RCA TUBE handBook HB-3

GENERAL SECTION

The information in this Section, in general, applies to all classes of RCA iubes. it includes such material as the Table of Contents for all Sections; Index of Tube Types arranged in numerical-alphabeticalnumerical sequence; list of preferred types; list of not-rccommended types; interchangeability list; discussion of ratings; outlines; cap and base drawings; as well as other general information of interest to the equipment designer.

For further Technical Information, write to Commercial Engineering, Tube Division, Radio Corporation of America, IIarrison, N. J.

0

0

0

0

0

0

RCA Electron Tube Handbook HB-3

This Handbook of data on RCA electron tubes has been compiled to meet the requirements of electronicequipment design engineers primarily but will prove helpful to anyone having need for technical information which can be kept up to date. Its convenient loose-leaf form permits the revision of data on existing types and the addition of data on new types as they are made available. The material is arranged in Sections divided by tabbed separators to facilitate quick reference.

In the event of change of address or transfer of ownership, notification should be forwarded promptly to:

> Commercial Engineering, Code HB Electron Tube Division Radio Corporation of America Harrison, New Jersey (U.S.A.)

To facilitate identification in our records, and thereby permit the change to be effected promptly so that service will not be interrupted, be sure to include the Subscription-Registration Number.

The Subscription-Registration Number of your Handbook set is:

No 28644

\bullet

HB-3 CHANGE OF ADDRESS FORM

Service-Mailing Subscription
SUBSCRIPTION. REGISTRATION NUMBER ${ }^{\circ}$

No.

Imprinted on preceding PREFACE page.
NAME
(Please Print or Type)

NEW ADDRESS

Zip Code No.

OLD ADDRESS

Zip Code No.

Return this sheet to:
ommercial Engineering
RCA Electronic Components
Harrison, N.J. 07029

HANDBOOK BINDER ORDER FORM

Commercial Engineering RCA Electronic Components
Harrison, N.J. 07029
Gentlemen:
Enclosed is my remittance of $\$$ for which send postpaid the following:

BINDER
QUANTITY DOMESTIC FOREIGN TOTAL

```
_HB-3 \({ }^{\wedge}\), each \(\$ 3.00\)
\(\$ 3.50\)
``` \(\qquad\)
```

$\triangle$ Includes strip of labels,

```
(Please Print or Type)
NAME \(\qquad\)
ADDRESS \(\qquad\)
\(\qquad\)
Zip Code No. \(\qquad\)
Remittance (check, draft, or money order) should be made payable in U.S. Dollars to:

\section*{RCA CORPORATION}

DOMESTIC price applies to the United States of America and its possessions. FOREIGN price applies to all other countries.
Prices are net and subject to change.

\section*{Table of Contents}

Sheets in the RCA Electron Tube Handbook are arranged in the Table of Contents in order of appearance in each section. The Index of Types, which follows the Table of Contents, lists type numbers in numerical-alphabeticalnumerical sequence.

The Table of Contents and Index of Types may be used to determine:
(1) location of individual sheets
(2) completeness of Handbook
(3) arrangement of Handbook sheets

Reference is to front of sheet only unless otherwise indicated. Date appearing on sheet is identified by mon th and year only (e.g., 471).

\section*{Preface}

Change of Address Form, 11.69
Handbook Binder Order Form (On back of Change of Address Form)

\section*{GENERAL SECTION}

Separator "GENERAL SECTION", 2-57
Table of Contents 1 to 4, 4-71
Index of Types 1 to 14, 4-7|
Rating Systems for Electron Devices, 4-59
Tube Ratings 1 to 8, 6-43
Types of Cathodes 1 to 4, 6-43
Conversion Factors, 4-56
Outlines-Glass Tubes:
Subminiature-Flexible-Lead Types, Outlines 1, 4-58
Small-Button Sub-Minar 8-Pin Base Types (On back of Outlines 1)
Acorn-Radial 5-Pin Base Type, Outlines 2, 5-55
5-Pin Base Type with End Terminals (On back of Outlines 2) 7-Pin Base Type, Outlines 3, 5-55

\section*{GENERAL SECTION (Cont*d)}

Outlines-Glass Tubes:
Acorn Types (On back of Outlines 3)
Miniature-Miniature 7-Pin Base Types, Outlines 4, 10-66
Noval 9-Pin Base Types (Ón back of Outlines 4)
Duodecar-12-Pin Base Types with T9 Bulbs, Outlines 4B, 4-64 12-Pin Base Types with Tl2 Bulb (On back of Outlines 4B)
Novar-9-Pin Base Types with T9 \& Tl2 Bulb, Outlines 4C, 10-64
Glass Octal-Octal Base Types with T9 Bulbs, Outlines 5, 5-55
Octal Base Types with Tl2 Bulbs, Outlines 6, 5-55
Octal Base Types with ST Bulbs (On back of Outlines 6)
Lock-In-Lock In 8-Pin Base Types, Outlines
7, 5-55
Small 4-, 5-, 6-, and 7-Pin Base Types
(On back of Outlines 7)
Sasall 4-: 5-, and 6-Pin\& Medium 7-Pin Base
Types, Outlines 8, 5-55

\section*{Outlines-Metal Tubes:}

Outlines 8 (On back of Glass Tubes Outline 8) Outlines 9, 5-55
Key (On back of Outlines 9)

\section*{Bases:}

1-Terminal Types (Caps), Caps \(1 \& 2,4-57\) 3, 5-54
Caps (1-Terminal Types), Caps 4, 10-65
3-Pin Types, Bases 1, 11-54
3-Terminal Types (On back of Bases 1)
4-Pin Types Bases 2, 8-56 \& 3, 1-55
4, \& 4A, 4-57
5-Pin Types, Bases 5 \& 6, 3-55
6 -Pin Types (On back of Bases 6)
6-Pin Types, Bases 7, 3-55
6-Terminal Types (On back of Bases 7)
7-Pin Types, Bases 8 \& 9, 5-55; 10 \& 10A, 4-58
8-Pin Types, Bases 11, 4-58
8 -Lead Types (On back of Bases 11)
8-Pin Types, Bases 11A \& 11B, 6-59

\section*{Table of Contents}

\section*{GENERAL SECTION (Cont'd)}

\section*{Bases:}

\section*{CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE SECTION}

Separator "CATHODE-RAY TUBE, STORAGE TUBE \({ }^{8}{ }^{8} 7\)
MONOSCOPE SECTION", \(2 \mathbf{5} 7\)
RCA Picture Tube Guide 1 to \(4,1-68\)
Cathode-Ray Tube, Storage Tube, \& Monoscope Clas ification Chart 1 to \(3,5-69\)
RCA Picture Tube Interchangeability Guide 1 to 6, 8-70 Features of Fluorescent Screens, 1I-58 Spectral-Energy Emission and Persistence \({ }^{\Delta}\)

Characteristic of:
Phosphor P1, 92CM-5372R1 \& 92CM-5380R2
P2, 92CM-7312 \& 92CM-7321
P4-Sulfide Type, \(92 \mathrm{CM}-7316\)
Silicate-Sulfide Type, 92CM-7456
Silicate Type, 92CM-7335
No. 5, 92CM-5559R2 \& 92CM-7266
P7, 92CM-7336 \& 92CM-7015R4
Buildup Characteristics of Phosphor P7, 92CM-7019R3 Persistence Characteristics of Phosphor P7

92CL-6804R5
- Persistence Characteristic, shown on back of
Spectral-Energy Emission Curve.

\section*{Table of Contents}

CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE SECTION (Cont'd)
Spectral-Energy Emission and Persistence \({ }^{\Delta}\) Characteristic(s) of:
Phosphor No.11, 92CM-6749 \& 92CM-6806R2
Pl2, 92CM-7317 \& 92CM-7318R1
P14, 92CM-7675 \& 92CM-7326R1
P15, 92CM-6915R1 \& 92CM-8540R1
P16, 92CM-7563R1 \& 9.2CM-7564R1
P20, 4-66
Group Phosphor P22, 10-60
P22, All-Sulfide Type, 5-61
P22, Rare-Earth (Red), \(\begin{aligned} & \text { Sulfide } \\ & \text { (Blue \& Green }) \\ & \text { Type, } 9-65\end{aligned}\)
P22, New Rare-Earth (Red), Sulfide (Blue \& Green) Type, 4-67
Phosphor P24, 92CM-8204R1 \& 92CM-8205R2
Picture-Tube Dimensional Outlines, CRT
Outlines I, 4-65
Dimensional Outlines:
Bulb J67-1/2A, CRT Outlines 1 (back)
1/2 B, CRT Outlines 1A, 4-65
J 109-1/2 A/C, CRT Outlines 1A (back)
J112 A/B, CRT Outlines 2, 4-65
J125 A, CRT Outlines 2 (back)
B, CRT Outlines 3, 4-65
C2, CRT Outlines \(4,10-65\)
J129 A/B, CRT Outlines 4 (back)
J132-1/2 A/B, CRT Outlines 5, 10-65 1/2 C/D, CRT Outlines 6, 3-62
J133 B/D, CRT Outlines 7, 3-62
C/E, CRT Outlines 8, 3-62
F/G, CRT Outlines 9, 10-65
J149 A, CRT Outlines 9 (back)
B, CRT Outlines 11, 10-65
C, CRT Outlines 11 (back)
F, CRT Outlines 12, 10-64
J161 C/D, CRT Outlines 13, 3-62
J 165 Z, CRT Outlines 14, 3-62
J170 A/C, CRT Outlines 15, 3-62
B/D, CRT Outlines 16, 3-62
J171 B/F, CRT Outlines 17, 3-62
D/E, CRT Outlines 18, 3-62
G/K, CRT Outlines 19, 3-62
H/J, CRT Outlines 20, 4-65
Persistence Characteristic, shown on back of Spectral-Energy Emission Curve.

\section*{Table of Contents}

\section*{CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE SECTION (Cont'd)}

Dimensional Outlines:
Bulb Jl87 A, CRT Outlines 20 (back)
B, CRT Outlines 22, 4-65
C/F, CRT Outlines 23, 3-62
D/G, CRT Outlines 24. 8-64 E, CRT Outlines 24 (back) Hi, CRT Outlines 25, 8-64 J, CRT Outlines 25 (back) K, CRT Outlines 26, 4-65 L, CRT Outlines 26 (back) M, CRT Outlines 26A, 10-66
J192 A/B, CRT Outlines 26A (back)
C/D, CRT Outlines 27, 8-64
J214-1/2 A, CRT Outlines 27 (back)
MJ135 A, CRT Outlines 28, 8-64
MJ166 A, CRT Outlines 29, 3-62
MJ214 A, CRT Outlines 30, 3-62
Reference-Line Gauge:
JETEC No.G-110, CE-7391R1
G-116; CE-7896R1 (back)
G-126, CE-9145R1
X-Radiation Precautions for Cathode-Ray Tubes, 3-62
Definitions of Cathode-Ray Tube Terms, 3-62
(On back of sheet X-Radiation Precautions for Cathode-Ray Tubes)

For types in Cathode-Ray Tube, Storage Tube, \& Monoscope Section, see types with letter "C" in "Section" column of INDEX OF TYPES starting on back of sheet INDEX OF TYPES 1.

\section*{PHOTOSENSITIVE DEVICE SECTION}

Separator "PHOTOSENSITIVE DEVICE SECTION", 2-57 RCA Photosensitive Device Guide 1 \& 2, 7-67
Definitions of Photosensitive-Device Terms, 11-58 Phototube Sensitivity and Sensitivity

Measurements, . 9-50
Spectral Characteristic of:
Human Eye \& of Tungsten Lamp at Color Temperature of \(2870^{\circ} \mathrm{K}, 92 \mathrm{CM}-6435 \mathrm{Rl}\)

\section*{Table of Contents}

\section*{PHOTOSENSITIVE DEVICE SECTION (Cont'd)}

\section*{Spectral Characteristic of:}

Phototube having S-1 Response, 920M-6056R6
S-3 Response, 92CM-6057R6 (On back of curve 92CM-6056R6)
S-4 Response, 92CM-6152R9
S-5 Response, 92CM-6814R2
S-8 Response, 92CM-6592R3 (Om back of curve 92OM-6814R2)
Photosensitive Device having S-9 Response 92OM-7274R2 S-10Response, 92OM-7821R2 (On back of curve 920M-7274R2)
S-11 Response, 7-63
S-12 Response (On back of Response S-11)
Tentative Spectral-Sensitivity Characteristic of:
Phototube having S-13 Response, 92CM-9037R1
Photojunction Cell having S-14 Response, \(920 \mathrm{M}-9647\)
(On back of curve 920M-9037R1)
Photoconductive Cell having S-15 Response, 92CM-9206R1
S-17 Response 92CM-9477Rl (On back of curve 92CM-9206R1)
Spectral-Sensitivity Characteristic of Photosensitive Device having S-18 Response, 1-62
Tentative Spectral-Sensitivity Characteristic of:
Phototube having S-19 Response, 92CM-9582

> S- 20 Response, \(92 \mathrm{OM}-9779\) (On back of curve \(92 \mathrm{OM}-9582\))

Photosensitive Device having \(\mathrm{S}-21\) Response, 92CM-9980
Spectral Characteristic of \(2870^{\circ} \mathrm{K}\) Light
Source and Spectral Characteristic of
Light from \(2870^{\circ} \mathrm{K}\) Source after Passing
Through Indicated:
Blue Filter, \(92 \mathrm{CM}-7811\)
Red-Infrared Filter, 920M-7838
(On back of curve 92CM-7811)
Infrared Filter, \(92 \mathrm{CM}-9454\)
Red Filter, 92CM-98R3(On back of curve 92CM-9454)
Spectral Energy Distribution:
Blue Filter. 920M-11081R1, 9-67
Frequency-Response Characteristics of Gas
Spectral Response:
Phototubes, 92CM-6864
PCA Type 11, 920M-11619, 12-68

RCA Type IV, 92LM-2586 (On back of curve 92CM-11619)

\section*{Table of Contents}

\section*{PHOTOSENSITIVE DEVICE SECTION (Cont'd)}

For types in Photosensitive Device Section, see types with letter "P" in "Section" column of INDEX OF TYPES starting on back of sheet INDEX OF TYPES 1.

THYRATRON, IGNITRON, \& GLOW-DISCHARGE TUBE SECTION
Separator "THYRATRON, IGNITRON, \& GLOWDISCHARGE TUBE' SECTION", 2-57
RCA Thyratron, Glow-Discharge, Ignitron, \& Vacuum-Gauge Tube Guide \(1 \& 2,7-67\)
Grid-Controlled Rectifier Circuits:
Rectifier Circuits 1 \& 2, 4-57
For types in Thyratron, Ignitron \& Glow-Discharge Tube Section, see types with letter " \(F\) " in "Section" column of INDEX OF TYPES starting on back of sheet INDEX OF TYPES 1.

\section*{RECEIVING TUBE SECTION-Part 1}

Separator"RECEIVING TUBE SECTION--Part1", 2-57 Application Guide for RCA Receiving Tubes:

Application Guide 1 to 6, 11-70
RCA Receiving Tube Types:
. Supplementary Listing 1 to 7,4-71
RCA Receiving-Tube Data:
Types Not Recommended for New Equipment
Design l to \(13,2-70\)
X-Radiation Precautions for RCA Receiving Tubes, 4-71
Diode Considerations, 12-47
Diode Considerations, Diode Circuits, 12-47 Resistance-Coupled Amplifiers 1 to 8, 5-65
Grid-No. 2 Input Rating Chart, \(1-55\)
Heater Warm-Up Time Measurement, 3-55
Oiode Nomograph, 7-61
For types in Receiving Tube Section-Part 1 (Type 0Z4 up through Type 6MU8), see types with letter " \(R\) " in
"Section" column of INDEX OF TYPES starting on back of sheet INDEX OF TYPES 1.

\section*{Table of Contents}

\section*{RECEIVING TUBE SECTION-Part 2}

Separator "RECEIVING TUBE SECTION--Part2",2-57
For types in Receiving Tube Section-Part 2/Type 6S4A and beyond), see types with letter " \(R\) " in "Section" column of INDEX OF TYPES starting on sheet INDEX OF TYPES 7.

\section*{RECEIVING-TYPE INDUSTRIAL TUBE SECTION}

> Separator "RECEIVING -TYPE INDUSTRIAL TUBE SFCTION", 2-57

RCA Industrial Receiving-Type Tube Applicotion
Guide 1 to 4, 8-69
Prototypes vs RCA "Premium" or Special Types (On back of application Guide for RCA Receiving-Type Industrial Tube, Guide 4) Socket \& Connector Information for RCA Nuvistor Tubes, Data, 1-64

For types in Receiving-Type Industrial Tube Section, see types with letter "D" in "Section" column of INDEX OF TYPES starting on back of sheet INDEX OF TYPES 1.

\section*{TRANSMITTING TUBE SECTION}

Separator "TRANSMITTING TUBE SECTION", 2-57
RCA Power Tube Guide 1 to \(4,7-67\)
RCA Transmitting-Tube Types, Limited Listing
RCA Transmitting Tube Operating Considerations 1 to 13, 2-65
Transmitting Tube Ratings vs Operating Frequency I \& 2, 9-63 Circuits for Hot-Cathode Mercury-Vapor \&as Rectifier Tubes \(1 \& 2,2-52\)
For types in Transmitting Tube Section, see types with letter " \(T\) " in "Section" column of INDEX OF TYPES starting on sheet INDEX OF TYPES 2.

\section*{Table of Contents Supplement}

\section*{ADDITIONS AND REVISIONS}

\section*{GENERAL SECTION}

Table of Contents, Contents Supplement, 2-72
Index of Types, Index Supplement, 2-72

\author{
CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE SECTION \\ Safety Precautions For Color Picture Tubes, 2-72 JEDEC Phosphor P31, 6-72
}

\section*{RECEIVING TUBE SECTION - PART 1}

RCA RECEIVING TUBE TYPES - Supplementary Listing 1 to 9, 10-71
Safety Precautions (1) For Receiving Tubes, 10-71
Safety Precautions (11) For Receiving Tubes, 10-71

\section*{DELETION}

RECEIVING TUBE SECTION - PART 1
X-Radiation Precautions For Receiving Tubes, 4-71

\section*{Index of Types}

This Index of Types is arranged in numerical-alphabeticalnumerical sequence of types. The letter in the "Section" column indicates the particular section in which the type will be found. The sections are keyed as follows:

C = Cathode-Ray Tube, Storage Tube \& Monoscope
D = Receiving- Type Industrial Tube
F \(=\) Thyratron, Ignitron, \& Glow-Discharge Tube
G = General
\(\mathbf{P}=\) Photosensitive Device
\(R=\) Receiving Tube
\(T=\) Transmitting Tube
Supplements, when applicable, will appear immediately following this index.
- See sheet titled RCA RECEIVING TUBE TYPES Supplementary Listing at beginning of Receiving Tube Section.
- See sheet titled RCA RECEIVING TUBE DATA Types Not Recommended for New Equipment Design at beginning of Receiving Tube Section.
- See sheet titled RCA TRANSMITTING.TUBE TYPES Limited Listing at beginning of Transmitting Tube Section.
- Discontinued type. Data retained in Handbook for reference purposes only.

Reference is to front of sheet only unless otherwise indicated. Data appearing on sheet is identified by month and year only (e. g., 4-71).

Index of Types
OA2 to 2AF4B/2DZ4
For key to symbols, see sheet Index of Types 1

\section*{Index of Types 2AH2 to 3B2}

Index of Types \(3 B 28\) to 3JPI

\section*{Index of Types \\ 3JP7 to 4ES8}

Index of Types
4ES8 to 5HZ6
For key to symbols, see sheer Index of Types 1
\begin{tabular}{|c|c|c|c|c|}
\hline Type & & \begin{tabular}{l}
Shear \\
\& Date
\end{tabular} & Type & Sheet \& Date \\
\hline 4ES8*... & & Use 4ES8/ XCC189 & 5AUP24. C & Data 1\&2, 9-58 Curve 92CM- \\
\hline 4EW6 & R & On back of 4EH7 sheet & 5AV8 ... R & \begin{tabular}{l}
8343R1 \\
Data, 7-61
\end{tabular} \\
\hline 4GK5 & R & Suppl. Listing. 4-71 \({ }^{\text {i }}\) & \[
\begin{aligned}
& \text { 5AZ4 ... R } \\
& \text { 5AZP4 .. }
\end{aligned}
\] & \begin{tabular}{l}
Data Chart, 2-70 \({ }^{\text {D }}\) \\
Data 1 to 6,2-69
\end{tabular} \\
\hline 4GM6 . . . & R & On back of 4EH7 sheet & 5B8 R & \[
\begin{aligned}
& \text { Tent. Data } \\
& \text { 1\&2, 9-58 }
\end{aligned}
\] \\
\hline 4HM6 & R & Data, 8-63 & 5BC3A . . R & Data 1 to 4,4-65 \\
\hline 4H05 & R & Suppl. Listing,
\[
4-71^{4}
\] & \[
\begin{array}{lll}
\text { 5BE8 ... } \\
\text { 5BK7A }
\end{array} .
\] & \begin{tabular}{l}
Data Chart, 2-70 \\
Data, 2-59
\end{tabular} \\
\hline 4HS8 & R & Data, 3-64 & 5BP1A .. C & Data 1, 7.45 \\
\hline 4JC6* & R & Data, 10-66 & 5807A . . R & On 5BK7A sheet \\
\hline 4JC6A & R & On 4JC6 sheet & 5BR8 ... R & On 5BK7A sheet \\
\hline 4JD6 & R & On 4JC6 sheet & & Use 5BR8/5F V8 \\
\hline 4JH6 & R & Suppl. Listing,
\[
4.71^{\star}
\] & & Data Chart, 2-70 \\
\hline 4KE8 & R & On 4JC6 sheet & 5C21 & See C6J/5C21 \\
\hline 4KT6 & R & On 4JC6 sheet & 5CG8 ... R & Data, 7-61 \\
\hline \(4 \times 150 \mathrm{D}\) & & See 7035/4X150D & 5CL8A . . R & On 5CG8 sheet \\
\hline \(4 \times 500 \mathrm{~A}\) & T & Data Chart, 11-69" & \[
\begin{array}{lll}
\text { 5CM8 } & \ldots & R \\
5 \text { CP1A }^{\circ} & \ldots & \text { C }
\end{array}
\] & On 5CG8 sheet Data 1\&2, 10-51 \\
\hline 5-125B . . & & \[
\begin{aligned}
& \text { See 4E27A/ } \\
& 5-125 B
\end{aligned}
\] & C & Outline CE-6408R4 \\
\hline \multirow[t]{2}{*}{5ABP1 ..} & C & \[
\begin{aligned}
& \text { Tent. Data } \\
& 1 \& 2,6-53
\end{aligned}
\] & 5CP11A . \({ }^{\text {C }}\) & \begin{tabular}{l}
Curve 92CM-6821 \\
Tent. Data, 4-47
\end{tabular} \\
\hline & C & \begin{tabular}{l}
Out line CE-7842 \\
Curve 92CM-7910
\end{tabular} & 5CO8 ... R & On back of 5CG8 sheet \\
\hline \[
\begin{aligned}
& 5 A B P 4^{\circ} . \\
& 5 A B P 7{ }^{\circ}
\end{aligned}
\] & C & \begin{tabular}{l}
Data, 11-55 \\
On 5ABP4 sheet
\end{tabular} & 5CZ5 ... R & On back of 5CG8 sheet \\
\hline 5 ABP11 & C & On 5ABP4 sheet & 5 D 22 & See 4-250A/5D22 \\
\hline \multirow[t]{5}{*}{5ADP1 ..} & C & Tent. Data 1\&2, 12.56 & 50.J4 ... R & Data Chart, 2-70 \\
\hline & C & Curve 92cm- & 5EA8 ... R & Data,5-62 \\
\hline & & \[
9099
\] & 5EU8 & On 5EA8 sheet \\
\hline & C & & 5EW6 . . . R & On 5EA8 sheet \\
\hline & c & Curve 92CM-
\[
682081
\] & 5FG7 . . . R & On back of \\
\hline 5AM8 . . . & R & On back of & 5FP4A & Data 1\&2,8-63 \\
\hline & & 4JC6 sheet & 5FP7A ... C & Data, 8-51 \\
\hline 5AN8. & R & On back of 4JC6 sheet & 5FV8 ... R & On back of \\
\hline 5A05 & R & On back of 4JC6 sheet & 5GH8A . . R & Data, 9-68 \\
\hline 5AS4A... & R & Tent. Data, 4-57 & 5GM6
5G X6 & On 5GH8A sheet On 5GH8A sheet \\
\hline 5AS8 & R & Data, 7-61 & 5HZ6 ... R & On back of 5GH8A \\
\hline 5AT8 & R & On 5AS8 sheet & & sheet \\
\hline
\end{tabular}

\section*{Index of Types 5J6 to 6AN4}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{For key to symbols, see sheet Index of Types 1} \\
\hline Type & Sheet
8 Date & Type & Sheet
8 Date \\
\hline \multirow[t]{2}{*}{\(556 \ldots\)} & R On back of & 6AB & Data Chart, 2-70 \\
\hline & 5GH8A sheet & 6AB4. & Dats, 5-52 \\
\hline \multirow[t]{2}{*}{5KE8} & R On back of & & See also \\
\hline & 5GH8A sheet & & 6664/6AB4 \\
\hline \multirow[t]{2}{*}{5M08} & R On back of & 6 6C7 . . . R & Data Chart, 2.70 \({ }^{\text {0 }}\) \\
\hline & 5GH8A sheet & 6AD10 & Suppl. Listing, \\
\hline 5R4GYB & D Data 1 to 4, 7-61 & & 4-71* \\
\hline \(5 \mathrm{T8}\) & R Data, 4-56 & 6A & Data, 10.59 \\
\hline 5U4G & \(R\) Data Chart, 2-70 \({ }^{\circ}\) & 6AF4 & Dats, 11-54 \\
\hline 5U4GB & \(R\) Data 1 to 3,7-61 & 6AF4A . . R & Data, 5-61 \\
\hline & R Data, 3-55 & R & Curve 92CM- 7756 \\
\hline \multirow[t]{7}{*}{} & C Tent. Data, 12-46 & R & Curve 92CM7759R1 \\
\hline & c Cir & & Use 6AF4A/6DZ4 \\
\hline & CE-6819 & 6AF6G .. R & Data, 12.44 \\
\hline & C Curve 92CM- & 6AF1 & Data, 5-65 \\
\hline & 6808 & 6AG5 & ata, 1-55 \\
\hline & C Curve 92CM- & \(R\) & urve 92CM- \\
\hline & 6810 & & 399R2 \\
\hline 5UP7 . . . & C Data, 9-65 & 6AG7 ... R & Data 1\&2,1152 \\
\hline 5UP11.. & C On 5UP7 sheat & R & Curves \\
\hline 5UP31 & C On 5UP7 sheet & & E-6035T1 \& \\
\hline \multirow[t]{3}{*}{5V3A ...} & R Data, 7-61 & & E-6036T1 \\
\hline & Use 5V3A/ & 6AH4GT R & ata Chart, 2-70 \({ }^{\circ}\) \\
\hline & 5AU4 & 6AH6 & Data Chart, 2-70 \({ }^{\text {¹ }}\) \\
\hline \multirow[t]{5}{*}{EVAGA ..} & R Tent. Data, 758 & 6AK5 ... R & Data, 9-55 \\
\hline & R Outline & R & rve 92CM-6504 \\
\hline & CE-9549R1 \& & & e 6AK5/EF95 \\
\hline & rve 92CS- & 6AK6 & nt. Data 10.43 \\
\hline & 6110 R 1 & & urve 92C-6449 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
5V6GT . . \\
5WP11 .
\end{tabular}} & \(R\) Data, 7-58 & 6AL3 \({ }^{\bullet}\). . R & ata, 3-62 \\
\hline & C Tent. Data 1\&2, 2-49 & 64L3 ... & Use 6AL3/EY88 \\
\hline \(5 \times 8 \ldots\) & R Data, 3-55 & 6AL5 ... R & ata, 5-54 \\
\hline 5Y3GT & \(R\) Data 1\&2,7-61 & R & urve 92CM-6661 \\
\hline 5Y4GA.. R & \(R\) Data Chart. 2-70 & & ee also 6663/6AL5 \\
\hline 5Y4GT .. A & R Data Chart, 2-70 \({ }^{\circ}\) & 6AL7 & Data Chart, 2.70 \({ }^{\circ}\) \\
\hline 523 & R Data Chart, 2-70 \({ }^{\circ}\) & 6AL1 & Data 1, 10-66 \\
\hline 524 & R Data Chart, 2-70 \({ }^{\circ}\) & & Data 2\&3, 8-64 \\
\hline \multirow[t]{5}{*}{52P16 ..} & C Data 1\&2, 7-58 & 6AN & Data Chart, 2-70 \\
\hline & C Outline \& Notes & 6AM8A & Data 1,10-59 \\
\hline & CE-7574R2 & R & urve 92CS. \\
\hline & C Curve 92CM- & & 8504R1 \\
\hline & 576R1 & R & urve 92CM- \\
\hline \multirow[t]{2}{*}{6 A7} & R Data Chart, & & 10244 \\
\hline & \[
2.70^{\circ}
\] & 6AN4 . . . R & Tent. Data, 6-57 \\
\hline
\end{tabular}

\section*{Index of Types \\ 6AN8A to 6BE3}

\section*{Index of Types 6BE6 to 6C5}

\section*{Index of Types \\ 6C6 to 6DE7}

For key to symbols, see sheet Index of Types 1

Type

6C6,6C9 . R Data Chart, 2.70 \({ }^{\circ}\)
6CA4 ... R Data 1\&2, 8-60
6CA5 ... R Data, 7.61
6CB5A .. R Data, 8.59
R Outline CE8988R1
R Curve 92CM. 8436
6CB6 ... R Data, 3-55
R Curve 92CM. 7378
6CB6A R Tent. Data, 459
R Curve 92CM. 9854
Use 6CB6A/6CF6
See also 6676/6CB6A
6CD6GA R Tent. Data, 10-56
R Outline CE-9012
R Curve 92 Cm - 9016
6CE3 ... R Data, 2-69 Use 6CE3/6CD3
6CG3 ... R Data, 2-69 Use 6CG3/ 6BW3
6CG8A . R Data, 3-61
6CH8 ... R Data Chart, 2-70 \({ }^{\circ}\)
6C.J3.... R Data, 12-68 Use 6CJ3/ 6CH3
6CK3 ... R Data, 8-69
6CK4 ... R Data Chart, 2-70 \({ }^{\circ}\)
6CL3 ... R Data, \(12 \cdot 66\)
6CL6 ... R Tent. Data,9-52
R Circuit CE- 7804
R Curve 92 CM - 7802
R Curve 92CM- 7808 See also 6677/6CL6
6CL8A . R Data 1\&2, \(10-59\)
6CM 3 ... R Data, 4-67
6CM6 ... R Tent. Data 1\&2, \(9-58\)
6CM7 ... R Data 1 to 3, 5-61
6CM8 ... R Data Chart, 2-70 \({ }^{\text {a }}\)
6CN7 ... R Data, 1-63
6CO4 ... R Data, 5-62 Use 6DE4/6C04
\begin{tabular}{|c|c|c|}
\hline Type & & \\
\hline \multicolumn{2}{|l|}{\(6 \mathrm{CO8}\). . . R} & Data 1 to 4, 3-61 \\
\hline \multicolumn{2}{|l|}{6CR6 ... R} & Data Chart, 2-70 \({ }^{\text {º }}\) \\
\hline \(6 C 56\) & R & \begin{tabular}{l}
Data, 8-56 \\
Curve 92CM-8922
\end{tabular} \\
\hline \(6 C 57\) & R & \[
\begin{aligned}
& \text { Tent. Data } \\
& \text { 1\&2, } 11.58
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 6CT3 } \\
& \text { 6CU5 }
\end{aligned}
\]} & R & Data, 5-68 \\
\hline & R & Data, 1-62 \\
\hline & R & Curve 92CM8908R 1 \\
\hline \multicolumn{2}{|l|}{6CU6 ...} & See 6BO6GTB/ 6CU6 \\
\hline \multirow[t]{3}{*}{6048} & R & Data, 4-60 \\
\hline & R & \[
\begin{aligned}
& \text { Curve 92CM- } \\
& 10353
\end{aligned}
\] \\
\hline & R & Curve 92CM-
\[
10646
\] \\
\hline 6CW4 & R & Data 1 to 3, 1-63 \\
\hline \multirow[t]{2}{*}{6CW5} & R & Data, 5-65 \\
\hline & R & Use 6CW5/EL86 \\
\hline \(6 \mathrm{CX8}\) & R & Data, 10-59 \\
\hline \multirow[t]{4}{*}{\(6 \mathrm{CY5}\)} & R & Data, 10-59 \\
\hline & R & Curve 92CM9518 \\
\hline & & See also \\
\hline & & 7717/6CY5 \\
\hline \multicolumn{2}{|l|}{\[
6 C Y 7
\]} & Data, 10-59 \\
\hline \multicolumn{2}{|l|}{6CZ5 ... R} & Data 1 to 3,1-61 \\
\hline \multirow[t]{2}{*}{6DA4} & R & Data, 10-59 \\
\hline & & Use 6DM4A/ 6DA4 \\
\hline \multirow[t]{2}{*}{60B5} & R & Data, 7-61 \\
\hline & R & Tent. Data, 6-54 \\
\hline \multirow[t]{2}{*}{6066} & R & \[
\begin{aligned}
& \text { Curve 92CM- } \\
& 8330 R 1
\end{aligned}
\] \\
\hline & R & Curve 92CM8338 \\
\hline \multirow[t]{2}{*}{60E4} & R & Data, 1-62 \\
\hline & & Use 60E4/6CO4 \\
\hline \multirow[t]{3}{*}{60E6} & R & Data, 10.59 \\
\hline & R & Curve 92CM- \\
\hline & R & 8578R1 \\
\hline \multirow[t]{3}{*}{60E7} & R & Dent. Data 2, 6-59 \\
\hline & R & Curve 92CM-9991 \\
\hline & R & Curve 92CM-9914 \\
\hline
\end{tabular}

\section*{Index of Types 6DG6GT to 6FQ5A}

For key to symbols, see sheet Index of Types 1
\begin{tabular}{|c|c|c|}
\hline Type & & Sheet 8 Date \\
\hline 60G6GT & R & Tent. Data, 12.56 \\
\hline \multirow[t]{2}{*}{6DK6...} & R & Tent. Data, 4-59 \\
\hline & R & Curve 92CM9851 R1 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{6DM4A/
6DA4 .. R}} & \\
\hline & & Suppl. Listing,
\[
4-71^{4}
\] \\
\hline 6DN3 & R & Data 1\&2,5-70 \\
\hline 60N6 & R & Data Chart, 2-70 \\
\hline 60N7 & \[
\begin{aligned}
& \mathbf{R} \\
& \mathbf{R}
\end{aligned}
\] & Data, 10-59 Outline CE-10241 \\
\hline \multirow[t]{3}{*}{6005 ...} & R & Data 1, 7-63 \\
\hline & R & Outline CE-9343 \\
\hline & R & Curve 92CM-9309 \\
\hline \multirow[t]{3}{*}{6 6R7} & R & Tent. Data, 6-59 \\
\hline & R & Data 2, 1-62 \\
\hline & R & Curve 92CM- \\
\hline 6054 & R & \\
\hline \multirow[t]{2}{*}{6055} & R & Data 1\&2, 8-69 \\
\hline & R & Curve 92CM9292 \\
\hline 6DT5 & R & Data, 10-59 \\
\hline 6DT6A & R & Data 1 to 4,1-61 \\
\hline \multirow[t]{2}{*}{6DT8} & R & Tent. Data, 8-57 \\
\hline & R & Curve 92CM-9397 \\
\hline 60V4 & R & Data 1 to 3,1-63 \\
\hline 60W48 & R & Data, 4-65 \\
\hline \multirow[t]{3}{*}{\(60 \times 8{ }^{\circ}\)} & \(R\) & Data, 9-62 \\
\hline & & Use 60×8/ \\
\hline & & ECL84 \\
\hline 60Z4 & R & Data 182,4-63 \\
\hline 6E5 & R & Data, 12-44 \\
\hline 6EA5 & R & See 6CY5 \\
\hline \multirow[t]{2}{*}{GEA7} & R & Data, 7-61 \\
\hline & & Use 6EM7/6EA7 \\
\hline \multirow[t]{3}{*}{GEAB} & R & Data, 7-61 \\
\hline & R & Curve 92CM-9866 \\
\hline & R & Curve 92CM-9867 \\
\hline \multirow[t]{3}{*}{CEB8} & R & Tent. Data 1\&2,6.59 \\
\hline & R & Curve 92CM-9908 \\
\hline & R & Curve 92CM- 9905 \\
\hline
\end{tabular}

Index of Types 6FQ7 to 6JZ8

For key to symbols, see sheet Index of Types 1
\begin{tabular}{|c|c|c|c|c|}
\hline Type & & \begin{tabular}{l}
Sheet \\
\& Date
\end{tabular} & Type & \begin{tabular}{l}
Sheet \\
\& Date
\end{tabular} \\
\hline \multirow[t]{4}{*}{6K6GT.} & R & Data 1 \& 2,6-56 & 6N5 & See 6AB5/6N5 \\
\hline & R & Curve 92CM4881 R2 & 6N7. 6N7GT ค & Data Chart, 2-70 \\
\hline & R & Curve 92CM- & \(607 \ldots\). R & DataChart, 2-700 \\
\hline & & 6313 & 6011 & See6K11/6011 \\
\hline \multirow[t]{3}{*}{6K7,6K8 6K11/ 6011 .} & R & DataChart, 2-700 & 6S4A ... \(R\) & Data 1 \& 2, 1-62 \\
\hline & & & 6S8GT• R & Data Chart, 2-700 \\
\hline & R & Data, 2-65 & GSA7. & \\
\hline \[
\begin{aligned}
& 6011 \text {. } \\
& \text { 6KA8 . }
\end{aligned}
\] & R & Data 1 to 5,5-62 & 6SA7GT/G & Data, 1-43 \\
\hline & R & Data 1 \& 2,5-69 & R & Curve 92C-4993 \\
\hline 6KD6 & R & Data 1 to 3,463 & R & Curve 92C-4989 \\
\hline 6KL8 & R & DataChart, 2-70 & 6SB7Y. R & Data Chart, 2-70 \\
\hline 6KM6 & R & Data 1 \& 2,9-65 & OSC7 .. R & Data Chart, 2-70 \\
\hline 6KM8 & R & Data 1 to 3, 1-63 & 6SF5 ... R & DataChart, 2-70 \\
\hline 6KT6 & R & Data 1 \& 2, 10-66 & GSF7 .. R & Data Chart, 2-70 \\
\hline 6KT8.. R & R & Data, 4-64 & 6SG7 . . R & DataChart, 2-700 \\
\hline 6KV6.. R & R & Data 7-67 & 6SH7 . . R & Data Chart, 2-700 \\
\hline 6KV6A. P & R & Data 1 82,8-69 & OSJ7, & \\
\hline 6KV8 . . P & R & Data 1 to 3, 6-66 & 6SJIGT* R & Data, 6-48 \\
\hline 6KY6.. P & R & Data 1 \& 2,4-67 & R & Curve 92CM-4939R1 \\
\hline 6KY8A & R & Data 1 to 3, 10-64 & R & Curve 92CM-6444R1 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 6KZ8.. } \\
& \text { 6L6. } \\
& \text { 6L6G. }
\end{aligned}
\]} & R & Data 1 to 3, 3-64 & R & Curve 92CM-6409R1 \\
\hline & & & OSK7 .. R & Data Chart, 2-70 \\
\hline & R & Data 1 to 3,11-54 & 6SK7GT R & Data Chart, 2-70 \\
\hline & R & Curve 92C(M)- & 6SL7GT R & Data, 11-54 \\
\hline & & 4581R1 & R & Curve 92CM-6298 \\
\hline \multirow[t]{2}{*}{} & R & Curve 92C-4608 & 6SN7GTA \({ }^{\circ}\) & Tent. Data 1 \& 2, \\
\hline & R & Data 1 to5,8-60 & & 6.54 \\
\hline 6LGGC.
\[
6 L 7
\] & R & DataChart, 2-700
Data \(182,5-69\) & R & Curve 92CM-8122 \\
\hline 6LC8 & R & Data \(1: 04,9-63\) & GSN7GTB R & Data, 3-55 \\
\hline 6LE8 & R & Data 1 \& 2, 12-65 & 6SQ7GTIG & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
6LF8 \\
6LH6A.
\end{tabular}} & R & Data 1 to 3,4-64 & 6S & Curve 92C-6310 \\
\hline & R & Suppl. Listing, 4-714 & Gr87 ..
GT4 & DataChart, 2-70 \({ }^{\text {a }}\) \\
\hline \multirow[t]{2}{*}{6LJ6A/ 6LH6A} & & & \[
\begin{aligned}
& 6 T 4 \\
& 6 T 8 A
\end{aligned} \cdot R
\] & DataChar \\
\hline & R & Suppl. Listing, 4.714 & & \[
4-59
\] \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { 6LM8 . . } \\
& \text { 6LQ6 . }
\end{aligned}
\]} & R & Data 1 to 3, 8-64 & & \\
\hline & R & Data 1 \& 2, 1-68 & & DataChart, 2-70 \({ }^{\text {a }}\) \\
\hline & & Use 6LQ6/ & 6U8A ... R & Data 1 to 3, 1-61 \\
\hline & & 6JE6C & & Use6U8A/6KD8 \\
\hline 6L08 .. & R & Data 1 to 3, 2-66 & & Seealso6678/ \\
\hline \multirow[t]{2}{*}{6LT8 ..} & R & Suppl. Listing, & & 6U8A \\
\hline & & 4-71* & 6V3A . . R & Tent. Data, 5-55 \\
\hline 6MD8 . . & R & Data 1 \& 2,9-65 & 6V6 ... R & DataChart, 2-700 \\
\hline 6ME8 . . & R & Data 1 to 3,467 & 6V6GTA R & Data 1 to 3, 1-62 \\
\hline 6MJ8 & R & Data 1 \& 2,5-69 & GW4GT. R & Data, 1-62 \\
\hline 6MK8 .. & R & Suppl. Listing, 4.714 & 6W6GT. R & Tent. Data, \(10-53\) Curve 92CM-7942 \\
\hline 6MN8 . . & R & Data, 5-69 & 6x4 .. R & Data 1 \& 2,10-53 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
6M08 \\
6MU8
\end{tabular}} & R & Data 1 to 3,9-68 & R & Rating Chart II \\
\hline & R & Data 1 \& 2,5-70 & & 92CM-8024 \\
\hline
\end{tabular}

6X4 to 10GF7A
For key to symbols, see sheet Index of Types 1

\section*{Index of Types IOGN8 to 12CK3}
\begin{tabular}{|c|c|c|}
\hline Tуpe & & For key to symbols,
Sheet
\& Date \\
\hline 10GN8 & R & On beck of 10EM7 sheet \\
\hline 10HF8. & R & Onback of 10EM7 sheet \\
\hline 148 & R & Data 1 \& 2,4-64 \\
\hline & & Use 1014810,78 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 10LE8. } \\
& \text { 10SP4. }
\end{aligned}
\]} & R & Data, 8-69 \\
\hline & c & Data, 8-57 \\
\hline & c & Outline CE. \\
\hline & & \[
\begin{gathered}
\text { 7729R1 } \\
\text { Curve 92CM-7773 }
\end{gathered}
\] \\
\hline 11 AR11 & R & On10LE8 sheet \\
\hline \(11{ }^{\text {P }} 4\) & C & Dat \\
\hline \multicolumn{3}{|l|}{11CY7.} \\
\hline \multicolumn{2}{|l|}{11055} & On 10LE8 \\
\hline 11 GP4. & C & Data, 2-67 \\
\hline 11 HM 7. & R & Data 1 \& 2,6-66 \\
\hline 11HP4A. & C & Data, 6-66 \\
\hline 11KV8 & R & Data, 6-66 \\
\hline 11LOB & R & On 11KV8 sheet \\
\hline 11478 & R & Suppl. Listing, 4.714 \\
\hline \multirow[t]{2}{*}{\(2 \mathrm{A6}\)} & D & Tent. Data,5-42 \\
\hline & D & Curve92C-6327 \\
\hline \multirow[t]{2}{*}{12ABs.} & R & Tent. Data 182, \\
\hline & R & Curve92CM-8756 \\
\hline \multicolumn{3}{|l|}{12AC6,} \\
\hline \multirow[t]{2}{*}{12ADG} & R & DataChart, 2-700 \\
\hline & R & DataChart, 2-70 \\
\hline \multirow[t]{3}{*}{12AF3.} & R & Data, 10-59 \\
\hline & & Use 12AFF' \\
\hline & & 2BR3/ \\
\hline & & 12RK19 \\
\hline 12AF6. & R & DataChart, 2-70 \\
\hline 12 ALL & R & Data, 5-54 \\
\hline 12 ALB . & R & DataChart, 2-700 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 12 A L 11 \\
& 12 A 05 .
\end{aligned}
\]} & R & Data, 8-64 \\
\hline & R & Tent. Data 1,8.53 \\
\hline & R & Tent. Data 2,5-54 \\
\hline \multirow[t]{2}{*}{12AT6} & R & On back of 1 \\
\hline & & Tent. Data 2 sheet \\
\hline \multirow[t]{3}{*}{12AT7. .} & R & Data, 3 -54 \\
\hline & R & Curve 92CM-7056 \\
\hline & & Use 12AT7/ECC81 \\
\hline \multirow[t]{2}{*}{} & & Data, 6-57 \\
\hline & R & Data 1 to 3,7-6 \\
\hline 12AU7A P & & 12AU \\
\hline & & ECC82 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 12AV5GA R } \\
& \text { 12AV6. }
\end{aligned}
\]}} & \\
\hline & & On 12AV5GA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline pe & & Sheet
\& Date \\
\hline \multicolumn{3}{|l|}{12AV7.} \\
\hline 12AW6. & & DataChart, 2-70 \({ }^{\circ}\) \\
\hline 12 AX 3 & & Data, 1-63 \\
\hline \(12 \mathrm{~A} \times 4 \mathrm{G}\) & \({ }^{\text {• }}\) & On 12 AX3 sheet \\
\hline 12 AX 4 GT & & On 12AX 3 sheet \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{12AX7A R}} & Data 1 \& 2, 10-60 \\
\hline & & Use 12AX7ANECO83 \\
\hline 12AY3* & R & Data, 10-64 \\
\hline 12AY3A & R & On 12AY3sheet \\
\hline \multirow[t]{2}{*}{12AY7} & R & Tent. Data,4-53 \\
\hline & R & Curve 92CM-786 \\
\hline 12AZ7A & R & Data, 1-62 \\
\hline 12844. & R & Tent. Data, 5-55 \\
\hline 12BA6 & R & Data, 4-66 \\
\hline 12 BA 7 & R & On 12BA6sheet \\
\hline 12BD6. & R & On 12BA6sheet \\
\hline 12 EE 3 & R & On back of 128A6 \\
\hline \multicolumn{3}{|l|}{12BE6,} \\
\hline 12BF6. & R & Onback of 128A6 \\
\hline \multirow[t]{2}{*}{12 BF 11.} & R & sheet
On back of 128 A 6 \\
\hline & & sheet \\
\hline 12BH7A & R & Tent. Data \(\begin{array}{r}182 \\ 3-55\end{array}\) \\
\hline \(12 \mathrm{BK5} 5\). & R & DataChart, 2-70 \\
\hline 128 L 6 & R & DataChart, 2-700 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\({ }_{12806 G T B / ~ D a t a, ~}^{12-65}\)}} \\
\hline & & \\
\hline 12 CUG . & R & Data, 10-64 \\
\hline \(12 \mathrm{BR7}\). & R & DataChart, 2-70 \({ }^{\circ}\) \\
\hline \multirow[t]{2}{*}{\(12853{ }^{\text {c }}\)} & R & On 12806GT3/ \\
\hline & & \begin{tabular}{l}
12Cu6 \\
sheet
\end{tabular} \\
\hline \multirow[t]{5}{*}{12 BS 3 .} & R & On 12806GTB/ \\
\hline & & 1206 \\
\hline & & \\
\hline & & Use 128s3N \\
\hline & & 120 W4A \\
\hline \multirow[t]{2}{*}{128V7. .} & & DataChart, 2-70 \\
\hline & & Use 12SY7A128V7/ \\
\hline \multirow[t]{2}{*}{12 BV 11.} & R & Suppl. Listing, \\
\hline & & 4.714 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 128 \mathrm{WY} \\
& 12 \mathrm{BY} 7 \mathrm{~A}
\end{aligned}
\]} & R & DataChart, 2-70 \\
\hline & R & Data 1 \& 2, 3-61 \\
\hline & & Use 128Y7A 12BV7] \\
\hline & & 12007 \\
\hline \multicolumn{2}{|l|}{123Z6. . R} & Data, 3-61 \\
\hline \multicolumn{2}{|l|}{12827... R} & Data Chart, 2-700 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{12CA5.. R}} & Tent. Data 3-55 \\
\hline & & Curve 92CM-8507 \\
\hline 12 CK 3. & R & Data, 12-66 \\
\hline
\end{tabular}

\section*{Index of Types \\ 12CL3 to \(13 Z 10\)}

For kev to symbols, see sheet Index of Types 1
\begin{tabular}{|c|c|c|c|}
\hline & Shoet \& Date & & \[
\begin{aligned}
& \text { She } \\
& \text { \& } \mathrm{D}
\end{aligned}
\] \\
\hline CL3 & On 12CK3 sheet & 12K7GT• R & Data Chart. 2.700 \\
\hline 2015 & Data Chart, 2-70 & 12KL8. . R & DataChari2-700 \\
\hline \(12 \mathrm{CR6}\). & Tent. Data, 6-56 & \(12 \mathrm{KP4A}\). C & Da \\
\hline & Curve 92 CM & 12 LGGT . & Data Chart, 2-70 \({ }^{\circ}\) \\
\hline 12 CT 3 & Data, 8-70 & 121896 & \\
\hline \[
\begin{gathered}
12005 \\
1205 .
\end{gathered}
\] & On1 & \(12 \mathrm{MD8}\). & Suppl. Listin 4-714 \\
\hline 12 Cx 6 & DataChart, 2-70 & 12R5 & DataChart, 2-700 \\
\hline 12 & Tent. Data, 4-59 & 12847 & Data, 10-64 \\
\hline 12085 & Data, 7-61 & \(125 C 7\) & DataChart, 2-70口 \\
\hline \(120 \mathrm{K6}\) & Suppl. Listing, & 12SF5 & DataChart, 2.70 DataChart, 2.70 \\
\hline 12 & Data, 5-61 & 12867 & DataChart, 2-700 \\
\hline & On 120M4 she & 12 SH & Data Chart, 2-700 \\
\hline \(120068^{\circ}\) & On 12 CM 4 sheet & 12517 & On 12SA7 sheet \\
\hline 12007. & R DataChert, 2-70 & 12Sk7 & DataChart, 2-70 \\
\hline & 2BY7A & 12SK & hart, 2-700 \\
\hline & 128V7/12007 & 125 & SA7 sheet \\
\hline 12057 & Chart, 2-70 & 12507. & Onbeck of 12SA7 \\
\hline 12015 & Data, \(10-59\) & & \\
\hline T8, & On 12015 she & & Dat \\
\hline 120 & & 12 & ant. Data, 6-46 \\
\hline 12 & DataChart, 2-70 \({ }^{\text {a }}\) & & Curve 92CM-6786 \\
\hline 1207 & Data, 4-60 & 121 & ppl. Listing. \\
\hline & Curve 92 CM -10399 & & 4 \\
\hline ED6 & \(R\) DataChart, 2-700 & 12V6GT. & Onback of 128A7 \\
\hline & & & \\
\hline 12 O & DataChart, \(2 \cdot 70^{\circ}\) & 12NEGT & k of 12SA7 \\
\hline 1278 & & & \({ }^{\text {sheet }}\) \\
\hline 12 & Da & & 64 \\
\hline 12FM6 & DataChart, 2 & 13044, & \\
\hline \(12 \mathrm{FO7}\) & Data, 8-70 & 13057. & On \(12 \times 4\) sheet \\
\hline 12F08 & Datal \& 2, 10, & 13DR & k of \(12 \times 4\) \\
\hline 12 FV 7 & Data Chart, 2-70 & & sheet \\
\hline 12F) & Data, 7-63 & 13EM7. & back of 12X4 \\
\hline \(12 \mathrm{GC6}\). & Data, 7-61 & & 崖 \\
\hline 12GE5 & Data. 10.64 & & 13EM71 \\
\hline 12G5. & On12GE5 shee & & 15EA7 \\
\hline & Data, 4-65 & 13 & back of 12X \\
\hline \(12 \mathrm{GT54}{ }^{\circ}\) & On12GT5sheet & & \\
\hline 12GW6 & On 12GT5 sheet Use 12GWG/12DG68 & 13FM7 & \[
\begin{aligned}
& \text { sta, } 4-66 \\
& \text { se } 13 F M 7 /
\end{aligned}
\] \\
\hline H6 & f12G5 & & 15FM7 \\
\hline & & 13685*. & \\
\hline & ta 1 to 3,4-65 & & \\
\hline & ppl. List & & XL500 \\
\hline 12 & & 13GF7A. & back of 13 \\
\hline 1218 & DataChart, 2-700 & & sheet \\
\hline 12 & Data, 8-69 & \(13710^{\prime}\). & back \\
\hline & R On12186A sheet & & \\
\hline & On128 & & \[
1321
\] \\
\hline K5 & \(R\) DataChart,2-70 & & \\
\hline
\end{tabular}

For key to symbols，see sheet Index of Types 1
\begin{tabular}{|c|c|c|c|}
\hline Type & \[
\begin{aligned}
& \text { Sheet } \\
& \text { \& Date }
\end{aligned}
\] & pe & Sheet \＆Date \\
\hline 14G78．．R & Data 1 \＆2，1－61 & 1709 & Data Chart，2－70 \({ }^{\circ}\) \\
\hline 14NP4．．C & Data，4－63 & 17CFP4． & Data 1 \＆2，10－59 \\
\hline 15AF11．R & Data，5－65 & & Raster－Cutoff－ \\
\hline 158D11＊R & On 15AF11 shert & & Range Charts \\
\hline \multirow[t]{3}{*}{15CW5＊．R} & Use 15BD1 1 A On 15AF11 sheet & & 92cs－10246 \\
\hline & Use 15CW5 & & \＆92CS－10247 \\
\hline & PL84 & & OutineCE－10 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { 15EP22 . C } \\
& \text { 15FM7. }
\end{aligned}
\]} & Data，2－70 & & \begin{tabular}{l}
Curve 92CM－ \\
9241R1
\end{tabular} \\
\hline & On back of 15AF11 & & On 17BH3A sheet \\
\hline & Use 13FM77 \({ }^{\text {sheet }}\) & \[
17 \text { CSP4. }
\] & Data，3－62 \\
\hline & 15 FM 7 & 17 CT 3 & Onback of 178H3A \\
\hline \multirow[t]{2}{*}{15 FY 7} & Onback of 15AF11 & & \\
\hline & & 1700 & 78H3A \\
\hline \(15 \mathrm{HB6}\) ． & Onbock of 15AF11 & & Use 17CO5／17C5 \\
\hline 15KP22．C & Data，7．67 \({ }^{\text {sheat }}\) & 1784 & On back of 17BH3A \\
\hline \multirow[t]{3}{*}{15LE8．．R} & Data．10．64 & & \\
\hline & Suppl．Listing， & \(17 \mathrm{DAP4}\) ． & Data，4－60 \\
\hline & \(4.71{ }^{4}\) & 17064 & On back of 17BH3A \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 15 \mathrm{LP22} \\
& \text { 15NP22. }
\end{aligned} \mathrm{C}
\]} & Data 1 to6，7－67 & & － \\
\hline & Data 1 to5，1－68 & 17DM4A & Data，5－65 \\
\hline 16BGP4．C & Data，4－65 & 17DOP4． & Data，3－62 \\
\hline \(16 C H P 4 A\) & Data，7－67 & \(17 \mathrm{DRP4} 4\). & Data，4－63 \\
\hline 16 CMP4A C & Data，12－66 & 17DSP4 & Data 1 to 3，4－60 \\
\hline \(16 \mathrm{GK6}\) ．．R & Data，10．64 & & Outline CE－10375B \\
\hline \multirow[t]{2}{*}{\(167 \mathrm{P4}\) ． C} & Data，10．65 & & Charts 92cs：10376， \\
\hline & Data，9－58 & & －10377 \\
\hline \({ }_{17 A B 10}^{1610}{ }^{\text {c }}\) & & & Curve 92CM－10382 \\
\hline \multirow[t]{2}{*}{\(17 \times 10\)} & Suppl． & 17DW & Data，1－63 \\
\hline & \(4.71{ }^{\text {a }}\) & \(170 \times P 4\). & Data， 1 to 5，8－60 \\
\hline \multirow[t]{2}{*}{17AX3．．R 17AX4GTAR} & On 16GK6sheet & 17EFP4． & Data，10－65 \\
\hline & On16GK6sheat & 17EZP22 & Datal to 4，11－69 \\
\hline \multirow[t]{2}{*}{17AY3＇．R} & Onback of 16GK6 & 17GE5 & DataChar \\
\hline & sheat & 17G5A． & Data，8－70 \\
\hline \multirow[t]{2}{*}{17AY3A．} & Onback of 16GK6 & \(17 \mathrm{GV5} 5\) & Data Chart，2－700 \\
\hline & & 17 G & \\
\hline \multirow[t]{4}{*}{178E3．．R} & On back of 16GK6 & 170088 & On 17G5A sheot \\
\hline & sheet & 17HP4C． & Data，1－64 \\
\hline & Use 178E3／ & 17JB6A & On 17G5A sheet \\
\hline & 17823 & 17JF6 & Onback of 17G5A \\
\hline \multirow[t]{2}{*}{178F11．R} & On back of 16GK6 & & sheet \\
\hline & Sheet & 17JG6A & Onback of 17G54 \\
\hline & Use 178E3／ & 17. & \\
\hline 17843．． & DataChart，2－700 & & 4．71 \({ }^{\text {A }}\) \\
\hline \multirow[t]{2}{*}{178H3A．R} & Data，5－68 & 17 J 06 & Data，8－69 \\
\hline & Data，4－63 & 17JR6 & On 17106sheet \\
\hline 178P40．C & Data，3－64 & 17J6A & On 17J06sheet \\
\hline 178006 TBR & DataChart，2－700 & & \\
\hline \multicolumn{2}{|l|}{178R3／} & 17KV6． & Onback of 17J \\
\hline \multirow[t]{2}{*}{17RK19．R} & Suppl．Listing，4．71＊ & & sheet \\
\hline & Supol．Listing 4．714 & & \\
\hline
\end{tabular}

\section*{Index of Types \\ 17KV6A to 22BH3A}

\section*{Index of Types 22BW3 to 25DN6}

For key to symbols, see sheet Index of Types 1
\begin{tabular}{|c|c|c|}
\hline Type & - & Sheet \\
\hline & \% & 8 Datt \\
\hline
\end{tabular}

22BW3. . R Suppl. Listing, 4-714
220E4 ... R On 228H3sheet 22IF6 . . R On back of 228 H 3 sheet
22JG6A . R Data, 8-69 22P22 . C Data 1 to 5,4-67 22JR6 .. R On 22JG64 sheet 22116 . . R On 22JG6A sheet 22KM6 . R On 221G6A sheet 22KP22 . C Data, 4-67 22KV64. R Onback of 22IG64 sheet
22UP22. C Data 1 to 4,9-68 22WP22. C Data, 8-69 23AHP4. C Data 1 to 5,3-61 23ARP4. C Data, 12-65 23ASP4 . C Data, 3-61 238DP4. C Data, 1-63 23BGP4 . C Data, 5-65 23B1P4 . C Data, 3-62
23BKP4. C Data, 5-62
2380P4. C Data, 3-62
238TP4 . C Data, 2-65
23CBP4* C On 238TP4 sheet
230GP4. C On238TP4 sheet
230P4 .. C Data1 to 6,8-60
2300P4. C Data, 5-65
23DAP4. C Data, 8-63
230BP4. C Data, 8-64
23EKP4 . C Data, 8-64
23ENP4 . C Data, 8-64
23EP4 . . C Data 1 to 5,8-60
23EOP4 . C Data, 12-66
23ERP4. C Data, 12-66
23ETP4 . C Data, 8-64
23ETP4 . C Data, 10-66
23FDP4. C Data, 8-64
23FMP4. C Data, 8-64
23FP4A . C Data, 4-63
23FRP4 . C Data, 2-67
23FSP4 . C Data, 2-67
23GSP4 . C Data, 10-65
23HFP4A C Data, 7-65
23HGP4. C Data, 12-66
23HUP4A C Data, 7-67
23HMP4A C Data, 12-66
23P4 .. C Data, 4-63
23MP4. . C Data 1 to 6, 10-60
23NP4 . . C Data, 4-65
23YP4 .. C Data, 3-62
24AEP4. C Data. 1-63

Type

\section*{Sheet 8. Date}

24AHP4. C Tent. Data 1 \& 2, \(6-57\)
C Raster-
Cutoff-Range Chart 92CS-9349
C Outline CE-9345B
C Raster-
Cutoff-Range Chart 92CS-9350
C Curve 92CS-9351
24AUP4. C Tent. Data 1\&2,
C Raster-
Cutoff-Range
Charts 92CS-9919
\& 92CS-9918
Outline CE-9917B
Curve 92CM-9352
24BEP4 . C Data, 10-64
24BF11 . R Suppl Listing, 4-714
24CP48. C Data, 1-64
24E6A . R Onback of 22JG6A sheet
Use 24LO6/24E6C
24LO6.. Ti Onback of 221G6A sheet
Use 24LO6/24EEC
25A.P22 C Data 1 to4,9-68
25AV5GA R Data, 10.59
25AX4GT R On 25AV5GA sheet
25BCP22 C Data 1to4,8-69
25BDP22 C Data1\&2,8-69
25BGP22 C Data, \(2-70\)
25BHP22 C Data, 2-70
25BK5 . R On 25AV5GA shest
25B06GTB/
25CU6. R On 25AV5GA sheet
25C5 .. R Tent. Data, 7-58
R Curve 92CM-
8908 R2
25CA5 . . R DataChart, 2-70 \({ }^{\circ}\)
25CD6GB R Data, 8-70
25CG3. . R On 25CD6GB sheet
25CK3. . R On 25CDGGB sheet
25CM3. . R On back of 25CD6GB sheet
25CT3 . . A On back of 25CD6GB sheet
25CU6. . See 25BO6GTB/
25CU6
25DN6. . R Tent. Data,8-57
R OutlineCE-9343

\section*{Index of Types 25EC6 to 832A}

\section*{For key to symbols, see sheet Index of Types 1}

Type 25EC6.. R DataChart, 2.700 25EH5. . R Data, 11-58 25F5A.. R Data 1 to 3, 1-63 25106 .. R Data, 8-69 25L6GT. R DataChart, 2-700 Use 25L6GT/ 25WOGT
25NAGT. R DataChart, 2-700
25XP22. C Data 1 to 6,467 25YP22. C Data, 467 2525'.. R DataChart, 2-700 2526GT . R DataChart, 2-700 26A6 .. D Tent. Data, 6-46

D Curve 92CM6788
D Curve 92CM6784
28A7GT. D Data 1 \& 2, 1-55
2606 .. D Tent. Data, 6-46
2606 D Curve92CM-6772
D Curve 92CM-6789
31LO6. . R On 25J06sheet
32EI5A. R Data, 1-63
33/R6 . . R Data, 5-70
34CM3. . R On 33/R6sheet
34GD5A. R Data 1\&2.7-61
3585 .. R DataChart, 2-70
35C5 .. R Data 1\&2, 1-62
35EH5. . R Data 1\&2,8-60
35GL6'. R DataChart, 2-70
35L6GT . R Data, 6-47
R Curve 92CM-6309
R Carve 92CM-
6307R1
Sevin .. R Data, 9-50
Curve92CM6615R1
\(35 \mathrm{Y4}\).. R DataChart, 2-700
35Z4GT. R DataChart, 2-70
35Z5GT . R DataChart, 2-700
36AM3B. R Data, 7-61
42, 43.. R DataChart, 2-70 \({ }^{\circ}\)
50A5 .. R DataChart, 2-70
5085 .. R Tent. Data 1-46
R Curve 92CM-6603
\(50 C 5\).. R Data, 8-59
R Curve 92CM-6603
50004. . R Tent.Data,6-59

R Curve 92Cs-9893
50EH5. . R Data, 8-60
50FE5 . . R On50EH5 sheet
\begin{tabular}{|c|c|}
\hline Type & Sheet 8. Dat \\
\hline 50FK5 & Data Chart, 2-70 \\
\hline 50L6GT. & Data, 9-41 \\
\hline & Curve 92CM- \\
\hline & 6314R1 \\
\hline
\end{tabular}
50×6... R DataChart, 2.700 50Y6GT. R DataChart, 2-700 60FX5 . . R Data \(1 \& 2,8-60\) 80 R DataChart, 2-700 83. D Data, 7-63 84/624. R DataChart,2-70 \({ }^{\circ}\) 105.... F Tent. Data,5-46 117L7GT/
\begin{tabular}{|c|c|}
\hline 117M7GT R & DataChart, 2-700 \\
\hline 117N7GT R & Data Chart, 2.700 \\
\hline \(11723 . . \mathrm{R}\) & DataChart, 2-700 \\
\hline 404A & See 5847/404A \\
\hline 407A . . D & Data, 463 \\
\hline 408A .. D & Data, 463 \\
\hline 417A & See5842/417A \\
\hline 575A . . T & Data, 458 \\
\hline 579B .. T & Data, 1-63 \\
\hline 604/7014 T & Data, 5-62 \\
\hline 615/7018 T & Data, 5-62 \\
\hline 627.. . . F & Tent. Data, 5-46 \\
\hline 632B .. F & Tent. Data, 8-56 \\
\hline F & CurvesCE-9008 \\
\hline
\end{tabular}
672A ..

Tent. Data, 6-48
CurvesCE-6734T1
\(6929 T\)
\begin{tabular}{|c|c|}
\hline \(\frac{5}{4}\) & Data 1 \& 2,4-58 Curve 92CM8824R \\
\hline 676 & Tent. Data, 5-46 \\
\hline 677.... F & Tent. Data, 5-46 \\
\hline 710/6011 F & Data, 5-62 \\
\hline 714/7021 F & Data, 5-62 \\
\hline 716/6855 F & Data, 5-62 \\
\hline 760/6858 F & Data, 5-62 \\
\hline 807.... T & DataChart, 11-69* \\
\hline 810.... T & DataChart, 11-69* \\
\hline 811 A .. T & Data 1 to5,4-63 \\
\hline 812A .. T & Data 1,6-63 \\
\hline ... \(T\) & Tent.Data 2,3-51 \\
\hline T & Data3,6-63 \\
\hline - & Curve 92CM-6938 \\
\hline 813.... T & DataChart, 11-69* \\
\hline 816.... T & Data 1 \& 2,8-57 \\
\hline 827R. & \\
\hline 828 .. T & DataChart, 11-69* \\
\hline 829B, & \\
\hline 830B . T & DataChart, 11-69* \\
\hline 832A . . T & DataChart, 11-69* \\
\hline
\end{tabular}

\title{
Index of Types \\ 833A to 4464
}

For key to symbols, see sheet Index of Types 1
\begin{tabular}{|c|c|c|c|}
\hline Type & Sheet 8 Date & Type & \begin{tabular}{l}
Sheet \\
8 Date
\end{tabular} \\
\hline \multirow[t]{5}{*}{833A .. T} & Data 1,9-62 & 1612 & Data, 1-43 \\
\hline & Data 2\& 3, 10-56 & 1616 .. T & Data, 5-42 \\
\hline & Data 4, 2-59 & 1620 .. D & Onback of 1612 \\
\hline & OutlineCE. 4786R5 & & \\
\hline & Curve 92CM-6197 & 1622 & Data, 8-43 \\
\hline 834.... T & DataChart, 11-69* & 1624, & \\
\hline \(835^{\circ} \ldots .\). T & Data, 12-42 & 1625 & Data Chart, 11-0. \\
\hline 836.... T & On835 sheet & 1629 & Data, 6-44 \\
\hline 837-845 T & Data Chart, 11-69* & 1635 & Data, 4-47 \\
\hline 8578 .. T & Data 1\& 2, 7-55 & 1640 & \begin{tabular}{l}
Curve92C-6358 \\
See 6405/1640
\end{tabular} \\
\hline 860... T & DataChart, 11-69* & 1946 & Tent. Data, 6-47 \\
\hline 866A & Data 1 \& 2,8-57 & 1947 .. F & Tent. Data, 6-47 \\
\hline 868 & Data, 3-61 & 1949 . F & Curve 92CM-6849 \\
\hline 869B & Data 1 \& 2, 11-52 Curve 92CM-7634 & 1949 .. F & \begin{tabular}{l}
Data, 3-54 \\
Curve92CM-6851
\end{tabular} \\
\hline 872A .. T & Data 1 \& 2,8-57 & 2020 .. P & Data 1 to 6, 5-69 \\
\hline \(880^{\circ} \ldots\). \(T\) & DataChart, 11-69* & 2060 .. F & Data, 6-48 \\
\hline 884,885 \(F\) & Data 1 \& 2, 12.44 & F & \begin{tabular}{l}
Curve CE-6540T1 \\
Curve92CM-6274R1
\end{tabular} \\
\hline 891R892 T & Data Chart, 11-69** & 2050A & Data 1 to 3,3-61 \\
\hline 892R . . T & Data Chart, 11-69* & 2054 .. T & Data 1 to 3,6-66 \\
\hline \multirow[t]{3}{*}{917....} & Data 1,7-45 & 2060 .. P & Data, 10-66 \\
\hline & & 2061 & Data, 6-66 \\
\hline & 4360R2 & 2062 & Data, 10.66 \\
\hline 918.... P & Data 1 \& 2,3-61 & 2063 & Data 1,6-66 \\
\hline 919 & Data, 10.56 & \[
\begin{aligned}
& 20641 \\
& 2065
\end{aligned}
\] & \[
\begin{aligned}
& \text { Data } 1 \& 2,6-66 \\
& \text { Data } 1 \& 2,6-66
\end{aligned}
\] \\
\hline 920 & Data 1 \& 2,3-62 & 4028A & Data 1 to 5, -6.65 \\
\hline 921 & Data, 12-56 & 4037A & Data 1 to 4, 7-65 \\
\hline 922 & Data, 10-56 & 4041 & Data 1 to 3, 12-68 \\
\hline \multirow[t]{2}{*}{925} & Data, 8-47 & \[
4053
\] & Data 1 \& 2,5-65 \\
\hline & Data, 1-62 & & Data 1 to 3, 12-68 \\
\hline & \begin{tabular}{l}
Curve 92CM- \\
6208R1
\end{tabular} & 4055... T & Data 1 \& 2,9-67 \\
\hline 926 & Data, 12-56 & T & Data 3, 7-65 \\
\hline 927 & Data 1 \& 2, 3-62 & 4058... T & Data 1 to 3, 2-66 \\
\hline 929 & Data 1 \& 2, 1-62 & 4062 A & Data 1 to 3, 7-67 \\
\hline 930 & Data 1 \& 2, 3-61 & 4068 & Data 1 \& 2, 2-70 \\
\hline 931A & Data 1 to6, 11-69 & 4070. & \\
\hline 934 & Data 1 \& 2,3-62 & 4071 . . T & Data 18 2,8-70 \\
\hline 935 & Data, 5-62 & 4072... T & Data 1 \& 2,8-70 \\
\hline P & Curve 92CM- & 4438, & \\
\hline & 6478R1 & 4439 . . P & Data 1 \&7,5-70 \\
\hline \multirow[t]{2}{*}{968.... D} & Data, 6-44 & \[
\begin{aligned}
& 4440 \ldots \\
& 4441 \ldots
\end{aligned}
\] & \begin{tabular}{l}
Data 1 to 4,8-63 \\
Data 1 to 4,8-63
\end{tabular} \\
\hline & Curve 92C-5561R1 & & \begin{tabular}{l}
Data 1 to 4,8-63 \\
Data, 3-64
\end{tabular} \\
\hline 969.... D & Data, 6-44 & & \begin{tabular}{l}
Data, 3-64 \\
Data 1 to 3,6-64
\end{tabular} \\
\hline 991... F & Data, 12-39 & \[
\begin{aligned}
& \text { 4449A. . P } \\
& 4459 \ldots
\end{aligned}
\] & \begin{tabular}{l}
Data 1 to 3,6-64 \\
Data 1 to5, 6-64
\end{tabular} \\
\hline 1609*.. D & Data, 1-43 Curve92C-6355 & 4460. . . P & Data 1 to5,6-64 \\
\hline \multirow[t]{3}{*}{1611} & Data, 1-43 Onnback & 4461... P & Data 1 to5,5-65 \\
\hline & Data, 1609 Curve & 4463. & Data 1 to 5,6-64 \\
\hline & 92C-6355) & 4464 & Data 1 to 5,8-64 \\
\hline
\end{tabular}

\section*{Index of Types 5671 to 6073}

Index of Types
6074 to 6550
For key to symbols, see sheet Index of Types 1
Type

6074 .. F Tent.Data, 5-52
6080 .. D Data 18 2,8-53
6082 .. D Data 1 \& 2,8-53
6101 .. D Tent. Data 1 to 3,
10-53
\(\begin{array}{rrr} & \text { D } & \text { Curve 92CM-8033 } \\ \text {.. } & \text { D } & \text { Tent.Data } 1 \text { to } 3, \\ & \text { D } & \text { Curve 92CM-94 } \\ & & \end{array}\)
\(6130 /\)
3C45 . . F Data 1 \& 2, 4-59
6136 .. D Tent. Data 1 to 3, 4-58
D Curve 92CM-6613
D Curve 92CM-6623
6246A. . T DataChart, 11-69*
6146B/
8298A. T Data 1 to 7, 2-64
6155... T DataChart,11-69*
\(6156^{\circ}\).. T Data Chart.11-69*
6159* . . T Data Chart, 11-69*
6159B. . T Data, 2-65
6159W/
\(\begin{array}{rll}7357 & \text {.. } & \text { T }\end{array}\) Data, 7-63 ment CE6833R2
6198 T Curve 92CL-7771R1
\begin{tabular}{|c|c|c|}
\hline \multirow{5}{*}{\[
\begin{aligned}
& 6328 . \\
& 6336 A . \\
& 6342 A .
\end{aligned}
\]} & & 8016 T \\
\hline & & Data 1 to4, 12-65 \\
\hline & & Data 1 \& 2,5-62 \\
\hline & & Data 1, 6-66 \\
\hline & P & Data 2, 7-63 \\
\hline & P & Data 3, 6-66 \\
\hline & P & Data 4, 7-63 \\
\hline \multirow[t]{2}{*}{6350} & D & Tent. Data 1 \& \\
\hline & & 6-57 \\
\hline
\end{tabular}

6405/.
1640... \begin{tabular}{ll}
\(P\) & Data, 8-63 \\
\(P\) & Data 2, 3-62
\end{tabular}

6417 .. T Data, 5-54
6448 .. T Tent. Data 1 to 3, 5-54
T OutlineCE-8256A
T OutlineCE-8256C
T Gauge CE-8254
Curve 92CM-8252
Curve 92CM-8247
T Curve 92CM-8245
6472 .. P Datal to 4, 12-65
6499 .. C Tent. Data 1 \& 2, 8-56
6166A/
\begin{tabular}{rll}
\(7007 \ldots\) & \(\mathbf{T}\) & Data, 1,9-65 \\
& \(\mathbf{T}\) & Data 2, 10-60 \\
& Data 3, 9-65 \\
& \(\mathbf{T}\) & Data 4to9, 10-60 \\
& \(T\) & Data 10, 1-62 \\
& Data 11, 10-60
\end{tabular}

6173 .. D Data \(1 \& 2,9-58\)
D Curves 92CS-968 8. 92CS-9637

6181 .. T Data Chart, 11-69*
6197 .. D Tent. Data, 3-54
D Curve 92CM-8150
D Curve92CM-8149
6189 .. P Data ho 5, 10-66
6201 .. D Tent. Data 1 to 4. \(10-56\)
D Curve92CM-9021
D Curve 92CM-9022
6211 . . D Data 1 \& 2,4-56
D Curve 92CM-7822

\section*{\(6562 / 5794 \mathrm{~A}\) to 7025}

For key to symbois, see sheet index of Types \(i\)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Type} & \multirow[t]{2}{*}{} & Sheet \\
\hline & & \& Date \\
\hline
\end{tabular}

8840R2B
\(T\) Notes CE.
8840R2D
1 Gauge CE-8253R2
T DrawingCE. B250R2
\(T\) Curve 92CM-8899
T Curve 92CM-8909
6810A. . P Data 1 to6,11-69
6816 .. T Data 1 to 5, 7-67
\(T\) Data 6. 9-62
\(T\) Data 7, 7-67
6850 .. T Data, 6-56
6855 .. See 716/6855
6858 .. See 760/6858
6861 .. T Data, 7-58
\(T\) OutlineCE-8951R1
T CurvesCE-8971T.

6866 ... C Tent. Data 1, 10-56

C Curve 92CM-9042
C Curve 92CM-9044
Curve 92CM-9046
6883 .. T DataChart,11-69*
6883B/
B032A/
8552 . . T Data, 8-64
6884 .. T Data, 7.67
6887 .. D Tent. Data,4-57
D CurveCE-9187T
6894 .. T Data, 1-63
6897 .. T DataChart, 1-69*
6903 .. \(P_{P}\) Data1\&2,7-65
6914.

6914A. P Data 1 to 4, 8-70
6922* . . D Data, 5-62
Use6922/E88CC
6929 .. P Data 1 to 4,8-70
6939 .. D Data 1 to 6, 10-60
6949 .. T Tent. Data 1 \& 2, 7.58

T Tent. Data 3,7-58 \& Out line CE-9296A
T Notes CE-9296C \& DrawingCE-9294
6952 . . T Data 1 to 3, 2-64
\(T\) Data4\&5,5-61
6953 .. P Data1\&2,3-61
6973 .. R Data 1, 10-60
R Tent. Data 2,8-57
.R Curve 92CM-9389
7007 .. See 6166A/7007
7008 .. T Tent. Data 1 to 3, \(9-58\)
T Curves 92CS-8941R1 \& 92CS-9472R1
\(T\) OutlineCE-9470B
T Drawings CE-8981R1
-9486
T Curves92CS-9460R1 \& 92CS-9285R1
T Curves92CS-9471R1 \& 92CS-9466
7014 .. See604/7014
701B .. See615/7018
7019 .. See 635/7019
7021 . . See 714/7021
7025 .. R Tent. Data, 4-59
R Curve 92CM-6879

\section*{Index of Types \\ 7027A to 7552}

For key to symbols, see sheet Index of Types 1

Type
Sheet
\& Date

7027A. R Data 1 \& 2,8-59
R Curve92CM-10132
R Curve92CM-10126
R Curve92CM-9568
7035/
4X15000 T Data, 9-62
7038 .. P Data 1 \& 2, 2-65
P Data 3\&4,4-64
P Curve92CM-7783R2
P Dark Current Range 92CM-9497
7044 .. D Data 1 to 3, 3-62
7054 .. D Data, 5-62
Seealso8077/7054
7055 .. D Tent. Data, 11-58
7056 .. D Tent. Data 1 \& 2,
\(11-58\)
D Curve 92CM-9789
7057 .. D Tent. Data 1 \& 2,
11.58

D Curve 92CM-9792
7058 .. D Tent. Data 1 \& 2, 11-58
D Curve 92CM-9805
7059 .. D Tent. Data 1 \& 2 . \(11-58\)
D Curve92CM-9810
D Curve 92CM-9809
7090 .. D Tent. Data 1 to 3. 11-58
D Curve 92CM-9806
D Curve92CM-9811
D Curve92CM-9813
7081 .. D Tent. Data 1 \& 2,
11-58
D Curve 92CM-9794
D Curve 92CM-9801
7094 . . T Data 1 to8,5-62
7102 .. P Data 1 to 6, 11-69
7111 .. T Datal to6,9-62
7117 .. P Data1 \& 2,6-66
7163 .. P Data 1 to 5, 5-62
7183A. . C Data 1 to 5,5-68
7189 .. R Data 1 to 3,3-61
7199 .. R Data 1\&2,7-63
R Curve92CM-9704
R Curves92Cs-9702 \&92CS-9703
7200 .. P Tent. Data 1 \& 2, 7.58

P Curve 92CM-9577
P Curve92CS-9586
\begin{tabular}{ll}
Type & Sheet \\
\& Date
\end{tabular}
\(7204 /\)
4CX250F T Data, 9-62
7213 .. T Data 1 to 3, 1-63
T Curve 92CM-9737
T Curve 92CM-9753
T Curve 92CM-9754
T Curve 92CM-9752
7214 . . T Data 1 to 3, 1-63
T Curve 92CM-9737
T Curve 92CM-10185
7247 . . R DataChart, 2-700
7262A. . P Data 1 to 6, 1-68
72634.. P Data, 12-68

7264 .. P Tent. Data 1 to 3, 2-59
P OutlineCE-9689R1
P Curve 92CM-8848
P Curve 92CM-9356
7265 ... P Datal to 7, 2-69
7268B. . C Data 1 to5,4-66
7271 .. T DataChart, 11-69*
7293A. . P Data 1,1-62
P Data 2,4-66
P Data3, 1-62
72958 .. P Data 1 to 3,6-63
7295C . . P Data, 7-67
7315 .. C Tent. Data 1 to 3, 6-59
C OutlineCE.
9855R1A
C Curves 92Cs-9858 \& 92CS-9861
7326 .. P Tent. Data 1 \& 2,2-59
P Curve 92CM-9840
P Curve92Cs-9841
7357 .. See 6159W/7357
7360 .. D Data 1 to 5, 3-61
73898!. P Data1 to 3, 2-64
7389C . . P Data, 7-67
7408 .. R Data, 3-62
7412 .. P Data, 8-59
P Outline \& Notes
CE-9986
P Curves 92CS-9532 \& 92CS. 9533
P Curve92CS-9534
7457 .. T Data 1to6, 1-68
\(T\) Data 7, 9-62
T Data8\&9,1-68
7533 .. T Data 1 to 3, 10-60
7543 .. R Data \(1 \& 2,8-60\)
7551 .. D Data1 \& 2,9-63
Data 3\&4,4-60
7552 . . D Data 1 to 7,9-62

\section*{Index of Types 7553 to \(8532 / 6 \mathrm{~J} 4 \mathrm{WA}\)}

\section*{Index of Types 8541A to EM84/6FG6}

\section*{Index of Types \\ Supplement}

\section*{ADDITIONS AND REVISIONS \\ For koy to symbols, see sheet Index of Types 1.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Type \({ }^{\text {S }}\) & pion & \begin{tabular}{l}
Sheet \\
8. Date
\end{tabular} & Type 5 & aion & Sheet \& Dat \\
\hline \multirow[t]{3}{*}{} & 1AY2..... & R & Data Suppl.,
10.71 & 6EH4A. . . . & R & Data Suppl. 10-71 \\
\hline & 1AY2A.... & R & \[
\begin{aligned}
& \text { Data Suppl., } \\
& 10-71
\end{aligned}
\] & 6EJ4A . . . & R & \[
\begin{aligned}
& \text { Data Suppl., } \\
& 10-71
\end{aligned}
\] \\
\hline & 1BH2..... & R & Data Suppl., 10-71 & 6LZ6 & F & \[
\begin{aligned}
& \text { Data } 1 \text { to } 3 \text {, } \\
& 7.71
\end{aligned}
\] \\
\hline \multirow[t]{9}{*}{} & 1DG3..... & \(R\) & \[
\begin{aligned}
& \text { Data Suppl., } \\
& 10-71
\end{aligned}
\] & 6MC6 . . . & R & \[
\begin{gathered}
\text { Data } 1 \& 2, \\
6.72
\end{gathered}
\] \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 1S2A/ } \\
& \text { DY87. . . }
\end{aligned}
\]} & \multirow[t]{2}{*}{R} & & GME6.... . & R & \[
\begin{aligned}
& \text { Data } 1 \& 2, \\
& 2-72
\end{aligned}
\] \\
\hline & & & Data Suppl.,
\[
10-71
\] & 12SN7GTA. & R & On 12 SA 7 \\
\hline & 1×2C.... & R & Data Suppl., 10-71 & 16LU8A... & R & sheet \({ }_{\text {Data Suppl., }}\) \\
\hline & 2BJ2A.... & R & \[
\begin{gathered}
\text { Data } 1 \& 2, \\
7.71
\end{gathered}
\] & 19VANP22. & C & Data 1 to 6, \\
\hline & \multicolumn{2}{|l|}{2BU2/} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Data Suppl., } \\
& 10-71
\end{aligned}
\]} & & & \(2-72\) \\
\hline & 2AH2.... & R & & \(19 \mathrm{VBRP22}\). & c & \[
\begin{aligned}
& \text { Data } 1 \text { to } 6 \text {, } \\
& 2-72
\end{aligned}
\] \\
\hline & 3A2A..... & R & \[
\begin{gathered}
\text { Data } 1 \& 2, \\
7.71
\end{gathered}
\] & 21VAKP22. & C & Data 1 to 6, 2-72 \\
\hline & 3A3B & P & Data Suppl,, 10-71 & \[
\begin{aligned}
& \text { 24LZ6 } \\
& \text { 25JZ8. . . . }
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{R} \\
& \mathbf{R}
\end{aligned}
\] & \begin{tabular}{l}
Data, 7.71 \\
Data Suppl.,
\end{tabular} \\
\hline \multirow[t]{8}{*}{} & 3BY6.... & R & Data Suppl., 10.71 & 25VABP22. & C & 10-71
Data 1 to 6, \\
\hline & 3BZ6..... & R & \[
\begin{aligned}
& \text { Data Suppl., } \\
& 10-71
\end{aligned}
\] & 26LX6.... & A & 2.72 \({ }_{\text {Data Suppl., }}\) \\
\hline & 3САЗA.... & R & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Data } 1 \& 2, \\
7-71
\end{gathered}
\]} & 30KD6.... & R & 10-71
Data Supl., \\
\hline & \multicolumn{2}{|l|}{3CB6/} & & & & \[
10-71
\] \\
\hline & 3 CF 6 & R & Data Suppl.,
\[
10-71
\] & 31LR8.... & R & Data Suppl.
\[
10-71
\] \\
\hline & 3C23A.... & R & \[
\begin{aligned}
& \text { Data } 1 \& 2, \\
& 7.71
\end{aligned}
\] & 34R3..... & R & Data Suppl.
\[
10-71
\] \\
\hline & \[
\begin{aligned}
& \text { 4G.J7/ } \\
& \text { XCF801 . . }
\end{aligned}
\] & R & Data Suppl., 10-71 & \[
\begin{aligned}
& \text { 36KD6/ } \\
& \text { 40KD6 . . }
\end{aligned}
\] & R & Data Suppl.,
10.71 \\
\hline & 6DL3..... & & \[
\begin{aligned}
& \text { Data } 1 \& 2 \\
& 7.71
\end{aligned}
\] & 36MC6 . . & R & Data, 6.72 \\
\hline
\end{tabular}

Index of Types Supplement
\begin{tabular}{|c|c|c|c|}
\hline 4445 P & \[
\text { Data } 1 \text { to } 4 \text {, }
\]
\[
6-72
\] & \[
\begin{aligned}
& 4807,4807 \mathrm{~V} 1 \\
& 4807 \mathrm{~A},
\end{aligned}
\] & \\
\hline 4490, \(4491 . \mathrm{R}\) & \[
\begin{aligned}
& \text { Data } 1 \& 2 \\
& 7.71
\end{aligned}
\] & 4807AV1 . P & \[
\text { Data } 1 \text { to } 13
\]
\[
11-72
\] \\
\hline 4506 C & \[
\begin{gathered}
\text { Data } 1 \text { to } 3, ~ \\
7.71
\end{gathered}
\] & 4818...... P & \[
\text { Data } 1 \text { to } 5,
\] \\
\hline 4507 P & \[
\begin{aligned}
& \text { Data } 1 \text { to } 9, \\
& 10-71
\end{aligned}
\] & 4820 C & \[
\text { Data } 1 \text { to } 4,
\] \\
\hline \(4526 \ldots . .\). . P & \begin{tabular}{l}
Data 1 to 7. \\
6.72
\end{tabular} & 8134/4811 . P & \[
\text { Data } 1 \text { to } 5
\]
\[
6.72
\] \\
\hline 4531 C & \[
{ }_{11-72} \text { Dara } 1 \& 2
\] & 8480/4810 . P & \[
\begin{gathered}
\text { Data } 1 \text { to } 5, \\
6-72
\end{gathered}
\] \\
\hline \[
\begin{array}{r}
4532, \\
4532 A
\end{array}
\] & \[
\begin{aligned}
& \text { Data } 1 \text { to } 8 \text {, } \\
& 7.71
\end{aligned}
\] & \[
{ }_{8541}^{8541 \mathrm{~A} \ldots \mathrm{P}}
\] & \[
\begin{aligned}
& \text { Data } 1 \text { to } 7 \text {, } \\
& 11-72
\end{aligned}
\] \\
\hline \(4549 P\) & \[
\begin{gathered}
\text { Data } 1 \text { to } 7 \text {. } \\
2.72
\end{gathered}
\] & 8811 T & \[
\begin{aligned}
& \text { Data } 1 \text { to } 4 \text {, } \\
& 10.71
\end{aligned}
\] \\
\hline 4552 P & \[
\begin{gathered}
\text { Data } 1 \text { to } 9, ~ \\
7.71
\end{gathered}
\] & \(8824\). t & \[
\begin{aligned}
& \text { Data } 1 \text { to } 5 \\
& 2-72
\end{aligned}
\] \\
\hline 4555 P & \[
\begin{gathered}
\text { Data } 1 \text { to } 5 \text {, } \\
10-71
\end{gathered}
\] & 8825 T & \[
\underset{2-72}{ }
\] \\
\hline \[
\begin{aligned}
& 4583,4584, \\
& 4585 \ldots \ldots c
\end{aligned}
\] & \[
\begin{gathered}
\text { Data } 1 \text { to } 4 \text {, } \\
11-72
\end{gathered}
\] & \(8826 ~ . ~ T ~ T ~\) & \begin{tabular}{l}
Data 1 to 4 . 6-72 \\
Data 1 to 3.
\end{tabular} \\
\hline \(4634 . . .\). . 7 & Data 1 to 3 . 6-72 & \(8916\). , T & \[
\begin{aligned}
& 11-72 \\
& \text { Data } 1 \text { to } 8 \text {, }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { 4647, } 4648 . T \\
& 4802 \ldots \ldots . \text { P }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Data } 1 \text { to } 15, \\
& 10-71 \\
& \text { Data } 1 \text { to } 5, \\
& 6-72
\end{aligned}
\] & DR2000, DR2100. DR2200 Series c & \\
\hline 4804, 4804/ P2, 4804A. 4804A/P2. P & \[
\begin{gathered}
\text { Data } 1 \text { to } 7 \text {, } \\
6-72
\end{gathered}
\] & & \[
11-72
\] \\
\hline
\end{tabular}

\section*{DELETIONS}

\begin{tabular}{|c|c|}
\hline 19GWP22. . C & Data 1 to 5, 4-67 \\
\hline 19HCP \(22 .\). & Data 1 to 4, 5-68 \\
\hline 19HMP22. . D & Data, 2.70 \\
\hline 19HNP22. . C & Data 1 to 4,9-68 \\
\hline 19HVP22 . . C & Data 1 to 4, 5-69 \\
\hline 4478 P P & Data, 2-69 \\
\hline 4634 T & Data, 9-68 \\
\hline \(7163\). & Data 1 to 5, 5-62 \\
\hline 7293A P & \begin{tabular}{l}
Data 1 \& 3, 1-62 \\
Data 2, 4-66
\end{tabular} \\
\hline 8134 P & Data 1 to 4, 6-66 \\
\hline & Data 5, 12-66 \\
\hline 8480 P P & Data 1 to 4, 3-64 \\
\hline 8134/V1 . . P & Data, 6-66 \\
\hline
\end{tabular}

\section*{DISCDNTINUED TYPES}
\begin{tabular}{lllll}
1A5-GT & \(3 A T 2\) & 6AL7-GT & 6BZ7 & 6LH6A \\
\(1 S 4\) & \(5 G \times 6\) & \(6 B S 8\) & \(6 F Q 5 A\) & \(23 E O P 4\)
\end{tabular}

\section*{Index of Types}

\section*{ADDITIONS AND REVISIONS}

For key to symbols, see sheet Index of Types 1.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & \[
30^{n 01}
\] & Sheet \& Date & Туре & \[
\text { a } 0^{n}
\] & Sheat \& Date \\
\hline 1 AY2. & R & Data Suppl., \(10-71^{4}\) & 6EH4A.... & R & Data Suppl., 10.71* \\
\hline 1AY2A. & R & Data Suppl.,
\[
10.71^{\star}
\] & 6EJ4A . . . & R & \[
\begin{aligned}
& \text { Data Suppl., } \\
& 10.71^{\star}
\end{aligned}
\] \\
\hline 18+52 & R & Data Suppl., 10.71* & 6LZ6.... & R & \[
\begin{aligned}
& \text { Data } 1 \text { to } 3 \text {, } \\
& 7.71
\end{aligned}
\] \\
\hline 1DG3.... & R & Data Suppl.,
\[
10-71^{\star}
\] & 6ME6. . . . & R & \[
\begin{aligned}
& \text { Data } 1 \& 2, \\
& 2-72
\end{aligned}
\] \\
\hline \[
1 S 2 A
\]
DY87 & R & & 12SN7GTA. & R & \begin{tabular}{l}
On 12 SA7 \\
sheet
\end{tabular} \\
\hline & R & \[
10.71^{\star}
\] & 16LU8A. . & R & Data Suppl., \\
\hline 1×2C.... & R & Data Suppl.,
\[
10.71^{\star}
\] & 19 VANP 22. & C & \begin{tabular}{l}
\[
10.71^{\star}
\] \\
Data 1 to 6.
\end{tabular} \\
\hline 2BJ2A & R & \[
\begin{gathered}
\text { Data } 1 \& 2, \\
7.71
\end{gathered}
\] & 19V8RP22. & C & \begin{tabular}{l}
\[
2-72
\] \\
Data 1 to 6,
\end{tabular} \\
\hline 2BU2/ & & & & & 2.72 \\
\hline 2AH2. & \(R\) & Data Suppl.,
\[
10.71^{\star}
\] & 21VAKP 22. & C & Data 1 to 6,
\[
2-72
\] \\
\hline 3A2A. & R & Data 1 \& 2, & 24LZ6 & R & Data, 7-71 \\
\hline & & 7.71 & 25JZ8. & R & Data Suppl., \\
\hline 3A3B & R & Data Suppl,
\[
10.71
\] & 25VABP22. & C & \begin{tabular}{l}
\[
10.71^{\star}
\] \\
Data 1 to 6 ,
\end{tabular} \\
\hline 3 BY 6 & R & \[
\begin{aligned}
& \text { Data Suppl., } \\
& 10.71^{\wedge}
\end{aligned}
\] & 26LX6 & R & \[
\begin{aligned}
& 2-72 \\
& \text { Data Suppl., }
\end{aligned}
\] \\
\hline 3BZ6 & 8 & Data Suppl., & & & 10.71* \\
\hline 3CA3A. . . & 8 & \begin{tabular}{l}
\[
10.71^{\star}
\] \\
Data 1 \& 2,
\end{tabular} & 30KD6.... & A & Data Suppl.,
\[
10.71^{\wedge}
\] \\
\hline 3CB6/ & & 7-71 & 31LR8.... & R & \[
\begin{aligned}
& \text { Data Suppl., } \\
& 10.71^{\star}
\end{aligned}
\] \\
\hline 3CF6. & R & Data Suppl., \(10.71^{4}\) & 34R3 & R & \[
\begin{aligned}
& \text { Data Suppl., } \\
& 10.71^{\wedge}
\end{aligned}
\] \\
\hline 3CZ3A . . . & R & Data 1 \& 2, & 36KD6/ & & \\
\hline & & 7.71 & 40KD6... & R & Data Suppl., \\
\hline 4GJ7/ & & & & & 10-74 \\
\hline XCF801.. & R & Data Suppl., 10-714 & 4490, 4491. & R & \[
\begin{gathered}
\text { Data } 1 \& 2, \\
7-71
\end{gathered}
\] \\
\hline 6DL3... & R & \[
\begin{gathered}
\text { Data } 1 \& 2, \\
7.71
\end{gathered}
\] & 4506. & C & \[
\begin{aligned}
& \text { Data } 1 \text { to } 3 \\
& 7.71
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Index of Types}

\section*{Supplement}

\section*{ADDITIONS AND REVISIONS (cont'd.)}

For key to symbols, see sheet Index of Types 1.

\section*{DELETIONS}
\begin{tabular}{|c|c|c|c|c|}
\hline 1K3/1J3... & R & \[
\begin{aligned}
& \text { Data } 1 \& 2, \\
& 3-64
\end{aligned}
\] & 17DXP4... & \[
\begin{aligned}
& \text { Data } 1 \text { to } 5, \\
& 8-60
\end{aligned}
\] \\
\hline 3CN3A. & R & Data, 9-68 & 17EFP4 & Data, 10-65 \\
\hline 6FV8A. & R & Data, 3-64 & 19FNP4 & Data, 10-66 \\
\hline \(6 \times 8\) & R & \[
\begin{aligned}
& \text { Data } 1 \text { to } 3 \text {, } \\
& 8-60
\end{aligned}
\] & 19GWP22. . & Data 1 to 5. 4-67 \\
\hline 12KP4A & C & Data, 9-58 & 19HCP22.. & Data 1 to 4, \\
\hline 15 KP 22 & C & Data, 7-67 & & 5-68 \\
\hline 15 LP 22 & C & Data 1 to 6, & 19HMP22. . & Data, 2-70 \\
\hline & & 7.67 & 19HNP22. . & Data 1 to 4, \\
\hline 15NP22. & C & Data 1 to 5, & & 9-68 \\
\hline & & 1-68 & 19HVP22. & Data 1 to 4, \\
\hline 16TP4 & C & Data, 9-58 & & 5-69 \\
\hline 17 DAP 4. & C & Data, 4-60 & 4478. & Data, 2.69 \\
\hline & & & 8134/V1... & Data, 6-66 \\
\hline
\end{tabular}

\section*{DISCONTINUED TYPES}

The following types have been discontinued. To indicate this fact for your future reference, please place a large (\(\odot\)) after these types in the "Type column of the Index of Types".
\begin{tabular}{llll}
\(3 A T 2\) & 6BSB & 6FO5A & 23EOP4 \\
\(5 G X 6\) & \(6 B 27\) & 6LH6A &
\end{tabular}

\footnotetext{
^See sheet titled RCA RECEIVING TUBE - Supplementary Listing at beginning of Receiving Tube Section.
}

\section*{RATING SYSTEMS}

\section*{for Electron Devices}

Three Rating Systema are in use by the Electron-Device. Industry. The oldest is known as the Absolute-Maximum System, the next as the Design-Center System, and the latest and newest is the Design-Maximum System, Definitions of these systema have been formulated by the Joint Electron Tube Engineering Council (JETEC)-now identified as the Joint Electron Device Engineering Council (JEDEC) - and standardized by National Electrical Manufacturers Association (NEMA) and Electronic Industries Association (EIA) as follows:

\section*{Absolute-Maximur Rating Systen}

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron device of apecified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environment variations, and the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughout life no Absolute-Maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply-voltage variation, equipment-component variation, equipment-control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristica.

\section*{Design-Center Ratiog Syaten}

Design-Center ratings are limiting values of operating and environmental conditions applicable to a bogey electron device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation*, equipment-component variation, equipment-control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristics.

The equipment manufacturer should design so that initially no Design-Center value for the intended service is exceeded -ith a bogey deviceinequipment operatingat the stated normal supply voltage*.
* For a acepower sowree, 117 volte plup or miene 10 per cent fa secopted USA practice.

\section*{RATING SYSTEMS}

\section*{for Electron Devices}

\section*{Design-Mexinua Rating Systen}

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughout life no Design-Maximum value for the intended service is exceeded with bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment-component variation, equipment-control adjustment, load variation, signal variation, and environmental conditions.

\section*{Differences Between Systems}

The significant differences between the three Rating Systems can be summarized as follows:

Absolute-Maximua Systen:
Retinge \(=\left[\begin{array}{c}\text { Maximum capa- } \\ \text { bilities of } \\ \text { any electron } \\ \text { device of the } \\ \text { type rated }\end{array}\right]\)

Dezign-Center System:
Hating* \(=\left[\begin{array}{c}\text { Maximum capa- } \\ \text { bilities of } \\ \text { any electron } \\ \text { device of the } \\ \text { type rated }\end{array}\right]-\left[\begin{array}{c}\text { Allow- } \\ \text { ance for } \\ \text { electron- } \\ \text { device } \\ \text { variations }\end{array}\right]-\left[\begin{array}{c}\text { Allowance } \\ \text { for } \\ \text { component } \\ \text { and supply } \\ \text { variationa }\end{array}\right]\)

Design-Maximun System:
Ratings \(=\left[\begin{array}{c}\text { Maximum capa- } \\ \text { bilities of } \\ \text { any electron } \\ \text { device of the } \\ \text { type rated }\end{array}\right]-\left[\begin{array}{c}\text { Allow- } \\ \text { ance for } \\ \text { electron- } \\ \text { device } \\ \text { variations }\end{array}\right]\)

TUBE RATINGS

\section*{AND THEIR SIGNIFICANCE}

A rating is a designation, as established by defnite standards, of an operating limit of a tube. Tubes are rated by either of two systems, l.e., the "absolute maximum" system or the "design-center maximum" system. Of the two, the absolute maximum system is the older and dates back to the beginning of tubes. With either system, each maximum rating for a given tube type must be considered in relation to all other maximum ratings for that type, so that no one maximum rating will be exceeded in utilizing any other maximum rating. For convenience in referring to these two systems, the former will hereinafter be called the "absolute system," and the latter, the "design-center system."

In the absolute system,* the maximum ratings shown for each type thus rated are limiting values above which the serviceability of the tube may be impaired from the viewpoint of life and satisfactory performance. Therefore, in order not to exceed these absolute ratings, the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by an amount such that the absolute values will never be exceeded under any usual condition of supply-voltage variation, load variation, or manufacturing variation in the equipment itself.

The equipment should be designed to operate the flament or heater of each tube type at rated normal value for full-load operating conditions under average voltage-supply conditions. Variations from this normal value due to voltage-supply fluctuation or other causes, should not exceed \(\pm 5\) per cent unless otherwise specifled by the tube manufacturer.

\footnotetext{
- Types rated according to the aboolute mytem have no identification on their data pages issued prior to April 1. 1942. Sheets issued after that date carry the statement "Maximum Ratings Are Absolute Values" preceding the ratings.
}

\section*{TUBE RATINGS}

\section*{(continued from preceding page)}

In the design-center system** adopted by the re-ceiving-tube industry late in 1939 , the maximum ratings shown for each type thus rated are working design-center maximums. The basic purpose underlying this system is to provide satisfactory average performance in the greatest number of equipments on the premise that they will not be adjusted to local power-supply conditions at time of installation. In the setting up of design-center ratings, consideration has been given to three important kinds of power supply commonly in use, i.e., a-c and d-c power lines, storage battery with connected charger, and dry batteries.

In the case of a-c or d-c power lines, the maximum ratings for tubes rated according to the designcenter system have been chosen so that the tubes will give satisfactory performance at these maximum ratings in equipment operated from powerline supplies whose normal voltage including normal variations fall within \(\pm 10\) per cent of a specifled center value. In other words, it is basic to the design-center system of ratings for tubes operated from power-line supplies that flaments or heaters as well as positive- and negative-potential electrodes may have to operate at voltages differing as much as \(\pm 10\) per cent from their rated values. It also recognizes that equipment may occasionally be used on power-line supplies outside the normal range, but since such extreme cases are the exception, they should be handled by adjustment made locally.

The choice of \(\pm 10\) per cent takes care of voltage differences in power lines in the U.S.A. where surveys have shown that the voltages delivered fall within \(\pm 10\) per cent of 117 volts. Therefore, satisfactory performance from tubes rated according to the design-center system will ordinarily be obtained

\footnotetext{
- Types rated according to the denign-center myntem are identified on their data pages either by a large star in the index corner or by the statement "Maximum Ratings Are Design-Center Values" precedins the ratings. This statement is used on sheets issued since April 1, 1942.
}

\section*{TUBE RATINGS}

\section*{(continued from preceding page)}
anywhere in the U.S.A. in equipment designed so that the design-center maximum ratings are not exceeded at a line-voltage-center value of 117 volts. While 117 volts represents present-day conditions, the design-center system permits the utilization of a new line-center value as new surveys may indicate the necessity for such a change.

In the case of storage-battery-with-charger supply or similar supplies, the normal battery-voltage fluctuation may be as much as 35 per cent or more. This fluctuation imposes severe operating conditions on tubes. Under these conditions, latitude for operation of tubes is provided for by the stipulation that only 90 per cent of the design-center maximum values of plate voltages, screen-supply voltages, dissipations, and rectifier output currents is never exceeded for a terminal potential at the battery source of 2.2 volts per cell. While a tube's operating voltages in this service will at times exceed the maximum values, satisfactory performance with probable sacrifice in life will be obtained.

In the cases of dry-battery supply and rectified a-c supply for 1.4 -volt tubes, recommended design practice is given in RMA Standard M8-210.

RMA Standard M8-210 (Jan. 8, 1940 Rev. 11-40) is reproduced here for the convenient reference of design engineers with permission of the Engineering Department of the Radio Manufacturers Association. Although worded to cover only receiving tubes, it can be applied to any tube having design-centersystem ratings.

It shall be standard to interpret the ratings on receiving types of tubes according to the following conditions:
1. CATHODE-The heater or flament voltage is given as a normal value unless otherwise stated. This means that transformers or resistances in the heater or fllament circuit should be designed to op-

\section*{TUBE RATINGS}

\section*{(continued from preceding page)}
erate the heater or flament at rated value for fullload operating conditions under average supplyvoltage conditions. A reasonable amount of leeway is incorporated in the cathode design so that moderate fluctuations of heater or filament voltage downward will not cause marked falling off In response; also, moderate voltage fluctuations upward will not reduce the life of the cathode to an unsatisfactory degree.
A. 1.4-Volt Battery Tube Types-The flament power supply may be obtained from dry-cell batteries, from storage batteries, or from a power line. With dry-cell battery supply, the filament may be connected elther directly across a battery rated at a terminal potential of 1.5 volts, or in series with the filaments of similar tubes across a power supply consisting of dry cells in series. In either case, the voltage across each 1.4 -volt section of filament should not exceed 1.6 volts. With power-line or storage-battery supply, the filament may be operated in series with the filaments of similar tubes. For such operation, design adjustments should be made so that, with tubes of rated characteristics, operating with all electrode voltages applled and on a normal line voltage of 117 volts or on a normal storage-battery voltage of 2.0 volts per cell (without a charger) or 2.2 volts per cell (with a charger). the voltage drop across each 1.4 -volt section of filament will be maintained within a range of \(\mathbf{1 . 2 5}\) to 1.4 volts with a nominal center of 1.3 volts. In order to meet the recommended conditions for operating filaments in series from dry-battery. storage-battery, or power-line sources it may be necessary to use shunting resistors across the individual 1.4 -volt sections of filament.
B. 2.0-Volt Battery Tube Types-The 2.0-volt line of tubes is designed to be operated with 2.0 volts across the filament. In all cases the operat-

\section*{TUBE RATINGS}
(continued from preceding page)
ing voltage range should be maintained within the limits of 1.8 volts to 2.2 volts.
2. POSITIVE POTENTIAL ELECTRODRS - The power sources for the operation of radio equipment are subject to variations in their terminal potential. Consequently, the maximum ratings shown on the tube-type data sheets have been established for certain Design Center Voltages which experience has shown to be representative. The Design Center Voltages to be used for the various power supplies together with other rating considerations are as given below:
A. AC or DC Power Line Service in U.S.A.-The design center voltage for this type of power supply is 117 volts. The maximum ratings of plate voltages, screen-supply voltages, dissipations, and rectifler output currents are design maximums and should not be exceeded in equipment operated at a line voltage of 117 volts.
B. Storage-Battery Service-When storage-battery equipment is operated without a charger, it should be designed so that the published maximum values of plate voltages, screen-supply voltages, dissipations, and rectifier output currents are never exceeded for a terminal potential at the battery source of 2.0 volts per cell. When storagebattery equipment is operated with a charger, it should be designed so that \(90 \%\) of the same maximum values is never exceeded for a terminal potential at the battery source of 2.2 , volts.
C. "B"-Battery Service-The design center voltage for " \(B\) " batteries is the normal voltage rating of the battery block, such as 45 volts, 90 volts, etc. Equipment should be designed so that under no condition of battery voltage will the plate voltages, the screen-supply voltages, or dissipations ever exceed the recommended respective maximum values shown in the data for each tube type by more than \(10 \%\).

\section*{TUBE RATINGS}
(continued from preceding page)

\section*{D. Other Considerations}
a. Class \(A_{1}\) Ampliflers-The maximum plate dissipation occurs at the "Zero-Signal" condition. The maximum screen dissipation usually occurs at the condition where the peak-input signal voltage is equal to the bias voltage.
b. Ciass \(\mathbf{B}\) Amplifers-The max!mum plate dissipation theoretically occurs at approximately \(63 \%\) of the "Maximum-Signal" condition, but practically may occur at any signal voltage value.
c. Converters-The maximum plate dissipation occurs at the "Zero-Signal" condition and the frequency at which the oscillator-developed bias is a minimum. The screen dissipation for any reasonable variation in signal voltage must never exceed the rated value by more than \(10 \%\).
d. Screen Ratings-When the screen voltage is supplied through a series voltage-dropping resistor, the maximum screen voltage rating may be exceeded, provided the maximum screen dissipation rating is not exceeded at any signal condition, and the maximum screen voltage rating is not exceeded at the maximum-signal condition. Provided these conditions are fulfilled, the screen-supply voltage may be as high as, but not above, the maximum plate voltage rating.
8. TYPICAL OPERATION - For many receiving tubes, the data show typical operating conditions in particular services. These typical operating values are given to show concisely some guiding information for the use of each type. They are not to be considered as ratings, because the tube can be used under any suitable conditions within its rating limitations.

\section*{TUBE RATINGS}

\section*{(continued from preceding page)}

\section*{RECEIVING TUBES}

The ratings of all receiving tubes currently used in new equipment are set up according to the designcenter system. Older and obsolescent types of recelving tubes still have absolute maximum ratings because these types are used only for renewal purposes and, therefore, design-center values are of no practical value. Receiving-tube types rated on the design-center system are identified in the ReceivingTube Section either by a large star in the index corner of each data page or by the statement "Maximum Ratings Are Design-Center Values" preceding the ratings on each data page.

\section*{TRANSMITTING TUBES}

The ratings of transmitting tubes grouped in the Transmitting-Tube Section are on the basis of the absolute system. This system enables the transmitter design engineer to choose his design values so as to obtain maximum performance within the tube ratings. Such design procedure has been considered practical for large transmitters where adequate controls are usually incorporated in the design, and ordinarily an experienced operator is present to make any necessary adjustments.

The maximum ratings given for each transmitting type on its data pages apply only when the type is operated at frequencles lower than some specifled value which depends on the design of the type. As the frequency is raised above the specified value, the radio-frequency currents, dielectric losses, and heating effects increase rapidly. Most types can be operated above their specified maximum frequency provided the plate voltage and plate input are reduced in accordance with the information given in the table "Transmitting-Tube Ratings vs Operating Frequency" in the front part of the TransmittingTube Section.

For certain air-cooled transmitting tubes, two sets

\section*{TUBE RATINGS}
(continued from preceding page)
of absolute maximum values are shown to meet diversified design requirements. One set is designated as CCS (Continuous Commercial Service) ratings, while the other is called ICAS (Intermittent Commercial and Amateur Service) ratings.

Continuous Commercial Service is defined as that type of service in which leng tube llfe and reliability of performance under continuous operating conditions are the prime consideration. To meet these requirements, the CCS ratings have been established.

Intermittent Commercial and Amateur Service is defined to include the many applications where the transmitter design factors of minimum size, light weight, and maximum power output are more important than long tube life. These various factors have been taken into account in establishing the ICAS ratings.

Under the ICAS classiffcation are such applications as the use of tubes in amateur transmitters, and the use of tubes in equipment where transmissions are of an intermittent nature. The term "intermittent" is used to identify operating conditions in all applications other than amateur in which no operating or "on" period exceeds 5 minutes and every "on" period is followed by an "off" or standby period of at least the same or greater duration.

ICAS ratings are considerably higher than CCS ratings. They permit the handling of greater power, but tube life under ICAS conditions, of course, is reduced. However, the transmitter designer may very properly decide that a small tube operated with ICAS ratings better meets his requirements than a larger tube operated with CCS ratings. Although such use involves some sacrifice in tube life, the period over which tubes will continue to give satisfactory performance in intermittent service can be extremely long depending on the exact nature of the service.

\section*{TUBE RATINGS}
(continued from preceding page)
The choice of tube operating conditions best fitted for any particular application should be based on a careful consideration of all pertinent factors.

\section*{RECTIFIER TUBES}

Rectifier tubes used principally in receiving equipment are rated according to the design-center system, while those used primarily in transmitting and laboratory equipment are rated according to the absolute system. The method of identifying which rating system is used for any rectifier tube in this Handbook is the same as that for other tubes in the particular section of the Handbook in which data for the rectifier tube are given.

The ratings of rectifier tubes are based on fundamental limitations in the operation of the tubes themselves, and in general include the following: maximum peak inverse plate voltage, maximum peak plate current, and maximum d-c output current.

Maximum peak inverse plate voltage is the highest instantaneous plate voltage which the tube can withstand recurrently in the direction opposite to that in which it is designed to pass current. For mercuryvapor tubes and gas-filled tubes, it is the safe top value to prevent arc-back in the tube operating within the specified temperature range.

In determining peak inverse plate voltage on a rectifier tube in a particular circuit, the equipment designer should remember that the relations between peak value of inverse plate voltage, rms value of input voltage, and average value of output voltage, depend largely on the characteristics of the particular rectifier circuit and the power supply. Furthermore, the presence of transients, such as line surges and keying surges, or waveform distortion, may raise the actual inverse plate voltage to a peak higher than that calculated for sine-wave voltages. Therefore, the actual inverse plate voltage on a rec-

\section*{TUBE RATINGS}
(continued from preceding page)
tifior tube should never exceed the maximum peak Inverse plate voltage rating for that tube. The peak inverse plate voltage may be determined with an electronic peak voltmeter of the self-contained battery type.

In single-phase, full-wave rectifier circuits with sinewave input and pure resistance load, the peak inverse plate voltage is approximately 1.4 times the rms value of the plate-to-plate voltage supply. In single-phase, half-wave circuits with sine-wave input and pure resistance load, the peak inverse plate voltage is approximately 1.4 times the rms value of the plate voltage supply, but with condenser input to filter, the peak inverse plate voltage may be as high as 2.8 times the rms value of the plate voltage supply.

Maximum peak plate current is the highest instantaneous plate current that a tube can safely carry recurrently in the direction of normal current flow. The safe value of this peak current in hot-cathode types of rectifier tubes is a function of the electron emission available and the duration of the pulsating current flow from the rectifier tube in each halfcycle.

The value of peak plate current in a given rectifier circuit is largely determined by fliter constants. If a large choke is used at the filter input, the peak plate current is not much greater than the load current; but if a large condenser is used at the filter input, the peak current may be many times the load current. In order to determine accurately the peak plate current in any rectifler circuit, the designer should measure it with a peak-indicating meter or use an oscillograph.

Maximum d-c output current is the highest average plate current which can be handled continuously by a rectiffer tube. Its value for any rectifier tube type is based on the permissible plate dissipation of that type. Under operating conditions involving a rapidly

\section*{TUBE RATINGS}

\section*{(continued from preceding page)}
repeating duty cycle (steady load), the average plate current may be measured with a d-c meter. In the case of certain mercury-vapor tubes where the load is fluctuating, it is necessary to determine the average current over the time interval specified on the data pages for these types.

In addition to the above ratings for rectifier tubes, other ratings may be set up for a rectifier tube when the service in which the tube is to be used makes such ratings essential for satisfactory performance. Such ratings are: maximum surge plate current, and maximum heater-cathode potential.

Maximum surge plate current is the highest value of abnormal peak currents of short duration that should pass through the rectifier tube under the most adverse conditions of service. This value is intended to assist the equipment designer in a choice of circuit components such that the tube will not be subjected to disastrous currents under abnormal service conditions approximating a short circuit. This surge-current rating is not intended for use under normal operating conditions because subjecting the tube to the maximum surge current even only once may impair tube life. If the tube is subjected to repeated surge currents, its life will be seriously reduced or even terminated.

Maximum heater-cathode potential is the highest instantaneous value of voltage that a rectifier tube can safely stand between its heater and cathode. This rating is applied to certain rectifier tubes having a-separate cathode terminal and used in applications where excessive potential may be introduced between heater and cathode. For convenience, this rating is usually given as a d-c value.

\section*{CATHODE-RAY TUBES}

The ratings of some cathode-ray tubes are set up on the absolute system while others are set up on the design-center system. Initially, cathode-ray tubes

\section*{TUBE RATINGS}
(continued from preceding page)
were all rated according to the absolute system. With the advent of television which presented design conditions similar to those in the recelving-set fleld, the method of rating popular types of cathoderay tubes was changed to the design-center system. More recently, because of procedure standardized by the RMA Cathode-Ray-Tube Committee, newer types of cathode-ray tubes are being rated on the absolute system. Cathode-ray types rated according to the design-center system are identified in the Cathode-Ray Types Section by a statement to that effect just ahead of the maximum ratings on each data page. The data pages of types rated according to the absolute system have either (1) no identifying statement as to the rating system, or (2) an identifying statement that the ratings are according to the absolute system.

\section*{PHOTOTUBES}

The ratings of all phototubes in the Phototube Section are on the absolute maximum basis. This basis enables the designing engineer to choose design values so as to obtain optimum performance within tube ratings. In the case of gas phototubes, the value to which the plate voltage and the plate current can be raised is abruptly limited by ionization effects. If these are allowed to occur, they may ruin the photosurface almost instantly. While phototubes in general might be rated on the design-center basis, such a procedure, with provision for an adequate factor of safety to take care of all conditions of operation, would impose undue limitations on the use of gas phototubes.

\section*{MISCELLANEOUS SPECIAL TUBES}

The ratings of some of the various tube types grouped in the Miscellaneous-Types Section are according to the design-center system while others are according to the absolute system. Miscellaneous types rated on the design-center basis are identified

\section*{TUBE RATINGS}
(continued from preceding page)
by a statement to that effect on the data pages or else refer back for ratings to a receiving-tube type whose rating basis is explained under TUBE HATINGS-liecelving Tubes. The data pages of types rated according to the absolute system have either (1) no identifying statement as to the rating system, or (2) an Identifying statement that the ratings are according to the absolute system.

\section*{CHARACTERISTICS and TYPICAL OPERATING CONDITIONS}

In addition to showing the ratings of each tube type, the data pages for many of the types in this Handbook include "characteristics," such as amplification factor, plate resistance, and transconductance, which help to distinguish between the electrical features of the respective types. Usually, the characteristics shown for any type are obtained for that type in class A service: where class A data are given for the type, the characteristics are included with that data for convenience. Based on a large number of tubes of a given type, the values shown for these characteristics are average values.

Range of Characteristics-The equipment designer should bear in mind that individual tubes of a given type may have characteristics values either side of the average values shown for the type He should also realize that these characteristics change during the life of individual tubes. In designing equipment, therefore, he should allow for the maximum cumulative variation of any characteristic from the average value of that characteristic as shown in the tabulated data for the type. The exact percentage of the variation will be different for different types of tubes depending on the design of the tubes and their Intended application, but in general the designer should consider a probable plus or minus variation of not less than 30 per cent.

Furthermore, the equipment designer should recog-

\section*{TUBE RATINGS}

\section*{(continued from preceding page)}
nize the desirability of designing equipment so that the full range of the operating characteristics of tubes will be utilized. If this practice is not followed, he imposes on the equipment user special replacement problems in that the user will have to select tubes suitable for use in the equipment, and may not be able to obtain the full life capability of such tubes.

Typical Operating Values-Also included on the data pages is information on typical operating conditions for most of the various tubes when used in particular services. These typical operating values are intended to show concisely some guiding information for the use of each type. They must not be considered as ratings because each type can, in general, be used under any suitable conditions within its rating limitations. In referring to these values for transmitting tubes, it should be noted that the power output value is not a rating. It is an approximate tube output, i.e., tube input minus plate loss. Circuit losses must be subtracted from tube output in determining useful output.

Datum Point for Electrode Potentials-In the data for any type in the Handbook, the values for grid bias and positive-potential-electrode voltages are given with reference to a specified datum point as follows. For types having filaments heated with d.c., the negative flament terminal is taken as the datum point to which other electrode voltages are referred. For types having flaments heated with a.c., the mid-point (i.e., the center tap on the fila-ment-transformer secondary, or the mid-point on a resistor shunting the flament) is taken as the datum point. For types having equipotential cathodes indirectly heated, the cathode is taken as the datum point.

Grid Bias vs Filament Excitation-If the filament of any type for which data are given on a d-c basis Is to be operated with an a-c supply, the given grid

\section*{TUBE RATINGS}

\section*{(continued from preceding page)}
blas should be increased by an amount approximately equal to one half the rated filament voltage and be referred to the flament mid-point. Conversely, if it is required to use d-c fllament excitation on any flament type for which the data are given on an a-c basis, the grid-bias values as given on the data pages should be decreased by an amount approximately equal to one half the rated flament voltage and be referred to the negative filament terminal instead of the mid-point as in a-c operation.

In practice, the necessity for following this rule depends on circuit conditions and operating requirements. If the bias is relatively small compared with the filament voltage and hum is a consideration, adjustment of the grid bias is ordinarily essential. Conversely, if the bias is relatively large compared with the filament voltage, adjustment of the grid bias may be unnecessary.

When flament excitation of tubes used as Audio Ampliflers is changed from d.c to a.c., the grid return should. in general, be shifted to the mid-point of the filament circuit to minimize hum, and the bias adjusted accordingly. When the excitation is changed from a.c. to d.c., blas adjustment depending on the relative values of bias and flament voltage may be required to provide the full signalhandling capability of the tubes.

When flament excitation of tubes used as R-F Amplifiers is changed, bias adjustment is not required unless the change makes the circuit critical as to hum or signal-handling capability. For example, in class \(C\) amplifiers, the bias is usually so large in comparison with the filament voltage that adjustment is generally unnecessary.

Grid Current and Driving Power-The typical values of d-c grid current and driving power shown for triodes and tetrodes in class \(B\) r-f service and in class \(C\) service are subject to variations depending on the impedance of the load circuit. High-impe-

\section*{TUBE RATINGS}
(continued from preceding page)
dance load circuits require more grid current and driving power to obtain the desired output. Lowimpedance circuits need less grid current and driving power, but plate-circuit efficiency is sacrificed. In comparison, the d-c grid current and driving power shown for beam tubes and pentodes in class \(B\) r-f service and in class \(C\) service are not as critical to variations in load-circuit conditlons. In any event, sufficient grid current should be used so that the stage is "saturated," i.e., so that a small change in grid current results in negligible change in power output. Regardless of the type of tube used, the driving stage should have a tank circuit of good regulation and should be capable of delivering power in excess of the indicated power by a factor of several times.

\section*{TYPES OF CATHODES \\ AND THEIR USE}

In electron tubes, a cathode is an electrode which Is the primary source of electron or ion emission. There are two broad classes of cathodes, i.e., hot and cold. "Hot cathodes" are defined as cathodes which are heated or otherwise operate at elevated temperature (frequently incandescent) in order to function as emitters. In contrast, "cold cathodes" are defined as cathodes which do not rely on heat or on elevated temperature in order to function as emitters.

\section*{HOT CATHODES}

Hot cathodes commonly in use in electron tubes are classified as directly heated, Indirectly heated, and ionic-heated.

A directly heated cathode, or fllament-cathode, is a wire or ribbon which is heated by the passage of current through it. It is further classified by identifying the filament material or the electron-emitting material. Such materials in regular use are pure tungsten, thoriated tungsten, and metals coated with alkaline-earth oxides. Each of these materials has distinctive advantages which are utilized in the design of tubes for particular applications.

PURE-TUNGSTEN FILAMENTS are used in certain tubes, especially those for high-voltage transmitting service. Since these filaments must operate at a high temperature of about \(2500^{\circ} \mathrm{C}\) (a dazzling white) to emit sufficient electrons, a relatively large amount of filament power is required. The operating life of these flaments is determined by the rate of tungsten evaporation. Their failure, therefore, occurs through decreased emission or burn-out.

Pure-tungsten filaments give best life performance when they are operated so as to conserve their emitting capability. They are designed with voltage and current ratings in accord with the service expected of the particular tube type. However, in applications where the normal emission at rated voltage is not

\section*{TYPES OF CATHODES}
(continued from preceding page)
required, the filament can be operated at a somewhat reduced voliage. The extent of the reduction depends on the peak emission requirements of the application as well as on the percentage regulation of the filament voltage. When these are known, the correct operating filament voltage for any tungstenfilament type can be calculated from its filamentemission characteristic. The permissible regulation in transmitters may be checked by reducing the filament voltage (with the transmitter under normal operation) to a value such that reduction in output can just be detected. The filament voltage must then be increased by an amount equivalent to the maximum percentage regulation of the flament-supply voltage and then increased further by approximately 2 per cent to allow for minor variations in emission of individual tubes. It follows that the better the regulation, the less the filament operating voltage and, therefore, the longer the filament life.

It should be noted that a reduction of 5 per cent in the filament voltage applied to tubes with pure-tungsten filaments will approximately double their life. A reduction of 15 per cent will increase the flament life almost tenfold.

During long or frequent standby periods, pure-tung-sten-filament tubes may be operated at decreased filament voltage to conserve life. When the average standby time is an appreciable portion of the average duty cycle and is less than 2 hours, it is recommended that the filament voltage of all but the largest types be reduced to 80 per cent of normal; and that for longer periods, the filament power be turned off. For the largest types, such as the 898 . It is recommended that the filament voltage be reduced to 80 per cent of normal during standby operation up to 12 hours; and that for longer periods, the filament power be turned off.

For turning on filament power, a filament starter should be used so as to increase the voltage gradually and to limit the high initial rush of current through

\section*{TYPES OF CATHODES}
(continued from preceding page)
the flament. It is important that the filament current never exceed, even momentarily, a value of more than 150 per cent of normal, unless the tube data specify otherwise. Similarly, as an added precaution, the flament power should be turned off gradually to prevent cooling strains in the filament.

THORIATED-TUNGSTEN FILAMENTS are now used mainly in certain transmitting and special tubes. Thoriated-tungsten filaments are made from tungsten impregnated with thoria. Due to the presence of thorium, these filaments liberate electrons at a more moderate temperature of about \(1700^{\circ} \mathrm{C}\) (a bright yellow), and are, therefore, much more economical of flament power than are pure-tungsten flaments. The operating life of thoriated-tungsten filaments is ordinarily ended by a decrease in electron emission. Decreased emission, however, may be caused by the accidental application of too high flament, screen, or plate voltage. If the over-voltage has not beell continued for a long time, the activity of the filament can often be restored by operating the filament at its normal voltage for 10 min utes or longer without plate, screen, or grid voltage. The reactivation process may be accelerated by raising the filament voltage to not higher than 120 per cent of normal value for a few minutes. This reactivation schedule is of ten effective in restoring the emission of thoriated-tungsten flaments in tubes which have falled after normal service Sometimes a few hundred hours of additional life may be obtained after reactivation.

The operating voltage of a thoriated-tungsten filament should, in general, be held to within \(\pm 5\) per cent of its rated value. However, in transmitting applications where the tube is lightly loaded, the filament may be operated on the low side-as much as 5 per cent below normal voltage. As conditions require, the voltage should be increased gradually to maintain output. Toward the end of life, additional service may be obtained by operating the fila-

\section*{(B20)}

\section*{TYPES OF CATHODES}
(continued from preceding page)
ment above its rated voltage. It should be noted that a tube having a thoriated-tungsten filament should never be operated under emission-limited conditions since this type of operation may overheat the tube and cause permanent loss of emission.

During standby periods in transmitting service, tho-riated-tungsten filaments may be operated accordIng to the following recommendations to conserve life. For short standbys of less than 15 minutes duration, the fllament voltage of all but the largest types should be reduced to 80 per cent of normal; for longer periods, the filament power should be turned off. For the largest types, such as the 827-R and 861 , it is recommended that the flament voltage be reduced to 80 per cent of normal during standby operation up to 2 hours; and that for longer periods, the flament power be turned off.

COATED FILAMENTS are used in receiving tubes, certain transmitting tubes, most mercury-vapor rectiflers, and some special tubes. Coated flaments employ a relatively thick coating of alkaline-earth compounds on a metallic base as a source of electronic emission. The metallic base carries the heating current. These fllaments operate at a low temperature of about \(800^{\circ} \mathrm{C}\) (a dull red) and require relatively little power to produce a copious supply of electrons.

For proper performance of these types, rated filament voltage should, in general, be applied at the filament terminals. However, when coated-filament, high-vacuum tubes are used in transmitting service with light loadinf, the flament voltage may be reduced as much as 5 per cent below normal to conserve life. Then, as conditions require, the voltage should be increased gradually to maintain output. Toward the end of life, the gradual increase may be carried above rated flament voltage to obtain additional service. In the case of gas or vapor tubes, it is important that these types be operated, in general, at rated flament voltage. However, if the line regu-

\section*{TYPES OF CATHODES}

\section*{(continued from preceding page)}
lation regularly and consistently does not exceed 1 to 2 per cent, it is practical to reduce the flament voltage slightly (not over 5 per cent) with benefit to tube life.

During standby periods of less than 15 minutes, the flament voltage of quick-heating, high-vacuum types, such as the 1616 and 1624 , should be reduced to 80 per cent of normal; for longer periods, the filament power should be turned off. In contrast, the voltage of coated flaments in gas or vapor tubes should not be reduced during standbys except under conditions explained in the preceding paragraph. In general, the filament voltage of small and medium types, such as the \(866-\mathrm{A} / 866\) and \(872-\mathrm{A} / 872\), should be maintained at normal rated value during standbys up to 2 hours; for longer periods, the filament power should be turned off. For large types, such as the \(857-\mathrm{B}\), the filament voltage should be maintained at normal rated value during standbys up to 12 hours; for longer periods, the filament power should be turned off.

After having given normal service or after having been operated at excessive voltage, coated flaments lose their emission. When such is the case, their usefulness may be considered as terminated.

An indirectly heated cathode, or heater-cathode, consists of a heater wire enclosed in a thin metal sleeve coated on the outside with electron-emitting material similar to that used for coated flaments. The sleeve is heated by radiation and conduction from the heater through which current is passed. Useful emission does not take place from the heater wire. An important feature of this kind of cathode construction is that the functions of heating and emission can be independent of each other.

HEATER-CATHODES, or unipotential cathodes as they are frequently called, are used in high-vacuum tubes operating at low plate voltage, such as recelv-

Ing tubes, low-power transmitting tubes, and small gnecing tubes. They alsc ind application In mercuryvapor tubes and In cathode-ray tubes. Heater-cathodes, llke coated flaments, provide a coplous supply of electron emission at low cathode temperature (a dull red).

For proper performance of heater-cathode tubes, rated heater voltage should, In general, be applled at the heater terminals. However, when heatercathode high-vacuum tubes are used in transmitting service and are lightly loaded, the heater voltage may be reduced as much as 5 per cent below normal to conserve life. As conditions require, the voltage should be increased gradually to maintain output. Toward the end of llfe, the gradual increase may be carried above rated heater voltage to obtain addltlonal service.

During standby periods of less than 15 minutes, the heater voltage of high-vacuum tubes should be maintained at normal rated value; for longer periods, the heater power should be turned off. In the case of vapor or gas tubes, the heater voltage should be maintained at normal during standby periods up to 12 hours; for longer periods, the heater power should be turned off.

An ionicheated cathode is one which liberates electrons when it is subjected to intense positive ion bombardment. The bombardment may be so intense as to raise the temperature of the cathode, frequently causing it to become visibly hot. The lonicheated cathode in radio tubes has found application in gas rectifers intended primarlly for automobile recelver service.

\section*{COLD CATHODES}

The designation "cold cathode" is commonly used in referring to those cathodes which emit electrons when they are subjected to bombardment by other electrons, ions, or metastable atoms. Cathodes of

\title{
TYPES OF CATHODES
}
(continued irom preceding page)
this type are sometimes designated as secondaryemission cathodes. They are used in certain glowdischarge tubes, and also in multiplier phototubes where they contribute to electron multiplication in the successive dynode stages.

Not customarily referred to as cold cathodes, although they are such, is another group of emitters known as photocathodes. By definition, a photocathode is one which emits electrons when it is energized with radiant flux, such as light, infra-red radiation, or ultra-violet radiation. Such cathodes are used in phototubes. When used in gas phototubes, these cathodes not only emit under the infuence of radiant flux but also as a result of bombardment and thus become partial secondary-emission cathodes.

Photocathodes are classifled according to the spectral response characteristics of their respective photoactive surfaces. The 51 photosurface gives high response to red and near infra-red radiation. The S2 photosurface is similar to the S1 surface but extends somewhat further into the infra-red region. The S3 photosurface has a spectral response characteristic which is closest to that of the eye. The S4 photosurface has exceptionally high response to blue and blue-green radiation with negligible response to red radiation.

Exposure of photocathodes to intense light, such as direct sunlight, may decrease the sensitivity of the tubes in which they are used, even though there is no voltage applied. The magnitude and duration of the decrease depend on the length of the exposure. Permanent damage to a phototube may result if it is exposed to radiant energy so intense as to cause excessive heating of the cathode.

\section*{CONVERSION FACTORS}
促

\section*{CONVERSION FACTOR NOMOGRAPH}

The Conversion Factor Nomograph shown above may be used to determine the approximate characteristics of an electron tube when all the electrode voltages are changed in the same proportion from the published or measured values.

The conversion factors obtained from the nomograph are applicable to triodes, tetrodes, pentodes, and beam power tubes when the plate voltage, grid-No. 1 voltage, and grid-No. 2 voltage are changed simultaneously by the same factor. They may be used for any class of tube operation (class \(A, A R_{1}\), \(A B_{2}, B\), or \(C\)).

The nomograph may be used to determine the proper value for each conversion factor for a specified relationship (\(F_{e}\))

\section*{CONVERSION FACTORS}
between published or measured values \(\left\{E_{\text {pub }}\right\}\) and desi red values (\(E_{\text {des }}\)) of operating voltage. The dashed lines on the nomograph indicate the correct procedure for determining each of these conversion factors when it is desired to reduce the operating electrode voltage from 250 to 200 volts.

\section*{EXAMPLE}

Published characteristics for a typical pentode are listed below for a plate voltage of 250 volts. If it is desired to determine the characteristics of this tube for a plate voltage of 200 volts, the voltage conversion factor, Fe , is equal to \(200 / 250\) or 0.8 . The values for the other conversion factors are obtained from the nomograph. By use of these factors characteristics values at aplate voltage of 200 volts are obtained.
\begin{tabular}{|c|c|c|c|c|}
\hline & Published Falue & Comuersion Factor & Desired Value & \\
\hline Plate Voltage & 250 & 0.8 & 200 & volts \\
\hline Grid-No. 2 Voltage & 250 & 0.8 & 200 & volts \\
\hline Grid-No. 1 Voltage & -15 & 0.8 & -12 & volts \\
\hline Plate Current . . & 30 & 0.72 & 21.6 & ma \\
\hline Grid-No. 2 Current & 6 & 0.72 & 4.3 & ma \\
\hline Plate Resistance (Approx.). & 0.13 & 1. 12 & 0.15 & megotm \\
\hline Transconductance. & 2000 & 0.89 & 1780 & uminos \\
\hline Load Resistance & 10000 & 1.12 & +1200 & chims \\
\hline Total Hamonic Distortion & 10 & unchanged & 10 & \% \\
\hline Max.-Signal Power Output. & 2.5 & 0.57 & 1. 42 & watts \\
\hline
\end{tabular}

\section*{LIMITATIONS}

Because this method for conversion of characteristics is necessarily an approximation, progressively greater errors will be introduced as the voltage conversion factor \((\mathrm{Fe}=\) \(E_{\text {des }} / E_{\text {pub }}\)) departs from unity. In general, it may be assumed that results obtained will be approximately correct when the value of \(F_{e}\) is between 0.7 and 1.5. When \(F_{e}\) is extended beyond these limits (down to 0.5 or up to 2.0), the accuracy becomes considerably reduced and the results obtained can serve only as a rough approximation.

It should be noted that this method daes not take into account the effects of contact potential or secondary emission in electron tubes. Contact potential, however, may safely be neglected for most applications because its effects are noticeable only at very low grid-No. 1 voltages. Secondary emission may occur in conventional tetrodes at low plate voltages. For such tubes, therefore, the use of conversion factors should be limited to regions of the olate characteristic in which the plate voltage is greater than the grid-No. 2 voltage. For beam power tubes, the regions of both lowplate currents and low plate voltages should also be avoided.

OUTLINES-Glass Tubes

\section*{SUBMINIATURE--Flexible-Lead Types}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
OUTLIME \\
JETEC NO.
\end{tabular}} & \multicolumn{2}{|c|}{ DIMENS ION } \\
\cline { 2 - 3 } & \begin{tabular}{c}
A.O60 \\
INCHES
\end{tabular} & \begin{tabular}{c}
B \\
Max. \\
IMCHES
\end{tabular} \\
\hline \(3-1\) & 1.075 & 1.375 \\
\(3-2\) & 1.200 & 1.500 \\
\(3-3\) & 1.450 & 1.750 \\
\(3-4\) & 1.700 & 2.000 \\
\(3-8\) & 1.325 & 1.625 \\
\(3-11\) & 0.950 & 1.250 \\
\hline
\end{tabular}

OUTLINES-Glass Tubes
SUBMIMIATURE--Small-Button Sub-Minar 8-Pin Base Types

OUTLINES - Glass Tubes

\section*{ACORM--Radial 5-Pin Base Type}

JETEC NO.4-1

Fer additionel socket design informetion, set bach of "Outlines 3 " sheet

OUTLINES - Glass Tubes
ACORN--Radial 5-Pin Base Type
with End Terminals

JETEC No.4-3

For additional socket design information, see back of "Outlines \(3^{\prime \prime}\) sheet

\section*{OUTLINES - Glass Tubes}

ACORN--Radial 7-Pin Base Type

JETEC No.4-2

Por additional socket design infonntion. see back of this sheet

\section*{OUTLINES-Glass Tubes}
acork trpes

\section*{Outlines Glass Tubes}

\author{
MINIATURE - Miniature 7-Pin Base Types with T5-1/2 Bulbs
}

\begin{tabular}{|c|c|c|c|c|}
\hline OUTLINE & \multicolumn{4}{|c|}{ DIMENSIONS (INCHES) } \\
\cline { 2 - 5 } \begin{tabular}{c}
DRAWING \\
NUMBER
\end{tabular} & A & \multicolumn{2}{|c|}{ B } & C \\
\cline { 2 - 5 } & Max & Min & Max & Max \\
\hline (JEDEC) & Max & .906 & 1.094 & 1.375 \\
\(5-1\) & 1.750 & 1.031 & 1.219 & 1.500 \\
\(5-2\) & 2.125 & 1.406 & 1.594 & 1.875 \\
\(5-3\) & 2.625 & 1.906 & 2.094 & 2.375 \\
\hline
\end{tabular}
* Major dimeter as checked by ring gatges of 0.25 inch thickneas. The Eaximum gage should clear the bulb above 0.38 iach from the base seat and the minimum gauge should not.
Measured from the base seat to the bulb-top line as determined by a ring gauge of 0.437 inch 1. D.
*** The diameter of the boundary cylinder as defined by the barriera of the pin alignment sauge (Gage No.GE7-1. Sheer 24, Section 3 of EIA Standard RS-209A).

Outlines Glass Tubes

MINIATURE - Noval 9-Pin Base Types
with T6-1/2 Bulbs

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ OUTLINE } & \multicolumn{4}{|c|}{ DIMENSIONS (INCHES) } \\
\cline { 2 - 6 } DRAWING & A & \multicolumn{2}{|c|}{\(B\)} & \(C\) \\
NUMBER \\
(JEDEC) & Max & Min & Max & Max \\
\hline \(0-1\) & 1.750 & 1.031 & 1.219 & 1.500 \\
\(6-2\) & 2.187 & 1.469 & 1.656 & 1.937 \\
\(6-3\) & 2.625 & 1.906 & 2.094 & 2.375 \\
\(6-4\) & 3.062 & 2.344 & 2.531 & 2.812 \\
\hline
\end{tabular}

DIMENSIONS IK IKCHES

\begin{tabular}{|l|c|c|c|}
\hline OUTLINE & \multicolumn{3}{|c|}{ DIMENS IONS (INCHES) } \\
\cline { 2 - 4 } \begin{tabular}{l}
ORAWING \\
NUMBER \\
(JEDEC)
\end{tabular} & Max & \multicolumn{2}{|c|}{ Min } \\
\cline { 2 - 4 } & Max \\
\hline \(6-5\) & 1.969 & 1.437 & 1.687 \\
\(6-6\) & 2.406 & 1.875 & 2.125 \\
\(6-7 *=* *\) & 2.844 & 2.312 & 2.562 \\
\(6-8\) & 3.281 & 2.750 & 3.000 \\
\hline
\end{tabular}

DIMEKSIORS IN IKCHES

Major diameter sachecked by ring, geuges of 0.25 imeh tlicknieas. The maximum geuge shouldelear the bulb bove 0.38 inch from thebase seat and the minimum gause should not.
Measured from the base seat to the bulb-cop line as determined by ring rauge of 0.437 inch I.D.
The diameter of the boundary cylinder as defined by the barriers of the pin lignment gauge (Gauge No. GE9-1, Sheet 30, Section 3 of EIA Stendard RS-209A).
*** \({ }^{*}\) Jedec Outline No. \(6-7\) may also use non-atandard CI- 33 cep.

\title{
Outlines \\ Glass Tubes
}

\section*{DUODECAR-12-Pin Base Types with T9 Bulbs}

\begin{tabular}{|c|c|c|c|}
\hline OUTLINE & \multicolumn{3}{|c|}{\begin{tabular}{c}
DIMENS IONS (I ICHES) \\
ORAWING \\
DUMBER \\
NUM \\
(JEDEC)
\end{tabular}} \\
\cline { 2 - 4 } & \multicolumn{2}{|c|}{ Min. } & Max. \\
\hline \(9-55\) & 1.000 & 1.250 & 1.625 \\
\(9-56\) & 1.250 & 1.500 & 1.875 \\
\(9-57\) & 1.500 & 1.750 & 2.125 \\
\(9-58\) & 1.750 & 2.000 & 2.375 \\
\(9-59\) & 2.000 & 2.250 & 2.625 \\
\(9-60\) & 2.750 & 2.500 & 2.875 \\
\(9-61\) & 2.500 & 2.750 & 3.125 \\
\(9-62\) & 2.750 & 3.000 & 3.375 \\
\hline
\end{tabular}
DIMENSIONS IN INCHES
* Applies to minimum diameter except in area of seal.
Outlines with Top Cap

DIMENSIOKS IH IHCHES
92CS-12526
* Applies to minimum diameter except in area of seal.
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{l}
OUTLINE \\
ORAWING
\end{tabular}} & \multicolumn{3}{|c|}{ DIMENS IONS (NCHES) } \\
\cline { 2 - 4 } \begin{tabular}{l}
NUMBER
\end{tabular} & \multicolumn{2}{|c|}{ A } & B \\
\cline { 2 - 4 } & (JEDEC) & Min. & Max.
\end{tabular} Max..
\begin{tabular}{|c|c|c|c|}
\hline OUTLINE & \multicolumn{3}{c|}{ DIMENSIONS (INCHES) } \\
\cline { 2 - 4 } \begin{tabular}{c}
DRAWING \\
NUMBER \\
(JEDEC)
\end{tabular} & \multicolumn{2}{|c|}{ A } & Bin. \\
\cline { 2 - 4 } & Max. & Max. \\
\hline \(9-96\) & 2.000 & 2.250 & 7.625 \\
\(9-97\) & 2.250 & 2.500 & 2.875 \\
\(9-98\) & 2.500 & 2.750 & 3.125 \\
\(9-99\) & 2.750 & 3.000 & 3.375 \\
\(9-100\) & 3.000 & 3.250 & 3.625 \\
\(9-101\) & 3.250 & 3.500 & 3.875 \\
\(9-102\) & 3.500 & 3.750 & 4.125 \\
\(9-103\) & 3.750 & 4.000 & 4.375 \\
\hline
\end{tabular}

\section*{Outlines Glass Tubes}

\section*{DUODECAR—12-Pin Base Types with T12 Bulbs}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{OUTLINE
DRAWING
NUMBER
(JEDEC)} & \multicolumn{3}{|l|}{DIMENSIONS (INCHES)} \\
\hline & \multicolumn{2}{|l|}{-} & \(B\) \\
\hline & Min. & Max. & Max. \\
\hline 12-52 & 1.250 & 1.500 & 1.875 \\
\hline 12-53 & 1.500 & 1.750 & 2.125 \\
\hline 12-54 & 1.750 & 2.000 & 2.375 \\
\hline 12-55 & 2.000 & 2.250 & 2.625 \\
\hline 12-56 & 2.250 & 2.500 & 2.875 \\
\hline 12-57 & 2.500 & 2.750 & 3.125 \\
\hline 12-58 & 2.750 & 3.000 & 3.375 \\
\hline 12-59 & 3.000 & 3.250 & 3.625 \\
\hline 12-60 & 3.250 & 3.500 & 3.875 \\
\hline 12-61 & 3.500 & 3.750 & 4.125 \\
\hline 12-62 & 3.750 & 4.000 & 4.375 \\
\hline
\end{tabular}
* Applies to minimum diameter except in area of seal.

Outlines with Top Cap

DIMENSIONS IN IMCHES
9ecs-120.3
* Applies to minimum diameter except in area of seal.
\begin{tabular}{|l|l|l|c|}
\hline OUTLINE & \multicolumn{3}{|c|}{ DIMENSIONS (INCHES) } \\
\cline { 2 - 4 } \begin{tabular}{c}
ORAWING \\
MUMBER
\end{tabular} & \multicolumn{2}{|c|}{ A } & B \\
\cline { 2 - 4 } (JEDEC) & Min. & Max. & Max. \\
\hline \(12-75\) & 2.000 & 2.250 & 2.625 \\
\(12-76\) & 2.250 & 2.500 & 2.875 \\
\(12-77\) & 2.500 & 2.750 & 3.125 \\
\(12-78\) & 2.750 & 3.000 & 3.375 \\
\(12-79\) & 3.000 & 3.250 & 3.625 \\
\(12-80\) & 3.250 & 3.500 & 3.875 \\
\(12-81\) & 3.500 & 3.750 & 4.125 \\
\(12-82\) & 3.750 & 4.000 & 4.375 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline OUTLINE & \multicolumn{3}{|c|}{ DIMEMSIOMS (I MCHES) } \\
\cline { 2 - 4 } \begin{tabular}{c}
DRAWING \\
NUMBER \\
(JEDEC)
\end{tabular} & \multicolumn{2}{|c|}{ A } & Min. \\
\hline \(12-83\) & 2.000 & 2.250 & 2.625 \\
\hline \(12-84\) & 2.250 & 2.500 & 2.875 \\
\(12-85\) & 2.500 & 2.750 & 3.125 \\
\(12-86\) & 2.750 & 3.000 & 3.375 \\
\(12-87\) & 3.000 & 3.250 & 3.625 \\
\(12-88\) & 3.250 & 3.500 & 3.875 \\
\(12-89\) & 3.500 & 3.750 & 4.125 \\
\(12-90\) & 3.750 & 4.000 & 4.375 \\
\hline
\end{tabular}

\section*{NOVAR-9-Pin Base Types}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{OUTLINE DRAWING NUMBER (JEDEC)} & \multicolumn{3}{|l|}{DIMENSIONS (INCHES)} \\
\hline & \multicolumn{2}{|c|}{A} & B \\
\hline & Min. & Max. & Max. \\
\hline 12-116 & 3.500 & 3.750 & 4.130 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{OUTLINE DRAWING NUMBER (JEDEC)} & \multicolumn{3}{|l|}{DIMENSIONS (INCHES)} \\
\hline & \multicolumn{2}{|l|}{A} & B \\
\hline & Min. & Max. & Max. \\
\hline 12-95 & 2.250 & 2.500 & 2.880 \\
\hline 12-96 & 2.500 & 2.750 & 3.130 \\
\hline 12-99 & 3.250 & 3.500 & 3.880 \\
\hline
\end{tabular}

* applies to the minimum diameter except in the area of the seal.

RADIO CORPORATION OF AMERICA OUTLINES 4C
Electronic Components and Devices.
- Harrison, M. Ji

\section*{Outlines}

Glass Tubes
NOVAR-9-Pin Base Types

*Measured from the base seat to bulb top line as determined by a ring gauge of 0.600 " I.D.
\begin{tabular}{|c|c|c|c|}
\hline OUTLIME & \multicolumn{3}{|c|}{\begin{tabular}{c}
DIMENSIONS (INCHES) \\
DRAWIMG \\
\cline { 3 - 4 } \\
NUMBER \\
DIMENS \\
(JEDEC)
\end{tabular}} \\
\cline { 2 - 4 } & Min. & Max. & Max. \\
\hline- & 2.875 & 3.125 & 3.505 \\
\hline
\end{tabular}

Bottom-exhaust type has the same dimensions as top-exhaust type shown
- For E9-76 base

OUTLINES - Glass Tubes

\section*{GLASS OCTAL--Octal Base Types} with T9 Bulbs

Fig. 1
\begin{tabular}{|c|c|c|c|c|}
\hline & OUTLINE & & \multicolumn{2}{|l|}{DIMENSIOM} \\
\hline \multicolumn{3}{|c|}{JETEC No.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline Fig. 1 & Fig. 2 & Fig. 3 & & \\
\hline - & 9-1 & - & 1-3/4* & 2-5/16 \\
\hline - & 9-7 & - & 2-1/2 & 3-1/16 \\
\hline 9-41 & 9-11 & 9-12 & 2-3/4 & 3-5/16 \\
\hline - & 9-13 & - & 2-13/16 & 3-318 \\
\hline - & 9-15 & - & 2-7/8 & 3-7116 \\
\hline - & 9-33 & - & 3-1/4 & 3-13/16 \\
\hline
\end{tabular}

JETEC NO.9-17

JETEC No.9-18

OUTLINES-Glass Tubes
GLASS OCTAL--Octal Base Types
with T9 Bulbs

JETEC No.9-23

JETEC No. None

JETEC No.9-51

OUTLINES-Glass Tubes
CLASS OCTAL-Octal Base Types
with TI2 Bulbs

OUTLINES-Glass Tubes
CLASS OCTAL--Octal Base Types
with ST Bulbs

\section*{RGA)}

OUTLINES-Glass Tubes

\section*{LOCK-IN--Lock-lñ 8-Pin Base Types}

JETEC No.9-32

JETEC No.9-30

ETEC No.9-51

OUTLINES - Glass Tubes

\section*{SMALL 4-PIN, SMALL 5-PIN,}

SMALL 6-PIN, \& SMALL 7-PIN BASE TYPES

\section*{JETEC No.9-26}

JETEC No. 12-6]

DETEC NO. 12-5

(3)

\section*{OUTLINES-Glass Tubes}

\section*{SMALL 4-PIN, SMALL 5-PIN,}

SMALL 6-PIN, \& MEDIUM 7-PIN BASE TYPES

\section*{OUTLINES - Metal Tubes}

\section*{For correlation of}

THD TYPE, ENVELOPE DESIGNATION, O OUTLIZE FO., see IEY on back of this shest

JETEC No. \(8-5\)

JETEC NO. 8-1

STEC No.8-5

JETEC No.8-4

\section*{(CB}

OUTLINES-Metal Tubes

OUTLINES - Metal Tubes
KEY

\section*{Bases}

\section*{Caps (1-Terminal Types)}

Details of Recessed Small Cavity Cap Bulb Assembly JEDEC Mo.JI-2I

VARIANT SEAL SHAPES

secm-888n3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DIMEN- } \\
& \text { SION } \\
& \hline
\end{aligned}
\]} & \multicolumn{3}{|c|}{INCHES} & \multicolumn{3}{|c|}{MJ LLIMETERS} & \multirow[b]{2}{*}{NOTES} \\
\hline & MIn & Hom & Max & Min & Nom & Max & \\
\hline A & - & - & 0.750 & - & - & 19.05 & 2 \\
\hline B & 0.307 & 0.312 & 0.317 & 7.798 & 7.925 & 8.051 & \\
\hline C & - & - & 0.570 & - & - & 14.47 & \\
\hline D & 0.153 & - & 0.173 & 3.89 & - & 4.39 & \\
\hline E & 0.136 & - & 0.166 & 3.46 & - & 4.21 & \\
\hline \(F\) & - & - & 0.188 & - & - & 4.78 & \\
\hline G & - & - & 0.031 & - & - & 0.78 & \\
\hline H & - & \(\rightarrow\) & 0.031 & - & - & 0.78 & \\
\hline J & - & - & 0.047 & - & - & 1.19 & 3 \\
\hline K & \(\rightarrow\) & - & 0.094 & - & - & 2.38 & \\
\hline M & - & - & 0.188 & - & - & 4.78 & \\
\hline
\end{tabular}

See Noten on reveree side.

\section*{Bases}

\section*{Caps (1-Terminal Types)}

Mote 1: Connector shall not extend beyond this line. Botton contour optional.
Mote 2: Protrusion or depression of glass around cap above bulb contour is limited to areas bounded by circleconcentric with cap axis and having radii as shown above.
Note 3: When measuredina plane perpendicular to axis of contact cone.
Wote 4: When attaching or detaching the connector the total force required should not exceed eight pounds as applied perpendicular to the plane of the rim of the cap.
Mota 5: The angle between plane of the rim of the cap and plane tangent to original contour of bulb at center of cap shall not exceed \(10^{\circ}\).

BASES

\section*{3-PIN TYPES}

BASES

\section*{3-TERMINAL TYPES}

*add \(1 / \mathrm{B}^{\circ}\) for solder on finlshed tube.
NOV. 5, 1954

\author{
4-PIN TYPES
}
"SMALL 4-PIN"
PIA DIMENSIONS AND ORIENTATION

Base-pin positions are held to tolerances such that entire length of pinswlllenter fiat-plate gauge (JETEC No.GA4-1) having thickness of \(1 / 4^{\prime \prime}\) and four holes, two with diameters of \(0.1650^{\prime \prime} \pm 0.0005^{\prime \prime}\) and two with diameters of \(0.1340^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.6400^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance between the adjacent \(0.1650^{\prime \prime}\) diameterpins \(150.4680^{\prime \prime} \pm 0.0005^{\prime \prime}\) and the distance between the adjacent 0.1340" dlameter pins is \(0.4370^{\prime \prime}\) \(\pm 0.0005\) ".
Pin fit in gauge is such that gauge together with supplementary weight totaling 4 pounds "wlil not be lifted when pins are withdrawn.
\[
\begin{aligned}
& \text { DWARF - SHELLL } \\
& \text { SMALL 4-PIN }
\end{aligned}
\]

\section*{SMALL-SHELL SMALL 4-PIN}

RCA NO. 4108

4-PIN TYPES

\section*{BASES}

4-PIN TYPES

\section*{BASES}

4-PIN TYPES

\section*{4-PIN TYPES}

4-PIN TYPES

\section*{BASES}

For other dimensions, see first page of the "Super-Jumbo" series.
\[
\therefore
\]

5-PIN TYPES

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge (JETEC No.GA5-1) haviny thickness of \(1 / 4^{\prime \prime}\) and five holes with diameters of \(0.1360^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a 0.7500" \(\pm 0.0005^{\prime \prime}\) diameter circle that the distance between centers of the four adjacent holes is \(0.3750^{\prime \prime} \pm 0.0005^{\prime \prime}\) and the distance between the center of the remaining hole and its adjacent hole centers is \(0.5300^{\prime \prime} \pm 0.0005^{\prime \prime}\).
Pin fit in gauge is such that gauge together with supplementary weight totaling 4 pounds wibl not be lifted when pins are withdrawn.

\section*{SMALL-SHELL SMALL S-PIN}

\section*{MEDIUM-SHELL SMALL 5-PIN}

\[
\begin{gathered}
\text { JETEC No. A5-11 } \\
\text { RCA No. } 5106 \\
\hline
\end{gathered}
\]
* add \(0.030^{*}\) for solder on Inished tube.

MAR. 1, 1955

\title{
(8G) \\ BASES
}

5-PIN TYPES

\section*{MEDIUM-SHELL \\ GIANT 5-PIN \\ WITH BAYONET}

SPECIAL METAL-SHELL GIANT 5-PIM

See Tube Types 4-125A/4D21 and 4-250//5Dan

\section*{SPECIAL METAL-SHELL SUPER-GIANT 5-PIM}

See Tube Type 4-1000A

\section*{BASES}

5-PIN TYPES

\author{
\section*{SMULL-SHELL DUODECAL 5-PIM} \\ For details of this base, see corresponding DDODECAL 12-PIN type \\ \section*{DWARF-SHELL OCTAL 5-PIM SMALL-SHELL OCTAL 5-PIM SMALL-HAFER OCTAL 5-PIM SMALL-WAFER OCTAL 5-PIN WITH SLEEVE} \\ INTERMEDIATE-SHELL OCTAL 5-PIM SHORT INTERMEDIATE-SHELL OCTAL 5-PIM SHORT INTERMEDIATE-SHELL OCTAL 5-PIN WITH EXTERMAL BARRIERS MEDIUM-SHELL OCTAL 5-PIK SHORT JMMBO-SHELL OCTAL 5-PIN \\ For details of above bases, see corresponding OCTAL 8-PIN type \\ SMLL RADIAL 5-PIM \\ See OUTLINES--Glass Typas \\ MEDIUM-MOLDED-FLARE SEPTAR 5-PIM \\ See Tube Type 4-65A
}

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge (JETEC NO.GA6-l) having thickness of \(1 / 4^{\prime \prime}\) and six holes, two adjacent with diameters of \(0.1650^{\prime \prime} \pm 0.0005^{\prime \prime}\) and four with dlameters of \(0.1360^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.7500^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance between any two adjacent hole centers is \(0.3750^{\prime \prime} \pm 0.0005^{\prime \prime}\).
Pin fit in gauge is such that gauge together with supplementary weight totaling 4 pounds will not be lifted when plins are withdrawn.

\section*{SMALL-SHELL SMALL 6-PIN}

MEDIUM-SHELL SMALL 6-PIN

Add \(0.030^{\circ}\) for solder on inished tube.

6-PIN TYPES

\section*{LONG MEDIUM-SHELL \\ SMALL 6-PIN}

ACA No. 6105

For other dimensions, see first page of the "Small 6-Pin" series.

SMALL-SHELL DUODECAL 6-PIN
For details of this base, see corresponding DUODECAL 12-PIM type

SMALL-SHELL OCTAL 6-PIM IMTERMEDIATE-SHELL OCTAL 6-PIN SHORT IMTERMEDIATE-SHELL OCTAL 6-PIM
SHORT IMTERMEDIATE-SHELL OCTAL 6-PIM WITH EXTERMAL BARRIERS MEDIUM-SHELL OCTAL 6-PIM SHORT JUMBO-SHELL OCTAL 6-PIM SMALL-WAFER OCTAL 6-PIM SMALL-WAFER OCTAL 6-PIM WITH SLEEVE

For details of above bases, see corresponding OCTAL-8 PIH type

\section*{(as) \\ BASES}

6-TERMINAL TYPES

\section*{BASES}

\section*{SMALL-BUTTON MINIATURE 7-PIN}

Minlature Base Pin Contour

\section*{JETEC No.E7-1}

Base-pin positions are held to tolerances such that entiro length of pinswillwithout undue force pass into and disengage from flat-plate gauge (part of gauge JETEC No. GE7-1) having thickness of \(1 / 4^{\prime \prime}\) and eight holes with diameters of \(0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.3750^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.1434^{\prime \prime} \pm 0.0005^{\prime \prime}\).
The design of the socket should be such that circult wiring can not impress lateral strains through the socket contacts on the base pins. The point of bearing of the contacts on the base pins should not be closer than \(1 / 8^{\prime \prime}\) from the bottom of the seated tube.
* This dimension around the periphery of any individuel pin may vary within the linits shomn.
MAY 1, 1955

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge (JETEC No.GA7-1) having thickness of \(1 / 4^{\prime \prime}\) and seven holes, two adjacent with diameters of \(0.1650 " \pm 0.0005^{\prime \prime}\) and five with dlameters of \(0.1360^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.7500^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance between centers of the adjacent \(0.1650^{\prime \prime}\) diameter holes is \(0.3288^{\prime \prime} \pm 0.0005^{\prime \prime}\) and the distance between centers of the adjacent 0.1360 " diameter holes is \(0.3229^{\prime \prime} \pm 0.0005^{\prime \prime}\).
Pin fit in gauge is such that gauge together with supplementary weight totaling 4 pounds will not be lifted when pins are withdrawn.

\section*{7-PIN TYPES}

\title{
"MEDIUM 7-PIN" \\ PIN DIMENSIONS AND ORIENTATION
}

Base-pin positions are held totolerances such that entire length of pinswlllenter flat-plate gauge (JETEC No.GA7-2) havilly ihinklless of ifi" allu seven indes, iwu ajjaceni with diameters of \(0.1650^{\prime \prime} \pm 0.0005^{\prime \prime}\) and five with diameters of 0.1360" \(\pm 0.0005^{\prime \prime}\) so located on a 0.8550" \(\pm 0.0005^{\prime \prime}\) diameter circle that the distance between centers of the adjacent \(0.1650^{\prime \prime}\) dlameter holes is \(0.3748^{\prime \prime} \pm 0.0005^{\prime \prime}\) and the distance between centers of the adjacent 0.1360" diameter holes is \(0.361^{\prime \prime} \pm 0.0005^{\prime \prime}\).

Pin fit in gauge is such that gauge together with supplementary weight totaling 4 pounds wlll not be lifted when pins are withdrawn.

\section*{MEDIUM-SHELL MEDIUM 7-PIN}

\section*{MEDIUM-SHELL MEDIUM 7-PIN WITH BAYONET}

JETEC No.A7-13 RCA No. 7306

\[
\begin{aligned}
& \text { JETEC No. A7-14 } \\
& \text { RCA No. } 7302
\end{aligned}
\]
- Add \(0.030^{\circ}\) for solder on finisned tude.

BASES
7-PIN TYPES

MEDIUM-METAL-SHELL GIANT 7-PIN WITH BAYONET

> JETEC No.A7-17 RCA No. 7609

\section*{VEMTILATED MEDIUM-METAL-SHELL GIANT 7-PIN}

See Tube Type 4Ea7A/5-125

7-PIN TYPES

\section*{"SEPTAR" \\ PIN DMENSIONS AND ORIENTATION}

Septar Base Pin Contour

Base-pin positions are held to tolerances such that entire length of pins will without undue force pass into and disengage from flat-plate gauge having thickness of \(3 / 8^{\prime \prime}\) and seven holes, one with diameter of \(0.1450^{\prime \prime} \pm\) \(0.0005^{\prime \prime}\) and six with diameters of \(0.0800 " \pm 0.0005\) " located on a \(1.0000 " \pm 0.0005^{\prime \prime}\) diameter circle at specified angles with tolerance of \(\pm 51\) for each angle. Gauge is also provided with a hole \(0.500^{\prime \prime} \pm 0.010^{\prime \prime}\) concentrlc with pin circle.
It is essential that the socket shall be constructed with float ing-contact clips.

\section*{Rg \\ BASES}

\section*{7-PIN TYPES}

7-PIN TYPES

SMALL-SHELL DUODECAL 7-PIN
For details of this base, see corresponding SWALL-SHELL DUODECAL 12-PIN type

SMALL-BUTTON EIGHTAR 7-PIN
For details of this base, see corresponding SHALL-BUTTON EIGBTAR 8-PIN type

SMALL-SHELL OCTAL 7-PIN
SHORT INTERMEDIATE-SHELL OCTAL 7-PIM
SHORT INTERMEDIATE-SHELL OCTAL 7-PIM
WITH EXTERMAL BARRIERS
IMTERMEDIATE-SHELL OCTAL 7-PIM
SHORT MEDIUM-SHELL OCTAL 7-PIN WITH EXTERMAL BARRIERS, STYLES A AHD B

MEDIUM-SHELL OCTAL 7-PIN
SHORT JUMBO-SHELL OCTAL 7-PIR
WITH EXTERNAL BARRIERS
SMALL-WAFER OCTAL 7-PIM
SMALL-WAFER OCTAL 7-PIN
WITH SLEEVE
For details of above bases, see corresponding OCTAL 8-PIN type

SMALL RADIAL 7-PIIK
See OUTLINES--Glass Tubes
－

en

 \(+\)
正
正
正
正
正
en
 1
en
．

\section*{B-PIN TYPES}

\section*{SMALL-BUTTON SUB-MINAR 8-PIN}

DIA.

\section*{JETEC No.E8-9}

Base-pin positions are held to tolerances such that entire length of pins will without undue force pass into and disengage from flat-plate gauge JETEC No.GE8-I. This gauge contains a flat-plate section having thickness of \(13 / 64^{\prime \prime}\) and nine holes with diameters of \(0.0240^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.2350^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is 0.0804" \(\pm 0.0005^{\prime \prime}\).

The design of the socket should be such that circult wiring can not lmpress lateral strains through the socket contacts on the base pins. The point of bearing of the contacts on the base pins should not be closer than \(0.050^{\prime \prime}\) from the bottom of the seated tube.

\section*{8-LEAD TYPES}

JETEC No.E8-10
- The specified lead dianeter applies only in the zone between 0.050" and \(0.250^{\circ}\) from the base seat. getween \(0.250^{\circ}\) and \(1.500^{\circ}\), a maximum diameter of \(0.022^{\circ}\) is held. 0utside of these zones, the lead dianeter is not controiled.

\section*{Q-PIN TYPES}

\section*{8-PIN TYPES}

\section*{(19) \\ BASES}

8-PIN TYPES

\section*{SMALL-BUTTON NEODITETRAR 8-PIN}

Base-pin positions are held to tolerances such that entire length of pinswill, without undue force, pass into and disengage from fiat-plate gauge having thickness of 1/4" and nine holes with diameters of \(0.0700^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.6000^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.2052^{\prime \prime} \pm 0.0005^{\prime \prime}\).

\section*{BASES}

\section*{8-PIN TYPES}

\section*{SMALL-BUTTON DITETRAR 8-PN}

\[
\begin{array}{r}
\text { JEDEC NO. EB-11 } \\
\text { RCA No. }\left\{\begin{array}{l}
\text { FSB675 } \\
\text { FSB6015 }
\end{array}\right.
\end{array}
\]

Base-pin positions are held to tolerances such that entlre length of pins will. without undue force, pass into and disengage from flat-plate gauge having thickness of \(1 / 4^{\text {" }}\) and nine holes with diameters of \(0.0700^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.6000^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.2052^{\prime \prime} \pm 0.0005^{\prime \prime}\). Gauge is also provided with a hole having diameter of \(0.300^{\prime \prime} \pm 0.001^{\prime \prime}\) concentrle with the pincircle.

Base-pin positions are held to tolerances such that entire length of pins will without undue force pass into and disengage from gauge JETEC No. GDB-I. This gauge contains a flat-plate section having thickness of 1/4" and eight slots located and dimensioned as shown on the following diagram. Flat-plate section is also provided with a hole having diameter of \(0.272^{\prime \prime} \pm 0.002^{\prime \prime}\) concentric with slot circle, and with a keyway as shown on the diagram.

8-PIN TYPES

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Fin. & Center & Max. & & Hin. & Center & Max. \\
\hline \(A\) & . 5501 & . 560" & . \(570^{\prime \prime}\) & L & - & \(45^{\circ}\) & - \\
\hline 8 & . 4901 & . \(500^{\prime \prime}\) & . \(510^{\prime \prime}\) & M & . \(505^{\prime \prime}\) & . \(312^{\prime \prime}\) & . \(317^{\prime \prime}\) \\
\hline \(c\) & . 3001 & . \(308{ }^{\prime \prime}\) & .315" & N & .075" & .080" & .085" \\
\hline \(D\). & . \(427{ }^{\prime \prime}\) & . 437 " & . 44711 & P & . \(343^{\prime \prime}\) & . 353 " & . \(363^{\prime \prime}\) \\
\hline E & - & \(\checkmark\) & .050" & Q & . 04011 & .047' & .055" \\
\hline F & . \(085^{\prime \prime}\) & . 09011 & .095" & \(\mathrm{R}_{1}\) & - & .031" & - \\
\hline \(G\) & . 35211 & . 362 " & . \(372^{\prime \prime}\) & \(R_{2}\) & - & - & .05011 \\
\hline H & - & . 687" & - & \(\mathrm{R}_{3}\) & & .0407 & - \\
\hline J & . 09011 & .09311 & .096" & T & . 3400 & - & - \\
\hline \(k\) & - & \(22.5{ }^{\circ}\) & - & U & - & - & . \(135^{\prime \prime}\) \\
\hline
\end{tabular}

Base-pin positions are held to'tolerances such that entire length of pins will enter flat-plate gauge (JETEC No.GB8-I) having thickness of \(1 / 4^{\prime \prime}\) and eight holes with diameters of \(0.1030^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.6870^{\prime \prime} \pm 0.0005^{\prime \prime}\) dlameter circle that the distance along the chord between any two adjacent hole centers is \(0.2629^{\prime \prime} \pm 0.0005^{\prime \prime}\).

Pin fit in gauge is such that gauge together with supplementary weight totaling 2 pounds.will not be lifted when pins are withdrawn.

\title{
Bases
}

\section*{8-Pin Types}

\section*{DWARF-SHELL OCTAL}

Mo. of
Pins
5-Pin
\begin{tabular}{cccc}
Pins & & JEDEC & RCA \\
1, \(3, ~ 5, ~ 7,8\) & H0. & No.
\end{tabular}
sMALL-SMELL OCTAL

\begin{tabular}{cccc}
Mo. of & Pins & JEDEC & RCA \\
Pins & No. & Mo. \\
8-Pin & \(1,2,3,4,5,6,7,8\) & \(88-1\) & 8529 \\
7-Pin & \(1,2,3,4,5,7,8\) & \(87-2\) & 7529 \\
6-Pin & \(1,2,3,5,7,8\) & \(86-3\) & 6529 \\
5-Pin & \(1,2,4,6,8\) & \(85-5\) & 5529
\end{tabular}

\author{
For other dimensions, see first page of the "Octal" series
}

\section*{Bases}

\section*{8-Pin Types}

SHORT INTERMEDIATE-SHELL OCTAL

\begin{tabular}{cccc}
Mo. of & Pins & JEDEC & RCA \\
Pins & No. & No. \\
8-Pin & \(1,2,3,4,5,6,7,8\) & \(88-46\) & 8555 \\
7-Pin & \(1,2,3,4,5,7,8\) & \(87-47\) & 7555 \\
6-Pin & \(1,2,3 ; 5,7,8\) & \(86-48\) & 6555 \\
5-Pin & \(1,2,4,6,8\) & \(85-49\) & 5555
\end{tabular}

\section*{SHORT INTERMEDIATE-SHELL OCTAL}

WITH EXTERMAL BARRIERS

\begin{tabular}{|c|}
\hline No. of Pins \\
\hline \\
\hline \\
\hline P \\
\hline \(-\mathrm{Pl} \mathrm{n}^{\text {a }}\) \\
\hline -Pin \\
\hline \\
\hline 5-Pin \\
\hline 5-P1nc \\
\hline
\end{tabular}

\footnotetext{
arrangement 1.
brangement 2.
C arrangement 3.
}

\section*{Bases \\ 8-Pin Types}

\section*{INTERMEDIATE-SHELL OCTAL}

\begin{tabular}{|c|c|c|c|}
\hline No. of Pins & Pins & \[
\begin{aligned}
& \text { JEDSC } \\
& \text { Mo. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RCA } \\
& \text { Ho. }
\end{aligned}
\] \\
\hline 8-Pin & 1,2,3,4,5,6,7,8 & 88-6 & 8537 \\
\hline 7-Pin \({ }^{\text {a }}\) & 1,2,3,4,5, 7,8 & 87-7 & 7537 \\
\hline 7-Pin \({ }^{\text {b }}\) & 1,2,3, 5,6,7,8 & 87-166 & 39100 \\
\hline 6-Pina & 1,2,3, 5, 7,8 & 86-8 & 6537 \\
\hline 6-Pinb & 2,3,4,5, 7,8 & B6-81 & 6737 \\
\hline \(5-\mathrm{Pin}{ }^{\text {a }}\) & \(1,2,4,6,8\) & 85-10 & 5537 \\
\hline \(5-P\) in \({ }^{\text {b }}\) & 2,3, 5, 7,8 & 85-82 & 5737 \\
\hline
\end{tabular}

For other dimensions, see first page
of the "Octal" series
- Arrangement 1.
b arrangement 2.

\section*{Bases}

8-Pin Types

IMTERMEDIATE-SHELL OCTAL
vith external barriers

\begin{tabular}{cccr}
\begin{tabular}{c}
Mo. of \\
Pins
\end{tabular} & Pins & JEDEC & RCA \\
8-Pin & \(1,2,3,4,5,6,7,8\) & \(88-142\) & Mo. \\
7-Pin & \(1,2,3,4,5,7,8\) & \(87-143\) & 7566 \\
6-Pin & \(1,2,3,5,7,8\) & \(86-144\) & 6566 \\
6-Pinb & \(2,3,4,5,7,8\) & \(86-145\) & 6766 \\
6-Pinc & \(2,3,5,6,7,8\) & \(86-229\) & 39111 \\
5-Pin & \(1,2,4,6,8\) & \(85-146\) & 5566 \\
5-Pin & \(2,3,5,7,8\) & \(85-147\) & 5766
\end{tabular}

For other dimensions, see first page of the "Octal" series

\section*{Bases}

\section*{8-Pin Types}

\section*{SHORT MEDIUM-SHELL OCTAL vith external barriers}

Style

\begin{tabular}{|c|c|c|c|c|}
\hline No. of Pins & Pins & Style & JEDEC Ho. & \[
\begin{aligned}
& \text { RCA } \\
& \text { Ho. }
\end{aligned}
\] \\
\hline B-Pin & \(1,2,3,4,5,6,7,8\) & A & B8-110 & 39081 \\
\hline 8-Pin & \(1,2,3,4,5,6,7,8\) & B & B8-118 & 8564 \\
\hline 7-PIn* & 1,2,3,4,5, 7,8 & A & 87-111 & - \\
\hline 7-Pin & 1,2,3,4,5, 7,8 & 8 & 87-119 & 7564 \\
\hline 7-Pin \({ }^{\text {b }}\) & 1,2,3, 5,6,7,8 & 8 & 87-227 & 39113 \\
\hline 7-Pin \({ }^{\text {c }}\) & 1,2,3,4, 6,7,8 & 8 & 87-235 & - \\
\hline \(6-\mathrm{Pin}\) & 1.2.3, 5, 7.8 & A & 86-112 & - \\
\hline 6-Pin & 1,2,3, 5, 7,8 & 8 & B6-120 & 6564 \\
\hline 6-Pin \({ }^{\text {b }}\) & 2,3,4,5, 7,8 & A & B6-148 & - \\
\hline \(6-\mathrm{Pin}\) b & 2,3,4,5, 7,8 & B & B6-122 & 6764 \\
\hline 5-Pin & \(1,2,4,6,8\) & \(\wedge\) & B5-113 & - \\
\hline 5-Pin & 1,2, 4. 6, 8 & 8 & B5-121 & 5564 \\
\hline 5-Pin \({ }^{\text {b }}\) & 2,3, 5, 7,8 & A & B5-149 & - \\
\hline 5-Pin \({ }^{\text {b }}\) & 2,3, 5, 7,8 & 8 & 85-123 & 5764 \\
\hline 5-Pinc & \(1,2,3,5.7\) & \(A\) & B5-234 & - \\
\hline 5-Pinc & \(1,2,3,5,7\) & 8 & B5-239 & 39116 \\
\hline \(5-\mathrm{Pin}{ }^{\text {d }}\) & 2. 4,5, 7,8 & 8 & 85-190 & 391 \\
\hline
\end{tabular}

For other dimensions, see first page of the "Octal" series
* Arrangement 1.
- Arrangement 2.

C Arrangement 3 .
d Arrangement 4 .

\section*{Bases}

\section*{8-Pin Types}

\section*{MEDIUM -SHELL OCTAL}

\begin{tabular}{cccc}
Mo. of & Pins & JEDI & RCA \\
Pins & & No. & Mo. \\
8-Pin & \(1,2,3,4,5,6,7,8\) & \(88-11\) & 8533 \\
7-Pin & \(1,2,3,4,5,7,8\) & \(87-12\) & 7533 \\
6-Pin & \(1,2,3,5,7,8\) & \(86-13\) & 6533 \\
5-Pin & \(1,2,4,6,8\) & \(85-15\) & 5533 \\
5-Pin & \(2,3,5,7,8\) & \(85-224\) & 5733
\end{tabular}

\section*{LOME MEDIUM-SHELL OCTAL}

\begin{tabular}{cccc}
Mo. of & Pins & JLDEC & RCA \\
Pins & & Mo. & MO. \\
8-Pin & \(1,2,3,4,5,6,7,8\) & \(88-65\) & 8545 \\
5-Pin & \(2,3,5,7,8\) & \(85-80\) & 5545
\end{tabular}

For other dimensions of above bases, see first page of the "Octal" series

\section*{RCA}

\section*{BASES}

\section*{8-PHN TYPES}
SHORT JUMBO-SHELL OCTAL

8-PIN TYPES

SMALL-WAFER OCTAL

\begin{tabular}{|c|c|c|c|c|}
\hline Mo. of Pins & Pins & \[
\begin{aligned}
& \text { JETEC } \\
& \text { Ho. }
\end{aligned}
\] & \multicolumn{2}{|c|}{\[
\begin{aligned}
& \text { RCA } \\
& \text { Mo. }
\end{aligned}
\]} \\
\hline 8-Pin & \(1,2,3,4,5,6,7,8\) & 88-21 & 8527 & 8540 \\
\hline 7-PIn & \(1,2,3,4,5,7,8\) & 87-22 & 7527 & 7540 \\
\hline \(6-\mathrm{Pin}\) & \(1,2,3,5,7,8\) & 86-23 & 6527 & 6540 \\
\hline 5-Pin & 1.2 4, 6, 8 & B5-25 & 5527 & 5540 \\
\hline
\end{tabular}

SMALL-WAFER OCTAL WITH SLEEVE

\begin{tabular}{cccc}
\begin{tabular}{c}
Mo. of \\
Pins
\end{tabular} & Pins & JSTEC & NCA \\
O-Pin & \(1,2,3,4,5,6,7,8\) & B8-44 & HB.
\end{tabular}

For other dimensions of above bases, see Girst page of the "Octal" series

\section*{8-PIN TYPES}

\section*{SMALL-WAFER OCTAL WITH " 770 " SLEEVE}

\begin{tabular}{cccc}
\begin{tabular}{c}
Ho. of Pins \\
Pins
\end{tabular} JETEC & RCA \\
No. & Mo.
\end{tabular}

8-PIN TYPES

\section*{(89) \\ BASES}

\section*{8-PIN TYPES}

\section*{LARGE-WAFER OCTAL}

\begin{tabular}{cccc}
Mo. of & Pins & JETEC & MCA \\
Pins & Ho. & Mo. \\
8-PIn & \(1,2,3,4,5,6,7,8\) & B8-32 & 8534
\end{tabular}

LARGE-WAFER OCTAL WITH SLEEVE

\begin{tabular}{cccc}
Mo. of & Pins & JETEC & RCA \\
Pins & & Mo. & Mo. \\
日-Pin & \(1,2,3,4,5,6,7,8\) & Be-86 & Me8534-601
\end{tabular}

For other dimensions of above bases, see first pafe of the "Octal" series

8-PIN TYPES

\section*{8-PIN TYPES}

\(00000\)

\section*{Bases}

\section*{8-Pin Types}

\section*{SMALL-BUTTON SUPERDITETRAR}
Pin Dimensions and Orientation

Superditetrar-Base-Pin Contour

\[
\begin{array}{|l|}
\hline \text { JEDEC No.E8-78 } \\
\text { RCA No. FSB6055 } \\
\hline
\end{array}
\]

\footnotetext{
Base-pin positions are held to tolerances such that entire length of pins will, without undue force, pass into and disengage from a flat-plate gauge having a thickness of

This number applies to stem only.
}

RADIO CORPORATION OF AMERICA

\section*{Bases}

\section*{8-Pin Types}
\(1 / 4^{\prime \prime}\) and nine holes with diameters of \(0.0700^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.9000^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.3078^{\prime \prime} \pm 0.0005^{\prime \prime}\). Gauge is also provided with a hole having diameter of \(0.300^{\prime \prime} \pm 0.001^{\prime \prime}\) concentric with the pin circle.

\section*{Bases}

\section*{9-Pin Types}

Base-pin positions are held to tolerances such that entire length of pinswlll, without undue force, pass into and disengage from gauge JEDEC No.GE9-I. This gauge contains a flat-plate section having thickness of \(1 / 4^{\prime \prime}\) and ten holes with diameters of \(0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.4680^{\prime \prime}\) \(\pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.1446{ }^{\prime \prime} \pm\) \(0.0005^{\prime \prime}\).
The design of the socket should be such that circuit wirIng can not impress lateral strains through the socket contacts on the base pins. The point of bearing of the contacts on the base pins should not be closer than \(1 / 8^{n}\) from the bottom of the seated tube.
* This dimension around the periphery of any individual pin may vary within the 1 imits shown. The surface of the pin is convex or conical ? shape and not brought to a sharp point.

\section*{Bases}

\section*{9-Pin Types}

Neonoval-Base-Pin Contour

\[
\begin{aligned}
& \text { JEDEC No.E9-68 } \\
& \text { RCA No. FSD } 171 \\
& \hline
\end{aligned}
\]

Base-pin positions are held to tolerances such that entire length of pins will, without undue force, pass into and disengage from gauge JEDEC No.GE9-4. This gauge contains a flat-plate section having thickness of \(1 / 4^{\prime \prime}\) and ten holes with diameters of \(0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.4680 "\) \(\pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.1446^{\prime \prime} \pm 0.0005^{\prime \prime}\).
The design of the socket should be such that circult wiring can not impress lateral strains through the socket contacts on the base pins. The point of bearing of the contacts on the base pins should not be closer than \(1 / 8^{\prime \prime}\) from the bottom of the seated tube.
* This dimension around the periphery of any ind lyidual pin may vary within the limits shown. The surface of the pin is convex or conical in shape and not brought to a sharp point.

\section*{NOVAR \\ Pin Dimansions and orientation}

Novar-Base-Pin Contour

DIMEMSIOMS IW IMCMES

Base-pin positions are heid totolerances such that entire length of pins will, without undue force, pass into and disengage from flat-plate gauge having a thickness of \(0.350^{\prime \prime}\) and ten holes with diameters of \(0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.6870^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.2123^{\prime \prime} \pm 0.0005^{\prime \prime}\). Gauge is also provided with a hole \(0.330^{\prime \prime}+0.005^{\prime \prime}-0.000^{\prime \prime}\) diameter concentric with the pinclrcle.
athis dimension applies only to Jedec sase mos. E9-8s and E9-s9.
b Limit of exhaust tube fillet diamter.
c Exhaust tube maximum diameter.
d This dimension around the periphery of any Individual pinmay vary within the limits shown. The surface of the pin is convex or coniced in shape and not brought to a sharp point.

Bases
9-Pin Types

\section*{TOP EXHAUST MOVAR}

dimensions in incues

\section*{Bases}

\section*{9-Pin Types}

Movar-Base-Pin Contour

Base-pin positions are held to tolerances such that entire length of pins will, without undue force, pass into and disengage from flat-plate gauge having a thickness of \(0.350^{\prime \prime}\) and ten holes with diameters of \(0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.6870^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.2123^{\prime \prime} \pm 0.0005^{\prime \prime}\). Gauge is also provided with a hole \(0.330^{\prime \prime}+0.005^{\prime \prime}-0.000\) " diameter concentric with the pincircle.
The design of the socket should be such that circult wiring can not impress lateral strains through the socket contacts on the base pins. The polnt of bearing of the contacts on the base pins should not be closer than \(1 / 8^{\prime \prime}\) from the bottom of the seated tube.

\footnotetext{
* This dimension around the periphery of any individual pin may vary within the limits shown. The surface of the pin is convex or conlcal in shape and not brought to a sharp point.
}

RADIO CORPORATION OF AMERICA

\section*{Bases}

\section*{9-Pin Types}

SMALL-BUTTION NOVAR 8-PIM

DIA.

JEOEC NO. E9-75
RCA No. FSE2OA

Fits Gauge JBDSC No.GE9-5

LARGE-BUTTON MOVAR 8-PIM

\[
\begin{aligned}
& \text { JEOEC NO.E9-76 } \\
& \text { RCA NO. FSE22A }
\end{aligned}
\]

Fits Gauge JEDEC No.GE9-6

\section*{Bases}

\section*{SMALL-SHELL MEOSUBMAGNAL II-PIM}

\section*{Pin Dimensions and Orientation}

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge (JEDEC Group 2, No.GB|I-2) having thickness of 1/4" and eleven holes with diameters of \(0.1030^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.7500^{\prime \prime} \pm\) \(0.0005^{\prime \prime}\) diameter circle that the distance along the chora between any two adjacent hole centers is \(0.213^{\prime \prime} \pm 0.0005^{\prime \prime}\).
Pin fit ingauge is such that gauge together with supplementary welght totaling 3 pounds will not be lifted when pins are withdrawn.

BASES

\section*{11-PIN TYPES}

\section*{11-PIN TYPES}

\section*{SMALL-SHELL SUBMAGNAL}

For other dimensions, see first paga of the "Subwagnal" series

\section*{BASES}

\section*{11-PIN TYPES}

\section*{SMALL-BUTTON UNIDEKAR II-PIN}

Unidekar Base Pin Contour

JETEC No. Eli-22
RCA No. FSB6O 19

Base-pin positions areheld to tolerances such that entire length of pins will without undue force pass into and disengage from flat-plate gauge having thickness of 1/4" and twelve holes with diameters of \(0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.6870^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.1778^{\prime \prime} \pm 0.0005^{\prime \prime}\). Gauge is also provided with a hole \(0.3750^{\prime \prime} \pm 0.0100^{\prime \prime}\) concentric with the pin circle.

This dimension around the periphery of any individual pin may vary within the lifits shown.

\section*{BASES}

11-PIN TYPES

\section*{SMALL-DUTTON UNIDEKAR II-PIN (CONT'D)}

The design of the socket should be such that circuit wiring can not impress lateral strains through the socket contacts on the base pins. The point of bearing of the contacts on the base pins should not be closer than 1/8" from the bottom of the seated tube.

\section*{Bases}

\section*{LARGE-WAFER ELEVENAR II-PIN WITH RIMG \\ Pin Dimensions and Orientation}

Elevenar-Base-Pin Contour

J EDEC No. EII-8|

Base-pin positions are held to tolerances such that entire length of pins will, without undue force, pass into and disengage from flat-plate gauge (JEDEC No.GEII-1) having a thickness of \(0.250^{\prime \prime}\) and twelve holes with diameters of \(0.0520^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(0.6870^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.1778^{\prime \prime} \pm 0.0005^{\prime \prime}\). Gauge is also provided with a hole \(0.3750^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter concentric with the pincircle.
- This dimension around the periphery of any individual plnmay vary within the limits shown. The surface of the pin is convex or conical in shape and not brought to a sharp point.

\section*{I1-PIN TYPES}
"MAGNAL"
PIN DIMENSIONS AND ORIENTATION
AND INDEX GUIDE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Hin. & Center & Hax. & & Yis. & Center & Mas. \\
\hline A & .550" & . \(560{ }^{\text {n }}\) & .570" & L & - & 32-8/110 & - \\
\hline 8 & . 49011 & . 5001 & \(.510^{\prime \prime}\) & * & .305" & . \(312^{\prime \prime}\) & . 317 " \\
\hline c & . 30011 & . \(308{ }^{\prime \prime}\) & . \(315^{\prime \prime}\) & N & . \(075^{\prime \prime}\) & . 0801 & .085" \\
\hline 0 & .427" & .437* & .447" & P & . 34310 & .353" & .363" \\
\hline E & - & - & .050" & - & .040 \({ }^{\text {\% }}\) & .047" & . \(055^{\prime \prime}\) \\
\hline F & .085" & .090" & .095" & \(\mathrm{R}_{1}\) & - & .031" & - \\
\hline 6 & .352" & .362" & .372" & \(\mathrm{R}_{2}\) & - & - & .050" \\
\hline H & - & 1.063" & - & \(\mathrm{R}_{3}\) & - & .040" & - \\
\hline d & .050" & .093" & .083" & 1 & . 3401 & & - \\
\hline , & - & \(16-4 / 11^{\circ}\) & - & U & - & - & .135* \\
\hline
\end{tabular}

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge (JETEC NO.GBII-I) having thickness of \(1 / 4^{\prime \prime}\) and eleven holes withdiameters of \(0.1030^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(1.0630^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.2995^{\prime \prime} \pm 0.0005^{\prime \prime}\).
Pin fit in gauge is such that gauge together with supplementary weight totaling 3 pounds will not be lifted when plins are withdrawn.

N0 0.030 for selter on finished tube.

11-PIN TYPES

\section*{SMALL-SHELL. MAGNAL}

\begin{tabular}{cccc}
Mo. of & Pins & JETEC & ECI \\
Pins & Mo. & Ho. \\
H-PIn & \(1,2,3,4,5,6,7,8,9,10,11\) & B11-33 & 11247
\end{tabular}

MEDIUM-SHELL MAGNAL

\begin{tabular}{|c|c|c|}
\hline Ho. of
Pins & Pins & JETEC No. \\
\hline llopin & \(1,2,3,4,5,6,7,8,9,19,11\) & 81:-66 \\
\hline
\end{tabular}

Por other dimensions of above bases, see first paye of the "Magnal" series

\section*{Mediun ceramic-wafer Twelyar base Pin Dimensions and Orientation and Index luide}

nete: MAXIMUM OUTSIDE DIAMETER OF \(0.440^{\prime \prime}\) IS PERMITTED alONG THE 0.190" LUG LENGTH.

- Pins 3,5.8.9 are of a length such that their ends do not touch the sochet inaertion piane. pin 11 is omitted.
\(b\)
Pins \(2,4.8 .9\) are of a length such that their ends do not touch the aochet Insertion plane. Pln 11 is omitted.
C pint is of a lengen such that its end does not touch the socket fasertion plane. Pins 1.3.5.6.9.11 are omitted.
d Pins 1.3.5.6.7.9 are of a length such that their ends do not touch the socket insertion plane. Pin il is omitted.

RADIO CORPORATION OF AMERICA
BASES 20pA
Electron Tube Division
Harrison, M. J.

\section*{Bases}

\section*{12-Pin Types}

Base-pin positions and lug positions shall be held to tolerances such that entire length of pins and lugs will without undue force pass into and disengage from flat-plate gauge (JEDEC No.GEI2-5) having thickness of \(0.250^{\prime \prime}\) and twelve holes of \(0.0350^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter located on four concentric circles as follows: Three holes located on \(0.2800^{\prime \prime} \pm 0.0005^{\prime \prime}\), three holes located on \(0.2100^{\prime \prime} \pm 0.0005^{\prime \prime}\). three holes located on \(0.1400^{\prime \prime} \pm 0.0005^{\prime \prime}\), three holes located on \(0.0700^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circles at specified angles with a tolerance of \(\pm 0.08^{\circ}\) for each angle. In addition, gauge provides for two curved slots with chordal lengths of \(0.2270^{\prime \prime} \pm 0.0005^{\prime \prime}\) and \(0.1450^{\prime \prime} \pm 0.0005^{\prime \prime}\) located on \(0.4200^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle concentric with pin circles at \(180^{\circ} \pm 0.08^{\circ}\) and having a width of \(0.0230^{\prime \prime}\) \(\pm 0.0005^{\prime \prime}\).

\section*{Bases}

\section*{12-Pin Types}

JEDEC No. El2-70

JEDEC NO. EI2-74

Fits Gauge JEDEC No.GE1a-3 Fits Gauge JEDEC No.GE1a-4

\section*{RG)}

\section*{BASES}

12-PIN TYPES

12-PIN TYPES

BASES
12-PIN TYPES

\section*{(RC) \\ BASES}

\section*{Bases}

\section*{13-Lead Types}

\section*{SMLL-BUTTOM THIRTEEMAR}

\begin{tabular}{cccc}
MOTE: LEAD IS CUT OFFWITHIN 0.04 INCH FROW THE GLASS & BUTTOM. \\
Mo. of & Leads & JEDEC & RCA \\
Leads & & Mo. & Mo. \\
13-Lead & \(1,2,3,4,5,6,7,8,9,10,11,12,13\) & E13-71 & - \\
12-Lead \(^{2}\) & \(1,2,3,4,5,6,7,8,9,10,11,12\), & El2-72 & -
\end{tabular}

RADIO CORPORATION OF AMERICA

\title{
RGA \\ BASES
}

14-PIN TYPES

\section*{SMALL-SHELL NEODIHEPTAL}

\begin{tabular}{lcccc}
No. of & Pins & JETEC & RCA \\
Pins & & No. & No. \\
\(14-\) Pin & \(1,2,3,4,5,6,7,8,9,10,11,12,13,14\) & B14-130 & 14560 \\
\(12-\) Pin & \(1,2,3,4,5,6,7,9\), & \(9,11,12,13,14\) & B12-131 & 12560
\end{tabular}

Base-pin positions are held to tolerances such that entire length of pinswill enter flat-plate gauge (JETEC No.GBI4-2) having thlckness of \(1 / 4^{\prime \prime}\) and fourteen holes with diameters of \(0.1030^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a 1.5500" \(\pm 0.0005^{\prime \prime}\) diameter circle that the distance along, the chord between any two adjacent hole centers is \(0.3449^{\prime \prime} \pm 0.0005^{\prime \prime}\).
Pin fit in gauge is such that gauge together with supplementary weight totaling 3 pounds will not be lifted when pins are withdrawn.

\section*{ex}

\section*{BASES}

\section*{14-PIN TYPES}

\section*{"DIHEPTAL" \\ PW DIMENSIONS AND ORIENTATION AND INDEX GUIDE}

Base-pin positions are held to tolerances such that entire length of pinswill enter flat-plate gauge (JETEC No.GB14-1) having thickness of \(1 / 4^{\text {" }}\) and fourteen holes with diameters of 0.1030" \(\pm 0.0005^{\prime \prime}\) so located on a \(1.750^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two hole centers is \(0.3895^{\prime \prime} \pm 0.0005^{\prime \prime}\).
Pin fit in gauge is such that gauge together with supplementary welght totaling 3 pounds will not be lifted when pins are withdrawn.

14-PIN TYPES

Por ether dimensions of above bases, see first page of the "Diheptal" series

\section*{SMALL-SHELL BIDECAL.}

\begin{tabular}{cccc}
No. of & & JETEC & RCA \\
Pins & Riss & No. & Mo. \\
20-PIn & throwgh 20 & \(020-102\) & 20158
\end{tabular}

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge iJETEC No.GB20-11 having thickness of \(1 / 4^{\prime \prime}\) and twenty holes with diameters of \(0.1030^{\prime \prime} \pm 0.0005^{\prime \prime}\) so located on a \(1.7500^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle that the distance along the chord between any two adjacent hole centers is \(0.2738^{\prime \prime} \pm 0.0005\) ".
Pin fit in gauge is such that gauge together with supplementary weight totaling 3 pounds will not be lifted when pins are withdrawn.

\section*{Bases}

25-Pin Types

JEDEC No. B25-216

DIMEMSIOMS IN IMCHES
* Add 0.030 inch for solder.

\section*{BASES}

\section*{29-PIN TYPES}

\section*{SMALL-EUTTON TWENTYNINAR (CONT'D)}

Base - in positions are held to tolerances such that entire length of pins will enter flat-plate gauge having thickness of \(3 / 8^{\prime \prime}\) and twenty-nine holes with diameters of \(0.0700^{\prime \prime} \pm 0.0005^{\prime \prime}\), nineteen of which are located with hole centers corresponding to the specified location of pin centers on \(1.8750^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle, and ten of which are located with hole centers corresponding to the specified location of pin centers on a \(0.8750^{\prime \prime} \pm\) \(0.0005^{\prime \prime}\) diameter circleconcentricwiththe l. \(8750^{\prime \prime}\) circle.

Pin fit in gauge is such that entire length of pins will, without undue force, enter into and disengage from the gauge.

\section*{(12G) \\ BASES}

\section*{35-PIN TYPES}

\section*{35-PIN TYPES}

\section*{thirtyfivar (CONT'D)}
pin centers on a \(2.1250^{\prime \prime} \pm 0.0005^{\prime \prime}\) diameter circle, and fourteen of which are located with hole centers corresponding to the specified location of pin centers on a l.3750" \(\pm 0.0005^{\prime \prime}\) diameter clrcle concentric with the 2. 1250" circle.

Pin fit in gauge is such that entire length of pins will, without undue force, enter into and disengage from the gauge. Gauge is also provided with a hole \(1.000^{\prime \prime}\) diameter minimum concentrlc with pin circles.

\section*{SMALE-BUTTON THIRTYFIVAR}

\begin{tabular}{|c|c|c|c|}
\hline Mo. of Pins & Pins & \[
\begin{aligned}
& \text { JETEC } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RCA } \\
& \text { Ho. }
\end{aligned}
\] \\
\hline 35-Pin & 1 through 35 & E35-28 & \(\cdots\) \\
\hline 33-Pin & Omit pins 24 and 30 & E33-29 & - \\
\hline \(31-\mathrm{Pin}\) & Omit pins 24 and 30 ; pins 23 and 31 are trimmed to same dimension as index pin. & E31-36 & - \\
\hline 21ヶPin & 1 through 21 & E21-40 & - \\
\hline
\end{tabular}

Fow other dimensions of above base, see first page of the "Thirtyfivar" series

\section*{RCA TUBE handBook HB-3 \\ CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE SECTION}

This Section contains data for black-andwhite and color TV picture tubes, oscillo-

For further Technical Information, write to Commerciai Engineering, Tuise Division, Radio Corporation of America, Harrison, N. J.

\title{
RCA PICTURE TUBE INTERCHANGEABILITY GUIDE
}

\section*{Replacement Classification Keys}
- Replacement information is based primarily on electrical and mechanical similarity of the picture-tube types covered. The technician should make certain that replacement is in accord with all safety precautions required by the TV receiver for picture-tube insulation or mechanical mounting.
A. RCA type does not require an external ion-trap magnet.
B. The ball-type anode contact must be replaced with cavitytype contact.
C. Neck length and/or overall tength of RCA type is slightly greater.
D. Direct replacement.
E. The RCA replacement type is electrically interchangeableMechanical modifications to the receiver may be required.
F. The RCA replacement type has a 6.3 -volt/ 600 -milliampere heater. The receiver picture tube heater circuit must be modified to use this replacement type.
G. A conversion Kit (RCA Part No. 12B202) is, available for RCA receivers.
H. The RCA replacement type is mechanically interchangeable-Electrical-modifications to the receiver may be required.
J. The RCA replacement is directly interchangeable in most cases; however, in some cases the red cathode lead may have to be interchanged with the blue or green cathode leads to obtain satisfactory black-and-white tracking. Replacement information is packed with the tube.
K, Pin No. 6 (focusing electrode) of the RCA replacement must be connected to Pin No. 11 at the socket. The original tube did not require an external voltage for focus.
L. The RCA replacement type is electrically interchangeable Mounting hardware may have to be modified to accept the replacement type. In some small-cabinet receivers, the replacement may not be feasible.
M. The RCA replacement type is electrically interchangeable - The receiver socket should be replaced by RCA Part No. 1 12579, Eby Sales Co. Part No. 49-13DD, or equivalent.
N. A conversion Kit (RCA Part No. 12B101) is available for RCA receivers.
P. External conductive coating must be gounded.

\footnotetext{
*Band around periphery of tube panel must be gounded and isolated from the ac line voltage.
}

Type \(\mathrm{To} \mathrm{Be} \star\)
Replaced
Replaced By
RCA Type Color Picture Tubes
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
11 SP22 \\
11 WP22
\end{tabular} & C. 11 WP 22 & D \\
\hline \[
\begin{aligned}
& \text { 15AEP22 } \\
& \text { 15AFP22 } \\
& \text { 15AGP222 }
\end{aligned}
\] & H-15AEP22 C.15AEP22 & \[
\begin{array}{r}
0 \\
0
\end{array}
\] \\
\hline 15LP22 & \[
\begin{aligned}
& \text { H.15LP22 } \\
& \text { C-15LP22 }
\end{aligned}
\] & D \\
\hline 15NP22 & \[
\begin{aligned}
& \text { H-15NP22 } \\
& \text { C-15NP22 } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\cdot \mathrm{D} \\
\cdot \mathrm{D} \\
\hline
\end{array}
\] \\
\hline 15SP22 & \[
\begin{aligned}
& \text { H-15AEP22 } \\
& \text { C.15AEP22 }
\end{aligned}
\] & - D \\
\hline 15 TP22 & \[
\begin{aligned}
& \text { H-15NP22 } \\
& \text { C.15NP22 }
\end{aligned}
\] & \[
\stackrel{D}{\cdot D}
\] \\
\hline 15WP22 & \[
\begin{aligned}
& \text { H-15LP22 } \\
& \text { C-15LP22 }
\end{aligned}
\] & D \\
\hline \(15 \times 122\) & \[
\begin{aligned}
& \text { H-15NP22 } \\
& \text { C.15NP22 } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\text { •D } \\
\cdot D \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { 17EZP22 } \\
& \text { 17FAP22 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H}-17 \mathrm{EZP22} \\
& \mathrm{C}-17 \mathrm{E} P 22
\end{aligned}
\] & \[
\begin{aligned}
& \cdot \mathrm{D} \\
& \cdot \mathrm{D}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline \(19 E X P 22\) & H.19GVP22 & \(D\)
\end{tabular}
\begin{tabular}{lcc}
19EXP22 & C-19GVP22I \\
& 19EXP22
\end{tabular}\(\quad\) p
\begin{tabular}{ccc}
\hline 19GVP22 & H-19GVP22 & \(D\) \\
19GVP221 & C-19GVP221 & \\
\(19 E X P 22\) & \(19 E X P 22\) & \(D\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
19GWP22 \\
19GWP22/ \\
\(19 E\) YP22
\end{tabular} & \begin{tabular}{l}
H-19GWP22 \\
C.19GWP22 19 YP22
\end{tabular} & D \\
\hline \(19 \mathrm{GXP22}\) & H.19GVP22 & C \\
\hline \(196 \mathrm{YP22}\) & C-19GVP221 19E ZP22 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 19GZP22 & H.19GWP22
C. 19GWP221 19 YP22 & D \\
\hline \multirow[t]{2}{*}{19HBP22} & H-19GWP 22 C-19GWP22I & D \\
\hline & 19EYP22 & 0 \\
\hline \multirow[t]{3}{*}{19HCP22 19HCP22/ 19HKP22} & H-19HCP221 & \\
\hline & 19HKP22 & - D \\
\hline & 19 HCP 221 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 19HFP22 & \begin{tabular}{l}
H-19GWP22 \\
C-19GWP22I \(19 E\) YP22
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { 19HJP22 } \\
& \text { 19HKP22 }
\end{aligned}
\] & \[
\begin{array}{r}
\text { H-19HCP22l } \\
\text { 19HKP22 } \\
\text { C. } 19 \mathrm{HCP} 221 \\
19 \mathrm{HKP} 22
\end{array}
\] & - D \\
\hline 19HNP22 & \[
\begin{aligned}
& \mathrm{H} \text {-19HNP22 } \\
& \text { C-19HNP22 }
\end{aligned}
\] & \[
\cdot 0
\] \\
\hline 19HOP22 & \[
\begin{gathered}
\hline \text { H-19GVP22 } \\
\text { C.19GVP22I } \\
19 E \times P 22 \\
\hline
\end{gathered}
\] & 0 \\
\hline 19HRP22 & \begin{tabular}{l}
H-19GWP22 \\
C-19GWP22I 19 YP22
\end{tabular} & 0 \\
\hline \(194 \times P 22\) & \[
\begin{array}{r}
\text { H.19HCP22I } \\
\text { 19HKP22 } \\
\text { C. 19HCP } 22 / \\
19 \mathrm{HKP} 22
\end{array}
\] & - \\
\hline \[
\begin{aligned}
& \text { 19JBP22 } \\
& \text { 19JDP22 }
\end{aligned}
\] & \begin{tabular}{l}
H.19GVP22 \\
C-19GVP22! 19 XP22
\end{tabular} & D \\
\hline 19JGP22 & \begin{tabular}{l}
H-19.JWP 22 \\
C.19.JWP 22
\end{tabular} & 旦 \\
\hline 19.JHP22 & \begin{tabular}{l}
H-19GWP22 \\
C-19GWP22I 19 YP22
\end{tabular} & D \\
\hline \(19 \mathrm{JKP22}\) & \begin{tabular}{l}
H-19GWP22 \\
C.19GWP22I \(19 E\) YP22
\end{tabular} & D \\
\hline 19.JWP22 & H-19.JWP22
C-19JWP22 & \[
\begin{aligned}
& \hline \mathbf{D} \\
& \text { 等 } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { 21AXP22 } \\
& 21 A X P 22 A \\
& 21 A X P 22 A / \\
& 21 A X P 22
\end{aligned}
\] & C-21AXP22A C.21CYP22A C-21FBP22 H-21GUP22 C.21GUP22/ 21FBP22A & D CN CN C.N C.N \\
\hline \[
\begin{aligned}
& \text { 21CYP22 } \\
& \text { 21CYP22A }
\end{aligned}
\] & \[
\begin{aligned}
& \text { C-21CYP22A } \\
& \text { C-21FBPP22 } \\
& \text { H-21GUP22 } \\
& \text { C-21GUP22l } \\
& \text { 21FBP22A }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { 21FBP22 } \\
& \text { 21FBP22A }
\end{aligned}
\] & \begin{tabular}{l}
C.21FBP22 H.21GUP22 \\
C-21GUP22I \\
21FBP22A
\end{tabular} & 0 \\
\hline
\end{tabular}
\(\star\) See note on back of sheet 2 of this guide.
\(\triangle\) See Replacement information in front of this guide.

\section*{RCA PICTURE TUBE INTERCHANGEABILITY GUIDE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Type \\
To Be \\
Replaced
\end{tabular} & Replaced By RCA Type & \(\Delta\) & \begin{tabular}{l}
Type \\
To Be * \\
Replaced
\end{tabular} & Replaced By RCA Type & \(\Delta\) \\
\hline \begin{tabular}{l}
21FJP22 \\
21FJP22A \\
21FKP22
\end{tabular} & C-21FJP22 H-21GVP22 C-21GVP22/
21FJP22A & \[
\begin{aligned}
& \mathrm{D} \\
& \mathrm{~J} \\
& \mathrm{~J}
\end{aligned}
\] & 25AEP. 22 & \[
\begin{aligned}
& \mathrm{H} \cdot 25 \mathrm{YP} 22 \\
& \text { C-25YP22/ } \\
& 25 \mathrm{BP} 22 \mathrm{~A} \\
& \hline
\end{aligned}
\] & D \\
\hline \[
\begin{aligned}
& \text { 21GFP22 } \\
& 21 G L P P 22
\end{aligned}
\] & \[
\begin{aligned}
& \text { H-22.JP22 } \\
& \text { C-22JP22 }
\end{aligned}
\] & \[
\frac{L}{L}
\] & 25 AFP22 & \[
\begin{gathered}
\mathrm{C}-25 \times P 22 I \\
25 A P 22 A \\
\hline
\end{gathered}
\] & D \\
\hline 21GRP22 & H-21GUP22 & D & \[
\begin{aligned}
& \hline \text { 25AGP22 } \\
& \text { 25A JP22 }
\end{aligned}
\] & \begin{tabular}{l}
H-25A JP 22 \\
C-25AJP 22
\end{tabular} & - D \\
\hline \begin{tabular}{l}
21GUP22I \\
21FBP22A
\end{tabular} & \begin{tabular}{l}
C.21FBP22 \\
C-21GUP22I \\
21FBP22A
\end{tabular} & D & \[
\begin{aligned}
& \text { 25ANP22 } \\
& \text { 25AP22 } \\
& \text { 25AP22AA }
\end{aligned}
\] & H-25×P22
C-25XP22I
\(25 A P 22 A\) & D \\
\hline 21GVP22 & H-21GVP22 & D & 25AQP22 & & \\
\hline 21GVP22/
21FJP22A & \[
\begin{array}{r}
\text { C-21GVP221 } \\
21 F J P 22 A \\
\hline
\end{array}
\] & D & \begin{tabular}{l}
25ASP22 \\
25AWP 22
\end{tabular} & H-25AJP22
C-25AJP22 & \[
: \begin{aligned}
& D \\
& D
\end{aligned}
\] \\
\hline 21GWP22 & \[
\begin{aligned}
& \text { H-22JP22 } \\
& \text { C-22JP22 }
\end{aligned}
\] & \[
\mathbf{L}
\] & \[
\begin{aligned}
& \text { 25AXP22 } \\
& \text { 25AZP22 }
\end{aligned}
\] & & \\
\hline 21GXP 22
21GYP22 & \[
\begin{aligned}
& \text { H-21GVP22 } \\
& \text { C-21FJP22 } \\
& \text { C-21GVP22I }
\end{aligned}
\] & \[
\begin{aligned}
& D \\
& 0
\end{aligned}
\] & 25BMP22 & \[
\begin{aligned}
& \mathrm{H}-25 \times P 22 \\
& \mathrm{C}-25 \times P 22 / \\
& 25 A P 22 \mathrm{~A}
\end{aligned}
\] & 0
0 \\
\hline & 21FJP22A & D & 25BP22 & H-25YP22 & D \\
\hline 22ADP22 & \begin{tabular}{l}
H-22UP22 \\
C-22UP22
\end{tabular} & \[
\cdot \mathrm{D}
\]
\[
\cdot \mathrm{D}
\] & 25BP22A & \[
\begin{gathered}
\text { C.25YP22/ } \\
25 B P 22 A
\end{gathered}
\] & 0 \\
\hline \[
22 A H P 22
\] & & & 25 CP 22 & H.25×P22 & D \\
\hline 22JP22 & \[
\begin{aligned}
& \mathrm{H}-22 \mathrm{JP} 22 \\
& \mathrm{C}-22 \mathrm{JP} 22
\end{aligned}
\] & \[
\begin{aligned}
& \overline{\mathbf{D}} \\
& \mathbf{D}
\end{aligned}
\] & 25CP22A & \[
\begin{gathered}
\text { C. } 25 \times P 22 / \\
25 A P 22 A
\end{gathered}
\] & D \\
\hline 22 KP 22 & \[
\begin{aligned}
& \text { H-22KP22 } \\
& \text { C-22JP22 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{D} \\
& \mathbf{D} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 25FP22 } \\
& \text { 25FP22A }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{H}-25 \mathrm{YP} 22 \\
\mathrm{C}-25 \mathrm{YP} 22 / \\
25 \mathrm{BP} 22 \mathrm{~A} \\
\hline
\end{gathered}
\] & O \\
\hline \[
\begin{array}{r}
22 L P 22 \\
220 P 22 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { H-22JP22 } \\
& \text { C-22JP22 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{D} \\
& \mathbf{D}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 25GP } 22 \\
& \text { 25GP22A }
\end{aligned}
\] & \[
\begin{aligned}
& H-25 \times P 22 \\
& \text { C-25XP22i } \\
& 25 A P 222 A
\end{aligned}
\] & O \\
\hline 22RP 22 & \[
\begin{aligned}
& \mathrm{H}-22 \mathrm{KP} 22 \\
& \mathrm{C} \cdot 22 \mathrm{KP22} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathbf{D} \\
& \mathbf{D}
\end{aligned}
\] & 25RP22 & \[
\begin{aligned}
& \text { H-25YP22 } \\
& \text { C-25YP22i }
\end{aligned}
\] & D \\
\hline 22SP 22 & \[
\begin{aligned}
& \text { H-22JP22 } \\
& \text { C-22JP } 22
\end{aligned}
\] & D & 2SRP22 & 25BP22A & D \\
\hline \[
\begin{aligned}
& \text { 22UP22 } \\
& 22 \times P 22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { H-22UP22 } \\
& \text { C-22UP22 }
\end{aligned}
\] & \[
\begin{aligned}
& \cdot D \\
& \bullet D
\end{aligned}
\] & 25SP22 & \[
\begin{gathered}
\mathrm{C}-25 \times \mathrm{P} 221 \\
25 \mathrm{AP} 22 \mathrm{~A} \\
\hline
\end{gathered}
\] & D \\
\hline 22YP22 & \[
\begin{aligned}
& \text { H-22JP22 } \\
& \text { C-22JP22 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \overline{\mathrm{D}} \\
& \mathrm{D} \\
& \hline
\end{aligned}
\] & 25 VP 22 & \[
\begin{aligned}
& \mathrm{H}-25 \times P 22 \\
& \mathrm{C}-25 \times \mathrm{P} 221
\end{aligned}
\] & D \\
\hline \[
\begin{aligned}
& \text { 23EGP22 } \\
& 23 E G P 22 A \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { C-23EGP22 } \\
& \text { C.23EGP22A }
\end{aligned}
\] & D & \(25 W P 22\) & 258P22A & D \\
\hline \(25 A B P 22\) & \[
\begin{aligned}
& H-25 \times P 22 \\
& C-25 \times P 22 / \\
& 25 A P 22 A
\end{aligned}
\] & D & \[
\begin{aligned}
& 25 \times P 22 \\
& 25 \times P 22 I \\
& 25 A P 22 A
\end{aligned}
\] & \[
\begin{aligned}
& \text { H-25XP22 } \\
& \text { C-25×P22 } \\
& 25 A P 22 A
\end{aligned}
\] & 0 \\
\hline \(25 A D P 22\) & H-25AJP22
C-25AJP22 & \[
\begin{array}{r}
0 \\
\cdot 0
\end{array}
\] & \[
\begin{aligned}
& 25 \mathrm{YP} 22 \\
& 25 \mathrm{YP} 221 \\
& 25 \mathrm{BP} 22 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \text { H-25YP22 } \\
& \text { C-25YP22/ } \\
& 25 B P 22 A A
\end{aligned}
\] & D \\
\hline
\end{tabular}
* See note on back of sheet 2 of this guide.
- See Replacement information in front of this guide.

\section*{RCA PICTURE TUBE INTERCHANGEABILITY GUIDE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Type \\
To Be Replaced
\end{tabular} & Replaced By RCA Type & \(\wedge\) & \begin{tabular}{l}
Type \\
ToBe＊ Replaced
\end{tabular} & Replaced By RCA Type & － \\
\hline 252P 22 & \[
\begin{aligned}
& \hline H \cdot 25 \times P 22 \\
& \text { C-25XP221 } \\
& 25 A P 22 A \\
& \hline
\end{aligned}
\] & D & 490BGB22 & \[
\begin{aligned}
& \text { H-19GVP22 } \\
& \text { C-19GVP22I } \\
& 19 E X P 22
\end{aligned}
\] & D \\
\hline \[
\begin{aligned}
& \hline 370 A B 22 \\
& 370 \mathrm{CB} 22
\end{aligned}
\] & \begin{tabular}{l}
H－15NP22 \\
C－15NP22
\end{tabular} & \[
\begin{aligned}
& \cdot \mathrm{D} \\
& \cdot \mathrm{D} \\
& \hline
\end{aligned}
\] & \multirow[t]{2}{*}{490BH82\％} & \multirow[t]{2}{*}{H－19GWP22 C．19GWP22I \(19 E\) YP22} & 9 \\
\hline 4904822 & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline H-19 G V P 22 \\
C-19 G V P 221 \\
19 E X P 22 \\
\hline
\end{gathered}
\]} & J & & & 8 \\
\hline 490 ACB 22 490ADB22 & & \(J\) & \(490 \mathrm{BNB22}\) & \[
\begin{aligned}
& \text { H-19.WP22 } \\
& \text { C.19JWP22 }
\end{aligned}
\] & 0 \\
\hline 490AE B22 490AFB22 490AGB22 & \[
\begin{gathered}
\hline \text { H-19GWP22 } \\
\text { C-19GWP22I } \\
\text { 19EYP22 } \\
\hline
\end{gathered}
\] & J & 4908RB22 & H－19GWP22 C．19GWP22I \(19 E\) YP22 & 0 \\
\hline 490 HB22 & \begin{tabular}{l}
H．19GVP22 \\
C－19GVP221 \\
19 XP22
\end{tabular} & J & \[
\begin{aligned}
& 490 \mathrm{BVB} 22 \\
& 490 \mathrm{BXB} 22
\end{aligned}
\] & H.19JWP22
C.19JWP22 & E \\
\hline 480AHB22A & \[
\begin{aligned}
& \text { H-19GVP22 } \\
& \text { C-19GVP221 } \\
& \text { 19EXP22 } \\
& \hline
\end{aligned}
\] & D & \multirow[t]{2}{*}{490 CB 22
490 DB 22
\(490 \mathrm{EB22}\)
\(490 \mathrm{EB22A}\)
490 FB 22
490 GB 22} & \multirow[t]{2}{*}{\begin{tabular}{l}
H－19GVP22 \\
C．19GVP22I \\
\(19 E \times P 22\)
\end{tabular}} & \multirow[t]{2}{*}{1} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 490A JB22 } \\
& 490 \mathrm{~A} \text { JB22A }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
H．19GWP22 \\
C．19GWP22I \\
\(19 E\) YP22
\end{tabular}} & D & & & \\
\hline & & D & \multirow[t]{2}{*}{\[
\begin{aligned}
& 490 \mathrm{HB} 22 \\
& 490 \mathrm{JB} 22 \\
& 490 \mathrm{JB} 22 \mathrm{~A}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { H-19GVP22 } \\
& \text { C-19GVP22/ } \\
& 19 E \times P 22 \\
& \hline
\end{aligned}
\]} & 0 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
490AKB22 \\
490ALB22 \\
490AMB22 \\
490ANB22
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
H－19GVP22 \\
C．19GVP221 \\
\(19 E\) XP22
\end{tabular}} & 」 & & & \％ \\
\hline & & 」 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 490KB22 } \\
& 490 \mathrm{KB22A} \\
& 490 \mathrm{LB} 22 \\
& 490 \mathrm{MB} 22
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { H-19GVP22 } \\
\text { C-19GVP22/ } \\
19 E \times P 22
\end{gathered}
\]} & 3 \\
\hline 490ARB22 & \begin{tabular}{l}
H．19GWP 22 \\
C．19GWP22I
\end{tabular} & 」 & & & 3 \\
\hline & \(19 \mathrm{EPP22}\) & J & 490NB 22 & H－19GWP22 & ＊ \\
\hline \multirow[t]{2}{*}{490ASB22} & \multirow[t]{2}{*}{\begin{tabular}{l}
H．19GWP 22 \\
C．19GWP22 \\
\(19 E\) YP 22
\end{tabular}} & \multirow[t]{2}{*}{D} & \[
\begin{aligned}
& \text { 490RB22 } \\
& 490 \mathrm{SB} 22 \\
& 490 \mathrm{~TB} 22
\end{aligned}
\] & C－19GWP22／
19EYP22 & 1 \\
\hline & & & \multirow[t]{2}{*}{490 U 22} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { H-19GVP22 } \\
\text { C-19GVP22/ } \\
19 E \times P 22 \\
\hline
\end{gathered}
\]} & 3 \\
\hline 4908 AB22 & \begin{tabular}{l}
H．19G VP22 \\
C－19GVP22I
\end{tabular} & D & & & \(\pm\) \\
\hline & \(19 \mathrm{XP22}\) & D & \multirow[t]{2}{*}{490VB2ia} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { H-19GWP22 } \\
& \text { C-19GWP22/ } \\
& 19 E Y P 22
\end{aligned}
\]} & 3 \\
\hline 408 CB 22 & H－19GWP22 & D & & & ， \\
\hline & C．19GWP22／ 19 Y YP22 & D & 490W822 & \[
\begin{aligned}
& \text { H-19GVP22 } \\
& \text { C-19GVP221 } \\
& 19 \in X P 22 \\
& \hline
\end{aligned}
\] & 3 \\
\hline \(4908 \mathrm{CB22}\) & \begin{tabular}{l}
H．19GWP 22 \\
C．19GWP22I \\
19 YP22
\end{tabular} & J & \[
\begin{aligned}
& 490 \times 822 \\
& 490 Y B 22 \\
& 490 Z B 22
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { H.19GWPP22 } \\
& \text { C.19GWP22I } \\
& 19 E \mathrm{YP} 22
\end{aligned}
\] & 1 \\
\hline
\end{tabular}

The type to be replaced may have a manufacturer＇s coding prefix such as \(A N, C, C R, H, H R, O C, R E, R E A\) ，etc．Since these prefixes do not affect the electrical characteristics or interchangeability of the type，the prefixes have been omitted from type numbers in this column．
\(\Delta\) See Replacement information in front of this guide．

\section*{RCA PICTURE TUBE INTERCHANGEABILITY GUIDE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Type} & \multicolumn{3}{|l|}{Type} \\
\hline To Be * & Replaced By & & To Be * & Replaced By & \\
\hline Replaced & RCA Type & ^ & Replaced & RCA Type & \(\Delta\) \\
\hline
\end{tabular}

Black \& White Picture Tubes
\begin{tabular}{|c|c|c|c|c|c|}
\hline 7JP4 & 7JP4 & D & 16BOP4 & 16CMP4 & . C \\
\hline BDP4 & BDP4 & D & \(16 \mathrm{CHP4}\) & 16ATP4 & -E \\
\hline 9AEP4 & 9AEP4 & - D & 16BVP4 & 16CMP4A & - E \\
\hline 9WP4 & 9WP4 & - D & 16BWP4 & 168GP4 & - 0 \\
\hline 10ATP4 & 10ATP4 & D & & & \\
\hline 11 AP4 & \(11 \mathrm{HP4A}\) & - D & & & \\
\hline \(118 \mathrm{P4}\) & 1 HP4A & - & 16CHP4 16CHP4A & 16CHP4A & - D \\
\hline 11 CP 4 & \(11 \mathrm{CP4}\) & D & 16CJP4 & 16CMP4A & - D \\
\hline \(11 \mathrm{GP4}\) & \(11 \mathrm{GP4}\) & - D & 16CMP4 & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 11 \mathrm{HP4} \\
& 11 \mathrm{HP4A}
\end{aligned}
\]} & \multirow[t]{2}{*}{\(11 \mathrm{HP4A}\)} & \multirow[t]{2}{*}{- D} & 16CMP4A & & \\
\hline & & & 16CTP4 & 16BGP4 & - C \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 12BNP4 } \\
& \text { 12BNP4A }
\end{aligned}
\]} & \multirow[t]{2}{*}{12BNP4A} & \multirow[t]{2}{*}{. D} & \(16 \mathrm{CUP4}\) & 16CMP4A & - C \\
\hline & & & 16CVP4 & 16CHP4A & - CE \\
\hline 12CFP4 & 12CNP4 & - D & \multirow[t]{2}{*}{\[
\begin{aligned}
& 16 \mathrm{KP4} \\
& 16 \mathrm{KP4A} \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{16RP4B} & \multirow[t]{2}{*}{A} \\
\hline 12CGP4 & 12BNP4A & - D & & & \\
\hline 12CNP4 & 12CNP4 & - D & 16QP4 & 16RP4B & AP \\
\hline 12DEP4 & 12DEP4 & - D & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { 16RP4 } \\
& \text { 16RP4/ } \\
& 16 \mathrm{KP4} \\
& 16 R P 4 A \\
& 16 R P 4 A / \\
& 16 \mathrm{KP4A} \\
& \hline
\end{aligned}
\]} & \multirow[t]{4}{*}{16RP4B} & \multirow[t]{4}{*}{A} \\
\hline 12DFP4 & 12DFP4 & - D & & & \\
\hline 12DSP4 & 12DSP4 & D & & & \\
\hline 14NP4 & \multirow[t]{4}{*}{14WP4} & A & & & \\
\hline 14RP4 & & & 16RP4B & 16RP4B & D \\
\hline 14RP4A & & \multirow[t]{2}{*}{} & 16TP4 & 16 TP4 & D \\
\hline 14SP4 & & & 16UP4 & 16RP4B & ACP \\
\hline 14WP4 14WP4/ & \multirow[t]{2}{*}{14WP4} & \multirow[t]{3}{*}{D} & \(16 \times P 4\) & 16RP4B & \(A P\) \\
\hline 14ZP4 & & & \(17 \mathrm{AP4}\) & \(178 P 40\) & ACP \\
\hline 14ZP4 142P4/ 14WP4 & 1 & & \multirow[t]{7}{*}{\begin{tabular}{l}
17ATP4 \\
17ATP4/ \\
17AVP4 \\
17ATP4A \\
17ATP4A/ \\
17AVP4A \\
17AVP4 \\
17AVP4/ \\
17ATP4 \\
17AVP4A \\
17A VP4A/ \\
17ATP4A
\end{tabular}} & \multirow[t]{7}{*}{178JP4} & \multirow[t]{7}{*}{A} \\
\hline \[
\begin{aligned}
& 16 A S P 4 \\
& 16 A \times P 4
\end{aligned}
\] & 16CMP4A & - E & & & \\
\hline \(16 \mathrm{AYP4}\) & 168GP4 & - E & & & \\
\hline 16BFP4 & 16CMP4A & - C & & & \\
\hline 168GP4 & 168GP4 & . D & & & \\
\hline 16BKP4 & 16CHP4A & . C & & & \\
\hline 168MP4 & 168GP4 & - CE & & & \\
\hline
\end{tabular}
- See Replacement information in front of this guide.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Type \\
To Be \\
Replaced
\end{tabular} & Replaced By RCA Type & 4 & \begin{tabular}{l}
Type \\
To Be Replaced
\end{tabular} & Replaced By RCA Type & * \\
\hline 17BJP4 & 178.JP4 & D & \multirow[t]{6}{*}{\begin{tabular}{l}
17FP4 \\
17FP4A \\
17HP4 \\
17HP4/ \\
17RP4 \\
17HP4A \\
17HP4B \\
17HP4B/ \\
17RP4C
\end{tabular}} & \multirow{6}{*}{17HP46} & \multirow{6}{*}{A} \\
\hline 17 BP 4 & 178P4D & AP & & & \\
\hline \[
\begin{aligned}
& 17 \mathrm{BP} 4 A \\
& 17 \mathrm{BP} 4 \mathrm{~B} \\
& 17 \mathrm{BP} 4 \mathrm{C}
\end{aligned}
\] & 17BP4D & A & & & \\
\hline 17BP4D & 178P4D & D & & & \\
\hline 17BRP4 & \(17 \mathrm{DSP4}\) & A & & & \\
\hline \(17 \mathrm{BUP4}\) & 178JP4 & A & & & \\
\hline 17BZP4 & \multirow[t]{4}{*}{17DSP4} & \multirow[t]{4}{*}{D} & 17HP4C & \(17 \mathrm{HP4C}\) & D \\
\hline 17BZP4/ & & & 17JP4 & 17BP4D & A \\
\hline 17CAP4/ 17CKP4 & & & \begin{tabular}{l}
\(17 \mathrm{KP4}\) \\
17KP4A
\end{tabular} & \(17 \mathrm{HP4C}\) & AK \\
\hline \[
\begin{aligned}
& 17 \mathrm{BZP4/} \\
& 17 \mathrm{CAP4/} \\
& 17 \mathrm{CKP4/} \\
& 17 \mathrm{BRP4} \\
& 17 \mathrm{CAP4} \\
& \hline
\end{aligned}
\] & & & \multirow[t]{2}{*}{\begin{tabular}{l}
17LP4 \\
17LP4/ \\
17VP4 \\
17LP4A \\
17LP4A/ \\
17VP4B
\end{tabular}} & \multirow[t]{2}{*}{17LP4B} & \multirow[t]{2}{*}{A} \\
\hline 17CBP4 & 17BJP4 & A & & & \\
\hline 17CFP4 & 17CFP4 & D & 17LP4B & 17LP48 & 3 \\
\hline 17CKP4 & \(17 \mathrm{DSP4}\) & D & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 170P4 } \\
& \text { 17QP4A } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\(17 \mathrm{QP4B}\)} & \multirow[t]{2}{*}{A} \\
\hline 17CLP4 & 17BJP4 & AP & & & \\
\hline 17CTP4 & 17EFP4 & D & 170P4B & 170P4B & \(D\) \\
\hline \(17 \mathrm{CWP4}\) & \(17 \mathrm{DSP4}\) & D & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 17RP4 } \\
& \text { 17RP4C } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{17HP4C} & \multirow[t]{2}{*}{A} \\
\hline 17CYP4 & 17CFP4 & D & & & \\
\hline \(17 \mathrm{DAP4}\) & \(17 \mathrm{DAP4}\) & D & 17584 & \(17 \mathrm{LP4B}\) & A \\
\hline \(170 \mathrm{HP4}\) & \(17 \mathrm{FFP4}\) & P & \multirow[b]{4}{*}{\[
\begin{aligned}
& 17 \mathrm{VP4} \\
& 17 \mathrm{VP4} / \\
& 17 \mathrm{LP4} \\
& 17 \mathrm{VP} 4 \mathrm{~B} \\
& \hline
\end{aligned}
\]} & \multirow{4}{*}{17LP4B} & A \\
\hline 170KP4 & \(17 \mathrm{DSP4}\) & C & & & \multirow[t]{3}{*}{A} \\
\hline 17DLP4 & 17DSP4 & D & & & \\
\hline 17DQP4 & 17DOP4 & D & & & \\
\hline 17DRP4 & 17DRP4 & D & \(17 \mathrm{YP4}\) & 170P4B & A \\
\hline \(17 \mathrm{DSP4}\) & \(17 \mathrm{DSP4}\) & D & 19ABP4 & 19ABP4 & D \\
\hline 170TP4 & \(17 \mathrm{DSP4}\) & C & 19ACP4 & \(19 \mathrm{CHP4}\) & D \\
\hline \(17 \mathrm{DXP4}\) & \(17 \mathrm{XP4}\) & D & 19ADP4 & 19AVP4 & D \\
\hline 17DZP4 & & & 19AFP4 & 19AFP4 & D \\
\hline \(17 \mathrm{EAP4}\) & 17HP4C & AK & 19AGP4 & 19AVP4 & C \\
\hline 17EBP4 & 17EFP4 & D & 19AHP4 & 19A YP4 & D \\
\hline 17EFP4 & \(17 \mathrm{EFP4}\) & D & 19AJP4 & 19AJP4 & D \\
\hline 17EMP4 & 17EMP4 & - D & 19AKP4 & 19AVP4 & D \\
\hline 17EWP4 & \(17 \mathrm{EWP4}\) & - D & 19ANP4 & \(19 \mathrm{AYP4}\) & C \\
\hline \(17 \mathrm{FCP4}\) & 17FCP4 & - D & 19ARP4 & 19AFP4 & D \\
\hline
\end{tabular}

\footnotetext{
4 See Replacement information in front of this quide.
}

\section*{RCA PICTURE TUBE INTERCHANGEABILITY GUIDE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Type \\
To Be \\
Replaced
\end{tabular} & Replaced By RCA Type & \(\Delta\) & Type To Be * Replaced & Replaced By RCA Type & - \\
\hline 19A TP4 & 19AFP4 & C & 19DHP4 & 19DSP4 & - \\
\hline 19AUP4 & 19AFP4 & D & 19DKP4 & 19DRP4 & E \\
\hline 19A VP4 & 19AVP4 & D & 19DLP4 & \(19 \mathrm{CHP4}\) & D \\
\hline 19AWP4 & 19AYP4 & C & 19DNP4 & 19DRP4 & - E \\
\hline 19AXP4 & 19AYP4 & D & 19DOP4 & 1900P4 & D \\
\hline 19AYP4 & & & 19DRP4 & 19DRP4 & D \\
\hline 19AZP4 & 19AVP4 & D & 19DSP4 & 19DSP4 & D \\
\hline 198DP4 & 198DP4 & D & 19DTP4 & 19DQP4 & C \\
\hline 198HP4 & 19AVP4 & D & 19DUP4 & 19DUP4 & . \({ }^{\text {d }}\) \\
\hline 198LP4 & 19AVP4 & C & 19DWP4 & 19DOP4 & - D \\
\hline 198MP4 & 19AFP4 & C & 19EAP4 & 19FEP4B & D \\
\hline 19BRP4 & 19DRP4 & - E & 19EBP4 & \(19 \mathrm{EPP4}\) & D \\
\hline 19BSP4 & 19A VP4 & C & 19EDP4 & 19DRP4 & D \\
\hline \[
\frac{\text { 19BTP4 }}{19 B V P 4}
\] & 19AVP4 & D & 19EFP4 & 19DSP4 & D \\
\hline 198WP4 & 19AYP4 & D & 19EGP4 & \(19 E G P 4\) & D \\
\hline \(19 \mathrm{BXP4}\) & 19AYP4 & E & \[
\begin{aligned}
& \text { 19EHP4 } \\
& \text { 19EHP4A }
\end{aligned}
\] & 19DRP4 & D \\
\hline 19CAP4 & 19AVP4 & C & 19EJP4 & 19FEP4B & - \({ }^{\text {a }}\) \\
\hline \(19 \mathrm{CDP4}\) & \(19 \mathrm{CXP4}\) & D & 19E LP4 & 19AVP4 & D \\
\hline \(19 \mathrm{CFP4}\) & \(19 \mathrm{CHP4}\) & CE & 19EMP4 & 19EBP4 & - C \\
\hline 19CHP4 & \(19 \mathrm{CHP4}\) & D & 19ENP4 & 19FEP4B & - 0 \\
\hline 19C.JP4 & 19AVP4 & D & 19ENP4A & & \\
\hline 19CKP4 & \(19 \mathrm{CHP4}\) & E & 19ERP4 & 19DRP4 & - D \\
\hline 19CLP4 & 198DP4 & D & 19ESP4 & 19DSP4 & - D \\
\hline \(19 \mathrm{CMP4}\) 19CMP4A & 19CMP4 & 0 & 19EUP4 & 19DRP4 & - 0 \\
\hline \(19 \mathrm{CQP4}\) & \(19 \mathrm{CXP4}\) & D & \(19 E V P 4\)
19EWP4 & 190QP4 & - 0 \\
\hline 19CRP4 & 198DP4 & D & 19EZP4 & 19EZP4 & - D \\
\hline 19 CSP4 & \(19 \mathrm{CHP4}\) & D & 19FBP4 & \(19 E G P 4\) & - 0 \\
\hline \(19 \mathrm{CUP4}\) & \(19 \mathrm{CMP4}\) & D & 19FCP4 19FCP4A & 19DOP4 & -9 \\
\hline \(19 \mathrm{CXP4}\) & \(19 \mathrm{CXP4}\) & D & 19FDP4 & & \\
\hline \(19 \mathrm{CYP4}\) & 19A VP4 & C & 19FEP4
19FEP4A & 19FEP4B & - \\
\hline \[
\begin{aligned}
& \text { 19CZP4 } \\
& \text { 19DAP4 }
\end{aligned}
\] & 190QP4 & -E & 19FEP4B & 19FEP4B & - \\
\hline 190CP4 & 19DRP4 & . D & 19F JP4 19FJP4A & 190QP4 & - D \\
\hline 19DEP4 & 19AVP4 & E & 19FLP4 & \(19 \mathrm{FLP4}\) & - 0 \\
\hline 19DFP4 & \(19 \mathrm{CHP4}\) & D & 19FSP4 & \(19 \mathrm{FEP4B}\) & - 0 \\
\hline & & & 19FTP4 & 19FLP4 & - \({ }^{\text {d }}\) \\
\hline
\end{tabular}
\(\Delta\) See Replacement information in front of this guide.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Type \\
To Be * \\
Replaced
\end{tabular} & Replaced By RCA Type & \(\wedge\) \\
\hline 19FWP4 & 19AYP4 & D \\
\hline 19GAP4 & 19GAP4 & - D \\
\hline \(19 \mathrm{GBP4}\) & 19DOP4 & - E \\
\hline \[
\begin{aligned}
& \text { 19GEP4 } \\
& \text { 19GEP4A } \\
& 19 \mathrm{GFP4}
\end{aligned}
\] & 19GEP4A & \(\cdot \mathrm{D}\) \\
\hline 19GHP4 & 19DUP4 & - C \\
\hline \[
\begin{aligned}
& \text { 19GJP4 } \\
& \text { 19GJP4A }
\end{aligned}
\] & 1900P4 & * D \\
\hline 19GNP4 & 19DRP4 & . D \\
\hline 19GRP4 & 19DQP4 & - D \\
\hline \(19 \mathrm{GTP4}\) & 19FEP4B & - C \\
\hline \(19 \times P 4\) & 19AVP4 & D \\
\hline \(19 \mathrm{YP4} 4\) & 19AVP4 & C \\
\hline 19ZP4 & 19AVP4 & D \\
\hline \(20 \mathrm{CP4} 4\) & 20DP4D & ACP \\
\hline 20CP4A & 20DP4D & AC \\
\hline 20CP4B & 20DP4D & ACP \\
\hline 20CP4C & & \\
\hline 20CP4D & 20DP4D & \\
\hline 20DP4A & & \\
\hline 20DP4A/ & 20DP4D & A \\
\hline \multicolumn{3}{|l|}{20CP4A} \\
\hline 20DP4B & 20DP4D & \(\overline{A P}\) \\
\hline 20DP4C & & \\
\hline 20DP4C/ & 20DP4D & A \\
\hline \multicolumn{3}{|l|}{20CP4D} \\
\hline 20DP4D & 20DP4D & D \\
\hline 20RP4 & 20RP4 & - D \\
\hline 20 209P4 & 20894 & - \({ }^{\text {D }}\) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{201P4
20xP4}} \\
\hline & & \\
\hline 20YP4 & \[
\begin{aligned}
& \frac{20 S P 4}{20 S P 4}
\end{aligned}
\] & - D \\
\hline 21ACP4 & 21AMP4B & A \\
\hline \multicolumn{3}{|l|}{\[
21 A C P 4 /
\]
21AMP4} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{21ACP4A \(21 A C P 4 A /\)}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{21ACP4Al} \\
\hline \[
\begin{aligned}
& 21 A C P 4 A / \\
& 21 B S P 4 / \\
& 21 A M P 4 A
\end{aligned}
\] & & \\
\hline
\end{tabular}

Type
To Be \(\star\) Replaced By
\begin{tabular}{lll}
Replaced & RCA Type & \(\quad\) \\
\hline \(21 A F P 4\) & \(21 \mathrm{YP4B}\) & \(A P\) \\
\hline \(21 A L P 4\) & \(21 C 8 P 4 A\) & \(A P\)
\end{tabular}

21ALP4A
21ALP4B
21ALP4B/

21AQP4A
\begin{tabular}{lll}
\hline \(21 A S P 4\) & \(21 \times P 4 B\) & \(A P\) \\
\hline \(21 A T P 4\) & \(21 C B P 4 A\) & \(A P\)
\end{tabular}

21ATP4A
21ATP4A/
21 ATP4
\(\frac{21 A T P 4 B}{21 A U P 4 ~ 21 A V P 4 C ~ A}\)
21AUP4A
21AUP4B
21AUP4B/
21AUP4A
\begin{tabular}{lll}
\hline 21AUP4C & 21AVP4C & D \\
\hline 21AVP4 & 21AVP4C & A \\
21AVP4/ & & \\
\(21 A \cup P 4\) & & \\
\(21 A V P 4 A\) & & \\
\(21 A V P 4 B\) & & \\
\(21 A V P 4 B /\) & & \\
\(21 A V P 4 A\) & & \\
\(21 A V P 4 B /\) & & \\
\(21 A U P 4 B\) & & \\
21AVP4A & & \\
21AUP4A & & \\
\hline \(21 A V P 4 C\) & \(21 A V P 4 C\) & \(D\) \\
\hline \(21 A W P 4\) & \(21 A W P 4 A\) & \(A\) \\
\hline \(21 A W P 4 A\) & \(21 A W P 4 A\) & \(D\) \\
\hline \(21 A Y P 4\) & \(21 \times P 4 B\) & \(A\) \\
\hline \(21 B A P 4\) & \(21 C B P 4 A\) & \(D\) \\
\hline \(21 B C P 4\) & \(21 Y P 4 B\) & \(C\) \\
\hline \(21 B D P 4\) & \(21 A V P 4 C\) & \(D\) \\
\hline \(21 B N P 4\) & \(21 C B P 4 A\) & \(D\) \\
\hline
\end{tabular}
- See Replacement information in front of this guide.

\section*{RCA PICTURE TUBE INTERCHANGEABILITY GUIDE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Type \\
To Be Replaced
\end{tabular} & Replaced By RCA Type & \(\Delta\) & \begin{tabular}{l}
Type \\
To Be \\
Replaced
\end{tabular} & Replaced By RCA Type & \(t\) \\
\hline 21BSP4 & 21 AMP4B & A & \multirow[t]{2}{*}{21EP4A 21EP4B} & \multirow[t]{2}{*}{21EP4C} & \multirow[t]{2}{*}{A} \\
\hline 21BTP4 & 21CBP4A & A & & & \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& 21 \mathrm{CBP4} \\
& 21 \mathrm{CBP4A} \\
& 21 \mathrm{CBP4A} \\
& 21 \mathrm{CBP4/} \\
& 21 \mathrm{CMP4} \\
& 21 \mathrm{CBP} 4 \mathrm{~B} \\
& \hline
\end{aligned}
\]} & \multirow[t]{6}{*}{21 CBP4A} & \multirow[t]{6}{*}{D} & 21EP4C & 21EP4C & 5 \\
\hline & & & 21EQP4 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 21EMP4/ } \\
& \text { 21EQP4 }
\end{aligned}
\]} & \multirow[t]{3}{*}{S} \\
\hline & & & 21ESP4 & & \\
\hline & & & 21ETP4 & & \\
\hline & & & 21EVP4 & 21FDP4 & CF \\
\hline & & & \multirow[t]{2}{*}{21FAP4} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 21EMP4/ } \\
& \text { 21EQP4 }
\end{aligned}
\]} & \multirow[t]{2}{*}{D} \\
\hline 21CEP4 & 21EMP4/ & \multirow[t]{2}{*}{D} & & & \\
\hline 21CEP4A & 21EQPA & & 21FDP4 & 21FDP4 & 0 \\
\hline \(21 \mathrm{CMP4}\) & 21CBP4A & A & 21FLP4 & 21CBP4A & D \\
\hline 21CQP4 & 21CQP4 & D & 21FP4 & 21FP4D & AP \\
\hline 21CUP4 & 21 AMP4B & A & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 21FP4A } \\
& \text { 21FP4C }
\end{aligned}
\]} & \multirow[t]{2}{*}{21FP4D} & \multirow[t]{2}{*}{N} \\
\hline 21CVP4 & 21CBP4A & D & & & \\
\hline 21CWP4 & 21CBP4A & A & 21FP4D & 21FP4D & 0 \\
\hline 21CXP4 & 21DSP4 & D & \multirow[t]{2}{*}{\begin{tabular}{l}
21FVP4 \\
21FWP4 \\
21FZP4
\end{tabular}} & \multirow[t]{2}{*}{21FVP4} & \multirow[t]{2}{*}{- 6} \\
\hline 21CZP4 & \[
\begin{array}{r}
\text { 21EMP4/ } \\
21 E Q P 4
\end{array}
\] & A & & & \\
\hline 21DAP4 & \multirow[t]{5}{*}{21DEP4A} & \multirow[t]{5}{*}{D} & \[
\begin{aligned}
& \text { 21GAP4 } \\
& \text { 21GAP4A }
\end{aligned}
\] & 21GAP4A & - \\
\hline 21DEP4A & & & \(21 \mathrm{KP4}\)
\(21 \mathrm{KP4A}\) & 21FP4D & AK \\
\hline 21DEP4A/ & & & 21MP4 & 21YP4B & E \\
\hline 21DEP4/ & & & 21WP4 & 21WP4B & 5 \\
\hline \(21 \mathrm{CZP4}\) & & & 21 WP4A & & \\
\hline \multirow[t]{2}{*}{21DFP4} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 21EMP4/ } \\
& \text { 21EQP4 } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{D} & 21WP4B & 21WP4B & \$ \\
\hline & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 21 \times P 4 \\
& 21 \times P 4 A \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\(21 \times P 48\)} & \multirow[t]{2}{*}{A} \\
\hline 21DHP4 & 21DHP4 & D & & & \\
\hline 21DLP4 & 21DLP4 & D & \(21 \times P 48\) & \(21 \times P 48\) & \(\underline{12}\) \\
\hline 21 DMP4 & \[
\begin{aligned}
& \text { 21EMP4/ } \\
& \text { 21EOP4 }
\end{aligned}
\] & D & \[
\begin{aligned}
& \hline 21 \mathrm{YP4} \\
& 21 \mathrm{YP4A} \\
& \hline
\end{aligned}
\] & 21 YP 48 & A \\
\hline 21DNP4 & 21CBP4A & AP. & \(21 \mathrm{YP4B}\) & \(21 \mathrm{YP4B}\) & ? \\
\hline 21DQP4 & 21DLP4 & D & 21ZP4 & 212P4C & A \\
\hline 21DRP4 & 21CBP4A & D & 21ZP4A & 212P4C & A \\
\hline 21DSP4 & 21 DSP4 & D & & & \\
\hline 21EAP4 & 21FDP4 & F & 212P4C & 212P4C. & R \\
\hline 21EDP4 & 21EMP4/ & D & 23ACP4 & \(23 \mathrm{YP4}\) & - \\
\hline \(21 E M P 4\) & 21EQP4 & & 23AFP4 & & \\
\hline \(21 E M P 4 /\) & & & 23AGP4 & \(23 C P 4\) & \(\underline{4}\) \\
\hline 21EOP4 & & & 23AHP4 & 23AHP4/ & I \\
\hline 21EP4 & 21EP4C & AP & 23AKP4 & 23FP4A & 5 \\
\hline
\end{tabular}

\footnotetext{
- See Replacement information in front of this guide.
}

\(\triangle\) See Replacement information in front of this guide.
Electronic
INTERCHANGEABILITY GUIDE 5

\section*{RCA PICTURE TUBE INTERCHANGEABILITY GUIDE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type To Be Replaced & Replaced By RCA Type & \(\triangle\) & \begin{tabular}{l}
Type \\
To Be Replaced
\end{tabular} & Replaced By RCA Type & * \\
\hline 23FZP4 & 23GSP4 & - D & \multirow[t]{2}{*}{\[
\begin{aligned}
& 23 \times P 4 \\
& 23 Y P 4 \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{23YP4} & \multirow[t]{2}{*}{D} \\
\hline 23GBP4 & 23HFP4A & - D & & & \\
\hline 23GEP4 & 23ENP4 & - D & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { 24ADP4 } \\
& \text { 24ADP4/ } \\
& 24 \mathrm{VP4A} \\
& 24 \mathrm{CP4A/} \\
& 24 \mathrm{TP4} \\
& \hline
\end{aligned}
\]} & \multirow[t]{3}{*}{24CP4B} & \multirow[t]{3}{*}{A} \\
\hline 23GFP4 & 23HGP4 & - D & & & \\
\hline 23GJP4 & \multirow[t]{2}{*}{23GJP4A} & \multirow[t]{2}{*}{- D} & & & \\
\hline 23GJP4A & & & & & \\
\hline 23GP4 & 23CP4 & D & & & \multirow[b]{2}{*}{D} \\
\hline 23GSP4 & 23GSP4 & - D & 24AEP4 & 24AEP4 & \\
\hline 23GTP4 & 23ETP4 & - D & 24AHP4 & 24AHP4 & D \\
\hline 23GUP4 & 23F.RP4 & \(\cdots\) & 24ALP4 & 24AHP4 & D \\
\hline 23GVP4 & 23HUP4A & - D & 24ANP4 & 24AEP4 & A \\
\hline 23GWP4 & 23GWP4 & - D & 24AVP4 & 24AUP4 & F \\
\hline 23GXP4 & 23GSP4 & - D & 24BEP4 & 24BEP4 & D \\
\hline 23GZP4 & 23EKP4 & - E & \(24 \mathrm{CP4}\) & 24CP48 & D \\
\hline 23HFP4 & \multirow[t]{2}{*}{23HFP4A} & -D & 24CP4A & 24CP4B & A \\
\hline \(\frac{23 H F P 4 A}{23 H G P 4}\) & & - D & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{ll}
\hline \(24 C P 4 B\) & \(24 C P 4 B\) \\
\hline \(24 D P 4\) & \(24 A E P 4\) \\
\(24 D P 4 A\) & \\
\(24 D P 4 A /\) & \\
\(24 \mathrm{YP4}\) &
\end{tabular}}} & \multirow[t]{4}{*}{D} \\
\hline 23HLP4 & 23GSP4 & - D & & & \\
\hline \(23 \mathrm{HP4}\) & 23CP4 & D & & & \\
\hline 23HQP4 & 23HGP4 & . 0 & & & \\
\hline 23HRP4 & \multirow[t]{2}{*}{23HWP4A} & \multirow[t]{2}{*}{- C} & 24QP4 & 24CP48 & \(\overline{A P}\) \\
\hline 23HSP4 & & & 24TP4 & \multirow[t]{2}{*}{24CP4B} & \multirow[t]{3}{*}{\({ }_{\text {A }}\)} \\
\hline 23HUP4 & 23HUP4A & - D & 24VP4 & & \\
\hline 23HUP4A & & & \multicolumn{2}{|l|}{24VP4A} & \\
\hline 23HWP4 & 23HWP4A & - D & 24XP4 & 24CP4B & \multirow[t]{2}{*}{\(\frac{A P}{\text { A }}\)} \\
\hline 23HWP4A & 23HWP4A & \(\cdot \mathrm{D}\) & 24YP4 & 24AEP4 & \\
\hline 23HXP4 & 23HFP4A & - D & 24ZP4 & 24EAP4 & D \\
\hline 23HYP4 & 23.JEP4 & - D & 230RB4 & 9WP4 & \multirow[t]{2}{*}{- D} \\
\hline 23JAP4 & 23GJP4A & - D & 310A VB4 & 12CNP4 & \\
\hline \(23.18 P^{4}\) & 23FSP4 & - \({ }^{\text {C }}\) & \multicolumn{2}{|l|}{470ACB4 19AYP4} & D \\
\hline 23JEP4 & 23JEP4 & - D & \multicolumn{2}{|l|}{500KB4 20TP4} & \multirow[t]{2}{*}{- D} \\
\hline 23JGP4 & 23FRP4 & - D & \multicolumn{2}{|l|}{SG10FP4A 10 FP4 A} & \\
\hline 23JHP4 & 23HFP4A & - D & \multicolumn{2}{|l|}{\begin{tabular}{l}
SG14WP4 \\
\hline SG16KP4A \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{D} \\
\hline 23JLP4 & 23HUP4A & -D & \multicolumn{2}{|l|}{\begin{tabular}{l}
SG16KP4A 16RP4B \\
\hline SG17BJP4 \\
\hline 17BJP4
\end{tabular}} & \\
\hline 23.JP4 & 23JP4 & D & SG178P48 & 17BP4D & D \\
\hline \(23 \mathrm{KP4}\) & \multirow[t]{2}{*}{23FP4A} & \multirow[t]{2}{*}{C} & \multicolumn{2}{|l|}{SG17CKP4 170SP4} & D \\
\hline 23KP4A & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
SG17HP4B & 17 HP 4 C \\
\hline SG171LP4A & 17 LP 4 B
\end{tabular}}} & \multirow[t]{2}{*}{D} \\
\hline 23LP4 & 23ETP4 & - & & & \\
\hline 23MP4 & \multirow[t]{5}{*}{23FP4A} & \multirow[t]{5}{*}{D} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
SG170P4A 170P4B \\
\hline SG20CP4D 200P4D
\end{tabular}}} & J \\
\hline 23MP4/ & & & & & C \\
\hline 23MP4A/ & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SG21ACP4A 21AMP4B SG21AUP4日 21AVP4C}} & D \\
\hline 23WP4 & & & & & \multirow[t]{2}{*}{\(\frac{D}{D}\)} \\
\hline 23MP4A & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SG21AUP4B 21 AVP4C SG21AWP4 21AWP4A SG21DEP4A21EMP4/}} & \\
\hline 23NP4 & 23NP4 & D & & & D \\
\hline 23084 & \(23 \mathrm{CP4}\) & D & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
\hline SG21EP4B & 21EP4C \\
\hline SG21FLP4 & \(21 C B P 4 A\)
\end{tabular}}} & \multirow[t]{2}{*}{D} \\
\hline 23 TP4 & 23YP4 & D & & & \\
\hline 23kJP4 & 238 CP 4 & D & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SG21FP4C } \\
& \text { SG21WP4A }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 21 F P 4 D \\
& 21 W P^{2} 4 B
\end{aligned}
\]} & \multirow[t]{2}{*}{D} \\
\hline 23WP4 & 23FP4A & D & & & \\
\hline
\end{tabular}

\section*{RCA PICTURE TUBE INTERCHANGEABILITY GUIDE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Type \\
TOBe Replaced
\end{tabular} & Replaced By RCA Type & \(\wedge\) & \begin{tabular}{l}
Type \\
To Be * Replaced
\end{tabular} & Replaced By RCA Type & \(\triangle\) \\
\hline SG21×P4A & \(21 \times P 48\) & D & SG24AEP4 & 24AEP4 & B \\
\hline SG21YP4A & 21 YP 4 B & D & SG24CP4A & 24CP4B & D \\
\hline SG212P4B & 21ZP4C & D & & & \\
\hline
\end{tabular}

\section*{Safety Precautions For Color Picture Tubes}

\section*{WARNING}

\author{
\(X\)-Radiation:
}

Operation of the referenced color picture tube at abnormal conditions which exceed the \(0.5 \mathrm{mR} / \mathrm{h}\) isodose-rate curve shown for this tube may produce soft X-rays which may constitute a health hazard on prolonged exposure at close range unless adequate external shielding is provided. Therefore, precautions must be exercised during servicing of TV receivers employing this tube to assure that the anode voltage and other tube voltages are adjusted to the recommended values so that the Design-Maximum Ratings will not be exceeded.

This color picture tube incorporates integral X-radiation shielding and must be replaced with a tube of the same type number or an RCA recommended replacement to assure continued safety.

\section*{Implosion Protection:}

This picture tube employs integral implosion protection and must be replaced with a tube of the same type number or an RCA recommended replacement to assure continued safety.

\section*{Shock Hazard:}

The high voltage at which the tube is operated may be very dangerous. Design of the TV receiver should include safeguards to prevent the user from coming in contact with the high voltage. Extreme care should be taken in the servicing or adjustment of any high-voltage circuit.

Caution must be exercised during the replacement or servicing of the picture tube since a residual electrical charge may be contained on the high-voltage capacitor formed by the external and internal conductive coatings of the picture tube funnel. To remove any undesirable residual high-voltage charges from the picture tube, "bleed off" the charge by shorting the anode contact button, located in the funnel of

\section*{Safety Precautions For Color Picture Tubes}
the picture tube, to the external conductive coating before handling the tube. Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

\section*{Tube Handling:}

Picture tubes should be kept in the shipping box or similar protective container until just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the picture tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.

The equipment manufacturer should provide a warning label in an appropriate position on the equipment to advise the serviceman of all safety precautions.

\section*{JEDEC PHOSPHOR P3I}

Spectral-Energy Emission Characteristic

Persistence Characteristic

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{SPECIAL-PURPOSE KINESCOPES} \\
\hline \begin{tabular}{l}
Approx. \\
Bulb \\
Dia. \\
Inches
\end{tabular} & Focusing Method & \begin{tabular}{l}
De. \\
flec- \\
tion \\
Meth- \\
od
\end{tabular} & Minimum Screen Size Inches & Maximum Anode Voltsa & Tube Type \\
\hline \multicolumn{6}{|l|}{Monitor Types} \\
\hline \[
\begin{aligned}
& 7 \\
& 7 \\
& 8 b \\
& 8 b \\
& 10 \\
& 17 b \\
& 21 b
\end{aligned}
\] & \(M\)
\(E\)
\(E\)
\(E\)
\(E\)
\(E\)
\(E\) & \(M\)
\(M\)
\(M\)
\(M\)
\(M\)
\(M\)
\(M\)
\(M\) & \(6.1 / 2\)
6
\(7.13 / 16 b\)
\(7.3 / 4 b\)
\(9.1 / 8\)
\(15.9 / 16 b\)
\(20.1 / 4 b\) & 8,000
12,000
\(14,000 \mathrm{c}\)
\(22,000 \mathrm{c}\)
20,000
\(22,000 \mathrm{c}\)
\(22,000 \mathrm{c}\) & 7CP4
7TP4
8HP4
8NP4
\(105 P 4\)
\(170 W P 4\)
21EYP4 \\
\hline \multicolumn{6}{|l|}{Display Cathode-Ray Tube} \\
\hline 12b & E & \[
M
\] & Has in-
legral
protec-
tive
window & \[
16,000
\] & \[
4557
\] \\
\hline \multicolumn{6}{|l|}{Prajectian Types} \\
\hline \[
\begin{aligned}
& 5 \\
& 7 \\
& 7 \\
& 7
\end{aligned}
\] & \(\mathbf{E}\)
\(\mathbf{E}\)
\(\mathbf{E}\)
\(\mathbf{E}\) & \(M\)
\(M\)
\(M\)
\(M\) & \(41 / 2 d\)
\(5 \times 3.3 / 4{ }^{e}\)
\(5 \times 3 / 4 / 4{ }^{e}\)
\(5 \times 3 / 3 / 4^{e}\) & \(40,000 \mathrm{c}\)
\(80,000 \mathrm{c}\)
80.000 c
\(80,000 \mathrm{c}\) & 5AZP4
7NP4
7WP4
4486 \\
\hline \[
\begin{gathered}
\text { View-Fir } \\
5
\end{gathered}
\] & \begin{tabular}{l}
der Type \\
M
\end{tabular} & M & \[
41 / 4
\] & \[
8,000
\] & 5FP4A \\
\hline \begin{tabular}{l}
Transeri \\
5
\end{tabular} & Type E & M & \[
4-1 / 4
\] & 27.000 & 5WP 11 \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
\(E=\) Electrostatic. \\
M = Magnetic.
\end{tabular}} \\
\hline \begin{tabular}{l}
- Design \\
b Diagon \\
c Absolu \\
d Quality \\
- Quality
\end{tabular} & \begin{tabular}{l}
Center vo \\
I. \\
value. \\
circle di \\
rectangle.
\end{tabular} & meter; & oss otherwi & - noted. & \\
\hline
\end{tabular}

Block-and-White Television Types
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 5 \\
& 5
\end{aligned}
\] & \[
\underset{\mathbf{E}}{\mathbf{E}}
\] & \[
\begin{aligned}
& \mathbf{M} \\
& \mathbf{M}
\end{aligned}
\] & P15 P16 & \[
\begin{aligned}
& 27,000^{b} \\
& 27,000^{b}
\end{aligned}
\] & 5WP 15
\[
5 Z P 16
\] \\
\hline \multicolumn{6}{|l|}{Calar-Talevision Type} \\
\hline 5 & E & M & P 24 & 27,000 \({ }^{\text {b }}\) & 5AUP24 \\
\hline \multicolumn{6}{|l|}{MONOSCOPES} \\
\hline Approx. Bulb Dio. Inches & \[
\begin{aligned}
& \text { Focus- } \\
& \text { ing } \\
& \text { Method }
\end{aligned}
\] & \begin{tabular}{l}
De- \\
flec- \\
tion \\
Meth- \\
od
\end{tabular} & Feotures & Maximum Anode Volisc & Tube Type \\
\hline 2 & E & E & Customized metal stencil electrode pattern & 2,500d & 4560 \\
\hline 5 & \(E\) & \(M\) & Indian Head Pattern & 1,500 \({ }^{\text {b }}\) & 2F21 \\
\hline 5 & E & M & Pattern individually styled to customer requirements & 1,500 \({ }^{\text {b }}\) & 1699 \\
\hline
\end{tabular}
\(E=\) Electrostotic.
\(M=\) Magnetic.
- 5ee sheet Features of Fluorescent Screens.
b Design-center value.
c Pattern-electrode voltage.
d Absolute-maximum value.

CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE CLASSIFICATION CHART
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{OSCILLOGRAPH TUBES} \\
\hline Phosphor & \begin{tabular}{l}
Approx. \\
Bulb \\
Dia. \\
Inches
\end{tabular} & \begin{tabular}{l}
Max. \\
Anode \\
Volts \({ }^{a}\)
\end{tabular} & \[
\begin{aligned}
& \hline \text { Tube } \\
& \text { Type }
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Electrostatic-Deflection \& Focus \(\mathrm{T}_{\text {ypes }}\)} \\
\hline P1 & 1 & 1,500 & 1EPI \\
\hline PI & 2 & 1,100 & 2AP1A \\
\hline P1 & 2 & 2,500 & 2BPI \\
\hline P1 & 2 & 600 & 902A \\
\hline P1 & 3 & 1,500 & 3APIA \\
\hline P1 & 3 & 2,750 & \(3 A Q P 1\) \\
\hline P1 & 3 & 2,000 & 3BP1A \\
\hline P1 & 3 & 2,500 & 3 KPI \\
\hline P1 & 3 & 2,500 & 3RPI \\
\hline P1 & 3 & 2,500 & 3RP1A \\
\hline P1 & 3 & 2,500 & 3WP1 \\
\hline P1 & 5 & 2,000 & 5BP1A \\
\hline P1 & 5 & 2,500 & SUP1 \\
\hline P1 & 7 & 4,000 & 7UP1 \\
\hline P1 & 5 & 2,800 \({ }^{\text {b }}\) & 4499 \\
\hline P2 & 1 & 1,500 & 1EP2 \\
\hline P7 & 3 & 2,500 & 3KP7 \\
\hline P7 & 3 & 2,500 & 3RP7A \\
\hline P7 & 5 & 2,500 & 5UP7 \\
\hline P11 & 1 & 1,500 & 1EP11 \\
\hline P11 & 2 & 2,500 & 2BP11 \\
\hline P11 & 3 & 2,500 & \(3 \mathrm{KP11}\) \\
\hline P11 & 3 & 2,500 & 3WP11 \\
\hline P11 & 5 & 2,500 & SUP11 \\
\hline P31 & 5 & 2.500 & 5UP31 \\
\hline P31 & 7 & 4,000 & 7UP31 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
a Design-center value. \\
b Absolute-maximum value.
\end{tabular}} \\
\hline
\end{tabular}

\section*{CATHODE-RAY TUBE, STORAGE TUBE,} \& MONOSCOPE CLASSIFICATION CHART
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{OSCILLOGRAPH TUBES (Cont'd)} \\
\hline Phosphor & Approx. Bulb Dia. Inches & \begin{tabular}{l}
Max. \\
Post \\
Accel- \\
erator \\
Volts
\end{tabular} & \[
\begin{aligned}
& \text { Tube } \\
& \text { Type }
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Electrostatic.Deflection \& Focus Types With} \\
\hline \multicolumn{4}{|l|}{Post-Daflection Accelerator} \\
\hline Pl & 3 & 4,000 & 3JPI \\
\hline P1 & 5 & 6,000 & 5ABPI \\
\hline P1 & 5 & 6,000 & 5ADPI \\
\hline P1 & 5 & 4,000 & 5CP1A \\
\hline P7 & 3 & 4,000 & 3JP7 \\
\hline P7 & 5 & 6,000 \({ }^{\text {b }}\) & 4510 \\
\hline P11 & 5 & 6,000 & 5ABPII \\
\hline P11 & 5 & 4,000 & 5CP11A \\
\hline P31 & 5 & 6,000 & 5ABP31 \\
\hline P31 & 5 & 6,000 & 5ADP31 \\
\hline P31 & 5 & 8,000 \({ }^{\text {b }}\) & 4489 \\
\hline P31 & 7 & 8,000 \({ }^{\text {b }}\) & 4490 \\
\hline P31 & 8 & 8,000 \({ }^{\text {b }}\) & 4491 \\
\hline Phosphor & Approx. & Mox. & Tube \\
\hline & Bulb & Anode & Type \\
\hline & Dia. & Volts & \\
\hline & Inches & & \\
\hline \multicolumn{4}{|l|}{Magnatic-Daflection \& Focus Types} \\
\hline P7 & 5 & 8,000 & 5FP7A \\
\hline P7 & 7 & 8,000 & 7BP7A \\
\hline P7 & 7 & 8,000 & 7MP7 \\
\hline \multicolumn{4}{|l|}{b Absolute-maximum value.} \\
\hline
\end{tabular}

\section*{CATHODE-RAY TUBE, STORAGE TUBE, \& MONOSCOPE CLASSIFICATION CHART}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{STORAGE TUBES} \\
\hline Name & Description & Tube Type \\
\hline Display & Ruggedized, 5"'-diameter type having electrostatic-focus and deflection writing gun & 2053 \\
\hline Display & Ruggedized, \(10^{\circ}\)-diameter type having electrostatic-focus and deflection writing gun & 4412 \\
\hline Display & \(5^{\prime \prime}\)-diameter type having elec-trostatic-focus and magneticdeflection writing gun & 4454 \\
\hline Display & \(5^{\prime \prime}\)-diameter type having elec-trostatic-focus and deflection writing gun & 6866 \\
\hline Display & 5'-diameter type having elec-trostatic-focus and magneticdeflection writing gun & 7183A \\
\hline Display & Ruggedized, \(5^{\prime \prime}\)-diameter type having two electrostotic-focus ond deflection writing guns & 7268B \\
\hline Display & 5"'-diameter type having elec-trostatic-focus and deflection writing gun & 7315 \\
\hline Rodechon & Single-beam barrier-grid type for digital data storage & 6499 \\
\hline Radechon & Variant of 6499 for binary memory systems in computers & 1858 \\
\hline Graphechon & Singla-converter type with reading gun and writing gun & 7539 \\
\hline
\end{tabular}

\section*{Picture-Tube Replacement Guide}

Key to Replacement Information
Replacement information is based primarily on electrical and mechanical similarity of the picture-tube types covered. Replacement should be in accord with all safety precautions required by the TV receiver for picture-tube insulation or mechanical mounting.
A. RCA type does not require an external ion-trap magnet.
B. The ball-type anode contact muat be replaced with cavitytype contact.
C. Neck length and/or overall length of RCA type ia alightly greater.
D. External conductive conting must be grounded.
E. The 16LP4A is electrically interchangeable-Extenaive mechanical modifications may be required.
F. The PCA replacement type has a 6.3-volt/600-milliampere heater. The type to be replaced has a \(2.35-\mathrm{volt} / 600-\mathrm{milli}-\) ampere heater.
G. A conversion Kit (RCA Part No. 12B202) ia available for RCA receivers.
* Band around periphery of tube panel must be grounded and isolated fron the AC line voltage.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type to be \(\mathrm{Re}-\) placed & \begin{tabular}{l}
Replace \\
by RCA \\
Type
\end{tabular} & Re-placement \({ }^{-}\) & Type to be Replaced & \begin{tabular}{l}
Replace \\
by RCA Type
\end{tabular} & \[
\begin{gathered}
\text { Re- } \\
\text { place- }
\end{gathered}
\]
\[
\text { ment }{ }^{0}
\] \\
\hline 5TP4 & 5TP4 & Direct & 12JP4 & 12KP4A & BCD \\
\hline 7JP4 & 7JP4 & Direct & \multirow[t]{3}{*}{\[
\begin{aligned}
& 12 \mathrm{KP} 4 \\
& 12 \mathrm{KP} 4 / \\
& 122 \mathrm{P}_{4} \\
& 12 \mathrm{KP} 4 \mathrm{~A}
\end{aligned}
\]} & \multirow{3}{*}{\(12 \mathrm{KP4}\)} & \multirow{3}{*}{Direct} \\
\hline 8DP4 & 8DP4 & Direct & & & \\
\hline 9 9P4A & 90 P4A & Direct & & & \\
\hline \[
\begin{aligned}
& 10 \mathrm{BP}_{4} \\
& \text { 10BP4A }
\end{aligned}
\] & 10BP4A & Direct & \[
\begin{aligned}
& 121 P_{4} \\
& 12 P_{4 A}
\end{aligned}
\] & 12KP4A & A \\
\hline \[
\begin{aligned}
& \text { 10BP4C } \\
& \text { 10BP4D }
\end{aligned}
\] & 10FP4A & A & 12LP4C & 12KP4A & AD \\
\hline 10 CP 4 & 10FP4A & BCD & \[
\begin{aligned}
& 12 \mathrm{QP4} \\
& 12 \mathrm{QP4A}
\end{aligned}
\] & 12 KP 4 A & ABCD \\
\hline \(10 \mathrm{EP4} 4\) & 10BP4A & B & 12TP4 & 12KP4A & AD \\
\hline \[
\begin{aligned}
& 10 \mathrm{FP} 4 \\
& 10 \mathrm{FP} 4 \mathrm{~A}
\end{aligned}
\] & 10FP4A & Direct & \begin{tabular}{l}
12ZP4 \\
122P4A
\end{tabular} & 12KP4A & A \\
\hline \[
\begin{aligned}
& 11 \mathrm{AP}_{4} \\
& 11 \mathrm{BP} 4
\end{aligned}
\] & 11HP4A & Direct* & 14ATP4 & 14ATP4 & Direct \\
\hline \(11 \mathrm{CP}_{4}\) & \(11 \mathrm{P}_{4}\) & Direct & \[
\begin{aligned}
& 14 \mathrm{BP} 4 \\
& 14 \mathrm{BP} 4 \mathrm{~A}
\end{aligned}
\] & \multirow[b]{2}{*}{14CP4B} & \multirow[b]{2}{*}{A} \\
\hline \[
\begin{aligned}
& 11 \mathrm{FP} \\
& 11 \mathrm{HP} 4 \mathrm{~A}
\end{aligned}
\] & 11HP4A & Direct* & \[
\begin{aligned}
& 14 C P_{4} \\
& 14 C P 4 A
\end{aligned}
\] & & \\
\hline 12BNP4 & \multirow[t]{2}{*}{12ENP4A} & \multirow[t]{2}{*}{Direct*} & 14CP4B & 14CP4B & Direct \\
\hline 12 BNP 4 A & & & 14DP4 & 14CP4B & AD \\
\hline
\end{tabular}
"See Key to Aeplacement Information in front of this section.

\section*{Picture-Tube Replacement Guide}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type to be Replaced & \begin{tabular}{l}
Replace \\
by RCA Type
\end{tabular} & Re-placement \({ }^{-}\) & Type to be Replaced & Replace by RCA Type & Re-placement \({ }^{\square}\) \\
\hline \[
\begin{aligned}
& 14 \mathrm{EP} 4 \\
& 14 \mathrm{EP} 4
\end{aligned}
\] & \multirow{4}{*}{14CP48} & \multirow{4}{*}{A} & \[
\begin{aligned}
& \text { 16SP4 } \\
& \text { 16SP4A }
\end{aligned}
\] & 16WP4A & CD \\
\hline 14 CP 4 & & & 16 TP 4 & 16 TP 4 & Direct \\
\hline \(14 \mathrm{EP4/}\) & & & \(16 \mathrm{UP4}\) & 16RP4B & ACD \\
\hline 14 BP 4 & & & \(16 \mathrm{VP4}\) & 16WP4A & CD \\
\hline \[
\begin{aligned}
& 14 \mathrm{NP4} \\
& 14 \mathrm{NP} 4 \mathrm{~A}
\end{aligned}
\] & 141P4 & A & \[
\begin{aligned}
& 16 W P 4 \\
& 16 W P 4 /
\end{aligned}
\] & 16WP4A & D \\
\hline \(14 \mathrm{PP4} 4\) & \multirow{3}{*}{14.14} & \multirow{3}{*}{A} & 16 YP 4 & & \\
\hline 14 RP 4 A & & & 16WP4A & 16WP4A & Direct \\
\hline 14 SP 4 & & & & & \\
\hline 14WP4 & \multirow{5}{*}{\(14 \mathrm{MP4}\)} & \multirow{5}{*}{Direct} & 16XP4 & 16RP4B & AD \\
\hline 14WP4/ & & & 16 YP 4 & 16WP4A & CD \\
\hline \[
\begin{aligned}
& 142 P 4 \\
& 147 P 4
\end{aligned}
\] & & & \(16 \mathrm{ZP4}\) & 16LP4A & D \\
\hline 142P4/ & & & \(17 \mathrm{AP}_{4}\) & 17BP4D & AC3 \\
\hline 14WP4 & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 17ATP4 } \\
& \text { 17ATP4/ }
\end{aligned}
\]} & & \\
\hline 16ANP4 & 16ANP4 & Brect & & & \\
\hline \(16 \mathrm{AP4}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{See Note E}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 17ATP4A } \\
& \text { 17ATP4A/ }
\end{aligned}
\]} & & \\
\hline 16AP4A & & & & & \\
\hline 16AYP4 & 16AYP4 & Direct & & 18.84 & \\
\hline 16BGP4 & \multirow{3}{*}{16BCP4} & \multirow{3}{*}{Direct*} & 17AVP4 & 17004 & \\
\hline 16BWP4 & & & 17AVP4/ & & \\
\hline \(16 \mathrm{CAP4}\) & & & 17ATP4 & & \\
\hline 16 CP 4 & 16LP4A & CD & \(17 \mathrm{AVP4A}\) & & \\
\hline 16DP4 & \multirow[t]{2}{*}{16DP4A} & \multirow[t]{2}{*}{Direct} & 17ATP4A & & \\
\hline 16 DP 4 A & & & 17BJP4 & 17BJP4 & Direct \\
\hline 16GP4 & \multirow{3}{*}{16CP4B} & \multirow{3}{*}{Direct} & 17BP4 & 178P4D & AD \\
\hline 16 CP 4 B & & & 17BP4A & & \\
\hline 16GP4C & & & 178P4B & 17BP4D & A \\
\hline 16 KP 4 & \multirow[t]{2}{*}{16PP4B} & \multirow[t]{2}{*}{A} & & 178p4D & \\
\hline 16 KP 4 A & & & 17BP4D & 178P4D & Direct \\
\hline 16LP4 & \multirow[t]{2}{*}{16LP4A} & \multirow[t]{2}{*}{Direct} & 17 BRP 4 & \(1205 P 4\) & A \\
\hline 16LP4A & & & 17BUP4 & 1789P4 & A \\
\hline 16PP4 & 16RP4B & AD & \(17 \mathrm{BVP4}\) & 17CSP4 & A \\
\hline 16 RP 4 & & \multirow{5}{*}{A} & 17BWP4 & 17CSP4 & Direct \\
\hline 16RP4/ & \multirow{4}{*}{10948} & & 17BZP4 & & \\
\hline 16 KP 4 & & & 17BZP4/ & & \\
\hline 16 RP 4 A
\(16 \mathrm{RP} 4 \mathrm{~A} /\) & & & 17CAP4/ & 17Some & Divere \\
\hline \[
\begin{gathered}
16 \mathrm{RP} 4 \mathrm{~A} / \\
16 \mathrm{KP} 4 \mathrm{~A}
\end{gathered}
\] & & & 170×P4 & & \\
\hline 16RP4B & 16PP4B & Brace & & & \\
\hline
\end{tabular}

DSee Key to Replacement Information in front of this section.

\section*{Picture-Tube Replacement Guide}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type to be Replaced & Replace by RCA Type & Re-placement & Type to be Replaced & Replace by RCA Type & Re-placement \({ }^{-}\) \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline 17 \mathrm{~B} 7 \mathrm{P}_{4} / \\
& 17 \mathrm{CAP} 4 / \\
& 17 \mathrm{CKP} 4 / \\
& 17 \mathrm{BRP} 4 \\
& 17 \mathrm{CAP} 4 \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{178934} & \multirow[t]{2}{*}{Direet} & 171P4A 171P4A/ 17 VP 4 B & 171P4B & A \\
\hline & & & 17LP4B & 17LP4B & mineat \\
\hline \(17 \mathrm{CBP}^{17}\) & 178JP4 & A & \[
\begin{aligned}
& 17 \mathrm{QP}_{4} \\
& 17 \mathrm{QP} 4 \mathrm{~A}
\end{aligned}
\] & 170P4B & A \\
\hline \(17 \mathrm{CDP4}\) & 17 CDP 4 & Direct & 17QP4B & 17QP4B & Bureet \\
\hline 17 CFP 4 & 17 CFP 4 & Direct & \multirow[t]{2}{*}{\[
\begin{aligned}
& 17 \mathrm{RP} 4 \\
& 17 \mathrm{RP} 4 \mathrm{C}
\end{aligned}
\]} & \multirow[b]{2}{*}{17HP4C} & \multirow[t]{2}{*}{A} \\
\hline \(17 \mathrm{CKP}_{4}\) & 17DSP4 & Direct & & & \\
\hline 17C1P4 & 17RJP4 & AD & 17 TP4 & 17TP4 & Direct \\
\hline \(17 \mathrm{CP}_{4}\) & \multirow[t]{2}{*}{17CP4} & \multirow[t]{2}{*}{Direct} & 171P4 & 17PP4B & 1 \\
\hline 17CP4A & & & \multirow[t]{2}{*}{17 VP 4 17VP4/} & \multirow{3}{*}{17LP48} & \multirow{3}{*}{4} \\
\hline 17 CSP 4 & 17 CSP 4 & Direct & & & \\
\hline 17 CWP 4 & 17DSP4 & Direct & \[
\begin{array}{r}
17 \mathrm{LP} 4 \\
17 \mathrm{VP} 4 \mathrm{~B}
\end{array}
\] & & \\
\hline 17 CYP 4 & 17CYP4 & Direct & 17 YP 4 & 17QP4B & A \\
\hline 17 DAP 4 & \(17 \mathrm{DAP4}\) & Direct & 19ABP4 & 19ABP4 & Direct \\
\hline \(17 \mathrm{DHP4}\) & 17 EFP 4 & D & 19ACP4 & 19CHP4 & Direct \\
\hline 17 DKP 4 & 170KP4 & Direct & 19AFP4 & 19ALP4 & Dir \\
\hline 17DIP4 & 17DSP4 & Direct & 19AHP4 & 19AHP4 & Dir \\
\hline 17DPP4 & 17DPP4 & Direct & 19AJJP4 & 19AJP4 & Direct \\
\hline 17DRP4 & \(17 \mathrm{DPP4}\) & Direct & 19AIP4 & 19AlP4 & \\
\hline 17DSP4 & 17DSP4 & Direct & & 19AlP4 & Direct \\
\hline 17DTP4 & 17DKP4 & Direct & & & \\
\hline 17DXP4 & 170XP4 & Direct & 19AYP4 & 19AYP4 & Direct \\
\hline 17DZP4 & & & 19BDP4 & 19BDP4 & Direct \\
\hline 17 EBP 4 & 17EFP4 & D & 19BHP4 & 19AVP4 & Direct \\
\hline \(17 \mathrm{EFP}_{4}\) & 17 EFP 4 & Direct & 198LP4 & 19AVP4 & C \\
\hline \(17 \mathrm{GP4}\) & 17CP4 & Direct & 198TP4 & 19BTP4 & Direct \\
\hline \[
\begin{aligned}
& 17 \mathrm{HP} 4 \\
& 17 \mathrm{HP} 4 /
\end{aligned}
\] & \multirow{5}{*}{17ince} & \multirow{5}{*}{A} & 19BVP4 & 19AVP4 & Direct \\
\hline 17PP4 & & & 19BWP4 & 19AYP4 & Direct \\
\hline 17 HP 4 A & & & \(19 \mathrm{CDP4}\) & 19CXP4 & Direct \\
\hline \(17 \mathrm{HP4B} 4\) / & & & \(19 \mathrm{CFP4}\) & \(19 \mathrm{CHP4}\) & C \\
\hline 17RP4C & & & 19CHP4 & 19CHP4 & Direct \\
\hline 17HP4C & 17HP4C & Direct & 19CJP4 & 19AVP4 & Direct \\
\hline 17 JP 4 & 17RPAD & A & 19CKP4 & 19CRP4 & Direct \\
\hline \[
\begin{aligned}
& \text { 17PL4 } \\
& \text { 17LP4/ }
\end{aligned}
\] & \multirow[t]{2}{*}{171P4B} & \multirow[t]{2}{*}{A} & \[
\begin{aligned}
& \text { 19CAP4 } \\
& \text { 19CP4A }
\end{aligned}
\] & 19CMP4 & Direct \\
\hline 17 VP 4 & & & 1900P4 & 19CXP4 & Direct \\
\hline
\end{tabular}

ESee Key to Replacesent Information in front of this section.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type to be Replaced & Replace by RCA Type & Re-placement \({ }^{\square}\) & Type to be Replaced & Replace by RCA Type & Re-
placement \({ }^{\text {² }}\) \\
\hline 19 CRP 4 & 19BDP4 & Direct & 20DP4B & 20DP4D & AD \\
\hline \(19 \mathrm{CXP4}\) & 19CXP4 & Direct & 20DP4C & & \\
\hline \(19 \mathrm{CYP4}\) & 19BTP4 & Direct & \[
\begin{array}{r}
20 \mathrm{DP} 4 \mathrm{C} / / \\
20 \mathrm{CP} 4 \mathrm{D}
\end{array}
\] & 201P4D & A \\
\hline \[
\begin{aligned}
& 19 \mathrm{CZP4} \\
& 19 \mathrm{DAP4}
\end{aligned}
\] & 19DAP4 & Direct & 20DP4D & 20DP4D & Direct \\
\hline 19DCP4 & 19DPP4 & Direct* & 20 HP 4 & 20HP4E & AD \\
\hline 190EP4 & 19AUP4 & Direct & 20HP4A & & \\
\hline \(19 \mathrm{DFP4}\) & \(19 \mathrm{CPP4}\) & Direct & 201P4A & 200304 & 4 \\
\hline 19DHP4 & \(19059_{4}\) & Direct* & 20HP4A/ & & \\
\hline 19DLP4 & 19 CHP 4 & Direct & 20MP4 & & \\
\hline 19DPP4 & 19DQP4 & Direct* & \[
20 \mathrm{HP} 4 \mathrm{~B}
\] & 20HP4E & AD \\
\hline 19DRP4 & 19 DRP 4 & Direct* & 20HP4D & 20HP4E & \\
\hline 19DSP4 & 19DSP4 & Direct** & 20HP4 & \(20 \mathrm{HP4L}\) & A \\
\hline 19DWP4 & 19DOP4 & Direct* & 20HP4E & 20HP4E & Direas \\
\hline 19 EDP 4 & 19DRP4 & Direct** & 20LP4 & 20HP4E & A \\
\hline 19 EFP 4 & 190SP4 & Direct* & 21ACP4 & & \\
\hline \[
\begin{aligned}
& \text { 19EHPA } \\
& \text { 19EHP4A }
\end{aligned}
\] & 19DRP4 & Direct* & \[
\begin{aligned}
& 21 A^{2} P_{4} / \\
& 21 A_{4} 4
\end{aligned}
\] & & \\
\hline \(19 \mathrm{ELP4}\) & 19AVP4 & Direct & 21ACP4A & & \\
\hline 19 ERP 4 & 19DRP4 & Direct* & 21AMP4A & 22mpen & 4 \\
\hline 19ESP4 & 19DSP4 & Direct* & 21ACP4A/ & & \\
\hline 19EUP4 & 19DRP4 & Direct** & 21BSP4 & & \\
\hline \(19 \mathrm{EVP4}\) & & & 21ACP4A/ & & \\
\hline 19EWP4 & & & 21ANP4A & & \\
\hline 19FDP44 & 1-304 & Ement* & 21 APP4 & \(21 \mathrm{YP4}\) & 6 \\
\hline 19FJP4A & & & 21ALP4 & & \\
\hline 19XP4 & 19 AVP4 & Direct & \(21 A\) & mepu & \\
\hline 19 YP 4 & 19BTP4 & Direct & \(21 A L P 4 B /\) & 20.in & \\
\hline 197P4 & 19AVP4 & Direct & 21ALP4A & & \\
\hline \(20 \mathrm{CP}_{4}\) & 20DP4D & ACD & 21 AMP4 & 21AMP4B & A \\
\hline 20CP4A & 20DP4D & AC & 21AMP4A & & \\
\hline 20CP4B & 20 P 40 & ACD & 21ANP4B & 21AMP4B & Direct \\
\hline 20CP4C & 20DP4D & ACD & 21 ANP4 & 21GEP4A & AD \\
\hline 20CP4D & 20DP4D & AC & 21ANP4A & 21.084 & A \\
\hline \(20 \mathrm{DP}_{4}\) & 20DP4D & AD & 21AP4 & \[
\begin{aligned}
& 21 \mathrm{AP}_{4} \\
& 21 \mathrm{ZP} 4 \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
\text { Direct } \\
\mathbf{G}
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& 20 \mathrm{DP} 4 \mathrm{~A} \\
& 20 \mathrm{DP} 4 \mathrm{~A} / \\
& 20 \mathrm{CP} 4 \mathrm{~A}
\end{aligned}
\] & 201P4D & A & \[
\begin{aligned}
& 21 A Q P 4 \\
& 21 A Q P 4 A \\
& \hline
\end{aligned}
\] & 21ANP4B & N \\
\hline
\end{tabular}

Dee Key to Replacement Information in front of this section.

\section*{Picture-Tube Replacement Guide}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type to be Replaced & Replace by RCA Type & \[
\begin{aligned}
& \text { Re- } \\
& \text { place- } \\
& \text { ment }{ }^{\text {a }}
\end{aligned}
\] & Type to be Replaced & Replace by RCA Type & \[
\begin{gathered}
\text { Re- } \\
\text { place- }
\end{gathered}
\]
\[
\text { ment }{ }^{\square}
\] \\
\hline 21ASP4 & 21 XP4B & AD & 21CUP4 & 21AIP4B & A \\
\hline 21ATP4 & & & 21CVP4 & 21CBP4A & Direct \\
\hline 21ATP4A & & & 21CWP4 & 21 CBP4A & A \\
\hline 21ATP4 & \(210 \times 1\) & \(\omega\) & 21CXP4 & 21DSP4 & Direct \\
\hline 21ATP4B & & & 21CZP4 & 21DEP4A & A \\
\hline 21 AUP4 & & & 21DAP4 & & \\
\hline 21AUP4A & & & 21DEP4 & & \\
\hline 21AUP4B & 21A3P4 & 4 & 21DEP4A & 216 cesa & Erect \\
\hline 21AUP4B/ 21AUP4A & & & \[
\begin{aligned}
& \text { 21DEP4A/ } \\
& \text { 21DEP4/ }
\end{aligned}
\] & 21uert & Erect \\
\hline 21ALP4C & 21AVP4C & Direct & 21CZP4 & & \\
\hline 21 AVP4 & & & 21DFP4 & 21DFP4 & Direct \\
\hline 21AVP4/ & & & 21DHP4 & 21DHP4 & Direct \\
\hline 21AVP4A & & & 21DLP4 & 21DLP4 & Direct \\
\hline 21AVP4B & & & 21DNP4 & 21FAP4 & Direct \\
\hline 21AVP4B/ & 21anP4C & A & 21DNP4 & 21CBP4A & AD \\
\hline 21 AVP4B/ & & & 21DQP4 & 21DLP4 & Direct \\
\hline 21 ALP 4 B/ & & & 21DSP4 & 21 DSP 4 & Direct \\
\hline 21AVP4A/ & & & 21 EAP 4 & 21FDP4 & F \\
\hline & & & 21ENP4 & 21EQP4 & Direct \\
\hline 21AVP4C & 21AVP4C & Direct & 21 EP 4 & 21EP4C & A \\
\hline 21AWP4 & 21AWP4A & A & & \(21 .{ }^{\text {P }}\) & \\
\hline 21AMP4A & 21AWP4A & Direct & 21EP4B & 21EP4C & A \\
\hline 21AYP4 & \(21 \times\) P4B & A & \(21 \mathrm{EP4C}\) & 21EP4C & Direct \\
\hline 21BAP4 & 21CBP4A & Direct & 21 EQP4 & 21 EQP4 & Direct \\
\hline 21BCP4 & 21 YP 4 B & AC & 21ESP4 & 21FAP4 & Direct \\
\hline 21BDP4 & 21AVP4C & Direct & 21EVP4 & 21 EVP4 & Direct \\
\hline 21ENP4 & 21CBP4A & Direct & 21FAP4 & 21FAP4 & Direct \\
\hline 21BSP4 & 21AMP4B & A & 21FDP4 & 21FDP4 & Direct \\
\hline 21BTP4 & 21CBP4A & A & 21FLP4 & 21CPP4A & Direct \\
\hline 21 CBP 4 & & & 21 FP 4 & 21FP4D & AD \\
\hline 21CBP4A & & & & & \\
\hline \[
\begin{aligned}
& \text { 21CBP4A/ } \\
& \text { 21CBP4/ }
\end{aligned}
\] & 810.24 & Direct & \[
\begin{aligned}
& 21 \mathrm{FP} 4 \mathrm{~A} \\
& \text { 21FP4C }
\end{aligned}
\] & 21FP4D & A \\
\hline \(210 \mathrm{MP}_{4}\) & & & 21FP4D & 21FP4D & Direet \\
\hline 21CBP4B & & & 21FVP4 & & \\
\hline 21CEP4 & \(21 \mathrm{DFP4}\) & Direct & 21FWP4 & 21FVP4 & Direct* \\
\hline 21CEP4A & 21DFP4 & Direct & 21FZP4 & & \\
\hline 21CMP4 & 21CBP4A & A & 21 MP 4 & 21MP4 & Direct \\
\hline \(21 \mathrm{CQP}_{4}\) & 210 PP 4 & Direct & \begin{tabular}{l}
21WP4 \\
21WP4A
\end{tabular} & 21WP4B & A \\
\hline
\end{tabular}
\({ }^{\square}\) See Key to Replacement Information in front of this section.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type to be Replaced & Replace by RCA Type & Re-placement \({ }^{-}\) & Type to be Replaced & Replace by RCA Type & \(\mathrm{Re}-\) placement \({ }^{\text {- }}\) \\
\hline 21WP4B & 21WP4B & Direct & \[
23 \mathrm{D} \text { P4 }
\] & 23ENP4 & C* \\
\hline \[
\begin{aligned}
& \text { 21XP4 } \\
& \text { 21XP4A }
\end{aligned}
\] & 21XP4B & A & 23DIP4A
23INP4 & 23BLP4 & Direct \\
\hline 21XP4B & 21XP4B & Birect & 23DYP4 & 23ETP4 & D* \\
\hline 21YP4 & \multirow[t]{2}{*}{21YP4B} & \multirow[t]{2}{*}{A} & 23D7P4 & 23EQP4 & Direct* \\
\hline 21YP4A & & & \(23 \mathrm{EKP4}\) & 23 EKP4 & Direct* \\
\hline 21YP4B & 21 YP 4 B & Direct & 23 EvP4 & 23 ENP4 & Direct \\
\hline \(21 \mathrm{ZP4}\) & 21ZP4C & AD & \(23 \mathrm{EP}_{4}\) & 23EP4 & Direct \\
\hline 21ZP4A & \multirow[t]{2}{*}{21ZP4C} & \multirow[t]{2}{*}{A} & 23FQP4 & 23EQP4 & Direct* \\
\hline 21ZP4B & & & 23ETP4 & 23ETP4 & Direct* \\
\hline 212P4C & 21ZP4C & Direct & \multirow[t]{2}{*}{\[
\begin{aligned}
& 23 E W P 4 \\
& 23 E W P 4 A
\end{aligned}
\]} & \multirow[t]{2}{*}{23EQP4} & \multirow[t]{2}{*}{Direct*} \\
\hline 23AFP4 & 23 YP 4 & Direct & & & \\
\hline 23AHP4 & 23AHP4 & Direct & 23 FBP4 & 23 FBP4 & Direct* \\
\hline 23ALP4 & 2300P4 & Direct & 23FEP4 & 23ENP4 & Direct* \\
\hline 23ANP4 & 23 BPL 4 & \(D_{1}\) rect & 23FJP4 & 23ETP4 & D* \\
\hline 23ARP4 & 23ARP4 & Direct & \(23 \mathrm{FLP4}\) & 23EKP4 & Direct* \\
\hline 23ASP4 & 23ASP4 & Direct & 23FMP4 & 23FMP4 & Direct* \\
\hline 23ATP4 & 23BLP4 & Direct & 23 FP4 & & Direct \\
\hline 23AUP4 & 23AHP4 & Direct & 23FP4A & 23FP4A & Direct \\
\hline 23AVP4 & \(23 \mathrm{CP}_{4}\) & C & 23 GBP 4 & 23FMP4 & Direct* \\
\hline 23AWP4 & 23BJP4 & C & 23GEP4 & 23 FBP4 & Direct* \\
\hline 23PDPP4 & 23YP4 & Direct & 23GP4 & 23 CP 4 & Direct \\
\hline 23BCP4 & \multirow[t]{2}{*}{23BGP4} & \multirow[t]{2}{*}{Direct} & 23GTP4 & 23ETP4 & Direct* \\
\hline 23EHP4 & & & 23HP4 & \(23 \mathrm{CP}_{4}\) & Direct \\
\hline 23BJP4 & 23BJP4 & Direct & 23JP4 & 23JP4 & Direct \\
\hline \[
\begin{aligned}
& \text { 23BKP4 } \\
& 23 B L P_{4}
\end{aligned}
\] & 23BLP4 & Direct & \[
\begin{aligned}
& 23 \mathrm{KP}_{4} \\
& 23 \mathrm{KP} 4 \mathrm{~A} \\
& \hline
\end{aligned}
\] & 23FP4A & C \\
\hline 23BNP4 & \(23 \mathrm{CP}_{4}\) & Direct & \multirow[t]{3}{*}{\[
\begin{aligned}
& \hline 23 M P_{4} \\
& 23 M 4_{4} / \\
& 23 M P_{4 A /} \\
& 23 W P_{4} \\
& 23 M \mathrm{MA}^{2}
\end{aligned}
\]} & \multirow[b]{3}{*}{204} & \multirow[b]{3}{*}{Breet} \\
\hline \(23 \mathrm{BOP4}\) & \(23 \mathrm{BQP4}\) & Direct & & & \\
\hline \[
\begin{aligned}
& \hline 23 \mathrm{BTP} 4 \\
& \text { 23BVP4 } \\
& \hline
\end{aligned}
\] & 23YP4 & Direct & & & \\
\hline 23 CBP4 & \(23 C B P 4\) & Direct & 23NP4 & 23NP4 & Direct \\
\hline \(230 G P 4\) & 230GP4 & Direct & 23TP4 & 23YP4 & Direct \\
\hline \[
\begin{aligned}
& 23 \mathrm{CP}_{4} \\
& 23 \mathrm{CP}_{4 \mathrm{~A}}
\end{aligned}
\] & 23CP4 & Direct & 23UP4 & 23BCP4 & Direct \\
\hline 2300P4 & 2300P4 & Direct & 23WP4 & 23FP4A & Direct \\
\hline 23C7.P4 & 23 AHP4 & Direct & \[
23 \times P_{4}
\] & 23YP4 & Direet \\
\hline 23DAP4 & 23DAP4 & Direct & & & \\
\hline 23DBP4 & 23DBP4 & Direct & & & \\
\hline
\end{tabular}
"See Key to Replacement Information in front of this section.

\section*{Picture-Tube Replacement Guide}
\begin{tabular}{llr}
\begin{tabular}{c}
Type to \\
be Re- \\
placed
\end{tabular} & \begin{tabular}{c}
Replace \\
by RCA \\
Type
\end{tabular} & \begin{tabular}{c}
Re- \\
place- \\
ment
\end{tabular} \\
\hline \begin{tabular}{l}
24ADP4 \\
24ADP4/ \\
24VP4A/
\end{tabular} & 240P4B & A \\
24CP4A/ \\
24TP4
\end{tabular}
\begin{tabular}{|llr}
\begin{tabular}{l}
Type to \\
be Re- \\
placed
\end{tabular} & \begin{tabular}{c}
Replace \\
by RCA \\
Type
\end{tabular} & \begin{tabular}{c}
Re- \\
place- \\
ment
\end{tabular} \\
\hline SG17BJP4 & 17BJP4 & Direct
\end{tabular}

COLOR PICTURE TUBES
\begin{tabular}{lll}
\hline 15GP22 & 15GP22 & Direct \\
\hline \begin{tabular}{l}
19EYP22
\end{tabular} & 19EYP22 & Direct \\
\hline \begin{tabular}{l}
19FMP22
\end{tabular} \\
\begin{tabular}{l}
21AXP22 \\
21AXP22A \\
21AXP22
\end{tabular} & 21AXP22A & Bireet \\
\hline \begin{tabular}{l}
21CYP22
\end{tabular} & 21CYP22A & Direct \\
\hline 21CTP22A & 21FBP22 & Direct \\
\hline 21FBP22 & 21FB22A & 21FBP22A \\
\hline Direct \\
\hline 21FJP22 & 21FJP22 & Direct \\
\hline 21FJP22A & 21FJP22A & Direct \\
\hline 21FKP22 & 21FJP22 & Direct
\end{tabular}

\footnotetext{
See Key to Replacement Information in front of this section.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type to be Replaced & Replace by RCA Type & \[
\begin{gathered}
\text { Re- } \\
\text { place- }
\end{gathered}
\]
\[
\text { ment }{ }^{\square}
\] & Type to be Replaced & Replace by RCA Type & Re-placement \({ }^{-}\) \\
\hline \[
\begin{aligned}
& \text { 25AP22 } \\
& \text { 25AP22A }
\end{aligned}
\] & 25AP22A & Direct & \[
\begin{aligned}
& 25 \mathrm{FP} 22 \\
& 25 \mathrm{FP} 22 \mathrm{~A}
\end{aligned}
\] & 25BP22A & Direct \\
\hline \[
\begin{aligned}
& \text { 25BP22 } \\
& 25 \mathrm{BP} 22 \mathrm{~A}
\end{aligned}
\] & 25BP22A & Direct & \[
\begin{aligned}
& \text { 25GP22A } \\
& \text { 25GP22A } \\
& \hline
\end{aligned}
\] & 25AP22A & Direct \\
\hline 25CP22 & 25AP22A & Direct & & & \\
\hline
\end{tabular}

DSee Key to Replacement Information in front of this section.

\section*{FEATURES OF FLUORESCENT SCREENS}

The fluorescent screens of the cathode-ray tubes covered in this Section are identified according to phosphor number, e.g., P1, P2, P4, P5, P7, etc.

Phosphor Pl produces a brilliant spot having yellowish-green fluorescence and medium persistence. Types having this phosphor are particularly useful for general oscillographic applications in which recurrent-wave phenomena are to be observed visually.
Phosphor P2 is a medium-persistence screen which exhibits yellowish-green fluorescence and phosphorescence. The phosphorescence may persist for over a minute under conditions of adequate excitation and low-ambient light. Types utilizing this phosphor are particularly useful for observing either low- or medium-speed non-recurring phenomena.
Phosphor P4 is a highly efficient screen having white fluorescence and medium-short persistence. Types having this phosphor are of particular interest for television picture tubes.

Phospher P5 produces a highly actinic spot having blue fluorescence and medium-short persistence. Types having this phosphor are especially useful in photographic applications involving film moving at very high speeds.
Phosphor P7 is a very long-persistence, cascade (two-layer) screen. During excitation by the electron beam, this phosphor produces a purplish-blue fluorescence. After excitation, the screen exhibits a yellowish-green phosphorescence which persists for several minutes. Types having this phosphor are particularly useful where either extremely low-speed recurrent phenomena or medium-speed non-recurrent phenomena are to be observed.
Phosphor Pll produces a brilliant actinic spotof blue fluorescence and medium-short persistence to permit its use in all photographic applications except those in which film moves at high speed. Pll screens, because of their unusually high brightness characteristic, may also be used for visual observation of phenomena.
Phosphor Pl2 is a long-persistence phosphor which exhibits both yellowish-orange fluorescence and phosphorescence. Types utilizing this phosphor are particularly useful for observing low- and medium-speed recurring phenomena.
Phosphor Pl4 isalong-persistence cascade (two-layer) screen. During excitation by the electron beam, this phosphor exhibits purplish-blue fluorescence. After excitation, it exhibits a yellowish-orange phosphorescence which persists for a little over a minute. Types utilizing this phosphorareparticularly useful for observing either low- and medium-speed non-recurring phenomena or high-speed recurring phenomena.

\section*{FEATURES OF FLUORESCENT SCREENS}

Phosphor Pl5 has radiation in the visible green region and in the invisible near-ultraviolet region. The ultraviolet radiation has short persistence which is appreciably shorter than that of the visible radiation. This phosphor finds application in flying-spot cathode-ray tubes.
Phosphor P16 has violet as well as near-ultroviolet fluorescence and phosphorescencewith very short persistence. This phosphor has a stable, exponential decay characteristic and is particularly useful for the high-speed scanning requirements of a flying-spot video-signal generator.
Phosphor P20 has high luminous efficiency, yellow-green fluorescence and medium-short persistence. The screen may be used in applications requiring relatively short persistence and good visual efficiency.
Phosphor P22 is the designation for three separate phosphors used in combination in a color picture tube. The separate phosphors are blue, green, and red, respectively. The persistence of the group phosphorescence is classified as medium.
Phosphor P24 is a short-persistence phosphor with green fluorescence and phosphorescence. Its spectral-energy emission characteristic has sufficient range to provide useable energy over the visible spectrum required for generating color signals from color tranaparencies.

\section*{SPECTRAL-ENERGY EMISSION CHARACTERISTIC OF PHOSPHOR PI}

\section*{PERSISTENCE CHARACTERISTIC OF PHOSPHOR PI}
- CURVE IS ESSENTIALLY INDEPENDENT
- OF TUBE OPERATING VALUES

\section*{SPECTRAL-ENERGY EMISSION CHARACTERISTIC OF PHOSPHOR P2}

\section*{COLOR TEMPERATURE: \(7000^{\circ} \mathrm{K}\)}

\footnotetext{

WAVELENGTH-ANGSTROMS
}
T1. 4
7000
,

\section*{PERSISTENCE CHARACTERISTIC OF PHOSPHOR P4 SULFIDE TYPE}

\section*{FOR KIMESCOPES}

The persistence of the phosphorescence is such that its brightness does not exceed 7 per cent of the peak value in 33 milliseconds after excitation is removed.

\section*{FOR OSCILLOGRAPH TUBES}

The persistence characteristics of the phosphorescence are the same as those shown for the P11 phosphor.

\section*{§PECTRAL-ENERGY EMISSION CHARACTERISTIC OF PHOSPHOR N으4 SILICATE-SULFIDE TYPE}

\section*{PERSISTENCE CHARACTERISTIC OF PHOSPOR NQ 4 SILICATE-SULFIDE TYPE}

The persistence of the phosphorescence is such that its brightness does not exceed 7 per cent of the peak value in 33 milliseconds after excitation is removed.

SPECTRALENERGY EMISSION CHARACTERISTLG OF PHOSPHOR P4 SILICATE TYPE

\section*{FEMSIDIEIVEL}

The persistence of the phosphorescence is such that its brightness does not exceed 7 per cent of the peak value in 33 milliseconds after excitation is removed.

\author{
SPECTRAL-ENERGY EMISSION CHARACTERISTIC OF PHOSPHOR NO 5
}

PERSISTENCE CHARACTERISTIC OF PHOSPHOR № 5

TIME AFTER EXCITATION IS REMOVED-MICROSECONDS```

