

1941
ABRIDGED
CATALOG
No. 185A

Scanned and Prepared by Dale H. Cook

MICA · PAPER · DYKANOL · WET & DRY ELECTROLYTIC

CAPACITORS

CAPACITOR TEST INSTRUMENTS

C-D CAPACITOR ANALYZER

The Model BF-50 Capacitor Analyzer quickly and accurately measures all important characteristics of all types of capacitors. It offers the most accurate and thorough capacitor test of any instrument of its type, and may be

operated on any 110-volt, 50-60 cycle power line.
The analyzer will determine the true condition of all paper, mica and electrolytic capacitors, including A.C. motor starting types. It is the only instrument of its type which provides a complete test for all capacitors, with amplifier for adequate sensitivity, easy reading linear scales, pushbutton switches for simplicity of adjustments, D.C. voltage supply and visual eye leakage indicator.

Features of C-D Analyzer

- Measures Capacity—Accurately measures capacity of paper, mica, air, electrolytic and motor-starting capacitors from .00001 to 240. mfd.
- Measures Power Factor—Measurements of power factor from zero to 50 percent on all types of electrolytic capacitors including motor-starting types.
- Employs Wien Bridge—Assures permanent accuracy of capacity and power factor measurements. Readings not affected by line

- and power factor measurements. Readings not affected by line voltage variations.

 Indicates Insulation Resistance—Insulation resistance measurements of paper and mica capacitors up to 1500 megohms. Also measures many types of insulation.

 Indicates Leakage—Measurements of leakage of electrolytic capacitors by means of built-in direct current power supply.

 Visual Eye Leakage Indicator—Provides simplified and reliable leakage tests on all types of capacitors. Enables measurements to be made rapidly.

 Detects Defective Capacitors—Character measurements, such as leaky, shorted, open, high and low capacity, and high power factor on all capacitors.

 High Sensitivity on All Measurements—Amplifier for capacity,
- factor on all capacitors.

 8. High Sensitivity on All Measurements—Amplifier for capacity, power factor and leakage tests provides sharp and accurate readings. Amplifier built in Analyser.

 9. Balance Sensitivity Control—Provides sharp or broad balances for quick and accurate readings. All readings are made simply and directly.

 10. Direct Reading Linear Scale Calibration—Provides simplified measurements. All scales on panel uniformly spaced, easy to read, thus avoiding possible errors in using multipliers or charts.

 11. Push-Button Switching—For convenient and simplified adjustments, all tests and circuit changes are made by means of modern push-button switches.

 12. Visual Eve Bridge Balance—Visual detector gives positive indica-

- push-button switches.

 12. Visual Eye Bridge Balance—Visual detector gives positive indication of bridge balance for convenient, simplified and accurate capacity and power factor measurements.

 13. Six Color-Coded Scales—Accurately calibrated, six color-coded scales. Uniformly spaced over total spacing of sixty inches. Easy to read. No "blind" spots.

 14. General Purpose Instrument—May be used to check continuity approximate the property windings and capacity between circuits insulation of transformer windings and
- General Purpose Instrument—May be used to check continuity capacity between circuits, insulation of transformer windings and other types of coils, etc.
 Self-Contained—Portable—An instrument complete in itself, requiring no external standard, headphones, meters or accessories. A portable unit, for 110 volt, 50-60 cycle operation, supplied in walnut cabinet, removable cover, with carrying handle. Size, 6 ½ x 12 x 9¾ inches. Weight, 9 pounds.
 MODEL BF-50 CAPACITOR ANALYZER
 List Price less thips. \$41 50

List Price, less tubes, \$41.50

Net Price

For Operation on 110 volts, 50-60 cycles.

\$24.90

C-D CAPACITOR BRIDGE

The Model BN Midget Capacitor Bridge quickly and accurately measures all types of capacitors between limits of .00001 mfd. and 50. mfd.

Features of C-D Capacitor Bridge

- Measures Capacity—Accurately measures capacity of paper mica electrolytic and air capacitors between limits of .00001 mfd. to 50. mfds.
- Indicates Power Factor—Power factor of electrolytic capacitor indicated by means of visual eye detector tube.
- Detects Defective Capacitors—Detects many types of defective capacitors, open and short circuited, high and low capacity, and high power factor.
- Checks Circuit Continuity—May be used on continuity meter. A handy instrument for checking circuits, coils, transformers and many other uses.
- Employs Wien Bridge—Employs Wien Bridge circuit for all measurements. Accuracy independent of line voltage variations.
- Visual Eye Bridge Balance—Dual type visual bridge balance for accurate measurements facilitates quick tests on service jobs.
- Direct Reading Scale—Direct reading ranges with all scale markings directly in microfarads. Clear reading dial scale. All capacity calibrations marked on panel. No charts or multipliers required.
- Self-Contained—The Capacitor Bridge is complete in itself and requires no headphones, standards, external meters or similar accessories.
- Extremely Compact—The unusually small size of this bridge makes it particularly handy for portable use—35%" x 5" x 3", weight 2 pounds.
- Attractive—Supplied in attractive walnut Bakelite case complete with detachable test leads and useful instruction booklet.

MODEL BN CAPACITOR BRIDGE

List Price, less tubes, \$16.50.
For operation on 110 volts, 60 cycles.

\$9.90 Net Price

C-D CAPACITOR DECADES

C-D Capacitor Decades provide accurate standards over a wide range of capacity. May be used in groups of the three decades, shown above, or used individually for maximum flexibility. Each decade is furnished with calibration chart giving exact capacity values for all scale markings, extending use to more precise measurements.

Rated Voltage-600 D. C .- 220 A. C.

Model	Ca	pacity		+ or— Tol.	Dielectric	List Price	
CDA-5			mfd. steps	5%		\$9.00	
CDB-5 CDB-3	mfd. in		mfd. steps mfd. steps	5%	Oil-Paper Oil-Paper		
CDC-5 CDC-3	mfd. in	1.0	mfd. steps	5%	Oil-Paper Oil-Paper	16.00	9.60

CORNELL (D) DUBILIER

DRY ELECTROLYTIC CAPACITORS

TYPE BR "BLUE BEAVERS"

Type BR "Blue Beavers" are the most universal capacitors available for use where single section units are required. They are extremely small, handy, and completely eliminate the use of exact duplicate replacement capacitors. Polarity is clearly indicated on a protective varnished cardboard sleeve fitted over a pure aluminum cartridge. Hermetically sealed, vented, and especially designed for use in all radio circuits.

Cat. No.	Cap. Mfd.	Size—Inches Diam. x Length	List Price	Net Price
	6	25 V. D.C.		
BR 102A	10	5/8 x 11/16	\$0.40	\$0.24
BR 202A	20	5% x 11/16	.45	.27
R 252A	25	5/8 x 1 1/16	.50	.30
3R 502	50	5/8 x 17/16	.60	.30
IN JUL	00	50 V. D.C.	.00	
R 550	5	5/8 x 11/16	.40	.2
R 105	10	5/8 x 11/16	.45	.2
R 205	20	5/8 x 17/16 5/8 x 17/16	.50	.30
R 255	25	5/8 x 17/6	.55	.3:
R 505	50	5/8 x 111/16	.70	.4:
		150 V. D.C.		
BR 415	4	5/ 11/	.40	.2
BR 815	8	5/8 x 11/16	.45	.2
BR 1215	12	5/8 x 17/16	.50	.3
BR 1615	16	5/8 x 17/16	.55	.3
BR 2015	20	5/8 x 1 11/16	.60	.3
R 3015	30	3/4 x 2	.65	.3
3R 4015	40	34 x 2	.70	.4:
		58 x 1 1/6 58 x 1 1/6 58 x 1 1/6 58 x 1 1/6 58 x 1 1/6 34 x 2 250 V. D.C.		
3R 425	4		.45	.2
3R 825	8	5/8 x 17/16	.50	.3
3R 1225	12	5/8 x 17/16 5/8 x 2	.65	.3
BR 1625	16	3/4 x 111/16	.75	.4
3R 2025	20	34 x 111/16	.80	.4
3R 4025	40	350 V. D.C.	.95	.5
		350 V. D.C.		
3R 435	4	5/8 x 17/16 3/4 x 111/16	.50	.3
R 835	8	3/4 x 1 11/16	.55 .70	.4
3R 1235	12 16	34 x 2	.80	.4
BR 1635	16	450 V. D.C.	.80	
N 145	1	450 V. D.C.	.45	.2
BR 145 BR 245	2	5/8 x 11/16	.50	.3
3R 245 3R 445	4	5/ - 17/	.55	.3
R 845	8	8 X 1 /16	.60	.3
	10	7/ - 17/	.70	.4
BR 1045 BR 1245	12	7/ × 2	.75	.4
3R 1245 3R 1645	16	58 x 1 7/6 58 x 1 7/6 58 x 1 7/6 34 x 2 78 x 2 78 x 2	.90	.5
3R 1645 3R 2045	20	1 x 2 ½	1.00	.6
3R 2045 3R 3045	30	1 -3	1.20	.7
OF JUIS	30	1 x 3 500 V. D.C.	1.20	
BR 850	8	7/8 x 111/16	.85	.5
R 1650	16	1 x 2 1/2	1.30	.7

* Reg. U. S. Pat. Off.

TYPES BRL AND BRS "BEAVERS*"

Type BRL "Beavers" are dual and triple common negative capacitors, while Type BRS are dual common positive units. Capacities, voltages and polarity of the leads are clearly defined by color coding stamped on the cardboard tube casing. Units are provided with a mounting strap around the center of the cardboard tube casing which enables mounting with one screw under the chassis assembly.

Dual Common Negative Units

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—Ins. Dia. x Lgth.	List Price	Net Price
BRL 2055	5-5	25	5/8 x 1 3/4	\$0.60	\$0.36
BRL 2101	10-10	25	5/8 x 1 3/4	.70	.42
BRL 3055	5-5	50	5/8 x 1 3/4	.75	.45
BRL 115	10-10	50	5/8 x 2 1/4	.80	.48
BRL 4415	4-4	150	11/16 x 1 3/4	.70	.42
BRL 8815	8-8	150	3/4 x 2 1/2	.80	.48
BRL 8115	8-16	150	13/6 x 2 1/4	.85	.51
BRL 1115	16-16	150	1/8 x 2 1/2	.95	.57
BRL 2115	20-10	150	1/8 x 2 1/2	.95	.57
BRL 2215	20-20	150	7/8 x 2 1/2	1.05	.63
BRL 4215	40-20	150	15/16 x 2 1/2	1.15	.69
BRL 8125	8-16	250	7/8 x 2 3/4	1.05	.63
BRL 1125	16-16	250	1 x 2 34	1.25	.75
BRL 8845	8-8	450	1 x 2 34	1.05	.63
BRL 8145	8-16	450	11/16 x 3 1/4	1.35	.81

Triple Common Negative Units

BRL 201	4-8, 10	150, 25	3/4 x 2 1/2	\$1.10	\$0.66
BRL 202	10-16, 10	150, 25	1/8 x 2 1/2	1.25	.75
BRL 203	16-16, 20	150, 25	15/6 x 2 3/4	1.35	.81
BRL 205	8-8-8	150	18/6 x 2 1/2	1.15	.69
BRL 206	4-8-16	150	1/8 x 2 1/2	1.20	.72
BRL 207	10-10-20	150	1 x 2 1/2	1.40	.84

Dual Common Positive Units

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—Ins. Dia. x Lgth.	List Price	Net Price
BRS 4815	4-8	150	3/4 x 2 1/2	\$0.95	\$0.57
BRS 8815	8-8	150	18/6 x 2 1/2	1.00	.60
BRS 1415	4-12	150	13/6 x 2 1/2	1.00	.60
BRS 8115	8-16	150	15/16 x 2 1/2	1.10	.66
BRS 1115	16-16	150	1 x 2 1/2	1.25	.75
BRS 2215	20-20	150	15/16 x 2 7/8	1.35	.81
BRS 3115	30-10	150	15/16 x 2 7/8	1.35	.81
BRS 3215	30-20	150	1 x 2 1/8	1.40	.84

DRY ELECTROLYTIC CAPACITORS

TYPE EZ UNIVERSAL MOUNTING UNITS

Type EZ capacitors are especially popular for radio servicing where low cost replacements are required. They are designed with mounting feet for upright mounting to replace inverted can-type units, spade-lug units, or may be mounted beneath the chassis by means of the mounting strap provided around the center of the cardboard tube casing. In any instance, the unused mountings may easily be cut off.

These units are without doubt the most practical all-around replacement capacitors available and incorporate C-D etched foil features in design and construction. They are completely sealed in moisture-proof cardboard tube casing, filled with special wax compound, and provided with insulated wire leads eight inches long.

All units are clearly stamped with capacities, voltages and color code designation of leads.

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—Ins. Dia. x Lth.	List Price	Net Price
EZ 825	8	250	1/8 x 2 1/2	\$0.50	\$0.30
EZ 1625	16	250	1 x 2 1/2	.75	. 15
EZ 2425	24	250	11/6 x 2 3/4	.85	.51
EZ 835	8	350	15/16 x 2 1/2	.55	.33
EZ 1235	12	350	15/16 x 2 3/4	.70	.42
EZ 1635	16	350	1 x 2 3/4	.80	.48
EZ 2435	24	350	1 x 3 1/2	1.00	.60
EZ 845	8	450	7/8 x 2 3/4	.60	.36
EZ 1245	12	450	1 x 2 3/4	.75	.45
EZ 1645	16	450	11/16 x 23/4	.90	.54

	Dual Common Negative Units						
EZ 3315	30-30	150	1 x 2 3/4	\$1.45	S0.87		
EZ 5515	50-50	150	1 x3½	1.65	.99		
EZ 8825	8–8	250	1 x 2 3/4	.85			
EZ 8835	8–8	350	15/16 x 3 1/2	.95	.57		
EZ 8845	8–8	450	1 x 3 1/2	1.05	.63		

EZ 288	8–8	250	13% x 23/4	\$1.10	SO.66
EZ 2116	16-16	250	13% x 334	1.65	.99
EZ 388	8-8	350	13% x 3	1.25	.75
EZ 3112	12-12	350	13% x 334	1.55	.93
EZ 3116	16-16	350	1 3% x 4 34	1.80	1.08
EZ 588	8-8	450	13% x 3	1.35	.81
EZ 5816	8-16	450	13/8 x 33/4	1.65	.99
EZ 5112	12-12	450	13% x 334	1.65	.99
EZ 5116	16-16	450	13% x 434	2.00	1.20

Type EZ capacitors continued in next column.

TYPE BRH HIGH-CAPACITY LOW-VOLTAGE UNITS

These compact C-D otched foil electrolytic capacitors have been especially designed for all applications requiring high capacity units operating in low voltage D.C. circuits. They are widely employed in portable radio power rectifying circuits, electric fence devices, telephone and D.C. timing circuits. Units are available in standard capacities and voltage ratings for all uses.

Hermetically sealed in pure aluminum cans with an external cardboard insulating sleeve, these units are provided with metal mounting strap and bare wire leads for convenient wiring into any circuit assembly. They are constructed identically the same as Type BR "Blue Beavers" except all units are provided with a mounting strap.

Cat. No.	Cap. Mfd.	D.C. W.Volts	Size—Inches Dia. x Lgth.	List Price	Net Price
BRH 601	100	6	5/8 x 11/6	\$0.75	\$0.45
BRH 6025	250	6	5/8 x 17/16	.95	.57
BRH 605	500	6	5/8 x 2 1/2	1.25	.75
BRH 610	1000	6	1/8 x 2	1.75	1.05
BRH 615	1500	6	1/8 x 2 1/2	2.25	1.35
BRH 620	2000	6	1 x 21/2	2.75	1.65
BRH 121	100	12	5/8 x 17/6	.80	.48
BRH 1225	250	12	3/4 x 2	1.10	.66
BRH 125	500	12	1/8 x 2 1/2	1.50	.90
BRH 151	100	15	5/8 x 11/6	.85	.51
BRH 1525	250	15	3/4 x 2	1.25	.75
BRH 155	500	15	1/8 x 2 1/2	1.75	1.05
BRH 251	100	25	5% x 2	.90	.54
BRH 2525	250	25	7/8 x 2	1.50	.90
BRH 255	500	25	1 x 21/2	2.25	1.35
BRH 501	100	50	3/4 x 2	1.10	.66

	Triple Com	mon Negati	ive Units		
Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—Ins. Dia. x Lth.	List Price	Net Price
EZ 601 EZ 602 EZ 603 EZ 604 EZ 605 EZ 606 EZ 607	24-16, 20 30-10, 20 40-20, 20 30-20, 10 40-20-20 15-10, 20 20-10, 25	150, 25 150, 25 150, 25 150, 25 150 350, 25 400–350, 25	1 x 3 1 x 3 1 1/16 x 3 1 1/18 x 2 3/4 1 1/8 x 3 1/2 1 1/8 x 3 1/2 1 3/8 x 3 1/2	\$1.45 1.45 1.50 1.50 1.65 1.65 1.85	\$0.87 .87 .90 .90 .99
	Triple Sep	arate Section	on Units*		
EZ 608 EZ 609 EZ 610 EZ 621 EZ 611 EZ 612 EZ 613 EZ 614 EZ 615 EZ 616	8-8, 20 16-16, 20 8-8, 20 12-12, 20 16-16, 20 8-8, 20 12-12, 20 8-8-8 8-8-8 8-8-8	250, 25 250, 25 350, 25 350, 5 350, 5 350, 25 450, 25 450, 25 250 350 450	13/8 x 3 8/4 13/8 x 3 8/4	\$1.50 2.00 1.50 1.90 2.10 1.65 2.00 1.50 1.65 1.85	\$0.90 1.20 .90 1.14 1.26 .99 1.20 .90
	Quadruple Co	mmon Neg	ative Un	its	
EZ 617 EZ 618	8-8, 10-10 30-20, 10-10	150, 25 150, 25	1 x 2 3/4 1 3/16 x 2 3/4	\$1.45	\$0.87
	Quadruple Se	parate Sec	tion Unit	s*	

DRY ELECTROLYTIC CAPACITORS

TYPE FA HIGH-CAPACITY LOW-VOLTAGE UNITS

Type FA capacitors in round aluminum cans are designed for high capacity, low voltage applications, and are especially popular as replacements in motion picture sound equipment, "A" battery power supplies and other low voltage circuits where hum-free operation is essential. Their physical size for a given capacity and voltage rating makes them particularly desirable for compact assemblies. All units are provided with lug terminals on a moulded bakelite cover and furnished with an external cardboard insulating sleeve for protection against short circuits with associated parts of equipment assemblies.

Cat.	Cap.	D.C.	Size—Inches	List	Not
No.	Mfd.	W.Volts	Dia. x Lgth.	Price	Price
FA 1205 FA 1210 FA 1215 FA 1225 FA 1220 FA 1220 FA 1240 FA 1510 FA 1510 FA 1520 FA 1520 FA 1520 FA 1520 FA 1810 FA 1805 FA 1805 FA 1805 FA 1807 FA 1807 FA 1807 FA 1807 FA 1807 FA 1807 FA 2010 FA 2010 FA 2010 FA 2010 FA 2010 FA 2010 FA 3010 FA 3010 FA 3510 FA 5010	500 1000 1500 2000 2500 3000 4000 500 1000 2000 4000 500 1000 2000 4000 500 1000 2000 4000 500 1000 2000 4000 500 1000 2000 4000 500 1000 2000 4000 500 1000 2000 4000 500 1000 2000 4000 500	12 12 12 12 12 12 12 15 15 15 15 15 18 18 18 20 20 20 25 25 30 30 35 35 35 40 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	1 \$\{\cong x \ 4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ 1.50 2.50 3.00 3.25 4.00 5.50 1.75 3.00 3.75 8.00 2.00 3.00 4.00 9.00 2.25 3.25 4.50 10.00 2.25 3.50 6.00 12.50 3.75 8.00 2.25 3.25 6.00 12.50 3.75 8.00 12.50 3.75 8.00 12.50 13.75 8.00 12.50 13.75 8.00 14.50 15.50 16.00	\$0.90 1.50 1.80 1.95 2.25 2.40 3.30 1.05 5.180 2.25 3.15 4.80 1.20 1.80 2.40 5.40 5.40 5.40 6.00 1.35 2.10 3.60 7.50 6.00 1.95 2.70 6.00 1.95 2.70 6.00 1.95 2.70 6.00 1.95 2.70 6.00

TYPE FV HIGH-CAPACITY LOW-VOLTAGE UNITS

Type FV high capacity, low-voltage capacitors in rectangular metal cans are widely employed in standard types of low-voltage rectifiers for sound picture equipment, public address and sound systems, low-voltage power supplies, etc. They are particularly popular as replacements for servicing requirements where exact duplicate units are desired.

All units are hermetically sealed in an internal aluminum can insulated from the external metal casing, and provided with bakelite, barrier-insulated terminals and fork soldering lugs.

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—Inches Hgt. x Wth. x Dpt.	List Price	Net Price
FV 1205	500	12	41/4 x 21/16 x 11/16	\$2.35	\$1.41
FV 1210	1000	12	41/4 x 2 x 1 1/8	3.55	2.13
FV 1215	1500	12	41/4 x 21/4 x 21/4	4.95	2.97
FV 1220	2000	12	4 ¼ x 2 ¼ x 2 ¼ 4 ¼ x 2 ¼ x 2 ¼ 6 ¼ x 2 ¼ x 2 ¼ 6 ¼ x 2 ¼ x 2 ¼	6.30	3.78
FV 1225	2500	12	61/4 x 21/4 x 21/4	7.75	4.65
FV 1230	3000	12	61/4 x 3 x 3	9.25	5.55
FV 1240	4000	12	6½ x 3 x 3	11.95	7.17
FV 1505	500	15	41/4 x 21/4 x 11/4	2.50	1.50
FV 1510	1000	15	41/4 x 2 x 2	4.25	2.55
FV 1520	2000	15	61/4 x 21/4 x 21/4	7.75	4.65
FV 1530	3000	15	61/4 x 3 x 3	11.30	6.78
FV 1540	4000	15	6¼ x3 x3	14.80	8.88
FV 1805	500	18	41/4 x 2 x 2	2.85	
FV 1810	1000	18	4½ x 2½ x 2½		1.71
FV 1820	2000	18		4.95	2.97
FV 1840	4000	18	614 x 3 x 3	9.15	5.49
FV 2005	500		614 x 4 x 4	17.50	10.50
FV 2010	1000	20 20	4½ x 2 x 2	3.10	1.86
FV 2020	2000		61/4 x 21/4 x 21/4	5.40	3.24
FV 2040		20	61/4 x 3 x 3	9.95	5.97
FV 2505	4000	20	614 x 4 x 4	19.35	11.61
	500	25	414 x 2 x 2	3.75	2.25
FV 2510	1000	25	$6\frac{1}{4} \times 2\frac{1}{4} \times 2\frac{1}{4}$	6.55	3.93
FV 2520	2000	25	61/4 x 3 x 3	12.45	7.47
FV 2540	4000	25	61/4 x 4 x 4	24.00	14.40
FV 3010	1000	30	61/4 x 21/4 x 21/4	7.75	4.65
FV 3020	2000	30	61/4 x 3 x 3	14.75	8.85
FV 3040	4000	30	61/4 x 4 x 4	28.75	17.25
FV 3505	500	35	$6\frac{1}{4} \times 2\frac{1}{4} \times 2\frac{1}{4}$	4.95	2.97
FV 3510	1000	35	$6\frac{1}{4} \times 2\frac{1}{4} \times 2\frac{1}{4}$	8.90	5.34
FV 3520	2000	35	61/4 x 3 x 3	17.50	10.50
FV 3530	3000	35	61/4 x 4 x 4	25.25	15.15
FV 4010	1000	40	6¼ x 3 x 3	9.95	5.97
FV 4020	2000	40	61/4 x 4 x 4	19.35	11.61
FV 5005	500	50	61/4 x 21/4 x 21/4	6.50	3.90
FV 5010	1000	50	61/4 x 3 x 3	12.45	7.47
FV 5020	2000	50	61/4 x 4 x 4	24.00	14.40

UBILIER CORNELL

DRY ELECTROLYTIC CAPACITORS

TYPE UP CYLINDRICAL CAN UNITS

Type UP capacitors are the smallest can-type electrolytic units available. They are hermetically sealed in aluminum cans with positive terminal lugs on a bakelite insulating cover, the can being the common negative terminal.

Projecting tongues provide facilities for mounting in a vertical position on metal chassis bodies or on metal or bakelite mounting washer. Bakelite and metal washers are furnished with each unit. The projecting tongues have small wire holes and are tinned for convenient soldering to common negative connections. All solder lugs are mechanically strong, being made of cold rolled steel, although nothing other than pure aluminum comes in contact with the electrolyte within the container to cause galvanic corrosion. Electrically, these Type UP units possess excellent characteristics, having exceptionally low leakage and power factor, and are especially dependable in operation over wide temperature variations with minimum capacity change.

TYPE UP

DIMENSIONS OF METAL AND BAKELITE MOUNTING WASHERS FOR TYPE UP CAPACITORS

METAL WASHER - .025" THICK BAKELITE WASHER - 1/16" THICK

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—In. D. x L.	List Price	Net Price
UP 1A J22	40	25	3/4 x 2	\$0.65	\$0.39
UP 4A J23	100	25	1 x 2	1.05	.63
UP 1A J24	30	150	3/4 x 2	.70	.42
UP 4A J25	50	150	1 x 2	.95	.57
UP 1A J26	20	250	3/4 x 2	.70	.42
UP 4A J10	30	250	1 x 2	.90	.54
UP 4A J27	40	250	1 x 2	1.00	.60
UP 1A J28	15	300	3/4 x 2	.65	.39
UP 4A J29	30	300	1 x 2	1.00	.60
UP 6A J30	50	350	1 x3	1.45	.87
UP 9A J31	125	350	136 x 3	2.60	1.56
UP 4A J57	10	450	34 x 2	.75	.45
UP 1045	10	450	1 x 2	.75	.45
UP 4A J18	15	450	1 x2	1.00	.60
UP 2045	20	450	1 x2	1.10	.66
UP 4045	40	450	1 x3	1.60	.96
					1.47
UP 9A J32	80	400	13% x 3	2.45	

Duai section Chilis						
4B J33	40-40	25	1	x 2	\$1.00	\$0.60
2215	20-20	150	1	x 2	1.00	.60
4B J6	15-30	150	1	x 2	1.00	.60
3315	30-30	150	1	x 2	1.10	.66
6B J34	50-50	150	1	x 3	1.30	.78
2225	20-20	250	1	x 2	1.10	.66
6B J35	40-40	250	1	x 3	1.45	.87
4B J36	15-15	300	1	x 2	1.00	.60
6B J37	30-30	350-300	1	x 3	1.50	.90
				-	1 00	70

UP UP UP UP UP UP UP UP UP 10-10 20-20 40-40 **Triple Section Units**

Duni Continu Iluite

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—In. D. x L.	List Price	Net Price
UP 4C J2	30-20/20	150/25	1 x 2	\$1.15	\$0.69
UP 6C J41	50-50/20	150/25	1 x 3	1.45	.87
UP 4C J3	15-15/20	250/25	1 x 2	1.10	.66
UP 6C J21	30-30/20	250/25	1 x 3	1.35	.87
UP 6C J42	40-15/20	300/25	1 x 3	1.45	.66
UP 4C J5	10-10/20	350/25	1 x 2	1.20	.72
UP 4C J4	10-10/20	450/350/25	1 x 2 1 x 3	1.30	.78
UP 6C J12	10-10/20	450/25	1 x3	1.60	.96
UP 6C J13	10-20/20	450/25 25	1 x 2	.90	.54
UP 4C J43	20-20-20	150	1 x 2	1.20	.72
UP 4C J1	20-20-20 10-30-30	150	1 x 3	1.25	7
UP 6C J7	40-40-40	150	1 x3	1.55	.9
UP 6C J44 UP 4C J14	10-15-15	250	1 x 2	1.15	.6
UP 6C J45	10-15-15	250	1 x3	1.30	.71
UP 6C J11	10-13-30	250/350	1 x3	1.50	.90
UP 4C J46	10-10-10	300	1 x 2	1.05	.63
UP 6C J20	20/15-10	450/300-300	1 x3	1.50	.90
UP 6C J17	15-20-20	450-350-250	1 x3	1.65	.9
UP 6C J18	10-10-10	450	1 x3	1.55	.9
UP 6C J47	15-15-10	450	1 x3	1.75	1.0
UP 10C 156	15-15/10	450/300	1 x 3 1/2		.9:

Quadruple Section Units						
UP 7D J19	40-40-30/20	150/25	13/8 x 2	\$1.65	\$0.99	
UP 9D J48	50-50-50/20	150/25	13/8 x 3	1.90	1.14	
UP 9D J49	40/40-20/20	350/300/25	13/8 x 3	2.30	1.38	
UP 9D J50	20/15-15/20	450/350/25	13/8 x 3	1.85	1.10	
UP 7D J51	10-10-10/20	450/25	13/8 x 2	1.70	1.02	
UP 7D J52	20-15/20-20	450/25	13/8 x 2	1.80	1.08	
UP 9D 153	40-30-10/20	450/25	13/8 x 3	2.80	1.68	
UP 7D J54	10-10-10-10	450	13/8 x 2	1.90	1.14	
UP 9D J55	23-20/30-30	450/300	13/8 x 3	2.55	1.53	
UP 9D 156	20-20-20-20	450	1 3/8 x 3	2.75	1.65	

	Hardware For Type UP Capacitors							
Cat. No.	Item	Description	List Price	Net Price				
22272	Wrench for	Mounting Type UP Units	\$0.75	SO.45				
19891	Bakelite Washer	For 3/4" UP	.05	.03				
19884	Bakelite Washer	For 1" UP	.05	.03				
19888	Bakelite Washer	For 1 3/8" UP	.05	.03				
19890	Metal Washer	For 34" UP	.05	.03				
19883	Metal Washer	For 1" UP	.05	.03				
19887	Metal Washer	For 1 3/8" UP	.05	.03				
21368-1	Mounting Clip	For 34" UP	.10	.06				
21368-2	Mounting Clip	For 1" UP	.10	.06				
21368-3	Mounting Clip	For 1 3/8" UP	.10	.06				
22153-1	Insulating Tube	For 3/4 x 2" UP	.05	.03				
22153-4	Insulating Tube	For 1 x 2" UP	.05	.03				
22153-6	Insulating Tube	For 1 x 3" UP	.05	.03				
22153-7	Insulating Tube	For 1 3/8 x 2" UP	.05	.03				
22153-9	Insulating Tube	For 1 3/8 x 3" UP	.05	.03				

CORNELL (D) DUBILIER

DRY ELECTROLYTIC CAPACITORS

TYPES JR, JRC & JRX CARDBOARD BOX UNITS

C-D etched foil "Handy-Mikes" in silvered cardboard boxes have won outstanding recognition as universal replacement units for servicing all types of sets. Equipped with convenient mounting feet and color-coded wire leads.

No.	14fd.	W. x H. x L.	Price	Price
		250 V. D.C.		
JRX 204	4	$\frac{1}{2} \times \frac{3}{4} \times 2\frac{1}{2}$	\$0.65	\$0.39
JRX 208	8	% x 1 x 2 1/2	.80	.48
JRX 210	10	9/16 x 1 x 2 1/2	.95	.57
JRX 212	12	11/6 x 1 1/8 x 2 1/2	1.00	.60
JRX 216	16	$^{11}_{16} \times 1^{\frac{1}{8}} \times 2^{\frac{1}{2}}$	1.10	.66
		450 V. D.C.		
JR 502	2	$\frac{1}{2} \times \frac{3}{4} \times 2\frac{1}{2}$.65	.39
JR 504	4	% x 1 x 2 1/2	.75	.45
JR 506	6	9/16 x 1 x 2 1/2	.90	.54
JR 508	8	11/16 x 1 1/8 x 2 1/2	.95	.57
JR 510	10	$\frac{7}{8} \times 1\frac{1}{8} \times 2\frac{1}{2}$	1.15	.69
JR 512	12	$\frac{7}{8} \times 1\frac{1}{8} \times 2\frac{1}{2}$	1.30	.78
JR 516	16	$1 \times 1\frac{1}{8} \times 2\frac{1}{2}$	1.45	.87

Common Negative Units

		250 V. D.C.		
JRC 244	4-4	5/8 x 1 x 2 1/2	\$0.90	\$0.54
JRC 248	4-8	5/8 x 1 x 2 1/2	1.15	.69
JRC 288	8-8	11/6 x 1 1/8 x 2 1/2	1.30	.78
JRC 2888	8-8-8	$\frac{7}{8} \times 1\frac{1}{8} \times 2\frac{1}{2}$	1.95	1.17
JRC 544	4-4	450 V. D.C.	1.20	.72
JRC 548	4-8	11/6 x 1 1/8 x 2 1/2	1.35	.81
JRC 588	8-8	7/8 x 1 1/8 x 2 1/2	1.50	.90
JRC 5888	8-8-8	$1\frac{1}{8} \times 1\frac{3}{8} \times 2\frac{1}{2}$	2.20	1.32

Separate Section Units

		250 V. D.C.		
JRX 244	4-4	11/6 x 1 1/8 x 2 1/2	\$0.90	\$0.54
JRX 248	4-8	$\frac{7}{8} \times 1\frac{1}{8} \times 2\frac{1}{2}$	1.15	.69
JRX 288	8-8	1 x 1 1/8 x 2 1/2	1.30	.78
JRX 2888	8-8-8	1 1/8 x 1 3/8 x 2 1/2	1.95	1.17
JRX 2116	16–16	1 ½ x 1 ¾ x 2 ½ 450 V. D.C.	1.80	1.08
JR 544	4-4	7/8 x 1 1/8 x 2 1/2	1.20	.72
JR 5444	4-4-4	1 1/8 x 1 3/8 x 2 1/2	1.80	1.08
JR 548	4-8	1 x 1 1/8 x 2 1/2	1.35	.81
JR 588	8-8	1 1/8 x 1 3/8 x 2 1/2	1.50	.90
JR 5816	8-16	1 1/2 x 2 x 2 1/2	1.90	1.14
JR 5888	8-8-8	$1\frac{1}{8} \times 1\frac{5}{8} \times 2\frac{1}{2}$	2.20	1.32

TYPE KR CYLINDRICAL CAN UNITS

Types KR and KRC are compact etched foil type dry electrolytic capacitors furnished in cylindrical (inverted mounting) aluminum cans. Available in single, dual and triple sections with color-coded leads. Made in all popular voltage ratings for use in A.C.-D.C. or voltage-doubler midgets and A.C. operated sets.

The substantial reduction in size of these capacitors allows their use in compact and portable amplifiers and receivers.

TYPE KR

INSULATED LEADS 8" LONG \(\frac{1}{2} \)" OF ENDS SKINNED & TINNED

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—Ins. Dia. x Lth.	List Price	Net Price
KR 105	50	25	1 x 29/16	\$1.05	\$0.63
KR 204	4	250	1 x 29/16	.75	.45
KR 208	8	250	1 x 29/16	.95	.57
KR 212	12	250	1 x 29/16	1.10	.66
KR 225	25	250	1 x 3 ½	1.50	.90
KR 350	50	300	13/8 x 3 3/4	2.75	1.65
KR 504	4	450	1 x 2 1/2	.85	.51
KR 508	8	450	1 x 2 1/2	1.05	.63
KR 512A	12	450	1 x 2 1/2	1.40	.84
KR 516A	16	450	1 x 3 1/2	1.55	.93
KR 604	4	600	1 3/8 x 3 1/2	1.85	1.10
KR 608	8	600	1 3/8 x 4 1/2	2.60	1.56
KR 616	16	600	1 1/2 x 4 1/2	3.50	2.10

Common Negative Units

KRC 248	4-8	250	1 x 3	\$1.30	\$0.78
KRC 288	8–8	250	1 x3	1.45	.87
KRC 2888	8-8-8	250	13/x x 3	2.10	1.26
KRC 548	4-8	450	1 x 3	1.45	.87
KRC 588	8–8	450	13/8 x 21/2	1.60	.96
KRC 5888	8-8-8	450	1 3/8 x 3 1/2	2.30	1.38

Separate Section Units

KR 248	4-8	250	1 3/8 x 2 3/4	\$1.30	\$0.78
KR 288	8–8	250	1 3% x 2 34	1.45	.87
KR 2888	8-8-8	250	1 3% x 3 1/2	2.10	1.26
KR 2881	8-8-16	250	1 3/8 x 3 1/2	2.35	1.41
KR 2811	8-16-16	250	1 3% x 3 1/2	2.60	1.56
KR 548A	4-8	450	13/8 x 3	1.45	.87
KR 588A	8-8	450	13% x 3	1.60	.96
KR 5816A	8-16	450	1 3/8 x 4 1/2	1.90	1.14
KR 5888A	8-8-8	450	1 8% v 4 1%	2 30	1 38

DRY ELECTROLYTIC CAPACITORS

TYPE EH CARDBOARD BOX UNITS

Type EH capacitors are standbys for "heavy-duty" units in filter circuits of console model receivers or equipment where larger size units can be used. They have mounting flanges (which may be easily cut off if necessary). Dual units are available in separate section construction, having four color-coded wire leads; also in common negative three lug-terminal assembly, with two positive and one negative terminals. Triple section units have four leads, three of which are positive and the fourth, common negative. No deviation is made from this practice because most circuit combinations can be successfully met by the use of one or more of capacitors listed. (L denotes wire leads; SL separate leads.) Color code of leads with polarity, capacity and voltage rating of each section is clearly stamped on all units.

Cat. No.	Cap. Mfd.	Size—Inches L. W. T.	List Price	Net Price
		450 V. D.C.		
EH 9400	4	4 1/8 x 1 3/8 x 3/4	\$0.75	\$0.45
EH 9400L	4	41/8 x 13/8 x 3/4	.75	.45
EH 9800	8	41/8 x 13/8 x 1	.95	.57
EH 9800L	8	41/8 x 13/8 x 1	.95	.57
EH 9160	16	4½ x 1½ x 1½	1.45	.87
EH 9404	4-4	4½ x 1% x 15/16	1.20	.72
EH 9404SL	4-4	4½ x 1½ x 1½	1.20	.72
EH 9408	4-8	4 1/8 x 19/16 x 15/16	1.35	.81
EH 9408SL	4-8	4 1/8 x 1 9/16 x 1 5/16	1.35	.81
EH 9808	8–8	4½ x 1½ x 1½	1.50	.90
EH 9808SL	8–8	4½ x 1½ x 1½	1.50	.90
EH 9444L	4-4-4	4½ x 1% x 13/16	1.80	1.08
EH 9888L	8-8-8	41/8 x 2 x 2	2.20	1.32

TYPES EA, EB & EP ALUMINUM CAN UNITS

These Types, EA, EB and EP, are the most popular of the larger round can electrolytic capacitors. Type EB has insulated, color-coded wire leads; in single section units, red lead is positive, black negative. In dual units, this combination holds for the one section, while a blue lead and its complementary yellow lead makes up the other section. In the EP and EA units, the central insulated terminal is the positive, while the metal container is the negative. In multiple section units, EP and EA, positive terminals are insulated and the container is common negative, most generally grounded to the chassis. EB and EP have lock washers and hexagon nuts, EA a mounting ring, (see page 9). Color code of leads with polarity, capacity and voltage rating of each section is clearly stamped on all units.

Cat. No.	Cap. Mfd.	Size—Inches Diam. x Length	List Price	Net Price
TD 0040		450 V. D.C.		
EB 9040 EB 9080	4	1 3/8 x 2 1/2	\$0.85	\$0.51
EB 9100	8	1 3/8 x 4 3/8	1.05	.63
EB 9120	12	1 3/8 x 4 3/8 1 1/2 x 4 3/8	1.25	.75
EB 9160	16	1 ½ x 4 3/8	1.55	.84
EB 9180	18	1 ½ x 4 3/8	1.65	.99
EB 4400	4-4	1 3% x 4 3%	1.30	.78
EB 4800	4-8	1 1/2 x 4 3/8	1.45	.87
EB 8800	8–8	1 1/2 x 4 3/8	1.60	.96
		500 V. D.C.		
EB 11080	8	4 3/8 x 1 3/8	1.70	1.05
		450 V. D.C.		Consider.
EP 9080	8	1 3/8 x 47/16	1.05	.63
EP 9081 EP 9250	8	1 x 47/16	1.05	.63
EP 9808	25 8–8	1 ½ x 4 ¾	2.00	1.20
LF 3000	0-0	1 3/8 x 47/16 450 V. D.C.	1.60	.96
EA 9080	8	13% x 43%	1.05	.63
EA 5150	5-15	2½ x 43%	2.30	1.38
EA 8800*	8-8	21/2 x 43/8	1.80	1.08
EA 8801	8–8	21/2 x 43/8	1.80	1.08
EA 8160	8-16	2½ x 43/8	2.35	1.41
EA 8880	8-8-8	3 x 4 3/8	2.70	1.62
EA 9918	9-9-18	3 x 4 3/8	3.75	2.25
EA 9911	9-9-18-18	3½ x 43/8	5.25	3.15

^{*} EA 8800 is a Dual, Separate-Section 4-Terminal Unit.

DRY ELECTROLYTIC CAPACITORS

Cardboard Tube Units

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—Inches Dia. x Length		Net Price
UM 101		250	13/8 x 31/4	\$2.30	\$1.38
UM 105	12-20-10-10	150-150-25-25	$1\frac{1}{8} \times 3$	1.90	1.14
UM 112	8-8-8, 5-5	200, 25	1 3/8 x 3 3/4	2.50	1.50
UM 118	16-12	200	1 3% x 3 1/4	1.55	.93
UM 121	8-30	300-30	1 1/4 x 4 5/8	1.35	.81
UM 126	65	30	11/4 x 21/4	1.10	.66
UM 139	8-16, 5-5	200, 50	1 3% x 2 34	2.15	1.29
UM 141	16-2-2, 25	450, 25	1 1/2 x 4 1/2	2.60	1.56
UM 150	6-4-16	350-350-25	1 x 3 3/4	1.60	.96
UM 151	6-6	250	11/4 x 31/4	1.15	.69
UM 152	8-12	400	13/8 x 4	1.75	1.05
UM 155	8-8-20	350-350-25	1 3/8 x 2 1/2	1.35	1.11
UM 158	8-16-10-10	450-450-25-25	1 ½ x 4	2.90	1.74
UM 159	12-8-8-10	450-450-350-25	1 3/8 x 5	2.55	1.53

Cardboard Box Units

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—Inches L. x W. x D.		Net Price
UM 100		200	% x 1 1/8 x 2 1/2	\$2.15	\$1.29
UM 104		150	5/8 x 1 1/4 x 2 1/4	1.35	.81
UM 106	8-8-8-8	250	11/4 x 1 1/2 x 3	2.60	1.56
UM 107	5-25-10	150	113/6 x 1 3/8 x 2 3/8	1.95	1.17
UM 108	8-8	250-300	11/8 x 1 1/8 x 2 1/4	1.30	.78
UM 113	8-8-8, 5-5	200, 25	11/4 x 1 1/2 x 3	2.50	
UM 115	8-8-8-8	450	1 5% x 1 34 x 3	2.95	1.77
UM 116	20-20	150	13/16 x 1 5/8 x 2 3/8	1.65	.99
UM 117	5-8-16	150	1 x 1 1/4 x 2 1/2	1.80	
UM 119	8-12	300	11/4 x 1 1/8 x 2 3/4	1.55	
UM 122	3-5-6	300-300-12	1 1/8 x 1 3/6 x 2	1.50	
UM 124	6-6	350	11/16 x 19/16 x 2 7/8	1.35	
UM 125	6-4-6	300-300-12	11/16 x 19/16 x 2 7/8	1.55	
UM 128	8-8-25	400-400-25	19/16 x 19/16 x 23/8	1.90	
UM 129	8-8-25	350-300-25	2 x2 x21/2	1.85	
UM 131	16-30-16	200	1 34 x 1 15/16 x 4	2.75	
UM 132	8, 8-8, 12-12		1 1/8 x 2 3/4 x 2 15/16		
UM 136	5-20-10, 5	150, 25	111/16 x 115/16 x 27/16	2.25	1.35
UM 137	5-5	35	34 x 34 x 1 ½	.75	.45
UM 138	30-10	150	34 x 1 34 x 3 ½	1.55	
UM 140	8-8, 12	350-25	1 5/8 x 1 5/8 x 25/32	1.75	
UM 142	4-4-10-4	300-300-150-25	19/6 x 19/6 x 313/6		
UM 143	8-8, 5-5	450, 50	1 1/8 x 1 11/6 x 4 1/8	2.20	
UM 144	8-4-4-12	450-350-150-25	1% x 1 % x 3 %	2.05	1.23
UM 145	4-4	450-150	1 x 1 % x 3 34	1.05	
UM 147	6-4-10	350-300-25	11/4 x 1 3/8 x 4 1/2	1.65	
UM 148	16-8-10	150-150-25	1½ x1½ x4	1.75	
UM 149	4-12-16	150	11/4 x 11/4 x 23/4	1.85	1.11

All Type UM capacitors are clearly stamped with capacity and voltages of sections, including color coding of leads in order to preclude against error in wiring.

TYPE UM UNIVERSAL REPLACEMENTS

C-D universal replacement capacitors Type UM cover a wide variety of requirements where units of special capacity and voltage combinations are needed. They are furnished in standard cylindrical aluminum cans, cardboard tube and box-type casings as noted in the listing below.

Cylindrical Aluminum Can Units

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—Inches Dia. x Length	List Price	Net Price
UM 102 UM 111	8-16	250	1 3/8 x 3 5/8	\$2.40	
	3-2-1-1	450	$1\frac{3}{8} \times 2\frac{3}{4}$	2.10	
UM 120 UM 123	6-4-6	300-300-25	$1\frac{3}{8} \times 2\frac{5}{8}$	1.70	
UM 127	8-8	350	$1\frac{3}{8} \times 3\frac{1}{8}$	1.55	
	8-8-25	400-400-25	$1\frac{3}{8} \times 2\frac{3}{4}$	2.10	
UM 130	8-8, 16-16	350, 100	$1\frac{3}{8} \times 4\frac{3}{4}$	2.90	
UM 133	8-8-8	450-450-350	$1\frac{3}{8} \times 2\frac{3}{4}$	2.25	
UM 134	8-8-8	450-450-350	$1\frac{3}{8} \times 4\frac{3}{4}$	2.25	1.35
UM 135	16-16-10	150-150-25	$1\frac{3}{8} \times 2\frac{3}{4}$	1.95	1.17
UM 146	8-8-10	300-300-25	$1\frac{1}{2} \times 2\frac{3}{4}$	1.85	1.11
UM 153	12	150	1 x 219/32	.95	.57
UM 154	12-4	150	1 x 219/32	1.10	.66
UM 156	8-8	450	13/8 x 31/4	1.60	.96
UM 157	8-8	450	13/8 x 33/4	1.60	
UM 160	8-8	450	138 x 234	1.60	.96
UM 161	10	450	1 1 8 x 2 1/4	1.25	.75
UM 162	12	450	1 3/8 x 3	1.40	.84
UM 163	8-8	450	138 x 31/4	1.60	.96

CAPACITOR MOUNTING HARDWARE

Additional hardware for mounting all types of electrolytic capacitors as well as tubular paper units is available as shown in the accompanying diagrams and listed below.

Part	Description	List	Net
No.		Price	Price
14582 12125 15591 16693 14464 13590 15266 17842 19213 18573 17842 19213 17843 17921 17922 17923 16279	Mounting Ring for 1 " dia. Cans Mounting Ring for 1 3%" dia. Cans Mounting Ring for 2 " dia. Cans Mounting Ring for 3 " dia. Cans Mounting Ring for 3 " dia. Cans Mounting Ring for 1 %" dia. Cans Mounting Ring for 1 %" dia. Cans Mounting Ring for 1 %" dia. Cans Mounting Ring for 1 3%" dia. Cans Mounting Clip for 3 %" dia. Cans Mounting Clip for 3 %" dia. Cans Mounting Clip for 1 %" dia. Cans Mounting Clip for 1 %" dia. Cans C''' Clamp for 3%" - 3" Cans or Tubulars C''' Clamp for 1 %" - 1 %" Cans or Tubulars C''' Clamp for 1 %" - 1 %" Cans or Tubulars C''' Clamp for 1 %" - 1 %" Cans or Tubulars Tubular Straps for Mounting All Types of Tubular Units	\$0.07 .08 .10 .12 .15 .15 .15 .07 .08 .08 .10 .10 .10 .10 .10 .10 .10 .10	\$0.04 -056 -08 -099 -099 -099 -055 -055 -066 -066 -066 -066

DUBILIER CORNEL

WET ELECTROLYTIC CAPACITORS

TYPES EX AND EY WET ELECTROLYTICS

C-D wet electrolytics, with high scintillation point, are mechanically and electrically perfected units. Vented, to allow generated gas to escape harmlessly, these self-healing units have remarkably long life . . . and fine filtering efficiency. Possessing a certain amount of "self-regulation" properties, special designs are avialable to meet definite regulation characteristics.

Type EY is provided with a pal nut. Insulating washers and large ground lug are optional, at slight extra cost, and are used to insulate the metal container, which is the negative terminal, from the chassis when required. Type EX is provided with a mounting ring with two feet.

Cat. No.	Cap. Mfd.	Size—Inches Dia. x Length	List Price	Net Price
			Peak Vol	
EY 11040	4		\$1.30	\$0.78
EY 11080	8	1 3/8 x 4 1/2 1 3/8 x 4 1/2	1.50	.90
EY 11081	8	1 1/2 x 4 1/2	1.50	.90
EY 11100 EY 11600	10 16	$\begin{array}{c} 1\frac{1}{2} \times 4\frac{1}{2} \\ 1\frac{1}{2} \times 4\frac{1}{2} \end{array}$	1.60 2.00	1.20
		Working-500		
EY 9040	4	1 3/8 x 4 1/2 1 x 3 1/16 1 3/8 x 4 1/2	\$0.80	\$0.48
EY 9043 EY 9080	4	1 x 37/16	.80 .95	.48
EY 9081	8	1 1/0 v 4 1/0	.95	.57
EY 9082	8	1 x 4 1/2	.95	.57
EY 9083	8	1 x 4 ½ 1 x 3 ½ 1 x 3 ½ 1 3 8 x 3 ⅙ 1 3 8 x 3 ⅙	.95	.57
EY 9084	.8	1 % x 3 1/16	.95	.57
EY 9100 EY 9104	10 10	$\begin{array}{c} 1\frac{1}{2} \times 4\frac{1}{2} \\ 1\frac{3}{8} \times 3\frac{1}{2} \end{array}$	1.05 1.05	.63
EY 9120	12	1/0 Y 4 1/0	1.15	.69
EY 9124	12	13/2 - 37/	1.15	.69
EY 9160	16	1 ½ x 4 ½	1.35	.81
EY 9162 EY 9164	16 16	13/ + 27/	1.35	.81
EY 9180	18		1.50	.90
EY 9184	18	1 3/4 - 21/	1.50	.90
EY 9200	20	1 1/2 x 4 1/2	1.50	.90
EY 9201 EY 9240	20 24	-/0/4	1.50 1.65	.90
EY 9250	25	1 3% x 47/2	1.65	.99
EY 9301	30	1 3% x 4 1/6	1.70	1.02
EY 9350 EY 9400	35 40	1 ½ x 4 ½ 1 ½ x 4 ½	1.75 1.90	1.05
	-	. Working—350	-	
EV 7082	8		\$0.90	S0.54
EY 7180 EY 7240 EY 7301	18	1 x 4 ½ 1 3/8 x 4 ½	1.25	.75
EY 7240	24		1.50	.90
EY 7301 EY 7350	30 35	1 3/8 x 4 1/2 1 1/2 x 4 1/2	1.60 1.75	1.05
		. Working—300	-	
EY 6080	8		\$0.85	\$0.51
EY 6160	16	1 x 3½ 1 x 3½ 1 x 3½	1.05	.63
EY 6243	24		1.15	.69
150 V EY 5202	Volts D.C.	Working—200	Peak Vol	ts \$0.66
EY 5400	40	1 x 4 ½ 1 3/8 x 4 ½	1.25	.75
EY 5402	40	1 x 4 ½	1.25	.75
500 1	Volts D.C.	. Working-600	Peak Vol	ts
EX 11080	8	1 3/8 x 4 1/2	\$1.50	\$0.90
450 1	Volts D.C.	. Working—500	Peak Vol	ts
EX 9080	8	$1\frac{3}{8} \times 4\frac{1}{2}$	\$0.95	\$0.57
		ATING TYPE V V.—300 Reg. V	VETS olts	
EY 6180R	18	1 3% x 3	\$1.15	\$0.69
EY 6401R	40	1 3/8 x 4 1/2	1.35	.81
	300 W.			
EY 7180R EY 7301R	18 30	1 3/8 x 3 1/2 1 3/8 x 4 1/2	\$1.25	\$0.75
E I 1301K	1 30	1 78 x 4 72	1.00	.90

"ELECTROLYTIC CAPACITORS"

By PAUL McK. DEELEY Chief Engineer of the Electrolytic Division

CORNELL-DUBILIER ELECTRIC CORPORATION

Here in one masterly volume, "Electrolytic Capacitors," you will find a wealth of the most practical information ever published on the subject of electrolytic capacitors.

Never before has the technician been offered a manual so complete and so comprehensive at this price—\$1.00 net, formerly \$3.00. "Electrolytic Capacitors" should be in every radio man's professional library and technical file.

This instructive book supplies the reader with specific information concerning the many factors involved in the theory, design and construction of electrolytics. It is profusely illustrated and describes all applications of electrolytic capacitors. 300 pages, size $5\frac{1}{2}$ x 71/8", cloth bound hard cover. Every page is a gold mine of facts and data.

\$1.00 net

DUBILIER CORNELI

TUBULAR PAPER CAPACITORS

C-D Type DT, "Dwarf Tiger" paper tubulars are non-inductively wound, specially sealed and impregnated. They are small, have a high safety factor, are uniform in electrical properties and have well-soldered rigidly anchored wire leads. A specially-treated cardboard tube keeps out moisture. High melting point wax ends add strength and give extra protection to the unit.

C-D Type MD "Blue Tiger" tubular paper capacitors are designed to meet the more rigid requirements of improved modern radio receivers. They provide greater permanency of electrical characteristics such as higher resistivity, lower power-factor and more stable capacity over a long period of time. They are non-inductively wound, specially sealed with a wax outer coating, impregnated with Dykanol "D", and are provided with bare, tinned wire leads.

FEATURES OF TYPES DT & MD

- FEATURES OF TYPES DT & MD

 1. Type DT-Halowax Impregnated—Reduced physical size.
 Type MD-Dykanol "D" Impregnated—Improved powerfactor: higher and more stable insulation resistance; more constant
 capacity characteristics; longer life under most severe conditions of
 humidity, and temperature.

 2. Hi-Purity Aluminum Foil—Lower R.F. resistance; light weight.

 3. Hi-Purity Multi-Laminated Tissue—Higher working voltage.

 4. Vacuum Dried and Impregnated—Lower losses; longer life.

 5. Oil-Cooled—Higher voltage breakdown.

 6. Rigidly Tested—Uniform product.

 7. Self-Supporting Leads—No contact resistance; added strength.

 8. Wax Impregnated Tube—Protected against moisture.

 9. Small Size, Non-Inductive—"Short-path" R.F. bypass.

 10. Special Wax-Potted Ends—Better humidity and temperature seal

 11. Conservative D.C. Rating—Triple-tested for dependable service

TYPE DT—Wax Impregnated Units

Cat. No.	Cap. Mfd.	Size—Inches Dia. x Length	List Price	Net Price
DT 4S1 DT 4S15 DT 4S2 DT 4S25 DT 4S3 DT 4S3 DT 4S5 DT 4S6 DT 4P1 DT 4P2 DT 4P2 DT 4P25 DT 4P5 DT 4W1	.01 .015 .02 .025 .03 .04 .05 .06 .1 .2 .25	400 V. D.C. 38 x 1 14 38 x 1 13 38 x 1 13 76 x 1 13 76 x 1 15 76 x 1 15 76 x 1 5 76 x 1 2 8 x 2 34 x 2 78 x 2	\$0.15 .15 .15 .15 .15 .15 .15 .20 .20 .25 .25 .50	\$0.09 .09 .09 .09 .09 .09 .12 .12 .15 .15
DT 6T1 DT 6T25 DT 6T5 DT 6D1 DT 6D2 DT 6D3 DT 6D4 DT 6D6 DT 6S1 DT 6S15 DT 6S2 DT 6S2 DT 6S3 DT 6S3 DT 6S4 DT 6S5	.0001 .00025 .0005 .0011 .002 .003 .004 .005 .006 .011 .012 .025 .03 .04 .05 .06 .1	600 V. D.C. 3	.15 .15 .15 .15 .15 .15 .15 .15 .15 .15	.09 .09 .09 .09 .09 .09 .09 .09 .09 .12 .12 .12 .15 .15 .21 .21

TYPE DT & MD PAPER TUBULARS

TYPE MD—Dykanol Impregnated Units

Cat. No.	Cap. Mfd.	Size—Inches Dia. x Length	List Price	Net Price
MD 8T15 MD 8T25 MD 8T5 MD 8T5 MD 8D1 MD 8D2 MD 8D25 MD 8D4 MD 8D4 MD 8D6 MD 8D7 MD 8D8 MD 8S1 MD 8S1 MD 8S2 MD 8S2 MD 8S2 MD 8S2 MD 8S4 MD 8S4 MD 8S5 MD 8S4 MD 8S6 MD 8S7	.0001 .00025 .0005 .001 .002 .0025 .003 .004 .005 .006 .007 .008 .01 .02 .025 .033 .044 .05	800 V. D.C. 3 x 1 1/4 3 x x 2 1/4 3 x x x 2 1/4 3 x x x 2 1/4 3 x x x x 2 1/4 3 x x x x x x x x x x x x x x x x x x	\$0.20 .20 .20 .20 .20 .20 .20 .20 .20 .20	\$0.12 .12 .12 .12 .12 .12 .12 .12 .12 .12
MD 12D1 MD 12D2 MD 12D2 MD 12D3 MD 12D4 MD 12D5 MD 12D6 MD 12D7 MD 12D7 MD 12D8 MD 12S1 MD 12S1 MD 12S2 MD 12S3 MD 12S3 MD 12S3 MD 12S5 MD 12S8 MD 12S8	.001 .002 .003 .004 .005 .006 .007 .008 .01 .015 .02 .03 .04 .05 .06	1200 V. D.C. \$\frac{3}{5} \times 1 \frac{3}{5} \frac{1}{5}	.25 .25 .25 .25 .25 .25 .25 .25 .25 .25	.15 .15 .15 .15 .15 .15 .15 .15 .15 .15
MD 16D1 MD 16D2 MD 16D25 MD 16D3 MD 16D4 MD 16D5 MD 16D6 MD 16D7 MD 16B1 MD 16S1 MD 16S1 MD 16S2 MD 16S2 MD 16S25 MD 16S3 MD 16S3 MD 16S4 MD 16S5	.001 .002 .0025 .003 .004 .005 .006 .007 .008 .01 .015 .02 .025 .03	1600 V. D. C. 36 x 1 86 76 x 1 86 12 x 1 12 12 x 1 12 16 x 1 12 16 x 1 12 16 x 1 12 16 x 1 2 16 x 1 2 16 x 2 2 17 x 2 3 17 x 2 2	.35 .35 .35 .35 .35 .35 .35 .35 .35 .35	.21 .21 .21 .21 .21 .21 .21 .21 .21 .21

CORNELL (C) DUBILIER

METAL SHELL CASED PAPER CAPACITORS

TYPES DA, DB, DC & DD WAX FILLED UNITS

C-D Metal Shell Type DA to DD capacitors are non-inductively wound, well protected against climatic conditions and available in a large variety of ratings for radio frequency bypass, audio frequency coupling and bypass functions. Lug terminals are amply insulated. Integral with casing, the mounting feet allow ease of assembly.

In the single and dual section capacitor units, the terminals are insulated from the container. The duals have three terminals, the common lug being on the left. In the triple and quadruple section capacitors, the common terminal connection is grounded to the metal case.

All units are wound with the highest grade pure aluminum foil and multi-laminated Kraft tissue, thoroughly dried under vacuum pressure, impregnated in the finest grade wax compound, oil-cooled, and potted in a special wax compound. Conservative D. C. ratings of these capacitors by triple testing assures dependable service in operation.

Cat. Co.	Capacity Mfd.	Size—Inches Lth. x Wid. x Thick.	List Price	Net Price
		400 D.C.V. Work.		
DA 4011	.1	113/16 x 1 x 3/4	\$0.65	\$0.39
DA 4025	.25	113/16 x 1 x 3/4	.75	.45
DA 4050	.5	113/16 x 1 x 7/8	.95	.57
DA 4100	1	2 $\times 1^{3/4} \times 1^{3/16}$	1.25	.75
DA 4200	2	$2 \times 2 \times 1\frac{1}{8}$	1.55	.93
DB 4010	.11	113/16 x 1 x 3/4	.80	.48
DB 4025	.2525	2 x1½ x ¾	1.00	.60
DB 4050	.55	2 x 1 3/4 x 1	1.25	.75
DC 4010	.111	113/16 x 1 x 3/4	/1.05	.63
DD 4010	.111	2 x 1 3/4 x 13/16	1.40	.84
		600 D.C.V. Work.		
DA 6011	.1	113/16 x 1 x 3/4	.75	.45
DA 6025	.25	113/16 x 1 1/4 x 3/4	.90	.54
DA 6050	.5	2 x 1 3/4 x 13/16	1.20	.72
DA 6100	1	2 x2 x11/8	1.50	.90

TYPE DYR DYKANOL FILLED UNITS

Type DYR Dykanol Bypass Capacitors are non-inductively wound and fill the need for dependable capacitors of fractional capacities that will operate efficiently in R.F. and A.F. bypass, audio frequency coupling and A.C. circuits under all humidity conditions and at temperatures up to approximately 80° C. (180° F.). They are built to stand an immersion test in hot water and have been specially designed to fill the severe requirements of aircraft, submarine, marine and tropical applications for maximum capacity and voltage in minimum space, where quality and reliability are of paramount importance. They are impregnated and filled with Dykanol "A" and sealed in non-corrosive cases with leakproof riveted terminals.

Cat. No.	Capacity Mfd.	Size—Inches Lth. x Wid. x Thick.	List Price	Net Price
DYR 6005 DYR 6010 DYR 6025 DYR 6050 DYR 6100 DYR 6200 DYR 60055 DYR 6011 DYR 6022 DYR 6110 DYR 6111 DYR 6111 DYR 6222 DYR 6555	.05 .1 .25 .5 .5 .1 .0505 .11 .2525 .55 .11 .111	600 V.D.C. Work. 113/6 x 1 x 3/4 2 x 13/4 x 3/4 2 x 13/4 x 1/4 2 x 2 x 1/4	\$1.70 1.75 1.80 1.95 2.25 3.00 2.15 2.20 2.25 3.15 2.50 3.40	\$1.05 1.08 1.17 1.35 1.80 1.29 1.32 1.35 1.53 1.89 1.50
DYR 10005 DYR 10010 DYR 10025 DYR 10050 DYR 10100 DYR 100055 DYR 10011 DYR 10022 DYR 10055 DYR 10111 DYR 10222	.05 .1 .25 .5 .1 .0505 .11 .2525 .55 .11-1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.75 1.85 1.90 2.05 2.75 2.15 2.30 2.50 3.25 2.75 3.50	1.05 1.11 1.14 1.23 1.65 1.29 1.38 1.50 1.95

REPLACEMENT PAPER CAPACITORS

EXACT DUPLICATES FOR STANDARD SETS

Manufacturer and Part No.	C-D Cat. No.	Total Capacities	List Price	Net Price
ATWATER-KENT				
37-9497	AK 201	3 x .25	\$1.70	\$1.02
37-9575	AK 202	.25	.70	.42
COLONIAL				
1728SA	CN 400	3 x .125	1.25	.75
1748SA	CN 401	.125	.90	.54
CROSLEY		The second second		3.14
W4919	C 57	.5	.75	.45
GREBE				
SK-4	SG 217	2 x .1	.80	.48
MAJESTIC				
7BP6	MC 101	10	4.50	2.70
7P6	MC 102	9	4.50	2.70
8P6	MC 103	9	9.00	5.40
9P6	MC 104	7	4.50	2.70
SPARTON				
A5032 1334	SW 311	1	.90	.54
A5933 1335	SW 312	.25	.75	.45
A5031	SW 320	.5	.80	.48

UNCASED PAPER CAPACITORS

Type RM uncased capacitors are made available to repair paper dielectric filter blocks which were used in the early models of A.C. operated radio sets. Also useful in the elimination of electrical interference caused by pushbuttons, bells, buzzers, and similar applications in radio, electronic and electrical devices.

Special capacitor units can be made up and potted into suitable containers by servicemen to fulfill many requirements.

Cat. No.	Cap. Mfd.	Size—Inches Lth. x Wid. x Thick.	List Price	Net Price
		400 V. D.C.		
RM 4050	.5	2 x 1 x ½	\$0.50	\$0.30
RM 4100	1	2 x 1 3/8 x 7/16	.75	.45
RM 4200	2	2 x 1 1/8 x 1	1.15	.69
RM 4400	4	$3\frac{3}{8} \times 1\frac{7}{8} \times 1\frac{1}{8}$	2.00	1.20
		600 V. D.C.	2.00	
RM 6010	.1	2 x 1 x 3/16	.40	.24
RM 6025	.25	2 x 1 x 3/8	.50	.30
RM 6050	.5	2 x 1 3/8 x 1/2	.60	.36
RM 6100	1	2 x 1 3/8 x 1/2 2 x 1 7/8 x 3/4 3 3/8 x 1 7/8 x 7/8	.90	.54
RM 6200	2	33/8 x 1 1/8 x 1/8	1.35	.81
RM 6400	4	4 1/4 x 1 1/8 x 1 3/8	2.70	1.62
		1000 V. D.C.		
RM 10100	1	4 1/4 x 1 1/8 x 1/8	1.50	.90
RM 10200	2	4 1/4 x 1 1/8 x 1 3/4	2.50	1.50

TYPES PE-CH, PE-A AND PE-B PAPER UNITS

Paper Replacement Capacitors that simulate electrolytics in appearance; these types fulfill a real service need. Their actual capacity is from 1/3 to 1/2 of the usual value employed when using electrolytics. They afford a high voltage breakdown which an electrolytic does not offer. There is no polarity to observe when using these capacitors. In Types PE-B and PE-CH, the dual section units have separate leads, a set of two leads of one color identify the terminals for each capacity. In Type PE-A triple section units, the common terminal stud is insulated, with provision made to ground same by means of a small wire lead soldered to the grounding lug on the metal container.

Cat. No.	"Replace- ment" for Electrolytic Cap. Mfd.	Actual Mfd. Capacity	Size—Inches Length x Width x Thickness	List Price	Net Price
-------------	---	----------------------------	--	---------------	--------------

TYPE PE-CH, 1000 V. D.C. Test, 600 V. D.C. Peak, 450 V. D.C. Working

PE-CH 4008 8 3½ 4 % x 1 % x 1 1	11/ ₁₆ \$0.90 15/ ₁₆ 1.15 1.90	.69
---------------------------------	--	-----

TYPE PE-CH, 1200 V. D.C. Test, 800 V. D.C. Peak, 600 V. D.C. Working

PE-CH 6004	4	1 2	4 3/8 x 1 3/8 x 15/16	1.20	.72
PE-CH 6008	8	3	43/8 x 15/8 x 11/8	1.60	.96
PE-CH 6808	8-8	23/4 x 23/4	43/8 x 2 x 1 1/2		

TYPE PE-B, 1200 V. D.C. Test, 800 V. D.C. Peak, 600 V. D.C. Working

PE-B 6004	4	1 3/4	43/8 x 13/8	1.35 .81
PE-B 6008	8	2 3/4	43/8 x 13/8	1.75 1.05
PE-B 6808	8–8	1 3/4 x 1 3/4	$4\frac{3}{8} \times 1\frac{1}{2}$	2.80 1.68

TYPE PE-A, 1000 V. D.C. Test, 800 V. D.C. Peak, 600 V. D.C. Working

PE-A 6444 PE-A 6888	4-4-4 8-8-8	1 ½ x 1 ½ x 1 ½ 2 ¾ x 2 ¾ x 2 ¾	43/8 x 21/2 43/8 x 3	3.50	2.10
PE-A 6918	9-9-18	3-3-6	43/8 x 3	6.50	3.90

AUTO RADIO CAPACITORS

Top Row—TYPES IC-2P55, FC-2PV, FC-2P5A & ICH-2W1A. Center Row—TYPES IC-2P5C, HC-870E & VL-S1 Lower Row—TYPES VC 1160, VUL S2 & DT16D5.

The mechanical design of C-D Auto Radio Capacitors insures against damage by the high temperatures and excessive vibration existing under the hood of an auto. Special units such as these are designed for certain particular installations. Thus, for instance, Ford generator capacitor, FC-2P5V, has a special mounting bracket while others are also provided with special mountings and terminals. Vibrator capacitors are oil-treated to withstand high peak and surge voltages.

No.	Mfd.	Lth. x Wth. x Thick	Price	Price
	GEN	VERATOR UNITS	1	
ICS 2S5A IC 2P5C FC 2P5A FC 2P5V IC 2P55 ICH 2W1A ICV 2P25A ICV 2P5A ICV 2W1A	.05 .5 .5 .55 1.0 .25 .5	1 ½ x ½6 1 ½ x 1 ½6 1 ½ x 1 ½6 1 ¼ x 1 ½6 2 ¼ x 1 ½6 2 ¼ 6 x 1 1 ½ x 1 ¼6 1 ½ x 1 ¼6 2 ¼ 6 x 1	\$0.50 .50 .50 .50 .75 .70 .50 .50	\$0.30 .30 .30 .45 .42 .30 .30
	Al	MMETER UNIT		
HC 870E	.5	2 x 3/4	\$0.45	\$0.27

VIBRATOR BUFFER UNITS

Cat. No.	Cap. Mfd.	Size—Inches Lth. x Wth. x Thick.	List Price	Net Price
Metal ''	postage stamp	" capacitors, oil filled	, 2000 V. P	eak
VUL D7 VUL D8 VUL S1 VUL S2 VU S3* * This unit has	.007 .008 .01 .02	7/8 x 1 1/16 x 5/16 7/8 x 1 1/16 x 5/16	\$0.45 .45 .45 .45 .45	\$0.27 .27 .27 .27 .27
Oil-impregnate	ed and proces	ssed paper tubular cap	oacitors 200	O V. Peak
DT 16T5 DT 16T8 DT 16D1 DT 16D2 DT 16D25 DT 16D3 DT 16D4 DT 16D5 DT 16D6 DT 16D7 DT 16D7 DT 16D7 DT 16B7 DT 16B7 DT 16B82 DT 16S2 DT 16S3 DT 16S5 DT 16S5 DT 16S5 DT 16S5	.0005 .0008 .0001 .0002 .00025 .0003 .0004 .0005 .0007 .0008 .0077 .001 .002 .003 .004 .0075 .01	1 1/4 x 7/16 1 1/4 x 1/16 1 1/4 x 1/2 1 1/4 x 1/4 2 x 1/46 2 x 1/46 2 x 1/46 2 2 x 1/46	\$0.35 .35 .35 .35 .35 .35 .35 .35 .35 .35	\$0.21 .21 .21 .21 .21 .21 .21 .21 .21 .21
VL S1	A STATE OF THE PARTY OF THE PAR	or old style vibrator "		
VL SI VL P5	.01—1500V. .5—200V.	$3^{3}_{16} \times {}^{17}_{32} \times {}^{3}_{8}$ $3^{3}_{16} \times {}^{27}_{32} \times {}^{3}_{8}$	\$0.60 .65	\$0.36 .39
Spec	ial dual .000	8 rectangular unit wit	h four leads	
VC 1160	2x.0008	1½ x ¾ x 5/8	\$0.50	\$0.30
Vib	rator Buffer (th flexible br	oval shaped) capacito aid leads. 120 V.D.C.	r provided Working.	
HC 1306	.5	2 x 3/4 x 7/16	\$0.45	\$0.27
Metal cased o	il-impregnate l insulating sl	d and processed tubu eeve and mounting str	ılar paper ap. 2000 V.I	capacitors D.C. Peak.
TVC 16D5-6 TVC 16D7-6 TVC 16S1-6 TVC 16S2-6	.005 .007 .01 .02	1 5/8 x 5/8 1 5/8 x 5/8 1 5/8 x 5/8 2 1/8 x 11/16	\$0.45 .50 .55 .60	\$0.27 .30 .33 .36

CORNELL (C) DUBILIER

DYKANOL TRANSMITTING CAPACITORS

Cat. No.	Cap. Mfd.	A	Dim. B	ension C	s—Inc	ches E	F	List Price	Net Price
		6	00 V	D.C.	. Wo	rkin	g		
FJU 6005 FJU 6010 FJU 6020 FJU 6030 FJU 6050 FJU 6050 FJU 6060 FJU 6080 FJU 6100	.5 1 2 3 4 5 6 8 10	21/8 21/8 27/8 33/8 43/4 45/8 313/16 45/8	$\begin{array}{c} 1^{13} & 16 \\ 1^{13} & 16 \\ 1^{13} & 16 \\ 1^{13} & 16 \\ 2^{1} & 2 \\ 1^{13} & 16 \\ 2^{1} & 2 \\ 2^{1} & 2^{1} & 2 \\ 3^{3} & 3^{4} & 3^{3} & 4 \\ 3^{3} & 3^{4} & 3^{3} & 4 \\ \end{array}$	1 1/16 1 1/16 1 1/16 1 1/16 1 3/16 1 1/16 1 3/16 1 1/4 1 1/4	7/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8	13/16 13/16 13/16 13/16 13/16 13/16 13/16 13/16 13/16 2	21/4 21/4 21/4 21/4 31/4 31/4 34/3/8 43/8	\$2.75 3.50 4.25 5.00 5.50 6.25 6.75 8.00 9.00	\$1.66 2.10 2.55 3.00 3.30 3.75 4.05 4.80 5.40
			7 000			orkir	ıg	0.50	1 50
FJU 10001 FJU 100025 FJU 10005 FJU 10010 FJU 10020 FJU 10030 FJU 10050 FJU 10050 FJU 10080 FJU 10080 FJU 10100 FJU 10100 FJU 10120 FJU 10120	.1 .25 .5 .1 2 3 4 5 6 8 10 12 15	2 1/8 2 1/8 2 1/8 4 1/2 4 5/8 3 13/16 4 3/4 4 5/8 3 13/16 4 3/4	$\begin{array}{c} 1^{13} & 16 \\ 1^{13} & 16 \\ 1^{13} & 16 \\ 1^{13} & 16 \\ 1^{13} & 16 \\ 2^{1} & 2^{2} \\ 2^{2} & 2^{2} \\ 2$	11/16 11/16 11/16 11/16 13/16 11/16	7/8	13/16 13/16 13/16 13/16 13/16 11/8 2 2 2 2 2	3 43/8 43/8 43/8 43/8 43/8 43/8	2.50 2.75 3.00 3.75 5.00 5.75 6.25 7.50 8.25 9.00 10.00 11.00	1.50 1.66 1.80 2.25 3.00 3.45 3.75 4.50 4.95 5.40 6.00 6.60 7.20
			500 T			orkir			
FJU 15005 FJU 15010 FJU 15020 FJU 15030 FJU 15040 FJU 15050 FJU 15060 FJU 15080 FJU 15100 FJ 15120 FJ 15150	.5 1 2 3 4 5 6 8 10* 12* 15*	27/8 4 1/8/4/8/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/	$\begin{array}{c} 1^{13} & & \\ 1^{13} & & \\ 1^{13} & & \\ 2^{1} & & \\ 2^{12} & & \\ 2^{12} & & \\ 3^{34} & & \\ 3^{34} & & \\ 3^{34} & & \\ 3^{34} & & \\ 3^{34} & & \\ 3^{34} & & \\ 3^{34} & & \\ 3^{34} & & \\ 3^{34} & & \\ 3^{34} & & \\ 3^{34} & & \\ \end{array}$	$\begin{array}{c} 1 \stackrel{1}{1}_{16} \\ 1 \stackrel{1}{1}_{16} \\ 1 \stackrel{3}{1}_{16} \\ 1 \stackrel{3}{1}_{16} \\ 1 \stackrel{1}{1}_{4} \\ 1 \stackrel{3}{1}_{4} \\ 2 \stackrel{1}{1}_{2} \\ 2 \stackrel{3}{1}_{3} \\ 3 \stackrel{3}{1}_{6} \\ 4 \stackrel{9}{1}_{6} \\ \end{array}$	7,	13/16 13/16 11/8 11/8 2 2 2 2 2 2 2 2	21/4 21/4 3 3 4 3/8 4 3/8 4 3/8 4 3/8 4 3/8 4 3/8 4 3/8	4.00 4.50 6.25 7.50 8.50 9.00 10.25 12.50 15.00 16.50 18.00	2.40 2.70 3.75 4.50 5.10 5.40 6.15 7.50 9.90 10.80
			7 000	7.D.		orkir			
FJU 20001 FJU 200025 FJU 20005 FJU 20010 FJU 20030 FJU 20030 FJU 20040 FJU 20050 FJ 20060 FJ 20080 FJ 20120	.1 .25 .5 .1 2 3 4 5 6* 8* 10* 12*	2 \frac{1}{8} \text{8} \text{1} \text{8} \text{2} \text{2} \frac{3}{8} \text{8} \text{4} \frac{3}{4} \text{4} \frac{3}{4} \frac{4}{3} \frac{4}{4} \fra	118/16 118/16 118/16 21/2 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33	$\begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{16} \\ 1\frac{1}{16} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \\ 1\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 3\frac{3}{16} \\ 4\frac{9}{16} \\ 4\frac{9}{16} \\ \end{array}$	7/8 7/8 7/8 11/4 11/4 11/4 11/4 11/4 11/4 11/4 11	13/16 13/16 13/16 11/8 2 2 2 2 2 2 2 2 2	2 1/4 2 2 1/4 3 4 3/8 4 4 3/8 4 4 3/8 4 3/8 4 3/8 4 3/8 4 3/8 4 3/8	4.00 4.25 4.50 5.50 6.50 8.00 9.00 10.00 11.75 15.00 18.50 20.00	2.40 2.55 2.70 3.30 4.80 5.40 6.00 7.05 9.00 11.10
rju 25005			500 T			orkir 2	13/	7.00	4.20
FJU 25010 FJU 25010 FJU 25020 FJ 25040 FJ 25100A	.5 1 2 4* 10*	3½ 3¼ 4¾ 4 6¾	3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1/4 1 1/4 1 1/4 1 1/4 1 1/4	2 2 2 2	4 3/8 4 3/8 4 3/8 4 3/8 4 3/8	8.00 13.00 18.00 45.00	4.80 7.80 10.80 27.00
		1.00	7 000 T						
FJU 30001 FJU 30025 FJU 30005 FJU 30010 FJ 30020 FJ 30040	.1 .25 .5 .1 2* 4*	2 2 ½ 3 ½ 3 ½ 3 13 16 4 ½ 4 3/4	2½ 2½ 2½ 2½ 3¾ 3¾ 3¾ 3¾	1^{3}_{16} 1^{3}_{16} 1^{9}_{16} 2^{1}_{4} 3^{3}_{16} 4^{9}_{16}	1 1/4 1 1/4 1 1/4 1 1/4 1 1/4 1 1/4	1 1/8 1 1/8 1 1/8 2 2 2	1 3 4 3/8 4 3/8 4 3/8	8.50 9.00 10.00 12.00 15.00 22.00	5.10 5.40 6.00 7.20 9.00 13.20
TITT 40001	,		000					15.00	0.00
FJU 40001 FJU 400025 FJU 40005 FJU 40010 FJ 40020 FJ 40040A	.1 .25 .5 .1 2* 4*	2 ³ / ₄ 2 ³ / ₄ 5 5 8	3 ³ / ₄ 3 ³ / ₄	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$ $4\frac{9}{16}$ $4\frac{9}{16}$	2 2 2 2 2 2	2 2 2 2	4 3/8 4 3/8 4 3/8 4 3/8 4 3/8 4 3/8	15.00 16.00 18.00 22.00 28.00 40.00	9.00 9.60 10.80 13.20 16.80 24.00
			000						
FJU 50005 FJ 50010 FJ 50020	.5 1* 2*	41/4 41/4 6	3 3/4 3 3/4 3 3/4	2 1/4 4 9/16 4 9/16	2 2 2	2 2 2	4 3/8 4 3/8 4 3/8	20.00 25.00 32.00	12.00 15.00 19.20
			000	7.D.			ıg		
TJ 60010A	1*	8	3 3/4	49/16	2	2	4 3/8	50.00	30.00

TYPE TJU DYKANOL CAPACITORS

C-D Dykanol Transmitting Capacitors Type TJU are without doubt the most dependable units offered to the radio trade—amateur, broadcast and commercial. Beautifully designed, compact, light-weight, safely-rated, furnished with universal mounting clamp, well-insulated terminals. These are the capacitors which practically every broadcast and government station in the world uses with such marked success. Standard equipment with tens of thousands of amateurs. Also employed in all types of television receivers and transmitters.

These units are thoroughly impregnated and filled with Dykanol "A" (chlorinated diphenyl), a non-inflammable, fire-proof non-oxidizable liquid compound which is unaffected by wide latitude of temperature changes or voltage stresses.

All units are conservatively rated and may be operated continuously at 10% above their rated voltage. Clamp-type mounting brackets as shown below, for mounting units in either upright or inverted position are furnished with all units.

(For higher voltage units 6000 to 25,000 V. D.C. see Cat. No. 160-T which is available to accredited engineering, educational, broadcasting and manufacturing organizations on request.)

DYKANOL TRANSMITTING CAPACITORS

TYPE TO DYKANOL CAPACITORS

Cornell-Dubilier, Type TQ Dykanol Capacitors, in cylindrical aluminum containers are provided with two insulated terminals and universal mounting rings for mounting the unit in any position with terminals either above or below a subpanel assembly. These units are designed primarily for filter circuits in amateur, low-power broadcast and commercial transmitters. They are also adapted for high-power, high-fidelity public address systems and portable power amplifiers.

Cat.	Cap.	D	imensio	ons—In	ches	List	Net
No.	Mfd.	A	В	C	D	Price	Price
		600 X	olts D	.C. Wo	rking		
TQ 6020	2	21/8	2	1	13/16	\$3.25	\$1.95
TQ 6040	4	23/4	2	1	13/16	4.50	2.70
		1000	Volts D	.C. We	orking		10000
TQ 10010	1	1 7/8	2	1	13/16	2.75	1.65
TQ 10020	2	21/2	2	1	13/16	3.75	2.25
TQ 10040	4	3 1/8	2	1	13/16	4.75	2.85
		1500	Volts D	.C. We	orking		The same of
TQ 15010	1	23/8	2	1	13/16	3.50	2.10
TQ 15020	2	3 5/8	2	1	13/16	4.75	2.85
		2000	Volts D	.C. We	rking		
TQ 20010	1	31/8	2	1	13/16	4.50	2.70
TQ 20020	2	4 7/8	2	1	13/16	5.00	3.00
TQ 20040	4	43/8	3	11/4	11/4	7.00	4.20
		3000	Volts D		orking		
TO 30010	1	31/4	3	11/4	11/4	9.00	5.40
TO 30020	2	51/4	3	11/4	11/4	11.00	6.60

TYPE TLA DYKANOL CAPACITORS

For compact high-voltage filter applications in high-fidelity P.A. amplifiers, power supplies for short-wave portable transmitters and transceivers, type TLA Dykanol filter units in cylindrical aluminum containers are ideal in every respect. One terminal is well insulated, the other being the metal can itself. They will withstand transient voltages as well as high-peak voltage surges, as they are designed to operate for continuous, full-load duty.

Insulating washers, as well as a large spade lug, are provided so that the metal container may be insulated from the chassis. They are thoroughly impregnated and filled with Dykanol as the Dykanol has a di-electric constant of 4.8, a power factor of .3%, and enables the fabrication of capacitors having a direct current resistance of 10,000 megohms per microfarad, of small size and high insulation resistance. An appreciably lower space factor accounts for the substantial reduction in physical size for a given capacity and voltage rating.

Cat. No.	Cap. Mfd.	D.C. W. Volts	Size—Inches Lth. x Diam.	List Price	Net Price
TLA 6020	2	600	2 1/2 x 1 1/2	\$2.75	\$1.65
TLA 6030	3	600	4 1/2 x 1 1/2	3.25	1.95
TLA 6040	4	600	4 1/2 x 1 1/2	3.75	2.25
TLA 10010	1	1000	2 1/8 x 1 1/2	2.50	1.50
TLA 10020	2	1000	4½ x 1½	3.25	1.95
TLA 15005	.5	1500	2 1/8 x 1 1/2	3.00	1.80
TLA 15010	1	1500	4 1/2 x 1 1/2	3.25	1.95

BROADCAST AND COMMERCIAL ENGINEERS Write for C-D Catalog No. 160-T

Radio Transmitter Capacitors, for radio broadcast and commercial engineers, amateurs, and experimenters. Gives complete description of mica and Dykanol capacitors for all transmitter requirements. Also contains useful data, charts and information on capacitors.

MICA TRANSMITTING CAPACITORS

TYPES 4 & 9 MICA CAPACITORS

C-D Mica Capacitors Types 4 and 9 are designed to meet the requirements of power amplifiers and low-power transmitters. They are principally employed for grid and plate blocking purposes and for r. f. by-pass functions. These popular units are available in a wide range of capacities and three standard voltage ratings.

	TYPI	E 4			TYPI	E 9	
Cat. No.	Cap. Mfd.	List Price	Net Price	Cat. No.	Cap. Mfd.	List Price	Net Price
	00 V. D. C. V. D. C.		-		0 V. D. C. V. D. C.		- 9
4-14050	.00005	\$0.50	\$0.30	9-14050	.00005	\$0.60	\$0.36
4-13010	.0001	.50	.30	9-13010	.0001	.60	.30
4-13020	.0002	.50	.30	9-13025	.00025	.60	.30
4-13025	.00025	.50	-30	9-13050	.0005	.60	.30
4-13030 4-13040	.0003	.50 .50	.30	9-12010 9-12020	.001	.60 .65	.3
4-13050	.0004	.50	.30	9-12025	.0025	.75	.4
1-12010	.0003	.50	.30	9-12030	.003	.85	.5
1-12015	.0015	.50	.30	9-12040	.004	.85	.5
1-12020	.002	.55	.33	9-12050	.005	.85	.5
4-12025	.0025	.65	.39	9-12060	.006	1.00	-60
4-12030	.003	.70	.42	9-12080	.008	1.20	.73
4-12040	.004	.70	.42	9-11010	.01	1.40	-8-
4-12050	.005	.70	.42	9-11015	.015	1.60	1.1
4-12060	.006	.85	.51 .57	9-11020 9-11025	.02 .025	1.85 2.30	1.3
4-12070 4-12080	.007	.95	.60	9-11025	.025	2.50	1.5
4-12000	.008	1.15	.69	9-11040	.04	3.25	1.9
4-11015	.015	1.35	.87	9-11050	.05	3.85	2.3
4-11020	.02	1.55	.93	9-11060	.06	4.50	2.70
4-11025	.025	1.90	1.14	250	0 V. D. C	. Test	
4-11030	.03	2.10	1.26	1200	V. D. C.	Workin	-
	0 V. D. C.		107	9-24050 9-23010	.00005	\$0.70	\$0.43
4-24050	.00005	\$0.70	\$0.42	9-23025	.0001	.70	-42
4-23010	.00003	.70	.42	9-23050	.0005	.70	.43
4-23020	.0002	.70	.42	9-22010	.001	.90	.54
4-23025	.00025	.70	.42	9-22020	.002	1.35	.8:
4-23030	.0003	.70	.42	9-22025	.0025	1.45	-87
4-23050	.0005	.70	.42	9-22030	.003	1.55	.9:
4-22010	.001	.90 1.15	-54	9-22040	.004	1.55	1.0
4-22015 4-22020	.0015	1.15	.69 .81	9-22060	.005	1.75 1.75	1.0
4-22025	.0025	1.45	.87	9-22080	.008	2.25	1.3
4-22030	.0023	1.55	.93	9-21010	.01	2.80	1.6
4.22040	.004	1.55	.93	9-21015	015	3.35	2.0
4-22050	.005	1.75	1.05	9-21020	.02	3.95	2.3
4-22060	.006	1.75	1.05	9-21025	025	4.40	2.6
4-22080 4-21010	.008	2.25	1.35	9-21030	.03	4.60	2.7
	0 V. D. C		1.00	2500	0 V. D. C. V. D. C.	C. Test— Workin	ıa
2500	V. D. C.	Workin	ng	9-54050	.00005	\$0.90	\$0.54
4-54050	.00005	\$0.90	\$0.54	9-53010	.0001	.90	.54
4-53010	.0001	.90	.54	9-53025	00025	1 05	-63
4-53020	.0002	1.05	.63	9-53050 9-52010	.0005	1.25	-75
4-53025	.00025	1.05	.63	9-52010	.001	2.25	1.35
4-53030 4-53050	.0003	1.10	-75	9-52025	0025	2.25	1.50
1-52010	.0003	1.50	.90	9-52030	.003	2.75	1.6
4-52015	.0015	1.95	1.17	9-52040	.004	3.15	1.89
1-52020	.002	2.25	1.35	9-52050	.005	3 40	2.04
-52025	.0025	2.50	1.50	9-52060	.006	3.50	2.10
1-52030	.003	2.75	1.65	9-52080	.008	3.80	2.28
1-52040	.004	3.15	1.89 2.10	9-51010	.01 .015	4.10 4.50	2.46
-52050	.005	3.50		9-51015	UID		

Standard tolerance \pm 10%. Also available in closer capacity tolerances at slightly higher prices, and low-loss bakelite . . . For low-loss bakelite add 25c to list price.

TYPE 86 MICA CAPACITORS

C-D new and improved Type 86 Mica Capacitors in dehydrated porcelain cases have been designed for amateur radio communication, 'fone, CW and ICW, for plate blocking, grid, buffer, tank, and antenna coupling purposes.

By selecting a special high grade ruby mica, Type 86 capacitors have very low radio frequency resistance and power factor, but extremely high direct current resistance.

While entirely satisfactory for intermittent duty in amateur transmitters, these units are not recommended for use in broadcast station equipment, aircraft transmitters or commercial applications where more rigid tolerances* and other heavier current carrying characteristics are essential.

			Max	cimum (Curren	t in A	mps.		
Cat.	Cap.	Max. D.C.	30 mc	15000 kc	7500 kc	3750 kc	1875 kc	List	Net
No.	Mfd.	Volt.	10M	20M	40M		160M		Price
45A 86	.00005	12,500	3.5	3	2.5	1.5	1	\$5.50	\$3.30
31A 86	.0001	12,500	5	5	4	3	2	5.00	3.00
325A 86	.00025	12,500	5	7	8	6	4	5.50	3.30
35A 86	.0005	12,500	5	8	9	8	7	5.50	3.30
35C 86	.0005	7,000	5	7	8	6	4	4.50	2.70
21A 86	.001	12,500	5	9	10	11	12	5.50	3.30
21C 86	.001	7,000	5	8	9	10	8	5.00	3.00
21D 86	.001	3,500	5	8	9	8	5	4.50	2.70
215A 86	.0015	12,500	6	9	10	11	12	6.50	3.90
22A 86	.002	12,500	6	9	12	13	15	7.50	4.50
22C 86	.002	7,000	6	8	9	10	10	6.50	3.90
22D 86	.002	3,500	6	8	8	9	7	5.50	3.30
25B 86	.005	10,000	7	10	13	14	15	10.00	6.00
11C 86	.01	7,000	7	10	13	15	15	10.50	6.30
11D 86	.01	3,500	7	10	13	14	14	10.00	6.00
12D 86	.02	3,500	7	10	14	16	17	10.00	6.00
IE 86	.1	2,000	7	10	14	17	18	11.00	6.60

^{*}Standard tolerance \pm 20%. For closer tolerance units, see Types 6, 15L and 30B as listed in C-D Transmitter Capacitor Catalog No. 160-T.

MICA RECEIVING CAPACITORS

TYPES 1W, 3L & 5W MICA CAPACITORS

Moulded Bakelite Capacitors, Types 1W, 3L and 5W are suitable for numerous electronic uses and are specially adapted to serve many important functions in low-voltage radio circuits. All units are rated at 500 volts D.C. working and tested at 1000 volts D.C. except on capacities higher than .003 mfd. of Types 1W and 3L which are rated at 300 volts D.C. working—600 volts test. They are individually tested for accuracy of capacity and voltage breakdown and designed to give dependable service where small size units are required.

	1000 V.D.C	1000 V.D.C. Test-500 V.D.C. Work.			
Cap. Mfd.	Type 1W Cat. No.	Type 3L Cat. No.	Type 5W Cat. No.	List Price	Net Price
.000005 .00001 .00002 .00002 .000025 .00003 .00004 .00007 .0001 .00015 .00025 .0003 .0004 .0005 .0006 .0007 .0006 .0007 .0009 .0009 .0009 .0009 .0009 .0009	1W 5T6 1W 5T7 1W 5T8 1W 5T9 1W 5D1 1W 5D15 1W 5D25 1W 5D25 1W 5D3	3L 5T1 3L 5T2 3L 5T2 3L 5T3 3L 5T3 3L 5T4 3L 5T6 3L 5T6 3L 5T7 3L 5T8 3L 5D1 3L 5D1 3L 5D1 3L 5D2 3L 5D2 3L 5D2 3L 5D3	5W 5V5 5W 5Q1 5W 5Q2 5W 5Q25 5W 5Q3 5W 5Q4 5W 5Q7 5W 5T1 5W 5T1 5W 5T12 5W 5T25 5W 5T25 5W 5T4 5W 5T5	\$0.20 .20 .20 .20 .20 .15 .15 .15 .15 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20	\$0.12 -122 -122 -123 -099 -099 -099 -091 -121 -121 -121 -121 -121 -121 -121 -1
		O.C. Test C. Working	3 603		
.004 .005 .006 .007 .008 .009	1W 3D4 1W 3D5 1W 3D6 1W 3D7 1W 3D8 1W 3D9 1W 3S1	3L 3D4 3L 3D5 3L 3D6 3L 3D7 3L 3D8 3L 3D9 3L 3S1		.45 .50 .60 .65 .65	.27 .30 .36 .39 .39

Standard capacity tolerance is \pm 20%. Also available in closer capacity tolerances and low-loss bakelite at slightly higher prices.

TYPES 1R, 2R & 5R MICA CAPACITORS

Types 1R, 2R and 5R "Silver-Mike" Silvered Mica Capacitors are designed for use in electronic circuits where frequency stability must be maintained. They are ideally suited for use in circuits where the LC product must be maintained constant, and particularly adapted for use in tuning IF transformers, push-button tuning circuits and other similar applications. Standard units are moulded in low-loss red bakelite and furnished with tinned brass wire leads.

All units are rated at 500 volts D.C. working and tested at 1000 volts D.C. except on capacities higher than .0025 mfd. of Type 1R which are rated at 300 volts D.C. working—600 volts test.

	1000 V.D.C.	Test-500 V	-		
Cap. Mfd.	Type 1R Cat. No.	Type 2R Cat. No.	Type 5R Cat. No.	List Price	Net Price
.000001 .000005 .00001 .00001 .00002 .000025 .00002 .00003 .00004 .00005 .00007 .0001 .00015 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .0009 .0015 .0009	1R 5D1 1R 5D15 1R 5D2 1R 5D25 600V.D.C.Test 300VDC.Wkg	2R 5T1 2R 5T15 2R 5T25 2R 5T25 2R 5T3 2R 5T4 2R 5T7 2R 5T7 2R 5T8 2R 5T9 2R 5T9	5R 5V1* 5R 5V5* 5R 5Q1* 5R-5Q2* 5R 5Q3 5R 5Q3 5R 5Q5 5R 5Q7 5R 5T1 5R 5T15 5R 5T2 5R 5T2 5R 5T3 5R 5T3 5R 5T3 5R 5T4 5R 5T5	\$0.50 .50 .40 .40 .40 .40 .40 .50 .50 .50 .75 .75 .75 .1.00 1.125 1.50 2.00	\$0.30 .30 .24 .24 .24 .24 .24 .24 .30 .30 .45 .45 .45 .45 .90 .60
.003 .004 .005	1R 3D3 1R 3D4 IR 3D5			2.25 2.35 2.50	1.35 1.41 1.50

Standard capacity tolerance is \pm 5%, can also be furnished in \pm 3%, \pm 2% and \pm 1% at slightly higher prices. *Closest tolerance of these units \pm 1 mmfd.

QUIETONE INTERFERENCE FILTERS

Top Row-IF-19, IF-18 and IF-21 Lower Row-IF-4 & 5, IF-6, IF-22, IF-20, AF-10

RADIO AND APPLIANCE QUIETONES

Most satisfactory results are obtained when Quietones are installed at the source of the interference. A Quietone installed in connection with an offending appliance corrects the noise conditions caused by that appliance, improving your neighbor's radio reception as well as your

Where source of interference cannot be located a Quietone connected in the electric supply line of the radio receiver will alleviate, if not fully correct, the condition. When a Quietone is installed, interference will be greatly reduced. Remaining interference usually enters receiver through the antenna system.

Quietones for Use at the Radio Receiver

TYPE IF-4—For use on small radio receivers, such as A.C.-D.C. midget sets, etc., where noise level is not too severe. Connects in power line between the radio receiver plug and wall receptacle. Rating: 110 V.A.C.-D.C. S amps. Colors—Furnished in ivory, walnut, or green finish.

List Price \$0.75 Net Price \$0.45

TYPE IF-18—For use in connection with all radio receivers where noise level is severe. Furnished in Bakelite case (see colors). Employs highly effective all-wave capacitive-inductive type filter. Ratings: 110 V.A.C.-D.C. S amps. Colors—Furnished in ivory or walnut Bakelite.

List Price \$5.00 Net Price \$3.00

Quietones for Use at Appliances

TYPE IF-5—For small electrical appliances such as food mixers, hair dryers, etc., where radio interference is of low intensity. Plug type filter. Convenient to install. Rating: 110 V.A.C.-D.C. 5 amps. Colors—Furnished in ivory, walnut or green finish.

List Price \$0.75 Net Price \$0.45

TYPE IF-6—For all types of home electrical appliances where interference is of moderately low intensity. Installed between appliance and power supply line with short return lead which reduces radiation. Rating: 110 V.A.C.-D.C. 5 amps. Colors—Furnished in ivory, walnut or green finish.

List Price \$1.25 Net Price \$0.75

TYPE IF-18—An efficient all-wave capacitive-inductive sectional band type filter for use in connection with all types of electrical appliances where interference conditions are severe. Provided with frame connection for reduction of radiation. Furnished in Bakelite case (see colors). Rating: 110 V.A.C.-D.C. 5 amps. Colors—Bakelite case, walnut finished.

List Price \$5.00 Net Price \$3.00

TYPE IF-19—Capacitive-inducted type filter for use where interference is severe. Frame connection provided. Furnished in Bakelite case. Rating: 110 V.A.C.-D.C. 5 amps. Colors—Bakelite case. Ivory or walnut finish.

List Price \$4.00 Net Price \$2.40

TYPE IF-20—For use on small electrical appliances where interference is very low. Simply connected to cord plug of appliance and plugged into wall receptacle. Rating: 110 V.A.C.-D.C. 5 amps. Colors—Bakelite case. Ivory or walnut finish.

List Price \$0.50 Net Price \$0.30

TYPE IF-21—All-wave capacitive-inductive type filter for use on appliances where return lead to the frame of appliance cannot be made, such as shaver, barber clippers, etc. Furnished in Bakelite case. Rating: 110 V.A.C.-D.C. 1.6 amps. Colors—Bakelite case. Ivory or walnut finish.

List Price \$2.50 Net Price \$1.50

TYPE IF-22—For use in connection with electric shavers of all standard types. Line cord and plug provided with Schick and Packard type adapters which fit practically all type shavers. (Specify type desired when ordering.) Type IF-22A for Schick, Knapp Monarch, and similar type shavers. Type IF-22B for Packard, Zephyr, Remington-Rand and Ronson type shavers. Rating: 110 V.A.C. 5 amps. Colors—Bakelite case. Ivory or black finish.

List Price \$1.75 Net Price \$1.05

TYPE AF-10—Antenna Eliminator for all types of receivers. Furnished in Bakelite case with two binding posts. Plugs into wall receptacle and provides an efficient aerial connection. Colors—Furnished in ivory, walnut or green finish. List Price \$1.00 Net Price \$0.60

Top Row-IF-11 & 12, IF-7A, 15, 16 and IF-14 Lower Row-IF-24, IF-25, IF-26 and IF-27, 28, 29

INDUSTRIAL QUIETONES

The development of radio receiving and broadcasting equipment has been perfected to a degree where complete enjoyment of programs is within the reach of all. However, only too frequently is radio reception marred by disturbing noises commonly referred to as "man-made static." This condition does not have to be endured. It is unnecessary to tolerate the majority of these offending noises. Quietone Filters enable you to enjoy quiet, noise-free reception.

Although atmospheric disturbances in many instances cause radio noises, this condition is not chronically annoying. With the average radio receiver, noise is generally caused by the operation of electrical appliances or apparatus which create high frequency oscillations. Many types of equipment cause minute sparks as a result of a change in electrical conditions within the device, which are essential to its operation. In effect these appliances act as miniature radio transmitters, setting up a disturbance which may affect radio receivers at a considerable distance.

It is highly desirable to correct noise conditions at the source as one filter properly installed at this point may eliminate the noise in a number of radio receivers. Where it is impossible to locate the equipment which is causing the interference a Quietone installed at the receiver will correct the noise in that receiver.

The Quietones listed below will correct radio noise conditions caused by motors, generators, elevators, stokers and many other types of industrial electrical apparatus. They are designed for convenient mounting, and contain highest quality capacitors, with lowest possible impedance internal connections. There are no current limitations for (CP) Capacitive Quietones

Capacitive (CP) Quietones

Туре	Volts A.C.— D.C.	Connections	Housing	List Price	Net Price	
IF-24*	110	Flex-Leads	Metal	\$0.75	\$0.45	
IF-25	110-220	Flex-Leads	Metal	3.00	1.80	
IF-26	110-220	Flex-Leads	Metal	5.00	3.00	
IF-11	110	BX	Cutout Box	7.00	4.20	
IF-12	220	BX	Cutout Box	10.00	6.00	
IF-14**	110-220	BX	Cutout Box	14.00	8.40	

** All Quietones listed above with exception of IF-14 are for single phase circuits. IF-14 is for 2 or 3 phase or 3-wire circuits.

The Quietones listed below are for the more severe radio noise conditions caused by motors, generators, elevators, diathermy, oil burners, etc. They are designed for convenient mounting and quick connection to these machines. They consist of low-loss coils and highest quality capacitors with correct noise conditions in both broadcast and short wave receivers. They are the most efficient filters available for heavy duty application. All capacitive-inductive (CI) Quietones are for single

Capacitive-Inductive (CI) Quietones

Туре	Volts A.C.— D.C.	Max Amps	Connections	Housing	List Price	Net Price
IF-7A*	110-220	5	BX	Cutout Box	\$7.50	\$4.50
IF-15	110-220	10	BX	Cutout Box	15.00	9.00
IF-16	110-220	20	BX	Cutout Box	22.00	13.20
IF-27	110	5	Flex-Leads	Steel Box	4.50	2.70
IF-28	110	10	Flex-Leads	Steel Box	8.00	4.80
IF-29	110	20	Flex-Leads	Steel Box	14.00	8.40

^{*}For use on oil burners.

^{*} Dual unit for use on fluorescent lighting fixtures.

AUTHORIZED CORNELL-DUBILIER DISTRIBUTOR

B. J. DeJARNATT WHOLESALE CO. 515 N. HUNTER STREET TELEPHONE 2-5262 STOCKTON, CALIFORNIA

CORNELL-DUBILIER ELECTRIC CORPORATION

SOUTH PLAINFIELD, N. J., U. S. Am.

Cable Address: "CORDU"