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Important Note to 
the Reader 

This is a large-looking book of nearly 500 pages, but it is important to note that about half of 

this book is devoted to WORKED THROUGH EXAMPLES with step-by-step solutions. Many 
students learn about electricity and dc circuits most easily from problems of this sort. Students must 

often buy an additional book to obtain extra worked through examples; however, a wide variety of 
problems with solutions is included in the body of this text for you, and in a large set at the end of each 
lesson. 

In addition, each text section uses a new special layout which has several distinct features: 

1. Quite a bit of blank space has been deliberately left on the text pages so that there is ample 
room for highlighting, extra notes, questions, etc. 

2. There are two "pathways" through the text material. One is a fast path through the essential 

required materials. The other path includes extra examples and detailed discussion in areas 
where questions are commonly raised. 

The page layout and type faces are your keys to the use of these two pathways. The explanation of 
their use is a simple one, as is shown on the next page. It's as if you are on a railroad train and you have 

the option of selecting an "express route", or taking a tour through a new "sidings" of interest. Here's 
how it works. 



SAMPLE TEXT PAGE 

• Basic Concept =1 

• Supplemental Material 

• Basic Concept e.`2 

Basic Concept #1 — Basic materials are 

presented on the left side of printed text pages in 

type like this. (Figure A) The main body of the 

course will be presented using this layout. In key 

course areas, supplemental materials are inserted 

for you. At these points, you have the option of 

swinging your attention to the right side of the 

page, or moving straight down to the next basic 

concept, skipping the supplemental material. 

YOU ARE 
HERE 

Figure B 

Basic Concept #2 — If you move straight down 

the left side of the textbook pages, from basic 

concept to basic concept, you will have no 

problems with the continuity of the text or flow of 

material. If you have some background in basic 

electricity, or wish a shorter "express" pathway 

through the material, this is the path for you. 

YOU ARE 
HERE 

Figure A 

Supplemental Material — If you are interested 

in "digging in" a little deeper for an extra 

example or more detailed discussion, swing your 
attention to the right, where supplemental 

materials are printed in a slightly lighter type like 

this. On these "sidings" you will hopefully find a 
question answered, a helpful extra example, or 

extra details in an area of interest to you. 

Figure C 

YOU ARE 
HERE 
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Features of This Book 

This book is designed primarily for the entry level student. No sophisticated math background or 

previous knowledge of electricity is assumed, and no matter what your background you can learn the 

basic concepts that have enabled man to harness and control dc electricity. 

There are several features of this book specifically designed to increase its efficiency and aid you in 
grasping the principles of predicting and controlling dc electricity. 

1. There is plenty of blank space near each text passage and figure for your notes, calculations or 

sketches. Keep your notes here in the book so they can serve as a handy reference 

2. At the beginning of each lesson, on a shaded page, detailed OBJECTIVES are listed for you. 
These objectives state, step-by-step, what new things you should be able to do upon successful 

completion of each chapter. (The things you will actually be doing are printed in italics; write, 
sketch, calculate, predict, construct, explain, etc.) 

3. At the end of each lesson there are three types of examples for your use: 

First, in addition to those examples in the text, there is a set of examples with detailed step-by-
step solutions. These WORKED THROUGH EXAMPLES apply the theory in each lesson to 

typical situations involving dc electricity. In this way you are led from knowledge of the 

concepts you need to know, to the application of those concepts in circuits you will build and 
handle. 

Second, you are provided with a complete set of PRACTICE PROBLEMS with answers on the 

back of each page. These problems will give you the opportunity to try your new skills and test 
your accuracy. 

Finally, a set of questions without solutions or answers is arranged as a two-page QUIZ, and 
will take you less than an hour to complete. Your quiz will serve as an indicator of areas where 

you need further review of key concepts and principles. 

The quizzes and the worked through problems were taken from the most asked questions in 
TI's instructor conducted course on Basic Electricity and DC Circuits. 
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Lesson 8 

Parallel-Series Circuits 

Now that series and parallel circuit analyses have been introduced, 
this lesson begins discussing how these methods may be combined to 
analyze circuits that are a simple combination of the two: 

PARALLEL-SERIES circuits. The techniques discussed are essentially 

an extension of the principles covered in Lessons 5, 6, and 7. The 
circuit examples discussed find many applications in everyday life, 
including the basic layout of the automotive wiring system. 

8-1 





LESSON 8. PARALLEL-SERIES CIRCUITS 

• Objectives 

This lesson begins to put together the techniques of parallel and series circuit analysis and to apply 
them to a more complex circuit, the parallel-series circuit. The basic principles covered are essentially a 
logical extension of those you have learned thus far. The circuit examples you will work with in this lesson 
include a basic automotive wiring system. At the end of this lesson you should find yourself able to: 

1. Define parallel-series circuit and given a series of schematics, distinguish which represent 
series, parallel, series-parallel, and parallel-series circuits. 

2. Given a schematic diagram of the type shown below, use circuit reduction techniques to 
calculate the total equivalent resistance of the circuit. 

=? 

3. Given a schematic diagram of the type shown, you should be able to use circuit reduction 
techniques and Ohm's law to: calculate the voltage across and current through each resistor 
in the circuit, find the total current in the circuit, and calculate the circuit's equivalent 
resistance. 

1.1kn 

2.1kS.2 

4. Given a schematic diagram of the type shown and using current reduction techniques and 
Ohm's law, you should be able to: calculate all unknown currents, voltages, and resistances. 

3K2 
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LESSON 8: PARALLEL-SERIES CIRCUITS 

• Series-Parallel Circuit 
e Parallel-Series Circuit 

In Lessons 5, 6 and 7, series and parallel circuits were discussed. The essential features differentiating 

these two basic types of circuit were outlined along with the specific rules that describe the operation of 
each type of circuit. 

In this lesson you will see how several of the key features of parallel circuits may be combined with 
those of series circuits in forming what is called a parallel-series circuit. Later on in Lesson 9, another circuit 
type, the series-parallel circuit, will be covered. These new circuit names, series-parallel and parallel-series, 

sound pretty much alike, but there are some key distinctions between these two types of circuits that will 
affect the methods used in analyzing them. In presenting their analysis it is important that you distinguish 
the two types in your mind. 

Series-Parallel Circuit — Figure 8.1 shows the 
series-parallel circuit which will be covered in detail 

in Lesson 9. This circuit is called a series-parallel 
circuit because at least one circuit component, in 
this case R1, lies in series with the total current. 

Notice that in this schematic, resistor R1 is 
connected so that the total circuit current flows 
through it. It is wired in series with other circuit 
components which may include parallel wired 
combinations of resistors such as R2 and R3. 

Parallel-Series Circuit — Figure 8.2 shows a 
parallel-series circuit. The key difference between 
this type of circuit and the series-parallel circuit is 
that there is no single component that lies in the 
path of the total circuit. This circuit consists of 

several branches wired in parallel, but notice that 

each of the parallel branches may contain one or 
more resistors connected in series with one 
another. The circuit contains several parallel 

branches which may each contain several resistors 
wired in series; hence, this is called a parallel-series 
circuit. 

Figure 8.1 

R2 RU 

Figure 8.2 

PARALLEL-SERIES CIRCUIT NO. I 
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• Series Voltage Law and Formula 
• Series Current Law and Formula 

In order to analyze circuits of this type, you 

will be applying both the series and parallel circuit 
laws. To help keep these laws in mind, review them 
now briefly before examining your first 

parallel-series circuit. 

Series Voltage Law and Formula — Series circuit 
behavior is summarized in three rules. Recall that 
as far as voltage behavior is concerned the rule to 
use is, "The sum of the individual voltage drops 
around a series circuit is equal to the total applied 
voltage." Putting this law in formula form, the law 
appears as shown in Figure 8.3: 

ET = ER1 4- ER2 4- ER3-

Series Current Law and Formula — The current 
behavior of series circuits is summarized in a law 
which states "The current has the same value at 
any point within a series circuit," as shown in 
Figure 8.4. The current law for series circuits 
written as a formula indicates that the total circuit 

current is the same as that current through each of 

the circuit resistors: IT = R 1 = 1 R 2 = 1 R3. 

LAWS OF SERIES CIRCUITS 

1. THE SUM OF THE INDIVIDUAL VOLTAGE 

DROPS AROUND A SERIES CIRCUIT 
EQUALS THE APPLIED VOLTAGE 

ET' ER1 + ER2 ER3 + • • • • 

Figure 8.3 

2. CURRENT HAS THE SAME VALUE AT ANY 
POINT WITHIN A SERIES CIRCUIT 

IT= IR1 -I R2" IR3 = • • •• 

Figure 8.4 
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• Series Resistance Law and Formula 
• Parallel Voltage Law and Formula 

• Parallel Current Law and Formula 

Series Resistance Law and Formula — The law 
governing the behavior of resistance in series 

circuits states: "The sum of the individual 
resistances within a series circuit equals the total 
resistance of the circuit." To find the total (or 
equivalent) resistance of a string of resistors wired 
in series, simply add the resistance of each series 
wired resistor, as shown in Figure 8.5. 

As you recall, three similar laws governing the 
operation of parallel circuits have also been 
covered. The laws point out the key differences 

between series and parallel circuit behavior. 

Parallel Voltage Law and Formula — The law 
describing voltage behavior in parallel circuits 

states: "The total applied voltage in a parallel 

circuit is the same across each branch of that 
circuit." This law may be written in formula form 
as shown in Figure 8.6. Note that in the formula 

the subscripts have been changed from ER1 to 
ERi. The "B" subscript is used to indicate 

"Branch" in this formula, and it will be of help to 
focus your attention on the behavior of parallel 

branches in this lesson. Notice that the only real 
difference between "regular" parallel circuits and 

parallel-series circuits is that parallel-series circuits 
may contain several resistors in any branch. 

Parallel Current Law and Formula — The law 
governing current behavior in a parallel circuit 
states, "The total (or main line) current in a 

parallel circuit is equal to the sum of the individual 
branch currents." Figure 8.7 shows how this law is 
written in formula form. Notice once again a "B" 
subscript is used to indicate branch. 

111111111.11MIPIR% 

3. THE SUM OF THE INDIVIDUAL RESISTANCES 

WITHIN A SERIES CIRCUIT EQUALS THE 

TOTAL RESISTANCE OF THE CIRCUIT 

RT.= R1 + R2 + R3 +.... 

Figure 8.5 

LAWS FOR PARALLEL CIRCUITS 

1. THE TOTAL VOLTAGE OF A PARALLEL 

CIRCUIT IS THE SAME ACROSS EACH 

BRANCH OF THAT CIRCUIT 

ET EB1 = EB2 = EB3 

Figure 8.6 

2. THE TOTAL CURRENT IN A PARALLEL 
CIRCUIT IS EQUAL TO THE SUM OF THE 
INDIVIDUAL BRANCH CURRENTS 

Figure 8.7 

IT = 1131 +1 62 +1 63 + • • • • 
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• Parallel Resistance Law 
• Parallel Resistance Formula 

• Circuit Laws 

Parallel Resistance Law — Finally, the law 
governing resistance in parallel circuits states, "The 
total resistance of a parallel circuit is always less 
than, or approximately equal to, that of the 
smallest resistive branch (Figure 8.8). 

3. THE TOTAL RESISTANCE IN A PARALLEL 

CIRCUIT IS ALWAYS LESS THAN OR 

APPROXIMATELY EQUAL TO THE SMALLEST 

RESISTIVE BRANCH. 

Figure 8.8 

Parallel Resistance Formula — The most general 
formula used in determining parallel resistance is 
"Sum of the Reciprocals Formula," shown in 
Figure 8.9. This formula can be used in calculating 

equivalent resistance of any parallel resistor 
combination. 

Circuit Laws — The parallel and series circuit rules 

will be the basic tools you will need as you proceed 
to analyze any parallel-series circuit. The only 

other formulas you will need will be those given 
you by Ohm's law. The real key to analyzing more 
complex parallel-series circuits boils down to the 
question, "How do I know which circuit laws to 
apply and where to apply them?" The answer to 
this question is fairly straightforward, as you might 

have guessed. Simply apply the series circuit laws 
to those portions of the circuits that are wired in 

series (Figure 8.10). Those parts of the circuits you 
encounter that are connected in parallel are subject 
to the parallel circuit laws. 

1 

RT- 1 1 1 

—+ —+ — 
R1 12 11 3 

Figure 8.9 

APPLY 
SERIES CIRCUIT LAWS 
TO THOSE PORTIONS OF 
CIRCUITS WIRED 
IN SERIES 

APPLY 
PARALLEL CIRCUIT LAWS 
TO THOSE PORTIONS OF 
CIRCUITS WIRED 
IN PARALLEL 

Figure 8.10 
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• Basic Parallel-Series Circuit 

All of these problems depend on your ability 
to recognize various parts of circuits as being in 

either series or parallel with other circuit 
components. Hopefully, by now you can fairly 

easily guess at the one sure way to gain expertise in 
this area. Practice! Your "circuit sense," that is, 
your ability to just examine a circuit and sense 
what is going on right away, develops only after 
you have examined many different types of 
circuits. 

Basic Parallel-Series Circuit — Figure 8.11 shows a 

basic parallel-series circuit. First, focus your 
attention on the fact that R1 and R2 are 
connected in series with each other, and that R3 

and R4 are also connected in series with each 
other. Now, focus on the whole circuit. Notice that 
branch 1, which contains R1 and R2, is in parallel 
with branch 2, which contains R3 and R4. 

To solve for voltage, current, and resistance in 
this circuit, you must simply apply the series 

circuit rules to the series-connected resistors, and 
then the parallel-circuit rules to the 

parallel-connected branches. Remember, your 
general aim is to solve for all the voltage drops, 

currents, and total resistance of the circuit. Also, 
recall that once the circuit's total or equivalent 
resistance is known, this value can be used to help 
you find the total or main line current it draws. 

Figure 8.11 

8-9 



• Ohm's Law 

• Basic Parallel-Series Circuit (Circuit Reduction) 

• Basic Parallel-Series Circuit (First Reduction) 

Ohm's Law — The procedure for finding the total 
current simply involves using Ohm's law as shown 

in Figure 8.12. Total current IT equals the applied 
voltage, EA, divided by the circuit's total 
equivalent resistance, Req. 

The process by which the total equivalent 
resistance, Req, is found is called circuit reduction. 
The term "circuit reduction" refers to the 
processes by which a complex circuit is reduced to 
one that is simpler. A circuit is reduced by 

alternately applying the series and parallel circuit 
laws. 

Figure 8.13 

Figure 8-14 

owe 

Figure 8.12 

EA 
l - 

Req 

Basic Parallel-Series Circuit (Circuit Reduction) — 

How do you begin the process of circuit reduction? 
A good idea is to begin with the simplest parts of 
the circuit focusing your attention on how they 
may be further simplified. For example, in the 

basic parallel-series circuit shown in Figure 8.13 
the simplest thing you can do immediately is to 
add the series resistors in each branch using the 
series circuit rule. You could then replace the two 

resistors in each branch with one equivalent 
resistor whose value is the sum of the two 
resistances. The sum of the values of R1 and R2 is 
labeled R1.2. The sum of the resistances R3 and 
R4 is R3_4. 

Basic Parallel-Series Circuit (First Reduction) — 

You can redraw the circuit as shown in Figure 8.14 
using the reduced values, R1..2 and R3_4. Notice 
that you now have a simple parallel circuit with a 
single resistor in each branch. You can proceed to 

further reduce this circuit to a circuit containing 
one single resistance by combining R1_2 and R3_4 

using the law for adding resistances in parallel. The 
final single resistance Req can be obtained using 

the formula: 

Reg - 
1 

R1-2 

± 
R3_4 
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• Parallel-Series Circuit No. 2 (Third Reduction) 
• Parallel-Series Circuit No. 2 

• Series Resistance Formula 

 WV`  

Figure 8.15 

Parallel-Series Circuit No. 2 — Figure 8.16 shows 

the same basic parallel-series circuit with resistance 
values inserted. Branch 1 consists of resistor R1 

with 1 kilohm of resistance in series with resistor 
R2, whieh is a 2-kilohm resistor. Resistors R3 and 
R4 in the second branch have resistance values of 
3 kilohms and 1 kilohm, respectively. First focus 
on the upper branch of this circuit, between 
points C and D. Resistors R1 and R2 may be 

combined using the law for addition of series 
resistances. This enables you to replace R1 and R2 

with one equivalent resistance, R1_2. 

Series Resistance Formula — Using the resistance 

law to find R1_2 (as shown in Figure 8.17), R1_2 - 
R1 + R2 or R1_2 = 1 kilohm + 2 kilohms for a 
total of 3 kilohms. 

Parallel-Series Circuit No. 2 (Third Reduction) — 

This finally reduces the circuit to the simple form 
shown in Figure 8.15. Now you may easily solve 

for the total or main line current that would flow 
in this circuit. This current value will then aid in 

solving for the rest of the voltages and currents in 
this circuit. 

Reexamine this same circuit but this time 
consider the circuit reduction using realistic ohmic 
values for the four resistors. 

Figure 8.16 

Figure 8.17 
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• Basic Parallel-Series Circuit (First Reduction) 

• Series Resistance Formula 
• Basic Parallel-Series Circuit (Second Reduction) 

Basic Parallel-Series Circuit (First Reduction) — 
The two resistors in the upper branch may be 

replaced with one single resistor, R1_2, of 
3 kilohms. Similarly, the second branch may be 
simplified by the combination of R3 and R4 
resulting in an equivalent resistance R3_4 as you 

can see in Figure 8.18. 

Figure 8.18 

Series Resistance Formula — Again applying the 

series circuit resistance formula, R3_4 equals 
3 kilohms plus 1 kilohm or 4 kilohms 
(Figure 8.19). 

Figure 8.19 

Basic Parallel-Series Circuit (Second Reduction) — 
Resistors R3 and R4 may be replaced by one 
resistor, R3_4, having a resistance of 4 kilohmeand 
illustrated in Figure 8.20. 

At this point, notice that this circuit may be 
further reduced because it is now a simple parallel 
circuit. Since this circuit has only two resistors in 
parallel, the product-over-the-sum formula can be 
used to calculate the total equivalent resistance. 

Figure 8.20 

R3 -4 = R3 + R4 

R3_4 = 31(1.2+ 1 kn 

R3-4 =4 k,S2 
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• Parallel Resistance Formula 

• Basic Parallel-Series Circuit (Final Reduction) 
• Ohm's Law (IT) 

Parallel Resistance Formula — All necessary 

calculations are shown in Figure 8.21. Begin with 

the product-over-the-sum-formula and substitute 
the correct circuit values to get 3 kilohms times 

4 kilohms over 3 kilohms plus 4 kilohms. Having 
done the indicated multiplication and addition, 
you will get 12 X 106, divided by 7 X 103. 
Completing the calculation, the total equivalent 
resistance is found to be equal to 1.714 X 10+3, or 
1.71 kilohms (Figure 8.21). 

Basic Parallel-Series Circuit (Final Reduction) — 

This 1.71 kilohms of equivalent resistance can be 

placed into a new circuit that, as far as total 
resistance is concerned, is equivalent to the original 
circuit. The new resistor has been labeled Req for 

equivalent. Notice that by using the process of 
circuit reduction or circuit simplification, the 

complex parallel-series circuit you began with has 
now been reduced to a circuit that contains only 

one resistor (Figure 8.22). 

Ohm's Law (IT) — Using this equivalent resistance, 
you can find the total or main line current that will 
flow in this circuit. The voltage applied to the 

circuit is 24 volts. The circuit's total resistance is 
also known, 1.71 kilohms. These values can be 
substituted into the Ohm's law formula IT = 
ET/Req to find the total current (Figure 8.23). 

Divide 24 volts by 1.71 kilohms and you will find 
that 14 milliamps of main line current is flowing in 
the circuit. 

To proceed to the next part of the circuit 
analysis, look at the reduced circuit carefully. It 

can be seen that the entire 24 volts is dropped 

across the equivalent resistance, Req. Now, here's a 

R 1-2 X R3-4  

R3-4 

3k X 4k 

eq 3k + 4k 

12 X 106  
Reg - 

7 X 103 

Reg = 1.714 X 103 = 1.71 Id2 

Figure 8.21 

Re =1.71Ka 

 ¡NV'  

Figure 8.22 

Figure 8.23 

 NI  
ET :24v 

ET 

IT eq 

IT = 
1.71 Id2, 

24 V 

24 V  
IT - 

14 X 103 

IT = 14 X 10-3 = 14 mA 
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• Basic Parallel-Series Circuit (Second Reduction) 

• Ohm's Law (11_2) 

key method of procedure in circuit analysis: back 
up one step at this point. 

Basic Parallel-Series Circuit (Second Reduction) — 

Figure 8.24 shows the same circuit just before it 
was reduced to one resistance showing two resistive 
branches, each with a single resistor. Recall that 

the parallel circuit rules state that the voltage is the 
same across all branches of a parallel circuit. In this 
case both branches each have 24 volts applied 

across them. This bit of information is very 
significant because the voltage across each branch 

may simply be divided by the branch resistance to 
find the current flowing through each branch. 

Figure 8.24 

Ohm's Law (11_2) — Consider branch 1. At this 
point you know that ER1_2 is equal to 24 volts 

and that R1_2 is 3 kilohms. If these values are used 
in an appropriate Ohm's law formula, as shown in 

Figure 8.25, a current value of 8 milliamps through 
R1_2 can be calculated. (Notice this is the current 
flowing through resistor R1_2, and, hence, this is 
the current that flows throughout branch 1.) 

Figure 8.25 

24V 

R1-2= 3Kn. 

ER1-2 =24 V 

R1_2 = 3 kn 

ER1-2 
11-2 -   

R1-2 

24 V 

11.2 = 8 mA 
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e Ohm's Law (134) 

• Basic Parallel-Series Circuit 

• nh I-aw IF 

Ohm's Law (13.4) — The current flowing through 

the second branch containing R3_4 may be 

calculated in the same manner. The voltage across 
this branch is also 24 volts, and the branch 

resistance in this case is 4 kilohms. Using Ohm's 
law again, as shown in Figure 8.26, 24 volts is 
divided by 4 kilohms to equal 6 milliamps of 
current through R3_4, and, hence, all of branch 2. 

Basic Parallel-Series Circuit — Now that the current 

flow through both branches is known, the original 
circuit diagram can be used to find the voltages 
dropped across each individual resistor 

(Figure 8.27). For example, in branch 1, you know 
that 8 milliamps of current is flowing through both 
R1 and R2. Why? Notice that both these resistors 
are connected in series. Throughout any 
series-connected branch, whatever current is 

flowing in one resistor, flows in all of them. So, 
whatever current flows in the equivalent resistor 
Req, is flowing through all the series resistors that 
make it up. 

You can proceed to calculate the voltage drop 

across R1 and R2 now that you know the current 
flowing through the top branch. 

Ohm's Law (ER1) — Using Ohm's law, ER1 can be 
found by simply multiplying I Ri by R1 
(Figure 8.28). Substituting the circuit values into 

the equation and completing the mathematics 
yields 8 milliamps times 1 kilohm, or 8 volts for 
the voltage across R1. 

Notice that once ER1 is known to be 8 volts, 
the series circuit voltage law may be applied to find 
ER2. Recall that in a series circuit the sum of the 

individual voltage drops is equal to the applied 

voltage. Again recall that the total voltage applied 
to this branch is 24 volts. 

Figure 8.26 

Figure 8.27 

Figure 8.28 

ER34 
13 

-4 - R 3  

24 V 

13-4  

134 = 6 mA 

ER1 =1 131 X R1 

ER1 =8 mA X 1 kSt 

ER1 =8V 
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• Series Voltage Formula (ER2) 
• Basic Parallel-Series Circuit 
• Ohm's Law (ER3) 

Series Voltage Formula (ER2) — Consequently, 

ER1, which is 8 volts, plus ER2 must equal 
24 volts. Subtracting 8 volts from 24 volts yields 

16 volts, which is the voltage dropped across R2 

(F igure 8.29). 

Figure 8.29 

Basic Parallel-Series Circuit — The same procedure 
may now be used to calculate the voltage drops 
across R3 and R4. Previously, it was calculated 

that 6 milliamps flows through the second branch, 
and thus flows through R3 and R4 because of their 
series connection (Figure 8.30). 

Ohm's Law (ER3) — Using Ohm's law once again, 

this time in the form ER3 = I R3 X R3 

(Figure 8.31), you may now calculate the voltage 
drop across R3. Substituting the resistance and 
current values into the formula, ER3 is found to 
equal 6 milliamps times 3 kilohms or 18 volts. 

Figure 8.30 

Figure 8.31 

ER1 + ER2 = ET 

àV + ER2 = 24V 

ER2 =24V — 8V 

ER2 = 16V 

ER3 =1 R3 X R3 

ER3 =6 mA X3 Id-1 

ER3 = 18V 
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• Series Voltage Formula (R4) 

• Basic Parallel-Series Circuit 

• Automotive Electrical System 

Series Voltage Formula (R4) — Now that you 

know 18 of the 24 volts applied to this branch are 
dropped across R3, by subtracting ER3 (which is 
18 volts) from 24 volts, the voltage dropped across 
R4 may be found. As shown in Figure 8.32, ER4 is 
6 volts. 

Basic Parallel-Series Circuit — Through this logical 
step-by-step procedure, you have seen how the 

voltage across and current through every 

component in this circuit can be calculated 
(Figure 8.33). The technique of circuit reduction, 

which you have seen illustrated, will become an 

important part of your "bag of tricks" as you 
analyze circuits. Why? One reason to learn circuit 
reduction as applied to parallel-series circuits is 
because many common electronic circuits you will 
encounter in your everyday life will have this 

general configuration. A particularly important 

example can be found in the typical automobile 
wiring system. 

Automotive Electrical System — Figure 8.34 shows 
a schematic diagram of several key parts of an 
automobile. Notice that in this automotive 
situation all of the circuit branches are powered by 

the car's standard 12-volt battery. The branch 
closest to the battery contains a headlight and a 
switch. The headlight is designed to operate at 

12 volts and will receive the total battery voltage 
when the switch is closed. 

The second branch is a series circuit which 

contains a spark coil and spark plug, a resistor 
called a "dropping resistor," and a momentary 
contact switch which simulates the switching 

action of the points in an automobile distributor. 

Figure 8.32 

Figure 8.33 

Figure 8.34 

ER4 = ET — ER3 

ER4 = 24V — 18V 

ER4 = 6V 

4,5A 
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• Automotive Electrical System (Equivalent Schematic) 

Branch 3 consists of a heater fan motor, a fan 
speed control switch which can be turned to one of 

three positions, and an on-off switch. Notice that 
there are resistors connected to two of the three 
fan speed control switch positions. These resistors 
are also called "dropping resistors" as is the resistor 

connected in series with the coil. 
The term "dropping resistor" has cropped up 

quite a bit. Consider the function of these 

dropping resistors in the circuit. In many 
automotive applications, devices are designed to 

operate at a lower voltage than the usual 12 volts 
supplied by the car battery. To enable these 

devices to operate properly, some other device is 
needed which will "drop" some of the circuit 
voltage. This is how the "dropping resistor" got its 
name. In automotive applications, the dropping 
resistor value is selected so that when the 12 volts 
from the battery is applied to the branch, enough 
voltage is dropped across the resistor to allow a 
device such as the spark coil to receive the correct 

voltage. 

Automotive Electrical System (Equivalent 

Schematic) — To simplify this discussion of the 
automotive electrical system, the circuit pictorial 
diagram shown in Figure 8.34 can be reduced to an 

equivalent circuit schematic consisting solely of 
resistors, as shown in Figure 8.35. 

In this schematic the headlight resistance is 
drawn as a simple resistor in the first branch, and 
the spark coil is shown as a resistance in series with 
its dropping resistor in the second branch. In the 

third branch, the motor resistance is shown 
connected in series with a speed control dropping 
resistor. Examining this circuit as a whole, you can 

recognize this as a parallel-series circuit. 

E + 
12V 

Figure 8.35 

R R 
(SPEED ,(DROPPING) 

.7-11tAtA4 
CONTROL) 

I. RCOIL %ACTOR 
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• Automotive Wiring System 

Automotive Wiring System — Figure 8.36 shows a 
drawing of the actual circuit. The 12-volt battery 

supplies power to branch 1, consisting of the 
headlamp and its on-off switch, branch 2 which 
contains the dropping resistor, on-off switch, spark 

coil, and spark plug. Branch 3 consists of an on-off 
switch, a three-pole switch, two resistors, and an 
automobile heater fan motor. 

Imagine at this point that you need to analyze 
this automotive electrical system in detail. You 
need to calculate the total current it demands, IT, 

as well as the individual branch currents, li, 12, 
and 13, and the voltage drop across each individual 

component including the dropping resistors. 
When you begin your analysis of the circuit, 

you know absolutely nothing about it except for 
the total applied voltage. You will need something 

more than that, so how do you proceed? In this 
example, it will be assumed that some of the 

circuit voltages and currents can be measured, 

while other circuit values will have to be calculated 

using circuit laws. In analyzing or troubleshooting 
real circuits, you may often have to proceed in this 
manner. In some cases, you may have a schematic 
in the auto's service manual showing you generally 
how various components are wired throughout the 
car. Some of these actual components may be 

easily accessible allowing you convenient access for 
voltage or current measurements. Some 

components, however, may be quite inaccessible, 
enclosed in cabinets or in operating positions deep 
inside your car. As you will see, it is possible to 
utilize measurements, giving you some known 

values, combined with calculations to give 
information about inaccessible circuit components. 

To measure voltages, remember that an 
appropriate voltmeter must be inserted across the 

circuit component being tested (in parallel with it). 
For any current values that are needed, the circuit 

must be broken and an ammeter inserted in series, 
so that the current being measured passes through 
it. For example, the voltage across the first branch 

may be easily measured. Notice that the voltage 
across this branch will be equal to the source 

voltage since the headlamp is connected in parallel 
or directly across the battery. 

Figure 8.36 
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• Automotive Wiring System 

• Ohm's Law (RL) 

Automotive Wiring System — Suppose that the 
voltage measured across the branch containing 

lamp, EL, was 12.4 volts and suppose you needed 
to find the current flowing through the lamp when 
it is operating. To do this you must connect an 
ammeter in series with the lamp. A convenient 
means of measuring the current would be to 
connect the ammeter directly across the lamp 
on-off switch terminals. If the switch is initially 

open, connecting the meter across its terminals will 
complete the circuit and allow the full branch 

current to flow through the ammeter as required 
for the measurement. 

If you performed this measurement in a 
typical branch of this type containing a single 
headlamp, as shown in Figure 8.37, you would find 
that the current flowing through the lamp was 

about 3 amperes. 

Ohm's Law (RL) — From the two values, 

12.4 volts and 3 amps, you may calculate the 

resistance of the lamp when in operation. Using 
Ohm's law in the form R equals E over I and 

substituting your measured values, you have 

12.4 volts divided by 3 amps which is equal to 
4.13 ohms (Figure 8.38). Incidentally, if you were 
to measure the resistance of this headlamp directly 
with an ohmmeter, you would read a significantly 
lower value for RL. This is because as the filaments 
of the bulb heat up, their resistance also increases. 

So, in order to be accurate, the resistance of the 
lamp should be calculated while the lamp is 
operating, rather than measured while it is off. 

Figure 8.37 

Figure 8.38 

E 
R =— L 1 

12.4 V 
Ri - ... 3A 

RL =4• 13 e 

8-20 



• Automotive Wiring System 
• Series Voltage Formula 

Automotive Wiring System — By applying the rules 
for a parallel circuit (Figure 8.39), you know that 

the voltage across branch 2 should be the same as 
the source voltage, 12.4 volts. This total voltage 
applied to branch 2 will be divided between the 

dropping resistor and the coil. To get a picture of 
this voltage behavior, the voltage across the 
dropping resistor can be measured while the coil is 

in operation. Then once the voltage across the 

resistor is known, this value may be subtracted 
from the total voltage applied to the branch, and 

the remainder is the voltage that is dropped across 
the coil. 

If you were to connect your voltmeter across 
a typical automotive ballast or dropping resistor 

while the switch or points were closed, you would 
typically find that 6 volts are dropped across the 
resistor. 

Knowing that 6 volts are dropped across the 
ballast resistor, you then know that the remainder 

of the total voltage applied to the branch is 
dropped across the ignition coil. 

Series Voltage Formula — Subtracting the 6 volts 

dropped across the resistor, ER from the 12.4 volts 
applied to the branch, ET, you would find that a 

voltage of 6.4 volts is dropped across the coil as 
shown in the equation in Figure 8.40. Since any 

branch in this circuit is actually a series circuit, the 
sum of the individual voltage drops in the branch is 
equal to the total applied branch voltage. 

Figure 8.39 

Figure 8.40 

ET — ER = EC 

12.4V 6V = 6.4V 
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• Automotive Wiring System 
• Automotive Wiring System 

Automotive Wiring System — Moving on in your 
measurement and analysis of this circuit, pictured 

in Figure 8.41, you know that by connecting an 
ammeter in series with this branch, the branch 
current can be found. One way to perform this 
measurement would be to place the ammeter 

across the open switch, completing the circuit and 

allowing the total current to flow through the 
ammeter. Typically, this branch current would 
read about 4 amps. You would also notice that 

each time the circuit containing the coil was 
activated and then deactivated, the spark plug 

would "spark." This important electronic 
phenomenon involving sparks and coils is a key 
effect used in automotive ignition systems, and will 

be covered in detail in a later lesson. 

Automotive Wiring System — You could employ 
the same procedures to find the individual voltage 
drops and branch current in branch 3. Imagine for 

a moment, however that the heater fan was inside 

an enclosure that was difficult to get to. A direct 
voltage measurement in a case like this would 
require lots of disassembling. In this case, instead 
of measuring the voltage drop across the motor, 

you could calculate it after making some other 
measurements in the circuit. Assume that the fan 

motor speed control is set in the medium speed 
position as you begin your work (Figure 8.42). 

First of all, the total branch current may be 
found by connecting your ammeter across the 

open on-off switch, thus completing the circuit. 
With one type of typical fan motor and motor 

speed control (on medium setting), you would read 
a branch current in the neighborhood of 4.5 amps. 

While the ammeter is still connected, you 
could vary the setting of the motor speed control 

and observe its effect on current flow in this 

branch. You should note that when a larger value 

of dropping resistance is switched in, the motor 
slows down and the ammeter reads a lower value. 
When a smaller value of resistance is selected, the 

motor speeds up and the ammeter indicates that 
more current is flowing. 

Figure 8.41 

Figure 8.42 

POPP 
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• Series Voltage Formula 

• Automotive Wiring System 

With the motor speed switch set at its 
medium speed position, the smaller of the two 

dropping resistors is in operation. In typical circuit 
situations, you may measure 3.6 volts dropped 
across this resistor. Units of this type may be 
mounted right behind your dashboard and be fairly 
accessible for measurement. 

Series Voltage Formula — Since the total branch 

voltage is known, the voltage dropped across the 
speed control resistor can be subtracted from the 

total voltage, and the remainder will be the voltage 
dropped across the motor. As shown in 

Figure 8.43, 12.4 volts minus 3.6 volts gives a 
voltage of 8.8 volts across the motor. 

Automotive Wiring System — At this point and 
shown in Figure 8.44, the voltage drop across each 

component in this automotive circuit is known 
along with all of the branch currents. The total or 

main line current the battery is providing to this 
circuit may be found by simply adding the 
individual branch currents. 

Figure 8.43 

_ 

Figure 8.44 

Em = ET ER 

Em = 12.4V — 3.6V 

Em = 8.8V 

- 
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• Parallel Current Formula 

Parallel Current Formula — Using the formula for 
finding main line currents shown in Figure 8.45, 
add 3 amps of current flowing in branch 1, 4 amps 
flowing in branch 2, and 4.5 amps flowing through 
branch 3. The total current flowing in the circuit is 

11.5 amps. 
Your analysis of this automotive circuit 

example is now complete. All the voltage drops 
have been found, the branch currents have been 

measured and added together to find the total 
current. This example illustrates a common 
technique used in analyzing actual circuits. Some 

circuit values were first measured and then by 
applying the three laws governing series circuits, 

the three laws governing parallel circuits, and 
Ohm's law, the other needed values were 

calculated. 
If you keep the laws governing series and 

parallel circuits firmly in your mind and practice, 
you will encounter little difficulty as you move on 

the more complex circuit. 

IT =1 131 +1 82 +1 83 

= 3A+4A+4.5A 

= 11.5A 

Figure 8.45 

As you have seen, your automobile is a good 
place to learn about dc electricity and to get some 

practice in handling and studying dc circuits. In a 
way, your car is like your own private dc circuits 

lab, and many laboratory and circuit analysis 
techniques can be learned and practiced right in 

your car. Be sure, as always, to use extreme 

caution when working with automotive circuitry. 
Also, please realize that the circuit studied in this 

lesson presents only part of what is happening in 

the average automobile electrical system, and the 
measured values shown in this example were only 
typical values. Actual circuit voltages and currents 

will vary from car to car as you might expect. 
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• Parallel-Series Circuit 

Details on automotive wiring are discussed in 
further detail in automotive shop manuals and 
repair texts that are available. You will find that 
most of the electrical systems in your car, gauges, 
charging, starting, ignition, etc., involve the basic 
principles of parallel-series circuit analysis that 
have been discussed in this lesson. Also, keep in 
mind that on most cars the frame or body of the 
car forms part of all electrical circuits completing 
the circuit path to the battery. This "chassis 
ground" is usually connected to the negative 
battery terminal in most American cars. 

Before completing this lesson, one more 
circuit will be analyzed for you in detail. This 
circuit will put you through some different types 

of analyses and manipulation than before, but you 
will still be using the old standby, Ohm's law and 
the laws governing series and parallel circuits. This 
circuit, unlike the first you analyzed, will have a 
variety of unknown quantities and will be 
presented in a slightly different schematic form. 

R1-? 

)13-me 

Figure 8.46 

Parallel-Series Circuit — The circuit in Figure 8.46 
is clearly a little different looking than those you 
have handled previously. The voltage source is 

drawn in the center of the circuit, and the branches 
are drawn around to either side of it. By now you 
should be able to recognize this as a parallel-series 
circuit with two branches, and you should be able 
to redraw this circuit if you desire in a more 

familiar form: Notice that the total potential 
difference is applied to points A and B and from 
there to each branch. If you can imagine for a 
moment that the wires in this circuit were as 
flexible as rubber bands, you could take the 
left-hand branch and stretch it back up and over 
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• Equivalent Parallel-Series Circuit 

the voltage source to the right of the right-hand 
branch without changing any circuit connections. 

Figure 8.47 

Equivalent Parallel-Series Circuit — The circuit 
drawn in Figure 8.46 is entirely identical to the 
more recognizable one shown in Figure 8.47. The 

knack of redrawing circuits such as this comes 
easily with practice and can greatly simplify 
complicated looking circuits into simpler ones. 
Doing the practice problems included at the end of 

this lesson will help you learn this. 
Examine the known and unknown quantities 

in this circuit. In branch 1, the voltage across R1 is 
known, but its value in ohms is not. The value of 
R2 is known, but you do not know the voltage 
across R2. Both the voltage across and the 

resistance of R3 are known. 
The branch current in the second branch is 

known to be 500 microamps, and the voltage 

across R5 is also known. Nothing else is given. 
Where do you go from here? Focus your attention 
on the left-hand branch of this circuit and look for 
a component about which two values are known so 
that you can apply Ohm's law. R3 fits this 
description. The voltage across it and its resistance 
value are known and thus you can use Ohm's law 
to find the current through it. 
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• Ohm's Law 
• Series Current Analysis 

• Ohm's Law (E R2) 

Figure 8.48 

Figure 8.49 

ER3 

1R3 — 
R3 

8V 

1R3 -20 kS2 

I R3 = 400 pA 

ER2 =1 R2 X R2 

ER2 = 400µA X 72 kft 

ER2 =28.8V 

4181111111111111111161111iiiiiiiMMOV 
Figure 8.50 

Ohm's Law — Using Ohm's law in the form I equals 
E divided by R and substituting the known values 

for R3, 8 volts divided by 20 kilohms yields a 
calculated current flowing through R3 of 400 
microamps as you can see in Figure 8.48. 

Series Current Analysis — The law for current 
behavior in series circuits says that current is the 
same at all points in a series circuit. Notice in 
Figure 8.49 that R1, and R2 and R3 are all in 
series. Once you know the current flowing through 
any of these resistors, you know that the same 

current is flowing throughout that branch. You 
know 400 microamps are flowing in R3, so you 
also know that the current flowing throughout 

branch 1 is 400 microamps. This now enables you 
to find the voltage across R2, because you know 
that 400 microamps is flowing through R2, and R2 
has an ohmic value of 72 kilohms. 

Ohm's Law (ER2) — The voltage across R2 can be 
calculated using Ohm's law in the form ER2 equals 
the current in branch 1 times the value of R2, 
which is 400 microamps times 72 kilohms which 
yields a voltage value of 28.8 volts as shown in 
Figure 8.50. With this voltage calculated, you now 
know the voltage drop for each resistor in 
branch 1. 

8-27 



Figure 8.52 

• Series Circuit Voltage Law 

• Ohm's Lavv (Ri) 
• Parallel-Series Circuit: Branch 2 

ET = El E2 E3 

ET = 13.2V + 28.8V + 8V 

ET = 50V 

Figure 8.51 

ER1  

R1 - I R1 

13.2 V  
- 
' 400 pA 

R1 = 33 ks2 

Figure 8.53 

Series Circuit Voltage Law — Recall that the 
voltage law for series circuits says that the sum of 
the individual voltage drops in any series circuit 
equals the total applied voltage. Branch 1 is itself a 
series circuit. By adding the individual voltage 
drops, as shown in Figure 8.51, the total voltage 

across branch 1 is calculated to be 50 volts. 

Ohm's Law (R1) — The only unknown quantity 
remaining in the first branch is R1. Using Ohm's 
law in the form R =E/I, R1 may be calculated since 
you know that 13.2 volts is dropped across R1, 

and 400 microamps are flowing through it. 
Working this problem out as shown in Figure 8.52, 
13.2 volts divided by 400 microamps gives 
33 kilohms of resistance for the value of R1. 

Parallel-Series Circuit: Branch 2 — In moving from 
one parallel branch to another, keep in mind the 
voltage law for parallel circuits which states that 
the voltage across all of the branches in any parallel 

circuit is the same. 
Since you know there are 50 volts across 

branch 1, as illustrated in Figure 8.53, there must 
also be a 50-volt drop across branch 2. In fact, 
50 volts must be the total voltage applied to this 

circuit by the battery or power supply. 

8-28 



• Calculation of ER4 
• Ohm's Law (R4) 

• Ohm's Law (R5) 

ER4 = ET — ER5 

ER4 = 50 V 18.5 V 

ER4 = 31.5 V 

Figure 8.54 

ER4 
R4 = 

I R4 

31.5V 
R4 -  

500 pA 

R4 = 63 k.S2 

Figure 8.55 

Rn = — 
5 12 

R 18.5 V  
, - 
u 500 pA 

R5= 37 kS2 

Figure 8.56 

Calculation of ER4 — Since you know that there 

are 50 volts across branch 2 and 18.5 volts across 
R5, you can readily solve for the voltage across R4 
(Figure 8.54). For a series branch such as this one, 
you know that the total applied voltage, ET = 
50 volts, equals the sum of individual voltage 

drops. One of the voltage drops, ER5, is 18.5 volts, 
so the other, ER4, must equal ET — ER5, which is 
50 minus 18.5 or 31.5 volts. 

Ohm's Law (R4) — You can proceed to solve for 

the resistance value of R4, as shown in Figure 8.55, 
because the voltage across it and the current 
through it are known. This time you will use 

Ohm's law in the form R equals E over I. 

Substituting the known voltage and current values 

into the formula yields 31.5 volts divided by 500 

microamps which gives a calculated resistance of 
63 kilohms for R4. 

Ohm's Law (R5) — R5 may now be calculated 
quite easily. Using R = E/I and substituting the 
known values ER5 = 18.5 volts and 12 = 500 
microamps, as shown in Figure 8.56, R5 is 
calculated as 37 kilohms. 
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• Parallel Current Formula 
• Analyzed Parallel-Series Circuit 

IT =1 1+12 

IT = 400 µA + 500 µA 

IT = 900 µA 

Figure 8.57 

E 50V 

123.33V/ 

R2 mks? 

R3•20k0 

Figure 8.58 

Parallel Current Formula — Now you know all 
there is to know about each one of the individual 
branches, so it will be easy to calculate the total 
amount of current flowing in the circuit. Use the 

law for parallel current which says "the sum of the 
individual branch currents equals the total current" 
in formula form, IT equals li plus 12 (Figure 8.57). 
Substituting the branch currents into the formula 
and adding these together, 900 microamps of total 
current is found to be flowing in this circuit. 

Analyzed Parallel-Series Circuit — The fully 
analyzed circuit with all of the known values 
inserted is shown in Figure 8.58 for your reference. 
With several of these circuit analyses behind you 
and the practice provided by the problems at the 
end of this lesson, you should be able to carry out 
a detailed analysis on any circuit of this type. 

As you see, there are several alternative ways 
to proceed through each calculation and the best 

way to really learn how to use them is to practice 
these techniques. 

As has been mentioned, at the end of this 
lesson there are several practice problems designed 
to enable you to really learn and practice the 

methods. 
If you should get bogged down, there are also 

several additional worked through examples 
showing how to solve these circuits. 
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• Procedural Steps for Parallel-Series Circuits 
• Current Through Series Resistors 
• Voltage in Parallel 

Procedural Steps for Parallel-Series Circuits — This 
lesson has shown you how to use the laws 

governing series and parallel circuits along with 
Ohm's law to analyze parallel-series circuits 
(Figure 8.59). The technique of circuit reduction 

was also introduced, and you have a bit of practice 
behind you in that area. 

Basically, when you first encounter a 
parallel-series circuit problem, carefully examine 

the known or given values on the schematic and 
then clearly mark those circuit values that you 
need to calculate. Focus your attention on each 

circuit component and what is known about it. 
From this you may be able to draw some 
immediate conclusions. 

Current Through Series Resistors — As an example, 
see Figure 8.60. If a resistor is in a series branch 
and the current through it is known, then the same 

current flows through all resistors in that branch 

because of the law for currents in a series circuit. 

Voltage in Parallel — Remember also that once the 
voltage across any one complete branch is known, 

the parallel circuit voltage laws say that the same 
voltage must also be dropped across all of the 
circuit branches. This is shown in Figure 8.61. 

PROCEDURAL STEPS FOR 

PARALLEL-SERIES CIRCUITS 

• LIST KNOWN VALUES 

• LIST VALUES DESIRED 

• EXAMINE KNOWN VALUES FOR EACH 
COMPONENT 

Figure 8.59 

YOU ALSO KNOW 

A THE CURRENT HERE 1400D  

.100D A 

AND HERE ARE 

THE SAME 

Figure 8.60 

Figure 8.61 
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• Total Current Methods 

• Parallel-Series Circuit 
• Parallel-Series Circuit (First Reduction) 

Total Current Methods — Also recall that the total 

or main line current in a parallel-series circuit is the 
sum of all of the branch currents and is also equal 

to the applied circuit voltage divided by the 
circuit's equivalent resistance. This equation is 

shown in Figure 8.62. 

Figure 8.62 

Parallel-Series Circuit — The equivalent resistance 
may be found for a circuit such as the one in 
Figure 8.63 by systematically applying the method 

of circuit reduction. 

Figure 8.63 

Parallel-Series Circuit (First Reduction) — First, 

reduce each series branch to a single resistance 
value using the rules for adding resistances in series 
as shown in Figure 8.64. 

Figure 8.64 

IT = I B I + B2 • " • 

Ea 

eq 

R4-5 

:R4-4-R5 
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• Parallel-Series Circuit (Second Reduction) 
• Power in Parallel-Series Circuits 
• Example 

Parallel-Series Circuit (Second Reduction) — Then 
combine the parallel branch resistances into a 
single equivalent resistance using the reciprocal 
formula, product-over-sum formula, or other 
appropriate technique as shown in Figure 8.65. 

TOTAL POWER DISSIPATER 

Figure 8.66 

P=IxE 

PR1 =IR1 x ERi = (400 x 10-6) (13.2) 

= 5.28 MI LLIWATTS 

PR2 = 11.52 mW 

PR3 = 3.2 mW 

PR4 = 15.8 mW 
PR5 =  9.25 mW 

PT = 45.1 mW 

OR 

PT = IT x ET = (900 x 10-6) (50) = 45 mW 

Figure 8.67 

MM•al 

Figure 8.65 

(R1.3)(F14-5)  
Req=m1-34(R44) 

Power in Parallel-Series Circuits — Consider how to 
calculate the total power dissipated in the 
parallel-series circuit shown in Figure 8.66. You 
will find that in all dc resistive circuits power is an 
additive quantity. Each resistor in any circuit 

dissipates a certain amount of power, and to find 
the total power dissipated, you simply add all these 
individual power d ssipations. 

Alternatively, once a circuit has been fully 
analyzed, such as the circuit in the illustration, you 
can use the total circuit values ET, IT, and AT in 
one of the three power formulas you have been 
given, and you will obtain the same result for the 
power dissipated. 

Example — In the circuit of Figure 8.66 you could 
apply the formula P=I X E to each resistor as 
shown in Figure 8.67. Adding all the powers 
dissipated by each resistor yields a total dissipated 
power of 45.1 milliwatts. Alternatively, applying 
the formula PT = ET X IT and substituting the 
total circuit values of 900 microamps and 50 volts, 
you obtain approximately 45 milliwatts. 
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LESSON 8. PARALLEL-SERIES CIRCUITS 

• Worked Through Examples 

1. Solve for all voltages and currents in the circuit shown below. 

18V — 

R1 

3.6 
kn 
R2 

2.4 
kS2 

First of all, you need to simplify or reduce the circuit in order to find its equivalent resistance. The 

values of resistors R1 and R2 may be added since they are connected in series, 3.6 kilohms plus 
2.4 kilohms is equal to 6.0 kilohms. This means that resistors R1 and R2 can be replaced by an 
equivalent resistance, R1_2 equal to 6 kilohms. The same procedure may be followed with resistors 

R3 and R4. When 1.5 kilohms and 7.5 kilohms are added, you get an equivalent resistance, R3_4 
equal to 9.0 kilohms. The circuit redrawn to include these two equivalent resistances appears as shown 
below. 

18V — 
R34 

91a2 

The circuit now appears as a simple parallel circuit. R1_2 and R3_4 may be combined using one of the 

parallel resistance formulas. This time the produce-over-the-sum formula will be used. 

R1_2 X R3_4 
RT = 

R 1-2 + R 3-4 

Substitute the circuit values into the formula in powers of ten form: 

6 X 103 X 9 X 103 
RT — 

(6 X 103) + (9 X 103) 

Multiply and add: 

54 X 106 
RT = 

15 + 103 
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• Worked Through Examples 

Now divide: 

54 X 106-3  
RT — 

15 

54 X 1510 

RT = 3.6 X 103 = 3,600 S2 

The total equivalent resistance of this circuit is 3,600 ohms. Now that you know the total equivalent 
resistance and the total applied voltage, Ohm's law may be used to find the total current flowing in 

tilis circuit. 

IT — ET/ R eq 

IT = 18 V/3,600 S2 

IT = 0.005 A = 5 mA 

The equivalent circuit now looks like this: 

Now, an important point, back up a step. Draw the circuit as it appeared just before the final equiva-
lent resistance was found. The circuit will look like this: 

R34 

91d2 

The total circuit current flows to the junction of the two resistances and splits. Some amount of 
current flows through the 9-kilohm resistance, and the rest flows through the other resistance. How 
can the exact amounts be found? This question is answered simply by applying the parallel circuit rule 
that says, "The voltage is the same across all branches of a parallel circuit." Since resistances R1_2 and 

R34 are connected in parallel with the source voltage, the voltage across them will be the same as the 
source voltage, 18 volts. Ohm's law may now be used to calculate the current flowing through each 

branch of the circuit. 
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• Worked Through Examples 

For branch 1: 

11-2 = E 1-2/ R 1-2 

11_2 = 18 V/6 ksz 

11-2 = 3 mA 

At this point, one of two approaches may be taken to arrive at the value of current flowing through 
R3.4. Ohm's law may be used again, or a circuit law may be employed. This time, the circuit law that 

says "The total current in a parallel circuit is equal to the sum of the individual branch currents," will 
be used. The total current is equal to 5 milliamps. If 3 milliamps flow through branch 1 (R1_2), then 
the rest of the current, 2 milliamps, must be flowing through the second branch (R3_4). In formula 
form, the law appears like this: 

IT = I 1_2 + 13_4 

To find 13_4, 11_2 must be subtracted from both sides of the equation to produce: 

IT — 11-2 =" 11-2 + 13-4 — 11-2 

IT — 11-2 = 13-4 

Now plug the correct values into the formula: 

5 mA — 3 mA = 13_4 

2 mA = 13_4 

Therefore, 2 milliamps of current flow through the resistance R3_4. Label these current values on the 
original schematic. 

Since the current flowing through and the resistance of each resistor is known, Ohm's law may be used 

to find the voltage dropped across each individual resistor. R1 is equal to 3.6 kilohms. li is 3 milli-
amps. Ohm's law in the form E=IXR may be used to solve this problem. 

ER1 =1 R1 X R1 

ER1 = 3 mA X 3.6 kS2 

ER1 = 3 X 10-3 X 3.6 X 10+3 

ER1 = 10.8 V 
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• Worked Through Examples 

The same procedure may be used to find ER2, or a circuit law may be employed. You know that in a 
series circuit (R1 + R2 are in series with each other) the sum of the individual voltage drops is equal to 

the source voltage. Written in formula form: 

E R1 + ER2 = ET 

To find ER2, ER1 must be subtracted from both sides of the equation producing: 

ER1 ± ER2 — ER1 = ET — ER1 

ER2 = ET — ER1 

Substitute in the circuit values: 

ER2 = 18 V — 10.8 V 

ER2 = 7.2 V 

The same procedure will be followed in solving for ER3 and ER4. First ER3 may be found by using 
Ohm's law. R3 is known to be 1.5 kilohms. The current flowing through R3 is 2 milliamps. Substi-
tute these values into an Ohm's law formula and solve for ER3. 

ER3 = IR3 X R3 

ER3 = 2 mA X 1.5 Id2, 

ER3 = 2 X 10-3 X 1.5 X 10+3 
ER3 = 3.0 V 

You know that 3 volts are dropped across resistor R3. The rest of the 18 volts applied to this branch 
must be dropped across R4. The voltage equation may be rearranged to solve this problem by sub-
tracting the known value of ER3 from both sides: 

ET = ER3 + ER4 

—E R3 + ET =ER3 + ER4 E R3 

—E R3 + ET = ER4 

Substitute in the circuit values and subtract: 

—3 V + 18 V = ER4 

15 V = ER4 
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• Worked Through Examples 

Place all known values on the schematic, and the circuit analysis is complete. 

I R1 3.6I<S2 

R3 

1.5kS-2 

R4 

7.2V 7.51<S-2 

-'11-1 2mA ......./ 

2. Solve for all of the voltages and currents in the following circuit. 

v 1 

Since this circuit has the same configuration as the last example the same analysis methods will be 
employed in abbreviated form. 

First, reduce or simplify the circuit to its equivalent resistance. 

-<> 
Add using 
Series Formula 

R1.2 = 4.31d2 + 5.11d2 

R14 = 1.61d2 + 2.4k2 
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• Worked Through Examples 

Req = 

2.81d2 

Find IT by using Ohm's law: 

IT — ET /R eg 

IT = 7 V/2.8 I<S2 

7.0 X 10o 
IT 

2.8 X 10+3 

7.0 X 10-3 
IT —  

2.8 

IT -- 2.5 X 10-3 = 2.5 mA 

The branch currents may be found by using Ohm's law. 

Add using 
Parallel Formula 

R 1-2 X R 3-4 
R —  
e ' R 1-2 + R 3-4 
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• Worked Through Examples 

ER1-2  

I R1-2 R1-2 

7V  
I R1-2 9.4 kS2 

I R 1-2 = 
9.4 X 10+3 

7 X 10-3  

1R1-2— 9.4 X 10 

I R1-2 = 0.745 X 10-3 = 0.745 mA 

7 X 100 

ER3_4 

I R3-4 R 
3-4 

7 V 7 X 100  _ 

7 X 100-3  
IR3-4 — 4 

I R3-4 = 1.75 X.10-3 

IR3-4 = 1.75 mA 

Now that the branch currents are known, the individual voltage drops may be calculated using Ohm's 
law. 
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• Worked Through Examples 

Ohm's law: 
ER1 = I R1 X R1 

ER1 = 0.745 mA X 4.3 kS2 

ER 1 = 0.745 X 10-3 X 4.3 X 10+3 

ER1 = 3.20 V 

ER2 = I R2 X R2 

ER2 = 0.745 mA X 5.1 I<S2 

ER2 = 0.745 X 10-3 X 5.1 X 10+3 

ER2 = 4.0 V 

Moving to the right-hand branch, and again using Ohm's law: 

ER3 = I R3 X R3 

ER3 = 1.75 mA X 1.6 kn 

F_ R3 = 1.75 X 10-3 X 1.6 X 10+3 

ER3 = 2.8 V 

ER4 = IR4 X R4 

ER4 = 1.75 mA X 2.4 kn 

ER4 = 1.75 X 10-3 X 2.4 X 10+3 

ER4 = 4.2 V 

Placing these values on the circuit schematic, the analysis is complete. 

1 , 17-5-MA 

Ri 3.20V 

43kn   

R3 

l.6kn 

4.0V 
2.41(11 

R4 

2.8V 

«4:62—V1 
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LESSON 8. PARALLEL-SERIES CIRCUITS 

• Practice Problems 

The key objective of this lesson has been achieved if you can solve for the total resistance of any 
parallel-series circuit using the techniques of circuit reduction, and if given any parallel-series circuit 

schematic with known values labeled, you can solve for any unknowns required. The following problems 
are designed to give you practice in both of these areas. Check your progress and accuracy by folding 
over the page as indicated. 

Depending upon the approach you use in solving these problems and how you round off intermediate 
results, your answers may vary slightly from those given here. However, any differences you encounter 
should only occur in the third significant digit of your answer. If the first two significant digits of your 
answers do not agree with those given here, recheck your calculations. 

1. Find the total equivalent resistance, Reel, for each of these circuits. 

a. 

b. 

c. 

d. 

30E2 

3.9S2 

47S2 

Req =  .9\ 

R =  3 .  eq 

(49 
Req =  

Fold Over 
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• Practice Problems 

Answers 

1.a. 283 St 

1.b. 1.42 la/ 

1.c. 3.2 S2 

1.d. 45.7 Idt 
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• Practice Problems 

1. (Continued) Fold Over , 

e. 

f. 

g. 

h. 

Red =  

Reg =  

Req =  

Req =  

Reg =  
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• Practice Problems 

Answers 

1.e. 152 St 

1.f. 15.3 kS2 

1.g. 9.29 St 

1.h. 287 S2, 

1.i. 591 ks2 
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• Practice Problems 

1. (Continued) Fold Over 

k. 

m. 

n. 

Req =  

Req =  

Reg =  

Req =  

Reg =  
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• Practice Problems 

Answers 

1.j. 142 St 

1.k. 1.061d2 

1.1. 34.5 s2 

1.m. 139 s2 

1.n. 60.7 MS2 
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• Practice Problems 

1. (Continued) Fold Over 

o. 

Reg =  

2. In each of the following circuits, calculate the voltage across and current 
through each resistor as well as the circuit's total current, total resistance, 
and total power dissipation. 

a. 

b. 

= ER1 = / R 1 f lot 7  Ik-

Li S., 1 , 
ER2 =   'R2 

ER3 —  /c  .R3 =   

ER4 =   1R4 =   

ER5 =   IR5 

ER6 = Li   1R6 =   

=  53  

RT =  jt  

PT = b6. 

7, 1/4- =   
ER1 = R1 

ER2= 1-1Â  IR2 =   

ER3= , R3I 

ER4 =   1R4 =   

p So,Lt-.•-r = 
PT = en'/A4V1 
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• Practice Problems 

Answers 

1.o. 13.5 kS2 

2.a. ER1 = 54.9 V 

ER2 = 45.1 V 

ER3 = 100V 

ER4 = 27 V 

ER5 = 32.4 V 

ER6 = 40.5 V 

IT = 58.4 mA 

RT = 1.71 kS2 

PT = 5.84 W 

2.b. ER = 7.43 V 

ER2 = 42.6 V 

ER3 = 2.78 V 

ER4 = 47.2 V 

IT = 990 µA 

RT = 50.5 kS2 

PT = 49.5 mW 

1R1 = 16.7 mA 

I R2 = 16.7 mA 

I R3 14.7 mA 

I R4 = 27.0 mA 

I R5 = 27.0 mA 

I R6 = 27.0 mA 

1R 1 = 906 pA 

I R2 = 906 ;IA 

IR3 = 84.3 µA 

1R4 = 84.311A 
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• Practice Problems 

2. (Continued) Fold Over 

C. 

d. 

I V I I 
ER1 =   R1 =  -  

ER2 = S:7  IR2 =   

ER3 =  ‘.3 I R3   

ER4 =   R4 =   

• 1 
Er;t5 =   

I R5 =   

RT = ••• 

PT = /Y13  Li 

E = R1 1 7? I R1 = 

ER2 =  Js % 1  I R2 = 

ER3 =   I R3 = 

ER4 =   I R4 = 

ER5 = IR5 = 

411  

I 3 7{ 0 

, 

IT = 

RT = 

PT = 

3. In each of the circuits shown below, solve for the values indicated. 

a. 

200S2 

RT = 

R2 = 

1R3 = 

/7/ , 

'4: 

f -veep 

s-
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• Practice Problems 

Answers 

2.c. = +12 V ER1 

ER2 = 5.71 V 

ER3 = 6.29 V 

ER4 = 7.28 V 

ER5 = 4.73 V 

IT = 594 mA 

RT = 20.2 SI 

PT = 7.13 W 

2.d. ER1 = 17.7 V 

ER2 = 12.3 V 

ER3 = 30 V 

ER4 = 6.1 V 

ER5 = 23.9 V 

IT = 218.8 mA 

RT = 137 S2 

PT = 6.55 W 

3.a. RT = 171 S2 

R2 = 900 SI 

1R3 = 30 mA 

I = 146 mA 

I R2 = 83.9 mA 

I R3 = 83.9 mA 

I R4 = 364 mA 

I R5 = 364 mA 

1R 1 = 31.6 mA 

I R2 = 31.6 mA 

I R3 = 136 mA 

I R4 = 5" mA 

I R5 = 50.8 mA 
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• Practice Problems 

3. (Continued) 

b. 

C. 

d. 

ET? 2V 

R2'? 

Le. 

e. 

f. 

ET = 

IT = 

R3 = 

ET = 

IT = 

RT = 

ET 

= 

I R2 = 

ET = 

R1 - 

I R3 = 

ET = 

I R1 = 

R1 = 

JYV 

Liqiç 

d 
1. 

v 

et^^ee 

1,1i# 
7 MU-

Fold Over 
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• Practice Problems 

Answers 

3.b. ET = 18 V 

IT = 3.46 mA 

R3 = 4.1 kS2 

3.c. ET = 6.22 V 

IT = 8.42 mA 

RT = 739.5 St 

3.d. ET = 4.64 V 

R2 = 550 n 

I R2 = 3.56 mA 

3.e. ET = 900 mV 

1R1 = 7.5 mA 

I R3 = 2.5 mA 

3.f. ET = 7.44 V 

I R1 = 7.32 mA 

R = 546 st 
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• Practice Problems 

3. (Continued) 

g. 

h. 

R1 
1.3kS-1 

. 20v 

RT= R2.? ▪ 4▪ V 
2.311,12 

AT-

R-r? 

ET 

= 

R4 =   

R2 = 

R4 = CP 

IT=   

R2 = 

R4 = 

RT = 

ET = 

RT = 

R3 = 

V 

Fold Over 
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Practice Problems 

Answers 

3.g. ET = 328 V 

IT = 20.5 mA 

R4 = 3.87 Id?. 

3.h. R2 = 8.7 k2 

R4 = 600 D. 

IT = 8.66 mA 

3.i. R2 = 300 S-2 

R4 = 52.6 S2 

RT = 71.4 S-2, 

3.). ET = 4.87 V 

RT = 424 S2 

R3 = 854 S-2, 
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LESSON 8 — QUIZ 

Identify the following circuits as being series (S), 
parallel (P), series-parallel (SP), or parallel-series 
(PS). 

1 

2 

3 

4 

5. 

 MA.  

6 

8 

9 

10 
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LESSON 8 — QUIZ 

Calculate Req for the following circuits: 

6002 

12. 

13. 

14. 

1300P, 

15 

BRANCH BRANCH BRANCH 
1 2 3 

The following questions refer to the circuits 

above. 

16 Which branch will contain the greatest 
amount of current?  

17 Which resistor will have the largest voltage 

drop?  

18 What is the total equivalent resistance of the 

circuit?  

19 What is the value of the voltage drop across 

R6  

20 What is the value of the current flowing 

through Fia?  

8-58 



Lesson 9 

Series-Parallel Circuits 

This lesson will deal with the recognition and description of 

series-parallel circuits. The student will also learn to recognize series and 

parallel circuit configurations when they are part of larger, more 
complex circuits. The laws governing series and parallel circuits will be 

used to solve more complex circuits by applying them to one circuit 
segment at a time. 

9-1 





LESSON 9. SERIES-PARALLEL CIRCUITS 

• Objectives 

1. Given a series of schematics, select which represents series, parallel, series-parallel, and 
parallel-series circuits. 

2. Write an explanation, using sketches, of the distinguishing features of parallel-series and 
series-parallel circuits. 

3. Given a schematic of the type shown, calculate the total equivalent resistance Reg for the 
network, using the techniques of circuit reduction. 

2kSI 

2kS2 25kSI 

4. Using Ohm's law and circuit reduction techniques, calculate all of the unknown voltages and 

currents in any series-parallel circuit of the type shown below, given the applied voltage and 
resistance values as illustrated on the schematic. 

10kS2 

3.33kS2 
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• Objectives 

5. Using Ohm's law and circuit reduction techniques, calcu!ate all unknown voltages, currents, and 

resistances in any series and parallel circuit of the :ype shown below, given a combination of 

known circuit values as illustrated in the schematic below. 

Ea=? 

Rr? ER1=2V 

94 



LESSON 9. SERIES-PARALLEL CIRCUITS 

• Parallel-Series Circuit 

• Series-Parallel Circuit 

In Lesson 8, two new circuits were introduced, parallel-series and series-parallel circuits. The essential 

differences between these circuits were explained with an emphasis on how different approaches are used in 
solving for the voltages, currents, and resistances in these two different circuit configurations. Lesson 8 
focused in deep detail on the procedures to follow in analyzing parallel-series circuits. Several example 
circuits were worked through in detail for you, including several circuits taken from automotive 

applications. In this lesson your attention will be focused on the series-parallel circuit. You will see several 

circuits of this type and be shown how they may be identified. You will also learn the steps to follow in 
analyzing this type of circuit. 

An important objective of this lesson, as well as this entire course, is to enable you to recognize simple 

series and parallel circuit configurations when they are part of larger and more complex circuits. At the end 
of this lesson you should be able to use the laws governing series and parallel circuits to solve the more 

complex series-parallel circuits by applying the basic laws correctly to one circuit segment at a time. 
To begin, the basic difference between the parallel-series circuit discussed in Lesson 8 and the 

series-parallel circuit discussed in this lesson is that in series-parallel circuits there is either one resistor or 

equivalent resistance connected in series with the total current. In the parallel-series circuit, no single 
element contains the total current flowing in the circuit. 

Parallel-Series Circuit — To further understand the 
features of these two types of circuits, examine 

Figure 9.1 which shows one of the parallel-series 
circuits of the type discussed in Lesson 8. Notice 
that in this circuit there is no single circuit element 

that must carry the total or mainline current. This 
circuit essentially consists of several parallel 

branches, each of which may contain one resistor 
or several resistors in series. 

Series-Parallel Circuit — Series-parallel circuits 
which will be the topic for discussion in this lesson 

contain one circuit element (or an equivalent 
resistance) that lies in the path of the total current, 

as shown in Figure 9.2. In this series-parallel 

circuit, the series component is resistor R1, and the 
entire circuit current will flow through it. 

Figure 9.1 

Figure 9.2 

R3 
2K11 
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• Two Parallel Circuits in Series 
• Solving Parallel-Series Circuits Review 

• Solving Series-Parallel Circuits 

Two Parallel Circuits in Series — Notice that the 

definition of a series-parallel circuit specifies that 
the element in series with the total circuit current 

may be an equivalent resistance. This equivalent 
resistance may be made up of several resistors in 

parallel. For this reason, a series-parallel circuit 
may appear as two or more parallel circuits wired 

in series, as shown in Figure 9.3. The analysis of 
circuits with this configuration will also be 

discussed for you in this lesson. 

Solving Parallel-Series Circuits Review — As far as 

the techniques you will learn in this lesson are 

concerned, you will find that many of the same 
techniques used to solve parallel-series circuits will 

also be employed to solve series-parallel circuits. 

The only real difference is that these basic various 

techniques will be applied in a different order. 
You may recall that when voltage, current, 

and resistance values in parallel-series circuits were 

calculated, each of the branches was examined 

first, as shown in Figure 9.4. The three series 

circuit laws were initially applied to each branch to 

reduce the circuit to the fewest possible elements. 
Then the parallel circuit laws were used to further 

reduce the number of elements in the circuit. 

Solving Series-Parallel Circuits — When working 

with series-parallel circuits, you will find that the 
analysis will in general proceed in the reverse 
direction from that of parallel-series circuits 
(Figure 9.5). The parallel circuit "clusters" will 
first be reduced using the parallel circuit laws. The 

series circuit laws are then used to reduce the 
remaining series resistors and parallel equivalent 
resistances to one final equivalent resistance. Once 

the equivalent resistance is known, the total circuit 
current can be found and used to find the voltage 

across each component. 

Figure 9.3 

PARALLEL SERIES CIRCUITS 

1ST: REDUCE EACH S RIES BRANCH 
2ND: REDUCE PARALLEL BRANCHES 

Figure 9.4 

Figure 9.5 

• 

$I: REDUCE PARALLEL CIRCUIT CLUSTERS TO Re, 

1ND: REDUCE SERIES ELEMENTS AND EQUIVALENT RESISTANCES 
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• Basic Series-Parallel Circuit 

• Steps in Analyzing Series-Parallel Circuits 

Basic Series-Parallel Circuit — Before actually going 

through the mechanics of a detailed circuit 
solution, consider in general the path of current 

flow in a simple series-parallel circuit. The circuit 
in Figure 9.6 contains one resistor connected in 

series with two other resistors which are connected 
in parallel. (This is actually the most simple form 
of series-parallel circuit.) 

Electron current flows from the negative side 
of the power supply to point B where it divides, 

then flows through the two resistors, R3 and R4, 
in parallel. At point A, the current recombines and 
comes back to a single path and flows through the 
single resistor, R1, and back to the other side of 

the power supply. Notice again that all the current 
in this circuit must pass through the single 
resistor, R1. 

Steps in Analyzing Series-Parallel Circuits — How 
would you go about analyzing an actual circuit of 
this type? The procedural steps are listed in 
Figure 9.7. 

1. Find the equivalent resistance of the 

circuit. This may be done by simplifying 
or reducing the circuit down to a single 
component. As has been mentioned, the 
best way to do this is to first identify 

those portions of the circuit that are 
connected in parallel, and using the rules 

for combining parallel resistances, reduce 
those parallel "clusters" to single 

equivalent resistors. Then using series 
circuit rules, combine all the series 

Figure 9.6 

3 

STEPS IN ANALYZING SERIES-PARALLEL CIRCUITS 

FIND THE EQUIVALENT RESISTANCE Of THE CIRCUIT 

2. FIND THE TOTAL CURRENT IT • E/Ri 

3. BACK TO ORIGINAL CIRCUIT - SOLVE FOR VOLTAGES AND CURRENTS 
USING OHM'S LAW 

Figure 9.7 

VT 
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• Basic Series-Parallel Circuit Example 

• Parallel Resistance Reduction Shortcut 

elements, including the equivalent 
resistances, to a single resistance. 

2. Find the total current flowing in the 
circuit using Ohm's law. Once the total 
circuit resistance is known, Ohm's law 
may be used in the form IT = E/RT to 

find the total current. 

3. Go back to the original circuit and, once 
again, using Ohm's law, calculate the 
voltage across and current through each 

circuit component. 

Basic Series-Parallel Circuit Example — With these 

steps in mind, consider the circuit shown in 
Figure 9.8. In this circuit the value of resistor R1 is 

1 kilohm and R2 and R3 are each 2 kilohms. 
Following the steps in the analysis outlined above, 
you will begin by reducing this circuit to a single 

equivalent resistance, beginning with the parallel 
resistors R2 and R3. 

Parallel Resistance Reduction Shortcut — Note 

that since both of these resistors are 2 kilohms, a 

shortcut formula may be used to determine the 
equivalent resistance as was discussed in a previous 

lesson. The shortcut rule (Figure 9.9) states: The 

equivalent resistance of two equal resistors in 
parallel is one-half the value of one of the resistors. 

iov 

R1 

33 33 

2331 - 2331 

Figure 9.8 

THE RESISTANCE OF TWO RESISTORS IN 

PARALLEL, WHICH HAVE THE SAME VALUE, 
IS ONE-HALF THE VALUE OF ONE OF THE 

RESISTORS 

Figure 9.9 
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• Equal Resistance Formula 

• Simple Series-Parallel Circuit Reduced to Two Resistances 

• Series Resistance Rule and Formula 

Equal Resistance Formula — In formula form as 

shown in Figure 9.10, this rule translates to, Reg — 

Rs/N. When the resistance values for R2 and R3 
are substituted into the formula, the result is 
2 kilohms divided by 2, because these two equal 
value resistors are connected in parallel. The result 
is 1 kilohm, that is, resistors R2 and R3 are 
equivalent to a single 1-kilohm resistor. 

Simple Series-Parallel Circuit Reduced to Two 
Resistances — This is the first reduction of this 

circuit, and it appears as shown in Figure 9.11. The 
circuit consists of resistance R1 which is 1 kilohm, 

in series with the equivalent resistance R2_3, which 
is also 1 kilohm. 

Series Resistance Rule and Formula — This circuit 

may be reduced even further using the law for 
series resistance (Figure 9.12), which states that 

the total equivalent resistance of a series circuit 
equals the sum of the individual resistances. 

Rs 
Reg =—N 

2 ks-2 

2 

= 1 kS2 

Figure 9.10 

01•10111 

1 
Figure 9.11 

TOTAL RESISTANCE OF A SERIES CIRCUIT 
EQUALS THE SUM OF THE INDIVIDUAL 

RESISTANCES 

= R1+ R2 + R3+  

Figure 9.12 
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• RT = 2 kilohms 
• Simple Series-Parallel Circuit Reduced to a Single Resistance 

• Calculating Total Current 

RT = 2 kilohms — In the circuit of Figure 9.13, 

RT, the total equivalent resistance, simply equals 
R1 plus R2_3. One kilohm plus 1 kilohm equals 

2 kilohms for the total circuit resistance. 

AT = R1+ R2.3 

= 11(42+ 11(1.2 

=2 kn 

Figure 9.13 

Simple Series-Parallel Circuit Reduced to a Single 

Resistance — At this point it is important to point 

out once again that in solving for these circuit 
values, the first step is most usually to reduce the 
circuit to a single equivalent resistance as shown in 

Figure 9.14. Keep in mind that no matter how 
complex these circuits may appear at first, they 

reduce down to a single equivalent resistance. 

ictti Z-Z 

...--- IT 

IT • EiRT 

tT • in ko • 5 mA 

••••-••••• 

Figure 9.15 

Reg 
2k0 

Figure 9.14 

Calculating Total Current — Now that the 

equivalent resistance of this circuit is known, it can 
be used to find the total circuit current using 
Ohm's law in the form IT = ET/RT (as shown in 

Figure 9.15). Substituting 10 volts for the applied 
voltage and 2 kilohms for Req. IT is calculated to 
be 5 milliamps. This 5 milliamps flows through 
Req. Keeping this in mind, take the circuit back to 

the second reduction where it was seen as two 

resistors in series. 
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• Determining Voltage Drops 
• Determining the Branch Currents 
• Two Parallel Circuits Connected in Series 

E• 
10V 

RI. 1 kQ 

«11— • 

E•IxR 
• se o lkn 

101 " ER2-3 • 5 Volts 

Figure 9.16 

R1• RO 

10 

0R2- 5V , 
.172 

IRO • IR) • 2.5mA I. 11121 

Figure 9.17 
400ffiv 

Two Parallel Circuits Connected in Series — The 
circuit analyzed above is actually the simplest form 
of a series-parallel circuit. If the single resistor R1 
were actually an equivalent resistance made up of 
several resistors in parallel, the circuit would 
appear initially more complex and resemble the 
circuit of Figure 9.18. As you proceed through the 
analysis of this circuit, however, you will see that 
using the same steps to do the job, the analysis is 
not much more complex than before. This circuit 
consists of a 35-volt power supply, resistors R1 and 
R2 in parallel, and resistors R3, 134, and R5 which 
are also in parallel with each other. These two 
parallel circuits are then wired in series with each 
other. Figure 9.18 

Determining Voltage Drops — In Figure 9.16 you 

can see that the total current, IT, flows through 
both R1 and R2.3. Since both these resistors' 
values are known, the voltage drop across each can 
be calculated using Ohm's law in the form 
E = I X R. Since each resistor's value is the same, 
the result for the voltage across each is easily seen 
to be 5 volts. 

Notice the voltage across R2_3 is 5 volts, and 
R2_3 is made up of two parallel resistors, R2 and 
R3. This means that you now know the voltage 
across R2 and R3 to be 5 volts because in any 
parallel circuit the voltage across each branch is the 
same. 

Determining the Branch Currents — At this point 
you are ready to put what you know about the 
circuit on the original unreduced schematic as 

shown in Figure 9.17: The currents through R2 
and R3 are the only values remaining to be 
calculated, and there are two ways this can be 
done. Using Ohm's law in the form I R2 = 
ER2-3/R2, you can find the current through R2 
and also R3 since R2 and R3 have the same value. 
Dividing 5 volts by 2 kilohnns yields 2.5 milliamps 
for I R2 and I R3. Consider the fact that the total 
current must divide at point B, to flow through 
two branches of equal resistance. Because of this 
equal resistance, exactly 1/2 of IT must flow in 
each branch, and IT/2 is 2.5 milliamps. 
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• Parallel Resistance Reduction: Step 1 

Before beginning the actual circuit analysis, it 
will be helpful to generally block out the steps you 
will be taking. The first step in solving this problem 
is to reduce the circuit to its equivalent resistance. 
Then you can use the equivalent resistance to 
calculate the total current flowing in the circuit. 
Using the value of the total current, the rest of the 
voltage drops, and currents in the circuit may be 
calculated. 

In reducing this circuit to a single equivalent 
resistance, you must begin by first reducing the 
two parallel circuit clusters. The parallel 
combination of R1 and R2 may first be reduced to 
an equivalent resistance, and also the combination 
of R3, 13,4, and R5 can be reduced to their 
equivalent resistance. Then, these two equivalent 
resistances, which are connected in series, may be 
added to arrive at the total equivalent resistance 
for the circuit. 

Parallel Resistance Reduction: Step 1 — R1 and R2 
may be reduced to a single resistance by using the 
rules for combining parallel resistors. Since in this 
case there are only two resistances in parallel, the 
product-over-the-sum technique will be used, as 
shown in Figure 9.19. 

The equivalent resistance equals R1 times R2 
divided by R1 plus R2. Substituting the value for 
R1 + R2 yields 30 kilohms (or 3 X 10+4) times 
60 kilohms (or 6 X 10+4) over 30 kilohms plus 
60 kilohms. Carrying out the multiplication and 
addition, this equals 18 X 10+8 divided by 
9 X 10+4. The result is 2 X 10+4, or 20 kilohms. 

Figure 9.19 

R1 X R2 
RT1-2 = 

Ri + R2 

(3 X 10+4 )(6 X 10+4)  

(3 X 10+4) + (6 X 10+4) 
18 X 10+8 

9 X 10+4 

= 2 X 10+4 

= 201<S2 
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• Parallel Resistors 1 and 2 Reduced to a Single Resistance 
• Equal Value Parallel Resistance Reduction 

• Circuit with R1_2 and Ras 

Parallel Resistors 1 and 2 Reduced to a Single 

Resistance — The equivalent resistance of resistors 
R1 and R2 is 20 kilohms and is labeled R1_2 as 
shown in Figure 9.20. 

The parallel combination of resistors R3, R4, 
and R5 may be reduced, and this equivalent 
resistance will be labeled R3_5. 

Equal Value Parallel Resistance Reduction — Since 

resistors R3, R4 and R5 are equal in value, this 

parallel combination can be reduced using the 
shortcut formula as shown in Figure 9.21. R3_5 
equals Rs, which is the value of one of these equal 

size resistors, divided by N, the total number of 
resistors. Substituting the values from the 
schematic diagram into the formula yields 
45 kilohms divided by 3, which equals 15 kilohms 
for the equivalent resistance R3_5. 

Circuit with R1_2 and Ras — As seen in Figure 
9.22, the two parallel resistor combinations have 
been reduced to their equivalent resistances, and 

the equivalent circuit simply consists of two 
resistors connected in series. At this point, another 
reduction can be performed using the law for 

combining series resistances. 

Rs 
45KI1 

Figure 9.20 

Rs 
R3.5 =7  

45 kS2 

3 

=15 k12 

Figure 9.21 

IMO 

R, 

iNtO 

ORIGINAL CIRCUIT FIRST REDUCTION 

Figure 9.22 

EOUIVN.FJO CIRCUIT 
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• Series Resistance Formula (Final Reduction) 

• Ohm's Law to Find Total Current: Step 2 
• Circuit with Equivalent Resistor R1.5 

Series Resistance Formula (Final Reduction) — 
The total equivalent resistance of this circuit equals 
the sum of these two equivalent resistances. R1.2 
(20 kilohms) plus R3_5 (15 kilohms) yields a total 

circuit equivalent resistance of 35 kilohms as 
shown in Figure 9.23. Now that the total resistance 
and the total voltage in the circuit are known, you 

can proceed to the second step in analyzing this 

circuit, using Ohm's law to determine the circuit's 
total current. 

Ohm's Law to Find Total Current: Step 2 — As 
you should recall, the total current in this 
situation, IT, equals the total applied voltage, ET, 
divided by the circuit's total equivalent resistance, 
R1_5. In this circuit you know that there are 
35 volts applied, and this divided by the 
35 kilohms just calculated for R1_5 gives you a 
total current of 1 milliamp, as shown in 
Figure 9.24. 

Circuit with Equivalent Resistor R1..5 — At this 

point it is time to recall that an equivalent circuit 

has the same essential characteristics of the larger, 
more complex circuit from which it originated. An 

equivalent circuit has the same amount of applied 
voltage, the same total equivalent resistance, and 
the same total current flowing. The only difference 

is that the many resistive components have been 
reduced to a single resistive component as shown in 
Figure 9.25. 

55V 

• RH • R34 

• 2%0 • 15Ie 

• 351d) 

Figure 9.23 

Figure 9.24 

Figure 9.25 

2Cle 

R2.) 

IT = 
R1.5 

35 V 

35v 

ET 

35 I<S2 

= 1 mA 

1 
I=1mA Re2 

35Kil 
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• Two Parallel Circuits Connected in Series: Step 3 
• Circuit with R1 and R3_5 

• Ohm's Law (ER1-2) 

Two Parallel Circuits Connected in Series: Step 3 — 
The circuit in Figure 9.25 is electrically equivalent 
to the original circuit shown again in Figure 9.26. 
Now that the voltage, current, and resistance of the 
equivalent circuit are known, the third step in 
completing the analysis of this circuit is to work 
your way back to this original circuit, following 
the same steps as in circuit reduction, but this time 
in reverse. As you proceed you will determine all 
the unknown voltage drops in the circuit and the 
branch currents for each branch. 

Circuit with R1_2 and R3.5 — Consider the circuit 

shown in Figure 9.27(B). Recall that this circuit 
was the next to last step in the circuit reduction, 

just before the circuit was reduced to a single 
equivalent resistor, Figure 9.27(A). You now know 
that the total current flowing in this circuit is 
1 milliamp. The current law governing series 
circuits states that the current must have the same 
value at any point in a series circuit. Thus, 
Figure 9.27 shows that 1 milliamp of current is 
flowing through both the equivalent resistance 
R1_2 and through the equivalent resistance R3_5. 

You know the current flowing through these 
resistors and their value in ohms; thus, using Ohm's 

law the voltage drops across R1_2 and R3_5 can be 
found. 

Ohm's Law (ER1_2) — The voltage drop across the 

entire equivalent resistance R1_2 is found by using 
the Ohm's law formula as shown in Figure 9.28, 

ER1-2 equals IT times R1_2. Substituting the 
circuit figures into this formula, 1 milliamp times 

20 kilohms equals 20 volts dropped across R1_2. 

1 mA 

ET = 
35V 

n3 
45kfl 

R 1 

30kS2 

1 mA 

R2 

60kS2 

R4 

45kn 

R5 

45161 

Figure 9.26 

( IrnA 

Figure 9.27 

Figure 9.28 

I mA ROWS IN 

A 

SO 1 mA ROWS THROUGH 111.7 

AND I RA ROWS THROUGH R3.7 

ER1-2 = (11-"1-2) 

= (1 mA) (20 kn) 

20 V 
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• Ohm's Law (ER3_5) 
• Voltage Across Series Resistors 
• Back to Original Circuit 

Ohm's Law (ER3_5) — Using the same formula and 
substituting the circuit values for R3_5, you find 
that 15 volts is dropped across R3_5, the equivalent 
resistance as shown in Figure 9.29. 

Voltage Across Series Resistors — These 

calculations may be checked by adding the voltage 
dropped across R1_2, which is 20 volts, and the 

voltage dropped across R3_5, which is 15 volts. The 

sum of these voltages is 35 volts and this is equal to 
the total applied voltage as shown in Figure 9.30. 

Back to Original Circuit — Now that these two 

voltage drops are known, you can go back to the 

original circuit and complete the circuit analysis. 
First of all, since you know that there is a drop of 

20 volts across R1_2, you also automatically know 
that there is a 20-volt drop across both R1 and R2 
since these are connected in parallel. Likewise you 
know that there are 15 volts across R3, R4, and 
R5, as shown in Figure 9.31. With these facts, you 

can calculate the current flowing through each of 
the individual resistors. 

Figure 9.29 

35V1 

1 
Figure 9.30 

ER3.5 = (IT) (R 3_5) 

= (1 mA) (15 kS2) 

= 15 V 

 li. 

Figure 9.31 
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• Ohm's Law (1R1) 
• Parallel Circuit Current Law 

• Ohm's Law (IR2) 

Ohm's Law (1R1) — The current flowing through 
R1 may be found by using Ohm's law as shown in 
Figure 9.32. Dividing 20 volts by 30 kilohms yields 
666 microamps of calculated current flowing 
through R1. 

Parallel Circuit Current Law — You know that the 
total current flowing in the circuit is 1 milliamp. 

Since R1 is passing 666 microamps and since 
resistor R2 affords the only other path for the 
remainder of the current flow, at this point in the 

circuit, the current through R2 may be found by 
subtracting the current through R1 from the total 
current flowing in the circuit. Following the 
procedure shown in Figure 9.33, 1 milliamp plus 
666 microamps equals 333 microamps of current 
for the current flowing through R2. 

Ohm's Law (IR2) — A second method may also be 

used to find the current flowing through R2 which 
involves simply using Ohm's law. Twenty volts are 
being dropped across R2 which is a 60-kilohm 

resistor. Ohm's law says that the current through 
R2 equals 20 volts divided by 60 kilohms, as 
shown in Figure 9.34. Hence this calculation also 

yields a current of 333 microamps flowing through 
R2, which agrees with the previous result. 

Figure 9.32 

Figure 9.33 

Figure 9.34 

IRI = ER1 
R1 

20 V 

30 kS2 

= 666 pA 

Mar 

I R2 = IT — IR1 

= 1 mA — 666 µA 

= 333 µA 

I R 2 = n R2 

2 

20 V 

60 kS2 

= 333 µA 
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• Calculating Lower Branch Currents 
• Ohm's Law (I R3) 

• Complete Circuit Solution 

Calculating Lower Branch Currents — Figure 9.35 
shows the original circuit with all the calculated 
values for the upper parallel resistor cluster labeled. 
Ohm's law may be used once again to calculate the 
current flowing through the three individual 
resistors in the lower cluster, R3, R4, and R5. 

From your previous analysis of the equivalent 

circuit, it was shown that 15 volts were being 
dropped across this lower parallel resistor 
combination. 

Ohm's Law (I R3) — The current through R3 can 
be calculated using Ohm's law in the form I R3 = 
ER 3/R3, as shown in Figure 9.36. Plugging in the 

circuit values yields 15 volts across R3, divided by 

the value of R3, 45 kilohms, which equals 333 
microamps of current for 13. 

Complete Circuit Solution — Determining the 

current flowing through resistors R4 and R5 is now 
relatively easy because these resistors all have the 
same value as R3. Since 1 milliamp of current 

enters the parallel combination of the identical 

resistors R3, R4, and R5, all the resistors must 
have one-third of 1 milliamp flowing through 
them. Thus each resistor in the lower parallel 
cluster has 333 microamps of current flowing 
through it, as shown in Figure 9.37. 

Keep in mind, however, that if the resistors in 
the lower parallel cluster had different resistive 
values, Ohm's law could have been used to solve 
for the current through each individual resistor. 

I 'RA 

XI 

R, 

I /DA 

>R2 IC) 
6155,1A »he 60141 

XI  

44, 5 
s5 

Figure 9.35 

Figure 9.36 

Figure 9.37 

ER3 

R3 --

R3 

15 V 

451(12 

= 333 mA 
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• Review of Circuit Analysis 

Review of Circuit Analysis — This is a good time to 
look back and review just how the analysis took 
place. 

Originally, only the applied voltage and the 
values of the various resistors were known as 
shown in Figure 9.38(A). 

By using parallel circuit laws, the parallel 
resistor combinations were reduced to their 
equivalent resistances illustrated in Figure 9.38(B). 

As you can see in Figure 9.39(A), the series 

circuit laws were then used to determine one single 

equivalent resistance for the circuit. 

This equivalent resistance was then used to 
determine the total current flowing in the circuit as 

in Figure 9.39(B). 

Once the total current was known, the 
individual resistances, and the series and parallel 

circuit laws were used to determine the voltage 
drops across the two parallel resistor combinations 

as you can see in Figure 9.40(A). 
Once the voltage drops were known, this 

information was used to calculate the current 
flowing through each of the individual resistors in 
the circuit in Figure 9.40(B). 

It is simply a process of: 
1. Reducing the resistances 
2. Determining the total current 

A 

Figure 9.38 

A 

Figure 9.39 

EA= 

R3_5 

I, • - -a> 
RI-5 

11111111 

Figure 9.40 
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• Lamp Demonstration Circuit 

3. Using this information to determine the 

voltage drops across and current flowing 
through each of the individual 

components. 
This procedure is basic to solving any 

series-parallel circuit where all the resistance values 
and the total applied voltage are known. 

Lamp Demonstration Circuit — At this point the 
basic steps in solving series-parallel circuits have 
been set down and demonstrated and a few circuits 
have been analyzed. More circuit examples will be 
worked through for you but for now it will be 

helpful to consider a real-life example of a 
series-parallel circuit to watch and get the feel of 
them in actual operation. The demonstration 
circuit that will be discussed is an easy one to set 

up in the laboratory and will provide you with 
some insight as to how these circuits behave. 

Figure 9.41 shows a schematic diagram of a 
series-parallel circuit that consists of four switches 

and four lamps. Notice that lamp 1 and switch 1 
are in series with the total current, and that 
lamps 2, 3, and 4 are connected in parallel with 
each other. Each lamp is controlled by the switch 
in series with it. 

Figure 9.41 
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• Switch Si Closed 

• Picture of Circuit Operation 

Switch Si Closed — Consider what would happen 
in this circuit if Si alone were closed. Would there 
be any current flow in the circuit? A quick 
examination of Figure 9.42 should tell you there 

would be no current flow. Trace the electron 
current flow out of the negative power supply 
terminal. With Si alone closed, current could flow 

through it, through lamp 1, and then as you can 
see, with S2, S3, and S4 open, there is no complete 

path for current flow further. 
If any one or all of these remaining switches 

are closed, the circuit will be completed and 
current will flow. 

Picture of Circuit Operation — Consider what will 

happen if switches Si and S2 are closed in 

Figure 9.43 which is a sketch of what this actual 
circuit might look like. With switches Si and S2 

closed, lamps L1 and L2 will be lit. 
Electron current will flow from the power 

supply, through Si, Li, L2, S2, and then return to 
the power supply. With Si and S2 closed, this 
circuit acts as a simple series circuit. Because these 
lamps are identical, they have the same amount of 
current flowing through them because they are 
connected in series, and they should produce the 
same amount of light as indicated in the figure. 
Equal currents through these identical lamps 
produce equal light output. (Also, because these 

two lamps are identical, they have the same 
resistance, and therefore the voltage drop across 

each is the same.) 

NO CURRENT RON 

Figure 9.42 

Figure 9.43 
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• Circuit Operation: S2 and S3 Closed 

Circuit Operation: S2 and S3 Closed — If S3 is now 
closed in this circuit, as shown in Figure 9.44, L1 
will glow much brighter than before, while L2 and 
L3 will not be as bright as L1. Lamp 2 will not be 

as bright as it was before, when it alone was 
connected in series with L1. Lamps 2 and 3 will be 

burning with equal (low) brightness. 
If this circuit were wired in front of you right 

now, that is the brightness picture you would be 

seeing. Keeping your series and parallel circuit laws 

in mind, along with some circuit sense, you can 

make some general statements about what is going 
on in this circuit before you actually analyze it 
mathematically. Focus your attention carefully on 
the brightness level of each lamp. Lamp 1 is 

burning more brightly than before; so since the 
lamp itself has not changed, there must be more 
current flowing through it than before. Since 

lamp 1 is in series in this circuit, this means that 
there is more total circuit current flowing now 
than there was before. This higher total circuit 

current flows on past L1 where it divides to flow 
through L2 and L3. Since L2 and L3 are in parallel 
and have the same resistance (they are identical 
lamps, remember), they each must carry one-half 
the total circuit current. Now think, what does 

that tell you? First, this explains why L2 and L3 
are of equal brightness, they each carry the same 
current. Second, L2 is dimmer than it was before, 
so it is receiving less current than before in this 
new circuit situation. (This also means that 

one-half the new total circuit current is less than 
the old total circuit current.) 

Those are a few general deductions. Now 
consider how these can be backed up by circuit 
analysis. 

Figure 9.44 

CLOSED BRIGHTER 

THAN BEFORE 
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• Lamp One Glows More Brightly 
• Calculating New Resistance 

Lamp One Glows More Brightly — Why does L1 

glow more brightly when L3 is switched on? As 
was mentioned, it must be because more current is 
flowing through it which means the total circuit 
current must increase. To calculate this increase, go 
back and consider the resistances in these two 
circuits as shown schematically in Figure 9.45. 

When L1 and L2 were connected in series, the 
circuit contained a certain amount of resistance. 
For typical resistance in laboratory lamps you 

might use about 40 ohms. With two of these lamps 
in series, the total resistance of the first circuit 

would be 80 ohms. 
When L3 was switched into the circuit, the 

circuit's total resistance was reduced. Why? Notice 
that L2 and L3 are connected in parallel. Recall 
that one of the parallel resistance rules says that 

two resistors of equal value connected in parallel 
have a total resistance equal to half the value of 

one of the resistors. 

Calculating New Resistance — According to the 

parallel resistance rule, shown in Figure 9.46, the 

equivalent resistance of lamps L2 and L3 in parallel 
is equal to Rs over N, which equals 40 over 2 or 

20 ohms. Now the total circuit resistance, RT, 
equals 40 ohms plus R2_3, or 40 ohms plus 

20 ohms, which is 60 ohms. 
Therefore, the circuit resistance dropped from 

80 ohms to 60 ohms when L3 was switched on. 

This is a decrease of 20 ohms or 20/80 (or 1/4 or 

25%) drop in resistance. Since the resistance has 
dropped by 25%, the total current flowing will rise 
by 25%, because as you should recall, current and 

resistance are inversely related. So L1, which is 

LAMP 

LAMP I 

Figure 9.45 

Figure 9.46 

R, • IOC • R2.3 

AT = 4012 + R2.3 

RT =40S2+20S2 

RT = 602 
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• Lamps Two and Three Burn Dimmer 
• Circuit Calculation: Circuit 1 

carrying the total current, will glow brighter than 
before. 

iTOIAL 
DIVIDES 
IN NILE 

DOD Nee 
MP I 
IMES MIMS 

Figure 9.47 

Figure 9.48 

Lamps Two and Three Burn Dimmer — This new 

25% higher current flows on to L2 and L3 where it 
divides, half flowing through each lamp 
(Figure 9.47). Although 25% more total current is 

flowing in this circuit, because it is divided by 2 as 
it flows through L2 and L3, these two lamps each 

receive less current than L2 did previously. This is 
why L2 and L3 glow less brightly now than in the 
first circuit. 

Circuit Calculation: Circuit 1 — To check this 

discussion, you could quickly calculate all the 

currents and voltages flowing in these circuits using 
the techniques covered in this lesson. In a 
laboratory demonstration of this type, the first 

circuit (shown in Figure 9.48) contains a 13-volt 
supply, and the two. lamps L1 and L2 are in series. 
The total circuit resistance has already been 

calculated as 80 ohms, so the total circuit current 
is just 13 volts divided by 80 ohms which is 163 
milliamps. The voltage dropped across each bulb 
equals this circuit current times the bulb's 
resistance, 163 milliamps times 40 ohms which is 

6.5 volts. Each bulb drops one-half of the supply 
voltage. 
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• Circuit Calculation: Circuit 2 
• Fourth Lamp in Circuit 

Figure 9.49 

Fourth Lamp in Circuit — You should be able to 
predict what would happen if a fourth lamp were 
switched into the circuit, as shown in Figure 9.50. 
Lamp 1, which is in series, should glow more 
brightly, and L2, L3, and L4 should glow less 
brightly than before. 

This effect occurs because L4 is put into the 
circuit in parallel, which decreases the total 
resistance of the circuit. This decrease again causes 
an increase in the total circuit current, which 
passes through lamp 1. 

Circuit Calculation: Circuit 2 — In the second 
circuit everything is the same except another bulb, 
L3, has been switched in across L2, as shown in 
Figure 9.49. The total resistance in this case has 
been calculated as 60 ohms. The total circuit 
current is just 13 volts divided by 60 ohms or 217 
milliamps. This is flowing through L1, so the 
voltage across L1 equals 217 milliamps times 
40 ohms or 8.67 volts. This current divides so that 
half of it flows through L2 and half through L3, 
217/2 is 109 milliamps. With 109 milliamps 
flowing through each of these 40-ohm bulbs, you 
can calculate that 109 milliamps times 40 ohms, or 
4.36 volts is across each of L2 and L3. This gives 
you a complete picture of how these circuits differ 
in operation, and what happens when switch 3 is 
thrown bringing a third lamp into the circuit. 

Figure 9.50 
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• Fuse Action 

• Circuit Switch Operation 

Fuse Action — The circuit has actually 
demonstrated an important circuit situation in 

electricity and electronics, that of the series-wired 
fuse. As has been discussed in earlier lessons, fuses 
are designed to be protective devices. They are 

usually made of a special resistive material that will 

melt if a prescribed current flows through it. If a 
circuit protected by a fuse were to draw too much 
current, the fuse would open the circuit. 

In the demonstration circuit of Figure 9.51, 
L1 is in the position that would normally be 

occupied by a fuse. All circuit current flows 
through it. In fact, L1 may actually act as a fuse. If 

the current carrying capability of the lamp is 

exceeded, the lamp will burn out, opening the 
circuit just as a fuse would if the circuit exceeded 
its current rating. 

Circuit Switch Operation — Quite a lot has been 

reviewed concerning this demonstration circuit. 

Before leaving it completely, focus your attention 
on one final factor, the action of the switches in 

this circuit. By examining the schematic in 

Figure 9.52, you can see that S1 controls the 
operation of all the circuit lamps because it is series 
with the total current. With S1 closed, the other 
switches can then be used to activate L2, L3, and 
L4 in the circuit branches. 

Consider the behavior of the voltage across 
S1. If this circuit were built for you in the 
laboratory, the voltage drop across S1 could be 
measured simply by placing the voltmeter leads 
directly across the switch. 

L 
Figure 9.51 

Figure 9.52 
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• Open Switch: Maximum Voltage Drop 

• Ohm's Law and Switches 

Open Switch: Maximum Voltage Drop — Let's 
check the operation of the circuit by closing 
switches Si and S2. Lamps L1 and L2 will light. If 
Si is now opened, as in Figure 9.53, both lights 
will go out and no current will flow in the circuit. 
If you placed a voltmeter across this open switch, 
as shown in the figure, the meter would indicate 
approximately 13 volts, the total power supply 
voltage. This value is indicated because in the 

"open" position, the switch offers maximum 

opposition to current flow. Because of this, no 

current flows anywhere in the circuit, so there is 
no voltage dropped anywhere in this circuit. Across 
the point where the circuit is broken, the full 

supply voltage appears. It is not enough voltage, 
however, to force current to flow through the very 
high resistance of the open switch. 

If the switch Si is closed, the voltmeter 

would read zero volts and the lamps will light. 

Ohm's Law and Switches — Figure 9.54 shows 

Ohm's law applied to a switch. The voltage drop 
across a device and the device's resistance vary 

directly. For an open switch, the resistance to 

current flow is infinite, so the voltage across it is at 
a maximum and it permits no current to flow. A 

closed switch offers zero resistance to current flow. 
Thus, if the resistance is zero ohms, the voltage 
drop across the resistance must be zero volts. The 
resistance of a closed switch is very close to zero 
ohms, so there's no voltage drop across it. 

1 

CIOSED: °PDT 
ZERO VOLTS 13 VOLTS 
RAMPS RAMPS OUT/ 
LIGHT) 

Figure 9.53 
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Figure 9.54 
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• Voltage Across a Switch 
• Series Parallel Circuit with Known Values 

Voltage Across a Switch — This is an important 
point to remember: voltage is always maximum or 
equal to the applied voltage across an open switch 
and minimum across a closed switch, as shown in 
Figure 9.55. 

R1 • 130 

R3 

Figure 9.56 

E E 
MAX MIN 

Figure 9.55 

Before leaving this lesson, it will be helpful to 
extend your knowledge of and skill in handling 
series-parallel circuits by discussing a different type 
of example. 

Up to this point, you have seen circuit 
reduction techniques used to determine voltages 
and currents in series-parallel circuits. In these 
examples you were given only the applied voltage 
and resistance values at the beginning of the 
problem. There will be times when you will know 
more about the circuit as you begin to analyze it 
than you did in the previous examples in this 
lesson. In some of these cases, the circuit analysis 
may proceed in a little more straightforward 
fashion. 

Series Parallel Circuit with Known Values — To see 
how this may be done, consider the circuit in 
Figure 9.56. Going through the solution to solve 

this circuit will help develop your circuit sense, 
because it is a tricky circuit. But, it is a circuit type 
often encountered and you should know how to 
handle it. 

First of all, take a moment to analyze this 
circuit. You should recognize it as a series-parallel 
circuit, because in this case there are two resistors, 
R1 and R6, that are in series with the total circuit 
current. 

You can also see that resistor R2 is a parallel 
component. The function of resistors R3, R4, and 
R5 in the circuit may not be clear to you at first. 
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• Redrawn Circuit 

This circuit can be redrawn in a slightly different 
fashion to clarify the operation of the right-hand 
side. 

Figure 9.57 

Redrawn Circuit — It is fairly easy to recognize in 
this redrawn circuit (Figure 9.57), that R3 and R4 
are in parallel with eaçh other, and that this 
parallel combination of R3 and R4 is in series with 
resistor R5. In addition, the parallel combination 
of R3 and R4 plus the series resistor R5 are all in 
parallel with resistor R2. Hence, in this circuit you 
can see that there is a parallel-series element (R3, 
R4, and R5) in parallel with another component, 
R2. This entire resistor cluster is in series with the 
components R1 and R6. 

Now focus your attention on the known 
quantities in this circuit as labeled on the 
schematic. You know that R1 is 1 kilohm, and that 
the current flowing through this leg of the circuit is 
50 milliamps. You know that resistor R2 is 
3 kilohms, and the current flowing through its 
branch is 12.5 milliamps. The current through the 
branch containing R3 is 25 milliamps, and the 
voltage drop across R4 is 25 volts. Finally, you are 
given that the voltage drop across R6 is 50 volts. 
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• Known Circuit Values Chart 
• Solution: Begin with R1 
• Calculation of ER1 and R6 

E I R 

ER1 = Iiii = 50 mA Ri = 1 Idi 

ER2 = IR2 = 12.5 mA R2 = 3 ka 

ER3 e IR3=25 mA R3= 

ER4 = 25 V 1R4 = R4 = 

ER5 = IR5 = R5 = 

ER6 =5° V 1R6 = R6 - 

ET = IT = RT = 

Figure 9.58 

Figure 9.59 

ER1 =(1 R1 )(R1) 

= (50 mA)(1 kn) 

= 50 V 

R6 = ER6/I R6 

= 50 V/50 mA = 1 kn 

Figure 9.60 

Known Circuit Values Chart — This example is 
really a little different from the others that have 
been analyzed in this lesson, except there are a few 
more knowns and unknowns, and they are sort of 
"scrambled." To help you keep track of the 
knowns and the unknowns as you determine them, 
you can use a chart such as the one shown in 
Figure 9.58. This chart lists all the possible 
voltages, currents, and resistances in the particular 
circuit you are going to solve. When you complete 
your calculations, all of the spaces will be filled in, 

and you can check your values since each voltage 
listed should equal the current times the resistance 
across each line of the chart. 

Solution: Begin with R1 — There are several ways 
to begin the solution of this problem, but in 
general when solving series-parallel circuits, it is a 
good idea to determine the total current flowing in 
the circuit as soon as possible. Focus your 
attention on Ri in Figure 9.59. Since Ri is in 
series with the total current, and you are given that 
50 milliamps is flowing through it, you 
immediately know that the total current flowing in 
this circuit, IT, is also 50 milliamps. Also, since R6 
is in series with the total current, it too must have 
50 milliamps flowing through it. With these values 
in mind, you can now use Ohm's law to calculate 
the voltage across Ri (ER1) and the resistance 
of R6. 

Calculation of ER1 and R6 — Using Ohm's law in 
the correct form, as shown in Figure 9.60 ER6 and 
R6 can be calculated. ER1 is 50 volts and R6 turns 
out to be identical to Ri, 1 kilohm. 
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• Solution: Branch Containing R2 
• Chart with Calculated Values 

Ri • IRO 

iirsorm 

Figure 9.61 

E I R 

ER1 ' 50 V 1R1 ' 50 mA R1 = 1 ktz 

ER2 ' 37.5 V 1R2 ' 12.5 mA R2 = .3 kn 

ER3 = IR3 = 25 mA R3 = 

E = 25 V IR4 = R4 = 

ER5 = I R5 = R5 = 

ER6 = 50 V IR6 = 50 mA R6 =1 Idt 

ET = 137.5 V IT = 50 mA RT = 

Figure 9.62 

Solution: Branch Containing R2 — Turn your 
attention to the branch containing resistor R2 in 
Figure 9.61. You know two things about R2: its 
resistance is 3 kilohms and the current flow 
through it is 12.5 milliamps. Using Ohm's law in 
the form ER2 = I R2 X R2, you can calculate the 
voltage across 1:12, 12.5 milliamps times 3 kilohms 
is 37.5 volts for ER2. Remember this important 
fact, the voltage across R2 is also the voltage across 
the right-hand branch (between points C and D), 

since these two branches are connected in parallel. 
Therefore, ER2 (37.5 volts) is the voltage across 
the entire parallel-connected cluster of resistors. At 
this point you know: 

1. The voltage across Ri is 50 volts. 
2. Connected in series with R1 is the 

parallel cluster containing resistors R2, 
R3, R4, and R5, and the voltage across 
that cluster (ER2_5) is 37.5 volts. 

3. Connected in series with R2_5 is R6 and 
the voltage across R6 is 50 volts. 

What do these three facts tell you? The total 
voltage, ET, is the sum of these three voltages: 

ET = ER1 + ER2-5 + ER6 
or 

ET = 50 + 37.5 + 50 
ET = 137.5 V 

Chart with Calculated Values — You are now quite 
well into the analysis of the operation of this 
circuit. Your chart of values at this point should 
look like the one in Figure 9.62. By inspecting the 
chart carefully, you can decide on your next step. 
First of all, since ET and IT, the total applied 
voltage and current, are known, you can calculate 
RT, the total equivalent resistance of this circuit, 
using Ohm's law. Notice that no circuit reduction 
was involved in this case since you were given 
different types of known values at the start of this 
problem than in previous cases. Using Ohm's law in 
the form RT = ET/IT, and substituting, yields 
RT -= 137.5 volts divided by 50 milliamps, which 
equals a value of 2.75 kilohms. Looking at the 
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• Circuit Solution: Right-Hand Branch 

other blank spaces in your chart should tell you 
that it is time to move your attention to the 
right-hand branch of the circuit which contains R3, 
R4, and R5. 

Figure 9.63 

Circuit Solution: Right-Hand Branch — All you 
know about the branch in Figure 9.63 is that the 
voltage across it equals ER2, 37.5 volts. What else 

can you calculate about it? The law for currents in 
a parallel circuit states that the total or main line 
current must equal the sum of the branch currents. 
Here, 50 milliamps is flowing through R6 to 
point B, where it divides. You know that 12.5 
milliamps out of this 50 milliamps flows through 
R2, so the rest must flow in the right-hand branch. 
Fifty milliamps minus 12.5 milliamps yields 37.5 
milliamps flowing in this branch. Automatically 
you know that this is I R5, the current through R5 
since R5 is in series in this branch and hence must 
carry all the branch current. Also, this branch 
current of 37.5 milliamps flowing past R5 must 

again branch to go through R3 and R4. 
Twenty-five out of those 37.5 milliamps flow 
through R3 so what is left must go through R4. 
This 37.5 milliamps minus 25 milliamps leaves 12.5 
milliamps for the current through R4, •IF14. 
Immediately, your mind should "click." ER4 and 
I R4 are now known. Therefore, R4 can be 
calculated with Ohm's law in the form R4 = 
ER4/I R4. Substituting, R4 = 25 volts/12.5 
milliamps, or R4 equals 2 kilohms. 
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• Circuit Solution R3 and R5 

• Complete Analysis 

Figure 9.64 

E I R 

ERI = 50 V I R 1 = 50 mA Ri = 1 kS2 

ER2 = 37.5 V IR2= 12.5 mA R2 = 3 ksz 
ER3 = 25 V I R3 = 25 mA R = 11(12 

ER4 = 25 V IR4 = 12.5 mA R4 = 2 kn 

ER5 = 12.5 V I R5 = 37.5 mA R5 = 333 S2 

ER6 = 50 V I R6 = 50 mA R6 = 1 kS2 

ET = 137.5 V IT = 50 mA RT = 2.75 Id2 

Figure 9.65 

Circuit Solution R3 and R5 — Where do you 
proceed from here? Look at Figure 9.64. You need 

to "finish off" R3 and R5. What do you know 
about R3? You are given that 25 milliamps of 
current flows through it. Also, notice that it is in 

parallel with R4, so the voltage across R4 is also 
the voltage across R3, 25 volts. This enables you to 
calculate R3: 

R3 = ER3/IR3 

R3 = 25 V/25 mA 
which equals 1 kilohm. 

Proceed to R5. You have already calculated 
that I R5 is 37.5 milliamps. You know that the 
total voltage across the right-hand branch, between 
points C and D, is 37.5 volts. Twenty-five volts of 
that is dropped across the parallel cluster 
containing R3 and R4, and the remainder must be 
dropped across R5. This means that 37.5 volts 
minus 25 volts results in 12.5 volts for ER5. With 
ER5 and I R5 known, you can now calculate 

R5 = ER5/IR5 
= 12.5 V/37.5 mA 

which equals 333 ohms. 

Complete Analysis — Your analysis should be 

complete and the completed chart of values for 
this circuit is given in Figure 9.65 for your 
reference. 
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• Final Note-Power in Series-Parallel Circuits 

Final Note-Power in Series-Parallel Circuits — As 

was the case for parallel-series circuits and all de 
resistive circuits, the power dissipated by the 
circuit is an additive quantity. To find the total 

power a series-parallel circuit dissipates, you could: 
1. Find the power dissipated by each 

resistor and add them all. 

2. Apply a power formula to the total 
circuit quantities ET, IT, or RT. 

For the circuit that has just been analyzed 

then, as shown in Figure 9.66, the total dissipated 
power can be calculated using the formula PT = 

IT X ET. Substituting the circuit total values into 

the formula: 
PT = 50 mA X 137.5 V 
PT = 6.88 W 

More information concerning the calculation 
of dissipated power in complex circuits will be 
covered in Lesson 10. 

During this lesson quite a lot concerning the 
series-parallel circuit has been covered. These 

circuits were first discussed in general with 
attention to how they may be recognized and what 
the outstanding features of these operations are. 

Several simple circuits were analyzed where you 
were given the applied voltages and resistance 
values and where to calculate all voltages and 

currents. In cases such as this, three steps to follow 
in the circuit analysis were set down. A "live" 
example then demonstrated some of the 
peculiarities in the behavior of these circuits for 
you. Finally, an example involving a "detective" 

approach was covered for you. In cases such as the 

last one, you proceed through the circuit armed 
with your "circuit sense," building your analysis as 

you go along. 
Practice, as usual, is the best way to develop 

the knack for handling these circuits. An extensive 

set of worked through examples and practice 
problems is included at the end of this lesson for 
your use. If you work with these problems, you 
will find yourself capable of solving these circuits 

very quickly. Also, you should begin to enjoy the 
"detective" aspect involved in predicting the 

behavior of voltages and currents in this complex 

circuit situation. 

Pi • IT x ET 

IT • 50 rnA 
ET • 131.5 V 

PT • (50 x X 1137.51 • 6.88 WATTS 

Figure 9.66 
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LESSON 9. SERIES-PARALLEL CIRCUITS 

• Worked Through Examples 

1. In the series-parallel circuit shown, calculate the total equivalent resistance and all unknown voltages 
and currents using Ohm's law and circuit reduction techniques. 

R 1 
15kn 

ET= 

72V ----

R2 
18krt 

R3 

18kn 

First, you can find RT by circuit reduction techniques. Since R2 and R3 are of equal value and are 
connected in parallel, the equivalent resistance, R2,3 can be found with the formula: 

Rs 
Req = —N 

Rs equals 18 kilohms and N equals 2, so: 

R 18 kS2 
R2,3 = Req — s =  

N 2 

R2,3 = 9 4(2 

After the first circuit reduction, the circuit now consists of R1 in series with R2 ,3 as shown. 

ET= 

72V 

I 
1 

Ri 

15kS-2 

R2 ,3 

9 kS-2 
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• Worked Through Examples 

You can find the total resistance of the circuit by simply using the series circuit law which says that 
the total resistance of a series circuit equals the sum of the individual resistances. In formula form: 

RT = R1 + R2 + R3 +... 

or in this case: 

RT = R1 + R2,3 

RT = 15 kS2 + 9 1(1.2 

RT = 24 k52 

72V — RT 
24K2 

Once you know the total resistance, you can find the total current by using Ohm's law in the form 

IT = ET/RT. Substituting the appropriate values in the formula gives: 

ET 72 V  
IT = — 

RT 24 kS2 

IT = 3 mA 

This total current can be used to find the voltage across Ri. Remember, since R1 is in series with the 

rest of the circuit, the total current must flow through R 1. If you use Ohm's law in the form E=IXR 
and substitute the appropriate values, you get: 

ER 1 = IT X R1 

ER1 = 3 mA X 15 Id2 

ER1 = 45 V 

Eli 

17.3mA 

R1 

15k!! 

R2,3 

ER1 45V 
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• Worked Through Examples 

Remember that in a series circuit the total voltage equals the sum of the individual voltage drops. You 

know the total voltage and the voltage across R; the remainder of the voltage must be dropped across 
R2,3. In formula form: 

ER2,3 = ET — E R1 

E R2,3 = 72 V — 45 V 

ER2,3 = 27 V 

You can find the current through R2 or R3 by using Ohm's law in the form I = E/R. Remember, R2 
and R3 are in parallel, so they have the same 27 volts dropped across them. 

E R 2 = 27 V  

R2 18 I<S2 

I R2 = 1.5 mA 

Since R2 and R3 have the same resistance value and the same voltage across them, they have the same 
current flow through them. You could have found the current through R2 and R3 by simply realizing 
that they must divide the total current of 3 milliamps equally between them. 

IT 3 mA 
IR2 = IR3 — 2 — 2 

IR2 = IR3 = 1.5 mA 
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• Worked Through Examples 

If R2 and R3 did not have the same resistance value, you could have found the current through R3 by 
subtraction. You know the total current and you know the current through R2, so the remainder of 

the current must flow through R3. 

IR3 = IT — IR2 

I R3 = 3 mA — 1.5 mA 

I R3 = 1.5 mA 

and the circuit is completely solved. 

2. In the series-parallel circuit shown, calculate the total equivalent resistance and all unknown voltages 

and currents using Ohm's law and circuit reduction techniques. 

In order to keep track of all the knowns and unknowns, make a chart as shown below and fill in the 

known values. Then you can fill in the unknown values as you calculate them. 

E I R 

ER1 = 36 V IR 1 = Ri = 10 kS2 

ER2 = 36 V IR2 = R2 = 15 kS2 

ER3 = = IR3 R3 = 27 kS2 

ER4 = IR4 = R4 = 27 kS-2 

= ER5 I = R5 2mA  R5 = 27 kn 

ER6 = IR6 = R6 = 2 ks2 

ET = IT = RT = 

9-38 



• Worked Through Examples 

Notice that since R1 and R2 are in parallel, the voltage across them is the same. 

You can use Ohm's law in the form I = E/R to calculate I Ri and I R2. 

ER1 ER2 
IR1 "2 

36 V 36 V  

R 1 = 10 kS2 I R2 15 kn 

I R1 = 3.6 mA I R 2 = 2.4 mA 

You know that the total current in a parallel circuit equals the sum of the individual branch currents. 
In this circuit, the total current flows through the combination of Ri and R2; you can add I Ri and 
I R2 to get IT. 

IT = IR1 IR2 

IT = 3.6 mA + 2.4 mA 

IT = 6.0 mA 

You can now fill in these calculated values on the chart as shown. 

E I R 

ER1 = 36 V IR1 = 3.6 111A Ri = 10 kn 

ER2 = 36 V IR2 = 2.4 mA R2 = 15 kS2 

ER3 IR3 R3 = 271(12 

ER4 IR4 R4 = 27 kS2 

ER5 IR5 = 2 mA R5 = 27 kS2 

ER6 IR6 R6 = 2 kn 

ET IT = 6.0 mA RT 

Looking at the chart or the circuit, you can see that you know two things about R5, you know its 

resistance, and you know the current flow through it. You can useOhm's law in the form E=IXR 
to find ER5. 

ERS — IR5 X R5 

ER5 = 2 mA X 27 la2 

ER5 = 54 V 
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• Worked Through Examples 

Because R3, R4, and R5 are in parallel, they have 54 volts dropped across them. If they all have the 
same voltage across them and they all have the same resistance value, then the current must be the 
same through all of them. Since IR5 equals 2 milliamps, then I R3 and I R4 also equal 2 milliamps each. 

E I R 

ER1 = 36 V 411 = 3.6 mA R1 = ion2 

ER2 = 36 V IR2 = 2.4 mA R2 = 15 kS2 

ER3 = 54 V 
1R3 = 2mA R3 = 27 kn 

ER4 = 54 V 1R4 = 2 mA R4 = 27 kS2 

ER5 = 54 V 1R5 = 2 mA 
R5 = 27 kS2 

ER6 IR6 R6 = 2 kS2 

ET IT = 6.0 mA RT 

You could check your work at this point by adding I R3, I • R4 and I R5 to see that they do add up to 
the total current of 6 milliamps. 

Because R6 is in series with the rest of the circuit, the total current must flow through it. Thus I R6 
equals 6 milliamps and you can now use this information to find ER6. 

ER6 = 1R6 X R6 

ER6 = 6 mA X 2 kS2 

ER6 = 12 V 

As shown, you know the voltage across and current flow through each portion of the circuit. 
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• Worked Through Examples 

E 

The voltage across R1 and R2 is the same; ER 1,2 equals 36 volts. The voltage is also the same across 

R3, R4, and R5; ER3 4 5 equals 54 volts. You also know the voltage across R6; ER6 equals 12 volts. 
From series circuit laws, these voltages can be added to find the total voltage applied to the circuit. 

ET = ER z + 
E R3,4,5 + ER6 

ET = 36 V + 54 V + 12 V 

ET -- 102 V 

The only unknown quantity remaining to be calculated is the total resistance. This can be found in 
either of two ways. One way is to use Ohm's law in the form: 

ET 
RT =— 

IT 

When you substitute the appropriate values in the formula, you obtain: 

102 V  
RT = 

6 mA 

RT = 17 kS2 
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• Worked Through Examples 

Circuit reduction techniques can also be used to find RT. First, consider R1 in parallel with R2. Using 
the product-over-the-sum formula: 

R1 X R2 

R1 ,2 R1 + R2 

10 k0 X 15 k2 
R - 
1,2- 10 1(0 + 15 k0 

(1 X 10+4) X (1.5 X 10+4)  
R1'2 - (1 X 10+4) + (1.5 X 10+4) 

1.5 X 10+8 

R1 '2 - 2.5 X 10+4 

R1,2 = 0.6 X 10+4 = 6 I<S2 

R3 = 

27k2 

= 6kSZ 

R4 = 

27k S-2 
e R5 = 27k2 

SSS  

R6 = 21(1.2 

Because R3, R4 and R5 all have the same resistance value, they can be reduced to an equivalent 

resistance by using the formula: 

Rs 
Reg = —N 

R eq = 27 1(0 

3 

Reg = 9 I<S2 
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• Worked Through Examples 

NOV%  

R6.2k52 

R345 II 

These three resistances are now in series and can be added to find RT. 

RT = R1,2 + R3,4,6 + R6 

RT = 6 I<S2 + 9 l<52 + 2 kS2 

RT = 17 I<S2 

and this agrees with the previous calculation. 

The chart can be filled in as shown, and the circuit is completely solved. 

E I R 

ER 1 = 36 V 1R 1 = 3-6 mA Ri = 10 K2 

ER2 = 36 V IR2 = 2.4 mA R2 = 15162 

ER3 = 54 V IR3 = 2 mA R3 = 27 Idt 

ER4 = 54 V 1R4 = 2 mA R4 = 27 kS2 

ER5 = 54 V 1R5 = 2 mA R5 = 271(1.2 

ER6 = 12 V 1R6 = 6 mA R6 = 2 kSZ 

ET = 102 V IT = 6 mA RT = 17 kS2 
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LESSON 9. SERIES-PARALLEL CIRCUITS 

• Practice Problems 

The key objective of this lesson has been achieved if you can analyze any series parallel circuit in a 
variety of situations such as: 

1. Given a series-parallel wired network of resistors, calculate their equivalent resistance, Req. 
2. Given a series-parallel circuit with all of the resistor values and the applied voltage labeled, 

calculate any or all of the voltages across and currents through each resistor, as well as the 
total circuit current and equivalent resistance. 

3. Given a series-parallel circuit schematic with several known values labeled, calculate any 
unknown values required. 

The practice problems that follow are designed to give you as much practice as you may need in these 
areas. It is suggested that you work enough of these to enable you to approach and analyze any series-
parallel circuit without referring back to the lesson. Fold over the page to check your answers 

Depending upon the approach you use in solving these problems and how you round off intermediate 
results, your answers may vary slightly from those given here. However, any differences you encounter 
should only occur in the third significant digit of your answer. If the first two significant digits of your 

answers do not agree with those given here, recheck your calculations. 

1. Find Req for the following circuits. 

a. 

Req =  

Fold Over 

9-45 



• Practice Problems 

Answers 

1.a. Req = 58.5 id2 
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• Practice Problems 

b. Fold Over 

C. 
6211 

Reg =  

Req =  
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• Practice Problems 

Answers 

1.b. Reg = 7.39 I<S2 

1.c. R eg = 199 St 
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• Practice Problems 

d. Fold Over 
lkfl 

e. 

15k11 

lekfl 

R eq =  

Req =  
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• Practice Problems 

Answers 

1.d. Reg = 1-61 kS2 

1.e. Req = 76.9 kS2 
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• Practice Problems 

f. Fold Over 

g. 
um) 

310kfl 

Reg =  

Reg =  
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• Practice Problems 

Answers 

1.f. Req = 148 kn 

1.g. Reg = 1.65 MS2 
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• Practice Problems 

h. Fold Over 
1 SI 

82ft 

4731 

Reg =  

Reg =  
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• Practice Problems 

Answers 

1.h. Req = 10-1 kS2 

1.i. Reg = 304 SZ 
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• Practice Problems 

j. Fold Over 
Reg =  

k. 

16k51 

R eq =  
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• Practice Problems 

Answers 

1.j. Req = 1 kS.2 

1.k. Req = 154 kS2 
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• Practice Problems 

I. Fold Over 

m. 

Z2Okil 

60Ckft 

Reg =  

R eq =  
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• Practice Problems 

Answers 

1.1. Req = 5.82 tat 

1.m. R eq = 124 mn 
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• Practice Problems 

n. 

o. 

R eq =  

Req =  

Fold Over 
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• Practice Problems 

Answers 

1.n. Req 9.6 = 0 MS-2 

1.o. Req = 14.4 la2 
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• Practice Problems 

P. 

R eq =  

Fold Over 
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• Practice Problems 

Answers 

1.p. Reg = 432 S1 
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• Practice Problems 

2. Using Ohm's law and circuit reduction techniques, calculate the Fold Over 
requested voltages and currents in the following circuits. 

a. 

RI 10kfa 

b. 

15k11 

Ri•lkS1 

I R2 =  

ER4 =  

I R5 =  

I R3 =  

ER4 =  

I R6 =  
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• Practice Problems 

Answers 

2.a. I R2 = 137 µA 

ER4 = 2.40 V 

I R5 = 66.7 biA 

2.b. I R3 = 1 mA 

ER4 = 724 mV 

l R6 = 329 PA 
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• Practice Problems 

C. 

R1 
390S1 

d. 

27051 

Rg 5611 

ER1 =   

I R2 =   

ER6 =   

ER1 = 

ER5 = 

l R7 = 

Fold Over 
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• Practice Problems 

Answers 

2.c. ER 1 = 39 V 

1R2 = 50 mA 

ER6 = 4.0 V 

2.d. ER1 = 44.0 mV 

ER5 = 59.0 mV 

I R7 = 5.0 mA 
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• Practice Problems 

e. Fold Over 

R1 

120M 

37 

f. 

5130k17 

ER1 =   

ER2 =   

I R6 =   

ER3 =   

I R 4 =   

E R6 =   
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• Practice Problems 

Answers 

2.e. ER1 = 3.6 V 

ER2 = 3.69 V 

I R6 = 10.0,uA 

2.f. ER3 = 24.0 V 

I R4 = 389 nA 

ER6 = 21.8 V 
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• Practice Problems 

9. Fold Over 

el 
3.9Mft 

h. 

10.0MS-1 

R1 

391cS2 

I R 1 =   

I R3 =   

I R6 =   

E R 1 =   

E R 4 =   

E R7 =   
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• Practice Problems 

Answers 

2.g. I R 1 = 500 nA 

I R3 = 250 nA 

I R6 = 167 nA 

2.h. ER1 = 7.44 V 

ER4 = 6.27 V 

ER7 = 14.1 V 
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• Practice Problems 

3. Calculate the requested voltages, currents, and resistances in the following Fold Over 
circuits. 

a. 

R1 

330f1 

b. 

R1 

101cf1 

R2 =   

I R 3 =   

E R7 =   

ET = 

I R 1 =   

R4 = 

E R7 =   

ET =   
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• Practice Problems 

Answers 

3.a. R2 = 150 SZ 

I R3 = 5 mA 

ER7 = 535 mV 

ET = 7.58 V 

lb' l R1 = 1.63 mA 

R4 = 10.0 ks-2 

ER7 = 11.7 V 

ET = 36.0 V 
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• Practice Problems 

C. 

R1 

d. 

58kft 

eant 

I R2 =   

I R4 =   

R5 = 

ET = 

I R 1 = 

ER3 =   

R4 =   

ET = 

Fold Over 
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S Practice Problems 

Answers 

3.c. 
I R2 = 3°I3 PA 

I R4 = 600 biA 

R5 = 39 1(12 

ET = 88.5 V 

3.d. I R 1 = 43.6 µA 

ER3 = 65.8 V 

R4 = 330 kS2 

ET = 120 V 
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• Practice Problems 

e. 

f. 

Idcfl 

RI 
3.9k PI 

ER1 =   

ER5 =   

I R6 =   

ET =   

I R1 = 

I R4 = 

ER5 = 

ET = 

Fold Over 
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• Practice Problems 

Answers 

3.e. ER1 = 12 V 

ER5 = 6.76 V 

1R6 = 173 PA 

ET = 84.3 V 

3.f. I R 1 = 2.36 mA 

I R4 = " 3 mA 

ER5 = 9.04 V 

ET = 52.7 V 
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LESSON 9 — QUIZ 

Identify the following circuits as series (S), 
parallel (P), series-parallel (SP), or parallel series 
(PS). 

1 

2 

3 

4 

5 

Find Reg for the following circuits: 

6. 10k2 
 -•VV%  

7 

15k2 

8.2kSt 
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LESSON 9 — QUIZ 

Find the requested voltages and currents and the Find the requested voltages, currents, and 
total resistance for the following circuit. resistances in the following circuit. 

R1 

 •VS/se  
22kS2 

9. RT=  

10. IT=  

1 1 . IR2=  

12. ER5=  

13. Iv=  

R1 

R5 

1.8kS2 

14. 

15. R2=  

16. ER4= 

17. IR6=  

18. ET=  

19. When solving Parallel-Series Networks: 

a. Each branch was examined first 
b. Series circuit laws were applied to each 
c. branch 
d. Parallel circuit laws reduced the elements 

to minimum 
All of the above 

20. When solving Series-Parallel Networks: 

a. Parallel circuit clusters are reduced with 
parallel laws 

b. Series laws are used to reduce elements to 
minimum series elements 

c. The total current is found from the total 
equivalent series resistance 

d. All of the above 
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Lesson 10 

Voltage, Current, and Power 

This lesson introduces the loaded voltage divider as a particular 
application of series-parallel circuits. The concept of dividing voltage is 
illustrated with a simple voltage divider circuit and this circuit is used to 
examine the effect of selecting different ground points in the circuit. 
More practical voltage dividers with loads are discussed, and then the 
basic power formulas are reviewed and applied to a voltage divider 

circuit. The procedures for finding square roots with a calculator and 
with square root tables are also discussed. 
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LESSON 10. VOLTAGE DIVIDERS AND POWER 

• Objectives 

In this lesson your knowledge of series-parallel circuits will be extended to cover the voltage divider 
circuit configuration. In addition, the concept of power will be reviewed and calculation of power 
consumption for more complex circuits will be covered. Upon successful completion of this lesson, you 
should be able to: 

1. Design a voltage divider circuit using a 100-volt power supply and five 10-kilohm resistors 
that will provide voltages of —20 V, —40 V, —60 V, +20 V, and +40 V to an external circuit 
that draws little or no current. 

2. Write an explanation of the terms shown below, including diagrams where necessary: 

a. Polarity 

b. Ground reference 

c. Load 
d. Bleeder current 

3. Write the "rules of thumb" by which bleeder currents may be selected for voltage dividers in 
simple applications. 

4. Design a voltage divider that could be used to supply power to two loads requiring 45 volts 

at 20 milliamps, and 150 volts at 10 milliamps from a 200-volt power supply. 

5. Using circle diagram (if necessary), write formulas that can be used to calculate power if 

a. Voltage across and current through a load are known 
b. Current through and resistance of a load are known 
c. Voltage across and resistance of a load are known. 

6. With what you have learned in previous lessons, calculate the voltage across, current 
through, or resistance of any resistor in a circuit schematic such as the one shown. At the 
end of this lesson, given the same schematic and using Ohm's law, the power formulas, and 
circuit reduction techniques, calculate the power each resistor dissipates. 

PR3 

405mW 
PR2 
425mW 

7. When performing square root calculations required in problems such as the above, use a 

handheld calculator or square root tables to find the square roots. 

1 0-3 





LESSON 10. VOLTAGE DIVIDERS AND POWER 

• Voltage Dividers 

This lesson, Lesson 10, introduces the topic of voltage dividers, and reviews and expands your 
knowledge of the power formulas used in dc circuits and how to use them. The review and discussion of the 
power formulas will be presented later on in the lesson, and they will be related to series-parallel circuits of 
the type that were covered in Lessons 8 and 9. 

Voltage Dividers — The first part of this lesson 

gives you a look at what is called a voltage divider. 
You will learn what voltage dividers are, and why 
they are used (Figure 10.1). As you will see, a 
voltage divider is actually a series-parallel circuits, 
so in order to understand and work with voltage 

dividers, you need to know Ohm's law, the series 
voltage law, and the parallel current law. 

VOLTAGE DIVIDERS 

• WHAT THEY ARE 

• WHY THEY ARE USED 

Figure 10.1 

Now you may be asking, "What are voltage 
dividers anyway, and why should I study them?" 
Often in your study of electricity or electronics, 

you may have an application or circuit situation 
that requires a voltage source which can provide 

several specified voltages and currents, but there is 

no power supply handy that provides just the 
voltages you need. (For example, suppose you 

need to operate devices that require 15, 25, and 

150 volts, and maybe only a 200-volt supply is 
available.) Voltage dividers provide a fairly 

economical way to obtain one or several lower 
voltages from a single higher voltage supply. Since 

this requirement occurs quite often, it is 
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• Sample Voltage Divider 

convenient to know about voltage dividers and 
their use. It is also important to realize the 

limitations and tradeoffs involved in their use. 
They do waste some power and in general cannot 
be used to operate devices whose demand for 
current is very high or varies greatly. 

Sample Voltage Divider — In order to better 
únderstand voltage dividers, it will be helpful to 
review some of the topics related to them that have 
already been covered. In Lesson 5, it was pointed 
out how it is possible to get both positive and 
negative voltages from one series string of resistors, 
depending on where the reference point is in the 
circuit. It may seem unusual that a circuit may 
require negative and positive voltages from a single 

source; however, circuits and devices requiring 
more than one polarity of voltage for their 
operation are quite common in many electronic 
applications, from your TV to the most advanced 
computers. 

Figure 10.2 shows a simple series circuit with 
four resistors each having 25 ohms of resistance. 
This means that in this circuit there is a total of 
100 ohms of resistance across a 100-volt supply. 

100V 

Figure 10.2 
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• Calculations for Sample Circuit 

• Sample Divider with Voltages 
• Voltage Divider Equation 

Calculations for Sample Circuit — Using Ohm's law 

as shown in Figure 10.3, you can calculate that the 

total current flowing in this circuit is 1 amp. You 
can use Ohm's law once again in the form E = I 

times R to determine the voltage across R4. Since 
you know the current is the same in all parts of a 
series circuit, the current through R4 is 1 amp. 
Multiplying 1 amp times 25 ohms yields a 

calculated voltage drop of 25 volts across R4. 

Sample Divider with Voltages — In the circuit of 
Figure 10.4, 25 volts is measured from ground to 

point D. If you were to measure the voltage from 
ground to point C, you would have an additional 

25 volts across R3 which when added to the 
voltage drop across R4 would give you a total of 

50 volts. If you were to measure the voltage from 
ground to point B, you would have 75 volts, and 

from ground to point A, you would measure the 

total supply voltage of 100 volts. You can see that 

at points A, B, C, and D, there are four different 
voltages increasing in 25-volt steps; the voltage has 

been divided by this circuit. 

in 
(SUPPLY r 

Qj 

Figure 10.5 

R4 

(SUPPLY  
81 • R2 .R3 .R4 

/  (SUPPLY  
EA8 I RI \RI • RO RS • R4 

IOUTI'(% .1,:ft) ROM 

Eloui) • (R TL) (EsuPPtY) 

VOLTAGE DIVIDER EQUATION 

I = E/R 

100 VOLTS 
I=  

100 OHMS 

E=IXR 

E = 1 AMP X 25 OHMS 

E = 25 VOLTS 

Figure 10.3 

Figure 10.4 

I= 1 AMP 

( v) 

(75V) 

(251) 

Voltage Divider Equation — The voltage output 
between any two points of a simple series circuit 
voltage divider such as this can be expressed in 
terms of a formula often called the voltage divider 
equation. Consider the simple circuit shown in 
Figure 10.5, where R1, R2, R3, and R4 can be any 
resistor values, and Esuppiy is the supply voltage 
connected in series with them. You know' from 

Ohm's law that the total current flowing in this 
circuit, I, equals the supply voltage divided by the 

total series resistance of the circuit: 

Esupply 
I — 

R1 + R2 + R3 + R4 
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• Voltage Divider Equation 

The voltage between any two points on this 
divider equals the product of this current times the 
resistance between these two points. For example, 

EAB = I X R1. If you substitute for I, its 

equivalent expression as shown, you find that: 

EAB — 

E supp y  

R1 + R2 + R3 + R4 ) X R1 

It turns out that for any two points on this 
divider the voltage output can be related directly 

to the supply voltage through a simple formula like 
this. Recognize that R1 + R2 + R3 + R4 is the 
total resistance of the circuit, Rtota l. Then the 
output voltage between any two points, Eout, can 

be expressed as 

(Esupply) 
E — R out X out 

Rtotal 

or, just moving these terms around: 

E —   out (p out ) X Esupply 
— total 

This last expression is called the voltage 
divider equation. It states that the voltage output 

between any two points of a voltage divider equals 
the supply voltage times the ratio of the resistance 

between these two points, to the total resistance of 
the circuit. 

This series circuit is one simple type of 
voltage divider. Suppose that you wanted to obtain 
a negative 25 volts from this same 100-volt supply. 

How could this circuit be altered to provide that? 

All you have to do is move the ground reference to 
point D, and move point D down to where the 
ground point was originally. 
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• Review: Grounds and Voltage Reference 
• Return Path for Current 

Figure 10.6 

BRIGHTNESS I. AMP 
, CONTROL 

_ B 'POTENT 10METERI 

GROUNDED TO 
METAL FRAME 

BAT TER Y 

Figure 10.7 

POTENTIOMETER 
sl, 

GROUNDED TO METAL FRAME 

CARDAIS 
GROUND 

LEAL 
CHASSIS 

DASH L IGHT 

DIMMER SWITCH 

Review: Grounds and Voltage Reference — At this 
point it might be helpful to review the concept of a 
reference point for voltage measurement and 
ground. As has been mentioned previously, 
whenever a voltage is being measured, two points 
are involved. There are two probes on any 
voltmeter and the meter will measure the potential 
difference between these points. In circuits, voltage 
values are often stated with respect to,one 
common reference point in the circuit. This 
reference point is given the general name 
"ground." Note that as shown in Figure 10.6, once 
this reference point is established for voltage, it is 
considered. to be the zero voltage point, in the 
circuit: This is because it is at zero vo.ts with 
respect to itself as a reference. Think about this; 
any point is at zero volts with respect to itself as a 
reference. Also, any point in the circuit can be 
picked as a reference point for measuring voltage. 
If you place the voltmeter's reference probe at the 
reference point of the circuit, you can then 
measure all voltages and their polarities with 
respect to that point by touching the voltmeter's 
positive probe to other points in the circuit. Note 
that if you touch the Posktive probe to the 
reference point itself, you will read zero volts. The 
probes are effectively touched together. 

Return Path for Current — In addition to being 
used to specify the reference point from which 
voltage measurements are taken, the word ground 
is also often used to designate the return path for 
current flow in a circuit. In much electronic 
circuitry, the metal chassis upon which the circuit 
is assembled is used as the "return" path. In your 
car, the body and frame of the car are used as a 
return path for the current and are usually part of 
the path completing all circuits as shown in 
Figure 10.7. The great advantage of the common 
ground is realized in its contribution to the 
economy of wiring in circuits. Only one wire need 
be run to the part, and then the chassis completes 
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• Earth Ground 

the circuit. In addition, schematic diagrams are 
simplified, and voltage checks in equipment are 
made easier. Usually the technician is given a table 
of voltages with respect to the chassis of a piece of 
equipment. With the meter reference probe 
connected to the chassis, voltage readings may then 
be taken easily throughout the circuit with the 
other probe. The symbol used for a chassis ground 
is shown in Figure 10.7. 

EARTH GROUND 

Figure 10.8 

Earth Ground — As the use of electricity 
developed, one of the earliest reference points for 
voltage measurement and return paths for current 
flow was the earth itself. This is how the use of the 
word "ground" got started. In early telegraph 
systems, for example, one side of the system was 
connected directly into the earth. (A good long 
pipe or metal rod running into the earth is often 
used as a ground — good earth contact must be 
made.) The earth itself completed the circuit. 
(Actually, a good earth contact can be considered 
as a huge neutral reservoir containing both positive 
and negative charges. In the telegraph circuit 
shown in Figure 10.8, electrons are pushed into the 
ground at point A, and pulled out at point B). The 
use of earth grounding eliminated the need to 
string two telegraph wires over long distances and 
saved considerable cost. 
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Figure 10.10 

• Grounding 
• Three-Prong Plug and Outlet 
• Don't Ground Yourself 

Figure 10.9 

WIRE TO EARTH 
GROUND ARAIRE J_ 
PIPES. FICA 

WIRE TO CASE 

L"J Of APPLIANCE 

3 PRONG PLUG 

Grounding — Earth ground is an important concept 
to review because in most homes and laboratories 
the structural metal surfaces are at earth ground 
potential. Water pipes, gratings, electric conduit 
boxes and plates should all be connected to earth 
ground. Since it is easy to touch these things as 
you move about your home or the lab, it is 
important that none of the other surfaces you can 
easily touch have a greatly different potential from 
ground. If, for example, through faulty wiring, the 
outside of the refrigerator in your kitchen was 
raised to 110 volts, look at the possibilities in 
Figure 10.9. If you touched a faucet with one hand 
and the refrigerator with the other, you would 
have a 110-volt potential difference right across 
your body. This is very often a lethal situation. 

Three-Prong Plug and Outlet — For this reason 
most appliances now come with a special 
three-prong plug. The third (long) prong is 
connected to a wire which should be connected to 
nothing but the outside surfaces and case of the 
appliance. In your wall outlet, the third socket in 
the receptacle should be connected directly to a 
good earth ground (Figure 10.10). In this way, all 
the appliances and fixtures in your kitchen and the 
rest of your home have their outside conducting 
surfaces at ground potential. If through faulty 
wiring some appliance developed a high potential 
on its outside case, a large current would flow 
through the ground wire, usually enough to blow a 
fuse and alert you of trouble. 

Don't Ground Yourself — Electrical chassis are 
often connected to earth ground for safety reasons. 
In schematics you may see the earth ground 
symbol used to indicate an earth grounded point. 
But often electrical chassis grounds are NOT earth 
grounded. This means a metal chassis may beata 
much higher (or lower) potential than earth 
ground, in which case touching the chassis and 
touching a good ground could result in an 
unhealthy shock. Always be careful when handling 
electrical equipment, and, in general, avoid 
grounding your body while working in the lab. If 
the floor and your shoes are wet, for example, you 
could become well grounded through the water. 
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• Another Similar Voltage Divider 

Figure 10.11 

•HOT.• 
CHASSIS 

Another Similar Voltage Divider — To get back to 

voltage dividers, consider a circuit similar to the 
previous voltage divider circuit. This circuit 
(Figure 10.12) is essentially the same as the first 
voltage divider shown in Figure 10.2. All that has 
been done is that the ground reference point has 
been moved. If you were to measure the voltage 
from the ground reference to point C, you would 
measure a positive 25 volts. 

If you were to measure from ground to 

point B, you would get a plus 50 volts, and from 
ground to point A, you would get a plus 75 volts. 
However, if you were to measure from ground to 
point D, you would get a negative voltage, a 

Touching a "hot" wire could then cause quite a bit 
of current flow through your body (Figure 10.11). 

In review: 

1. Voltages are measured between two 

points, one of these is usually referred to 
as a reference point or "ground." 

2. A chassis ground ( /-)-7 ) refers to an 
electrical chassis or metal frame that is 
used as part of the current pathway for 

circuits wired on it. The chassis is usually 
also used as the reference point from 

which voltages in these circuits are 
measured. A chassis ground may or may 
not be an earth ground. 

3. An earth ground ( ) refers to a point 

that is at the same potential as the earth 
itself, and most usually is a point that is 
electrically well connected to a set of 
metal water pipes that run for long 
distances under ground. 

1 AMP 
r RI 

R2 
- 100V 

R3 

R4 

Figure 10.12 

A +75V 
2511 

B +50V 
2511 
2511 C +25V 

25li 
D -25V 
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• Polarity and Ground 

• A Load 

negative 25 volts. Remember that the term 

"polarity" is used when speaking of positive or 

negative voltage. For instance, in this circuit, the 
polarity of voltage from points A through C is 

positive with respect to ground; the polarity of 
voltage at point D is negative with respect to 
ground. Notice that this circuit still divides the 
applied voltage into four equal "chunks," and that 
the same current will flow as before. The 
maximum positive voltage available is 75 volts, but 
note a —25 volts is available from the reference 
point to point D. 

A CONNECTION HERE 

CAUSES ELECTRON FLOW 

BETWEEN GROUND 

AND POINT C 

A CONNECTION HERE 

CAUSES ELECTRON FLOW 

BETWEEN POINT D 

AND GROUND 

Figure 10.13 

A Load — Notice that so far in this discussion of 
voltage dividers, no external circuits that would 

draw any current have been connected to the 
voltage divider. If a current carrying circuit were 

attached to one of the voltage points, the whole 
operation of the circuit would change. Such an 
external circuit is called a "load". 

Concentrate your attention for a moment on 
this word, load. A load is defined as any circuit or 
device that draws current and/or has resistance, 

requires voltage, or dissipates power. As shown in 
Figure 10.14, when there is a load on a voltage 

source or power supply, current is drawn. The load 
may be a simple resistor. 

Polarity and Ground — Notice that when a voltage 

is said to be positive with respect to ground, this 
means that if a circuit were connected between 
that point and ground, electrons would flow out of 
ground to that point. If a point is negative with 
respect to ground, connecting the point and 
ground would result in a flow of electrons from 
that point to ground. 

This situation is pictured for you in 

Figure 10.13. If ground and point C were 

connected, electron current would flow from 
ground to point C. If ground and point D were 

connected, electron current would flow from 
point D to ground. 

Figure  10.14 

I load 
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• Large and Small Loads 
• Voltage Divider Problem 

• Practical Voltage Divider 

Large and Small Loads — Different devices will 

create different loading effects when attached to a 
power supply or circuit. Figure 10.15 shows an 
important point, a lower resistance draws a greater 
current and is, therefore, a greater load. A higher 
resistance draws less current, and is a lighter load. 
So a larger load causes a large current drain on the 

power supply, while a small load causes a small 
current drain. In some voltage divider applications, 
a voltage reference may be needed that will not 
have to drive any load. However, in many practical 
applications, a load drawing significant current will 

be attached to the divider, and the current drawn 
must be considered in its design. 

Voltage Divider Problem — Figure 10.16 shows a 
more typical type of voltage divider problem. 
Consider that you have to operate a load that 
draws 20 milliamps of current and requires 
100 volts to operate. In this situation, also imagine 
that all that is available in your lab is a 150-volt 
power source. The problem is to design a voltage 
divider circuit to supply the correct voltage and 
current to the load, using what you have learned 
about series-parallel circuits in previous lessons. 

Practical Voltage Divider Circuit — Figure 10.17 

shows the schematic of a basic voltage divider 
circuit to do the job, with the specified load 
connected to points A and B. Notice that this 
voltage divider is basically just a series-parallel 
circuit. There are two parallel paths for current to 
flow through. One branch current flows through 
R2 and the other branch current flows through the 

load. The sum of these two currents equals the 
total current, which flows through R1. The dotted 

lines indicate the paths of current flow. 

To make this voltage divider supply the 
correct voltage and current for the load, you must 

select the correct resistances for R1 and R2. How 

A LOWER RESISTANCE DRAWS A GREATER 

CURRENT AND IS THEREFORE A GREATER 
LOAD. 

A HIGHER RESISTANCE DRAWS LESS 
CURRENT AND IS A LIGHTER LOAD. 

Figure 10.15 

isou'R5g)1=- 

Figure 10.16 

Figure 10.17 
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• Choosing Bleeder Current 

do you do this? This question leads to several 
interesting points concerning voltage dividers. The 
voltage delivered to the load depends on the 
relative sizes of R1 and R2, their ratio. Notice 

again that resistor R1 will carry the total current in 
the circuit but that resistor R2 carries a smaller 
current, called the bleeder current. Resistor R2, 
through which the bleeder current flows, is called 
the bleeder resistor. The bleeder resistor is what 
develops the voltage that is delivered to the load, 

and also will function to stabilize the voltage to the 
load. 

Choosing Bleeder Current — The design of a 

voltage divider begins by choosing a value of 

bleeder current. A large bleeder current will tend 
to keep the load voltage constant, even if the load 

current should vary for some reason. Variations in 
load current may occur for a variety of reasons, 

which depend on the nature of the load. The load 
attached to this circuit may be a motor or other 

device whose current demand may be continually 

varying. A high bleeder current causes a lot of 

power to be wasted in the voltage divider. 
A compromise is made and as a general rule of 

thumb, shown in Figure 10.18, for simple voltage 
divider applications, bleeder current is selected to 
be 10% or one-tenth of the total load current. This 
conserves power, while allowing some measure of 
stability for the voltage divider. 

"RULE OF THUMB" FOR 
VOLTAGE DIVIDERS 

THE BLEEDER CURRENT EQUALS 10% OR 
ONE-TENTH OF THE TOTAL LOAD CURRENT 

Figure 10.18 
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• Voltage Divider Bleeder Current 
• Low Power Highly Varying Load 

/ IT • 'El • 'LOAD 

HIGHER IR. MORE STABLE VAR 
MORE POWER WASTE 

LOWER I R: LESS STABLE VAR 
LESS POWER WASTE 

LOAD 1 VARYING CURRENT 

Figure 10.19 

TO KEEP VAB CONSTANT 

IF IL IS VARYING - 

MAKE IB MUCH LARGER  THAN IL 

IB =10 X IL 

(LOW LOAD APPLICATIONS) 

Figure 10.20 

Voltage Divider Bleeder Current — This "rule of 
thumb" for voltage dividers is one that achieves a 
good compromise for most low-power, 
constant-load demand situations. To accommodate 
other loads and other power situations, you may 
see a variety of "rules of thumb" listed in various 
textbooks. Any.rule, however, is working around 
the same compromise. The higher the bleeder 
current, the more stable the load voltage will be if 
the load current should vary. This is illustrated in 
Figure 10.19. However, bleeder current causes 
wasted power, all of which must be dissipated in 
the bleeder resistor. So in reality, the 10% rule 
offers a good compromise for loads drawing a 
moderate amount of current (generally around 100 
milliamps or less) that will not vary drastically. For 
heavier loads, this rule is sometimes modified to 
read as follows: For loads from zero to 
99 milliamps, select the bleeder current as 10% of 
the load current. For loads drawing greater than 
100 milliamps, choose a bleeder current of 
10 milliamps. This modified rule is primarily 
designed to keep the power dissipated by the 
bleeder resistor to a level that can be handled by 
fairly common components. 

Low Power Highly Varying Load — The choice of 
bleeder current might take another direction in a 
case where you have a small load drawing very 
little current but whose current drain is varying 
wildly. If a load such as this required a constant 
voltage to operate, you might choose to make the 
bleeder current much higher than the load current, 
say ten times the load current. In this case 
(Figure 10.20), the voltage between points A and B 
is primarily determined by the bleeder current. 
Actually, if the bleeder current is very high and the 
load current is low and varying, the varying load 
acts as a slight disturbance to the total current. The 
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• Calculation of Bleeder Current 1R2 

resulting change in VAB will be quite small. The 
amount of bleeder current, as mentioned earlier, is 

limited by how much power loss can be tolerated 
and whether or not the bleeder resistor can safely 
dissipate this power. 

What about loads that need a lot of current 

and power and vary as well? For loads of this type, 
a voltage divider is probably not the best choice of 

circuitry to provide power. A regulated power 

supply will be needed to handle a large varying 
load. The word "regulated" means that the power 

supply contains special circuitry designed to keep 
its output voltage constant, even if the current 

drain on it is changing. Some regulation circuits are 

quite sophisticated and complex and their design 

often incorporates circuit components called 
capacitors, as will be discussed in Lesson 13. 

Note again that the 10% rule for bleeder 
current will work for simple loads and voltage 
divider applications and that is what has been 

assumed here. The example voltage dividers you 
will see in this lesson will be confined to handling 

load currents of about 100 milliamps or less. 

Calculation of Bleeder Current, 1R2 — As shown in 
Figure 10.21, the value of the current through R2 
is chosen to be 10% or one-tenth of the total load 

current, or 0.1 times 20 milliamps, which equals 1 
2 milliamps. 

1R2= —10 X I LOAD 

IR2 = 0.1 X 20 mA 

IR2 = 2 mA 

Figure 10.21 
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• Calculation of R2 
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Calculation of R2 — You know that you want 
2 milliamps of current to flow through R2, and 

you know that the voltage across R2 must equal ER2 
100 volts, since it is connected in parallel with the R2 - 

load which requires 100 volts. To find the R2 

resistance of R2, you can use Ohm's law as shown 100 V 100 
in Figure 10.22. When you substitute the values of R2 -  

voltage and current in the formula, you should 2 mA 2 X 10-3 A 
have 100 volts divided by 2 milliamps, which 3 equals 50 kilohms. R2 = 50 X 10+ 

R2 = 50 kS2 

Figure 10.22 

Partially Completed Voltage Divider — 
Figure 10.23 shows the voltage divider circuit with 
the bleeder resistance and bleeder current labeled. 

You are ready to calculate the value of Ri. From 
the series circuit laws, you know that the voltage 
across R2 plus the voltage across R1 must equal 
the total source voltage of 150 volts. Since you 
know the voltage across R2 is 100 volts, the 
remainder of 50 volts must be dropped across Ri. 
Note also that the total circuit current flows 
through R1. So before you calculate R1, it will be 
necessary to calculate the total circuit current. 

Total Circuit Current — As shown in Figure 10.24, 
this is equal to the current through R2, plus the 
current through the load, which simply equals 
2 milliamps plus 20 milliamps. Thus the current 
through R1 equals 22 milliamps. 

BLEEDER 
RESISTOR 

Figure 10.23 

Figure 10.24 
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• Basic Voltage Divider Design 

Calculation of R1 — Knowing the current flowing 
through Ri and the voltage that must appear 
across it, you can use Ohm's law in the form 
R = E/I to find the resistance of R I. As shown in 
Figure 10.25, Ri equals ERI divided by •I R1. 
When you substitute the values into the formula, 
you should have 50 volts divided by 22 milliamps 
which equals 2.27 kilohms. 

Final Circuit — Figure 10.26 shows the completed 
voltage divider design with all values labeled. 

VOLTAGE DIVIDER DESIGN BASICS 

1) EXAMINE POWER SUPPLY AND LOAD 
REQUIREMENTS 

2) SELECT BLEEDER CURRENT 

3) CALCULATE BLEEDER RESISTANCE 

4) CALCULATE RESISTANCE OF OTHER 

DIVIDER RESISTOR(S) 

Figure 10.27 

Figure 10.25 

ER1 
R 

1R1 

50 V 
R -  

22 mA 

R =2.27 k,S2 

Figure 10.26 

Basic Voltage Divider Design — The basics of 
voltage divider design have been reviewed in this 

example and are shown in abbreviated form in 
Figure 10.27. In the rest of this lesson several 

examples will be used to illustrate and reinforce 
this procedure. Basically, the procedure is: 

1. Examine your available power supply 

output voltage and the requirements of 
your load carefully. (Your power supply 
must provide a higher voltage and 

current capability than your load in 

order for a voltage divider to be designed 
between them.) 
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• Voltage Divider with Two Loads 
• Resistor Voltage Divider 

2. Select a value of bleeder current for the 
divider. For most voltage dividers, one 

tenth or 10% of the load current is 
selected. 

3. Calculate the value needed for the 
bleeder resistor. (In building a divider, be 
sure to use a resistor with a high enough 
power rating to handle the bleeder 
current at the load voltage.) 

4. Calculate the value of the other resistor 
or resistors needed for the circuit by 
calculating the total current flow 
through it, and then using Ohm's law in 

the form R = E/I. 

Voltage Divider with Two Loads — The next 
logical step in considering the design of voltage 
divider circuits is to consider the design of a 
voltage divider that will supply the voltage and 
current needed to power two or more loads. This 
type of circuit basically involves a fairly 
straightforward extension of what has already been 
covered and the problem being considered is shown 
in Figure 10.28. 

In this situation there are two loads; one load 
(load 1) requires 45 volts and draws 20 milliamps 
of current, while the other load (load 2) requires 
150 volts and draws 10 milliamps of current. 
Suppose that the only power supply readily 
available is a 200-volt supply. 

Resistor Voltage Divider — In order to deliver the 
required voltages and currents you will need a 
voltage divider with three resistors of the type 
shown in Figure 10.29. The problem boils down to 
one of calculating the values of R1, R2, and the 
bleeder resistor, R3. 

150V 

200v_ 45V 

Figure 10.28 

2110 

Figure 10.29 

20m4 

LOAD I 

LOAD 2 

Rs 

,BLEEDER 
RES I SIORi 

150V 
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• Calculation of Bleeder Current 
• Calculation of R3 

Calculation of Bleeder Current - To solve this 
problem you will follow the same basic steps that 

were followed previously (Figure 10.30). First of 
all, assume that the power supply has ample 

current capability to handle the job of powering 
the 10-milliamp and 20-milliamp loads, plus 
providing the bleeder current. Your next step is to 

select a suitable bleeder current to flow 
through R3. 

If you follow the rule of thumb for the 
bleeder current, you will want the current through 

R3 to be about 10% of the total load current. In 

this case, since the load currents are 10 milliamps 
and 20 milliamps, the total load current is 

10 milliamps plus 20 milliamps, which equals 
30 milliamps. The current through R3 then equals 
10% of 30 milliamps, which is 3 milliamps. 

Calculation of R3 - Load 1 must have a voltage of 
45 volts across it to operate correctly. Since R3, 
the bleeder resistor, is in parallel with load 1, you 
know that the voltage across R3 must also equal 

45 volts. So at this point you know the current 
flowing through R3, the bleeder current, and the 
voltage across it, 45 volts. Therefore, you can use 
Ohm's law in the form R3 equals ER3 divided by 

I R3 to find R3 as shown in Figure 10.31. 

Substituting the values of voltage and current into 
the formula, you have 45 volts divided by 

3 milliamps, which in scientific notation equals 
4.5 X 10+ 1 divided by 3 X 10-3. When you 

divide, you get 1.5 X 10+4, which is 15 kilohms. 

1 
'BLEEDER =1 R3 - j5 'LOAD 

= 10 mA + 20 mA = 30 mA ILOA0 

IR3 = (0.1) X (30 mA) = 3 mA 

Figure 10.30 

Figure 10.31 

ER3 45 V 
R3 =-- 

1R3 3 mA 

4.5 X 10+1 
R3 -  

3 X 10-3 

R3 = 1.5 X10+4 = 15 kS2 
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Determination of IR2 and R2 - With R3 
determined, move up the divider to consider the 

next resistor, R2. First you should analyze the 
currents flowing through R2 as shown in 
Figure 10.32. From the parallel circuit laws, the 
current through R2 equals the sum of the currents 
flowing through R3 and load 1. This equals 
3 milliamps for the bleeder current plus 
20 milliamps from load 1 for a total current 

through R2 of 23 milliamps. 

Calculation of ER2 - You need to determine the 
voltage across R2. As shown in Figure 10.33, the 
voltage between ground and point 13 equals the 
voltage required by load 2, which is 150 volts. The 
voltage between ground and point A is 45 volts. 

The voltage across R2 equals the difference 
between these two voltages, so subtract 45 volts 
from 150 volts and you get 105 volts. Now that 

you know the voltage across R2 is 105 volts, and 
the current through R2 is 23 milliamps, you can 

use Ohm's law to calculate the resistance of R2. 

Calculation of R2 - As shown in Figure 10.34, R2 
equals ER2 divided by I R2. Substituting the values 
of voltage and current in the formula yields 
105 volts divided by 23 milliamps. In scientific 
notation that equals 1.05 X 10+2 divided by 
2.3 X 10-2 which equals about 4.6 kilohms 
for R2. 

Figure 10.32 

ER2 • E 8 - CA 
• 150 - 45 • W54 

1504 

FRS • 150 45 • 1CD4 

150V 

45 

z 

0; 

LOAD I LOADS 

Figure 10.33 

Figure 10.34 

GROUND REFERENCE 

ER2 105 V 
R2 - 

1R2 23 mA 

1.05 X 10+2 
R2 - 

2.3 X 10-2 

R2 = 4.6 kS2 
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• Calculation of R1 

Determination of I R 1 - Move up the divider one 

more time and consider how to calculate the 

resistance needed for R1. This procedure is the 
same as for R2 and would be the same for a fourth 
or fifth resistor in this circuit. First determine the 

current flowing through the resistor, then the 

voltage across it, and finally use Ohm's law in the 
form R = E/I to calculate the resistance. 

First consider the flow of current as shown in 

Figure 10.35. The current through R1 equals the 
23 milliamps of current flowing through R2 plus 

the 10 milliamps of current flowing through 
load 2. The sum of these two currents is 

33 milliamps. 

Calculation of ER1 - You need to calculate the 
voltage across R1. As shown in Figure 10.36, the 

voltage from ground to point C is the full supply 

voltage of 200 volts. The voltage between ground 

and point B is 150 volts. The voltage across R1 is 
the difference between the two, or 200 volts minus 

150 volts which equals 50 volts across R1. 

Calculation of R1 - To find R1 you can use Ohm's 
law as shown in Figure 10.37. R1 equals ER1 

divided by I Ri. When you substitute the circuit 
values in the formula, you have 50 volts divided by 

33 milliamps. In scientific notation this equals 

5 X 10+1 divided by 3.3 X 10-2. When you 

divide, you should get 1.515 X 10+3 which is 

about 1.5 kilohms for R1. 

1 'RI • 23mA • 10mA 

'RI • 33mA 

R3 

20mA 

LOAD 1 

10mA 

I LO 02 

Figure 10.35 

_ GROUND REFERENCE 

Figure 10.36 

ER1 50 V 
R =— - 1 

IR1 33 mA 

5 X 10+1 
R1 -   - 1.515 X 1C+3 

3.3 X 10-2. 

= 1.5 kS-2 

Figure 10.37 

150V 

10-23 



• Completed Voltage Divider 

• Additional Voltage Divider Problem 
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Completed Voltage Divider — As shown in 
Figure 10.38, the voltage divider design is now 

complete with the resistance values of R1, R2, and 

R3 found. As long as the current drawn by the 
load remains fairly constant, this will provide a 
reliable power source for them. It is interesting to 
note that in a voltage divider with more than one 
load, such as this one, one stable load will keep the 

voltage to an unstable load constant. If load 1 was 
a very constant load, it would help stabilize the 

voltage at point B if load 2 should start to vary. 
A more advanced discussion of the specific 

applications of voltage dividers is beyond the scope 
of this course. However, for those of you who are 

interested, some reference books on this subject 
are listed at the end of this lesson. 

F 

Figure 10.39 

264V 

'BLEEDER RESISTOR' 

Figure 10.40 

131V 

49.5V 

40mA 

ILOALD_Ii 

131V 

(I5mA) 

LOAD 2 

awl B 

R, 
Ilki: 33mA 

R 

I 421-23mA 

A 
R3 

le 3mA 

Figure 10.38 

1.5 kfl 

150V 

4.6kfl ( 10mA  

45V 

( 15 kn. 20mA 
LLOAD 1 

Additional Voltage Divider Problem — Consider 
two additional examples of voltage divider design. 
Figure 10.39 shows the requirements for the first 

problem. Load 1 draws 40 milliamps of current 
and operates at 49.5 volts while load 2 draws 15 
milliamps of current and needs 131 volts applied to 
operate properly. Suppose that the only readily 
available power supply has an output voltage of 
264 volts. • 

Basic Voltage Divider Circuit — The voltage divider 
circuit necessary to supply the correct voltages and 
currents to these two loads is shown in 
Figure 10.40. As you saw in the previous case, the 
design of this voltage divider boils down to the 

calculation of three resistors, R1, R2 and the 
bleeder resistor, R3. 
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1B = 1/10TH OF ITOTAL LOAD 

IB = 0.1 X (40 mA + 15 mA) 

IB = 0.1 X (55 mA) 

IB = 5.5 mA 

Figure 10.41 

E3 

R3 = — 
lb 

49.5 V 
R3 = 

5.5 mA 

4.95 X 10+1 
R3 -   

5.5 X 10-3 

R3 = 0.9 X 10+4 = 9.0 ksz 

Figure 10.42 

IO2 "10 ' 'LOAD I 

102 .5.5mA • 40m4 • 45.5m4 

Figure 10.43 

Calculation of I g - To begin the design of this 
voltage divider, you need to select a value for the 
bleeder current, lg. From the rule of thumb for 
bleeder current, I g equals 10% or one-tenth of the 
total load current. As shown in Figure 10.41, l g 
equals one-tenth of 40 milliamps plus 15 
milliamps. If you add the two load currents and 
multiply by 0.1, you get 5.5 milliamps for the 
bleeder current. 

Calculation of R3 - You can use that information 
to find R3 by using Ohm's law in the form R = E/I. 
When you substitute the appropriate values in the 
formula as shown in Figure 10.42, you get 

49.5 volts for ER3 divided by 5.5 milliamps for 'B-
When you divide, you get 9.0 kilohms for R3. 

Here's an interesting point. If you were to 
look at a chart of preferred resistance values you 
would not find 9.0 listed. In the actual 
construction of the circuit you could use two 
18-kilohm resistors in parallel in order to obtain 
the 9 kilohms needed for R3. 

Determination of I R2 and R2 - To calculate the 
value of R2, you need to know the current flow 
through R2 II I and d the  ,. R2,voltage across R2 (ER2). 

As shown in Figure 10.43, I R2 is equal to the sum 
of I g and the current through load 1. When these 

are added, you get 45.5 milliamps for I R2. 
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ER2 ' ELOAD 2 " ER3 

ER2 • 13IV - 19.5V • 81.5V 

131V 

13IV 

49.5V 

GROUND REFERENCE 

Figure 10.44 

ER2 

R2 - 1R2 

81.5 V 

R2 45.5 mA 

8.15 X 10+1 
R2 -  

4.55 X 10-2 

R2 = 1.79 X 10+3 = 1.79 kS2 

Figure 10.45 

'RI " R2 'LOAD 2 

'RI • 45.5m4 • 15m4 • 40.5m4 

Figure 10.46 

'LOAD 2 

Calculation of ER2 - Figure 10.44 illustrates the 
calculation of ER2. The voltage across R2 equals 
the difference between the two load voltages since 
R2 is essentially connected between the two loads. 
The voltage required by load 2 is 131 volts, and the 
voltage required by load 1 is 49.5 volts. The 
difference between these two is 81.5 volts for ER2. 

Calculation of R2 - You can use Ohm's law in the 
form R = E/I to find the value of R2. As shown in 
Figure 10.45, when you substitute 81.5 volts for 
ER2 and 45.5 milliamps in the formula and divide, 
you get 1.79 kilohms for R2. In actual circuit 
construction you would use a 1.8-kilohm resistor. 

Determination of I Ri and R - To finish the 
design of this voltage divider circuit, you need to 
find the value of R1. First you can find the current 
flow through R1 as illustrated in Figure 10.46 by 
adding I R2 and the current through load 2. Their 
sum is 60.5 milliamps for !R.I. 
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13IV 
264v= 

49 

ERI (POWER SUPPLY• ElOAD 

ER1 • ?UV • DIY II3V 

Figure 10.47 

Figure 10.48 

Figure 10.49 

GROUND REFERENCE 

ER1 
R =---
1 1R1 

133V 
R1 -   

60.5 mA 

1.33 X 10+2 
R1 -   

6.05 X 10-2 

R1 = 0.2198 X 10+4 = 2.2 kn 

Calculation of ER1 - You also need to know the 

voltage across Ri in order to calculate the 
resistance value of R . As illustrated in 
Figure 10.47, ER1 is the difference between the 
supply voltage of 264 volts and the voltage 

required by load 2 of 131 volts. This difference is 
133 volts for ER1. 

Calculation of R1 - Now you can use Ohm's law 
in the form R = E/I to find Ri. As shown in 

Figure 10.48, when you substitute the appropriate 

values in the formula, you get 133 volts over 60.5 
milliamps, and when you divide, the result is 
2.2 kilohms for Ri. 

Completed Voltage Divider - The design of this 
voltage divider is complete, the values of Ri, R2 
and R3 have been calculated and are shown in 
Figure 10.49 along with the values of voltage and 

current used to calculate the resistances. 
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302V 

Figure 10.50 

302V 

170V 

( 75mA) 

LOAD 2 

100V 

LOAD 1 

RI 

170V 

100V 

LOAD 1 

LOAD 2 

Figure 10.51 

IB = 10%0R 1/10TH OF 1TOTAL LOAD 

IB = 0.1 X (25 mA +75 mA) 

IB = 0.1 X 100 mA 

1B = 10 mA 

Figure 10.52 

Another Voltage Divider Design — In order to 
become thoroughly familiar with the design of 
voltage dividers, consider one more example. The 
requirements for the circuit are shown in 
Figure 10.50. Load 1 draws 25 milliamps of 
current and requires 100 volts to operate properly, 
and load 2 draws 75 milliamps of current and 
requires 170 volts. Suppose that the only available 
power supply has an output voltage of 302 volts 
and assume that it is capable of delivering the 
required currents. 

Basic Voltage Divider Circuit — As before, the 
voltage divider circuit necessary to supply these 
voltages and current to the two loads consists of 
three resistors, R1, R2, and the bleeder resistor, R3 
shown in Figure 10.51. Again, the design of this 
voltage divider simply involves the calculation of 
the three resistances. 

Determination of 113 and R3 — In order to 
calculate R3, you need to know the current 
flowing through it, which is the bleeder current, 
IB, and the voltage across it, which is 100 volts. 
(R3 is in parallel with load 1, which requires 
100 volts.) From your rule of thumb for bleeder 
current, IB equals 10% or one-tenth of the total 
load current, or, as shown in Figure 10.52, I g 
equals one-tenth of 25 milliamps plus 
75 milliamps, therefore IB equals one-tenth of 100 
milliamps, which is 10 milliamps. 
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R3 - 

ER3 

IB 

100 V 
R3 - 

10 mA 

1 X 10+2 
R3 -  

1 X 10-2 

R3 = 1 X 10+4 = 10 kSI 

Figure 10.53 

Figure 10.54 

ER2 
R2 --

1R2 

70 V 
R2 - 

35 mA 

7.0 X 10+1 

R2 -  

3.5 X 10-2 

R2 = 2 X 10+3 = 2 kS2 

Figure 10.55 

Calculation of R3 — If you substitute the values of 
ER3 and IB in the Ohm's law formula as shown in 

Figure 10.53 and divide, you get 10 kilohms 
for R3. 

Determination of I R2 and ER2 — Moving up the 
voltage divider to R2, you will need to determine 

I R2 and ER2 in order to calculate R2. I R2 is 
simply the sum of I g and I load 1, which is 10 
milliamps plus 25 milliamps. When you add these 
two currents, you obtain 35 milliamps for IR2. 

To find ER2 you need to subtract the voltage 
across load 1 from the voltage across load 2. Since 

R2 is between these loads, ER2 is the difference 
between their two voltage requirements. As shown 

in Figure 10.54, this is 170 volts minus 100 volts 
or 70 volts for ER2. 

Calculation of R2 — Now that you know ER2, you 

can use Ohm's law in the form R = E/I to calculate 

R2. As shown in Figure 10.55, when you 
substitute the values in the formula and divide, the 

result is 2 kilohms for R2. 
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Figure 10.56 

ER1 

R1 -1711 

132 V 
R1 -   

110 mA 

1.32 X 10+2 
R1 

1.1 X 10-1 

R1 = 1.2 X 10+3 = 1.2 kS2 

Figure 10.57 

Power - Thus far you have seen how voltage 

dividers can be used to provide different polarities 

of voltage, and how to calculate voltages, currents, 

and resistances in a voltage divider circuit. Loads 
and how the voltage or current of a load affects a 

voltage divider were also discussed. There is 
another factor used as a measure of a load, 
however, and that is its power or wattage rating. 
The concept of power was introduced in Lesson 4 

along with a discussion of Ohm's law. At this 
point, it will be helpful to review this important 

subject and introduce some additional topics of 
interest that will expand your useful knowledge in 
this area. 

Determination of I Ri and ER1 - Following the 

same procedure for R1, you should find the 
voltage across R1 is 132 volts and the current 
through R1 is 110 milliamps, as illustrated by 

Figure 10.56. 

Calculation of Ri - In order to complete the 

design of this voltage divider all you need to do is 
to use Ohm's law in the form R = Eli as shown in 
Figure 10.57. When you substitute the values of 

voltage and current in the formula, the result is 
132 volts divided by 110 milliamps, which equals 

1.2 kilohms and the design is complete. 
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Basic Power Formula in Circle Form — As you may 
recall from Lesson 4, the basic formula for power 

states that power equals current times voltage, and 
remember the unit for power is the watt. This 

formula may be put into a circle form as shown in 
Figure 10.58, which can be used in the same way 
that you used the Ohm's law circle. This gives you 

a convenient device for handling problems 
involving power calculations. Simply cover the 
quantity you want to find with your thumb, and 

the position of the remaining letters tells you the 
procedure to follow. Remember, a vertical line 
means multiply the quantities on either side of the 

line, and a horizontal line means divide the 
quantity on the top by the quantity on the 

bottom. For example, if you cover P, the position 

of the remaining letters gives you the basic power 

formula, power equals current times voltage. If you 
cover up the 1, the formula is 1 = PIE, and covering 
E yields E = P/I. 

Derived Power Formula — In Lesson 4 another 

formula was derived for power using the first 
power formula and Ohm's law. That formula was 
P = I2R. Figure 10.59 shows that formula in a 
circle form similar to the one above. This time by 

covering the P, you can see that power equals the 
current squared times the resistance. In other 

words, to find power, multiply current times itself 

and then multiply by the resistance. 
You can also use this circle to find current 

when you know the power dissipated by a resistor, 
and the value of resistance. If you cover 12, you 
can see that the square of the current equals power 

Figure 10.58 

12 . piR 

I • SOUARE ROOT OF P/R 

1 • srlirt 

Figure 10.59 

P.12XR 
P•IXIXR 
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divided by resistance. How then do you find the 
current, if you know the square of the current? As 

you may recall, you must take the square root of 
the answer. In this case you can find the current by 

taking the square root of power divided by 

resistance. 

1 R • DM P • 0.5 WATT 

Figure 10.60 

0.5 WATt 
" 

\/"tI -0E05 
FO-005 

TAKE SQUARE ROOT 

I • 0.0274 • 22.4mA 

Circle Diagram for Calculating R — The third way 
you can use this circle is in finding resistance when 

you know the power dissipated by a resistor and 
the current flowing through the resistor. By 
covering the R, you can see that resistance equals 
power divided by the square of current 

(Figure 10.61). In this case, you must square the 
current or multiply it by itself before you divide it 
into the power, to calculate the resistance. 

Example: I =\/15711. — From the circle formula 

shown in Figure 10.59, covering the 12 gives P/R so 
you can easily write 12 = P/R. This means that P/R 
is the square of I, or equal to I times 1, not equal to 

I itself. You can find 1 by taking the square root of 
P/R. In the simple circuit of Figure 10.60, the 

1-kilohm resistor is dissipating one-half of a watt. 
How would you calculate the current flowing 
through it? Substituting in the formula as shown, 1 

equals the square root of P/R, which is the square 

root of 0.0005. This square root can be found 
either using a calculator or square root tables (both 
methods will be reviewed later in the lesson). When 
the square root is computed, you find that I= 22 
milliamps. 

Figure 10.61 

R • P,I2 
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• Example R = P/I 2 

• Third Power Formula 
• Third Circle Diagram 

1 
P•500m0/ 
R• , 

RR.  • 

75 I0 

KC 10-3  

17.5.10-3117.5. IOI 

R • 8.80111 

Figure 10.62 

0.5 

5.625A 104  

Third Power Formula — A third helpful power 

circle can be developed by using Ohm's law and the 
first power formula that was introduced. 

Figure 10.63 shows the first power formula, P 

equals I times E, and also shows Ohm's law in the 

form I equals E over R. What you can do is 
substitute the equivalent of current from Ohm's 

law into the power formula, that is, you can 
replace current in the power formula with E over 
R. This enables you to write power as the product 
of voltage times voltage all divided by resistance, 
and this is equivalent to voltage squared divided by 
resistance. 

Third Circle Diagram — This relationship can now 
be put in circle form. You should have voltage 

squared on the top with power and resistance on 
the bottom as shown in Figure 10.64. This circle 
diagram can be used to give you three formulas in 
the same way as all the others. If you cover P, you 
should find that power equals voltage squared 
divided by resistance. In order to find the power 
dissipated by a resistor, when you know the 
voltage across the resistor and the value of 
resistance, you must square the voltage, and then 
divide by the resistance. 

A second way this circle can be used is to find 

resistance when you know the power dissipated by 

Example R = P/I 2 — For example, if you know 

that a resistor in a circuit is dissipating 500 
milliwatts and is handling a current of 
7.5 milliamps, how would you calculate its 
resistance? Use the formula R = P/I 2 as shown in 
Figure 10.62 and substitute. Remember that the 
7.5 milliamps must be multiplied by itself 
(squared) before it is divided into the power. When 
you perform the calculations, you find that 
R = 8.89 kilohms. 

Figure 10.63 

Figure 10.64 

P=IxE 

R• 
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e Example P = E2/R 

• Example R = E2/P 

a resistor and the voltage drop across the resistor. 
By covering the R, you can see that resistance 
equals the square of voltage divided by power. 

You can also use this circle formula to find 
voltage when you know the power dissipated by a 
resistor and the value of resistance. If you cover E 
squared, all you have to do is multiply power times 
resistance. However, that does not give you 
voltage, it gives you the square of voltage. You 
must take the square root of that to find the 
voltage. Thus, voltage equals the square root of 
power times resistance. 

Example P = E2/R — In order for you to become 
more familiar with this third circle formula for 
power, consider some examples of its use. The 
100-ohm resistor in Figure 10.65 has 25 volts 
applied to it. How much power is it dissipating? 

Cover the P in the circle to find that P = E2/R. 
Then substitute 25 volts in the formula for E and 
100 ohms for R. When you square 25 and divide 
by 100, you get 6.25 watts for the power 
dissipated by the resistor. 

Figure 10.65 

Example R = E2/P — A light bulb is rated at 60 
watts and the required voltage is 120 volts. What is 
the resistance value? In Figure 10.66, cover the R 
in the circle to get IR = E2/P, then substitute 
120 volts in the formula for E and 60 watts for P. 
When you square 120 and divide by 60, you find 
that the resistance of the bulb is 240 ohms. 

Figure 10.66 
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• Example E = N/P X R 

• Power in Series-Parallel Circuits 

1.? 

T 

Figure 10.67 

moiv'• 

E2 • PXR 

E • P V7) 1--2-

P•350mW 

E • ‘FiTt 

E • 4350«.- 7,7 --(5600 

E • \10.5 X 1E01 X 15.6%102 

E • ‘il.% X 10.2 

E • 1.4 X 10.1 • 14 VOLTS 

Power in Series-Parallel Circuits — Now that three 
separate circle formulas for power have been 
introduced and discussed, it will be helpful to show 
how they all can be applied to the analysis of a 
series-parallel circuit of the type shown in 
Figure 10.68. 

In this circuit diagram, all the known 
quantities have been labeled and the unknown 
quantities have been labeled with question marks. 
This circuit can be analyzed in a variety of ways by 
focusing your attention on each component and 
each unknown, one at a time. You can begin your 

analysis by using the first power formula to find 
the power dissipated by R1. First of all, what do 

you know about this resistor? You know that the 
current through R1 is 3 milliamps, and you know 

that the voltage across R1 is 50 volts. You have to 
calculate the power. 

Example E = • R — The power dissipated by a 
460-ohm resistor is 350 mil liwatts. What is the 

voltage drop across the resistor? Cover the E in the 
circle as shown in Figure 10.67 to get E2 = P X R. 
Remember that this means E = N/P X R. Then 
substitute 560 ohms for R and 350 mil; iwatts for 

P, multiply, and take the square root of that to get 
1.4 X 10+ 1 which equals 14 volts dropped across 
the resistor. 

Figure 10.68 
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• Calculation of PR1 

• Circuit Diagram: Study R3 

• Calculation of IR3 

Calculation of PRi — The first circle formula that 
was introduced gave you the relationship between 

P, I, and E, as shown in Figure 10.69. If you cover 

the P, you can see that power dissipated in a 

resistor equals current through it times voltage 

across it. Substituting the values of voltage and 

current in the formula gives you 3 milliamps times 

50 volts. In powers of ten form, 3 milliamps equals 
3 X 10-3 and 50 volts equals 5 X 10+1 . When you 
multiply, you should have 15 X 10-2 which equals 
150 milliwatts for the power being dissipated 
by R1. 

Circuit Diagram: Study R3 — From Figure 10.70 
you can see that the resistance of R3 is 5 kilohms 
and the power dissipated by R3 is 405 milliwatts. 
You know resistance and power dissipated and 
need to calculate the current flowing in the 
resistor. The second circle diagram that was 
introduced relates power, current, and resistance 
and can be used to help in this calculation. 

Calculation of 1R3 — If you look at this circle 

diagram, reproduced in Figure 10.71, and cover 12, 

you can see that the square of current equals 

power divided by resistance. Substituting the 
values into the formula as shown, you should have 
405 milliwatts divided by 5 kilohms. In scientific 

notation, this equals 4.05 X 10-1 divided by 
5 X 10+3. When you divide, you can see that the 
square of the current through R3 equals 
0.81 X 

You must take the square root of that to find 
the current through R3. In previous lessons it was 
shown how a calculator such as the TI SR-50 can 

P=IXE 

PR1 = IRI X ERI 

PR1 = 3mA X 50 V 

PRI = (3 X 10-3) X (5 X 10+1) 

PR1 = 15 X 10-2 = 150 mW 

Figure 10.69 

PR3 .4115,e, 'Rt .' 

Figure 10.70 

Figure 10.71 
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• Use of Calculator for Square Root 
• Circuit Diagram: Consider R1 

be used to help simplify calculations of this sort. 
You can also use it to find the square root in this 
example. 

Use of Calculator for Square Root — The chart in 
Figure 10.72 will help you keep track of the steps 
needed and what the display should read as you go 

along. First enter 0.81. Then press the EE or 

enter exponent key. (The EE or enter exponent 
key is what tells the calculator that the number has 

an exponent; the exponent is displayed to the right 
of the number.) Next press the +/— key to make 
the sign of the exponent negative. Then enter four 
and the calculator should display 0.81 X 10-4. In 
order to find the square root of this number, you 
simply press the square root key. The calculator 
should display 9 X 10-3 which is the current 
through R3 expressed in scientific notation. In 

abbreviated form, this is 9 milliamps of current 
through R3. 

IR3'hi X 10-4 

ENTER PR ESS DISPLAY 

.81 EE 0.81 00 

0.81 — 00 

4 0.81 — 04 

9. — 03 

+/— 

Figure 10.72 

VT 

IR3 = 9 mA 

Circuit Diagram: Consider R1 — Figure 10.73 

shows the circuit diagram with the value of I R3 PR3 •405n1W 

and PR1 labeled. You might recall that there are 

other methods that can be used to determine 

square roots. The use of tables and a manual 
calculation method were introduced in Lesson 4. 
The tabular method will be reviewed later as you 

proceed to analyze this circuit. Right now, focus 
your attention on R1. At this point you still need 

to calculate its resistance value. 

Figure 10.73 
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• Calculation of R1 

• Calculation of ER2 

Calculation of R1 — Since you know the voltage 

across and the current through R1, you could use 

Ohm's law to find the resistance. However, from a 
previous calculation, you know that the power 

dissipated by R1 is 150 milliwatts. The last circle 
diagram for power relates power, voltage, and 
resistance. In this case you can use this circle to 
help calculate R1. As shown in Figure 10.74, if 

you cover R, you can see that resistance equals 
voltage squared divided by power. Substituting the 

values of voltage and power into the formula as 
shown, you should have 50 volts squared divided 
by 150 milliwatts. In powers of ten form, this 

equals 5 X 10+ 1 times 5 X 10+1 divided by 
1.5 X 10-1 . This works out to be 16.7 X 10+3 

which equals 16.7 kilohms; thus the resistance of 
R1 is 16.7 kilohms. 

Calculation of ER2 — If you look back at the 

circuit and scan it for additional unknown 

quantities, you see that ER2 needs to be 
calculated. You can find the voltage across R2 

using the last circle formula. You know the 
resistance of R2 is 17 kilohms, and you know that 

the power dissipated by R2 is 415 milliwatts. If 
you look at the third circle formula for power as 
shown in Figure 10.75 and cover E2, you can see 

that the square of voltage equals power times 

resistance. Substituting the values into the formula 
as shown, you should have 425 milliwatts times 
17 kilohms. In scientific notation, this is 

ER1 2 
R 
1 PR 1 

R :5500 Vm/w2 

(5 X 10+1) X (5 X 10+1) R, - 
1.5 X 10-1 

R1 = 16.7 X 10+3 = 16.7 kS2 

Figure 10.74 

Figure 10.75 

E2 • 'x R 

EL • PR2 X R2 

L • 425mW 

4,2 • 41.P5 X 10-11 X (LI X10.4) 

EL -7.225 X 10.3 

ER2 • V1.22- 77ii 
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• Square Root Tables 

• Square Root Example 1 

4.25 X 10-1 times 1.7 X 10+4. When you 
multiply, you can see that the square of the voltage 

across R2 equals 7.225 X 10+3. 

Square Root Tables — You must take the square 
root of that to get the voltage. Before you do this, 

however, consider how you can find square roots 

using square root tables. As shown in Figure 10.76, 

many of these tables list numbers from one to a 

thousand, and then across the page to the right are 
columns listing the squares and square roots. Some 
tables also list cubes and cube roots, but these will 
not be discussed here. 

Square Root Example 1 — As a review of using 
tables to find square roots, go back to your first 
example and try to find the square root of 
0.81 X 10-4. When using tables, a good way to 
proceed is to try to alter the number you are 

working with until it is in a form that is easier to 
find in the tables. You will find that you can find 
the square root of this number much more easily 
by converting it to 81 X 10-6 as shown in 
Figure 10.77. (All this operation does is move the 

decimal point two places to the right and make the 
exponent more negative to make up for it.) 

Looking in the square root table, you see that the 
square root of 81 is 9. 

SQUARE ROOT TABLE 

n 

1000 SLUM eir ,r,f,: 

Figure 10.76 

Figure 10.77 

./.81 x io-4 = 

N/81 X 10-6 = 

4=9 
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• Square Root of Exponent 
• Example 1 Complete 

• Square Root Example 2 

Square Root of Exponent — Here's the key point 
on taking the square root of the exponent. As 

stated in Figure 10.78, to find the square root of 
the power of ten, simply divide the power or 

exponent by 2. You want to avoid powers of ten 

that are not whole numbers for the results, so you 
must make sure that the power of ten you are 

dividing is an even number, or one that is a 
multiple of 2. If not, the power of ten in your 
result may come out uneven like 103.91 power. 

Powers such as this are difficult to handle and 
should be avoided. 

Example 1 Complete — For example, in 
Figure 10.79, you know that the square root of 81 

is 9 from the tables. You must now take the square 
root of the power of ten which is minus 6. To do 
this, you just divide the exponent by 2, giving you 

a minus 3. So, you can see that the square root of 
81 X 10-6 equals 9 X 10-3. 

Square Root Example 2 — As a second example, 
you can finish the circuit problem you were 

working. To find R2 you need to take the square 
root of 7.225 X 10+3. As shown in Figure 10.80, 
you could convert this number to 72.25 X 10+2 
and then find 71 in the square root tables. 
However, since the tables list only whole numbers, 
this would not be very accurate. There is a more 
accurate method which can be used to find the 

square roots of numbers that are larger or smaller 
than those listed in the square root table. 

TO FIND THE SQUARE ROOT OF A POWER 

OF TEN, DIVIDE THE POWER OR EXPONENT 

BY 2. 

Figure 10.78 

Figure 10.79 

Figure 10.80 

N/81 x io76 

= N/87 x fitF6-

= 9 X 10-3 

ER2 = i7.225 X 10+3 

ER2 = 172.25 X 102 
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• Alternate Method 
• Additional Square Root Example 

Alternate Method — As shown in Figure 10.81, 
convert the number to decimal form and you 
should have 7225. Then there is a little 
mathematical trick you can use to find its square 
root. Find two numbers that when multiplied 
together give 7225, both of which are listed in 
your square root table. You can then take the 
square root of each of these numbers and multiply 
them together to get your answer. For example, 
select some number, say 25, and divide it into 
7225. You find that 7225 is equal to 289 times 25. 
Looking in the tables you can find the square root 
of each of these numbers. When you look up the 
square roots, you find that the square root of 289 
is 17 and the square root of 25 is 5. Then you 
multiply these two square roots together, 17 times 

5 equals 85. Thus, the square root of 7225 is 85, 
and this is also the result for ER2. 

E2•PXR 

EZ •PXR 

E2 • 60W X 21320 

E2 • 12,120 

E • 

Figure 10.82 

ER2 -17.225 X 10+3 

ER2 ='"225 

ER2 ='1289 X 25 

ER2 = 17 X 5 

ER2 = 85 V 

Figure 10.81 

Additional Square Root Example — Suppose you 

wanted to know the proper voltage to apply to a 
light bulb rated at 60 watts, and you have 

measured its resistance and found it to be 
202 ohms. Here again, you can use the third circle 
for power as shown in Figure 10.82. First, cover 

E2 and the formula is E2 = R X P. When you 

substitute the appropriate values in the formula 
and multiply, you get 12,120 for E2. You must 
find the square root of that to get the voltage. As 
shown in Figure 10.83, you must first find two 
numbers that when multiplied together equal 
12,120. To do this, divide 12,120 by, say 60, and 
you get 202. Now find the square root of each of 
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• Additional Square Root Example 

• Additional Reference Material on Voltage Dividers 

E = N/12,120 

E =N/60 X 202 

N7-2F12-

E = 7.75 X 14.2 

E = 110 VOLTS 

Figure 10.83 

In this lesson, several new concepts have been 
discussed, along with a review and expansion of 

some that were covered previously. The voltage 
divider circuit (both with and without loading) was 

covered. At this point you should be able to design 
a voltage divider circuit to power several small 

loads from a single adequate power supply. The 
concept of power has been reviewed and expanded, 

and at this point, you should be able to use the 
three power circle diagrams as an aid in analyzing 
complex circuits. You are now ready to discuss 

multiple source dc circuits and some of the 
methods used to analyze them. 

Additional Reference Material on Voltage Dividers 

these numbers in the square root tables. The square 

root of 60 is 7.75 and the square root of 202 is 
14.2. When you multiply these two square roots 
together, you find that the voltage required by the 
60 watt bulb is 110 volts. 

Grob, B., Basic Electronics, 3rd edition (New York: McGraw-Hill, 1971), pp. 61-64, 106-108. 

Herrick, Clyde N., Unified Concepts of Electronics (Englewood Cliffs, New Jersey: Prentice-Hall, 
1970), pp. 173-178. 

Korneff, T., Introduction to Electronics (New York: Academic Press, 1966), pp. 160-164. 

Tocci, R. J., Introduction to Electric Circuit Analysis (Columbus, Ohio: Charles E. Merrill Publishing 
Co., 1974), p. 168 (unloaded), p. 238 (loaded). 

Weick, Carl B., Principles of Electronic Technology (Toronto, Canada: McGraw-Hill, 1969), pp. 79-82. 
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LESSON 10. VOLTAGE DIVIDERS AND POWER 

• Worked Through Examples 

In these examples and in the practice problems that follow, you will be designing voltage divider 
circuits for various loads which operate at specific values of voltage and current. You will find that quite 

often the resistances you calculate for your voltage divider circuits will not be "preferred values" of resis-
tance. Therefore, if you were to actually build any of these circuits, you would more than likely have to 

combine various resistors in parallel or series to obtain the value of resistance required for the voltage 
divider circuit. 

1. Design a voltage divider to supply power to a load which draws 30 milliamps of current and requires 

50 volts to operate properly. Assume that the only readily available power supply capable of deliver-
ing the required current has an output voltage of 80 volts. 

Since there is only one load, this voltage divider requires only two resistors to divide the 80 volts down 
to the 50 volts required by the load. The design of this voltage divider then simply requires you to 
calculate the values of R1 and R2. 

The first step is to find the value of the bleeder current which flows through R2, the bleeder resistor. 
The rule of thumb for finding bleeder current says that the bleeder current should be 10% or one-tenth 
of the total load current. 

lb = 1/10th of 'total load 

lb = I R2 — 0.1 X 30 mA 

lb = 1R2 = 3 mA 

Now, since R2 is in parallel with the load it will have the same voltage of 50 volts dropped across it. 

You now know the current through and the voltage across R2. and can therefore use Ohm's law in the 
form R = E/I to find the value of R2. 
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• Worked Through Examples 

E 
Rn =— 
Z I 

50 V 
RI = 
' 3 mA 

5 X 10+1 
R2 — 

3 X 10-3 

R2 = 1.67 X 10+4 = 16.7 kS2 

Now to find the value of R1 you first need to know the current through it. As shown in the schematic 
below, the current through R1 is the sum of lb and the current through the load. 

IR1 = lb + I load 

I Ri = 3 mA + 30 mA 

I R 1 = 33 mA 
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• Worked Through Examples 

Next you need to determine the voltage across Ri. 

As shown, ER1 is the difference between the supply voltage of 80 volts and the load voltage of 50 volts 
and consequently, ER1 is 30 volts. 

Now you can use Ohm's law in the form R = Ell to find Ri. 

E R 1 30 V  
R 1 — — 

I R 1 33 mA 

3.0 X 10+1  

R1 = 3.3 X 10-2 

R1 • = 0 909 X 10+3 

R1 = 909 SZ 

This calculation completes your design of the voltage divider for this load. 
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• Worked Through Examples 

2. Design a voltage divider circuit for a 250-volt power supply. The loads to be connected to the voltage 

divider require 40 milliamps at 150 volts and 50 milliamps at 200 volts. 

200V 

150V 
250V — 

LOAD 2 LOAD 1 

(  40mA ) ( 50mA )  

• 

First find the bleeder current through R3. 

lb = 10% or 1/10th 'total load 

lb = 0.1 X (40 mA + 50 mA) 

lb = 0.1 X 90 mA = 9 mA 

Since R3 is in parallel with load 2, ER3 equals 150 volts, and you can now use Ohm's law to calculate 

R3. 

13.• — E3 = 150 V 
— lb 9 mA 

1.5 X 10+2 
R3 —   = 0.167 X 10+5 = 16.7 I<S2 

9 X 10-3 

Moving up the voltage divider to R2, you need to determine the voltage across R2 and the current 

through it. 
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• Worked Through Examples 

200V 

E 

250V = 

ER2= 200-150= 50V 

R3 

16.7k2 

9mA 

ll 
150V 

LOAD 2 LOAD 1 

40mA ( 50mA ) 

I 
I R2 — lb l load 2 

l R2 = 9 mA + 40 mA = 49 mA 

As shown in the above sketch, ER2 is the difference between the two load voltages or 50 volts, and 
I R2 is the sum of the bleeder current and the current through load 2, which equals 49 milliamps. 

You can use Ohm's law as shown to calculate R2. 

R2 = ER2 — 50 V  

I R2 49 mA 

5.0 X le R2 = i  - 1.02 X 10+3 = 1.02 kS2 
4.9 X 10-2 

„ 

In order to calculate Ri you need to find its voltage and current. ER1 is the difference between the 
supply voltage and the voltage required by load 1, or 250 — 200, which equals 50 volts. I R1 is the 

total current in the circuit, which equals the sum of I R2 and the current through load 1. Here, 
49 milliamps plus 50 milliamps equals 99 milliamps for I Ri. 

You can use Ohm's law to find Ri. 

ER1 50 V  
R 1 = 

I R1 99 mA 

5.0 X 10+1  
R 1 — — 0.505 X 10+3 

9.9 X 10-2 

R1 = 505 S2 

and your design is complete. 
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• Worked Through Examples 

3. Design a voltage divider circuit for a 125-volt power supply that will supply voltage and current to the 

following loads. 

Load 1: 0.0 milliamps at —25 volts 

Load 2: 5.0 milliamps at +25 volts 

Load 3: 15 milliamps at 50 volts 

Load 4: 30 milliamps at 100 volts 

The voltage divider circuit consists of R1, R2, R3, and R4 with loads connected as shown in the sketch. 

100V 

50V 

LOAD 4 

LOAD 3 

125 V =— 

R4 

25V 

LOAD 2 

(15mA) 

(30m A) 

—  Ground Reference 

(0.0mA) 

LOAD 1 

—25V 

Since load 1 requires a negative voltage, it is connected from ground to the negative side of the source. 
All that is necessary to complete the design of this voltage divider circuit is to calculate the values of 

resistors 1 through 4 using the same procedures and techniques for the proceding examples. 

In this case, R3 is the bleeder resistor and R4 is simply a voltage dropping resistor necessary to produce 
the —25 volts required by load 1. 
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• Worked Through Examples 

To find lb, take one-tenth of the total load current. 

lb = 10% or 1/10th total load 

lb = 0.1 X (5 mA + 15 mA + 30 mA) 

lb = 0.1 X (50 mA) = 5 mA 

ER3 equals plus 25 volts since R3 is in parallel with load 2. Now you can calculate R3. 

ER3 25 V 
R3 = - 

= 
5 X 10-3 

Ib 5 mA 

2.5 X 10+1 

R3 = 0.5 X 10+4 = 5 kS2 

Moving up the divider to R2, you need to know I R2 and ER2. The current through R2 is simply the 
sum of lb and the current through load 2. 

I R2 - lb + l load 2 

I R2 = 5 mA + 5 mA = 10 mA. 

The voltage across R2 is the difference between the voltages required by load 2 and load 3 since R2 is 
connected between these two loads. 

ER2 = Eload 3— E load 2 

ER2 = 50 V — 25 V = 25 V 

Using Ohm's law in the form R = E/I, you can calculate the value of R2. 

E R2 25 V 
R2 = - 

IR2 10 mA 

2.5 X 10+1  
R2 - 

1.0 X 10-2 

R2 = 2.5 X 10+3 = 2.5 kS2 
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• Worked Through Examples 

100V 

50V 

LOAD 4 

125V — 

1132 
10mA 

5mA 

R2 

2.51(12 

25V 

R3 

5k1Z 

LOAD 2 

(5mA) 

(30mA) 

R4 0.0mA 

LOAD 1 

Proceeding up the voltage divider to R1, you need to determine ER1 

is simply the sum of I R2 and the current through load 3. 

1R 1 = 1R2 + lload 3 

1R 1 = 10 mA + 15 mA 

1R 1 = 25 mA 

and 1R1. The current through R1 

ER1 is the difference between the voltages required by load 3 and load 4 because R1 is connected 

between these two loads. 

E R1 — E load 4 E load 3 

ER 1 = 100 V — 50 V 

E R1 = V 

Using Ohm's law in the same form as before, you can calculate the value of R1. 

E R1 50 V 
Ri = 

1R1 25 mA 

5.0 X 10+1 
Ri   

2.5 X 10-2 

R = 2 X 10+3 = 2 k12 
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• Worked Through Examples 

All that remains to finish the design is to calculate the resistance of R4. Because it is in parallel with 
load 1, you know that ER4 is 25 volts. You also know that no current flows through load 1 

'load 1 = 0.0 mA), therefore the total circuit current must flow through R4. 

1R4 = lb + l load 1 4- 'load 2 + l load 3 

I R4 = 5 mA + 5 mA + 15 mA + 30 mA 

1R4 = 55 mA 

Using Ohm's law in the form R = E/I, you can calculate the value of R4. 

ER4 25 V  
R4 = — 

'R4 55 mA 

2.5 X 10+1  
R4 — — 0.455 X 10+3 

5.5 X 10-2 

R4 = 455 St 

100V 

125V 

1R1 = 25mA 

IR2 = 10mA 

lb = 5mA 

14 = 55mA 

2ksi 

50V 

2 

2.5kfz 

5ks-/ 

LOAD 2 

5mA 

LOAD 3 

15mA D 

LOAD 4 

R4 

455st 

0.0mA 

LOAD 1 
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• Worked Through Examples 

4. An electric iron dissipates 300 watts of power, and its measured resistance is 50 ohms. Using the 
appropriate power circle memory aid, determine the correct formula for finding the operating voltage 

of the iron and then solve for the voltage. 

Cover E2 in the E2 — R — P circle to see that E2 = P X R, and then take the square root to get: 

E2 =PXR 

E = ',JP X R 

Then substitute the appropriate values in the formula and multiply. 

E = N/300 X 50 

E = N,/ 15000 

In order to find the voltage required by the iron, you must take the square root of 15,000. If you have 
a calculator with a square root key, simply enter 15,000 and press the square root key to get 122 volts. 
If you don't have a calculator, you may use the square root tables. Since 15,000 is too large to be listed 
listed in the tables, you must find two numbers that when multiplied equal 15,000 and both of which 
are listed in the tables. 

150 
100 N/ 15000 

100 

500 
500 

Dividing 15,000 by 100 gives you 150. Then 

E = N./ 100 X 150 

E = N/1C—)CTX NrIgt5 

Look up the square root of 100 and 150, and multiply to get your final answer. 

E =171571) X 

E = 10 X 12.2 

E = 122 volts. 

The voltage required by the iron to produce 300 watts of power is 122 volts, which agrees with the 
previous answer. 
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LESSON 10. VOLTAGE DIVIDERS AND POWER 

• Practice Problems 

The key objectives of this lesson have been achieved if you can now: 
1. Design a simple voltage divider for use in any typical low-power application. 

2. Apply the power formulas in analyzing circuit configurations of the type covered up to this point 
in the course. 

The following problems are divided into two sets to enable you to get some practice in these areas. 
Fold over the page to check your progress and the accuracy of your calculations. 

Depending upon the approach you use in solving these problems and how you round off intermediate 
results, your answers may vary slightly from those given here. However, any differences you encounter 
should only occur in the third significant digit of your answer. If the first two significant digits of your 
answers do not agree with those given here, recheck your calculations. 

Calculate the following values: Fold Over 

a. 

b. 

c. 

R1 =   

R 2 =   

+10V 

R1 = 

R 2 =   

5V 

Hint: (Bleeder current should be one-tenth of the total load current) 

I R 1 =   

1R2 =   

R1 =   

R2 =   
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• Practice Problems 

Answers 

1. 

a. R = 3.5 kS2 

R2 = 6.5 ko. 

b. R = 2 kS2 

R2 = 1 

c. I R = 2.2 mA 

I R2 = 0.2 mA 

Ri = 1.36 kn 

R2 = 45 k2 
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• Practice Problems 

d. 

e. 

f. 

I R1 = 

I R2 = 

R1 = 

R2 = 

wvet 

/ 1 

3 0 'eeee  

9 0 9  

1R1 =  337 /WV," 

1R2 =  `(' /17e#9" 

R1 =  Ut(9  

R , o4 .  
P= 

PR2 =  '  

I R1 =   

I R2 =   

I R3 =   

R1 =   

R2 =   

R3 =   

PR1   

PR2 =   

PR3 =   

Fold Over 
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• Practice Problems 

Answers 

d. I R1 = 1 mA 

I R2 = 11 mA 

= 30 lcS2 

R2 = 909 S2 

e. I R1 = 33 mA 

I R2 = 3 mA 

R1 = 60.6 S.2 

R2 = 6 kn 

PR 1 = mW 

PR2 = 64 mW 

f. R1 = 16.5 mA 

I R2 = 11.5 mA 

I R3 = 1.5 mA 

R 1 = 3.03 kn 

R2 = 3.48 Id2 

R3 = 6.67 kn 

1'Rl = 8 25 mW 

PR2 = 460 mW 

PR3 = 15 mW 
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• Practice Problems 

Fold Over 

g. 

h. 

I R 1 = 

I R 2 = 

I R 3 = 

R 1 = 

R2 = 

R3 = 

P R 1 = 

PR 2 = 

P R 3 = 

I R 1 = 

I R 2 = 

I R3 =   

R1 =   

R2 =   

R3 =   

PR 1 =   

'R2 =   

PR 3 =   
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• Practice Problems 

Answers 

g. I R1 =99  mA 

I R2 -= 34 mA 

I R3 = 9 mA 

R1 = 70.7 S2 

R2 = 382 St 

R3 = 1.67 1(2, 

PR1 -= 693 mW 

PR2 = 442 mW 

PR3 = 135 mW 

h. IR = 44 mA 

I R2 = 19 mA 

I R3 = 4 mA 

R1 = 909 n 

R2 = 526 s-2 

R3 = 7.5 Id2 

PR1 = 1.76 W  

PR2 = 19° mW 

PR3 = 120 mW 
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• Practice Problems 

Fold Over 

_= 28V 

28V @ 20mA 

— 

+ 

20V @ 15mA 

— 

12V @ 35mA 

PR 1 = 

P R 2 = 

1'R3 = 

I R 1 = 

I R2 = 

I R 3 = 

R1 = 

R2 = 

R3 =   

PR 1 =   

P R 2 =   

P R 3 =   
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• Practice Problems 

Answers 

i. I Ri = 44 nnA 

R2 = 18 mA 

I R3 = 4 mA 

R1 = 45 n 

R2 = 211 St 

R3 = 3 kg2 

PR 1 = mW 

PR2 = 76 mW 

PR3 = 48 mW 

j. I R1 = 57 mA 

I R2 = 42 mA 

I R3 = 7 mA 

R1 = 140 St 

R2 = 190 St 

R3 = 1.71 Id2 

PR 1 = 456 mW  

PR2 = 336 mW  

PR3 = 84 mW 
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• Practice Problems 

Fold Over 

k. 

R4 4V 
20mA 

120V 

_ 

R4 

8V 
35mA 

10V 
10mA 

+ 

100V @ 5mA 

+ 

40V @ 60mA 

I - 
+ 

35V @ 20mA 

I R1 =   

I R2 =   

I R3 =   

I R4 =   

R1 =   

R2 =   

R3 =   

R4 =   

PR1 =   

PR2 =   

PR3 =   

PR4 =   

I R1 =   

I R2 =   

1R3 =   

I R4 =   

R1 =   

R2 =   

R3 =   

R4 =   

PR1 =   

PR2 =   

PR3 =   

PR4 =   
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• Practice Problems 

Answers 

k. I R = 71.5 mA 

I R2 = 61.5 mA 

I R3 = 26.5 mA 

I R4 = 6.5 mA 

R = 70 S2 

R2 = 32.5 S2 

R3 = 151 s2 

R4 = 6151-2 

PR 1 = 358 mW 

PR2 = 123 mW 

PR3 = 106 mW 

PR4 = 26 mW 

1R1 = 83.5 mA 

I R2 = 88.5 mA 

I R3 = 28.5 mA 

1R4 = 8.5 mA 

Ri = 214 S2 

R2 = 678 S2 

R3 = 175 S2 

R4 = 4.12 kS2 

PR1 = 1.87 W 

PR2 = 5.31 W 

PR3 = 143 mW 

PR4 = 298 mW 
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• Practice Problems 

Fold Over 
m. 

-. 200V 

R4 

+ 
170V @ 25mA 

I -

+ 

135V @ 10mA 

I -

+ 
100V @ 5mA 

n. 

I R1 =   

I R2 =   

I R3 = 

I R 4 = 

R1 = 

R2 = 

R3 = 

R4 =   

P R 1 =   

P R 2 = 

P R 3 = 

P R 4 = 

I R1 = 

I R 2 = 

I R3 = 

I R4 = 

R1 =   

R2 =   

R3 =   

R4 =   

PR I =   

P R 2 =   

P R 3 =   

P R 4 =   
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• Practice Problems 

Answers 
= 44 mA 

m- R1 

I R2 = 19 mA 

I R3 = 9 mA 

R4 = 4 mA 

R1 = 682 2 

R2 = 1.84 k1-2. 

R3 = 3.89 l(S.2 

R4 = 25 kS2 

PR1 = 1.32 W 

PR2 = 665 mW 

PR3 = 315 mW 

PR4 = 400 mW 

n. = 93.5 mA 

R2 = 53.5 mA 

I R3 = 28.5 mA 

I R4 = 9.5 mA 

R = 53.5 S2 

R2 = 224 S-2 

R3 = 211 1-2 

R4 = 1.41 kn 

PRi = 468 mW 

PR2 = 642 mW 

PR3 = 171 mW 

PR4 = 102 mW 
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• Practice Problems 

Fold Over 
o. I R1 = 

I R2 — 

I R3 = 

I R4 —   

R1 =   

R2 =   

R3 =   

R4 =   

PR 1 =   

1R2 =   

PR 3 =   

1R4 =   

2. Calculate the following unknown values using the three power formulas: 

a. P -- 5 W 

I = 25 mA 

E =  

b. P = 1320 W 

I=   

E = 12 V 

C. P=  

I=6A 

E=5V 
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• Practice Problems 

Answers 

o. R1 = 93.5 mA 

R2 = 58.5 mA 

1R3 = 33.5 mA 

IR4 = 8.5 mA 

R1 = 193 S2 

R2 = 256 .S2 

R3 = 388 S2 

R4 = 1.18 k5-2 

1.68 W 
PR 1 = 

PR2 = 878 mW 

PR3 = 436 mW 

PR4 = 85 mW 

2. 

a. E = 200 V 

b. 1=110A 

c. P = 30W 
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• Practice Problems 

Fold Over 

2. d. P=6 W 

I= 0.39 A 

E=  

e. P= 100 W 

I=   

E= 38 V 

f. P= 30 W 

I= 3 A 

R=  

g. P= 6W 

I=   

R= 500 52 

h. P=  

I= 0.036 A 

R= 15 k52 

P= 2W 

I= 0.009 A 

R=  

j. P= 12 W 

I=   

R= 320 52 
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• Practice Problems 

Answers 

d. E= 15.4 V 

e. I = 2.63 A 

f. R = 3.33 2 

g. I = 110 mA 

h. P= 19.4 W 

R = 24.7 kS2 

I = 194 mA 
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• Practice Problems 

Fold Over 

2. k. E =  

R = 33 kS2 

P = 20 W 

I. E= 120V 

R = 400 kS2 

P=  

m. E = 12 V 

R=  

P = 0.5 W 

n. E =  

R = 10 kS2 

P = 0.25 W 

o. E = 1000 V 

R = 5 MS2 

P =  
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• Practice Problems 

Answers 

k. E = 812 V 

I. P = 36 mW 

m. R = 288 S-2 

n. E = 50 V 

o. P = 200 mW 
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LESSON 10 — QUIZ 

1. Any circuit or device that draws current and/ Two quantities are given for each of the five 
or has resistance, requires voltage, or resistors drawn below. In each case, calculate the 
dissipates power is defined as: quantity indicated with a question mark. 

a. A voltage generator 
b. A load 
c. An alternator 
d. A short circuit 

2 A point that is at the same potential as the 
earth itself is called: 

a. Chassis ground 
b. The minus terminal 
c. An earth ground 
d. The positive terminal 

3. A rule of thumb for voltage dividers: 
 % of the load current is selected as 
bleeder current. 

a. 10% 
b. 25% 
c. 50% 
d. 90% 

4. The next step in designing a voltage divider 
after examining the power supply and load 
requirements is: 

a. To draw a schematic 
b. To select the bleeder current 
c. To turn on the switch 
d. To calculate the current 

5. A 100 watt light bulb requires 120 volts; 
what is its resistance? 

a. 14.4 K 
b. 120 ohms 
c. 1.2 ohms 
d. 144 ohms 

6. I=20mA 

7 I=200mA 

P-? 
R=10kS2 

(Power dissipated) = ? 

P=   

8. I=? 

R=3.9kS2 
P=2 .44W 

9. 

10. 

I= 

R=15kS2 
P=? 

R=1002 

P=125W 

E=   
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LESSON 10 — QUIZ 

A 

The questions that follow refer to schematics A 
and B. 

11. The series network of resistors from A thru E 
in schematic A is known as a: 

a. Series-parallel circuit 
b. Voltage divider 
c. Parallel - series circuit 
d. Open circuit 

12. Point E in schematic A is with 
respect to chassis ground (point D). 

a. Negative 
b. Positive 
c. Neutral 
d. The same voltage 

13. Point A in Schematic A is with 
respect to chassis ground (Point D). 

a. Negative 
b. Positive 
c. Neutral 
d. The same voltage 

14. Point C of Schematic A has a voltage with 
respect to point E that is of the 
applied voltage from A to E. 

a. 10% 
b. 20% 
c. 60% 
d. 50% 

15 R2 of Schematic B is called: 

a. The load 
b. A needless bypass 
c. A bleeder resistor 
d. A power saver 

16 R1 of Schematic B has a current through it 
that should be at least of the load 
current: 

a. 5% 
b. 50% 
c. 1 1 0% 
c. 90% 

17 Increasing the current through 82 of 
Schematic B will make VAB more stable: 

a. But wastes more power 
b. But doesn't help the circuit. 
c. And requires changing R3 
d. All of above 
e. .a and c above 

18 If the load of Schematic B is changed to a 
smaller resistor the current drain from the 
power supply: 

a. Decreases 
b. Increases 
c. Remains the same 
d. Goes negative 
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Lesson 11 

Introduction to Kirchhoff's Laws 

This lesson introduces Kirchhoff's Current Law and Kirchhoff's 
Voltage Law and explains all new terminology relating to these two 

laws. Discussion includes an examination of how to write and solve 
loop equations for the unknown current or currents. This includes all 

algebraic manipulations necessary to solve the loop equations for 
multiple source circuits. 





LESSON 11. INTRODUCTION TO KIRCHHOFF'S LAWS 

• Objectives 

This lesson introduces two new and powerful laws that you will find useful in analyzing dc circuits 

where you cannot use Ohm's law alone. This lesson and the next explore Kirchhoff's laws and several 
advanced methods of circuit analysis. At the end of this lesson, you should be able to: 

1. Write Kirchhoff's current law, using diagrams to explain it. 

2. In any circuit of the type illustrated in the schematic diagram below 

a. Identify and label the loops and nodes (or junctions) 

b. Identify three typical circuit paths that are not loops. 

A B C D 

H G F E 

3. At any node of the type illustrated below, use Kirchhoff's current law to calculate the 
unknown current labeled with a question mark. 

11=300mA 

 'VVs.  

12=10mA 

 *Mt  

4. Write Kirchhoff's voltage law, using diagrams to explain it. 

• 5. Write the six rules governing series circuit and parallel circuit operation. Explain which of 
these rules are related to Kirchhoff's voltage law, which to Kirchhoff's current law, and 
why. 

6. Write an explanation of the significance of a negative current value solution in a Kirchhoff's 

law problem. 
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• Objectives 

7. In any loop, such as the type represented in the schematic below, write a Kirchhoff's voltage 
law or "loop" equation, being careful to observe the correct rules with respect to the signs 
of the voltages. Write one equation using electron current and another equation using 
conventional current. 

3kS-2 4.5ks-z 

 mAr----

10V — 

 4NIV‘,  

=-6V 

500S2 

8. Solve any loop equation of the type shown for a single unknown quantity such as the 

current, correctly using the procedures of: 

a. Transposing 

b. Combining "like" terms 

c. Multiplying or dividing both sides of the equation by the same quantity 

d. Adding or subtracting the same quantity on both sides of an equation 

e. Changing the signs of all parts of an equation. 

10 V — 3 kl — 4.5 kl — 6 V — 500 kl = 

9. In a multiple source circuit of the type shown, using Kirchhoff's laws, solve for all unknown 
currents (including direction) and voltages (including polarity). You should be able to write 
loop equations for this circuit using either conventional or electron current. 

R1 R2 
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LESSON 11. INTRODUCTION TO KIRCHHOFF'S LAWS 

• Gustav Kirchhoff 

An important objective of this course on dc 
circuits is to provide you with the tools you will 

need to make electricity work for you, or to 
predict how it will behave in any given circuit 
situation. Up to this point, you have been using 
Ohm's law, the power formulas, and some basic 
circuit rules as tools for analyzing dc circuits 
(Figure 11.1). 

In this lesson and the next, you will be 

introduced to some new tools you can use to help 
simplify and analyze more complex circuits 

(Figure 11.2). The key difference between the 
methods that will be covered in this lesson and 
methods you have seen earlier is that the methods 
introduced here will allow you to analyze dc 
circuits which cannot be solved using Ohm's law 
alone. This includes certain types of single power 
supply circuits, as well as those with more than one 
voltage source. You will find that in certain 
circuits, the solution is not possible using Ohm's 
law alone. 

Gustav Kirchhoff — Some of the basic and general 

methods for analyzing circuits that will be 
introduced and analyzed in this lesson, were 

developed in 1874 by the German physicist, 

Gustav Kirchhoff (pronounced Kirk'hawf). A 
photo of Kirchhoff is shown as Figure 11.3. 

Figure 11.1 

P ie 

Figure 11 2 

Figure 11.3 

1) KIRCH1-OFF'S 
CURRENT LAW 
2)KIRCHHOEFS 
VOLTAGE LAW 
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• Lesson Objectives 

• Basic Circuit Rules: Series Circuit 

• Basic Circuit Rules: Parallel Circuit 

Lesson Objectives — The key objective of this 

lesson and the next is to enable you to write down 

and use what are called Kirchhoff's laws to 

completely analyze a complex, multiple source dc 

circuit, such as the one in Figure 11.4. At the end 

of Lessons 11 and 12, you should be able to 

calculate any voltage drop and any current flowing 

in a multiple source complex circuit, such as this. 

Basic Circuit Rules: Series Circuit — You have 

already seen Kirchhoff's laws at work in some 

specific cases, such as when the rules describing the 

operation of series and parallel circuits were 

introduced. Take a minute to briefly review these 

rules. As listed in Figure 11.5 for series circuits, 

you have seen that: 

1. The current is the same in all parts of a 

series circuit. 

2. The sum of the individual voltage drops 

in a series circuit equals the total applied 

voltage. 

3. The total resistance of a series circuit is 

equal to the sum of the individual 

resistances. 

Basic Circuit Rules: Parallel Circuit — For parallel 

circuits (Figure 11.6) you have seen that: 

1. The total or main line current is the sum 

of the individual branch currents. 

2. The voltage is the same across all 

branches. 

3. The total resistance is always less than, 

or approximately equal to, the smallest 

branch resistance. 

As you proceed through this lesson, you will 

see how Kirchhoff's laws really are just more 

general statements of these circuit rules you have 

been using. 

Figure 11.4 

SERIES CIRCUIT RULES 

1. CURRENT IS THE SAME IN ALL PARTS 

OF A SERIES CIRCUIT. 

2. THE SUM OF THE INDIVIDUAL VOLTAGE 

DROPS IN A SERIES CIRCUIT EQUALS 

THE TOTAL APPLIED VOLTAGE. 

3. THE TOTAL RESISTANCE OF A SERIES 

CIRCUIT EQUALS THE SUM OF THE 

INDIVIDUAL RESISTANCES. 

Figure 11.5 

PARALLEL CIRCUIT RULES 

1. TOTAL CURRENT ISTHE SUM OF THE 

INDIVIDUAL BRANCH CURRENTS. 

2. VOLTAGE IS THE SAME ACROSS ALL 

BRANCHES. 

3. TOTAL RESISTANCE IS ALWAYS LESS 

THAN OR APPROXIMATELY EQUAL TO 

THE SMALLEST BRANCH RESISTANCE. 

Figure 11.6 
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• Why Do You Need Kirchhoff's Laws? 
• Which Way Does Current Flow Through R2 

Figure 11.7 

Figure 11.8 

50V - 

R2 

R3 

Figure 11.9 

Why Do You Need Kirchhoff's Laws? — You may 
be wondering just why these new laws are needed. 
The reason is that the laws you already know 
won't always work with complex circuits such as 
the one shown in Figure 11.7. 

Why? Suppose that you need to find the 
voltage dropped across R2. There are two voltage 
sources in the circuit, and as you see, each one 
acting on R2. 

Which Way Does Current Flow Through R2 — 
There are several possibilities for this question. Will 
the currents flow as shown in Figure 11.8, where 
electron current from both sources combines and 
flows through R2? 

Or, will the larger battery "overpower" the 
smaller battery and push current backwards 
through the smaller source as shown in 
Figure 11.9? 

If this is the case, what effect does the 12-volt 
battery have on the circuit? Should it be treated as 
a resistance, an open circuit, a short circuit, or 
something else? 

These are all good questions. Unfortunately, 
they cannot be answered by applying Ohm's law 
and the series and parallel circuit laws you already 
know. For this reason, some other circuit analysis 
methods, including methods such as Kirchhoff's 
laws must be studied. There are two of these laws, 
and they will be discussed one at a time. 
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• Kirchhoff's Current Law 
• Junctions or Nodes 
• Kirchhoff's Current Law at a Junction 

Kirchhoff's Current Law — Kirchhoff's first law, 

sometimes called Kirchhoff's current law, simply 
states that the sum of the currents arriving at any 
point in a circuit must equal the sum of the 

currents leaving that point (Figure 11.10). You 

may see this law stated several different ways, and 
you will be shown several alternate statements of 

this law. But, basically, any statement of 
Kirchhoff's current law means the same thing: 
whatever current arrives at any point in a circuit 

must equal the total current that leaves. 

Junctions or Nodes — This law applies to any point 

in a circuit but is most frequently used to analyze 
points in circuits where three or more components 
are joined together. As shown in Figure 11.11, 
points with three or more connections are called 
"junction points" or junctions. They may also be 
called branch points or nodes as well. 

Kirchhoff's Current Law at a Junction — 

Figure 11.12 shows an example of two junctions or 

nodes. How does Kirchhoff's first law work for 

each case? Mathematically it can be stated that a 
junction of three resistors where two currents, li 

and 12 flow toward the junction and one current, 
13, leaves it, that l +12 must equal 13. All the 

current that arrives at the junction must leave it. 

KIRCHHOFF'S FIRST LAW OR 

KIRCHHOFF'S CURRENT LAW 

THE SUM OF THE CURRENTS ARRIVING AT 
ANY POINT IN A CIRCUIT MUST EQUAL THE 

SUM OF THE CURRENTS LEAVING THAT 
POINT. 

Figure 11.10 

Figure 11.11 

12 

Figure 11.12 

JUNCTION  

BRANCH POINT 

PRIMARY NODE 

—AM,— 13 
11 

12 —0» 

1 1 _1 _2. - - 13 
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• Kirchhoff's Current Law at a Junction 
• If Kirchhoff's Current Law Were Not Followed 
• If More Electrons Leave Than Arrive 

Kirchhoff's Current Law at a Junction — 
Figure 11.13 shows another example set of two 

junctions. In each case there is one current, 
entering the junction and two currents, 12 and 13, 
leaving the junction. By Kirchhoff's first law, Ii 
must equal 12 + 13. For example, suppose you 

know that l equals 7 amps, and 12 equals 5 amps. 
How would you determine 13? Recall again that 
the current leaving the junction must be equal to 
the current entering. In order for this to be true, 13 
must be 2 amps. 

If Kirchhoff's Current Law Were Not Followed — 
Consider for a second what would happen if 
Kirchhoff's current law were not followed. 

Suppose, as shown in Figure 11.14, that more 
current arrives at a point in a circuit than leaves it. 

Remember that electron current is a flow of 
electrons, and if there is more electron current 
arriving at a point than leaving, what would the 
result be? Electrons would have to be building up 
somehow at a point since more negative charges are 
coming in than are leaving. This type of circuit 
behavior — with a wire blowing up like a balloon 
just doesn't happen anywhere in nature. 

If More Electrons Leave Than Arrive — In the 
opposite vein, as shown in Figure 11.15, suppose 

more electrons were leaving a circuit point than 

arrived. If this is the case, electrons have to be 

magically created somehow, or secretly "snuck" 
into the circuit and this doesn't happen either. 
Kirchhoff's first law states that all the electrons 

that enter any point in a circuit, leave it, no more, 

no less. The total current arriving at any point, 
must leave that point. 

12+ 13 

*at 

Figure 11.13 

MORE CHARGE ARRWINO 
THAN LEAVING 

Figure 11.14 

Figure 11.15 

MOliWIAROE LE RIO 
THAN ARRIVING 
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• Example: Kirchhoff's First Law 
• Kirchhoff's Current Law in Parallel Circuits 

• Kirchhoff's Current Law in Series Circuits 

6.67mA 

67  

6.67mA 

-le R1 R3 > 

6.61mA 
20mA 
-». R. 

Figure 11.16 

R7.63-64 

_ 

IR21 R3.1 R1 '12e 

tRrIR3.1R4.6.6706A 

Kirchhoff's Current Law in Parallel Circuits — You 

have already seen Kirchhoff's first law at work in 
parallel and series circuits. In parallel circuits, recall 
that "the total or main line current equals the sum 
of the branch currents." Basically, you have seen 

this law expressed as the formula IT = 1i +12 +13, 
for parallel circuits. If you focus your attention on 
the points where the circuit branches in 

Figure 11.17, you will see that the law for currents 
in a parallel circuit is actually just a specific 
statement of Kirchhoff's current law that applies 

to parallel circuits. 

Kirchhoff's Current Law in Series Circuits — In 

series circuits you have seen that the "current is 

the same in all parts of the circuit." This just 

means that if you closely examine any point in the 
circuit, as shown in Figure 11.18, the current 
entering that point always equals the current 
leaving it. This is, again, just a specific statement of 

Kirchhoff's first law or Kirchhoff's current law 

that applies to series circuits. 

Example: Kirchhoff's First Law — Say that you 
have the circuit pictured in Figure 11.16. The 
current flowing through R1 is 20 milliamps. 

Resistors 2, 3, and 4 are of equal size. Kirchhoff's 

current law says that the current leaving a junction 
must equal the current flowing into that junction. 
The 20 milliamps flowing into the junction will be 
divided three ways by the three equal-sized 

resistors. You could then calculate that the current 

flowing through each resistor will be 6.67 

milliamps, for a total of 20 milliamps. 

Figure 11.17 

Figure 11.18 
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• Kirchhoff's Voltage Law 
• Closed Circuit Path 

• Other Loops in this Circuit 

Kirchhoff's Voltage Law — Moving on, Kirchhoff's 

second law, sometimes called Kirchhoff's voltage 
law will be discussed. Then the discussion will 
proceed to how Kirchhoff's current and voltage 
laws may be used together to analyze complex dc 
circuits. Figure 11.19 shows one way that 

Kirchhoff's voltage law can be stated: the total 

voltage applied to any closed circuit path is always 
equal to the sum of the voltage drops across the 
individual parts of the path. To really understand 
the meaning of this law and how to use it, you will 

have to concentrate your attention on all the parts 

of the law one at a time. First, consider the 
concept of a "closed circuit path" for a minute. 

Closed Circuit Path — A "closed circuit path" 
simply means any continuous path you trace in a 
circuit that starts and ends at the same point. In 

electricity, these closed circuit pathways are 
usually called loops, as they will be referred to 
from now on in this course. In Figure 11.20, the 

pathway ABCD and back to A is a loop. 

7"-,,/ 

PA. MU( I MD IACK 
TO AIS MOO, 

/ 

Figure 11.21 

KIRCHHOFF'S VOLTAGE LAW 

THE TOTAL VOLTAGE APPLIED TO ANY 
"CLOSED CIRCUIT PATH" IS ALWAYS 
EQUAL TO THE SUM OF THE VOLTAGE 

DROPS IN THAT PATH. 

Figure 11.19 

Figure 11.20 

Other Loops in this Circuit — Actually in most any 
circuit, it is possible to trace out several loops. A 
loop is any closed circuit pathway, regardless of 

what kinds of components it may contain. Since 
one of the objectives of this lesson requires that 

you be able to identify loops in a circuit, it is 

important that you spend a little time familiarizing 
yourself with loops. For example, in Figure 11.21, 

two other simple loops in the circuit are shown. To 
trace a loop in your mind, start at any point and 

mentally move around (or traverse) a path that 
returns to the same point. In doing this, you will 
have traversed a closed path, or loop. 



• Paths That Are Not Loops 
• Kirchhoff's Voltage Law in Series Circuits 

• Loops in Parallel Circuits 

Paths That Are Not Loops — Circuit pathways that 
are not closed are not loops. This means that if a 
path in a circuit doesn't start and end at the same 

point, it is not a loop. In Figure 11.22, paths going 
through points BAD and CFE are not loops. Now 

remember that Kirchhoff's voltage law holds for 

loops only, and again states that the total voltage 
applied to a loop equals the sum or all the voltage 

drops in the loop. 

Kirchhoff's Voltage Law in Series Circuits — You 
have already seen Kirchhoff's voltage law in 

operation in series circuits. Series circuits are 
circuits with only one closed circuit path, or only 

one loop, as shown in Figure 11.23. You have seen 
that in any series circuit such as this, the sum of 
the voltage drops across the circuit resistors must 
equal the applied voltage. This is just another way 
of stating Kirchhoff's second law. This law tells us 
that in any loop the algebraic sum of the voltage 
applied by generators, batteries, etc., must always 

equal the sum of the voltage drops across all 
resistances. 

Loops in Parallel Circuits — The really new thing 

about Kirchhoff's second law is that it applies to 

loops anywhere in any type of circuit. For 
example, Figure 11.24 shows a simple parallel 

circuit. In this circuit you can "move around" or 
"traverse" several loops, starting at any point. You 

can start at point A and find several possible loops 
in this circuit. There is one loop around the outer 
path (points ABCDHGFE and back to A); there is 

another loop through the central branch (points 
ABCGFE and back to A); and there is a third loop 
through points ABFE and back to A. Note in 
Figure 11.24(D) that loop CDHG is also a loop; 
this particular loop contains only resistors, no 

BAD AND CFE ARE NOT LOOPS 

Figure 11.22 

Figure 11.23 

A 
1/ 

7 
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Figure 11.24 
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• Kirchhoff's Voltage Law: Alternate Statement 
• Voltages Aiding and Opposing Current 

voltage sources. Kirchhoff's laws hold in loops such 
as this, also. 

Kirchhoff's Voltage Law: Alternate Statement — 
In each of these loops, and in any closed circuit 
path, Kirchhoff's voltage law holds true. As this 
lesson proceeds, this law will be stated for you in 

several different ways to help clarify its meaning. 
One alternate way it may be stated is: for any loop 
the sum of all the voltages that aid current flow in 

the loop, must equal the sum of all those voltages 
that oppose it (Figure 1 1.25). 

KIRCHHOFF'S SECOND LAW 
IN ANY LOOP 

SUM OF VOLTAGES SUM OF VOLTAGES 

AIDING CURRENT = OPPOSING CURRENT 
FLOW FLOW 

Figure 11.25 

Voltages Aiding and Opposing Current — As you 

study Kirchhoff's law, you will be asked to keep 

track of several facts concerning loops. Normally, 
as you analyze a loop you will start at one point in 

the loop and mentally "walk around" or traverse 
the loop. As you traverse the loop you will be 

writing down each voltage you come across along 
with its correct sign. That is, you will write down 
all the positive and negative voltages you come to 

as you go around the loop. Anytime you come to a 

battery or voltage source, you will write down its 
voltage, and any time you come to a resistor, you 
will write down a voltage expressed as a current 
times a resistance (IR drop). Now a key point. The 
sign (positive or negative) that you put in front of 

11-13 



• Kirchhoff's Voltage Law: Alternate Form 

Figure 11.26 

CLOCKW IDE 
COUNTER 
CLOCKVi,sr 

DIRECTION 
OF TRAVERSAL 

VOLTAGES ENCOUNTERED: 

1, -1R1, -1R2. -1113 

E • I RI • IR2 • IR3 

To use Kirchhoff's second law in more 

complex circuit situations, you need to be careful 
just how you add up the applied voltages and the 

voltage drops in circuit loops. In some more 
complex cases, it might not be obvious which 

voltages aid current flow and which voltages 
oppose it, or even in what direction the currents 

are flowing. 

Kirchhoff's Voltage Law: Alternate Form — In 

cases such as this, it is often more convenient to 

rewrite Kirchhoff's second law in another form. If 
you label all the voltages aiding current flow in a 
loop with a plus sign and all voltages hindering or 

opposing current flow in the same loop with a 

minus sign, then Kirchhoff's second law says that 
their algebraic sum must equal zero (Figure 11.27). 

these voltages will be important. How do you 

determine these signs? Basically, it is a matter of 
considering what effect each voltage you come to 

has on the current flow in the circuit. Consider 
Figure 11.26; you see a single loop with electron 

current flowing clockwise as shown. If you traverse 

this circuit in the same direction as the current, 
then you mark all voltage sources positive that 
push current in that same direction. When you 
come to a resistor and traverse it in the same 

direction as current flow through it, you write 
down a negative voltage, —IR. This is because the 

resistors act to oppose current flow; a voltage drop 
develops across them. So starting at point A in this 

simple loop and going around the circuit, you 
would encounter voltages +E, —I Ri, —I R2 and 
—I R3. Kirchhoff's second law states that the 

applied voltage E, equals I Ri plus I R2 plus I R3 or 
E= + IR2+ IR3. 

KIRCHHOFF'S VOLTAGE LAW 

SUM OF VOLTAGES VOLTAGES OPPOSING till 
+ AIDING CURRENT — CURRENT FLOW =0 

FLOW 

Figure 11.27 
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• Kirchhoff's Voltage Law Example 

• Kirchhoff's Voltage Law: Third Form 

Kirchhoff's Voltage Law Example — The voltage 
law tells you that the sum of these voltages aiding 
current flow minus those that oppose it equals 
zero. This is an alternate (but equivalent) 
statement of Kirchhoff's voltage law. You will find 

that writing this law in this second way may make 
it easier to simplify solutions of more complex 
circuits. 

To use Kirchhoff's second law, what you 
really need to do is go around or traverse the 

loop and focus on the voltage sources and resistors 

you encounter. Voltages which aid current flow in 
the direction you are moving get a plus sign. 

Voltages which are opposing current flow in the 
direction you are moving get a minus sign. Put all 
these plus and minus voltages on one side of an 
equal sign. Kirchhoff's voltage law tells you there 

must be a zero on the other side. This then gives 
you a Kirchhoff's voltage law equation. 

Consider the expression containing all the 
voltages and their signs on the left-hand side of the 
equal sign in Figure 11.28. This is called the 

+E, - E2 0 algebraic sum of these voltages. To take the 
algebraic sum of these voltages, you add all of the 
positive voltages together, and subtract each 

"ALGEBRAIC SUM OF VOLTAGES. • 0 

negative voltage from that result. Kirchhoff's 

second law states that for any loop you have as 
many positive as negative volts; so that when you 
finish adding and subtracting, the result will be 
exactly zero. 

Figure 11.28 

Kirchhoff's Voltage Law: Third Form — If you 
keep careful track of the signs of all the voltages in 

the circuit, you can rewrite Kirchhoff's voltage law 

once again, this time in a simpler form as shown in 

Figure 11.29. The algebraic sum of all the voltages 
encountered in any loop equals zero. 

Again, algebraic sum means the sum of the 

voltages taking into account whether each is 
positive or negative. Positive voltages are simply 
added, and negative voltages are subtracted to get 
the total. 

KIRCHHOFF'S VOLTAGE LAW 

THE ALGEBRAIC SUM OF ALL THE VOLTAGES 
ENCOUNTERED IN ANY LOOP EQUALS ZERO. 

Figure 11.29 
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• Loop Equation 
• Example: Kirchhoff's Voltage Law 

• Assign Current Directions 

Loop Equation — When the algebraic sum of all the 

voltages in a loop is set to equal zero, the result is 
called a loop equation. A loop equation 
(Figure 11.30) is simply a mathematical expression 
of Kirchhoff's voltage law. As you will see, loop 

equations can be used to help solve for unknown 
currents and voltages in circuits, where Ohm's law 

and basic circuit rules can't always be used. 

Example: Kirchhoff's Voltage Law — As an 
example, examine the single-loop circuit shown in 
Figure 11.31, and go through the steps that you 
would need in writing a loop equation for it. In 
this circuit, a loop equation could be used to allow 
you to solve for the total current. (Note that you 
could solve this circuit using series circuit rules, but 

this type of example will be a good place for you 
to begin learning the use of Kirchhoff's laws.) 

Assign Current Directions — The first step in 
writing a loop equation is to mark all the current 
directions. In some circumstances, you may not 

know the direction of the current flow. Here's a 
trick. In those cases where the current flow is 

unknown, simply guess a direction. 
A key point to remember is that if you 

happen to guess the current direction incorrectly, 

the current you calculate using Kirchhoff's laws 
will turn out to be negative. That's a key to using 

Kirchhoff's laws. If any current you calculate using 
Kirchhoff's laws turns out to be negative, you then 
know it's flowing opposite to the direction you've 
guessed (Figure 11.32). 

LOOP EQUATION 

THE ALGEBRAIC SUM OF THE VOLTAGES 
IN A LOOP EQUALS ZERO. 

SUM OF SUM OF 

+ APPLIED — VOLTAGE = 

VO LTAGES DROPS 

Figure 11.30 

A 
E = 50V 1 52 = 100V 

R 1 = 100S-2 R = 10042 

Figure 11.31 

DON'T KNOW CURRENT DIRECTION? 

GUESS A DIRECTION! 

IF ANY CURRENT YOU CALCULATE IS 
NEGATIVE, IT IS FLOWING IN THE 

OPPOSITE DIRECTION. 

Figure 11.32 
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• Selected Clockwise Electron Current Flow 
• Step 2: Traverse the Circuit 

• Determining Signs: Voltage Sources 

Selected Clockwise Electron Current Flow — In 
this loop you could just blindly assume that 

electron current is flowing clockwise. An arrow has 
been inserted in Figure 11.33 to help you keep this 

in mind. Remember that if you calculate a negative 
current, this means that this assumed current 
direction is incorrect. If that's the case, you will 

know that electron current is actually flowing in 
the opposite direction in this circuit. 

Step 2: Traverse the Circuit — The second step in 

writing a loop equation is to mentally get inside 
your circuit and walk around or "traverse" it. Start 
at one point and write down all the voltages you 
encounter along the way, with their correct signs. 

Determining Signs: Voltage Sources — How do you 

determine the correct signs? The trick is to pay 

careful attention to the direction in which you are 

going through or traversing your circuit. Source 
voltages (like batteries) are considered positive if 
you go through (or traverse) them in the same 

direction that they normally push current 
(Figure 11.35). 

Ei =50V E2=100V 

Figure 11.33 

STEP 2: 

 W .•  
R1=10011 R2=100.11 

GET "INTO" CIRCUIT, TRAVERSE CIRCUIT, 

AND WRITE DOWN ALL VOLTAGES WITH 

CORRECT SIGNS. 

Figure 11.34 

--TRAVERSAL 
DIRECTION 

r---1 r PUSH ON -\ 
L CURRENT/ 

POSITIVE 
E 

Figure 11.35 
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• Negative Voltage Sources 

• Signs of Source Voltages 
• Example 

Negative Voltage Sources — Correspondingly, 

source voltages are considered negative in the loop 

equation if the source is pushing current against 
you as you traverse it, as shown in Figure 11.36. 

Signs of Source Voltages — To determine the right 
sign for a voltage source in a loop equation, 

compare the direction in which you are going 
through the source, to the direction that the source 
is pushing on current. If you go through the source 
in the same direction as it pushes on current, write 
down the voltage in your loop equation with a plus 

sign. If the source is pushing current against you as 
you traverse it, write down the voltage with a 
negative sign. These two rules are illustrated in 

Figure 11.37. 

Example — Mentally traverse the example circuit 
and write down the two source voltages according 

to these rules. Starting at point A, traverse the 

circuit clockwise. This way you will be moving 
through the top of this circuit from left to right. 
The first thing you come to is a voltage source 
which you will go through from plus to minus. 
Now notice that this is the same direction this 

source pushes on electron current. This gives you a 

plus 50 volts. Proceed through a second source 
from minus to plus. Notice that this source is 
pushing electron current against you as you go 
through it, so you get a minus 100 volts. Next as 
you move clockwise around this circuit, you come 
to resistor R2. So now consider how to handle the 

D ) 
TRAVERSAL 
DIRECTION 

NEGATIVE 
E 

PUSH LT 71 
,.CURRENT 

Figure 11.36 

-DIRECTION OF) 
TRAVERSAL 

E1 ErI1I —lilt 

SAME OPPOSITE 
DIRECTION DIRECTION 

+ E1 -E2 

Figure 11.37 

Er5OV 

  _ 

• 
Ri•ICOO 

-e  
R2.1COn 

E2•1COV 

•50 -100 

Figure 11.38 
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• Size of Voltage Across Resistors 

• Sign of Voltage Across Resistors 

voltage across a resistor when writing loop 
equations. 

Size of Voltage Across Resistors — First of all, 
from Ohm's law you know that the size of the 
voltage across any resistor equals the product of 
the current through it times its resistance. The 
voltage across a resistor equals I times R, and, as 

you know by now, is called an IR drop, as shown 
in Figure 11.39. 

Sign of Voltage Across Resistors — How do you 
determine the correct sign (positive or negative) for 
an IR voltage in your loop equation? To do this, 

concentrate on the direction you are moving 
through or traversing the resistor and how current 
is flowing through it. 

As shown in Figure 11.40, if you go through a 

resistor in the direction of assumed current flow, 
you write down its voltage with a negative sign. 

Figure 11.39 

POSMVE OR NEGATIVE IR VOLTAGE ? 

L <  
R, 

Figure 11.40 

SAME 
DIRECTION: 

< DTR VEACTEIZIAfF -I R1 
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• Sign of Voltage Across Resistors 
• Loop Equation 

Sign of Voltage Across Resistors — If you go 
through a resistor opposite to the direction of 

current through it, the IR voltage across it is 

considered positive, as shown in Figure 11.41. 

Back in the example circuit as you move 
through R2 and R1, you will get voltages of —I R2 
and —I Ri. Notice in Figure 11.42 that the minus 
signs are there because you traversed both of these 
resistors in the same direction as the electron 
current flowed through them. To complete the 
loop equation, algebraically add all of these 

voltages with their correct signs, set the result 
equal to zero. 

+50 — 100 — I R2 — I Ri = 

This is, in equation form, the statement of 

Kirchhoff's second law for this simple loop. As you 
will see, you can use equations like this to solve for 

unknown quantities in circuits. 

Loop Equation — In this case, you know the value 

of the source voltages, and the values of R1 and 
R2. The unknown quantity in this equation is the 
current, I, which as you recall was assumed to be 
flowing in the clockwise direction. 

Notice that if you use a little "circuit sense" 
here, since E2 is twice as large as E1, you should 

expect that the actual direction of the electron 
current flow is counterclockwise. 

What steps are necessary to finish the solution 
for I? Since I is the only quantity you don't know 
in this equation, one way to find the value of I 
would be to simply move the parts of the equation 
around until you have I all alone on one side of the 

rii'  t_<-015fiTzlatitr OF j 
- - Mv 
R 

'DIRECTION OF 
TRAVERSAL ./ 

OPPOSITE DIRECTION: + IR1 

Figure 11.41 

E1 40V E2 • low 

 I'll 'III  

«ir 

Ri•ICOQ 

50 -100 -IR,--IR,= 
Figure 11.42 

RrICO$1 
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• Solution of Equations 

equal sign. Then the current will simply equal all 

the known quantities on the other side of the equal 
sign as shown in Figure 11.43. 

+50-100-1R2 -1R 1=0 

Figure 11.43 

SOLVING EQUATIONS 

OBJECTIVE: GET UNKNOWN QUANTITY ALL 
ALONE ON ONE SIDE OF EQUAL SIGN 

WITH ONLY KNOWN QUANTITIES ON THE 
OTHER. 

Figure 11.44 

Solution of Equations — Quite often in electronic 

problems you may encounter situations where you 
must "solve" an equation (a mathematical 
statement with an equal sign). In this equation may 

be several known quantities and an unknown 
quantity that you need to find. To "solve the 

equation" means to rearrange it using correct 
procedures, until the unknown quantity is all by 
itself on one side of the equal sign, and only 

known quantities are on the other (Figure 11.44). 

When that has been accomplished, you know that 
your unknown quantity is equal to a combination 
of known quantities, and you have your answer. 

Whenever you are manipulating equations in 
solving for unknowns, you must follow the correct 
procedures which will allow you to rearrange an 

equation without actually changing its equality. 
These procedures are fairly easy to learn, and will 
be reviewed for you. 
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• Basic Principle 
• One Equation for Each Unknown 

BASIC PRINCIPLE IN SOLVING EQUATIONS 

ANY MATHEMATICAL MANIPULATION 
PERFORMED ON ONE SIDE OF THE EQUAL 
SIGN MUST BE PERFORMED ON THE OTHER 
SIDE OF THE EQUAL SIGN. 

Figure 11.45 

EQUATIONS AND UNKNOWNS 

YOU NEED ONE EQUATION FOR EVERY 
UNKNOWN FOR WHICH YOU MUST SOLVE. 

-41111 
Figure 11 46 

Basic Principle — The basic principle to follow 
when solving any equation is this: Any 
mathematical operation that's performed on one 
side of an equal sign must be performed on the 
other. If this principle is not followed, as you work 
with an equation, the equation will no longer be an 
equation and you will start getting wrong answers. 
The operations you are allowed to perform on an 
equation to solve it are listed below. You can apply 
these to an equation as many times as you need to; 
and in any order until the unknown is alone on one 
side of the equal sign. That is always your 
objective as you work on an equation to solve it: 
Get the unknown all by itself on one side of the 
equal sign with known quantities on the other side 
of the equal sign (Figure 11.45). 

One Equation for Each Unknown — Also, note one 
more point, before the procedures are reviewed. 
One equation can be solved for only one unknown. 
You will need one equation for each unknown 
quantity that shows up in any problem 
(Figure 11.46). This is why Kirchhoff's laws come 
in handy in circuits where there are several 
unknowns. For example, if there are three 
unknown currents, you can use Kirchhoff's laws to 
write three equations and then solve these 
equations together for the three unknowns. 

Solving several equations together will be 
discussed in a moment. For now, consider the rules 

you can use to solve one equation for one 
unknown quantity. In the example equations that 
are discussed for you, the letter "X" will be used 
to mean "the unknown quantity." In your work, 
the "X" might be an "I" for an unknown current 
or an "E" for an unknown voltage. 
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• First Rule 
• Example 

RULE: YOU CAN ADD OR SUBTRACT 

THE SAME QUANTITY FROM BOTH SIDES 
OF THE EQUAL SIGN. 

EXAMPLE: YOU HAVE X — 300 AND 
NEED TO FIND X 

ADD 30 TO BOTH DES 

X — 

(— 30 + 30 = 0, 30 + 30 

/= 330. 

UNKNOWN —r it KNOWN 

Figure 11.47 

X + 150 = 400 

SUBTRACT 150 FROM BOTH SIDES 

X + 150 — 150 = 400 — 150 

X = 400 — 150 

X = 250 

Figure 11.48 

First Rule — What are the procedures you can use 
with equations in solving them? First of all, you 
can add or subtract the same quantity from both 
sides of the equal sign in any equation, as shown 
in Figure 11.47. For example, if you have an 
equation such as X — 30 = 300 and need to 
calculate X, you can add 30 to both sides. Here's 
where some plain old common sense comes into 
play. Why would you add 30 to both sides? 
Because you know that you want X all alone on 
one side of the equal sign. If you add 30 to both 
sides of this equation, you get 

X — 30 + 30 = 300 + 30. 
The —30 and +30 on the left-hand side of the 
equal sign will then cancel and you will have 

X = 300 + 30 
or 

X = 330 
and the equation is solved. 

Example — Suppose you had an equation like 
X + 150 = 400, as shown in Figure 11.48. How 
would you solve this? Subtracting 150 from both 
sides will put X all alone on the left-hand side of 

the equal sign, and 250 on the right-hand side. 
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• Rule 2 
• Rule 3 

RULE: YOU CAN MOVE A QUANTITY FROM 
ONE SIDE OF THE EQUAL SIGN TO THE 
OTHER; IF YOU CHANGE ITS SIGN (THIS IS 
CALLED TRANSPOSING). 

EXAMPLE: YOU HAVE +50 +X —30 = 300 
AND NEED TO FIND X 
TRANSPOSE +50 AND —30 — (CHANGE SIGNS 
AND MOVE TO RIGHT OF =) 
X = 300 + 30 — 50 
(300 + 30 — 50 = 280) 

X = 280 

UNKNOWN-11 t KNOWN 

Figure 11.49 

RULE: YOU CAN MULTIPLY OR DIVIDE BOTH 
SIDES OF THE EQUAL SIGN BY THE SAME 
QUANTITY. 

EXAMPLE: YOU HAVE: 300X = 30 AND NEED X 
DIVIDE BOTH SIDES BY 300 

300X 30 

300 300 

SINCE 300/300 =1 

= 30/300 
UNKNOWN KNOWN 

Figure 11.50 

Rule 2 — Another rule you can use (that arises 
directly from the previous rule) states that you can 
move any quantity from one side of the equal sign 
to the other, if you change its sign. This procedure 
is called transposing. Transposing is really just the 
same as adding or subtracting the same quantity 
from both sides .of the equation. However, 
transposing saves you some steps. For example, as 
shown in Figure 11.49, if you have 

+50 + X — 30 = 300 
and you want to find X, you can transpose the 
—30 and the +50 to the right-hand side. Remember 
when you do, to change the signs of the terms you 
transpose. This will give you 

X = 300 + 30 — 50 
or 

X = 280 

Rule 3 — Following the basic principle of 
"whatever you do to one side of an equation you 
must also do to the other" leads to an additional 
rule you can use in solving equations. As stated in 
Figure 11.50, you can multiply or divide the 
quantities on both sides of the equal sign by the 
same quantity. This is the rule you use when your 
unknown in an equation is multiplied by or divided 
by some number and you wnat to get the unknown 
all by itself. 

For example, if you have the equation 300X 
= 30, how would get X all by itself? If you divide 
this equation (that means all of the terms in it) by 
300, you would have (Figure 11.50): 
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• Example 

• Rule 4 

300X 30 

300 300 

Now 300/330 equals 1, and 1 times X equals X, so 
you would then have 

30 
X= 

300 
or 

X = 0.1 

The trick in cases such as this is to divide both 

sides of the equation by whatever is multiplying X. 
This will give you X all by itself. 

X 
  - . 6000 003 

MULTIPLY BOTH SIDES BY 6000 

X 
6 - .003 (6000) 

t hiX = 18 

Figure 11.51-

RULE: YOU CAN CHANGE THE SIGN OF EVERY 44 

TERM IN AN EQUATION, AS LONG AS YOU 
CHANGE THEM ALL AT THE SAME TIME. , 

EXAMPLE: YOU HAVE -X = 30+ 400- 10 AND 
NEED X. CHANGE ALL SIGNS 

X = -30 -400 +10 

X —420 

Figure 11.52 

Example - Suppose the unknown is divided by 

some quantity as in Figure 11.51. How would you 
get X all by itself in this situation? In cases like this 
you can multiply both sides of the equation by the 
quantity by which X is divided. In this case you 
would get X = 0.003 times 6000 or X = 18. 

Rule 4 - Growing out of the last rule is an 
additional one. In any equation you can change the 
signs of all of the terms if you need to. (This is 
actually equivalent to multiplying the entire 
equation by -1). The thing to remember when 
doing this is that all the terms' signs must be 
changed. As an example, if you have -X = 
30 + 400 - 10, as shown in Figure 11.52, you 
could change all the signs to give you X (actually 
+X) all by itself. 
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• Rule 5 

• Solution for the Current, I 

Rule 5 — One additional and useful rule concerns 

equations where the unknown appears more than 
once, as shown in Figure 11.53. If you have a RULE: IN ANY EQUATION YOU CAN COMBINE 

LIKE TERMS. situation such as 
30X + 60X = 90 

EXAMPLE: YOU HAVE 30X + 60X = 90 AND NEED X you can combine the terms that each contain the 

COMBINE 30X unknown, the "like" terms. Then 30X + 60X 

+60X equals 90X, and your equation reads 90X =90. 

TO GET 90X Now you could use an earlier rule and divide 

90X = 90 both sides of this equation by 90 to get X = 1. 
DIVIDE BY 90 With these rules in mind, you can get back to 
X = 1 the solution of basic loop equations. 

Figure 11.53 

Solution for the Current, I — How do you proceed 

to solve the equation underlined at the top of 
Figure 11.54 for the current? One thing you can 
do is to move the 50 — 100 to the right side of the 
equation. Remember this process is called 
transposing and when you do this you must change 
the sign of each quantity. 

Algebraically add —50 and +100 to get +50. 

Then, since you know that the values of R1 and 

R2 are each 100 ohms, you can substitute that into 
the equation. 

You can combine like terms: —100 I 

combined with —100 I gives you a —200 I. 

Next you can multiply both sides of the 

equation by —1, remembering that when two 

minus numbers are multiplied, they yield a plus 
number. This reduces the equation further to: 

200 I = —50. 
You want I, your unknown, all by itself. 

Since it is multiplied by 200, you can divide both 

sides of the equation by 200. When you do, you 
will find that the current, I, equals —0.25 amp. 
Notice that this answer is negative, which as 
expected tells you that the current is actually 
flowing in the opposite direction. 

Figure 11.54 

50 — 100— IR 1 — IR 2 =0 

—IR i — IR2 = — 50 +100 

—1R i — IR 2= 50 

— 100 I — 100 I = 50 

— 200 I = 50 

(— 1) (— 200 I) = (50) (— 1) 

200 I = — 50 

200 I /200 = — 50/200 

I = — .25 A 
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• Kirchhoff's Laws in More Complex Circuits 

• Electron and Conventional Current 

Kirchhoff's Laws in More Complex Circuts — At 

this point you have seen how to use Kirchhoff's 
laws and some basic tools to solve a simple type of 
circuit problem, one which you really know how 

to solve with simpler techniques. As mentioned, 
however, this problem was presented as an 
introduction to Kirchhoff's laws. Their real power 
comes into play when you are faced with the 
analysis of a more complex circuit, which may 
contain several voltage sources in a configuration 
like that shown in Figure 11.55. 

In circuits such as this where more than one 
branch contains a voltage source, you cannot use 

Ohm's law and basic circuit rules all by themselves, 
since they are designed to take into accout only 

one source at a time. Here is where you must use 
more powerful tools such as Kirchhoff's laws. All 
the procedures involved in using these tools will be 
outlined. To keep things simple, electron current 
examples will be used at first. Keep in mind, 
however, that all of these procedures will be 
applicable, whether you are considering 
conventional or electron current. Examples using 
each will be worked through for you. 

Electron and Conventional Current — Remember 
that all of the effects of electron and conventional 
current are the same as shown in Figure 11.56. 
They just flow in opposite directions. 

Figure 11.55 

OR E2 ?? 

SO, USE 
KIRCHHOFF'S LAW 

Figure 11.56 
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• Review: Kirchhoff's First Law 

• Review: Kirchhoff's Second Law 

• Steps in Using Kirchhoff's Voltage Law 

Review: Kirchhoff's First Law — Before beginning 

to analyze a more complex circuit, it will be 

helpful to briefly go through Kirchhoff's laws once 

again as illustrated in Figure 11.57. Kirchhoff's 

first law or current law states that the sum of the 

currents arriving at any point in a circuit must 

equal the sum of the currents leaving. 

Review: Kirchhoff's Second Law — Kirchhoff's 

second law or voltage law states that the algebraic 

sum of the voltages around any closed loop must 

be zero (Figure 11.58). Again, when writing loop 

equations, the following steps must be kept in 

mind. 

Steps in Using Kirchhoff's Voltage Law — First, 

label all of the current directions in the circuit, 

assuming a current direction if one happens to be 

unknown. Second, traverse the loop and write 

down each voltage encountered with the correct 

sign, and set the sum equal to zero (Figure 11.59). 

KIRCHHOFF'S FIRST LAW OR 

KIRCHHOFF'S CURRENT LAW 

THE SUM OF THE CURRENTS ARRIVING AT 

ANY POINT IN A CIRCUIT MUST EQUAL THE 

SUM OF THE CURRENTS LEAVING THAT 

POINT. 

Figure 11.57 

KIRCHHOFF'S VOLTAGE LAW 

THE TOTAL VOLTAGE APPLIED TO ANY 

"CLOSED CIRCUIT PATH" IS ALWAYS 
EQUAL TO THE SUM OF THE VOLTAGE 

DROPS IN THAT PATH. 

Figure 11.58 

STEPS IN USING KIRCHHOFF'S SECOND LAW 

STEP I. 

LABEL ALL CURRENT DIRECTIONS 
(ASSUME ANY THAT MAY 
BE UNKNOWNI E 'R2 

STEP 2: 

TRAVERSE EACH LOOP AND 
WRITE DOWN EACH VOLTAGE 
ENCOUNTERED WITH ITS 
CORRECT SIGN ANO SET 
THE SUM EQUAL TO ZERO. 

E- 421 - R2 IR3 .° 

Figure 11.59 

1 

'R3 

'RI 

-•••••  

RU 
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• Rules for Voltage Signs 

• Rules 
• Rules 

Rules for Voltage Signs — If you traverse a voltage 

source in the same direction that it pushes on the 
type of current you are using, write down its 
voltage with a plus sign (Figure 11.60). 

Rules — If you traverse a voltage source opposite 
to the direction it pushes the type of current you 
are using, write down its voltage with a negative 

sign (Figure 11.61). 

Rules — If you traverse a resistor in the direction 
of current flow through it, the voltage across it gets 
a negative sign in the loop equation (Figure 11.62). 

FTRAVERSAL 
L__DIRECTION 

II rri PUSH ON --' 
CURRENT /> , 

POSITIVE E 

Figure 11.60 

-TRAVERSAL_) DIRECTION 

NEGATIVE E 
/- PUSH ON --

CURRENT_ 

Figure 11.61 

POSMVE OR NEGATIVE IR VOLTAGE ? 

LAY:21_7_71j 
d 

Figure 11.62 

SAME 
DIRECTION: 

/-DIRECTION OF] _I R1 
\ TRAVERSAL j 
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• Rules 

• Complex Circuit Example 

• Voltage Solution 

Rules — If you go through a resistor against the 
direction of current flow through it, the voltage 

across it gets a positive sign (Figure 11.63). This 

rule holds true whether you are considering 
electron or conventional current. 

Complex Circuit Example — All of the facts 
covered in this lesson will be put together by 

carrying out the analysis of a complex circuit such 
as the one shown in Figure 11.64. A good way to 
begin analyzing circuits such as this is to first solve 
for the current in all parts of the circuit. 
Remember, the currents are your first 

"unknown"quantities. 

Voltage Solution — Once you know the currents, 
you can then solve for all the voltages in the circuit 

with Ohm's law. So the first thing to do is label all 
the different currents with a direction. As has been 
mentioned, if you don't know a current direction, 
just assign one arbitrarily. If, in your final answer, 
any current ends up with a negative sign, this 

means that the actual current is flowing opposite 
to the original direction you assumed. 

t___(DirtgleOF 1 4 j 
R1 

DIRECTION OF , 
TRAVERSAL 

OPPOSITE DIRECTION: + I R1 

Figure 11.63 

Figure 11.64 

c ER1 =1 1 XR 1 B ER2 = 12 X R2 F 

242 6S-2. 

E + 1 
84V — 

_1 

411011 

Figure 11.65 

I = ? 1 « 12 = ? 

ER3 

T 13 X R3 

+ E2 

I — 21V 

A E 
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• Circuit Solution: Step 1 
• Kirchhoff's Current Law Equation 

Circuit Solution: Step 1 — Label all the currents 

with their directions. In the same problem the 

current flowing in the left-hand branch will be 
labeled li, the current in the right-hand branch 12, 
and the current through the central resistor 13, as 
shown in Figure 11.66. 

Kirchhoff's Current Law Equation — Your "circuit 

sense" should begin "tingling" a little as soon as 
you set up the problem. Right away you can see in 
Figure 11.67 that at junction point A that l and 
12 enter the junction and 13 leaves. You 
immediately see that according to Kirchhoff's 

current law: 13 = l + 12. 
You have three unknown quantities to find: 

12, and 13. An important mathematical rule 
states that you need one equation for each 

unknown quantity you are trying to find. Since 
you already have one equation, you now need to 

find two more. Then these three equations can be 

solved altogether (simultaneously) for the 

unknown quantities Ii, 12, and 13. The methods 

you will need will be outlined for you; however, 
you need two more equations. 

Figure 11.66 

13 =11 + 12 

Figure 11.67 
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• Kirchhoff's Voltage Law Equation 1 

• Right-Hand Loop Equation 

Kirchhoff's Voltage Law Equation 1 — The two 

other equations you need are where Kirchhoff's 

voltage law applies. Now you simply pick two 
loops and write a loop equation for each. In the 

example circuit (Figure 11.68), you can write 
equations for the left-hand and right-hand loops. 

If you go around the left-hand loop 

counterclockwise starting at point A, and write 
down all the 1R voltages and the source voltage, 
you will get: 

Minus I3R3 (since you go through R3 in the 
direction of the current 13) 
Minus I1R1 (since you go through Ri in the 
direction of 11) 

Plus Ei (since you go through Ei in the 
direction that it is pushing current) 
Your first loop equation is: —I3R3 

R +El = O. On the schematic all the resistances 

and the source voltages are labeled so you can put 
them into this equation where they belong. You 
know that R3 = 12 St, Ri = 24 S2, and Ei = 84 V. 
Substituting these values gives you: 

—1213-2411+84 = O. 

Right-Hand Loop Equation — Follow the same 
procedure in the right-hand loop. Going around the 
circuit counterclockwise starting at point A, you 
get (Figure 11.69): 

—E2 (since E2 is pushing current against the 
direction in which you go through it). 
+I2R2 (since you go through R2 against the 
current direction). 
+I3R3 (since you go through R3 against the 
current direction). 
So for this loop, you have —E2 + I2R2 + 

I3R3 = O. Again, putting in all of the known values 
labeled on the circuit diagram you have: 

—21 + 6 12 + 12 13 = O. 

This is your second loop equation. 

Ri 
82 

• Il  
4 12 

D A 

LEFT-HAND LOOP (COUNTER CLOCKWISE) 

-13 R3 .0 

-121 3 -2411.84.0 

Figure 11.68 

Ri8 82 

E 

E2 

Ei 

84V - 

241) 

•. '1 

3 183 211 

4  

• E2 

-7-

- 21V 

D 
A 

RIGHT-HAND LOOP (COUNTER CLOCKWISE) 

- E2 .1 2 R, 13 R3 .0 

- 21 *6 12 +12 13 .0 

Figure 11.69 

E 
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• Three Equations to Solve 

• Solving Simultaneous Equations 

• Addition Method 

Three Equations to Solve — Figure 11.70 shows 

the current equation and two loop equations 
together. Now you want to solve for Ii, 12, and 13. 
Your aim in using three equations like this with 
three unknown quantities is to solve for one 

unknown quantity at a time. 

METHODS USED IN SOLVING SIMULTANEOUS 

EQUATIONS WHICH ALLOW YOU TO ELIMINATE 
UNKNOWNS FROM ONE OR MORE OF THESE 
EQUATIONS: 

1) ADDITION METHOD 

2) SUBSTITUTION METHOD 

Figure 11.71 

ADDITION METHOD 

ANY TWO EQUATIONS CAN BE ADDED 
TOGETHER 

Figure 11.72 

13 '11+12 

— 12 13 — 24 11+ 84 =0 

— 21+61 2 + 121 3 =0 

Figure 11.70 

Solving Simultaneous Equations — At this point 
you encounter the need for another technique for 

analyzing complex circuits. You now have three 
equations to solve for three unknown quantities, in 

this case I1,and 12, and 13. Your goal is the same 
as before. You want to get each unknown all by 

itself alone on one side of the equals sign, and only 
known quantities on the other side. Since each of 
the three equations contains more than one 

unknown at this point, the procedures that were 
described earlier won't enable you to solve these 
equations. You need some methods that allow you 

to eliminate some of the unknowns from these 

equations (Figure 11.71). If you could do this, you 

could manipulate your three equations so that each 
equation contained only one unknown quantity. 

Addition Method — What methods can you use to 
eliminate some of the unknowns from these 
equations? The first is simple addition; any two 
equations can be added together (Figure 11.72). 
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• Addition Method Example 
• Steps in Using Addition Method 

ADDITION METHOD EXAMPLE 

11+3 12- 47 

11+ 12' 17 

MULTIPLY THIS 1_4 , 
EQUATION BY -3 

ADD TWO 
EQUATIONS 

CHANGE SIGNS 

DIVIDE BY 2 

Figure 11.73 

11+ 31 2 =47 

-311-312=-51 

- 2 11 = - 4 

2 11= 4 

I  1=2 

STEPS IN USING ADDITION METHOD 

DECIDE WHICH UNKNOWN TO ELIMINATE 

MAKE THE TERMS CONTAINING THIS 
UNKNOWN EQUAL IN VALUE BUT OPPOSITE 
IN SIGN 

ADD THE EQUATIONS TOGETHER; ONE 
UNKNOWN IS ELIMINATED 

SOLVE FOR REMAINING UNKNOWN QUANTITY 

Figure 11.74 

Addition Method Example - To see how this 
works, consider the example shown in 
Figure 11.73. Suppose you have two equations, 
each of which contains the two unknowns l and 
12, and you need to solve for : 

11 + 3 12 = 47 
11 +12 = 17 

Notice that each of these equations contains 
both unknowns li and 12. You can't solve for 
Ii until you have an equation whose only 
unknown quantity is Ii. 

Focus your attention on these two equations 
and consider this point. Any of the procedures 
outlined in the rules you were given earlier can be 
performed on either one of the equations. You 
now know that these two equations can be added 
together. The secret to getting rid of 12 in these 
two equations is to make the 12 terms equal in 
value but opposite in sign. For example, if you 
take the second equation in Figure 11.73 and 
multiply both sides by -3, it will become: 

(1 + 12) X (-3) = (17) X (-3) 

-3 11 3 12 = -51 . 
Add this equation and your first equation - 

together. See what happens? The +3 12 in the 
upper equation and -312 in the lower equation 
cancel when you add them, and the resulting 
equation is now 

-2 11 = -4 
You can now solve this easily for Ii. If you 

change the signs of both terms in this equation and 
then divide by 2 you get Ii = 2 and the equation is 
solved for I. 

Steps in Using Addition Method - One method 
you can use in solving simultaneous equations is to 
eliminate unknowns using addition. To do this, 
follow these steps, as reviewed in Figure 11.74: 

1. Decide which unknown you want to 
eliminate, say X. 

2. Make the terms containing this unknown 
equal in value but opposite in sign. 

3. Add the equations together: X is 
eliminated. 

4. Solve for the other unknown. 
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Figure 11.76 

Figure 11.75 

• Substitution Method 
• Substitution Example 

SUBSTITUTION METHOD 

SUBSTITUTE ONE EQUATION INTO THE 
OTHER EQUATION TO ELIMINATE AN 
UNKNOWN. 

SUBSTITUTION EXAMPLE 

6 11 +12 = 157 

(7, — 11 +12 = — 18 
(REARRANGE TRIS 
EQUATION SO 1 HAT 12 
IS ALL ALONE ON ONE 
SIDE OF EQUALS SIGN 

—1 1 +12 = — 18 

ADD I 

+11 
12 = — 

= — 18+1 

NOW IN FIRST EQUATION SUBSTITUTE 

6 I 157 

6 11 — 18 +1 1=157 

Substitution Method — Another method exists that 
will be helpful in solving several equations 

together. This is called the substitution method. In 
this situation you take one equation and actually 
substitute it into the other to eliminate an 
unknown quantity (Figure 11.75). 

Substitution Example — Consider the two 
equations shown in Figure 11.76: 

611 +12 = 1 57 
—11 +12=-18 

and you need to calculate 1. Here is another way 
to proceed that will allow you to eliminate one 
unknown in one of these equations. First, 
rearrange one equation, the second one, so that 12 
is all alone on one side of the equals sign. In this 

case, if you add l to both sides, you will get 
+11 — 11 + 12 = —18 + 11 

or 
12 = —18 +11. 

You know that 12 equals, or is exactly the 
same as, the expression, —18 + 1. You can go back 
to your first equation and substitute or replace 12 
by the expression —18 + 11. Therefore your first 
equation 

6 11 +12 = 157 
becomes 

6 11 — 18 +II = 1 57. 
This equation now has only one unknown, 1 1. 
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• Substitution Example 
• Circuit Example 

SUBSTITUTION EXAMPLE (CONTINUED) 

61 1- 18+1 =157 

COMBINE TERMS 

7 18 = 151 

ADD 18 TO BOTH SIDES 

71 1- 18+18=157+1 

7 11 = 175 

DIVIDE BY 7 

7I 175 

7 l 1 25 , 7  

Figure 11.77 ' 

Circuit Example - Your first goal is to get li on 
one side of an equals sign, and only things you 
know on the other side. Examine your equations 
again carefully. Notice that the second and third 
equations contain Ii , 12, and 13. You know from 
your first equation that 13 = li + 12, so now you 
can substitute the expression li + 12 wherever you 
see 13 in your last two equations. Then your last 
two equations will only contain the two unknowns 

Ii and 12. This will reduce the number of 
unknowns in the last two equations and bring you 
a little closer to your goal. 

Substitution Example - To finish solving for 
combine terms 

7 11 - 18 = 157 
Then add 18 to both sides 

+18+711 - 18=157+18 
which gives you 7 11 = 175. Next, divide both sides 
by 7 to get 

or 

71 1- 175 

7 7 

II = 25 

These two methods, addition and substitution 
may be used together and repetitively to solve for 
any number of unknown quantities. Remember 
though, when using Kirchhoff's laws that you must 
have one equation for each unknown. Now you 
can return to your previous circuit problem. 

13=11+12 

- 121 3 - 241 1+ 84 =0 

-21+612 +121 3=0 

arà0-1.4*-1,W eeiktwevehriiewer •5>'k, 

Figure 11.78 
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• Substitution in First Loop Equation 

• Substitution in Second Loop Equation 
• Two Loop Equations 

Substitution in First Loop Equation — The first 
loop equation is shown in Figure 11.79. When you 

substitute Ii +12 for 13, as shown, you get 
—12(11 + 12) —24 11 + 84 = 0. 

Now notice that when li +12 are each 
multiplied by —12, you have —12 Ii — 12 12 — 
24 1 + 84 = 0. You can algebraically add all the 
terms in this equation that contain the same 
unknown. (Again, this is called combining like 

terms.) You have a —12 11 and —24 11 on the same 
side of the equation, so add them to get —36 Ii — 
12 12 + 84 = O. 

Substitution in Second Loop Equation — Examine 
your second loop equation, which is underlined in 

Figure 11.80. You can follow a similar procedure 
to eliminate one unknown in this equation. First, 

substitute li + 12 for 13 as shown, and this gives 
you 

—21 + 612 + 12(1 + 12) = 0. 
Multiply the 12 times each of the terms in 
parentheses to get 

—21 + 612 + 12 11 + 12 12 = 0. 
Now combine like terms, and you get 

—21 + 18 12 + 12 11 =0. 

Two Loop Equations — Now that both loop 
equations have been simplified, you want to 
manipulate them to eliminate one of the unknown 
loop currents so that you can solve for the other. 
You can solve for either unknown first. The 
analysis will be aimed at solving for 12, and 
then 

In Figure 11.81 both simplified loop 

equations are written one right under the other, 
and the terms have been moved around a little so 

that all of the terms of the same kind (that is, 
containing the same unknown) are aligned one 

under another. A rule of mathematics says that any 
two equations can be added together to help 

eliminate unknowns. The idea is to do this in such 

FIRST LOOP EQUATION 

-12 13 -241 1 +84 = 

13= 11+1 2 

-12(11+12)-2411+84=0 

-121 1 -12 12 -241 1+84=0 

-3611-1212+84=0 

Figure 11.79 

SECOND LOOP EQUATION 

—21 +6 12+12 (1 1+1 21= 0 

—21 +612+ 121 1+ 1 212    = 0 

tit — 21+ 18 12 + 12 11 =0 

Figure 11.80 

Figure 11.81 

2 LOOP EQUATIONS 

— 21 + 1812 + 121 1 = 

+ 84 — 1212 — 361 1= 0 
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• Manipulation of First Equation 

• Solution by Addition 

a way that the sum of the two equations contains 

only one loop current. So how do you do this? 

Manipulation of First Equation — Focus your 

attention on the first equation. If this equation is 
multiplied by 3 you get —63 + 54 12 + 36 li = 0, as 
shown in Figure 11.82. Now, with this change, 
rewrite the equation above the second equation. 

Solution by Addition — If this equation is added to 
the second equation, term by term, you will have 
21 + 42 12 = 0. Notice that the two l terms have 
canceled out. You now have an equation with only 
one unknown current. Transpose and divide as 
shown in Figure 11.83 to get 12 = —21/42 which 
equals —0.5 amp. Notice that this answer came out 
negative; that means that the wrong direction was 
originally assumed for 12. So you now know that 

12 (electron current) is actually flowing in the 
opposite direction in the right-hand loop. 

— 21 + 181 2 + 121 1= 0 

X 3 X 3 

— 63 + 541 2 + 361 1= 0 

Figure 11.82 

—63 +541 2 +361 1 = 0 

+84 —121 2 —361 1 = 

Figure 11.83 

21 +4212 = 

421 2 = —21 

12 = —21/42 = —.5 A 
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• Solution for li 
• Solution for 13 

• Solution for Voltages 

Solution for l — Now that you know 12, you can 
substitute its value in either of the two loop 
equations to solve for li. For example, if you take 
the second loop equation and replace 12 with 
—0.5 amp, as shown in Figure 11.84, you now get 

84 + 6 — 36 Ii = 0, or 90 — 36 Ii = O. Transposing 
and dividing by —36, you have li = —90/-36 or 
2.5 amps. Notice that this current came out 
positive which means the initially assumed 
direction of flow in this loop was correct. 

Solution for 13 — Now that you know l and 12, 
you can go back to the current equation and solve 

for 13 as shown in Figure 11.85. You simply 

substitute your known values of Ii and 12 in the 
equation, and you get 13 = 2.5 — 0.5 or 2 amps, 
which is positive, so it's in the correct direction. 

Now that all of the currents have been calculated, 

you can use Ohm's law to find the voltage across 
each resistor. 

Solution for Voltages — Simply multiply the 
appropriate currents by the appropriate resistances 
as shown in Figure 11.86. 

El = 60 volts 
E2 = 3 volts 
E3 = 24 volts 

and the problem is completely solved. 

84 — 1212 — 361 1 = 0 

84 — 12(—.5) — 361 1 = 0 

84+6 — 361 1 = 0 

90 — 361 1 = 0 

— 361 1 = — 90 

= — 90/— 36 = 2.5 A 

Figure 11.84 

13 =-1 1 +12 

13 = 2.5 — .5 

13 = 2 AMPS 

Figure 11.85 

Ei =1 1 X Ri =2.5 X 24 = 60 VOLTS 

E2 =12 X R2 = .5 X 6 = 3 VOLTS 

E3 =1 3 X R3 = 2.0 X 12 = 24 VOLTS 

Figure 11.86 
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• Complete Solution 
• How to Determine Voltage Polarities 

Complete Solution — Figure 11.87 shows the 
circuit schematic with all of the answers labeled. 
Notice also that the voltage polarities have been 
labeled. Recall that if you wanted to solve this 
problem using conventional currents, you would 

follow exactly the same steps and you would get 
the same answers, except all the current directions 
would be opposite. 

CONVENTIONAL CURRENT 

Figure 11.88 

84V =-

\_  

= 60V 

2412 

E53 
24V 

652 3V 

- 

BSI 

12 J 

- E2 

21V 

A E 

= 2.54 12 -.5A 13 .2A 

Figure 11.87 

How to Determine Voltage Polarities — In simple 
circuits your rule for determining the polarity of a 
resistor's voltage drop simply states that the side of 
a resistor closest to the positive terminal of the 
battery or voltage source is positive and the side 
closest to the negative terminal is negative. This is 
understood when you only have one voltage source 
or battery, but what do you do when you are 
working with more complex circuits which contain 
more than one source? 

You use this simple rule (Figure 11.88): 
1. First determine the correct direction for 

the current (either electron or 
conventional current) 

2. Electron current flows through resistors 

from minus (—) to plus (+) 
3. Conventional current flows through 

resistors from plus (+) to minus (—). 
Then you can label your voltage drops 

accordingly. 
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Example 

II 

Figure 11.89 

3 
I 2 

Figure 11.90 

This has been a busy lesson. The next lesson 
will continue to give you some practice using some 

of what has been covered here; and more 
importantly, you will be introduced to some 

shortcuts to make using these laws easier. In the 
meanwhile, it is suggested that you carefully go 

through the worked examples set out on the next 
few pages. These will help you in understanding 

the techniques involved in using Kirchhoff's laws. 

Example — Suppose you have determined the 

correct directions for all the electron currents in a 
circuit and they are as shown in Figure 11.89. 
What then are the correct polarities for the voltage 
drops? Following the above rule you should find 

that the polarities are as shown in Figure 11.90. 
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LESSON 11. INTRODUCTION TO KIRCHHOFF'S LAWS 

• Worked Through Examples 

1. Write a node equation for the diagram shown below, substitute the appropriate currents and solve the 
equation for 15. Also indicate the direction of 15. 

11 = 2 A 

12 = 3.5 A 

13 = 4 A 

14 = 2.5 A 

From Kirchhoff's current law you know that whatever current arrives at a junction must equal the 
current that leaves the junction. Write down the currents entering the junction on one side of an 

equals sign, and then write down the currents that leave the junction on the other side of the equals 
sign. 

Leaving = Entering 

11 + 14 = 12 + 13 

On which side of the equals sign does 15 belong? If you substitute the values for I through 14 in the 
equation, you will see. 

Leaving = Entering 

2 A + 2.5 A = 3.5 A + 4 A 

4.5 A = 7.5 A 

Obviously, 4.5 amps does not equal 7.5 amps, so 15 must belong with the 4.5 amp leaving the junction. 

Leaving = Entering 

4.5 A + 15 = 7.5 A 

In order for the currents leaving to equal the currents entering, 15 must be the right value so that there 

will be 7.5 amps leaving and entering the junction. 15 should be 3 amps leaving the junction. You can 
prove this by subtracting 4.5 amps from each side of the equation. 

4.5 A + 15 = 7.5 A 

—4.5 A —4.5 A 

15 = 3 A 

Thus, 15 does equal 3 amps and it must leave the junction. 
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• Worked Through Examples 

2. Write a loop equation for the circuit shown below using electron current, and write another loop 

equation using conventional current. 

R1 

 NV%  

1.5kS2 

R3 R2 

560S2 2.21d2 

Step One: Assign a current direction. Any direction is fine but more than likely the actual direction 

of electron current is counterclockwise since E 1 is larger than E2. Assume that the electron current is 
flowing in the counterclockwise direction and label it accordingly. 

El 1 

12V 

R3 

--NV's.  
560S2 

R i =1.5kn 

 MA  

E2 

8V 
I 

«MM. 

R2 

Misr--
2.2kn 

Step Two: Traverse the circuit and write down all the source voltages and I R voltages according to the 

rules presented in this lesson. If you start at the positive terminal of El and move through the circuit 

counterclockwise, you should get: 

+E 1 (since you go through El in the same direction it pushes electron current) 

—I R3 (since you traverse R3 in the direction of electron current) 

—I R2 (since you traverse R2 in the direction of electron current) 

—E2 (since you go through E2 against the direction it is pushing electron current) 

—I R1 (since you traverse R1 in the direction of electron current). 
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• Worked Through Examples 

When you set this equal to zero, the loop equation for this circuit, considering electron current, is: 

El — IR 3 — IR 2 — E2 — IRi = O. 

To write a loop equation for conventional current, traverse the loop again and write down the voltages 

according to your rules. Assume the same direction for current as before. If you start at the same 
point (the positive terminal of Ell and move through the circuit counterclockwise, you should get: 

—E 1 (since you go through E1 against the direction it pushes conventional current) 

—I R3 (since you traverse R3 in the assumed direction for conventional current) 

—I R2 (since you traverse R3 in the assumed direction for conventional current) 

+E 2 (since you go through E2 in the same direction it pushes conventional current) 

—I Ri (since you traverse R1 in the assumed direction for conventional current). 

The loop equation for this circuit, considering conventional current, is: 

—E 1 — IR 3 — IR 2 + E2 —113 1 =O. 

3. Solve each of the equations from the previous example for the current. 

Electron Current Equation 

E1 — IR 3 — IR 2 — E2 — IR i = 0 

El 1 

12V 

Ri=1.5kS2 

 4N/VN,  

I 
E2 

8V 

R3 R2 

560S2 2.2kn 

I 
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• Worked Through Examples 

First, substitute the appropriate values from the circuit into the equation. 

12 — 0.56 kl — 2.2 kl —8— 1.5 kl = 

When the two source voltages are added algebraically, they yield 4. 

4 — 0.56 kl — 2.2 kl — 1.5 kl = 

You can combine the 1 terms to get: 

4 — 4.26 kl = 

Transpose the 4, remembering to change its sign. 

—4.26 kl = —4 

Divide both sides of the equation by —4.26 k. 

—4.26 kl —4 

—4.26 k —4.26 k 

I = 0.939 mA or 939 µA 

Since this answer is positive, the assumed direction for the electron current (counterclockwise) is 

correct. 

Conventional Current Equation 

—E 1 —IR 3 —1R 2 + E2 —1)3 1 =0 

First, substitute the appropriate values from the circuit into the equation. 

— 12 — 0.56 kl — 2.2 kl + 8 — 1.5 kl = 

When the two source voltages are added algebraically, they yield —4. This, as you will see, will make a 

difference in your answer. 

—4-0.56 kl — 2.2 kl — 1.5 kl = 

Combine the I terms to get: 

— 4 — 4.26 kl = 

Transpose the 4, remembering to change its sign. 

—4.26 kl = 4 

Divide both sides of this equation by —4.26 k. 

—4.26 kl 4  

—4.26 k —4.26 k 

1 = —0.939 mA or —939 µA 
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• Worked Through Examples 

Since this answer is negative the assumed direction for the conventional current was wrong, and so you 
know that the conventional current is actually flowing clockwise. 

You know, if you thought about this answer for a minute, it makes a great deal of sense. The 
solution to the electron current equation told you that the electron current was flowing counter-

clockwise. Recall that electron and conventional current have the same effect in a circuit; they just 
flow in opposite directions. Thus, you know that conventional current for this circuit must flow in 
the clockwise direction. 

4. Write the loop and node equations for the following circuit using electron current. Then solve the 

equations for the branch currents, including their directions, and use these currents to find the voltage 
drop across each resistor. Also indicate the polarity of each voltage drop. 

E1 =18V R2=20kS2 

E2=10V 

First Step: Assign a direction for each current and label it accordingly. 

R 

10kS2 

Ei=18V 

 III 
r 

R2=20k&Z 

R3 

15kS2 

A 
E2=10V 

Immediately, you can see from Kirchhoff's current law that at junction point A: 

l. = 13 + 12 
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• Worked Through Examples 

Second Step: Traverse each loop and write down all the voltages you encounter with their correct 

signs. 

Loop 1 18 — 10 kl 1 — 15 kl 3 = 0 (counterclockwise from point B) 

Loop 2 10 — 20 kl 2 + 15 kl 3 = O (counterclockwise from point A) 

Third Step: Simplify the equations. If you substitute 13 + 12 for l. in the first equation, you will then 

have only two unknowns, and you will have two equations with which to find the two unknowns. 

18 — 10 k (1 3 + 12) — 15 kl 3 = 

10 — 20 k 12 + 15 k 13 = 0 

In the first equation, multiply 13 and 12 by —10k. 

18 — 10 kl 3 — 10 kl 2 — 15 kl 3 = 

You can now combine the 13 terms. 

18 — 10 kl 2 — 25 kl 3 = O. 

If you multiply both sides of this equation by —2, you can then add it to your equation for loop 2. 

(-2) (18 — 10 kl 2 — 25 k1 3) = (0) (-2) 

—36 + 20 kl 2 + 50 kl 3 = 0 

Fourth Step: Add the equations to eliminate one of the unknown currents, thus enabling you to 

calculate the other current. 

—36 + 20 + 50 kl 3 = 

10 — + 15 kl 3 = 

—26 + 65 kl 3 = 0 

65 kl 3 = 26 

26 
IQ = — = 0.4 mA = 400 µA 

65 k 

Since this answer is positive, you know that the assumed direction for 13 is correct. 

Fifth Step: Substitute the value of 13 in one of the previous loop equations to find l. or 12. 

Loop 2 10 — 20 kl 2 + 15 kl 3 = 

10 — 20 kl 2 + 15 k (0.4 mA) = 

When 15 k is multiplied by 4 mA, the result is 6, which can then be added to the 10. 

10 — 20 kl 2 + 6 = 0 

16 — 20 kl 2 = 
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• Worked Through Examples 

Transpose and divide. 

—20 kl 2 = —16 

—20 kl2 —16 

—20 k —20 k 

12 = 0.8 mA = 800 µA 

This answer is also positive, so the assumed direction for 12 is correct. 

Sixth Step: Substitute 12 and 13 in the node current equation to find 1 1. 

11 = 13 + 12 

= 0.4 mA + 0.8 mA 

= 1.2 mA 

The answer is again positive, so its assumed direction is also correct. If any of the answers for the 
branch currents were negative, you would know that the assumed direction for the current was wrong 

and that the actual direction was opposite to the assumed direction for that current. 

Seventh Step: Use Ohm's law to calculate the voltage drops across the resistors. 

ER1=11 X R1 

ER 1 = 1.2 mA X 10 ktt 

ER 1 = 12 V 

ER2 = 12 X R2 

ER2 = 0.8 mA X 20 kS2 

ER2 = 16 V 

ER3 = 13 X R3 

ER3 = 0.4 mA X 15 kS2 

ER3 = 6 V 

Recall the rule for determining the polarity of the voltage across a resistor, which states that electron 

current flows through a resistor from minus to plus or from the negative side to the positive side. Thus, 
the voltage drops and their polarities are as shown below. 

ER2=16V 

ER1-

12V 
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• Worked Through Examples 

5. Write the loop and node equations for the circuit shown in example 4 using conventional current. 
Then solve the equations for the branch currents, including their directions. Also indicate the 

polarities of the voltage drops produced by these conventional currents. 

First Step: Assign a direction for each current and lable it accordingly. 

Ei=18V R2=20kS2 

Then, from Kirchhoff's current law, the node current equation for node A is: 

12 =1 3 + 11 

Second Step: Traverse each loop and write down all the voltages you encounter with their correct 

signs. 

Loop 1 18 + 15 kl 3 — 10 kl 1 =0 (clockwise from point C) 

Loop 2 10 — 15 kl 3 — 20 kl 2 = O (clockwise from point D) 

Third Step: Simplify the equations. If you substitute 13 +l. for 12 in the second equation, you will 
have two equations with two unknowns. You can then easily solve the equations for the unknown 

currents. 

10 — 15 kl 3 — 20 kl 2 = 

10 — 15 kl 3 — 20 k (1 3 +1.0= 0 

Multiply 13 and l. by —20 k. 

10 — 15 kl 3 — 20 kl 3 — 20 kl 1 = 0 

You can combine the 13 terms. 

10 — 35 kl 3 — 20 kl 1 = 0 

If you divide both sides of this equation by —2, you can add it to the equation for loop 1. 

(10 — 35 kl 3 — 20 k1 1) ÷ (-2) = (0) (-2) 

—5+17.5 kl 3 + 10 kl 1 = 
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• Worked Through Examples 

Fourth Step: Add the equations to eliminate one of the unknown currents, thus enabling you to find 
the other current. 

Loop 1 18 + 15 kl 3 — 1 = 0 

Loop 2 —5+17.5 kl 3 + 10 = 0 

13 + 32.5 kl 3 =0 

32.5 kl 3 = —13 

13 32.5 k 

13 = —0.4 mA = —400 µA 

—13 

Since this answer is negative, you know that the assumed direction for 13 is wrong and that the con-
ventional current 13 actually flows down through R3. 

Fifth Step: Substitute the value of 13 in one of the previous loop equations to find 11 or 12. 

Loop 1 18 + 15 kl 3 — 10 kl = 0 

18 + 15 k (-0.4 mA) — 10 kl 1 = 

When 15 k is multiplied by —0.4 mA, the result is —6, which can then be added algebraically to the 18. 

18 — 6 — 10 kl 1 = 

12 — 10 kl 1 = 

Transpose and divide. 

—10 kl 1 = —12 

—10 kl 1 —12 

—10 k —10 k 

11 = 1.2 mA 

This answer is positive, so you know that the assumed direction for l. is correct. 

Sixth Step: Substitute and 13 in the node current equation to find 12; 

12 13 + 11 
12 = —0.4 mA + 1.2 mA 

12 = 0.8 mA or 800 µA 

The answer is positive so the assumed direction for 12 is correct. 

11-51 



• Worked Through Examples 

Seventh Step: Use Ohm's law to find the voltage drops across the resistors. Since the answers for the 

currents have the same numerical value as in the previous example, the voltage drops will be the same 

as they were before, or: 

ER1 = 12 V 

ER2 = 16 V 

ER3 = 6 V 

In determining the correct polarities of these voltage drops, remember two things: 

1. Conventional current flows through resistors from plus to minus. 

2. 13 is actually flowing down through R3. 

E2=10V 
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LESSON 11. INTRODUCTION TO KIRCHHOFF'S LAWS 

• Practice Problems 

Depending upon the approach you use in solving these problems and how 
you round off intermediate results, your answers may vary slightly from those 

given here. However, any differences you encounter should only occur in the 
third significant digit of your answer. If the first two significant digits of your 
answers do not agree with those given here, recheck your calculations. Fold 
over the page to check your answers. 

1. Write the node equations for the following diagrams. 

a. 

b. 

C. 

d. 

Ii 

---offl,--, 

13 
--ab 

e—NOVY-

12 

11 

—..'NA,Ar—.......... 

11 

13 

12 
41-

12 
--I> 

—a. 
—"WY—II 

li 
41-

14 

13 
41-

.—.....-..—MA,.----

12 
—a. 

13 
--lb 411-

Fold Over 
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S Practice Problems 

Answers 

1.a. 1 + 12 -- 13 

1.b. =1 2 +1 3 

1.c. 1 + 13 = 12 

1.d. 14 + 13 = 11 -1- 12 
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• Practice Problems 

e. 

2. Write the loop equations for the following diagrams. 

a. 

E 1 

lov -----

b. 

R1 

27S2 

C. 

R 1 

Ii 

\lik R4 

15S2 

12 
I _ E2=15V 
# — 

22S2 

El=20V E2=25V 

R2 

--W,--
56kS2 

,-- .)11 
Ii 

E 1 =30V = 

13 
«di--

R3 

68 kS2 

R1 
471d2 = E 2=40V 

'TB 12  

13 

R =i8S2 

R3 

39S2 

Fold Over 
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• Practice Problems 

Answers 

1.e. 11 =1 2 +1 3 +1 4 +1 5 

2.a. Loop 1 — Start at point A and trace the loop ccw. 
10 — 221 1 — 15 — 101 1 =0 

Loop 2 — Start at point B and trace the loop ccw. 
15 — 181 3 — 151 3 = 0 

2.b. Loop 1 — Start at point A and trace the loop cw. 
20 — 271 1 — 331 3 = 0 

Loop 2 — Start at point B and trace the loop cw. 
25 + 331 3 — 391 2 = 0 

2.c. Loop 1 — Start at point A and trace the loop cw. 
30 — 56 kli — 68 kl3 

Loop 2 — Start at point B and trace the loop ccw. 
40 — 68 kl3 — 47 kl2 
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• Practice Problems 

d. Fold Over 

R3 

B 

e. 

2.7k2 

R3 

E2=75V -.-. 

1- ••••..  

13 

«I--

3.9162. 

I 
= E1 =50V 

3.3kn 

12 ) 

R 

E2 

20V 

3. Solve the following circuits for all currents and voltage drops. Indicate 
the polarity of the voltage drops and the direction of the currents. 

a. 
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• Practice Problems 

Answers 

2.d. Loop 1 — Start at point A and trace the loop ccw. 

80 — 1.2 kli= 

Loop 2 — Start at point B and trace the loop ccw. 
—1.5 k 12 — .68 k (1 2 + 13) + 1.2 k 1 = 

Loop 3 — Start at point C and trace the loop ccw. 

—20 + 1.5 k 12 = 0 

2.e. Loop 1 — Start at point A and trace the loop ccw. 
50 — 2.7 kli + 3.9 kl 3 = 0 

Loop 2 — Start at point B and trace the loop ccw. 
75 — 3.3 k 12 — 3.9 k 13 = 

3.a. ELECTRON CURRENT CONVENTIONAL CURRENT 
SOLUTION SOLUTION 

ER1 
30V 

E2 

112.5V 

Il 

— Ei. 
- 42V 

ER3 = 72V 

40.5V 112.5V I 

ER3 = 72V 

+ - 

ER1 
30V 

ER2 E2 t 

AA.  

4 -

13 

Ei 
••= 

42V 

ER2 
12 4a5V 

11 = 2• 5A 12 = 4.5A 13 = 2A 
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• Practice Problems 

Fold Over 

b. 

d. 

10kS2 

E 

20V T 

15kSl 

III 

E2 I 

25V 

R2 

201d2 

R2 

5kS2 

R3 

7.51a2 

R3 

30kS2 

E1 • = 82 5V 

E2 

84V — 

R3 = 452 

El R1 

36V 1. 15S2 

E2 
36V 
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• Practice Problems 

Answers 

3.b. 

3.c. 

3.d. 

el 1 
20V 

ER1 
37.5V 

ER2 

12V 

ER1 
36V 

ELECTRON CURRENT 
SOLUTION 

ER = 32V ER2 = 24V 

+ - 

ER3 

12V 

+ 

113 

12 

11 = 3.2mA 

ELECTRON CURRENT 

SOLUTION 

El 

20V 

E2 

36V 

CONVENTIONAL CURRENT 

SOLUTION 

ER1 32V ER2 = 24V 

ER3 

12V 

•  

e. it3 

12 = 4.8mA 13 = 1.6mA 

III 
El = 82.5V 

E2 

25V 
4 

ER3 ER, 

45V 37.5V 

ER2 
20V 
e 

12 

11 = 2.5mA 12 = 1.5mA 

E2 
36V 

CONVENTIONAL CURRENT 
SOLUTION 

  E2 

25V 

ER2 

I 20V 

III 
E1 = 82.5V 

13 = 1.0mA 

ELECTRON CURRENT CONVENTIONAL CURRENT 
SOLUTION SOLUTION 

ER3 = 72V 

+  

4-
13 

El 

36V 

ER2 
12V 
e 

12 

ER3 = 72V 

ER I E - 1 
36V 

13 

L  
11 = 2.4A 12 = 4A 13 = 1.6A 

36V 

e 
12 

ER3 

45V 

11-60 



• Practice Problems 

Fold Over 

e. 

f. 

g. 

R 45S2 1 

E, - 
81V 

R3 

6S2 
e - E2 

E1 = 30V 

 liii 

E2 

11V 

R2 = 30S2 

R2 

2kS2 

1 

114V 

E1 = 19V 

Vv•  

R3 = 16kS2 

R2 = 12.5kS2 

R3 

17kS2 

R1 = 15kSt E2 = 6V 

11-61 



• Practice Problems 

Answers 

3.e. 

3.f. 

3.g. 

El — 

81V — 

ER1 
14V 

ELECTRON CURRENT 

ER1 = 9°V SOLUTION 
L VW+ 

ER 

9V 11 3 

4 
12  

ER2 = 105V 

114V 

El 

81V 

CONVENTIONAL CURRENT 

ER1 = 9°V SOLUTION 
_  

/". 

ER3 $ 
9V 13 

4  
12 

+ — 

11 = 2A 12 = 3.5A 13 = 1.5A 

ER2 = 105V 

ELECTRON CURRENT CONVENTIONAL CURRENT 
El = 30V SOLUTION SOLUTION 

E = 30V 
II 

$ ER2 
3i e_ 5V 

4  
12 

ER1 
14V 

E2 
114V 

ER3 = 16V 

11 = 3.5mA 12 = lmA 13 = 2.5mA 

ELECTRON CURRENT 
SOLUTION 

E1 =19V ER = 2.5V 

\  I 1  

•  

4  

ER3 

8.5V 1 13 

ER1 = 10.5V 
II 

""\ 
e E2 12 

13  , 5,1 

4  

— + 
ER3 = 16V 

CONVENTIONAL CURRENT 
SOLUTION 

1 = 19V 
ER2 = 2.5v 

+ — 

ER3 .e 

85V 1 13 

E2 = 6V ER1 = 10.5V 

11 = 700pA 12 = 200pA 13 = 500pA 

E2 = 6V 

."\ 
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S Practice Problems 

Fold Over 

h. E = 38V 1 E2 = 27V 

II  

R3 
1.2kS2 

M.  

R1 = 6kS2 

R3 

21d2 

R2 = 9kS2 

E1 = 123V 

E2 

36V — 

R2 

1kS1 

R1 = 3k12 
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• Practice Problems 

Answers 

3.h. 
E1 = 38V 

Il  

ELECTRON CURRENT 
SOLUTION 

E2 = 27V 

É 

ER3 

3V 

- 4-

4  

i 

12 

- \ 

 } 

ER1 = 35V 

3.i. 

ER2 = 3°V 

CONVENTIONAL CURRENT 
SOLUTION 

E1 = 38V 

II  
E2 = 27V 

É 

3 i  _ER3 

I 3V 

\  

III  

12 
4  

ER1 = 35V ER2 = 3°V 

11 = 5.83mA 12 = 3.33mA 13 = 2.5mA 

ELECTRON CURRENT 
SOLUTION 

E1 = 123V 

 t----AIII  

É 

ER 3 

42V 

12 

 p -,- E2 

36V 

13 i 
+ ER2 

- 6V 11 
4  

+ - VVN. 

ER1 = 81V 

'N 

i 

ER3 

42V _ 

CONVENTIONAL CURRENT 
SOLUTION 

E1 = 123V 

 te-IIII  

( 

‘..  
12 

E2  

36V - 

ER2 
6V 

4  

li = 27mA 12 = 21mA 13 = 6mA 

ER1 -- 81V 
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• Practice Problems 

Fold Over 

j. 11 1 =2Wa 
,---We  

E -12V 

R3 = 5kS2 

IAN  

E2 =62V 

II 

 VW-----.... 

R2 =1kn 
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• Practice Problems 

Answers 

3.j. 
ELECTRON CURRENT 

SOLUTION 

ER1 = 28V E1 = 12V 

ER3 = 40V 

12 

III 
E2 =62V 

ER2 = 22V 

CONVENTIONAL CURRENT 
SOLUTION 

ER1 = 28V El = 12V 

  i 

ER3 = 40V 

12  

_ 
 Mh  

E2 = 62V ER2 = 22V 

= 14mA 12 = 22mA 13 = 8mA 
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LESSON 11 — QUIZ 

1. "The sum of currents arriving at any point in 
a circuit must be equal to the sum of the 
currents leaving the point" is called: 

a. The law of Electrostatics 
(e)Kirchhoff's current law 
c. The product over sum law 
d. The loop equation 

2. Junctions or branch points in a circuit are 
commonly called: 

a. High points 
b. Terminals 
c. Extra paths 
Ç Nodes 

3. "The total circuit current equals the sum of 
the branch currents" is: 

a. The first law of electrostatics 
b. Coulomb's law 
(.Kirchhoff's current law for parallel circuits 
d. A series circuit law 

4. "The current is the same at any point in the 
circuit" is: 

a. The first law of electrostatics 
b. A parallel circuit law 
c. Coulomb's law 

i0Kirchhoff's current law for series circuits 

5. Kirchhoff's second law is: 

a. For series circuits 
b. For parallel circuits 
ic./Kirchhoff's voltage law 
a For a closed circuit path 
e. All of the above 
f. None of the above 

6. "The total voltage applied to any closed 
circuit path is always equal to the sum of the 
voltage drops in that path" is: 

a. To be used with series-parallel circuits 
b. To be used with parallel-series circuits 

(_CD Kirchhoff's voltage law 
d. a, b, c above 
e, a only 

7. A continuous path that is traced in a circuit 
that starts and ends at the same point is 
called: 

a. A junction 
(OA loop 
c. A closed path 
d. A branch 
e. b and c above 
f. All of above 

8. Kirchhoff's voltage law hold for 
circuit loops that have no voltage sources. 

("àDDoes 
b. Doesn't 
C, May 
d. May not 

9. "For any loop, the sum of all the voltages 

that aid current flow in the loop, must equal 
the sum of all those voltages that oppose it" 
is: 

a. Kirchhoff's current law 
CAn alternate statement of Kirchhoff's 

voltage law 
c. Applies only to series circuits 
d. Applies only to parallel circuits 

10. "The algebraic sum of the voltages aiding 
current and the voltages opposing current in 
any circuit loop is equal to zero" is: 

a. To be used only for series circuits 
b. To be used only for parallel circuits 
E.)An alternate of Kirchhoff's current law 
d. An alternate statement of Kirchhoff's 

voltage law. 

11. "The algebraic sum of all voltages in a loop 
equals zero" is: 

a. To be used only for series circuits 
b. To be used only for parallel circuits 
c. An alternate of Kirchhoff's current law 

alternate of Kirchhoff's voltage law 

12. When the algebraic sum of all voltages in a 
loop is set equal to zero the result is called: 

a. A series circuit 
C)A loop equation 
c. The total current 
d. A branch 

13. When analyzing circuits, using Kirchhoff's 
laws for circuit branches where the current 
direction is unknown, a direction. 

Guess 
b. The current dictates 
c. The voltage dictates 
d. All of the above 

14. When calculating currents in a circuit using 
Kirchhoff's laws, if the current is negative it: 

a. Must not be flowing 
b. Is too great in value 

Is flowing opposite to the direction chosen 
d. Is very small in value 
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LESSON 11 — QUIZ 

E e ivvN,  

13 

A R2 

"SAA  
«le  

3 12 

If D 

I E2 

The questions that follow use the schematic 
above. 

15. Point A and Point B are: 
a. Junctions 
°Nodes 
c. Form a branch 
d. All of above 
e. b only 

16. Circuit paths ABF EA and A BC DA are 
called: 

®Circuit loops 
b. Nodes 
c. Junctions 
d. Voltage sources 

1 7. The direction of l and 12 shown is for 
 flow. 

a. Electron 
()Conventional current 
c. Branch current 
d. Load current 

18. If El and E2 and RI, R2 and R3 are known, 
solving for Il, 12, and 13 requires  
equations. 

One 
Two 

c. Three 
d. Four 

19. Kirchhoff's current law can be used to write 
an equation for: 

The loop A BF EA 
Point A 

c. Node B 
d. a and b above 
e. b and c above 
f. c only 

20 Kirchhoff's voltage law can be used to write 
equations around: 

a.LoopABFEA 
b.LoopABCDA 
c.LoopBFEADCB 

All of the above 
e. a and b only 
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Lesson 12 

Advanced Methods of 
DC Circuit Analysis 

In this lesson, Kirchhoff's laws and the procedures for using them 

will be reviewed, and a new circuit analysis technique called the 

superposition theorem will be introduced. The use of the superposition 

theorem in analyzing multiple source dc circuits will be covered. Several 

additional advanced methods of dc circuit analysis will also be 

introduced. A brief synopsis of the use of these methods will be 

covered at the end of this lesson. 
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LESSON 12. ADVANCED METHODS OF DC CIRCUIT ANALYSIS 

• Objectives 

1. Using Kirchhoff's voltage and current laws correctly, write the loop and junction equations for any dc 
circuit such as the bridge circuit shown below, using either electron or conventional current to analyze 
the circuit. 

E. 

2. Write the superposition theorem, including a statement of its limitations. 

3. Using the superposition theorem, solve for the unknown voltages and currents in multiple source dc 
circuits of the type illustrated in the schematic diagram below. 

5kS2 

10V 

4. With the aid of this lesson summary and other reference material, state how any of the following 
circuit analysis techniques may be used in analyzing dc circuits: 
a. Method of mesh currents 
b. Node voltage analysis 
c. Thevenin's theorem 
d. Norton's theorem 
e. Millman's theorem 

123 





LESSON 12. ADVANCED METHODS OF DC CIRCUIT ANALYSIS 
• 

• Kirchhoff's Voltage Law 

• Series Circuit as a Closed Loop 

In the previous lesson, Kirchhoff's laws were introduced and you were shown how to apply them in 
analyzing multiple source dc circuits. This lesson goes on to examine the use of Kirchhoff's laws to analyze 
a complex series-parallel circuit, and also discusses what is called the superposition theorem. You will see 

that the superposition theorem is a very important tool, because you can use it to greatly simplify the 
analysis of multiple source circuits. This lesson then goes on to briefly familiarize you with some more 

methods used in circuit analysis. These advanced methods will not be discussed at great length but they will 
be concisely outlined for you at the end of the lesson for your later reference. 

Kirchhoff's Voltage Law — In the last lesson 
Kirchhoff's laws were first introduced to you. 

Before covering any new material in this lesson, it 

will be helpful to review these laws and the rules 
you were given on how to use them. Remember 

there are two laws: Kirchhoff's current law and 

Kirchhoff's voltage law. It will be helpful to review 
Kirchhoff's voltage law which is stated as shown in 

Figure 12.1; the algebraic sum of the voltages 
around any closed loop in a circuit must equal 
zero. 

Since quite a few new terms and concepts are 
involved in using this law, a brief review of some of 

its basic elements will be helpful. 

Series Circuit as a Closed Loop — A closed path, or 
loop as it was called in the preceding lesson, is 

determined by traversing a path through a circuit 

in a particular direction until the starting point of 
the path is reached. As you can see in the simple 

series circuit of Figure 12.2, if you start at the 
starting point labeled in this circuit and proceed in 
a counterclockwise direction, you must .pass 
through R1, R2, R3 and the voltage source before 

you return to the starting point. This path through 
the circuit is a closed path or loop. 

KIRCHHOFF'S VOLTAGE LAW 

THE ALGEBRAIC SUM OF THE VOLTAGES 

AROUND ANY CLOSED LOOP MUST EQUAL 
ZERO. 

Figure 12.1 

Figure 12.2 
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• Use of Kirchhoff's Laws 
• Positive Source Voltage 

• Negative Source Voltage 

Use of Kirchhoff's Laws — You must remember 
the steps involved in using Kirchhoff's second law. 

In order to write down a loop equation as shown in 

Figure 12.3, the first step is to label all the currents 
flowing in the circuit and assign them a direction. 
Then traverse the loop you are analyzing, adding 

the voltages algebraically, and set the algebraic sum 
of the voltages equal to zero. In the loop equation, 
a voltage source gets a positive sign if you traverse 
it in the same direction as it normally pushes 

current. 

Positive Source Voltage — Stop and consider for a 

moment what that means. If you are considering 
electron current (Figure 12.4), a source voltage is 

considered positive if you traverse it from plus to 
minus. If you are considering conventional current, 
a source voltage is considered positive if you 

traverse it from minus to plus. In either 
convention, a voltage source gets a positive sign in 

the loop equation if the direction you traverse it is 

the same as the direction it pushes current. 

Negative Source Voltage — Conversely, a voltage 
source gets a negative sign (Figure 12.5) if you 

traverse it opposite to the direction it normally 
pushes current. In other words, if you are 

considering electron current, a source voltage 

receives a negative sign when you traverse the 
source from negative to positive. For conventional 
current, the source voltage is negative when you 

traverse the source from positive to negative. In 

either current convention, a voltage source gets a 
negative sign in the loop equation if you traverse it 

opposite to the direction it normally carries 

current. 

TO USE KIRCHHOFF'S LAWS 

1. LABEL ALL CURRENTS AND ASSIGN THEM A 

DIRECTION. 

2. TRAVERSE THE LOOP, ADD ALL VOLTAGES 

ALGEBRAICALLY, AND SET THE SUM EQUAL 
TO ZERO. 

3. A VOLTAGE SOURCE RECEIVES A POSITIVE 
SIGN, IF YOU TRAVERSE IT IN THE SAME 

DIRECTION, IT NORMALLY PUSHES CURRENT. 

4. A VOLTAGE SOURCE RECEIVES A NEGATIVE 
SIGN, IF YOU TRAVERSE IT OPPOSITE TO THE 

DIRECTION IT NORMALLY PUSHES CURRENT. 

Figure 12.3 

ELECTRON CURRENT DIRECTION OF TRAVERSAL 
1  

Figure 12.4 

ELECTRON CURRENT 
4-  r DI RECT I ON OF 
E  
T TRAVERSAL 

Figure 12.5 

CONVENT I ONAL CURRENT 

CONVENT I ONAL CURRENT 

-E 
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• Signs of Voltages Across Resistors 

• Voltages Around a Closed Loop 
• Series Circuit Rule 

Signs of Voltages Across Resistors — Two rules 
governing the signs of voltage terms across resistors 

were also covered in Lesson 11 (Figure 12.6). If 
you traverse a resistor in the direction of current 
flow through it, the voltage across it is considered 
negative. If you go through a resistor against the 
current direction, the voltage across it is considered 
positive. 

Voltages Around a Closed Loop — In the single 

loop shown in Figure 12.7, consider that electron 
current is flowing counterclockwise as labeled. To 

write the loop equation for this circuit, begin with 

the voltage source and traverse the loop, writing 

down all the voltages you encounter along the way. 
It is normally convenient in loops such as this to 

traverse in the same direction as the current 

flowing in the circuit. If you were traversing 
counterclockwise, beginning with the voltage 
source, you would get ET —1131 — I R2 — IR3 = O. 
Remember that the voltages across each resistor are 
equal to I times R, from Ohm's law. 

Series Circuit Rule — As mentioned in Lesson 11, 

the loop equation above is simply another way of 

stating an earlier rule about voltages in a series 
circuit. If the resistor's IR drops are transposed to 

the other side of the equation (remember to 

change the signs), the result is a mathematical 
expression for the series circuit rule. As shown in 

Figure 12.8, the total applied voltage must be 
equal to the sum of the individual drops. Here ET 

equals the sum of the voltage across the resistors or 
ER1 plus ER2 plus ER3. 

TO USE KIRCHHOFF'S LAWS 

(CONTINUED) 

5. IF YOU TRAVERSE A RESISTOR IN THE 
DIRECTION OF ASSUMED CURRENT FLOW, 
THE VOLTAGE ACROSS IT IS CONSIDERED 
NEGATIVE. 

6. IF YOU TRAVERSE A RESISTOR AGAINST 

THE DIRECTION OF ASSUMED CURRENT 
FLOW, THE VOLTAGE ACROSS IT IS 
CONSIDERED POSITIVE. 

Figure 12.6 

Figure 12.7 

Figure 12.8 

ET -1121- IR2-1R3 

SERIES CIRCUIT RULE 

ET =10 1+102 +I 1R3 

OR 

ET = ER1 + ER2 + ER3 
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• Kirchhoff's Current Law 
• Example Circuit 

Kirchhoff's Current Law — Go back a moment to 
consider Kirchhoff's first law or Kirchhoff's 

current law, which states that the sum of the 
currents into any point of a circuit must equal the 
sum of the currents out of that point 
(Figure 12.9). This law is generally applied where 

there is a branch in a circuit, where the current will 
either divide or recombine. Recall that such circuit 
points are called nodes. 

Example Circuit — For example, in the circuit of 
Figure 12.10, you can see that the current will 
divide at point A and combine at point B. So, if 
there is a total of, say, 5 milliamps coming into 

point A, there must be a total of 5 milliamps 

leaving that point and dividing into li and 12. 
Thus, you can see that this is just another way of 
saying that the total or main line current in a 

parallel circuit is equal to the sum of the individual 

branch currents, or IT = 1i + 12. This, you recall, is 
the rule for currents in parallel circuits. 

Remember, Kirchhoff's laws are really just 
another more general way of stating the series and 

parallel circuit rules. 
In the last lesson it was shown how these laws 

can be applied to the solution of multiple source 
dc circuits, in configurations where Ohm's law 
alone would not be enough to complete the circuit 
analysis. This lesson will help you expand the use 
of Kirchhoff's two laws and apply them to another 

class of complex series-parallel circuits called 

bridge circuits. Although the bridge circuits to be 

discussed have only one voltage source, they 

cannot be analyzed using Ohm's law methods 
alone. After this discussion, the lesson will move 

on to cover several additional new methods that 
are useful in solving complex circuits. 

KIRCHHOFF'S CURRENT LAW 

THE SUM OF THE CURRENTS INTO ANY POINT 
OF A CIRCUIT, MUST EQUAL THE SUM OF THE 
CURRENTS OUT OF THAT POINT. 

Figure 12.9 

PARALLEL CIRCUIT 

II) 

Figure 12.10 

•  

12 

A 
IT 11 +12 
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• Lesson Objectives 

• Bridge Circuit 

Lesson Objectives — So, at the end of this lesson 
you should: 

1. Know and be able to use Kirchhoff's laws to 
write the loop and node equations for a 
bridge circuit 

2. Know the superposition theorem, its 
limitations, and how to use it to analyze 
multiple source dc circuits 

3. Be familiar with more advanced circuit 
analysis methods, and know where to look for 
reference material necessary to implement 

them (Figure 12.11). 

Bridge Circuit — In the previous lesson you saw 

how to use Kirchhoff's laws to analyze multiple 
source circuits. This lesson first considers a 

complex series-parallel circuit which (although it 

has only one voltage source) cannot be analyzed by 
ordinary means; that is, with Ohm's law and simple 
circuit rules. 

A circuit of the type shown in Figure 12.12 is 
called a bridge circuit. As you will see in the 
laboratory portion of this course, a specialized 

version of this circuit called a Wheatstone bridge 
can be used in making very accurate resistance 
measurements. At this point in this lesson, 

Kirchhoff's laws will be used to begin the analysis 
of this circuit. That is, all the loop equations and 

node equations necessary to find all currents and 
voltages in the circuit will be written down, going 
through all procedures step by step. At this point, 
if you feel ready to write down these equations 

and solve them on your own, please do so. This 
would be a good point to see how far you can go 
on your own in handling Kirchhoff's laws. If you 

have any difficulty, the complete analysis of this 
circuit will be worked out step by step for you 
right here. 

• KIRCHHOFF'S LAWS 

• SUPERPOSITION THEOREM 

e ADVANCED CIRCUIT ANALYSIS METHODS 

Figure 12.11 

Figure 12.12 
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• Label Current Direction 
• Node Current Equations: Node A 

Label Current Direction — The first step in 

analysing this circuit is to label all the electron 
currents and assign them a direction, as shown in 
Figure 12.13. (Note, at this point if you do not 

know the direction of current flow, just guess a 
direction. Remember that, if any current you solve 
for turns out negative, the current is flowing 
opposite to the direction you guessed.) Notice in 

the circuit that the total main line electron current 
is 12 amps, and that it flows from the negative 
terminal of the source to point A. At point A, the 
total current divides into two parts which you can 
label l and 12, which flow up through R1 and R2 
respectively. Assume that 13, the current flowing 
through R3, is flowing from left to right. Now 14 

and 15 flow up through R4 and R5 respectively, 
and then join at point D to produce the total 

current, which flows back to the voltage source. 

Node Current Equations: Node A — Now that all 

the currents flowing in the circuit have been 
labeled and a direction assigned to them, you can 

use Kirchhoff's current law to write the node 
current equations at points A, B, C, and D. 

At point A in Figure 12.14, the sum of li and 

12 must equal the total current. Since you 
know the total current is 12 amps, you can say 

that li plus 12 equals 12 amps. 

R1 

IT=12A 8Q R2 
12Q 

Figure 12.13 

A 
11 + 12 = IT 

11 + 12 = 12A 

Figure 12.14 
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• Node B 

• Node C 

• Node D 

Node B — At point B in the circuit, as shown in 
Figure 12.15,11 must equal 13 plus 14. This gives 
you another node equation to use in analyzing this 
circuit. 

Node C — Likewise, at point C in Figure 12.16, 15 
must equal 13 plus 12. 

Node D — At point D in Figure 12.17, 14 plus 15 
equals IT or 12 amps. 

Figure 12.15 

D 
13 

B *-7-/7-M*  
Iv 

A 
15= 13+12 

D 

Figure 12.16 

  D 

Figure 12.17 

/I 

I 

C 

C 
4+I5 = IT 
4 +15 =12A 
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• Node Current Equations 

• First Loop Equation 
• Second Loop Equation 

Node Current Equations — Figure 12.18 shows all 
the node current equations. As you will be seeing, 
these equations can be manipulated so that any 
one current can be expressed in terms of other 

currents. This is usually done to simplify the loop 

equations which are developed next. To carry the 
circuit analysis further, three loop equations will 

be written for it. The loop equations when 
analyzed with the node equations, will allow you 
to completely analyze this circuit. 

First Loop Equation — Figure 12.19 shows one 
loop of the circuit. If you traverse the loop 

beginning with the voltage source and move around 
in the counterclockwise direction in the assumed 

direction of electron current, the loop equation is 
ET — liR1 — I4R4 = 0. When you substitute the 
resistance values written on the schematic into the 

equation, you should have ET — 8 1 — 18 14 = 0. 

Second Loop Equation — Figure 12.20 shows a 

second loop in the circuit. If you traverse this loop 
in the clockwise direction starting at point A, the 
loop equation is —11 R1 — 13R3 +12R2 = 0. Note 
that since you traversed R2 against the direction of 
current flowing through it, the last term in the 

equation has a plus sign. When you substitute the 
resistance values in the equation, you should have 

—8 11 — 12 13+ 12 12= 0. 
Now consider one more loop and write the 

equation for it. 

11+1 2 = 12 

11 =1 3 +1 4 

15 =1 3 +1 2 

14 +1 5 = 12 

Figure 12.18 

ET —1-- 1P4 
B 

"re 12A Rl<1II 
8a   

A 
ET-IA-144=0 
ET-8I1 -18I4 = 0 

Figure 12.19 

R2 
aft n. A 12 

-Id; -13 R3 412 R2::0 

-84-1213+1212=0 

C 

Figure 12.20 
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• Third Loop Equation 

Third Loop Equation — If you traverse the loop in 

Figure 12.21 in the counterclockwise direction, 
starting at point B, the equation is —13R3 — 
I5R 5 + I4R4 = 0. Again, substitute the resistance 
values in the equation, and you should have 
—12 13-6 15 + 18 14 = 0. The last term in this 

equation also has a plus sign since you traverse R4 
against the direction of current flowing through it. 
(Note, any three loops could be used in arriving at 
the loop equations you need for this problem.) 

As you will see, the remainder of this problem 

involves manipulations and substitutions with the 

node current equations and the loop equations to 
find the individual branch currents. Once all the 
branch currents are known, you simply multiply 

them by the appropriate resistances to find the 
individual voltages in the circuit. 

Ifin R5-6i 
15 

Re 12 st 
-13123-15R5 +144 =0 
-1213 -615 + 1814= 0 

Figure 12.21 

For those of you who want to follow the 

analysis of this circuit, its step-by-step solution is 
included here. 

To start, write all of the node current 
equations in simplified form: 

11 +12 = 12-» 11 = 12 -12 

11 =1 3 +14 14 =1 1 -1 3 = 12-12 -13 

15=13+ 12 -+ 13 =1 5 - 12 

14 + 15 = 12. 14 = 12 - 15= 12 - 12 -13 

Note that in writing a simplified expression 

for 14 in the second equation, the simplified value 
of li from the first equation was used. This is also 
done in the fourth equation. By having several 
alternate expressions for 14, the problem can be 
solved more easily. 

Write the three loop equations. 
1. ET-8 11 — 18 14 = 0 
2. —811 — 1213+ 1212=0 

3. —1213— 615+ 1814=0 

Pick two equations that share a common term 
so that that term may be canceled out. In this case, 

equations 2 and 3 are used, because they both 
contain the term "13'. The two equations may now 

be simplified. Equation 2 is divisible by 4, and 
equation 3 is divisible by 6. 

-81 1 - 1213+ 1212 =0 
4 - 21 1 -313+312 =0(•) 

-12 13 -615 +1814 =0 

6 
- 213-15+314=0 
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• Third Loop Equation 

In order to simplify the problem further, the 
equations may be reduced to two unknowns. This 
may be done by substituting a node current 
equivalent value into the loop equations. For 

example, l may also be expressed as 12 — 12. If 

this value is substituted into the simplified loop 
equation (* above) you have: 

—211 — 313+ 312= 0 
—2(12 — 12) —313 + 312 = 0 
—24 + 2 12 — 3 13 + 312 = 0 

or 
5 12 — 3 13 24 
Next, reduce the other equation to two 

unknowns (12 and 13) 
—2 13 —15+ 314 — 0 
From the node current equations you know 

that 15 is equal to 12 + 13.14 is equal to 12 — 
12 — 13. When these values are substituted into the 

loop equation, the equation will contain only the 
unknowns 12 and 13, and can then be solved. 

—213— 15 + 314 = 

—2 13 — (1 2 + 13) + 3(12 — 12 — 13) = 
—213 —12 —13+ 36 — 312 — 313=0 
+36 — 4 12 — 6 13 = 
—412-613 = —36 or 

4 12 + 6 13 = 36 
Now the loop equations have been reduced to 

two unknowns, 12 and 13. One of the currents may 

now be found. 
5 12 — 3 13 = 24 
4 12 + 6 13 = 36 
In order to cancel the 13 term, the first 

equation above should be multiplied by 2, and 
then the equations can be added. 

2 (5 12 — 3 13) = (24)2 

10 12 — 6 13 = 48 

4 12 + 61 3 = 48 

14 12 = 84 

14 12 84 
=-

14 14 

12 = 6 A 
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• Third Loop Equation 

Now that one of the currents is known, this 
value may be substituted into the node current and 

loop equations to solve for the remainder of the 
circuit currents. 

Node current equation: 
li = 12 — 12 

11 = 12 — 6 
li = 6 A 

Loop equation 
—313 + 512 = 24 

—3 13 + 5(6) = 24 
—3 13 + 30 = 24 
—3 13 = 24 — 30 

—3 13 = —6 
13 = 2 A 

Node current equation: 

14= 11 — 13 
14 = 6 A — 2 A 
14 = 4 A 

15 =12 +13 
15 = 6 A + 2 A 

15 = 8 A 

To find the voltages across all resistors in the 
circuit, Ohm's law may be used. 

ER1 =11 X Ri = 6 AX 8S-2 = 48 V 

ER2 =12 X R2 = 6 A X 12 1-2 = 72 V 
ER3 =13 X R3= 2 AX 12 S2 = 24 V 

ER4 —14 X R4 = 4 A X 1852 = 72 V 
ER5 =15 X R5 = 8 A X 6 St = 48 V 

To determine ET, go back to the loop 
equation in Figure 12.19 and substitute the 
appropriate current values in the equation. 

ET — 8 11 — 18 14 = 0 
ET — 8(6) — 18(4) = 0 
ET — 48 — 72 = 0 
ET — 120 = 0 
ET = 120 V 

12-15 



• Superposition Theorem 
• Second Source 

Superposition Theorem — At this point you have 
seen how to use Kirchhoff's laws to analyze several 

different types of circuits. Several examples have 
now been worked through for you to show you 

how Kirchhoff's laws may be used in analyzing 
multiple source dc circuits and bridge circuits, 
which cannot be worked if Ohm's law methods 

alone are used. This lesson now goes on to examine 
another powerful method which simplifies the 

analysis of circuits with more than one voltage 
source. This method essentially involves carefully 

examining the effect that each source has on the 
circuit by itself. For example, consider the simple 

circuit of Figure 12.22. The basic circuit consists 
of a 10-ohm resistor connected to a 10-volt source. 

The current produced in the resistor is 10 volts 

divided by 10 ohms or 1 amp. 

Second Source — Figure 12.23 shows this same 
10-ohm resistor connected to another 10-volt 
source. The current produced in this resistor by 

this second source acting alone is again 1 amp. 

10V 10s?. 

Figure 12.22 

I.1A 

Th 

Figure 12.23 

100 
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• Circuit with Both Sources Acting 
• Statement of Superposition Theorem 

• Limitations of the Superposition Theorem 

Circuit with Both Sources Acting — When both 

voltage sources are connected to the resistor as 
shown in Figure 12.24, the current flowing 

through the resistor is now 2 amps. The action of 
this circuit is a simplified illustration of what is 
called the superposition theorem. 

Statement of Superposition Theorem — The 

superposition theorem is stated as shown in 
Figure 12.25. In a network with two or more 

sources, the current or voltage for any component 

is equal to the algebraic sum of the effects 

produced by each source acting separately. 
The superposition theorem is easy to use. As 

was illustrated in the simplified example, when you 

analyze a circuit considering only one source at a 
time, you can solve the remaining circuit by simply 
using Ohm's law and the rules you have learned for 
the behavior of series and parallel circuits. 

Limitations of the Superposition Theorem — The 
superposition theorem, however, does have two 

limitations (Figure 12.26). First, all components 
must be linear, which means that as the input to 

the component increases or decreases, the output 
must increase or decrease in direct proportion. 

Secona, all components must be bilateral, which 
means that current must flow equally well in either 
direction. Because of these limitations, the 
superposition theorem is most effectively used in 
analyzing the behavior of resistive circuits. 

10V 

1 I • 20 

Figure 12.24 

SUPERPOSITION THEOREM 

IN A NETWORK WITH TWO OR MORE SOURCES, 

THE CURRENT OR VOLTAGE FOR ANY 

COMPONENT IS EQUAL TO THE ALGEBRAIC 
SUM OF THE EFFECTS PRODUCED BY EACH 
SOURCE ACTING SEPARATELY. 

Figure 12.25 

LIMITATIONS OF THE SUPERPOSITION 

THEOREM 

1. LINEAR COMPONENTS 

2. BILATERAL COMPONENTS 

Figure 12.26 
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• Sample Solution Using the Superposition Theorem 

• Trick in Using Superposition: Short Out E2 

• Redrawn Circuit 

Sample Solution Using the Superposition 
Theorem — To see how the superposition theorem 

works, it will be used to solve for the voltage from 
point A to ground, across R3, in a circuit with two 
voltage sources such as the one shown in 
Figure 12.27. Notice you could use Kirchhoff's 
laws to solve this problem, but not Ohm's law and 
the simple circuit rules alone. (Ohm's law methods 
alone would not allow you to determine what was 

happening in this circuit because two sources are 
interacting here to produce current flow.) 

Trick in Using Superposition: Short Out E2 — The 
key trick in using the superposition theorem to 
analyze a circuit like this is to just mentally replace 
one of the voltage sources on your schematic, say 
E2, with a short. With E2 replaced by a short, as 
shown in Figure 12.28, you can now use simple 
circuit rules and Ohm's law to first find the voltage 

from point A to ground with El acting alone. This 

voltage will be called EA1. 

R1 

Figure 12.29 

RS R2 R3 • • H+ 9 

R2 hR3 • 505? 

RTI • 1000 5011 

RT1 • 150i1 

E 50V 
'T1' 

5.350 

150Q 

15 • .33A 

E01 • ICR2 11 R3) • 

E01 • .33 15001 

Em. • 16.67 VOLTS 

Figure 12.27 

R1 R2 

E2 REPLACED WITH SHORT 

Figure 12.28 

Redrawn Circuit — This circuit can be redrawn 
slightly to indicate clearly how you would solve for 
EA.] (Figure 12.29). With E2 shorted out, this 

circuit consists of the single power source, El, 
powering a series-parallel circuit. In the circuit, R1 

is in series with the parallel combination of R2 and 
R3. Remember that a shorthand notation that can 
be used to express "R2 in parallel with R3" is 

R2I1R3. The first step in analyzing our original 
two-source circuit is to find the voltage from 

point A to ground in this circuit, with El acting 
alone. This is a straightforward series-parallel 
circuit problem. 

Begin by finding the total resistance of the 
circuit. To do that you need to calculate the total 
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• Solution for Em 
• Next Step: "Short" E1 

resistance of R2 in parallel with R3(R2I1R3). Since 
R2 and R3 are both 100-ohm resistors, use the 
formula Req = Rs/N. Substituting, you have 
100 ohms divided by 2 or 50 ohms for R2I1R3. 
Now the total resistance of this circuit is just R1 + 
(R211R3) or 100 plus 50 or 150 ohms. The total 
circuit current 1Ti just equals Ei/R-ri or 
50 volts/150 ohms which equals 333 milliamps. 
Finally, EA.' now equals this total current times 
the resistance between point A and ground. EA1 = 
1T1 X (R2I1R3) which equals 0.333 X 50 ohms or 
16.67 volts. 

Solution for Em — If you were to calculate this 
voltage with the series-parallel circuit rules and 
ohm's law, you would find that it is 16.67 volts as 
shown in Figure 12.30. The polarity of EA.' as 
shown is negative at ground and positive at 
point A. 

At this point you know the voltage across R3, 
from point A to ground, produced by one of the 
two sources acting alone. If you find the voltage 
across R3 produced by the other source acting 
alone, you can add the two voltages algebraically 
to find the total voltage across R3. 

Next Step: "Short" El — Your next step is to 
mentally reconnect E2, and short El as shown in 
Figure 12.31. Now you can find the voltage from 
point A to ground with E2 acting alone; call 
it EA1/42. 

EI • 

50V 

EA1 • VOLTAGE BETWEEN A AND WITH El ACTING ALONE 

Figure 12.30 

E1 REPLACED 

WITH SHORT 

Figure 12.31 
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• Solving for EA2 

• Solution for EA2 
• Add Em and EA2 to Get Final Result 

R2 

Figure 12.32 

Solution for EA2 — If you were to calculate this 
voltage with the simple circuit rules and Ohm's 
law, you would find that it is 8.33 volts. The 
polarity of EA2, as shown in Figure 12.33, is 
opposite to the polarity of EA.', that is, positive at 

ground and negative at point A. 
To find the total voltage from point A to 

ground, algebraically add up the effects of 
each of the sources acting separately, remembering 
that the voltages are of opposite polarity. 

Add Em and EA2 to Get Final Result — In 
Figure 12.34, if you consider EA.' positive and 

EA2 negative, you should have 16.67 minus 8.33, 
and you get 8.34 volts for the total voltage 
between point A and ground. The polarity will be 

that of the larger voltage: positive at point A and 
negative at ground. 

A word of caution may be in order here. 

Although you can talk about shorting out voltage 

sources in schematic diagrams when analyzing 
circuits with the superposition theorem, you 
should never just short out an actual voltage source 
in a real circuit. This can damage the source, cause 

electrical burns, as well as a variety of other 
undesirable effects. When the term "shorting out a 

Solving for EA2 — This circuit of Figure 12.31 can 
be redrawn as shown in Figure 12.32 to show that 

this too is a series-parallel circuit. The equivalent 
resistance of (R1 IIR3) is now 50 ohms, similar to 
the previous case, and the total circuit resistance is 
again 150 ohms. This time the total current 1T2 is 
equal to E2/RT2 or 5 volts divided by 150 ohms or 
167 milliamps. EA2 is then equal to 1T2 times 
(R1 11R3) which equals 0.167 amp times 50 ohms 

or 8.33 volts. 

Figure 12.33 

EA1 = 16.67 VOLTS 

= —8.33 VOLTS 
EA2  

tie EA = 8.34 VO LTS 

Figure 12.34 
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• Another Sample Solution Using the Superposition Theorem 

source" is used in circuit analysis, it refers to a 
mental process only. 

Another Sample Solution Using the Superposition 

Theorem — To provide you with some additional 

practice in using the superposition theorem, it will 

now be used with a slightly different circuit. This 
time the superposition theorem will be used to find 

the current flowing in one of the resistors in the 

complex circuit situation shown in Figure 12.35. 
This is a complex two-source circuit in which 

you want to find the current flowing through the 
resistor, R1. The two sources, El which equals 

10 volts, and E2 which equals 20 volts, are pushing 
current through R1 in opposite directions. Using 

the superposition theorem to solve this problem, 
you first want to find li, the current flowing in R1 
produced by El acting alone, so you short out E2. 
Then you want to find 12, the current flowing 
through R1 with E2 acting alone — so you short 

out El. Once li and 12 are calculated, algebraically 
add the results to find the total current flow 

through R1 with both sources acting together. 

Figure 12.35 
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• Short E2: E1 Acting Alone 

• Redrawn Circuit 
• Short El: E2 Acting Alone 

Short E2: E1 Acting Alone — Begin by shorting 

out E2 so that E1 is acting alone in the circuit 
(Figure 12.36). Notice that when E2 is shorted out 
this creates a short circuit directly across R3. There 

is now essentially a path with zero resistance right 
across R3. This means that no current will flow 

through R3 and the circuit essentially consists of 
R1 in parallel with R2 with 10 volts applied. 

Redrawn Circuit — To clarify this, the equivalent 

circuit has been redrawn in Figure 12.37 with R3 
replaced by a short. The position of 11 in the 
circuit is now more easily seen. To find li, use 

Ohm's law in the form* E1/R1, as shown in 
Figure 12.37. E1 divided by R1 equals 1 amp. 1 
flows in the direction shown in the circuit diagram. 

Short El: E2 Acting Alone — Next you want to 

find 12, the current produced in R1 by E2 acting 
alone, so you short out El as shown in 
Figure 12.38. This puts a zero resistance path right 

across R2. Now the circuit essentially consists of 
R1 in parallel with R3, since no current will flow 
through R2. 

To find 12, you can use Ohm's law just as 
before. As shown in the figure, E2 divided by R1 

equals 2 amps. The direction of 12 is opposite to 

that of li, as indicated on the circuit diagram. 

E1 

10V 

R1 

> 

100 

<R2 e 
SQ Ri:, 

Figure 12.36 

El 

10V 

R1 IOC/ 

5RÎ 

•••- Il 

R3 REPLACED 
BY SHORT 

Figure 12.37 

R1 100 

II • 1 AMP 

R2 

51.1 

z R 

51:n 

Figure 12.38 
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• Final Solution 

• Other Methods of Circuit Analysis 

Final Solution — Back in the original circuit 

(Figure 12.39), the two currents l and 12 have 
been labeled along with their directions. Since they 
are flowing in opposite directions, the total current 
through R1 is the difference between the two 
currents which is equal to 1 amp. The direction of 
I R1 is in the direction of 12, since 12 is the larger 
of the two currents. 

This problem is fairly easy to work using the 
superposition theorem, especially when you 
compare it to the previous methods. If you were to 

use loop and node equations to analyze this circuit, 
you would have to write three equations, simplify 
them, and then manipulate the three equations in 
order to solve for the current you want. Using the 
superposition theorem, a complex two-source 
problem can be reduced to two single-source 
circuits that can be solved using methods you 

already know. 

Other Methods of Circuit Analysis — The objective 

of the remainder of this lesson is to very briefly 
introduce you to some other methods of dc circuit 

analysis which may be useful in certain specific 
circuit applications. 

Figure 12.40 is a list of methods and 

theorems which will be discussed. Relax as a 
general survey of these methods is presented for 
you. The intent is not to explain each method of 
analysis in depth, but to give a brief description of 
each method so that you will be familiar with the 
language and terminology of each and know 
generally where the different methods can be 
applied most effectively. 

tRI • 2A-IA • IA 

Figure 12.39 

Figure 12.40 

MESH CURRENT ANALYSIS 

NODE VOLTAGE ANALYSIS 

THEVENIN'S THEOREM 

NORTON'S THEOREM 

MILLMAN'S THEOREM 
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• Mesh Current Analysis 

For those of you who wish to study these 

methods more fully, there is a more thorough 
explanation of each theorem along with worked 

examples at the end of this lesson. Also included is 
a list of reference books which discuss the various 
theorems and advanced methods of dc circuit 

analysis. 
The presentation of this material is 

deliberately intended to serve only as an 
introduction for several reasons. First of all, 

detailed coverage of these advanced methods will 
be taken up and discussed in detail in more 
advanced courses in electricity and electronics. 
Secondly, most circuits" you will encounter can be 

solved by applying the methods that have already 

been discussed, although some of the solutions 
may become quite lengthy. The methods presented 
here are more powerful tools that can aid in circuit 
analysis or greatly simplify the prediction of circuit 
behavior. 

Mesh Current Analysis — First consider what is 
called the mesh current method of analyzing dc 
circuits. This method is handy for analyzing 

circuits with many, many branches such as the one 
shown in Figure 12.41. A mesh is defined as the 
simplest form of a loop. In a circuit such as that 

shown, a typical mesh looks sort of like a single 
window pane. Other larger paths in this circuit are 
loops, but not meshes. The current flowing in a 

mesh is called, aptly enough, a mesh current. When 

working with mesh currents, you usually assume 
that all of the currents in all of the circuit meshes 
flow in the same direction, usually clockwise. Also, 

it is assumed that the mesh current flows all the 
way around the mesh and doesn't break up at 

Rtr6Q 

Figure 12.41 

R6•10Q 

R7 

80 

R4 

I5Q 

R10 

40 
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• Circuit with Drawn-In Mesh Currents 

• Close-Up on Central Resistor 

circuit nodes. If you get a negative sign in your 
final solution for the circuit currents, that indicates 
the assumed direction of the current is opposite to 
the actual direction of current. 

Circuit with Drawn-In Mesh Currents — An 

important thing to remember about mesh currents 
is that they are assumed currents. Figure 12.42 

shows the circuit with all the assumed branch 
currents drawn in. Notice that all of the branch 

currents are assumed to be flowing in the clockwise 
direction. The actual current flowing in any branch 

of the circuit may be opposite in direction to the 
assumed mesh current. Also, in some branches of a 
mesh, the current may consist of two mesh 

currents flowing in opposite directions. 

Close-Up on Central Resistor — Figure 12.43, for 
example, is a "close-up" of this circuit centered on 
the branch containing resistor R3. Note that the 
current flow through R3 is the algebraic sum of li 
and 12. Since these two currents flow through R3 
in different directions, 1R3 = li — 12. 

To carry out a complete mesh current analysis 
of a complex circuit like this, write mesh equations 
for each mesh the same way you write loop 

equations, except that now you use mesh currents. 

Figure 12.42 

R2 

R1 . 

20S? 

R5 

Figure 12.43 

512 
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• Left-Hand Mesh 
• Central Mesh 

• Complete Solution 

Left-Hand Mesh — For example, in the left-hand 
mesh of Figure 12.44, you can start with the 

voltage source and traverse the circuit clockwise to 
get: 10 V — 5 11 — 20 11 — 5 11 + 20 12 = 0. 

Notice the 20-ohm resistor also has 12 flowing 

through it (opposite to ) so the 20 12 term in the 
mesh equation has a plus sign. 

50 

Figure 12.44 

Central Mesh — In the mesh in which 12 is flowing, 

the mesh equation of Figure 12.45 is —5 12 — 
15 12 — 20 12 + 20 11 + 513 = 0. Since I I also 
flows in R3, the 20 Ii term is positive, and because 
13 flows in R5, the 5 13 term is also positive. 

To finish the analysis of this circuit 

completely, you would write one equation for each 
mesh and solve them for all of the unknown 
currents. With the currents known, you could then 

solve for all the unknown voltages in the circuit. 

-51r151r2012.2011.513.0 

R2 

10V-5i1-2011-511.2012 • 0 

Figure 12.45 

Complete Solution — The mesh equation for the 
top mesh, shown in Figure 12.45, starting to the 

left of R5 and proceeding clockwise is: —1013 — 
8 13 — 5 13 + 5 12 = O. 

The bottom mesh equation may be written 
as: —4 14-614— 10 14 = 0. As you can see, this 
equation contains only terms lor 14. When added 
up, this equation is: —20 14 = 0. No current flows 
in this loop! This fact can be seen by examining 

the circuit diagram. Notice that a short circuit is 
connected across the three resistors Rg, Rg, and 
R10, thus no current can flow through them. 
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• Complete Solution 

The three remaining mesh equations may now 

be written and simplified. 

1. 10 —51 1 —201 1 —51 1+201 2 = 

10 — 30 11 + 20 12 = 

— 3011+2012 = —10 

2. —20 12 — 5 12 — 15 12 + 20 11 + 5 13 = 

— 40 12 + 20 11 + 513 = 0 

3. —101 3 -813 -513 +51 2 =0 

— 23 13 + 5 12 = 

In order to solve for any single current value, 
a pair of equations containing the same current 

values must be set up. This can be done by 
expressing 13 in terms of either l or 12. The third 

mesh equation allows this to be done rather easily. 
The equation states that 5 12 —23 13 = 0. 

Changing the equation around a bit, it can be seen 

that 23 13 = 5 12. Divide both sides of the equation 
by 23 and you see that: 

23 13 5 12 

23 23 

13 = 0.217 12 

Now that 13 can be expressed in terms of 12, a 

simultaneous equation may be set up using mesh 

equations 1 and 2. First, the 13 term in mesh 
equation 2 must be written in terms of 12. 

2. —40 12 + 20 11 + 5 13 =0 

—4012+2011 + 5 (0.217121= 0 

—40 12 + 201 1 + 1.091 2 = 

+20 11 — 38.9 12 = 0 

This equation may be solved by canceling out 

a term through addition to equation 1. 

1. —30 11 + 20 12 = —10 

20 — 38.9 12 = 0 

Equation 2 must be multiplied by 1.5 in order 
to cancel the li te-rm. 

1.5 (20 — 38.9 12) = (1.5) 
30 11 — 58.4 12 = 0 
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• Complete Solution 

Now, equations 1 and 2 may be added. 

1. —301 1+2012 = —10 

30 11 — 58.4 12 = 

— 38.4 12 = —10 

—38.4 12 _10 

—38.4 —38.4 

12 = 0.26 A = 260 mA 

The answer is positive, which means the 

originally assumed direction of current flow was 
correct. 

To solve for l, equation 1 may be used, and 

the value of 12 simply inserted. 

—30 11 + 20 12 = —10 

—30 11 + 20 1026) = —10 

—30 11 + 5.2 = —10 

—30 11 = —10 — 5.2 

—30 1 = —15.2 

— —30 1 15.2 

—30 —30 

11 = 0.507 A = 507 mA 

The positive answer for li indicates that the 

originally assumed direction of current flow was 
again correct. 

To find 13, the third equation may be used, 
and the value of 12 substituted in. 

512 = 23 13 

23 13 = 5 12 

23 13 = 5 10.26) 

23 13 = 1.30 

23 13 1 .3 _  

23 23 

13 = 0.057 A = 57 mA 

Now that all the currents are known, the 

individual voltages may be found by using Ohm's 
law. 

= 0.507 A 

12 = 0.26 A 

13 = 0.57 A 
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• Complete Solution 

ER1 —11 X R1 
ER1 = 0.507 A X 5 St 
ERi = 2.54 V 

ER2 =11 X R2 
ER2 = 0.507 A X 5 St 

ER2 = 2.54 V 
ER3 = (li —12) R3 

ER3 = (0.507 — 0.26) 20 
ER3 = 0.247 X 20 
ER3 = 4.94 V 

ER4 =12 X R4 
ER4=0.26 A x 15s2 
ER4 = 3.9 V 

The real advantage of mesh current analysis is 

that, even though a circuit may have many loops or 
voltage sources, all mesh currents are assumed to 
flow in the same direction continuously around 

each mesh. This can make writing the equations 

much simpler; and if the assumed direction for one 
of the currents is wrong, this is indicated by a 
negative sign in the answer. 

ER5 = (12 —13) R5 
ERS = (0.26 A — 0.057 A) 

ERS = 0.203 A X 5 S2 
ER5 — 1.02 V 

ER6 =13 X R6 
ER6 = 0.057 A X 10 St 

ER6 = 0.57 V 

5S2 

ER7 =13 X R7 
ER7 = 0.057 A X 8 S-2, 

ER7 = 0.456 V 

Since no cur rent flows through Rg, R9 or 
R10, the voltage dropped across each of these 

resistors is zero volts. 

12-29 



• Node Voltage Analysis 

• Sample Solution with Node Voltage Analysis 

• Use of Node Equation 

Node Voltage Analysis — Another method for 

analyzing dc circuits is called node voltage analysis. 
When using this method (Figure 12.46), you no 
longer express the voltage drops around the circuit 

in terms of 1R drops; now you express them in 
terms of the voltage at a node. A node is just a 

common connection of two or more circuit 

components. A principal node is defined as a point 
where three or more components are connected. 

Sample Solution with Node Voltage Analysis — In 
the circuit of Figure 12.47, points A and G are 
principal nodes. In this circuit, point G has been 
selected as the ground or reference point. The 
voltage, EN, between points A and G (with G used 

as the reference) can be used to find all other 
voltages in the circuit, and is called the node 
voltage. 

Use of Node Equation — In the node voltage 

analysis of this circuit, first write a Kirchhoff's 

current law equation for point A in the circuit. As 

shown in Figure 12.48, which is a close-up of this 
circuit at point A, 13 =11 + 12. 

NODE VOLTAGE ANALYSIS 

• VOLTAGE DROPS ARE EXPRESSED IN 
TERMS OF THE VOLTAGE AT A NODE 

• A NODE IS A COMMON CONNECTION 

OF TWO OR MORE COMPONENTS 

Figure 12.46 

Ry---lkfl. A R2=2k.ft 

100V :R3=2La 

13 t 6 

Figure 12.47 

Figure 12.48 

RI A R2 

Ij 12 

R3 
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• Express Each Current as a Voltage 

• Express All Voltages in Terms of Source and Node Voltages 
• Substitute in Previous Equation 

Express Each Current as a Voltage — Now each of 

these three currents can be expressed in terms of 
voltage and resistance as shown in Figure 12.49. 
The current flowing through R3 can be put into an 

Ohm's law formula and expressed in terms of EN 
and R3: 13 = EN/R3. Similarly, you can write that 

li = ERi/Ri and 12 = ER2/R2. 

Express All Voltages in Terms of Source and Node 
Voltages — The next step is to take this equation 
and express all the voltages in it in terms of the 

source voltages (E1 and E2) and the node voltage 
EN. You can do this by going around the loops 

containing the voltage sources, the node A and the 
ground reference as shown in Figure 12.50 and 
writing the loop equations. In the left-hand loop 
(starting at R1 and traversing clockwise), you get 

ER1 + EN — El = 0. Transposing EN and El to the 
right-hand side of the equals sign (remembering to 
change their signs), you get ERi =E1 — EN. For 

the right-hand loop (starting at R2 and traversing 
counterclockwise), you get ER2 + EN — E2 = 0. 
Transposing this equation becomes ER2 = 
E2 — EN. 

Substitute in Previous Equation — If you substitute 

this information into the current equation, it 

should appear as shown in Figure 12.51. Notice 
that in this final equation you know the values of 

all the resistances and source voltages, so you could 
solve the equation for EN. Once EN is known, all 
other voltages in the circuit can be found, using the 

equations you have just derived. 

EN ERI ER2 
R3 R1 R2 

Figure 12.49 

•Ferti "0 

1R1" (1-44 

ERZ .44 2 "0 

0R2 "E2-41 

Figure 12.50 

owe 

Figure 12.51 

13 =1 1+12 

— EN 

El — EN E2 — EN 
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• Summary: Node Voltage Analysis 
• Thevenin's Theorem 

• Sample Circuit 

Summary: Node Voltage Analysis — Figure 12.52 
briefly summarizes the node voltage method of 
analyzing dc circuits. First, determine which node 

you want to analyze and which you want to use as 
a ground. Then write a node current equation for 

the node you have selected to analyze. Next, 
express each current in the node equations in terms 

of voltage and resistance. When these voltages are 

then expressed in terms of the node voltage and 

source voltages, the equation can be solved for the 

node voltage. Once the node voltage is determined, 
all other voltages can be found. 

Thevenin's Theorem — Another method of circuit 
analysis that is useful in simplifying the calculation 
of voltages in certain special situations is called 
Thevenin's Theorem (Figure 12.53). Thevenin's 
theorem states that a complex circuit or network 
can be reduced to an equivalent series circuit with 
a single voltage source and a single series resistance, 

as long as all components are linear. 

Sample Circuit — One type of problem 

(Figure 12.54) where Thevenin's theorem is useful 
is if you have a complex circuit and you wish to 

connect several different loads between two 

selected points, say points A and B. If you want to 

calculate the voltage between points A and B, you 
would normally have to analyze the complete 
series-parallel circuit every time you changed loads. 

NODE VOLTAGE ANALYSIS 

1. CHOOSE A NODE 

2. WRITE A NODE CURRENT EQUATION 

3. EXPRESS EACH CURRENT IN TERMS OF 

VOLTAGE AND RESISTANCE 

4. EXPRESS THE VOLTAGES IN TERMS OF 
THE NODE VOLTAGE AND THE SOURCE 
VOLTAGES 

5. SOLVE THE EQUATION FOR THE NODE 
VOLTAGE 

Figure 12.52 

THEVENIN'S THEOREM, 

A COMPLEX CIRCUIT OR NETWORK CAN BE REDUCED TO AN EQUIVALENT 
SERIES CIRCUIT WITH A SINGLE VOLTAGE SOURCE AND A SINGLE 
SERIES RESISTANCE 

Figure 12.53 

Figure 12.54 

RTH 

ETH 
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• Thevenin Equivalent 

• Calculation of Thevenin Voltage 
• Calculation of Thevenin Resistance 

Thevenin Equivalent — When using Thevenin's 
theorem, you replace the complex circuit by an 
equivalent voltage, which is called the Thevenin 
voltage or ETH, in series with a resistance which is 
called the Thevenin resistance, or RTH, as shown 

in Figure 12.55. Then to find the voltage and 
current for each load, you connect to points A 

and 13, and need analyze only this simple series 
circuit shown in Figure 12.55. 

Calculation of Thevenin Voltage — To find ETH, 
the Thevenin voltage as shown in Figure 12.56, 
calculate the voltage between the two selected 
points, when the load is removed. 

Calculation of Thevenin Resistance — The 

Thevenin resistance, RTH, is the resistance you 

calculate between points A and 13 with no load 

connected, and all the voltage sources replaced by 

short circuits. So as shown in Figure 12.57 you 

would usually use series-parallel circuit reduction 
techniques to help you find RTH. 

Figure 12.55 

R1 A 

-=-

E2 

R2 R3 

Figure 12.56 

Figure 12.57 

TH 
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• Norton's Theorem 
• Norton Equivalent Current 
• Norton Equivalent Resistance = Thevenin Equivalent Resistance 

Norton's Theorem — Another technique that you 
can use to analyze similar circuit situations is called 

Norton's theorem. Norton's theorem 
(Figure 12.58) states that any complex circuit can 
be replaced by an equivalent parallel circuit 
consisting of a single current source, IN, and a 
single shunt or parallel resistance, RN. Then, in a 
circuit where various loads are to be connected 

across points A and B, as shown, the circuit 
analysis is reduced to that of a simple parallel 

circuit shown. 

Norton Equivalent Current — The value of the 
Norton equivalent current source, I N 
(Figure 12.59), is found by putting a short circuit 
across points A and 8, and finding the current that 
flows through this short. The value of this short 
circuit current is the Norton equivalent 
current, IN. 

Norton Equivalent Resistance = Thevenin 
Equivalent Resistance — The Norton equivalent 

resistance, RN (Figure 12.60), is found in the same 
way as the Thevenin resistance, RTH. Thus, RN 
equals RTH for any one circuit between any two 

points. 

NORTON'S THEOREM REPLACE COMPLEX CIRCUIT WITH I, ANC R, 

Figure 12.58 

Figure 12.59 

THE NORTON EQUIVALENT RESISTANCE, 

R IS FOUND IN THE SAME WAY AS THE 
THEVENIN RESISTANCE, RTH 

Figure 12.60 

RN = RTH 
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• Norton Equivalent Circuit 

• Constant Current Source 

• Millman's Theorem 

Norton Equivalent Circuit — Once the Norton 
equivalent circuit (Figure 12.61) is known, you can 
easily calculate the voltage across and current 
through any resistance you place between points A 

and B. It should be obvious that Norton's theorem 
is useful in design of voltage divider circuits, where 
you might want to connect different loads at 
different times to the same two points. 

CONSTANT CURRENT SOURCE 
E VARIES 
WITH 
LOAD 

I'CONSTANT 
TOTAL 
LOAD 

Figure 12.62 

Millman's Theorem — The final circuit analysis 
technique discussed in this lesson is called 

Millman's theorem. This theorem is similar to 
Thevenin's and Norton's theorems in that it is used 

to help simplify a circuit by analyzing circuit 
behavior between two selected points. 

More specifically, Millman's theorem gives 

you a formula to find the total voltage across 
several parallel branches (Figure 12.63), each of 
which may contain a different voltage source and 

several resistors. The details of deriving Millman's 
equation are not shown here, but a complete 
derivation is included at the end of this lesson. The 

intent is to show you the results of Millman's 

Figure 12.61 

Constant Current Source — Notice that the circle 

with the arrow inside it used in the Norton 

equivalent circuit is the symbol for a current 

source (Figure 12.62). This is a special idealized 
source that would provide a constant current 
output to a load, but whose output voltage would 
vary depending on the load put across it. (This is 
different from the normal power supplies discussed 
throughout this course whose voltage output is 
constant and whose current output would vary 

depending on the load connected to it.) 

Figure 12.63 
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• Millman's Formula 

theorem and how it can help in simplifying circuit 

analysis problems. 

Millman's Formula — Figure 12.64 shows the final 
formula that expresses Millman's theorem. 1 1, 12, 

and 13 are the branch currents and each of these 
can be calculated using the branch voltages and 
branch resistances. Once you use this formula to 
calculate the voltage between points A and B, you 
can use that voltage to find the current through 
any resistive load you may place between A and B. 

Millman's theorem can therefore be used to greatly 
simplify repetitive calculations involving a parallel 

circuit where different loads are to be applied in 
circuits where there are no series resistances 
between the parallel branches. 

In this lesson you have reviewed Kirchhoff's 

laws and seen these laws along with the 
superposition theorem used to analyze some 

typical circuits. Also, a very brief survey of some 
of the other more advanced methods of circuit 

analysis has been presented. Remember, at the end 
of this lesson there is additional information, 
including a review chart covering the advanced 

methods along with a list of reference texts, should 
you care to study these methods of analysis in 

more depth. The complete details of these 
advanced methods introduced are properly covered 

in more advanced courses in circuit analysis. 

Figure 12.64 

MILLMAN'S THEOREM 
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LESSON 12: ADVANCED METHODS OF DC CIRCUIT ANALYSIS 

• Worked Through Examples 

1. Solve for all voltages and currents in the following circuit using Kirchhoff's laws: 

Ri=1.5kS2 R4=2001-2 

Notice first that this type of circuit could be solved using Ohm's law and circuit reduction techniques, 

but can also be analyzed using the more general Kirchhoff's law techniques, presented in Lessons 11 

and 12. As a first step in solving this circuit, label all the currents flowing in the circuit, assigning each 
a direction as shown below. (This circuit will be analyzed here using electron current.) 

R1 R4 

You can immediately apply Kirchhoff's current law at point B in this circuit: at that point 13 enters, 
and 11 and 12 leave. So by Kirchhoff's current law 13 = li + 12. Now proceed to use Kirchhoff's 
voltage law to write two loop equations for the circuit. 

Starting at point A and traversing the left-hand loop counterclockwise, the voltages are: —R2I3 —R3I 1 
— R113 + E = O. Traversing the right-hand loop counterclockwise and starting at point B, the voltages 
are: — R5I2 — R4I2 + R3I 1 = O. Now, these loop equations may be simplified by substituting l + 12 
for 13, and combining terms. 

—R 213 — R311 — R113 + E = 0 (substitute li + 12 for 13) 

- R2(11 + 12) —R 3I1 — Ri (1 1 +1 2) + E = 0 

—R 2I1 — R2I2 — R311 — Ril i — R112 + E = 

Now substitute in the circuit values: 

—1k1 1 — 1 k 12 — 1k1 1 — 1.5k1 1 — 1.5 k 1 2 + 85 = 0 
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• Worked Through Examples 

And combine terms: 

—3.5k1 1 — 2.5kI 2 + 85 = 

—3.5k1 1 — 2.5kI 2 = —85 

3.5k1 + 2.5kI 2 = 85 

Now, write the second loop equation: 

or 

—R 5I2 — R4I2 + R3Il = 

Substitute circuit values: 

—3001 2 -20012+ 1k1 1 = 0 

Combine terms: 

—5001 2 + 1k1 1 = 0. 

Now the two equations may be solved by canceling out one of the terms through addition. 

3.5k1 1 + 2.5kI 2 = 85 

1k1 1 — 5001 2 = 0 

To cancel out the I I term, multiply the lower equation by —3.5. 

—3.5(1k1 1 — 5001 2) = 0(-3.5) 

—3.5k1 1 + 1.75kI 2 = 0. 

Now add the two equations. 

3.5k1 1 + 2.5k1 2 = 85 

—3.5k1 1 + 1.75k1 2 = 

4.25kI 2 = 85 

4.25kI 2 85 

4.25k 4.25k 

12 = 20 mA 

Substitute this value back into one of the equations and solve for 1 1. 

1kI 1 — 5001 2 = 0 

1k1 1 — 500 (20 mA) = 

1kli — 10,000 mA = 

1k1 1 = 10,000 mA 

1k1 1 10,000 mA 

1k 1k 

= 10mA 

13 = 11 + 12 = 10 mA + 20 mA = 30 mA 
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• Worked Through Examples 

All of the individual circuit voltage drops may now be found by using Ohm's law. 

ER1 = 13 X R1 

ER1 = 30 mA X 1.5 1(1-2, 

ER 1 = 45 V 

ER2 = 13 X R2 

ER2 = 30 mA X 1 Id2 

ER2 = 30 V 

ER3 = li X R3 

ER3 = 10 mA X 1 l<S2 

ER3 = 10 V 

ER4 =1 2 X R4 

ER4 = 20 mA X 200 SZ 

ER4 = 4 V 

ER5 = 12 X R5 

ER5 = 20 mA X 300 S2 

ER5 = 6 V 

2. Using Kirchhoff's laws, solve for all voltages and currents in the circuit shown below. 

R1 

A 7504-2 

Label all currents and assign them a direction as shown in the figure below. Assuming electron current, 
13, flows from the source to point B where it splits up into Il and 12 as shown. 

R1 

3 
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• Worked Through Examples 

Kirchhoff's current law can therefore be applied at point B: it simply states that 13 = li +12. Now 
traverse two loops, and apply Kirchhoff's voltage law to each to obtain two loop equations. This will 

yield a total of three equations, which will allow you to solve for the three unknown currents in the 

problem. 

First, the left-hand loop will be traversed from point A in a counterclockwise direction. The resulting 

loop equation is: —R2I 1 — R113 + E = 0. The right-hand loop may be traversed from point B in a 
counterclockwise direction also. This yields —R4I2 — R312 + R2I 1 = 0. These two equations may 

now be simplified by substituting in (11 +12) for 13, and combining like terms. 

—R 211 —13 113 +E= 0 

—R 211 — R1 (l i +1 2) + E = 

—R 211 —R 111 —R 112 +E= 0 

Now substitute the circuit values into the equations. 

—1.2k1 1 — 2.2k1 1 — 2.2k1 2 + 14 = 

—3.4k1 1 — 2.2k1 2 + 1 4 = 0 

—3.4k1 1 — 2.2k1 2 = —14 

—R 4I2 — R3I2 + R211 — 

—75012 - 470 12+ 1.2k1 1 = 0 

— 122012+ 1200 11 = 

+12001 1 = 12201 2 

12001 1 12201 2 

1200 1200 

(1st simplified loop equation) 

= 1.02 12 (2nd simplified loop equation) 

Now that l. has been expressed in terms of 12, the 11 terms in the first simplified loop equation may 

all be replaced with 12 terms. The equation may then be solved for 12 as shown below. 

—3.4k1 1 — 2.2kI 2 = —14 

—3.4k (1.02 12) — 2.2kI 2 = —14 

—3.47kI 2 — 2.2kI 2 = —14 

—5.67kI 2 = —14 

—5.67kI 2 _14 

—5.67k —5.67k 

12 = 2.47 mA 
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To find li, the value of 12 may be substituted into the second simplified loop equation. 

= 1.021 2 

= 1.02 (2.47 mA) 

= 2.52 mA 

Finally, since l +1 2 = 13, you can calculate that: 

13 = (2.47 mA + 2.52 mA) 

13 = 4.99 mA 

The three current values may now be used to find the voltage dropped across each resistor in the 
circuit. 

ER1 = R1 X 13 

ER1 = 2.2 kS-2 X 4.99 mA 

= 11.0 V 
ER1 

ER2 = R2 X 

ER2 = 1.2 Id2 X 2.52 mA 

ER2 = 3.02 V 

ER3 = R3 X 12 

ER3 = 470 S2 X 2.47 mA 

ER3 = 1.16 V 

ER4 = R4 X 12 

ER4 = 750 2 X 2.47 mA 

ER4 = 1.85 V 

3. Solve for all of the circuit currents in the multiple-source dc circuit shown below. 

D R3 

E1 R2 
25V 1.8kn 

820S2 

A R1 

E2 
36V 

First, label all of the currents and assign them a direction, as shown below. In this analysis, electron 
current directions are being assumed. 

D 
 NIV‘e  

••-411. 
12 

E2 

12 

Kirchhoff's current law can be immediately applied at point C in the circuit: I +1 2 = 13. 
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Proceed to use Kirchhoff's voltage law on two of the circuit loops to get two loop equations. The two 
loop equations, together with the current law equation, will give you the three equations necessary to 

solve for the unknown currents. 

First, traverse the left-hand loop counterclockwise, starting from point A, going through points C and 
D, and returning to point A. Algebraically adding each voltage you encounter (remembering the rules 

for using the voltage law) you get: 

—R lIl — R2I3 + 25 = O. 

Traversing the right-hand loop clockwise from point B (through points C and D and back to B) yields 

the equation: 

—R 2I3 — R312 + 36 = O. 

These two equations may now be reduced to simpler forms by substituting the expression (1 1 

13 each time it appears, and then combining like terms. 

—R 111 —R 2I3 + 25= 0 

—R I — R2 (1 1 + 12) + 25 = 0 

—R lIl — R211 — R2I2 +25= 0 

—8201 1 — 1.8k1 1 — 1.8kI 2 + 25 = 0 

—2.62k1 1 — 1.8kI 2 + 25 = 0 

—2.62k1 1 — 1.8kI 2 = —25 

—R 2I3 — R3I2 + 36 = 0 

—R 2 (1 + 12) — R312 + 36 = 

—R 2Il — R2I2 — R3I2 + 36 = 

—1.8kI 1 — 1.8k1 2 — 6801 2 + 36 = 

—1.8k1 1 — 2.48k1 2 + 36 = 

—1.8kI 1 — 2.48k1 2 = —36 

+1 2) for 

These two equations may now be solved simultaneously by manipulating one of the equations so that 

one of the "1" terms cancels out the pair. 

(*) —2.62k1 1 — 1.8k1 2 = —25 

—1.8kI 1 — 2.48kI2 = —36 

Now to arrange for one of the "1" terms to cancel, the lower equation may be multiplied by —1.46: 

(-1.46) (-1.8kI 1 — 2.48k1 2) = —36 (-1.46) 

2.62k1 1 + 362k 12 = +52.6 
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Now this equation may be added to the first loop equation V) to yield: 

—2.62k1 1 — 1.8kI 2 = —25 

2.62k1 1 + 3.62kI 2 = +52.6 

1.82kI 2 = 27.6 

1.82kI 2 27.6 

1.82k 1.82k 

12 = 15.2 mA 

Substitute this value back into the first equation: 

—2.62k1 1 — 1.8k (15.2m) = —2E 

—2.62k1 1 — 27.36 = —25 

—2.62k1 1 = —25 + 27.36 

—2.62kl i = 2.36 

—2.62k1 1 2.36 

—2.62k —2.62k 

I 1 = —0'9 mA 

The negative sign in front of the 0.9 indicates that this current flows in the opposite direction from 

that direction originally assumed. The circuit, redrawn with the correct current appears as shown 
below. 

36V 

As can be seen from the figure, the 36-volt battery is actually pushing current through the 25-volt 
battery in a backward direction. The value of 13 may now easily be calculated: 

+ 12 =13 
—0.9 + 15.2 =1 3 

14.3 mA = 13 

The result is positive, indicating that the correct direction was assumed for the current flow at the 
start of the problem. 
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4. Solve for all the voltages and currents in the following circuit using Kirchhoff's laws. Use conventional 

current in your analysis. 

10S2 R3 20S2 
R2 

El 

A 
 'VVN,  
R1 = 152 

E2 E3 

4 + 12V T-- 8V - + —r— 

B 

First, label all currents and assign them a direction, as shown in the circuit diagram below. The 

directions shown are assumed conventional current directions. 

f 
El 

1  
YO» 

 'VW  
R1 

4111  • 
12 

E3 _ 
T+ 

R3 

Applying Kirchhoff's current law at point B you can see that =1 2 + 13, or 13 = — 12. Since these 

three currents are unknown, two more equations will be needed to finish the circuit solution. Apply 

Kirchhoff's voltage law to the left-hand and right-hand loops, that is, traverse the loops, add all 
voltages algebraically, and set the sums equal to zero. Assuming conventional current and starting at 

point A, the voltages are: In the right-hand loop, traversing clockwise, 10 + 10 13 + 8 + 15 11 = 0. In 
the right-hand loop, starting at point B and traversing clockwise, you have: —8 — 101 3 + 201 2 + 12 = 0. 
Remember, since conventional current is being used here, voltage source terms are positive if you 

traverse them in the same way they push conventional current. 

Now, these equations may be rewritten in terms of and 12 by simply substituting (1 1 — 12) for 13 

each time it appears. In the first equation, this is equal to: 

10+ 101 3 +8+ 151 1= 0 

10 + 10 (1 1 —1 2)+8+ 151 1=0 

10 + 10 11 — 10 12 + 8 + 15 11 = 

10 + 25 11 — 10 12 + 8 = 

251 1 — 101 2 + 18=0 

25 11 — 10 12 = —18 
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Following the same procedure in the second equation, you have: 

—8 — 101 3 + 20 12 + 12 = 0 

—8 — 10 (1 1 — 12) + 20 12 + 12 = 0 

—8 — 101 1+ 101 2 +201 2 + 12=0 

—8 — 10 11 + 30 12 + 12 = 0 

—101 1 + 301 2 +4= 0 

—101 1 +301 2 =-4 

These loop equations may be solved by addition after multiplying the top equation by 3 (in order to 
make the 12 terms cancel). 

3 (25 11 — 10 12) = (-18) (3) 

—101 1 + 30 12 = —4 

751 1 — 301 2 = —54 

—101 1 +301 2 = — 4 

65 11 = —58 

651 1 _ —58 

65 

1 =-0.892 A 1  

65 

Since this answer is negative, you know that the conventional current, l, is flowing opposite to the 
assumed direction in the left-hand loop. 

12 may now be found by substituting the l value into one of the original loop equations. 

—10 11 + 30 12 = —4 

—10 (-0.892) + 301 2 = —4 

+8.92 + 30 12 = —4 

30 12 = —12.92 

30 12 —12.92 

30 30 

12 = —0.431 A 
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The negative answer for 12 again indicates that the originally assumed direction was incorrect and that 
the conventional current 12 actually flows clockwise in the right-hand loop. To find the value of 13, 

go back to the equation that expresses 13 in terms of I and 12. 13 is equal to — 12. 

13 =1 1 — 12 

13 = (-0.892 A) — (-0.431 A) 

13 = —0.461 A 

This answer is also negative, indicating that 13 actually flows down through R2, so conventional 

current in this circuit flows as shown below. 

To go on and find the individual voltage drops in this problem, simply substitute the values of current 

and resistance into Ohm's law for each resistor in the circuit. 

ER1 = 11 X R1 

ER1 = 0.892 A X 15 

ER1 = 13.38 V 

ER2 = 13 X R2 

ER2 = 0.461 X 10 

ER2 = 4.61 V 

ER3 = I—z X R3 

ER3 = 0.431 X 20 

ER3 = 8.62 V 

1 0 V =- 

I 
A R1 

R2 

8V 12 
4ig 

N 
3 

12V 

The voltage polarities are also labeled on the diagram. Remember that conventional current always 
flows through resistors from + to —; while electron current flows through resistors from — to +. 

5. Solve for all voltages and currents in the following circuit using the superposition theorem. 

El 

8V T--eS/Vs.  
R1 30S2, 

R2 

20S2 

R3 

10S2 

The superposition theorem says that "In a network with two or more sources, the current or voltage 
for any component is the algebraic sum of the effects produced by each source acting separately. The 
first step in solving this problem, is to remove one source and replace it with a short, or conducting path. 
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The circuit with E1 "shorted out" looks like this: 

E1 

SHORTED 

30S2 

E2 

5V 

Circuit reduction laws may be applied, and the circuit reduced down to one equivalent resistance. 

301.2 

LI 
22S2 

T 5V 
The total current may now be found by applying Ohm's law: 

IT = ET/RT 

IT = 5/22 

IT = 0.227 A = 227 mA 

This "total current" flows through resistor R3. ER3 may be found by applying Ohm's law. 

ER3 = I R3 X R3 

ER3 = 0.227 X 10 

ER3 = 2.27 V 

The balance of the circuit voltage is dropped across the parallel combination of resistors R1 and 
R2 (R 1_2). The voltage value may be found by applying Kirchhoff's voltage law for series circuits. 

E2 = E R1-2 + ER3 

5V= ER1-2 + 2.27 V 

—E R1-2 = —5 V + 2.27 V 

ER1-2 = 2.73 V 
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Knowing the voltage across the parallel resistors R1 and R2, their currents may be found by using 

Ohm's law. 

IR1 = E l/ R 1 
I R = 2.73/30 

R1 91 mA 

The circuit, completely analyzed with E1 shorted, looks like this: 

R2 = E2/132 

I R2 = 2.73/20 

I R2 = 137 mA 

ER1 = 2.73V 

Short E2, and solve the circuit for all voltages and currents using El as the source voltage. 

E1 R2 
gy — 

R1 = 30S2, 

20S2 

First reduce the circuit to find its equivalent resistance. 

302 301-2 

R3 

10,S2 

E2 

SHORTED 

36.67S2 
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Now, use the equivalent resistance and the total voltage to find the total current. 

IT = ET/R eq 

IT = 8/36.67 

IT = 0.218 A = 218 mA 

This current value flows through Ri. Ohm's law may be used to find the voltage dropped across Ri. 

ER1 = IT X R1 

ER1 = 0.218 A X 3on 
ER = 6.54 V 

According to the series circuit voltage law, the rest of the applied voltage must be dropped across the 
other circuit resistance, which in this case is the parallel combination of resistors R2 and R3 (R 2.3 ). 

E R2-3 =E 1 ER1 
ER2.3 = 8 V — 6.54 V 

ER2_3 = 1.46 V 

Since the 20-ohm and 10-ohm resistors are connected in parallel, the voltage across each of them is 
equal to 1.46 volts. The current flowing through these resistors may now be found by using Ohm's law 
and the known values of resistance and voltage: 

ER2 
I R2 = 

R2 

1.46 

R2 = 20 

I R2 = 73 mA 

I R 3 = 
R3 

ER3 

I  p."1 = 
in., 10 

1.46 

I R3 = 146 mA 

Here is the circuit with all circuit values shown, with the source, E1, acting alone. 

El _ 219mA 73mA 
8V 

ER1 = 6.54V 

ER3 

1.46V 
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Now, superimpose this circuit over the first circuit you worked and take the algebraic sum of the 

values of current and voltage in the circuit. 

I 
8V -=.-

1 

/ t 
137 73 
mA mA 

4 t 

146 228 
— + mA mA 

2.73V 1.46V 

+ — t t 

+ 
2.1-27V 1.46V 

— 

L— 91mA —O. ---' 5V 

1 — + 
ds10,---• 

— 2.73V + 
— 6.54V + 

Algebraically add all the voltage and current values for each resistor to get the final circuit values as 

labeled below: 

*> 
I310mA 

8V — L 64 I .fi32 
mA • 1.27V 

+ 

+ 

ER1=9.27V 

ER3 
374mA 3.73V 

—5V 

-1--
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6. Solve the following circuit for all values of current and voltage using the superposition theorem: 

R1 

332 

12V — 

f R2 

471.2 

First, short one source and reduce the circuit to its equivalent resistance. 

471.2 

202 

35V 

19.40 

The total circuit current may be found now by using Ohm's law. 

ET 
=— 

IT R eq 

35 V  

IT — 39.4 S2 

IT = 0.888 A = 888 mA 

2on 

35V 

Looking back to the simplified circuit diagrams, you can now see that the total current IT flows 
through the 20-ohm resistor and throgh the parallel combination of resistors R1 and R2 (R 1_2), which 
is 19.4 ohms. The voltage across these resistors may be calculated by using Ohm's law. 

ER3 = IT X R3 

ER3 = 0.888 X 20 

ER3 = 17.8 V 

ER1-2 = IT X R1-2 

ER1-2 = 0.888 X 19.4 

ER1-2= 17.2 V 
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Now the current through resistors R1 and R2 may be found by using Ohm's law. 

ER1 
I R1 — 

R 1 

17.2 V 
IR1 — 

33 S2 

I R i = 521 mA 

E R2 
IR2 — 

R2 

17.2 V 
I R2 47 S2 

I R2 = 366 mA 

Here is the circuit with El shorted and all currents and voltages listed. 

ER1 
17.2V 

ER3=17.8V 

ER2 
17.2V 

Now, short E2 and calculate all voltages and currents in the circuit. 

The circuit may now be reduced to its equivalent resistance. 

33E2 

— 12V 

35V 

t3s2 

— 12V 14S2§ — 12V 472 i 
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The total current may be calculated using Ohm's law. 

ET 
IT — 

R eq 

12 V 

IT = 0.255 A 

This total current flows through the 33-ohm resistor producing a voltage equal to IT X Ri. 

ER 1 = IT X R1 

ER1 = 0.255 A X 33 SZ 

ER 1 = 8.42 V 

The balance of the 12 volts is dropped across the resistor combination R2_3, as stated by the series 
circuit voltage law ET = E1 + E2. Since, in this case, ET = 12 volts, 12 — 8.42 is equal to 3.58 V. This 

is the voltage dropped across the parallel combination of resistors R2_3. 

Now that ER2 and ER3 are known, the current through the resistors may be calculated using Ohm's 

law. 

ER2 
I R2 --

R2 

I R2 = 
3.58 V 

47 

l R2 = 76 mA 

E R3 

3 

3.58 V 

20 St 

I R3 = 179 mA 

Here is the circuit with E2 shorted and all voltages and currents listed. 

ER1 
8.42V 

12V --'" 
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II IIIM II 

Now, superimpose the values of this circuit over the values of the circuit that had E1 shorted. 

— + 
8.42V 17.2V 
+ 

76 
mA 

521 t + 
mA t  
t 366 3.58V 

mA 17.2V 

255 
mA 

12V =_•-._ 
T • 

11, 
888 
mA 

Now take the algebraic sum of all these voltages and currents. 

179 
mA 

3.5+8V 17—.8V 
+ 

— 35V 

T 

+ — 0. 

8.78V 266mA 
- 

12V  t 
T  

if 

442 mA 

t 

+ 
20.8V 
_ 

709mA 
_ 

14.2V 
+ 

— 35V 

T 
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LESSON 12. ADVANCED METHODS OF DC CIRCUIT ANALYSIS 

• Practice Problems 

Depending upon the approach you use in solving these problems and how 
you round off intermediate results, your answers may vary slightly from those 
given here. However, any differences you encounter should only occur in the 
third significant digit of your answer. If the first two significant digits of your 

answers do not agree with those given here, recheck your calculations. 

ET 

31V 

2. 

Find the following values for these circuits 

R1 

47on 

R3 

1.5k1.2 

R2 

33012 

R i 

1.01d2 

3. Thevenin's theorem 

R3 

A 

Fold Over 

ER1 =   I R1 =   

ER2 =   ' R2 =   

ER3 =   IR3 =   

ER4 =   1R4 =   

ER1 =   1R1 =   

ER2 =   1R2 =   

ER3 =   1R3 =   

ER4 =   I R4 =   

RTH =  

ETH =   

270S2 
LOAD 
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• Practice Problems 

Answers 

1. ERi =9.4V 

ER2 = 6.6 V 

ER3 = 15 V 

ER4 = 15 V 

I R 1 = 20 mA 

I R2 = 20 mA 

I R3 = 10 mA 

I R4 = 10 mA 

2. ER1 =25 V IR 1 = 25 "'A 

ER2 = 29.5 V IR2 = 19.7 mA 

ER3 = 11.7 V I R3 = 5.33 mA 

ER4 = 17.6 V IR4 = 5.33 mA 

a 8TH = 886 n 

ETH = 11.4 V 
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e Practice Problems 

4. Fold Over 

5. 

3oon 470n 

51on 

1 

6. Norton's theorem 

ET 

110V 

7. 

470n 

390.t2 910.Q. B 

1.0k2 

28V = 1.5kn 

R4 

2700S2 

A 

A 

A 

B 

B 

RTH = 

LOAD ETH '   
1.5kn 

B 

12on 
LOAD 

RTH =  

ETH =   

I N = 

750n 
LOAD RN =   

IN = 

LOAD 
750n RN = 
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• Practice Problems 

Answers 

4. RTH = 2.40 la2 

ETH = 1" V 

5. RTH = 3.27 kS2 

ETH = 17 V 

6. I N = 28.4 mA 

RN = 1.23 k1.2 

7. IN = 28 mA 

RN = 600 St 
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• Practice Problems 

8. Millman's theorem Fold Over 

A 

9. 

35V 4- 

6002 

560S2 

-Z-1- 42V 

T1.5 kS2 
A 

60V — 100V — 

2.71(12 1.8kS2 

10. Mesh currents 

11. 

6.2S2 

= 10v 

2.2E2 

150S2 

A 

10V = 

=6V 

121-2 

820S2 

Em = 

EAB = 

EAB =   

5.12 IAB 
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• Practice Problems 

Answers 

8. Em = 7.36 V 

9. EAB = 25.2 V 

10. EAB — 30.1 V 

IAB = 64.0 mA 

11. EAB = 2.53 V 

IAB = 496 mA 
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• Practice Problems 

12. Node voltage Fold Over 

I 
24V ...=. 

I-

13. 

R1 

 NVN.  
1.51c1.2 

R1 

A 

B 

14. Superposition theorem 

270S21 

18V —7---

T 

R2 

 "s/Vs.  

R3 

3.0kS2 

B 

A 

R2 

ÀVV4  
1.5kSZ 

R2 

1 
— 6V 

1 

3302 

R3 

560n 

 Ili}  

VAB = 

IAB = 

R4 E R 3 =   
umn 

I R3 =   

24V 
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• Practice Problems 

Answers 

12. VAB = 12 V 

'AB ' 4 mA 

13. VAB = 4.29 V 

IAB = 1.43 mA 

14. ER3 = 11.5V 

I R3 = 20.5 mA 
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15. 

ER2 =   

l R2 .=   

Fold Over 

12-63 



• Practice Problems 

Answers 

15. ER2 = 10.4 V 

I R2 = 1.04 A 
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LESSON 12 — QUIZ 

1. A voltage source receives a  sign in 7. 12=500mA 

a loop equation if one passes over it in the same direction as it normally pushes current. 11=2.5A 

a. positive 
b. negative 
C. current 
d. voltage 

13=? 
2. If a voltage source is passed over when 

writing a loop equation in the opposite 13 - 
direction to that which it normally pushed 
current, the voltage receives: 

a. a negative sign 8. 11=30mA 
b. a positive sign  
c. a current sign 
d. a voltage sign 

3 When writing loop equations, if a resistor is 
passed over in the direction of the assumed 
current flow, the voltage across it is 
considered: 

a. negative 
b. positive 
c. zero 
d. opposite 9. 

4. The voltage across a resistor in a loop 
equation is considered positive if the resistor 
is passed over in  direction as the 
assumed current. 

a. The same 
b. A like 
c. An upward 
d. The opposite 

5. l + 12 + 13 = 0 is an equation using 
Kirchhoff's  law. 

a. Ohms 
b. Voltage 
c. Current 14 - 
d. Resistance 

12=? 

13=15.5mA 

12 = 

13=.05A 

-•••••41> 

1 11=20mA 
12=5mA 

Solve the following for the missing 
current. Give a value and direction. + is 
away from the node; — is toward the 
node. 

6. 11=300mA 

12=20mA 13 = 

13=? 

I4? 
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LESSON 12 — QUIZ 

10. 1110mA 14 Solve for II, 12, and 13: =  

\ 1 =? a. +3.0, —2.0, +1.0 
b. +2.5, +0.5, +3.0 
c. +2.29, —0.36, +1.93 

12=15mA d. +2.5, —0.5, +2.0 

13=35mA/ 

15=25mA 

14 =   

Use the above schematic for questions 11, 
12, 13, 14 and 15. 

11. Write the conventional current loop equation 
for loop ABCF A: 

a. 84 — 241 1 — 121 3 — 1212 = 
b. 84 — 241 1 + 121 3 = 
c. 84 — 241 1— 121 3 =0 
d. —84 — 241 1 — 121 3 = 

12. Write the conventional current loop equation 
for loop DEFC D: 

a. 21 — 612 — 121 3 = 
b. 21 — 612 — 121 3 — 121 1 = 
c. —21 + 612 — 121 3 = 
d. 21 — 612 + 121 3 = 

15. What are the voltages across RI, R2, and 

a. 81, 24, 3 
b. 55, 8, 29 
c. 60, 3, 24 
d. None of above 

R3? 

16. When using the Superposition Theorem, all 
components in the circuits must be: 

a. Voltage dependent 
b. Linear and bilateral 
c. Have low temperature coefficients 
d. Be stable 

17. When analyzing a circuit using mesh 
currents, it is usually assumed that all mesh 
currents: 

a. Flow backwards 
b. Flow in the same direction 
c. Are indefinitely small 
d. Can't flow opposite to the direction 

assumed 

18. In the node voltage analysis method for 
circuit analysis, the voltage drops around a 
circuit are expressed in terms: 

a. Of a node voltage 
b. Familiar to all 
c. That requires power dissipation 
d. Of superposition 

19 When a complex circuit is replaced with an 
equivalent voltage and an equivalent source 
resistance for circuit analysis   
theorem is being used. 

a. Ampere 
b. Coulombs 
c. Thevenin's 
d. Ohm's 

13. Write the Kirchoff's current law for node C: 20 Norton's Theorem is similar to Thevenin's 

a. l + 12 + 13 = 

b. l = 12 + 13 
C. l = —12 -1- 13 
d. l + 12 = 13 
e. d only 
f. c and d above 

theorem except source is used and 
a parallel equivalent resistance. 

a. A voltage 
b. A current 
c. A resistor 
d. A series 
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LESSON 12. SUPPLEMENT 
AN OUTLINE OF ADVANCED METHODS OF DC CIRCUIT ANALYSIS 

AND HOW THEY ARE USED 

In the previous lessons, Kirchhoff's voltage and current laws have been thoroughly discussed. This 
included not only a complete discussion of how they are applied in solving some fairly complex circuits, 
but also an introduction into some more specific applications of these rules as applied to complex circuit 
analysis. The methods discussed included node and loop equations and the superposition theorem; and also 
briefly introduced mesh current analysis, node voltage analysis, Thevenin's theorem, Norton's theorem, and 
finally Millman's theorem. 

With this introduction as a background, the purpose of this additional material is to give a more 

complete treatment of each of these methods of circuit analysis. Specifically, each method will be discussed 
as to where it is useful, as well as the specific steps to follow in using the method in solving problems. 

Then, each will have a complete worked through example illustrating details of the methods used. 

The methods of circuit analysis will be discussed in this order: 
1. Mesh currents 

2. Node voltages 
3. Thevenin's theorem 
4. Norton's theorem 
5. Millman's theorem 

These five methods can be placed into two similar groups. 

The first group consists of the mesh and node analysis methods. These two are actually used as 
extensions of Kirchhoff's current and voltage laws and are used primarily to analyze a circuit completely by 
finding all of the various current and voltage values throughout the circuit. 

The second group, Thevenin's, Norton's, and Millman's theorems, is used to analyze circuits with a 
specific solution as an objective. For example, Thevenin's theorem is useful for analyzing the effect of 

substituting various loads across two specific test terminals in a circuit. Norton's theorem allows analysis 
similar to Thevenin's; however, the specific test point in the circuit is analyzed with respect to current 
rather than the Thevenin voltage consideration. Finally, Millman's theorem provides a shortcut method of 

finding the voltage across any number of parallel circuit branches, where each branch may contain different 
voltage sources, as well as resistances. 

If further information is desired concerning these analysis methods, refer to the reference list 
following this supplement. 

12-67 



• Analysis Method: Mesh Currents 

Where Useful 
Mesh current solutions are particularly useful 

in solving for currents and voltages in complex 
circuits with several branch points, such as the 

circuit shown in Figure 12S.1. 

Figure 12S.1 

Definitions and Methods of Use 
The concept of mesh currents analyses of a 

circuit is similar to the analysis of loops and 
equations using Kirchhoff's laws. The basic 
differences center around the initial rules, or 
assumptions, used before writing the equations to 
solve for the currents in the circuits. 

Rule — Assign mesh currents to all meshes in the 

circuit so that each element in the circuit is 
included at least once. A mesh is defined as the 
simplest closed path, or loop, in a circuit. Within a 

circuit, a mesh resembles a single window pane, 
and may or may not include a voltage source. 

Notice in Figure 12S.2 that the circuit shown has 
only two meshes. (Other closed circuit pathways 

will be loops, but not meshes.) 
‘.  

 •VV\.. •  

MESH 

Figure 12S.2 

• 

MESH 



• Analysis Method: Mesh Currents 

Now, choose a current convention for use in 
the circuit (either electron current or conventional 
current) and assign all of the mesh currents the 
same direction (either all clockwise or all 

counterclockwise), as shown in Figure 12S.3. Note 
that with a resistor such as R2 there are two mesh 
currents flowing through it. The actual value of the 
current flowing through R2 will be the difference 
of the two mesh currents, with the direction being 
that of the larger current. 

After these rules are employed, mesh 

equations are written in the same way as loop 
equations, using Kirchhoff's voltage law. Note: 

When writing the equations, shared components, 
like R2 in Figure 12S.3, produce two terms in each 

mesh equation, one positive and one negative. (See 
sample solution.) 

Figure 12S.3 

R3 
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• Analysis Method: Mesh Currents Sample Problem Solution 

Problem 
Solve the circuit shown in Figure 12S.4 for 

the currents through R1, R2, and R3, and voltages 

across RI, R2, and R3. 

Solution 
First choose a current convention (here 

electron current is chosen), and assign mesh 
currents to each mesh, all in the same direction, as 
shown in Figure 12S.5. Then, write the mesh 

equation for each mesh current following 
Kirchhoff's voltage law: 

Mesh 1. Beginning at Point A and traversing 

clockwise in the direction of you get: —5 1 — 
1011 + 1012+ 20= 0 or-1511+ 1012+ 20= O. 

Note the (-10 I + 10 12) for R2, due to the 
opposite mesh currents through R2. 

Mesh 2. Begin at point B and follow clockwise 

in the direction of 12. This results in: —10 12 + 
1011 — 2012+ 10= 0, or+10 — 3012+ 10= O. 
Again note the R2 term. The polarities reverse for 

the second mesh for +1011-1012. 
Then solve the two resulting equations shown 

in Figure 12S.6. There will be one equation for 
each mesh so that there is one equation for each 
unknown mesh current. 

Figure 12S.4 

A R R 200 

Figure 12S.5 

EQUATION (1) — 151 1+ 1012 +20 = 0 

EQUATION (21+ 101 1 —30 l+ 10 =0 

Figure 12S.6 



• Analysis Method: Mesh Currents Sample Problem Solution 

Figure 12S.7 begins the solution. The first 
thing to do is to try to eliminate one of the 
unknowns, and the procedure followed here is 
aimed at eliminating 12. To do this, multiply the 
first equation by +3 to get common coefficients 
for 12 in both mesh equations. Then 

(Figure 12S.8), add the equations to eliminate 12. 

This leaves the equation at the top of Figure 12S.9 
with only one unknown. Solving this equation, 
is found to be 2 amps. 

FIRST — MULTIPLY EQUATION (1) BY 3 

3X (— 15 11 + 10 12 + 20 = 0) 

THIS GIVES 

—4511+301 2+60=0 

Figure 12S.7 

EQUATIONS (1) AND (2) NOW HAVE THE 
SAME COEFFICIENT FOR 12, THUS 12 

CAN BE ELIMINATED BY ADDITION: 

Figure 12S.8 

Figure 12S.9 

(1) —451 1+30 2+60=0 

+ (2) + 101 1 + 10=0 

—351 1 + 70 = 0 

— 35 I + 70 = 1 

— 35 I1 = — 70 

11 — 70 
_ 35 

1 = 2A 1 
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• Analysis Method: Mesh Currents Sample Problem Solution 

Once l is known, substitute l into either of 
the two equations and solve for 12 as shown in 

Figure 12S.10. 12 is found to be 1 amp. 

Then solve for the current through R2 by 
subtracting the smaller mesh current from the 
larger mesh current, giving the 1 amp shown in 
Figure 12S.1 1. This current flows down, through 
the central resistor R2, in the direction of the 
larger mesh current l. 

The rest of the solution is shown in 
Figure 1 2S.1 2 and involves finding each 
component's voltage using Ohm's law. 

EQUATION (2) 

+101 1 — 3012+10 =0 

(SUBSTITUTE l= 2) 

+ 10 (2) — 30 12 + 10 =0 

20 — 30 12 + 10 = 

— 30 12 + 30 = 

— 30 12 = 

Figure 12S.10 

— 30 
12 = 1—= 1A 3-u 

• 
1R2 = 11 — 12 (1 1 LARGER) 

= 2 — 1 
1R2 lA DOWN THROUGH R2 

Figure 12S.11 

Figure 12S.12 

ER1 =1 1 XF11 

ERi =2AX 51-2= 10V 

ER2 = IR2 X R2 
ER2 = 1A X 10 S2= 10V 

ER3 =12 X R3 

ER3 =1A X 20 S2 = 20 V 



• Analysis Method: Mesh Currents Sample Problem Solution 

The final solution with polarities is shown in 
Figure 12S.13. 

Figure 12S.13 
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• Analysis Method: Node Voltage 

Where Useful 
This method is useful when solving for a 

particular voltage at a node, or branch point, 
without having to solve for complete current and 

voltage values within the circuit. 

Definitions and Methods of Use 
A node is a connection of two or more circuit 

components. A principal node has three or more 
connections (such as points A and B in 
Figure 12S.14). The first step in utilizing the 

method of node voltage analysis is to select one 
principal node in the circuit to act as the reference 
node (point B in Figure 12S.14). Then a current 
equation is written for each of the other principal 
nodes in the circuit. With this method, there will 

be one less node equation written than there are 

principal nodes. (Figure 12S.14 would then require 

only one equation.) 

To actually write the equation, begin by 
choosing a current convention (in the circuit 

shown in Figure 12S.15 electron current will be 
assumed), and by labeling all of the currents 
flowing in the circuit with an assumed direction. 
Then, using Kirchhoff's current law, vvrite a 
Kirchhoff's current law equation for every node 

except the reference node. For the circuit shown in 

Figure 12S.15, you would have only one node 

equation: 13 = 11 + 12. 

NODE 
A 

Figure 12S.14 

E, T._ 

A R2 
 vv\.,  

R3 e 

13 

Figure 12S.15 
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• Analysis Method: Node Voltage 

Now the real trick in using node voltage 
analysis is this: Each of these currents is now 
expressed in terms of the voltages in the circuit. As 
shown in Figure 12S.16, 13 equals the voltage 
across R3 divided by R3 or ER3/R3. Similarly I 
equals ER i/Ri and 12 = ER2/R2 as shown in the 
figure. 

Figure 12S.16 

13 =11 + 12 

OR 

ER3 ER1 ER2 

R3 R1 R2 

Finally, all of the voltages can be expressed in 
terms of the source voltages and the node voltage 1 A R2 

EAB. To do this, assign voltage polarities 

(Figure 12S.17) to each resistor in the circuit 1 1 
(using your assumed current direction). Then, 1 2 

keeping Kirchhoff's voltage law in mind, examine E — + E 
— each voltage term in the equation l  e 2 

and look for a way to express each in terms of the 

= 
R3 R1 R2 13 

ER3 ER1 R2  

node voltage EAB (which equals ER3) and the 

applied voltages. 

For example, if you traverse the left-hand 

loop if the circuit (Figure 12S.17) starting at 
point B and proceeding counterclockwise and write 
down the loop equation, you'd have —I3R3 — 
101 + E1 = O. Or expressing each of these terms 

as a voltage directly, you'd have: —ER3 — ER1 + 
Ei = O. Remembering that ER3 = EAB, the node 

voltage, this becomes —EAB — ER + E1 = O. The 
key point is that, using this equation, ERI can now 

be expressed in terms of the node voltage EAB and 
the applied voltage El: 

— ER1 = E1 EAB 
or 

ER1 = E1 EAB. 
If you do this same operation for the 

right-hand loop, you'll find that ER2 = E2 — EAB 

and so the equation 

Figure 12S.17 
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• Analysis Method: Node Voltage 

ER3 ER1 ER2 
— + 

R3 R1 R2 

can now be written 

EAB E1 — EAB E2 — EAB 

R3 R1 R2 

The only unknown in this equation is now the 

node voltage, EAB, and this equation may then be 

solved for it. 
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S Analysis Method: Node Voltage Sample Solution 

Problem 

Solve Figure 12S.18 for the voltage across R3. 
Use node voltage analysis. 

Solution 

First, identify the principal nodes and select a 
reference node. Here B will be the reference node 
(and is labeled with a ground in Figure 12S.19), 
and the only other principal node in the circuit 

is A. Then, choose a current convention (electron 
current will be used here) and label all the currents 
on the circuit assigning each a direction as shown 
in Figure 12S.19. Then, label voltage polarities 
across each resistor. 

Next, write the current equation for the 
principal node A using Kirchhoff's current law. 
This gives 13 = l +12. 

Then, express the node equation in terms of 
circuit voltages. 

ER3 ER 1 ER2 
, and 12 — 

13 —R3 11 R1 R2 

With these terms substituted in the original current 
equation, you have 

ER3 ER1 ER2 

R3 R 1 R2 

Now, express the voltages in this equation in terms 
of the desired node voltage, EAB, and the applied 

voltages El and E2. First, ER3 is the node voltage, 
so ER3 = EAB. 

To obtain the other voltage relations you 
need, first write a loop equation for the left-hand 
loop in this circuit (starting at point B and 
traversing counterclockwise): 

This gives: — ER3 — ER2+ El = 

= RI=20Q R2 5Q 

R =10Q 
— E =10V - 2 

Figure 12S.18 

E1 -20V 
— 

R =20Q R2=5Q 
1 A 

— 

1 12 

----E -10V — 2 

- 13 §R3.10Q 

Figure 12S.19 
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• Analysis Method: Node Voltage Sample Solution 

Then, rearranging terms: 
ER1 = El — ER3, and substituting EAR for 

ER3, ER1 = El — EAB. 
Following a similar procedure for the 

right-hand loop gives you —E2 + E R2 + EAB = 0. 
Then rearranging: ER2 = E2 — EAB. 

At this point, rewrite the node equation with 
substituted terms, and then substitute known 
values into the equation. 

13= 1 1 + 12 
or 

Ennna En., nz Enn 

. 2_11 +  
R3 R1 R2 

or 

EAB El — EAB  En — EAB 
-  + e 

R3 R1 R2 

With known values: El = 20 V, E2 = 10 V, 
R1 = 20 12, R2 = 5 S2, and R3 = 10 n, the 
equation becomes: 

E 20 — E AB AB 10— EAB 
_  + 

10 20 5 

Then solve for EAB. Multiply the equation 
by 20 for: 

2EAB = 20 — EAB + 4(10 — EAB) 
or 

2EAB = 20 — EAB + 40 — 4EAB 

Combine like terms 

2EAB -= 60 — 5EAB 

Transpose 

7EAB = 60 
Divide 

EAB =607 = 8.57 V 
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• Analysis Method: Thevenin's Theorem 

Where Useful 

Thevenin's theorem is useful where one 
particular component in a circuit must be 

repeatedly replaced, such as in a complex circuit 
where several different loads are to be applied. For 

example, what will the current and voltage values 

be for R4 in Figure 12S.20 with R4 equal to 
20 ohms, 5 ohms, 30 ohms, and 50 ohms? Normal 
solution methods for this would involve four 
separate solutions of a complex circuit. However, 

Thevenin's theorem allows the rest of the circuit 
(without R4) to be analyzed just once, and a very 
simple analysis to be made each time a new R4 is 

"plugged in." 

Definitions and Methods of Use 
Thevenin's theorem states that a circuit such 

as Figure 12S.20 above can be replaced by an 
equivalent series circuit consisting of one voltage 

(Thevenin's voltage, ETH) and one series resistance 
(Thevenin's resistance, Rill), as shown in 
Figure 12S.21. 

Once ETH and RTH are known, various loads 

can be placed across points A and B 
(Figure 12S.22) and the desired current and 

voltage values for this load can then be easily 
determined. 

Figure 12S.20 

-I ETH _ 

RTH 

 vv\.•  0 A 

Figure 12S.21 

RTH 

 'VNA,  

Figure 12S.22 

LAOA D 
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• Analysis Method: Thevenin's Theorem 

Thevenin's voltage, ETH, is found by first 

removing the load component to be tested (R4 in 
Figure 12S.20) and then finding the voltage 

between these two open terminals (see 

Figure 12S.23). The voltage across the open 
terminals A and B in Figure 12S.23 will be ETH 

for this circuit. 

Thevenin's resistance, RTH, is found also with 
the test component (R4 of Figure 12S.20) 
removed. RTH is the resistance as measured 
between the open test terminals A and B, with all 
of the sources replaced by short circuits (see 

Figure 12S.24). 
Once ETH and RTH are found, the circuit has 

been Thevenized and the equivalent circuit 
(Figure 12S.22) can be used to solve for the 
voltages across, and the current through, any load 

attached to the terminals A and B. 

R IR 4 REMOVED) 
RI 3 

E — 
1 

• A 

(ETH * 

E2 

Figure 12S.23 

Figure 12S.24 

12-80 



• Analysis Method: Thevenin's Theorem Sample Problem Solution 

Problem 

Find the current and voltage for R4 in 
= Figure 12S.25 for these values of R4: R4 = 20 St R 10 Q R3= 15 S-2 

and R4 = 5 SZ . Use Thevenin's theorem. 

Solution 

First label the test points and remove the load 
to be tested (Figure 12S.26). 

Next, find ETH, the open circuit voltage 

between test points A and B. In Figure 12S.27, 

ETH will be the algebraic sum of ER3, ER2, and 
E2. Since A and 13 are open, no current flows 
through R3; therefore, ER3 = 0. ER2 can be solved 
using series circuit solution methods, because with 
A and 13 open, the only complete circuit path for 

current flow is the single series loop containing E1, 
R1, and R2. Once ER2 is found, it can be 
algebraically added to E2 to find the total voltage 
across points A and 13 (which is the Thevenin 
voltage). 

Using electron current to analyze the problem 
as shown in Figure 12S.27, 11 flows through R2 

and R1 and gives rise to the voltage polarities 

— [1 20V 

R2=5Q 

R4 (LOA f) 

E2-10V 

Figure 12S.25 

R 10Ç' R3 15 -3 

E ,20V 

1 
Figure 12S.26 

R1,10 

  Er2ov 

§R 

• 

5Q 

5n 

R3 .15 0 

 vv%  

Figure 12S.27 
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• Analysis Method: Thevenin's Theorem Sample Problem Solution 

labeled. (Note that you'd arrive at the same 

polarities using conventional current in your 
analysis.) 

To find ER2 just calculate the total current 
flowing in the left-hand loop, 

li = Ei/RT 
where RT just equals R1 + R2 which equals 5 + 
10 = 15 SZ. 

Substituting 

= 20 V/15 = 1.33 A 
Then ER2 equals li times R2 or 

1.33 A X 5 S.2 
or 

ER2 = 6.65 V 
So at this point ER3, ER2, and E2 are 

known. ETH is just the algebraic sum of these. 
(Remember ER3 = 0.) 

ETH = ER3 + ER2 + E2 
ETH = 0 V + 6.65 + 10 V 
ETH = 16.65 V 

Note: The polarities of the voltages must be 
considered. ER2 and E2 were in the same relative 
direction so they were added. Thus, ETH is 
16.65 V, negative at point B, positive at point A. 

Next solve for RTH by mentally replacing all 

source voltages with short circuits, and finding 
• RTH between the open test points A and B R 100 

(Figure 12S.28) using the circuit reduction 
techniques you've seen earlier (Figure 12S.29). 

Figure 12S.28 

R -15n 
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• Analysis Method: Thevenin's Theorem Sample Problem Solution 

R1 -10Q 

B R -50 

R3' 150 

A 

3.330 150 A 
o  

o 'NA«.  

FirH -18'33a 

Figure 12S.29 

Then draw the equivalent circuit and 
substitute the desired loads for solution RTH -18•33f2 

(Figure 12S.30). 
If R4 = 20 S2 find I and ER4, 

ETH 
I =- where RT - RTH + R4 

RT _=_ ETH =16.65V 

16.65 V  
I - 0.434 A 

18.33 + 20 

ER4 = I X R4 = 0.434 A X 20 = 8.68 V 

If R5 = 5 ohms. 

16.65 Figure 12S.30 
I = - 0.714 A 

18.33 + 5 

E = I X R4 = 0.714 X 5 = 3.57 V 

Note that once a circuit is "Thevenized," it is 
easy to solve for Eioad and 'load for any given 

load. A complete repeat of the circuit analysis is 

not required as different loads are plugged in. 

A 
o 

A 

R4 (LOAD) 

12-83 



• Analysis Method: Norton's Theorem 

Where Useful 
As with Thevenin's theorem, Norton's 

theorem is useful when repeated substitutions of 
one component are desired in a circuit, and you 
have no desire to do repeated complex solutions 
for the circuit for each load. For example, in 

Figure 12S.31, Norton's theorem provides a 
method that will allow you to easily calculate the 

voltage across and current through any load placed 

across terminals A and B without completely 
analyzing the circuit for each load. 

TEl 

R1   

A 

LOA D 

Figure 12S.31 

Definitions and Method of Use 
Norton's theorem states that a circuit with 

several sources and components can be replaced for 
evaluation at two test points by an equivalent 
circuit consisting of one current source (Norton 

current, IN) and one parallel, or shunt, resistance 
(Norton resistance, RN). See Figure 12S.32. N 

IN is found by mentally shorting the test 

terminals, A and B of Figure 12S.31, together and 

calculating the current that would flow through 

the short (see Figure 12S.33). The value of current 

found, IN, will be the value of the current source 
in the equivalent circuit (Figure 12S.32), whose 
output will be shared by RN and the load placed 

across A and B. 

Figure 12S.32 

RI 

— E 

R3 

R2 

A 

E2 

Figure 12S.33 
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• Analysis Method: Norton's Theorem 

RN is found by shorting all voltage sources 

and computing the resistance from the open load 
terminals with the load removed (R4), 
Figure 12S.34. Note that RN and RTH (Thevenin 
resistance) are found in an identical manner; thus, 
RN = RTH. 

Once IN and RN are known, the loads to be 

tested are placed across the equivalent circuit and 
the current and voltages calculated (Figure 12S.35) 
using parallel circuit analysis techniques. 

Figure 12S.34 

Figure 12S.35 
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• Analysis Method: Norton's Theorem Sample Problem Solution 

Problem 

Find the current and voltage for R4 in 
Figure 12S.36 for R4 = 30 St. Use Norton's 
theorem. 

Solution 

First remove the load (R4) and then short the 
load terminals and solve for IN through the short 
(Figure 12S.37). 

Several methods are available to solve for IN. 
Here, superposition is used. 

First mentally short out E2 and find the 
current produced by El acting alone as shown in 

Figure 12S.38. To do this, find the total resistance 

for the circuit and then solve for the total circuit 
current. 

R2 X R3 30 X 20 

RT — R2 + R3 + R 1 = + 10 30 + 20  

RT = 12 + 10 = 22 St 

E 30 
= 1.36 A 

30V 

2 - 

Figure 12S.36 

R1 IOC 

E1' 30V 

R3-300. 

R2.20S2 

A 

IN 

8 

E2.10V 

Figure 12S.37 

Figure 12S.38 

IE ACTING 
1ALOND 

I 

547 A 
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• Analysis Method: Norton's Theorem Sample Problem Solution 

Then solve for the voltage across R1. This 

subtracted from El will give you ER3. Given ER3, 
I R3 can be calculated, and this gives you the 
current past points A and B. Then 

ER1 = I X R1 • = 1 36 A X 10 = 13.6 

ER3 = 30 — 13.6 = 16.4 V 

E 16.4 V 
I 30 0.547  A 

The I through the shorted terminals for E I 

alone is 0.547 amp entering B to A for electron 
current. 

Then solve again with E2 in the circuit and El 
shorted (Figure 12S.39). To do this, again first find 

RT and solve for IT which is through the A, B 
terminal short. 

RT = R3 + 
R + R2 

Ri X R2 

10 X 20  
RT = 30 + 10 + 20 —30+6.67 

RT = 36.67 

10 V  
IT 36.67 = 0.272 A 

This second current through the shorted 

terminal is in an opposite direction to the first; 

therefore, the value of IN is the difference of the 

two, with the direction of the larger 
(Figure 12S.40). So 

I N = 0.547 — 0.272 
or 

IN = 0.275 amp from B to A. 

IL ACTING 
R3.30Q I -rALONE) 

Figure 12S.39 

1 R3 

547 

-- El 

Figure 12S.40 

272 

272A 

E2.10V 

I 275A 
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• Analysis Method: Norton's Theorem Sample Problem Solution 

Then to complete "Nortonizing" this circuit, 
find RN, the resistance between the open load 
terminals A and B with all sources replaced with 
shorts (Figure 12S.41). 

Ri X R2 200 
RN = R3 +  30 + 

R1 + R2 — 30 

RN = 36.67 ,S2 

Now, draw the equivalent circuit, add the R4 

load and calculate the current and voltage values 
(Figure 12S.42). 

If R4 = 30 St, then solve first for RT. 

R 36.67 X 30  

T = ' 36.67 + 30 

RT = 16.5 St 
Thus 

RT = 16.5 St. 

The applied voltage can then be found by 
multiplying this RT times IN. 

E = IN X RT = 0.275 X 16.5 

E = 4.54 V 

Then 

= E _4.54V  

DA 
I 
"' R4 30 St 

I R4 = 0.15 A 

Any number of loads can be attached and 

evaluated in the same manner, thus avoiding the 
lengthy initial problem solution for repeated values 
of the load resistance. 

R -10Q R -30Q 

Figure 12S.41 

Figure 12S.42 

Al+) 
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• Analysis Method: Millman's Theorem 

Where Useful 
Millman's theorem is particularly useful in 

finding the common value of voltage across several 
parallel branches each having different voltage 
sources as shown in Figure 12S.43. 

Definitions and Methods of Use 

Basically, Millman's theorem states that all 
parallel branches of a circuit such as Figure 12S.43 
can be converted to current sources by taking each 

branch's total source voltage and dividing it by the 
total resistance of that branch. Thus for Branch 1 

E 1 
= 
^ 1 

for Branch 2 

E2 

12 --R2 

and for Branch 3 

E3 
1 - 

R3 

Once this is done for each branch, the results 

are combined by adding the currents l + 12 + 13 

and then dividing by the sum of the conductance 

of each branch, 1/R1 + 1/R2+ 1/R3. This gives a 
formula of this form: 

E — 11 + 12 +13 

1 1 1 
— +—+— 
R1 R2 R3 

And since this is simply the total current divided 

by total conductance, it can also be written 
E = IT/GT. 

:1 

E3 

BRANCHES 

Figure 12S.43 

EAB=? 

 • B 
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• Analysis Method: Millman's Theorem 

This IT/GT of the branches is actually ITRT, 

since 1/G = R, thus resulting in the desired branch 
voltage since IT X RT = ET. 

Millman's Formula 

This can be expressed in the formula shown in 
Figure 12S.44. This formula will work for any 

number of branches and is simply extended as 
necessary. However, some precautions should be 
observed. First: All branches must be parallel with 
no series resistances between them. Second: If 
branches contain more than one source, or 
multiple resistances, combine them for totals for 
each branch before solving. Third: The polarity 

used in the formula for each source is taken to be 

the polarity it is applying to the top point (point A 
of Figure 12S.43) of the branches, with respect to 
point B as a reference point. For example in 

Figure 12S.43, E1 is negative, E3 is positive. 
Notice also that the second branch with R2 has no 

source, so E2 would simply be equal to zero for 
that branch. 

Once these precautions are observed, it is a 

simple matter to plug in the known values and 
solve for the desired voltage. Once this voltage is 

known, the other voltages and currents in the 
circuit can easily be found. 

Figure 12S.44 

MILLMAN'S FORMULA 

EAB - 
1 1 1 

El E2 E3 
-+ - +--
R1 R2 R3 • 

R1 R2 R3 
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• Analysis Method: Millman's Theorem Sample Problem Solution 

Problem 
Solve for the voltage between points A and B 

(or EAB) in Figure 12S.45. Use Millman's theorem. 

Figure 12S.45 

Solution 
Since there is only one source and one 

resistance in each parallel branch, simply place the 

values in the formula and solve. 

E1 E2 E3 

EAB 

- -F-

R1 R2 R3 

1 1 1 
—+—+ — 
R1 R2 R3 

By substituting the voltages and resistances, you get 

—30 0 10 

10 20 15 

EAB 1 1 1 

10 - 20 15 

(Note the —30 for E1, the 0 for E2 and the +10 

for E3.) Then, simply reduce the terms and solve. 

—3 + 0 + 0.667  
Epp = 

'--"" 0.1 + 0.05 + 0.067 

EAB — 
0.217 

EAB = —10.75 V 

—2.333 

Note that the minus indicates that the voltage 
is negative at point A with respect to point B as the 
reference point. 
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• Additional Reference Material on Complex Circuit Analysis Methods 

Additional Reference Material on Complex Circuit Analysis Methods 

Grob, B., Basic Electronics, Third Edition, (New York, N.Y.: McGraw-Hill Book Co., 1971) 
pp. 119-166. 

Herrick, C. N., Unified Concepts of Electronics, (Englewood Cliffs, N.J.: Prentice-Hall, 1970), 
pp. 187-232. 

Singer, B. B., Basic Mathematics for Electricity and Electronics, Second Edition, (New York, N.Y.: 
McGraw-Hill Book Co., 1965), pp. 178-238. 

Tocci, R. J., Introduction to Electric Circuit Analysis, (Columbus, Ohio: Charles E. Merrill Publishing 
Co., 1974), pp. 263-300. 

12-92 



Lesson 13 

Capacitors and the RC Time Constant 

This lesson introduces a new type of circuit component: the 

capacitor. Capacitor construction, units of capacitance measurement, 
and effects of capacitors in dc circuits are discussed. The very 

important concepts of the resistor-capacitor (RC) time constant and 

Universal Time Constant graph are introduced and discussed in detail, 
along with the effects of capacitor charge storage and rapid discharge. 

1 3- 1 





LESSON 13. CAPACITORS AND THE RC TIME CONSTANT 

1 MO 

Figure A 

• Objectives 

In this lesson you will be introduced to an entirely new type of circuit component that produces some 

very useful effects in dc circuits: the capacitor. At the end of this lesson you should be able to: 

1. Sketch the construction of a capacitor, label each of its component parts, and draw its 

schematic symbol. 

2. Write and show with sketches what is meant by a charged and discharged capacitor, 
including a description of the procedures that may be used to charge and discharge a 

capacitor. 

3. Write a definition of capacitance; explaining its relationship to the amount of charge stored 
and voltage across a capacitor's plates. List the three factors that determine the capacitance 

of a capacitor, and define the unit of capacitance; the farad. 

4. For the circuit shown in Figure A below: 

a. Calculate the resistor-capacitor 
(RC) time constant. 

b. Calculate the voltage across 
the capacitor's plates one time 
constant after switch S is 
thrown to position 1. 

c. Calculate the time it takes for 
the capacitor to fully charge., 

d. Sketch a graph which 
describes how the voltage 

across the capacitor varies 10V 
with time after the switch is 

thrown to position 1. 
e. With the capacitor in Figure A 

fully charged, the switch is 

thrown to position 2. 

Calculate the voltage on the 
capacitor 1 time constant 
later. Calculate the time it 
takes for the capacitor to fully 

discharge. 
f. Sketch a graph which describes the behavior of the voltage across the capacitor with 

time, after the switch is thrown to position 2. 
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• Objectives 

5. 

Figure B 

In Figure B above, switch S1 is closed for 5 time constants, then opened. Write a description of 
what happens when switch S2 is closed. 

134 



LESSON 13. CAPACITORS AND THE RC TIME CONSTANT 

• Lesson Objectives 

• Capacitor Construction 

By now you have come quite a long way in your study of dc electricity. You have probed the nature 
of electricity itself, learned much of the language and conventions used in describing electricity, and should 
be getting more and more familiar with the mathematical tools that enable you to predict and control the 
behavior of dc circuits. The circuits that have been discussed so far, however, have only contained 

combinations of voltage sources and resistors. In this lesson an entirely new type of circuit component will 
be introduced: the capacitor. 

Lesson Objectives — To begin, it is always a good 
idea to set down objectives for the topics you will 
be studying. At the end of this lesson you should 
be able to sketch the construction of typical 

capacitors, and mathematically describe their 
behavior in circuits. You will also be able to define 

the important new concept of an "RC 

(resistor-capacitor) time constant," and sketch and 
explain what is called the universal time constant 
graph. You should also be familiar with common 
applications of capacitors in dc circuits, and be 
able to explain why capacitors are useful in these 
applications. 

Capacitor Construction — In its most basic form, a 
capacitor consists of two conductors separated 
from each other by an insulator. In a capacitor, 

this insulator is called a dielectric. A sketch of a 
simple capacitor is shown in Figure 13.2. It 

basically consists of two metal plates separated by 
air, which is just one type of insulator or dielectric 

material commonly employed in capacitors. 
Connected to each plate is a lead or wire so that 
the capacitor can be connected to other circuit 

components. Capacitors used to be (and sometimes 
still are) referred to as condensors. The term 
capacitor is by far in more widespread use today. 

AT THE END OF THIS LESSON 
YOU SHOULD BE ABLE TO: 

DRAW TYPICAL CAPACITOR 

DESCRIBE CAPACITOR BEHAVIOR 
MATHEMATICALLY 

DEFINE "RC TIME CONSTANT" 

USE "UNIVERSAL TIME CONSTANT GRAPH" 

Figure 13.1 

Figure 13.2 

INSULAT ING MATERIAL 
(DIELECTRIC/ 
(AIR, P_AST IC. CERAMIC, 
OIL, ETCI 

KEY PARTS OF A CAPACITOR 

• CONDUCTING, "PLATES" 
• INSULATOR SEPARATING THEM: DIELECTRIC 
• LEADS CONNECTING PLATES 
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• Capacitor Symbols 

• Electrolytic Capacitor Symbol 

Capacitor Symbols — The schematic symbol for a 

capacitor is easy to associate with the real 
capacitor. As you see in Figure 13.3(A), the 

symbol shows two plates electrically separated 

from one another, with leads attached to each 
plate. 

Figure 13.3(B) shows the more commonly 
accepted symbol for a capacitor. Notice that the 
major difference between this and the previous 
symbol is that in this symbol one plate is curved 

while the other plate is symbolized with a straight 
line. Generally, the curved line indicates the plate 
that should be connected to a more negative 
voltage than the other plate. Figure 13.3(C) shows 
some symbols you may see for variable capacitors 
or trimmer capacitors used in a variety of 
electronic applications that will be discussed for 
you in later courses in electronics. 

Electrolytic Capacitor Symbol — One other 
important capacitor symbol is shown in 
Figure 13.4. This symbol has a "plus" sign next to 
the "flat" plate. This symbol is the most common 
one used to signify an electrolytic capacitor. 

Electrolytic capacitors should always have the 
plate marked with the "plus sign" connected to a 

more positive voltage than the other plate. 
Electrolytic capacitors are designed to be used in 
dc or pulsating dc applications only. 

A variety of other symbols are in use for 
electrolytic capacitors, and some additional ones 
are shown in Figure 13.4. In any of them, however, 
the polarity of the plates is identified; one of the 

plates is either labeled positive, or its shape tells 

Figure 13.3 

Figure 13.4 

CAPACITOR SCHEMATIC SYMBOLS 

--1 (Al 

MORE POSITIVE EAORE NEGATIVE 

VARIABLE 
Pr" 
TRIMMER " 

ELECTROLYTIC CAPACITOR SYMBOLS 

INON POLARIZED ELECTROLYTIC) 

181 

ICI 
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• Leyden Jar 

• Leyden Jar Operation 

you that it is positive. (Certain specially 
constructed electrolytic capacitors are available 

that can be used in ac applications, and the symbol 
used to indicate these "nonpolarized" electrolytic 
capacitors is also shown in Figure 13.4.) 

If this is your first opportunity to learn about 
the capacitor, you may be wondering just how the 
thing works in dc circuits. There is no direct 
conduction path for current flow through the 

device, so what good is it? Just what does it do? 
These questions about capacitors will be answered. 
First, however, a little discussion of the history of 
capacitors may be interesting to you. The fact is 
that the capacitor was discovered by accident in 
1746 in Leyden, Holland by a physicist named 
Pieter Van Musschenbroek. 

Leyden Jar — Pieter was doing some experiments 
in an attempt to "electrify" water. The water 

"electrification" device consisted of a large jar 

lined inside and out with copper foil as shown in 
Figure 13.5. This "Leyden jar" as it is called, has 
all of the elements of a capacitor. As shown in the 

detail view, the rod sticking through the lid of the 

jar had a chain on the end that hung down and 

supplied connection to the inside layer of foil. This 

formed one plate of the capacitor, the glass wall of 

the jar served as the dielectric, and the outer foil 
served as the other plate. 

Leyden Jar Operation — As the story goes, Van 
Musschenbroek connected the Leyden jar to a 
voltage source for a period of time (Figure 13.6), 
then the voltage source was disconnected, and the 
jar was removed. 

Figure 13.5 

Figure 13.6 

ROD 

CHAIN 

DETAIL OF WALL 

COPPER FOIL 

INSIDE rou "PLATE" 
CLASS 
IDIELECIR ICI 

OUTSIDE FOIL 
"PLATE" 
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• Zap 

• Capacitor Action 

Zap — At this point Van Musschenbroek's assistant 

is said to have held the jar with one hand while 
disconnecting the high-voltage lead with the other 

hand. The lab assistant received an unexpected 
shock of considerable intensity (Figure 13.7). 

Unfortunately, history didn't record the words 
spoken by the assistant. 

The shock received by the assistant points up 

a most important aspect of capacitors: They are 
devices that can store an electrical charge. 
Electrical charge, as well as electrical energy, can 

be stored or held in a capacitor and then released 
at a later time. Note that capacitors must be given 
the charge they store. A capacitor cannot produce 
electrical energy by itself, the way a battery does 
with chemical action. 

Capacitor Action — How does a capacitor store 
charge? It does this through the action of an 
electrostatic field. To see just how this works, 
focus your attention on the sketch of capacitor 
plates shown in Figure 13.8. 

As has been said, a capacitor consists of two 
conductors separated from each other by a layer of 

insulating material called a dielectric. Normally, 

the two metal conducting plates will have equal 

amounts of net positive and negative charge. As 

was discussed in Lesson 1, objects that contain 
equal amounts of positive and negative net charge 
are said to be electrically neutral. What will happen 

to these two plates if a potential difference is 
applied J them, say with a battery? The negative 

terminal of the battery pushes electrons out onto 
the negative connected plate, while the positive 
battery terminal draws electrons from the positive 

connected plate. As one plate receives a negative 
charge due to excess electrons building up, the 

other plate receives a positive charge due to the 
lack of electrons created. The net charges created 

on the capacitor's plates are equal and opposite. 

This is an important point. The battery takes 
electrons from one plate of the capacitor and 

essentially puts them on the other plate. 

Figure 13.7 

Figure 13.8 

ORIGINALLY NEUTRAL CAPACITOR 

WHEN CONNECTED TO BATTERY 

NE7 
POSITIVE 

CHARGE 
NET NEGATIVE 
CHARGE 
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• Charges Pack on Negative and Positive Plates 
• Capacitor Equivalent Circuit 

Charges Pack on Negative and Positive Plates — 

Negative charges (electrons) cannot build up on the 
negative plate forever. As more and more electrons 
move toward the negative plate, they start getting 
pushed back or repelled by the electrons already 
there. After a while the battery cannot push any 

more electrons onto the negative plate. The same 
thing is true with the positive plate. After a while, 
so many electrons have been removed from the 

positive plate that the battery cannot pull any 
more off. 

Consequently the capacitor develops a net 
positive charge on one plate and a net negative 

charge on the other plate. Because of this, a 
potential difference or voltage exists between the 
two plates. At the point where no more charge is 
flowing, the voltage across the capacitor's plates 
equals the battery's voltage. Notice in Figure 13.9 
that the voltage across the capacitor opposes the 
battery's voltage. The capacitor's negative plate is 
pushing electrons back in opposition to the push of 

the negative battery terminal, and the capacitor's 
positive plate attracts electrons and thus prevents 

their further removal from the positive plate. At 
the point where the voltage on the capacitor equals 

the voltage of the battery, no more current flows, 

since these voltages are in opposing directions. 

Capacitor Equivalent Circuit — As illustrated in 
Figure 13.10, once the capacitor's plates have 

accumulated enough negative and positive charges, 
the capacitor acts like a battery wired to act 
against the original battery in this circuit. 

Review in your mind for a moment the 
important points about a capacitor which have 
been discussed. When a capacitor originally having 

neutral plates is connected to a battery, charge 
flows as a current exists in the circuit. Electrons 
flow out of the battery's negative terminal and 
build up on the negative connected plate, while 

electrons are drawn from the positive connected 
plate. The charge created on each plate causes a 

potential difference or voltage, to build up on the 

e 
e 
EUT 

G 
0 0 (10 0 ED 0000 

EBATTERY 

14--04 VOLTAGE BUILDUP ACROSS CAPACITOR 
(ACTS LIKE A BATTERY OPPOSING 

[CAPACITOR CURRENT FLOW) 

00 WHEN NO MORE ELECTRONS 
OA 0 0 e CAN BE PUSHED ON PLATE 

HIP-1 

Figure 13.9 

ECAPACITOR • EBATTERY 

e 
o 

r-111F.--1 

 f _  

Figure 13.10 
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• Charged Capacitor 

capacitor. As the charge on the capacitor's plates 

increases, the voltage across the plates increases, 
until finally the potential difference of the 

capacitor equals that of the battery. Since these 

two voltages are in opposition, when they equal 
each other there can be no more electron current 
flow. So notice: Charges flow in the circuit, but 

none flow through the capacitor because of the 

insulating gap between the two plates. Also, charge 
flow or current only goes on for the short time 

necessary for the voltage across the capacitor to 
become equal to the battery voltage. 

Charged Capacitor — Whenever a net charge exists 
on each of the capacitor's plates, a potential 
difference or voltage exists across the capacitor. 
Likewise, when a voltage is placed across a 
capacitor, "charge" gets stored inside. Here's an 
important definition for you to remember: 
whenever a potential difference or voltage exists 

between the plates of a capacitor, the capacitor is 

said to be charged. A primary function of 

capacitors is this ability to store a charge. 

Capacitors are rated or measured by how well they 
perform this function. 

The factors that affect a capacitor's ability to 
perform the function of charge storage are the size 

of its plates, the spacing between the plates, and 
the type of insulating material separating the 
plates. 

Figure 13.11 

“CTIARGED CAPACITOR" 
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• Plate Area and Capacitance 

• Capacitance 
• Formula for Capacitance 

Plate Area and Capacitance — Each of these factors 

will be discussed in detail and you will probably 
find the first factor, plate size, is the most obvious 
thing about a capacitor that will affect its charge 
storage ability. As shown in Figure 13.12, if each 

of a capacitor's plates is made larger (that is, if the 
plate area is increased), and then connected to a 
battery, more charge will be stored on the larger 

plates than on the smaller plates. More charge 
would have to flow until the potential difference 

across the capacitor equals that of the battery. 
When current flow stops, the capacitor would be 
storing more charge than a capacitor with smaller 

plates, even though both capacitors were charged 
to the same voltage. 

Capacitance — Since charge storage is really one of 

the most basic capacitor functions, a quantity is 
needed to describe how well a capacitor does this. 
This quantity is called the capacitance of the 
capacitor. As shown in Figure 13.13, capacitance is 
defined as the charge stored on a device, divided by 

the voltage across the device when that charge was 

stored. 

Formula for Capacitance — Using the letter C to 
represent capacitance, Q for charge, and E for 

potential difference, an equation for capacitance 
may be written: C = Q/E. The capacitance of a 
device equals the charge it is storing divided by the 

voltage across it (Figure 13.14). 

Figure 13.12 

MAKE 
PLATES 

LARGER 

MORE 
- CHARGE 

STORED 

ál - 
-IN 14-

SAME VOLTAGE 

CAPACITANCE 

(SAME BATTERYI 

THE RATIO OF THE CHARGE STORED 
DIVIDED BY THE VOLTAGE ACROSS THE 

DEVICE. 

Figure 13.13 

Figure 13.14 

C = CAPACITANCE 

= CHARGE 

E = POTENTIAL DIFFERENCE 

C = Cl/E 
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• Other Factors Affecting Capacitance 

• Dielectric Strength and Dielectric Constant 

Other Factors Affecting Capacitance — It has 

already been shown that the capacitance of a 
capacitor depends on the area of its plates, the 

bigger the plate area, the bigger the capacitance. As 
has been mentioned, there are two additional 

factors that affect capacitance. One is the spacing 
between the capacitor's plates. It turns out that if 

the plates are pushed closer together, the 
capacitance will be increased. The third factor 
deals with the type of dielectric used. If different 

dielectrics are placed between the plates, the 

capacitance will vary. Details concerning why 
capacitance varies with capacitor construction will 

be covered in a later course, but for now just 

remember that the capacitance of a device depends 
on these three things: the spacing between plates, 

the area of the plates, and the dielectric material 
(specifically, the dielectric constant of the 

material). These three factors have been arranged 
into an easy-to-remember form for you in 
Figure 13.15. The first letters of the three factors 
spell SAD. 

FACTORS AFFECTING CAPACITANCE 

SPACING BETWEEN THE PLATES 

AREA OF THE PLATES 

DIELECTRIC MATERIAL USED 

Figure 13.15 

Dielectric Strength and Dielectric Constant — 
Notice that the dielectric in a capacitor is actually 
doing two things, First of all it is the insulating 

material that prevents charges from flowing from 

one plate to the other. Second, dielectric materials 
because of their makeup, actually act to help the 

capacitor store charge. As different dielectrics are 
placed between the plates of a capacitor, its 
capacitance will vary. 

Two special quantities are used to describe 

how well a dielectric performs these two functions. 
One is dielectric strength. This describes how 
resistant to breakdown a dielectric is. In capacitors, 

dielectrics consisting of very thin sheets are often 
subjected to very high voltages. When the voltage 
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• Example 

Dielectric Constant 

DIELECTRIC STRENGTH 

ABILITY OF A MATERIAL TO WITH STAND 

ELECTRICAL BREAKDOWN 

MATERIAL 
DIELECTRIC STRENGTH 

(VOLTS/MIL) 

AIR 

CERAMICS 

PYREX GLASS 

MICA 

TEFLON 

OIL 

PAPER 

Figure 13.16 

Figure 13.17 

1 INCH 

PHI 

20 

600-1250 VARIES WITH TYPE 

330 

600-1500 VARIES WITH TYPE 

1525 

375 

400-1250 VARIES WITH TYPE 

WITH AIR BETWEEN THE PLATES 
HOW MANY VOLTS UNTIL BREAKDOWN? 

'--- DIELECTRIC STRENGTH OF AIR 20V/MIL 

1 MIL -1/1000 INCH, 

1000 MILS • I INCH 

20V/MIL X 1000 MILS • 20.020 VOLTS 

DIELECTRIC CONSTANT 
A MEASURE OF HOW WELL A DIELECTRIC HELPS 

A CAPACITOR STORE CHARGE (AS COMPARED 

TO AIR) 

DIELECTRIC 
MATERIAL 

DIELECTRIC 

CONSTANT 

AIR 

CERAMICS 

GLASS 
MICA 

TEFLON 

OIL 

PAPER 

Figure 13.18 

1 

80-1200 VARIES WITH TYPE 

8 

3-8 VARIES WITH TYPE 

2.1 

2-5 VARIES WITH TYPE 

2-6 VARIES WITH TYPE 

applied across the dielectric becomes high enough, 
the dielectric will "break down," and electrons will 
"punch their way through" the dielectric. This 
creates a conducting path from one plate to the 
other through the dielectric and the capacitor 
malfunctions. Dielectric strength is a measure of 
how resistant a dielectric is to this type of 
breakdown. The dielectric strength of a material is 
commonly measured in volts per mil (Vira); and 
some common values are listed in Figure 13.16. 
(One mil = 1/1000th of an inch.) These values tell 
you how many volts a one-mil thickness of 
dielectric can withstand before breaking down. 

Example — For example, the dielectric strength of 
air is 20 volts/mil. How many volts would be 
required to break down 1 inch of air and jump a 
spark through it? As 1 mil is 0.001 inch; so 1 inch 
is 1000 mils. Air can withstand 20 volts for each 
mil of thickness so 20 volts/mil times 1000 mils 
equals 20,000 volts. In a capacitor with 1 inch of 
air between its plates, 20,000 volts applied would 
be enough to cause breakdown, as shown in 
Figure 13.17. 

Dielectric Constant — The other factor of 
importance that describes how well a dielectric 
functions in a capacitor is called its dielectric 
constant. This is a measure of how well a dielectric 
helps a capacitor store charge. Dielectric constants 
for some common materials are listed in 
Figure 13.18. Notice that the dielectric constant 
for air is listed as 1. The dielectric constant for any 
other material tells you how much more (or less) 
effective a material is (as compared to air) in 
helping a capacitor store charge. Glass, for 
example, has a dielectric constant of 8. If you had 
a capacitor with air originally between its plates, 
and replaced the air with a glass slab of the same 
thickness, the capacitor's ability to store charge 
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• Farad 

would have increased 8 times. Just how dielectrics 
work to help capacitors store charge has to do with 
how they affect the electric field between the 
capacitor's plates. Details of exactly how this 

process works are beyond the scope of this text, 
and are covered for you in later courses. 

Farad — The units used to measure capacitance are 
called farads, named after the scientist Michael 

Faraday. Following the equation C = Q/E, a 
capacitor has 1 farad of capacitance when it can 
store 1 coulomb of charge with a 1-volt potential 
difference placed across it. 

In reality, 1 farad turns out to be an 
extremely large unit of capacitance, so common 
capacitors are rated in microfarads or picofarads as 
listed in Figure 13.19. An important point to note 
is that on many capacitors the letter m is used as 

an abbreviation for micro. Keep in mind that on 
capacitors m does not mean milli or mega, it is 

always used to indicate micro. Also you may 
notice the abbreviation mmF used to indicate 
micro micro farads, which are identical to 

picofarads. Pico is simply a newer term. 

CAPACITANCE IS MEASURED IN FARADS 

C = G/E 

1 COULOMB  
1 FARAD - 

1 VOLT 

COMMON CAPACITOR VALUES IN 

MICROFARAOS =µF =mF 

PICOFARADS = pF = mmF 

Figure 13.19 
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• Charged Capacitor 
• Discharging a Capacitor 

Charged Capacitor — As has been mentioned, in 
order to charge a capacitor, you must connect it to 
a dc supply and apply a voltage. After a very short 
while, current stops flowing and the plates have a 
potential equal to the supply voltage. 

An important point: if the capacitor is 
disconnected from the battery or supply while in 
its charged condition, the charge still remains on its 
plates. How does the capacitor hold this charge on 
its plates? 

Recall from an earlier lesson, the first law of 

electrostatics states that unlike charges attract each 

other. Look at Figure 13.20, and you can see that 

even with the battery disconnected, the positive 
charges on one plate will attract the negative 

charges on the other plate and hold them there. 
Because of these unlike charges on the plates, an 
electric field exists in the dielectric region between 

them. This field is actually the mechanism that 
holds the charge on the plates, and also while 

acting to do that, actually stores energy. Since this 

electric field exists in the dielectric in the absence 
of current flow, it is called an electrostatic field. 

Since the charges on the plates cannot move 
to reach each other because of the insulating 
dielectric between the plates, in this charged 

condition the capacitor can store charge and 

energy for long periods of time. This means that a 
charged capacitor can be used to provide a current 

or do some work for you at some later time. 

Discharging a Capacitor — The energy and charge 
stored in a capacitor may be recovered if a 
conducting path is provided between the plates. 

This procedure is called discharging the capacitor. 
The excess electrons on the negative plate will flow 

to the positive plate, until both plates have no net 
excess charge, or are neutral. In this condition, the 
capacitor is said to be discharged. The current that 

flows is called the discharge current, and the path 
taken by the current is called the discharge path. A 
charged capacitor may be discharged by providing 

an appropriate conducting path between its plates 

as shown in Figure 13.21. An important 
observation for you to make should be emphasized 

at this point. Even though the power may be shut 

IF CAPACITOR IS REMOVED 
FROM SUPPLY, CHARGE REMAINS 
ON PLATES. 
CAPACITOR STORES: 

CHARGE 
ENERGY 

Figure 13.20 
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Figure 13.21 
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• Charge Formula 

off to a circuit, every capacitor in the circuit may 
retain its charge for a long period of time. 

Therefore, before working on high-voltage 
electronic circuitry, you should be sure to 

discharge all capacitors. The stored charge and 
energy in capacitors can discharge through you, 
giving you a nasty shock. 

Charge Formula — The amount of charge present 
on the capacitor's plates and the voltage across the 

plates are related. To restate, the capacitance of a 
capacitor in farads equals the charge on the 
capacitor in coulombs divided by the voltage across 

it, or C = Q/E. This equation may now be 
rearranged as shown in Figure 13.22 to read 
0 = CE, or the charge stored in a capacitor (in 

coulombs) equals its capacitance (in farads) times 
the voltage between its plates. Look at this new 

equation carefully. It states that the amount of 
charge stored in a capacitor is directly related to 
the voltage across the capacitor's plates. The more 

voltage across the plates, the more charge on the 

plates, and vice versa. For a given voltage, the 
higher the capacitance, the more charge will be 
stored on the plates, and vice versa. 

C = G/E 

G = CE 

CHARGE 
CAPACITANCE 

STORED = X VOLTS 
(FARADS) 

(COULOMBS) U LOMBS) 

Figure 13.22 
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• Capacitor Charging: No Resistance 

• Capacitor Charging: Resistance Present 

Capacitor Charging: No Resistance — Up to this 
point, capacitor construction and charging and 

discharging of a capacitor have been introduced 
and discussed for you. When a capacitor is 
connected to a voltage source, current flows for a 

short time until the capacitor charges up to equal 
the source voltage. A capacitor can hold that 
charge for long periods of time. Consider what will 

happen if a resistor is placed in series with a 
capacitor as it charges and discharges. 

The original circuit presented in this lesson 

consisted only of a capacitor and a power supply 
connected in series. When the battery was 

connected to the capacitor, electrons surged onto 
the negative-connected plate, and away from the 

positive-connected plate. When a capacitor is 

connected to a dc source in this way, it charges 

very rapidly. In fact, with virtually no resistance in 
the circuit, the capacitor would become fully 

charged almost instantly, as described in 
Figure 13.23. 

Capacitor Charging: Resistance Present — If a 
resistor is placed in series with this circuit, current 

cannot flow as freely as before. The current 
flowing in the circuit must "fight" its way through 

the resistor in order to charge the capacitor. Since 
there will be reduced current flow, more time will 
be required to charge the capacitor. Resistance has 

the important effect of causing a delay in the time 
required to charge a capacitor. 

When the switch, S, is closed in a circuit 
consisting of a resistor, capacitor, and voltage 

source in series, the voltage across the capacitor's 
plates will take a longer time to reach the battery 
voltage than before (as shown in Figure 13.24). 

This is an important new effect. With a resistor in 

NO RESISTANCE 

VOLTAGE RISES INSTANTLY 

E -= 

S 
WITH NO RESISTANCE IN CIRCUIT, VOLTAGE 

ACROSS CAPACITOR WILL RISE TO THE APPLIED 
VOLTAGE, E. INSTANTLY WHEN THE SWITCH IS 
CLOSED. 

Figure 13.23 

RESISTOR IN SERIES 

E 

VOLTAGE RIS S SLOWLY 

WITH RESISTOR IN THE CIRCUIT, VOLTAGE ACROSS THE CAPACITOR 
WILL RISE SLOWLY TO THE APPLIED VOLTAGE, E, AFTER SWITCH IS CLOSED. 

Figure 13.24 
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• Factors Affecting Delay 

• Time Constant Definition 

the circuit, the voltage across the capacitor rises 
more slowly than before, taking more time to 

reach the battery voltage. The current that flows in 

the circuit behaves in the opposite fashion. When 
the switch is first closed, a lot of current flows; and 

as the opposing voltage across the capacitor rises, 
less and less current flows, until finally, when the 
battery voltage and opposing capacitor voltage are 

equal, current flow ceases. 

Factors Affecting Delay — This time delay required 

for the capacitor's voltage to reach the supply 
voltage, is a very useful effect — and you can 
control it. To enable you to control this delay, 
consider the factors that affect it. 

The time required for the capacitor to charge 
and the voltage across it to rise up to the supply 

voltage depends on two factors (Figure 13.25): 
1) how much resistance is in the circuit opposing 

current flow, and 2) how big the capacitor is. 

Time Constant Definition — This time delay is such 
an important effect in electricity that engineers 
and technicians use a special way to describe how 
fast or how slow a capacitor charges. The time 
required for the capacitor to charge may be 
described in a standard way by defining what is 
known as the capacitive time constant. One time 

constant is defined as the time required for a 
capacitor to charge up to 63% of the battery or 
supply voltage (Figure 13.26). The time constant is 

also used to describe capacitor discharge, as will be 
discussed in a moment. 

THE TIME IT TAKES FOR THE VOLTAGE 
ACROSS THE CAPACITOR TO RISE TO 
E DEPENDS ON TWO THINGS: 

1. THE CIRCUIT RESISTANCE MI IN OHMS 

2. THE CIRCUIT CAPACITANCE ICI IN FARADS 

Figure 13.25 

DEFINITION: TIME CONSTANT 

1 TIME CONSTANT— THE TIME REQUIRED 
BY A CAPACITOR TO CHARGE TO 63% OF 
ITS FULL CHARGE VALUE (OR DISCHARGE 

DOWN 63% FROM FULL CHARGE). 

Figure 13.26 
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• Time Constant Formula 

• Time Constant Example 

• Second Example 

Time Constant Formula — Why this rather unusual 

definition for time constant? As it turns out, this 
specific time interval may be easily calculated from 
a simple formula as shown in Figure 13.27. You 
can calculate the capacitive time constant using the 

formula T = RC, where T is the capacitive time 
constant in seconds, R is the circuit resistance in 
ohms, and C is the capacitance in farads. For a 
series resistive-capacitive (RC) circuit, you find the 
time constant by simply multiplying the circuit's 
resistance in ohms, times the capacitance in farads. 

• RC R 100Q 

• 100 X 100 X 10-6 

• 1 X 10-2 • 10 X 10-3 • 

• 10 MILL I SECONDS 

Figure 13.28 

T • THE TIME FOR 
THE VOLTMETER TO 
RISE FROM ZERO 
TO 63% OF 10V 
16.3V1 

C • 100 X 10-6F 

C • 100 MCI 

10V 

F igure 13.29 

1CLIF 

T • RC 

R • 100 X 1060 C • 10 X 10 6F 

T • 100 X 106 X 10 X.10-6 

T • 1000 SECONDS 

CAPACITIVE TIME CONSTANT FORMULA 

T = RC 

T = TIME CONSTANT IN SECONDS 

R = CIRCUIT RESISTANCE IN OHMS 

C ---- CAPACITANCE IN FARADS 

Figure 13.27 

Time Constant Example — As an example, 

calculate the time constant for the circuit shown in 
Figure 13.28. In the circuit diagram the resistance 
is shown as 100 ohms, and the capacitance as 
100 microfarads. To calculate the time constant, 

simply use the formula T = RC. Substituting: T = 
100 X 100 X 10-6, which equals 1 X 10-2 or 

10 X 10-3 or 10 milliseconds. Remember, this is 
the time it would take for the voltage to rise from 

zero to 63% of the applied voltage. So in this case 
the voltage will rise to 63% of 10 volts or 

0.63 X 10 or 6.3 volts in 10 milliseconds. 

Second Example — Consider next the circuit of 

Figure 13.29. Here the resistance is a much larger 
100 megohms, while the capacitance has been 
reduced slightly to 10 microfarads. Again, using 

the formula T = RC and substituting, you get T = 
100 X 106 X 10 X 10-6 or T = 1000 seconds. In 

this circuit you have to wait 1000 seconds (16-2/3 
minutes) for .the capacitor's voltage to rise very 

slowly to 63% of the applied voltage or 6.3 volts. 
The extremely large resistance really slows things 
up. This predictable rising voltage can be put to 

many uses in electricity and electronics. 
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• Universal Time Constant Graph 
• Universal Time Constant Graph (Charge) 

Universal Time Constant Graph — At this point 

you know that the time constant of a circuit such 
as that shown in Figure 13.29 (called an "RC" 
circuit) equals R times C, and that in one time 
constant, the capacitor's voltage rises to 63% of the 

applied voltage, E. Focus your attention on the 

details of how this voltage behaves as time goes on 
after switch, S, is closed. This is a new dimension 

in the study of dc — time is involved now. You 
know that when the switch is closed in this circuit, 

the voltage across the capacitor starts to rise. To 
describe how this happens, the behavior of the 

circuit may be plotted on the graph shown in 
Figure 13.30. The voltage across the capacitor, that 

is the voltmeter's reading at different times, will be 
plotted on the vertical axis. Time (as measured by, 
say, a stopwatch) will be plotted on the horizontal 
axis. The switch is closed and the stopwatch 
started. As the watch measures off one time 
constant, the voltage will have risen to 63% of the 
battery voltage. As time goes on during the next 
and each successive time constant, the voltage 
continues to rise 63% of the remaining voltage, 
until full charge is obtained. During the second 

time constant, the voltage rises 63% of the 
remaining voltage or to 86.4% of full charge, and 

so on. This process continues until after five time 

constants the capacitor is for all practical purposes 
fully charged. The line on the graph shows the 

voltage behavior with time. This curve is important 

and deserves some close examination. 

Universal Time Constant Graph (Charge) — The 
graph shown in Figure 13.31 is called the universal 

time constant graph, and may be used to describe 
any circuitry with a time constant type of 
behavior. This graph marks out in detail exactly 
what percentage of the applied voltage a capacitor 
will have charged to during specific time intervals 
after the voltage is applied to an RC circuit. If you 
know a circuit's time constant, this curve will 

enable you to accurately predict RC circuit 
behavior as time goes on. For example, suppose 

that you had calculated a circuit's time constant to 
be one second and you want to know what the 

capacitor's voltage will be one-half second after 
applying a voltage of 10 volts to it. In this case 

CAPACITOR 
VOLTAGE 

8 - 

6 - 

a- 

SWITCH -/ 
CLOSED 

APPLIED VOLTAGES 

STOPWATCH 

VOLTAGE RISE 1INIVERSAL TIME 
63 CONSTANT CURVE.. 

Figure 13.30 
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• Universal Time Constant Graph (Discharge) 

one-half second is one-half of a time constant or 
0.5 time constant, so find that point on the 
bottom (or horizontal axis) of the graph. Follow 
the vertical line up from that point until it touches 

the charge curve, and you see that after 0.5 time 
constant, the capacitor would be at 39% of 
10 volts, or 3.9 volts. Notice that there are two 
curves on this graph, one is the charging curve that 
has already been discussed. Now consider the 

process of discharging a capacitor through a 
resistor. 

Universal Time Constant Graph (Discharge) — In 
Figure 13.32, the same capacitor used before is 

now fully charged but is rewired to discharge 
through the resistor, R. Notice that this is an RC 
circuit whose time constant is identical to the one 
considered in Figure 13.30. This time when the 

switch, S, is closed, the capacitor discharges, and 
the behavior of the capacitor's voltage is the 
reverse of that you saw previously. As the 
stopwatch ticks off the first RC time constant, the 
capacitor's voltage falls 63% of its fully charged 
voltage, so that at the end of one RC time 

constant, the voltage remaining on the capacitor is 

37% of its fully charged value. During each 

successive time constant, the voltage continues to 
fall 63% of the remaining voltage value. After five 

time constants, the voltage may be assumed to be 
zero. Notice this important point: it takes five time 

constants for a capacitor to either fully charge or 
fully discharge. This is an important fact to 
remember concerning RC circuits. 

TULLY i  
CHARGED 
CAPACITOR C 

S 

CAPACITOR 
VOLTAGE 

a 

6 

4 

2 

0 
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Figure 13.32 
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• Example: RC Circuit Demonstration 

e Storage Oscilloscope 

Example: RC Circuit Demonstration — To 
understand RC circuits more fully, a complete RC 
circuit example of a type you could easily build 

and study in the lab will now be discussed. Follow 
the circuit analysis as if you were actually watching 

the circuit perform. First, you will calculate the 

time constant for the circuit (shown in 
Figure 13.33), and then examine its behavior in 
detail. The circuit contains a 10-microfarad 

capacitor, and a 100-kilohm resistor and a switch, 
S, as shown. These components will be connected 
to a 100-volt de supply. First calculate the time 

constant for this circuit, using the formula T = RC. 

Substituting R = 100 Id2 or 1 X 105 S-2 and 

C = 10 µF or 1 X 10-5 farads. Multiplyin9 
1 X 10+5 and 1 X 10-5 gives you 1 X 10U or 1. So 
the time constant for this circuit is 1 second. 

Storage Oscilloscope — To check the circuit's 
behavior, you could connect it to a special 
instrument called a storage oscilloscope, if one was 

available in your laboratory. This special 
instrument will actually plot a graph of the 
capacitor's voltage on the vertical axis, and time on 
the horizontal axis. On a typical storage scope you 
can set up the scope face so that each division on 

the scope's vertical axis represents 20 volts, and 
each one of the scope's horizontal divisions 
represents 1 second (Figure 13.34). When the 
switch, S, is closed, the oscilloscope actually 
measures the voltage across the capacitor for you, 
and plots it at different time intervals. 

Figure 13.33 
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• Scope Face: Capacitor Charging 

• Discharge Demonstration Circuit 
• Scope Face (Discharge) 

Scope Face: Capacitor Charging — When the switch 
in the circuit is closed, as shown in Figure 13.34, 
the scope face traces the patterns as shown in 
Figure 13.35 during the first five time constants. 
Figure 13.35(A) shows what the scope trace 
(picture) would look like at the end of 1 second. 
At this point, 63 volts is indicated on the scope 
face, which is 63% of 100 volts. In 
Figure 13.35(E), after five time constants or 

5 seconds, the graph line has risen up to 100 volts 

or full charge. 

Discharge Demonstration Circuit — If the 100-volt 
power supply is removed from the circuit and the 

capacitor is connected so that it discharges through 
the same 100-kilohm resistor, the capacitor's 
discharge curve may be observed on the storage 
oscilloscope face (Figure 13.36), set at the same 
scales as before. 

Scope Face (Discharge) — What the storage 
oscilloscope would display for you is shown in 
Figure 13.37. In Figure 13.37(A), which shows the 

scope face after one time constant or 1 second, the 
voltage has fallen from full charge of 100 volts 
down to about 38 volts. In the successive figures 
the line continues to descend until in 
Figure 13.37(E) at five time constants, the voltage 
is at zero and the capacitor is discharged. 

11( 63% t 3V 
t 20V 
( 20V 
I 20V 

t 1 I 1 1 1 SEC AFTER 1 TIME CONSTANT 
IA) 

1111  
4 TIME CONSTANTS 

IDI 

Figure 13.35 

R .10050 

Figure 13.36 

11111  2 TIME CONSTANTS TIME CONSTANTS 
IS) ICI 

5 TIME CONSTANTS 
(EI 
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STORAGE 
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E  737-38%  
1 J I 1 AFTER 1 T JAE CONSeTANT TIME CONSTANTS TIME CONSTANTS (AI (8) ICI 

Figure 13.37 
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• Slow Discharge of Capacitor: Low Current 
• Rapid Discharge: High Current 

Slow Discharge of Capacitor: Low Current — At 
this point, you have seen what capacitors are, and 
how they operate in dc circuits. As has been 
demonstrated, a capacitor can store charge. This 

effect finds application in many dc circuits, for the 
following reason. When a charged capacitor is 
discharged, the rate at which the voltage across it 

drops and the amount of current that flows in the 
discharge circuit depend on the resistance in the 
discharge path. As you have seen, more resistance 

in the circuit causes a longer RC time constant, and 
hence it takes a longer time for a charged capacitor 
to discharge. In an RC circuit with high resistance, 

the amount of discharge current that flows is small. 

This trickle of discharge current flows for a long 
time, until the capacitor is discharged as shown in 
Figure 13.38. 

Rapid Discharge: High Current — Consider the 

following situation. If a charged capacitor is 

discharged by shorting its leads with a conductor, 
as shown in Figure 13.39, the resistance in the 

circuit that is formed approaches zero. The RC 
time constant then is also close to zero. As a result, 
a charged capacitor can be made to deliver an 
extremely large burst of current for a very short 

time. This makes the capacitor useful for providing 
power for special loads which require short, very 

high bursts of current to operate. 

LARGE 
CHARGED RESISTOR 
CAPACITOR 

I LOW 

DISCHARGES WITH LONG RC TIME CONSTANT 
VERY SMALL CURRENT, I, FLOWS FOR A LONG TIME 
UNTIL CAPACITOR DISCHARGES. 

Figure 13.38 

CHARGED 
CAPACITOR 

DISCHARGE WITH RC TIME CONSTANT - O. 
HUGE CURRENT FLOWS FOR VERY SHORT TIME UNTIL CAPACITOR 
IS DI SCHARGED. 

Figure 13.39 
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• Example 

• Capacitors Oppose Changes in Voltage 

Example — One type of load that requires a high 
burst of current for a short time is a flash tube of 
the type used with many cameras. In cases such as 
this, a dc supply, usually having a low-current 
capability, may be used to gradually charge a large 
capacitor. This capacitor may then be discharged 
through the loads that require a short burst of very 
high current. In Figure 13.40, a high-voltage supply 
with a low-current capability is first used to charge 
a capacitor when the switch is thrown to the left. 

Then after the capacitor is fully charged, the 
switch is thrown to the right to provide a large 
burst of current to fire the flash tube. This, by the 

way, is a good time to remind you that in circuits 

containing capacitors, even though the power is 
off, there may still be a "jolt" awaiting the careless 
technician. Be careful. 

Figure 13.40 

Capacitors Oppose Changes in Voltage — Now that 

you have seen capacitors in action, consider for a 

moment another of their effects that find use in a 
variety of applications. In all the circuits studied in 

the earlier lessons of this course, when power was 
applied to the circuit, the voltage at all parts of the 

circuit instantly reached its final value. No "time 

delays" were ever considered. In RC circuits of the 
type that have been discussed for you, the voltage 

across the capacitor rises more slowly, depending 

on the circuit's time constant. So it may be said 

that capacitance tends to fight or oppose changes 
of voltage in a circuit. As you have seen, if z. rising 

voltage (such as a power supply which is abruptly 
switched on) is applied to a capacitor, the 
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• Capacitor Types 

RESISTOR 
ONLY 

E = 

SWITCH TURNED ON 

R ANO C 

T--0 
SWITCH TURNED ON 

Figure 13.41 

Ir 
VOI TAGE UMPS TO E 

VOLTAGE RISES GRADUALLY 

capacitor will act to slow up or oppose the rise of 
voltage, making it more gradual. Alternately, if the 
voltage is turned off in a circuit containing a 
capacitor, the capacitor will give up some of its 
charge and keep the voltage up longer. For this 
reason the capacitor finds application as a filter in 
certain circuits. In these types of circuits 
(Figure 13.41), a capacitor may be used to 
"smooth out" any abrupt voltage changes that may 
occur. Another common use for a capacitor is in a 
variety of timing applications. Both of these 
applications, as well as many others, will be 
covered for you in depth in later courses. 

Capacitor Types — Now that you have seen some 
aspects of how capacitors work, consider some of 
the actual components you may find available in 
the laboratory. Figure 13.42 is a chart listing 
various types of capacitors that are available. 
Capacitors are usually named by the dielectric 
material used in them. 

Because of the many applications of 
capacitors and the different properties of the 
dielectric, each capacitor you encounter will 
probably be labeled with a WVDC or "Working 
Voltage dc." This is the maximum voltage the 
capacitor can tolerate without its dielectric 
breaking down. As you apply capacitors in circuits, 
the voltage across them must be kept below 
this WVDC. 
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Capacitor 
Type 

Range of 
Capacitance 

Range of 
WVDC 
(in volts) 

Range of 
Temperature 

(°C) 

Ri = Insulation 
Resistance 

IL = Leakage Current 
(at 25°C) Comments 

Ceramic 1 pF — 2.5 µF 20 — 200 —55 +125 R•1 = 100 GS2/µF Small size 
Low cost 

Paper 0.001 — 200 µF 50 — 200,000 —55 +105 R • = 3-20 GS2/µF i Low cost 

Electrolytic -0.5— 1,000,000 µF 2.5 — 700 —80 +125 IL = 0.1 µA or more Very small size 
Very low cost 

Mylar 0.001 — 20 µF 50 — 1000 —55 +150 R•= 50 GS2/µF i Small size 
Relatively high cost 

Air 10 — 400 pF 200/0.01 in 
air gap 

— — Variable 

Mica 1 pF — 1 µF 50 — 100,000 —55 +150 R i • = 10 — 100 GS-2/µF Cap. change 
with age 
very small 

Oil Filled 0.001 — 15;IF 100 — 12,500 —55 +85 R•= 2 — 100 GS2/µF i Low cost 

Figure 13.42 
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TYPICAL FIXED 
CAPACITOR CONSTRUCTION 

VARIABLE CAPACITOR 
CONSTRUCTION 

• Fixed and Variable Capacitors 
• Capacitor Construction 
• Electrolytic Capacitor vs Oil-Filled Capacitor 

Fixed and Variable Capacitors — Capacitors are 
available in both fixed and variable types as shown 
in Figure 13.43. Several different common types 
including paper, mica, and ceramic capacitors are 
shown in the figure. As mentioned, these are 
named for the dielectric material employed in 
manufacturing them, and are produced in a set of 
preferred values, with tolerances similar to those of 
resistors. In these devices the capacitance is usually 
labeled on the device or follows a color code (listed 
for you in the Appendix). 

Figure 13.43 

FIXED 

Capacitor Construction — To keep the size of these 
devices as small as possible, a series of foil plates is 
usually employed with thin sheets of dielectric 
rolled up in between them as shown in 
Figure 13.44. Also shown in the figure is a typical 
variable capacitor. Variable capacitors are most 
often constructed so that their effective plate area 
can be varied by rotating a shaft connected to one 
set of plates. These plates can be moved between a 
stationary set of plates changing the capacitance 
value of the device. 

Figure 13.44 

Electrolytic Capacitor vs Oil-Filled Capacitor — 
Often in electronics, large amounts of capacitance 
may be needed in a small space. Most standard 
fixed capacitors are limited to values of about 
1 microfarad or less due to cost and size 
considerations. There are capacitors available, 
however, that use a special chemical action to cram 
a large amount of capacitance into a small space. 
These are called electrolytic capacitors. An 
electrolytic capacitor having a capacitance of 
42,000 microfarads may be about the same size as 
a 10 microfarad standard oil-filled capacitor 
(Figure 13.45). A price is paid, however, because 
the maximum working voltage of electrolytic 
capacitors is usually much lower than oil-filled or Figure 13.45 
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• Electrolytic Construction 

other standard types. As mentioned, the maximum 
working voltage or WVDC of a capacitor is 
governed by its plate spacing and dielectric. If 
voltages on the capacitor's plates are higher than 
the WVDC, the dielectric will usually break down, 
allowing charge from one plate to pass through the 
dielectric to the other plate. When this happens, 
the capacitor is no longer properly functioning. 
With severe breakdown, the plates may actually 
short together, rendering the capacitor useless. A 
good rule of thumb is to choose capacitors that 

have a working voltage well above the highest 
voltage with which they will come in contact. 

OXIDE-COATED I, 
ALUMINUM FOIL ‘` 
(POS. ELECTRODE) 

ALUMINUM 
FOIL 
CONTACT TO 
ELECTRODE 
(NEC,. ELECTRODE) 

Figure 13.46 

NEGATIVE LEAD 

METAL CONTAINER 

• INSULATING AND 
SEALING DISC. 

POSITIVE 
LEAD 

PAPER 
SEPARATORS 

SATURATED WITH ELECTROLYTE 
(ACTUAL NEGATIVE ELECTRODE ) 

Electrolytic Construction — Most newer dry-type 

electrolytic capacitors commonly available are 

manufactured from two aluminum sheets separated 
by a saturated paper layer (Figure 13A6). The 
paper is saturated with a special chemical called an 
electrolyte, and rolled together with the aluminum 

sheets and packaged in a compact roll. When the 
capacitor is manufactured, a dc voltage is applied 
to it causing a thin oxide layer to be formed on 
one sheet. This oxide is very thin and acts as the 
insulating dielectric between the two plates. One of 

the capacitor's plates is now the aluminum sheet 
with the oxide deposited on it (positive plate), and 
the other plate is actually the electrolyte, which is 

connected to external circuits by the second 
aluminum sheet. Since the oxide layer is extremely 
thin, very large capacitances are available in 
electrolytic form. Since the oxide is fairly fragile, 
only lower voltages can normally be used with 
electrolytics. But most important, because of the 
way electrolytic capacitors are constructed, they 
can never be used in ac applications. They are 
restricted to only dc or pulsating dc applications, 

and must always be wired into dc circuits in the 
correct polarity, positive terminal to more positive 
voltages, negative to more negative voltages. If 

wired in the opposite direction, the electrolytic 

behaves as a low-value resistor, and the capacitor 
may actually explode due to heat generated by 
large amounts of current flow through it. 
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• Leakage Resistance 

• Capacitor Applications 

Leakage Resistance — It should be pointed out that 
even in the best capacitors, some "leakage" of 
charge will occur over periods of time. For good 
capacitors, however, significant charge can be 
stored almost indefinitely. Leakage occurs for a 
variety of reasons in capacitors and tends to be 
higher in electrolytic types. Some charge actually 
makes it through the dielectric, as if there were a 
very high-value resistor connected between the 
plates as shown in Figure 13.47. Often a minimum 
value of leakage resistance R L is specified for 
capacitors in applications where leakage may be 
critical. 

When discharging capacitors, it is generally 

not recommended that the leads simply be shorted 
together with a conductor. Although many 

capacitors can take this abuse, the very large 

internal currents created can damage them. So it is 

always a good idea to discharge capacitors 
gradually through an appropriate resistor. This 
keeps internal currents low and prevents damage to 

what are often expensive and difficult to replace 
parts. 

Capacitor Applications — The charge storage 
capability of capacitors is utilized in a variety of 
devices and applications. These are listed in 
Figure 13.48. Briefly consider several of these 
applications: discharging capacitors can produce 
currents large enough to weld metals together, 
which is a common capacitor application in 
spot-welding devices. Flash tubes, as has been 
mentioned, also require very large, very short 

bursts of current to operate. A capacitor is used to 
provide this burst of current. Also, in capacitive 
discharge ignition systems, the same principle is 

used to get a "hotter spark" in an automobile 

engine. More recently, in medical emergency rooms 
a device known as a defibrillator discharges a 

LEAKAGE RESISTANCE: RL SPECIFIES 
HOW MUCH LEAKAGE TO EXPECT FROM 
A GIVEN CAPACITOR 

Figure 13.47 

TYPICAL CAPACITOR APPLICATIONS 

SPOT WELDER 

FLASH TUBE 

CAPACITOR DISCHARGE IGNITION SYSTEM 

MEDICAL DEFIBRILLATOR 

ELECTRONICS — TIMING, COUPLING, 

RESONANT CIRCUITS, ETC. 

poi 
Figure 13.48 
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• Capacitors in Series 

capacitor through two paddles so that a controlled 
amount of energy is delivered to a patient's heart, 

restoring normal rhythm to a heart that has 
stopped beating. You will find capacitors applied 
in a variety of ways as you continue your study of 
electricity. 

d 

A 

I S EQUIVALENT TO d 

Hi-

CT 1 /c1 • 1/C2 • 1/C3 

Figure 13.49 

Capacitors in Series — Before leaving the topic of 
capacitors, one more topic should be mentioned. 

Often to obtain a desired value of capacitance, 

capacitors are combined in series and parallel 
connections. Consider what happens when two 

capacitors are connected in series as shown in 
Figure 13.49(A). The two inner plates of these 
capacitors are wired directly together so effectively 
that they act as one plate. The result is that two 

capacitors in series act as a single capacitor whose 
plates are separated by both plate separations. As 
you have learned, the larger the spacirg between 
the plates, the lower the capacitance. For this 
reason, the total capacitance of any series 

combination of capacitors is less than that of any 
individual capacitor in the circuit. As it turns out, 

the total capacitance of capacitors in series is 
calculated in the same way as the total resistance 
of parallel resistors. The formula is 

1 
c-r -   

1/C 1 + 1/C2 + 1/C3 

etc., as shown in Figure 13.49(3). 
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• Capacitors in Parallel 
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Figure 13.50 

A new and useful component has been 
examined in this lesson and some of the wide 
variety of its applications have been shown. In the 

next lesson, the behavior of dc in circuits 
containing other new components, called 
inductors, will be introduced. You will find many 
similarities, some big differences, and some 
interesting and important new effects. 

Capacitors in Parallel — When several capacitors are 

connected in parallel, an interesting thing happens. 
As shown in Figure 13.50(A), since all the plates 
are wired together in tandem, a parallel connection 

of capacitors acts like a single capacitor having a 
total plate area equal to the sum of the plate areas 

of the individual capacitors. Since capacitance 
varies directly with plate area, the total capacitance 
of several capacitors connected in parallel is found 
by adding all the individual capacitances, as with 
series resistors, as shown in Figure 13.50(B). 
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LESSON 13. CAPACITORS AND THE RC TIME CONSTANT 

• Worked Through Examples 

1 Find the time constant of a circuit containing a 10-kilohm resistor in series with a 0.82-microfarad 

capacitor. 

To solve this problem, you must use the time constant formula T = RC. Substituting in the circuit 
values, the formula reads T = 10 kS2 X 0.82 µF. In scientific notation the values are: 
T = 1.0 X 104 X 8.2 X 10-7. 

1.0 X 104 

X 8.2 X 10-7 

T = 8.2 X 10-3 seconds (s) or 8.2 milliseconds (ms) 

2. Find the time constant of this circuit: 

20µF 

 'VVV  

100k 

Use the formula: T = RC. First substitute in the circuit values: R = 100 kS2, C = 20 µF 

T = 100 kS2 X 20 µF 

T = 1.0 X 105 X 2.0 X 10-5 

T = 2.0 seconds 

3. How long will it take the capacitor in the following circuit to reach full charge? 

560pF 
8.2mn 

E=50V 

First, use the time constant formula T = RC 

T = RC 

T = 8.2 IVIS2 X 560 pF 

T = 8.2 X 106 X 5.6 X 10 10 

T = 4.59 X 10-3 s or 4.59 ms 
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• Worked Through Examples 

You must remember that the RC time constant formula you just worked gives you one time constant 
(in seconds). Five time constants are required for full charge. So, multiply the time constant by 5 to 
arrive at the correct answer. 

4.59 X 10-3 

X 5 

22.95 X 10-3 or 2.3 X 10-2 seconds 

The capacitor will be fully charged after 2.3 X 10-2 seconds or 23 milliseconds. 

4. Find the voltage across the capacitor in the circuit shown below 500 milliseconds after the switch is 

closed. (Use the universal time constant graph.) 

 •VVN.  

10k2 
33µ F 

100V 

First, you should calculate the time constant of the circuit. T = RC. 

T = RC 

T= 10 kS2 X 33 µ F 

T= 1.0 X 104 X 3.3 X 10-5 

T = 3.3 X 10-1 or 330 ms 

Now look at the universal time constant graph. Time (horizontal axis) is measured in time constants. 
To convert this chart to seconds, multiply 330 milliseconds by each of the time divisions. For example: 

1 X 330 ms = 330 ms 

1.5 X 330 ms = 495 ms 

2 X 330 ms = 660 ms 

3 X 330 ms = 990 ms 

4 X 330 ms = 1.32 s 

5 X 330 ms = 1.65 s 

Now these values are applied to the universal time constant graph. 
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• Worked Through Examples 
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.6 

.5 

.4 

.3 

.2 

.1 

95% 98% 99% 

1 

86% 

6 % 63% 

39/0 37% 

14% 

'«iee.";:•e„..............L% 1% 

0 .5 1.5 2 25 3 

330 495 660 970 
msec msec msec msec 

TIME (IN TIME CONSTANTS) 

4 

1.32 
msec 

5 

1.65 
msec 

Look at the chart and locate the 500 millisecond position on the horizontal axis. Now trace directly 
upward (following the dotted line) and note the point on the charging curve that is reached at 500 ms. 
Tracing to the left from that point, across the graph, you can see that the amplitude at the intersection 
point is about 0.78 or 78% of the full charge voltage; 0.78 X 100 V = 78 V. So after 500 ms, the 
capacitor is charged to 78 volts. 

5. Find the charge in coulombs of the capacitor in problem 4, at the end of 500 milliseconds. 

The formula for calculating the charge stored in a capacitor is 

Q = CE 
where 

Q = the stored charge in coulombs 
C = the capacitance in farads 

E = the voltage between the capacitor plates 

Substituting the values of capacitance and voltage: 

Q = 33 pF X 78 V 

Q= 3.3 X 10-5 X 7.8 X 10 1 

Q = 2.57 X 10-3 coulombs (or 2.57 millicoulombs) 
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• Worked Through Examples 

6. Using the universal time constant graph, calculate the time required for the capacitor shown below 
to charge to 55 volts. 

470k& 

First, calculate the circuit's time constant using the formula: T = RC 

T = RC 

T = 470 1(2 X 18µF 

T= 4.7 X 105 X 1.8 X 10-5 

T = 8.46 s 

Now, the universal time constant curve may be used as follows in solving this problem. First, 

examine the vertical axis. On this axis the fraction of the maximum voltage is located. The maximum 
voltage here is 120 volts: the total applied voltage. What fraction of 120 volts is 55 volts? Thus, 

55/120 equals 0.458. This is the fraction of the applied voltage 55 volts represents. Now, locate 
0.458 on the vertical axis of the universal time constant graph. Trace to the right horizontally (a 
dotted line is drawn in for you to follow) until you intersect the charging curve. 
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• Worked Through Examples 

Locate that point on the curve, and then trace directly down to the horizontal axis. At this point you 
read the time elapsed: 0.6 time constants. You know that 1 time constant is 8.46 seconds, so the 

total elapsed time is 0.6 X 8.46 or 5.08 seconds. 

7. A "strobe" flash attachment for a camera has a bulb that requires 0.02 coulomb of charge at 450 volts 
in order to flash properly. What is the minimum size capacitor that could be satisfactorily used? 

Since both the quantity of charge (Q) and voltage (E) are known, the equation C = Q/E can be used to 
solve this problem. Simply substitute in the capacitor values and solve for C. 

C = Q/E 

0.02 C (coulomb) 
C — 

450 V 

C = 0.0000444 F or 44.4 µF 

8. Find the approximate frequency of oscillation in the circuit shown here. 

0.2µF 

7.5Mn 

NE-2 IiID 
 1111 100V 

The circuit shown above is a "relaxation oscillator." It operates on the basis of its RC time constant. 
The bulb shown connected across the capacitor is an NE-2 neon glow lamp. These lamps require a 

certain voltage (called the "firing voltage") in order to light. Once lit, the voltage across the lamp must 
fall significantly below the firing voltage before it will turn "off." Typical "on" and "off" voltages for 

neon glow lamps are: 75 volts "on" and 50 volts "off." This means that the typical NE-2 will not 
"light" until the voltage across it reaches 75 volts, but once lit, will continue to glow until the voltage 
drops below 50 volts. Before the lamp lights, it has a very high resistance (essentially an open circuit). 

Once the lamp is on, its resistance drops to a low value. 

Consider what will happen when one of these lamps is connected across a capacitor as shown in the 
circuit above. When power is applied to the circuit, the capacitor will begin to charge up to the source 
voltage. The rate of charging will be controlled by the RC time constant. When the capacitor reaches 

75 volts, the neon bulb (which is connected in parallel with the capacitor) will also have 75 volts 
applied across it. At this instant, the bulb will light, allowing heavy current flow, and thus discharging 
the capacitor very quickly. As the capacitor discharges, its voltage will drop down below the 50 volts 
required to keep the neon bulb lit. The bulb goes out and the capacitor again charges up to the 

75 volts required to fire the bulb, and the cycle is repeated again and again. As you can see, there are 
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S Worked Through Examples 

several factors that affect the rate of blinking (or oscillation) of the bulb: the resistor size, the size of 
the capacitor, the supply voltage, and the characteristics of the individual neon bulb. 

To analyze this problem, first calculate the RC time constant of the circuit and plot it on a universal 

time constant graph. 

T = RC 

T=7.5MS2 X 0.2µF 

T = 7.5 X 106 X 2.0 X 10-7 

T= 1.5 s 
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0.75 1.5 2.25 3.0 4.5 
sec sec sec sec sec 

TIME (IN TIME CONSTANTS) 

1 X 1.5 s = 1.5 s 
1.5 X 1.5 s = 2.25 s 

2 X 1.5 s = 3.0 s 

3 X 1.5 s = 4.5 s 
4 X 1.5 s = 6.0 s 
5 X 1.5 s = 7.5 s 

4 

6.0 
sec 

 - 

5 
7.5 
sec 

To give a clearer picture of the operation of this circuit, these values are plotted on the horizontal axis 

of the universal time constant graph above. 
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The lamp fires at 75 volts, and causes the voltage across the capacitor to rapidly drop to 50 volts so 
that the lamp then goes out. Voltage across the capacitor, plotted as time goes on, will appear as 
shown below. 

75V 

50V 

In order to find the time duration between flashes, simply look back at the Universal Time Constant 
graph you just filled in. Locate 75 volts and 50 volts, and measure the time elapsed between these 

two points. Seventy-five volts occurs at approximately 1.4 time constants or 2.1 seconds. Fifty volts 

occurs at 0.7 time constants or 1.05 seconds. The time elapsed is the difference between the two 
times. Subtract and you get 2.1 s — 1.05 s = 1.05 s. So the lamp will blink once every 1.05 seconds. 
Dividing 60 by 1.05 yields a frequency of 57 flashes per minute. 

9. Calculate the total capacitance of this circuit. 

4µF 

8µF 

6µF 

 o 

Problems of the type shown above give many students headaches because capacitors "add" just the 
opposite of the way resistors do. Parallel capacitors are added by using a formula similar to the series 

resistance formula: CT = C1 + C2 + C3  Series capacitors must be added by using a formula 
similar to the parallel resistance formula: 

CT = 1/C 1 + 1/C2 + 1/C3 ... 

To solve this problem, the 4-microfarad and the 6-microfarad capacitors should be combined by using 
the parallel capacitance formula CT = C1 + C2 + C3 ... 

CT = 4 p F + 6 µF 

CT = 10µF 
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This 10 microfarads of capacitance must be combined with the 8 microfarads of capacitance by using 
the series capacitance formula. 

CT 1/c1 + 1/c2 + 1/c3 

1 

• 1/10 + 1/8 

• - 0.1 + 0.125 

CT 1  
- 0.225 

CT = 4.44 µ F 

10. Calculate the total capacitance of the following circuit. 

4µF 8µF 

61.2F 

First, find the total capacitance of the upper circuit branch using the series capacitance formula: 

1  

CT - 1/C 1 + 1/C2 + 1/C3 

1  

CT = 1/4 + 1/8 

1  

CT - 0.25 + 0.125 

1  

CT - 0.375 

CT = 2.67 µF 

2.67µF 

Now the total capacitance may be found by combining the two parallel capacitances using the parallel 
capacitance formula CT = C1 + C2 + C3 ... 

• = 2.67 µF + 6 µ F 

CT = 8.67 /IF 
8.67µF 
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LESSON 13. CAPACITORS AND THE RC TIME CONSTANT 

• Practice Problems 

Depending upon the approach you use in solving these problems and how you round off 

intermediate results, your answers may vary slightly from those given here. However, any differences you 
may encounter should only occur in the third significant digit of your answer. If the first two significant 
digits of your answers do not agree with those given here, recheck your calculations. 

1. Calculate the RC time constant for the following circuits. Fold over Fold Over 
the page to check your answers. 

a. 

b. 

1.5MSZ 
4.7µF 

750kSt 
.22µF 

c.O 

43pF 110M12 

d. 

e. 

56 
MS2 

56pF 
100kS2 

 O 

 o 

T=   

T=   

T =   

T = 

T=   

2. Calculate the total capacitance in the following circuits. (All capacitors are 2 I/ F). 

a. Il 
ii 1—° 

b. 

CT =  

c-r =  
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• Practice Problems 

Answers 

1. 

a. T = 7.05 s 

b. T = 165 ms 

c. T = 4.73 ms 

d. 560 s 

e. T = 5.6 ps 

2. 

a. CT = 1 µF 

b. CT --- 1.33 µF 
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• Practice Problems 

C. 

d. 

e. 

 II IF-i 

 Il  

 II- 0 

c-r =  

CT =  

CT =  

3. Find the following unknown values using the formula Q = CE. 

a. 

b. 

C. 

o I( 

t C=6pF 

  150V 

o  
I( 

600p F 

6V 

0 I( 0 

t 0=19.5 ncoul. 

  50V   

Q = 

Q = 

C = 

Fold Over 
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• Practice Problems 

Answers 

c. CT =5,uF 

d. CT = 0.75 /IF 

e. CT = 10 µF 

3. 
a. Qr900uC 

b. Q = 3.6 mC 

c. C = 390 pF 
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• Practice Problems 

ci. 

e. 

10µF 

Q=20µ coul. 1 

  E=?   

K 
.008µF.012µF 

15,000V   

4. For the circuit shown below, calculate, or use the universal time constant graph to find: 

E=   

=   

Fold Over 

1MS-2 2.2µF 

a. RC time constant. 

b. Time required for capacitor to charge fully. 

c. Voltage across the capacitor after 1.5 seconds. 

d. Voltage across the capacitor after 6.5 seconds. 

e. Time required for the capacitor to charge to 30 volts. 
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• Practice Problems 

Answers 

d. E = 1.33 V 

e. Q = 72 pC 

4. 
a. T = 2.2 s 

b. 11 s 

c. 39.5 V 

d. 75.8 V 

e. 1.03 s 
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LESSON 13, QUIZ 

1. A device which, in its basic form, consists of 
two conductors separated from each other by 
an insulator is called a: 

a. Battery 
b. Generator 

Motor 
;a: Capacitor 

2. Capacitors are devices that can: 

a. Store electric charge 
b. Be charged and discharged repeatedly 

c. Hold a charge for a long time 
eAll of the above 
e. None of the above 

3. When a potential difference exists between 
the plates of a capacitor, the capacitor is said 
to be: 

a. Discharge 
b. Open 
e: Charged 
d. Disconnected 

4. The equation of Capacitance C in farads is 
 where Q is charge in coulombs 
and E is potential difference in volts. 

a. C = QE 

b. C =—E 

E 
c. C = 

d. C = Q2E 

5. Capacitance is the ratio of the charge stored 
 the voltage across the caPcitor. 

a. Multiplied by 
b. Divided by 

c. Added to 
d. Subtracted from 

6 When a capacitor can store 1 coulomb of 
charge with 1 volt potential difference across 
it, it is said to have of capaçitance. 

a. 10 farads 
b. 1 farad 
c. 0.1 farad 
d. A small value 

7. The charge stored in a capacitor with C 

farads of capacitance and E volts applied is: 

a. Q = CE 
b. Q = CE2 

c. Q —E 

d. None of above 

8. When a capacitor is placed across a battery 
without resistance in the circuit, the capacitor 
charges: 

a. Very slowly 
b. To twice the voltage 
c. Instantaneously 

d. To one-half the voltage 

9 When a capacitor is placed across a battery 
with resistance in the circuit, the capacitor 
charges: 

a. Instantaneously 

b. Much slower than without resistance 
c. To twice the voltage 
d. To one-half the voltage 

10. The capacitive time constant is defined by 
the following equation: 

a. T = R2C 

b. T = CR 

c. T = —R 

d. T = RC 
e. b and d above 

11 When a capacitor and resistor are placed 
across a voltage, the time required to charge 
the capacitor to 63% of the applied voltage 
is called: 

a. The rise time 

b. The discharge curve 
c. The capacitive time constant 
d. The peak value 

12 When evaluating a capacitive time constant, 
the R in the equation is in ohms and the C is 
in farads. As a result T is in: 

a. Seconds 
b. Minutes 
c. Hours 
d. Relative time 

13. The capacitor is considered charged for all 
practical purposes after  time 
constants. 

a. 2 . 
b. 3 
C. 1 
d. 5 
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LESSON 13 — QUIZ 

14. The discharge time constant of a capacitor is 
the same as the charge time constant if: 

a. The voltage is reversed 
b. The circuit is open 
c. The resistor and capacitor are the same 
d. Other paths are removed 

1 5. What is the discharge time of a 10 
microfarad capacitor charged to 10 volts 
shunted by a 1 0 K resistor? 

a. 1 sec 
b. 0.1 sec 
c. 10 sec 
d. 100 sec 

Calculate the following quantities: 

16.  •v‘A.  
2.2MS2 

.47pF 

Time Constant  seconds 

17. 

39pF 

Stored charge coulombs 

18. C= 5pF 

seconds Time to discharge 

33I<S1 

19. 12pF 4pF 6 F 

HH 

Ct 
10pF 

CT, Total capacitance   

20. 

1.'41  

CT, Total Capacitance 
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Lesson 14 

Inductors and the L/R Time Constant 

In this lesson an entirely new type of circuit component — the coi/ 

or inductor — will be introduced and discussed. You will see that the 

behavior of coils in dc circuits may be described in a similar fashion to 
the action of capacitors discussed in the previous lesson. Coils, however, 

act to oppose changes in current, rather than voltage, and store energy 

in a magnetic field, rather than an electrostatic field. The concept of 

the L/R time constant used in describing circuits containing resistance 

(R) and inductance (L) will also be introduced. 
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LESSON 14. INDUCTORS AND THE L/R TIME CONSTANT 

• Objectives 

This lesson gives you a brief introduction to a new type of circuit component that you will see called 
by many names, such as: 

Coil 
Inductor 
Choke 
Solenoid 

The behavior of coils in dc circuits can be described using many of the terms that were introduced to you in 
the last lesson. At the end of this lesson, you should be able to 

1. Sketch the construction of a typical inductor, labeling its basic component parts. Sketch the 
schematic symbols for: 

a. Air or insulating core inductor 

b. Iron core inductor 

c. Powdered iron core inductor 

2. Write a brief description of the magnetic field created by a coil and the key effect this 

magnetic field has on a coil's behavior in circuits. Sketch the magnetic field lines around a 

simple current carrying coil. State the units used to measure the inductance. 

3. Given a schematic for any circuit of the type shown below: 

.13 = 50S2 

10V — L = 8.5H 

a. Calculate the circuit's time constant 

b. Calculate the value of the steady-state current 

c. Calculate the value of the current flowing in the circuit after one time constant 

d. Calculate the time it takes for the current in this circuit to reach its steady-state value 

e. Sketch a graph that shows how the current rises in this circuit from the time the switch 
is closed through five time constants 

f. Write a description of the effect that would occur if the switch is opened after the 

current in this circuit has been allowed to reach its steady-state value. 
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LESSON 14. INDUCTORS AND THE L/13 TIME CONSTANT 

• Coil Construction 
• Iron Core Coil 

Lesson 13 covered one of the most important circuits in electronics — the resistor-capacitor (or RC) 
circuit. In that lesson you were shown how to predict the behavior of a circuit containing a resistor and 

capacitor connected in series. The characteristic behavior of these circuits, especially the characteristic time 
required to charge and discharge the capacitor in RC circuits was discussed. The RC time constant was 
discussed and it was shown how RC circuits may be used to perform many useful tasks in electronics. It was 
also shown how capacitors store charge and energy, and how they can be used to provide large bursts of 
current for short periods of time for special loads requiring such power. 

Now in this lesson, another basic electronic component the "coil," or as it is often called, the 
"inductor," or "choke," will be examined. You will be seeing that the behavior of a coil, or inductor, in a 
circuit is, in many ways, similar to, and in some ways opposite from, the behavior of a capacitor. Puzzling? 
By the end of this lesson, you should have a fairly good understanding of coils and how they operate in 
circuits. 

Coil Construction — To begin, a coil simply 
consists of wire that is wrapped or coiled around a 
"core." The wire may be any size, or length, and 
typical core material may be anything from iron to 

air. The most common schematic symbol for a coil 
looks just like several turns of wire adjacent to one 

another. Figure 14.1 shows the symbol used to 

signify an air core or insulating core coil. Typically, 
cores of this type are used in high-frequency ac 
appl ications. 

Iron Core Coil — If the coil symbol also contains 

two parallel lines as shown in Figure 14.2, an iron 
core coil is indicated. These inductors are typically 

used in lower frequency ac applications and dc 
applications. A typical iron core coil is also shown 

in Figure 14.2. In this type of coil, the core 

material may actually surround the wire and forms 

the most substantial component of the coil. 

Figure 14.1 

Figure 14.2 

INSULATING CORE COIL 

AIR CORE COIL 

r I__ 

SCHEMAT IC SYMBOL FOR AN INSULATING 
CORE OR AIR CORE COIL 

IRON CORE INDUCTOR 

IRON CORE INDUCTOR SCHEMATIC SYMBOL 
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• Powdered Iron Core Coil 

• Wire Inside Coils 

Powdered Iron Core Coil — Figure 14.3 shows a 

schematic symbol indicating a coil that has an iron 
core indicated by dashed lines. These dashed lines 
indicate a coil that has a powdered iron core. A 
powdered iron core coil is used in applications 
where radio-frequency waves are being processed. 
A common use for this type of coil is for the 

antenna in a standard AM radio. 

Wire Inside Coils — What do coils do in dc circuits? 

How do they work? To get into the processes by 
which coils function, it is necessary to focus your 

attention on the individual parts of the coil one at 
a time (Figure 14.4). First, consider the wire 
making up the coil itself. 

Very early in your study of dc electricity, you 
saw how a single strand of conducting wire 

contains billions of free electrons. Normally these 
electrons are moving around in the wire in random 

motion. You have already seen that if a potential 
difference is applied across the wire, electrons 
begin drifting from the negative to the positive 
potential, as discussed earlier. This is the 
phenomenon of electron current flow. 

The action of coils depends upon a 
phenomenon that will be introduced at this point: 

the electromagnetic field. 

POWDERED IRON CORE COIL 
(AM RADIO ANTENNA) 

POWDERED IRON CORE COIL SCHEMATIC SYMBOL • 

Figure 14.3 

Figure 14.4 

WIRE 

os-o a0 
0 -8 ̀c) cr .0 '13  

ELECTRONS IN RANDOM MOTION 

W IRE W ITH POTENTIAL DIFFERENCE 

• '0 -0 '0 --0 
O.-0 so -0 --o 

< ELECTRON FLOW 
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• Electromagnetic Field 
• Electrostatic Field and Lines of Force 
• Wire with Electromagnetic Field 

Electromagnetic Field — Here's a new and 
important fact about electrons in motion: 
"Whenever current flows in a conductor, a 

magnetic field is set up around the conductor" 
(Figure 14.5). A magnetic field is a type of field 

that has some properties similar to that of the 

electrostatic field examined earlier. 

Electrostatic Field and Lines of Force — Recall 
that in an earlier lesson it was shown that an 
electrostatic field exists in the area around any 
charged body, and that this field may be visualized 
with electrostatic lines of force, as shown in 
Figure 14.6. Considerable time has been spent 

discussing the effects of the electrostatic field on 
electrons. 

Wire with Electromagnetic Field — An 

electromagnetic field is a field which surrounds any 
current-carrying conductor, and can also be 
visualized by using what are called "magnetic lines 

of force." The magnetic lines of force go right 
around the current, and thus around the wire in 
little rings as shown in Figure 14.7. The center of 

these rings is the current itself. 

"WHENEVER CURRENT FLOWS THROUGH A 
CONDUCTOR, A MAGNETIC FIELD IS SET UP 
AROUND THE CONDUCTOR." 

Figure 14.5 

Figure 14.6 

DLECTRON CURRENT--
/4/ e MAGNETIC LINES OF FORCE 

Figure 14.7 
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• Magnetic Lines of Force 

• Direction of Lines of Force 
• Simple Coil 

SMALL ELECTRON CURRENT 

Figure 14.8 

y- .. " `. . .....  
LEFT HAND 

Figure 14.9 

LARGE ELECTRON CURRENT 

e WIRE CARRYING 
ELECTRON CURRENT 

COMPASS NEEDLES PLACED NEAR 
WIRE ALIGN WITH FIELD 

MAGNETIC FIELD 

<CONVENIIONAL CURRENT 

RIGHT HAND 

Simple Coil — In most current-carrying wires, the 

surrounding magnetic field is small and goes 
unnoticed. However, if the wire were to be 
wrapped into a coil, the wire would be 
concentrated into a smaller area, thus 

concentrating the lines of force around it into a 

smaller area, as shown in Figure 14.10. This 
increases the strength of the magnetic field, 
especially inside the loop. 

Magnetic Lines of Force — An electromagnetic 
field is created around any wire carrying current. 
The larger the current in the wire, the stronger the 
field will be. In a diagram such as shown in 
Figure 14.8, this is represented by drawing more 
and denser lines of force. The magnetic field 

around a current-carrying wire may be detected 
with a small compass needle placed near the wire. 

The compass needle, being magnetized, will line up 

with the magnetic lines of force near the wire. The 
magnetic lines of force are assigned a direction 

(indicated by the small arrows on them). This 
direction is the direction that the north pole of the 

compass will point when placed into the field. 

Direction of Lines of Force — To find the direction 
of the field lines, you can use one of the "hand 
rules." In Figure 14.9, a wire is shown with 
electron current flowing from left to right (this is 
equivalent and identical to conventional current 
flowing from right to left). To find the direction of 
the magnetic field, you mentally grasp the wire 
with your left hand, the thumb pointing in the 
direction of the electron current. Your fingers will 

curl around the wire, pointing in the direction of 
the magnetic field. (Do the same thing, only with 
your right hand, if you are considering 
conventional current; the magnetic field direction 

will be the same.) 

ELECTRON n, 
CURRENT , 

Figure 14.10 
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• Multiple Loops 
• Large Coil 

• Bar Magnet 

Multiple Loops — If the wire is looped two or more 

times, an interesting and very useful effect occurs. 
The lines of force produced by the first loop of 
wire join together and reinforce the lines of force 

produced by the second loop, strengthening the 
magnetic field inside the coil as shown in 
Figure 14.11. 

Large Coil — If many loops of current-carrying 
wire are wrapped into a coil, a strong 

electromagnetic field can be created inside the coil, 
as shown in the cutaway view in Figure 14.12. 

Bar Magnet — A coil, when carrying current, 
contains a strong magnetic field. Because of this, a 
coil carrying current will behave just like a regular 
bar magnet (Figure 14.13). 

Most of you have probably seen magnets and 
are familiar with how they attract metal objects. A 
coil, when carrying current, does the same thing 

with the added advantage that it may be turned on 
and off. With the current turned on, a piece of 

steel may be drawn into the coil. If no current 
flows,through the coil, no magnetic field exist and 
metal objects will be released. 

eie 

ELECTRON 

CURRENT 

Figure 14.11 

CONCENTRATED MAGNETIC LINES OF FORCE 

Figure 14.12 
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• Relay 
• Automotive Starting System 

Relay — This feature makes coils useful in many 
applications. The device, shown in Figure 14.14, is 
called a "relay." In a relay, a current is used to 
create a magnetic field in a coil which causes the 
coil to draw in a metal bar connected to a switch. 
The current may be made to open or close the 
switch, as the application requires. So by using a 
relay, one current (called the "control current") 
may be used to switch an entirely different 
current. 

NEGATIVE GROUNDED 
TO CAR MAN 

TIll. 
CIOSES 
CONTACTS 
WHEN 
DOWER 

Figure 14.15 
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SPRING HOLDS 
CONTACTS OPEN 
UNTIL COIL 
ENERGIZED 

Figure 14.14 

MOVING METAL ARM 
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RELAY 

COIL 

..--._ I CIRCUIT APPLIES 
CURRENT TO COIL & 
CONTROLS SECOND 
CIRCUIT 

Automotive Starting System — Relays find many 
uses in a variety of applications in electricity and 
electronics. One typical situation in which they are 
used is where a very large current needs to be 
switched on and off from a remote location. One 
such situation is in the starter circuit of your 
automobile. The starter motor for most cars is an 
extremely large load: drawing currents of 100 
amperes or more for short intervals. It would be 
impractical and undesirable to run a large length of 
heavy cable capable of handling 100 amps to your 
dashboard to a heavy-duty key switch. Instead, a 
special relay is actually used to switch the starter 
motor current. This relay is commonly called a 
solenoid (pronounced "soul-annoyed"), and may 
be mounted right in the casing with the starter 
motor or separately elsewhere in your car. The 
word solenoid is another one of those words that is 
often used to mean different things. It is used in 
different contexts to mean a coil, a relay, or an 
electromagnet, depending on what is being 
discussed. At any rate, the solenoid in your car 
works as described in Figure 14.15. When you turn 
your ignition key switch, it turns on only a small 
"control current" which activates the windings of 
the solenoid coil. The solenoid then completes the 
circuit, handling the very large current that cranks 
over your engine. (At the same time, another coil is 
at work, the spark coil, which will be discussed 
later in this lesson.) 
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• Effects of Coils in Circuits 

• Current Increase 

Effects of Coils in Circuits — Up to this point you 
have seen that when current flows through a coil, a 
magnetic field builds up in the coil. This magnetic 
field may be used for a variety of purposes, as 
mentioned, but its presence in the coil has some 

other interesting effects on the behavior of the 
circuit containing the coil. 

Anytime you try to force current through a 
coil, a magnetic field must build up inside it. The 
key point is that it takes a certain amount of time 

to build up this field. Because of the mechanisms 
involved in this field buildup (Figure 14.16), the 

rise of the current in circuits containing coils is 
slower. Coils act to oppose changes in current. 

Current Increase — Exact details of the mechanism 
by which coils oppose or fight changes in current 
will be discussed at great length in later courses. 
One way to quickly visualize what is going on is as 
follows. Magnetic fields (like electric fields) store 
energy inside them. (Energy is actually the ability 
to do work. In capacitors you saw how the electric 
field of a charged capacitor stored energy and gave 

up this energy when the capacitor was discharged). 

A magnetic field may actually be considered 
to be an energy storage device that is present in a 

circuit whenever a coil is connected. The workings 
of this system may be visualized as shown in 

Figure 14.17. When current tries to increase 
through the coil, the coil will take some energy 

from the circuit and dump it into the magnetic 

field. The current now finds itself building up thç 

magnetic field as it tries to start flowing through 
the circuit. As a result of this magnetic field 
buildup, it takes the current longer to build up in 
the circuit with the coil present than with no coil. 
For this reason, it may be said that coils fight or 
oppose current increasing through them. Again, it 
takes longer for current to build up in a circuit 
containing a coil than it does in a circuit with no 
coil. 

SINCE MAGNETIC FIELD TAKES A CERTAIN TIME TO BUILD UP - 
COILS TEND TO SLOW UP THE RISE IN CURRENT IN CIRCUITS 
THAT CONTAIN THEM 

INSTANT CURRENT RISE 

Figure 14.16 
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SLOW CURRENT RISE 

IRCREASE CTT 

Figure 14.17 
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• Steady Current Flow 

• Current Decrease 

• Coil Rule 

Steady Current Flow — After a period of time, the 

magnetic field increases to a maximum value, and 
the current in the circuit reaches a steady-state 
value. Here's another important point: As long as 

the current is not changing, the magnetic field 
remains built up at a steady-state (Figure 14.18). 

When the magnetic field is in a steady-state, it has 
no effect on the current flowing in the circuit. In a 
steady-state condition, the only thing that affects 
the amount of current flowing in the circuit is the 

total resistance present (and the applied voltage). 

Current Decrease — If the switch is opened in a 

circuit containing an inductor, the circuit current 
will try to rapidly fall to zero. At this point, the 
energy stored in the coil's magnetic field gets 
dumped back into the circuit and tries to help keep 
the current flowing. It appears as if the coil saw the 
current trying to fall and flushed the energy into 
the circuit to try to keep current flowing, as 
visualized in Figure 14.19. So it is said that a coil 
also acts to fight or oppose any current decrease 
through it. It takes longer for current to fall to 

zero in a circuit containing a coil than it does in a 
circuit with no coil. 

Coil Rule — Think about the actions of a coil for a 
moment. Through the actions of the magnetic 

field, a coil acts to oppose any current increase or 
decrease through it. It may be said that coils act to 
oppose any change in current through them 
(Figure 14.20). 

Figure 14.18 
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Figure 14.19 
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Figure 14.20 
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• Energy Storage 
• Capacitor Action (Charge) 
• Capacitor Action (Discharge) 

Energy Storage — As you will recall from the last 
lesson, a capacitor stores electrons. The imbalance 

of electrons (many on one plate, very few on the 
other) produces an electrostatic field in the region 
between the plates. It was stated that energy was 

stored in a capacitor in this electrostatic field. This 
stored energy was demonstrated to you as it was 
released in a capacitor discharge. Now, it has been 
seen that in a coil, energy is stored in the 
electromagnetic field created by a current flowing 
through it (Figure 14.21). Because of these similar 

effects, the voltage and current characteristics of 
coils and capacitors have an interesting 

interrelationship. 

Capacitor Action (Charge) — Capacitors in circuits 
oppose the change of voltage across the circuit. 
When the switch in the circuit of Figure 14.22 is 
thrown to position A, a voltage is applied to the 
RC circuit. The capacitor takes a certain amount of 
time to charge up, with the voltage across it rising 
slowly. When the voltage across the capacitor 
equals the applied voltage, no further current flow 
occurs in the circuit, and the capacitor is said to be 
fully charged. 

Capacitor Action (Discharge) — When the switch in 
this circuit is thrown to position B (Figure 14.23), 
the applied voltage is removed and the capacitor 

discharges, giving up its stored charge and energy. 

The voltage across the capacitor falls gradually to 
zero. Therefore, it may be said that a capacitor 
fights changes in voltage across it. 

As has been discussed, a coil opposes changes 
in the current flowing through a circuit by means 
of storing and giving up the energy contained in its 
magnetic field. The process by which a coil fights 
changes in current is called electromagnetic 
induction. A coil sets up a voltage called an 
induced voltage, which actually acts to fight 

against changes in current. In later courses on 

Figure 14.21 

Figure 14.22 

Figure 14.23 
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• Demonstration Circuit Schematic 

alternating current, induction and induced voltage 

will be discussed in more detail. For now, just 
remember that a coil tends to slow up or oppose 

changes in current through it. 

Demonstration Circuit Schematic — To help you 
visualize how a coil operates in a dc circuit, 
consider what would happen in a simple dc 
demonstration circuit like the one shown in 
Figure 14.24. In this circuit schematic, you have a 
coil connected in series with a battery, a switch 
and a resistor. To simplify the analysis of the 
circuit at first, assume that the coil has no 
resistance and that all of the resistance in the 
circuit is supplied by the resistor, which has a 
labeled value of 500 ohms. The battery voltage is 
6 volts. 

As has been said, if the switch is thrown to 

position B2, so that the battery is connected, the 
coil will fight or oppose the change or buildup in 
the circuit current. After the current is finished 

changing and the magnetic field is at its maximum 
value, the coil will no longer oppose the current. 

The coil itself opposes the current change, but not 

the current itself. So once the current has reached 
its final steady-state value, the only opposition to 
it will be the 500 ohms of resistance in the circuit. 

- 6V 

Figure 14.24 
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• Ohm's Law (I) 
• Current Rise in Inductive Circuits 

• Current Fall in Inductive Circuits 

Ohm's Law (I) — Because the only factor 

controlling the circuit's steady-state current is the 
circuit resistance, Ohm's law can be used to find 
this current, as shown in Figure 14.25. After the 
magnetic field around the coil has reached its final 
value, you can use Ohm's law in the form I -= E/R 

to calculate the current. Substituting, I = 6/500, 
which equals 12 milliamps. Keep in mind what will 

happen when the voltage is applied to the circuit of 
Figure 14.24. The current will slowly rise, finally 

reaching this steady state value of 12 milliamps. 

Current Rise in Inductive Circuits — Trace this 
process step by step. When the switch is first 
switched to position B2, connecting the battery, 
the current jumps up from zero and starts to flow. 
The coil opposes this drastic change in current by 
taking some circuit energy and storing it in its 
magnetic field. Gradually, as the magnetic field 
gets completely built up and reaches a steady-state, 
the resistor provides the only opposition to current 
flow in the circuit. 

At that point, the circuit current has reached 
a steady-state and the final current flowing is 12 
milliamps as shown in Figure 14.26. 

Current Fall in Inductive Circuits — If the switch in 

this circuit is instantly switched to position B1, the 
circuit current tries to immediately change back to 

zero. The coil will fight this change by dumping 
energy back into the circuit from its magnetic 

field, thus the current falls gradually to zero as 
seen in Figure 14.27. Coils act to oppose any 
changes in current. 

Figure 14.25 
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• Demonstration Circuit 

Demonstration Circuit — Figure 14.28 is a line 
drawing of what an actual circuit of the type being 

examined would look like in your laboratory. 

When the switch is closed, current flows from the 
power supply through the switch, through the 

100-ohm resistor, through the coil, and then back 
to the battery. You will notice back in 

Figure 14.27, the schematic diagram indicated that 
a 500-ohm resistor was connected in series with the 
coil. In an actual circuit of this type, probably 
about 400 ohms of resistance would be contained 

in the large amount of wire wound inside the coil. 
The coil probably contains about 100 feet of fairly 

small gage wire, so it is reasonable to expect the 
coil to have a considerable resistance. Keep this in 

mind. You must remember to include the internal 
resistance of coils when analyzing practical circuits. 

As seen in the schematic of Figure 14.27, the 

resistance oía coil appears to be connected in 
series with the coil itself. So the actual circuit 
represented by this schematic diagram would 
consist of a 100-ohm resistor in series with the coil 
for a total equivalent series resistance of 500 ohms. 

In order to actually observe the effect of the 
coil in the circuit, a "storage oscilloscope" may be 

connected across the 100-ohm resistor. If you 
remember, the storage oscilloscope was used in the 
last lesson. This type of "scope" will measure and 
plot the voltage across this resistor on its vertical 

axis, and time on its horizontal axis. 

Stop and consider what is being performed, 
keeping in mind Ohm's law. The oscilloscope will 
now plot the voltage across the resistor versus time. 

The voltage across any resistor, however, is directly 

proportional to the current flowing through it. The 
graph plotted by the storage scope will, in effect, 

be a picture of how the current in the circuit 
behaves as time goes on. On the screen will be a 
graph representing current on the vertical axis, and 

time on the horizontal axis. 

Z POSITION 
(MAKE BEFORE BREAK) 
SWITCH 

Figure 14.28 

COP_ 
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• Current Rise in L/R Circuit 
• Factors Affecting Time Constant in Circuits Containing Coils 
• Ohm's Law 

Current Rise in L/R Circuit — When the switch is 

thrown so that the 6-volt power source is applied 
to the circuit, the waveform shown in Figure 14.29 
is produced. Immediately the shape of this curve 
should look somewhat familiar to you. It is a 
universal time constant graph, similar to the graph 
produced by an RC circuit, with some exceptions. 
Figure 14.29 is a plot of current flowing in the 
circuit versus time, instead of voltage as it was 
when you were examining a capacitor. A capacitor 

opposes change in voltage across a circuit, where a 

coil opposes any change in current through a 
circuit. In series circuits with inductance and 
resistance, the current rises with a characteristic 

"time constant" type of behavior. 

Factors Affecting Time Constant in Circuits 

Containing Coils — Circuits containing inductance 
demonstrate a time-constant type of behavior 
similar to the action you have seen for RC circuits. 
Previously it was seen that the amount of 
resistance in the circuit and the size of the 
capacitor (in farads) were the two factors that 
affected the time constant for an RC circuit. In a 
circuit containing a resistor and a coil, you will see 
that the time constant behavior again depends on 
how much resistance is present in the circuit, and 
also on how well the coil does its job of slowing up 
current changes (Figure 14.30). Focus your 
attention on each of these factors one at a time. 

Ohm's Law — Consider the effect of resistance on 

the time constant. If more resistance is added to 
this circuit, what will be the result? 

You know from Ohm's law that more 
resistance in a circuit causes less total circuit 
current to flow (Figure 14.31). 
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Figure 14.29 
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• Time Constant and Resistance 
• Inductance 

Time Constant and Resistance — With increased 
resistance in the circuit, when the power supply is 
turned on, the change from zero current to 

maximum current will be less as shown in 
Figure 14.32. Since the change in current flowing 

is less, the coil will offer less opposition to the 
change in current. 

If the coil offers less opposition, the current 
flowing in the circuit will reach its maximum value 
in a shorter period of time, thus providing a shorter 
time constant. So the higher the circuit's series 

resistance in a circuit containing a resistor and a 
coil, the shorter the time constant will be. 

Inductance — What other factor will affect the 
current buildup? The better a coil is at storing 
energy, the more it will be able to oppose changes 
in current through a circuit. 

The ability of a coil to store energy and fight 

changes in current flowing through it is specified 
by what is called its "inductance." It is for this 
reason that coils are often called inductors. The 
symbol you will see used to indicate inductance in 
formulas is "L." The units used to measure 
inductance are called "henries," named after the 
American scientist Joseph Henry. The unit henry is 

abbreviated "H". So the mathematical statement: 
"The inductance of this coil is 10 henries" may be 

written in shorthand form L = 10 H, as shown in 
Figure 14.33. The more henries of inductance a 

coil has, the more energy it will store in its 

magnetic field. As a result, the coil will be better 

able to oppose current changes through it. The 

inductance of a coil depends on how it is 
constructed. In general, the more turns of wire a 

coil has, the bigger the cross-sectional area, and the 
shorter its length is, the bigger the coil's inductance 
will be. The core material used in its construction 

also drastically affects coil inductance. In general, 
coils that employ an iron core can pack a lot more 
inductance in a smaller space than is possible with 
air or insulating cores. More details on inductance 
and the mechanics of how coils fight current 

change are really part of an ac course, and 
therefore will not be covered in this course. 

52 
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• L/R Time Constant Formula 
• RC Circuit: First Turned On 

In circuits containing coils and resistors (often 
termed RL or LR circuits), the time constant will 
depend directly on the number of henries of 
inductance present. The more inductance, the 
longer the time constant, and vice versa. As you 
have already seen, the time constant depends 
inversely on the resistance. The more series 
resistance in the circuit, the shorter the time 
constant will be, and vice versa. 

L/R Time Constant Formula — In formula form, 
the time constant for an R L circuit can be 

expressed as: T = L/R. In the formula, T represents 
time constant in seconds; L is inductance in 
henries, and R is the series resistance in ohms, as 
shown in Figure 14.34. 

RC 
CIRCUIT 

FIRST TURNED ON 

E,R APPLIED VOLTAGE 

T•RC 

I 2 3 4 5 I 2 3 4 5 
TIME (TIME CONSTANTS, 

Figure 14.35 

TIME TIME CONSTANTS, 

T =1/R 
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L= INDUCTANCE IN HENRIES 

R = RESISTANCE IN OHMS 

Figure 14.34 

RC Circuit: First Turned On — You have now seen 

that inductive and capacitive dc circuits behave in 

somewhat similar ways, with a time constant 
associated with each. As a review, examine the 

behavior of both of these type circuits, during the 
various phases of their operation. First, consider 

what happens to the circuits in Figures 14.35 and 
14.36 when power is first applied. In the RC 
circuit, >the voltage across the capacitor starts at 

zero and gradually rises until it reaches the applied 

voltage. The current in the RC circuit flows only a 
short time necessary to charge the capacitor (five 
time constants). 
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• RL Circuit: First Turned On 
• RC and RL Circuits: Steady-State 
• Voltage Fall: RC Circuits 
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RL Circuit: First Turned On — In the RL circuit 
(Figure 14.36), the current in the circuit starts at 
zero and rises slowly to the steady-state value E/R. 
The voltage across the coil behaves in an interesting 
fashion. It starts out equal to the applied voltage 
when the switch is first closed, and gradually falls 
as the steady-state is reached. If the coil had no 
internal resistance, the coil voltage would gradually 
fall to zero. If the internal resistance of the coil is 
RL, the coil's voltage will fall to a value equal to 
the steady-state current times RL or I X RL. 

RC and RL Circuits: Steady-State — As has been 
seen, when the steady-state is reached in the RC 
circuit (after five time constants as shown in 
Figure 14.37), no more current is flowing in the 
circuit. At this point, the voltage across the 
capacitor equals the applied voltage. The capacitor 
stores energy in an electrostatic field between its 
plates. In the RL circuit, after five time constants, 
the circuit current has risen to a value equal to 
E/R. The coil's voltage would be zero if the coil 
had no internal resistance. Actually, the voltage 
across the coil will be equal to the circuit current 
times the coil's internal resistance, RL. The coil 
stores energy in the steady-state in its magnetic 
field. 

Voltage Fall: RC Circuits — If the switch in the RC 
circuit shown in Figure 14.38 is thrown after the 
capacitor has been allowed to reach steady-state, 
the capacitor will give up its stored energy. A burst 
of current will flow for a short while, and the 
capacitor's voltage will gradually fall to zero. 
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• Current Fall: RL Circuits 
• Example: Time Constant Calculation 
• Current Rise 
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Example: Time Constant Calculation — You are 
fairly familiar with the RC time constant and how 

it is calculated. Some examples of how the L/R 
time constant of a circuit such as that shown in 
Figure 14.40 can be calculated. 

The time constant of this circuit can be found 
by substituting the circuit values into the 
time-constant formula, T = L/R. "L" is equal to 
8.5 henries and R is 500 ohms. Performing the 

necessary calculations, T, the circuit time constant, 
is equal to 0.017 second, or 17 milliseconds. This 
means that it takes 17 milliseconds for the circuit 
current to rise to 63% of its steady-state value. 

Current Rise — To calculate the steady-state value 

of current in this circuit, use Ohm's law in the 
form I = E/R, as mentioned before. Here I = E/R = 

6 V/500 2 = 12 mA. So, the circuit current rises as 
shown in Figure 14.41. 

As in RC circuits, this L/R circuit also 
requires five time constants before the 
"steady-state" current value is reached, and no 

further change is taking place in the circuit. In this 
case, five time constants equal 5 X 17 milliseconds 
or 85 milliseconds. The graph shown in 

Figure 14.41 is a picture of the way a storage 
oscilloscope trace would illustrate the behavior of 
this circuit. 

Current Fall: R L Circuits — If the R L circuit 
shown in Figure 14.39 has been allowed to reach 

the steady-state and then the switch is instantly 
switched to the short position, the current will fall 
gradually to zero. The coil voltage will jump to E 

and then fall off. Notice that the switch must be 
"instantly" switched to do this. In practice, if you 

built a circuit such as this and attempted to switch 
the current off, a spark would probably appear at 
the switch as soon as the circuit was broken. A 

special "make before break" switch can be used to 

avoid this. This "sparking" effect will be explained 
later in the lesson. 
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• Current Fall with Resistor 
• L/R Time Constant for an Open Circuit 

Current Fall with Resistor — If the switch is 
instantaneously moved to position B1 as shown in 

Figure 14.42, the coil is connected in series with 
500 ohms of resistance, and the current source is 

removed. When this is done, it will be seen that the 

current follows a reverse time constant behavior, 
and gradually falls to zero, after five time 
constants. After one time constant, the current has 
fallen to 37% of its final value. 

Once again, when the drop in current is 

discussed, it is carefully specified that the switch 
must be "instantaneously" switched to position 

B1. This is because most switches would open the 
circuit for a little while before the contacts reached 
position B1. Opening a current-carrying circuit 

containing a coil produces an interesting, 
important, and somewhat drastic effect. As has 

been said before, a coil opposes changes in the 
current through a circuit. The more drastic the 
current change is, the greater the coil's opposition 
to it will be. When a circuit containing a coil is 

broken or opened, an infinite resistance is placed in 
the circuit. Stop for a moment and think about the 
effect this has on the time constant of the circuit. 

L/R Time Constant for an Open Circuit — Using 

the time constant formula T = L/R, notice that 

when R becomes equal to infinity, then the time 
constant for the circuit will become zero, because 
any number divided by infinity is zero, as shown in 
Figure 14.43. Now think: with a zero time 

constant, the current in the circuit will try to fall 
to zero instantly. This is a very drastic current 
change, and as you recall, a coil will oppose any 
current change and attempt to keep current flow 
constant through a circuit. The more drastic the 
change, the greater the coil will try to oppose it. 

Figure 14.42 

Figure 14.43 

I • FIR • 12m4 

1 2 3 4 5 
ITrts 34ms 51ms 68ms 85ms 

TIME TIME CONSTANTS) 

T = L/R 

8.5 H  
T - 

00 (INFINITY) 

T =0 (ZERO SECONDS!) 
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• Ohm's Law in Open Inductive Circuit 
• Inductive Kickback Circuit 

Ohm's Law in Open Inductive Circuit — However, 
the open circuit has an infinite resistance. In order 
to maintain any value of current at a constant level 
through an infinitely large resistance, the coil 
would need an infinitely large voltage. In theory, 
the coil should produce an infinite voltage as 
shown in Figure 14.44. In practice, that is just 
what the coil tries to do. The current flowing in 
the circuit before the switch was opened was 
17 milliamps. When the circuit is opened, the coil 
will attempt to maintain current flow at 

17 milliamps. In order to do this across an infinite 
resistance, the energy contained in the coil's 
magnetic field is converted to a very high voltage, 
perhaps thousands of volts. The result is usually a 

spark somewhere in the circuit, probably at the 
switch. This phenomenon is affectionately called 

the "kick" of a coil. (If you should ever have you 

body connected across a current-carrying inductor 

when the circuit is opened, you will know how it 
got that name.) 

Inductive Kickback Circuit — To illustrate this high 
voltage "kick," a circuit may be connected as 
shown in Figure 14.45. Two special neon glow 

lamps are now connected across the inductor and 
resistor in a series RL circuit, just like the one 
investigated previously. This circuit will 
demonstrate the high voltage produced by a 
current-carrying coil when the circuit is opened. 
Each of the neon lamps requires about 70 to 75 

volts in order to turn "on" and flash. Together 
they will require 140 volts or more to light at all. 

Until the voltage across the lamps reaches at least 
140 volts, these two lamps will not operate. Notice 

that the power supply in this circuit is the same 

one considered earlier. It has an output of only Figure 14.45 

E=I X R 

E =17 mA X00 

E=00V 

Figure 14.44 

70V 

70V 
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• Coil and Capacitor "Special Effects" 

6 volts. When the switch is closed, 6 volts are 
applied to the circuit. Current flow gradually 

builds up until after five time constants, 

17 milliamps of steady-state current flows in the 
circuit. At this point, the magnetic field has 
completely built up in the coil. The bulbs cannot 
light as yet because up to this point there is no 
voltage in the circuit anywhere near 140 volts. 

However, if the switch in the circuit is opened, 
energy from the coil's magnetic field will be 

abruptly dumped back into the circuit in the form 
of a very high voltage. Both of the neon bulbs will 

flash, indicating that a voltage of at least 140 volts 
was produced. In actuality, a much higher voltage 

than that is produced in this circuit. 

Coil and Capacitor "Special Effects" — The high 
voltage "kick" effect is very important and finds 

many applications in electricity and electronics. 
You have now seen that a coil can produce a burst 
of very high voltage for a short period of time. This 
is similar to the effect shown in the preceding 
lesson, where a capacitor was used to produce a 
large burst of current for a short time 

(Figure 14.46). 
Both of these effects have many uses in 

electrical applications. Coils are used to produce 
high voltages for firing fluorescent lights, in electric 
fences, and as was seen in an earlier lesson, for 

firing the spark plugs in an automotive ignition 
system. As a technician, it is necessary for you to 
keep in mind that sometimes the high-voltage 

"kick" a coil produces can be an undesirable side 

effect of having a coil in a circuit. For example, a 
circuit containing a relay may be damaged when 

the relay is shut off and a high-voltage burst 
appears across it. For this reason, relays often have 
special protective devices across their terminals to 

short-out and eliminate this high voltage. More 
than one expensive piece of electronic gear has 
been "wiped out" by high voltages from relays and 
other inductive devices. 

A COIL: CAN PRODUCE A BURST OF VERY 
HIGH VOLTAGE. 

A CAPACITOR: CAN PRODUCE A LARGE 

BURST OF CURRENT. 

Figure 14.46 

14-24 



• Automotive Ignition System 
• Summary 

Automotive Ignition System — You have seen a 

coil in action in an earlier lesson in this course; a 
portion of an automobile electrical system was 
shown. Your ignition system contains an "ignition 
coil" which produces the spark for your spark 
plugs, as well as an undesirable side effect. 
Figure 14.47 shows the basics of the circuit. The 
"points" in your ignition system perform the same 

function as the switch that provides current to this 
coil. 

When the "points" in an automobile engine 
close, current flows through the ignition coil and 

builds up the magnetic field inside it. The coil is 
designed so that when the points open, this 
magnetic field inside the coil collapses, producing a 
high-voltage arc or spark that appears across the 

spark plug. In addition, since the points are part of 
an inductive current-carrying circuit, when they 

open the circuit, an electrical discharge or spark 

can be expected to appear across the points also. 

Unfortunately, this is not a good or desirable effect 
and can cause the points to become burned and age 
rapidly. 

To stop the arcing across the points, a 
component that opposes a change in voltage can be 
inserted across them and control the action of the 
spark. This is the reason a capacitor is found in an 
automobile distributor connected directly across 
the points. The capacitor prevents the coil's 
induced voltage from damaging the points. This 
capacitor is often called a "buffer" capacitor, and 

capacitors of this sort are often employed where a 
switch or a "set of points" is used to interrupt the 

magnetic field produced by a coil. 

Summary — In this lesson a new electrical 

component, the coil, and the L/R time constant 
have been introduced and discussed. You have seen 
what coils are and examined the key factors that 

affect their behavior in dc circuits. In many ways 
coils are seen to operate in "reverse" fashion to 
capacitors. As will be seen in any ac circuits course, 

and later electronics courses, capacitors and 

inductors are very useful and integral parts of 
almost every electronic circuit. In your ac courses, 

you will explore the reasons why inductors behave 
the way they do in greater detail. 

Figure 14.47 

"BUFFER 
CAPACITOR" 

'POINTS' 
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LESSON 14. INDUCTORS AND THE L/R TIME CONSTANT 

E.25V 

• Worked Through Examples 

1. Describe the magnetic field around a simple coil of the type shown in the figure below. What is the 
key effect of a coil's magnetic field on the behavior of coils in dc circuits? 

ELECTRON 
CURRENT 
OUT 

ELECTRON 
Ç. CURRENT 

IN 

LINES OF FORCE 

Solution: A magnetic field surrounds any wire carrying current. When this wire is wound into a coil, 
the magnetic field is concentrated inside the coil as shown by the magnetic lines of force drawn in the 
figure. This concentrated magnetic field is in effect an energy storage reservoir. Energy is stored when 

current attempts to increase through the coil, and this energy is released back into the circuit when 
current attempts to decrease through the coil. For this reason, coils are said to oppose changes in 
current in circuits. 

2. Find the following values for the circuit shown below: 

a. Time constant 

b. Maximum steady-state current 

c. Voltage across the resistor after two time constants 

F
R
A
C
T
I
O
N
 C
IT
 M
A
X
.
 "
E
"
 O
R
 
"I
" 

10 

9 

8 

7 

6 

5 

.4 

.3 

.2 

1 

95.e. 
98 -,,, 89.;..z. 

86% 

c 8RENT BuiLoup cuRvE 

6-r, 0 63,,,„ 

39•;,. , 37% 

— curiRENT DEcAy cuRvE 

14% 

5% 
2% 

1% 

15 2 25 3 

TIME (IN TIME CONSTANTS) 

4 5 
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• Worked Through Examples 

The time constant for this circuit may be found by using the inductive time constant formula, T = L/R. 

In this circuit, L is equal to 5 henries and R is equal to 820 ohms. 5/820 = 0.0061 second, or 6.1 
milliseconds. This is one time constant for this circuit. Five time constants are required for the circuit 

to reach its steady-state condition. The maximum steady-state current in an inductive circuit is 

determined by using Ohm's law. The total voltage, E (here 25 volts), must be divided by the total 
circuit resistance RT to give you the steady-state current. In this circuit, the total resistance is taken 

to be 820 ohms, the value of the resistor performing the calculation: 25 V/820 ≤ = 30.5 mA. This 

value of current will be flowing in the circuit after five time constants. 

The value of current flowing after only two time constants may be found by using the universal time 
constant graph. First, locate the two time constant mark on the horizontal line. Trace the graph line 

up until it intersects the "current buildup" curve. The intersection point is labeled 86%. This means 
that at this point, the circuit current is at 86% of the steady-state value. So, the current value at 
2 time constants may be found by multiplying 0.86 X 30.5 mA. The current flowing after two time 
constants is equal to 26.2 mA. The value of the current at any time constant point may be determined 

by using the universal time constant graph in the manner just presented. To find the voltage across 
the resistor at the end of two time constants, multiply the current at that point (26.2 milliamps), times 

the resistance (820 ohms), to get your answer (21.5 volts). 

3. Find the following values for the circuit shown below: 

a. Time constant 

b. Maximum steady-state current 

c. Voltage across the resistor after 2 milliseconds (2 ms). 

27000. 

112H 

E -5V 

F
R
A
C
T
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61 . 63'. 
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CURRENT DECAY CURVE 

14% 

2% 

15 2 2.5 3 

TIME (IN TIME CONSTANTS) 
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• Worked Through Examples 

Solution: 

a. T = L/R 

T = 12/2700 

T = 4.44 ms 

b. ET/AT = IT 

5/2700 = 1.85 mA = steady-state current 

c. To find the circuit current at 2 milliseconds, the first thing to do is locate 2 milliseconds on the 
horizontal axis of the time constant graph. This axis of the graph is measured out in terms of time 

constants. You must get the chart to read out in seconds. This may be done by dividing 2 milli-
seconds by 4.44 milliseconds, to determine the exact percentage 2 milliseconds is as compared to 
4.44 milliseconds. Two ms/4.44 ms = 0.45. In terms of time constants, 2 milliseconds is equal to 
0.45 (or 45%) of one time constant. Locate 0.45 on the horizontal axis of the graph. Trace 
upward until that graph line intersects the current buildup curve. The intersection occurs at 
approximately 37%. This indicates that the current flowing at this point is 37% of the steady-

state current, or 0.37 X 1.85 mA which is equal to 0.68 mA. To find the voltage across the 
resistor, multiply this current (0.68 milliamps) times the resistance (2700 ohms) to yield the 
voltage (1.84 volts). 
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LESSON 14. INDUCTORS AND THE L/R TIME CONSTANT 

• Practice Problems 

Solve the following problems related to inductance and the UR time constant, using the time constant 
formula and the universal time constant graph given below. Fold over the sheet to check your answers. 

Depending upon the approach you use in solving these problems and how you round off intermediate 
results, your answers may vary slightly from those given here. However, any differences you encounter 
should only occur in the third significant digit of your answer. If the first two significant digits of your 
answers do not agree with those given here, recheck your calculations. 

Fold Over 

2. 

F
R
A
C
T
I
O
N
 O
F
 M
A
X
.
 "
E
"
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R
 
"I
" 

1 0 

9 

7 

6 

5 

4 

3 

2 

5 1.5 2 25 3 

TIME (IN TIME CONSTANTS) 

o 

L 2541H 

16H 

15(X) 

98% 99% 

2 

4 

Circuit time constant =   

'max =   

Voltage across the 150-kilohm resistor 

after two time constants =   

Circuit time constant =  

'max =  

Voltage across the 150-ohm resistor 

after 50 milliseconds =   

14-31 



• Practice Problems 

Answers 

1. Circuit time constant = 167 nanoseconds 

'max = 66.7 microamps 

Voltage across the 150-kilohm resistor 

after two time constants = 8.6 volts 

2. Circuit time constant = 107 milliseconds 

'max = 33.3 milliamps 

Voltage across the 150-ohm resistor 

after 50 milliseconds = 1.86 volts 
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• Practice Problems 

Fold Over 

3. 

4. 

5. 

R=5oon, Circuit time constant =   

'max =  

Voltage across the 500-ohm resistor 

after 1 millisecond =   

Circuit time constant =  

I max =  

Voltage across the 100-kilohm resistor 

after three time constants =   

Circuit time constant =   

'max =   

Voltage across the 750-ohm resistor 

after 25 microseconds =  
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• Practice Problems 

Answers 

3. Circuit time constant = 500 microseconds 

'max = 24 milliamps 

Voltage across the 500-ohm resistor 

after 1 millisecond = 10.3 volts 

4. Circuit time constant = 25 microseconds 

1 milliamp 'max = 

Voltage across the 100-kilohm resistor 

after three time constants = 95 volts 

5. Circuit time constant = 13.3 microseconds 

'max = 26.7 milliamps 

Voltage across the 750-ohm resistor 

after 25 microseconds = 17 volts 
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LESSON 14 — QUIZ 

1. Coils or inductors are commonly used at high 
frequency when they: 

a. Have an iron core 
b. Have an air core 
c. When they are wound backwards 
d. None of the above 

2. Coils oppose: 

a. Changes in current 
b. Changes in voltage 
c. Changes in resistance 
d. Changes in direction 

3. Whenever current flows in a conductor, a 
  field is set up around the 
conductor. 

a. Voltage 
b. Current 
c. Electrostatic 
d. Magnetic 

4. When many loops of current-carrying wire 
are wrapped into a coil, a strong  
created inside the coil. 

a. Current 
b. Voltage 
c. Electromagnetic field 

d. Bond 

8. In a circuit with a coil, a resistor, a battery 
and an open switch, when the switch is 
closed the current rises: 

a. Instantaneously 
b. In a step function 
c. Gradually 
d. The same as the voltage 

9. The final value of current in the circuit of 
question 8 is determined by: 

a. Ohm's Law 
b. The L and R ratio 
c. LR 
d. The amount of inductance 

10. The time it takes for the current to attain 
63% of its final value in a circuit containing 
inductance and resistance (besides a battery) 
is called: 

a. The capacitive time constant 
b. A coulomb 

is c. The first step 
d. The L/ R time constant 

5. Magnetic fields store  inside them. 

a. Coulombs 
b. Current 
c. Voltage 
d. Energy 

6. It takes  for current to build up in a 
series circuit containing a coil than it does in 
a circuit with no coil. 

a. A shorter time 
b. Longer 
c. Forever 
d. None of above 

7. In a coil with steady-state current flowing, 
the magnetic field has on the 
current. 

a. Lots of effect 
b. No effect 
c. A new dependence 
d. None of the above 

11. Inductance is measured in units called: 

a. Millivolts 
b. Henries 
c. Nanoseconds 
d. Gigahertz 

12. When a switch opens the circuit with a 
steady-state current flowing through a coil, 
the coil will cause  voltage to 
appear across the infinite resistance of the 
open circuit. 

a. Twice the battery 
b. A very large 
c. A very small 
d. 3 Millivolts of 

13. A coil can produce a burst of: 

a. Very high voltage 
b. Very low voltage 
c. Very large current 
d. Very small current 

14. A capacitor can produce a burst of: 

a. Very high voltage 
b. Very low voltage 
c. Very large current 
d. Very small current 
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LESSON 14 — QUIZ 

15. If more series resistance is added to a series 
R-L circuit, its time constant: 

a. Increases 
b. Stays the same 
c. Decreases 
d. None of above 

16. The time constant for an R-L circuit is 25 
milliseconds. Steady-state current is flowing. 
When the current is turned off it reaches 

approximately zero in: 

a. 25 Milliseconds 
b. 50 Milliseconds 
c. 75 Milliseconds 
d. 125 Milliseconds 

Calculate the indicated unknown quantities: 

17. L = 2.5 H R = 600 S2 

F.  
Time Constant sec 

18. L = 100 mH 

R=2MS2 

Time Constant  sec 

19. L = 15 H 

 ohms 

20. L = ? 

R=200kS2 

 Henries 

T=120ps 
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APPENDIX 1. INTERPRETING THE RESISTOR COLOR GUIDE 

1ST SIGNIFICANT DIGIT 

2ND SIGNIFICANT DIGIT 

DECIMAL MULTIPLIER 

\ TOLERANCE BAND 

IF GOLD t 5% 
SILVER t 10% 

IF NO 4TH BAND f- 20% 

(=. OF ZEROS TO PLACE AFTER FIRST TWO DIGITS) 

Significant 
Digit 

Decimal Multiplier 

(Power of Ten) 
(Put These Zeros Be-

hind First Two Digits) 

Black 0 1 100 

Brown 1 1 0 10 1 

Red 2 1 00 102 

Orange 3 1 000 103 

Yellow 4 1 0000 104 

Green 5 1 0 0 0 0 0 105 

Blue 6 1 0 0 0 0 0 0 106 

Violet 7 1 0 0 0 0 0 0 0 107 

Gray 8 1 0 0 0 0 0 0 0 0 108 

White 9 1 0 0 0 0 0 0 0 0 0 109 

Gold — Multiply by 0.1 10-1 

Silver — Multiply by 0.01 10-2 

A-2 



APPENDIX 2. PREFERRED VALUES FOR RESISTORS AND CAPACITORS 

The numbers listed in the chart below, and decimal multiples of these numbers, are the commonly 

available resistor values at 5%, 10%, and 20% tolerance. 

20% Tolerance 
(No 4th Band) 

10% Tolerance 
(Silver 4th Band) 

5% Tolerance 
(Gold 4th Band) 

10* 10 10 

11 

12 12 

13 

15 15 15 

16 

18 18 

20 

22 22 22 

24 

27 27 

30 

33 33 33 

36 

39 39 

47 47 47 

51 

56 56 

62 

68 68 68 

75 

82 82 

91 

100 100 100 
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APPENDIX 3. RESISTOR SIZE COMPARISON 

(By Wattage Rating) 

1 
—10 watt 

1 
—watt 
4 

1 
— watt 
2 

1 watt 

2 watt 
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APPENDIX 4. SCIENTIFIC NOTATION AND THE METRIC PREFIXES 

G M k 

Giga Mega Kilo 

111111111 

X10+9 X10+6 X10+3 

Units Milli 

I I I I 
X10o X10-3 

1.1 

Micro Nano 

I I I 

X10-6 X10-9 

1 unit = 1 . 

. 0 0 1 = 1 milli 

1 kilo = 1 0 0 0. 

. O 0 0 0 0 1 = 1 micro 

1 mega = 1 0 0 0 0 0 0 . 

. 000 000 001= 1nano 

1 giga = 1 0 0 0 0 0 0 0 0 0 . 

. 000 000 000 001= 1 pico 

13410 

Pico 

I I 
X10-12 

STANDARD FORM: X.XX x 10+exponent 

Symbol Prefix Value Power of 10 

G giga 1, 0 0 0, 000, 000. X10+9 

M 

k 

mega 

kilo 

1, 000, 

1, 

000. 

000. 

X 10+6 

X10+3 

— (units) 1 . X109 

m milli . 0 0 1 X10-3 

p micro .000 0 0 1 X10-6 

n nano . 0 0 0 0 0 0 0 0 1 X10-9 

P (Pm ) pico .000 000 0 0 0 0 0 1 X10-12 
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APPENDIX 5. BASIC SCHEMATIC SYMBOLS 

Symbol Device Symbol Device 

—Hill— 
Battery or 
DC Power 
Supply 

—I— 
o o 

Push Button 
Normally Open 
(PBNO) 

—"AN--- Resistor 2 112 

Push Button 
Normally Closed 
(PBNC) 

— I f-- Potentiometer —I— Earth Ground 

_dye_ Rheostat A7 
Chassis Ground 

-fle-- 
Tapped 
Resistor 

—1-- 

1' 
Capacitor 

Meters — 
Symbol to 
Indicate 
Function 

It 
'1' 

Capacitor, 
Polarized 
(Electrolytic) 

i)1 
Lamp _CieNrY1-- Coil, Air Core 

Oo 
Switch 
SPST Coil, Iron Core __flifYVN._ 

o ao Switch 
SPDT —e"\J—  Fuse 

04 0 

09'.0 

Switch 
DPST 

Conductor, General 

No Connection 

o Cr40 

o 0/ 0 

Switch 
DPDT 

Connection 

—1---
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APPENDIX 6. HOW TO USE SQUARE ROOT TABLES 

The following table can be used to find the square root or square of most any number. Numbers from 

1 to 120 can be read directly from the table. But what about a number such as 150? How can its square or 

square root be found? The secret to the use of this table is in the understanding of factoring. Factoring a 

number means to break the original number up into two smaller numbers, that, when multiplied together, 
give you back the original. For example, 150 is equal to 10 times 15. Ten and 15 are said to be factors of 

150. If 10 times 15 is equal to 150, then the square root of 10 times the square root of 15 is equal to the 

square root of 150. Both 10 and 15 are listed on the square and square root table. The square root of 10 
from the table is equal to 3.162. The square root of 15 is equal to 3.873; 3.162 times 3.873 is equal to 

12.246426, which should be the square root of 150. You can test this number by multiplying it by itself. 
Thus, 12.246426 squared is equal to 149.97, etc., — very close to 150. (Small errors due to rounding will 

normally occur when using the tables.) The factoring procedure written out mathematically would then be: 

150= 10 X 15 

N/150 = Nrli5X N[71- (Look up \Fir) , N/-"T in tables) 

N/150 = 3.162 X 3.873 

N/150 = 12.246   

Try another number now, say, 350. First, factor 350: 

350 = 35 X 10 

The square root of 350 must equal the square root of 35 times the square root of 10. 

N/350 = N/ X N/771) 

Go to the tables and look up the square roots of 10 and 35: 

N/350 = 5.9161 X 3.162 

Multiply the square roots of 10 and 35, and you have found the square root of 350. 

N/350 = 18.706   

To check the accuracy of your calculations, multiply 18.706 by itself. 

18.7062 = 349.91 

Again, very close to the original number. 

Try one more number, this time 1150. 

First, factor 1150. 

1150 = 115 X 10 

The square root of 1150 must equal the square root of 115 times the square root of 10. 

N/1150 =\/115 x \/-•3 
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APPENDIX 6. HOW TO USE SQUARE ROOT TABLES 

Look up the square roots of 115 and 10 from the tables. 

N/1150 = 10.7238 X 3.162 

Multiply the square roots of 115 and 10, and you have the square root of 1150. 

N/1150 = 33.908 

To check the validity of this number, square it. It should be very close to 1150. 
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APPENDIX 6. HOW TO USE SQUARE ROOT TABLES 

N \/i\-1- N2 I N ./1-\1- N2 N \FNT N2 

1 1.000 1 41 6.4031 1681 81 9.0000 6561 
2 1.414 4 42 6.4807 1764 82 9.0554 6724 
3 1.732 9 43 6.5574 1849 83 9.1104 6889 
4 2.000 16 44 6.6332 1936 84 9.1652 7056 
5 2.236 25 45 6.7082 2025 85 9.2195 7225 

6 2.449 36 46 6.7823 2116 86 9.2736 7396 
7 2.646 49 47 6.8557 2209 87 9.3274 7569 
8 2.828 64 48 6.9282 2304 88 9.3808 7744 
9 3.000 81 49 7.0000 2401 89 9.4340 7921 
10 3.162 100 50 7.0711 2500 90 9.4868 8100 

11 3.3166 121 51 7.1414 2601 91 9.5394 8281 
12 3.4641 144 52 7.2111 2704 92 9.5917 8464 
13 3.6056 169 53 7.2801 2809 93 9.6437 8649 
14 3.7417 196 54 7.3485 2916 94 9.6954 8836 
15 3.8730 225 55 7.4162 3025 95 9.7468 9025 

16 4.0000 256 56 7.4833 3136 96 9.7980 9216 
17 4.1231 289 57 7.5498 3249 97 9.8489 9409 
18 4.2426 324 58 7.6158 3364 98 9.8995 9604 
19 4.3589 361 59 7.6811 3481 99 9.9499 9801 
20 4.4721 400 60 7.7460 3600 100 10.0000 10000 

21 4.5826 441 61 7.8102 3721 101 10.0499 10201 
22 4.6904 484 62 7.8740 3844 102 10.0995 10404 
23 4.7958 529 63 7.9373 3969 103 10.1489 10609 
24 4.8990 576 64 8.0000 4096 104 10.1980 10816 
25 5.0000 625 65 8.0623 4225 105 10.2470 11025 

26 5.0990 676 66 8.1240 4356 106 10.2956 11236 
27 5.1962 729 67 8.1854 4489 107 10.3441 11449 
28 5.2915 784 68 8.2462 4624 108 10.3923 11664 
29 5.3852 841 69 8.3066 4761 109 10.4403 11881 
30 5.4772 900 70 8.3666 4900 110 10.4881 12100 

31 5.5678 961 71 8.4261 5041 111 10.5357 12321 

32 5.6569 1024 72 8.4853 5184 112 10.5830 12544 

33 5.7446 1089 73 8.5440 5329 113 10.6301 12769 

34 5.8310 1156 74 8.6023 5476 114 10.6771 12996 

35 5.9161 1225 75 8.6603 5625 115 10.7238 13225 

36 6.0000 1296 76 8.7178 5776 116 10.7703 13456 

37 6.0828 1369 77 8.7750 5929 117 10.8167 13689 

38 6.1644 1444 78 8.8318 6084 118 10.8628 13924 

39 6.2450 1521 79 8.8882 6241 119 10.9087 14161 

40 6.3246 1600 80 8.9443 6400 120 10.9545 14400 
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APPENDIX 7. HOW TO EXTRACT SQUARE ROOTS MANUALLY 

This procedure outlines, step by step, how to extract square roots manually. 

Problem 

Compute N/4139 

Solution 

Step 1: Begin at the decimal point (which is to the right of the last digit) and divide the number 

into two-digit groups (underlining indicates the groups). 

4139.00 

Step 2: Place the decimal point for the square root directly above the decimal point that appears 
under the radical sign. 

N/4139.00 

Step 3: Find the largest number that when multiplied by itself will give a product equal to or less 
than the first pair of digits. In this case, 6 X 6 = 36, which is the largest perfect square that 

does not exceed 41. Place 6 on the radical sign above 41. 

6.  

N/4139.00 

Step 4: Square 6 to obtain 36 and place it below the first two digits (41). Subtract 36 from 41 to 

obtain 5. Bring down the next pair of digits (39). 

6 
Y4139.00 

36 

539 

Step 5: Double the first digit of the answer, 6, to obtain a trial divisor of 12. Place 12 to the left of 
539 as shown. 

6  

Y4139.00 

36 

Step 6: 

12  

Divide the trial divisor (12) into all but the last digit of the modified remainder 539. It will 

divide into 53 four times. This will be the next digit of the answer. Place the 4 above the 

second pair of digits and also place the 4 to the right of the trial divisor. The completed 
divisor is 124. Multiply 124 by 4 to obtain 496. Subtract 496 from 539 to obtain 43. Bring 

down the next pair of digits (.00). 

A-10 



APPENDIX 7. HOW TO EXTRACT SQUARE ROOTS MANUALLY 

6 4.  

N/4139.00 

36  

124 539 
496 

4300 

Step 7: Double the first two digits of the answer (64) to obtain the new trial divisor (128). Place 

128 to the left of 4300 as shown. 

6 4.  

N/4139.00 

36  

124 539 
496  

128 4300 

Step 8: Divide the trial divisor 128 into all but the last digit of the modified remainder 4300. It 

will go into 430 three times. This will be the next digit of the answer. Place the 3 on the 

radical sign over the next pair of numbers. Also, place the 3 to the right of the trial divisor 

128. The completed trial divisor is 1283. Multiply 1283 by 3 to obtain 3849. Subtract 

3849 from 4300. The remainder is 4.51. 

6 4.3  

N/4139.00 

36  

124  539 
496  

1283 I 4300 
3849  

451 

Note: If greater accuracy is required, the number may be carried out by adding more pairs of zeros to 

the right of the decimal place and performing Steps 7 and 8 until the desired accuracy is obtained. 

Step 9. The answer may be checked by multiplying the answer by itself and adding the remainder 

from the last step, 64.3 times 64.3 plus 4.51 is equal to 4139. 

64.3 X 64.3 = 4134.49 + 4.51 = 4139 
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Problem 

Find the square root of 240.25 

Solution 

Step 1: Begin at the decimal point and divide the number into digit groups in both directions. 
(Notice that a zero was added in front of the two in order to make a pair.) 

N/0240.25 

Step 2: Place the decimal point for the square root directly above the decimal point that appears 

under the radical sign. 

N/0240.25 

Step 3: Determine the largest number that when multiplied by itself will give a product equal to or 
less than the first pair of digits, 02. The number 1 is the only number that meets these 
requirements. Place 1 over the first pair of digits. 

1 .  
N/0240.25 

— 

Step 4: Square 1 to obtain 1. Place this number below the first two digi is, 02. Subtract 1 from 02 
to obtain 1. Bring down the next pair of digits (40). 

1 .  
N/0240.25 

1 

140 

Step 5: Double the first digit of the answer 1 to obtain a trial divisor of 2. Place the 2 to the left of 
140 as shown. 

1 .  
N/0240.25 

1  

2  140 

Step 6: Divide the trial divisor (2) into all but the last digit of the modified remainder 140. Two 
will divide into 14, seven times. This will be the next digit of the answer. Place the 7 on the 

radical sign above the second pair of digits and also place a 7 to the right of the 2 in the trial 

divisor. The completed trial divisor is now 27. Multiply 27 by 7 to obtain 189. Oops! 189 
will not subtract from 140. Now you know why the trial divisor is so named! At this point 
go back to the trial divisor, subtract one from it, and try again. Notice that one was also 
subtracted from the answer on the radical sign. You now have a trial divisor of 26, and the 

A-12 
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last digit of the answer is 6; 26 times 6 is equal to 156. Unfortunately, 156 will not sub-
tract from 140. Take 1 from both the trial divisor and the last digit of the answer. You 

now have a trial divisor of 25 and the last digit of the answer is 5. Multiply 25 by 5 to get 
125. Fortunately, 125 will subtract from 140 to leave a remainder of 15. Bring down the 

next pair of digits (25). 

15 .  
N/0240.25 

1 

25 140 
125 

1525 

Step 7: Double the first two digits of the answer 15, to obtain the new trial divisor of 30. Place 30 

to the left of 1525 as shown. 

15 . 
N./0240.25 

1  

25 140 
125 

30 1525 

Step 8: Divide the trial divisor, 30, into all but the last digit of the modified remainder 1525; 152 
divided by 30 is equal to 5. This will be the next digit of the answer. Place the 5 above the 
next pair of digits in the number whose square root is being extracted. Also, place the 5 to 
the right of the 30 in the trial divisor. The new trial divisor is 305. Multiply 305 by 5 to 

obtain 1525. Subtract 1525 from 1525 to obtain zero. The square root of 240.25 is 15.5. 

15 .5  
N/0240.25 

1  

25  140 
125  

305  1525 
1525 

O 

Step 9: Check your answer by multiplying 15.5 by 15.5 and adding the remainder, if any, to the 
product. 

15.5 X 15.5 = 240.25 

A-13 



APPENDIX 8. THE UNIVERSAL TIME CONSTANT GRAPH 
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This chart can be used to graphically determine the voltage or current at any point in time for an RC 
or L/R circuit, during charging (or current buildup), or discharge (or current collapse). 

The examples shown below illustrate the use of the chart. 

1. Find the voltage across the capacitor shown in the circuit below, 1 second after the switch is thrown. 

=- 10V 

Solution 

 'VNAt  

R = 1 MS2 

o  C=2µF T 
a. First find the circuit time constant 

T = RC 

T = (1 X 106) X (2 X 10-6) = 2 seconds 
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b. Express the time (t) at which the capacitor voltage is desired in time constants. 

Here you want the voltage after 1 second and the time constant is 2 seconds, so t = 1/2 (the 
time constant) 

or t = 0.5T 

c. Look at the chart, on the horizontal axis and locate 0.5 time constants. 

d. Move up the vertical line until it reaches the appropriate curve (in this case the charging curve). 
Read from the vertical axis the fraction of the applied voltage at the time (here 39%). 

e. At t = 1 second, the voltage across the capacitor equals 39% of 10 volts or 

Ec = 0.39 X 10 

Ec = 3.9 volts 

2. Find the voltage across the capacitor shown in the circuit below 2 seconds after the switch, S, is 

thrown. The capacitor is charged to 20 volts before the switch is thrown. 

(ORIGINAL CAPACITOR 

VOLTAGE 20 VOLTS) 

Solution 

a. Find the circuit time constant 

T = RC 

T = (500 X 10+3) X (1 X 10-6) 

T = 0.5 seconds 

b. Express the time at which the capacitors voltage is desired in time constants. Here, 2 seconds 

divided by 0.5 seconds is 4; 2 seconds is 4 time constants for this circuit. 

t = 4T 

c. Look at the chart, locate 4 time constants on the horizontal axis. 

d. Move up the vertical line until it reaches the appropriate curve (the discharge curve). Read 

the fraction of the original voltage from the vertical axis (2%). 
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e. AT t = 2 seconds, the voltage across the capacitor is at 2% of the original voltage or is at 2% 
of 20 volts. 

Ec = 0.02 X 20 

Ec = 0.40 volts 

Remember that 5 time constants is required for a 100% charge (full charge or discharge for 
RC circuits, maximum or zero current for L/R circuits). 
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APPENDIX 9. CHARGE AND DISCHARGE CURVE CALCULATIONS 

The voltage at any point along a charge or discharge curve may be calculated by using one of these 

two mathematical formulas: 

Charge: e (at time t) = Eapp (1 _ 

Discharge: e (at time t) = Eapp (e—t/RC) 

The scientific calculator greatly reduces the degree of difficulty in the solution of problems of this 

type. For example, the charge formula shown above may be solved by using a calculator such as the SR-50, 

and this procedure: 

RXC = 

STO 

Enter t 

+/— 

RCL 

ex 

STO 

1 — 

X 

RCL 

Eapp 

e (at time t) 

Eapp 

E 
e(at time t) 

SWITCH CLOSED AT t=0 

Eapp 

E RISES 
ON CURVE 
SHOWN 
BELOW 

elat time t) = 

Eapp (1. c t/RC) 

The decay of a capacitor's charge (discharge) may be calculated by using this calculator sequence: 

R X C = 

STO 

Enter t 

+/— 

RCL 

ex 

X Eapp 

e (at time t) 

SWITCH CLOSED AT t=0 

CAPACITOR 
ORIGINALLY 
AT Eapp 

Eapp 
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APPENDIX 10. CAPACITOR COLOR CODES 

CAPACITOR COLOR CODE CHART 

Color 
Significant 

Digit 
Decimal 
Multiplier 

Tolerance 
in % 

Voltage 
Rating 

Black 0 1 20 

Brown 1 10 1 100 

Red 2 102 2 200 

Orange 3 103 3 300 

Yellow 4 104 4 400 

Green 5 105 5 500 

Blue 6 106 6 600 

Violet 7 107 7 700 

Gray 8 108 8 800 

White 9 109 9 900 

Gold 0.1 1000 

Silver 0.01 2000 

No Color 20 500 
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• Mica Capacitors 

WHITE - EIA 
BLACK - MIL 
SILVER - ASW PAPER 

(IF ANY OTHER COLOR APPEARS HERE, 
THE CAPACITOR IS ONE OF THE TWO 
OLDER 6-DOT VERSIONS) 

PRESENT 6-DOT CODE 

OLD RMA CODE 

OLD 6-DOT CODE 

OLD 5-DOT CODE 

OLD 3-DOT CODE 

1ST 
SIGNIFICANT DIGIT 

2ND 

MULTIPLIER 

TOLERANCE 

CLASSIFICATION 

1ST 

2ND SIGNIFICANT DIGIT 

3RD 

MULTIPLIER 

TOLERANCE 

WORKING VOLTAGE 

1ST 1 
SIGNIFICANT DIGIT 

2ND 

MULTIPLIER 

TOLERANCE (THIS IS THE IDENTIFYING 

BLANK CHARACTERISTIC OF 

WORKING VOLTAGE THIS CAPACITOR CODE TYPE) 

WORKING VOLTAGE 

TOLERANCE 

MULTIPLIER 

2ND 11ST SIGNIFICANT DIGIT 

(ALL RATED AT 500 WVDC 

TOLERANCE ±20%) 

MULTIPLIER 

2ND1 
SIGNIFICANT DIGIT 

1ST 
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• Ceramic Capacitors 

CERAMIC CAPACITORS 

All Values Are Read in Picofarads 

Color 
Significant 

Digit 
Decimal 
Multiplier 

Tolerance Temperature 
Coefficient ppmPC Above 10 pF (in %) Below 10 pF (in pF) 

Black 0 1 20 2.0 0 

Brown 1 10 1 —30 

Red 2 100 2 —80 

Orange 3 1000 —150 

Yellow 4 —220 

Green 5 5 0.5 —330 

Blue 6 —470 

Violet 7 —750 

Gray 8 0.01 0.25 30 

White 9 0.1 10 1.0 500 

TEMPERATURE COEFFICIENT 

1ST }2ND SIGNIFICANT DIGIT 

AXIAL 

LEADS 

TOLERANCE 

MULTIPLIER 

RADIAL 

LEADS 

5-DOT 

RADIAL 

LEADS 

6-DOT 

TEMPERATURE COEFFICIENT 

1ST 1 
SIGNIFICANT DIGIT 

2ND  

TOLERANCE 

MULTIPLIER 

TEMPERATURE COEFFICIENT 

1ST 

2ND SIGNIFICANT DIGIT 

VOLTAGE 

TOLERANCE 

MULTIPLIER 

BROWN - 150 

ORANGE - 350 

GREEN 

OR NONE - 500 
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• Ceramic Capacitors 

SIGNIFICANT DIGIT 

5-DOT DISK 

3-DOT DISK 

1 2ND 

1ST 

TEMPERATURE 

COEFFICIENT 

SIGNIFICANT DIGIT 
{ 1ST 

2ND 

TEMPERATURE 

COEFFICIENT 

STAND-OFF 

MULTIPLIER 

TOLERANCE 

SIGNIFICANT DIGIT 

BUTTON HEAD 

2ND 

1 1ST 

TEMPERATURE 

COEFFICIENT 

MULTIPLIER 

MULTIPLIER 

TOLERANCE 

MULTIPLIER 

1ST  2ND I 
SIGNIFICANT DIGIT 

TOLERANCE 
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APPENDIX 11. UNIT CONVERSION CHARTS 

The following charts are listed to give a convenient method for comparing various common English and 

metric units to allow easy conversion from one unit to another. These comparisons are for common values 

of lengths, areas, volume, speed, and electric resistivity. Included also is a listing of several other miscella-
neous unit comparisons. 

Length Comparisons 

To use this chart to compare (and thus convert) one unit to another, find the existing measurement in 

the From column and then find the desired unit in the vertical headings (TO). Where these two intersect 

will give you the conversion of one existing unit (From) into one new unit (To). For example, if you have 

one inch and you need this in centimeters; find "1 inch" in the From column (4th line down) and go over 

to the vertical column labeled cm; and you find that 1 inch = 2.54 cm. Then, if you wanted to convert 

25 inches (or any value of inches) into centimeters you would simply multiply 25 (or any given number of 
inches) by 2.54 for 63.5 centimeters. 

Length Comparisons 

"..*..''.. <o.........._ 
From cm meter km in ft mile 

naut. 
 mile 

3.281 6.214 5.40 
1 Centimeter 1 1 X 10-2 1 X 10-5 0.3937 X 10-2 X 10-6 X 10-6 

6.214 5.40 
1 Meter 100 1 1 X 10-3 39.37 3.281 X 10-4 X 10-4 

3.937 
1 Kilometer 1 X 105 1 X 103 1 X 104 3281 0.6214 0.540 

2.54 2.54 8.333 1.578 1.371 
1 Inch 2.54 X 10-2 X 10-5 1 X 10-2 X 10-5 X 10-5 

3.048 1.894 1.646 
1 Foot 30.48 0.3048 X 10-4 12 1 X 10-4 X 10-4 

1 Statute 1.609 6.336 
Mile X 105 1609 1.609 X 104 5280 1 0.8670 

1 Nautical 1.852 7.293 
Mile X 105 1852 1.852 X 104 6076.1 1.1508 1 
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The charts that follow are used in the same manner as the length comparison chart with the "From" 

in the left column and the "To" conversions listed in the following vertical columns. 

Area Comparison 

r*----------..„.....fo........._ 
From meter2 cm2 ft2 in2 circ mil 

1 square meter 1 1 X 104 10.76 1550 1.974 X 109 

1 square centimeter 1 X 10-4 1 1.076 X 10-3 0.1550 1.974 X 10 5 

1 square foot 9.290 X 10-2 929.0 1 144 1.833 X 108 

1 square inch 6.452 X 10-4 6.452 6.944 X 10-3 1 1.273 X 106 

1 circular mil 5.067 X 10-10 5.067 X 10-6 5.454 X 10-9 7.854 X 10-7 1 

Volume Comparison 

To 
From meter3 cm3 1 ft3 in3 

1 cubic meter 1 1 X 106 1000 35.31 6.102 X 104 

1 cubic centimeter 1 X 10-6 1 1. X 10-3 3.531 X 10-5 6.102 X 10-2 

1 liter 1.000 X 10-3 1000 1 3.531 X 10-2 61.02 

1 cubic foot 2.832 X 10-2 2.832 X 104 28.32 1 1728 

1 cubic inch 1.639 X 10-5 16.39 1.639 X 10-2 5.787 X 10-4 1 

Speed Comparison 

.s.---------,.............."..........ro 
From ft/sec km/hr meter/sec miles/hr cm/sec knot 

1 foot 

per second 1 1.097 0.3048 0.6818 30.48 0.5925 

1 kilometer 

per hour 0.9113 1 0.2778 0.6214 27.78 0.540 

1 meter 

per second 3.281 3.6 1 2.237 100 1.944 

1 mile 

per hour 1.467 1.609 0.4470 1 44.70 0.8689 

1 centimeter 

per second 3.281 X 10-2 3.6 X 10-2 0.01 2.237 X 10-2 1 1.944 X 10-2 

1 knot 1.688 1.852 0.5144 1.151 51.44 1 
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Electric Resistivity Comparison 

To 
From 

µohm- 
cm 

ohm-cm ohm-m ohm-circ 
mil/ft 

1 micro-ohm-centimeter 1 1 X 10-6 1 X 10-8 6.015 

1 ohm-centimeter 1 X 106 1 0.01 6.015 X 106 

1 ohm-meter 1 X 108 100 1 6.015 X 108 

1 ohm-circular mil per foot 0.1662 1.662 X 10-7 1.662 X 10-9 1 

Miscellaneous Unit Comparisons 

1 fathom = 1 ft 

1 yard = 3 ft 

1 rod = 16.5 ft 

1 U.S. gallon = 4 U.S. fluid quarts 

1 U.S. quart = 2 U.S. pints 

1 U.S. pint = 16 U.S. fluid ounces 

1 U.S. gallon = 0.8327 British imperial gallon 

1 British imperial gallon = 1.2 U.S. gallons 

1 liter = 1000 cm3 
1 knot = 1 nautical mile/hr 

1 mile/min = 88 ft/sec = 60 miles/hr 

1 meter = 39.4 in = 3.28 ft 

1 inch = 2.54 cm 

1 mile = 5280 ft = 1.61 km 

1 angstrom unit = 10-113 meters 

1 horsepower = 550 ft-lb/sec = 746 watts 
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The Greek Alphabet 

(Including common use of symbols in basic electricity) 

Letter Capital Common Use of Symbol Lower Common Use of Symbol 

Alpha A a 

Beta B 0 

Gamma l' Y 

Delta ..à change in change in 

Epsilon I-. t base of natural logs 

Zeta Z 

Eta II n 
Theta o 0, O angle (phase angle) 

Iota I t 

Kappa K V< dielectric constant 

Lambda .X X wavelength 

Mu ‘I bi micro 

Nu 

Xi 

N 

E 

1, frequency 

Omicron 

Pi 

o 

II 

, 

n 3.14159 

Rho P P specific resistance, resistivity 

Sigma y _ sum of terms 0, c 

Tau T r 

Upsilon r u 
Phi (1) 0, ,,c magnetic flux 

Chi X \ 

Psi ,-If I;) 

Omega St ohms w angular frequency 

(Reversed (Z5) mho 

Omega) 

A-25 



APPENDIX 13. BASIC FORMULAS OF BASIC ELECTRICITY 

TERM UNIT 

S 
Y 
M 
B 

e 

FORMULA 

SERIES PARALLEL 

Charge Coulomb Q 1 coulomb = 6.28 X 10 18 electrons 

Voltage 

(Potential 

difference, 

EMF) 

Volt 

(V) 
E 

= E + E2 + E3 + ET = El = E2 = E3... ET E1 ... 
I R 

E = I R 

Current 

(Flow of 

charge) 

Ampere 

(Amp) 

(A) 

I 

E 
11 = 12 = 13 IT ' 11 +12 +1 3... 1T= .. I R 

I =  E/R 

Resistance 
Ohm 

(S2) 
R 

RT = R1 + R2 + R3 +... 
1 

- ER RT 
I 

1/Ri + 1/R2 + 1/R3 +. 

R1R2 
R = Eli RT - 

R1 + R2 

Rs 
R - 1/G RT = N 

Conductance 
Mho 
(ZS) 

G GT = 1/RT G = 1/R GT = G1 + G2 + G3... 

Power 
Watt 

(W) 
P 

P 
P=IE P=IE 

P = E2/R P = E2/R 

p = 12R 
12 

p = 12R 

Capacitance 
Farad 

(F) 
C 

1 C - Q/E 
- I CT = C1 + C2 + C3 + ... CT 

1/C1 + 1/C2 + 1/C3 + ... T = RC 

Inductance 
Henry 

(H) 
L 

1 
LT = Li + L2 + L3 + ... T = - L/R LT 

1/Li + 1/L2 + 1/L3 + . 
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Glossary 

algebraic sum 

All positive quantities in an expression added together and each negative quantity subtracted from 
that result. 

alternating current 

Current which continuously reverses direction, usually in periodic fashion. 

ammeter 

A meter connected in series with a circuit, branch, or component which measures the current flowing 
through that circuit, branch, or component. 

ampere 

The unit of measure for current flow which equals 1 coulomb of electrons passing one point in a 
circuit in 1 second. 

atom 

The smallest part into which an element can be divided and still retain the behavior of the element. 

battery 

A device which maintains a potential difference between its terminals by chemical action. 

bleeder current 

Current flow through the bleeder resistor in a voltage divider circuit. Used to stabilize the output 
voltage of the voltage divider. 

bleeder resistor 
A resistor found in a voltage divider circuit or power supply and used to stabilize the output voltage. 

branch 

Path for current flow in a circuit. 

bridge circuit 

A special type of parallel-series circuit in which the voltages in each branch may be balanced by adjust-
ment of one component. A special version called a Wheatstone bridge may be used to accurately 
measure resistance. 

capacitance 

How well a capacitor stores charge. Equal to tl le quantity of stored charge (Q) divided by the voltage 
(E) across the device when that charge was stored. Unit of measurement is the farad. 

capacitor 

A device that can store a charge on conducting plates through the action of an electrostatic field 
between the plates. 

cell 

A single unit device which converts chemical energy into electrical energy. 
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• Glossary 

chassis 
A metal frame used to secure and house electrical components and associated circuitry. 

choke coil 

An inductor used to oppose changes in current flow. 

circuit 
A complete path for current flow from one terminal to the other of a source such as a battery or a 

power supply. 

circuit analysis 
A technique of examining components in circuits to determine various values of voltage, current, 

resistance, power, etc. 

circuit breaker 
An automatic device which, under abnormal conditions, will open a current-carrying circuit to help 
prevent unnecessary damage. Unlike a fuse, a circuit breaker may be reset to reconnect the circuit. 

circuit reduction 
A technique of circuit analysis whereby a complex resistive circuit is replaced by a single equivalent 
resistance. 

circuit sense 
An ability to recognize series or parallel portions of complex circuits to apply series and parallel circuit 
rules to those portions of the circuit for circuit analysis. 

coil 
A number of turns of wire that is wrapped around a core. (Also called an inductor.) 

combining like terms 
Algebraic addition of parts of an equation that each contain the same unknown quantity. 

common point 
A voltage reference point in a circuit. A point which is "common" to many components in the circuit. 

condenser 

See capacitor. 

conductance 
The ability to conduct or carry current. Conductance is equivalent to the reciprocal of (or one over) 

the resistance. 

conductor 
A material with many free electrons that will carry current. 

constant current source 
An idealized source whose output current does not change with changes in the load, but whose output 
voltage varies with the load connected to it. 
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coulomb 
A large quantity of electrons that is convenient when working with electricity and equals 6.25 billion, 
billion electrons (or 6.25 X 10 18 electrons). 

current 

"Electron current" is the flow of electrons through a material from negative to positive. "Conven-
tional current" is the flow of positive charges from positive to negative. "Current flow" is a general 
term often used to mean either of the above. Symbol is I, unit is ampere. 

dielectric 

An insulating material with properties that enable its use between the two plates of a capacitor. 

dielectric breakdown (in a capacitor) 
Failure of an insulator to prevent current flow from one plate of a capacitor through the insulator to 
the other plate. Often causes permanent damage to the capacitor. 

dielectric constant 
A factor which indicates how much more effective a material is as compared to air in helping a 
capacitor store a charge (when used as the insulating material between the capacitor's plates). The 
abbreviation for dielectric constant is K; air has a K of 1. 

dielectric strength 
A factor which indicates how well a dielectric resists breakdown under high voltages. 

direct current 

Current that flows in only one direction. 

direct relationship 
One in which two quantities both increase or both decrease while other factors remain constant. 

direct short 
A circuit situation in which a conductor with little or no resistance is placed across a battery or power 

supply. Results in very high current which will damage the source if a protective device such as a fuse 
or circuit breaker is not included in the circuit. 

dropping resistor 
A resistor used to decrease a given voltage by an amount equal to the voltage dropped across the 
resistor. 

dry cell 
A cell with a paste-like electrolyte which can be used in any position as compared to a wet cell which 

must be used in an upright position. 

earth ground 
A point that is at the potential of the earth or something that is in direct electrical connection with the 
earth such as water pipes. 
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electricity 
The flow of electrons through simple materials and devices. 

electrolyte 

A chemical (liquid or paste) which reacts with metals in a cell to produce electricity. 

electromagnetic field 
A field of force produced around a conductor whenever there is current flowing through it. This field 

can be visualized with magnetic lines of force. 

electron 
Negatively charged particles surrounding the nucleus of an atom which determine chemical and 
electrical properties of the atom. 

electron shells 
The specific paths of rotation, or orbits, which electrons follow as they revolve around the nucleus of 
the atom. 

electrostatic field 
A field of force that surrounds any charged object. This field can be visualized with electrostatic lines 
of force. 

electrostatic force 
A force which exists between any two charged objects. If the two objects each have the same type of 
charge, the force is a repulsion. If the two objects each have different types of charge, the force is an 

attraction. 

element 
One of the 106 different substances which is the basic building block of all matter, and cannot be 

divided into simpler substances by chemical means. 

energy 
The ability to do work. Unit commonly used in measuring energy is the joule; equal to the energy 
supplied by a 1-watt power source in 1 second. 

equivalent resistance 
The value of one single resistor that can be used to replace a more complex connection of several 
resistors. 

exponent 

A number written above and to the right of another number called the base. Example: 102, 10 is the 
base, 2 is the exponent. A number which indicates how many times the base is multiplied by itself. 
102 = 10 X 10 = 100. 

farad 

The unit of capacitance. A capacitor has 1 farad of capacitance when it can store 1 coulomb of charge 
with a 1-volt potential difference placed across it. 
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filament 

A wire in an electric light bulb or electron tube which is heated by passing a current through it in 
order to make it glow or emit light, and/or electrons. 

free electrons 

Electrons which are not bound to a particular atom but circulate among the atoms of the substance. 

fuse 

A protective device usually containing a material with a low melting point which melts when current 

through it exceeds the ampere value for which it is rated and opens the circuit stopping the current 
flow. 

giga 

The metric prefix meaning one billion or 109. Abbreviated G. 

ground 

A voltage reference point in a circuit which may be connected to earth ground. 

henry 

Unit of measure for inductance. A 1-henry coil produces 1 volt when the current through it is chang-
ing at a rate of 1 ampere per second. Abbreviated H. 

horsepower 

A measure of power. One horsepower equals 746 watts. Abbreviated hp. 

hot wire 

A wire which is connected to a source of voltage or current and is not grounded. 

inductance 

The ability of a coil to store energy and oppose changes in current flowing through it. 

inductor 

A number of turns of wire wrapped around a core used to provide inductance in a circuit. (Also called 
a coil.) 

insulator 

A material with very few free electrons. A nonconductor. 

inverse relationship 

A relationship between two quantities in which an increase in one quantity causes a decrease in the 
other quantity while other factors are held constant. 

jumper cables 

Heavy wire conductors (usually stranded) used as an aid in starting a car with a weak battery. 

junction 

A connection common to more than two components in a circuit. A node. 
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kilo 
A metric prefix meaning 1000 or 103. Abbreviated k. 

Kirchhoff's current law 
One of many tools of circuit analysis which states that the sum of the currents arriving at any point in 

a circuit must equal the sum of the currents leaving that point. 

Kirchhoff's voltage law 
Another tool of circuit analysis which states that the algebraic sum of all the voltages encountered in 

any loop equals zero. 

leakage resistance 
The normally high resistance of an insulator such as a dielectric between the plates of a capacitor. 

load 

loop 

A device such as a resistor which receives electrical energy from a source and that draws current and/or 

has resistance, requires voltage, or dissipates power. 

A closed path for current flow in a circuit. 

loop equation 
The algebraic sum of all the voltages in a loop set equal to zero. 

main line current 
The total current in a parallel circuit. 

mega 

mesh 

A metric prefix meaning one million or 1,000,000 or 106. Abbreviated M. 

The simplest form of a loop, resembling a single window pane in a circuit. 

mesh current 
The current flowing in a mesh. Usually assumed to be flowing in a particular direction. 

mho 
The unit of conductance. Symbol 25. 

micro 
A metric prefix meaning one millionth or 1/1,000,000 or 10-6. Abbreviated with the Greek letter 

mu (µ). 

milli 
A metric prefix meaning one thousandth or 1/1000 or 10-3. Abbreviated m. 

G-6 



• Glossary 

Millman's theorem 

A tool of circuit analysis which states that the voltage across several branches of a multisource parallel 
circuit that has no series resistance between the branches equals the sum of the branch currents 
divided by the total conductance of the circuit. 

nano 

A metric prefix meaning one billionth or 1/1,000,000,000 or 10-9. Abbreviated n. 

negative ion 

An atom which has gained one or more electrons. 

node 

A junction. A connection common to more than two components in a circuit. 

node current equations 

A mathematical expression of Kirchhoff's current law at a junction or node. 

node voltage 

The voltage at a node with respect to some reference point in the circuit. 

ohm 
The unit of resistance. Symbol 2. 

ohmmeter 

An instrument used to measure resistance. 

Ohm's law 

A basic tool of circuit analysis which states that in simple materials, the amount of current through the 
material varies directly with the applied voltage and varies inversely with the resistance of the material. 

Gives rise to three common equations for use in circuit analysis: E = I R, R = E/I, I = E/R. 

open circuit 

A circuit interruption that causes an incomplete path for current flow. 

oscilloscope 

An instrument that can visually display rapidly varying quantities as a function of time. Often used to 
measure voltage. 

parallel circuit 

A circuit that has two or more paths (or branches) for current flow. 

parallel-series circuit 

A circuit with several branches wired in parallel. Each branch contains one or more components 

connected in series, but no single component carries the total circuit current. 

partial short 

A path with essentially 0 ohms of resistance connected across part of a circuit but not connected 
directly across the source. 
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percent 
A ratio of one part to the total amount. One part of a hundred. 

pico 
A metric prefix meaning one million millionth or 10-12. Abbreviated p. 

polarity of voltage 
A means of describing a voltage with respect to some reference point, either positive or negative. 

positive ion 
An atom that has lost one or more electrons. 

potential difference 
A measure of force produced between charged objects that moves free electrons. Also called voltage 
or electromotive force. Symbol is E, unit is the volt (abbreviated V). 

potentiometer 
A resistance element with a sliding wiper contact used in applications where a division of resistance is 

required. (A three-terminal adjustable resistive divider.) 

power 
The rate at which work is done or the rate at which heat is generated (abbreviated P). The unit of 

power is the watt (abbreviated W), which is equal to 1 joule per second. 

power dissipated 
Power which escapes from a resistance in the form of heat by the convection of air moving around the 

component. 

power rating of a resistor 
How much power a resistor can dissipate (give off) safely in the form of heat in watts. 

power supply 
A device which is usually plugged into a wall outlet and can replace a battery in many applications by 

providing a known potential difference between two convenient terminals. 

protons 
Particles in the nucleus of the atom which has a positive charge equal to the electron's negative charge. 

recall 
Function key on a calculator which when pressed causes the calculator to display the contents of the 

memory. 

reciprocal 
Mathematical "inverse". The reciprocal of any number is simply that number divided into one. 

resistance 
Opposition to current flow which is a lot like friction because it opposes electron motion and 

generates heat. Symbol R. Unit is the ohm (n). 
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reference node 

A junction in a circuit from which all voltages are measured. 

reference point 

An arbitrarily chosen point in a circuit to which all other points in the circuit are compared, usually 
when measuring voltages. 

regulated voltage 

The output voltage of a power supply which contains special circuitry to keep the output voltage 
constant, even if the current drain on it is changing. 

relay 

A switch (or combination of switches) activated by an electromagnetic coil. 

rheostat 

An adjustable device with two terminals which can be used to produce a variable resistance in a circuit. 

rounding off 

A procedure by which a number with many digits can be reduced to a number with only three signifi-
cant digits. The first three significant digits are kept, and the fourth examined. If the fourth digit is 
5 or greater, the third significant digit is raised by one. If the fourth digit is 4 or less, the first three 
digits are kept unchanged. 

scientific notation 

A type of shorthand used to keep track of decimal places which utilizes powers of the number 10. 
Standard form for scientific notation is D.DD X 10E, where D represents each of the first 3 significant 
digits, and E represents the exponent, or power of ten. 

series circuit 

A circuit with only one path through which current can flow. 

series-parallel circuit 

A group of series and parallel components in which at least one circuit element lies in the path of the 
total current. 

short circuit 

A path with little or no resistance connected across the terminals of a circuit element. 

shunt 

Another term which means parallel. Often also refers to the low value of parallel resistance used in an 
ammeter for determining or changing the "range" of the meter. 

significant digits 

Those digits within a number which have the greatest weight. In the decimal system digits to the left 
of any designated digit are more significant than those to the right. 
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sign of a voltage 
A notation, either positive (+) or negative (—), in front of a voltage. (Important in solving loop 
equations and depends on whether the voltage aids or opposes current flow in a circuit.) 

simultaneous equations 
A series of equations which contain the same unknown quantities, and which can be manipulated to 

solve for each of the unknowns. 

solenoid 
A term used to mean coil or inductor, also used to mean a type of relay such as that used to switch 

the starter current in an automobile. 

source 
A device, such as a battery or dc power supply, which supplies the potential difference and electrical 

energy to the circuit. 

specific resistance 
The resistance of any material in a particular size and shape. The resistance of a piece of a substance 

that is 1 foot long and 1 mil in diameter at 20°C measured in ohms. 

square root of a number 
Another number which must be multiplied by itself to obtain the original number. 

square of a number 
That number multiplied by itself. 

store 
A calculator operation where the number in the display is transferred to the memory where it is held 

until it is recalled. 

substitute 
To replace one part of a formula or equation with another quantity which is its equal. 

superposition theorem 
A tool of complex circuit analysis which states that in a network with two or more sources the 

current or voltage for any component is equal to the algebraic sum of the effects produced by each 

source acting separately. 

switch 
A device that is used to open or close circuits, thereby stopping or allowing current flow in a circuit 

or through a component. 

terminal 
A connection point on a device or component. 

Thevenin's theorem 
A tool of circuit analysis which states that a complex circuit can be reduced to an equivalent series 

circuit with a single voltage source and a single series resistance, as long as all components are linear. 
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time constant 

The time it takes in seconds for a capacitor to charge up to 63 percent of the applied voltage or the 
time it takes for a fully charged capacitor to discharge from 100 percent down to 37 percent of full 
charge. Equal to the product of R (in ohms) times C (in farads) in a resistive-capacitive circuit. Also 
a measure of the current rise and fall in inductive circuits. (Equal to the quotient of L/R in resistive-
inductive circuits, L in henries, R in ohms.) 

transposing 

Moving a quantity from one side of an equation across the equal sign to the other side of the equation 
and changing its sign. 

traverse 

Move around a circuit or across a component. Usually refers to a mental process used for keeping 
track of various voltages encountered in a loop. 

troubleshooting 

A technique used to locate a problem in a circuit. 

valence electrons 

Those electrons in the outermost or valence shell of an atom. 

valence shell 

The outermost shell of an atom. 

volt 

The unit of voltage or potential difference. Abbreviated V. 

voltage 

A measure of the push on each electron which makes it move. Symbol E. Unit is the volt. 

voltage divider 

A type of circuitry that provides an economical way to obtain one or several lower voltages from a 
single higher voltage supply. 

voltage drop 

Change in voltage available between points in a circuit produced by current flow through resistors. 
Also called an IR drop. Unit is the volt. 

voltmeter 

An instrument used to measure voltage between two points in a circuit. 

watt 

The unit of power. Abbreviated W. Equal to 1 joule per second. 
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Wheatstone bridge 
A specialized circuit, sometimes housed as an instrument, for measuring resistance very accurately, by 

comparison to a standard resistance. 

working voltage 
The recommended maximum voltage at which a capacitor should be operated. 
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QUIZ ANSWERS - CHAPTERS 8-14 

Lesson 8 Lesson 9 

1. SP 
2. P 
3. PS 
4. S 
5. SP 
6. PS 
7. SP 
8. SP 
9. PS 

10. PS 
11. 952 
12. 123S2 
13. 1332 
14. 16.9S2 
15. 24.52 
16. 1 
17. R4 
18. 3.15K 
19. 10V 
20. 1mA 

Lesson 12 

1. a 
2. a 
3. a 
4. d 
5. b 
6. +320mA 
7. +3.0A 
8. -80mA 
9. +30.5mA 

10. -5mA 
11. C 
12. a 
13. f 
14. d 
15. c 

16. b 
17. b 
18. a 
19. c 
20. b 

1. SP 
2. P 
3. SP 
4. S 
5. SP 
6. 54K 
7. 13.9 
8. 45.3 
9. 84.6K 

10. -1mA 
11. -0.5mA 
12. 15.1V 
13. 222µ,A 
14. 6mA 
15. -8202 
16. -7.2V 
17. -2mA 
18. 19.7V 
19. d 
20. d 

Lesson 10 Lesson 11 

1. b 
2. c 
3. a 
4. b 
5. d 
6. 160mVV 
7. 400W 
8. 25mA 
9. 9.6mW 

10. 112V 
11. b 
12. a 
13. b 
14. d 
15. C 
16. c 
17. e 
18. b 

Lesson 13 Lesson 14 

1. d 
2. e 
3. c 
4. b 
5. b 
6. b 
7. a 
8. c 
9. b 

10. e 
11. C 

12. a 
13. d 
14. c 
15. b 
16. 1.03sec 
17. 39x-10 -

18. 0.825sec 
19. 12µF 
20. 6i.tF 

1. b 
2. a 
3. d 
4. c 
5. d 
6. b 
7. b 
8. c 
9. a 

10. d 
11. b 
12. b 
13. a 
14. c 
15. c 
16. d 
17. 4msec 
18. 5Onsec 
19. 3K 
20. 24H 

1. b 
2. d 
3. c 
4. d 
5. e 
6. d 
7. e 
8. a 
9. b 

10. d 
11. d 
12. b 
13. a 
14. c 
15. d 
16. a 
17. a 
18. c 
19. e 
20. d 
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