

Personal	1
	1
Name	1
Residence	ł _
Business Address	-
In case of accident, please notify	
Telephone	- :)
Accident Ins. Policy No	- 0
Automobile Information:	1
License No	- 5
Motor No	
Model No	\rightarrow F
	+ 1
	west
	ign lers.
	with
THIS BOOK IS VALUABLE If found, please return to the above.	ther ss of

Metal Tubes a Boon to Radio Industry

Typical of the leadership maintained by 3CA in all branches of the radio art was the ntroduction in the Spring of 1935 of the All-Metal Radio Tube, the most radical advance in tube design since RCA developed the a-c tube.

Metal Tubes were an immediate success. The public quickly realized that RCA Metal Tubes were modern tubes. They demanded Metal Tube radios. The radio trade recognized Metal Tubes as a powerful stimulant to sales —and they were not disappointed. Within a 'ew months Metal Tubes had definitely stamped themselves as the new order in tube lesign. Today, an overwhelming majority of ull American radio manufacturers use Metal Tubes—a tribute to the pioneering vision and perseverance of RCA in developing radio for the best interests of the public.

Glass has been used as the envelope of radio tubes because of its ability to retain a vacuum and because some of the manufacturing blems of radio tubes were similar to those amp bulbs. Radio tubes, however, did not uire a transparent envelope as did lamp bs but did require far greater precision in spacing of elements.

he Metal Tube awaited only the solvby the engineers of certain problems blved in quickly making vacuum-tight ds where the shell and base of tubes join, in designing a vacuum-tight seal at the point where the leads from the internal electrodes pass through the metal base to the pins.

The welding problem was solved by the use of electronic tubes to provide accurate control to a fraction of a second of a welding current as high as 75,000 amperes. An alloy possessing the same coefficient of expansion as glass is used with a small amount of glass to create a tight seal for the leads.

Metal, of course, can be worked with far greater precision than glass, permitting smaller tubes and better shielding. While most of the metal types are less than half the size of their glass counterparts, the reduction in size is a result of compact design and a close-fitting envelope rather than of miniature parts or decreased electrode clearances. Lead wires are much shorter, making a better tube both electrically and mechanically. The metal shell provides almost perfect shielding and is positively grounded to a base pin. Finally, the new Octal base, with its keyed center pin, makes it far easier to insert a Metal Tube in its socket

It is worthy of note that the manner in which the interests of both the radio trade and the public were protected in the introduction of the new tubes was also typical of RCA's acceptance of its responsibility as leader of the industry. The world's greatest tube laboratories and factories at the RCA Radiotron plant worked for months before the new tubes were announced so that a thoroughly reliable product might be offered right from the start. The tube characteristics were carefully standardized so that the number of types of PC Metal Tubes would be kept at the lov figure consistent with progress in radio des Thus the interests of manufacturers, dea and the public were safeguarded. Today, almost two full years of production and behind them. Metal Tubes stand as ano major contribution of RCA to the progre radio and to the prosperity of radio de: and service engineers.

City and State	Population U. S. Census 1930	Vo. of Families U. S. Census 1930	Estimated No. of Radio Sets Jan. 1. 1936	Est. % of* Families Hav- ing Radio Sets
ALABAMA Birmingham Mobile Montgomery	$2,646,248 \\ 259,678 \\ 68,202 \\ 66,079$	592,530 64,443 16,909 17,195	$258,000 \\ 71,518 \\ 14,642 \\ 13,524$	44 100 73 79
ARIZONA Douglas Phoenix Tucson	$\substack{435,573\\9,828\\48,118\\32,506}$	$\begin{array}{r} 106,630 \\ 2,397 \\ 12,666 \\ 8,266 \end{array}$	$62,500 \\ 1,527 \\ 13,869 \\ 8,647$	$59 \\ 64 \\ 100 \\ 100$
ARKANSAS Fort Smith Little Rock Pine Bluff	$\substack{1.854,482\\31,429\\81,679\\20,760}$	$\substack{439,408\\8,200\\20,123\\5,549}$	$187,300 \\ 11,636 \\ 19,757 \\ 5,639$	$\begin{array}{c} 43 \\ 100 \\ 98 \\ 100 \end{array}$
CALIFORNIA Berkeley Fresno Glendale Long Beach Los Angeles Oakland Pasadena Sacramento San Diego San Francisco San Jose	$\begin{array}{c} 5,677,251\\82,109\\52,513\\62,736\\142,032\\1,238,048\\284,063\\76,086\\93,750\\147,995\\634,394\\57,651\end{array}$	$\begin{array}{r} 1,618,533\\ 24,440\\ 14,556\\ 19,324\\ 47,153\\ 370,462\\ 83,350\\ 23,068\\ 24,886\\ 45,454\\ 180,346\\ 16,872 \end{array}$	$\begin{array}{r} 1,398,900\\ 24,309\\ 14,131\\ 22,380\\ 45,556\\ 358,094\\ 83,916\\ 22,612\\ 24,686\\ 44,311\\ 170,000\\ 17,894\end{array}$	86 99 97 100 97 97 100 98 99 97 98 99 97 94 100
COLORADO Colo. Springs Denver Pueblo	1,035,791 33,237 287,861 50,096	$268,531 \\ 10,048 \\ 79,879 \\ 12,360$	206,600 10,353 73,800 11,824	$\begin{array}{c c} 77 \\ 100 \\ 92 \\ 96 \end{array}$
CONNECTICUT Bridgeport Hartford New Britain New Haven Waterbury	$\begin{array}{r} 1,606,903\\ 146,716\\ 164,072\\ 68,124\\ 162,655\\ 99,902 \end{array}$	389,596 35,902 40,796 15,568 39,647 23,125	372,200 35,480 40,922 15,593 38,666 22,442	$\begin{array}{c c} 96 \\ 99 \\ 100 \\ 5 \\ 100 \\ 4 \\ 98 \\ 7 \\ 97 \\ 97 \\ 97 \\ 97 \\ 97 \\ 97 \\ 97 $
DELAWARE Dover New Castle Wilmington	$238,380 \\ 4,800 \\ 4,131 \\ 106,597$	59,295 1,200 1,033 25,694	47,10 82 75 25,83	
D. COLUMBIA Washington	486,869	126,014	125,80	0 99
FLORIDA Jacksonville Miami St. Petersburg Tampa	$\begin{array}{r}1,468,211\\129,549\\110,637\\40,425\\101,161\end{array}$	$\begin{array}{r} 377,823\\ 32,555\\ 30,902\\ 12,749\\ 25,111\end{array}$	$\begin{array}{c} 233,90\\ 33,55\\ 31,06\\ 12,09\\ 23,18\end{array}$	$\begin{array}{c ccc} 0 & 62 \\ 2 & 100 \\ 5 & 100 \\ 4 & 95 \\ 8 & 92 \end{array}$
GEORGIA Atlanta Augusta Macon Savannab	$\begin{array}{r} 2,908,506\\ 270,366\\ 60,342\\ 53,829\\ 85,024\end{array}$	$ \begin{array}{c} 654.009\\ 68.021\\ 15.421\\ 13.938\\ 422,495 \end{array} $	$\begin{array}{c} 334,50\\ 65,95\\ 11,36\\ 11,29\\ 16,93\end{array}$	0 51 7 97 7 74 5 81 6 75

City and State	Population U. S. Census 1930	No. of Families U. S. Census 1930	Estimated No. of Radio Sets Jan. 1, 1936	Est. % of* Families Hav- ing Radio Sets
IDAHO Boise Idaho Falls Pocatello	$445,032 \\ 21,544 \\ 9,429 \\ 16,471$	$108,515 \\ 5,931 \\ 2,300 \\ 4,164$	$75,800 \\ 6,114 \\ 2,096 \\ 4,055$	70 100 91 97
ILLINOIS Chicago Cicero Decatur E. St. Louis Evanston Oak Park Peorla Rockford Springfield	$\begin{array}{r} 7,630,654\\ 3,376,438\\ 66,602\\ 57,510\\ 74,347\\ 63,338\\ 63,982\\ 104,969\\ 85,864\\ 71,864\end{array}$	$\begin{array}{c} 1.934,445\\ 845,868\\ 16,276\\ 15,421\\ 19,122\\ 16,472\\ 17,021\\ 26,627\\ 22,187\\ 18,799 \end{array}$	$\begin{array}{r} 1,674,300\\ 819,201\\ 16,609\\ 16,846\\ 15,941\\ 19,578\\ 20,828\\ 25,357\\ 22,518\\ 15,290 \end{array}$	$\begin{array}{r} 87\\97\\100\\100\\83\\100\\100\\95\\100\\81\end{array}$
INDIANA Evansville Ft. Wayne Gary Hammond Indianapolis South Bend Terre Haute	$\substack{3,238,503\\102,249\\114,946\\100,426\\64,560\\364,161\\104,193\\62,810}$	$\begin{array}{r} 844,463\\ 25,769\\ 29,199\\ 23,232\\ 15,513\\ 98,841\\ 25,682\\ 17,612\\ \end{array}$	$\begin{array}{r} 616,800\\22,854\\30,125\\20,414\\16,661\\93,071\\22,579\\12,726\end{array}$	$73 \\ 89 \\ 100 \\ 88 \\ 100 \\ 94 \\ 88 \\ 72$
IOWA Cedar Rapids Davenport Des Moines Sioux City Waterloo	$\substack{2,470,939\\56,097\\60,751\\142,559\\79,183\\46,191}$	$\begin{array}{r} 636,905\\ 15,350\\ 16,706\\ 38,190\\ 20,051\\ 11,957 \end{array}$	503,100 16,216 15,399 38,588 20,026 11,469	$79 \\ 100 \\ 92 \\ 100 \\ 99 \\ 96$
KANSAS Kansas City Topeka Wichita	1,880,999 121,857 64,120 111,110	$488.055 \\ 31.657 \\ 17.468 \\ 30.021$	$348,000 \\ 31,987 \\ 18,586 \\ 30,819$	$71 \\ 100 \\ 100 \\ 100$
KENTUCKY Covington Lexington Louisville	2,614,589 65,252 45,736 307,745	610,288 17,271 12,060 80,297	$313,800 \\ 14,380 \\ 13,102 \\ 78,181$	$51\\ 83\\ 100\\ 97$
LOUISIANA Baton Rouge New Orleans Shreveport	2,101,593 30,720 458,762 76,655	$486,424 \\ 7,600 \\ 112,329 \\ 20,087$	$260,000 \\ 7,454 \\ 101,123 \\ 21,834$	$53 \\ 98 \\ 90 \\ 100$
MAINE Bangor Lewiston Portland	797,423 28,749 34,948 70,810	198,372 6,906 7,998 17,582	$163,600 \\ 7,812 \\ 5,154 \\ 17,566$	
MARYLAND Baltimore Cumberland Hagerstown	1,631,526 804,874 37,747 30,861	386.087 194,491 8,909 7,701	320,000 211,300 7,553 5,667	$83 \\ 100 \\ 85 \\ 74$
MAS'ACHUS'TS Boston Brockton	4,249,614 781,188 63,797	1,024,527 180,451 16,724	$946,900 \\ 170,220 \\ 16,517$	92 94 99

City and State	Population U. S. Census 1930	No. of Families U. S. Census 1930	Estimated No. of Radio Sets Jan. 1, 1936	Est. % of* Families Hav- ing Radio Sets
MASS.—Cont. Cambridge Fall River Halyer Holyoke Lawrence Lowell Lynn Malden Medford New Bedford Newton Pittsfield Quiney Somerville Springfield Worcester	$\begin{array}{c} 113,643\\ 115,274\\ 48,710\\ 56,537\\ 85,068\\ 100,234\\ 102,320\\ 59,714\\ 112,597\\ 65,276\\ 49,677\\ 71,983\\ 103,908\\ 149,900\\ 195,311\\ \end{array}$	$\begin{array}{c} 27,524\\ 27,077\\ 12,764\\ 14,010\\ 20,097\\ 23,805\\ 26,001\\ 14,413\\ 27,982\\ 15,350\\ 12,093\\ 18,343\\ 25,552\\ 38,188\\ 46,020 \end{array}$	$\begin{array}{c} 25,268\\ 25,466\\ 10,858\\ 12,687\\ 12,879\\ 21,841\\ 25,048\\ 15,550\\ 17,473\\ 26,336\\ 18,588\\ 11,540\\ 23,242\\ 23,509\\ 38,029\\ 43,045\end{array}$	$\begin{array}{c} 92\\ 94\\ 85\\ 91\\ 64\\ 92\\ 96\\ 100\\ 100\\ 94\\ 100\\ 95\\ 100\\ 92\\ 99\\ 94 \end{array}$
MICHIGAN Bay City Dearborn Detroit Flint Grand Rapids Hamtramek Highland Park Jackson Kalamazoo Lansing Pontiae	$\begin{array}{r} 4,842,325\\ 47,355\\ 50,358\\ 1,568,602\\ 156,642\\ 168,592\\ 56,268\\ 52,959\\ 55,187\\ 54,786\\ 78,397\\ 64,928\\ \end{array}$	$\substack{1,183,157\\11,457\\11,476\\371,344\\37,757\\43,567\\11,303\\13,038\\14,335\\13,867\\20,182\\15,189}$	$\begin{array}{r} 936,600\\ 8,540\\ 10,821\\ 345,672\\ 36,139\\ 41,657\\ 4,703\\ 13,173\\ 12,725\\ 13,349\\ 18,355\\ 12,236\end{array}$	79 75 94 93 96 42 100 89 96 91 81
MINNESOTA Duluth Minneapolis St. Paul	2,563,953 101,463 464,356 271,606	608,398 23,984 117,777 67,999	535,600 23,522 113,291 76,810	88 98 96 100
MISSISSIPPI Jackson Meridian Vicksburg	2,009,821 48,282 31,954 22,943	$472,354 \\ 11,130 \\ 8,128 \\ 6,861$	$166,400 \\ 11,787 \\ 8,666 \\ 5,573$	$35 \\ 100 \\ 100 \\ 81$
MISSOURI Kansas City St. Joseph St. Louis Springfield	3,629,367 399,746 80,935 821,960 57,527	$\begin{array}{r} 941,821 \\ 109,242 \\ 21,065 \\ 215,680 \\ 15,667 \end{array}$	$708,500 \\ 108,795 \\ 21,164 \\ 240,200 \\ 9,471$	75 99 100 100
MONTANA Butte Great Falls Missoula	537,606 39,532 28,822 14,657	137,010 10,352 7,374 3,924	91,700 9,850 6,439 5,548	60 67 95 87 100
NEBRASKA Grand Island Lincoln Omaha	1,377,963 18,041 75,933 214,006	$343,781 \\ 4,555 \\ 20,229 \\ 54,845$	$266,800 \\ 4,258 \\ 20,893 \\ 50,431$	78 93 100 92

City and State	Population U. S. Census 1930	No. of Families U. S. Census 1930	Estimated No. of Radio Sets Jan. 1, 1936	Est. % of*. Families Hav- ing Radio Sets
NEVADA Las Vegas Reno Sparks	$91,058 \\ 5,165 \\ 18,529 \\ 4,508$	25,730 1,476 5,093 1,288	21,700 1,429 5,220 1,118	84 97 100 87
N. HAMPSHIRE Concord Manchester Nashua	$465,293 \\ 25,228 \\ 76,834 \\ 31.463$	$119,660 \\ 6,181 \\ 18,832 \\ 7,612$	99,700 6,289 18,332 6,383	83 100 97 84
NEW JERSEY Atlantic City Bayonne Camden E. Orange Elizabeth Hoboken Irvington Jersey City Newark Paterson Trenton Union City	$\begin{array}{r} \textbf{4,} 041, 334\\ 66, 198\\ 88, 979\\ 118, 700\\ 68, 020\\ 114, 589\\ 59, 261\\ 56, 733\\ 316, 715\\ 442, 337\\ 62, 959\\ 138, 513\\ 123, 356\\ 58, 659\\ \end{array}$	$\begin{array}{c} 987,616\\ 16,986\\ 18,564\\ 27,874\\ 19,077\\ 26,772\\ 13,655\\ 15,106\\ 70,436\\ 105,398\\ 14,847\\ 35,556\\ 27,183\\ 16,127\\ \end{array}$	$\begin{array}{c} 897,500\\ 16,876\\ 15,065\\ 26,967\\ 21,609\\ 27,323\\ 10,010\\ 15,892\\ 74,054\\ 106,935\\ 11,221\\ 34,404\\ 26,286\\ 14,464\end{array}$	91 999 81 97 100 100 73 100 97 100 76 97 97 90
NEW MEXICO Albuquerque Roswell Sante Fe	$\substack{\begin{array}{r} 423,317\\ 26,570\\ 11,173\\ 11,176\end{array}}$	$98,820 \\ 6,821 \\ 2,860 \\ 2,625$	48,300 7,143 3,012 2,748	49 100 100 100
NEW YORK Albany Binghamton Buffalo Mt, Vernon New Rochelle New York Niagara Falls Rochester Syracuse Troy Ulica Yonkers	$\begin{array}{c} 12,588,066\\ 127,412\\ 76,662\\ 573,076\\ 61,499\\ 54,000\\ 6,930,446\\ 75,5460\\ 328,132\\ 95,692\\ 209,326\\ 72,763\\ 101,740\\ 134,646 \end{array}$	$\substack{ 3, 162, 118 \\ 34, 186 \\ 18, 880 \\ 140, 215 \\ 12, 542 \\ 1,728, 695 \\ 17,626 \\ 82,205 \\ 24,281 \\ 53,203 \\ 19,034 \\ 24,935 \\ 32,582 \\ 32,582 \\ \end{array} $	$\begin{array}{r} 2,993,100\\ 33,894\\ 19,222\\ 139,725\\ 18,959\\ 15,754\\ 1,730,595\\ 17,969\\ 82,185\\ 24,091\\ 53,372\\ 17,060\\ 24,633\\ 32,929\end{array}$	95 999 100 999 100 100 100 100 99 97 100 90 999 100
N. CAROLINA Asheville Charlotte Durham Greensboro Winston-Salem	3,170,276 50,193 82,675 52,037 53,569 75,274	$\begin{array}{r} 645,245 \\ 11,762 \\ 19,319 \\ 11,508 \\ 11,528 \\ 17,210 \end{array}$	$341,800 \\ 10,884 \\ 20,289 \\ 10,728 \\ 11,778 \\ 16,461$	$53 \\ 93 \\ 100 \\ 93 \\ 100 \\ 96$
N. DAKOTA Fargo Grand Forks Minot	$680,845 \\ 28,619 \\ 17,112 \\ 16,099$	$145.382 \\ 6,679 \\ 4,032 \\ 3,639$	$100,500 \\ 6,428 \\ 3,567 \\ 3,948$	69 96 88 100

City and State	Population U. S. Census 1930	No. of Families U. S. Census 1930	Estimated No. of Radio Sets Jan. 1, 1936	Est. % of* Families Hav- ing Radio Sets
TENNESSEE Chattanooga Knoxville Memphis Nashville	$\begin{array}{r} 2,616,556\\ 119,798\\ 105,802\\ 253,143\\ 153,866\end{array}$	601,578 29,252 24,381 68,452 39,501	328,900 27,005 22,502 62,268 39,558	55 92 92 91 100
TEXAS Austin Beaumont Dallas El Paso Ft. Worth Galveston Houston Port Arthur San Antonio Waco	$\begin{array}{c} 5,824,716\\ 53,120\\ 57,732\\ 260,475\\ 102,421\\ 163,447\\ 52,938\\ 292,352\\ 50,902\\ 231,542\\ 52,848\end{array}$	$\begin{array}{c} 1,383,280\\12,815\\14,512\\67,376\\24,564\\43,167\\13,635\\75,681\\12,522\\55,898\\13,329\end{array}$	$\begin{array}{r} 862.100\\ 11,089\\ 11,186\\ 72,421\\ 25,968\\ 45,825\\ 15,200\\ 80,123\\ 10,528\\ 52,520\\ 12,622\\ \end{array}$	$\begin{array}{c} 62\\ 87\\ 77\\ 100\\ 100\\ 100\\ 100\\ 100\\ 84\\ 94\\ 95\\ \end{array}$
UTAH Ogden Provo Salt Lake City	$507.847 \\ 40.272 \\ 14,766 \\ 140,267$	$\begin{array}{r} 116,254\\ 9,971\\ 3,204\\ 34,548\end{array}$	85,000 9,032 2,923 33,931	73 91 91 98
VERMONT Burlington Montpelier Rutland	359,611 24,789 7,837 17,315	89,439 6,028 1,959 4,374	$72,400 \\ 6,521 \\ 1,850 \\ 4,415$	$81 \\ 100 \\ 94 \\ 100$
VIRGINIA Lynchburg Norfolk Richmond Roanoke	$\begin{array}{r} 2,421,851\\ 40,661\\ 129,710\\ 182,929\\ 69,206\end{array}$	530,092 9,357 31,991 44,929 15,944	$336,900 \\ 10,416 \\ 34,331 \\ 42,229 \\ 17,246$	$64 \\ 100 \\ 100 \\ 94 \\ 100$
WASHINGTON Seattle Spokane Tacoma	$\begin{smallmatrix} 1,563,396\\ 365,583\\ 115,514\\ 106,817 \end{smallmatrix}$	$\begin{array}{r} 426,019\\101,794\\32,116\\30,686\end{array}$	$346,900 \\ 101,419 \\ 31,877 \\ 28,107$	81 99 99 92
W. VIRGINIA Charleston Huntington Wheeling	$\begin{array}{c c}1,729,205\\60,408\\75,572\\61,659\end{array}$	$374,646 \\ 14,128 \\ 17,975 \\ 15,595$	$240,000 \\ 14,236 \\ 18,787 \\ 15,419$	$ \begin{array}{r} 64 \\ 100 \\ 100 \\ 99 \end{array} $
WISCONSIN Kenosha Madison Milwaukee Racine	$\begin{array}{r} 2,939,006\\ 50,262\\ 57,899\\ 578,249\\ 67,542\end{array}$	$713,576 \\ 12,088 \\ 15,097 \\ 143,879 \\ 16,845$	576,600 11,770 18,153 145,760 15,104	81 97 100 100 90
WYOMING Casper Cheyenne Sheridan	$\begin{array}{r} 225,565\\ 16,619\\ 17,361\\ 8,536\end{array}$	57,218 4,663 4,590 2,189	$44,600 \\ 4,965 \\ 5,174 \\ 2,171$	$78 \\ 100 \\ 100 \\ 99$
U. S.	122,775,047	29,980,146	22,869,000	76

*Based upon number of radio homes as at Jan. 1, 1936 and number of families per 1930 U. S. census, the latest authentic figures available. This accounts for the large number of cities showing 100% (or better) in this column.

City and State	Population U. S. Census 1930	No. of Fumilies U.S. Census 1930	Estimated No. of Radio Sets Jan. 1, 1936	Est. % of* Families Hav- ing Radio Sets
OHIO Akron Canton Cincinnati Cieveland ticeveland Hts. Columbus Dayton Hamilton Lakewood Springfield Toledo Youngstown	$\begin{array}{c} 6, 646, 697\\ 225, 040\\ 104, 906\\ 451, 160\\ 900, 429\\ 50, 945\\ 290, 952\\ 520, 564\\ 200, 982\\ 52, 176\\ 70, 509\\ 68, 743\\ 290, 718\\ 170, 002\\ \end{array}$	$\begin{array}{c} 1,700,877\\ 62,689\\ 26,365\\ 122,832\\ 222,131\\ 13,271\\ 75,806\\ 52,839\\ 13,219\\ 19,656\\ 18,237\\ 74,205\\ 39,101 \end{array}$	$\begin{array}{c} 1,396,900\\ 60,974\\ 25,836\\ 123,540\\ 218,969\\ 15,926\\ 76,983\\ 52,459\\ 11,346\\ 23,774\\ 16,459\\ 974,603\\ 39,658\end{array}$	$\begin{array}{r} 82\\ 97\\ 98\\ 100\\ 99\\ 100\\ 100\\ 99\\ 86\\ 100\\ 90\\ 100\\ 100\\ 100\\ \end{array}$
OKLAHOMA Muskogee Oklahoma City Tulsa	2,396,040 32,026 185,389 141,258	$565,348 \\ 8,391 \\ 47,394 \\ 37,156$	$335,000 \\ 7,443 \\ 45,918 \\ 36,889$	59 89 97 99
OREGON Eugene Portland Salem	$\begin{array}{r} 953,786 \\ 18,901 \\ 301,815 \\ 26,266 \end{array}$	267,690 5,358 87,375 6,788	$216,400 \\ 4,299 \\ 83,800 \\ 6,774$	81 80 96 99
PEN'SYLVANIA Allentown Altoona Bothlehem Chester Erie Harrisburg Johnstown Lancaster McKeesport Philadelphia Pittsburgh Reading Scranton Wilkes-Barre	$\begin{array}{c} 9,631,350\\ 92,563\\ 82,054\\ 57,892\\ 59,164\\ 115,967\\ 80,339\\ 66,993\\ 59,949\\ 54,632\\ 1.950,961\\ 669,817\\ 111,171\\ 143,433\\ 86,626\end{array}$	$\begin{array}{c} 2,239,179\\ 22,838\\ 20,005\\ 13,579\\ 28,252\\ 21,652\\ 15,076\\ 15,433\\ 12,484\\ 459,629\\ 155,519\\ 27,706\\ 32,988\\ 18,752 \end{array}$	$\begin{array}{c} 1,938,400\\ 32,718\\ 17,028\\ 15,443\\ 13,024\\ 25,828\\ 22,393\\ 13,660\\ 15,609\\ 10,990\\ 430,300\\ 159,623\\ 29,146\\ 33,168\\ 16,815\end{array}$	$\begin{array}{r} 87\\ 100\\ 85\\ 100\\ 96\\ 91\\ 100\\ 87\\ 100\\ 88\\ 94\\ 100\\ 100\\ 100\\ 90\\ \end{array}$
RHODE ISLA'D Pawtucket Providence Woonsocket	687,497 77,149 252,981 49,376	$\substack{165,811\\19,121\\61,628\\11,253}$	$150,000 \\ 19,304 \\ 57,470 \\ 9,971$	90 100 93 89
S. CAROLINA Charleston Columbia Greenville	1,738,765 62,265 51,581 20,154	$366,265 \\ 16,746 \\ 11,239 \\ 7,223$	$174,600 \\ 11,936 \\ 10,867 \\ 11,168$	48 71 97 100
S. DAKOTA Aberdeen Pierre Sioux Falls	$692.849 \\ 16.465 \\ 3,659 \\ 33.362$	161,332 4,058 851 8,248	107,000 3,382 876 7,442	66 83 100 90

7

Technical Definitions*

- "A" Power Supply A power supply device providing heating current for the cathode of a vacuum tube.
- Alternating Current A current, the direction of which reverses at regularly recurring intervals, the algebraic average value being zero.
- Amplification Factor A measure of the effectiveness of the grid voltage relative to that of the plate voltage in affecting the plate current.
- Amplifier A device for increasing the amplitude of electric current, voltage or power, through the control by the input power of a larger amount of power supplied by a local source to the output circuit.
- Anode An electrode to which an electron stream flows.
- Antenna A conductor or a system of conductors for radiating or receiving radio waves.
- Atmospherics Strays produced by atmospheric conditions.
- Attenuation The reduction in power of a wave or a current with increasing distance from the source of transmission.
- Audio Frequency A frequency corresponding to a normally audible sound wave. The upper limit ordinarily lies between 10,000 and 20,000 cycles.
- Audio-Frequency Transformer A transformer for use with audio-frequency currents.
- Autodyne Reception A system of heterodyne reception through the use of a device which is both an oscillator and a detector.
- Automatic Volume Control A self-acting device which maintains the output constant within relatively narrow limits while the input voltage varies over a wide range.
- "B" Power Supply A power supply device connected in the plate circuit of a vacuum tube.
- **Baffle** A partition which may be used with an acoustic radiator to impede circulation between front and back.
- Band-Pass Filter A filter designed to pass currents of frequencies within a continuous band limited by an upper and a lower critical or cut-off frequency and substantially reduce the amplitude of currents of all frequencies outside of that band.
- Beat A complete cycle of pulsations in the phenomenon of beating.
- **Beat Frequency** The number of beats per second. This frequency is equal to the difference between the frequencies of the combining waves.
- Beating A phenomenon in which two or more periodic quantities of different frequencies react to produce a resultant having pulsations of amplitude.
- Broadcasting Radio transmission intended for general reception.
- By-Pass Condenser A condenser used to provide an alternating-current path of comparatively low impedance around some circuit element.

- "C" Fower Supply A power supply device connected in the circuit between the cathode and grid of a vacuum tube so as to apply a grid bias.
- Capacitive Coupling The association of one circuit with another by means of capacity common or mutual to both.
- Carbon Microphone A microphone which depends for its operation upon the variation in resistance of carbon contacts.
- Carrier A term broadly used to designate carrier wave, carrier current, or carrier voltage.
- Carrier Frequency The frequency of a carrier wave.
- Carrier Suppression That method of operation in which the carrier wave is not transmitted.
- **Carrier Wave** A wave which is modulated by a signal and which enables the signal to be transmitted through a specific physical system.
- Cathode The electrode from which the electron stream flows. (See Filament.)
- Choke Coil An inductor inserted in a circuit to offer relatively large impedance to alternating current.
- Class A Amplifier A class A amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows at all times.
- **Class AB Amplifier** A class AB amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows for appreciably more than half but less than the entire electrical cycle.
- Class B Amplifier A class B amplifier is an amplifier in which the grid bias is approximately equal to the cut-off value so that the plate current is approximately zero when no exciting grid voltage is applied, and so that plate current in a specific tube flows for approximately one-half of each cycle when an alternating grid voltage is applied.
- Class C Amplifier A class C amplifier is an amplifier in which the grid bias is appreciably greater than the cut-off value so that the plate current in each tube is zero when no alternating grid voltage is applied, and so that plate current flows in a specific tube for appreciably less than one-half of each cycle when an alternating grid voltage is applied.

Note:—To denote that grid current does not flow during any part of the input cycle, the suffix 1 may be added to the letter or letters of the class identification. The suffix 2 may be used to denote that grid current flows during some part of the cycle.

- **Condenser Loud Speaker** A loud speaker in which the mechanical forces result from electrostatic reactions.
- Condenser Microphone A microphone which depends for its operation upon variations in capacitance.
- **Continuous Waves** Continuous waves are waves in which successive cycles are identical under steady state conditions.

- **Conversion Transconductance** is the ratio of the magnitude of a single beat-frequency component $(f_1 + f_2)$ or $(f_1 f_3)$ of the output current to the magnitude of the input voltage of frequency f_1 under the conditions that all direct voltages and the magnitude of the second input alternating voltage f_1 must remain constant. As most precisely used, it refers to an infinitesimal magnitude of the voltage of frequency f_1 .
- Converter (generally, in superheterodyne receivers.) A converter is a vacuum-tube which performs simultaneously the functions of oscillation and mixing (first detection) in a radio receiver.
- **Coupling** The association of two circuits in such a way that energy may be transferred from one to the other.
- **Cross Modulation** A type of intermodulation due to modulation of the carrier of the desired signal in a radio apparatus by an undesired signal.
- **Current Amplification** The ratio of the alternating current produced in the output circuit of an amplifier to the alternating current supplied to the input circuit for specific circuit conditions.
- Cycle One complete set of the recurrent values of a periodic phenomenon.
- Damped Waves Waves of which the amplitude of successive cycles, at the source, progressively diminishes. Decibel The common transmission unit of the decimal
- becider the common transmission unit of the decidat system, equal to 1/10 bel.

1 bel=2
$$\log_{10} \frac{E_1}{E_2} = 2 \log_{10} \frac{I_1}{I_2}$$

(See Transmission Unit)

- **Detection** is any process of operation on a modulated signal wave to obtain the signal imparted to it in the modulation process.
- **Detector** A detector is a device which is used for operation on a signal wave to obtain the signal im-' parted to it in the modulation process,
- **Diaphragm** A diaphragm is a vibrating surface which produces sound vibrations.
- **Diode** A type of thermionic tube containing two electrodes which passes current wholly or predominantly in one direction.
- **Direct Capacitance** (C) between two conductors— The ratio of the charge produced on one conductor by the voltage between it and the other conductor, divided by this voltage, all other conductors in the neighborhood being at the potential of the first conductor.
- Direct Coupling The association of two circuits by having an inductor, a condenser, or a resistor common to both circuits.
- Direct Current A unidirectional current. As ordinarily used, the term designates a practically non-pulsating current.
- Distortion A change in wave form occurring in a transducer or transmission medium when the output wave form is not a faithful reproduction of the input wave form.

- Double Modulation The process of modulation in which a carrier wave of one frequency is first modulated by the signal wave and is then made to modulate a second carrier wave of another frequency. Dynamic Amplifier The RCA Dynamic Amplifier is
- a variable gain audio amplifier, the gain of which is proportional to the average intensity of the audio signal. Such an amplifier compensates for the contraction of volume range required because of recording or transmission line limitations.
- Dynamic Sensitivity of a Phototube The alternating-current response of a phototube to a pulsating light flux at specified values of mean light flux, frequency of pulsation, degree of pulsation, and steady tube voltage.
- Electro-Acoustic Transducer A transducer which is actuated by power from an electrical system and supplies power to an acoustic system or vice versa.
- Electron Emission The liberation of electrons from an electrode into the surrounding space. In a vacuum tube it is the rate at which the electrons are emitted from a cathode. This is ordinarily measured as the current carried by the electrons under the influence of a voltage sufficient to draw away all the electrons.
- Electron Tube A vacuum tube evacuated to such a degree that its electrical characteristics are due essentially to electron emission.
- Emission Characteristic A graph plotted between a factor controlling the emission (such as the temperature, voltage, or current of the cathode) as abscissas, and the emission from the cathode as ordinates.
- Facsimile Transmission The electrical transmission of a copy or reproduction of a picture, drawing or document. (This is also called picture transmission.)
- Fading The variation of the signal intensity received at a given location from a radio transmitting station as a result of changes occurring in the transmission path. (See Distortion.)
- Fidelity The degree to which a system, or a portion of a system, accurately reproduces at its output the signal which is impressed upon it.
- Filament A cathode in which the heat is supplied by current passing through the cathode.
- Filter A selective circuit network, designed to pass currents within a continuous band or bands of frequencies or direct current, and substantially reduce the amplitude of currents of undesired frequencies.

Frequency The number of cycles per second.

- Full-Wave Rectifier A double element rectifier arranged so that current is allowed to pass in the same direction to the load circuit during each half cycle of the alternating-current supply, one element functioning during one-half cycle and the other during the next half cycle, and so on. Fundamental Frequency The lowest component
- frequency of a periodic wave or quantity.
- Fundamental or Natural Frequency (of an antenna). The lowest resonant frequency of an antenna, without added inductance or capacity.

- Gas Phototube A type of phototube in which a quantity of gas has been introduced, usually for the purpose of increasing its sensitivity.
- Grid An electrode having openings through which electrons or ions may pass.
- Grid Bias The direct component of the grid voltage.
- Grid Condenser A series condenser in the grid or control circuit of a vacuum tube.
- Grid Leak A resistor in a grid circuit, through which the grid current flows, to affect or determine a grid bias.
- Grid-Plate Transconductance The name for the plate current to grid voltage transconductance. (This has also been called mutual conductance.)
- Ground System (of an antenna) That portion of the antenna system below the antenna loading devices or generating apparatus most closely associated with the ground and including the ground itself.
- Ground Wire A conductive connection to the earth.
- Half-Wave Rectifier A rectifier which changes alternating current into pulsating current, utilizing only one-half of each cycle.
- Harmonic A component of a periodic quantity having a frequency which is an integral multiple of the fundamental frequency. For example, a component the frequency of which is twice the fundamental frequency is called the second harmonic.
- Heater An electrical heating element for supplying heat to an indirectly heated cathode.
- Heterodyne Reception The process of receiving radio waves by combining in a detector a received voltage with a locally generated alternating voltage. The frequency of the locally generated voltage is commonly different from that of the received voltage. (Heterodyne reception is sometimes called beat reception.)
- Homodyne Reception A system of reception by the aid of a locally generated voltage of carrier frequency. (Homodyne reception is sometimes called zero-beat reception.)
- Hot-Wire Ammeter, Expansion Type An ammeter dependent for its indications on a change in dimensions of an element which is heated by the current to be measured.
- Indirectly Heated Cathode A cathode of a thermionic tube, in which heat is supplied from a source other than the cathode itself.
- Induction Loud Speaker is a moving coil loud speaker in which the current which reacts with the polarizing field is induced in the moving member.
- Inductive Coupling The association of one circuit with another by means of inductance common or mutual to both.
- Interelectrode Capacitance The direct capacitance between two electrodes.
- Interference Disturbance of reception due to strays, undesired signals, or other causes; also, that which produces the disturbance.

- Intermediate Frequency, in Superheterodyne Reception A frequency between that of the carrier and the signal, which results from the combination of the carrier frequency and the locally generated frequency.
- Intermodulation The production, in a non-linear circuit element, of frequencies corresponding to the sums and differences of the fundamentals and harmonies of two or more frequencies which are transmitted to that element.
- Interrupted Continuous Waves Interrupted continuous waves are waves obtained by interruption at audio frequency in a substantially periodic manner of otherwise continuous waves.
- Kilocycle When used as a unit of frequency, is a thousand cycles per second.
- Lead-In That portion of an antenna system which completes the electrical connection between the elevated outdoor portion and the instruments or disconnecting switches inside the building.
- Linear Detection That form of detection in which the audio output voltage under consideration is substantially proportional to the modulation envelope throughout the useful range of the detecting device.
- Loading Coil An inductor inserted in a circuit to increase its inductance but not to provide coupling with any other circuit.
- Loud Speaker A telephone receiver designed to radiate acoustic power into a room or open air.
- Magnetic Loud Speaker One in which the mechanical forces result from magnetic reactions.
- Magnetic Microphone A microphone whose electrical output results from the motion of a coil or conductor in a magnetic field.
- Master Oscillator An oscillator of comparatively low power so arranged as to establish the carrier frequency of the output of an amplifier.
- Megacycle When used as a unit of frequency, is a million cycles per second.
- Mercury-Vapor Rectifier. A mercury-vapor rectifier is a two electrode, vacuum-tube rectifier which contains a small amount of mercury. During operation, the mercury is vaporized. A characteristic of mercury-vapor rectifiers is the low-voltage drop in the tube.
- Microphone A microphone is an electro-acoustic transducer actuated by power in an acoustic system and delivering power to an electric system, the wave form in the electric system corresponding to the wave form in the acoustic system. This is also called a telephone transmitter.
- Mixer Tube (generally, in superheterodyne receivers.) A mixer tube is one in which a locally generated frequency is combined with the carrier-signal frequency to obtain a desired beat frequency.
- Modulated Wave A modulated wave is a wave of which either the amplitude, frequency, or phase is varied in accordance with a signal.

- **Power Detection** That form of detection in which the power output of the detecting device is used to supply a substantial amount of power directly to a device such as a loud speaker or recorder.
- Pulsating Current A periodic current, that is, current passing through successive cycles, the algebraic average value of which is not zero. A pulsating current is equivalent to the sum of an alternating and a direct current.
- Push-Pull Microphone One which makes use of two functioning elements 180 degrees out of phase.
- Radio Channel A band of frequencies or wavelengths of a width sufficient to permit of its use for radio communication. The width of a channel depends upon the type of transmission. (See Band of Frequencies.)
- Radio Compass A direction finder used for navigational purposes.
- Radio Frequency A frequency higher than those corresponding to normally audible sound waves. (See Audio Frequency.)
- Radio-Frequency Transformer A transformer for use with radio-frequency currents.
- Radio Receiver A device for converting radio waves into perceptible signals.
- Radio Transmission The transmission of signals by means of radiated electromagnetic waves originating in a constructed circuit.
- Radio Transmitter A device for producing radiofrequency power, with means for producing a signal.
- Rectifier A device having an asymmetrical conduction characteristic which is used for the conversion of an alternating current into a pulsating current. Such devices include vacuum-tube rectifiers, gas rectifiers, oxide rectifiers, electrolytic rectifiers, etc.
- Reflex Circuit Arrangement A circuit arrangement in which the signal is amplified, both before and after detection, in the same amplifier tube or tubes.
- **Regeneration** The process by which a part of the output power of an amplifying device reacts upon the input circuit in such a manner as to reinforce the initial power, thereby increasing the amplification. (Sometimes called "feedback" or "reaction.")
- Resistance Coupling The association of one circuit with another by means of resistance common to both.
- **Resonance Frequency** (of a reactive circuit)—The frequency at which the supply current and supply voltage of the circuit are in phase.
- Rheostat A resistor which is provided with means for readily adjusting its resistance.
- Screen Grid A screen grid is a grid placed between a control grid and an anode, and maintained at a fixed positive potential, for the purpose of reducing the electrostatic influence of the anode in the space between the screen grid and the cathode.
- Secondary Emission Electron emission under the influence of electron or ion bombardment.

- Modulation is the process in which the amplitude, frequency, or phase of a wave is varied in accordance with a signal, or the result of that process.
- Modulator A device which performs the process of modulation.
- Monochromatic Sensitivity The response of a phototube to light of a given color, or narrow frequency range.
- Moving-Armature Speaker A magnetic speaker whose operation involves the vibration of a portion of the ferromagnetic circuit. (This is sometimes called an electromagnetic or a magnetic speaker.)
- Moving Coil Loud Speaker A moving coil loud speaker is a magnetic loud speaker in which the mechanical forces are developed by the interaction of currents in a conductor and the polarizing field in which it is located. This is sometimes called an Electro-Dynamic or a Dynamic Loud Speaker.
- **Mu-Factor** A measure of the relative effect of the voltages on two electrodes upon the current in the circuit of any specified electrode. It is the ratio of the change in one electrode voltage to a change in the other electrode voltage, under the condition that a specified current remains unchanged.
- Mutual Conductance (See Grid-Plate Transconductance.)
- Oscillator A non-rotating device for producing alternating current, the output frequency of which is determined by the characteristics of the device.
- Oscillatory Circuit A circuit containing inductance and capacitance, such that a voltage impulse will produce a current which periodically reverses.
- Pentode A type of thermionic tube containing a plate, athode, and three additional electrodes. (Ordily the three additional electrodes are of the re of grids.)
- P. age Modulation The ratio of half the differbetween the maximum and minimum amplit. of a modulated wave to the average amplitude, e., essed in per cent.
- Phonograph Pickup An electromechanical transducer actuated by a phonograph record and delivering power to an electrical system, the wave form in the electrical system corresponding to the wave form in the phonograph record.
- **Phototube** A vacuum tube in which electron emission is produced by the illumination of an electrode. (This has also been called photo-electric tube.)
- Plate A common name for the principal anode in a vacuum tube.
- **Power Amplification** (of an amplifier)—The ratio of the alternating-current power produced in the output circuit to the alternating-current power supplied to the input circuit.

- Selectivity The degree to which a radio receiver is capable of differentiating between signals of different carrier frequencies.
- Sensitivity The degree to which a radio receiver responds to signals of the frequency to which it is tuned.
- Sensitivity of a Phototube The electrical current response of a phototube, with no impedance in its external circuit, to a specified amount and kind of light. It is usually expressed in terms of the current for a given radiant flux, or for a given luminous flux. In general the sensitivity depends upon the tube voltage, flux intensity, and spectral distribution of the flux.
- Service Band A band of frequencies allocated to a given class of radio communication service.
- Side Bands The bands of frequencies, one on either side of the carrier frequency, produced by the process of modulation.
- Signal The intelligence, message or effect conveyed in communication.
- Single-Side-Band Transmission That method of operation in which one side band is transmitted, and the other side band is suppressed. The carrier wave may be either transmitted or suppressed.

Static Strays produced by atmospheric conditions.

- Static Sensitivity of a Phototube The direct current response of a phototube to a light flux of specified value.
- Stopping Condenser A condenser used to intro-duce a comparatively high impedance in some branch of a circuit for the purpose of limiting the flow of low-frequency alternating current or direct current without materially affecting the flow of high frequency alternating current.
- Strays Electromagnetic disturbances in radio reception other than those produced by radio transmitting systems.
- Superheterodyne Reception-Superheterodyne reception is a method of reception in which the re-ceived voltage is combined with the voltage from a local oscillator and converted into voltage of an intermediate frequency which is usually amplified and then detected to reproduce the original signal wave. (This is sometimes called double detection or supersonic reception.)
- Swinging The momentary variation in frequency of a received wave.
- Telephone Receiver An electro-acoustic transducer actuated by power from an electrical system and supplying power to an acoustic system, the wave form in the acoustic system corresponding to the wave form in the electrical system.
- Television The electrical transmission of a succession of images and their reception in such a way as to give a substantially continuous reproduction of the object or scene before the eye of a distant observer.
- Tetrode A type of thermionic tube containing a plate, a cathode, and two additional electrodes. (Ordinarily the two additional electrodes are of the nature of grids.)

- Thermionic Relating to electron emission under the influence of heat.
- Thermionic Emission Electron or ion emission under the influence of heat.
- Thermionic Tube An electron tube in which the electron emission is produced by the heating of an electrode.
- Thermocouple Ammeter An ammeter dependent for its indications on the change in thermo-electromotive force set up in a thermo-electric couple which is heated by the current to be measured.
- Total Emission The value of the current carried by electrons emitted from a cathode under the influence of a voltage such as will draw away all the electrons emitted.
- Transconductance The ratio of the change in the current in the circuit of an electrode to the change in the voltage on another electrode, under the condition that all other voltages remain unchanged.
- Transducer A device actuated by power from one system and supplying power to another system. These systems may be electrical, mechanical, or acoustic.
- Transmission Unit A unit expressing the logarithmic ratios of powers, voltages, or currents in a trans-mission system. (See Decibel.)
- Triode A type of thermionic tube containing an anode, a cathode, and a third electrode, in which the current flowing between the anode and the cathode may be controlled by the voltage between the third electrode and the cathode.
- Tuned Transformer A transformer whose associated circuit elements are adjusted as a whole to be resonant at the frequency of the alternating current supplied to the primary, thereby causing the secon-dary voltage to build up to higher values than would otherwise be obtained.
- Tuning The adjustment of a circuit or system to secure optimum performance in relation to a frequency; commonly, the adjustment of a circuit or circuits to resonance.
- Vacuum Phototube A type of phototube which is evacuated to such a degree that the residual gas plays a negligible part in its operation. Vacuum Tube A device consisting of a number of
- electrodes contained within an evacuated enclosure.
- Vacuum-Tube Transmitter A radio transmitter in which vacuum tubes are utilized to convert the applied electric power into radio-frequency power.
- Vacuum-Tube Volt-Meter A device utilizing the characteristics of a vacuum tube for measuring alternating voltages.
- Voltage Amplification The ratio of the alternating voltage produced at the output terminals of an amplifier to the alternating voltage impressed at the input terminals.
- Voltage Divider A resistor provided with fixed or movable contacts and with two fixed terminal contacts;

current is passed between the terminal contacts, and a desired voltage is obtained across a portion of the resistor. (The term potentiometer is often erroneously used for this device.)

Wave a. A propagated disturbance, usually periodic, as an electric wave or sound wave,

- b. A single cycle of such a disturbance, or,
- c. A periodic variation as represented by a graph.

Wavelength The distance traveled in one period or cycle by a periodic disturbance.

*Most of these definitions are based on I.R.E. Standards.

New RCA Check-Up

A wealth of brand new sales helps—a new 10-point offer and new window displays are but a few of the many new features of the RCA Check-Up for 1937. Not only does the new Check-Up have greater customer appeal, but it enables the service engineer to make attractive combination offers which build up a greater dollar volume for him.

The RCA Check-Up, which now enters its third year of highly successful operation, is a simple means by which a service engineer or radio dealer may get in touch with customers who ordinarily would not call for a radio service engineer. It features a special 10-point job at a flat price. The job, which has obvious benefits for the customer, nevertheless costs little to perform and opens the way for the sale of tubes, parts or accessories. The service engineer is assured the flat price which more than covers any actual expense. Experience has shown that practically always additional merchandise is sold, all of which makes the RCA Check-Up a valuable, business-building program.

RCA Radio Tube Distributors are now featuring the 1937 RCA Check-Up on a number of attractive plans. They will be glad to show you the many unusual mailing pieces, the new window displays and many other important sales helps. See your distributor at once.

RCA Three-Point Service System

The RCA Three-Point Service System offers the service engineer or radio dealer help in the three fundamental phases of his business—the technical, the promotional and the accounting. These aids are based on actual experience and reach the basic needs of everyone engaged in the radio or service retail field.

The RCA Service Tip File is a collection of service tips, indexed both as to symptoms and set manufacture. Two hundred cards are included with the initial equipment and additional packets of twenty tips each are available for supplementing the file.

"101 Service Sales Ideas" is a unique booklet containing 101 actual selling ideas that have been used successfully in the radio service and retail business. While all the ideas will not apply to all organizations, nevertheless there are many that everyone can use.

"Radio Service Business Methods," by John F. Rider and J. Van Newenhizen, is a 220-page book that covers every phase of operating a radio business. It shows how to properly arrive at the cost of operation, how to compute overhead, and many other items of selling and service expense. Supplementing this book is a complete series of forms, supplied at low prices and imprinted with your name.

RCA Radio Tube Distributors are now featuring each unit of the RCA Three-Point Service System on unusually liberal terms. See your distributor at once.

All receivers are built around the vacuum tube used as amplifier, detector, rectifier or oscillator. Whenever an open or short occurs in the filament, plate, grid or screen-grid circuit of a vacuum tube, it will have a definite effect upon the voltage and current readings obtained at these different tube elements with an analyzer.

The analyzer is designed to indicate the variations caused by such opens or shorts, and thus enables the service man to determine in which tube circuit the abnormal condition exists. Having done this the analyzer has done all that it is possible for an instrument to do. It now remains for the service man to decide (by analytic reasoning based on previous experience and thought on trouble shooting problems) in which portion of that particular tube's circuits the trouble is.

On the following pages will be found 4 fundamental, schematic diagrams of the complete filament, grid and screen-grid circuits for:

- 1. Filament type triodes and screen-grid tubes.
- 2. Heater-cathode type triodes and screen-grid tubes.
- 3. Filament type pentodes (voltage or power amplifiers.)
- 4. Heater-cathode type pentodes (voltage or power amplifiers.)
- The various circuits are numbered as:

Example:

- 1 = grid return from grid of tubes to negative C in grid circuit.
- 2=plate circuit from positive B on voltage divider to plate of tube.

On a following page will be found a chart listing the effects noted (as compared to the normal readings) when the various circuits or parts are open or shorted. By the use of this chart, knowing what normal conditions are, and how the abnormal conditions compare with them, it is possible for a service man to narrow his tracing of the suspected tube circuit, down to the testing of one or two of the parts of that circuit.

Diagrams No. 1 and No. 2 apply equally as well to triodes of the filament and cathode-heater types by omitting circuit No. 13 and condenser No. 7 which apply to screen-grid types only.

It will be noted that circuit No. 14 in diagrams No. 3 and No. 4 applies only to a pendod. It represents the connection between the suppressor grid (located between the space charge or screen-grid and plate) and the eathode, or to a point in the circuit whose potential is more negative than the cathode. Since the suppressor grid serves the same purpose (i.e., to practically eliminate the effects of secondary emission) whether the tube be a radio-frequency pentode, such as the 57, or whether it be a power-output pentode, such as the 47,

diagrams No. 3 and No. 4 apply equally as well to both types of tubes. The effects upon normal voltage readings when this circuit opens are listed under circuit No. 14 on the following chart. In certain tube types, such as the 47, circuit No. 14 is made within the tube, as indicated by the dotted lines in Fig. 3. An open in this internal connection will cause the same analyzer readings as those noted under circuit No. 14 in the accompanying chart.

Diagram No. 4 applies to triple-grid amplifiers, such as the 89, when used as a pentode power amplifier. When this tube is used as a class A or B amplifier, it would then be classified as a triode, and in this case diagram No. 2 would apply. For information on the operation and connections of the grids of a triple-grid amplifier when used in class A or B amplifier circuits, refer to the set manufacturer's service notes.

Example:

If it is found that the readings at one tube socket show $E_{cl} = above$ normal, $I_b = o$, $E_b = o$, $E_{bf} = above$ normal; referring to the chart we see that when this condition exists it indicates a short in No. 6—(the plate by-pass condenser)—when its return is connected to positive side of grid-bias resistor No. 4, or it indicates an open in the cathode circuit through conductor No. 3 or grid-bias resistor No. 4.

The meaning of the symbols used in the reference chart are as follows:-

Ee1=Grid voltage or control	S=Shorted.
grid on S. G. tubes.	L= Leaking.
$E_{kf} = Cathode voltage on cath-$	Op=Open.
ode heater tube.	O=Zero voltage or current
$E_b = Plate voltage.$	Lo= Below normal
Ecs=Screen grid voltage.	Hi= Above normal
Ecs=Suppressor grid voltage.	Nor=Normal.
$I_b = Plate current.$	F= Fluctuating

Note: In servicing modern receivers it is extremely desirable that the service man use the set manufacturer's service notes. These will be found to be of great assistance in locating troubles and applying the correct remedy. Most radio set manufacturers will gladly furnish responsible service men with service notes on any model of their receivers upon a written request to the manufacturer's service denartment.

Cir- cuit No.	Con- di- tion	Ec1	Ec2	Ic2	Ib	Eb	Ekf	Ec3
1	Op	0	Lo	Hi	Hi	Lo	Hi	
* 2	Op	0	Nor	Hi	0	0	0	
† 3	Op	Hi	0	0	0	0	Hi	
4	Op	Hi	0	0	0	0	Hi	
5	S	0	Lo	Hi	Hi	Lo	0	
5	L	F or Lo	Nor	Nor	F or Hi	F or Lo	F or Lo	
5	Op	Nor	Nor	Nor	Nor	Nor	Nor	
+ 6	S	Hi	0	0	0	0	Hi	
6	L	F or Hi	F or Lo	F or Lo	F or Lo	F or Lo	F or Hi	
6	Op	Nor	Nor	Nor	Nor	Nor	Nor	
\$ 7	S	Hi	0	0	0	Lo	Hi	
7	L	F or Hi	F or Lo	F or Lo	F or Lo	F or Lo	F or Hi	
7	Op	Nor	Nor	Nor	Nor	Nor	Nor	
8	Op	Hi	Hi	Hi	Hi	Hi	Hi	
9	Op	0	0	0	0	0	0	
10	S	0	0	0	0	0	0	
11	Op	Nor	Nor	Nor	Nor	Nor	Nor	Hum
12	Op	Nor	Nor	Nor	Nor	Nor	0	Hum
13	Op	0	0	0	0	Hi	0	
14	Op	Nor	Nor	Hi	Lo	Nor	Nor	Hi

Exceptions:

*Ec1= O when Individual Bias Resistor.

Ec1=Lo when Common Bias Resistor, or S. G. Tube.

†Ec1 & Ekf=Hi when Individual Bias Resistor.

Ec1 & Ekf=Lo when Common Bias Resistor.

‡Ec1 and Ekt=O when condenser return is to neg. end No. 4 or Neg. Rectifier.

How The Cathode-Ray Tube Works

Since the cathode-ray tube is comparatively new in he field of electronic devices, information concerning its functioning may be of interest. The schematic liagram shows the essential parts of a typical cathodeay tube of the electrostatic-deflection type.

RCA Cathode-Ray Tube

Electrons emitted by the cathode are attracted by the positive voltages on the focusing anode and on the high-voltage anode. Some of these electrons pass through the two anodes, which are hollow cylinders, and flowing down the length of the tube, form a concentrated electron beam. The inner surface of the large end of the bulb is coated with a layer (called the screen) of a material which fluoresces wherever electrons strike it. Hence the beam of electrons flowing down the tube produces a spot of light on the screen at the end of the tube. Focusing of the spot is accomplished by adjusting the ratio of the anode voltages. The brightness of the spot is controlled by the negative voltage applied to the control grid, which regulates the amount of current in the electron beam. The voltages on the focusing anode and on the control grid are usually adjusted simultaneously so that the spot is sufficiently bright and of small size.

The position of the spot on the fluorescent screen is controlled by the voltages on the deflecting plates. When a voltage is connected across one of the sets of deflecting plates so that one plate is positive with respect to the other, the electrons in the beam are attracted toward the positive plate. Hence, the electrons in the beam are deflected and the position of the spot on the screen changes. One set of plates provides horizontal deflection of the beam; the other provides vertical deflection.

When the cathode-ray tube is used to observe an alternating voltage, the voltage under observation is applied to give vertical displacement of the light spot. A 'linear sweep'' voltage is applied to give horizontal displacement. With this arrangement, the spot traces on the screen a curve which shows the waveform of the voltage being observed.

The Cathode-Ray Oscillograph

A cathode-ray oscillograph consists of a cathode-ray tube and its associated apparatus, conveniently assembled with all necessary controls and switches. Thi associated apparatus usually consists of a "saw-tooth oscillator, which provides the linear sweep voltage vertical and horizontal amplifiers for increasing th image size on low input voltages, and the necessar power supply equipment. The RCA Oscillograph is a example of the better types of oscillographs now on th market.

Applications of the Oscillograph

For quickly disclosing the source of trouble in a radii receiver, the cathode-ray oscillograph is ideal. How ever, the service engineer must have an understandin of the use of the oscillograph to be able to take fu advantage of its capabilities.

First, the oscillograph should be recognized as an ir strument that shows effect, rather than cause. Fo example, numerous troubles can be identified an isolated in a particular section of the circuit with th oscillograph, but the actual testing of the parts mus be done with other equipment.

Distortion and Hum. In a receiver having object tionable distortion, the cause of the distortion can easil be located with the aid of an oscillograph. One way t do this is to apply the output of a signal generator t the input of the receiver and observe on the oscillograp the output of successive stages. If, for instance, th waveform appears undistorted at the input of the firs audio stage but is distorted at the output of this stage distortion obviously is being produced in this stage Similarly, a method of locating the source of hum in set is to examine the waveform of the output of suc cessive filter sections.

Aligning Receivers. Perhaps one of the most spec tacular uses of the cathode-ray oscillograph is the visua alignment of receivers. In this application, a tes oscillator is controlled by a frequency modulator so tha the output voltage of the oscillator varies in frequency This voltage of varying frequency is applied to th input of the stage being checked. The cathode-ray tub is connected to show the curve of gain-vs.-frequency fo

I. F. Curve Showing Double Image Method of Alignment

the stage. With this curve in view, the operator can easily adjust the trimmers to give peak gain at the cor rect frequency in each stage as it is checked. In the more advanced instruments, the r-f frequency is swep in both directions and a double curve is shown on the screen, adjustment being made with the trimmer capacitors until the curves coincide.

Measuring Percentage Modulation.

Modulation may be quickly checked with the oscillograph, either for percentage or for distortion. This is done by impressing the modulated r-f signal on the vertical plates and the linear timing voltage on the horizontal

 $\begin{array}{l} {\rm R. F. Modulated at 1000 Cycles} \\ {\rm Timing Axis Supply: 500-Cycle Saw-Tooth} \\ {\rm Per \ cent \ Modulation} = & \frac{{\rm EMax.} - {\rm EMin.} {\rm X} \ 100} \\ {\rm EMax.} + {\rm EMin.} \\ \end{array}$

plates. The true wave shape of the r-f envelope will appear and an appreciable lack of symmetry or other irregularities will be immediately apparent, indicating distortion. The percentage modulation is determined as shown in the illustration.

Туре	RCA CATHODE-RAY TUBES	Elec- trodes	Max. Anode No. 2 Volts	Cath- ode Volts
904	5 in., Electrostatic- Magnetic Deflection, High-Vacuum	5	4 600	9 5
905	5 in., Electrostatic-De-		2,000	0.5
906	3 in., Electrostatic De-	#	2,000	2.0
907	flection, High-Vacuum 5 in., Electrostatic De-	4	1,200	2.5
000	flection, High-Vacuum, Short Persistence Screen	4	2,000	2.5
900	flection, High-Vacuum, Short Persistence Screen	4	1.200	2.5
909	5 in., Electrostatic De- flection, High-Vacuum,		-1-00	
910	Long Persistence Screen 3 in., Electrostatic De-	4	2,000	2.5
011	Long Persistance Screen	4	1,200	2.5
511	Medium Persistence Screen, with Gun Un- usually Free from Mag- netium free from Mag-		1 200	
912	5 in., Electrostatic De- flection, High-Vacuum, Medium Persistence	4	1,200	2.0
	Screen	4	15,000	2.5

Calculation and Use of Shunts and Multipliers

Primarily, all electric meters of the indicating type having only two terminals are essentially current measuring devices and in fact are animeters or milliammeters, as it is only the current flowing through the meter that causes mechanical motion and deflection of the needle.

However, we may calibrate the meter scale so that the needle deflection will accurately read ohms, volts, microfarads, etc., or any one of the electrical factors which if varied would create a change in current flow provided the other characteristics of the circuit would remain constant.

Let us consider a DC milliammeter (0-1) which gives full scale deflection when 1 milliampere flows through the meter. We desire to use this meter as a multirange voltmeter having scales (0-10) (0-100) (0-500) and (0-1000) volts respectively. The

(0-1000) volts respectively. The resistance of many such meters in commercial use ranges from 20 to 50 ohms. In the extreme case considering a meter of 50 ohms resistance the voltage drop across the meter at full scale current would be, according to Ohms Law, $E_m = Rm \times I_m$, $R_m = resistance of meter = 50$ ohms Im = full scale current = 1 $milliampere = .001 ampere <math>E_m =$ 50 x.001 = 0.05 volts.

As the maximum voltage drop across the meter is only 1/20 volt under extreme conditions we can disregard this in our calculations as the error will be negligible.

Referring to Figure 1 we see that the meter can be used as a 0-10 voltmeter if a resistance or multiplier is connected in series with it. The resistance must be of such value that if 1 milliampere of current (which is full scale deflection of the meter) flows through it the voltage across the resistance will be 10 volts. Figure 1.

The multiplier, $R_1 = \frac{E}{I} = \frac{10}{.001} = 10,000$ ohms.

Half scale deflection means that 1/2 milliampere is flowing through the meter, therefore half scale deflection indicates

E = R I = 10,000 x .0005 = 5 volts.

Accordingly any fractional indication on the 0-1 mil scale will read the corresponding fraction of 10 volts which means the milliammeter scale is multiplied by 10 to get the actual reading in volts. Similarly the multiplier for the (0-100) volt scale

$$R_2 = \frac{E}{I} = \frac{100}{.001} = 100,000 \text{ ohms.}$$

and the milliammeter scale readings are multiplied by 100.

Likewise the multipliers for the (0-500) and (0-1000) volt scales would be 500,000 and 1,000,000 ohms respectively and the scale multiples would be correspondingly 500 and 1000.

If a 0-10 milliammeter was used in place of the 0-1 the multipliers in each case would of course be only 1/10 of their respective values in the previous example. This would also apply to the scale multiples. However, the 10 milliammeter would consume appreciable current in itself and may in certain circuits introduce a considerable error particularly where the resistance of the multiplier

is not considerably higher than the voltage supply system. Moreover, the regulation of the voltage supply system may be seriously affected when it is called upon to supply an additional 10 milliamperes to operate the voltmeter which would perhaps introduce a large error.

This emphasizes the importance of a high resistance volt-

meter; in the first example the resistance was 1000 ohms per volt while in the second instance it was only 100 ohms per volt. For the proper degree of accuracy in radio work a 1000 ohm per volt voltmeter will be quite suitable.

To use the 0-1 milliammeter as a higher scale milliammeter, it is necessary to provide a shunt as in Figure 2. In this case it is essential to know accurately the resistance of the meter. Assuming that it has a resistance of 27 ohms and that we want to have a scale reading of 0-10 mil (0-50) (0-100) (0-500) milliampere.

Referring to Figure 2 it is evident that to use the meter for 0-10 mil measurements the meter would carry 1/10 of the total current and the shunt 9/10 or the shunt resistance would be 1/9 of the meter resistance. If the meter resistance was 27 ohms the shunt resistance would be 3 ohms; correspondingly the shunt resistance for use as an 0-50 milliammeter would be 1/49 x 27 = .551 ohms, For 0-100 and 0-500 scales the shunt resistance must be 0.2727 ohms and 0.0541 ohms respectively.

The general formula is

$$R = \frac{R_m \times I_m}{I - I_m}$$

where R=resistance of shunt in ohms R_m =resistance of meter in ohms I_m = full scale current for meter I = full scale current for new calibration

By having a star or multipole switch as shown in Figure 3, one meter can be used as well as a voltmeter or milliammeter at any desired range. The accompanying chart shows the resistance of the shunt or multiplier as the case may be.

Shunt and Multiplier Values

27 Ohm (0-1) Milliammeter

Scale	Use as	Ohms of Resistance in Series or in Shunt with Meter	Multiply old scale
$\begin{array}{c} 0-10\\ 0-50\\ 0-100\\ 0-250\\ 0-500\\ 0-1000 \end{array}$	Voltmeter "	$\begin{array}{r}10,000\\50,000\\100,000\\250,000\\500,000\\1,000,000\end{array}$	$ \begin{array}{r} 10 \\ 50 \\ 100 \\ 250 \\ 500 \\ 1000 \end{array} $
0-10 0-50 0-100 0-500	Milliammeter	$\begin{array}{c} 3\\ 0.551\\ 0.272\\ 0.0541 \end{array}$	$10 \\ 50 \\ 100 \\ 500$

35 Ohm (0-1.5) Milliammeter

0-15 0-150 0-750	Voltmeter	$10,000 \\ 100,000 \\ 500,000$	$ \begin{array}{c c} 10 \\ 100 \\ 500 \end{array} $
$\begin{array}{c} 0-15 \\ 0-75 \\ 0-150 \\ 0-750 \end{array}$	Milliammeter	$3.89 \\ 0.714 \\ 0.354 \\ 0.0701$	10 50 100 500 500

Grid Bias Resistor Calculations

The radio service man often finds it necessary to replace the grid bias resistor in receivers employing a self-biasing arrangement for obtaining the proper grid voltage. When the resistance value is not known, it may be calculated by dividing the grid voltage required at the plate voltage at which the tube is operating, by the plate current in amperes plus the screen current in amperes times the number of tubes passing current through the resistor.

Under the above rule, the grid bias resistor value is given by the following formula:

$$R = \frac{Ec_1 \times 1,000}{(I_B + Ic_2) n}$$

where: R=Grid bias resistor value in ohms.

Ec1 = The grid bias required in volts.

IB = The plate current of a single tube in milliamperes.

Ic2=The screen-grid current of a single tube in milliamperes.

n = The number of tubes passing current through the resistor.

Example:

It is desired to determine the value of bias resistor used to obtain the proper value of grid bias on three type '35 tubes working in the radio frequency stages of a receiver. First determine the plate and screen voltages employed in this set. Suppose, in this case, it is found that the plate supply voltage is 250 and the screen voltage is 90. Looking in the characteristics chart, it is found that the proper grid bias for the '35 under these conditions is —3.0 volts. In addition, the plate current is 6.5 milliamperes and the screen current is 2.5 milliamperes. Substituting in the formula,

$$R = \frac{3.0 \times 1,000}{(6.5+2.5)3} = 111$$
 ohms.

The value of grid bias resistors can be calculated in this manner for any type and any number of tubes. In the case of triodes, the screen current term drops out entirely.

Be sure to determine the plate voltage at which the tubes are working, the number of tubes being supplied from the bias resistor, the screen voltage, (if a tetrode or pentode), the correct value of grid bias voltage required (whether the tube cathode is operated from A.C. or D.C. will affect the value of bias voltage), and the plate and screen current for the given plate voltage.

In the case of resistance-coupled amplifiers which employ high resistance in the plate circuit, it must be remembered that the plate voltage is equal to the plate supply voltage minus the voltage drop in the plate load resistance caused by the plate current. The net plate voltage alone determines the correct value of grid bias.

The foregoing methods of calculations cannot be used in connection with receivers employing a bleeder circuit to obtain grid bias.

RMA Standard Color Coding for Resistors

The Radio Manufacturers Association has standardized on the following color coding for resistance value identification:

Ten colors are assigned to the figures as shown in the following table:

Figure	Color	Figure	Color	Figure	Color
0	Black	4	Yellow	7	Violet
1	Brown	5	Green	8	Gray
2	Red	6	Blue	9	White
3	Orange				

The body (A) of the resistor is colored to represent the first figure of the resistance value. One end (B) of the resistor is colored to represent the second figure. A band, or dot (C) of color, representing the number of ciphers following the first two figures, is located within the body color. The two diagrams illustrate two interpretations of this standard method of coding resistance value.

NOTE: The problem of coding two resistors of the same nominal value when tolerances are different is solved in a practical manner by using the next higher or lower coded value for the unit with the larger tolerance. For example: if the nominal values of two resistors are 2.500 ohms, one with 10% tolerance and the other with 20%. The unit with 10% tolerance will be 2,500 ohms and be coded as such. The unit with 20% tolerance will be assigned a nominal value of either 2,400 ohms or 2,600 ohms and be so coded. A similar system for coding fixed condensers is in general use. Three colored dots are employed to show the capacity in micromicrofarads. The dots are read from left to right with the condenser held so that the brand name is upright. The correspondence between colors and digits is the same as in the resistance coding.
Series Resistances, Parallel Capacities

 $R = R_1 + R_2 + R_3$ etc. $C = C_1 + C_2 + C_3$ etc.

Where: R and C equal the total resistance or capacity.

Parallel Resistances, Series Capacities Chart

This chart suffices for both resistances in parallel and capacifies in series since the formula for each is the same.

Lay a straightedge from unit desired on the left oblique line o unit desired on right oblique line. Point at which straightedge intersects the vertical line is the resultant value in units.

To increase range of the scale multiply or divide all values by he factor destred, such as one thousandth, one hundredth, one enth; ien, one hundred or one thousand, etc.

DIAMETER, WEIGHTS AND RESISTANCE OF COPPER WIRE

	Diam-	Area.	Wei Bare	^{ght,} Wire	F 2	Resistance 25°C. (77°	e at °F.)
AWG	eter Mils	Cir- cular Mils	Pounds per 1000 Ft.	Pounds per Mile	Ohms per 1000 Ft.	Ohms per Mile	Feet per Ohm
0000	460.	211,600.	641.	3385.	0.0499	0.2638	20,040.
000	410.	167,800.	508.	2683.	0.0630	0.3325	15,870.
00	364.8	133,100.	403.	2126.	0.0794	0.419	12,590.
0	324.9	105,500.	319.5	1687.	0.1003	0.529	9,980.
1	289.3	83,700.	253.3	1337.	0.1262	0.666	7,930.
2	257.6	66,400.	200.9	1061.	0.1591	0.840	6,290.
3	229.4	52,600.	159.3	841.	0.2008	1.062	4,980.
4	204.3	41,700.	126.4	668.	0.2533	1.338	3,950.
5	181.9	33,100.	100.2	529.	0.3193	1.685	3,134.
6	162.0	26.250.	79.5	419.	0.403	2,127	2.485.
7	144.3	20,820.	63.0	332.6	0.507	2.682	1,971.
8	128.5	16,510.	50.0	264.0	0.640	3.382	1,562.
9	114.4	13.090.	39.63	208.3	0.807	4.26	1.238.
10	101.9	10,380.	31.43	165.9	1.017	5.37	983.
11	90.7	8,230.	24.92	131.6	1.284	6.78	779.
12	80.8	6,530.	19.77	104.3	1.618	8.55	618.
13	72.0	5,180.	15.68	82.8	2.040	10.77	490.
14	64.1	4,110.	12.43	65.6	2.575	13.60	388.2
15	57.1	3.257.	9.86	52.1	3 244	17.13	308.4
16	50.8	2,583.	7.82	41.3	4.09	21.62	244.3
17	45.3	2,048.	6.20	32.73	5.16	27.24	193.9
18	40.3	1.624.	4.92	26.00	6.51	34.34	153.7
19	35.89	1,288.	3.899	20.57	8.20	48.3	121.9
20	31.96	1,022.	3.092	16.33	10.34	54.6	96.6
21	28.46	810.	2.452	12.93	13.04	68.9	76.6
22	25.35	642.	1.945	10.27	16.44	86.9	60.8
23	22.57	509.	1.542	8.14	20.75	109.5	48.2
24	20.10	404.	1.223	6.46	26.15	138 1	38.2
25	17.90	320.4	0.970	5.12	33.00	174.3	30.3
26	15.94	254.1	0.769	4.06	41.6	219.5	24.0
27	14 20	201.5	0.610	3 220	52.4	276 8	10.0
28	12.64	159.8	0.484	2.556	66.01	349.2	15.1
		1 20010		1.000			10.1

AWG		Aros	Wei Bare	ght, Wire	Resistance at 25°C. (77°F.)		
	Diam- eter Mils	Cir- cular Mils	Pounds per 1000 Ft.	Pounds per Mile	Ohms per 1000 Ft,	Ohms per Mile	Feet per Ohm
29	11.26	126.7	0.3836	2.025	83.4	441.	11.98
30	10,03	100.5	0.3042	1.606	105.4	556.	9.48
31	8.93	79.7	0.2413	1.273	132.6	700.	7.55
32	7,95	63.2	0.1913	1.011	167.2	883.	5.98
33	7.08	50.1	0.1517	0.807	210.8	1113.	4.74
34	6.30	39.75	0.1203	0.636	265.8	1403.	3.762
35	5.61	31.52	0.0954	0.504	335.5	1772.	2,980
36	5.00	25.00	0.0757	0.400	423.0	2232.	2,366
37	4.45	19.83	0.0600	0.3168	533.	2814.	1.877
38	3.965	15.72	0.0476	0.2514	673.	3553.	1,487
39	3.531	12.47	0.03774	0.1991	847.	4470.	1.180
40	3.145	9.89	0.02993	0.1579	1068,	5640.	0.936

DIAMETER, WEIGHTS AND RESISTANCE OF COPPER WIRE

ALLOWABLE CARRYING CAPACITIES OF COPPER WIRE AND CABLE

(Regulations of the National Board of Fire Underwriters)

No. AWG	1	Am	beres		Amperes		
	Circular Mils	Rub- ber Insu- lation	Other Insu- lation	Circular Mils	Rub- ber Insu- lation	Other Insu- lation	
18	1.624	3	5	250,000	250	350	
16	2.583	6	10	300,000	275	400	
14	4.107	15	20	350,000	300	450	
12	6.530	20	25	400.000	325	500	
10	10,380	25	30	450,000	362	550	
8	16,510	35	50	500,000	400	600	
6	26,250	50	70	600,000	450	680	
4	41.740	70	90	700,000	500	760	
2	66.370	90	125	800,000	550	840	
1	83,690	100	150	1.000.000	650	1000	
Ō	105,500	125	200	1,250,000	750	1180	
00	133,100	150	225	1,500,000	850	1360	
000	167.800	175	275	1.750,000	950	1520	
0000	211,600	225	325	2,000,000	1050	1670	

TEMPERATURE CORRECTIONS FOR COPPER WIRE

(Based on A.I.E.E. Standards)

Temperature Coefficient of Resistance. At a temperature of 25 degrees Centigrade the "constant mass" temperature coefficient of resistance of standard annealed copper, measured between potential points rigidly fixed to the wire is 0.00385 or 1/259.5 per Centigrade degree.

Resistance values of copper wire given in table on preceding pages may be corrected for any temperature by means of the formula given below.

Correction for Change in Temperature

Rt = R₂₅ [1 + 0.00385 (t - 25)], where Rt = the resistance in ohms at a temperature, t. R₂₅ = the resistance in ohms at 25 degrees, Centigrade t = the temperature of wire in degrees, Centigrade

Temp. C.=5/9 (Temp. F.-32) Temp. F.=9/5 (Temp. C.)+32.

SPECIFIC RESISTANCE OF METALS AND ALLOYS AT ORDINARY TEMPERATURES

SUBSTANCE	Specific Resist- ance Mi- crohms per Cm. Cube	Rela- tive Con- duct- ance	SUB- STANCE	Specific Resist- ance Mi- crohms per Cm. Cube	Rela- tive Con- duct- ance
Aluminum Brass	2.94	54. 26-17	Lead	20.8	6.64
Climax	87.	1.83	Mercury .	95.7	1.66
Cobalt	9.7	16.3	Molybdenum	4.8	33.2
Constantan	49.	3.24	Nickel	10.5	11.8
Copper, U.S. std.	1.78	89.5	Nichrome .	110.	1.45
Copper, annealed	1.59	100.	Platinum .	10.8	14.6
Ger. Silver (18X)	30-40	5.3-4	Silver	1.5	106.
Iron, pure	9.	17.7	Superior 23.	86.	1.85
Iron, wrought .	13.9	11.4	Tungsten .	5.4	28.9

USEFUL CONVERSION RATIOS

Multiply	by	to obtain
Diam. Circle	3.1416	Circumference Circle
Diam. Circle	0.886	Side Equal Square
U. S. Gallons	0.8333	Imperial Gallons
U. S. Gallons	0.1337	Cubic Feet
Inches Mercury	0.4912	Pounds per Sq. In.
Feet of Water	0.4335	Pounds per Sg. In.
Cubic Feet	62.4	Pounds of Water
U. S. Gallons	8.343	Pounds of Water
U. S. Gallons	3.785	Liters
Knots	1.152	Miles
Inches	2.540	Centimeters
Yards	0.9144	Meters
Miles	1.609	Kilometers
Cubic Inches	16.39	Cubic Centimeters
Ounces	28.35	Grams
Pounds	0.4536	Kilograms

Winding Turns per Linear Inch

Gauge		1		1		IDSC		1	
B&	s	Enamel		S. S. C.		OF OF	0.	D. C. C.	
8		71	3						
9		8.6			-	1 7.	4	7.1	
10		0.0			-	8.	2	7.8	
11		10.2	.		- 9.3		3	8.9	
12		19.0		-	-	10.3	3	9.8	
13		12.0				11.8	5	10.9	
14		15.0			1	12.8	3	12.0	
15		16.0				14.2		13.3	
16		10.8				15.8		14.7	
17		10.9		18.9		17.9		16.4	
10		21.2		21.2		19.9		18.1	
10		23.6		23.6		22.0		19.8	
19		26.4		26.4		24.4		21.8	
20		29.4		29.4		27.0		23.8	
21		33.1		32.7		29.8		26.0	
22		37.0		36.5		34.1		30.0	
23		41.3		40.6		37.6		31.6	
24		46.3		45.3		41.5		35.6	
25		51.7		50.4		45.6		38.6	
26		58.0	1	55.6		50.2		41.8	
27	1	64.9		61.5		55.0		45.0	
28		72.7		68.6		60.2		48.5	
29		81.6		74.8	1	65.4		51.8	
30		90.5		83.3		71.5		55.5	
31	1	01.		92.0		77.5		59.2	
32	1	13.	1	01.		83.6		62 6	
33	1:	27.	11	10.		90.3	1	36.3	
34	14	13.	12	20.		97.0		70.0	
35	15	58.	13	12.	1	04.	5	73 5	
36	17	5.	14	3.	1	11.	7	7 0	
37	19	8.	15	4.	1	18.	8	0.3	
38	22	4.	16	6.	12	26.	Q	3.6	
39	24	8.	18	1.	13	3.	8	6.6	
40	28	2.	19	4.	14	0.	8	0.0	

Standard American Taps Used in Radio Manufacture

-	Size of Screw	Outside Dia. in Inches	Pitch Dia. in Inches	Root Dia. in Inches	Tap Drill Steel	Tap Drill Cast Iron	Tap Drill Commercial
-	2-56	.0860	.0744	.0628	No. 49 (.0730)	No. 49 (.0730)	No. 50 (.0700)
-	3-48	.0990	.0855	.0719	No. 44 (.0860)	No. 44 (.0860)	No. 47 (.0785)
	4-40	.1120	.0958	.0795	No. 42 (.0935)	No. 43 (.0890)	No. 43 (.0820)
2	5-40	.1250	.1088	.0925	No. 34 (.1110)	No. 35 (.1110)	No. 38 (.1015)
	6-32	. 1380	.1177	.0974	No. 32 (.1160)	No. 33 (.1130)	No. 36 (.1065)
-	8-32	. 1640	. 1437	. 1234	No. 27 (.1440)	No. 28 (.1405)	No. 29 (.1360)
	10-24	. 1900	.1625	. 1359	No. 21 (.1509)	No. 22 (.1570)	No. 25 (.1495)
-	10-32	. 1900	. 1697	. 1494	No. 19 (.1660)	No. 20 (.1610)	No. 21 (.1590)
	12-24	.2160	.1889	. 1619	No. 16 (.1770)	No. 17 (.1730)	No. 16 (.1770)
	1/4-20	.2500	.2175	1850	No. 7 (.2010)	No. 8 (.1990)	No. 7 (.2010)

Conversion

Factors	for	conversion — alphabetically
arranged.		

Multiply

Amperes Amperes Amperes Cycles Cycles Farads Farada Farada Henrys Henrys Kilocycles Kilovolts Kilowatts Megacycles Mhos Mhos Microamperes Microfarada Microhenrys Micromhos Micro-ohms Microvolta Microwatts Micromicrofarada Micromicro-ohms Milliamperes Millihenrys Millimhos Milliohms Millivolts Milliwatts Ohms Ohms Ohma Volts Volts Watts

Watts

Watts

By × 1.000.000.000.000 micromicroamperea × 1.000.000 \times 1.000 × .000.001 × .001 \times 1.000.000.000.000 \times 1.000.000 $\times 1.000$ \times 1.000.000 \times 1.000 × 1.000 $\times 1.000$ \times 1.000 × 1.000.000 × 1.000,000 \times 1.000 × .000.001 × .000.001 × .000,001 × .000.001 × .000.001 × .000.001 × .000.001 × .000.000.000.001 × .000.000.000.001 × .001 × .001 × .001 × .001 × .001 × .001 \times 1.000.000.000.000 × 1,000,000 \times 1.000 × 1.000,000 \times 1.000 × 1.000,000 × 1.000 × 001 -

microamperes milliamperes megacycles kiloeveles micromicrofarada microfarada millifarada microhenrys millihenrys cvcles volts watts cycles micromhos millimbos amperes farads henrys mbos ohms volts watts farads ohms amperes henrys mhos ohms volta watts micromicro-ohms micro-ohms milliohms microvolts millivolts microwatts milliwatts kilowatts

To Get

METRIC EQUIVALENTS

Length

Meter Meter Kilom.

Cm. = .3937 In.	In. $=2.54$ Cr	n.
Meter $= 3.28$ Ft.	Ft. = .305 M	e
Meter $= 1.094$ Yd.	Yd. = .914 M	let
Kilom. = .621 Mile	Mile = 1.61 K	ilc

Area

Sq. Cm.	-	0.1550) Sq. in.	Sq. in.	-	6.452	Sq.	Cm.
Sq. M.	=	10.764	Sq. ft.	Sq. ft.	=	.0929	Sq.	M.
Sq. M.	=	1,196	Sq. yd.	Sq. yd.	-	.836	Sq.	M.
Hectare	-	2.47	Acres	Acre	-	0.405	Hec	tare
Sq. Kilom.	=	.386	Sq. mi.	Sq. mi.	. =	2.59	Sq.	Kilom.

Volume

Cu. Cm	.= .061	Cu. in.	Cu. in. =	16.4 Cu. Cm.
Cu. M.	= 35.31	Cu. ft.	Cu. ft. =	.028 Cu. M.
Cu. M.	= 1.308	Cu. yd.	Cu. yd. =	.765 Cu. M.

Capacity

.0353 Cu. ft. Cu. ft. = 28.32 Litre= Litres .2642 Gal. (U. S.) Gal. = 3.785 Litres. Litre = Litre = 61.023 Cu. in. Cu. in. = .0164 Litre Litre = 2.202 lb, of fresh water at 62° F.

Weight

Gram	=	15.423	Grains	Grain	-	.0684	Gram
Gram	=	.0353	Ounce	Ounce	-	28.35	Gram
Kilogram	=	2.205	Lb.	Lb.	-	.454	Kilog'm
Kilogram	=	.0011	Ton(Sht)	Ton(Sht)	-	907.03	Kilog'm
Met. Ton	=	1.1025	Ton(Sht)	Ton(Sht)	-	.907	Met. Ton
			Ton(Sht) =	=2,000 Lb.			

Pressure

Kilograms per square centimeter = 14.225 pounds per square inch.

Pounds per square inch = .0703 kilograms per square cm. Kilograms per square meter = .205 pounds per square foot. Pounds per square foot = 4.88 kilograms per square meter. Kilograms per square centimeter = .968 atmosphere. Atmosphere = 1.033 kilograms per square cm.

Miscellaneous

Kilogrammeter = 7.233 foot pounds. Foot pound = .1383 kilogrammeter. Metric horse power = .986 horse power. Horse power = 1.014 metric horse power. Litre per second = 2.12 cubic feet per minute. Litre per second = 15.85 U.S. gallons per minute.

METRIC AND DECIMAL EQUIVALENTS OF COMMON FRACTIONS

Fractions of an inch	Deci- mals of an inch	Milli- meters	Fractions of an inch	Deci- mals of an inch	Milli- meters
1/61 1/62 3/64 1/16 5/64 3/62 1/61	.0156 .0313 .0469 .0625 .0781 .0938 .1094	0.397 0.794 1.191 1.588 1.985 2.381 2.778	³³ ,64 17,52 ⁹ ,16 ⁹ ,16 ¹⁹ ,52 ³⁷ ,64 ¹⁹ ,52 ³⁹ ,64	.5156 .5313 .5469 .5625 .5781 .5938 .6094	$\begin{array}{c} 13.097\\ 13.494\\ 13.891\\ 14.287\\ 14.684\\ 15.081\\ 15.478\end{array}$
78 9/64 5/52 11/64 3/16 13/	.1250 .1406 .1563 .1719 .1875 2021	3.175 3.572 3.969 4.366 4.762 5.150	9/8 41/64 21/52 43/64 11/16 45/	.6250 .6406 .6563 .6719 .6875 .7021	15.875 16.272 16.688 17.085 17.462 17.462
7.42 15.64 1.4 . 17.64 9.52	$\begin{array}{r} .2031\\ .2188\\ .2344\\ .2500\\ .2656\\ .2813 \end{array}$	5.556 5.953 6.350 6.747 7.144	23,52 764 3/4 47,64 25,52 47,64	.7188 .7344 .7500 .7656 .7813	$17.859 \\18.256 \\18.653 \\19.050 \\19.447 \\19.843$
⁵ / ₁₆ ¹⁹ / ₆₄ ¹¹ / ₈₂ ²³ / ₆₄	.2969 .3135 .3281 .3438 .3594 .3750	7.541 7.937 8.334 8.731 9.128 9.525	⁵¹ / ₆₄ ¹³ / ₁₆ ⁵³ / ₆₄ ²⁷ / ₅₂ ⁵⁵ / ₆₄	.7969 .8125 .8281 .8438 .8594 .8750	$\begin{array}{c} 20.240\\ 20.637\\ 21.034\\ 21.430\\ 21.827\\ 22.224 \end{array}$
13,52 25,64 27,64	.3906 .4063 .4219 .4275	9.922 10.319 10.716	29/22 59/64	.8906 .9063 .9219	22.621 23.018 23.415
¹ 16 ²⁹ 64 ¹⁵ 32 ³¹ 64 ¹ /2	.4375 .4531 .4688 .4844 .5000	$ \begin{array}{c} 11.12\\ 11.509\\ 11.906\\ 12.303\\ 12.700 \end{array} $	13/16 61/64 81/32 63/64	.9375 .9531 .9688 .9844 1.0000	23.812 24.209 24.606 25.003 25.400

EQUIVALENTS OF ELECTRICAL UNITS

1 kilowatt = 1000 watts.

- 1 kilowatt = 1.34 H. P.
- 1 kilowatt = 44,257 foot-pounds per minute.
- 1 kilowatt = 56.87 B. t. u. per minute.
- 1 horse power = 746 watts.

1 horse power = 33,000 foot-pounds per minute.

- 1 horse power = 42.41 B. t. u. per minute.
- 1 B. t. u. (British thermal unit) = 778 foot-pounds.
- 1 B. t. u. = 0.2930 watt-hour.
- 1 joule = 1 watt-second.

When volts and amperes are known, intersection of voltage and current lines gives resistance in ohms. To extend scales: When multiplying voltage by any factor with current remaining fixed, multiply resistance by same factor. When multiplying current, voltage remaining fixed, divide resistance by same factor. When dividing voltage by any factor, current remaining fixed, divide resistance by same factor. When dividing current by any factor, multiply resistance by same factor.

Knowing capacity in micromicrofarads and the frequency in kilocycles to be covered by a condenser at maximum capacity the inductance required for a coll may be found by running a straight line from the micromicrofarads column through the kilocycle column, the line intersecting the inductance column.

kilocycle column, the line intersecting the inductance column. Knowing the condenser capacity and the inductance of the coll, the frequency to which the coll will tune can be found by running a line from the micromicrofarads column to the micro-henrys column, the point of intersection on the kilocycle column will be the frequency of coll and condenser. Knowing the kilocycles and the inductance, the size of con-denser to be used to cover that frequency can be found in the same manner indicated; extension of a stratight line from microhenrys through kilocycles will terminate on the micro-

Conversion Table — Frequency to Wavelength

 $\begin{array}{c} \begin{array}{c} 300,000 \\ \hline \\ Wavelength \\ in \\ Meters \end{array} \right\} = \begin{array}{c} \begin{array}{c} 300,000 \\ \hline \\ \hline \\ Frequency in Kilocycles \\ 0 \\ 300 \end{array} \end{array}$

Frequency in Megacycles

Long Broades	-Wave ast Band	Short	Waves				
Frequency Kilocycles	Wavelength Meters	Frequency Megacycles	Wavelength Meters				
550	545	1.5	200				
600	500	2	150				
650	461	3	100				
700	429	4	75.0				
750	400	5	60.0				
800	375	6	50.0				
850	353	7	42.9				
900	333	8	37.5				
950	316	9	33.3				
1000	300	10	30.0				
1050	286	11	27.3				
1100	273	12	25.0				
1150	261	13	23.1				
1200	250	14	21.4				
1250	240	15	20.0				
1300	231	16	18.8				
1350	222	17	17.6				
1400	214	18	16.7				
1450	207	19	15.8				
1500	200	20	15.0				

Frequency Assignments in the High Frequency Radio Spectrum For United States

(Radiophone Stations Only)

Standard Broadcast	530 to 1600 kilocycles
Short Wave Broadcast	-49 meters- 6000- 6150 kc. 31 meters- 9500- 9600 kc. 25 meters-11700-11900 kc. 19 meters-15100-15350 kc. 16 meters-1750-17800 kc. 13 meters-25600-26600 kc.
Police	1600—1720 kc. (mostly State Police) 2300—2500 kc. (Municipal Police) 31000—41000 kc. (Municipal Police)
Aviation	2600—3500 Night 4700—5700 Day
Amateur Phone	160 meters- 1800- 2000 kc. 80 meters- 3900- 4000 kc. 20 meters-14150-14250 kc. 10 meters-28000-28500 kc. 5 meters-56000-60000 kc.
Time Signals	
NAA, Washington, D.C.	2. 64, 113, 690, 4525, 8410,

NPG, San Francisco W9XAM, Elgin, Ill. 9050, 12615, 16820 42.8, 108, 8590, 12885 4797

Sales Aids That Help You Sell

Sales aids listed below are only a few of the many designed to tie in your store with RCA Radio Tube advertising and to enable you to share RCA prestige.

Metal Flange Sign Electric Clock Tube Test Stickers New Travel-log Shop Coats and Shirts Direct Mail Cards Guarantee Certificates Service Order Pads Business Cards Repair Tickets Billheads Letterheads and many others

These aids may be obtained through your RCA Radiotron Distributor.

U. S. Broadcasting Stations .

		07 . 1	1		1 . 10
Station	Location	Kilo- eycle	Station	Location	Kilo- cycle
KDKA	Pittsburgh, Pa.	980	KPO	S. Francisco, Calif.	680
NDIL	Salt Lake Cy, Utah	1420	KPRC	Houston, Texas	920
KEY	Portland Orogon	1180	KRID	Dallas Toyos	1010
KEAR	Lincoln Nebr	770	KROW	Oakland Calif	930
KFAC	Los Angeles Calif	1300	KSCI	Sioux City, Iowa	1330
KFBB	Great Falls, Mont.	1280	KSD	St. Louis. Mo.	550
KFBI	Abilene, Kans.	1050	KSFO	S. Francisco, Calif.	560
KFBK	Sacramento, Calif.	1490	KSL	Salt Lake Cy, Utah	1130
KFDY	Brookings, S. D.	780	KSOO	Sioux Falls, S. D.	1110
KFEQ	St. Joseph, Mo.	680	KSTP	St. Paul, Minn.	1460
KFH	Wichita, Kans.	1300	KTAR	Phoenix, Ariz.	620
KFI	Los Angeles, Calif.	640	KTAT	Fort Worth, Texas	1240
KFAU	Lawrence, Kans.	1220	KIBS	Shreveport, La.	1940
KFUA	Spolene Work	800	KTHC	Twin Fails, Idano	1060
KERC	S Francisco Colif	610	KTPH	Houston Toras	1200
KESD	San Diego Calif	600	KTSA	San Antonio Tex	550
KEWB	Hollywood Calif	950	KTW	Seattle Wash	1220
KFYR	Bismarck, N. D.	550	KUOA	Favetteville, Ark	1260
KGA	Spokane, Wash.	1470	KVI	Tacoma, Wash.	570
KGB	San Diego, Calif.	1330	KVOO	Tulsa, Okla.	1140
KGBZ	York, Nebr.	930	KVOR	Colo, Springs, Colo.	1270
KGDM	Stockton, Calif.	1100	KWK	St. Louis, Mo.	1350
KGER	Long Beach, Calif.	1360	KWKH	Shreveport, La.	1100
KGGF	Coffeyville, Kans.	1010	KWSC	Pullman, Wash.	1220
KGHL	Billings, Mont.	1240	KWTO	Springfield, Mo.	560
KGNC	Amarillo Toroz	1410	KAYZ EVA	Houston, Texas	1440
KGNE	N Platto Nohr	1430	KVW	D. Francisco, Call.	1020
KGO	S Francisco Calif	790	WAAF	Chieggo Ill	920
KGVO	Missoula, Mont.	1260	WABC	New York, N Y	860
KGW	Portland, Oregon	620	WADC	Tallmadge, Ohio	1320
KHJ	Los Angeles, Calif.	900	WAPI	Birmingham, Ala.	1140
KHQ	Spokane, Wash.	590	WAVE	Louisville, Ky.	940
KIDO	Boise, Idaho	1350	WBAL	Baltimore, Md.	1060
KJR	Seattle, Wash.	970	WBAP	Fort Worth, Texas	800
KLRA	Little Rock, Ark.	1390	WBBM	Chicago, Ill.	770
KLA	Dakland, Calif.	880	WBBR	Brooklyn, N. Y.	1300
KMA	Denver, Col.	020	WBEN	Buffalo, N. Y.	900
KMRC	Kongog City Mo	950	WBOQ	New YORK, N. Y.	800
KMMJ	Clay Center Nehr	740	WBRC	Charlotto N C	1080
KMOX	St Louis Mo	1090	WRZ	Boston Mass	000
KMTR.	Los Angeles, Calif.	570	WBZA	Springfield Mass	990
KNX	Los Angeles, Calif.	1050	WCAE	Pittsburgh, Pa.	1220
KOA	Denver, Col.	830	WCAL	Northfield, Minn.	1250
KOAC	Corvallis, Ore.	550	WCAU	Philadelphia, Pa.	1170
KOB	Albuquerque, N. M.	1180	WCBD	Waukegan, Ill.	1080
KOIL	Council Bluffs, Ia.	1260	WCCO	Minneapolis, Minn.	810
KOIN	Portland, Oregon	940	WCFL	Chicago, Ill.	970
KOL	Seattle, Wash.	1270	WCKY	Covington, Ky.	1490
AOMA	Ol-lo	1400	WOSH	Portland, Maine	940
KOMO	Sonttle Wesh	1480	WDAE	Tampa, Fla.	1220
nomo	Deavere, wash.	040	WDAF	mansas Ulty, MO.	010

. 1000 Watts or More

WDAY Fargo, N. D. 94 2 WE Source S	Station	Location	vilo-	Station	Location	Vilo-
	TUDIT		H O	******	011 01 011	HO
WDB0 Orlando, Fla. 630 WLAC Nashville, Tenn. 1400 WDB0 Orlando, Fla. 680 WLAC Nashville, Tenn. 1470 WDOD Chattanooga, Tenn. 1380 WLB Minneapolis, Minn., 1250 WDOU New Orleans, La. 1250 WLW Chicago, III. 870 WEAF New York, N. Y. 660 WLW Chicago, III. 670 WEEI Reading, Pa. 380 WMBF Miaani, Fla. 1300 WEEK Roston, Mass. 590 WMAC Chicago, III. 1080 WESVD New York, N. Y. 1300 WMT Cedar Rapids, Ia. 600 WEVD New York, N. Y. 1300 WMAC Mesate, Ia. 600 WFAB New York, N. Y. 1300 WNAZ Soston, Mass. 1230 WFAB New York, N. Y. 1300 WNAZ Soston, Mass. 1230 WFAB New York, N. Y. 1300 WNAZ Soston, Mass. 1240 WFBM	WDAY	Fargo, N. D.	940	WKY	Okla. City, Okla.	900
	WDBJ	Roanoke, Va.	930	WKZO	Kalamazoo, Mich.	590
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	WDBO WDBO	Orlando, Fla.	580	WLAC	Nashville, Tenn.	1470
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	WDGY	Minneapolis, Minn.	1180	WLB	Minneapolis, Minn.	1250
WDRU Harttord, Conn. 1330 WLSU Chicago, III. 870 WDSU New Orleans, Ia. 1250 WLW Cincinnati, Ohio 700 WEEAF New York, N. Y. 1660 WLW L New York, N. Y. 1100 WEEC Boston, Mass. 590 WMA2 Macon, Ga. 1180 WEEC Inciago, III. 870 WMA2 Macon, Ga. 1180 WEEK Reading, Pa. 830 WMBF Miami, Fla. 1300 WENR Chicago, III. 870 WMM C Memphis, Tenn, 780 WEVD New York, N. Y. 1300 WMAZ Macon, Mass. 1230 WFAA Dallas, Texas 800 WMAZ Maton, S. Dak. 570 WFBE Stracuse, N. Y. 1300 WNAX Yankton, S. Dak. 570 WFBE M Indianapolis, I.d. 1230 WNOX Knoxville, Tenn, 1010 WFBL Syracuse, N. Y. 1300 WNAX Yankton, S. Dak. 570 WGR Buffalo, N. Y. 500 WNOX Knoxville, Tenn, 1010 WFBL Syracuse, N. Y. 1300 WNAX Yankton, S. J. 1250 WGR Buffalo, N. Y. 500 WNOY New York, N. J. 1320 </td <td>WDOD</td> <td>Chattanooga, Tenn.</td> <td>1280</td> <td>WLBL</td> <td>Stevens Pt., Wisc.</td> <td>900</td>	WDOD	Chattanooga, Tenn.	1280	WLBL	Stevens Pt., Wisc.	900
WDSU New Orleans, La. 1250 WLW Cincinnat, Onio 700 WEAF New York, N. Y. 1600 WLWL New York, N. Y. 1100 WEEG Boston, Mass. 560 WLWL New York, N. Y. 1100 WEEG Boston, Mass. 560 WMAZ Macon, Ga. 1180 WEEU Reading, Pa. 830 WMBF Miami, Fla. 1300 WEEN Chicago, Ill. 870 WMBF Miami, Fla. 1300 WESG Elimira, N. Y. 850 WMC Memphis, Tenn, 780 WWESG Elimira, N. Y. 1300 WMT Ceclar Rapids, Ia. 600 WFAA Dallas, Texas 800 WNAD Norman, Okla. 1010 WFAB New York, N. Y. 1300 WMA Coston, Mass. 1230 WFAA Dallas, Texas 800 WNAD Norman, Okla. 1010 WFBC Greenville, S. C. 1300 WNAD Xorakton, S. Dak. 570 WFBC Greenville, S. C. 1300 WNAD Xorakton, S. Dak. 570 WFBC Greenville, S. C. 1300 WNAX Yankton, S. Dak. 570 WFBC Greenville, S. C. 1300 WNOX Knoxville, Team. 1010 WFIL Philadelphia, Pa. 560 WNOX Mewark, N. J. 1250 WFAA Madison, Wis. 940 WOAK York, Pa. 1320 WGY Schenectady, N. Y. 790 WOV New York, N. Y. 1300 WHAA Madison, Wis. 940 WOW Normaha, Nebr. 550 WHAA Madison, Wis. 940 WOW Normaha, Nebr. 500 WHAA Machison, Wis. 940 WOW Orst Wayne, Ind. 1100 WHAA Schener, N. Y. 1150 WOWO Fort Wayne, Ind. 1100 WHAA Schener, N. Y. 1150 WOWO Fort Wayne, Ind. 1100 WHAA Madison, Wis. 940 WOW Masha, Nebr. 580 WHAA Madison, Wis. 1260 WAAA Mashville, Tenn. 600 WHAA Madison, Wis. 1280 WSAI Cincinnati, Ohio 1330 WHO Dest Mark, N. Y. 1100 WRUF Gainesville, Fla. 380 WHID Bactsonville, Fla. 380 WAAA Mashville, Tenn. 650 WIBA Louisville, Kr. 1400 WWAA Mashville, Tenn. 650 WIBA Louisville, Kr. 1400 WSM Mashville, Tenn. 650 WIBA Columbia, Sc. 660 WSPD Toledo, Ohio 1340 WKAA Mashville, Tenn. 650 WSD Toledo, Ohio 1340 WSM Mashville, Tenn. 650 WIBA Eduadoria, Na. 1400 WSM	WDRC	Hartford, Conn.	1330	WLS	Chicago, III.	870
WEBCNew York, N. Y.1100WEECBoston, Mass.590WMAQ Chicago, III.670WEEUReading, Pa.380WMBG Khiami, Fla.1800WENR Chicago, III.870WMBI Chicago, III.1080WEVD New York, N. Y.1300WMTC Cear Rapids, Ia.1000WEVD New York, N. Y.1300WMTC Cear Rapids, Ia.1080WEVD New York, N. Y.1300WMAC Memphis, Tenn.780WFAA Dallas, Texas800WNAC Morman, Okla.1010WFAB New York, N. Y.1300WNAX Yankton, S. Dak.570WFBE Stracuse, N. Y.1300WNAX Yankton, S. Dak.570WFBE Stracuse, N. Y.1300WNAX Yankton, S. Dak.570WFBL Stracuse, N. Y.1300WNCX Knoxville, Tenn.1010WFLA Clearwater, Fla.620WOAI San Antonio, Texas1100WFLA Chicago, III.720WOI Ames, Iowa640WGR Bidfalo, N. Y.500WOW Work Newark, N. J.1120WHAA Rochester, N. Y.1150WOOV New York, N. Y.1130WHA Rochester, N. Y.1150WOW Oraha, Nebr.590WHAM Rochester, N. Y.150WOQ Mainni, Fla.530WHAM Roston, Wis.1200WASA Chianni, Fla.530WHM New York, N. Y.11001300WHEP Lawrence, Kans.1220WHA Roston, Wis.1200WOW Oraha, Nebr.540WHA Roston, Wis.1200WOW Oraha, Nebr.540WHA Roston, Wis.12001300W	WDSU	New Orleans, La.	1250	WLW	Cincinnati, Ohio	700
WEBCI Superior, Wis. 1290 WMAQ Chicaco, III. 670 WEEL Reading, Pa. 530 WMAZ Macon, Ga. 1180 WEENR Chicago, III. 700 WMBI Miani, Fla. 1300 WENR Chicago, III. 700 WMBI Chicago, III. 1000 WESG Elmira, N. Y. 850 WMC Memphis, Tenn. 780 WFAA Dallas, Texas 800 WNAZ Socton, Mass. 1230 WFAB New York, N. Y. 1300 WNAZ Strakton, S. Dak. 700 WFBM Indianapolis, Ind. 1230 WNAX Knoxville, Fean. 1010 WFBM Indianapolis, Ind. 1230 WNCX Knoxville, Fean. 1010 WFBM Indianapolis, Ind. 1230 WNCX Knoxville, Fean. 1010 WFBM Indianapolis, Ind. 1230 WNCX Knoxville, Fean. 1010 WFBM Indianapolis, Mai. 120 WNAZ Knoxville, Stan Antonio, Texas 1190 WGR Biffalo, N. Y. 500 WOR Korkr	WEAF	New York, N. Y.	660	WLWL	New York, N. Y.	1100
WEEUReading, Pa.590WMAZMacon, Ga.1180WEEUReading, Pa.870WMBF Miami, Fla.1300WESGElmira, N. Y.870WMBF Memphis, Tenn,780WESGElmira, N. Y.1300WMACCedar Rapids, Ia.600WEVSt. Jouis, Mo.760WNAC Boston, Mass.1230WFAADalas, Texas.800WNAD Korman, Okla.1010WFAADalas, Texas.800WNAD Korman, Okla.1010WFAADalas, Texas.1300WNAX Yankton, S. Dak.570WFBCGreenville, S. C.1300WNAX Yankton, S. Dak.570WFBLSyracuse, N. Y.1360WNOX Knoxville, Tenn.1010WFLAClearwater, Fla.620WOX Knoxville, Tenn.1010WGRChicago, II.720WOUNewark, N. Y.810WGRScheacotady, N. Y.790WOUNewark, N. J.710WGSTAdantso, Wis.940WOM Anass.550WHAMadison, Wis.940WOW Oraha, Neb.550WHA Madison, Ohio1260WPCfAtlanti, Fla.1300WHB Kansas City, Mo.810WPCAtlanti, Fla.560WHD Boston, Mass.830WQC Cicksburg, Miss.1360WHO Des Moines, Iowa100WRE Latelach, N. C.660WHB Kansas City, Mo.1260WRC Laterenoe, Kass.1200WHB Madison, Wis.1280WSAI Cincinnati, Ohio1330	WEBC	Superior, Wis.	1290	WMAQ	Chicago, Ill.	670
WEEPIC Reading, Pa. 830 WMBF Minam, Fia. 1300 WEENR Chicago, III. 870 WMBI Chicago, III. 100 WEEVD New York, NY. 850 WMC Memphis, Tenn, 780 WEVD New York, NY. 1000 WMT Cedar Rapida, Ia. 600 WEW St. Louis, Mo. 760 WNAC Boston, Mass. 1230 WFAB New York, NY. 1300 WNAX Synakton, S. Dak. 570 WFBE Greenville, S. C. 1300 WNAX Synakton, S. Dak. 570 WFBL Practuse, N. Y. 1360 WNEW Newark, N. J. 1250 WFBL Prinadelphia, Pa. 560 WNYC New York, N. Y. 1100 WGR Buffalo, N. Y. 500 WORK York, N. Y. 1130 WGR Buffalo, N. Y. 500 WOW New York, N. Y. 1130 WHA Macison, Wis. 940 WOW Omaha, Nebr. 590 WHA Macison, Wis. 940 WOW Omaha, Nebr. 590 WHA Macison,	WEEI	Boston, Mass.	590	WMAZ	Macon, Ga.	1180
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WEEU	Reading, Pa.	830	WMBF	Miami, Fla.	1300
$ \begin{array}{cccc} WESVD New York, N. Y. 3500 WMT Carl Rapids, La. 600 WFLO New York, N. Y. 1300 WMT Carl Rapids, La. 610 WFAA Dallas, Texas 300 WAA Dorman, Okla. 1010 WFAB New York, N. Y. 1300 WNAX Yankton, S. Dak. 570 WFBC Greenville, S. C. 1300 WNBX Springfield, Vi. 1260 WFBL Syracuse, N. Y. 1300 WNEW Newark, N. J. 1250 WFBL Syracuse, N. Y. 1300 WNEW Newark, N. J. 1250 WFBL Syracuse, N. Y. 1300 WNEW Newark, N. J. 1250 WFBL Syracuse, N. Y. 1300 WNEW Newark, N. J. 1250 WFBL Syracuse, N. Y. 1300 WNCX Knoxville, Tenn. 1010 WFL Philadelphia, Pa. 560 WNYC New York, N. Y. 310 WFL Philadelphia, Pa. 560 WNYC New York, N. Y. 310 WOR Chicago, Ill. 720 WOI Ames, Iowa 640 WGR Buffalo, N. Y. 550 WOR Newark, N. J. 710 WGST Atlanta, Ga. 890 WORK York, Pa. 1320 WHA Madison, Wis. 940 WOW Omaha, Nebr. 590 WHAA Boehester, N. Y. 1150 WOW Fort Wayne, Ind. 1400 WHB Kansas City, Mo. 360 WFTF Raleigh, N. C. 680 WHEM Kansas City, Mo. 360 WFTF Raleigh, N. C. 680 WHO Bes Moines, Iowa 640 WHE Cleveland, Ohio 1260 WHEC Lawrence, Kans. 1220 WHN New York, N. Y. 1100 WHES Lawrence, Kans. 1220 WHM New York, N. Y. 1100 WHE Amadison, Wis. 1280 WSAL Cincinnati, Ohio 1330 WHM New York, N. Y. 1100 WHE Amadison, Wis. 1280 WSAL Cincinnati, Ohio 1330 WSAL Cincinnati, Ohio 1330 WSAL Cincinnati, Ohio 1330 WID Dayton, Ohio 1260 WSAL Cincinnati, Ohio 1330 WID Miami, Fla. 1300 WSAL Cincinnati, Ohio 1340 WSAL Cincinnati, Ohio 1340 WSAL Spartanburg, S. C. 920 WTAM Cleveland, Ohio 100 WID Miami, Fla. 1300 WID Miami, Fla. 1300 WTA Lawrence, Wise, 1330 WID Jackson, Miss. 1270 WTCN Minneapolis/Minn. 1250 WJJAX Jackson, Miss. 1270 WTCN Minneapolis/Minn. 1250 WJJAX Jackson, Miss. 1270 WTCN Minneapolis, Minn. 1250$	WENR	Chicago, III.	870	WMBI	Chicago, III.	1080
WEV D) New York, N, Y, 1300 WM1 Cecar Applds, 1a. 000 WFAA Dallas, Texas 300 WNAC Boston, Mass. 1230 WFAA Dallas, Texas 300 WNAD Norman, Okla. 1010 WFBE Greenville, S. C. 1300 WNAX Yankton, S. Dak. 570 WFBC Greenville, S. C. 1300 WNAX Yankton, S. Dak. 570 WFBL Syracuse, N. Y. 1360 WNEW Newark, N. J. 1250 WFBL Indianapolis, Ind. 1230 WNOX Knoxville, Penn. 1010 WFIL Philadelphia, Pa. 560 WNYC New York, N. Y. 810 WFAB New Grat, N. Y. 560 WOR Work, N. J. 710 WGR Enifalo, N. Y. 560 WOR Korxile, Penn. 1010 WGR Statistic, M. Y. 560 WOR Newark, N. J. 710 WGST Atlanta, Ga. 890 WORK York, Pa. 1320 WHA Madison, Wis. 940 WOW New York, N. J. 710 WGST Atlanta, Ga. 890 WORK York, Pa. 1320 WHA Madison, Wis. 940 WOW New York, N. J. 710 WHS Stehenetady, N. Y. 790 WOV New York, N. J. 1130 WHA Madison, Wis. 940 WOW Orahan, Nebr. 550 WHAS Louisville, Ky. 320 WFG Atlantic City, N. J. 1100 WHB Kansas City, Mo. 360 WPTF Raleigh, N. C. 680 WHDH Boston, Mass. 830 WQBC Vicksburg, Miss. 1360 WHIM New York, N. Y. 1010 WRUF Gainesville, Fla. 830 WHO Des Moines, Iowa 100 WRVA Richmond, Va. 1110 WHB Madison, Wis. 1280 WKSA Cincinnat, Ohio 1340 WKSA Leveland, Ohio 1340 WHO Des Moines, Iam. 1260 WSAT Stathurg, S. C. 920 WINS New York, N. Y. 1180 WSM Asahville, Tenn. 650 WJAG Stacksonville, Fla. 1300 WSM Nashville, Tenn. 650 WJAG Stacksonville, Fla. 1300 WSM Nashville, Tenn. 650 WJAS Ziaksonville, Fla. 1000 WSMA Richmond, Va. 1110 WIAS Acksonville, Fla. 1000 WSMA Richmond, Va. 1100 WJAS Acksonville, Fla. 1000 WSMA Rishville, Tenn. 650 WJAS Acksonville, N. Y. 1060 WSMA Mashville, Tenn. 650 WJAS Acksonville, F	WESG	Elmira, N. Y.	850	WMC	Memphis, 1enn.	780
WEW St. Louis, Mo. 760 WNAC Boston, Mass. 1230 WFAA Dallas, Texas 800 WNAD Norman, Okla. 1010 WFAB New York, N. Y. 1300 WNAX Yankton, S. Dak. 570 WFBC Greenville, S. C. 1300 WNBX Springfield, Vt. 1260 WFBL Syracuse, N. Y. 1300 WNBX Springfield, Vt. 1250 WFBL Miniaclphin, Pa. 560 WNVK Newark, N. J. 1250 WFLA Clearwater, Fla. 620 WOAI San Antonio, Texas 1190 WGR Buffalo, N. Y. 550 WOR Newark, N. J. 710 WGST Atlanta, Ga. 890 WOK York, Pa. 1320 WHA Macisson, Wis. 940 WOW Omaha, Nebr. 590 WHA Kachester, N. 1 1320 WOOV New York, N. Y. 1100 WHAS Louisville, Ky. 820 WCG Atlanta, Rebr. 590 WHA Kansas City, Mo. 800 WDTF Raleigh, N. C. 680 WHB Kansas City, Mo. 800 WBC Cricksburg, Miss. 1300 WHB Kansas, City, Mo. 800 WBC Cricksburg, Miss. 1300	WEVD	New York, N. Y.	1300	WMT	Cedar Rapids, 1a.	000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WEW	St. Louis, Mo.	760	WNAC	Boston, Mass.	1230
$ \begin{array}{cccccc} WFBC & Greenville, S. C. 1300 WNBA Springfield, V. 1260 WFBC (netarangity, N. Y. 1360 WNBC Springfield, V. 1260 WFBM (ndianapolis, Ind. 1230 WNOX Knoxville, Tenn. 1010 WFLA Clearwater, Fla. 620 WNOAI San Antonio, Texas 1190 WGR Chicago, III. 720 WOI Ames, Iowa 640 WGR Buffalo, N. Y. 550 WOR Newark, N. J. 710 WGST Atlanta, Ga. 890 WORK (York, Pa. 1320 WGST Atlanta, Ga. 890 WORK (York, Pa. 1320 WGST Atlanta, Ga. 890 WORK (York, Pa. 1320 WHA Madison, Wis. 940 WOW Oraha, Nebr. 590 WHB Kanasa City, Mo. 860 WPTF Raleigh, N. C. 680 WHDH Boston, Mass. 830 WGEC Vicksburg, Miss. 1360 WHD Dayton, Ohio 1260 WRED Lavrence, Kasa. 1220 WHN New York, N. Y. 1010 WRUF Gainesville, Fla. 330 WHO Des Moines, Iowa 100 WRA Richmond, Va. 1110 WIBA Madison, Wis. 1280 WSAI Cincinnati, Ohio 1330 WHO Des Moines, Iowa 100 WRA Richmond, Va. 1140 WIND Ary, Ind. 560 WSAZ Huntington, V.4. 1100 WIND Mary, Ind. 560 WSAZ Huntington, V.4. 1100 WIND Acksonville, Fla. 1300 WSM Nashville, Tenn. 650 WJAG Norfolk, Nebr. 1060 WSAZ Huntington, V.4. 1100 WINA Acksonville, Fla. 1300 WSM Nashville, Tenn. 650 WJAG Solacksonville, Fla. 1300 WSM Nashville, Tenn. 650 WID Diate, Kans, 580 WSAI Clincinnati, Ohio 1300 WIJAG Anctolk, Nebr. 1060 WSAZ Huntington, V.4. 1100 WIJA Jackson, Miss. 1270 WTCN Minneapolis/Minn. 1250 WJAG Norfolk, Nebr. 1060 WTAQ Eau Claire, Wisc. 360 WJAG Norfolk, Nebr. 1060 WTAQ Eau Claire, Wisc. 360 WJAG Norfolk, Nebr. 1060 WTAQ Eau Claire, Nis. 1270 WTCN Minneapolis/Minn. 1250 WJAG Acksonville, Fla. 900 WTAQ Eau Claire, Wisc. 360 WWAA Kacheville, Nebr. 360 WWAA Macheville, Nebr. 360 WWAA Kacheville, Ne$	WFAA	Dallas, Texas	800	WNAD	Norman, Okla.	1010
WFBL Syracuse, N. Y. 1300 WNEM Syracuse, N. J. 1250 WFBL Syracuse, N. Y. 1300 WNEW Newark, N. J. 1250 WFIL Philadelphia, Pa. 660 WNYC Newark, N. Y. 1100 WFLA Clearwater, Fla. 620 WOAI San Antonio, Texas 1190 WGR Buffalo, N. Y. 550 WOR San Antonio, Texas 1190 WGR Buffalo, N. Y. 500 WON Wew York, N. J. 710 WGST Atlanta, Ga. 890 WORK York, Pa. 1320 WHA Madison, Wis. 940 WOW Omaha, Nebr. 590 WHA Rochester, N. Y. 1150 WOOV Fort Wayne, Ind. 1160 WHA Rochester, N. Y. 1260 WOAI Kiani, Fla. 590 WHB Kansas City, Mo. 860 WPTF Raleich, N. C. 680 WHO Dayton, Ohio 1260 WREC Memphis, Ten. 600 WHM Newark, N. Y. 1100 WREC Hainmin, Fla. 530 WHM New York, N. Y. 1010 WREC Hainmin, Fla. 530 WHM Ses Moins, Fla. 1280 WREA Kainto, No. 1130 WHM Seston, Wis.	WFAB	New YORK, N. Y.	1300	WNAA	Tankton, S. Dak.	010
	WFBC	Greenville, S. C.	1300	WNBA	Springheld, Vt.	1260
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WFBL	Syracuse, N. Y.	1360	WNEW	Newark, N. J.	1250
	WEBM	Indianapolis, Ind.	1230	WNOX	Knoxville, Tenn.	1010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WFIL	Philadelphia, Pa.	560	WNYC	New York, N. Y.	810
WGR Chicago, III. 720 WOI Ames, Iowa 940 WGR Buffalo, N. Y. 550 WOR Newark, N. J. 1320 WGSY Atlanta, Ga. 890 WORK York, Pa. 1320 WGY Schenectady, N. Y. 700 WOV New York, N. J. 1330 WHA Madison, Wis. 940 WOW New York, N. J. 1300 WHAS Louisville, K. S20 WOG Fort Wayne, Ind. 1160 WHAS Louisville, K. S20 WPG Atlantic City, N. J. 1130 WHAS Louisville, K. S20 WPG Mianin, Fla. 560 WHO Dayton, Ohio 1260 WREC Memphis, Ten. 600 WHO Des Moines, Iowa 1000 WRUF Gainesville, Fla. 330 WHO Des Moines, Iowa 1000 WRVA 1110 1130 WHS New York, N. Y. 1180 WSAI Chichmond, Va. 1110 WHM </td <td>WFLA</td> <td>Clearwater, Fla.</td> <td>620</td> <td>WOAL</td> <td>San Antonio, Texas</td> <td>1190</td>	WFLA	Clearwater, Fla.	620	WOAL	San Antonio, Texas	1190
	WGN	Chicago, Ill.	720	WOI	Ames, Iowa	640
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WGR	Buttalo, N. Y.	550	WOR	Newark, N. J.	1200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WGST	Atlanta, Ga.	890	WORK	York, Pa.	1320
WHAA Madison, Wis. 940 WOW Omaha, Nebr. 950 WHAM Rochester, N. 1150 WOWO Fort Wayne, Ind. 1140 WHAS Louisville, Ky. 820 WPG Atlantic City, N. J. 1100 WHB Kansas City, Mo. 860 WPFF Raleigh, N. C. 680 WHB Kansas City, Mo. 800 WPCF Raleigh, N. C. 680 WHD Boston, Mass. 830 WQAM Miami, Fla. 560 WHO Deston, Mass. 830 WGEC Vicksburg, Miss. 1300 WHO Deston, Miss. 1200 WREC Kannot, Va. 1110 WHM New York, N. Y. 1000 WRVA Richmond, Va. 1110 WIB Madison, Wis. 1280 WSAI Cincinnati, Ohio 1330 WIB Madison, Wis. 1280 WSAI Cincinnati, Ohio 1340 WIB Moshvile, Ten. 600 WSAI Cincinnati, Ohio 1300	WGY	Schenectady, N. Y.	790	WOV	New York, N. Y.	1130
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WHA	Madison, Wis.	940	WOW	Omaha, Nebr.	590
WHBB Kanasa City, N. J. 100 WHBB Kanasa City, N. J. 1250 WHBI Newark, N. J. 1250 WQAM [Miani, Fla. WHDH Boston, Mass. 830 WHO Dayton, Ohio 1260 WREC Memphis, Tenn. WHO Des Moines, Iowa 1000 WREC Memphis, Tenn. 600 WHN New York, N. Y. 1010 WREC Memphis, Tenn. 600 WHN Des Moines, Iowa 1000 WRAC Meinesville, Fla. 830 WHN Adison, Wis. 1280 WSAI Cincinnati, Ohio 1340 WIBM Mopeka, Kans. 560 WSAZ Huntington, W.Ya. 1100 WIBM Madison, Wis. 1280 WSAI Fail River, Mass. 1450 WIND Gary, Ind. 660 WSAZ Huntington, W.Ya. 1100 WINS New York, N.Y. 1100 WSBA Calanta, Ga. 740 WIO Diami, Fla. 1300 WSBA Spartanburg, S. C. 920 WIAS Pittisburgh, Pa. 1290 WTAQ Calare, Wise. 130 WJA	WHAM	Rochester, N. Y.	1150	WOWO	Fort Wayne, Ind.	1100
WHBI Kansas City, Mo. 360 WTP F Raleign, N. C. 630 WHBI Knewark, N. 1250 WQAM Miami, Fla. 560 WHO Dayton, Ohio 1260 WRDC Vicksburg, Miss. 1360 WHO Dayton, Ohio 1360 WREC Knemphis, Tenn. 600 WHK Cleveland, Ohio 1390 WREV Lawrence, Kans. 1220 WHN New York, N. Y. 1010 WRUF Gainesville, Fla. 830 WHO Des Moines, Lowa 1000 WIXA Richmond, Va. 1110 WIBM Topeka, Kans. 580 WSAI Cincinnati, Ohio 1330 WIBM Gary, Ind. 660 WSAZ Huntington, W.Va. 1100 WINS New York, N. Y. 1180 WSB Atlanta, Ga. 740 WIOD Miami, Fla. 1300 WSM Sashville, Tenn. 650 WIAG Norfolk, Nebr. 1060 WSM Sashville, Tenn. 650 WJAZ Jackson, Miss. 1270 WSM Sashville, Tenn. 650 WJAZ <	WHAS	Louisville, Ky.	820	WPG	Atlantic City, N. J.	1100
WHDH Boston, Mass. 830 WHDH Boston, Mass. 830 WHDU Boston, Mass. 830 WHC Boston, Mass. 830 WHK Cleveland, Ohio 1300 WHK Cleveland, Ohio 1300 WHK Cleveland, Ohio 1300 WHK Cleveland, Ohio 1300 WHO Des Moines, Iowa 1000 WBA Madison, Wis. 1280 WHS Madison, Wis. 1280 WIND Gary, Ind. 560 WIND Mary, Ind. 560 WIND Mary, Ind. 560 WIND Mary, Ind. 660 WIP Philadelphia, Pa. 1300 WJA Columbia, S. C. 660 WJAS Clacksonville, Fla. 1300 WJAS Acksonville, Fla. 1000 WJAS New York, N. Y. 160 WJAS New York, N. Y. 160 WJAS Metachon, Nie. 220 WJAS Jackson, Miss.	WHB	Kansas City, Mo.	860	WPIF	Raleign, N. C.	080
WHIO Dayton, Ohio 1260 WHEC Memphis, Tenn. 630 WHIO Dayton, Ohio 1260 WHEC Memphis, Tenn. 630 WHK Cleveland, Ohio 1280 WHEC Memphis, Tenn. 630 WHN New York, N. Y. 1010 WREC Memphis, Tenn. 630 WHN Des Moines, Iowa 1000 WRVA Richmond, Va. 1110 WIBM Topeka, Kans. 580 WSAI Cincinnati, Ohio 1330 WIBM Topeka, Kans. 580 WSAZ Huntington, W.Ya. 140 WIDO Miami, Fla. 1300 WSM Nashville, Tenn. 650 WIAG Norfolk, Nebr. 1060 WSM Nashville, Tenn. 650 WIAG Oiumbia, S. 5.60 WSM Nashville, Tenn. 650 WIAG Norfolk, Nebr. 1060 WSM Nashville, Tenn. 650 WJAS Sittsburgh, Pa. 1290 WTAQ Ceau Claire, Wisc. 1330 WJAS Jackson, Miss. 1270 WTAQ Eau Claire, Wisc.	WHBI	Newark, N. J.	1250	WQAM	Wiahahan, Fla.	1260
WHK Cleveland, Ohio 1200 WREN Lawrence, Kans. 1200 WHK New York, N. Y. 1010 WREN Lawrence, Kans. 1200 WHO Des Moines, Iowa 1000 WREN Lawrence, Kans. 1200 WHO Des Moines, Iowa 1000 WRAN Lichmond, Ya. 1110 WIBA Madison, Wis. 1230 WSAI Cincinnati, Ohio 1340 WIBW Topeka, Kans. 580 WSAR Fall River, Mass. 1450 WIND Gary, Ind. 560 WSAZ Huntington, W.Ya. 1100 WIND Sorv, K. Y. 1180 WSB Atlanta, Ga. 740 WIOD Miami, Fla. 1300 WSM Asshville, Tenn. 650 WJAS Columbia, S. C. 660 WSPA Spartanburg, S. C. 920 WJAS Acksonville, Fla. 1060 WSUN Cleavater, Fla. 620 WJAS Acksonville, Fla. 1060 WTC Minneapolis, Minn. 1250 WJJD Jackson, Miss. 1270 WTC Minneapolis, Minn. 1250 WJJSV Alexandria, Va. 1400 WWC Savannah, Ga. 2400 WJJSV Alexandria, Va. 1400 WWU WWJ 240 WKZ New York, N. Y. 700 WWJ Detroit, Mich. 240	WHDH	Boston, Mass.	830	WOBC	Vicksburg, Iviliss.	1000
WHAN Cleveland, Ohlo 1390 WHAN New York, N. Y. 1010 WHU WRUF, Gainesville, Fla. 8300 WHO Des Moines, Iowa 1000 WRUF, Gainesville, Fla. 8300 WIBA Madison, Wis. 1280 WSAI Cincinnati, Ohio 1330 WIBW Topeka, Kans. 580 WSAI Cincinnati, Ohio 1330 WIBW Topeka, Kans. 580 WSAZ Huntington, W.Va. 1190 WIND Gary, Ind. 660 WSAZ Huntington, W.Va. 1190 WIND Mew York, N. Y. 1180 WSBA Atlanta, Ga. 740 WIO Diami, Fla. 1300 WSBA Spartanburg, S. C. 920 WIS Okumbia, S. C. 560 WSPA Spartanburg, S. C. 920 WJAG Norfolk, Nebr. 1060 WSDA Cleveland, Ohio 1340 WJAS Jackson, Miss. 1270 WTCN Minneapolis, Minn. 1250 WJJD Cheazadria, Va. 1400 WTC Conn. 1040 120 WJSV Alexandria, Va. 160	WHIO	Dayton, Ohio	1260	WREC	Memphis, Tenn.	1000
 WHO Des Moines, Iowa 1000 WRVA Richmond, Ya. 1110 WHO Des Moines, Iowa 1000 WRVA Richmond, Ya. 1110 WIBM Topeka, Kans, 580 WSAR Fall River, Mass. 1450 WIBW Topeka, Kans, 580 WSAR Fall River, Mass. 1450 WIND Gary, Ind. 560 WSAZ Huntington, W.Ya. 1190 WINS New York, N. Y. 1180 WSB Atlanta, Ga. 740 WIOD Miami, Fia. 1300 WSM Mashville, Tenn. 550 WID Philadelphia, Pa. 610 WSPA Spartanburg, S. C. 920 WIAG Norfolk, Nebr. 1060 WSPD Toledo, Ohio 1340 WJAG Norfolk, Nebr. 1060 WSPD Toledo, Ohio 1070 WJAX Jackson Miss. 1270 WTAM Cleveland, Ohio 1070 WJJD Jackson, Miss. 1270 WTAM Cleveland, Ohio 1070 WJJZ New York, N. Y. 760 WWJ Detroit, Mich. 250 WJZ New York, N. Y. 760 WWJ New Orleans, La. 850 WKBH La Crosse, Wis, 1380 WWNA Ashveille, N. C. 570 WKBW Boffalo, N. Y. 1480 WWVA Wheeling, W. Ya. 1160 	WIIN	Cleveland, Unio	1010	WREN	Cainaguille Ele	820
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WIN	New YORK, N. Y.	1010	WRUF	Gamesville, Fla.	1110
WIBM Topeka, Kans, 580 WSAR Fall River, Mass. 1430 WIBW Topeka, Kans, 580 WSAR Fall River, Mass. 1430 WIND Gary, Ind. 660 WSAZ Huntington, W.Ya. 1190 WIND New York, N. Y. 1130 WSBA Haltata, Gaa. 740 WIOD Miami, Fla. 1300 WSBA Spattanburg, S. C. 620 WIAG Norfolk, Nebr. 1060 WSDA Spattanburg, S. C. 920 WJAG Norfolk, Nebr. 1060 WSDM Cleavater, Fla. 620 WJAS Sittsburgh, Pa. 1290 WTAQ Eau Claire, Wise. 1330 WJAS Jackson, Miss. 1270 WTAQ Eau Claire, Wise. 1330 WJJD Jackson, Miss. 1270 WTON Mimaukee, Wis. 620 WJJZ Netarandria, Val. 460 WTOC Savannah. 621 WJSV Alexandria, Val. 460 WTOC 1320 1320 WJSV	WIDA	Des Moines, Iowa	1000	WILVA	Cincinnond, va.	1220
WIBW Topeka, Nans. 550 WSAL Find IAVet, Mass. 1400 WIND Gary, Ind. 660 WSAZ Huntington, Wya. 1400 WIND New York, N. Y. 1180 WSAZ Atlanta, Ga. 740 WIOD Miami, Fla. 1300 WSM Nashville, Tenn. 650 WIP Philadelphia, Pa. 610 WSM Nashville, Tenn. 650 WIS Columbia, S. C. 660 WSUN Clearwater, Fla. 620 WJAS Pittsburgh, Pa. 1290 WTAM Cleveland, Ohio 1340 WJAX Jackson, Miss. 1270 WTCN Minneapolis, Minn. 1250 WJJD Jackson, Miss. 1270 WTCN Minneapolis, Minn. 220 WJSV Alexandria, Va. 1460 WTOC Savannah, Ga. 1250 WJSV Alexandria, Va. 1460 WWO Savannah, Ga. 1260 WJSV Alexandria, Va. 1460 WWU New Orleans, La. 850	WIBA	Wadison, Wis.	1400	WOAL	Fall Discon Mass	1450
WINS New York, N. Y. 1130 WSB Allanta Ga. 7400 WIOD Miami, Fla. 1300 WSB Allanta Ga. 7400 WIP Philadelphia, Pa. 610 WSP Asartanburg, S. C. 650 WJS Columbia, S. C. 560 WSPD Toledo, Ohio 1340 WJAS Clumbia, S. C. 560 WSPD Toledo, Ohio 1340 WJAS Sittsburgh, Pa. 1290 WTAM Cleveland, Ohio 1070 WJAS Jackson, Miss. 1270 WTCM Minneapolis, Minn. 1250 WJDZ Jackson, Miss. 1270 WTCM Minneapolis, Minn. 1260 WJJZ Netwatoria, N. Y. 1400 WTCC Minneapolis, Minn. 1260 WJZZ New York, N. Y. 760 WWJ Detroit, Mich. 1200 WJZZ New York, N. Y. 760 WWJ Detroit, Mich. 1200 WKAR E. Lansing, Mich. 850 WWL New Orleans, La. 850 WKBH Boffalo, N. Y. 1480 WWA Wheeling, W. Ya. 1160 WKRC Clemennation, Nois 1000 WXZ Detroit, Mich. 1240	WIND	Topeka, Kans.	560	WOAN	Huntington W Vo	1100
WIOD Miami, Fia. 1300 WSM Nashville, Tenn. 650 WIOD Miami, Fia. 1300 WSM Nashville, Tenn. 650 WIOD Okumbia, S. C. 660 WSPA Spartanburg, S. C. 920 WIAG Norfolk, Nebr. 1060 WSPD Toledo, Ohio 1340 WJAG Norfolk, Nebr. 1060 WSUN Clearwater, Fla. 620 WJAS Pittsburgh, Pa. 1290 WTAQ Eau Claire, Wisc. 1330 WJDX Jackson, Miss. 1270 WTCN Minneapolis, Minn. 1250 WJJD Detroit, Mich. 750 WTLJ Milwaukee, Wis. 620 WJSV Alexandria, Va. 1400 WTCO Asvannah. 620 WJZ New York, N. Y. 760 WWJ Detroit, Mich. 220 WKBH La Crosse, Wis. 1880 WWN Asheville, N. C. 570 WKBH Boffalo, N. Y. 1480 WWVA Wheeling, W. Ya. 1460	WIND	Mary, Ind.	1190	WSD	Atlanta Ga	740
WID Dilamin, Fia. 1960 WSPA Nashring, Fai. 000 WIP Piliadelphia, Pa. 610 WSPA Spartanburg, S. C. 900 WIAS Columbia, S. C. 560 WSPD Toledo, Ohio 1340 WJAS Norfolk, Nebr. 1060 WSUN Clearwater, Fla. 620 WJAS Pittsburgh, Pa. 1290 WTAM Clearwater, Fla. 620 WJAX Jackson, Miss. 1270 WTAM Clearwater, Fla. 620 WJDX Jackson, Miss. 1270 WTCM Minne 2063, Minn. 1300 WJDZ Detroit, Mich. 750 WTMJ Milwaukee, Wis. 620 WJSV Alexandria, Va. 1460 WTOC Savannah, Ga. 1260 WJZ New York, N. Y. 760 WWJ Detroit, Mich. 220 WKAR E. Lansing, Mich. 380 WWNC Asheville, N. C. 570 WKBH La Crosse, Vis. 1380 WWNA Wheeling, W. Ya. 1160 WKRC Cineinnati, Ohio 500 WX2X Detroit, Mich. 1240	WIND	New LOFK, N. I.	1200	WSM	Machvillo Tonn	650
WIS Columbia, S. C. 560 WSPD Columbia, S. C. 560 WIA Solumbia, S. C. 560 WSPD Toledo, Ohio 1340 WJAS Sittisburgh, Pa. 1200 WTAM Clearwater, Fla. 620 WJAS Sittisburgh, Pa. 1290 WTAM Clearwater, Fla. 620 WJAS Sittisburgh, Pa. 1290 WTAM Cleareland 1330 WJDX Jackson, Miss. 1270 WTCN Minneapolis, Minn. 1250 WJJD Chicago, III. 1130 WTC Martoford, Conn. 1040 WJJZ Netrandria, Va. 1400 WTOC Savannah. Ga. 1260 WJSV Alexandria, Va. 1400 WTOC Savannah. Ga. 1260 WJZ New York, N. Y. 760 WWJ Detroit, Mich. 120 WKAR E. Lansing, Mich. 850 WWL New Orleans, La. 850 WKBH La Crossee, Wis. 1380 WWA Wheeling, W. Ya. 1400 WKYA'W heeling, W.	WIDD	Dhiledelphie Do	610	WSDA	Sportonburg S C	020
W1AG Norfolk, Net. 1000 WSUN Chearwater, Fla. 1040 WJAG Norfolk, Nebr. 1060 WSUN Clearwater, Fla. 1070 WJAS Pittsburgh, Pa. 1290 WTAM Clearwater, Fla. 1070 WJAX Jaeksonville, Fla. 900 WTAQ Eau Claire, Wisc. 1330 WJDX Jaekson, Miss. 1270 WTCN Minneapolis, Minn. 1250 WJDX Detroit, Mich. 750 WTMJ Milwaukee, Wis. 620 WJSV Alexandria, Va. 1460 WTOC Savannah. Ga. 1260 WJZX New York, N. Y. 760 WWJ Detroit, Mich. 920 WKBH La Crosse, Wis. 1380 WWNC Asheville, N. C. 570 WKBW Buffalo, N. Y. 1480 WWVA Wheeling, W. Ya. 1160	WIP	Philadelphia, Pa.	540	WOFA	Tolodo Ohio	1240
WJAS Fittsburgh, Nebr. 1000 WTAM Cleav Mater, Fla. 1200 WJAS Fittsburgh, Pfa. 1200 WTAM Cleveland, Ohio 1070 WJAX Jackson, Miss. 1270 WTAM Cleveland, Ohio 1070 WJDX Jackson, Miss. 1270 WTCN Minneapolis, Minn. 1230 WJDX Detroit, Mich. 750 WTCN Minneapolis, Minn. 1640 WJSV Alexandria, Va. 1460 WTOC Savannah, Ga. 1260 WJSV Alexandria, Va. 1460 WTOC Savannah, Ga. 1260 WJSV Alexandria, Va. 1460 WTOC Asavannah, Ga. 1260 WJSV Alexandria, Va. 1600 WWL New Orleans, La. 850 WKBH La Crosse, Wis. 1380 WWVA Abeeville, N. C. 570 WKRC Cineinnati, Ohio 550 WXZW Detroit, Mich. 1240	WIAC	Norfelly Nohr	1060	WSUM	Clearwater Fla	620
WJAX Jacksonville, Fla. 1500 WTAQ Lau Claire, Wisc. 1300 WJDX Jackson, Miss. 1270 WTAQ Lau Claire, Wisc. 1310 WJDX Jackson, Miss. 1270 WTCN Minneapolis, Minn. 1250 WJDZ Detroit, Mich. 750 WTLC Hartford, Conn. 1040 WJSV Alexandria, Va. 1460 WTOC Savannah. 620 WJZ New York, N. Y. 760 WWJ Detroit, Mich. 220 WKAR E. Lansing, Mich. 850 WWL New Orleans, La. 850 WKBH La Crosse, Wis. 1380 WWVA Wheeling, W. Ya. 1160 WKRC Cinceinnati, Ohio 550 WXZ Vatoria, N. Ya.	WIAG	Dittahungh Do	1200	WTAM	Cloveland Ohio	1070
WJDX Jackson Miss. 1370 WTCN Minneapolis, Miss. 1300 WJDX Jackson, Miss. 1370 WTCM Milwaukee, Wis. 620 WJSV Alexandria, Va. 1460 WTOC Savannah. Ga. 1260 WJZX New York, N. Y. 760 WWJ Detroit, Mich. 920 WKAR E. Lansing, Mich. 850 WWNC Asheville, N. C. 570 WKBW Buffalo, N. Y. 1480 WWVA Wheeling, W. Ya. 1160 WKRC Cheinianati, Ohio 5500 WXZY Detroit, Mich. 1260	WIAV	Laskapprille Ele	000	WTAO	Fon Cloiro Wise	1330
WJDD Chicago, III. 1130 WTIC Hartford, Conn. 1240 WJJD Chicago, III. 1130 WTIC Hartford, Conn. 1640 WJR Detroit, Mich. 750 WTIM Milwaukee, Wis. 620 WJSV Alexandria, V.a. 1400 WTOC Savannah. 6a. 1260 WJZ New York, N. Y. 760 WWJ Detroit, Mich. 920 WKAR E. Lansing, Mich. 850 WWL New Orleans, La. 850 WKBH La Crosse, Wis. 1800 WWVA & Meeling, W. Ya. 1400 WKVA 1400 WKRC Cheininati, Ohio 550 WXZ Detroit, Mich. 120	WIDY	Jacksonvine, Fia.	1970	WTCN	Minneanolie Minn	1250
WJR Detroit, Mich. 750 WTMJ Milwaukee, Wis. 620 WJSV Alexandria, Va. 1460 WTMJ Milwaukee, Wis. 620 WJZ New York, N. Y. 760 WWJ Detroit, Mich. 920 WKAR Lansing, Mich. 850 WWL New Orleans, La. 850 WKBH La Crosse, Wis. 1380 WWNC Asheville, N. C. 570 WKBW Buffalo, N. Y. 1480 WWVA Wheeling, W. Va. 1160	WIID	Chicago Ill	1130	WTIC	Hartford Conp	1040
WJSV Alexandria, V. 1460 WTOC Savannah, G. 1260 WJZ New York, N. Y. 760 WWJ Detroit, Mich. 920 WKAR E, Lansing, Mich. 850 WWL New Orleans, La. 850 WKBH La Crosse, Wis. 1380 WWNC Asheville, N. C. 570 WKBW Boffalo, N. Y. 1480 WWVA Wheeling, W. Ya. 1160 WKRC Cheminnati, Ohio 550 WXZZ Detroit, Mich. 1240	WIR	Detroit Mich	750	WTMI	Milwaukee Wie	620
WJZ New York, N. Y. 760 WWJ Detroit, Mich. 920 WKAR E. Lansing, Mich. 850 WWJ New Orleans, La. 850 WKBH La Crosse, Wis. 1380 WWN Absheville, N. C. 570 WKBW Buffalo, N. Y. 1480 WWNA Wheeling, W. Ya. 1160 WKRC Cheriot, Mich. 120 120	WISV	Alexandria Va	1460	WTOC	Savannah Ga	1260
WKAR E. Lansing, Mich. 850 WWL New Orleans, La. 850 WKBH La Crosse, Wig. 1380 WWVC Asheville, N. C. 570 WKBW Buffalo, N. Y. 1480 WWVA Wheeling, W. Va. 1160 WKRC Chicnianati, Ohio 5500 WXYZ Detroit, Mich. 1240	WIZ	New York N V	760	WWJ	Detroit Mich	920
WKBH La Crosse, Wis. 1380 WWNC Asheville, N. C. WKBW Buffalo, N. Y. 1480 WWVA Wheeling, W. Ca. 1160 WKRC Chiennati, Ohio 550 WXYZ Detroit, Mich. 1240	WKAR	E Langing Mich	850	WWI.	New Orleans, La	850
WKBW Buffalo, N. Y. WKRC Cincinnati, Ohio 550 WXYZ Detroit, Mich. 1160	WKRH	La Crosse Wig	1380	WWNC	Asheville N C	570
WKRC Cincinnati, Ohio 550 WXYZ Detroit, Mich. 1240	WKRW	Buffalo, N Y	1480	WWVA	Wheeling, W. Va.	1160
the second s	WKRC	Cincinnati, Ohio	550	WXYZ	Detroit, Mich.	1240

IMPORTANT SHORT-WAVE STATIONS

	Station	Meters	Meg.	Location	Time of Bro	padcast (EST)
2	XEBT COCO DJC GSA DJM I2RO1 CRCX GSL COCD CJRO YV5RB	$50.00 \\ 49.92 \\ 49.83 \\ 49.59 \\ 49.35 \\ 49.30 \\ 49.26 \\ 49.10 \\ 48.94 \\ 48.7$	$\begin{array}{c} 6.00\\ 6.01\\ 6.02\\ 6.05\\ 6.08\\ 6.09\\ 6.09\\ 6.09\\ 6.11\\ 6.13\\ 6.15\\ 6.15\end{array}$	Mexico City, Mex. Havana, Cuba Berlin, Germany London, England Berlin, Germany Rome, Italy Toronto, Canada London, England Havana, Cuba Winnipeg, Man, Canada Caracas, Venezuela	Daily Daily Daily Daily Daily Mon., Wed. & Sat. Daily Daily Daily Daily Daily	10 a.mMidnight 9:30-11:30 a.m. & 4-11 p.m. 12 N-4:30 p.m. & 5:30-10:45 p.m. 6-8 p.m. 7:10 p.m. 1:30-5:15 & 6-7:30 p.m. 4 p.mMidnight 12:15-5:45 p.m. 6-10 p.m. 8 p.mMidnight 10:30 a.m1:30 p.m. & 4:30-10 p.m.
44	PRF5 GSB VK3ME DJN DJA GSC VK3LR VK2ME HBI	31.58 31.55 31.52 31.45 31.38 31.32 31.32 31.28 31.28	9.50 9.51 9.51 9.54 9.56 9.58 9.58 9.58 9.59	Rio de Janeiro, Brazil London, England Melbourne, Australia Berlin, Germany Berlin, Germany London, England Melbourne, Australia Sidney, Australia Geneva Switzerland	Daily Daily Sun, thru Fri. Daily Daily Daily Mon, thru Sat. Daily Sat.	5:20-6:15 p.m. 12:15-2:30 a.m. & 12:15-5:45 p.m. 4-7 a.m. 12 M-11 a.m. & 5-10:45 p.m. 12 M-4, 8-11 a.m. & 5-10:45 p.m. 12:15-5:45, 6-8 & 10-11 p.m. 11 p.m2 a.m. & 4-7 a.m. 1-2, 3-8:30 & 10:30-11:30 a.m. 5:30-6:15 p.m.

IMPORTANT SHORT-WAVE STATIONS

	Station Meters M		Meg.	Location	Time of Broadcast (EST)							
	TPA-4 CJRX PHI GSD	25.61 25.60 25.58 25.53	$11.71 \\ 11.72 \\ 11.73 \\ 11.75$	Paris, France Winnipeg, Man., Canada Huizen, Holland London, England	Daily Daily Thurs. thru Mon. Daily	6:15-10 p.m. & 12 m1 a.m. 8 p.mMidnight 8-11 a.m. 6-8:45 a.m.; 12:15-5:45, 6-8 &						
25	DJD 12RO4	25.49 25.40	11.77 11.81	Berlin, Germany Rome, Italy	Daily Daily	10-11 p.m. 11 a.m11 p.m. 8:15-9, 9:15-11 a.m. & 11:30 a.m						
	HJ4ABA GSN TPA-3	$25.40 \\ 25.38 \\ 25.24$	$11.81 \\ 11.82 \\ 11.88 \\ 11.88 \\$	Medellin, Colombia London, England Paris, France	Daily Daily Daily	12:15 p.m. 11 a.m1 p.m. & 6-11 p.m. 12:15-2:30 a.m. 4-5 a.m. & 11:15 a.m6 p.m.						
19	DJL HVJ GSF PCJ TPA-2 LRU HAS3	$19.85 \\ 19.84 \\ 19.82 \\ 19.71 \\ 19.68 \\ 19.62 \\ 19.52 \\ 19.52 \\$	$\begin{array}{r} 15.11\\ 15.12\\ 15.14\\ 15.22\\ 15.24\\ 15.29\\ 15.37\end{array}$	Berlin, Germany Vatican City, Italy London, England Huizen, Holland Paris, France Buenos Aires, Argentina Budapest, Hungary	Daily Daily Daily Wed. Daily Daily Sun.	6-8 a.m. 10:30-10:45 a.m. & 5-5:15 p.m. 9 a.m12 Noon 6-11 a.m. 7-11 a.m. 2-6:50 p.m. 8-10 a.m.						
16	DJE GSG	$16.89 \\ 16.86$	17.76 17.79	Berlin, Germany London, England	Daily Daily	8-11 a.m. 6-8:45 a.m. & 9 a.m12 Noon						
13	GSJ	13.93	21.53	London, England	Daily	6-9 a.m.						

Interchangeable Tube Types

RCA Radio Glass Tube types can be interchanged for tube types of other manufacturers as follows:

tube types of other manufacturers as follows: In general, the last two digits of a three-digit receiving tube type number are the significant type designation. Thus, the RCA-27 is interchangeable with the C-327. In the case of a suffixed letter, the same rule applies; for example, the RCA-71-A will replace the UX-171-A of our manufacture and also the FY-'71-A or AG-71-A, etc., of other manu-facturers

Exceptions to this rule include the following types, for which we do not have an interchangeable type: KR-20, KR-22, 59-B, G-S4, 182B, 183, 401, 482B, 483, 484,

the RCA tube should be equipped with a close fitting tube

Tubes having a glass bulb and an octal base have type numbers with the suffix G. Tubes having a glass bulb, en-closed in a metal shield, and an octal base use the suffix MG. Both the G and MG types can usually be replaced by the corresponding RCA all-metal type without change in the receiver. When the replacement is made in a pertagrid convertor or miver stars it may be passed to realism the

the receiver. When the replacement is made in a pentagrid converter or mixer stage it may be necessary to realign the oscillator tuning condenser with the s-f tuning condenser. The following list covers other case of interchangeabil-ity. It shows the type numbers used by other manufacturers, together with the corresponding RCA Radio Tubes type numbers. The list also gives type numbers of tubes which supersede earlier tube models.

superseue carner -			RUA
	RCA	Ochor	Radio
Other	Radio	Other	Taihes
Other	Trabes	Manufacturers	mano No
Manufacturers	mana No	Tupe No.	Type Ivo.
Tupe No.	Type IVU.	65	.39/44*
2A3H	.2A3	65 A	.39/44*
672	.1-v	00-4	37*
020	84	67	27*
024	1973	67-A	20%
1423	0576	68	
25Z5MG	.2020	68-A	38*
1	.1-V	171	
200	00-A	171 D	71-A
101	01-A	/1-D	\$3**
01	112-A	'80M1	09**
12		88	
*13		95	ZAD
'13-B	80	08	84
'16	81	1994	
216-B		1004	71-A
10-11-11-11-1	24-A	4848	50
24	1B5/25S	585	
205	56	586	
27HM		P-861	84
'36-A		951	184
'37-A		086	83**
128-A		AD	.1-v
20		AD	82
120 4	39/44	AF	83
09-A	2546	AG.,	1.17
43MG	20/44	KR-1	
'44	1072	KR-5	0A4
HZ50	1240	VD-95	
*51		KIT-20	04
56-A		KR-28	
57-A	6C6*	T.A	6A4
50 A	6D6*	707	47
08-A	26*	T.L	945
64	26*	PZH	4A.3
CA A			

*Except when heaters are connected in series. **When receiver's power transformer will stand additional filament current.

loid	BES	L		TYPE			00-A	01.4		144	IAG		184	125/253	-	83		z	176	1	A-1	243		2A5	2A6	247	
RA	シ	1	POWER	-100	WATTE		1	1			Resistors.	TUCCORNIAS,	1	1	as. volts.	atcroenhon.		AC'0	T	T		10.01	15.01		-	-	
		1000	LOAD	STATED POWER	DUTTPUT DUTTPUT		1	1	11	100.0	(1.1) p	000	1	1	80 m m	ce, 325 n	1000		tor.	1	2 CAN	2000	10005				
1			AMPUR	CATION	FACTOR		30	8.0	425	120	Unator-Or	550	1000	20	(a 2); llator-Gri	onductar	340	650	ohm renis		1.2.1	1		Thadk.	1		
Q		TRANS.	COMDUC.	I ANGE (GRID-	CUANT		666	800	720	Anode-Grid	Onversion	600	650	cie	J nu. Ovel	OUTVERSION C	1700	650	gh 0.8-megi	Volta, RMS	5250	1	the triber to.		116 13.	YPE GAT.	ype 6B7.
	[A.C	PLATE	TAUCE	DIME		30000	10000	1000000	40000	500000	000000	8 CAM	-	250000 3.	2	200000	000000	Hed through	1 05	800	1	armoteristic	Totas an T	T DI MOL	reler to T	refer to T
E STER		PLATE	CUN-	REAT	112	1	C.1	3.0	2.2	1.2	1.3	0.1	0.8	t	1.5	1	8.0	2.0 10	rolls ap	1	0.0	- 0.	to and ch	terition		DOBIST	teristics,
U	9	SCREW	CUR.	RENT	-	T	T	1	0.8	2.5	2.4	2.0	1	1	0.0	11	9:	.6 In	Resulto	rent	1 60	80	er rating	er charac	te charac		tr charac
-	Ī	Contract	SUPPLY	VALIT		Return to	Pulament	1	67.5	67.5	07.5	67.5	1	K7. C	67.5	1	135	STECH Survey	Grie Tate Votes	Dutput Cur	ohme	xed bias	For oth	For oth	For oth		For othe
		Com	= SNIG	MOLTS		Quic	1 5.8 -	0.0	min.	3.0)	3.0	3.0	3.0	3.01	nin. /	1	4.5	2.0	IT A-C B	D.C.C.	Dias, 780	2 volts, fi					
60	Ē	PLATE	SUP.	VOLTS	1	45	8	90 1	180	-) Sti	1 06	180	- 557	135 /-	(S0 a	1.			Maximu	Maximi	10 Self-	0-					
2		BSE	Values to right give byeroling conditions	and charactericities for Indicated project was		DITTECTOR	CLASS & AMPLITTER	LAS A MRN ICICA	Union	CONVERTER	LAIS A AUBI IFIER		LAGS A AMFLIFTER	CONTERTR		ASS A ANTILIFIER	SATODE UNIT AS	NTOUE UNIT AS	Unitimeter	US A AUPUTRICK 20	PLON AND FIFTER	AMPLIFIER	HODE UNIT AS	AMPLIFICK	CONVERTER	AMPLIFIES	
0	-	T	NUREN	WILLY.	I	1	1	67.5	1	67.5	57.5 0	t	1	7.5	-	I35 CI	F	5:2	1	EI I	1	-	F	5	2	5	-
U	TING		HATE	WOLTS		45	135	180		160	180	135	Cer	180 6	1	135	1	100	1	250 -	1 000	1	50	50 1		50 12	1
	2	NDAT OR		AMPERCI		0.25	0.25	0.06	0.04	00	0.06	0.04		0.12	11	0.12	-	00.0	5.3	5		- 15 -	.8	8.	-	8 2	
Led .		- PE		VOLTE		2.0	S.0	2.0	3.0		2.0	2.0		··.	11	2.0	0 0		6.3	2.5	1	2.5	2.5 0	2.5 0		0 5-1	
4		CATHODE	ITPE		0-0	FILAMENT	FILAMENT	FILAMENT	p.c	THAMENT	FILAMENT	FILAMENT	Dec	TAMENT	0.0	TLAMENT	0-0	INTERNET	ICATER	CAMENT		EATER	EATER	EATER	1	CATER 2	
	BIMENSIONS	DYERALL	LENGTH	DIAMETER	411 - 1114	Sir a str	-241 x 211	495 × 118	432 × 116 *		211 X . 110	44 X 1/2 4	442° × 1.2.0		435 v 125	A 517 - 91.	41 x 1.2 "		+2 × 116 *	5]" x 212" FI	111 v 1130	21. 0 21.	4	H . 241 x . 561		H X IIe H	
-	CAPVET	CONNEC.	SNOT		0+	-	-	-	H.		-	IL	a	1	5K	T	6W	5	2	9	< 83 ×	28	1	2	1		
X		BASE			MEDIUM SPIN	MCDIUM 4-PIN	SMALL 4-PIN		NId-9 TTWWS	SMALL 4-PIN	SMALL &-PLN		Nid-9 TTWWS		NIG WINDIN		NIL-S TIVWS	SMALL 4-PIN		MEDIUM 4-PIN	MEDIUM 6-PIN	NId-9 TIVINS	SMALL 7.DIN		NIA-L TINNS		
R		NAME			DETECTOR	DETECTOR	BUPER-CONTROL R.F. AMPLIFIER	PENTIONE	CONVERTER	R-F AMPLIFIER	DUPLEX-DIODE	Treate and	CONVERTER 0	Advised and	PENTODE	DUPLEX.DIONE	PENTODE	HALF-WAVE RECTURER	POWER AMPLIFIER	DWE & AAM STOR	PENTODE	HIGH-MU TRIOOE	CONVERTER	Dilar	PENTODE		
E/	1	Inte			A-00-A	A-10	144	145		184	135/258	100	83	1 100	14	156	-	2-1	243	0 280	CW2	CA6	2A7	-	287		-

1	10'81	00003 100000	armio 0	Realator, ?	colf-lise	42'0	-	-	Solf-bias	058 858	CLASS AUG. MURINER	-	320								
	10.01	00001	tuijo ĝi	Resistor, 30	Pett-Boirs	U'4E 0'65	0'S	052 052	- 26.0	51E 51E	CEV22 VD ¹ WILFEER	320	512	1.0	5.0	La Lineau	stry tr		10.1-1 70130		
919	58'0	0005	L	3100	5000	0.16	-	-	- 30.0	058	CIY28 Y WALTER	-	320	2.0	12.0	HEATER	1.21 4 1.21	\$1	TIVWS	POWER AMPLIFIER	949
-	2'0 2'0	1000	300 300	0592 0052	12000 100000	45'0	8.0	SIE	-33.0	312	CITYRE Y YWAITALES	312	SIE			1					
ets I	25 = 25	n per stal	100 Cu	1200	1 00099	\$°0	-		£.0 -	320 M	ALTINIA A ZZAL	-	320	£.0	6.3	ASTABH	38, × 14.	245	NIG-S TV130	BOUNT UM-HOIH	939
939		Current, Current, Current, Current,	90°, Plate 90°, Plate 90°, Plate	tor = 0.5 n lits, Angle, tor = 1.0 n lits, Angle	Plate Resis	a Triode Migle, 0 ² a Triode a Triode	wobarts wobarts wobarts	- YiqquB - YiqquB - YiqquB - YiqquB	te & Target d. Bias,	Div Div	INDICATOR VISUAL	T	1-052	£'0	6.3	NATABH	44. x 14.	89	NLG-R TTYWS	TUBE ELECTROM-RAY	639
		0'1=6	Peak Volt	VotalD2eO		-	-	100	-10'0	05Z	SUPERIORATER OD YN					in the second	11. × 11.			WHITTHWY	
909	-	-	1580	1200	800000 \$20000	8.2	0'E	001	(0'E -)	05Z 001	N.F. AMPRILETCE	103	056	6.0	1.0	RELEAN	· 21 * • 111		KIA'Y TIYWS	OINO-BIRINT	909
939				Type 617	tice, releve	ni1933aco	do vallas	aog.			MOLTOLINT	001	320	£.0	6.3	HEATER	*#1 x ,#+	.11		MELLITANN MOLDBLED OWDOLDBLE	909
1	ere	tarentean t	. O DI Diste	to be adju	Tre cmicor	ta b	-	-	-12.0	OSZ	BIVE DELECTOR	1				100 LINE	ALLY SE	he	NI49 TWLOO	300181	can 1
605	-	-	54	- 52mle 5x	1 00001	0'1		-	0.8 -	320 Å	ETTOR Y YABITLES	-	320	6.0	6.0	8374314	ATLA ATC	03	SMALL	+ 80101120	539
889	61 = 23 55 = 38	to ber stat	ov. (Ga	Jean Stend	1.7 006	= yolaisa = yolaisa	A mound	anulo 002 armio 000	Seif-bias, J Seif-bias, J	¥00€	MUTURE UNIT AS	521	052	0.3	c.0	NELVEN	Arx ar	31	NM-P TYLOO	3001434	683
			008	SCEL	000003	10'01	E.2	888	0.8 -	520	PERSONA UNIT AS								Tom	20010 1210110	
L 89	6L = 20 55 = 20	toge and u toge and u	et."" (Ga	twing bird	1,1 meg	- 3035183	Streen R	amilo 002	Self-biat, 3 Self-biat, 1	×00E ×05	MUTTELLA	SEL	OSE	0'3	6.3	HEVLEN	. 21 x . 114	ac	אועיר זישאא	BOOLNEA	489
	-		582	056	300000	8.2	1.1	100	0.6 -	091	PENTODE UNIT AS					1000					
889	esistos a,	# (1 #) be	((s)) (cillator-Gr atochdod	eO. am 0.1	300000 200000	5.1 5.2	2.2	001 05	{0.0 - }	320 100	CONVERTER	001	092	٤,0	5.3	RUTABH	3}, x 1 ³ 2,	VI	NIG-S TVLDO	PENTAGRID CONVERTOR	EVS
249	tenistor	1025'230 M	cillutor-Gr	Conversion	300000	3.5 1.3	3'5	001 05	(0.E -)	320 100	CONVERTER	001	320	6.0	5.3	HEVLEN	"311 x "H+	54	NIN-L TINNS	PENTAGRID R MATRAVIOD	289
979			Y	N9 adat o	tics, refer t	ะกราวธาณ	offict ep	Eoi		-	WILLER		00E	8.0	6.3	HEIVEH	, 원1 x , 원+	84	W NIEL WINGSW	AMPLIFIER	946
A1/4A8	1.40	8000	100	3300 1300	42200	33.0	3.9	081	-13'0	180	CLASS A AMPLIFIER	081	180	6.0	6.3	THAMAJP	+# 2 1 1 5 1 1 5	28	WEDINW 2-BIN	POWER AMPLIFIER	¥7/9¥9
1729			estes MS	donailining 2	15		Current	C Output	d mumix	W		-		0.5	0.2	RETER	3% × 14.	75	NIG-S TATO	FULL-WAVE	\$29
829			eres MD	durailine o	55		Current	C Output		N.C.		-	1-	3.0	0.2	LINGWERL	2], x 3 ¹ , c	10	WEDINW 1-BIN	RECTIFIER	623
PMG			1213	donailiant 0	11		Current	C Output	C mumin	W		-	-	1.5	0.2	LITYMENL	31, x 14.	15	DCLYT PLIN	BECTIFIER FULL-WAVE	TAS

11 12		-		-	Part and a state					-	and the second second						in all	1.00			
TYPE 11 11 11 11 11 11 11 11 11 11 11 11 11			-	010	6H6		617		-u-	NO			9TP		647		-	DHO			
numro.	-180	TITLAN	1	1	ombos.	. 0.19 ma.	. 0.24 ma.		1	ge = 85 ge = 140	a, ma,	1		6.5	14.51	34.01	40.01	its.	1	exceeds 0.4	8.0
LOAD	FOW CL	204110	1	1	300 mic	t Current	t Curren		1	in per sta in per sta	5000 ohn	1	0.7 - 1	2500	5000	0090	5000	volta min 350 micr	1	20000 OF more	8000 10000
	CATION CATION	FACTOR	8	300	olta = 7.0	90°: Plat	90°. Plat	sits, RMS	1185	ber, "Ga	chistor, 50 mistor, **	005	Peak Volt	0 ohms.	S ohmit.	10 chints.	1	(s 3) Bias Swing, 12 iductance,	880	35	ube at
TRANS.	TANCE TANCE	1011714	500	1050	or Peak V aion Cond	iter = 0.5	stor = 1.0	100 V 4 M	1185	Grid Resist 0.5 mego	Plate A Orid R	1275 1650	Oscillator	Kesistor, 1	Resistor, 1	Veriator, 20	1	# 3 Peak ersion Cor	1100	3100	for one to
A.C	PLATE RESIS-	TAMGE	16000	250000	Conver	Plate Real	Flate Resi Bias, 0 vo		1.5+1	1.2 meg.	1	315000		Self-Bian	Self-Bias 1	Self-Bias 1	1	Contraction	200000	11330	Output is ated plate
	CUR-	1	3.5	6.3	2.8	a. Triode	Ande, 0".	er Plate	2.0	chistor -	current ma.	5.4	1	72.0	120.0	102.0	102.0	2.4	5.3	6.0	Power 1
CANTROL	CUR-	1	1	1.6	0.6	- 100 volt	- 250 volt	Voltage pe	0.5	Screen R	Cathode 0.43	1.3	1	5.4	10.0	6.0	4.0	6.2	5.5	1	1
	ATI-JALINS NGEBADS	40113	1	100	100	t Supply 8 volts: 5	t Supply	um A-C	100	600 ohma. 200 ohma.	100	90	100	250	250	300	300	100	100	1	1
	ERID BIAS m	1170A	- 3.0	- 3.0	-10.0	te & Targe d Bias, -	te & Targe d Bias	Maxim	- 3.0	Self-bias, 2 Self-bias, 1	- 4.3	(- 3.0) min.	-10.0	-14.0 Self-bias	-16.0 Self-bias	- 25.0 Self-bias	-20.0	- 3.0	- 3.0) min.4)	- 5.0	00
	SUP-	ADLIS	100	100	250	Pia	Pla		100	300 ×	250	90	250	250	250	400	400	250	250	250	250
-	U.S.E. Values in right pire operating conditions	and characterisides for Indicated typical use	TRIODE UNIT AS CLASS A AMPLIFIER	PENTODE LONIT AS CLASS A AMPLIFIER	PENTODE UNIT AS	INIDAL	INDICATOR	TWIN DIODE DE, TRUTOR RECTIFICR	SCREEN CRID	SCREEN-CRID A.F. AMPLIFIER	BIAS DETECTOR	SCREENGRID R.F. AMPULITIER	ALFERIETLACOVIE	SUNCLE-TUBE	TIMIHSM IV SYD	CLASS ABI, AMPLIFIER	PUSHPULL PUSHPULL	MIXER IN SUPERHELTEROOYNE	CLUSS A ANELLETER	CLASS A AMPLIFIER	CLASS B AMPLIFTER
	ICALIN	MAK.	1	100	100		1	1		125			1	250	250	300	300	150	100		1
ING	311714	TALET.	100	250	250		LOCZ	1		250			24	375	375	400	400	250	250		300
EAT	101 BA	10110		0.3		:	2.0	0.3		0.3					-	6.0		0.3		1	0.8
	TILLER NO	VOLTS		5.3		3	5.0	6.3		6,3			7.0			6.3		6.3		-	6.3
	CATHODE			HEATER			PEATER	HEATER		HEATER			PEATER			HEATER		HEATER			NUMTER
DIMENSIONS	DVERALL	DIAMETER		4H* x 1A*			42 x 118	18" x 14"		31 x 14.			31 X 1/6			. St x . 334		31" × 1.4."			31 x 14
	SOCKET CONNEC-	SNOIL	Γ	72		1	s	64		13		1	14			141		F			
	BASE			KIA-2 TIMAT			HINT TINNS	BUALL POINT		CCTAL 7-PH		SMALL	CCIAL 7-FIN		TIWNT	OCTAL 7-PIN	K	The Bush			NIL'S TYLOO
	BALLE	4		TRICOE.		PI FCTBOW BIV	TUGE	TWIN DICUE		TRIPLE-OND DETECTON AMPLIFIER		TRIPLE-GRID	AMPLIFICA		BEAM	POWER AMPLIFIER		PENTAGRID	AMPLITICA	anima mina	PARPLIFIES
	TIN			617		-	690	6MG		617			NO			SUS		817			243
			1					Concession in which the	ALC: NO	-	-	In succession	-	-	-	1000			-	1000	100

1000	3114	0008				0.1		-	0'51-	5'451	CLASS B AMPLLER					(in second		-		2001111	
30	-	-	5.9 5.3	820 820	10300 10300 10000	3.0	-	-	- 4.5	180 132 80	CLASS & AMPLIFIER	-	180	90.0	2.0	0.0 TN3MA.HT	·참1 x 1분	40	צאערר ל-נוא	AROTOTIA AUTOTATA	30
			.lengia	ou utin		-		-	(approx.)	1			-			-					
12	0134	mullim	C.0 of beta	to be adju	ite current	nd			0.02-1	520	BOLDELING SYNE	-	\$12	54'T	5'2	HEATER	211 x . 34	w	NIA-S WOIDEN	Mathlymma 3001AT	51
			0.0	\$16 0001	0526	5.4		-	-31'0	520	CLASS & AMPLIFIER									##0103730	
58	-	-	8.3	0511	0052 0058	0'3 3'6	-	-	5'#1-	021	CLASS & AMPLIPER	-	081	20.1	2.1	TNEMALIT	.811 x .81+	40	NIG-F WOID3W	TRIODE	56
1			alliamperes	82 58	· Plate	arrent pe	Onthing of	D.C mn	Maxim		RECTIFIER				1000					NT39000	
2526			illiamperes	N S8	ALL DE LE DE	Justiu	D auguo	nw D.C	mixaM		DOCHTEN	-	-	£.0	23.0	HEATER	"#1 x "!E	04	TIVWS	MECTIFIER.	9292
11			RMS, RMS	A SZL Y		or Plate.	o reque	D.V mn	mixaM	_	VOLTACE										12
0702		_	BIAR , RMS	- 320 A		a plate ?	d asuno	D.A. mu	mixaM		HYTE BYAE	-	-	6'0	0'57	HELVEN	AL X . 14	79	NIG TOWNS	DOUBLER	6702
			Miliamperes	A SET		. state.	Q judjuC	D-C mn	mixaM		DOUBLER									031312330	
levez	3.75	2000	100 80	3200 3000	42000	38.0	5.7	172 50	-30'0	091 56	CLASS A AMPLIFIER	522	081	\$.0	32.0	катазн	31. x 12.	84	SMALL SMALL	POWER AMPLIFIER	SSAG
			tignal.	with no			-	42	(south	005E	BIAS DETECTOR		1			1				-	
24-Y			e30	0501 0001	000009	0.4	*41	06	0.6 -	320	RE AMPLIFIER	06	315	27.1	2.5	язтазн	*511 x *4.8	31	MEDIUM 5-PIN	Walaridawa 4-W	A-bS
55		-	091	200	00052E	2'5	1'1.	5129	5'1 -	511	R.F. AMPELITIER	\$129	581	0,132	6.6	PLAMENT D.C	,위1 x ,부1	XP	NI4-9 WOIDSW	H-H WHUNER	55
50	0'110	0059	3'3	\$25	0000 8000	8'9 0'E	-	-	-33'2	511	CLASS & AMPLIFIER	-	501	0.132	5.3	P.C	. Fi x . 14	01	NIG-P TTVWS	LUIONE SWETLIER	50
61	0'I 1'2	10000	De at	o-blate loa	i and ino a	Powe	-	-	0.6 -	132	CLASS & AMPLUTER	-	138	0.36	3.0	D.G TNEMAJIN	. 211 x . 1+	99	NIA-2 TIVWS	TWIN-TRIDDE	61
91	1	-	009.	054	800000 900000	1.85	0.3	5.70	5'1 -	132	CLASS & AMPLIFIER	5.19	132	0.33	3.0	HEVLEN	, 왕1 x , 위*	м	NId-9 TIVWS	B-R AMPLITIEN	91
1573		-	eres AS	o Multiamp	9	stard limits	Current	C Onthrie A	A mumia	N.		-	-	8.0	13.6	NSTASH	, 왕1 x , [+	09	NIJ-P TIVWS	HALF-WAVE RECTIFIER	1523
15		-	9.9	014	00051	3.0	_	-	-10.5	581	VILLILING V SCVTT		132	52'0	1.1	INDMANT	*11 x . 17*	40	NLOT WITH	ASTALPIMA 300IAT	15
11			9.9	529	00551	2.5	1000		2.4 -	06					1	0.0	1. x 15	#	NId + GIA	##0103130	11
. 01	9'1 6'0	10300 11000	0.8	1000	2000	0.81	-	-	-40'0	529	REPLICING & AMPLIFIER		\$28	\$2.1	\$.5	LINWERL	. 2 t x . 15	01	HIN PHIN	POWER AMPLIFIER	01
9.55			etes SP	gmeilliM 8	55		Currenc.	andano o	A mumin	Ma		-	-	9.0	2.0	HEVLEN	3% x 14.	89	OCTAL 6-PIN	PULL-WAYE	9X9
1 489	fc = 15 0'58	n per stat	2 Dieg. Cali	10 'NO)s	Grid Resi	1.3	-		0.0 -	320A	CLASS & AMPLIFIER	-	058	٥.3	6.3	HEATER	3%, x 14.	N	NIJ-1 TV100	DUPLEX-DIODE	289
11.00	- 47	of stage	Gaing	sohm }	Grid Real	0.5	-	-	- 1.1	320 m	CTY22 Y WILTING	1		C'0	5.0	WEINEN	Mrx .te	N	NI4-1 TV100	300011 UM-HOIH	100
1 209			10	1300	28000	1'1	-	-	- 1.5	320 100	TRUDDE LINIT AS		USC	1.0					ZWALL	30010-237400	205

43	5.75	2000	00L 06	2200 2000	00009	0.65	0.4	SEI S6	-12'0	DST S6	CLASS & AMPLITURE	561	081	6.3	55.0	HEVERS	,#i x ,#+	89	NIG-9 W0103W	POWER AMPLIFIER	64	
	0.81	0009	-		-	42.0	anid	vita, fixed	Self-bias, w 0.85-	950 950	CTY22 V8 ¹ VWLTHEI		320				1	1				
-	10'61	10000 10000	smito Os	Ectintor, 3	WIE-JIPS	34'0	0.8	320	Sett-bias	\$4E \$4E	STATES AND PORTER	520	\$46	1	-	and	ST			1000	-	
29	0.65	3000	5.3	3300	3100	31.0			- 30'0	520	TRIODECI CLASS A AMPLITER		SIE	2.0	5.9	NUTABH	111 x .119	89	MEDIUM 6-PIN	POWER AMPLIFIER	ev	
	2'0	000L 000L	390 160	5220 5320	1000001 80000	34.0	0'8 \$'9	\$18 050	-19'0	312	CLASS & AMPLIFIER PENTGOE	312	SIE									
117	3'40	12000	120	3300	00009 107200	33.0	3.5	320	- 18.0	520 100	CEVER Y WINTER	520	520	9.0	5.3	изтазн	11. x 18.	09	NId-S TTYWS	POWER AMPLIFIER	11	
07		-	30	300 300	120000 120000	2.0 2.0	-	-	- 3'0 - 1'2	HONT MSEI	CLASS A AMPLIFICA	-	091	\$2.0	0'5	PLC D.C	+#, x 1H.	CP .	NIG-P WILLOOM	VOLTAGE VOLTAGE TINODE	Cr	
38/44	-	-	1020	0501 096	0000001	9.6	1.6	05 06	(im)	320 00	RUE YMGETILIER SCHEEN CHID	06	520	E.0	6.3	натази	·원. x 1당.	84.	NId-5 TTWNS	PENTODE R-F AMPLITER SUPER-CONTROL	\$\$/62	
38	3.50	00001	150	1100	100000 140000	33'0	8.5	520 100	-32.0	052	CTY22 Y WIMTER	520	520	6.9	5.3	NETABH	. 211 ×	n	NIN PERM	POWER AMPLIER	38	
18	r to pe	ine current	arq. stami	xorqqa əta taillim 2.0	esulav salues of beteulb	-pup	-	-	-39'0	0\$2 06	DIAS DETECTOR		her	0.0	e'0	HIMI	Mrx .te	15	NHA-T THINK	ANIODE	15	
			6'5	0011 008	8400 11200	5.5	-	-	0.81-	520 80	CLASS A ANYLITICR		one							+80103130		
00	i co pe	institus sti angie on e	imate Pla	aovqqa sta tailliom 1.0	esulay eaid of baseulb	oug	-	06 55	0.8 -	5200 1000	BUAS DETECTOR		400			UNIVER	ALT X LSL		NULL TOWNE	1004131	90	
96	-		565 04#	0901 058	220000 220000	8.1	•7.1	06 22	- 1.5	052 001	BL WHEFTELES SCHEENCHED	00	050	1.0	1.0	and the				ABIRLINGAN T.A		
32	-		450	1020	+00000	\$'9 \$'9	3'2. 5'2.	06 05	0.2 - }	052 081	RA WINTELEN SCREENCERD	06	\$22	52.1	3.5	изтазн	, HI x , Hs	39	NHA-R WINICOW	LETRODE R-F AMPLIFIER	32	
34	-	-	930 390	059 000	1000000 t 000000	8.5	1'0 1'0	5.78	(0.6 -)	120 122	K.F. AMPLITER	\$'49	180	90'0	3.0	FILAMENT P-C	.料1 x "毕s	WP	NEDINM 4-FIN	SUPER-CONTROL R-F AMPLIFICA PENTODE	34	
33	1.4	0009	05	00/1	22000	33'0	0.2	180	0.81-	180	CEVER Y YWEFTELER	180	180	0'39	0'2	FILAMENT D-C	.위1 × ,위+	жø	NIES WOIDEN	POWER AMPLIFIER	33	
70	bere	maillim t	ted to 0.	on this of or	JUSTIUS SI	nd.	-	\$.78	(4081	BIAS DETECTOR			0010		LINEWUTH	Hr w Lte			TETRODE	75	
	-	-	084	920	1500000	4.1	.**0	5'29	- 3.0	190	RA ANTUTER SCRUENCERID	1 5.29	081	90.0	0.0	0-0	1111-211	~	NIG F MINGST	Rartune 1.8		
18	0.185	0015 0001	8.8	050T 525	3000	8.0	-	-	-30'0	190	CLASS & AMPLLETER	-	081	\$1.0	0.5	TILAMENT	15 × 15	07	NIG-P TTWWS	REINIJAMA ROWOO BOORT	31	
	TLLYM IDJ	THHO TUTIO	801043	ALANDS PARADS	DINES LYNCE	WF INTRO-	WF KENI	5176A	5270A	1170A	ועקובענים לקובען ניים אינק כאיראבואלואלוגע נער אינה כאיראבואלואלוגענים לער	LITOA XVM	ALTIDA XVM	5383-6HV	1270A		LENGTH TEN					
TYPE	-100	RON GATATE	CATION CATION	17MCE	71A19 -21239	CUR.	CAB.	2066EM	E 2418	·dns	avig high of seulaV	N33836	374.19	R0 TH2	FILLAMENT	WEXYING CV1HODE MI		INSE CONNEC- OVERALL CATHO	23,48	R 3MAM	JAPE	
	POWER	CVOT		-SNVILL	3.4	31419	N339322			SIVIG	1911		51	RATH			SNOISNEIMIO		SKOISNEWIG	~~		-

		320000 opt	Cosistor, 2	Piate 1	-	Current.	Cathode 0.65	05	56.1 -	320	BUAS DETECTOR	nor	0.07	e'0	5'0	NEWER	flew the		ILLA TOUR	VWbFILLER	11
~~~	-		0051	1520	0000051	2.3	5'0	001 09	0.6 -	520 100	BE WERTELEY	001	056				131 - 115		NIG T TIVES	TRIPLE-GRID	
	iete l	turina :	.0 os bese Jangie	with no	Instury sli	गत	-	-	- 30°0	330	BIAS DETECTOR						1			BRITCHONE	
94	-	-	8'EI 13'8	1420	8200 13000	1'0 2'5 5'2		-	-13.5	520 A 520 100	CLASS A AMPLIFTER	-	320	6.9	6.3	RETAIN	47, × 177,	vs	NIA-S TWWS	BOOIRT-RIGHUR RISTRIJAMA	94
SL	09-05 -	. 98436 1	Gain p	-	-	1.0	-	-	SE.I -	\$05E	CLASS & AMPLIFIER	-	052	0.3	6.3	натази	,背I x ,ñ+	09	NID SWYTT S-BIN	BUPLEX-DIODE	54
¥-12	0*100	3000	3.0	1100 1900	0521 0212	30.0	-	-	0.61-	001	CLASS A AMPLIFIER	-	180	\$2.0	0.2	TNAMALITY	,計1 × ,积+	0¥	MEDIUM 4-PIN	POWER AMPLIFIER	¥-12
	10.01	0009	-	-	-	30'0	-	-	0	400	CLASS B AMPLIFIER	-	00+								
63	9.0	0000	001	5200	00009	32.0	0.6	052	0'81-	320	WELTCHEW V SEVID	520	052	0.5	3.5	HEVLER	24 x 24 x	¥2	WEDINW 1-BINK	POWER AMPLITER	69
	1.25	2000	0.8	3900	3300	0.95			-38'0	520	ATTULTINA A GALT	1.00	120					_	Varia -		
. 83	-		3	Type 6D	ites, refer to	ainstania	t officer ch	Log Log			ASTRU-TOWA	100	520	0.1	3.5	R3TA3H	,¥1 × ,H+	,js	NILL'S TTYWS	LIND.3.00100	89
49				Type 617	sics, refer to	aracteriat	t orpet ch	A			MOT24L20	100	520	0.1	3'2	RETARH	,왕1 × ,위)	49	SMALL BUILT	DING OF OND	49
99				.07 sqrcT (	ics, refer to	arecterist	r of per ch	Νo			DELECTOR AMPLIFIER	-	320	1'0	5.5	катлан	4fs × 15.	45	MILE TIVINS	ADDIAT-MANUA MAINURA AROTOSTAD	99
.88				.28 squit (	ics, reler to	aracterial	r ocher ch	No.			TRUCOS UNIT AS	-	520	0.1	3.5	#31A3H	,¥1 x ,扦+	DS	NIA-R TIYWS	DUPLEX-DIODE	99
23		_	1	N9 MAL	ics, refer to	Suitestanta	r other ch	kon			ANTUTER	-	300	3.0	3.5	RSTABH	. 211 x . 24+	84	WEDINW 1-PINE	TWINTFIELD	83
09	3.4	9320	8.C 8.C 8.E	3100 3100	1800 1800 1900	22.0	-	=	-24.0	420 400 200	CLASS A AMPLIFTER	-	05+	1.25	5*2	FILAMENT	. x 312 .	40	MEDIUM 4-PIN	RENTER AMPLITER	05
61	3.51	15000				0.4	-		0	180	CLASS & AMPLUTER&		190	21'0	3.0	FILAMENT	,計1 x ,計+	99	NIES WOIDSW	BOWER AMPLIFIER	69
	10.2	3000	1			0.001		100	-30'0	152	CLASS A AMPLIFICA		1							3000131	
84	3.5	1200 1200	=	005£	=	28.0	5.6	001 96	0'02- -10'0	152 96	CLASS & AND CIFTER	1001	152	4.0	30.0	0.0	53° x 24°	VI	MEDIUM 6-PIN	POWER AMPLIFIER	84
14	L'2	0004	051	2200	00009	0.15	0.9	052	5'91-	320	CTY22 Y WINTINES	320	520	\$2.1	5.5	TURMENT	21. x 25.	91	WEDINW 2-61M	SENTODE	LV
97	20.01 16.01	2800 2300	-	-	-	0'21		-	0	400	CLASS B AMPLIFIER &	-	009	\$2.1	3.5	LITYWENL	.44 x .15	96	NEDION S-PIN	POWER AMPLIFIER	97
-	1'52	0099	9'5	5320	3380	33'0			-32'0	320	CLASS & AMPRIFIER C	-	520	-	-						
92	13.01	3300 2000	-	-	-	13'0	eeid	amda 271	Self-brash, 7	542	CLASS AB ₁ AMPRLIFTER	-	542	5'1	5.5	LINIWERL	.#1 x . #+	40	WEDINW +-EIN	10000	57
	18.0	1200	2.5	5212	0021	0.36	-	-	-31/2	180	STALS & AMPLIFTER			-						43131 ISMAY IS3M.04	

	60ME8	COVOT		SHART	3.4	31419	N33832			3TA19	3211	-	BN	ITAR			SKOISHEME				
344	104 -100	CUTATED FOWER FOWER FORE	CATION CATION EACTOR	MTYLE) (CEND- LYNCE COMDOC:	LYNCE BEZIZ- BEZIZ-	KINI BENL CR8-	RENT COR-	ADELE ADELEA SCREEN	ANTIE BIVZ	ATA ATA -dns	swig high of anulaV anothers pritures on which has been been been been been been been bee	YYN NEJEZS	MAX.	BO LAS	NICTINI	TYPE	TENGLH TENGLH	LICHS COMMEC- 20CKEL	3540	ZWYN	TYPE
64				tonmi	terme		to without	-4	1		WALTER	1128	320	0.3	6.3	яатазн	NUT X THE		NIZ-9 TIWS	GINO-SUMINT BURD-SONTBOL	82
	2.2	2004	10.30	i joc ben in	a tarat teat	Powe			0	1 081	97710	-			-					WINTING	
64	0.8	14000	.p	not staiq-ot	Patalq bate	utr act			0	320	VILLILLING & STO	-	320	0.0	0.3	HEVLEN	. 11 x . 11+	HS	NId-9 TIVWS	WEIGTHEWY	64
68	UP PULAPU		o hearies.	a lewar in p	nt choke of	duy s	110 13	SEI (VY	umuiru	PO 102	D-C Onthat Cau	-	-	3'0	0'5	TILAMENT	+#1 x . ##+	29	NId-+ WOID3W	PULL-WAY	08
18		-	eres RB	o Veits, RU	8		Current	C Output	d mumi	AIM .		-	-	\$2.1	\$*2	FILAMENT	.212 x .19	89	NIG-> MUICIN	MECTURIEN	18
29	atiemperes	W 00+ ***	Voitage	ok Plate C	of mumic of mumic	WYI W	mbares KW2	152 Millin	Plate	the Cu	Maximum D.C Vo	-	-	3.0	3.5	THEMENT	+++, × 1++,	99	MEDIUM 4-PIN	NECTIFIER	82
83	estermaliti	N 008	Voltage-	ak Inverse D stalf da	ed mumiz	M	mperes RMS	ASO MUTH	Plate	tput Cu	Maximum D.C Vo	-	-	0.6	0'5	FILAMENT	21. x 34.	00 -	MEDIUM 4-PIN	PRECTURES P	68
83-A			eres NS	O Voits, R.	30		Per Plate.	C Output	A mumia	war Mar		-	-	3.0	0'5	RETTER	414 x . 114.	41	MEDIUM 4-PIN	PULL-WAVE	83-A
\$79/\$8			SN SN	o Wolts, RJ	19	1	per Plate	Tuqtuo 3	A mumin	uMa.		-	-	5.0	6.3	RETATH	, 및 1 X . 1분	01	NId-S TIVWS	PIECTURIER	\$29/88
98	056'0	\$0000 \$2000	6.3 5.3	1100	0054	1.7	-	-	0.05-	520 132	CLASS & AMPLITER	-	OSE	£.0	6.3	NETABH	,창1 × ,뛰*	00	NIG-9 TIVWS	DUPLEX-DIODE TRIODE	88
	0.30	0004	1.3	1452	3300	0.71	-	-	-20.0	091	AS TRUCK & WALL	-	320							1	
63	0'33	10300	132	1300	104000	5'6	9.1	100	-10.0	100	V2 LEMIODE	320	052	4.0	6.3	RETARH	**L x ' #	n	NId-9 TIVWS	CIND. TRIPLE CAID	68
	105'2	0400 13400			-	0.9	-	-	0	081	CLASS B ANTIFIER		320					1.5.1			
66-X 66-A	-	-	9.9	\$25	12200	3'2	-	-	5.8 -	06	CTY22 Y YMILTILIER	-	06	\$90'0	3'3	TN3MAJT	Aix te	0) 31	MIN-P TTYMS	AMPLIFICTOR+	66-X 66-A
115-1	-	-	8.5 8.5	0081- 5/51	4100 2400	1.7 0.8		-	-13.5	081 06	STATE & AMPLIFIER	-	190	52'0	0'5	D-C D-C	,#1 x .#+	01	NId-9 WOIO3W	DETECTOR+	115-9
\$28	10-50 Min.		(anonul)	g Current Trent (Con	Operating	D.CI	Volta	84 15	bbis Aoje	ing guin	D-C Operating Vol	-	-	-	-	-	24. x 34.	59	WEDINW PBIN	YOLTAGE NOTAJO38	\$78
9/8	100	aqmA 1.1			unD goitsen	do	\$110	1 09 03 01			Voltage Range	-	-	-	-	TNEMALIT	8, x 34°,		REAL	ROTAJUOJA	9/8
998	153	adury so	:		uD paires	do	\$110,	1 00 00 01			Voltage Range	-	-	-	-	TN2MAJIT	8, x 319,	-	REALAN	PEGULATOR PEGULATOR	988

		CATHODE	ANTIS	-	1.5	2.0	1	3.3	5.0	2.0	7.5	12.6	25.0	30.0
at. a during any part. ag some part of th		INDICATORS	( NORMA )		1	11		-	100 543	CPU '093	-		1	1
**Per pric of following title order-plane remains. wells. wells. (other how & Small Mond Ca (other how Small down call of the pric current down call for the pric current down call.		MIXER TUBES	BURLIOUS INLINE TOP IL	I	and the second s	2A7. 35. 58	States -		6A7. 6A8, 6D6, 6M7,	6LT. 39/44, 78		1		
a data mangeo da posto pana. contra per entra contra contra da a bata, so a sonto cana per entra contra da a terra da a su a contra da mandifer entra (e. A.D.) indust a contra o mandiferent entra	DLTAGE D FACE	DETECTORS	11 10		1 A.K. 1946/948 186 94 14	2A6, 287, 24-A, 27,	in the los	00-4 01.4 40 115.4	687, 688, 6C5, 6C6, 6F7, 6J7, 6H6, 6Q7,	Wit, JO, 31, 13, 70, 77, 85				
Applied through hete 2.1 Types of Note 2.3 Subscript hour cyc lapar cyc	AND BY CATHODE VO	CONVERTERS IN SUPERMETERODYNES	-		1A6.1C6	247			6A7, 6A8					
	Tuber of All-Metal constru-	POWER AMPLIFIERS			1P4, 19, 31, 33, 49	2A3, 2A5, 45, 46, 47, 53, 59	20	71.A. 112.A	6A4, 6A6, 6F6, 6L6, 6M7, 38 41 42 70 80	10 50	AT 101	2546.41	BT Incise	
al al 1 inductional control grad. Martinger Volkeyen, Man Tanger Volkeye = 90 vol solito, both plates. Marting plates s-plate load.	h	VOLTADE AMPLIFIENS Instanting Duplas-Diode Types	11, 12	36	144, 146, 184, 185/258, 196, 15, 30, 32, 34	2A6, 2B7, 24-A, 27, 35, 55, 56, 57, 58	22, 99	01-A, 40, 112-A	0D1, 6B8, 6C5, 6C6, 6D6, 6F5, 6F7, 6J7, 6M7, 6L7, 6Q7, 6K7, 36, 37, 39/44, 75, 76, 77, 78, 85					
field a 3 and 5 are entered. On this 42 and 54 are streen. On the 42 band 54 are streen. On the field connected together; the met being a field two tubes at a met being a field two tubes at a		RECTOREDS		-		62	1	SW4, 523, 524, 80, 83, 83 v	6H6, 6X5, 1-v. 84/624	81	1223	2525, 2526	1	
6470 00184		1476A		9.1	2.0	2.5	3.3	6.0	6.3	7.5	12.6	25.0	30.0	







#### **KEY TO TERMINAL DESIGNATIONS OF SOCKETS (Bottom Views)**

BP = Bayonet Pin F = Filament G = Grid H = Heater K = Cathode NC = No Connection P = Piate Par = Beam Forming Plate TA = Target Alphabetical subscripts D, P, and T indicate, respectively, diode unit, pentode unit, and triode unit in multi-unit types.

Numerical subscripts are used (1) in multi-grid types to indicate relative position of grids to cathode or filament, and (2) in multi-unit types to differentiate between (wo identical electrodes which would otherwise have the same designation.

### RCA G-TYPE RADIO TUBES (Octal-Base, Glass-Bulb Types)

In addition to the types of tubes shown on pages 52 to 58, the following octal-base, glass-bulb types are also available. These types are identified by the letter "G" following the type number. For each of these types, the corresponding glass or metal types are indicated below, together with socket connections and overall dimensions. Characteristic data for the G-types are the same as those for the corresponding types on pages 52 to 58.

G-Series	Corres	ponding	Socket	Max. Overall Dimensions
Type	Glass Type	Metal Type	Connections	Length x Diam.
15 pe 167-G 1J6-G 5V4-G 5V4-G 5V4-G 6K5-G 66F5-G 66F5-G 66F6-G 66F6-G 66F6-G 66F7-G 66F7-G 607-G 667-G	the         the           194         83-v           523         80	Mela Type  6A8 6C5 6F5 6F6 6H6 6H7 6K7 6K7 6K7	SC**           7AB**           5D**           5Q**           5T**           8A*           6Q*           7B**           7B**           7B**           7B**           7B**           7B**           7B**           7B**           7B**           7D**           7D**           7D**           7D*           7D*           7D*           7D*           7D*           7D*           7D*	4         1         4           4         1         4           4         1         1           4         1         1           4         1         1           4         1         1           5         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1           4         1         1
6X5-G 25A6-G		6X5 25A6	6S* 7S*	418 " x 1 % " 458 " x 1 18 "
25Z6-G		25Z6	7Q*	41% x 1.%

** Except that Pin No. 1 has no connection.

* Except that Pin No. 1 has no connection.
 ‡ Two 1F4's in the same bulb.
 ¶ Except that Pin No. 1 is connected to shield between diode units.
 ‡ Except that Pin No. 1 is connected to shield external to plate.

Except that filament current is 0.24 ampere.

Two 1F4's in the same bulb.

KADIO LOG									
Call Letters	Location	Dial Setting							



VANDOUVER . Victoria a da Boundary Mit, Verboo URALTIN HOULUNDIALALBY Bollingham MT. BAKEN Ol mpine additinu Seattle Southbe LNGT-0 WHITE ENTE Astoria de: Portland M FOULWEATHER Helena Jaquina Albany State aconda Dulles Pendleton Heppher Batte Baker o O S avon billeta an Drámono PK. Salato Huntington nin Gity Canyon City Challins G O .N Wall o Binckay be han Idaho City & St. Anti Boise Mountal Tales E. OUPPER KI 0 and tharnera I Silfor City Tyle ripidad MT SHASTA Roddin Montpeller 4 Tuscatora log 1 NOOGINO Suman JETH Ogda Sali Lake E fland Tana Carson (II) Provo 5. Eurola Sacramento San antvilla Francisco Oaland Lumpara lockton Bridge O Bela Bauta Crow Richfield Lo Tono Benton 6A Morced YOREMEN Mill RGoldBeld Pion Monte NAT. PARKS Marysvale Parowan HITNE 6 Escalante Koole o Sanal Mahnrg CONCEPTION Tuba SANTA BARBAR ill'ar Flogstaff Z Los Angeles San Ber Prescot o Sun Jacinto Polero AR St. Job 1 10 San Diego  $\mathbf{z}$ Q N Phoenis National 8 R Globe Gila ARC'TIOPT. BARROW OF 8 Tueson Pt. Yakon o Biebe 9 ST .LAWBEN KLONDIKED A ME St.Miehae LASKA Uncer PRIBILOF To Lakola Juneau Hermosillo Bering Sea Guaymas Limituk ALEUTIAN IS: Sandpoint PACIFIC ARCHIPELA Diron Entrance OCEAN

Winniphs Mocse Jaw RTASASEATCHE Regina ALTAINA Morris Glasgow VZUUSton Falls Wreitt Minot Miggo Grand Forks A A Glendi N O R TH DAKOTA amestowh . Medora Mandar Spring Falls Bismarch Billings Forsyth. Ellendale Wal Red Lospe Fort Custer Eureka 3 TELLOWST ONE OBL. Reda TIONAL PARK C SOUTH DAKOTA tone L. EBuffalo Pierre Huron Mail Newcastle in FREMONT 65 White B. Sionx Falls Hor Springa OM GDougla Lander Casper Vunktion to Mar Ladiran B. Sinux City LARAMIE PK. Granger Rawline EBRASK Rock Spin ( Chevenne arre R Brokenhow & Ord A Intanzie Bley Rangely Marries Borging Akron Bangely Marries Borging Akron Bangely Denver Morth Platts Kearney Omaha Greatey Sterling Indianola Hampings Beatrice Epadville Colorade Spine Topeta COLORSADO Delta -K-A-N Jetmore of the des La Junta Avia Walsenburg Wichita Lodge Wjuffel A Tierra Amarilla Morn Textine Pt. Definnce OKLAHOMA Sania Fel Hot Spr. Theresa Mobertio Oklahoma Ft. Wingata Guthrie Panhavale Albuquerque Las Vegas Damation City Bolen Puerto de Luna Mangum NEW X I C O Philavalle ME Magdalena S.D. Lehigh 8 Gazz Seymour Henrieta Dallas Boswell Dubbock Silver, City Tularova Ababant Worth Estabado Esteeiwster Bigspring Las Craces Carlebad Midland El Paso Gudad Juare Coleman Pecoa Waco San Angelo, orta BlancaT L E Ft.Stockton Menord Casar Grandes Mon Kerrville Austin UNITED STATES San Antonio Western Half Byak 50 700 150 200 250 800 Porfirio 320 MILES TO ONE INCH. COPYRIGHT, otulla . W. CLEMENT CO., SUFFALD, N. Y. San Diego

Pagt Arthur and a Is Ste Mar Minueauoli SL.Paul Portag 5 adison Milway lar Rapi JBOKBOD Mo Tidedo Clifenge -00 Der Hoines 5 Omalia 4-50 NOISTNDIAL Indianapolis Springfield Ibal Moberh St. Loui Jefferson Evansv10 KAN dity ichita Par 1, Sx Sela R Nashville 7 OKLA. ESSE NN Iklaho Hemphi Little Ro Haraitala AR 1 Hirmingh MISSISSIPPI ALABAN 34 Jackson Montgomery Messburg 9 Orark Blookp Funtrik T A/Mobile Tallaha KITHARD) aland L O/U Har Roug W, Orleans D.SAN BLAS Guljoj Me THE DELTA Matas 21 85 ANTONIO Same Scale as Main May. Sodo Batta Cruthe Hayana is 100 Miles (5 inch) a Guiles franche south of Key West. COPYRIGHT, J. W. CLEMENT CO., BUFFALD, N. Y.

Quebe Three Rivers Montreal She Portland Housen Handrer F.F. 1× N. 11 Portsmouth May heter rdis 3 6 RO oga Spra Hoston con orunio Lake ctady a SUTUCKET Bullalo Sector Libao NA Newport R Haren O LONG ISLAND Lerses Empot A series and a series and a series of the se Charleston VIRGINIA Richmond C. CHARLES Peterbore Lorfolk phong fort Walte St And Andrews An mark Sound CAPE HATTERAR B Anheon of Baufort agina Lrons Savannah Q B GIA UNITED STATES Eastern Half Thomasello Thomasello SLAugustine 50 100 150 200 250 ASL Avgustine C.O. Gallering COPYRIGHT Prinond and be look Destern Bears J. W. CLEMENT CO., BUFFALO, N. Y. C.CANAVERAL SL Petersburg hobes BAHAMA ISLANDS Key West SAL [Columbus, 1495
Okhotsk P.0 amobatki Niltolaie ovsk atosporik Harbin Mukde JAPANESE Tokyo-TOKOHANA TO HOND 3450 MILES Hankow UL La" Nanking EMPIRE BONIN MARCOR Y. Pacific 2 China A HARIANAS WAKE 1. United FIC ZMARSHALL JAPANESE MANDATE GILBERT ( IS. (Br.) EARANT 1. RITISH IU. MANDATE (Br. NDIAN Coral Sea NEW 3 OCEAN AUS RA 0 AUSTRALIA 1276 Auckiand dney auber NEW ZEAL Melbour Tasma Wellington 7270 MILES 24 DATE Sea 10 tenur 18 125 COPYRIGHT, J. W. CLEMENT CO. ANTIPODE ROYAL COMPANY . AUCKLAND LA 15. BUFFALD, N Y. Distances in Nantical Miles say Magellan 13,000 7,791 miles saved San Francisco Mugellan 13, 209 Honolulu Manlla, P. I. 5 Section of

GREENLAND ALASSA Parbanks Prices. Labradd. DOMI N10 N FLCAN OF 10 DAYS 4280 MILES Quebe Seattle 10 DAYS -> Halifar Sale Pat San Francisco w York hington UNITED STATES 10.01 Orleans 100 16AH 0090 / CANCER Mexico Magdale Bay Honolulu HAWALI SHORT ROUTE ilura TO THE EAST (0. 8.) VIA PANAMA Isthmits of CANAL O/C E Tehuaptoper Panamp Panama FANNING L. CHRISTMAS 1. EQUATOR 4005 18. A. (Echador) Guas MARQUESAS IS. TO AUSTRALIA SOUTH SHORT ROUTE VIA PARAMA CANAL MAN AWINT IS DATE З SACIETY US 194 AMERICA TROPIC OF CAPRICORN PITCAIRN L. - DUCIE I. TUBUAL IS (Fr.) FIC OCEAN EASTER I 500 1000 2000 Valparaiso NAUTIOAL MILES SCALE OF JUAN FERNANCES 500 IS. IND ---- Steamship Lines: Railroads: -AM Telegraph and Cable Lines: -All Distances are given in Nautical Miles WELLINGTON TO STR. OF MAGELLAN S 1. 4800 MILES PO IS. Strait of Mag Punta Arensa from New York via Panama Canal bs 2000 4000 6000 Suez 13,040 Yokohama 205 miles saved Раната 9,835 Suez 11,460 Hongkong 45 miles saved 731 miles as Sydney Panama 9,814 Summit Elevation 85 Feet Depth of Canal 41' to 45' NORMAL WATER LEVEL+85' BOTTOM OF CANAL+40 EVEL Panama Canal BOTTOM OF CANAL -41 30 35 . 40 45 50 M

Urkney Hangusund Islands Pentland Firth Baknfjor Wick Stavanger ay Firch Ekerson NOR W Rattray Head Peterhead AND Aberdeen Skagerrack Skage Dundee with of Forth Tuburgh N Eingkjöbing ort To Newcastle Sunderland Sea BRITAIN Liverpa Hull The Wash Halgoland Breine Halder NETHERALAND D The Hagne Quillin FIRMA English-Chan arls Sea Legue Marsfille C. Corso Liona Corsiea Ferons (To France) Barcelona S Tarragona stellon Pontine Is. Na Sassari Minorca dencia Palma Majoran liari-Tyrrhonias MAP OF Carbonara RAL EUROPE Egadian Is Trap Seale of Statute Miles Maraa 200 800 COPYRIGHT, J. W. CLEMENT CO., BUFFALO, N.Y.

Gulf of Fin Talling Stockhoim S ESTONIC Dage Strengt Topa 8 Norköping 30 Gotland WIEDEN ( Itio Riga Hamse exio Oland Rerlakrona 174 ristianstad V Men TH 3 -80 PO EK/ HUN TG 8 lustohuk Danube BULGARI BULGARI Balkan Mis FMostar Spala ratia. Philippin 11s coll Pleano 30 C Ravila BOL Prier Pescare. able Constitutio 9 Barl Durantol Olympus (may and the second UBING ATENZIA Brindly Mytifes Epbanchios Tonian oSGREECE Reggio di Calabria Islanda Zante Cyclades 00 all of Meaning and of Area Melon P





