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Preface 

In recent years there has been an increasing amount of comment and 
concern in management and educational circles about technical personnel 
becoming obsolete. The expression "engineering obsolescence" is gener-
ally taken to mean that certain engineers and technicians are not keeping 
up with the rapid changes that are taking place in all branches of 
technology. 

Alarmingly, these comments are not being directed exclusively to 
older people who are nearing retirement. It is not uncommon to hear 
managers complain that engineers who have been out of school not more 
than 10 or 15 years and who should be in the prime of their careers, are no 
longer able to cope with the latest technological developments. Although 
technical people themselves rarely talk about it, they are fully as 
concerned as management that they may be considered no longer 
technically useful. 

One solution to this problem is to promote the older engineers to 
management positions and turn the technically exacting tasks over to 
recent graduates. This approach has two rather serious limitations. In the 
first place, many engineers have neither the interest nor the aptitude to 
handle management functions. Secondly, and more important, the recent 
graduate rarely has the ingredient known as engineering judgment which 
seems to be best acquired through experience. 

I have long claimed that no engineer worth his salt has ever had any 
trouble keeping up with changes in the state-of-the-art that affect his job. 
Where the trouble conies is when he suddenly has to catch up with a field 
that he has never used or has forgotten all about. 

The sudden appearance of digital electronics in radio and television 
broadcasting is a good example of this phenomenon. Although most 
broadcasters have been aware for many years that rapid changes have been 
occuring in the fields of digital electronics and computers, they have paid 
little attention, because until quite recently neither of these fields has 
much to do with broadcasting. Admittedly computers were being used in 
the office for billing and payroll, but many ancient transmitters differed 
little from their more modern replacements. In fact, many engineers felt 
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that even if digital systems did become available for broadcasting, it would 
be decades before station management would shell out the cash to buy one. 
After all, didn't it take five years to get the owner to shell out the cash for 
the new field strength meter? 

The result of this was quite naturally that most broadcast engineers 
didn't bother to learn much about digital electronics, and if they have ever 
studied the subject, they didn't bother to keep up with the state of the art. 
Why be concerned with a branch of technology that would probably never 
affect them? 

When digital systems finally charged into the broadcast field, they 
entered with great speed. First, there were a few digital components in 
some of the control systems. Just a few integrated circuits, not enough to 
get the engineer excited. Then came digitally-controlled automation and 
remote control systems. Finally, the TV people found that the video signal 
itself is often converted to digital form for processing. Now, digital audio is 
becoming a reality. 

It is no longer enough for the engineers to try to keep up with digital 
electronics. He must catch up and he must do it fast. Catching up with any 
area of technology isn't easy. Most of the available books are either too 
elementary, or too involved. The texts used in colleges and technical 
schools are usually not much help. They usually contain far too much 
time-consuming material that the practicing broadcast engineer doesn't 
need, and not enough of the practical information that he needs desperate-
ly. 

This book is an attempt to correct the situation. You don't need any 
familiarity with digital electronics to understand the material, but it is 
assumed that you are familiar with broadcasting. All of the functional 
elements are covered and most of the examples are taken from broadcast-
ing so that you will feel that you are on familiar ground. 

Much of the material is presented in an original way and much has 
been suggested by my home study students. Many suggestions were made 
by engineers who attended the various seminars that I conducted on the 
subject of digital electronics in broadcasting. 

I would like to acknowledge the help of my associates at Cleveland 
Institute of Electronics, particularly Jim Arcaro, Jerry Casebeer, Steve 
Simcic, and Ron Zeldman. Their help and suggestions were invaluable. 
Much of the work was done in connection with digital seminars sponsored 
by the National Association of Broadcasters under the direction of George 
Bartlett who has probably done more to help the technical broadcaster than 
any other one man. Some of the work was done under the direction of Carl 
E. Smith who is always a gentleman and unselfishly shares his knowledge 
with anyone he can help. 

I would also like to thank Susan M. Heygi without whose help the 
book would never have been finished. Last but far from least I would like to 
thank Grace L. Slavik who has always been an inspiration to all who know 
her. 

John E. Cunningham 
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Chapter 1 

Introduction to the Digital World 

To the uninitiated, probably the most confusing aspect of digital 

electronics is the fact that the term "digital system" seems to-
embrace many different types of systems that, at least on the 
surface, seem to have nothing in common. Although a pushbutton 
control for a video recorder, a remote control system for a 
transmitter, and a television time-base corrector don't seem to 
have very much in common, they may all be called digital systems. 

It is hard to see how these apparently quite different devices can be 
classified together. So, we will start by defining what we mean by 
digital system 

ANALOG-DIGITAL SIGNAL COMPARISON 

The biggest difference between a digital system and an 
ordinary system is in the nature of the signals that we find inside. 
Figure 1-1 shows the waveform of a signal that might be found in an 
ordinary audio amplifier. This signal, at any instant of time, is 
directly proportional to the sound being amplified. For our 
purposes here, there are two important characteristics of this type 
of signal: 

0 It is continuous; that is, it varies smoothly from one value 
to another. It may have any value between zero and its maximum 
value. 

0 The amplitude, frequency, and phase of the signal will be 

the same as the amplitude, frequency, and phase of the sound that 
is being amplified. The signal might be thought of as an "analog" of 
the sound. Thus, ordinary signals and systems with which we are 
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Fig. 1-1. Analog signal corrupted by noise. 

all familiar are often called analog signals and systems to 
distinguish them from their digital counterparts. 

Before we look into digital systems, let's take a look at what 
happens to an ordinary AM analog signal as it passes through a 
system. We all know only too well that the signal will be subject to 
both noise and distortion. Figure 1-1B shows what might happen to 
the signal of Fig. 1-1A under extreme conditions. Here noise and 
distortion have corrupted the signals so badly that we may never be 
able to recover it., 

Now let's look at a digital signal. Figure 1-2A shows a typical 
digital signal. It has two properties that distinguish it from an 
analog signal: 

0 The signal has only two possible values. At any instant of 
time, a voltage is either present or not present. When the voltage 

o 

m-

èNe-
im 

Aie 
Fig. 1-2. Digital signal corrupted by noise. 
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is present, we normally refer to the signal as being high; when 
there is no voltage present, we refer to the signal as being low. 

D The digital signal bears no resemblance to the waveform of 
the analog signal it is representing. 

Now let's look at what noise and distortion might do to a digital 
signal. In Figure 1-2B we have subjected our digital signal to the 
same amount of noise and distortion that we applied to our analog 
signal in Fig. 1-1B. Here again, the corrupted signal bears little 
resemblance to the original. In this case, however, by studying the 
signal we can rather easily tell when the original signal is present. 
In fact, it would be rather easy to draw a plot of the original signal if 
all we had to work with was the corrupted signal of Fig. 1-2B. This 
is one of the important advantages of using digital signals. Up to a 
limit, all of the effects of noise and distortion can be removed from 
the signal by rather simple signal processing. 

Another advantage of digital signals is that they can be stored 
for any desired period of time by rather simple circuits. All that our 
storage element has to do is to record the fact that a signal is 
present at some instants and absent at others. This is a far cry from 
what would be involved if we tried to store an analog signal that was 
varying with time. 

Now that we have found what digital systems have in common, 
let's look at how they might differ from each other. The first 
distinction that we might make is between what we call simple 
logic systems and the more complicated systems. 

The simplest type of digital system, and probably the easiest 
one to understand, is a simple logic system. Such a system causes 
something to happen when and only when certain conditions are 
either true or false. A good example is the system used to control 
the plate voltage relay in a transmitter. We want the plate voltage 
to be applied when and only when: 
—the heaters of the tubes have warmed up, 
—the plate voltage switch is closed, 
—the cabinet is safely closed. 
There is nothing magic about such a system. Broadcasters 

have been using arrangements like this since long before anyone 
ever thought of the term "digital electronics." One simple way to 
accomplish the desired function is to wire the plate voltage switch, 
a time-delay relay, and a safety interlock switch in series with the 
plate relay as shown in Fig. 1-3A. 

In spite of its simplicity, the arrangement of Fig. 1-3A is a 
logic system and has much in common with logic systems using 
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Fig. 1-3. Logic circuit (A) with switches and relays, (B) with an integrated circuit. 

digital integrated circuits. One way to implement the system using 
digital circuit elements is shown in Fig. 1-3B. Here the circuit 
element is called a 3-input AND gate. We will have more to say 
about all sorts of logic gates in Chapter 2. 

One point of interest in our simple example is that the signals 
we're working with, in this case switch closures, are really digital 
in nature. A switch has only two possible positions, either it is 
closed or it isn't. That is why our system is so simple. Of course, if 
there were many more switch closures to consider, the system 
would become more complicated, but its principle of operation 
would still be simple and easy to understand. 

ANALOG-TO-DIGITAL CONVERSION 
The next type of system we will consider is one where the 

things we are interested in are not digital in nature. An example 
might be the digital voltmeter shown in Fig. 1-4. The voltage we 
want to measure isn't digital. It is just a plain old DC voltage that 
might have any value between zero and, say, 10 volts. 

The first stage of our digital meter is the same as in any DC 
meter—a voltage divider that scales the voltage down to a value we 
can handle conveniently. The next stage is new—brand new. We 
call it an analog-to-digital converter, or simply an AID conver-
ter. What this stage does is to take our DC voltage and produce 
some sort of digital signal that uniquely defines the voltage. 

After the A/D converter we have a digital signal. We can store 
it, or process it in any way that we wish. When we get through with 
it, it's no good unless we can read some sort of instrument to tell 
what the voltage is. This is handled by the output device. In this 
case the output device is a series of 7-segment readouts. 
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Still greater complication finds its way into a system when the 
signals themselves are digitized. A typical system of this type 
might be a TV time-base corrector. Again, we need an AID 
converter to get the signal into digital form and several digital 
circuits to process the signal in the way that we wish. When we get 
through with this signal we can't apply it to a readout device, but 
rather we must convert it back to analog form so that it can be 
applied to a TV transmitter. This last conversion is appropriately 
called a digital-to-analog or simply DIA. 

SAMPLING 

The first thing we have to do to convert an analog signal into a 
digital signal is to sample the value of the signal periodically. Of 
course, the question naturally rises as to how often and how 
accurately we must take samples of the signal. 

Figure 1-5 shows an analog signal that varies between zero 
and 5 volts. We will assume that the highest frequency component 
of the signal is 10,000 Hz. That is, if we were to pass the signal 
through a low-pass filter that cut off sharply at 10,000 Hz, that 
waveform of the signal wouldn't be changed. 

The first question about sampling was as to how often we must 
sample the signal to capture all of the information in it. Fortunate-
ly, this problem has been solved for us so we won't have to get into 

an involved mathematical investigation of the subject. Workers at 
Bell Telephone Laboratories have found that we can capture all the 
information in a signal if we sample it at a rate equal to at least twice 
the highest frequency component of the signal. Of course, there is 

Fig. 1-4. Digital voltmeter block diagram. 
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Fig. 1-5. Analog signal with step samples. 

no harm in sampling at a higher rate. The limitation is that we can't 
sample at a lower rate without losing some of the information in the 
signal. In Fig. 1-5B we show that we're taking a sample of our 
signal every 50 microseconds. That is, we are sampling the signal 
at a rate of 20,000 samples per second, which is twice the highest 
frequency component of the signal. 

The next question is how accurate our samples must be if we 
are to capture enough of the information in the signal so that we can 
reproduce it faithfully later on. This is a rather involved question, 
because it involves a subjective judgment of the quality of a signal. 
We'll have a lot more to say about this later in the book, but right 
now our main interest is how we can convert our samples into a 
digital signal, so we will allow ourselves the very generous 
specification that we'll be happy if the accuracy of the sample is 
within one-third of a volt. Later we can be concerned with the 
higher resolution that will be required in real life. 

On the basis of what we've said so far, we will be happy with 
the sample shown in Fig. 1-5B. What we've done is to take the 
samples of the smooth waveform of Fig. 1-5A and replace it with a 
series of samples, which for our purposes contain all of the 
information of interest in the original waveform. The next part of 
the problem is to find a way to express the values of these samples 
digitally. This will bring us to the subject of the binary number 
system, which is the basis of all digital systems. 

A LOOK AT NUMBERS IN GENERAL 

Before we go rushing off trying to find some binary numbers to 
represent our samples, let's look at numbers in general. We're so 
familiar with the decimal system which we use everyday that we 
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rarely take time to think about what it really means. As a simple 
example of the use of numbers, let's suppose we counted the 
number of resistors in a supply cabinet and found there were 174 of 
them. There are many ways we can record this fact. For example, 
we could make 174 marks on a piece of paper. This would indeed 
record the number of resistors, but it would be a very cumbersome 
system. If anybody wanted to interpret our count, he would have to 
count off all the little marks that we made. It is much better to 
simply write the digits 174 on a piece of paper. This is easy to do 

and the numbers are easy to interpret. The reason that it is easy is 
that the decimal numbering system is second nature to us. 

Let's take a look at just what the number 174 really means. 
With a little thought, we can see that it means we have: 

1 x 100 = 100 
7 x 10 = 70 
4 x 1 = 4 

174 

This is rather obvious, but we can carry the analysis a step 
further and see just what we mean when we say that the base of our 
decimal number system is ten. We can see that each of the digits in 
our numbering system corresponds to some power of 10. In fact, 
the power depends upon the column the digit happens to be in. 
Thus, we can write the number 174 in the following way, 
remembering that any number raised to the "0" power is equal to 1, 
and any number raised to the first power is equal to itself. Now we 
have: 

1 x (102 = 100) = 100 
7 x (101 = 10) = 70 
4 x(10°=1) -= 4 

174 

The fact that each column of a decimal number corresponds to 
some power of 10 is the essence of the decimal number system. 
Realizing this, we feel at home when we develop a number system 
with some base other than 10. 

THE BINARY NUMBER SYSTEM 

The binary number system is a system that has the base two. 
Of course, the first question to come up is why anyone would want 
to fool around with such a crazy numbering system in the first 
place. Well, there is a good reason that will become more apparent 
as we go along. To put it simply, in a digital system the signals can 
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have only one of two possible values at any time. This means that 
all our equipment has to do is recognize whether or not a voltage is 
present at any given time. The voltage can vary all over the lot, but 
as long as we can distinguish between the presence or absence of a 
voltage, we can reconstruct all of our signals to any desired degree 
of accuracy. This is such an advantage over the old analog signals, 
that it is worth the slight inconvenience of learning about a new 
numbering system. 

The binary number system has the base two. This means that 
the value of each of the columns in a number is equal to some power 
of two. Probably the best way to become familiar with the system is 
to start counting in it. This is done in Fig. 1-6. Here we find that the 
values of the columns of the table, starting with the right-hand 
column are: 

2° =- 1 
2 = 2 
22 = 4 
= 8 

Naturally the system doesn't stop here, but this is enough for 
us to get the general idea of how the binary number system really 
works. Looking at Fig. 1-6, we see that the first line is all zeros 
which means exactly that—the number is zero. As we start 
counting, we will put a 1 in the first column at the right. As shown, 
this corresponds to the decimal number 1. So far the system is the 
same as the decimal system. Now let's add one more to get a 
decimal 2. We don't have the symbol 2 in the binary system, so we 
will put a zero in the first column and a 1 in the next column to the 
left. As shown at the heading, this column is the number of two's 
that we have. As the figure shows we can count as high as we wish 
using only l's and O's. 

Once you get familiar with the system, it is very easy to use, 
although it is cumbersome. For example, the binary number 1011 
means that we have: 

1 x (23 =8) =8 
0 x (22 = 4) = 
1 x (2' =2) =2 
1 x (2° = 1) = 1 

11 

An extensive table of binary numbers is given in Appendix 1. 
Now that we know the rudiments of the binary number system, we 
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can go back to our problem of finding a way of expressing the value 
of an analog signal digitally. 

DIGITIZING THE SAMPLES 

Figure 1-7 shows the same samples of a waveform that we 
showed in Fig. 1-5B. The first thing that we want to do is to 
express the value of each of the samples as a binary number. This 
isn't very hard to do. In the following tabulation we show the value 
of the sample at each sample time in both decimal and binary 
numbers: 

Time Decimal Value Binary Value 

0 0 0000 
50 2 0010 

100 3 0011 
150 5 0101 
200 3 0011 
250 2 0010 
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Fig. 1-6. Counting in the binary number system. 
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Fig. 1-7. Analog signal and digital sample. 

We have binary numbers for each of our samples, but at the 
moment, we don't quite know what to do with them. One approach 
is shown in Fig. 1-8. Here we have a little box that will convert our 
analog signal into a digital signal. We won't have any idea of what is 
actually in the box until we get to a much later chapter. For now, we 
will just assume that it works. The output of the box consists of four 
wires, each of which may have some voltage with respect to 
ground. That is, at any instant any of the wires coming out of the 

box may be either high or low. 
Note that we have labeled the top wire MSB and the bottom 

wire LSB. These terms stand for Most Significant Bit and Least 
Significant Bit. A bit here stands for a binary digit. All that this 
means is that if we want to read out the binary number represented 
by the voltages on our four wires, we will start at the top, the same 
as we would start at the left to read a number. The top wire stands 
for the left-hand digit in our binary number. 

In Fig. 1-8A, we show how the voltages on the four wires 
correspond to the signal samples that were shown in Fig. 1-7. The 
time marked in microseconds corresponds to the time marked on 
the axis of Fig. 1-8. Thus, 150 microseconds after the start of the 
sampling process, the output of our little box is, starting from the 
top wire LO HI LO HI. If we merely cross out the H's and L's, we 
will find the signal will be 0101, which we know is the binary 
number for number 5. This is exactly what we want because the 
value of the sample taken at this time happens to be 5 volts. 

PARALLEL AND SERIAL TRANSMISSION 
The four wires of Fig. 1-8 are one way that we might transmit 

a digital signal from one point to another. This arrangement is 
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0 50 100 I50 200 250 0 DIGITAL SIGNAL VALUES 

Fig. 1-8. Digital values of the signal in Fig. 1-7. 

called parallel transmission because all of the bits corresponding to 
the value of a signal at a given instant are transmitted in parallel at 
the same time. This is fine system for use inside equipment where 
the distances between components is short. Because of the fact 
that the signal is distributed among several wires, in this case four, 
the bandwidth of the signal on any one wire is not very great. The 
disadvantage of parallel transmission is obvious when we want to 
transmit the data over a long distance. We certainly don't want to 
use four or more wires to carry one signal. 

The other approach to transmission uses only two wires, or 
one wire and ground. Here the bits corresponding to each value of 
the signal are transmitted one after the other. Because so many 
pulses are transmitted for each value of the signal, serial 
transmission will require a much greater bandwidth. 

BITS, BYTES, AND WORDS 

We noted earlier that the term bit is short for binary digit. It 
means one of the digits in a binary number. When several bits are 
used to represent something like the value of a sample, the 
collection of bits is usually called a word. The number of bits in a 
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word depends on the resolution that we require in a system. The 
binary number 1111 corresponds to the decimal number 15. This 
means that if we are to express a quantity in a 4-bit word, we will be 
able to distinguish 16 discrete values, counting zero as one of the 
values. 

When writing a long string of 1's and O's to represent a large 
binary number, life is much easier if we break up the string with a 
few spaces. A common practice is to write binary digits in groups of 
four. Thus the binary number, 11111111, which corresponds to the 
decimal number 255, is usually written as 1111 1111. This is an 
8-bit word. Thus, with an 8-bit word, we can distinguish 256 
possible values, again including zero as a value. 

The 8-bit word has become widely used in digital systems, 
and is usually called a "byte." Thus, if we are told that a certain 
word is a byte of data, we will know that is has 8 bits. Recently, 
someone deduced that if 8 bits constitutes a byte, then four bits 
should be called a nibble. The term nibble is gaining some 
acceptance to represent a 4-bit word. 
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Chapter 2 

The Easy Way To 

Understand Logic Gates 

The basic building block of digital systems is the logic gate. Any 
type of digital system that you can think of can be built of logic gates 
if you use enough of them. A complete understanding of logic gates 
is essential to an understanding of complex digital systems and is 
useful in digital troubleshooting. There are several different types 
of logic gates and they are all very easy to understand if you take 
the simple approach described in this chapter. 

In general a logic gate has two or more inputs and one output 
as shown in Fig. 2-1. The output will be either high or low, 
depending on the states of the various inputs. To keep things 
simple, for the present we will assume that a low state corresponds 
to zero voltage and a high state corresponds to a voltage of +5V. 
We will have more to say about the actual voltages in a later 
chapter. In the tables that we use to describe the various types of 
logic gates we will use a "0" to represent a low state and a "1" to 
represent a high state. 

Now for the easy way to understand any logic gate that you 
will ever encounter. All that you have to do is to remember the four 
symbols shown in Fig. 2-2 and their meaning. These symbols are 
used in various ways to represent all possible logic gates. Before 
we get into the meaning of the various symbols let's use the 
concept of an input being either active or inactive, rather than being 
high or low. The reason will soon become obvious. 

The first symbol in Fig. 2-2A is called an active low indicator. 
The reason for this symbol is that normally we will consider the 
inputs or the outputs of a gate to be active if they are high. It is only 
when we see the active low indicator that we know that the rules 
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'IWO OR 
MORE 
INPUTS 

ONE 
OUTPUT 

Fig. 2-1. Basic logic gate. 

have changed temporarily, and as far as that particular input or 
output is concerned we will consider a low signal to be active and a 
high signal to be inactive. Whenever the symbol doesn't appear we 
will return to the normal rule that a high state is an active state. 

The next symbol shown in Fig. 2-2B is called anALL symbol. 
It represents a logic gate where the output is active only when all of 
the inputs are active. The symbol shown in Fig. 2-2C is called an 
ANY symbol and it represents a gate where the output is active 
when any of the inputs are active. The last symbol, shown in Fig. 
2-2D is called an EXCLUSIVE symbol and we will defer its 
description until after we have described the use of the other 

symbols. 

â 
ACTIVE LOW I NDICATCR 

LD 
0 

1-----) --_ °ANY" SYMBOL 

o 
1:).) "OCCWSIVEn SYMBOL 

HALL" SYMBOL 

Fig. 2-2. Symbols used to represent logic gates. 
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THE "AND" GATE 

In Fig. 2-3A we show the symbol for a two-input AND gate. As 
we can see, it consists of an ALL symbol with two inputs and one 
output. Nothing being indicated to the contrary, we know that the 
two inputs and the output can be considered to be active whenever 
they are in a high state, which we agreed for the time being to be 
+5V. 

From the basic definition of the ALL symbol we know that the 
output will be active only when both of the inputs are active. In this 
particular case, this means that the output will be high only when 
the two inputs are both high. The easy way to show this is to 
construct a truth table, like that shown in Fig. 2-3B. In this table, 
the first two columns show the states of the two inputs and the third 
column shows the corresponding state of the output. In the first 
row in the table, the inputs are shown by "O's" to both be low. The 
output is also low. In the next two rows of the table, one of the 
inputs is high as shown by the "l's." Of course, the output is also 
"0." In the last row of the table where the two inputs are both high, 
or active, the output is also active, or high. 

As we noted at the outset, this type of logic gate is called an 
AND gate. The reason is simply that the output is high whenever 
input "A" AND input "B" are high. Let's now look at similar gates 
where we use the active low indicator. 

o 
Fig. 2-3. AND gate and its truth table. 
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THE "NAND" GATE 

Figure 2-4A shows the symbol for a NAND gate, and its truth 
table is shown in Fig. 2-4B. Once again we have the ALL symbol 
that indicates that the output will be active only when all of the 
inputs are active. As far as the inputs are concerned, nothing has 
changed from the preceding example. They are considered to be 
active when they are high. When we come to the output, however, 
we see an active low indicator. This means that we will now 
consider the output to be active when it is low. 

In constructing the truth table, we will again show all possible 
combinations of the inputs. The output will be active, or low, when 
all of the inputs are active, or high. The result is the truth table 
shown in Fig. 2-4B. The only condition when the output will be low 

is when both of the inputs are high. 
This gate is called a NAND gate. The name comes from NOT 

AND. It means that the output, for various combinations of inputs, 
will be just the opposite of that from an AND gate. A comparison of 
the truth tables in Fig. 2-4B and 2-3B will show that this is true. 

An actual practice, the NAND gate is much more common than 
the AND gate. The reason is that when digital integrated circuits 
were developed, a transistor was added to the basic gate structure 
to provide isolation. This transistor inverts the output of the gate. 
This concept will become clearer when we look into the various 
types of logic families. 

THE "OR" GATE 
Figure 2-5A shows the symbol for an OR gate and Fig. 2-5B 

shows its truth table. The basic symbol in this example is an ANY 
symbol which means that the output will be active whenever any of 
the inputs is active. There being no active low indicators in the 
symbol, we know that we consider inputs and outputs to be active 
when they are high. From the definition of the ANY symbol, we 
know immediately that the output will be high whenever any of the 
inputs is high. A look at the truth table will verify this. In fact the 
only condition under which the output will be low is when both of 
the inputs are low. 

The name, OR gate, for this symbol comes from the fact that 
the output of the gate will be high when input "A" OR input "B" is 
high. Although it isn't explicit in the OR symbol, the OR condition 
also embraces the condition when both inputs are high. 

THE NOR GATE 

In Fig. 2-6 we have the symbol for an NOR gate. Here again 
we use the ANY symbol which means that the output is active 
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Fig. 2-4. NAND gate and its truth table. 

whenever any of the inputs are active. As far as the inputs are 
concerned, there is no change from the preceding example; they 
are active when they are high. But on the output of the gate we have 
an active low indicator that flags us to the fact that as far as this one 
terminal is concerned, the rules have changed again. The output 
will be considered to be active when it is low. 

The behavior of the gate is shown in the truth table in Fig. 
2-6B. Here we see that the output is active, or low, whenever ANY 
of the inputs are active, or high. In practice, NOR gates are more 
common than OR gates for the same reason that we gave under the 
discussion of NAND gates. 

WORKING WITH ZEROES, OR NEGATIVE LOGIC 

In some of the older literature you will find references to what 
was called negative logic. Fortunately, the term is seldom if ever 
used anymore. Negative logic referred to the case where a high 
signal was considered to be a 0 and a low signal was considered to 
be a 1. You can imagine the confusion that the whole idea caused to 

Fig. 2-5. OR gate and its truth table. 
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Fig. 2-6. NOR gate and its truth table. 

anyone approaching the subject for the first time. Lest you suspect 
that the originators of the idea were completely insane, we should 
explain that there was a valid reason for the concept. It arose in 
connection with using Boolean algebra in the design of logic 
circuits. Incidentally, Boolean algebra usually isn't necessary for 
anyone working with digital systems. 

Even though we no longer feel any need for negative logic, 
there will indeed be cases where we will be more interested in O's 
or lows than we are in l's or highs. For example, we may have a 
system in which we are interested in the condition where we want 
to work with switch openings, rather than closings. The signals on 
which we might wish to operate will be O's instead of l's. 

Figure 2-7A shows a case of this type. We want to get a high 
signal when two other signals are both low. We can symbolize this 
operation by the ALL symbol with the two inputs designated as 
active low. This means that the output will be active, or high, 
whenever ALL of the inputs are active or low. By now the truth 
table shown in Fig. 2-7C that describes this type of gate is clear. It 
shows that the only condition under which the output is high is 
when both inputs are low. We could call this operation "ANDing" 
zeroes. 

There is only one problem with the type of gate that is shown 
in Fig. 2-7A, and that is that it isn't available commercially. You 
can't run down to the store and buy one. When you see this symbol 
on a diagram you can be sure that the actual gate in the circuit isn't 
this type of gate at all. The symbol is used to show the logical 
behavior of the gate. Fortunately, the fact that this gate isn't 
available isn't any problem at all. All we are really interested in is 
how the gate behaves. Any gate, no matter what its symbol 
happened to be, that behaved according to the truth table in Fig. 
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2-7C will do the job. If you will simply look back at the truth table 
for the NOR gate in Fig. 2-6, you will see that it has exactly the 
same truth table! 

What this means in practical terms is that ANDing zeroes is 
exactly the same thing as NORing ones. Thus, if you were to find 
the symbol of Fig. 2-7A on a diagram, you would not expect to find 
this gate in the actual system. What you would find is a NOR gate 
like that shown in Fig. 2-7B. Logically they are exactly the same 
thing. 

This concept of performing logical operations on low signals 
instead of high signals may seem confusing at first, but as soon as 
you begin to work with a few real-world digital systems you will 
find that it can be very useful. 

Another example of working with O's is shown in Fig. 2-8A. 
Here, what we want to do is to provide a high signal whenever any 
of the inputs is low. To symbolize this we draw the ANY symbol 
with two active low inputs. The truth table for this symbol is shown 
in Fig. 2-8C. Here again, the gate has the disadvantage that it is not 
available. It doesn't need to be because it has exactly the same 
truth table as the NAND gate that we studied in connection with 
Fig. 2-4. Again, the two logic symbols result in the same physical 
gate. All gates are normally described in terms of how they will 
operate on high signals. But if we are familiar with the ALL 
symbol, the ANY symbol, and the active low indicator, we can 
quickly convert from any logic symbol to a real, physically available 
logic gate. 

In Fig. 2-9A and B we have shown two other symbols that are 
sometimes used. By constructing a truth table for these gates, you 

Fig. 2-7. ANDing zeros is equivalent to NORing 1's. 
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can prove to yourself that they are exactly equivalent to the gates 
shown in Figs. 2-9C and 9D. 

THE EXCLUSIVE GATES 

There is one more basic symbol in Fig. 2-2 that we haven't 
used yet. It is the one that we called the EXCLUSIVE symbol in 
Fig. 2-2D. The symbol is used only in connection with OR and NOR 
gates and it has a rather simple meaning. It could, in fact, be called 
a "BUT NOT ALL" symbol. Figure 2-10A shows the symbol for 
what is called an exclusive OR gate. Its truth table is shown in Fig. 
2-10B. From the truth table we see that the output is high 
whenever any of the inputs is high, but not both. The only place 
where the truth table of the exclusive OR gate differs from that for a 
regular OR gate is in the bottom line. The OR gate has a high output 
whenever any of the inputs, or all of them, are high. The exclusive 
OR gate has a high output whenever any of the inputs, but not all 
are high. 

Figures 2-10C and D show the symbol and truth table for the 
exclusive NOR gate. Its truth table is just the opposite of that of the 
exclusive OR gate. The output is low whenever any, but not all, of 
the inputs are high. 

The exclusive OR and NOR gates can be very useful in many 
logic circuits, particularly when performing arithmetic operations 
with the binary number system. 

THE INVERTER, OR "NOT" GATE 

The simplest possible type of gate is the inverter shown in 
Fig. 2-11. It is really an amplifier with a gain of only one and where 

Fig. 2-8. ORing O's is equivalent to NANDing 1's. 
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the output is out of phase with the input. As shown in the truth 
table, if the input is high, the output is low; and if the input is low 
the output is high. 

This gate is easy enough to understand, but to one unfamiliar 
with digital circuits it may seem so simple as to be of little practical 
use. To the contrary, the inverter, or as it is sometimes called, the 
NOT gate, is one of the handiest devices the digital system 
designer can have available. In many systems, there is need for an 
operation that can be performed easily if some of the signals can 
be inverted. The problem can be solved by simply inserting an 
inverter whenever it is desired to invert a signal. Inverters come 
six to a single integrated circuit, so they are easy to include in a 
design. As we continue to investigate the application of logic gates, 
we will find the inverter will appear frequently. 

GATES WITH MORE THAN TWO INPUTS 
At the beginning of this chapter when we defined logic gates, 

we said that a logic gate has one output and two or more inputs. 
Then for the sake of keeping things simple, we ignored the "or 
more" part of the statement. All of the practical gates that we have 
investigated, except the inverter, have only two inputs. In actual 
practice, logic gates with three, four, or even eight inputs are 
rather common. The number of inputs should cause us no trouble as 
long as we remember the meaning of the basic symbols that were 
shown in Fig. 2-2. 

When confronted with a gate with any number of inputs, all we 
have to do is to construct a truth table showing the state of the 

D o . ID_ 

o o 

o o 
Fig. 2-9. Other logic gate symbols sometimes used (see text). 
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Fig. 2-10. Exclusive OR and exclusive NOR gates. 

output for all possible combinations of input signals. For example, 
Fig. 2-12 shows an AND gate with three inputs. Below the symbol 
is the truth table. Knowing that the basic symbol is an ALL symbol 
we would recognize immediately that the only time that the output 
would be active, in this case high, is when ALL of the inputs are 
high. Constructing the truth table verifies this. 

All that we have said so far about two-input gates applies to 
gates with more than two inputs. They are just as easy to 
understand and use as two-input gates. About the only difference is 
that the truth table will be longer because there are more possible 
combinations of input signals. As a matter of interest, there are 2" 

Fig. 2-11. The inverter or NOT gate and its truth table. 
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Fig. 2-12. Three-input AND gate (A), and its truth table (B). 

possible combinations of input states of a logic gate where "n" is 
the number of inputs. Thus, with a two-input gate, we have 22 = 4 
possible combinations of input signals, so there are four lines in the 
corresponding truth table. Likewise, with the three-input gate of 
Fig. 2-12, there are 23 = 8 possible combinations of input states, so 
there are 8 lines in the truth table. An eight-input gate is just as 
easy to work with, but there will be 28 possible input states and, 
therefore, 256 lines in the truth table. Usually, when we use a gate 
with a large number of inputs, we can see the intended operation of 
the circuit well enough so that we don't have to construct the entire 
truth table. 

THE LOGIC GATE AS A SWITCH 

When studying the operation of the various types of logic 
gates it is easy to visualize some possible applications. In general 
these are rather simple functions. The logic gate actually has many 
different applications which might not be immediately obvious. 
One such application is as a switch for digital signals. 

INPUT 

0  

l 
SWITCHING 

VOLTAGE 

OUTPUT 

Fig. 2-13 Switching circuit block diagram. 
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Fig. 2-14. Circuit using an AND gate as a switch. 

Figure 2-13 shows a black box with an output and two inputs. 
One of the inputs is connected to something like a pulse generator 
which furnishes a string of pulses which we can think of as a series 
of logical l's and O's. The other input is connected to what we call a 
switching voltage. What we want the box to do is to allow the 
pulses to appear at the output when the switching voltage is high 
and to hold the output at a low level when the switching voltage is 
low. 

This function is extremely easy to provide. All that we need is 
a simple AND gate as shown in Fig. 2-14. Here input "A" of the 
gate is connected to the source of pulses. If input "B" is low, 
nothing will happen at the output because we need all of the inputs 
active before the output will be anything other than a logical 0. 
When input "B" is made high, the output of the gate will follow 
input "A." The pulses will appear at the output. 

In this chapter, we have described how logic gates work. We 
certainly haven't exhausted the subject. We'll have more to say 
about gates throughout the book. 

Before going any farther, let's take a look at what's actually 
inside an integrated circuit. 
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Chapter 3 

Logic Families, or What's 

Inside An Integrated Circuit 

One question that often arises in connection with digital elec-
tronics is that of just how much an engineer or technician needs to 
know about what is actually inside a digital integrated circuit. 
There are two general schools of thought on the subject. One group 
maintains that if a system designer or technician knows what the IC 
does functionally, as well as such things as the required voltages, 
time delays and similar characteristics, he doesn't need to have any 
knowledge at all about what is actually inside the IC. He could care 
less how the thing is built. His only concern is how it operates 
functionally. 

Using this approach, the diagram of a typical IC would be like 
that shown in Fig. 3-1. Here we can tell what all of the pins of the IC 
are used for, and if we also have a data sheet, we will know the 
proper voltage levels. At first glance it looks like a reasonably good 
way to approach the subject. It does, however, have some 
limitations. Perhaps the biggest limitation is that the technical 
mind of the engineer or technician is rarely satisfied with such a 
simplified approach. He might be warned in the data sheet that he 
can't connect pins 3 and 6 of the IC of Fig. 3-1 in parallel. Usually, 
he will waste so much time wondering why that he would have been 
better off learning a little more about what is actually inside the IC. 

At the other extreme, we might use the complete schematic 
diagram of the same IC. This is shown in Fig. 3-2. There is no 
question that this figure contains much more information than Fig. 
3-1. The trouble is that the information isn't in a form that is very 
useful to anyone. The first thought may simply be a doubt as to the 
sanity of anyone that would design a circuit like this. 
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Al BI 

In this book, we will take the approach that the block diagram 
of Fig. 3-1 is adequate, provided that we have some idea of what is 
actually inside the IC. We are particularly interested in the type of 
circuitry that is connected to the various pins of the IC. With this 
knowledge, we will have a good idea of what might happen if we 
were to connect pins 3 and 5 of the IC of Fig. 3-1 in parallel. 

Before considering the actual circuits inside an IC, we must 
realize that the designer of an IC faces many problems that are 
quite different than those encountered when designing a similar 
circuit using discrete transistors, resistors, diodes, etc. Usually 
the transistor is the easiest component to build in an IC. For this 
reason integrated circuits usually use more transistors than a 
similar discrete circuit would use. Resistors and diodes are 
probably the next easiest components to build, but it is hard to hold 
the value of a resistor to a predetermined value. It is much easier to 
hold the ratio of the values of two resistors to a given tolerance than 
their absolute values. This, of course, will affect the design of the 
circuit. Finally, capacitors are really hard to make in an integrated 
circuit, so the IC designer will usually avoid them like the plague. 

Many different technologies have been used to build digital 
integrated circuits. Most of these have had a rather limited use. 
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14 13 12 11  

--/ 

> 

8 

2 3 14 5 

YI Vcc Y2 42 

7 

Fig. 3-1.1C basing diagram, Type 7402 (W). 
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Fig. 3-2. Circuit diagram of a TTL integrated circuit. 

The logic families that you are most likely to encounter at present 
are TTL (Transistor Transistor Logic) and CMOS (Complimen-
tary Metal-Oxide-Semiconductor logic). In this book we will stick 
to these two families because they are the ones that you will be 
most apt to encounter and because if you once became familiar with 
these two logic families and their application, you can learn about 
the others rather easily if you should ever find it necessary. 

TTL CIRCUITRY 

Figure 3-3 shows a somewhat simplified version of the 
diagram of Fig. 3-2. The most striking part of this diagram is the 
fact that the input stage uses a rather strange-looking transistor 
that seems to be drawn sideways. Without a further hint, it isn't 
easy to figure out just how this circuit is supposed to work. 

We have a little help in analyzing the circuit because we know 
that it is a two-input NOR gate. This tells us that the output is high 
when either or both of the inputs is grounded and the only condition 
under which the output will be low is when all of the inputs are high. 

Let's start with the input stage of the device, but let's redraw 
it so that we have a little better chance of finding out just what goes 
on in the circuit. In Fig.3-4 we have shown part of the circuit, but 
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we have drawn the transistor right side up and for the moment we 
only show one emitter. This makes Q1 just like any other NPN 
transistor. For the moment we have connected the emitter of the 
transistor to ground. 

This circuit is fairly easy to analyze. Inasmuch as the emitter 
is grounded and the base is connected to the positive supply 
through a 4K resistor, the transistor will be turned on hard. There 
will be very little voltage drop between the emitter and the 
collector. This will assure that transistor Q2 is turned off because 
its base will, for all practical purposes, be grounded. This, of 
course, means that point A will be at the +5V supply level and point 
B will be at ground potential. 

So far we have considered only one of the emitters of 
transistor Ql, but we might suspect that the actual transistor 
would act like Q1 of Fig. 3-4 if either of the emitters were grounded 
and this suspicion would be correct. So far, so good. The input 
portion of the circuit of Fig. 3-3 isn't very hard to understand if 
either of the two inputs happens to be grounded. The next question 
is, "What happens if both of the inputs are connected to the +5V 

Fig. 3-3. Circuit of a TTL NAND gate. 
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Fig. 3-4. Equivalent of the circuit in Fig. 3-3, with input grounded. 

supply?" This question isn't as easy to answer without giving a 
little thought about how a transistor works. 

The fact is that if both of the inputs are high, QI doesn't act 
like a transistor at all. In fact, when both of the inputs of the circuit 
of Fig. 3-3 are high, we can ignore them completely. No current 
will flow in the emitters of transistor Ql. We can omit the emitters 
from our equivalent circuit. 

Figure 3-5 shows the equivalent circuit. The only part of 
transistor Q1 that we have shown is the base-collector junction and 
it is easy to see that under this condition, the base-collector 
junction is a forward-biased diode. Base current will flow in 
transistor Q2, turning it on hard. There will be very little voltage 
drop across the transistor, so resistors R2 and R3 will act as a 
voltage divider. If nothing else were connected to the circuit, the 
voltage at point A would be slightly higher than that at point B. 

Now that we have the input stage under control, let's try to 
figure out how the entire circuit of Fig. 3-3 works. To do this we 
will consider two conditions, namely when the output is high and 
when the output is low. We will first look at when the output is 
high; that is, when both inputs are low. We will only show enough 
of the circuit to enable us to figure out how it works. 
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Fig. 3-5. Equivalent of the circuits in Figs. 3-3 and 3-4, with both inputs high. 

Figure 3-6 shows the equivalent circuit of the entire gate 
when one or both of the inputs are low. The input portion of the 
circuit is the same as that shown in Fig. 3-4. Here, as we noted 
earlier, transistor Q1 is turned on hard and transistor Q2 is turned 
off. Point A is at a high potential and allows base current to flow in 
transistor Q3, turning it on. Point B is still at ground potential so 
transistor Q4 cannot turn on. The output is thus at a high level. It 
will not go all the way to +5V, because there will be voltage drops 
across resistor R4, transistor Q3, and diode Dl. Usually the high 
output level is around 3 volts. 

Now let's look at the opposite situation, when the output is 
low. As we noted earlier, this is when both of the inputs are high. 
This gives us the equivalent circuit of Fig. 3-7, where the input is 
the same as that shown in Fig. 3-5. Here transistor Q2 is turned on. 
The obvious result of this is that base current will flow in transistor 
Q4, turning it on. It might appear superficially that transistor Q3 
might also want to turn on, but it won't. The circuit is designed so 
that either Q3 or Q4, but not both, will be turned on at any 
particular time. The diode, Dl, used in the output of the circuit is 
included to be sure that Q3 will not be turned on at the same time 

that Q4 is on. 
With transistor Q4 turned on and Q3 turned off, the output will 

be at nearly ground potential. Usually the low output level of a TTL 
circuit is in the order of +0.2V. 
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Although the circuit that we have used to understand TTL is 
typical, it is important to remember that the internal circuitry may 
vary from one manufacturer to another. The circuit we have 
described is adequate for our purpose which is to learn how to work 
with TTL ICs intelligently. 

THE TOTEM-POLE OUTPUT 
The reader will realize that you can't do very much with a 

single logic gate. In digital systems, there are very many logic 
gates connected together. For this reason, we should look at what 
happens when the output of one gate is connected to the input of 
another. Figure 3-8 shows a typical arrangement. Let's first look at 
what happens when the output of the driver is low. In the figure, Q4 
will be turned on and Q3 will be turned off. As we noted earlier, the 
input of a gate will draw a little current when it is low because 
transistor Ql is on. If we adopt the conventional current direction 
as from positive to negative, we will see that current will flow out 
of Q1 and into Q4. Thus the output of the driving stage doesn't 
furnish current to the next stage, rather, it provides a connection to 
ground. It is for this reason that TTL is often referred to as a 
current sinking type of logic. There are other logic families where 
the output of one stage furnishes current to the input of the 
following stage. Such logic families are said to be current sourcing 
logic. 

Fig. 3-6. Equivalent of circuits in Figs. 3-3, 3-4, and 3-5 with the output high. 
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Under the opposite condition, Q3 is turned on and Q4 is turned 
off. Now the input is Q1 is high and as we noted, no current flows. 
This brings up the interesting question that if transistor Q3 doesn't 
supply current to the following stages when it is turned on, why do 
we bother to have it in the first place. The fact is that this transistor 
isn't needed to raise the inputs of a following stage to a high level. 
In fact there are gates that we will consider later where the 
transistor is omitted. We can see how this transistor serves a 
useful purpose by considering what would happen in a practical 
circuit if it were not included. 

Figure 3-9 shows the output of a 'FIL gate where the top 
transistor of the totem pole has been replaced with a resistor. Also 
shown in the circuit is some capacitance connected between the 
output pin and ground. This is not a capacitor, but rather the 
inevitable capacitance of leads, wiring on a printed circuit board, 
and the capacitances of other gates connected to this line. Assume 
that the output is initially low; that is, that transistor Q4 is turned 
on. There will be no charge in the capacitor. Now let's assume that 
the circuit changes states; that is that transistor Q4 turns off and 
the output tries to go high. We know from elementary electronics 
that the voltage across a capacitor cannot change instantaneously. 
This would require an infinite current. What would happen in the 
circuit of Fig. 3-9 is that the capacitor would charge through the 

Fig. 3-7. Equivalent of the circuits in Figs. 3-3, 3-4 and 3-5 with the output low. 
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Fig. 3-8. Interconnection between TTL gates. 

resistor Rl. If we made R1 very large, it would take a long time for 
the capacitance to charge and the circuit would be very slow. If on 
the other hand, we made resistor 121 very small so that the circuit 
would be fast, there would be a large current through it when 
transistor Q4 was turned on, and the stage would consume a lot of 
power. 

From this it can be seen that the top transistor in the totem 
pole output is used to supply the necessary current to charge any 
capacitance in the circuits connected to the output so that the 
output will be pulled to a high level very quickly. Once this has 
been done, Q3 just sits there. It doesn't have to supply current to 
hold the inputs of following gates at a high level. It is easy to see 
why the arrangement that uses transistor Q3 is referred to as an 
active pull up. 

OPEN COLLECTOR OUTPUTS 

It is easy to imagine a situation where it is desirable to connect 
the outputs from two different integrated circuits to the input of 
another circuit. Figure 3-10A shows the arrangement. As long as 
both of the stages that are connected together are at the same 
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output state—both high or both low—there is no problem, but on 
the other hand, if we know that both of the outputs will always have 
the same state, there is no point in connecting them together. We 
could simply look at one, knowing that the other would have the 

same state. 
When the two stages that are connected in parallel have 

opposite states—one high and the other low—things begin to 
happen. Suppose that in Fig. 3-10A, stage A has a high output state 
and stage B has a low state. The output of stage A will try its best to 
pull the common connection to a high level, while the output of 
stage B is trying equally hard to pull the common connection to a 
low level. Usually the output that is trying to go low will win the 
struggle. The result is as shown in Fig. 3-10B. In this figure, both 
of the transistors are on and there is a high current path between 
the +5V supply and ground. The 130-ohm resistor will provide 
some current limiting, but usually one or the other of the circuits 
will not survive. 

Although the totem-pole outputs of a regular TTL gate cannot 
be connected in parallel, the arrangement shown in Fig. 3-11 is 
very useful in many applications., All that we have to do to use it is 
to find some gates whose outputs can safely be connected in 
parallel. The arrangement of Fig. 3-11 is called by many different 
names. The arrangement in the dashed box where the outputs are 
connected together is called wired-OR, dot-OR and dotted collector. 

Fig. 3-9. Charging currents in a TTL output stage. 
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Fig. 3-10. Two totem-pole outputs connected in parallel. 

All of these names are misleading. The function represented by the 
box is really an AND or an ALL function. The output goes high only 
when all of the lines, A, B, and C are high. As soon as any one of the 
lines goes low, the output will go low. For this reason, probably the 
most descriptive name for the arrangement is a wired AND. 

Now to find the gates that will make this arrangement 
practical. Figure 3-12 shows the schematic diagram of a special 
TTL NAND gate which is called an open-collector gate. Comparing 
this circuit with the circuit we showed earlier of a TTL gate, we 
see that the top transistor of the totem-pole output, together with 
its series resistor and diode, have been omitted. Otherwise the 
gate is the same as any other TTL gate. The output is the collector 
of transistor Q4 which isn't connected to anything else. We can see 
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Fig. 3-11. Wired-AND arrangement. 

that if Q4 is turned on, the output will be pulled to a low level, but 
unless we add something to the gate, the output can't go to a high 
level. This something that we add is a pull-up resistor shown by the 
dashed lines. With this resistor, the output will go to a high level 
whenever transistor Q4 is turned off. Inasmuch as we no longer 
have the active pull-up transistor, we can now connect the outputs 
of several gates of this type in parallel with a single pull-up resistor 

Fig. 3-12. Circuit of an open-collector gate with external pull-up resistor. 
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and the gates will not be damaged if one should happen to go high 
and another low. 

Figure 3-13 shows two such gates connected in parallel with a 
single pull-up resistor. From this figure we can clearly see that the 
output will go high only when the outputs of all gates that are 
connected together are high. If the output of any of the gates should 
go low, its output transistor will pull all of the outputs low, but no 
damage will be done to any of the stages. 

The open-collector gate is widely used when it is necessary to 
connect the outputs of several gates to a common line. There is 
also another arrangement that can be used for this purpose called 
tri-state logic. We will get to this a little later. 

'TTL CHARACTERISTICS 
So far we have treated digital ICs in a sort of qualitative way. 

We have noted that when the inputs of a NAND gate all go high, the 
output will go low. We haven't bothered with such questions as to 
just what voltage levels constituted a high or a low level. Neither 
have we questioned such things as to how much time is required for 
the gate to respond after the input levels change. If we are to be 
able to work with or troubleshoot digital systems intelligently, we 
must have quantitative answers to these questions. 

Input Levels 

Whenever the voltage at the input of a TTL gate is below 
0.8V, the gate will treat it as a low level. Usually manufacturers 

Fig. 3-13. Two open-collector gates connected in parallel. 
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guarantee this level. When the voltage rises above about 2V, the 
circuit will treat it as a high. Note that there is a gap between what 
constitutes a low and what constitutes a high level. This is not 
accidental. Levels in this no-man's land are avoided to allow room 
for noise spikes that will inevitably get onto the signal lines in a 
system. We will have more to say about this later. 

Output Levels 
On the output pin, the level will usually be about 0.2V for the 

low state, and about +3V for a high level. The manufacturer usually 
guarantees that the low will not be higher than 0.8V and the high 
will not be lower than +2.4V. 

Timing 
Obviously, it will take some time for a gate to respond to an 

input signal. This time period, although very short, can be 
significant in a complex digital system. The time required for a 
digital circuit element to respond to a change in the level of an input 
signal is called the propagation delay or propagation time of the unit. 
Actually, the time required is not the same when the output of a 
gate is going from a high state to a low state as it is when it is going 

from low to high. This is shown in Fig. 3-14. 
The waveform at the top is the signal applied to the input of a 

gate. It is going from a low level to a high level. The output 
responding to this signal switches from a high level to a low level. 
The propagation time required for the output of the gate to go from 
a high to a low level is labeled T pHL in the figure. This time is 
usually in the order of 7 nS or less. The time required for the output 
to go from a low to a high state is labeled T pui and is usually 11 nS or 

less. 
The term propagation delay, which is often specified, is the 

numerical average of the two times described above. Both of the 
propagation times depend on the amount of loading on the output 
and on the supply voltage. The time required for the output to go 
from high to low decreases as the temperature of the device 
increases and the time required to go in the opposite direction is 
independent of temperature. 

As we will see later, the propagation time of a gate can be used 
to advantage to prevent circuits from oscillating. 

LOADING OR FAN-OUT 

We have noted several times that various characteristics of 
TTL ICs depend on loading. The load of an IC is really the amount 
of current that the output pin must handle. This, of course, is not 
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Fig. 3-14. Waveforms showing propagation times in digital devices. 

the same when the output is at a high level as when it is at a low 
level. Inasmuch as most TTL outputs are connected to TTL inputs, 
the loading capability of TTL outputs is specified in terms of the 
number of TTL inputs that can be connected to it. The parameter is 
usually called the fan-out. An output that has a fan-out of 10 can 
drive ten input terminals of standard gates. 

Specifying the output capability of a gate in terms of its fan out 
is fine as long as the only thing connected to the output is the input 
of another gate. Sometimes, we must connect something else to 
the output and we need to know how much current it will supply. 
Similarily, the output capability of some digital ICs is given in 
terms of the amount of current the output will supply in the high and 
low states. Under these conditions, we need to know a little more 
about the relationship of fan-out to actual current capability. 

The output capability of a TTL gate can also be specified in 
terms of what is called a unit load. This is the current required by a 
single TTL input. Figure 3-15 shows the output of one TTL gate 
connected to one of the inputs of another. In Fig. 3-15A the output 
of the first gate is high. As we said above, this means that the 
output voltage will be somewhat higher than half the supply 
voltage, usually in the order of +3V. All that this signal has to do is 
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to hold the emitter in the input of the following stage at a high level. 
You will remember that the input transistor doesn't act like a 
transistor at all under this condition. Therefore, in theory, no 
current is required. In practice there will be some leakage current 
and it has been agreed that the maximum current required by a gate 
input under this condition is 40 A. 

Figure 3-15B shows the opposite situation where the output of 
the driving gate is in the low state. Its output voltage is very nearly 
OV. Under this condition, current will flow from the input pin of the 
driven gate to ground through transistor Q4 of the driving gate. 
The current that must be carried by this transistor is 1.6 inA. Thus, 
a unit load can be defined as: 

High 40 uA 
Low 1.6 inA 

Another, somewhat confusing term that you will sometimes 
encounter is fan-in. This doesn't mean the number of outputs that 
can be connected to the input of a gate. It means the amount of 
current required at the input of a gate in the high and low states. All 
modern TTL logic has a fan-in of one unit load. Some types of 
devices may require a greater or less current; it would be rated as 
having a fan-in of two. 

Standard TTL usually has a fan-out rating of 10. This means 
that a standard TTL gate may be connected to as many as 10 
different inputs without any of its operating characteristics going 
out of limits. Some larger devices, usually called buffers, have a 
fan-out rating as high as 30. 

NOISE IMMUNITY 

An important rating of any digital device is its ability to reject 
the noise that will inevitably be present in digital systems. This 
parameter is usually specified in terms of what is called noise 
margin. This is illustrated in Fig. 3-16. In Fig. 3-16A, the line 
between the two gates is high. The way in which noise could 
disrupt this situation is for a negative-going noise pulse to drop the 
voltage on this line low enough so that gate B would think it was a 
low signal. The immunity to this type of noise is called the 
high-state noise margin, VNH. The formula for calculating this 

voltage is given in the figure as: 

VNH = VOH — VIN 

Thus, if the lowest high-level voltage out of gate A is +3V, and the 
minimum voltage that gate B will think is a high level is 1.8V, the 
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Fig. 3-15. Interconnection loading on TTL gates. 

high-state noise immunity is: 
+3V — +1.8V = 1.2V 

This means that any negative-going noise pulse on the line 
between the gates of Fig. 3-16A will not cause any trouble as long 
as the pulse is smaller than 1.2V. 

In Fig. 3-16B we show the situation where the line between 
the gates is at a low level. The effect of noise on this arrangement 
would for a positive-going noise pulse to raise the voltage on this 
line high enough so that gate B would think it was a high-level 
signal. The formula for the low state noise margin is: 

VNL = VIL — VOL 
Thus if the highest value of voltage that gate B will think is a low 
level is 0.7V and the highest level that the output of gate A will 
have in the low state is 0.5V, the low-state noise margin will be: 

0.7V — 0.5V = 0.2V 
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Strictly speaking, the noise margins that we have been talking 
about are DC noise margins. But, at the speed at which TTL logic 
operates, a pulse having a duration of only one microsecond may be 
thought of as DC. Very short pulses having durations of only a few 
nanoseconds may be so short that they will be gone before the 
circuit has a chance to respond. In a case like this, the noise margin 
would be higher than the value that we have calculated. 

OTHER INPUT CONSIDERATIONS 

From our discussion of the way in which a TTL gate works, we 
know that if nothing is connected to any input of a gate, the effect is 
the same as if that input were connected to a high level. In other 
words, all TTL inputs can be considered to be in a high state until 
something pulls them low. Because of this, many experimenters 
and, unfortunately some designers, will leave any unused input 
pins on AND and NAND gates floating because this is the same as 
connecting them to a high level. This is shown in Fig. 3-17A. While 
this arrangement will usually work, it isn't a good idea, because the 
unconnected pin will act like an antenna and may well pick up noise 
pulses that will cause problems. 

A 
D o  HIGH ) 

O VNH =VOH— VIN 

O VNL = VIL— VOL 

B D °  

VNH = "HIGH" NOISE MARGIN 

VOH = MINIMUM HIGH OUTPUT VOLTAGE FROM GATEA 

VIN = MINIMUM LEVEL THAT GATE B WILLTHINK IS HIGH 

VNL = "LOW" NOISE MARGIN 

VIL = MAXIMUM LEVEL THAT GATE B WILL THINK IS LOW 

VOL = MAXIMUM LOW OUTPUT LEVEL FROM GATE A 

Fig. 3-16. Noise margins calculation. 
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Fig. 3-17. Six ways of handling unused TTL inputs. 

A better practice is to connect any unused pins of an AND or 
NAND gate to one of the used inputs as shown in Fig. 3-17B. The 
only time that this arrangement will not work is when the added 
input might exceed the fan-out rating of a driving stage. In such a 
case, the unused pin can be connected to the positive supply as 
shown in Fig. 3-17C. The resistor is included to protect the input 
against any transients that might be present on the power line. 

With an OR or NOR gate, unused inputs cannot be left floating 
as in Fig. 3-17D. This arrangement would cause the output to be 
low at all times regardless of the states of inputs A and B. The way 
to handle this situation is to either ground the unused pin as in Fig. 
3-17E or to connect it to one of the used input pins as in Fig. 3-17E. 

ANOTHER LOOK AT THE OUTPUT CIRCUIT 

We have noted that the high-level output of a TTL gate is at 
least 2.4V and usually around 3V. When the output is used to drive 
the input of another TTL gate, this is fine. The output is high 
enough to actuate the input with a good noise margin. There are, 
however, instances when we will want to use the output of a TTL 
gate to drive something else. In such a case, it might be useful if we 
were able to raise the level of the output voltage. This can be 
accomplished with the arrangement of Fig. 3-18. Here, an external 
pull-up resistor is added even though the gate has a regular 
totem-pole output. This external resistor will pull the high-state 
output voltage to nearly the full +5V supply voltage. 

Earlier we stated that the totem-pole output of a TTL gate was 
arranged so that when either of the transistors was turned on, the 
other would be turned off. This is true, but there is a joker that can 
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potentially cause problems. It revolves around the fact that a 
transistor that is in the off state can be turned on faster than a 
saturated transistor can be turned off. 

Figure 3-19 shows our familiar totem-pole output stage again. 
Assume that the output is low; that is, transistor Q3 is turned off 
and transistor Q4 is turned on into saturation. Now when the gate 
starts to switch so that the output will go to a high state, transistor 
Q3 will turn on rather rapidly. At the same time, transistor Q4 
starts to turn off, but inasmuch as it is saturated, some time will be 
required to remove all of the charge carriers. As a result, Q4 will 
not be fully off until a few nanoseconds after Q3 has turned on. 

What all this means in practical terms is that when a TTL 
stage switches so that its output goes from low to high, there will 
be a very short period of time when there is a very low resistance 
path between the supply voltage and ground. Thus there will be a 
very short current pulse on the supply line. This pulse is very short 
in duration—never more than about 10 nS; but when a circuit has 
several gates that switch at the same time, these pulses can cause 
troublesome noise glitches on the supply lines. There are ways of 
coping with the situation and these will be treated in the chapter on 
power supplies and noise. 

OTHER MEMBERS OF THETTL FAMILY 
So far we have been talking about what is usually called 

standard TTL. The integrated circuits in this branch of the family 
have numbers like 7400 or 5400 for the version that will meet 
military specifications. For example, a 7408 IC contains four 
2-input AND gates. Standard TTL has proven to be one of the best 
logic families for many applications. It is easy to imagine, however, 
that there applications where it is worthwhile to sacrifice one of the 
operating characteristics in order to get an improvement in 
another. For example, it might be worthwhile to sacrifice some 

1 2.2K 

 o 

Fig. 3-18. A pun-up resistor used to raise the high-state voltage from a TTL gate. 
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Fig. 3-19. Switching can induce a transient spike in a TTL output. 

speed of operation in order to get a circuit that doesn't dissipate as 
much power. As a result of factors such as this, several branches of 
the TTL family have been developed. Most of these either operate 
faster, or consume less power. 

As a standard of comparison of the various branches of the 
family we can assume that a standard TTL gate will have a 
propagation delay in the order of 10 nS and will have a power 
dissipation of about 10 mW per gate. 

Low-Power Tn. 
In this branch of the family, the ICs are about the same as 

those in standard TTL except that the values of all of the 

resistances have been increased. The result is that the power 
dissipation is reduced to about 1 mW per gate. The price that we 
pay for this reduction in power dissipation is that the propagation 
time is increased to about 23 nS. ICs in this branch of the family 
have the letter "L" in the number. Thus a type 74L00 would be the 
low-power version of the Type 7400 quad two-input NAND gate. 

High-Speed TTL 

At the opposite extreme, we have high-speed TTL where the 
values of all of the resistors have been decreased to speed it up. It 
is indeed faster, having a propagation delay of only about 6 nS, but 
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the power dissipation is increased to about 23 mW per gate. ICs in 
the series have the letter "H" in their numbers. 

Schottky TTL 

As we have noted previously, one of the factors that limits the 
speed of TTL is that transistors are switched into saturation and it 
takes time to get them out of saturation. In the Schottky TTL 
branch of the family, the transistors are kept out of saturation by 
connecting Schottky diodes across them. A Schottky diode is a 
very fast diode that has a forward voltage drop of only about 0.3V as 
compared with the typical 0.7V of a regular silicon diode. These 
diodes keep the transistors out of saturation so that they can be 
turned on much more quickly, thus increasing the speed of 
operation, and at the same time improving the speed-power 
tradeoff. 

A Schottky TTL gate will have a propagation time of about 3 
nS and a power dissipation of about 23 mW. These ICs have the 
letter "S" in their type numbers. 

Low-Power Schottky TTL 

The Schottky TTL has been modified to reduce its power 
consumption. The transistors are shunted by diodes to improve 
their speed, but the values of the resistances in the circuit have 
been increased to reduce power dissipation. The result is that the 
speed is about the same as standard TTL, but the power dissipation 
is reduced to about 2 mW per gate. 

CMOS INTEGRATED CIRCUITS 

There is another family of digital integrated circuits which are 
of interest to broadcasters. Although not as popular as TTL, 
CMOS ICs are widely used. CMOS stands for complimentary 
MOS. The name comes from the fact that these ICs use com-
plimentary MOS field-effect transistors. The MOS comes from the 
way that the device is built. As shown in Fig. 3-20, it consists of a 
layer of metal on top of a layer of oxide which is an insulator, which 
in turn is on a layer of semiconductor material; hence the name 
Metal O xide Semiconductor. 

There are many different types of MOS ICs. The one that we 
are concerned here is the CMOS variety. The reason for the word 
complimentary will soon become apparent. 

Most texts describe CMOS ICs in terms of the details of their 
construction. We won't bother with details, but will work out a 
description in terms of the schematic symbol for the MOS FET. 
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Fig. 3-20. MOS structure. 

Figure 3-21 shows the symbol for a N-type, enhancement-
mode FET. It has four electrodes—a source, a drain, a substrate, 
and a gate. We won't be particularly concerned with the substrate, 
except to note the fact that the arrow points inward, which tells us 
that it is an N-channel device, and that in N-channel devices the 
substrate is connected either to the source or to ground. 

The device of Fig. 3-21 is intended to serve as a switch. We 
want to be able to either complete the circuit between the source 
and drain or to leave it open. In this particular device, if we connect 
the gate to ground, the circuit between the source and drain will be 
open. If we apply a positive voltage to the gate, the circuit between 
the source and drain will be closed. There will be some resistance, 
but in general it will be small. 

Now we have a switch that is controlled by the voltage that we 
apply to the gate. We should note carefully that the gate doesn't 
make an electrical connection to the other electrodes. It is just like 
one plate of a capacitor. Thus this switch will have a very high input 
impedance and the gate will draw no current most of the time and 
only a very small current when it is charging. 

Here is where we get to the word, complimentary. Figure 
3-22 shows the symbol for a P-channel, enhancement-mode FET. 
We know that it is a P-channel device because the arrow points 
away from the substrate. This device is complimentary to the 
N-channel device of Fig. 3-21. If we connect the gate to ground, it 
will conduct between the source and drain. If we make the gate 
positive, we will open the circuit between the source and drain. 

Now we have the makings of all sorts of digital logic circuits. 
We have two devices where with the same voltage we can open one 
switch and close another. Figure 3-23 shows a CMOS inverter that 
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consists of the two types of FETs that we have just described. The 
one at the top is a P-channel device that will turn off when its gate 
becomes positive, and the one at the bottom is an N-channel device 
that will turn on when its gate becomes positive. It is easy to see 
that if we keep the two gates at ground potential, the device at the 
top of the figure will be turned on and the one at the bottom will be 
turned off. This means that the output will be high—at the power 
supply voltage. Now if we were to make the gates positive, the 
situation would be reversed. The device at the top would be turned 
off and the one at the bottom would be turned on, bringing the 
output to ground potential. Thus we have the truth table of an 

inverter shown in the figure. 
Before getting into any more detail about the operation of a 

CMOS stage, let's look at a logic gate. Figure 3-24 shows a CMOS 
two-input NAND gate. It uses two P-channel and two N-channel 
enhancement-mode FETs. We can again think of each of these 
FETs as a switch. Thus if either Pl or P2 is turned on, the output 
will be connected to the positive supply. Similarly, if both N1 and 
N2 are turned on, the output will be connected to ground. 
Naturally, we want to avoid the situation where the output is 
connected to the positive supply and to ground at the same time. 
The devices are connected so that we will indeed avoid this 
situation. 

GATE 

OV ON GATE, CHANNEL DOESN'T CONDUCT 

+V ON GATE, CHANNEL CONDUCTS 

DRAIN 

SUBSTRATE 

SOURCE 

Fig. 3-21. N-channel enhancement-mode FET. 
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GATE 

OV ON GATE, CHANNEL CONDUCTS 

DRAIN 

SUBSTRATE 

SOURCE 

+V ON GATE, CHANNEL DOESN'T CONDUCT 

Fig. 3-22. P-channel enhancement-mode FET. 

One of the easiest ways to make a truth table for a gate like 
that shown in Fig. 3-24A is to contrast the small table shown in Fig. 
3-24B, which shows which transistors are turned on and off when 
inputs A and B are made high and low. By just glancing at the table 
we can see that the only condition under which both N1 and N2 are 
turned on is when both inputs A and B are high. Inasmuch as both of 
these FETs must be on for the output to be connected to ground, A 
and B must both be high for the output to go low. A further 
inspection of this table will show that under all other input 
conditions either Pl or P2 will be turned on. This means that the 
output will be high. This leads to the truth table given in Fig. 
3-24C, which will be recognized as the truth table for a NAND gate. 

CMOS CHARACTERISTICS 

Now that we have seen how logic gates can be made with 
CMOS, let's look at some of its characteristics. Probably the most 
important feature is the fact that there is never a direct low-
resistance path between the supply voltage and ground. This 
means that a CMOS gate consumes very little power. In fact, when 
the gate is not changing state, but remaining in one state, there is 
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almost no power at all. This is one of the most attractive features of 
CMOS. 

The input of the CMOS gate is interesting. The only 
connections to the input pins are the gates of the MOS FETs. 
These, you will remember, are like the plate of a capacitor. There 
is no direct conducting connection between the gate of such an FET 
and its channel. Thus when the circuit is not changing state, there 
is essentially no input current. For this reason, we define a unit 
CMOS load as a capacitance of about 5 pF, which includes the 
capacitance of the case. A typical CMOS gate will have a fan-out of 
50. 

One bad feature of this type of input is that time will be 
required to charge the input capacitance. This characteristic limits 
the speed of CMOS. It is still pretty fast, however, being able to 
handle pulse rate of about 5 MHz. 

CMOS VOLTAGE LEVELS 

The CMOS gate will operate over a wide range of supply 
voltages, usually anything between 3 and 12 or 15V. The 
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Fig. 3-23. CMOS inverter. 
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Fig. 3-24. Diagram of a CMOS 2-input NAND gate. 
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output-voltage levels depend on the load connected. When one of 
the FETs is turned on it will have a resistance of somewhere 
between 200 and 400 ohms. This is no problem when driving the 
input of another gate because it will not draw any significant 
current. It can be a problem when driving some external device of 
some other logic family such as TTL. Special CMOS devices 
having a greater output capability are available for this purpose. 

CMOS NOISE IMMUNITY 

Another very attractive aspect of CMOS is that it can have a 
very high noise immunity. This can be best seen by looking at the 
transfer characteristic of a typical CMOS gate. Such a curve is 
shown in Fig. 3-25. The horizontal axis of the graph is the voltage 
applied between the input and ground. The vertical axis is the 
output voltage. Three sets of curves are shown, for supply voltages 
of 5V, 10V, and 15V. The interesting feature of these curves is that 
the output voltage doesn't change at all until the input voltage 
reaches nearly 50% of the supply voltage. Then a small additional 

Fig. 3-25. Characteristic curve of a CMOS inverter. 
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Fig. 3-26. Typical input circuit arrangement used to protect a CMOS gate. 

change in input voltage will drive the output to the final state. This 
means that in a system with a supply voltage of 10V, an input signal 
of nearly 5V is required to switch the gate from one state to 
another. Thus the noise margin is nearly half of the supply voltage. 

CMOS INPUT PROTECTION 

In describing the construction of a MOS FET we noted that 
the metal gate was insulated from the channel by a thin layer of 
oxide which served as an insulator. Inasmuch as this layer is really 
very thin, it can easily be damaged by a voltage higher than it was 
designed to withstand. Although circuits can be designed to use 
safe voltage levels, there is still the possibility that CMOS ICs can 
be damaged by high voltages from transients and static electricity. 
In fact, CMOS devices are usually packed in conductive packages 
so that stray static charges cannot damage the input circuits. 

Most CMOS ICs have some internal protection against high 
transient voltages. A typical arrangement is shown in Fig. 3-26, 
where diodes are used to provide protection. This circuit will 
indeed provide a great deal of protection for the high-resistance 
gates. However, because of this circuitry, it is important that 
power be applied to CMOS gates before the inputs are made high. 
Otherwise the gate can be permanently damaged. 
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Chapter 4 

Flip-Flops, or 

Circuits That Remember 

The logic gate that we considered in Chapter 2 is the fundamental 
building block of all digital systems. In fact, you could build any 
digital system, no matter how complex, with nothing but NAND or 

NOR gates. 
In Chapter 2, we thought of a logic gate as a device that had 

one of two possible output levels, depending on a combination of 
input levels. When gates are used in this way, the system is said to 
use combinational logic. There is another way to use digital circuit 
elements where the state of the output of a device depends not only 
on the present inputs, but also on what the input happened to be 
some time ago. This type of arrangement is called sequential logic. 
The simplest building block where the present output level 
depends on some past input level is called a flip-flop. Essentially a 

flip-flop is a circuit element that has two steady states. Various 
inputs can be used to switch the element from one state to the 

other. 
Figure 4-1 shows a block diagram of a flip-flop. Note that it has 

two output terminals, labeled Q and Q. The little bar over the 

second Q can be though of as meaning "not." It can also be thought 
of as meaning the same as an active low indicator. Thus the two 
outputs of our flip-flop are Q and not Q. It is apparent that, in 
general, when Q is high, Zi will be low and vice versa. 

In our block diagram we have shown several inputs to the 
flip-flop. We haven't stated what any of them might be called or how 
any entered into the operation of the device. In fact, there are many 
different types of flip-flops and they differ mainly in the types of 
inputs that are provided and how they affect the operation. 
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Fig. 4-1. Block diagram of a generalized flip-flop circuit. 

THE BISTABLE LATCH 

Figure 4-2 shows how a very simple flip-flop can be made with 
two NAND gates. As with gates, we can find out how the circuit 
works by constructing a truth table. In this instance the truth table 
is apt to be a little confusing to construct, because one of the inputs 
of each of the gates is the output of the other. Unless you are 
careful, you will find yourself going around in circles. 

The easy way to construct a truth table for the circuit of Fig. 
4-2 is to use the rule that with a NAND gate, as long as either of the 
inputs is low, or logical 0, the output will be high. With this bit of 
information, we can start with the top gate in the figure and assume 
that the input labeled "R" is low or zero. This tells us immediately 
that the output of this gate, which is Q, must be high or 1. Thus we 
can fill in the first line of the truth table of Fig. 4-2B. Inasmuch as 
Q, which is one of the inputs of the lower gate, is high, and we will 
assume that S is high, we know that Q will be low, or O. We can use 
this information to construct the first line of the truth table to the 
right in Fig. 4-2B. 

Now to the opposite situation. Let's make S low. This tells us 
right away that Q will be high. Now, inasmuch as -Ci is one of the 
inputs of the top gate, we know that Q will be low. We now have 
two lines of a truth table for the circuit, and so far there isn't 
anything exciting. In fact, there is no indication that this circuit can 
remember anything. 

Now let's try a little further manipulation of the data as shown 
in Fig. 4-2C. We will start out with R low, S high, Q high, and Zi 
low. Let's change R from low to high. Before we made this change, 
both of the inputs were low. Now one of them will be high and the 
other low. From what we know about a NAND gate, we know that if 
one or both of the inputs is low, the output will be high. In other 
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words, when we make R high, nothing happens. The circuit will 
remember its previous state and will stay there. 

By a very similar line of reasoning, we can take the situation 
shown in Fig. 4-2D and change S from low to high. Again, nothing 
will happen. Again the circuit remembers. 

Let's summarize all of this in a complete truth table as shown 
in Fig. 4-2E. On the top line of the table we see that when both R 
and S are high, the outputs will have the same state that they had 
before both R and S were made high. This is the memory feature of 
the circuit. On the next two lines we show the output states when 
R and S have opposite states. Finally, on the last line we indicate 
that if both R and S are low, both the outputs will be a high, a 
condition that we said wouldn't happen when we started talking 
about flip-flops. In fact this condition can actually exist, but it will 
not be remembered. In practice, either R or S will change before 
the other and this will be the condition that the circuit will 
remember. 

We have been using the letters R and S without any 
explanation of where we got them. Originally, they came from the 
terms set and reset. Be careful when using them, however, because 
some flip-flops might be set — Q made high—by a high signal and 
others by a low signal. We'll have more to say about this later. 

Before going further, it is interesting to note that we could 
also build a bistable latch using NOR gates instead of NAND gates. 
The circuit is shown in Fig. 4-3. To construct the truth table for this 
arrangement use the fact that in a NOR gate, if either or both of the 
inputs are high or 1, the output will be low, or O. The resulting truth 
table is shown in the figure. It is interesting to note that with this 
arrangement the memory feature occurs when both R and S go to O. 

The two preceding examples of latches are useful not only 
because they give a little insight into how a flip-flop can remember 
a past input, but also because the circuits are practical. It is handy 
to be able to build a little latch out of a couple of NAND or NOR 
gates. 

Figure 4-4 shows the block representation of an R-S flip-flop, 
which is similar to the latches that we have just discussed. You will 
find many different types of truth tables for flip-flops. They all tell 
the same thing, but often they are set up differently. In the truth 
table of Fig. 4-4, the third column is labeled Qn+1. This column 
shows the state of the Q output after the inputs have been set as 
shown in the preceding columns. The expression Q. indicates the 
state of the Q output with earlier inputs. The symbols have 
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meaning only in the first line of the table, which tells us that when R 
and S are both low, the state of the Q pin will not change. It will be 
whatever it was when R and Shad different values. 

Another interesting thing about the truth table is the comment 
"indeterminant" in the fourth row. We said earlier that we couldn't 
be exactly sure of what the output would be under this condition. 
Sometimes the truth table will label this situation "disallowed," 
meaning that the R and S inputs should not be allowed to go high at 
the same time. The reason is that, not knowing what output this 
would produce, we could not be certain of how a system would 
operate. 

Note that in the truth table of Fig. 4-4, nothing is shown about 
the state of the pin. There is no need to do this because it will 
always be just the opposite of the state of the Q pin. 

Fig. 4-2. Bistable latch circuit, using NAND gates, and truth tables. 
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Fig. 4-3. Bistable latch made with NOR gates. 

The flip-flop arrangements that we have described so far can 
be called asynchronous, because the output will change as soon as 
the input is changed. In general, inputs labeled set, reset, or clear 
are asynchronous. Changing their state will produce an immediate 
change in the output. 

SYNCHRONOUS OR CLOCKED FLIP-FLOPS 

There are many places in digital systems where it is desirable 
for all the flip-flops in a part of a system to change state at the same 
instant. This is called synchronous or clocked operation and 
synchronous or clocked flip-flops are used for the purpose. 

Figure 4-5 shows a general block diagram for a clocked 
flip-flop. Note that at the bottom of the block, there is a new type of 
input called a clock input. In this type of flip-flop, the states of the 
various synchronous data inputs can be changed, but nothing will 
happen until something is done at the clock input. Usually a pulse is 
applied to this input to make the outputs change state if the proper 

Fig. 4-4. R-S flip-flop with its truth table. 
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4-5. Block diagram of a clocked or synchronous flip-flop. 

combination of levels is present at the inputs. This type of flip can 
also have one or more asynchronous inputs such as the preset input 
at the top of the block. 

There are several different types of data inputs that can be 
used with a clocked flip-flop, and usually the device derives its 
name from the types of inputs provided. There are three different 
types of clock action that may be used on any type of flip-flops. In 
general, any type of clocking may be used on any type of flip-flop. 
There is usually only one clock input on a flip-flop, but there may be 
many different data inputs. Designers of integrated circuits are 
continually coming up with new versions of the flip-flop that will 
simplify system design. 

One type of clocking is called edge clocking. As shown in Fig. 
4-6A, the flip-flop may change state when the clock pulse reaches a 
certain level on its positive-going edge. Or it may be arranged so 
that it will change state at a certain level on it negative-going edge. 
Both types of edge triggering are widely used, but not in the same 
unit. With edge triggering, the operation doesn't depend on the 
rise time or duration of the clock pulse, but when the rise and fall 
times are greater than about 150 nS, the noise immunity of the 
flip-flop will suffer. 
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Another type of clock action that is widely used is found in the 
master-slave flip-flop. It is called level or master-slave clocking. 
Figure 4-7A shows a rough block diagram of the master-slave 
flip-flop. It consists of two separate latches and at no time are any of 
the data inputs connected directly to the output. This results in 
very good isolation between input and output. When the clock 
pulse is applied to clock input, the flip-flop reacts in four distinct 
steps as shown in Fig. 4-7B. First the slave latch is disconnected 
from the master, then the data inputs are connected to the master, 
changing its state. Following this, the data inputs are disabled, and 
the data is transferred to the slave where it will appear at the 
output. 

Although not widely used, still another form of clocking is 
available. It is called AC or capacitive-coupled clocking. Here, the 
clock pulse is capacitively coupled into the flip-flop. It responds to 
either the positive or negative rate of change of the pulse. With 
such an arrangement, the rise and fall times and the duration of the 
clock pulse are critical. 

THE TYPE "D" FLIP-FLOP 

Figure 4-8 shows the Type D flip-flop with its truth table. This 
flip-flop has one data input which appropriately is labeled D. The 
truth table is a little different than the ones that we have been using 

FLIP FLOP 

TRIGGERS --1> 
HERE 

CLOCK PULSE 

0 POSITIVE -EDGE TRIGGERING 

FLIP FLOP 

TRIGGERS 
HERE 

CLOCK PULSE 

0 NEGATIVE -EDGE TRIGGERING 

Fig. 4-6. Flip-flop may be edge-triggered by either the positive-going or 
negative-going edge of the clock pulse. 
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Fig. 4-7. Block diagram and waveform showing clocking of a master-slave 
flip-flop. 

in that we have shown two times, Tn and Tn+1. Tn means that we are 
interested in what state the D input is at, at the time just before the 
clock pulse arrives. Tn+1 is the time immediately after the clock 
pulse, when we are interested in the state of the output. 

The truth table tells simply that after the clock pulse, the Q 
pin will have the same state that the D pin had immediately before 
the clock pulse arrived. Type D flip-flops are handy for latching 
data at a given time. The data input is connected to the D pin. When 
we are ready to latch on to it, we can actuate the clock pin. Either 
both the Q and -q pins or just the Q pin may be available on the 
package and several flip-flops may be contained in a single IC. 
Sometimes one or more asynchronous inputs, such as a preset or a 
clear, may also be provided. Being asynchronous, inputs to these 
pins can force the output to a given state even before the flip-flop is 
clocked. 

TYPE "T" FLIP-FLOP 

Figure 4-9 shows an interesting flip-flop that may not be 
available in an integrated circuit package in a particular logic 
family. However, it can be made from other flip-flops and is used in 
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some large-scale integrated circuits. The name, T flip-flop, comes 
from the word toggle. The truth table tells us that if the T input is 
low, the Q output will not change when the flip-flop is clocked. On 
the other hand, if the T input is made high, the Q output will change 
state whenever the flip-flop is clocked. This arrangement is handy 
in counting circuits. 

CLOCKED RS FLIP-FLOP 

Th RS flip-flop shown in Fig. 4-10 is very similar to the RS 
flip-flop that we discussed earlier, except that it is clocked rather 
than asynchronous. The R and S inputs in this case are synchronous 
data inputs. In some instances, they have designations other than R 

and S. 
A clocked RS flip-flop may also have asynchronous inputs such 

as present and clear. 

THE TYPE J-K FLIP-FLOP 
Figure 4-11 shows what is probably the most versatile 

flip-flop of all. It is called a J-K type because it has two data inputs 
labeled J and K. Whereas there seems to be some reason why most 
of the other input designations such as R, S, T, and D were chosen, 
no one seems to know where the letters J and K originated. Very 
often J-K flip-flops also have asynchronous inputs as shown. The 
truth table shown in Fig. 4-11B shows how the states of the J and K 
inputs before the clock pulse will affect the state of the Q pin right 
after the flip-flop has clocked. 

Figure 4-11C shows another rather interesting table, which is 
sometimes called an excitation table. What this table shows is how 
we must connect the J and K pins if we have a certain state of the Q 
output and want another state right after the clock pulse. The "X" 
in the table represents a "don't care" state. For example, looking at 
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D 0 
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0 CLOCK 0 
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I 

Fig. 4-8. Block diagram of a type D flip-flop and its truth table. 
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Fig. 4-9. Block diagram of a type T flip-flop and its truth table. 

the second line of the table, we see that if Q is 0 before clocking and 
we want it to be 1 right after the clock pulse, we must connect the J 
pin to a high level. The X in the K column means that the flip-flop 
doesn't care in the slightest what state the K pin has. 

TIMING CONSIDERATIONS 

In a combinational logic system consisting only of various 
logic gates, timing may be relatively unimportant. For example if 
one of the high signals applied to the inputs of a 2-input NAND gate 
is a little late in arriving, the output will be a little late in going to 
the low state, but this might have no affect at all on the operation of 
the system. On the other hand, in a clocked system using 
synchronous flip-flops, a slight error in timing can make the 
difference between the system working and not working at all. If 
the system includes a counter, a slight extra delay in the arrival of a 
pulse might mean that the pulse wouldn't be counted at all. 

When using clocked flip-flops, questions arise such as, "How 
long before the clock pulse arrives must the data be present at the 
data inputs?" and "How soon after a clock pulse can the data inputs 
be changed without causing problems?" To aid in answering these 
and similar questions, the designer of an integrated circuit 
specifies several timing parameters. Chief among these are the 
propagation delay, the set-up-time, and the hold time. We will 
consider each of these parameters first as applied to the various 
types of edge-triggered flip-flops and then applied to the master-
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slave arrangement. Later we will discuss a problem called clock 
skew that applies equally to either type of flip-flop. 

All of the parameters of an integrated circuit depend to some 
extent on the temperature, the supply voltage and various 
manufacturing tolerances. For this reason, most of the timing 
parameters will spread over a small range. The important thing is 
to look at each parameter and be sure that the worst possible case 
is taken into consideration. 

Timing In The Edge-Triggered Flip-Flop 

In an edge-triggered flip-flop, the output changes when the 
clock pulse passes through some transition. It may be either the 
positive-going or the negative-going edge of the clock pulse. For 
the moment let's assume that the flip-flop will trigger when the 
clock pulse goes from a low to a high level. This is a very common 
arrangement, although there are flip-flops that trigger on the 
negative-going edge of the clock pulse. 

The propagation delay of an edge-triggered flip-flop is the 
time that elapses between the positive-going edge of the clock and 
when the output changes state. Usually the propagation time isn't 
the same when the output is going from high to low as when it is 
going from low to high. The two symbols usually used for 
propagation delay are T p¡IL and T pue 

One of the most confusing timing parameters of a flip-flop is 
what is now usually known as the set-up time. The reason that it 
tends to be confusing isn't that it is a complicated subject, but 
rather that different manufacturers have used different methods of 
expressing it. In an edge-triggered flip-flop, the clock pulse is what 
starts the action. The action that is taken depends on what signals 
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Fig.4-10. Block diagram of a clocked type R-S flip-flop and its truth table. 
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Fig. 4-11. Block diagram of a J-K flip-flop, its truth table, and an excitation table. 
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are present at the data inputs when the clock pulse arrives. 
Obviously, the signals must be present at the data inputs before the 
clock pulse arrives, but how long before? This is what the term 
set-up time is supposed to answer. 

The set-up time is, then, the time that the signals have to be 
present at the data inputs before the positive-going edge of the 
clock pulse arrives. Some manufacturers have called this the 
maximum set-up time, and others have called it the minimum 
set-up time. By examining the range of variation in this specifica-
tion, you can resolve any possible confusion. 

The next question is how long after the positive-going edge of 
the clock pulse arrives must the signals at the data inputs be held 
still? This parameter is called the holding time. In many modern 
flip-flops the data inputs can be changed anytime after the active 
edge of the clock pulse. In such a case the holding time would be 
zero. 

Timing In The Master-Slave Flip-Flop 

Earlier, in connection with Fig. 4-7, we described how a 
master-slave flip-flop responds to the clock pulse. This might be 
summarized by saying that the flip-flop "looks at" the data inputs 
when the clock pulse is high, and transfers the data to the output 
terminals when the clock goes low. 

Because of this action, the propagation times of a master 
flip-flop specified in a slightly different way. Usually the time 
between a data input and the output and the time between the clock 
and the output are specified. 

Inasmuch as the data inputs cannot change while the clock is 
high, the set-up time is usually specified in terms of the width of the 
clock pulse. During the period when the clock is high, the master 
might be thought of as "looking" for an input to latch on to. This 
leads to a phenomenon known as "ones catching." If the data inputs 
should change during the period when the clock is high, the master 
will usually lock on to a 1, regardless of which way the data 
changes. 
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Chapter 5 

Counters, Registers 
and Counting Systems 

A counter is a collection of flip-flops and logic gates. It is really a 
type of a memory, because the outputs of the flip-flops remain 
unchanged when the input signal is removed. In a counter, 
flip-flops are connected in a sequence, so that they will keep track 
of the number of pulses applied to the input. One obvious 
application of a counter is to count the number of pulses. In fact, the 
ordinary digital clock or watch, operates on this principle. Another 
application of a counter is to act as a frequency divider. 

GENERAL COUNTER OPERATION 

Figure 5-1, shows a general block diagram of a counter. It has 
one input at the left, where a pulse train is applied. The output 
terminals at the right have logic levels that indicate the number of 
pulses that have been applied to the input. The counter also has a 
reset input. Applying a signal to this input will reset the counter to 
zero, so that it can begin counting all over again. 

Figure 5-2A, shows a practical binary counter. We have 
arranged it somewhat differently than you'll see in most circuit 
diagrams, in that we have the input at the right and the outputs at 
the top. The reason for doing this is that it will make the binary 
number that we get as a result appear with the least significant digit 
on the right, the way we usually write numbers. 

The way the counter operates is shown in Fig. 5-2B. Before 
the counting starts, all of the output wires Q0 through Q3 have no 
voltage on them. That is, they are all at a logic zero level. When the 
first pulse is received, the output labeled Q0 goes high. If this is a 
TTL system, it will probably have about +3V on it. At the second 
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pulse, the output labeled Q0 goes back to a low state and the output 
labeled Q1 goes high. This process continues until the 15th pulse is 
received, when all of the outputs are high. 

Looking at the tabulation of Fig. 5-2B, we see two things. 
First of all, we see that the high states of the outputs correspond to 
the number of the pulse that has been received. That is, when five 
pulses have been received, the states of the outputs are 0101, the 
binary number corresponding to 5. Thus, our counter counts the 
pulses applied to its input and displays the count in the form of high 
and low signals in binary form on its outputs. 

The other thing that is obvious, is that the maximum number 
of pulses that our counter can handle at any one time, is 15. When it 
counts up to 15 input pulses, it runs out of output leads. 

Obviously, a binary counter must have enough flip-flops, and 
enough outputs to handle the largest number that it will be called on 
to count. The relationship between the highest number that can be 
handled and the number of outputs is given by the expression: 

Maximum count = 2" — 1 

Where n is the number of binary stages or flip-flops. The — 1 is 
included in the expression, because although the highest binary 
number that can be displayed by n digits, is 2, one of these 
numbers is zero, which is where the counter is set before any 
pulses are received. This information is summarized in Fig. 5-3. 

BINARY CODED DECIMAL OR BCD SYSTEM 

Figure 5-4 shows a somewhat larger counter. It consists of 
two of the counters that we had in Fig. 5-2. Let's imagine that the 
blocks labeled "decoder" will take a binary number and from it 
derive a signal that will actuate a 7-segment readout, as those 
shown at the top of the diagram. 

0 

INPUT 

RESET 

 B 
OUTPUTS 

C 

D 

Fig. 5-1. Block diagram of a counter. 
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Fig. 5-2. Block diagram and operating table of a practical binary counter. 

This system has a serious problem. It will do fine counting up 
to 9. When it gets to ten, we don't want the number going into the 
decoder and readout at the right. We want this one to read 0 and the 
one to its left, to read 1, so that between the two of them, they will 
display 10 on the tenth pulse. You might think that we could use a 
smaller counter, but the next smaller counter would have only 
three outputs and would count only to a binary 111, which is only 7. 

The way around the dilemma is to decode the output of the 
counter so that when it gets to 9, it will reset to zero and provide a 
carry pulse to the counter at its left. The way this can be done is 
shown in Fig. 5-5. Here, the output of the first counter is connected 
to a 4-input NAND gate. The output of this gate is connected to the 
reset pin of the counter. Note that there is an active low indicator 
on this pin, meaning that when the pin goes to a low level, the 
counter will reset. Now the output of our NAND gate will only go 
low when all of the inputs go high. We want this to happen when the 
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Fig. 5-3. Counter capacity depends on the number of flip-flops and output 

terminals. 

count reaches 10 or 1010 in binary. The way we get it to do this is to 
put inverters in the second and fourth lines from the counter. When 
the two Os that appear in the number at the count of 10 are inverted, 
bringing the input of the NAND gate to 1111, which will drive the 
output low and will reset the counter. We can also invert the output 
of the counter and send it as a carry pulse to the next counter to the 
left, so that it will display 1. 

This system of decoding with gates and inverters can be used 
to get a pulse on any count that we wish. Usually, this sort of thing 
is all built into a counter. 

E 

L L 1 
READOUT 

DECODER 

COUNTER OF 

FIG. 5-2 

READOUT 

DECODER 

COUNTER OF 

FIG. 5-2 INPUT 

Fig. 5-4. Block diagram of a two-decade counter. 
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Fig. 5-5. A NAND gate can be used to reset a counter at the count of 10. 

THE BCD NUMBERING SYSTEM 

The decoding arrangement of Fig. 5-5 lets us build counters 
where each stage will count up to ten in the binary number system. 
This arrangement is called Binary Coded Decimal or simply BCD. 
The signals are carried on groups of four wires. Each group carries 
a binary signal to represent signals from one to nine. 

The advantage of the BCD system is that it can easily be 
decoded into decimal form to operate decimal readouts. This 
system is frequently used in instruments such as digital voltme-
ters, frequency counters and calculators. The system is very 
simple and easy to use. The general idea is shown in Fig. 5-6. 

A counter is a comparatively simple circuit. Many different 
counters are available in integrated circuits. In spite of its 
simplicity, the counter can perform an amazing number of different 
functions in digital circuits. 

One example of the use of a counter is in frequency division. In 
Fig. 5-6, we show the same basic counter arrangement that we 
have been talking about. It counts the pulses that have been applied 
to the input and displays the count in binary form on its output lines. 

Suppose we have an input signal with a frequency of 60 Hz and 
we want an output frequency of 1 Hz. That is, we want an output 
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signal consisting of one pulse per second, such as we might use in a 
clock. To get this 1 Hz signal, we must divide the input signal by 
60. This isn't as difficult as it might seem. 

The easy way to look at the problem is to say that we want a 
pulse or a change of state after our counter has reached a count of 60 
(111100 in binary). Thus, we want an output pulse when lines Q5, 
, Q 3 and Q2 are high and lines Q1 and Q0 are low. When this is 

true, the count will be: 
32 + 16 +8 +4 =60 

Again, we can accomplish this with a gating arrangement. A 
commercially available NAND gate has eight inputs. We need only 

DECIMAL COUNT BCD COUNT  

0 0000 
0001 

2 0010 

3 0011 

9 1001 
10 0001 0000 

1 

11 0001 0001 

1 1 

45 LOJ,Oeí)j 

4 5 

1975 01/441_, L ZI11_, 0101 

1 9 7 5 

ETC. ETC. ETC. ETC. ETC. 

THOUSANDS HUNDREDS TENS UNITS 

Fig. 5-6. Table illustrating the BCD counting system. 
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Fig. 5-7. Block diagram of a system using a 5-stage counter to divide by 60. 

six inputs for our circuits, so we will tie two of the inputs to a logic 
high. The others are connected as shown in Fig. 5-7. Inspection of 
this circuit will show that the output of the gate will change state 
everytime that the input is 60 (111100 in binary). We can use the 
output of this gate not only to derive our output pulse, but also to 
reset our counter to zero. 

It is easy to see that our arrangement can be used to divide any 
frequency within the response range of our circuit by any integer. 
For example, counters can be used to derive any of the pulse ratio 
we might need in a TV system. We could, for example, derive the 
color subcarrier, the horizontal sync pulses, and the vertical sync 
pulses, all from the same stable oscillator. 

REGISTER 

A register is a storage device that is much more sophisticated 
than a simple latch. It usually uses edge-triggered flip-flops as 

storage devices. Thus, a register is operatied by a clock pulse. 
This means that the output of a register can be connected back to 
the input without problems such as oscillation or racing. 

Figure 5-8 shows a general block diagram of a register. Most 
registers don't have all of the functions of our sort of generalized 
model, but it will show us what we might expect to find in a 
register. 

Note in Fig. 5-8 that we can put bits into a register and take 
them out in many different ways. These include: 

D Serial-in, serial-out 
0 Serial-in, parallel-out 
El Parallel-in, serial-out 
D Parallel-in, serial-out 
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PARALLEL 
OUTPUT 

I I I 

SERIAL 
INPUT 

1 H 
PARALLEL 
INPUT 

SERIAL 
OUTPUT 

Fig. 5-8. Block diagram of a generalized register. 

We can use registers to perform many useful functions in a 
digital system. For example, we could use a register to connect 
data from serial to parallel form, and vice versa. We can also use 
registers to temporarily store digital signals. 

In Fig. 5-9, we show a parallel-out, serial-in shift register. 
The input data, consisting of a series of high and low signals, 
arrives in serial form at the input at the left of the figure. The input 
high and low signals are synchronized to a clock pulse train that is 
also applied to the register. 

Each time that a new data pulse is applied to the input 
terminal, a clock pulse is applied. The first stage of the register 
then takes on the state of the input. At the same time, whatever 
state the first stage formerly had is transferred to the next stage to 
the right. 

This process is continued, with the data being shifted to the 
right, until four bits of data have been received. Note that when this 
occurs, the data is stored in parallel form in the register. 

Fig. 5-9. Block diagram of a 4-bit serial in, parallel out, shift register. 
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ONE WIRE RECEMNG ENO 
(SERIAL INPUT SHIFT 

REGISTER) 
DATA TRANSMISS1CN 

h EIGHT CLOCK INTERS—ONE BYTE 1.1 

 I I  
SERIAL DATA: — 

CLOCK PULSES: — 

EXAMPLE ILLUSTRATES 8- BR- BYTE10110011 

Fig. 5-10. Pulse waveforms of the type applied during the operation of the 
serial-input register in Fig. 5-9. 

Figure 5-10 shows the pulses in an 8-bit register of the type 
shown in Fig. 5-9. Note that the clock pulses are absolutely 
essential to the operation of the register. 

Another variation of a shift register is shown in Fig. 5-11. The 
operation here is just the opposite of the register in Fig. 5-9. The 
data is applied in parallel to the inputs labeled Do through D 3. The 
data is then stored in the flip-flops of the register. 

Inasmuch as the input signal is now stored, it can be removed. 
When clock pulses are applied, the contents of the register are 
clocked out in serial form. 

Fig. 5-11. Block diagram of a 4-bit parallel in, serial out, shift register. 
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One obvious use of shift registers is to convert data between 
serial and parallel form. It can also be used for short-time storage of 
data. For example, the parallel inputs of a register can be used to 
accept data from a keyboard. While the data is being entered, it is 
stored in the register. Once it has been entered, it can be clocked 
out serially into a digital system. 

Shift registers can also be used to perform counting functions. 
For example, a "1" can be entered into the serial input, then the 
number of clock pulses that have occurred since the "1" was 
entered can be determined by seeing how many places in the 
register the "1" has advanced. 

Shift registers are available in integrated circuits, and 
large-scale devices may contain many of them. They may be of any 
length. Some calculators have registers of more than 70 stages. 
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Chapter 6 

Some Digital Integrated Circuits 

So far we have discussed all of the basic digital functions that are 
performed in a digital system. We have mentioned that these 
functional units are available in integrated circuits but we haven't 
spent any time discussing the integrated circuits themselves. 
Inasmuch as there are thousands of different digital integrated 
circuits available commercially, we can't possibly cover them all in 
one chapter. In fact several books would be required. What we will 
do here is to give some idea of the types of integrated circuits that 
are commonly used. We will also describe a few functional units 
that are not mentioned elsewhere in the book. 

Integrated circuits are usually grouped into three categories 
on the basis of their internal complexity. The simplest category is 
called Small Scale Integration, or simply SSI. Devices in this 
category have the equivalent of up to 10 logic gates in a single 
package. They may be packaged in a round transistor type can with 
the leads protruding from the bottom, or more commonly they are 
in a dual-in-line package, or DIP. A package of this type is shown in 
Fig. 6-1. SSI packages usually have either 14 or 16 pins. 

At the other extreme we have what is called Large Scale 
Integration or LSI. These devices have the equivalent of over 100 
logic gates in a single package. The packages often have either 28 
or 40 pins, although other arrangements are sometimes used. 
Microprocessors and semiconductor memories fall into this cate-
gory. Between these two extremes we have Medium Scale 
Integration or MSI. Counters and registers are in this category. 

One of the most useful "tools" available to the engineer or 
technician working in the digital field is a familiarity with the 
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Fig. 6-1. Drawing of a typical dual-in-line package, or DIP, IC. 

different types of digital integrated circuits that are commonly 
used. Of course, as we pointed out earlier, you don't have to know 
what is inside, a functional knowledge of what happens at the pins is 
usually adequate. 

New digital integrated circuits are still being introduced at a 
rapid rate. The only way to keep up with them is to read the 
technical journals regularly. Many fine data books are available 
from manufacturers that will serve as a source of information on 
what is available at any given time. 

What is actually made available in digital integrated circuits 
depends more on demand that on almost anything else. If there is a 
great demand for a rather complicated function in many systems, 
manufacturers will usually develop an LSI circuit that will perform 

Fig. 6-2. Block diagram of a type 7400 quad 2-input NAND gate. 
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Fig. 6-3. Block diagram of the type 7401 quad 2-input NAND gate with open 
collectors. 

many of the system functions in a single integrated circuit. If, on 
the other hand, there isn't much demand for a particular combina-
tion of functions, they must be realized by using many SS! circuits. 
The reason for this is that it is feasible to put almost any number of 
functions into a single integrated circuit. Much of the cost is in the 
original development. Another problem is that the yield is often 
low in a new product. If the demand is great enough the 
manufacturing process can be highly refined, giving a good yield, 
and the development cost may be amortized over a large number of 
devices. 

LOGIC GATES 

One of the simplest digital integrated circuits is the logic gate. 
Many different gating arrangements are available. Usually the 
number of gates in a single package is limited by the number of pins 
available on the package. The number of pins on SSI packages is 
usually limited to 14 or 16 in the interest of standardization. 

Figure 6-2 shows the Type 7400 quad 2-input NAND gate 
which is typical of a digital integrated circuit. The word, quad, 
means that there are four separate gates in the package. Note that 
the positive supply voltage is applied to pin 14 and ground is 
connected to pin 7. This arrangement is rather common, but it is far 
from universal. Don't depend on it unless you have checked the 
diagram. 

Figure 6-3 shows what appears to be an identical gate, but in 
this arrangement, the gates have open collectors as described in 
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Fig. 6-4. Three logic gates with a variety of input configurations. 
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Fig. 6-5. Block diagram of the type 7404 hex inverter. 

Chapter 2. This figure illustrates that just having the basing 
diagram doesn't necessarily tell you all you need to know about an 
IC. Just looking at Fig. 6-3 might lead to the misconception that the 
package contained four regular 2-input NAND gates. If an open 
collector gate were connected in a regular circuit without a pull-up 
resistor, the output would never go to a high level. 

We have spent a lot of time talking about gates with two 
inputs. This has been primarily in the interest of keeping things 
simple. Gates are available with many inputs as shown in Fig. 6-4. 

INVERTERS 

The inverter is probably the most simple digital circuit that 
one can imagine. However, this doesn't mean that it isn't very 
useful. In designing a digital system there are often cases where a 
signal has the wrong polarity to do what we want done. In such a 
case, it is handy to be able to insert an inverter into the system. 

Many different inverter packages are available. The Type 7404 hex 
inverter shown in Fig. 6-5 is typical. The word, hex, means simply 
that there are six circuits in the package. 

BUFFERS 

Another name that you will find in the catalog of digital circuits 
is buffer. The name is applied to both inverters and gates. It merely 
means that the output stage has a greater capability to source and 

sink current than a regular gate or inverter. Buffers are used when 
it is necessary to drive something that consumes more current than 
a regular logic gate. For example, a buffer would be used to drive a 

line connecting two parts of a digital system. 
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THE SCHMIDT TRIGGER 

The inverters and gates shown in Fig. 6-6 look just like 
regular gates and inverters except for the little symbol inside that 
looks like the hysteresis loop of a magnet. This symbol means that 
the gate exhibits a property known as hysteresis which we will 
discuss in a minute. The circuit that accomplishes this is called a 
Schmidt trigger circuit after a similar circuit made with discrete 
components. 

The term hysteresis used in connection with a logic gate 
means that the input circuit has two, rather than one, trigger 
levels. If the input voltage slowly rises from zero, when it reaches 
a level of about +1.6V, the circuit will change state, that is, the 
output of the NAND gate will go low. O. K. so far. Now suppose the 
voltage starts to drop back toward zero. The circuit will not change 
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Fig. 6-6. The marking in the inverter and gate symbols indicate Schmidt trigger 
inputs. 
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Fig. 6-7. Simplified diagram of a tri -state gate. 

state when the voltage reaches +1.6V, but will remain in the low 
state until the voltage drops to about +0.8V, then it will change 
state. Thus the trigger voltage is higher when the input voltage is 
rising than when it is falling. This effect, which is called hysteresis, 
is useful when the input comes from the outside world, rather than 
from another digital IC. We will discuss the operation of the 
Schmidt trigger in instances when the input voltage has a rather 
long rise or fall time later in the book. 

TRI-STATE LOGIC 
The open collector arrangement described in a preceding 

chapter for connecting the outputs of logic gates in parallel has 
many limitations. To improve this situation a new type of TTL was 
developed. This is called tri-state logic. The name is apt to be 
deceiving because the logic signals still have only two significant 
states—high and low. The name tri-state means that the output of a 
gate has three possible states—high, low, and a third state where 
there is no output, just a high impedance. 

Figure 6-7 shows a simplified diagram of a tri-sate gate. In 
many ways it is similar to a regular TTL gate. The interesting part 
of the circuit is shown within the dashed lines. When the disable 
input is high, transistor Q1 removes the drive current from the 
output transistors. Thus both of the output transistors are turned 
off, and the output pin is floating. 

89 



The circuit of Fig. 6-7 varies from a standard TTL gate in 
another respect. The top transistor in the totem-pole output state 
is actually a part of a Darlington circuit. The purpose for this is so 
that the output stage can supply leakage currents for the many 
other output stages that might be connected in parallel. 

When the disable input of Fig. 6-7 is brought to a low logic 
level, the gate will act just like any other TTL gate. The state of the 
output will depend on what is connected to the inputs. Several of 
these gates can be connected with their outputs in parallel without 
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Fig. 6-8. Block diagrams of tri -state inverters and gates. 
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Fig. 6-9. Block diagram of the type 74151 data selector. 

any ill effects. Normally all of the disable inputs are held high so 
that there will be no output from the gate. The normal output of any 
particular gate can be applied to the common connection by merely 
bringing its disable input to a low logic level. 

INPUTS OUTPUTS 

SELECT 

C B A 

STROBE 

Y W 

X X X 

L L L 

L L H 

L H L 

L H H 

H L L 

H L H 

H H L 

H H H 

H 

H = High Level, L = Low Level, X = Don't Care 
EO, El ... El 5 = the complement of the level of the 
DO, D1 ... D7 = the level of the respective D input 
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F
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 i
 

respective E input 

Fig. 6-10. Truth table for the data selector in Fig. 6-9. 
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Figure 6-8 shows a typical tri-state inverter and gate package. 
All sorts of gates are available using tri-state technology. 

THE DATA SELECTOR 

Figure 6-9 shows an integrated circuit which is called a data 

selector, or decoder. It has two output lines which always have 
complimentary states, much like the Q and Q outputs of a flip-flop. 
When pin Y is high, W will be low and vice versa. There are eight 
input pins. In effect only one of these input pins is connected to the 
output at any one time. The particular input pin that is connected to 
the output depends on the signals applied to the three data select 
pins. There is one more pin, called the strobe, which must be 
brought to a low logic level for the circuit to operate. 

The operation of the data selector is shown in the truth table of 
Fig. 6-10. On the first line of the table we see that if the strobe pin 
is at a high level, pin Y will be low and pin will be high. The X's in 
the columns pertaining to the C, B, and A inputs show that the 
circuit doesn't care what their states might be. Thus when the 
strobe pin is high, the output is fixed regardless of what is 
connected to the other pins. 

The circuit gets more interesting when the strobe is brought 
to a low level. In the second line of the truth table, we see that 
inputs C, B, and A are all low, or O's the output at pin Y will take on 
whatever state is applied to pin DO. On the next line we see that if 
the inputs, starting with pin C are 001, the output at pin Y will take 
on the state of pin Dl. 

As we look down the table, we see that the states of pins C, B, 
and A, in that order, represent the binary number corresponding to 
the input pin that is connected to the output, pin Y. As we noted 
earlier, pin W will always be complimentary to pin Y. 

It is rather obvious that the data selector can be used to take 
the data that happens to be on any of the input pins and connect it to 

GATING 

ARRANGEMENT 
OUTPUT 

Fig. 6-11. Block diagram illustrating how a data selector can simplify a complex 
gating arrangement. 
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LINES DESIRED CONNECT 
A 8 C OUTPUT PIN TO  

i i 
0 0 0 0 DO GND 

O 0 1 I DI + 

O I 0 I D2 + 

Oil I D3 + 

I 00 0 D4 GND 

I 0 I 0 05 GND 

110 I 06 + 

III I D7 + 

Fig. 6-12. Table of data selector terminal connections for the output shown. 

the output by merely applying the address of the pin to the in data 
select pins C, B, and A. Thus if we wanted the output to have the 
same state as pin 5, we would apply the signal 101 to pins C, B, and 
A. 101 is the binary number corresponding to 5. 

An application of the data selector that isn't immediately 
obvious is that it can be made to replace many gates to perform 
very complex gating functions. Suppose that we have three lines, 
C, B, and A as shown in Fig. 6-11. We can implement a gating 
arrangement that will perform any desired operation on the signals 
on these lines with a data selector. All we have to do is to decide 
what we want the output of our circuit to be for various 
combinations of O's and l's on lines C, B, and A. Then we connect 
the corresponding data pin to this level and take our desired output 
from pin Y. 

Suppose, for example that we wanted the desired outputs 
shown in Fig. 6-12 for various combinations of signals on lines C, 
B, and A. The table in the figure shows which pin we have to 
connect to a high level to get this condition. By refering back to the 
truth table in Fig. 6-10 you can see how this works. The 
connections are shown in Fig. 6-13. Thus a data selector can be 
used in a new simple circuit to accomplish very complex gating 
function. 

THE MONOSTABLE MULTI VIBRATOR 

The monostable multivibrator, or one-shot as it is often 
called, is sort of a combination of analog and digital circuitry. It is a 
circuit that will develop an output pulse when it is triggered by an 
input pulse. The duration of the output pulse is determined by a 
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resistor and capacitor connected externally. The one-shot is used 
in digital system to introduce a time delay, or to generate a pulse 
having a definite duration. 

Figure 6-14 shows the Type 74121 one-shot together with its 
truth table. An external resistor is connected between pins 9 and 
11 and a capacitor between pins 10 and 11 to set the time period. 

Although the one-shot looks like a very convenient way to 
adjust timing in a digital system, it has the disadvantatge that its 
timing depends on the value of the external resistor and capacitor. 
In many systems slight changes in timing have little or no effect. In 
other systems timing is very critical. In critical applications, it is 
better to generate timing periods, delays etc., by counting down 
from a stable source than to depend on the time constant of an 
external circuit. 

BECOMING FAMILIAR WITH DIGITAL CIRCUITS 

Only a very few digital IC's have been mentioned in this 
chapter. However, we have tried to take some of the mystery out of 
the subject. One of the best ways of increasing one's knowledge 
and familiarity with digital circuits is to leisurely scan through the 
manufacturers data books. Such books are available from most IC 
manufacturers either free or at a very nominal cost. 

By merely looking over the various IC's that are available, one 
will gradually obtain a familiarity that will simplify both design and 

Fig. 6-13. Circuit connections needed for realizing logic states in the truth table 
of Fig. 6-12. 
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Fig. 6-14. Block diagram and truth table for the type 74121 monostable 
multivibrator. 

troubleshooting. Some of the functions that are available in a single 
package are rather complex and may appear rather confusing at 
first. Fortunately, the manufacturer also gives the truth table for 
each circuit, and this makes it possible to understand even the most 
complex circuit. 
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Chapter 7 

Power Supplies And Noise 

Although power supplies and noise might seem to be unrelated 
subjects, we have a reason for covering them in the same chapter. 
The reason is simply that power supplies and their associated leads 
are the most common means for propagating objectionable noise 
through digital systems. 

The power supplies used with digital systems are somewhat 
unique. The voltages are low, often only +5V. Currents are high. It 
is not uncommon to find power supplies capable of delivering many 
amperes. Voltage regulation is universally used because digital 
ICs are easily damaged by over-voltage. 

Another unique aspect of the power supplies used in digital 
systems is that they must be capable of delivering current in short 
spikes. Digital systems are, by their nature, switching systems; as 
a result, power supply current is furnished in pulses. Because of 
these factors, any consideration of the power supply must include 
the entire power distribution system. 

Figure 7-1 shows a simplified schematic diagram of the power 
supply of a digital system. It consists of a power transformer, a 
rectifier, a couple of capacitors, and a regulator. Inasmuch as 
digital circuit elements operate at comparatively low voltages— 
between 5 and 15 volts—the power supply produces a low voltage, 
and if the system has any size at all, a large current. Currents of 
several amperes are common in larger systems. 

Because of the high currents involved, filter chokes are 
usually not considered practical. This increases the problem of 
regulating the output voltage and removing AC ripple from the 
output. Fortunately, the regulator itself is a pretty good filter. 
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Fig. 7-1. Schematic of a typical power supply for a digital system. 

Voltage regulation is necessary because digital ICs are 
usually not very tolerant of overvoltages. Whereas a vacuum tube 
might overheat when the supply voltage exceeded the specified 
limits, it will usually forgive the offense if the over-voltage doesn't 
last too long. A solid-state device, on the other hand, has no 
forgiving spirit at all. This caused one engineer to remark that, 
"Vacuum tubes are kind and forgiving, whereas solid-state devices 
seem to have been designed to protect fuses." 
THE REGULATOR 

In smaller power supplies, the regulator is a solid-state device 
with three terminals—the input, the output, and ground. In larger 
power supplies, there are often a few external components, such as 
a transistor to carry currents that are too large for an IC regulator. 
In all cases, the regulator is a feedback circuit that compares the 
actual output voltage with the voltage from some standard, such as 
a Zener diode. The error voltage is amplified and is applied to some 
device, such as a pass transistor that will, in turn, limit the output 
voltage. 

Any closed-loop feedback system can oscillate under the right 
conditions. Unfortunately, we can't always predict what these right 
conditions might happen to be, so precautions are always taken to 
keep voltage regulators from oscillating. This is usually ac-
complished by the input and output filter capacitors shown in Fig. 
7-1. Thus, in addition to the regular filtering function, these 
capacitors also help to make sure that the regulator will not 
oscillate. 

The input filter capacitor, Cl in Fig. 7-1, must be large enough 
so that the input voltage to the regulator will never fall below the 
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specified value of the output voltage. Thus, its value will depend on 
how much current the power supply must deliver. In a high-current 
supply, the voltage across Cl will drop more between cycles of the 
voltage from the transformer and the rectifier. In a one-ampere 
supply, the value of Cl wi 11 be about 4000 F. 

The output capacitor, C2, is much smaller. Its main function is 
to remove any high-frequency noise and to smooth out transients 
that may be generated in the digital system itself. 

Most IC regulators have built-in protective features. They 
will shut down if the load current becomes excessive or if they 
overheat. This should be remembered when troubleshooting a 
power supply. 

POWER DISTRIBUTION SYSTEM 

The best way to look at the power supply of a digital system is 
not as a single stage called the power supply, but as a power 
distribution system that not only furnishes the proper voltages and 
currents, but distributes them to the various parts of the system. 
Thus, the power distribution system consists not only of what we 
normally call the power supply, but also the wiring, connectors, 
shielding, and miscellaneous filtering capacitors that might be in 
the system. 

We have noted earlier that in a digital system, things happen 
very quickly. This results in transients that can travel all through 
the system. To get a better idea of the result of rapid switching, 
consider the voltage that can be induced in the inductance of a lead 
by a switching transient. The induced voltage is given by: 

E = L di 
dt 

where E is the induced voltage, and di/dt is the rate of change of 
current. 

In most digital systems, the inductance of leads, the values of 
the currents and the switching time are all small, but the rate of 
change of current can be very large indeed. Suppose, for example, 
that a current switched from zero to 10 rnA in 10 nS, a reasonable 
thing to expect in a digital system. The rate of change of current 
would be ten million amperes per second. Of course, the current 
will never get very high, but this extremely high rate of change will 
cause induced voltages to be much higher than one might expect. A 
lead having an inductance of one microhenry would have an induced 
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voltage of 10 volts from such a transient. In a much shorter lead, 
having an inductance of only one tenth of a microhenry, the induced 
voltage could be one volt. 

DESPIKING CAPACITORS 

The discussion in the preceding paragraphs shows how 
serious the induced voltages can be in digital power distribution 
systems. The best approach is to keep these rapid changes in 
current off the distribution lines by the judicious use of capacitors. 
Figure 7-2 shows in an elementary way what happens when there is 
a switching surge in a system. In Fig. 7-2A, we have a rather rough 
equivalent circuit of a power distribution line with a switching 
device connected to it. When the switch is closed, note that voltage 
Eon the supply line will suddenly drop. This is shown in Fig. 7-2B. 

We can avoid the voltage drop on the supply line by installing a 
capacitor close to the switching device as shown in Fig. 7-2C. 
Now, when the switch is closed, the voltage will not drop instantly. 
The capacitor will hold the voltage up, while it is discharging 
through the load. If the switch is only closed for a very short time, 
the voltage will not have a chance to drop very much before the 
switch is opened again. 

The situation shown in Fig. 7-2 is analogous to what happens 
when a TTL IC switches from one state to another. We noted 
earlier that during this very brief switching period, there is a 
low-resistance path between the supply voltage and ground. By the 
judicious use of what are often called "despiking capacitors" the 
transients can be kept off the supply lines. It is usual practice to 
install a 0.01 to 0.1 ceramic capacitor on each PC board for every 
three or four TTL packages. Also on each board is at least one 
larger capacitor in the order of 10 ,LF, preferably a tantalum type. 

Although use of despiking capacitors is properly a function of 
system design, sometimes failure of a capacitor can cause very 
elusive problems in a system. 

LEADS SHIELDING AND GROUNDING 

The leads that carry the operating voltages throughout the 
system are an important part of the power distribution system. 
Even though capacitors are used throughout the system, the leads 
should be heavy enough to carry the required current. The hot line 
and ground line should be run close together, and, in many 
systems, shielding of the power lines is advisable. 
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Ground loops should be carefully avoided, the shielding and 
cabinet should be connected to the power supply ground at only one 
point. Figure 7-3, shows a sketch of a sandwich type of construc-
tion that is sometimes used for power lines. The hot line is 
sandwiched between two conductors that are grounded. This 
arrangement not only provides shielding for the lines, but the 
capacitance of the structure helps to suppress surges. 

Most manufactured equipment has good wiring and shielding, 
but many times a piece of manufactured equipment cannot be 
installed in a broadcast station without modification or the addition 
of other components. This is particularly true when computers are 
used to control various functions. The addition or modification 
often violates the wiring and shielding rules, with the result that 
the system will not be reliable. 

NOISE AND INTERFERENCE 

We have already discussed the way that impulses that are 
generated inside a digital system may interfere with its operation. 

Fig. 7-2. Schematics showing the effect of a switching device on supply 
voltages and the purpose of a despiking capacitor. 
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Fig. 7-3. Drawing of a sandwich conductor used to provide good shielding of 
power supply lines. 

There are two other considerations regarding noise and interfer-
ence from outside sources. One is that external things, such as a 
transmitter, may interfere with the system. The other is that the 
digital system may generate noise that will interfere with the 
operation of other equipment, which may or may not be digital. If 
you have any doubts about the ability of digital devices to cause 
interference, just hold your pocket calculator close to a TV set and 
watch the interference pattern on the screen. 

Noise in analog systems is pretty easy to understand and to 
identify. We are all familiar with this hiss, roar, clicking and 
popping that we call noise. We can't always minimize the noise as 
much as we would like, but usually we have no trouble identifying 
it. In a digital system, noise isn't as easy to identify. 

In an analog system, if noise gets into one of the stages it will 
travel along with the signal through all the other stages and will 
show up, usually amplified considerably, in the output. In a digital 
system, however, noise in one stage will have no effect on any of 
the stages until it is strong enough to overcome the noise margin of 
the stage. Then it will introduce a false high or low into the system. 

Figure 7-4, shows the effect of noise graphically. The 
maximum level that the system will see as a low signal and the 

Fig. 7-4. These drawings show how noise on an input signal can cause spurious 
pulses an output signal. 
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minimum level that the system will think is a high are marked on 
the graph. We have also shown a digital signal, which is corrupted 
by noise. Looking at the plot of the output, we see that most of the 
time the noise isn't strong enough to cause false triggering. 
However, at two points in the figure the noise does cause the 
output signal to be incorrect. 

There are two points about Fig. 7-4 that are important. The 
first is that even though the noise at the input has an effect on the 
output at two points, the output doesn't look noisy. If we were to 
look at the output on an oscilloscope, we wouldn't necessarily 
know that the errors were due to noise. The other important point 
is that, often, there is enough noise on a digital signal so that there 
is practically no noise margin left and we have no way of knowing 
this. The system will work fine, but the noise is so high that even a 
very slight additional amount of noise getting into the system will 
cause errors. This sometimes makes troubleshooting very dif-
ficult. A system with some noise, but not enough to cause trouble, 
will often be erratic. 

An old broadcast engineer once remarked that the vicinity of a 
radio transmitter was the worst possible place to try to operate 
electronic equipment, including a radio station. Of course, the 
remark refers to the fact that there is often a very high RF field 
strength in the vicinity of a radio or TV station. Everything that is 
located in this region of high field strength will try to act as an 
antenna and pick up some of the energy. Digital signals are quite 
low in voltage, and although they tend to discriminate against 
noise, it doesn't take a very great shielding or grounding fault to 
pick up interfering signals that are much stronger than the regular 
digital signals. 

Some items of digital equipment were apparently not de-
signed to operate in a region of high RF field strength. Items of this 
type need work on the shielding and grounding. Figure 7-5 shows 

POWER LINE 

o   

çrl ELCED CABLE 

0  (j  

Fig. 7-5. Ground loops exist on a shielded cable when it is grounded at both 
ends. 
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Fig. 7-6. Skin effect causes current to flow on the outer surface of conductors. 

what may happen when the shield of a cable carrying a digital signal 
is grounded at both ends. Note that there is also a power line 
running between the same two points and it also is grounded at both 
ends. It is easy to see from the figure that the shield is electrically 
in parallel with the grounded side of the power line. This means 
that the shield will actually carry some of the current that would 
normally flow in the grounded side of the power line. Now ideally 
the power line current should flow only on the outside of the shield. 
But, as is often the way in the real world, some of it will also get on 
the inside of the shield and will show up mixed in well with the 
signal. We will have more to say about running long lines carrying 
digital signals in another chapter. 

One thing that is often neglected in connection with shielding 
is the skin effect. We all know that at high frequencies, current 
flows only on a thin layer on the surface of a conductor. Of course, 
radio frequencies fall into this category. So do the high-frequency 
components of digital signals. Although a digital signal may have a 
fairly low pulse repetition rate, say 1000 pulses per second, the 
very steep leading and trailing edges of the pulses will have very 
high frequency components. Thus, both RF and digital shielding 
must take the skin effect into consideration. 

Figure 7-6A shows a shielded enclosure. Note that the 
equipment inside the enclosure is connected to a screw at the 
bottom of the shield. The other end of the screw is connected to 
ground. This certainly looks like as good a ground as you can 
get—until we consider the skin effect. When we realize that the 
high-frequency components of the signal will not penetrate the 
metal of the shield but will travel along its surface, we see that this 
isn't a good arrangement at all. The signal will follow the path 
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Fig. 7-7. Calculation of power loss in a series regulator. 

shown by the dashed lines in Fig. 7-6A, out over the outer surface 
of the shield. This means that rather than being a good shield, our 
arrangement is much more like an antenna. The correct way to 
connect the shield of the cable to the shielded cabinets is shown in 

Fig. 7-6B. 

SWITCHING REGULATORS 

The IC voltage regulators that we discussed earlier in this 
chapter consume quite a bit of power in the process of voltage 
regulation. As shown in Fig. 7-7, the series-pass element of the 
regulator acts as a variable resistor that changes value as required 
to keep the output voltage constant. 

As shown in the figure, the power dissipated in the regulator 
at any instant will be the product of the current flowing through it 
and the voltage drop across it. Although this power dissipation is 
small, it is significant in battery-operated equipment and in the 
interest of energy conservation. 

Fig. 7-8. A switching regulator relates voltage by varying the time that a switch is 
closed. 
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Fig. 7-9. Diagrams showing the action of a switching regulator. 

There is another approach to voltage regulation, which is 
much more energy efficient. As shown in Fig. 7-8, the series 
element of the regulator acts more like a switch than a resistor. 
The output voltage is controlled by the percentage of the time the 
switch is closed. 

To appreciate how a switching regulator can be more efficient, 
consider an ideal switch. When it is open, there is a voltage across 
it, but no current. When it is closed, current flows, but there is no 
voltage across the switch. If the switch changes instantaneously, 
the product of voltage and current will always be zero. Hence, no 
power will be dissipated in the switch. 

Of course, a transistor isn't an ideal switch. There is always 
some voltage drop, however small, when it is turned on. As a 
result, there is always some power dissipation in the switching 
transistor, but it is much less than the dissipation in a conventional 
series regulator. 

In addition to its high efficiency, the switching regulator also 
has the advantage of making the power supply smaller and lighter, 
because there is less heat to be dissipated. 

Figure 7-9A, shows the circuit of a typical switching reg-
ulator. Note that, unlike earlier power supply regulators, it has two 
different components—diode Dl and inductor Ll. The presence of 
these components in the power supply is a good hint that a 
switching regulator circuit is used. 
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First, let's look at how the switching transistor, together with 
the other components, accomplishes voltage regulation. When 
transistor Ql is turned on, as in Fig. 7-9A, current flows through 
inductor Ll. This current is applied to the load and also charges 
capacitor Cl. When transistor Ql is turned off, as in Fig. 7-9B, no 
current can flow through it. However, the magnetic field of 
inductor Li collapses and the stored energy of the field causes 
current to continue to flow through Li and through the load. This 
current can't flow through the transistor, since it is open, so it 
flows through Dl, as shown. 

The voltage across the load will tend to rise when transistor 
Q1 is turned on and to fall when it is turned off. To hold the average 
voltage across the load constant, we need to furnish the base of Ql 
with an oscillating voltage that will vary the on and off times of Ql. 

Figure 7-10 shows a circuit that can accomplish this. Here, we 
have an amplifier connected so that when voltage e, is higher than 
e2' transistor Ql will be turned on. When e2 is higher, Q1 will be 
turned off. Voltage el is obtained from a reference voltage and a 
circuit consisting of resistors R1 and R2 that provides positive 
feedback to the amplifiers. 

Voltage e2 is obtained from resistors R3 and R4 and is 
proportional to the voltage across the load. Now, assume for a 
minute that the load voltage is lower than it should be. 

Under this condition, el would be greater than e2 for more than 
half of the cycle of oscillation. This would allow Q1 to be turned on 
for more than half of the cycle, which, in turn, would allow more 
current to pass, thus, boosting the output voltage to the desired 
value. Just the opposite situation would occur if the output voltage 
were to rise above the desired value. 

Fig. 7-10. Practical switching regulator circuit. 
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Fig. 7-11. Step-up (A) and polarity-reversing (B) switching regulator circuits. 

In order to properly regulate the voltage, the frequency of 
oscillation of the switching regulator must vary with changes in 
supply voltage and load current. In practical regulators, the 
switching frequency varies between 5 and 100 kHz. 

This switching phenomenon can cause considerable radiation, 
unless proper precautions are taken. This, of course, is a design 
rather than a maintenance problem. Sometimes, however, inter-
ference may be encountered when a system using a switching 
regulator is connected to another system with inadequate shield-
ing. 

The switching regulator has another unique feature. By 
rearranging the components, it can step up voltage so that the 
output voltage is actually higher than the input voltage. It can also 
reverse the polarity of the input voltage so that the output voltage 
is negative with respect to ground. 

Figure 7-11A shows how the components are arranged to step 
up the voltage and Fig. 7-11B shows a circuit where the polarity of 
the output voltage will be inverted with respect to the input 
voltage. 
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Chapter 8 

The Operational Amplifier 

Although it isn't a digital component, the operational amplifier, or 
op-amp as it is usually called, is a very useful integrated circuit and 
is used extensively in circuits that convert signals from analog to 
digital form. For this reason, we will take a brief look at how it 
works. 

OP-AMP CHARACTERISTICS 

Figure 8-1 shows the symbol for an op-amp. If this amplifier 
were ideal, it would have infinite gain, an infinite input impedance 
and practically zero output impedance. In real life, op-amps don't 
realize these specifications, but they come close enough for many 
practical purposes. Note that the op-amp has two power supply 
leads, one positive and one negative, with respect to ground. With 
this arrangement, the output can swing linearly above and below 
zero. In a typical IC op-amp, the output swing may be ±10V. The 
gain of an op-amp is typically between 100,000 and 1,000,000. 

The op-amp shown in Fig. 8-1 has two inputs, one marked 
positive (+) and one marked negative (—). This doesn't mean that 
positive voltages are applied to one input and negative voltages to 
the other. Rather, it indicates the phase of the output voltage with 
respect to the input voltage. If a signal is applied to the plus (+) or 
noninverting input, the output voltage will be in phase with the 
input voltage. If the signal is applied to the minus (—) or inverting 
input, the output will be inverted or 180 degrees out of phase with 
the input. This inverting input is the one most commonly used, 
because an op-amp is almost always used with negative feedback to 
stabilize it and hold its parameters constant. 
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As we noted, the gain of an op-amp is extremely high as 
compared with other amplifiers with which we may be familiar. It 
takes only a very small input signal to saturate the amplifier. In Fig. 
8-2, we have plotted the output of an op-amp as a function of the 
input voltage. Note that as the input voltage changes from zero the 
output voltage will change linearly as we might expect, but that as 
soon as the input voltage is either positive or negative a few 
microvolts with respect to ground, the amplifier will saturate. That 
is, the output will have reached its highest possible value—in this 
case, either plus or minus 10V with respect to ground. 

THE OP-AMP WITH FEEDBACK 
It doesn't take much imagination to tell that if we were to 

attempt to operate an op-amp without feedback, we could easily 
run into problems with oscillation. With the gain over 100,000 and 
the pins separated only by a small fraction of an inch, conditions 
leading to oscillation could readily be encountered. 

By using negative feedback around the op-amp, we will reduce 
its gain, but we will also produce a circuit where such things as the 
gain depend only on the external components, such as resistors, 
and not on the properties of the op-amp itself. 

Figure 8-3 shows an op-amp with a feedback network 
consisting of only two resistors. Here, the input current is II and 
the feedback current is 12. The circuit is easy to analyze because the 
gain of the op-amp is so high that for all practical purposes, we can 
assume that no current flows into the input of the amplifier at all. Of 
course, there must be an extremely small current flowing into the 

Fig. 8-1. Symbolic representation of an op-amp. 
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Fig. 8-2. Output voltage of an op-amp as a function of input voltage. 

input of the amplifier, if we are to get any output, but this current is 
really infinitesmal compared with the other currents in the circuit. 
There is practically no error at all in neglecting it. 

We can, therefore, consider that the input current to the 
circuit II is numerically equal to the feedback current 12. Another 
way of looking at the same point is to assume that the input voltage 
of the op-amp is so close to zéro, for any real output, that we can 
consider the voltage at point A of Fig. 8-3 to be zero; that is, we can 
consider point A to be a "virtual" ground. With these simplifying 
assumptions, the analysis of the circuit of Fig. 8-3 comes very 
easy. 

Fig. 8-3. Op-amp with negative feedback. 
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The input current is simply equal to Vin/R1, and the feedback 
current is equal to — VIR2.Inasmuch as these two currents are 
equal, we can write the following equation: 

— V V 
o in 

R2 R 1 

With a simple rearrangement of terms, this becomes: 

V V _ — R 2 
o — R 1 

which means that the gain of the circuit is equal only to the ratio of 
the feedback resistance to the input resistance. 

Note carefully that the gain depends only on the ratio of the 
resistances, and not on anything else, such as supply voltages or 
the parameters of the op-amp itself. This relationship will hold as 
long as the actual gain of the op-amp, by itself, is much higher than 
the gain of the final circuit, which is almost always the case. The 
minus sign in the equations merely indicates that the output 
voltage is 180 degrees out of phase with the input voltage. 

So far, we have only used the minus (—) or inverting input of 
the op-amp. We can, if we wish, build a noninverting stage by 
applying the input voltage to the plus (+) or noninverting input and 
use the minus (—) or inverting input for our negative feedback. The 
arrangement is shown in Fig. 8-4. The expression for the gain of 
the complete stage is derived in a similar way. 

Figure 8-5 shows a practical example of the use of feedback 
around an op-amp to set the gain. Here, the input resistance is 10k, 

Fig. 8-4. Op-amp using the non-inverting input for signal input and the inverting 
input for negative feedback. 
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Fig. 8-5. Practical amplifier circuit. 

and the feedback resistance is 100k. From the equations that we 
derived earlier, we can see that the gain of the stage is: 

V. — R2 — 100K 

V = R1 —  10K--10 
In 

Although this simple circuit arrangement has many useful 
applications in digital systems, more complex circuits are often 
found. We will look at the most common of these in the following 
paragraphs. 

SUMMING WITH THE OP-AMP 

Figure 8-6 shows how an op-amp can be used to add two 
signals. This doesn't look very impressive, but it is very useful in 
converting signals from digital to analog form, as we will see in a 
later chapter. As shown in Fig. 8-6, if we connect two separate 
input signals to an op-amp through separate input resistors, the 
output will be equal to the sum of the two input voltages. Before 
going any further with this, let's see how it works. 

Fig. 8-6. Circuit for using an op-amp to sum two signals. 
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Figure 8-7 shows a simplified form of the circuit of Fig. 8-6. As 
we noted earlier, the input terminals of the op-amp, for all practical 
purposes, don't draw any current at all. So, we have left it out of the 
diagram. Now we have two currents flowing into point A, and the 
only place these currents can go is through the feedback resistor. 
We also noted earlier that, with the feedback arrangement, the 
output voltage adjusted itself, so that the voltage at point A would 
be so close to ground potential that we could consider it to be at 
ground. Now we can write an equation that says that the sum of the 
currents flowing into point A from the two inputs will be equal to 
the current in the feedback resistor, R3: 

VI V2 V3 

+ = 

R1 R2 R3 

We can arrange the equation to read: 

R1 , R3 
Vi R3 I- V2 R2 = —VO 

and if we assume that the input resistors and the feedback resistor 
are all equal, the equation simplifies to: 

VI + V2 = — V o 

Here the minus sign only means that the output voltage is out of 
phase with the input voltage, as we might expect. 

WEIGHTING THE INPUTS 

In the two circuits that we have just discussed, all of the input 
voltages are added directly. We don't have to do this. By changing 

Fig. 8-7. Schematic showing currents and voltages in a summing amplifier. 
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the values of the input resistors, we can scale, or weight, the inputs 
so that we will only add a fraction of any given input voltage to the 
others. This feature is again very useful in digital circuits. 

Figure 8-8 shows a summing circuit where the input resis-
tances are not equal. To keep things comparatively simple, we 
have made all of the input voltages equal. 

From the equations we developed earlier, it is easy to see that 
we get twice as much output voltage when we apply a signal to 
input 2 as when we apply the same signal to input 1. 

This concept of summing signals, particularly with weighted 
inputs, should be well understood. It is important in many digital 
systems. 

The op-amp is the basic circuit element of some other 
so-called linear ICs that are often found in digital systems. 

THE COMPARATOR 

A comparator circuit, such as that shown in Fig. 8-9, is 
basically a high-gain op-amp, operated without feedback. It's 
purpose is simply to compare one voltage with another. 

As we pointed out earlier in this chapter, an op-amp without 
feedback, has an extremely high gain—usually at least 100,000. In 
practical terms, this means that if the input voltage in Fig. 8-9 is 
even very slightly more positive than the reference voltage, the 
amplifier will go into positive saturation. The ouput will have its 
maximum positive voltage. Similarly, if the input voltage is even 
slightly more negative than the reference voltage, the output will 
go into negative saturation. The output will have its maximum 
negative value. 

Fig. 8-8. Circuit showing unequal weighting in a summing amplifier. 
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Fig. 8-9. Op-amp without feedback as a comparator. 

Although comparator circuits can be made from operational 
amplifiers, there is no need to do this. Comparator circuits are 
available in ICs. The advantage of using IC comparators rather than 
building comparators using regular op-amps is that all of the design 
subtleties have been taken into consideration. The IC comparator 
will usually work when it is connected in a circuit. The homemade 
comparator may involve a considerable amount of debugging 
before it will operate properly. 

Another advantage of the IC comparator is that it usually 
operates with a single power supply and the output can be made to 
swing between ground and +5V, so that it will be fully compatible 
with TTL logic ICs. 
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Chapter 9 

Getting In and Out of the Digital World 

From the preceding chapters, we can see that various digital 
components are quite compatible with each other. Gates and 
flip-flops can be connected together in almost any arrangement 
with few problems. When we attempt to interface a digital system 
with the real world, the situation becomes more complicated. 

If a digital system is to perform a useful function, it must 
receive input from the real world and then deliver outputs back to 
the real world. The input signal will come either from regular 
analog equipment or from a human being, neither of which is very 
compatible with a digital system. 

In the first chapter of this book, we discussed the process of 
sampling and "quantizing," so that we could convert an analog 
signal into digital form. In this chapter, we will describe some of 
the circuits that are actually used for this purpose. 

There are two different.classes of devices that we use to get in 
and out of a digital system. The first class of such devices are called 
analog-to-digital (A/D) and digital-to-analog (D/A) converters. 
These devices actually operate on signals. In an A/D converter, an 
analog signal is actually converted into a digital signal. Similarly, in 
a D/A converter, a digital signal is actually converted into an 
analog signal. 

There is another, somewhat simpler, class of input/output 
(I/O) devices used to get in and out of digital systems. These 
devices use things such as switches and keyboards to generate 
inputs to digital systems. The outputs of digital systems are used 
to activate something like a light or a lamp, to give an indication of 
the output. 
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The familiar pocket calculator, shown in Fig. 94, is a good 
example of such input and output devices. The input device is a 
keyboard labeled with regular decimal numbers. An operator can 
press the keys with no knowledge of what happens inside the 
calculator. The entries are in the familiar decimal number system. 
Of course, the calculator, being a digital system, can't use decimal 
numbers. The interfacing is accomplished by circuits that produce 
binary numbers, corresponding to the decimal numbers that are 
entered. Although the output of the calculator circuits is a binary 
number, the interface circuits decode these numbers so that they 

Fig. 9-1. The familiar calculator uses a keyboard as an input device and a 
liquid-crystal readout as an output device (courtesy of CASIO). 
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can energize the familiar 7-segment readout. The input and output 
devices of a digital system are often called encoders and decoders, 
respectively, or simply I/O (for Input/Output) devices. 

SWITCHES AND KEYBOARDS 

Figure 9-2 shows a very simple switching arrangement that 
can be used to enter data into a digital system. Here, switches are 
arranged to pull each of the lines of a bus to either a high or low 
logic level. Of course, this arrangement has many limitations. It is 
slow, and the switches must be reset for each bit of data that is 
entered. Nevertheless, the arrangement is practical in application, 
where the data is seldom changed once it is entered. 

A much more useful input device is the keyboard shown in Fig. 
9-3. Each of the keys is merely a switch, but the keyboard is 
connected to an IC that produces a unique binary number 
corresponding to each key of the keyboard. Also shown is a 
cathode-ray tube display of data. 

In a similar way, switches and relays can be used to generate 
inputs for digital systems. For example, interlock switches on 
cabinet doors can be used to generate inputs for control systems. 

SHAFT ENCODERS 

A shaft encoder is an electromechanical device that looks 
something like a precision potentiometer. Its input is a mechanical 
shaft and its output is a parallel digital number that accurately 
represents the postion of the shaft. Figure 9-4 shows several shaft 
encoders. 

The shaft encoder is of interest for two reasons. In the first 
place, with the proliferation of digital systems there is an 
increasing need for devices that will convert mechanical displace-
ments. Secondly, the fact that the shaft encoder is a mechanical 
device enables us to get a better insight into the conversion 
process. 

There are several different devices that are used to produce 
digital signals from shaft rotation. The simplest is a tachometer 
encoder. This device simply generates pulses as the shaft rotates. 
The output is simply a train of pulses, such as that shown in Fig. 
9-5A. The pulses can be counted digitally to determine the total 
number of revolutions of the shaft. Similarly, the pulses can be 
counted for a known time interval to determine velocity. , 

An improvement over the tachometer encoder is the incre-
mental encoder. This device usually has three outputs. Two 
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Fig. 9-2. Switches can be used to enter digital data into a system. 

outputs produce pulses that result from rotation of the shaft. The 
third output, called the incremental output, identifies a unique 
position of the shaft. The pulses, shown in Fig. 9-5B, can be used in 

Fig. 9-3. A typewriter keyboard simplifies entering data into a digital system 
(courtesy of IBM). 
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Fig. 9-4. Shaft position encoders convert a shaft position into a digital signal 
(courtesy of BEI Electronics Inc.) 

the same way as those from a tachometer encoder, but can also be 
processed digitally to show the direction of rotation of the shaft. 

The most elaborate shaft encoder is called an absolute 
position encoder. It has between 6 and 20 output connections. The 
output leads carry a digital number that identifies the shaft 
position. Figure 9-6 shows how the outputs of a 4-bit encoder 
change with shaft rotation. 

The resolution of an encoder increases with the number of 
outputs. Inasmuch as a 4-bit binary number can represent 16 
different values, including zero, its resolution will be one part in 
16. That is, it can resolve the shaft position into increments of 
360/16 = 22.5 degrees. For precision applications, much higher 
resolution is required. 

Fig. 9-5. Pulses from shaft encoders (courtesy of BEI Electronics Inc.) 
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READOUTS 

By far, the most common readout used with digital systems is 
the familiar 7-segment readout seen on calculators, cash registers, 
and all sorts of electronic equipment. 

The most common 7-segment readout uses light-emitting 
diodes (LEDs) to make up its segments. However, fluorescent 
tubes with similar elements are also available. For low-power 
applications, 7-segment readouts using liquid crystals are also 
widely used. 

The segments of the 7-segment readout, together with their 
commonly used alphabetical designations, are shown in Fig. 9-7A. 
Figure 9-7B shows which segments are lighted to form each of the 
numerals 0 through 9 and some commonly used letters. 

Figure 9-8 shows a typical decoder that accepts a BCD input 
and displays the numerals 0 through 9 and the letters A through F. 

DIGITAL TO ANALOG (D/A) CONVERTERS 

Since in a real system we start out with an analog signal and 
convert it to digital form, it would seem that the logical way to 
approach the subject would be to treat the AID converter first. 
Unfortunately, some A/D converters use a D/A converter as an 
integral part. For this reason, things will be easier to explain if we 
start out with the D/A converter. 

Figure 9-9A, shows a 4-bit binary signal. Inasmuch as all of the 
lines are high, the decimal equivalent of the binary number is: 

1111 =8+4+2+1 =15 
From this, we can see that if we could find a way to assign the 

proper weight to the signals on the lines of Fig. 9-9A, we could 
simply add these signals together to get the decimal equivalent. 
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o 
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Fig. 9-6. Output of a 4-bit binary shaft encoder (courtesy of BEI Electronics Inc.) 
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Fig. 9-7. Seven-segment readout used to display decimal numbers. 

That is: 

1111=(8x1)+(4x1)+(2x1)+(lx1)=15 

A functional arrangement is shown in Fig. 9-9B. Here, the 
output will be a voltage that is numerically equal to the decimal 
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value of the binary signal applied to the input. For example, if the 
input were 1001, the output would be: 

(8 xl) + (4 x0) + (2 x0) + (lx1) = 9 

which, of course, is the decimal equivalent of 1001. 
One problem, then, is to find a circuit that will perform the 

function of the arrangement shown in Fig. 9-9B. It turns out that 
this function can be performed by a single operational amplifier, 
connected in a summing circuit with weighted inputs. This 
arrangement was discussed in Chapter 8. 

Figure 9-10, shows the circuit of a simple 4-bit D/A 
converter, using an op-amp. The resistor values are chosen to 
properly weight the inputs. The output voltage of this circuit will 
be: 

R R R R 
V=— [8 A — — AP/ R 8 +4 A R 4 +2 A R  2 + R 1 

or: 

V=- [8A8 +4A4 +2A2+A1]V 

where V is the voltage level at each of the inputs and the minus sign 
is due to the fact that the output of the op-amp is out of phase with 
its input. 

To keep things simple, let's assume that we have OV at an 
input to represent a logical 0 and 1V to represent a logical 1. In 
other words, if the input is 0110 (6 in decimal), the input voltages 
will be: 

=OV 
A=N 
Ai =IV 
= OV 

Fig. 9-9. Summing and weighting digital signals to get an equivalent analog 
signal. 
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Fig. 9-10. Diagram of a 4-bit A/0 converter. 

Then the output of the circuit will be: 

V = — (0 x8) + (1 x4) + (1 x2) + (0 x 1) = — 6V 

showing that we have, indeed, obtained a voltage whose value 
corresponds to the decimal value of the digital input. 

In Fig. 9-11A, we show a table of the output of the circuit for 
all possible input values. A plot of the output is shown in Fig. 
9-11B. Note that the output is a staircase, varying in discrete 
steps. This is because the digital input signal changes in discrete 
steps. Usually, however, the output curve of a DIA converter is 
plotted as a straight line, as shown by the dashed line of Fig. 9-11B. 

There are several features of our simple DIA circuit that make 
it impractical. It has poor accuracy and stability. Furthermore, 
most op-amps of the type we might use will not swing to a full 15V 
output. A 10V output is much more common. 

SCALING DATA 

We can overcome the limitation of the voltage range of an 
op-amp by scaling the data so that the circuit will never call for an 
output of which our op-amp is not capable. 

Suppose, for example, that the output of our op-amp can only 
swing to — 10V. We can use the same setup with resistor values. 
shown in Fig. 9-12. The output voltage of this circuit is given by: 

V = — [ —8R A8 + 4R A, + 2Rr A2 + A, IV 
R R R' 
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We can simplify this a little to: 

— R 
V = --R-L (8A8 + 4A4 + 2A2 + Ai) V 

The greatest output will occur when all of the input bits are 
high and will be: 

R V=— __t_ (8+4+2+1)V 
R 

R 
V = —15 .... V 

R 

Thus, we can set the ratio of Rf R to take into consideration 
both the desired maximum output voltage as well as the input 
voltage. 

One limitation of our circuit is that we have tacitly assumed 
that when an input was a logical zero, the input voltage would be 
zero, and that when the input was a logical 1, the input would be 
exactly 1V. Neither of these values is apt to prevail in the real 
world. A logical zero might produce a voltage anywhere between 
zero and +0.4V, and the voltage corresponding to a logical high 
will vary even more. 

Our op-amp will sum the actual voltages applied to its inputs, 
so any change in an input voltage from the ideal value will introduce 
errors. 
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Fig. 9-11. Output waveform of a 4-bit binary DIA converter. 
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Fig. 9-12. Output voltage is scaled by choosing Rf/R. 

This problem may be solved by deriving the actual input 
voltages from a regulated source and using the digital input merely 
to turn semiconductor switches on and off. 

One of the limitations of this type of D/A converter is that it is 
not suitable for use with digital words much longer than eight bits. 
For the circuit to work properly the highest value of resistor must 
be much smaller than the actual input resistance of the operational 
amplifier. We have been assuming that the input resistance of the 
op-amp is infinite. But, of course, in practice this is not true. At the 
other extreme, if we use semiconductor switches, the smallest 
resistance must be much larger than the internal resistance of the 
semiconductor switch when it is turned on. The R2R converter, 
described in the following paragraphs, overcomes these limita-
tions. 

R2R D/A CONVERTER 
Figure 9-13 shows what is called an R2R digital-to-analog 

converter. It derives its name from the fact that the heart of the 

Fig. 9-13. Schematic of an R2R D/A converter. 
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converter is a ladder network, consisting of resistors, where the 
series resistors have a value of R and the shunt resistors have a 
value of 2R. 

The operation of this converter can be rather difficult to 
understand at first. The heart of the circuit is the ladder network 
itself which has some rather interesting properties. If we were to 
cut the network along the dashed line A in Fig. 9-14, it is easy to 
see that the resistance to ground of the portion at the left is equal to 
R, because it consists of two resistances equal to 2R connected in 
parallel. 

Similarly, if we were to cut the network along the line B, we 
would also find that the resistance to ground of the portion to the 
left of the line would again be R ohms. The same thing would also 
be true at lines C and D. 

Now, the best way to see how the R2R network, working 
together with the summing op-amp, weights the various inputs is 
to consider the inputs one at a time. Suppose that only the most 
significant bit is turned on. The circuit would be as in Fig. 9-15A. 
This is simply a summing op-amp with one input connected to 
ground and the other input connected to the +1V source. Inasmuch 
as the resistor in the — IV branch is equal to the feedback resistor, 
the output will be +IV. The input voltage is negative because the 
op-amp inverts the signal, thus the output will be a positive voltage 
with respect to ground. 

If we try to see what happens when only the second most 
significant bit, A4, is turned on, we can get really confused. As 
shown in Fig.9-15B, at point C the network looks like a voltage 
divider with R5 making up the top half and the rest of the network 

Fig. 9-14. The resistance to ground to the left of points A, B, C, or D is equal to R. 
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Fig. 9-15. Analysis of the R2R DIA converter circuit. 

making up the bottom. The voltage at point C would thus be 
— 1/2V. So far so good, but if we start to apply this to the summing 
circuit, the gain of the amplifier will turn out to be wrong. The way 
around the problem is to get a little theoretical and apply 
Thevenin's theorem to the circuit of Fig. 9-15B. All this means is 
that a circuit like that of Fig. 9-15B looks electrically exactly like 
the circuit shown in Fig. 9-15C. That is, it looks like an ideal 
voltage source in series with a resistor of R ohms. Now that we 
know this, we can construct the rest of the equivalent circuit as in 
Fig. 9-15D. Here we see that we are in effect applying a — Y2V 
source to the amplifier through a summing resistor equal to 2R so 
that the gain of the amplifier will be 1 and the output will be +1/2 V. 
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If we continue this method of analysis to the other inputs we 
will see that each input will be weighted so that when it is 
energized, the output will be one half of what the next most 
significant input would provide. Therefore, we have the binary 
weighting we want in a D/A converter. Figure 9-16 shows a plot of 
the output of the circuit as a function of which inputs are energized. 

Note that as we add more steps to the R2R converter, the 
output voltage doesn't increase. All that happens is that the 
increments between the various steps become smaller. The result 
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is that we can build D/A converters with as much resolution as we 
wish using this prinaiple. The resistance values are still simply R 
and 2R ohms. 

SPECIFICATION OF D/A CONVERTERS 

One of the problems in maintaining a digital system is 
ascertaining that all of its subsystems are working properly. 
Inasmuch as the D/A converter involves both digital and analog 
circuits, it is sometimes difficult to tell whether it is performing the 
way it should. For this reason, some specifications are given and 
some of these will be described in the following paragraphs. 

Accuracy 

The accuracy of the D-to-A converter is a very general term, 
relating the actual output to what we expect to get for an output. 
Accuracy is usually stated as a percentage of a full-scale output. 
For example, if a D/A converter has an accuracy of 0.1% and the 
full-scale output voltage is 10V, then the ouput for any digital input 
should not vary more than 10V from its expected value for that 
particular digital input. 

Resolution 

Resolution really means the number of binary bits of input. It 
is common, for D/A converters to have 8-,10-, or 12-bit inputs. 
This resolving ability can also be expressed as a percentage of the 
full-scale output. For example, an 8-bit converter has a resolution 
of one part in 256 (2°), which can be expressed as 1/256 of the 
output or 0.39% of the full-scale output. Inasmuch as the resolution 
is determined by the number of bits, the accuracy specification 
usually tells us much more than resolution. 

Linearity 

We have seen that the actual output of the D/A converter is a 
staircase, rather than a straight line. However, it is common to 
express the output characteristic as a straight line drawn through 
points of the staircase, as shown in Fig. 9-16. 

Linearity is a measure of how much a line drawn through the 
same points would deviate from a straight line. This is shown in 
Fig. 9-17. If the linearity is stated as 0.1%, then the actual curve 
drawn through these points should not deviate from a straight line 
more than 0.1% of the full-scale output voltage. For example, in 
the figure with 0.1% linearity, the curve must not deviate from the 
expected straight line more than 20mV. 
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Scale Factor 

The scale factor is also known as the gain error and it is the 
factor most responsible for the actual output of a D/A converter 
deviating from the expected output. It is affected by changes in the 
values of resistances and by any changes in the reference voltage. 

Offset 

An offset is a fixed voltage which is added to or subtracted 
from the output voltage. Offset is usually caused by faults in the 
op-amp. It can be measured rather simply by setting all of the 
digital inputs to zero and measuring the output voltage. Under ideal 
conditions the output voltage should be zero. Any deviation from 
zero is the offset voltage. 

ANALOG-TO-DIGITAL (A/D) CONVERTERS 

In order to get real world signals into a digital system we must 
convert the analog voltages to digital signals. This is done by 
means of an AID converter. The simplest type of AID converter is 
shown in Fig. 9-18. It consists mostly of components with which 
we are already familiar. It contains a voltage comparator which we 

Fig. 9-17. Linearity of a D/A converter is measured as the difference between 
the expected linear output (straight line)and the actual output (curved line). 
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studied in Chapter 8, as well as an AND function and a binary 
counter. There is one component which we have not looked at 
previously, and that is the ramp generator. 

The purpose of the ramp generator is to develop a voltage that 
increases linearly with time. This is accomplished by a circuit that 
is designed to charge a capacitor with a constant current. When a 
constant current flows into a capacitor, the voltage across the 
capacitor will increase linearly with time. 

Of course, no constant-current generator is perfect, because a 
perfect constant-current generator would eventually produce an 
infinite voltage across the capacitor. However, over limited ranges 
current generators can be built good enough so that the ramp 
voltage will be as linear as we want it to be. In Fig. 9-19 we have 
shown an ideal ramp where the voltage increases at a rate of 1V per 
millisecond. 
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Fig. 9-18. Block diagram and input/output characteristic curves for a simple AID 
converter. 
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Fig. 9-19. In an ideal linear ramp, the ramp voltage is directly proportional to 
time. 

The important point about the ideal ramp is that if we're able 
to measure accurately the time from when the ramp started to a 
particular time, then we would know the voltage. For example, in 
Fig. 9-19, if we measure the time from the start of the ramp until 4 
milliseconds later, we would know that the ramp voltage was 
exactly 4 volts. This is important, because it is very easy to 
measure time with a high degree of accuracy with digital curcuits. 

Now, we can get back to our simple A-to-D converter. The 
operation of the circuit is rather simple. The first thing that 
happens is that a clear command resets the binary counter to zero. 
And at the same time, the output of the ramp generator is applied to 
the comparator. The analog signal that we wish to convert is 
applied to the other input of the comparator. Since the ramp voltage 
is initially much less than the voltage we want to measure, the 
output of the comparator is high. Now, the output of the AND gate 
is also high. As long as the output of the comparator is high, one 
input of the AND gate will be high and the output will go high 
whenever a clock pulse occurs. 

While the output of the comparator is high, clock pulses will 
go to the counter and will be counted. The instant that the output of 
the ramp generator even slightly exceeds the analog input voltage, 
the comparator will switch states and its output will go low. This 
will inhibit the transmission of the clock pulses, so that counter will 
stop counting at the exact instant when the ramp voltage is equal to 
the analog input voltage. Thus, the number of clock pulses that 
where counted will be proportional to the input analog voltage. 

For example, suppose we had a clock frequency of 200 kHz; 
that is, the clock produces 200 pulses per millisecond. If we apply 
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Fig. 9-20. Waveforms in a dual-slope ND converter. 

an input voltage of 2 volts, the counter would read to the binary 
equivalent of 400 during the conversion. 

The accuracy of this system is limited to just how linear we 
can make the ramp waveform and how stable the output of our clock 
generator will be. 

THE DUAL-SLOPE: AN ANALOG-TO-DIGITAL CONVERTER 

A more sophisticated A/D converter, which has become very 
popular in digital voltmeters and is available in integrated circuits, 
is called the dual-slope A/D converter. Unfortunately, the opera-
tion of this particular device isn't very easy to follow. '1'he best way 
to understand it is first take a look at what it actually does and then 
later, see how it does it. 
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Fig. 9-21. Schematic of a dual-slope A/D converter. 
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Fig. 9-22. Block diagram of an AID converter using D/A feedback. 

Figure 9-20 shows a plot of the two slopes that are generated 
inside the converter. At the start, ramp voltage is developed, the 
slope of which is proportional to the analog input voltage. Then this 
voltage is brought back to zero by a ramp, which is proportional to a 
fixed reference voltage inside the converter. The analog voltage 
that we wish to convert to a digital value is applied to a ramp 
generator, which produces a linearly increasing voltage, shown at 
the left of Fig. 9-21. The ramp generator is turned on for a fixed 
period of time, which is accurately known. Then, the analog 
voltage is disconnected from the ramp generator and a fixed 
reference voltage is applied to generate a negative-going ramp, as 
shown. This negative-going ramp is continued until the ramp 
voltage reaches zero. The important thing to note in the figure is 
that the time required to bring the ramp voltage from its maximum 
value to zero is proportional to the analog input voltage. The fact 
that the converter uses two separate slopes, each of which count 
the same clock, shows that long-term variations in the clock 
frequency will not effect the accuracy of the conversion. For this 
reason, this particular type of converter has become very popular 
in small digital voltmeters. 
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A/D CONVERTERS USING D/A FEEDBACK 

One of limitations of the ramp type AID converters that we 
have been discussing is that the accuracy is limited by how linear 
and how stable we can make the ramp generator. There is a way 
around this problem, and that is to eliminate the ramp generator 
completely. One way of doing this is shown in Fig. 9-22A. 

Here, the analog input signal that we wish to convert is 
compared to a digital signal. To do this, we first have to convert the 
digital signal to analog form. As shown in the figure, the output of a 
binary counter is converted to analog form and applied to one input 
of a comparator. The signal to be converted is applied to the other 
input. The output of the comparator is then used to inhibit or enable 
clock pulses to the binary counter. 

The action of the converter is as shown in Fig. 9-22B. Here, 
when the input voltage is applied, the counter starts. Its output is 
continually converted to analog form and applied to one input of the 
comparator. When the output of the counter (converted to analog 
form) reaches the value of the input voltage, the counter is 

Fig. 9-23. Block diagram of an AID converter with an up-down counter. 
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Fig. 9-24. Block diagram and truth table for a successive approximation D/A 
converter. 

stopped. The output of the counter will then be a digital word 
representing the analog input. 

One of the limitations of this conversion scheme is that each 
time a conversion is made, the counter has to start from zero. It is 
possible to modify the system, as shown in Fig. 9-23A, to make it 
much faster in operation. In this arrangement, which is called a 
continuous counter converter, the basic digital counter is an 
up/down converter, which can count in either direction. 

Assume, for the moment that everything is set to zero, and 
analog voltage is applied to the input. The counter starts counting 
up until its output, converted to analog form, equals the value of the 
input signal. The counter then stops. Now, let's suppose that the 
input voltage decreases in value, by some sort of step. This will be 
sensed by the circuitry ahead of the counter, and the counter will 
start counting down until its output again equals the value of the 
input voltage. In this way, it can be seen that the output of our 
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counter will oscillate about the value of the input signal and will 
count in the proper direction whenever the value of the input signal 
changes. 

Obviously, this arrangement is faster than a ramp-type 
converter, where the counter has to be reset for each conversion. 
It does, however, have some limitations in that with large changes 
in the value of the input signal the conversion process is slow 
because the counter must increment one bit at a time. 

In converting fast signals, such as, in television, this type 
converter is still much too slow. A faster type is the successive 
approximation AID converter, described below. 

SU CCESSWE APPROXI MATION A/D CONVERTER 
Figure 9-24 shows a successive approximation DIA conver-

ter. For convenience we have shown a 4-bit counter. But, of 
course, a much larger counter can be used to get better resolution. 
Assume that the input voltage to this converter can vary anywhere 
between 0 and 15 volts. The output of the DIA converter in the 
feedback loop can also vary from 0 to 15 volts on one-volt steps. 

To see how the thing works, assume that we apply 11 volts to 
the input. The operation starts with the most significant bit of the 
counter being set to one. This means that the output of the DIA 
feedback converter will be eight volts. The comparator senses that 
this eight volts isn't enough, so the next step is to increment the 
next most significant bit giving the counter an output of binary 1100 
or 12 volts. The converter senses that this is too much, so the 
second most significant bit is reset to zero, and the third most 
significant bit is incremented to one, giving us binary 1010 or 10 
volts. This isn't enough, so the next most significant bit is set to 
one, giving us an output of binary 1011 or 11 volts, which is exactly 
what we want. 

The fascinating thing about this converter is that it only takes 
four steps to match any input voltage. This the successive 
approximation converter can be made very fast indeed. It is found 
adequate for use in digitizing television signals. 

PARALLEL A-TO-D CONVERTERS 
The fastest possible way of converting from analog to digital 

form is to perform the operation in parallel as shown in Fig. 9-25. 
Here, we have a separate converter for each bit of the output 
number. The reference voltage is divided into descrete steps by a 
resistive voltage divider. Each of these steps is applied to one 
input of a comparator. The analog signal to be converted is applied 
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Fig. 9-25. Schematic of a parallel ND converter. 

to the other inputs of the comparator. Thus, an output of a 
comparator is provided for each level of the analog input voltage. 
Inasmuch as all the operations are being performed at the same 
time, the conversion is very fast. The output of the comparators is 
fed to a decoder network which produces the proper digital word. 

Although this converter is extremely fast, it does require a 
large amount of circuitry. For only three bits at the output, seven 
comparators are required. In general, for M bits, 2"-1 levels of 
comparison are required. This means for a 10-bit output, you would 
need 1023 comparators. Obviously, this system is used only where 
extremely high speed is an absolute necessity. 

RESOLUTION OF A/D CONVERTERS 

One question that comes up in connection with A/D conver-
ters is just how well the digital output approximates the true value 
of the analog input. This, as you probably have suspected, depends 
upon the number of bits in the output. For a converter with N bits in 
the output, the resolution is ± one part in 2n. For example, in a 
7-bit converter, the resolution would be one part in 128, which is 
the same as -±- 0.8%. If the analog input voltage varied between 0 
and 10 volts, the resolution would be 0.008 x 10 = 80mv. 
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Chapter 10 
What Is Digital Data 

And How Is It Handled? 

So far, we have discussed the various ways that digital signals can 
be processed. We have also shown repeatedly how a digital signal 
can be used to represent a number. The most straightforward way 
to use a digital signal to represent a number is to use the binary 
numbering system. If the number is to be converted to and from the 
decimal system, binary coded decimal is usually a better method. 

So much for numbers. What else can we represent by digital 
signals? Just about anything. An 8-bit number can take on 256 
different values. This really means that we can use such a signal to 
represent 256 different things. All that is required is that we agree 
on what the signal will mean in a given system. For example, the 
signal 1011 can mean that the heater voltage of a transmitter is 
applied, the interlock switches are safely closed, ventilating fans 
or blowers are operating and the plate voltage has been applied. By 
means of gating or decoding circuits we can recognize this signal 
and know that the above stated conditions are true. 

In other words, a digital signal can mean just about anything 
that we want it to mean. Included in the things that we can 
represent by digital signals are the letters of the alphabet. There is 
nothing new about this because teletype systems have used 
on-and-off signals to represent characters for many years, before 
the word digital found its way into our vocabulary. In fact, 
teletypewriter keyboards are often used to enter data into digital 
systems because they are readily available and are competitively 
priced. 
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ASCII DATA CODE 

In addition to the code used in teletype systems, there are 
several other different codes that have been developed for various 
purposes. Actually, the only requirement of any code that enables 
digital signals to represent other things is that the code be 
consistent within the system. In order to permit units such as 
keyboards and printers to be used with many different systems. 
The American Standards Association has issued a standard code 
that can be used for all systems. 

This code, the American Standard Code for Information 
Interchange, or ASCII (Ass-key) as it is commonly called, uses a 
7-bit word to represent each of the characters of the alphabet, 
numbers from 0 to 9, and some other things that are called machine 
commands. The code is shown in Fig. 10-1. 

The three most significant bits, bit 5 through bit 7, are used in 
much the same way that a shift key is used on a typewriter. These 
bits tell what the next four bits will represent. If the three most 
significant bits are 000 or 001, the character transmitted will be a 
machine code. For example, the symbol or digital word 000 1101 is 
listed in the figure as CR. This is a carriage return command. When 
it is received by a printer, the carriage of the printer will be 
returned to the left side of the page. Similarly, if the three most 
significant bits are 100 or 101, the digital word will represent a 
capital letter or a punctuation mark. 

Thus, a 7-bit word can be used to represent just about 
anything that might be required on a printer. Inasmuch as the code 
is a standard, it is possible to buy a digital system from one 
manufacturer and a printer from another and find that the two will 

be compatible. 

PARITY 

You have probably noticed that whereas one byte of data is 
usually considered to consist of eight bits, the ASCII words are 
only seven bits long. There is a reason for this. An eighth bit is 
often added to aid in detecting errors that might occur in a 
transmission system. This extra bit is called a parity bit. 

The way the parity bit works is to make all of the digital words 
contain either an even or an odd number of l's. In the first case it is 
called even parity and in the other, oddparibe. 

Suppose that we were using an even-parity system and the 
word "act" was to be transmitted in capital letters. The ASCII 
codes for these three letters are: 

141 



100 0001 = A 
100 0011 =C 
101 0100 = T 

Note that the code for A contains two 1's—an even number. 
This is what we want, so the 8th parity bit would be 0. The code for 
C has three 1's—an odd number. To make this word an even 
number of is, we would make the parity bit 1. Similarly, the code 
for T has an odd number of l's, so its parity bit would also be 1. 

By means of a relatively simple circuit arrangement, the 
device that receives the data can be made to check the number of 
l's in each word. Inasmuch as we have made sure that when the 
words are transmitted they all have an even number of l's, we can 
check to see if any of the bits were "dropped" while the word was 
being transmitted. This is called a parity check. If at the receiving 
end of the link we find a word with an odd number of l's, we know 
that something went wrong. Many systems are arranged so that a 
word like this will automatically be rejected and a repeat will be 
requested. This mode of transmission is sometimes called ARQ, 
for Automatic Repeat Request. 

In addition to the simple parity described above, many 
sophisticated codes have been developed that will not only detect 
errors, but will identify many types of errors and will automatically 
correct them. 

LONG-DISTANCE TRANSMISSION 

So far in this book we have considered two ways to get digital 
signals from one point to another. One way is to use parallel 
transmission. Here a separate wire is provided for each bit of the 
byte and all bits of the byte are transmitted at the same time. This 
arrangement is fast, but it suffers from the fact that a lot of wires 
are required. It is fine inside a cabinet or between two adjoining 
cabinets. For longer distances, it is preferable to use serial 
transmission where the bits are transmitted one after the other and 
where only two wires are required. As we mentioned in an earlier 
chapter, shift registers can be used to convert data between serial 
and parallel form. 

When we want to transmit digital signals over distances of 
more than a few hundred feet, we run into another problem. That 
is, ordinary wires such as telephone wires are not very well suited 
to carrying digital signals which have very short rise and fall times. 
When these signals are transmitted over long lines, the pulse 
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NUL Null, or all zeros 
SOH Start of heading 
STX Start of text 
ETX End of text 
EOT End of transmission 
ENO Enquiry 
ACK Acknowledge 
BEL Bell, or alarm 
BS Backspace 
HT Horizontal tabulation 
LF Line feed 
VT Vertical tabulation 
FF Form feed 
CR Carriage return 
SO Shift out 
SI Shift in 
DLE Data link escape 

DC1 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
US 
SP 
DEL 

Device controll 
Device control 2 
Device control 3 
Device control 4 
Negative acknowledge 
Synchronous idle 
End of transmission block 
Cancel 
End of medium 
Substitute 
Escape 
File separator 
Group separator 
Record separator 
Unit separator 
Space 
Delete 

Fig. 10-1. American Standard code for Information Interchange (ASCII). 
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shape will be changed so that the various bits will tend to overlap. 
The only way that these signals can be transmitted directly on wire 
lines is to use an inconveniently slow speed of transmission. The 
solution to the problem is to use a carrier signal just as we do in 
radio and television. 

Figure 10-2 shows the arrangement. The digital signal that is 
to be transmitted is applied to a modulator where it modulates a 
carrier in the audio frequency range. At the receiving end of the 
link, a demodulator is used to recover the original digital signal. 
Inasmuch as both a modulator and demodulator are usually used at 
each end of a data communication link, the device is usually called a 
MODEM, from MOdulator-DEModulator. MODEMS are com-
mercially available from many different manufacturers. They are 
specified in terms of how fast they can transmit data and how many 
channels are provided. 

For transmission purposes, digital signals are usually 
specified in terms of bits per second. Lines and MODEMS are 
specified in terms of their capacity in a unit called the baud. One 
baud is equal to one unit time interval per second. 

DIGITAL MODULATION CONSIDERATIONS 

Of course, the audio frequency tone that is used for a carrier 
for transmitting digital signals can be modulated in any of the 
conventional methods. That is, either the amplitude, the frequen-
cy, or the phase of the tone can be modulated in accordance with the 
digital signal that is to be transmitted. Because of the noise 
immunity features of angle modulation, either frequency or phase 
modulation is usually used in preference to amplitude modulation. 

First let's look at frequency modulation. Here, the frequency 
of the audio tone is varied in accordance with the modulating signal. 
Inasmuch as the digital signal only has two possible values, 1 and 0, 
there will only be two frequencies used in transmission. Thus, the 
system is more like what is commonly called frequency-shift 
keying or FSK than like regular voice frequency modulation 

systems. 
Figure 10-3 shows one possible FSK arrangement. Here we 

have two oscillators operating at different frequencies. One 
frequency can represent a 1 and the other a 0. The incoming digital 
signal is applied to a switching arrangement so that when the signal 
is a 1, oscillator A will be connected to the line, and when the signal 
is a zero, oscillator B will be connected to the line. 
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Fig. 10-2. Block diagram of the modulation arrangement used to transmit digital 
signals over long distances. 

The principal limitation of the simple arrangement of Fig. 10-3 
is that the transmitted signal switches from one frequency to the 
other very rapidly when the digital signal changes value. This rapid 
switching causes something like key clicks in CW systems. It will 
tend to spread the signal over a rather broad bandwidth. This will 
limit the number of channels that can be carried on a pair of wires 
and will also tend to limit the speed at which the data can be 
transmitted. 

Figure 10-4 shows an arrangement that overcomes some of 
these limitations. Here the digital signal is applied to a waveshap-
ing circuit that removes the sharp corners and slows down the rise 
and fall times. Doing this reduces the bandwidth required for 
transmission or permits a higher speed of transmission at the same 
bandwidth. 

Although in voice communication it is sometimes hard to 
distinguish between frequency and phase modulation, in MOD-
EMS the equipment used to accomplish phase modulation differs 
significantly from that used for FSK. Phase-shift modulation is 
becoming very popular in present day MODEMS. Several different 
arrangements are used, but in each case there is an abrupt change 
in the phase of the audio carrier when the digital signal changes 
between a 1 and a 0. 

PROBLEMS IN DATA TRANSMISSION 

In the average broadcast station we have two different types of 
data transmission. First there is the transmission over short paths 
of a few feet from one console to another. For example, sometimes 
a teletype printer is located a few feet from an automation console. 
The other type of transmission is over a relatively long path. For 
example, digital signals may be transmitted from an unmanned 
transmitter site to a control room miles away. Usually, if the path is 
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longer than that a few hundred feet, MODEMS are used at each end 
of the path. 

Digital data transmission is complicated somewhat in the 
broadcast situation because there are often very strong RF fields in 
the vicinity. The first problem that is usually encountered is to get 
the thing working in the first place. After this, keeping it going is 
usually much simpler. Keeping RF out of the transmission path is 
just like solving any other RFI problem. It is frustrating and time 
consuming, but usually the problem can be solved. The approach is 
to carefully go over all grounding and shielding, then begin 
installing RFI filters as required. 

One problem that is often overlooked in broadcast applica-
tions is that the digital equipment can be damaged, or errors can be 
introduced, by strong static discharges. Broadcast stations have 
tall towers that are plagued by lightning surges. If even a small 
amount of the discharge gets into the digital system, it will 
introduce spurious signals. If a large surge enters the system, 
components will be destroyed. 

Again the approach is proper grounding and shielding. 
Multiple grounds often cause problems because when a high 
current due to a static charge flows through the ground there will 
be an appreciable voltage drop. This voltage drop can often get 
inside the system and raise havoc. 

OSCILLATOR A 

>0 
DIGITAL 
INPUT 

OSCILLATOR B 

) 
O—OUTF'UT 

Fig. 10-3. Block diagram of an FSK modulator for digital signals. 
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Fig. 10-4. Block diagram of a modulator with waveshaping circuit. 

A COMPLETE DATA LINK 

Figure 10-5 shows a functional block diagram of a complete 
data link. In this system certain transmitter parameters are 
measured, converted to digital form and transmitted back to a 
control room a few miles away. 

The first elements in the system are the input devices. Some 
of the parameters are simple on-off indications. For example, there 
is a signal that indicates that the transmitter is on the air. There is 
also a burglar alarm that will be a logical high signal if anyone 
enters the premises. In addition, there are analog-to-digital 
converters. For example, the DC plate current is sampled and is 
converted into a binary signal that represents the actual value of the 
plate current. 

The signals from the input devices are fed into shift registers 
where they are temporarily stored until the system is ready to 
transmit them. A multiplexer sequentially samples each of the 
storage registers and reads out its signal in serial form. This signal 
is then applied to an FSK modulator or MODEM. 

It isn't enough to merely digitize the data and transmit it. We 
must have some way of knowing at the receiving end what data is 
being transmitted. We can accomplish this by assigning a number 
to each channel of information and transmit this number just ahead 
of the data. To keep things simple, we can assign the numbers 1 
through 7 to the channels of data. We can express the numbers 1 
through 7 in digital form with a 3-bit word as follows: 
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Channel Number 
1 001 
2 010 
3 011 
4 100 
5 101 
6 110 

111 

In addition, we must transmit some sort of synchronizing 
signal so that the receiving equipment will know that we are about 
to send some data. In our system, this is accomplished by 
transmitting both tones of our FSK signal simultaneously. 

At the receiver, a circuit recognizes when both tones are 
being transmitted and resets everything to zero and gets ready to 
receive data. Suppose that the first parameter that is transmitted is 
the value of the plate current, and suppose for the sake of example 
that it happens to be 250 mA. The word that will be transmitted 
along the link will be 

001 1111 1010 

The first three bits identify the fact that information is being 
transmitted in channel 1. The next eight bits identify the value of 
the plate current as 250 rnA. 

At the receiving end, the number of the channel is recognized 
and the data that follows is fed serially into register 1. The data is 
stored here and the system moves on to the next channel. 
Meanwhile, the data that was fed into register 1 serially can be read 
out in parallel to a decoder which, in turn, operates 7-segment 
readouts that will display the value of the plate current. 

The simple channels that transmit on-off signals to indicate 
that the transmitter is on the air, or that a burglar may have entered 
the premises, can be readout on simple lights. It would probably be 
a good idea to have these signals trigger an audible alarm that 
would attract attention to the fact that the transmitter is off the air 
or that there had been an entry. 

Although the foregoing paragraphs explain the general opera-
tion of a data link, our simple system has many limitations. In 
practice there could be many more refinements. One obvious 
limitation is that we used a straight binary number to transmit the 
value of the plate current. In practice, we don't need to be able to 
transmit every possible value of plate current from zero to the 
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maximum possible value. We could transmit just a few numbers in 
the normal range of operation. This could be handled by assigning a 
different meaning to the binary numbers that we transmitted and 
properly decoding them at the receiving end of the link. 

In a practical system it might be advisable to transmit our 
numerical data in the form of ASCII characters. This would require 
several words to transmit the value of the plate current. Inasmuch 
as the system will respond much faster than it needs to, we can 
easily afford to transmit the extra words. 

Figure 10-6 shows one channel of a system that would use 
several digital words to transmit the value of some parameter such 
as the plate current. Here the plate current is again so sampled and 
digitized in an AID converter. The information can be in either 
binary or BCD form. Probably BCD is easier to handle. Then the 
signals from the register are applied to an encoder, which may be a 
single integrated circuit, that converts each BCD number to an 
ASCII character. 

Fig. 10-5. Simplified functional blockdiagram of a remote metering system. 
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Fig. 10-6. Block of a single channel of a remote metering system using ASCII 
code. 

When data is transmitted, a few synchronizing pulses are 
transmitted first. The receiving system then knows that some data 
is coming. It further knows how many words will be used to 
transmit this particular parameter. Suppose that we provide four 
characters to send the data and that the value of the plate current is 
again 250 mA. The decimal, BCD, and ASCII codes are as shown 
below: 

DECIMAL BCD ASCII 
0 0000 011-0000 
2 0010 011-0010 
5 0101 011-0101 
0 0000 011-0000 

To be sure that the system knows that we have sent the value 
of one parameter, we will again send a few synchronizing pulses. 

One advantage of using ASCII characters for transmission is 
that the signal may be applied directly to a printer that will 
recognize each character and print it out. The receiving system can 
have instructions stored in it that will recognize the channel 
designation and print it out in English. For example, if the 
identification 001 is received, the printer will not print out 1, but 
rather "plate current." 

Many more refinements may be added to our system. We can, 
for example, add a parity bit so that the system can detect certain 
classes of errors in transmission. We can use ARQ so that if a 
defective character is received, the signal can be sent from the 
receiving location back to the transmitter requesting that the data 
be transmitted again. We can arrange it so that the defective data 
will not be printed out and an operator watching the system might 
never even know that an error was transmitted and corrected. 
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Chapter 11 

A Few Simple Digital Systems 

In the first part of this book, we concentrated on digital ICs and 
their functions. We considered both combinational functions using 
logic gates and sequential functions using flip-flops or counters. In 
the following chapters we will look at complex digital systems 
where it would be completely impossible to consider all of the 
functional units such as gates and flip-flops. Many systems use 
hundreds or even thousands of these simple functions. To 
understand the larger systems, we must concern ourselves with 
more advanced functions such as data storage or manipulation. 

This approach, which seems to be the only practical one, 
tends to leave us with a gap between simple functional units and 
large subassemblies of a system. For example, we may be 
confronted with a remote metering system of the type we 
discussed briefly in the preceding chapter. We might find that there 
is trouble somewhere between where the transmitter parameters 
are sampled and the MODEM. Upon opening the cabinet we find 
several printed circuit boards packed tightly with SSI packages. It 
is often hard to find a correlation between the overall functional 
operation of the cabinet and all of those little ICs. The situation 
isn't made any easier by the fact that there are many different ways 
that different ICs can be combined to perform the same overall 
function. The particular arrangement will depend to some extent 
on the designer's preference. 

In this chapter, we are going to take a few very simple tasks 
and see how we might use digital circuits to accomplish them. Of 
course, in many applications the systems are much more complex 
than those that we will consider. Nevertheless the principles are 
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the same and by going through these examples, you can see the 
way that you should look at larger systems. 

THE SYSTEMS APPROACH 

When studying a digital system, it is helpful to think a little bit 
about how the designer might have approached the task of 
designing the system, Of course, this task can never be complete, 
because you have no way of knowing all of the factors that the 
designer had to take into consideration. Often, when looking at a 
part of a system, you will find an arrangement that certainly looks 
like the hard way to solve a rather simple problem. This is often 
true. Usually, though, there is a good reason for the design being 
the way that it is. 

Any designer must take design costs into consideration. If a 
system is produced in small quantities, like many items used in 
broadcasting, the design cost is often a large part of the total 
expense of producing a system. In such a case, the designer must 
take every step that he can to minimize the design costs. Often this 
means that if he has already designed a circuit that works and can be 
used in a particular application, it is advisable to use it, rather than 
to take the time to design another circuit that might use fewer 
components or be more straightforward. Sometimes you can 
recognize this when you see that a certain manufacturer's products 
often use the same circuitry in different pieces of equipment. 

Getting back to the systems approach, the designer usually 
approaches the problem first from an overall point of view, then 
gets to the details. Let's take as an example a very familiar product, 
the digital electric clock. Of course, this particular product has 
become so popular that all of the required functions are now 
available in a single large-scale integrated circuit, but it wasn't 
always this way. Early electric clocks were made from small-scale 
integrated circuits. By taking the SSI approach, we can get an idea 
of how a system might evolve. 

Faced with the task of designing an electric clock, we might 
start with the simple approach of Fig. 11-1. We know that we must 
have some way of reading out the time, so we have shown 
7-segment readouts for hours, minutes and seconds. We also know 
that we must have some accurate source of time to drive the clock. 
At this point, we haven't the slightest idea of how we might process 
the time information, so we have just shown a box. 

So far, there is no way of telling at which end of the box the 
design might start. It might be handled alternately at each end of 
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Fig. 11-1. Functional diagram of an electric clock. 

the box. For the sake of example, lets assume that we will use the 
60-11z power line as a source of timing information. Incidentally, 
this is a very accurate source of timing information over a long 
period of time. The frequency of a power line does indeed vary 
during the day, but the utilities, knowing that their frequency is 

used to operate clocks, corrects for this. Every night, usually 
during the early hours of the morning, utility operators speed up, 
or slow down the frequency of the system so that any errors in 
electric clocks operated from the system will be corrected. The 
result is that the 60-Hz line frequency is one of the most accurate 
long-term time standards available. 

Of course, other sources such as crystal oscillators have 
greater short-term accuracy, but they always have some error 
however small. A clock tends to accumulate errors. If a clock runs 
ever so slightly slow, eventually it will be off by some amount. 
Usually, at the end of a long period such as a year, the line-operated 

clock will be more accurate. 
Before we even start to use the power line as a time standard, 

we know that the voltage is too high. Thus, we will start our design 
with a transformer that will step the voltage down to about 5V so 

that it will be compatible with TTL. We also know that the line 
voltage is sinusoidal and that digital circuits don't like slowly 
varying signals like sine waves. Thus, we will add something to 
square up the waveform. A latch made out of two gates would do 
the job. The next thing that we would like to do is to divide the line 
frequency by 60 to give us a pulse train having a pulse repetition 
frequency of 1 pulse per second. 

With these considerations in mind, we arrive at the block 
diagram of Fig. 11-2. Now let's go back to the other end of the 
system. Here we have six 7-segment readouts for hours, minutes 
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Fig. 11-2. Time-base circuit for an electric clock. 

and seconds. Our design philosophy will be to count our one-
pulse-per-second signal from our time base, and then decode the 
output of the timer counter to drive our readouts. The approach is 
shown functionally in Fig. 11-3. 

The decoding operation is quite simple. The Type 7447 IC 
will accept a BCD signal and will drive a 7-segment readout to 
display the decimal equivalent of the BCD input. The only problem 
remaining is the counting. 

The Type 7490 counter will divide by either 10 or 12, 
depending on how it is connected. We can apply the one-pulse-
per-second pulse to one of these counters as shown in Fig. 11-4A. 
Thus, the counter will count up to 10 seconds, display the count on 
the readout, and then reset and supply a count to the next counter 
which counts ten of seconds. 

The tens of seconds counter can't be the same type as the one 
that we just used, because we want it to count to six, corresponding 
to 60 seconds and then reset. A Type 7492 counter will do the job, 
as shown in Fig. 11-4B. 

By following this general line of reasoning, we will eventually 
arrive at the digital clock functional diagram of Fig. 11-5. We have 
in a general way taken a requirement and found a functional 
approach to a digital system that will meet the requirement. 

SPECIAL DECODING 

There are applications where we have the output of a counter 
which we wish to decode for some special purpose. This type of 

FIG II-2 
60 Hz 

TIME BASE COUNTER DECODER RE,Z)0..T 

Fig. 11-3. Block diagram showing further development of electric clock. 
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Fig. 11-4. Block diagram of the counters and decoders for an electric clock. 

decoding can be accomplished by the use of gates and inverters. 
Suppose, for example, that we wish to get one output pulse 
whenever the output of a BCD counter reaches the decimal count of 
nine (1001 in binary or BCD). We can accomplish this by using the 
arrangement of Fig. 11-6. Here, when the input to the gates and 
inverters is 1001, the two inverters in the two middle leads will 
make the signal at the input to the gate 1111. This, in turn, drives 
the output of the NAND gate to a low level. An inverter following 
the gate will produce a high level. Thus, the output of the decoder 
will go high whenever the input is 1001. 

Special decoding arrangements much more complex than this 
are often used for special purposes in digital systems. Once the 
general function is recognized, the circuit can be understood by 
constructing a truth table. 
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Fig. 11-5. Block diagram of the complete electric clock. 

FREQUENCY COUNTER 

The frequency counter shown in the block diagram of Fig. 11-7 
might be a good example of a case where a designer used circuits 
that were developed for another purpose. Suppose the designer 
had developed and tested the digital clock that we discussed in 
preceding paragraphs and was now called on to design a simple 
frequency counter. The approach would surely be to use the same 
type of readout and decoder. The frequency counter differs from a 
digital clock in that we count a pulse train whose frequency is 

unknown. The accuracy of the system comes from accurately 
controlling the time interval during which the count is made. 

In the diagram of Fig. 11-7, the display and decoder arrange-
ment is similar to that used in the clock. We can't, however, drive 

Fig. 11-6. Decoding arrangement to provide a pulse at the count of 9 (1001 in 
binary) 
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the decoder directly from the outputs of our counters. The reason 
is that the frequency that we may be counting might be quite high. If 
the outputs of the counters were applied directly to the decoders 
and displays, the displays would be changing very rapidly with the 
result that the readout would look like a blur instead of discrete 
numbers. We can correct this situation by inserting latches 
between the counter outputs and the decoders. These latches will 
act as memories and will store the count at the end of a counting 
interval long enough for a reading to be taken. They will then be 
reset and will store another count. 

The counting chain will be slightly different in that we will use 
decade counters for all stages. The rest of the circuit is also 
straightforward. The timing interval is obtained by dividing down a 
signal from a time base. 

Here, we are not as much interested in the long-term accuracy 
of the time base as in the short-term accuracy. We will measure the 
frequency in question over a comparatively short period such as 
one second at the most. Suppose for example that we applied a 
signal of unknown frequency to the counter, counted it for one 
second and found the count to be 99,950. We would then know that 
the unknown frequency was 99,950 Hz. If there were an error in the 
interval over which we did the counting, there would be the same 
percentage error in our frequency measurement. 

For this reason, we will use a crystal oscillator as a time 
standard rather than the power line. Both this signal and the 
unknown signal are applied to a logic gate that allows the unknown 
signal to be counted during the counting interval. The signal 
processing in the chain is to "square up" the unknown signal so that 
it will be compatible with out TTL logic and to adjust its level. 

UNDERSTANDING A DIGITAL SYSTEM 
The preceding paragraphs show in a general way the process 

of solving a problem by combining various digital functions. When 
one is confronted with a digital system that has already been 
designed and wants to understand it, the process is reversed and in 
general is less straightforward. Faced with a complicated diagram 
containing hundreds of ICs, it isn't easy to see the function of each 
one. Often, the best approach is to start with the inputs and outputs 
and trace from each end until a functional picture of the entire 
system can be constructed. 

Suppose, for example, that the frequency counter of Fig. 11-7 
were simply a part of a larger system and we had no clue to its 
function. We could start at the readouts. We know their function. 

157 



Fig. 11-7. Block diagram of a frequency counter. 

They display decimal numbers in response to signals that cause the 
various segments to light up. The decoders are almost as easy to 
understand. Checking the data book, we find that the inputs to 
these decoders are BCD signals. 

The next step isn't so easy. When we come to the 7475 
latches, we know that their function is to latch some digital signals 
and hold them. We might not have the slightest idea of why they 
might need to be stored. There are two possible reasons for using 
the latches. One is that the signal which is to be displayed on the 
readout isn't available all the time. It might be a signal that occurs 
occasionally and is latched so that it can be read out on the display, 
or it might be a signal that is usually changing so fast that it can't be 
read on the display. With a little more investigation we can find that 
the latter is true in this case. 

The counter chain will probably be the easiest to understand. 
Counters are straightforward. By checking the data sheet we can 
see what the counter is supposed to do, and with that information 
we can usually figure out what the designer intended. There is one 
potential problem with counters in that some counter ICs can be 
connected to count in different ways. For example, a certain 
counter may divide by 6, 10, or 12, depending on how it is 
connected. To be sure of just what the counter is doing, we must 
carefully check the connections. 

In reading the block diagrams of digital systems, it is common 
to encounter an arrangement that doesn't make any sense at all at 
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Fig. 11-8. With this arrangement, half of an integrated circuit is used as an 
inverter. 

first glance. For example, one might find the arrangement shown in 
Fig. 11-8. Here, the first stage is obviously a 4-input NAND gate. 
The second stage isn't as clear, however, because although the 
function is also a 4-input NAND gate, all four of the inputs are tied 
together. A little thought reveals that when a 4-input NAND gate is 
connected in this way, it functions as a simple inverter. If we 
construct a truth table of the whole arrangement, we will find that it 
operates as a 4-input NAND gate. 

The first question that might arise is why the designer didn't 
use an inverter in place of the second NAND gate. The reason, of 
course, is that there are six inverters in the usual package and he 
may need only one. Futhermore, there are two 4-input NAND 
gates in a package such as the TTL Type 7420. There is still the 
question as to why he didn't use half of the Type 7421, which 
contains two 4-input AND gates. Perhaps, in many applications, he 
could indeed have used the Type 7421. On the other hand, if the 
output of the circuit of Fig. 11-8 were used to reset a flip-flop or 
counter, the additional propagation time of the second gate might 
be needed to assure proper operation of the overall circuit. In this 
case, using the Type 7420 with one half operating as a 4-input 
NAND gate and the other half operating as an inverter might be the 
optimum choice. 

Thus, by carefully considering the various possibilities, one 
can usually at least figure out how the system is supposed to work. 
Sometimes, indeed, the design isn't optimum. For example, if one 
type of IC is used in very large quantities, it might be advisable to 
use it in places where it would not normally be used just because of 
the cost savings. This, of course, is something that one not 
involved in the design would not know. 
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Chapter 12 

Digital Video 

One aspect of broadcasting where digital technology is having an 
ever-increasing effect is in television. It seems that many of the 
things that we have always wanted to do with TV signals have been 
impossible or at least impFactical with analog techniques. Such 
things include time-base correction, generation of special effects, 
elaborate graphics, reduction of noise, and the conversion from one 
transmission standard to another. These things are not only 
practical, but in many cases rather easy with digital techniques. 

The pioneering work on digital television was done by Bell 
Telephone Laboratories in connection with the development of a 
picture phone. This work was expanded considerably in connection 
with the space program, with the result that most of the required 
technical knowledge is readily available. 

The application of digital technology to television is limited 
primarily by the cost and availability of components. The first 
commercially available digital television device was a time-base 
corrector introduced in 1973. Since then, many more digital 
television devices have become available and more can be 
expected on a regular basis. 

Many of the digital television devices available today are 
organized in accordance with the block diagram of Fig. 12-1. At the 
input of the system an analog video signal is converted to digital 
form and at the output a digital signal is converted back to analog 
form. The reason is, simply, that TV cameras are analog devices, 
and present transmission standards require that the TV transmit-
ter be modulated with an analog signal. In spite of the fact that a TV 
system must start and end with an analog signal, it is well 
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Fig. 12-1. Block diagram of a typical digital TV signal processor. 

worthwhile to convert the signal to digital form because of the 
many useful things that we can do with digital techniques. 

Most of the advantages of digital processing stem from the 
facts that digital signals can be stored easily, and that digital signals 
can be completely recovered after they have been corrupted with 
noise. 

Inasmuch as the input and output stages of many digital video 
signal processors are AID and D/A converters, they can be 
installed somewhere between the camera and the modulator, and 
the fact that they are digital will not be apparent to the operator. 
Devices of this type are sometimes said to be "transparent" to the 
video signal. 

The A/D converter at the input of a digital processor is often 
called a coder and the D/A converter at the output is called a 
decoder. Frequently, the combination of the two is called a codec. 
Before we look at what a digital system can do with a video signal, 
lets look in more detail at the coder and decoder. 

THE CODER 

The coder, or device which is used to convert an analog video 
signal into digital form, performs three functional operations: 

1. Sampling. Here a sample is taken of the signal and is held 
while the conversion process is taking place. 

2. Quantizing, which is adjusting the signal to specific levels. 
3. The coding, or actual analog-to-digital conversion. These 

three functions are shown in Fig. 12-2. 
The first question that arises in connection with digitizing any 

analog signal is how frequently we must take samples in order not 
to lose any of the detail in the original signal. In an earlier chapter, 
we mentioned the so-called "Nyquist Criterion," which tells us 
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Fig. 12-2. Stages involved in typical video analog-to-digital conversion. 
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that in order not to lose any of the information in a signal we must 
take samples at twice the highest frequency present in the signal. 
Let's take another look at this and see if we can make a little more 
sense out of it. 

One way to look at sampling is to consider it to be amplitude 
modulation. The sampling signal is the carrier and the signal being 
sampled is the modulating signal. From what we know about 
amplitude modulation, we will expect two sidebands to be 
produced, one at a higher frequency than that of the carrier and one 
at a lower frequency. 

Figure 12-3A shows a regular video signal in the video 
frequency domain. This figure shows that all of the information in 
the signal lies between zero frequency and some high frequency, 
which we will call fo. Now let's use this signal to amplitude-
modulate some sampling signal which has a frequency fs. Figure 
12-3B shows the original signal, called the baseband signal, which 
occupies that part of the spectrum between 0 and f., the sampling 
signal, f, and the upper and lower sidebands. Each of the sidebands 
has a bandwidth equal to f.. Looking at the figure we can see that if 
we don't want the lower sideband to fall on top of the original 
signal, the lowest frequency that we can use for the sampling signal 
must be equal to twice f.. This gives us another way of looking at 
the Nyquist criterion. 

Taking another look at Figs. 12-3A and B, we note that we 
have shown the signal as occupying a rectangular piece of the 
frequency spectrum. This, of course, is an ideal situation which we 
will not find in practice. In the real world, the frequency domain 
representation of a signal will start to fall off at some frequency, but 
there will be still higher frequency components that will extend 
beyond where the signal starts to fall off. Thus, the spectrum of a 
real-world signal will look like that shown at the left of Fig. 12-3C 
and the sidebands of the modulated signal will occupy a spectrum 
like that shown farther to the right. From this, we can see that in 
the real world it would be a good idea to use a sampling frequency 
that is much higher than 2f0. 

In practice, television sampling is usually done at either three 
or four times the frequency of the 3. 58-mHz color subcarrier. In 
addition, the higher frequency components of the original signal 
are attenuated with a low-pass filter as shown in Fig. 12-2. 

Now that the sampling frequency is out of the way, we must 
take a look at the number of levels into which we will quantize our 
signal. Here we encounter the first difference between analog and 
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Fig. 12-3. Practical video signal sampling considerations regarding bandwidth. 

digital signals. Whereas the analog signal can, at least in theory, 
assume an infinite number of values, the digital signal can have only 

a discrete number of values, depending on how many bits we use to 
represent each sample. A 4-bit digital signal can represent 16 
different values if we count zero as one of the values. The effect of 
quantizing is shown in Fig. 12-4. Here we have allowed our signal 
to take on four different values regardless of the number of samples 
that we might take. In the figure we have shown a typical analog 
signal that varies smoothly from one value to another. If at the 
moment that we take our sample the value of the signal lies 
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Fig. 12-4. Typical method of quantizing video signal levels. 

between 0 and A, we will let it take on the value 1. If it lies 
between A and B, it will take the value 2. If it is within B and C, it 
will take the value 3, and if it is between C and D it will take the 
value 4. 

The same information is also given in slightly different form in 
Fig. 12-5. Here we see that if during the sampling interval the 
signal being sampled varies from one value to another, the 
quantized signal will have a value somewhere between the two 
extremes. 

Naturally, if the brightness of a signal on a TV screen could 
have only four possible values, the picture would be far from 
satisfactory. We know that we must have more than four quantizing 
levels, but how many more? 

An insufficient number of quantizing levels can distort the 
signal in two different ways. The first type of distortion that we will 
consider is called contour distortion. This is caused when a slight 
variation in the brightness of a part of a scene results in the signal 
jumping from one quantizing level to another. This is very 
noticeable when only a few quantizing levels are used. 

Another form of distortion associated with quantizing is called 
quantizing noise. This is due to the fact that the elements of a 
quantized picture do not have their exact original value. As the 
number of quantizing levels is increased, this effect is less 
noticeable, but tends to occur on a random basis in different parts of 
the picture, thus the effect resembles noise in the picture. 

There is another consideration in selecting the number of 
quantizing levels. That is, with the advent of many different types 
of digital processing units, each of which has its own codec, a signal 
may pass through several conversions between the time that it 
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leaves the cameras and is finally broadcast. If there aren't enough 
quantizing levels, the effect of several codecs in tandem can add up, 
causing a considerable amount of distortion. 

Inasmuch as the quantized signal will be converted into a 
digital signal, the number of quantizing levels selected will usually 
be some integral power of two. Experience has shown that if the 
signal is quantized into 256 different levels, it will be practically 
indistinguishable from a regular analog signal. Furthermore, up to 
seven codecs can be connected in tandem without any noticeable 
effect of the quality of the signal. 

The number 256 is equal to the eighth power of two, so the 
signal can be represented by an 8-bit digital word. Thus, each 
sample of the signal will result in one byte of data. 

An important consideration in the transmission of any signal, 
digital or analog, is the frequency range or bandwidth of the signal. 
If in a codec we sampled a signal at the rate of three times the color 
subcarrier frequency, we would sample at a rate of 10.7 mHz. Each 
sample of the signal results in eight bits, so we would have a data 
rate of 8 x 10.7 = 85.6 million bits per second. In addition to the 
data bits representing the actual signal, we must add some other 
bits for synchronizing and possibly parity checking. So the actual 
bit rate would be higher than this. There is a generally accepted 
rule of thumb that to transmit a 525-line, 60 field-per-second 
picture a data rate of 100,000,000 bits per second is required. If, in 
the worst case, the data consisted of alternate is and Os, the 
corresponding frequency would be 50 rnHz. 

Obviously, one of the prices we pay for having a video signal in 
digital form is that the bandwidth required for tansmission is much 
greater than with the same signal in analog form. One thing that can 

Fig. 12-5. Quantizing errors. 

165 



be done to keep the bandwidth within reasonable limits is to keep 
the data in parallel form inside the processing unit. This is 
practical, because the paths within the unit are relatively short. 

Figure 12-6 shows a parallel system with eight bits. Here, 
although all of the data may be processed at the rate of 100 
megabits per second, the bandwidth on any one of the eight lines is 
only about half the sampling frequency. Thus, with sampling at 
three times the color subcarrier frequency, the bandwidth on each 
line is about 5 mHz. If we sample at four times the color subcarrier 
frequency, the bandwidth will be about 7 mHz. In practical terms, 
this means that video digital processing units can use Schottky 

TTL logic. 
The coder is actually an analog-to-digital converter. Because 

of the speed required, a successive approximation converter of the 
type described in an earlier chapter is used. This type of converter 
is fast enough to keep up with the digital signal. 

BANDWIDTH REDUCTION 

One of the areas of digital signal processing where a great deal 
of work is being done is that of bandwidth reduction. If the rules are 
ever changed to the point where we can actually transmit digitally 
modulated TV signals, it is imperative that the bandwidth be 
reduced. 

Another area where bandwidth is critical is in magnetic 
recording of TV signals. Although the state of the art is continually 
being improved, the limitations of the magnetic media tend to limit 
the bandwidth of the recording. Still another area where bandwidth 
is critical is in the distribution of TV signals by landlines and 
satellite systems. 

50 MHz 
DATA RATE 

50  6.25 IN Hz 
8 - CATA RATE 

ON EACH LNE. 

Fig. 12-6. A narrower bandwidth is needed with parallel transmission. 
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The most obvious way of reducing the bandwidth of a digital 
TV signal is to not digitize the blanking intervals. The horizontal 
and vertical blanking intervals in a regular picture contain no 
information and they can easily be reconstructed later. By leaving 
them out, we can reduce the bit rate by as much as 20%. 

Another technique that is often used in digital systems to 
reduce bandwidth is called "differential modulation," or differential 
pulse code modulation DPCM . This system works on the basis 
that a great deal of the information in the picture doesn't change 
very much from one picture element to the next, from one line to 
another. The system is based on the principle of merely transmit-
ting the differences in signal level or color, rather than transmitting 
all of the information in each picture element. Problems connected 
with this scheme are that it is not easy to predict when one picture 
element will change drastically from another. 

Another method of bandwidth reduction is sampling at below 
the Nyquist rate. The way this is done is exactly the same way that 
the NTSC color subcarrier is interleaved with illuminate signal. 
The reason we have to sample at at least 2F0 is so that the lower 
subcarrier that results from that sampling will not overlap the 
baseband signal. If a way is found to interleave the information is 
the lower subcarrier with the baseband carrier, the two can in fact 
overlap without causing distortion. 

There are still other methods of processing signals, so that 
when digitized the spectral components are interleaved or com-
pressed. The result is that a smaller bit rate is required for 
adequate sampling. 

The area of bandwidth reduction by digital techniques is one 
that we can expect to see continual advancement. An information-
theory analysis of the TV signal shows that we are transmitting 
much more information than is really required to actually represent 
the signal. The amount of bandwidth to be used in the future to 
transmit TV signals will depend greatly on developments in the 
state of the art of bandwidth compression. 

The decoder of our codec is really a digital-to-analog conver-
ter. It's function is just the inverse of the A-to-D converter at the 
input of the processor. 

TIME-BASE CORRECTION 

Modern TV programming is based on the use of portable, 
inexpensive tape recorders. Electronic news gathering or elec-
tonic journalism would be impossible without recorders that could 
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be carried to the scene of the action and operated under all sorts of 
environmental conditions. 

The main obstacle in the use of such recorders is the presence 
of what are commonly called time-base errors. There are three 
general classes of these errors. 

E The sync pulses, vertical or horizontal, or color subcarrier 
may become displaced in phase. 

E There may be actual discontinuities in these sync pulses. 
E The frequencies of the sync pulses can be changed. 
Some of these errors can be attributed to limitations of the 

magnetic tape itself. The tolerances and manufacturing processes 
are such that the tape may stretch or distort when operated under 
adverse environmental conditions. Other errors may be traced to 
the recorders. As the size and weight of the recorders are reduced, 
there is a greater probability of error. The situation is complicated 
by the fact that portable recorders are forced to operate under all 
sorts of adverse conditions. 

The use of such recorders has been made possible by the 
introduction of the time-base corrector. The early time-base 
correctors were analog in nature. They effectively inserted 
varying amounts of delay into the system so that the recorded 
signal being played back could be locked to the studio sync. Many 
of these analog time-base correctors were designed specifically for 
use with particular video tape recorders. 

The digital time-base corrector which resulted from lower 
cost digital components is a stand-alone device. It can be used with 
almost any video tape recorder and is often billed as a cureall for all 
sorts of problems encountered with recorded video signals. 

It might be useful to the broadcast engineer to point out a few 
things that a time-base corrector cannot do. These things fall under 
the general heading that the time-base corrector can't improve 
poor picture quality if it is not directly related to time-base errors. 
If the recorded program had poor lighting, wrong color, poor 
signal-to-noise ratio, the time-base corrector can't do much about 
it. It basically corrects time-base errors in recorded signals. Some 
of the time-base errors can be recognized as shift in color, blurring, 
flag waving, color streaking, or rolling upon switching. 

Figure 12-7 shows a block diagram of a digital time-base 
corrector. The main element of the processing portion of the 
system is a semiconductor memory. This memory is controlled by 
a block called "memory control logic." 

The signal coming in will have the proper phase with respect 
to its own sync pulses. This signal is detected and applied to the 
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Fig. 12-7. Block diagram of a digital time-base corrector. 

control logic that will make it write directly into the memory. 
Thus, in our memory we will have a pretty good representation of 
the incoming signal. The rate at which it is written in may vary with 
the time-base errors. But, once in the memory the signal will be in 
pretty good form. Now, the question is to get it out. 

The reading of the memory is controlled by a digital signal 
derived from the reference sync signal and color subcarrier. 
These, in turn, are derived from the studio sync. Thus, the readout 
of the picture that is stored in the memory will be controlled 
entirely by the studio sync. Just about any time-base error can be 
eliminated in the corrector. Finally, the digital signal is converted 
back into analog form and applied to the video chain. 

The range of time-base errors that can be handled by a 
time-base corrector is often called the "window." For example, if a 
time-base corrector can correct any delay error up to one 
horizontal scan period, it is said to have a range or window of 63 
microseconds. 

As digital technology continues its rapid pace of development, 
we can expect time-base correctors to become smaller, less 
expensive, and to consume less power. 

ELECTRONIC GRAPHICS 

One place where digital technology has found widespread 
application is in the generation of numerals and alphabetic 
characters on TV screens, as well as the generation of all sorts of 
special graphic effects. The TV picture is derived by scanning. 
This means that any spot on the picture can be very accurately 
specified in terms of time intervals with respect to the sync pulses 
in the signal. 
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Suppose that we wish to generate a segment on the screen so 
that we can develop an alphabetic character. As shown in Fig. 12-8, 
the segment can be completely specified in terms of time intervals. 
The vertical position of the segment will be determined by the time 
that elapses from the vertical sync pulse. In Fig. 12-8, this is 
interval "C." The horizontal position of the segment is specified in 
terms of interval "A" from the horizontal sync pulse. The 
horizontal length of the segment is determined by the duration of 
pulse "B." Thus, the first segment in our picture is the top of the 
letter A. To form the complete character, segments of the proper 
duration are generated on each horizontal line for the required 
number of lines, "D." 

Using this procedure, any number of graphic elements can be 
developed to provide almost any desired graphic effect. By 
changing the pulse repetition frequency of the graphics generator 
as compared to the sweep frequencies of the signal, the characters 
can be made to crawl in either direction horizontally or to roll 
vertically. 

Early character generators used a very large number of 
small-scale integrated circuits. Modern systems take advantage of 
available large-scale intergrated circuits and often use microcom-
puters for control of the overall system. 

THE VERTICAL BLANKING INTERVAL 

The vertical blanking interval of a TV signal has always been a 
challenge to broadcast engineers. During this interval, the signal is 
blanked from the screen, but horizontal sync pulses are being 
transmitted. There is nothing in that part of the signal that normally 
carries picture information. In effect, we are transmitting a carrier 
without any information on it. Naturally, many different proposals 
have been advanced to make use of this part of the signal. 

One of the first uses to be made of the blanking interval was 
the transmission of test signals. Test signals are added to the 
signal before broadcasting. Knowing what the test signals should 
look like makes it possible to make corrections for distortion 
suffered in transmission. Digital computers can be used to analyze 
these test signals and make automatic corrections to compensate 
for distortion. 

Several other uses have been proposed for the vertical 
blanking interval. Many of these center around transmitting 
alphanumeric characters using ASCII characters. The word teletext 
has been used as a generic term to embrace all of these systems. In 

170 



14-A-)14;4_ 

 V\ 

Fig. 12-8. The letters in the dimension line indicate time intervals used in 
generating graphics. 

Europe, many such systems are actually on the air, transmitting 
everything from weather and time information to stock market 
quotations. At the time of this writing, these systems have only 
been used experimentally in the United States. 

An interesting application involved adding captions to pic-
tures for the benefit of deaf viewers. Captioning has been used on 
some networks for years, but while it is very helpful for those who 
are hard-of-hearing, it tends to be annoying to those who can hear 
the audio perfectly well. 

The proposed captioning system would transmit the ASCII 
characters that make up the captions during the vertical blanking 
interval so that they would not normally appear on the screen. 
Thus, a viewer who was not hard-of-hearing would never know that 
the captions were being transmitted. A deaf person could, 
however, add a converter to his receiver. The converter would 
pick up and store the characters that were transmitted during the 
vertical blanking interval. These characters could then be dis-
played on the screen in response to commands that were also 
transmitted during the blanking interval. 

There are a few unique problems associated with transmitting 
digital signals during the vertical blanking interval. In the first 
place, the data is transmitted at a slow rate, because the intervals 
only occur at a rate of 60 times per second. The individual bits of 
data must be transmitted at a much higher rate, however, because a 
complete character must be transmitted during the time of one 
horizontal line—about 63 microseconds. 

These characters which are caught on the fly and stored are 
critical as to timing, and thus are much more susceptible to 
problems from such things as multipath transmission than are 
ordinary video signals. This problem is overcome by transmitting 
special synchronizing words that permit detection and correction 
of timing errors. 
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Chapter 13 

Digital Audio 

Although digital video processing got somewhat of a head start on 
digital audio in the broadcast field, digital audio is rapidly catching 
up. The advantages are fully as great in audio as in video, and in 
some respects the problems are not as formidable. It will probably 
come as a surprise that the number of bits per sample required for 
faithful reproduction of an audio signal is greater than that required 
with a video signal. 

As we noted in our discussion of digital video, there are two 
separate considerations in digitizing an analog signal. The first is 
the sampling rate, which is determined entirely by the highest 
frequency component of the signal that we wish to digitize. Of 
course, the highest frequency in an audio signal is much lower than 
that of a video signal, so we can live with lower sampling 
frequency. 

The other consideration is the number of bits required to 
represent each sample. This cannot be determined by a formula 
such as the Nyquist criterion, but depends on subjective considera-
tions. The number of bits per sample in a video picture depends on 
how the resulting picture looks to an observer. Similarly, the 
number of bits per sample in a digitized audio signal depends on 
how the signal sounds to a listener. We saw in the preceding 
chapter that an 8-bit picture looked, for all practical purposes, as 
good as an analog signal. In audio, however, we find that we need 
about 12 bits per sample for the resulting signal to sound natural. 

One of the things that makes digital systems easy to 
understand is the fact that all digital systems seem to have a great 
deal in common. Thus, it is not surprising to find that the digital 

172 



AUDIO INPUT 
A/D 
CON-
VERTER 

RAM 

I 

-I! 

CONTROL 

D/A [.... 
CON-
VERTER 

Fig. 13-1. Block diagram of a digital audio processing system. 

audio processing system shown in Fig. 13-1 is practically identical 
to the video systems that we studied earlier. Functionally, the 
systems are nearly identical, but they differ in sampling rates and 
the actual use that is made of the samples. 

One of the problems that digital processing solves in video is 
related to time-base errors. In audio, we are not concerned with 
accurate timing. About the only timing consideration is the 
development of echo effects by time-delay units. Of course, this 
can be accomplished digitally as shown in Fig. 13-2. Here we 
introduce a variable amount of delay into the signal by connecting 
the output to various stages of a shift register. 

NOISE REDUCTION 

One of the most promising uses of digital technology in the 
audio field is in reduction of noise in recordings. There are two 
different aspects of noise reduction involving digital technology. 
The first, which we have mentioned in Chapter 1, involves the fact 
that once we have a signal in digital form, it can acquire quite a bit of 

Fig. 13-2. Block diagram of an elementary digital audio delay line. 
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noise which can be removed by digital techniques. The second, 
which is more involved, is that digital techniques can be used to 
remove noise from an analog signal. 

First let's review the way that the effects of noise can be 
removed from a digital signal. Figure 13-3A shows a digital signal. 
It consists of a series of pulses that are either high or low. Figure 
13-3B shows this same signal after it has been corrupted by noise. 
By simply looking at the signal in Fig. 13-3B, we can quite easily 
tell where the highs and lows of the original signal are. Of course, 
looking at an audio signal doesn't do very much for us. We must 
have an electronic system that will do the job for us. 

Figure 13-4A shows an arrangement that can be used to 
recover a digital signal from noise. The input stage is a Schmidt 
trigger of the type that we have mentioned several times. The 
output of this stage will go low whenever the input reaches a 
certain level. It will not go high if the signal falls below this level. It 
will go high only when the input falls to an even lower level. 

Figure 13-4B shows how the hysteresis of the Schmidt trigger 
will recover a clean digital signal from noise. The hysteresis will 
prevent the output signal from swinging high and low with small 
noise perturbations of the input signal. 

Looking at Fig. 13-4 we can easily imagine situations where 
the noise corruption can be so bad that even our Schmidt trigger 
won't recover the original signal. One such situation is shown in 
Fig. 13-5. Here, the noise perturbation is so bad that there are 
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Fig. 13-3. Distorted digital signal. 
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Fig. 13-4. A Schmidt trigger can be used to clean up a digital signal. 

places within the high level of a pulse where the signal actually 
goes to zero (points A and B in the figure). The Schmidt trigger has 
no way of distinguishing the noise pulse from a low level. 

We still aren't completely helpless. We have another tool at 
our disposal. If transmission standards have been adopted, we 
know a lot about the type of pulse train that is buried in the noise. 
For example, we may well know the duration of each pulse that 
makes up the system. In this case, we can install some sort of delay 
unit that will not let our signal change level until the end of a normal 
pulse period. Figure 13-6 shows a simplified approach to this. 
Here, our Schmidt trigger is followed by a one-shot multivibrator 
that will generate a pulse equal in duration to one of the pulses in 

Fig. 13-5. This comparison shows a severely distorted digital signal. 
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our system whenever a high level is detected. This pulse is applied 
to a gate that will not pass any pulses between the limits of this 
time period. Thus, if a spurious noise pulse should occur during 
one of the signal pulses, it will not appear in the output. 

There is still another way in which a digital signal can be 
corrupted by noise. Although we can recover the original high and 
low signals, we can't necessarily determine the exact instant at 
which the original signal changed state. There are two ways that 
we can attack this problem. One is to store our recovered signals 
and then read them out of the memory smoothly by a clock that 
operates at the data rate of the original signal. 

There is another technique that can be used to recover signals 
from noise. It involves correlation techniques. We will discuss this 
in the following paragraphs. 

REMOVING NOISE FROM ANALOG SIGNALS 

Before we consider how to use correlation techniques in 
digital signals, let's look at just what we mean by correlation. 
Figure 13-7 shows a simple sinusoidal signal. Figure 13-7B shows 
a very noisy signal that may or may not contain the sinusoidal signal 
of Fig. 13-7A. Our problem is to find out whether or not the signal 
of Fig. 13-7A is indeed present in the noisy signal of Fig. 13-7B, 
and, if so, to recover it. 

Suppose that we have a signal source that produces the signal 
of Fig. 13-7A. Also suppose for the moment that if this signal is 
present in the noisy signal of Fig. 13-7B, it will be in phase. We can 
get rid of this restriction later. 

In Fig. 13-8 we have a system where we apply both the noisy 
signal and the signal from our generator to a multiplier. First let's 
suppose that the sinusoidal signal that we are looking for isn't 
present in the noisy signal at all. The noisy signal will be 
alternately swinging positive and negative, as shown in Fig. 13-9. 
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Fig. 13-6. A one-shot multivibrator can be used to establish pulse duration. 
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Fig. 13-7. The sinusoidal signal (A) 

is buried in noise (B). 

Thus, the product of this signal and our sinusoidal signal will 
alternately be positive and negative. In the next stage of our 
system we integrate the output of the multiplier. If the signal is 
alternately positive and negative, the voltage across the capacitor 
will alternately go positive and negative so that the net charge in 
the capacitor will not increase. 

Now let's look at the other situation. Suppose that the signal 
that we are looking for really is present in the noisy signal as shown 
in Fig. 13-10A. Now our system will multiply our sinusoidal signal 
in Fig. 13-10B by the noisy signal. Inasmuch as the sinusoidal 
signal buried in the noise is assumed to be in phase with our locally 
generated sinusoid, both signals will be positive at the same time. 
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Fig. 13-8. Block diagram of a correlator used to detect a signal in noise. 
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Fig. 13-9. The average value of the 

product of a sinusoid and noise is 

zero. 

Inasmuch as the product of two positive numbers is positive, and 
the product of two negative numbers is also positive, the output of 
the multiplier will be positive at all times. If this signal is applied to 
our integrating capacitor, the net charge will tend to increase. This 
is shown in Fig. 13-10C. 

To summarize, we now have a system that will tell us whether 
or not a locally generated signal is actually present in a signal that 
looks for all practical purposes like random noise. We call this 
technique the cross correlation of our locally generated signal and 
the noisy signal. We can look at the output of the integrator. And 
when it exceeds a certain value, we can use the locally generated 
signal as the received signal, because we know that it is actually 
buried in the noise. 

So far we have tacitly assumed that if the signal we are looking 
for is actually present in the noise it will actually be in phase with 
our locally generated signal. In the real world, we would never be 
so lucky. What we must do is to add a phase shifter to our system as 
shown in Fig. 13-11A. Here we will vary the phase of our locally 
generated signal until the output of the integrator is maximum. As 
we vary the phase, the output of the integrator will be as shown in 
Fig. 13-11B. When the two signals are in phase, the output of the 
integrator will be maximum. Thus, we cannot only recover the 
signal that we are looking for from the noise, we can also determine 
its phase. 

One thing that is apparent from our discussion of correlation is 
that it takes time to perform. We must have time to shift the phase 
of our signal and it takes time for the capacitor to integrate the 
signal to tell us whether or not the signal we are looking for is 
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actually present. In the meantime the noisy signal will continue to 
go on. It won't wait for us to perform our magic operations. 

There is another limitation to our scheme. If we applied an 
analog signal, such as speech or music, we would need a separate 
locally generated signal for each frequency that might be present 
buried in the noise. 

Both of these limitations can be overcome by using digital 
techniques. First, digital signals are easy to store. We can store 
the digitized version of the noisy input signals and correlate it at a 
more leisurely pace and again store the result. The other 
advantage of using digital techniques is that we are only looking for 
highs and lows, not for every frequency that might be present. 

DIGITAL CORRELATION 

A digital correlation system would have a block diagram 
similar to that of the analog system that was described above. 
However, the low cost of digital computer equipment makes it 
possible to perform very elaborate correlation functions at low 
cost. Some phonograph recordings of famous artists who are now 
dead have been resurrected and had all or almost all of the noise 
that was characteristic of recordings of their day removed. 

The audio techniques that can be implemented with a 
computer far exceed those that we have discussed above. For 
example, we know a great deal about the nature of what might be on 
a recording. If the subject matter of a recording is a known musical 
piece, we know a great deal about just what we should be looking 

Fig. 13-10. Waveforms illustrating 

the operation of a correlator circuit. 
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for when we process the signal. Using this knowledge, we can 
operate on a signal several times to recover as much of the original 
as we wish. 

DIGITAL AUDIO RECORDINGS 

At the time of this writing there have been no universally 
accepted standards for digital recording of audio signals. Video 
recorders have been developed to the stage where ample recording 
bandwidth is available to accommodate elaborate digital encoding 
of audio signals for recording. 

The advantages of digital recordings are obvious. The 
principal advantage is the freedom from noise. If the recording 
track on the recording is digital, all that the pickup system has to do 
is to decide whether the signal at any instant is a zero or a one. This 
means that the recording will not be seriously affected by dust and 
greasy fingerprints. 

We can expect many advances in this field in the very near 
future. Probably the biggest obstacle at present is the lack of 
universally accepted standards that will lead to mass production of 
both recordings and reproduction equipment. 

Fig. 13-11. Correlator system with phase shifter. 
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QUASI-DIGITAL TECHNIQUES 

Although they do not properly fall under the heading of digital 
circuits, there are many techniques used in audio amplification that 
are nearly digital in nature. 

The efficiency of vacuum tube amplifiers was seriously 
limited by the fact that there is an inevitable voltage drop across a 
tube even when it is conducting at its maximum value of plate 
current. The transistor does not suffer from this limitation. A 
transistor can be operated nearly like a switch. When it is turned on 
fully there is a large current, but a very low voltage drop. Inasmuch 
as the dissipation in the transistor is equal to the product of voltage 
and current, the dissipation will be low. Similarly, when the 
transistor is turned off, there will be a voltage across it but there 
will be little or no current. Thus, again, the dissipation is low. In 
a transistor connected as a switch, about the only time that the 
internal dissipation is significant is when the transistor is switching 
from on to off or vice versa. That is, when we have a significant 
value of both voltage and current. 

Because of this possibility of very efficient operation of 
transistors, there is a trend to operate transistors as close to 
switches as possible. This permits the design of very efficient 
amplifiers. 

The ideal way to operate a transistor amplifier is to operate on 
truly digital signals. In this way, the transistor is either on or off, 
except during the very short periods when the signal is changing 
from a high to a low or vice versa. 

Because of the difficulty of changing from analog signals to 
digital and back again, the use of true digital signals, as we have 
been discussing them, in home and studio audio equipment is 
rarely practical. There are, however, many other techniques that 
can be used that are very similar in nature. 

One technique is to represent the amplitude of a signal by the 
duration of a pulse. This technique, which is called pulse-duration 
modulation, keeps the signal at a high or low level almost all of the 
time. Pulse-duration modulation is also used in an amplitude-
modulation scheme that eliminates the high-power modulator 
tubes and transformer that formerly characterized an AM transmit-
ter. 

We can expect increasing use of switching, or quasi-digital 
techniques, in the amplification and processing of audio signals. 
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Chapter 14 
Digital Remote And Automatic Control 

The subject of digital control systems is very complex. Many 
digital control systems include their own digital computer. Natur-
ally, we can barely scratch the surface in a single chapter. What we 
will try to do is to include enough information to enable the reader 
to read and understand the instruction manuals covering control 
systems so that he can learn to handle them. 

THE OPEN-LOOP SYSTEM 

One type of control system is called an open-loop control 
system. As shown in Fig. 14-1, control information is fed into one 
end of the system and something happens at the other end. The 
switching arrangement used to change the antenna networks of an 
AM station from its daytime to its nighttime pattern is an open-loop 
system. Looking at the block diagram of Fig. 14-1, we can see that 
the open-loop system might be adequate for some situations, but 
rather inadequate for others. For example, an open-loop system is 
fine for controlling tower lighting. The switch can be thrown to 
switch on the tower lights, and the operator can look out the 
window to be sure that the lights turned on. 

On the other hand, if an open-loop system is used to do 
something such as increase or decrease the power of a remote 
transmitter, the system in itself isn't capable of telling us whether 
or not the transmitter power actually changed, Thus, in addition to 
most open-loop control systems, we have some sort of instrumen-
tation system to monitor the parameters that we are changing. 

In Fig. 14-2, we show an open-loop system used in connection 
with a remote measuring system. The measurement system 
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Fig. 14-1. Block diagram of an open-loop control system. 

displays the values of many of the parameters of a remote 
transmitter, and the control system provides a method of changing 
these parameters. Looking at the figure we can see that both the 
measurement system and the control system are data transmission 
systems. The measurement system sends measurement data from 
the remote location to the control point. The control system sends 
control data from the control point to the remote location. 

In Fig. 14-3, we have carried the development of our system a 
step further. Here we have used a single two-way data transmis-
sion system to carry data in both directions. This is still an 
open-loop system, because at the control point the measurement 
data is not connected directly to the control system. 

THE CLOSED-LOOP SYSTEM 

Let us for a moment consider the operator at the control point 
of the arrangement of Fig. 14-3 to be a part of our system. The 
system is now called a closed-loop system because the data follows 
a closed path. The measurement data is first transmitted to the 
control point where it is displayed on a readout. The data then 
enters the brain of the operator. In the brain the measured value of 
the parameters is compared with the correct value as known to the 
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Fig. 14-2. An open-loop control system used with a measurement system. 
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Fig. 14-3. Open-loop control and measurement systems using a single 
transmission system. 

operator. If any of the parameters do not have the correct value, the 
operator's hand enters correction data into the control system. 
This data changes the value of the parameter and the new value is 
sent back to the operator. 

Of course, in a true closed-loop system, we want something 
other than a human operator in the control loop. But for now we can 
learn a little about the behavior of a closed-loop system by leaving 
our operator in the loop a little longer. 

Let's suppose that our operator is a little slow compared with 
what we want him to be. He notices that a parameter has fallen 
outside of limits, but he takes his time about sending the proper 
control signal. Even when he does initiate the control signal, he 
sends a small signal at first, then slowly increases it as necessary. 
If, for example, the parameter being measured happened to be the 
plate current of a final amplifier, the plate current might follow the 
curve of Fig. 14-4. Here, something happened that caused the plate 
current to become excessive. Because of the fact that the operator 
wasn't particularly speedy, the plate current remained at the 
excessive value for some time, and then corrected slowly. We 

would probably feel that this lag in the control is undesirable. 
Let's look at the other extreme. Suppose our operator is 

particularly fast and makes corrections instantly. Now, when he 
notices that a parameter is out of limits, he reaches for the control 
and applies full correction. Before the measurement system can 
respond, the parameter has gone too far and is again out of limits in 
the opposite direction. The operator again applies a correction, and 
again the parameter overshoots in the other direction. The 
parameter, such as plate current, might behave as shown in Fig. 
14-5. Here we see that instead of controlling a parameter, we have 
simply managed to make it oscillate about the desired value. 
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These two examples show us that a closed-loop control 
system might either have excessive lag or it might oscillate. This 
is exactly what we find when we get to a true closed-loop system. 
In fact there are three ways that our system can respond. As shown 
in Fig. 14-6, our system can have a slow lagging response, it can 
oscillate, or it can make the correction in a minimum period of 
time. Of course, this is the response that we really want. 

THE CONTROL UNIT 

Figure 14-7 shows a functional block diagram of the control 
unit of a closed-loop digital control system. The value of the 
controlled parameter is constantly monitored and sent to the 
control point by a link such as a phone line. At the control point, a 
digital signal is recovered from a modem. This signal is applied to a 
digital comparator. Also applied to the comparator is a digital 
signal that specifies the desired value of the controlled parameter. 

The set, or desired, value of the controlled parameter is a 
digital signal that is derived from a switching arrangement. It may 
be taken directly from switches, or it may be stored in some sort of 
memory. In either case, the operator can change it at will. 

In the comparator, the actual value of the controlled parame-
ter is compared with the desired value. If the two agree, there is no 
output from the comparator. If the actual value of the parameter 
does not agree with the desired value, an error signal is produced. 
The error signal will tell whether the parameter is greater or less 
than the desired value. A signal is then sent to the remote point to 
change the parameter in such a direction as to restore it to its 
proper value. 

CONTROL 
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Fig. 14-4. Curve illustrating correction time lag in a control system. 
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Fig. 14-5. Curve showing over-correction in a control system. 

The system of Fig. 14-7 has been simplified considerably. In 
an actual system, the error signal will usually not indicate the 
direction of the error, but will be proportional to its magnitude. 
The error signal can be processed digitally so that the system will 
respond in an optimum way without either excessive lag or 
oscillation. 

Although many digital control systems have been built using 
small-scale integration, the low cost of microprocessors has 
changed this trend. Now almost every control system of any 
complexity at all incorporates a microprocessor. This drastically 
reduces the number of components in a system. However, the 
functions that are performed are just about the same as those we 
have described. 

COMPLEX CONTROL SYSTEMS 
The closed-loop control system that we have been discussing 

in the preceding paragraphs is very simple compared with many 
readily available control arrangements. In fact, it isn't easy to 
understand how very complex functions can be performed by 
simple digital functional units. There doesn't seem to be much 

Fig. 14-6. These curves illustrate the modes of response of a closed-loop 
control system. 
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resemblance between a complex system and the simple functions 
that we have been discussing. The problem seems to be that 
although the individual digital functions are very simple, it takes a 
tremendous number of them to perform a complex operation. 

One approach to understanding complex controllers is to 
realize that any imaginable control function can be performed by 
using both combinational and sequential logic. Combinational logic 
will enable us to derive an output signal whenever any combination 
of inputs is present. This function can be performed with a 
collection of logic gates or circuits that perform similar functions. 
By adding sequential logic, we can insist that certain operations 
must be performed before other functions can be performed. We 
can even specify the time that must elapse between functions. For 
example, we can design a circuit for turning a transmitter on and 
arrange the gates so that the heater voltage for the tubes must be 
applied before the plate voltage can be applied. By adding a counter 
in the circuit, we can specify how long the heater voltage must be 
applied before the plate voltage. 

ARITHMETIC OPERATIONS 

In this book we have frequently mentioned the binary number 
system, but about the only operation we used with the system was 
counting. We have had no occasion to mention that various 
arithmetic operations can also be performed with digital circuits. 
Before we look at the subject of binary addition, let's take another 
look at exactly what we mean by addition. Normally if we were to 
add 8 and 4 in the decimal system, we would say that the sum is 
twelve. This is not basic enough for us to apply it directly to binary 
arithmetic. Let's look at what we actually do when we add 8 and 4: 
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Fig. 14-7. Block diagram of a control unit. 
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8 
+ 4 
12 

What we actually do when we perform this addition is to put a 2 in 
the right hand column, and then carry a 1 to the next column. Thus, 
we can say that: 

8 + 4 = 2 (with a carry) 

Now let's look at binary addition. We stated the rules in 
Chapter 1. They are: 

0+0=0 
0 + 1 = 1 
1 + 1 = 10 

Let's reword the last statement to read 

1 + 1 = 0 (with a carry) 

With this little bit of information, we can see that the 
exclusive OR gate will perform binary addition, if we provide some 
means to generate the carry signal when we need it. 

It is worth noting that the binary addition function is not the 
same as the logical AND function that we have performed so many 
times. For example, we know that if we AND the binary numbers 
for 4 and 2, one bit at a time we will get 

0100 (4) 
AND 0010 (2) 

0000 
This is because the only time that we get a 1 from the logical AND 
process is when both of the inputs are 1. If we AND the bits of the 
two words above we see that none of the columns has two l's in it. 

On the other hand, if we were to add the two binary numbers 
above we would get: 

0100 (4) 
+ 0010 (2) 
0110 (6) 

It is a good idea to keep these two functions separate when 
dealing with a complex system where we might encounter both 
operations. 

Without getting into details, digital ICs are available that will 
perform the various arithmetical operations readily. Thus, we can 
multiply, add, subtract, and divide with little trouble. In fact a 
single microprocessor IC can perform both arithmetic and logic 
operations. 
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Chapter 15 

Troubleshooting 

Digital Equipment 

The well-accepted method of troubleshooting analog equipment is 
based on the troubleshooter having a rather thorough knowledge of 
just how each stage of the equipment works and how each stage 
contributes to the overall performance of the system. For example, 
in troubleshooting the audio console in a broadcast station, the 
technician carefully checks each stage until the faulty stage is 
located. He then proceeds to check individual components until he 
locates the defective component. The component is then replaced. 

There is nothing wrong with this approach, if it is reasonable 
under a given set of circumstances. Unfortunately, there are 
several reasons why it cannot be adopted in many digital items. In 
the first place, the state-of-the-art in digital equipment is advanc-
ing so rapidly that equipment is being installed so fast that the busy 
engineer or technician can't keep up with all of the details. When 
trouble occurs, the pressure to get it fixed and to get the station 
back on the air is so great that there isn't time to learn the details of 
system operation. 

Furthermore, in a digital system, all of the systems compo-
nents are buried in integrated circuits so that a functional approach 
must be taken. 

Naturally, the best approach to troubleshooting any piece of 
equipment is to be prepared in advance. If time is available, the 
person responsible for troubleshooting must become sufficiently 
familiar with each item of equipment so that he will be prepared to 
troubleshoot it when trouble occurs. Although there is probably 
universal agreement on the fact that this is a good approach to 
troubleshooting, there is probably also near universal agreement 
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that it will rarely happen. In all probability, when a digital system 
fails in a broadcast station, someone who has never had time to 
become familiar with the details of its operation will be called on 
not only to fix it, but to fix it quickly. 

Fortunately, the situation isn't hopeless. There are many 
aspects of digital systems that tend to make them all alike. They all 
use digital signals. They all use the same functional operations. 
Similar pulse shape and timing considerations are involved in all of 
them. The result of all of this is that it is very frequently possible to 
isolate and correct faults in a digital system with only a very 
superficial knowledge of just how all of the components work 
together to perform the overall system functions. 

THE SAME OLD STUFF 
One thing that must be born in mind is that digital systems are 

subject to many of the same types of troubles that affect any 
electronic system. Many of these common faults are so simple that 
they are often overlooked as the technician becomes almost 
overwhelmed by the complexity of the complete system. Some-
times simple things are checked only after many hours of useless 
sophisticated troubleshooting. 

As a first step in troubleshooting any type of equipment, look 
for the common faults such as poor connections, broken wires, 
short circuits, and even the power plug not being connected. Often, 
checks of this type will save hours of troubleshooting. 

The printed-circuit board has some unique faults. Often there 
can be a faulty soldered joint that looks OK and works OK for a long 
time before it begins to cause problems. Solder bridges across the 
foil on the board may not make a complete connection for a long 
time. Therefore, an inspection of a printed-circuit board should 
include a close visual inspection—often with the aid of a light and 
magnifying glass. Carefully probing connections can help in 
locating poorly soldered joints. 

THE INTEGRATED CIRCUIT AS A CAUSE OF TROUBLE 
When solid-state devices first became popular we all learned 

that they were extremely reliable. We were told that once a device 
had lived through the initial burn-in period, its life was, for all 
practical purposes, infinite. The only possible cause of failure was 
exceeding its ratings. Everyone who had read the early articles in 
journals learned that transistors and integrated circuits rarely 
failed. 

Those who gained experience with these devices soon 
learned that much of what they had been told about reliability was 
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little more than wishful thinking. Solid-state devices can and do 
fail. Perhaps not as frequently as capacitors and tubes, but that they 
can and do fail. 

Looking at the schematic diagram of what is inside an 
integrated circuit shows that there are plenty of places for trouble 
to occur. In fact, the circuits are so complex that one wouldn't know 
where to begin. Fortunately, we need not concern ourselves with 
most of what is inside an integrated circuit. 

The best approach to troubleshooting a system with inte-
grated circuits is to know what is supposed to happen at the pins. 
We needn't concern ourselves with where the actual trouble might 
be. We can consider all faults as occuring just inside the package at 
the pins. With this approach, the number of different failures that 
can occur in any integrated circuit are quite limited. We can learn 
each of these faults and how to recognize them. 

The types of faults that can occur in a digital integrated circuit 
fall into two classes. A pin can be opened, or it can be shorted to 
another pin. Most of the catastrophic faults can be thought of as 
being of these types. 

There is another type of trouble that is familiar to anyone 
working in electronics. That is the intermittent fault. This may be 
one of the above faults that occurs intermittently, or it might be 
what we can call a dynamic fault that only occurs under certain 
conditions. First let's look at the IC as a cause of problems. 

FAULTS IN INTEGRATED CIRCUITS 
One of the most useful tools in investigating faults in an 

integrated circuit is a truth table showing how the circuit is 
supposed to behave. When the device is faulty, it will not behave in 
accordance with its truth table. 

Open Pins 
We can consider a fault to be caused by an open pin when the 

IC behaves as though there were no connection between the pin 
and what is inside. The IC will not be affected by whatever signal 
we apply to the open pin. If the open pin happens to be an output 
pin, it will have no effect on what is connected to it. 

Pins Shorted to the Power Supply 
Sometimes a pin of an IC will be permanently in a high state. It 

will behave as though it were connected internally to the positive 
supply pin. Usually, this "high" will have a higher voltage than a 
normal logic high. For example, in TTL logic a normal logic high is 
usually in the order of +3V. If the pin is shorted to the supply the 
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voltage will usually be closer to +5V. This is often a useful clue in 
troubleshooting. 

Pin Shorted To Ground 
A somewhat similar fault exists when a pin is permanently at 

ground level. This low is usually about the same as a regular low, 
so this type of fault isn't as easy to recognize. 

Pins Shorted Together 
In this instance, one pin will always have the same potential as 

another pin. They may not be at any state permanently. 
In the followingparagraphs we look at these types of faults in a 

little more detail and look at ways that we might recognize the 
faults. 

The Open Pin 
First let's look at what happens when the input pin of an IC is 

open. Figure 15-1 shows the input circuitry of a typical TTL IC. To 
make anything happen, we must connect the input pin, which is 
actually the emitter of a transistor, to a low level. If we leave the 
pin disconnected, nothing will happen. Now, if the connection 
between the emitter inside the IC and the input pin is open, the 
gate will behave as though the pin were stuck at a high level. 

Note that we can't observe this condition at the input pin 
itself. Inasmuch as it isn't connected to anything, the pin will follow 
any voltage that we might connect to it. We can't definitely isolate 
an open pin by making a measurement on it. The best approach to 
locating an open input pin is to change the voltage on all of the input 
pins while observing the state of the output. 

Figure 15-2 shows a TTL NAND gate and its truth table. If the 
gate is functioningproperly, it will follow the truth table. 

Now let's suppose that the lead inside pin A of the IC is open 
and not connected to the rest of the circuit at all. Of course, we 
can't tell this by looking at the voltage on the pin. If we apply a high 

Fig. 15-1. Input circuit of a TTL IC. 
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Fig. 15-2. TTL NAND gate and its truth table. 

to the pin it will go high, and if we apply a low it will go low. What 
we can do is to apply different inputs to the pins while observing the 
output. Figure 15-3 shows what we will find. 

The two columns at the left of the table show the input 
voltages that we actually apply to the inputs. The next column 
shows what we would see at the output if the circuit were 
functioning properly. So far we have a regular truth table. The last 
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Fig. 15-3. The truth table shows the output of a NAND gate with pin A open. 
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column at the right shows what we actually observe at the output 
pin. As shown in the figure, the only place where the observed 
result differs from the truth table is in the second line. This is 
because pin A, being open, drifts to a high level and the gate 
interprets it as being high even though we have tried to apply a low 
signal. 

This figure also shows an interesting aspect of many faults 
that we find in digital systems; that is, the faulty IC may behave 
correctly for all but one possible combination of input signals. This 
could easily mean that a system using an IC with such a fault would 
behave properly most of the time. Suppose, for example, that the 
particular combination of input signals shown on the second line of 

Fig. 15-3 occured only rarely in the operation of the system. The 
fault would be evident only at these times. As can be seen, such a 
fault could be very elusive and hard to pin down. 

Before we leave the subject of open input pins, let's look at a 
NOR gate with the same type of fault; that is, an open circuit inside 
the IC at pin A. Figure 15-4B shows the truth table for a NOR gate 
and the output we would get from the faulty gate. Note that the 
output will be low for all combinations of input signals. This is 
because the only time that the output of a NOR gate can go high is 
when both of its input pins are low. Inasmuch as pin A is open, the 
corresponding emitter will drift to a high level and stay there. 
Thus, there is no way that we can make both of the inputs low. 

Looking over the table in Fig. 15-4B we see how the faulty 
gate behaves, but we also see something else. We see that the gate 
behaves exactly the way it would if the output pin were shorted to 
ground. In either case, we would have isolated the fault to the same 
IC, which must, of course, be replaced. 

While on the subject of open pins, let's look at the output pin of 
an IC. Of course, with the connection to the pin being open the 
output circuit of the IC will not change the voltage at the actual pin. 
It will be floating. Thus, the voltage at an open pin will depend on 
what it is connected to. In the usual case, the output of an IC is 
connected to an input pin of another IC. 

Figure 15-5 shows such an arrangement. The input pin of IC2 
will behave as though nothing were connected to it. Thus, it will 
drift to a level that it will consider to be a high. This high will, 
however, be lower than the usual TTL high. It will be in the order 
of about +1.5V. Such a level is considered to be a "bad level." 
This is because, although the gate will treat it as a high, it will 
actually fall into the "no man's land" between high and low logic 
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INPUT CORRECT 
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0 0 1 0 

0 1 0 0 

1 0 0 0 

1 1 0 0 

Fig. 15-4. Illustrated in the truth table is a NOR gate with an open input pin. 

levels. This fact can be used to verify the fact that the output pin of 
IC1 is open. 

Thus, whenever we find a bad level at the output pin of an IC, 
we can be reasonably sure that the output pin is open and that the 
bad level is coming from the input pin of the following IC. If the 
suspected IC happens to be in a socket, we can verify this very 
quickly. If the voltage at the output connection is the same whether 
or not the IC is in the socket, we can be sure that the fault is an open 
output pin. 

Shorted Pins 

There are three classes of faults that we can consider as shorts 
at the pins of an IC regardless of where the actual fault occurs. An 
IC can behave as though a pin were shorted to the positive supply, 

OPEN CIRCUIT 

A 

WILL DRIFT TO 
ABOUT +1.5V 

Fig. 15-5. An open output pin in IC1 will allow pin A on IC2 to drift. 
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to ground, or to some other pin. Frequently when an input pin is 
shorted to either the positive supply or to ground, the result will be 
catastrophic failure of the preceding IC. 

Figure 15-6A shows an input pin shorted to the positive 
supply. As long as the output of the preceding stage is high, there 
will be no problem. When the output of the preceding stage goes 
low, there will be a short between the positive supply and the top of 
transistor Q4, which will usually result in excessive current and 
failure of IC1. 

Figure 15-6B shows the situation where an input pin is 
shorted to ground. Here there will be no problem when the output 
of IC1 is low. When the output goes high, there will be a short from 
the bottom of transistor Q3 to ground. This will cause excessive 
current which can destroy IC1, but failure isn't quite as certain as in 
the case of Fig. 15-6A. There is a diode and often some resistance 
in the circuit, and if the short doesn't persist too long, IC1 can 
sometimes be saved. 

A short in an output pin is more confusing. The effect will 
depend on the nature of the fault inside the IC. Frequently, the 
effect is the same as though the input pin of the following stage 
were shorted to either the positive supply or to ground. Usually, 

Fig. 15-6. These drawings show the effect of shorted input pins. 
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the result will be catastrophic failure of the IC. After this failure 
occurs, the output stage can act as though the output pin were 
shorted to either the supply or to ground. The result will be that the 
output pin is usually permanently either high or low. 

The remaining case to consider is when a pin is shorted to 
some other pin, not either the positive supply or ground. The effect 
will, of course, depend on just where the short occurs. If two input 
pins are shorted together, the fault can often be deduced by 
drawing a truth table of the bahavior of the gate and comparing it 
with the actual truth table for this type of gate. When an input pin 
and an output pin are shorted together, the nature of the fault may 
indeed be strange. Sometimes the stage will oscillate. More often 
than not it will not obey its truth table and can be diagnosed as being 
defective. 

CIRCUIT FAULTS 

Often in digital systems, faults occur on the foil of the 
printed-circuit boards. Most of these faults will produce the same 
symptoms as open or shorted pins. They can be isolated more 
easily, however, because measurements can be made at points 
along the foil to isolate the fault. 

DYNAMIC FAULTS 

While discussing the various types of faults that can occur in 
digital ICs, we have tacitly considered that the faults would be what 
we might call "hard faults." That is, we assumed that once the fault 
occured it would persist and that we could troubleshoot until we 
located it. This is often the way that digital circuits behave. 
However, there is another class of faults that we might call 
dynamic faults. They occur only while the system is in operation. If 
we were to test each of the ICs in the system, we might not be able 
to find anything wrong with them. Under the general heading of 
dynamic faults we should consider three types of problems: 

I: The system may be subject to interference. This interfer-
ence might come from the outside world, or it may be generated 
within the system itself. 

E The system may be causing interference to some 
peripheral device that works with it, or 

E There may be some dynamic problem in the system. Often 
such faults are thermally related, but sometimes they result from 
marginal design. 
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INTERFERENCE 

A digital system may fail dynamically whenever interfering 
signals from the outside world find their way into the circuits. This 
is probably more common in broadcasting because so much of the 
equipment must operate in strong RF fields. Usually, such a fault 
can be traced to improper grounding or shielding. 

First, let's consider the problem of shielding. There is a 
tendency to think of a shield as something that protects what is 
inside it in much the same way as a raincoat protects a person from 
the rain. While this idea is adequate in many cases, a better 
understanding of how a shield works can be had by taking a more 
fundamental approach. 

Whenever an electron anywhere in the world moves at an RF 
rate, it produces a field that makes every other electron in the 
universe want to move at the same rate. Shielding is produced by 
arranging conductors so that when a field is set up one conductor, 
an equal and opposite field is set up in another conductor, with the 
result that the two fields cancel locally and have no effect on other 
conductors. 

A good example of shielding is the familiar coaxial cable. Here 
the current in the inner conductor causes an electromagnetic field. 
An equal current in the opposite direction flows in the outer 
conductor and also causes a field. The two fields cancel at the outer 
conductor so there will effectively be no field outside the cable. 

Another factor that must be taken into consideration in 
connection with shielding is the skin effect. RF currents will only 
flow on the surface of a conductor. The situation is shown in Fig. 
15-7. Note that although a grounding bolt passes through the panel, 
the ground current will flow only on the surface of the panel. 

Whenever RF is found inside a digital system, there can be 
trouble. Correcting the problem is often tedious, but careful 
attention to shielding and grounding will almost always clear it up. 

Other Dynamic Faults 

Most of the dynamic faults in a digital system that are not 
caused by interference are caused by one of three things: 

1. Poor connections that operate properly most of the time, 
but occasionally open, causing spurious pulses by making and 
breaking the circuit on a random basis. This type of trouble is found 
by careful inspection of all connections. Suspect connections 
should be touched up with a soldering iron. 
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Fig. 15-7. Drawing illustrating skin effect in shielding. 

2. Thermal problems that change the behavior of a digital IC. 
Thermal faults can cause the threshold level of a gate to change, or 
they can slow down the response of an IC. The best way to isolate 
thermally related faults is to heat suspected ICs with a blast of hot 
air from a hand-held hair drier and to cool them with a spray made 
for the purpose. Usually, one or the other of these will cause a 
thermally related fault to either appear or to clear. 

3. Spurious pulses on power supply lines. We discussed this at 
some length in the chapter on power supplies and noise. Often a 
spurious pulse is of such short duration that it is hard to see on an 
oscilloscope. Frequently spurious pulses are caused by the failure 
of components that were included in the design to eliminate them. 
Frequently, a faulty despiking capacitor can be found by noticing 
that the trouble disappears when the suspected capacitor is bridged 
with a similar capacitor known to be good. 
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Sometimes spurious pulses are the result of marginal design. 
A frequently found case of this type is where the designer simply 
didn't include enough despiking capacitors to take care of what 
might happen as the system ages. 

TEST EQUIPMENT 
Now that we have an idea of the types of faults that we might 

find in digital systems, let's take a look at what we might use for 
test equipment to locate the cause of these troubles. Although 
much specialized test equipment is available that is specifically 
designed for use in digital systems, the old tried and true VOM and 
oscilloscope can also be used to advantage. 

The VOM 

In a digital system, the voltages are either logic highs or logic 
lows. In TTL, the high and low values of voltage are shown in Fig. 
15-8. When the states of the various stages of the system are not 
changing too rapidly, these states can be checked using an ordinary 
VOM with a sensitivity of 20,000 ohms per volt or higher. Figure 
15-9 shows the high, low, and bad levels marked on a 5-volt VOM 
scale. 

If the system is one when logic states change only in response 
to inputs that can be disconnected, the levels at all of the pins of the 
ICs in the system can be checked rather quickly for a bad level that 
would indicate. trouble. If this fails, the various highs and lows can 
be checked against the truth tables for the various ICs. 

Fig. 15-8. High and low levels in TTL ICs. 
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Fig. 15-9. Good high and low logic readings on a meter scale. 

There are two limitations to this approach. First, there are 
some systems that operate with a clock operating at a high 
frequency. Usually, the system won't do much of anything if the 
clock is stopped. The result is that everything changes much too 
fast for a meter to follow. The other limitation of this approach is 
that some faults are dynamic in nature and won't show up on a 
meter. In such cases, the cathode-ray oscilloscope can be used to 
advantage. 
The Oscilloscope 

The best way to set the oscilloscope sensitivity for trou-
bleshooting digital systems is to adjust it so that the top graticule of 
repetition rate and time of occurence of the pulses that we find in 
digital systems all at the same time. If the oscilloscope has a 
compensated probe, the compensation must be properly adjusted 
before intelligent measurements can be made. Figure 15-10 shows 
how a square wave will look on the oscilloscope when the probe is 
under-, over-, and properly compensated. 

The best way to set the oscilloscope sensitivity for troub-
leshooting digital systems is to adjust it so that the top graticule of 
the display corresponds to the lowest voltage. In Fig. 15-11, the 
controls are set for checking TTL circuitry where the highest 
voltage is +5V and the lowest voltage is ground. The input is also 
set for DC coupling so that DC voltage measurements can be made. 
In Fig. 15-12A, the probe is connected to a point at +5V and at Fig. 
15-12B the probe is applied to a ground level. 

JoL   
RIGHT 

Jet 
WRONG WRONG 

Fig. 15-10. Waveforms showing proper and improper compensation of an 
oscilloscope probe. 

201 



Fig. 15-11. Logic readings are simplified by adjusting oscilloscope vertical 
sensitivity to correspond high and low levels with the graticule markings. 

So much for DC measurements. Most of the measurements 
we will make deal with pulse trains. If the sweep of the 
oscilloscope is not synchronized to the pulse train, the display will 
be in continuous motion, as shown in Fig. 15-13A. Although this 
display will not show any of the details of the pulses, it isn't 
completely useless. It will tell us that a pulse is present and that 
the pulses vary between ground and about +3V. Sometimes this is 
all we need to know about some point in a circuit. 

If the oscilloscope is properly synchronized, we can see the 
details of the pulses as in Fig. 15-13B. Here, by properly setting 
the horizontal controls of the scope, we can measure both the 
duration and the repetition rate of the pulses. 

In order to get a stationary display, we must properly 
synchronize the oscilloscope. There are two ways that we can do 
this. One is to use internal synchronizing. With this mode, the 
sweep of the oscilloscope is initiated by one of the pulses that is 
displayed. If we use positive triggering, the sweep will start when 
the pulse is going in a positive direction. If we use negative 

Fig. 15-12. Oscilloscope set for high and low logic voltage measurements. 
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Fig. 15-13. The horizontal sweep of an oscilloscope must be synchronized with 
the frequency of a pulse train. 

OSCILLOSCOPE PROPERLY 
SYNCHRONIZED 

triggering, the sweep will start when the pulse is going in a 
positive direction. If we use negative triggering, the steep starts 
when the pulse is going in a negative direction. This is shown in 
Fig. 15-14 A and B. Usually, the edge of the pulse that actually 
starts the sweep will not show on the screen, but will be off to the 
left. 

The other way we can use to trigger the oscilloscope is to use 
external triggering. In this mode, we get a pulse from some point in 
the system and apply in to the external triggering input of the 
oscilloscope. Some systems have synchronizing pulses available at 
some point that can be used to start the sweep at the beginning of a 
word or byte. Often, the biggest problem in using an oscilloscope is 
to find the proper triggering input so that we can see what we want 
to see. 

.._  

TRACE STARTS WITH 
POSITIVE-GOING EDGE 

Fig. 15-14. Scope displays showing positive and negative horizontal sweep 
triggering. 

TRACE STARTS WITH 
NEGATIVE-GOING EDGE 

203 



One of the most obvious faults that can be detected with an 
oscilloscope is noise in the system. Figure 15-15 shows some 
oscillograms with permissible and excessive values of noise. 
Usually, the noise can be traced to the point in the system where it 
starts. More often than not, a defective component will be the 
cause. 

Another thing that can be found with an oscilloscope is a 
spurious pulse. There are three different kinds of spurious pulses 
that get into digital signals. The first kind is the pulse that is caused 
by a defective component and is generally in synchronism with the 
other pulses in the system. Figure 15-16A shows a pulse of this 
type. It is probably caused by the switching of some stage in the 
system that is not directly in line with the pulses that we are 
observing. The cause of this pulse can be found by probing through 
the system to find out where it starts. 

In Fig. 15-16A we are using external synchronizing so the 
trace will always start at the same time. The spurious pulse 
marked "T" doesn't seem to be directly related to the pulses that 
are being displayed. What we must look for is something else in the 
system that occurs at time "T". 

Suppose that while probing around the system we find the 
waveform shown at Fig. 15-16B. There is nothing wrong with this 
pulse, but due to the fact that it occurs at time "T", we are 
suspicious. Further investigation shows that the points where the 
two traces of Fig. 15-16A and B were taken are both part of the 
same IC as, shown in Fig. 15-16C. Thus, we might well suspect 
that in some way the pulse of Fig. 15-16B is affecting the trace of 
Fig. 15-16A. It might be leakage in the IC. It could also be caused 

Fig. 15-15. Scope displays showing excessive noise 
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Fig. 15-16. Scope waveforms are useful in locating the cause of a spurious 
pulse. 

by a faulty despiking capacitor, or possibly even a design weakness 
where the despiking capacitor was omitted. In any case, we have 
traced the spurious pulse to its source. 

The next type of spurious pulse is related to the frequency of 
the power line, which is probably not harmonically related to the 
pulse frequency of the system. If we look at the pulse train of Fig. 
15-17A, which has a pulse repetition frequency of 1 kHz, we 

Fig. 15-17. Power line triggering can be used to isolate a "glitch" related to the 
power line frequency. 
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Fig. 15-18. Waveform showing oscillation on leading or trailing edges of a pulse. 

probably won't see the pulse at all. After all, the pulses of the 
system occur every millisecond and the power-line-related pulse 
will occur only about once every 17 milliseconds. Furthermore, 
the power line pulse will be constantly moving with respect to the 
pulses of the system. 

The way to spot pulses or "glitches" that are related to the 
power line frequency is to synchronize the oscilloscope to the 
power line. Now the main pulses of the system will not hold still 
but will be in continuous motion, making a blur on the screen. The 
spurious pulse will, however, hold still. This is shown in Fig. 
15-17B. 

The last class of spurious pulse or "glitch" will be one that 
isn't related in frequency to either the power line frequency or to 
the pulse rate of the system. It is probably caused by something 
outside the system. In a broadcast environment, it might be related 
to either the carrier frequency or to the modulation frequency. 
Sometimes sweeping the oscilloscope at some submultiple of 
either of these frequencies will make the pulse hold still on the 
scope. Once a spurious signal is made stationary on the oscillos-
cope screen, it can usually be traced to its source. 

Often when integrated circuits start to fail, their timing will go 
off. The output of a stage that is about to fail might be much longer 
than normal. When this pulse reaches the input of the following 
stage, it might well cause oscillation as we discussed earlier in the 
book. Sometimes, if we are lucky, this oscillation will be evident 
on the front or back of a pulse as in Fig. 15-18A. More often than 
not, the frequency of oscillation will be much higher than the pulse 
frequency so that it will not be obvious, but will look more like the 
trace of Fig. 15-19B. 
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Chapter 16 

The Microprocessor 
and the Broadcaster 

No book on digital electronics as it applies to broadcasting would 
be complete without at least an introduction to the microprocessor. 
Certainly, no device has had such a great impact on the configura-
tion of broadcast equipment since the introduction of the transis-
tor. Just about every type of broadcast equipment from transmitters 
and video equipment to test equipment is being changed by the 
microprocessor. Sooner or later every broadcast engineer and 
technician who wishes to avoid becoming obsolescent must 
become familiar with it. 

Before we even begin to discuss the technical details, let's 
look at some of the problems that will be encountered by one 
wishing to master the device. There are a surprising number of 
engineers and technicans who work with microprocessors who 
have rather superficial knowledge of the subject. They know 
enough to get by, but are often stumped when problems arise. 

Probably the biggest reason that more people haven't really 
mastered the microprocessor is due to the fact that the task is 
underestimated .This may be because the device itself is so small. 
In the past, no one underestimated the task of mastering the digital 
computer. The very size and complexity of a computer was enough 
to convince one that its mastery would take a great deal of time and 
effort. The microprocessor is actually similar to a large digital 
computer. Functionally, it is very similar. In spite of its small size, 
it contains a very large number of functional elements. There 
seems to be no short cut to real mastery of the subject. 

Another point that must be borne in mind when approaching 
the subject is that a microprocessor is a digital system. A complex 
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one to be sure, but nevertheless a digital system. Unless the 
principles of digital systems are well understood, it is nearly 
impossible to acquire any real mastery of the microprocessor. 

Is there a good way to become familiar with the subject? 
Probably not as good as we wish, but there is an approach that 
works. It starts out with becoming familiar with all of the functional 
aspects of digital electronics. Frequently, questioning shows that 
one who has a great deal of difficulty with the microprocessor 
doesn't really understand one or more aspects of basic digital 
electronics. 

Once one has a good knowledge of digital electronics, the next 
step is to start learning about the microprocessor itself. An 
important aspect of this is becoming familiar with the terminology 
of the field. There are many good books, and seminars on the 
subject, but until one has at least a passing knowledge of the 
terminology, they are apt to be most difficult. 

Lastly, one should gain some hands-on experience. This 
should preferably be done on a system that is procured for training 
rather than on operational equipment. But, often the first exposure 
will be to a faulty piece of equipment that must be put back on the 
air in the shortest possible time. 

In the following pages we will present a very elementary 
introduction to the subject. No claim is made for completeness. 
The order of presentation has been chosen so as to develop a 
gradual familiarity with some aspects of the subject. 

WHAT IS A MICROPROCESSOR? 
Perhaps the simplest description of a microprocessor is that it 

is a single integrated circuit that contains all of the control and 
processing sections of a digital computer and sometimes more. Of 
course, this definition doesn't explain why the microprocessor is 
having such an impact on broadcast equipment. Why should a 
digital computer improve such things as transmitters, control 
systems, and video pocessing equipment? 

The question arises because of the way most of us have 
become assustomed to thinking of digital computers. To most of us 
a digital computer is something that can make out pay checks, do 
accounting, and perform mathematical operations. Of course, this 
has been the principal application of digital computers. But the 
computer is also capable of operating as a controller. The cost 
reduction that has resulted from the development of the micro-
processor has made it practical to apply computer technology to all 
sorts of control problems. 
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As we have seen throughout this book, a digital system 
consists of many functional elements such as logic gates and 
flip-flops that perform simple logic functions. The overall opera-
tion of the system depends on the selection of these units and on 
how they are connected together. 

Suppose that we have a single integrated circuit that contains 
many logic elements and can duplicate the functions of our ordinary 
logic elements. Suppose further that the way in which all of these 
elements are connected together doesn't depend on wiring, but on 
information that is stored in memories. We then would have a 
circuit that could be made to duplicate the function of any digital 
system that you can imagine. That is just about what we have in the 
microprocessor. 

Thus, by using a microprocessor, together with peripheral 
devices, we can develop what amounts to a universal system. What 
the system actually does will be determined by the program we 
store in its memories. We can have two systems that have nearly 
identical wiring diagrams but completely different functions. 

The microprocessor approach to digital systems has many 
advantages. Techniques of programming have been highly de-
veloped by the digital computer people, so putting a program into 
such a system is straightforward. Furthermore, design changes 
can be made by merely changing the program that is stored in 
memory, rather than by changing wiring and interconnections in 
the system. A system based on microprocessor might be said to 
have a wiring diagram that we can change at will without actually 
disturbing a single connection. All of the changes are actually made 
in the is and Os that are stored in the memories. 
LIMITATIONS 

Although the number of places that microprocessors are used 
will continue to increase for a long time to come, the microproces-
sor is not the answer to all digital design problems. Two 
limitations, at least at the present time, involve the size of the 
system and the required speed of operation. Many digital systems 
consist of only a few integrated circuits. Obviously, there is 
nothing to be gained by replacing such a simple system with a 
microprocessor. 

The other limitation involves the required speed of operation. 
Most microprocessors are simply not as fast as circuits that use 
discrete components such as transistors, although this situation 
could well change through the years. For this reason, in such 
applications as real-time processing of TV signals, the micro-
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processor may well control the system, but the actual signal 
handling will be done by faster components. 

PROBLEM AREAS IN LEARNING 

There are several reasons why the microprocessor poses 
problems for the engineer or technician who is not familiar with it. 
Although the actual basic functions in such a system are very 
simple, there are very many steps in even the most elementary 
operation. This gives the system the illusion of complexity. 
Furthermore, a microprocessor system usually has several large-
scale integrated circuits connected so that several things are 
happening at almost the same time. Here again, the system 
appears to be very complex. 

We mentioned that one problem facing the newcomer to the 
field is the fact that there is a whole new vocabulary involved. Until 
the new terms are understood, the subject will indeed remain 
confusing. 

Two terms that are bandied about in connection with micro-
processor systems are hardware and software. The term, 
hardware, isn't bad, because it refers to physical devices such as 
integrated circuits, readouts and interconnecting wires. The term, 
software, is apt to be more confusing. It is used to describe 
numbers and programs that have no physical existence, but are 
stored in hardware such as semiconductor memories. The program 
or set of instructions that tells the microprocessor what to so is 
called software. 

BASIC ELEMENTS 

All programmable digital computers consist of three func-
tional elements as shown in Fig. 16-1. The first element that we 
will consider is called the memory. As its name implies, the 
memory stores data. The data that is stored in the memory may be 
the actual numbers that the system is processing, or it may consist 
of binary numbers, called instructions, that tell the rest of the 
system what to do. 

In a microprocessor system, the memory is usually a 
semiconductor device, although systems handling large amounts of 
data often use magnetic disks to store data. Memories are of two 
general types. The Read Only Memory, or ROM , has information 
stored in it that cannot be easily changed. Therefore, it is used to 
store instructions that will not change. The Random Access 
Memory, or RAM, would probably better be called a read-write 
memory because data can be stored in it electrically at any time and 
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can just as easily be erased. A RAM is used for things that are to be 
stored temporarily. Thus, the actual numbers the system is 
working with, as well as instructions that are changed frequently, 
are stored in RAM. 

The next basic element of a computer that we will discuss is 
the Arithmetic Logic Unit or ALU. It can perform simple 
arithmetic operations on binary numbers as well as basic logic 
functions such as ANDing and ORing. Even the most complex 
mathematical or control operation can be broken down into very 
large number of very simple operation. Thus, the ALU can perform 
any functional operation that is performed in any digital system. 
The problem is that there are a very large number of operations. 
Inasmuch as microprocessors can perform these simple steps in 
less than a microsecond, this isn't much of a problem in most 
applications. 

The next functional element in Fig. 16-1 is called the control 
unit. It is often called the brain of the computer because it 
coordinates the operation of the other elements. The instructions 
that are stored in the memory are deciphered in the control unit 
which then tells the ALU what to do. 

These three functional elements are the essential parts of any 
digital computer. Of course, we can't do much with it unless we 
have some way of interfacing it with the real world. This 
interfacing is accomplished by the/nput/Output or I/O devices. 

COMPUTER OPERATION 

One of the reasons that computer operation tends to be 
baffling to the newcomer is that all operations are performed by a 
series of many very simple steps. The steps are so elementary that 
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Fig. 16-1. Functional block diagram of a microprocessor. 

211 



Fig. 16-2. Calculator, pencil and paper analogy of microprocessor operation. 

they require a new way of thinking about problems. One way in 
which to gain a little insight into how a computer works is to use an 
analogy consisting of a man with a calculator, a pad of paper and a 
pencil as shown in Fig. 16-2. The man is analogous to the control 
unit of the computer. The calculator corresponds to the ALU, and 
the paper and pencil are analogous to the memory circuits. 

Let's use this analogy to see how we would write program for 
adding the decimal number 2 to the decimal number 3. We can 
perform this operation so simply in our heads that we fail to 
recognize all of the steps involved in the process. 

The first thing that we need is a list of instructions. These 
instructions would be stored in the memory of a computer, so we 
will write them on the pad of paper. A computer has no judgement 
other than what we program into it, so we must be very careful to 
include all of the steps. 
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The following list shows the steps necessary to simply add 
the decimal number 2 to the number 3, using our simple calculator 

I. Press the clear key. 
2. Enter the first number into the calculator. 
3. Press the "+" key. 
4. Enter the second number into the calculator. 
5. Press the "=" key. 
6. Read the total and write it down 
To find any of the above instructions, all we have to do is to go 

the proper numbered line above. In computer parlance, the number 
of the line is called the address of the instruction. For example, line 
3 is the address of the instruction, "Press the + key." 

Looking at our list of instructions, we see that something is 
missing. We haven't stated just which numbers we were going to 
add together. So we will take another piece of paper and enter: 

A 2 
3 

These numbers, 2 and 3, are the numerical data that we are going to 
work with. To get the number 2, we have to go to line A, so we can 
say that A is the address of the number 2. 

Although we may seem to be complicating the simple situation 
of adding two numbers together with a calculator, this example will 
give a considerable amount of insight into how a computer or 
microprocessor must be programmed to perform what seems like a 
simple task. From what we have said so far, we can see that a 
program consists of a series of two types of operations. First we 
must get, or fetch, the instruction or data; then we operate on, or 
execute, these instructions. 

Let's continue to write a detailed program for adding the 
numbers 2 and 3. The steps will look something like this: 

1. Fetch the instruction on line 1. This instruction is to press 
the clear key on the calculator. 

2. Execute this instruction. This means to actually press the 
clear key. 

3. Fetch the instruction on line 2. This instruction tells us to 
enter the first of the two numbers that we wish to add, but it doesn't 
tell us what the number is. We must have another line of the 
program to tell us the value of the number. 

4. Fetch the number on line A. Now we find that the value of 
the number is 2. 

5. Execute the instruction on line 2. This means to actually 
press the "2" key on the calculator. 
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6. Fetch the instruction on line 3. This tells that we must 
press the + key. 

7. Execute the instruction on line 3. Actually press the "+" 
key. 

8. Fetch the instruction on line 4. This tells us to enter the 
second of the two numbers that we wish to add, but, again, it does 
not tell us the actual value of the number, so we have the next step. 

9. Fetch the number on line B. Now we know that the value of 
the second of our two numbers is 3 so we can proceed. 

10. Execute the instruction on line 4. Actually press the "3" 
key on the calculator. 

11. Fetch the instruction on line 5. This tells us to press the 
key. 
12. Execute the instruction on line 5—actually press the "=" 

key. 
13. Fetch the instruction from line 6. This tells us to read the 

indication of the readout of the calculator. 

14. Execute the instruction from line 6. Actually read the 
number 5 on the calculator and write it down. 

In a computer program, this wouldn't be enough; we would 
actually have to specify some address at which we would write 
down the number 5. We might specify that the 5 be written on line 
C of the second piece of paper. 

One thing that is obvious from this simple example is the fact 
that as human beings we perform many detailed steps of most 
things that we do almost automatically. Certainly, if we were to add 
the numbers 2 and 3, we wouldn't consciously go through all of the 
detailed steps that we have listed above. The computer, however, 
has no intelligence of its own. It can only do what we program it to 
do. This is one of the problems that faces the beginner at 
programming. He often neglects some of the simple steps that 
enter into an operation so that his program won't work. 

In this analogy, the calculator, the human operator and the 
pencil and paper are hardware. The instructions and the numbers 
are software. Now we have a reasonably close approximation of a 
computer program that is used with a microprocessor. It points out 
the important fact that although a microprocessor operates very 
fast, time is required for the operation of each step and there are 
often many steps in an operation. Thus, when performing complex 
functions, the speed of operation of the microprocessor can be 
significant. 
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FLOW CHARTS 

One of the questions that frequently arises in connection with 
the microprocessor is, "Just how can a device, which operates in 
much the same way as a computer, perform all of the operations 
that have traditionally been performed with more conventional 
systems?" The answer isn't simple, but it isn't very complicated 
either. To use the microprocessor intelligently, the designer must 
combine the skills of hardware design and programming. 

One of the aids in either preparing programs or interpreting 
them is called a flow chart. The flow chart is to the programmer 
what the schematic diagram is to the circuit designer. 

Several different symbols are used in flow charts, but all you 
need to know to get a good insight into the matter is the meaning of 
the three symbols shown in Fig. 16-3. The first symbol that looks 
like a rectangle with rounded ends marks the beginning or the end 
of the program or a part of a program. This seems like an 
unnecessarily simple symbol, but you must always remember that 
a computer-like device won't so anything unless you tell it to. For 
example, it will neither start nor stop unless it is properly 
instructed. These start and stop symbols in the flow chart remind 
the programmer to put in the proper instructions. 

The second flow chart symbol in Fig. 16-3 is a rectangle. It is 
used to represent one or more instructions that the microprocessor 
must follow. In a detailed flow chart there will often be a separate 
rectangle for each instruction. In a more general flow chart a single 
rectangle may represent a whole set of instructions. Again this is 
analogous to a circuit diagram. In a detailed diagram, we will have a 

Fig. 16-3. Flow chart symbols. 
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symbol for each circuit component. In a more general diagram, 
several components are included in a single block. 

The final symbol in Fig. 16-3, the diamond shape, is 
representative of what distinguishes a software-based system from 
a hardware-based system. It represents a point in the program 
where the system must make some sort of decision. The decision 
is based on something that the system can easily determine. For 
example, the system may compare two numbers to determine 
which is larger. If one number is larger, one set of instructions will 
be followed. If the other number is larger, another set of 
instructions will be followed. Another type of decision may be 
based on whether or not a number has been reduced to zero. 

Figure 16-4 shows a simple application of a flow chart. Here 
we have a simplified program for a microprocessor-based system 
that is used to control the speed of a motor. The first block of the 
chart is the start instruction. Usually, it will tell the microproces-
sor to set all of the registers in the system to some known state. 

Digital circuits, when they are first turned on, may be in either 
a high or a low state. In our motor controller the various circuits 
just might be in a state that will command the motor to go to full 
speed. We might not want this to happen, so we will provide 
instructions that will tell the system what state we want it to be in 
when it is turned on. This process is called initialization. The next 
block tells the system to get a signal that is some function of the 
speed of the motor we are controlling. It might be a digitized signal 
from a tachometer. Next, the actual speed of the motor as 
represented by a binary number is compared with another binary 
number that represents the desired speed of the motor. 

Now, we come to the first point in the program where the 
system must make a decision. The diamond-shaped symbol 
labeled, "Is the motor speed correct?" is called a decision point or a 
conditional branch in the program. What happens next depends on 
whether the speed of the motor is what we want it to be. If the 
answer is yes, nothing will happen and the program will revert to 
the first step and again check the speed of the motor. If the answer 
is no, then another decision must be made. The system must 
determine whether the speed is to high or too low. In either case, 
the system is programmed to initiate corrective action. 

Of course, our flow chart is simplified in that we haven't 
shown any of the detailed instructions that must be supplied to the 
microprocessor. Nevertheless, it will give a good overall view of 
what is going on in the system. 
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One thing that isn't obvious from our flow chart is the fact that 
the microprocessor can perform all of the steps required to control 
the speed on a motor with plenty of time to spare. In practical terms 
this means that we might use the same system to control several 
other things. For example, we might start our program once every 
several hundred milliseconds. In the interim period we may use the 
same system to execute a completely different program that 
controls something else. 

SIMULATING LOGIC ELEMENTS 

There is another way in which we can gain a little insight into 
the way that a computer-type of system can duplicate the function 

Fig. 16-4. Flow chart of a motor control program. 
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of another digital system. Earlier in this book we discussed the fact 
that NAND gates can be combined to perform any type of digital 
function. By cross coupling NAND gates we can make flip-flops, 
and with gates and flip-flops we can make any conceivable type of 
digital system if we have enough of them. Figure 16-5 shows the 
symbol for a NAND gate, together with its truth table. Figure 16-6 
shows a microprocessor system with three external connections. 
There are two inputs labeled A and B, and one output connection. 

Figure 16-7 shows a flow chart of a program that will enable 
our system to duplicate the function of a NAND gate. The first step 
in the program is to determine whether input A is high or low. If 
this input is low, the situation corresponds to one of the top two 
lines of the truth table of Fig. 16-5. In either case, the output will be 
high. If input A happens to be high, that is not low, the situation 
corresponds to the third or fourth lines of the truth table. The state 
of the output will be either high or low, depending on the state of 
input B. Thus, we next make a decision on the basis of this input. 
By comparing the flow chart with the truth table, we see that they 
both accomplish the same thing. Thus, we have shown two things: 
First, that we can use a flow chart to do the same thing that we can 
do with a logic truth table, and secondly, if we can build any 
imaginable type of digital system out of NAND gates, then we can 
also build any imaginable type of digital system using a micro-
processor that will follow the program of Fig. 16-7. 

SYSTEM FLEXIBILITY 
One of the advantages of the microprocessor-based system is 

the fact that it is very flexible and can be adapted to many changing 
conditions. For example, suppose that we had a conventional 
digital system using gates and flip-flops that was designed to test a 
particular type of integrated circuit automatically. The system 
might check all of the parameters of the integrated circuit to be 
sure that they were within prescribed limits. 

Now suppose that we wished to test a different type of 
integrated circuit. The pin connections might be different and the 
parameters might not be the same. To adapt a conventional system 
to the new IC would require a great deal of rewiring and possibly 
some redesign. 

If, on the other hand, our system were based on a micro-
processor, we could accommodate changes in both the pin 
connections and circuit parameters by merely changing the 
program that operates the system. It wouldn't be necessary to 
change a single soldered connection. 
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MACHINE LANGUAGE 

So far, all of the instructions that we have talked about have 
been expressed in words. Obviously, we can't place words in 
English on the actual wires that connect to a microprocessor. The 
actual instruction that goes into a microprocessor is a binary 
number; that is, a set of high and low signals. The most popular 
microprocessors have a data bus and instructions that are one byte, 
or eight bits long. Thus, a particular instruction that would be 
placed on the 8-bit data bus might be 1001 0010. This set of binary 
signals might, for example, tell the microprocessor to add one 
binary number to another. As we get into discussions about 
computer languages, it is important to remember that all of the data 
in a system is stored in binary form, and binary numbers are the 
only language that a microprocessor understands. The signals at 
the various pins of the microprocessor are either high or low, and 
thus are binary digital signals. Any talk about languages other than 
binary numbers pertains to something that is done for the 
convenience of the human operator of the system. When the signals 
get into the system they are binary signals. 

Looking at the binary signal that we mentioned above, 1001 
0010, it is easy to see that regardless of how well the processor can 
handle it, a number like this isn't particularly well suited for use by 
human beings. Each microprocessor has what is called an instruc-

Fig. 16-5. NAND gate and its truth table (B). 
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MICROPROCESSOR 
SYSTEM 

OUTPUT 

Fig. 16-6. Microprocessor system set up to simulate a NAND gate. 

tion set. This is a set of binary numbers that will tell it to do 
different things. Most of these instructions consist of eight-bits. 
For example, the instruction 1001 0010 might tell the micro-
processor to add two numbers together, and 1010 0101 might tell it 
to move the number from one location to another. Numbers of this 
type are not easy to remember and for that matter aren't 
particularly easy to talk about. For the convenience of human 
beings who might be associated with such systems, we need some 
sort of shortcut that will make the instructions easier to handle. 

One solution to the problem is to express the various binary 
numbers in some other number system that has more symbols and 
is thus easier for a human being to handle. The first thing that 
comes to mind is that we might use something like the binary-
coded decimal system that we learned about earlier in the book. 
With this system we could express all of the 8-bit binary words in 
the familiar decimal numbers. The idea has a serious limitation in 
that the BCD system isn't very efficient. We couldn't express 
every 8-bit binary number with two decimal numbers. For 
example, the binary number 1001 0010 could be expressed as 92 
using binary-coded decimal, but the number 1001 1111 would be 9 
15. Thus we would have difficulty trying to use the system. 

The next best bet, and the one that is nearly universally used, 
is the hexadecimal number system. This is a numbering system 
having the base 16. Figure 16-8 shows a comparison of the 
hexadecimal, binary and decimal numbering systems. We can see 
that from 0 to 9, the hexadecimal system is the same as our familiar 
decimal system. Above 9 we have six new symbols, the first six 
letters of the alphabet. Before we go any further, it is obvious that 
it is much easier to work with a hexadecimal number such as 1A, 
than to work with its binary counterpart 0001 1010. 
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Fig. 16-7. Flow chart of the program to simulate the operation of a NAND gate. 

There are other advantages to using the hexadecimal number 
system. One advantage is that it is very easy to convert between 
binary and hexadecimal numbers. First, suppose that we have a 
number in binary form. The first step is to separate the number into 
groups of four digits each. We usually do this anyway just to make 
the numbers easier to read and write. Then, we find the decimal 
value of each group of four digits. Finally, we assign a hexadecimal 
number for each group of four digits. The process is shown in Fig. 
16-9. 

Now let's go the other way. Suppose we have a hexadecimal 
number and we want to express it in binary form. All, we have to do 
is to assign a 4-bit binary number to each digit of the hexadecimal 
number. This is shown in Fig. 16-10. 

Using the hexadecimal number system, it is common to see 
the instructions for a microprocessor written as F4, B2, or 11. 
These hexadecimal numbers are much easier to work with than 
their binary counterparts, but we must remember that the actual 
signals are in binary form. 
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DECIMAL BINARY HEXADECIMAL 
NUMBER NUMBER NUMBER 

I 000 I I 

2 0010 2 

3 0011 3 

4 01 00 4 

5 0101 5 

6 0110 6 

7 0111 7 

8 1000 8 

9 1001 9 

10 1010 A 

II 1011 B 

12 II 00 C 

13 110 I D 

14 1110 E 

15 1111 F 

Fig. 16-8. Comparison of decimal, binary, and hexadecimal representations of a 
number. 

WHAT IS AN INSTRUCTION SET? 

In the preceding pages we have made reference to the 
instruction set of the microprocessor. The entire instruction set is 
rather lengthy and complex, but we can take at least a superficial 
look at it. An instruction is a digital signal, usually eight bits long, 
that when fed into the instruction register of a mperoprocessor will 

01001010 = 74 DECIMAL =4A HEXADECIMAL 

1. BREAK BINARY 0100 1010 
NUMBER INTO 
GROUPS OF FOUR 
DIGITS 

2. ASSIGN HEXADECIMAL 
NUMBER TO 
EACH GROUP 

0100 =4 1010 =A 

3. WRITE HEXADECIMAL 4A 
NUMBER 

Fig. 16-9. These calculations show how to convert a binary number to a 
hexadecimal number. 
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instruct the ALU to do something useful. For example, the 
instruction 1000 0101 might make the ALU move the data that is 
stored in the accumulator to another register. 

Inasmuch as the microprocessor can do just about anything 
that any other electronic system can do, we might expect that there 
are several different types of instructions in a typical instruction 
set. Indeed there are, but at first glance, the exact instructions 
tend to be a little confusing. We can understand what they do, but 
the immediate reaction is apt to be the question as to why anyone 
would want to do anything like that. The reason for this confusion is 
that the microprocessor does things in extremely small elementary 
steps. The fact that it operates at high speed is the only thing that 
makes it practical to accomplish things in this way. As an example, 
it usually requires more than ten instructions to simply add two 
numbers together. 

To accomplish tasks with a microprocessor, we must break 
the task down into very elementary steps. At first this requires a 
different way of thinking. Later, we will see that there are things 
called "higher level languages" that will simplify the task consider-
ably. 

To make the instruction set a little easier to follow, we can 
somewhat arbitrarily break the instructions down into five 
categories: 

111 Arithmetic Instructions. These instructions cause bi-
nary numbers stored in various parts of the system to be operated 
on mathematically. For example, the contents of the accumulator 
might be added to the number stored in a given memory location. 
Note that addition is about the most complex operation that is 
performed by a single instruction. To do such things as subtract, 

2 B HEXADECIMAL = 00101011 BNARY = 33 DECIMAL 

I. SEPARATE HEXACECIMAL 2 
DIGITS 

2.ASS1GN A 4-BIT BINARY 2=0010 B = 1011 
NUMBER TO EACH 
HEXADECIMAL NUMBER 

3. WRITE BINARY NUMBER 00101011 

Fig. 16-10. These calculations will convert a hexadecimal number to a binary 
number. 
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multiply, or divide, we need to have several sequential instruc-
tions. This emphasizes the fact that things are done in very simple 
steps. 

D Logic Instructions. These instructions cause some logic 
operation to be performed on the numbers in the system. Typical 
logic instructions cause ANDing, ORing, and NOTing. 

D Moving Instructions. These are sort of housekeeping 
instructions. They cause data to be moved in some way in the 
system. In most operations it is necessary to move data in and out 
of the accumulator. Multiplication is performed by combining 
addition with shifting the data to the right or left. Also included in 
this category are instructions that cause data to be stored in various 
memory locations. This operation may tend to be a little confusing, 
because the storing is done in a slightly unconventional way. For 
example, we might store the contents of the accumulator in a given 
memory location. After the operation is complete, the data will 
indeed be in the specified memory location, but it may also still be 
in the accumulator. This feature often causes many problems to 
beginners. 

D Jump or Branch Instructions. These instructions 
define operations which make the microprocessor such a powerful 
tool. Instructions can cause something to be done only under 
certain conditions. This is the same as saying that the system 
makes a decision. For example, the system may be programmed to 
perform a series of instructions, but if certain conditions prevail to 
jump to another instruction. Typical conditional jumps are based on 
such things as whether the binary number resulting from an 
operation happens to be greater than, equal to, or less than zero. 
This conditional jumping is equivalent to being able to change the 
wiring diagram of a system under certain conditions. 

Other jump instructions are unconditional. That is, the system 
will jump to a different instruction under any condition. This adds 
flexibility to programming. A typical use of an unconditional jump is 
to cause the system to jump to a "subroutine" that performs some 
functional operation that may be used many times. Thus, in any 
part of the program where this operation is needed, the program 
can jump to that location. In this way the instructions for the 
functional operation need to only be prepared once. 

D Input-Output Instructions. These instructions cause 
the data to be taken from or delivered to registers in the I/O 
devices of the system. 
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Admittedly, this breakdown of instructions into categories is 
somewhat arbitrary, but it does tend to take some of the 
complexity out of an instruction set. 

HIGHER LEVEL LANGUAGES 

In order to make a microprocessor perform its various tasks, 
we must select the proper instructions from the instruction set and 
store them sequentially in a memory. When the system starts to 
operate, it will access the memory and fetch the instructions in the 
proper order. 

The first thing that is obvious in connection with this is that it 
is a very difficult chore to actually store these instructions in the 
memory in binary form. The processor speaks binary, but the 
human being doesn't. It isn't easy to keep track of hundreds of 
instructions of the form 1100 0110. The fact that binary numbers 
are unfamiliar makes it very difficult to memorize them, even for a 
few seconds. We have to handle them almost on a bit by bit basis. 

The hexadecimal number system which we mentioned earlier 
is a good compromise. It is easier to handle than binary, but it is 
also easy to convert to binary form, which must be done before it is 
actually entered into the system. This conversion can easily be 
done by the system itself. 

A typical small microcomputer might include a keyboard, 
something like that of a calculator, for entering data. The keys are 
coded in hexadecimal, but when the key is pressed, the corres-
ponding binary number will be generated in the system. For 
example, if key "A" is pressed, the binary number 1010 will be 
entered into the system. Note that the hexadecimal character A 
and the binary number 1010 are the same. They are both equivalent 
to 10 in our decimal system. 

It is easy to see that the hexadecimal system is easier to 
handle than the binary system. It is much easier to enter a number 
such as 5F into a keyboard than the binary equivalent 0101 1111. 
The whole business is made still easier by the fact that if an 
instruction is listed in a book in hexadecimal form, we don't have to 
know either its binary or decimal equivalent. For example, if an 
instruction is listed as 4B in hexadecimal, that is all we have to 
know. We can simply enter 4B into our keyboard without knowing 
any more about it. It is only when we are actually looking at one of 
the buses of the system in troubleshooting that we have to get back 
to l's and O's. 

An instruction set expressed in hexadecimal or even binary 

notation is said to be stated in machine language. This is because 
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the instructions are in a form that the system actually uses. 
Programming a system in this notation is said to be programming in 
machine language. 

The principal limitation of an instruction set expressed in 
hexadecimal notation is the fact that the notation has no relation to 
the nature of the instruction. For example, suppose the hexadeci-
mal code B6 is an instruction that tells the system to branch or jump 
to a subroutine. There is no way that we could recognize this by 
looking at the number B6. This brings to the first level of language 
above the simple machine language that we have been considering. 
This is called assembly language. 

It would be very nice if we had an arrangement like that shown 
in Fig. 16-11. Here the input is a series of digital signals from a 
keyboard. They might, for example, be in the ASCII code. The 
output is the actual binary representation of the instruction. To use 
our same example, suppose we wanted to enter the instruction 
telling the system to branch to a subroutine into a memory location. 
We would simply type BSR into our keyboard and out of the box in 
Fig. 16-11 we would get the binary number 1011 0110, which is the 
hexadecimal number B6 which we saw represented this instruc-
tion. 

The advantages of the box of Fig. 16-11 are so great that it 
would seem worthwhile to build one into every system. With the 
box, we could enter what is called assembly language where each 
instruction is represented by a mnemonic such as LDAA for load 
accumulator A, or INC for increment. This certainly makes 
programming much easier than it is using even hexadecimal 
notation. The entire instruction set can be memorized rather 
easily. 

Fortunately, it isn't necessary to build the box shown in Fig. 
16-11 at all. The microcomputer can do the same job that the black 
box can do. A program can be written that will accept ASCII 
characters from a keyboard and produce binary numbers corres-
ponding to the mnemonic. This program can be prepared on 
another computer, and once it is prepared, it can be stored in the 
memory of the system that will use it. 

Note that when we begin to use a higher level language, such 
as assembly language, we tend to be getting away from what is 
actually happening in our system in digital form. This is why it is a 
good idea to get a little experience working with machine language 
before graduating to a higher level language. Many engineers and 
technicians who have never actually used machine language tend to 
have a superficial knowledge of the systems with which they work. 
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Once a system is programmed to accept assembly language 
and translate it into machine language, we can use this feature to 
make programming even easier. For example, suppose we have to 
write a part of a program that consists of 15 steps and we find that 
we will want to use this same set of 15 instructions many times in 
the programs that we are writing. We can write this set of 
instructions into the system and assign a mnemonic to it. Then 
every time we enter the mnemonic, the 15 instructions will be 
written. This is often called macroprogramming and the resulting 
mnemonic is called a macroinstruction . 

All of the languages that we have described so far have the 
disadvantage that the problem or task must be reduced to very 
elementary steps before the program can be written. This 
disadvantage can be overcome by using still higher level lan-
guages. Before discussing any of them we want to emphasize again 
that the microcomputer itself speaks only binary and must be 
actually programmed in very elementary steps. If we use a 
technique whereby we can program the system in an easier way, 
the translation to the elementary binary steps must be ac-
complished somewhere. This is usually done in the system itself 
and the program that tells the system how to do it is stored in 
memory. Thus, we see that the price that we pay for something 
that makes life simple for us is that we need memory locations to 
store the program that does the translation. 

There is a way out of this that is practical if we are going to 
program a lot of systems. We can use a completely different system 
that translates things into the binary instructions. These are then 
entered directly into the system in question by some automatic 
means. While entering them we don't have to think, so the task is 
easier. 

Getting back to the need for higher level languages, suppose 
we have a microprocessor system in a broadcast station and in 
order to perform its assigned task it must calculate the sine of an 
angle. You can just imagine that the amount of shifting and adding 
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Fig. 16-11. This diagram shows the principle of operation of an assembler. 
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that would have to be done repeatedly to get sine of an angle with 
any accuracy at all. Here's where a higher level language like 
BASIC comes in handy. If the system includes a program that will 
translate BASIC, all we have to do is to type in SIN. This will 
automatically call up all of the necessary instructions to perform 
the required computation. 

BASIC is the simplest of the higher languages. There are 
many more and each type has advantages for certain types of 
programs. FORTRAN is used in computers that are required to 
solve engineering type problems and COBOL is well suited to 
business type problems. 

The actual program that translates a high-level language into 
machine language is called a compiler. This program looks at 
everything that is typed into the system and assigns memory 
locations for everything as well as generating the actual machine 
code in binary form. The result is that the final program that comes 
out of the compiler often is no where as efficient as a program 
written in machine code by a highly skilled programmer would be. 
This is usually only important in small systems, or in systems that 
are going to be produced in large quantities. Semiconductor 
memories are quite economical and it is often worth spending a 
little more for additional memory to avoid the difficulty of 
programming in machine language. 

Another instance where the inefficiency of high-level lan-
guages is significant is where great speed is required. Home 
computer enthusiasts have noticed this, particularly when generat-
ing graphics. A graphic display generated in a higher level language 
will usually be much slower than the same thing done in machine 
language. 

A CLOSER LOOK AT THE MICROPROCESSOR 

With the background that we have acquired so far in this 
chapter, we can take a closer look at the microprocessor and get a 
little better understanding of how it works. We must do this in a 
general way for two reasons. First, the various functional elements 
of the microprocessor work so closely together that it is often hard 
to tell where one unit leaves off and another begins. Secondly, 
microprocessors are not alike. In the older units, the various 
functional elements were distributed between two or more 
integrated circuits. Some of the newer units, appropriately called 
"single chip" units, have all of the necessary functional units in one 
package. 
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All of the functional elements of the microprocessor are 
important, but we can consider the heart of the unit to be the 
Arithmetic Logic Unit, or ALU. This is the element that performs 
mathematical operations such as addition and subtraction, logic 
operations such as ANDing and ORing, and shifting of data to the 
right or to the left. 

The ALU gets its inputs from and supplies its outputs to at 
least two registers. One of these is called the accumulator, usually 
abbreviated to ACC. This register is very similar to the readout of 
a pocket calculator. Much of the data that passes into and out of the 
ALU passes through the accumulator. The other data connection is 
usually to another data register such as a memory data register. 

In both of these registers, the data may pass in either 
direction. For example, if two numbers are to be added together, 
one of them may be stored in the accumulator before the addition, 
and the sum may be stored in the accumulator after the addition. 
This use of the same connections to carry data in either direction is 
one of the things that make it possible to get all of the functional 
elements of a microprocessor into a single integrated circuit. 

The control signals, that is the signals that actually tell the 
accumulator what to do, come from the control circuitry. The 
actual function of the control circuitry is to take two inputs—an 
instruction and pulses from a clock—and decode them to provide 
signals that will make the ALU perform the desired function. The 
arrangements of the actual circuits is rather complex and differs 
from one microprocessor to another. The ALU and its control 
circuits are so closely interrelated that the combination of the two 
functional elements is often referred to as the Central Processing 
Unit, or CPU. 

The arrangement of the actual control circuits, and the ALU 
give rise to what is called the instruction set of the microprocessor. 

The instruction set is simply a set of binary digits that when applied 
to the microprocessor will make it perform certain functional 
operations. These operations are of the form of alternate fetch and 
execute operations as we saw earlier. 

In Fig. 16-12 we show the ALU and control circuits connected 
to an instruction register, called the IR, and an instruction decoder. 
The instruction register gets its input from the data bus which is 
connected to external circuits through the data bus. What it 
actually gets in an 8-bit microprocessor is either high or low signals 
on each of eight data lines that make up the data bus. For example, 
in a typical microprocessor an instruction might be called load 
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accumulator. This instruction makes the inputs to the instruction 
register 1000 0110. When this particular combination of high and 
low signals reaches the instruction register, it will be decoded in 
the instruction decoder and eventually the signals that go to the ALU 
will cause it to perform the desired function of actually loading the 
accumulator. There are usually several different forms of an 
instruction such as this that will perform the operation in different 
ways. We'll have more to say about this later. 

Getting back to our microprocessor, we can now add a couple 
more blocks to our diagram. These blocks contain memory. The 
read-only memory, or ROM, has things stored in it permanently. 
These are things that won't change, so they are actually built into 
the memory. The random-access memory, or RAM, on the other 
hand can be either loaded into or read out of. This is usually called 
"writing into" the memory, or reading out of it. 

As shown in the figure, there are three sets of connections to a 
memory element. First there is the address bus. This is a set of 
wires, usually 16 in an 8-bit microprocessor, that are used to 
designate a particular cell in the memory. Then there is the data 
bus, eight wires in an 8-bit microprocessor, that will either write 
into or read out of the particular memory cell. Finally, there are 
control connections. For example a RAM has a connection that 
tells it whether it should accept data from the data bus or put data 
on the data bus. 

Each combination of high and low signals on the input address 
of the memory specifies a certain location. In most 8-bit systems, 
this location is eight-bits wide. The eight bits in this location are 
the data that is stored in the memory. In a RAM, we may enter data 
into each of these locations and read it out. In a RAM, we can only 
read out. 

WHAT IS A FLAG? 

In looking at the specification sheets covering microproces-
sors and microcomputers, we often run across the term "flag." 
Usually what is called a flag is actually a flip-flop, or one stage of a 
register that is buried deep inside the microprocessor. Sometimes 
the flags are stages of a register that is called something like a 
"condition register." The purpose of the condition register is to 
keep track of what is a happening inside the microprocessor. At 
first it is confusing to learn that there is no direct access to these 
register stages from outside the device. None of the stages of such 
a register are connected to the pins of the device. 
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Fig. 16-12. Block diagram showing organization of components in a micro-
processor. 

A typical flag might be called an overflow flag. This flip-flop is 
set whenever the operation of the device causes the contents of the 
accumulator to overflow, that is, when an operation tries to cram 
nine bits into an 8-bit register. Similar flags are provided to 
indicate when the contents of a register go to zero. Inasmuch as we 
can't look at a pin on the device to determine the state of the various 
flags, they must be handled by programming. There are instruc-
tions that can be incorporated into a program to test the state of a 
flag, or even to set or reset a flag. 

PUTTING ITALL TOGETHER 

Figure 16-13 shows a block diagram of a Type 6800 micro-
processor. Each of the blocks in the diagram can be thought of as a 
register of some type. The numbered leads at the right of the figure 
correspond to the numbered pins of the device. Pins that are input 
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Fig. 16-13. Block diagram of the type 6800 micrprocessor (courtesy of American 
Microsystems, Inc.). 
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connections show arrows pointing to the device, whereas output 
pins show arrows pointing outward. Note that the arrows on the 
data bus point in both directions. This is because these pins serve 
both as input and output connections. Data is brought into the 
device and is also fed out on the same connections. 

Essentially the device contains the ALU, two 8-bit ac-
cumulators, one condition code register, and three other 16-bit 
registers that are used for address storage (the index register, the 
stack pointer, and the program counter). All of these registers can 
be accessed in some way by programming. 

There are also other registers that are not accessible by 
programming. These include the 16-bit address incrementen/ 
decrementer, an 8-bit temporary register, and an 8-bit instruction 
register. 

Other functional blocks in the diagram include the 
instruction-decoding ROM, cycle control logic, interrupt and 
restart logic, bus control and halt logic, and timing generator. 

Inside the device the various instructions are carried out in 
incremental time periods, called processor cycles. Each cycle 
consists of one phase 1 clock period and one phase 2 clock period. A 
2-phase clock has two outputs which do not go high at, the same 
time, as shown in Fig. 16-14. If the clock is operating at 1 mHz, 
each processor cycle is one microsecond long. It takes a minimum 
of two clock cycles to carry out a single instruction. Some 
instructions take more than two processor cycles. 

In a typical cycle, during phase 1 of the clock signal, the 
processor puts an address on the address bus. This address 
effectively connects a memory location or an I/O register to the 
data bus. Then, during phase 2 of the clock, the data or instructions 
are fetched and loaded into an internal register. During phase 1 of 
the next processor cycle, internal operations are performed to 
execute the instruction. Thus, the operation generally consists of a 
series of fetch-and-execute operations. 

Frequently, the microprocessor is doing more than one thing 
at the same time. For example, the device may be fetching data 
from the data bus while at the same time the ALU is performing 
some operation on some data that has been fetched earlier. 

The actual addressing, or putting of the required addresses on 
the address bus, is a rather complex operation and is beyond the 
scope of this book. It is sufficient to note that there are several 
different ways that this can be done and, in fact, some of the major 
differences between various types of microprocessors lie in the 
way that addressing is handled. 
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Fig. 16-14. Dual-phase microprocessor clock signal waveforms (courtesy of 
Motorola Semiconductor Products, Inc.). 

Without getting into much detail, let's take a look at the 
address bus. Note that it handles 16 bits. This means that it can 
carry over 65,000 different high and low signal patterns and each of 
these corresponds to the address of something. A given system 
may not use all of these address locations, but they are available. 
For convenience in operation, the 16-bit bus is considered as two 
8-bit buses, one corresponding to the eight least significant bits 
and the other to the most significant eight bits. In this way, when 
the entire 16 bits are not necessary for an operation, the least 
significant bits can be manipulated separately. 

Normally the address on the address bus is generated by the 
program counter. Thus, for example, this counter can be set to 
zero and the program will start with what is stored at location 0000 
0000 0000 0000. As the program proceeds, the program counter 
will increment, addressing the next instruction. 

The data bus is the port through which all data and instructions 
pass in and out of the microprocessor. Note that this is a tri-state 
bus. If the data on the data bus happen to be an instruction, the 
information is fed to the instruction register. From there it goes to 
the instruction decode circuitry, which generates the necessary 
signals to tell the device to carry out the instruction in following 
processor cycles. Incoming data is fed directly to the data bus, and 
outgoing data is applied to the bus through the data buffer. 

The registers of the device that are used in programming are 
often shown in block form as in Fig. 16-15. Note that this particular 
microprocessor has two accumulators. These are registers used in 
connection with the ALU to hold data while an operation is being 
performed. Each accumulator is much like the readout of a pocket 
calculator. 
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Fig. 16-15. Registers used in programming the type 6800 microprocessor 
(courtesy of American Microsystems, Inc.). 

The index register is used to store addresses for other forms 
of addressing. This register adds a great deal of flexibility to the 
problem of addressing, and, when its use is mastered, many rather 
elaborate things can be accomplished in the programming. 

We have already mentioned the program counter. It is used in 
connection with the incrementer/decrementer to develop the 
current address that goes on the address bus. 

The stack pointer is a register that keeps track of a portion of 
the memory that is called a stack. This is much like the stack used 
in some pocket calculators. Data can be entered into a stack in 
order and recalled in the same order. The stack is often used in 
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connection with the interrrupt feature. Suppose the processor is 
performing some routine operation when an interrupt signal is 
received, telling the device that some more important operation 
must be performed. The processor will stop what it is doing so that 
it can attend to the more important chore. But before it does this, it 
will store enough of the data that it's working on in the stack so that 
when the interrupt operation is complete, it can go back to what it 
was doing without losing track of anything. The stack pointer 
carries the address at which things were stored. This operation is 
usually described by saying that the stack pointer "points" to the 
location that is to be remembered. 

The condition code register was mentioned earlier. It con-
tains the various flags that are required to keep track of internal 
operations. When an interrupt is received, the contents of the 
condition register are stored in the stack. 

WHAT DOES 11100K LIKE FROM THE OUTSIDE? 

In the past few pages we have been discussing the various 
functional elements that are found inside a microprocessor. 
Although a knowledge of these elements is a great help in 
understanding how a microprocessor works, we can't directly get 
at many of these elements, In a practical situation we are more 
interested in what happens at the pins of a microprocessor than in 
exactly what is inside. 

Figure 16-16 shows the pin diagram of a type 6800 micro-
processor. At first it appears formidable, because it has 40 pins 

Fig. 16-16. Pin connections, type 
6800 microprocessor (courtesy of 
American Microsystems, Inc.). 
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which aren't particularly familiar to a beginner in the field. Many of 
these pins work together, however, and can be considered as one 
input or output. 

Pins 1 and 21 are ground connections, and pin 8, labeled Vcc, 
is the positive power supply connection. 

Clock connections. Pins 3 and 37 are clock connections. The 
Type 6800 uses an external 2-phase clock signal which is applied to 
these two pins. When we say that we have a 2-phase clock signal, 
we mean that it consists of two pulse trains that do not go high at 
the same time as shown in Fig. 16-14. 

The address bus. Pins 9 through 20 and 22 through 25 make up 
the address bus. It consists of 16 address lines that carry a digital 
signal that specifies the address to which data is to be sent or from 
which data is to be received. These are output pins because the 
address signal is generated inside the microprocessor. By using 16 
lines, 65,536 different address locations can be specified. These 16 
lines can be though of as a single output port of the microprocessor. 

The data bus. Pins 26 through 33 are called the data bus. 
These pins tend to be somewhat unfamiliar because they can be 
used as either input or output pins. These eight lines carry the 
actual data and instructions used by the system. 

Control functions. There are two general ways in which the 
action of the microprocessor can be controlled. One way is by 
applying signals to some of the pins that have various control 
functions. The other way is to feed digital signals which will be 

interpreted as instructions to the data bus. 

Pin 39, labeled TSC, is the trip-state control for the address 
bus. This microprocessor uses tri-state gates on several of its 
connections. When pin 39 is brought to a high logic level, all of the 
address lines which are outputs will go to a high impedance state in 
which they are neither high nor low. As explained in the chapter on 
logic gates, this permits connecting other outputs in parallel with 
the address pins. Since the microprocessor is a dynamic device, it 
can only be held in this state for 5.0 microseconds, but this is 
enough for many purposes. 

Pin 36, labeled DBE, is the tri-state control for the data bus. 
When it is high, the internal drivers are connected to the data pins. 
When this pin is low, the internal drivers will be disconnected and 
the unit can read data from the data bus. This pin is normally 
operated from phase 2 of the clock signal, but it can be externally 

controlled. 
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Pin 2, labeled HALT, stopseverything in the microprocessor. 
It is used to stop the microprocessor after a single instruction or 
whenever it is desired to stop the device. 

Pin 4, labeled IRQ, is the interrupt request pin. It is an input 
that will stop the microprocessor after it has executed the present 
instruction so that it can be used to perform some other function. 
One of the attractive features of a microprocessor is that it can be 
performing some routine job and be interrupted to do something 
else, then return to the original job. Usually, the device operates 
so fast that an observer would never realize that an interrupt had 
occured. 

Pin 6, labeled NMI, is also an interrupt request pin. The 
microprocessor can be programmed to have priorities for the 
various things that it does. Thus, it can mask out an interrupt signal 
applied to pin 4 under some conditions. The interrupt to pin 6 can't 
be masked out, hence it is called a non-maskable interrupt. 

Housekeeping outputs. As we noted earlier, many of the 
internal elements of the microprocessor are not connected to any of 
the pins. We can only control them by means of instructions that we 
provide to the data bus. In order to do this, however, our system 
needs to know the state of many things inside the microprocessor. 
Outputs are provided to give this information. 

Pin 34, labeled R/W, carries an output signal that tells 
whether the microprocessor in is in a state where it will accept or 
read data, or whether it is in a state where it will give out, or write 
data. A high signal on this pin indicates the read state, whereas a 
low level indicates a write state. 

Pin 7, labeled BA, is normally in a low state. However if the 
HALT input is in a low state, or if the microprocessor is in a WAIT 
state as the result of instruction, this pin will go high, indicating 
that the address bus is available (BA). 
THE MICROPROCESSOR IN A SYSTEM 

Much of the terminology used in connection with micro-
processors is used rather loosely. We have noted that the micro-
processor contains at least the central processing unit (CPU) of a 
computer. Some include much more. Nevertheless, it is common 
to speak of the microprocessor integrated circuit as a CPU. When 
the microprocessor is mounted on a printed-circuit board along 
with other components, the entire arrangement is often called a 
microcomputer. 

From what we have said about the microprocessor so far, it is 
obvious that if we are to do anything worthwhile with it, we must 
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connect some other components to it. The means of making these 
connections are through the buses as shown in Fig. 16-17. The 
address bus consists of the 16 leads that are connected to the 
address pins. Similarly, the data bus is made up of the eight leads 
connected to the data pins. The leads that are connected to all of the 
other pins such as the HALT, R/W, and BA pins are grouped 
together and rather loosely called the control bus. The power 
supply connections are straightforward and are not shown. 

One of the first things that comes to mind as a part of the 
system is something that will let us connect it to the real world. 
Devices of this type are called input, output, or simply input/ 
output (I/O) devices as shown in Fig.16-17. There are many 
different types of I/O devices for use in systems, but they all 
operate something like a register. When data is to be read into the 
system from the outside world, it is first stored in a register. Then, 
when the system is ready the data is read onto the data bus. 
Outputs from the system are handled in the same way. When the 
system is ready, the output data is taken from the data bus and 
stored in an output register. 

This sounds like a strange way of doing things, but when one 
realizes that things happen very fast in a microprocessor, it all 
begins to make sense. The data that we want to take off the data bus 
may be present on the bus for only a fraction of a microsecond. 
Most devices that will use such data in the outside world can't 
operate at this speed, so the data is temporarily stored in a register 
in the I/O device. Similar factors govern the input signals. 

It is usually due to speed and timing considerations that 
microprocessors and their peripheral components use a lot of 
registers. Almost any part of such a system includes registers. 

So far we have treated input and output signals as though they 
were always digital in nature. Often they are. If the input is from a 
keyboard, it will be digital in nature. Similarly, a printer or 
7-segment output device will be operated by digital signals. 

In many applications, our inputs and outputs are analog 
signals. These signals are accommodated by incorporating AID 
and DIA converters between the system and the outside world. 

The other devices that we usually connect to the micro-
processor are memories. Usually, we will need both ROM and 
RAM. 
THE SINGLE-COMPONENT MICROCOMPUTER 

The types of microprocessors and other integrated circuits 
produced depends much more on the size of the potential market 
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than it does on technology. The state-of-the-art in the development 
of integrated circuits has progressed to the point where it is 
possible to build many components that are not commercially 
available today. Usually, the initial development cost for a new unit 
is quite high. However, if the market is large enough, this cost can 
be amortized over many units. Once the development is complete, 
the manufacturing cost is usually surprisingly low. 

Because of these considerations, the types of new devices 
that we see in the future are apt to depend on what managers think 
will sell in great volume. It is for this reason that we see highly 
specialized devices used in such things as TV games that sell in 
great volume, and standard general purpose devices used in such 
things as broadcast equipment that usually sell in much smaller 
volume. 

One of the newer devices that is more specialized than the 
earlier microprocessors, yet still a general purpose device, is 
called the single-component or single-chip microcomputer. We 
noted earlier that the term, microprocessor, was generally used 
for the IC that contained the CPU of a computer system. The term, 
microcomputer, is reserved for systems that contain all of the 
items required in a computer. The circuit that we are talking about 
has all of the functional elements of a computer in a single IC, and 
hence is called a microcomputer. 

A typical example of a device of this type is the Intel Type 
8048 single-chip microcomputer, which is shown in the block 
diagram of Fig. 16-18. As shown in the figure, the device contains 
the CPU, clock circuitry, 1024 bytes of program memory (ROM), 
and 8-bit timer and event counter, as well as 271/0 lines. No other 
components are needed to build an actual digital computer. 
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FROM  J DATA 10 OUTSIDE 
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Fig. 16-17. Functional diagram of an I/O device. 
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Fig. 16-18. Block diagram of the type 8048 single-component microcomputer. 
Courtesy of Intel) 

Several different versions of the device are available, differing 
primarily in the arrangement used for the program memory. In one 
version, the program is put into the ROM permanently at the 
factory. This is the best approach when the device is to be used in 
large quantities. In another version, the user can put a program into 
the memory which can be erased. This unit is ideal for small 
volume applications and in applications where the program might 
be changed for different versions of the final equipment. 

We can gain a little more familiarity with the device by 
considering it as viewed from its pins. Figure 16-19 shows the pin 
diagram of the device. 

Pin 1. This pin is used during programing and can also be used 
as a clock output. It also has other uses in system operation. 

Pins 2 and3. These are the clock input pins. Inasmuch as all of 
the clock circuitry is self contained, usually an oscillator crystal is 

connected between these two pins. 
Pin 4, RESET. This pin is used to initialize the processor 

and is also used during verification of the program. 
Pin 5 SS. This input pin is used to single-step the processor 

through each step of the program. 
Pin 6, INT. This is an interrupt pin. 
Pin 7, EA. This is an input pin, called "external access," that 

forces all program fetches to reference external memory. It is 
useful for debugging and essential for program verification. 

Pin 8. This output pin is activated while the bus is being read. 
It can be used to put data onto the bus from an external source. 
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Pin 9, PSEN. This output occurs only during a fetch to 
external program memory. 

Pin 10. This output occurs during a bus write. 
Pin 11. This output occurs once during each cycle and can be 

used as a clock output. 
Pins 12 through 19. These eight pins are bidirectional and can 

carry data in either direction, using the RD and WR output signals. 
Pin 20. This is the ground power supply connection. 
Pins 21through 24. These four pins form a bidirectional port. 
Pin 25. A +25V signal is applied to this pin when a program is 

being burned into the internal ROA. 
Pin 26. This pin also has a +25V input during programing, but 

has a +5V input during normal operation. 
Pins 27 through 34. These pins form a bidirectional port. 
Pins 35 through 38. These contain the four higher bits of the 

program counter. 
Pin 39. This pin can be used as an input for the timer and 

counter functions, using the proper instruction. 
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Fig. 16-19. Pin configuration of the type 8048 single-component microcomputer 
(courtesy of Intel). 
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Pin 40. This is the main positive power supply connection. 
Without going into very much detail, we can see from the pin 

connections that the single-component microcomputer is quite a 
bit different from the microprocessor. In fact, its connections are 
much more like those of a complete computer system. Of course, 
this is what we might expect from the name of the device. 

The fact that so many different functional elements are 
contained inside the device relieves the designer from many of the 
problems of circuit design. It is only when the system is large 
enough to require external memory that some of the problems that 
we usually associate with microprocessors come into the picture. 

About the only technical skill required to apply the single-
component microcomputer is the ability to program it. This, of 
course, requires knowledge of programing and is beyond the scope 
of this book. 

A good example of the application of this device to broadcast-
ing is in the Series 99 cartridge recording and playback machines 
manufactured by International Tapetronics Corporation. This 
equipment was developed to overcome many of the limitations 
usually associated with audio cartridge machines, particularly in 
stereo transmission. 

The cartridge machines are completely controlled by a 
single-component microcomputer. This means that, except for 
manual cartridge insertion, most of the operation of the machine is 
either completely automatic or controlled by simple pushbuttons. 

The functions controlled by the microcomputer are interest-
ing. The crystal clock is accurate to within 0.05%, so it can 
accurately control the timing frequency in the system. It provides 
two cue tones in addition to those usually provided (3.35 and 3.65 
kHz). These may be used as discrete cue tones or for other 
operations such as data logging. Provision is included for using 
these two tones in an FSK mode. The record head bias frequency is 
also derived from the clock. 

In operation, the microcomputer looks at the status of all 
inputs to the system and controls the sequence of operations of the 
machine accordingly. The inputs that are looked at include all of the 
pushbuttons, the cartridge switch, the motor lock-in signal, cue 
tones and various status signals. Based on the status of these 
inputs, the system decides which operation, if any, is to be 
performed. Any necessary operations are then performed in a 
sequence that is stored in the memory. Internal buffers are 
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included in the system so that external devices such as lamps can 
be connected without any external buffering. 

Some of the things that are accomplished by incorporating the 
microcomputer are shown in a description of the ELSA option, 
which stands for Erase, Locate Splice, and Azimuth. This option 
provides three functions—automatic azimuth adjustment, erasing, 
locating a splice, and stopping the machine. Any of these functions 
can be automatically skipped if desired by making a small change of 
a jumper wire. 

The automatic azimuth adjustment is preceded by a bulk 
erasure of the cartridge to remove any recorded material. After the 
erasure is completed, a tone is recorded on all tracks—left, right, 
and cue. The signals from these tracks are then fed to a phase 
comparator. The output derived from the phase comparator is then 
applied to a drive motor which will move the head in such a 
direction as to correct the error. The procedure is then repeated 
with another tone to further reduce the phase error. 

This is an example of a system which would require hundreds 
of LSI ICs to accomplish the same function. By using microcompu-
ter technology, all of the control circuitry can be contained in a few 
ICs. This is the only thing that makes including so many functions 
economically viable. 

DIGITAL FILTERING 

Frequently, we have mentioned that a digital system can do 
anything that an analog system can do. In some instances this is 
easy to imagine. For example, it is easy to see how a digital 
system can be used to introduce a delay into a signal. On the 
other hand, there are some hard-to-imagine things that can be 
accomplished digitally. The filtering of a signal is an operation of 
this type. It is hard to see how we can filter a signal after it has been 
converted into a series of digital pulses. After all, the pulse 
repetition frequency depends on the sampling rate of the system 
and not on the frequency of the signal. 

The fact is, however, that filtering can be accomplished 
digitally. In fact, it is easier to provide many rather elaborate 
filtering functions in the digital world than with more conventional 
analog filters. We will see digital filtering and signal processing 
increasingly in broadcast equipment, so it might be a good idea for 
us to look at the basic principles involved. 

Figure 16-20A shows a block representing a filter. As we 
know, the most common filters fall into low-pass, high-pass, 
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Fig. 16-20: Block diagram (A) and circuit diagram (B) if a low-pass filter. 

band-pass or band-rejection categories. In conventional filters the 
box in Fig. 16-20 would contain either inductors and capacitors or 
resistors and capacitors. In more modern circuits, we find the 
so-called active filters that contain resistors, capacitors, and 
op-amps. Let's assume for the moment that the box of Fig. 16-20 
contains a low-pass filter. We can imagine the circuit being 
something like that shown in Fig. 16-20B. 

Without going into any of the mathematics used to describe 
filters, we can intuitively see how the circuit of Fig. 16-20B would 
indeed act as a low-pass filter. At very low frequencies, well below 
the cutoff frequency of the filter, the inductive reactance of the 
inductor will be very small and the capacitive reactance of the 
capacitor will be very high. Thus, a signal in this frequency range 

will pass through the circuit with very little attenuation. As the 
frequency increases, so does the reactance of the inductor. The 
reactance of the capacitor will get lower. Thus, the attenuation of 
the circuit will increase as the frequency of the signal increases. 
Eventually, at some frequency well above the filter's cutoff 
frequency, the inductor will look nearly like an open circuit and the 
capacitor nearly like a short circuit. Thus, the attenuation will be 
very high. 

The circuit of Fig. 16-20B is the conventional approach to 
filtering, although the mathematics can become very involved. 
However, in electronics there are many situations where we may 
take two or more completely different approaches to a problem and 
get the same results. We can use a block diagram, like that of Fig. 
16-20A to describe the overall behavior of a circuit. Although the 
circuit of Fig. 16-20B might well be what is inside the block, we 
often find that we can put something entirely different inside the 
box and get the same result. 

A simple example is shown in Fig. 16-21A. Here we have a 
box with two terminals, and if we measure the resistance between 
the terminals we find it to be 25 ohms over a wide frequency range. 
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We find only resistance, no reactance. Our first guess as to what 
actually might be inside the box is a 25-ohm resistor. Of course, 
what is actually inside the box could be some series-parallel 
combination of resistors that provides a net resistance of 25 ohms. 
What probably wouldn't occur to us is the fact that a circuit like that 
of Fig. 16-21B could be inside the box: This circuit is probably not 
familiar, but if you take the time to calcualte the impedance across 
the terminals, you will find it to be 25 ohms of pure resistance at all 
frequencies. 

The point of this example is that in addition to the circuits with 
which we are familiar, there are probably other unfamiliar circuit 
arrangements that will accomplish the same thing. This is the case 
in filtering. There is another approach to filtering which hasn't 
been popular because it hasn't been particularly easy to implement 
with analog circuits. 

If we were to write down the mathematical expression for the 
performance of a filter to an arbitrary input signal, we would 
usually specify everything in terms of frequency. The equation 
would describe the frequency response of the filter and the 
frequency content of the signal. However, there is another way in 
which we could write the math. We could write everything in terms 
of time. Although the math is unpleasantly complex in either case, 
we would find that the time approach to the problem involved 
introducing time delays. 

Fig. 16-21. Filter "boxes" often contain unexpected circuits. 
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The fact is that every filter takes some time to respond to the 
input signal. The time is indeed short, but there is always some 
time interval between when a signal is applied to the input of a filter 
and when this input has an effect on the output. This at least implies 
that we might be able to perform filtering by using things like time 
delays. 

Figure 16-22A shows a box with an input signal consisting of 
just a pulse. Also shown is the output which the box would produce 
in response to this pulse. In Fig. 16-22B, we show how we can 
break any arbitrary signal into a series of pulses. From this it 
follows that if we can take the responses that would be produced by 
all of the pulses in our signal and add them together, we would get 
the same effect as though we had applied the continuous signal to 
the circuit. Actually, we would need a special circuit to this, but it 
could be done. 

Although this mathematical technique has been known for 
many years, it hasn't been the basis of filter design because it 
resulted in circuit configurations that were very hard to build using 
conventional circuit elements. In the first place, stable time delays 
are hard to accomplish. Delay lines tend to be both bulky and 
difficult to build. Shifting analog signals in time isn't easy either. 

This application is where some of the advantages of digital 
systems become apparent. We have seen that once we have a 
signal in digital form, it is easy to store in a memory without any 
signal degradation. Once a sample of a signal is stored in a memory, 
we can delay it as much as we wish, by simply reading it out after 
the required time delay. We can also vary this time delay at will by 
taking more or less time before we read the signal out of the 
memory. There is another advantage in that once we have a digital 
signal stored in memory, we can use the same sample as often as 
we wish without the need to take another sample. 

This flexibility of a digital system makes it possible for us to 
take samples of our signal, delay them as long as we wish, multiply 
them by other samples or by other signals, and add the results. 
With this capability we can duplicate almost any conventional filter 
that one can imagine. 

In addition to all that can be done with linear filters, the digital 
system can easily introduce nonlinearity into the system if desired. 
Thus, a filter can be made that treats loud signals in a completely 
different manner than the way it handles weaker signals. A further 
advantage is that any changes that might be necessary can be 
accomplished by merely changing the program in the digital system 
without even reaching for a screwdriver or a soldering iron. 
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Compare the requirement for changing a small program to the work 
required to change a conventional low-pass filter into a high-pass 
filter with a different cutoff frequency! 

All devices that handle signals in a broadcast system, either 
audio or video, are made as linear as possible because nonlinearity 
introduces distortion that we can't remove with conventional 
techniques. Sometimes other parameters are sacrificed in or der to 
get the required linearity. With digital processing equipment, 
linearity is no longer significant because we can remove the effect 
of nonlinearity with signal processing. Thus, as digital processing 
advances, we can expect changes in the design of analog compo-
nents such as microphones and cameras. 

THE SIGNAL PROCESSOR 

From the preceding discussion, it is obvious that any digital 
signal processor requires analog-to-digital and digital-to-analog 
conversion. We must get the signal into digital form before we can 
process it, and we must get it back into analog form before we can 
use it in the real world. This might make it seem as though any 
digital processing system would require a large number of 
components. This isn't true. 

Figure 16-23 shows a block diagram of an Intel 2920 Signal 
Processor. Note that the device includes both AID and DIA 
converters inside the IC. Thus, the input and output signals are 
both analog signals, although all of the processing inside the device 
is done digitally. For this reason it is sometimes called an analog 
microcomputer. 

Looking at the block diagram, we see that the input signal is 
sampled and the value of the sample is held constant long enough 
for it to be converted into digital form. It then enters the digita 

Fig. 16-22. Waveforms showing the response of a filter to a pulse (A) and an 
arbitrary signal broken into pulses. 
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Fig. 16-23. Block diagram of the Intel 2920 signal processor. 

circuitry which is controlled by a microprocessor. What happens to 
the signal depends on what is programmed into the microproces-
sor. Thus, the circuit can be made to process the signal in almost 
any imaginable way. Various filtering functions can be performed 
and even such things as recognizing a particular tone can be 
accomplished easily. There are four separate inputs and eight 
outputs. Each can be multiplexed so that many different things can 
be done at almost the same time. 

The frequency response of the device is limited by how 
elaborate our processing is. Simple processing might only require 
one pass of the signal through the processor, whereas more 
elaborate processing may require many passes, hence more time. 

As of this writing the signal processor IC is limited to the high 
audio frequencies, but it is dangerous to talk about limitations in a 
field that is advancing as fast as digital electronics! 
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