ALLIED'S RADIO-FORMULA

 AND DATA BOOKSgletenamaio cuaporition Enicaro

FOREWORD

ALLIED RADIO CORPORATION offers this publication to fill a long standing need for a convenient collection of radio formulassand data in handy, pocket-size form. Students of radio and electronics and engineers and technicians actively engaged in the ficld will find this booklet extremely helpful in their everyday work.

The publishers are indebted to the McGraw-Hill Book Company, Inc., for their permission to use material selected from Mathematics for Electricians and Radiomen by Nelson M. Cooke. ALLIED also extends sincere appreciation to Lieutenant Nelson M. Cooke, U. S. Navy, for generous contribution of his time and specialized knowledge in editing the material contained in this booklet as well as for his many helpful suggestions.

* Any opinions or assertions contained herein are those of the publisher and are not to be construed as official or reflecting the view of the Navy Department or the naval service at large.

CONTENTS

Fundamental Algebraic Formulas 2
Miscellaneous Radio Formulas. . . . 3-7 3-7
Concentric Transmission Lines 8
2-Wire Open-Air Transmission Lines. 8
Vacuum Tube Constants. 10
Varuum Tube Symbols 10
Vacuum Tube Formulas 11
DC Meter Formulas 12-13
Ohmmeter Formulas. 14-15
Bare Copper Wire Tables 16
Trigonometric Relationships 17
Trigonometric Functions 18
Solution of a Right Triangle 19
Metric Relationships. 20
Metric Conversion Chart 21
Radio Color Codes 22-28
Resistor Color Codes 23
Condenser Color Codes 24
Power Transformer Leads. 25
I. F. Transformer Leads. 25
Speaker Leads and Plug
Connections 26-27
Audio Transiormer Leads 28
Battery Cable Leads 28
3-Place Log Table 29
Sines, Cosines, Tangents, Radians 30-31
Decibel Table 32-33
Ohms Law for DC Circuits 33
(Ohms Law for AC Circuits) 5
Greek Alphabet 34-35
Radio Abbreviations 36-37
Inches to Metric Equivalents 38-39
Mathematical Symbols 40

ALLIED'S RADIO FORMULAS AND DATA BOOK

A Condensed Compilation of Essential Mathematical Formulas, Tables, Data, and Standards Commonly leed in the liedd of Ladioand Llectronies.

Compiled under the direction of the Terhnical Staff of alaied radio comporation.
\star
Edited by NELSON M. COOKE
Lieutenant, U. S. N., Naval Reasearch Laboratory, Washington, D. C.
Member, Institute of Radio Engineers.
Author, "Mathematics for Electricians and Radiomen."
*
Published by

Allied Radio Corporation, Chicago, llifnois, U. s. A.

Printed is U. S. A. Copyright 1942 by Allied ILadlo Corp.

FUNDAMENTAL ALGEBRAIC FORMULAS

Exponents and Radicals

$a^{x} \times a^{y}=a^{(x+y)}$.

$$
\frac{a^{x}}{a^{\nu}}=a^{(x-\nu)}
$$

$$
\left(a^{x}\right)^{y}=a^{x y}
$$

$$
\sqrt[x]{\sqrt[y]{a}}=\sqrt[x y]{a}
$$

$$
(a b)^{x}=a^{x} b^{x}
$$

$$
\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}
$$

$$
\sqrt[z]{a b}=\sqrt[7]{a} \sqrt[x]{b}
$$

$$
\sqrt[x]{\frac{a}{b}}=\frac{\sqrt[x]{a}}{\sqrt[x]{b}} \cdot \quad a^{0}=1 . \quad a^{-x}=\frac{1}{a^{x}} . \quad a^{\frac{1}{x}}=\sqrt[x]{a} . \quad a^{\frac{x}{y}}=\sqrt[v]{a^{x}}
$$

Solution of a Quadratic Equation

Quadratic equations in the form $a x^{2}+b x+c=0$ may be solved by use of the following formula

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} .
$$

MISCELLANEOUS FORMULAS

The capacity of a vertical antenna, shorter than one-quarter wave length at its operating frequency, may be computed by the equation

$$
C_{a}=\frac{17 l}{\left[\left(\log \frac{24 l}{d}\right)-1\right]\left[1-\left(\frac{f l}{2 \cdot 46}\right)^{2}\right]}
$$

where $C_{a}=$ capacity of antenna in micromicrofarads,
$l=$ height of antenna in feet.
$d=$ diameter of antenma conductor in inches,
$f=$ operating frequency in megacycles.
In a caparitive circuit, the equation for the current is

$$
i=\frac{E}{R} \quad \in-\frac{t}{R C}
$$

where $i=$ current in amperes t seconds after the voltage is impressed,
$E=$ impressed voltage in volts,
$C=$ apacity of the circuit in farads,
$R=$ resistance of the circuit in ohms,
$\epsilon=$ base of the natural system of logarithms (2.718).

․ Miscellaneous Formulas-continued

In an inductive circuit, the equation for the growth of rurrent is given by

$$
i=\frac{E}{R}\left(1-\epsilon-\frac{R t}{L}\right)
$$

where $i=c$ current in amperes t seconds after the voltage is impressed,
$E^{\prime}=$ impressed voltage in volts, $L=$ inductance of the circuit in henrys,
$R=$ resistance of the circuit in ohms,
$\epsilon=$ hase of the natural system of logarithms (2.718).

The inductance of a single-layer-wound air-core coil is given by the equation

$$
L=\frac{(r \cdot N)^{2}}{9 r+1 \omega l}
$$

where $N=$ number of turns,
$r=$ radius of coil form in inches,
$l=$ length of winding in inches,
$L=$ inductance in microhenrys.

Miscellaneous Formulas (continued)

Ohms Law for AC Circuits

$$
I=\frac{E}{Z}, \quad Z=\frac{E}{I}, \quad E=Z I I, \quad U=I E \operatorname{Cos} \theta .
$$

where $I=$ rurrent in amperes,
$Z=$ impedance in ohms,
$E=$ r.m.s. volts.
$W^{F}=$ power in watts, $\theta=$ phase angle.

Resisfances in Series

$$
R_{x}=R_{1}+R_{2}+R_{3} \ldots \text { etc. }
$$

where $R_{X}=$ total value of resistances in series.
Resistance in Parallel

$$
\begin{aligned}
& R_{X}=\frac{1}{\bar{R}_{1}+\frac{1}{R_{2}^{-}}+\frac{1}{R_{3}} \cdots \text { etc. }} \\
& \text { or where only two } \\
& \text { resistors are used, }=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

where $R_{X}=$ offective value of resistances in parallel.

Capacities in Series

$$
C_{X}=\frac{1}{\frac{1}{\bar{C}_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \ldots \text { ete. }}
$$

where $C_{X}=$ effective value of capacities in series.

: Miscellaneous Formulas (continued)

Condensers in Parallel

$$
C_{X}=C_{1}+C_{2}+C_{3} \ldots \text { etc. }
$$

where (${ }_{X}^{\prime}=$ total value of caparities in parallel.

Capacitive Reactance (In Ohms)

$$
X_{C}=\frac{1}{2 \pi f(!}
$$

where $2 \pi=6.28$,

$$
\begin{aligned}
& f=\text { frequency in cycles per second, } \\
& \text { c }=\text { capacity in farads. }
\end{aligned}
$$

Inductive Reactance (In Ohms)

$$
\lambda_{L}=2 \pi f L_{L}
$$

where $2 \pi=6.28$,
$f=$ frequency in cyeles per second,
$L=$ inductance in Lemries.

Impedance (In Ohms)
(Of a Resistance and Reactance in Neries)

$$
Z=\sqrt{R^{2}+\lambda^{2}}
$$

(Of a Resistance and Reactance in Parallel)

$$
Z=\frac{R X}{\sqrt{R^{2}+X^{2}}}
$$

Miscellaneous Formulas (continued)

(Of an Inductance. Resistance and Capacity in series)

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

(Of an Inductance, Resistance and Caparity in l'arallel:

$$
Z=\frac{R X_{L} X_{C}}{\sqrt{\left(R X_{L}-R X_{C}\right)^{2}+\left(X_{L}^{\prime} X_{C}\right)^{\prime \prime}}}
$$

where $R=$ resistance in ohms,
$\mathrm{N}=$ reactance in ohms,
$X_{c}=$ reactance of caparity in ohms,
$\lambda_{L}=$ reartance of inductance in ohms.
Frequency (In Megacycles)

$$
\begin{aligned}
& f_{r}=\frac{159}{\sqrt{L C^{\prime}}} \\
& L_{C}=\text { inductance in microhenrien, } \\
& C^{\prime}=\text { capateity in micromicrofarads. }
\end{aligned}
$$

Wavelength from Frequency

$$
\lambda=\frac{3 \times 10^{5}}{f} \text { (meter: }
$$

where $f=$ frequency in kilocycles.

$$
\lambda=\frac{3 \times 10^{4}}{f} \text { (centimeters) }
$$

where $f=$ frequency in megacycles.

FORMULAS FOR CONCENTRIC TRANSMISSION LINES

The characteristic impedance in ohms, of a concentric transmission line is

$$
Z_{o}=138 \log \frac{d_{1}}{d_{2}}
$$

where d_{1} is the inside diameter of the outer conductor, and d_{2} is the outside diameter of the inner conductor. d_{1} and d_{2} must be expressed in the same units.
.
The radio frequency resistance r, in ohms per $r=\sqrt{f}\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}\right) \times 10^{-3}$
foot, of a copper concentric transmission line is
where f is the frequency in megacyoles.

The attenuation in decibels per foot of line, for a concentric transmission line is

$$
\alpha=\frac{4.6 \sqrt{f}\left(d_{1}+d_{2}\right)}{d_{1} d_{2} \log \frac{d_{1}}{d_{2}}} \times 10^{-6}
$$

where d_{1} and d_{2} are in inches, and f is the frequency in megacycles.

Page 8

FORMULAS FOR TWO-WIRE OPEN-AIR TRANSMISSION LINES

The chararteristic impedance of a two-wire openair transmission line is given by

$Z_{o}=276 \log \frac{2 D}{d}$ ohms

where D is the spacing hetween wire centers, and d is the dia, of the conductors in the same units as D.

The indurtance L, in microhenrys per foot, of a two-wire open-air transmission line is
$\begin{aligned} & \text { The caparity } C \text {, in micromicrofarads per foot, } \\ & \text { of a two-wire open-air transmission line is }\end{aligned} \quad C=\frac{3.68}{\log \frac{2 D}{d}}$
The attenuation in decibels per foot of wire for a two-wire open-air transmission line is where R_{f} is the r.f. resistance per loop-foot of wire.

$$
\mathrm{db}=\frac{0.0157 R_{f}}{\log \frac{2 D}{d}}
$$

VACUUM TUBE CONSTANTS

Amplification factor $(M u$ or $\mu)=\frac{\text { Change in plate voltage }\left(E_{p}\right)}{\text { Change in grid voltage }\left(E_{c}\right)}$
Dynamic plate resistance in ohms $\left(r_{v}\right)=\frac{\text { Change in plate voltage }\left(K_{n}\right)}{\text { Change in plate current }\left(I_{n}\right)}$
Mutual conductane in mhos $(g m)=\frac{\text { Change in plate current }\left(I_{n}\right)}{\text { Change in grid voltagne }\left(L_{2}\right)}$

VACUUM TUBE SYMBOLS

	= Amplifucation factor
r_{b}	= Dynamic plate resistance
g_{m}	= Mutual conductance
E_{v}	$=$ Plate voltage
$E_{\text {c }}$	$=$ (irid voltage
I_{p}	= Plate current
R_{t}	= Plate load resistance
I_{k}	$=$ Total cathode current
E	= Signal voltage

Page 10

VACUUM TUBE FORMULAS

Gain per stave $=\mu\left(\frac{R_{l}}{R_{t}+r_{p}}\right)$
Voltage output $=\mu\left(\frac{E_{s} h_{t}}{r_{s}+h_{l}}\right)$
Power output $=R_{l}\left(\frac{\mu E_{s}}{r_{\mu}+h_{l}}\right)^{2}$
Maximum power output $=\frac{\left(\mu E_{s}\right)^{2}}{4 r_{p}}$
Maximum undistorted power ontput $=\frac{\bullet\left(\mu E_{j}\right)^{2}}{9 r_{p}}$
Required cathode resistor value in ohrus, for a single tube $=\frac{E_{o}}{I_{k}}$

DC-METER FORMULAS

Ohms Per Volt

$$
\Omega / V=\frac{1}{I_{f_{n}}}
$$

$\Omega / V=$ Ohms per volt.
$I_{f_{0}}=$ Current in amps. required for full scale reading.

Universal Current Shunt

$$
R_{1}=\frac{\left(R_{1}+R_{2}\right)+R m}{K}
$$

$R_{1}+R_{2}=$ Total resistance required for the lowest shunted current range wanted.
$\mathrm{km} \quad=$ Meter resistance.
$K \quad=$ Multiplying factor.

Fixed Current Shunt*

$$
R=\frac{R m}{K-1}
$$

$R m=$ Meter resistance.
$K=$ Multiplying factor (full scale).
$R=$ Shunt resistance .

Voltage Multiplier*

$$
R=\frac{E_{f s}}{I_{f s}}
$$

$E_{f_{s}}=$ Full scale volts desired.
$I_{f s}=$ Full scale current of meter in amps.
$R=$ Multiplier resistance.
*See table of shunt and multiplier values on page 15.

Formula for Measuring Unknown Resistance wlth Milliammeter and Baffery.*

Formula for Measuring Unknown Resistance with Voltmeter and Baftery.

$$
R x=R m\left(\frac{I_{2}}{I_{1}-I_{2}}\right)
$$

$R x=$ Unknown resistance.
$\mathrm{R} m=$ Meter resistance.
$I_{1}=$ Current reading with switch open.
$I_{2}=$ Current reading with switch closed.
$s w=$ SISST switch.
*A current limiting resistor (not shown) should be connected in series with ? hattery.

$$
R x=R m\binom{E_{1}^{\prime}-1}{\bar{L}_{2}^{\prime}-1}
$$

$R x=\operatorname{linknown}$ resistance.
$R m=$ Meter resistance.
$E_{1}=$ Voltmeter reading with switch closed.
$E_{2}=$ Voltmeter reading with switch open. $s w=$ SPST switch.
Page 14

Formula for Measurlng Unknown Resistor with Milliammeter, Battery and Known Resistor.

$R x=$ Unknown resistance.
$R y=$ Known resistance plus meter resistance.
$I_{1}=$ Current reading with switch closed.
$I_{2}=$ Current reading with switch open.
$s w=$ SI'ST switch.

Shunt and Multiplier Values for 27 ohm (0-1) Milliammeter

Current Scale	Shunt Resistance		Voltage Scale		Multiplier Resistance
$0-10$ Mills	3.0	Ohms	0-10	Volts	10,000 Ohms
0.50 Mills	0.551	Ohms	050	Volts	50,000 Ohms
$0-100$ mills	0.272	Ohms	0-100	Voits	$100,000 \mathrm{Ohms}$
0-500 Mills	0.0541	Ohms	0.250	Volts	250,000 Ohms
			0-500	Volts	500,000 Ohms
			0-1,000	Volts	1,000,000 Ohms

B \& S Gauge No.	Diam. in Mils	Area Circular Mils	$\begin{aligned} & \text { Ohms per } \\ & 1,000 \mathrm{Ft} \\ & 2^{\circ} \mathrm{C}, 77^{\circ} \mathrm{F} . \end{aligned}$	$\begin{gathered} \text { Approx. } \\ \text { Pounds per } \\ 1,000 \mathrm{Ft} \text {. } \end{gathered}$
1	289.3	83,690.0	0.1264	253
2	257.6	66,370.0	0.1593	201
3	229.4	52,640.0	0.2009	159
4	204.3	41,740.0	0.2533	126
5	181.9	33,100.0	0.3195	100
6	162.0	26,250.0	0.4028	79
	144.3	20,820.0	0.5080	63
8	128.5	16,510.0	0.6405	50
9	114.4	13,090.0	0.8077	40
10	101.9	10,380.0	1.018	31
11	90.74	8,234.0	1.284	25
12	80.81	6,530.0	1.619	20
13	71.96	5,178.0	2.042	15.7
14	64.08	4,107.0	2.575	12.4
15	57.07	3,257.0	3.247	9.8
16	50.82	2,583.0	4.094	7.8
17	45.26	2,048.0	5.163	6.2
18	40.30	1,624.0	6.510	4.9
19	35.89	1,288.0	8.210	3.9
20	31.96	1,022.0	10.35	3.1
21	28.46	810.1	13.05	2.5
22	25.35	642.4	16.46	1.9
23	22.57	509.5	20.76	1.5
24	20.10	404.0	26.17	1.2
25	17.90	320.4	33.00	0.97
26	15.94	254.1	41.62	0.77
27	14.20	201.5	52.48	0.61
28	12.64	159.8	66.17	0.48
29	11.26	126.7	83.44	0.38
30	10.03	100.5	105.2	0.30
31	8.93	79.70	132.7	0.24
32	7.95	63.21	167.3	0.19
33	7.08	50.13	211.0	0.15
34	6.31	39.75	266.0	0.12
35	5.62	31.52	335.5	0.095
36	5.00	25.00	423.0	0.076
37	4.45	19.83	533.4	0.060
38	3.96	15.72	672.6	0.048
39	3.53	12.47	848.1	0.038
40	3.14	9.89	1,069.0	0.030
41	2.80	7.84	1,323.0	0.0229
42	2.50	6.22	1,667.0	0.0189
43	2.22	4.93	2,105.0	0.0153
44	1.98	3.91	2,655.0	0.0121

TRIGONOMETRIC RELATIONSHIPS

TRIGONOMETRIC FUNCTIONS

$$
\begin{aligned}
& \text { Sine of } \theta \quad=\text { in } \theta=\frac{\text { Side opposite } \theta}{\text { Hypotenuse }}=\frac{y}{r} \\
& \text { Cosine of } \theta=\operatorname{side} \theta=\frac{\text { Sidjarent } \theta}{\text { Hypotenuse }}=\frac{x}{r} \\
& \text { Tangent of } \theta=\tan \theta=\frac{\text { Side opposite } \theta}{\text { Side adjacent } \theta}=\frac{!}{x} \\
& \text { Cotangent of } \theta=\cot \theta=\frac{\text { Side adjacent } \theta}{\text { Side opposite } \theta}=\frac{3}{!} \\
& \text { Secant of } \theta=\sec \theta=\frac{\text { Hypotenuse }}{\text { Side adjacent } \theta}=\frac{r}{x} \\
& \text { Cosecant of } \theta=\operatorname{esc} \theta=\frac{\text { Hypotenuse }}{\text { Side opposite } \theta}=\frac{r}{y}
\end{aligned}
$$

FORMULAS FOR THE TRIGONOMETRIC SOLUTION OF A RIGHT TRIANGLE

See diagram of Trigonometric Relationships on page 17.

$$
\begin{aligned}
& \begin{array}{l}
\text { Length of } \\
\text { side opposite }
\end{array}=\left\{\begin{array}{l}
\text { Hypotenuse } \times \operatorname{sine} \theta=\mathrm{r} \cdot \sin \theta \\
\text { side adjacent } \theta \times \text { tangent } \theta=x \cdot \tan \theta
\end{array}\right. \\
& \begin{array}{l}
\text { Length of } \\
\text { side adjacent } \theta
\end{array}=\left\{\begin{array}{l}
\text { Hypotemuse } \times \operatorname{cosine} \theta=\mathrm{r} \cdot \cos \theta \\
\text { side opposite } \theta \div \text { tangent } \theta=\frac{y}{\tan }
\end{array}\right. \\
& \\
& \begin{array}{l}
\text { Length of } \\
\text { hypotenuse }
\end{array}=\left\{\begin{array}{l}
\text { Side opposite } \theta \div \operatorname{sine} \theta=\frac{y}{\sin \theta} \\
\text { Side adjacent } \theta \div \operatorname{cosine} \theta=\frac{x}{\cos \theta}
\end{array}\right.
\end{aligned}
$$

METRIC RELATIONSHIPS

The chart above shows the relationship between our American system of numbering and the most used metric equivalents. The number of steps to the left or right, between two metric prefixes being compared, is the same as the number of places and direction the decimal point would be moved, in converting a figure from the terms of one, to the terms of the other. See Metric Conversion Chart on page 21.

Page 20

METRIC CONVERSION CHART

From To.>	Mega	Kilo	Units	Deci	Centi	Milli	Micro	Micromicro
Mega		3>	6>	7)	8>	$9 \rightarrow$	$\xrightarrow{\text { ¢ }}$	$\xrightarrow{\rightarrow}$
Kilo	- 3		3>	4)	$5>$	6>	9 \rightarrow	15>
Units	< 6	< 3		1-	2 $>$	3->	6>	12-
Deci	< ${ }^{+8}$	< 4	< 1		$1>$	$2>$	5)	11-
Centi	< 8	<5	< 2	$\leqslant 1$		1)	$4>$	$10>$
Milij	<-9	< 6	< 3	< 2	$\leqslant 1$		3>	9)
Micro	<12	< 9	* 6	<-5	< 4	< 3		$6>$
Micromicro	<18	<15	<12	<11	<-10	< 9	\&	

The figures and arrows indicate the number of places and the direction in which the decimal point moves. The boxes marked Units represent fundamental terms of measure such as amperes, volts, watts, cycles, etc. The chart reads only one way; from left to right as indicated in the upper left hand corner. Example: Convert 0.15 amperes to milliamperes. First fiad Units box in the left-hand column. Then follow this line across until you come to the box

Metric Conversion Chart-continued

directly under the word Milli. Read $3 \rightarrow$, which indicates decimal is to be moved three places to the right. 0.15 amperes therefore is the equivalent of 150 milliamperes.
Example: 'To convert kilocycles to megarycles, read on the line level with Kilo, and under Vegn, the figure <3. 50,000 kilocyreles therefore would become 50 megacyeles. Conversely, in converting from megateycles to kilorycles, read on a level with Mega, and under kilo, the figure $3 \rightarrow$. 0.05 megaeycles therefore would become 50 kilocerles.

RADIO COLOR CODES

The color codes which follow are used be most radio and instrument manufacturers in the wiring of their products, and by parts manufacturers for identifying lead placement or resistor and condenser values, ratings, and tolerances. These have heen included for whatever help they may provide in identifying parts and leads when shooting trouble. Since all manufacturers do not use these codes however, due caution must be used to determine whether or not the set, instrument, or part under examination, does or does not follow the code colors given here. A quick cherk with a volt meter, ohmmeter or continuity meter is usually all that is needed to establish this fact.

RESISTOR COLOR CODES (Values in Ohms)

Body		Heavy Woven Thread		Light Woven Thread		\leftarrow Flexible type resistars. All others below are carbon	
Body		End		Dot or Band		End	
1st Band or Dot		2nd Band or Dot		3rd Band or Dot		End Band	
Color	Value	Color	Value	Color	Value	Color	Tolerance
Black Brown Red Orange Yellow Green Blue Violet Grey White	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & \hline \end{aligned}$	Black Brown Red Orange Yellow Green Blue Violet Grey White	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 7 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	Black Brown Red Orange Yellow Green Blue	None 0 00 000 0000 00000 000000	Gold Silver None	$\begin{aligned} & \pm 5 \% \\ & \pm 10 \% \\ & \pm 20 \% \end{aligned}$

CONDENSER COLOR CODES (Values in Micromicrofarads)

1st Dot		2nd Dot		3rd Dol		4th Dol		Used on paper condensers only	
Color	Value	Color	Value	Color	Value	Color	\% Tolerance	Color	DC Work ing Volts
Black	0	Black	0	Black	None	White	± 2.5	Brown	100
Brown	1	Brown	1	Brown	0	Green	± 5	Red	200
Red	2	Red	2	Red	00	Blue	± 10	Orange	300
Orange	3	Orange	3	Orange	000	Yellow	\pm	Yellow	400
Yellow	4	Yellow	4	Yellow	0000	Red	± 20	Green	500
Green	5	Green	5	Green	00000	None	Over 20	Blue	600
Blue	6	Blue	6	Blue	000000			Violet	700
Violet	7	Violet	7	Violet	0000000			Gray	800
Grey	8	Grey	8					White	900
White	9	White	9					Gold	1,000
								Copper	1,600
								Silver	2,000

Page 25

SPEAKER LEADS AND PLUG CONNECTIONS

Speaker Leads and Plug Connections-continued

AUDIO TRANSFORMER LEADS

(Input, Interstage, Output)

*Found only on push-pull primary or secondary windings.

battery cable leads

Red	A +	White	B+Intermediate
Black	A-	Brown	C+
Blue	B +	Orange	C-Intermediate
Yellow	B -	Green	C-

Page 28

MANTISSAS OF COMMON LOGARITHMS

No.	Log	No.	Log	No.	Log	No.	Log
1	000	26	415	51	708	76	881
2	301	21	431	52	716	71	886
3	477	28	447	53	724	78	892
4	602	29	462	54	732	79	898
5	699	30	477	55	740	80	903
6	778	31	491	56	748	81	908
7	845	32	505	57	756	82	914
8	903	33	518	58	763	83	919
9	954	34	532	59	771	84	924
10	000	35	544	60	778	85	929
11	041	36	556	61	785	86	934
12	079	31	568	62	792	87	940
13	114	38	580	63	799	88	944
14	146	39	591	64	806	89	949
15	176	40	602	65	813	90	954
16	204	41	613	66	820	91	959
17	230	42	623	61	826	92	964
18	255	43	034	88	832	93	968
19	219	44	644	69	¢ 3 y	94	973
20	301	45	653	70	845	95	978
21	322	45	663	11	851	96	982
22	342	47	672	72	857	97	987
23	362	48	681	73	863	98	991
24	380	49	690	74	869	99	996
25	398	50	699	75	875	100	000

NATURAL SINES, COSINES, TANGENTS AND RADIANS*

Angle	Radians	Sine	Cosine	Tangent	Angle	Radians	Sine	Cosine	Tangent
0	0.0000	0.0000	1.000	0.0000	21	0.3665	0.3584	0.9336	0.3839
1	0.0175	0.0175	0.9998	0.0175	22	0.3840	0.3746	0.9272	0.4040
2	0.0349	0.0349	0.9994	0.0349	23	0.4014	0.3907	0.9205	0.4245
3	0.0524	0.0523	0.9986	0.0524	24	0.4189	0.4067	0.9135	0.4452
4	0.0698	0.0698	0.9976	0.0699	25	0.4363	0.4226	0.9063	0.4663
5	0.0873	0.0872	0.9962	0.0875	26	0.4538	0.4384	0.8988	0.4877
6	0.1047	0.1045	0.9945	0.1051	27	0.4712	0.4540	0.8910	0.5095
7	0.1222	0.1219	0.9925	0.1228	28	0.4887	0.4695	0.8829	0.5317
8	0.1396	0.1392	0.9903	0.1405	29	0.5061	0.4848	0.8746	0.5543
9	0.1571	0.1564	0.9877	0.1584	30	0.5236	0.5000	0.8660	0.5774
10	0.1745	0.1736	0.9848	0.1763	31	0.5411	0.5150	0.8572	0.6009
11	0.1920	0.1908	0.9816	0.1944	32	0.5585	0.5299	0.8480	0.6249
12	0.2094	0.2079	0.9781	0.2126	33	0.5760	0.5446	0.8387	0.6494
13	0.2269	0.2250	0.9744	0.2309	34	0.5934	0.5592	0.8290	0.6745
14	0.2443	0.2419	0.9703	0.2493	35	0.6109	0.5736	0.8192	0.7002
15	0.2618	0.2588	0.9659	0.2679	36	0.6283	0.5878	0.8090	0.7265
16	0.2793	0.2756	0.9613	0.2867	37	0.6458	0.6018	0.7986	0.7536
17	0.2967	0.2924	0.9563	0.3057	38	0.6632	0.6157	0.7880	0.7813
18	0.3142	0.3090	0.9511	0.3249	39	0.6807	0.6293	0.7771	0.8098
19	0.3316	0.3256	0.9455	0.3443	40	0.6981	0.6428	0.7660	0.8391
20	0.3491	0.3420	0.9397	0.3640	41	0.7156	0.6561	0.7547	0.8693

Page 30

* 1 Radian $=57.3^{\circ}$

$\begin{gathered} \text { An } \\ \text { gle } \end{gathered}$	Radians	Sine	Cosine	Tangent	An- gle	Radians	Sine	Cosine	Tangent
42	0.7330	0.6691	0.7431	0.9004	66	1.1519	0.9135	0.4067	2.2460
43	0.7505	0.6820	0.7314	0.9325	67	1.1694	0.9205	0.3907	2.3559
44	0.7679	0.6947	0.7193	0.9657	68	1.1868	0.9272	0.3746	2.4751
45	0.7854	0.7071	0.7071	1.0000	69	1.2043	0.9336	0.3584	2.6051
46	0.8029	0.7193	0.6947	1.0355	70	1.2217	0.9397	0.3420	2.7475
47	0.8203	0.7314	0.6820	1.0724	71	1.2392	0.9455	0.3256	2.9042
48	0.8378	0.7431	0.6691	1.1106	72	1.2566	0.9511	0.3090	3.0777
49	0.8552	0.7547	0.6561	1.1504	73	1.2741	0.9563	0.2924	3.2709
50	0.8727	0.7660	0.6428	1.1918	74	1.2915	0.9613	0.2756	3.4874
51	0.8901	0.7771	0.6293	1.2349	75	1.3090	0.9659	0.2588	3.7321
52	0.9076	0.7880	0.6157	1.2799	76	1.3265	0.9703	0.2419	4.0108
53	0.9250	0.7986	0.6018	1.3270	77	1.3439	0.9744	0.2250	4.3315
54	0.9425	0.8090	0.5878	1.3764	78	1.3614	0.9781	0.2079	4.7046
55	0.9599	0.8192	0.5736	1.4281	79	1.3788	0.9816	0.1908	5.1446
56	0.9774	0.8290	0.5592	1.4826	80	1.3963	0.9848	0.1736	5.6713
57	0.9948	0.8387	0.5446	1.5399	81	1.4137	0.9877	0.1564	6.3138
58	1.0123	0.8480	0.5299	1.6003	82	1.4312	0.9903	0.1392	7.1154
59	1.0297	0.8572	0.5150	1.6643	83	1.4486	0.9925	0.1219	8.1443
60	1.0472	0.8660	0.5000	1.7321	84	1.4661	0.9945	0.1045	9.5144
61	1.0647	0.8746	0.4848	1.8040	85	1.4835	0.9962	0.0872	11.43
62	1.0821	0.8829	0.4695	1.8807	86	1.5010	0.9976	0.0698	14.30
63	1.0996	0.8910	0.4540	1.9626	87	1.5184	0.9986	0.0523	19.08
64	1.1170	0.8988	0.4384	2.0503	88	1.5359	0.9994	0.0349	28.64
65	1.1345	0.9063	0.4226	2.1445	89	1.5533	0.9998	0.0175	57.29

Page 31

O DB EXPRESSED IN WATTS AND VOLTS

$D B^{*}$	Above Zero Level		Below Zero Level	
	Watts	Volts	Watts	Volts
0	0.00600	1.73	6.00×10^{-3}	1.73
1	0.00755	1.94	4.77×10^{-3}	1.54
2	0.00951	2.18	3.78×10^{-3}	1.38
3	0.0120	2.45	3.01×10^{-8}	1.23
4	0.0151	2.74	2.39×10^{-3}	1.09
5	0.0190	3.08	1.90×10^{-3}	0.974
6	0.0239	3.46	1.51×10^{-3}	0.868
7	0.0301	3.88	1.20×10^{-3}	0.774
8	0.0378	4.35	9.51×10^{-4}	0.690
9	0.0477	4.88	7.55×10^{-4}	0.614
10	0.0600	5.48	6.00×10^{-4}	0.548
11	0.0755	6.14	4.77×10^{-4}	0.488
12	0.0951	6.90	3.78×10^{-4}	0.435
13	0.120	7.74	3.01×10^{-4}	0.388
14	0.151	8.68	2.39×10^{-4}	0.346
15	0.190	9.74	1.90×10^{-4}	0.308
16	0.239	10.93	1.51×10^{-4}	0.275
17	0.301	12.26	1.20×10^{-4}	0.245
18	0.378	13.76	9.51×10^{-5}	0.218
19	0.477	15.44	7.55×10^{-5}	0.194
20	0.600	17.32	6.00×10^{-5}	0.173
		30.8	1.90×10^{-5}	0.0974
30	6.00	54.8	6.00×10^{-8}	0.0548
35	19.0	97.4	1.90×10^{-8}	0.0308
40	60.0	173	6.00×10^{-7}	0.0173
45	190	308	1.90×10^{-7}	0.00974
50	600	548	6.00×10^{-8}	0.00548
60	6,000	1,730	6.00×10^{-9}	0.00173
70	60,000	5,480	6.00×10^{-10}	0.000548
80	600,000	17,300	6.00×10^{-11}	0.000173

$D B$ in Watts and Volts-continued

*Zero $\mathrm{db}=6$ milliwatts into a 500 ohm load. Power ratios hold for any impedance, but voltages must be referred to an impedance load of 500 ohms.
The number of db ly which two power outputs P_{1} and P_{2} (expressed in watts) may differ $=10$ $\log \left(P_{1} / P_{2}\right)$; or expressed in terms of volts, $20 \log$ (E_{1} / E_{2}) ; or current, $20 \log \left(I_{1} / I_{2}\right)$. While power ratios are independent of source and load impedance values, voltage and current ratios in these formulas hold true only when the source and load impedances are equal. In circuits where these impedances differ, voltage and current ratios are calculated as follows:

$$
D B=20 \log \frac{E_{1} \sqrt{R_{2}}}{E_{2}^{\prime} \sqrt{R_{1}}} \text { or } 20 \log \frac{I_{1} \sqrt{R_{1}}}{I_{2} \sqrt{R_{2}}}
$$

where R_{1} and $R_{2}=$ the source and load impedances; $E_{1} \sqrt{R_{2}}$ and $I_{1} \sqrt{R_{1}}$ always being higher in value than $E_{2} \sqrt{R_{1}}$ and $I_{2} \sqrt{R_{2}}$.

OHMS LAW FORMULAS FOR DC CIRCUITS

$$
\begin{aligned}
& I=\frac{E}{R}=\frac{W}{E}=\sqrt{\frac{W}{R}} \\
& R=\frac{E}{I}=\frac{W^{\gamma}}{I^{2}}=\frac{E^{2}}{W^{\prime}} \\
& E=I R=\frac{H}{I}=\sqrt{\overline{W R}} \\
& W=E I=I^{2} R=\frac{E^{2}}{R}
\end{aligned}
$$

Greek alphabet

Name	Capital	Lower Case	Commonly used to designate
Alpha	A	α	Angles. Area. Coefficients
Beta	13	β	Angles. Flux density. Coefficients
Gamma	I'	γ	Condurtivity. Specific gravity
Delta	Δ	δ	Variation. Density
Epsilon	E	ϵ	Base of natural logarithms
Zeta	Z	ζ	Impedance. Coefficients. Coordinates
Eta	H	η	Hysteresis coeflicient. Effiriency
Theta	θ	θ	Temperature. Phase angle
Iota	I	ι	
Kappa	K	κ	Dielectric constant. Susceptibility
Lambda	Λ	λ	Wave length
Mu	M	μ	Micro. Amplification factor. Permeability
$\mathrm{Nu}_{\mathrm{Xi}}$	$\stackrel{N}{\sim}$	ν	Reluctivity

Page 34

Greek Alphabet-Continued

Name	Capital	1. оне (ane	Commonly used to designate
Omicron	()	0	
Pi	11	π	Ratio of circumference to diameter $=3.1416$
Rho	1	ρ	Resistivity
Sigma	シ	σ	Sign of summation
Tau	T'	τ	Time constant. Time phase displacement
Upsilon	\uparrow	v	-
Phi	\$	φ	Magnetic flux. Augles
Chi	X	χ	
Psi	Ψ	ψ	Dielectric flux. Phase difference
Omega	Q	ω	Capital, ohms. Tawer cass. anuular velocity

ABBREVIATIONS AND LETTER SYMBOLS

Many of the abbreviations given are in lower-case letters. Ohviously, however, there will be occasions such as when the abbreviations are used in titles of columns, where the original word would have been capitalized. In these cases, the abbreviation should be similarly capitalized.

A two-word adjective expression should contain a hyphen.

Term	Abbreriation	Term	Abbreri-
Alternating-current (adjec-		Electric field intensity.	
tive).	a-c	Electromotive foree.	f.
Alternating current (noun).	a.c.	Frequency.	f
Ampere.	a	(iround.	gnd
Antenna	ant.	Henry	
Audio-frequency (adjeetive)	:t-f	High-frequency (adjective)	${ }_{1}$-f
Audio frequency (noun). .	a.f.	Intermediate-f requency	
Centimeter.	cm	(adjective).	i-f
Continuous wave.	ew	Intermediate frequeney	
(yucle per second		(noun)	i.f.
Decibel.	dh	Interrupted continuous	
1)irect-current (adjective)	d-c	waves.	iew
Direct current (nomi)	d.c.	Kilocycle (per second)	kc

Page 36

Abbreviations and Leffer Symbols-continued

Term	Abbreriation	Term	Abbreviation
Kilowatt	kw	Millivolt	
Low-frequency (adjective)	1-f	Millivolt per moter	mv/m
Magnetic field intensity.	11	Milliwatt	mw
Megacycle	Me	Modulated contimuous waves	m.e.w.
Megohm	M!	Ohm	?
Meter	m	Power	
Microfarad (mfd)		lower factor	
Microhenry.		Radio-frequency (adjective)	
Micromicrofarad (mmfd)	$\mu \mu \mathrm{f}$	Radio fregueney (noun) . .	r.f.
Microvolt.	μ_{V}	Revolutions per minute	r.p.m.
Microvolt per meter	$\mu_{\mathrm{V} / \mathrm{m}}$	Root mean square. . . .	r.m.s.
Microwatt	μ_{W}	Ultra high frequency	u.h.f.
Milliampere		Volt	
Millihenry	mh	Watt	

P FRACTIONAL INCHES TO DECIMAL AND MILLIMETER EQUIVALENTS

Inches $\times \quad 2.540=$ Centimeters
Inches $\times 8.33 \times 10^{-2}=$ Feet
Inches $\times 1.578 \times 10^{-5}=$ Miles
Inches $\times 10^{3}=$ Mils
Inches $\times 2.778 \times 10^{-2}$
$=$ Yirds

Inches			Decimal Equivalent	Millimeter Equivalent
1/64	1/32		.0156 .0313	$\begin{aligned} & 0.397 \\ & 0.794 \end{aligned}$
3/64		1/16	$\begin{array}{r} .0469 \\ .0625 \end{array}$	1.191 1.588
5/64	3/32		$\begin{array}{r} .0781 \\ .0938 \end{array}$	$\begin{aligned} & 1.985 \\ & 2.381 \end{aligned}$
7/64		1/8	.1094 .1250	$\begin{aligned} & 2.778 \\ & 3.175 \end{aligned}$
9/64	5/32		1406 .1563	3.572 3.969
11/64		3/16	.1719 .1875	$\begin{aligned} & 4.366 \\ & 4.762 \end{aligned}$
13/64	7/32		$\begin{aligned} & .2031 \\ & .2188 \end{aligned}$	$\begin{aligned} & 5.159 \\ & 5.556 \end{aligned}$
15/64		1/4	2344 .2500	$\begin{array}{r} 5.953 \\ 6.350 \\ \hline \end{array}$
17/64	9/32		$\begin{array}{r} .2656 \\ .2813 \\ \hline \end{array}$	$\begin{aligned} & 6.747 \\ & 7.144 \\ & \hline \end{aligned}$
19/64		5/16	.2969 .3125	7.541
21/64	11/32		.3281 .3438	$\begin{aligned} & 8.334 \\ & 8.731 \end{aligned}$
23/64		3/8	$\begin{array}{r}3594 \\ .3750 \\ \hline\end{array}$	$\begin{aligned} & 9.128 \\ & 9.525 \end{aligned}$
25/64	13/32		$\begin{array}{r} .3906 \\ .4063 \end{array}$	$\begin{array}{r} 9.922 \\ 10.319 \end{array}$

Inches			Decimal Equivalent	Millimeter Equivalent
27/64		7/16	$\begin{array}{r} .4219 \\ .4375 \end{array}$	$\begin{aligned} & 10.716 \\ & 11.112 \end{aligned}$
29/64	15/32		$\begin{array}{r} .4531 \\ .4688 \end{array}$	$\begin{aligned} & 11.509 \\ & 11.906 \end{aligned}$
31/64		1/2	$\begin{array}{r} .4844 \\ .5000 \end{array}$	$\begin{aligned} & 12.303 \\ & 12.700 \end{aligned}$
33/64	17/32		$\begin{array}{r} .5156 \\ .5313 \end{array}$	$\begin{aligned} & 13.097 \\ & 13.494 \end{aligned}$
35/64		9/16	$\begin{aligned} & .5469 \\ & .5625 \end{aligned}$	$\begin{aligned} & 13.891 \\ & 14.287 \end{aligned}$
37/64	19/32		$\begin{aligned} & .5781 \\ & .5938 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.684 \\ & 15.081 \end{aligned}$
39/64		5/8	$\begin{array}{r} .6094 \\ .6250 \end{array}$	$\begin{aligned} & 15.478 \\ & 15.875 \end{aligned}$
41/64	21/32		$\begin{array}{r} .6406 \\ .6563 \end{array}$	$\begin{aligned} & 16.272 \\ & 16.669 \end{aligned}$
43/64		11/16	$\begin{aligned} & .6719 \\ & .6875 \end{aligned}$	$\begin{aligned} & 17.067 \\ & 17.463 \end{aligned}$
45/64	23/32		$\begin{aligned} & .7031 \\ & .7188 \end{aligned}$	$\begin{aligned} & 17.860 \\ & 18.238 \end{aligned}$
47/64		3/4	$\begin{aligned} & .7344 \\ & .7500 \end{aligned}$	$\begin{aligned} & 18.635 \\ & 19.049 \end{aligned}$
49/64	25/32		$\begin{array}{r} .7656 \\ .7813 \\ \hline \end{array}$	$\begin{aligned} & 19.446 \\ & 19.842 \end{aligned}$
51/64		13/16	$\begin{array}{r} .7969 \\ .8125 \\ \hline \end{array}$	$\begin{aligned} & 20.239 \\ & 20.636 \end{aligned}$
53/64	27/32		$\begin{array}{r} .8281 \\ .8438 \\ \hline \end{array}$	$\begin{array}{r} 21.033 \\ 21.430 \\ \hline \end{array}$
55/64		7/8	$\begin{array}{r} .8594 \\ .8750 \\ \hline \end{array}$	$\begin{aligned} & 21.827 \\ & 22.224 \end{aligned}$
57/64	29/32		$\begin{array}{r} .8906 \\ .9063 \end{array}$	$\begin{aligned} & 22.621 \\ & 23.018 \end{aligned}$
59/64		15/16	$\begin{array}{r} .9219 \\ .9375 \end{array}$	$\begin{aligned} & 23.415 \\ & 23.812 \end{aligned}$
61/64	31/32		$\begin{aligned} & .9531 \\ & .9688 \end{aligned}$	$\begin{aligned} & 24.209 \\ & 24.606 \end{aligned}$
63/64		1.0	$\begin{array}{r} .9844 \\ 1.0000 \end{array}$	$\begin{aligned} & 25.004 \\ & 25.400 \end{aligned}$

\times or \cdot	Multiplied by
$\div 0 r^{\text {: }}$	Inivided by
+	Positive. Plus. Add
-	Negative. Minus. Suhtract
\pm	Positive or negative. Plus or minus
干	Negative or positive. Minus or phus
$=0 \mathrm{O} \mathrm{:}$:	Licquals
三	Identity
\sim	Is approximately equal to
F	Does not equal
$>$	Is greater than
$>$	Is much greater than
$<$	Is less than
\ll	Is much less than
\geqq	Gireater than or equal to
\leqq	Less, than or equal to
\therefore	Therefore
\angle	Angle
- -	Perpendicular to
11	Parallel to
$\|n\|$	Absolute value of n

USEFUL RADIO BOOKS

Allied Radio Corp. Allied's Radio Data Handbook
Edited by N. M. Cooke, Li., U.N. N., Faral Resperch Maboratory $25 c$
Allied Radio Corp. A Dictionary of Kadio 'Terms 10c
Allied Radio Corp. Manual of Simplified liadio Nervicing by li. ('ol. G. Tustison, l'. S. Army Siqnal Corps. $10 c$
Allied Radio Corp. Radio lBuilders' Handbook 10 c
Allied Radio Corp. Allied's ladio Circuit Handbook 10c
American Radio Relay League How to Hecome a Kadio Amateur 25c
American Radio Relay League IRadio Amateur's Handbook $\$ 1.00$
American Radio Relay League Suecial Defense lidition Handbook $\$ 1.00$
American Radio Relay League Liadio Amateur Jicense Manual $25 c$
N. M. Cooke, It., U. S. Niwy Nathematios for bilectriciats and Radiomen $\$ 3.92$
William L. Everitt, et al...Fundamentals of Radio $\$ 4.90$
A. A. Ghirardi Kadio I'hysics Course $\$ 5.00$
Keith Henney l'rinciples of ladio $\$ 3.43$
Keith Henney Radio Engincering Handbook $\$ 4.90$
Mallory MIE Technical Msnual $\$ 2.00$
Wayne Miller Radio (Herator's lisense Guide $\$ 3.00$
Alfred Morgan (ietting Acquainted with Radio $\$ 2.45$
Radio, Ltd 'The 'Radio' Handbook $\$ 2.00$
John F. Rider Frequency Modulation $\$ 1.47$
George E. Sterling The IRadio Manual \$5.88
Watson, Welch and Eby Understanding Radio $\$ 2.74$

Consulf Your ALLIED Catalog for Everything in Radio and Electronics

