
DIGITAL ELECTPONICS
FOP BPOADCASTEPS

BY JOHN E. CUNNINGHAM

No. 1260
$14.95

Digital
Electronics
For
Broadcasters
by John E. Cunningham

ITAB TAB BOOKS Inc.
BLUE RIDGE SUMMIT, PA. 17214

FIRST EDITION

FIRST PRINTING

Copyright © 1981 by TAB BOOKS Inc.

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Cunningham, John Edward, 1923-
Digital electronics for broadcasters.

Includes index.
1. Digital electronics. 2. Radio—Apparatus

and supplies. 3. Television—Apparatus supplies.
I. Title.
TK7868.D5C86 621.3815 80-20587
ISBN 0-8306-9705-5

Contents

Preface 5

1 Introduction To The Digital World
Analog-Digital Signal Comparison—Analog-to-Digital
Conversion—Sampling—A Look At Numbers In General—The
Binary Number System—Digitizing The Samples—Parallel and
Serial Transmission—Bits, Bytes and Words

2 The Easy Way To Understand Logic Gates
The "AND"Gate—The "NAND"Gate—The"OR"Gate—The NOR
Gate—Working With Zeroes or Negative Logic—The Exclusive
Gates—The Inverter or "NOT" Gate—Gates With More Than Two
Inputs—The Logic Gate As a Switch

7

19

3 Logic Families, or What's Inside an Integrated Circuit 31
TTL Circuitry—The Totem Pole Output—Open Collector
Outputs—TTL Characteristics—Loading or Fan Out—Noise
Immunity—Other Input Considerations—Another Look At The
Output Circuit—Other Members of the TTL Family—CMOS Inte-
grated Circuits—CMOS Characteristics—CMOS Voltage
Levels—CMOS Noise Immunity—CMOS Input Protection

4 Flip-Flops, or Circuits That Remember 60
The Bistable Latch—Synchronous or Clocked Flip-Flops—The
Type "D" Flip-Flop—Type "T" Flip-Flop—Clocked RS Flip-
Flop—The Type J K Flip-Flop—Timing Considerations—Timing In
the Edge-Triggered Flip-Flop—Timing In the Master-Slave Flip-
Flop

5 Counters, Registers and Counting Systems
General Counter Operation—Binary-Coded Decimal (BCD)
System—The BCD Numbering System—Register

6 Some Digital Integrated Circuits
Logic Gates—Inverters—Buffers—The Schmidt Trigger—Tri-
State Logic—The Data Selector—The Monostable
Multivibrator—Becoming Familiar With Digital Circuits

7 Power Supplies and Noise
The Regulator—Power Distribution System—Despiking
Capacitors—Leads Shielding and Grounding—Noise and
Interference—Switching Regulators

73

83

96

8 The Operational Amplifier
Op-Amp Characteristics—The Op-Amp With Feedback—
Summing With the Op-Amp—Weighting the Inputs—The Com-

parator

9 Getting In and Out of the Digital World
Switches and Keyboards—Shaft Encoders—Readouts—Digital-
To-Analog Converters—Scaling Data—R2R D/A Converter—
Specification of D/A Converters—Analog-to-Digital (A/D)
Converters—The Dual Slope, An Analog To Digital Converter—
AID Converters Using D/A Feedback—Successive Approximation
ND Converter—Parallel A-to-D Converters—Resolution of ND

Converters

108

116

10 What Is Digital Data And Howls It Handled? 140
ASCII Data Code—Parity—Long-Distance Transmission—
Modulation Considerations—Problems In Data Transmission—A
Complete Data Link

11 A Few Simple Digital Systems 151
The Systems Approach—Special Decoding—Frequency
Counter—Understanding a Digital System

12 Digital Video 160
The Coder—Bandwith Reduction—Time Base Correction—
Electronic Graphics—The Vertical Blanking Interval

13 Digital Audio 172
Noise Reduction—Removing Noise From Analog Signals—Digital
Correlation—Digital Audio Recordings—Quasi Digital Techniques

14 Digital Remote and Automatic Control 182
The Open-Loop System—The Closed-Loop System—The Con-
trol Unit—Complex Control Systems—Arithmetic Operations

15 Troubleshooting Digital Equipment 189
The Same Old Stuff—The Integrated Circuit As a Cause of
Trouble—Faults in Integrated Circuits—Circuit Faults—Dynamic
Faults—Interference—Other Dynamic Faults—Test Equipment

16 The Microprocessor and the Broadcaster
What Is a Microprocessor—Limitations—Problem Areas In
Learning—Basic Elements—Computer Operation—Flow
Charts—Simulating Logic Elements—System Flexibility—
Machine Language—What Is An Instruction Set?—Higher Level
Languages—A Closer Look At the Microprocessor—What Is a
Flag?—Putting It All Together—What Does It Look Like From the
Outside?—The Microprocessor In a System—The Single-
Component Microcomputer—Digital Filtering—The Signal Pro-
cessor

207

Index 251

Preface

In recent years there has been an increasing amount of comment and
concern in management and educational circles about technical personnel
becoming obsolete. The expression "engineering obsolescence" is gener-
ally taken to mean that certain engineers and technicians are not keeping
up with the rapid changes that are taking place in all branches of
technology.

Alarmingly, these comments are not being directed exclusively to
older people who are nearing retirement. It is not uncommon to hear
managers complain that engineers who have been out of school not more
than 10 or 15 years and who should be in the prime of their careers, are no
longer able to cope with the latest technological developments. Although
technical people themselves rarely talk about it, they are fully as
concerned as management that they may be considered no longer
technically useful.

One solution to this problem is to promote the older engineers to
management positions and turn the technically exacting tasks over to
recent graduates. This approach has two rather serious limitations. In the
first place, many engineers have neither the interest nor the aptitude to
handle management functions. Secondly, and more important, the recent
graduate rarely has the ingredient known as engineering judgment which
seems to be best acquired through experience.

I have long claimed that no engineer worth his salt has ever had any
trouble keeping up with changes in the state-of-the-art that affect his job.
Where the trouble conies is when he suddenly has to catch up with a field
that he has never used or has forgotten all about.

The sudden appearance of digital electronics in radio and television
broadcasting is a good example of this phenomenon. Although most
broadcasters have been aware for many years that rapid changes have been
occuring in the fields of digital electronics and computers, they have paid
little attention, because until quite recently neither of these fields has
much to do with broadcasting. Admittedly computers were being used in
the office for billing and payroll, but many ancient transmitters differed
little from their more modern replacements. In fact, many engineers felt

5

that even if digital systems did become available for broadcasting, it would
be decades before station management would shell out the cash to buy one.
After all, didn't it take five years to get the owner to shell out the cash for
the new field strength meter?

The result of this was quite naturally that most broadcast engineers
didn't bother to learn much about digital electronics, and if they have ever
studied the subject, they didn't bother to keep up with the state of the art.
Why be concerned with a branch of technology that would probably never
affect them?

When digital systems finally charged into the broadcast field, they
entered with great speed. First, there were a few digital components in
some of the control systems. Just a few integrated circuits, not enough to
get the engineer excited. Then came digitally-controlled automation and
remote control systems. Finally, the TV people found that the video signal
itself is often converted to digital form for processing. Now, digital audio is
becoming a reality.

It is no longer enough for the engineers to try to keep up with digital
electronics. He must catch up and he must do it fast. Catching up with any
area of technology isn't easy. Most of the available books are either too
elementary, or too involved. The texts used in colleges and technical
schools are usually not much help. They usually contain far too much
time-consuming material that the practicing broadcast engineer doesn't
need, and not enough of the practical information that he needs desperate-
ly.

This book is an attempt to correct the situation. You don't need any
familiarity with digital electronics to understand the material, but it is
assumed that you are familiar with broadcasting. All of the functional
elements are covered and most of the examples are taken from broadcast-
ing so that you will feel that you are on familiar ground.

Much of the material is presented in an original way and much has
been suggested by my home study students. Many suggestions were made
by engineers who attended the various seminars that I conducted on the
subject of digital electronics in broadcasting.

I would like to acknowledge the help of my associates at Cleveland
Institute of Electronics, particularly Jim Arcaro, Jerry Casebeer, Steve
Simcic, and Ron Zeldman. Their help and suggestions were invaluable.
Much of the work was done in connection with digital seminars sponsored
by the National Association of Broadcasters under the direction of George
Bartlett who has probably done more to help the technical broadcaster than
any other one man. Some of the work was done under the direction of Carl
E. Smith who is always a gentleman and unselfishly shares his knowledge
with anyone he can help.

I would also like to thank Susan M. Heygi without whose help the
book would never have been finished. Last but far from least I would like to
thank Grace L. Slavik who has always been an inspiration to all who know
her.

John E. Cunningham

6

Chapter 1

Introduction to the Digital World

To the uninitiated, probably the most confusing aspect of digital

electronics is the fact that the term "digital system" seems to-
embrace many different types of systems that, at least on the
surface, seem to have nothing in common. Although a pushbutton
control for a video recorder, a remote control system for a
transmitter, and a television time-base corrector don't seem to
have very much in common, they may all be called digital systems.

It is hard to see how these apparently quite different devices can be
classified together. So, we will start by defining what we mean by
digital system

ANALOG-DIGITAL SIGNAL COMPARISON

The biggest difference between a digital system and an
ordinary system is in the nature of the signals that we find inside.
Figure 1-1 shows the waveform of a signal that might be found in an
ordinary audio amplifier. This signal, at any instant of time, is
directly proportional to the sound being amplified. For our
purposes here, there are two important characteristics of this type
of signal:

0 It is continuous; that is, it varies smoothly from one value
to another. It may have any value between zero and its maximum
value.

0 The amplitude, frequency, and phase of the signal will be

the same as the amplitude, frequency, and phase of the sound that
is being amplified. The signal might be thought of as an "analog" of
the sound. Thus, ordinary signals and systems with which we are

7

Fig. 1-1. Analog signal corrupted by noise.

all familiar are often called analog signals and systems to
distinguish them from their digital counterparts.

Before we look into digital systems, let's take a look at what
happens to an ordinary AM analog signal as it passes through a
system. We all know only too well that the signal will be subject to
both noise and distortion. Figure 1-1B shows what might happen to
the signal of Fig. 1-1A under extreme conditions. Here noise and
distortion have corrupted the signals so badly that we may never be
able to recover it.,

Now let's look at a digital signal. Figure 1-2A shows a typical
digital signal. It has two properties that distinguish it from an
analog signal:

0 The signal has only two possible values. At any instant of
time, a voltage is either present or not present. When the voltage

o

m-

èNe-
im

Aie
Fig. 1-2. Digital signal corrupted by noise.

8

is present, we normally refer to the signal as being high; when
there is no voltage present, we refer to the signal as being low.

D The digital signal bears no resemblance to the waveform of
the analog signal it is representing.

Now let's look at what noise and distortion might do to a digital
signal. In Figure 1-2B we have subjected our digital signal to the
same amount of noise and distortion that we applied to our analog
signal in Fig. 1-1B. Here again, the corrupted signal bears little
resemblance to the original. In this case, however, by studying the
signal we can rather easily tell when the original signal is present.
In fact, it would be rather easy to draw a plot of the original signal if
all we had to work with was the corrupted signal of Fig. 1-2B. This
is one of the important advantages of using digital signals. Up to a
limit, all of the effects of noise and distortion can be removed from
the signal by rather simple signal processing.

Another advantage of digital signals is that they can be stored
for any desired period of time by rather simple circuits. All that our
storage element has to do is to record the fact that a signal is
present at some instants and absent at others. This is a far cry from
what would be involved if we tried to store an analog signal that was
varying with time.

Now that we have found what digital systems have in common,
let's look at how they might differ from each other. The first
distinction that we might make is between what we call simple
logic systems and the more complicated systems.

The simplest type of digital system, and probably the easiest
one to understand, is a simple logic system. Such a system causes
something to happen when and only when certain conditions are
either true or false. A good example is the system used to control
the plate voltage relay in a transmitter. We want the plate voltage
to be applied when and only when:
—the heaters of the tubes have warmed up,
—the plate voltage switch is closed,
—the cabinet is safely closed.
There is nothing magic about such a system. Broadcasters

have been using arrangements like this since long before anyone
ever thought of the term "digital electronics." One simple way to
accomplish the desired function is to wire the plate voltage switch,
a time-delay relay, and a safety interlock switch in series with the
plate relay as shown in Fig. 1-3A.

In spite of its simplicity, the arrangement of Fig. 1-3A is a
logic system and has much in common with logic systems using

9

PLATE VOLTAGE HEATER
SWITCH INTELOCK RELAY

\ --o \ --• A--

POWER
SUPPLY PLATE vcireE 0 SWITCHES AND RELAYS RELAY

3 -INPUT ANC GATE

PLATE VOLTAGE SWITCH

IKTERLOCK SWIT CH TO PLATE

HEATER RE LAY I _,J v.. RELAY
0 IC LOGC

Fig. 1-3. Logic circuit (A) with switches and relays, (B) with an integrated circuit.

digital integrated circuits. One way to implement the system using
digital circuit elements is shown in Fig. 1-3B. Here the circuit
element is called a 3-input AND gate. We will have more to say
about all sorts of logic gates in Chapter 2.

One point of interest in our simple example is that the signals
we're working with, in this case switch closures, are really digital
in nature. A switch has only two possible positions, either it is
closed or it isn't. That is why our system is so simple. Of course, if
there were many more switch closures to consider, the system
would become more complicated, but its principle of operation
would still be simple and easy to understand.

ANALOG-TO-DIGITAL CONVERSION
The next type of system we will consider is one where the

things we are interested in are not digital in nature. An example
might be the digital voltmeter shown in Fig. 1-4. The voltage we
want to measure isn't digital. It is just a plain old DC voltage that
might have any value between zero and, say, 10 volts.

The first stage of our digital meter is the same as in any DC
meter—a voltage divider that scales the voltage down to a value we
can handle conveniently. The next stage is new—brand new. We
call it an analog-to-digital converter, or simply an AID conver-
ter. What this stage does is to take our DC voltage and produce
some sort of digital signal that uniquely defines the voltage.

After the A/D converter we have a digital signal. We can store
it, or process it in any way that we wish. When we get through with
it, it's no good unless we can read some sort of instrument to tell
what the voltage is. This is handled by the output device. In this
case the output device is a series of 7-segment readouts.

10

Still greater complication finds its way into a system when the
signals themselves are digitized. A typical system of this type
might be a TV time-base corrector. Again, we need an AID
converter to get the signal into digital form and several digital
circuits to process the signal in the way that we wish. When we get
through with this signal we can't apply it to a readout device, but
rather we must convert it back to analog form so that it can be
applied to a TV transmitter. This last conversion is appropriately
called a digital-to-analog or simply DIA.

SAMPLING

The first thing we have to do to convert an analog signal into a
digital signal is to sample the value of the signal periodically. Of
course, the question naturally rises as to how often and how
accurately we must take samples of the signal.

Figure 1-5 shows an analog signal that varies between zero
and 5 volts. We will assume that the highest frequency component
of the signal is 10,000 Hz. That is, if we were to pass the signal
through a low-pass filter that cut off sharply at 10,000 Hz, that
waveform of the signal wouldn't be changed.

The first question about sampling was as to how often we must
sample the signal to capture all of the information in it. Fortunate-
ly, this problem has been solved for us so we won't have to get into

an involved mathematical investigation of the subject. Workers at
Bell Telephone Laboratories have found that we can capture all the
information in a signal if we sample it at a rate equal to at least twice
the highest frequency component of the signal. Of course, there is

Fig. 1-4. Digital voltmeter block diagram.

11

0 50 100 150 200 250 0 50 100 150 200 250

0% MICROSECONDS get MICROSECONDS

W ANALOG SIGNAL ‘,17 50-MICROSECOND SAMPLES

Fig. 1-5. Analog signal with step samples.

no harm in sampling at a higher rate. The limitation is that we can't
sample at a lower rate without losing some of the information in the
signal. In Fig. 1-5B we show that we're taking a sample of our
signal every 50 microseconds. That is, we are sampling the signal
at a rate of 20,000 samples per second, which is twice the highest
frequency component of the signal.

The next question is how accurate our samples must be if we
are to capture enough of the information in the signal so that we can
reproduce it faithfully later on. This is a rather involved question,
because it involves a subjective judgment of the quality of a signal.
We'll have a lot more to say about this later in the book, but right
now our main interest is how we can convert our samples into a
digital signal, so we will allow ourselves the very generous
specification that we'll be happy if the accuracy of the sample is
within one-third of a volt. Later we can be concerned with the
higher resolution that will be required in real life.

On the basis of what we've said so far, we will be happy with
the sample shown in Fig. 1-5B. What we've done is to take the
samples of the smooth waveform of Fig. 1-5A and replace it with a
series of samples, which for our purposes contain all of the
information of interest in the original waveform. The next part of
the problem is to find a way to express the values of these samples
digitally. This will bring us to the subject of the binary number
system, which is the basis of all digital systems.

A LOOK AT NUMBERS IN GENERAL

Before we go rushing off trying to find some binary numbers to
represent our samples, let's look at numbers in general. We're so
familiar with the decimal system which we use everyday that we

12

rarely take time to think about what it really means. As a simple
example of the use of numbers, let's suppose we counted the
number of resistors in a supply cabinet and found there were 174 of
them. There are many ways we can record this fact. For example,
we could make 174 marks on a piece of paper. This would indeed
record the number of resistors, but it would be a very cumbersome
system. If anybody wanted to interpret our count, he would have to
count off all the little marks that we made. It is much better to
simply write the digits 174 on a piece of paper. This is easy to do

and the numbers are easy to interpret. The reason that it is easy is
that the decimal numbering system is second nature to us.

Let's take a look at just what the number 174 really means.
With a little thought, we can see that it means we have:

1 x 100 = 100
7 x 10 = 70
4 x 1 = 4

174

This is rather obvious, but we can carry the analysis a step
further and see just what we mean when we say that the base of our
decimal number system is ten. We can see that each of the digits in
our numbering system corresponds to some power of 10. In fact,
the power depends upon the column the digit happens to be in.
Thus, we can write the number 174 in the following way,
remembering that any number raised to the "0" power is equal to 1,
and any number raised to the first power is equal to itself. Now we
have:

1 x (102 = 100) = 100
7 x (101 = 10) = 70
4 x(10°=1) -= 4

174

The fact that each column of a decimal number corresponds to
some power of 10 is the essence of the decimal number system.
Realizing this, we feel at home when we develop a number system
with some base other than 10.

THE BINARY NUMBER SYSTEM

The binary number system is a system that has the base two.
Of course, the first question to come up is why anyone would want
to fool around with such a crazy numbering system in the first
place. Well, there is a good reason that will become more apparent
as we go along. To put it simply, in a digital system the signals can

13

have only one of two possible values at any time. This means that
all our equipment has to do is recognize whether or not a voltage is
present at any given time. The voltage can vary all over the lot, but
as long as we can distinguish between the presence or absence of a
voltage, we can reconstruct all of our signals to any desired degree
of accuracy. This is such an advantage over the old analog signals,
that it is worth the slight inconvenience of learning about a new
numbering system.

The binary number system has the base two. This means that
the value of each of the columns in a number is equal to some power
of two. Probably the best way to become familiar with the system is
to start counting in it. This is done in Fig. 1-6. Here we find that the
values of the columns of the table, starting with the right-hand
column are:

2° =- 1
2 = 2
22 = 4
= 8

Naturally the system doesn't stop here, but this is enough for
us to get the general idea of how the binary number system really
works. Looking at Fig. 1-6, we see that the first line is all zeros
which means exactly that—the number is zero. As we start
counting, we will put a 1 in the first column at the right. As shown,
this corresponds to the decimal number 1. So far the system is the
same as the decimal system. Now let's add one more to get a
decimal 2. We don't have the symbol 2 in the binary system, so we
will put a zero in the first column and a 1 in the next column to the
left. As shown at the heading, this column is the number of two's
that we have. As the figure shows we can count as high as we wish
using only l's and O's.

Once you get familiar with the system, it is very easy to use,
although it is cumbersome. For example, the binary number 1011
means that we have:

1 x (23 =8) =8
0 x (22 = 4) =
1 x (2' =2) =2
1 x (2° = 1) = 1

11

An extensive table of binary numbers is given in Appendix 1.
Now that we know the rudiments of the binary number system, we

14

can go back to our problem of finding a way of expressing the value
of an analog signal digitally.

DIGITIZING THE SAMPLES

Figure 1-7 shows the same samples of a waveform that we
showed in Fig. 1-5B. The first thing that we want to do is to
express the value of each of the samples as a binary number. This
isn't very hard to do. In the following tabulation we show the value
of the sample at each sample time in both decimal and binary
numbers:

Time Decimal Value Binary Value

0 0 0000
50 2 0010

100 3 0011
150 5 0101
200 3 0011
250 2 0010

„ „
o
(1.

I>

o
o

o
o
o
o
o
o
1
1
1
1
1
1
1
1

o
o

o
o
1
1
i
1
o
o
o
o
i
i
1
i

o
o
1
1
o
o
i
1
o
o
1
1
o
o
i
1

o
1
o
1
o
1
o
i
o
1
o
1
o
i
o
1

DECIMAL
EQUIVALENT

0

1

2

3

4

5

6

7

8

9

10

I 1

12

13

14

5

Fig. 1-6. Counting in the binary number system.

15

Fig. 1-7. Analog signal and digital sample.

We have binary numbers for each of our samples, but at the
moment, we don't quite know what to do with them. One approach
is shown in Fig. 1-8. Here we have a little box that will convert our
analog signal into a digital signal. We won't have any idea of what is
actually in the box until we get to a much later chapter. For now, we
will just assume that it works. The output of the box consists of four
wires, each of which may have some voltage with respect to
ground. That is, at any instant any of the wires coming out of the

box may be either high or low.
Note that we have labeled the top wire MSB and the bottom

wire LSB. These terms stand for Most Significant Bit and Least
Significant Bit. A bit here stands for a binary digit. All that this
means is that if we want to read out the binary number represented
by the voltages on our four wires, we will start at the top, the same
as we would start at the left to read a number. The top wire stands
for the left-hand digit in our binary number.

In Fig. 1-8A, we show how the voltages on the four wires
correspond to the signal samples that were shown in Fig. 1-7. The
time marked in microseconds corresponds to the time marked on
the axis of Fig. 1-8. Thus, 150 microseconds after the start of the
sampling process, the output of our little box is, starting from the
top wire LO HI LO HI. If we merely cross out the H's and L's, we
will find the signal will be 0101, which we know is the binary
number for number 5. This is exactly what we want because the
value of the sample taken at this time happens to be 5 volts.

PARALLEL AND SERIAL TRANSMISSION
The four wires of Fig. 1-8 are one way that we might transmit

a digital signal from one point to another. This arrangement is

16

A/D CONVERTER

ANALOG
INPUT

rvtsB —

-

-

LSB —

C4GITAL
CUTPUT

MSB

LS B

0 A/D CONVERTER

LO LO LO W LO LO

LO LO LO HI LO LO

LO HI HI LO HI HI

LO LO HI HI HI W
I I I I I I
0 50 100 I50 200 250 0 DIGITAL SIGNAL VALUES

Fig. 1-8. Digital values of the signal in Fig. 1-7.

called parallel transmission because all of the bits corresponding to
the value of a signal at a given instant are transmitted in parallel at
the same time. This is fine system for use inside equipment where
the distances between components is short. Because of the fact
that the signal is distributed among several wires, in this case four,
the bandwidth of the signal on any one wire is not very great. The
disadvantage of parallel transmission is obvious when we want to
transmit the data over a long distance. We certainly don't want to
use four or more wires to carry one signal.

The other approach to transmission uses only two wires, or
one wire and ground. Here the bits corresponding to each value of
the signal are transmitted one after the other. Because so many
pulses are transmitted for each value of the signal, serial
transmission will require a much greater bandwidth.

BITS, BYTES, AND WORDS

We noted earlier that the term bit is short for binary digit. It
means one of the digits in a binary number. When several bits are
used to represent something like the value of a sample, the
collection of bits is usually called a word. The number of bits in a

17

word depends on the resolution that we require in a system. The
binary number 1111 corresponds to the decimal number 15. This
means that if we are to express a quantity in a 4-bit word, we will be
able to distinguish 16 discrete values, counting zero as one of the
values.

When writing a long string of 1's and O's to represent a large
binary number, life is much easier if we break up the string with a
few spaces. A common practice is to write binary digits in groups of
four. Thus the binary number, 11111111, which corresponds to the
decimal number 255, is usually written as 1111 1111. This is an
8-bit word. Thus, with an 8-bit word, we can distinguish 256
possible values, again including zero as a value.

The 8-bit word has become widely used in digital systems,
and is usually called a "byte." Thus, if we are told that a certain
word is a byte of data, we will know that is has 8 bits. Recently,
someone deduced that if 8 bits constitutes a byte, then four bits
should be called a nibble. The term nibble is gaining some
acceptance to represent a 4-bit word.

18

Chapter 2

The Easy Way To

Understand Logic Gates

The basic building block of digital systems is the logic gate. Any
type of digital system that you can think of can be built of logic gates
if you use enough of them. A complete understanding of logic gates
is essential to an understanding of complex digital systems and is
useful in digital troubleshooting. There are several different types
of logic gates and they are all very easy to understand if you take
the simple approach described in this chapter.

In general a logic gate has two or more inputs and one output
as shown in Fig. 2-1. The output will be either high or low,
depending on the states of the various inputs. To keep things
simple, for the present we will assume that a low state corresponds
to zero voltage and a high state corresponds to a voltage of +5V.
We will have more to say about the actual voltages in a later
chapter. In the tables that we use to describe the various types of
logic gates we will use a "0" to represent a low state and a "1" to
represent a high state.

Now for the easy way to understand any logic gate that you
will ever encounter. All that you have to do is to remember the four
symbols shown in Fig. 2-2 and their meaning. These symbols are
used in various ways to represent all possible logic gates. Before
we get into the meaning of the various symbols let's use the
concept of an input being either active or inactive, rather than being
high or low. The reason will soon become obvious.

The first symbol in Fig. 2-2A is called an active low indicator.
The reason for this symbol is that normally we will consider the
inputs or the outputs of a gate to be active if they are high. It is only
when we see the active low indicator that we know that the rules

19

'IWO OR
MORE
INPUTS

ONE
OUTPUT

Fig. 2-1. Basic logic gate.

have changed temporarily, and as far as that particular input or
output is concerned we will consider a low signal to be active and a
high signal to be inactive. Whenever the symbol doesn't appear we
will return to the normal rule that a high state is an active state.

The next symbol shown in Fig. 2-2B is called anALL symbol.
It represents a logic gate where the output is active only when all of
the inputs are active. The symbol shown in Fig. 2-2C is called an
ANY symbol and it represents a gate where the output is active
when any of the inputs are active. The last symbol, shown in Fig.
2-2D is called an EXCLUSIVE symbol and we will defer its
description until after we have described the use of the other

symbols.

â
ACTIVE LOW I NDICATCR

LD
0

1-----) --_ °ANY" SYMBOL

o
1:).) "OCCWSIVEn SYMBOL

HALL" SYMBOL

Fig. 2-2. Symbols used to represent logic gates.

20

THE "AND" GATE

In Fig. 2-3A we show the symbol for a two-input AND gate. As
we can see, it consists of an ALL symbol with two inputs and one
output. Nothing being indicated to the contrary, we know that the
two inputs and the output can be considered to be active whenever
they are in a high state, which we agreed for the time being to be
+5V.

From the basic definition of the ALL symbol we know that the
output will be active only when both of the inputs are active. In this
particular case, this means that the output will be high only when
the two inputs are both high. The easy way to show this is to
construct a truth table, like that shown in Fig. 2-3B. In this table,
the first two columns show the states of the two inputs and the third
column shows the corresponding state of the output. In the first
row in the table, the inputs are shown by "O's" to both be low. The
output is also low. In the next two rows of the table, one of the
inputs is high as shown by the "l's." Of course, the output is also
"0." In the last row of the table where the two inputs are both high,
or active, the output is also active, or high.

As we noted at the outset, this type of logic gate is called an
AND gate. The reason is simply that the output is high whenever
input "A" AND input "B" are high. Let's now look at similar gates
where we use the active low indicator.

o
Fig. 2-3. AND gate and its truth table.

21

THE "NAND" GATE

Figure 2-4A shows the symbol for a NAND gate, and its truth
table is shown in Fig. 2-4B. Once again we have the ALL symbol
that indicates that the output will be active only when all of the
inputs are active. As far as the inputs are concerned, nothing has
changed from the preceding example. They are considered to be
active when they are high. When we come to the output, however,
we see an active low indicator. This means that we will now
consider the output to be active when it is low.

In constructing the truth table, we will again show all possible
combinations of the inputs. The output will be active, or low, when
all of the inputs are active, or high. The result is the truth table
shown in Fig. 2-4B. The only condition when the output will be low

is when both of the inputs are high.
This gate is called a NAND gate. The name comes from NOT

AND. It means that the output, for various combinations of inputs,
will be just the opposite of that from an AND gate. A comparison of
the truth tables in Fig. 2-4B and 2-3B will show that this is true.

An actual practice, the NAND gate is much more common than
the AND gate. The reason is that when digital integrated circuits
were developed, a transistor was added to the basic gate structure
to provide isolation. This transistor inverts the output of the gate.
This concept will become clearer when we look into the various
types of logic families.

THE "OR" GATE
Figure 2-5A shows the symbol for an OR gate and Fig. 2-5B

shows its truth table. The basic symbol in this example is an ANY
symbol which means that the output will be active whenever any of
the inputs is active. There being no active low indicators in the
symbol, we know that we consider inputs and outputs to be active
when they are high. From the definition of the ANY symbol, we
know immediately that the output will be high whenever any of the
inputs is high. A look at the truth table will verify this. In fact the
only condition under which the output will be low is when both of
the inputs are low.

The name, OR gate, for this symbol comes from the fact that
the output of the gate will be high when input "A" OR input "B" is
high. Although it isn't explicit in the OR symbol, the OR condition
also embraces the condition when both inputs are high.

THE NOR GATE

In Fig. 2-6 we have the symbol for an NOR gate. Here again
we use the ANY symbol which means that the output is active

22

Fig. 2-4. NAND gate and its truth table.

whenever any of the inputs are active. As far as the inputs are
concerned, there is no change from the preceding example; they
are active when they are high. But on the output of the gate we have
an active low indicator that flags us to the fact that as far as this one
terminal is concerned, the rules have changed again. The output
will be considered to be active when it is low.

The behavior of the gate is shown in the truth table in Fig.
2-6B. Here we see that the output is active, or low, whenever ANY
of the inputs are active, or high. In practice, NOR gates are more
common than OR gates for the same reason that we gave under the
discussion of NAND gates.

WORKING WITH ZEROES, OR NEGATIVE LOGIC

In some of the older literature you will find references to what
was called negative logic. Fortunately, the term is seldom if ever
used anymore. Negative logic referred to the case where a high
signal was considered to be a 0 and a low signal was considered to
be a 1. You can imagine the confusion that the whole idea caused to

Fig. 2-5. OR gate and its truth table.

23

Fig. 2-6. NOR gate and its truth table.

anyone approaching the subject for the first time. Lest you suspect
that the originators of the idea were completely insane, we should
explain that there was a valid reason for the concept. It arose in
connection with using Boolean algebra in the design of logic
circuits. Incidentally, Boolean algebra usually isn't necessary for
anyone working with digital systems.

Even though we no longer feel any need for negative logic,
there will indeed be cases where we will be more interested in O's
or lows than we are in l's or highs. For example, we may have a
system in which we are interested in the condition where we want
to work with switch openings, rather than closings. The signals on
which we might wish to operate will be O's instead of l's.

Figure 2-7A shows a case of this type. We want to get a high
signal when two other signals are both low. We can symbolize this
operation by the ALL symbol with the two inputs designated as
active low. This means that the output will be active, or high,
whenever ALL of the inputs are active or low. By now the truth
table shown in Fig. 2-7C that describes this type of gate is clear. It
shows that the only condition under which the output is high is
when both inputs are low. We could call this operation "ANDing"
zeroes.

There is only one problem with the type of gate that is shown
in Fig. 2-7A, and that is that it isn't available commercially. You
can't run down to the store and buy one. When you see this symbol
on a diagram you can be sure that the actual gate in the circuit isn't
this type of gate at all. The symbol is used to show the logical
behavior of the gate. Fortunately, the fact that this gate isn't
available isn't any problem at all. All we are really interested in is
how the gate behaves. Any gate, no matter what its symbol
happened to be, that behaved according to the truth table in Fig.

24

2-7C will do the job. If you will simply look back at the truth table
for the NOR gate in Fig. 2-6, you will see that it has exactly the
same truth table!

What this means in practical terms is that ANDing zeroes is
exactly the same thing as NORing ones. Thus, if you were to find
the symbol of Fig. 2-7A on a diagram, you would not expect to find
this gate in the actual system. What you would find is a NOR gate
like that shown in Fig. 2-7B. Logically they are exactly the same
thing.

This concept of performing logical operations on low signals
instead of high signals may seem confusing at first, but as soon as
you begin to work with a few real-world digital systems you will
find that it can be very useful.

Another example of working with O's is shown in Fig. 2-8A.
Here, what we want to do is to provide a high signal whenever any
of the inputs is low. To symbolize this we draw the ANY symbol
with two active low inputs. The truth table for this symbol is shown
in Fig. 2-8C. Here again, the gate has the disadvantage that it is not
available. It doesn't need to be because it has exactly the same
truth table as the NAND gate that we studied in connection with
Fig. 2-4. Again, the two logic symbols result in the same physical
gate. All gates are normally described in terms of how they will
operate on high signals. But if we are familiar with the ALL
symbol, the ANY symbol, and the active low indicator, we can
quickly convert from any logic symbol to a real, physically available
logic gate.

In Fig. 2-9A and B we have shown two other symbols that are
sometimes used. By constructing a truth table for these gates, you

Fig. 2-7. ANDing zeros is equivalent to NORing 1's.

25

can prove to yourself that they are exactly equivalent to the gates
shown in Figs. 2-9C and 9D.

THE EXCLUSIVE GATES

There is one more basic symbol in Fig. 2-2 that we haven't
used yet. It is the one that we called the EXCLUSIVE symbol in
Fig. 2-2D. The symbol is used only in connection with OR and NOR
gates and it has a rather simple meaning. It could, in fact, be called
a "BUT NOT ALL" symbol. Figure 2-10A shows the symbol for
what is called an exclusive OR gate. Its truth table is shown in Fig.
2-10B. From the truth table we see that the output is high
whenever any of the inputs is high, but not both. The only place
where the truth table of the exclusive OR gate differs from that for a
regular OR gate is in the bottom line. The OR gate has a high output
whenever any of the inputs, or all of them, are high. The exclusive
OR gate has a high output whenever any of the inputs, but not all
are high.

Figures 2-10C and D show the symbol and truth table for the
exclusive NOR gate. Its truth table is just the opposite of that of the
exclusive OR gate. The output is low whenever any, but not all, of
the inputs are high.

The exclusive OR and NOR gates can be very useful in many
logic circuits, particularly when performing arithmetic operations
with the binary number system.

THE INVERTER, OR "NOT" GATE

The simplest possible type of gate is the inverter shown in
Fig. 2-11. It is really an amplifier with a gain of only one and where

Fig. 2-8. ORing O's is equivalent to NANDing 1's.

26

the output is out of phase with the input. As shown in the truth
table, if the input is high, the output is low; and if the input is low
the output is high.

This gate is easy enough to understand, but to one unfamiliar
with digital circuits it may seem so simple as to be of little practical
use. To the contrary, the inverter, or as it is sometimes called, the
NOT gate, is one of the handiest devices the digital system
designer can have available. In many systems, there is need for an
operation that can be performed easily if some of the signals can
be inverted. The problem can be solved by simply inserting an
inverter whenever it is desired to invert a signal. Inverters come
six to a single integrated circuit, so they are easy to include in a
design. As we continue to investigate the application of logic gates,
we will find the inverter will appear frequently.

GATES WITH MORE THAN TWO INPUTS
At the beginning of this chapter when we defined logic gates,

we said that a logic gate has one output and two or more inputs.
Then for the sake of keeping things simple, we ignored the "or
more" part of the statement. All of the practical gates that we have
investigated, except the inverter, have only two inputs. In actual
practice, logic gates with three, four, or even eight inputs are
rather common. The number of inputs should cause us no trouble as
long as we remember the meaning of the basic symbols that were
shown in Fig. 2-2.

When confronted with a gate with any number of inputs, all we
have to do is to construct a truth table showing the state of the

D o . ID_

o o

o o
Fig. 2-9. Other logic gate symbols sometimes used (see text).

27

Fig. 2-10. Exclusive OR and exclusive NOR gates.

output for all possible combinations of input signals. For example,
Fig. 2-12 shows an AND gate with three inputs. Below the symbol
is the truth table. Knowing that the basic symbol is an ALL symbol
we would recognize immediately that the only time that the output
would be active, in this case high, is when ALL of the inputs are
high. Constructing the truth table verifies this.

All that we have said so far about two-input gates applies to
gates with more than two inputs. They are just as easy to
understand and use as two-input gates. About the only difference is
that the truth table will be longer because there are more possible
combinations of input signals. As a matter of interest, there are 2"

Fig. 2-11. The inverter or NOT gate and its truth table.

28

Fig. 2-12. Three-input AND gate (A), and its truth table (B).

possible combinations of input states of a logic gate where "n" is
the number of inputs. Thus, with a two-input gate, we have 22 = 4
possible combinations of input signals, so there are four lines in the
corresponding truth table. Likewise, with the three-input gate of
Fig. 2-12, there are 23 = 8 possible combinations of input states, so
there are 8 lines in the truth table. An eight-input gate is just as
easy to work with, but there will be 28 possible input states and,
therefore, 256 lines in the truth table. Usually, when we use a gate
with a large number of inputs, we can see the intended operation of
the circuit well enough so that we don't have to construct the entire
truth table.

THE LOGIC GATE AS A SWITCH

When studying the operation of the various types of logic
gates it is easy to visualize some possible applications. In general
these are rather simple functions. The logic gate actually has many
different applications which might not be immediately obvious.
One such application is as a switch for digital signals.

INPUT

0

l
SWITCHING

VOLTAGE

OUTPUT

Fig. 2-13 Switching circuit block diagram.

29

Fig. 2-14. Circuit using an AND gate as a switch.

Figure 2-13 shows a black box with an output and two inputs.
One of the inputs is connected to something like a pulse generator
which furnishes a string of pulses which we can think of as a series
of logical l's and O's. The other input is connected to what we call a
switching voltage. What we want the box to do is to allow the
pulses to appear at the output when the switching voltage is high
and to hold the output at a low level when the switching voltage is
low.

This function is extremely easy to provide. All that we need is
a simple AND gate as shown in Fig. 2-14. Here input "A" of the
gate is connected to the source of pulses. If input "B" is low,
nothing will happen at the output because we need all of the inputs
active before the output will be anything other than a logical 0.
When input "B" is made high, the output of the gate will follow
input "A." The pulses will appear at the output.

In this chapter, we have described how logic gates work. We
certainly haven't exhausted the subject. We'll have more to say
about gates throughout the book.

Before going any farther, let's take a look at what's actually
inside an integrated circuit.

30

Chapter 3

Logic Families, or What's

Inside An Integrated Circuit

One question that often arises in connection with digital elec-
tronics is that of just how much an engineer or technician needs to
know about what is actually inside a digital integrated circuit.
There are two general schools of thought on the subject. One group
maintains that if a system designer or technician knows what the IC
does functionally, as well as such things as the required voltages,
time delays and similar characteristics, he doesn't need to have any
knowledge at all about what is actually inside the IC. He could care
less how the thing is built. His only concern is how it operates
functionally.

Using this approach, the diagram of a typical IC would be like
that shown in Fig. 3-1. Here we can tell what all of the pins of the IC
are used for, and if we also have a data sheet, we will know the
proper voltage levels. At first glance it looks like a reasonably good
way to approach the subject. It does, however, have some
limitations. Perhaps the biggest limitation is that the technical
mind of the engineer or technician is rarely satisfied with such a
simplified approach. He might be warned in the data sheet that he
can't connect pins 3 and 6 of the IC of Fig. 3-1 in parallel. Usually,
he will waste so much time wondering why that he would have been
better off learning a little more about what is actually inside the IC.

At the other extreme, we might use the complete schematic
diagram of the same IC. This is shown in Fig. 3-2. There is no
question that this figure contains much more information than Fig.
3-1. The trouble is that the information isn't in a form that is very
useful to anyone. The first thought may simply be a doubt as to the
sanity of anyone that would design a circuit like this.

31

Al BI

In this book, we will take the approach that the block diagram
of Fig. 3-1 is adequate, provided that we have some idea of what is
actually inside the IC. We are particularly interested in the type of
circuitry that is connected to the various pins of the IC. With this
knowledge, we will have a good idea of what might happen if we
were to connect pins 3 and 5 of the IC of Fig. 3-1 in parallel.

Before considering the actual circuits inside an IC, we must
realize that the designer of an IC faces many problems that are
quite different than those encountered when designing a similar
circuit using discrete transistors, resistors, diodes, etc. Usually
the transistor is the easiest component to build in an IC. For this
reason integrated circuits usually use more transistors than a
similar discrete circuit would use. Resistors and diodes are
probably the next easiest components to build, but it is hard to hold
the value of a resistor to a predetermined value. It is much easier to
hold the ratio of the values of two resistors to a given tolerance than
their absolute values. This, of course, will affect the design of the
circuit. Finally, capacitors are really hard to make in an integrated
circuit, so the IC designer will usually avoid them like the plague.

Many different technologies have been used to build digital
integrated circuits. Most of these have had a rather limited use.

Y4 4 44 %JD,

14 13 12 11

--/

>

8

2 3 14 5

YI Vcc Y2 42

7

Fig. 3-1.1C basing diagram, Type 7402 (W).

32

Fig. 3-2. Circuit diagram of a TTL integrated circuit.

The logic families that you are most likely to encounter at present
are TTL (Transistor Transistor Logic) and CMOS (Complimen-
tary Metal-Oxide-Semiconductor logic). In this book we will stick
to these two families because they are the ones that you will be
most apt to encounter and because if you once became familiar with
these two logic families and their application, you can learn about
the others rather easily if you should ever find it necessary.

TTL CIRCUITRY

Figure 3-3 shows a somewhat simplified version of the
diagram of Fig. 3-2. The most striking part of this diagram is the
fact that the input stage uses a rather strange-looking transistor
that seems to be drawn sideways. Without a further hint, it isn't
easy to figure out just how this circuit is supposed to work.

We have a little help in analyzing the circuit because we know
that it is a two-input NOR gate. This tells us that the output is high
when either or both of the inputs is grounded and the only condition
under which the output will be low is when all of the inputs are high.

Let's start with the input stage of the device, but let's redraw
it so that we have a little better chance of finding out just what goes
on in the circuit. In Fig.3-4 we have shown part of the circuit, but

33

we have drawn the transistor right side up and for the moment we
only show one emitter. This makes Q1 just like any other NPN
transistor. For the moment we have connected the emitter of the
transistor to ground.

This circuit is fairly easy to analyze. Inasmuch as the emitter
is grounded and the base is connected to the positive supply
through a 4K resistor, the transistor will be turned on hard. There
will be very little voltage drop between the emitter and the
collector. This will assure that transistor Q2 is turned off because
its base will, for all practical purposes, be grounded. This, of
course, means that point A will be at the +5V supply level and point
B will be at ground potential.

So far we have considered only one of the emitters of
transistor Ql, but we might suspect that the actual transistor
would act like Q1 of Fig. 3-4 if either of the emitters were grounded
and this suspicion would be correct. So far, so good. The input
portion of the circuit of Fig. 3-3 isn't very hard to understand if
either of the two inputs happens to be grounded. The next question
is, "What happens if both of the inputs are connected to the +5V

Fig. 3-3. Circuit of a TTL NAND gate.

34

Fig. 3-4. Equivalent of the circuit in Fig. 3-3, with input grounded.

supply?" This question isn't as easy to answer without giving a
little thought about how a transistor works.

The fact is that if both of the inputs are high, QI doesn't act
like a transistor at all. In fact, when both of the inputs of the circuit
of Fig. 3-3 are high, we can ignore them completely. No current
will flow in the emitters of transistor Ql. We can omit the emitters
from our equivalent circuit.

Figure 3-5 shows the equivalent circuit. The only part of
transistor Q1 that we have shown is the base-collector junction and
it is easy to see that under this condition, the base-collector
junction is a forward-biased diode. Base current will flow in
transistor Q2, turning it on hard. There will be very little voltage
drop across the transistor, so resistors R2 and R3 will act as a
voltage divider. If nothing else were connected to the circuit, the
voltage at point A would be slightly higher than that at point B.

Now that we have the input stage under control, let's try to
figure out how the entire circuit of Fig. 3-3 works. To do this we
will consider two conditions, namely when the output is high and
when the output is low. We will first look at when the output is
high; that is, when both inputs are low. We will only show enough
of the circuit to enable us to figure out how it works.

35

Fig. 3-5. Equivalent of the circuits in Figs. 3-3 and 3-4, with both inputs high.

Figure 3-6 shows the equivalent circuit of the entire gate
when one or both of the inputs are low. The input portion of the
circuit is the same as that shown in Fig. 3-4. Here, as we noted
earlier, transistor Q1 is turned on hard and transistor Q2 is turned
off. Point A is at a high potential and allows base current to flow in
transistor Q3, turning it on. Point B is still at ground potential so
transistor Q4 cannot turn on. The output is thus at a high level. It
will not go all the way to +5V, because there will be voltage drops
across resistor R4, transistor Q3, and diode Dl. Usually the high
output level is around 3 volts.

Now let's look at the opposite situation, when the output is
low. As we noted earlier, this is when both of the inputs are high.
This gives us the equivalent circuit of Fig. 3-7, where the input is
the same as that shown in Fig. 3-5. Here transistor Q2 is turned on.
The obvious result of this is that base current will flow in transistor
Q4, turning it on. It might appear superficially that transistor Q3
might also want to turn on, but it won't. The circuit is designed so
that either Q3 or Q4, but not both, will be turned on at any
particular time. The diode, Dl, used in the output of the circuit is
included to be sure that Q3 will not be turned on at the same time

that Q4 is on.
With transistor Q4 turned on and Q3 turned off, the output will

be at nearly ground potential. Usually the low output level of a TTL
circuit is in the order of +0.2V.

36

Although the circuit that we have used to understand TTL is
typical, it is important to remember that the internal circuitry may
vary from one manufacturer to another. The circuit we have
described is adequate for our purpose which is to learn how to work
with TTL ICs intelligently.

THE TOTEM-POLE OUTPUT
The reader will realize that you can't do very much with a

single logic gate. In digital systems, there are very many logic
gates connected together. For this reason, we should look at what
happens when the output of one gate is connected to the input of
another. Figure 3-8 shows a typical arrangement. Let's first look at
what happens when the output of the driver is low. In the figure, Q4
will be turned on and Q3 will be turned off. As we noted earlier, the
input of a gate will draw a little current when it is low because
transistor Ql is on. If we adopt the conventional current direction
as from positive to negative, we will see that current will flow out
of Q1 and into Q4. Thus the output of the driving stage doesn't
furnish current to the next stage, rather, it provides a connection to
ground. It is for this reason that TTL is often referred to as a
current sinking type of logic. There are other logic families where
the output of one stage furnishes current to the input of the
following stage. Such logic families are said to be current sourcing
logic.

Fig. 3-6. Equivalent of circuits in Figs. 3-3, 3-4, and 3-5 with the output high.

37

Under the opposite condition, Q3 is turned on and Q4 is turned
off. Now the input is Q1 is high and as we noted, no current flows.
This brings up the interesting question that if transistor Q3 doesn't
supply current to the following stages when it is turned on, why do
we bother to have it in the first place. The fact is that this transistor
isn't needed to raise the inputs of a following stage to a high level.
In fact there are gates that we will consider later where the
transistor is omitted. We can see how this transistor serves a
useful purpose by considering what would happen in a practical
circuit if it were not included.

Figure 3-9 shows the output of a 'FIL gate where the top
transistor of the totem pole has been replaced with a resistor. Also
shown in the circuit is some capacitance connected between the
output pin and ground. This is not a capacitor, but rather the
inevitable capacitance of leads, wiring on a printed circuit board,
and the capacitances of other gates connected to this line. Assume
that the output is initially low; that is, that transistor Q4 is turned
on. There will be no charge in the capacitor. Now let's assume that
the circuit changes states; that is that transistor Q4 turns off and
the output tries to go high. We know from elementary electronics
that the voltage across a capacitor cannot change instantaneously.
This would require an infinite current. What would happen in the
circuit of Fig. 3-9 is that the capacitor would charge through the

Fig. 3-7. Equivalent of the circuits in Figs. 3-3, 3-4 and 3-5 with the output low.

38

Fig. 3-8. Interconnection between TTL gates.

resistor Rl. If we made R1 very large, it would take a long time for
the capacitance to charge and the circuit would be very slow. If on
the other hand, we made resistor 121 very small so that the circuit
would be fast, there would be a large current through it when
transistor Q4 was turned on, and the stage would consume a lot of
power.

From this it can be seen that the top transistor in the totem
pole output is used to supply the necessary current to charge any
capacitance in the circuits connected to the output so that the
output will be pulled to a high level very quickly. Once this has
been done, Q3 just sits there. It doesn't have to supply current to
hold the inputs of following gates at a high level. It is easy to see
why the arrangement that uses transistor Q3 is referred to as an
active pull up.

OPEN COLLECTOR OUTPUTS

It is easy to imagine a situation where it is desirable to connect
the outputs from two different integrated circuits to the input of
another circuit. Figure 3-10A shows the arrangement. As long as
both of the stages that are connected together are at the same

39

output state—both high or both low—there is no problem, but on
the other hand, if we know that both of the outputs will always have
the same state, there is no point in connecting them together. We
could simply look at one, knowing that the other would have the

same state.
When the two stages that are connected in parallel have

opposite states—one high and the other low—things begin to
happen. Suppose that in Fig. 3-10A, stage A has a high output state
and stage B has a low state. The output of stage A will try its best to
pull the common connection to a high level, while the output of
stage B is trying equally hard to pull the common connection to a
low level. Usually the output that is trying to go low will win the
struggle. The result is as shown in Fig. 3-10B. In this figure, both
of the transistors are on and there is a high current path between
the +5V supply and ground. The 130-ohm resistor will provide
some current limiting, but usually one or the other of the circuits
will not survive.

Although the totem-pole outputs of a regular TTL gate cannot
be connected in parallel, the arrangement shown in Fig. 3-11 is
very useful in many applications., All that we have to do to use it is
to find some gates whose outputs can safely be connected in
parallel. The arrangement of Fig. 3-11 is called by many different
names. The arrangement in the dashed box where the outputs are
connected together is called wired-OR, dot-OR and dotted collector.

Fig. 3-9. Charging currents in a TTL output stage.

40

Fig. 3-10. Two totem-pole outputs connected in parallel.

All of these names are misleading. The function represented by the
box is really an AND or an ALL function. The output goes high only
when all of the lines, A, B, and C are high. As soon as any one of the
lines goes low, the output will go low. For this reason, probably the
most descriptive name for the arrangement is a wired AND.

Now to find the gates that will make this arrangement
practical. Figure 3-12 shows the schematic diagram of a special
TTL NAND gate which is called an open-collector gate. Comparing
this circuit with the circuit we showed earlier of a TTL gate, we
see that the top transistor of the totem-pole output, together with
its series resistor and diode, have been omitted. Otherwise the
gate is the same as any other TTL gate. The output is the collector
of transistor Q4 which isn't connected to anything else. We can see

41

Fig. 3-11. Wired-AND arrangement.

that if Q4 is turned on, the output will be pulled to a low level, but
unless we add something to the gate, the output can't go to a high
level. This something that we add is a pull-up resistor shown by the
dashed lines. With this resistor, the output will go to a high level
whenever transistor Q4 is turned off. Inasmuch as we no longer
have the active pull-up transistor, we can now connect the outputs
of several gates of this type in parallel with a single pull-up resistor

Fig. 3-12. Circuit of an open-collector gate with external pull-up resistor.

42

and the gates will not be damaged if one should happen to go high
and another low.

Figure 3-13 shows two such gates connected in parallel with a
single pull-up resistor. From this figure we can clearly see that the
output will go high only when the outputs of all gates that are
connected together are high. If the output of any of the gates should
go low, its output transistor will pull all of the outputs low, but no
damage will be done to any of the stages.

The open-collector gate is widely used when it is necessary to
connect the outputs of several gates to a common line. There is
also another arrangement that can be used for this purpose called
tri-state logic. We will get to this a little later.

'TTL CHARACTERISTICS
So far we have treated digital ICs in a sort of qualitative way.

We have noted that when the inputs of a NAND gate all go high, the
output will go low. We haven't bothered with such questions as to
just what voltage levels constituted a high or a low level. Neither
have we questioned such things as to how much time is required for
the gate to respond after the input levels change. If we are to be
able to work with or troubleshoot digital systems intelligently, we
must have quantitative answers to these questions.

Input Levels

Whenever the voltage at the input of a TTL gate is below
0.8V, the gate will treat it as a low level. Usually manufacturers

Fig. 3-13. Two open-collector gates connected in parallel.

43

guarantee this level. When the voltage rises above about 2V, the
circuit will treat it as a high. Note that there is a gap between what
constitutes a low and what constitutes a high level. This is not
accidental. Levels in this no-man's land are avoided to allow room
for noise spikes that will inevitably get onto the signal lines in a
system. We will have more to say about this later.

Output Levels
On the output pin, the level will usually be about 0.2V for the

low state, and about +3V for a high level. The manufacturer usually
guarantees that the low will not be higher than 0.8V and the high
will not be lower than +2.4V.

Timing
Obviously, it will take some time for a gate to respond to an

input signal. This time period, although very short, can be
significant in a complex digital system. The time required for a
digital circuit element to respond to a change in the level of an input
signal is called the propagation delay or propagation time of the unit.
Actually, the time required is not the same when the output of a
gate is going from a high state to a low state as it is when it is going

from low to high. This is shown in Fig. 3-14.
The waveform at the top is the signal applied to the input of a

gate. It is going from a low level to a high level. The output
responding to this signal switches from a high level to a low level.
The propagation time required for the output of the gate to go from
a high to a low level is labeled T pHL in the figure. This time is
usually in the order of 7 nS or less. The time required for the output
to go from a low to a high state is labeled T pui and is usually 11 nS or

less.
The term propagation delay, which is often specified, is the

numerical average of the two times described above. Both of the
propagation times depend on the amount of loading on the output
and on the supply voltage. The time required for the output to go
from high to low decreases as the temperature of the device
increases and the time required to go in the opposite direction is
independent of temperature.

As we will see later, the propagation time of a gate can be used
to advantage to prevent circuits from oscillating.

LOADING OR FAN-OUT

We have noted several times that various characteristics of
TTL ICs depend on loading. The load of an IC is really the amount
of current that the output pin must handle. This, of course, is not

44

LOW HIGH
+ 1.5/

LOW + 0.4 V

TPHL = PROPAGAIION TIME OUTPUT GOING HIGH ID LOW

TPLH= PROPAGATION TIME OUTPUT GOING LOW TO FIGH

I.5V

INPUT SIGNAL

Fig. 3-14. Waveforms showing propagation times in digital devices.

the same when the output is at a high level as when it is at a low
level. Inasmuch as most TTL outputs are connected to TTL inputs,
the loading capability of TTL outputs is specified in terms of the
number of TTL inputs that can be connected to it. The parameter is
usually called the fan-out. An output that has a fan-out of 10 can
drive ten input terminals of standard gates.

Specifying the output capability of a gate in terms of its fan out
is fine as long as the only thing connected to the output is the input
of another gate. Sometimes, we must connect something else to
the output and we need to know how much current it will supply.
Similarily, the output capability of some digital ICs is given in
terms of the amount of current the output will supply in the high and
low states. Under these conditions, we need to know a little more
about the relationship of fan-out to actual current capability.

The output capability of a TTL gate can also be specified in
terms of what is called a unit load. This is the current required by a
single TTL input. Figure 3-15 shows the output of one TTL gate
connected to one of the inputs of another. In Fig. 3-15A the output
of the first gate is high. As we said above, this means that the
output voltage will be somewhat higher than half the supply
voltage, usually in the order of +3V. All that this signal has to do is

45

to hold the emitter in the input of the following stage at a high level.
You will remember that the input transistor doesn't act like a
transistor at all under this condition. Therefore, in theory, no
current is required. In practice there will be some leakage current
and it has been agreed that the maximum current required by a gate
input under this condition is 40 A.

Figure 3-15B shows the opposite situation where the output of
the driving gate is in the low state. Its output voltage is very nearly
OV. Under this condition, current will flow from the input pin of the
driven gate to ground through transistor Q4 of the driving gate.
The current that must be carried by this transistor is 1.6 inA. Thus,
a unit load can be defined as:

High 40 uA
Low 1.6 inA

Another, somewhat confusing term that you will sometimes
encounter is fan-in. This doesn't mean the number of outputs that
can be connected to the input of a gate. It means the amount of
current required at the input of a gate in the high and low states. All
modern TTL logic has a fan-in of one unit load. Some types of
devices may require a greater or less current; it would be rated as
having a fan-in of two.

Standard TTL usually has a fan-out rating of 10. This means
that a standard TTL gate may be connected to as many as 10
different inputs without any of its operating characteristics going
out of limits. Some larger devices, usually called buffers, have a
fan-out rating as high as 30.

NOISE IMMUNITY

An important rating of any digital device is its ability to reject
the noise that will inevitably be present in digital systems. This
parameter is usually specified in terms of what is called noise
margin. This is illustrated in Fig. 3-16. In Fig. 3-16A, the line
between the two gates is high. The way in which noise could
disrupt this situation is for a negative-going noise pulse to drop the
voltage on this line low enough so that gate B would think it was a
low signal. The immunity to this type of noise is called the
high-state noise margin, VNH. The formula for calculating this

voltage is given in the figure as:

VNH = VOH — VIN

Thus, if the lowest high-level voltage out of gate A is +3V, and the
minimum voltage that gate B will think is a high level is 1.8V, the

46

Fig. 3-15. Interconnection loading on TTL gates.

high-state noise immunity is:
+3V — +1.8V = 1.2V

This means that any negative-going noise pulse on the line
between the gates of Fig. 3-16A will not cause any trouble as long
as the pulse is smaller than 1.2V.

In Fig. 3-16B we show the situation where the line between
the gates is at a low level. The effect of noise on this arrangement
would for a positive-going noise pulse to raise the voltage on this
line high enough so that gate B would think it was a high-level
signal. The formula for the low state noise margin is:

VNL = VIL — VOL
Thus if the highest value of voltage that gate B will think is a low
level is 0.7V and the highest level that the output of gate A will
have in the low state is 0.5V, the low-state noise margin will be:

0.7V — 0.5V = 0.2V

47

Strictly speaking, the noise margins that we have been talking
about are DC noise margins. But, at the speed at which TTL logic
operates, a pulse having a duration of only one microsecond may be
thought of as DC. Very short pulses having durations of only a few
nanoseconds may be so short that they will be gone before the
circuit has a chance to respond. In a case like this, the noise margin
would be higher than the value that we have calculated.

OTHER INPUT CONSIDERATIONS

From our discussion of the way in which a TTL gate works, we
know that if nothing is connected to any input of a gate, the effect is
the same as if that input were connected to a high level. In other
words, all TTL inputs can be considered to be in a high state until
something pulls them low. Because of this, many experimenters
and, unfortunately some designers, will leave any unused input
pins on AND and NAND gates floating because this is the same as
connecting them to a high level. This is shown in Fig. 3-17A. While
this arrangement will usually work, it isn't a good idea, because the
unconnected pin will act like an antenna and may well pick up noise
pulses that will cause problems.

A
D o HIGH)

O VNH =VOH— VIN

O VNL = VIL— VOL

B D °

VNH = "HIGH" NOISE MARGIN

VOH = MINIMUM HIGH OUTPUT VOLTAGE FROM GATEA

VIN = MINIMUM LEVEL THAT GATE B WILLTHINK IS HIGH

VNL = "LOW" NOISE MARGIN

VIL = MAXIMUM LEVEL THAT GATE B WILL THINK IS LOW

VOL = MAXIMUM LOW OUTPUT LEVEL FROM GATE A

Fig. 3-16. Noise margins calculation.

48

A A A

B B B

UNUSED
INPUT

UNUSED

A A

INPUT

CO 0

Fig. 3-17. Six ways of handling unused TTL inputs.

A better practice is to connect any unused pins of an AND or
NAND gate to one of the used inputs as shown in Fig. 3-17B. The
only time that this arrangement will not work is when the added
input might exceed the fan-out rating of a driving stage. In such a
case, the unused pin can be connected to the positive supply as
shown in Fig. 3-17C. The resistor is included to protect the input
against any transients that might be present on the power line.

With an OR or NOR gate, unused inputs cannot be left floating
as in Fig. 3-17D. This arrangement would cause the output to be
low at all times regardless of the states of inputs A and B. The way
to handle this situation is to either ground the unused pin as in Fig.
3-17E or to connect it to one of the used input pins as in Fig. 3-17E.

ANOTHER LOOK AT THE OUTPUT CIRCUIT

We have noted that the high-level output of a TTL gate is at
least 2.4V and usually around 3V. When the output is used to drive
the input of another TTL gate, this is fine. The output is high
enough to actuate the input with a good noise margin. There are,
however, instances when we will want to use the output of a TTL
gate to drive something else. In such a case, it might be useful if we
were able to raise the level of the output voltage. This can be
accomplished with the arrangement of Fig. 3-18. Here, an external
pull-up resistor is added even though the gate has a regular
totem-pole output. This external resistor will pull the high-state
output voltage to nearly the full +5V supply voltage.

Earlier we stated that the totem-pole output of a TTL gate was
arranged so that when either of the transistors was turned on, the
other would be turned off. This is true, but there is a joker that can

49

potentially cause problems. It revolves around the fact that a
transistor that is in the off state can be turned on faster than a
saturated transistor can be turned off.

Figure 3-19 shows our familiar totem-pole output stage again.
Assume that the output is low; that is, transistor Q3 is turned off
and transistor Q4 is turned on into saturation. Now when the gate
starts to switch so that the output will go to a high state, transistor
Q3 will turn on rather rapidly. At the same time, transistor Q4
starts to turn off, but inasmuch as it is saturated, some time will be
required to remove all of the charge carriers. As a result, Q4 will
not be fully off until a few nanoseconds after Q3 has turned on.

What all this means in practical terms is that when a TTL
stage switches so that its output goes from low to high, there will
be a very short period of time when there is a very low resistance
path between the supply voltage and ground. Thus there will be a
very short current pulse on the supply line. This pulse is very short
in duration—never more than about 10 nS; but when a circuit has
several gates that switch at the same time, these pulses can cause
troublesome noise glitches on the supply lines. There are ways of
coping with the situation and these will be treated in the chapter on
power supplies and noise.

OTHER MEMBERS OF THETTL FAMILY
So far we have been talking about what is usually called

standard TTL. The integrated circuits in this branch of the family
have numbers like 7400 or 5400 for the version that will meet
military specifications. For example, a 7408 IC contains four
2-input AND gates. Standard TTL has proven to be one of the best
logic families for many applications. It is easy to imagine, however,
that there applications where it is worthwhile to sacrifice one of the
operating characteristics in order to get an improvement in
another. For example, it might be worthwhile to sacrifice some

1 2.2K

 o

Fig. 3-18. A pun-up resistor used to raise the high-state voltage from a TTL gate.

50

Fig. 3-19. Switching can induce a transient spike in a TTL output.

speed of operation in order to get a circuit that doesn't dissipate as
much power. As a result of factors such as this, several branches of
the TTL family have been developed. Most of these either operate
faster, or consume less power.

As a standard of comparison of the various branches of the
family we can assume that a standard TTL gate will have a
propagation delay in the order of 10 nS and will have a power
dissipation of about 10 mW per gate.

Low-Power Tn.
In this branch of the family, the ICs are about the same as

those in standard TTL except that the values of all of the

resistances have been increased. The result is that the power
dissipation is reduced to about 1 mW per gate. The price that we
pay for this reduction in power dissipation is that the propagation
time is increased to about 23 nS. ICs in this branch of the family
have the letter "L" in the number. Thus a type 74L00 would be the
low-power version of the Type 7400 quad two-input NAND gate.

High-Speed TTL

At the opposite extreme, we have high-speed TTL where the
values of all of the resistors have been decreased to speed it up. It
is indeed faster, having a propagation delay of only about 6 nS, but

51

the power dissipation is increased to about 23 mW per gate. ICs in
the series have the letter "H" in their numbers.

Schottky TTL

As we have noted previously, one of the factors that limits the
speed of TTL is that transistors are switched into saturation and it
takes time to get them out of saturation. In the Schottky TTL
branch of the family, the transistors are kept out of saturation by
connecting Schottky diodes across them. A Schottky diode is a
very fast diode that has a forward voltage drop of only about 0.3V as
compared with the typical 0.7V of a regular silicon diode. These
diodes keep the transistors out of saturation so that they can be
turned on much more quickly, thus increasing the speed of
operation, and at the same time improving the speed-power
tradeoff.

A Schottky TTL gate will have a propagation time of about 3
nS and a power dissipation of about 23 mW. These ICs have the
letter "S" in their type numbers.

Low-Power Schottky TTL

The Schottky TTL has been modified to reduce its power
consumption. The transistors are shunted by diodes to improve
their speed, but the values of the resistances in the circuit have
been increased to reduce power dissipation. The result is that the
speed is about the same as standard TTL, but the power dissipation
is reduced to about 2 mW per gate.

CMOS INTEGRATED CIRCUITS

There is another family of digital integrated circuits which are
of interest to broadcasters. Although not as popular as TTL,
CMOS ICs are widely used. CMOS stands for complimentary
MOS. The name comes from the fact that these ICs use com-
plimentary MOS field-effect transistors. The MOS comes from the
way that the device is built. As shown in Fig. 3-20, it consists of a
layer of metal on top of a layer of oxide which is an insulator, which
in turn is on a layer of semiconductor material; hence the name
Metal O xide Semiconductor.

There are many different types of MOS ICs. The one that we
are concerned here is the CMOS variety. The reason for the word
complimentary will soon become apparent.

Most texts describe CMOS ICs in terms of the details of their
construction. We won't bother with details, but will work out a
description in terms of the schematic symbol for the MOS FET.

52

Fig. 3-20. MOS structure.

Figure 3-21 shows the symbol for a N-type, enhancement-
mode FET. It has four electrodes—a source, a drain, a substrate,
and a gate. We won't be particularly concerned with the substrate,
except to note the fact that the arrow points inward, which tells us
that it is an N-channel device, and that in N-channel devices the
substrate is connected either to the source or to ground.

The device of Fig. 3-21 is intended to serve as a switch. We
want to be able to either complete the circuit between the source
and drain or to leave it open. In this particular device, if we connect
the gate to ground, the circuit between the source and drain will be
open. If we apply a positive voltage to the gate, the circuit between
the source and drain will be closed. There will be some resistance,
but in general it will be small.

Now we have a switch that is controlled by the voltage that we
apply to the gate. We should note carefully that the gate doesn't
make an electrical connection to the other electrodes. It is just like
one plate of a capacitor. Thus this switch will have a very high input
impedance and the gate will draw no current most of the time and
only a very small current when it is charging.

Here is where we get to the word, complimentary. Figure
3-22 shows the symbol for a P-channel, enhancement-mode FET.
We know that it is a P-channel device because the arrow points
away from the substrate. This device is complimentary to the
N-channel device of Fig. 3-21. If we connect the gate to ground, it
will conduct between the source and drain. If we make the gate
positive, we will open the circuit between the source and drain.

Now we have the makings of all sorts of digital logic circuits.
We have two devices where with the same voltage we can open one
switch and close another. Figure 3-23 shows a CMOS inverter that

53

consists of the two types of FETs that we have just described. The
one at the top is a P-channel device that will turn off when its gate
becomes positive, and the one at the bottom is an N-channel device
that will turn on when its gate becomes positive. It is easy to see
that if we keep the two gates at ground potential, the device at the
top of the figure will be turned on and the one at the bottom will be
turned off. This means that the output will be high—at the power
supply voltage. Now if we were to make the gates positive, the
situation would be reversed. The device at the top would be turned
off and the one at the bottom would be turned on, bringing the
output to ground potential. Thus we have the truth table of an

inverter shown in the figure.
Before getting into any more detail about the operation of a

CMOS stage, let's look at a logic gate. Figure 3-24 shows a CMOS
two-input NAND gate. It uses two P-channel and two N-channel
enhancement-mode FETs. We can again think of each of these
FETs as a switch. Thus if either Pl or P2 is turned on, the output
will be connected to the positive supply. Similarly, if both N1 and
N2 are turned on, the output will be connected to ground.
Naturally, we want to avoid the situation where the output is
connected to the positive supply and to ground at the same time.
The devices are connected so that we will indeed avoid this
situation.

GATE

OV ON GATE, CHANNEL DOESN'T CONDUCT

+V ON GATE, CHANNEL CONDUCTS

DRAIN

SUBSTRATE

SOURCE

Fig. 3-21. N-channel enhancement-mode FET.

54

GATE

OV ON GATE, CHANNEL CONDUCTS

DRAIN

SUBSTRATE

SOURCE

+V ON GATE, CHANNEL DOESN'T CONDUCT

Fig. 3-22. P-channel enhancement-mode FET.

One of the easiest ways to make a truth table for a gate like
that shown in Fig. 3-24A is to contrast the small table shown in Fig.
3-24B, which shows which transistors are turned on and off when
inputs A and B are made high and low. By just glancing at the table
we can see that the only condition under which both N1 and N2 are
turned on is when both inputs A and B are high. Inasmuch as both of
these FETs must be on for the output to be connected to ground, A
and B must both be high for the output to go low. A further
inspection of this table will show that under all other input
conditions either Pl or P2 will be turned on. This means that the
output will be high. This leads to the truth table given in Fig.
3-24C, which will be recognized as the truth table for a NAND gate.

CMOS CHARACTERISTICS

Now that we have seen how logic gates can be made with
CMOS, let's look at some of its characteristics. Probably the most
important feature is the fact that there is never a direct low-
resistance path between the supply voltage and ground. This
means that a CMOS gate consumes very little power. In fact, when
the gate is not changing state, but remaining in one state, there is

55

almost no power at all. This is one of the most attractive features of
CMOS.

The input of the CMOS gate is interesting. The only
connections to the input pins are the gates of the MOS FETs.
These, you will remember, are like the plate of a capacitor. There
is no direct conducting connection between the gate of such an FET
and its channel. Thus when the circuit is not changing state, there
is essentially no input current. For this reason, we define a unit
CMOS load as a capacitance of about 5 pF, which includes the
capacitance of the case. A typical CMOS gate will have a fan-out of
50.

One bad feature of this type of input is that time will be
required to charge the input capacitance. This characteristic limits
the speed of CMOS. It is still pretty fast, however, being able to
handle pulse rate of about 5 MHz.

CMOS VOLTAGE LEVELS

The CMOS gate will operate over a wide range of supply
voltages, usually anything between 3 and 12 or 15V. The

 1+
OUTPUT

INPUT

INPUT

HIGH

LOW

OUTPUT

LOW

HIGH

Fig. 3-23. CMOS inverter.

56

A

B

A

0

I

NI I P2

OFF ON

ON OFF

_Ittiloillen
0 o 1
O I I
I 0 I

I I 0

=.

o

e

B
0

I

N2
OFF

ON

P2

OUTPUT

PI
ON

OFF

Fig. 3-24. Diagram of a CMOS 2-input NAND gate.

57

output-voltage levels depend on the load connected. When one of
the FETs is turned on it will have a resistance of somewhere
between 200 and 400 ohms. This is no problem when driving the
input of another gate because it will not draw any significant
current. It can be a problem when driving some external device of
some other logic family such as TTL. Special CMOS devices
having a greater output capability are available for this purpose.

CMOS NOISE IMMUNITY

Another very attractive aspect of CMOS is that it can have a
very high noise immunity. This can be best seen by looking at the
transfer characteristic of a typical CMOS gate. Such a curve is
shown in Fig. 3-25. The horizontal axis of the graph is the voltage
applied between the input and ground. The vertical axis is the
output voltage. Three sets of curves are shown, for supply voltages
of 5V, 10V, and 15V. The interesting feature of these curves is that
the output voltage doesn't change at all until the input voltage
reaches nearly 50% of the supply voltage. Then a small additional

Fig. 3-25. Characteristic curve of a CMOS inverter.

58

Fig. 3-26. Typical input circuit arrangement used to protect a CMOS gate.

change in input voltage will drive the output to the final state. This
means that in a system with a supply voltage of 10V, an input signal
of nearly 5V is required to switch the gate from one state to
another. Thus the noise margin is nearly half of the supply voltage.

CMOS INPUT PROTECTION

In describing the construction of a MOS FET we noted that
the metal gate was insulated from the channel by a thin layer of
oxide which served as an insulator. Inasmuch as this layer is really
very thin, it can easily be damaged by a voltage higher than it was
designed to withstand. Although circuits can be designed to use
safe voltage levels, there is still the possibility that CMOS ICs can
be damaged by high voltages from transients and static electricity.
In fact, CMOS devices are usually packed in conductive packages
so that stray static charges cannot damage the input circuits.

Most CMOS ICs have some internal protection against high
transient voltages. A typical arrangement is shown in Fig. 3-26,
where diodes are used to provide protection. This circuit will
indeed provide a great deal of protection for the high-resistance
gates. However, because of this circuitry, it is important that
power be applied to CMOS gates before the inputs are made high.
Otherwise the gate can be permanently damaged.

59

Chapter 4

Flip-Flops, or

Circuits That Remember

The logic gate that we considered in Chapter 2 is the fundamental
building block of all digital systems. In fact, you could build any
digital system, no matter how complex, with nothing but NAND or

NOR gates.
In Chapter 2, we thought of a logic gate as a device that had

one of two possible output levels, depending on a combination of
input levels. When gates are used in this way, the system is said to
use combinational logic. There is another way to use digital circuit
elements where the state of the output of a device depends not only
on the present inputs, but also on what the input happened to be
some time ago. This type of arrangement is called sequential logic.
The simplest building block where the present output level
depends on some past input level is called a flip-flop. Essentially a

flip-flop is a circuit element that has two steady states. Various
inputs can be used to switch the element from one state to the

other.
Figure 4-1 shows a block diagram of a flip-flop. Note that it has

two output terminals, labeled Q and Q. The little bar over the

second Q can be though of as meaning "not." It can also be thought
of as meaning the same as an active low indicator. Thus the two
outputs of our flip-flop are Q and not Q. It is apparent that, in
general, when Q is high, Zi will be low and vice versa.

In our block diagram we have shown several inputs to the
flip-flop. We haven't stated what any of them might be called or how
any entered into the operation of the device. In fact, there are many
different types of flip-flops and they differ mainly in the types of
inputs that are provided and how they affect the operation.

60

INPUTS

FLIP - FLOP

I I I
INPUTS

Q

_ OUTPUTS
Q

Fig. 4-1. Block diagram of a generalized flip-flop circuit.

THE BISTABLE LATCH

Figure 4-2 shows how a very simple flip-flop can be made with
two NAND gates. As with gates, we can find out how the circuit
works by constructing a truth table. In this instance the truth table
is apt to be a little confusing to construct, because one of the inputs
of each of the gates is the output of the other. Unless you are
careful, you will find yourself going around in circles.

The easy way to construct a truth table for the circuit of Fig.
4-2 is to use the rule that with a NAND gate, as long as either of the
inputs is low, or logical 0, the output will be high. With this bit of
information, we can start with the top gate in the figure and assume
that the input labeled "R" is low or zero. This tells us immediately
that the output of this gate, which is Q, must be high or 1. Thus we
can fill in the first line of the truth table of Fig. 4-2B. Inasmuch as
Q, which is one of the inputs of the lower gate, is high, and we will
assume that S is high, we know that Q will be low, or O. We can use
this information to construct the first line of the truth table to the
right in Fig. 4-2B.

Now to the opposite situation. Let's make S low. This tells us
right away that Q will be high. Now, inasmuch as -Ci is one of the
inputs of the top gate, we know that Q will be low. We now have
two lines of a truth table for the circuit, and so far there isn't
anything exciting. In fact, there is no indication that this circuit can
remember anything.

Now let's try a little further manipulation of the data as shown
in Fig. 4-2C. We will start out with R low, S high, Q high, and Zi
low. Let's change R from low to high. Before we made this change,
both of the inputs were low. Now one of them will be high and the
other low. From what we know about a NAND gate, we know that if
one or both of the inputs is low, the output will be high. In other

61

words, when we make R high, nothing happens. The circuit will
remember its previous state and will stay there.

By a very similar line of reasoning, we can take the situation
shown in Fig. 4-2D and change S from low to high. Again, nothing
will happen. Again the circuit remembers.

Let's summarize all of this in a complete truth table as shown
in Fig. 4-2E. On the top line of the table we see that when both R
and S are high, the outputs will have the same state that they had
before both R and S were made high. This is the memory feature of
the circuit. On the next two lines we show the output states when
R and S have opposite states. Finally, on the last line we indicate
that if both R and S are low, both the outputs will be a high, a
condition that we said wouldn't happen when we started talking
about flip-flops. In fact this condition can actually exist, but it will
not be remembered. In practice, either R or S will change before
the other and this will be the condition that the circuit will
remember.

We have been using the letters R and S without any
explanation of where we got them. Originally, they came from the
terms set and reset. Be careful when using them, however, because
some flip-flops might be set — Q made high—by a high signal and
others by a low signal. We'll have more to say about this later.

Before going further, it is interesting to note that we could
also build a bistable latch using NOR gates instead of NAND gates.
The circuit is shown in Fig. 4-3. To construct the truth table for this
arrangement use the fact that in a NOR gate, if either or both of the
inputs are high or 1, the output will be low, or O. The resulting truth
table is shown in the figure. It is interesting to note that with this
arrangement the memory feature occurs when both R and S go to O.

The two preceding examples of latches are useful not only
because they give a little insight into how a flip-flop can remember
a past input, but also because the circuits are practical. It is handy
to be able to build a little latch out of a couple of NAND or NOR
gates.

Figure 4-4 shows the block representation of an R-S flip-flop,
which is similar to the latches that we have just discussed. You will
find many different types of truth tables for flip-flops. They all tell
the same thing, but often they are set up differently. In the truth
table of Fig. 4-4, the third column is labeled Qn+1. This column
shows the state of the Q output after the inputs have been set as
shown in the preceding columns. The expression Q. indicates the
state of the Q output with earlier inputs. The symbols have

62

meaning only in the first line of the table, which tells us that when R
and S are both low, the state of the Q pin will not change. It will be
whatever it was when R and Shad different values.

Another interesting thing about the truth table is the comment
"indeterminant" in the fourth row. We said earlier that we couldn't
be exactly sure of what the output would be under this condition.
Sometimes the truth table will label this situation "disallowed,"
meaning that the R and S inputs should not be allowed to go high at
the same time. The reason is that, not knowing what output this
would produce, we could not be certain of how a system would
operate.

Note that in the truth table of Fig. 4-4, nothing is shown about
the state of the pin. There is no need to do this because it will
always be just the opposite of the state of the Q pin.

Fig. 4-2. Bistable latch circuit, using NAND gates, and truth tables.

63

Fig. 4-3. Bistable latch made with NOR gates.

The flip-flop arrangements that we have described so far can
be called asynchronous, because the output will change as soon as
the input is changed. In general, inputs labeled set, reset, or clear
are asynchronous. Changing their state will produce an immediate
change in the output.

SYNCHRONOUS OR CLOCKED FLIP-FLOPS

There are many places in digital systems where it is desirable
for all the flip-flops in a part of a system to change state at the same
instant. This is called synchronous or clocked operation and
synchronous or clocked flip-flops are used for the purpose.

Figure 4-5 shows a general block diagram for a clocked
flip-flop. Note that at the bottom of the block, there is a new type of
input called a clock input. In this type of flip-flop, the states of the
various synchronous data inputs can be changed, but nothing will
happen until something is done at the clock input. Usually a pulse is
applied to this input to make the outputs change state if the proper

Fig. 4-4. R-S flip-flop with its truth table.

64

Ar' eTA HR?)ÚT°USIN
PRESET

SYNCRONCUS
DATA
INPUTS

CLOCK
INPUT

4-5. Block diagram of a clocked or synchronous flip-flop.

combination of levels is present at the inputs. This type of flip can
also have one or more asynchronous inputs such as the preset input
at the top of the block.

There are several different types of data inputs that can be
used with a clocked flip-flop, and usually the device derives its
name from the types of inputs provided. There are three different
types of clock action that may be used on any type of flip-flops. In
general, any type of clocking may be used on any type of flip-flop.
There is usually only one clock input on a flip-flop, but there may be
many different data inputs. Designers of integrated circuits are
continually coming up with new versions of the flip-flop that will
simplify system design.

One type of clocking is called edge clocking. As shown in Fig.
4-6A, the flip-flop may change state when the clock pulse reaches a
certain level on its positive-going edge. Or it may be arranged so
that it will change state at a certain level on it negative-going edge.
Both types of edge triggering are widely used, but not in the same
unit. With edge triggering, the operation doesn't depend on the
rise time or duration of the clock pulse, but when the rise and fall
times are greater than about 150 nS, the noise immunity of the
flip-flop will suffer.

65

Another type of clock action that is widely used is found in the
master-slave flip-flop. It is called level or master-slave clocking.
Figure 4-7A shows a rough block diagram of the master-slave
flip-flop. It consists of two separate latches and at no time are any of
the data inputs connected directly to the output. This results in
very good isolation between input and output. When the clock
pulse is applied to clock input, the flip-flop reacts in four distinct
steps as shown in Fig. 4-7B. First the slave latch is disconnected
from the master, then the data inputs are connected to the master,
changing its state. Following this, the data inputs are disabled, and
the data is transferred to the slave where it will appear at the
output.

Although not widely used, still another form of clocking is
available. It is called AC or capacitive-coupled clocking. Here, the
clock pulse is capacitively coupled into the flip-flop. It responds to
either the positive or negative rate of change of the pulse. With
such an arrangement, the rise and fall times and the duration of the
clock pulse are critical.

THE TYPE "D" FLIP-FLOP

Figure 4-8 shows the Type D flip-flop with its truth table. This
flip-flop has one data input which appropriately is labeled D. The
truth table is a little different than the ones that we have been using

FLIP FLOP

TRIGGERS --1>
HERE

CLOCK PULSE

0 POSITIVE -EDGE TRIGGERING

FLIP FLOP

TRIGGERS
HERE

CLOCK PULSE

0 NEGATIVE -EDGE TRIGGERING

Fig. 4-6. Flip-flop may be edge-triggered by either the positive-going or
negative-going edge of the clock pulse.

66

DATA _
INPUTS —

-

o

o

MASTER

I

1
SLAVE i
ISOLATED—
FROM
MASTER

DATA INPUTS
CONNECTED
TO
MASTER

t
CLOCK

SLAVE

1
L DATA
TRANSFERRED
FROM MASTER
TO SLAVE

DATA
INPUTS
DISABLED

Fig. 4-7. Block diagram and waveform showing clocking of a master-slave
flip-flop.

in that we have shown two times, Tn and Tn+1. Tn means that we are
interested in what state the D input is at, at the time just before the
clock pulse arrives. Tn+1 is the time immediately after the clock
pulse, when we are interested in the state of the output.

The truth table tells simply that after the clock pulse, the Q
pin will have the same state that the D pin had immediately before
the clock pulse arrived. Type D flip-flops are handy for latching
data at a given time. The data input is connected to the D pin. When
we are ready to latch on to it, we can actuate the clock pin. Either
both the Q and -q pins or just the Q pin may be available on the
package and several flip-flops may be contained in a single IC.
Sometimes one or more asynchronous inputs, such as a preset or a
clear, may also be provided. Being asynchronous, inputs to these
pins can force the output to a given state even before the flip-flop is
clocked.

TYPE "T" FLIP-FLOP

Figure 4-9 shows an interesting flip-flop that may not be
available in an integrated circuit package in a particular logic
family. However, it can be made from other flip-flops and is used in

67

some large-scale integrated circuits. The name, T flip-flop, comes
from the word toggle. The truth table tells us that if the T input is
low, the Q output will not change when the flip-flop is clocked. On
the other hand, if the T input is made high, the Q output will change
state whenever the flip-flop is clocked. This arrangement is handy
in counting circuits.

CLOCKED RS FLIP-FLOP

Th RS flip-flop shown in Fig. 4-10 is very similar to the RS
flip-flop that we discussed earlier, except that it is clocked rather
than asynchronous. The R and S inputs in this case are synchronous
data inputs. In some instances, they have designations other than R

and S.
A clocked RS flip-flop may also have asynchronous inputs such

as present and clear.

THE TYPE J-K FLIP-FLOP
Figure 4-11 shows what is probably the most versatile

flip-flop of all. It is called a J-K type because it has two data inputs
labeled J and K. Whereas there seems to be some reason why most
of the other input designations such as R, S, T, and D were chosen,
no one seems to know where the letters J and K originated. Very
often J-K flip-flops also have asynchronous inputs as shown. The
truth table shown in Fig. 4-11B shows how the states of the J and K
inputs before the clock pulse will affect the state of the Q pin right
after the flip-flop has clocked.

Figure 4-11C shows another rather interesting table, which is
sometimes called an excitation table. What this table shows is how
we must connect the J and K pins if we have a certain state of the Q
output and want another state right after the clock pulse. The "X"
in the table represents a "don't care" state. For example, looking at

D
-

Tn Tn+ I

D 0

I

0 CLOCK 0

0 0

I

Fig. 4-8. Block diagram of a type D flip-flop and its truth table.

68

o CLOCK

Tn Tn+ I

T Q

o Qn

Qn

o
Fig. 4-9. Block diagram of a type T flip-flop and its truth table.

the second line of the table, we see that if Q is 0 before clocking and
we want it to be 1 right after the clock pulse, we must connect the J
pin to a high level. The X in the K column means that the flip-flop
doesn't care in the slightest what state the K pin has.

TIMING CONSIDERATIONS

In a combinational logic system consisting only of various
logic gates, timing may be relatively unimportant. For example if
one of the high signals applied to the inputs of a 2-input NAND gate
is a little late in arriving, the output will be a little late in going to
the low state, but this might have no affect at all on the operation of
the system. On the other hand, in a clocked system using
synchronous flip-flops, a slight error in timing can make the
difference between the system working and not working at all. If
the system includes a counter, a slight extra delay in the arrival of a
pulse might mean that the pulse wouldn't be counted at all.

When using clocked flip-flops, questions arise such as, "How
long before the clock pulse arrives must the data be present at the
data inputs?" and "How soon after a clock pulse can the data inputs
be changed without causing problems?" To aid in answering these
and similar questions, the designer of an integrated circuit
specifies several timing parameters. Chief among these are the
propagation delay, the set-up-time, and the hold time. We will
consider each of these parameters first as applied to the various
types of edge-triggered flip-flops and then applied to the master-

69

slave arrangement. Later we will discuss a problem called clock
skew that applies equally to either type of flip-flop.

All of the parameters of an integrated circuit depend to some
extent on the temperature, the supply voltage and various
manufacturing tolerances. For this reason, most of the timing
parameters will spread over a small range. The important thing is
to look at each parameter and be sure that the worst possible case
is taken into consideration.

Timing In The Edge-Triggered Flip-Flop

In an edge-triggered flip-flop, the output changes when the
clock pulse passes through some transition. It may be either the
positive-going or the negative-going edge of the clock pulse. For
the moment let's assume that the flip-flop will trigger when the
clock pulse goes from a low to a high level. This is a very common
arrangement, although there are flip-flops that trigger on the
negative-going edge of the clock pulse.

The propagation delay of an edge-triggered flip-flop is the
time that elapses between the positive-going edge of the clock and
when the output changes state. Usually the propagation time isn't
the same when the output is going from high to low as when it is
going from low to high. The two symbols usually used for
propagation delay are T p¡IL and T pue

One of the most confusing timing parameters of a flip-flop is
what is now usually known as the set-up time. The reason that it
tends to be confusing isn't that it is a complicated subject, but
rather that different manufacturers have used different methods of
expressing it. In an edge-triggered flip-flop, the clock pulse is what
starts the action. The action that is taken depends on what signals

CLOCK

Tn

S

Tn+ I

Q

o o

o
O

Qn

1

INDETERMINATE

Fig.4-10. Block diagram of a clocked type R-S flip-flop and its truth table.

70

PRESENT

I

CLEAR
CLOCK

o

Qn

Tn
J K

Tn+1
Q

0

0

Qn+I

0

i
o
I

o
J

Qn

0

1

(7)n

K

0

0

I

1

0

1

0

I

0

1

X

X

G

X

X

I

0

Fig. 4-11. Block diagram of a J-K flip-flop, its truth table, and an excitation table.

71

are present at the data inputs when the clock pulse arrives.
Obviously, the signals must be present at the data inputs before the
clock pulse arrives, but how long before? This is what the term
set-up time is supposed to answer.

The set-up time is, then, the time that the signals have to be
present at the data inputs before the positive-going edge of the
clock pulse arrives. Some manufacturers have called this the
maximum set-up time, and others have called it the minimum
set-up time. By examining the range of variation in this specifica-
tion, you can resolve any possible confusion.

The next question is how long after the positive-going edge of
the clock pulse arrives must the signals at the data inputs be held
still? This parameter is called the holding time. In many modern
flip-flops the data inputs can be changed anytime after the active
edge of the clock pulse. In such a case the holding time would be
zero.

Timing In The Master-Slave Flip-Flop

Earlier, in connection with Fig. 4-7, we described how a
master-slave flip-flop responds to the clock pulse. This might be
summarized by saying that the flip-flop "looks at" the data inputs
when the clock pulse is high, and transfers the data to the output
terminals when the clock goes low.

Because of this action, the propagation times of a master
flip-flop specified in a slightly different way. Usually the time
between a data input and the output and the time between the clock
and the output are specified.

Inasmuch as the data inputs cannot change while the clock is
high, the set-up time is usually specified in terms of the width of the
clock pulse. During the period when the clock is high, the master
might be thought of as "looking" for an input to latch on to. This
leads to a phenomenon known as "ones catching." If the data inputs
should change during the period when the clock is high, the master
will usually lock on to a 1, regardless of which way the data
changes.

72

Chapter 5

Counters, Registers
and Counting Systems

A counter is a collection of flip-flops and logic gates. It is really a
type of a memory, because the outputs of the flip-flops remain
unchanged when the input signal is removed. In a counter,
flip-flops are connected in a sequence, so that they will keep track
of the number of pulses applied to the input. One obvious
application of a counter is to count the number of pulses. In fact, the
ordinary digital clock or watch, operates on this principle. Another
application of a counter is to act as a frequency divider.

GENERAL COUNTER OPERATION

Figure 5-1, shows a general block diagram of a counter. It has
one input at the left, where a pulse train is applied. The output
terminals at the right have logic levels that indicate the number of
pulses that have been applied to the input. The counter also has a
reset input. Applying a signal to this input will reset the counter to
zero, so that it can begin counting all over again.

Figure 5-2A, shows a practical binary counter. We have
arranged it somewhat differently than you'll see in most circuit
diagrams, in that we have the input at the right and the outputs at
the top. The reason for doing this is that it will make the binary
number that we get as a result appear with the least significant digit
on the right, the way we usually write numbers.

The way the counter operates is shown in Fig. 5-2B. Before
the counting starts, all of the output wires Q0 through Q3 have no
voltage on them. That is, they are all at a logic zero level. When the
first pulse is received, the output labeled Q0 goes high. If this is a
TTL system, it will probably have about +3V on it. At the second

73

pulse, the output labeled Q0 goes back to a low state and the output
labeled Q1 goes high. This process continues until the 15th pulse is
received, when all of the outputs are high.

Looking at the tabulation of Fig. 5-2B, we see two things.
First of all, we see that the high states of the outputs correspond to
the number of the pulse that has been received. That is, when five
pulses have been received, the states of the outputs are 0101, the
binary number corresponding to 5. Thus, our counter counts the
pulses applied to its input and displays the count in the form of high
and low signals in binary form on its outputs.

The other thing that is obvious, is that the maximum number
of pulses that our counter can handle at any one time, is 15. When it
counts up to 15 input pulses, it runs out of output leads.

Obviously, a binary counter must have enough flip-flops, and
enough outputs to handle the largest number that it will be called on
to count. The relationship between the highest number that can be
handled and the number of outputs is given by the expression:

Maximum count = 2" — 1

Where n is the number of binary stages or flip-flops. The — 1 is
included in the expression, because although the highest binary
number that can be displayed by n digits, is 2, one of these
numbers is zero, which is where the counter is set before any
pulses are received. This information is summarized in Fig. 5-3.

BINARY CODED DECIMAL OR BCD SYSTEM

Figure 5-4 shows a somewhat larger counter. It consists of
two of the counters that we had in Fig. 5-2. Let's imagine that the
blocks labeled "decoder" will take a binary number and from it
derive a signal that will actuate a 7-segment readout, as those
shown at the top of the diagram.

0

INPUT

RESET

 B
OUTPUTS

C

D

Fig. 5-1. Block diagram of a counter.

74

CI T
R

Q T
R

Qi

Q T
R

Qo
o

Q T
R INPUT

RESET

0 COUNTER MADE OF FLIP-FLOPS

OUTPUTS

PULSE NO.
03 Q2 QI 0 0

0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 et 1 1 1 1
V, OUTPUT SEQUENCE

Fig. 5-2. Block diagram and operating table of a practical binary counter.

This system has a serious problem. It will do fine counting up
to 9. When it gets to ten, we don't want the number going into the
decoder and readout at the right. We want this one to read 0 and the
one to its left, to read 1, so that between the two of them, they will
display 10 on the tenth pulse. You might think that we could use a
smaller counter, but the next smaller counter would have only
three outputs and would count only to a binary 111, which is only 7.

The way around the dilemma is to decode the output of the
counter so that when it gets to 9, it will reset to zero and provide a
carry pulse to the counter at its left. The way this can be done is
shown in Fig. 5-5. Here, the output of the first counter is connected
to a 4-input NAND gate. The output of this gate is connected to the
reset pin of the counter. Note that there is an active low indicator
on this pin, meaning that when the pin goes to a low level, the
counter will reset. Now the output of our NAND gate will only go
low when all of the inputs go high. We want this to happen when the

75

NO. OF
FLIP— FLOPS NO. CF COUNTING
AND CUTFUT POSSIBLE CAPACITY *
TERMINALS STATES

2 4 3

3 8 7

4 16 15

5 32 31

6 64 63

7 128 127

8 256 255

e ASSUMES COUNT BEGINS FROM ALL O's STATE

Fig. 5-3. Counter capacity depends on the number of flip-flops and output

terminals.

count reaches 10 or 1010 in binary. The way we get it to do this is to
put inverters in the second and fourth lines from the counter. When
the two Os that appear in the number at the count of 10 are inverted,
bringing the input of the NAND gate to 1111, which will drive the
output low and will reset the counter. We can also invert the output
of the counter and send it as a carry pulse to the next counter to the
left, so that it will display 1.

This system of decoding with gates and inverters can be used
to get a pulse on any count that we wish. Usually, this sort of thing
is all built into a counter.

E

L L 1
READOUT

DECODER

COUNTER OF

FIG. 5-2

READOUT

DECODER

COUNTER OF

FIG. 5-2 INPUT

Fig. 5-4. Block diagram of a two-decade counter.

76

COUNTER

3

Q2
INPUT

Ql

Q0

o RESET

Fig. 5-5. A NAND gate can be used to reset a counter at the count of 10.

THE BCD NUMBERING SYSTEM

The decoding arrangement of Fig. 5-5 lets us build counters
where each stage will count up to ten in the binary number system.
This arrangement is called Binary Coded Decimal or simply BCD.
The signals are carried on groups of four wires. Each group carries
a binary signal to represent signals from one to nine.

The advantage of the BCD system is that it can easily be
decoded into decimal form to operate decimal readouts. This
system is frequently used in instruments such as digital voltme-
ters, frequency counters and calculators. The system is very
simple and easy to use. The general idea is shown in Fig. 5-6.

A counter is a comparatively simple circuit. Many different
counters are available in integrated circuits. In spite of its
simplicity, the counter can perform an amazing number of different
functions in digital circuits.

One example of the use of a counter is in frequency division. In
Fig. 5-6, we show the same basic counter arrangement that we
have been talking about. It counts the pulses that have been applied
to the input and displays the count in binary form on its output lines.

Suppose we have an input signal with a frequency of 60 Hz and
we want an output frequency of 1 Hz. That is, we want an output

77

signal consisting of one pulse per second, such as we might use in a
clock. To get this 1 Hz signal, we must divide the input signal by
60. This isn't as difficult as it might seem.

The easy way to look at the problem is to say that we want a
pulse or a change of state after our counter has reached a count of 60
(111100 in binary). Thus, we want an output pulse when lines Q5,
, Q 3 and Q2 are high and lines Q1 and Q0 are low. When this is

true, the count will be:
32 + 16 +8 +4 =60

Again, we can accomplish this with a gating arrangement. A
commercially available NAND gate has eight inputs. We need only

DECIMAL COUNT BCD COUNT

0 0000
0001

2 0010

3 0011

9 1001
10 0001 0000

1

11 0001 0001

1 1

45 LOJ,Oeí)j

4 5

1975 01/441_, L ZI11_, 0101

1 9 7 5

ETC. ETC. ETC. ETC. ETC.

THOUSANDS HUNDREDS TENS UNITS

Fig. 5-6. Table illustrating the BCD counting system.

78

Fig. 5-7. Block diagram of a system using a 5-stage counter to divide by 60.

six inputs for our circuits, so we will tie two of the inputs to a logic
high. The others are connected as shown in Fig. 5-7. Inspection of
this circuit will show that the output of the gate will change state
everytime that the input is 60 (111100 in binary). We can use the
output of this gate not only to derive our output pulse, but also to
reset our counter to zero.

It is easy to see that our arrangement can be used to divide any
frequency within the response range of our circuit by any integer.
For example, counters can be used to derive any of the pulse ratio
we might need in a TV system. We could, for example, derive the
color subcarrier, the horizontal sync pulses, and the vertical sync
pulses, all from the same stable oscillator.

REGISTER

A register is a storage device that is much more sophisticated
than a simple latch. It usually uses edge-triggered flip-flops as

storage devices. Thus, a register is operatied by a clock pulse.
This means that the output of a register can be connected back to
the input without problems such as oscillation or racing.

Figure 5-8 shows a general block diagram of a register. Most
registers don't have all of the functions of our sort of generalized
model, but it will show us what we might expect to find in a
register.

Note in Fig. 5-8 that we can put bits into a register and take
them out in many different ways. These include:

D Serial-in, serial-out
0 Serial-in, parallel-out
El Parallel-in, serial-out
D Parallel-in, serial-out

79

PARALLEL
OUTPUT

I I I

SERIAL
INPUT

1 H
PARALLEL
INPUT

SERIAL
OUTPUT

Fig. 5-8. Block diagram of a generalized register.

We can use registers to perform many useful functions in a
digital system. For example, we could use a register to connect
data from serial to parallel form, and vice versa. We can also use
registers to temporarily store digital signals.

In Fig. 5-9, we show a parallel-out, serial-in shift register.
The input data, consisting of a series of high and low signals,
arrives in serial form at the input at the left of the figure. The input
high and low signals are synchronized to a clock pulse train that is
also applied to the register.

Each time that a new data pulse is applied to the input
terminal, a clock pulse is applied. The first stage of the register
then takes on the state of the input. At the same time, whatever
state the first stage formerly had is transferred to the next stage to
the right.

This process is continued, with the data being shifted to the
right, until four bits of data have been received. Note that when this
occurs, the data is stored in parallel form in the register.

Fig. 5-9. Block diagram of a 4-bit serial in, parallel out, shift register.

80

ONE WIRE RECEMNG ENO
(SERIAL INPUT SHIFT

REGISTER)
DATA TRANSMISS1CN

h EIGHT CLOCK INTERS—ONE BYTE 1.1

 I I
SERIAL DATA: —

CLOCK PULSES: —

EXAMPLE ILLUSTRATES 8- BR- BYTE10110011

Fig. 5-10. Pulse waveforms of the type applied during the operation of the
serial-input register in Fig. 5-9.

Figure 5-10 shows the pulses in an 8-bit register of the type
shown in Fig. 5-9. Note that the clock pulses are absolutely
essential to the operation of the register.

Another variation of a shift register is shown in Fig. 5-11. The
operation here is just the opposite of the register in Fig. 5-9. The
data is applied in parallel to the inputs labeled Do through D 3. The
data is then stored in the flip-flops of the register.

Inasmuch as the input signal is now stored, it can be removed.
When clock pulses are applied, the contents of the register are
clocked out in serial form.

Fig. 5-11. Block diagram of a 4-bit parallel in, serial out, shift register.

81

One obvious use of shift registers is to convert data between
serial and parallel form. It can also be used for short-time storage of
data. For example, the parallel inputs of a register can be used to
accept data from a keyboard. While the data is being entered, it is
stored in the register. Once it has been entered, it can be clocked
out serially into a digital system.

Shift registers can also be used to perform counting functions.
For example, a "1" can be entered into the serial input, then the
number of clock pulses that have occurred since the "1" was
entered can be determined by seeing how many places in the
register the "1" has advanced.

Shift registers are available in integrated circuits, and
large-scale devices may contain many of them. They may be of any
length. Some calculators have registers of more than 70 stages.

82

Chapter 6

Some Digital Integrated Circuits

So far we have discussed all of the basic digital functions that are
performed in a digital system. We have mentioned that these
functional units are available in integrated circuits but we haven't
spent any time discussing the integrated circuits themselves.
Inasmuch as there are thousands of different digital integrated
circuits available commercially, we can't possibly cover them all in
one chapter. In fact several books would be required. What we will
do here is to give some idea of the types of integrated circuits that
are commonly used. We will also describe a few functional units
that are not mentioned elsewhere in the book.

Integrated circuits are usually grouped into three categories
on the basis of their internal complexity. The simplest category is
called Small Scale Integration, or simply SSI. Devices in this
category have the equivalent of up to 10 logic gates in a single
package. They may be packaged in a round transistor type can with
the leads protruding from the bottom, or more commonly they are
in a dual-in-line package, or DIP. A package of this type is shown in
Fig. 6-1. SSI packages usually have either 14 or 16 pins.

At the other extreme we have what is called Large Scale
Integration or LSI. These devices have the equivalent of over 100
logic gates in a single package. The packages often have either 28
or 40 pins, although other arrangements are sometimes used.
Microprocessors and semiconductor memories fall into this cate-
gory. Between these two extremes we have Medium Scale
Integration or MSI. Counters and registers are in this category.

One of the most useful "tools" available to the engineer or
technician working in the digital field is a familiarity with the

83

Fig. 6-1. Drawing of a typical dual-in-line package, or DIP, IC.

different types of digital integrated circuits that are commonly
used. Of course, as we pointed out earlier, you don't have to know
what is inside, a functional knowledge of what happens at the pins is
usually adequate.

New digital integrated circuits are still being introduced at a
rapid rate. The only way to keep up with them is to read the
technical journals regularly. Many fine data books are available
from manufacturers that will serve as a source of information on
what is available at any given time.

What is actually made available in digital integrated circuits
depends more on demand that on almost anything else. If there is a
great demand for a rather complicated function in many systems,
manufacturers will usually develop an LSI circuit that will perform

Fig. 6-2. Block diagram of a type 7400 quad 2-input NAND gate.

84

Vcc Y4
14

84 A4 Y3 63

3 12 11 10
43

Al

2

BI

3

Fig. 6-3. Block diagram of the type 7401 quad 2-input NAND gate with open
collectors.

many of the system functions in a single integrated circuit. If, on
the other hand, there isn't much demand for a particular combina-
tion of functions, they must be realized by using many SS! circuits.
The reason for this is that it is feasible to put almost any number of
functions into a single integrated circuit. Much of the cost is in the
original development. Another problem is that the yield is often
low in a new product. If the demand is great enough the
manufacturing process can be highly refined, giving a good yield,
and the development cost may be amortized over a large number of
devices.

LOGIC GATES

One of the simplest digital integrated circuits is the logic gate.
Many different gating arrangements are available. Usually the
number of gates in a single package is limited by the number of pins
available on the package. The number of pins on SSI packages is
usually limited to 14 or 16 in the interest of standardization.

Figure 6-2 shows the Type 7400 quad 2-input NAND gate
which is typical of a digital integrated circuit. The word, quad,
means that there are four separate gates in the package. Note that
the positive supply voltage is applied to pin 14 and ground is
connected to pin 7. This arrangement is rather common, but it is far
from universal. Don't depend on it unless you have checked the
diagram.

Figure 6-3 shows what appears to be an identical gate, but in
this arrangement, the gates have open collectors as described in

85

Fig. 6-4. Three logic gates with a variety of input configurations.

86

114 13 12 V6 AL
Vicc A6

>0-

Y5 44 Y4

10 9 8

2

Y I

5 6 17

43 Y3 GND

Fig. 6-5. Block diagram of the type 7404 hex inverter.

Chapter 2. This figure illustrates that just having the basing
diagram doesn't necessarily tell you all you need to know about an
IC. Just looking at Fig. 6-3 might lead to the misconception that the
package contained four regular 2-input NAND gates. If an open
collector gate were connected in a regular circuit without a pull-up
resistor, the output would never go to a high level.

We have spent a lot of time talking about gates with two
inputs. This has been primarily in the interest of keeping things
simple. Gates are available with many inputs as shown in Fig. 6-4.

INVERTERS

The inverter is probably the most simple digital circuit that
one can imagine. However, this doesn't mean that it isn't very
useful. In designing a digital system there are often cases where a
signal has the wrong polarity to do what we want done. In such a
case, it is handy to be able to insert an inverter into the system.

Many different inverter packages are available. The Type 7404 hex
inverter shown in Fig. 6-5 is typical. The word, hex, means simply
that there are six circuits in the package.

BUFFERS

Another name that you will find in the catalog of digital circuits
is buffer. The name is applied to both inverters and gates. It merely
means that the output stage has a greater capability to source and

sink current than a regular gate or inverter. Buffers are used when
it is necessary to drive something that consumes more current than
a regular logic gate. For example, a buffer would be used to drive a

line connecting two parts of a digital system.

87

THE SCHMIDT TRIGGER

The inverters and gates shown in Fig. 6-6 look just like
regular gates and inverters except for the little symbol inside that
looks like the hysteresis loop of a magnet. This symbol means that
the gate exhibits a property known as hysteresis which we will
discuss in a minute. The circuit that accomplishes this is called a
Schmidt trigger circuit after a similar circuit made with discrete
components.

The term hysteresis used in connection with a logic gate
means that the input circuit has two, rather than one, trigger
levels. If the input voltage slowly rises from zero, when it reaches
a level of about +1.6V, the circuit will change state, that is, the
output of the NAND gate will go low. O. K. so far. Now suppose the
voltage starts to drop back toward zero. The circuit will not change

14

Y6

13 12

Y5 44

H 10

Y4

8

èi. d 11.

B4

13

A4 Y4

12

Y2

II

7414

E3

5

A3.

10

6

GND

7

8

a.)0)

y

BI YI

3

0 A2

74132

V
GM)

Fig. 6-6. The marking in the inverter and gate symbols indicate Schmidt trigger
inputs.

88

Fig. 6-7. Simplified diagram of a tri -state gate.

state when the voltage reaches +1.6V, but will remain in the low
state until the voltage drops to about +0.8V, then it will change
state. Thus the trigger voltage is higher when the input voltage is
rising than when it is falling. This effect, which is called hysteresis,
is useful when the input comes from the outside world, rather than
from another digital IC. We will discuss the operation of the
Schmidt trigger in instances when the input voltage has a rather
long rise or fall time later in the book.

TRI-STATE LOGIC
The open collector arrangement described in a preceding

chapter for connecting the outputs of logic gates in parallel has
many limitations. To improve this situation a new type of TTL was
developed. This is called tri-state logic. The name is apt to be
deceiving because the logic signals still have only two significant
states—high and low. The name tri-state means that the output of a
gate has three possible states—high, low, and a third state where
there is no output, just a high impedance.

Figure 6-7 shows a simplified diagram of a tri-sate gate. In
many ways it is similar to a regular TTL gate. The interesting part
of the circuit is shown within the dashed lines. When the disable
input is high, transistor Q1 removes the drive current from the
output transistors. Thus both of the output transistors are turned
off, and the output pin is floating.

89

The circuit of Fig. 6-7 varies from a standard TTL gate in
another respect. The top transistor in the totem-pole output state
is actually a part of a Darlington circuit. The purpose for this is so
that the output stage can supply leakage currents for the many
other output stages that might be connected in parallel.

When the disable input of Fig. 6-7 is brought to a low logic
level, the gate will act just like any other TTL gate. The state of the
output will depend on what is connected to the inputs. Several of
these gates can be connected with their outputs in parallel without

\kc C4 44 Y4 C3
114 13 12 II 10

>
->

Cl

OUTPUT
Vcc CONROL

16 15 I

12 3

Y3
9

>

>
4

Al Y C2 42 0 74126

L K J
14 13 12

5 6 17

Y2 GND

1-i
II 10 9

..

r

—

1 2 3 4

A 9

5 6 7 18
C D E F G GND 0 74134

Fig. 6-8. Block diagrams of tri -state inverters and gates.

90

DATA DATA
INPUTS SELECT

VF D4 D5 DS D7 (AT2

116 15 14 13 12 I II 10 9

)

(i I 2 3 4 5 6 7 18

1 .D3 D2 DI DO Y _ W)S1ROBE GND

-----v ------} OJTPU TS
DATA

IN PUTS

Fig. 6-9. Block diagram of the type 74151 data selector.

any ill effects. Normally all of the disable inputs are held high so
that there will be no output from the gate. The normal output of any
particular gate can be applied to the common connection by merely
bringing its disable input to a low logic level.

INPUTS OUTPUTS

SELECT

C B A

STROBE

Y W

X X X

L L L

L L H

L H L

L H H

H L L

H L H

H H L

H H H

H

H = High Level, L = Low Level, X = Don't Care
EO, El ... El 5 = the complement of the level of the
DO, D1 ... D7 = the level of the respective D input

DO

D 1

D2

D3

D4

C6

D6

D7 .'JI
F
 U
l

21
 E

l
P,I

 2
1
81
 i

respective E input

Fig. 6-10. Truth table for the data selector in Fig. 6-9.

91

Figure 6-8 shows a typical tri-state inverter and gate package.
All sorts of gates are available using tri-state technology.

THE DATA SELECTOR

Figure 6-9 shows an integrated circuit which is called a data

selector, or decoder. It has two output lines which always have
complimentary states, much like the Q and Q outputs of a flip-flop.
When pin Y is high, W will be low and vice versa. There are eight
input pins. In effect only one of these input pins is connected to the
output at any one time. The particular input pin that is connected to
the output depends on the signals applied to the three data select
pins. There is one more pin, called the strobe, which must be
brought to a low logic level for the circuit to operate.

The operation of the data selector is shown in the truth table of
Fig. 6-10. On the first line of the table we see that if the strobe pin
is at a high level, pin Y will be low and pin will be high. The X's in
the columns pertaining to the C, B, and A inputs show that the
circuit doesn't care what their states might be. Thus when the
strobe pin is high, the output is fixed regardless of what is
connected to the other pins.

The circuit gets more interesting when the strobe is brought
to a low level. In the second line of the truth table, we see that
inputs C, B, and A are all low, or O's the output at pin Y will take on
whatever state is applied to pin DO. On the next line we see that if
the inputs, starting with pin C are 001, the output at pin Y will take
on the state of pin Dl.

As we look down the table, we see that the states of pins C, B,
and A, in that order, represent the binary number corresponding to
the input pin that is connected to the output, pin Y. As we noted
earlier, pin W will always be complimentary to pin Y.

It is rather obvious that the data selector can be used to take
the data that happens to be on any of the input pins and connect it to

GATING

ARRANGEMENT
OUTPUT

Fig. 6-11. Block diagram illustrating how a data selector can simplify a complex
gating arrangement.

92

LINES DESIRED CONNECT
A 8 C OUTPUT PIN TO

i i
0 0 0 0 DO GND

O 0 1 I DI +

O I 0 I D2 +

Oil I D3 +

I 00 0 D4 GND

I 0 I 0 05 GND

110 I 06 +

III I D7 +

Fig. 6-12. Table of data selector terminal connections for the output shown.

the output by merely applying the address of the pin to the in data
select pins C, B, and A. Thus if we wanted the output to have the
same state as pin 5, we would apply the signal 101 to pins C, B, and
A. 101 is the binary number corresponding to 5.

An application of the data selector that isn't immediately
obvious is that it can be made to replace many gates to perform
very complex gating functions. Suppose that we have three lines,
C, B, and A as shown in Fig. 6-11. We can implement a gating
arrangement that will perform any desired operation on the signals
on these lines with a data selector. All we have to do is to decide
what we want the output of our circuit to be for various
combinations of O's and l's on lines C, B, and A. Then we connect
the corresponding data pin to this level and take our desired output
from pin Y.

Suppose, for example that we wanted the desired outputs
shown in Fig. 6-12 for various combinations of signals on lines C,
B, and A. The table in the figure shows which pin we have to
connect to a high level to get this condition. By refering back to the
truth table in Fig. 6-10 you can see how this works. The
connections are shown in Fig. 6-13. Thus a data selector can be
used in a new simple circuit to accomplish very complex gating
function.

THE MONOSTABLE MULTI VIBRATOR

The monostable multivibrator, or one-shot as it is often
called, is sort of a combination of analog and digital circuitry. It is a
circuit that will develop an output pulse when it is triggered by an
input pulse. The duration of the output pulse is determined by a

93

resistor and capacitor connected externally. The one-shot is used
in digital system to introduce a time delay, or to generate a pulse
having a definite duration.

Figure 6-14 shows the Type 74121 one-shot together with its
truth table. An external resistor is connected between pins 9 and
11 and a capacitor between pins 10 and 11 to set the time period.

Although the one-shot looks like a very convenient way to
adjust timing in a digital system, it has the disadvantatge that its
timing depends on the value of the external resistor and capacitor.
In many systems slight changes in timing have little or no effect. In
other systems timing is very critical. In critical applications, it is
better to generate timing periods, delays etc., by counting down
from a stable source than to depend on the time constant of an
external circuit.

BECOMING FAMILIAR WITH DIGITAL CIRCUITS

Only a very few digital IC's have been mentioned in this
chapter. However, we have tried to take some of the mystery out of
the subject. One of the best ways of increasing one's knowledge
and familiarity with digital circuits is to leisurely scan through the
manufacturers data books. Such books are available from most IC
manufacturers either free or at a very nominal cost.

By merely looking over the various IC's that are available, one
will gradually obtain a familiarity that will simplify both design and

Fig. 6-13. Circuit connections needed for realizing logic states in the truth table
of Fig. 6-12.

94

V ..:c NC

i4

R
CEXT
EX-T- CqT

13 12 II

R,NT

10

NC

9
2K
vv\,,

---91 >
.1

INPUTS

12 .,

NC Al A2

OUTPUTS

4

B Q GN17D

Al A2
L X
X L
X X
H H
H +
* H

* *
L X
XL

B CI 5
H L H
H L H
L L H
X L H
H IL tr
H It. -U-

1-1 IL 11"
1 IL -LI" t ji. -LF

Fig. 6-14. Block diagram and truth table for the type 74121 monostable
multivibrator.

troubleshooting. Some of the functions that are available in a single
package are rather complex and may appear rather confusing at
first. Fortunately, the manufacturer also gives the truth table for
each circuit, and this makes it possible to understand even the most
complex circuit.

95

Chapter 7

Power Supplies And Noise

Although power supplies and noise might seem to be unrelated
subjects, we have a reason for covering them in the same chapter.
The reason is simply that power supplies and their associated leads
are the most common means for propagating objectionable noise
through digital systems.

The power supplies used with digital systems are somewhat
unique. The voltages are low, often only +5V. Currents are high. It
is not uncommon to find power supplies capable of delivering many
amperes. Voltage regulation is universally used because digital
ICs are easily damaged by over-voltage.

Another unique aspect of the power supplies used in digital
systems is that they must be capable of delivering current in short
spikes. Digital systems are, by their nature, switching systems; as
a result, power supply current is furnished in pulses. Because of
these factors, any consideration of the power supply must include
the entire power distribution system.

Figure 7-1 shows a simplified schematic diagram of the power
supply of a digital system. It consists of a power transformer, a
rectifier, a couple of capacitors, and a regulator. Inasmuch as
digital circuit elements operate at comparatively low voltages—
between 5 and 15 volts—the power supply produces a low voltage,
and if the system has any size at all, a large current. Currents of
several amperes are common in larger systems.

Because of the high currents involved, filter chokes are
usually not considered practical. This increases the problem of
regulating the output voltage and removing AC ripple from the
output. Fortunately, the regulator itself is a pretty good filter.

96

Fig. 7-1. Schematic of a typical power supply for a digital system.

Voltage regulation is necessary because digital ICs are
usually not very tolerant of overvoltages. Whereas a vacuum tube
might overheat when the supply voltage exceeded the specified
limits, it will usually forgive the offense if the over-voltage doesn't
last too long. A solid-state device, on the other hand, has no
forgiving spirit at all. This caused one engineer to remark that,
"Vacuum tubes are kind and forgiving, whereas solid-state devices
seem to have been designed to protect fuses."
THE REGULATOR

In smaller power supplies, the regulator is a solid-state device
with three terminals—the input, the output, and ground. In larger
power supplies, there are often a few external components, such as
a transistor to carry currents that are too large for an IC regulator.
In all cases, the regulator is a feedback circuit that compares the
actual output voltage with the voltage from some standard, such as
a Zener diode. The error voltage is amplified and is applied to some
device, such as a pass transistor that will, in turn, limit the output
voltage.

Any closed-loop feedback system can oscillate under the right
conditions. Unfortunately, we can't always predict what these right
conditions might happen to be, so precautions are always taken to
keep voltage regulators from oscillating. This is usually ac-
complished by the input and output filter capacitors shown in Fig.
7-1. Thus, in addition to the regular filtering function, these
capacitors also help to make sure that the regulator will not
oscillate.

The input filter capacitor, Cl in Fig. 7-1, must be large enough
so that the input voltage to the regulator will never fall below the

97

specified value of the output voltage. Thus, its value will depend on
how much current the power supply must deliver. In a high-current
supply, the voltage across Cl will drop more between cycles of the
voltage from the transformer and the rectifier. In a one-ampere
supply, the value of Cl wi 11 be about 4000 F.

The output capacitor, C2, is much smaller. Its main function is
to remove any high-frequency noise and to smooth out transients
that may be generated in the digital system itself.

Most IC regulators have built-in protective features. They
will shut down if the load current becomes excessive or if they
overheat. This should be remembered when troubleshooting a
power supply.

POWER DISTRIBUTION SYSTEM

The best way to look at the power supply of a digital system is
not as a single stage called the power supply, but as a power
distribution system that not only furnishes the proper voltages and
currents, but distributes them to the various parts of the system.
Thus, the power distribution system consists not only of what we
normally call the power supply, but also the wiring, connectors,
shielding, and miscellaneous filtering capacitors that might be in
the system.

We have noted earlier that in a digital system, things happen
very quickly. This results in transients that can travel all through
the system. To get a better idea of the result of rapid switching,
consider the voltage that can be induced in the inductance of a lead
by a switching transient. The induced voltage is given by:

E = L di
dt

where E is the induced voltage, and di/dt is the rate of change of
current.

In most digital systems, the inductance of leads, the values of
the currents and the switching time are all small, but the rate of
change of current can be very large indeed. Suppose, for example,
that a current switched from zero to 10 rnA in 10 nS, a reasonable
thing to expect in a digital system. The rate of change of current
would be ten million amperes per second. Of course, the current
will never get very high, but this extremely high rate of change will
cause induced voltages to be much higher than one might expect. A
lead having an inductance of one microhenry would have an induced

98

voltage of 10 volts from such a transient. In a much shorter lead,
having an inductance of only one tenth of a microhenry, the induced
voltage could be one volt.

DESPIKING CAPACITORS

The discussion in the preceding paragraphs shows how
serious the induced voltages can be in digital power distribution
systems. The best approach is to keep these rapid changes in
current off the distribution lines by the judicious use of capacitors.
Figure 7-2 shows in an elementary way what happens when there is
a switching surge in a system. In Fig. 7-2A, we have a rather rough
equivalent circuit of a power distribution line with a switching
device connected to it. When the switch is closed, note that voltage
Eon the supply line will suddenly drop. This is shown in Fig. 7-2B.

We can avoid the voltage drop on the supply line by installing a
capacitor close to the switching device as shown in Fig. 7-2C.
Now, when the switch is closed, the voltage will not drop instantly.
The capacitor will hold the voltage up, while it is discharging
through the load. If the switch is only closed for a very short time,
the voltage will not have a chance to drop very much before the
switch is opened again.

The situation shown in Fig. 7-2 is analogous to what happens
when a TTL IC switches from one state to another. We noted
earlier that during this very brief switching period, there is a
low-resistance path between the supply voltage and ground. By the
judicious use of what are often called "despiking capacitors" the
transients can be kept off the supply lines. It is usual practice to
install a 0.01 to 0.1 ceramic capacitor on each PC board for every
three or four TTL packages. Also on each board is at least one
larger capacitor in the order of 10 ,LF, preferably a tantalum type.

Although use of despiking capacitors is properly a function of
system design, sometimes failure of a capacitor can cause very
elusive problems in a system.

LEADS SHIELDING AND GROUNDING

The leads that carry the operating voltages throughout the
system are an important part of the power distribution system.
Even though capacitors are used throughout the system, the leads
should be heavy enough to carry the required current. The hot line
and ground line should be run close together, and, in many
systems, shielding of the power lines is advisable.

99

Ground loops should be carefully avoided, the shielding and
cabinet should be connected to the power supply ground at only one
point. Figure 7-3, shows a sketch of a sandwich type of construc-
tion that is sometimes used for power lines. The hot line is
sandwiched between two conductors that are grounded. This
arrangement not only provides shielding for the lines, but the
capacitance of the structure helps to suppress surges.

Most manufactured equipment has good wiring and shielding,
but many times a piece of manufactured equipment cannot be
installed in a broadcast station without modification or the addition
of other components. This is particularly true when computers are
used to control various functions. The addition or modification
often violates the wiring and shielding rules, with the result that
the system will not be reliable.

NOISE AND INTERFERENCE

We have already discussed the way that impulses that are
generated inside a digital system may interfere with its operation.

Fig. 7-2. Schematics showing the effect of a switching device on supply
voltages and the purpose of a despiking capacitor.

100

GROUNDED
CONCUCTCRS

SLPPLY UNE

INSULATION
LAYERS

... --.'-----e."

Fig. 7-3. Drawing of a sandwich conductor used to provide good shielding of
power supply lines.

There are two other considerations regarding noise and interfer-
ence from outside sources. One is that external things, such as a
transmitter, may interfere with the system. The other is that the
digital system may generate noise that will interfere with the
operation of other equipment, which may or may not be digital. If
you have any doubts about the ability of digital devices to cause
interference, just hold your pocket calculator close to a TV set and
watch the interference pattern on the screen.

Noise in analog systems is pretty easy to understand and to
identify. We are all familiar with this hiss, roar, clicking and
popping that we call noise. We can't always minimize the noise as
much as we would like, but usually we have no trouble identifying
it. In a digital system, noise isn't as easy to identify.

In an analog system, if noise gets into one of the stages it will
travel along with the signal through all the other stages and will
show up, usually amplified considerably, in the output. In a digital
system, however, noise in one stage will have no effect on any of
the stages until it is strong enough to overcome the noise margin of
the stage. Then it will introduce a false high or low into the system.

Figure 7-4, shows the effect of noise graphically. The
maximum level that the system will see as a low signal and the

Fig. 7-4. These drawings show how noise on an input signal can cause spurious
pulses an output signal.

101

minimum level that the system will think is a high are marked on
the graph. We have also shown a digital signal, which is corrupted
by noise. Looking at the plot of the output, we see that most of the
time the noise isn't strong enough to cause false triggering.
However, at two points in the figure the noise does cause the
output signal to be incorrect.

There are two points about Fig. 7-4 that are important. The
first is that even though the noise at the input has an effect on the
output at two points, the output doesn't look noisy. If we were to
look at the output on an oscilloscope, we wouldn't necessarily
know that the errors were due to noise. The other important point
is that, often, there is enough noise on a digital signal so that there
is practically no noise margin left and we have no way of knowing
this. The system will work fine, but the noise is so high that even a
very slight additional amount of noise getting into the system will
cause errors. This sometimes makes troubleshooting very dif-
ficult. A system with some noise, but not enough to cause trouble,
will often be erratic.

An old broadcast engineer once remarked that the vicinity of a
radio transmitter was the worst possible place to try to operate
electronic equipment, including a radio station. Of course, the
remark refers to the fact that there is often a very high RF field
strength in the vicinity of a radio or TV station. Everything that is
located in this region of high field strength will try to act as an
antenna and pick up some of the energy. Digital signals are quite
low in voltage, and although they tend to discriminate against
noise, it doesn't take a very great shielding or grounding fault to
pick up interfering signals that are much stronger than the regular
digital signals.

Some items of digital equipment were apparently not de-
signed to operate in a region of high RF field strength. Items of this
type need work on the shielding and grounding. Figure 7-5 shows

POWER LINE

o

çrl ELCED CABLE

0 (j

Fig. 7-5. Ground loops exist on a shielded cable when it is grounded at both
ends.

102

o

•••.,'ACTUAL
GROUNDED CURRENT PATH

BOLT TO GROUND

CURRENT PATH DUE TO SKIN EFFECT

Fig. 7-6. Skin effect causes current to flow on the outer surface of conductors.

what may happen when the shield of a cable carrying a digital signal
is grounded at both ends. Note that there is also a power line
running between the same two points and it also is grounded at both
ends. It is easy to see from the figure that the shield is electrically
in parallel with the grounded side of the power line. This means
that the shield will actually carry some of the current that would
normally flow in the grounded side of the power line. Now ideally
the power line current should flow only on the outside of the shield.
But, as is often the way in the real world, some of it will also get on
the inside of the shield and will show up mixed in well with the
signal. We will have more to say about running long lines carrying
digital signals in another chapter.

One thing that is often neglected in connection with shielding
is the skin effect. We all know that at high frequencies, current
flows only on a thin layer on the surface of a conductor. Of course,
radio frequencies fall into this category. So do the high-frequency
components of digital signals. Although a digital signal may have a
fairly low pulse repetition rate, say 1000 pulses per second, the
very steep leading and trailing edges of the pulses will have very
high frequency components. Thus, both RF and digital shielding
must take the skin effect into consideration.

Figure 7-6A shows a shielded enclosure. Note that the
equipment inside the enclosure is connected to a screw at the
bottom of the shield. The other end of the screw is connected to
ground. This certainly looks like as good a ground as you can
get—until we consider the skin effect. When we realize that the
high-frequency components of the signal will not penetrate the
metal of the shield but will travel along its surface, we see that this
isn't a good arrangement at all. The signal will follow the path

103

Vin - Vout

FROM VIN

RECTIFIER

SERIES REGULATOR
UNIT

IL

V OUT

POWER LOSE IN REGULATOR = (Vin - Vout) IL

Fig. 7-7. Calculation of power loss in a series regulator.

shown by the dashed lines in Fig. 7-6A, out over the outer surface
of the shield. This means that rather than being a good shield, our
arrangement is much more like an antenna. The correct way to
connect the shield of the cable to the shielded cabinets is shown in

Fig. 7-6B.

SWITCHING REGULATORS

The IC voltage regulators that we discussed earlier in this
chapter consume quite a bit of power in the process of voltage
regulation. As shown in Fig. 7-7, the series-pass element of the
regulator acts as a variable resistor that changes value as required
to keep the output voltage constant.

As shown in the figure, the power dissipated in the regulator
at any instant will be the product of the current flowing through it
and the voltage drop across it. Although this power dissipation is
small, it is significant in battery-operated equipment and in the
interest of energy conservation.

Fig. 7-8. A switching regulator relates voltage by varying the time that a switch is
closed.

104

Fig. 7-9. Diagrams showing the action of a switching regulator.

There is another approach to voltage regulation, which is
much more energy efficient. As shown in Fig. 7-8, the series
element of the regulator acts more like a switch than a resistor.
The output voltage is controlled by the percentage of the time the
switch is closed.

To appreciate how a switching regulator can be more efficient,
consider an ideal switch. When it is open, there is a voltage across
it, but no current. When it is closed, current flows, but there is no
voltage across the switch. If the switch changes instantaneously,
the product of voltage and current will always be zero. Hence, no
power will be dissipated in the switch.

Of course, a transistor isn't an ideal switch. There is always
some voltage drop, however small, when it is turned on. As a
result, there is always some power dissipation in the switching
transistor, but it is much less than the dissipation in a conventional
series regulator.

In addition to its high efficiency, the switching regulator also
has the advantage of making the power supply smaller and lighter,
because there is less heat to be dissipated.

Figure 7-9A, shows the circuit of a typical switching reg-
ulator. Note that, unlike earlier power supply regulators, it has two
different components—diode Dl and inductor Ll. The presence of
these components in the power supply is a good hint that a
switching regulator circuit is used.

105

First, let's look at how the switching transistor, together with
the other components, accomplishes voltage regulation. When
transistor Ql is turned on, as in Fig. 7-9A, current flows through
inductor Ll. This current is applied to the load and also charges
capacitor Cl. When transistor Ql is turned off, as in Fig. 7-9B, no
current can flow through it. However, the magnetic field of
inductor Li collapses and the stored energy of the field causes
current to continue to flow through Li and through the load. This
current can't flow through the transistor, since it is open, so it
flows through Dl, as shown.

The voltage across the load will tend to rise when transistor
Q1 is turned on and to fall when it is turned off. To hold the average
voltage across the load constant, we need to furnish the base of Ql
with an oscillating voltage that will vary the on and off times of Ql.

Figure 7-10 shows a circuit that can accomplish this. Here, we
have an amplifier connected so that when voltage e, is higher than
e2' transistor Ql will be turned on. When e2 is higher, Q1 will be
turned off. Voltage el is obtained from a reference voltage and a
circuit consisting of resistors R1 and R2 that provides positive
feedback to the amplifiers.

Voltage e2 is obtained from resistors R3 and R4 and is
proportional to the voltage across the load. Now, assume for a
minute that the load voltage is lower than it should be.

Under this condition, el would be greater than e2 for more than
half of the cycle of oscillation. This would allow Q1 to be turned on
for more than half of the cycle, which, in turn, would allow more
current to pass, thus, boosting the output voltage to the desired
value. Just the opposite situation would occur if the output voltage
were to rise above the desired value.

Fig. 7-10. Practical switching regulator circuit.

106

Fig. 7-11. Step-up (A) and polarity-reversing (B) switching regulator circuits.

In order to properly regulate the voltage, the frequency of
oscillation of the switching regulator must vary with changes in
supply voltage and load current. In practical regulators, the
switching frequency varies between 5 and 100 kHz.

This switching phenomenon can cause considerable radiation,
unless proper precautions are taken. This, of course, is a design
rather than a maintenance problem. Sometimes, however, inter-
ference may be encountered when a system using a switching
regulator is connected to another system with inadequate shield-
ing.

The switching regulator has another unique feature. By
rearranging the components, it can step up voltage so that the
output voltage is actually higher than the input voltage. It can also
reverse the polarity of the input voltage so that the output voltage
is negative with respect to ground.

Figure 7-11A shows how the components are arranged to step
up the voltage and Fig. 7-11B shows a circuit where the polarity of
the output voltage will be inverted with respect to the input
voltage.

107

Chapter 8

The Operational Amplifier

Although it isn't a digital component, the operational amplifier, or
op-amp as it is usually called, is a very useful integrated circuit and
is used extensively in circuits that convert signals from analog to
digital form. For this reason, we will take a brief look at how it
works.

OP-AMP CHARACTERISTICS

Figure 8-1 shows the symbol for an op-amp. If this amplifier
were ideal, it would have infinite gain, an infinite input impedance
and practically zero output impedance. In real life, op-amps don't
realize these specifications, but they come close enough for many
practical purposes. Note that the op-amp has two power supply
leads, one positive and one negative, with respect to ground. With
this arrangement, the output can swing linearly above and below
zero. In a typical IC op-amp, the output swing may be ±10V. The
gain of an op-amp is typically between 100,000 and 1,000,000.

The op-amp shown in Fig. 8-1 has two inputs, one marked
positive (+) and one marked negative (—). This doesn't mean that
positive voltages are applied to one input and negative voltages to
the other. Rather, it indicates the phase of the output voltage with
respect to the input voltage. If a signal is applied to the plus (+) or
noninverting input, the output voltage will be in phase with the
input voltage. If the signal is applied to the minus (—) or inverting
input, the output will be inverted or 180 degrees out of phase with
the input. This inverting input is the one most commonly used,
because an op-amp is almost always used with negative feedback to
stabilize it and hold its parameters constant.

108

As we noted, the gain of an op-amp is extremely high as
compared with other amplifiers with which we may be familiar. It
takes only a very small input signal to saturate the amplifier. In Fig.
8-2, we have plotted the output of an op-amp as a function of the
input voltage. Note that as the input voltage changes from zero the
output voltage will change linearly as we might expect, but that as
soon as the input voltage is either positive or negative a few
microvolts with respect to ground, the amplifier will saturate. That
is, the output will have reached its highest possible value—in this
case, either plus or minus 10V with respect to ground.

THE OP-AMP WITH FEEDBACK
It doesn't take much imagination to tell that if we were to

attempt to operate an op-amp without feedback, we could easily
run into problems with oscillation. With the gain over 100,000 and
the pins separated only by a small fraction of an inch, conditions
leading to oscillation could readily be encountered.

By using negative feedback around the op-amp, we will reduce
its gain, but we will also produce a circuit where such things as the
gain depend only on the external components, such as resistors,
and not on the properties of the op-amp itself.

Figure 8-3 shows an op-amp with a feedback network
consisting of only two resistors. Here, the input current is II and
the feedback current is 12. The circuit is easy to analyze because the
gain of the op-amp is so high that for all practical purposes, we can
assume that no current flows into the input of the amplifier at all. Of
course, there must be an extremely small current flowing into the

Fig. 8-1. Symbolic representation of an op-amp.

109

-20 -10 OV +10 +20

INPUT VOLTAGE
MICROVOLTS

Fig. 8-2. Output voltage of an op-amp as a function of input voltage.

input of the amplifier, if we are to get any output, but this current is
really infinitesmal compared with the other currents in the circuit.
There is practically no error at all in neglecting it.

We can, therefore, consider that the input current to the
circuit II is numerically equal to the feedback current 12. Another
way of looking at the same point is to assume that the input voltage
of the op-amp is so close to zéro, for any real output, that we can
consider the voltage at point A of Fig. 8-3 to be zero; that is, we can
consider point A to be a "virtual" ground. With these simplifying
assumptions, the analysis of the circuit of Fig. 8-3 comes very
easy.

Fig. 8-3. Op-amp with negative feedback.

110

The input current is simply equal to Vin/R1, and the feedback
current is equal to — VIR2.Inasmuch as these two currents are
equal, we can write the following equation:

— V V
o in

R2 R 1

With a simple rearrangement of terms, this becomes:

V V _ — R 2
o — R 1

which means that the gain of the circuit is equal only to the ratio of
the feedback resistance to the input resistance.

Note carefully that the gain depends only on the ratio of the
resistances, and not on anything else, such as supply voltages or
the parameters of the op-amp itself. This relationship will hold as
long as the actual gain of the op-amp, by itself, is much higher than
the gain of the final circuit, which is almost always the case. The
minus sign in the equations merely indicates that the output
voltage is 180 degrees out of phase with the input voltage.

So far, we have only used the minus (—) or inverting input of
the op-amp. We can, if we wish, build a noninverting stage by
applying the input voltage to the plus (+) or noninverting input and
use the minus (—) or inverting input for our negative feedback. The
arrangement is shown in Fig. 8-4. The expression for the gain of
the complete stage is derived in a similar way.

Figure 8-5 shows a practical example of the use of feedback
around an op-amp to set the gain. Here, the input resistance is 10k,

Fig. 8-4. Op-amp using the non-inverting input for signal input and the inverting
input for negative feedback.

111

Fig. 8-5. Practical amplifier circuit.

and the feedback resistance is 100k. From the equations that we
derived earlier, we can see that the gain of the stage is:

V. — R2 — 100K

V = R1 — 10K--10
In

Although this simple circuit arrangement has many useful
applications in digital systems, more complex circuits are often
found. We will look at the most common of these in the following
paragraphs.

SUMMING WITH THE OP-AMP

Figure 8-6 shows how an op-amp can be used to add two
signals. This doesn't look very impressive, but it is very useful in
converting signals from digital to analog form, as we will see in a
later chapter. As shown in Fig. 8-6, if we connect two separate
input signals to an op-amp through separate input resistors, the
output will be equal to the sum of the two input voltages. Before
going any further with this, let's see how it works.

Fig. 8-6. Circuit for using an op-amp to sum two signals.

112

Figure 8-7 shows a simplified form of the circuit of Fig. 8-6. As
we noted earlier, the input terminals of the op-amp, for all practical
purposes, don't draw any current at all. So, we have left it out of the
diagram. Now we have two currents flowing into point A, and the
only place these currents can go is through the feedback resistor.
We also noted earlier that, with the feedback arrangement, the
output voltage adjusted itself, so that the voltage at point A would
be so close to ground potential that we could consider it to be at
ground. Now we can write an equation that says that the sum of the
currents flowing into point A from the two inputs will be equal to
the current in the feedback resistor, R3:

VI V2 V3

+ =

R1 R2 R3

We can arrange the equation to read:

R1 , R3
Vi R3 I- V2 R2 = —VO

and if we assume that the input resistors and the feedback resistor
are all equal, the equation simplifies to:

VI + V2 = — V o

Here the minus sign only means that the output voltage is out of
phase with the input voltage, as we might expect.

WEIGHTING THE INPUTS

In the two circuits that we have just discussed, all of the input
voltages are added directly. We don't have to do this. By changing

Fig. 8-7. Schematic showing currents and voltages in a summing amplifier.

113

the values of the input resistors, we can scale, or weight, the inputs
so that we will only add a fraction of any given input voltage to the
others. This feature is again very useful in digital circuits.

Figure 8-8 shows a summing circuit where the input resis-
tances are not equal. To keep things comparatively simple, we
have made all of the input voltages equal.

From the equations we developed earlier, it is easy to see that
we get twice as much output voltage when we apply a signal to
input 2 as when we apply the same signal to input 1.

This concept of summing signals, particularly with weighted
inputs, should be well understood. It is important in many digital
systems.

The op-amp is the basic circuit element of some other
so-called linear ICs that are often found in digital systems.

THE COMPARATOR

A comparator circuit, such as that shown in Fig. 8-9, is
basically a high-gain op-amp, operated without feedback. It's
purpose is simply to compare one voltage with another.

As we pointed out earlier in this chapter, an op-amp without
feedback, has an extremely high gain—usually at least 100,000. In
practical terms, this means that if the input voltage in Fig. 8-9 is
even very slightly more positive than the reference voltage, the
amplifier will go into positive saturation. The ouput will have its
maximum positive voltage. Similarly, if the input voltage is even
slightly more negative than the reference voltage, the output will
go into negative saturation. The output will have its maximum
negative value.

Fig. 8-8. Circuit showing unequal weighting in a summing amplifier.

114

Fig. 8-9. Op-amp without feedback as a comparator.

Although comparator circuits can be made from operational
amplifiers, there is no need to do this. Comparator circuits are
available in ICs. The advantage of using IC comparators rather than
building comparators using regular op-amps is that all of the design
subtleties have been taken into consideration. The IC comparator
will usually work when it is connected in a circuit. The homemade
comparator may involve a considerable amount of debugging
before it will operate properly.

Another advantage of the IC comparator is that it usually
operates with a single power supply and the output can be made to
swing between ground and +5V, so that it will be fully compatible
with TTL logic ICs.

115

Chapter 9

Getting In and Out of the Digital World

From the preceding chapters, we can see that various digital
components are quite compatible with each other. Gates and
flip-flops can be connected together in almost any arrangement
with few problems. When we attempt to interface a digital system
with the real world, the situation becomes more complicated.

If a digital system is to perform a useful function, it must
receive input from the real world and then deliver outputs back to
the real world. The input signal will come either from regular
analog equipment or from a human being, neither of which is very
compatible with a digital system.

In the first chapter of this book, we discussed the process of
sampling and "quantizing," so that we could convert an analog
signal into digital form. In this chapter, we will describe some of
the circuits that are actually used for this purpose.

There are two different.classes of devices that we use to get in
and out of a digital system. The first class of such devices are called
analog-to-digital (A/D) and digital-to-analog (D/A) converters.
These devices actually operate on signals. In an A/D converter, an
analog signal is actually converted into a digital signal. Similarly, in
a D/A converter, a digital signal is actually converted into an
analog signal.

There is another, somewhat simpler, class of input/output
(I/O) devices used to get in and out of digital systems. These
devices use things such as switches and keyboards to generate
inputs to digital systems. The outputs of digital systems are used
to activate something like a light or a lamp, to give an indication of
the output.

116

The familiar pocket calculator, shown in Fig. 94, is a good
example of such input and output devices. The input device is a
keyboard labeled with regular decimal numbers. An operator can
press the keys with no knowledge of what happens inside the
calculator. The entries are in the familiar decimal number system.
Of course, the calculator, being a digital system, can't use decimal
numbers. The interfacing is accomplished by circuits that produce
binary numbers, corresponding to the decimal numbers that are
entered. Although the output of the calculator circuits is a binary
number, the interface circuits decode these numbers so that they

Fig. 9-1. The familiar calculator uses a keyboard as an input device and a
liquid-crystal readout as an output device (courtesy of CASIO).

117

can energize the familiar 7-segment readout. The input and output
devices of a digital system are often called encoders and decoders,
respectively, or simply I/O (for Input/Output) devices.

SWITCHES AND KEYBOARDS

Figure 9-2 shows a very simple switching arrangement that
can be used to enter data into a digital system. Here, switches are
arranged to pull each of the lines of a bus to either a high or low
logic level. Of course, this arrangement has many limitations. It is
slow, and the switches must be reset for each bit of data that is
entered. Nevertheless, the arrangement is practical in application,
where the data is seldom changed once it is entered.

A much more useful input device is the keyboard shown in Fig.
9-3. Each of the keys is merely a switch, but the keyboard is
connected to an IC that produces a unique binary number
corresponding to each key of the keyboard. Also shown is a
cathode-ray tube display of data.

In a similar way, switches and relays can be used to generate
inputs for digital systems. For example, interlock switches on
cabinet doors can be used to generate inputs for control systems.

SHAFT ENCODERS

A shaft encoder is an electromechanical device that looks
something like a precision potentiometer. Its input is a mechanical
shaft and its output is a parallel digital number that accurately
represents the postion of the shaft. Figure 9-4 shows several shaft
encoders.

The shaft encoder is of interest for two reasons. In the first
place, with the proliferation of digital systems there is an
increasing need for devices that will convert mechanical displace-
ments. Secondly, the fact that the shaft encoder is a mechanical
device enables us to get a better insight into the conversion
process.

There are several different devices that are used to produce
digital signals from shaft rotation. The simplest is a tachometer
encoder. This device simply generates pulses as the shaft rotates.
The output is simply a train of pulses, such as that shown in Fig.
9-5A. The pulses can be counted digitally to determine the total
number of revolutions of the shaft. Similarly, the pulses can be
counted for a known time interval to determine velocity. ,

An improvement over the tachometer encoder is the incre-
mental encoder. This device usually has three outputs. Two

118

Fig. 9-2. Switches can be used to enter digital data into a system.

outputs produce pulses that result from rotation of the shaft. The
third output, called the incremental output, identifies a unique
position of the shaft. The pulses, shown in Fig. 9-5B, can be used in

Fig. 9-3. A typewriter keyboard simplifies entering data into a digital system
(courtesy of IBM).

119

Fig. 9-4. Shaft position encoders convert a shaft position into a digital signal
(courtesy of BEI Electronics Inc.)

the same way as those from a tachometer encoder, but can also be
processed digitally to show the direction of rotation of the shaft.

The most elaborate shaft encoder is called an absolute
position encoder. It has between 6 and 20 output connections. The
output leads carry a digital number that identifies the shaft
position. Figure 9-6 shows how the outputs of a 4-bit encoder
change with shaft rotation.

The resolution of an encoder increases with the number of
outputs. Inasmuch as a 4-bit binary number can represent 16
different values, including zero, its resolution will be one part in
16. That is, it can resolve the shaft position into increments of
360/16 = 22.5 degrees. For precision applications, much higher
resolution is required.

Fig. 9-5. Pulses from shaft encoders (courtesy of BEI Electronics Inc.)

120

READOUTS

By far, the most common readout used with digital systems is
the familiar 7-segment readout seen on calculators, cash registers,
and all sorts of electronic equipment.

The most common 7-segment readout uses light-emitting
diodes (LEDs) to make up its segments. However, fluorescent
tubes with similar elements are also available. For low-power
applications, 7-segment readouts using liquid crystals are also
widely used.

The segments of the 7-segment readout, together with their
commonly used alphabetical designations, are shown in Fig. 9-7A.
Figure 9-7B shows which segments are lighted to form each of the
numerals 0 through 9 and some commonly used letters.

Figure 9-8 shows a typical decoder that accepts a BCD input
and displays the numerals 0 through 9 and the letters A through F.

DIGITAL TO ANALOG (D/A) CONVERTERS

Since in a real system we start out with an analog signal and
convert it to digital form, it would seem that the logical way to
approach the subject would be to treat the AID converter first.
Unfortunately, some A/D converters use a D/A converter as an
integral part. For this reason, things will be easier to explain if we
start out with the D/A converter.

Figure 9-9A, shows a 4-bit binary signal. Inasmuch as all of the
lines are high, the decimal equivalent of the binary number is:

1111 =8+4+2+1 =15
From this, we can see that if we could find a way to assign the

proper weight to the signals on the lines of Fig. 9-9A, we could
simply add these signals together to get the decimal equivalent.

2'

2'

o

o

o

o

nnnnnnn
r-1
I I

Absolute positioning encoder output

Fig. 9-6. Output of a 4-bit binary shaft encoder (courtesy of BEI Electronics Inc.)

121

Q

d

I -1 iiil i — 1 Ili— I n
l CI _ill -I -II-1 ¡Li -IL!

Fig. 9-7. Seven-segment readout used to display decimal numbers.

That is:

1111=(8x1)+(4x1)+(2x1)+(lx1)=15

A functional arrangement is shown in Fig. 9-9B. Here, the
output will be a voltage that is numerically equal to the decimal

Inputs

1 1 II! 1
Ao Al A2 43 EL RBI

9370
7-SEGMENT DECODER

DRIVER/LATCH
RBOa bc de f g

YYYYYYY?

Open

Segments Active Low
Collector Output Circuit

Outputs

RBI A3 A2 A, Ao —o i .--c ic —e i —(3 RBO Dispkiy

*
0
0
1
2
3
4
5
6
7
e
9
10
11
12
13
14
15

X
L
H
X

X

X X X X
LL LL
LL LL
LL LH
LLHLLLHLLHL
LLHHLLLLHHL
LHLLHLLHHLL
LHLHLHLLHLL
LHHLLHLLLLL
LHHHLLLHHHH
HLLLLLLLLLL
HLLHLLLHHLL
HLHLLLLHLLL
HLHHHHLLLLL
HHLLLHHLLLL
HHLHHLLLLHL
HHHL
HHHH

HHHHHHH
HHHHHHH
LLLLLL H
HLLHHHH

LHHLLLL
L HHHL LL

L'i blank
Lblonk
H

H

0
1
2
3
4
5
6
7
e
9
A
b
C
d
E
F

*RBO used as on input

Fig. 9-8. Decoder used to drive a 7-segment readout from a 4-bit BCD signal.

122

value of the binary signal applied to the input. For example, if the
input were 1001, the output would be:

(8 xl) + (4 x0) + (2 x0) + (lx1) = 9

which, of course, is the decimal equivalent of 1001.
One problem, then, is to find a circuit that will perform the

function of the arrangement shown in Fig. 9-9B. It turns out that
this function can be performed by a single operational amplifier,
connected in a summing circuit with weighted inputs. This
arrangement was discussed in Chapter 8.

Figure 9-10, shows the circuit of a simple 4-bit D/A
converter, using an op-amp. The resistor values are chosen to
properly weight the inputs. The output voltage of this circuit will
be:

R R R R
V=— [8 A — — AP/ R 8 +4 A R 4 +2 A R 2 + R 1

or:

V=- [8A8 +4A4 +2A2+A1]V

where V is the voltage level at each of the inputs and the minus sign
is due to the fact that the output of the op-amp is out of phase with
its input.

To keep things simple, let's assume that we have OV at an
input to represent a logical 0 and 1V to represent a logical 1. In
other words, if the input is 0110 (6 in decimal), the input voltages
will be:

=OV
A=N
Ai =IV
= OV

Fig. 9-9. Summing and weighting digital signals to get an equivalent analog
signal.

123

MSB

LSB
4-BIT
DIGITAL
INPUT

R/2

R/4
 'VW

f/8
 41/VN.

 o
ANALOG

•OP-AMP OUTPUT

Fig. 9-10. Diagram of a 4-bit A/0 converter.

Then the output of the circuit will be:

V = — (0 x8) + (1 x4) + (1 x2) + (0 x 1) = — 6V

showing that we have, indeed, obtained a voltage whose value
corresponds to the decimal value of the digital input.

In Fig. 9-11A, we show a table of the output of the circuit for
all possible input values. A plot of the output is shown in Fig.
9-11B. Note that the output is a staircase, varying in discrete
steps. This is because the digital input signal changes in discrete
steps. Usually, however, the output curve of a DIA converter is
plotted as a straight line, as shown by the dashed line of Fig. 9-11B.

There are several features of our simple DIA circuit that make
it impractical. It has poor accuracy and stability. Furthermore,
most op-amps of the type we might use will not swing to a full 15V
output. A 10V output is much more common.

SCALING DATA

We can overcome the limitation of the voltage range of an
op-amp by scaling the data so that the circuit will never call for an
output of which our op-amp is not capable.

Suppose, for example, that the output of our op-amp can only
swing to — 10V. We can use the same setup with resistor values.
shown in Fig. 9-12. The output voltage of this circuit is given by:

V = — [—8R A8 + 4R A, + 2Rr A2 + A, IV
R R R'

124

We can simplify this a little to:

— R
V = --R-L (8A8 + 4A4 + 2A2 + Ai) V

The greatest output will occur when all of the input bits are
high and will be:

R V=— __t_ (8+4+2+1)V
R

R
V = —15 V

R

Thus, we can set the ratio of Rf R to take into consideration
both the desired maximum output voltage as well as the input
voltage.

One limitation of our circuit is that we have tacitly assumed
that when an input was a logical zero, the input voltage would be
zero, and that when the input was a logical 1, the input would be
exactly 1V. Neither of these values is apt to prevail in the real
world. A logical zero might produce a voltage anywhere between
zero and +0.4V, and the voltage corresponding to a logical high
will vary even more.

Our op-amp will sum the actual voltages applied to its inputs,
so any change in an input voltage from the ideal value will introduce
errors.

OUTPUT VOLTAGE
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
1

o

DECIMAL DIGITAL INPuT OUTPUT VOLTAGE

0
1
2
3
4
5
e
7
e
9
10
11
12
13
14
15

1 2 3 4 5 67 8 9 10 11 12 13 14 15 DECIMAL INPUT

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

o

0
-1
-2
-3
-4
-5
-6
-7

-6
-9

Fig. 9-11. Output waveform of a 4-bit binary DIA converter.

125

Fig. 9-12. Output voltage is scaled by choosing Rf/R.

This problem may be solved by deriving the actual input
voltages from a regulated source and using the digital input merely
to turn semiconductor switches on and off.

One of the limitations of this type of D/A converter is that it is
not suitable for use with digital words much longer than eight bits.
For the circuit to work properly the highest value of resistor must
be much smaller than the actual input resistance of the operational
amplifier. We have been assuming that the input resistance of the
op-amp is infinite. But, of course, in practice this is not true. At the
other extreme, if we use semiconductor switches, the smallest
resistance must be much larger than the internal resistance of the
semiconductor switch when it is turned on. The R2R converter,
described in the following paragraphs, overcomes these limita-
tions.

R2R D/A CONVERTER
Figure 9-13 shows what is called an R2R digital-to-analog

converter. It derives its name from the fact that the heart of the

Fig. 9-13. Schematic of an R2R D/A converter.

126

converter is a ladder network, consisting of resistors, where the
series resistors have a value of R and the shunt resistors have a
value of 2R.

The operation of this converter can be rather difficult to
understand at first. The heart of the circuit is the ladder network
itself which has some rather interesting properties. If we were to
cut the network along the dashed line A in Fig. 9-14, it is easy to
see that the resistance to ground of the portion at the left is equal to
R, because it consists of two resistances equal to 2R connected in
parallel.

Similarly, if we were to cut the network along the line B, we
would also find that the resistance to ground of the portion to the
left of the line would again be R ohms. The same thing would also
be true at lines C and D.

Now, the best way to see how the R2R network, working
together with the summing op-amp, weights the various inputs is
to consider the inputs one at a time. Suppose that only the most
significant bit is turned on. The circuit would be as in Fig. 9-15A.
This is simply a summing op-amp with one input connected to
ground and the other input connected to the +1V source. Inasmuch
as the resistor in the — IV branch is equal to the feedback resistor,
the output will be +IV. The input voltage is negative because the
op-amp inverts the signal, thus the output will be a positive voltage
with respect to ground.

If we try to see what happens when only the second most
significant bit, A4, is turned on, we can get really confused. As
shown in Fig.9-15B, at point C the network looks like a voltage
divider with R5 making up the top half and the rest of the network

Fig. 9-14. The resistance to ground to the left of points A, B, C, or D is equal to R.

127

Fig. 9-15. Analysis of the R2R DIA converter circuit.

making up the bottom. The voltage at point C would thus be
— 1/2V. So far so good, but if we start to apply this to the summing
circuit, the gain of the amplifier will turn out to be wrong. The way
around the problem is to get a little theoretical and apply
Thevenin's theorem to the circuit of Fig. 9-15B. All this means is
that a circuit like that of Fig. 9-15B looks electrically exactly like
the circuit shown in Fig. 9-15C. That is, it looks like an ideal
voltage source in series with a resistor of R ohms. Now that we
know this, we can construct the rest of the equivalent circuit as in
Fig. 9-15D. Here we see that we are in effect applying a — Y2V
source to the amplifier through a summing resistor equal to 2R so
that the gain of the amplifier will be 1 and the output will be +1/2 V.

128

If we continue this method of analysis to the other inputs we
will see that each input will be weighted so that when it is
energized, the output will be one half of what the next most
significant input would provide. Therefore, we have the binary
weighting we want in a D/A converter. Figure 9-16 shows a plot of
the output of the circuit as a function of which inputs are energized.

Note that as we add more steps to the R2R converter, the
output voltage doesn't increase. All that happens is that the
increments between the various steps become smaller. The result

DECIMAL
DIGITAL INPUT

°4 °2 °I

OUTPUT, VŒIS

o

2
3
4
5
6
7
8
9
o

2
3
4
5

OUTPUT yours

20

1.5

10

0.5

o
o
o
o
o
o
o
o

O 0 0
O 0 I
O I 0
O 1 1
1 0 0
1 0 1
I 1 0
I 1 I
O 0 0
O 0 I
O I 0
O 1 1
1 0 0
I 0 I
1 I 0
1 1 1

0.000
0.125
0.250
0.375
0.500
0.625
0.750
0.875
.000
.125
.250
.375
.500
.625
.750
.875

O

o
DECIMAL INPUT

Fig. 9-16. Output of an R2R D/A converter.

129

is that we can build D/A converters with as much resolution as we
wish using this prinaiple. The resistance values are still simply R
and 2R ohms.

SPECIFICATION OF D/A CONVERTERS

One of the problems in maintaining a digital system is
ascertaining that all of its subsystems are working properly.
Inasmuch as the D/A converter involves both digital and analog
circuits, it is sometimes difficult to tell whether it is performing the
way it should. For this reason, some specifications are given and
some of these will be described in the following paragraphs.

Accuracy

The accuracy of the D-to-A converter is a very general term,
relating the actual output to what we expect to get for an output.
Accuracy is usually stated as a percentage of a full-scale output.
For example, if a D/A converter has an accuracy of 0.1% and the
full-scale output voltage is 10V, then the ouput for any digital input
should not vary more than 10V from its expected value for that
particular digital input.

Resolution

Resolution really means the number of binary bits of input. It
is common, for D/A converters to have 8-,10-, or 12-bit inputs.
This resolving ability can also be expressed as a percentage of the
full-scale output. For example, an 8-bit converter has a resolution
of one part in 256 (2°), which can be expressed as 1/256 of the
output or 0.39% of the full-scale output. Inasmuch as the resolution
is determined by the number of bits, the accuracy specification
usually tells us much more than resolution.

Linearity

We have seen that the actual output of the D/A converter is a
staircase, rather than a straight line. However, it is common to
express the output characteristic as a straight line drawn through
points of the staircase, as shown in Fig. 9-16.

Linearity is a measure of how much a line drawn through the
same points would deviate from a straight line. This is shown in
Fig. 9-17. If the linearity is stated as 0.1%, then the actual curve
drawn through these points should not deviate from a straight line
more than 0.1% of the full-scale output voltage. For example, in
the figure with 0.1% linearity, the curve must not deviate from the
expected straight line more than 20mV.

130

Scale Factor

The scale factor is also known as the gain error and it is the
factor most responsible for the actual output of a D/A converter
deviating from the expected output. It is affected by changes in the
values of resistances and by any changes in the reference voltage.

Offset

An offset is a fixed voltage which is added to or subtracted
from the output voltage. Offset is usually caused by faults in the
op-amp. It can be measured rather simply by setting all of the
digital inputs to zero and measuring the output voltage. Under ideal
conditions the output voltage should be zero. Any deviation from
zero is the offset voltage.

ANALOG-TO-DIGITAL (A/D) CONVERTERS

In order to get real world signals into a digital system we must
convert the analog voltages to digital signals. This is done by
means of an AID converter. The simplest type of AID converter is
shown in Fig. 9-18. It consists mostly of components with which
we are already familiar. It contains a voltage comparator which we

Fig. 9-17. Linearity of a D/A converter is measured as the difference between
the expected linear output (straight line)and the actual output (curved line).

131

studied in Chapter 8, as well as an AND function and a binary
counter. There is one component which we have not looked at
previously, and that is the ramp generator.

The purpose of the ramp generator is to develop a voltage that
increases linearly with time. This is accomplished by a circuit that
is designed to charge a capacitor with a constant current. When a
constant current flows into a capacitor, the voltage across the
capacitor will increase linearly with time.

Of course, no constant-current generator is perfect, because a
perfect constant-current generator would eventually produce an
infinite voltage across the capacitor. However, over limited ranges
current generators can be built good enough so that the ramp
voltage will be as linear as we want it to be. In Fig. 9-19 we have
shown an ideal ramp where the voltage increases at a rate of 1V per
millisecond.

CLEAR

COMPARATOR

Vino
ANALOG INPUT

—

RAMP

GENERATOR

o

AND FUNCTION

BINARY

COUNTER

MSS;

— 0

SS

O RAMP-TYPE /VD CONVERTER

RAMP OUT PUT
V

COMPARA TOR

OUTPUT

INPUT T 0 COUNITER
LOCK PULSES

DIGITAL
OUTPUT

NUMBER OF CLOCK PULSES REACH NG THE COUNTER IS PRO-
PORTIONAL TO ANALOG INPUT VOLTAGE

Fig. 9-18. Block diagram and input/output characteristic curves for a simple AID
converter.

132

Fig. 9-19. In an ideal linear ramp, the ramp voltage is directly proportional to
time.

The important point about the ideal ramp is that if we're able
to measure accurately the time from when the ramp started to a
particular time, then we would know the voltage. For example, in
Fig. 9-19, if we measure the time from the start of the ramp until 4
milliseconds later, we would know that the ramp voltage was
exactly 4 volts. This is important, because it is very easy to
measure time with a high degree of accuracy with digital curcuits.

Now, we can get back to our simple A-to-D converter. The
operation of the circuit is rather simple. The first thing that
happens is that a clear command resets the binary counter to zero.
And at the same time, the output of the ramp generator is applied to
the comparator. The analog signal that we wish to convert is
applied to the other input of the comparator. Since the ramp voltage
is initially much less than the voltage we want to measure, the
output of the comparator is high. Now, the output of the AND gate
is also high. As long as the output of the comparator is high, one
input of the AND gate will be high and the output will go high
whenever a clock pulse occurs.

While the output of the comparator is high, clock pulses will
go to the counter and will be counted. The instant that the output of
the ramp generator even slightly exceeds the analog input voltage,
the comparator will switch states and its output will go low. This
will inhibit the transmission of the clock pulses, so that counter will
stop counting at the exact instant when the ramp voltage is equal to
the analog input voltage. Thus, the number of clock pulses that
where counted will be proportional to the input analog voltage.

For example, suppose we had a clock frequency of 200 kHz;
that is, the clock produces 200 pulses per millisecond. If we apply

133

Fig. 9-20. Waveforms in a dual-slope ND converter.

an input voltage of 2 volts, the counter would read to the binary
equivalent of 400 during the conversion.

The accuracy of this system is limited to just how linear we
can make the ramp waveform and how stable the output of our clock
generator will be.

THE DUAL-SLOPE: AN ANALOG-TO-DIGITAL CONVERTER

A more sophisticated A/D converter, which has become very
popular in digital voltmeters and is available in integrated circuits,
is called the dual-slope A/D converter. Unfortunately, the opera-
tion of this particular device isn't very easy to follow. '1'he best way
to understand it is first take a look at what it actually does and then
later, see how it does it.

SWRCH LOGIC
/RAMP GENERATE?

CLOCK
/ RI COMPARATOR COUNTER

Mn I I R

R4 AIM FUNCTION LSB

RESET

1 DIGITAL OUTPUT

Fig. 9-21. Schematic of a dual-slope A/D converter.

134

Fig. 9-22. Block diagram of an AID converter using D/A feedback.

Figure 9-20 shows a plot of the two slopes that are generated
inside the converter. At the start, ramp voltage is developed, the
slope of which is proportional to the analog input voltage. Then this
voltage is brought back to zero by a ramp, which is proportional to a
fixed reference voltage inside the converter. The analog voltage
that we wish to convert to a digital value is applied to a ramp
generator, which produces a linearly increasing voltage, shown at
the left of Fig. 9-21. The ramp generator is turned on for a fixed
period of time, which is accurately known. Then, the analog
voltage is disconnected from the ramp generator and a fixed
reference voltage is applied to generate a negative-going ramp, as
shown. This negative-going ramp is continued until the ramp
voltage reaches zero. The important thing to note in the figure is
that the time required to bring the ramp voltage from its maximum
value to zero is proportional to the analog input voltage. The fact
that the converter uses two separate slopes, each of which count
the same clock, shows that long-term variations in the clock
frequency will not effect the accuracy of the conversion. For this
reason, this particular type of converter has become very popular
in small digital voltmeters.

135

A/D CONVERTERS USING D/A FEEDBACK

One of limitations of the ramp type AID converters that we
have been discussing is that the accuracy is limited by how linear
and how stable we can make the ramp generator. There is a way
around this problem, and that is to eliminate the ramp generator
completely. One way of doing this is shown in Fig. 9-22A.

Here, the analog input signal that we wish to convert is
compared to a digital signal. To do this, we first have to convert the
digital signal to analog form. As shown in the figure, the output of a
binary counter is converted to analog form and applied to one input
of a comparator. The signal to be converted is applied to the other
input. The output of the comparator is then used to inhibit or enable
clock pulses to the binary counter.

The action of the converter is as shown in Fig. 9-22B. Here,
when the input voltage is applied, the counter starts. Its output is
continually converted to analog form and applied to one input of the
comparator. When the output of the counter (converted to analog
form) reaches the value of the input voltage, the counter is

Fig. 9-23. Block diagram of an AID converter with an up-down counter.

136

L+
COMPARATOR LOX etecx

r —
STORACE I
REGSTER

o

MS8 0

 o

LSB

 o

DIA CONVERTER

DIGITAL OUTPUT D-A

O 0 0 0
O 0 0 I
O 0 I 0 2
O011 3
O 1 0 0 4
O 1 0 1 5
O1 1 0 6
Oil I 7
I 0 0 0 8
I 0 0 1 9
1010 10
I 0 I I 1 1
1 1 0 0 I 2
I I 0 I 13
I 1 1 0 14
1111 1 5

TABLE SHOWS NE OPERATION OF A/D CONVERTER

DIGITAL
OUTPUT

Fig. 9-24. Block diagram and truth table for a successive approximation D/A
converter.

stopped. The output of the counter will then be a digital word
representing the analog input.

One of the limitations of this conversion scheme is that each
time a conversion is made, the counter has to start from zero. It is
possible to modify the system, as shown in Fig. 9-23A, to make it
much faster in operation. In this arrangement, which is called a
continuous counter converter, the basic digital counter is an
up/down converter, which can count in either direction.

Assume, for the moment that everything is set to zero, and
analog voltage is applied to the input. The counter starts counting
up until its output, converted to analog form, equals the value of the
input signal. The counter then stops. Now, let's suppose that the
input voltage decreases in value, by some sort of step. This will be
sensed by the circuitry ahead of the counter, and the counter will
start counting down until its output again equals the value of the
input voltage. In this way, it can be seen that the output of our

137

counter will oscillate about the value of the input signal and will
count in the proper direction whenever the value of the input signal
changes.

Obviously, this arrangement is faster than a ramp-type
converter, where the counter has to be reset for each conversion.
It does, however, have some limitations in that with large changes
in the value of the input signal the conversion process is slow
because the counter must increment one bit at a time.

In converting fast signals, such as, in television, this type
converter is still much too slow. A faster type is the successive
approximation AID converter, described below.

SU CCESSWE APPROXI MATION A/D CONVERTER
Figure 9-24 shows a successive approximation DIA conver-

ter. For convenience we have shown a 4-bit counter. But, of
course, a much larger counter can be used to get better resolution.
Assume that the input voltage to this converter can vary anywhere
between 0 and 15 volts. The output of the DIA converter in the
feedback loop can also vary from 0 to 15 volts on one-volt steps.

To see how the thing works, assume that we apply 11 volts to
the input. The operation starts with the most significant bit of the
counter being set to one. This means that the output of the DIA
feedback converter will be eight volts. The comparator senses that
this eight volts isn't enough, so the next step is to increment the
next most significant bit giving the counter an output of binary 1100
or 12 volts. The converter senses that this is too much, so the
second most significant bit is reset to zero, and the third most
significant bit is incremented to one, giving us binary 1010 or 10
volts. This isn't enough, so the next most significant bit is set to
one, giving us an output of binary 1011 or 11 volts, which is exactly
what we want.

The fascinating thing about this converter is that it only takes
four steps to match any input voltage. This the successive
approximation converter can be made very fast indeed. It is found
adequate for use in digitizing television signals.

PARALLEL A-TO-D CONVERTERS
The fastest possible way of converting from analog to digital

form is to perform the operation in parallel as shown in Fig. 9-25.
Here, we have a separate converter for each bit of the output
number. The reference voltage is divided into descrete steps by a
resistive voltage divider. Each of these steps is applied to one
input of a comparator. The analog signal to be converted is applied

138

Fig. 9-25. Schematic of a parallel ND converter.

to the other inputs of the comparator. Thus, an output of a
comparator is provided for each level of the analog input voltage.
Inasmuch as all the operations are being performed at the same
time, the conversion is very fast. The output of the comparators is
fed to a decoder network which produces the proper digital word.

Although this converter is extremely fast, it does require a
large amount of circuitry. For only three bits at the output, seven
comparators are required. In general, for M bits, 2"-1 levels of
comparison are required. This means for a 10-bit output, you would
need 1023 comparators. Obviously, this system is used only where
extremely high speed is an absolute necessity.

RESOLUTION OF A/D CONVERTERS

One question that comes up in connection with A/D conver-
ters is just how well the digital output approximates the true value
of the analog input. This, as you probably have suspected, depends
upon the number of bits in the output. For a converter with N bits in
the output, the resolution is ± one part in 2n. For example, in a
7-bit converter, the resolution would be one part in 128, which is
the same as -±- 0.8%. If the analog input voltage varied between 0
and 10 volts, the resolution would be 0.008 x 10 = 80mv.

139

Chapter 10
What Is Digital Data

And How Is It Handled?

So far, we have discussed the various ways that digital signals can
be processed. We have also shown repeatedly how a digital signal
can be used to represent a number. The most straightforward way
to use a digital signal to represent a number is to use the binary
numbering system. If the number is to be converted to and from the
decimal system, binary coded decimal is usually a better method.

So much for numbers. What else can we represent by digital
signals? Just about anything. An 8-bit number can take on 256
different values. This really means that we can use such a signal to
represent 256 different things. All that is required is that we agree
on what the signal will mean in a given system. For example, the
signal 1011 can mean that the heater voltage of a transmitter is
applied, the interlock switches are safely closed, ventilating fans
or blowers are operating and the plate voltage has been applied. By
means of gating or decoding circuits we can recognize this signal
and know that the above stated conditions are true.

In other words, a digital signal can mean just about anything
that we want it to mean. Included in the things that we can
represent by digital signals are the letters of the alphabet. There is
nothing new about this because teletype systems have used
on-and-off signals to represent characters for many years, before
the word digital found its way into our vocabulary. In fact,
teletypewriter keyboards are often used to enter data into digital
systems because they are readily available and are competitively
priced.

140

ASCII DATA CODE

In addition to the code used in teletype systems, there are
several other different codes that have been developed for various
purposes. Actually, the only requirement of any code that enables
digital signals to represent other things is that the code be
consistent within the system. In order to permit units such as
keyboards and printers to be used with many different systems.
The American Standards Association has issued a standard code
that can be used for all systems.

This code, the American Standard Code for Information
Interchange, or ASCII (Ass-key) as it is commonly called, uses a
7-bit word to represent each of the characters of the alphabet,
numbers from 0 to 9, and some other things that are called machine
commands. The code is shown in Fig. 10-1.

The three most significant bits, bit 5 through bit 7, are used in
much the same way that a shift key is used on a typewriter. These
bits tell what the next four bits will represent. If the three most
significant bits are 000 or 001, the character transmitted will be a
machine code. For example, the symbol or digital word 000 1101 is
listed in the figure as CR. This is a carriage return command. When
it is received by a printer, the carriage of the printer will be
returned to the left side of the page. Similarly, if the three most
significant bits are 100 or 101, the digital word will represent a
capital letter or a punctuation mark.

Thus, a 7-bit word can be used to represent just about
anything that might be required on a printer. Inasmuch as the code
is a standard, it is possible to buy a digital system from one
manufacturer and a printer from another and find that the two will

be compatible.

PARITY

You have probably noticed that whereas one byte of data is
usually considered to consist of eight bits, the ASCII words are
only seven bits long. There is a reason for this. An eighth bit is
often added to aid in detecting errors that might occur in a
transmission system. This extra bit is called a parity bit.

The way the parity bit works is to make all of the digital words
contain either an even or an odd number of l's. In the first case it is
called even parity and in the other, oddparibe.

Suppose that we were using an even-parity system and the
word "act" was to be transmitted in capital letters. The ASCII
codes for these three letters are:

141

100 0001 = A
100 0011 =C
101 0100 = T

Note that the code for A contains two 1's—an even number.
This is what we want, so the 8th parity bit would be 0. The code for
C has three 1's—an odd number. To make this word an even
number of is, we would make the parity bit 1. Similarly, the code
for T has an odd number of l's, so its parity bit would also be 1.

By means of a relatively simple circuit arrangement, the
device that receives the data can be made to check the number of
l's in each word. Inasmuch as we have made sure that when the
words are transmitted they all have an even number of l's, we can
check to see if any of the bits were "dropped" while the word was
being transmitted. This is called a parity check. If at the receiving
end of the link we find a word with an odd number of l's, we know
that something went wrong. Many systems are arranged so that a
word like this will automatically be rejected and a repeat will be
requested. This mode of transmission is sometimes called ARQ,
for Automatic Repeat Request.

In addition to the simple parity described above, many
sophisticated codes have been developed that will not only detect
errors, but will identify many types of errors and will automatically
correct them.

LONG-DISTANCE TRANSMISSION

So far in this book we have considered two ways to get digital
signals from one point to another. One way is to use parallel
transmission. Here a separate wire is provided for each bit of the
byte and all bits of the byte are transmitted at the same time. This
arrangement is fast, but it suffers from the fact that a lot of wires
are required. It is fine inside a cabinet or between two adjoining
cabinets. For longer distances, it is preferable to use serial
transmission where the bits are transmitted one after the other and
where only two wires are required. As we mentioned in an earlier
chapter, shift registers can be used to convert data between serial
and parallel form.

When we want to transmit digital signals over distances of
more than a few hundred feet, we run into another problem. That
is, ordinary wires such as telephone wires are not very well suited
to carrying digital signals which have very short rise and fall times.
When these signals are transmitted over long lines, the pulse

142

BIT NUMBERS

000 o o o lo o loo o
o

b7 b6 b5 b4 b3 b2 b1 COLUMN

ROW o 2 3 4 5 6 7

O O o O O NUL DLE SP O

O O O SOH DCI A O o
O

O

O

O

O 2

3

STX

ETX

DC2

DC3

2

3 S
O O O 4 EOT DC4 $ 4 d

O O 5 ENO NAK 5 E U e

o

O

O 6

7

ACK

BEL

SYN

ETB

a 6

7 G

O O O 8 BS CAN 8 H h

O

o

O

O

9

10

HT

LF

EM

SUB

9

O

O O

11

12

VT

FF

ESC

FS

O 13 CR GS rn

1 1 1 0

1 1 1 1

14

15

SO RS

SI US /

N A n
7 0 o DEL

NUL Null, or all zeros
SOH Start of heading
STX Start of text
ETX End of text
EOT End of transmission
ENO Enquiry
ACK Acknowledge
BEL Bell, or alarm
BS Backspace
HT Horizontal tabulation
LF Line feed
VT Vertical tabulation
FF Form feed
CR Carriage return
SO Shift out
SI Shift in
DLE Data link escape

DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
SP
DEL

Device controll
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission block
Cancel
End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator
Space
Delete

Fig. 10-1. American Standard code for Information Interchange (ASCII).

143

shape will be changed so that the various bits will tend to overlap.
The only way that these signals can be transmitted directly on wire
lines is to use an inconveniently slow speed of transmission. The
solution to the problem is to use a carrier signal just as we do in
radio and television.

Figure 10-2 shows the arrangement. The digital signal that is
to be transmitted is applied to a modulator where it modulates a
carrier in the audio frequency range. At the receiving end of the
link, a demodulator is used to recover the original digital signal.
Inasmuch as both a modulator and demodulator are usually used at
each end of a data communication link, the device is usually called a
MODEM, from MOdulator-DEModulator. MODEMS are com-
mercially available from many different manufacturers. They are
specified in terms of how fast they can transmit data and how many
channels are provided.

For transmission purposes, digital signals are usually
specified in terms of bits per second. Lines and MODEMS are
specified in terms of their capacity in a unit called the baud. One
baud is equal to one unit time interval per second.

DIGITAL MODULATION CONSIDERATIONS

Of course, the audio frequency tone that is used for a carrier
for transmitting digital signals can be modulated in any of the
conventional methods. That is, either the amplitude, the frequen-
cy, or the phase of the tone can be modulated in accordance with the
digital signal that is to be transmitted. Because of the noise
immunity features of angle modulation, either frequency or phase
modulation is usually used in preference to amplitude modulation.

First let's look at frequency modulation. Here, the frequency
of the audio tone is varied in accordance with the modulating signal.
Inasmuch as the digital signal only has two possible values, 1 and 0,
there will only be two frequencies used in transmission. Thus, the
system is more like what is commonly called frequency-shift
keying or FSK than like regular voice frequency modulation

systems.
Figure 10-3 shows one possible FSK arrangement. Here we

have two oscillators operating at different frequencies. One
frequency can represent a 1 and the other a 0. The incoming digital
signal is applied to a switching arrangement so that when the signal
is a 1, oscillator A will be connected to the line, and when the signal
is a zero, oscillator B will be connected to the line.

144

TELEPHONE
LINE

DIGITAL
SIGNAL

MODULATOR DEMODULATOR

_DOTAL
SIGNAL

Fig. 10-2. Block diagram of the modulation arrangement used to transmit digital
signals over long distances.

The principal limitation of the simple arrangement of Fig. 10-3
is that the transmitted signal switches from one frequency to the
other very rapidly when the digital signal changes value. This rapid
switching causes something like key clicks in CW systems. It will
tend to spread the signal over a rather broad bandwidth. This will
limit the number of channels that can be carried on a pair of wires
and will also tend to limit the speed at which the data can be
transmitted.

Figure 10-4 shows an arrangement that overcomes some of
these limitations. Here the digital signal is applied to a waveshap-
ing circuit that removes the sharp corners and slows down the rise
and fall times. Doing this reduces the bandwidth required for
transmission or permits a higher speed of transmission at the same
bandwidth.

Although in voice communication it is sometimes hard to
distinguish between frequency and phase modulation, in MOD-
EMS the equipment used to accomplish phase modulation differs
significantly from that used for FSK. Phase-shift modulation is
becoming very popular in present day MODEMS. Several different
arrangements are used, but in each case there is an abrupt change
in the phase of the audio carrier when the digital signal changes
between a 1 and a 0.

PROBLEMS IN DATA TRANSMISSION

In the average broadcast station we have two different types of
data transmission. First there is the transmission over short paths
of a few feet from one console to another. For example, sometimes
a teletype printer is located a few feet from an automation console.
The other type of transmission is over a relatively long path. For
example, digital signals may be transmitted from an unmanned
transmitter site to a control room miles away. Usually, if the path is

145

longer than that a few hundred feet, MODEMS are used at each end
of the path.

Digital data transmission is complicated somewhat in the
broadcast situation because there are often very strong RF fields in
the vicinity. The first problem that is usually encountered is to get
the thing working in the first place. After this, keeping it going is
usually much simpler. Keeping RF out of the transmission path is
just like solving any other RFI problem. It is frustrating and time
consuming, but usually the problem can be solved. The approach is
to carefully go over all grounding and shielding, then begin
installing RFI filters as required.

One problem that is often overlooked in broadcast applica-
tions is that the digital equipment can be damaged, or errors can be
introduced, by strong static discharges. Broadcast stations have
tall towers that are plagued by lightning surges. If even a small
amount of the discharge gets into the digital system, it will
introduce spurious signals. If a large surge enters the system,
components will be destroyed.

Again the approach is proper grounding and shielding.
Multiple grounds often cause problems because when a high
current due to a static charge flows through the ground there will
be an appreciable voltage drop. This voltage drop can often get
inside the system and raise havoc.

OSCILLATOR A

>0
DIGITAL
INPUT

OSCILLATOR B

)
O—OUTF'UT

Fig. 10-3. Block diagram of an FSK modulator for digital signals.

146

VOLTAGE - CONTROLLED
OSCILLATOR

NPUT

ILI-111.11._ _ WAVESHAPI NG CIRCUIT

I

rle-sir`r\

— OUTPUT

Fig. 10-4. Block diagram of a modulator with waveshaping circuit.

A COMPLETE DATA LINK

Figure 10-5 shows a functional block diagram of a complete
data link. In this system certain transmitter parameters are
measured, converted to digital form and transmitted back to a
control room a few miles away.

The first elements in the system are the input devices. Some
of the parameters are simple on-off indications. For example, there
is a signal that indicates that the transmitter is on the air. There is
also a burglar alarm that will be a logical high signal if anyone
enters the premises. In addition, there are analog-to-digital
converters. For example, the DC plate current is sampled and is
converted into a binary signal that represents the actual value of the
plate current.

The signals from the input devices are fed into shift registers
where they are temporarily stored until the system is ready to
transmit them. A multiplexer sequentially samples each of the
storage registers and reads out its signal in serial form. This signal
is then applied to an FSK modulator or MODEM.

It isn't enough to merely digitize the data and transmit it. We
must have some way of knowing at the receiving end what data is
being transmitted. We can accomplish this by assigning a number
to each channel of information and transmit this number just ahead
of the data. To keep things simple, we can assign the numbers 1
through 7 to the channels of data. We can express the numbers 1
through 7 in digital form with a 3-bit word as follows:

147

Channel Number
1 001
2 010
3 011
4 100
5 101
6 110

111

In addition, we must transmit some sort of synchronizing
signal so that the receiving equipment will know that we are about
to send some data. In our system, this is accomplished by
transmitting both tones of our FSK signal simultaneously.

At the receiver, a circuit recognizes when both tones are
being transmitted and resets everything to zero and gets ready to
receive data. Suppose that the first parameter that is transmitted is
the value of the plate current, and suppose for the sake of example
that it happens to be 250 mA. The word that will be transmitted
along the link will be

001 1111 1010

The first three bits identify the fact that information is being
transmitted in channel 1. The next eight bits identify the value of
the plate current as 250 rnA.

At the receiving end, the number of the channel is recognized
and the data that follows is fed serially into register 1. The data is
stored here and the system moves on to the next channel.
Meanwhile, the data that was fed into register 1 serially can be read
out in parallel to a decoder which, in turn, operates 7-segment
readouts that will display the value of the plate current.

The simple channels that transmit on-off signals to indicate
that the transmitter is on the air, or that a burglar may have entered
the premises, can be readout on simple lights. It would probably be
a good idea to have these signals trigger an audible alarm that
would attract attention to the fact that the transmitter is off the air
or that there had been an entry.

Although the foregoing paragraphs explain the general opera-
tion of a data link, our simple system has many limitations. In
practice there could be many more refinements. One obvious
limitation is that we used a straight binary number to transmit the
value of the plate current. In practice, we don't need to be able to
transmit every possible value of plate current from zero to the

148

maximum possible value. We could transmit just a few numbers in
the normal range of operation. This could be handled by assigning a
different meaning to the binary numbers that we transmitted and
properly decoding them at the receiving end of the link.

In a practical system it might be advisable to transmit our
numerical data in the form of ASCII characters. This would require
several words to transmit the value of the plate current. Inasmuch
as the system will respond much faster than it needs to, we can
easily afford to transmit the extra words.

Figure 10-6 shows one channel of a system that would use
several digital words to transmit the value of some parameter such
as the plate current. Here the plate current is again so sampled and
digitized in an AID converter. The information can be in either
binary or BCD form. Probably BCD is easier to handle. Then the
signals from the register are applied to an encoder, which may be a
single integrated circuit, that converts each BCD number to an
ASCII character.

Fig. 10-5. Simplified functional blockdiagram of a remote metering system.

149

PLATE A/D
CIRCUIT CONVERTER
SAMPLE

-OW REGISTER
BINARY TO
ASCII
ENCODER

MULTIPLIER -SW MODERN -TO TRANSMISSION
SYSTEM

Fig. 10-6. Block of a single channel of a remote metering system using ASCII
code.

When data is transmitted, a few synchronizing pulses are
transmitted first. The receiving system then knows that some data
is coming. It further knows how many words will be used to
transmit this particular parameter. Suppose that we provide four
characters to send the data and that the value of the plate current is
again 250 mA. The decimal, BCD, and ASCII codes are as shown
below:

DECIMAL BCD ASCII
0 0000 011-0000
2 0010 011-0010
5 0101 011-0101
0 0000 011-0000

To be sure that the system knows that we have sent the value
of one parameter, we will again send a few synchronizing pulses.

One advantage of using ASCII characters for transmission is
that the signal may be applied directly to a printer that will
recognize each character and print it out. The receiving system can
have instructions stored in it that will recognize the channel
designation and print it out in English. For example, if the
identification 001 is received, the printer will not print out 1, but
rather "plate current."

Many more refinements may be added to our system. We can,
for example, add a parity bit so that the system can detect certain
classes of errors in transmission. We can use ARQ so that if a
defective character is received, the signal can be sent from the
receiving location back to the transmitter requesting that the data
be transmitted again. We can arrange it so that the defective data
will not be printed out and an operator watching the system might
never even know that an error was transmitted and corrected.

150

Chapter 11

A Few Simple Digital Systems

In the first part of this book, we concentrated on digital ICs and
their functions. We considered both combinational functions using
logic gates and sequential functions using flip-flops or counters. In
the following chapters we will look at complex digital systems
where it would be completely impossible to consider all of the
functional units such as gates and flip-flops. Many systems use
hundreds or even thousands of these simple functions. To
understand the larger systems, we must concern ourselves with
more advanced functions such as data storage or manipulation.

This approach, which seems to be the only practical one,
tends to leave us with a gap between simple functional units and
large subassemblies of a system. For example, we may be
confronted with a remote metering system of the type we
discussed briefly in the preceding chapter. We might find that there
is trouble somewhere between where the transmitter parameters
are sampled and the MODEM. Upon opening the cabinet we find
several printed circuit boards packed tightly with SSI packages. It
is often hard to find a correlation between the overall functional
operation of the cabinet and all of those little ICs. The situation
isn't made any easier by the fact that there are many different ways
that different ICs can be combined to perform the same overall
function. The particular arrangement will depend to some extent
on the designer's preference.

In this chapter, we are going to take a few very simple tasks
and see how we might use digital circuits to accomplish them. Of
course, in many applications the systems are much more complex
than those that we will consider. Nevertheless the principles are

151

the same and by going through these examples, you can see the
way that you should look at larger systems.

THE SYSTEMS APPROACH

When studying a digital system, it is helpful to think a little bit
about how the designer might have approached the task of
designing the system, Of course, this task can never be complete,
because you have no way of knowing all of the factors that the
designer had to take into consideration. Often, when looking at a
part of a system, you will find an arrangement that certainly looks
like the hard way to solve a rather simple problem. This is often
true. Usually, though, there is a good reason for the design being
the way that it is.

Any designer must take design costs into consideration. If a
system is produced in small quantities, like many items used in
broadcasting, the design cost is often a large part of the total
expense of producing a system. In such a case, the designer must
take every step that he can to minimize the design costs. Often this
means that if he has already designed a circuit that works and can be
used in a particular application, it is advisable to use it, rather than
to take the time to design another circuit that might use fewer
components or be more straightforward. Sometimes you can
recognize this when you see that a certain manufacturer's products
often use the same circuitry in different pieces of equipment.

Getting back to the systems approach, the designer usually
approaches the problem first from an overall point of view, then
gets to the details. Let's take as an example a very familiar product,
the digital electric clock. Of course, this particular product has
become so popular that all of the required functions are now
available in a single large-scale integrated circuit, but it wasn't
always this way. Early electric clocks were made from small-scale
integrated circuits. By taking the SSI approach, we can get an idea
of how a system might evolve.

Faced with the task of designing an electric clock, we might
start with the simple approach of Fig. 11-1. We know that we must
have some way of reading out the time, so we have shown
7-segment readouts for hours, minutes and seconds. We also know
that we must have some accurate source of time to drive the clock.
At this point, we haven't the slightest idea of how we might process
the time information, so we have just shown a box.

So far, there is no way of telling at which end of the box the
design might start. It might be handled alternately at each end of

152

READOUT

I I
I I
I I I I

SIGNAL

TIMING PROCESSING
INFORMATION

Fig. 11-1. Functional diagram of an electric clock.

the box. For the sake of example, lets assume that we will use the
60-11z power line as a source of timing information. Incidentally,
this is a very accurate source of timing information over a long
period of time. The frequency of a power line does indeed vary
during the day, but the utilities, knowing that their frequency is

used to operate clocks, corrects for this. Every night, usually
during the early hours of the morning, utility operators speed up,
or slow down the frequency of the system so that any errors in
electric clocks operated from the system will be corrected. The
result is that the 60-Hz line frequency is one of the most accurate
long-term time standards available.

Of course, other sources such as crystal oscillators have
greater short-term accuracy, but they always have some error
however small. A clock tends to accumulate errors. If a clock runs
ever so slightly slow, eventually it will be off by some amount.
Usually, at the end of a long period such as a year, the line-operated

clock will be more accurate.
Before we even start to use the power line as a time standard,

we know that the voltage is too high. Thus, we will start our design
with a transformer that will step the voltage down to about 5V so

that it will be compatible with TTL. We also know that the line
voltage is sinusoidal and that digital circuits don't like slowly
varying signals like sine waves. Thus, we will add something to
square up the waveform. A latch made out of two gates would do
the job. The next thing that we would like to do is to divide the line
frequency by 60 to give us a pulse train having a pulse repetition
frequency of 1 pulse per second.

With these considerations in mind, we arrive at the block
diagram of Fig. 11-2. Now let's go back to the other end of the
system. Here we have six 7-segment readouts for hours, minutes

153

Fig. 11-2. Time-base circuit for an electric clock.

and seconds. Our design philosophy will be to count our one-
pulse-per-second signal from our time base, and then decode the
output of the timer counter to drive our readouts. The approach is
shown functionally in Fig. 11-3.

The decoding operation is quite simple. The Type 7447 IC
will accept a BCD signal and will drive a 7-segment readout to
display the decimal equivalent of the BCD input. The only problem
remaining is the counting.

The Type 7490 counter will divide by either 10 or 12,
depending on how it is connected. We can apply the one-pulse-
per-second pulse to one of these counters as shown in Fig. 11-4A.
Thus, the counter will count up to 10 seconds, display the count on
the readout, and then reset and supply a count to the next counter
which counts ten of seconds.

The tens of seconds counter can't be the same type as the one
that we just used, because we want it to count to six, corresponding
to 60 seconds and then reset. A Type 7492 counter will do the job,
as shown in Fig. 11-4B.

By following this general line of reasoning, we will eventually
arrive at the digital clock functional diagram of Fig. 11-5. We have
in a general way taken a requirement and found a functional
approach to a digital system that will meet the requirement.

SPECIAL DECODING

There are applications where we have the output of a counter
which we wish to decode for some special purpose. This type of

FIG II-2
60 Hz

TIME BASE COUNTER DECODER RE,Z)0..T

Fig. 11-3. Block diagram showing further development of electric clock.

154

7
SEGMENT
READOUT

7 WIRES

7447

BCD INPUT

ONE PULSE
EVERY
60 SECONDS

..ei

ONE PULSE
EVERY TEN .fflih
SECONDS

7 SEGMENT
READOUT

7 WIRES

7447

7492

7490

SECONDS COUNTER

o

o

1 PPS
INPUT

.... ONE PULSE EVERY
10 SECONDS

TENS OF SECONDS COUNTER

Fig. 11-4. Block diagram of the counters and decoders for an electric clock.

decoding can be accomplished by the use of gates and inverters.
Suppose, for example, that we wish to get one output pulse
whenever the output of a BCD counter reaches the decimal count of
nine (1001 in binary or BCD). We can accomplish this by using the
arrangement of Fig. 11-6. Here, when the input to the gates and
inverters is 1001, the two inverters in the two middle leads will
make the signal at the input to the gate 1111. This, in turn, drives
the output of the NAND gate to a low level. An inverter following
the gate will produce a high level. Thus, the output of the decoder
will go high whenever the input is 1001.

Special decoding arrangements much more complex than this
are often used for special purposes in digital systems. Once the
general function is recognized, the circuit can be understood by
constructing a truth table.

155

READ
OUTS

cn

o
o
o

C
O
U
N
T
E
R
S

HOURS

I I I I

I

7447 7447

MINUTES

I I I I

7447 7447

SECONDS
a

I I

7447 7447

7492 7490 7492 7490 7492 7490

60 Hz TIME BASE1 1 PPS

Fig. 11-5. Block diagram of the complete electric clock.

FREQUENCY COUNTER

The frequency counter shown in the block diagram of Fig. 11-7
might be a good example of a case where a designer used circuits
that were developed for another purpose. Suppose the designer
had developed and tested the digital clock that we discussed in
preceding paragraphs and was now called on to design a simple
frequency counter. The approach would surely be to use the same
type of readout and decoder. The frequency counter differs from a
digital clock in that we count a pulse train whose frequency is

unknown. The accuracy of the system comes from accurately
controlling the time interval during which the count is made.

In the diagram of Fig. 11-7, the display and decoder arrange-
ment is similar to that used in the clock. We can't, however, drive

Fig. 11-6. Decoding arrangement to provide a pulse at the count of 9 (1001 in
binary)

156

the decoder directly from the outputs of our counters. The reason
is that the frequency that we may be counting might be quite high. If
the outputs of the counters were applied directly to the decoders
and displays, the displays would be changing very rapidly with the
result that the readout would look like a blur instead of discrete
numbers. We can correct this situation by inserting latches
between the counter outputs and the decoders. These latches will
act as memories and will store the count at the end of a counting
interval long enough for a reading to be taken. They will then be
reset and will store another count.

The counting chain will be slightly different in that we will use
decade counters for all stages. The rest of the circuit is also
straightforward. The timing interval is obtained by dividing down a
signal from a time base.

Here, we are not as much interested in the long-term accuracy
of the time base as in the short-term accuracy. We will measure the
frequency in question over a comparatively short period such as
one second at the most. Suppose for example that we applied a
signal of unknown frequency to the counter, counted it for one
second and found the count to be 99,950. We would then know that
the unknown frequency was 99,950 Hz. If there were an error in the
interval over which we did the counting, there would be the same
percentage error in our frequency measurement.

For this reason, we will use a crystal oscillator as a time
standard rather than the power line. Both this signal and the
unknown signal are applied to a logic gate that allows the unknown
signal to be counted during the counting interval. The signal
processing in the chain is to "square up" the unknown signal so that
it will be compatible with out TTL logic and to adjust its level.

UNDERSTANDING A DIGITAL SYSTEM
The preceding paragraphs show in a general way the process

of solving a problem by combining various digital functions. When
one is confronted with a digital system that has already been
designed and wants to understand it, the process is reversed and in
general is less straightforward. Faced with a complicated diagram
containing hundreds of ICs, it isn't easy to see the function of each
one. Often, the best approach is to start with the inputs and outputs
and trace from each end until a functional picture of the entire
system can be constructed.

Suppose, for example, that the frequency counter of Fig. 11-7
were simply a part of a larger system and we had no clue to its
function. We could start at the readouts. We know their function.

157

Fig. 11-7. Block diagram of a frequency counter.

They display decimal numbers in response to signals that cause the
various segments to light up. The decoders are almost as easy to
understand. Checking the data book, we find that the inputs to
these decoders are BCD signals.

The next step isn't so easy. When we come to the 7475
latches, we know that their function is to latch some digital signals
and hold them. We might not have the slightest idea of why they
might need to be stored. There are two possible reasons for using
the latches. One is that the signal which is to be displayed on the
readout isn't available all the time. It might be a signal that occurs
occasionally and is latched so that it can be read out on the display,
or it might be a signal that is usually changing so fast that it can't be
read on the display. With a little more investigation we can find that
the latter is true in this case.

The counter chain will probably be the easiest to understand.
Counters are straightforward. By checking the data sheet we can
see what the counter is supposed to do, and with that information
we can usually figure out what the designer intended. There is one
potential problem with counters in that some counter ICs can be
connected to count in different ways. For example, a certain
counter may divide by 6, 10, or 12, depending on how it is
connected. To be sure of just what the counter is doing, we must
carefully check the connections.

In reading the block diagrams of digital systems, it is common
to encounter an arrangement that doesn't make any sense at all at

158

Fig. 11-8. With this arrangement, half of an integrated circuit is used as an
inverter.

first glance. For example, one might find the arrangement shown in
Fig. 11-8. Here, the first stage is obviously a 4-input NAND gate.
The second stage isn't as clear, however, because although the
function is also a 4-input NAND gate, all four of the inputs are tied
together. A little thought reveals that when a 4-input NAND gate is
connected in this way, it functions as a simple inverter. If we
construct a truth table of the whole arrangement, we will find that it
operates as a 4-input NAND gate.

The first question that might arise is why the designer didn't
use an inverter in place of the second NAND gate. The reason, of
course, is that there are six inverters in the usual package and he
may need only one. Futhermore, there are two 4-input NAND
gates in a package such as the TTL Type 7420. There is still the
question as to why he didn't use half of the Type 7421, which
contains two 4-input AND gates. Perhaps, in many applications, he
could indeed have used the Type 7421. On the other hand, if the
output of the circuit of Fig. 11-8 were used to reset a flip-flop or
counter, the additional propagation time of the second gate might
be needed to assure proper operation of the overall circuit. In this
case, using the Type 7420 with one half operating as a 4-input
NAND gate and the other half operating as an inverter might be the
optimum choice.

Thus, by carefully considering the various possibilities, one
can usually at least figure out how the system is supposed to work.
Sometimes, indeed, the design isn't optimum. For example, if one
type of IC is used in very large quantities, it might be advisable to
use it in places where it would not normally be used just because of
the cost savings. This, of course, is something that one not
involved in the design would not know.

159

Chapter 12

Digital Video

One aspect of broadcasting where digital technology is having an
ever-increasing effect is in television. It seems that many of the
things that we have always wanted to do with TV signals have been
impossible or at least impFactical with analog techniques. Such
things include time-base correction, generation of special effects,
elaborate graphics, reduction of noise, and the conversion from one
transmission standard to another. These things are not only
practical, but in many cases rather easy with digital techniques.

The pioneering work on digital television was done by Bell
Telephone Laboratories in connection with the development of a
picture phone. This work was expanded considerably in connection
with the space program, with the result that most of the required
technical knowledge is readily available.

The application of digital technology to television is limited
primarily by the cost and availability of components. The first
commercially available digital television device was a time-base
corrector introduced in 1973. Since then, many more digital
television devices have become available and more can be
expected on a regular basis.

Many of the digital television devices available today are
organized in accordance with the block diagram of Fig. 12-1. At the
input of the system an analog video signal is converted to digital
form and at the output a digital signal is converted back to analog
form. The reason is, simply, that TV cameras are analog devices,
and present transmission standards require that the TV transmit-
ter be modulated with an analog signal. In spite of the fact that a TV
system must start and end with an analog signal, it is well

160

VIDEO SIGNAL -e,
IN

A/O
COwEFrrai

— DIGITAL
PROCESSCR

D/A
nccemerER

.--10,VICE0 SIGNAL
CUT

Fig. 12-1. Block diagram of a typical digital TV signal processor.

worthwhile to convert the signal to digital form because of the
many useful things that we can do with digital techniques.

Most of the advantages of digital processing stem from the
facts that digital signals can be stored easily, and that digital signals
can be completely recovered after they have been corrupted with
noise.

Inasmuch as the input and output stages of many digital video
signal processors are AID and D/A converters, they can be
installed somewhere between the camera and the modulator, and
the fact that they are digital will not be apparent to the operator.
Devices of this type are sometimes said to be "transparent" to the
video signal.

The A/D converter at the input of a digital processor is often
called a coder and the D/A converter at the output is called a
decoder. Frequently, the combination of the two is called a codec.
Before we look at what a digital system can do with a video signal,
lets look in more detail at the coder and decoder.

THE CODER

The coder, or device which is used to convert an analog video
signal into digital form, performs three functional operations:

1. Sampling. Here a sample is taken of the signal and is held
while the conversion process is taking place.

2. Quantizing, which is adjusting the signal to specific levels.
3. The coding, or actual analog-to-digital conversion. These

three functions are shown in Fig. 12-2.
The first question that arises in connection with digitizing any

analog signal is how frequently we must take samples in order not
to lose any of the detail in the original signal. In an earlier chapter,
we mentioned the so-called "Nyquist Criterion," which tells us

SAMPLE
ANALOG -0. L P — AND —01JANTIZER— COCER —0,,,DIGITAL
VIDEO FILTER HOLD VIDEO

IN OUT

Fig. 12-2. Stages involved in typical video analog-to-digital conversion.

161

that in order not to lose any of the information in a signal we must
take samples at twice the highest frequency present in the signal.
Let's take another look at this and see if we can make a little more
sense out of it.

One way to look at sampling is to consider it to be amplitude
modulation. The sampling signal is the carrier and the signal being
sampled is the modulating signal. From what we know about
amplitude modulation, we will expect two sidebands to be
produced, one at a higher frequency than that of the carrier and one
at a lower frequency.

Figure 12-3A shows a regular video signal in the video
frequency domain. This figure shows that all of the information in
the signal lies between zero frequency and some high frequency,
which we will call fo. Now let's use this signal to amplitude-
modulate some sampling signal which has a frequency fs. Figure
12-3B shows the original signal, called the baseband signal, which
occupies that part of the spectrum between 0 and f., the sampling
signal, f, and the upper and lower sidebands. Each of the sidebands
has a bandwidth equal to f.. Looking at the figure we can see that if
we don't want the lower sideband to fall on top of the original
signal, the lowest frequency that we can use for the sampling signal
must be equal to twice f.. This gives us another way of looking at
the Nyquist criterion.

Taking another look at Figs. 12-3A and B, we note that we
have shown the signal as occupying a rectangular piece of the
frequency spectrum. This, of course, is an ideal situation which we
will not find in practice. In the real world, the frequency domain
representation of a signal will start to fall off at some frequency, but
there will be still higher frequency components that will extend
beyond where the signal starts to fall off. Thus, the spectrum of a
real-world signal will look like that shown at the left of Fig. 12-3C
and the sidebands of the modulated signal will occupy a spectrum
like that shown farther to the right. From this, we can see that in
the real world it would be a good idea to use a sampling frequency
that is much higher than 2f0.

In practice, television sampling is usually done at either three
or four times the frequency of the 3. 58-mHz color subcarrier. In
addition, the higher frequency components of the original signal
are attenuated with a low-pass filter as shown in Fig. 12-2.

Now that the sampling frequency is out of the way, we must
take a look at the number of levels into which we will quantize our
signal. Here we encounter the first difference between analog and

162

Fig. 12-3. Practical video signal sampling considerations regarding bandwidth.

digital signals. Whereas the analog signal can, at least in theory,
assume an infinite number of values, the digital signal can have only

a discrete number of values, depending on how many bits we use to
represent each sample. A 4-bit digital signal can represent 16
different values if we count zero as one of the values. The effect of
quantizing is shown in Fig. 12-4. Here we have allowed our signal
to take on four different values regardless of the number of samples
that we might take. In the figure we have shown a typical analog
signal that varies smoothly from one value to another. If at the
moment that we take our sample the value of the signal lies

163

Fig. 12-4. Typical method of quantizing video signal levels.

between 0 and A, we will let it take on the value 1. If it lies
between A and B, it will take the value 2. If it is within B and C, it
will take the value 3, and if it is between C and D it will take the
value 4.

The same information is also given in slightly different form in
Fig. 12-5. Here we see that if during the sampling interval the
signal being sampled varies from one value to another, the
quantized signal will have a value somewhere between the two
extremes.

Naturally, if the brightness of a signal on a TV screen could
have only four possible values, the picture would be far from
satisfactory. We know that we must have more than four quantizing
levels, but how many more?

An insufficient number of quantizing levels can distort the
signal in two different ways. The first type of distortion that we will
consider is called contour distortion. This is caused when a slight
variation in the brightness of a part of a scene results in the signal
jumping from one quantizing level to another. This is very
noticeable when only a few quantizing levels are used.

Another form of distortion associated with quantizing is called
quantizing noise. This is due to the fact that the elements of a
quantized picture do not have their exact original value. As the
number of quantizing levels is increased, this effect is less
noticeable, but tends to occur on a random basis in different parts of
the picture, thus the effect resembles noise in the picture.

There is another consideration in selecting the number of
quantizing levels. That is, with the advent of many different types
of digital processing units, each of which has its own codec, a signal
may pass through several conversions between the time that it

164

leaves the cameras and is finally broadcast. If there aren't enough
quantizing levels, the effect of several codecs in tandem can add up,
causing a considerable amount of distortion.

Inasmuch as the quantized signal will be converted into a
digital signal, the number of quantizing levels selected will usually
be some integral power of two. Experience has shown that if the
signal is quantized into 256 different levels, it will be practically
indistinguishable from a regular analog signal. Furthermore, up to
seven codecs can be connected in tandem without any noticeable
effect of the quality of the signal.

The number 256 is equal to the eighth power of two, so the
signal can be represented by an 8-bit digital word. Thus, each
sample of the signal will result in one byte of data.

An important consideration in the transmission of any signal,
digital or analog, is the frequency range or bandwidth of the signal.
If in a codec we sampled a signal at the rate of three times the color
subcarrier frequency, we would sample at a rate of 10.7 mHz. Each
sample of the signal results in eight bits, so we would have a data
rate of 8 x 10.7 = 85.6 million bits per second. In addition to the
data bits representing the actual signal, we must add some other
bits for synchronizing and possibly parity checking. So the actual
bit rate would be higher than this. There is a generally accepted
rule of thumb that to transmit a 525-line, 60 field-per-second
picture a data rate of 100,000,000 bits per second is required. If, in
the worst case, the data consisted of alternate is and Os, the
corresponding frequency would be 50 rnHz.

Obviously, one of the prices we pay for having a video signal in
digital form is that the bandwidth required for tansmission is much
greater than with the same signal in analog form. One thing that can

Fig. 12-5. Quantizing errors.

165

be done to keep the bandwidth within reasonable limits is to keep
the data in parallel form inside the processing unit. This is
practical, because the paths within the unit are relatively short.

Figure 12-6 shows a parallel system with eight bits. Here,
although all of the data may be processed at the rate of 100
megabits per second, the bandwidth on any one of the eight lines is
only about half the sampling frequency. Thus, with sampling at
three times the color subcarrier frequency, the bandwidth on each
line is about 5 mHz. If we sample at four times the color subcarrier
frequency, the bandwidth will be about 7 mHz. In practical terms,
this means that video digital processing units can use Schottky

TTL logic.
The coder is actually an analog-to-digital converter. Because

of the speed required, a successive approximation converter of the
type described in an earlier chapter is used. This type of converter
is fast enough to keep up with the digital signal.

BANDWIDTH REDUCTION

One of the areas of digital signal processing where a great deal
of work is being done is that of bandwidth reduction. If the rules are
ever changed to the point where we can actually transmit digitally
modulated TV signals, it is imperative that the bandwidth be
reduced.

Another area where bandwidth is critical is in magnetic
recording of TV signals. Although the state of the art is continually
being improved, the limitations of the magnetic media tend to limit
the bandwidth of the recording. Still another area where bandwidth
is critical is in the distribution of TV signals by landlines and
satellite systems.

50 MHz
DATA RATE

50 6.25 IN Hz
8 - CATA RATE

ON EACH LNE.

Fig. 12-6. A narrower bandwidth is needed with parallel transmission.

166

The most obvious way of reducing the bandwidth of a digital
TV signal is to not digitize the blanking intervals. The horizontal
and vertical blanking intervals in a regular picture contain no
information and they can easily be reconstructed later. By leaving
them out, we can reduce the bit rate by as much as 20%.

Another technique that is often used in digital systems to
reduce bandwidth is called "differential modulation," or differential
pulse code modulation DPCM . This system works on the basis
that a great deal of the information in the picture doesn't change
very much from one picture element to the next, from one line to
another. The system is based on the principle of merely transmit-
ting the differences in signal level or color, rather than transmitting
all of the information in each picture element. Problems connected
with this scheme are that it is not easy to predict when one picture
element will change drastically from another.

Another method of bandwidth reduction is sampling at below
the Nyquist rate. The way this is done is exactly the same way that
the NTSC color subcarrier is interleaved with illuminate signal.
The reason we have to sample at at least 2F0 is so that the lower
subcarrier that results from that sampling will not overlap the
baseband signal. If a way is found to interleave the information is
the lower subcarrier with the baseband carrier, the two can in fact
overlap without causing distortion.

There are still other methods of processing signals, so that
when digitized the spectral components are interleaved or com-
pressed. The result is that a smaller bit rate is required for
adequate sampling.

The area of bandwidth reduction by digital techniques is one
that we can expect to see continual advancement. An information-
theory analysis of the TV signal shows that we are transmitting
much more information than is really required to actually represent
the signal. The amount of bandwidth to be used in the future to
transmit TV signals will depend greatly on developments in the
state of the art of bandwidth compression.

The decoder of our codec is really a digital-to-analog conver-
ter. It's function is just the inverse of the A-to-D converter at the
input of the processor.

TIME-BASE CORRECTION

Modern TV programming is based on the use of portable,
inexpensive tape recorders. Electronic news gathering or elec-
tonic journalism would be impossible without recorders that could

167

be carried to the scene of the action and operated under all sorts of
environmental conditions.

The main obstacle in the use of such recorders is the presence
of what are commonly called time-base errors. There are three
general classes of these errors.

E The sync pulses, vertical or horizontal, or color subcarrier
may become displaced in phase.

E There may be actual discontinuities in these sync pulses.
E The frequencies of the sync pulses can be changed.
Some of these errors can be attributed to limitations of the

magnetic tape itself. The tolerances and manufacturing processes
are such that the tape may stretch or distort when operated under
adverse environmental conditions. Other errors may be traced to
the recorders. As the size and weight of the recorders are reduced,
there is a greater probability of error. The situation is complicated
by the fact that portable recorders are forced to operate under all
sorts of adverse conditions.

The use of such recorders has been made possible by the
introduction of the time-base corrector. The early time-base
correctors were analog in nature. They effectively inserted
varying amounts of delay into the system so that the recorded
signal being played back could be locked to the studio sync. Many
of these analog time-base correctors were designed specifically for
use with particular video tape recorders.

The digital time-base corrector which resulted from lower
cost digital components is a stand-alone device. It can be used with
almost any video tape recorder and is often billed as a cureall for all
sorts of problems encountered with recorded video signals.

It might be useful to the broadcast engineer to point out a few
things that a time-base corrector cannot do. These things fall under
the general heading that the time-base corrector can't improve
poor picture quality if it is not directly related to time-base errors.
If the recorded program had poor lighting, wrong color, poor
signal-to-noise ratio, the time-base corrector can't do much about
it. It basically corrects time-base errors in recorded signals. Some
of the time-base errors can be recognized as shift in color, blurring,
flag waving, color streaking, or rolling upon switching.

Figure 12-7 shows a block diagram of a digital time-base
corrector. The main element of the processing portion of the
system is a semiconductor memory. This memory is controlled by
a block called "memory control logic."

The signal coming in will have the proper phase with respect
to its own sync pulses. This signal is detected and applied to the

168

Fig. 12-7. Block diagram of a digital time-base corrector.

control logic that will make it write directly into the memory.
Thus, in our memory we will have a pretty good representation of
the incoming signal. The rate at which it is written in may vary with
the time-base errors. But, once in the memory the signal will be in
pretty good form. Now, the question is to get it out.

The reading of the memory is controlled by a digital signal
derived from the reference sync signal and color subcarrier.
These, in turn, are derived from the studio sync. Thus, the readout
of the picture that is stored in the memory will be controlled
entirely by the studio sync. Just about any time-base error can be
eliminated in the corrector. Finally, the digital signal is converted
back into analog form and applied to the video chain.

The range of time-base errors that can be handled by a
time-base corrector is often called the "window." For example, if a
time-base corrector can correct any delay error up to one
horizontal scan period, it is said to have a range or window of 63
microseconds.

As digital technology continues its rapid pace of development,
we can expect time-base correctors to become smaller, less
expensive, and to consume less power.

ELECTRONIC GRAPHICS

One place where digital technology has found widespread
application is in the generation of numerals and alphabetic
characters on TV screens, as well as the generation of all sorts of
special graphic effects. The TV picture is derived by scanning.
This means that any spot on the picture can be very accurately
specified in terms of time intervals with respect to the sync pulses
in the signal.

169

Suppose that we wish to generate a segment on the screen so
that we can develop an alphabetic character. As shown in Fig. 12-8,
the segment can be completely specified in terms of time intervals.
The vertical position of the segment will be determined by the time
that elapses from the vertical sync pulse. In Fig. 12-8, this is
interval "C." The horizontal position of the segment is specified in
terms of interval "A" from the horizontal sync pulse. The
horizontal length of the segment is determined by the duration of
pulse "B." Thus, the first segment in our picture is the top of the
letter A. To form the complete character, segments of the proper
duration are generated on each horizontal line for the required
number of lines, "D."

Using this procedure, any number of graphic elements can be
developed to provide almost any desired graphic effect. By
changing the pulse repetition frequency of the graphics generator
as compared to the sweep frequencies of the signal, the characters
can be made to crawl in either direction horizontally or to roll
vertically.

Early character generators used a very large number of
small-scale integrated circuits. Modern systems take advantage of
available large-scale intergrated circuits and often use microcom-
puters for control of the overall system.

THE VERTICAL BLANKING INTERVAL

The vertical blanking interval of a TV signal has always been a
challenge to broadcast engineers. During this interval, the signal is
blanked from the screen, but horizontal sync pulses are being
transmitted. There is nothing in that part of the signal that normally
carries picture information. In effect, we are transmitting a carrier
without any information on it. Naturally, many different proposals
have been advanced to make use of this part of the signal.

One of the first uses to be made of the blanking interval was
the transmission of test signals. Test signals are added to the
signal before broadcasting. Knowing what the test signals should
look like makes it possible to make corrections for distortion
suffered in transmission. Digital computers can be used to analyze
these test signals and make automatic corrections to compensate
for distortion.

Several other uses have been proposed for the vertical
blanking interval. Many of these center around transmitting
alphanumeric characters using ASCII characters. The word teletext
has been used as a generic term to embrace all of these systems. In

170

14-A-)14;4_

 V\

Fig. 12-8. The letters in the dimension line indicate time intervals used in
generating graphics.

Europe, many such systems are actually on the air, transmitting
everything from weather and time information to stock market
quotations. At the time of this writing, these systems have only
been used experimentally in the United States.

An interesting application involved adding captions to pic-
tures for the benefit of deaf viewers. Captioning has been used on
some networks for years, but while it is very helpful for those who
are hard-of-hearing, it tends to be annoying to those who can hear
the audio perfectly well.

The proposed captioning system would transmit the ASCII
characters that make up the captions during the vertical blanking
interval so that they would not normally appear on the screen.
Thus, a viewer who was not hard-of-hearing would never know that
the captions were being transmitted. A deaf person could,
however, add a converter to his receiver. The converter would
pick up and store the characters that were transmitted during the
vertical blanking interval. These characters could then be dis-
played on the screen in response to commands that were also
transmitted during the blanking interval.

There are a few unique problems associated with transmitting
digital signals during the vertical blanking interval. In the first
place, the data is transmitted at a slow rate, because the intervals
only occur at a rate of 60 times per second. The individual bits of
data must be transmitted at a much higher rate, however, because a
complete character must be transmitted during the time of one
horizontal line—about 63 microseconds.

These characters which are caught on the fly and stored are
critical as to timing, and thus are much more susceptible to
problems from such things as multipath transmission than are
ordinary video signals. This problem is overcome by transmitting
special synchronizing words that permit detection and correction
of timing errors.

171

Chapter 13

Digital Audio

Although digital video processing got somewhat of a head start on
digital audio in the broadcast field, digital audio is rapidly catching
up. The advantages are fully as great in audio as in video, and in
some respects the problems are not as formidable. It will probably
come as a surprise that the number of bits per sample required for
faithful reproduction of an audio signal is greater than that required
with a video signal.

As we noted in our discussion of digital video, there are two
separate considerations in digitizing an analog signal. The first is
the sampling rate, which is determined entirely by the highest
frequency component of the signal that we wish to digitize. Of
course, the highest frequency in an audio signal is much lower than
that of a video signal, so we can live with lower sampling
frequency.

The other consideration is the number of bits required to
represent each sample. This cannot be determined by a formula
such as the Nyquist criterion, but depends on subjective considera-
tions. The number of bits per sample in a video picture depends on
how the resulting picture looks to an observer. Similarly, the
number of bits per sample in a digitized audio signal depends on
how the signal sounds to a listener. We saw in the preceding
chapter that an 8-bit picture looked, for all practical purposes, as
good as an analog signal. In audio, however, we find that we need
about 12 bits per sample for the resulting signal to sound natural.

One of the things that makes digital systems easy to
understand is the fact that all digital systems seem to have a great
deal in common. Thus, it is not surprising to find that the digital

172

AUDIO INPUT
A/D
CON-
VERTER

RAM

I

-I!

CONTROL

D/A [....
CON-
VERTER

Fig. 13-1. Block diagram of a digital audio processing system.

audio processing system shown in Fig. 13-1 is practically identical
to the video systems that we studied earlier. Functionally, the
systems are nearly identical, but they differ in sampling rates and
the actual use that is made of the samples.

One of the problems that digital processing solves in video is
related to time-base errors. In audio, we are not concerned with
accurate timing. About the only timing consideration is the
development of echo effects by time-delay units. Of course, this
can be accomplished digitally as shown in Fig. 13-2. Here we
introduce a variable amount of delay into the signal by connecting
the output to various stages of a shift register.

NOISE REDUCTION

One of the most promising uses of digital technology in the
audio field is in reduction of noise in recordings. There are two
different aspects of noise reduction involving digital technology.
The first, which we have mentioned in Chapter 1, involves the fact
that once we have a signal in digital form, it can acquire quite a bit of

Fig. 13-2. Block diagram of an elementary digital audio delay line.

173

noise which can be removed by digital techniques. The second,
which is more involved, is that digital techniques can be used to
remove noise from an analog signal.

First let's review the way that the effects of noise can be
removed from a digital signal. Figure 13-3A shows a digital signal.
It consists of a series of pulses that are either high or low. Figure
13-3B shows this same signal after it has been corrupted by noise.
By simply looking at the signal in Fig. 13-3B, we can quite easily
tell where the highs and lows of the original signal are. Of course,
looking at an audio signal doesn't do very much for us. We must
have an electronic system that will do the job for us.

Figure 13-4A shows an arrangement that can be used to
recover a digital signal from noise. The input stage is a Schmidt
trigger of the type that we have mentioned several times. The
output of this stage will go low whenever the input reaches a
certain level. It will not go high if the signal falls below this level. It
will go high only when the input falls to an even lower level.

Figure 13-4B shows how the hysteresis of the Schmidt trigger
will recover a clean digital signal from noise. The hysteresis will
prevent the output signal from swinging high and low with small
noise perturbations of the input signal.

Looking at Fig. 13-4 we can easily imagine situations where
the noise corruption can be so bad that even our Schmidt trigger
won't recover the original signal. One such situation is shown in
Fig. 13-5. Here, the noise perturbation is so bad that there are

-

o

-e- -,vv\- 4\fie

0

-^Me 4 -Ailve -W

Fig. 13-3. Distorted digital signal.

174

>0 >0
4Ae

-
-

jeffi -eq.
INPUT OUTPUT

o

—TRIGGER
—LEVELS 0

Fig. 13-4. A Schmidt trigger can be used to clean up a digital signal.

places within the high level of a pulse where the signal actually
goes to zero (points A and B in the figure). The Schmidt trigger has
no way of distinguishing the noise pulse from a low level.

We still aren't completely helpless. We have another tool at
our disposal. If transmission standards have been adopted, we
know a lot about the type of pulse train that is buried in the noise.
For example, we may well know the duration of each pulse that
makes up the system. In this case, we can install some sort of delay
unit that will not let our signal change level until the end of a normal
pulse period. Figure 13-6 shows a simplified approach to this.
Here, our Schmidt trigger is followed by a one-shot multivibrator
that will generate a pulse equal in duration to one of the pulses in

Fig. 13-5. This comparison shows a severely distorted digital signal.

175

our system whenever a high level is detected. This pulse is applied
to a gate that will not pass any pulses between the limits of this
time period. Thus, if a spurious noise pulse should occur during
one of the signal pulses, it will not appear in the output.

There is still another way in which a digital signal can be
corrupted by noise. Although we can recover the original high and
low signals, we can't necessarily determine the exact instant at
which the original signal changed state. There are two ways that
we can attack this problem. One is to store our recovered signals
and then read them out of the memory smoothly by a clock that
operates at the data rate of the original signal.

There is another technique that can be used to recover signals
from noise. It involves correlation techniques. We will discuss this
in the following paragraphs.

REMOVING NOISE FROM ANALOG SIGNALS

Before we consider how to use correlation techniques in
digital signals, let's look at just what we mean by correlation.
Figure 13-7 shows a simple sinusoidal signal. Figure 13-7B shows
a very noisy signal that may or may not contain the sinusoidal signal
of Fig. 13-7A. Our problem is to find out whether or not the signal
of Fig. 13-7A is indeed present in the noisy signal of Fig. 13-7B,
and, if so, to recover it.

Suppose that we have a signal source that produces the signal
of Fig. 13-7A. Also suppose for the moment that if this signal is
present in the noisy signal of Fig. 13-7B, it will be in phase. We can
get rid of this restriction later.

In Fig. 13-8 we have a system where we apply both the noisy
signal and the signal from our generator to a multiplier. First let's
suppose that the sinusoidal signal that we are looking for isn't
present in the noisy signal at all. The noisy signal will be
alternately swinging positive and negative, as shown in Fig. 13-9.

ONE-SHOT
\ MULTIVIBRATOR

11

SCHMIDT TRIGGER

Fig. 13-6. A one-shot multivibrator can be used to establish pulse duration.

176

Fig. 13-7. The sinusoidal signal (A)

is buried in noise (B).

Thus, the product of this signal and our sinusoidal signal will
alternately be positive and negative. In the next stage of our
system we integrate the output of the multiplier. If the signal is
alternately positive and negative, the voltage across the capacitor
will alternately go positive and negative so that the net charge in
the capacitor will not increase.

Now let's look at the other situation. Suppose that the signal
that we are looking for really is present in the noisy signal as shown
in Fig. 13-10A. Now our system will multiply our sinusoidal signal
in Fig. 13-10B by the noisy signal. Inasmuch as the sinusoidal
signal buried in the noise is assumed to be in phase with our locally
generated sinusoid, both signals will be positive at the same time.

NOISY
SIGNAL

HMULTIPLIER

I

OUTPUT

,i, INTEGRATOR

SINUSOIDAL =. SIGNAL

SIGNAL
GENERATOR

Fig. 13-8. Block diagram of a correlator used to detect a signal in noise.

177

Fig. 13-9. The average value of the

product of a sinusoid and noise is

zero.

Inasmuch as the product of two positive numbers is positive, and
the product of two negative numbers is also positive, the output of
the multiplier will be positive at all times. If this signal is applied to
our integrating capacitor, the net charge will tend to increase. This
is shown in Fig. 13-10C.

To summarize, we now have a system that will tell us whether
or not a locally generated signal is actually present in a signal that
looks for all practical purposes like random noise. We call this
technique the cross correlation of our locally generated signal and
the noisy signal. We can look at the output of the integrator. And
when it exceeds a certain value, we can use the locally generated
signal as the received signal, because we know that it is actually
buried in the noise.

So far we have tacitly assumed that if the signal we are looking
for is actually present in the noise it will actually be in phase with
our locally generated signal. In the real world, we would never be
so lucky. What we must do is to add a phase shifter to our system as
shown in Fig. 13-11A. Here we will vary the phase of our locally
generated signal until the output of the integrator is maximum. As
we vary the phase, the output of the integrator will be as shown in
Fig. 13-11B. When the two signals are in phase, the output of the
integrator will be maximum. Thus, we cannot only recover the
signal that we are looking for from the noise, we can also determine
its phase.

One thing that is apparent from our discussion of correlation is
that it takes time to perform. We must have time to shift the phase
of our signal and it takes time for the capacitor to integrate the
signal to tell us whether or not the signal we are looking for is

178

actually present. In the meantime the noisy signal will continue to
go on. It won't wait for us to perform our magic operations.

There is another limitation to our scheme. If we applied an
analog signal, such as speech or music, we would need a separate
locally generated signal for each frequency that might be present
buried in the noise.

Both of these limitations can be overcome by using digital
techniques. First, digital signals are easy to store. We can store
the digitized version of the noisy input signals and correlate it at a
more leisurely pace and again store the result. The other
advantage of using digital techniques is that we are only looking for
highs and lows, not for every frequency that might be present.

DIGITAL CORRELATION

A digital correlation system would have a block diagram
similar to that of the analog system that was described above.
However, the low cost of digital computer equipment makes it
possible to perform very elaborate correlation functions at low
cost. Some phonograph recordings of famous artists who are now
dead have been resurrected and had all or almost all of the noise
that was characteristic of recordings of their day removed.

The audio techniques that can be implemented with a
computer far exceed those that we have discussed above. For
example, we know a great deal about the nature of what might be on
a recording. If the subject matter of a recording is a known musical
piece, we know a great deal about just what we should be looking

Fig. 13-10. Waveforms illustrating

the operation of a correlator circuit.

179

for when we process the signal. Using this knowledge, we can
operate on a signal several times to recover as much of the original
as we wish.

DIGITAL AUDIO RECORDINGS

At the time of this writing there have been no universally
accepted standards for digital recording of audio signals. Video
recorders have been developed to the stage where ample recording
bandwidth is available to accommodate elaborate digital encoding
of audio signals for recording.

The advantages of digital recordings are obvious. The
principal advantage is the freedom from noise. If the recording
track on the recording is digital, all that the pickup system has to do
is to decide whether the signal at any instant is a zero or a one. This
means that the recording will not be seriously affected by dust and
greasy fingerprints.

We can expect many advances in this field in the very near
future. Probably the biggest obstacle at present is the lack of
universally accepted standards that will lead to mass production of
both recordings and reproduction equipment.

Fig. 13-11. Correlator system with phase shifter.

180

QUASI-DIGITAL TECHNIQUES

Although they do not properly fall under the heading of digital
circuits, there are many techniques used in audio amplification that
are nearly digital in nature.

The efficiency of vacuum tube amplifiers was seriously
limited by the fact that there is an inevitable voltage drop across a
tube even when it is conducting at its maximum value of plate
current. The transistor does not suffer from this limitation. A
transistor can be operated nearly like a switch. When it is turned on
fully there is a large current, but a very low voltage drop. Inasmuch
as the dissipation in the transistor is equal to the product of voltage
and current, the dissipation will be low. Similarly, when the
transistor is turned off, there will be a voltage across it but there
will be little or no current. Thus, again, the dissipation is low. In
a transistor connected as a switch, about the only time that the
internal dissipation is significant is when the transistor is switching
from on to off or vice versa. That is, when we have a significant
value of both voltage and current.

Because of this possibility of very efficient operation of
transistors, there is a trend to operate transistors as close to
switches as possible. This permits the design of very efficient
amplifiers.

The ideal way to operate a transistor amplifier is to operate on
truly digital signals. In this way, the transistor is either on or off,
except during the very short periods when the signal is changing
from a high to a low or vice versa.

Because of the difficulty of changing from analog signals to
digital and back again, the use of true digital signals, as we have
been discussing them, in home and studio audio equipment is
rarely practical. There are, however, many other techniques that
can be used that are very similar in nature.

One technique is to represent the amplitude of a signal by the
duration of a pulse. This technique, which is called pulse-duration
modulation, keeps the signal at a high or low level almost all of the
time. Pulse-duration modulation is also used in an amplitude-
modulation scheme that eliminates the high-power modulator
tubes and transformer that formerly characterized an AM transmit-
ter.

We can expect increasing use of switching, or quasi-digital
techniques, in the amplification and processing of audio signals.

181

Chapter 14
Digital Remote And Automatic Control

The subject of digital control systems is very complex. Many
digital control systems include their own digital computer. Natur-
ally, we can barely scratch the surface in a single chapter. What we
will try to do is to include enough information to enable the reader
to read and understand the instruction manuals covering control
systems so that he can learn to handle them.

THE OPEN-LOOP SYSTEM

One type of control system is called an open-loop control
system. As shown in Fig. 14-1, control information is fed into one
end of the system and something happens at the other end. The
switching arrangement used to change the antenna networks of an
AM station from its daytime to its nighttime pattern is an open-loop
system. Looking at the block diagram of Fig. 14-1, we can see that
the open-loop system might be adequate for some situations, but
rather inadequate for others. For example, an open-loop system is
fine for controlling tower lighting. The switch can be thrown to
switch on the tower lights, and the operator can look out the
window to be sure that the lights turned on.

On the other hand, if an open-loop system is used to do
something such as increase or decrease the power of a remote
transmitter, the system in itself isn't capable of telling us whether
or not the transmitter power actually changed, Thus, in addition to
most open-loop control systems, we have some sort of instrumen-
tation system to monitor the parameters that we are changing.

In Fig. 14-2, we show an open-loop system used in connection
with a remote measuring system. The measurement system

182

CONTROL
UNIT

TRANSMISSION
SYSTEM arl CONTROL DEVICE

Fig. 14-1. Block diagram of an open-loop control system.

displays the values of many of the parameters of a remote
transmitter, and the control system provides a method of changing
these parameters. Looking at the figure we can see that both the
measurement system and the control system are data transmission
systems. The measurement system sends measurement data from
the remote location to the control point. The control system sends
control data from the control point to the remote location.

In Fig. 14-3, we have carried the development of our system a
step further. Here we have used a single two-way data transmis-
sion system to carry data in both directions. This is still an
open-loop system, because at the control point the measurement
data is not connected directly to the control system.

THE CLOSED-LOOP SYSTEM

Let us for a moment consider the operator at the control point
of the arrangement of Fig. 14-3 to be a part of our system. The
system is now called a closed-loop system because the data follows
a closed path. The measurement data is first transmitted to the
control point where it is displayed on a readout. The data then
enters the brain of the operator. In the brain the measured value of
the parameters is compared with the correct value as known to the

CONTROL
UNIT

INDICAT-

OR

TRANSMISSION
SYSTEM

TRANSMISSION
SYSTEM

CONTROL
DEVICE

CONTROLLED -mu
PARAMENTER «mal

MEASURE
MENT
DEVICE

Fig. 14-2. An open-loop control system used with a measurement system.

183

CONTROL
UNIT

NDICATOF11-

MODEM

CONTROL POINT

PHONE
LINES

MODEM

_11 CONTROL DEVICE

MEASURE
MENT
DEVICE

CONTROLLED pPARAMETER
REMOTE PO NT

Fig. 14-3. Open-loop control and measurement systems using a single
transmission system.

operator. If any of the parameters do not have the correct value, the
operator's hand enters correction data into the control system.
This data changes the value of the parameter and the new value is
sent back to the operator.

Of course, in a true closed-loop system, we want something
other than a human operator in the control loop. But for now we can
learn a little about the behavior of a closed-loop system by leaving
our operator in the loop a little longer.

Let's suppose that our operator is a little slow compared with
what we want him to be. He notices that a parameter has fallen
outside of limits, but he takes his time about sending the proper
control signal. Even when he does initiate the control signal, he
sends a small signal at first, then slowly increases it as necessary.
If, for example, the parameter being measured happened to be the
plate current of a final amplifier, the plate current might follow the
curve of Fig. 14-4. Here, something happened that caused the plate
current to become excessive. Because of the fact that the operator
wasn't particularly speedy, the plate current remained at the
excessive value for some time, and then corrected slowly. We

would probably feel that this lag in the control is undesirable.
Let's look at the other extreme. Suppose our operator is

particularly fast and makes corrections instantly. Now, when he
notices that a parameter is out of limits, he reaches for the control
and applies full correction. Before the measurement system can
respond, the parameter has gone too far and is again out of limits in
the opposite direction. The operator again applies a correction, and
again the parameter overshoots in the other direction. The
parameter, such as plate current, might behave as shown in Fig.
14-5. Here we see that instead of controlling a parameter, we have
simply managed to make it oscillate about the desired value.

184

These two examples show us that a closed-loop control
system might either have excessive lag or it might oscillate. This
is exactly what we find when we get to a true closed-loop system.
In fact there are three ways that our system can respond. As shown
in Fig. 14-6, our system can have a slow lagging response, it can
oscillate, or it can make the correction in a minimum period of
time. Of course, this is the response that we really want.

THE CONTROL UNIT

Figure 14-7 shows a functional block diagram of the control
unit of a closed-loop digital control system. The value of the
controlled parameter is constantly monitored and sent to the
control point by a link such as a phone line. At the control point, a
digital signal is recovered from a modem. This signal is applied to a
digital comparator. Also applied to the comparator is a digital
signal that specifies the desired value of the controlled parameter.

The set, or desired, value of the controlled parameter is a
digital signal that is derived from a switching arrangement. It may
be taken directly from switches, or it may be stored in some sort of
memory. In either case, the operator can change it at will.

In the comparator, the actual value of the controlled parame-
ter is compared with the desired value. If the two agree, there is no
output from the comparator. If the actual value of the parameter
does not agree with the desired value, an error signal is produced.
The error signal will tell whether the parameter is greater or less
than the desired value. A signal is then sent to the remote point to
change the parameter in such a direction as to restore it to its
proper value.

CONTROL
INITIATED

DESIRED—
VALUE

TIME

Fig. 14-4. Curve illustrating correction time lag in a control system.

185

Fig. 14-5. Curve showing over-correction in a control system.

The system of Fig. 14-7 has been simplified considerably. In
an actual system, the error signal will usually not indicate the
direction of the error, but will be proportional to its magnitude.
The error signal can be processed digitally so that the system will
respond in an optimum way without either excessive lag or
oscillation.

Although many digital control systems have been built using
small-scale integration, the low cost of microprocessors has
changed this trend. Now almost every control system of any
complexity at all incorporates a microprocessor. This drastically
reduces the number of components in a system. However, the
functions that are performed are just about the same as those we
have described.

COMPLEX CONTROL SYSTEMS
The closed-loop control system that we have been discussing

in the preceding paragraphs is very simple compared with many
readily available control arrangements. In fact, it isn't easy to
understand how very complex functions can be performed by
simple digital functional units. There doesn't seem to be much

Fig. 14-6. These curves illustrate the modes of response of a closed-loop
control system.

186

resemblance between a complex system and the simple functions
that we have been discussing. The problem seems to be that
although the individual digital functions are very simple, it takes a
tremendous number of them to perform a complex operation.

One approach to understanding complex controllers is to
realize that any imaginable control function can be performed by
using both combinational and sequential logic. Combinational logic
will enable us to derive an output signal whenever any combination
of inputs is present. This function can be performed with a
collection of logic gates or circuits that perform similar functions.
By adding sequential logic, we can insist that certain operations
must be performed before other functions can be performed. We
can even specify the time that must elapse between functions. For
example, we can design a circuit for turning a transmitter on and
arrange the gates so that the heater voltage for the tubes must be
applied before the plate voltage can be applied. By adding a counter
in the circuit, we can specify how long the heater voltage must be
applied before the plate voltage.

ARITHMETIC OPERATIONS

In this book we have frequently mentioned the binary number
system, but about the only operation we used with the system was
counting. We have had no occasion to mention that various
arithmetic operations can also be performed with digital circuits.
Before we look at the subject of binary addition, let's take another
look at exactly what we mean by addition. Normally if we were to
add 8 and 4 in the decimal system, we would say that the sum is
twelve. This is not basic enough for us to apply it directly to binary
arithmetic. Let's look at what we actually do when we add 8 and 4:

I
DIGITAL
COMPARATOR

DIGITAL
SET
VALUE

MODEM

__...... ERROR
--- SIGNAL

TRANSMISSION
SYSTEM

Fig. 14-7. Block diagram of a control unit.

187

8
+ 4
12

What we actually do when we perform this addition is to put a 2 in
the right hand column, and then carry a 1 to the next column. Thus,
we can say that:

8 + 4 = 2 (with a carry)

Now let's look at binary addition. We stated the rules in
Chapter 1. They are:

0+0=0
0 + 1 = 1
1 + 1 = 10

Let's reword the last statement to read

1 + 1 = 0 (with a carry)

With this little bit of information, we can see that the
exclusive OR gate will perform binary addition, if we provide some
means to generate the carry signal when we need it.

It is worth noting that the binary addition function is not the
same as the logical AND function that we have performed so many
times. For example, we know that if we AND the binary numbers
for 4 and 2, one bit at a time we will get

0100 (4)
AND 0010 (2)

0000
This is because the only time that we get a 1 from the logical AND
process is when both of the inputs are 1. If we AND the bits of the
two words above we see that none of the columns has two l's in it.

On the other hand, if we were to add the two binary numbers
above we would get:

0100 (4)
+ 0010 (2)
0110 (6)

It is a good idea to keep these two functions separate when
dealing with a complex system where we might encounter both
operations.

Without getting into details, digital ICs are available that will
perform the various arithmetical operations readily. Thus, we can
multiply, add, subtract, and divide with little trouble. In fact a
single microprocessor IC can perform both arithmetic and logic
operations.

188

Chapter 15

Troubleshooting

Digital Equipment

The well-accepted method of troubleshooting analog equipment is
based on the troubleshooter having a rather thorough knowledge of
just how each stage of the equipment works and how each stage
contributes to the overall performance of the system. For example,
in troubleshooting the audio console in a broadcast station, the
technician carefully checks each stage until the faulty stage is
located. He then proceeds to check individual components until he
locates the defective component. The component is then replaced.

There is nothing wrong with this approach, if it is reasonable
under a given set of circumstances. Unfortunately, there are
several reasons why it cannot be adopted in many digital items. In
the first place, the state-of-the-art in digital equipment is advanc-
ing so rapidly that equipment is being installed so fast that the busy
engineer or technician can't keep up with all of the details. When
trouble occurs, the pressure to get it fixed and to get the station
back on the air is so great that there isn't time to learn the details of
system operation.

Furthermore, in a digital system, all of the systems compo-
nents are buried in integrated circuits so that a functional approach
must be taken.

Naturally, the best approach to troubleshooting any piece of
equipment is to be prepared in advance. If time is available, the
person responsible for troubleshooting must become sufficiently
familiar with each item of equipment so that he will be prepared to
troubleshoot it when trouble occurs. Although there is probably
universal agreement on the fact that this is a good approach to
troubleshooting, there is probably also near universal agreement

189

that it will rarely happen. In all probability, when a digital system
fails in a broadcast station, someone who has never had time to
become familiar with the details of its operation will be called on
not only to fix it, but to fix it quickly.

Fortunately, the situation isn't hopeless. There are many
aspects of digital systems that tend to make them all alike. They all
use digital signals. They all use the same functional operations.
Similar pulse shape and timing considerations are involved in all of
them. The result of all of this is that it is very frequently possible to
isolate and correct faults in a digital system with only a very
superficial knowledge of just how all of the components work
together to perform the overall system functions.

THE SAME OLD STUFF
One thing that must be born in mind is that digital systems are

subject to many of the same types of troubles that affect any
electronic system. Many of these common faults are so simple that
they are often overlooked as the technician becomes almost
overwhelmed by the complexity of the complete system. Some-
times simple things are checked only after many hours of useless
sophisticated troubleshooting.

As a first step in troubleshooting any type of equipment, look
for the common faults such as poor connections, broken wires,
short circuits, and even the power plug not being connected. Often,
checks of this type will save hours of troubleshooting.

The printed-circuit board has some unique faults. Often there
can be a faulty soldered joint that looks OK and works OK for a long
time before it begins to cause problems. Solder bridges across the
foil on the board may not make a complete connection for a long
time. Therefore, an inspection of a printed-circuit board should
include a close visual inspection—often with the aid of a light and
magnifying glass. Carefully probing connections can help in
locating poorly soldered joints.

THE INTEGRATED CIRCUIT AS A CAUSE OF TROUBLE
When solid-state devices first became popular we all learned

that they were extremely reliable. We were told that once a device
had lived through the initial burn-in period, its life was, for all
practical purposes, infinite. The only possible cause of failure was
exceeding its ratings. Everyone who had read the early articles in
journals learned that transistors and integrated circuits rarely
failed.

Those who gained experience with these devices soon
learned that much of what they had been told about reliability was

190

little more than wishful thinking. Solid-state devices can and do
fail. Perhaps not as frequently as capacitors and tubes, but that they
can and do fail.

Looking at the schematic diagram of what is inside an
integrated circuit shows that there are plenty of places for trouble
to occur. In fact, the circuits are so complex that one wouldn't know
where to begin. Fortunately, we need not concern ourselves with
most of what is inside an integrated circuit.

The best approach to troubleshooting a system with inte-
grated circuits is to know what is supposed to happen at the pins.
We needn't concern ourselves with where the actual trouble might
be. We can consider all faults as occuring just inside the package at
the pins. With this approach, the number of different failures that
can occur in any integrated circuit are quite limited. We can learn
each of these faults and how to recognize them.

The types of faults that can occur in a digital integrated circuit
fall into two classes. A pin can be opened, or it can be shorted to
another pin. Most of the catastrophic faults can be thought of as
being of these types.

There is another type of trouble that is familiar to anyone
working in electronics. That is the intermittent fault. This may be
one of the above faults that occurs intermittently, or it might be
what we can call a dynamic fault that only occurs under certain
conditions. First let's look at the IC as a cause of problems.

FAULTS IN INTEGRATED CIRCUITS
One of the most useful tools in investigating faults in an

integrated circuit is a truth table showing how the circuit is
supposed to behave. When the device is faulty, it will not behave in
accordance with its truth table.

Open Pins
We can consider a fault to be caused by an open pin when the

IC behaves as though there were no connection between the pin
and what is inside. The IC will not be affected by whatever signal
we apply to the open pin. If the open pin happens to be an output
pin, it will have no effect on what is connected to it.

Pins Shorted to the Power Supply
Sometimes a pin of an IC will be permanently in a high state. It

will behave as though it were connected internally to the positive
supply pin. Usually, this "high" will have a higher voltage than a
normal logic high. For example, in TTL logic a normal logic high is
usually in the order of +3V. If the pin is shorted to the supply the

191

voltage will usually be closer to +5V. This is often a useful clue in
troubleshooting.

Pin Shorted To Ground
A somewhat similar fault exists when a pin is permanently at

ground level. This low is usually about the same as a regular low,
so this type of fault isn't as easy to recognize.

Pins Shorted Together
In this instance, one pin will always have the same potential as

another pin. They may not be at any state permanently.
In the followingparagraphs we look at these types of faults in a

little more detail and look at ways that we might recognize the
faults.

The Open Pin
First let's look at what happens when the input pin of an IC is

open. Figure 15-1 shows the input circuitry of a typical TTL IC. To
make anything happen, we must connect the input pin, which is
actually the emitter of a transistor, to a low level. If we leave the
pin disconnected, nothing will happen. Now, if the connection
between the emitter inside the IC and the input pin is open, the
gate will behave as though the pin were stuck at a high level.

Note that we can't observe this condition at the input pin
itself. Inasmuch as it isn't connected to anything, the pin will follow
any voltage that we might connect to it. We can't definitely isolate
an open pin by making a measurement on it. The best approach to
locating an open input pin is to change the voltage on all of the input
pins while observing the state of the output.

Figure 15-2 shows a TTL NAND gate and its truth table. If the
gate is functioningproperly, it will follow the truth table.

Now let's suppose that the lead inside pin A of the IC is open
and not connected to the rest of the circuit at all. Of course, we
can't tell this by looking at the voltage on the pin. If we apply a high

Fig. 15-1. Input circuit of a TTL IC.

192

Fig. 15-2. TTL NAND gate and its truth table.

to the pin it will go high, and if we apply a low it will go low. What
we can do is to apply different inputs to the pins while observing the
output. Figure 15-3 shows what we will find.

The two columns at the left of the table show the input
voltages that we actually apply to the inputs. The next column
shows what we would see at the output if the circuit were
functioning properly. So far we have a regular truth table. The last

"PEN CIRCUIT

c.—

OUTPUT •

INPUT
CORRECT
OUTPUT

OUTPUT
WITH PIN A OPEN

A B

I

I

I

0

I

0

1

0

0

0

I

I

0

I

0

I

Fig. 15-3. The truth table shows the output of a NAND gate with pin A open.

193

column at the right shows what we actually observe at the output
pin. As shown in the figure, the only place where the observed
result differs from the truth table is in the second line. This is
because pin A, being open, drifts to a high level and the gate
interprets it as being high even though we have tried to apply a low
signal.

This figure also shows an interesting aspect of many faults
that we find in digital systems; that is, the faulty IC may behave
correctly for all but one possible combination of input signals. This
could easily mean that a system using an IC with such a fault would
behave properly most of the time. Suppose, for example, that the
particular combination of input signals shown on the second line of

Fig. 15-3 occured only rarely in the operation of the system. The
fault would be evident only at these times. As can be seen, such a
fault could be very elusive and hard to pin down.

Before we leave the subject of open input pins, let's look at a
NOR gate with the same type of fault; that is, an open circuit inside
the IC at pin A. Figure 15-4B shows the truth table for a NOR gate
and the output we would get from the faulty gate. Note that the
output will be low for all combinations of input signals. This is
because the only time that the output of a NOR gate can go high is
when both of its input pins are low. Inasmuch as pin A is open, the
corresponding emitter will drift to a high level and stay there.
Thus, there is no way that we can make both of the inputs low.

Looking over the table in Fig. 15-4B we see how the faulty
gate behaves, but we also see something else. We see that the gate
behaves exactly the way it would if the output pin were shorted to
ground. In either case, we would have isolated the fault to the same
IC, which must, of course, be replaced.

While on the subject of open pins, let's look at the output pin of
an IC. Of course, with the connection to the pin being open the
output circuit of the IC will not change the voltage at the actual pin.
It will be floating. Thus, the voltage at an open pin will depend on
what it is connected to. In the usual case, the output of an IC is
connected to an input pin of another IC.

Figure 15-5 shows such an arrangement. The input pin of IC2
will behave as though nothing were connected to it. Thus, it will
drift to a level that it will consider to be a high. This high will,
however, be lower than the usual TTL high. It will be in the order
of about +1.5V. Such a level is considered to be a "bad level."
This is because, although the gate will treat it as a high, it will
actually fall into the "no man's land" between high and low logic

194

INPUT CORRECT
OUTPUT

OUTPUT WITH
PIN A OPEN A B

0 0 1 0

0 1 0 0

1 0 0 0

1 1 0 0

Fig. 15-4. Illustrated in the truth table is a NOR gate with an open input pin.

levels. This fact can be used to verify the fact that the output pin of
IC1 is open.

Thus, whenever we find a bad level at the output pin of an IC,
we can be reasonably sure that the output pin is open and that the
bad level is coming from the input pin of the following IC. If the
suspected IC happens to be in a socket, we can verify this very
quickly. If the voltage at the output connection is the same whether
or not the IC is in the socket, we can be sure that the fault is an open
output pin.

Shorted Pins

There are three classes of faults that we can consider as shorts
at the pins of an IC regardless of where the actual fault occurs. An
IC can behave as though a pin were shorted to the positive supply,

OPEN CIRCUIT

A

WILL DRIFT TO
ABOUT +1.5V

Fig. 15-5. An open output pin in IC1 will allow pin A on IC2 to drift.

195

to ground, or to some other pin. Frequently when an input pin is
shorted to either the positive supply or to ground, the result will be
catastrophic failure of the preceding IC.

Figure 15-6A shows an input pin shorted to the positive
supply. As long as the output of the preceding stage is high, there
will be no problem. When the output of the preceding stage goes
low, there will be a short between the positive supply and the top of
transistor Q4, which will usually result in excessive current and
failure of IC1.

Figure 15-6B shows the situation where an input pin is
shorted to ground. Here there will be no problem when the output
of IC1 is low. When the output goes high, there will be a short from
the bottom of transistor Q3 to ground. This will cause excessive
current which can destroy IC1, but failure isn't quite as certain as in
the case of Fig. 15-6A. There is a diode and often some resistance
in the circuit, and if the short doesn't persist too long, IC1 can
sometimes be saved.

A short in an output pin is more confusing. The effect will
depend on the nature of the fault inside the IC. Frequently, the
effect is the same as though the input pin of the following stage
were shorted to either the positive supply or to ground. Usually,

Fig. 15-6. These drawings show the effect of shorted input pins.

196

the result will be catastrophic failure of the IC. After this failure
occurs, the output stage can act as though the output pin were
shorted to either the supply or to ground. The result will be that the
output pin is usually permanently either high or low.

The remaining case to consider is when a pin is shorted to
some other pin, not either the positive supply or ground. The effect
will, of course, depend on just where the short occurs. If two input
pins are shorted together, the fault can often be deduced by
drawing a truth table of the bahavior of the gate and comparing it
with the actual truth table for this type of gate. When an input pin
and an output pin are shorted together, the nature of the fault may
indeed be strange. Sometimes the stage will oscillate. More often
than not it will not obey its truth table and can be diagnosed as being
defective.

CIRCUIT FAULTS

Often in digital systems, faults occur on the foil of the
printed-circuit boards. Most of these faults will produce the same
symptoms as open or shorted pins. They can be isolated more
easily, however, because measurements can be made at points
along the foil to isolate the fault.

DYNAMIC FAULTS

While discussing the various types of faults that can occur in
digital ICs, we have tacitly considered that the faults would be what
we might call "hard faults." That is, we assumed that once the fault
occured it would persist and that we could troubleshoot until we
located it. This is often the way that digital circuits behave.
However, there is another class of faults that we might call
dynamic faults. They occur only while the system is in operation. If
we were to test each of the ICs in the system, we might not be able
to find anything wrong with them. Under the general heading of
dynamic faults we should consider three types of problems:

I: The system may be subject to interference. This interfer-
ence might come from the outside world, or it may be generated
within the system itself.

E The system may be causing interference to some
peripheral device that works with it, or

E There may be some dynamic problem in the system. Often
such faults are thermally related, but sometimes they result from
marginal design.

197

INTERFERENCE

A digital system may fail dynamically whenever interfering
signals from the outside world find their way into the circuits. This
is probably more common in broadcasting because so much of the
equipment must operate in strong RF fields. Usually, such a fault
can be traced to improper grounding or shielding.

First, let's consider the problem of shielding. There is a
tendency to think of a shield as something that protects what is
inside it in much the same way as a raincoat protects a person from
the rain. While this idea is adequate in many cases, a better
understanding of how a shield works can be had by taking a more
fundamental approach.

Whenever an electron anywhere in the world moves at an RF
rate, it produces a field that makes every other electron in the
universe want to move at the same rate. Shielding is produced by
arranging conductors so that when a field is set up one conductor,
an equal and opposite field is set up in another conductor, with the
result that the two fields cancel locally and have no effect on other
conductors.

A good example of shielding is the familiar coaxial cable. Here
the current in the inner conductor causes an electromagnetic field.
An equal current in the opposite direction flows in the outer
conductor and also causes a field. The two fields cancel at the outer
conductor so there will effectively be no field outside the cable.

Another factor that must be taken into consideration in
connection with shielding is the skin effect. RF currents will only
flow on the surface of a conductor. The situation is shown in Fig.
15-7. Note that although a grounding bolt passes through the panel,
the ground current will flow only on the surface of the panel.

Whenever RF is found inside a digital system, there can be
trouble. Correcting the problem is often tedious, but careful
attention to shielding and grounding will almost always clear it up.

Other Dynamic Faults

Most of the dynamic faults in a digital system that are not
caused by interference are caused by one of three things:

1. Poor connections that operate properly most of the time,
but occasionally open, causing spurious pulses by making and
breaking the circuit on a random basis. This type of trouble is found
by careful inspection of all connections. Suspect connections
should be touched up with a soldering iron.

198

Fig. 15-7. Drawing illustrating skin effect in shielding.

2. Thermal problems that change the behavior of a digital IC.
Thermal faults can cause the threshold level of a gate to change, or
they can slow down the response of an IC. The best way to isolate
thermally related faults is to heat suspected ICs with a blast of hot
air from a hand-held hair drier and to cool them with a spray made
for the purpose. Usually, one or the other of these will cause a
thermally related fault to either appear or to clear.

3. Spurious pulses on power supply lines. We discussed this at
some length in the chapter on power supplies and noise. Often a
spurious pulse is of such short duration that it is hard to see on an
oscilloscope. Frequently spurious pulses are caused by the failure
of components that were included in the design to eliminate them.
Frequently, a faulty despiking capacitor can be found by noticing
that the trouble disappears when the suspected capacitor is bridged
with a similar capacitor known to be good.

199

Sometimes spurious pulses are the result of marginal design.
A frequently found case of this type is where the designer simply
didn't include enough despiking capacitors to take care of what
might happen as the system ages.

TEST EQUIPMENT
Now that we have an idea of the types of faults that we might

find in digital systems, let's take a look at what we might use for
test equipment to locate the cause of these troubles. Although
much specialized test equipment is available that is specifically
designed for use in digital systems, the old tried and true VOM and
oscilloscope can also be used to advantage.

The VOM

In a digital system, the voltages are either logic highs or logic
lows. In TTL, the high and low values of voltage are shown in Fig.
15-8. When the states of the various stages of the system are not
changing too rapidly, these states can be checked using an ordinary
VOM with a sensitivity of 20,000 ohms per volt or higher. Figure
15-9 shows the high, low, and bad levels marked on a 5-volt VOM
scale.

If the system is one when logic states change only in response
to inputs that can be disconnected, the levels at all of the pins of the
ICs in the system can be checked rather quickly for a bad level that
would indicate. trouble. If this fails, the various highs and lows can
be checked against the truth tables for the various ICs.

Fig. 15-8. High and low levels in TTL ICs.

200

Fig. 15-9. Good high and low logic readings on a meter scale.

There are two limitations to this approach. First, there are
some systems that operate with a clock operating at a high
frequency. Usually, the system won't do much of anything if the
clock is stopped. The result is that everything changes much too
fast for a meter to follow. The other limitation of this approach is
that some faults are dynamic in nature and won't show up on a
meter. In such cases, the cathode-ray oscilloscope can be used to
advantage.
The Oscilloscope

The best way to set the oscilloscope sensitivity for trou-
bleshooting digital systems is to adjust it so that the top graticule of
repetition rate and time of occurence of the pulses that we find in
digital systems all at the same time. If the oscilloscope has a
compensated probe, the compensation must be properly adjusted
before intelligent measurements can be made. Figure 15-10 shows
how a square wave will look on the oscilloscope when the probe is
under-, over-, and properly compensated.

The best way to set the oscilloscope sensitivity for troub-
leshooting digital systems is to adjust it so that the top graticule of
the display corresponds to the lowest voltage. In Fig. 15-11, the
controls are set for checking TTL circuitry where the highest
voltage is +5V and the lowest voltage is ground. The input is also
set for DC coupling so that DC voltage measurements can be made.
In Fig. 15-12A, the probe is connected to a point at +5V and at Fig.
15-12B the probe is applied to a ground level.

JoL
RIGHT

Jet
WRONG WRONG

Fig. 15-10. Waveforms showing proper and improper compensation of an
oscilloscope probe.

201

Fig. 15-11. Logic readings are simplified by adjusting oscilloscope vertical
sensitivity to correspond high and low levels with the graticule markings.

So much for DC measurements. Most of the measurements
we will make deal with pulse trains. If the sweep of the
oscilloscope is not synchronized to the pulse train, the display will
be in continuous motion, as shown in Fig. 15-13A. Although this
display will not show any of the details of the pulses, it isn't
completely useless. It will tell us that a pulse is present and that
the pulses vary between ground and about +3V. Sometimes this is
all we need to know about some point in a circuit.

If the oscilloscope is properly synchronized, we can see the
details of the pulses as in Fig. 15-13B. Here, by properly setting
the horizontal controls of the scope, we can measure both the
duration and the repetition rate of the pulses.

In order to get a stationary display, we must properly
synchronize the oscilloscope. There are two ways that we can do
this. One is to use internal synchronizing. With this mode, the
sweep of the oscilloscope is initiated by one of the pulses that is
displayed. If we use positive triggering, the sweep will start when
the pulse is going in a positive direction. If we use negative

Fig. 15-12. Oscilloscope set for high and low logic voltage measurements.

202

Fig. 15-13. The horizontal sweep of an oscilloscope must be synchronized with
the frequency of a pulse train.

OSCILLOSCOPE PROPERLY
SYNCHRONIZED

triggering, the sweep will start when the pulse is going in a
positive direction. If we use negative triggering, the steep starts
when the pulse is going in a negative direction. This is shown in
Fig. 15-14 A and B. Usually, the edge of the pulse that actually
starts the sweep will not show on the screen, but will be off to the
left.

The other way we can use to trigger the oscilloscope is to use
external triggering. In this mode, we get a pulse from some point in
the system and apply in to the external triggering input of the
oscilloscope. Some systems have synchronizing pulses available at
some point that can be used to start the sweep at the beginning of a
word or byte. Often, the biggest problem in using an oscilloscope is
to find the proper triggering input so that we can see what we want
to see.

.._

TRACE STARTS WITH
POSITIVE-GOING EDGE

Fig. 15-14. Scope displays showing positive and negative horizontal sweep
triggering.

TRACE STARTS WITH
NEGATIVE-GOING EDGE

203

One of the most obvious faults that can be detected with an
oscilloscope is noise in the system. Figure 15-15 shows some
oscillograms with permissible and excessive values of noise.
Usually, the noise can be traced to the point in the system where it
starts. More often than not, a defective component will be the
cause.

Another thing that can be found with an oscilloscope is a
spurious pulse. There are three different kinds of spurious pulses
that get into digital signals. The first kind is the pulse that is caused
by a defective component and is generally in synchronism with the
other pulses in the system. Figure 15-16A shows a pulse of this
type. It is probably caused by the switching of some stage in the
system that is not directly in line with the pulses that we are
observing. The cause of this pulse can be found by probing through
the system to find out where it starts.

In Fig. 15-16A we are using external synchronizing so the
trace will always start at the same time. The spurious pulse
marked "T" doesn't seem to be directly related to the pulses that
are being displayed. What we must look for is something else in the
system that occurs at time "T".

Suppose that while probing around the system we find the
waveform shown at Fig. 15-16B. There is nothing wrong with this
pulse, but due to the fact that it occurs at time "T", we are
suspicious. Further investigation shows that the points where the
two traces of Fig. 15-16A and B were taken are both part of the
same IC as, shown in Fig. 15-16C. Thus, we might well suspect
that in some way the pulse of Fig. 15-16B is affecting the trace of
Fig. 15-16A. It might be leakage in the IC. It could also be caused

Fig. 15-15. Scope displays showing excessive noise

204

Fig. 15-16. Scope waveforms are useful in locating the cause of a spurious
pulse.

by a faulty despiking capacitor, or possibly even a design weakness
where the despiking capacitor was omitted. In any case, we have
traced the spurious pulse to its source.

The next type of spurious pulse is related to the frequency of
the power line, which is probably not harmonically related to the
pulse frequency of the system. If we look at the pulse train of Fig.
15-17A, which has a pulse repetition frequency of 1 kHz, we

Fig. 15-17. Power line triggering can be used to isolate a "glitch" related to the
power line frequency.

205

OSCILLATION F' F

o

1- 1 f----

o
Fig. 15-18. Waveform showing oscillation on leading or trailing edges of a pulse.

probably won't see the pulse at all. After all, the pulses of the
system occur every millisecond and the power-line-related pulse
will occur only about once every 17 milliseconds. Furthermore,
the power line pulse will be constantly moving with respect to the
pulses of the system.

The way to spot pulses or "glitches" that are related to the
power line frequency is to synchronize the oscilloscope to the
power line. Now the main pulses of the system will not hold still
but will be in continuous motion, making a blur on the screen. The
spurious pulse will, however, hold still. This is shown in Fig.
15-17B.

The last class of spurious pulse or "glitch" will be one that
isn't related in frequency to either the power line frequency or to
the pulse rate of the system. It is probably caused by something
outside the system. In a broadcast environment, it might be related
to either the carrier frequency or to the modulation frequency.
Sometimes sweeping the oscilloscope at some submultiple of
either of these frequencies will make the pulse hold still on the
scope. Once a spurious signal is made stationary on the oscillos-
cope screen, it can usually be traced to its source.

Often when integrated circuits start to fail, their timing will go
off. The output of a stage that is about to fail might be much longer
than normal. When this pulse reaches the input of the following
stage, it might well cause oscillation as we discussed earlier in the
book. Sometimes, if we are lucky, this oscillation will be evident
on the front or back of a pulse as in Fig. 15-18A. More often than
not, the frequency of oscillation will be much higher than the pulse
frequency so that it will not be obvious, but will look more like the
trace of Fig. 15-19B.

206

Chapter 16

The Microprocessor
and the Broadcaster

No book on digital electronics as it applies to broadcasting would
be complete without at least an introduction to the microprocessor.
Certainly, no device has had such a great impact on the configura-
tion of broadcast equipment since the introduction of the transis-
tor. Just about every type of broadcast equipment from transmitters
and video equipment to test equipment is being changed by the
microprocessor. Sooner or later every broadcast engineer and
technician who wishes to avoid becoming obsolescent must
become familiar with it.

Before we even begin to discuss the technical details, let's
look at some of the problems that will be encountered by one
wishing to master the device. There are a surprising number of
engineers and technicans who work with microprocessors who
have rather superficial knowledge of the subject. They know
enough to get by, but are often stumped when problems arise.

Probably the biggest reason that more people haven't really
mastered the microprocessor is due to the fact that the task is
underestimated .This may be because the device itself is so small.
In the past, no one underestimated the task of mastering the digital
computer. The very size and complexity of a computer was enough
to convince one that its mastery would take a great deal of time and
effort. The microprocessor is actually similar to a large digital
computer. Functionally, it is very similar. In spite of its small size,
it contains a very large number of functional elements. There
seems to be no short cut to real mastery of the subject.

Another point that must be borne in mind when approaching
the subject is that a microprocessor is a digital system. A complex

207

one to be sure, but nevertheless a digital system. Unless the
principles of digital systems are well understood, it is nearly
impossible to acquire any real mastery of the microprocessor.

Is there a good way to become familiar with the subject?
Probably not as good as we wish, but there is an approach that
works. It starts out with becoming familiar with all of the functional
aspects of digital electronics. Frequently, questioning shows that
one who has a great deal of difficulty with the microprocessor
doesn't really understand one or more aspects of basic digital
electronics.

Once one has a good knowledge of digital electronics, the next
step is to start learning about the microprocessor itself. An
important aspect of this is becoming familiar with the terminology
of the field. There are many good books, and seminars on the
subject, but until one has at least a passing knowledge of the
terminology, they are apt to be most difficult.

Lastly, one should gain some hands-on experience. This
should preferably be done on a system that is procured for training
rather than on operational equipment. But, often the first exposure
will be to a faulty piece of equipment that must be put back on the
air in the shortest possible time.

In the following pages we will present a very elementary
introduction to the subject. No claim is made for completeness.
The order of presentation has been chosen so as to develop a
gradual familiarity with some aspects of the subject.

WHAT IS A MICROPROCESSOR?
Perhaps the simplest description of a microprocessor is that it

is a single integrated circuit that contains all of the control and
processing sections of a digital computer and sometimes more. Of
course, this definition doesn't explain why the microprocessor is
having such an impact on broadcast equipment. Why should a
digital computer improve such things as transmitters, control
systems, and video pocessing equipment?

The question arises because of the way most of us have
become assustomed to thinking of digital computers. To most of us
a digital computer is something that can make out pay checks, do
accounting, and perform mathematical operations. Of course, this
has been the principal application of digital computers. But the
computer is also capable of operating as a controller. The cost
reduction that has resulted from the development of the micro-
processor has made it practical to apply computer technology to all
sorts of control problems.

208

As we have seen throughout this book, a digital system
consists of many functional elements such as logic gates and
flip-flops that perform simple logic functions. The overall opera-
tion of the system depends on the selection of these units and on
how they are connected together.

Suppose that we have a single integrated circuit that contains
many logic elements and can duplicate the functions of our ordinary
logic elements. Suppose further that the way in which all of these
elements are connected together doesn't depend on wiring, but on
information that is stored in memories. We then would have a
circuit that could be made to duplicate the function of any digital
system that you can imagine. That is just about what we have in the
microprocessor.

Thus, by using a microprocessor, together with peripheral
devices, we can develop what amounts to a universal system. What
the system actually does will be determined by the program we
store in its memories. We can have two systems that have nearly
identical wiring diagrams but completely different functions.

The microprocessor approach to digital systems has many
advantages. Techniques of programming have been highly de-
veloped by the digital computer people, so putting a program into
such a system is straightforward. Furthermore, design changes
can be made by merely changing the program that is stored in
memory, rather than by changing wiring and interconnections in
the system. A system based on microprocessor might be said to
have a wiring diagram that we can change at will without actually
disturbing a single connection. All of the changes are actually made
in the is and Os that are stored in the memories.
LIMITATIONS

Although the number of places that microprocessors are used
will continue to increase for a long time to come, the microproces-
sor is not the answer to all digital design problems. Two
limitations, at least at the present time, involve the size of the
system and the required speed of operation. Many digital systems
consist of only a few integrated circuits. Obviously, there is
nothing to be gained by replacing such a simple system with a
microprocessor.

The other limitation involves the required speed of operation.
Most microprocessors are simply not as fast as circuits that use
discrete components such as transistors, although this situation
could well change through the years. For this reason, in such
applications as real-time processing of TV signals, the micro-

209

processor may well control the system, but the actual signal
handling will be done by faster components.

PROBLEM AREAS IN LEARNING

There are several reasons why the microprocessor poses
problems for the engineer or technician who is not familiar with it.
Although the actual basic functions in such a system are very
simple, there are very many steps in even the most elementary
operation. This gives the system the illusion of complexity.
Furthermore, a microprocessor system usually has several large-
scale integrated circuits connected so that several things are
happening at almost the same time. Here again, the system
appears to be very complex.

We mentioned that one problem facing the newcomer to the
field is the fact that there is a whole new vocabulary involved. Until
the new terms are understood, the subject will indeed remain
confusing.

Two terms that are bandied about in connection with micro-
processor systems are hardware and software. The term,
hardware, isn't bad, because it refers to physical devices such as
integrated circuits, readouts and interconnecting wires. The term,
software, is apt to be more confusing. It is used to describe
numbers and programs that have no physical existence, but are
stored in hardware such as semiconductor memories. The program
or set of instructions that tells the microprocessor what to so is
called software.

BASIC ELEMENTS

All programmable digital computers consist of three func-
tional elements as shown in Fig. 16-1. The first element that we
will consider is called the memory. As its name implies, the
memory stores data. The data that is stored in the memory may be
the actual numbers that the system is processing, or it may consist
of binary numbers, called instructions, that tell the rest of the
system what to do.

In a microprocessor system, the memory is usually a
semiconductor device, although systems handling large amounts of
data often use magnetic disks to store data. Memories are of two
general types. The Read Only Memory, or ROM , has information
stored in it that cannot be easily changed. Therefore, it is used to
store instructions that will not change. The Random Access
Memory, or RAM, would probably better be called a read-write
memory because data can be stored in it electrically at any time and

210

can just as easily be erased. A RAM is used for things that are to be
stored temporarily. Thus, the actual numbers the system is
working with, as well as instructions that are changed frequently,
are stored in RAM.

The next basic element of a computer that we will discuss is
the Arithmetic Logic Unit or ALU. It can perform simple
arithmetic operations on binary numbers as well as basic logic
functions such as ANDing and ORing. Even the most complex
mathematical or control operation can be broken down into very
large number of very simple operation. Thus, the ALU can perform
any functional operation that is performed in any digital system.
The problem is that there are a very large number of operations.
Inasmuch as microprocessors can perform these simple steps in
less than a microsecond, this isn't much of a problem in most
applications.

The next functional element in Fig. 16-1 is called the control
unit. It is often called the brain of the computer because it
coordinates the operation of the other elements. The instructions
that are stored in the memory are deciphered in the control unit
which then tells the ALU what to do.

These three functional elements are the essential parts of any
digital computer. Of course, we can't do much with it unless we
have some way of interfacing it with the real world. This
interfacing is accomplished by the/nput/Output or I/O devices.

COMPUTER OPERATION

One of the reasons that computer operation tends to be
baffling to the newcomer is that all operations are performed by a
series of many very simple steps. The steps are so elementary that

CPU

MEMORY

INPUT

OUTPUT

%),
ARITHMETIC
& LOGIC

UNIT (ALU)

CONTROL
UNIT

MEMORY

11,1TA
— I> CONTROL

Fig. 16-1. Functional block diagram of a microprocessor.

211

Fig. 16-2. Calculator, pencil and paper analogy of microprocessor operation.

they require a new way of thinking about problems. One way in
which to gain a little insight into how a computer works is to use an
analogy consisting of a man with a calculator, a pad of paper and a
pencil as shown in Fig. 16-2. The man is analogous to the control
unit of the computer. The calculator corresponds to the ALU, and
the paper and pencil are analogous to the memory circuits.

Let's use this analogy to see how we would write program for
adding the decimal number 2 to the decimal number 3. We can
perform this operation so simply in our heads that we fail to
recognize all of the steps involved in the process.

The first thing that we need is a list of instructions. These
instructions would be stored in the memory of a computer, so we
will write them on the pad of paper. A computer has no judgement
other than what we program into it, so we must be very careful to
include all of the steps.

212

The following list shows the steps necessary to simply add
the decimal number 2 to the number 3, using our simple calculator

I. Press the clear key.
2. Enter the first number into the calculator.
3. Press the "+" key.
4. Enter the second number into the calculator.
5. Press the "=" key.
6. Read the total and write it down
To find any of the above instructions, all we have to do is to go

the proper numbered line above. In computer parlance, the number
of the line is called the address of the instruction. For example, line
3 is the address of the instruction, "Press the + key."

Looking at our list of instructions, we see that something is
missing. We haven't stated just which numbers we were going to
add together. So we will take another piece of paper and enter:

A 2
3

These numbers, 2 and 3, are the numerical data that we are going to
work with. To get the number 2, we have to go to line A, so we can
say that A is the address of the number 2.

Although we may seem to be complicating the simple situation
of adding two numbers together with a calculator, this example will
give a considerable amount of insight into how a computer or
microprocessor must be programmed to perform what seems like a
simple task. From what we have said so far, we can see that a
program consists of a series of two types of operations. First we
must get, or fetch, the instruction or data; then we operate on, or
execute, these instructions.

Let's continue to write a detailed program for adding the
numbers 2 and 3. The steps will look something like this:

1. Fetch the instruction on line 1. This instruction is to press
the clear key on the calculator.

2. Execute this instruction. This means to actually press the
clear key.

3. Fetch the instruction on line 2. This instruction tells us to
enter the first of the two numbers that we wish to add, but it doesn't
tell us what the number is. We must have another line of the
program to tell us the value of the number.

4. Fetch the number on line A. Now we find that the value of
the number is 2.

5. Execute the instruction on line 2. This means to actually
press the "2" key on the calculator.

213

6. Fetch the instruction on line 3. This tells that we must
press the + key.

7. Execute the instruction on line 3. Actually press the "+"
key.

8. Fetch the instruction on line 4. This tells us to enter the
second of the two numbers that we wish to add, but, again, it does
not tell us the actual value of the number, so we have the next step.

9. Fetch the number on line B. Now we know that the value of
the second of our two numbers is 3 so we can proceed.

10. Execute the instruction on line 4. Actually press the "3"
key on the calculator.

11. Fetch the instruction on line 5. This tells us to press the
key.
12. Execute the instruction on line 5—actually press the "="

key.
13. Fetch the instruction from line 6. This tells us to read the

indication of the readout of the calculator.

14. Execute the instruction from line 6. Actually read the
number 5 on the calculator and write it down.

In a computer program, this wouldn't be enough; we would
actually have to specify some address at which we would write
down the number 5. We might specify that the 5 be written on line
C of the second piece of paper.

One thing that is obvious from this simple example is the fact
that as human beings we perform many detailed steps of most
things that we do almost automatically. Certainly, if we were to add
the numbers 2 and 3, we wouldn't consciously go through all of the
detailed steps that we have listed above. The computer, however,
has no intelligence of its own. It can only do what we program it to
do. This is one of the problems that faces the beginner at
programming. He often neglects some of the simple steps that
enter into an operation so that his program won't work.

In this analogy, the calculator, the human operator and the
pencil and paper are hardware. The instructions and the numbers
are software. Now we have a reasonably close approximation of a
computer program that is used with a microprocessor. It points out
the important fact that although a microprocessor operates very
fast, time is required for the operation of each step and there are
often many steps in an operation. Thus, when performing complex
functions, the speed of operation of the microprocessor can be
significant.

214

FLOW CHARTS

One of the questions that frequently arises in connection with
the microprocessor is, "Just how can a device, which operates in
much the same way as a computer, perform all of the operations
that have traditionally been performed with more conventional
systems?" The answer isn't simple, but it isn't very complicated
either. To use the microprocessor intelligently, the designer must
combine the skills of hardware design and programming.

One of the aids in either preparing programs or interpreting
them is called a flow chart. The flow chart is to the programmer
what the schematic diagram is to the circuit designer.

Several different symbols are used in flow charts, but all you
need to know to get a good insight into the matter is the meaning of
the three symbols shown in Fig. 16-3. The first symbol that looks
like a rectangle with rounded ends marks the beginning or the end
of the program or a part of a program. This seems like an
unnecessarily simple symbol, but you must always remember that
a computer-like device won't so anything unless you tell it to. For
example, it will neither start nor stop unless it is properly
instructed. These start and stop symbols in the flow chart remind
the programmer to put in the proper instructions.

The second flow chart symbol in Fig. 16-3 is a rectangle. It is
used to represent one or more instructions that the microprocessor
must follow. In a detailed flow chart there will often be a separate
rectangle for each instruction. In a more general flow chart a single
rectangle may represent a whole set of instructions. Again this is
analogous to a circuit diagram. In a detailed diagram, we will have a

Fig. 16-3. Flow chart symbols.

C_D Start or
Stop

o
Instruction

Decision or
Conditional
Branch

215

symbol for each circuit component. In a more general diagram,
several components are included in a single block.

The final symbol in Fig. 16-3, the diamond shape, is
representative of what distinguishes a software-based system from
a hardware-based system. It represents a point in the program
where the system must make some sort of decision. The decision
is based on something that the system can easily determine. For
example, the system may compare two numbers to determine
which is larger. If one number is larger, one set of instructions will
be followed. If the other number is larger, another set of
instructions will be followed. Another type of decision may be
based on whether or not a number has been reduced to zero.

Figure 16-4 shows a simple application of a flow chart. Here
we have a simplified program for a microprocessor-based system
that is used to control the speed of a motor. The first block of the
chart is the start instruction. Usually, it will tell the microproces-
sor to set all of the registers in the system to some known state.

Digital circuits, when they are first turned on, may be in either
a high or a low state. In our motor controller the various circuits
just might be in a state that will command the motor to go to full
speed. We might not want this to happen, so we will provide
instructions that will tell the system what state we want it to be in
when it is turned on. This process is called initialization. The next
block tells the system to get a signal that is some function of the
speed of the motor we are controlling. It might be a digitized signal
from a tachometer. Next, the actual speed of the motor as
represented by a binary number is compared with another binary
number that represents the desired speed of the motor.

Now, we come to the first point in the program where the
system must make a decision. The diamond-shaped symbol
labeled, "Is the motor speed correct?" is called a decision point or a
conditional branch in the program. What happens next depends on
whether the speed of the motor is what we want it to be. If the
answer is yes, nothing will happen and the program will revert to
the first step and again check the speed of the motor. If the answer
is no, then another decision must be made. The system must
determine whether the speed is to high or too low. In either case,
the system is programmed to initiate corrective action.

Of course, our flow chart is simplified in that we haven't
shown any of the detailed instructions that must be supplied to the
microprocessor. Nevertheless, it will give a good overall view of
what is going on in the system.

216

One thing that isn't obvious from our flow chart is the fact that
the microprocessor can perform all of the steps required to control
the speed on a motor with plenty of time to spare. In practical terms
this means that we might use the same system to control several
other things. For example, we might start our program once every
several hundred milliseconds. In the interim period we may use the
same system to execute a completely different program that
controls something else.

SIMULATING LOGIC ELEMENTS

There is another way in which we can gain a little insight into
the way that a computer-type of system can duplicate the function

Fig. 16-4. Flow chart of a motor control program.

217

of another digital system. Earlier in this book we discussed the fact
that NAND gates can be combined to perform any type of digital
function. By cross coupling NAND gates we can make flip-flops,
and with gates and flip-flops we can make any conceivable type of
digital system if we have enough of them. Figure 16-5 shows the
symbol for a NAND gate, together with its truth table. Figure 16-6
shows a microprocessor system with three external connections.
There are two inputs labeled A and B, and one output connection.

Figure 16-7 shows a flow chart of a program that will enable
our system to duplicate the function of a NAND gate. The first step
in the program is to determine whether input A is high or low. If
this input is low, the situation corresponds to one of the top two
lines of the truth table of Fig. 16-5. In either case, the output will be
high. If input A happens to be high, that is not low, the situation
corresponds to the third or fourth lines of the truth table. The state
of the output will be either high or low, depending on the state of
input B. Thus, we next make a decision on the basis of this input.
By comparing the flow chart with the truth table, we see that they
both accomplish the same thing. Thus, we have shown two things:
First, that we can use a flow chart to do the same thing that we can
do with a logic truth table, and secondly, if we can build any
imaginable type of digital system out of NAND gates, then we can
also build any imaginable type of digital system using a micro-
processor that will follow the program of Fig. 16-7.

SYSTEM FLEXIBILITY
One of the advantages of the microprocessor-based system is

the fact that it is very flexible and can be adapted to many changing
conditions. For example, suppose that we had a conventional
digital system using gates and flip-flops that was designed to test a
particular type of integrated circuit automatically. The system
might check all of the parameters of the integrated circuit to be
sure that they were within prescribed limits.

Now suppose that we wished to test a different type of
integrated circuit. The pin connections might be different and the
parameters might not be the same. To adapt a conventional system
to the new IC would require a great deal of rewiring and possibly
some redesign.

If, on the other hand, our system were based on a micro-
processor, we could accommodate changes in both the pin
connections and circuit parameters by merely changing the
program that operates the system. It wouldn't be necessary to
change a single soldered connection.

218

MACHINE LANGUAGE

So far, all of the instructions that we have talked about have
been expressed in words. Obviously, we can't place words in
English on the actual wires that connect to a microprocessor. The
actual instruction that goes into a microprocessor is a binary
number; that is, a set of high and low signals. The most popular
microprocessors have a data bus and instructions that are one byte,
or eight bits long. Thus, a particular instruction that would be
placed on the 8-bit data bus might be 1001 0010. This set of binary
signals might, for example, tell the microprocessor to add one
binary number to another. As we get into discussions about
computer languages, it is important to remember that all of the data
in a system is stored in binary form, and binary numbers are the
only language that a microprocessor understands. The signals at
the various pins of the microprocessor are either high or low, and
thus are binary digital signals. Any talk about languages other than
binary numbers pertains to something that is done for the
convenience of the human operator of the system. When the signals
get into the system they are binary signals.

Looking at the binary signal that we mentioned above, 1001
0010, it is easy to see that regardless of how well the processor can
handle it, a number like this isn't particularly well suited for use by
human beings. Each microprocessor has what is called an instruc-

Fig. 16-5. NAND gate and its truth table (B).

219

MICROPROCESSOR
SYSTEM

OUTPUT

Fig. 16-6. Microprocessor system set up to simulate a NAND gate.

tion set. This is a set of binary numbers that will tell it to do
different things. Most of these instructions consist of eight-bits.
For example, the instruction 1001 0010 might tell the micro-
processor to add two numbers together, and 1010 0101 might tell it
to move the number from one location to another. Numbers of this
type are not easy to remember and for that matter aren't
particularly easy to talk about. For the convenience of human
beings who might be associated with such systems, we need some
sort of shortcut that will make the instructions easier to handle.

One solution to the problem is to express the various binary
numbers in some other number system that has more symbols and
is thus easier for a human being to handle. The first thing that
comes to mind is that we might use something like the binary-
coded decimal system that we learned about earlier in the book.
With this system we could express all of the 8-bit binary words in
the familiar decimal numbers. The idea has a serious limitation in
that the BCD system isn't very efficient. We couldn't express
every 8-bit binary number with two decimal numbers. For
example, the binary number 1001 0010 could be expressed as 92
using binary-coded decimal, but the number 1001 1111 would be 9
15. Thus we would have difficulty trying to use the system.

The next best bet, and the one that is nearly universally used,
is the hexadecimal number system. This is a numbering system
having the base 16. Figure 16-8 shows a comparison of the
hexadecimal, binary and decimal numbering systems. We can see
that from 0 to 9, the hexadecimal system is the same as our familiar
decimal system. Above 9 we have six new symbols, the first six
letters of the alphabet. Before we go any further, it is obvious that
it is much easier to work with a hexadecimal number such as 1A,
than to work with its binary counterpart 0001 1010.

220

NO

NO

START

YES

YES

SET

OUTPUT
LOW

SET

OUTPUT

HIGH

FINISH

Fig. 16-7. Flow chart of the program to simulate the operation of a NAND gate.

There are other advantages to using the hexadecimal number
system. One advantage is that it is very easy to convert between
binary and hexadecimal numbers. First, suppose that we have a
number in binary form. The first step is to separate the number into
groups of four digits each. We usually do this anyway just to make
the numbers easier to read and write. Then, we find the decimal
value of each group of four digits. Finally, we assign a hexadecimal
number for each group of four digits. The process is shown in Fig.
16-9.

Now let's go the other way. Suppose we have a hexadecimal
number and we want to express it in binary form. All, we have to do
is to assign a 4-bit binary number to each digit of the hexadecimal
number. This is shown in Fig. 16-10.

Using the hexadecimal number system, it is common to see
the instructions for a microprocessor written as F4, B2, or 11.
These hexadecimal numbers are much easier to work with than
their binary counterparts, but we must remember that the actual
signals are in binary form.

221

DECIMAL BINARY HEXADECIMAL
NUMBER NUMBER NUMBER

I 000 I I

2 0010 2

3 0011 3

4 01 00 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

II 1011 B

12 II 00 C

13 110 I D

14 1110 E

15 1111 F

Fig. 16-8. Comparison of decimal, binary, and hexadecimal representations of a
number.

WHAT IS AN INSTRUCTION SET?

In the preceding pages we have made reference to the
instruction set of the microprocessor. The entire instruction set is
rather lengthy and complex, but we can take at least a superficial
look at it. An instruction is a digital signal, usually eight bits long,
that when fed into the instruction register of a mperoprocessor will

01001010 = 74 DECIMAL =4A HEXADECIMAL

1. BREAK BINARY 0100 1010
NUMBER INTO
GROUPS OF FOUR
DIGITS

2. ASSIGN HEXADECIMAL
NUMBER TO
EACH GROUP

0100 =4 1010 =A

3. WRITE HEXADECIMAL 4A
NUMBER

Fig. 16-9. These calculations show how to convert a binary number to a
hexadecimal number.

222

instruct the ALU to do something useful. For example, the
instruction 1000 0101 might make the ALU move the data that is
stored in the accumulator to another register.

Inasmuch as the microprocessor can do just about anything
that any other electronic system can do, we might expect that there
are several different types of instructions in a typical instruction
set. Indeed there are, but at first glance, the exact instructions
tend to be a little confusing. We can understand what they do, but
the immediate reaction is apt to be the question as to why anyone
would want to do anything like that. The reason for this confusion is
that the microprocessor does things in extremely small elementary
steps. The fact that it operates at high speed is the only thing that
makes it practical to accomplish things in this way. As an example,
it usually requires more than ten instructions to simply add two
numbers together.

To accomplish tasks with a microprocessor, we must break
the task down into very elementary steps. At first this requires a
different way of thinking. Later, we will see that there are things
called "higher level languages" that will simplify the task consider-
ably.

To make the instruction set a little easier to follow, we can
somewhat arbitrarily break the instructions down into five
categories:

111 Arithmetic Instructions. These instructions cause bi-
nary numbers stored in various parts of the system to be operated
on mathematically. For example, the contents of the accumulator
might be added to the number stored in a given memory location.
Note that addition is about the most complex operation that is
performed by a single instruction. To do such things as subtract,

2 B HEXADECIMAL = 00101011 BNARY = 33 DECIMAL

I. SEPARATE HEXACECIMAL 2
DIGITS

2.ASS1GN A 4-BIT BINARY 2=0010 B = 1011
NUMBER TO EACH
HEXADECIMAL NUMBER

3. WRITE BINARY NUMBER 00101011

Fig. 16-10. These calculations will convert a hexadecimal number to a binary
number.

223

multiply, or divide, we need to have several sequential instruc-
tions. This emphasizes the fact that things are done in very simple
steps.

D Logic Instructions. These instructions cause some logic
operation to be performed on the numbers in the system. Typical
logic instructions cause ANDing, ORing, and NOTing.

D Moving Instructions. These are sort of housekeeping
instructions. They cause data to be moved in some way in the
system. In most operations it is necessary to move data in and out
of the accumulator. Multiplication is performed by combining
addition with shifting the data to the right or left. Also included in
this category are instructions that cause data to be stored in various
memory locations. This operation may tend to be a little confusing,
because the storing is done in a slightly unconventional way. For
example, we might store the contents of the accumulator in a given
memory location. After the operation is complete, the data will
indeed be in the specified memory location, but it may also still be
in the accumulator. This feature often causes many problems to
beginners.

D Jump or Branch Instructions. These instructions
define operations which make the microprocessor such a powerful
tool. Instructions can cause something to be done only under
certain conditions. This is the same as saying that the system
makes a decision. For example, the system may be programmed to
perform a series of instructions, but if certain conditions prevail to
jump to another instruction. Typical conditional jumps are based on
such things as whether the binary number resulting from an
operation happens to be greater than, equal to, or less than zero.
This conditional jumping is equivalent to being able to change the
wiring diagram of a system under certain conditions.

Other jump instructions are unconditional. That is, the system
will jump to a different instruction under any condition. This adds
flexibility to programming. A typical use of an unconditional jump is
to cause the system to jump to a "subroutine" that performs some
functional operation that may be used many times. Thus, in any
part of the program where this operation is needed, the program
can jump to that location. In this way the instructions for the
functional operation need to only be prepared once.

D Input-Output Instructions. These instructions cause
the data to be taken from or delivered to registers in the I/O
devices of the system.

224

Admittedly, this breakdown of instructions into categories is
somewhat arbitrary, but it does tend to take some of the
complexity out of an instruction set.

HIGHER LEVEL LANGUAGES

In order to make a microprocessor perform its various tasks,
we must select the proper instructions from the instruction set and
store them sequentially in a memory. When the system starts to
operate, it will access the memory and fetch the instructions in the
proper order.

The first thing that is obvious in connection with this is that it
is a very difficult chore to actually store these instructions in the
memory in binary form. The processor speaks binary, but the
human being doesn't. It isn't easy to keep track of hundreds of
instructions of the form 1100 0110. The fact that binary numbers
are unfamiliar makes it very difficult to memorize them, even for a
few seconds. We have to handle them almost on a bit by bit basis.

The hexadecimal number system which we mentioned earlier
is a good compromise. It is easier to handle than binary, but it is
also easy to convert to binary form, which must be done before it is
actually entered into the system. This conversion can easily be
done by the system itself.

A typical small microcomputer might include a keyboard,
something like that of a calculator, for entering data. The keys are
coded in hexadecimal, but when the key is pressed, the corres-
ponding binary number will be generated in the system. For
example, if key "A" is pressed, the binary number 1010 will be
entered into the system. Note that the hexadecimal character A
and the binary number 1010 are the same. They are both equivalent
to 10 in our decimal system.

It is easy to see that the hexadecimal system is easier to
handle than the binary system. It is much easier to enter a number
such as 5F into a keyboard than the binary equivalent 0101 1111.
The whole business is made still easier by the fact that if an
instruction is listed in a book in hexadecimal form, we don't have to
know either its binary or decimal equivalent. For example, if an
instruction is listed as 4B in hexadecimal, that is all we have to
know. We can simply enter 4B into our keyboard without knowing
any more about it. It is only when we are actually looking at one of
the buses of the system in troubleshooting that we have to get back
to l's and O's.

An instruction set expressed in hexadecimal or even binary

notation is said to be stated in machine language. This is because

225

the instructions are in a form that the system actually uses.
Programming a system in this notation is said to be programming in
machine language.

The principal limitation of an instruction set expressed in
hexadecimal notation is the fact that the notation has no relation to
the nature of the instruction. For example, suppose the hexadeci-
mal code B6 is an instruction that tells the system to branch or jump
to a subroutine. There is no way that we could recognize this by
looking at the number B6. This brings to the first level of language
above the simple machine language that we have been considering.
This is called assembly language.

It would be very nice if we had an arrangement like that shown
in Fig. 16-11. Here the input is a series of digital signals from a
keyboard. They might, for example, be in the ASCII code. The
output is the actual binary representation of the instruction. To use
our same example, suppose we wanted to enter the instruction
telling the system to branch to a subroutine into a memory location.
We would simply type BSR into our keyboard and out of the box in
Fig. 16-11 we would get the binary number 1011 0110, which is the
hexadecimal number B6 which we saw represented this instruc-
tion.

The advantages of the box of Fig. 16-11 are so great that it
would seem worthwhile to build one into every system. With the
box, we could enter what is called assembly language where each
instruction is represented by a mnemonic such as LDAA for load
accumulator A, or INC for increment. This certainly makes
programming much easier than it is using even hexadecimal
notation. The entire instruction set can be memorized rather
easily.

Fortunately, it isn't necessary to build the box shown in Fig.
16-11 at all. The microcomputer can do the same job that the black
box can do. A program can be written that will accept ASCII
characters from a keyboard and produce binary numbers corres-
ponding to the mnemonic. This program can be prepared on
another computer, and once it is prepared, it can be stored in the
memory of the system that will use it.

Note that when we begin to use a higher level language, such
as assembly language, we tend to be getting away from what is
actually happening in our system in digital form. This is why it is a
good idea to get a little experience working with machine language
before graduating to a higher level language. Many engineers and
technicians who have never actually used machine language tend to
have a superficial knowledge of the systems with which they work.

226

Once a system is programmed to accept assembly language
and translate it into machine language, we can use this feature to
make programming even easier. For example, suppose we have to
write a part of a program that consists of 15 steps and we find that
we will want to use this same set of 15 instructions many times in
the programs that we are writing. We can write this set of
instructions into the system and assign a mnemonic to it. Then
every time we enter the mnemonic, the 15 instructions will be
written. This is often called macroprogramming and the resulting
mnemonic is called a macroinstruction .

All of the languages that we have described so far have the
disadvantage that the problem or task must be reduced to very
elementary steps before the program can be written. This
disadvantage can be overcome by using still higher level lan-
guages. Before discussing any of them we want to emphasize again
that the microcomputer itself speaks only binary and must be
actually programmed in very elementary steps. If we use a
technique whereby we can program the system in an easier way,
the translation to the elementary binary steps must be ac-
complished somewhere. This is usually done in the system itself
and the program that tells the system how to do it is stored in
memory. Thus, we see that the price that we pay for something
that makes life simple for us is that we need memory locations to
store the program that does the translation.

There is a way out of this that is practical if we are going to
program a lot of systems. We can use a completely different system
that translates things into the binary instructions. These are then
entered directly into the system in question by some automatic
means. While entering them we don't have to think, so the task is
easier.

Getting back to the need for higher level languages, suppose
we have a microprocessor system in a broadcast station and in
order to perform its assigned task it must calculate the sine of an
angle. You can just imagine that the amount of shifting and adding

INPUT SIGOL CUTRJT SIGNAL _eel1000010 100011 1010010
l•

S

ASSEMBLER

0110110

B 6

Fig. 16-11. This diagram shows the principle of operation of an assembler.

227

that would have to be done repeatedly to get sine of an angle with
any accuracy at all. Here's where a higher level language like
BASIC comes in handy. If the system includes a program that will
translate BASIC, all we have to do is to type in SIN. This will
automatically call up all of the necessary instructions to perform
the required computation.

BASIC is the simplest of the higher languages. There are
many more and each type has advantages for certain types of
programs. FORTRAN is used in computers that are required to
solve engineering type problems and COBOL is well suited to
business type problems.

The actual program that translates a high-level language into
machine language is called a compiler. This program looks at
everything that is typed into the system and assigns memory
locations for everything as well as generating the actual machine
code in binary form. The result is that the final program that comes
out of the compiler often is no where as efficient as a program
written in machine code by a highly skilled programmer would be.
This is usually only important in small systems, or in systems that
are going to be produced in large quantities. Semiconductor
memories are quite economical and it is often worth spending a
little more for additional memory to avoid the difficulty of
programming in machine language.

Another instance where the inefficiency of high-level lan-
guages is significant is where great speed is required. Home
computer enthusiasts have noticed this, particularly when generat-
ing graphics. A graphic display generated in a higher level language
will usually be much slower than the same thing done in machine
language.

A CLOSER LOOK AT THE MICROPROCESSOR

With the background that we have acquired so far in this
chapter, we can take a closer look at the microprocessor and get a
little better understanding of how it works. We must do this in a
general way for two reasons. First, the various functional elements
of the microprocessor work so closely together that it is often hard
to tell where one unit leaves off and another begins. Secondly,
microprocessors are not alike. In the older units, the various
functional elements were distributed between two or more
integrated circuits. Some of the newer units, appropriately called
"single chip" units, have all of the necessary functional units in one
package.

228

All of the functional elements of the microprocessor are
important, but we can consider the heart of the unit to be the
Arithmetic Logic Unit, or ALU. This is the element that performs
mathematical operations such as addition and subtraction, logic
operations such as ANDing and ORing, and shifting of data to the
right or to the left.

The ALU gets its inputs from and supplies its outputs to at
least two registers. One of these is called the accumulator, usually
abbreviated to ACC. This register is very similar to the readout of
a pocket calculator. Much of the data that passes into and out of the
ALU passes through the accumulator. The other data connection is
usually to another data register such as a memory data register.

In both of these registers, the data may pass in either
direction. For example, if two numbers are to be added together,
one of them may be stored in the accumulator before the addition,
and the sum may be stored in the accumulator after the addition.
This use of the same connections to carry data in either direction is
one of the things that make it possible to get all of the functional
elements of a microprocessor into a single integrated circuit.

The control signals, that is the signals that actually tell the
accumulator what to do, come from the control circuitry. The
actual function of the control circuitry is to take two inputs—an
instruction and pulses from a clock—and decode them to provide
signals that will make the ALU perform the desired function. The
arrangements of the actual circuits is rather complex and differs
from one microprocessor to another. The ALU and its control
circuits are so closely interrelated that the combination of the two
functional elements is often referred to as the Central Processing
Unit, or CPU.

The arrangement of the actual control circuits, and the ALU
give rise to what is called the instruction set of the microprocessor.

The instruction set is simply a set of binary digits that when applied
to the microprocessor will make it perform certain functional
operations. These operations are of the form of alternate fetch and
execute operations as we saw earlier.

In Fig. 16-12 we show the ALU and control circuits connected
to an instruction register, called the IR, and an instruction decoder.
The instruction register gets its input from the data bus which is
connected to external circuits through the data bus. What it
actually gets in an 8-bit microprocessor is either high or low signals
on each of eight data lines that make up the data bus. For example,
in a typical microprocessor an instruction might be called load

229

accumulator. This instruction makes the inputs to the instruction
register 1000 0110. When this particular combination of high and
low signals reaches the instruction register, it will be decoded in
the instruction decoder and eventually the signals that go to the ALU
will cause it to perform the desired function of actually loading the
accumulator. There are usually several different forms of an
instruction such as this that will perform the operation in different
ways. We'll have more to say about this later.

Getting back to our microprocessor, we can now add a couple
more blocks to our diagram. These blocks contain memory. The
read-only memory, or ROM, has things stored in it permanently.
These are things that won't change, so they are actually built into
the memory. The random-access memory, or RAM, on the other
hand can be either loaded into or read out of. This is usually called
"writing into" the memory, or reading out of it.

As shown in the figure, there are three sets of connections to a
memory element. First there is the address bus. This is a set of
wires, usually 16 in an 8-bit microprocessor, that are used to
designate a particular cell in the memory. Then there is the data
bus, eight wires in an 8-bit microprocessor, that will either write
into or read out of the particular memory cell. Finally, there are
control connections. For example a RAM has a connection that
tells it whether it should accept data from the data bus or put data
on the data bus.

Each combination of high and low signals on the input address
of the memory specifies a certain location. In most 8-bit systems,
this location is eight-bits wide. The eight bits in this location are
the data that is stored in the memory. In a RAM, we may enter data
into each of these locations and read it out. In a RAM, we can only
read out.

WHAT IS A FLAG?

In looking at the specification sheets covering microproces-
sors and microcomputers, we often run across the term "flag."
Usually what is called a flag is actually a flip-flop, or one stage of a
register that is buried deep inside the microprocessor. Sometimes
the flags are stages of a register that is called something like a
"condition register." The purpose of the condition register is to
keep track of what is a happening inside the microprocessor. At
first it is confusing to learn that there is no direct access to these
register stages from outside the device. None of the stages of such
a register are connected to the pins of the device.

230

o

ZZUMULATCR

C

INSTRUCTON

REGSTER

R 0 M

RA M

I /0
DEVICES

CONTROL
CIRCUITRY

 INSTRMION

DECODER

Fig. 16-12. Block diagram showing organization of components in a micro-
processor.

A typical flag might be called an overflow flag. This flip-flop is
set whenever the operation of the device causes the contents of the
accumulator to overflow, that is, when an operation tries to cram
nine bits into an 8-bit register. Similar flags are provided to
indicate when the contents of a register go to zero. Inasmuch as we
can't look at a pin on the device to determine the state of the various
flags, they must be handled by programming. There are instruc-
tions that can be incorporated into a program to test the state of a
flag, or even to set or reset a flag.

PUTTING ITALL TOGETHER

Figure 16-13 shows a block diagram of a Type 6800 micro-
processor. Each of the blocks in the diagram can be thought of as a
register of some type. The numbered leads at the right of the figure
correspond to the numbered pins of the device. Pins that are input

231

INTERNAL
ADDRESS
BUS ILO)

ADDRESS
BUS HI

CONDITION
CODE

REGISTER

ALU
El (1) BITS) A

SUM

LAMA
A

IS BITS)

UMULATO
13

III BITS)

INDEX REGISTER

Ill BITS HI) 0 BITS LO)

STACK POINTER

M BITS MI ST BITS LOI

PROGRAM COUNTER

111 BITS HI) IS BITS LOI

INCREMENTER'DECREMENTER

PI BITS HO t8 BITS LOI

REGISTER
Ill BITS)

Fig. 16-13. Block diagram of the type 6800 micrprocessor (courtesy of American
Microsystems, Inc.).

232

INTERNAL
DATA
BUS

1361

DATA
BUFFER

INSTRUCTION
REGISTER

ALU ANO
REGISTER
CONTROL
LINES

BUS
DISABLE

INSTRUCTION
DECODER AND
CTRL LOGIC

R UPT
ANO RESTART

LOGIC

TIMING
GENERATOR

BUS CONTROL
AND HALT
LOGIC

ADDRESS
BUFFER

(13 BITS LOI

ADDRESS
BUFFER
18 BITS HI/

181

131

03
DI

06

07

V CC
ONO
ONO

RESET
NMI
IRO

DI

RAY
VMA
BA

TSC

AO
Al
At
Al
A4
AS
A6
Al
A8
AT
AIR
All
AIT
A 13
AIR
AID

233

connections show arrows pointing to the device, whereas output
pins show arrows pointing outward. Note that the arrows on the
data bus point in both directions. This is because these pins serve
both as input and output connections. Data is brought into the
device and is also fed out on the same connections.

Essentially the device contains the ALU, two 8-bit ac-
cumulators, one condition code register, and three other 16-bit
registers that are used for address storage (the index register, the
stack pointer, and the program counter). All of these registers can
be accessed in some way by programming.

There are also other registers that are not accessible by
programming. These include the 16-bit address incrementen/
decrementer, an 8-bit temporary register, and an 8-bit instruction
register.

Other functional blocks in the diagram include the
instruction-decoding ROM, cycle control logic, interrupt and
restart logic, bus control and halt logic, and timing generator.

Inside the device the various instructions are carried out in
incremental time periods, called processor cycles. Each cycle
consists of one phase 1 clock period and one phase 2 clock period. A
2-phase clock has two outputs which do not go high at, the same
time, as shown in Fig. 16-14. If the clock is operating at 1 mHz,
each processor cycle is one microsecond long. It takes a minimum
of two clock cycles to carry out a single instruction. Some
instructions take more than two processor cycles.

In a typical cycle, during phase 1 of the clock signal, the
processor puts an address on the address bus. This address
effectively connects a memory location or an I/O register to the
data bus. Then, during phase 2 of the clock, the data or instructions
are fetched and loaded into an internal register. During phase 1 of
the next processor cycle, internal operations are performed to
execute the instruction. Thus, the operation generally consists of a
series of fetch-and-execute operations.

Frequently, the microprocessor is doing more than one thing
at the same time. For example, the device may be fetching data
from the data bus while at the same time the ALU is performing
some operation on some data that has been fetched earlier.

The actual addressing, or putting of the required addresses on
the address bus, is a rather complex operation and is beyond the
scope of this book. It is sufficient to note that there are several
different ways that this can be done and, in fact, some of the major
differences between various types of microprocessors lie in the
way that addressing is handled.

234

Fig. 16-14. Dual-phase microprocessor clock signal waveforms (courtesy of
Motorola Semiconductor Products, Inc.).

Without getting into much detail, let's take a look at the
address bus. Note that it handles 16 bits. This means that it can
carry over 65,000 different high and low signal patterns and each of
these corresponds to the address of something. A given system
may not use all of these address locations, but they are available.
For convenience in operation, the 16-bit bus is considered as two
8-bit buses, one corresponding to the eight least significant bits
and the other to the most significant eight bits. In this way, when
the entire 16 bits are not necessary for an operation, the least
significant bits can be manipulated separately.

Normally the address on the address bus is generated by the
program counter. Thus, for example, this counter can be set to
zero and the program will start with what is stored at location 0000
0000 0000 0000. As the program proceeds, the program counter
will increment, addressing the next instruction.

The data bus is the port through which all data and instructions
pass in and out of the microprocessor. Note that this is a tri-state
bus. If the data on the data bus happen to be an instruction, the
information is fed to the instruction register. From there it goes to
the instruction decode circuitry, which generates the necessary
signals to tell the device to carry out the instruction in following
processor cycles. Incoming data is fed directly to the data bus, and
outgoing data is applied to the bus through the data buffer.

The registers of the device that are used in programming are
often shown in block form as in Fig. 16-15. Note that this particular
microprocessor has two accumulators. These are registers used in
connection with the ALU to hold data while an operation is being
performed. Each accumulator is much like the readout of a pocket
calculator.

235

15

7 o

ACCUMULATOR A IACCA)

7 o

IACCUMULATOR Fl IACCB)

l

O

INDEX REGISTER (X)

15 O

PROGRAM COUNTER (PC)

15 O

STACK POINTER (SP)

7 o

11H NZVC
CONDITION CODE
REGISTER

,Carry-Borrow (from bit 7)

 Overflow

 Zero

 Negative

 Interrupt Mask et

 Halt Carry (from bit 3)

Fig. 16-15. Registers used in programming the type 6800 microprocessor
(courtesy of American Microsystems, Inc.).

The index register is used to store addresses for other forms
of addressing. This register adds a great deal of flexibility to the
problem of addressing, and, when its use is mastered, many rather
elaborate things can be accomplished in the programming.

We have already mentioned the program counter. It is used in
connection with the incrementer/decrementer to develop the
current address that goes on the address bus.

The stack pointer is a register that keeps track of a portion of
the memory that is called a stack. This is much like the stack used
in some pocket calculators. Data can be entered into a stack in
order and recalled in the same order. The stack is often used in

236

connection with the interrrupt feature. Suppose the processor is
performing some routine operation when an interrupt signal is
received, telling the device that some more important operation
must be performed. The processor will stop what it is doing so that
it can attend to the more important chore. But before it does this, it
will store enough of the data that it's working on in the stack so that
when the interrupt operation is complete, it can go back to what it
was doing without losing track of anything. The stack pointer
carries the address at which things were stored. This operation is
usually described by saying that the stack pointer "points" to the
location that is to be remembered.

The condition code register was mentioned earlier. It con-
tains the various flags that are required to keep track of internal
operations. When an interrupt is received, the contents of the
condition register are stored in the stack.

WHAT DOES 11100K LIKE FROM THE OUTSIDE?

In the past few pages we have been discussing the various
functional elements that are found inside a microprocessor.
Although a knowledge of these elements is a great help in
understanding how a microprocessor works, we can't directly get
at many of these elements, In a practical situation we are more
interested in what happens at the pins of a microprocessor than in
exactly what is inside.

Figure 16-16 shows the pin diagram of a type 6800 micro-
processor. At first it appears formidable, because it has 40 pins

Fig. 16-16. Pin connections, type
6800 microprocessor (courtesy of
American Microsystems, Inc.).

GND -. 1 •
2

40

39

38

.- RESET

- TSC

-
HALT -

01-3

37 ,--- 02
VMA -. 5 36 - DBE

NMI -. 6 35 ,-

BA -- 7 34.-- RAII

V CC -' 8 33 - DO
AO -. 9 32 -.-- 01
Al -• 10 S68C* 31 .- D2

A2 -. 11 39 .-- D3

A3 -. 12 29 .--- D4

A4 -• 13 28.- D5
A5 --, 14 27 - 06
A6 .--, 15 26 .-- D7

A7 .--- 16 25 Al5

A8 -. 17 24 ---. Al4

A9 .-. 18 23-A13

A10 --, 19 22 .-... Al2

All .-- 20 21 ,--- GND

237

which aren't particularly familiar to a beginner in the field. Many of
these pins work together, however, and can be considered as one
input or output.

Pins 1 and 21 are ground connections, and pin 8, labeled Vcc,
is the positive power supply connection.

Clock connections. Pins 3 and 37 are clock connections. The
Type 6800 uses an external 2-phase clock signal which is applied to
these two pins. When we say that we have a 2-phase clock signal,
we mean that it consists of two pulse trains that do not go high at
the same time as shown in Fig. 16-14.

The address bus. Pins 9 through 20 and 22 through 25 make up
the address bus. It consists of 16 address lines that carry a digital
signal that specifies the address to which data is to be sent or from
which data is to be received. These are output pins because the
address signal is generated inside the microprocessor. By using 16
lines, 65,536 different address locations can be specified. These 16
lines can be though of as a single output port of the microprocessor.

The data bus. Pins 26 through 33 are called the data bus.
These pins tend to be somewhat unfamiliar because they can be
used as either input or output pins. These eight lines carry the
actual data and instructions used by the system.

Control functions. There are two general ways in which the
action of the microprocessor can be controlled. One way is by
applying signals to some of the pins that have various control
functions. The other way is to feed digital signals which will be

interpreted as instructions to the data bus.

Pin 39, labeled TSC, is the trip-state control for the address
bus. This microprocessor uses tri-state gates on several of its
connections. When pin 39 is brought to a high logic level, all of the
address lines which are outputs will go to a high impedance state in
which they are neither high nor low. As explained in the chapter on
logic gates, this permits connecting other outputs in parallel with
the address pins. Since the microprocessor is a dynamic device, it
can only be held in this state for 5.0 microseconds, but this is
enough for many purposes.

Pin 36, labeled DBE, is the tri-state control for the data bus.
When it is high, the internal drivers are connected to the data pins.
When this pin is low, the internal drivers will be disconnected and
the unit can read data from the data bus. This pin is normally
operated from phase 2 of the clock signal, but it can be externally

controlled.

238

Pin 2, labeled HALT, stopseverything in the microprocessor.
It is used to stop the microprocessor after a single instruction or
whenever it is desired to stop the device.

Pin 4, labeled IRQ, is the interrupt request pin. It is an input
that will stop the microprocessor after it has executed the present
instruction so that it can be used to perform some other function.
One of the attractive features of a microprocessor is that it can be
performing some routine job and be interrupted to do something
else, then return to the original job. Usually, the device operates
so fast that an observer would never realize that an interrupt had
occured.

Pin 6, labeled NMI, is also an interrupt request pin. The
microprocessor can be programmed to have priorities for the
various things that it does. Thus, it can mask out an interrupt signal
applied to pin 4 under some conditions. The interrupt to pin 6 can't
be masked out, hence it is called a non-maskable interrupt.

Housekeeping outputs. As we noted earlier, many of the
internal elements of the microprocessor are not connected to any of
the pins. We can only control them by means of instructions that we
provide to the data bus. In order to do this, however, our system
needs to know the state of many things inside the microprocessor.
Outputs are provided to give this information.

Pin 34, labeled R/W, carries an output signal that tells
whether the microprocessor in is in a state where it will accept or
read data, or whether it is in a state where it will give out, or write
data. A high signal on this pin indicates the read state, whereas a
low level indicates a write state.

Pin 7, labeled BA, is normally in a low state. However if the
HALT input is in a low state, or if the microprocessor is in a WAIT
state as the result of instruction, this pin will go high, indicating
that the address bus is available (BA).
THE MICROPROCESSOR IN A SYSTEM

Much of the terminology used in connection with micro-
processors is used rather loosely. We have noted that the micro-
processor contains at least the central processing unit (CPU) of a
computer. Some include much more. Nevertheless, it is common
to speak of the microprocessor integrated circuit as a CPU. When
the microprocessor is mounted on a printed-circuit board along
with other components, the entire arrangement is often called a
microcomputer.

From what we have said about the microprocessor so far, it is
obvious that if we are to do anything worthwhile with it, we must

239

connect some other components to it. The means of making these
connections are through the buses as shown in Fig. 16-17. The
address bus consists of the 16 leads that are connected to the
address pins. Similarly, the data bus is made up of the eight leads
connected to the data pins. The leads that are connected to all of the
other pins such as the HALT, R/W, and BA pins are grouped
together and rather loosely called the control bus. The power
supply connections are straightforward and are not shown.

One of the first things that comes to mind as a part of the
system is something that will let us connect it to the real world.
Devices of this type are called input, output, or simply input/
output (I/O) devices as shown in Fig.16-17. There are many
different types of I/O devices for use in systems, but they all
operate something like a register. When data is to be read into the
system from the outside world, it is first stored in a register. Then,
when the system is ready the data is read onto the data bus.
Outputs from the system are handled in the same way. When the
system is ready, the output data is taken from the data bus and
stored in an output register.

This sounds like a strange way of doing things, but when one
realizes that things happen very fast in a microprocessor, it all
begins to make sense. The data that we want to take off the data bus
may be present on the bus for only a fraction of a microsecond.
Most devices that will use such data in the outside world can't
operate at this speed, so the data is temporarily stored in a register
in the I/O device. Similar factors govern the input signals.

It is usually due to speed and timing considerations that
microprocessors and their peripheral components use a lot of
registers. Almost any part of such a system includes registers.

So far we have treated input and output signals as though they
were always digital in nature. Often they are. If the input is from a
keyboard, it will be digital in nature. Similarly, a printer or
7-segment output device will be operated by digital signals.

In many applications, our inputs and outputs are analog
signals. These signals are accommodated by incorporating AID
and DIA converters between the system and the outside world.

The other devices that we usually connect to the micro-
processor are memories. Usually, we will need both ROM and
RAM.
THE SINGLE-COMPONENT MICROCOMPUTER

The types of microprocessors and other integrated circuits
produced depends much more on the size of the potential market

240

than it does on technology. The state-of-the-art in the development
of integrated circuits has progressed to the point where it is
possible to build many components that are not commercially
available today. Usually, the initial development cost for a new unit
is quite high. However, if the market is large enough, this cost can
be amortized over many units. Once the development is complete,
the manufacturing cost is usually surprisingly low.

Because of these considerations, the types of new devices
that we see in the future are apt to depend on what managers think
will sell in great volume. It is for this reason that we see highly
specialized devices used in such things as TV games that sell in
great volume, and standard general purpose devices used in such
things as broadcast equipment that usually sell in much smaller
volume.

One of the newer devices that is more specialized than the
earlier microprocessors, yet still a general purpose device, is
called the single-component or single-chip microcomputer. We
noted earlier that the term, microprocessor, was generally used
for the IC that contained the CPU of a computer system. The term,
microcomputer, is reserved for systems that contain all of the
items required in a computer. The circuit that we are talking about
has all of the functional elements of a computer in a single IC, and
hence is called a microcomputer.

A typical example of a device of this type is the Intel Type
8048 single-chip microcomputer, which is shown in the block
diagram of Fig. 16-18. As shown in the figure, the device contains
the CPU, clock circuitry, 1024 bytes of program memory (ROM),
and 8-bit timer and event counter, as well as 271/0 lines. No other
components are needed to build an actual digital computer.

FROM IADDRESS
ADDRESS REGISTER
BUS

I

FROM CONTROL
CONTROL CIRCUITRY
AND CLOCK
LINES

FROM J DATA 10 OUTSIDE
DATA BUS REGISTER WORLD

Fig. 16-17. Functional diagram of an I/O device.

241

CLOCK

8 BIT

CPU

1024 WORDS
PROGRAM
MEMORY

64 WORDS
QUA
MEMORY

r

8 BIT
TIMER

EVENT
COUNTER

27
I/0 LINES

Fig. 16-18. Block diagram of the type 8048 single-component microcomputer.
Courtesy of Intel)

Several different versions of the device are available, differing
primarily in the arrangement used for the program memory. In one
version, the program is put into the ROM permanently at the
factory. This is the best approach when the device is to be used in
large quantities. In another version, the user can put a program into
the memory which can be erased. This unit is ideal for small
volume applications and in applications where the program might
be changed for different versions of the final equipment.

We can gain a little more familiarity with the device by
considering it as viewed from its pins. Figure 16-19 shows the pin
diagram of the device.

Pin 1. This pin is used during programing and can also be used
as a clock output. It also has other uses in system operation.

Pins 2 and3. These are the clock input pins. Inasmuch as all of
the clock circuitry is self contained, usually an oscillator crystal is

connected between these two pins.
Pin 4, RESET. This pin is used to initialize the processor

and is also used during verification of the program.
Pin 5 SS. This input pin is used to single-step the processor

through each step of the program.
Pin 6, INT. This is an interrupt pin.
Pin 7, EA. This is an input pin, called "external access," that

forces all program fetches to reference external memory. It is
useful for debugging and essential for program verification.

Pin 8. This output pin is activated while the bus is being read.
It can be used to put data onto the bus from an external source.

242

Pin 9, PSEN. This output occurs only during a fetch to
external program memory.

Pin 10. This output occurs during a bus write.
Pin 11. This output occurs once during each cycle and can be

used as a clock output.
Pins 12 through 19. These eight pins are bidirectional and can

carry data in either direction, using the RD and WR output signals.
Pin 20. This is the ground power supply connection.
Pins 21through 24. These four pins form a bidirectional port.
Pin 25. A +25V signal is applied to this pin when a program is

being burned into the internal ROA.
Pin 26. This pin also has a +25V input during programing, but

has a +5V input during normal operation.
Pins 27 through 34. These pins form a bidirectional port.
Pins 35 through 38. These contain the four higher bits of the

program counter.
Pin 39. This pin can be used as an input for the timer and

counter functions, using the proper instruction.

TO C \& I 403
XTAL I E 2 39 JTI
XTAL2 C 3 38 : P27
FrZr E 4 37 : P26
n c 5 36 : P25
INT C6 35 3 P24
EA C 7 34 3 PI7
RD C8

8048
8648 33 J PI6

PSEN E 9 8748 32 JPI5
iirli E 10 8035 31 3 PI4

ALE C ii 30 3 PI3
DB0C12 29: P12
D8 1 C13 28 J PI l
D82 C14 27 D PIO
D93 C15 26 3 Ve.c

Ce4 :16 25 3 PROG
D85 CI7 24 3 P23
D86 118 23 3 P22
DIE17 C19 22 3 P22
Vss C 20 21 3 P20

Fig. 16-19. Pin configuration of the type 8048 single-component microcomputer
(courtesy of Intel).

243

Pin 40. This is the main positive power supply connection.
Without going into very much detail, we can see from the pin

connections that the single-component microcomputer is quite a
bit different from the microprocessor. In fact, its connections are
much more like those of a complete computer system. Of course,
this is what we might expect from the name of the device.

The fact that so many different functional elements are
contained inside the device relieves the designer from many of the
problems of circuit design. It is only when the system is large
enough to require external memory that some of the problems that
we usually associate with microprocessors come into the picture.

About the only technical skill required to apply the single-
component microcomputer is the ability to program it. This, of
course, requires knowledge of programing and is beyond the scope
of this book.

A good example of the application of this device to broadcast-
ing is in the Series 99 cartridge recording and playback machines
manufactured by International Tapetronics Corporation. This
equipment was developed to overcome many of the limitations
usually associated with audio cartridge machines, particularly in
stereo transmission.

The cartridge machines are completely controlled by a
single-component microcomputer. This means that, except for
manual cartridge insertion, most of the operation of the machine is
either completely automatic or controlled by simple pushbuttons.

The functions controlled by the microcomputer are interest-
ing. The crystal clock is accurate to within 0.05%, so it can
accurately control the timing frequency in the system. It provides
two cue tones in addition to those usually provided (3.35 and 3.65
kHz). These may be used as discrete cue tones or for other
operations such as data logging. Provision is included for using
these two tones in an FSK mode. The record head bias frequency is
also derived from the clock.

In operation, the microcomputer looks at the status of all
inputs to the system and controls the sequence of operations of the
machine accordingly. The inputs that are looked at include all of the
pushbuttons, the cartridge switch, the motor lock-in signal, cue
tones and various status signals. Based on the status of these
inputs, the system decides which operation, if any, is to be
performed. Any necessary operations are then performed in a
sequence that is stored in the memory. Internal buffers are

244

included in the system so that external devices such as lamps can
be connected without any external buffering.

Some of the things that are accomplished by incorporating the
microcomputer are shown in a description of the ELSA option,
which stands for Erase, Locate Splice, and Azimuth. This option
provides three functions—automatic azimuth adjustment, erasing,
locating a splice, and stopping the machine. Any of these functions
can be automatically skipped if desired by making a small change of
a jumper wire.

The automatic azimuth adjustment is preceded by a bulk
erasure of the cartridge to remove any recorded material. After the
erasure is completed, a tone is recorded on all tracks—left, right,
and cue. The signals from these tracks are then fed to a phase
comparator. The output derived from the phase comparator is then
applied to a drive motor which will move the head in such a
direction as to correct the error. The procedure is then repeated
with another tone to further reduce the phase error.

This is an example of a system which would require hundreds
of LSI ICs to accomplish the same function. By using microcompu-
ter technology, all of the control circuitry can be contained in a few
ICs. This is the only thing that makes including so many functions
economically viable.

DIGITAL FILTERING

Frequently, we have mentioned that a digital system can do
anything that an analog system can do. In some instances this is
easy to imagine. For example, it is easy to see how a digital
system can be used to introduce a delay into a signal. On the
other hand, there are some hard-to-imagine things that can be
accomplished digitally. The filtering of a signal is an operation of
this type. It is hard to see how we can filter a signal after it has been
converted into a series of digital pulses. After all, the pulse
repetition frequency depends on the sampling rate of the system
and not on the frequency of the signal.

The fact is, however, that filtering can be accomplished
digitally. In fact, it is easier to provide many rather elaborate
filtering functions in the digital world than with more conventional
analog filters. We will see digital filtering and signal processing
increasingly in broadcast equipment, so it might be a good idea for
us to look at the basic principles involved.

Figure 16-20A shows a block representing a filter. As we
know, the most common filters fall into low-pass, high-pass,

245

o
0- LOW — PASS

FILTER

1...0

....0

Fig. 16-20: Block diagram (A) and circuit diagram (B) if a low-pass filter.

band-pass or band-rejection categories. In conventional filters the
box in Fig. 16-20 would contain either inductors and capacitors or
resistors and capacitors. In more modern circuits, we find the
so-called active filters that contain resistors, capacitors, and
op-amps. Let's assume for the moment that the box of Fig. 16-20
contains a low-pass filter. We can imagine the circuit being
something like that shown in Fig. 16-20B.

Without going into any of the mathematics used to describe
filters, we can intuitively see how the circuit of Fig. 16-20B would
indeed act as a low-pass filter. At very low frequencies, well below
the cutoff frequency of the filter, the inductive reactance of the
inductor will be very small and the capacitive reactance of the
capacitor will be very high. Thus, a signal in this frequency range

will pass through the circuit with very little attenuation. As the
frequency increases, so does the reactance of the inductor. The
reactance of the capacitor will get lower. Thus, the attenuation of
the circuit will increase as the frequency of the signal increases.
Eventually, at some frequency well above the filter's cutoff
frequency, the inductor will look nearly like an open circuit and the
capacitor nearly like a short circuit. Thus, the attenuation will be
very high.

The circuit of Fig. 16-20B is the conventional approach to
filtering, although the mathematics can become very involved.
However, in electronics there are many situations where we may
take two or more completely different approaches to a problem and
get the same results. We can use a block diagram, like that of Fig.
16-20A to describe the overall behavior of a circuit. Although the
circuit of Fig. 16-20B might well be what is inside the block, we
often find that we can put something entirely different inside the
box and get the same result.

A simple example is shown in Fig. 16-21A. Here we have a
box with two terminals, and if we measure the resistance between
the terminals we find it to be 25 ohms over a wide frequency range.

246

We find only resistance, no reactance. Our first guess as to what
actually might be inside the box is a 25-ohm resistor. Of course,
what is actually inside the box could be some series-parallel
combination of resistors that provides a net resistance of 25 ohms.
What probably wouldn't occur to us is the fact that a circuit like that
of Fig. 16-21B could be inside the box: This circuit is probably not
familiar, but if you take the time to calcualte the impedance across
the terminals, you will find it to be 25 ohms of pure resistance at all
frequencies.

The point of this example is that in addition to the circuits with
which we are familiar, there are probably other unfamiliar circuit
arrangements that will accomplish the same thing. This is the case
in filtering. There is another approach to filtering which hasn't
been popular because it hasn't been particularly easy to implement
with analog circuits.

If we were to write down the mathematical expression for the
performance of a filter to an arbitrary input signal, we would
usually specify everything in terms of frequency. The equation
would describe the frequency response of the filter and the
frequency content of the signal. However, there is another way in
which we could write the math. We could write everything in terms
of time. Although the math is unpleasantly complex in either case,
we would find that the time approach to the problem involved
introducing time delays.

Fig. 16-21. Filter "boxes" often contain unexpected circuits.

247

The fact is that every filter takes some time to respond to the
input signal. The time is indeed short, but there is always some
time interval between when a signal is applied to the input of a filter
and when this input has an effect on the output. This at least implies
that we might be able to perform filtering by using things like time
delays.

Figure 16-22A shows a box with an input signal consisting of
just a pulse. Also shown is the output which the box would produce
in response to this pulse. In Fig. 16-22B, we show how we can
break any arbitrary signal into a series of pulses. From this it
follows that if we can take the responses that would be produced by
all of the pulses in our signal and add them together, we would get
the same effect as though we had applied the continuous signal to
the circuit. Actually, we would need a special circuit to this, but it
could be done.

Although this mathematical technique has been known for
many years, it hasn't been the basis of filter design because it
resulted in circuit configurations that were very hard to build using
conventional circuit elements. In the first place, stable time delays
are hard to accomplish. Delay lines tend to be both bulky and
difficult to build. Shifting analog signals in time isn't easy either.

This application is where some of the advantages of digital
systems become apparent. We have seen that once we have a
signal in digital form, it is easy to store in a memory without any
signal degradation. Once a sample of a signal is stored in a memory,
we can delay it as much as we wish, by simply reading it out after
the required time delay. We can also vary this time delay at will by
taking more or less time before we read the signal out of the
memory. There is another advantage in that once we have a digital
signal stored in memory, we can use the same sample as often as
we wish without the need to take another sample.

This flexibility of a digital system makes it possible for us to
take samples of our signal, delay them as long as we wish, multiply
them by other samples or by other signals, and add the results.
With this capability we can duplicate almost any conventional filter
that one can imagine.

In addition to all that can be done with linear filters, the digital
system can easily introduce nonlinearity into the system if desired.
Thus, a filter can be made that treats loud signals in a completely
different manner than the way it handles weaker signals. A further
advantage is that any changes that might be necessary can be
accomplished by merely changing the program in the digital system
without even reaching for a screwdriver or a soldering iron.

248

Compare the requirement for changing a small program to the work
required to change a conventional low-pass filter into a high-pass
filter with a different cutoff frequency!

All devices that handle signals in a broadcast system, either
audio or video, are made as linear as possible because nonlinearity
introduces distortion that we can't remove with conventional
techniques. Sometimes other parameters are sacrificed in or der to
get the required linearity. With digital processing equipment,
linearity is no longer significant because we can remove the effect
of nonlinearity with signal processing. Thus, as digital processing
advances, we can expect changes in the design of analog compo-
nents such as microphones and cameras.

THE SIGNAL PROCESSOR

From the preceding discussion, it is obvious that any digital
signal processor requires analog-to-digital and digital-to-analog
conversion. We must get the signal into digital form before we can
process it, and we must get it back into analog form before we can
use it in the real world. This might make it seem as though any
digital processing system would require a large number of
components. This isn't true.

Figure 16-23 shows a block diagram of an Intel 2920 Signal
Processor. Note that the device includes both AID and DIA
converters inside the IC. Thus, the input and output signals are
both analog signals, although all of the processing inside the device
is done digitally. For this reason it is sometimes called an analog
microcomputer.

Looking at the block diagram, we see that the input signal is
sampled and the value of the sample is held constant long enough
for it to be converted into digital form. It then enters the digita

Fig. 16-22. Waveforms showing the response of a filter to a pulse (A) and an
arbitrary signal broken into pulses.

249

S/H 4 MD
DIGITAL

PROCES9OR
D/A

S/H — SAMPLE AND HOW CIRCUM

A/ D ANALOG TO DIGITAL CONVERTER

DIA — DIGITAL TO ANALOG CONVERTER

S/H

Fig. 16-23. Block diagram of the Intel 2920 signal processor.

circuitry which is controlled by a microprocessor. What happens to
the signal depends on what is programmed into the microproces-
sor. Thus, the circuit can be made to process the signal in almost
any imaginable way. Various filtering functions can be performed
and even such things as recognizing a particular tone can be
accomplished easily. There are four separate inputs and eight
outputs. Each can be multiplexed so that many different things can
be done at almost the same time.

The frequency response of the device is limited by how
elaborate our processing is. Simple processing might only require
one pass of the signal through the processor, whereas more
elaborate processing may require many passes, hence more time.

As of this writing the signal processor IC is limited to the high
audio frequencies, but it is dangerous to talk about limitations in a
field that is advancing as fast as digital electronics!

250

Index

A F
Accuracy 130 Fan-out
Actrve low rndcator 19 Faults. °mud
AID 116 dynamrc
ND converter. FrIterang. drgrtal

successrve approcrmaton 138 Flag. what's a
resoluton of 139 Fltp-Ilop, clocked RS
using D/A feedback 136

ALL symbol 20
Analog.drgdal srgnal companson 7 type J.K

Analog.to-chgrtal 116 Fie-flops. clocked
conversron 10 Flowcharts
converters 131 Frequency counter

Analog srgnals.

removIng npse from 171
"AND- gate 2

ANY symbol 21 ASCII data code 1,?

Asynchronous 64
Audo recorcfings,drgrtal 180 H

Bandvedth reductron 166
BCD numbering system 77

system 74
na ry coded decimal 74
number system 13

Brstable latch 61
Etts 17
Buffers 87
BYTES 17

C
Capacitors. desprlung 99
Crrcurt faults 197
Orcurtry. TTL 33
Guards. CMOS rntegrateo 52
Clocked I Irptlops 64

RS Itp.11op 68
Cloclung. edge 65

Closed-loop system 183

Hogh.speed TTL

mmuryty. noise
necator. a Me low
nput consrderatrons. other
nput levels
npuboutput
nput protect on. CMOS
nputs.werghtrng
nstruct on set, what Is
ntegrated or all LS. CMOS

faults
nteg rat on. large scale

medrum scale
small scale

nterlerence
nterva I. vert cal blanking
NVERTER
nverters
lo

Gates. logrc
Gates wqh more than two Inputs
Graphrcs. electronrc
GroundIng

0
44 Op-amp charactensbcs 108
197 Op-amp. summing vAtt1 112
197 Op.amp min feedback 109
245 Open collector outputs 39
231 Open.loop system 182
68 Open prn 192
66 Open pals 191
67 'OR' gate 22
68 Osülloscope 201
64 Output °taut 49
215 Output levels 44
156 output. totem-pole 37

Outputs. open collectof 39

85 P
27 Parallel transntssen 16
169 Panty 141
99 Power cbstrIbuten system 98

Processor. srgnal 249

51 6
Ouasr-chgrtal technrqueb 181

47
19
48
43
116
59
113
222
52
191

83
83
83

100, 1%
170
26
87
116

Readouts

Reduction. banderadth
no•se

Regrster

Regulator
Regulators. scratching
Reset
Resoluton
RS119.11op. clocked

Samples. chgrtzing
&arming
Scale factor
Scalrng data
Schmrdt tragger
Schottky TTL

low power

121
166
173
79
97

104
63
130
68

15
11

131
124
88
52
52

251

CMOS charactenstiCs 55 118 sSeetquential logic 60
K Serial transmission input protection 59 16

52 Keyboards ea
integrated circuits

Shaft encoders 118
noise immunity 58

56 Shorted pins 195 voltage levels
Language. machine 219 Signal comparison. analog-digital 7

Coder 161
Languages. higher level 225 Signal processor 249

Combinational logic 60 Large scaleintegration 83 Small scale integration 83
Comparator 114 Latch. bistable 61 SSI 83
Complex control systems 186 Leads shielding 99 Switches 118
Control systems. complex 186

1.s 44 Synchronous
130 SwItching nchronorus egulators 104 unit

y Conversion, analog-to-digital "16 Loading 64
Logic. combinational Converters. AiD 13 1 80 System fiesibility 218
Logic elements. simulating 217 Systems approach 152

D/A 121 Logic gate as a switch 29
Correlation. digital 179 Logic gates 85 T
Counter. frequency 156 Test equipment 200

Logic. sequential 60
operation, general 73 trif state 89 7' Hip-flop 67

Time-base correction 167
0 Long-distance transmission 143 Timing 44

Low indicator. active 19 considerations 69 [VA 116 Low-power Schottky TTL 52
converters. specification 01 130 Totem-pole Output 37

Low Power TTL 51
Data link, complete 147 Transmission. data 145

LSI 83 long-distance 143 Data selector 92
transmission. problems 145 lig parallel 16

DeCOding,speaal 154 Machine language 219 serial 16
Despiking capacitors 72 Tn-state logic 89 99 Master•slave flip-Ilcp. timing

83 Truth table "D'' flip-flop 66 21 Medium scale integration
180 Microcomputer. Digital audio recordings TTL characteristics 43

Circuits. becoming lamiltar with 94 single-component 240 circuitry 33
correlation 179 Microprocessor 206 family. members 50

modulation considerations 144 closer look at 228 high-speed 51
system. understanding 157 in a system 239 low-power 51

Digital-to-analog 16 limitations 209 Schottky 52
converters .21 Modulation, digital 144 Schottky. low-power 52

Digitizing samples 15 Monostable multivibrator 93 Type J-K flip-flop 68

DIP 83 MSI 83
Dual-in-tine package 83 Multivibrate. monostable 93 U
Dual-slope 134 Unit load 45
Dynamic faults 197 N V

'NAND' gate 22 170 E Nibble 18 Vertical blanking interval
Voltage levels. CMOS 56

Edge clocking 65 Noise 106 VON 200
Edge-triggered flipfflop. timing 70 Noise immunity 47

Word W Electronic graphics 169 CMOS 58 17
Encoders. shaft 118 Noise reduction 173
EXCLUSIVE gates 26 NOR gate 22 Z

symbol 20 "NOT" gate 26 Zeroes, working vath 23

252

