CONDUCTANCE CURVE DESIGN MANUAL

KEATS A. PULLEN, Jr., Eng., D.

JOHN F. RIDER PUBLISHER, INC., NEW YORK

COPYRIGHT 2008 FOR PHYLLISK. PULLEN, M.D.

 by Robert J. LeggCOPYRIGHT 1958 BY JOHN F. RIDER PUBLISHER, INC. All rights reserved. This book or any parts thereof may not be reproduced in any form or any language without permission of the publisher.
LIBRARY OF CONGRESS CATALOG CARD NUMBER 58-8591
Printed in the United States of America

INTRODUCTION

The Conductance Curve Design Manual has been prepared to make available to engineers, scientists, and technicians, a group of data organized to help the user design circuits which function in the manner desired, with a minimum of readjustment. It is divided into three principal sections:
(1) a brief explanation of the special curves and their application in typical R-C amplifier designs.
(2) a set of tables useful in making tube substitutions, and tables to simplify the selection of tubes for given applications.
(3) a special set of curves organized to facilitate tube circuit design.

Chapter 1 describes briefly the forms of curves, and gives examples of the use of the additional data. As the principal purpose of this Manual is to provide data on the tubes, organized in a form which simplifies design, a brief discussion of the different sets of curves is included here.

Chapter 2 of the Manual develops, from the general plate current equation for tubes, some of the more commonly used equations for both triode and pentode amplifiers. This discussion is intentionally limited to several typical R-C amplifier problems as most of the design principles are displayed in the examples. The use of the techniques on more complex circuits can be readily deduced, or obtained from the appropriate reference articles in the bibliography.

Chapter 3 provides some typical design examples for both triodes and pentodes, showing the calculation of amplification and distortion and the selection of bias. In addition, the problem of selecting both the screen and cathode bypass capacitors is solved.

The first of the two tables in the cross-reference data shows the Manual equivalents for several hundred common tubes, and includes structure and basing data. The second table lists tubes for which curves are included, and all their equivalents as provided in Table 1.

The two power-handling tables, one for triodes and one for pentodes, may be used to improve operational reliability. These tables list the tubes in ascending order of plate conductance or screen-to-plate transconductance.

Tube curves themselves represent the characteristics of 71 tubes. Low-
power and high-power tubes, triodes and pentodes, and several mixer tubes are included.

Because of the great familiarity of the term RETMA in the engineering field, we have retained this term rather than use the newer abbreviation resulting from the Association's recent name change: EIA ~ Electronic Industries Association.

New York, N. Y. John F. Rider Publisher, Inc. March 1958

PREFACE

Electron tube information supplied by manufacturers generally consists of static characteristic curves, maximum ratings, and typical operating conditions. Although these data are useful, they are inadequate for design work, as component values that are selected based on them, usually have to be altered in the actual circuit to achieve the desired performance. Extensive use of cut-and-try methods by circuit designers clearly indicates the need for additional electrical information on these tubes, and for modification of the mathematical methods for handling this information. The triode curves given in this Manual consist of standard plate characteristic curves with contours of constant grid-toplate transconductance (g_{m}), and contours of constant plate conductance (g_{p}), superimposed on them.

Curves provided here for tetrode and pentode tubes have been designed to present the rapidly varying relations in full, and reduce the more slowly varying relations to correction curves. For this reason, the contours of constant grid bias are plotted as a function of screen voltage and plate current, rather than as standard plate characteristics.

In addition, contours of constant grid-to-plate transconductance ($\mathrm{G}_{\mathrm{m} 1}$) are superimposed on the static screen characteristics. The pentode curves also include correction curves for X_{p} and $\mathrm{X}_{\mathrm{c} 2}$ as a function of $\mathrm{e}_{\mathrm{b}} / \mathrm{E}_{\mathrm{c} 2}$ to allow adjustment of the design for any ratio of plate-to-screen voltage. This permits the determination of both plate and screen current at any value of plate and screen voltage. Tube data presented in these forms are called "G-Curves." G-Curves permit design over a wide range of operating conditions and help in the design of circuits which, when actually built, conform closely to the predictions of the calculated design.

G-Curves contain the dynamic as well as the static characteristics of a tube in a single convenient graph. One of the important advantages of the G-Curve technique is that the designer can meet specific requirements by making, on paper, point-by-point determinations of dynamic operating conditions anywhere within a tube's ratings. It is therefore possible to optimize a design so that a given performance can be obtained with minimum tube element dissipation. Tube life and circuit
reliability are enhanced and the experimental readjustment often required in electronic circuit design is minimized.

In brief, the circuit design technique presented here is based on the fundamental equations of vacuum tube circuits. The small-signal parameters such as g_{m} and g_{p}, which appear in these equations are obtained directly from the G-Curves included in this Manual. Quantities of interest, such as output voltage, gain, distortion, etc., may be obtained explicitly for use with the fundamental equations because of the additional data available with the G-Curve technique. In most treatments of vacuum tube fundamentals, the circuit equations are developed and the concept of small-signal parameters, although well explained, are not used as a basis for circuit design.

The use of these curves and the equations listed in Chapter 2 enable the designer to understand more dearly in what manner circuit performance changes whenever any circuit parameters are varied. Also, it becomes evident that when a required performance cannot be obtained without operating the tube at or near its peak rating, another tube type with greater power-handling capability should be chosen.

The selection of a different tube type is relatively simple in terms of the tables of power-handling ability included in this Manual. First, amplifier distortion and tube dissipation are calculated. If the distortion is larger than desired and/or the dissipation is high, a tube having a larger nominal value of g_{p} or $G_{m 2}$ should be selected. If on the other hand the distortion is lower and/or the dissipation is much less than permissible, then a tube having a lower g_{p} or $G_{m 2}$ may be selected.

Tube reliability is one of the major problems confronting designers of specialized equipment. It may be attained by the design of conservatively rated circuits where the selection of tubes and operating conditions is such that circuit performance is accomplished with the lowest possible element dissipation. The G-Curve technique is well suited to the design of conservatively rated circuits since it provides the design information required.

The author wishes to thank Mr. W. E. Babcock of RCA for his technical review and comments on this Manual. He wishes also to note the assistance of H . G. McGuire and T. Turner in the preparation of some of the material.

Kingsville, Md.
Keats A. Pullen, Jr., Eng.D.
March 1958

Acknowledgment

The author wishes to express his appreciation to General Electric Company for their courtesy in supplying data used in the preparation of the following curves:

6AM4	5840	
6BY4	5844	
12AU7	5899	
12AX7	5902	
5654	5965	
5670	6005	
5686	6021	
5691	6072	
5692	6111	
5693	6112	
5718	6134	6386
5719	6136	6414
5749	6137	6661
5751	6201	6679
5814A	6265	6829

About the author of The Conductance Curve Design Manual :

Keats A. Pullen, Jr. ED, PE
was born in Onawa, IA, in November 1916. He attended schools in Los Gatos, CA, then earned a B.S. in physics from the California Institute of Technology, Pasadena, CA, in 1939. He received his Doctorate in Engineering from Johns Hopkins University in 1946 and became a licensed professional engineer in Maryland in 1948.

In June 1946, Dr. Pullen started working at the Ballistics Research Laboratory (BRL), Aberdeen Proving Ground, MD, where he remained until 1978. He transferred from BRL to the U.S. Army Material Systems Analysis Activity (AMSAA) in 1978, where he remained until his retirement from the Army in 1990.

While working at BRL and AMSAA, Dr. Pullen designed and evaluated designs for a wide range of electronic systems for military use, such as DOVAP, DORAN, EMA, a drone program, satellite systems, Havename, and other systems. During his years working at Aberdeen Proving Grounds, he was also on the faculty of several universities where he taught college courses in engineering. These included the Pratt Institute of Technology in Brooklyn, New York, the University of Delaware, and Drexel University.

Dr. Pullen was a Life Fellow of the Institute of Electrical and Electronics Engineers, President of the Aberdeen Chapter of the Armed Forces Communications and Electronics Association, a member of ADPA, AUSA, the Association of Old Crows, and Sigma Xi. In 1982, he received the Marconi Memorial Medal from the Veteran Wireless Operators Association.

During his lifetime, Dr. Pullen published nine books, more than 25 reports, and many more papers and letters. He also was the holder of six patents. He was active in developing improved communication systems for the Special Operations Forces, Airland Battle 2000, and in developing grounding improvements for the Army, to protect the increasingly delicate systems that support the U.S. Military.

Dr. Pullen died in December 2000, at age 84, as the result of a fall. He was survived by his wife, Dr. Phyllis K. Pullen, four sons, Peter, Paul, Keats III, Andrew, his daughter Victoria Leonard, and seven grandchildren.

General Symbols

C_{k}	cathode bypass capacitance for stabilizing bias voltage
Cs	shunt capacitance for stabilizing screen voltage
D	second-harmonic distortion (percent)
E_{b}	static plate voltage, no signal
E_{bb}	d-c plate supply voltage
E_{bn}	plate voltage at negative limit of bias
E_{bp}	plate voltage at positive limit of bias
E_{bz}	intersection of dynamic load line with $\mathrm{i}_{\mathrm{b}}=0$ axis
E_{c} or $\mathrm{E}_{\mathrm{c} 1}$	grid bias voltage with no applied signal
$\mathrm{E}_{\mathrm{c} 2}$	static screen grid voltage
E_{cc}	grid bias supply voltage
E_{k}	static voltage between cathode and cathode return (usually ground)
e_{b}	total instantaneous plate-to-cathode voltage
e_{c}	total instantaneous grid-to-cathode voltage for triodes
$\mathrm{e}_{\mathrm{c} 1}$	total instantaneous grid-to-cathode voltage for pentodes
$\mathrm{e}_{\mathrm{c} 2}$	total instantaneous screen-grid-to-cathode voltage
e_{c}	bias on grid three (used with mixer tubes)
e_{g}	a-c component of e_{c}
$\mathrm{e}_{\mathrm{g} 1}$	a-c component of $\mathrm{e}_{\mathrm{c} 1}$
$\mathrm{eg}_{\mathrm{g} 2}$	a-c component of $\mathrm{e}_{\mathrm{c} 2}$
e_{k}	a-c component of cathode voltage
e_{L}	instantaneous voltage across load resistance R_{L}
e_{p}	$a-c$ component of e_{b}
$\mathrm{e}_{\text {s }}$	input signal voltage, instantaneous value
$\mathrm{G}_{\mathrm{m} 1}$	nominal transconductance of pentode for $\mathrm{e}_{\mathrm{b}} / \mathrm{e}_{\mathrm{c} 2}=2$ (first grid)
$\mathrm{G}_{\mathrm{m} 2}$	nominal screen-to-plate transconductance for $\mathrm{e}_{\mathrm{b}} / \mathrm{e}_{\mathrm{c} 2}=2$
$\mathrm{G}_{\mathrm{m} 3}$	nominal transconductance from grid three to plate (used with mixer tubes)
gm_{m}	triode transconductance
$g_{m 1}$	transconductance, for pentode first grid (corrected)
$\mathrm{g}_{\mathrm{m} 2}$	screen-to-plate transconductance for pentode (corrected)
$\mathrm{gm}_{\mathrm{m} 12}$	control-to-screen transconductance
$\mathrm{gm}_{\mathrm{m} 2}$	screen self-conductance

$g_{p} \quad$ plate conductance ($=1 / r_{p}$)
$\mathrm{I}_{\mathrm{b}} \quad$ static plate current with no signal
$\mathrm{I}_{\mathrm{bm}} \quad$ plate current at maximum power dissipation
$I_{b n} \quad$ plate current at negative limit of bias
$l_{b p} \quad$ plate current at positive limit of bias
$\mathrm{I}_{\mathrm{c} 2}$ screen current
$I_{p} \quad$ nominal plate current in pentode for $e_{b} / e_{c 2}=2$
$\mathrm{I}_{\mathrm{pp}} \quad$ nominal plate current at condition of positive limit bias
$\mathrm{i}_{\mathrm{b}} \quad$ total instantaneous plate current
$\mathrm{i}_{\mathrm{c} 2}$ total instantaneous screen grid current
$\mathrm{i}_{\mathrm{g} 2}$ a-c component of i_{b}
$i_{k} \quad$ total alternating cathode current $\left(i_{p}+i_{g 2}\right)$
$i_{p} \quad a-c$ component of i_{b}
K gain
$K_{n} \quad$ gain at most negative excursion of e_{c}
$K_{p} \quad$ gain at most positive excursion of e_{c}
$\mathrm{K}_{\mathrm{s}} \quad$ gain at static bias, E_{c}
$\mathrm{P}_{\mathrm{c} 2} \quad$ power dissipated in screen grid
$P_{p} \quad$ power dissipated in plate
$\mathrm{P}_{\mathrm{pm}} \quad$ maximum instantaneous plate dissipation
$\mathrm{R}_{\mathrm{i}} \quad$ input resistance
$\mathrm{R}_{\mathrm{k} 1}$ unbypassed portion of cathode bias resistance
$\mathrm{R}_{\mathrm{k} 2}$ bypassed portion of cathode bias resistance
$R_{L} \quad$ static load resistance
$R_{\text {LD }} \quad$ dynamic load resistance
$\mathrm{R}_{0} \quad$ output resistance
$r_{p} \quad$ plate resistance $\left(\Delta e_{b} / \Delta i_{b}\right.$ with $E_{c 1}$ and $E_{c 2}$ constant $\left.\sim 1 / g_{p}\right)$
$R_{s} \quad$ series resistance for limiting screen voltage and current
$X_{c 2} \quad$ screen correction factor ($\left.X_{c 2} \sim i_{c 2} / l_{p} \sim g_{m 1} / G_{m 1}\right)$
$X_{p} \quad$ plate correction factor $\left(X_{p} \sim \mathrm{i}_{\mathrm{b}} / \mathrm{l}_{\mathrm{p}} \sim \mathrm{g}_{\mathrm{m} 1} / \mathrm{G}_{\mathrm{m} 1}\right)$

CONTENTS

General Symbols xi
Chapter 1: THE CURVES 1
Triode Data 1
Special Noise Contours 2
Logarithmic Data 2
Pentode Data 2
Screen-to-Plate Transconductance in Pentodes 3
Logarithmic Data 4
Mixer Data Sheets 4
Measurement of Tube Data 4
G-Curve Preparation 4
Chapter 2: THE EQUATIONS 6
The Basic Equation 6
Resistance-Coupled Amplifier Equations 6
Cathode Degenerative Amplifier Equations 8
Cathode Follower Equations 8
Chapter 3: AMPLIFICATION TECHNIQUES 10
Triode R-C Amplifier 10
Load Lines 10
Amplification 12
Distortion 12
Power Dissipation in the Triode Tube 13
Pentode R-C Amplifier 14
Initial Selections 16
Small-Signal Amplifications 17
Distortion 17
Power Dissipation in the Pentode 17
Calculation of the Series Screen Resistance 18
Screen Bypass Capacitor 18
Dynamic Load Lines 19
Triode Degenerative Amplifier 20
Distortion 20
Pentode Degenerative Amplifier 20
Triode Cathode Follower 21
Pentode Cathode Follower 22
Calculating the Cathode Bypass Capacitor 22
Bibliography 23
Cross-Reference Data 25
Table I: Tubes with Electrical Characteristics
Similar to Manual Tubes 27
RETMA Bases 31
Table II: Tubes for which Curves are listed in this Manual 33
Tables of Power-Handling Ability 36
Table III: Triodes 37
Table IV: Pentodes 38
Tube Curves 39
Index 114
Index of Tube Curves 115

THE CURVES

TRIODE DATA

Triode G-Curves are prepared from large scale sets of standard plate characteristic curves. This is done by adding contours which define the positions of contours for several values of the transconductance and plate conductance parameters. The method chosen for distinguishing the various contours is to use solid lines for the bias contour curves, dashed lines for the transconductance contours, and dotted lines for the plate conductance contours. The designation of the specific values of the parameters applying to any contour is indicated by a number placed beside the contour. The grid bias values are expressed in volts, and the small-signal parameter values are expressed in micromhos.

A value of plate conductance is also tabulated along with the corresponding transconductance, in the Table of Triode Power-Handling Abilities. These values are determined along the zero-bias contour at a point corresponding, with most tubes, to 75% of rated dissipation. As a result, the selection of a tube for a modified design is accomplished by finding one having either twice the nominal g_{p}, or half, depending on whether the design was overloaded or overly conservative initially. Usually two or three trials will lead to a satisfactory tube.

Example 1. Find the transconductance and the plate conductance for the 6 J 5 tube with $\mathrm{e}_{\mathrm{b}}=100$ volts and $\mathrm{e}_{\mathrm{c}}=-2$ volts.

On the G-Curve for the 6J5 tube, examination of the area around $e_{b}=100$ volts and $e_{c}=-2$ volts shows the following:

e_{c}	g_{m}	i_{b}			e_{c}	g_{p}
-	3500	8 ma	i_{b}			
-2	-	6.8 ma		175	9.7 ma.	
	-2	-	6.8 ma.			
-	3000	5.8 ma		-	150	6.3 ma.

Interpolating with these data gives an approximate g_{m} of 3200 micromhos and a_{p} of 153 micromhos.

The accuracy required of the interpolation is fortunately very low. Because of normal manufacturing variations, the positions of the contours may vary from tube to tube by as much as 20%. As a result, a linear approximation actually gives results that are as close as can be justified by both the data and the devices themselves.

SPECIAL NOISE CONTOURS

The curves of the 6AM4 tube include a contour of minimum noise figure. This has been obtained from the manufacturer's data which indicate the correct bias for use with the tube (with a low-impedance grid circuit) in a grounded-grid connection. This contour, which indicates the bias required for obtaining the highest signal-to-noise ratio, is found to lie near the negative edge of the contact potential area (where the grid will bias itself with an infinite grid impedance) for the tube. Operation of the tube on the minimum noise contour should be attempted only in a grounded-grid connection.

LOGARITHMIC DATA

The triode characteristic curves as normally presented do not give enough data in the low current range for the design of such circuits as multivibrators, flip-flops, and relaxation oscillators. Therefore characteristic curves of tubes for switching applications are plotted on the basis of a linear plate voltage scale and a logarithmic plate current scale. The small-signal data are also plotted on a logarithmic scale. As an example, the curves for the 5965 tube are plotted on the ordinary basis and the logarithmic basis in this set.

PENTODE

The G-Curves provided on pentode tubes are curves of constant bias as a function of screen-grid voltage $\mathrm{E}_{\mathrm{c} 2}$, and nominal plate current lp. The small-signal data included are in the form of contours of constant value of nominal transconductance $\mathrm{G}_{\mathrm{m} 1}$. Data on plate conductance are not included since they rarely require consideration with pentode tubes. One of the few examples where the plate conductance data are useful is in connection with series-pass tubes in regulated power supplies.

An examination of the relations of the various voltages and currents for pentode tubes shows that the voltages having the greatest effect on plate current are grid-to-cathode voltage $\mathrm{e}_{\mathrm{c} 1}$, and screen-to-cathode voltage $\mathrm{E}_{\mathrm{c} 2}$ with plate voltage eb, having a rather small effect. Consequently the plotting of, grid voltage as a function of plate voltage and plate current, as is done on standard data sheets on pentodes, does not give the most significant data on the pentode. However, plotting the characteristics of pentodes on the basis of their screen voltage shows directly the importance of the rate of change of plate current with screen voltage. It also shows the importance of the dependence.

The screen characteristic curves are plotted for a ratio of plate-toscreen voltage ($\mathrm{e}_{\mathrm{b}} / \mathrm{E}_{\mathrm{c} 2}$) equal to two. Values of i_{b}, and $\mathrm{g}_{\mathrm{m} 1}$ for ratios of plate-to-screen voltage other than two may be obtained by the X_{p} correction curve included in the upper left-hand comer of each data sheet*.

[^0]An uncorrected value of I_{p} or $G_{m 1}$ is read from the G-Curve at the desired grid bias and screen voltage. It is then corrected by use of the value X_{p} for the voltage ratio applying by the equations:

$$
\begin{align*}
\mathrm{I}_{\mathrm{b}} & =X_{\mathrm{p}} \mathrm{I}_{\mathrm{p}} \\
\mathrm{~g}_{\mathrm{m} 1} & =X_{\mathrm{p}} G_{\mathrm{m} 1} \tag{1}
\end{align*}
$$

Values of $i_{c 2}$ and $g_{m 12}$ may also be obtained with the help of the $X_{c 2}$ curve also located in the upper left-hand corner of the data sheet. This $\mathrm{X}_{\mathrm{c} 2}$ factor is read from the $\mathrm{X}_{\mathrm{c} 2}$ curve at the plate-to-screen voltage ratio in question. The values of $i_{c 2}$ and $g_{m 12}$ are:

$$
\begin{align*}
\mathrm{i}_{\mathrm{c} 2} & =\mathrm{X}_{\mathrm{c} 2} \mathrm{I}_{\mathrm{p}} \\
\mathrm{~g}_{\mathrm{m} 12} & =\mathrm{X}_{\mathrm{c} 2} \mathrm{G}_{\mathrm{m} 1} \tag{2}
\end{align*}
$$

Example 2. Find the plate current, screen current, and the transconductance from control grid to screen and plate for the 6AH6 tube with a bias of -1 volt and a screen and plate voltage of 100 volts.

TABLE OF SOLUTIONS .

Data Given	Read from Curve	Equations	Solution
Tube 6AH6	$\mathrm{X}_{\mathrm{p}}=0.97$	$\mathrm{i}_{\mathrm{b}}=\mathrm{X}_{\mathrm{p}} \underline{\mathrm{L}}_{\mathrm{p}}$	$\mathrm{i}_{\mathrm{b}}=8.4 \mathrm{ma}$
$\underline{e}_{\mathrm{e}}=100$ volts	$\mathrm{X}_{\mathrm{c} 2}=0.23$	$\mathrm{I}_{\mathrm{c} 2}=\mathrm{X}_{\mathrm{C} 2} \underline{\mathrm{l}}_{\mathrm{p}}$	$\mathrm{i}_{\mathrm{c} 2}=2.0 \mathrm{ma}$
$\mathrm{E}_{\mathrm{c} 2}=100 \mathrm{volts}$	$\mathrm{l}_{\mathrm{p}}=8.7 \mathrm{ma}$	$g_{m 1}=X_{p} G_{m 1}$	$\mathrm{g}_{\mathrm{m} 1}=9200$
$\underline{e}_{c 1}=-1 \mathrm{volt}$	$\mathrm{G}_{\mathrm{m} 1}=9500$	$\mathrm{g}_{\mathrm{m} 12}=\mathrm{X}_{\mathrm{c} 2} \mathrm{G}_{\mathrm{m} 1}$	$\mathrm{g}_{\mathrm{m} 12}=2200$

SCREEN-TO-PLATE TRANSCONDUCTANCE IN PENTODES

The screen-to-plate transconductance ($g_{\mathrm{m} 2}$) of pentode tubes is normally only needed in the selection of the correct tube for a given application; occasionally, however, it is needed in design. Its value may be obtained from the G-Curve by finding the slope of the bias contour at the required points. The nominal value is adjusted by the use of X_{p} and $X_{c 2}$ to correct for the space-current distribution.

The nominal values of $\mathrm{G}_{\mathrm{m} 2}$ given in the Table of Power-Handling Ability for Pentodes may be used to guide the selection of a pentode, as the values given in the table correspond to zero-bias conditions with the plate and screen voltages equal. As a result, a higher value of $\mathrm{G}_{\mathrm{m} 2}$ means that the same current can be obtained at lower plate and screen voltages, or more output power may be obtained for a given tube dissipation.

[^1]
LOGARITHMIC DATA

The design of variable-gain radio-frequency and intermediate-frequency amplifiers requires data in the low current region and therefore makes desirable a special logarithmic set of curves. The special sheet for this application presents the characteristics for the remote-cutoff type of pentodes on a logarithmic plate current scale, and a linear screen voltage scale. Transconductance contours arranged in a logarithmic order are presented on this plot. An example of a G-Curve of this type for a remote-cutoff pentode may be seen on the 6BJ6 G-Curve.

MIXER DATA SHEETS

Special data sheets are required for the multi-control-grid type of mixer tubes such as the 6CS6, 6BE6, etc. For mixer design it is necessary to have data showing the effect each control grid has on the plate current, as well as the data on the small-signal interaction.

Static design of the mixer tube circuit requires a standard screen characteristic sheet for the preliminary phase of the design. The final conversion design is accomplished with the special sheets, called converter sheets (see the 6BE6 sheets). The converter G-Curve information is presented in two sections, one of which shows $G_{m 1}$ and $e_{c 3}$ contours, the other G_{m} and $\mathrm{e}_{\mathrm{c} 1}$ contours, as a function of the screen voltage and the plate current. Use of these curves is described elsewhere*.

MEASUREMENT OF TUBE DATA

The current-voltage relationships for the G-Curves measured for this Manual were recorded with an X-Y recorder and special variable-voltage supplies. The small-signal parameters were measured with a General Radio type 561D Vacuum Tube Bridge. Each G-Curve so obtained represents the average of the measurements of a number of tubes, and has been correlated with other data sources as well. Although the curves thus obtained consist strictly of small sample lots, the data appear to be adequate for all but the most stringent design problems.

Some of the data sheets have been transcribed from extended data provided by the manufacturer. (See sheets carrying the statement "Data courtesy of General Electric Co." for examples. In these cases, special large-size copies were made available.) Such transcription of data can frequently be accomplished because of the trend toward improved data which has resulted from the introduction of G-Curves. The data have been replotted because of the greater flexibility of use possible with G-Curves.
*ref - Pullen, K. A., "Design of Mixers Using Conductance Curves," Electronic Design, June 1, 1957.

G-CURVE PREPARATION

The transcription from extended data to G-Curves can be made by the user. With triodes, the values of bias or plate current for a given plate voltage corresponding to given values of transconductance or plate conductance (reciprocal of plate resistance), may be marked directly on the plate characteristic curves. The contours may then be smoothed through the corresponding points.

Transcription of the extended data on pentodes to screen characteristic curves is based principally on the contours of constant screen voltage as a function of bias and plate current, and the contours of constant screen voltage as a function of bias and transconductance. If the X_{p} correction is assumed to be unity, the positions of the successive bias contours as a function of screen voltage and plate current, may be read directly from the screen voltage contours. The position of the transconductance contours may be read similarly.

Resulting data may be plotted as a function of screen voltage and plate current, giving the screen characteristic curves approximately. The plate (X_{p}) and screen ($\mathrm{X}_{\mathrm{c} 2}$) correction curves are obtained from the standard plate characteristic curves by reading the plate current for a plate voltage twice the screen voltage, and determining the ratio of the values of plate and screen currents to this current for different ratios of $\mathrm{e}_{\mathrm{b}} / \mathrm{e}_{\mathrm{c} 2}$.

Although considerable effort has been made to be certain of the average correctness of the curves provided herein, neither the author nor the publishers can guarantee satisfactory results because of the wide variations from tube to tube, and from manufacturer to manufacturer. A wide practical experience in the use of all the included curves indicates, however, that satisfactory results can be obtained if the techniques are applied as described. The wide variations result from minor differences in brand design, and changes in design during production. Curves prepared directly from published characteristics given by one manufacturer-. will often not apply to another brand, particularly in uncontrolled areas - very low plate and screen voltages, near zero grid bias, and near plate-current cutoff in particular.

Chapter 2

THE EQUATIONS

THE BASIC EQUATION

Although the equations describing the operation of the vacuum tube are derived in many text books, the derivation is repeated here so that a form more suitable for use with G-Curves can be shown. With these equations and the G-Curves, the performance of a vacuum tube in its circuit may be calculated at any point within the operating area.

The total instantaneous value of the plate current in a tube is a function of the tube parameters and can be expressed as:

$$
i_{b}=f\left(e_{b}, e_{c 1}, e_{c 2}, \ldots\right)
$$

The unspecified parameters are functions of such things as filament voltage, tube geometry, temperature, and many other factors. Holding the unspecified parameters constant, a series expansion of the above equation in terms of partial derivatives of ' f ' can be written. These partial derivatives are the commonly used conductance parameters in the following equation:

$$
\begin{equation*}
i_{p}=g_{m 1} e_{g 1}+g_{m 2} e_{g 2}+\ldots+g_{p} e_{p} \tag{3}
\end{equation*}
$$

where the g's are the values of the partial derivatives. This is the basic equation from which equations for use with the G-Curve technique are derived. For triodes, it reduces to:

$$
\begin{equation*}
i_{p}=g_{m} e_{g}+g_{p} e_{p} \tag{4}
\end{equation*}
$$

RESISTANCE-COUPLED AMPLIFIER EQUATIONS

The triode R-C amplifier circuit is shown in Fig. 2-1. For the present analysis $R_{k 1}$ may be assumed equal to zero, or a short circuit. Because supply voltage E_{bb} is constant, plate voltage change e_{p} is equal but opposite in polarity to the output voltage change, i.e. :

$$
e_{p}=-e_{L}=-i_{p} R_{L}
$$

Using this to eliminate i_{p} from Equation 4 gives:

$$
e_{p}=-g_{m} R_{L} e_{g} /\left(1+g_{p} R_{L}\right)
$$

and the equation for amplification follows immediately:

$$
\begin{equation*}
K=e_{p} / e_{g}=-g_{m} R_{L} /\left(1+g_{p} R_{L}\right) \tag{5}
\end{equation*}
$$

Fig 2-1. Voltage relations of triode and pentode amplifiers.

TRIODE

Small signal components	e_{p}	i_{p}	e_{g}
Instantaneous components	e_{b}	i_{b}	e_{c}

See General Symbols: page xi

In the case of pentodes the plate conductance is normally negligible that is, plate resistance r_{p} is very large provided plate voltage e_{b} is more than half the screen voltage, $\mathrm{E}_{\mathrm{c} 2}$. The pentode amplification equation for constant screen voltage follows from Equation 5 by setting g_{p} equal to zero, and by replacing g_{m} with $g_{m 1}$. The resulting equation is:

$$
\begin{equation*}
K=e_{p} / e_{g 1}=-g_{m 1} R_{L} \tag{6}
\end{equation*}
$$

As the transconductance is dependent on both $G_{m 1}$ and X_{p} (see equation 1), equation 6 reduces to:

$$
\begin{equation*}
K=-G_{m 1} X_{p} R_{L} \tag{7}
\end{equation*}
$$

CATHODE DEGENERATIVE AMPLIFIER EQUATIONS

The triode cathode degenerative amplifier is an R-C amplifier in which a portion of the cathode resistor $R_{k 1}$ is left unbypassed (Fig. 2-1). Thus the instantaneous signal voltage between grid and cathode is:

$$
e_{g}=e_{s}-e_{k}=e_{s}-i_{p} R_{k 1}
$$

and the plate-to-cathode voltage is:

$$
e_{p}=-e_{k}-e_{L}=-i_{p}\left(R_{k 1}+R_{L}\right)
$$

Substitution of these relations into the basic equation (4) gives the amplification equation:

$$
\begin{equation*}
K=-e_{L} / e_{s}=-g_{m} R_{L} /\left[1+\left(g_{m}+g_{p}\right) R_{k 1}+g_{p} R_{L}\right] \tag{8}
\end{equation*}
$$

This equation resembles that for the triode R-C amplifier (Equation 5) but has an added term in the denominator, the term introduced by the cathode degeneration, $\left(g_{m}+g_{p}\right) R_{k 1}$.

For the pentode degenerative amplifier, the equations for signal voltages are slightly different:

$$
e_{g 1}=e_{s}-i_{k} R_{k 1}=e_{s}-\left(i_{p}+i_{g 2}\right) R_{k 1}
$$

and

$$
e_{p}=-i_{k} R_{k 1}-i_{p} R_{L}=-\left(i_{p}+i_{g 2}\right) R_{k 1}-i_{p} R_{L}
$$

Now, if the screen grid is adequately bypassed to the cathode, the instantaneous value of the varying component of the screen current $\mathrm{i}_{\mathrm{g} 2}$ may be neglected. Likewise, for properly designed pentode amplifiers, the plate conductance term may be neglected. Under these conditions, the equation for amplification becomes:

$$
\begin{equation*}
K=-e_{L} / e_{s}=-g_{m} R_{L} /\left(1+g_{m 1} R_{k 1}\right) \tag{9}
\end{equation*}
$$

which, in terms of pentode parameters, becomes:

$$
\begin{equation*}
K=-G_{m 1} X_{p} R_{L} /\left(1+G_{m 1} X_{p} R_{k 1}\right) \tag{10}
\end{equation*}
$$

CATHODE FOLLOWER EQUATIONS

The cathode follower is an amplifier (with an amplification less than unity) that has its output signal taken between cathode and ground. To obtain a cathode follower from Fig. 2-1, the resistance of R_{L} is set equal to zero and the bypass capacitor across $R_{k 2}$ is removed. The circuit equations then are, for the voltages:

$$
e_{g}=e_{s}-e_{k}=e_{s}-i_{p} R_{k}
$$

and

$$
e_{p}=-e_{k}
$$

where R_{k} is the sum of $R_{k 1}$ and $R_{k 2}$. Substitution in Equation 4 gives the amplification equation:

$$
\begin{equation*}
K=e_{k} / e_{s}=g_{m} R_{k} /\left[1+\left(g_{m}+g_{p}\right) R_{k}\right] \tag{11}
\end{equation*}
$$

The equation for the amplification of a pentode cathode follower is derived in a similar manner; using the same assumptions as made on page 8, it is:

$$
\begin{equation*}
K=g_{m 1} R_{k} /\left(1+g_{m 1} R_{k}\right) \tag{12}
\end{equation*}
$$

and substituting for the pentode parameters:

$$
\begin{equation*}
K=G_{m 1} X_{p} R_{k} /\left(1+G_{m 1} X_{p} R_{k}\right) \tag{13}
\end{equation*}
$$

Chapter 3

AMPLIFICATION TECHNIQUES

The resistance-coupled amplifier, although one of the simplest to design, demonstrates many of the important techniques used with G-Curves. Separate consideration of the design of triode and pentode amplifiers is required as the design techniques differ appreciably. Design features which are not directly dependent on the G-Curve technique, such as bandwidth, cutoff frequency limits, etc., are not discussed here as they can be established adequately by standard techniques.

THE TRIODE R-C AMPLIFIER

As the important specifications on an amplifier are the input and output voltages, the impedance levels, the amplification and the distortion, the purpose of the design procedure is to provide a circuit that conforms with the specifications. The following basic steps may be used with G-Curves to provide the required design:

1 - Select a trial tube.
2 - Select a tentative supply voltage E_{bb} and load resistance R_{L}, and draw a load line.

3 - Read the small-signal parameters, g_{m} and g_{p}, at several points along the load line.

4 - Calculate the small-signal amplifications.
5 - Calculate the distortion.
6 - Calculate the dissipations.
The selection of a trial tube initially is an educated guess. If an amplifier for handling small voltages is required, a tube may be selected from among the top third (low g_{p} or $\mathrm{G}_{\mathrm{m} 2}$) of the appropriate Table of Power-Handling Ability. For moderate voltages select from the middle third, and so forth. After a tube has been selected the design may be prepared as described, and if desired, a re-design made with a tube having a lower or higher nominal g_{p} or $\mathrm{G}_{\mathrm{m} 2}$ rating, as indicated by the results from the initial design.

Fig 3-1. Basic design of a triode amplifier.

LOAD LINES

The triode R-C amplifier circuit is shown in Fig. 3-1. Based on this circuit, the equation for the load line is:

$$
\begin{equation*}
\mathrm{e}_{\mathrm{b}}=\mathrm{E}_{\mathrm{bb}}-\mathrm{i}_{\mathrm{b}} \mathrm{R}_{\mathrm{L}} \tag{14}
\end{equation*}
$$

This is the equation for a straight line which, when plotted on the plate characteristic curve, shows how the voltage across the tube varies with the current through the tube. It is most easily plotted from two limit points such as the following:

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{b}}=\text { zero when } \mathrm{e}_{\mathrm{b}}=\mathrm{E}_{\mathrm{bb}} \\
& \mathrm{e}_{\mathrm{b}}=\text { zero when } \mathrm{i}_{\mathrm{b}}=\mathrm{E}_{\mathrm{bb}} / R_{\mathrm{L}}
\end{aligned}
$$

The load line may be drawn through these points.

Example 3. Find the limit points for a $6 J 5$ tube used with a supply voltage of 250 volts and a load resistance of 25,000 ohms; repeat with a load of 50,000 ohms.

Case I	Point I	Point 2.
$R_{L}=25,000$ ohms		
$E_{b b}=250$ volts	$e_{b}=250$ volts	$e_{b}=0$
$i_{b}=0 \mathrm{ma}$	$i_{b}=10 \mathrm{ma}$	
Case II Point I	Point 2.	
$R_{L}=50,000$ ohms		
$E_{b b}=250$ volts	$e_{b}=250$ volts $i_{b}=0 ~ m a$	$e_{b}=0$ $i_{b}=5 \mathrm{ma}$

These lines may be drawn on the 6J5 G-Curve.

AMPLIFICATION

Read the small-signal parameters g_{m} and g_{p} at several desired points along the load line and tabulate for calculation of the amplification using Equation 5. These values of K are true small-signal amplifications and not average amplifications as are normally obtained.

Example 4. Read and tabulate the small-signal parameter values at several bias values for Cases I and II, and calculate the values of K .

Case 1:	6 J 5 tube	$\mathrm{E}_{\mathrm{Eb}}=250$ volts and R_{L}					$=25,000$
ohms							
e_{c}	0	-2	-4	-6	-8	volts	
g_{m}	3800	3150	2500	1950	1350	umhos	
g_{p}	165	150	130	110	80	umhos	
K	-18.5	-16.6	-14.7	-13.0	-11.3		

Case II: 6 J 5 tube $\mathrm{E}_{\mathrm{bb}}=250$ volts and $\mathrm{R}_{\mathrm{L}}=50,000$ ohms						
e_{c}	0	-2	-4	-6	-8	volts
g_{m}	3200	2400	1850	1350	900	umhos
g_{p}	140	120	105	80	60	umhos
K	-20.0	-17.1	-14.8	-13.5	-11.3	

DISTORTION

The second-harmonic distortion of an input signal as generated in the amplifier may be determined by using the small-signal amplifications in the following equation:

$$
\begin{equation*}
D=25\left(K_{p}-K_{n}\right) /\left(K_{p}+K_{n}\right) \tag{15}
\end{equation*}
$$

The values of the amplification K_{p} and K_{n} correspond to the amplifications at the most positive and most negative values of e_{c}, respectively. Equation 15 is valid as long as K is approximately a linear function of e_{c}. Higher-order components of harmonic distortion are present when a plot of K vs e_{c} gives a curved line. The amplitudes of these components may be calculated with the help of Fourier analysis techniques and the smallsignal amplifications at several points.

Example 5. If the input voltage e_{s} is 8 volts peak to peak and the tube is biased at $E_{c}=-4$ volts, then from Case I Example 4, the distortion is approximately 6%. For a peak-to-peak signal of 4 volts, the distortion is 3%, showing that the distortion decreases as the input signal is decreased.

POWER DISSIPATION IN THE TRIODE TUBE

Maximum plate power dissipation in an R-C amplifier occurs when the plate voltage is one-half the voltage at which the load line intersects the line of zero plate current. In Fig.3-2 maximum plate dissipation

Fig. 3-2. Load lines for power dissipation.

NOTE. if R_{L} and $R_{L D}$ coincide, $E_{b b}=E_{b z}$.
occurs when plate voltage e_{b} is one-half supply voltage $E_{b b}$ for the amplifier, with negligible coupled loading; or, half the voltage at which the dynamic load line cuts the line of zero plate current when the coupled loading reduces the dynamic load impedance to R_{LD}. The maximum plate power dissipation can be calculated from the equation:

$$
\begin{equation*}
P_{p m}=0.5 E_{b z} I_{b m} \tag{16}
\end{equation*}
$$

where E_{bz} is the plate voltage at the intersection of the dynamic load
line and the zero plate current line, and I_{bm} is the plate current at maximum power dissipation (when plate voltage $\mathrm{e}_{\mathrm{b}}=\mathrm{E}_{\mathrm{bz}} / 2$). The dissipation at any point is:

$$
P_{p}=e_{b} i_{b}
$$

As the life and reliability of a tube depend on how conservatively it is operated, a compromise may be required between life and dissipation. In general, for a-c amplifiers, the plate dissipation calculated at the static bias condition should not exceed the desired fraction (e.g., $1 / 2$ to $2 / 3$) of the rated dissipation of the tube. For d-c amplifiers it is the maximum plate dissipation which should not exceed the desired fraction of the tube rating.

Example 6. Calculate the maximum plate dissipations for Cases I and II for Example 3.

Case I: $\mathrm{RL}=25,000$ ohms	$\mathrm{Ebb}=\mathrm{Ebz}=250$ volts	$\mathrm{Ppm}=0.625$ watt
Case II: $\mathrm{RL}=50,000$ ohms	$\mathrm{Ebb}=\mathrm{Ebz}=250$ volts	$\mathrm{Ppm}=0.313$ watt

As the plate dissipation rating for the 6 J 5 is 2.5 watts, the tube is operating well within the limits of its rating.

DYNAMIC LOAD LINES

A dynamic rather than a static load line may be required for calculating characteristics in the design of an amplifier if appreciable loading is coupled onto the amplifier. If the external load is R_{g}, then the dynamic load impedance (Fig. 3-3) is given by the equation:

$$
R_{L D}=R_{L} R_{g} /\left(R_{L}+R_{g}\right)
$$

The static load line may be plotted through E_{bb} in the usual fashion, a static operating point A chosen along it, and the dynamic load line then passed through the point A at a slope corresponding to the value of R R . The values of the small-signal parameters are then read from $R_{L D}$ and amplifications calculated in the normal way.

THE PENTODE R-C AMPLIFIER

The following are the steps normally used in the design of pentode R-C amplifiers using G-Curves:

1 - Select a trial tube (see page 10).
2 -Select the bias and screen voltage and determine plate voltage, supply voltage, and load resistance.

3 - Calculate small-signal amplifications at several values of bias.
4 - Calculate output voltage and distortion.
5 - Calculate plate and screen dissipations.

If the design provides insufficient output within the limits of dissipation and distortion, or the output is much greater than is required, the wrong tube type probably has been selected and a redesign should be made using a different tube.

Fig.3-3 Load lines for static and dynamic design.

The element voltages used with the tube should be as small as possible, consistent with the following restrictions:
(1) The screen voltage should be larger than 20 to 50 volts to keep operation out of the area where tube behavior may be erratic.
(2) The minimum plate voltage, at zero control grid bias, should be greater than one-half the screen voltage for class-B amplifiers, and threequarters the screen voltage for voltage amplifiers, to keep the plate current relatively independent of plate voltage.
(3) The screen voltage should be high enough to ensure that the static bias is not in the contact bias area. (A static bias more negative than -1 volt is normally required.)*

As the screen voltage is usually constant, it is designated as $\mathrm{E}_{\mathrm{c} 2}$, and is represented on the pentode G-Curve by a vertical line at the appropriate voltage. Data may be read along this load line in exactly the same manner as with the more conventional triode load line.

[^2]
THE INITIAL SELECTIONS

The pentode R-C amplifier circuit is shown in Fig.3-4. Based on this circuit, a tube may be selected, and then its screen voltage selected. Then the values of plate current may be determined and the load resistance selected.

Fig.3-4 Basic design of a pentode amplifier.

Example 7. A 6BH6 pentode has been chosen for use with Fig.3-4.
Assuming a 200 -volt supply and choosing $\mathrm{E}_{\mathrm{c} 2}=100$ volts, the minimum plate voltage is 75 volts, giving the voltage (maximum) across the load resistor R_{L} as 125 volts. To minimize the grid current, assume that the positive limit grid bias is -0.5 volts. From the G-Curve the nominal plate current $I_{p}=7.0 \mathrm{ma}$ at the minimum bias. Since $\mathrm{e}_{\mathrm{b}} / \mathrm{E}_{\mathrm{c} 2}=0.75$, the value of X_{p} is 0.95 and the corrected plate current is 6.65 ma (see page 2). Therefore, the load resistance is 19,000 ohms - actually an 18,000 -ohm resistor probably would be used.

If a bias excursion to zero bias can be permitted, then $I_{p}=9.3 \mathrm{ma}$ and, with $\mathrm{e}_{\mathrm{b}} / \mathrm{E}_{\mathrm{c} 2}=0.75, \mathrm{X}_{\mathrm{p}}=0.95$. Then $\mathrm{i}_{\mathrm{b}}=8.83 \mathrm{ma}$, giving R_{L} as 14,150 ohms. A standard 15,000 -ohm resistor would be used.

SMALL-SIGNAL AMPLIFICATIONS

The small-signal amplifications are calculated for several bias points using the equation:

$$
\begin{equation*}
K=-G_{m 1} X_{p} R_{L} \tag{7}
\end{equation*}
$$

The values of $G_{m 1}, X_{p}, e_{L}$, and e_{b} may be tabulated and the amplifications calculated as indicated in the following example:

Example 8. Calculate the amplification of the amplifier of Example 7 at bias values of $-0.5,-1.0,-1.5,-2.0$, and -2.5 volts. Assume $R_{L}=19,000$ ohms.

$\mathrm{e}_{\mathrm{c} 1}$	-0.5	-1.0	-1.5	-2.0	-2.5	volts
I_{p}	7.0	4.6	2.8	1.7	0.8	ma
e_{L}	133	87.5	53.2	32.3	15.2	volts
e_{b}	67	112.5	146.8	167.7	184.8	volts
$\mathrm{e}_{\mathrm{b}} / \mathrm{E}_{\mathrm{c} 2}$	0.67	1.1	1.5	1.7	1.8	
X_{p}	0.96	0.97	0.98	0.99	0.99	
$\mathrm{G}_{\mathrm{m} 1}$	5300	4200	3000	2000	1000	umhos
K	-96.7	-77.3	-55.9	-37.6	-18.8	

The above data is based on an R_{L} of 19,000 ohms.

DISTORTION

If the distortion is primarily second harmonic, it can be calculated using Equation 15. If the tube in Example 8 is biased at -1.5 volts, and the grid swing is 1 volt peak to peak, the distortion is 8.6% and the peak-to-peak output is 55.2 volts. With 2 volts, however, D is 16.9% and the output voltage is 118 volts.

POWER DISSIPATIONS IN THE PENTODE

Both the plate dissipation and the screen dissipation must be considered in the pentode amplifier. As in the triode (see page 13), the maximum plate dissipation is:

$$
\begin{equation*}
P_{p m}=0.5 E_{b z} I_{b m} \tag{17}
\end{equation*}
$$

The maximum screen dissipation, on the other hand, occurs at maximum screen current because of the constant screen voltage. The screen current at any value of plate current may be found from the nominal plate current by using the screen correction factor, $\mathrm{X}_{\mathrm{c} 2}$ applying at the conditions in question. The screen dissipation is:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{c} 2}=\mathrm{E}_{\mathrm{c} 2} \mathrm{I}_{\mathrm{p}} \mathrm{X}_{\mathrm{c} 2} \tag{18}
\end{equation*}
$$

The value of e_{b} at maximum plate current may be checked in the process of design, to verify the correctness of $\mathrm{X}_{\mathrm{c} 2}$. The equation for this calculation is:

$$
\begin{equation*}
\mathrm{e}_{\mathrm{b}}=\mathrm{E}_{\mathrm{bb}}-\mathrm{I}_{\mathrm{p}} X_{\mathrm{p}} R_{\mathrm{L}} \tag{19}
\end{equation*}
$$

Example 9. Determine the maximum plate and screen dissipations for the amplifier of Example 7.

Plate Dissipation	Screen Dissipation
$\mathrm{e}_{\mathrm{b}}=\mathrm{E}_{\mathrm{bz}} / 2=100$ volts	$\mathrm{I}_{\mathrm{pp}}=7.0 \mathrm{ma}$
$\mathrm{I}_{\mathrm{bm}}=5.26 \mathrm{ma}$	$\mathrm{e}_{\mathrm{b}}=\mathrm{E}_{\mathrm{bb}}-\mathrm{I}_{\mathrm{p}} X_{\mathrm{p}} R_{\mathrm{L}}=74$ volts
$\mathrm{P}_{\mathrm{pm}}=0.53$ watt	$\mathrm{X}_{\mathrm{c} 2}=0.42$
	$\mathrm{I}_{\mathrm{c} 2}=2.94 \mathrm{ma}$
	$\mathrm{P}_{\mathrm{c} 2}(\mathrm{max})=0.294$ watt

These dissipations are well within the prescribed ratings.

CALCULATIONS OF THE SERIES SCREEN RESISTANCE

A series resistance (R_{s} in Fig.3-4) must be used between the screen of the tube and the voltage source to limit the screen voltage and current. The screen voltage is held constant by a bypass capacitor (C_{s} in Fig.3-4) of sufficient capacitance to keep the effect of screen voltage variation negligible. The value of resistance R_{s} required may be calculated from the equation:

$$
\begin{equation*}
R_{s}=\left(E_{b b}-E_{c 2}\right) / I_{p} X_{c 2} \tag{20}
\end{equation*}
$$

where the I_{p} and the $X_{c 2}$ are the values at the static bias.
Example 10. What series screen resistance is required for Example 9?

Data Given	Read from Curves	Equation	Solution.
$E_{b b}=200$ volts	$I_{\mathrm{p}}=2.8 \mathrm{ma}$	Equation(20)	
$\mathrm{E}_{\mathrm{c} 2}=100$ volts	$X_{\mathrm{c} 2}=0.39$		
$\mathrm{E}_{\mathrm{c} 1}=-1.5$ volts		$R_{s}=90,000$ ohms	
$\underline{e}_{\mathrm{b}} \sim 150$ volts			

THE SCREEN BYPASS CAPACITOR

The screen bypass capacitor may be found by the use of the equation:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{s}}=5 \mathrm{G}_{\mathrm{m} 2} \mathrm{X}_{\mathrm{c} 2} /(2 \pi \mathrm{f})=5 \mathrm{~g}_{\mathrm{m} 22} /(2 \pi \mathrm{f}) \tag{21}
\end{equation*}
$$

where $g_{m 22}$ is the screen conductance of the tube, or by the equation:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{s}}=\Delta \mathrm{I}_{\mathrm{c} 2} /\left(2 \pi \mathrm{f} \Delta \mathrm{E}_{\mathrm{c} 2}\right)=\Delta \mathrm{I}_{\mathrm{c} 2} /\left(2 \pi \mathrm{f} \Delta \mathrm{E}_{\mathrm{s}}\right) \tag{22}
\end{equation*}
$$

where the deltas (Δ) indicate the total changes in $I_{c 2}, E_{c 2}$, and E_{s}, respectively. Equation 21 should be used if size and weight are critical, as it gives the minimum acceptable value, but requires a more detailed calculation; otherwise Equation 22 may be used.

These equations are based on the assumption that variations in screen voltage resulting from screen current changes should be small compared with the output signal; less than, or equal at most to the input signal. The first equation makes certain that the screen degeneration is sufficiently small that the stage amplification will not be deteriorated by the reactance in the screen circuit. In the second equation, the capacitance is made large enough to ensure that the change in charge cannot make the screen voltage vary by more than the magnitude of the input signal. (it is generally used in the absence of screen conductance data.)

Example 11. What value of capacitance C_{s} is required if (2 mf) $=600$ radians ? (f_{1} is approximately 100 cycles.) Take $G_{m 2}=100$ umhos, and $\mathrm{X}_{\mathrm{c} 2}=0.40$.

> By $21, C_{s}=0.3$ uf By $22, C_{s}=2$ uf

DYNAMIC LOAD LINES

The design of pentode amplifiers, where the dynamic load impedance is different than the static load impedance, is similar to that outlined for triodes (see page 14). The static operating point is determined using the static load impedance after which the design is continued using the dynamic load impedance.

Example 12. Assume that the dynamic load impedance for Example 7 is 10,000 ohms. Calculate the amplifications at the same bias points.

$\mathrm{e}_{\mathrm{c} 1}$	-0.5	-1.0	-1.5	-2.0	-2.5	volts
I_{p}	7.0	4.6	2.8	1.7	0.8	ma
$\Delta \mathrm{e}_{\mathrm{L}}$	42	18	0	-11	-20	volts
e_{b}	105	129	147	158	167	volts
$\mathrm{e}_{\mathrm{b}} / \mathrm{E}_{\mathrm{c} 2}$	1.05	1.3	1.5	1.6	1.7	
X_{p}	0.97	0.98	0.98	0.99	0.99	
$\mathrm{G}_{\mathrm{m} 1}$	5300	4200	3000	2000	1000	umhos
$\mathrm{G}_{\mathrm{m} 1} X_{p}$	5140	4120	2940	1980	990	umhos
K	-51.4	-41.2	-29.4	-19.8	-9.9	

In Example 7, the value of e_{b} for $\mathrm{e}_{\mathrm{c} 1}=-1.5$ volts is the static voltage, E_{b}. For that reason, the change in output voltage, $\Delta \mathrm{e}_{\mathrm{L}}$, is calculated with respect to $E_{b}=147$ volts by:

$$
\Delta \mathrm{e}_{\mathrm{L}}=\left(\mathrm{i}_{\mathrm{b}}-\mathrm{I}_{\mathrm{b}}\right) R_{\mathrm{LD}}
$$

The total plate voltage, e_{b}, is the sum of E_{b} and $-\Delta \mathrm{e}_{\mathrm{L}}$.

TRIODE DEGENERATIVE AMPLIFIERS

The equation for the gain of this amplifier was derived in Chapter 2, and is:

$$
\begin{equation*}
K=-g_{m} R_{L} /\left[1+\left(g_{m}+g_{p}\right) R_{k 1}+g_{p} R_{L}\right] \tag{8}
\end{equation*}
$$

where R_{k}, is the portion of the cathode bias resistor which is not bypassed. The equation for the load line for this amplifier is slightly modified from that of the ordinary triode amplifier:

$$
\begin{equation*}
e_{b}=E_{b b}-i_{b}\left(R_{k 1}+R_{L}\right) \tag{23}
\end{equation*}
$$

In other respects, the design technique is unchanged.
Example 13. To illustrate the effect of degeneration clearly, the design of Example 4, Case 1, may be modified by assuming $R_{k 1}=400$ ohms. Find the change of amplification and distortion.

As $R_{k 1}$, is negligible compared to R_{L}, the same data may be used, giving:

e_{c}	0	-2	-4	-6	-8	volts
K	-14.1	-13.0	-11.8	-10.7	-9.4	

DISTORTION

The distortion generated by the degenerative amplifier may be calculated using either Equation 15 or the Fourier technique. Using Equation 15 with a peak-to-peak signal voltage e_{s} of 8 volts, the amplifier of Example 13 will have a distortion of 5%. In a similar manner, a peak signal of 4 volts yields a distortion of 2.4% ($\mathrm{E}_{\mathrm{c} 1}=-4$ volts). As can be seen from page 13, the distortions without degeneration are 6.0 and 3.0%, respectively.

THE PENTODE DEGENERATIVE AMPLIFIER

The amplification equation for the pentode degenerative amplifier has been derived on page 8 ; it is:

$$
K=-G_{m 1} X_{p} R_{L} /\left(1+G_{m 1} X_{p} R_{k 1}\right)
$$

The plate-to-cathode voltage, and the voltage to ground are given by the, equations:

$$
\begin{aligned}
& e_{b}=E_{b b}-I_{p}\left[X_{p}\left(R_{k 1}+R_{L}\right)+X_{c 2} R_{k 1}\right] \\
& E_{K}=I_{p}\left(X_{p}+X_{c 22}\right) R_{k} \\
& e_{k}=I_{p} X_{p} R_{k 1}
\end{aligned}
$$

The second of this group is used to calculate the bias, and the third the degenerative signal voltage.

THE TRIODE CATHODE FOLLOWER

The equations for the cathode follower are given on page 8. They show that it can handle a much larger input voltage than can an ordinary amplifier because most of the input signal is offset by the signal voltage developed in the cathode circuit. This leaves only a small grid-to-cathode voltage. The load line for it is usually dependent on the value of the cathode resistance alone since normally no plate load resistor is used with it. As with ordinary amplifiers, a static and a dynamic load line should be used if the coupled loading has sufficient magnitude. The equation for amplification is:

$$
K=g_{m} R_{k}\left[1+\left(g_{m}+g_{p}\right) R_{k}\right]
$$

The dynamic output impedance (not to be confused with the dynamic load impedance, which should be large compared to R_{k}) is given by the equation:

$$
\begin{equation*}
R_{o}=1 /\left(g_{m}+g_{p}\right) \tag{24}
\end{equation*}
$$

The input impedance, with the grid returned to ground, is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{i}}=\mathrm{R}_{\mathrm{g}} \tag{25}
\end{equation*}
$$

It may, however, be made much higher by returning grid resistor R_{g} to a tap on the cathode resistor (between R_{k}, and $R_{k 2}$). Usually sufficient resistance $R_{k 1}$ is placed between the cathode and the tap point to provide the necessary bias. In this case the input resistance is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{i}}=\mathrm{R}_{\mathrm{g}} /(1-\mathrm{K}) \tag{26}
\end{equation*}
$$

The output impedance is also higher in this arrangement.
Example 14. A cathode follower is required using a 6J5, $\mathrm{E}_{\mathrm{bb}}=250$ volts, and $R_{k}=25,000$ ohms. What are its characteristics?

The small-signal data may be tabulated in the usual manner:

ec	0	-2	-4	-6	-8	volts
g_{m}	3800	3150	2500	1950	1350	umhos
g_{p}	165	150	130	110	80	umhos
K	0.95 D	0.942	0.936	0.926	0.918	
\underline{R}_{0}	252	303	380	485	700	ohms.

If the static bias point is -4 volts and the grid swing is 8 volts peak to peak, the distortion is 0.43%, the output voltage is 115 volts, and the input signal 123 volts peak to peak. The output resistances are very easily obtained at each bias point by the G-Curve technique. When matching is critical, therefore, the additional information can be invaluable. The example shows that the output resistance varies rather widely, with the result that the selection of the proper values of R_{k}, and the static bias point E_{c} can easily provide the required matching.

THE PENTODE CATHODE FOLLOWER

Pentode-type tubes are used for cathode followers when a very low output resistance, a very high input resistance, and a very small input capacitance are required. The equation for amplification is:

$$
K=G_{m 1} X_{p} R_{k} /\left(1+G_{m 1} X_{p} R_{k}\right)
$$

The pentode G-Curves may be used with this equation to determine the small-signal parameters and the gain, output and input resistances are found just as with triodes. (This procedure must be modified if the screen is bypassed to ground instead of to the cathode.)

CALCULATING THE CATHODE BYPASS CAPACITOR

When cathode degeneration is not desired, cathode resistor R_{k} may be bypassed with a capacitor of sufficient size to ensure that the alternating voltage between the cathode and ground is negligible over the passband of the amplifier. The amount of cathode degeneration is given by the term $\left(g_{m}+g_{p}\right) R_{k 1}$ in Equation 8. If a bypass capacitor C_{k} is connected in parallel with R_{k} this degeneration term becomes $\left(g_{m}+g_{p}\right) Z_{k}$, where Z_{k} is given by $R_{k} /\left(1+j \omega C_{k} R_{k}\right)$. Sufficient bypassing is obtained when the degeneration term is small compared to the balance of the denominator of Equation 8. The approximate conditions required for a triode are given by:

$$
\begin{equation*}
C_{k}=5\left(g_{m}+g_{p}\right) /\left[2 \pi f_{1}\left(1+g_{p} R_{L}\right)\right. \tag{27}
\end{equation*}
$$

For pentode tubes, this equation may be written:

$$
\begin{equation*}
C_{k}=5 G_{m 1} X_{p} /\left(2 \pi f_{1}\right) \tag{28}
\end{equation*}
$$

These equations may be obtained in the same way as Equations 21 and 22. The actual derivations however, are published elsewhere (see bibliography.)

The fact that the designs considered here seem only to apply to R-C amplifiers, should not mislead the reader into thinking that other types of amplifiers cannot he designed in similar manner. As a matter of fact, any amplifier in effect develops its output in some kind of a load resistance or impedance. For example, the transformer-coupled amplifier may be solved by drawing a static load line corresponding to the primary resistance of the transformer, followed by a dynamic load line at the effective impedance of the load as seen at the input to the transformer. Tuned amplifiers are handled similarly, since the dynamic load line is established by determining the effective impedance of the circuit, and then plotting the corresponding line. In fact, the method is completely general and can be used, with minor modifications, with almost every circuit confronting the electronics man.

BIBLIOGRAPHY

[^3][^4]
CROSS-REFERENCE DATA

The following tube characteristic cross-reference and equivalence charts are included to help guide the user in selecting substitutes for tubes listed in this Manual. They also enable the designer to use tubes that are not included, but have identical characteristics.

Where several similar tubes differing only in filament voltage are available, standard practice in these lists has been to make the principal listing in the 6 - or the 7 - tube series. Tubes bearing codes starting with the numbers $3,4,5,9,12,19,25$, etc., should be checked under the corresponding 6 -series. The 14 -series should be checked under the 7 -series.

Tube classification techniques have always been a problem. The setting up of a simple standard means of identifying the characteristics of a tube by a number and letter combination has been tried several times in this country. In every case the standardizing nomenclature has fallen into disuse. The best identifying system so far found by the writer appears to be one used by several European organizations, typically Mullard, Telefunken, and others. For that reason, a slightly modified version of the Continental system has been prepared for use in tube classification in this Manual. The defining table, with additions made to improve its utility with the present application, follows.

The nomenclature used consists of a series of identifying letters followed by two or more numbers. The first letter of the series is used to indicate the filament or heater voltage or current. (Additions to the standard table are followed by the symbol π.) For the first letter:

A	4.0-volt filament	H	150-ma heater
C	200-ma heater	J	26 -volt heater
D	0.5 - to 1.5 -volt filament	K	2.0 -volt filament
E	6.3 -volt heater	P	300-ma heater

(also used with 6.3-12.6-volt tubes)
G 5.0 -volt heater U 100-ma heater
The series of letters following the first letter are used to identify the types of structures, i.e., diodes, triodes, etc., that comprise the active elements of the tube. The revised list as used in this Manual is as follows:

A	single diode	\mathbf{M}	electron-beam indicator
B	double diode	\mathbf{N}	thyratron
C	triode	\mathbf{P}	secondary-emission tube
D	output triode		(used only as third letter)
E	tetrode	\mathbf{Q}	nonode
F	voltage-amplifier pentode	\mathbf{S}	dual-control pentode (T)
FR	remote-cutoff pentode (T)	\mathbf{X}	full-wave gas rectifier
\mathbf{H}	hexode	\mathbf{Y}	haft-wave rectifier
K	heptode or octode	\mathbf{Z}	full-wave rectifier
L	output pentode		

Several of the above letters may have to be used with a tube to describe completely the tube structure. For example, the twin-triode 6SN7
carries the type designation ECC, and the 6SQ7 carries designation EBC.
In addition to the above group of letters, the following numbers convey additional information on the tube. The first number identifies the type of tube socket required. The designations are as follows:

2	loctal base	6	subminiature in-line
$\mathbf{3}$	octal base	7	subminiature circle eight
4	B8A base (not used in the USA)	8	nine-pin miniature base
5	B9G base	9	seven-pin miniature base

Other bases are identified by Sp followed by the number of pins available with the socket.

The numbers following these numbers on the type indicate the specific engineering design number. As a consequence, they are of little interest and are not used herein.

In addition to the above data, the RETMA base pattern number is included for those tubes on which it is known.

Two tables of classification are included in the next few pages. The first includes a fairly complete listing of tubes that have electrical characteristics reasonably similar to those for which curves are included. This table includes classification data indicating the type of tube, and the tube base type. In addition, a column listing the RETMA base diagram is included. The final column lists the Manual equivalent on which curves are available.

Tubes whose curves are included are italicized in the tube type column. Electrical equivalents that are mechanically interchangeable are type I; electrical equivalents differing mechanically are type II. Differences in filament voltage or current are indicated by a capital F, and premium tube types by capital P.

For example, the code (I-F) means that the tubes are electrically equivalent except for the heater voltage or current, which are different.

The second table lists the tubes whose curves are included in the Manual along with a tabulation of the various equivalent types with which the curves may be used.

26.

TABLE I: TUBES WITH ELECTRICAL CHARACTERISTICS SIMILAR TO MANUAL CURVES

Tube Type	Classification	RETMA 'Base	"Manual" Equivalent
2 C 51	ECC8	8CJ	5670 (I-P)
6AB4	EC9	5CE	6201 (II-P)
6AC7/1852	EF3	8 N	6134 (I-P)
6AG7	EL3	8Y	6AG7
6AH4GT	ED3	8EL	6AH4GT
6AH6	EF9	7BK	6AH6
6AJ7	EF3	8N	6134 (I-P)
6AK5	EF9	7BD	6AK5
6AK7	EL3	8Y	6AG7 (I)
6AL6	EL3	6AM	6L6 (II)
6AM4	EC8	9BX	6AM4
6AM8/5AM8	EAF8	9CY	6AM8
6AQ5/19AQ5	EL9	7BZ	6005 (I-P)
6AR6	EL3	6BQ	6AR6
6AS7G	EDD3	8BD	6AS7G
6AU6	EF9	7BK	6136 (-P)
6AV5GT	EL3	6CK	6BQ6 (II)
6BA6/12BA6	EFR9	7BK	5749 (I-P)
6BD6/12BD6	EFR9	7BK	6137 (II-P)
6BE6/3BE6/12BE6	6 EK9	7 CH	6BE6
6BH6	EF9	7CM	6BH6
6BJ6	EFR9	7CM	6B J6
6BQ6GT/25BQ6GT	T EL3	6AM	6BQ6
6BQ7A/6BQ7	ECC8	9AJ	6BQ7A
6BY4	EC-Sp	6BY4	6BY4
6BZ7	ECC8	9AJ	6BQ7A (I)
6C4	EC9	6BG	6135 (I -F-P)
6CB6/3CB6	EF9	7CM	6CB6
6CD6GA	EL3	5BT	6CD6GA
6CL6	EL8	9BV	6CL6
6CM6/12CM6	EL8	9CK	6CM6
6CS6	EH9	7 CH	6CS6
6CU6	EL3	6AM	6BQ6GT (I)
6DQ5	EL3	8JC	6DQ5
6DQ6-A	EL3	6AM	6DQ6-A
6F8G	ECC3	8G	6 J (II)
6J5/12J5	EC3	6Q	6J5
6J6/9J6/19J6	ECC9	7BF	6J6
6K7	EFR3	7R	6137 (II-P)
6L6	EL3	7AC	6L6
6SD7	EFR3	8N	6B J6 (II)
6SJ7	EF3	8 N	5693 (I-P)
6SK7/12SK7	EFR3	8 N	6137 (I-P)

27.

TABLE I: TUBES WITH ELECTRICAL CHARACTERISTICS SIMILAR TO MANUAL CURVES (Contd.)

Tube Type	Classification	RETMA 'Base	"Manual" Equivalent
6SL7/12SL7	ECC3	8BD	6SL7
6SN7/12SN7/25SN7	ECC3	8BD	5692 (I-P)
6SS7	EFR3	8N	6137 (II-P)
65U7	ECC3	8BD	6SL7 (I)
6T	EL3		6V6 (II)
6TP	EL3		6L6 (II)
6V6/12V6	EL3	7AC	6V6
6Y6G	EL3	7AC	6Y6
7A4/14A4	EC2	5AC	6 J 5 (II)
7A7/14A7	EFR2	8V	6137 (II-P)
7C5/14C5	EL2	6AA	6V6 (II)
7F7/14F7	ECC2	8AC	6SL7 (II)
7N7/14N7	ECC2	8AC	6 J 5 (II)
10F3	EF		6134 (II-P)
12AT7	ECC8	9A	6201 (I-P)
12AU7	ECC8	9A	5814A (I-P)
12AV7	ECC8	9A	5965 (I-P)
12AX7	ECC8	9A	12AX7
12AY7	ECC8	9A	12AY7
12AZ7	ECC8	9A	6201 (I-P)
12BH7	ECC8	9A	12BH7
12BY7	EL8	9BF	12BY7
12BZ7	ECC8	9A	12BZ7
12K7	EFR3	7R	6137 (I-P)
125X7	ECC3	8BD	6 J 5 (II)
26D6	JK9	7 CH	6BE6 (I-F)
396A	ECC8	8CJ	5670 (I-P)
403A, 403B	EF9	7BD	5654 (I-P)
417A	EC8	9 V	5842/417A
731A	EF9	7BD	6AK5 (I)
829	ELL-7Sp	7BP	5894A
1132	EF5		6AK5 (II)
1381HQ	EF9	7BD	6AK5 (I)
1491	ECC8	8CJ	5670 (I-P)
1614	EL3	7AC	6L6 (II)
1622	EL3	7AC	6L6 (I)
1631	EL3	7AC	6L6 (I)
1642	ECC8	8CJ	5670 (I-P)
1649	EF3	8N	6134 (I-P)
1851	EF3	7R	6134 (II-P)
5591	EF9	7BD	6AK5 (I)
5637	EC	8DK	5719 (II)

28.

TABLE : TUBES WITH ELECTRICAL CHARACTERISTICS SIMILAR TO MANUAL CURVES (Contd.)

Tube Type	Classification	RETMA 'Base	"Manual" Equivalent
5654	EF9	7BD	5654
5670	ECC8	8CJ	5670
5686	EL8	9G	5686
5687	EDD8	9 H	5687
5691	ECC3	8BD	5691
5692	ECC3	8BD	5692
5693	EF3	8N	5693
5702WA	EF-sp	5702 (R117)	6AK5 (II)
5718	EC7	8DK	5718
5719	EC7	8DK	5719
5749	EFR9	7BK	5749
5750	EK9	7CH	6BE6 (I)
5751	ECC8	9A	5751
5763	EL8	9K	5763
5814A/6135	5 ECC8	9A	6135/5814A
5840	EFR7	8DL	5840
5842	EC8	9 V	5842/417A
5844	ECC9	7BF	5844
5871	EL3	7AC	6 V 6 (1)
5881	EL3	7AC	6V6 (1)
5894A	ELL-7Sp	5894A-7BP	5894A
5899	EFR7	8DL	5899
5900	EFR7	8DL	5899 (I)
5901	EF7	8DL	5840 (I)
5902	EL7	8DL	5902
5906	EF7	8DL	5840 (1)
5932	EL3	7AC	6L6 (I)
5965	ECC8	9A	5965
5992	EL3	7AC	6V6 (I)
6005	EL9	7BZ	6005
6021	ECC8	8DG	6021
6028	EF9	7BD	6AK5 (I)
6061	EL8	9AM	6V6 (II)
6062	EL8	9 K	5763 (I)
6067	ECC8	9A	5814A (I)
6080	EDD3	8BD	6AS7 (I)
6082	EDD3	8BD	6AS7 (I-F)
6090	EF9	7BD	5654 (I)
6096	EF9	7BD	6AK5 (I)
6098	EL3	6BQ	6AR6 (I)
6099	ECC9	7BF	6J6 (I)
6101	ECC9	7BF	6J6 (I)
6111	ECC7	8DG	6111

29.

TABLE I: TUBES WITH ELECTRICAL CHARACTERISTICS SIMILAR TO MANUAL CURVES (Contd.)

Tube Type	Classification	RETMA 'Base	"Manual" Equivalent
6112	ECC7	8DG	6112
6113	ECC3	8BD	6SL7 (I)
6134	EF3	8 N	6134
6135/5814A	EC9	6BG	6135
6136	EF9	7BK	6136
6137	EFR3	8N	6137
6180	ECC3	8BD	6 J (II)
6185	ECC8	8CJ	5670 (1)
6189	ECC8	9A	5814 (I)
6197	EL8	9BV	6CL6 (I)
6201	ECC8	9A	6201
6216	EL8	9CE	6216
6265	EF9	7CM	6265
6336	EDD3	8BD	6336
6386	ECC8	8CJ	6386
6394	EDD3	8BD	6336 (I-F)
6414	ECC8	9A	6414
6485	EF9	7BK	6AH6 (I)
6661	EF9	7CM	6661
6662	EFR9	7CM	6B J6 (I)
6669	EL9	7BZ	6005 (I)
6677	EL8	9BV	6CL6 (I)
6679	ECC8	9A	6679
6680	ECC8	9A	5814A (I)
6760	EL8	9CE	6216 (I-F)
6761	EL8	9CE	6216 (I)
6829	ECC8	9A	6829
6927	ECC9	7BF	6 J 6 (I)
6928	EL9	7BZ	6005 (I)
7756	EL3	6BQ	6AR6 (I)
B36	ECC3	8BD	6 J 5 (II)
B65	ECC3	8BD	6 J 5 (II)
BPM04	EL9	7BZ	6 V 6 (II)
CK605CX	EF6	5702(R117)	5654 (II)
EC90	EC9	6BG	6135 (I-P)
ECC35	ECC3	8BD	6SL7 (I-F)
ECC81	ECC8	9A	6201(I-P)
ECC82	ECC8	9A	5814A (I-P)
ECC91	ECC9	7BF	6 J 6 (I)
EF93, HF93	EF9	7BK	5749 (I-P)
EF95	EF9	7BD	6AK5 (I)
EH90	EH9	7 CH	6CS6 (I)

30.

TABLE I: TUBES WITH ELECTRICAL CHARACTERISTICS SIMILAR TO MANUAL CURVES (Contd.)

Tube Type	Classification	RETMA 'Base	"Manual" Equivalent
EK90, HK90	EK9	7CH	6BE6 (I)
EL90, HL90	EL9	7BZ	6005 (I-F-P)
HM04	HK9	7CH	6BE6 (1)
L63	EC3	6Q	6 J 5 (1)
NR77	EL3	7AC	$6 \mathrm{L6}$ (1)
A4073F	EF3	8 N	6134 (I-P)
A4273F	ECC3		6 J (11)
A4434	ECC9	7BF	6 J 6 (I)
A4450	EL9	7BZ	6005 (I-P)
A4475	ECC3	8BD	6AS7G (1)
A4524A	EF9	7CM	6BH6 (1)
A4541A	EL8	9K	5763 (I)
PM04	EFR8	7BK	5749 (I-P)
PM05	EF9	7BD	6AK5 (I)
QM328	EL8	9G	5686 (1)
T2M05	ECC9	7BF	6 J 6 (1)
TS229	ECC8	9 H	5687 (I)
X107	BK9	7CH	6BE6 (I-F)
Z2096	BC9	6BG	5814A (I-P)
Z2101	ECC8	9 A	12AY7 (I-P)

RETMA BASES

5AC-2	1-H	2-P			6-G	7-K	8-H
5BT-3		2-H	3-KG3		$5-\mathrm{G}_{1}$	7-H	8-G2 Cap-P
5CE-9	1-P	2-IS	3-H	4-H	6-G	7-K	
6AA-2	1-H	2-P	$3-\mathrm{G}_{2}$		$6-\mathrm{G}_{1}$	7-KG3	8-H
6AM-3		2-H		$4-\mathrm{G}_{2}$	$5-\mathrm{G}_{1}$	7-H	$8-\mathrm{KG}_{3} \mathrm{Cap}-\mathrm{P}$
6BG-9	1-P	2-IC	3-H	$4-\mathrm{H}$	5-P	6-G	7-K
6BQ-3	1-KBF		3-P		$5-\mathrm{G}_{2}$	6-H	7-G ${ }_{1} 8$ - ${ }^{\text {d }}$
6CK-3	$1-\mathrm{G}_{1}$	2-H	$3-\mathrm{KG}_{3}$		5-P		7-H $\quad 8-\mathrm{G}_{2}$
6Q-3	1-S	$2-\mathrm{H}$	3-P		5-G		7-H 8 -K
7AC-3		2-H	3-P	$4-\mathrm{G}_{2}$	$5-\mathrm{G}_{1}$		$7-\mathrm{H} \quad 8-\mathrm{KG}_{3}$
7BD-9	1-G ${ }_{1}$	2-K	3-H	4-H	5-P	6-G2	7-KG3 3 S
7BF-9	$1-\mathrm{PT}_{2}$	$2-\mathrm{PT}_{1}$	$3-\mathrm{H}$	$4-\mathrm{H}$	$5-\mathrm{GT}_{1}$	6-GT	7-K
7BK-9	1-G1	$2-\mathrm{G}_{3}$	3-H	4-H	5-P	$6-\mathrm{G}_{2}$	7-K
7BP-Sp	1-H	$2-\mathrm{G}_{1} \mathrm{~T}_{2}$	3-G2	4-KG3	5-HCT	$6-\mathrm{G}_{1} \mathrm{~T}_{1}$	
			Cap,-P	$\mathrm{P}_{2} \mathrm{C}$	$\mathrm{ap}_{2}-\mathrm{PT}_{1}$		
7BZ-9	1-G1	$2-K B F P$	3-H	4-H	5-P	6-G2	7-G1

31.

RETMA BASES (Contd.)

7CH-9	1-G1	2-KG5	3-H	4-H	5-P	6-G2G4		7-G3
7CM-9	1-G1	2-K	$3-\mathrm{H}$	4-H	5-P	6-G2	7-G31S	
7R-3	1-S	2-H	3-P	4-G2	5-G3	7-H	8-K	Cap-G1
8AC-2	1-H	2-KT2	3-PT2		4-GT2	5-GT1	6-PT1	7-KT1 8-H
8BD-3	1-GT2	2-PT2	3-KT2	4-GT1	5-PT1	6-KT1	7-H	8-H
8CJ-8	1-H	2-KT1	3-GT1	4-PT1	5-IS	6-PT2	7-GT2	8-KT2 9-H
8DG-7	1-PT1	2-GT1	3-H	4-KT1	5-KT2	6-H	7-GT2	8-PT2
8DK-7	1-G		3-H		5-K	6-H		8-P
8DL-7	1-G1	2-KG3	$3-\mathrm{H}$	4-KG3	5-P	$6-\mathrm{H}$	7-G2	8-KG3
8EL-3	1-G	2-H			5-P		7-H	8-K
8G-3	2-H	3-PT2	4-KT2	5-GT1	6-PT1	7-H	8-KT1	Cap-GT2
8JC-4	1-G1	2-H	3-KG3	4-G2	5-G1	6-KG3	7-H	Cap-P
8N-3	1-S	2-H	3-G3	4-G1	5-K	6-G3	7-H	8-P
8V-2	1-H	2-P	3-G2	4-G3	5-S	6-G1	7-H	$8-\mathrm{H}$
8Y-3	1-G3S	2-H	3-IS	4-G1	5-K	6-G2	7-H	8-P
9AJ-8	1-PT2	2-GT2	3-KT2	4-H	5-H	6-PT1	7-GT1	8-KT1 9-IS
9A-8	1-PT2	2-GT2	3-KT2	4-H	5-H	6-PT1	7-GT1	8-KT1 9-HCT
9AM-8	1-G1	2-G1	3-K	4-H	5-H	7-P	8-G2	9-G3
9BF-8	1-K	2-G1	3-G3	4-H	5-H	6-HCT	7-P	8-G2 9-G3
9BV-8	1-K	2-G1	3-G2	$4-\mathrm{H}$	5-H	6-P	7-G3	8-G2 9-G1
9BX-8	1-G	2-K	3-G	4-G	5-P	6-G	7-H	8-H 9-G
9CE-8	1-P	2-G1	3-KG3	4-H	5-H	6-P	7-G2	8-K
9CK-8	1-G2		3-G1	4-H	5-H	6-G1	7-KG3	9-P
9CY-8	1-K	2-G1	3-G2	4-H	5-H	$6-\mathrm{P}$	7-K	8-P 9-G3
9G-8	1-K	2-G1	3-KG3	$4-\mathrm{H}$	5-H	6-G2	7-P	8-K 9-G2
9-H-8	1-PT1	2-GT1	3-KT1	4-H	5-H	6-KT2	7-GT2	8-HCT 9-PT2
9K-8	1-P		3-G3	4-H	5-H	6-G2	7-K	8-G1 9-G1
9V-8	1-P		3-H	4-G	5-G	6-K	7-G	8-G 9-H
$\begin{aligned} & \text { 5637-Sp 1-P } \\ & \text { 5702(R117) } \end{aligned}$		2-G	3-H	4-H	5-K			
		1-P	2-G2	3-H	4-H	5-G3	6-K	7-G1
					(clockw	wise from	red dot)	

32.

TABLE II: TUBES FOR WHICH CURVES ARE LISTED IN THIS MANUAL

Tube Type	Classification	Equivalents	
		Class I	Class II
6AG7	EL3	6AK7	None
6AH4	ED3	None	None
6AH6	EF9	6485	6AC7 1851
			18526134
			6AJ7
6AK5	EF9	5591 403B	5702WA
		EF95 403A	1132
		PMO5 73 IA	CK605CX
		56086028	
		1381HQ 6096	
		5654	

6AM4	EC8	None	None
6AM8	EAF8	None	None
6AR6	EL3	60987756	None
6AS7G	EDD3	6080	
		6082	
6BE6	EK9	3BE6 12BE6	
		5750 HK90	
		EK90 X107	
		HM04 26D6	
6BH6	EF9	6265	
		6661	
$\begin{aligned} & \text { 6BJ6 } \\ & \text { 6BQ6GT } \\ & \text { 6BQ7A } \\ & \text { 6BY4 } \\ & \text { 6C4 } \end{aligned}$	EFR9 EL3 ECC8 EC-Sp EC9	6662	$\begin{aligned} & \text { 6SD7 } \\ & \text { 6AVSGT } \end{aligned}$
		25BQ6GT 6CU6 6BZ7 4BQ7	
		None	None None
		$\begin{array}{ll} 6135 & \text { EC90 } \\ \text { Z2096 } \end{array}$	
(See 12AU7 curves)			
6CB6	EF9	3CB6	
6CD6GA	EL3	None	
6CL6	EL8	61976677	None
6CM6	EL8	12CM6	6AQ5 6005
6CS6	EH9	EH90	
6DQ5	EL3	None	None
6DQ6-A	EL3	None	None
6J5	EC3	12J5 L63	6F8G 12SN7
			7A4 12SX7
			6SN7 14N7
			7N7 25SN7
			B65 B36
			61805692

TABLE II: TUBES FOR WHICH CURVES ARE LISTED IN THIS MANUAL (Contd.)

34.

TABLE II: TUBES FOR WHICH CURVES ARE LISTED
IN THIS MANUAL (Contd.)

Tube Type	Classification	Equivalents	
		Class I	Class II
5751	ECC8	None	None
5763	EL8	6062	None
5814A	ECC8	$12 \mathrm{AU7}$ ECC82	None
		60676680	
		6189	
5840	EF7	59015906	1132
5842	EC8	417A	None
5844	ECC9	None	None
5894A	ELL-Sp	None	None
5899	EFR7	5900	None
5902	EL7	None	None
5965	ECC8	12AV7 6829	None
6005	EL9	6AQ5 EL90	6 T 12V6
		19AQ5 HL90	6V6 14C5
		BPM04 A4450	7C5 5871
		66696928	
6021	ECC7	None	6J6
6072	ECC8	12AY7 Z2101	None
6111	ECC7	None	None
6112	ECC7	None	None
6134	EF3	6 6C7 6A J7	6AH6
		18521622	10F3
		1649 A4073F	1851
6135	EC9	$\begin{array}{ll} \text { 6C4 } & \text { Z2096 } \\ \text { EC90 } \end{array}$	12AU7 5814A
6136	EF9	6AU6	6BH6
6137	EFR9	6SK7 12SK7	7A7 14A7
		12K7 6K7	6BD6 12BD6
			6SS7
6201	ECC8	12AT7 ECC81	6AB4
		12AZ7 6679	
6216	EL8	67606761	None
6265	EF9	6BH6 6661	None
6336	EDD3	6394	None
6386	ECC8	None	None
6414	ECC8	None	None
6661	EF9	6BH6 6265	None
6679	ECC8	12AT7 ECC81	6AB4
		12AZ7 6201	
6829	ECC8	12AV7 5965	None

35.

TABLES OF POWER-HANDLING ABILITY

The following tables list tubes based on power conductance, in their order of power-handling ability. The triode table lists the tubes in ascending order of plate conductance; the Pentode table (including tetrodes) lists the tubes in ascending order of screen-to-plate transconductance. The conductance values measure the approximate amount of current which may be passed by the tube for a given value of screen or plate voltage, indicating the amount of power which can be developed for a given dissipation.

Since good design is obtained by plotting the load contour roughly parallel to the constant-dissipation contour in the neighborhood of zero bias, it has been found convenient to list the approximate values of conductance on the zero-bias contour at the specified dissipation. In addition to these data, the approximate values of transconductance at the same point are included, as are the nominal power dissipations for the significant electrodes - plate, or screen and plate, as required. These latter data are convenient in that they give the user an idea of the types of applications for which the tube may be used, for example, audio or video amplifiers, etc.

The data may be accumulated at any set of conditions which will give an indication of the behavior of the tube in its area of high dissipation, as in any case an adjustment factor is required for numerical design.* For this reason, the zero bias condition at three-quarters peak dissipation has been chosen for triodes; a correction factor or gamma of two* is convenient in adjusting the dissipation levels. With pentodes, the zero bias condition with the plate dissipation one-half the peak has been chosen to allow an additional margin for the variation of screen and plate dissipations. The value of the gamma factor again is near two.

[^5]TABLE III: POWER-HANDLING ABILITY OF TRIODES
Values of transconductance and plate conductance at approximately 3/4 rated dissipation, unless noted

Tube	g_{m} (approx.)	g_{p} (approx.)	Rated Dissipation (W)
12AX7	2,600	25	1.0
5751	2,000	27	1.0
6SL7GT	2,000	30	1.0
6112	2,500	39	0.55
5719	2,500	40	0.55
12AY7	2,500	58	1.5
6072	2,800	58	1.5
12BZ7	7,500	60	1.5
6BY4	6,500	65	1.1
6679	8,500	105	2.8
6201	6,500	125	2.5
6AU8	6,500	141	2.5
6AM4	11,000	142	2.0
6BF7	5,300	150	1.0
6414	10,000	150	2.0
6135/5814A	3,500	177	2.75
6C4-12AU7	3,500	177	2.75
5670	6,200	184	1.5
$6 \mathrm{J6}$	6,200	184	1.5
5965	9,500	184	2.75
5492	3,000	185	1.75
5844	6,000	190	1.0
6021	6,500	192	0.7
6BQ7	8,500	200	2.0
6 U 8	8,500	203	2.7
6 J 5	4,500	220	2.5
6829	10,500	230	2.2
6BZ7	8,500	250	2.0
6BC8	8,500	250	2.0
5718	8,000	261	3.3
6111	6,000	266	1.1
6AZ8	5,500	280	2.5
6BH8	6,000	280	2.5
6386	6,000	300	2.5
12BH7	8,000	340	3.5
6463	6,000	350	4.0/7.0
5842	28,000 (half)	568 (half)	4.2
5687	12,500	613	4.2/7.5
6AH4	8,500	1,000	7.5
5998	10,000	4,000	13
6AS7G	12,000 (half)	5,500 (half)	13
6336	22,000	3,000	30

37.

TABLE IV: POWER-HANDLING ABILITY OF PENTODES
Values of transconductance and screen-to-plate transconductance at half the rated plate dissipation

Tube	$\mathrm{G}_{\text {m1 }}$ (approx.)	$\underline{G}_{\text {m2 }}$ (approx.)	Rated P_{p}	Rated P $\mathrm{c}_{\text {c }}$
6661	6,000	102	3.0	0.5
6265	5,000	104	2.0	0.5
5693	2,400	108	2.0	0.3
6BH6	5,000	110	3.0	0.5
6BE6	2,500	118	1.0	1.0
6136	6,000	138	3.0	0.65
6CS6	2,000	160	1.0	1.0
6AM8	8,000	160	2.8	0.5
6CB6	8,000	172	2.0	0.5
5915A	3,000	175	1.0	1.0
6137	3,000	195	3.3	0.4
5749	5,000	200	3.0	0.6
5840	6,080	202	1.1	0.55
5899	4,900	204	1.1	0.55
6AK5	7,000	220	1.7	0.5
5654	6,000	220	1.7	0.5
6BJ6	5,000	230	3.0	0.6
6AH6	13,300	268	3.2	0.4
6AZ8	6,000	300	2.0	0.5
6134	14,000	312	3.0	0.38
E-180-F	22,000	380	3.0	0.9
5686	3,750	420	7.5	3.0
12BY7	15,000	431	6.0	1.1
6V6	5,000	468	12.0	2.0
6CM6	5,000	480	12.0	2.0
6AG7	11,000	486	9.0	1.5
6005	5,000	500	12.0	2.0
6CL6	12,500	504	7.5	1.7
5763	12,000	552	12.0	2.0
6L6	8,000	780	19	2.5
807	9,800	880	25	3.5
5902	6,000	900	3.7	0.4
6AR6	9,000	1,120	19.0	3.2
5894A	10,500	1,200	20	7.0
6216	14,000	1,620	10	1.0
6BQ6GT	11,000	1,980	11	2.5
6Y6G	12,000	2,150	12.5	1.75
6CD6GA	20,000	3,000	15	3.0
6DQ6A	9,000	3,470	15	3.0
6DQ5	16,000	5,400	2.4	3.2

38.

The curves in the following section represent a compilation of tube data organized to facilitate circuit design. They have been obtained in several ways, among them:

1) Replotting of manufacturers' data
2) Measurement, followed by coordination with published data
3) A combination of I and 2

At the same time that they have been prepared, an effort has been made to evaluate the importance of the various parameters in practical design and to prepare the curves in a way which takes best advantage of the important factors. In this way the curves themselves tend to help the user become an experienced designer - they rapidly show him the range of characteristics available in a tube as well as showing him a great deal about the relative linearity of the device.

Interestingly enough, the data which prove to be most critical are the small-signal, or conductance data. The static contours can vary in position over an appreciable range without introducing serious accuracy problems, whereas considerable difficulty may be encountered if the conductance contours are incorrectly positioned. As a result, the included curves, because of the conductance information, both speed up the design process and make it more accurate.

Because of the ways in which the curves have been obtained, the reader may find that some variations exist between manufacturers' data and the curves. These differences are most pronounced in the static contours, and usually indicate either poor control of g_{p} or $G_{m 2}$ on the tubes themselves, particularly from producer to producer, or indicate that possibly the tube is being used outside the normally controlled area. For these reasons, and because new tubes are being issued at frequent intervals, it is planned to reissue this Manual as need arises so that the user can be kept up to date.

As the dissipation of a tube is such an important factor, the plotting of contours corresponding to critical values of dissipation on the GCurves can be useful. For this reason, contours marking the positions of the half-rated and full-rated plate dissipations are marked by red curves, a broken curve indicating half-of-rated, and a solid curve representing full-rated dissipation. This method of marking the power contours is used to prevent confusion with the bias and conductance contours. Note that where two power ratings are carried on one sheet ($6 \mathrm{C} 4-12 \mathrm{AU7}$, for example) the lower one is plotted.

A convenient technique in using the power contours is to locate the point corresponding to either $1 / 2$ or $3 / 4$ of rated dissipation on the zerobias contour, calling the coordinates of this point ($\mathrm{E}_{\mathrm{bp}}, \mathrm{I}_{\mathrm{bp}}$). Then, for a single-tube amplifier, the static operating point may be defined by the equations:,

$$
\begin{aligned}
\mathrm{E}_{\mathrm{bp}} & =0.6 \mathrm{E}_{\mathrm{b}} \quad \mathrm{Z}_{\mathrm{L}}=\mathrm{E}_{\mathrm{b}} / \mathrm{I}_{\mathrm{bp}}=5 \mathrm{E}_{\mathrm{bp}} / 3 \mathrm{I}_{\mathrm{bp}}
\end{aligned}
$$

The static supply voltage is $5 / 3$ of the zero-bias voltage, and the plate voltage for current cutoff is $8 / 3 \mathrm{E}_{\text {bp }}$. For a push-pull amplifier, the platesupply voltage is raised and the grid bias made more negative. These voltages are changed sufficiently to reduce the static amplification of the single tube at E_{b} to approximately one-half that at E_{bp}.

The pentode dissipation contours indicate the conditions for half and full-rated power input with the plate and screen voltages equal. If the plate voltage at zero bias E_{bp} is taken to be $3 / 4$ of screen voltage $\mathrm{E}_{\mathrm{c} 2}$, the maximum plate dissipation occurs with $\mathrm{e}_{\mathrm{b}}=\mathrm{E}_{\mathrm{c} 2}$. The equations applying to the pentode otherwise are the same as those for the triode:

$$
\mathrm{E}_{\mathrm{bp}}=0.6 \mathrm{E}_{\mathrm{b}} ; \quad \mathrm{I}_{\mathrm{b}}=0.6 \mathrm{l}_{\mathrm{bp}} ; \quad \mathrm{Z}_{\mathrm{L}}=5 \mathrm{E}_{\mathrm{bp}} / 3 \mathrm{l}_{\mathrm{bp}}
$$

40.

SCREEN CHARACTERISTICS

$P_{p} 9.0$ WATTS: $P_{c 2}$ 1.5 WATTS

PLATE CHARACTERISTICS

$P_{p} \quad 7.5$ WATTS
BASE: 1-G $\quad \mathbf{2 - H} \quad \mathbf{5 - P} \quad \mathbf{7 - H} \quad \mathbf{8 - K}$

SCREEN CHARACTERISTICS

$P_{p} 3.2$ WATTS: $P_{c 2} 0.4$ WATT
BASE: $\quad \mathbf{1 - G} \mathbf{G}_{1} \quad \mathbf{2 - G} \mathbf{G}_{3} \quad 3$ 4-F

P_{p} 1.7 WATT: $P_{c 2} 0.5$ WATT

PLATE CHARACTERISTICS

e_{b} VOLTS
$P_{p} 2$ WATTS
BASE: 13 4-G $\mathrm{G}_{\text {in }}$ 2-K $\mathbf{5 - P} \mathbf{6}$ 9-G $\mathbf{G}_{\text {out }} 78$ 8-H
NOISE FIGURES AT 900 MC : A 14 db : B 14.5 db : C 15 db CONTOUR OF NOISE FIGURE MINIMA:

CURVE
6AM8
SCREEN CHARACTERISTICS

P_{p} 2.8 WATTS: $P_{c 2} 0.5$ WATT

CURVE 6AR6
SCREEN CHARACTERISTICS

$P_{p} 21$ WATTS: $P_{c 2}$ 3.5 WATTS
BASE: 1-K 2 4-NC 3-P 5-G $\mathbf{2}$ 6-H $\mathbf{7 - G}$

CURVE 6AS7G

PLATE CHARACTERISTICS

$P_{p} 13$ WATTS
BASE: $\quad \mathbf{1 - G} \mathbf{G}_{2} \quad \mathbf{2 - P} \mathbf{P}_{2} \quad \mathbf{3 - K} \mathbf{K}_{2} \quad \mathbf{4 - G} \mathbf{G}_{1} \quad \mathbf{5 - P} \mathbf{P}_{1} \quad \mathbf{6 - K} \mathbf{K}_{1} \quad \mathbf{7} \quad \mathbf{8}-\mathbf{F}$

SCREEN CHARACTERISTICS

$P_{p 1} 1$ WATT: $P_{c 2} 1$ WATT

CURVE
6BE6 (2)

NO. 1: SIGNAL GRID BIAS-I VOLT
NO. 3: SIGNAL GRID GIAS-I VOLT
BASE: 1-G $\mathbf{G}_{1} \quad$ 2-K $\quad 3$ 4-H \quad 5-P $\quad \mathbf{G - G}_{2} \quad \mathbf{G}_{\mathbf{4}} \quad$ 7-G \mathbf{G}_{3}

P_{p} 3.0 WATTS: $P_{c 2} 0.5$ WATT
BASE: 1-G \mathbf{G}_{1} 2-K 3 4-F $\mathbf{5 - P} \quad \mathbf{6 - G} \mathbf{G}_{2} \quad$ 7-G \mathbf{G}_{3}

SCREEN CHARACTERISTICS

P_{p} 3.0 WATTS: $P_{c 2} 0.6$ WATT
BASE: 1-G $\mathbf{G}_{1} \quad$ 2-K 3 4-F \quad 5-P \quad 6-G $\mathbf{G}_{2} \quad$ 7-G \mathbf{G}_{3}

CURVE

SCREEN CHARACTERISTICS

$P_{p} 10$ WATTS: $P_{c 2}$ 2.5 WATTS
BASE: 2-F \quad 4-G \mathbf{G}_{2} 5-G 7-F 8-K Cap-P

PLATE CHARACTERISTICS

$P_{\mathrm{p}} 2$ WATTS

PLATE CHARACTERISTICS

$P_{p} 1.1$ WATT
Special socket:

CURVE
 6CB6

SCREEN CHARACTERISTICS

CURVE 6CD6GA

SCREEN CHARACTERISTICS

$P_{\mathrm{D}} 15$ WATTS: $\mathrm{P}_{\mathrm{c} 2} 3$ WATTS
BASE: \quad 2-H \quad 3-K \quad 5-G $\mathbf{G}_{1} \quad \mathbf{7 - H} \quad 8-\mathrm{G}_{2} \quad$ Cap-P

CURVE
6CL6
SCREEN CHARACTERISTICS

$P_{\mathrm{D}} 7.5$ WATTS: $\mathrm{P}_{\mathrm{c} 2}$ 1.7 WATT

SCREEN CHARACTERISTICS

$P_{\mathrm{p}} 12$ WATTS: $\mathrm{P}_{\mathrm{c} 2} 2$ WATTS

CURVE 6 CS6 (1)

SCREEN CHARACTERISTICS

$P_{\mathrm{p}} 1$ WATT: $\mathrm{P}_{\mathrm{c} 2} 1$ WATT

SCREEN CONVERTER

$P_{p} 1$ WATT: $P_{c 2} 1$ WATT

CURVE 6DQ5

SCREEN CHARACTERISTICS

$P_{p} 24$ WATTS: $P_{c 2}$ 3.2 WATTS

SCREEN CHARACTERISTICS

$P_{\mathrm{p}} 15$ WATTS: $P_{\mathrm{c} 2} 3$ WATTS
BASE: 2-H \quad 4-G $\mathbf{G}_{2} \quad$ 5-G $\mathbf{G}_{1} \quad$ 7-H \quad 8-K-G $3_{3} \quad$ Cap-P

CURVE

6 J5
PLATE CHARACTERISTICS

$P_{p} \quad 2.5$ WATTS

BASE: 2-F $\quad \mathbf{3 - P} \quad \mathbf{5 - G} \quad \mathbf{7 - F} \quad \mathbf{8 - K}$

PLATE CHARACTERISTICS

$P_{p} 1.5$ WATT

$$
\text { BASE: } \begin{array}{llllllll}
1-P_{2} & 2-P_{1} & 3 & 4-F & 5-G_{1} & 6-G_{2} & 7-K
\end{array}
$$

CURVE
$6 L 6$
SCREEN CHARACTERISTICS

$P_{p} 19$ WATTS: $P_{c 2} 2.5$ WATTS
BASE: 1-SH 2 7-F $\quad 3-\mathrm{P} \quad \mathbf{4 - G}_{2} \quad$ 5-G $\mathbf{G}_{1} \quad$ 8-K

CURVE 6SL7

PLATE CHARACTERISTICS

P_{p} 1.0 WATT

CURVE
 6V6

SCREEN CHARACTERISTICS

$P_{\mathrm{D}} 12$ WATTS: $\mathrm{P}_{\mathrm{c} 2} 2$ WATTS

SCREEN CHARACTERISTICS

$P_{\mathrm{p}} 12.5$ WATTS: $\mathrm{P}_{\mathrm{c} 2} 1.75$ WATTS

$$
\text { BASE: } 27-\mathrm{F} \quad 3-\mathrm{P} \quad 4-\mathrm{G}_{2} \quad 5-\mathrm{G}_{1} \quad 8-\mathrm{K}
$$

CURVE

12AU7-6C4

PLATE CHARACTERISTICS

12AUT: $P_{p} 2.75$ WATTS

6C4: $\quad P_{p} \quad 3.5$ WATTS
BASE: 1 5-P 2-1C 3 4-H \quad 6-G $\quad 7-K$

PLATE CHARACTERISTICS

$P_{p} 1$ WATt
BASE: $\begin{array}{lllllllll}\mathbf{1 - P} & \mathbf{2 - G} & \mathbf{3 - K} & \mathbf{4} & \mathbf{5 - H} & \mathbf{6 - P} & \text { 7-G1 } & \mathbf{8 - K} & \mathbf{9 - H C T}\end{array}$

CURVE

12AY7

$P_{p} \quad 1.5$ WATT

BASE: $\quad \mathbf{1 - P} \mathrm{P}_{2} \quad \mathbf{2 - G} \mathrm{G}_{2} \quad \mathbf{3 - \mathrm { K } _ { 2 }} \quad \mathbf{4} \mathbf{5 - H} \quad \mathbf{6 - P} \mathrm{P}_{1} \quad \mathbf{7 - G} \mathbf{G}_{1} \quad \mathbf{8 - K} \mathrm{~K}_{1} \quad \mathbf{9 - H C T}$

CURVE
12BH7

PLATE CHARACTERISTICS

$P_{\mathrm{p}} 2.5$ WATTS

SCREEN CHARACTERISTICS

$P_{\mathrm{p}} 6.0$ WATTS: $\mathrm{P}_{\mathrm{c} 2}$ 1.1 WATT

CURVE 12BZ7

PLATE CHARACTERISTICS

$P_{p} 1.5$ WATT

P_{p} 4.5 WATTS

BASE: 1-P 2-NC 3 9-H 4578 8-G 6-K

SCREEN CHARACTERISTICS

P_{D} 1.7 WATT: $\mathrm{P}_{\mathrm{c} 2} 0.5$ WAIT

CURVE 5670

PLATE CHARACTERISTICS

$P_{p} \quad 1.5$ WATT

SCREEN CHARACTERISTICS

$P_{\mathrm{D}} 7.5$ WATTS: $\mathrm{P}_{\mathrm{c} 2}$ 3.0 WATTS

CURVE 5687

PLATE CHARACTERISTICS

P_{p} 4.2 WATTS
BASE: $\quad \mathbf{1 - P} \mathrm{P}_{1} \quad \mathbf{2 - G} \mathrm{G}_{1} \quad \mathbf{3 - K} \mathrm{~K}_{1} \quad \mathbf{4} \mathbf{5 - H} \quad \mathbf{6 - K} \mathrm{~K}_{2} \quad \mathbf{7 - G} \mathbf{G}_{2} \quad \mathbf{8 - H C T} \quad \mathbf{9 - P} \mathbf{P}_{2}$
MAXIMUM TOTAL PLATE DISSIPATION - BOTH SECTIONS: 7.5 WATTS

PLATE CHARACTERISTICS

CURVE

5692 (6SN7)

PLATE CHARACTERISTICS

$P_{p} \quad 1.75$ WATT

SCREEN CHARACTERISTICS

P_{p} 2.0 WATTS: $\mathrm{P}_{\mathrm{c} 2}$ 0.3 WATT
BASE: 2-H $\quad \mathbf{3 - G} \mathbf{G}_{3} \quad \mathbf{4 - G} \mathbf{G}_{1} \quad \mathbf{5 - K} \quad \mathbf{6 - G} \mathbf{G}_{2} \quad \mathbf{7 - H} \quad \mathbf{8 - P}$

CURVE

5718
PLATE CHARACTERISTICS

$P_{p} \quad$ 3.3 WATTS

BASE (SUB-MIN.): 1-G 2-NC 3-H $\quad 4$-NC \quad 5-K \quad 6-H \quad 7-NC 8 8-P

PLATE CHARACTERISTICS

$P_{\mathrm{p}} 0.55$ WATT
BASE: 1-G 24 7-NC 3 6-H 5-K 8-P

SCREEN CHARACTERISTICS

$P_{\text {D }}$ 3.0 WATTS: $P_{\text {c2 }} 0.6$ WATT
BASE: $\quad \mathbf{1 - G} \mathbf{G}_{1} \quad$ 2-G $\mathbf{G}_{3} \quad 3$ 4-H \quad 5-P \quad 6-G $\mathbf{G}_{2} \quad$ 7-K

CURVE 5751

PLATE CHARACTERISTICS

e_{b} VOLTS
$P_{\mathrm{p}} 1$ WATT

$P_{p} 12$ WATTS: $P_{c 2} 2$ WATTS

CURVE 5814A-6135

PLATE CHARACTERISTICS

6135: $P_{p} \quad 3.5$ WATTS
BASE: 1 5-P 2-1C 3 4-H 6-G 7-K
5814A: $P_{p} 2.75$ WATTS

P_{p} 1.1 WATT: $P_{c 2} 0.55$ WATT

PLATE CHARACTERISTICS

$P_{p} 1$ WATT

```
BASE: 1-P 2-P 3 3-H
```

CURVE
5894A

SCREEN CHARACTERISTICS

$P_{p} 20$ WATTS: $P_{c 2} 7$ WATTS TOTAL
BASE: 1 7-H $\mathbf{2 - G} \mathbf{G}_{12} \quad \mathbf{3 - G}_{22} \mathbf{G}_{21} \quad$ 4-K-IS \quad 5-HCT \quad 6-G $\mathbf{G}_{11} \quad$ Caps-P $\mathbf{P}_{2} \mathbf{P}_{1}$

SCREEN CHARACTERISTICS

P_{p} 1.1 WATT: $\mathrm{P}_{\mathrm{c} 2} 0.55$ WATT
BASE: $\quad \mathbf{1 - G} \mathbf{- G} \mathbf{2} \mathbf{8 - K} \mathbf{- G}_{3} \quad \mathbf{3} \mathbf{6 - H} \quad \mathbf{4 - K} \mathbf{G}_{3} \quad \mathbf{5 - P} \quad \mathbf{7 - \mathbf { G } _ { 2 }}$

CURVE 5902

SCREEN CHARACTERISTICS

$P_{p} 4$ WATTS: $P_{c 2} 1$ WATT
BASE: 1-G 24 8-K-G $\mathbf{G}_{3} \quad 3 \mathbf{6 - H} \quad \mathbf{5 - P} \quad$ 7-G \mathbf{G}_{2}

PLATE CHARACTERISTICS

$P_{\mathrm{p}} 2.75$ WATTS

PLATE LOGARITHMICS

$P_{p} 2.75$ WATTS
BASE: $\begin{array}{llllllllll}1-P_{2} & 2-G_{2} & \mathbf{3 - K} & \mathbf{4} & \mathbf{5 - H} & \mathbf{6}-\mathrm{P}_{1} & \mathbf{7}-\mathrm{G}_{1} & \mathbf{8 - K} & \text { 9-HCT }\end{array}$

SCREEN CHARACTERISTICS

$P_{p} 12$ WATTS: $P_{c 2} 2$ WATTS
BASE: 1 7-G \mathbf{G}_{1} 2-K \mathbf{G}_{3} 3 4-H \quad 5-P \quad 6-G \mathbf{G}_{2}

PLATE CHARACTERISTICS

$P_{p} 1.1$ WATT
BASE: $\begin{array}{llllllll}1-P_{2} & \text { 2-G } \\ 2 & 3 & \mathbf{6 - H} & \mathbf{4 - K} & \mathbf{5}-\mathrm{K}_{1} & \mathbf{7 - G} & \mathbf{8}-\mathrm{P}_{1}\end{array}$

PLATE CHARACTERISTICS

P_{p} 1.5 WATT

$P_{p} 1.1$ WATT
$\begin{array}{llllllll}\text { BASE: } & \mathbf{1 - P} & \text { 2-G } & \text { 3-6-H } & \mathbf{4 - K} & \text { 5-K } & \text { 7-G } & \text { 8- }\end{array}$

PLATE CHARACTERISTICS

$P_{p} 0.55$ WATT

CURVE
6134

$P_{p} 3.0$ WATTS: $P_{c 2} 0.38$ WATT

SCREEN CHARACTERISTICS

P_{p} 3.0 WATTS: $P_{c 2} 0.65$ WATT
BASE: $\quad \mathbf{1 - G} \mathbf{G}_{1} \quad$ 2-G $\mathbf{G}_{3} \quad 3$ 4-H \quad 5-P \quad 6-G $\mathbf{G}_{2} \quad$ 7-K

CURVE
6137
SCREEN CHARACTERISTICS

P_{p} 3.0 WATTS: $\mathrm{P}_{\mathrm{c} 2}$ 0.4 WATT
$\begin{array}{lllllllll}\text { BASE: } & \mathbf{1 - S H} & 2 & \mathbf{7 - H} & \mathbf{3 - G} & \text { 4-G } & \text { 5-K } & \mathbf{6}-\mathrm{G}_{2} & \mathbf{8 - P}\end{array}$

PLATE CHARACTERISTICS

$P_{p} \quad 2.5$ WATTS

BASE: $\quad \mathbf{1 - P} \mathrm{P}_{2} \quad \mathbf{2 - G} \mathbf{G}_{2} \quad \mathbf{3 - K} \mathrm{~K}_{2} \quad \mathbf{4} \mathbf{5 - H} \quad \mathbf{6 - P} \mathbf{P}_{\mathbf{1}} \quad \mathbf{7 - \mathbf { G } _ { 1 }} \quad \mathbf{8 - K} \mathbf{K}_{1} \quad \mathbf{9 - H C T}$

CURVE
6216
SCREEN CHARACTERISTICS

$P_{p} 10$ WATTS: $P_{c 2}$ 1.0 WATT
$\begin{array}{lllllllllllll}\text { BASE: } & \mathbf{1 - P} & \mathbf{2 - G} & \mathbf{3 - K} & \mathrm{G}_{3} & \mathbf{4} & \mathbf{5 - H} & \mathbf{6 - P} & \mathbf{7}-\mathrm{G}_{2} & \mathbf{8 - K} & \mathbf{9 - N C}\end{array}$

CURVE 6265

SCREEN CHARACTERISTICS

$P_{p} 2.0$ WATTS: $P_{c 2} 0.5$ WATT

CURVE
6336
PLATE CHARACTERISTICS

$P_{p} 30$ WATTS

PLATE CHARACTERISTICS

$P_{p} 1.5$ WATT

CURVE 6414

PLATE CHARACTERISTICS

$P_{p} 2$ WATTS
BASE: 1-P $\begin{array}{lllllllll}2 & \text { 2-G } & 3 & 3-K_{2} & 4 & 5-H & 6-P & 7-G & 8-K_{1} \\ \text { 9-HCT }\end{array}$

SCREEN CHARACTERISTICS

CURVE 6679

PLATE CHARACTERISTICS

$P_{p} \quad 2.8$ WATTS

PLATE CHARACTERISTICS

eb Volts

$P_{p} 2.2$ WATTS

INDEX

Amplification techniques, 10
Amplifier, 10
cathode follower 8, 20, 22
degenerative, 8
pentode cathode, 8, 20
triode cathode, 8, 20
grounded grid, 2
pentode R-C, 7, 14
triode R-C, 6, 10
Capacitor, screen bypass (C_{s}), 18
cathode bypass (C_{k}), 22
Conductance, 6
plate, 1
screen, 18
Contact potential, 2
Contents, table of, xiii - xiv
Contour, bias, 1
noise, 2
plate conductance, 1
transconductance, 1
Converter curves, 4
Corrected currents, 3
transconductance, 3
Correction curves, 2
Cross-reference data, 25
tables, 27, 28, 29, 30
Data transcription, 4
sources, ix,
Derivatives, partial, 6
Dissipation, power (P), 10, 13, 17
plate, 14, 17
screen, 17
Distortion (D), 10,
triode, 12
pentode, 17
triode degenerative, 20
EIA (RETMA) bases, 31, 32
Equations, 6
Equivalence tables,
2C51-6SK7 27
6SL7-5637 28
5654-6111 29
6112-EH90 30
EK90-Z2101 31
Flip-flops, 2
G-Curve, vii, 1, 2, 39
preparation of, 5
index of, 115
G-Curves, for tubes listed in Table II, 41-112
Grid Bias (E_{c}), 1
Grounded grid amplifier, 2
Impedance, dynamic load ($R_{L D}$), 13
Load Line, 10
dynamic, 14, 19
Logarithmic data, 2, 4

Measurement of tube data, 4
Mixer data sheets, 4
Multivibrator, 2
Noise, 2
contours, 2
Oscillator, 2
Parameter, 1
Partial derivative, 6
Pentodes, 2
power handling ability of, 38
screen-to-pate transconductance, 3
logarithmic data, 4
Plate characteristic curves, 1, 2
conductance, 1, 5
current equation, 6
Power handling ability, 3, 10, 36, 37, 38
Relaxation, 2
Resistance, cathode, 6, 8, 9 load, 6, 10
plate (r_{p}), 5, 7 series screen, 18
Resistance-Coupled (R-C) amplifier, 6, 7, 14
RETMA (EIA) bases, 31
Screen characteristic curves, 2 converter curves, 4
Screen grid, 2
Screen-to-plate transconductance, 2
Signal-to-noise ratio, 2
Symbols, table of, xi
Transconductance (G), vii, 1, 2, 3 tables, 37, 38
Triodes, 1
power handling ability of, 37
Tube curves, 39-112
list, 115
equivalent types, 27, 28, 29, 30, 31
Tubes,
for which G-Curves are given,
Table of, 33
with electrical characteristics similar to Manual curves,

Table of, 27
Index of, 115
Uncorrected currents, 3
transconductance, 3
Zero bias, 1, 3, 4, 36

TUBE CONDUCTANCE CURVE LIST

6AG7. 41
6AH4. 42
6AH6 43
6AK5. 44
6AM4. 45
6AM8. 46
6AR6 47
6AS7. 48
6BE6. 49, 50
6BH6 516BJ6....................... 52
6BQ6GT 53
6BQ7A. 54
6BY4. 55
6CB6 56
6CD6GA 57
6CL6 58
6CM6 59
6CS6. 60, 61
6DQ5 62
6DQ6A 63
$6 J 5$ 64
6J6 656L6......................... 666
6SL7 676SL7
6V6 68
6Y6 69
12AU7 70
12AX7 71
12AY7 72
12BH7 73
12BY7 74
12BZ7 75
417A. 76
5654 77
5670 78
5686 79
5687 80
5691 81
5692 82
5693 83
5718 84
5719 85
5749 86
5751 87
5763 88
5814A 89
5840 90
5844 91
5894A 92
5899 93
5902 94
5965 95, 96
6005 97
6021 98
6072 99
6111 100
6112. 101
6134 102
6136 103
6137 104
6201 105
6216 106
6265 107
6336 108
6386 109
6414 110
6661 111
6679 112
6829 113

[^0]: *note - The correction curves are obtained by plotting the curves $X_{p}=i_{\mathrm{b}} / I_{\mathrm{p}}$ and $\mathrm{X}_{\mathrm{c} 2}=\mathrm{i}_{\mathrm{c} 2} / I_{\mathrm{p}}$ as a function of $e_{b} / e_{c 2}$, where I_{p} is the value of i_{b}, where $e_{b} / e_{c 2}=2$. A series of these

[^1]: correction curves may be prepared and averaged, with possibly a little extra weight being given to the contours obtained for bias voltages near zero. The resulting relations show the variations of X_{p} above $\mathrm{e}_{\mathrm{b}} / \mathrm{e}_{\mathrm{c} 2}=0.5$ to within 3-5\% of the true value, or much closer than can be expected from the tube itself. The values of $X_{\mathrm{c} 2}$ take the same form from tube to tube, but may differ in overall magnitude by from 5-25 \% with average tubes.

[^2]: * Note - The bias should be sufficiently large that grid current will not flow during the static or signal conditions. This will make certain that the bias is not altered by grid current flow $=$ a flow causes increased distortion.

[^3]: Radiotron Designer's Handbook, 4th Ed., pp. 23, 554-555, published by Amalgamated Wireless Valve Co., Pty., Ltd., Sydney, Aust.

 Pullen, K. A., "Instrument Design Using G-Curves," The Instrument Maker, January-February 1949.

 - "Amplifier Design Using G-Curves," (Abstract), Proc. I.R.E., February 1949.
 "Using G-Curves in Tube Circuit Design," (Part I), Tele-Tech and Electronic Industries, July 1949.
 "Using G-Curves in Tube Circuit Design," (Part II), Tele-Tech and Electronic Industries, August 1949.
 "Tube Circuit Design Using the G-Curve Technique," Ballistic Research Laboratories Memorandum Report 489, 1949.

 Hodge, A. H. and Pullen, K. A., "The Use of Conductance Curves for Pentode Circuit Design," Ballistic Research Laboratories Memorandum Report 499, 1949.

 Pullen, K. A., "The Use of Conductance Curves for Pentode Circuit Design," Tele-Tech and Electronic Industries, November 1950.
 "Using Conductance Curves in Electronic Circuit Design," Proc. National Electronics Conference, Vol. 6, 1950.
 "Notes on U-H-F Oscillator Design," Tele-Tech and Electronic Industries, February 1953.
 "Conductance Curves Speed Triode R-C Amplifier Design," Tele-Tech and Electronic Industries, May 1953.
 "Conductance Curves Speed Pentode R-C Amplifier Design," Tele-Tech and Electronic Industries, July 1953.
 "G-Curves and Impedance Amplifiers," Tele-Tech and Electronic Industries, September 1953.
 "The Use of Screen-to-Plate Transconductance in Multigid Tube Circuit Design," Electrical Engineering, October 1954.
 "The Use of Screen-to-Plate Transconductance in Multigrid Tube Circuit Design," Ballistic Research Laboratories Memorandum Report 817, August 1954.
 "Improved Techniques for Tube Circuit Design," Radio and Television News, (Engineering Edition), July 1951.
 "Conductance Techniques as Applied to the Vacuum Tube Reliability Program," Proc. Conference on Reliability and Maintenance of Electronic Equipment, October 1955.
 "Conductance Curve Design of Relaxation Circuits," Transactions of the Professional Group on Circuit Theory, National I.R.E. Meeting, 1953.
 "Conductance Curve Design of Relaxation Circuits," Electronic Design, September 1955.

[^4]: "Use of Screen-to-Plate Transconductance in Multigrid Tube Circuit Design," Communication and Electronics: (Publication of AIEE), November 1955.
 "Designing Cathode Coupled Amplifier Using Conductance Curves," Electronic Design, January 1956.
 "Designing Cascade Amplifiers Using G-Curves," Electronic Design, May 1,1956.
 "G-Curves and Degenerative Amplifiers," Tele-Tech and Electronic Industries, April 1954.
 "Design Techniques Using Conductance Curves (Pentode Degenerative Amplifiers)," Electronic Design, October 1, 1956.
 "Guides to Tube Selection," Electronic Design, November 1, 1956.
 "R-F and I-F Amplifier Design With Conductance Curves," Electronic Design, February 1, 1957.
 "Oscillator Design Techniques Using Conductance Curves," Electronic Design, May 15, 1957.
 "Design of Mixers Using Conductance Curves," Electronic Design, June 1, 1957.
 "Achievement of Reliability by Design and Redesign," Electronic Equipment, May 1957.
 "Conductance Design Curves for Electron Tubes," Ballistic Research Laboratories Memorandum Report 1073, May 1957.
 "Design of Oscillators," (Part I),
 Electronic Design, July 1, 1957.
 "Design of Oscillators," (Part II), Electronic Design, July 15, 1957.
 Design of Active Circuits, New York: John F. Rider Publisher, Inc., (in preparation)

[^5]: * Pullen, K. A., "Guides to Tube Selection," Electronic Design, Nov. 1, 1956.

