

A MODERN Transistor WORKBOOK

Schematics and data for building 50 projects using latest solid state devices

INCLUDING INSTRUCTIONS AND MASTER PARTS LIST!

Audio Amplifier/Oscillator
SSB Test Oscillator
Wireless Microphone
Broadcaster
Wireless Phono Oscillator
CB Channel Locator
Microphone Booster
Electroplater and Battery Charger
AM Broadcast Tuner
Battery Eliminator
Supersonic Transceiver
Electronic Organ
Telephone Amplifier
Clorox Powered AM Radio
High Sensitivity Hearing Aid
Two-transistor Receiver
Audio Mixer
The Key-Click Killer
Cathode Modulator for CW

BUILD THESE 50 PROJECTS

Transmitters
Carbon Mike Preamplifier
Public Address System
Noise Limiter
High-to-Low-Impedance Mike Matcher
Low-to-High-Impedance Mike Matcher
"No Power" Receiver
Receiver with Push-Pull Amplification
AM Radio Booster
Current Reverser
World's Smaliest Transmitter?
Experimenter's Power Supply
Headset Booster
Light/Dark Music Maker
VLF "Whistler" Receiver
Interphone Amplifier
Radio-TV Signal Tracer

Supersonic Receiver
World's Smallest Receiver?

Theremin

Power Supply for Tunnel Diodes
vu Meters
Square Wave Generator
Headset/Loudspeaker Converter
Modulation Monitor
15-Meter "Flea Watter"
Transmitter
Audio Preamplifier
Dynamic Microphone
Flashing Light
Broadcast Band CW
Transmitter
Code Practice Oscillator
Hi-Lo Switch (500 watts max.)
Variable AC Control

DARCHER \rightarrow 1-lb. Spool of Electronic Solder $249 \quad \begin{aligned} & 60 \% \text { Tin, } \\ & 40 \% \text { Leod } \end{aligned}$ 16 gauge solder meers Federal Specs QQ-S-571d. \#64.0003 $\$ 2.49$ $12 \&$ Up: 2.19 Ea.	SOLDER and haidoware for the alBcTRONIC HO:BYIST
25-Watt Soldering Iron $189 \begin{aligned} & \text { - Pinpoint Accuracy } \\ & \text { : With UL Cord Plug } \\ & \text { - Uses } 117 \text { V AC IDC }\end{aligned}$ A top miniature iron value priced withour sacrificing quality! $\underset{\text { budget }}{\text { A }}$ priced, without sacrificing qu must for bench or shop work. 64-2182, Sh. wt. 1 lb . 64-2178, Extra Copper Tip \qquad $\$ 1.89$ $\$.25$	WEN Soldering Pistol with ATR* Feature 3^{95} *Automatic Thermal Regulation for Instant Heat More heat - faster! Long reach, with sporlight to illuminate work area 64-2181, Replacement Tip
Budget-Priced All-Purpose Cabinets - High-Impact Styrene Enclosure for Durability! Versatile! Use for parts. medicines, or kirchen needs. 64 2034, $103 / 8 \times 93 / 4 \times 61 / 4$ ", 21 Draws $64-203571 / 2 \times 91 / 4 \times 61 / 4$ ". 10 Draws Net 3.99 Net 2.99	Wire Stripper and Cutter - Won't Crush Fine Wires! - Adjusts to Wire Size! Quality made for all commonly used standard wire sizes. 5" blades cut with smooth shearing action. 64-2129, Ship. wf. 1/2 lb. Net Ea. 1.29: 12/Ea. . 99 99d Ea. In lots of 12
Build Your Own Unclad Perf-Board (Punched) - Accepts Miniature Components! - Simplifies Experimental Circuits! - Easy-In, Easy-Out Mounting! - Ideal for Modular Construction! - Economical Low Pricel 276-1582. 3.65×6.87×1/16" \qquad $276.1583,6.87 \times 9.8 \times 1 / 16^{\prime \prime}$ Net 49	Printed Circuits

RADIO SHACK Test Equipment Tops in Quality and Value

- MICRANTA

DYNAMIC TRANSISTOR CHECKER 995

- Test Transistors In or Out of Circuit!
- Tests Low, Med., High PNP/NPN Power Types!

Gives visual indication of Electrode Open Circuits, Short Circuits, Current Gain. Permits matching similar transistors in operatigg circuirs .o. gives GO/NO-GO rest © currents from 5 ma to 50 ma on power types. Quick check transistor socket on front panel. Clip leads for "in circuit" rest, $61 / 4 \times 33 / 4 \times 21 / 2^{\prime \prime}$
22-024, Ship, wt. 2 lbs.
Net 9.95

YOU PAY ONLY 4申 PER ELECTRONIC EXPERIMENT WHEN YOU BUY THIS BOOK

Contains 50 lab-proven projects for hobbyists, students, experimenters and teachers. 2 sections: "easy" and "more complicated". At the back of this book you"ll find a keyed Master Parts List and prices. All are regularly stocked parts.

A Note To Teachers, Clubs, Institutions

This Book Available at Group Discount Prices!
"50 PROJECTS" is education plus fun at its best. In addition, electronics is as modern as tomorrow's news. These factors make the book extremely desirable as a group activity medium. We now make it available at quantity discount prices and, at the same time, invite you to request discount prices on parts for these projects if bought in quantities.

EACH	2.00 Postpaid
10 copies	10.00 Postpaid
20 copies	15.00 Postpaid
50 copies	25.00 Postpaid
100 copies	35.00 Postpaid

Mail order to the Radio Shack nearest you.

50 TRANSISTOR WORKSHOP PROJECTS

A RADIO SHACK ${ }^{\text {® }}$ PUBLICATION Cat. No. 62-2025

An educational science program designed to provide an introduction to space-age electronics

Published by
RADIO SHACK CORPORATION
SUBSIDIARY OF TANDY CORP.
730 Commonwealth Avenue, Boston, Mass. 02215

FOREWORD

"A Modern Transistor Workbook" comprises 50 electronic projects entirely different from those included in Radio Shack's other book " 50 Easy-to-Build Solid State Projects". It has been written expressly for the Amateur. the CB'er, the Audiophile, the Experimenter and the Photographer.

None of these experiments incorporate hard-to-get or costly parts every part is available from any Radio Shack store. The Master Parts List (page 79) gives you the identifying Radio Shack stock number and price for ease in ordering. No guesswork involved! With the clean, easy-to-follow schematics included, you can build such fascinating transistorized units as an AM Broadcast Tuner: a Radio-TV Signal Tracer: a Square Wave Generator or an Audio Preamplifier. You'll find. too, that most of the circuits used in this book can be adapted to your own needs. and that the number of devices which can be constructed is multiplied accordingly.

All these projects are useful as well as educational and fun to make. and we have taken care to eliminate that major stumbling block for hobbyists and experimenters - the high cost of needed parts. All our parts are standard components designed for universal use and all of them are priced right. Simply check the Master Parts List and order by mail if, for any reason, you can't avail yourself of the personalized service obtainable at any one of our coast-to-coast Radio Shack stores.

RADIO SHACK CORPORATION
Boston, Mass. 02215 U.S.A.

TABLE OF CONTENTS

Introduction 6
No. I Audio Amplifier-Oscillator 10
No. 2 SSB Test Oscillator 11
No. 3 Wireless Microphone Broadcaster 12
No. 4 Wireless Microphone Booster 14
No. 5 Wireless Phono Oscillator 15
No. 6 CB Channel Locator 16
No. 7 Electroplater and Battery Churger 18
No. 8 AM Broadcast Tuner 20
No. 9 Battery Eliminator 21
No. 10 Supersonic Transceiver 22
No. II Electronic Organ 23
No. 12 Telephone Amplifier 24
No. 13 High Sensitivity Hearing Aid 25
No. 14 Clorox Powered AM Radio 26
No. 15 Two-Transistor Receiver 28
No. 16 Audio Mixer 29
No. 17 The Key-Click Killer 30
No. 18 Cathode Modulator for CW Transmiters 31
No. 19 Carbon Mike Preamplifier 32
No. 20 Public Address System 33
No. 21 Noise Limiter 34
No. 22 High-to-Low-Impedance Mike Matcher 35
No. 23 Low-to-High-Impedance Mike Matcher 36
No. 24 "No-Power" Receiver 37
No. 25 Receiver with Push-Pull Amplification and Detection 38

TABLE OF CONTENTS

No. 26 AM Radio Booster 39
No. 27 Current Reverser 40
No. 28 World's Smallest Transmitter 41
No. 29 VLF "Whistler" Receiver 42
No. 30 Radio-TV Signal Tracer 44
No. 31 Headset Booster 46
No. 32 Light/Dark Music Maker 47
No. 33 Theremin 48
No. 34 Interphone Amplifier 50
No. 35 Supersonic Receiver 51
No. 36 Experimenter's Power Supply 52
No. 37 World's Smallest Receiver. 54
No. 38 Power Supply for Tunnel Diodes. 55
No. 39 VUMeter 56
No. 40 Square Wave Generator 58
No. 41 Headset/Loudspeaker Converter 59
No. 42 Modulation Monitor 60
No. 43 15-Meter "Flea Watter" Transmitter 61
No. 44 Audio Preamplifier 62
No. 45 Dynamic Microphone 63
No. 46 Flashing Light 64
No. 47 Broadcast Band CW Transmitter 65
No. 48 Code Practice Oscillator 66
No. 49 Hi-Lo Switch (500 watts max.) 67
No. 50 Variable AC Control 68

INTRODUCTION

Before you begin working on the first project, you should become familiar with transistors, and some of the more important electronic components, schematic diagram symbols, and the tools you will use.

TOOLS

Small tools for use in constructing electronic projects are inexpensive, and can be used over and over again.

For soldering, an iron
 with a pencil tip is the most appropriate. It should be rated at $371 / 2$ watts.

A coil of rosin-core solder (never use acid-core solder in electronics), and a roll of plastic-covered hookup wire.
$5^{\prime \prime}$ long-nose pliers for
 handling compoinents and for twisting wires together; $5^{\prime \prime}$ diagonal cutters for trimming.
A large screwdriver for general work; a small "set" screwdriver for attaching knobs.

A small hand drill, a set of drill bits, and a keyhole saw are very useful.

BOARDS AND CHASSIS

The base on which electronic parts are mounted is called a "chassis." Many everyday things can be used; a piece of plywood or pine, (waxed or shellacked for protection against moisture), pegboard, plastic boxes, cigar boxes, small paper cartons, aluminum boxes, and cake pans are just a few of the more common chassis bases that have been used successfully by hobbyists and experimenters. A thin nonconductive
board with tiny perforations called "vector board" has become popular in recent years. Our projects will use a widely varied assortment of boards, some you may find around the house, and other specifically intended for use in electronics.

HOW TO RECOGNIZE ELECTRONIC PARTS

Your projects use electronic parts best suited to and most popular for transistor work. Here are some of those which are most often used:
Resistors - control voltage levels, limit currents in circuits, and separate circuit elements from each other.

Capacitors - store energy, or isolate certain circuit elements from each other. Larger value units are usually "electrolytic" types. There are also tubular (long and round), ceramic (flat dises), and variable capacitors for tuning antenna coils.
Antenna coils - when used with a variable capacitor, select and separate signals picked up by an antenna.

Earphones - small, lowpower speakers which convert electrical energy to sound.
Loudspeakers-like earphones, but generally larger and more powerful.

IF (intermediate-fre-

 quency) transformers interconnect sections in certain types of radios.

AF (audio-frequency) transformers - used to
 connect the output of one stage to the input of another. Power output types connect a stage to a loudspeaker.

Volume controls-a "potentiometer" or variable resistor used to electrically vary the size of a signal and the loudness of sound.

Diodes and rectifiers convert alternating currents to direct currents. In many radio applications diodes are used as signal "detectors."

Transistors

A small-signal transistor amplifies relatively "small" electrical signals into much bigger ones.
Power transistors amplify considerably larger signals, do heary work.
Solder lugs - easily soldered terminals for securing the leads from wires and parts; small holes for wires, larger holes for screw mounts.

Fahnestock clips -spring-like grippers for the ends of wires; used when temporary connections are needed, such as to batteries. earphones, loudspeakers, and so on.

HOW TO SOLDER

A solder joint that "looks good" is usually electrically good. The soldering iron must be given time to get as hot as it can. If the tip of the iron melts solder instantly, it is hot enough for use. The joint to be soldered must be cleaned of any insulation, and the enamel wire coating scraped off. For best results, the joint must be heated by the iron so that the joint, not the iron, actually melts the solder.

Transistors, capacitors, and other small parts must be protected when the hot soldering iron is touched to their wire leads. With the tip of the long-nose pliers, grasp the wire lead close to the point where it enters the body of the component. This conducts the heat away from the delicate "insides" of the part, yet does not interfere with soldering.

Press the tip of the iron to the point you want to solder. Hold the end of the solder against the junction, not against the iron. If the junction is hot enough, the solder will flow like syrup onto the junction. Hold the pliers absolutely still - while you lift the iron quickly away from the junction. The solder will cool and harden in a few seconds.

A good solder joint looks smooth and glossy. If too little heat is used or the wires are moved before the solder has hardened, the appearance is crystalline, dull. You can fix it by touching the iron to the joint again to liquefy the solder.

AN ANTENNA "PICKS UP" RADIO SIGNALS

The better the antenna, the stronger are the signals it provides. A good antenna is high up and clear of surrounding objects such as telephone and electric power lines, trees, and buildings.

A convenient and effective antenna for receiving commercial AM broadcast stations is a 50^{\prime} length of flexible copper wire running from the edge of a house roof. for example, to a clothes pole, or to the top of another high structure.

Insulators at the ends of the wire electrically insulate it from its supports. Insulated lead-in wire connects the antenna to the radio set. The lead-in wire itself must be insulated.

A cold water pipe (not a hot one) makes a good "ground." Use a metal hose clamp, tightened to the pipe with the bare end of the ground wire from the radio set placed between the clamp and the pipe. Radios often work without a "ground," but usually work better with one.

No. 1

AUDIO AMPLIFIER/OSCILLATOR

This device doubles as a code practice oscillator and an audio amplifier. It requires just a few standard parts and can be built in a small aluminum box or speaker cabinet.

If you have no use for a code practice oscillator and wish to use this only as an audio amplifier, you can eliminate the connection which runs between the base of the 2 N 104 to the collector of the 2 N 408 . This, of course, also eliminates the key and the capacitor. The volume can be adjusted when used either way.

Fig. 1

PARTS LIST

SYMBDL	DESCRIPTION	RAOIO SHACK. NO.
01	transistor, 2N104	276-403
02	transistor, 2N408	276-1702
R1	resistor, 470 ohms	70.0195
R2	potentionmeter, 10,000 ohms	271-1715
C1	capacitor, 0.01 mfd	71.5194
T1	AF output transformer: $\mathbf{5 0 0}$-ohm CT primary. 3.2 -ohm secondary	273-1379
J1	standard phono jack	75-0966
S1	switch, SPST	275-602
B1	6 volts ($4^{\text {"C" cells }}$)	$23-467$
	$6^{\prime \prime}$ PM speaker, 3.2-ohm	$40-1207$
	telegraph key	20-1085

No. 2 SSB TEST OSCILLATOR

This two-tone, SSB test oscillator may be constructed on a piece of board about the size of a deck of playing cards. The output of this unit may be applied to a SSB generator for two-tone linearity measurements.

Fig. 2
Compoments may be mounted on top of the construction boaru and soldered together beneath.

PARTS LIST

SYMBOL	DESCRIPTION	RADIO SHACK NO.
$\begin{aligned} & \text { Q1, Q2 } \\ & \text { R1, R2. } \\ & \text { R3, R4. } \end{aligned}$	transistors, 2N408	276-403
R5, R6	resistors, 10,000 ohms	70-0195
R7, R8	resistors, 680,000 ohms	70-0195
R9, R10	potentiometers, $10,000 \mathrm{ohms}$	271-1915
$\begin{gathered} C 1, C 2, C 3 \\ C 4, C 5 \end{gathered}$	capacitors, 0.002 mfd .	71-5182
C6, C7. 88	capacitors, 0.0047 mfd .	71-5189
	output jack	75-3392
B1	battery. 22.5 volts	23-097

No. 3 WIRELESS MICROPHONE BROADCASTER

These circuits have always been popular for both utility and entertainment purposes (candid microphones are made of this).

Our wireless mike is built with a minimum of components to save space and cost (cost is an important factor in case the victim of the candid mike treatment doesn't see the humor of the device and decides to end its career).

The broadcasting frequency of the unit is determined by LI and the 365-pf variable capacitor. LI consists of No. 7/41 Belden litz wire wound in a single close-spaced layer on a 7 -inch by 0.33 -inch ferrite rod. Leave $1 / 4$ inch at the end of the rod. L2 is about 35 turns of No. 24 enameled wire wound directly on top of LI.

Any piece of stiff wire will serve as the antenna and will give good coverage. FCC regulations prohibit the antenna length from exceeding 10 feet.

Try your unit out at any convenient dead spot on the low end of the broadcast band. If it fails to transmit, try reversing the connections on L2. A ground connection is optional; it often helps.

PARTS LIST

srmbol	DESCRIPTION	radio shack mo.
01	transistor, 2N139	276-402
R1	resistor, 100,000 ohms	70-0195
C1	capacitor, 365 -mmf, variable	272-1343
C2, C4	capacitors, 0.02 mfd	71-0424
C3	capacitors, 0.002 mfd	71-5182
B1	6 volts (4 "D" cells)	23-466
S1	switch, SPST	275-602
L1	No. 7/41 Belden litz wire wound on 7 in. $\times 0.33$ in. ferrite rod, single layer	
L2	35 turns, No. 24 enameled wire, wound directly on L1 antenna: stiff wire carbon mike	279-1425

No. 4 WIRELESS MICROPHONE BOOSTER

This little circuit was originally designed for use in $C B$ transceivers, but it will also add zip to ham rigs. The entire assembly is small enough to be wired directly inside the microphone case!' Yet, small as it is, it generally adds considerable audio gain to any unit into which $i t$ is wired.

Fig. 4

The 5-mfd capacitor will give you good base-boost; however if you do not desire this feature you can replace the component with a 0.05 mfd capacitor.

Should oscillations occur after the booster has been added try inserting a filter capacitor (about $0.01-\mathrm{mfd}$) at the mike plug on the transmitter. Do not put this on the audio output lead. If this does not cure the oscillation, use a 100 K resistor at the mike plug where the lead from the mike enters the set. If all else fails, reduce the size of RI to the point where the oscillations cease but do not exceed 200,000 ohms.

PARTS LIST

SYMBOL	OESCRIPTION	RAOIO SHACK ND.
Q1	transistor, DS 22	$276-401$
R1	resistor, 82,000 ohms C1 mike bution	$\mathbf{7 0 - 0 1 9 5}$
	mid or 0.05-mfd (see text)	

Fig. 5
This is a form of wireless mike, except that it is specifically designed to enable you to use the amplifier of a better quality AM receiver instead of the relatively poor quality of an inexpensive phonograph.

The unit attaches to the phonograph cartridge and actually broadcasts the recording in the immediate vicinity of the phonograph. The device will also permit you to hear your recordings over any pocket portable receiver as long as you don't stray too far from the phono oscillator's antenna.

The transmitting frequency is controlled by Ll, a vari-loopstick, and the two 82 pf capacitors. Jl is a phono jack to receive output of phonograph's crystal cartridge.

The two 82 pf capacitors should be ceramic units.
The antenna should not be longer than 10 feet to comply with FCC regulations.

PARTS LIST

SYM80L	OESCRIPTION	RAO1O SHACK NO.
Q1	transistor, 2N321	$276-403$
R1, R2, R3	resistors, 10,000 ohms	$70-0195$
R4	resistor, 4,700 ohms	$70-0195$
C1, C2	capacitors, 82 pf	$71-5105$
C3	capacitor, 0.05 mfd.	$71-0407$
C4, C5	capacitor, 0.02 mfd.	$71-0424$
L1	vari-loopstick	$270-1430$
J1	phono jack	$75-0966$
S1	switch, SPST	$275-602$
B1	3 volts (2 "D" cells)	$23-466$

No. 6 CB CHANNEL LOCATOR

This gadget will permit a CB'er to rapidly locate any CB channel on his receiver by mere insertion of a 3rd overtone CB transmitting crystal in the circuit.

The unit is housed in a $4-1 / 2 \mathrm{in} . \times 2-1 / 2 \mathrm{in} . \times 2 \mathrm{in}$. aluminum box. When constructing it, keep the leads as short as possible.

To operate the channel locator, start with the I-megohm variable resistor set at its point of highest resistance. Gradually back down on the resistor until the circuit (without a crystal. installed) pulls about 0.2 ma on a milliameter connected in series with one of the battery leads.

Then, insert a crystal (3rd overtone only) and peak the circuit using the 50 -pf variable capacitor, listening on your receiver for maximum signal reading. This capacitor should be peaked on each crystal used for maximum signal radiation.

This CB Channel Locator is also helpful as an aid in determining the radiation pattern of a base or mobile CB antenna. A short walk around the antenna, unit in hand, will show you peaks and nulls.

PARTS LIST

SYMBOL	OESCRIPTION	RADIO SHACK NO.
01	transistor, 2N372	276-412
R1	potentiometer, 1 megohm	271-211
C1	capacitor, 5 pf	71-5087
C2	capacitor, 47 pf	71-5101
C3	capacitor, 50 pf variable	71-4031
C4	capacitor, 0.01 mfd	71-5194
S1	toggle switch, SPST	275-602
B1	9 -volt battery	23-464
L1	coil, B\& W 3003 crystal 3rd overtone (standard)	
	crystal socket	75-9131

No. 7 ELECTROPLATER AND BATTERY CHARGER

As an electroplater, this device should find many uses around any household. As a battery charger it will be of genuine value to all experimenters.

The unit is built in an aluminum chassis $5 \mathrm{in} . \times 9-1 / 2 \mathrm{in} . \times 2 \mathrm{in}$. The transistor should be mounted outside, on top of the aluminum chassis, so that it can have a heat sink-use a power transistor mounting kit as the transistor holder, so the case of the transistor will be insulated from the chassis.

TI is a filament transformer which happens to be well-suited for stepping down house current to transistor-operating current. D1 and D2 are rectifiers connected for full-wave rectification. The transistor is protected from overload by a 1.5 -ampere, 250 -volt fuse F1, which is mounted in a fuse holder.
The output of this unit is 0 to 14 volts dc at 1 ampere. Controlling factor for the output is the 500 -ohm wire wound resistor R1. The output can be measured by an external ammeter connected between JI and the load.

For electroplating stainless steel, nickel, bronze, copper, brass, tin, and other metals, check any of the several inexpensive books on the subject for instructions on handling the necessary acids and other materials which are part of this interesting art.

PARTS LIST

SYMBOL	DESCRIPTIDM	RADIO SHACK MO.
01	transistor, 2N1291	276-406
R1	resistor, 500 ohm, 10 -watt, wirewound. with sliding contact	80-0101
T1	transformer, filament, 24-volt, 1 ampere	273-1480
F1	fuse, 1.5-ampere, 250-volt	77-2764
S1	switch, SPST	275-602
J1.J2	nylon binding post (set of 2)	274-736
D1, D2	rectifiers, 100 PIV, 1 ampere	276-1708
	fuse holder	270-739
	aluminum chassis	77-0347

Fig. 7

No. 8 AM BROADCAST TUNER

This AM broadcast tuner will convert a phonograph or audio amplifier into a household radio. It has a high-impedance output.

The unit may be built in a small case about 1-1/2 in. x 2 in. x $2-1 / 2$ in., either plastic or fiber.

Fig. 8
S 1 is the power switch. L 1 is a ferrite antenna-tuning coil The output of the tuner is at Jl , which is a standard phono jack.

The antenna does not have to be of any particular length-a random length of wire will suffice, the longer the better.

PARTS LIST

SYMBOL	DESCRIPTION	RADIO SHACK NO.
Q1	transistor, 2N402	$276-403$
R1	resistor, 10,000 ohms	$70-0195$
R2	resistor, 220,000 ohms	$70-0195$
R3	resistor, 47,000 ohms	$70-0195$
C1, C2	capacitor,0.01 mfd.	$71-5194$
C3	capacitor, 365 pf, variable	$272-1343$
D1	diode, 1N34	$276-1709$
S1	switch, SPST	$275-602$
J1	standard phono jack	$75-0966$
L1	ferrite coil (standard broadcast)	$270-1430$
B1	power supply, 4.5 volts (3 "D"cells)	$23-466$

No. 9 BATTERY ELIMINATOR

If you have constructed and experimented with transistor circuits, you may be getting weary of working with batteries. This device plugs into your household current and converts it to a supply of almost zero to 9 volts at 20 ma .

The circuit can be constructed in a $2-3 / 4 \mathrm{in}$. $\times 2-1 / 8 \mathrm{in}$. $\times 1-5 / 8 \mathrm{in}$. box. The transformer is a power transformer.

To protect the transistor, the current output requirement should not go over 20 ma . This can be checked with a $0-25$ milliameter in the circuit at the output.

When working with a new circuit, start with the output all the way down (control knob fully counterclockwise), then slowly advance it (turn it clockwise) until the unit functions properly. It might be wise to insert the meter in the unit while testing all new circuits.

Fig. 9

PARTS LIST

SYMBOL	OESCRIPTION	RAOIO SHACK ND.
O1	transistor, 2N104	$276-403$
R1	potentiometer, 5,000 ohms	$271-1714$
R2	resistor, 2,200 ohms	$70-0195$
R3	resistor, 10 ohms	$70-0195$
C1, C2	capacitor, 30 mfd	$272-961$
T1	transformer, power, 110-volt 60 cycle primary,	
	12.6-volt secondary, 1.2 amp.	$273-1505$
D1	rectifier, 1 ampere, 100 PIV.	$276-1708$
	aluminum box	$77-0677$

No. 10 SUPERSONIC TRANSCEIVER

Here's an experiment in supersonic communications-even though the unit described has a very short range. The transmission range of the unit can be greatly increased by the addition of a transistor audio amplifier to the circuit.

Heart of the circuit is a type SQ7 transistor. The headphones are 2,000 ohms impedance.

Coil Ll consists of exactly 5 turns of No. 12 wire wound on an 18in. diameter by $5 / 8-\mathrm{in}$. high form (try the top of a basket). Turns should be spaced $1 / 8 \mathrm{in}$. on centers. L2 is one turn. Both transceivers must have exactly the same coils for communications.

To test the units, place them two feet apart on a wooden table-top. Press the key on one of the units-a click should be heard in the headphones of both units. Try this with the other unit. If all is well with both units, leave both keys closed and manipulate the spacing of the coils until a pure tone is heard.

For receiving-one transceiver should have its key held closed while someone keys the other unit.

Fig. 10

PARTS LIST

SYMBOL	DESCRIPTION	RAOID SHACK NO.
01	transistor, SQ7	276-409
R1	resistor, $47,000 \mathrm{ohms}$	70-0195
C1	capacitor, 0.005 mfd	71.5190
C2, C3	capacitors, 0.02 mfd	71-0452
B1	1.5 volts (1 "D" cell)	23-466
L1	coil, 5 turns No. 12 on 18 -in. D. \times 6-in. high form	
12	coil, 1 turn	
	headphones, 2,000 ohms impedance telegraph key	$\begin{aligned} & 33-180 \\ & 20-1085 \end{aligned}$

No. 11 ELECTRONIC ORGAN

Here is an interesting experiment in audio which would make a nice toy for a child.

Our electronic organ will play but one note at a time-its keys being made of spring-return pushbuttons (like doorbell buttons) mounted on a board.

Fig. 11
The best loudspeaker to use in this circuit is an 8 -ohm unit, 2-1/4 inches in diameter (see parts list). Connect the speaker to the secondary winding terminals No. I and No. 2 of T1, an AF output transformer, with a 1000 -ohm CT primary and an 8 -ohm secondary.
To raise the tonal range of the unit, change the value of the 0.05 mid . capacitor, Cl , to 0.02 mfd . The 100,000 ohm potentiometer controls the frequency range.

The unit is turned on and off by means of S7, a SPST switch.

PARTS LIST

SYMBOL	OESCRIPTION	RAOIO SHACK NO.
0.1	transistor, 2N1291	276-406
R1	resistor, 470 ohms	70-0195
R2	potentiometer, 100,000 ohms	271-092
C1	capacitor, 0.05 mfd .	71-0407
C2, C3, C4, 71.0407		
C5, C6, C7	capacitor, 0.02 mfd .	71-0452
S1,S2, S3, 71.0452		
S4, S5, S6	switch, pushbutton, spring-return, SPSR	275-1385
S7	switch, SPST	275-602
T1	transformer, AF output, 1000-ohm CT. prim., 8 -ohm sec.	273.1380
SPKR	speaker: 8 -ohm, $23 / 4 \mathrm{in}$.	40.262
B1	power supply, 6 volts (4 "D" cells)	23.466

No. 12 TELEPHONE AMPLIFIER

The telephone amplifier described here will enable you to play a telephone conversation for a group of people, or it can be used for the hard of hearing.
The transformer is a transistor audio output type with a 500 -ohm primary impedance. LI is an induction coil designed for telephone pickup. When this coil is placed in proximity to a telephone line, the magnetic flux created by the voltage in the line will induce a voltage in the coil and an input will be coupled into the amplifier through capacitor Cl . Each transistor provides a stage of amplification which is coupled to the speaker by output transformer TI.
Be careful not to place the amplifier's loudspeaker too close to the telephone's transmitter, or you'll have feedback problems. The 5,000 ohm potentiometer is the volume control and may be helpful in controlling feedback.

Fig. 12

PARTS LIST

SYMBOL	DESCRIPTION	RADIO SHACK MO.
Q1, Q2	transistors	$276-404$
Q3	transistor, 2N255A	$276-406$
R1	potentiometer, 5,000 ohms	$271-1714$
R2, R4	resistors, 1,000,000 ohms	$70-0195$
R3	resistor, 6,800 ohms	$70-0195$
R5	resistor, 5,600 ohms	$70-0195$
C1. C2	capacitors, 0.1 mfd.	$71-0409$
C3	capacitor, 100 mifd.	$272-963$
T1	transformer, transistor audio output type,	
	with 500-ohm primary impedance	$273-1380$
L1	induction coil for telephone pickup	$44-533$
B1	9-volt battery	$23-464$
S1	switch, SPST	$275-602$
	miniature speaker, 8-10 ohms, 23/4 in.	$\mathbf{4 0 - 2 6 2}$

No. 13 HIGH SENSITIVITY HEARING AID

This unit was designed to fit in a tiny plastic box. With it you will be able to increase your hearing range so that you can hear a whisper from across a large room.

Construction is not difficult. Use a miniature microphone, and a hearing-aid or magnetic transistor-portable type earphone.

The volume control is the 10,000 -ohm potentiometer Rl . The tone control is the 50,000 -ohm potentiometer R3. R1 is also the on-off switch. The headphone plugs into Jl , which is a miniature phono jack.

Fig. 13

PARTS LIST

SYMBOL	OESCRIPIION	RADIO SHACK NO.
01	transistor, 2N207B	276-405
Q2. 03	transistors, 2N1265	276-403
R1	potentiometer, 10,000 ohms, with switch	271-1443
R2	resistor, 4,700 ohms	70-0195
R3	potentiometer, 50,000 ohms	271-1716
R4	resistor, 3,300 ohms	70-0195
R5	resistor, 3,900 ohms	70.0195
C1, C2	capacitors, 1 mfd .	71-0416
S1	switch, part of R1	
J1	miniature phono jack	75-3392
B1	1.5 volts (1 'D' cell)	23-466
	microphone : miniature, 1850 ohms, 400-3500 cps	

No. 14 CLOROX POWERED AM RADIO

This little crystal receiver has a transistor amplifier and a Clorox laundry bleach power supply.

LI and L2 are standard ferrite loopsticks.
The electrodes consist of a $3-\mathrm{in}$. strip of zinc and a $3-\mathrm{in}$. copper rod. For operation of the receiver, place both in a glass of Clorox laundry bleach.

String up a long antenna, ground the set to a cold water pipe or other good ground, and you have a receiver which will never need battery replacement (except as the Clorox evaporates or the zinc eventually disintegrates).

The 365 -pf variable capacitor will enable you to tune across the standard AM broadcasting band.

Stations can be heard on any low-impedance headset.
To adjust the set for proper operation, move the L2 slug all the way in, and tune with the variable capacitor until a station is heard. Then adjust L1 for maximum volume. L2 should then be adjusted so that the widest possible segment of the broadcast band can be tuned with the variable capacitor.

PARTS LIST

SYMBOL	DESCRIPTION	RADIO SHACK NO.
Q1	transistor, 2N1097	$276-405$
C1	capacitor, 100 mfd.	$272-963$
C2 1, L2	capacitor, 365-pf variable	$272-1341$
D1	standard ferrite loopstick diode, 1N34	$270-1430$
	electrodes: 3-in. strip of copper:	
	Clorox headphone-low impedance	$276-1709$
		$33-175$

Fig. 14

No. 15 TWO-TRANSISTOR RECEIVER

This receiver was designed for use with an inexpensive crystal earphone.

The coil, LI, is a regular vari-loopstick. Tuning is accomplished by the 365 -pf variable capacitor.

To adjust the circuit for maximum operation, set the variable capacitor for minimum capacity and tune the coil's slug so that the highest frequency local broadcast station in your area can be heard well.

A $32-\mathrm{in}$. antenna will give good results for portable use; for fixed use, the longer the better.

Fig. 15

PARTS LIST

SYMBOL	DESCRIPTION	RADIO SHACK ND.
O1, Q2	transistors, 2N464	$276-403$
R1, R2	resistors, 10,000 ohms	$70-0195$
C1	capacitor, 665 -pf variable	$272-1343$
C2, C3	capacitors, 0.02 mfd.	$71-0424$
D1	diode, 1N34	$276-1709$
L1	vari-loopstick	$270-1430$
	antenna, 32 in.	
B1, B2	crystal headphone	
power supply, 1.5 volts each (1 "D" cell each)	$23-466$	

No. 16 AUDIO MIXER

The Audio Mixer permits two-microphone operation for audio and recording applications or for mixing microphone and radio signals into a recording machine.

The three jacks can be any type which is compatible with your existing equipment.

Fig. 16
Signals coming through J1 and J2 are mixed by the two 500,000 ohm potentiometers, fed into the 2 N 104 , and the mixed signal at the output of transistor Q1 is available for use at J 3 .

It is suggested that this circuit be housed in a metal box and that all wiring be shielded wire to eliminate the possibility of hum.

PARTS LIST

SYMBOL	OESCRIPTION	RAOIO SHACK NO.
Q1	transistor, 2N104	$276-403$
R1, R2	potentiometers, 500,000 ohms	$271-210$
R3, R4	resistors, 100,000 ohms	$70-0195$
R5	resistor, 22,000 ohms	$70-0195$
R6	resistor, 2.2 megohms	$70-0195$
C1, C2, C3	capacitors, 0.5 mfd.	$71-0468$
J1, J2, J3	standard phono jacks	$75-0966$
S1	switch, SPST	$275-602$
B1	power supply. 1.5 volts (1 ${ }^{\prime \prime} \mathrm{D}^{\prime \prime}$ cell)	$23-466$

No. 17 THE KEY-CLICK KILLER

This circuit was developed to eliminate those annoying clicks and thumps which plague the transmissions of many CW operators.

The key plug is inserted in jack J 1 , and plug J 2 is inserted in the transmitter key-jack, thereby placing the whole circuit between the key and the transmitter. Do not leave the key pressed down when this device is in the circuit.

Fig. 17
PARTS LIST

SYMBOL		OESCRIPTION
Q1	transistor, 2N445	$\mathbf{2 7 6 - 4 1 0}$
Q2	transistor, 2N578	$276-401$
R1, R2	resistors,220 ohms	$70-0195$
C1	capacitor, 1 mfd.	71.0416
J1	jack	$75-3392$
J2	plug	$\mathbf{7 5 - 3 3 9 4}$

No. 18 CATHODE MODULATOR FOR CW TRANSMITTERS

Fig. 18
If your low-power ham CW transmitter is set up for cathode keying, this unit plugs directly into the key jack (instead of the key) and converts the transmitter from CW operation to phone operation with about 75% modulation. The circuit also acts as a clamp and will limit the amount of cathode current should the final amplifier stage lose drive.

Q4 should be chosen to suit your individual transmitter. The amount of cathode current which will flow through it will be the determining factor. It is an n-p-n type.

Use a crystal lapel microphone at the input of the device.
To use the modulator, tune up as you would for normal CW operation. Adjust R2 until you get a reading of maximum change in cathode current as you modulate.

PARTS LIST

SYMBAL	OESCRIPTION	RAOIO SHACK NO.
Q1. 02, 03	transistors, 2N213	276-410
04	transistor, (see text)	
R1	resistor, 100,000 ohms	70-0195
R2	potentiometer, 2 megohms	271-093
C1	capacitor, 5 mfd .	71-468
C2	capacitor, 0.001 mfd .	71-5123
B1	4'D' ${ }^{\prime \prime}$ cell batteries	23-466
	lapel microphone, crystal	33-100

No. 19 CARBON MIKE PREAMPLIFIER

Fig. 19
Boosting the normally low output of a carbon microphone is a simple task with this preamp.

The quality of the audio output will vary as the volume control is varied. A satisfactory level of volume with good audio quality can be achieved by proper adjustment.

Construct the preamplifier in an aluminum minibox, with all ground points to the box. Keep leads as short as possible.

PARTS LIST

SYMBOL	DESCRIPIION	RADIO SHACK NO.
Q1	transistor, 2N679	$\mathbf{2 7 6 - 4 1 1}$
R1	resistor, 47,000 ohms	$70-0195$
R2	resistor, 22,000 ohms	$70-0195$
R3	resistor, 470 ohms	$70-0195$
R4	potentiometer, 50,000 ohms	$271-1716$
C1, C2	capacitor, 0.1 mfd.	$71-0409$
	carbon microphone	$279-1425$
B1	8 "D" cells	$23-466$

No. 20 PUBLIC ADDRESS SYSTEM

This miniature PA system can be built right into the speaker enclosure, power supply and all.

The unit is supplied with audio from any carbon mike having good sensitivity.

The 2 N174 transistor is a rugged power transistor connected directly to the 6 -volt battery supply and whose output drives the speaker directly.

It operates when microphone input is supplied at J , and the power switch S 1 is on.

Fig. 20

PARTS LIST

SYMBOL		DESCRIPTIOM
Q1	transistor, 2N174	RAOIO SHACK MD.
R1	resistor, 10 ohms	$276-407$
J1	phono input jack	$70-0195$
S1	toggle switch. SPST	$75-0966$
B1	4"D" cells	$275-602$
	speaker, heavy magnet	$23-466$
		$40-262$

No. 21 NOISE LIMITER

This is a straightforward design utilizing 2 diodes functioning in the manner of a 6AL5 vacuum tube.

The unit can be built in a small metal box and mounted near the mobile rig. The only operating control is switch SI, which simply cuts the limiter in and out of the receiver's circuit.

Fig. 21

PARTS LIST

SYMBOL	DESCRIPTIDN	RADIO SHACK NO.
R1	potentiometer, 500,000 ohms	$271-210$
R2, R3	resistors, 560,000 ohms	$70-0195$
R4	resistor, 270,000 ohms	$70-0195$
R5, R6	resistors, 1 megohm	$70-0195$
C1	capacitor, 0.02 mfd.	$71-0424$
C2, C3	capacitor, 0.01 mfd.	$71-5194$
D1, D2	diodes, 1N625	$276-418$
S1	switch, SPST	$275-602$

No. 22 HIGH-TO-LOWIMPEDANCE MIKE MATCHER

This device enables you to match high-impedance microphones into low-impedance inputs.

Build the mike matcher in a metal box, hooking all ground leads to the box to prevent hum. Use shielded wire for hookup purposes.

Fig. 22

PARTS LIST

SYMBOL	OESCRIPTION	RAOIO SHACK NO.
Q1	transistor, DS-22	$276-401$
R1, R2	resistors, 47,000 ohms	$70-0195$
R3, R4	resistors, 100,000 ohms	$70-0195$
C1	capacitor, 0.002 mfd.	$71-5182$
C2, C3, C4	capacitors, 10 mfd.	$272-960$
B1	12 volts, 8 "D" cell batteries	$23-466$

No. 23 LOW-TO-HIGHIMPEDANCE MIKE MATCHER

This device enables you to match low-impedance microphones into high-impedance inputs.

The transistor is a PNP type audio transistor.
Build the mike matcher in an aluminum minibox with all ground connections made to the box to prevent hum. Use shielded wire for hookup purposes.

Fig. 23
PARTS LIST

symbol	deschiption	RADIO SHACK MO.
01	transistor, 9-volt audio	$276-405$
R1	resistor, 560,000 ohms	70.0195
R2	resistor, 100,000 ohms	70.0195
R3	resistor, 10,000 ohms	70.0195
c1	capacitor, 30 mfd .	272-961
c2	capacitor, 0.01 mfd .	71.5197
B1	9 -volt battery	23-464

No. 24 "'NO-POWER" RECEIVER

Here's a receiver which requires no power supply, and it's not a crystal set.

The stations are tuned with the 365 -pf variable capacitor in the antenna and are heard best over high-impedance magnetic headphones.
A long wire antenna will give good results, and the set should be grounded to a cold water pipe.

L1 is a vari-loopstick. L2 consists of 6 turns of No. 22 wire wound over the loopstick's coil. Experiment with L2's connections; the set might work better with them reversed.

Fig. 24

PARTS LIST

SYMBOL	DESCRIPTION	RAOID SHACK ND.
Q1	transistor, 2N104	$276-403$
C1	capacitor, 365-pf variable L1 L2	6 turns No. 22 wire on loopstick's coil antenna-see text earphones, high impedance magnetic
		$272-1341$
		$270-1430$

No. 25 RECEIVER WITH
 PUSH-PULL AMPLIFICATION AND DETECTION

This interesting circuit is rather unique in that it uses a bridge type detector which provides a push-pull output signal which, in turn, drives a push-pull amplifier circuit.

The antenna coil LI is a ferri-loopstick. The transformer drives a miniature 8 - 10 -ohm speaker.
The antenna should be a long wire, and best results will be obtained when the unit is connected to a good ground such as a cold water pipe.

fig. 25

PARTS LIST

SYMBOL	DESCRIPTION	RAO10 SHACK NO.
Q1, Q2	transistors, 2N 104	$276-407$
R1, R2	resistors, 220,000 ohms	$70-0195$
C1	capacitor, 365-pf, variable	$272-1343$
C2. C3	capacitor, 50 mfd.	$272-962$
L1	ferri-loopstick	$270-1430$
T1	transformer	$273-1380$
D1. D2.		
D3. D4	diodes, 1N34	$276-1709$
S1	switch, SPST	$275-602$
B1	3"D"cell batteries	$23-466$
	speaker, 8-10 ohms	$40-262$
	antenna, long wire	

No. 26 AM RADIO BOOSTER

If your small AM radio does not seem to be able to bring in distant stations clearly, or if your BCB DX receiver can use a little more "zip," this circuit should be immediately put to use.

Fig. 26
LI is a regular ferri-loopstick. The unit can be built in an aluminum minibox and mounted in the rear of the receiver cabinet. The loopstick and the $365-\mathrm{pf}$ capacitor should be peaked to the center of the band for regular listening (1080 kc) or to any particular frequency you wish to bring in better than the others.

PARTS LIST

SYMBOL	DESCRIPTION	RAOIO SHACK NO.
Q1	transistor, 2N166	$276-409$
R1	resistor, 39,000 ohms	$70-0195$
C1, C2	capacitors, 0.01 mfd.	$71-5194$
C3	capacitor, 365-pf variable	$272-1343$
L1	ferri-loopstick	$270-1430$
S1	switch, SPST	$275-602$
B1	1.5 volts, (1 "D" cell battery)	$23-466$

No. 27 CURRENT REVERSER

Fig. 27

This is an interesting experiment in electrical polarity. The device puts out a few volts of pulsating dc and you can reverse the polarity of the circuit, resulting in changing the operation of anything which is being powered by the device. For instance, if you connect a 1.5 -volt $\mathrm{d}-\mathrm{c}$ motor to the output of the reverser, it will run in one direction. By rotating the potentiometer slowly, the motor will slow down, then stop, slowly start up in the opposite direction, increasing in speed as you go. The center of the potentiometer is zero volts.

A filament transformer is used to operate from house current and supply the six volts required to operate the transistor.

The unit can also be used as a dimmer for small bulbs and other lighting devices.

PARTS LIST

SYMBOL	DESCRIPTION	RAOIO SHACK MO.
Q1	transistor, 2N301	276.406
R1	resistor, 150 ohms	$70-0195$
R2	resistor, 15,000 ohms	$70-0195$
R3	potentiometer, 10,000 ohms	
T1	filament transformer,6.3 volts @ $1.2 A$	$271-1715$
		$273-050$

No. 28 WORLD'S SMALLEST TRANSMITTER?

This is a real low-power "spy" type transmitter which can be used at transmitter hunts when you are not engaged in spying activities.

Designed for operation on a relatively wide range of frequencies, operation on 80 meters is simple with a 17 -inch whip antenna doing the honors.

The 1 -meg potentiometer controls the bias to the transistor; it may be omitted from the circuit, but will often improve operation of the transmitter.

Fig. 28

PARTS LIST

SYMBOL	OESCRIPTION	RaOIO Shack no.
Q1	transistor, 2N247	276.412
R1	resistor, 100,000 ohms	70-0195
R2	potentiometer. 1 megohm	271-211
C1	capacitor, 4-40 pf, variable	71.4030
L1	r-f choke: 2.5 mh	270-1713
B 1	battery. 9 volts	23.464
	telegraph key	20-1085
	antenna: 17 -inch whip crystal socket	75-9131

No. 29 VLF "'WHISTLER" RECEIVER

The VLF portion of the RF spectrum runs from 4 to 16 kc . If you monitor this portion of the radio spectrum, you are liable to hear the strange sounds which mother nature makes in the RF spectrum. These are called "whistlers," long descending screams caused by lightning. You can also hear sounds called "the dawn chorus," "clicks," "chirps," "chinks," and other phenomena which science has yet to explain. Atomic blasts and the ionized air trails from rising missiles can also be heard. The device described here will permit you to monitor these strange signals. By the way, if you should hear some CW, it is probably the U.S. Navy's 2 -million-watt radio station in Cutler, Maine. They operate on 14.8 kc .

The unit may be built on a small piece of punched board, and can be enclosed in a metal box if you desire. Parts layout is not critical.
The loop antenna consists of 200 turns of No. 25 enameled wire wound in a square loop on a wooden frame. The frame should consist of two $48-\mathrm{in}$. pieces of wood formed into an " X ". The loop is joined to the unit by a length of lamp cord. Mount the loop so that it may be rotated. The rotation is necessary because of the fact that it will pick up considerable power-line hum. The loop should be rotated to a point where the hum is at it's minimum, or "null," point-where it should be permanently located.

With the antenna properly located, and the output of your unit fed into the high-impedance input of a hi-fi amplifier, you should be able to hear the clicks and pops of atmospheric noise. Early morning should bring you the dawn chorus; summertime, the whistlers; launching time, the missiles. Look for anything that differs from the normal background noise as being something worth studying.

PARTS LIST

SYMBOL	DESCRIPTION	RADIO SHACK MD.
01	transistor, 2N64	276-404
02	tra sistor, 2N104	276-403
R1	resistor, 470 ohms	70-0195
R2	resistor, 10,000 ohms	70-0195
R3	resistor, 330,000 ohms	70-0195
R4	resistor, 5,600 ohms	70-0195
C1	capacitor, 10 mfd .	271-953
C2	capacitor, 5 mfd .	271-952
C3, C 4	capacitor, 0.02 mfd .	71.0452
L1	loop antenna (see text)	
S1	switch, SPST	275-602
B1	6 volts (4 "D" cell batteries)	23-466

Fig. 29

No. 30 RADIO-TV SIGNAL TRACER

This device can be used to follow a signal through its course in the circuit of a radio or TV set, or an audio amplifier.

The device can be constructed in a small plastic case. Use a midget audio transformer to drive the midget PM type speaker. A DPDT slide switch is used as a selector for use with af or rf circuits. Volume control is provided by the 25,000 ohm potentiometer at the input to transistor QI. Any short, stiff piece of wire can be used as the probea nail will suffice.

The unit is designed to be grounded to the chassis of the equipment being serviced. This is accomplished by a short length of wire and an alligator clip. The ground lead and all but the tip of the alligator clip should be insulated to prevent the tracer from grounding to components within the equipment.

When testing audio equipment, SI should be turned towards af: when testing radios and TV sets, towards $r f$.

PARTS LIST

SYMbol	OESCRIPTION	RADIO SHACK NO.
01	transistor, 2N707	276-407
02	transistor, 2N104	276-403
R1	resistor, 100,000 ohms	70.0195
R2	potentiometer, 25,000 ohms	271.094
R3, R4	resistors, 270,000 ohms	70-0195
R5	resistor, 4,700 ohms	70-0195
R6	resistor, 100 ohms	70.0195
C1	capacitor, 0.05 mfd .	71.0407
C2	capacitor, 100 pf	272-963
C3, C4	capacitor, 3 mfd .	272-958
C5	capacitor, 10 mfd .	272-960
T1	transformer, primary: $\mathbf{1 0 0 0}$ ohms C.T., secondary: 8 ohms	273-1380
S1	switch, DPDT	275.067
S2	switch (part of R2)	
D1	rectifier, 1N34	276-1709
B1	9 volt battery	23.464
	speaker, miniature PM	40-262

Fig. 30

No. 31 HEADSET BOOSTER

If you have used magnetic earphones, you have probably wondered what could be done to pep them up, or completely replace them. Here's the answer for a small sum and very little effort you can build a booster which will substantially increase the sensitivity of the magnetic headset.

This unit is to be constructed in an aluminum minibox.

Fig. 31

Resistor RI will vary depending upon the receiver and the output impedance of the receiver with which it will be used. Typical values are: vacuum tube sets 100,000 ohms, crystal sets $47,(0) 0$ ohms, transistor sets 470 ohms.

The set turns on and off as the carphones are inserted into J2. This means that when you wire the unit, the battery should be hooked up last, and when you use it, the earphones should be renoved from the unit at the end of usage. The carphones used with the booster can be anywhere from 500 ohms to 6,000 ohms.

PARTS LIST

SYMB0L	OESCRIPTION	RADIO SHACK NO.
Q1	transistor, 2N104	$276-403$
R1	resistor (see text)	
R2	resistor, 330,000 ohms	$70-0195$
C1	capacitor, 0.1 mfd.	$71-0409$
B1	15 -volt battery	$23-509$

No. 32 LIGHT/DARK MUSIC MAKER

The next time someone tells you that they like "light music," you can build this gadget and give them a serenade in the world's only true "light music." Yes, this device actually produces musical tones by changes in light and dark falling upon it.

The sun battery is a type B2M selenium photovoltaic cell, which delivers about 0.25 volts when operated under sunlight. The sensitive circuit described here, however, does not operate in full sunlight, but will sense differences in light, such as those caused by shadows.

The output iransformer TI, drives a miniature speaker.
As the shadow of your hand passes over the photocell, different musical tones will be produced. (Do not expect the unit to be workable in a dark, or even almost-dark, room, and not in bright sunlight.)

Fig. 32

PARTS LIST

SYMBDL	description	RADIO SHACK NO.
Q1	transistor, 2N104	276-403
Q2	transistor, 2N1251	276-410
R1	resistor, 10,000 ohms	70-0195
C1	capacitor. 0.005 mfd .	71-5190
C2	capacitor, 30 mfd .	272-961
T1	AF output transformer: 500-ohm CT primary, 3.2 -ohm secondary	273-1379
PC1	selenium photovoltaic cell, type B2M	276-1025
S1	switch. SPST	275-602
B1	9 -volt battery	23-464
	speaker, miniature, $23 / 4 \mathrm{in}$.	40-262

No. 33 THEREMIN

Perhaps you've heard recordings of this eerie musical instrument, or maybe you've heard its wailing sound in science fiction movies. At any rate you can construct your own Theremin without too much trouble-enjoy some strange "outer space" music and experiment with the effect capacitance can have on an oscillator circuit's frequency.
Our Theremin is constructed in a 7 -in. x 5 -in. x 2 -in. metal box with a punched board as the chassis.

Parts are standard: two whip antennas are connected to 5 -way binding posts J1 and J2. Vari-loopsticks are used as antenna tuning coils. The leads should be as short as possible, the shield connections on the two 2NI264 transistors should be cut off, and care should be taken not to let the circuit wiring come in contact with the cabinet box. The loopsticks should be in the center of the chassis. J1 and J2 mount on opposite sides of the $7-\mathrm{in}$. length of the chassis.

When the unit is constructed, the two whip antennas are placed in the binding posts in a vertical position. The unit is then placed near the back of an AM broadcast radio. The loopstick slugs are set about halfway in. Now adjust the 200 -pf capacitor at JI until a hissing noise is heard over the radio, at about the center of the band. Next adjust the 200 -pf capacitor at J2 until you hear a very loud whistle. The AM radio's dial setting should not be changed.

Go back to the 200 -pi capacitor at JI and readjust it for the lowest pitch. You are now ready for playing the instrument.

To play the Theremin just move your hands around in the air a few inches away from the antennas. It is not necessary to touch the antennas. With a little practice you might be able to play a recognizable melody.

PARTS LIST

SYMBOL	OESCRIPTION	RAOIO SHACK NO.
Q1	transistor, 2N1097	276.405
Q2, Q3	transistor, 2N1264	$276-412$
R1	resistor, 180,000 ohms	$70-0195$
R2, R3	resistors, 56,000 ohms	$70-0195$
C1, C2	capacitors, 220 pf	$71-5111$
C3, C4	capacitors, 200 pf, variable	$71-4035$
C5, C6	capacitors,0.01 mfd.	$71-5194$
L1, L2	vari-loopstick	270.1430
J1, J2	5-way binding post	$274-333$
S1	switch, SPST	$275-602$
B1	9-volt battery	$23-464$
	antenna: miniature whip, 38" long	-

Fig. 33

No. 34 INTERPHONE AMPLIFIER

This circuit can be put to use as an inter-office or factory telephone amplifier.

Use a crystal microphone for the input, and a headset with 1,000 to 4,000 ohms impedance as the output. The 100,000 ohm potentiometer is the volume control.

This unit can be built into a relatively small space, even inside a telephone type handset. Two handsets, two units, the right kinds of transmitter and headset buttons, and you have an intercom system.

Fig. 34

PARTS LIST

SYMB0L	OESCRIPTION	RADIO SHACK NO.
Q1, Q3	transistors, 2N464	$276-403$
Q2	transistor, 2N166	276.409
R1	potentiometer, 100,000 ohms	271.092
S1	switch, SPST	275.602
B1	6 voits. 14 "D" cell batteries)	$23-466$
	Microphone : crystal	$33-100$

No. 35 SUPERSONIC RECEIVER

Here's an interesting experiment in supersonic sound. This receiver acts like a radio receiver; any radio receiver or an audio amplifier can be the transmitter.

The receiver circuit may be constructed on a small piece of unclad perf-board. The sensing device which picks up the signal from the transmitting loop is a telephone pickup unit. The volume is controlled by the 5,000 ohm potentiometer which also contains the on-off switch. Spaghetti tubing should be used to cover the lead from the pickup coil to the $0.1-\mathrm{mfd}$. capacitor Cl .

The transmitting antenna is a loop of wire strung around the room or area in which the reception will take place. The loop of wire is connected at each of its ends to the speaker connections of a radio or amplifier. The loop's impedance must match up with that of the receiving unit.

Use insulated wire of the thinnest gauge available for the loop. You should have a 10 -ohm resistor of the same wattage rating as the amplifier inserted in series with the loop.

Fig. 35

PARTS LIST

SYMBDL	DESCRIPTION	RADID SHACK NO.
Q1, O2	transistors, 30V-HG	$276-405$
R1, R2	resistors, 1 megohm	$70-0195$
R3, R4	resistors, 5,600 ohms	$70-0195$
R5	potentiometer, 5,000 ohms with switch	$271-1620$
C1, C2	capacitor, 0.1 mfd.	$71-0409$
L1	telephone pickup	$44-533$
S1	switch (part of R5)	$23-464$
B1	9volt battery	$33-180$
	earphones	

No. 36 EXPERIMENTER'S POWER SUPPLY

This is more or less a battery eliminator to give your transistor circuits a little versatility and to save you the trouble of working with batteries of various sizes and shapes. It will deliver zero to 12 volts de at half an ampere.

The unit can be constructed in an aluminum minibox with the transistor mounted on the box as a heat sink. An insulated power transistor socket is necessary for this circuit so that the 2N307A transistor does not ground to the chassis.

The bridge rectifier circuit consists of four silicon rectifiers whose balanced output is adjusted to drive the 2N307A transistor. It operates from a 117 -volt, 60 -cycle primary source through a 24 -volt power transformer. A dc voltmeter is connected across the output as an aid in adjusting to the desired output voltage.

To operate, turn the unit on by plugging it into a 117 -volt outlet, with the 500 -ohm potentiometer set at its minimum position, and the desired load across terminals N and P . Slowly increase the potentiometer by turning it clockwise until a voltage can be read on the meter. Set the potentiometer at the desired reading of the de voltmeter. This power supply will be very useful in the experimenter's lab.

PARTS LIST

SYMBOL	OESCRIPTION	RAOIO SHACK NO.
01	transistor, 2N307A	276-1706
R1	potentiometer, 500 ohms	271-066
R2	resistor, 150 ohms	70.0195
R3	resistor, 100 ohms	70.0195
C1, C2	capacitor, $1000 \mathrm{mfd} ., 25 \mathrm{~V}$	272-1718
T1	transformer, 117 -v primary, 60 cy ., secondary, 24 VAC at 1.2 amperes	273-1480
$\begin{aligned} & \text { D1, D2, } \\ & \text { D3, D4 } \end{aligned}$	rectifiers, 100 PIV, 1 ampere	
	socket for TO-3 case transistor	75.4969

Fig. 36

No. 37 WORLD'S SMALLEST RECEIVER?

This may or may not be the world's smallest receiver. However, it's probably the smallest you'll be able to build with standard components.

A vari-loopstick is used as the antenna tuning coil, and a miniature $2,000 \mathrm{ohm}$ earphone, of the type used in small transistor radios provides the audio output. For sake of miniaturization, the loopstick can be cut off about $2 / 3$ of the way from the end away from the coil; however, this is complicated and involves unwrapping the coil, wrapping it back again, etc.

The radio should fit into a 1 -in. x 1 -in. plastic box, with a hole drilled in the side to accommodate the loopstick. The receiver is tuned by adjusting the loopstick's slug.

The battery is a mercury cell of the type used in hearing aids.
Any long length of wire may be used for an antenna.

Fig. 37

PARTS LIST

SYMBOL	DESCRIPTIOM	RADIO SHACK NO.
Q1	transistor, 2N1415	$276-404$
C1	capacitor, 220 pf	$71-5111$
L1	vari-loopstick	$270-1430$
D1	rectifier, 1N34	$276-1709$
B1	1.35-volt, type RM-400 mercury cell	$23-592$
	headphone: 2,000-ohm miniature	
	antenna: long wire	

No. 38 POWER SUPPLY FOR TUNNEL DIODES

Here's a power supply which delivers between 10 and $500 \mathrm{~d}-\mathrm{c}$ millivolts, ideal for experimenting with tunnel diodes.

The circuit can be constructed in a small aluminum box, with parts layout not critical. Do not attempt to use the metal box as a heat sink for the transistor-it is not needed here, and the circuit will not function if the case of the transistor is grounded to the box.

The 10,000 -ohm output control potentiometer should be mounted where it is readily accessible.

To use the unit, start with the output control set to minimum output. Then slowly advance the control until the tunnel diode begins to function.

Place bypass capacitors at the tunnel diode rather than at the output of the power supply.

Fig 38

PARTS LIST

SYMBDL	DESCRIPTION	RADIO SHACK NO.
Q1	transistor	$276-406$
R1	potentiometer, 10,000 ohms	$271-1715$
R2	resistor, 330 ohms	$70-0195$
R3	resistor, 10 ohms	$70-0195$
S1	switch, DPDT	$270-067$
B1	1.35 -volt mercury cell	$23-592$
B2	1.5 volts (1 "D" cell)	$23-466$

No. 39 VU METER

Many audiophiles can never seem to attain a "perfect" recording. One of the reasons for this is overmodulation, together with its inherent distortion. Another reason is undermodulation with hum and noises. A VU meter will enable you to keep a watchful eye on your recording level at all times so that you can "ride the gain" control of the recorder to keep your sound level constant and at the proper setting for maximum quality.

The VU meter can be constructed in a small metal box, using the box itself as the chassis. The meter is calibrated in standard Volume Units, -20 to +3 VU and $0-100 \%$ range. It is connected by shielded cable to the grid of the last stage in the recorder's voice amplifier.

If you cannot get adequate signal from this point in your recorder, the unit should be tried at other spots in the circuit, taking care to avoid connecting it where a high d-c voltage exists. If you can obtain a signal only at a high d-c voltage source, remember that the electrolytic capacitor at the VU meter's input is only rated for 25 volts. A $0.5-\mathrm{mfd}$ capacitor with at least a 400 -volt rating should, therefore, be placed in series with the existing 25 -volt capacitor.

To calibrate the unit for your equipment, play a recording into the unit at various recording levels. Make a note of the recording level at each of the test levels. Pick the maximum-quality level on the meter and mark it on the face. This is the point where your recordings should average (do not calibrate the meter for loud sound-peaks).

The input level of the meter is controlled by the 500,000 -ohm potentiometer.

PARTS LIST

SYMBDL	DESCRIPTION	RADIO SHACK NO.
O1	transistor, 2N407	$276-403$
R1	potentiometer, 500,000 ohms	$271-210$
R2	resistor, 1 megohm	$70-01!\mathbf{0}$
R3	resistor, 3,900 ohms	$70-0195$
C1	capacitor, 3 mfd, 25 volts	$271-958$
C2	capacitor, 1 mfd. 200 VDCW	$71-0416$
M1	VU meter	$22-019$
S1	switch, SPST	$275-602$
B1	22.5 volts, bantamweight "B" battery	$23-097$

Fig. 39

No. 40 SQUARE WAVE GENERATOR

If you're interested in doing some servicing on your hi-fi equipment, you will undoubtedly find this square wave generator to be a handy item. It can feed from the output of a sine wave generator and puts out about I volt, or its own $60-\mathrm{cps}$ signal.
The unit is constructed in a small aluminum box. A filament transformer is used to step down the line voltage to operate the transistors. Sl is the power on-off switch, connecting both the line voltage and battery voltage at the same time. Switch S2 permits selection of $117-$ volt input or an external input from a sine wave generator. The output level is controlled by potentiometer R4.

If you use the generator with an external signal source, do not plug in the 117-volt a-c line cord. The signal source is inserted in JI; the circuit under test in J2. Place S2 in the EXT position.

To use the internal signal, plug in the unit, place S 2 in the INT position.

Fig. 40

PARTS LIST

SYMBDL	DESCRIPTIOM	RADIO SHACK NO.
Q1, Q2	transistors, 2N104	$276-403$
R1, R2	resistors, 470 ohms	$70-0195$
R3	resistor, 100,000 ohms	$70-0195$
R4	potentiometer, 50,000 ohms	$271-1716$
S1,S2	switch, DPDT	$275-062$
T1	filament transformer, 6.3 volts at 1.2 amps	$273-050$
B1	1.5 volts (one "D" cell)	$23-466$

No. 41 HEADSET/LOUDSPEAKER CONVERTER

This gadget permits you to have loudspeaker volume on a set designed for headset reception.
The speaker is driven with an AF output transformer with the center-tap not connected. A PM type speaker is used.

Potentiometer RI should be adjusted for maximum undistorted volume. The standard phone plug is plugged into the jack where a headset would normally be connected.

If results with this circuit are less than desired, try connecting a resistor between the base of the 2N464 and the positive terminal of the battery. Values between 100 K and 2 megohms should be tried.

Fig. 41

PARTS LIST

SYMBOL	DESCRIPTIDM	RADIO SHACK NO.
Q1	transistor, 2N464	$276-403$
R1	potentiometer, 5,000 ohms	$271-1714$
C1	capacitor, 0.05 mfd.	$71-0407$
T1	AF output transformer:	
	500-ohm CT primary, 3.2-ohm secondary	$273-1379$
S1	switch, SPST	$275-602$
B1	9-volt battery	$23-464$
	speaker, 23/4-inch PM type	$40-262$

No. 42 MODULATION MONITOR

Possibly the most basic circuit in this volume, the modulation monitor can be one of the most useful around a ham or CB station. This device enables you to hear your own transmissions to check your modulation.

Four components make up the entire unit. The only critical one is the earphone which must be a magnetic or dynamic type.

Fig. 42

PARTS LIST

SYMBDL	DESCRIPTION	RADIO SHACK NO.
C1	Capacitor, $\mathbf{0 . 0 0 1} \mathrm{mfd}$	$71-5123$
D1	rectifier, 1 N34	$276-1709$
	T-Adapter	$42-2439$
	Headphones, 2000 ohms	$33-180$

No. 43 15-METER "'FLEA WATTER'' TRANSMITTER

The transmitter discussed here may be built in a tiny plastic box, using a punched board as the chassis.
The unit is powered by a carbon mike. The final output coil LI consists of 17 turns of B\&W type No. 3007 coil tapped 8 turns from the $4700-\mathrm{pf}$ capacitor. The crystal is a $21-\mathrm{mc}$ third overtone type. This can be operated on a CB base station beam.

To tune the transmitter, turn on your receiver and set it to the "Flea Watter's" frequency. Peak the 3 -30-pf trimmer in conjunction with the receiver's S-meter. That's all there is to it.

Fig. 43

PARTS LIST

SYMBOL	DESCRIPTION	RADIO SHACK NO.
$\begin{aligned} & \text { Q1 } \\ & \text { R1 } \end{aligned}$	transistor, 2 N373 resistor, 10,000 ohms	$\begin{aligned} & 276-412 \\ & 70-0195 \end{aligned}$
R2, R3	resistor, 470 ohms	70-0195
R4	resistor, 47,000 ohms	70-0195
C1, C5	capacitor, 4700 pf	71-5189
C2	capacitor, 4-40-pf, variable	71-4030
C3	capacitor, 30 mfd	272-961
C4	capacitor, 1000-pf	71-5123
L1	17 turns of B\&W No. 3007	
J1	CB coax cable connector, S0239	278-201
B1	9 -volt battery	23-464
	crystal: 21-mc 3rd overtone microphone: carbon	279-1425

No. 44 AUDIO PREAMPLIFIER

If you've ever tried to run a long cable on a low-impedance microphone you will probably have a need for this device. It permits the use of low-impedance mikes and phono cartridges at reasonable distances from high-impedance inputs on recorders and amplifiers.

The unit is easily constructed on a small chassis, and can be inserted anywhere in your mike cable.

Fig. 44

PARTS LIST

SYMBOL		RAOIO SHACK NO.
O1	transistor, 2N465	$276-403$
O2	transistor, 2N466	$276-403$
R1, R2	resistors, 18,000 ohms	$70-0195$
R3	resistor, 1,000 ohms	$70-0195$
R4, R5	resistor, 10,000 ohms	$70-0195$
R6	resistor, 2,000 ohms	$70-0195$
R7	resistor, 330 ohms	$70-0195$
C1, C2	capacitors, 10 mfd.	$272-960$
C3	capacitors,0.25 mfd.	$71-0412$
C4	capacitor,500 mfd, 25-volt electrolytic	$272-986$
C5	capacitor,0.02 mfd.	$71-452$
B1	3 volts (2"D" cells)	$\mathbf{2 3 - 4 6 6}$
S1	switch,SPST	$275-602$

No. 45 DYNAMIC MICROPHONE

Did you know that a small dynamic loudspeaker can be made into a high output dynamic microphone? It can, and here's how to do it.

Using a 2-3/4-inch speaker for the microphone, you can easily construct this circuit in a 7 -inch $\times 5$-inch $\times 3$-inch aluminum box.

The circuit contains two batteries which are controlled by a DPDT on-off switch.

For better quality, larger speakers may be used; however, the larger. the loudspeaker used, the more cumbersome the microphone.

Fig. 45

PARTS LIST

SYMBOL	DESCRIPTION	RAOIO SHACK NO.
Q1	transistor, SQ7	$276-409$
R1	resistor, 6,800 ohms	$70-0195$
R2	resistor, 1,600 ohms	$70-0195$
C1	capacitor, 1 mfd.	$71-0416$
C2	capacitor, 500 mid, 25 volts, electrolytic	$272-986$
S1	switch, DPDT	$275-666$
B1	1.5 volts (1 "D" cell)	$23-466$
B2	9-volt battery	$23-464$
	speaker: $23 / 4$ inch PM type	$40-262$

No. 46 FLASHING LIGHT

This is an experimenter's delight, and also useful to keep in the car for emergency use. Around the ham shack, it's a nice light for atop the tower to ward off low flying planes and high flying butterflies.
The light will flash about once a second, and can be varied in intensity by varying the value of the capacitor.

Fig. 46

PARTS LIST

SYMBOL		DESCRIPTION
Q1	transistor, 2N438A	$276-408$
Q2	transistor. 2N565	$276-404$
R1	resistor. 100 ohms	$70-0195$
R2	resistor, 1000 ohms	$70-0195$
R3	resistor. 0.82 megohms	$70-0195$
C1	capacitor. 3.0 mfd. 25 volts	$272-958$
P1	No.47 lamp	$77-3396$
S1	Switch, SPST	$275-602$
B1	6 volts (4'D" cells)	$23-466$

No. 47 BROADCAST BAND CW TRANSMITTER

Here's a handy device for use as a code practice oscillator or for short distance communications as it can be operated without a license under Part 15 of the FCC's Rules. It will transmit CW on any frequency which you select throughout the entire range of the AM broadcasting band.

The antenna tuning coil L1 is a standard ferri-loopstick. L2 consists of 12 turns of plastic covered hookup wire over the coils of L1.

The antenna length is limited by FCC regulations to 10 feet so that the transmitter will not radiate over too large an area.

Fig. 47

PARTS LIST

SYMBDL	DESCAIPTION	RADIO SHACK NO.
Q1	transistor, 2N1251	276-410
R1	resistor, 4,700 ohms	70-0195
R2	potentiometer, 1 megohm	271.211
R3	resistor, 10,000 ohms	70-0195
C1	capacitor, 47 pf	71.5101
C2	capacitor, 365 pf, variable	272.1343
C3	capacitor, 0.005 mfd .	71.5190
C4	capacitor, 0.01	71.5194
L1	ferri-loopstick	270-1430
L2	12 turns plastic covered hookup over L1	
S1	switch, SPST	275-602
B1	9-volt battery antenna (see text)	23-464
	telegraph key	20-1085

No. 48 CODE PRACTICE OSCILLATOR

Here is an audio code practice oscillator that is good for "fun and learning." It produces a variable tone which may be keyed for practicing the Morse Code. It will be useful to young men interested in radio communications, such as radio hams and boy scouts.

For fun and entertainment, simple musical tunes may be played with only a little practice by varying the tone control knob.
The unit can be built in a standard cabinet in a style of your own choice, with the speaker, control knob, and switch mounted on the front panel; and the binding post and battery holder at the rear.

Fig. 48

PARTS LIST

SYMBOL	DESCRIPTION	RAOIO SHACK NO.
0.1	transistor, CK-722	276-1034
R1	potentiometer, 50,000 ohms	271-1716
R2	resistor, 6,800 ohms, $1 / 2$ watt	70-0195
C1	capacitor, 0.5 mid.	71-0468
T1	AF output transformer, 500 -ohm CT primary, 10,000 -ohm secondary	273-1379
S1	switch, SPST	275-602
	5-way binding posts	274-333
	PM speaker, 23/4 inch	40-262

No. 49 HI-LO SWITCH
 (500 watts max.)

This relatively simple device has been proven to be very useful in the home. It has many uses. Wherever a lamp or motor of less than 500 watts is used, this device is applicable. It can be used to reduce the output of incandescent lamps, resistance heaters and most motors. It is NOT to be used on TRANSFORMER TYPE LOADS such as FLUOR ESCENT LAMPS or INSTANT-HEATING SOLDERING GUNS.

This device has two settings, a high and a low-it is not variable in between-and the low output is obtained by blocking part of the current from the source by using the diode. A diode in an AC circuit only passes current on the half-cycle of the source. The load therefore sees 70% of the source voltage and the remaining 30% is blocked. When used on 120 -volt house current, the output on the high setting is 120 volts and on the low setting is 84 volts.

Mount the switch, diode, and space-saver socket in a small aluminum chassis. Attach a lamp-cord to one side of the plug and one terminal of the switch. Complete the other connections as shown in the diagram.

Fig. 49

PARTS LIST

SYMBOL	OESCRIPTION	RADIO SHACK NO.
D1	silicon rectifier 12 amps (a) 400 PIV	$276-1063$
S1	slide switch, SPDT	$275-125$
	space-saver socket	$270-640$
	lamp cord, 6-foot with molded plug	$278-1255$

No. 50 VARIABLE AC CONTROL

In Project No. 49, a two-level AC control was described. In this circuit we have a means of controlling the output of an AC device from zero to its full-load capacity.

This is a full wave circuit which gives symmetrical control from zero to 100 percent over an AC load. It does a complete job of dimming incandescent lamps, and controlling AC motors. During the positive half-cycle of the supply voltage, the arm on the 100,000 -ohm control samples the AC voltage and compares it with the back voltage of the motor through the gate of SCR. When the potentiometer voltage rises above the armature, diode D2 triggers the SCR which applies the remainder of that half cycle voltage to the motor at the controlled level.

D1 is used to suppress the inductive spikes that would be created when this circuit is used to control a motor. When application of this circuit is limited to controlling incandescent lamps, D1 can be eliminated.

PARTS LIST

SYMBOL	OESCRIPTION	RADIO SHACK NO.
SCR	silicon controlled rectifier, 6 amps, 200 PIV	276-1132
D1, D2,		
D3, D4	silicon rectifiers, 1 amp, 100 PIV	$276-1709$
R1	resistor, 33,000 ohms, \mathbf{W} W	$70-0196$
R2	potentiometer, 100,000 ohms	$271-092$
C1	capacitor, 1.0 mfd.	$71-0416$
S1	switch, SPST	$275-315$
	space-saver socket	$270-640$
	fuse holder	$270-739$
	box of 5-amp fuses	$77-2768$
	lamp cord, 6-foot with molded plug	$278-1255$

Fig. 50

RADIO SHACK HANDBOOK

- SCHEMATIC DIAGRAMS
 - ELECTRONIC SYMBOLS

USEFUL DATA FOR STUDENTS AND EXPERIMENTERS. The dato and specifications presented in this section will be an invaluable aid in the solution of electronic problems. The Ham, $\mathrm{Hi}-\mathrm{Fi}$ enthusiast and the hobbyist will find that this section will add to their knowledge and enjoyment.

Capacitance
$C_{r}=\frac{1}{\frac{1}{c_{1}}+\frac{1}{c_{2}}+\frac{1}{c_{3}} \ldots \text { erc. }}$
$C_{r}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$

self-mpuctamce
$t_{r}=\frac{1}{\frac{1}{t_{1}}+\frac{1}{L_{2}}+\frac{1}{t_{3}}} \ldots \text { enc. }$
$L_{1}=\frac{L_{1} l_{2}}{L_{1}+L_{2}}$

- SPECIFICATIONS
- FORmULAS

Impledmee
$\begin{array}{ll}\text { Sceliss } \\ \text { cincuits } & I_{T}=\sqrt{R_{T}^{2}+X_{1}^{2}}\end{array}$
$\begin{aligned} & \begin{array}{l} \text { PARALIEL } \\ \text { CRCUITS } \end{array} \end{aligned} z_{\mathrm{T}}=\frac{1}{\sqrt{\overline{\mathrm{r}}^{2}+\overline{1}_{\mathrm{r}}{ }^{2}}}$
$\mathbf{Z}_{\mathbf{1}}=$ Mognitude of Impedonce (Ohms) $\mathbf{R}_{\mathbf{T}}=$ Tofal Resistance in Ohms $X_{\mathbf{r}}=$ Total teactonce in Ohms $\mathbf{6}_{\mathbf{T}}=$ Totol Conductonese in Mhos $\mathrm{B}_{\mathrm{T}}=$ Tofal Susceptance in whos

R AND X IM TERMS OF 6 AND E

$R=\frac{6}{6^{2}+D^{2}}$	$x=\frac{1}{6^{2}+e^{2}}$
a On FIGUEIE OF MERIT	
Simple Reoctor $\mathbf{a}=\frac{x_{\mathbf{L}}}{\mathbf{R}_{\mathbf{L}}}$	Single Copacitor $\mathbf{a}=\frac{\mathbf{x}_{c}}{\mathbf{R}_{\mathbf{c}}}$

$\mathbf{Q}=\mathbf{R}$ Ratio Expressing the Figure of Merit
$X_{1}=$ Inductive Reactance (Ohms)
$\boldsymbol{X}_{\mathrm{c}}=$ Copocitive Reoctance (Ohms)
$\mathrm{R}_{1}=$ Resistunce in ohms acting in series with inductonce
$R_{c}=$ Resistunce in ohms acting in series with ceppacitonce

USEFUL FORMULAS

WAVELENGIH FROM FREQUENCY

$\lambda=\frac{3 \times 10^{4}}{f}$ (Centimeters)
$\lambda=\frac{3 \times 10^{5}}{f}$ (Meters)
f Frequency in kilocycles

frequency from wavelengit

$$
\begin{aligned}
& f=\frac{3 \times 10^{4}}{\lambda} \text { (Megacycles) } \\
& \lambda=\text { Wovelength in centimeters } \\
& f=\frac{3 \times 10^{5}}{\lambda} \text { (Kilacycies) } \\
& \lambda=\text { Wavelength in meters }
\end{aligned}
$$

VACUUM TUBE FORMULAS	
AMPIIFICAIION FACTOR (MU or $\mu \mathrm{f}$)	$M_{u}=\frac{\Delta E_{p}}{\Delta E_{G}}$
DYNamic PLATE RESISTANCE (Ohms)	$r_{p}=\frac{\Delta E_{p}}{\Delta l_{p}}$
mUTUAL CONDUCT. ANCE (Mhos)	$\mathrm{G}_{\mathrm{m}}=\frac{\Delta \mathrm{I}_{\mathrm{m}}}{\Delta \mathrm{E}_{\mathrm{G}}}$
GAIN PER STAGE	$\mu\left(\frac{R_{t}}{R_{t} \mid R_{f}}\right)$
VOLTAGE OUTPUT IN R_{1}	$\mu\left(\frac{E_{5} R_{1}}{r_{p}+R_{1}}\right)$
POWER OUIPUT IN R_{1}	

ellectrical quantitiss

Multiply	By	To Obtain
Amperes.	0.1	Abamperes
Ampere-hours.	3,600	Coulombs
Ampere-hours.	0.03731	Foradoys
Coulombs.	0.1	Abcoulombs
Coulombs...	. 1.03710^{5}	Faradays
Faradays.	26.80	Ampere-hours
Farads.	$1^{1} 10^{\circ}$	Abfarads
Forads.	1×10^{6}	. Mirroforads
Gausses.	1.	. Maxwells sq cm
Gausses.....	6.452	lines sq inch
Henries......	. 1×10^{4}.	Abhenries
Ohm-cm.	6.015×10^{6}	.cire mil-ohms ${ }^{\text {f }}$
Ohm-cm.....	. 0.3937	Ohm-inches
Volts...	. 1×10^{4}.	.Abvolts

COMMON ELECTRONIC ABBREVIATIONS AND LETTER SYMBOLS

IEmM Amarviation				
mikrowort millicampere				
Millitenry				
milliver - My				
Millivot per Meler _ MV/M				
Milisoft				
Moduloted Conlinuess Woves				
Muliplex				
Multivibrator \longrightarrow MYB				
Mutual Induxatance				
0 mm				
Peock to Prom				
Mrase Modulation ___ MM				
Power				
Power Fexter				
Rostio frequency (Mdj)				
Rodio Frequemy				
lessistance				
Reet meens square				mas
Sell-indurctame				-
Short Wave				sw
Single Collon Covered				${ }_{5 c}$
Single Cotron Enamel				SE
Single Pote, Dovble Throw				STOI
Single Poct, Single Throw				SeSt
Single sill Coverod				5SC
Signal to Moise Ratio				SNR
Tuned liodio Frequency				TRF
Single Side lond				ssa
Ulira High frequency				UHF
Vounom Inte Vommeter				VIVM
Vet				VIo
				- V
Veloye				
Voft-Ohm-Milliommeter				vow
				W
TRANSMISSION-LINE DATA				
Туpe	Description	Character-		Copocitance
	or Type Number	istix	Facter	Per feot;
				$\mu / L^{\text {f }}$
Cooxial	Air-Insulated	50-100	$0.85{ }^{1}$	
	RG-8/U	53	0.66	29.5
	RG-58 ${ }^{\prime}$	53	0.66	28.5
	RG-11/4	75	0.66	20.5
	RG-59/U	73	0.66	21.0
Parollel Condec. for	Air-Insulated	200-600	0.975^{2}	
	214.080 ${ }^{3}$	75	0.68	19.0
	214-0233	75	0.71	20.0
	214-0793	150	0.77	10.0
	214-056 ${ }^{3}$	300	0.82	5.8
	214.076 ${ }^{3}$	300	0.84	3.9
	214-022 ${ }^{3}$	300	0.85	3.0

TYPICAL TRANSISTOR BASES

6

(3MONTLAD)

Her colon
mondert meverse moletily

CASIC TRANSISTOR AMPIFIER CIRCUITS. R1, the lood resistance, may be an actual resistor or the primary of a transformer. The input signol may be supplied from a transformer secondary or by resistance-copacitance coupling. In any cose it is to be understood that a d.c. path must exist between the base ond the emitter. PNP tronsistors are shown in these circuits. If NPN trpes are used, the bottery polarities must be reversed.

OHM'S LAW FORMULAS

OHM'S LAW FORMULAS FOR A-C CIRCUITS

$=$ Current in Amperes
$\mathbf{Z}=$ Impedance in Ohms
$\mathbf{F}=$ Potential Across \mathbf{Z} in Volta
$\mathbf{w}=$ Prower in Watts
$0=$ Phase Angle in Derrees
To solve any Ohm's Law equation locate the symibol for the unknown value in the center wheel and then use the formula, in the outer circle, that contains the known values.

DECIBELS
The number of deribels corresponding to a given power ratio is expressed by the following forniula:

$$
\mathbf{D h}=10 \log \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}
$$

Common logarithms (base in are used.
Note that the decibel is based on power ratios Voltage or current ratios can be used only when the impsiance is the same for both values of voltage or current.

$$
\begin{aligned}
\text { (Volts) } \mathrm{Db} & =20 \mathrm{lng} \frac{\mathrm{E}_{\mathrm{H}_{1}}}{\mathrm{E}_{1}} \\
\text { (Current) } \mathrm{Dd} & =20 \mathrm{log} \quad \frac{\mathrm{I}_{2}}{I_{1}}
\end{aligned}
$$

These formulas are shown graphically in the chart for rations from 1 to 10 . Gains (increases) expressed In dershels may he adided arlthmetically; insses (decreases) thay be subtracted. A power decrease is indicated by prefining the decibel figure with a nilnus sign. Thus 6 db . means that the power has been multiplied by 4 , while -6 dh . means that the power has been divided by 4 .

The formula given for power ratios is indenendent of source and load impedance values. However, the formulas for voltage and current ratios hold true only when the sourre and load impedances (Z_{1}, and Z_{2}.) are equal. When these imperances differ the follow ing formulas should be used for voltage and current ratios:

$$
\begin{aligned}
\text { (Volts) Db } & =20 \log \frac{\mathrm{~F}_{2}}{\mathrm{~F}_{1}} \frac{\mathrm{Z}_{1}}{} \\
\mathrm{~F}_{1} & \mathbf{Z}_{2} \\
\text { (Current) } \mathrm{Db} & =20 \mathrm{log} \frac{\mathrm{I}_{2}}{\mathbf{Z}_{3}} \\
\mathrm{l}_{1} & \mathbf{Z}_{2}
\end{aligned}
$$

OHM'S LAW FORMULAS FOR D-C CIRCUITS

1 = Current in Amperes
$E=$ Potential Across R in Volts
$\mathrm{R}=$ Resistance in Onms
$\mathbf{w}=$ Power in Watts

In the following table is a summary of the IV. S. amateur bands on which operation is permitted as of our press date. Bigures are megacycles. As ineans an un modulated carrier, A1 means c.w. telegraphy, A2 is tone modulated c.w. telegraphy, A.3 is anplitudemodulated phone. At is facsimile. A5 is television. nf.m. desimnates narrow-band frequency or phase.modulated radiotelephony. f.in. means fre quency modulation. phone (including n.f.m.) or telegraphy, and $F^{\prime} 1$ is frequency-shift keying.

$\begin{gathered} 80 \\ \text { meters } \end{gathered}$	3.500-4.000	- A1
	3.500-3.800	- F1
	\$.800 4.000	- A3 and u.f.in
	7.0007 .800	- A1
40 m.	7.0007 .200	- Fl
	$7.200 \cdot 7.300$	- A3 and n.f.m
	14.100-14.350	- A1
20 in.	14.00014 .200	- Fl
	14.210t-14.300	- A. 3 and n.f.nı.
	11.300.14.35t	- Fil
	21.100021 .450	$-\mathrm{Al}$
15 in.	21.000 .21 .250	F1
	21.25021 .450	- A3 and nif.m.
	28.000-29.700	- A1
10 nt .	$28.500-29.700$	- A3 and u.f.m.
	29.000-29.700	- f.mi.
	50-54	- A1
	50.0.50.9	- A2, A3. A4, n.f.mi
6 m .	51-54	- A\%, A2, A3, A4, nif.in.
	52.5.54	- 1.ni.
	144.148	- A1
2 m .	14.147.9	
	220.225)	
		Ae, A1, A2, A3, A4, f.in.
	420.4501	
	1,215-1,300	

AMATEUR BANDS AND TABLES

In the following table if a summary of the \mathbf{U}. S . amateur bands on which operation is permitted as of our press date. Figures are megacycles. Ao means an unmodulated cartier, A1 means c.w. telegraphy. A2 is tone-modulated c.w. telegraphy, A3 is ainplitudemodulated phone. At is facsimble. As is televialon. n.f.m. dealgnates narrow-band frequency - or phase modulated radiotelephony, fim. means fre. quency modulation, phone (including n.f.m.) or telegraphy, and $F 1$ is frequency-shift keying.

$\begin{aligned} & \text { Ag, A1. A2. A3. A4, A5, } \\ & \text { f.m., pulse } \end{aligned}$	
RELATIVE RESISTIVITY OF METALS	
Aluminum	1.70
Bross	3.57
Codmium	5.26
Chromium	1.82
Copper (hord-drown)	1.12
Copper (onneoled)	1.00
Iron (pure)	5.65
Lead	14.30
Nickel	8.33
Phosphor lromze	2.78
Silver	0.94
Tin	7.70
Linc	3.54

PREFIXES

Prefix	Meaning	Volue
Millimicro	One-billionth	$0.000,000,001$ or 10^{-1}
Micro.	One-millionth	$0.000,001 \ldots .$. or $10^{\text {. }}$
Milli.	One-thousondth	$0.001 \ldots \ldots . . .$. or 10^{-3}
Centi.	One hundredth	0.01 or 10^{-2}
Deci,	One-tenth	0.1 or 10^{-1}

MASTER ELECTRONIC PARTS LIST

TRANSISTORS	RAOIO SHACK NO.	PRICE
2N140	$276-401$.99
2N107	$276-403$.99
2N46	276.404	.99
2N197	$276-405$.99
2N242	$276-406$	1.19
2N1515	276.407	2.29
2N358	$276-408$	1.09
2N149	$276-409$	1.15
2N313	276.410	.99
2N649	$276-411$.99
2N310	$276-412$	1.29
CK722(2)	276.1034	.59

RESISTORS RA	RAOIO SHACK NO.	PRICE
82000	$70-0195$. 12
100000	70.0195	. 12
220000	70.0195	. 12
270000	70.0195	. 12
330000	70-0195	. 12
560000	70.0195	. 12
680000	70.0195	. 12
820000	70.0195	. 12
1 MEG.	70.0195	. 12
1.2 MEG	70-0195	. 12
2.2 MEG	70-0195	. 12
$10 \mathrm{~W}$	80.0101	1.19
	RAOIO SHACK	
POTENTIOMETERS	S NO.	PRICE
500 W/SPST	271-066	. 79
5K W/SPST	271-1620	. 79
5K.	271-1714	59
10K	271-1715	59
50K	271-1716	. 59
25K W/SPST	271-094	. 79
100K	271.092	. 59
500K	271.210	59
1 MEG	271-211	59
2 MEG	271.093	. 59
CAPACITORS (Ul) RAOIO SHACK NO.		PRICE
1.0	71.416	59
. 1	71.409	. 22
. 25	71.412	. 30
. 5	71.468	. 88
. 01	71-5194	. 18
. 02	71.452	. 19
. 05	71-407	17
RaOIO Shack		
CAPACITORS (uuf)) NO.	PRICE
5	71-5087	. 16
47	71-5101	. 16
82	71-5105	. 16
220	71-5111	. 16
1000	71-5123	. 16
2000	71-5182	. 16
4700	71-5189	. 16
5000	71-5190	16
(Continued on next page)		

MASTER ELECTRONIC PARTS LIST

ELECTROLYTIC			
CAPACITORS	RAOIO	SHACK NO.	PRICE
3 MFD		72.958	29
5 MFD		72-952	29
10 MFD		72-960	. 31
30 MFD		72-961	. 31
50 MFD		72-962	35
100 MFD		72.963	45
500 MFD		72-986	. 72
1000 MFD		72-1718	. 98
CAPACITORS			
VARIABLE	RAOIO	SHACK NO.	PRICE
365 uuf		2-1343	1.19
365		2-1341	. 59
2-25		71-4029	. 27
4-40		71.4030	. 29
7.100		71.4031	. 32
55-300		$71-4035$. 45
IRANSFORMERS		ADIO SHACK	PRICE
500!2CT-3.2!		273-1379	. 79
1000:2CT-8!		273-1380	. 79
24V © 1.2A		273-1480	1.98
12V@1.2A		273-1505	1.69
IF Transformer		273-049	. 49
6.3V @ 1.2A		273-050	. 98
BATIERIES	RAOIO	SHACK NO.	PRICE
$11 / 2 \mathrm{VD}$ Cell		23-466	. 15
221/2V		23-097	1.29
9 V Rect.		23-464	. 29
15 V		23-509	1.05
1.35 V		23-592	. 45
SPEAKERS		AOIO SHACK	PRICE
6" SPKR		40-1207	2.39
234" SPKR		40-262	. 98
5×7 SPKR		40-1215	4.49

ANTENNAS RA	RAOIO SHACK NO.	PRICE
Loopstick	270-1430	. 59
Walkie Talkie Whip	- 21.1156	1.99
MISC. RA	RADIO SHACK NO.	PRICE
Phono Jack	75-0966	12
SPST Switch	275-602	. 30
Hand Key	20-1085	. 69
Miniature Phone		
Jack	75-3392	. 29
Headphone	33-180	1.98
Min. Phone Plug	75-3394	. 59
Lapel Microphone	33-100	1.89
Carbon Microphone	e 279-1425	. 79
DPDT Slide		
Switch	275-067	. 20
vU Meter	22.019	3.95
COAX Chassis		
Connector	278-201	. 50
Crystal Socket	75.9131	12
SPST Push		
Switch	275-1385	. 25
Induction Coil	44.533	99
Low \mathbf{Z} Headphone	33-175	98
R.F Choke 2.5 MH	H 270-1713	. 75
B2M	276-1025	1.50
Socket for TO-3 Case	ase 75-4969	. 19
Binding Post (pkg		
\#47 Bulb	77-3396	. 15
Tape	64-2348	. 29
Line Cord	278-1255	39
5A 3AG Fuse (5)	77-2768	. 19
AC Outlet (2)	270-640	. 29
SPST Slide Sw (2)	275-315	. 25
SPDT Slide SW (2)) 275-125	29
Fuse Holder	270-364	39
Clip-in Fuse		
Holder (2)	270-739	32
T Adapter	42-2439	1.25
$4 \times 21 / 4 \times 21 / 4$	77.0680	. 80
23/4×21/9×15/8	77.0677	. 65
$5 \times 91 / 2 \times 2$	77-0347	1.45

