Pa .	1220
KOA	Denver, Col.	830	WCAL	Northfield, Minn.	1250
KOAC	Corvallis, Ore.	550	WCAU	Philadelphia, Pa.	1170
KOB	Albuquerque, N.M.	1180	WCBD	Waukegan, Ill.	1080
KOIL	Council Bluffs, Iz.	1260	WCCO	Minneapolis, Minn.	810
KOIN	Portland, Oregon	940	WCFL	Chicago, III.	970
KOL	Seattle, Wash.	1270	WCKY		1490
KOMA	Oklahoma City,		WCSH	Portland, Maine	940
	Okla.	1480	WDAE	Tampa, Fla.	1220
KOMO	Seattle, Wash.	920	WDAF	Kansas City, Mo.	610

Station	Location		Station	Location	$\text { 葛 } \frac{8}{5}$
$\overline{\text { WDAY }}$	Fargo, N. D.	940	WKY	Okla. City,	900
WDBJ	Roanoke, Va.	930	WKZO	Kalamazoo, Mich.	590
WDBO	Orlando, Fla.	580	WLAC	Nashville, Tenn.	1470
WDGY	Minneapolis, Minn.	1180	WLB	Minneapolis, Minn.	1250
WDOD	Chattanooga,Tenn.	1280	WLBL	Stevens Pt., Wisc.	900
WDRC	Hartford, Conn.	1330	WLS	Chicago, Ill.	870
WDSU	New Orleans, La.	1250	WLW	Cincinnati,	0
WEAF	New York, N. Y.	660	WLWL	New York, N. Y.	1100
WEBC	Superior, Wis.	1290	WMAQ	Chicago, Ill.	670
WEEI	Boston, Mass.	590	WMAZ	Macon, Ga.	1180
WEEU	Reading, Pa .	830	WMBF	Miami, Fla.	1300
WENR	Chicago,	870	WMBI	Chicago, III.	1080
WESG	Elmira, N. Y.	850	WMC	Memphis, Tenn.	780
WEVD	New York, N, Y.	1300	WMT	Cedar Rapids, Ia.	600
WEW	St. Louis, Mo.	760	WNAC	Boston, Mass.	1230
WFAA	Dallas, Texas	800	WNAD	Norman, Okla.	1010
WFAB	New York, N. Y.	1300	WNAX	Yankton, S. Da	570
WFBC	Greenville, S. C.	1300	W NBX	Springfield,	1260
WFBL	Syracuse, N. Y.	1360	WNEW	Newark, N.	1250
WFBM	Indianapolis, Ind.	1230	WNOX	Knoxville, Tenn.	1010
WFIL	Philadelphia, Pa.	560	WNYC	New York, N. Y.	810
WFLA	Clearwater, Fla,	620	WOAI	San Antonio, Texas	1190
WGN	Chicago,	720	WOI	Ames, Iowa	640
WGR	Buffalo,	550	WOR	Newark, N	710
WGST	Atlanta, Ga.	890	WORK	York, Pa.	1320
WGY	Schenectady, N. Y.	790	WOV	New York	1130
WHA	Madison, W	940	WOW	Omaha, Ne	590
WHAM	Rochester, N	1150	WOWO	Fort Wayne, Ind.	1160
WHAS	Louisville, K	820	WPG	Atlantic City, N. J.	1100
WHB	Kansas City, Mo.	860	WPTF		680
WHBI	Newal	1250	WQAM	Mi	30
WHDH	Boston, Mass.	830	WQBC	Vicksburg, Miss.	1360
WHIO	Dayton, Ohio	1260	WREC	Memphis, Tenn.	600
WHK	Cleveland, Ohio	1390	WREN	Lawrence, Kans.	1220
WHN	New York, N. Y.	1010	WRUF	Gainesville, Fla.	830
WHO	Des Moines, Iowa	1000	WRVA	Richmond, Va.	1110
WIBA	Madison, Wis.	1280	WSAI	Cincinnati, Ohio	1330
WIBW	Topeka, Kans,	580	WSAR	Fall River, Mass.	1450
WIND	Gary, Ind.	560	WSAZ	Huntington, W.Va.	1190
WINS	New York, N. Y.	1180	WSB	Atlanta, Ga.	740
WIOD	Miami, Fla.	1300	WSM	Nashville, Tenn.	650
WIP	Philadelphia, Pa.	610	WSPA	Spartanburg, S. C.	920
WIS	Columbia, S. C.	560	WSPD	Toledo, Ohio	1340
WJAG	Norfolk, Nebr.	1060	WSUN	Clearwater, Fla.	620
WJAS	Pittsburgh, Pa.	1290	WTAM	Cleveland, Ohio	1070
WJAX	Jacksonville, Fla.	900	WTAQ	Eau Claire, Wiso.	1330
WJDX	Jackson, Miss.	1270	WTCN	Minneapolis, ${ }^{\text {² }} \mathrm{Min}$.	1250
WJJD	Chicago, Ill.	1130	WTIC	Hartford, Conn.	1040
WJR	Detroit, Mich.	750	WTMJ	Milwaukee, Wis.	620
WJSV	Alexandria, Va.	1460	WTOC	Savannah. Ga.	1260
WJZ	New York, N. Y.	760	WWJ	Detroit, Mich.	920
WKAR	E. Lansing, Mich.	850	WWL	New Orleans, La.	850
WKBH	La Crosse, Wis.	1380	WWNC	Asheville, N. C.	570
WKBW	Buffalo, N. Y.	1480	WWVA	Wheeling, W. Va.	1160
WKRC	Cincinnati, Ohio	550	WXYZ	Detroit, Mich.	1240

IMPORTANT SHORT-WAVE STATIONS

IMPORTANT SHORT-WAVE STATIONS

Interchangeable Tube Types

RCA Radio Glass Tube types can be interchanged for tube types of other manufacturers as follows:

In general, the last two digits of a three-digit receiving tube type number are the significant type designation. Thus. the RCA-27 is interchangeable with the -32 example, the of a suffixed letter, the same rule apples our manufacture RCA-71-A will replace or AG-71-A, ete., of other manuand also the FY-71-A or AG-71-A, ete., of other facturers.

Exceptions to this rule include the following types, for which we do not have an interchangeable type: KR-20, $\mathrm{KR}-22,59-\mathrm{B}, \mathrm{G}-84,182 \mathrm{~B}, 183,401,482 \mathrm{~B}, 483,484$, 485, 985.

Spray-shielded tubes, having type numbers which correspond to RCA type numbers followed by the letter "s", can usually be replaced by the RCA type. When the replacement is made in an $1-1$ or r-1 stage where shielding is important, the RCA tube should be equipped with a close fitting tube shield.

Tubes having a glass bulb and an octal base have type numbers with the suffix G. Tubes having a glass bulb, enclosed in a metal shield, and an octal base use the suffix MG. Both the G and MG types can usually be replaced by the corresponding RCA all-metal type without change in the receiver. When the replacement is made in a pentagrid converter or mixer stage it may be sec-f tuning condenser. oscillator tuning condenser wher ceses of interchangeabil-

The following list covers other by other manufacturers, together with the corresponding RCA Radio Tubes type numbers. The list also gives type numbers of tubes which

e ea	RCA		RCA
	RCA	Other	Radio
Other Manufacturers'	Tubes	Manufacturets	Type No.
Manusacturers Type No.	Type No.	Type 10.	.39/44**
2 A 3 H	. 2 A 3	65-A.....	.39/44*
$6 Z 3$.	1-V	$67 .$.37*
6Z4......	12Z3	67-A...	. $37{ }^{*}$
25 Z 5 MG	. 25 Z 6	68.	. $38{ }^{*}$
1.......	1-v	'71..	.. 71-A
,00.	.00-A	71-B.	. 71-A
'01.	. 112 -	'80M	.83***
$\cdot 12$.	. 80	88	.835
$13-\mathrm{B}$	80		84
'16..	. 81	182 A	71-A
,16-B	.81	482 A . .	. $71-\mathrm{A}$
'24. ${ }^{\text {a }}$.	1B5 25 S	585.	. 50
${ }_{2}^{25 \mathrm{~S}} \mathrm{HM}$. ${ }^{\text {a }}$. 56	586.	. 80
, $36-\mathrm{A}$.	. 36	P-861	1B4
, 37-A.	. 37	986.	83**
'38-A		AD	1-v
'39.	39/44	AF.	82
'39-A	. $39 / 44$	AG	. 83
43 MG	25A6	KR-1.	$1-\mathrm{V}$
'44. ${ }^{\text {H }}$	12Z3	KR-5	.6A4
HZ50	35	KR-25	2A5
	76 *	KR-28	. 84
$57-\mathrm{A}$	6C6*	LA.	. 6A4
58-A	6D6*	PZ	. 47
64.	36**	PZH....	...2A5

* Except when heaters are connected in will stand additional **When receiver
ament current.

919	$\frac{10881}{10.41}$	$\begin{aligned} & 6002 \\ & 80091 \end{aligned}$	（ximpo	$\text { 3010 }{ }^{2}$	wis.	$\begin{aligned} & 0.36 \\ & 0.05 \end{aligned}$	－	－	$\begin{aligned} & 0.96- \\ & \text { kughe } \end{aligned}$	$\begin{aligned} & 658 \\ & \text { Ni5E } \end{aligned}$	Kationtionsyp	－	OSE	10	E\％	ExL2H	．$\frac{31}{81} \times .15$	5	Nidd－2 TVY：30		889
	$\begin{aligned} & 1061 \\ & 10.61 \\ & \hline \end{aligned}$	$\begin{aligned} & 00001 \\ & 00001 \end{aligned}$	$\frac{\text { rulpo }}{\text {（1）}}$			$\begin{aligned} & 1.15 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \cos 2 \\ & \cos 2 \end{aligned}$	$\begin{array}{\|c\|} \hline 0.96= \\ \text { seng.j15S } \end{array}$	$5 E L E$	TMAMEnd zooske	Dit	55ε								
	$50^{\circ} \mathrm{O}$	000\％	2	002t	009\％	0.15	－	－	0．08－	OSt	032024	－	OSt								
	0＇S	$\begin{aligned} & 00021 \\ & 0004 \end{aligned}$	$\begin{aligned} & 002 \\ & 005 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 059E } \\ & \text { OOSE } \end{aligned}$	00056 00003	$\begin{aligned} & 8.26 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 51! \\ & 05 x \\ & 0 \end{aligned}$	$\begin{aligned} & 0.28= \\ & 5 \cdot 98= \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SIC } \\ & \text { OSt } \end{aligned}$		515	515								
918						Pro		－	$8.0=$	$\begin{gathered} x \operatorname{cose} \\ 0.2 \end{gathered}$	MaLuTday Y SSYD	－	058	80	$8 \cdot 9$	431733		＊			939
939	 										8oproiont	－	2052	E＇0	V＇9	1311ヶ24		\％	Nido TTM\％	Averemat ${ }^{\text {2ant }}$	939
989						\square	－	$\begin{aligned} & 001 \\ & 001 \end{aligned}$	$\begin{aligned} & 0.01- \\ & 0.01- \end{aligned}$	$\begin{aligned} & \begin{array}{l} 052 \\ 001 \end{array} \end{aligned}$		D0T	052	E＇0	\＆＇9	k2irsir		N	Kไd－ บTYW		009
			¢8821	009］ cost	000098 000055	$\begin{aligned} & 7.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0 \% \\ & i=1 \end{aligned}$	$\begin{aligned} & 001 \\ & 001 \end{aligned}$	wial	$\begin{aligned} & 052 \\ & 001 \end{aligned}$	silimuny sy OMYONTE8S										
909											\％\％itulat	000		$5 \cdot 0$	5.9	НЗ，${ }^{\text {ar3 }}$		3	HICH गTVW2	n3ingowr tal 53130 （0） 0^{2}－	908
599	एमश is on काष 						－	－		Ose	yolvaisu sria	－	¢5\％	O	59		M1 \times ，it	\％ 1	Nide Twiog	300161 $83912 \mathrm{~N}=\mathrm{y}$4.4012120	S09
			x^{122}	$3 \mathrm{xexix} 2 \mathrm{dy}$ $000 t$	UबO	$\begin{aligned} & 01 \\ & 0.9 \end{aligned}$	－	－	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{gathered} 905 z \\ 0 s 2 \end{gathered}$	v3ishany Y Syd										
8 899			wyosions s＇a 		 					$\begin{aligned} & \times 00 \mathrm{E} \\ & \times 06 \\ & \hline \end{aligned}$	ร 1 IWN smolved	521	052	E．0	E\％9	vacky		32			899
	－	－－	008	5201	D0cou3	0.01	$\varepsilon^{\prime} \mathrm{I}$	561	$\mathrm{a}^{1} \mathrm{~L}$－	056											
289	 				 					$\begin{aligned} & \text { K00E } \\ & \times 05 \\ & \hline \end{aligned}$		521	ost	E^{\prime}	$8 \cdot 9$	tairai		at	N1dく671Yw		289
	－	－	501	$\begin{aligned} & 5211 \\ & 056 \end{aligned}$	$\begin{aligned} & 000059 \\ & 00000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.6 \\ & 85 \end{aligned}$	$\begin{aligned} & \varepsilon \% \\ & 1 \% 1 \end{aligned}$	$\begin{aligned} & 521 \\ & 001 \end{aligned}$	$\begin{aligned} & 0 \cdot E \\ & 0 . E I \end{aligned}$	$\begin{aligned} & 098 \\ & 090 \end{aligned}$	83isindwy st svinh 3001534										
899	 nom xum sosz（tss）puoppoury				000095 000009	$\begin{aligned} & \varepsilon^{\prime} \delta \\ & v^{\prime} \end{aligned}$	${ }_{5}^{\prime \prime} \AA$	$\begin{aligned} & 001 \\ & 08 \end{aligned}$	$\left\|\begin{array}{c} \text { nad } \\ 0^{\circ} \mathrm{E}-1 \end{array}\right\|$	$\begin{aligned} & 085 \\ & 001 \end{aligned}$	MELTSNECO	cot	ost	$\varepsilon^{*} 0$	₹＇9	H3LVEH	\cdots－${ }^{\text {2 }}$	w	Nldity ${ }_{\text {Tinw }}$		879
LV9	 Sion xiw cose sif：pupypour				$\begin{aligned} & 0000095 \\ & 000009 \end{aligned}$	$\mathrm{S}_{\mathrm{E}^{\prime} \mathrm{I}}$	$\begin{aligned} & z^{\prime} \cdot \\ & x^{\prime} z \end{aligned}$	$\begin{aligned} & 001 \\ & 085 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { uqui } \\ & 0 \cdot E-\rangle \end{aligned}\right.$	$\begin{aligned} & \text { OSE } \\ & \text { OOL } \end{aligned}$	\％	001	0st	E＇0	$\varepsilon^{*} 9$	blivic		$0 \cdot$	N1d－L TVWW	－Misieranas	LY9
9v9											xethravy	－	ODE	$8 \cdot 0$	$5 \cdot 9$	H31834		\ldots	a Whe－L Wriozw		9Ys
87／ty9	¢0．0	$\begin{aligned} & 00018 \\ & 000 \mathrm{If} \end{aligned}$	0101	$\begin{aligned} & 0022 \\ & 0021 \end{aligned}$	$\begin{aligned} & 00 \log ^{2} \\ & \text { ostce } \end{aligned}$	$\begin{aligned} & 0722 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 6 \cdot g \\ & 91 \end{aligned}$	$\begin{aligned} & 081 \\ & 001 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 001 \end{aligned}$		081	M1	¢＊0	$8 \cdot 9$	1\％3wnla		85	Hider wnucaw		$\mathrm{n} / \mathrm{trg}$
11779	sejudaritive 5er SWE＇sion 800 D					zuมump andino ar q umumax zuld tad abenion y v untuxisk						－	－	0%	$0 \cdot 5$	171434		7		431s1195 3กУ／ล－72ก3	± 29
£29	Exscumytive ose SWX＇210 1 Dos					 						－	－	$0^{\circ} \mathrm{E}$	0.5	153WYT4	$\cdots \frac{12}{* 12} \times 45$	or	N1d－t Wniosw	83131534 3 1 VM－ 172	829
DME	Exatumity 015 дuدयाँ jnding 2 －una SINZ＇GIIOA OSE 											－	－	S＇t	0.5	Lwawทา	，坛1 $1 \times$ ，if	18	Kldst TV100		t城9

范	\％	：	管	5	8	$\frac{8}{6}$	\％	㐌	
躴言言宗	111							为： $8=0$	
	11								
言耪管	2\％${ }^{\text {at }}$								
	Bisi		${ }^{\frac{3}{3}}$			紿			${ }^{88}$
								$1{ }^{8 \text { ºis }}$	
					＂ns		！	$\left.\because \square^{\circ 2}\right)^{\circ}$	
	$1 \div 2:$				38	ㅇํㅇํㅇํㅇ	！\％	11	
綰咅	1888	侤詨䛠		58	$2: 8$		8	11	
					品品		＋$\square_{0} \stackrel{\circ}{\text { ¢ }}$		
容言を晋	๕ระ \％			\％\％\％\％ix	85		\％\％		
		新							
	1\＆\＆	1	1	\＃	\＃	3）：\％\％	\bigcirc	1	
	¢ ¢ ：	亳	1	$\stackrel{9}{7}$	号	¢ \％\％\％	8	\％	
할 ${ }^{5}$	\％	\％	\％	\％	3	：	\％	：	
	${ }^{3}$	${ }_{5}$	3	－	\％	\％	？	？	
諾范	$\frac{5}{1}$	$\frac{5}{6}$	$\begin{array}{\|c\|} \hline \frac{5}{2} \\ \hline \end{array}$	$\frac{5}{2}$	$\frac{5}{1}$	乽	崖	5	
			$\left\|\begin{array}{c} u \\ \alpha \\ \vdots \end{array}\right\|$			$\begin{aligned} & \stackrel{\rightharpoonup}{\mu} \\ & \vdots \end{aligned}$	\＃	한 \vdots	
䪰镱	\pm	s	：	＊	E	\％	＝	：	
䓵		$\begin{aligned} & \frac{1}{5} \\ & \frac{1}{3} \end{aligned}$		䚄	毞		管然	等	
蓳			$\begin{array}{\|l} \hline \\ \hline \end{array}$					賑	
家	ち	管	$\frac{1}{6}$	5	5	\％	3	管	

Ev		0005 005%	001 06	00S2 0002	$\begin{aligned} & \text { pooot } \\ & \text { poops } \end{aligned}$	0．58	92：	SEt	（e．05－		\％̇3	Sct	081	E＇0	$0 \cdot 50$	H71\％2H		89	N1d－9 Wniezw		ct
27		0000 00001	\cdots	－．－	－					$\begin{aligned} & 058 \\ & 058 \\ & 058 \end{aligned}$		－	ess	$2 \cdot 0$	$\varepsilon^{\prime \prime}$	431v34	，皆1 \times ，精	0	Nider Waicsiw	300 inad 41imavy tamod	27
	$\begin{array}{r} 10.61 \\ 10.61 \end{array}$	$\begin{aligned} & 60001 \\ & 00001 \\ & \hline \end{aligned}$				$\begin{aligned} & 0.2 \\ & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0 \cdot \xi \\ & 0.9 \end{aligned}$	$\begin{aligned} & 052 \\ & \hline 052 \\ & \hline 052 \end{aligned}$	$\begin{array}{\|c\|} \hline 0.92-2 \\ 50 v 9-13 \\ \hline \end{array}$	$\begin{aligned} & 5 L E \\ & 5 \angle K \\ & \hline \end{aligned}$	TTMKTM 300wN3d	ost	546								
	$59^{\circ} \mathrm{O}$	0008	\％＇9	00st	0012	$0 \cdot 15$	－	－	0．02－	csz		－	SIE								
		$\begin{array}{\|l\|} \hline 000 \mathrm{~L} \\ 000 \mathrm{~L} \\ \hline \end{array}$	$\begin{aligned} & 692 \\ & 661 \\ & \hline \end{aligned}$	$\begin{aligned} & 0092 \\ & 058 z \end{aligned}$	$\begin{aligned} & \hline 000001 \\ & 00008 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 518 \\ & 055 \end{aligned}$	$\begin{aligned} & 0.2 t- \\ & 5: 91= \end{aligned}$	$\begin{aligned} & \text { SII } \\ & \hline 085 \\ & \hline \end{aligned}$		SIF	\＄18								
15	$\begin{aligned} & 0 r^{\prime} \varepsilon \\ & \mathrm{E} \cdot \mathrm{E} \end{aligned}$	$\begin{aligned} & 009 \mathrm{C} \\ & 000 \mathrm{tI} \end{aligned}$	$\begin{aligned} & 051 \\ & 051 \\ & \hline 05 \end{aligned}$	$\begin{aligned} & 002 t \\ & 0501 \\ & \hline 051 \end{aligned}$	$\begin{aligned} & 00089 \\ & 005801 \end{aligned}$	$\begin{aligned} & 0.2 \varepsilon \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.9 \\ & 9.1 \\ & 9 . \end{aligned}$	$\begin{aligned} & \text { ost } \\ & \text { por } \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{Ot} \\ & 0: 8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 058 \\ & 001 \\ & \hline 0 . \end{aligned}$	y3 madry Y ssmb	$05 t$	050	$8 \cdot 0$	$\varepsilon \cdot 9$			19	Nid－3 Tivws	3caLn3d s3LuITSWY צ3MOd	17
07	－	－	${ }_{0 ¢}^{0 ¢}$	002	$\begin{aligned} & 00005 t \\ & \text { ocoost } \end{aligned}$	$r^{\tau} \cdot$	－	－	S＇E－	$$		－	O8I	$52^{\circ} 0$	0.5		，晰1 \times ，$\frac{1}{1}+$	\％			ct
\＄7／68	－	7	${ }_{0}^{0501}$	$\begin{aligned} & 0501 \\ & 096 \end{aligned}$	$\begin{aligned} & 0000001 \\ & 0005 \angle \mathrm{e} \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 2.1 \end{aligned}$	$\begin{aligned} & \hline 66 \\ & 06 \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \text { мй } \\ 0.6-1 \end{array}\right\|$	$\begin{aligned} & 052 \\ & 06 \\ & \hline \end{aligned}$	ygumany dey	06	OST	\％＇0	$\varepsilon^{*} 9$	İIV3\％	．$\frac{51}{7} \times$.	45	Nid－s Tivws	3001N3d Hyuluwl d－y 70e1wory3dns	50／68
88	$05^{2} \mathrm{C}$ 420	$\begin{aligned} & 00001 \\ & 00051 \end{aligned}$	$\begin{aligned} & 021 \\ & 0 \mathrm{tI} \end{aligned}$	$\begin{aligned} & 0021 \\ & 568 \\ & \hline \end{aligned}$	$\begin{aligned} & 000001 \\ & 0000+1 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 8 \cdot \varepsilon \\ & 2 \cdot 1 \end{aligned}$	$\begin{aligned} & 05 z \\ & 001 \end{aligned}$	$\begin{aligned} & 9 . \frac{5}{2}= \\ & 0.6- \end{aligned}$	$\begin{aligned} & 082 \\ & 001 \\ & 001 \end{aligned}$	Bnatawy Y Sno	OSE	ost	$\varepsilon^{\circ} 0$	80	taivat		36	N1d－9 71w		88
	$2 \mathrm{or}$	जubiz ou เ2ymo 21	124． 25 xh id गrounx	$\begin{aligned} & \text { Panu } z^{\prime} 0 \\ & \text { couddo } 2 \pi \end{aligned}$	20 peasnippe papas seif		－	－		$\begin{aligned} & 05 z \\ & 06 \\ & \hline \end{aligned}$	H0tr3130 5\％18								W1dç 7 \％	${ }^{3001}$	LE
28		－		0011 0018	（1） $\begin{aligned} & \text { 0018 } \\ & \text { 00511 }\end{aligned}$	$\mathrm{S}^{5 \cdot 2}$	－	－	（erst－	${ }_{0}^{052}$	83lichavy S S50	－	ost	ع＇0	$8 \cdot 9$			N		＋80203130	2ε
9ε	39.71	Usis ou		$\begin{aligned} & \text { Witicition } \\ & \text { cousto are } \end{aligned}$	$\begin{aligned} & 01 \text { poisnipe } \\ & \text { enspen हnig- } \\ & \hline \end{aligned}$		－	$\begin{aligned} & 06 \\ & 55 \end{aligned}$	00：9	$\begin{aligned} & 0052 \\ & 0001 \\ & 000 \end{aligned}$	4023130 STi4										
8	－	－	$\begin{aligned} & 565 \\ & 065 \end{aligned}$	$\begin{aligned} & \hline 0001 \\ & \text { CS8 } \\ & \hline \end{aligned}$	$\begin{aligned} & 000055 \\ & 000055 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \varepsilon^{\prime \prime} 6 \\ 8^{\prime} 1 \\ \hline \end{array}$	T 7	$\begin{aligned} & 96 \\ & \$ 5 \\ & \hline \end{aligned}$		$\begin{aligned} & 061 \\ & 001 \\ & 001 \end{aligned}$	หुluruny dy anspacses	06	ost	\＆．0	ع－9	yzivin	\cdots	31	N1d－8 77w	प3140ew ded	9
SE	－	－	atb SoE	$\begin{aligned} & 0501 \\ & 0201 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 00000 t \\ 00000 \mathrm{E} \\ \hline \end{array}$	$\begin{aligned} & 5^{2.9} \\ & \varepsilon^{29} \end{aligned}$	$\begin{aligned} & 5 \cdot t \\ & .5 . z \\ & \hline \end{aligned}$	$\begin{aligned} & 06 \\ & 06 \\ & \hline \end{aligned}$		$\begin{aligned} & 05 z \\ & \text { e81 } \\ & \hline \end{aligned}$		06	522	521	$5 \cdot 2$	แ3เที่		25	N1／－Wnasw	7041Novaradirs	28
te	－	－	$\begin{aligned} & 079 \\ & 098 \end{aligned}$	$\begin{array}{r} 029 \\ 009 \\ \hline \end{array}$	$\begin{aligned} & 0000001 \\ & 000009 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 8 \div 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \% 1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.69 \\ 5.69 \\ \hline \end{array}$	$\left\{\begin{array}{l} \text { vixu } \\ 0^{\prime} \varepsilon-1 \end{array}\right.$	$\begin{aligned} & \text { ost } \\ & \text { SSI } \end{aligned}$	ygumany fyis	5＊29	08t	$90^{\circ} 0$	$0^{\prime} 2$			w	Nid？wnlosw	3001N3d 	te
¢¢	${ }^{\prime \prime}$	0009	06	0061	cooss	0.22	$0 \cdot 5$	081	$0 \cdot 3 \mathrm{~B}-$	081		081	O8F ${ }^{-1}$	$92^{\circ} 0$	$0 \cdot 2$	${ }_{\text {12w }}^{30}$	． $171 \times$ ， 17	＊	Nids wnozw	y3undivyd	EE
$z \varepsilon$			$\begin{array}{r} \text { Teulas on } \\ \times 001 \text { poyen } \end{array}$		130mo sim		－	S．C9	$\binom{\text { modste }}{0.9-1}$	A08T	80123130 5n｜					Lзw\％tis	． $21 \times \times 8$	＊		3098131	2ε
$\varepsilon \varepsilon$	－	－	082 019 19	$\begin{aligned} & 059 \\ & 009 \\ & \hline \end{aligned}$	$\begin{aligned} & 00000 t 1 \\ & 000056 \\ & \hline \end{aligned}$	$i_{L^{\prime} \rightarrow 1}$		$\begin{aligned} & 5.69 \\ & 5.69 \end{aligned}$	$\begin{aligned} & 0 \% \\ & 0 \cdot \varepsilon= \end{aligned}$	$\begin{aligned} & 081 \\ & 5 \pi 1 \\ & \hline \end{aligned}$		529	081	90.0	$0 \cdot z$	3 a		＊	midt wnusw	bsumaw－bid	
18	$\begin{aligned} & \text { SLE.0 } \\ & \operatorname{seI}^{\circ} \cdot 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0065 \\ 0002 \\ \hline \end{array}$	$\begin{aligned} & 8^{\prime} \varepsilon \\ & y^{\prime} \varepsilon \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O501 } \\ & 586 \end{aligned}$	$\begin{aligned} & 009 \mathrm{C} \\ & 001 \% \end{aligned}$	$\begin{aligned} & 8^{\prime} 11 \\ & 0 \cdot 8 \end{aligned}$	－	S	$\begin{aligned} & \text { are } \\ & s^{\prime} \cdot 2 \pi= \\ & \hline \end{aligned}$	$\begin{aligned} & 081 \\ & 581 \end{aligned}$	2nlinaky \％ 555 FD	－	081	E1＇0	$0^{\prime} 2$	Downic	．$\frac{9}{4}+\times$ it	$0{ }^{0}$	Nide\％Tluws		18
			y013Y	ร0wnd （asr） －สเมว）	$\begin{aligned} & \text { sпй } \\ & 331 \% 1 \end{aligned}$	m IMB		41704	แ\％\％	2170 A7d	ena paxis patinixy ＊5：	$\frac{\mathrm{x} 17 \mathrm{ph}}{\mathrm{xvn}}$	$\frac{\operatorname{uncx}}{x Y n}$	gasam	21704		hiows	SMOII			
3101	$\begin{aligned} & \text { Ind } \\ & \text { - } 100 \end{aligned}$	caty ses	$\begin{aligned} & \text { Nolivs } \\ & \text { tundwy } \end{aligned}$	$\begin{gathered} 30 \mathrm{WY1} \\ -3 \mathrm{OHOHOS} \end{gathered}$	$\begin{aligned} & \text {-sis3y } \\ & \text { zinn } \end{aligned}$	$\begin{aligned} & 1180 \\ & \text { yno } \end{aligned}$		A1ddņs kazajs	$\begin{aligned} & \text { esvis } \\ & \text { 6i83 } \end{aligned}$		35Ω	мวзая	3ind	$\begin{array}{r} 1317 \\ \times 0 \operatorname{lin} 7 \\ \hline \end{array}$		$300 \mathrm{H} \% \mathrm{y}$	17 yazio WRNUYY	$\begin{aligned} & -33 \times 109 \\ & 13 \times 305 \end{aligned}$	zers	3WY	3814
	cimad	0\％21		－simat	37									ive			SHolskamio				

4	turyo 0000st dojetiod 230｜a				－	тияam	${ }_{\text {spoutas }}$	os	56．1－	ost	volvaiza sia	00 t	0st	$\varepsilon^{\prime} 0$	8.9	нанан	A	4	Nidy nivws		4
		－		oscti OOII	$\begin{aligned} & 0000051 \\ & 000059 \end{aligned}$	\％\％ 1	¢	（001		act											
8.	Twusif ou may ajaduryminu z＇0 oa posinlpe aq on juaums avid						－	－	$\begin{aligned} & \text { xactove } \\ & 0.00-1 \end{aligned}$	ost	wovaizo sile	－	0st	\＆\％O	$\varepsilon \cdot 9$	เэาที	． $\sin _{6}^{1} \times$ ，it	n	Nade Twws		92
	－	－	${ }_{8}^{8 \cdot c t}$	$\overline{\substack{\text { OSt } \\ \text { OStit }}}$	$\overline{0_{0}^{0056}}$	$\begin{aligned} & 0 \cdot 1 \\ & 0 \cdot 5 \\ & 0^{\prime} \cdot \underline{5} \end{aligned}$	－	－		$\begin{array}{\|c} \hline \text { Aosz } \\ \hline 052 \\ 0.51 \end{array}$	zatenaw v mino										
SL				－	－	\checkmark	－	\because	se．－	xost		－	05\％	E\％O	$8 \cdot 9$	взігун		0	N10］tivms	300191－nwwink	92
Y／1L	$\begin{aligned} & \hline 06 L^{\circ} \\ & \text { sti. } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 008 \% \\ 0008 \\ \hline 008 \end{array}$			（0stt	$\begin{aligned} & 5006 \\ & 0.00 \\ & 0.01 \end{aligned}$	－	－	$\begin{aligned} & 0.8 \mathrm{bl} \\ & 0.61- \\ & 0.0 \end{aligned}$	${ }_{06}^{091}$		－	$08 t$	$52^{\circ} \mathrm{O}$	$0 \cdot 5$	aswrus		ar			W－12
68		$\begin{aligned} & 0009 \\ & 0009 \\ & \hline 002 \end{aligned}$	－	－	－		－	－	！	0_{0}^{0006}		－	00t	$0 \cdot z$	57	взнзн		Vk			69
	$0 \cdot \mathrm{~S}$	0009	001	0083	0000\％	0．รE	0.6	ost	0－81－	ose		$05 t$	0st								
	St．1	0005	0.9	0082	0082	$0 \cdot 92$	－	－	0．8t－	ast	katumin		085								
89											घ⿺𠃊⿳亠丷厂犬	007	ast	0.1	$5 \cdot \tau$	บละ．va		3	Nida ग7we		82
18											balurisa	00t	ast	0.1	58	8 8ican	－확 x ，H\％	3	N1＋2 7 17w		19
29												－	0st	$0 \cdot 1$	$5 \cdot \mathrm{~s}$	ง．uvar	－新 \times ， l	n	mav tives		99
59												－	ose	$0 \cdot 1$	52	ванзт	－亲1 x ，$f t r$	bs	Nidel mw		99
¢9											yatman	－	DoE	$0 \cdot \mathrm{t}$	$5 \cdot \mathrm{t}$	в31734		st	andar：wniozw		$\varepsilon 9$
09	\％\％$\%$	$\begin{aligned} & 0 \cos \% \\ & 0 \operatorname{cog} \end{aligned}$ 0_{0092}		$\begin{aligned} & 0012 \\ & 0012 \\ & 0001 \\ & 0061 \end{aligned}$	$\begin{array}{\|c} 0001 \\ 0001 \\ 00012 \\ \hline 0002 \\ \hline \end{array}$	$\begin{aligned} & 0.55 \\ & 0.55 \\ & 0.55 \\ & 0.5 \mathrm{sin} \end{aligned}$	二	二		$\begin{aligned} & 056 \\ & \text { oot } \\ & \text { oot } \\ & \hline \end{aligned}$	vismanv V ¢ท\％	－	05t	Stet	5.2	Lawert		${ }^{\text {ar }}$	midy wniosw		08
67		00002t	$\stackrel{\square}{1.2}$	szil	Stir		三	E	0 0	081 561		＝	¢81	210	$0 \cdot 2$	Lowneaid		\cdots	Nider wnicas		67
	10.8	0008	－	－	－	0.001	－	001	0.00 －	581		00 x	str	＊ 0	0．os			n			$8{ }^{5}$
87	Ster	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { oss } \\ \text { ooss } \end{array}$	三	$\begin{aligned} & 0068 \mathrm{E} \\ & \text { po88 } \end{aligned}$	三	$\begin{aligned} & 0.95 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 5 \cdot 6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 001 \\ & 96 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O.02- } \\ & 0.61- \end{aligned}$	$\begin{aligned} & \text { sin } \\ & 96 \end{aligned}$											
$\angle 5$	L＇t	0002	ost	cost	00009	0.18	0.9	ost	5．91－	ast	untany rsma	058	052	52.4	$5 \cdot 2$	Lawnle	．18 18.15	${ }^{*}$	Nads wniozm	צauciown iamod	2%
97		$\begin{array}{\|l\|l\|} \hline 0095 \\ 00055 \end{array}$	－	－	－	0．21	－	－	：	${ }_{006}^{006}$		－	00\％	Su＇s	$5 \cdot 2$	nawnis		＊	Nider Wnicaw	＊3intery ugMod	97
	$\frac{52.1}{10.81}$	${ }^{00098}$	$9 \cdot 5$	0552	0882	$\frac{0.72}{0.82}$				Os2	－ialunaw rsmp	－	0 OE								
sb	10.81 $00^{\circ} \mathrm{Cl}$ 0.2	$\begin{array}{\|c\|c\|c\|} \hline 000 \varepsilon \\ 0905 \end{array}$	डक्ट	0का2	－	$\begin{aligned} & 0.8 t \\ & 0.72 \\ & \hline 0 \end{aligned}$				（	valinamy gev san	－	522	54	ร．z	Lawnis	， $\mathrm{H}_{4} \times 17$	or	Nid＋wnicue		st
	－ 018	$\begin{aligned} & 0094 \\ & c o c t \end{aligned}$	हुप	$\begin{aligned} & 0502 \\ & 5: 12 \end{aligned}$	$\begin{aligned} & \hline 0021 \\ & 00891 \end{aligned}$		－	－	$\begin{aligned} & \text { 0.0र- } \\ & \text { दy } 18 \end{aligned}$	${ }_{5}^{568}$											

$$
\begin{aligned}
& \text { - Mercury-Vapor Type. } \\
& \text { "Goid } \$ 1 \text { is control grid. Grid } \$ 2 \text { ia screen, Grid } s 3 \text { tied to cathode. }
\end{aligned}
$$

- Applied through plate resiacoe of 250000 ohms or 500 -henry cholke shunted by 0.25 -megolum resiricor.
FApplied through plete resistor of 100000 ohims. Applied through plate resistor of 100000 ohims. Maxinum.
IMegohme. 0 Orid $\leqslant 2$ tied to plate. $\&$ Crids $\$ 1$ and $\$ 2$ tied together. ${ }^{* *}$ For grid of following tube.
i Plate voltages greater than 125 volts RMSS require 100 -okm series-plate resittor.
 EApplied through 200000-ohm plate retistor.
Fiote 2: Types with octal bases have Miniatu
Mete 2: Subseript I on class of ampli.6er service

AFor Gind lenk. Detectien-plate volts 45 , erid return to + filament or to carthote
m Zither A. C. of D, C. may be aest on filament or beater, escept as opocificaly noted. For une of D.C. on A.C

O-

YGind 51 is control grd. Gride $\$ 2$ and $\$ 3$ tied to plate.
0 Grids $\$ 3$ and si are sereen. Gind 84 is nignal-laput coutrol grid.
A Orids 52 and $\$ 4$ are screen. Grid $\$ 1$ is signal-ibput controi grid. - Both gride connected toget her; likewise, both plates.
\dagger thower output is for two tuben at atsuted plate-ts-plate load.

TMDEX OF TYPES BY USE AND Tuber of All. Motal construction aical Tubes of All. Metal construction a								
	RECTIEITSS		POWER AMPUREAS	CONVEATDS SUPLAHETEROOYNES	eettctons	MIxEA tubes is sumerfitinoonnzs	moicktors (Manol)	$\begin{gathered} \text { camept } \\ \text { votrs } \\ \hline \end{gathered}$
1.15	-	11, 12	$\underline{\square}$	-	11, 17	-	$\underline{ }$	1.1
2.0	-	1A4, 1A6, 184, 185/25s, 1F6, 15, 30, 32, 34	4,19, 31, 33, 49	-		-	\square	1.5
2.5	82	$\frac{\text { a }}{}$	$\frac{184, ~ 19, ~ 31, ~ 33, ~}{49}$	1A6, 1Cb	1A6, 185/25s, 1F6, 30, 32	1A6, 1C8, 34	-	2.0
2.5 3.3	82	55, 56, 57,38	$2 A 3,2 A 5,45,46$ $47,53,59$	2A7	$\begin{gathered} 2 A 6,237,21-A, 27 . \\ 55,50,57 \end{gathered}$	2A7, 35, 58	-	2.5
5.9	5W4, 523, 52t, 80, 83, 83-v	$\frac{22,90}{\text { 01. }{ }^{\text {a }} \text { 40, } 112 \cdot \mathrm{~A}}$	20	$\underline{\square}$	90	-	-	3.3
		$\frac{01-A, 40,112-A}{6 D 7,6 B 3,6 C 5,6 C 6,6 D 6, ~ 6 F S, ~ 657, ~ 537,6 K 77, ~}$	72.A, 112.A	-	00-A, 01-A, 40, 112.A	-	-	5.0
6.3 7.5	$\frac{6 H 5,5 \times 5,1 v, ~ 84 / 624}{81}$	$\begin{aligned} & \text { 6D7, 6B3, 6C5, 6C6, 6D6, 6F5, 657, 657, 6K7, } \\ & \text { 6L7, 697, 6RT, 36, 37,39/41, 75, 75, 77, 78, 85 } \end{aligned}$	6A4, 6A6, 6F6, 6L6, 6N7, 38, 41, 42, 79, 89	SA7, 6A3	6B7, 638, 5C5, 6C5, 6F7, 6D7, 6N6, 697, $687,36,37,75,76,77, ~ 85 ~$	$\begin{gathered} \text { 6A7, } 5 \mathrm{AB}, 6 \mathrm{DK}, 6 \mathrm{KT}, \\ 6 \mathrm{~L} 7,39 / 44,78 \end{gathered}$	6Es, 5as	6.3
12.6	1223	-	10,50	-	-	-	-	7.5
25.0	2325. 25.26		25A6, 43		$\underline{\square}$	-	-	12.6
30.0	-	$\underline{\square}$	$\frac{2888}{}$	-	$\underline{ }$	-	$\underline{\square}$	25.0
					-	-	-	30.9

 $\therefore=$

 $\begin{array}{r}4 K \\ 6_{1} \\ 3 \\ \hline\end{array}$

 Me

RCA G-TYPE RADIO TUBES (Octal-Base, Glass-Bulb Types)

In addition to the types of tubes shown on pages 52 to 58 , the following octal-base, glass-bulb types are also available. These types are identified by the letter " G " following the type number. For each of these types, the corresponding glass or metal types are indicated below, together with socket connections and overall dimensions. Characteristic data for the G-types are the same as those for the corresponding types on pages 52 to 58 .

** Except that Pin No. 1 has no connection.
Except that filament current is 0.24 ampere.

* Except that Pin No. 1 has no connection.

Two 1F4's in the same bulb.
-I Except that Pin No. 1 is connected to shield between diode units. Except that Pin No. 1 is connected to shield external to plate.

RADIO LOG

EUROPE, ASIA, africa and AUSTRALIA.

Rall roads Steamship Lines:Submarine Cables: KE月GUEL Distances on Map are in Nautical Miles,

