

FOREWORD

ALLIED RADIO CORPORATION offers this publication to fill a long standing need for a convenient collection of radio formulas and data in handy, pocket-size form. Students of radio and electronics and engineers and technicians actively engaged in the field will find this booklet extremely helpful in their everyday work.

The publishers are indebted to the McGraw-Hill Book Company, Inc., for their permission to use material selected from *Mathematics for Electricians and Radiomen* by Nelson M. Cooke. *ALLIED* also extends sincere appreciation to Lieutenant Nelson M. Cooke, U. S. Navy, for generous contribution of his time and specialized knowledge in editing the material contained in this booklet as well as for his many helpful suggestions.

* Any opinions or assertions contained herein are those of the publisher and are not to be construct as official or reflecting the view of the Navy Department or the naval service at large.

CONTENTS

Fundamental Algebraic Formulas...2 Miscellaneous Radio Formulas.....3-7 Concentric Transmission Lines.....8 2-Wire Open-Air Transmission Lines.9 Vacuum Tube Symbols.....10 Vacuum Tube Formulas......11 Bare Copper Wire Tables......16

Condenser Color Codes24
Power Transformer Leads25
I. F. Transformer Leads25
Speaker Leads and Plug
Connections
Audio Transformer Leads
Battery Cable Leads
3-Place Log Table
Sines, Cosines, Tangents,
Radians
Decibel Table
Ohms Law for DC Circuits33
(Ohms Law for AC Circuits)5
Greek Alphabet
Radio Abbreviations
Inches to Metric Equivalents 38-39
Mathematical Symbols

A Condensed Compilation of Essential Mathematical Formulas, Tables, Data, and Standards Commonly Used in the Field of Radio and Electronics.

*

Compiled under the direction of the Technical Staff of ALLIED RADIO CORPORATION.

*

Edited by NELSON M. COOKE Lieutenant, U. S. N., Naval Reasearch Laboratory, Washington, D. C. Member, Institute of Radio Engineers. Author, "Mathematics for Electricians and Radiomen."

*

Published by

Allied Radio Corporation, Chicago, Illinois, U.S.A.

Printed in U.S.A. Copyright 1942 by Allied Radio Corp.

Forld Redio Histo

FUNDAMENTAL ALGEBRAIC FORMULAS

Exponents and Radicals

 $a^{x} \times a^{y} = a^{(x+y)}. \qquad \frac{a^{x}}{a^{y}} = a^{(x-y)}. \qquad (a^{x})^{y} = a^{xy}. \qquad \sqrt[x]{\sqrt[y]{a}} = \sqrt[x]{a}.$ $(ab)^{x} = a^{x}b^{x}. \qquad \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}. \qquad \sqrt[x]{ab} = \sqrt[x]{a}\sqrt[x]{b}.$ $\frac{x}{\sqrt[a]{b}} = \frac{\sqrt[x]{a}}{\sqrt[x]{b}}. \qquad a^{0} = 1. \qquad a^{-x} = \frac{1}{a^{x}}. \qquad a^{\frac{1}{x}} = \sqrt[x]{a}. \qquad a^{\frac{x}{y}} = \sqrt[y]{a^{x}}.$

Solution of a Quadratic Equation

Quadratic equations in the form $ax^2+bx+c=0$ may be solved by use of the following formula

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

MISCELLANEOUS FORMULAS

The capacity of a vertical antenna, shorter than one-quarter wave length at its operating frequency, may be computed by the equation

$$C_a = \frac{17l}{\left[\left(\log \frac{24l}{d}\right) - 1\right] \left[1 - \left(\frac{fl}{246}\right)^2\right]}$$

where C_a = capacity of antenna in micromicrofarads, l = height of antenna in feet, d = diameter of antenna conductor in inches, f = operating frequency in megacycles.

In a capacitive circuit, the equation for the current is

 $i = \frac{E}{R} \epsilon^{-\frac{t}{RC}}$

where i = current in amperes t seconds after the voltage is impressed, E = impressed voltage in volts, C = capacity of the circuit in farads, R = resistance of the circuit in ohms, $\epsilon = \text{base}$ of the natural system of logarithms (2.718).

Miscellaneous Formulas—continued

Page

In an inductive circuit, the equation for the growth of current is given by

$$i = \frac{E}{R} (1 - \epsilon^{-\frac{Rt}{L}})$$

- where i = current in amperes t seconds after the voltage is impressed,
 - E =impressed voltage in volts,
 - L = inductance of the circuit in henrys,
 - R =resistance of the circuit in ohms,
 - ϵ = base of the natural system of logarithms (2.718).

The inductance of a single-layer-wound air-core coil is given by the equation

$$L = \frac{(rN)^2}{9r + 10l}$$

where N = number of turns,

- r =radius of coil form in inches,
- l =length of winding in inches,
- L = inductance in microhenrys.

Miscellaneous Formulas (continued)

Ohms Law for AC Circuits $I = \frac{E}{Z}, \quad Z = \frac{E}{I}, \quad E = ZI, \quad W = IE \operatorname{Cos} \theta.$ where I = current in amperes, Z = impedance in ohms, E = r.m.s. volts, W = power in watts, $\theta = \text{phase angle}.$

Resistances in Series

 $R_X = R_1 + R_2 + R_3$. . . etc. where $R_X = \text{total}$ value of resistances in series.

Resistance in Parallel

$$R_{X} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \cdot \cdot \cdot \text{ etc.}},$$

or where only two resistors are used, = $\frac{R_1 \times R_2}{R_1 + R_2}$

where R_{χ} = effective value of resistances in parallel.

Capacities in Series

$$C_X = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots \text{ etc.}}$$

Page

where C_x = effective value of capacities in series.

Page 6

Miscellaneous Formulas (continued)

Condensers in Parallel

 $C_X = C_1 + C_2 + C_3 \dots$ etc. where $C_X =$ total value of capacities in parallel.

Capacitive Reactance (In Ohms)

$$X_C = \frac{1}{2\pi fC}$$

where $2\pi = 6.28$, f = frequency in cycles per second, C = capacity in farads.

Inductive Reactance (In Ohms)

 $X_L = 2\pi f L$

where $2\pi = 6.28$, f =frequency in cycles per second, L =inductance in Euries.

Impedance (In Ohms)

(Of a Resistance and Reactance in Series) $Z = \sqrt{R^2 + V^2}$

(Of a Resistance and Reactance in Parallel)

$$Z = \frac{RX}{\sqrt{R^2 + X^2}}$$

Miscellaneous Formulas (continued)

(Of an Inductance, Resistance and Capacity in Series)

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

(Of an Inductance, Resistance and Capacity in Parallel)

$$Z = \frac{RX_L X_C}{\sqrt{(RX_L - RX_C)^2 + (X_L X_C)^2}}$$

where R = resistance in ohms,

X =reactance in ohms,

 X_c = reactance of capacity in ohms,

 X_{L}^{*} = reactance of inductance in ohms.

Frequency (In Megacycles)

$$f_r = \frac{159}{\sqrt{LC}}$$

L =inductance in microhenries,

C = capacity in micromicrofarads.

Wavelength from Frequency

$$\lambda = \frac{3 \times 10^5}{f} \text{ (meters)}$$

where f = frequency in kilocycles.

$$\lambda = \frac{3 \times 10^4}{f}$$
 (centimeters)

where f = frequency in megacycles.

FORMULAS FOR CONCENTRIC TRANSMISSION LINES

The characteristic impedance in ohms, of a concentric transmission line is $Z_o = 138 \log \frac{d_1}{d_2}$

where d_1 is the inside diameter of the outer conductor, and d_2 is the outside diameter of the inner conductor. d_1 and d_2 must be expressed in the same units.

The radio frequency resistance r, in ohms per $r = \sqrt{f} \left(\frac{1}{d_1} + \frac{1}{d_2}\right) \times 10^{-3}$

where *f* is the frequency in megacycles.

The attenuation in decibels per foot of *line*, for a concentric transmission line is

$$\alpha = \frac{4.6\sqrt{f} (d_1 + d_2)}{d_1 d_2 \log \frac{d_1}{d_2}} \times 10^{-6}$$

where d_1 and d_2 are in inches, and f is the frequency in megacycles.

Page 8

15

FORMULAS FOR TWO-WIRE OPEN-AIR TRANSMISSION LINES

The characteristic impedance of a two-wire openair transmission line is given by

where D is the spacing between wire centers, and d is the dia of the conductors in the same units as D.

The inductance L, in microhenrys per foot, of a two-wire open-air transmission line is

The capacity C, in micromicrofarads per foot, of a two-wire open-air transmission line is

The attenuation in decibels per foot of wire for
a two-wire open-air transmission line is
where
$$R_f$$
 is the r.f. resistance per loop-foot of wire.

$$Z_o = 276 \log \frac{2D}{d}$$
 ohms

$$C = \frac{3.68}{\log \frac{2D}{d}}$$

 $L = 0.281 \log \frac{2D}{d}$

$$\mathrm{db} = \frac{0.0157 \ R_f}{\log \frac{2D}{d}}$$

VACUUM TUBE CONSTANTS

Amplification factor $(Mu \text{ or } \mu) = \frac{\text{Change in plate voltage } (E_p)}{\text{Change in grid voltage } (E_c)}$

Dynamic plate resistance in ohms $(r_p) = \frac{\text{Change in plate voltage } (E_p)}{\text{Change in plate current } (I_p)}$

Mutual conductance in mhos $(gm) = \frac{\text{Change in plate current } (I_n)}{\text{Change in grid voltage } (E)}$

VACUUM TUBE SYMBOLS

 $\begin{array}{lll} Mu \mbox{ or } \mu = \mbox{Amplification factor} \\ r_{\nu} & = \mbox{ Dynamic plate resistance} \\ g_m & = \mbox{ Mutual conductance} \\ E_p & = \mbox{ Plate voltage} \\ E_c & = \mbox{ Grid voltage} \\ I_p & = \mbox{ Plate current} \\ R_1 & = \mbox{ Plate load resistance} \\ I_k & = \mbox{ Total cathode current} \\ E_s & = \mbox{ Signal voltage} \end{array}$

VACUUM TUBE FORMULAS

Gain per stage =
$$\mu \left(\frac{R_l}{R_l + r_p} \right)$$

Voltage output = $\mu \left(\frac{E_s R_l}{r_p + R_l} \right)$
Power output = $R_l \left(\frac{\mu E_s}{r_p + R_l} \right)^2$
Maximum power output = $\frac{(\mu E_s)^2}{4r_p}$

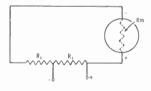
Maximum undistorted power output =

Required cathode resistor value in ohms, for a single tube =

 $2(\mu E_s)^2$

 $9r_p$

 $\frac{E_{g}}{I_{k}}$


DC-METER FORMULAS

Ohms Per Volt $\Omega/V = \frac{1}{I_{tr}}$

 $\Omega/V = 0$ hms per volt. $I_{f_{\theta}} = 0$ current in amps, required for full scale reading.

K

Universal Current Shunt

$$R_1 = \frac{(R_1 + R_2) + Rm}{K}$$

 $R_1 + R_2 =$ Total resistance required for the lowest shunted current range wanted.

Rm = Meter resistance.

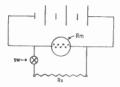
= Multiplying factor.

Fixed Current Shunt*

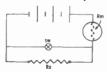
$$R = \frac{Rm}{K-1}$$

Rm = Meter resistance. K = Multiplying factor (full scale). R = Shunt resistance.

Voltage Multiplier*



$$R = \frac{E_{fs}}{I_{fs}}$$


 $E_{I_s} = \text{Full scale volts desired.}$ $I_{I_s} = \text{Full scale current of meter in amps.}$ R = Multiplier resistance.

*See table of shunt and multiplier values on page 15.

Formula for Measuring Unknown Resistance with Milliammeter and Battery.*

Formula for Measuring Unknown Resistance with Voltmeter and Battery.

$$Rx = Rm \left(\frac{I_2}{I_1 - I_2} \right)$$

Rx =Unknown resistance.

Rm = Meter resistance.

 I_1 = Current reading with switch open.

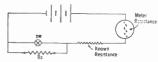
 $I_2 =$ Current reading with switch closed. sw = SPST switch.

*A current limiting resistor (not shown) should be connected in series with battery.

$$Rx = Rm \left(\begin{array}{c} E_1 \\ \overline{E}_2 \end{array} - 1 \right)$$

Rx =Unknown resistance.

Rm = Meter resistance.


 E_1 = Voltmeter reading with switch closed.

$$E_2$$
 = Voltmeter reading with switch open.

sw = SPST switch.

Page 14

Formula for Measuring Unknown Resistor with Milliammeter, Battery and Known Resistor.

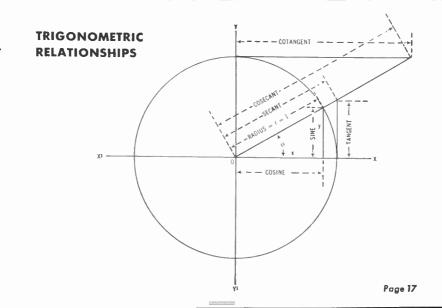
$$Rx = Ry\left(\frac{I_1 - I_2}{I_2}\right)$$

Rx =Unknown resistance.

 $\begin{array}{c} \underset{\substack{\text{Metric}\\\text{Scuttaree}}}{\overset{\text{Metric}}{\prod}} Ry = \text{Known resistance plus meter resistance.} \\ I_1 = \text{Current reading with switch closed.} \\ I_2 = \text{Current reading with switch open.} \end{array}$

 $I_2 = \text{Current reading with switch oper } SW = \text{SPST switch.}$

Shunt and Multiplier Values for 27 ohm (0-1) Milliammeter


Current	Shunt	Voltage	Multiplier	
Scale	Resistance	Scale	Resistance	
0-10 Mills 0-50 Mills 0-100 Mills 0-500 Mills	3.0 Ohms 0.551 Ohms 0.272 Ohms 0.0541 Ohms	0-10 Volts 0 50 Volts 0-100 Volts 0-250 Volts 0-500 Volts 0-1.000 Volts	10,000 Ohms 50,000 Ohms 100,000 Ohms 250,000 Ohms 500,000 Ohms 1,000,000 Ohms	

Page 16

BARE COPPER WIRE TABLE

BAKE	COPPI	K WIKE	IABLE	
B & S	Diam.	Area	Ohms per	Approx.
Gauge	in	Circular	1.000 Ft.	Pounds per
No.	Mils	Mils	25°C, 77°F.	1,000 Ft.
1	289.3	83,690.0	0,1264	253
2	257.6	66.370.0	0.1593	201
2 3 4	229.4	52,640.0	0.2009	159
4	204.3	41,740.0	0.2533	126
5	181.9	33,100.0	0,3195	100
6	162.0	26,250.0	0.4028	79
7	144.3	20,820,0	0,5080	63
8	128.5	16,510.0	0,6405	50
9	114.4	13.090.0	0,8077	40
10	101.9	10,380.0	1.018	31
-11	90.74	8.234.0	1,284	25
12	80,81	6,530.0	1,619	20
13	71.96	5,178.0	2,042	15.7
14	64.08	4,107.0	2.575	12.4
15	57.07	3,257.0	3,247	9.8
16	50.82	2,583.0	4.094	7.8
17	45,26	2,048.0	5.163	6.2
18	40,30	1,624.0	6.510	4.9
19	35,89	1,288.0	8.210	3.9
20	31,96	1,022.0	10.35	6.2 4.9 3.9 3.1
21	28,46	810.1	13.05	2.5
22	25.35	642.4	16.46	1.9
23	22,57	509.5	20.76	1.5
24	20.10	404.0	26.17	1.2
25	17,90	320.4	33.00	0.97
26	15.94	254.1	41.62	0.77
27	14.20	201.5	52.48	0.61
28	12,64	159.8	66.17	0.48
29	11.26	126,7	83.44	0.38
30	10.03	100.5	105.2	0.30
31	8,93	79.70	132.7	0.24
32	7.95	63.21	167.3	0.19
33	7.08	50.13	211.0	0.15
34	6.31	39.75	266.0	0.12
35	5.62	31.52	335.5	0.095
36	5.00	25.00	423.0	0.076
37	4.45	19.83	533.4	0.060
38	3.96	15.72	672.6	0.048
39	3,53	12.47	848.1	0.038
40	3.14	9.89	1,069.0	
41	2.80	7.84	1,323.0	0.0229
42	2.50	6.22	1,667.0	0.0189 0.0153
43	2.22	4.93	2,105.0	0.0153
44	1.98	3,91	2,033.0	0.0121

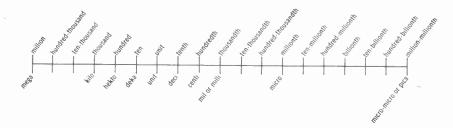
.0

TRIGONOMETRIC FUNCTIONS

Sine of
$$\theta$$
 = $\sin \theta$ = $\frac{\text{Side opposite } \theta}{\text{Hypotenuse}} = \frac{y}{r}$
Cosine of θ = $\cos \theta$ = $\frac{\text{Side adjacent } \theta}{\text{Hypotenuse}} = \frac{x}{r}$
Tangent of θ = $\tan \theta$ = $\frac{\text{Side opposite } \theta}{\text{Side adjacent } \theta} = \frac{y}{x}$
Cotangent of θ = $\cot \theta$ = $\frac{\text{Side adjacent } \theta}{\text{Side opposite } \theta} = \frac{x}{y}$
Secant of θ = $\sec \theta$ = $\frac{\text{Hypotenuse}}{\text{Side adjacent } \theta} = \frac{r}{x}$
Cosecant of θ = $\csc \theta$ = $\frac{\text{Hypotenuse}}{\text{Side adjacent } \theta} = \frac{r}{y}$

4

FORMULAS FOR THE TRIGONOMETRIC SOLUTION OF A RIGHT TRIANGLE


See diagram of Trigonometric Relationships on page 17.

Length of
side opposite
$$\theta$$
 = {Ilypotenuse \times sine θ = r · sin θ
Side adjacent $\theta \times$ tangent θ = x · tan θ

Length of
side adjacent
$$\theta$$
 =
 $\begin{cases} \text{Hypotenuse } \times \text{ cosine } \theta = \text{r} \cdot \cos \theta \\ \text{Side opposite } \theta \div \text{tangent } \theta = \frac{y}{tan \theta} \end{cases}$

Length of
hypotenuse =
$$\begin{cases} \text{Side opposite } \theta \div \sin \theta = \frac{y}{\sin \theta} \\ \text{Side adjacent } \theta \div \cos \theta = \frac{x}{\cos \theta} \end{cases}$$

METRIC RELATIONSHIPS

The chart above shows the relationship between our American system of numbering and the most used metric equivalents. The number of steps to the left or right, between two metric prefixes being compared, is the same as the number of places and direction the decimal point would be moved, in converting a figure from the terms of one, to the terms of the other. See Metric Conversion Chart on page 21.

METRIC CONVERSION CHART

From To.→	Mega	Kilo	Units	Deci	Centi	Milli	Micro	Micromicro
Mega		3 ≻	<u>6</u> ≻	7 ≻	8 ≻	9->-	12->	18->
Kilo	∢- 3		3 ≻	4 ≻	5 ≻	<u>6≻</u>	9->	15->
Units	∢ 6	∢- 3		1 ≻	2 ≻	3-≻	<u>6</u> ≻	12->
Deci	∢-7	∢ 4	≺ − 1		1 >	2 >	5≻	11->
Centi	- 8	5	≺ 2	← 1		1 >	4 ≻	10 >
Milli	∢- 9	≺ - 6	∢- 3	∢- 2	≺ 1		3 ≻	9 >
Micro	≺-12	≪- 9	∢-6	∢- 5	∢ 4	∢- 3		6 >
Micromicro	≁18	← 15	≁12	≺11		-∢- 9	≺ 6	

The figures and arrows indicate the number of places and the direction in which the decimal point moves. The boxes marked *Units* represent fundamental terms of measure such as amperes, volts, watts, cycles, etc. The chart reads only one way; from left to right as indicated in the upper left hand corner.

Example: Convert 0.15 amperes to milliamperes. First find *Units* box in the left-hand column. Then follow this line across until you come to the box

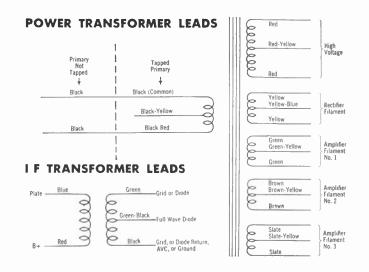
Metric Conversion Chart—continued

directly under the word *Milli*. Read $3 \rightarrow$, which indicates decimal is to be moved three places to the right. 0.15 amperes therefore is the equivalent of 150 milliamperes.

Example: To convert kilocycles to megacycles, read on the line level with *Kilo*, and under *Mega*, the figure $\prec 3$. 50,000 kilocycles therefore would become 50 megacycles. Conversely, in converting from megacycles to kilocycles, read on a level with *Mega*, and under *Kilo*, the figure $3 \rightarrow .0.05$ megacycles therefore would become 50 kilocycles.

RADIO COLOR CODES

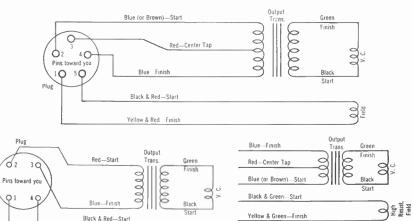
The color codes which follow are used by most radio and instrument manufacturers in the wiring of their products, and by parts manufacturers for identifying lead placement or resistor and condenser values, ratings, and tolerances. These have been included for whatever help they may provide in identifying parts and leads when shooting trouble. Since all manufacturers do not use these codes however, due caution must be used to determine whether or not the set, instrument, or part under examination, does or does not follow the code colors given here. A quick check with a voltmeter, ohmmeter or continuity meter is usually all that is needed to establish this fact.


RESISTOR COLOR CODES (Values in Ohms)

2

Body		Heavy Wov	ven Thread Light Woven Thread		en Thread		type resistors. low are carbon	
Bo	dy	En	ıd	Dot o	r Band	End		
1st Band	or Dot	2nd Ban	Band or Dot		3rd Band or Dot		Band	
Color	Value	Color	Value	Color	Value	Color	Tolerance	
Black	0	Black	0	Black	None	Gold	± 5%	
Brown	1	Brown	1	Brown	0	Silver	±10%	
Red	2	Red	2	Red	00	None	± 20%	
)range	3	Orange	3	Orange	000		1 70	
rellow	4	Yellow	4	Yellow	0000		1	
reen	5	Green	5	Green	00000			
Blue	6	Blue	6	Blue	000000			
/iolet	7	Violet	7					
Grey	8	Grey	8					
White	9	White	9					

CONDENSER COLOR CODES (Values in Micromicrofarads)


1st D	lot	2nd I	Dot	3rd Dot		4th Dot		Used on paper condensers only	
Color Black Brown Red Orange Yellow Green Blue Violet Grey White	Value 0 1 2 3 4 5 6 7 8 9	Color Black Brown Red Orange Yellow Green Blue Violet Grey White	Value 0 1 2 3 4 5 6 7 8 9	Color Black Brown Red Orange Yellow Green Blue Violet	Value None 0 000 0000 0000 00000 00000 000000	Color White Green Blue Yellow Red None	% Toler- ance ±2.5 ±5 ±10 ±15 ±20 Over 20	Color Brown Red Orange Yellow Green Blue Violet Gray White Gold Copper Silver	DC Work- ing Volts 100 200 300 400 500 600 700 800 900 1,000 1,600 2,000

.

SPEAKER LEADS AND PLUG CONNECTIONS

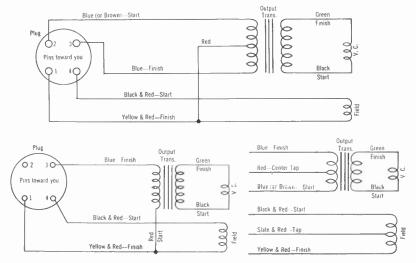
Yellow & Red-Finish

.

Low Resist. Field

World Redio Histor

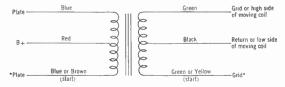
C


J.

Black & Red-Start

Yellow & Red-Finish

Speaker Leads and Plug Connections—continued


.

AUDIO TRANSFORMER LEADS

(Input, Interstage, Output)

*Found only on push-pull primary or secondary windings.

BATTERY CABLE LEADS

MANTISSAS OF COMMON LOGARITHMS

.

No.	Log	No.	Log	No.	Log	No.	Log
1	000	26	415	51	708	76	881
2	301	27	431	52	716	77	886
3	477	28	447	53 54	724	78	892
4	602	29	462	54	732	79	898
5	699	30	477	55	740	80	903
6	778	31	491	56	748	81	908
1	845	32	505	57	756	82	914
8	903	33	518	58	763	83	919
9	954	34	532	57 58 59 60	771	84	924
10	000	35	544	60	778	85	929
11	041	36	556	61	785	86	934
12	079	37	568	62	792	87	940
13	114	38	580	63	799	88	944
14	146	39	591	64	806	89	949
15	176	40	602	65	813	90	954
16	204	41	613	66	820	91	959
17	230	42	623	67 80 69	826	92	964
18	255	43	834	68	832	93	968
19	279	44	644	69	839	94 95	973
20	301	45	653	70	845	95	978
21	322	46	663	71	851	96	982
22 23	342	47	672	72	857	97	987
23	362	48	681	73	863	98	991
24	380	49	690	74	869	99	996
25	398	50	699	75	875	100	000

NATURAL SINES, COSINES, TANGENTS AND RADIANS*

An- gle	Radians	Sine	Cosine	Tangent	An- gle	Radians	Sine	Cosine	Tangent
0	0.0000	0.0000	1.000	0.0000	21	0.3665	0.3584	0.9336	0.3839
1	0.0175	0.0175	0.9998	0.0175	22	0.3840	0.3746	0.9272	0.4040
2	0.0349	0.0349	0.9994	0.0349	23	0.4014	0.3907	0.9205	0.4245
3	0.0524	0.0523	0.9986	0.0524	24	0.4189	0.4067	0.9135	0.4452
4	0.0698	0.0698	0.9976	0.0699	25	0.4363	0.4226	0.9063	0.4663
5	0.0873	0.0872	0.9962	0.0875	26	0.4538	0.4384	0.8988	0.4877
6	0.1047	0.1045	0.9945	0.1051	27	0.4712	0.4540	0.8910	0.5095
7	0.1222	0.1219	0.9925	0.1228	28	0.4887	0.4695	0.8829	0.5317
8	0.1396	0.1392	0.9903	0.1405	29	0.5061	0.4848	0.8746	0.5543
9	0.1571	0.1564	0.9877	0.1584	30	0.5236	0.5000	0.8660	0.5774
10	0.1745	0.1736	0.9848	0.1763	31	0.5411	0.5150	0.8572	0.6009
11	0.1920	0.1908	0.9816	0.1944	32	0.5585	0.5299	0.8480	0.6249
12	0.2094	0.2079	0.9781	0.2126	33	0.5760	0.5446	0.8387	0.6494
13	0.2269	0.2250	0.9744	0.2309	34	0.5934	0.5592	0.8290	0.6745
14	0.2443	0.2419	0.9703	0.2493	35	0.6109	0.5736	0.8192	0.7002
15	0.2618	0.2588	0.9659	0.2679	36	0.6283	0.5878	0.8090	0.7265
16	0.2793	0.2756	0.9613	0.2867	37	0.6458	0,6018	0.7986	0.7536
17	0.2967	0.2924	0.9563	0.3057	38	0.6632	0,6157	0.7880	0.7813
18	0.3142	0.3090	0.9511	0.3249	39	0.6807	0,6293	0.7771	0.8098
19	0.3316	0.3256	0.9455	0.3443	40	0.6981	0,6428	0.7660	0.8391
20	0.3491	0.3420	0.9397	0.3640	41	0.7156	0,6561	0.7547	0.8693

Page 30

*1 Radian = 57.3°

An-					An-				1
gle	Radians	Sine	Cosine	Tangent	gle	Radians	Sine	Cosine	Tangent
42	0.7330	0.6691	0.7431 0.7314	0.9004	66 67	1.1519	0.9135	0.4067	2.2460 2.3559
44	0.7679	0.6947	0.7193	0,9657	68	1,1868	0.9272	0.3746	2.4751
45	0.7854	0.7071	0.7071	1.0000	69 70	1.2043	0.9336	0.3584	2.6051
46	0.8029	0.7314	0.6820	1.0355	71	1.2392	0.9397	0.3256	2.9042
48	0.8378	0.7431	0.6691	1.1106	72	1.2566	0.9511	0.3090	3.0777
49	0.8552	0.7547	0.6561	1.1504	73	1.2741	0.9563	0.2924	3.2709
50	0.8727	0.7660	0.6428	1.1918	74	1.2915	0.9613	0.2756	3.4874
51 52	0.8901	0.7771	0.6293	1.2349	75 76	1.3090	0.9659	0.2588	3.7321 4.0108
53	0.9250	0.7986	0.6018	1.3270	77	1.3439	0.9744	0.2250	4.3315
54 55	0.9425 0.9599	0.8090 0.8192	0.5878 0.5736	1.3764 1.4281	78 79	1.3614 1.3788	0.9781 0.9816	0.2079 0.1908	4.7046 5.1446
56	0.9774	0.8290	0.5592	1.4826	80	1.3963	0.9848	0.1736	5.6713
57	0.9948	0.8387	0.5446	1.5399	81	1.4137	0.9877	0.1564	6.3138
58 59	1.0123	0.8480	0.5299	1.6003	82 83	1.4312	0.9903	0.1392 0.1219	7.1154 8.1443
60	1.0472	0.8660	0.5000	1.7321	84	1.4661	0.9945	0.1045	9.5144
61	1.0647	0.8746	0.4848	1.8040	85	1.4835	0.9962	0.0872	11.43
62 63	1.0821	0.8829 0.8910	0.4695	1.8807	86 87	1.5010	0.9976	0.0698	14.30 19.08
64	1.1170	0.8988	0.4384	2.0503	88	1.5184	0.9986	0.0349	28.64
65	1.1345	0.9063	0.4226	2.1445	89	1.5533	0.9998	0.0175	57.29

.

DB EXPRESS **DB EXPRESSED IN WATTS**

*	Above Zero	Level	Below Zer	o Level
DB	Watts	Volts	Watts	Volts
0	0.00600	1.73	6.00×10-3	1.73
1	0.00755	1.94	4.77×10-3	1.54
2	0.00951	2.18	3.78×10-3	1.38
3	0.0120	2.45	3.01×10-3	1.23
4	0.0151	2.74	2.39×10-3	1.09
5	0.0190	3.08	1.90×10-3	0.974
6	0.0239	3,46	1.51 x 10 ⁻³	0.868
7	0.0301	3,88	1.20 x 10 ⁻³	0.774
8	0.0378	4,35	9.51 x 10 ⁻⁴	0.690
9	0.0477	4,88	7.55 x 10 ⁻⁴	0.614
10	0.0600	5,48	6.00 x 10 ⁻⁴	0.548
11	0.0755	6.14	4.77 x 10 ⁻⁴	0.488
12	0.0951	6.90	3.78 x 10 ⁻⁴	0.435
13	0.120	7.74	3.01 x 10 ⁻⁴	0.388
14	0.151	8.68	2.39 x 10 ⁻⁴	0.346
15	0.190	9.74	1.90 x 10 ⁻⁴	0.308
16	0.239	10.93	$\begin{array}{r} 1.51 \times 10^{-4} \\ 1.20 \times 10^{-4} \\ 9.51 \times 10^{-5} \\ 7.55 \times 10^{-5} \\ 6.00 \times 10^{-5} \end{array}$	0.275
17	0.301	12.26		0.245
18	0.378	13.76		0.218
19	0.477	15.44		0.194
20	0.600	17.32		0.173
25	1.90	30.8	1.90 x 10 ⁻⁵	0.0974
30	6.00	54.8	6.00 x 10 ⁻⁶	0.0548
35	19.0	97.4	1.90 x 10 ⁻⁶	0.0308
40	60.0	173	6.00 x 10 ⁻⁷	0.0173
45	190	308	1.90 x 10 ⁻⁷	0.00974
50 60 70 80	600 6,000 60,000 600,000	548 1,730 5,480 17,300	6.00 x 10-8 6.00 x 10-9 6.00 x 10-9 6.00 x 10-10 6.00 x 10-11	0.00548 0.00173 0.000548 0.000173

DB in Watts and Volts—continued

*Zero db = 6 milliwatts into a 500 ohm load. Power ratios hold for any impedance, but voltages must be referred to an impedance load of 500 ohms.

The number of db by which two power outputs P_1 and P_2 (expressed in watts) may differ = 10 $\log(P_1/P_2)$; or expressed in terms of volts, 20 $\log(E_1/E_2)$; or current, 20 $\log(I_1/I_2)$. While power ratios are independent of source and load impedance values, voltage and current ratios in these formulas hold true only when the source and load impedances are equal. In circuits where these impedances differ, voltage and current ratios are calculated as follows:

$$DB = 20 \log \frac{E_1 \sqrt{R_2}}{E_2 \sqrt{R_1}} \text{ or } 20 \log \frac{I_1 \sqrt{R_1}}{I_2 \sqrt{R_2}}$$

where R_1 and R_2 =the source and load impedances; $E_1 \sqrt{R_2}$ and $I_1 \sqrt{R_1}$ always being higher in value than $E_2 \sqrt{R_1}$ and $I_2 \sqrt{R_2}$.

OHMS LAW FORMULAS

$$I = \frac{E}{R} = \frac{W}{E} = \sqrt{\frac{W}{R}}$$
$$R = \frac{E}{I} = \frac{W}{I^2} = \frac{E^2}{W}$$
$$E = IR = \frac{W}{I} = \sqrt{WR}$$
$$W = EI = I^2R = \frac{E^2}{R}$$

GREEK ALPHABET

Name	Capital	Lower Case	Commonly used to designate
Alpha	A	α	Angles. Area. Coefficients
Beta	В	β	Angles. Flux density. Coefficients
Gamma	Г	γ	Conductivity. Specific gravity
Delta	Δ	δ	Variation. Density
Epsilon	Е	€	Base of natural logarithms
Zeta	Z	5	Impedance. Coefficients. Coordinates
Eta	Η	η	Hysteresis coefficient. Efficiency
Theta	θ	θ	Temperature. Phase angle
Iota	I	ι	
Kappa	K	κ	Dielectric constant. Susceptibility
Lambda	Λ	λ	Wave length
Mu	М	μ	Micro. Amplification factor. Permeability
Nu	N	ν	Reluctivity
Xi]1[ξ	

Greek Alphabet—Continued

Name	Capital	Lower Case	Commonly used to designate
Omicron	0	0	
Pi	11	π	Ratio of circumference to diameter $= 3.1416$
Rho	Р	ρ	Resistivity
Sigma	2	σ	Sign of summation
Tau	Т	τ	Time constant. Time phase displacement
Upsilon	Ϋ́	υ	
Phi	ф	ç	Magnetic flux. Angles
\mathbf{Chi}	X	x	
Psi	Ψ	Ŷ	Dielectric flux. Phase difference
Omega	Ω	ω	Capital, ohms. Lower case, angular velocity

ABBREVIATIONS AND LETTER SYMBOLS

Many of the abbreviations given are in lower-case letters. Obviously, however, there will be occasions such as when the abbreviations are used in titles of columns, where the original word would have been capitalized. In these cases, the abbreviation should be similarly capitalized.

A two-word adjective expression should contain a hyphen.

	Abbrevi-		Abbrevi-
Term	ation	Term	ation
Alternating-current (adjec-		 Electric field intensity 	e
tive),	a-c	Electromotive force	e.m.f.
Alternating current (noun)	a.c.	Frequency	f
Ampere	a	Ground	gnd
Antenna		Henry	
Audio-frequency (adjective).	a-f	High-frequency (adjective)	h-f
Audio frequency (noun)	a.f.	Intermediate-frequency	
Centimeter		(adjective)	i-f
Continuous wave		Intermediate frequency	
Cycle per second	~	(noun)	i.f.
Decibel		Interrupted continuous	
Direct-current (adjective).		waves	iew
Direct current (noun)		Kilocycle (per second)	

Abbreviations and Letter Symbols—continued

Term	Abbrevi- ation	Term	Abbrevi- ation
Kilowatt	kw	Millivolt	mv
Low-frequency (adjective)	l-f	Millivolt per meter	
Magnetic field intensity	11	Milliwatt	
Megacycle	Me	Modulated continuous waves	
Megohm	M Ω	Ohm	Ω
Meter	m	Power	
Microfarad (mfd)	μſ	Power factor	p.f.
Microhenry	μ h	Radio-frequency (adjective).	r-f
Micromicrofarad (mmfd)	μµſ	Radio frequency (noun)	r.f.
Microvolt	μ_V	Revolutions per minute	r.p.m.
Microvolt per meter.	$\mu v/m$	Root mean square	r.m.s.
Microwatt	μ_{W}	Ultra high frequency	u.h.f.
Milliampere	ma	Volt	V
Millihenry	$\mathbf{m}\mathbf{h}$	Watt	W

*Reprinted from "Report of the Standards Committee of The Institute of Radio Engineers."

FRACTIONAL INCHES TO DECIMAL AND MILLIMETER EQUIVALENTS

Inches	\times	2.540	=	Centimeters
Inches	\times	8.33×10^{-2}	=	Feet
Inches	\times	$1.578 imes 10^{-5}$		Miles
Inches	\times	103		Mils
Inches	Х	2.778×10^{-2}	=	Yards

	Inches		Decimal Equivalent	Millimeter Equivalent
1/64	1/32		.0156 .0313	0.397 0.794
3/64		1/16	.0469 .0625	1,191 1,588
5/64	3/32		.0781 .0938	1,985 2,381
7/64		1/8	.1094	2.778 3.175
9/64	5/32		.1406 .1563	3,572 3,969
11/64		3/16	.1719 .1875	4.366 4.762
13/64	7/32		.2031 .2188	5.159 5.556
15/64		1/4	.2344 .2500	5.953 6.350
17/64	9/32		.2656 .2813	6.747 7.144
19/64		5/16	.2969 .3125	7.541 7.937
21/64	11/32		.3281 .3438	8.334 8.731
23/64		3/8	.3594 .3750	9.128 9.525
25/64	13/32	· · · · ·	.3906 .4063	9.922 10.319

	Inches		Decimal Equivalent	Millimeter Equivalent
27/64	1	7/16	.4219 .4375	10.716 11.112
29/64	15/32		.4531 .4688	11.509 11.906
31/64		1/2	.4844	12.303 12.700
33/64	17/32		.5156 .5313	13.097 13.494
35/64		9/16	.5469 .5625	13.891 14.287
37/64	19/32	2	.5781	14.684 15.081
39/64		5/8	.6094	15.478 15.875
41/64	21/32		.6406 .6563	16.272 16.669
43/64		11/16	.6719 .6875	17.067 17.463
45/64	23/32		.7031 .7188	17.860 18.238
47/64		3/4	.7344 .7500	18.635 19.049
49/64	25/32		.7656 .7813	19.446 19.842
51/64		13/16	.7969	20,239 20,636
53/64	27/32		.8281 .8438	21,033 21,430
55/64		7/8	.8594 .8750	21.827 22,224
57/64	29/32		.8906	22.621 23.018
59/64		15/16	.9219 .9375	23.415 23.812
61/64	31/32		.9531	24,209 24,606
63/64		1.0	.9844 1.0000	25.004 25.400

•

Page 39

.,#

Page 40

MATHEMATICAL SYMBOLS

\times	or	•	Multiplied by
*	01.	:	Divided by
+			Positive, Plus. Add
—			Negative. Minus. Subtract
- + +			Positive or negative. Plus or minus
\mp			Negative or positive. Minus or plus
=	or	::	Equals
			Identity
\cong			Is approximately equal to
¥			Does not equal
>			Is greater than
\gg			Is much greater than
<			Is less than
\ll			Is much less than
\geq			Greater than or equal to
\leq			Less than or equal to
			Therefore
\angle			Angle
_ _			Perpendicular to
H			Parallel to
n			Absolute value of n

World Radio History

USEFUL RADIO BOOKS

Allied Radio Corp
Allied Radio Corp
Allied Radio Corp
by Lt. Col. J. G. Tustison, C. S. Army Signal Corps 10c
Allied Radio Corp 10c
Allied Radio Corp 10c
American Radio Relay League
N. M. Cooke, Lt., U. S. Navy
William L. Everitt, et al
A. A. Ghirardi
Keith Henney Principles of Radio
Keith Henney Radio Engineering Handbook \$4.90
Mallory
Wayne Miller
Alfred Morgan
Radio, Ltd
John F. Rider
George E. Sterling
Watson, Welch and Eby

.

Consult Your ALLIED Catalog for Everything in Radio and Electronics