

Form No. 1 F1057

Personal
\qquad
Name Hermeth Naskin Residence 122 Main lt. Cedar Sidle, your
Business Address \qquad
\qquad
In case of accident, please notify
Ernest. Napkin 407 Necker ©neinstir, Mun. Telephone 3529

Accident Ins. Policy No. \qquad
Automobile Information:
License No. \qquad
Motor No. \qquad
Model No. \qquad
\qquad
\qquad
\qquad
\qquad

R C A

AND THE RADIO SERVICE BUSINESS

Realizing that there is a world of information that must be immediately available to the radio service man, RCA takes pride in presenting this, the 1940 edition of the RCA Reference Book, to the radio service men of America. To the best of our knowledge this is the only book of its kind ever issued. It consists of a complete and carefully compiled list of terms, technical charts, diagrams and statistics which are bound to play an important part in the business activity of every radio service dealer and every radio engineer.
It is important, however, not to conclude that all information used in radio servicing is compiled herein, but everything possible has been done to condense this information without sacrificing its effectiveness.

Undoubtedly you will find valuable information which will be helpful in your business. Indeed if that much is done for you, then this booklet will have amply justified itself.

In these highly competitive days success in radio service business requires more than a
sound technical knowledge and up-to-date efficient service equipment. Even expertly trained service engineers who work on the theory that radio owners will "build a path to their door" will fall short of capitalizing on existing opportunities if they fail to recognize the importance of selling their services aggressively. RCA offers radio service men this opportunity.

As prominently as the RCA trade-mark stands for leadership in every phase of the radio business, so the achievements of RCA engineers stand out in the field of radio research. Service men who have studied radio know that to cata\log the contributions of RCA to the radio and television art is to write much of its history. So, too, RCA can contribute as much and even more to the radio service profession.

When you offer RCA Radio Tubes and Parts to your customers in connection with your professional services, you are associating your name with the greatest name in radio - RCA. When you use RCA Test Equipment, you are using products backed by the only organization that is active in every phase of radio and television - from the microphone in the studio to the radio set in the home - from the television camera iconoscope in the studio to the television receiver kinescope in the home.

This handy reference book is evidence of the close 'cooperation between RCA and radio service men. Our interests and problems are mutual and it is this, together with the close cooperation in technical matters which has always linked us and always will.

U. S. POPUL.ATION BY STATES

RADIO SETS BY STATES

State	POPULATION	FAMILIES	RADIO SIET
Alabama	2,895,000	670,000	375,000
Arizona	412,000	104,000	79,600
Arkansas	2,048,000	501,000	254,800
California	6,154,000	1,818,000	1,719,000
Colorado	1,071,000	288,000	233,500
Comnecticut	1,741,000	437,000	402,100
Delaware	261,000	67,000	57,600
Dist Columbia	627,000	168,000	152,900
Florida	1,670,000	443,000	297,900
Georgia	3,085,000	716,000	370,800
Idaho	493,000	124,000	98,700
Illinois	7,878,000	2,063,000	1,857,100
Indiana	3,474,000	934,000	816,800
Iowa	2,552,000	680,000	577,800
Kansas	1,864,000	501,000	367,800
Kientucky	2,920,000	708,000	494,900
Louisiana	2,132,000	510,000	297,400
Maine	856,000	221,000	201,100
Maryland	1,679,000	410,000	355,100
Massachusetts	4,426,000	1,104,000	1,019,200
Michigan	4,830,000	1,220,000	1,122,000
Minnesota	2,652,000	652,000	556,900
Mississippi	2,023,000	494,000	207,000
Missouri	3,989,000	1,072,000	822,800
Montana	539,000	142,000	114,600
Nebraska	1,364,000	352,000	284,100
Nevada	101,000	30,000	28,500
New Hampshire	510,000	136,000	124,400
New Jersey	4,343,000	1,098,000	1,022,500
New Mexico	422,000	102,000	62,300
New York	12,959,000	3,382,000	3,132,300
North Carolina	3,492,000	736,000	408,600
North Dakota	706,000	156,000	119,600
Ohio	6,733,000	1,777,000	1,641,500
Oklahoma	2,548,000	619,000	454,300
Oregon	1,027,000	299,000	285,400
Pennsylvania	10,176,000	2,452,000	2,206,400
Rhode Island	681,000	169,000	155,500
South Carolina	1,875,000	407,000	207,300
South Dakota	692,000	167,000	132,900
Tennessee	2,893,000	689,000	459,900
Texas	6,172,000	1,516,000	1,033,500
Utah	519,000	123,000	111,000
Vermont	383,000	99,000	88,600
Virginia	2,706,000	613,000	400,200
Washington	1,658,000	468,000	443,300
West Virginia	1,865,000	417,000	348,300
Wisconsin	2,926,000	735,000	612,700
W yoming	235,000	62,000	49,800

Technical Definitions*

"A" Power Supply A power supply device providing heating current for the cathode of a vacuum tube.
Alternating Current A current, the direction of which reverses at regularly recurring intervals, the algebraic average value being zero.
Amplification Factor A measure of the effectiveness of the grid voltage relative to that of the plate voltage in affecting the plate current.
Amplifier A device for increasing the amplitude of electric current, voltage or power, through the control by the input power of a larger amount of power supplied by a local source to the output circuit.
Anode An electrode to which an electron stream flows.
Antenna A conductor or a system of conductors for radiating or receiving radio waves.
Atmospherics Strays produced by atmospheric conditions.
Attenuation The reduction in power of a wave or a current with increasing distance from the source of transmission.
Audio Frequency A frequency corresponding to a normally audible sound wave. The upper limit ordinarily lies between 10,000 and 20,000 cycles.
Audio-Frequency Transformer A transformer for use with audio-frequency currents.
Autodyne Reception A system of heterodyne reception through the use of a device which is both an oscillator and a detector.
Automatic Volume Control A self-acting device which maintains the output constant within relatively narrow limits while the input voltage varies over a wide range.
"B" Power Supply A power supply device connected in the plate circuit of a vacuum tube.
Baffle A partition which may be used with an acoustic radiator to impede circulation between front and back.
Band-Pass Filter A filter designed to pass currents of frequencies within a continuous band limited by an upper and a lower critical or cut-off frequency and substantially reduce the amplitude of currents of all frequencies outside of that band.
Beat A complete cycle of pulsations in the phenomenon of beating.
Beat Frequency. The number of beats per second. This frequency is equal to the difference between the frequencies of the combining waves.
Beating A phenomenon in which two or more periodic quantities of different frequencies react to produce a resultant having pulsations of amplitude.
Broadcasting Radio transmission intended for general reception.
By-Pass Condenser A condenser used to provide an alternating-current path of comparatively low impedance around some circuit element.
"C" Power Supply A power supply device connected in the circuit between the cathode and grid of a vacuum tube so as to apply a grid bias.
Capacitive Coupling The association of one circuit with another by means of capacity common or mutual to both.
Carbon Microphone A microphone which depends for its operation upon the variation in resistance of carbon contacts.
Carrier A term broadly used to designate carrier wave, carrier current, or carrier voltage.
Carrier Frequency The frequency of a carrier wave.
Carrier Suppression That method of operation in which the carrier wave is not transmitted.
Carrier Wave A wave which is modulated by a signal and which enables the signal to be transmitted through a specific physical system.
Cathode The electrode from which the electron stream flows. (See Filament.)
Choke Coil An inductor inserted in a circuit to offer relatively large impedance to alternating current.
Class A Amplifier A class A amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows at all times.
Class AB Amplifier A class AB amplifier is an amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows for appreciably more than half but less than the entire electrical cycle.
Class B Amplifier A class B amplifier is an amplifier in which the grid bias is approximately equal to the cut-off value so that the plate current is approximately zero when no exciting grid voltage is applied, and so that plate current in a specific tube flows for approximately one-half of each cycle when an alternating grid voltage is applied.
Class C Amplifier A class C amplifier is an amplifier in which the grid bias is appreciably greater than the cut-off value so that the plate current in each tube is zero when no alternating grid voltage is applied, and so that plate current flows in a specific tube for appreciably less than one-half of each cycle when an alternating grid voltage is applied.
Note:-To denote that grid current does not flow during any part of the input cycle, the suffix 1 may be added to the letter or letters of the class identification. The suffix 2 may be used to denote that grid current flows during some part of the cycle.
Condenser Loud Speaker A loud speaker in which the mechanical forces result from electrostatic reactions.
Condenser Microphone A microphone which depends for its operation upon variations in capacitance.
Continuous Waves Continuous waves are waves in which successive cycles are identical under steady state conditions.

Conversion Transconductance is the ratio of the magnitude of a single beat-frequency component ($\mathrm{f}_{1}+\mathrm{f}_{2}$) or ($\mathrm{f}_{1}-\mathrm{f}_{2}$) of the output current to the magnitude of the input yoltage of frequency f_{1} under the conditions that all direct voltages and the magnitude of the second input alternating voltage f_{2} must remain constant. As most precisely used, it refers to an infinitesimal magnitude of the voltage of frequency f_{1}.
Converter (generally, in superheterodyne receivers.) A converter is a vacuum-tube which performs simultaneously the functions of oscillation and mixing (first detection) in a radio receiver.
Coupling The association of two circuits in such a way that energy may be transferred from one to the other.
Cross Modulation A type of intermodulation due to modulation of the carrier of the desired signal in a radio apparatus by an undesired signal.
Current Amplification The ratio of the alternating current produced in the output circuit of an amplifier to the alternating current supplied to the input circuit for specific circuit eonditions.
Cycle One complete set of the recurrent values of a periodic phenomenon.
Damped Waves Waves of which the amplitude of successive cycles, at the source, progressively diminishes.
Decibel The common transmission unit of the decimal system, equal to $1 / 10$ bel.

$$
1 \text { bel }=2 \log _{10} \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=2 \log _{10} \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}
$$

(See Transmission Unit)
Detection is any process of operation on a modulated signal wave to obtain the signal imparted to it in the modulation process.
Detector A detector is a device which is used for operation on a signal wave to obtain the signal imparted to it in the modulation process.
Diaphragm A diaphragm is a vibrating surface which produces sound vibrations.
Diode A type of thermionic tube containing two electrodes which passes current wholly or predominantly in one direction.
Direct Capacitance (C) between two conductorsThe ratio of the charge produced on one conductor by the voltage between it and the other conductor, divided by this yoltage, all other conductors in the neighborhood being at the potential of the first conductor.
Direct Coupling The association of two circuits by having an inductor, a condenser, or a resistor common to both circuits.
Direct Current A unidirectional current. As ordinarily used, the term designates a practically non-pulsating current.
Distortion A change in wave form occurring in a transducer or transmission medium when the output wave form is not a faithful reproduction of the input wave form.

Double Modulation The process of modulation in which a carrier wave of one frequency is first modulated by the signal wave and is then made to modulate a second carrier wave of another frequency.
Dynamic Amplifier The RCA Dynamic Amplifier is a variable gain audio amplifier, the gain of which is proportional to the average intensity of the audio signal. Such an amplifier compensates for the contraction of volume range required because of recording or transmission line limitations.
Dynamic Sensitivity of a Phototube The alternat-ing-current response of a phototube to a pulsating light flux at specified values of mean light flux, frequency of pulsation, degree of pulsation, and steady tube voltage.
Electro-Acoustic Transducer A transducer which is actuated by power from an electrical system and supplies power to an acoustic systom or vice versa.
Electron Emission The liberation of electrons from an electrode into the surrounding space. In a vacuum tube it is the rate at which the electrons are emitted from a cathode. This is ordinarily measured as the current carried by the electrons under the influence of a voltage sufficient to draw away all the electrons.
Electron Tube A vacuum tube evacuated to such a degree that its electrical characteristics are due essentially to electron emission
Emission Characteristic A graph plotted between a factor controlling the emission (such as the temperature, voltage, or current of the cathode) as abscissas, and the emission from the cathode as ordinates.
Facsimile Transmission The electrical transmission of a copy or reproduction of a picture, drawing or document. (This is also called picture transmission.)
Fading. The variation of the signal intensity received at a given location from a radio transmitting station as a result of changes occurring in the transmission path. (See Distortion.)
Fidelity The degree to which a system, or a portion of a system, accurately reproduces at its output the signal which is impressed upon it.
Filament A cathode in which the heat is supplied by current passing through the cathode.
Filter A selective circuit network, designed to pass currents within a continuous band or bands of frequencies or direct current, and substantially reduce the amplitude of currents of undesired frequencies.
Frequency The number of cycles per second.
Full-Wave Rectifier A double element rectifier arranged so that current is allowed to pass in the same direction to the load circuit during each half cycle of the alternating-current supply, one element functioning during one-half cycle and the other during the next half cycle, and so on.
Fundamental Frequency The lowest component frequency of a periodic wave or quantity.
Fundamental or Natural Frequency (of an antenna). The lowest resonant frequency of an antenna, without added inductance or capacity.

Gas Phototube A type of phototube in which a quantity of gas has been introduced, usually for the purpose of increasing its sensitivity.
Grid An electrode having openings through which electrons or ions may pass.
Grid Bias The direct component of the grid voltage.
Grid Condenser A series condenser in the grid or control circuit of a vacuum tube.
Grid Leak A resistor in a grid circuit, through which the grid current flows, to affect or determine a grid bias.
Grid-Plate Transconductance The name for the plate current to grid voltage transconductance. (This has also been called mutual conductance.)
Ground System (of an antenna) That portion of the antenna system below the antenna loading devices or generating apparatus most closely associated with the ground and including the ground itself.
Ground Wire A conductive connection to the earth.
Half-Wave Rectifier A rectifier which changes alternating current into pulsating current, utilizing only one-half of each cycle.
Harmonic A component of a periodic quantity having a frequency which is an integral multiple of the fundamental frequency. For example, a component the frequency of which is twice the fundamental frequency is called the second harmonic.
Heater An electrical heating element for supplying heat to an indirectly heated cathode.
Heterodyne Reception The process of receiving radio waves by combining in a detector a received voltage with a locally generated alternating voltage. The frequency of the locally generated voltage is commonly different from that of the received voltage. (Heterodyne reception is sometimes called beat reception.)
Homodyne Reception A system of reception by the aid of a locally generated voltage of carrier frequency. (Homodyne reception is sometimes called zero-beat reception.)
Hot-Wire Ammeter, Expansion Type An ammeter dependent for its indications on a change in dimensions of an element which is heated by the current to be measured.
Indirectly Heated Cathode A cathode of a thermionic tube, in which heat is supplied from a source other than the cathode itself.
Induction Loud Speaker is a moving coil loud speaker in which the current which reacts with the polarizing field is induced in the moving member.
Inductive Coupling The association of one circuit with another by means of inductance common or mutual to both.
Interelectrode Capacitance The direct capacitance between two electrodes.
Interference Disturbance of reception due to strays, undesired signals, or other causes; also, that which produces the disturbance.

Intermediate Frequency, in Superheterodyne Reception A frequency between that of the carrier and the signal, which results from the combination of the carrier frequency and the locally generated frequency.
Intermodulation The production, in a non-linear circuit element, of frequencies corresponding to the sums and differences of the fundamentals and harmonics of two or more frequencies which are transmitted to that element.
Interrupted Continuous Waves Interrupted continuous waves are waves obtained by interruption at audio frequency in a substantially periodic manner of otherwise continuous waves.
Kilocycle When used as a unit of frequency, is a thousand cycles per second.
Lead-In That portion of an antenna system which completes the electrical connection between the elevated outdoor portion and the instruments or disconnecting switches inside the building.
Linear Detection That form of detection in which the audio output voltage under consideration is substantially proportional to the modulation envelope throughout the useful range of the detecting device.
Loading Coil An inductor inserted in a circuit to increase its inductance but not to provide coupling with any other circuit.
Loud Speaker A telephone receiver designed to radiate acoustic power into a room or open air.
Magnetic Loud Speaker One in which the mechanical forces result from magnetic reactions.
Magnetic Microphone A microphone whose electrical output results from the motion of a coil or conductor in a magnetic field.
Master Oscillator An oscillator of comparatively low power so arranged as to establish the carrier frequency of the output of an amplifier.
Megacycle When used as a unit of frequency, is a million cycles per second.
Mercury-Vapor Rectifier. A mercury-vapor rectifier is a two electrode, vacuum-tube rectifier which contains a small amount of mercury. During operation, the mercury is vaporized. A characteristic of mercury-vapor rectifiers is the low-voltage drop in the tube.
Microphone A microphone is an electro-acoustic transducer actuated by power in an acoustic system and delivering power to an electric system, the wave form in the electric system corresponding to the wave form in the acoustic system. This is also called a telephone transmitter.
Mixer Tube (generally, in superheterodyne receivers.) A mixer tube is one in which a locally generated frequency is combined with the carrier-signal frequency to obtain a desired beat frequency.
Modulated Wave A modulated wave is a wave of which either the amplitude, frequency, or phase is varied in accordance with a signal.

Modulation is the process in which the amplitude, frequency, or phase of a wave is varied in accordance with a signal, or the result of that process.
Modulator A device which performs the process of modulation.
Monochromatic Sensitivity The response of a phototube to light of a given color, or narrow frequency range.
Moving-Armature Speaker A magnetic speaker whose operation involves the vibration of a portion of the ferromagnetic circuit. (This is sometimes called an electromagnetic or a magnetic speaker.)
Moving Coil Loud Speaker A moving coil loud speaker is a magnetic loud speaker in which the mechanical forces are developed by the interaction of currents in a conductor and the polarizing field in which it is located. This is sometimes called an Elec-tro-Dynamic or a Dynamic Loud Speaker.
Mu-Factor A measure of the relative effect of the voltages on two electrodes upon the current in the circuit of any specified electrode. It is the ratio of the change in one electrode voltage to a change in the other electrode voltage, under the condition that a specified current remains unchanged.
Mutual Conductance (See Grid-Plate Transconductance.)
Oscillator A non-rotating device for producing alternating current, the output frequency of which is determined by the characteristics of the device.
Oscillatory Circuit A circuit containing inductance and capacitance, such that a voltage impulse will produce a current which periodically reverses.
Pentode A type of thermionic tube containing a plate, a cathode, and three additional electrodes. (Ordinarily the three additional electrodes are of the nature of grids.)
Percentage Modulation The ratio of half the difference between the maximum and minimum amplitudes of a modulated wave to the average amplitude, expressed in per cent.
Phonograph Pickup An electromechanical transducer actuated by a phonograph record and delivering power to an electrical system, the wave form in the electrical system corresponding to the wave form in the phonograph record.
Phototube A vacuum tube in which electron emission is produced by the illumination of an electrode. (This has also been called photo-electric tube.)
Plate A common name for the principal anode in a vacuum tube.
Power Amplification (of an amplifier) - The ratio of the alternating-current power produced in the output circuit to the alternating-current power supplied to the input circuit.

Power Detection That form of detection in which the power output of the detecting device is used to supply a substantial amount of power directly to a device such as a loud speaker or recorder.
Pulsating Current A periodic current, that is, current passing through successive cycles, the algebraic average value of which is not zero. A pulsating current is equivalent to the sum of an alternating and a direct current.
Push-Pull Microphone One which makes use of two functioning elements 180 degrees out of phase.
Radio Channel A band of frequencies or wavelengths of a width sufficient to permit of its use for radio communication. The width of a channel depends upon the type of transmission. (See Band of Frequencies.)
Radio Compass A direction finder used for navigational purposes.
Radio Frequency A frequency higher than those corresponding to normally audible sound waves. (See Audio Frequency.)
Radio-Frequency Transformer A transformer for use with radio-frequency currents.
Radio Receiver A device for converting radio waves into perceptible signals.
Radio Transmission The transmission of signals by means of radiated electromagnetic waves originating in a constructed circuit.
Radio Transmitter A device for producing radiofrequency power, with means for producing a signal.
Rectifier A device having an asymmetrical conduction characteristic which is used for the conversion of an alternating current into a pulsating current. Such devices mclude vacuum-tube rectifiers, gas rectifiers, oxide rectifiers, electrolytic rectifiers, etc.
Reflex Circuit Arrangement A circuit arrangement in which the signal is amplified, both before and after detection, in the same amplifier tube or tubes.
Regeneration The process by which a part of the output power of an amplifying device reacts upon the input circuit in such a manner as to reinforce the initial power, thereby increasing the amplification. (Sometimes called "feedback" or "reaction.")
Resistance Coupling The association of circuit with another by means of resistance common to both.
Resonance Frequency (of a reactive circuit) - The frequency at which the supply current and supply voltage of the circuit are in phase.
Rheostat A resistor which is provided with means for readily adjusting its resistance.
Screen Grid A screen grid is a grid placed between a control grid and an anode, and maintained at a fixed positive potential, for the purpose of reducing the electrostatic influence of the anode in the space between the screen grid and the cathode.
Secondary Emission Electron emission under the influence of electron or ion bombardment.

Selectivity The degree to which a radio receiver is capable of differentiating between signals of different carrier frequencies.
Sensitivity The degree to which a radio receiver responds to signals of the frequency to which it is tuned.
Sensitivity of a Phototube The electrical current response of a phototube, with no impedance in its external circuit, to a specified amount and kind of light. It is usually expressed in terms of the current for a given radiant flux, or for a given luminous flux. In general the sensitivity depends upon the tube voltage, flux intensity, and spectral distribution of the fiux.
Service Band A band of frequencies allocated to a given class of radio communication service.
Side Bands The bands of frequencies, one on either side of the carrier frequency, produced by the process of modulation.
Signal The intelligence, message or effect conveyed in communication.
Single-Side-Band Transmission That method of operation in which one side band is transmitted, and the other side band is suppressed. The carrier wave may be either transmitted or suppressed.
Static Strays produced by atmospheric conditions.
Static Sensitivity of a Phototube The direct current response of a phototube to a light flux of specified value.
Stopping Condenser A condenser used to introduce a comparatively high impedance in some branch of a circuit for the purpose of limiting the flow of low-frequency alternating current or direct current without materially affecting the flow of high frequency alternating current.
Strays Electromagnetic disturbances in radio reception other than those produced by radio transmitting systems.
Superheterodyne Reception-Superheterodyne reception is a method of reception in which the received voltage is combined with the voltage from a local oscillator and converted into voltage of an intermediate frequency which is usually amplified and then detected to reproduce the original signal wave. (This is sometimes called double detection or supersonic reception.)
Swinging The momentary variation in frequency of a received wave.
Telephone Receiver An electro-acoustic transducer actuated by power from an electrical system and supplying power to an acoustic system, the wave form in the acoustic system corresponding to the wave form in the electrical system.
Television The electrical transmission of a succession of images and their reception in such a way as to give a substantially continuous reproduction of the object or scene before the eye of a distant observer.
Tetrode A type of thermionic tube containing a plate, a cathode, and two additional electrodes. (Ordinarily the two additional electrodes are of the nature of grids.)

Thermionic Relating to electron emission under the influence of heat.
Thermionic Emission Electron or ion emission under the influence of heat.
Thermionic Tube An electron tube in which the electron emission is produced by the heating of an electrode.
Thermocouple Ammeter An ammeter dependent for its indications on the change in thermo-electromotive force set up in a thermo-electric couple which is heated by the current to be measured.
Total Emission The value of the current carried by electrons emitted from a cathode under the influence of a voltage such as will draw away all the electrons emitted.
Transconductance The ratio of the change in the current in the circuit of an electrode to the change in the voltage on another electrode, under the condition that all other voltages remain unchanged.
Transducer A device actuated by power from one system and supplying power to another system. These systems may be electrical, mechanical, or acoustic.
Transmission Unit A unit expressing the logarithmic ratios of powers, voltages, or currents in a transmission system. (See Decibel.)
Triode A type of thermionic tube containing an anode, a cathode, and a third electrode, in which the current flowing between the anode and the cathode may be controlled by the voltage between the third electrode and the cathode.
Tuned Transformer A transformer whose associated circuit elements are adjusted as a whole to be resonant at the frequency of the alternating current supplied to the primary, thereby causing the secondary voltage to build up to higher values than would otherwise be obtained.
Tuning The adjustment of a circuit or system to secure optimum performance in relation to a frequency; commonly, the adjustment of a circuit or circuits to resonance.
Vacuum Phototube A type of phototube which is evacuated to such a degree that the residual gas plays a negligible part in its operation.
Vacuum Tube A device consisting of a number of electrodes contained within an evacuated enclosure.
Vacuum-Tube Transmitter A radio transmitter in which vacuum tubes are utilized to convert the applied electric power into radio-frequency power.
Vacuum-Tube Volt-Meter A device utilizing the characteristics of a vacuum tube for measuring alternating voltages.
Voltage Amplification The ratio of the alternating voltage produced at the output terminals of an amplifier to the alternating voltage impressed at the input terminals.
Voltage Divider A resistor provided with fixed or movable contacts and with two fixed terminal contacts;

Signal Tracing in Receiver Circuits

By John F. Rider

Signal tracing is a means of locating a defect by observing the performance of the receiver when a test signal is fed into the antenna input system of the receiver. To accomplish this end, signal tracing calls for observation of the presence, absence, and character of the test signal at key points of the receiver system. Supplementing this test is the measurement of those control voltages which are in any way associated with the signal. Final conclusions are reached by moasurement of the operating voltages in those circuits where the signal tracing process
 has loealized the fault.
The signal test is considered the primary or fundamental test. Secondary tests are those associated with the control and operating voltages, the former being considered to be the more important, although both are placed in the same oategory. As a follow-up of the voltage tests, we also employ, when necessary, a d-c resistance test. If the results of the signal-tracing test localize the defect to a certain component, it is possible to dispense with the voltage test and to apply the d-c resistance test to the component in question. Thus the actual routine subsequent to the signal-tracing test depends entirely upon exiating conditions.

The sequence of signal-tracing, expressed in its simplest terms, is as follows: The test signal is traced through the receiver until some point is reached where it is no longer normal. Then supplementary tests are made at the point where the signal departs from normal, or in that portion of the system that is related to the particular section of the receiver where the signal first departs from normal. As is to be expected, however, there are instances when this sequence of operation is modified, but such variation does not oceur frequently enough to interfere with the identification of the system as being of a certain general character.

Establishes Conditions of Signal

When we speak about the signal we include a number of items. Tracing the signal means all of the items to follow, but not necessarily a progressive test to check all of these conditions. For example, it might be necessary to establish whether the signal exists in those circuits where it should exist, whether it is absent from those circuits where it should not exist, and, furthermore, whether the signal has the proper level or intensity at certain specific points in the system in accordance with the manner in which the units operating upon the
signal are intended to perform. Added to the above are such items as frequency, the presence of interfering signals, distortion, overload, hum, unbalanced signal voltages, etc.

Working with the signal-tracing routine as a means of localizing the defect, we embrace all of the components utilized in the receiver. This is so because the function of all of the components of a radio receiver is to secure proper operation of that receiver with respect to the signal, and hence, to show some effect, direct or indirect, upon the signal. Therefore, the process of signal tracing makes possible a definite indentification of the manner in which individual components function in addition to an identification of the manner in which complete sections of a receiver operate. Signal tracing, therefore, becomes a functional test of a complete receiver, of complete sections of a receiver, and of the individual components of a receiver,- all with respect to the signal.

Why do we select the signal as a basis of test? There is one very definite and sound reason for this choice. Expressed in simple words, it is because the signal is the common denominator of all communication systems. The simplest of all radio recoivers has one thing in common with the most complicated of radio receivers. That common factor is the signal.

The signal is the fundamental, elemental, basic factor in all of these systems. Any number of defects may develop in a communication system, but if they do not influence the signal, the presence of the defect will never be known. On the other hand, the simplest defect is instantly recognized if of such character as to influence the signal so that it departs from normal. There is nothing mysterious about this close relation between the signal and operating condition. It is quite natural since the components used in the communication system - the receiver or transmitter-are employed in order to develop a certain signal.

Checked Under Operating Conditions

The first major advantage of signal tracing is that the receiver being tested is checked in actual operation or at least under operating conditions. This is of tremendous importance because of the large number of possible defects in a receiver which manifest themselves only when the system is in an operative state. The state of operation may not be productive of a normal signal because of the defect, but in order to be able to locate the defect it is necessary that the receiver power be "on."

Defects of the above variety do not always interfere with the operating potentials or the d -c resistance values in the various circuits, since they are not necessarily associated with open circuits or short circuits. All the connections are normal, yet the defect exists. Troubles of this type, in the past, have been representative of major service problems, essentially because of the absence of a trouble localizing technique which was capable of establishing the location of such defects without interfering with the operation of the recelver.

No matter what the function of the tube in a communication system, the signal-tracing process provides for a test of this tube right in the system without removing the tube from the circuit. Even if a tube is removed for a supplementary test in a tube checker, if such a test is considered necessary by the operator, a tremendous amount of time is saved in the process because the necessity for removing and checking each tube in a tube checker is eliminated. Only the tube under suspicion, as established by the signal-tracing test, is removed from its regular socket for a supplementary test.

It might be of incidental interest to briefly mention the tremendous superiority of a signal-tracing or functional test of a tube in its normal circuit rather than the conventional emission of mutual-conductance test. All receivers are not designed in exactly the same manner with respect to circuit constants, and, in many instances, tubes which are exceptionally good for one specific purpose may be unsuited for the r-f or i-f systems because of the regeneration introduced into the receiver. A new tube with slightly higher than normal mutual conductance may result in excessive regeneration and thereby interfere with the normal operation of the receiver. Then again, certain tubes with normal emission and mutual conductance values within the stated tolerance limits may oscillate over a certain portion of the frequency range of the receiver, but not over the complete frequency range. Thus, while the tube checker would show this tube to be normal and in good condition it may still not be suitable for the receiver in question.

Tubes Change Characłeristics

Last, but by far not the least, are those cases of tubes which develop gas after a certain period of use and after the tube has reached a sufficiently high temperature. In some instances this period of use may be ten minutes, while in other cases it may take one or two hours. The routine test of such tubes is a tube checker for the required period of time and under the exact conditions,

Block Diagram of Typical Receiver Circuit showing various stages.
prevailing in the receiver. Not knowing which tube is at fault, such tests in a tube checker would require expenditure of hours of testing time. On the other hand, a functional test of the receiver would indicate the development of a defect and would quickly enable the determination of the offending tube. Therefore, not only is the signal-tracing system independent of tube types, but it affords definite advantages over routine tube tests made with tube checkers.

An extremely important advantage of the signaltracing method of trouble localization over other methods is its complete freedom from limitations due to circuit design. By circuit design we mean such items as type of receiver, that is, $t-r-\mathrm{f}$, superheterodyne reflex, etc.; the age of the receiver, old or new; the number of tubes, which means systems ranging from those which employ no tubes as in a crystal receiver to a modern 25 - or 30 -tube receiver. It also covers the origin of the receiver which means receivers made in any part of the world.

It is possible to supplement the reference to "type" as contained in the foregoing paragraph by including a comment relating to individual specialized control circuits, as for example, automatic frequency control, automatic volume control, automatic bass compensation, automatic volume expansion, automatic selectivity control, and the like. Still another item associated with the comment that signal tracing as a means of localizing trouble is independent of circuit design, is utility of the receiver, which means classification of service, as, for example, the frequency range covered in the conventional multi-waveband home broadcast receiver, auto radio receiver, television receiver or facsimile receiver, and whether it embraces the police band, the commercial aircraft bands, the army and navy channels, carriers telephony, ship-to-shore channels as used by tugs and fishing fleets, etc.

All receivers, all circuits, revolve either directly or indirectly around some sort of a signal voltage, because all components in every receiver, no matter what the

Block Diagram of Typical Receiver Circuit showing various stages.
nature of the circuit, have some bearing upon the signal passing through that receiver.

It might be well to investigate this statement. It can be described simply by saying that every circuit contains certain test points or locations where information relating to the signal, if not the signal itself, can be obtained. Any change in circuit design, in the number of tubes, in the type of circuit-in general, any difference among receivers-resolves itself into the number of test points or locations and the kind of information desired at these points.

It might be well at this time to illustrate these points with a few examples. Suppose that we consider Figs. 1 and 2 . The former illustrates a comparatively simple superheterodyne receiver. The circuit is simple and few tubes are used. Special circuits are conspicuous by their absence. The latter receiver, however, is more elaborate. The number of tubes is greater, for separate oscillator and mixer tubes are used and an automatic volume control circuit with a separate AVC amplifier also is incorporated in the system. The number of i-f and a-f stages are increased. In general the receiver in Fig. 2 is more complex than in Fig. 1.

With signal tracing as the primary test, we have identified the major signal test points or test locations. The input circuits of the respective stages are indicated by the symbol for the grid and the output circuit is indicated by the symbol for the plate.

Signal Testing Routine Identical

Now if you compare these two block diagrams, you will note that there is no difference in signal-testing routine. In other words, the increased number of tubes and the change in circuits does not alter the general test locations. All that is changed is the number of signal test points at radio frequencies, intermediate frequencies, audio frequencies, etc. Even this statement is subject to qualifications, for while we show the increased number of signal test points, it does not necessarily mean that the signal is checked at each of these points. If you recall, the statement was made that complete sections of a receiver can be checked just as readily as individual components, so that it is possible to check the complete i-f system in Fig. 2 by working between the output of the mixer and the input of the demodulator (second detector), a test which is identical to that made in Fig. 1, although the number of tubes and individual test points in Fig. 2 is greater than in Fig. 1.

The routine of establishing facts concerning the signal is exactly the same in both cases, although the man who works upon the receiver must recognize certain inherent differences between the two receivers.

If you recall, we made mention of the fact that checking the control voltages was a vital function in the process of locating a defect by tracing the signal. Defining a control voltage so as to distinguish it from other d-c voltages found in receivers, we describe it as
being that $d-c$ voltage which is developed as the result of a signal and is employed to control the amplification provided in a tube or in a section of a radio receiver. Accordingly, we may encounter control voltages and control circuits in every portion of the receiver, as, for example, the r-f amplifier, the i-f amplifier and the a-f amplifier.

The process of testing control voltages is identical to that used to check signal voltages. Of courec, there is a difference between the two voltages, the control voltage being of $\mathrm{d}-\mathrm{c}$ character and the signal voltage being of a-c character, but the process of checking these voltages and interpreting them in terms of the action upon the signal consists of nothing more than establishing four essential facts. These are: (1) the function of the control voltage, (2) the source of the signal applied to the input of the control tube, (3) the control tube itself, and (4) the manner in which the control voltage is distributed to the various control points.

Checks Variation in Control Circuits

As in the previously mentioned cases of signal tracing, variations in control circuits mean nothing more than variations in the source of the signal voltage fed into the tube that develops the control voltage. It might be an i-f signal secured from any number of nlaces in an i-f system and by various coupling means, or it might be an a-f signal secured from some place in the demodulator or audio system. Hence, a variation in the control system means a variation in the lind of signal being checked at the input of the tube which generates the control voltage and the point at which this signal is checked. Also, it may mean a variation in the number of points at which the control voltage developed in a tube is fed to the other tubes. Expressed differently, this would be a variation in the number of places where the control voltage is measured, depending entirely upon the design of the individual receiver.

For example, in Fig. 2, a tube marked "AVC" is used to develop the automatic-volume-control voltage. The i-f signal is secured from the second intermediatefrequency amplifier and the control voltage is fed to the $r-f$, mixer, and first i-f tubes. The exact type of tube being used to develop the AVC voltage is of no consequence. The AVC voltage is developed at the output circuit of this AVC tube and this voltage is then distributed to the various tubes under control. In a circuit such as this, there are four basic control-voltage test points: the source and the three control grids which receive the control voltage. We of course assume, as has been stated before, that the device used to measure these control voltages is of such design as not to interfere in any way with the normal operation of the circuits, that is, it does not load the circuits. In the event that the control voltage does not appear at the end of the various distribution points, then additional test points may be found in the distribution channels so as to identify the exact point where the interruption of the circuit occurs.

TELEVISION DEFINITIONS

Aspect Ratio: The Aspect Ratio of a frame is the numerical ratio of the frame width to frame height.
Audio (Latin, "I hear"): Pertaining to the transmission of sound.
Blanking Pulse: Pulses produced during the return time of the cathode-ray beam from the bottom to the top of the picture to "blank out" the undesirable signals produced by the return lines in both the Iconoscope and Kinescope.
Brightness Control: Brightness Control is the control which varies the average illumination of the reproduced image.
Coaxial Cable: Special telephone cable suitable for conveying television signals.
Contrast Control: A device on the receiver for adjusting the range of brightness between highlights and shadows in a picture.
D. C. Transmission: D. C. Transmission means the transmission of a television signal with the direct current component represented in the picture signal.
Field Frequency: Field Frequency is the number of times per second the frame area is fractionally scanned in interlaced scanning.
Focus Control: This control is used for adjustment of spot definition.
Frame: One complete picture. Thirty of these in the present system are shown in one second on a television screen.
Framing Control: This control is used for centering and adjusting the height and width of pictures.
Frame Frequency: Frame Frequency is the number of times per second the picture area is completely scanned.
Ghost: An unwanted image appearing in a television picture as a result of signal reflection.
Gobo: A light-deflecting fin used to direct light in the studio and protect the camera lens from glare.
Horizontal Centering: Adjustment of the picture position in the horizontal direction.
Horizontal Hold Control: This control is used for adjustment of the free-running period of the horizontal oscillator.
Height Control : This control is used for adjustment of the pleture size in the vertical direction.
Iconoscope: A type of electronic cathode-ray pickup tube which has been developed by RCA.

It serves the dual nurpose of analyzing the visible picture projected on its mosaic into elements and producing electricalimpulses for each of these picture elements.
Interference:Disturbance of reception due to strays, undesired signals, or other causes; also, that which produces the disturbance.
Interlacing: A technique of dividing each picture into two sets of lines to reduce flicker.

Keystone: Shape of a reproduced image which is wider at the ton than at the bottom or vice versa. This shape is caused by the method used in scanning mosaic of the Ieonoscope.
Kinescope: A type of electronic cathode-ray receiver tube which has been developed by RCA.

It converts electrical impulses into picture elements which are visible to the eye.
Line: A single line across a picture, containing highlights, shadow, and half-tones.
Linearity Control: Adjustment of scanning wave shapes. May be qualified by the adjectives "Top," "Bottom," "Right," "Left."
Mosaic: Photo-sensitive plate mounted in the Iconoscope. The pieture is imaged upon it and seanned by electron gun.
Negative Transmission (Modulation): Negative Transmission (Modulation) occurs when a decrease in initial light intensity causes an increase in the radiated power.
Panning: A horizontal sweep of the camera. (From "panorama.")
Pedestal: Pulse which "blanks out" the return line in the Kinescope.
Polarization: The particular property of an antenna system which determines its radiation characteristics. i.e.-Vertical or horizontal polarization.
Positive Transmission (Modulation): Positive Transmission (Modulation) occurs when an increase in initial light intensity causes an increase in the radiated power.
Progressive Scanning: Progressive Scanning is that in which the seanning lines trace one dimension substantially parallel to a side of the frame in which successively traced lines are adjacent.
Radio Channel: A band of frequencies or wavelengths of a width sufficient to permit of its use for radio communication. The width of a channel depends upon the type of transmission.
Return Line: Trace of the cathode-ray beam in returning from bottom to top of the picture.
Sawtooth: A wave of electric current or voltage employed in seanning.
Scanning: Scanning is the process of analyzing successfully, according to a predetermined method, the light values of picture elements constituting the total picture area.
Scanning Line: A Scanning Line is a single continuous narrow strip which is determined by the process of scanning.
Shading: Reduces the undesired signals produced by the Iconoscope in the process of seanning.
Side-Bands: The bands of frequencies, one on either side of the carrier frequency produced by the process of modulation.
Signal: The intelligence, message or effeet conveyed in communication.

Spot: The visible spot of light formed by the impact of the electron beam on the screen as it scans the pieture.
Spottiness: Spottiness is the effect of a television picture resulting from the variation of the instantancous light value of the reproduced image due to electrical disturbances between the scanning and reproducing devices.
Television: Television is the electrical transmission and reception of transient visual images.
Tilting: A vertical sweep of the camera,
Vertical Centering: Adjustment of the pleture position in the vertical direction.
Vertical Hold: Adjustment of the free-running period of the vertical oscillator.
Vestigial-Side-Band Transmitter: A Vestigial-SideBand Transmitter is one in which one side band and a portion of the other are intentionally transmitted.
Video Frequency: The Video Frequency is the frequency of the voltage resulting from television scanning.
Width Control: This control is used for adjustment of the picture size in the horizontal direction.
Yoke: Produces magnetic deflection of an Iconoscope or Kinescope when supplied with sawtooth currents of proper voltage and phase.

RCA Victor Model TRK-12 Television Receiver

RCA CATHODE RAY TUBES

Type	Class	Bulb	Deflection	Phosphor		$\begin{gathered} \text { Maximum } \\ \text { Anode No. } 2 \\ \text { Volts } \end{gathered}$
				Color	Persistence	
$3 \mathrm{AP1} / 906-\mathrm{Pl}$	Oscillograph	$3^{\prime \prime}$	Electrostatic	Green	Medium	1500
$3 \mathrm{AP} 4 / 906-\mathrm{P} 4$	Kinescope	3 "	Electrostatic	White	Television	1500
$5 \mathrm{AP} 4 / 1805-\mathrm{P} 4$	Kinescope	$5^{\prime \prime}$, Short	Electrostatic	White	Television	2000
5BP1/1802-P1	Oscillograph	$5^{\prime \prime}$	Electrostatic	Green	Medium	2000
$5 \mathrm{BP} 4 / 1802-\mathrm{P} 4$	Kinescope	$5^{\prime \prime}$	Electrostatic	White	Television	2000
7AP4	Kinescope	$7^{\prime \prime}$, Short	Magnetic	White	Television	3500
9AP4/1804-P4	Kinescope	$9^{\prime \prime}$	Magnetic	White	Television	7000
12AP4/1803-P4	Kinescope	$12^{\prime \prime}$	Magnetic	White	Television	7000
902	Oscillograph	$2^{\prime \prime}$	Electrostatic	Green	Medium	600
904	Oscillograph	$5^{\prime \prime}$	ElectrostaticMagnetic	Green	Medium	4600
905	Oscillograph	$5^{\prime \prime}$	Electrostatic	Green	Medium	2000

RCA CATHODE RAY TUBES (Continued)

Type	Class	Bulb	Defleetion	Phosphor		$\begin{aligned} & \text { Maximum } \\ & \text { Anode No. } 2 \\ & \text { Volts } \end{aligned}$
				Color	Persistence	
907	Oscillograph	$5^{\prime \prime}$	Electrostatic	Blue	Short	2000
908	Oscillograph	$3^{\prime \prime}$	Electrostatic	Blue	Short	1500
909	Oscillograph	$5^{\prime \prime}$	Electrostatic	Blue	Long	2000
910	Oscillograph	$3 "$	Electrostatic	Blue	Long	1500
-913	Oscillograph	1 "	Electrostatic	Green	Medium	500
914	Oscillograph	$9{ }^{\prime \prime}$	Electrostatic	Green	Medium	7000
1800	Kinescope	$9{ }^{\prime \prime}$	Magnetic	Yellow	Television	7000
1801	Kinescope	$5^{\prime \prime}$	Magnetic	Yellow	Television	3000
1898	Monoscope	3 "	Electrostatic	Pattern	is Girl's Head	1200
1899	Monoscope	$5^{\prime \prime}$	Magnetic	Pattern testing to 500	is chart for resolution up lines.	1500

Calculation and Use of Shunts and Multipliers

Primarily, all electric meters of the indicating type having only two terminals are essentially current measuring devices and in fact are ammeters or milliammeters, as it is only the current flowing through the meter that causes mechanical motion and deflection of the needle.

However, we may calibrate the meter scale so that the needle deflection will accurately read ohms, volts, microfarads, etc., or any one of the electrical factors which if varied would create a change in current flow provided the other characteristics of the circuit would remain constant.

Let us consider a DC milliammeter ($0-1$) which gives full scale deflection when 1 milliampere flows through the meter. We desire to use this meter as a multirange voltmeter having scales $(0-10)(0-100)(0-500)$ and ($0-1000$) volts respectively. The resistance of many such meters in commercial use ranges from
 20 to 105 ohms. In the extreme case considering a meter of 105 ohms resistance the voltage drop across the meter at full scale current would be, according to Ohms Law, $\mathrm{Em}=\mathrm{Rm} \times \mathrm{Im}_{\mathrm{m}}$, $\mathrm{R}_{\mathrm{m}}=$ resistance of meter $=105$ ohms $\mathrm{Im}_{\mathrm{m}}=$ full scale current $=1$ milliampere $=.001$ ampere $\mathrm{Em}=$ $105 \times .001=0.105$ volts .

As the maximum voltage drop across the meter is only about $1 / 10$ volt under extreme conditions we can disregard this in our calculations as the error will be negligible.

Referring to Figure 1 we see that the meter can be used as a $0-10$ voltmeter if a resistance or multiplier is connected in series with it. The resistance must be of such value that if 1 milliampere of current (which is full scale deflection of the meter) flows through it the voltage across the resistance will be 10 volts. Figure 1.

The multiplier, $R_{1}=\frac{E}{I}=\frac{10}{.001}=10,000$ ohms.
Half scale deflection means that $1 / 2$ milliampere is flowing through the meter, therefore half scale deflection indicates

$$
E=R I=10,000 \times .0005=5 \text { volts. }
$$

Accordingly any fractional indication on the 0-1 mil scale will read the corresponding fraction of 10 volts which means the milliammeter scale is multiplied by 10 to get the actual reading in volts.

Similarly the multiplier for the ($0-100$) volt scale

$$
R_{2}=\frac{E}{I}=\frac{100}{.001}=100,000 \text { ohms. }
$$

and the milliammeter scale readings are multiplied by 100.

Likewise the multipliers for the ($0-500$) and ($0-1000$) volt scales would be 500,000 and $1,000,000$ ohms respectively and the scale multiples would be correspondingly 500 and 1000.

If a $0-10$ milliammeter was used in place of the 0-1 the multipliers in each case would of course be only $1 / 10$ of their respective values in the previous example. This would also apply to the scale multiples. However, the 10 milliampere meter would consume appreciable current in itself and may in certain circuits introduce a considerable error particularly where the resistance of the multiplier is not considerably higher than the voltage supply

FIG. 2 system. The voltage to be measured may be seriously affected when its source is called upon to supply an additional 10 milliamperes to operate the voltmeter.

This emphasizes the importance of a high resistance voltmeter; in the first example the resistance was 1000 ohms per volt while in the second instance it was only 100 ohms per volt. For the proper degree of accuracy in radio work, a 1000 ohm per volt voltmeter will be generally suitable.

To use the 0-1 milliammeter as a higher scale milliammeter, it is necessary to provide a shunt as in Figure 2. In this case it is essential to know accurately the resistance of the meter. Assume that it has a resistance of 27 ohms and that we want to have a scale reading of $(0-10),(0-50),(0-100)$ and ($0-500$) milliamperes.

Referring to Figure 2 it is evident that with a meter for $0-10$ mil measurements the meter would carry $1 / 10$ of the total current and the shunt $9 / 10$ or the shunt resistance would be $1 / 9$ of the meter resistance. If the meter resistance was 27 ohms the shunt resistance would be 3 ohms; correspondingly the shunt resistance for use as an 0-50 milliammeter would be $1 / 49 \times 27=$.551 ohms. For $0-100$ and $0-500$ scales the shunt resistance must be 0.2727 ohms and 0.0541 ohms respectively.
The general formula is

$$
\mathrm{R}=\frac{\mathrm{R}_{\mathrm{m}} \times \mathrm{I}_{\mathrm{m}}}{\mathrm{I}-\mathrm{Im}_{\mathrm{m}}}
$$

where $R=$ resistance of shunt in ohms
$\mathrm{R}_{\mathrm{m}}=$ resistance of meter in ohms
$\mathrm{Im}_{\mathrm{m}}=$ full scale current for meter $\mathrm{I}=$ full scale current for new calibration

By the use of a star or multipole switch as shown in Figure 3, one meter can be used as a voltmeter or milliammeter at any desired range. The accompanying chart shows the resistance of the shunt or multiplier as the case may be.

Shunt and Multiplier Values

105 Ohm (0-1) Milliammeter

Scale	Use as	Ohms of Resistance in Series or in Shunt with Meter	Multiply old scale by
0-10	Voltmeter	10,000	10
0-50	"	50,000	50
0-100	"	100,000	100
0-250	"	250,000	250
0-500	".	500,000	500
0-1000	"	1,000,000	1000
0-10	Milliammeter	11.7	
0-50	" ${ }^{\text {U }}$	2.14	50
0-100	"	1.06	100
0-500	"	0.21	500

35 Ohm (0-1.5) Milliammeter

$\begin{aligned} & 0-15 \\ & 0-150 \\ & 0-750 \end{aligned}$	Voltmeter	$\begin{array}{r} 10,000 \\ 100,000 \\ 500,000 \end{array}$	$\begin{array}{r} 10 \\ 100 \\ 500 \end{array}$
$\begin{aligned} & \hline 0-15 \\ & 0-75 \\ & 0-150 \\ & 0-750 \\ & \hline \end{aligned}$	Milliammeter 64 64 64 64	$\begin{aligned} & \hline 3.89 \\ & 0.714 \\ & 0.354 \\ & 0.0701 \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ 50 \\ 100 \\ 500 \\ \hline \end{array}$

Grid Bias Resistor Calculations

The radio service man often finds it necessary to replace the grid bias resistor in receivers employing a self-biasing arrangement for obtaining the proper grid voltage. When the resistance value is not known, it may be calculated by dividing the grid voltage required at the plate voltage at which the tube is operating, by the plate current in amperes plus the screen current in amperes times the number of tubes passing current through the resistor.

Under the above rule, the grid bias resistor value is given by the following formula:

$$
\mathrm{R}=\frac{\mathrm{Ec} \mathrm{c}_{1} \times 1.000}{\left(\mathrm{IB}+I \mathrm{c}_{2}\right) \mathrm{n}}
$$

where: $\mathrm{R}=$ Grid bias resistor value in ohms.
$\mathrm{Ec}_{1}=$ The grid bias required in volts.
$\mathrm{I}_{\mathrm{B}}=$ The plate current of a single tube in milliamperes.
$\mathrm{Ic}_{2}=$ The screen-grid current of a single tube in milliamperes.
$\mathrm{n}=$ The number of tubes passing current through the resistor.
Example:
It is desired to determine the value of bias resistor used to obtain the proper value of grid bias on three type ' 35 tubes working in the radio frequency stages of a receiver. First determine the plate and screen yoltages employed in this set. Suppose, in this case, it is found that the plate supply voltage is 250 and the screen voltage is 90 . Looking in the characteristics chart, it is found that the proper grid bias for the ' 35 under these conditions is -3.0 volts. In addition, the plate current is 6.5 milliamperes and the screen current is 2.5 milliamperes. Substituting in the formula,

$$
\mathrm{R}=\frac{3.0 \times 1,000}{(6.5+2.5) 3}=111 \text { ohms }
$$

The value of grid bias resistors can be calculated in this manner for any type and any number of tubes. In the case of triodes, the screen current term drops out entirely.

Be sure to determine the plate voltage at which the tubes are working, the number of tubes being supplied from the bias resistor, the screen voltage, (if a tetrode or pentode), the correct value of grid bias voltage required, and the plate and screen current for the given plate voltage.

In the case of resistance-coupled amplifiers which employ high resistance in the plate circuit, it must be remembered that the plate voltage is equal to the plate supply voltage minus the voltage drop in the plate load resistance caused by the plate current. The net plate voltage alone determines the correct value of grid bias.

The foregoing methods of calculations cannot be used in connection with receivers employing a bleeder circuit to obtain grid bias.

DIAMETER, WEIGHTS AND RESISTANCE OF COPPER WIRE

宅宅	Diameter Mils	Area, CircularMils	Weight. Bare Wire		Resistance at$25^{\circ} \mathrm{C} .\left(77^{\circ} \mathrm{F} .\right)$		
			$\begin{gathered} \hline \text { Pounds } \\ \text { per } \\ 1000 \\ \mathrm{Ft} \text {. } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { per } \\ \text { Mile } \end{gathered}$	$\begin{gathered} \hline \text { Ohms } \\ \text { per } \\ \text { 1000 } \\ \text { Ft. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ohms } \\ & \text { per } \\ & \text { Mile } \end{aligned}$	Feet per Ohm
0000	460.	211	41.	338	0.0499	0.2638	
000	410.	167,800.	508.	2683.	0.0630	0.3325	15,870.
00	364.8	133,100.	403.	2126.	0.0794	0.419	12,590.
	324.9	105,500.	319.5	1687.	0.1003	- 0.529	9,980.
	289.3	83,700.	253.3	1337.	0.1262	0.666	7,930.
2	257.6	66,400.	200.9	1061.	0.1591	0.840	6,290.
	229.4	52,600.	159.3	841.	0.2008	1.062	4,980.
	204.3	41,700.	126.4	668.	0.2533	1.338	3,950.
5	181.9	33,100.	100.2	529.	0.3193	1.685	3,134.
	162.0	26,250.	79.5	419.	0.403	2.127	2,485.
7	144.3	20,820.	63.0	332.6	0.507	2.682	1,971.
8	128.5	16,510.	50.0	264.0	0.640	3.382	1,562.
	114.4	13,090.	39.63	208.3	0.807	4.26	1,238.
10	101.9	10,380.	31.43	165.9	1.017	5.37	983.
11	90.7	8,230 .	24.92	131.6	1.284	6.78	779
12	80.8	6,530.	19.77	104.3	1.618	8.55	618.
13	72.0	5,180.	15.68	82.8	2.040	10.77	490.
14	64.1	4,110.	12.43	65.6	2.575	13.60	388.2
15	57.1	3,257.	9.86	52.1	3.244	17.13	308.4
16	50.8	2,583.	7.82	41.3	4.09	21.62	244.3
17	45.3	2,048.	6.20	32.73	5.16	27.24	193.9
18	40.3	1,624.	4.92	26.00	6.51	34.34	153.7
19	35.89	1,288.	3.899	20.57	8.20	43.3	121.9
20	31.96	1,022.	3.092	16.33	10.34	54.6	96.6
21	28.46	810.	2.452	12.93	13.04	68.9	76.6
22	25.35	642.	1.945	10.27	16.44	86.9	60.8
23	22.57	509.	1.542	8.14	20.75	109.5	48.2
24	20.10	404.	1.223	6.46	26.15	138.1	38.25
25	17.90	320.4	0.970	5.12	33.00	174.3	30.30
26	15.94	254.1	0.769	4.06	41.6	219.5	24.04
27	14.20	201.5	0.610	3.220	52.4	276.8	19.07
28	12.64	159.8	0.484	2.556	66.01	349.2	15.13

DIAMETER, WEIGHTS AND RESISTANCE OF COPPER WIRE

Bis	Diameter Mils	Area, Circular Mils	Weight, Bare Wire		Resistance at $25^{\circ} \mathrm{C}$. $\left(77^{\circ} \mathrm{F}.\right)$		
			$\begin{gathered} \text { Pounds } \\ \text { per } \\ 1000 \\ \mathrm{Ft} \end{gathered}$	Pouruds ner Mile	$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \\ \text { Ft. } \end{gathered}$	Ohms per Mile	Feet per Ohm
29	11.26	126.7	0.3836	2.025	83.4	1.	11.98
30	10.03	100.5	0.3042	1.606	105.4	556.	9.48
31	8.93	79.7	0.2413	1.273	132.6	700.	7.55
32	7.95	63.2	0.1913	1.011	167.2	883.	5.98
33.	7.08	50.1	0.1517	0.807	210.8	1113.	4.74
34	6.30	39.75	0.1203	0.636	265.8	1403.	3.762
35	5.61	31.52	0.0954	0.504	335.5	1772.	2.980
36	5.00	25.00	0.0757	0.400	423.0	2232.	2.366
37	4.45	19.83	0.0600	0.3168	533.	2814.	1.877
38	3.965	15.72	0.0476	0.2514	673.	3555.	1.487
39	3.531	12.47	0.03774	0.1991	847.	4470.	1.180
40	3.145	9.89	0.02993	0.1579	1068.	5640.	0.936

ALLOW ABLE CARRYING CAPACITIES OF COPPER WIRE AND CABLE

(Regulations of the National Board of Fire Underwriters)

$\begin{aligned} & \text { No. } \\ & \text { AWG } \end{aligned}$	Circular Mils	Amperes		Circular Mils	Amperes	
		Rubber Insulation	Other Insulation		Rubber Insulation	Other Insulation
18	1,624	3	5	250,000	250	350
16	2,583	6	10	300,000	275	409
14	4,107	15	20	350,000	300	450
12	6,530	20	25	400,000	325	500
10	10,380	25	30	450,000	362	550
8	16,510	35	50	500,000	400	600
6	26,250	50	70	600,000	450	680
4	41,740	70	90	700,000	500	780
2	66,370	90	125	800,000	550	840
1	83,690	100	150	1,000,000	650	1000
0	105,500	125	200	1,250,000	750	1180
00	133,100	150	225	1,500,000	850	1360
000	167,800	175	275	1,750,000	950	1520
0000	211,600	225	325	2,000,000	1050	1670

TEMPERATURE CORRECTIONS FOR COPPER WIRE

(Based on A.I.E.E. Standards)
Temperature Coefficient of Resistance. At a temperature of 25 degrees Centigrade the "constant mass" temperature coefficient of resistance of standard annealed copper, measured between potential points rigidly fixed to the wire is 0.00385 or $1 / 259.5$ per Centigrade degree.

Resistance values of copper wire given in table on preceding pages may be corrected for any temperature by means of the formula given below.

Correction for Change in Temperature

$R t=R_{25}[1+0.00385(t-25)]$, where
Rt $=$ the resistance in ohms at a temperature, t.
$\mathrm{R}_{25}=$ the resistance in ohms at 25 degrees, Centigrade $\mathrm{t}=$ the temperature of wire in degrees, Centigrade

Temp. C. $=5 / 9$ (Temp. F. -32)
Temp. F. $=9 / 5($ Temp, C. $)+32$.

SPECIFIC RESISTANCE OF METALS AND ALLOYS AT ORDINARY TEMPERATURES

SUBSTANCE	Specific Resist- ance Mi- crohms per Cm. Cube	Relative Con-ductance	$\begin{aligned} & \text { SUB- } \\ & \text { STANCE } \end{aligned}$	$\left.\begin{array}{\|c\|} \hline \text { Specifig } \\ \text { Resist- } \\ \text { ance } \\ \text { Mi- } \\ \text { crohms } \\ \text { per Cm. } \\ \text { Cube } \end{array} \right\rvert\,$	Relative Con-ductance
Aluminum	2.94	54.	Le	20	
Brass	6-9	26-17	Manganin	43.	3.7
Climax	87.	1.83	Mercury	95.7	1.66
Cobalt	9.7	16.3	Molybdenum	4.8	33.2
Constantan	49.	3.24	Nickel	10.5	11.8
Copper, U.S. std.	1.78	89.5	Nichrome	110.	1.45
Copper, annealed	1.59	100.	Platinum	10.8	14.6
Ger. Silver (18X)	30-40	5.3-4	Silver.	1.5	106.
Iron, pure	9.	17.7	Superior 23.	86.	1.85
Iron, wrought	13.9	11.4	Tungsten	5.4	28.9

USEFUL CONVERSION RATIOS

Multiply	by	
Diam. Circle		to obtain
Diam. Circle	0.1416	
U.S. Gallons	0.886	Sircumference Eircle Equal Square
U.S. Gallons	0.8333	Imperial Gallons
Inches Mercury	0.1337	Cubic Fect
Feet of Water	0.4912	Pounds per Sq. In.
Cubic Feet	0.4335	Pounds per Sq. In.
U.S. Gallons	62.4	Pounds of Water
U. S. Gallons	8.343	Pounds of Water
Knots	3.785	Liters
Inches	1.152	Miles
Yards	2.540	Centimeters
Miles	0.9144	Meters
Cubic Inches	1.609	Kilometers
Ounces	16.39	Cubie Centimeters
Pounds	28.35	Grams

Winding Turns per Linear Inch

$\begin{aligned} & \text { Gauge } \\ & \text { No. } \\ & \text { B\&S } \end{aligned}$	Enamel	S. S. C.	$\begin{aligned} & \text { D. S. C. } \\ & \text { S. ©r C. } \end{aligned}$	D. C. C.
8	7.6	-	7.4	7.1
9	8.6	-	8.2	7.8
10	9.6	-	9.3	8.9
11	10.7	-	10.3	9.8
12	12.0	-	11.5	10.9
13	13.5	-	12.8	12.0
14	15.0	-	14.2	13.3
15	16.8	-	15.8	14.7
16	18.9	18.9	17.9	16.4
17	21.2	21.2	19.9	18.1
18	23.6	23.6	22.0	19.8
19	26.4	26.4	24.4	21.8
20	29.4	29.4	27.0	23.8
21	33.1	32.7	29.8	26.0
22	37.0	36.5	34.1	30.0
23	41.3	40.6	37.6	31.6
24	46.3	45.3	41.5	35.6
25	51.7	50.4	45.6	38.6
26	58.0	55.6	50.2	41.8
27	64.9	61.5	55.0	45.0
28	72.7	68.6	60.2	48.5
29	81.6	74.8	65.4	51.8
30	90.5	83.3	71.5	55.5
31	101.	92.0	77.5	59.2
32	113.	101.	83.6	62.6
33	127.	110.	90.3	66.3
34	143.	120.	97.0	70.0
35	158.	132.	104.	73.5
36	175.	143.	111.	77.0
37	198.	154.	118.	80.3
38	224.	166.	126.	83.6
38 40	248.	$181 .$	133.	$\begin{aligned} & 86.6 \\ & 89.7 \end{aligned}$
40	282.	194.	140.	89.7

Conversion

Factors for Conversions-alphabetically arranged

Ampere	$\begin{aligned} & =1,000,000,000,000 \text { micromicro- } \\ & \text { amperes } \end{aligned}$
Ampere	$=1,000,000$ microamperes
Ampere	$=1,000$ milliamperes
Cycle	$=.000,001$ megacyele
Cycle	=. 001 kilocycle
Farad	$=1,000,000,000,000 \mathrm{micromicrofarads}$
Farad	$=1,000,000$ microfarads
Earad	$=1,000$ millifarads
Henry	$=1,000,000$ microhenrys
Henry	$=1,000$ millihenrys
Kilocycle	$=1,000$ cycles
Kilovolt	
Kilowatt	$=1,000$ watts
Megacycle	$=1,000,000$ cycles
Mho	$=1,000,000$ micromhos
Mho	$=1,000$ millimhos
Microampere	$=.000,001$ ampere
Microfarad	$=.000,001 \mathrm{farad}$
Microhenry	$=.000,001$ henry
Mieromho	$=.000,001 \mathrm{mho}$
Micro-ohm	$=.000,001 \mathrm{ohm}$
Microvolt	$=.000,001 \mathrm{volt}$
Microwatt	$=.000,001$ watt
Micromicrofarad	$=.000,000,000,001$ farad
Micromicro-ohm	$=.000,000,000,001 \mathrm{ohm}$
Milliampere	$=.001$ ampere
Millihenry	$=.001$ henry
Millimho	$=.001 \mathrm{mho}$
Milliohm	$=.001 \mathrm{ohm}$
Millivolt	$=.001 \mathrm{volt}$
Milliwatt	$=.001 \mathrm{watt}$
Ohm	$=1,000,000,000,000$ micromicro-ohms
Ohm	$=1,000,000$ micro-ohms
Ohm	$=1,000$ milliohms
Volt	$=1,000,000$ microvolts
Volt	$=1,000$ millivolts
Watt	$=1,000,000$ microwatts
Watt	$=1,000$ milliwatts
Watt	$=.001$ kilowatt

METRIC EQUIVALENTS

Length

$\mathrm{Cm} .=.3937 \mathrm{In}$.
Meter $=3.28 \mathrm{Ft}$.
Meter $=1.094 \mathrm{Yd}$.
Kilom. $=.621 \mathrm{Mile}$

In. $=2.54 \mathrm{Cm}$.
Ft. $=.305$ Meter
Yd. $=.914$ Meter
Mile $=1.61$ Kilom .

Area

Sq. Cm.	$=0.1550 \mathrm{Sq} . \mathrm{In}$.	Sq. in. $=6.452 \mathrm{Sq} . \mathrm{Cm}$.	
Sq. M.	$=10.764$ Sq. ft.	Sq. ft. $=.0929$ Sq. M.	
Sq. M.	$=1.196$ Sq. yd.	Sq. yd. $=.836$ Sq. M.	
Hectare	$=2.47$	Acres	Acre $=0.405$ Hectare
Sq. Kilom. $=$.386 Sq. mi.	Sq. mi. $=2.59$	Sq. Kilom

Volume

$\mathrm{Cu} . \mathrm{Cm} .=.061 \mathrm{Cu}$. in.
$\mathrm{Cu}, \mathrm{M} .=35.31 \mathrm{Cu} . \mathrm{ft}$.
$\mathrm{Cu} . \mathrm{M} .=1.308 \mathrm{Cu} . \mathrm{yd}$.
$\mathrm{Cu} . \mathrm{in} .=16.4 \mathrm{Cu} . \mathrm{Cm}$.
$\mathrm{Cu} . \mathrm{ft} .=.028 \mathrm{Cu} . \mathrm{M}$.
$\mathrm{Cu} . \mathrm{yd}=\quad .765 \mathrm{Cu} . \mathrm{M}$.

Capacity

Litre $=$	$.0353 \mathrm{Cu} . \mathrm{ft}$.	Cu. ft. $=28.32$	Litres
Litre $=$.2642 Gal. (U. S.)	Gal. $=3.785$	Litres
Litre $=61.023 \mathrm{Cu}$. in.	Cu. in. $=$.0164	Litre
	Litre $=2.202 \mathrm{lb}$. of fresh water at $62^{\circ} \mathrm{F}$.		

Weight

Gram	$=15.423$	Grains	Grain	$=$		4 Gram
Gram	. 0353	Ounce	Ounce		28.	Gram
Kilogra	2.205	Lb.	Lb.	$=$		Kilog'm
Kilogra	$=.0011$	Ton(Sht)	Ton(Sh	$=$		Kilog' 3
Met. To	$=1.1025$	$\begin{aligned} & \text { Ton(Sht) } \\ & \text { Ton(Sht) } \end{aligned}$	$\begin{gathered} \text { Ton(Sht } \\ =2,000 \mathrm{Lb} \end{gathered}$			Met. Ton

Pressure

Kilograms per square centimeter $=14.225$ pounds per square inch.
Pounds per square inch $=.0703$ kilograms per square cm .
Kilograms per square meter $=.205$ pounds per square foot. Pounds per square foot $=4.88$ kilograms per square meter
Kilograms per square centimeter $=.968$ atmosphere.
Atmosphere $=1.033$ kilograms per square cm .

Miscellaneous

Kilogrammeter $=7.233$ foot pounds.
Foot pound $=.1383$ kilogrammeter.
Metric horse power $=.986$ horse power.
Horse power $=1.014$ metrlc horse power.
Litre per second $=2.12$ cuble feet per minute.
Litre per second $=15.85$ U. S. gallons per minute.

TYPE NUMBERS OF PLUG-IN RESISTORS AND BALLAST UNITS
The internal connections and voltage characteristies of many plug-in resistors used in $\mathrm{AC} / \mathrm{DC}$ receivers are indicated by the type number and its arrangement. An example is type BK-36-C.
" B " indicates that a ballast section is provided for one or more pilot lamps.
" K " indicates the characteristics of the pilot lamp or lamps in accordance with the table below.
" 36 " implies that a 36 volt drop occurs across the entire unit in normal operation with pilot lamps connected.
"C" or the final letter refers to the terminal arrangement; arrangements are shown in the diagrams below.

U. S. Broadcasting Stations

Station	Location	这落	Station	Location	$\text { d } \frac{y_{0}^{\prime}}{5}$
KALE	Por	1300	KM	br.	40
KCMO	Kansas City, Mo.	1378	KMO	Tacoma, Was	3
KDKA	Pittsburgh, Pa.	980	KMOX	St. Lous, M	1090
KDYL	Salt Lake Cy, Utah	1290	KMTR	Los Angeles, Calif.	570
KECA	Los Angeles, Calif.	1430	KNX	Los Angeles, Calif.	50
KEHE	Los Angeles, Calif.	780	KOA	Denver, Co	30
KEX	Portland. Ore.	1180	KOAC	Corvallis, Ore	0
KFAB	Lincoln, Nebr.	770	KOB	Albuquerque, N.M.	
KFAC	Los Angeles, Calif.	1300	KOIL	Omaha, Nebr.	60
KFAR	Fairbanks, Alaska	610	KOIN	Portland. Ore.	40
KFBB	Great Falls, Mont.	1280	KOL	Seattle, Wash.	70
KFBI	Abilene, Kans	1050	KOMA	OklahomaCy, Okla.	0
KFBK	Sacramento, Calif.	1490	K0M0	Seattle, Wash.	0
KFH	Wichita, Kans.	1300	KOY	Phoenix, Ariz.	90
KFI	Los Angeles, Calif.	640	KPMC	Bakersfield, Calif.	50
KFKU	Lawrence, Kans.	1220	KPO	S. Franciseo, Calif	80
KFNF	Shenandoah, Iowa	890	KPOF	Denver, Colo.	880
KFOX	Long Beach, Calif.	1250	KPRC	Houston, Texas	20
KFPY	Spokane, Wash	890	KQW	San Jose, Calif.	1010
KFRC	S. Francisco, Calif.	610	KRGV	Weslaco, Texas	1260
KFSD	San Diego, Calif.	600	KRLD	Dallas, Texas	0
KFVD	Los Angeles, Calif.	1000	KRNT	Des Moines, Iowa	
KFWB	Hollywood, Calif.	950	KROW	Oakland, Calif.	30
KFYR	Bismarck, N. D.	550	KSCJ	Sioux City, Iow	1330
KGA	Spokane, Wash.	1470	KSD	St. Louis,	550
KGB	San Diego, Calif.	1330	KSFO	S. Francisco, Ca	0
KGCX	Wolf Point, Mont.	1450	KSL	Salt Lake Cy,	
KGER	Long Beach, Calif.	1360	KSO	Des Moines, Iowa	143
KGGF	Coffeyville, Kans.	1010	KSOO	Sioux Falls, S. D.	111
KGGM	Albuquerque, N.M.	1230	KSTP	St. Paul, Minn.	146
KGHL	Billings, Mont.	780	KTAR	Phoenix, Ariz	62
KGIR	Butte, Mont.	1340	KTAT	Fort Worth, Texas	124
KGKO	Fort Worth, Tex.	570	KTBC	Austin, Texas	11
KGMB	Honolulu, Hawaii	1320	KTBS	Shreveport, La	0
KGNC	Amarillo, Tex.	1410	KTFI	Twin Falls, Idaho	0
KGO	S. Francisco, Calif.	790	KTHS	Hot Springs, Ark.	1060
KGU	Honolulu, Hawaii	750	KTRH	Houston, Texas	290
KGVO	Missoula, Mont.	1260	KTSA	San Antonio, Tex.	550
KGW	Portland, Ore.	620	KTUL	Tulsa, Okla.	00
KHJ	Los Angeles, Calif.	900	KTW	Seattle, Wash.	220
KHQ	Spokane, Wash.	590	KUOA	Siloam Sprge, Ark.	80
KIDO	Boise, Idaho	1350	KVI	Tacoma, Wash.	570
KIRO	Seattle, Wash.	710	KVOA	Tueson, Ariz.	260
KITE	Kansas City, Mo.	1530	KVOO	Tulsa, Okla	40
KJR	Seattle, Wash.	970	KVOR	Colo.Springs, Colo.	
KLO	Ogden, Utah	1400	KWK	St. Lotis, Mo.	1350
KLRA	Little Rock, Ark.	1390	KWKH	Shreveport, La.	1100
KLX	Oakland, Calif.	880	KWSC	Pullman, Wash.	1220
KLZ	Denver, Col	560	KWTO	Springfield, M	60
KMA	Shenandoah, Ia.	930	KXA	Seattle, Wash.	60
KMBC	Kansas City Mo.	950	KXOK	St. Louis, Mo	12.
KMJ	Fresno, Calif.	58	KXYZ	Houston, Texas	1440

. . . . 1000 Watts or More

Station	Location		Station	Location	
		128	WGR	Bufialo, N. Y.	
KYW	Philadelphia, Pa.	102	WGST		
WABC	New York, N. Y		WGY	Col	
WADC	Akron, Ohio	1820	WHAM	Rochester, $\mathrm{N} . \mathrm{Y}$	1150
WAPI	Birmingham,	1140	WHAS	Lonisville, Ky.	820
WAVE	Louisville, Ky	940	WHAZ		300
WAWZ	Zarephath, N J	1350	WHBF	Rack Islan	1240
WBAL	Baltimore, Md.	1060	WHBI	Newark, N	1250
WBAP	Fort Worth, Texas	800	WHIO	Dayton	260
WBBM	Chicago, Ill.	770	WHIP	Hammond, Ind.	80
WBBR	Brookly	1300	WHK	Cleveland, Ohio	1390
WBEN		900	WHN	New York, N. Y.	1010
WBIG	Green	1440	WHO	Des Moines, Iowa	1000
WBIL	New	1100	WHP	Harrisburg, Pa.	1430
WBNS	Columbus,	1430	WIBA	Madison, Wis.	1280
WBNX	New York,	1350	W1BW	Topeka, Kan	580
WBRC	Birmingham, Ala.	930	WILL	Urbana, I1].	80
WBRY	Waterbury, Conn	1530	WIND	Gary, Ind.	560
WBT	Charlotte, N	1080	WINS	New York,	1180
WBZ	Boston, Mass.	990	WIOD	Miami, Fla	610
WBZA	Springfield, Ma	990	W1P	Philadelphia,	610
WCAT	Pittsburgh, P8	1220	WIRE	Indianapolis, Ind.	1400
WCAL	Northfield, Minn.	760	WlS	Columbia, S. C.	560
WCAU	Phi adelphia,	1170	WJAG		1060
WCBD	Chicago, Ill.	1080	WJAR	Providence, R.	890
WCOU	Minneapois, Mir	810	WJAS	Pittsburgh, Pa.	1290
WCFL	Cbicago, I	970	WJAX	Jacksonville, F	900
WCKY	Cavington, Ky.	1490	WJDX	Jackson, Mi	1270
WCOC	Meridien, Miss.	880	WJJD	Chicago, Ill	1130
WCSH	Portland, Maine	940	W.JR	Defroit, Mich	750
IVDAE	Tampa, Fla.	1220	WJSV	Washington, D C	1460
WDAF	Kansas City		WJZ		760
VDAY	Fargo	940	WKAQ	San	1240
V DBJ	Roano	930	WKAR	E. Lansing, Mich	850
WDBO	Orlando, Fla.	580	WKBH	La Crosse, Wis.	1380
WDGY	Minneapolis, Min	1180	WKBW	Buffalo, N. Y.	1480
WDOD	Chattanooga, Tenn.	1280	WKRC	Cineinmati, Ohio	550
WDRC	Hartford, Conn.	1830	WKY	Okla. City, Okla.	900
WDSU	New Orleans, Ia.	1950	WILAC	Nashville, Tern.	1470
WEAF	New York, N	660	WLB	Minneapolis, Minn.	760
WEAN	Providence R. I.	780	WIBL	Stevens Pt., Wisc.	900
WEAU	Eau Claire, Wis	1050	WLS	Chicago, Il].	870
WEBC	Duluth, Minn.	1290	WLW	Cincinnati, Ohio	700
WEEI	Boston, Mas		WMAQ	Chicago, Ill	670
WENR	Chicago,	870	WMAZ	Macon, Ga.	1180
WEVD	New York, N. Y.	1300	WMBD	Peoria, Il	1440
WFAA	Dallas, Texas	800	WMBI	Chicago, Ill.	1080
WFBC	Greenville,	1300	WMC	Memphis, Tenn.	780
WFBL	Syracus	1360	WMCA	New York, N. Y	570
WFBM	Indianapolis, Ind.	1230	WMEX	Boston, Miass.	1470
WTBR	Baltimore, Md.	1270	WMMN	Fairmont, W. Va.	890
WFIL	Philadelphia, Pa.	560	WMT	Cedar Rapids, Ia.	600
WETA	Tampa, F	620	WNAC	Boston, Mass.	1230
WGAR	Cleveland, Ohio	1450	WNAD	Norman, Okla.	1010
WGN	Chicago. 111.	720	WNAX	Yankton, S. D.	570

U. S. BROADCASTING STATIONS (Continued)

Station	Location		Station	Location	$\begin{array}{r} 1 \\ 3 \\ 3 \\ 3 \end{array}$
WNBX	Sp	1280	WSAI	Ci	1330
WNEL	San Juan, P R.	1290	WSAR	Fall River, Mass.	0
WNEW	New York, N. Y.	1250	WSAZ	Huntington, W.Va.	190
WNOX	Knoxville, Tenn,	1010	WSB	Atranta, G	0
WOAI	San Antonio, Tex.	1190	WSM	Nashville,	650
WOI	Ames, Iowa	640	WSMB	New Orieans, La.	1320
WOL	Washington, D	1230	WSPD	Toledo, Ohio	1340
WOR	New	710	WCUN	St. Petersburg,	620
WORK	York	1320	WSYR	Syracuse, N. Y.	570
WOV	New York,	1130	WTAG	Worcester, Mass.	580
WOW	Omaha, Neb	590	WTAM	Cleveland, Ohio	1070
WOW0	Fort Wayne, Ind.	1160	WTAQ	Green Bay, Wis	1330
WPEN	Philadelphia, Pa .	920	WTAR	Noriolk, Va.	780
WPG	Atlantic City, N.	1100	WTCN	Minneapolis, Minn.	250
WPTF	Raleigh, N	680	WTIC	Hartford, Conn.	1040
WQAM	Miami, Fla	560	WTMJ	Milwaukee, Wis.	620
WQXR	New York, N. Y.	1550	WTOC	Savannah, Ga	1260
WRC	Washington, D. C.	950	WWJ	Detroit, Mıch.	920
WREC	Memphis, Tenn.	600	WWL	New Orleans,	850
WREN	Lawrence, Kans.	1220	WWNC	Asheville, N. C	570
WRUF	Gainesville, Fla.	8	WWVA	Wheeling, W. Va.	1160
WRVA	Richmond, Va.	1110,	WXYZ	Detroit, Mich.	124

RADIO LOG

Principal Short Wave Stations

Meg. Call	Place	Schedule
4.11 HCJB	Quito, Ecuador	ex. Mon.
4.76 HJ2ABJ	Santa Marta, Col.	ex. Sun.
4.78 HJ1ABB	Barranquilla, Col.	ex. Sun.
4.80 HJlABE	Cartagena, Col.	Daily
4.82 HJ7ABB	Bucaramanga, Col.	ex. Sun.
4.84 HJ3ABD	Bogota, Col.	Daily
4.88 HJ4ABP	Medellin, Col.	ex. Sun.
4.90 HJ3ABH	Bogota, Col.	Daily
5.80 YV5RC	Caracas, Venez.	Daily
5.83 TIGPH	San Jose, C. R.	ex. Sun.
5.85 YV1RB	Maracaibo, Ven.	ex. Sun.
5.85 HI1J	San Pedro, D. R.	Daily
5.86 YV4RH	Valencia, Ven.	ex. Sun.
5.87 HRN	Tegucigalpa, Hon.	Daily
5.88 HI9B	Santiago, D. R.	ex. Sun.
5.90 T1LS	San Jose, R. D.	ex. Sun.
5.90 YV3RA	Barquisimeto, Ven.	ex. Sun.
5.93 HH 2 S	Port-au-Pr., Haiti	ex. Sun.
5.93 YV1RL	Maracaibo, Ven.	ex. Sun.
5.94 TG2X	Guatamela City	M. W. Sat.
6.00 HP55K	Colon, Panama	Daily
6.01 HJ3ABX	Bogota, Col.	Daily
6.02 DJC	Berlin, Ger.	Daily
6.03 HP5B	Panama City	Daily
6.04 HJ1ABG	Barranquilla, Col.	Daily
6.05 HJ6ABA	Pereira, Col.	ex. Sun.
6.05 GSA	London, Eng.	Daily
6.07 OAX4Z	Lima, Peru	ex. Sun.
6.11 HJ6ABB	Manizales, Col.	ex. Sun.
6.11 GSL	London, Eng.	Daily
6.15 HJ4ABE	Medellin, Col.	Daily
6.15 H15N	Moca City, R. D.	ex. Sun.
6.15 YV5RD	Caracas, Ven.	Daily
6.21 TG2	Guatemala City	ex. Sun.
6.22 YV1RG	Valera, Venez.	Daily
6.24 HRD	LaCeiba, Honduras	ex. Sun.
6.24 HIN	Trujillo, R. D.	ex. Sun.
6.25 YV5RJ	Caracas, Ven.	ex. Sun.
6.27 YV5RP	Caracas, Ven.	ex. Sun.
6.29 HIG	Trujillo City, R. D.	ex. Sun.
6.30 YV4RD	Maracay, Venez.	ex. Sun.
6.31 HIZ	Trujillo, R. D.	ex. Sun,

Short Wave Stations (cont.)

Meg. Call	Place	Schedule
6.34 HI1X	Trujillo, R. D.	Tu. \& Fri.
6.36 YV1RH	Maracaibo, Ven.	ex. Sun.
6.38 YV5RF	Caracas, Ven.	ex. Sun.
6.40 YV5RH	Caracas, Venez.	ex. Sun.
6.40 TGQA	Quezaltenango, Guat.	t. ex. Sun.
6.41 TiPG	San Jose, C. R.	Daily
6.42 YV6RC	Bolivar, Venez.	ex. Sun.
6.47 YV3RD	Barquismento, Ven.	Daily
6.50 HIL	Trujillo City, R. D.	ex. Sun.
6.52 YV4RB	Valencia, Venez.	Daily
6.55 YV6RB	Bolivar, Venez.	ex. Sun.
6.63 HIT	Trujillo, R. D.	ex. Sun.
6.63 HC2RL	Guayaquil, Ec.	. \& Tu.
6.68 TIEP	San Jose, C. R.	Daily
7.80 HBP	Geneva, Switz.	Mon.
7.89 HC1RB	Quito, Ecuador	ex. Sun.
9.12 HAT-4	Budapest, Hung.	un. \& W.
9.23 HC2CW	Guayaquil, Ecu.	ex. Sun.
9.34 OAX4J	Lima, Peru	Daily
9.49 EAR	Madrid, Spain	in., Tu. \& Th.
9.51 VK3ME	Melbourne, Aus.	ex. Sun.
9.51 HJU	Buenaventura, Col.	M. W. \& F.
9.51 GSB	London, Eng.	Daily
9.52 HJ6ABH	Armenia, Col.	Daily
9.52 ZBW-3	HongKong, Chins	Daily
9.52 OZF	Copenhagen, Den.	Daily
9.53 LKC	Oslo, Norway	Daily
9.54 DJN	Berlin, Ger.	Daily
9.55 OLR3A	Prague	M. T. T. \& F.
9.56 DJA	Berlin, Ger.	Daily
9.57 KZRM	Manila, P. I.	Daily
9.58 VLR	Melbourne, Aus.	ex. Sun.
9.58 GSC	London, Eng.	Daily
9.59 PCJ	Eindhoven, Holland	Irr.
9.60 RAN	Moscow, USSR.	Daily
9.60 HP5J	Panama City	Daily
9.62 HJ1ABP	Cartagena, Col.	Daily
9.62 ZRK	Johannesburg, S. Af.	. ex. Sun.
9.63 HJ7ABD	Bucaramanga, Col.	Daily
9.63 I2RO3	Rome, Italy	Daily
9.64 HH3W	Port-au-Pr, Haiti	ex. Sun.
9.65 CS 2 WA	Lisbon, Port.	T.T. \& Sat.

Short Wave Stations (cont.)

Meg.	Call	Place	Schedule
9.66	LRX	Buenos Aires, Arg.	Daily
9.67	T14-NRH	Heredia, CR. T	Tu. Th. \& Sat.
9.68	TGWA	Guatemala City	Daily
9.68	VK2ME	Sydney, Aus.	Suñ.
9.70	Fort de Fra	acne, Martinique	Daily
9.83	IRF	Rome, Italy	Daily
9.86	EAQ	Madrid, Spain	Daily
9.93	JDY	Darien, Manchukuo	Daily
9.95	CSW	Lisbon, Port.	Daily
9.95	TPB11	Paris, France	Daily
10.22	PSH	Rio de Janeiro, Brazil	il ex. Sun.
10.37	EAJ-43	Santa Cruz, Can. Is.	Daily
11.00	PLP	Bandoeng, Java	Daily
11.04	CSW	Lisbon, Port.	Daily
11.53	SPD	Warsaw, Poland	Daily
11.70	HP5A	Panama City	Daily
11.71	TPA4	Paris, France	Daily
11.75	GSD	London, Eng.	Daily
11.77	DJD	Berlin, Ger.	Daily
11.80	OER3	Vienna, Ger.	Daily
11.80	JZJ	Tokyo, Japan	Daily
11.81	2RO	Rome, Italy	Daily
11.84	OLR4A	Prague M.	M. Tu. Th. \& F.
11.85	DJP	Berlin, Germany	Daily
11.86	GSE	London, Eng.	Daily
11.88	TPB 7	Paris, France	Daily
11.91	CD1190	Valdivia, Chile	Daily
12.00	RNE	Moscow, USSR.	Daily
13.63	SPW	Warsaw, Poland	ex. Sat.
15.11	DJL	Berlin, Ger.	Daily
15.14	GSF	London, Eng.	Daily
15.15	YDC	Sourabaya, Java	Daily
15.18	GSO	London, Eng.	Daily
15.19	OFB	Lahte, Finland	ex. Sun.
15.20	DJB	Berlin, Germany	Daily
15.24	TPA 2	Paris, France	Daily
15.28	DJQ	Berlin, Germany	Daily
15.34	DJR	Berlin, Germany	Daily
15.37	HAS 3	Budapest, Hungary	Sun.
17.76	DJE	Berlin, Germany	Daily
17.77	PHI2	Huisin, Holland	Mon. to Fr.
17.79	GSG	London, Eng.	Daily
21.47	GSH	London, Eng.	Daily
21.53	GSJ	London, Eng.	Daily

RADIO TUBE CHART
$\stackrel{H}{*}$

TYPE	NAME	DIMENSIONS SOCKET COHNECIENS		CATHODE TVPE AHD RATIMG			USE Values to right give operating condilions and charatieristics for Indicated typical use	PLATE SUP- PLY volts	6RID BIAS = votrs	SCIEEM SUPPLY votrs	$\begin{gathered} \text { SCREEN } \\ \text { CUR- } \\ \text { RENT } \\ \text { MA. } \end{gathered}$	PLATE CUR- REWT ua.	A. PLATE RESIS. TAHCE OHMS	TRANS. CONBUC- TAKCE (GRID- PLITE) य M M:	amplifl CATIOH FACTOR	LOAD FOK states POWER output ония	POWER DUT. PUT wats	TYPE
		DINES.	s.c.	c. T.	vocts	AMP.												
00-A	DETECTOR TAIODE	D12	40	D.C.	5.0	0.25	$\begin{aligned} & \text { CRID.LEAK } \\ & \text { DETECTOR } \end{aligned}$	45		Return Filamen		1.5	30000	666	20	-	-	00-A
O1-A	DETECTOR ANPLIFIEA	D12	40	D.C.	5.0	0.25	CLass a Amplifier	90 135	-4.5 -9.0	-	-	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11000 \\ & 10000 \end{aligned}$	$\begin{array}{r} 725 \\ 800 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	-	-	01-A
084-6	GAS-TRICOE	D3	G-46	Cold	-	-	$\begin{aligned} & \text { RELAYY } \\ & \text { SERVICE } \end{aligned}$	Peak Cathode Current, 100 max. ma. D-C Cathode Current, 25 max, ma, Starter-Anode Drop, 60 zpprox, volts. Anode Drop, 70 approx, volts.										0A4-6
014	FULL-WAVE GAS RECTIFIER	83	4月	Cold	-	-	RECTIFIER	Starting-Supply Vultage per Plate, 300 min . peak volts. Peak Plate Current, 200 max, nia. D-C Output Current, 75 max, 30 min. ma. D.C Output Voltage, 300 max, volts.										024
024-6	FULL-WAVE GAS RECTIFIEA	81	G-18 0	Cold	-	-	RECTIFIER											024-6
1A4-P	SUPER-CONTROL R-F AMPLIFIER PENTODE	D9	4 M	D.C.	2.0	0.06	AMPLIFIER	For other characteristics, refer to Type IDS-GP.										IA4-P
1/45-G	POWEA AMPUIICR FENTODE	D1	G-8x	D.C.	1.4	0.05	CLASS A AMPLIFIER	85 90	-4.5 -4.5	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 300000 \\ & 300000 \\ & \hline \end{aligned}$	$\begin{array}{r} 800 \\ 850 \\ \hline \end{array}$	\square	$\begin{aligned} & 25000 \\ & 25000 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.115 \end{aligned}$	1A5-6
146	PENTAGRIO CONVERTERO	D9	61	$\overline{\mathrm{D} . \mathrm{C}}$	2.0	0.06	CONVERTER	For other characteristics, refer to Type 1D7-G.										IÅ6
187-6	PENTAGRID CONVERTER:	D8	G-7z	$\stackrel{\text { D.c. }}{\text { F }}$	1.4	0.05	CONVERTER	90	0	454	0.6	0.53	600000	Anode-Grid Oscillator-G Conversion	$\begin{aligned} & \mathrm{d}(x 2): 9 \\ & \text { Grid }(\leqslant 1 \\ & \text { Transco } \\ & \hline \end{aligned}$	max. y Resistor d., 250	$\begin{gathered} 9.1 .2 \mathrm{ma} . \\ 0.2 \mathrm{meg} \\ \text { nicromhos. } \end{gathered}$	[A7-6
1A7-ET	PENTAGRID CONVEATERD	C3	G.72	D, F.	1.4	0.05	CONVERTER	For other characteristica, refer to Type 1A7-G.										1A7-8T
134-P	R-F AMPLIFIER PENTODE	D9	4M	D.C.	2.0	0.06	AMPLIFIER	For other characteristics, refer to Type 1E5-GP.										\| B4-P
1B5/255	DUPLEX-DIODE THIODE	DS	6M	$D_{\mathrm{F}}^{\mathrm{D} . \mathrm{C}_{1}}$	2.0	0.06	TRIODE UNIT AS AMPLIFIER	For other characteristics, refer to Type 1H6-G.										1B5/25\$
165-6	- POWEA ANGPLIFIER PENTODE	D1	C-5X	D.C.	1.4	0.10	CLASS A AMPLIFIER	83 90	$\begin{array}{r}-7.0 \\ -7.5 \\ \hline\end{array}$	$\begin{aligned} & \hline 83 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 110000 \\ & 115000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & 1550 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 9000 \\ & 8000 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.24 \end{aligned}$	IC5-6
166	PENTKGRID CONVERTER 0	D9	61.	D.C.	2.0	0.12	CONVERTER	For other characteristica, refer to Type 1C7-G.										106

167-G	(PENTAGAID	D8	6-7z	${ }_{\text {D }}^{\text {D. }}$ F	2.0	0.12	CONVERTER	135 180	- 3.0 -3.0	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 600000 \\ & 700000 \end{aligned}$	Anode-Grid ($\$ 2$): 180 n max, volts, 4.0 ma . Oscillator-Grid (\$1) Resistora Conversion Transcond., 325 micromhos				IC7-G
105-6P	SUPER-CONTROL R-F AMPLIFIER PENTODE	DS	G-5y	${ }_{\text {D.C. }}^{\text {c }}$	2.0	0.06	CUASS A AMPLIFIER	$\begin{array}{r} 90 \\ 180 \end{array}$	$\left\{\begin{array}{\|c} -3.0 \\ \min . \end{array}\right\}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.3 \end{aligned}$	$\begin{array}{r} 600000 \\ 1000000 \end{array}$	$\begin{aligned} & 720 \\ & 750 \end{aligned}$	-	-	-	105-6P
107-G	PENTAGRID CONVERTERA	DE	0-72	$\stackrel{\text { D.C. }}{\text { F }}$	2.0	0.06	CONVERTER	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	$\left\{\begin{array}{c}-3.0 \\ \text { min. }\end{array}\right\}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 400000 \\ & 500000 \end{aligned}$	Anode-Grid (\$2): 180 m max. volts, 2.3 ma . Oscillator-Grid (\$1) Resistor $\%$. Conversion Transcond., 300 micromhos				1D7-a
							PENTODE UNIT AS CLASS A ANPLIFIER	$\begin{aligned} & 45 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} -4.5 \\ -9.0 \\ \hline \end{array}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 300000 \\ & 200000 \\ & \hline \end{aligned}$	$\begin{aligned} & 650 \\ & 925 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 20000 \\ & 12000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.035 \\ & 0.200 \\ & \hline \end{aligned}$	108-6T
ID8-GT	POWER AMPLIFIER PENTODE	c3	C-8	-.C.	1.4	0.1	TRIODE UNIT 15 CLASS A AMPLIFIER	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-	-	$\begin{aligned} & 0.3 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 77000 \\ & 43500 \end{aligned}$	$\begin{aligned} & 325 \\ & 575 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	-	,	
IE5-GP	A-F AMPLIFIER PENTODE	D8	C-5Y	${ }_{\text {D. }}^{\text {D. }}$	2.0	0.06	CLUSS A AMPLIFIER	$\begin{array}{r} 90 \\ 180 \end{array}$	$\begin{array}{r} =3.0 \\ -3.0 \\ \hline \end{array}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1000000 \\ & 1500000 \\ & \hline \end{aligned}$	$\begin{array}{r} 600 \\ 650 \\ \hline \end{array}$	-	-	-	1E5-GP
1E7-G	TWIN PENTODE POWER AMPLIFIEA	${ }^{\text {D3 }}$	G-8C	D.C.	2.0	0.24	CLSS $~$ AMPLIFER	135	-7.5	135	-	Power Output is for one tube at stated plate-to plate load.				24000	0.575	1E7-G
$1 F 4$	POWER AMPLIFIER PENTODE	D12	5K	D.C.	2.0	0.12	AMPLIFER	For other characteristics, refer to Type 1FS-G.										1F4
1F5-G	POWER AMPLIFIER PENTODE	D10	c-6x	D.C.	2.0	0.12	CLASS A AMPLFIER	$\begin{array}{r} 90 \\ 135 \\ \hline \end{array}$	$\begin{array}{r} -3.0 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{r} 90 \\ 135 \\ \hline \end{array}$	$\begin{aligned} & 1.1 \\ & 2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 240000 \\ & 200000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1400 \\ & 1700 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 20000 \\ & 16000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.31 \\ & \hline \end{aligned}$	IF5-G
156	DUPLEX-DIODE PENTODE	Ds	6w	$\stackrel{\text { b.C. }}{\text { c }}$	2.0	0.06	PENTODE USVIT AS	For other characteristics, refer to Type 1F7-GV.										1F6
1F7-6Y	DUPLEX-DIODE PENTODE	D8	0-710	D.e.	2.0	0.06		180	-1.5	67.5	0.7	2.2	1060000	650			\square	IF7-GV
							PENTODE UNIT AS AF AMPLIFIER	$135 \times$	-2.0	Sereen Supply, 135 volts applied through 0.8 -megohm resistor. Grid Resistor,** 1.0 megohm. Voltage Gain, 46.								
164-6	DETECTOA AMPLIFIEA TRIODE	01	6.5s	$\underset{F}{D_{F},}$	1.4	0.05	CLASS A AMPLIFIER	90	- 6.0	-	-	2.3	10700	825	8.8	-	-	164-6
IG5-6	POWER AMPLIFIEA PENTODE	D10	G-6x	D.c.	2.0	0.12	CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 135 \\ \hline \end{array}$	$\begin{array}{r} -6.0 \\ -13.5 \\ \hline \end{array}$	$\begin{array}{r} 90 \\ 135 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 133000 \\ & 160000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & 1550 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 8500 \\ & 9000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.55 \\ & \hline \end{aligned}$	165-6
IG6-G	TWIN TRLODE AMPLIFIEB	D1	6-7Aa	D.C.	1.4	0.10	CLISS B AMPLIFER	90	0	-	-	Power Output is for one tube at stated plate-to-plate load.				12000	0.675	165-6
1H4-6	DETECTOR * AMPLIFIEA	D3	0.5s	$\underset{F}{\text { D.e. }}$	2.0	0.06	CLASS A AMPLITEER	$\begin{array}{r} 90 \\ 135 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & =4.5 \\ & =9.0 \\ & -13.5 \end{aligned}$	-	-	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 11000 \\ & 10300 \\ & 10300 \end{aligned}$	$\begin{aligned} & 850 \\ & 990 \\ & 900 \end{aligned}$	$\begin{aligned} & 9.3 \\ & 9.3 \\ & 9.3 \end{aligned}$	-	-	1H4-6
							CUSS B AMPLIFIER	157.5	-15.0	-	-	1.04	-	-	9.3	8000	2.1 t	
1H5-G	$\begin{aligned} & \text { DIODE } \\ & \text { HIGH-MUTIODE } \end{aligned}$	D8	0. 52	$\overline{\text { D.C. }}$	1.4	0.05	$\begin{aligned} & \text { IRIODE UNITAS } \\ & \text { CLISS A MPLIIER } \end{aligned}$	90	0	-	-	0.15	240000	275	65	-	\square	1H5-G
1H5-GT	$\begin{aligned} & \text { DIODE } \\ & \text { HIOH-MU TRIODE } \end{aligned}$	${ }^{\text {c3 }}$	C.5z	D.C.	1.4	0.05	IRIODE UNIT AS AMPLIFIER	For other characteriatics, refer to Type 1H5-G.										IH5-GT
IH6-G	DUPLEX-D100E TROOEE	D3	C-7AA	O.c.	2.0	0.06	TRIODE UNIT AS CLASS A AMPLFIER	135	-3.0	-	-	0.8	35000	575	20	-	-	IH6-G

5W4	FHLLWAVE RECTIFIER	C2	का	F	5.0	1.5	WITH CONDENSERINPUT FILTER	Max. A.C Volts per Plate (RMS), 350 Max. Pcak Inverse Volts, 1400				Max, D-C Output Ma., 100 Max. Peak Plate Ma., 600			Min. Total Effect. Supply Imped. per Plate, 25 ohms			5W4
							WITH CHOKE INPUT FILTER	Max. A.C Volts per Plate (RMS), 500 : Aax. Peak Inverse Volts, 1400				Max, D-C Cutput Ma, 100 Max, Peok Plate Ma., 600			Min. Value of Ioput Chole, 6 henries			
5X4-G	FUL-WAVE RECTIFIER	E2	E-SQ	F	5.0	3.0	For other ratings, refer to Type SU4-G.											5) 4 -G
5Y3-6	FULL-WAVE RECTIFIEA	D10	G-5T	F	5.0	2.0	WITH CONDENSER. INPUT FILTER	Max. A-C Volts per Plate (EMS), 350 Max. Peak Inverse Volts, 1400				Max. D-C Output Ma., 125 Max. Peek Plate Ma., 750			Min. Total Effect, SupplyImpeci, per Piate, 10 ohrns			5Y3-6
5Y3-6							WITH CHOKE. INPUT FILTER	Max. A-C Volts per Plate (RMS), 500 Max. Peale Inverse Volts, 1400				Max. D-C Output Ma., 125 Max. Peak Plate Ma., 750			Min. Value of Input Choke, S lienries			
5Y4-6	FULL-WAVE RECTIFIER	010	G-5Q	F	5.0	2.0	For other ratings, refer to Type 5Y3-0.											5Y4-G
523	FULL-WAVE RECTIFIER	E3	4 C	F	5.0	3.0	For other ratingi, refer to Type 5U4-G.											523
	FULL-WAVE RECTIFIER	C2	5 L	H	5.0	2.0	WITH CONDENSER- INPUT FILTER	Max. A.C Volts per Plate (RMS), 350 Max. Peak Inverse Volts, 1400 Max. A.C Volts per Plate (RMS), 500 Max. Peak Inverse Volts, 1400				Max. D.C Outpet Ma., 125 Max. Peak Plate Ma., 750 Max. D-C Output Ma., 125 Max. Pcak Plate Ma., 750			Min. Total Eifcet, Supply Imped. per Plate, 30 ohrins Min. Value of Input Choke,\qquad 5 hemries			524
4							WITH CHOKE INPUT FILTER											
6A4/LA	FOWEA AMPLIFIER PENTODE	DI2	5 E	F	6.3	0.3	CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 180 \\ & \hline \end{aligned}$	-6.5 -12.0	100 180	$\begin{aligned} & 1.6 \\ & 3.9 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.0 \\ 22.0 \\ \hline \end{array}$	$\begin{array}{r} 83250 \\ 45500 \\ \hline \end{array}$	$\begin{aligned} & 1200 \\ & 2200 \\ & \hline \end{aligned}$	-	$\begin{array}{r} 11000 \\ 8000 \\ \hline \end{array}$	$\begin{aligned} & 0.31 \\ & 1.40 \\ & \hline \end{aligned}$	6A4/LA
6 66	TWIN THIODE AMPLIFIEA	DI2	75	H	6.3	0.8	AMPLIFIER	For other characteristic3, refer to Type 6N7.										6 6. 6
6 67	pentaghid CONVERTER D	D0	76	H	6.3	0.3	CONVERTER	For other characteristics, refer to Type 6A8.										$6 A 7$
6AB	PENTAGAID CONVERTER	C1	81	H	6.3	0.3	CONVERTER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	-1.5 -3.0	50 100	1.3 2.7	1.1 3.5	600000 360000	Anode-Grid (B2): 250 m max. volts, 4. 0 ma . Oscillator-Grid (51) Resistor a.Conversion Transcond, 550 micromhos. Conversion Transcond., 550 micromhos.				688
6A8-G	PENTAGRID CONVERTERA	08	C-8A!	H	6.3	0.3	CONYERTER	For other characteristics, refer to Type 6A8.										6A8-6
6A8-GT	PENTAGRID CONVERTER -	C3	O-8A:	H	6.3	0.3	CONVERTER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	-1.5 min 50 -3.0 min. 100		$\begin{aligned} & 1.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 500000 \\ & 360000 \end{aligned}$	AnodeGrid (\$2): 250 m max, volts, 4.0 ma . Oscillator-Grid (\$1) Resistor a^{2}. Conversion Transcond, 500 micromhos.				6AB-GT
6AB7/ 1363	TELEVISION AMPLIFIER PENTODE	83	80	H	6.3	0.45	CLUSS A AMPLIFIER	300	-3.0	200	3.2	12.5	700000	5000	-	$\underline{\square}$	\square	$\begin{aligned} & 6 A B 7 / \\ & 1853 \end{aligned}$
							CLASS B AMPLIFIER	250	0	-	-	5.0 d		-	=	10000	$8.0 \dagger$	
6AC5-G	POWER AMPLIFIER TRIODE	D3	G-60:	H	6.3	0.4	DNNAMICCOUPLED AMPLIFIER WITH TYPE 6PSG DRIVER	250	Bias for both 6AC5-G and 6P5-G is developed in coupling circuit. Average Plate Current of Driver $=5.5$ milliamperes. Average Plate Current of 6AC5-G $=32$ mallismperea.							7000	3.7	6AC5-G
$\begin{aligned} & 6 A C 7 / \\ & 1852 \end{aligned}$	TELEVISION AMPLIIER PENTCDE	es	88	H	6.3	0.45	CLASS A AMPLIFIER	300	Cath. Bias	150	2.5	10.0	750000	[9000	Cathode-Bias Resistor, 160 ohmes			$\begin{aligned} & \text { 6AC7// } \\ & 1852 \end{aligned}$
6AE5-GT	AMPLIFIER	C3	6-60 \ddagger	H	6.3	0.3	CLASS A AMPLIFIER	95	-15.0	-	-	7.0	3500	1200	4.2	-	-	6AE5-GT

TYPE	NAME	DIMENSIONS SOCKET COMNECTIONS		CATHODE TYPE AND RATIME			USE Values to right glve oporating conditions and charactoristics for indicated typical ese	PLATE SUP. PLY volts	GRID BIAS = votri	SCREEM SUPPLY votrs	SCREENCUR-RENTMA.	PLITE CUR- REIT ma.	A.C PLATE RESIS- TAHCE orms	TRANSCONDUC. TAMCE (ckile PLITE) μ H HO :	AMPLIFI. CATION FACTOR	$\begin{aligned} & \text { LOAD } \\ & \text { FOS } \\ & \text { sfated } \\ & \text { POWEA } \\ & \text { Qutput } \\ & \text { OUWs } \end{aligned}$	POWER OUT. PUT WATtI	TYPE
		DIMEM.	3. 6.	C.T.	Votrs	AMP.												
6AF6-G	$\begin{aligned} & \text { ELECTRON-RAY } \\ & \text { TUBE } \\ & \text { Twin Indieator } \\ & \text { Type } \end{aligned}$	Bz	G-7AG	H	6.3	0.15	VISUAL INDICATOR	Target Voltage, 100 volts. Control-Electrode Voltage, 0 volts; Shadow Angle, 100°; Target Current, 0.9 ma . Control-Electrode Voltage, 60 volts; Angl $=0^{\circ}$.										6AF6-6
								Target Voltage, 135 volts. Control-Electrode Voltage, 0 volts; Shadow Angle, 100°; Target Current, 1.5 ma . Control-Electrode Voltage, 81 volts; Angle, 0°.										
6AG7	VIDEO BEAM POWER AMPLIFIER	C2	8 B	H	6.3	0.65	CLISS A AMPLIFIER	250	-2.0	140	8.5	33.0	Load Resistance, 1700 ohms. Peak-to-Peak Volts Output, 70 approx.					6AG7
6B5	DIRECT-COUPLED POWEA AMPLIFIER	D12	EAS	H	6.3	0.8	CLASS A AMPLIFIER	For other characteristics, refer to Type 6N6-G.										685
686-G	DUPLEX-DIODE HIGH-MU TRIODE	D8	Q-7V:	H	6.3	0.3	TRIODE UNIT AS AMPLIFIER	For other characteristics, refer to Type 6SQ7.										6B6-G
687	DUPLEX-DIODE PENTODE	D9	70	H	6.3	0.3	PENTODE UNIT AS AMPLIFIER	For other charecteristics, refer to Type 6B8-G.										687
688	DUPLEX-DIODE PENTODE	cl	${ }^{8 E}$	H	6.3	0.3	PENTODE UNIT AS R-F AMPLIFIER	250	-3.0	125	2.3	10.0	600000	1325	-	-	-	688
							PENTODE UNIT AS A-F AMPLIFIER	$90 \times$ Cath. Bias, 3500 ohms. Screen Resistor $=1.1$ meg. 300×1 Cath. Bias, 1600 ohms. Screen Resistor $=1.2 \mathrm{meg}\} \quad$.0.5 megohm.								$\left\{\begin{array}{l} \text { Gain per stage }=55 \\ \text { Gain per stage }=79 \end{array}\right.$		
6B3-G	DUPLEX-DIODE PENTODE	D8	G-8E!	H	6.3	0.3	PENTODE UNIT AS R.F AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	-3.0 -3.0	100 125	1.7 2.3	$\begin{aligned} & 5.8 \\ & 9.0 \\ & \hline \end{aligned}$	300000 600000	$\begin{array}{r}950 \\ +1125 \\ \hline\end{array}$	-	-	-	6B8-6
							PENTODE UNIT AS AF AMPLIFIER	$90 \times$ Cath. Bias, 3500 ohms. Screen Resistor $=1.1$ meg. Grid Resistor,** $300 \times$ Cath. Bias, 1500 ohms. Sereen Resistor $=1.2$ meg. 0.5 megohm.								$\text { Gain per stage }=55$$\text { Gain per stage }=79$		
$6 \mathrm{C5}$	DETECTOR* AMPLIFIEA TRIODE	B3	60	H	6.3	0.3	CLAES A AMPLIFIER	250	-8.0	-	$1-$	8.0	10000	2000	120	L-	\square	$6 C 5$
								$\begin{gathered} 90 \% \\ 300 \% \\ \hline 250 \end{gathered}$	$\left.\begin{array}{l}\text { Cath. Bias, } 6400 \text { ohms. } \\ \text { Cath. Bias, } 5300 \text { ohms. }\end{array}\right\}$			Grid Resistor, ** 0.25 megohm.			$\left\{\begin{array}{l} \text { Gain per stage }=11 \\ \text { Gain per st=ge }=13 \end{array}\right.$			
							BIAS DETECTOR		-17.0 approx, Plate current to be adjusted to 0.2 milliampere with no signal.									
6C5-G	DETECTOR* AMPLIFIER TRIODE	D3	6-69:1	H	6.3	0.3	AMPLIFIER DETECTOR	For other characteristics, refer to Type 6C5.										6C5-6
6C6	Thibleg-gaio DETECTOA AMPLIFIEA	013	6F	H	6.3	0.3	AMPLIFIER DETECTOR	For other characteristics, refer to Type 6J7.										$6 \mathrm{C6}$
6C8-0	TWIN TAIODE AMPLIFIEA	D8	G-6G	H	6.3	0.3	EACH UNIT AS AMPLIFIER	250	-4.5		-	3.2	22500	1600	36	-	-	6C8-6
626	TAIPLE-GRID SUPER-CONTROL AMPLIFIEA	D13	6F	H	6.3	0.3	AMPLIFIER MIXER	For other characteristics, refer to Type 6U7-G.										606

608-G	PENTACGRIO CONVERTERA	D3	C-8A:	H	6.3	0.15	CONVERTER	$\begin{aligned} & 135 \\ & 250 \end{aligned}$	$\begin{array}{r} -3.0 \\ -3.0 \\ \hline \end{array}$	$\begin{array}{r} 67.5 \\ 100 \end{array}$		\bar{Z}	$\begin{aligned} & 600000 \\ & 400000 \end{aligned}$		$\begin{aligned} & \text { (N.2): } \\ & \text { lator-Gri } \\ & \text { Crenscons } \end{aligned}$	$\begin{aligned} & 250 n \\ & d(51)^{n} \\ & d ., 550 \end{aligned}$	x. volts, cristor 9 . cromihas.	6DB-G
6E5	ELECTBON-RAY						ISUA	Plat Grid	${ }_{6}$ Target S Bias, -3.3	$\begin{aligned} & \text { ply }= \\ & \text { pla; } \end{aligned}$	0 voits. dow An	$\begin{aligned} & \text { Tiode Pla } \\ & \text { Ic, } 0^{\circ} \text {. } \mathrm{Bi} \end{aligned}$	ate Resisto ias, 0 volt	$\begin{aligned} & =0.5 \mathrm{me} \\ & \text { Angle, } \end{aligned}$	$\begin{aligned} & \text { Farget Cu } \\ & \text { Plate C } \end{aligned}$	ritent arrent,	$\begin{aligned} & 0 \mathrm{ma} \\ & 9 \mathrm{ma.} \end{aligned}$	6E5
6.5	tues	D5	$6 \times$	H	5.3	0.3	INDICATOR	Fint Grid	\& Target S Bias. -8.0	$\begin{aligned} & \text { ply }= \\ & \text { citts; } \end{aligned}$	0 volts. dotv An	$\begin{aligned} & \text { riode } \mathrm{Pl} \\ & \text { le, } 0^{\circ}, \mathrm{Bi} \end{aligned}$	ate Resisto Bias, 0 volt	$\begin{aligned} & =1.0 \mathrm{me} \\ & \text { Angle, } 9 \end{aligned}$	$\begin{aligned} & \text { Farget Cy } \\ & \text { Plate C } \end{aligned}$	$\begin{aligned} & \text { irient }= \\ & \text { jrrent, } \end{aligned}$	$\begin{aligned} & 0 \mathrm{mal} \\ & 4 \mathrm{ma} . \end{aligned}$	685
$6 F 5$	highemu thicoe	CI	5 M	H	6.3	0.3	2MPLTIER				other ch	racteris	tics, refer	Type 6.				$6 F 5$
6F5-G	HIGH-MU TRIODE	D3	G.SM:	H	6.3	0.3	AMPLIFIER				other ch	aracterist	tics, refer	Type 6S				6F5-G
6F5-GT	HIGH-MU TMIOOE	C3	G-5M :	H	6.3	0.3	AMPITIER				other	racterist	tics, refer	Type 6S				6F5-GT
							PENTODE CLASS-A AMPLIFTER	$\begin{array}{r} 250 \\ 285 \\ \hline \end{array}$	$\begin{array}{r} -16.5 \\ -20.0 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 285 \\ \hline \end{array}$	$\begin{array}{r} 6.5 \\ 7.0 \\ \hline \end{array}$	$\begin{aligned} & 34,0 \\ & 38.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 80000 \\ & 78000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2500 \\ & 2550 \\ & \hline \end{aligned}$	\square	$\begin{aligned} & 7000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & 4.8 \\ & \hline \end{aligned}$	
							TTUODED CUASS A AMPLIEIER	250	-20.0	-	-	31.0	2600	2600	6,8	4000	0.85	
$6 F 6$	POWER AMPLIFIER PENTODE	C2	75	H	6.3	0.7	PENTODE PUSH.PULC CLISS A AMPLIFIER	$\begin{array}{r} 315 \\ 315 \\ \hline \end{array}$	Cath. Bias -24.0	$\begin{aligned} & 285 \\ & 285 \end{aligned}$	$\begin{aligned} & 12.04 \\ & 12.0 \$ \end{aligned}$	$\begin{aligned} & 62.04 \\ & 62.04 \end{aligned}$	Cath. Bia	istor	ohme ${ }^{\text {a }}$	$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$	$\begin{aligned} & 11.01 \\ & 11.0 \dagger \end{aligned}$	$6 \mathrm{F6}$
							PENTODE PUSHPUIL CLASS AB AMPLIFIER	$\begin{aligned} & 375 \\ & 375 \end{aligned}$	$\begin{gathered} \text { Cath. Bias } \\ -26.0 \\ \hline \end{gathered}$	$\begin{array}{r} 250 \\ 250 \end{array}$	$\begin{aligned} & 8.0 \& \\ & 5.0 \AA \end{aligned}$	$\begin{aligned} & 54,004 \\ & 34,04 \end{aligned}$	Cath. Bia	csistor,	ohins ${ }^{\text {a }}$	$\begin{aligned} & 10000 \\ & 10000 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.07 \\ & 18.5 \dagger \end{aligned}$	
							TRIODE PLSHPYLLIO CLLSS AB, AMPLIFIER	$\begin{array}{r} 350 \\ 350 \\ \hline \end{array}$	$\begin{gathered} \text { Cath. Bias } \\ -38.0 \\ \hline \end{gathered}$	-	-	$\begin{aligned} & 50.04 \\ & 48.04 \end{aligned}$	Cath. Bia	csistor,	ohms ${ }^{\text {a }}$	$\begin{array}{r} 10000 \\ 6000 \\ \hline \end{array}$	$\begin{array}{r} 9.5 t \\ 13.0 t \\ \hline \end{array}$	
6F6-6	FOWEA AMPLIFIEA PENTODE	Dio	E.7s:	H	6.3	0.7	AMPLIFIER	For other charecteristics, refer to Type 6F6.										6F6-G
657	TRIODE. PENTODE	D9	TE	H	5.3	0.3	TRIODE UNTT IS CLISS \triangle AMPLIIER	100	-3.0	-	-	3.5	16000	500	8	-	-	$6 F 7$
							PENTODE LNIT AS CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	$\left\{\begin{array}{l}-3.0 \\ \text { min. }\end{array}\right\}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 290000 \\ & 850000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1050 \\ & 1100 \end{aligned}$	-	-	-	
							PENTODE LNIT AS MIXER	250	-10.9	100	0.6	2.8	Oscillator Peak Volts $=7.0$. Conversion Transcond. $=300$ micromhos.					
6F3-G	TWIN TAIODE AMPLIFIEA	DS	G-6a	H	6.3	0.6	EACH UNIT AS AMPLIFIER	$\begin{array}{r} 90 \\ 250 \end{array}$	$\begin{array}{r}0 \\ -8.0 \\ \hline\end{array}$	\square	-	$\begin{array}{r} 10.0 \\ 9.0 \\ \hline \end{array}$	$\begin{aligned} & 6700 \\ & 7700 \\ & \hline \end{aligned}$	$\begin{aligned} & 3000 \\ & 2600 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	-	-	678-G
666-6	POWER RMPLIFIEA PENTODE:	D3	6.75:	H	6.3	0.15	PENTODE CLASS A AMPLIEIER	$\begin{aligned} & 135 \\ & 180 \\ & \hline \end{aligned}$	$\begin{array}{r} -6.0 \\ -9.0 \\ \hline \end{array}$	$\begin{aligned} & 135 \\ & 180 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 170000 \\ & 175000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2100 \\ & 2300 \end{aligned}$	-	$\begin{aligned} & 12000 \\ & 10000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.1 \\ & \hline \end{aligned}$	6G6-6
							TRIODED CLLSS A AMPLIFER	180	-12.0			11.0	4730	2000	9.5	12000	0.25	
$6{ }^{6} 6$	TWIN DICDE	At	79	H	6.3	0.3	DETECTOR RECTIFIES	Maximum A-C Voltage per Plate_............. 117 Volts, RMS Maximum D-C Output Current 4 Milliamperes										6H6
6H6-6	TWIN DIEDE	D3	6-7Q:	H	6.3	0.3	DETECTOR RECTHFIER	For other ratings, refer to Type 6\%6.										6H6-G
6.5	Derectoa AMPLIFIER iriode	E3	59	H	6.3	0.3	CTASS A AMPLAFIER	90	0	-	-	10.0	6700	3000	20	-	-	6 J 5

$6 \mathrm{K8}$	TRIOOE.HEXODECONVERTER	c1	${ }^{\text {ak }}$	H	6.3	0.3	TRIODE UNIT AS osclllator	100	Triode-Grid Resittora			3.8	Triode-Grid \&s Hexode-Grid Current, 0.15 ma .					6 K 8
							HEXODE UNIT AS MIXER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\begin{array}{r} -3.0 \\ -3.0 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 400000 \\ & 600000 \end{aligned}$	Conversion Transcond., 325 mieromhos. Conversion Transcond., 350 micromhos.				
6L5-G	DETECTOR AMPIODE	D3	6-60:	H	6.3	0.15	CLASS A AMPLIFIER	$\begin{aligned} & 135 \\ & 250 \end{aligned}$	-5.0 -9.0	三	-	3.5 8.0	$\begin{array}{r}11300 \\ 9000 \\ \hline\end{array}$	$\begin{aligned} & 1500 \\ & 1900 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	-	-	6L5-6
6L6	$\begin{aligned} & \text { BEAM } \\ & \text { POWER AMPLIFIER } \end{aligned}$	D7	7 Ac	H	6.3	0.9	SINGLETUBE	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{gathered} -14.0 \\ \text { Cath. Bias } \end{gathered}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 72.0 \\ & 75.0 \\ & \hline \end{aligned}$	Cath. Bias Resistor, 170 ohms.			$\begin{aligned} & 2500 \\ & 2500 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	6 6 6
							PUSH POLI CHASS A AMPLIFIER	$\begin{aligned} & 250 \\ & 270 \\ & 270 \end{aligned}$	$\begin{gathered} -17.5 \\ \text { Cath. Bias } \end{gathered}$	$\begin{aligned} & 270 \\ & 270 \\ & 270 \end{aligned}$	$\begin{aligned} & 11.04 \\ & 11.06 \end{aligned}$	$\begin{aligned} & 134.0 \$ \\ & 145.0 \uparrow \end{aligned}$	$\overline{\text { Cath. Bias Resistor, } 125 \text { ohms. }} 1$			$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 18.5 \dagger \end{aligned}$	
							PUSHPPLLL CLASS AB, AMPLIFIER	360	$\begin{gathered} -22.5 \\ \text { Cath. Bias } \end{gathered}$	$\begin{aligned} & 270 \\ & 270 \end{aligned}$	$\begin{aligned} & 5.0 \$ \\ & 5.0 \end{aligned}$	$\begin{aligned} & 88.04 \\ & 88.04 \end{aligned}$	Cath. Bias Resistor, 248 ohms. 4			$\begin{aligned} & 6600 \\ & 9000 \end{aligned}$	$\begin{aligned} & 26.5 t \\ & 24.5 t \end{aligned}$	
							PUSHPULI CASS AB2 AMPLIFIER	$\begin{aligned} & 360 \\ & 360 \\ & \hline \end{aligned}$	$\begin{aligned} & -18.0 \\ & -22.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 225 \\ & 270 \end{aligned}$	$\begin{aligned} & 3.5 \phi \\ & 5.0 \phi \end{aligned}$	$\begin{aligned} & 78.0 \\ & 88.0 \phi \end{aligned}$	-	-	-	6000 3800 5000	$\begin{aligned} & 31.01 \\ & 47.01 \end{aligned}$	
							SINGLE TRIODED CLASS A AMPLFIER	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	Cath. Bies		S.0.	$\begin{array}{r} 40.0 \\ 40.0 \end{array}$	$\frac{1700}{\text { Cath. Bie }}$	$\frac{4700}{\text { 2esistor, }}$	$\begin{gathered} 8.0 \\ \hline 0 \mathrm{ohms} . \end{gathered}$	$\begin{array}{r} 5000 \\ 6000 \\ \hline \end{array}$	$\begin{aligned} & 1.4 \\ & 1.3 \end{aligned}$	
6L6-G	POWER AMMPLIFIER	$E 2$	G-7AC:	H	6.3	0.9	AMPLIFIER	For other characteristics, refer to Type 6L6.										6L6-G
6 L 7	PENTAGRID mixera AMPLIFIER	cl	π	H	6.3	0.3	MixER in SUPERHETERODYNE	250	-3.0	100	7.1	2.4	Oscillator-Grid (3) Bias, -10 volts. Grid $\# 3$ Peak Swing, 12 volts minimum. Conversion Transcond., 375 micromhios.					$6 L 7$
							CLASS A AMPlifier	250	$\left\lvert\,\left\{\begin{array}{l}-3.0 \\ \min .4\end{array}\right\}\right.$	100	6.5	5.3	600000	1100	-	-	-	
6L7-G	PENTAGRID MIXERA AMPLIFIER	D8	c-rt:	H	6.3	0.3	MIXER AMPLFIER	For other characteristics, refer to Type 6L\%.										6L7-6
6N5	$\begin{aligned} & \text { ELECTRON-AAY } \\ & \text { TUBE } \end{aligned}$	D5	${ }^{\text {6R }}$	H	6.3	0.15	VISUAL INDICATOR	Plate \& Target Supply $=135$ volts. Triode Plate Resistor $=0.25 \mathrm{meg}$. Target Current $=2.0 \mathrm{ma}$. Grid Bias, -12.0 volts; Shadow Angle, 0°. Bias, 0 volts; Angle, 90°; Pinte Current, 0.5 ma										6N5
6N6-G	DIGECT-COUPLED POWER AMPLIFIER	D12	G.7AU	H	6.3	0.8	CLASS A AMPLIFIER	Output Triode: Plate Volts, 300 ; Plate Ma ., 42 ; Load, 7000 ohms. Input Triode: Plate Volts, 300 ; Grid Volts, 0; A-F Sigrial Volts (RMS), 15; Plate Ma., 9.									4.0	6N6-G
6N7	TWIN TRIDDE	C2	${ }^{18}$	H	6.3	0.8	CUSS A AMPLIFIER (As Divet) 0	$\begin{aligned} & 250 \\ & 294 \end{aligned}$	$\begin{array}{r} -5.0 \\ -6.0 \\ \hline \end{array}$	-	-	$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11300 \\ & 11000 \\ & \hline \end{aligned}$	$\begin{aligned} & 3100 \\ & 3200 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{gathered} 20000 \\ \text { or more } \end{gathered}$	$\begin{gathered} \text { exceeds } \\ 0.4 \end{gathered}$	6 H 7
							CLSS B AMPLIFER	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	0	-	-	Power Output is for one tube at stated plate-to-plate load.				$\begin{aligned} & 8000 \\ & 8000 \end{aligned}$	$\begin{array}{r} 8.0 \\ 10.0 \end{array}$	
6N7-G	TWIN TRIODE AMPLIFIER	${ }^{\text {D }} 10$	G-8E:	H	6.3	0.8	AMPLIFIER	For other characteristics, refer to Type 6N7.										6N7-G
6P5-6	DETECTOR AMPLIFIER TRIODE	D3	0.40	H	6.3	0.3	CUSS A AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 5.0 \\ -13.5 \end{array} \end{aligned}$	-	-	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 12000 \\ 9500 \\ \hline \end{array}$	$\begin{aligned} & 1150 \\ & 1450 \end{aligned}$	$\begin{aligned} & 13.8 \\ & 13.8 \\ & \hline \end{aligned}$	-	-	f 6P5-6
								$\begin{gathered} 90 \% \\ 300 \% \end{gathered}$	Cath. Bias, 6500 ohms.)Cath. Bias, $64 e 0$ ohms.			Grid Resistor, ${ }^{*} 0.25 \mathrm{mrgohm}$. (c)				$\begin{array}{r} \text { Gain per stage }=9 \\ \text { Gsin per stage }=10 \end{array}$		6P5-G
							BIAS DETECTOR	250	$\left[\begin{array}{c}-20.0 \\ \text { approx. }\end{array}\right]$	-	-	Plate current to be adjusted to 0.2 milliampere						

IYPE	NAME	$\begin{aligned} & \text { DIMENSIONS } \\ & \text { SOCKET } \\ & \text { CORNEC- } \\ & \text { TIOHS } \end{aligned}$		CATHOOETYPEANDRATHG			USE Values to right give oporating conditions and characteristies foe Indicatod typical usa	PLATE Sup. PLY volts	6R10 BIAS a voits	SCREEN SUPPLY votrs	SCREEN cuaRERT ma.	PLATE cur. RENT ma.	A.C PLATE RESIS. TAHCE onas	TRARS- COMDUC- TAACE (GRIDPLTE) यмиоя	AMPLIT CATION FACTOR	LOAD for staten POVEA ountur онмs	POWER OUT. PUT watrs	TYrt						
		dimen.	s.c.	c.t.	voits	AMP.																		
6097	DUPLEX-DIODE HIGH-MU TRIODE	cl	TV	H	6.3	0.3	TRIODE UNTT ASCWSA AMPIFIER	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.5 \\ -3.0 \\ \hline \end{array}$			$\begin{aligned} & 0.35 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 87500 \\ & 58000 \\ & \hline \end{aligned}$	$\begin{array}{r} 800 \\ 1200 \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & 70 \\ & \hline \end{aligned}$	-		6Q7						
								$300^{90 x}$	Cath. Bias, 7500 ohms.Cath. Bias, 3000 ohms.			Grid Resistor,** 0.5 megohm.			$\left\{\begin{array}{l}\text { Gain per stage }=32 \\ \text { Gain per stage }=45\end{array}\right.$									
607-6	DUPLEX-DIODE	D3	6.7v:	H	6.3	0.3	TRIODE UNIT AS	For other characteristics, refer to Type 6Q7.										6Q7-5						
6Q7-6T	DUPLEX-DIODE HIGH-MU TRIODE	c3	G-7v:	H	6.3	0.3	TRIODE UNITASE	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	0 -3.0 -3.0	-	-	2.3 1.1	$\begin{array}{r} 43000 \\ 58000 \\ \hline \end{array}$	$\begin{aligned} & 1400 \\ & 1200 \\ & \hline \end{aligned}$	60 70	-	\cdots	697-GT						
687	DUPLEX-DIOCE TRIODE	c1	TV	H	6.3	0.3	TRIODE UNTT AS CUSS A AMPLAFIER	250	Cath. Bias, 4400 ohms.) Cath. Bias, 3800 ohtrs.			9.5 8500 1900 Grid Resistor, ** 0.25 megohm.			$\begin{aligned} & 16\|=\|=10 \\ & \text { Gain per stage }=10 \\ & \text { Gain per stage }=10 \end{aligned}$			637						
								$\begin{array}{r} 90 \% \\ 300 \% \\ \hline \end{array}$																
687-6	DUPLEX-DIODE TRIODE	D8	G-Nv:	H	6.3	0.3	TRICDE UNITTAS	For other characteristics, refer to Type 6R7.										6R7-G						
657	$\begin{aligned} & \text { TRIPLE-GRID } \\ & \text { SUPER-GONTHOL } \\ & \text { AMPLFIER } \end{aligned}$	C)	7 R	H	6.3	0.15	CLASS A AMPLIFIER	$\begin{aligned} & 135 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r}-3.0 \\ -3.0 \\ \hline\end{array}$	67.5 100	0.9 2.0	3.7 8.5	1000000 1000000	$\begin{aligned} & 1250 \\ & 1750 \end{aligned}$	-	-	-	6\$7						
657-6	$\begin{aligned} & \text { TRIPLE-GRID } \\ & \text { SUPER-CONTMOL } \\ & \text { AMPLIFIER } \end{aligned}$	Ds	C-7R:	H	6.3	0.15	AMPLIFER	For other characteristics, refer to Type GS7.										657-G						
6547	pentagrid convertera	${ }^{83}$	89	H	6.3	0.3	MIXER	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	-2.0 -2.0	$\begin{array}{r} 100 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.4 \\ & \hline \end{aligned}$	500000 Grid \$1 Resistor, 20000 ohms. 800000 Conversion Transcond. 450 micromhos.	Grid \$1 Resistor, 20000 ohms. Conversion Transcond. 450 micromhos.				6SA7						
6507	TWIN TRiODE AMPLIFIER	B	85	H	6.3	0.3	EACH UNIT AS	250	- 2.0		8.0	2.0	53000	conversion 1325	78	-	-	6SC7						
6SF5	high-mu triode	${ }^{3}$	698	H	6.3	0.3	CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	0 -2.0	-	-	$\begin{aligned} & 1.8 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 50000 \\ & 66000 \end{aligned}$	$\begin{aligned} & 1520 \\ & 1500 \end{aligned}$	$\begin{gathered} 80 \\ 100 \end{gathered}$	-	-	$65 F 5$						
								$\begin{array}{r} 90 x \\ 300 \end{array}$	Cath. Bias, 8800 ohms.Cath, Bias, 3200 ohms.			Grid Resistor,** 0.5 megohm.			$\left\{\begin{array}{l}\text { Gain per stage }=43 \\ \text { Gain per stage }=63\end{array}\right.$									
65.57	TRIPLE-GRID DEYECTOR AMPLIFIEA	E3	as	H	6.3	0.3	CUSS A AMPITIER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	3.0 -3.0	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	0.9 0.8	$\begin{aligned} & 2.9 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{\|} 700000 \\ 1500000 \\ \hline \end{array}$	$\begin{aligned} & 1575 \\ & 1650 \end{aligned}$,	-	-							
								$\begin{array}{r} 90 x \\ 300 x \end{array}$	Cath. Bias, 1700 ohms.Cath. Biess, 860 olims.			Grid Resistor, $* * 0.5 \mathrm{megohm}$.			$\left\{\begin{array}{l} \text { Gain per stnge }=93 \\ \text { Gain per atage }=167 \end{array}\right.$			6\$ ${ }^{7}$						
6\$K7	$\begin{aligned} & \text { TRIPLE-GRID } \\ & \text { SUPER-CONTMOL } \\ & \text { AMPLIFIER } \end{aligned}$	83	${ }^{\text {® }}$	H	6.3	0.3	CLASS A MMPLIFER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\left\{\begin{array}{c} -3.0 \\ \min . \end{array}\right\}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 8.9 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 250000 \\ & 800000 \end{aligned}$	$\begin{aligned} & 1900 \\ & 2000 \end{aligned}$	-	-	-	6SK7						

63 Q7	DUPLEX－DHODE HIGH－MU TBIODE	B3	8	H	6.3	0.3	TRIODE UNIT AS CLASS A AMPLIFIER	250	－2．0	－	－	0.9	91000	1100	100			6SQ7
								$90 \times$ Cath．Bias， 11000 ohms． $300 \times$ Cath．Bias， 3900 ohims． 250 $-3.0 \mid$				Grid Resistor，＊＊ 0.5 megolim．			Gain per stage $=40$ Gain per stage $=53$			
							TRIODE UNIT AS CLASS A AMPLIFIER					1.2	62000	1050	65			6T7－6
6T7－6	DUPLEX－DIODE HIGH－MU TRIODE	De	O－TV：	H	6.3	0.15		$90 \times$ Cath．Bias， 8300 olmms．$300 \times$ Cath．Bias， 4580 ohms．				Grid Resistor，＊＊ 0.5 megohm．			Gain per stage $=30$ Gain per stage $=40$			
	Electron－ray	D4	＊R	H	6.3	0.3	（indicator	Plate \＆s Target Supply $=100$ volts．Triale Plate Resistor $=0.5 \mathrm{meg}$ ．Target Current $=1.0 \mathrm{ma}$ ． Grid Bias，-8 volts；Shadow Angle， 0° ．Bias， 0 volts；Angle， 90° ；Plate Current， 0.19 ma ．										645／665
6U5／6G5								Plate क\％Target Supply $=250$ volts．Triode Plate Resistor $=1.0 \mathrm{meg}$ ．Target Current $=4.0 \mathrm{ma}$ ． Grid Bias，-22 volts：Shadow Angle， 0° ．Bias， 0 volts；Angle， 90° ；Plate Current， 0.24 ma．										
6U7－6	TRIPLE－GRIDSUPER－CONTRGL AMPLIFIER	D8	G－7R；	H	6.3	0.3	CLASS A AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 250000 \\ & 800000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & 1600 \\ & \hline \end{aligned}$	－		－	6U7－6
							MIXER IN SUPERHETERODYNE	$\begin{array}{r} 100 \\ 250 \end{array}$	$\begin{aligned} & -10.0 \\ & -10.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	－	Oscillator Peak Volts $=7.0$						
6 V 6	POWER AMPLIFIER	C2	7 AC	H	6.3	0.45	SINGIETUBE CLASS A AMPLIFIER	$\begin{array}{r} 180 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & =8.5 \\ & -12.5 \end{aligned}$	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 29.0 \\ 45.0 \\ \hline \end{array}$	$\begin{aligned} & 58000 \\ & 52000 \\ & \hline \end{aligned}$	$\begin{array}{r} 3700 \\ 4100 \end{array}$	三－	$\begin{aligned} & 5500 \\ & 5000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & \hline \end{aligned}$	6V6
							$\begin{aligned} & \text { P(SHPMUL } \\ & \text { CASSSABIAMPLIER } \end{aligned}$	$\begin{array}{llll}250 & -15.0 & 250\end{array}$			5.04	70．04	－	－		10000	10.01	
6V6－6	POWER AMPLM	Dio	G－7AC：	H	6.3	0.45	AMPLIEIER	For other characteristics，refer to Type 6 V 6.										6V6－3
6V6－GT	POWER AMPLIFIER	C3	c－rac	H	6.3	0.45	SINGIETUBE CLASS A AMPLIFIER	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	$\begin{array}{r} -8.5 \\ -12.5 \\ \hline \end{array}$	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 29.0 \\ 45.0 \\ \hline \end{array}$	$\overline{52000}$	$\stackrel{4100}{ }$	－	$\begin{aligned} & 5500 \\ & 5000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.00 \\ & 4.25 \\ & \hline \end{aligned}$	6V6－GT
							PUSH．PUIL CUSS ABA AMPLIFIER	$\begin{aligned} & 250 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & -12.3 \\ & -150 \\ & -20.0 \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & +.9 \\ & 5.0 \mathrm{~A} \\ & 5.0 \hat{\Delta} \end{aligned}$	$\begin{aligned} & 70.0 \AA \\ & 78.0 \$ \\ & \hline \end{aligned}$	二	－	＝	$\begin{array}{r} 10000 \\ 8000 \\ \hline \end{array}$	$\begin{array}{r} 8.51 \\ 13.01 \\ \hline \end{array}$	
6W7－G	TRIPLE－GRIO DETECTOR AMPLIFIER	D8	a－7Rt	H	5.3	0.15	CLASS A AMPLFIER	250	－ 3.0	100	0.5	2.0	1500000	1225	－	－	－	6พ7－6
6X5	FULL－WAVE RECTIFIEA	C2	es	H	6.3	0.6	WITH CONDENSER． INPUT FILTER	Max．A－C Volts per Plate（RMS）， 325 Max．Penk Inverse Volts， 1250				Max．D．C Output Ma．， 70 Max．Peak Plate Ma， 420			Min．Total Effect．Supply Imped．per Plate， 150 ohms Min．Value of Input Choke， henrics			6X5
							WITH CHOKE－ INPUT FILTER	Max．A．C Volts per Plate（RMS）， 450 Max．Peak Inverse Volts， 1250				Max．D－C Output Ma．， 70 Max．Peak Plate Ma．， 420						
6X5－6	FULL－WAVE RECTIFIEA	D3	Q．65：	H	6.3	0.6		For other ratings，refer to Type 6X5．										6X5－6
6Y6－6	日EAM POWER AMPLIFIER	D10	Q．tact	H	6.3	1.25	CuISSAMAMPLIIER	$\begin{aligned} & 135 \\ & 200 \end{aligned}$	$\begin{aligned} & -13.5 \\ & -14.0 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 58.0 \\ & 61.0 \end{aligned}$	$\begin{array}{r} 9300 \\ 18300 \\ \hline \end{array}$	$\begin{aligned} & 7000 \\ & 7100 \end{aligned}$	－	$\begin{aligned} & 2000 \\ & 2600 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 6.0 \\ & \hline \end{aligned}$	6Y6－6
627－6	TWIN TRICDE AMPLIFIER	D3	6－8Bt	N	6.3	0.3	CLISS B AMPLIFER	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		－	Power Output is for one tube at stated plate－to－plate lead．				$\begin{array}{r} 9000 \\ 12000 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 4.2 \\ & \hline \end{aligned}$	627－G
							WITH CONDENSER． INPUT FLLTER	Max．A－C Volta per Plate（RMS）， 325 Max．Peak Inverse Voles， 1250				Max．D－C Output Ma．， 40 Max．Peak Plate Ma．， 240			Min．Total Effcet．Supply Imped．per Plate， 275 ohms			62Y5－6
62Y5－6	1 RECTITER	D3	a－s	H	6.3	0.3	WFH CHOKE． INPUT FLLTER	Max．A－C Volts per Plate（RMS）， 450 Max．Peak Inverse Votes， 1250				Max．D．C Output Ms．， 40 Max．Peak Pinte Ma．， 240			Min．Value of Input Choke． 13.5 henries			

－ 2 －LVSZ	Easdarejpg $5 L$SNA＇syon stL											E．0	$0 \cdot 52$	H	38	010	3001N3d－43415034	9－LVSE
	12.0	005\％	－	0081	00005	S＇0 ${ }^{\circ}$	$0 \cdot \downarrow$	001	0．5I－	001	yratulidivy y 5510 SY 11 NM goolnad							
5－989z											vsialidwy	$\varepsilon^{*} 0$	0.52	H	ISLCD	010	$\begin{aligned} & 3001 \mathrm{NBd} \\ & \text { H3isildiwy } 83 \mathrm{MOd} \end{aligned}$	0－9V9\％
9Y¢		$\begin{aligned} & \text { 000S } \\ & \text { cost } \end{aligned}$	－	$\begin{aligned} & \text { SLEZ } \\ & 000 z \end{aligned}$	$\begin{aligned} & 0002 \% \\ & 0005 t \end{aligned}$	$\begin{aligned} & 0^{\prime} \varepsilon \varepsilon \\ & 0^{*} 0 \tau \\ & \hline \end{aligned}$	$\begin{aligned} & 5^{\prime} 9 \\ & 0^{\prime} .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 06 \mathrm{I} \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 0^{\prime} 81- \\ & 0^{\circ} \mathrm{si}- \end{aligned}$	$\begin{aligned} & 091 \\ & 56 \\ & \hline \end{aligned}$	अGLHIINV V SSVD	£＇0	0＇56	H	\＄2	20	$\begin{aligned} & \text { 3001N3d } \\ & \text { U31sildWV U3MOd } \end{aligned}$	9צ¢
$V-6 z$	Tpusis out quis 						－	$\begin{aligned} & \text { St } \\ & \text { o1 } 0 \tau \\ & \hline \end{aligned}$	$\left\{\begin{array}{l} \text { xasdde } \\ 0^{\circ} \mathrm{s}- \end{array}\right\}$	cosz	צ01031ヨa 5vig	$S L^{\prime} 1$	$s^{*} \%$	H	39	เ3	$\begin{aligned} & 3008131 \\ & \text { y31 } 1 \text { ITdWy } \mathrm{s}=\mathrm{y} \end{aligned}$	$V-\downarrow z$
	－	\square	－	$\begin{aligned} & \hline 0501 \\ & 0001 \\ & \hline \end{aligned}$	$\begin{aligned} & 000009 \\ & 00000 t \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.6 \end{aligned}$	$\begin{aligned} & . L^{\prime} \mathrm{I} \\ & . L^{\prime} \mathrm{t} \end{aligned}$	$\begin{aligned} & 06 \\ & 06 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \cdot \varepsilon= \\ & 0 \cdot \varepsilon= \end{aligned}$	$\begin{aligned} & 05 Z \\ & 08 \mathrm{I} \\ & \hline \end{aligned}$	प्र3LTMWV Jy व1มว NT3 \％S							
22	－	－	－	008 $5 \angle 8$	coosze 000szL	L＇E	$\begin{aligned} & \star E^{\prime} I \\ & .9^{\prime} 0 \end{aligned}$	$\begin{aligned} & \text { s: } 29 \\ & \text { st } \\ & \hline \end{aligned}$	$5^{\prime} \mathrm{I}$ $5^{\prime} \mathrm{I}-2$	$\begin{aligned} & \text { SEI } \\ & \text { SEI } \\ & \hline \end{aligned}$	clat－N33 2 S	tet＊O	$\varepsilon^{\prime} \varepsilon$	3	36	13	$\begin{aligned} & 3008131 \\ & \text { a3isndwy s-b } \end{aligned}$	22
02	$\begin{aligned} & 017 \% \\ & \text { s } 00^{\circ} 0 \end{aligned}$	$\begin{aligned} & 0059 \\ & 0096 \end{aligned}$	$\begin{aligned} & \varepsilon \cdot \varepsilon \\ & \varepsilon \cdot \varepsilon \end{aligned}$	$\begin{aligned} & \text { S65 } \\ & \text { SIt } \\ & \hline \end{aligned}$	$\begin{aligned} & 00 £ 9 \\ & 0008 \\ & \hline \end{aligned}$	$\begin{aligned} & S^{\prime} 9 \\ & 0^{\prime} \varepsilon \\ & \hline \end{aligned}$	－	－	$\begin{aligned} & \mathrm{s}^{\circ} 22- \\ & \mathrm{s}^{\circ} \cdot 91- \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SEI } \\ & 06 \end{aligned}$	ชडİITMWV Y 5svo	ข¢1＊0	$\varepsilon^{\prime} \varepsilon$	$\stackrel{1}{3}$	01	20	$\begin{aligned} & 300181 \\ & \text { B3tulndw } 43 \mathrm{MOd} \end{aligned}$	02
61											ช314「\％W\％	$97^{\circ} 0$	0%	$\stackrel{1}{2} \mathrm{a}$	09	90	H3lय17 JWV 300181 NIML	61
G1		\square	－	OS 2 014	000008 000089		E＇0 E＇0	S． 29 S． 29	S＇I＝	S＇ 29	CSEITdWY Y 5svis	$26^{\circ} 0$	$0 \cdot 2$	$\begin{aligned} & \mathrm{H}^{2} \\ & 0^{\prime} \mathrm{O} \end{aligned}$	35	60		SI
\＆Z己）											Y马LTIS LीJNI －VESNICNOO HLIM	$E^{\prime} 0$	9＊21	H	90	go	$\begin{aligned} & 831311934 \\ & 3 \mathrm{AVM-37VH} \end{aligned}$	E2Z1
LOS21											$\begin{aligned} & \text { ม71TMTNWV } \\ & \text { SV INNO } 300121 \end{aligned}$	STOO	$9 \cdot 21$	H	08	E日	． 300141 NW－H91H 30010－x37dna	LOsz1
LXSZI											vsiamdw	ST＊0	$9 * 2 t$	H	N8	60		LASE1
LT\＄21											Y313TIdNV	ST＇0	$9 * 27$	H	N8	88	$\begin{gathered} 431117 d W V \\ 40103130 \\ 0149-371181 \end{gathered}$	LISEI
SIS21											chithdivy	SI＇0	$9^{\circ} \mathrm{zI}$	H	8v9	¢ $¢$	300181 IW－H01H	93SZ1
20521											अ3ISTakV	SI＇0	9.25	H	Ss	Es	प्र3ISITdWV 300181 NIML	L3S21
LHSEI											หヲxtw	St＇0	9＊2I	H	48	£ ${ }^{\text {a }}$	$\begin{gathered} \text { TByIM3ANO9 } \\ \text { OIBOVINJd } \end{gathered}$	LVSZ1
13－20z1												St＇0	9.25	H	1 $\mathrm{AL} \cdot \mathrm{S}$	80	$\begin{aligned} & 300181 \text { nW-HDIH } \\ & 30010-\times 37 \mathrm{lan} \end{aligned}$	19－2021
$12-2 \% 21$											xalurnwv	CI＇0	$9^{\circ} \mathrm{ZF}$	H	$78 \leq-9$	85		19－2MEI

08											8З1317WV	90．0	0°	\pm	01	sa	$\begin{gathered} 300181 \\ \text { H311517dWy } \\ +40103130 \\ \hline \end{gathered}$	08	
22	Truens ou tive 							－	$\left(\begin{array}{l}\text { xouddr } \\ 0^{\circ} 0 \mathrm{~L}-\end{array}\right.$	052	\％0103190 SVIG	S L^{\prime} I	ς^{\prime}＇$\%$	H	vs	50	3a0nst H3saldiwy	2	
		－	0.6 0.6	SL6 000 I	0526 0006	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$		\square	$0.17-$ $0.6-$	$\begin{aligned} & 052 \\ & 581 \end{aligned}$	ชว1sticixy v ssvo								
92		－	£＇8	OSIt	00EL	\％＇9 $6 . \tau$	－	－		$\begin{aligned} & 081 \\ & 05 \end{aligned}$	Q3ilmalky Y s5vid	50＇1	S＇I	4	ap	210	$\begin{aligned} & 300181 \\ & \text { y31417dWV } \end{aligned}$	92	
15－9798											พงเ11039 3AVAJTVH	$\varepsilon^{*} 0$	$0 \cdot 52$	H	10200	co	צงาดกกด －431315934	19－929己	
	sexpduvilin 58 \qquad zuamp anding J－a wnuixey 210tit tod $28 \mathrm{mpos} 3 \cdot \mathrm{~V}$ unumery										$\begin{aligned} & 237800 \mathrm{a} \\ & 30 v 170 \Lambda \end{aligned}$								
－9－9292												$\varepsilon^{\prime} 0$	0.52	H	10200	£0	$\begin{aligned} & \text { y37日nod } \\ & -83191034 \end{aligned}$	D－92¢	
9Z9Z											ม31．11234 3АVAㄱIYH	8＇0	0052	H	\％2	20	471anod -431 ± 1234	9792	
	SL＂myt andano onc xow										$\begin{aligned} & \text { 87ginox } \\ & 35 \% 170 \wedge \end{aligned}$								
9792											$\begin{aligned} & \text { x378ing } \\ & -8 \exists 1311034 \end{aligned}$	£＊0	$0 \cdot 52$	H	39	sa	$\begin{gathered} \text { H37anod } \\ -431312034 \\ \hline \end{gathered}$	9792	
19－9792											ช314！awy	$\varepsilon^{*} 0$	$00^{\circ} \mathrm{s} \tau$	H	10040	50	$\begin{aligned} & \text { Y31317dWY 日3MOd } \\ & \text { WYき8 } \end{aligned}$	19－9792	
9－9792											צ̇İimaw	\＆：0	0.52	H	106L－9	010	g3isindwy yamod WH3e	9－9792	
979	$z^{\prime} z$ $i \cdot z$	$\begin{aligned} & \operatorname{coct} \\ & 0051 \end{aligned}$	－	0078 0028 0008	00001 00001	$\begin{aligned} & 06 p \\ & 0^{-} 6 t \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 011 \\ & 011 \end{aligned}$	$\begin{aligned} & 5^{\circ} L= \\ & 5^{*} L= \end{aligned}$	$\begin{aligned} & 011 \\ & 015 \end{aligned}$	a3LHTIWY V SSYT 3en ：zionis	\＆＇0	0＇St	H	3\％2	20	GIlsiTdWV HZMOA WV38	9792	
－ 9 99¢				0005		$0 \cdot 19$	s．	SEI	－${ }^{\circ}$	$\begin{aligned} & 581 \\ & 56 \end{aligned}$	ช9t	\＆ 0	0＇s2	H	Ist－0	010	300LNJd galsitewy blamod	9－982を	
フ－9asて	$6 \div 1$	$000 t$		0097	－	$0^{\circ} 17$	S．1	S6	0＊SI－	56	dutinak v ssio			H					
19－99v9z	$0^{\circ} \tau$	$000 t$	＇sasodurentur $L=$ IDA！ ut podopanap LD－SAV9 pue ID SOVSt 4\％Oq 10j seig							011	ช3atso 15 53v9 3dXL HLIA＇dWY G3 RanOOOINVNAG	$\varepsilon^{*} 0$	0＇5 2		109－9	¢	300181 H3itildWy y3MOd nud－HOIH	10－93V92	
	0.9	0086			－	¢ $0^{+}+$	－	－	0	081									
	surm Ind －Ino szind	รพн Indıno v3N．04 e3tyis 801 ©Y07	4013yd N3H\％3 －ITIJWy	sound Givาd －G129） 33NVI －Jnanas －SHYN1	ระห๐ 3JWH1 －SIS38 3177d 2．V	＊＊ INBX － 8 ก2 3iv7d	－w INAX －－ 12 Na3u3s	3170 kTdJas Na3 35	ม1าак －SVIG 0 0	5170A kid －dIS 3IV7d	osn 10． suopipuos Bupe eade 3 3	dary	\＄2．70N	13	$3 \cdot 5$	＊N3nia	3MYK	$3 \mathrm{~d} \times 1$	
															SNORL －234月03 13030S SNOISNEMA				
3 dAL																			

31	POWER AMPLFIER TaIOUE	D3	4D	F	2.0	0.13	CLASS A AMPLIFIER	$\begin{array}{r} 135 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & -22.5 \\ & -30.0 \\ & \hline \end{aligned}$	-	-	$\begin{array}{r} 8.0 \\ 12.3 \\ \hline \end{array}$	$\begin{aligned} & 4100 \\ & 3600 \end{aligned}$	$\begin{array}{r} 925 \\ 1050 \\ \hline \end{array}$	$\begin{aligned} & 3.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 7000 \\ & 5700 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.185 \\ & 0.375 \\ & \hline \end{aligned}$	31
32	R-F AMPLIFIERTETRODE	E1	4 K	F	2.0	0.06	SCREEN-GRID R-F AMPLIFIER	$\begin{aligned} & 135 \\ & 180 \\ & \hline \end{aligned}$	$\begin{array}{r} -3.0 \\ -\quad 3.0 \\ \hline \end{array}$	$\begin{aligned} & 67.5 \\ & 67.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4^{\circ} \\ & 0.4^{*} \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 950000 \\ 1200000 \end{array}$	$\begin{aligned} & 640 \\ & 650 \end{aligned}$		\square	-	32
							BHAS DETECTOR	180	$\left\{\begin{array}{l} -6.0 \\ \text { approx. }\} \end{array}\right\}$	67.5	-	Plate current to be adjusted to 0.2 milliampere with no signal.						
33	POWER AMPLIFIER PENTOUE	D12	5K	F	2.0	0.26	CLASS A AMPLIFIER	180	-18.0	180	5.0	22.0	55000	1700		6950	1.4	33
34	SUPER-CONTNOL R-F AMPLIFIER PENTODE	51	4m	$\underset{F}{\text { P.C. }}$	2.0	0.06	SCREEN_CRID R-F AMPLIFIER	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	$\left\{\begin{array}{c} -3.0 \\ \mathrm{~min} . \end{array}\right\}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	$\begin{array}{r} 600000 \\ 1000000 \end{array}$	$\begin{aligned} & 600 \\ & 620 \end{aligned}$	-	-	-	34
35	SUPER-CONTROL R-F AMPLIFIER YETRGDE	E1	5 E	H	2.5	1.75	SCREENGRID R-F AMPLIFIER	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	$\left\{\begin{array}{c} -3.01 \\ \min . \end{array}\right\}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 2.5^{*} \\ & 2.5^{\circ} \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 300000 \\ & 400000 \end{aligned}$	$\begin{aligned} & 1020 \\ & 1050 \end{aligned}$		-	-	35
35A5-LT	$\begin{aligned} & \text { PEOM } \\ & \text { PERER AMPLIEIER } \end{aligned}$	cs	bat	H	35.0	0.15	SINGLETUBE CLASS A AMPLIFIER	110	-7.5	110	3.0	40.0	14000	5800	-	2500	1.5	35A5-LT
35L6-GT	$\begin{aligned} & \text { BEAM } \\ & \text { POWER AMPLFER } \end{aligned}$	c3	6-7aC:	H	35.0	0.15	SINGLETUBE CLASS a AMPLIFIER	110	-7.5	110	3.9	40.0	13800	5800		2500	1.5	35L6-GT
3523-LT	Half-WAVE RECTIFIER	cs	42	H	35.0	0.15	WITH CONDENSER. INPUT FILTER	Max. A.C Plate Volts (RMS), $250 \&$ Max. D.C Output Ma., 100 Max. Peak Inverse Volts, 700 Max. Peak Flate Ma., 600										3523-LT
35Z4-GT	HALF-WAVE RECTIFIER	C3	E.5AA	H	35.0	0.15	WITI CONDENSER. INPUT FILTER	Max. A.C Plate Volts (RMS), 250 Max. Peak Inverse Volts, 720						Max. D.C Output Mia., 100 Max. Peal; Plate Mia., 600				3524-6T
3525-ET	HALF-WAVE REGTIFIEA Heater Tap for Pilot	c3	G-6AD	H	35.0	0.15	WITHOUT PLLOT	Max. A-C Plate Volts (RMS), 125Max. A-C Plate Volts (RMS), 125										3525-GT
							Withpilot											
33	R-F AMPLIFIER TETRODE	E9	SE	H	6.3	0.3	SCREEN-GRID R.F AMPLIFIER	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	-1.5 -3.0	$\begin{aligned} & 55 \\ & 90 \\ & \hline \end{aligned}$	1.7*	1.8 3.2	$\begin{array}{r} 550000 \\ 550000 \\ \hline \end{array}$	$\begin{array}{r} 850 \\ 1080 \end{array}$	-	-		36
							biAS DETECTOR	$\begin{aligned} & 1000 \\ & 2500 \\ & \hline \end{aligned}$	$\begin{array}{r} -5.0 \\ -\quad 8.0 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 50 \\ & \hline \end{aligned}$	-	Grid-blas values are approximate. Plate current to be adjusted to 0.1 milliampere with no signol.						
37	DETECTOR \downarrow AMPLIFIER triode	DS	54	H	6.3	0.3	CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 250 \\ \hline \end{array}$	- 6.0 -18.0	-	-	2.5 7.5	$\begin{array}{r} 11500 \\ 8400 \\ \hline \end{array}$	$\begin{array}{r} 800 \\ 1100 \end{array}$	$\begin{aligned} & 9.2 \\ & 9.2 \\ & \hline \end{aligned}$	-	-	37
							Bias detector	$\begin{array}{r} 90 \\ 250 \end{array}$	$\begin{array}{r} -10.0 \\ -28.0 \\ \hline \end{array}$	-	-	Grid-bias values are approximate. Plate current to be adjusted to 0.2 milliampere with no signal.						
38	POWER AMPLIFIER PENTODE	D9	5 F	H	6.3	0.3	CLASS A AMPLIFIER	$\begin{aligned} & 106 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.0 \\ -\quad 25.0 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 22.0 \\ \hline \end{array}$	$\begin{aligned} & 140000 \\ & 100000 \end{aligned}$	$\begin{array}{r} 875 \\ 1200 \\ \hline \end{array}$	-	$\begin{aligned} & 15000 \\ & 10000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.27 \\ & 2.50 \\ & \hline \end{aligned}$	38
39/44	SUPEA-CONTROL R-F AMPLIFIER PENTODE	D9	55	H	6.3	0.3	CLASS A AMPLIFIER	$\begin{array}{r} 90 \\ 250 \end{array}$	$\left\{\begin{array}{c}-3.0 \\ \text { min. }\end{array}\right\}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.8 \end{aligned}$	$\begin{array}{r} 375000 \\ 1000000 \end{array}$	$\begin{array}{r} 960 \\ 1050 \end{array}$	-		-	39/44
40	VOLTAGE AMPLIFIER TRIODE	D12	45	D.c.	5.0	0.25	CLASS A AMPLIFIER	$\begin{aligned} & 135 k \\ & 180^{\circ} \end{aligned}$	-1.5 -3.0	-	-	0.2 0.2	$\begin{aligned} & 150000 \\ & 150000 \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	-	-	40
41	POWEA AMPLIFIEA PENTCDE	D5	68	H	6.3	0.4	AMPLIFIER				other c	aracter	tics, refer	Type 6	G.			$4!$

99												$0 \cdot 1$	$s^{\prime} \mathrm{Z}$	H	Vs	so	$\begin{gathered} 7801.03130 \\ 831717 \mathrm{dNV} \\ 3001 \mathrm{H} 1-43 \mathrm{dns} \end{gathered}$	99	
S9											$\begin{aligned} & \text { YGLAI TJNY } \\ & \text { SV LINO JGOI甘L } \end{aligned}$	0.1	s^{\prime}	H	09	60	$\begin{gathered} 300141 \\ 30010-x 37 \mathrm{~d} 0 \\ \hline \end{gathered}$	99	
EG											\％3Jmany	$0^{\circ} \mathrm{Z}$	$5 \cdot 6$	H	8.	210	मझEITINY 300141 NIN．L	ES	
15－9709											y¢LSITdWV Y SEvD	SI．0	$0 \% \mathrm{~S}$	H	\ddagger FVL－0	\＆	ผソコロ	19－9709	
09		$\begin{aligned} & \text { OSEV } \\ & 0 \dot{L} \mathrm{E} \\ & 009 \mathrm{p} \end{aligned}$	$\begin{aligned} & 8^{\circ} \varepsilon \\ & 8^{\circ} \varepsilon \\ & 8^{\circ} \varepsilon \\ & \hline \end{aligned}$	$\begin{aligned} & 001 Z \\ & 001 Z \\ & 0001 \end{aligned}$	$\begin{aligned} & 0081 \\ & 0081 \\ & 0002 \\ & \hline \end{aligned}$	$\begin{aligned} & 0^{*} \mathrm{SS} \\ & 0^{\circ} \mathrm{SS} \\ & 0^{*} \mathrm{~g} \\ & \hline \end{aligned}$	－		$\begin{aligned} & 0.7 S- \\ & 0^{\circ} 0 L- \\ & 0^{\circ}+5- \end{aligned}$	$\begin{aligned} & 05 t \\ & 00 t \\ & 008 \end{aligned}$	ช3I－17dw\％v SSVD	St＇${ }^{1}$	S＇L	1	ab	ta	3001H1 H3：177dWV YZANOd	09	
67	$\frac{15.8}{4.0}$	00021	－			＊0＊\％	$\underline{\square}$	－	0	081	จxatilldwv 日 5sv70	210	$0^{\circ} \mathrm{Z}$	${ }_{2}{ }^{\frac{1}{2}} \mathrm{a}$	$9 ¢$	210	E3i317dWY H2MOd aleo－7vna	67	
	410	00011	L＊	SZII	SLIt	$0 \cdot 9$	－	－	0．02－	SEI									
87	10．5	0008	－	－	－	40.001	－	001	0\％0z－	SCI	子3I－17dWV V Ssvo TINd H5nd 3004i31	\＃＊	0% \％	$\begin{gathered} H \\ { }^{2} \mathrm{a} \end{gathered}$	V9	£	$\begin{gathered} 3004131 \\ \text { H31417ivy } 83 \mathrm{MOd} \end{gathered}$	81	
	$5 \cdot z$ $0 \cdot \frac{1}{6}$	$\begin{aligned} & \text { 00SI } \\ & \text { 00SI } \end{aligned}$	－	$\begin{aligned} & 006 \varepsilon \\ & 008 \varepsilon \end{aligned}$	－	$\begin{aligned} & 0^{\circ} 95 \\ & 0^{\circ} 25 \\ & \hline \end{aligned}$	$\begin{aligned} & S^{*} 6 \\ & 0^{*} 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 001 \\ & 96 \\ & \hline \end{aligned}$	$\begin{aligned} & 0^{*} 0 \mathrm{z}- \\ & 0^{*} 6 \mathrm{I}- \end{aligned}$	$\begin{aligned} & \text { SEI } \\ & 96 \end{aligned}$	$\begin{gathered} \text { צ3IJITdWY } \forall \text { SSMD } \\ \text { gCOXIJL } \end{gathered}$								
Li	$4 \cdot \tau$	0004	－	0052	00009	$0 \cdot 18$	$0 \cdot 9$	032	S．91－	$0 ¢ \%$		SL＇t	s．\quad.	1	83	E3	3GOINGd Balsान	Lt	
96	$10.0 z$ +0.91	$\begin{aligned} & 0085 \\ & 00 \boxed{ } \\ & \hline \end{aligned}$		－	－	$\begin{aligned} & \phi 0^{\circ} z \tau \\ & \varphi 0^{\prime} g \end{aligned}$	－	－	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 000 \\ & 008 \\ & \hline \end{aligned}$	कd3luldaw e ssito	SL＇I	ς^{\prime}＇	1	25	Ea	dibovena	97	
	st＇I	0089	9.5	OSEL	08E2	$0.2 z$	－	－	$0 \cdot \mathrm{EE}-$	058	－${ }^{\text {ajELITdWV V SSY7 }}$								
15－929\％											Lo7ld HLIM	SI＇0	0＇st	H	069－5	EO		19－929b	
											Lolld Lnotila								
St		$\begin{aligned} & 0028 \\ & 0905 \end{aligned}$		－	－	$\begin{aligned} & \frac{3}{3} 0^{\circ} 82 \\ & 0^{\circ} 98 \end{aligned}$	sela poxy＂Eyiod 0．89－ \＄sump SLL＇seia＇ỷe			$\begin{aligned} & S L Z \\ & S L Z \end{aligned}$	ThledHsind	S＇I	$S^{\prime} \tau$	3	0	210	300181 431317divy damod	S\％	
	$\begin{aligned} & C 0^{\circ} z \\ & \varepsilon 8^{\circ} 0 \end{aligned}$	$\begin{aligned} & 009 p \\ & 0026 \end{aligned}$	$\begin{aligned} & S^{\prime} \varepsilon \\ & S^{\prime} \varepsilon \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \operatorname{coz} \\ & \operatorname{szIz} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { coL } \\ & 0591 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0^{\circ} 18 \\ & \hline \end{aligned}$	－	\square	$\begin{aligned} & 0.95- \\ & 5.18- \end{aligned}$	$\begin{aligned} & S L Z \\ & 081 \end{aligned}$									
Ct											प31－ITILNY	\＆＇0	0．52	H	89	2 ± 10	$\begin{gathered} \text { 3002Nad } \\ \text { U3131JWWY 甘3MOd } \end{gathered}$	$\varepsilon \%$	
24											YSIITIWW	$L^{\circ} 0$	\＆＇9	M	89	210	$\begin{gathered} \text { 3GONNZd } \\ \text { H3i, } 17 \mathrm{WWY} \text { H3Mod } \\ \hline \end{gathered}$	くt	
3 dAL	 Ifid － 100 83MOd	รพHO 10d2no dimos G31vis 201 6401	8013V3 K011\％3 －Hildiky		$\begin{gathered} \text { smino } \\ \text { 33NV1 } \\ \text {-SIS3y } \\ \text { 3IV7d } \\ \text { j-y } \end{gathered}$	＊W LNEX -4.95 3177d	$\begin{gathered} \text { rw } \\ \text { 1N3y } \\ \text {-yn3 } \\ \text { N33y3s } \end{gathered}$	S170A AlddnS H3ay3s	2170A －SHIG 0189	$\begin{gathered} 3110 \mathrm{n} \\ \text { A1d } \\ \text {-dnS } \\ \text { 31V7d } \end{gathered}$	 suopypuos бulperado 3Sn	＊ 2 my	S170A	7%	37	＇tavia	IWYN	3 d 11	
												BNIIY ONY 3 d 人1 3001183			$\begin{aligned} & \text { SH011 } \\ & -33 N H 05 \\ & \text { 13N30S } \\ & \text { SK01SNBM } \end{aligned}$				

57	ThIPLEGBRIO DETECTA AMPLFIEA	D13	$6 F$	H	2.5	1.0	AMPLIFER DETECTOR	For other characteristics, refer to Type 6J\%.										57
58		013	${ }^{6}$	H	2.5	1.0	AMPLIFIER MIXER	For other charecteristics, refer to Type 6U7.G.										58
59	TRIPLE-GRID POWER AMFLIFIER	E3	74	H	2.5	2.0		250	-28.0	-	-	26.0	2300	2600	6.0	5000	1.25	59
							CUSS A AMPLIAER	250	-18.0	250	9.0	35.0	40000	2500	\square	6000	3.0	
							CUSS B AMPDIFIER	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 30.0 \$ \\ & 26.0 \% \end{aligned}$	-	-	-	$\begin{aligned} & 4600 \\ & 6000 \end{aligned}$	$\begin{aligned} & 15.0 t \\ & 20.0 t \end{aligned}$	
71-A	POWES AMPLIFIER TRIODE	012	4 D	r	5.0	0.25	CUSS A AMPLITER	$\begin{array}{r} 90 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & -19.0 \\ & -43.0 \end{aligned}$	-	-	$\begin{aligned} & 10.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 2170 \\ & 1750 \end{aligned}$	$\begin{aligned} & 1400 \\ & 1700 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3000 \\ & 4800 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.125 \\ & 0.790 \\ & \hline \end{aligned}$	71-A
75	DUPLEX-DIODE HIGW-NIS TRIODE	D9	6a	H	6.3	0.3	amplifer	For other characteristics, refer to Type 6 SQ7.										75
76	SUPER-TPIODE ASMPLIFER DEIECTOBK	D5	5A	H			AMPLFIER DETECTOR	For other characteristics, refer to Type 6PS-G.										76
77	TRIPLE-GRID DETECTOR AMPLIFIER	D3	ef	H	6.3	0.3	CLASS A MMPLIMER	$\begin{array}{r} 100 \\ 250 \\ \hline \end{array}$		$\begin{array}{r} 60 \\ 100 \end{array}$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 600000 \\ & 1.0+5 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1250 \end{aligned}$	-	-	-	77
							bias detector	250	$\begin{array}{\|l\|} \hline-3.0 \\ \hline-1.05 \\ \hline \end{array}$	50	Cathode current 0.65 ma .		-	Plate Resistor, 250000 ohins. Grid Resistor, ${ }^{* 3} 250000$ ohms.				
78	TRIPLE-GKIO SUPE-CONTROL AMPLIFIER	D9	67	H	6.3	0.3	AMpLIFIER MIXER	For other characteristies, refer to Type 6K7.										78
79	TWIM TAIOOE AMPLIFIEA	OR	${ }^{64}$	$\stackrel{\sim}{4}$	6.3	0.6	CLASS 8 AMPUITER	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	0	-	-	Power Output is for one tube at stated plate-to-plate load.				$\begin{array}{r} 7000 \\ 14000 \end{array}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	79
80	FULL-WAVE MECT:FER	D12	40	F	5.0	2.0		For other ratings, refer to Type 5Y3-G.										80
81	HALF-WAVE RECTIF:ER	7	${ }^{48}$	F	7.5	1.25	WITH CONDENSER. INPUT FILTER	Maximum A-C Plate Voltage 700 Volts, RMS Maximum D.C Output Current \qquad 85 Milliamperes										81
	FUL-WAVEDRECTHER	${ }^{\text {D }} 12$	$4{ }^{4}$	F	2.5	3.0	WITH CONDENSER. PNELTFLLER	Max. A-C Volts per Plate (RMS), 450 Max. Peak Inverse Volts, 1550				Max. D-C Output Ma., IIS Max. Peak Plate Ma, 690			Min. Total Effect. Supply Imped. per Plate, 50 ohtris.			82
82							WITH CHOKE INPUT FILTER	Max. A.C Volts per Plate (RMS), 550 Max. Pcak Inverse Volts, 1550				Max, D-C Output Ma., IIS Max. Pealk Plate Ma., 690			Min . Value of Input Choke, 6 henries			
83	FULT-WAVE REGTIFIEA	EB^{3}	4 C	F	5.0	3.0	WITH CONDENSERINPUT FILTER	Max. Max.	$\begin{gathered} \text { CVolts p pors } \\ \text { ate Inver } \end{gathered}$	$\begin{aligned} & \text { Flate (1 } \\ & \text { volts, } 15 \end{aligned}$	$\text { MS). } 450$	Max. D-C Output Ma., 225 Max. Peak Plate Ma. 1350			Min. Total Effect. Supply Imped. per Plate, 50 ohms			83
83							WITH CHOKE. INPUT FLTER	Max. A.C Volts per Plate (RMS), 550 Max. Peak Inverse Volts, 1550				Max. D-C Output Ma, 225 Max. Peak Plate Ma., 1350			Min. Value of Input Choke, 3 henries			

1931											\&3ITIdWY V S5vid	St\%0	\&*9	H	${ }^{2}$	40	30020N3d \&31317dWY NO:SIAT3T3L	1981	
988	saxadury 50^{\prime} '		วuammj \$upreado									-	-	3	-	19	\%otv71934	588	
928	maxdury $L^{\prime} 1$			- วบระ	58 zupzes		Stion 09 on or				2848y 33 Ezjon	-	-	\pm	-	19	ноเทาก934 1พзввกว	928	
t28	ew os bul us.ol 											-	-	-	5b	13	$\begin{aligned} & \text { 401871534 } \\ & 30 \forall 170 n \end{aligned}$	7 28	
$v-211$	-	-	$\begin{aligned} & 5.8 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0081 \\ & \text { SLSI } \end{aligned}$	002 00ts	$\begin{aligned} & L \cdot L \\ & 0 \cdot 5 \end{aligned}$	-	-	$\begin{aligned} & \text { s. }^{\prime} \mathrm{EI}- \\ & \text { s. }^{\prime} .6- \end{aligned}$	$\begin{aligned} & 081 \\ & 068 \end{aligned}$	\%3ITIJNY V Ssvt	52.0	$0 \cdot \mathrm{~s}$	$\stackrel{3}{\text { - }{ }^{\text {a }} \text { a }}$	08	2:0	$\begin{gathered} 300181 \\ 431117 d N y \\ 43010313 a \end{gathered}$	V-211	
$\begin{aligned} & 66^{-} \mathrm{x} \\ & 66^{-} \AA \\ & \hline \end{aligned}$	-	-	979	sto	005St	5. 2	-	-	s't -	06		290\%	₹ं₹	$\stackrel{y}{3}$	$\frac{d v}{a v}$	$\begin{aligned} & 10 \\ & t 0 \end{aligned}$	$\begin{aligned} & 360141 \\ & \text { H3117dWy } \\ & +80103130 \end{aligned}$	$\begin{aligned} & 66^{*} \mathrm{X} \\ & 66^{-}-\bar{A} \\ & \hline \end{aligned}$	
68	$\begin{aligned} & \hline 05^{\prime} \varepsilon \\ & +0 s^{\prime} z \\ & \hline \end{aligned}$	$00 \downarrow 5$ $0095!$	-	-	-	40.9	-	\square	0	081		t'0	E'9	H	49	60	G3isindwy hamod 0.45:эาม) 41	68	
	$\begin{aligned} & 0+\cdot \varepsilon \\ & \varepsilon \varepsilon \cdot 0 \end{aligned}$	$\begin{aligned} & 05 \angle 9 \\ & 09 \angle 08 \end{aligned}$	-	$\begin{aligned} & 6081 \\ & 0021 \end{aligned}$	00002 000p0t	$\begin{aligned} & 0^{\circ} .2 \varepsilon \\ & 5^{\circ} 6 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 9.1 \end{aligned}$	$\begin{aligned} & \text { ost } \\ & 001 \end{aligned}$	$\begin{aligned} & 0.52- \\ & 0.01= \end{aligned}$	$\begin{aligned} & \text { Osz } \\ & 001 \end{aligned}$	צIITITdWY Y 557D -a SOOLN3d SY								
	$\begin{aligned} & 05^{\circ} 0 \\ & 00^{\circ} 0 \end{aligned}$	$\begin{aligned} & 005 \mathrm{~S} \\ & 000 \mathrm{~L} \end{aligned}$	$\begin{aligned} & i \cdot b \\ & i \cdot b \\ & \hline \end{aligned}$	$\begin{aligned} & 0081 \\ & 52 b 1 \end{aligned}$	$\begin{aligned} & 009 \tau \\ & 00 \varepsilon \varepsilon \\ & \hline \end{aligned}$	$\begin{aligned} & 0 . \tau \varepsilon \\ & 0 . \angle 1 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 0.18- \\ & 0.0 z- \end{aligned}$	$\begin{aligned} & 0 \varsigma z \\ & 091 \\ & \hline 091 \end{aligned}$	$\begin{aligned} & \text { yalinidwy y ssyo } \\ & 3 \text { 300nal sy } \\ & \hline \end{aligned}$								
98	$\begin{aligned} & \text { OSE'0 } \\ & \text { S20.0 } \end{aligned}$	$\begin{aligned} & \text { coove } \\ & 000 S Z \end{aligned}$	$\frac{8 \cdot 8}{8 \cdot 8}$	$\begin{aligned} & 001 \mathrm{t} \\ & 0 \mathrm{~S} L \end{aligned}$	$\begin{aligned} & 005 l \\ & 00011 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0^{\circ} \cdot 8 \end{aligned}$	-	-	$\begin{aligned} & \text { e.02- } \\ & \text { s.01- } \end{aligned}$	$\begin{aligned} & \text { esz } \\ & \text { SEI } \end{aligned}$		\&.0	\&'9	H	09	60		98	
t79/ $\uparrow 8$	วndul jo anjon utw			02 "exi andino $2 \cdot a$ xenk			 				yヨulif IndNI ЗУОНО НЕи	5.0	\& 9	H	هs	sc	H3:31403:4 ЗАマM-77ก	129/58	
129/V3	Sydans poong luzoz uig			09 "eW andino $x^{\circ} \mathrm{a}$ xw x															
A-88												0.2	0.5	H	OVP	210	$\begin{aligned} & \text { H31.10938 } \\ & 3 A 6 M-77 n=1 \end{aligned}$	A.88	
3 d 1.1	turn Ind -100 gand		2017\% NCLYS - HITM	soknr (aind - 0 (295) 32NYL -รаสнез -SWYL	เงต180 39NYI -51538 Hivid 3-V	$\begin{aligned} & \text { vn } \\ & \text { Inay } \\ & \text {-un3 } \\ & \text { 3ivl } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { vm } \\ \text { inad } \\ \text { c\&n3 } \\ \text { MB3y3s } \end{gathered}\right.$			มา70 Ald -dnS 317nd	оза joydat poreapu! จuoppoes bunteaso 35Ω	*W\%	2170x	1.5	57	N3m10	3WY	3 dAL	
												$\begin{aligned} & \text { SHIIV } \\ & \text { CNV } \\ & \text { 3dAL } \\ & \text { 30OHIV3 } \end{aligned}$							

SNOISNZWIC $38 \cap 1$ OL KヨX

r12Kう andur 30 Hed Kue suimp Mon

 - oradue Es'0: 0 :

 -دачว2802 pan z
-2णd oz pris $Z \%$ pus

$$
\begin{aligned}
& \text { "suyposo IV } 8 \\
& \text { "unuuxum. }
\end{aligned}
$$

ulid- \angle Ifeus woy zoxpos zuaraplp samnbay

 Ppits jeumat of poyouroos sit on

-asqua Ons 10 A *

 'J075!531 8unddoup-22eว

SOCKET CONNECTIONS

Bottom Views

KEY TQ TERMINAL DESIGNATIONS OF SOCKETS

Alphabetical subscripts D, P, T, and HX indicate, respectively, diode unit, pentode unit, triode unit, and hexode unit in multi-unit types.

$$
\begin{aligned}
& \mathrm{BP}=\text { Bayonet Pin } \\
& \mathrm{BS}=\text { Base Shell } \\
& \mathrm{F}=\text { Filament } \\
& \mathrm{G}=\text { Grid }
\end{aligned}
$$

$H=$ Heater
$\mathrm{K}=$ Cothode
$\mathrm{NC}=\mathrm{N}_{0}$ Connection
P = Plate (Anode)
$P_{1}=$ Starter-Anode
$\mathrm{P}_{\mathrm{BF}}=$ Beam-Forming Plates
RC=Ray-Control Electrode
S = Shell

- Gas-Type Tube
$\mathrm{S}_{\mathrm{I}}=$ Interlead Shield
SL = Base Sleeve
TA $=$ Target
$U=U_{\text {nit }}$

4AD

$4 B$

$4 C$

40

$4 E$

$4 F$

$4 G$

JANUARY, 1940

SUN. 21

SEPTUAGESIMA SUNDAT
MON. 22

TUES. 23

WED. 24

THUR. 25

FR1. 26

SUN. 14

MON. 15

TUES. 16

WED. 17

THUR. 18

FRI. 19

JANUARY-FEBRUARY, 1940

FRI. 2

