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PREFACE

Arrangements of the resistor, capacitor, and inductor are found
in various series, parallel, or series-parallel combinations in elec-
tronic circuits, depending upon the specific application desired. The
relationships of these three components, as they are affected by a-c
voltages of varying frequencies, are of particular interest when the
capacitive and inductive reactances become equal, yielding a res-
onant circuit.

In the first chapter, we review the essential theory related to
resonance. Detailed discussions then treat the theory of series res-
onant circuits, delineating the computations relating to resonant
frequency, the voltage relationships, and the role of the figure of
merit (Q) in these circuits. Similar analyses are made, first for the
elements comprising parallel resonant circuits and then of the
parallel resonant circuits themselves. Further analyses cover res-
onant circuits with distributed constants through an explanation
of tuned lines. The rest of the theoretical material treats resonant
coupled circuits, including the coupling coefficient, reflected im-
pedance, and the effects of coupling upon resonance. A few basic
applications are described. These are typical of the general uses of
the circuits and are sufficient to give an understanding of general
circuit arrangements.

Grateful acknowledgement is made to the staff of New York
Technical Institute for its assistance in the preparation of this
manuscript.

New York, N. Y. AS.
January 1957
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Chapter 1

INTRODUCTION TO RESONANCE

1. Review of Theory Related to Resonance

The reader who selects a work on resonant circuits for study is
assumed to be familiar with the behavior of various components
in a-c circuits. The brief, but comprehensive summary of a-c theory
relevant to resonance included in this chapter should help him to
refresh his memory sufficiently to allow complete understanding of
what follows. In the equations in this review the currents and
voltages, may be instantaneous, peak, or rms provided that all
values within the equation are expressed in the same terms.

2. Resistance in a-c circuits

There is no essential difference between the behavior of a
resistor in either a d-c or an a-c circuit. The pertinent equations
and characteristics for either circuit are:

Ohm’s Law: I—=E/R E=1IR R —=E/I
Series Connections: Ri=R; + Rp+.... R,
Parallel Connection: /R, = I/R; + 1/Ry + .... /R,

where I is in amperes, E in volts, and R in ohms.

1



2 RESONANT CIRCUITS

Effect on phase: Resistors do not affect the phase relationships
between current and voltage a-c circuits in any
way. (See Fig. 1.)

Power dissipation (see Fig. 2): P = IR = EI = E?/R
3. Capacitance in a-c circvits

The opposition of a capacitor to the flow of ac is termed capaci-
tive reactance; the magnitude of the capacitive reactance of any
capacitor depends upon its capacitance, C, and the frequency, f,
of the ac.

Series connection: 1/CG = 1/Cy + 1/Cy +....1/C,
Parallel connection: C;,=GC; +GC; +....G,

Capacitive reactance: X; = 1/2#C

Ohm’s law: I —=E/X, E—=1IX; Xc=E/I
where X is in ohms, f in cps, C in Farads, I in amperes, and

E in volts.

Effect on phase: The current flowing in a purely capacitive circuit
always leads the applied voltage by 90 degrees.
(See Fig. 3.)

Power dissipation: A purely capacitive circuit does not dissipate
any power. (See Fig. 4.) If the circuit contains
both capacitance and resistance, the phase
angle will be less than 90 degrees and the
power dissipation is:

P —EIlcos ¢
where ¢ is the phase angle determined by
cot ¢ = 2fRC

Charge on capacitor: 0 = CE
Energy of capacitor: W = 15 CE2

where Q is the charge in coulombs and W is the energy in watt-
seconds



INTRODUCTION TO RESONANCE 3
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Fig. 1. Current and voltage in a resistive circvit.
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Fig. 3. Current and voltage in o capacitive circuit.



4 RESONANT CIRCUITS
4. Inductance in a-c circuits

The opposition of an inductor to the flow of ac is called in-
ductive reactance; its magnitude is a function of the a-c frequency,
and the inductance.

Series connection (no coupling): L, = L, + L, +....1/L,

Parallel connection (no coupling) :
Ly = 1/Ly + 1/Lg + ..., 1/L,

Inductive reactance: X, = 2«fL
Ohm’s law: I = E/XL E — IXL XL _ E/I

where X is in ohms, f in cps, L in henrys, I in amperes, and E
in volts.

Effect on phase: The current flowing in a purely inductive a-c
circuit lags behind the applied voltage by 90
degrees. (See Fig. 5.)

Power dissipation: A purely inductive circuit dissipates no power.
(See Fig. 6.) If the circuit contains both in-
ductance and resistance, the phase angle will be
less than 90 degrees and the power dissipation is

P — EI cos ¢
where ¢ is the phase angle determined by Cot¢ = 24fL/R

5. Meaning of Resonance

Figure 7 shows a capacitor C, a coil L, and a resistor R con-
nected in series with an a-c voltage source of variable frequency.
In one range of frequencies X, may be considerably larger than
X1; in some higher frequency range X, may become much greater
than X.. (The resistance R remains the same for all frequencies.)
At some frequency between these two ranges, an interchange of
predominance occurs, and at one point the reactances of the capaci-
tor and the inductor become equal. The voltage drops across them
are then equal and 180 degrees out of phase. (This angle is the sum
of the 90 degree lead of the capacitor and the 90 degree of the
inductor.) Under these conditions, the reactances effectively cancel
each other completely, and the current flow is determined only by
the resistance of the circuit. At the frequency that establishes these
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6 RESONANT CIRCUITS

conditions — i.e. the resonant frequency — the current reaches its
highest possible value (assuming a constant source voltage), a con-
dition termed series resonance. Thus, a series circuit is said to be
resonant when the inductive reactance equals the capacitive reac-
tance.

A capacitor and inductor may also be connected in parallel
across the output of an a-c generator to form a parallel resonant

R

(Dr—w

Fig. 7 Series circuit con-
E(~ == taining resistance, capaci-
F tance, and inductance.

L
11N

circuit in which the conditions for resonance are somewhat modi-
fied. Both series and parallel resonance are discussed in detail in
subsequent chapters.

6. Review Questions

(1) What is the relationship between current and voltage waves in purely
resistive circuits?

(2) What is the only a-c circuit component that can dissipate power?

(3) What is the voltage-current phase relationship in a purely capacitive
circuit? in a purely inductive circuit?

(4) State the equation for determining capacitive reactance; inductive re-
actance.

(5) From the a-c power equation, what must be the value of the phase angle
¢ for maximum power dissipation to occur?

(6) Referring to Fig. 4, explain how this diagram shows that the power
dissipated in a capacitive circuit is zero. Repeat for Fig. 6, for inductive circuits.

(7) In what way does the power curve of Fig. 2 differ from those of Fig. 4
and Fig. 6 and what is the implication of this difference.

(8) Calculate the inductive reactance of a 10-henry choke coil when used in
connection with 60-cps power lines.

(9) Calculate the capacitance of the capacitor that would resonate at 60 cps
with the inductor of Question 8.

(10) What is the total reactance of a coil and capacitor combination con-
nected in series across a generator if the reactance of each is 137 ohms?



Chapter 2

SERIES RESONANT CIRCUITS

7. Indications of Series Resonance

Before proceeding in our study of series resonant circuits, let
us find out how to determine whether a particular circuit is reso-
nant. The first requirement is that the capacitive reactance equal
the inductive reactance. A series circuit cannot be resonant if these
two values are not equal.

It might be well to mention at this point that the resonant
condition can be obtained by varying the value of the inductance,
the capacitance, or the applied frequency. When the circuits are
in resonance, the impedance of the circuit is at a minimum and is
equal to the circuit resistance. The current flowing in the circuit
is at its highest possible point and is in phase with the applied volt-
age. In addition, the circuit acts as a purely resistive circuit. The
voltage across the inductance is equal to the voltage across the
capacitance, and is relatively high. In fact it may exceed the supply
voltage. Although numerically equal, these emf’s have opposite
polarity and the resultant voltage is zero.

If there is any possibility that the circuit will operate at or
close to resonance, the voltage ratings of the coils and capacitors
must be carefully selected to insure that the components can with-
stand a voltage in excess of the supply voltage. This is particularly
true if the circuit resistance is low compared to the circuit reactance,

7



8 RESONANT CIRCUITS

8. Calculation of Resonant Frequency

Although coil-capacitor combinations may be designed to res-
onate at any frequency, resonant circuits find their widest applica-
tion in the radio frequency range. The reactive effects associated
with even small capacitances may impose severe limitations on the
usefulness of these circuits, if the frequency is relatively high. One
way of overcoming these effects is to add inductive reactance to the
circuit if the effects of capacitive reactance are to be cancelled, and
vice versa. A specific reactance may be detrimental to the per-

(O— R
\_/ \ R /
ER
Fig. 8. Typical series circuit
ET<~> Lgs"" B containing R, C and L
Ec
{2\
AY|
A
SO0 HUF

formance of a circuit when it produces an undesirable voltage drop
at a particular frequency. In this case, the insertion of a reactive
component of the opposite kind gives rise to a neutralizing voltage
drop 180 degrees out of phase with the unwanted one. This rem-
edy is effective at one frequency only, since there is only one reso-
nant point for a given pair of reactances.

The series resonant circuit is in a state of resonance when the
inductive reactance and the capacitive reactance are exactly equal.
Since this is true,

1
2xf, L = THEC
solving for f,, the resonant frequency, we have
1
£, =

2x/LC

Let us apply this to the circuit shown in Fig. 8. First, since we
are looking for the resonant frequency, the resistance of the circuit -
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is of no consequence at this time. Solution for the resonant fre-
quency of this circuit(C = 500 uuf = 500 X 102 farads, I, = 5 mh
= 5 X 108 h.), then, is

1 1
2+/IC = 6.281/5 X 103 X 500 X 1012
1

1
" 6.281/250 X 1014  6.28 X 158 X 107

1 B i o
= 99.924 ¥ 107 100.7 X 108 = 100.7 kc.

f, =

Now that we know 100.7 kilocycles is the resonant frequency
of the circuit, let us investigate the other characteristics. It would
be useful to know the total impedance, the line current, the volt-
age across each unit, and the circuit phase angle. For the purpose
of the problem, we will assume that the applied voltage is 100
volts. The total impedance of the circuit is given by the equation
Z, = VR? + X2

First, let us find the inductive reactance, X,, and the capacitive
reactance Xo.

XL = 24fL = 6.28 X 100.7 X 103 X5 X 10 = 3162 ohms

1 1
Xo = 29.1C 6.28 X 100.7 X 108 X 500 X 1012

= 8162 ohms

The fact that X,, and X emerge as equal quantities is of course,
a check on the previous calculation in which the resonant fre-
quency was derived. The net reactance of the circuit is zero and
the total impedance

Z = y/R? 4 X2 = R = 1250 ohms.

You will observe that the total impedance is equal to the resistance
of the circuit. We may now proceed to find the line current and
the voltage drop across each unit in the following manner:

Ip = Ep 100 _ 80 milliamperes.

Z, 1250
Ex = IR = 80 X 103 X 1250 = 100 volts
E, = IX; = 80 X 1028 X 3162 = 253 volts
E. = IX. = 80 X 103 X 3162 = 253 volts
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Although E. and E. are numerically equal, they are 180 degrees
out ol phase and effectively cancel each other. A voltmeter con-
nected across the series circuit comprising the inductance and the
capacitance would read zero. Note that these voltages across the
reactive components in the circuit are higher than the line voltage.
As stated earlier, this can happen in a series R-L-C circuit if it is
operated at or close to resonance, and if the circuit resistance is low
compared to inductive and capacitive reactances.

The circuit phase angle (i.e., the angle between the voltage
and current vectors), is zero because the arrangement acts as if
only resistance were present, the reactive voltage drops having can-

EL

B
90°LEAD 90° ANGLE
ET 1 BETWEEN
Ec AND I
90°LAG
Ec ul
90° ANGLE
BETWEEN
EL AND I

Fig. 9. Vector diagram (left) and vectorial addition of voltage (right) for the
circuit of Fig. 8.

celled each other. To see how this appears vectorially, reter to Fig.
9 in which current is used as the reference vector. The line voltage
is in phase with the line current; the circuit is operating at unity
power factor, and the phase angle is zero, just as if the circuit were
purely resistive.

9. Voltage Relationship in Series Resonant Circuits

Referring to the circuit of Fig. 10A, let us consider the voltage
relationship in a series-resonant circuit. If an a-c source of a fre-
quency below resonance is connected to the circuit, it will be found
that the greatest opposition to current flow is caused by the reac-
tance of capacitor C, because capacitive reactance increases as the
frequency of the applied voltage decreases.

If a source voltage with a frequency above resonance is applied to
the circuit under consideration, the greatest opposition to the flow
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of current is set up by the inductance L, because inductive reactance
increases as the frequency of the applied voltage is increased. An-
other way of stating this is to say that, at frequencies below reson-
ance, the net reactance in a series resonant circuit is capacitive and,
at frequencies above resonance, the net reactance in a series res-
onant circuit is inductive.

As we have seen, at some [requency between these two ex-
tremes, the inductive reactance will be exactly the same as the ca-

AR
A AN N
N R |
- !
2 |
w
« |
[ 4
> |
(&)
@ : |
|
|
Fo
c FREQUENGY
L
1] Fo * RESONANGE FREQUENGY
(A) (B)

Fig. 10, (A) Typical series resonant circvit. (B) Graph showing relationship
between current and frequency

pacitive reactance, and the circuit will be in a state of resonance.
At this point, the voltage drops across the inductive and capac-
itive reactances are equal, and since they are opposite in phase,
they cancel each other. As a result, the only effective opposition to
current flow in the circuit is the resistance.

The current flowing in the circuit of Fig. 10A may be measured
by means of meter A. If the frequency of the source voltage is in-
creased gradually from below resonance to above resonance, the cur-
rent in the circuit will rapidly increase until it reaches its maximum
possible value at the resonant frequency of the circuit. It then de-
creases as the frequency continues to rise, as shown in Fig. 10B.

Since the current flow in the circuit is determined by im-
pedance, the impedance of the circuit under consideration is at
its lowest or minimum value when the current it at its highest
value. Another way of phrasing this is to say that the circuit con-
tains the smallest impedance of which it is capable at the resonant
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frequency, and that the impedance rapidly increases on either side
of resonance. Figure 11 shows the impedance curve for a typical
series-resonant circuit.

The voltage drop across each element of a series circuit is given
by a-c forms of Ohm’s Law as follows:

ER — IR EL = IXL Eo = IXG

At any given frequency, the reactances X, and X, are fixed by
the physical nature of the inductor and the capacitor, respectively,
and by the frequency of the ac. These reactances are not individu-
ally modified by connecting them in series with each other to form a

IMPEDANCE

Fig. 11. Impedance curve of
a series-tuned circuit.

FEREQUENCY
Fo *RESONANCE FREQUENCY

resonant circuit if the frequency is unchanged; furthermore, the
current in a series circuit is everywhere the same for any given set of
conditions. Hence, the voltage developed across either the induc-
tance or capacitance considered separately attains its highest value
when the circuit current is greatest, or when the total impedance is
least. This situation occurs at resonance when the net reactance is
zero and the circuit impedance becomes equal to the resistance.
Considering either the inductive or capacitive component, what we
really have is a condition in which a high current — obtainable by
making the resistance, R, of the circuit small — flows through a
large reactance, thus yielding a very large voltage (IR) drop.

Although the high voltages across the individual reactances
are equal and opposite in polarity at resonance (and thus tend to
cancel each other from the viewpoint of the net circuit voltage),
either of them may be used to operate other circuits.

If the value of either the inductance or the capacitance is
changed, the resonant frequency of the circuit is changed. An in-
crease of either capacitance or inductance, or both, will cause the



SERIES RESONANT CIRCUITS 13

resonant frequency of the circuit to become lower. Conversely, de-
creasing the values of capacitance or inductance or both will cause
the resonant frequency of the circuit to increase. Thus we may
make either the capacitance or the inductance variable. The circuit
can then be resonated to any frequency over a range determined
by the value of the fixed reactance and the maximum and mini-
mum values of the variable reactance.

In practical applications, either reactance may be varied to
tune the circuit. For example, in most broadcast-band receivers,
tuning is done by varying the amount of capacitance in the circuit.
In many television and f-m tuners tuning is accomplished by in-
ductance variation.

In summary, we might say that when a circuit operates below
its resonant frequency the capacitive reactance is greater than the in-
ductive reactance, and the circuit acts as an R-C circuit. When the
circuit operates above its resonant frequency, the inductive reac-
tance exceeds the capacitive reactance, and the circuit acts as an
R-L circuit.

10. Q of Resonant Circuits

Our discussions thus far have ignored the inherent resistance
that is present, often to a large degree, in practical coils and to a
much lesser extent in capacitors. The resistance of a conductor is
not always the same for an alternating current as it is for direct
current. A high-frequency alternating current flowing through a
conductor causes internal effects that tend to force the current to
flow mostly in the outer parts of the conductor, a phenomenon
known as “skin effect.” Skin effect decreases the effective cross-sec-
tional area of the conductor, with an accompanying increase in
resistance.

In low-frequency circuits, skin effect is often negligible. At
radio-frequencies, however, it is so much greater that virtually all
the current flow is confined within a depth of a few thousandths
of an inch under the surface of the conductor. Radio-frequency
resistance consequently may be many times the direct current re-
sistance and continues to increase as the frequency rises. In the
r-f ranges, a conductor of thin tubing may present the same resis-
tance to current flow as a solid conductor of the same diameter.

At the higher frequencies, the relationship between the induc-
tive reactance and the overall resistance of a given coil changes in
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a way dependent upon the manner in which the a-c resistance in-
creases. The ratio of the reactance of a coil to its overall resistance
is called the figure of merit or Q of the coil and is mathematically
defined as:
_ 2L X,
=%
Since both X, and R are expressed in ohms, QQ is a simple
ratio and has no units.
EXAMPLE: Find the Q of a coil of 0.2 mh at 2 myc, if the effective
resistance at that frequency is 10 ohms.

Q —2rfL _ 6:28 X 2 X 10° X 02 X 107
— R 10
2512 X 108
=T 10

Since both the reactance ol a coil and its a-c resistance due to
skin effect increase with rising frequency, it might seem that Q
must be constant for all frequencies. This is not true, however,
because these two factors do not change at the same rate. Q re-
mains constant over a relatively small range of frequencies. Below
this range, however, Q decreases because X, drops faster than R.
Above this range, QQ again decreases because the a-c resistance rises
faster than X,.

Effect of varying frequency near resonance. 1f we draw a curve
of the current flowing in the circuit of Fig. 10A, assuming that the
voltage is constant and the frequency varies from a low to a high
value, the curve would resemble one of those in the chart of Fig. 12.
The shape of the resonance curve at frequencies of applied voltage
near resonance is principally determined by the Q of the coil. In
Fig. 12, different values of R (from 10 ohms to 100 ohms) are
assumed, instead of the value of 1250 ohms shown in Fig. 10A. X,
at the resonant frequency, is 1000 ohms. This gives the circuit a
minimum Q of 10, with R = 100. You will note that at frequencies
at least plus or minus 15 percent away from resonance, the current
is substantially unaffected by further frequency changes.

If the reactance of either the inductance or the capacitance is
of the same order of magnitude as the circuit resistance (Q is low,
near 1) the current decreases rather slowly from resonance in either
direction. Such a circuit is said to be “broad.” On the other hand,

= 251.2
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if the values of reactance are large compared to the circuit resis-
ance (Q is high) the current decreases rapidly as the frequency
moves away from resonance. Such a circuit is said to be “sharp.”
A sharp circuit responds a great deal more readily to signals of the
resonant frequency than to signals of frequencies on either side of
resonance. A broad circuit responds almost equally well to a band
of frequencies around the resonant frequency. Both types of reso-

1.0
.8
ar180
= ”
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«
2
o
. R=20
Fig. 12, Effect of R (and Q) s NG*SO
on resonance. [
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i
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«
2
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o,._/ Q10 e ———
-20 -0 [o] +10 +20

PERCENTAGE DEVIATION FROM
RESONANT FREQUENCY

nance curves are of great value. The sharp circuit provides great
selectivity, which is the ability to respond strongly, in terms of cur-
rent amplitude, at one desired frequency and to discriminate against
others. The broad circuit may be used when it is necessary to obtain
about the same circuit response over a band of frequencies rather
than at a single frequency.

We should emphasize at this point, that while most resonant
circuits in schematic diagrams show only inductance and capaci-
tance, resistance is always present.

The source of the resistance depends upon the frequency, the
type of circuit elements used, and the width of frequency pass
band desired. We are interested here primarily in circuits of rela-
tively high Q (from 50 to 500), employed in radio-frequency
equipment. In such applications, it is the resistance of the wire in
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the coil that constitutes the major part of the circuit resistance,
except at high radio frequencies. In the very high frequency (vhf)
range (30-300 mc) and higher, the resistance component in the
capacitor often becomes appreciable, especially if the dielectric is
not made of low-loss material like steatite or polystyrene.

It should be noted that the resistance between the plates (leak-
age resistance) of a capacitor is not analogous to the resistance of
the wire in the coil. The leakage resistance of a capacitor is a
parallel (or shunt) resistance, while that in the coil is a series re-
sistance. Leakage resistance of a good capacitor is very high; re-
sistance of a good coil is very low. To combine the resistances of
the coil and capacitor in a series circuit, an equivalent series re-
sistance of the capacitor is often used. As the leakage resistance of
a capacitor increases, equivalent series resistance decreases. Equiv-
alent series resistance is related to leakage (parallel) resistance as
follows:

Xc)

R
where r is the equivalent series resistance, R, the parallel resistance,
and X, the capacitive reactance of the capacitor. This relationship
is true if the frequency is high enough to make X, large compared
to R. Note that series resistance is inversely proportional to parallel
resistance, as stated above.
EXAMPLE: A 100-uuf capacitor, used at 1 mc, has a leakage resistance
of 10,000 ohms. What is the equivalent series resistance?

1 1
104 (6.28 X 106 X 10192 — 10¢ (6.28 X 1092
1 1

304X 10% — 00893 — 2o ohms

r=

r =

When maximum sharpness (selectivity) is desired, the aim of
the designer is to reduce the inherent resistance of the components
to the lowest possible values, thereby raising the Q of the circuit.

The effect of Q on the sharpness of resonance in a circuit is
shown in Fig. 13. In the curves illustrated, the frequency change
is shown in percentage above and below resonance. Q’s of 10, 20,
50, and 100 are shown because these values cover much of the
range used in radio work. In this graph current at resonance is
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assumed to be the same in all cases. The lower the Q, the more
slowly the current decreases as the frequency moves away from res-
onance.

At frequencies above 30 mc, energy losses in the capacitor be-
come an important consideration. These losses may be compared
to the energy loss that would result if a resistor were introduced in
the circuit. As stated earlier, the'Q of a coil tends to decrease at
higher frequencies and the apparent increase in circuit resistance
caused by capacitor losses has the effect of further reducing Q.

T
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Fig. 13. Effect of Q on resonance characteristic.

It is important to specify the Q of the circuit components at the
resonant frequency so that the resonance curve of the circuit will
provide either the selectivity or the bandwidth required by the cir-
cuit application.

Let us consider how to determine the voltage rise across a re-
active element. When a voltage of the resonant frequency is ap-
plied to a series circuit, the potential that appears across either the
inductor or the capacitor is considerably higher than the applied
voltage. The current in the circuit is determined by the actual re-
sistance of the inductance-capacitance combination in the circuit
and may have a relatively high value. However, the same current
flows through the high reactances of the inductance and capacitance
and causes large voltage drops. The ratio of the reactive voltage to
the applied voltage is equal to the ratio of the reactance to the re-
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sistance. This ratio is the Q of the circuit. Hence, the voltage across
either the capacitor or the inductor is equal to Q times the applied
voltage.

11. Review Questions

(I) What are the indications of series resonance?
(2) How may the resonant frequency of an L-C circuit be varied?
(3) Explain the calculation of resonant frequency in a series-resonant circuit.
(4) What is the effect of an applied voltage of lower-than-resonance-frequency
on a series R-L-C circuit?
(5) What is the effect of an applied voltage of higher-than-resonance-frequen-
cy on a series R-L-C circuit?
(6) How may the resistance of a series R-L-C circuit affect the bandwidth of
the circuit?
(7) How may the circuit resistance of an R-L-C circuit affect the selectivity
of the circuit?
(8) What is the most important consideration in designing highly selective
circuits?
(9) Explain the effect of Q on the selectivity of the series-resonant circuit.
(10) How may the voltage rise across the reactances in a series circuit be de-
termined?
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ELEMENTS OF PARALLEL RESONANT CIRCUITS

12. Paralle] Resistive-Inductive Circuits

Before discussing parallel circuits at resonance, we will con-
sider the effect of current flow on the elements of parallel circuits,
starting with a parallel circuit containing resistance and inductance.

When a resistance and an inductance are connected in parallel,
the line current (I;) consists of two components. The first is I, the
current through the resistance, which is in phase with the line
voltage. The second is I, the current through the inductance, which
lags the line voltage by 90 degrees.

Referring to Fig. 14, we will analyze the circuit and determine
the line current, the circuit phase angle, the total circuit impedance,
the power dissipated by the circuit, and the equivalent series circuit.

First, we may determine the value of the inductive reactance
of the coil:
X = 27fL = 6.28 X 60 X 0.5 = 189 ohms.

The current in the inductor is found by Ohm’s law:

1. = Eo_ 120 0.635 amperes (lagging by 90 degrees).
X, 189

19
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The current in the resistor,
E _ 120

I = —

= = oo 1.20 amperes (in phase).

LINE > R L
120V (

VOL;AGE sor L7V §I00n é.sn

IRT TIL

LINE CURRENT—»
1

Fig. 14. R-L parallel circvit.

The total current thus is:

I = i, + i, (The dots indicate that vector addition must be used)

The trigonometric system for adding two vector quantities when
the vectors are at right angles gives us the expression

I = V{I)? + (l)? Hence,
I. = \/(1.20)2 + (0.635)2 = 1.36 amperes.

IR E
f
27.9*

1 Fig. 15. Vector diagram for
L the circult of Fig. 14.

The circuit phase angle is found in the following manner.

L _ 0.635 _
= arc tan S mlh arc tan 120 = 27.9 degrees.
The total circuit impedance, Z, may be found by Ohm’s law:
_ E _ 120
Z = I~ = 13 - 88.2 ohms

Figure 15 shows the vector diagram of this circuit.
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A pure inductance does not dissipate electric power, therefore
any power loss taking place in a circuit of this kind must be due
to the resistive element alone. Hence,

P = El; = 120 X 1.20 = 144 watts,

A series circuit would produce the same effect if it had an
impedance of 88.2 ohms and the impedance triangle had a circuit

7790 g
7
MW -
z
XL
'\D L%O.IOQH
G g
{ - ———
(B)
(A)

Fig. 16. Equivalent circuit and impedance triangle for the circuit of Fig. 14.

phase angle of 27.9 degrees. The equivalent series circuit is shown,
with its impedance triangle, in Fig. 16. The values of the circuit
elements are ascertained thus:

R = Zgpcos ¢ = 88.2 X 0.884 = 77.9 ohms
Xy = Zgsin ¢ == 88.2 X 0.468 — 41.3 ohms

X, 413
= 2. 628 X 60

This circuit is relatively straightforward because the phases of
the two branch currents differ by 90 degrees. If either branch con-
tained more than one type of circuit element, the current in that
branch would have a phase angle of less than 90 degrees. This
makes the solution more laborious, although the basic reasoning
remains the same.

L

= 0.109 henrys

13. Resistive-Capacitive Circuits

The procedure for solving R-C parallel circuits is similar to
the method discussed above for the R-L circuit. The only change
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is that now the current leads the line voltage by some angle less
than 90 degrees. Assuming a supply voltage of 40 volts rms at 2000
kc for the circuit of Fig. 17, we will find the line current, the circuit
phase angle, the power dissipated, the total circuit impedance, and
the equivalent series circuit.

First, we will determine the capacitive reactances of capacitors
Cl and C2 and the currents, I; and I; in the capacitive branches.

o = 2,,f101 T WX 2 X 10«l <350 57 10 — 227 ohms.
Koz = 2,rflcz T 628 X 2 X 10: 100 X 102 = /95 ohms.
I = XE;I = 242(,)7 = 0.176 amperes rms.
I, = Xl; = 7‘;(; == 0.0503 amperes rms.

These currents lead the applied voltage by 90 degrees. The cur-
rent in the resistive branch (which is in phase with the applied
voltage) is found in a similar manner:

E 40

I, = R = By — 0.08 amperes rms.

To find the total circuit current, we must add the three branch
currents vectorially as shown in Fig. 17. The line current, I, is
the hypotenuse of a right triangle one leg of which represents the
resistive branch current, I,, while the other leg represents the sum
of the capacitive branch currents, I; and Iz Therefore

I = V@) + (I, + I)2 = /(0.08)2 + (0.226)2

= 0.239 amperes rms.

We may also see from the vector diagram that the tangent of the
circuit phase angle, ¢, is the ratio of the capacitive to the resistive
component of the line current, or
0.226
0.08
From this we may say that the line current leads the line voltage
by 70.5 degrees. (Previously we considered line current and voltage
to be in phase. However, this is not the case for parallel circuits
containing reactive branches when the applied a-c is not at the
resonant frequency.) Since no power is dissipated in the capacitors,
we can determine the power consumption of the circuit from

¢ = arc tan = 70.5 degrees.
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P = EI, = 40 X 0.08 = 3.20 watts.
Finally, the total impedance of the circuit, Z, is found by

E 40
An equivalent series circuit would have a total impedance of 167
ohms and ¢, the angle between the resistive and capacitive vectors,

would be 70.5 degrees. Therefore,

Ry, = 167 cos¢ — 167 X .334 =— 55.8 ohms.
Xeq = 167 sin ¢ = 167 X .943 — 157.5 ohms

17 | /
/‘\ /
/
13 /
E /
Lct R l_c2 /
zc?o%‘:(c 6) T 350W§ soon T 100upF 1;/
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L/-—J—D
Iz Tt

Fig. 17. R-C parallel circvit and vector diagram.

Since the reactance is capacitive, the value of a single capacitor pro-

viding the proper reactance may be found.
1 1

Co=gms = TBWxIX B X 575 — 0ok

Parallel resistance-capacitance circuits are used extensively in
communication applications. Quite often such a circuit is used in
series with the cathode of a vacuum tube to provide bias. Many
other bypassing activities are most efficiently performed by these
circuits.

14. Resistance, Inductance, and Capacitance in Parallel

In the foregoing paragraphs we have discussed circuits con-
taining resistance and capacitance, and circuits containing resist-
ance and inductance. Let us now consider a parallel circuit contain-
ing resistance, capacitance, and inductance. Note that the circuit
of Fig. 18 has a measuring instrument connected in series with each
branch and one instrument in series with all three branches. These
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ammeters show the total current and the current in each individual
branch.

In any one branch the current would be unchanged if the
other two branches were disconnected, as long as the applied volt-
age did not change. Hence, the total current (I) is the vector sum
of the currents through all three branches. The currents through
the various branches is as shown in Fig. 19, which shows the

Fig. 18. R-L-C parallel
E g\; circuit.

Wiy ]

applied voltage shape, the current through each component, the
current through the inductance and capacitance in parallel, and
the total current in the circuit.

For the purposes of this explanation we are assuming that the
inductive reactance is smaller than the capacitive reactance, and
that the capacitive reactance is smaller than the resistance of the
circuit. The current through the capacitance leads the applied volt-
age by 90 degrees, and the current through the inductance lags the
applied voltage by 90 degrees, so that these currents are 180 degrees
out of phase. The net reactive current in the circuit is found by
subtracting the current in the inductance from that in the capac-
itance and the total circuit current is found by adding the net
reactive current and the resistive current vectorially. Note that
the net reactive current is smaller than either of the currents in
the reactive branches.

The total current (I) lags the applied voltage by an angle
less than 90 degrees. The sum of the three branch currents is larger
than the current in the resistance alone.

The impedance, looking into the circuit from the voltage
source, is equal to the applied voltage divided by the line current,
I. In the case we are discussing, the line current is greater than the
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current flowing through resistance R. Since this is so, the imped-
ance of the circuit must be less than the value of the resistance of

AV IVANVA N

\%
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TIME

TIME

iL'l-ic /|
I

Fig. 19. Amplitude and phase relations in the circuit of Fig. 18.

R. (How much less depends on the reactive current.) If the in-
ductive reactance and the capacitive reactance are nearly equal, this
reactive current will be very small since the reactive current is the
difference between the values of the two currents flowing through
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the reactances. In such a case the impedance of the circuit will be
nearly the same as the value of the resistance R alone. On the other
hand, if the difference between the the reactances is great, the re-
active current will be large and the total current also will be con-
siderably larger than the value of the current flowing through the
resistance R. In such a case, the value of the circuit impedance will
be lower than the value of R alone.

15. Series-Parallel Circvits

A series-parallel circuit, as applied to resonance, is simply a
parallel circuit with both resistance and reactance in one or both
branches. Although most cases of parallel resonance are concerned
only with reactive branches, one of the branches sometimes con-

1y

ILl
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Fig. 20. Resonant conditions in a low-Q parallel circvit.

tains a resistance. This is more often true in the inductive branch
circuit when the coil has a low Q. A typical illustration is a trans-
mitter tank circuit, where a low Q is often necessary because of
the load coupled to the coil. Instructions for tuning these circuits
often advise tuning just off the minimum current point. This
means that after final tuning adjustment the line current will not
be at a minimum. The reason for this is that when a branch of a
parallel circuit contains both resistance and reactance (instead of
pure reactance), different characteristics of resonance occur at dif-
ferent frequencies, as explained below.
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In a series-parallel circuit, resonance may be considered to
occur at any one of three different frequencies as follows: (1)
when the inductive reactance equals the capacitive reactance, (2)
when the line current is at its minimum value, and (3) when the
circuit acts as a pure resistance. As previously explained, the first
condition is the requirement for series resonance, regardless of the
resistance of the coil. In parallel circuits, the last condition is most
commonly used as an indication of resonance. However, when the

"

Fig. 21. Typical parallel
resonant circvit. v Je ¢ =

T

Q of the coil is fairly high, the resistance in the inductive branch
is negligible compared with the reactance, and all three conditions
occur at the same frequency. Since this is normally the case, we
usually consider resonance for the parallel circuit to be the point
at which inductive and capacitive reactance balance each other.
However, the important point is that, if an appreciable resistance
is introduced into either reactive branch of a parallel circuit, the
circuit will be thrown out of resonance and must be retuned. Such
a circuit with its vector diagram is shown in Fig. 20. Note that the
vector at (a) shows the current at the frequency at which inductive
and capacitive reactances are equal, (b) minimum line current,
and (c¢) the current at the frequency at which the circuit acts as
if it were purely resistive.

16. Effects of Frequency

Figure 21 shows a parallel-resonant circuit. The resistance (R)
does not appear in physically separate form in the circuit, but
rather, indicates the resistance present in the circuit due to the
circuit elements. Since the coil and the capacitor are both con-
nected across the line of the variable frequency source, there are
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two paths through which the current may flow: through the coil
and through the capacitor. If the frequency of the applied voltage
is below resonance, most of the current will flow in the inductance,
since the reactance of the coil is small for low frequency alternating
currents, and the reactance of the capacitor is high for low fre-
quency currents. If the frequency of the applied voltage is above
resonance, the greatest current flow is in the capacitive branch, be-
cause capacitive reactance is small at high frequencies and the re-
actance of the inductance is high at high frequencies.

17. Parallel Resonance

As previously explained, there are three separate conditions
that apply at or near parallel resonance. The frequencies at which
these conditions occur are different if resistance is appreciable,
but the same if resistance is negligible. The three conditions are:

(1) Inductive reactance equals capacitive reactance.

(2) The line current is at a minimum (i.e., impedance is max-
imum).

(3) Total circuit impedance is resistive and power factor = 1.

Condition (3) is defined as parallel resonance. Condition (2)
is sometimes called antiresonance to distinguish it from the series
resonant condition. As in the case of series circuits, the resonant
frequency of a parallel circuit may be changed by varying the value
of either the capacitance or the inductance in the circuit. However,
unlike series circuits, the resonance point may also be changed by
varying the resistance of one of the branches.

As the frequency of the applied voltage is increased above the
resonant value of the circuit (condition 3) the reactance of the
inductive branch increases in proportion, and the current through
the inductance decreases. At the same time, the capacitive reactance
decreases, developing a proportionate increase in the current in the
capacitive branch. Since the reactances are no longer equal, the
total current increases and leads the applied voltage. This increase
in current means that the total impedance has decreased.

In other words, a parallel resonant circuit offers a maximum
impedance at the resonant frequency, and less impedance to other
frequencies, depending upon how far these other frequencies are
from the resonant frequency. This is the characteristic of the
parallel resonant circuit that we exploit most in communications
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circuitry. Examples of this are the tuning circuit in a broadcast or
communications receiver, and the “tank” circuit in a transmitter.

18. Review Questions

(1) Draw a typical R-L circuit.

(2) Explain the operation of the circuit you have just sketched.

(3) Explain how the phase angle of an R-C circuit may be determined.

(4) Give a typical use for parallel R-C circuits.

(5) Explain how the resonant frequency of a parallel R-L-C circuit may be
determined.

(6) Explain the conditions possible at and near resonance in a low-Q parallel
circuit that has a resistance in one of the branches.

(7) What is the effect of frequency variation on the action of a parallel res-
onant circuit?

(8) An inductance of 20 gh with a Q of 100 is connected in parallel with a
capacitor of 30 uuf. Compute f, the resonant frequency.

(9) List the conditions in a pure L-C circuit at resonance, giving indi-
vidual reactances, current, and impedance.
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PARALLEL RESONANT CIRCUITS

19. Minimum Line Current

Consider again a parallel circuit having a low Q. When the
Q is below 10, resonance in a circuit such as the one shown in Fig.
20 is not easily defined. We usually consider series resonance to be
the point at which inductive reactance and capacitive reactance are
equal. However, in this circuit, there is a set of values for the in-
ductive and capacitive reactance that will make the parallel im-
pedance a pure resistance (unity power factory. This is normally
defined as parallel resonance. However, with these values the im-
pedance of the circuit will not have its maximum value.

There is a further set of values for the inductive and capacitive
reactances that will cause the parallel impedance of the circuit to
be at a maximum when the circuit is resonant. However, under
these conditions the circuit does not present a pure resistance.
Either condition could be called resonance, so for low Q circuits
a distinction must be made between maximum-impedance and
resistive-impedance parallel resonance. The difference between the
two points becomes quite appreciable at a Q of 5 or lower.

Referring again to Fig. 20, consider what happens as the ap-
plied frequency is decreased. The inductive reactance of the coil
and the impedance of the coil decrease in proportion to the change
in applied frequency. This causes the current in the inductance to
rise. We will assume that the phase angle of this inductive current

30
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will remain constant. This assumption is justified for a small fre-
quency change, assuming that the effective resistance of the coil is
reduced when the inductive reactance is reduced.

As the current through the inductance increases, the reactance
of the capacitor also increases, thereby decreasing the current in
the capacitive branch. Both of these effects together cause the cir-
cuit phase angle to decrease toward zero. Meanwhile, the resultant
line current also decreases. If the frequency is reduced further, the
phase angle will continue to decrease, but the line current will be-
gin to increase. The vector for minimum line current is shown in

Fig. 20 (B).
20. Equal Reactance and Unity Power Factor Cases

At some frequency, the inductive reactance of a parallel reso-
nant circuit equals the capacitive reactance. Since this condition is
similar to the one discussed for series circuits, we know the fre-
quency at which this condition occurs is

1

2+VLC

However, due to the resistance in the inductive branch, the im-
pedance of the inductive branch will be greater than the reactance
of the capacitor. Therefore, the current through the inductance
will be smaller than the current in the capacitance. This current
will, of course, be lagging, but to a lesser extent than if the branch
contained only a pure inductance and no resistance. (For example,
when Q is 1, R is equal to X, and I, lags 45 degrees instead of
90 degrees.)

Naturally, under these conditions the opposing components
are not balanced, and the line current leads the applied voltage.
The circuit does not act as a purely resistive circuit, nor is the line
current at its minimum possible value. Condition (a) of the vector
diagram in Fig. 20 illustrates this. You will note that this is not a
resonant circuit, yet it satisfies the requirement that inductive and
capacitive reactances be equal.

If the resistor in the inductive branch of the circuit in Fig. 20
were decreased (Q made higher) the angle of the lag of the cur-
rent flowing in the inductive branch would increase. Examine the
vector diagram in Fig. 20 again. It is clear that, as the current lag
through the inductance approaches 90 degrees, the three capacitive

f, =
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current lines fall into coincidence. Certainly, if the Q of the coil
were as high as 20 (the lag of Ip, — 87 degrees), it would be very
difficult to distinguish between the three separate currents.

21. Current Relationship in a Parallel Resonant Circuit

The total current flowing in the circuit of Fig. 18 may be
measured by meter A. If the frequency of the applied voltage is
varied from a low value through the resonant frequency to a high
value, the current rapidly decreases from its maximum value at

Fig. 22. Line current varia-
tion with frequency in o
parallel resonant circuit.
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the low frequency to its minimum value at the resonant fre-
quency, and will then rise again at higher frequencies. The graph
of Fig. 22 shows this current variation.

As previously mentioned, the line current is the sum of the
currents flowing in the inductive and capacitive circuit branches.
The graph of Fig. 23 shows the magnitudes of currents, assum-
ing zero resistance. Values of currents are shown as positive, re-
gardless of polarity. (This gives a clearer idea of how the readings
on an a-c meter would vary) . Because no circuit has absolutely zero
resistance, the two branch currents can never cancel each other
completely. The lower the resistance of the circuit, the lower the
value of the line current at resonance. Although the line current
may be of a very small magnitude, the current flowing through the
inductance and capacitance may be very large. This latter current
is referred to as circulating current, because it circulates around the
L-C loop.

Since the total current, or line current, is minimum when
the circuit is at resonance, the total impedance of the circuit
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at this time is at its maximum value. The impedance diminishes
rapidly as the frequency is varied in either direction from resonance.

If a fixed frequency signal is applied to the circuit of Fig. 18,
variation of capacitor C results in a variation of the line cur-
rent (ammeter reading) as the circuit impedance changes. Mini-
mum line current indicates that a maximum circulating current is
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Fig. 23. Magnitude of current flow in the branches of a parallel resonant
cirevit. (R=0)

flowing in the parallel tuned circuit. A parallel resonant circuit
is quite often tuned in this manner, by watching for a dip in the
line current ammeter reading.

22. Selectivity and Bandwidth

The selectivity of a parallel resonant circuit depends upon the
amount and distribution of resistance in the circuit. For instance,
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if the circuit has a larger resistance in one of the reactive branches
than in the other, the selectivity of the circuit will be impaired.
For this reason, resistance may be deliberately introduced in a
parallel resonant circuit to provide a more nearly symmetrical, but
reduced resonance response. Normally, the resistance inherent in
the circuit provides all the resistance necessary to provide these char-
acteristics; in fact, it is sometimes difficult to design a circuit hav-
ing a low enough resistance (hence a high enough selectivity) for
its intended use.

23. Review Questions

(1) Why is parallel resonance in a low Q circuit not easily defined?

(2) What is the parallel resonance formula for minimum line current in a
low Q circuit?

(3) What determines the value of the line current in a parallel circuit?

(4) Why cannot the two branch currents in a parallel circuit cancel each
other completely?

(5) How does high Q affect a parallel circuit?

(6) What happens to the impedance of a parallel circuit when tuned to
resonance?

(7) How may the resonant frequency of a parallel circuit be varied?

(8) What determines the selectivity and bandwidth of a parallel resonant
circuit?
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RESONANT CIRCUITS WITH DISTRIBUTED CONSTANTS

24. General Information

A resonant arrangement, particularly one in which Q is high,
is recognized by input impedance considerations, equality of in-
ductive and capacitive reactance, high tank currents, or any other
of the identifying characteristics discussed in the previous chapters.
Up to this point, requirements for resonance have been discussed
from the standpoint of lumped constants; that is, real coils and
capacitors, physically recognizable as such.

Resonance may also be obtained by using distributed constants;
in circuits of this nature, either the wound coil or the standard
capacitor, or both, may be absent. The L-C components are repre-
sented by parallel rods or wires, specially fabricated devices like
butterfly tuners, the metallic parts of certain transmitting tubes,
etc. In this chapter we shall be concerned only with the use of
tuned lines as distributed L-C constants.

25. Distinction Between Tuned and Untuned Lines

A tuned (or resonant) line may be defined as an essentially
lossless pair of wires whose input impedance varies with frequency
in a fashion that closely resembles that of a lumped-constant cir-
cuit. During operation, a resonant line contains standing waves
(or stationary waves) in which voltage loops (maxima) and volt-

35
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age nodes (minima) are found at rather well defined, evenly
spaced points along the line.

If an alternating voltage is impressed across the input termin-
als of a two-wire line of infinite length, a current will flow from
the generator into the line even though the latter is open-circuited
all along its length. The presence of the current is due to the capaci-
tance between the wires while the magnitude of the current is
determined by the distributed inductance, resistance, capacitance,
and leakage between the wires. Treating the line as a lumped-
constant circuit for comparison purposes enables us to state that:

E,
T

where E, is the input voltage, I is the current flowing from the
generator into the line, and Z, (measured in ohms when E, is in
volts and I in amperes) is called the characteristic impedance of
the line.

An infinitely long line can have no reflections of voltage or
current from its remote end, a condition that is implicit in the
very concept of infinity. If the line is cut to finite length and term-
inated in an impedance equal to its characteristic impedance, there
will again be no reflections. Since the output end of the finite line
“looks into” an impedance that is the exact equivalent of the in-
finite length just cut off, the line behaves in exactly the same man-
ner as it did when it was of infinite length. A line of this kind is
called nonresonant or untuned.

A resonant line, on the other hand, is a two-wire system of
finite length not terminated in its characteristic impedance. Since
such a terminating impedance does not simulate an infinite line,
much of the energy that arrives at the remote end is not absorbed;
instead, it is reflected back along the line toward the generator
resulting in voltage and current loops and nodes.

Zy =

26. Wavelength vs. Length of Tuned lines

Basing our reasoning on the universal power equation P —
I2R, complete reflection of the energy reaching the remote end of
a two-wire line is possible if: (a) the terminating impedance is
infinitely great — i.e. an open circuit — since no current and hence
no power can appear in such an impedance; (b) if the terminating
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impedance is zero — i.e. a short circuit — for, under these conditions,
R is zero, P must be zero, and there is again no absorption of
energy in the load; or (c) if the terminating impedance is either
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Fig. 24. Open-circuited lines.

pure inductance or pure capacitance, in which case R is again
zero. Since tuned lines used for reception and transmission systems
almost always use either a short-circuited or open-circuited term-
ination, we shall confine our discussion to these two cases.
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Consider first, an open-circuited two wire line 5/4 of a wave-
length long! across which any alternating voltage is impressed. Due
to 100 percent reflection of the energy and the accompanying in-
terference (re-inforcement and cancellation) along the line, voltage
and current nodes and loops will appear at specific points. As-
suming a lossless line, the voltage at the open end must be the same
as that of the generator peak, since the voltage drop across an in-
finite impedance is always equal to the generator voltage. The loops
and nodes thus take up positions as shown in Fig. 24A; volt-
meters connected at various points as illustrated would read maxi-
mum, minimum, or intermediate values depending upon their
position. It should be emphasized that the curves of Fig. 24A are
not portrayals of waves; they are graphs of instrument-read voltage
variations along the line due to standing waves.

In contrast with the voltage distribution, the current loops and
nodes are displaced by 90 degrees. The reason for this is eveident if
it is remembered that the current at the termination must be zero
since it is an open circuit at this point. The current distribution is
illustrated in Fig. 24B. From this, it is logical to conclude that the
impedance of the line is minimum where the current is maximum
(points A, C, and E in Fig. 24B) and that the impedance is maxi-
mum where the current is minimum (points B, D, and F in Fig.
24B) .

The question of whether the generator end or the remote end
of the line determines the voltage and current distribution is now
answerable. Clearly, the distribution is a function of the conditions
at the remote end, since it here that current-voltage maxima and
minima are established. It is therefore conventional to measure line
lengths from the remote end.?

Now consider a short-circuited two-wire line, again 5/4 A in
length. At the short-circuited termination, the voltage must be
zero because there can be no voltage drop across zero resistance,

! The physical length of a 5/4\ line is based, of course, upon the frequency
of the alternating voltage impressed at the generator end. For example, if the
frequency of the a-c is 100 mc.,, A = 3 meters (wavelength — 3 X 108 meters/
frequency in cps) and a 5/4 A line would then be 3.75 meters in length.

2 Although the open-circuited line in Fig. 24, shorts out the generator, it is
simple to bypass this difficulty by assuming a small resistive generator im-
pedance in series with the generator. In this case, the open-circuited line still
looks like a short circuit at the source and the corresponding maximum current
flows through the generator impedance to produce a voltage drop which is equal
to the generator voltage.
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and the current must be maximum. On this basis, the distribution
is as shown in Fig. 25.

27. Line Resonance

Open lines. If a generator is connected across a two-wire open
line at a distance A/4 from the remote end (on the line labelled A
in Fig. 24) and if the rest of the line is removed, the generator will
then look into the quarter-wave section and see, at the point of
connection: (a) maximum current and (b) minimum impedance.
As far as the generator is concerned, it is then looking into a series
resonant circuit, because these current-impedance conditions togeth-
er with the resonant rise of voltage from the quarter-wave point
toward the remote end are typical of the behavior of series resonant
arrangements. Again, if the generator is now moved to the A/2
point (3x/4 line in Figure 24) it sees minimum current and maxi-
mum impedance; this is the equivalent of connecting the generator
to a parallel resonant circuit. Thus, a quarter-wave open line may
be used to replace a lumped-constant series resonant circuit and a
half-wave open line may be used in place of a lumped-constant
parallel resonant circuit.

Shorted lines. Since the voltage-current distribution is displaced
90 degrees in the case of short-circuited lines as compared with open
lines (Fig. 25), connecting the generator at one-quarter wave-
length from the shorted end is the same thing as presenting it with
a parallel resonant circuit; at one-half wavelength the generator
sees a series resonant circuit. Thus, a quarter-wave shorted line may
replace a lumped-constant parallel resonant circuit, whereas, a
half-wave shorted line is equivalent to a lumped-constant series
resonant circuit.

The same thinking is applicable to multiples of quarter-wave-
length and half-wavelength lines as is apparent from Figs. 24 and 25.

28. Reactance of Lines Longer and Shorter than Quarter-Waves.

From the foregoing it is clear that line sections that are multi-
ples of quarter-waves behave as either series or parallel resonant
circuits depending upon actual length and termination. This brings
up the question of the behavior of longer or shorter lines for both
open-and shorted-circuited terminations.
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The solution of this problem involves rather complex vector
diagrams and will not be discussed here. The results of these
analyses are important, however, particularly as applied to resonant-

N
C,\D VOLTAGE
DISTRIBUTION
: \./\./ (A)
f\,) CURRENT
DISTRIBUTION
A S T L

Fig. 25. Short-circuited lines.

line tuners found in some television receivers and radar sets, and
tuned-line oscillator tank circuits used at very high frequencies.
Section Less than One-Quarter Wavelength, Open Termina-
tion: An open two-wire line between 0 and A/4 presents itself to the
generator as a pure capacitive reactance. The magnitude of the
reactance in all cases depends primarily upon the characteristic



RESONANT CIRCUITS WITH DISTRIBUTED CONSTANTS 41

impedance of the line and secondarily upon whether the line is
closer to 0 or A/4 in length.

Section Less than One-Quarter Wavelength, Shorted Termin-
ation: When the termination is a short-circuit, such a section be-
haves as a pure inductive reactance.

Section More than One-Quarter Wavelength but Less than
One-Half Wavelength, Open Termination. This arrangement pre-
sents a pure inductive reactance to the generator.

Section More than One-Quarter Wavelength but Less than
One-Half Wavelength, Shorted Termination. Such a section pre-
sents a pure capacitive reactance to the generator.

29. Summary Table of Tuned Line Characteristics

The chart given below is intended to assist the reader in de-
termining the effect of a given line at a glance.

TABLE 1

Equivalent Impedance

Length Open Circuit Short Circuit
Termination Termination
Less than A/4 Capacitor Inductor
Exactly /4 Series resonant Parallel resonant
circuit circuit
From A/4 to A/2 Inductor Capacitor
Exactly A/2 Parallel resonant Series resonant
circuit circuit

30. Application to Tuned-Line Oscillators

As mentioned before, distributed constant resonant circuits
consisting of tuned lines are used in both reception and transmis-
sion equipment, in radar, and in industrial applications. Funda-
mentally, all of these uses involve similar principles, so that only
one will be discussed, the tuned-line oscillator, chosen because of
its simplicity and straight-forwardness.
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The oscillator circuit whose schematic is shown in Fig. 26, is a
tuned-plate, tuned-grid type with resonant lines replacing the
lumped L-C components usually found in low frequency oscillators.

Let us assume (for the moment) that the interelectrode capaci-
tances of the tubes are very small. To tune the grid circuit to the
desired frequency, the resonant lines between the two grids should
each be exactly one-quarter wavelength, terminatd in a short circuit.
As shown in Table 1, such lines appear as the parallel resonant

GRID LINE
PLATE LINE
IL
N
SHORTING SHORTING
BAR A B8AR B
b AAA— | sross
\5
LESS LESS
THAN TNxM
4 s

Fig. 26. A push-pull tuned-plate tuned-grid oscillator using tuned lines.

circuits required for tuning. But our original assumption cannot
be correct, since, for a tuned-plate tune-grid oscillator to operate,
feedback must occur from output to input via the grid-to-plate
capacitance of the tube. Since the grid-to-plate capacitance is in
parallel with the lines, we can establish resonance at the same
desired frequency by making the lines just inductive enough to tune
the grid-to-plate capacitance to that frequency. As Table 1 shows,
this requires that the lines be slightly shorter than one-quarter
wavelength; thus, the desired frequency is obtained by sliding the
shorting bar (A in Fig. 26) a little closer to the grids.

The normal tuned-plate tuned-grid oscillator plate circuit must
be tuned to a somewhat lower frequency than that of the oscillation
frequency. This means that the plate lines must be inductive. Again
this is accomplished by sliding the plate circuit shorting bar (B
in Fig. 26) closer to the plates than one-quarter wavelength to
permit the plate-cathode capacitance to become a part of the tuned
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circuit. Frequencies of several hundred megacycles are easily
realized with this oscillator when it is used in conjunction with
high frequency tubes.

31.

)
@)
3
)
(5)
(6)
™

Review Questions

How does a tuned line differ from other types of resonant circuits?
Define characteristic impedance.

What is the difference between a resonant and a nonresonant line?
What are standing waves?

How do standing waves arise?

What factors determine voltage and current distribution in a tuned line?
Give an application in which a tuned line would be preferable to a

lumped-constant resonator.

®
©

Why is a tuned line preferable in the application given in Question 72
How does the interelectrode capacitance in the tube of a high-frequency

tuned-plate tuned-grid oscillator affect the tuning of its resonant lines?

(10)

How is the required change in Question 9 accomplished?



Chapter 6

RESONANT COUPLED CIRCUITS

32. Importance of Coupled Circuits

The behavior of a resonant circuit may be seriously changed
when it is coupled to another circuit that absorbs energy from it.
The method of coupling, the extent to which power is withdrawn,
and the method whereby the absorbed energy is dissipated all
contribute to the moification of performance that may be expected.

Multistage equipment in which coupling between resonant
circuits is encountered may be found in many diversified applica-
tions. Television and radio receivers, radar apparatus, transmitters,
and industrial control circuits depend upon resonant coupling for
many of their functions. In this chapter we shall be concerned only
with the ways in which inductive coupling affects the performance
of L-C arrangements at or near the resonant frequency.

33. Mutval Inductance

Basically, mutual inductance is an electrical property associ-
ated with a pair of coils placed so that the magnetic flux from one
links with the turns of the other. (See Fig. 27.) It may be rigorously
defined as a condition in which a variation of current magnitude
or direction in one coil induces a voltage across the turns of the
second coil.

44
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Mutual inductance, M, like self inductance, L, is measured
in henrys and is defined by the equation:

L
2+11,
where M is the mutual inductance in henrys, E, the voltage induced
in the secondary in volts, { the frequency of the primary current
in cps, and I, the intensity of the primary current in amperes. (It

M=

PRIMARY SECONDARY . _ _ _
|
|
|
Fig. 27. An inductively Ep('\l LOAD lgg
coupled circuit. :
Ip 1g ——— _!
;V_I
]

is customary to refer to the winding in which the initial current
flows as the primary winding and the coil in which the induced
voltage appears as the secondary winding.)

EXAMPLE: Assume that two coils are so placed that a primary cur-
rent of 0.5 amperes at 60 cycles per second causes 50 volts to appear
across the secondary winding. The mutual inductance between the
two coils is thus:

50

M=gas o0 x 05— 2 hemys

From a qualitative point of view, it is evident that the amount
of mutual inductance between two coils may be changed in several
ways: (a) by changing the distance between windings; (b) by
changing the axial angle of one coil with respect to the other; and
(c) by changing the manner in which coupling is accomplished,
i.e., by placing the coils end to end, one above the other, winding
one coil between the separate turns of the other, using tubing for
one coil and winding the other inside the hollow tube, etc. The
relationships that govern the mutual inductance of these arrange-
ments are complicated and will not be discussed here, but they do
lead to the question of what constitutes “close” and “loose” coup-
ling — an important question indeed.
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34. Covpling Coefficient

When every flux line from a primary coil carrying an alter-
nating current links with the turns of the secondary, the mutual
inductance is maximum and is called unity coupling. For this
theoretical condition, the mutual inductance M,,, may be ex-
pressed by the equation:

Mmax =YV LpLs

where L, is the primary inductance and L, the secondary induc-
tance, both in henrys.

In practical circuits, unity coupling is impossible to obtain;
the degree to which coupling is actually accomplished is, therefore,
defined as the ratio between the true mutual inductance and the
theoretical maximum, or:

M
vV L,L,
where M is the actual mutual inductance between two coils and k
is the coefficient of coupling.
EXAMPLE: A certain 60 cycle isolation transformer used for medium
power applications has equal primary and secondary inductances

of 10 henrys. If the mutual inductance between windings is 9.4
henrys, what is the coefficient of coupling?

9.4 94
TV 10x10 10

In this case, the coupling is close to “unity” —a condition that is
quite often encountered in power transformer design. In air core
coils, however, such as those found in radio-frequency devices,
coupling of k = .5 is considered very close while loose coupling
is represented by figures like .008 or .01.

— .94 (or 949)

35. Reflected Impedance

The coupled circuit of Fig. 27 has a closed secondary winding;
that is, the primary voltage E, causes a current I, to flow in the
primary coil which then induces a voltage E, across the secondary
winding. I, is the current that flows in the secondary coil as a
result of E,. Mutual inductance is a two-way affair and works just
as well from secondary back to primary as the other way around.
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Hence, the secondary current I, is responsible for the induction of
a new voltage E, in the primary coil — a voltage which generally
has a component that opposes the primary current flow. This
counter-emf then causes the primary current to behave as though a
new impedance is present in the coil. The phrase reflected im-
pedance is a convenient way to express the effect of the secondary
current upon the primary circuit and refers to the hypothetical
physical impedance which would cause the same effect as the
counter-emf just described. The value of reflected impedance may
be found from the equation:

_(2rfM)?

Z A

in which Z, is reflected impedance, M is mutual inductance, and
Z, is the total secondary impedance, considered to be made up of
resistance Ry and reactance Xg.

This equation may thus (by employing the notation of com-
plex numbers) be re-written:

(2xtM) 2

Z, =R, T X, %

In general terms this equation yields the result:
Zr = Rr - jxr

where R, is the reflected resistance and X, is the reflected reactance
due to the secondary current. The significant portion of this equa-
tion is the change from + j to — j that occurs as a result of the divi-
sion. The change shows that the phase angle of the current in the
secondary coil has an important effect upon the nature of the re-
flected impedance. In a normal untuned coupled circuit such as a
transformer, the secondary impedance is highly inductive (+j)
and, as shown in the equation, it is reflected as a capacitive reac-
tance back into the primary. When the coupled circuits are reson-
ant, however, the secondary impedance may be capacitive in na-
ture while the circuit is working off-frequency; in this event, a
similar reversal of sign occurs (i.e. from —j to +j) and the reflec-
ted impedance appears inductive. In general, the reflected im-
pedance is capacitive when the secondary impedance is inductive
and inductive when the secondary impedance is predominantly
capacitive. This is an important concept in the analysis of coupled
resonant circuits as will be shown shortly.
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EXAMPLE: (See Fig. 28.) A mutual inductance of .02 henrys exists
between a pair of coupled coils; the impedance of the secondary
coil is 30 ohms and the frequency is 400 cps. What is the impedance
reflected into the primary winding?

(628 X 400 X .02)?
= 30

g _ (50207 25240
=73 30

Z,

= 84.1 ohms

36. Effect of Coupling upon Resonance

Change of resonance curves with coupling. Suppose a circuit
such as that shown in Fig. 29 is arranged to permit variation of
coupling between L, and L, at various frequencies. Starting with

Zg=30n Fig. 28. Circuit for illustra-

tive example.

M

400 CPS

~—
M=.02 HENRIES

very loose coupling between the coils (k = .001 to .005), the fre-
quency of the generator is varied above and below the resonant
frequency F,. As shown in the diagram, the two resonant circuits
are identical in every respect, the Q of each being greater than 100.
The loose coupling condition yields a response curve such as (1)
in Figure 30 having these characteristics: (a) reduced secondary
current as contrasted with the other curves due to inadequate flux
linkage between primary and secondary, (b) relatively peaked top
at resonance, a desirable condition for sharp tuning, (c) steeply
sloped sides at frequencies near F, on each side of resonance. This
last attribute makes for good selectivity or rejection of closely ad-
jacent frequencies when the circuit is used for receiver tuning.

As the coils L, and L, are moved closer together to increase
the coupling from k = .003 to k — .0067, the secondary current
increases as a result of the improved flux linkage, the curve (2 in
Fig. 30) broadens somewhat and at the same time takes on more
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gently sloped sides. If the coupling is increased beyond this point,
the curve (3 in Fig. 30) begins to develop double peaks which
spread farther apart (curve 4) as the circuits go from slight over-
coupling to increased overcoupling. The coupling coefficient for
the condition which provides maximum response with a single
peak — that is, curve 2 —is called the critical coupling coefficient.

AAA I i
n I\

Lp=Ls
Cp*Cs
Rp=Rg
Qp* Qg 100

Fig. 29. Coupling of id series T t circuits.

The amount of mutual inductance necessary to arrive at critical
coupling depends upon the Q’s of the two resonant circuits as will
be demonstrated later.

Response below resonant frequency. An understanding of the
cause of the variation of the resonance curves requires application
of the facts discussed in Par. 35. When the generator frequency is
below resonance, the inductive reactances in the circuits are no
longer equal to the capacitive reactances, the latter being the larger
in magnitude. That is, a series L-C circuit below its resonant fre-
quency behaves as a predominantly capacitive circuit. Considering
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only the secondary L-C combination for the moment, its capacitive
reactance is reflected back into the primary winding as an inductive
reactance; it will be recalled that this effect is due to the sign
change of the j operator as described in Par. 35. Since the primary
circuit is also intrinsically capacitive below resonance, there must

(I 2)
SECONDARY
CURRENT

BELOW ABOVE
RESONANCE RESO”\ANGE

1.- LOOSE COUPLING (K=.003)

2.- CRITICAL COUPLING (K=.0067)

3.- SLIGHT OVERCOUPLING (K=.01)
4.- INCREASED OVERCOUPLING (K=.08

Fig. 30. Resonance curves for various coefficients of coupling.

be some frequency at which enough inductive reactance is reflected
back into this circuit to cancel the residual capacitive reactance
and re-establish a resonant condition in the primary circuit alone.
Thus, at some frequency below resonance with a given degree of
overcoupling, the primary resonates by itself and produces an off-
resonance peak (C and D in Fig. 30).

Response above resonant frequency. Similar reasoning may be
applied to this condition. Both L-C circuits are essentially inductive
for all frequencies above resonance, hence the secondary reflects a
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capacitive reactance back into the primary. At some frequency
higher than F,, then, the effective inductive reactance of the prim-
ary is neutralized by the reflected capacitive reactance producing
the off-resonance peaks C, C; D, and D’ in Figure 30.

Response at resonance — With both circuits fed the resonant
frequency F,, reactance completely vanishes leaving only resistances
R1 and R2. Since there is no reactance in the secondary, only re-
sistance appears as reflected impedance, adding to the resistance
already present in the primary. This does not change the resonant
frequency of either circuit so that resonance is theoretically present
at F,. It should be noted, however, that the magnitude of the re-
sponse at F, for the overcoupled curve (D”) is substantially less
than that of the two off-frequency peaks (D and D’). This is
easily explained as follows: for the over-coupled condition, M (in
the equation Z, — (2xfM)2/Z,) is so large that the resistance
coupled back into the primary is appreciably larger than the re-
flected resistances for the off-frequency cases. This increased re-
flected resistance reduces the primary current and hence the sec-
ondary current at F,.

37. Conditions for Critical Coupling

If the coupling between two resonant circuits is adjusted for
critical coupling it is found that the reflected impedance is a pure
resistance having the same value as the primary resistance. This
establishes a condition of matched impedances in which R, is effec-
tively matched to R, through the medium of reflected resistance;
thus, this is also the condition in which maximum power is trans-
ferred from the primary to the secondary—a fact that accounts
for the high peak at B in curve 2 to Fig. 30. For critical coupling,
the equation Z, = (2fM)2/Z, may be rewritten as

ot
R, = 200°

(a) 2AM — \/ KR,

Note that Rg rather than Zg is used in this equation because the
circuits are in resonance and the only impedances present are
resistive in nature.

or
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We are interested in deriving the value of the coefficient of
critical coupling (call this k) in terms of other common quanti-
ties. To do this, let us write several other equations as follows:

__ 2«fL, (Q of the primary, by the

(b) 2 R, standard definition of Q)
_ 24fL, (Q of the secondary, by the
() Q =R, standard definition of Q)
d K — M definition of k obtained in
(@ TV LL, Paragraph 34.)
Solving equations (b) and (c) for R, and R,, respectively, we have:
2xfL
€ R, = L
(€) » =70,
2#fL,
(® =0,
These values of R, and R, are now substituted in equation (a):
2#fL. 2xfL,
® 2afM = = X
Vel 2
Simplifying:
v L, L,
(h) 20fM = 2o
VQ Q
) M _V LL
vV Q Q

Converting equation (d) to
) M = pLe

Substituting equation (j) into equation (i) yields

®) kLI, =—————VLQ°L'

=
r
o

Which simplifies to

1
1 ———
O Kee N
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Thus, equation (I) demonstrates that the coefficient of critical
coupling is an inverse function of the square root of the product
of the primary and secondary Q’s. Thus, in circuits of high Q the
coefficient of coupling may be smaller (and the coupling looser)
to realize critical coupling.

The value of k.. as shown in Fig. 30 was obtained from equa-
tion (l) by assuming that both Q, and Q, were equal to 150. Then:

1 1
TV 150 X 150 150

Kee — .0067

38. Review Questions

(1) State three ways in which the coefficient of coupling between two given
coils may be alterd.

(2) If the inductance of the primary winding of a certain transformer is
2 henrys and its secondary inductance is 50 henrys, what is the value of M for
unity coupling?

(8) What is the coefficient of coupling in the transformer of Question 3
if M is actually 9 henrys.

(4) Explain briefly why reflected impedance is inductive when the second-
ary circuit is predominantly capacitive.

(5) Define coefficient of coupling in terms of actual mutual inductance and
unity coupling.

(6) Explain clearly what is meant by critical coupling between resonant
circuits.

(7) In terms of the discussion in the preceding chapter, why are over-
coupled resonant circuits often used to provide wide bandpass tuning ar-
rangements?

(9) State one advantage of loose coupling; state one disadvantage. Discuss
these advantages and disadvantages in relation to a tuned circuit in the inter-
mediate frequency stage of a superheterodyne receiver.

(9) Explain why critical coupling may be obtained in high Q circuits with
less flux linkage between primary and secondary than in low Q circuits.
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APPLICATIONS

39. Series and Parallel Feed

Figure 31 shows three separate arrangements for a tuned-plate
oscillator. Circuits (A) and (B) use series feed, and circuit (C) uses
parallel feed. In circuits (A) and (B), note that the oscillator,
tuned circuit, and B+ supply are connected in series. The direct
current flows through the inductance to reach the tube. This circuit
works because the impedance of the d-c supply is bypassed by C2,
whose reactance is so law at radio frequencies that it does not im-
pede the flow of r-f currents. Likewise, the d-c resistance of the coil
is so low that it does not impede the flow of plate dc. In these ap-
plications, the tuned circuits are used to determine and select the
oscillation frequency for the circuit.

Figure 31 (C) shows a parallel-feed (or shunt-feed) oscillator
circuit. This circuit is usually preferred in receivers because the
tuning capacitor may be directly grounded without any need for
additional blocking capacitors. Tight coil coupling is important in
all these circuits, since it helps maintain frequency stability when
the supply voltage fluctuates. L; is made as small as possible to
reduce the mutual inductance, and to keep its resonant frequency
well above the tuning range. This means that stray capacitances
across the feedback winding must be kept to a minimum. This
circuit is not satisfactory above about 50 mc. Figure 32 shows
how a resonant circuit may be used to provide boosting in an
amplifier. The circuit in (A) provides boosting in the vicinity

54
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of the resonant frequency, with maximum boost at the resonant
frequency. For this type of application, the resonant frequency is
often between 50 and 120 cps, although higher or lower frequencies
may be used. Note that the inductor (L1) has to carry the greater
part of the plate current for V1. In all circuits of this type, it is

Fig. 31. Typical tuned-plate oscillators.

advisable to select a high L/C ratio in order to give the highest
gain with a fixed amount of boosting.

An alternative arrangement that has the advantage of avoiding
direct current flow through the winding of the inductance is shown
in circuit (B). In this application, the tuned circuit is in the grid
circuit of V2. As a result, it is possible to use a higher value of L
(because d-c saturation is avoided), and to shunt the tuned circuit
with a variable resistor.

40. |I-F Amplifiers

Let us consider the use of resonant circuits in the design of
intermediate-frequency amplifiers. The intermediate-frequency am-
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plifier, as used in the typical superheterodyne circuit, is a high-gain
circuit permanently tuned to the frequency difference between the
local oscillator and the incoming r-f signal. (All incoming signals
are converted to signals of the same intermediate frequency by the
converter,) Thus the tuned i-f circuits may be adjusted for max-
imum amplification and selectivity. The if transformers used in
these circuits consist of pairs of coupled resonant circuits. They

B+

=s- (8)
Fig. 32. Bass-boosting circuits.

are tuned either by varying the capacitance in the circuit, or
by moving a powdered iron core in or out of the coils to change
the inductance of the tuned circuits. Some applications of rf
transformers require that only the secondary be tunable.

The diagram of the single-stage i-f amplifier using a pentode
tube (Fig. 33) illustrates the use of the i-f transformer. Trans-
former T1, the input transformer, has its primary winding in the
plate circuit of the mixer tube, and L1-Cl is resonated at the se-
lected intermediate frequency. This winding is usually in paraliel
with the output of the mixer tube to provide shunting of any
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signals of unwanted frequencies. The secondary circuit (L2-C2) is
inductively coupled to the primary and is in series with the grid
of the pentode to provide the highest possible impedance path to
the grid, to utilize as much as possible of the i-f signal. Since the
circuits of T2 are tuned to the same frequency as the circuits of T1,
and operate in the same manner, we will not discuss the operation
of the second i-f transformer.

41. Filters

Filters are necessary for selecting energy at desired frequencies
and for rejecting energy at undesired frequencies. As you know,

-

S M_%_ou

Fig. 33. Single-stage i-f amplifier.
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capacitors and inductors have qualities that make them suitable,
either singly or in combination, for use as wide frequency range
filters. Tuned circuits may also be employed as filters for specified
bands of frequencies. Bandpass and band rejection filters are of
this type.

The low-pass filter is designed to pass all frequencies below a
selected frequency known as the cutoff frequency. It is also in-
tended to reduce substantially all signals of frequencies above cut-
off. Such a filter, together with its cutoff characteristic, is shown in
Fig. 34.

A filter of this type will pass direct current and low frequency
alternating current with little opposition. For this reason, the low-
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pass filter is often used to filter, or smooth, the output of rectifiers
of power supplies.

The high-pass filter is designed to pass currents of all fre-
quencies above cutoff frequency. Note in Fig. 35 that this type of
filter is merely a reversal of the components in the low-pass filter.

ICUT-OFF
: FREQUENCY

0

PASS
BAND

INPUT c% OUTPUT

OUTPUT CURRENT
OR VOLTAGE

o ¢ 0

—_—
FREQUENCY

Fig. 34. Llow-puss filter.

Since signals of all frequencies below cutoff are attenuated, this
type of filter may, in some applications, be used to stop the flow
of direct current, without stopping alternating currents above the
cutoff frequency.

When higher current selectivity is required in the filter, res-
onant circuits may be used for filtering. The bandpass filter shown

It

o it 0 =
ulu
Eo
INPUT L OUTPUT 3§
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o o tE

(<4

R e rotod
FREQUENCY
Fig. 35. High-pass filter.

in Fig. 36 is designed to pass frequencies within a continuous band,
which is limited by upper and lower cutoff frequencies. The series
and parallel resonant circuits of which this filter is composed are
all tuned to the frequency band desired. The series resonant circuit
provides a low impedance path for the signals of desired frequen-
cies, while the parallel resonant circuits provide a low impedance
path for the signals of undesired frequencies. The parallel circuit
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also presents a high impedance to the desired signal. These circuits
are extensively used in communications receivers and transmitters.

A band-reject filter is designed to attenuate signals of all fre-
quencies within a preselected bandwidth and to pass signals of all
frequencies on either side of the attenuated band. Again, all reso-

o———TI—{{9——o

(7%
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OUTPUT CURRENT
OR VOLTAGE
—_—

—
FREQUENCY

Fig. 36. Bandpass filter.

nant circuits are tuned to the band to be affected. The parallel
circuits present a high impedance to the signals of undesired fre-
quencies only, while the series circuits present a low impedance
path for these signals. Signals of frequencies outside the reject
band find a low impedance path through the parallel circuit.
Figure 37 is a schematic of a circuit of this type.

42. Wave Traps

Wave traps are often used in the antenna circuits of radio
receivers and are, in essence, a form of the band-reject filter. Figure
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38 shows two basic wave traps. The parallel circuit (A), con-
nected as shown, is tuned to be resonant at the frequency of an
undesired signal. The wave trap then presents a high impedance

— IO\

p <
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INPUT QUTPUT

—l 1 .

OUTPUT CURRENT
OR VOLTAGE
_—

———

FREQUENCY

Fig. 37 Band-stop filter.

to all signals of this frequency, and allows signals of frequencies
on either side of the resonant frequency to enter the receiver.

The series circuit (B) connected as shown, is tuned to be res-
onant at the frequency of the undesired signal, which is then by-

o | -0 o _]_ 0
EIN Eout Ein Eout
(o2 0 o L le]

(A) {B)

Fig. 38. Basic wave traps.

passed, usually to ground, without effecting the currents of other
frequencies. Wave traps are often employed between amplifier
stages in television receivers to eliminate unwanted signals.

43. Lecher Llines

Lecher lines are lengths of parallel two-wire transmission line
that are used as tuned circuit elements for obtaining wavelength
measurements. These lines are normally between 2 and 5 wave-
lengths long. A shorting bar may be moved over the length of the
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line. When used for wavelength measurement, the line may be
closed at the input end and coupled inductively, or open and
coupled capacitively to the rf source. Figure 39 shows both
conditions.

Lecher lines may be used to measure wavelengths by detecting
the maxima and minima of the voltage or the current in the line.
Current values can be measured roughly by a small loop or coil
of wire placed close enough to the line to couple into the magnetic
fields. An ammeter measures the current flow in the loop, reading
maximum at the current maxima and minimum at the current

GENERATOR SHORTING
TANK BARZ

{

L g %
{

T 35—

Fig. 39, Coupling lecher CAPACITIVE COUPLING

lines to an rf source.

GENERATOR SHORTING

3 a

INDUCTIVE COUPLING

minima. The wavelength is twice the distance between two suc-
cessive maxima or two successive minima. In some cases, it is more
convenient to use an r-f voltage indicator to locate the voltage max-
ima and minima.

44. Review Questions

(1) Draw the circuit of a tuned-plate oscillator.

(2) Explain the operation of the circuit you have just drawn.

(8) Why is a parallel feed oscillator circuit preferred for use in radio receivers?

(4) What are the characteristics of the low-pass filter?

(5) Draw the circuit of a band-stop filter. Explain the circuit.

(6) Explain the use of Lecher lines.

(7) Why may a quarter-wave line be utilized as a stand-off insulator?

(8) What happens to a quarter-wave line used as an insulator when the signal
frequency varies?
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SUMMARY

45. Characteristics of R-L-C Circuits in General

R-L-C circuits are always resonant at some frequency. Circuit
characteristics and component behavior depend principally upon
whether or not the circuit is used with signals of resonant frequency.
The highlights of R-L-C circuits are outlined below, with specific
references to the condition of resonance (use at resonance fre-
quency) or non-resonance (use at other than resonance frequency)
as the case may be.

A. The voltage across the inductor and the voltage across the
capacitor are 180 degrees out-of-phase (assuming no resistance).
This phase relationship permits arithmetic subtraction of one
trom the other to obtain the resultant voltage across both compo-
nents.

B. The current through the inductor is opposite in phase to
that in the capacitor. Again, the 180-degree phase difference makes
it possible to find the net reactance of the reactive components by
arithmetic subtraction.

C. The current flowing in a series R-L-C circuit has the same
magnitude throughout and, when used as a reference vector in a
voltage vector diagram, is considered as a constant for the circuit.
Thus the current vector shoul be considered as the reference line
tfor the vector diagram.
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D. The voltage that appears across either of the reactive com-
ponents may be considerably larger than the source voltage. Its
magnitude depends upon (a) the proximity to resonance and
(b) the Q of the coil. At series resonance, the potential developed
across the coil or capacitor is the product of the source voltage and
the Q of the coil.

E. Theoretically there are an infinite number of possible L-C
combinations that may be used to establish resonance at a given
frequency. In practice, the L/C ratio is chosen on the basis of the
characteristic response desired for the circuit; ie., the L/C ratio
is dictated by the selectivity, pass-band, or Q called for by design
considerations.

F. In a series-resonant circuit composed of R-L-C components,
the current is maximum and the impedance is minimum; in a
parallel-resonant circuit of the same type, the line current is min-
imum, the impedance is maximum, and the circulating tank cur-
rent is maximum. In either case, the only impedance that governs
the magnitude of series current is the resistance present in the
circuit.

46, How Off-Resonance Operation Affects Performance

The tabular summary given below indicates the changes that
occur in parallel resonant circuits with operation at frequencies
above and below resonance.

Above Resonance Below Resonance

Inductive reactance rises falls
Capacitive reactance falls rises
Circuit resistance unchanged* unchanged*
Circuit impedance falls falls
Line current rises rises
Tank current falls falls
Inductance unchanged unchanged
Capacitance unchanged unchanged
Circuit behavior inductive capacitive

*Except for skin effect, which can be considerable.

The following is'a comparison of two similar parallel resonant
circuits, one having a higher Q than the other. The terms “high”
and “low” are used in a relative sense only.
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High Q Circuit Low Q Circuit

Selectivity high low
Bandwidth small large
Impedance high low
Line current low high
Tank (circulating) current high low

47. R-l-C Applications

The wide application of R-L-C circuits in modern electronic
design is somewhat misleading in the sense that it implies a multi-
tude of significantly different effects. Actually, these circuits may
be classified in relatively few groups as follows:

A. In general, an R-L-C circuit is either a tuning arrangement
or a filter network. The classification into which any given circuit
falls depend principally upon its intended function and its posi-
tion in the circuit.

B. Tuning is generally defined as a process in which an R-L-C
circuit selects signals of one particular frequency while it discards
signals of other frequencies that may be present simultaneously.
Filters, on the other hand, are usually used either to select or to
reject signals of a narrow or wide band of frequencies. In this group
are found bandpass filters, which choose signals within a band of
frequencies while they reject signals of all other frequencies above
and below the desired band; high-pass filters, which pass only
high-frequency signals, while rejecting low-frequency signals; and
low-pass filters, which reject high-frequency signals, permitting pas-
sage of signals of low frequencies.

C. Increasing the number of filter components generally re-
sults in a sharpening of the filter action, but this advantage is not
proportional to the number of additional sections. The design
engineer must constantly contend with diminishing returns as filter
pairs are added, so that it is uneconomical and disadvantageous to
carry the process beyond a certain point. The filter sharpness re-
quired is determined by the function of the circuit; the design of
the circuit determines what types of network may be used.



INDEX

A-C circuit capacitance, 3
A-C circuit inductance, 4
A-C circuit resistance, 1
Antiresonance, 28

Bandpass filters, 57, 64
Band-reject filters, 57, 59
Bandwith. 15, 33

Broad circuit, 15

Butterfly tuners, 35

Capacitive reactance, 10, 22
ormula for, 2
Characteristic impedance, 36
Charge on capacitor, 2
Circuit phase angle, 10, 22, 23
Circuit tuning, 13, 26, 33, 64
Close coupling, 45, 46
Coefficient of coré)ling, 46
formula for,
Coefficient of critical coupling,
formulas, 52, 53
Coupled circuits, importance of, 43, 44
Coupling, effect upon resonance, 48,
49, 50, 51

Distributed constants, definition of, 35

Effective conductor cross-sectional
area, 13

Energy of capacitor, 2

Equivalent resistance, formula for, 16

Figure of merit, 14
Filters, 57, 58, 59, 64
Frequency effects, 27, 28

High-pass filters, 58, 59, 64
Hypothetical physical impedance, 47

I-F amplifiers, 55, 56, 57

Impedance, 9, 11, 12, 20, 24
Inductive reactance, formula for, 4
Infinite line, 36

Leakage resistance, 16

Lecher lines, 60, 61

Line resonance, 39

Loose coupling, 45, 46

Low-pass filters, 57, 58, 64

Lumped constants, definition of, 35

Matched impedance, 51

Minimum line current, 30, 31, 32

Mutual inductance, 44, 45
formula for, 45

Net reactive current, 24

Off-resonance operation, 68, 64
Ohm's law, ac, 1, 12, 19, 22
Open lines, 39

Overcoupling, 51

Parallel circuit wave traps, 60
Parallel feed applications, 54, 55

Parallel resistive-inductive circuits,
19, 20, 21

Parallel resonance, 6, 28, 29, 30, 31,
32, 33 ,3¢4

Parallel resonant circuits:
current relationship, 32, 38
definition of, 6
equal reactance cases, 31, 32



66 INDEX

Phase effects:
capacitance, 2
inductance, 4

Power dissipation, 2, 4, 21

Q, formula for, 14

Q of resonant circuits, 13, 14, 15, 16,
17, 18, 27, 81, 32, 48 49, 52,
63, 64

R-C circuit, 13
R-C parallel circuit, solution of, 21,
22, 23
Reactance of non-quarter wave lines,
39, 40, 41
Reactive current, 25
Reflected impedance, 46, 47
formula for, 47
Resistance source, 15
Resistive-Capacitive circuits, 21, 22, 23
Resonance:
indication of, 27
meaning of, 5
related theory, 1
Resonance point, 28
Resonant frequency, 4
calculation, 8, 9
formula for, 8
R-L-C applications, 64
R-L-C circuits, characteristics of, 62,

63
R-L-C parallel circuits, 23, 24, 25, 26

Selectivity, 15, 33, 34, 48, 56, 58, 64

Series circuit wave trap, 60

Series feed applications, 54, 55

Series L-C circuits, 49, 50

Series-parallel circuits, 26, 27

Series resonance, 6

Series resonant circuit, definition of,
6, 21

Sharp circuit, 15, 16

Shorted lines, 39

Skin effect, 13

Terminating impedance, 36, 37
Tube interelectrode capacitance effect,
42
Tuned lines, 35, 36, 37, 38
characteristics, 41
Tuned-line oscillators, 41, 42, 43
Tuned-plate tuned-grid oscillator, 42

Unity coupling, 46
Unity power factor, 30, 31
Untuned lines, 35, 36, 37, 38

Voltage loops, 35

Voltage nodes, 36

Voltage relationship, series resonant
circuits, 10

Wave traps, 59, 60



