RADIO FIELD SERVICE DATA

COMPANION BOOK TO (MODERN RADIO SERVICING)

BY

ALFRED A. GHIRARDI, E.E.

Author, "The Radio Physics Course", "Modern Radio Servicing". Contributing Editor, "Radio News Magazine". Technical Consultant. Member, New York Electrical Society, Radio Club of America, Institute of Radio Engineers.

OVER 70 ILLUSTRATIONS

SECOND REVISED EDITION
 (First Impression)
 (October, 1936)

New York City
RADIO \& TECHNICAL PUBLISHING $C O$.
45 Astor Place

Copyright, 1955, 1936
By
Radio \& Technical Publishing Co.

All tabulated and other data in this book is fully protected by copyright.

All rights reserved-no part of this book may be reproduced in any form without permission in writing from the publisher.

Copyright in Canada and Great Britain and in all countries subscribing to the Berne Convention.

RADIO FIELD SERVICE DATA

Other Helpful Books
צヵ
MODERN RADIO SERVICING
By Alfred A. Ghirardi
RADIO PHYSICS COURSE
By Alfred A. Ghirardi
SHORT WAVE RADIO HANDBOOK
By Clifford E. Denton
YOUR INVENTION
(How To Protect and Merchandise It)
By Elmore B. Lyford
Detailed descriptive literature on any of these books will be supplied gladly upon request.

PREFACE TO THE SECOND EDITION

Modern Radio Servicing, a 1,300-page textbook, has been prepared by the author of this book to furnish all the detailed information regarding test equipment, test methods, servicing procedures, etc., which the progressive radio service man of today should know and use if he is to perform service work quickly and effectively by the most modern methods. This Radio Field Service Data Book has been prepared to supplement Modern Radio Servicing for the purpose of presenting, in as convenient and useful a form as possible, practical radio reference data which the author has found to be exceedingly useful to radio service men daily, when they are actually on radio service jobs in the field. Therefore, it has been called Radio Field Service Data.

The enthusiastic manner in which the first edition of this Radio Field Service Data reference book has been received by practicing radio service men everywhere is extremely gratifying. The many letters which the publishers have received from men who have been using the book in their daily work for months indicate that it has successfully passed the acid test of practical everyday field use and has proved to be an important, extremely helpful and handy reference book of useful information and data for the radio service man. It is for these reasons that the book has now been revised throughout and greatly enlarged in an effort to bring all of this reference data up to date and to provide more of it. It is hoped that this revision will make the book still more helpful and valuable. The same style of presentation of the data has been maintained, as it has proved satisfactory in practice, but the book is now issued in loose-leaf form in order that it may be kept up to date by a regular periodic supplement sheet service. It has been prepared in a convenient size so that the service man can use it at his service bench and also carry it along in his tool bag on all jobs.

The Intermediate Peak Frequency listings in Section 1 supply data which is essential in i-f amplifier alignment work. This section has been brought up to date to include this important alignment data for all new superheterodyne receivers (including the current models)-and also for many additional older sets. The total number of sets listed has been increased from 3,300 to over 5,200 models-representing the products of 154 reeciver manufacturers.

A new section which presents a cross-index of the model numbers of American RCA-Victor with the corresponding American G.E., WHS'E. and Graybar receivers, and one presenting a cross-index of American RCA-Victor with the corresponding Canadian RCA-Victor, G.E. and WHS'E. receivers, has been added for reference.

The Receiver "Case History" section is a time-saving adjunct to the service man's test equipment and experience, for it represents the accumulated servicing information gained by thousands of hours of actual service work on many different receivers of each model and make listed, under all sorts of installation and operating conditions. It has proved so useful to service men that it also has been greatly enlarged. The "Case Histories" of 750 models of receivers have been added to the original compilation-bringing the total number now listed up to over 1,500 models in all.

The field of auto-radio installation and service work is rapidly assuming such large proportions that it was considered necessary to add considerable data on this phase of service work. Many valuable, time-saving service hints have been added to Section 3 on the Remedies for Stubborn Cases of Ignition Interference in Various Makes and Models of American Cars. Complete data on 29 makes of cars is now presented. The electrical wiring diagrams of many recent models of automobiles have also been added in Section 4, and the compilation of Car Battery Polarity, Breaker-point, Spark-Plug gap and Auto-Radio Antenna data for American cars in Section 5 has been brought up to date by the addition of much new material.

The Tube Characteristic and Socket Connection charts in

Sections 9 and 10 have also been brought up to date with data on all the new "glass", "all-metal" and " G " type tubes. A TubeType Index and chart listing Replacement Tube Types have been added in Sections 11 and 12.

A new and improved chart for resistor and power rating calculations has been put into Section 16. In Section 17, the RMA Standard Color Codes for power transformer leads, i-f transformer leads and audio transformer leads have been added. RMA Standards data on standard panel- or dial-light bulbs has been added in Section 18. An explanation of the special fixed resistor color-code numbering system employed by PHILCO has been presented in Section 19.

Practically every Section in the book has been improved in some manner, and the index has been completely rearranged to conform with the new contents and page layout. It will be noticed that a preliminary explanation of the nature and purpose of the data, together with a typical example illustrating the correct way to use it (when necessary), has been included before each section. It is felt that this will enable all classes of readers to more thoroughly understand just how to use these charts and tables and therefore employ them more frequently and to greater advantage in their work.

Grateful acknowledgement is made to Mr. Bertram Freed for his assistance in the preparation of the old edition of this book and to the many radio service men who have cooperated so enthusiastically and unselfishly with the author by offering their unbiased criticism of the first edition and constructive suggestions for new material contained in this new book. The author is also indebted to the many radio receiver manufacturers for their cooperation in making the compilation of the Intermediate Peak Frequency listings possible; to the editors of Radio Retailing magazine for permission to reprint data which appeared originally in its pages; to the Raytheon Production Corp. for permission to publish the tube data charts in Sections 8 to 12 ; to the RCA Radiotron Co. for permission to reprint the special tube data in Section 13; to Mr. Leonard Fischer for preparing the final drawings; and to Mr. I. Ellin for his assist-
ance during the preparation of the rearranged and new data for publication, and the reading of the proofs.

It is my sincere hope that the data in this book will prove uscful to radio service men both because of its convenient form and its content. If it is at all helpful in making their highly specialized tasks less burdensome, and less time-consuming, I shall feel amply repaid for the work. Suggestions for increasing the usefulness of the book will be gratefully received at any time.

Alfred A. Ghirardi

New York City
Oct. 1936

CONTENTS

Preface
PAGE
SECTION
1 Intermediate Peak Frequencies of Receivers 1-1*
1A Cross-Index of Model Numbers of American RCA- Victor with corresponding American G.E., Whs'e \& Graybar Receivers 1A-1*
1B Cross-Index of Model Numbers of American RCA- Victor with corresponding Canadian RCA, G.E., \& Whs'e Receivers 1B-1*
2 "Case Histories" of Receivers 2-1
3 Remedies for Stubborn Automobile Ignition Interference 3-1
4 Electrical Wiring Diagrams of Automobiles 4-1
5 Battery Polarity, Breaker-Point \& Spark-Plug Gaps, Auto-Radio Antenna and Complete Set Installation Data for American Cars $5-1^{*}$
6 Trouble-Shooting Chart for Common Receiver Troubles 6-1
7 RMA Tube "Type Number" Designation System for Standard-"Glass" Tubes, Octal-Based "Glass" Tubes ("G") Tubes, and Octal-Based "All- Metal" Tubes 7-1*
8 RMA Socket \& Tube Base "Terminal" Designation and Numbering System for Standard-"Glass" Tubes 8-1*
9 RMA Socket \& Tube Base "Terminal" Designation \& Numbering System for "All-Metal" and Octal-Based "Glass" ("G") Tubes $9-1^{*}$
10 Base Pin Positions \& Pin Numbers for Octal-Based "All-Metal" and "G" Type Tubes, "Glass" Tube Equivalents of All-Metal \& "G" Tubes . .10-1"
11. Tube Index-"Characteristic" Data \& Socket-Connection Charts for Standard-"Glass","All-Metal", and "G" Type Tubes11-1*
SECTION PAGE
12 Cross-Index of Replacement Tube Types 12-1*
13 Rectifier Tube Operating Characteristics 13-1*
14 Operating Conditions for Combination Tubes Employed in Resistance-Coupled A-F Amplifiers 14-1
15 Grid-Bias Resistor Chart 15-1
16 Resistance-Current-Voltage-Power Rating Chart for Resistors 16-1
17 RMA Standard Color Codes 17-1
18 RCA Standard Panel- or Dial-Light Lamp Bulb Data 18-1
19 Philco Fixed Resistor Color-Code Numbering System 19-1
20 Condenser Reactances at Power-Suppy, Audio and Radio Frequencies 20-1
21 "Litz" Wire Table 21-1
22 Copper Wire Table 22-1
23 Resistance Data for Common Metals and Alloys 23-1
24 Transformer Turns-Per-Volt Chart 24-1
25 Metric Prefixes Used in Radio Work 25-1
26 Use of Exponents in Calculations 26-1
27 Summary of Formulas Commonly Used in Radio Work 27-1
28 Wavelength, Frequency and $L \times$ C Conversion Table 28-1
29 Tools for Radio Service Work 29-1
30 Drill \& Tap Sizes \& Uses 30-1
31 Common Fractions and Their Decimal Equivalents 31-1
32 Answers to Numerical Problems in Modern Radio Servicing (1st Edit.) 32-1
33 Intercommunicating Systems 33-1
34 Servicing Sound Recording Equipment 34-1
36 Trade Directories (Radio Receiver Mnfr's. \& "Trade Names"; Mnfr's. of Sound Eqp't, Radio Parts, Radio Accessories, Tubes, Test. Eqp't) 36-1
Index Index-1*
Memoranda M-1

INTERMEDIATE PEAK FREQUENCIES EMPLOYED IN SUPERHETERODYNE RECEIVERS
 (154 Manufacturers - over 5,200 Models)

For best performance of a superheterodyne receiver, it is essential that its intermediate-frequency amplifier stages be correctly adjusted to tune to the frequency intended by the designer. Since the i-f which the receiver is designed to employ must be known before satisfactory alignment can be attempted, the following compilation of the intermediate peak frequencies of all superheterodyne receivers of American and Canadian manufacture is presented here with the hope that it will prove helpful as a reliable source of i-f information in the work of the radio service man. For a comprehensive presentation of the principles involved, and the actual procedure to employ, in the alignment of superheterodynes, see Chapter XXV in Modern Radio Servicing. The use of the Cathode-Ray Oscilloscope in all superheterodyne alignment work is also explained in this chapter.

The receivers are listed here alphabetically according to manufacturer's or trade names (154 in all) and alphabetically and numerically according to model numbers (over 5,200 models in all).

ACRATONE
(See Federated Purchaser)
AERO-CHARLES HOODWIN (See Hoodwin Co., Charles)

AERONAUTIC
(See Mission Bell)
ADMIRAL
(See Continental Radio \& Tel.)

AIR KING

ALLIED RADIO (Cont'd)
F-9631 ___ 456
F-9640 177.5
F-9660 177.5
L-4 456
L-7 456
L-477 456
L-481 456
L-567 456
L-767 456
L-783 456
M-169 456
ML-2 456
ML-4 456
ML-215A, ML-266 456
ML-477, ML-481 456
P 175
U-6 456
X-6 456
X-641 456
X-718 456
X-813 456
Z-242, Z-442 456
19A-68 465
30A-99 175
37B-71 465
39B 465
allied radio
Model ke
Knight 6 tube 175
Knight 7 tube 175
Knight 12 tube 177.5
Knight 118 AVC 175
Knight E-9830 177.5
Knight E-9831 177.5
A-47HS, A-56 456
A-60, A-60B 456
A-81 465
A-321, A-681 465
A-3281 456
A-6372 465
AZ-2, AZ-4 456
AZ-282, AZ-482 456
B-101 456
B-102 175 or 262
CL-5, CL-6 456
CL-583, CL-684 456
F-9501, F-9503, F-9505 456
F-9511, F-9515 456
F-9531 456
F-9541 175
F-9571 465
F-9591 456
F-9610 485
F-9616 175

AMERICAN BOSCH	ARVIN (Cont'd)
(see United Amer. Bosch)	
	61 B -_-_-_-175
AMERICAN TELEV. \&	$61 \mathrm{M}, 62 \ldots \ldots$
AMERAD CORP.	62B -175
	$62 \mathrm{M}-\ldots-\ldots-\ldots-\quad 456$
Duo. 61 \qquad 175	$81,81 \mathrm{M}$------------------------456
ANSLEY RADIO	517, 517B - 456
Model kc	527, 527B ----------.---. 456
B-1 _-_-_-_-_-_-_-1456	617, 617B .---------.-.-.-.-.-. 456
D-3, D-4 .--- 175	627, 627B -----------......-. 456
	ATWATER KENT
D-17, D-18 -...-.-.-. 456	Model ke
U-3, U-8 .-.--------175	H-1, H-2 _-_ 130
	72 , - - 130
	80, 80-F, 81 _- 130
APEX	82, $83 \ldots$ (all) -_-_ 130
(see U. S. Radio \& Television)	84, 85 --..(all) -- 130
(see U. S. Radio \& Television)	86, 87 --.-(all) --..--130
ARKAY (R.K. RADIO LABS.)	91, 91-B, 91-C
Model ke	92.-_(all) .-_ 130
RKS-5 \qquad 175	93 _-_-1.-1,000
$50,60,60-\mathrm{D}$	94, 96, 99 _-...all) _-_ 130
	112, $112-\mathrm{N}, 112-\mathrm{S} \ldots \ldots-472.5$
	126, 126G .-........... 264
521, $523 \ldots \ldots$	136, 136G --....-_-_-_ 264
534 .-. --- - 465	135 .---.-.-.-.-.-.-.-. 264
	145 .-- - 264
	155 .-----2.--262.5
	165-Q _-- (1656 late) _-.... 264
ARVIN (NOBLITT SPARKS)	
ARVIN (NOBLITT SPARKS)	185, 185-A --...-- 264
Model	188.....-. (all) -- - 130
	$206,-206-0-472.5$
	215, 215-E _-_ _ 264
$16,17,17 \mathrm{~A}-\quad 175$	217, 217-D _- 264
18 , --- - 175	225 - 450
	$228 . .$. (all) _
	237-Q _-_ 472.5
25,27 ---175	246 Q - 262.5
28,	260.__(all) ____ 130
30-A ---- 181.5	266 _- 262.5
33 ------	$275 \ldots \ldots \ldots \ldots$
35, 37, $38 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	285-Q --- ${ }^{\text {a }}$
41 , 3 , 456	286
$45-\ldots-\quad-\quad 175$	
$51,51 \mathrm{~B}-\square$	310 _-_ 130

ATW ATER KENT (Cont'd)

ATWATER KENT (Cont'd)

AUBURN AUTOMOBILE CO.

Model	kc
A5A3	-181.5

AUDIOLA

Model
A-6, S-6 .-...------------177.5
B-7, S-7 --------------------177.5
7 Tube Super Pent., '31----177.5
8 Tube Super. Pent., '31----177.5
9 Tube Super Pent., '31----177.5
10 Tube Super----------------..-177.5
6, 7 ------------------------------------177.5
9-T-45 ----------------------177.5
23-S-7, 23-S-8, 23-S-12
23-T-8-LW -------.---------------177.5
33-A-6, 33-S-6 ----------177.5
33-S-5 .---.-----------------------456
33-S-6-B, 33-S-7 ------------456
33-S-10-SW, 33-T-4 _--- 456
34-C-5, AC-DC_-_---------456
34-S-5 AVC .--_-_-_-.-.-. 456
345 -------------------------456
346,347 .--- 177.5
31 Super. \qquad 175

AUTOMATIC RADIO MFG. CO.
Model ke A1, A5 …e................................. 480

AUTO-VOX RADIO CO.
Model ke

BALKEIT
$\begin{array}{ll}\text { Model } \\ \mathrm{L}-7 & \text { ke }\end{array}$

6-7 ----.........----- $\quad 456$
$55,70,85 \ldots-\ldots-\ldots-\ldots-\ldots$

BELMONT

Model	I
51-B,	
$55-\mathrm{B}$	175
71 AC ,	
100	175
110	175
404	---465
522	---. 465
525	456
530, 5	540, 550 --- 456
566	465
575	175
578	465
580	175
585 A	
585 C	
586, 5	587 --------------------.-. 465
601 A	
625	

BELMONT (Cont'd)
650, 660 .-----....................................... 175

670 --.................................. 175

777 A, B, C 465

786, 787 .-----.-............................... 465

880 A, B .. 175
880 C, D

1070 A, B ...-................................ 465

BOSCE
(See United Amer. Bosch)

BROWNING DRAKE
Model ke

BRUNSWICK
$\begin{array}{lr}\text { Model } & \text { kc } \\ \text { AVC-D }\end{array}$

3 NC 8, 3 NW $8 \ldots \ldots-\ldots$
5 NC 8

33, 33 AC

BULOVA

Model	ke
C-751	
G-781	
M-701	175
$-\quad 175$	

CADILLAC MOTOR CAR CO.
Model kc
O6W, 072, 56-VI_-_-_-_-_-_-_ 262

CAPEHART

Model	ke
400-A	180
400-B	-_-_-.-.-. 180
$400-\mathrm{C}$	400-D .-.-.-.-.------- 465
$400-\mathrm{E}$	-------------------------------------165

CARUSO-LAUREHK RADIO MFG. LABS.

CASE ELECTRIC CORP. (CASE "TELL-TIME")

Chassis 17
Chassis $19,19 \mathrm{~A}$
Chassis 27,
27A
Chassis 27, 27A
610, 610R .-.....................................

710A, $710 \mathrm{AR}, 710 \mathrm{E} \ldots 262.5$
713A, 713AR

715A, 715AR ---------------262.5
716A, 716AR $-\quad . \quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad 262.5$
718A, 718AR $-\ldots-\ldots-\ldots-\ldots-\ldots-\quad 262.5$

1016, 1017, 1017R .---.......--.-. 262.5
1017-3, 1017R-3 ….......-.-.-.-262.5
7113, 7113R ----------------------.-. 262.5

CENTRAL RADIO CORP.
Model kc

261 175
$560,561 \ldots 2$

CLIMAX RADIO \& TELEVISION CO.

Model	ke D-8
G-4, H-5	456
J-6, JE-7	456
K-6, L-91	$-\quad 456$
M-8, ME-9, ME-17	$-\quad 456$

COLONIAL
Model ke
C-90A, C-90B 175
C-695, C-995 175
C-1495 175
T-345, T-397, T-399 175
44, 47, 48, 50, 51, 52 175
55 1,000
56 175
62, 69, 71, 73, 76 175
*90A, *90B 175
106-B 175
150 480
164, 164-B 175
182, 182-B 175
240 AC 490
250 Chassis 128-A, 128-B. 175
250 AC 175
279 Chassis $128-\mathrm{A}, 128-\mathrm{B}$ 175
279 AC 175
300 Chassis 128-A, 128-B 175
300 AC, 301 AC 175
†345 175
†397 175
*399, 400 175
500, 500 AC 175
501, 501 AC 175
*595 175
600, 600-A, 601, 602 175
603 480
604 445
605, 650 175
651, 652, 653, 654, 655 480
656 175
657, 658 480
659 175
662 175
*695
175
175
700, 701, 702
700, 701, 702 175
1495 175

- See also the corresponding listings under letter "C'" models, such as C-90A, C-90B, etc.
\dagger See also the corresponding listings under letter " T " models, such as T-345, etc.

COLUMBIA

Model	lec
C-25B	175
C-53,	C-54, C-55 --- 175
C-59	175
C-80	175
C-80-A	C-80-B --- 175
C-81	175
C-83,	C-84, C-85 --..---------175
C-90,	C-90 A, C-90 B _-_-_ 175
C-93,	C-94 ----- 175
C-120,	C-120-B .----------------175
C-123	--_-_-175
C-220,	C-223 ----.-.---------175
C-256	--_- 175
C-550	--. 175
C-559	175
C-800	175
32, 34	--.-.-.. 175

CONTINENTAL RADIO \& TELEVISION CORP. (ADMIRAL)
Model kc
A31, A32

AM587, AM688 .-.-.....-.-....... 465
B125, B127 ...-........................ 465

CL583, CL684 .-.-.-....-.-.-.-.-.-. 465

M351, M551 .-.-.........-.-......... 465
ML215A .-............-.................... 465
ML266 .-...........-........................ 465

MX218, MX239 _-_-_._- 465
MX240, MX241 ----.-.-.-.-. 465
X140, X141 .-......-.-.-.-............ 465

X641, X718 _- 465
X813, X821 __-..._-_-_-_ 465

CONTINENTAL (Cont'd)

Z344, Z393-------...........- 465
Z442, Z482--............ 465
Z544, Z593 …---......................... 465
100C -.---------------------------------. 465

CROSLEY

Model	kc
Buccaneer	
Chen	

Chief ---------------------------------181.5

Constitution _-_-_-_-_-_-_450
Corsair _-_ - _-_ 450
Cruiser _-__-_-_-_-_-_-_-_ 450
Fiver ..._____ 450
Galleon ….............................. 450
Merrimac _-_.................... 450
Monitor _-_ _-_-_-_ 450
New Travid _-_-_-_-_-_-_450

Viking _-.............................. 450
A156, A166 -----------------------262.5
A266, A366 - .-........................ 262.5
Bat-4, 5, 6, 8 .---------------- 450
Bat-46 - 450
Bat-62, 62A - -- 450

4A1, 4C1 .---------------------------. 456
5A1, 5A3 …--.-.-.-.-_ 181.5

6H2, 7H2 ----------------------------- 456
7V2 --.. 181.5

10P3-....-.-.-............................... 181.5
Dual 60, Dual 60 Lowboy ... 181.5
61, 61 Lowboy _-...-.-.-.-.-. 456.0
Dual 70, Dual 70 Lowboy --.-181.5

80-AW, 80-AW Lowboy.-.... 456.0
95,96

$120,121,122 \ldots 175$

CROSLEY (Cont'd)

123	175
124-----(all)	175
125	175
126, 127 --.-. (all)	175
128 .----	175
129 --- (all)	181.5
130	181.5
131	175
132-1	181.5
133	181.5
134---- (all)	-181.5
135	181.5
136---.- (all)	456
137	181.5
141, 143	181.5
146 ...-(all)	181.5

154, 155 456
*156 456
157, 158 181.5
159 456
160 181.5
163 456
*166, 167 456
168 181.5
169 456
170, 171 181.5
$172,173,173-5$ 456
174 456
175 181.5
176, 178 456
179, 180 181.5
181, 182, 184 456
*266, *366 262.5
415, 425, 435 450
515-5515 450
516 450
525-505 450
526-5526 450
534 456
535 450
536-5536 450
545, 546 450
555-5555 450
556, 605 450
615, 616 450
626. 635, 636 450
645, 646, 655 450
715, 725 450
815, 816 450
855, 865 450
915, 916 450
955 450

CROSLEY (Cont'd)

1014	456
1016	450
1055, 1155	__-_450
1316	450
5516-6515	450
6615, 6625	450

> "See also the corresponding listings under letter ${ }^{\text {. }}$ models, such as A-156, A-166, etc.

DE FOREST CROSLEY RADIO
Model ke140 _-_-___-_ 175
405A, 405B, 405C 175
405D, 405E, 405F 175
500, 501 175
607 175
608A, 608C 175
.705A, 707A 175
801 175
840, 850 175
851A, 851C 175
853, 855, 855B 175
902, 905, 907 175
DELCO RADIO
(See United Motors Service)
DETROLA RADIO CORP.
Model ke
Roadmaster 456
Warwick 456
5B3 370
5D1 455
5W Models 370
5WG1 370
5X Models 370
6A, 6M, 6R 262
6W Models 370
6XM, 6ZM Models 370
7A3 262
7ZM Models 370
10ZM Models 456
100, 100A 456
101, 101A 456
102A, 103A 456
105A, 106A 456
108A, 109A 456
110A, 114A, 116A 456
134A 456
DEW ALD-PIERCE AIRO, INC.
Model
AC7
AC76-7M
BAH 175
BLG 115
52 175
55-X 456
58-EX, 58-R 456
59, 60 456
61 456
62 175
80 456
81, 81-R 456
100 456
440 456
500-A 130
501-A, 501-B 456
503, 504 456
505, 505R 456
507, 510 456
517, 517-R 456
520 456
553 456
570 456
600-A 456
600A-R 456
601 460
602 456
603 455
605, 606 175
607 456
608 177.5
609: 610, 610-LW 456
611, 611-LW 456
612, 612-LW 456
614 455
615, 615-LW 456
616 456
617 175
618, 619 456
620, 620-LW 456
621, 621-LW 456
622 456
630 456
640 175
800 456
802, 803, 804, 805 456
811, 811R 456
1000 456
1100 456
DYNAPHONE
(See Ansley Radio)

ECHOPHONE

Model	kc
S-5	175
5	175
10	175
12	175
4, 15	175

14, 15 175
16, 17, 18 175
20 175
35, 36 175
38 175
50, 55 175
60 175
62 115
65 175
70 175
72 115
75 175
80, 90 175
92 115
112 456
119 456
124, 125, 126 456
130 456
133 175
143 456
160 456
EDISON BELL CO.
Model ke
43, 44, 45 175
53 175
53-LW 115
55-AW 456
63 175
63-LW 115
64 456
ELECTRIC AUTO LITE Model ke 262
072-A 262
3722 262
ELECTRICAL RESEARCH LABS.
("ERLA" - "SENTINEL")
Model ke
7M 262
10M 370
31B, 32B 465
33B, 34B, 35B 465
36L 465
ELECT. RES. LABS. (Cont'd)
37B, 38B, 39B 465
40A, 44A 465
46A, 47A, 48A 465
49B, 50B 465
51U 465
52A, 53A 465
55 465
56 U 465
57A, 58A 465
59 U 465
60B, 63B 465
61, 62, 63 175
$65 \mathrm{~B}, 66 \mathrm{~B}$ 465
67 L 465
68B 465
69 U 465
70A 465
71 U 465
81, 81-P 175
82 (245), 82-P 175
106B 175
108, 108A, 109 175
110, 114, 261 175
501, 502 465
513 175
521 175
550 175
560, 561 265
570 465
599 262
600 265
601, 602, 603 265
614 175
623, 624 465
634, 635 465
660 465
1020A, 1030A 115
1046 465
4400 370
4500 465
5000, 5100 465
5211 465
5500 370
5600 265
5628 465
5721 465
6000 265
6101, 6102 465
6232, 6241 465
6315 465
6317 465
6321, 6323 465
7732 465
7741 465

ELECTROTONE

 (See Harris Mfg.)EL RAY RADIO MFG. CO.
Model
Ac
A, B, C

EMERSON

Model ke
Chassis A, B, C, D 456
Chassis E-5, F, F-5, F-7 456
Chassis H, J, K, L 456
Chassis U4A, U5A 456
Chassis U6A, U6B, U6E 456
A-130, A-132 456
B-5 456
B-10 172.5
B-AC-10 175
B-131 456
C-134, C-134-LW 456
C-136, C-136-LW 456
C-138, C-138-LW 456
C-139, C-139-LW 456
C-140, C-140-LW 456
C-142, C-142-LW 456
CS 175
D-55 456
D-134, D-134-LW 456
D-136, D-136-LW 456
D-138, D-138-LW 456
D-139, D-139-LW 456
D-140, D-140-LW 456
D-142, D-142-LW 456
D-146, D-146-LW 456
E-128 172.5
F-117, F-122 456
F-133, F-135, F-141 456
G-127 456
H-5, H-5A 172.5
H-5L 132
H-5S, H-6A 172.5
H-130, H-137 456
JS 175
J-106 456
KS 175
K-116, K-121, K-123 456
LA 172.5
L-117, L-117-LW 456
L-122, L-122-LW 456
L-133, L-133-LW 456
L-135, L-135-LW 456
L-141, L-141-LW 456
M-134, M-136 456
M-138, M-139 456
EMERSON (Cont'd) EMERSON (Cont'd)
321-LW 132
350-AW 456
350-LW 132
375 175
375-LW 125
450 456
667 172.5
678 172.5
755 175
755-L 115
770 456
775-L 115
775-M 175
775-S 465
965 172.5

EMPIRE ELECTRICAL

 PRODUCTS| Model | ke |
| :---: | :---: |
| 30 | 175 |
| 30-L | 115 |
| 40 | 175 |
| 40-L | 115 |
| 40-SW | 456 |
| 45-SW | 456 |
| 51, 52 | 175 |
| 60 | 175 |
| 71 | 175 |
| 74 | 462.5 |
| 450-A, 460-B | 456 |
| 470-C, 480-C | 456 |
| 575 | 175 |

ERLA

(See Electrical Res. Labs.)

ESPEY MFG. CO.
(ENSIGN)

Model	kc
451, 458, 459	456
464, 467	456
472	460
481, 555	456
560, 564, 565	456
671, 674, 675	456
5101, 5111, 518	456
6101, 6141	456

FADA

FADA (Cont'd)

66 (KY) 175
73 (RE), 74 (RA) 175
76 (RA) 175
78 (RC) 175
78-10 265
79 (RC) 175
79-10 265
83 (RA) 175
85 (RE) 175
87 (RA) 175
88 (RA) 175
89 (RA) 175
93 (RX), 95 (RX) 125
99-10 265
101 (RK) 175
102, 102 (RP) 175
104 470
104-B (RV) 175
105 (RN), 106 (RN) 470
107 (RN) 470
112 (RS) 470
131 (RU), 132 (RU) 265
133, 134, 135 265
141 (NA) 265
$150 \mathrm{C}, 150 \mathrm{~T}$ 456
151 (NE), 152 (NE) 265
155, 156, 157 456
160C, 160 T 456
161C, 161 T 456
166 175
170C, 170CK 456
170T 456
171C, 171CK, 171 T 456
172 456
190C, 190CK 456
190T 456
191C, 191CK, 191T 456
192C, 192CK, 192T 456
193C, 193CK 456
193T 456
211C, 211CK, 211T 456
212C, 212CK, 212T 456
$216 \mathrm{C}, 216 \mathrm{CK}, 216 \mathrm{~T}$ 456
250 C, T, U, W 456
260, B, D, G, T, V, W 456
262 G, D, T, U, W 456
266 175
270 C, CK, T 456
272 V, W 456
280 C, T 456
290 C, CK, T 456
732 (RF) 470
852 (RF) 470
1462D, 1463D 456

FAIRBANKS MORSE	FEDERATED PURCE. (Cont'd)
Model kc	Federated P urci. (Conta)
B-6 _----_-_-_-_-_-_-175	42-D, 43-D, 44-D _-_ 175
	52-F, 53-D, 54-D
	$55-\mathrm{D}, 56-\mathrm{D}, 58-\mathrm{D}$ _-....-_ 456
42, 43 -	
54, 55 .-- 456	61E ------_- 456
56, $57-3$	
58, 63 ‥-----------------456	
64 Auto Radio .-............... 175	$66 \mathrm{~F}, 67 \mathrm{~F}, 68 \mathrm{~F}$...---.-.-.-.-. 456
	75, 77, 83 --.----.-_ 456
	86, 87 - $-\quad 485$
67, 68 ----------------------------------356	92 -m-----175
$69,72,73$------------------------------466	93, 94 - 370
74 -----------------------------------175	
	118 B
	146B - $168 \mathrm{~B},-\ldots 9 \mathrm{~B}-\ldots-\ldots-\ldots$
	179B, $168 \mathrm{~B}, 169 \mathrm{~B}$.-.-----456
	266F, 268F
	336B, 337B, 338B, 339B .-. 456
840, 841 ------------------175	
1014 ---------------------------175	FIRESTONE-STEWART
1040 ------------------175	WARNER
5106 ---------------------------456	Model kc
5241 .-------------------------------------156	
	FISCHER \& SMITH
5341 ---------------------------------456	Model ke
7040 ---------------------------.----456	
7042 --456	FORD MOTOR CO.
FEDERATED PURCHASER	
Model ke	FORDSON
	Model ke
	FP.-.... (All models) .-.-....... 456
7C Early -------------------------.----456	
	FT (Auto)
11B, 12B, 13B, 14B .------.- 456	
16B, 17B .-.-.-----------------456	FU (540-1500 Kc tuning
18B, 19B -----------------------1456	range) -----------156
20B, 21B, 22B, 23B \ldots.	(6775-20,000 Kc tuning
$24 \mathrm{~B}-\ldots-\ldots-\ldots-\ldots-\ldots$	range) \qquad 456 FU K
$26 \mathrm{C}, 27 \mathrm{C}, 28 \mathrm{C}, 29 \mathrm{C} \ldots-\ldots-\ldots$	FU (150-1500 Kc tuning range) \qquad
$30 \mathrm{C}, 31 \mathrm{C}$-------------------456	FW (Midget 115-2300 tun-
$31-40$ - 31 C	ing range)
$32 \mathrm{C}, 33 \mathrm{C}, 34 \mathrm{C}$-------------456	FW (Console 115-2300 tun-
40D .---------------------------460	ing range) \qquad 456

FRANKLIN	GAROD RADIO CORP.
Model ke	Model kc
	G-6, G-15 ___ 175
	G-35 _-_ 456
$55-\mathrm{CU}$----------------------250	
	G-61 --.- 456
55-EU, 55-GU .-.-.-.---.---.- 250	
$65-\mathrm{HU}, 65-\mathrm{HU} 32 \ldots-\ldots-{ }^{\text {--------. } 250}$	*37, *38 .---1.-_-175
94 --------------------------------150	
100 ------------------------------------17	66 ------------156
102 ------------------------175	237, 238 .----.-.-.-. 456
105-C, 105-PC .------ 450	250 --------------------------------------456
200 -.------------------------------175	337 ---156
	370, 370C --------------------------456
	370D, 370KC .-.-.--------.-. 456
FREED MFG. CO. (FREED-EISEMANN)	371, 371C -----...--------------456
	371D, 371KC --------------------456
Model ke	
	380 KC -----------------------356
MB-7 --------------------------175	
	381 KC :------------------------------456
55, 56 -----------------------------156	600, 620 ---------------------------------156
56-L --------------------------115	830, 830C
58, 60, 62 -----------------------456	830D, 830KC
66, 67 --------------------------456	
76	930, 930D -----------------------456
78 ------------------------------------162.5	930 KC
94 ---------------------------------------156.5	931, 931D .-------------------456
353 --------------------------132	
$354,355-\ldots-\ldots-\ldots-\ldots-\ldots-\ldots$	
360, 360-X _-_ 175	
365, 365-X 456	1650, 1650H, 1650LC .----.. 456
366 ---------- 462	4110, 4110E, 4110LC .-....-.. 456
366-LW --------115	$5140,5140 \mathrm{H}, 5140 \mathrm{LC}$.-......-456
367, C-367 ------------------462	
	* See also the corresponding list-
	such as G-37, G-38, etc.
466, 467 _-...-.-.-.-. 462	GAYLORD MFG. CO.
	Model k ke
482, C-482	510S, 510U _-................-456
	610S, 610U ...-.-................ 456
JESSE FRENCH	620S, 620U
Model kc	
U-1 _-_ 175	720S, 720U .-.-...-.-.-.-.-. 456
GALVIN	1010S, 1010U -...--....-.-.-. 456
(See MOTOROLA)	1100 ---------------------356

GENERAL ELECTRIC
(U.S.A.)
Model kc A-52, A-53, A-54 .-.-............ 465A-55, A-56, A-60 465
A-63, A-64, A-65 465
A-66, A-67 465
A-70, A-75 465
A-81, A-82, A-83, A-85 465
A-86, A-87 465
A-88 465
A-90 175
A-125 465
A-205, A-206 465
A-208 465
B-40, B-52 175
B-81, B-86 175
BX-41 175
C-41, C-60 175
C-61 175
C-62 460
C-67 175
C-70, C-75 460
D-50, D-51 175
D-52, D-72 175
E-50, E-52 465
E-61, E-62, E-68 465
E-71, E-72 465
E-76, E-79 465
E-81, E-86 465
E-91, E-95 465
E-101, E-105, E-106 465
E-126, E-129 465
E-155 465
H-31, H-32 175
H-51, H-51-R 175
H-71, H-71-R 175
H-72 175
H-91, H-91-R 175
J-70, J-72 175
J-75, J-80, J-82 175
J-83, J-83A 465
J-85, J-86 175
J-87, J-88 175
J-100, J-105 175
J-107, J-109 175
J-125, J-125A 175
JZ-822A 456
JZ-835 175
K-40, K-41, K-43 175
K-50, K-50-P 175
K-51, K-51-P 175
K-52 175
K-53, K-53-M 175
K-54-P, K-55 175
GEN. ELEC. U.S.A. (Cont'd)
K-58 175
K-60, K-60-P 175
K-62, K-63 175
K-64, K-64-D 370
K-65, K-65-P 175
K-66, K-66-M 175
K-78, K-79 175
K-80, K-80-X 445
K-82 465
K-85 445
K-88, K-88-X 445
K-105, K-106, K-107 175
K-126 175
KZ-62-P 175
L-51, L-52, L-53 175
M-41, M-42 460
M-49, M-50 460
M-51, M-51A, M-52 460
M-55, M-56 460
M-61, M-62, M-63 460
M-65, M-66 460
M-67, M-68, M-69 460
M-85, M-86 175
M-89 460
M-106, M-107 460
M-125 460
M-128, M-128-R, M-129 175
M-655 460
N-60 175
S-22, S-22A, S-22-D 175
S-42, S-42-B, S-42-D 175
S-132 175
SZ-42-P 175
U-50 175
U-51, U-55 456
U-70, U-75 456
GENERAL ELECTRIC (CANADIAN)
Model kc
B-40, B-52 175
C-41, C-61 175
H-31, H-32 175
H-51 460
H-71, H-72, H-77 175
J-72, J-76 175
J-82, J-85 175
J-105, J-107, J-125 175
JB-83, JB-87 175
K-8-B, K-8-CB 175
K-50, K-52, K-53 175
K-57, K-59, K-60 175

GEN. ELEC. CAN. (Cont'd)
K-62 …--_ 175

K-80, K-85 .-_-_ 445
M-7-B, M-7-CB _—_ 460
M-41, M-42 460
M-51, M-52, M-56 ___ 460

M-62
M-67 _-_-_-_-_-_-_ 460
M-69 …-_ 370
M-81, M-86 _.................... 460
M-106, M-107 _--.-.---_-_-_- 460

GENERAL HOUSEHOLD UTILITIES
 (GRUNOW)

Model lse

410, 411-.-. - 465
450, 451-Chassis 4A ___ 455
460, 461-Chassis 4B _-_.. 455
470-Chassis 4C -- 465 or 490*
500-Chassis 5A .-....-.......-455
501—Chassis 5B, 65B, $\quad 45$
502—Chassis 5C _-_ 455
503-Chassis 5C -.-.-.-.-.-....-455
520-Chassis 5A .-....-.-.-. 455
530-Chassis 5B 455
532-Chassis 5H 465
542-Chassis 5J 465
550_Chassis 5B_-_ 455
551—Chassis 5K .-- -165
560—Chassis 5E 455
564-Chassis 5R ...-............ 465
566-Chassis 5S----.-.-. 465
570, 571—Chassis 5D _-... 455
572-Chassis 5L-.......... 465
573-Chassis 5Q 465
580, 581-Chassis 5G- 465 or 490

620, 621—Chassis 6HB _...... 465

631 Chassis 6M .-.-........-.-. 465
640, 641—Chassis 6J-
465 or 490*
643-Chassis 6M .-.-.............. 465
650, 651-Chassis 6A - -262
660, 661, 662-Chassis 6C .. 262
670, 671—Chassis 6D _-_ 455
680,681 -Chassis $6 \mathrm{G}-465$ or 490^{*}

GEN. H'S'HLD. UTIL. (Cont'd)
700, 701—Chassis 7A _-_._- 262
711 ..._-_-_-_-_-_-_ 465
720, 721-Chassis 7DB _ 465
721, 731-Chassis 7M ___ 465
733, 735-Chassis 7M ___ 465
750, 751, 752-Chassis 7B .. 262
753-Chassis 7B _____ 262
760, 761-Chassis 7C ___455
801-Chassis 8A 262
823-Chassis 8 H - $-\ldots-\quad 465$
831, 835-Chassis 8H —--. 465
871-Chassis 8E ...__ 455
901, 902—Chassis 9A _-_._ 262
941-Chassis 9E-.-.......... 465
1101 - -262
1151, 1152 _
1171-Chassis 11C _-_-_-_- 455
1191—Chassis 11G 465
1241—Chassis 12A 455
1291—Chassis 12B .-........ 465
1297-Chassis 12W_-_ 465
1541-Chassis 15W ..--------.-. 455

- If local code interference is about 455 kc , the $1-1$ is 490 kc . If it is about 500 kc , the $\mathrm{l}-\mathrm{i}$ is 465 kc. The correct i-i is stamped on the chassis.

GENERAL MOTORS

Mod	el ke
210	(S-1A, S-1B) ._-_ 175
211	175
	217 (S-1A, S-1B) _-_ 175
	220 (S-1A, S-1B) -- 175
	(S-1A, S-1B) ...-.-.-. 175
251	(S-2A, S-2B) $\ldots \ldots \ldots$
252	175
253	175
254	175
255	. 175
256	175
257	175
258	175
281	17

GENERAL TELEVISION AND RADIO

Model	ke
7, 7-C	456
9	. 456
9 (Auto Comb.)-. 456	
10	175
12	175

GRAHAM-PAIGE	MOTORS
Model	kc
ATP-101, ATP-102	175

GRAYBAR ELECTRIC
Model kc
GB-9 175
GB-100 175
GB-700, GB-770 175
GB-900 175
GB-989 175
GC-13 175
GC-14, GC-15 175
GT-7, GT-8 175
GT-8-56 175
GT-8-69 175
GT-10-69 175
GT-10-88 175
GT-10-99 175
340 180
600 175
GREBE
Model ke
HS-3, HS-4, HS-5 175
HS-6, HS-7, HS-8 175
HS-12 175
61-R 456
250 456
360, 361 456
370, 370C, 370D 456
371D 456
380, 380D 456

GREBE (Cont'd)

381, 381D 456
620 456
730, 731 456
830D 456
831 456
930, 930D 456
931, 931D 456
1240, $1240 \mathrm{E}, 1240 \mathrm{LC}$ 456
$1650,1650 \mathrm{H}, 1650 \mathrm{LC}$ 456
2150 456
$4110,4110 \mathrm{E}, 4110 \mathrm{LC}$ 456
5140, 5140H, 5140LC 456
5240 456
GRIGSBY GRUNOW (MAJESTIC)
Model ke
7-B Chassis 262
9-A 262
10 1,000
11-A 262
15, 15-B 175
20, 21, 22, 23, 25, 25-B 175
35 175
44, 49 (440 Chassis) 456
50, 52, 55 175
55, 59 456
60. 61, 62 175
66, 67, 68, 69 175
75, 85,86 (800 Chassis) 456
85, 86 175
95 175
105, 114 175
116, 116-A 175
120, 150 175
160. 163 175
194, 195 456
194, 195 (440 Chassis) 456
196 175
200, 210 175
220, 290 175
300 175
310-A, 310-B 175
320, 330 175
340 175
351, 353 175
360
360 175 175
370 456
390 175
400 456
411, 413 456
440 456
450 455

GRIGSBY GRUNOW (Cont'd)

$$
460,461,463-175
$$

490, 491, 493 175
520 175
550 455
560, 566 456
650, 651 262
$660,661,662$ 262
666 175
670, 671 455
776, 886, 996 175
998 175
1101 262
1151, 1152 262
GRUNOW
(See General HouseholdUtilities)
GULBRANSEN
Model ke
V6Z2, Z6Z1 262
06-W 262
062 262
092 175
10, 13 175
20, 23 175
53, 92 175
93, 130 175
135, 235 175
236, 237 175
322 175
352, 362 262
530, 535 175
925 175
3225, 3226 175
3521 175
3525 262
3622 262
3925 175
8726 175
HALLICRAFTERSINC.
Model ke
Super Skyrider (25,000-540 Kc tuning range) 465
Super Skyrider (25,000-1500 465
Super Skyrider (43,000-1500 Kc tuning range) 465
S10 1600
S11 465
hallicrafters (Cont'd)
S12 1600
S14 465
5T 465
HALSON
Model ke
Roadmaster 456
AW6 456
CW6 456
CW7, CW8 456
MA53, MA63 456
NS 50 456
NS 60 262
6L6 456
20-B 456
$50 \mathrm{M}, 50 \mathrm{R}, 50 \mathrm{RL}$ 456
50S, 50 V 456
50X 456
53C 456
56U 456
60L, 60M 456
66 AW 456
72, 75, 78 456
100, 100M, 101 456
505 456
520, 530 456
535, 536, 540 456
560 456
570, 580 456
606 456
610, 620, 630 456
770 AW 456
1200 456
1500, 1900 456
HAMMARLUND (COMET)
Model ke
Comet All-Wave 465
Comet, Dec. '31 465
Comet, July '32 465
Comet Pro 465
Super Pro 465
HARRIS MFG. CO. (ELECTROTONE)
Model kc
500, 600, 700 465
800, 900, 1000 465
501W, 701W 465
1201W 465
HOODWIN CO., CHARLES(AERO-CHARLESHOODWIN CO.)Modelke
International Aero 485
6-Tube Batt. 175
6-Tube DC 175
970 175
H. H. HORN
Model ke
Riviera 66, 66PR 465
5A, 5AD, 5AC 465
5AVC, 5AW 465
$5 \mathrm{M}, 5 \mathrm{MB}$ 465
5MT, 5MTC, 5MTD 465
$5 \mathrm{MTW}, 5 \mathrm{MW}$ 465
7C, 7MT, 7MTC 465
8MT, 8MTC 465
9MT, 9MTC 465
10MT, 10MTC 465
16MTC, 17MTC 465
24, 36 465
50 PR 465
51, 51C 465
52, 52C 465
56 175
58 465
59 175
62, 62C 465
63 465
66, 66C 465
$66 \mathrm{MT}, 66 \mathrm{MTC}$ 465
69, 70, 71 175
$73 \mathrm{C}, 76 \mathrm{MT}$ 465
83, 83C, 83W 465
90 175
101. 101-B 175
102 175
110 175
112-A 465
136 465
156, 156-C 465
158, 158-C 465
419 465
535, 536 465
537, 538 465
611 465
612, 639, 710 465
1934 190
HOW ARD
Model ke Grand 465

HOWARD (Cont'd)

Howard "Highwayman" 175
A (S-W Converter) 680
B-13 465
C-14 456
D-15, D-16 465
EX 175
E-57 456
F-17, F-18 465
HA1 175
HA2 456
HA6-1, HA6-2 465
J-3 456
M 175
S-2 175
S-3 456
S-7 175
V-11 135
W-6 465
W-18, W-19 465
X-2, X-3, X-8 175
Y-3 175
Z-4, Z-8 175
6A, 8A 465
20, 25 175
30, 32 (0) 175
35, 35-A (AVO) 175
40 (H) 175
45 175
57-AU, 57-AUS 456
58A, 58B 465
60, 60-SW 456
60 (AVH) 175
67 465
68C, 68CA 465
68T, 68TA, 68 TB 465
$77 \mathrm{C}, 77 \mathrm{~T}$ 465
88C, 88 T 465
99C, 99 T 465
400 (K), 420, 420 (L) 175
500, 501 (DL) 175
626 465
1626, 1627 465
HUDSON-RCA VICTOR Model kc

HUPP MOTOR CAR CORP.
Model kc
HAD, HT-2 260

INTERNATIONAL (Cont'd)
JS, KS 175
K-6, K-60 262.5
52 448
60 262
61 448
65 262
66, 66X 448
70 262
71, 71C 456
72, 77 448
85 (Serial No. 5950) 456
85 (Serial No. 5951) 262
85 (Serial No. 185498) 456
85 (Serial No. 185499) 262
85, 90 (Serial No. 6500) 456
85, 90 (Serial No. 6501) 262
86, 87, 96, 120 448
105 456
400 Series 448
777, 778, 779 448
1050 456
1200, 2200 448
JACKSON BELL CO., Ltd.
Model ke
24 456
25, 27, 28, 29 175
33 840
89 175
205 465
406, 456 456
506, $506 \mathrm{M}, 556$ 456
606, 606M, 606U, 606UM 456
KADETTE
(See INTERNATIONAL)
KARADIO CORP.
Model ke
50 465
56, 57, 57 S 456
65 456
66 6-Tube 262 or 456
66 7-Tube 456
67-S 456
75, 76 456
77, 77-X 456
88 8-Tube 262
150 456
160, 180 175
667 Farmsette 175

Model	kc
50 S	175
70, 80, 90	175
120	175

KENNEDY

Model	kc
52	

52 Export 135
53-SW 1000
54 1525
54-SW 1000
56 175
62 (all) 175
63 175
64 (all), 66 (all) 175
67 Export 110
72 175
164-B 175
266-B 175
366-B 175
563-A, 563-B 175
882-62-D 175
882-64C 175
KINGSTON RADIO CO., INC.
Model kc
55 456
500-A 456
600-A, 600-B 172.5
700-A, 700-B 456
Gypsy Model 5-T ac-dc 456
KNIGHT
(See Allied Radio)
KOLSTER

Model		kc
K-JJ		175
K-55		175
K-60,	K-62, K-63	. 175
K-65,	K-66	. 175
K-70		-175
K-72,	K-73	

KOLSTER (Cont'd)

K-75, K-76 --.............................. 175
K-80, K-82, K-83 175
K-85, K-86 175
K-90, K-92 175
K-93 175
K-95, K-96 175
K-100 175
K-102. K-103 175
K-105, K-106 175
K-110 175
K-113, K-114 175
K-120 175
K-122, K-123 175
K-125 175
K-130 175
K-132, K-133 175
K-135 175
K-140 175
K-140, K-142 (Flat Topped)170-180
K-143 175
K-145, K-165, K-195 175
LAFAYETTE
(See Wholesale Radio Co.)
LANG
Model kc
MA-7, MD- 7 175
MA-8, MD-8 175
SA-7, SC-7, SD-7 175
SA-8, SA-9 175
SD-8 175
41-UP 470
50-AS 470
50-UP 470
50-US 456
51-AS 470
52-PC 456
60-AA, 60-UP 470
66-AA 470
70-AA, 70-UA 470
80-AC 175
81-UA, 81-VA 470
LARKIN COMPANY
Model ke
90, 91 175
LAUREHK RADIO MFG.
Model ke
AE-5 456

LAUREHK (Cont'd)

AE-42........ (car radio) ..-.-...... 175
AE-79 .---.-. (car radio) .-.-..... 175

L-8-AW ... 456

LEHMAN RADIO SALON (PORT-O-MATIC)
Model
10, 12 Series 1935 \quad kc 10, 12 Series 1936 .-------..---. 470

LEUTZ

Model	
C-10	ke

LEWOL MFG. CO.
Model ke

LINCOLN

Model ke

SW-10 (D.C.) -.--------------- 480

L"TATRO MFG. CO.
Model
A-525

AK-54, AM-54 --------------.......-177.5

C-625, D-625 .------------------------177.5

F-725
FN-66, GN-66 ...-..-............... 457
H-465, I-465 .---....................... 456

N-74 -177.5
O-84, 0-94

L'TATRO MFG. CO. (Cont'd)
P-54
177.5

T-4626-.-.-............................. 456

T-5636 ----------------------------------- 456
T-6216 -----------------------------------177.5
T-6236 ---------------------------..-------- 456

LYRIC
 (See Wurlitzer)

McMURDO SILVER, INC.
Model ke
Masterpiece I
Masterpiece II ---.----------------. 465
Masterpiece III _------...------- 465
Masterpiece IV --------------... 465
Masterpiece V .-.-.-...........-....-. 465
World Wide Nine $-\ldots-\quad-\quad-\quad-\quad-\quad .-$

Prof. 5-D --------------------..------- 465

MAJESTIC
(See Grigsby Grunow)

MELBURN RADIO MFG. CO.
Model ke

SEC. 1 INTERMEDIAT	AK FREQUENCIES 1-23
MIDWEST	MONTGOM. WARD (Cont'd)
Model kc	
H-6 .-- 456	
D-7, E-7, HH-7	62-7, 62-8 --------------------------175
F-9, G-9 -------------156	62-9 $62-11,62-12,62-14,62-19-175$
R-9, RT-9	$62-11$, $62-20,62-12, ~ 62-X, ~$ (62-25)
F-10, G-10	$62-20,62-20-X, ~(62-25)------\quad 175$ $62-21,62$
M-10, R-10	62-27,
G-11, GG-11, J-11	62-29 (11-12) ----------175
M-11, R-11, RT-11	62-30 --------------------162
C-12, CT-12	62-38, 62-40 ----------.--.-262
K-12, L-12, M-12	$62-50$ $62-89$
	62-91, 62-93 ---------------------175
	62-96, 262
M-14, MT-14 ------------------456	62-97, 62-97X
P-14, Q-14	62-99, 62-99X -----------------262
R-14, RT-14 ------------------456	62-101, 62-101X
A-16, AA-16	62-103 .-------------------------175
B-16, BB-16 -	
C-16, CC-16	62-105 ------------------175
C-16 (1933 Model) .-.-.-.-. 450	62-106, 62-107 --------------175
D-16, DD-16 .---------------------456	77 ---------------------------------175
K-16 ----------------------------450	
KP-16 --- 456	
L-16, M-16, PR-16 -------- 450	106, 107 -------------------175
R-16, M-16, RT-16 .-----------456	120, 121, 122 -----------------175
S-16, T-16, U-16 .--.....-...... 456	123, 124 -----------------------156
AA-18, BB-18 ----------------456	
CC-18, DD-18 .----..----------. 456	129, 131 .----------------------------456
EE-18, FF-18 --.--------------456	
V-18, VT-18 ----------------------156	
W-18, X-18 .-.-.-.-...---------. 456	136 --175
Y-18, Z-18------------------456	137 .---156
	138 ----------------------------------175
MISSION BELL	139 --------------------------------------156
	141 ---------------------------------------175
(AERONAUTIC)	142 -------------------------------156
Model kc	143 ------------------------------175
10-A, 11 -----------352	144, 145, 146 .---------------------156
14 --------------------------456	147 .----------------------------------370
$19,19-A ~$ $25-\mathrm{A}$	
25-A -------------------------------152	150 ---370
40 --456	151 --175
	152, 153 ------------------------456
MONTGOMERY WARD	
(AIRLINE)	
Model ke	156 ----------------------------------3170
7GM ------------------------------456	157 -----------------------175
13, 15, 16, 16-X, 17,	158, 159 --- 456
18, 18-X .----------------------262	160, 161, 162 _............... 175
17, 62 .-------------175	163 _- 456
62-1 -------------------175	

MONTGOM. WARD (Cont'd)
165 456
166 175
167 456
169 465
171 465
$173,175,176,177$ 456
178 175
179 456
181, 183 175
186, 187, 188 456
189 175
190 456
191 175
192, 193, 194 456
195, 196, 197 456
198 465
202 175
203, 205, 206 456
207, 208, 209 456
211 178
212 456
213 178
214 465
215, 216, 217, 218 456
219, 220, 221 456
223 456
224, 225 465
226, 227, 228 456
229 175
230, 233, 235 465
236, 237, 239 175
240 465
241 456
242 175
244, 245, 247 456
248, 249, 251 465
253, 255 465
259 456
307 465
308, 310 456
311, 313 456
315, 316, 317 465
318 456
326 465
327 456
328 465
332 456
338 465
407 465
408 456
410, 411, 413 456
415, 416 465
418 456

MONTGOM. WARD (Cont'd)
426 465
427 456
428 465
670 175
811 (62-1711) 175
1111 (62-1611) 175
1238 (62-1838) 262
1355 (62-1955) 262
Auto Radio 262
Airline Series 1355 \& 1955 262
MOTOROLA (GALVIN)
Model ke
Golden Voice 262
Super 6 456
D-6 262
J-8 175
T-8 262
T-77 456
S-10 175
7-T-47-A 175
34 262
44 456
50 262
55, 57 456
60 262
61 175
62 456
66 456
75 262
*77-A, *77-AB 456
79 262
80 262
88 175
100 262
110 262

* See also the corresponding list- ing under the letter "T" model such as T-77, etc.
MOTO-METER GAUGE \& EQUIP. CO.
Model ke Moto Vox 10-A 175
NATIONAL
Model ke
AGS 495 495
AGSX, FB-7A, FBXA 495
HRO 456
NOBLITT SPARKS
(See ARVIN)

PACKARD-BELL

Model	kc
5, 7	465
25, 35, 35A	460
36, 45, 46	460
47	458
48, 50	460
55, 65	460
66, 67	460
76	465
77	460
86	460
PACKARD	MOTOR CO.
Model	kc
	260

PACKARD RADIO CORP.
Model
4-Tube Super 5

PATTERSON

Model
PR-10
PR-12
PR-12C
R-16

PHILCO (Cont'd)

PHILCO (Cont'd)

90 (with 2-45) 175
90, 90 -A (with 2-47's) 260
90 (with 1-47) 260
90 (above serial No. 237,001) 175
90 (above serial) 175
(No. 237,001
90 (above serial No. 353100) 260
91 (121-221) 260
97 460
111, 111-A 175
112, 112-A 175
116, 116-A 460
116-X 460
116-X (Codes 122) 460
$118,118-\mathrm{B}, 118-\mathrm{D}, 118-\mathrm{H}$ 260
$118-\mathrm{MX}, 118-\mathrm{RX}$ 260
118-X 260
144, 144-B, 144-H, 144-X 460
200, 200-X
200, 200-X 175 175
201 260
211, 211-A 175
212, 212-A 175
270, 270-A 260
470, 470-A (SW-IF) 1,000
470, 470-A (Broadcast IF). 260
490, 490-A (SW-IF) $\quad 1,000$490, 490-A (Broadcast IF). 260
500, 501 460
503 (code 122) 260
504, 505 460
506 460
507 260
509 260
600 460
602, 604 460
610, 611 460
620, 623 460
624, 625 460
630, 635 460
640, 641 460
643, 645 460
650, 655 460
660, 665 460
680 460
700, 800 260
805, 806 260
808, 809 260
816, 817 260
818, 818 K 260
819, 819H 260

[^0]| PIERCE-AIRO, INC. (See DE-WALD-PIERCEAIRO) |
| :---: |
| PILGRIM ELECTRIC CORP (PILGRIM) |
| Model kc |
| AA -------------------------------156 |
| D, DA --...-.-.-.-...-...-. 456 |
| G, GBE, GH |
| |
| |
| PILOT |
| Model kc |
| Dragon 10, 11 ...-............ 115 |
| SW Converter-.-.-.-...-. 550 |
| A-6 _-_-_-_-_-_-156 |
| |
| |
| |
| C-153, C-154 ---------175 |
| C-162, C-165 _- 175 |
| |
| C-203 ---------------------------456 |
| C-213, C-215 |
| |
| |
| C-304 - -----------------------------456 |
| |
| |
| |
| P-63 |
| P-393 --------------------------156 |
| S-148 ------------------------175 |
| S-164 ---------------------------175 |
| |
| |
| X-65, X-68, X-69 _-_ 456 |
| X-73, X-75 .-----------------456 |
| X-105 ---------------------156 |
| $\mathrm{X}-114, \mathrm{X}-115$$\mathrm{Y}-41, \mathrm{Y}-43, \mathrm{Y}-48$ |
| | |
| |
| 8,81 --------------115 |
| 10-AC |
| 11 - - -------------------115 |
| |
| 20 -----------------------156 |
| 23 --- 456 |
| 28 -_-_-_-_-_-_-_-_-115 |
| 33 _ _ - |
| 39 -------------115 |
| |

PILOT (Cont'd)
843 456
45 456
48, Y-48 456
53, 55 456

* $\ddagger+63$ 456
$\ddagger 65$ 456
$\ddagger 68, \ddagger 69$ 456
\$75, $\ddagger 75$ 456
81 482

84. 88 115
92, 93, 94 115
103 456
$\dagger 105$ 456
108 456

* $\ddagger 114$ 456
$\ddagger 115$ 456
123, 125 456
148 456
*149 175
*153, 155 456
*183, 185 456
193, 195 456
*203, 205 456
*213 456
*215 456
223 456
*243 456
253, 255 456
268, 269 456
290 456
*293 456
295 456
*298 456
*304 456
305 456
364 456
390 456
$\dagger 393$ 456
* 403 456
405 456
423 456
605 175
1010 115
2108, 2109 456
2203, 2205 456
2253 456

[^1]
PIONEER

(See RADOLEK)
PLAZA MUSIC
Model kc
5-Tube Super 456
6-Tube Long Wave .-.....-...... 175
7-Tube Super .-........................ 175
711 Super 175
PONTIAC MOTOR CO.
Model kc
Air Chief 544268
(above No. 1,791,090) 262
Air Chief 544290-91
(above No. 300,000) 172
Air Chief 544290-91
(above No. 500,000) 262
Air Mate 544267
(above No. 1,791,090) 262
Air Mate 544289
(above No. 300,000) 172
Air Mate 544289
(above 1,791,090) 262
De Luxe 983506 262
Master 983507 262
PORT-O-MATIC
(See Lehman Radio Salon)

POSTAL

PREMIER

Model	kc
Auto Pal $\ldots . ~$	175

RADIOBAR CO. OF AMERICA
Model kc

105
465

107 (Philco 37-84) 470

210-B, 210-C-........ 262
504 (Philco 37-610) 470
505-.-.-.-.-................................ 465

507 (Philco 37-610) .-.-.---.-. 470
508, No. 1 $-\ldots-\ldots-\ldots-\ldots-$
508, No. $3 \ldots-\ldots-\ldots-\ldots-\ldots-\ldots$

RADIOBAR (Cont'd)

510, No. 5
510 (Philco 37-650) …-...... 470
515 (Philco 37-650) …-.....- 470

528, No. 3
528 (Philco 37-620) 470
536 (Philco 37-640) .-........... 470
550 (Philco 37-670) .---.......- 470
RADIO CHASSIS INC.
Model ke
2,5 -.. 175
V-6--................................. 175
AL-33-.-.-................................... 456
AC-36
LSA-36, QAC-36 175

SL-853 ... 456
RADIO MFG. ENGINEERS
Model kc

RADIOTROPE

Model	kc
$70-\mathrm{R}$	$\mathbf{2 6 2}$

71-R, 72-R, 73-R........-.-.-.......... 262
RCA MFG. CO RCA MFG. CO. (Cont'd)(RCA-VICTOR)
Model kc
ACR-136 460
ACR-175 460
AVR-1 445
BC6-4, BC6-6 460
BC7-9 460
BT6-3, BT6-5 460
BT6-10, BT7-8 460
C6-2, C6-8 460
C6-12, C7-6 460
C7-14, C8-15 460
C8-17, C8-19 460
C8-20 460
C9-4, C9-6 460
C11-1, C11-3 460
C13-2, C13-3 460
C15-3, C15-4 460
D7-7, D8-28 460
D9-19 460
D11-2, D22-1 460
M--30, M-31, M-32 175
M-101 175
M-104, M-105 175
M-107, M-108 175
M-109 175
M-116 175
M-119 460
M-123 475
P-31 175
R-3B. R-3C 175
R-7, R-7A 175
R-7-LW 110
R-8, R-9 175
R-10 175
R-11, R-12 175
R-21 175
R-22 175
R-25 175
R-28 175
R-28 BW, R-28-BWC, R-28-P 175
R-37, R-37-P 175
R-38, R-38-P 175
R-40-P 175
R-43 175
R-50 175
R-51-B, R-53-B 175
R-55 175
R-70, R-71 175
R-71-B 175
R-72, R-73-A 175
R-74, R-75, R-75-A 175
R-76 175
R-77, R-78 175
R-90 175
R-90-P 175
RAD60, RAD62, RAD64 180
RAD66, RAD 67 175
RAD80, 82, 86 175
RAE-26 175
RAE-59 175
RAE-79 175
RAE-84 175
RE-16, RE-16A 175
RE-18, RE-19, RE-20 175
RE-40 175
RE-80, RE-81 175
RO-23 (Broadcast i-f) 175
RO-23 (SW i-f) 1,075
SW Adapter 1,000
SWA-2 1,075
T4-8, T4-8A 460
T4-9, T4-9A 460
T5-2 460
T6-1 460
T6-7, T6-9 460
T6-11 460
T7-5, T7-12 460
T8-14 460
T8-16, T8-18 460
T9-7, T9-8 460
T9-9, T9-10 460
T10-1. T10-3 460
T11-8 460
4T, 4X 460
4X3, 4X4 460
5 M 260
5T, 5X 460
5X3, 5X4 460
$6 \mathrm{~K}, 6 \mathrm{~K} 2$ 460
6M, 6M2 260
$6 \mathrm{~T}, 6 \mathrm{~T} 2$ 460
7K, 7T 460
7U, 7X 460
$8 \mathrm{~K}, 8 \mathrm{~T}, 8 \mathrm{U}$ 460
9K, 9K2 460
9T 460
9-tube General Purpose 445
9U, 9U2 460
10K, 10T 460
13K 460
15K 460
100, 101, 103 460
$110,111,112,112-\mathrm{A}$ 175
114, 115 175
117 460
118 460

RCA MFG. CO. (Cont'd)
120 _-_-_-_-_-.............................. 175
121, 122-.-.-.-.-.-................. 370

$125,126-\mathrm{B}$.-.-...................... 460

$128,128-\mathrm{E} .-\ldots-\ldots-$

141-B, 142-B 175

225, 226 ------------------------------ 460
235-B, 236-B _._................ 460

322 "Duo", 322-E "Duo"--.- 460

330, 331 _-an-...................... 175
340, 340-E, "Duo" 340 .-.....- 445
341 "Duo", 342 .---------------- 460

380-HR "Duo" .-.-........-.....-.-. 175
381 "Duo" ----------------------------. 460

RCA-VICTOR (CANADIAN)
Model kc

R-7-A, R-8-A, R-9-A 175
R-8, R-10, R-12-.-.-.-. 175

R-20, R-20R .---------------------175
R-21, R-22
R-29, R-30, R-31 175

RCA-VICTOR (CAN.) (Cont'd)
R-39 175
R-48, R-49 175
R-50, R-52 175
R-53, R-54 175
R-56 175
R-68, R-78 175
R-87, R-88 175
R-104, R-105 175
R-107, R-109 175
R-128 175
RAD. 80, RAD. 82 175
RAD. 86 175
RAD. 90 175
RAD. 101 460
RAE-59 175
RAE-84 175
RE-33, RE-37 175
RE-41, RE-57 175
RO-112 175
118 460
122 370
126-B 460
128 460
135-B 460
140 445
143 460
211 460
221 370
222 175
223-B 460
224 460
235-B 460
242, 262 460
280 175
281 460
321 370
331 175
340 445
381 460

REMLER	RADOLEK (Cont'd)
Model kc	
	10150 -------------------------175
10 --------------180	10151 ---- 456
	10963 .-----......-........-.-.-----. 456
	10967 -------...-.-.--- 456
	10968 --------------------------------456
15-3 --------------------------180	
17, 19 -----180	10970 --- 456
21.12	10980, 10981 --.--- 465
21-3 -----------------------------250	
	SCOTT LABS.
26 .------------------------------1450	Model ke
	All-Wave Super .-----------.-. 470
36, $37 \ldots \ldots$	(Silvertone)
	Model
$42,44,45 \cdots-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad$	
53, 53C $-\cdots-\cdots-\cdots-\cdots-\cdots-\cdots-\cdots$	
	1320, 1322, 1324 _-...--175
63, 64 -----------------------------30	1390, 1400, 1402, 1404, 175
	$1430-\cdots-----\quad-\quad 175$
	1480, 1482, 1484 _-- 175
	1570, 1572, 1574-----------175
REPUBLIC INDUSTRIES	1590, 1592 - 175
Model kc	
Sky Hawk Patrician 175	
Sky Hawk RC-5, RC-6....... 175	1640 --- 175
	1700 -----------------------------1750
SL-6 .-.--------------------------115	1704 -..----.-.-. 480
SL-6-D	1705 .-.------------------------175
42 --------------------175	1706, 1707-------------------------480
51 - 175	1710 ----------------175
55,56	
311, 316	
R. K. RADIO LABS.	1715 ---------------------------------175
(See ARKAY)	1720 --.o-mon- 175
	1721 ------------------175
RADOLEK (PIONEER)	$1722,1722 \mathrm{X}$----------175
Custom Craft ...- 175	
	1726-X .---------------------175
5 Tube Duola .-................... 465	1729 ------------------------------175
6 Tube Auto Set .-------------175	1730
6 Tube Duola--------.-. 465	1750 ------------------------175
8 Tube 2 Volt Battery ---.-. 175	
10 Tube Magic Messenger-... 175	1904, 1904A
	1906 ----------------------175

SEARS ROEBUCK (Cont'd)

1914 175
1920 480
1922A 175
1923 175
1925 450
1926 480
1932A 175
1933 175
1935 450
1936 175
1954 175
1964, 1964A 175
1980 480
1982A 175
1983 175
1985 450
1992A 175
1993 175
1995 450
1996 175
7065 175
7070, 7071, 7072, 7073, 7074 480
7075, 7076, 7077, 7078 480
7090 175
7090-A 480
7091. 7092, 7093, 7094 480
SENTINEL
(See Electrical Research Labs.)
SETCHELL CARLSON
Model kc
32, 33 456
40, 41 456
44 465
45 456
50, 51, 52 456
60, 60-S 456
61, 62 465
66, 68, 68-S 465
70, 71 456
80 456
210 456
211, 212 465
230 465
330 456
410, 510 456
630, 930 465
SHELLEY RADIO CO.
Model ke
5, 6 460

SHELLEY (Cont'd)

34, 48 460
65, 67 460
SILVER-MARSHALL
Model ke
All World de Luxe-(Table)Kc tuning range(540-25,000)465
All World de Luxe-(Console) Kc tuning range, (540-25,000) 465
All World 5 465
Bearcat Midget 175
Round World 35 465
Super Air Flight 465
A, B, C, D, E 175
F, G, J, 175
Q, QD 465
R, R-T, V 465
X, Y 465
Z-DeLuxe 472.5
Z-10 465
Z-13 472.5
36-A 175
41 175
683 175
714, 716 175
724, 724B 175
726, 726SW 175
727 465
728 175
729 SW 465
738 1,000
739 650
773 175
782 175
1040 175
4801, 4802 175
SILVERTONE
(See Sears Roebuck)

\qquad

SIMPLEX

Model	c
B	175
CA, D	-----.-.-.-456
DB	456
J	175
JA	456
K, L	175
N	175
NT, NTH	456
P-Bat.	. 175
P-DC	175
P (prior	No. 330001) .-.... 175
P-AC, P	------------------------. 456
PJ 32-V,	-6V ---------------------456
T	175
	--. 456
	------ 456
UEX	--.. 456
W (Tabl	or Console) ------- 456
Z, ZS	---------------------------456
	SONORA
Model	ke
70, 71, 72	262
73, 84, 85	. 262
86, 87	262

Model	kc
9-X	172.5

10, 12, 13

14, 14-A $-\ldots-\ldots-\ldots-\ldots-\ldots$
16, 16 -A W* - ---------------------------172. 172
25, 25-X172.5
26-AW*, 26 172.5
27, 27-A, 27-X 172.5
28, 28-X 172.5
 172.5
33, 33-A, 33-B 17.5
34, 35, 36 172.5
40 - $-\quad 45, \quad 46-\mathrm{P}$ 172.5
172.5
53
54 456
56 172.5
57, 58 456
60 900
61, 62, 63, 63-AX 456
65, 65-T 456

SPARTON (Cont'd)

66, 66-T 456
67, 68 345
70 345
71, 71-B 456
72, 72-PQ 172.5
73, 73-AX, 73-BX 456
74 172.5
75, 75-A, 75-B, 75-AX 456
76 456
77 345
78 172.5
80, 81, 81-A 456
82, 83, 84 456
84, 85-X 456
86-X 456
104 456
111-X 172.5
134 456
333 456
475-A, 475-AX 456
478 172.5
506 456
517 456
536 345
537 456
556, 557 456
566, 567 456
577 456
594 456
616, 616M, 616X 345
617 456
620-X 172.5
655 456
666, 666M, 666X 345
667 456
676 172.5
685 345
686 172.5
691 345
716X 456
750-A, 750-X 172.5
766, 766M, 766X 456
766XP 456
766XS 456
775 345
776 456
827-X 456
867 456
870-A, 870-X 172.5
966 456
977, 987 456
1066, 1166 456
1167 456
1176, 1186 456

SPARTON (Cont'd)

1196
1466,1476
$1567,1867-$

*The short-wave superheterodyne converter in these models operates on an intermediate fre quency of $900 \mathrm{k} . \mathrm{c}$.

STEINITE

Model		
203, 600, 605, 630, 635, (all) 642, 642B-, 643		
700, 705, 706, 725 $\ldots \ldots \ldots$		
STEWART RADIO CORP.		
Model		kc
60 ----		262

STEWART-WARNER CORP.
Model kc

R-102 A, B \& E, R-102 -177.5
R-104 A, B \& E
R-105 (SW IF) .-...........1,525
(Broadcast IF) 177.5
R-105A, B\&E 177.5
R-106, 177.5
R-110 177.5
R-111, R-112 456
R-115, R-116 456
R-117, R-118 177.5
R-119, R-12, R-120EF 177.5
R-123
R-125, R-126 456
R-127, R-128D 456
R-130 456
R-131, R-132 177.5
R-133, R-134 456
R-135, R-136 456
R-137 456
R-138 456
R-139-D, R-140 456
R-141 456
R-142A, R-142AS 456
R-143 177.5
R-144AS, R-145 456
R-146, R-147 456
R-148, R-149 456
STEWART-WARNER (Cont'd)
R-160 177.5
R-161-D, R-162-D 456
R-163-D, R-164-D 456
R-167, R-168 456
R-169 262
R-170, R-171 456
R-172 262
R-173 456
R-1322 177.5
R-1332 456
51-59 177.5
1090-1099 177.5
1121 456
1171, 1172 177.5
1181, 1182, 1183 177.5
1191, 1192 177.5
1201 to 1209 177.5
1231 to 1239 456
1251 to 1259 456
1261 to 1269 456
1271 to 1279 456
1281-D to 1289-D 456
1301 to 1309 456
1311 to 1319 177.5
1322 177.5
1332 456
1341 to 1349 456
1351 to 1359 456
1361 to 1369 456
1371 to 1379 456
1381 to 1389 456
1391-D to 1399-D 456
1401 to 1409 456
1411 to 1419 456
1421 to 1429 456
1431 177.5
1441 to 1449 456
1451 to 1459 456
1461 to 1469 456
1471 to 1479 456
1481 to 1489 456
1491 to 1499 456
1601 to 1609 177.5
1611-D to 1619-D 456
1621-D to $1629-\mathrm{D}$ 456
$1631-\mathrm{D}$ to $1639-\mathrm{D}$ 456
$1641-\mathrm{D}$ to $1649-\mathrm{D}$ 456
1671 to 1679 456
1681 to 1689 456
1691 to 1699 262
1701 to 1709 456
1711 to 1719 456
1721 to 1729 262
1731 to 1739 456

TROY (Cont'd)

74, 74B 465
$75,75 \mathrm{~B}, 75 \mathrm{C}, 75 \mathrm{CH}$.-.-.-...... 465
77 .. 465

153, 175 .-..................................... 465
ULTRAMAR MFG. CO.
Model ke

61, 62 -......-.......---.....-............ 480
65-A, 66-A .-........................... 480

1004, 1005 ----...-........................ 480
1005-A, 1006 .---...------------------ 480

1008, 1009 .-.----.................-. . 480

1028, 1029 --.-.....-......................-- 480

1039, 1046 - .-.---.---................ 480

UNITED AMERICAN BOSCH CORP.
Model 05 Kc
10-. .-....................... 175
$20,20-\mathrm{J}, 20-\mathrm{K}, 20-\mathrm{L} \ldots-\ldots-\ldots-{ }^{-} 175$

40, 41, 43, 45-A $-\cdots-\cdots---------175$

100, 100 Auto --.-.-.-..................... 175
108, 108 (Police) $-\ldots-\ldots-\ldots-\ldots$

UNITED AM. BOSCH (Cont'd)
117, 127 --------------------------- 456
140, 140-A --------------------175
150, 150 (Ed 1 \& 2), $160 \ldots 175$
226, 236, 237 …-.................... 175
242, 243 .---------....------................... 175

260, 261 -...

310, 312, 313 175

355, 357 --------------------------.-.-. 175

376-BT, 376-S .-------------.-.-. 456

$430,430-\mathrm{T}$
$440-\mathrm{C}, 440-\mathrm{T}$.--....................... 456

460-A, $460-\mathrm{B}, 460-\mathrm{R}-\ldots-\ldots 5$
$462-\mathrm{A}, 462-\mathrm{B}, 462-\mathrm{V} . .-\ldots$.
470 -- 456
480-D ... 456
500, 501, 502 456

524, 524A .. 456

565 -....................................... 465
575, 575F, 575Q .-................ 465
$585,585 \mathrm{Y}, 585 \mathrm{Z}$.. -.....-.......... 465
595, 595M, 595P ---------------- 465
604, 605, 605C -------------------- 465
$610,620,625$.-......................... 465
634. 634A -........................... 175

636, 637-- 175

660C, 660T ------------------------. 465

680 .-.......-.........-.................... 465
736, 737, 738 175

UNITED MOTORS SERVICE (DELCO)

Model kc

R-1116, R-1117 .-.-.-.-.-........-- 456
R-1118, R-1119 -----------........- 456

R-3208, R-3209 ------------------ 450
RB-1, RC-1 -----------...----------- 175

630, 631, 631A .-----------------. 262
632, 633 --------------------------------- 262
634, 635 ---------------------------------- 262
1101 --------------------------------------181.5
1102, 1103 --------------------------.-. 456

*1115 --..---- .-.----------------------. 465
*1116, *1117 -------....-------.....-. 456
*1118, *1119 - .-.------..------------ 456
2035 ... 262

3026 .------------------------------------ 175
3201, 3202 (below
serial No. 800) -...---------- 262.5
3201, 3202 (above
serial No. 800)
3203, 3204 ----------------------------- 456
3205, 3206 ----------------------------- 450

*3208, *3209 450
4036, 4037 .-.-----....................... 262

4049, 4050 --------------------------- 181.5

4053 .- .. 181.5

- See also the corresponning list. ings under letter "R" monleis, such as R-1115, R-1116, ete.
U. S. RADIO \& TELEVISION
(APEX)
Model kc

7-D, 8 …............................ 455

10, 10-C, 12, 19----............ 262

U. S. RADIO \& TEL. CO. (Cont'd)

24, 25 455
69 262
99 262
112-A 1,000
120 262
1006, 1007 262
3040, 3056 455
3070 262
3084, 3086 455
308.1, 3086 (Serial No. 1344156 to 1344652) 427
3084, 3086 (Serial No.
1345799 to 1395800) 427
UNIVERSAL BATTERY CO.
Model ke
802, 803 175
5010, 6110 465
6310 465
8210, 8410 465
WARE
Model kc
S-1 175
SB1 175
SBA, SBB 175
SBF 175
SB-45 175
WARWICK MFG. CO.Modelkc
550, 560 456
660 262.5
665 175
686 262.5
WELLS-GARDNER \& CO. Model ke
OC 456
ODM 456
OEL 456
OF 456
OGL 456
OCA, OOB 456
02A, 02AA 175
05A 262
05AA, 05B, 05BA 262
06A 175
06W, 06X 262
07A, 07B 175
022 175

WELLS-GARDNER (Cont'd)

2B, 2CM, 2DL .-.-.-.-------------- 456
3A --------------------------------...---. 456
4C --- 456

5D -...-. 456

5G

6EL, 6F ----------------------------- 456

6K, 6L, 6N .---------------.---------- 175
6Q, 6R, 6S .------------------------ 175

6S -175
6-U, 6-V, 6-Z-1.-.....---................. 262
7C 175

7L, 7LL ------------------------------- 456
7P, 7Q .--------------------------------- 456

17X ------....................---.............-. 125

40, 40-A

572 -------------------------------------. 175

WESTINGHOUSE (Cont'd)

WR-18, WR-19 175
WR-20, WR-21 456
WR-22, WR-23 456
WR-24 456
WR-25 172.5
WR-26, WR-26M 175
WR-27, WR-28 175
WR-29 175
WR-30, WR-31 445
WR-32, WR-33 460
WR-34, WR-35 175
WR-36 175
WR-37 370
WR-38, WR-39 445
WR-41, WR-42 175
WR-45, WR-45A 460
WR-46, WR-46A 460
WR-47 460
WR-48, WR-48A 460
WR-49, WR-50 460
WR-100, WR-101 456
WR-102, WR-103 465
WR-116 465
WR-201, WR-203 456
WR-204, WR-205 465
WR-207, WR-208 456
WR-209, WR-210 465
WR-211, WR-212 465
WR-214 465
WR-303 456
WR-304, WR-305 465
WR-306 465
WR-310, WR-311 465
WR-312, WR-314 465
WR-315 465 and 98
WR-502, WR-503 175
WR-601, WR-602 456
WR-603, WR-604 465
WR-605, WR-606 465
WR-607, WR-608 465
WESTINGHOUSE ELECTRIC SUPPLY $\mathbf{C O}$.
Model kc
WR-5 175
WR-6, WR-6-R 175
WR-7, WR-7-R 175
WR-10, WR-12 175
WR-13, WR-13A 175
WR-15, WR-15A 175
WR-16, WR-17 175

WESTINGHOUSE (CANADIAN)

WHOLESALE RADIO SERVICE CO. INC. (LAFAYETTE)

Model
Auto Radio ke
6 Tube Super 262
A-15 175
A-18 456
A-24, A-25 456 or 465^{*}
A-31 456
A-33, A-34 456
A-38, A-39 456
A. 54 456 or 65*
A-60 175
A-77L, A-81L 465 or 115^{*}
AM-20, AM-26 175
B-12 456
B-21, B-22, B-23 456
B-28, B-29 456
B-30, B-32 456

WHOLESALE RADIO (Cont'd)
B-35, B-36, B-37 --.-..----------. 456
B-41, B-42 ----------------------.- 456
B-68, B-69 ---------------------156
B-75, B-76- B-77 -----------456
B-90 -------------------------------175
C-13, C-15, C-17 456 or 465*
C-25, C-26 .--------.- 456 or 465*
C-83, C-84 .------- -------------456
C-95 --------------456 or 465*
F-36 -------------...-------------.-115
F-44 .------------------------------115
F-49, F-50 -------.----456 or 465*
F-59, F-60゙
J-16, J-20 ---.-...-- 456 or 465
L-20 -----------------------------------175
10, 20, AM-20
80-M, 80-MA --------------175
* All of these receivers which were manufactured prior to October 1935 use 456 Kc . for the i-f.
WILCOX-GAY
Model kc
A-1, A-2
A-3, A-4 --------------------------1456
A-5, A-6 ---------------------------..456
A-7, A-8 ------------------------------156
A-9, A-10 --------------------------456
A-11 ------------------------------175
A-12, A-13 --------------------456
A-15, A-16, A-17 .---- 175
A-18, A-19 .-.-------------------175
A-21 -----------------------------456
A-22, A-23 _-------------------175
A-24, A-25 ---------------------175
A-26 ---------------------------456
2-S-5, 2-T-5, 2-VA-7 .---.... 175
3-D-5 -------------------------..--175
3-J-5, 3-K-5 ----------------------175
3-KE5-26 --------------------------175
3-PA-6-66 ----------------115
3-R-6 .------------_-_-_-175
3-S-5-66 -.----------------175
3-SB5-66 -----------------------176
3-T-6-66 ----------------------175
3-VB6-73 -----------------------175
3-VB6-710 -----------------------175
4B6 ---------------------------------175
4CD5-29 -----------------------175

WHOLESALE RADIO (Cont'd)B-41, B-42456
B-68, B-69456
B-90456 or 465^{*}
C-25, C-26456
C-83, C-84
F-36 115F-49, F-50456 or 465^{*}J-3, J-4456
J-37, J-50 465
L-175
10, 20, AM-20175
All of these receivers which were 1935 use 456 Kc . for the i-f.
WILCOX-GAY
A-1, A-2 175
A-5, A-6 456
A-9, A-10175
A-12, A-13175
A-18, A-19456
A-22, A-23 17A-26456
2-S-5, 2-T-5, 2-VA-7175
3-J-5, 3-K-5175
3-PA-6-66 15
-R-6175
3-SB5-66 1763-76 73175
B6-710175
4CD5-29 175

6-M-90, 6-M-91252.5
6-S-27, 6-S-27A252.5
6-S-128 456$6-152$ 6-S 157456
6-V-27, 6-V-62 456-...-..-------------------------------175
7-D-126, 7-D-127 4567-158, 148456
7-D-162, 7-D-1682525
7-S-28, 7-S-30, 7-S-53 45456
צ-S-30, 9-S-54, 9-S-55456
10-S-147 10-S-156 10-S-157456
10-S-160456
12-U-158, 12-U-159 175
91, 92, 103 175
210-5, 211-5, 220 175
215, 216, 217, 221, 225175
250, 260, (SW-IF)175
.125
271 175
, Broadcast175
430, 440, 441, 442, 443 17
462 252.5
47, 476,175
475
517, 518175
550 485605. 606, 607, 608610, 611, 616, 617175

ZENITH (Cont'd)

618, 619, 620, 621,	1101, 1102 -...-.-------...--------- 485
622, 623, -----------------------175	1162, 1170, S1170 .------------252.5
	2032 ---------------------....-----..------- 175
660-TD, 661-TE .--------------..-252.5	
663, 664 ------------------------------- 456	2052, 2053, 2054 ------------------175
666, 668 ----------------------------252.5	2056 -------------.----.................. 485
680 ---------------------------------------252.5	
701 ---------------------------------------456	5401 --.---------------------------------456
705, 706, 707 ---------------------485	5405, 5406 --------------------------456
711, 712 ---------------------------------485	5502, 5504 ------------------------. 252.5
715 ------------------------------------175	5505, 5509 .---------------.---.---... 252.5
730, 735 ---------------------------------175	5510 - .-. ----------------------------- 456
740 --175	5513, 5513A -------------.--------.-252.5
750 --------------------------------------185	
755, 756 -..-----------------------175	5605, 5607 .-------------------------- 252.5
	5608 .--.---------------------------------125
770-B, 775, 775-B, 780 .----- 175	
801 -------------------------------156	5616, 5617, 5618 .-.-------------252.5
805, 806 .----------------------------..-252.5	
807, 808 -------------------------------252.5	5621 ---------------------------------------156
809, 811 ----------------------------252.5	5633, 5634 --------------------------------456
	5701, 5702, 5703
825, 827 -------------.-.----.---------. 485	5701-R, 5702-R, 5703-R ---. 252.5
829, S829 ----------------------------485	5704 , 456
834, 835 ---------------------185	5707 --156
845 -------------------------------------252.5	5801 ---456
847 ------.......-----------------------252.5	5801 ----------------------------------175
$850,860,861$	5902 ---------------------------------175
862, 865, 866 ------------------1252.5	5908 -------------------------------------252.5
880, 881 -------------------------------485	ZEPHYR RADIO CO.
908, 909 --.-----------.-.----------252.5	Model kc
945, 950 --..-----.-.-..-----------252.5	
960, 961, S961 -------------252.5	
970, 975 ------------------------175	
980, 985 ---------------------------485	D, GR - -80 NT, TA
990 ----------------------------185	J-80, NT, TA
1001, 1001A --------------..-485	
	63X8 -------------------------------------456

Use this Space for Recording the I-F's of New Models

Model	Manufacturer	ke

Model	Manufacturer	kc

Use this Space for Recording the I-F's of New Models

$-1 \mathrm{~A}-$

CROSS-INDEX

OF MODEL NUMBERS OF AMERICAN RCA-VICTOR WITH THOSE OF CORRESPONDING AMERICAN GENERAL ELECTRIC, WESTINGHOUSE AND GRAYBAR RECEIVERS

RADIO FIELD SERVICE DATA
RECEIVER CROSS－INDEX—Continued

RCA－Victor （American）	General Electric （American）	Westinghouse （American）	Graybar （American）
P－31	A－81	\ldots	
M－32	A－60		
Rad． 33			GB－311
M－34	13－40	W17－33	．．．．．．．．．．．
R－37	K゙－60		．．．．．．．．．．．．．．
R－37－P	K－60－P	WR－28	．．．．．．
R－38	K－65	．．．．．．．．．．．	．．．．．．．．．．．
R－38－P	K゙－65－P	\cdots	．．．．．．．．．．
RE－40	に゙－54		．．．．．．．．．．
RE－40－P	K－54－P	W1R－29	．－．．．．．．．．．．
R－43	S－42－B	．．．．．．．．．．．	
Rad． 44		．．．	（il3－500
Rad． 46			（13－550
Rad． 48	T－41	WIR－4	CB－678
R－50 51	H－32	．．．．．．．．．．．	
Rad． 51		\ldots	GB－320 GB－100
RAE－59	H－72	．．．．．．．．．．．．	
Rad． 60	．．．．．．．．．．．	．．．．	（113－330
Rad． 62	．．．	\ldots	（1B－340
Rad． 66			GB－600
R－70 and R－70－N	J－72		．．．．．．．．．．．
R－72	．J－86		．．．．．．．．．．．
R－73（47）	J－83	W17－22	．．．．．．．．
R－73（2A5）	J－83－A		．．．．．．．
R－74	J－100	WIT20	．．．．．．．
R－75（47）	J－87	．．．．．．．．．．．．	$\ldots .$.
R－75（2A5）	J－87－A	．．．．．．．．．．．．	
R－76	J－105	．．．．．．．．．．．	．．．．
R－77	J－107	．．．．．．．．．．．．	．．．．．
R－78	J－125	\cdots	．．．．
R－78（2）	J－125－A		．．．．．．．．．．．．
RE－80		WR－23	
Rad． 80	H－31	WR－5	GB－700
RE－80－SW		WR－25	
Rad． 82 and $82-\mathrm{R}$	H－51 and 51－R	WR－6 and 6－R	GB－770
Rad． 86 and 86－R	H－71 and 71－R	WR－7 and 7－R	GB－900
R－90	K－106	．．．．．．．．．．．	．．．．．．．．．．．
R－90P	K－306－P	．－．－．．．．．．．．	．．．．．．．．．．．
91－B 100	C－30	WR－32	．．．．．．．．．．．．．．
101	M－41	．－．．．．．．	\ldots
102	M－40		．．．．．．．．
M－105	C－41	WR－41	．．．．．．．．．．
M－107 110	C－60	．．．．．．．．．．．．	．．．．．．．．．．．．．．
111	K－53	WR－35	\ldots
112	L－52	WR－34	．．．．．．．．
114	L－53		．．．．．．．
$\mathrm{ll}_{\text {M－1 }} 11$	K－52－M	WR－42	\ldots
	B－52	WR－42	．．．．．．．．．．．．

RECEIVER CROSS－INDEX—Continued

RCA－Victor （American）	General Electric （American）	Westinghouse （American）	Graybar （American）
118	M－51	WR－48	
120	K－63	WR－36	．．．．．．．．．．．．．．．
121	K－64	WR－37	．．．．．．．．．．．．．．
M－123	C－61	．．．．．．．．．．．	．．．．．．．．．．．．．．．
124	M－63	．．．．．．．．．．．．．．．	．－．．．．．．．．．．
126－B	C－62	．．．．．．．．．．．．．	．．．．．．．．．．．．
127	$\mathrm{K}-64$－D	\ldots	．．．．．．．．．．．
128	M－61	WR－46	．．．．．．．．．
128－E		WR－50	．．．．．．．．．．
135－B	C－70	WR－47	．．．．．．．．．．
140 and 140－E	K－80	WR－30	．．．．．．．．．．．
141 and 141－E	$\mathrm{K}-80-\mathrm{X}$	WR－31	．．．．．．．．．．．．
142－B	B－81		．．．．．．．．．
143	M－81	WR－45	．．．．．．．．．．．
210	K－55	．．．．．．．．．．．	．．．．．．．．．．．
211	M－56	．．．．．．．．．．	．．．．．．．．．．．．
220	K－66	．．．．．．．．．．．	．．．．．．．．．．．
221	M－65	．．．．．．．．．．	．．．．．．
222	К＇66－M	．．．．．．．．．．．	．．．．．．．．．．．．．
223	C－67	．．．．．．．．．．．．	．．．．．．．．．．
224	M－67	．．．．．．．．．．．	．．．．．．．
235－B	C－75	．．．．．．．．．．．．	．．．．．．．．．．．
240	K－85	．．．．．．．．．．	．．．．．．．．．．．．
241－B	13－86	．．．．．．．．．．．	．．．．．．．．．．．
242	M－86	．．．．．．．．．．．	．．．．．．．．．．．．．．
260	K－107	．．．．．．．．．．．	．．．
261	K－105	．．．．．．．．．．．	．．．．．．．．．．．
262	M－106	．．．．．．．．．．	．．．．．．．．．．．．．
280	K－126	．．．．．．．．．	．．．．．．．．．．．
281	M－125	．．．．．．．．．．．	．．．．．．．．．．．
300	K－48	．－．．．．．．．．．	．．．．．．．．．．．
301 310	M－49	．．．．．．．．．．．	．－．．．．．．．．
310 321	K゙－58	．．．．．．．．．．．．	．．．．．．．．．．．
321 322	M－68		．．．．．．．．．
322 330	M－69 $\mathrm{K}-78$	WR－49	．．．．．．．．．．．
331	に－79		
$340{ }^{\circ}$	に゙－88	WR－38	．．．．．
$340-\mathrm{E}$	K－88－X	WR－39	．．．．．．．．．
341 380	M－89	．．．．．．．．．．．	．．．．．．．．．
380 $380-H$.	M－128	－．．．．．．．．．．	．．．．．．．．．
$\underset{381}{380-H . R .}$	M－128－R M－129	．．．．．．．．．．．．	－．．．．．．．．．．．

MODELS WITHOUT RCA－VICTOR EQUIVALENTS

Westinghouse：
WR－8 Westinghouse WR－6 Chassis with Clock in Columnaire Cabinet．
WR－8－R Westinghouse WR－6－R Chassis modified for vertical Operation in Columnaire Cabinet．

MODELS WITHOUT RCA-VICTOR EQUIVALENTS-(Cont'd)

General Electric:

K-82 G.E.K-62 in Clock Cabinet.
J-88 G.E.J-82 with Manual Motor Board.
H-91 G.E. H-51 (modified) in Clock Cabinet.
H-91-R G.E. H-51-R (modified) in Clock Cabinet.
J-109 G.E.J-100 Chassis and Automatic Motor Board.
JZ-826 G.E.JZ-822 in Console Cabinet.
JZ-828 G.E. J-88 with Short-Wave Adapter.
-Courtesy "Service" Magazine

OF MODEL NUMBERS OF AMERICAN RCA-VICTOR WITH THOSE OF CORRESPONDING CANADIAN RCA, GENERAL ELECTRIC AND WESTINGHOUSE RECEIVERS

RCA-Victor (U.S.A.)	RCA-Victor (Canada)	General Elect. (Canadian)	Westinghouse (Canadian)
SW2	SWA 102	J730	
R-7	R-7, R-78	S22, S22X	W-801
R-7A	$\begin{aligned} & \text { R7A, R8A, R9A, } \\ & \text { R104, R105 } \end{aligned}$	H77, S42A	W-801
R-8	R-8	S42	
R-9		W-801
R10	$\begin{aligned} & \text { R8. R10, } \\ & \text { R12, R107 } \end{aligned}$	J-85
R11	R15	K62
R12	R12, R10	J85	
RAD. 16		W16
RE16	RE37	H 77	
RAD. 17		6. $\mathrm{AC}-27 / 28$
RE18, RE18A	RE41	\ldots
RAD. 18	\ldots	6.1C-28/29
R.1D. 20	W55
R21, R22	R20R. R20, R109
RO-23	RO112	W112
R-28	R28	K50	W53
R-28-P	R29. R31	K゙s5, K53	W53
R-28-P (A to G)	W53
R.AD. 33	-...........	6AC-28/29
M34	M-34	B40	A-43
R37	R37	K゙60
RE 40-P	RE33
RAD. 42		\cdots	W61, W81, W71
R-43	R30	S42-B	
RAD. 48	R15, RAD. 48	T41	W71, W81, W61
R50, R-55	R20, R21	H32	
R51-B, R53B	B103
RAE 59	RAE-59	H-72	
RAD. 66	-....	W89
R70, R70N	R48	J72, J76	
R71,	R50	J82	W82
R71B	R6. R-67, R68	JB83, JB-87	B83
R72,	R52	J86	W88
R73 (47)	R53
R74, R-76, R-77	R-54, R56	J105, J107

CANADIAN RECEIVER CROSS-INDEX—Continued

RCA.Victor (U.S.A.)	RCA-Victor (Canada)	General Elect. (Canadian)	Westinghouse (Canadian)
R78	R22	J125	W122
RE80	RE80		
RAD. 80	R35, Rad. 80	H31	W101
Rad. 82, 82R	R39, Rad. 82	H51
Rad. 86, 86R	RE57, Rad. 86	H71
RAE-84	RAE84	.-.........
RE-81	RE81		
R-90	90	K106	W-103
R-90-P	W-104
100, 101	101	M41, M42	W44
M-105	M-105	C41	A-44
110, 111, 115	R-31	K59, K52, K53	A53, W53
M-116	M116	B-52
118	118	M51, M52	W254, W155
120	K-57	W53
121, 122	M69, K64, M62	W64, W634
M123	M123	C61
126-B	126-B, 223-B	L6B, L6CB	B64
128	128	M61	W165A
135B	135-B	M7B
140, 140E, 141	140	K80, K85	W83AW
141E, 141	W83AW
142B, 241B	R87	K8B
143	143	M81	W84, W 185X
211	211	M56	W254, W155
220	222
221	221, 122
222	222
223	223-B, 126B	16CB	B634
224	224	M-67	W165X
235B	235B	M7CB	B74, W185X
241B, 142-B	R88	K8CB
242	242	M86	W84
262	262	M106, M107
280	280	K126
281	281	M125	W124
321	321
330	R49	W73
331	331	K79
340	340
381	381
788(2)	R22A	J125A	W122A

COMPILATIONS OF "CASE HISTORIES" (ACTUAL SYMPTOMS AND REMEDIES) FOR COMMON TROUBLES IN VARIOUS MAKES AND MODELS OF RADIO RECEIVERS

Value of Trouble "Symptoms" in Locating Troubles: In many lines of service work, an experienced technician can quickly tell a great deal about the location and nature of com-monly-occurring troubles by simply listening carefully to the operation of the device being serviced. For instance, an automobile service man listening intently to an automobile engine in operation knows instantly from his experience that a certain regular "metallic" clicking noise usually means that one or more valve tappets require adjustment; another peculiar characteristic "rattling" noise means that the fan belt is frayed or too loose and is striking something; a third low-pitched reverberating sound indicates that there is a leak somewhere in the muffler or exhaust manifold, etc. Knowing these "symptoms", he is able to get at the source of trouble immediately, and remedy it without making elaborate, time-consuming tests.

So, too, every wide-awake radio service man who has had some experience in servicing radio receivers, soon realizes that particular models of almost all makes of receivers develop certain definite troubles after being in use for some time, that is, almost the same troubles are usually found in the same model of receiver. These troubles are invariably accompanied by definite recognizable "symptoms" in the operation of the receiversymptoms which can easily be recognized by simply attempting to operate it. Experienced service men soon find themselves taking advantage of this fact almost unconsciously, for when called upon to service a familiar model and make of receiver with a trouble symptom which they have run across before in a similar receiver, they immediately proceed directly to test the particular part which caused the trouble in their last experience-without
taking the time required to analyze or test the various circuits of the entire receiver.

Value of a "Case History" Compilation:-If a service man remembers, or has access to the "Case Histories" for most of the popular models of the various makes of receivers, he can often make more rapid diagnoses and repairs on numerous receivers which he is called upon to service, and can speed up his work considerably. A compilation of this kind, for over 1500 popular receivers has been made by the author from the actual service records of several large service organizations with which he is associated. It is authentic in every detail, and is presented with the hope that it will be a time-saver to practical radio service men in their daily work. In some instances, the troubles arising can be disclosed quickly by one of the regular test procedures which are described in Modern Radio Servicing, but very often they are of a nature which makes them particularly elusive and difficult to locate by ordinary test methods. It is for cases of this kind that the following "Case History" compilation is of particular value.

Common Sense in Using "Case History" Compilations: Before presenting the compilation of "Case Histories" the author wishes to discuss several points in connection with its use, that should always be kept in mind.
(1) When using a compilation of radio receiver "Case Histories", remember that the troubles listed are by no means the only ones which can occur in the respective sets. They are the ones which have been found to occur most frequently, and are those which a service man should suspect and test for first.
(2) No service man, or student of radio servicing, should entertain the idea that all he needs to do in order to become a successful service man is to "arm" himself with a voluminous list of receiver "Case Histories", throw all the rest of his analyzing and testing equipment and knowledge out of the window, and proceed to conduct his service work with little effort "by chart". Nothing could be further from the truth! As every experienced radio service man knows, hundreds of cases of every-
day troubles in radio receivers are not the "conventional" ones, and they are often located only by the most persistent and careful testing and sometimes only by the merest chance or "luck".
(3) The list presented herewith will be useful as an accessory to the "conventional" routines of servicing and should be consulted as a "first try". If the correct "trouble symptom" and "remedy" are found with it, so much the better. The repair can then be made quickly without need for time-consuming analysis. If the "Case Histories" listed do not cover the particular case in hand, the service man should proceed immediately in accordance with the modern technique of analysis and testing explained in detail in the book Modern Radio Servicing by Ghirardi. In other words the list should be regarded as a possible time-saving accessory only-not as a new kind of service man's "brain".

The Compilation of "Case Histories" for Receivers:-It will be noticed that the reccivers are listed alphabetically by manufacturers' names. The various models of each manufacturer follow each other in progressive alphabetical and/or numerical order. The various trouble "symptoms" which may be noticed when the receiver is turned on with the volume control set for "loud" operation are listed at the left, and the corresponding "causes" or "remedies" for each trouble are listed at the right. If the trouble occurs at a different setting of the volume control, this fact is stated. It is assumed that the service man has sufficient radio knowledge to enable him to proceed directly to remedy the trouble where only the "cause" is listed. (For a general "Trouble-shooting Chart" applicable to all general "types" of receivers see Section 6 of this book.)

Finally, the fact that a large number of "Case Histories" are presented here for many certain makes of receivers is not to be taken as an indication that these particular receivers (or the receivers of any inanufacturer for that matter) are particularly subject to trouble, or that any reflection on the quality of the receivers of those particular manufacturers is intended. Such is not the case! No recciver is perfect! All receivers are subject to troubles eventually. It is natural that a larger number of those receivers which have proved to be most popular, and have
therefore had the widest sale, should be in use. Consequently, it will be found that a large proportion of the service calls are for receivers of these types, mainly because of this preponderance of the number of them in use. It is on these receivers, therefore, that the largest amount of trouble information due to actual trouble-shooting experience has been obtained and recorded here.

ACTUAL "CASE HISTORIES" (SYMPTOMS AND REMEDIES) FOR COMMON TROUBLES IN VARIOUS MAKES AND MODELS OF HOME AND AUTO RADIO RECEIVERS

Trouble Symptom
Cause or Remedy
ACE A.C.-D.C. MIDGET
Crackling,

"Sputtering" noises | a-c line wires from the rear of the |
| :--- |
| the choke and run these wires around it |
| instead of underneath it |

AIR CASTLE

AIRLINE (old models using '26 tubes)

Inoperative, (r-f tubes do not	riveted junction between binding posts and power transformer lead soldering
light up)	lugs loosened due to shrinkage of
Fluctuating filament voltages	mounting strip. Remove the transformer, and either squeeze down the riveted joints, or flood them with solder
t reception -- 1)	clean hardened flux or grease from contacts of local-distance switch-even if it tests $0 . K$. on 110 volts

AIRIINE Alexander

Oscillation,	check the value of the center-tap re-
Receiver cannot be	sistor of $21 / 2-$-volt winding. It should be
properly aligned	150 ohns. Replace if necessary

AIRLINE AE-11

Low volume, Broad tuning

Oscillation at 1500 kc ---1) re-ncutralize the receiver circuits
2) interaction between the bus-bar grid leads. Bend them close to chassis to reduce interaction effects
3) loose coil shields. Tighten them so that they make good contact

AIRLINE AF.-11 (Cont'd)

Slipping dial drive
Insensitive,
Poor tone

Poor tone	1) connect a 10,000 -ohm resistor across the primary of the push-pull input transformer: Connect a 0.02 mfd . condenser from the plate terminal of the primary to one side of the secondary
	AIRLINE 05 BA
Oscillation	1) replace the $0.002-\mathrm{mfd}$. detector plate condenser with one of 0.01 mfd . If oscillation still persists, connect another $0.01-\mathrm{mfd}$. condenser from the choke coil to the chassis
	AIRIINE 07 I (32 -volt Farm Receiver)
Noisy, (scratching	.-.............. 1) faulty push-pull input transformer prinoise) mary winding. Replace transformer
	AIRLINE 9
Oscillation	1) remove the shaft of the gang condenser. Clean it where it contacts the frame, cleaning the spring contacts and adjusting the screw

Whistling, especially ...-1) replace the oscillator grid leak with one around 800 kc

AIRLINE BATTERY 5

1) replace the type ' 34 detector tube (unshielded ' 34 tube at rear of chassis) with a ' 32 tube, and make the following circuit change: connect the grid return directly to C - 9 volts (brown lead), eliminating the 1 -megohm resistor from the circuit entirely

AIRIINE TRF Receivers

AIRLINE 40, 40A

1) loosen the set-screw holding the tuning drum after wedging the friction drive open. Turn the drum a half turn and tighten the set screw, making sure that the drum engages properly with the friction drive condenser with one of 0.01 mfd . If oscillation still persists, connect another $0.01-\mathrm{mfd}$. condenser from the choke coil to the chassis

AIRLINE 9
) remove the shaft of the gang condenser. Clean it where it contacts the frame, cleaning the spring contacts and adjusting the screw of 40,000 ohms

AIRLINE 62 SERIES

Inoperative when new
or in use ohly a short time

Intermittent reception

1) defective two-section armored wirewound resistor. Replace with 25,000ohm, 1-watt and 1500 -ohm, 2-watt units respectively
2) intermittently open-circuiting 3,200 -ohm "Candohm" resistor furnishing cathode and suppressor grid bias to the type '57 first detector-oscillator tube. Replace with 1-watt unit

AIRLINE 62-14

Reception only at high-frequency end of dial

1) check tuning condenser plates for "shorts" at the "in" and "near-in" positions
2) check the value of the 40,000 -ohm resistor between the control-grid of the ' 27 oscillator tube and ground. This often changes, necessitating a replacement

AIRLINE 62-2:
Intermittent reception, -.1) "open" cathode by-pass condenser i-f Fading stage
Distortion,

1) if AVC plate voltage is somewhat high when receiver is first turned on, look for an open-circuited resistor between the oscillator and r-f screens to plate of AVC tube. Also check for an "open" in the "localizer"-especially at the "cathode" side of the control. The divider resistance should be 4,300 ohms total, tapped at the $1,100-\mathrm{ohm}$ point. Make tests from suspected point to cathode instead of to ground
2) check for "open" by-pass condenser in i-f stage

AIILLINE 62-68

Intermittent reception -1) 3,200 -ohm "Candohm" resistor (furnishing cathode and suppressor grid bias to the '57 first detector'oscillator) "opens" periodically. Replace with 1 -watt unit

Intermittent fading

1) "open" or. "leaky' 0.04 mfd . audio-coupling condenser between '56 second detector and grid of ' 47 output tube. This condenser is located below the ' 47 tube (under the chassis)

AIRLINE 62-76

AIRLINE 62-99
Sce also Case History listed for Airline 62-97
Inoperative-1) faulty '32 oscillator tube. Try several tubes. Readjust plate and screen voltages slightly if necessary

AIRLINE 62-120, 62-122, 62-126, 62-128
Inoperative,-1) if '34 second detector tube burns out Intermittent reception or is found to be faulty, before replacing it with a new tube test the (50mmf(l.) coupling condenser between this tube and the preceding one. It is made of braid tubing pulled over a piece of silk-covered wire, and usually becomes corroded inside and "shorts". Since the $70-\mathrm{mmfd}$. condenser across the primary of the first j-f transformer, the $45-\mathrm{mmfd}$. condenser across the secondary of the first i-f transformer, the 200 mmfd . conclenser in the antenna circuit, and the 35 -mmfd. grid condenser of the first de-tector-oscillator tube are also of this type, they should also be checked. All can be replaced with mica-dielectric molded condensers of these same capacities

AIRLINE 62-134

High-pitch whistle intermittently

Weak signals, Tuning meter inoperative

1) check the 100,000 -ohm grid-leak resistor, and replace if found faulty

IIRLINE 64

1) if volume increases when finger is placed on control-grid cap of first r-f '58 tube the meter is burned out. If operation is desired until the meter can conveniently be replaced, merely "short" it out of the circuit

AIRLINE 77, 95

Abstract

Poor tone after replac-...1) decrease grid bias from 6. or $41 / 2$-volts ing defective '19 tube by shifting the grid bias connection from the 6 -volt pin to the $4 \frac{1}{2}$-volt pin

Static-like noise 1) faulty primary winding of push-pull input transformer. Replace transformer

AIRLINE 123, 131, 133, 142, 144
Same Case Histories as those listed under Airline 62 Series
AIRLINE 182
Power transformer-1) the filament leads to the various tubes, overheats
noperative

1) short-circuit between the two wires running from the high-voltage secondary of the power transformer to the plates of the type ' 80 rectifier tube due to poor insulation. Replace wires

Weak reception,

1) 2,460 -ohm section of speaker field coil

Noise, "open". Replace the field coil
Power transf. "smoking"

AIRLINE 1955

Noisy reception,
No control of volume on strong stations

Intermittent reception, (tubes and voltages test O.K.)

1) defective 8 -mfd., 275 -volt detector plate return filter condenser. Replace with new unit
..1) open-circuiting $0.01-\mathrm{mfd}$. coupling condenser connected between the plate of the oscillator tube and a lug on the oscillator coil. This condition can be checked by testing for oscillator signal. Replace with a new unit if necessary

AIR MASTER AC-DC

Distortion, -.-.-.----.-.....-1) decrease in capacity of one or both

Blasting,
Poor tone at high volume levels
Distortion on low \qquad volume (after set heats up)
"Mushy" tone

8 -mfd. filter condensers. The trouble usually occurs when their total capacity drops to less than $12-\mathrm{mfd}$.

1) check ' 43 tube by replacing it with another (even though it tests O.K.)
2) check $0.01-\mathrm{mfd}$. condenser from screen of 6C6 tube, replacing it if necessary

MLL-AMERICAN MOHAWK (LYRIC)

Oscillation1) leaky dual by-pass condenser.
2) open-circuiting connections at one of the by-pass condensers

ALI-AMERICAN MOHAWK 70, 73, 75

IIum1) change location of grid leak, isolating it from the a-c filament leads so it will not pick up hum from them

AMRAD 81

Fading about 3 or 4 hours after being switched on, (no plate voltage on the detector tube when the above condition appears)

Hum,

(hum balancers adjusted) ("Mershon" condenser tests O.K.)

Hum

1) check the 4 -anode 52 -mfd. Mershon elec-
(develops after about 30 minutes of operation) trolytic condenser. Disconnect each wire separately from each anode of the Mershon, inserting a 0 to 10 milliammetr in scries with it to measure the leakage current. If the leakage indicated is over 4 mils for any 8 -mfd. anode, replace with a 400 -volt condenser. If it is over 10 mils for any $18-\mathrm{mfd}$. anode, replace with a 4 mfd .400 -volt condenser. The $8-\mathrm{mfd}$. anodes are the two that are nearest the copper container

AMRAD 7100

Intermittent reception

1) leads shorting in cabled wiring
2) a-f transformer leads shorting to chassis or shield
3) corroded or loose fuse-block contacts
4) a-f transformer leads shorting to chassis
5) a-f transformer leads shorting to shield

Hum-1) open-circuited center-tapped filament resistor across the type ' 27 tube
2) faulty electrolytic condensers

Hum at resonance 1) out of neutralization

APEX 7

Inoperative (test reveals neyative screen-grid voltage)

Intermittent reception, . 1) intermittent "open" in 3,200-ohm cath-

Intermittent reception (on low-frequency end of dial only, perfect reception othe:wise)

Unsatisfactory perform- 1) replace the first detector-oscillator tube ance
(all voltages normal, tubes test O.K.)
ode resistor for the '24 oscillator tube Replace this resistor

1) filter condensers check $O . K$. on leakage test, but capacity is low. Measure the capacity, or, if a capacity meter is not available, try adding another condenser in parallel

AIPE 7A

1) 0.1 mfd . condenser in screen-grid circuit "leaky" with a '24A, trying several tubes until a satisfying one is found

APEX 7D (Chassis 700)

Fading or
I.ow volume
. . 1) voice-coil wires "shorting" together at the start of the coil due to vibration of the cone. Clean the coil and paint it with a quick-drying insulating lacquer. Keep wires apart as much as possible

APEX 8A
Distortion

1) filament center-tap for ' 47 tube "open" (after receiver has played for about 30 minutes, grid of ' 47 tube gets red hot)

Distortion, .-
Low volume,
Motorboating with volume control at maximum setting

Sudden increase .
(or decrease) in volume when a nearby light is turned on)
Loud hum immediately after switch is snapped on

Fading \qquad
i) faulty type '27 second detector tube
$2)$ decrease in capacity of the $8-\mathrm{mfd}$. condenser across the output of the filter unit. Replace with new unit

1) 0.5 mfd . condenser connected between the r-f cathode and the grid return of the r-f and i-f coils "open". Replace with 400 -volt unit
2) open-circuited 8 -mfd. cardboard electrolytic filter condensers. Replace with newunits
3) faulty $0.04-\mathrm{mfd}$. coupling condenser between the plate of the type ' 27 second detector tube and the type ' 47 output tube. Replace with new unit

Al'EX 9A

--		open-circuited 7,100-ohm voltage-divider
Motorboating section. Replace with new unit		
(voltages abnormally high)	2)	fauity condenser across the filter out-
		put. Replace with new unit
	3)	connect a $0.5-\mathrm{mfd}$., 600 -volt condenser
		between the i-f screen or cathode
		cuits and ground
	4)	loss of capacity in filter condensers. Re-
		ce with new units

APEX 10 SERIES

APEX 12
R -f and i-f circuits dead,
Audio circuit operative (plate-to-cathode voltages on $\mathrm{r}-\mathrm{f}$ and i-f tubes about 10 -volts; chassis-to-cathode voltages about 250 volts)

APEX 20

Weak reception (all voltages normal)

1) "open" $0.05-\mathrm{mfd}$. blocking condenser in the input circuit of the '24 detector' stage. Replace

APEX 26
Inoperative
(faint signals fro
local stations on
Weak reception,
Poor selectivity
Poor control of volu
Intermittent volume
Oscillation,
(extremely high
screen voltages)

Oscillation
(detector screen
voltage high)

1) short-circuited $0.4-\mathrm{mfd}$. screen-grid bypass condenser. Replace with a $0.5-\mathrm{mfd}$. tubular unit
2) check grid wires for "chafed" insulation where they run through holes in chassis
3) faulty volume control. Replace with a new 8,000 -ohm unit
4) open-circuited $2,560-\mathrm{hm}$ resistor. Replace with $2,500-\mathrm{ohm}, 20$-watt unit
5) replace 2640 -ohm section of metal-clad resistor with a 2,500 -ohm 10 -watt wirewound resistor

APEX 27

Intermittent oscillation .-1) increase the r-f by-pass condenser capacity from 0.5 to 1.0 mfd .

APEX 32

1) poor "grounding" of flat by-pass condenser can containing 6 condensers. Solder the can to the tube shields

APEX 36

1) double filter choke (which is sealed with the power transformer in a common pitch-filled can) slips down when the pitch is heated after set is in operation and touches the high-voltage terminal on power transformer. When the set cools, the contraction of the mass causes the contact to open. Heating, however, causes the same condition to repeat itself. Melt out the pitch from the can and insulate the choke and transformer from the sides of the can and from the high-voltage terminals. Reseal the unit
Weak reception at low-frequency end of dial. Normal, or excessive volume at high-frequency end
2) check the antenna choke for an "open". Replace it if necessary, and realign the receiver

APEX 41, 42

Sec also Case Histories listed for Airline AE-11 receiver Oscillation over entire _-_1) try connecting a 3000 -ohm resistor into dial

APEX 43, 44
Same Case Histories as those listed for Airline AE-11 receiver

APEX 46

See also the Case Histories listed for Apex 48

Distortion on lowvolume setting (after tubes have been replaced)

1) trouble of this kind can be overcome by replacing the old volume control with another unit connected in a slightly different way. The old one is simply a resistor in the cathode circuits of the 24's. For proper replacement install a $10,000-\mathrm{ohm}$ tapered unit connected with one end to the intenna lead, the other end to the cathorles of the 24's through a 250 ohm resistor, and the slider to "ground" or chessis. The break in the wire-wound resistor where the old control was connected should be closed electrically with a jumper

APEX 47

Sce also the Case Histories listed for Apex 48
Inoperative-........-1) cut out and tape the white lead coming
(strong blue glow in '80 rectifier tube) out of the filter condenser block. Removal of this section of the condenser will not materially affect the operation of the receiver. However if it is desired, another condenser can be connected externally to replace the one cut out

APEX 48
Inoperative

1) unsolder the rectifier leads and prevent
(smole issuing from
power transformer)

No plate voltage on
one of the ' 45 tubes

1) audio choke "open". It may be "shorted" out of the circuit without material change in receiver performanee

APEX 60,60A
Same Case Histories as those listed for Airline AE-11 receiver

APEX 80
Weak reception

(jarring the receiver
brings it back to
normal)

Weak reception
on one end of dial
Oscillation at
certain dial settings

Weak reception

Intermittent reception (receiver operates only when the "onoff" switch is snapped, or when one of the house lights is turned on)

1) faulty a-c receptacle of dynamic speaker, resulting in a loose connection and no field excitation current. Replace receptacle
2) stator plates of tuning condenser have shifted out of alignment. Plates must mesh with similar spacing at top and bottom of plates
3) connect a 50 -ohm non-inductive resistor directly into the grid lead of the second r-f tube. Also connect a 250 -ohm resistor at grid end of the third r-f tube

APEX 99

1) 4- and 8 -mfd. filter condensers "open", or lowered in capacity

APEX 99A

1) faulty detector tube by-pass condenser. Replace it

APEX 120

Same Case Histories as those listed for Apex 12 receiver
APEX Chassis 700
See Case Histories listed for Apex 7D

ARBORPHONE 45

Fading
Insufficient selectivity

Inoperative
Intermittent reception

1) clean and solder the rivets that are used on the "balancing panel" located under the chassis. Rebalance the receiver, using a meter for best results.
2) fraying and breakage of leads to tickler coil in '27 detector plate circuit. Replace with high-grade flexible wire, bending coil as close to r-f coil as possible without causing oscillation
3) "opens" in grid resistances, or "corrosion" at terminals. Replace with 600ohm flexible pigtail type resistor, or with 400 to 500 -ohm units for greater sensitivity
(Cont'd over)

ARBORPHONE 45 (Cont'd)

3) r-f coil grid-return wires to chassis loosen frequently. Connect a common ground to each coil, and connect to ground post
4) bias condenser at right of '80 tube socket loosens where bolted in place
Hum ..-.1) interaction between '80 rectifier and '27 detector tubes. Place a piece of sheet copper or aluminum about 3 inches square behind the license notice plate in front of the rectifier

Increasing sensitivity ...1) replace the ' 27 tube with a ' 56 type tube and improving general operation

AIRVIN 1934 Auto Radio Sets
Excessive hum . ---1) pickup of vibrator interference by second i-f coil, as a result of the yellow wire from the volume control to power supply unit running near it. Move it away as far from i-f transformer as possible

ARVIN 1935 Auto Radio Sets
Poor quality, . .---1) loose plug where the local-distance

Low volume
Excessive .-... .-.--1) move the large yellow " A " lead running vibrator hum change is made. Repair plug, or replace with new unit
from the volume-control switch to the power supply compartment as far as possible from the second i-f coil. Shield. ing this wire also helps a great deal

ARVIN 1936 Auto Radio Sets

ARVIN A2 Antenna

Proper method of installation for motor noise elimination

1) the Arvin Type A 2 antenna should always be installed on the front door hinge on the same side of the car on which the radio chassis is installed
Drill a $7 / 32-\mathrm{in}$. hole to accommodate the lead-in wire. The hole should be drilled in the door sill close to the door hinge in such a manner that when the door is closed the hole through which the lead-in passes is covered by the front edge of the door
The "Phantom Filter" box should be securely grounded to the instrument panel or the metal part of the dash close to the point of entry of the antenna leading into the car
Shield the antenna lead wire from the "Phantom Filter" to the point where the lead passes out of the car. Ground one end of the shield to the "Phantom Filter." Ground the other end to the automobile chassis or body
If motor noise is present after the antenna is installed in this way, it is generally caused by the car hood being ungrounded and may be remedied by placin a $6-\mathrm{in}$. length (or longer if necessary) of braided shielding over the fabric strip attached to the cowl on which the rear edge of the hood rests. Solder both ends of the braid to the cowl and if the fabric hood strip is fastened in place by metal screws, remove these and drive them through the shielding to hold it in a permanent position. Clean the paint off the hood at the spot where it rests on this braided shiclding so that it will be securely grounded
Usually no suppressors-not even distributor type-are needed if the foregoing instructions are followed

ARVIN P28 to P45 Auto-Radio Remote Controls

Backlash

1) misaligmment between dial mechanism and dial drive member. The small flexible shaft linking the two assemblies must not make two bends. Thin washer: are used to line up these members into which the shaft is inserted
2) Play in worm-gear drive mechanism. This may be removed by tightening the small he: adjusting nut to the point where no backlash is perceptible
3) Kink in small dial drive flexible shaft. This small shaft must be straight and free from kinks. Otherwise backlash will be noticed on one end of the dial and not on the other
4) excessive or insufficient amount of shafting connecting dial to tuning member. When the small link flexible shaft is either too short or too long, the curve it assumes is beyond its elastic limit and the detrimental efiect is similar to that caused by a kinked shaft
graphite grease should be used on the worm-drive gears and light motor oil for all other bearings in the control mechanism

ARVIN 7 Auto Radio

Intermittent reception, 1) replace twin AVC condenser between

Oscillation
Motorboating

Oscillating while tuning

Ignition noise

Hum (after replacing '84 tube)

Howl
(when set is cold)
Howl

1) ungrounded cables. Ground all cables

ARVIN 10A the 6F7 tube socket and ontenna coil in the Arvin 17, $2 ;$ and 37 receivers (this is between the " 78 tube socket and the antenna coil)

1) condensel's No. 17-47.31 and No. 17-4712 making poor ground contact through metal collar to chassis. Replace with new types, No. 17-14020 and No. 1714007, which have separate ground leads
2) install a metal shield over the tube and ground
3) reverse the primary leads to the reflexed audio transformer
4) check the 12 -mfd. 25 -volt electrolytic condenser. Replace if faulty

ARVIN 16
Poor sensitivity

1) remove inter-channel noise suppression feature by connecting a resistor from the low end of the secondary of the detector i-f transformer, i.e., from the ground directly to the cathode of the detector tube

ARVIN 17 Auto-Radio
See also Case Histories listed for Arvin 7
Oscillation .-.1) poor "ground" contact through inetal (while tuning)

Ignition noise

1) check to see that all cables are properly "grounded"

ARVIN 18 Auto Radio

Distorted, mushy tone,
Weak reception
when jarred

1) faulty $0.05-\mathrm{mfd}$. 160 -volt condenser (mounted through chassis near the power pack) connected from the volume control to the resistor on the end of the second i-f transformer

ARVIN 19 Auto Radio

1) this interference is caused by chassis pickup. Remove the radio chassis front cover and sandpaper the rim of the cover to reinove all grease and paint
2) ground the shield of the '78 or 6A7G tube, and ground the shielding partitions in the tuning condenser. Use narrow copper braiding to ground these to the chassis

ARVIN 20.1 Auto Radio

Inoperative

1) inspect r-f chassis unit and if the tube heaters are not lit, repair the broken "A" choke in the audio unit
2) if the tubes in the r-f chassis light up but the vibrator is not heard, check this same choke for a break at the opposite end

IReceiver overloads on .-1) replace the ' 75 tube with an ' 85 tube. powerful local signals This will reduce the sensitivity somewhat, but will improve the tone

ARVIN 25 Auto Radio

Inoperative-1) short-circuited tone control (Note: this is a tapped condenser-type unit)
Intermittent reception ...1) replace dual $0.015-\mathrm{mfd}$. antenna coupling condenser

No reception, Vibrator sounds weak

1) "shorted" dual $0.02 \mathrm{ml}^{\prime} d$. condenser used as a buffer across power transf. sec.

ARVIN 27 Auto Radio
See also Case Histories listed for Arvin 7 and 17 receivers

Low volume,-1) change the value of the 200,000-ohm type
(with a type '6B7 second detector and amplifier tube)

Ințermittent reception Intermittent oscillation
'6B7 tube plate resistor to 300,000 -ohms

1) intermittent or high-resistance connection between the bodies of the metalcan condensers and their mounting flanges. Bond the condenser bodies to their flanges with solder

ARVIN 29 Auto Radio

Sane Case Histories as those listed for Arvin 19 Auto Radio

ARVIN 30A Auto Radio

Same Case Histories as those listed for Arvin 20A Auto Radio

ARVIN 3: Auto Radio

Poor tone1) replace both $0.01-\mathrm{mfd}$. audio-coupling condensers with mica-moulded condensers of the same value

ARVIN 37 Auto Radio

Same Case Histories as those listed for Arvin 7 Auto Radio

ARVIN 39 Auto Radio

Same Case Histories as those listed for Arvin 19 Auto Radio

ARVIN 41, 51 Auto Radios

Distortion at low volume- i) overbias on type '6F7 tube gride, Recontrol settings, and on strong signals move the 100 -ohm resistor from the cathode circuit of this tube, and crimnect the cathode to ground through an 800 . ohm resistor: The volume control will then affect the bias on the 6A7 tube only, rather than on both this tube and the 6F7. Fix-bias the latter independently

ARVIN 62 Auto Radio

Noisy,
(when tuning dial
is rotated)

ARVIN 65 Auto Radio
Ignition interference . .1) clean surface joints on front cover of receiver to remove all paint and grease
2) check the "acoustinator" plug to see that good grounding contact is obtained
3) check the right-hand breather screen for ground. "Spot" it with solder

1) solder the bottom arm on the planetary drive system to the bracket at the bottom front end of the condenser gang

AlRVIN 617 Auto Radio

Crackling,
Flickering pilot lights

1) dial frame is not properly grounded to receiver chassis Run a short, flexible lead between the two, and solder it securely in place

ATWATER KENT ALL-WAVE BATTERY RECEIVERS

Poor quality,
High battery drain, Oscillation

1) leaky 8 -mfd. 200 -volt electrolytic condenser connected to B-plus. Replace with new unit of higher voltage rating

ATWATER KENT H-1, H-2

Inoperative 1) open-circuited antenna choke
2) short-circuited i-f trimmer condensers. Replace nica dielectrics and re-align the i-f amplifier

ATWATER KENT "L" CHASSIS

Oscillation, \qquad 1) Set "dead"	dirty or corroded connections at rotor spring contacts on the condenser gang. Clean and increase tension of springs or solder flexible pigtails between the rotor and the condenser frame
Oscillation (sensitivity switch in "local" position)	coupling between wire leading to switch and r-f choke. Bend this wire away from the coil opening
Lack of voltage on the1) detector or first audio 2) tube	burnt-out filter resistors short-circuited condensers burnt-out plate circuit resistors burnt-out input transformer

ATVATER KENT L1

Distortion, -......... 1) bias resistor for the '45 output tubes
Hum

ATWATER KENT "L" CHASSIS

Oscillation, ------------------1$)$	dirty or corroded connections at rotor spring contacts on the condenser gang. Set dead
	Clean and increase tension of springs or solder flexible pigtails between the
lotor and the condenser frame	

ATWATER KENT 7-D
Squeals at low volume1) leaky condenser C18. Replace with an 8 -mfd., 400 -volt unit
2) open-circuited section in i-f transformer T5. Replace with new unit

ATWATER KENT 30 SERIES

ATWATER KENT 40

Weak reception

1) open-circuited detector plate resistor
2) open-circuited first a-f resistor
3) tuning belts loose
4) tuning condensers not synchronized
5) defective glass tube grid leak resistor. Replace it with a carbon pigtail type resistor unit
(Cont'd)

ATWATER KENT 40 (cont'd)

Inoperative	shorted r-f by-pass condenser
Choked reception, \qquad 1) Distorted and weak	short-circuited or leaky speaker output condenser open-circuited detector plate resistor
Intermittent reception_-_-_1) 2) 3)	loose nuts on power pack terminal strip poor contact of volume control slider arm antenna lead short-circuiting to shielding braid
Oscillation, \qquad 1) (during warming-up period)	shunt a $250,000-0 h m$ resistor across the secondary of the first a-f transformer
Insensitive, \qquad 1) (only powerful local stations are heard) (tubes and voltages test O.K.), Hum	poor connection between flat-type antenna coil and its lug. Resolder connection detector grid condenser short-circuiting to tuning condenser frame. Mount the condenser rigidly or wind tape around its free end receiver circuits out of alignment. Realign circuits
Set dead .-....................--1)	open-circuited $625-0 \mathrm{hm}$ r-f and a-f bias resistance section and 2,200 -ohm type '71A bias resistance section. Replace with new resistance units
Noisy reception -------.----1)	dirty volume control. Clean resistance strip or replace unit intermittently open-circuiting 6,500 -ohm detector plate resistor. Replace with new unit
Noisy reception, \qquad Crackling	loose connection in r-f plate circuit between bias resistor and ground defective "flat" type wire-wound cathode. Replace tube
Noisy reception while1) tuning	remove complete condenser gang assembly from chassis and wash in gasoline, cleaning all contact points
Low volume, \qquad Fading	type ' 26 tubes are old. Connect additional filament leads from power pack to first r-f socket filament lugs, so as to lower the voltage drop in these leads, thereby raising the filament voltage

ATWATER KENT 41

Inoperative _-____-_1)	burnt-out tube open-circuited r-f line choke
Weak reception $-\ldots-\cdots--\quad 1)$	tuning belts loose tuning condensers not synchronized remove 1st r-f plate resistor from circuit
Hum at resonance \qquad 1)	open-circuited r-f filament by-pass condenser
Same ATW	ATER KENT 42
Same case histories as tho	e listed for Atwater Kent 37, 38 and 40
AT	ATER KENT 43
See also case histo	ries listed for Atwater Kent 40
Inoperative, 1) \qquad Weak reception	open-circuited detector or first-audio resistor
$\begin{array}{r} \text { Intermittent reception...----1) } \\ \\ \text { 2) } \\ \text { 3) } \end{array}$	broken voice-coil lead at soldered joint loose nuts on power pack terminal strip antenna lead shorting to shielding braid
Weak reception ...-.-.......-1)	tuning belts loose tuning condensers not synchronized

ATWATER KENT 44, 45
Same case histories as those listed for Atwater Kent 40
ATWATER KENT 46, 47
Same case histories as those listed for Atwater Kent 40, 43
ATWATER KENT 51 D.C.
Same case histories as those listed for Atwater Kent 41

ATWATER KENT 52
Same case histories as those listed for Atwater Kent 40
ATWATER KENT 53
Same case histories as those listed for Atwater Kent 43
ATWATER KENT 55, 55-C
See also case histories listed for Atwater Kent 67
Choked reception,
Distorted and weak

Oscillation \qquad 1) open-circuited screen by-pass condenser
2) tuning condensers not synchronized

No signals
(no screen voltage)

1) open-circuited detector cathode bias resistor
2) open-circuited screen by-pass condenser

ATWATER KENT 55, 55C (cont'd)

Distorted
(high output grid bias)

Distorted (no output grid bias)
Weak or no signals \qquad
Low volume \qquad 1) open-circuited first r-f transformer primary 2) receiver circuits out of alignment

Poor high-frequency- 1) remove the "quality" condenser connectresponse

1) open-circuited bias resistor across speaker field
2) short-circuited bias resistor across speaker field
3) open first or second a-f bias resistor ed across the plates of the type ' 45 tubes, located in the audio transformer assembly. The condenser is located at the at the top of the can, which must be heated in order to remove it)
Intermittent reception,
Fading a few minutes after being switched on, resulting in a buzzing sound
Audio "howl"
4) open-circuited secondary in second r-f transformer. Test for an intermittently open-circuiting coil with a 60 -watt bulb near it to heat it
5) open-circuited 4 -mfd. plate filter condenser in the a-f circuit (C14). Replace with a new unit

ATWATER KENT 55-F, 55-FC
See also case histories listed for Atwater Kent 67

Choked reception,
Distortion
Oscillation \qquad 1) open-circuited screen by-pass condenser
2) tuning condensers not synchronized

Weak or no signals \qquad 1) open-circuited detector coupling resistor

ATWATER KENT 60, 60-C

See also case histories listed for Atwater Kent 67

Noisy reception,
Low volume

Intermittent reception,
(snapping the power switch off and on brings set back to normal)

1) drop in value of 40,000 -ohm and $65,000-$ ohm a-f grid resistors. Replace with new units
2) open-circuited speaker voice coil. Repair or resolder the open circuit
3) open-circuited first or second a-f tube bias resistors

ATWATER KENT 61-D.C.

See also case histories listed for Atwater Kient 67

Noisy reception \qquad 1) loosening of the winding on the filament resistor. Replace with a tighter wound resistor

ATWATER KENT 67

Fading, --------------------..-1 Intermittent reception

1) poorly soldered connections at leads of tubular condensers. Resolder all connections
2) poor contact between lugs and resistance wire in wire-wound resistors
3) poorly soldered connections to metallized resistors having solder ends. In all of the above cases test the connections with an ohmmeter, moving them mechanically during the test, and keeping the test prods on the terminals and not on the resistance element.

ATWATER KENT 70, 72, 74, 75, 76
Dial readings off calibra-1) three control-grid leads in incorrect position tions. Rearrange them to run parallel

ATWATER KENT 80, 82
Weak and distorted, ...-.-1) open-circuited output tube grid choke
Inoperative
No control of volume .-.-1) high-resistance connection between oscillator tube cathode prong and socket. Clean and tighten the socket prongs
2) "gassy" or high emission AVC tube (applies to models 85,86 only)
Poor sensitivity

1) defective type ' 24 AVC tube. Test by removing tube from socket and noting difference in volume. If the volume increases the tube is defective and requires replacement
Hum,
2) replace grid resistor in type ' 47 tube input circuit
Distortion
3) replace the detector plate coupling condenser

Intermittent reception .-.-1) high-resistance short-circuits between socket holes. Rub pencil eraser on top of tube sockets to remove shorts

ATWATER KENT 84 D.C.
Low volume, \qquad 1) open-circuited connection at lug of choke (voltages test O.K.) connected between the i-f blocking condenser and the volume control

ATWATER KENT 84 (EARLY MODEL)

Set dead -.-----------------1)	open-circuited type '24A first detector plate choke due to corrosion at the terminals. Resolder leads at terminals internally open-circuited plate coupling and i-f selecting choke in the grid lead of the type 24 A i-f tube (value 66ohms). Replace with a new unit increase in value of $40,000-\mathrm{hm}$ bias resistor in the oscillator circuit. Replace with new unit
Noisy reception ..---.---...-1)	corroded tuning condenser contacts
Noisy reception, 1) \qquad Intermittent reception, Fading	intermittently open-circuiting primary winding in one of the i-f transformers Replace with new unit and realign the receiver circuits
ATW	ATER KENT 84
Weak reception on \qquad strong local stations, (voltages and currents test O.K.)	excess wax from field coil working into armature, freezing driving unit or voice coil of speaker
Poor volume, \qquad Intermittent volume	open-circuit in i-f stopping choke, due to broken leads at lugs under the protective wax
Inoperative .---.... .-. .-.-.-1)	defective oscillator coil. Replace with new oscillator coil, realigning oscillator at 1500 kc , by means of the trimmer on top of the oscillator tuning condenser Then adjust the oscillator for $800-\mathrm{ke}$ by means of dise at bottom of coil

ATWATER KENT 85

See also case histories listed for Atwater Kent 80
Poor control of volume ..1) defective type '24 AVC tube (even though it may test O.K.) Replace by substitution with new tube

Intermittent reception, . 1) poorly soldered connections. Check by wiggling every connection and connecting terminal, as well as wires through shields, etc. with the set in operation
2) peeling condenser plates, causing intermittent short-circuits between plates. Burn with high voltage-all terminals disconnected

ATWATER KENT 86

See first case history listed for Atwater Kent 80

ATWATER KENT 89

See also case history listed for Atwater Kent 80

Inoperative, \qquad
(high positive grid voltage on r-f, first detector and i-f tubes),
Falling of neon glow
.1) change in value of 425 -ohm bleeder resistor. Replace with 1-watt unit
Noisy reception .---------.-1) noisy type '35 variable-mu tube (even though it may test O.K.) Replace with new tube

ATWATER KENT 92, 94

See also case history listed for Atwater Kent 80
Set dead, but becomes ---1) short-circuiting trimmer condensers. operative after a few Clean the trimmers with alcohol and reminutes, building up to normal reception in about half an hour place the mica strips inside them

ATWATER KENT 96

Intermittent reception .-.-1) heater current through the type '35 i-f tubes and type ' 24 AVC tube too high, causing the AVC tube to draw grid current when heating and resulting in an erratic action of the AVC resistor network. Insert a heavy wire-wound resistor in the heater circuit in order to cut down the heater voltage slightly. This will prevent grid current from flowing in the AVC tube grid circuit

1) grid resistor in i-f circuit short-circuiting to plate winding of input i-f transformer, causing plate voltage to be supplied to grid of i-f tube. Isolate and insulate resistor from plate winding

ATWATER KENT 99

Set dead,
(made crackling noise before it had ceased operating)
(about 400 volts present between chassis and type ' 35 first detector tube control grid)
Erratic operation of neon glow tube

1) carbon resistor shunted across the secondary winding of the first i-f transformer short-circuiting to primary winding. Wind tape around resistor and move it away from possible contact with the primary winding
2) grid resistor in i-f circuit short-circuiting to plate winding of input i-f transformer, causing plate voltage to be applied to grid of i-f tube. Isolate and insulate grid resistor from plate winding

ATWATER KENT 99 (cont'd)

Inoperative (Cont'd) .-.-- 2) | resistor in i-f transformer short-circuit- |
| :--- |
| ing to side of can. Move it away from |
| can and insulate it |

ATWATER KENT 145

Audio squeal, ------------
(condition is aggravated by touching the grid cap of the type '2A6 tube)

1) remove and discard the metal clamp around the type '2A6 tube grid lead at the point where it is grounded. Solder the wire twisted around the grid lead to point where clamp was grounded

ATWATER KENT 155

Hum,
Distortion
2) change in value of volume control from normal value of $1 / 2$-megohm. Replace with new unit
3) adjust trimmer between tuning condensers and speaker at the top front of chassis to loudest point

Low volume,

1) replace the type ' 85 tube with a type

Receiver gets out of alignment,
Screen-grid resistor changes in value ' 75 tube, making the following changes in the circuit: connect a 0.25 -megohm resistor in series with the 0.1 -megohm resistor and B-plus. By-pass this resistor to ground with a $0.1-\mathrm{mfd}$., 200volt condenser. Also connect a 4 -mfd., 30 -volt condenser across the 300 -ohm resistor connected between the chassis and the a-c-d-c switch

ATWATER KENT 165

Oscillation, \qquad .1) Hum, Distortion	decrease in capacity of second filter condenser
Oscillation, \qquad 1) Weak reception, Cross-talk	open-circuited first detector-oscillator bias resistor
Slipping tuning drive ...-1)	stall new bearing race
Vibrating noise at loud ..1) volume	play in variable tuning condensers

ATWATER KENT 188
"Rattling" at the least ..1) $\begin{aligned} & \text { substitute other wires for the control- } \\ & \text { vibration, } \\ & \text { grid wires to the r-f tubes. The mineral } \\ & \text { content sometimes present in the rubber } \\ & \text { insulation may make it conductive, caus- } \\ & \text { ing interaction. This defect does not } \\ & \text { usually show up under ordinary tests }\end{aligned}$

ATWATER KENT 206

ATWATER KENT 217-D

Same case histories as those listed for Atwater Kent 7-D
ATW ATER KENT 246
Audio howl as volume ..1) defective volume control. Replace with control is advanced new unit with tone control in "low" position
Intermittent reception ..1) poor connection at filter choke from plate of type '58 first detector tube, caused by loosening and corrosion of connecting brads

ATWATER KENT 260
Set requires about $2, \ldots 1$) it is necessary to cool the chassis (posor 3 hours after the switch is turned on, before it begins to operate. This is only the case in cold weather when the set has not been used for some time sibly by placing it in a refrigerator), then test the individual components when cold. Since the a-f transformer is sealed in a can with pitch, the pitch will contract when cooled, pressing against the windings and causing a possible short-circuit between two poorly insulated points. When the pitch is heated, it will expand, releasing the pressure and the short-circuit will no longer appear. This condition can happen with any impregnated unit

ATWATER KENT 277

Weak reception, $\ldots-.-. .-1) ~ o p e n-c i r c u i t e d ~ f i r s t ~ d e t e c t o r ~ c a t h o d e ~ b i a s ~$
Distortion,
resistor

Oscillation	2) leaky by-pass condenser
Cross talk	

ATWATER KENT 310

See also case history listed for Atwater Kent 510
Inoperative,
(no r-f or i-f plate voltage)
(low output plate voltages)

1) small AVC and second-detector coupling condensers shorting to primary of second i-f transformer

ATWATER KENT 310 (cont'd)

Inoperative, ___ 1) open-circuited r-f choke in diode circuit (all voltages test O.K.)
Shadowgraph operates
Inoperative,

(no plate voltages)

1) filter choke shorting to core or shield
2) insulate choke from chassis and mark
Thin line on shadowgraph "hot"

Hum at resonance

1) oscillator tube cath.-htr. short-circuit

Distortion,

1) open-circuited section in output trans-

Screen element of type former primary
'2A5 tube red hot
"Sizzling" when receiver--.-1) temporary breakdown of electrolytic is switched on condensers
2) change type ' 80 rectifier to direct-heater type tube
Intermittent reception__-...1) splashed particles of solder on contacts
Intermittent reception, --.-1) open-circuiting oscillator series conInoperative denser

ATWATER KENT 318

Intermittent reception of.-.1) poorly soldered connections to top of low-frequency broadcast oscillator coil lug
stations
Weak reception, _____1) cathode prong of type '55 tube socket
Distortion,
Shadowgraph indication narrows

First and third short- \qquad 1) first detector grid coil open-circuited wave bands inoperative
Second short-wave band 1) first detector grid coil open-circuited inoperative,
"Hiss" at low-frequency end of second shortwave band

Fading, \qquad 1) replace volume control. Push or pull upon shaft to ascertain condition

ATWATER KENT 345
Intermittent reception, _-1) defective type '2A7 detector-oscillator Cuts off completely tube. Replace with new tube

ATWATER KENT 376

Same case histories as those listed for Atwater Kent 206
ATWATER KENT 425
Same case histories as those listed for Atwater Kent 165

ATW ATER KENT 427-D
Same case histories as those listed for Atwater Kent 7-D
ATWATER KENT 447
Same case histories as those listed for Atwater Kent 318
ATWATER KENT 465Q
See also case histories listed for Atwater Kent 665Q

Distortion, \qquad 1) open-circuited $8-\mathrm{mfd}$. condenser con-
(sounds like defective speaker), "Howling" nected between B-plus at speaker cord and ground. Replace with new unit

ATWATER KENT 510

Audio oscillation .-...----- 1) mismatched type '2A5 tubes in the pushpull audio stage. Replace with matched tubes

ATWATER KENT 557
Same case histories as those listed for Atwater Kent 318

ATWATER KENT 612

1) short-circuited buffer condensers
2) inoperative type ' 83 rectifier tube (not burnt-out)

Noisy, intermittent reception

1) loose connection to oscillator series condenser
2) loose element in type ' 57 tube

Noisy reception

1) open-circuited or leaky buffer condensers

ATWATER KENT 627

ATWATER KENT 665Q

Fading about 15 min utes after set is switched on

Poor tone \qquad 1) open-circuited connection on speaker coil. The coil is replacable on early models, but on later models, the entire unit requires replacement
(Cont'd)

ATWATER KENT 465 (cont'd)

Noisy reception at .-----1) defective black electrolytic condenser. low volume, (noise somewhat like a fog horn) Replace with new unit

ATWATER KENT 667

Same case histories as those listed for Atwater Kent 227

ATWATER KENT 667-D

Same case histories as those listed for Atwater Kent 7-D
ATWATER KENT 708, 711
Inoperative, - .-- -----.-.-. 1) defective tubes
Noisy reception on short-wave band
2) defective silencing adjustment resistor
3) defective wave-change switch. Resolder all connections at this switch and realign the receiver circuits

ATWATER KENT 812

See also case histories listed for Atwater Kent 612

Poor tone,
Blocks at maximum volume setting

Noisy reception, Intermittent reception

Erratic operation of silent tuning control

Erratic "tone-beam" operation

No "tone-beam" action .-1) open-circuited $40,000-\mathrm{ohm}$ tone beam bleeder resistor

AUDIOLA JR. (WESTMINSTER)

No plate voltage 1) short-circuiting of 0.01-mfd. condenser
connected between the type '45 tube
plate and ground

BALKEIT A3, A5, A7
Soisy reception ___ 1) inoperative audio transformer
2) inoperative phono-pickup jack
3) inoperative electrolytic condenser
ading ...___1) worn carbon strip in volume control

BALKEIT 41A

Oscillation ---------......-.-.---1) high-resistance or open-circuiting contacts of loose or improperly fitting tube shields. Solder flexible pigtails between all tube shields and the chassis
2) interaction between the wires from the the diode plates and control grid of the type 75 tube. Separate the leads as far apart as possible

BELMONT 41, 42A

Inoperative

1) short-circuited primary winding in the output transformer. Replace with a new unit

BELMONT 51-C

Set dead, \qquad (no plate voltage on the type ' 57 detector tube)
Noise at high volume, (banging the set will bring this noise out at any level)

1) defective 250,000 -ohm plate supply resistor. Replace with new unit

BELMONT 420

BELMONT-GAMBLE 777 Series B-C, 778 Series A

Intermittent hum, (disappears when line switch is snapped off and on)

1) intermittent open-circuiting of the common lead of the dual condenser unit $0.1-0.25-\mathrm{mfd}$., 220 -volt) comprising the bias voltage hum filter and screen bypass condensers. Replace the entire unit with two separate units of same capacity and voltage

BEST 4 TUBE MIDGET

Inoperative, (only voltage present across speaker field)
Difficulty in tuning,
Set drifts off freqeuncy setting

1) defective type ' 25 Z 5 tube, caused by an open-circuit inside one of the cathode leads. Replace with new tube
2) loose tension of the springs on the tuning condenser rotors. Solder pigtails across rotors and springs

B.O.P. "AIR MATE"

Distortion,

1) decrease of value of condensers in elec-

Poor tone at high volume trolytic condenser block. Replace the complete section if any unit is defective (never replace single units)

B.O.P. CHEVROLET

Pronounced vibrator-1) open-circuited filter output condenser. buzz

Connect a 4 -mfd. condenser from the B-plus terminal of the type ' 75 tube to ground

BOSCH JR.
Same case histories as those listed for Bosch 16, 17, 18

BOSCH CB 49

Same case histories as those listed for Bosch 16, 17, 18

BOSCH R6, R7
Poor selectivity

1) receiver circuits out of alignment

BOSCH 5-C
Inoperative

1) open-circuited field coil

BOSCH 16, 17, 18
Oscillation, --...----.......------1

1) high-resistance variometer wiping conNoisy tuning tact. Remove the inner shaft of the variometer and carefully clean the wiper blade and brass contact surface. In assembling the unit, bend the blade so that it will make better contact
2) broken pigtail at condenser next to the variometer. Solder a new one about $11 / 2$-inches longer
3) poor tension of contact springs or rotor of tuning condenser gang. Clean contacts and provide better tension or solder pigtails between the rotor and condenser frame

Weak reception at \qquad 1) variometer rotor not working together
high or low frequencies,
Oscillation

Hum

1) defective tubes
2) open-circuited section in center-tapped resistor
3) unmatched audio transformer secondary windings
4) connect a $2-\mathrm{mfd}$. filter condenser from one side of the speaker field terminals to chassis, determining exactly which is the best side by trial connections
5) short-circuited choke tuning condenser

Weak reception,

1) open-circuited $500-\mathrm{hm}$ carbon resistor Poor sensitivity (high plate current in 2nd or 3rd r-f tube) in the control-grid circuit of the second or third r-f stage
2) volume control shaft short-circuiting to metal panel

Noisy reception

1) leaky 0.001 -mfd. detector plate by-pass condenser

BOSCH 20

Poor control of volume 1) remove the antenna lead from the volume control and use the control only on the cathode of the i-f tube. Add a $1,000-\mathrm{ohm}$ minimum bias resistor to the $200-\mathrm{ohm}$ volume control unit in the set at present

BOSCH 28, 29
Intermittent reception, . 1) intermittent short-circuiting to chassis Fading of black lead from the variometer stator. The sharp-edged hole through which the lead passes cuts through its insulation and the vibration causes it to touch the chassis intermittently. Replace with a heavier insulated lead, providing also adequate insulation at the hole
2) loose lug on front of first condenser stator section

Weak reception,

1) open-circuited $50,000-$ ohm detector plate supply resistor

Noisy reception

1) noisy 50,000 -ohm detector plate supply resistor
2) noisy primary windings of a-f transformers
3) noisy volume control. Replace with new unit

Motor-boating,___ 1) connect additional 1-mfd. by-pass con-

Oscillation

Hum at resonance

1) open-circuited supply line by-pass condenser. Out of neutralization

BOSCH 31, 32

Fading,
Intermittent reception

1) intermittently open-circuiting screen voltage-divider resistor
2) intermittently open-circuiting second detector screen resistor

Hum

1) open-circuited filter condenser
2) short-circuited field coil "by-pass" or "tuning" condenser

Weak reception,---...-.-1) short-circuited field coil tuning conHum denser

Muffled tone

1) open-circuited second detector screen resistor
Distorted reproduction
Inoperative,

2) primary winding of 2nd i-f transformer (no plate voltages)

Poor tone at low volume_-1) intermittently open-circuiting 2-megohm screen-grid resistor. Replace with new unit

BOSCH 38
Same case histories as those listed for Bosch 28, 29

BOSCH 46
Oscillation,
Weak reception

1) open-circuited type '226 tube bias-resistor condenser
Inoperative, \qquad Intermittent reception
2) short-circuited or intermittently shortcircuiting compensating condenser

BOSCH 48, 49
Same case histories as those listed for Bosch 16, 17, 18

BOSCH 54 D.C.

Noisy tuning,___1) see first case history listed for Bosch	
Oscillation	$16,17,18$
Weak reception,__-_1) see second case history listed for Bosch	
Oscillation	$16,17,18$

Distorted reproduction,

1) weak or exhausted "C" battery

Low or no output grid bias
Weak reception,

1) open-circuited grid suppressor resistor

High plate current on 2nd or 3rd r-f tube

Weak reception, \qquad 1) open-circuited detector cathode by-pass

Distorted, condenser
Hum at resonance

BOSCH 58

Lack of sensitivity-. 1

1) adjust antenna aligning condenser, located above antenna and ground posts, at $1,000-\mathrm{ke}$ for maximum volume

Set dead,

1) defective 2 -megohm coupling resistor in (no grid bias on the first a-f tube)

Inoperative, (set operates when control-grid lead of first r-f tube is touched)

Distortion, \qquad
Weak reception, Station "hiss"
Weak in "local" position, Station "hiss" the grid circuit of the first a-f tube. Replace with a new unit

1) test variable condenser across antenna coupling stage for short-circuited plates. The cap screws holding the rotor plates usually work off center and touch stator plates
2) open-circuited detector screen resistor
3) open-circuited de-coupling resistor
4) open-circuited 500 -ohm resistor in localdistance switch circuit

BOSCH 60
See also case histories listed for Bosch 61
Lack of sensitivity .---.-.-1) adjust antenna aligning condenser (located above antenna and ground posts) at $1,000-\mathrm{kc}$ for maximum volume
Hum

1) open-circuited 1 -mfd. condensers connected between each side of the line and chassis
"Local" position of
2) open-circuited carbon resistor between local-distance switch inoperative

Inoperative \qquad 1) short-circuited $0.25-\mathrm{mfd}$. r-f plate bypass condenser located under the tube sockets behind the r-f tuning unit. Replace

BOSCH 60, 61
Two-spot tuning, \qquad 1) open-circuited 1 -megohm detector screen

Weak reception,
Distorted and choked reception,
Poor sensitivity, Erratic tuning meter operation

Station "hiss,"_-____-_1) open-circuited r-f de-coupling resistor
Weak reception 2) open-circuited r-f secondary return bypass condenser
3) broken lead to 500 -ohm resistor in localdistance switch circuit
4) open-circuited $500-\mathrm{hm}$ resistor in local distance switch circuit

BOSCH 62 (1933)

Weak reception _-........-.-1) leaky or partially short-circuited AVC
plate by-pass condenser
Inoperative _-_1) inoperative AVC tube

BOSCH 96A

Low volume,
Distortion

1) loose driving rod on the magnetic speaker cone. Solder the rod to the cone

BOSCH 126, 146
Same case histories as those listed for Bosch 46

BOSCH 150

Short-wave reception	1) i-f amplifier out of alignment
at center of dial	2) oscillator not tracking properly. Check
setting	3) loose coil and tube shields

BOSCH 166, 167
Same case histories as those listed for Bosch 46

BOSCH 200, 201
Low volume,

1) leaky dual 4-8-mfd. electrolytic filter Noisy reception condenser in power pack. Replace with new unit
2) defective $0.01-\mathrm{mfd}$. line buffer condenser. Replace with new unit

BOSCH 242, 243
Low volume,

1) remove $0.05-\mathrm{mfd}$. audio coupling conPoor tone denser between detector and first audio tubes
2) remove the 1 -megohm resistor in the plate circuit of the type '56 detector tube
3) connect together the two open leads which are left as a result of the above

BOSCH 350
Intermittent reception, _-1) loose rivets holding soldering lugs of Hum grounded sides of filaments at tube (dial-light bulb flickers)
(heater voltages low) sockets. Make sure all these rivets are tight and are making good contact with the chassis, or solder heavy wires from the ground lugs to chassis

BOSCH 360
Intermittent oscillation ..1) corroded joints between tube shields and shield bases. Drill a hole between shield and base and put a "Parker-Talon" screw through it
Steady or intermittent ..1) poorly grounded tube shields, or coroscillation on weak roded contacts between the shields and stations chassis. Bond shields to chassis with separate pigtails or aluminum solder

Dead

1) condensers C - 39 and C - 40 short-circuiting or a section of resistor $R-3$ opencircuiting

BOSCH 402
"Howls"

1) defective type '6F7 tube (even though
(only when set heats up) it may test O.K.). Replace with new tube

Inoperative

BRUNSWICK PANATROPES

Low volume when playing -1) replace damping rubbers on pick-up phonograph records, (chassis O.K.) head with new "live" rubbers

BRUNSWICK PR-17-8
Hum, --------------------------1) volume control arm not making contact
Weak reception,
No bias on first r-f tube
Oscillation

1) open-circuited type ' 26 filament by-pass condenser

BRUNSWICK S-14, S-21, S-31, S-81, S-82

Noisy reception,__-_-_1) poor contacts on "local-distance" switch
No control of volume_-.--1) volume control shaft short-circuited to
Slipping tuning dial1) increase tension of cable drive spring by
drive
noving screw to which spring is attached
forward in slotted hole
2) apply drop of oil to tuning gang shaft bearing and pulleys
Hum,

1) open-circuited section of filter condenser block

Distortion,

1) leads from audio transformer shortcircuited to ground
No reception, low plate voltages
2) short-circuited plate by-pass condenser

Insufficient sensitivity__-_

1) wind a 3 to 5 turn coil at grid end of each r-f secondary coil. Connect one end to plate of preceding tube
Intermittent phono
operation
2) loose terminal of tubular condenser connected to terminal of transfer switch (for Brunswick S-31 only)
Intermittent reception, .-1) high-resistance connection to control Fading grid of second r-f tube

BRUNSWICK 3-NC-8
Distortion,
Weak reception

Distortion at low volume 1) broken spider on speaker cone
Weak reception1) carbonized 20,000 -ohm carbon bleeder re-
sistor-change to wire-wound unit
Insufficient sensitivity..-.-. 1) shunt 40 -ohm section of flat wiredil wound voltage divider near volume control with a 500 -ohm unit
$\begin{array}{ll}\text { Insensitive at high or-1.-1) oscillator trimmers out of adjustment } \\ \text { low frequencies } & \text { 2) } \begin{array}{l}\text { r-f compensator condenser out of ad- } \\ \text { justment }\end{array}\end{array}$
Inoperative above 600 kc ,

1) snapped tabs on oscillator series conDial settings incorrect
Unstable operation,
2) open-circuited oscillator grid leak

Oscillation, "Birdies"
Hum \qquad 1) partially short-circuited speaker rectifier stacks
(Cont'd)

BRUNSWICK 3-NC-8 (cont'd)

2) remove speaker frame ground connection

House fuse blows_-___-_1) short-circuited sections of speaker stacks

BRUNSWICK 3-NW-8

Tuning meter fluctuates....1) shunt a $0.0001-\mathrm{mfd}$. condenser across meter
Distortion, ------------------1) open-circuited a-f transformer primary Weak reception

Weak reception, Inoperative
\qquad 1) open-circuited 1 -megohm AVC grid re-

Intermittent reception

1) snapped tabs on oscillator series condenser
Inoperative below \qquad 1) snapped tabs on oscillator series con600 kc ,
Dial settings incorrect
Insensitive at either \qquad
high or low frequencies
2) oscillator trimmers out of adjustment
3) r-f compensator condenser out of adjustment

BRUNSWICK 5.KR, 5-KRO, 5-KR-6
Weak reception

1) volume control arm not making contact No bias on first r-f tube

Oscillation \qquad 1) open-circuited type '26 tube filament bypass condenser
Oscillation over entire dial

Distortion, (high detector plate voltage)
Oscillation on high \qquad frequencies
Poor selectivity, \qquad

1) adjust r-f compensating condenser
2) adjust r-f compensating condenser
3) open-circuited by-pass condenser across split primary winding of second and third r-f stages
4) open-circuited detector-plate limiting resistor

BRUNSWICK 5-NC-8

Same case histories as those listed for Brunswick 3-NC-8

BRUNSWICK 5-NO

Distortion,
Weak reception
$\left.\begin{array}{ll}\text { Distortion at low volume_1) } & \text { broken spider on speaker cone } \\ \text { Weak reception. } & \text { 1) }\end{array} \begin{array}{l}\text { carbonized } 20,000 \text {-ohm carbon bleeder re- } \\ \text { sistor-change to wire-wound unit }\end{array}\right]$

Insensitive at high or_-1) low frequencies	2)oscillator trimmers out of adjustment r-f compensator condenser out of adjust- ment

Inoperative above $600 \mathrm{kc}, 1)$ snapped tabs on oscillator series con-

Dial settings incorrect denser

Unstable operation, \qquad 1) open-circuited oscillator grid leak

Oscillation, "Birdies"

1) open-circuited a-f transformer primary Weak reception

Distortion at low volume_1) broken spider on speaker cone
Weak reception

BRUNSWICK 10
See also case histories listed for TCA Chassis

1) screen drop resistor carbonized (4,100 ohms)
2) det. plate resistor (0.5 meg) carbonized
3) open-circuited speaker voice coil

BRUNSWICK 11, 12
Intermittent reception_1) loose internal connection of oscillator
2) broken porcelain turret condenser brackets
3) short-circuiting first detector coupling condenser (fastened to stator of first detector tuning condenser)
4) lugs on r-f coil forms shorting to chassis within shields
5) coil leads snapped at lugs-making contact intermittently
Inoperative,
(positive control-grid bias on 1st detector tube)

Distortion, Hum,
Oscillation

1) capacity of $6-\mathrm{mfd}$. electrolytic filter condenser below normal
2) short-circuited coupling condenser
3) carbonized 5,000 -ohm resistors in volt-age-divider circuit
4) screen voltage drop resistor carbonized (Cont'd)

BRUNSWICK 11, 12 (cont'd)
Inoperative over part of....1) broken porcelain turret condenser bracktuning range ets
Slipping condenser drive_1) raise volume-tone control assembly by insertion of small washers

Low volume, Inoperative

1) charring and change in value of the $14,000-\mathrm{ohm}$, 2-watt resistor connected in series with a $1 / 3$-watt, 5,000 -ohm resistor (in the case of the type ' 24 oscillator) and another $1 / 3$-watt, 5,000 -ohm resistor as a bleeder to ground. Very often these resistors burn out entirely. Replace with 2-watt, $1 / 2$-watt and 1-watt units respectively
No control of volume .-1) grid returns in r-f, mixer, and i-f stages short-circuiting to ground

Poor high-frequency response

1) remove the small $0.001-\mathrm{mfd}$. condenser connected to the second detector plate. Replace with a $0.00025-\mathrm{mfd}$. unit

BRUNSWICK 14

No control of volume_-_-_1) leakage between first electrolytic filter condenser insulation and chassis
2) leaky $0.02-\mathrm{mfd}$. r-f or first detector tube secondary return by-pass condenser
3) leaky $0.1-\mathrm{mfd}$. i-f secondary return bypass condenser
4) speaker leads shorting to frame of speaker or terminal cover
5) carbonized screen voltage dropping resistor
6) replace AVC tube

Intermittent reception, --1) loose internal connection to $0.5-\mathrm{mfd}$. Fading oscillator plate by-pass condenser
2) lugs of coil forms shorting to chassis
3) broken turret condenser porcelain brackets
4) snapped coil windings at lugs of coils
5) short-circuiting first detector coupling condenser
6) defective or loosely connected $0.1-\mathrm{mfd}$. screen grid by-pass condenser in the detector circuit. Check its condition, replacing if defective and solder its riveted connections
7) intermittently open-circuiting 0.001mfd. condenser connected between the grid and plate of the type '24A detector: tube. Replace with new unit

Fading,

1) intermittently open-circuiting a-f trans-

Intermittent reception, (insertion of analyzer plug in socket or pulling out type '45 push-pull tubes, restores set to normal operation)
(tubes and voltages check O.K.) former secondary. Replace with new transformer

Noisy tuning	1)burrs on plates of tuning condensers (burn off with high voltage-all leads disconnected)
Inoperative, (high positive control- grid bias voltage on first detector tube)1)short-circuited first detector coupling condenser mounted upon stator of first detector tuning condenser.	

Inoperative

1) lugs on coil form shorting to chassis or shield
2) broken turret condenser porcelain brackets
(Cont'd)

BRUNSWICK 14 (cont'd)

Distortion at any volume_-.-1) screen drop resistor carbonized to lower
level
Speaker field overheats_-.-2) two 5,000 -ohm carbon resistors in plate voltage divider circuit carbonized to lower value
3) third electrolytic condenser below normal capacity
Full volume for minute_-_1) replace AVC tube with "quick-heater" or so after receiver is switched on type tube
2) leaky insulation between first electrolytic condenser and chassis

Slipping tuning dial .-... 1) raise volume-tone control assembly by drive inserting small washers
2) increase tension of cable drive spring by moving screw, to which spring is attached, forward in slotted hole
3) apply drop of oil to tuning gang shaft bearing and pulleys

Insensitive on high____1) change oscillator tube frequencies,
Inoperative below 650 kc
Weak reception \qquad 1) leaky condensers across the two grid (voltages and resistances check O.K.) terminals of the type ' 45 power tubes (this does not show up in a point-to- point test). Replace with new 0.00025mfd. units

Noisy reception

1) poor contacts on "local-distance" switch

Hum at resonance,

1) r-f amplifier out of neutralization Oscillation
Inoperative-distorted reception
No signals, \qquad (low plate voltages)
2) leads from audio transformer shorted to chassis
3) short-circuited $1-\mathrm{mfd}$. condenser across the output of the filter circuit. Replace with new unit

Hum

1) defective filter-condensers. Test by bridging each unit with a 1 - or 2 -mfd. condenser, replacing all defective units

Fading, \qquad 1) short-circuiting of small black by-pass condensers located next to each 5-prong socket. Test each by substituting with a $0.25-\mathrm{mfd}$. condenser

BRUNSWICK 15

Distortion ---------------------1)	short-circuited detector screen by-pass condenser. Check it with a neon lamp or condenser tester
Rushing noise (like \qquad escaping steam). Strongest at lower end of dial	remove condenser across local-distance switch. No replacement is necessary
Noisy reception, \qquad 1) Intermittent reception	defective $0.02-\mathrm{mfd}$. coupling condenser in a-f circuit. Replace with new unit inspect set thoroughly mechanically
Weak reception, \qquad 1) Choked and distorted	short-circuited speaker output condenser
Station "hiss" \qquad (switch in "local" position)	remove $0.0002-\mathrm{mfd}$. condenser connected from one side of the "local-distance" switch to chassis
Intermittent reception_--_-1) 2)	poorly-riveted contacts on audio coupling condenser open-circuiting screen or cathode by-pass condensers in r-f stages
Noisy volume control, -.--1) Intermittent reception	poor or corroded connection of copper strip to plunger of volume control
Weak reception ------------1)	poor connection to 4 -megohm resistor in detector secondary return circuit
Noisy tuning -.-_ 1)	rroded condenser gang rotor contacts
Inoperative receiver, \qquad 1) (high positive con-trol-grid voltages on r-f tubes)	corroded condenser gang rotor contacts. Bond rotors to chassis with flexible wire pigtails
No reception, \qquad Weak reception on 2) lower end of dial	shorted screen-grid by-pass condensers readjust trimmers on tuning condenser

BRUNSWICK 16
See also case histories listed for Brunswick 11, 12
Noisy volume control__1) dirty contacts inside of volume control. Take apart and clean

Weak reception

1) detector plate resistor carbonized

BRUNSWICK 17 SERIES

See also case histories listed for Brunswick 11, 12
Inoperative,
(tubes light up) $\quad \begin{gathered}\text { high----------1) } \\ \text { frame }\end{gathered}$

BRUNSWICK 17 SERIES (cont'd)

Inoperative (Cont'd) .--.-.2) grounding of 14,000-ohm screen-grid resistor located in the right half of the chassis between the two coil shields
3) change in value of the two 5,000 -ohm resistors in the oscillator stage. Replace with new units
4) short-circuited $0.5-\mathrm{mfd}$. condenser in the plate circuit of the oscillator stage

Intermittent reception, (set becomes operative when someone walks across the floor)

Weak reception \qquad 1) open-circuited r-f and i-f control-grid return circuits
2) open-circuited by-pass condensers

Distortion,

1) intermittent cathode-to-heater shortWeak reception

Fading, \qquad (several seconds after intensity of signal builds up to high level; resuming normal operation after a few seconds)

No control of volume, Distortion circuit in the type ' 51 second detector tube. Replace with new tube

1) slow-heating tube in the AVC stage, while the rest of the tubes are "quick heaters." Replace with quick heating tube
.-.-1) leakage between the can of the first electrolytic condenser and the chassis due to the poor fish-paper insulation
2) decrease in value of the screen-grid voltage dropping resistor, located between the two i-f transformers. This results in a consequent decrease in value of the two $5,000-\mathrm{ohm}, 0.5$-watt resistors which are used to obtain the oscillator plate voltage. Replace the former resistor with a 15,000 -ohm wire-wound unit and the smaller one also with the same type unit
3) cathode-heater leakage in the r-f and i-f tubes. Replace with new tubes
4) speaker terminal shield short-circuiting to one or more terminals

BRUNSWICK 18

Same case histories as those listed for Brunswick 11, 12 and 16

BRUNSWICK 22

See also case histories listed for Brunswick 15

Fading \qquad 1) connecting lug of input winding on one of the r-f coils short-circuiting to shield can intermittently. Insulate the lugs with tape to eliminate recurrence of this trouble
2) corroded joints at the local-distance switch. Replace with new unit
3) defective "Bradley" unit tone control. Replace with a new unit

BRUNSWICK 21
Same case histories as those listed for Brunswick 14
BRUNSWICK 24
Same case histories as those listed for Brunswick 17

BRUNSWICK 31
Same case histories as those listed for Brunswick 14

BRUNSWICK 32
Same case histories as those listed for Brunswick 15
BRUNSWICK 33
See also case histories listed for Brunswick 11, 12
Radio reception inter--.-_1) lead to "change-over switch" snapped ference during playing of records

BRUNSWICK 42

See also case histories listed for Brunswick 15
Mechanism stops after__1) adjust cycle switch few revolutions

Mechanism slows down__1) clean motor brushes and commutator or stops during operation cycle
Records reject
continuously

Strong vibration,____-_1) solenoid improperly centered
Mechanical hum
2) hardening of rubber damper in solenoid

Record rejecting \qquad 1) burnt-out or open-circuited solenoid mechanism inoperative
2) too much tension on stop lever spring (motor operates)

Records are not rejected_-..1) contacts on tone-arm switch fail to open,

BRUNSWICK 42 (cont'd)

Records not rejected (Cont'd)

Record-rejecting mechanism resumes another. rejecting cycle immediately after completing one and before record is played
usually because they are set too close together. Adjust the contacts so that they open when the end of the record is reached

1) defective contact blades on the cycle switch, which fail to open when the cycle is ended. Adjust the switch so that the contacts will open when the cycle is ended

Pick-up lowers off record 1) cabinet not level
Pick-up lowers past first....1) cabinet not level
record groove

Needle does not slip into first record groove
Mechanism jams,
Records jam,
Records split
2) tension of suspension arm spring too great

1) insufficient tension of suspension arm spring
2) record gate incorrectly adjusted
3) records warped

BRUNSWICK 81, 82
Same case histories as those listed for Brunswick 14
BULOVA M501
Same case historics as those listed for TCA Chassis

BREMMER TULLY 82
Low volume

1) open-circuit in one of the wires to the ballast tube
2) short-circuited r-f cathode by-pass condenser. Replace with a 0.5 -mfd. unit

CADILLAC MASTER 1935

Large 2,000-ohm resist-..1) secondary of last i-f coil short-circuitor burns out ing to primary. Replace with new i-f transformer

CAMDEN 1480, 2480
Same case histories as those listed for Clarion 480

CAPEHART 400 SERIES

(Automatic phonograph record changer section of receiver)
Records keep rejecting...-1) automatic-stop trip lever needs oiling
2) hair-spring on clutch-throwout lever broken
3) clutch gears set too close

Records do not hit spindle..1) adjust record tray correctly 2) adjust magazine
Pick-up arm does not set.-_1) Adjust pickup arm lever hook on records correctly
"On-Off" and phono- ---1) fibre insulation worn. Take apart and graph switch defective back it up with metal; be sure it does not ground to shaft

CHAMPIONETTE 5 TUBE MIDGET

Inoperative a few min- .. 1) decrease in value of $25,000-\mathrm{hm}$ resistor utes after being plac- connected between the plate and screen
ed in operation,
Fading
grid of the detector tube. Replace with new unit

CLARION A.C.-D.C. 5 TUBE RECEIVER
Low volume -----------------1) defective detector-plate load resistor. Replace with a new unit

CLARION 40
See also histories listed for TCA Chassis
"Popping" noise while ---1) replace the 1-megohm grid resistor with set is warming up a $1 / 2$-megohm unit
$\begin{aligned} & \text { Uneven control of } \ldots . .-1 \text { 1) } \\ & \text { volume }\end{aligned}$
$\begin{aligned} & \text { defective volume control potentiometer. } \\ & \text { Replace with a new } 5,000 \text {-ohm unit }\end{aligned}$
2) connect a 100 - or $200-\mathrm{hm}$ resistor in series with the volume control and chassis, so as to prevent the possible reduction of grid-bias to zero
Poor selectivity .-..----------.-1) short-circuited volume control
2) burnt-out antenna coil. Rewind with silk-covered wire
Oscillation ----------------------1) connect a 0.002 -mfd. condenser from one side of power line to chassis
Excessive hum .------------1) loose laminations in the filter choke

CLARION 51, 52, 55
Oscillation, ___ 1) open-circuited or leaky r-f cathode by-
Intermittent reception, Noisy reception pass condenser

CLARION 90, 94, 95

Weak reception,
(tubes and voltages
check O.K.)

1) replace the $0.05-\mathrm{mfd}$. $(0.02-\mathrm{mfd}$. in models $94,95,160$) condensers connected in the r-f and first detector tube grid-return circuits. These constitute part of the antenna and first detector coil assemblies. Remove the cans and replace

Inoperative ------------------1) defective 500,000 -ohm resistor connected between the plate of the AVC tube and the r-f filament circuits. Replace with a unit of higher wattage rating

CLARION 100

Oscillator inoperative .-.-1) defective type '24 detector-oscillator tube (even though it checks O.K.). Replace with a new tube by substitution. Re-align the receiver circuits

CLARION 160

Same case histories as those listed for Clarion 90, 94, 95
CLARION 220
Receiver dead, Inoperative

1) change in value of 4,000 -ohm resistor between oscillator coil and cathode of the detector-oscillator tube. Replace with a new 1 -watt unit
2) change in value of $4,000-\mathrm{ohm}$ bias resistor of type '24 autodyne tube, preventing it from oscillating. Replace with $1 / 2$-watt carbon unit, soldering it to one end of chassis and by-passing it with a $0.001-\mathrm{mfd}$. condenser
3) open-circuited or loose control-grid wire to the type '24A detector-oscillator tube. This is a short piece of 1,000 -ohm wire inside a sheath, making it difficult to detect an open circuit. Connect a new lead with a 1,000 -ohm, $1 / 2$-watt carbon or metallized resistor in series

CLARION 280

Poor tone

1) incorrect connection at voice-coil or speaker field. Reverse connections at either point and note the effect

	CLARION 300
Hum) loose laminations in filter choke
	short-circuited, or partially short-circuited filter choke winding
	air gap disturbed (strike core with hammer)
Oscillation, \qquad Motorboating	open-circuited $0.01-\mathrm{mfd}$. condensers by passing first detector, first and second i-f secondary return-leads to ground
Intermittent oscillation,-...-1)) open-circuiting $0.01-\mathrm{mfd}$. r-f, first de-
Intermittent motorboating,	tector, first i-f and second i-f secondary return by-pass condensers

CLARION 480

Hum

1) loose laminations in filter choke
2) short-circuited, or partially short-circuited filter choke winding
Inoperative on short_-1) "flat" oscillator tube. Replace with new
waves
tube
Distortion, \qquad 1) replace "tun-a-lite" bulb

Low signal strength,
Poor neon tube action
Fading,
Intermittent reception,
Intermittent distortion

1) poor contacts on "tun-a-lite" socket Replace socket.
2) defective grid filter condensers in r-f, i-f and first detector circuits
3) open-circuiting audio coupling condenser

Fuses blow,

1) first section of dual filter condenser

Type '5Z3 rectifier tube block leaky burns out

CLARION 320
Fading,

1) tube shields touching the control-grid

Set goes dead caps of the i-f or r-f tubes. Wrap pieces of fish paper around control-grid caps

CLARION 470
Intermittent reception, .-1) replace the present $10,000-\mathrm{ohm}$ type Distortion, Poor sensitivity '2A6 tube bias resistor with a 5,000ohm unit

CLIMAX 4-Tube A.C.-D.C.

Low volume,
Weak reception

1) open-circuit in the detector load resistor. Replace with a good $0.5-\mathrm{megohm}$, 1 -watt unit. The detector plate voltage should be about 150 -volts when the resistor has been replaced

COLONIAL 1933 MODELS
Microphonics ----------------1) loosen nuts on the rubber-cushioned condenser mounting studs

COLONIAL 31

Set dead, \qquad
No r-f bias voltage (even though r-f bias resistor tests O.K.)

1) open-circuited center-tapped r-f filament resistor, which is sealed in the power transformer case. Replace by mounting a 10 - or 20 -ohm center-tapped unit on the transformer terminals
Weak reception,
2) tuning condensers not synchronized Broad tuning

Hum at resonance, Oscillation

1) open-circurited $0.5-\mathrm{mfd}$. type ' 26 tube filament by-pass condensers
Fuses blow ------------------1) short-circuited 1-mfd. line buffer condensers

COLONIAL 31 D.C.
Receiver cannot be

1) short-circuited
$0.5-\mathrm{mfd}$. condenser in switched off unless ground wire is disconnected ground circuit

COLONIAL 32
Fading,
Intermittent reception

1) open-circuiting $0.1-\mathrm{mfd}$. audio coupling Intermittent reception condenser
2) open-circuiting $0.1-\mathrm{mfd}$. detector secondary return by-pass condenser
3) open-circuiting sections of $\$ 407-P$ bypass block in audio circuit
4) broken porcelain tuning-condenser mounting brackets
5) loose or broken volume control resistance elements
6) poor or unsoldered connections to the carbon resistor pig-tails
7) open-circuited or leaky sections of first, second, third r-f and detector by-pass condenser blocks
8) open-circuiting 750,000 -ohm red carbon resistor in first r-f secondary return circuit
9) defective type '26 tubes (even though they test O.K.). Replace with new tubes by substitution
Note: fading in this receiver as a result of defective tubes is often due to the double tube shields which provide poor ventilation. It may be well to drill large holes in the shield to provide better dissipation of the heat. In any event, adequate ventilation should be provided for the tubes
Noisy reception
10) corroded or loose fuse-block clips
11) volume control carbon resistor elements caked or cracked
12) noisy 65,000 -ohm carbon resistor in first audio plate circuit

Weak reception, Distortion

1) open-circuited detector cathode bias resistor
2) open-circuited first audio cathode bias resistor

Poor tone,

1) open-circuited or burnt-out field coil Weak reception
Choked reception,
2) open-circuited $100,000-\mathrm{ohm}$ resistor in Distortion (no output tube bias voltage)

Weak reception at \qquad 1) tuning condensers not synchronized higher frequencies
Microphonic at resonance..1) insert small felt washers between stator plates of tuning condensers
Oscillation,
General instability

1) open-circuited 35,000 -ohm resistor connecting from first r-f screen to chassis
(Cont'd)

COLONIAL 32 (cont'd)
Reception of one or 1) tuning condenser shaft loose from pulley two stations over en- 2) broken tuning condenser drive tire dial

Inoperative
_-__-_1) broken tuning condenser mounting brackets
2) antenna lead shorting to metal braid

COLONIAL 32 D.C.
Fading, _-_ 1) open-circuiting $0.1-\mathrm{mfd}$. audio coupling Intermittent reception condenser
2) open-circuiting $0.1-\mathrm{mfd}$. detector second-ary-return by-pass condenser
3) open-circuiting sections of by-pass block in audio circuit
4) broken porcelain tuning condenser mounting brackets
5) loose or broken volume control resistance elements
6) poor or unsoldered connections to the carbon resistor pigtails
7) open-circuited or leaky sections of first, second, third r-f and detector by-pass condenser blocks
8) open-circuiting 750,000 -ohm red carbon resistor in first r-f secondary return circuit

Poor selectivity

1) remove 750,000 -ohm resistor from third $r-f$ secondary return circuit

COLONIAL 33

See also case histories listed for Colonial 34

Low volume

1) receiver circuits out of alignment
2) open-circuited aerial connection

3) open-circuited $60,000-\mathrm{hm}$ screen-grid resistor section of the three-section voltage divider located near the two r-f screen-grid tube sockets. Replace with a 25,000 -ohm unit in order to obtain an increase in volume

Low volume,

1) change in value of "lavite" or graphite Distortion, (low plate or screengrid voltage; high grid-bias voltage)
Fading
2) loose elements in type ' 24 tubes. Replace by substituting new tubes
3) intermittently open-circuiting primary in the first audio transformer. Replace with new transformer

Inoperative,
(no r-f plate or
screen voltages)
Inoperative,
(no screen voltage)
Inoperative, \qquad (no first-audio plate voltage)
Inoperative, \qquad 1) open-circuited 210 -ohm section of center(no d-c voltages on any tubes)
Inoperative, \qquad 1) open-circuited $800-\mathrm{ohm}$ bias resistor (no output tube plate voltage)
Oscillation \qquad 1) open-circuited 50,000 -ohm section of voltage divider
2) open-circuited $0.5-\mathrm{mfd}$. screen by-pass condenser
3) open-circuited $0.2-\mathrm{mfd}$. plate circuit bypass condenser
4) open-circuited $0.2-\mathrm{mfd}$. first $\mathrm{r}-\mathrm{f}$, second $r-f$, or detector secondary-return by-pass condensers
No control of volume

1) cable of volume control shaft off pulley
2) volume control shaft pulley loose

Weak reception,

1) open-circuited $100,000-\mathrm{hm}$ resistor in secondary return circuits of first or second r-f transformers
2) open-circuited or burnt-out speaker field (Cont'd)

COLONIAL 33 (cont'd)
Weak over entire dial _--_-1) open-circuited band selector coupling coil

Distortion,
$\begin{aligned} & \text { Intermittent reception ,...--1) open-circuiting or leaky } 0.2 \text {-mfd. ref sec- } \\ & \text { ondary return by-pass condensers } \\ & \text { Fading }\end{aligned}$

2) open-circuiting screen by-pass condenser
3) leaky r-f plate circuit by-pass condenser

COLONIAL 34
Oscillation,
$(r-f$ screen and plate
voltages high)

Inoperative

1) open-circuited $50,000-$ ohm center secton of voltage divider
2) open-circuit in one of the sections of the 121,000 -ohm voltage divider resistor. Check each section carefully, replacing if defective
3) open-circuited 420 -ohm center-tapped resistor (usually at the negative end) connected in the negative leg of the power supply, located between the two type ' 45 sockets. This may be shortcircuited temporarily, but a replacement is advisable

Slight oscillation, \qquad (poor reception on the lower frequendies)

1) open-circuit in one of the $0.2-\mathrm{mfd}$. condensers located under the condenser gang shield and used as secondary return by-pass units. One terminal is soldered to each coil. Replace with new units if found defective

Distortion,

1) open-circuited grid-bias resistor

Lack of grid-bias on the type ' 45 amplifier tubes a 10,000 -ohm carbon unit connected from the secondary center-tap of the input push-pull transformer to chassis. Replace with new unit

Low volume at high
frequencies
(tubes and voltages test O.K.)

1) open-circuit in one of the small bobbin coils used to couple the tuning unit more effectively. These are located in the antenna and first ref units of the bandpass filter. Defect is usually at the lug

Oscillation

1) short-circuited section of voltage-divider resistor. Replace with new unit

COLONIAL 36 A.C.

Intermittent reception ..1) leaky $0.25-\mathrm{mfd}$. by-pass condensers. Replace if defective
2) defective $0.5-\mathrm{mfd}$. condenser between the first audio transformer and cathode. Replace with a new unit
3) defective tube sockets, resulting in poor contact at tube base prongs. Clean and bend contacts or replace with new sockets
4) defective $0.1-\mathrm{mfd}$. coupling condenser. Replace with new unit
5) defective phonograph switch. Replace with a new switch
6) high-resistance grounds at r-f shields. Bond together all the grounding lugs with a piece of bus-bar and solder the latter in turn, securely to the chassis
Insensitive

1) open-circuited antenna winding in the first r-f coil
2) loose connection at the antenna-end terminal of the first r-f coil
Excessive hum ..---.-.....-.-1) open-circuit or increase in value in the $400,000-\mathrm{ohm}$ resistors connected between the grids of the type ' 45 push-pull tubes and the hum-balancing potentiometer. Replace the dual unit with single $1 / 2$ watt resistor
Low volume,
3) replace the 350 -ohm bias resistor conDistortion, Inoperative nected between the chassis and first and second r-f tube cathodes, with a 1 -watt carbon unit
4) replace the two 400,000 -ohm grid leaks in the output tube grid circuits
3) replace the 60,000 - and $100,000-\mathrm{hm}$ voltage-divider resistors.

COLONIAL
136
Type '25Z5 tube flashes .. 1) defective electrolytic condenser in power supply unit. Replace with a 225- or 250 -volt unit
2) replace the $0.02-\mathrm{mfd}$. condenser across the plates of the type ' 25 Z 5 tube with a 400 -volt unit
3) check the antenna series condenser. Connect a $0.001-\mathrm{mfd}$. unit in the circuit if one is not there

COLONIAL 250

Inoperative

1) defective heater cord
2) defective type ' $25 Z 5$ tube

Hum

1) adjust speaker and grid leads (Cont'd)

COLONIAL 250 (cont'd)

No AVC action

1) open-circuit or change in value of AVC resistor connected in the circuit of the type '6B7 AVC tube. Replace with new unit

COLONIAL 300

Poor tone

1) defective condenser bank. Replace

Inoperative

1) replace dual 4 -mfd. filter condenser

COLONIAL 601

Type ' 83 rectifier tube . 1) short-circuited electrolytic filter conflashes denser. Replace with new unit
2) overloading of rectifier tube

Distortion

1) defective type ' 37 tube (even though it may test O.K.). Replace with new tube
2) defective type ' 37 tube resistor. Check all resistors in this circuit for changes in value

COLONIAL 654

No control of volume

1) connect a lead from the unused lug of on local stations the volume control to the point where the $0.001-\mathrm{mfd}$. condenser is connected to the antenna coil primary

COLUMBIA C-100A

Cuts off during the passage of strong signals
Intermittent reception (voltage drops across the power supply and at plate of the power pentode tube)

1) defective type '47 tube (even though it may test O.K.). The insulation in this tube breaks down on strong signals, causing the cut-off. Replace with new tube

COLUMBIA SCREEN-GRID 8

Inoperative _--.-.-.-_-1) open-circuited detector choke
2) short-circuited condenser in detector choke and condenser assembly
3) open plate choke in one of r-f circuits
4) short-circuited r-f coupling condenser

Oscillation .---------------------1) open screen-grid by-pass condenser
2) readjust compensating condensers

Loss of volume over a1) loose rotor section on the condenser period of time gang. Drill and tap the condenser gang hub for a setscrew, in order to hold the rotor section in place

COLUMBIA SCREEN-GRID 9

CROSLEY "BUDDY", "CHUM"

Inoperative

1) open-circuited $10,000-\mathrm{hm}$ screen-grid circuit voltage-dropping resistor (wirewound). Replace with a carbon unit even though the above resistor may test O.K.

CROSLEY "WASHINGTON"

Inoperative,
No voltage on r-f tubes
2)
:---
new unit
burnt-out r-f voltage resistor

CROSLEY 5

CROSLEY 8H1

CROSLEY 30-S, 31-S, 33-S, 34-S

	terminals of tube sockets short-circuiting to chassis, as holes admitting them are too small for safety. Enlarge the holes
Hum .. .-.---...- .-.--- .-.------1)	leaky electrolytic condensers. Replace with new units
Low volume, ${ }_{\text {Lack of }}^{\text {Lensitivity }}$.-.... 1)	decrease in value of $11,000-\mathrm{ohm}$ resistors connected in parallel in the bleeder circuit. Replace with 5-watt units
Low volume, .- .-. .-.-...- 1) Poor tone	connect a $15,000-\mathrm{ohm}$ resistor between the positive side of the detector plate resistor and ground

CROSLEY 40 A.C -D.C.

Excessive hum, (hum disappears when set is removed from cabinet)

1) condenser block punched by one of the screws which hold the chassis to the cabinet, thereby short-circuiting the condenser. When screw is removed, the hum ceases, since the condenser is no longer short-circuited

CROSLEY 40
Distortion after a few ...-1) defective 750 -ohm resistor on the reminutes of operation sistor strip causing improper bias on the type ' 45 tubes. The defect is apparent only when the receiver heats up

CROSLEY 40-S, 41-S
Low volume, .-.--.-.-. ...-1) high-resistance connection between the Noisy reception tuning condenser rotor and the frame Solder flexible pigtails from the rotor shaft to the frame

Intermittent reception, .. 1) defective 0.5 -mfd. r-f cathode by-pass condenser. Replace with new unit
2) defective coupling condenser between the plate of type ' 27 detector tube and the control-grid of the first a-f tube. Replace with new unit
3) broken solid-wire leads running from the voice coil to the connecting lugs. Replace with flexible leads

CROSLEY 42, 42A

```No reception,```	short-circuited r-f by-pass condenser open-circuited 1,400 -ohm r-f resistor
Hum .-----------1-1)	defective Mershon condenser
	readjust balancing condensers
Irregular noises when...--.-1) tuning	clean variable condenser plates and solder a pig-tail lead from rotor to chassis
	clean volume control contacts and strip

## CROSLEY 42 (Using 45-mil. "Dynacoil" Speaker)

Low volume,
Poor sensitivity

1) change in value of 6,000 -ohm carbon resistors. Replace with 10 -watt wirewound units

## CROSLEY 42-S

See also case histories listed for Crosley 40-S
Distortion
Poor tone

## CROSLEY 53

Inoperative
(type ' 45 tube gridbias resistor smoking)

1) defective $0.5-\mathrm{mfd}$. condenser connected between the speaker voice coil and the type ' 45 tube grid-bias resistor terminal. Replace with new unit

## CROSLEY 54

See also case histories listed for Crosley 53

Audio "howl" (normal operation restored when the analyzer cable is plugged into the circuit)
Intermittent oscillation when analyzer is plugged into power tube socket
(plate voltage decreases and grid-bias increases when this condition occurs)

1) change in value of the 150000 -ohm coupling resistor connected between the detector plate choke and the audio coupling condenser, and one side of the a-f choke. Replace with new unit
2) change in value of the 1 -megohm type ' 45 tube grid resistor. Replace with new unit

Low volume

1) leaky $0.1-\mathrm{mfd}$. condenser between the plate of the detector tube and grid of the audio tube. Replace with a new unit if the leakage resistance is more than 50- or 75-megohms (Cont'd)

## CROSLEY 54 (cont'd)

Poor sensitivity . . ...-1) replace the 150,000 -ohm detector plate resistor with a 300,000 - or 400,000 -ohm unit

## CROSLEY 58

Fading

1) rewire the filament circuits with direct connections instead of leaving one side grounded
Distortion
2) disconnect the detector screen-grid from the $r$-f screen grids, connecting it to the detector plate in series with a $250,000-\mathrm{hm}$ resistor and by-passing it to ground with a $0.25-\mathrm{mfd}$. condenser

Inoperative,
(switch has to be put off and on a number of times before receiver starts),
(tubes and voltages test O.K.)
Insertion of the analy-
zer cable or test prods
starts the receiver operating

1) defective detector grid-bias resistor bypass condenser. It is usually shortcircuited, but is cleared up by the least change of voltage. Replace with new unit

## CROSLEY 82-S

Same case histories as those listed for Crosley 40-S

## CROSLEY 102 AUTO RADIO

Oscillation ---------------------1) defective type '6B7 second detector tube, having low emission. Replace with new tube

Inoperative

1) short-circuited 0.1 -mfd. condenser across power transformer secondary

CROSLEY 122
Type '24 oscillator tube

1) shunt a 1 -watt, 750 -ohm resistor across fails to oscillate at low frequency end of dial $650-\mathrm{ohm}$ volume control and replace with type '24A tube

## CROSLEY 124

High control-grid bias ---1)
on the r-f and i-f
tubes


| change in value of grid-bias resistors. |
| :--- | :--- |
| Connect a 400- to $750-o h m ~ r e s i s t o r ~ b e-~$ |

tween the volume control and ground,
which will keep the bias under control

## CROSLEY 124J

Impossible to align at 175-ke

1) grounded or short-circuited winding on first i-f transformer. Replace with new unit
2) defective type '27 oscillator tube. Replace with new tube
3) check phasing of twin speakers

## CROSI, EY 124-1

Fading, Intermittent reception

1) high leakage in one of four $0.1-\mathrm{mfd}$. condensers located in condenser block No. W22412
2) defective two $0.25-\mathrm{mfd}$. units and $0.5-$ mfd. unit in block No. W237s6.

## CROSLEY 126-1

Distortion -.-----.-.-...---.-....-1) defective audio coupling condenser
2) speaker out of adjustment

## CROSLEY 129


#### Abstract

Oscillation at high fre- ..1) change in value of critical 200 -ohm fixed quencies (tubes and voltages portion of volume control. Replace with new volume control unit


 test O.K.)
## CROSLEY 130

Reception drifts off -......1) leaky or open-circuited 8-mfd. 300-volt
frequency setting of tuning dial filter condenser. Replace with new unit of higher voltage rating
2) leaky or open-circuited 4 -mfd. 150 -volt screen-grid condenser. Replace with new unit
3) adjust the oscillator trimmer condenser

## CROSLEY 132 "CHIEF"

Low volume, .......... .... 1) short-circuited 0.0001-mfd. condenser (tubes and voltages between the cathode of the ' 56 tube test O.K.) used as a diode-detector and the $5-\mathrm{meg}$ ohm resistor. Check the latter unit for change in value also

CROSLEY 132-1
No AVC action $\qquad$ 1) defective 0.15 -megohm resistor ( $R-4$ ). Replace with new unit

CROSIEY 137

Insensitive, $\qquad$ No distant reception

1) defective oscillator coil. Replace with new unit

## CROSLEY 146

Insensitive,

1) open-circuited $12-\mathrm{mfd}$. condenser secWeak reception on local stations,
No distant reception, (voltages test O.K.) tion of dual $12-6 \mathrm{mfd}$. cardboardencased filter unit. Replace with a 400volt unit

## CROSLEY 148

$\qquad$ 1) charred or open-circuited 750 -ohm type '42 tube bias resistor. Replace with a new unit
2) short-circuited 6 -mfd., 300 -volt and 8 -mfd., 25 -volt dual electrolytic filter condenser. Replace with new unit

Distortion

1) grounded speaker winding
(high current flow in the plate circuit of the output tube)

Inoperative below $\qquad$ 1) defective 6-8-mfd. electrolytic con1200 kc,
Volume control inoperative past first $1 / 2-r e v-$ olution,
Oscillation all over dial
Weak reception

1) defective tone-control condenser

Intermittent reception .-. 1) | dirt in padding condenser causing a |
| :--- |
| high-resistance short-circuit. Clean unit |
| with Carbon Tetrachloride |

## CROSLEY 1:59

Set dead

1) burnt-out resistor in the cathode circuit of the type ' 43 output tube. Replace with a new unit

## CROSLEY 163

Low volume (plate voltage of type '77 second detector tube drops to about 5-volts)

1) open-circuited 3 -megohm and $300,000-$ ohm plate load resistors in the type '77 tube circuit. Replace with new units

## CROSLEY 167

Distortion, Low volume

Chassis smokes, Inoperative

1) leakage between filter condensers and the type '2A5 tube cathode bypass condenser section. Both of these units are contained in a common can
2) short-circuit between the positive terminals of the $6-\mathrm{mfd}$. condenser connected between the output transformer primary and ground and the $8-\mathrm{mfd}$. condenser connected between the cathode and ground. This places a heavy load on the 750 -ohm flexible resistor connected between cathode and ground, causing it to burn out. Replace the resistor and the condenser units(Cont'd)

CROSLEY 167 (cont'd)

Inoperative --------------------1	insulate leads to the dial-lamp socket with spaghetti. The original leads often ground to the chassis defective electrolytic filter condenser. Replace with new unit
Weak or intermittent ... reception on low frequencies	short-circuited $0.1-\mathrm{mfd}$. condenser across 3,500 -ohm resistor in the cathode circuit of the type '58 first detector-oscillator tube
CROS   See also case	LEY 170 DUAL TEN   histories listed for Crosley 171
Oscillation, $\qquad$   (ceases when the finger is placed on the cap of the first type '58 tube)	open-circuited $r$-f oscillator coil located behind the hand switch

## CROSLEY 171

Noisy reception, .--------1) defective $0.0005-\mathrm{mfd}$. tubular condenser Loss of volume in series with antenna coil

Inoperative

1) defective triple 8 -mfd. filter condenser unit (part No. W-29097). Replace with the improved part No. W-29097-A
2) defective $8,500-25,000$-ohm "Candohm" resistor (part No. W-28471). Replace with new unit
3) defective rectifier tube as a result of the above condition. Replace with new tube

No AVC action,

1) defective section in "Candohm" resistor. Replace with new unit (part No. 28471)

## CROSLEY 175

Inoperative on lower ---1) replace $7,000-\mathrm{ohm}$ cathode resistor in
frequencies the oscillator circuit with a 5,000 -ohm unit. Re-align the i-f amplifier

## CROSLEY 178

Tubes burn out when the set is switched off,
Inoperative

1) short-circuited resistor between one side of the filament circuit and ground
2) short-circuited "safety" resistor connected between the movable arm of the volume control potentiometer and the ground
The above condition causes the 22.5volt "C" battery to be connected across the filaments when the switch is turned off

## CROSLEY 305 CHASSIS

Noisy reception, ... .....-1) change in value of the 11,000 -ohm stabilUnstable operation izing resistors connected in parallel from the B-plus terminal of the audio transformer to ground. Replace with new units

Intermittent reception ..1) intermittently open-circuiting heater in the type ' 27 first audio tube. Replace with new tube
2) intermittently short-circuiting $0.5-\mathrm{mfd}$. detector cathode resistor by-pass condenser, resulting in no bias on the type ' 27 detector tube. Replace with a new unit
3) decrease in value of $55,000-\mathrm{ohm}$ first detector plate supply resistor. Replace with new unit
4) leaky $0.001-\mathrm{mfd}$. r-f by-pass condenser connected between plate and cathode of the first detector tube. Replace with new unit
5) leaky a-f coupling condenser between the first detector plate choke and the control grid of the first audio tube
6) leaky electrolytic condensers. Replace with new units

## CROSLEY 515

Weak or intermittently . 1) defective dual 0.02 -mfd., 200-volt type weak reception '6D6 tube cathode by-pass condenser (even though it may test O.K.). Replace with a new unit

## CROSLEY 609, 610 (cont'd)

	corroded condenser gang rotor shaft tension spring. Connect a flexible pigtail between the condenser rotor and chassis
Distorted reproduction......-1)	open-circuited 10,000 -ohm resistor in secondary return circuit of output tube
Lack of sensitivity or $\qquad$ selectivity	readjust angles or positions of r-f coils
	CROSLEY 706
Noisy tuning	corroded condenser gang rotor shaft tension spring. Connect a flexible pigtail between the condenser rotor and chassis
Noisy reception ...........-	clean volume control resistance element and contact arm
Oscillation, $\qquad$ 1) General instability	open-circuited type ' 226 tube filament by-pass condenser
Inoperative, $\qquad$ High voltage output shorted	filter choke leads shorting to chassis speaker field pin jacks shorting to chassis
Inoperative,   No plate voltage on the first a-f tube	loose spring contact at plate prong of first a-f tube socket. Repair or replace with new socket
```No reception, .. .-... 1) (no r-f plate voltage)```	shorted r-f by-pass condenser
	defective Mershon condenser
Weak reception and \qquad 1) oscillation	readjust balancing condenser
No r-f plate voltage .-.-....-1)	eplace 3,250 -ohm, r-f resistor

CROSLEY 804 (JEWELBOX)

Distortion about 20 1) leaky $0.25-\mathrm{mfd}$., 400 -volt by-pass conminutes after receiver is switched on denser connected from the B-plus cathode of the first type ' 27 a-f tube. Replace with new unit

CROSLEY 814

Distortion,
Low volume,

1) open-circuited section in $10,000-\mathrm{hm}$ "Candohm" resistor section connected
between the screen circuits and ground

DAYFAN 5005-A
Oscillation between -------1) connect a $0.01-\mathrm{mfd}$. condenser between 1400 - and $1500-\mathrm{kc}$ the screen-grid on the first r-f tube and the ground post, insulating the ground post from the chassis. Make sure that the ground wire goes directly to the condenser and not to the post

DAYTON A.C. "NAVIGATOR"

Inoperative

1) defective a-c switch. Replace with new switch

DE CHAMPE RECEIVERS

Loss of volume ..--------. . 1) magnetic speaker armature off center. Recenter the armature

DE-FOREST CROSLEY "ARIA" 740, "TROUBADOR" 750 "MINSTREL" 810
Loud hum .------------------.- 1) defective 3-section "Mershon" filter condenser. Replace with new unit or drill a hole in the hard rubber top and fill the can till about $1 / 2$-inch from the top with distilled water, sealing up the hole with sealing wax

DE-FOREST CROSLEY (CANADIAN) "ARIA", "MELODY",	
Distortion at low \qquad volume	decrease in resistance of $20,000-\mathrm{ohm}$, 2-watt carbon bleeder resistor connected between the r-f plate supply and the cathode of the audio tube. This causes overbiasing of the a-f tube. Discard the bleeder resistor and self-bias the tube with a 2,000 -ohm, 1 -watt unit
Low volume,-...-. 1)	efective speaker voice coil
Poor tone 2)	open-circuited field coil in speaker

DELCO 500, 630
Insensitive,-.-.1) blocking of weak signals by noise-supNo distant reception pression circuit. Remove the grounded wire of the volume control and re-connect it to the cathode terminal of the type '6D6 tube. If this causes resulting audible vibrator noise, connect a $100-\mathrm{ohm}$ resistor in series with the 275 -ohm common '6D6 and 6B7 tube bias resistor

DE WALD "BAG"
Inoperative .---..................1) open-circuited ballast lamp. Replace

DE WALD "DYNETTE"

Inoperative -------------------1) defective line resistor. Replace with new unit

DeWALD 632 D.C.
Inoperative,

1) burnt-out pilot light

Tubes do not light
DE WALD 802
Hum ------------------------------ by-pass condensers for the '2A5 and '2A6 tubes

Distortion on short- -- 1) defective $0.05-\mathrm{mfd}$. type ' 2 A 7 grid return wave band circuit by-pass condenser. Replace with new unit

EARL 21, 22 D.C.
Tubes blow,

1) antenna variometer shaft short-circuit-(r-f secondary coil burnt out)

Inoperative,

1) short-circuited 2 -mfd. filter condenser

Reversed plate readings on r-f and first audio tubes

Oscillation,
Whistle

1) defective or open-circuited detector bypass condenser

EARL 21, 31
Noisy reception

1) loosening of two screws fastened to bakelite strip which hold the variometer assembly in place
Inoperative,
2) open-circuited detector plate supply re(no detector tube plate voltage) sistor. Replace with new unit

ECHOPHONE MODEL C
Poor sensitivity, $-\ldots-\ldots$ 1) substitute a type '56 tube in place of
Hum
the type ' 27 tube

ECHOPHONE S-3, S-4

Low volume,
Loss of sensitivity with volume control at maximum setting

1) open-circuited 1 -megohm resistor connected from B-plus to the screen-grid of the type '24 detector tube. If defective, an increase in volume will be noticed when the unit is shunted with the fingers. Replace this resistor with a new unit
2) replace the r-f coils with litz-wound coils (used on the later type models). Re-aligning is necessary if this is done
3) replace the 1 -megohm control-grid bias resistor located on the resistor panel, which is fastened on the side of the chassis, with a new carbon pigtail unit
Noisy reception,
4) defective tone control condenser. ReLow volume place with new unit
5) tuning condenser plates touching at certain positions. Bend these out so that they will not touch

EDISON C-2
(Same "case histories" as listed for Edison R-1, R-2)

EDISON C-4

(Same "case histories" as listed for Edison R-4, R-5)

EDISON R-1, R-2 (cont'd)

the detector grid circuit, and bias that circuit with a 40,000 -ohm, 1 -watt resistor. This should be by-passed with a $0.1-\mathrm{mfd}$. condenser
3) re-bias the first audio tube with a $2,700-$ ohm resistor in the cathode circuit, bypassing it with a proper sized condenser
4) adjust hum controls
Intermittent reception -1) open-circuit in any one of the three 600-
ohm grid suppressors
2) short-circuited trimmer condenser on the condenser gang
Test for the above by tuning in a station and with volume control at maximum setting, move the trimmers slightly with an insulated tool and listen for any change in volume. Repeat the same with the suppressors

Inoperative,
(all resistors and other components check O.-...-. 1)
open-circuited condenser section, connected from one side of the high-voltage secondary to
center-tap of the type '81 tube filament

winding

EDISON R-4, R-5
Poor tone, ... --------------1) open-circuited 10,000 -ohm "loss" re-

Condensers blow, Plate voltages high sistor in power pack. This resistor should be checked frequently, as it is the cause of most trouble in these sets

Hum,
Distortion

1) filament winding of type ' 45 tube shortcircuiting to the filament winding of the type '27 detector tube, depriving the ' 45 s of their biasing voltage, since the center tap of the ' 27 tube is normally grounded. Repair by shifting the center tap on the type '27 tube from the ground to the type ' 45 filament winding center tap

EDISON R-6, R-7

Weak reception,
(low plate voltages
on all r-f tubes)

Inoperative, (very low or no screen voltage in r-f stages)

Rumbling or drumming sound on low audio frequencies

1) short-circuiting of $0.05-\mathrm{mfd}$. condenser located in the detector filter unit, which is connected from the third r-f tube plate to ground
2) short-circuited $0.5-\mathrm{mfd}$. condenser located in r-f filter unit connected between second and third r-f tube screens to ground
voice coil striking field coil housing at the bottom of the voice coil passage. Insert thick cardboard washer to give voice coil more travel distance

Intermittent reception, .. 1) intermittent grounding of r-f choke to (stations tune in faintly then burst through strong and clear), (no detector tube plate voltage)

Intermittent reception -1) loose type '27 tube socket contacts. Tighten the contact springs, or replace socket
2) defective phono switch. Replace with new switch
3) defective power switch. Replace with new switch
4) tighten all hexagonal nuts on power pack connector panel

EDISON-BELL 35

Hum ------------------.----------1) replace power transformer with one having an electrostatic shield or connect two $0.25-\mathrm{mfd}$., 600 -volt condensers in series across the a-c input, grounding their common connection to the chassis
2) open-circuited grounding lead to electrostatic shield

EMERSON AC-7, M-AC-7

Oscillation, Weak reception

1) drop in value of 12,500 -ohm, 2 -watt resistor. Replace with a 10 -watt wirewound unit
2) leaky screen-grid by-pass condenser

Hum

1) partial short-circuit on high-voltage winding of power transformer, throwing the center-tap off

EMERSON D-S5 (CHASSIS)

Intermittent reception, \qquad 1) volume control contacts internally loose Noisy reception, 2) open-circuiting audio coupling condensers Fading	
High output grid- bias voltage nected across field coil in series with another resistor	
Distortion, -_-...-___1)	leaky grid filter condenser in output
Output tube grids glow, Low grid-bias voltage on output tube	

EMERSON L-A
(Same "case histories" as listed for Emerson 415, 416)

EMERSON L-AC-5

Oscillation (tubes and voltages test O.K.)

1) replace condenser $C-7$ with a $0.0005-\mathrm{mfd}$. or higher unit

EMERSON "MICKEY MOUSE"

Hum

1) connect a high-capacity condenser between one side of the line and the chassis. Change the position of the $0.0001-\mathrm{mfd}$. coupling condenser, placing it where the hum is least audible while the receiver is in operation.

EMERSON U-6D (CHASSIS)

Receiver drifts off fre- .-1) overheating of midget-type compensat-
quency, (trouble appears only when set is in cabinet) ing condenser in series with broadcast oscillator coil. Drill $\%^{\prime \prime}$ hole in cabinet near condenser to ventilate it

EMERSON V-4

Insensitive,
Low volume on low frequencies (tubes and voltages test O.K.)

1) defective antenna pickup coil. Move coil either up or down over secondary of first tuned r-f stage until the most satisfactory result is obtained, then cement the coil in that position
2) antenna and interstage circuits out of alignment

EMERSON 4-TUBE A.C.-D.C.
Distortion,

1) defective condenser connected between Low volume the plate and cathode of the type '38 a-f tube. This is usually a short-circuited unit. Replace with a $0.004-\mathrm{mfd}$. condenser

EMERSON 20A, 25A
Loud crackling noise .-.-1) intermittent short-circuit to chassis after being in opera- caused by a large lump of solder on one tion about an hour of the filter-choke lugs. The heat developed in the set after it is in operation for some time causes the fibre terminal strip on which the lug is mounted to bend toward the chassis, causing the intermittent short-circuit
2) defective 4 -mfd. filter condensers. Replace with new units

EMERSON 26

Partial or intermittent ..1) | defective $15,000-$ ohm, $1 / 4$-watt screen |
| :--- |
| distortion, |
| voltage dropping resistor of type '57 |

Whistling	second detector tube. Replace with 1-
	watt unit

EMERSON 38

(Same "case histories" as those listed for Emerson U-6D chassis)
EMERSON 39
(Same "case histories" as those listed for Emerson D-S5 chassis)
EMERSON 42, 49
(Same "case histories" as those listed for Emerson U-6D chassis)
EMERSON 59
(Same "case histories" as those listed for Emerson D-S5 chassis)
EMERSON 415, 416
'(Same "case histories" as those listed for Emerson V-4)
EVEREADY 1, 2, 3

Weak reception,
Distortion

1) open-circuited 50,000 -ohm detector plate supply resistor
Noisy reception. \qquad 1) noisy $50,000-0 \mathrm{hm}$ detector plate supply resistor
2) noisy primary winding of a-f transformer
Motorboating, ---------- --. 1) connect additional 1-mfd. by-pass con-
Oscillation densers from either side of detector plate supply resistor to chassis
Hum at resonance
3) open-circuited supply line by-pass condenser
Intermittent reception _-_1) loose lug on front of first condenser stator section
4) variometer connection lead short-circuiting to chassis

EVEREADY 30, 40

Oscillation at high volume level	1) adjust variometer on end of condenser gang shaft by loosening mounting screws and turning stator of variometer 2) check line voltage
Intermittent reception	..1) intermittently open-circuiting winding on speaker voice coil, opening with the vibration of the speaker. Rewind or replace the voice coil
	EVEREADY 50
High-resistance section of dual volume control burns out	..1) substitute a 50,000 - or $75,000-\mathrm{ohm}, 2$ watt fixed resistor for the defective section. Replacement of complete unit is unnecessary

EVEREADY 52, 53,54
Noisy tuning,

1) corroded variometer rotor contact

Oscillation
Weak reception at high.....-1) variometer out of adjustment or low frequencies

Noisy reception \qquad 1) noisy $0.001-\mathrm{mfd}$. detector plate by-pass condenser

Hum \qquad 1) add filter condenser from either side of speaker field to chassis
2) short-circuited choke "tuning" condenser
Weak reception- 1) control shafts short-circuiting to metal

High plate current

1) open-circuited grid suppressors

FADA KU

Intermittent distortion 1) intermittent high-resistance short-cir-
cuit between the primary and secondary
of the input push-pull transformer. Re-
place with a new unit

FADA RK-101 MOTOSET

Noisy reception .-.-....-.-. 1) poor shielding of leads running from power unit to receiver. See that the metal sleeve is properly grounded to the car frame; it should be bonded at several points

FADA (CANADIAN) W-452X

Distortion at
low volume

1) overloading in the r-f section. Remedy: slightly detune the first r-f stage

FADA 10, 11

Noisy reception, -----------1)	noisy first or second a-f transformer primary
Inoperative, ----------.-..-----1)) shorted or grounded lugs of r-f coils
Weak reception 2)) readjust balancing condensers
No reception, (low "B" voltage, or 2) no r-f plate voltage)	short-circuited filter condenser in block short-circuited r-f by-pass condenser
Poor s	open- or short-circuited wave-trap secondary coil
Fading .--------------..--1)	replace volume control
Loud hum, \qquad Poor tone	due to electromagnetic interaction between the first a-f transformer and the power transformer or filter chokes. Substitute a type '56 tube for the type '27 detector tube and "short" the grid leak and condenser. Insert a 30,000 -ohm resistor, shunted by a $1-\mathrm{mfd}$. condenser between the detector tube cathode and ground. Remove the first a-f transformer and substitute in its place re-sistance-capacity coupling pilot-light socket short-circuiting to chassis pilot-light socket lug short-circuiting to chassis
Pitch melts out from ...-1) power transformer	caused by heat generated by type ' 80 tube situated close to the transformer. Place a piece of asbestos board between the tube and transformer

FADA 16, 17, 20

Inoperative,
Weak reception
Noisy reception
Intermittent reception Oscillation

Fading

Weak reception,
No reception,
(no plate voltage)
--1
2) short-circuited by-pass condenser

FADA 25, 25-Z
 unit
(Cont'd)

FADA 25, 25-Z (cont'd)

Weak reception	readjust balancing condensers defective $0.001-\mathrm{mfd}$. by-pass condenser between the plate and cathode of the type ' 27 detector tube. Replace with new unit
Intermittent reception,--...1) Oscillation	open-circuiting r-f cathode or plate bypass condenser block
Intermittent reception ---1)	defective tinsel speaker cord poor connection of speaker tinsel cord to phone tips
Inoperative, \qquad 1) Weak reception	r-f coil lugs short-circuiting or grounding to chassis
No reception, \qquad	short-circuited filter condenser in block short-circuited by-pass condenser
Hum, \qquad 1) Distortion 2) 3) 4) 5)	open-circuited filter condenser poor grounding of condenser block short-circuited filter condenser block leads pilot light socket short-circuiting to chassis pilot light lug short-circuiting to chassis
Noisy reception \qquad 1) "Frying" noise \qquad 1) 2)	noisy a-f transformer primaries replace the first audio transformer reverse the $a-c$ line plug. One side causes more hum than the other
Slipping dial ---------------1)	pour some powdered rosin between the discs and the engaging drum on the driving mechanism

FADA 30, 31
Same case histories as those listed for Fada 10, 11
FADA 32
Same case histories as those listed for Fada 16, 17, 20

FADA 35, 35B
Intermittent reception___1) open-circuiting r-f cathode or plate bypass condenser (block)
2) defective tinsel speaker cord
3) corroded contact arms of double volume control
4) poor connection of speaker tinsel cord to phone tips
Oscillation

1) open-circuiting r-f cathode or plate bypass condenser
Hum
2) open-circuited filter condenser
3) poor grounding of condenser block
4) short-circuited filter condenser block leads-rubber insulation cracked

Inoperative,

1) r-f coil lugs short-circuiting or ground-

Weak reception
Noisy reception

1) noisy a-f transformer primaries

Hum, \qquad Distortion

1) pilot-light socket short-circuiting to chassis

FADA 41
Intermittent reception, ..1) open-circuiting r-f secondary windings Fading (leads snapped at lug)
2) open-circuiting $0.01-\mathrm{mfd}$. audio coupling condenser

Weak reception-1) open-circuited 50,000 -ohm resistor in diode detector plate circuit

Hum \qquad 1) open-circuited $0.5-\mathrm{mfd}$. detector amplifier cathode by-pass condenser
2) poor cathode-heater insulation of type '27 tubes
Distorted,

1) leaky $0.01-\mathrm{mfd}$. audio coupling condenser

Weak reception
Inoperative \qquad 1) short-circuited $0.01-\mathrm{mfd}$. audio coupling condenser

FADA 43
Same case histories as those listed for Fada 41, 761
FADA 44, 46, 47
Same case histories as those listed for Fada 41
FADA 48-KW, 49-KW
Oscillation,

1) leaky by-pass condensers. Test for and "Howling," Fading replace all defective units
(Cont'd)

FADA 48-KW, 49-KW (Cont'd)

Low volume, \qquad 1) poor contact between resistance element

Audio oscillation, (set plays when test prod is placed on plate terminal of second i-f tube)
and movable arm on volume control, causing an increase in the value of the AVC circuit resistance, thus making it over-effective and causing a decrease in volume. Adjust the arm so it will make good contact

FADE 50
Same case histories as those listed for Fada 70, 71, 72

FAD 66
Oscillation on one or more short-wave bands

1) connect a 300 -ohm, non-inductive resister in series with the control-grid lead of the type '24A first detectoroscillator tube

FADA 70, 71, 72
No reception

1) short-circuited by-pass condenser located under variable condenser in shield can
2) open-circuited resistors in series with the plate voltage supplied to ref coils

Intermittent reception, - 1) broken leads on loop antenna
No reception
2) open resistor in power pack

FADA 761, 762, 764, 766

Fading,
Intermittent reception

Oscillation,
Distortion at any volume level

1) open-circuiting ref cathode by-pass condenser
2) open-circuiting ref plate by-pass condenser
3) open-circuiting $0.5-\mathrm{mfd}$. screen by-pass condenser
4) open-circuited screen resistor connected from detector screen to chassis
5) resistor connected from detector screen to chassis changed to higher value

FAIRBANKS MORSE 238-T32
Noisy reception1) vibrator unit mounted too tightly to chassis. Remount it, using two screws and insert $1 / 2$-inch pieces of sponge rubber between each metal washer under the screw head, and the chassis

FEDERAL RECEIVERS (using types 201-A, 222 and 226 tubes)

Type 'BA rectifier tube -. 1)
burnt out, or requiring replacement
replace with a type ${ }^{3} 5 \mathrm{Z} 3$ rectifier tube. Reconnect the high-voltage leads to the grid and plate terminals on the tube socket and provide a 5 -volt filament voltage by a step-down transformer or possibly by winding an additional secondary on the power transformer core. The positive lead is taken from one of the filament terminals

FIRESTONE 1322

FORD-MA.JESTIC

Intermittent reception .-1) intermittent short-circuiting of tube while riding, (performs O.K. on test bench)
Heavy "A" battery
drain
Fuses blow

Excessive noise

1) connect a 0.25 - or $0.5-\mathrm{mfd}$. low voltage paper condenser directly across the rectifier filament

FORD-PHILCO N

Inoperative,
(tubes and voltages test O.K.)

1) padding condenser soldering lugs on tuning condenser frame puncturing through insulating paper glued to can of fixed condenser beneath, thereby grounding out the i-f. Bend the lugs up and slip a heavy piece of insulating fibre under them

FORD-PHILCO 1934

Intermittent volume .---.-1) wires to terminals on inside of i-f coils touching rivets of trimmers and changing condenser capacities. Rearrange the leads

FORD 35

Intermittent reception, .-1) header speaker cone leads short-cirLow volume cuiting to steel spring support

FREED EISEMANN NR-60
Noisy reception

1) corroded variometer tap switch
2) loose carbon element of volume control

FREED EISEMANN NR-65, 78, 79
Intermittent reception, .. 1) corroded connection beneath rubber inFading sulation at terminal of 500 -ohm, 1-watt fixed bias resistor connected in series with the volume control, causing the resistance to vary from 500 - to 25,000 ohms when the chassis heats up. Replace with new unit

Hum

1) open-circuited type ' 27 tube heater cen-ter-tap-to-ground lead. Resolder the connection

FREED EISEMANN NR-80
No control of volume \qquad 1) volume control contact arm not engaging resistor strip

Hum,

1) hum controls shorting to chassis

Distortion
Also same case histories as listed for Freed Eisemann NR-85
FREED EISEMANN NR-85
Noisy volume control ...-1) connect a 2,000 - or 3,000 -ohm potentiometer across the antenna choke, enclosing the leads in a grounded shield.
2) adjust the third neutralizing condenser to a point at about 150 kc , just below oscillation

FREED EISEMANN 95

Low volume1) | defective dynamic speaker field supply |
| :--- |
| filter condenser or rectifier tube. Re- |
| place with new units |

FRESHMAN EQUAPHASE

Oscillation
Broad tuning \qquad 1) equalizing condensers incorrectly adjusted

Inoperative \qquad 1) trimmer condenser stator plate or lug shorting to chassis
2) hum control contact arm not making contact to resistance

FRESHMAN EQUAPHASE G60S POWER UNIT

No plate voltage_----.-.-.....1) open resistors in power pack

No bias on type '71A .-.1) open-circuited resistors in power pack tube

Inoperative

1) open-circuited resistors in power pack

Weak reception
Noisy reception .-..-------.-.-1) open-circuited 300 -ohm equaphase resistor

Fading

1) defective volume control

FRESHMAN N

 tion strip

Fading,

1) loose terminals on power pack connec-

No control of volume tion strip
2) replace volume control

No reception,

1) shorted r-f by-pass condenser
(low voltage)
Weak or no reception
2) defective pig-tail resistors

No reception \qquad 1) open-circuited output transformer

FRESHMAN 2N

Fading

1) loose or corroded connections at connecting terminals in the power pack, making intermittent contact. Go over these terminals and tighten each with a large screwdriver
2) open-circuited filament winding in power transformer. Re-connect the leads from this winding to any of the other windings of the same voltage. If the r-f and audio tubes are heated from the same winding, replace the 1800 -ohm r-f bias resistor with a 500 -ohm unit, since there is now more current flowing in this circuit

FRESHMAN Q-15
See also case histories listed for Freshman Q-D-16-18
FRESHMAN Q-16
See also case histories listed for Freshman Q-D-16-18
Intermittent reception, .-1) defective type ' 22 tube biasing resistor. Fading Replace with new unit
2) go over all socket connections, contacts and soldered joints for intermittent contacts

FRESHMAN Q-D-16-8, 3-Q-15, 3-Q-16

Noisy reception, \qquad 1) Intermittent reception	open-circuiting flexible pig-tail resistors
Hum at resonance .-.------1)	poor type '222 tube
Broad tuning, \qquad Oscillation	incorrect adjustment of regeneration control

GALVIN
See receivers listed under "Motorola"
GEM A.C.-D.C.

Inoperative $\ldots-\ldots-\ldots-\ldots$) | defective speaker coil, usually open- |
| :--- |
| circuited. Since the speaker here can- |
| not be repaired, the unit should be re- |
| placed |

Loud crackling noise -...-1) poor connection at the lug of the filter
after being in opera- choke
tion about an hour

(GENERAL ELECTRIC (AMERICAN)* RECEIVERS)

GENERAL ELECTRIC A-53*

Distortion,

1) short-circuited condensers C-16 or C-26. Replace with new units
Inoperative
2) open or high-resistance contacts on band switch
Noisy reception, Hissing noise, "Birdies"
3) defective type ' 6 K 7 r-f tube (even though it may test O.K.). Replace with new tube

GENERAL ELECTRIC A-54
Oscillation,

1) open-circuit or high-resistance connection at condenser C27. Resolder connections to this condenser and note the effect
(at low frequency end of broadcast band with tone control at high-frequency setting only)

* For Canadian General Electric Receivers, see the listings in the "General Electric (Canadian)" group. This follows immediately after the G. E. (American) receivers.

GENERAL ELECTRIC A-63

High voltage between --.1) open-circuit between shield pin of type type '6A7 or '6A8 tube and ground
' 6 K 7 tube and socket resulting in an "open" ground contact. This causes the '6K7 to oscillate and draw grid current through $R-11$, resulting in the appearance of a d-c voltage across it and from the type '6K7 or '6A7 tube to the con-trol-grid ground.
Noisy reception at high ..1) filings in air-gap of speaker
volume causing inter-
ference in other sets
Hum

1) shield the control-grid wire of the type '6F5 tube

Distortion

1) open- or partially open-circuited $250,000-$ ohm type '6F5 tube plate resistor ($R 8$)

GENERAL ELECTRIC A-64

Severe a-c hum ..-......-.-1) electrostatic shield of the electrolytic by-pass condenser (C23) touching the high a-c voltage terminal of the type '5Z4 rectifier tube and making contact with it. Move the condenser away from the terminal and wind tape or insulating paper over the shield

Intermittent reception, -.1) open or high-resistance contacts on band Inoperative switch due to decrease in tension of springs behind contacts. Bend the springs with long-nosed pliers toward the stationary section of the switch
2) dirty contacts on band switch. Clean contacts with abrasive paper and wipe off with a cloth. Do not use any kind of lubricant on switch. If it works stiffly, oil the external moving parts only

Better reception on local stations with the type ' 6 H 6 tube removed

1) open-circuited secondary in the second i-f transformer

GENERAL ELECTRIC A-65

Same "case histories" as listed for General Electric A-63

GENERAL ELECTRIC A-67

See also "case histories" listed for General Electric A-64
Noisy reception devel- ...-1) defective $1 / 2$-megohm type '6F6 tube grid oping into distortion resistor (even though it may test O.K.). Replace with new unit

GENERAL ELECTRIC A-82, A-86, A-87, A-88

Loss of volume,----1) Poor selectivity, (abnormally high screen voltage on the zype '6K7 i-f tube)

1) open-circuited $10,000-\mathrm{hm}$ resistor section (R18) or tapped resistor (R11, R17, R18)

No signals on all \qquad 1) short-circuited
$0.1-\mathrm{mfd}$. condenser in bands,
Static
Inoperative on "C"' band, 1) (operates perfectly on all other bands)

GENERAL ELECTRIC A-125

Inoperative, (audio amplifier alive)

1) short-circuited type 6 K 7 tube in AVC circuit

No DX reception

1) short-circuited "permaliner" condenser. Test each circuit in chassis separately with oscillator to trace this trouble
Poor tone on " E " band .. 1) no fault of receiver. Due to inad($18-40-\mathrm{mc}$), vertant frequency modulation of transmitter

Tuning dial off calibra- -.1) defective type '6L7 tube. (Even though tion,
Tuning meter functions erratically,
Low volume,
Poor tone,
Poor short-wave reception

GENERAL ELECTRIC A-205, A-208

Distortion, Poor tone

Speaker rattle or "buzz"

1) improper phasing of dual speakers. Reverse the connections on one of the voice coils
2) unevenly tightened speaker mounting bolts. Speaker cone warps as a result of an excessively tightened bolt, causing the voice coil to be thrown off center

GENERAL ELECTRIC B-40
Intermittent reception -.1) defective vibrator. Replace with new Vibrator "hash" unit

GENERAL ELECTRIC C-41

Distortion on local \qquad 1) drop in value of 110,000 -ohm unit on stations at low volume settings of the volume control

Crackling noise \qquad 1) metal filings between tuning condenser plates. Clean out with a pipe cleaner

GENERAL ELECTRIC H-32
Same case histories as those listed for RCA-Victor R-50
GENERAL ELECTRIC H-51, H-71
Same case histories as those listed for General Electric H-31
GENERAL ELECTRIC H-72
See also case histories listed for Graybar GB-100
Intermittent reception,--..-1) corroded contact segments of radioLow phono volume phono transfer switch

GENERAL ELECTRIC J-70
Same case histories as those listed for RCA-Victor R-4
GENERAL ELECTRIC J-75
Same case histories as those listed for RCA-Victor R-4
GENERAL ELECTRIC J-80
Same case histories as those listed for RCA-Victor R-8

GENERAL ELECTRIC J-83, J-83A

See also case histories listed for RCA-Victor R-73

1) replace 50,000 -ohm resistor under the r-f coil with a 60,000 -ohm unit and resolder all oscillator coil connections

GENERAL ELECTRIC J-85
Same case histories as those listed for RCA-Victor R-8, R-10
GENERAL ELECTRIC J-87, J-87A
See also case histories listed for RCA-Victor R-73

GENERAL ELECTRIC J-88

Fading, \qquad 1)	open-circuited or leaky r-f, 1st detector
Intermittent reception	and i-f secondary-return by-pass condensers
Oscillation, _-_-_-_-_-1)	corroded condenser-gang rotor contacts
Motorboating, 2)	open-circuited r-f, 1st detector and i-f
Station hiss	secondary-return by-pass condensers
Motorboating .---------------1)	leaky r-f, 1st detector, and i-f second-dary-return by-pass condensers

GENERAL ELECTRIC J-100
See also case histories listed for RCA-Victor R-74
Hum when stations are _-1) cathode short-circuits in the type '56 tuned in and '58 tubes, caused by high voltage surges on fluctuating line voltages. Install voltage regulator resistors to prevent wide voltage variations
Oscillation

1) open-circuited $10-\mathrm{mfd}$. condenser with yellow lead connecting the volume control lug. (Note: watch the polarity in replacing, as the ground in this receiver is positive.)

GENERAL ELECTRIC J-105

See also case histories listed for RCA-Victor R-74
Oscillation

1) open-circuited $10-\mathrm{mfd}$. condenser with yellow lead connecting to volume control ing. (Note: watch polarity in replacing as ground in this receiver is positive)

GENERAL ELECTRIC J-107

Intermittent volume, ...-1) high-resistance short-circuits between

Removal of AVC tube has no effect on volume condensers CS8, $10-\mathrm{mfd}$., 200 -volts; C21, $0.5-\mathrm{mfd} ., 600$-volts; C19, $0.1-\mathrm{mfd}$., 600volts; C36, $10-\mathrm{mfd} ., 400$-volts; C35, 10mfd., 400-volts

GENERAL ELECTRIC J-125

See also "case histories" listed for RCA-Victor R-78
Hum when stations are ..1) cathode short-circuits in the types '56 tuned in and '58 tubes, caused by high voltage surges on fluctuating line voltages. Install voltage-regulator resistors to prevent wide voltage variations

Excessive hum

1) remove dial-light wires from the vicinity of the r-f choke on top of chassis. Also twist these wires

GENERAL ELECTRIC K-40A

Weak reception Distortion

1) high leakage or total short-circuiting of double 4 -mfd. electrolytic condensers. The most troublesome unit is in the ' 25 Z 5 circuit and the next is in the type ' 77 or type ' 78 cathode circuits
2) defective type '25Z5 tube, (even though it tests O.K.). Replace with new tube
Plate currents of \qquad 1) defective type ' $25 Z 5$ rectifier tube. Retype '38 tubes abnormally low, (all other voltages test O.K.) place with new tube

GENERAL ELECTRIC K-41
Same "case histories" as those listed for RCA-Victor R-17-M
GENERAL ELECTRIC K-43

60 -cycle hum,

1) connect a $500-\mathrm{ohm}$ resistor from the set (most noticeable when signal is tuned in) side of the $0.01-\mathrm{mfd}$. antenna condenser to chassis

GENERAL ELECTRIC K-50
See also "case histories" listed for RCA-Victor R-28
Oscillation

1) defective filter condenser

GENERAL ELECTRIC K-50-P
 Same "case histories" as those listed for RCA-Victor 28-P

GENERAL ELECTRIC K-s1
Low volume

1) defective series padding condenser in the type ' 2 A 7 circuit. Replace with a new unit
2) defective type '2A7 tube (even though it may test O.K). Replace.
3) oscillator and i-f circuits out of align-. ment

GENERAL ELECTRIC K-51-P

Same "case histories" as those listed for RCA-Victor 28-P

GENERAL ELECTRIC K-52, K-53

Hum

1) connect the receiver to a good ground connection and the hum will disappear

GENERAL ELECTRIC K-60, K-60-P

See also "case histories" listed for RCA-Victor R-28

Oscillation,
Motorboating,
(stops when type '2B7 tube grid cap is touched with the finger)

1) decrease in capacity of condenser Cso. Replace with a 4 -mfd., 600 -volt paper type unit

See also "case histories" listed for RCA-Victor R-11 and RCA-Victor 121
Motorboating .------.-.-.--1) leaky by-pass or filter condensers, conadvisable to replace the entire can

No AVC action

1) decrease in value of one of the AVC resistors. Replace with resistors of the proper value
Oscillation
2) decrease in capacity of condenser connected across the rectifier output. Replace with a new unit
(all receiver circuits are correctly aligned)
3) dirty or corroded condenser rotor contacts. Solder flexible pigtail leads between the rotors and the condenser frame or chassis

GENERAL ELECTRIC K-64

See also "case histories" listed for RCA-Victor 121
Intermittent reception ..1) short-circuit between the bare wire conas the tuning dial is rotated,
(this is not the case when the set is removed from the cabinet)
condenser and the wave-band switch, and a nother bare wire near it connected to ground. When chassis is inserted in the cabinet, the condenser gang is pressed down on its rubber cushions, as a result of the shaft fitting into the hole, thereby forcing the two wires very closely together and causing them to short-circuit. Separate the wires about twice the distance that they were apart originally

GENERAL ELECTRIC K-66
Same case histories as those listed for RCA.Victor 220
GENERAL ELECTRIC K-78
Same case histories as those listed for RCA-Victor 330
GENERAL ELECTRIC K-79
Same case histories as those listed for RCA-Victor 331

GENERAL ELECTRIC K-80, K-80X
See also case histories listed for RCA-Victor 140, 141
Inoperative on "C"-1) defective type '2A7 oscillator tube (even and "D" bands though it tests O.K.). Replace by substitution

Oscillation,

1) shield the grid leads of the type ' $2 B 7$

Howls on strong signals second detector tube

Inoperative,

1) short-circuit between detector coils L1s (audio system O.K.) (high grid voltage and low plate and screen voltages on the type ' 2 A 7 tubes) and L18 (receiver wiring diagram). The defect is usually at the beginning or end of the winding and the coil can easily be repaired. The coil should be doped and the receiver circuits should be aligned after it is replaced

GENERAL ELECTRIC K-85
See also case histories listed for RCA-Victor 240
Inoperative on "C" and 1) defective type '2A7 oscillator tube (even
"D" bands though it may test O.K.). Replace by substitution

Oscillation,
"Howls"
on strong signals

1) shield the grid leads of the type ' 2 B 7 second detector tube

GENERAL ELECTRIC K-105
Same case histories as those listed for RCA-Victor 261
GENERAL ELECTRIC K-106
Inoperative,

1) r-f amplifier out of alignment

Poor quality,
Poor sensitivity,
Poor AVC action
2) oscillator not tracking at the proper frequency

GENERAL ELECTRIC K-107
Same case histories as those listed for RCA-Victor 260

GENERAL ELECTRIC K-126

Same case histories as those listed for RCA-Victor 280
GENERAL ELECTRIC M-49 (Phonograph Motor)
Starting difficulty .--------1) failure of stator to rotate on the outer bearing, due to spaghetti sleeve sticking in the slot or to the resilient bumper
2) improper lubrication on outer bearing

GENERAL ELECTRIC M-50
Same case histories as those listed for RCA-Victor 117
GENERAL ELECTRIC M-51
Same case histories as those listed for RCA-Victor 118
GENERAL ELECTRIC M-56
Same case histories as those listed for RCA-Victor 211
GENERAL ELECTRIC M-61
Same case histories as those listed for RCA-Victor 128

GENERAL ELECTRIC M-65
See also case histories listed for RCA-Victor 221
Inoperative on broad- ...-1) open-circuited 4 -mfd. screen-grid cir-
cast band
(tubes and voltages test O.K.)
cuit condenser located in the power pack. Replace with a 500 -volt unit

GENERAL ELECTRIC M-66
Same case histories as those listeo for RCA-Victor 128

GENERAL ELECTRIC M-67
Same case histories as those listed for RCA-Victor 224
GENERAL ELECTRIC M-81
Same case histories as those listed for RCA-Victor 143
GENERAL ELECTRIC M-86
Same case histories as those listed for RCA-Victor 143
GENERAL ELECTRIC M-89
Same case histories as those listed for RCA-Victor 341
GENERAL ELECTRIC M-106
Same case histories as those listed for RCA-Victor 262

GENERAL ELECTRIC M-106
Poor sensitivity on 1) defective i-f or detector by-pass con- short-waves (intermittently or steadily densers between coil returns and ground
2) slipping dial on fast speed knob setting. Bend down three contact springs on tun- ing knob shaft
GENERAL ELECTRIC M-107
Same case histories as those listed for RCA-Victor 263GENERAL ELECTRIC M-125Same case histories as those listed for RCA-Victor 281
GENERAL ELECTRIC M-129Same case histories as those listed for RCA-Victor 381
GENERAL ELECTRIC N-60
Ignition interference .-.-1) lengthen the distributor rotor arm bypeening it. This shortens the gap be-tween it and the stationary contacts,thereby reducing the length of the arc
GENERAL ELECTRIC S-22DSame case histories as those listed for RCA-Victor R-7
GENERAL ELECTRIC S-42
See also case histories listed for RCA-Victor R-8Noisy reception,1) tighten bolt located between type ' 35(disappears when set i-f tube and type ' 24 first detector tube,is tapped)
which holds oscillator coil in place and also provides ground for it
GENERAL ELECTRIC S-42D
Same case histories as those listed for RCA-Victor R-9D
GENERAL ELECTRIC SZ-42P
Same case histories as those listed for Radiola 86
GENERAL ELECTRIC S-132
Same case histories as those listed for General Electric K-62
GENERAL ELECTRIC T-12
Poor reception-----...-1) increase the length of the aerial from 50 to 100 feet
GENERAL ELECTRIC T-41
Same case histories as those listed for Radiola 48

GENERAL ELECTRIC 18

Hum

1) defective antenna condenser
GENERAL ELECTRIC 51-R

\[

\]

Game case histories as those listed for Radiola 80
GENERAL ELECTRIC 80

GENERAL ELECTRIC 700

Same case histories as those listed for Westinghouse WR-5

GENERAL ELECTRIC (CANADIAN) RECEIVERS

GENERAL ELECTRIC (CANADIAN) ALL-WAVE RECEIVERS
Inoperative on "C" or ..1) warped 7 inch shaft on the wave-change
"X" band,
(set may operate if
switch is snapped hard against the stop),
Cleaning or tightening contacts does not improve the switch
switch. This prevents the rear switch arm from turning far enough, and either the wrong contact or sometimes no contact is made in this section

GENERAL ELECTRIC (CANADIAN) H-32
Same case histories as those listed for Radiola 17
GENERAL ELECTRIC (CANADIAN) H-72
Same case histories as those listed for RCA-Victor R-4
GENERAL ELECTRIC (CANADIAN) J-82
Same case histories as those listed for RCA-Victor R-71
GENERAL ELECTRIC (CANADIAN) J-86
Same case histories as those listed for RCA-Victor R-71
GENERAL ELECTRIC (CANADIAN) J-105, J-107
Same case histories as those listed for RCA-Victor R-74
GENERAL ELECTRIC (CANADIAN) K-50
Same case histories as those listed for RCA-Victor R-28
GENERAL ELECTRIC (CANADIAN) K-52, K-53
Same case histories as those listed for RCA-Victor R-28P
GENERAL ELECTRIC (CANADIAN) K-64
See also case histories listed for RCA-Victor 121
GENERAL ELECTRIC (CANADIAN) K-80, K-85
Same case histories as those listed for RCA.Victor 140
GENERAL ELECTRIC (CANADIAN) K-106
Same case histories as those listed for RCA-Victor R-90
GENERAL ELECTRIC (CANADIAN) M-62
See also case histories listed for RCA-Victor 121
GENERAL ELECTRIC (CANADIAN) M-69
See also case histories listed for RCA-Victor 121
GENERAL ELECTRIC (CANADIAN) M-86
Same case histories as those listed for RCA-Victor 143

GENERAL ELECTRIC (CANADIAN) M-86
 Same case histories as those listed for RCA-Victor 143

GENERAL ELECTRIC (CANADIAN) S-22, S-22X
Same case histories as those listed for RCA-Victor R-4
GENERAL ELECTRIC (CANADIAN) S-42A
Same case histories as those listed for RCA-Victor R-4
GENERAL ELECTRIC (CANADIAN) T-41
See also case histories listed for Radiola 48
Excessive plate voltage 1) one of the filter choke leads connected and current in the output stage,
Excessive screen-grid and plate voltages on the r-f tubes to the high-voltage center tap of the power transformer grounding to case. This results in the full unfiltered voltage from the rectifier tube passing through all the tube circuits. Insert a piece of insulating paper or empire cloth between the leads and the case of the choke

GENERAL MOTORS 50

Poor volume,
Plate voltages low

1) leaky or short-circuited r-f plate condenser, usually the top one in the threepile assembly

GENERAL MOTORS 120, 130, 140, 150
See also case histories listed under General Motors 160
Intermittent drop in-1) tighten screws holding stator plates on
volume,
(set does not go completely dead)
Weak reception, Inoperative, (serial numbers below 2.9100A or 1700B)
(all voltages, condensers and resistors check O.K.)
gang condenser
2) solder wire between top and bottom stator lugs

1) grid-bias on tubes too high. Connect a 200 -ohm, 10 -watt resistor across the 240 -ohm section of the bias voltage divider in order to decrease the grid-bias on the tubes and bring up the sensitivity of the receiver

GENERAL MOTORS 160

See also case histories listed under General Motors
 120

Oscillation, \qquad Noisy tuning	corroded condenser-gang rotor contacts. Solder the r-f filament grid return leads directly to chassis and connect flexible pigtail resistors between the rotors and the tuning condenser frame
Fading, \qquad 1) Intermittent reception	open-circuiting $0.01-\mathrm{mfd}$. audio coupling condenser
	open-circuiting screen by-pass condenser broken antenna section of dual volume control
Poor control of volume...--1)	replace type '24 tube in r-f stage with '35 tube
Dial readings incorrect.-----1)	re-align receiver re-locate dial scale
Fuse blows ..-.----------1)	short-circuited or leaky $0.1-\mathrm{mfd}$. line buffer condensers
Hum .--------------------------1)	short-circuited $0.1-\mathrm{mfd}$. filter choke "tuning" condenser defective type ' 27 tube

GENERAL MOTORS 252

See also case histories listed under General Motors 253
Intermittent buzz, - ..-.-.-1) defective type "23 first detector tube (stops when aerial (even though it may test O.K.). Reand ground are disconnected, but when it is not of an external nature)
Excessive hum

1) defective power transformer input bypass condensers, having the center tap grounded. Replace with a pair of $0.003-\mathrm{mfd}$. units

GENERAL MOTORS 253, 254, 255, 256, 257, 258
See also case histories listed under General Motors 252
Inoperative unless AVC.-.-.-1) open-circuited 2-megohm resistor in grid tube is withdrawn circuit of AVC tube
Distortion \qquad 1) open-circuited $100,000-\mathrm{hm}$ section of voltage divider across speaker field

GLORITONE 26, 26P

Whistling,

1) lead from antenna post to volume con-

Howling Noise,
Oscillation trol shifted from original position. See that it runs from antenna terminal to one corner of the chassis, and from this point to the next corner, and then to
(Cont'd)

GLORITONE 26, 26P (Cont'd)

(Cont'd)
the volume control, sliding it under all other wires and making sure that it rests directly on the metal chassis all the way.

Intermittent reception, (2,640-ohm resistor heats up excessively when set cuts out)

1) replace the "Candohm" resistor with a carbon-type unit
2) short-circuit in speaker field which is tapped to act as a bleeder resistor for the screen-grid voltage supply, causing it to heat. This is usually caused by the wearing of the enameled wire insulation under the lead connection. Repair by placing a heavy piece of paper or empire cloth under this lead and giving the entire coil a coat of dope

GLORITONE 27

Fading,
(switching a light on or off restores set to normal operation) (all parts test O.K.)

Low volume \qquad 1) defective speaker field; coil open-circuits under load. Test by touching metal screwdriver to core with set in operation and noting magnetism

GLORITONE 99

Distortion at high volume
\qquad 1) defective 4 -mfd. electrolytic condenser
2) check 400,000 -ohm resistor from type ' 47 grid to voltage divider for change in value or open circuit, causing high pentode plate current
3) check type ' 47 tube. Replace if weak

GLORITONE 99-B

Loud whine developing at high volume and building up till signal is drowned out

1) vibration of oscillator and tuning condenser plates transmitted from the speaker through the chassis. Float the oscillator and tuning condensers on rubber cushion supports

GRAYBAR GB-8, GB-8A
Same case histories as those listed for RCA-Victor R-4

GRAYBAR GB-9

 AVC circuit
2) leaky 0.1 -mfd. AVC grid-return by-pass condensers
Weak reception,

1) leaky 0.1-mfd. AVC grid-return by-pass Insensitive,
Inoperative until AVC tube is withdrawn
Distortion at any volume....1) carbonized voltage-divider resistors. Inlevel

Stations tune with "plop"

1) Reduce AVC heater voltage

Fading,

1) corroded contact of volume control shaft

Noisy,
2) loose volume control resistance winding

Intermittent reception
Noisy tuning, Oscillation

1) corroded condenser-gang rotor contacts. Install flexible pigtail leads on rotor
Very weak-distorted reception
2) open-circuited coupling winding in second i-f transformer
Distortion,
3) "short" from "prim." to "sec." of pushWeak reception,
High positive bias on one output tube

Hum,

Motorboating when one type ' 47 tube is withdrawn pull input transformer

1) resistor on phono terminal strip shorting to terminal No. 4

GRAYBAR GB-100

Intermittent reception,.....1) open-circuited screen by-pass condenser
Oscillation

Weak reception,	1) leaky 0.1-mfd. AVC grid by-pass conden-
Inoperative until AVC tube is withdrawn 1) ser in power pack. Replace open-circuited 1-megohm AVC grid re- sistor in power pack	

Poor tone

1) ope:ate pentode tubes as triodes
2) remove 18,000 -ohm and $0.005-\mathrm{mfd}$. condenser across output plate circuit
Distortion at any volume...-1) carbonized voltage divider resistors. Inlevel,
Weak reception stall wire-wound unit for screen drop resistor

GRAYBAR GB-310, GB-311
Same case histories as those listed for Radiola 18
GRAYBAR GB-320
Same case histories as those listed for Radiola 18
GRAYBAR GB-330, GB-340
Same case histories as those listed for Radiola 60
GRAYBAR GB-500
See also case histories listed for Radiola 44

Poor volume,
Poor selectivity

1) tuning condenser rotors out of line. Reset the tuning condensers and rebalance the circuits

GRAYBAR GB-550
Same case histories as those listed for Radiola 44, 46
GRAYBAR GB-600
Same case histories as those listed for Radiola 66
GRAYBAR GB-678
Same case histories as those listed for Radiola 48
GRAYBAR G13-700, 770, 900
See case histories listed for Radiola 80
GRAYBAR GB-989
Same case histories as those listed for RCA-Victor R-10
GRAYBAR GC-13
Same case histories as those listed for RCA-Victor R-4
GRAYBAR GC-14
Same case histories as those listed for RCA-Victor R-8
GRAYBAR GC-10-69, 10-88, $\mathbf{1 0 - 9 9}$

Fading,
Sharp drop in volume, Weak reception, Station hiss
Poor control of volume,, 1) leaky $0.05-m f d$. r-f first detector and i-f Distortion, secondary by-pass condensers
Distortion at resonance
Noisy tuning,

1) corroded condenser gang rotor contacts. Oscillation, Motorboating between stations
Intermittent reception,.....1) open-circuiting or open-circuited 0.1-mfd. Inoperative
2) open-circuited $0.05-\mathrm{mfd}$. r-f, first detector and i-f secondary-return by-pass condensers
-1) corroded condenser gang rotor contacts. Bond rotors to chassis with flexible pigtails

GRAYBAR GT-7

Same case histories as those listed for RCA-Victor R-4
GRAYBAR GT- 8
Same case histories as those listed for RCA-Victor R-8

GRAYBAR 700, 770, 900
Same case histories as those listed for Radiola 80 and Westinghouse WR-5

GIREBE HS-4

Intermittent reception, ..1) replace 8,500 -ohm resistors in screen-	
feed circuit, using wire-wound 10 -watt	
Noisy reception,	units
Oscillation	2) remove entire 6 -section metal-cased by-
pass condenser. Replace the r-f and i-f	
	cathode by-pass units with 0.1 -mfd. con-
	dersers; the second detector tube by-pass
	units with 0.5-mfd. by-pass condensers;
and the tone control condenser with a	
	0.02 -mfd. unit. The capacity of the
screen by-pass condensers is also 0.1-mfd.	

GREBE M 3-4

\qquad 1) leaky or intermittently open-circuiting condensers. Test each separately with high voltage and a neon lamp. Replace if defective

GREBE SK-4

60-cycle ham,
(filter condensers check O.K.)

1) defective $0.1-\mathrm{mfd}$. condenser mounted at the detector tube. Replace with new unit

GREBE 7

Inoperative

1) short-circuited tuning condenser
2) defective push-pull input transformer

GRIMES SERENADER 0

Oscillation at low fre- .-1) high-impedance r-f coil primary windquencies (tubes and voltages test O.K.) ings. Detune the plate coil in the first r-f stage by connecting a $0.00005-\mathrm{mfd}$. condenser across it

GRUNOW CHASSIS 5A

No voltage

1) flashing occurring between the humbucking coil and the speaker winding, destroying the field coil leads

GRUNOW CHASSIS 5B

Motorboating,
Weak reception on local
stations only

1) open-circuited $20-\mathrm{mfd}$. filter condenser. Replace with new unit across the terminals of the old unit on condenser bank
2) open-circuited 8 -mfd. filter condenser. Repair similar to above.
Note: it may be best to replace the entire bank, since the units on the newer types have better connecting leads

60-cycle hum

1) pilot light short-circuiting on variable condenser gang. Twist insulating washer until pilot light is insulated from condenser frame, then apply some cement to hold it in place
Set draws current after ..1) due to large capacity of condenser being turned off, (dial-light glows dimly) jammed in behind the speaker. Replace with smaller unit

Hum

1) loose laminations in filter choke
2) defective filter choke coil. Replace with new coil

GRUNOW CHASSIS 6A, 6C
Poor tone ...-.-.-.-...-1) replace the coupling condenser between the type '75 and '42 tube with a 0.01mfd., 600 -volt unit. This unit is located on the left side of the chassis behind the short resistor strip

Excessive distortion

1) high-resistance leak in $0.01-\mathrm{mfd}$. coupwhen volume control ling condenser, being of the order of is advanced toward maximum setting 5 -megohms. Replace with new unit

GRUNOW CHASSIS 6D

Set dead

1) short-circuited lead in condenser block. This necessitates the replacement of the entire block, as the negative lead is tied inside it
Intermittent reception .- 1) defective type '75 tube (even though it may test O.K.). Replace with new tube

GRUNOW CHASSIS 7A

Screen-grid resistor .-...-1) burns out	replace this 14,700 -ohm section of the voltage divider with a 15,000 -ohm, 10 watt wire-wound unit
Poor tone --.---.-.-.........-.-.-1)	leaky electrolytic filter condensers. Replace with new 8 -mfd. units, leaving the shield off
Hum, \qquad Poor tone	defective type '6B7 tube (even though it may test O.K.). Replace with new tube
Intermittent loss of \qquad 1) volume, Inoperative at high-firequency setting of dial, (trouble corrected by shifting band switch from broadcast to short-wave band and back again)	defective $0.1-\mathrm{mfd}$. condenser in block located on bank lug attached to oscillator coil in shield can farthest from the front of the chassis. Replace with new unit
Inoperative, \qquad 1) Intermittent reception	defective $0.1-\mathrm{mfd}$. condenser in block behind tuning gang with green lead, which is connected together with two red leads to a common terminal at the left rear of the short-wave switch. Replace with a 600 -volt unit defective 1,000 -ohm resistor, as a result of the above condition, located in resistor bank. Replace with new unit

GRUNOW CHASSIS 7B

Loss of volume1) defective volume control. Replace with a new unit

Noisy reception on the ..1) dirty or corroded grounding arms which " A " band, hold the variable condensers in place. Inoperative Clean them with fine sandpaper and replace

Dual-ratio drive does

1) loosen the two small bolts on the drivenot stay in low-ratio position sleeve assembly; push the drive sleeve back slightly, re-tightening the screws as tightly as possible

Microphonic noises-.1) chassis bolts too tight. Loosen bolts
2) shafts on chassis touching the wood of the cabinet

GRUNOW CHASSIS 8A, 9A

See case histories listed for Grunow Chassis 7A
GRUNOW CHASSIS 11A
See also case histories listed for Grunow Chassis 7B
Oscillation

1) higih-resistance connection between shield and socket of type '6C6 tube. Drill out rivet, replacing it with a 6-32 brass machine screw and nut

GRUNOW CHASSIS 12A

Low volume, Poor tone, Distortion

1) speakers out of phase-polarity on their terminals reversed. Test by shorting out voice coil in large speaker and reverse polarity on one of the small speakers. Connect leads on one of small speakers in position which gives best response. Then do the same with large speaker, connecting leads in position which gives best output

GRUNOW CHASSIS 65B. 65C
Same case histories as those listed for Grunow Chassis 5B
GRUNOW 500
Same case histories as those listed for Grunow Chassis 5A
GRUNOW 501
Same case histories as those listed for Grunow Chassis 5B
GRUNOW 650
Same case histories as those listed for Grunow Chassis 6A, 6C
GRUNOW 660, 661, 662
Same case histories as those listed for Grunow Chassis 6A, 6C
GRUNOW 670, 671
Same case histories as those listed for Grunow Chassis 6D
GRUNOW 700, 701
Same case histories as those listed for Grunow Chassis 7A, 8A, 9A
GRUNOW 750, 751
Same case histories as those listed for Grunow Chassis 7B
GRUNOW 801
Same case histories as those listed for Grunow Chassis 7A, 8A, 9A

GRUNOW 901, 902

Same case histories as those listed for Grunow Chassis 7A, 8A, 9A

GRUNOW 1101

No control of volume ...--..-1) replace remote control cable
2) short-circuit between blue wire and metallic shield over black wire

GRUNOW 1151, 1152
Same case histories as those listed for Grunow Chassis 11A
GRUNOW 1241
Same case histories as those listed for Grunow Chassis 12A

GULBRANSEN "CHAMPION JUNIOR"

Set dead

1) double open-circuit caused by the corrosion of the primary leads of the first audio transformer, inside the case. Remove the transformer from the case and after removing tape, etc., from the connected joints, clean off the corrosion and solder a new section of the wire to the leads. Re-tape and insulate the newly soldered joints carefully
"Sluggish,"
2) voltage-dropping resistors off value. Check their resistance, replacing with new units if above or below tolerance value

GULBRANSEN 8 TUBE A-C CHASSIS

Noisy reception, \qquad Intermittent reception

1) defective type '24 r-f tube (even though they may test O.K.). Replace with new tubes
2) intermittently short-circuiting $0.3-\mathrm{mfd}$. r-f plate supply by-pass condenser (one of 3 units in a common can). Replace with a new unit

GULBRANSEN 75

Static on all stations, .-.-. 1) defective plate choke coil in type ' 24 de(tubes and voltages check O.K.) tector circuit

GULBRANSEN 92,93
Tubes burn out .-.-......-...-.1) arcs occurring between the "B" limiting resistor connected from the type ' 33 socket to the nearby filament wire

HALSON L-10
Hum

1) defective volume control. Replace unit

HALSON 515SW
Same case histories as those listed for Zenith A

HAMMARLUND "PRO", "COMET"

Failure of the i-f oscillator	high-aresistance connection to one of the secondary lugs on the i-f oscillator coil. Resolder the connection

HOW ARD 1936 A.C.-D.C. MODELS
Hum

1) interaction of pilot light leads running from sockets to the resistor and other nearby wires. Isolate these leads from all the rest of the receiver circuits

HOWARD E-14

Hum	insert a 30 -henry choke between the speaker cable and the field coil terminal, adding a $16-\mathrm{mfd}$. condenser to the input of this choke. Note: since there is no room on the chassis for this installation, it will be necessary to install a little shelf in the cabinet above the power transformer, for mounting the units

HOWARD MODEL SG-B

HOWARD X-2, X-3, Y-3
Noise suppressor sys- -.-1) reduce length of the antenna tem does not function

INTERNATIONAL (KADETTE)
 (See listings under KADETTE)

JACKSON-BELL "PETER PAN"

Inoperative .-.---.-.-.-.-...-.-1) inspect the soldered joints on the coils

JACKSON-BELL 260

Set dead, \quad (grid bias on type tube approximately 75 -volts)

1) replace the $0.02-\mathrm{mfd}$. coupling condenser (C-12)
2) replace the 2 -megohm type ' 45 tube grid resistor ($R-6$)
3) leaky $0.1-\mathrm{mfd}$. r-f cathode by-pass condenser. Replace with new unit

KADETTE B \& S

Intermittent reception ..1) replace type '6B7 tube

Inoperative
KADETTE ES-19, ES-20

1) short-circuited $0.05-\mathrm{mfd}$. tone control by-pass condenser. Replace.
2) burnt-out 50,000 -ohm tone control as a result of the above condition. Replace with new unit
3) short-circuited electrolytic condenser block. Replace with new unit

KADETTE 2 TUBE RECEIVER

Inoperative

1) open-circuited $3,000-\mathrm{hm}$ resistor located under the type '12A7 tube

KADETTE "INTERNATIONAL"

Inoperative, \qquad 1) defective 75 -ohm resistor in the plate (no plate and screengrid voltage on all tubes) lead of the type 'KR-1 rectifier tube. Replace with a 10 -watt wire-wound unit
2) defective type 'KR-1 rectifier tube. Replace with a new tube

Squealing at the highfrequency end of the tuning dial

Weak reception,
Low volume, Distortion

1) short projecting wire from the control grid of the type ' 36 tube situated too close to the r-f coil. Remove the wire from the coil and re-align the receiver circuits
2) defective $0.05-\mathrm{mfd}$. condenser connected between the plate of the rectifier tube and one leg of the line. Replace with a new unit
3) defective filter condensers. Replace with 4 -mfd., 175 -volt units
4) defective cathode by-pass condenser. Replace with a 5 -mfd., 35 -volt unit

KADETTE 72

Oscillation \qquad
Microphonic howl

1) interaction between the grid leads of the type '106 and '34 tubes. Separato them
2) defective type ' 25 S tube (even though it may test O.K.) Replace.

KARADIO

No local reception

1) partially short-circuited 100,000 -ohm a-f coupling condenser connected between the plate of the type ' 85 tube and the first a-f transformer. Replace with new unit
2) defective oscillator, usually a result of a defective type ' 36 tube. Replace tube

KENNEDY 4 A.C.-D.C.
Intermittent reception, ..1) check tube socket connections. Loose

Noisy reception connection in one of the tube plate circuits

KENNEDY 26

1) shorted compensating condenser on condenser gang
2) shorting compensating condenser on condenser gang

KENNEDY 30, 32
Intermittent reception

1) short-circuiting or leaky detector plate by-pass condensers
2) open-circuiting or open-circuited 0.06mfd. audio coupling condenser
3) open-circuiting voice coil of dynamic speaker

KENNEDY 60
Intermittent reception

1) green lead to stator of first tuning condenser broken (replace with flexible wire)
Fading \qquad 1) corroded contacts or insufficient blade tension of wave-band switch in shortwave converter.

KENNEDY 62
Distortion \qquad 1) short-circuit between the primary and secondary windings of the push-pull input transformer. Replace with new unit
Intermittent reception .. 1) replace the stator connecting leads with Inoperative (when tuning control is reached or moved from one side of receiver to other)
more flexible wires. The present ones open-circuit, since they are not fiexible and cannot stand being twisted, when the condenser is rocked

KENNEDY 62A
Same case histories as those listed for Kennedy 60
KENNEDY 526
Same case histories as those listed for Kennedy 26
KENNEDY 632
Same case histories as those listed for Kennedy 30, 32
KNIGHT S. G. 8
Same case histories as those listed for Columbia Screen Grid 8

KOLSTER CK-35

Poor selectivity over
part of the tuning

dial \quad\begin{tabular}{l}

open-circuited | grid suppressor resistor in the grid cir- |
| :--- |
| cuit of the first r r-f tube. Replace with |

a $1 / 4$-watt, 2,200 -ohm metallized unit
\end{tabular}

KOLSTER K-20

Starting howl ___-_1) connect 100,000 -_hm resistor across first audio secondary
Noisy reception ._____._._._1) sparking or arcing voltage divider
2) noisy audio transformer primary windings
3) worn resistance element in volume control
4) loose nuts on terminal strip

Weak reception.-................-1) open grid-suppressor resistors

Fading,
Intermittent reception

1) open-circuiting plate by-pass condenser
2) loose nuts on terminal strip
3) short-circuiting detector tuning condenser vernier
4) open-circuiting filament by-pass condenser

Inoperative \qquad 1) short-circuited detector tuning condenser vernier

Microphonic \qquad 1) remove small condensers shunting grid suppressors
2) increase value of grid suppressors

Oscillation \qquad 1) open-circuited plate or filament by-pass condenser
2) remove one or more small condensers shunting grid suppressors
3) increase value of grid suppressors
4) leaky neutralizing condensers across the suppressor resistors in the r-f amplifier grid leads. Replace with new trimmer condensers, setting their capacity just beyond the point of regeneration

KOLSTER K-21
See also case histories listed under Kolster K-20
Loud "howl" for about .-1) remove extra piece of green wire conten minutes after set is turned on
nected from the control grid of the first a-f tube. This wire is laced for a way with the tuner power supply wires, but its other end is left open. Its removal will check the howl
(Cont'd)

KOLSTER K-21 (Cont'd)

KOLSTER K-22, K-23, K-24, K-27, K-28
See case histories listed for Kolster K-20, K-21
No reception_-______ 1) look for loose prongs on loudspeaker plug
2) open circuit in voice-coil leads
3) shorted filter condenser in power pack

Noisy reception _______ 1) defective audio transformer in power pack

KOLSTER 42

Weak reception with volume control at maximum setting, (tubes and voltages test O.K.)

1) leaky $0.0025-\mathrm{mfd}$. grid condenser in detector circuit. Replace with new unit

KOLSTER K-43

KOLSTER K-60, K-62 (cont'd)

(Cont'd)
5) loose grid cap clips. Replace with tight fitting clips
6) defective band-pass filter
7) short-circuited tuning coil

KOLSTER K-70

See also case histories listed for Kolster K-80- K-82

Fading to almost a

1) leaky $0.1-\mathrm{mfd}$. coupling condenser conwhisper when tone control position is changed

High-pitched whistle

1) interaction between type ' 47 tube and push-pull input transformer. Bond the transformer case to the chassis in several places

KOLSTER K-80, K-82, K-90, K-92

Fading

1) gassy AVC tube

Noisy tuning,

1) corroded condenser-gang rotor contacts. Solder flexible pigtail between rotor and condenser frame
Inoperative until AVC...-.-1) open-circuited 2 -megohm AVC grid
tube is withdrawn
Insensitive,
Volume control critical,
Volume control has timelag,
Difficult to tune
Oscillation,
Motorboating, Noisy
High-pitched whistle
2) interaction bewteen type ' 47 tubes and push-pull input transformer. Bond the transformer case to chassis in several places

KOLSTER K-100

Same case histories as those listed for Kolster K-60, K-62

KOLSTER K-130, K-132

Oscillator inoperative,1) (oscillator tube tests O.K.)	1) change in value of grid condenser or grid resistor. Replace with new unit 2) defective oscillator plate resistor. Replace with new unit 3) increase in value of first a-f tube plate resistor, causing a drop in plate voltage. Replace with new unit 4) defective first a-f transformer. Replace with new unit
Failure of tuning in-1) dicator	1) change in value of $\mathbf{1 0 , 0 0 0}$-ohm resistor between the neon tuning indicator and ground
Low volume .-.-.--.-.----.-....-.-1)	1) defective r-f choke. Replace with a new unit
Insensitive, \qquad 1) Poor AVC control	1) change in value of AVC resistor. Replace with new unit

KOLSTER K-140
Weak reception, Fading

1) change in value of $25,000-\mathrm{hm}$, 1 -watt resistor located at end of chassis farthest from power transformer (R21), and $10,000-\mathrm{hm}$, 1 -watt unit located near power transformer. Replace both with 10-watt units
Impossible to align re-
ceiver due to unstable
i-f amplifier
2) align all i-f transformers to exactly $175-\mathrm{kc}$. Turn the trimmer of the one which is least stable all the way in. This gives better selectivity and stability than staggering. Locate unstable stage by placing screwdriver near each, noting in which the most change is introduced
Intermittent reception .-. 1) replace defective type '56 tube
Hum
3) defective filter condenser. Replace with new unit

KOLSTER 6F, 6J, 6K, 6L, 6N, 6R
 arm aganist resistance
2) clean and tighten socket prongs (Kolster 6 K only)
Starting howl

1) connect $\mathbf{1 0 0 , 0 0 0}$-ohm resistor across secondary of first a-f transformer
Hum
2) shield detector tube and ground shield

Choked,

1) short-circuited or leaky 2 -mfd. speaker

Weak reception output condenser
No signals

1) open resistor in power pack
2) shorted condenser in power pack (for Kolster 6 K only)
(Cont'd)

KOLSTER 6-F, 6-J, 6-K, 6-L, 6-N, 6-R (cont'd)
Distortion,
(tubes and voltages
test $\mathrm{O} . \mathrm{K}$.
(voltage on type $\quad 71$
filament about $51 / 2-$
volts)

1) defective push-pull line switch. Replace with long-necked toggle switch (For Kolster 6-K only)

LEWOL LW-4

Insensitive

1) increase in value of 2 -megohm resistor connected in the grid lead of the type '6C6 detector tube. Replace with new unit

LYRIC A-65
Operative only over .-...1) failure of oscillator over inoperative part of the dial part of the dial. Drop the value of the oscillator cathode resistor to $1 / 2$ its former value

Resistors burn out

1) decrease in value of 15,000 -ohm, 2 -watt and 10,000 -ohm, 1-watt resistors, causing them to draw a high plate current and burn up. Replace with new units of the proper value

LYRIC C-4, M-4

Set dead,

1) locate open-circuited filament in one of Tubes do not light the tubes, and all the tubes will light, since they are connected in series
2) defective 16 -mfd., 150 -volt electrolytic condenser mounted on the top side of the chassis and tied to the speaker frame. Replace with a new unit

LYRIC D

Intermittent volume, .-....-1) defective volume control resistor. Re-

Oscillation,

Volume increases when light is switched on place with new unit
2) add $0.25-\mathrm{mfd}$. condensers to the screengrid and cathode by-pass units. This will cure the oscillation

LYRIC K-69

Low volume, Muffled tone

1) short-circuited $1-\mathrm{mfd}$. condenser in detector circuit, located in dual unit next to filter block. Replace both to avoid trouble with second condenser later on

Weak reception, (good tone)

1) partial short-circuit in screen-grid condenser

LYRIC S6

Distortion,
(tubes and voltages
test $0 . \mathrm{K}$.)

Distortion at low volume

Pentode output tube gets red hot

Muffled reception, "Blare"

Distortion,
Speaker rattle,
(no grid bias on the type ${ }^{4} 4$ tubes)

Noisy reception,
Intermittent noise

1) increase in value of 200,000 -ohm resistor in circuit of unshielded tube in rear of chassis. Replace with new unit
2) defective 1 -megohm resistor located on power transformer. Replace with new unit

LYRIC S7

1) open-circuited output transformer, leaving no voltage on the plate and causing the screen-grid to carry the full load. Replace the output transformer
2) replace 250,000 -ohm resistor in the type ' 47 pentode tube circuit and the $1 / 2$-mfd. condenser in the plate end of the screengrid circuit

LYRIC S8

1) open-circuited $1 / 2$-megohm resistor. Replace with new unit
2) defective a-f input transformer (even though it may test O.K.). Replace with new unit
3) short-circuited $0.1-\mathrm{mfd}$. condenser between the first detector grid coil and the tuning condenser

LYRIC S-80
Poor reception, Low volume, Fading

1) change in value of 16,000 -ohm resistor connected between plate and screen circuits and the $15,000-\mathrm{ohm}$ resistor connected between screens and cathodes. Replace with 10 -watt units

LYRIC SA-90

Noisy reception, (sounds like defective volume control)

Hum after set operates for about an hour

Poor sensitivity, \qquad
Low volume

1) leaky or short-circuited type ' 27 tube. Replace with new tube
2) connect a 2 -mfd. condenser between the "low" side of the filter choke and ground
3) one-half of secondary of second pushpull transformer open-circuiting intermittently. Replace with new transformer or disconnect the secondary connections and connect the two grid (Cont'd)

LYRIC SA-90 (Cont'd)

leads from the type ' 45 tubes in series with the $0.06-\mathrm{mfd}$., 400 -volt condensers across the primary terminals of that transformer. Then connect two $1 / 2-$ megohm resistors in series across the grid leads of the ' 45 s , grounding the point where they are connected in series to the chassis

LYRIC SA-91, SA-99, 91, 99, 900

No inter-station noise suppression,
Microphonic

Weak reception, Distortion
Distortion at low volume
Distortion, \qquad Blasts at high volume, Tone control ineffective, Oscillation

1) short-circuited or leaky first audio cathode by-pass condenser
2) change type '55 tube which may test perfectly
3) voice coil improperly centered
4) isolate grids of parallel type ' 2 A 5 tubes with second coupling condenser and grid leak
5) Insert 250 -ohm resistor in each ' 245 grid circuit
Distortion,
6) short-circuited or leaky '2A5 cathode

Grids of type '2A5
tubes glow,
Low '2A5 grid bias
Intermittent reception, ... 1) open-circuiting r-f screen by-pass conOscillation denser
Inoperative, \qquad 1) primary to secondary short-circuit or primary to shield short-circuit of i-f transformers

Oscillation,

1) i-f transformer out of adjustment
"Birdies,"
Unstable
Inoperative,
2) primary of i-f transformer grounding to

No 1st detector or i-f plate voltage, all other voltages low,
D-C output shorted
can. Melt out of can and line inside with paper or tape, etc.

LYRIC SA-133, 1300

L	chokes in type '82 tube
Grids of type '2A5 tube glow	plate leads
Arcing at high \qquad volume	arcing from voice coils to field "pot". Connect resistor across voice coils

Grids of type '2A5 tube glow
Arcing at high volume

1) arcing from voice coils to field "pot". Connect resistor across voice coils
plate leads

MAJESTIC M

Distortion -----.-.-.---.-.......-1) replace the type '43 tube
MAJESTIC 15

Inoperative on part-1) of dial	change the value of the first detectoroscillator cathode resistor to $5,000-\mathrm{hms}$, replacing the old 10,000 -ohm unit
Inoperative, \qquad 1) (tubes and voltages test O.K.)	defective type '24-A oscillator tube (even though it tests O.K.). Replace by substitution
Inoperative, 1) \qquad (no plate voltages on r-f and i-f tubes)	hort-circuited i-f transformer
Inoperative \ldots-.---...........-1)	burnt-out antenna coil. Replace with new unit defective antenna coupling condenser open- or short-circuited $0.01-\mathrm{mfd}$. primary buffer condenser. Replace with a unit of higher voltage rating
	corroded or high-resistance connection at the i-f coils. Test this by charging an $8-\mathrm{mfd}$. condenser and flashing each coil. The coil is in grood condition if it stands this test

MAJESTIC 20, 21, 22, 23
Inoperative --------.----------1) short-circuited $0.1-\mathrm{mfd}$. plate by-pass condenser within second i-f transformer
2) open-circuited 10,000 -ohm oscillator grid leak

Inoperative with tone------1) short-circuited $0.022-\mathrm{mfd}$. condenser in control in "bass" position this circuit

Unstable operation---------.--1) open-circuited $10,000-$ ohm oscillator grid leak

Hum at resonance

1) open-circuited detector cathode by-pass condensers

MAJESTIC 30
Type '80 rectifier

1) short-circuited 2 -mfd. filter condenser tube filament burns between the orange lead of the type ' 80 out on one side tube filament terminal and the filter pack. Replace with a new 600 -volt unit

MAJESTIC 39
Intermittent reception, ..1) check and replace audio coupling conFading denser

MAJESTIC 50

See also case histories listed for Majestic 52
No control of tuning.........1) replace drive cable condensers

Noisy reception-1) defective volume control
Set dead, .-......................
No plate voltage on sec-

1) remove small plate in back of chassis ond detector tube,
All plate voltages about 15 -volts below normal directly below mounting of types ' 80 and ' 45 tubes. Look for a charred 25,000ohm resistor, with a short-circuited 1 -mfd. condenser across it. Replace them

MAJESTIC 52

MAJESTIC 55, 59
Intermittent reception,......1) short out grid filter resistor in type '6A7 Fading tube secondary return circuit
2) leaky condensers in block located on outside of chassis near speaker
3) open-circuits or loose ends on tubular condensers. Check each one carefully

Inoperative, Motorboating

Inoperative \qquad 1) defective electrolytic filter condensers. Replace both condensers

Weak reception \qquad 1) shorted $0.003-\mathrm{mfd}$. tone-control conden.ser. When this happens, inspect the tone control, as a shorted condenser allows high voltage to pass through it, ruining the carbon strip; (tone-control value 50,000 -ohms)

MAJESTIC 60 SERIES

Inoperative
Fading, Erratic meter operation, Weak reception

1) short-circuited $0.1-\mathrm{mfd}$. plate by-pass condenser within first or second i-f transformer
2) leakage between porous cotton-covered leads
3) leaky $0.067-\mathrm{mfd}$. r-f secondary return by-pass condensers
4) leaky 0.067 first detector secondary-return by-pass condenser
5) porous 57,000 -ohm blue carbon resistor
6) absorption of moisture by cotton-coveered leads and resistors throwing receiver out of alignment. It is advisable to rewire the entire receiver using rub-ber-covered wire for tuning condenser leads, control-grid leads, AVC plate leads, r-f and first detector secondary return leads; new, good condensers and wire-wound resistors

MAJESTIC 70

Inoperative

1) shorted r-f by-pass condenser in chassis
2) shorted filter condenser between "B + r-f", and "ground" in power pack
3) defective "on-off" switch
4) open-circuited ballast resistor

MAJESTIC 71, 72
Same case histories as those listed for Majestic 70
MAJESTIC 75
Same case histories as those listed for Majestic 55
MAJESTIC 90 SERIES
See also case histories listed for Majestic 91, 92, 93
Weak reception

1) shorted detector filter-condenser in block in power pack. Disconnect leads, then solder a 2,000 -ohm resistor between "B+ HIGH" and "B + DETECTOR" (externally) and a 2 -mfd. condenser between "B + DETECTOR and "grid"
2) re-balance and re-neutralize circuits
3) worn-out sensitivity equalizer, which is a variable resistance working together with the condenser shaft. Replace Note: if the new equalizer resistor is thicker than old one and throws the condenser shaft out of position, remove the metal back-plate on equalizer, allowing condenser shield to take its place
Indistinct reproduction 1) repair seam on loud speaker cone

MAJESTIC 91, 92, 93

Noisy tuning ..-..................1)	burrs on tuning condenser plates (burn with high voltage-all leads disconnected)
Intermittent reception ..2)	worn carbon element in equalizer control mounted on condenser-gang shaft
	lugs on audio transformers or phono input transformer grounding to core
) loose power pack terminal-strip nuts
	broken carbon resistance element of equalizer control
	open-circuited detector filter choke or resistor (in condenser block) in power pack
Weak reception, \qquad (low plate voltage)	leaky or short-circuited detector plate-voltage-supply filter condenser
Slipping dial drive .-------1)	replace with the new Majestic dial drive having heavy metal bearings
	MAJESTIC 95
Intermittent reception ..-1) caused by oscillator ceasing to function	short-circuit the resistor ($R 8$) in the A-minus lead. Note: This is only possible if a 2-volt storage cell is used for the "A" supply

MAJESTIC 101, 102, 103
Same case histories as those listed for Majestic 91, 92, 93
MAJESTIC 105
Same case histories as those listed for Majestic 95

MAJESTIC 116-A

Noisy reception .------------1)

1) short-circuited $1-\mathrm{mfd}$. vibrator buffer condenser. Replace with new unit
2) poor terminal connections or short-circuited $0.008-\mathrm{mfd}$. vibrator transformer secondary buffer condenser. Replace with new unit

MAJESTIC 130, 13:1, 132
Noisy tuning1) corroded copper friction contact on rotor of condenser gang. Solder flexible pigtails between rotor and condenser frame

Inoperative \qquad 1) terminal lugs of push-pull input transformer "shorting" to core beneath the terminal strip
Inoperative, (high cathode voltage on first and second r-f tubes)

Fading,
Intermittent reception, Weak reception

1) blue wire torn away from volume control
2) leaky or open-circuited $0.04-\mathrm{mfd}$. first $r-f$, second r-f, and detector secondaryreturn by-pass condensers. Use only finest grade replacements.
3) terminal lugs of push-pull input transformer shorting to core
4) leaky or open-circuiting r-f screen bypass condensers
5) leaky or open-circuiting r-f cathode bypass condensers

MAJESTIC 160, 163
Same case histories as those listed for Majestic 60 Series
MAJESTIC 181
Condenser drive cable.-...-.-1) remove gang assembly to re-string
broken
Fading,

1) loose power-pack terminal-strip nuts
Intermittent reception, ..1) open-circuited bias resistors in r-f, first Inoperative audio or power stages

No reception \qquad 1) short-circuited filter condenser in power pack
Indistinct reproduction_-..1) repair seam on speaker cone

MAJESTIC 195

Same case histories as those listed for Majestic 55

Inoperative
MAJESTIC 210

1) defective electrolytic condenser, replace both condensers

MAJESTIC 233
Same case histories as those listed for Majestic 130, 131, 132

MAJESTIC 300 SERIES

In	open-circuited center plate winding of pilot-light reactance transformer
2)	carbonized type ' 82 tube rectifier socket inoperative type ' 82 tubes (not burntout)
Noisy receptio	change position of type ' 82 tube rectifier high-voltage and filament leads
Pilot light does not.............1) dim when tuning	leaky or short-circuited electrolytic condenser connected across plate winding of reactance transformer

MAJESTIC 307
See also case histories listed for Majestic 300 Series

,	open-circuited or leaky $0.1-\mathrm{mfd}$.
eak reception	coupling-condenser
Poor tone, \qquad Weak reception	inoperative type ' 58 phase-rotating tube (not burnt-out)

MAJESTIC 310-A
See also case histories listed for Majestic 300 Series
Poor sensitivity1) place a 20,000 - or $30,000-\mathrm{ohm}$ resistor across the grid return of the i-f transformer and ground
Intermittent reception1) high-resistance connection between poorly cleaned enameled voice-coil wire and speaker leads

MAJESTIC 324
Same case histories as those listed for Majestic 300 Series

MAJESTIC 344
See also case histories listed for Majestic 300 Series

Highly distorted,

1) open-circuited or leaky 0.1 -mfd. audio coupling condenser
2) inoperative type '58 phase-rotating tube (not burnt-out). Replace with new tube

MAJESTIC 363
Same case histories as those listed for Majestic 300 Series

Same case histories as those listed for Majestic 55

MARCONI (CANADIAN) 1930 "STANDARD", "JUNIOR", "SENIOR"

MIDWEST 16 TUBE

Insensitive,
Weak,

1) align i-f transformers

Broad tuning,
Incorrect dial calibration
Distortion at

1) AVC i-f transformer out of alignment resonance

Poor tone (especially ... 2) replace the cathode by-pass condensers on phono reproduction)

Noisy reception (sounds like tearing cloth)
Type ' 82 tube flashes

1) two short-circuited 8 -mfd. filter condensers

MIDWEST 16-34

Poor selectivity, Weak reception
2) align r-f circuits
3) align oscillator circuits

MOHAWK RECEIVERS

See case histories listed for All-American Mohawk receivers

MONTGOMERY WARD RECEIVERS

See case histories listed for Airline receivers

MOTOROLA "GOLDEN VOICE"

Intermittent reception $\ldots-$ 1) low battery voltage delivered to the
receiver. Check all wiring between the
car battery and receiver
2) replace the type '0Z-4 rectifier tube with
a type '6X5 metal flament type rectifier
tube. The filament connections are usual-
ly already wired in these receivers. If
not, wire one contact to ground and the
other to the 0.5-mfd. condenser located
next to the "A" filter choke

MOTOROLA DUAL 6

Poor tone \qquad 1) 2) 3)	defective type ' 75 tube defective type ' 42 tube defective $500,000-\mathrm{ohm}$ type '75 tube plate resistor. Replace with a new unit
Insensitive .-.-----------------1)	short-circuited diode secondary winding in i-f transformer short-circuited i-f trimmer condenser open-circuited antenna primary coil
Speaker rattle --------------1)	dirt or filings in speaker air-gap
Buzzing noise from \qquad vibration pack, 1) Vibrator "hash"	tighten self-tapping screw in bottom of set which holds vibrator pack in its housing
2)	connect a $0.5-\mathrm{mfd}$. automotive-type condenser between the hot "A" lead at the terminal lug and the ground

MOTOROLA SUPER 6
Poor tone ..--------------------1) defective power tube
2) defective tone-control condenser
3) grounded tone control
4) defective input transformer

Poor sensitivity -------------1) defective i-f transformer coil
2) defective type '78 tube
3) defective antenna coil
4) high cathode bias on type " 78 i-f tube

Low volume -----------------1) speaker mounting bolt improperly grounded
2) plate voltage below normal

Intermittent reception .-1) pitted vibrator contact points. If points are not worn too far, trim them with an ignition file; otherwise, replace

MOTOROLA S-10

MOTOROLA TWIN 8

$\left.\begin{array}{l}\begin{array}{l}\text { Excess vibrator "hash,"--1) tighten self-tapping screw in bottom of } \\ \text { Buzzing noise from } \\ \text { vibrator pack }\end{array} \\ \begin{array}{ll}\text { set which holds pack in place }\end{array} \\ \text { 2) connect a 0.5-mfd. automatic-type con- } \\ \text { denser between the hot "A" lead at the } \\ \text { terminal lug and the ground }\end{array}\right]$

MOTOROLA 5-T-71A

Poor tone \qquad 1) defective type '71A tube 2) defective input choke 3) weak " B " batteries
Poor sensitivity \qquad 1) defective r-f coupling condenser 2) receiver circuits out of alignment 3) defective coil
MOTOROLA 6-T-12
Poor tone \qquad 1) defective type '112 tube 2) defective input transformer 3) defective $50-\mathrm{mfd}$. electrolytic condenser
Poor sensitivity --.---------.-1) defective r-f coupling condenser
Oscillation \qquad 1) poor grounds on condenser wipers 2) defective cathode condenser 3) high capacity r-f coupling condenser
MOTOROLA 7T-38
Poor tone \qquad 1) defective type 38 tube 2) open-circuited 650 -ohm bias resistor. Replace with new unit
Poor sensitivity \qquad 1) receiver circuits out of alignment 2) defective r-f coupling condenser 3) defective r-f coil

MOTOROLA 34

Failure of oscillator .-...-1) | defective 10,000 -ohm oscillator tube |
| :--- |
| grid-bias resistor. Replace with new |
| unit |

2) defective type ' 77 tube (even though it may test O.K.). Replace by substitution
Poor tone
3) defective speaker
4) defective 500,000 -ohm resistor

Poor sensitivity .--.--...-.-. 1) short-circuited i-f trimmer condenser
2) defective type '77 or ' 78 tube
3) i-f amplifier out of alignment
4) open-circuited screen resistor. Replace with new unit
"Hash" interference .---.-1) improper grounding of wiping contacts against set housing

MOTOROLA 55	
Poor tone ----.-.-.-...----- .-	1) short-circuited $30-\mathrm{mfd}$. electrolytic condenser. Replace with new unit
No plate voltage .----------1)	1) short-circuited filter condenser 2) "shorted" "Elkonode" point condenser 3) short-circuited "hash-filter" condenser
Short life on Elkonode \qquad unit	_1) to prolong life, connect a 50,000 -ohm resistor across output of replacement unit
Poor sensitivity ------------1)	1) receiver circuits out of alignment 2) defective antenna coil 3) defective i-f transformer coil
Tubes do not light Power supply inoperative	1) open-circuit in power switch
Excessive hum .---.......-	1) "A" battery leads too long or improperly connected
	MOTOROLA 61
Oscillator "hiss"	1) substitute a type ' 36 tube in the oscilla-tor-modulator socket
"Elkonode" operates spasmodically, "B-R" tube does not glow	1) short-circuited $0.05-\mathrm{mfd}$. buffer condenser across secondary of power transformer
"B-R" tube does not ionize	1) open-circuited $0.05-\mathrm{mfd}$. buffer condenser across sec. of power transf.
	MOTOROLA 77
Poor tone	1) defective last audio tube 2) defective plate choke 3) no bias on last audio tubes 4) defective $65-\mathrm{mfd}$. electrolytic condensers
Poor sensitivity	1) defective type ' 39 tube 2) short-circuited i-f trimmer condenser 3) defective untuned r-f transformer 4) open-circuit in AVC network
	MOTOROLA 77-A
Distortion, Loud whistles	1) open-circuited connection between tone control and small fixed condenser mounted behind it. Replace with flexible wire connector
Set dead, Inoperative	1) defective vibrator. Check the two 0.007 mfd. condensers shunted across the contact points, which do the rectifying

MOTOROLA 77-A (Cont'd)

2) short-circuited shunting condensers across rectifier points in vibrator. Replace with $0.007-\mathrm{mfd}$., 1600 -volt oil-filled units

Static when car is in .-.-.1) broken soldered joints between antenna
motion
2) corrosion of spring contact grounding the variable condenser rotors. Bond rotors to chassis with flexible pigtails

Poor tone ...-------------......-1) defective power tube
2) defective coupling condenser
3) no bias on type '12A5 tubes

Poor sensitivity .-............1) excessive bias on type ' 85 cathode. Reduce value of resistor to 500 -ohms
2) i-f amplifier out of alignment
3) open-circuited resistor

MOTOROLA 88
Same "case histories" as those listed for Motorola 61

MOTOROLA 100

Filament ripple

1) excessively long " A " leads. These leads should be as short as possible
2) high-resistance connection at either "hot" or grounded "A" terminal
3) improperly matched power output tubes
4) induced currents in the grid circuit of the type ' 85 tube. Remove the black lead from the 4 -contact dummy lug strip to the cathode of this tube. Next remove the volume control ground lead from terminal 2 of the same dummy strip and re-ground it to the i-f coil can directly behind the type ' 85 tube

NORTHERN ELECTRIC (CANADIAN) 81, 101
Poor reception on short-_1) open the ground connection at the wave-
wave bands (especially on the high-frequencies) band switch contact arms, connect these two arms in common to a $0.005-\mathrm{mfd}$. condenser and connect the other terminal of this condenser to ground
2) in the Model 101, reduce the bias on the third i-f tube
Broad tuning

1) replace the first and second i-f transformers. These are incorrectly designed

OLDSMOBILE AUTO RADIO

OZARKA 93, 94AVC	
No control of volume .-..1)	open-circuiting of $250,000-\mathrm{hm}$ resistor connected between the movable arm of the volume control and the center tap of the high-voltage secondary. Replace with new unit
Hum -----------------------------1)	open-circuited $350,000-\mathrm{hm}$ resistor in the type ' 47 tube control-grid circuit
	RAVOX K-482
Distortion .-------.-.-.------...-1)	defective two section $8-\mathrm{mfd}$. filter condenser. Replace with new unit
PATTERSON 70-	AW, 107-AW, 207-AW, 210-AW
60-cycle hum -------------...1)	defective type ' 82 tube. Replace with new tube
Poor quality at \qquad 1) aerial too long low volume	
I-f tubes block \qquad on local stations	disconnect the antenna. Install a switch in this circuit for receiving local stations

PEERLESS 20 SERIES

Ballast tube "blows"-_-_.1)	carbonized type '80 tube rectifier socket. Replace socket
Intermittent reception _-1)defective condenser between detector grid coil and ground	

PEERLESS COURIER 65

Choked, \qquad 1) Weak reception	open-circuited $0.01-\mathrm{mfd}$. audio couplingcondenser
Distortion, \qquad 1) Poor control of volume	carbonized 5,000 -ohm r-f screen cathode carbon resistors
Noisy, \qquad 1) Weak reception 2) 3)	leaky or open-circuited $0.00035-\mathrm{mfd}$. r-f plate by-pass condensers across split primary winding sparking sections of Kylectron speaker dirty volume control or contact arm
Inoperative ___ ${ }^{\text {a) }}$	short-circuited terminals or sections on Kylectron speaker short-circuited r-f plate by-pass condensers short-circuited screen by-pass condensers open-circuited sections of voltage divider
Fading, \qquad 1) Intermittent reception 2) 3)	open-circuited $0.01-\mathrm{mfd}$. audio couplingcondenser short-circuiting terminals on Kylectron speaker leaky detector plate by-pass condenser

PEERLESS 70, 71, 72
Inoperative-1) detector tuning condenser lug shorting to tube shield

Rectifier tube "blows"---...-1) temporary breakdown of first or second filter condenser (test each under load)

Weak,
Noisy reception

1) leaky $0.00035-\mathrm{mfd}$. r-f plate by-pass condensers across split primary winding
2) dirty volume control resistance winding or contact

PHILCO (CANADIAN) RECEIVERS

Fading-.-.-.-.----.........-1) connecting wires drawn too tightly around the edges of projecting condenser cases causing permanent or intermittent short-circuits to chassis. Insulate all such places by winding tape around edges

PHILCO TRANSITONE 3

1) water in the compensating condensers. This usually gets into them during a rainstorm or while the car is being washed. Remove the mica insulation and dry it thoroughly
2) loosening of field connections in speaker. Test for this condition by carefully sticking a piece of steel wire through the screen cover of the speaker with the set turned on, touching the wire to the centering screw of the cone. If the wire fails to stick, the field circuit is "open"

PHILCO TRANSITONE 5

Oscillation, -------------------1) pull the $15,000-$ ohm resistor in the '6A7
tube circuit up toward the front of the
set
"Swishing" noise \qquad
Inoperative,

(no plate or screen voltage)
(primary draws 10 to 15 amps.)

Intermittent reception (plays satisfactorily when the chassis is jarred)

Fuses blow \qquad 1) defective vibrator unit. Adjust or replace with new unit

PHILCO TRANSITONE 6, 6F, 9
Inoperative ---------------------1) battery connections to dynamotor re-
versed

PHILCO TRANSITONE 11

Fuses blow \qquad 1) short-circuit between speaker field hous(vibrator tests O.K.) ing and "on-off" switch mounted on vol- ume control. Tape field section close to volume control and place insulating material around switch

PHILCO 1936 TRANSITONE RECEIVERS

Intermittent reception ..1)	loose antenna plug insulator preventing good contact. File long insulator to al- most the level of the plug

PHILCO 14, 14X, 14LZX
Inoperative at high.............1) poor type '36 tube
or low frequencies $\quad 2$) reduce value of detector-oscillator cathode bias resistor
No control of tone.-.-....-....-1) check type ' 37 tube in first audio stage
Inoperative .-----.-..--------.......-1) open-circuited shadowgraph
Intermittent reception_-...-.-1) snapped coil leads at lugs of oscillator coil

Insufficient shadow-

1) small antenna. Increase size of antenna graph action
2) weak type ' 44 tubes in r-f and i-f stages
3) increase value of diode detector sec-ondary-return resistor

Shadowgraph inoperative 1) receiver circuits out of alignment on local stations $\quad 2$) defective type '6A7 tube
Motorboating,-...........1) eliminate by connecting 100,000-ohm reHum sistor from first audio grid to chassis
Broad tuning

1) r-f and i-f compensating condensers out of alignment

Oscillation

1) compensating condensers out of adjustment
2) move all leads adjacent to oscillator coil further away from it.

PHILCO 16, 16B, 16X, 16RX, (Codes 121, 122)
Intermittent reception, -1) replace volume control
Hum,
Fading
3) open-circuiting resistor in second i-f tube plate circuit
4) defective type '78 tube (even though it may test O.K.). Replace with a new tube by substitution

Fading

1) intermittent open-circuit in the third
(condensers and resistors check O.K.)

Fading on short-waves Oscillator drift i-f transformer. Replace with new unit if defective

1) bond tuning gang to chassis
2) bond tuning gang rotors to chassis with flexible pigtails

Weak reception on very-...1) increase oscillator plate voltage. Relow wavelengths

Inoperative below .------.-1) high resistance tuning condenser gang 15 mc

Two resonance peaks 1) replace shadowgraph
indicated on shadowgraph,
Widening of shadow upon resonance

Insensitive,
Plate voltages low
Choked \qquad 1) open-circuited 2 -mfd. by-pass condenser B in condenser block
2) open-circuited $0.5-\mathrm{mfd}$. first audio plate by-pass condenser

Audio distortion .------.-.-1) leaky electrolytic condenser No. 75. Replace with new unit

Noisy reception ...-.........-1) defective shadowgraph bracket. Replace

PHILCO 16, 16-X, 16-RX (Code 123)
See also case histories listed for Code 121, 122 models
Inoperative on S-W .-...-.-1) high-resistance contacts in waveband switch. Replace wtih new switch

Intermittent reception .-.-1) intermittent connection between coil lead and hook-up wire in third i-f transformer

PHILCO 16, 16B, 16X (Codes 125, 126)

Distorted reproduction, .-1)	center-tap of push-pull input transform-
Grids of type ' 42 tubes	er grounded to core or can (Insulate
from chassis with insulating bushings	
	and washers)

Intermittent reception, _1) open-circuiting diode audio coupling
Very weak signals
(shadowgraph oper-
\quad ates)

Dial sticks,
Dial slips

1) excessive pressure exerted by felt rests against dial
2) dial cable worn or frayed

Weak reception,
No plate voltage on second i-f tube,
Wide shadowgraph indication

Spasmodic operation, _-.-.-1) open-circuited first-audio screen resistor

1) open-circuited second i-f tube cathode bias resistor
2) first-audio screen resistor increased in value

Weak reception

1) gassy type '5Z3 tube

Distortion,

1) leakage between insulation and chassis

Type '42 screens get red hot

Cutting off of volume, . 1) open-circuiting by-pass condenser. TrouIntermittent reception of first filter condenser
ble in lead contacts
2) open-circuiting 250 -ohm resistor assembly blocks in i-f plate circuit

Distorted,

1) open-circuiting, or change of resistance Intermittent reception of first audio tube 1-megohm screen resistor

PHILCO 17

See also case histories listed for Philco 16

Spasmodic operation,

1) open-circuited first-audio screen resistor
Distortion
2) first-audio screen resistor increased in value
Weak reception ---. .-. -.- 1) gassy type ' 5 Z 3 tube
Inoperative with volume .1) replace condenser 6 (circuit diagram) control at minimum setting and QAVC
switch in "on"
position

PHILCO 17-X

PHILCO 18
Distorted reproduction,--...1) center tap of push-pull input transformer No power tube bias grounded to core or can. Insulate transformer from chassis with fibre washers and bushings

Choked, distorted

1) open-circuited 1-mfd. by-pass condenser reproduction

No short-wave reception .-1) open contacts on wave-band switch
Mechanical hum ___-_1) loose, vibrating laminations of power to test for decrease in hum

Inoperative

1) control grid of type '75 tube shorting to shield can
2) open-circuited audio coupling-condenser

No signal, ---------------
Shadowgraph insensitive

Intermittent reception

1) short-circuited trimmer condensers. Insert larger insulating washers after bending up plates
2) leaky AVC coupling condenser
3) broken wire connection in bakelite case of coupling condenser making intermittent contact. Replace condenser
4) open-circuiting first i-f transformer primary winding

PHILCO 18-X
Distortion,

1) leakage between insulation and chassis

Type '42 screens get red hot

Cutting off, \qquad Intermittent reception of first filter condenser

1) open-circuiting type '75 tube grid-coupling condenser
2) open-circuiting coupling condenser from diode load resistors to volume control

PHILCO 19
Inoperative (completely),..1) replace type '36 oscillator tube
Inoperative over a portion 2) change first det.-oscill. cathode-bias reof the dial, sistor from 15,000 -ohms to 10,000 -ohms

Intermittent operation,
Fades after playing for some time, resuming operation after the switch is turned off for 15 minutes or more
3) change first i-f compensating condensers to new type Philco Part No. 31-6016
4) replace fibre washers in compensating condensers with new bakelite washer and metal washer on top (Philco Part numbers 27-4109, W-1381)
(Cont'd)

PHILCO 19 (Cont'd)

5) replace extremely thin or cracked mica which separates the leaves of the highfrequency oscillator compensating condensers
6) snapped coil leads at lugs of oscillator coil
7) wire from oscillator tuning condenser to oscillator coil should be rubber-covered
8) re-impregnate oscillator coil, dip entire coil in hot paraffin for twenty secondsleaving only a portion of the mounting lug undipped, to assure a good ground connection. Allow both the coil and the pot of paraffin to cool until the paraffin becomes of somewhat heavier constituency, when the coil should be dipped again to give it a fairly heavy coating
9) in ext:eme cases, detector-oscillator tube socket should be replaced
Shadowgraph inopera-
9) replace shadowgraph (open-circuited)
tive, but receiver operates

Low volume \qquad 1) remove the 5,000 -ohm resistor in the r-f tube plate lead
Weak, distorted reception

1) poor ' 75 tube in second detector AVC stage

Shadow on shadow-

1) snapped lugs at oscillator coil leads graph widens
Wide shadow on \qquad 1) insufficient antenna (connect $2,000-\mathrm{ohm}$ shadowgraph
Insufficient action resistor across shadowgraph)
2) remove shadowgraph from i-f plate circuit

Intermittent operation of shadowgraph

1) intermittently open-circuiting shadowgraph coil. Replacement is necessary

Hum

1) dried-up electrolytic condensers. Replace with new units
\(\left.$$
\begin{array}{ll} & \begin{array}{l}\text { PHILCO 20, 20A }\end{array} \\
\text { Oscillation } & \text { 1) } \begin{array}{l}\text { open-circuited r-f plate and by-pass con- } \\
\text { densers (connecting leads snap at lugs or } \\
\text { vithin case) }\end{array}
$$

open-circuited first audio coupling-con-

densers (connecting leads snap at lugs

or within case)\end{array}\right]\)| connect a large mica condenser in the |
| :--- |
| detector plate circuit |

PHILCO 21, 21A

High-pitched whistle at . 1) place a 4 -mfd. filter condenser between high volume levels the yellow terminal of the condenser block connected to the high voltage side of the voltage-divider system and ground

PHILCO 28, 28-C

Distortion

1) defective speaker cone
2) defective type ' $25 Z 5$ tube

Distorted reproduction, -1) leaky plate by-pass condenser in plate Weak reception, circuit of type ' 75 tube
Low plate voltage on type ' 75 tube

Noisy tuning,
Noisy reception at high-
frequency end of short-wave band

Noisy tuning, \qquad 1) burrs or flakes on condenser gang plates.

Inoperation at some point of scale Burn with high voltage-all terminals disconnected
Intermittent reception ..1) short-circuited i-f transformer. Replace with new unit

Intermittent reception, ...1) replace volume control
Hum,
Volume control operation difficult

Intermittent reception, .-1) defective volume control. Test by pulling Noisy reception on shaft
2) loose lead from antenna post to antenna coil
3) intermittent connection in second i-f transformer
Noisy volume control1) isolate volume control from diode load circuit with condenser and complete diode circuit with additional resistor
Slipping dial-.-.-.-.........1) insufficient tension of roller spring at end of drive shaft

Inoperative,

1) short-circuited $0.1-\mathrm{mfd}$. by-pass condenser connected from junction of two 70,000 -ohm resistors in type '75 plate circuit to ground
2) open-circuited resistor in type '75 tube plate circuit

No short-wave

1) open or poor wave-band and switch contacts

No short-wave reception, 1) receiver circuits out of alignment
Fading on local stations 2) defective tubes. Check by replacement tests

Code interference on broadcast band

Oscillation,
Weak reception

1) wave-trap in antenna circuit out of adjustment
2) open-circuited first i-f tube cathode bypass condenser

PHILCO 29
See also case histories listed for Philco 28
Fading

1) defective third i-f transformer. Replace with new unit
Intermittent oscillation .-1) intermittently open-circuiting $0.1-\mathrm{mfd}$. tubular condenser connected between the i-f transformer secondary coils and ground. Replace with new unit
Audio whistle,
2) intermittently open-circuiting $0.09-\mathrm{mfd}$.
"Bubbling" hum
common bias by-pass condenser for the two type ' 39 tubes. Replace with new unit

PHILCO 30
Fading

1) intermittently open-circuiting $0.05-\mathrm{mfd}$. blocking condensers in the grid circuits of the r-f stages. Test by squeezing each unit and noting the effect. Replace if defective

PHILCO 38
Inoperative (entirely),----... 1

1) see remedies listed under inoperative or Inoperative over a portion of the dial, intermittent operation of Philco Model 19 receiver (except remedies 2 and 3)
Intermittent operation
2) low " A " or " B " battery resulting in failure of oscillator to function
3) change first det.-oscill. cathode bias resistor from 6,000 ohms to 4,000 ohms
4) permanent or intermittent short-circuit between i-f transformer leads as a result of the staples used to anchor these leads being driven into the wooden dowel so that they damage the insulation or touch at opposite ends. Replace with a new coil, making sure that this condition does not exist in the new replacement

Oscillation

1) replace the 0.5 -megohm resistor in the all over the dial second detector screen circuit with a $0.35-$ or 0.4 -megohm, 1 -watt unit

PHILCO 39
Intermittent reception ..1) intermittent connection in oscillator transformer

PHILCO 41 D.C.

Fading to very low \qquad 1) defective by-pass condenser across 5,000volume which can be restored to normal value by turning the volume control ohm resistor in the detector grid-return circuit. Replace with a new unit

PHILCO 41DC (Cont'd)

PHILCO 44, 44B, 44H

Distortion,
Type '42 screen red hot
Volume increases,
Selectivity poor on
broadcast band

Weak on short-waves, -- 1) open-circuited $0.00025-m f d$. postage-
Station hiss
-1) insulation of electrolytic condenser leaky, or can shorting to chassis

1) due to improper setting of waveband switch. Moving contact of third section of switch engages second wiping contact before disengaging the first one stamp type condenser connected between two bottom contacts of 3 rd and 4 th switch sections
Inoperative,
2) open-circuited type ' 75 tube grid-coup-

Very weak reception,
Slightly distorted reproduction ling condenser
2) short-circuited or leaky condenser connected from junction of two 70,000 -ohm resistors in plate circuit of type ' 75 tube to ground
Intermittent reception - 1) intermittent connection in 2nd i-f transformer
2) open-circuiting type '75 tube coupling condenser
No volume ..------------...-. 1) short-circuited i-f transformer

PHILCO 45
See also case histories listed for Philco 28

No plate voltage on	
the type 75 tube	defective $0.1-\mathrm{mfd}$. plate condenser. Re-
place with new unit of higher voltage	
rating	

Intermittent reception _-1) bolts holding tuning condenser to chassis too long or too tight, thereby short-circuiting to the stator section. Repair by loosening the bolts or cutting off their ends

Low volume \qquad 1) short-circuited terminals on dual section, 8 -mfd. electrolytic condenser. Replace with new unit
2) short-circuited turns in i-f transformer secondary. Replace with new unit
3) re-balance the receiver circuits

Distortion,

1) defective type '6A7 tube (even though it may test O.K.). Replace with new tube

Loud buzzing sound .-...-1) loose power transformer laminations.
from chassis
Sharp tuning, \qquad
Oscillation at resonance

1) replace first i-f tube cathode resistor with 500 -ohm unit

PHILCO 60

Inoperation at low frequencies
\qquad 1) short-circuited end plates on tuning condenser gang

Noisy tuning,
Inoperation at some point of dial

1) burrs or flakes on condenser gang plates Burn with high voltage-all terminals disconnected

Intermittent noise-

1) replace type '6A7 oscillator tube even though it tests O.K.

Weak, distorted reproduction,
Low plate voltage on type '75 tube
Intermittent reception, - 1) snapped oscillator coil connections at
Fading

2) defsective volume control

Oscillation,
General instability

1) add second by-pass condenser across type '6A7 tube cathode bias resistor
2) employ separate biasing resistor and bypass condenser for i-f stage

PHILCO 65

Intermittent reception,---_1) leaky or short-circuiting 0.001-mfd. deFading, tector plate by-pass condenser
Inoperative,
Weak reception

Hum,
Distortion

Low volume \qquad 1) weak detector tube. Replace with a new type '56 tube

Weak reception on high.....1) r-f circuits out of alignment frequencies

Oscillation \qquad 1) intermittently defective cathode by-pass condensers. Replace with new units
2) connect a 0.00025 - or $0.0005-\mathrm{mfd}$. mica condenser from the "low" side of the detector plate choke to ground
3) bond both ends of the tuning condenser gang rotor to the frame and the latter in turn, to the chassis with flexible pigtail leads

Crackling noise

1) loose rivets on combination resistor and cartridge-type condenser in the first r-f tube plate circuit

PHILCO 66
Set "dead" \qquad 1) short-circuited type ' 75 tube plate bypass condenser connected between the two 70,000 -ohm resistors. Replace with a 0.1 -mfd. 600 -volt unit

Inoperation at low ___ 1) end plates of tuning gang short-cirfrequencies, cuited
Cuts off at low end of dial
Noisy tuning, \qquad 1) burrs or flakes on condenser gang plates. Inoperation at one or more points Burn with high voltage-all terminals disconnected

Noisy reception, \qquad 1) defective volume control

Intermittent reception
if set is subjected
to any vibration
Noisy volume control _-_1) isolate volume control from diode load circuit

PHILCO 70, 70A

Inoperative
Type '27 tube lights up brightly
Fading, \qquad
Intermittent reception

1) second i-f transformer secondary winding short-circuited to primary winding. Dis-assemble and move leads
2) open-circuiting r-f by-pass and audio coupling condensers, usually at the eyelet of the case. Replace with new style condensers having stranded wires at eyelets
Note: the above condition is usually difficult to test but can usually be induced by shorting across the blocking condenser several times in succession, causing the condenser to open; a $0.01-\mathrm{mfd}$. condenser bridged across it should bring the set back to full volume
3) defective type ' 47 tube. Replace with new tube

Weak reception all $\ldots-\ldots--1)$	open-circuited auxiliary fixed condenser
over the dial	across the i-f padding condenser termin-
I-f transformers will not	als
peak (serial No.	2) open-circuited high-frequency feedback
below 22,000)	3) condenser. Replace with new unit

Low volume at the low-

1) defective type ' 24 second detector tube frequency end of the dial
Distortion

Low-freq. "padder" cannot be peaked	open-circuited auxiliary low-frequency padding condenser
Weak reception at	$----1)$

Suppressor grid of the .-1) section of voltage divider between the type ' 47 tube turns red-hot

Erratic tone control -...-1) change in capacity or open-circuit in operation,
Loud howl,
Microphonics

Feedback \qquad not traceable to missing rubber cushions
high-voltage center tap of the power transformer and ground short-circuits when it becomes hot. Replace with a 240 - to 300 -ohm, 10 -watt unit (even though it may test O.K.). Replace by substitution with new tube
2) open-circuited auxiliary low-frequency padding condenser

1) open-circuited low-frequency condenser across the low-frequency padder and the oscilliator cathode bias resistor. Replace with a new condenser
$0.00025-\mathrm{mfd}$. condenser connected to the plate lead of the second detector tube next to the choke coil. Replace with a new unit
2) vibrating tuning condenser plates. Place a pair of rubber washers under the chassis so as to "float" it.
3) caused by vibration of oscillator coil. Repair by dropping wad of paper in coil and with chassis upside down, drop
(Cont'd)

PHILCO 70, 70A (Cont'd)

or floating conden-
ser gang)
Microphonics,Noisy reception

Intermittent noise
beeswax from hot soldering iron point onto the paper. This will steady the coil

1) re-adjust padder condensers, until the trouble disappears
2) defective type ' 47 tube bias section on voltage divider resistor. Replace with 180 -ohm unit
Noisy reception
3) check grid connections on all tubes
4) check condition of volume control
5) peeling plates on tuning condensers. Burn with high voltage-all terminals disconnected

PHILCO 71

Inoperative

1) open-circuited shadowgraph

Inoperative between

1) defective type ' 36 tube (even though

800 and 1500 kc ,
Detector-oscillator tube fails to oscillate it may test O.K.). Replace with new tube
2) replace the $15,000-\mathrm{hm}$ detector-oscillator cathode resistor with a $10,000-0 \mathrm{hm}$ unit
3) moisture in oscillator coil. Replace with a well-impregnated coil
4) high-resistance connection to pigtails of r-f stage plate choke
Insufficient action of _-1) insufficient antenna. Lengthen antenna shadowgraph
2) weak type ' 44 tubes
3) remove shadowgraph from i-f plate circuit

Intermittent reception__1) snapped coil leads at lugs of oscillator
Oscillation,
Fading \qquad 1) open-circuited r-f plate and screen byFading pass condensers (connecting leads at eyelets or within housing)
2) open-circuited first detector or oscillator cathode by-pass condenser (connecting leads at eyelets or within housing)

Intermittent reception, ..1) defective voltage-divider section between

Loss of volume
(operation restored when analyzer plug is inserted for test)

Oscillation at high .---..-- 1) open-circuited first detector-oscillator frequencies only tube cathode by-pass condenser screen grid and cathode of second detector tube
2) compensating condensers out of alignment

PHILCO 71B

PHILCO 76, 76A See also case histories listed for Philco 77, 77A	
Hum --------------------..-.-1) loose wire on r-f or i-f coil short-cir-	
$\begin{array}{cl}\text { Inoperative } \\ \begin{array}{c}\text { about } \\ \text { after set minutes }\end{array} & \begin{array}{l}\text { cuiting to soldering lug, thereby short- } \\ \text { circuiting primary to secondary }\end{array} \\ & \text { wire back into original place and cement } \\ \text { it in position }\end{array}$	

PHILCO 77, 77A

Inoperative _.__-_1) open-circuited $0.1-\mathrm{mfd}$. audio coupling condenser (connecting leads at eyelets or within case)
Weak reception,

1) open-circuited $0.1-\mathrm{mfd}$. audio coupling condenser
Distortion
Distortion at low volume
2) improperly centered dynamic speaker voice coil
Tuning condenser
3) stretched dial-drive cord
shifts off frequency
4) weak dial-drive cordspring. Replace with heavy duty type

PHILCO 80

No control of volume .-.-1) replace the $0.05-\mathrm{mfd}$. r-f by-pass condenser (C35)
Set dead

1) open-circuited 1 -megohm screen-grid re-
(no plate voltage on type '36 second detector tube)
Noisy reception -.-.--.........-1)
2) high-resistance short-circuit on first i-f transformer primary wire

PHILCO 81
Intermittent oscillation . 1) replace the $0.006-\mathrm{mfd}$. type ' 42 tube output by-pass condenser
2) by-pass one side of the a-c line

Weak reception .---------.-1) defective type '77 tube
2) open-circuited i-f pickup coil. Note: This being a bank-wound coil, is most deceptive, as the set will balance without it

PHILCO 84
Weak reception

1) defective type 77 tube
2) open-circuited i-f pickup coil Note: This being a bank-wound coil is most deceptive as the set will balance without it

PHILCO 86

Low hissing sound
(tubes test O.K.)

1) defective first audio transformer. Substitute with new unit

PHILCO 87
Hum \qquad 1) corroded or open friction contact on range control
2) receiver out of neutralization
3) defective filter condenser
4) defective $0.5-\mathrm{mfd}$. by-pass condensers across the type ' 26 tube filaments. Replace if their d-c resistance is less than 25 megohms
Weak reception .-----------1) short-circuited neutralizing condenser
No plate voltage on. any r-f tube

1) open-circuited resistor in plate circuit (contained in by-pass block for that stage)
Unstable,
2) check all resistors which are wound

Neutralization of tuned circuits impossible directly on $0.1-\mathrm{mfd}$. condensers. These usually open-circuit, causing excessive oscillation

PHILCO 89

Inoperative (completely),..1) See remedies listed under inoperative
Inoperative over a portion of the dial,
Intermittent operation
Weak, distorted reception-1) poor type '76 tube in second detector AVC stage
Weak reception on low-_1) reverse the primary leads on first i-f
frequency end of dial
transformer
Hum

1) dried-up electrolytic condensers

Oscillation --------------------1) open-circuited first detector grid coil
Noisy reception -.-----.-.-.--1) rewire oscillator coil

PHILCO 90 SERIES (ALL MODELS)

Weak reception all over--1) the dial	open-circuited fixed condenser across the i-f padding condenser terminals open-circuited high-frequency feedback condenser. Replace with new unit
Weak, distorted recep- .-1) tion	open-circuited audio coupling-condensers (connecting leads at eyelets, or within housing)
Feedback \qquad 1) (untraceable to missing rubber cushions or floating condenser gang)	caused by vibration of the oscillator coil. Repair by dropping wad of paper in coil and with chassis upside down, drop beeswax from hot soldering iron point onto the paper. This will steady the coil
Microphonics, \qquad Noisy reception	re-adjust padder condensers until the trouble disappears
icrophonic howl \qquad (stops if i-f or oscillator coil cans are squeezed)	loose leads in coil forms. Remove coil assemblies and melt paraffin over coil forms so as to hold leads solidly in place

Interference from air- ..1) re-adjust the i-f compensating condenser port radio beacon staat 250 - or 270 -ke tions transmitting at $260-\mathrm{kc}$ (the i-f of the receiver)

Fading after set oper- ..1) intermittently open-circuiting $0.01-\mathrm{mfd}$. ates satisfactorily for some time (turning switch off and on restores set to normal operation for awhile)

Intermittent reception......-1) see remedies listed under fading for Philco 70 receiver
2) defective i-f trimmer condenser, usually the first i-f secondary trimmer that can be reached from the back of the chassis. Push this trimmer gently with a balancing tool with the set on and note the result

Inoperative

1) open-circuited audio coupling-condensers (connecting leads at eyelets, or within housing)

Low motorboating

1) replace first audio grid resistor with 100,000 -ohm unit

PHILCO 90 (TYPE '45 OUTPUT TUBES

Fading only when chas- .-1) sis is touched (tubes and voltages check O.K.) (normal volume resumed when test is made)	open-circuiting $0.01-\mathrm{mfd}$. condenser connected between the detector plate and the grid of the first audio tube. Replace with a new unit
No control of volume1) Low volume	intermittently open-circuiting coupling condenser connected between the "de-tector-rectifier" output resistor and the volume control. Replace with a new unit

PHILCO 90 (PENTODE OUTPUT TUBES)

Noisy reception

1) defective $0.01-\mathrm{mfd}$. coupling condensers connected from the diode detector to the detector amplifier tube; the plate of the detector-amplifier tube to the grid of the first a-f tube; and the plate of the first a-f tube to the grid of the pentode tube. Replace with $0.1-\mathrm{mfd}$. tubular condensers and the a-f grid-leak resistors with 100,000 -ohm units

Hum \qquad 1) 2) 3)	caused by coupling as a result of the close proximity of the audio stages to the rectifier. Insert a shield plate (obtainable from the manufacturer) between the pentode tube and the rectifier tube slow-heating or defective type '27 first audio tube (even though it tests O.K.). Replace with new tube defective type ' 47 pentode tube (even though it tests O.K.). Replace with new tube
Intermittent reception -.-.1)	open-circuited $0.01-\mathrm{mfd}$. condenser connected between the plate of the type ' 27 second a-f tube and the grid of the type ' 47 pentode tube. Replace with a new unit
Fading after operating .. 1) normally for about 5 minutes	defective pentode tubes (even though they may test O.K.).
Weak reception .---------.-1)	open-circuited a-f coupling condensers. Replace with new units

PHILCO 91

PHILCO 91B

Cuts off at 750 kc .--.-..- 1) decrease in value of 8,000 -ohm cathode resistor

PHILCO 91X

$\begin{aligned} & \text { Inoperative at high_-_1) } \\ & \text { or low frequencies } \end{aligned}$	poor type '36 tube reduce value of detector-oscillator cathode bias resistor
No control of tone.___-_1)	check type ' 37 tube in first audio stage
Inoperative ._-_._-_1)	open-circuited shadowgraph
Intermittent reception .--.....1)	snapped coil leads at lugs of oscillator coil
$\begin{array}{cc} \text { Insufficient shadow- } & \text { 1) } \\ \text { graph action } & \text { 2) } \\ & \text { 3) } \end{array}$	small antenna. Increase size weak type ' 44 tubes in r-f and i-f stages increase value of diode detector sec-ondary-return resistor
Motorboating, \qquad Hum,	eliminate by connecting 100,000 -ohm resistor from first audio grid to chassis
Broad tuning, .----------....-1)	r-f and i-f compensating condensers out of alignment
Oscillation ...-_1-_1)	```compensating condensers out of adjust- ment remove all leads adjacent to oscillator coil```

PHILCO 95, 96, 96A

Intermittent reception ..1) intermittently defective by-pass con-
(volume increases to high level and drops back to normal when test instruments are applied to circuit) denser on "low" side of volume control Replace with a $0.5-\mathrm{mfd}$. tubular condenser between the "low" end of the volume control and the grounded lug of the nearest trimmer

Intermittent reception, ..1) open-circuited or open-circuiting 0.05-

Fading,
Weak reception
Oscillation, \qquad
Intermittent reception
Serious oscillation,
Not traceable to opencircuited condenser or resistor mfd. r-f secondary-return by-pass condensers (at eyelets or within housing)

1) open-circuited screen by-pass condensers (at eyelets or within housing)
2) replace screen feeder resistor with 50,000 -ohm, 1-watt replacement, and bypass with $2-\mathrm{mfd}$. condenser
3) by-pass the a-c line with a $0.001-\mathrm{mfd}$. condenser
4) add a $0.1-\mathrm{mfd}$. condenser to the center of grid resistor network in the audio channel

Tuning condenser shifts -_-1) stretched dial-drive cord
off frequency $\quad 2$) weak dial-drive cordspring. Replace with heavy-duty type
No screen-grid voltage on second and third r-f tubes

1) open-circuited $200-\mathrm{hm}$ screen resistor feeding the second and third r-f tubes. This resistor is moulded in one unit with a by-pass condenser

PHILCO 111, 111A, 112, 112A
Tuning condenser shifts_-1) stretched dial-drive cord
off frequency 2) weak dial-drive cordspring. Replace with heavy-duty type
Intermittent volume-1) open-circuited primary and secondary (low voltages on the types '27 and '45 a-f input transformer windings. Retubes)

Intermittent reception,----1) open-circuiting or open-circuited 0.05-

Fading,
Weak reception
Inoperative \qquad 1) open-circuited section of $70-\mathrm{ohm}$ centertapped resistor in high voltage second-ary-return circuit
Inoperative \qquad 1) dial-lamp receptacle or wiring to it
(high control-grid voltages on the type '24 tubes)
(resistors and condensers check O.K.)

Crackling or sputtering ..1) breakdown of output transformer. Reat high volume
Crackling noises

Audio howl place with new unit

1) burnt-out field coil. Replace with new unit
2) high-resistance connection in i-f or r-f
coil, where leads are soldered to lugs
3) vibration of tin-enclosed by-pass condensers. Squeeze the tin covers so they will not vibrate

PHILCO 112X

PHILCO 116X
See also case histories listed for Philco 16X, 16RX
Hum-1) high-resistance ground between pilot lamp wires and chassis
Noisy reception

1) noisy type '6A3 tubes (even though they may test O.K.). Replace with new tubes by substitution

PHILCO 118

Intermittent reception -.1)	defective wave-band switch. Replace switch
Distortion at low vol- .-.-1) ume,	intermittent high-resistance leak in the $0.00018-\mathrm{mfd}$. mica plate coupling con-
Shadowgraph action in-	denser connected between the type '78
correct	tube plate and the type '6A7 tube grid.
	It is located inside the oscillator coil and
	its defect does not show up until some
	time after the receiver is in operation

Vibration on certain .---1) loose escutcheon plate in resonance with notes these notes

PHILCO 118X

See also case histories listed for Philco 18X

Hum .-------------------------1)	high-resistance ground on pilot-lamp wires
Noisy reception .-----.-----1)	noisy type '6A3 tubes
Shadowgraph does not _ 1) function	open-circuited shadowgraph

High-pitched reproduc- _-1) open-circuited resistor connected in
tion

Distortion, \qquad 1) push-pull input transformer secondary

Glowing type '42 output tube grids return "grounding" to core or shield. Insulate from chassis

Slipping dial drive \qquad 1) insufficient tension of roller spring at end of drive shaft

No short-wave reception

1) open-circuited $0.003-\mathrm{mfd}$. postage stamp type series condenser for this band

Intermittent reception, ..1) open-circuiting $0.05-\mathrm{mfd}$. grid-filter con-

Two-spot tuning denser in r-f stage
2) leaky or short-circuited grid-filter condenser in r-f stage

PHILCO 144
Motorboating \qquad 1) defective gang condenser. Replace with new unit
2) defective type '6A7 tube (even though it may test O.K.). Replace with new tube

Intermittent reception, ..1) defective i-f transformer. Replace with Hum new unit

No short-wave reception_1) defective wave-band switch

PHILCO 144X
Same case histories as those listed for Philco 44
PHILCO 200X

Rattle
(similar to speaker rattle)

1) resonant vibration of the metal sound diffuser mounted in front of the speaker. Bend the blades slightly until the rattle is eliminated

PHILCO 211, 211A
Same case histories as those listed for Philco 111, 111A
PHILCO 221, 221A
Same case histories as those listed for Philco 21, 21A
PHILCO 270
Same case histories as those listed for Philco 70, 70A
PHILCO 296
See also case histories listed for Philco 95, 96, 96A
Oscillation

1) connect two $0.5-\mathrm{mfd}$. by-pass condensers in series across r-f, detector and first a-f heater winding with the junction point grounded

PHILCO 370
Same case histories as those listed for Philco 70, 70A
PHILCO 470
See also case histories listed for Philco 70, 70A
Intermittent reception, .-1) short-circuited a-f coupling condenser. Hum Replace with new unit
(snapping power
switch off and on
restores set to nor-
mal operation)
No reception on second _-1) poor switch contacts on wave-band and third band switch

PHILCO 500, 501
Same case histories as those listed for Philco 16, 16X (Codes 125, 126) Spasmodic phono re--1) poor contacts on the radio-phono transproduction fer switch. Be careful not to bend the contact blades too far as they may lose their tension

PHILCO 506
Same case histories as those listed for Philco 44
PHILCO 507
Same case histories as those listed for Philco 118X

PHILCO 511

Poor tone $\ldots-\cdots-\cdots$ 1) defective bias resistor
2) defective by-pass condenser
PHILCO 570

PHILCO 600-C

Poor tone .---------------.-----1) connect a $25-\mathrm{mfd}$., 50 -volt electrolytic condenser between the ground and the center-tap of the power transformer high-voltage secondary. Shunt this across the present condensers in that circuit

PHILCO 624
Hum-1) extension cable in "A" lead too light. Use a heavier cable
2) low "A" battery
3) poor ground connection to " B " power unit

PHILCO 630

Oscillation,
Motorboatin

1) loose shielding eyclets on chassis. Bond Motorboating shields to chassis with flexible pigtails
2) loose spade clamps on shield cans

PHILCO 645
Hum 1) input transformer primary wires re-
versed. Reverse the terminal connec-
tions
PHILCO 680

PHILCO 800

Inoperative------....-.-1) sticking vibrator points. Replace with new vibrator unit
2) open- or short-circuited buffer condensers, causing arcing at the vibrator points. Test by unsoldering one lead in the power transformer primary
3) oscillator circuit out of alignment

PHILCO 806

Rattling sound

1) bond all riveted "ground" terminals to the chassis

PIERCE-AIRO 524

Motorboating-1) high-resistance connection between the | ground of the by-pass condenser block |
| :--- |
| and the chassis |

PILOT "DRAGON" 10
Excessive 60 -cycle hum .1) grounded reflector mounted behind the pilot lamp. Insulate the sharp corner of the reflector with a piece of fibre to prevent the short-circuiting of tube filaments to ground

PILOT X-63
Noisy reception

1) loose or dirty contacts in band switch
2) intermittently open-circuiting phono jack contact
3) defective type ' 42 tube (even though it may test O.K.). Replace with new tube
4) change type '6A7 tube

Hum ----------------------------1) reverse the speaker field terminal connections
2) a-c leads too close to volume control. Re-route them
3) open-circuited or leaky filter condensers. Replace with new units
4) short-circuited r-f by-pass condenser. Replace with new unit
5) short-circuited type ' 42 tube cathode condenser. Replace with new unit
6) defective type ' 75 tube (even though it may test O.K.). Replace with new tube
7) change type '6A7 tube

Distortion -----..-------.------1) grounded short-circuiting contact
2) short-circuited i-f or 1 -f grid return bypass condenser. Replace with new unit
3) leaky audio coupling condenser. Replace with new unit
4) change type ' 75 tube
5) change type ' 42 tube
6) defective type ' 42 tube cathode by-pass condenser. Replace with new unit
7) voice coil requires recentering
8) i-f amplifier out of alignment

Microphonics

1) chassis too far forward in cabinet
2) defective type '6A7 tube (even though it may test O.K.). Replace with new tube
3) tuning dial assembly touching front of cabinet
(Cont'd)

PILOT X-63 (cont'd)

Insensitive in center ---- 1) i-f amplifier out of alignment
of band
2) "short-circuiting" contact in band switch
not shorting

PILOT X-73

Noisy reception .-..---.-.---1) 2)	weak batteries defective type '19 tube (even though it may test O.K.). Replace with new tube
Inoperative, -----------.......---1)	op
No signal 2)	reversed battery connections
Distortion \qquad	grounded short-circuiting contact leaky audio coupling condenser. place with new unit open-circuited audio transformer. Replace with new unit wrong "C" battery voltage low filament voltage short-circuited cathode by-pass condenser. Replace with new unit
Weak reception ..---...--...-1)	low battery voltage receiver circuits out of alignment
Weak audio reception ---1)	defective type '19 tube. Replace with new tube weak permanent magnet in speaker
Insensitive in center of ..1) band	"short-circuiting" contact in band switch not shorting receiver aligned on image frequency
Speaker rattle --------------1)	metal filings in speaker

PILOT 7, 8

Distortion,
Low sensitivity, Oscillation

Distortion, \qquad
Grids of type '2A5 tube glow

1) carbonized voltage-divider system. Replace with wire-wound resistors
2) leaky or short-circuited type '2A5 tube cathode by-pass condenser

PILOT 31-81 (RAINBOW SUPER)

Intermittent reception, ..1) replace the $10,000-\mathrm{hm}, 1 / 2$-watt resistor Fading in the cathode circuit of the detectoroscillator tube with a $6,000-\mathrm{ohm}$ unit
Erratic operation

1) defective 10,000 -ohm resistor connected between the screens of the first detectoroscillator and the second detector tubes. Replace with a 1 -watt unit

PILOT 33
Same case histories as those listed for Pilot 403

Oscillation \qquad 1) set minimum setting of volume control for 100 or 200 -ohms PILOT 81, 84 Same case histories as those listed for Pilot 7, 8 PILOT 93 Whistles all over dial ..-1) receiver circuits out of alignment Fading 1) defective triple-unit $0.1-\mathrm{mfd}$. condensers just below 170 -ohm filament resistorusually leaky or open-circuited. Replace with separate tubular condensers PILOT 103 Audio oscillation \qquad 1) tone control condenser too close to volume control. Shift the position of this unit Noisy reception \qquad 1) change type ' 42 tube 2) change type ' 6 A 7 tube Hum \qquad 1) open-circuited or leaky filter condenser 2) short-circuited cathode condenser on type ' 42 tube 3) short-circuited r-f by-pass condenser Insensitive in center 1) i-f amplifier out of alignment of band 2) r-f amplifier out of alignment Microphonics \qquad 1) chassis too far forward in cabinet 2) defective type '6A7 tube 3) tuning dial assembly touching front of cabinet 4) defective type '75 tube 5) defective type '6A7 tube Distortion \qquad 1) defective type '75 tube 2) defective type ' 42 tube 3) defective type ' 42 tube cathode by-pass condenser 4) speaker voice coil rubbing on pole piece 5) i-f amplifier out of alignment PILOT 114 Distortion \qquad 1) leaky audio coupling condenser. Replace with new unit 2) leaky i-f or r-f grid return by-pass condenser. Replace with new unit 3) grounded short-circuiting contact	

PILOT 114 (cont'd)

Noisy reception \qquad 1) 2) 3) 4)	dirty or corroded rotor wiping contacts on gang condenser. Clean contacts or solder flexible pigtails between rotor and condenser frame dial-drive dise touching chassis change type '42 tube change type '6A7 tube
	open-circuited or leaky filter condenser short-circuited cathode condenser on type '42 tube short-circuited "r-f by-pass" condenser defective type ' 75 tube defective type '6A7 tube
Distortion .------------------1) ${ }^{\text {2 }}$ (${ }^{\text {a }}$)	defective type ' 75 tube defective type '42 tube defective type ' 42 tube cathode by-pass condenser speaker voice coil rubbing on pole piece i-f amplifier out of alignment
Microphonics --------------1) ${ }^{\text {2) }}$ (${ }^{\text {3) }}$	chassis too far forward in cabinet defective type '6A7 tube tuning dial assembly touching front of cabinet
$\begin{aligned} & \text { Insensitive in center }--1 \text { 1) } \\ & \text { of band } \end{aligned}$	i-f amplifier out of alignment r-f amplifier out of alignment
No signal .------------------...-1)	open-circuited voltage divider

PILOT 123
Inoperative,

1) short-circuited field coil No signals

Noisy reception

1) defective tube
2) intermittent contact in band switch
3) speaker cone out of alignment

4) short-circuited cathode condenser on type '43 tube
5) short-circuited r-f by-pass condenser
6) defective type '75 tube
7) defective type '6A7 tube
Distortion $-\ldots--\quad$ 1) defective type '76 tube
8) defective type '43 tube
9) defective type ' 43 tube cathode by-pass
condenser
10) speaker voice coil rubbing on pole piece
11) i-f emplifier out of alignment

Microphonics

1) chassis too far forward in cabinet
2) defective type '6A7 tube
3) tuning dial assembly touching front of cabinet

Insensitive in center ...1) i-f amplifier out of alignment
of band \quad 2) r-f amplifier out of alignment
3) "shorting" contacts on band switch not shorting

PILOT 153
Noisy reception

1) weak batteries
2) defective type ' 35 tube

No signal -.----------------1) open-circuited fuse
2) reversed battery connections

Distortion

1) open-circuited audio transformer
2) wrong "C" battery voltage
3) low filament voltage
4) short-circuited cathode by-pass condenser. Replace with new unit

Weak reception .-............1) low battery voltage
2) receiver circuits out of alignment

Weak reception in1) receiver aligned on image frequency center of band

Speaker rattle

1) metal filings in speaker

PILOT 183

Noise

1) change type '6F6 tube
2) change type '6A8 tube

PILOT 183 (cont'd)

PILOT 243 (cont'd)

Hum \qquad 2) 3) 4)	open-circuited or leaky filter condenser short-circuited cathode condenser on type '6F6 tube short-circuited r-f by-pass condenser defective type '6H6 or '6A8 tube
Distortion \qquad -1) 3) 4)	defective type ' 6 H 6 or ' 6 F 6 tube defective '6F6 tube cathode by-pass cond. speaker voice coil rubbing on pole piece i-f amplifier out of alignment
Microphonics ----------------1)	chassis too far forward in cabinet defective type '6A8 tube tuning-dial assembly touching front of cabinet
Insensitive in center1) of band 2)	i-f amplifier out of alignment r-f amplifier out of alignment "shorting" contact in band switch not shorting
```Type '6E5 tube .-...-.-....--1) inoperative```	grid filter short- or open-circuited plate resistor short circuiting
	PILOT 253
Noisy reception --.-...-----.-1)   2)   3)   4)   5)	defective vibrator unit defective tube (even though it may test O.K.). Try a new tube connection wires not in original positions by-pass condenser not connected to original ground connection. weak battery
Hum $\qquad$ 1) 2) 3)   4)	open-circuited or leaky filter condenser* "shorted" cathode cond. on '41 tube short-circuited r-f by-pass condenser* defective type '75 or '6A7 tube
Distortion $\qquad$ 1)   3)   4)   5)	defective type ' 75 or ' 41 tube defective ' 41 tube cathode by-pass cond.* speaker voice coil rubbing on pole piece i-f amplifier out of alignment
Microphonics .-.....-------1)	chassis too far forward in cabinet defective type '6A7 tube tuning-dial assembly touching front of cabinet
$\begin{array}{lr} \text { Insensitive in center } & \ldots-1) \\ \text { of band } & \\ & \\ & \\ & \text { 2) } \end{array}$	i-f amplifier out of alignment r-f amplifier out of alignment "shorting" contact in band switch not shorting
Weak audio reception $\begin{array}{r}--.1) \\ \text { 2) } \\ \\ \text { 3) }\end{array}$	defective vibrator unit defective tube (even though it may test O.K.). Replace with new tube weak speaker magnet
*Important Note: When re connections exactly th	placing condensers, be sure to make the e same as they were originally.

PILOT 293


## PILOT 364



## RADIOLA 17

Hum, $\qquad$ 1)   Weak reception,   No bias on first r-f tube	e control arm not making contact
	clean contacts on all hum-control potentiometers and adjust for minimum hum
Oscillation .-.-.-.-.-.-.-------1)	open-circuited type '26 tube filament bypass condenser
Inoperative $\qquad$	open audio transformer winding open-circuited voltage divider resistor shorted condenser in block in power pack
Weak reception,-_-___-_-_1) Foul odor	defective power transformer
Weak reception, _____1)	open-circuited grid resistor
Noisy reception, ..-_-_-_-_-_1) Fading	clean volume control contacts and resistor strip
2)	clean tube socket prongs tighten all connections on terminal board

Oscillation over entire
dial $\qquad$ 1) open-circuited by-pass condenser across split primary winding of second and third r-f stages
Oscillation at high frequencies
Noisy,
Intermittent reception
Noisy reception,
Fading

1) adjust r-f compensating condenser
2) poor contact, or snapped tabs of by-pass condensers across primary winding
3) clean contacts and resistance strip on volume control

## RADIOLA 18

2) clean tube socket prongs

Noisy reception, $\qquad$ 1) intermittently open-circuiting coil in

Intermittent "crackling" series with the primary winding of the (volume control at minimum setting; antenna and ground connected),
Noise stops when second $r$-f tube is removed

Crackling noises at all ..1) partial open-circuit in one of the r-f volume control settings

Low volume $\qquad$ 1) this may be improved by disconnecting the antenna lead from one side of the volume control potentiometer and connecting that lead to the movable arm, disconnecting the lead to the grid of (Cont'd)

## RADIOLA 18 (cont'd)

the first r-f tube from that point. Now, between the grid of the first r-f tube and the side of the potentiometer to which the antenna was formerly connected, connect an r-f choke. This will increase the receiver output considerably
Poor selectivity,

1) adjust r-f compensating condenser

Low sensitivity
Inoperative

1) shorted condenser in block in power pack
2) open plate resistor in power pack. Replace with one of higher wattage rating
Distortion, .------------------------1) detector plate limiting resistor "open"
Higher detector plate voltage
Distortion
3) defective type ' 47 tube (even though it may test O.K.). Replace with new tube
RADIOLA 28A
Low volume, ..............-1) ground the case of the oscillator padOscillation
(impossible to align receiver circuits) ding condenser

## RADIOLA 30A

Fading,
Intermittent reception, Fluctuating voltages
Oscillation over entire $\qquad$ dial
Noisy,
Intermittent reception
Insensitive, $\qquad$
Tuning off scale

Weak reception $\qquad$ 1) one of the parallel resistors in type ' 876 ballast tube open; shunt a 60 -watt electric light bulb in parallel with ballast tube socket for permanent operation, or temporary repair.
No reception, $\qquad$ 1) "shorted" filter condenser in power pack
(type 876 ballast tube lights very brightly
Noisy tuning $\qquad$ 1) clean variable condenser plates with pipe cleaner

Noisy reception or fading

1) poorly soldered connections to voltage dividers
2) loose contact arms on rheostats
3) adjust r-f neutralizing condenser
4) oxidized rheostat resistance element and slider
5) check antenna coupler connections

RADIOLA 30, 32

## RADIOLA 33

See also case histories listed for Radiola 18


## Hum

1) pilot-light socket shorted to chassis

Inoperative

1) replace plate resistor with one of higher wattage rating
Weak reception,
2) re-adjust detector trimming condenser Oscillation
Noisy reception,
3) clean volume control contacts
Fading
4) clean tube socket prongs

## RADIOLA 41

Choked reception

1) short-circuited type ' 210 tube bias reDistortion, sistor by-pass condenser
No output tube bias voltage

Hum $\qquad$ 1) partially "shorted" section or sections of speaker rectifier stacks
2) volume control arm not making contact
3) poor ground connection to speaker frame

Strong hum .....-.................-1) remove ground connection to speaker frame

Noisy reception

1) corroded volume control resistance element and contact arm
2) loose volume control contact arm
3) noisy audio transformer primary

Line fuse blows -......---------...-1) short-circuited rectifier stack sections
Oscillation ........................-1) shunt 100,000 -ohm resistor across 3rd r-f transformer primary
2) increase value of grid suppressors

Broad tuning .-.------------------1) reduce value of grid suppressors
Inoperative

1) shorted filter cond. in block power pack
2) open voltage-divider resistor

## RADIOLA 42

Fading on local
stations

RADIOLA 44, 46
Noisy tuning, .. ..........- 1) corroded seats on r-f shield cans
Oscillation
Inoperative $\qquad$ 1) open-circuited or open-circuiting 0.01-

Intermittent reception mfd. audio coupling-condenser
Insensitive

1) re-align condenser gang

Oscillation at low
frequencies

## RADIOLA 44, 46 (cont'd)

Low, or no detector $\qquad$ plate voltage	grounded detector-plate audio choke. Place insulation between choke and chassis
No r-f screen voltage-_--3--1)	volume control slider arm not making contact   shaft of volume control shorting to chassis
Hum, $\qquad$   Insensitive	add a 4 -mfd. electrolytic condenser between field lug and "ground"   variable condenser stator plates offcenter
Oscillation 1) $\qquad$ 2)	poorly soldered connections on r-f coils leads on r-f chokes (inside of coil) shorting

## RADIOLA 47

Noisy tuning, _._-_1) corroded seats on r-f shield cans
Oscillation
Broad tuning, $\qquad$ 1) worn-out rotor bearings, which allow

Set does not tune to settings on the tuning dial, especially at the high-frequency settings the rotor to slip slightly in a side direction, thus changing the tuning condenser capacity and throwing the set out of alignment. Realign the rotor plates and tighten them in position
2) realign the trimmers at the high-frequency settings of the tuning dial

Spasmodic radio opera- .-1) corroded radio-phono transfer-switch tion (lack of screengrid voltage on the r-f amplifier tubes)
Inoperative, $\qquad$ Intermittent reception
Intermittent reception
No r-f screen or plate voltages
Insensitive, Oscillation at low frequencies
Low, or no detector. $\qquad$ plate voltage

No r-f screen voltage. prong, the other prong making good contact. Clean the prong and bend it to increase its tension

1) open-circuited or open-circuiting 0.01mfd. audio coupling-condenser
2) corroded or open contacts of phono-radio transfer switch
3) re-align condenser gang
4) grounded detector plate audio choke. Place insulation between choke and chassis
5) volume control slider arm not making contact
6) vol. control shaft shorting to chassis

Fading on local stations_-1) poor contact on phono switch through volume can be brought back by snapping a-c switch on and off which plate supply of first and second r-f tubes feeds through. Replace with new switch

Choked reception, Distortion, Hum,
Positive grid bias on type ' 45 tubes,
Weak reception

Noisy tuning, $\qquad$ 1) plating peeling from variable condenser plates. Burn with high voltage-all leads disconnected
2) corroded gang-condenser rotor shaft clips

Oscillation $\qquad$ 1) corroded gang-condenser rotor shaft clips

## Fading,

Intermittent reception,
Noisy reception
No r-f screen voltage

1) open-circuited r-f choke in screen circuit

Hum

1) change type ' 24 detector tube

## RADIOLA 48 (CANADIAN)

Same case histories as those listed for Radiola 48
RADIOLA 50
Same case histories as those listed for Radiola 17

## RADIOLA 51

Same case histories as those listed for Radiola 18
RADIOLA 60, 62
Distortion,
Weak reception

1) open-circuited audio transformer primary
Distortion at low volume
2) broken spider on speaker cone

Inoperative

1) open-circuited i-f coil

Weak reception

1) increase in value of 20,000 -ohm bleeder resistor in power pack from about 2,500 to 3,700 -ohms. Replace with a 20,000 ohm, 10 -watt unit
Insensitive,
2) re-adjust neutralizing condensers, and Oscillation tuning condensers of i-f coils. To do this, variable condenser tube must be removed

Insufficient sensitivity $\qquad$ 1) shunt 400 -ohm section of flat wire-wound voltage divider near volume control with 500 -ohm unit
(Cont'd)

## RADIOLA 60, 62 (cont'd)



## RADIOLA 66

Distortion ............1) open-circuited 250,000-ohm resistor in
audio transformer secondary-return cir-
cuit

## RADIOLA 80, 82

See also case histories listed for Westinghouse WR-5
Distorted reproduction,-....-1) open-circuited 60,000 -ohm resistor in

Poor control of volume -.-. 1) remove 6,000 -ohm resistor across volume control
Distortion,

1) "open" audio transformer primary

Low volume push-pull input transformer secondary return circuit

1) increase in value of 10,000 -ohm " C " bias resistor connected between the cathode of the second detector tube and the ground. Replace with a 7,500 to $10,000-$ ohm resistance
(Cont'd)

## RADIOLA 80, 82 (cont'd)

Fading, _- 1)	snapped tabs on oscillator series con-
Intermittent reception	denser
Shifting of station dial settings	
Inoperative below $\qquad$ 1) 600 kc	snapped tabs on oscillator series condenser
Weak reception, ------------.-1)	screen drop resistor carbonized to low
Slight distortion,	value and screen-cathode bleeder carbon-
Volume control must be turned to maximum	ized. Replace with new wire-wound units
Noisy reception (Model 82 only)	loose connection in local-distance switch defective type '24-A tube

## RADIOLA 80, 82 (CANADIAN)

Same case histories as those listed for Radiola 80
RADIOLA 86
Same case histories as listed for Radiola 80
RCA SUPERETTE
Weak oscillations, _-_-_1) carbonized 14,300 -ohm screen resistor High screen-grid voltage Replace with wire-wound type resistor.

## RCA-VICTOR (AMERICAN) RECEIVERS

See also listings under Radiola
(RCA-Victor (Canadian) receivers are listed following the end of the RCA-Victor (American) group. See also the RCA-Victor Canadian-American receiver Cross Index on page 1B-1)

## RCA-VICTOR AVR-1

Same case histories as those listed for RCA-Victor 140, 141, 240
RCA-VICTOR R-4
See also case histories listed for RCA-Victor R-6
"Sputtering,"

1) connect a $0.01-\mathrm{mfd}$. condenser from the Motorboating
(only at "low" setting of volume control)
Crackling noise
2) loose eyelet through which grid lead of type '24 tube is brought up, causing a variation in capacity between the grid lead and ground. Remove or solder eyelet in place

## RCA-VICTOR R-6



## RCA-VICTOR R-8 (cont'd)

Motorboating …............-1) | defective 4-mfd. pack condenser in the |
| :--- |
| plate-to-ground circuit of the r-f and |
| detector-oscillator plate voltage filter. |
| Replace this condenser on the outside |
| of the pack |

Intermittent reception, -_1)open-circuiting or open-circuited r-f and   i-f secondary-return by-pass condensers
RCA-VICTOR R-9

Same case histories as those listed for RCA-Victor R-4, R-6, R-7

## RCA-VICTOR R-10

Weak oscillations, Distortion

1) carbonized 16,000 -ohm screen resistor. Replace with wire-wound type resistor

RCA-VICTOR R-11

Fading $\qquad$ 1) 2)	"open" 5 -meg. resistor in AVC ck't leaky $0.1-\mathrm{mfd}$. AVC grid-return by-pass condensers
Weak reception ------------1)	leaky 0.1-mfd. AVC grid-return by-pass
Insensitive,	condense
Inoperative until AVC tube is withdrawn	
Distortion at any volume .1) level	carbonized voltage-divider resistors. Install wire-wound unit for screen-drop resistor
Stations tune in with.........1) "plop"	reduce AVC tube heater voltage
Fading, Noisy, Intermittent reception	corroded contact of volume control shaft loose volume control resistance winding
Very weak, distorted .-....1) reception	open-circuited coupling winding in second i-f transformer
Distortion, $\qquad$ 1)   Weak reception, High positive bias on one output tube	primary to secondary "short" in pushpull input transformer
Noisy tuning, 1) $\qquad$ Oscillation, Hum	corroded condenser-gang rotor contacts. Solder a pigtail from rotor shaft to chassis
Motorboating if a ' 47 1) tube is withdrawn	1-megohm resistor on phono terminal strip shorting to terminal No. 4
Motorboating ............-----1)	connect a $0.1-\mathrm{mfd}$. condenser across the resistor mounted inside of the ant. coil



## RCA-VICTOR R-35

Weak, or no reception____1) open 1st a-f plate-supply resistor ( 10,000 ohms)
2) carbonized screen-grid drop resistor ( 8,000 -ohms)

RCA-VICTOR R-37, R-38
Same case histories as those listed for RCA-Victor R-28
RCA-VICTOR R-39
Same case histories as those listed for RCA-Victor R-35

## RCA-VICTOR R-43

Erratic operation .---.-- -.-1) low "B" batteries. Replace when battery voltage (with set turned on) drops to less than $1 / 4$ of normal voltage

## RCA-VICTOR R-50

See also case histories listed for Graybar GB-100

Weak reception,
Cannot peak 1st detector stage

Inoperative, $\qquad$
No plate voltage on
2nd detector tube
Hum $\qquad$

Distorted reproduction, ...1) carbonized voltage-divider system. Use Weak reception, $\qquad$ Fading, Oscillation
Intermittent reception,----1) corroded contact segments of radioLow phono volume
(RAE-59, RE-20)

1) open-circuiting of end section of tapped filter choke-install jumper wire-wound screen voltage drop resistor
2) open-circuited trimmer series resistor for this stage
3) open-circuited portion of primary of push-pull input transformer. Use good portion only as replacement phono transfer switch

RCA-VICTOR R-52
Same case histories as those listed for RCA-Victor R-32

RCA-VICTOR R-55
Same case histories as those listed for RCA-Victor R-50

RCA-VICTOR R-71, R-72
Sharp volume cut-off,---.-...1) open-circuiting or open-circuited 0.05-

Oscillation,
Station hiss
Weak reception, Station hiss, Oscillation

Motorboating between .-. 1) leaky $0.05-\mathrm{mfd}$. r-f first detector and r-f stations,
Distorted,
Poor control of volume
Noisy tuning,_-_1) corroded condenser-gang rotor contacts. Oscillation,
Motorboating between stations mfd. r-f, first detector and i-f secondaryreturn by-pass condensers

1) open-circuiting or open-circuited 0.05mfd. r-f, first detector and i-f secondaryreturn by-pass condensers secondary-return by-pass condensers Solder flexible pigtails between rotors and condenser frame

## RCA-VICTOR R-73

Fading,
Intermittent reception, Station hiss, Oscillation

1) decrease in value of one of the $0.05-\mathrm{mfd}$. by-pass condensers in the secondary return circuits of the r-f, first detector and i-f stages. Replace if the value is lower than rated. This is usually due to a high-resistance connection at the condenser terminal or an internal opencircuit
2) intermittently open-circuiting condenser in one of the secondary return circuits. Test by flashing with high a-c. voltage. Replace all condensers which break down after this test
Distortion,
Poor control of volume,
Motorboating,
Oscillation
Noisy tuning,
Oscillation,
Motorboating between stations
Weak,
3) leaky $0.05-m f d$. r-f, first detector and i-f secondary-return by-pass condensers

Distorted reception

1) open-circuited $60,000-\mathrm{hm}$ resistor in push-pull input transformer secondary return circuit
2) open-circuited $0.2-\mathrm{mfd}$. a-f blocking condenser
Low volume
3) change the three $0.1-\mathrm{mfd}$. by-pass condensers in the AVC circuit

RCA-VICTOR R-74

Fading,
Sharp drop in volume, Weak reception, Station hiss

1) open-circuited $0.05-\mathrm{mfd}$. r-f, first detector and i-f secondary-return by-pass condensers
(Cont'd)

## RCA-VICTOR R-74 (cont'd)

Poor control of volume,.-. 1) open-circuited screen-grid or cathode by-

Distortion,
Distortion at resonance
2) open-circuited first detector $0.05-\mathrm{mfd}$ grid filter condenser connected between the secondary winding of the second r-f transformer and ground, located to the left of the volume control. Replace with new unit
Note: the same trouble also occurs in similar condenser located in the i-f or r-f stages; the former being connected near the antenna coil; the latter near the second i-f transformer

Noisy tuning

1) corroded condenser-gang rotor contacts. Oscillation,
Motorboating between stations

Intermittent reception
Inoperative

Solder pigtails between rotors and condenser frame

1) open-circuiting or open-circuited 0.1mfd. audio coupling-condenser

RCA-VICTOR R-75
Same case histories as those listed for RCA-Victor R-73
RCA-VICTOR R-76
Same case histories as those listed for RCA-Victor R-74

RCA-VICTOR R-77
Same case histories as those listed for RCA-Victor R-74

## RCA-VICTOR R-78, R-78A

Fading,
Sharp drop in volume, Weak reception, Station hiss

Poor control of volume, Distortion,
Distortion at resonance
Noisy tuning,
Oscillation,
Motorboating between stations

Mechanical hum $\qquad$

Noisy reception $\qquad$
Fading,
Dial settings incorrect

1) corroded condenser-gang rotor contacts.
2) loose laminations of filter choke-heat in oven
3) open-circuited $0.1-\mathrm{mfd}$. r-f, first detector and i-f secondary-return by-pass condensers
4) leaky $0.1-m f d$. r-f, first detector and i-f secondary-return by-pass condensers Solder pigtails between rotors and condenser frame
5) noisy volume control
6) snapped tabs on oscillator series condenser

## RCA-VICTOR R-90

Weak, $\qquad$ 1) Distorted reception	open-circuited AVC coupling condenser
	and grid resistor within first i-f transformer shield
RCA	VICTOR RAE-26
See also case histor	ries listed for RCA-Victor R-11
Weak reception-----------......1)	carbonized 14,300 -ohm screen-drop resistor. Replace with wire-wound resistor
2)	carbonized 18,000-ohm screen-bleeder
	resistor

RCA-VICTOR RAE-59
Same case histories as those listed for RCA-Victor R-50

RCA-VICTOR RAE-68
Cannot be switched on........1) copper contacts on relay burned away
Cannot be switched off -.1) relay arm welded to copper contacts of relay

Chattering of tuning .-....-1) adjust friction screw control when "remote" is used

Distorted reproduction,....-1) open-circuited 60,000-ohm resistor in
Hum push-pull input transformer secondary return circuit

Poor control of volume..-..-1) remove $6,000-\mathrm{ohm}$ resistor from across volume control

Distortion,

1) open-circuited audio transformer priLow volume mary

Fading,

1) snapped tabs on oscillator series con-

Intermittent reception,
Shifting of station dial settings
Inoperative below ................-1) snapped tabs on oscillator series con600 kc denser

Weak reception

1) screen-drop resistor carbonized to low

Slight distortion,
Volume control must be value and screen-cathode bleeder carbonized turned to maximum

Automatic phono $\qquad$ 1) see Case Histories listed for RCA-Victor RAE-79

## RCA.VICTOR RAE-79

Cannot be switched on

1) copper contacts on relay burned away

Cannot be switched off.-.-.-1) copper contacts on relay welded to armature of relay

## RCA-VICTOR RAE-79 (cont'd)

Phono-radio change-over__1) open-circuited 17 -ohm pilot indicator switch inoperative shunt resistor

Remote control does not....1) break in remote control cable at control respond box

Bottom record dislodged..._1) magazine roller incorrectly adjusted
Record not deposited

1) adjust record transfer lever upon turntable
2) increase tension of spring in turntable spindle nose

Pickup lowers on outer -1) too much tension on flat spring pressing smooth rim on record, failing to slip into first groove or slides across several grooves

Continuous rejecting.......... 1

1) riveted joint on which four finger lever is mounted working loose, causing the long finger to dislodge, so that it swings into position against the flat side of the clutch pawl, starting another cycle. Hammer down the rivet, so as to tighten lever, but not so that it will stick
2) insufficient tension of four-finger lever spring
3) long arm of four-finger lever bent out of shape
Continuous tripping,
4) incorrect timing

Cannot be stopped by
2) improper adjustment of switch actuated by the bracket at the rear of the slide. The contacts of this switch should open and close only when the mechanism has tripped. Adjust switch by loosening the two mounting screws, one of which slides in a slotted adjusting hole
Intermittent phono__-.-.-. 1

1) corroded contact segments of phonoradio transfer switch
2) corroded copper center contact of phono volume control

Weak record reproduction_1) dismantle phono pick-up and clean wax
Weak home and radio recording

Noisy reception $\qquad$ 1) high-resistance connection at wiping contact between movable arm of volume control, and lug at the center of the cover. Solder a flexible pigtail between these two points

## RCA-VICTOR RAE-84

Fading,
Sharp drop in volume, Weak reception, Station hiss

Poor control of volume, Distortion,
Distortion at resonance
Noisy tuning, $\qquad$ Oscillation,
Motorboating between stations
Mechanical hum $\qquad$ 1) loose laminations of filter choke-heat in oven
Noisy reception

1) noisy volume control

Fading.
Dial settings incorrect
Phono troubles $\qquad$ 1) see Case Histories listed for RCA-Victor RAE-79
Manual lever jammed $\qquad$ 1) manual lever bent

RCA-VICTOR RE-18
Same case histories as those listed for RCA-Victor R-11
RCA-VICTOR RE- 20
Same case histories as those listed for RCA-Victor R-50
RCA-VICTOR RE-40
See also case histories listed for RCA-Victor R-28
Interference,

1) pickup of noise from cable sheath by Noisy reception tuning cable, which is connected to variable condenser rotors. Bond sheath to triangular plate (mounted on rubber) to which sheath is attached

RCA-VICTOR RE-45
Same case histories as those listed for RCA-Victor R-32
RCA-VICTOR RE-57
Same case histories as those listed for RCA-Victor R-35
RCA-VICTOR RE-80

Oscillation,

1) pilot-lamp socket short-circuiting to the No AVC action, Loud volume, Motorboating, Distortion, Oscillation chassis. Since this is connected across the power amplifier filament lines, the power amplifier bias resistor is shortcircuited and the cathode voltage from the type ' 55 tube is removed, thus pre- venting AVC action. Wrap a layer of tape around the socket lugs to prevent further short-circuiting

RCA-VICTOR RE-81

Intermittent radio or----.-....1) phono reception	corroded contact segments at master change-over switch
Fading, $\qquad$ 1)   Sharp drop in volume, Weak reception,	open-circuited $0.05-\mathrm{mfd}$. r-f, first detector and i-f secondary-return by-pass condensers

Poor control of volume,-----1) leaky $0.05-m f d$. r-f, first detector and i-f Distortion,
Distortion at resonance
Noisy tuning,---------------
Oscillation,
Motorboating between
stations

Intermittent reception, ..-.1)	open-circuiting or open-circuited   nfd. audio coupling-condenser
Inoperative	0.1-
Inoperative home re-...--1)   cording meter	remove meter and decrease tension upon   pivot of meter needle

## RCA-VICTOR 28-P

Intermittent reception, .-.-1) open-circuited detector secondary return Fading by-pass condenser
2) open-circuited r-f cathode by-pass condenser
Oscillation,

1) loss in capacity of second section of dual filter condenser

## RCA-VICTOR 66

Inoperative
(tubes and voltages test O.K.),
Oscillator signal cannot pass through second detector stage

1) open-circuited primary coil in last i-f transformer (has a $7,000-\mathrm{ohm}$ resistor shunted across it

## RCA-VICTOR 68

Remote-control switch .-.-1) burned or corroded contacts at the power inoperative switch relay caused by switching when the phonograph is in the circuit. Replace if burned; clean if corroded. Connect a $2-\mathrm{mfd}$., 150 -volt paper condenser across the contacts to reduce the arc when switching takes place

RCA-VICTOR 100
Modulation hum at low .. 1 ) connect a $0.1-\mathrm{mfd}$. ( 400 -volt) by-pass volume setting condenser from one side of the power transformer primary to ground
2) reverse the line-plug in its socket

RCA-VICTOR 117
Intermittent reception, .-.1) open-circuiting $10,000-$ ohm screen drop Inoperative, resistor
No screen voltages
Choked, distorted re-

1) leaky or short-circuited type '6B7 tube ception cathode by-pass condenser
Weak reception

Inoperative,
No screen voltage on
oscillator tube
Oscillation
Weak, choked signals
Fading,
Intermittent reception, Station hiss

Slipping dial in "fast" ....1) insufficient tension of three copper spring tuning position

1) open-circuited oscillator plate series resistor
2) "shorted" oscill. plate by-pass condenser
3) loss in capacity of oscillator plate bypass condenser
4) open-circuiting grid filter condensers in oscillator and i-f stages clips on dial-drive shaft

## RCA-VICTOR 118



RCA-VICTOR 121
See also case histories listed for RCA-Victor 122
Instability
after replacing a
filter condenser
Poor selectivity .-.-..........1) defective oscillator coil
Motorboating .................1) "open" 4-mfd. capacitor pack section

RCA-VICTOR 122
Inoperative

1) open-circuited 10,000 -ohm screen volt-age-dropping resistor
2) short-circuited oscillator plate by-pass condenser

## RCA-VICTOR 122 (cont'd)

3) open-circuited oscillator plate series resistor

Fading,
Oscillator drift

1) snapping of connecting tabs of oscillator series condenser
2) excessive solder at ends of oscillator series condenser contacting metal jacket

Two-spot reception

1) short-circuited or leaky i-f grid filter condenser
20 kc apart
2) open-circuited 4-mfd. oscillator plate bypass condenser
Inoperative, $\qquad$
Inoperative, $\qquad$
No oscillator plate voltage
3) burnt-out 30,000 -ohm oscillator plate dropping resistor. (Check for shorted 4-mfd. by-pass condenser at same time)
4) open-circuiting screen-voltage dropping resistor
Intermittent reception ....1) open-circuiting type '58 or '2A7 grid
Fading
Noisy return by-pass condensers

## RCA-VICTOR 128

Inoperative except at $\qquad$ 1) short-circuited oscillator section of conone point on broadcast band
Choked reproduction, Weak reception
Two resonance peaks of stations, about 20 kc apart
Slipping dial in "fast" ....1) insufficient tension of three spring clips tuning position on drive shaft
Intermittent reception, -..1) open-circuiting $10,000-$ ohm screen voltInoperative age-dropping resistor

Fading, Oscillator drift

1) snapped tabs on oscillator series condensers
2) lumps of solder at soldered connections of oscillator series condenser contacting metal jacket
Dial slips
3) push down three copper fingers on reduction device (with dial set for vernier tuning) to increase tension

Vibration,
Rattle

1) make dial glass window and frame secure
Inoperative
2) grid lead to type '6B7 tube grounding to shield cable

RCA-VICTOR 140, 140-E, 141, 141-E
Hum at resonance.....-.-......-1) change type '2B7 second-detector tube
2) shunt first audio '56 grid choke with 0.1mfd. by-pass condenser
Noisy

1) loose elements in type '2A7 tube

Intermittent reception
Inoperative

1) leakage or short-circuit between cathode and heater of type '2A7 tube
Code interference
2) use 445 -kc i-f transformer as wave trap in antenna circuit
Intermittent reception, -.-1) insufficient tension of wave-band switch Inoperative contacts
3) open-circuiting coils in tuner assembly
4) short-circuiting trimmers within 1st i-f transformer
Weak, distorted
5) open-circuited section of output transreception, former primary
Hum
Distortion
(in 140 Model only)
6) shunt a $40,000-\mathrm{hm}$ resistor across the 2 -megohm unit located in the grid circuit of the second detector tube

RCA-VICTOR 143
Very weak response,

1) replace volume control

Volume control ineffective
Inoperative,

1) open-circuited 10,000 -ohm series resistor

No plate voltage on 1st type '76 tube
Noisy reception,

1) noisy primary of push-pull input transformer
Grinding, rasping, with volume control turned to minimum
Slipping dial in "fast" ---1) insufficient tension of three spring clips tuning position on drive shaft
Intermittent reception, --.-1) open-circuiting grid filter condensers in Station hiss r-f, i-f and first detector stages
Fading,
2) snapped connecting tabs of oscillator series condenser
3) end connections to oscillator series condenser contacting metal jacket
Weak reception, -- .----.-1) defective volume control. Arm not makNo change in volume ing contact

Intermittent, $-\ldots--------\quad-\quad-\quad$ -
Noisy reception

Dial slips $\qquad$ 1) push down three copper fingers, with dial set for vernier tuning
(Cont'd)

## RCA-VICTOR 143 (cont'd)

Intermittent, ----------------1) poor contact on wave-band switch
Noisy reception
Fading
Inoperative

1) control-grid lead of type '75 detector tube grounding to shield

RCA-VICTOR 211
Same case histories as those listed for RCA-Victor 117, 118
RCA-VICTOR 220, 221


RCA-VICTOR 224
Same case histories as those listed for RCA-Victor 128
RCA-VICTOR 226
Same case histories as those listed for RCA-Victor 128
RCA-VICTOR 240
Same case histories as those listed for RCA-Victor 140, 141
RCA-VICTOR 241-B
Intermittent reception 1) corroded joints at points where leads are welded to coils in both input and output transformers

RCA-VICTOR 242
Same case histories as those listed for RCA-Victor 143
RCA-VICTOR 260, 261

Distortion,
Lowered sensitivity
Distortion at resonance Intermittent reception Station hiss

1) open-circuited type '58 AVC-i-f tube cathode bias resistor
2) open-circuited AVC coupling condenser
3) open-circuiting grid filter condensers in r-f, i-f and first detector stages
4) open-circuited secondary return by-pass condenser in second detector stage

RCA-VICTOR 262, 263
Abrupt volume increases_-1) pigtail of type '6A7 tube bias resistor grounding to oscillator padding condenser

Intermittent reception, ...1) open-circuiting grid filter condensers in Volume level falls, r-f, i-f and first detector stages
Station hiss
Intermittent reception, .-_1) replace volume control
Noisy,
Hum,
Erratic operation of volume control
Noisy volume control ___1) isolate volume control from diode load circuit with condenser and resistor

Slipping dial

1) insufficient tension of spring clips on drive shaft

Intermittent reception, -.1) defective volume control
Fading
2) poor contacts on wave-band switch

Intermittent reception, ..1) open-circuiting type '6D6 or '6A7 gridNoisy return by-pass condensers
Dial slips

1) push three copper fingers down (with dial set for vernier tuning) to increase tension

Hum,

1) leaky or short-circuited type '76 AVC Distortion Usually weak reception cathode tube by-pass condenser

RCA-VICTOR 280
Same case histories as listed for RCA-Victor 260

## RCA-VICTOR 281

Abrupt volume increases.1) pigtail of type '6A7 tube resistor grounding to oscillator padding condenser

Intermittent reception, .-.1) open-circuiting gaid filter condensers in Station hiss r-f, i-f and first detector stages

Slipping dial

1) insufficient tension of spring clips on drive shaft

## RCA-VICTOR 321

Only phono reception, .-. 1) short-circuited 4-mfd. condenser near No radio reception oscillator padding condenser (condenser with blue lead)
Note: be sure to include 30,000 -ohm resistor in original position when replacing

## RCA-VICTOR 330

Weak reception, .-......-....-.-1) open-circuited field coil

## Distortion

Noisy volume control ...-.-1) isolate volume control from diode load circuit with condenser and two resistors

Noisy tone control

1) clean resistance element
2) clean slider arm contact surfaces

Radio or phono

1) open-contacts on radio-phono transfer inoperative, switch. Replace switch

Intermittent radio or

1) open contacts on radio-phono transfer phono operation switch. Replace switch
No plate voltage on type '58 r-f tube
Poor control of record....--1 1) disconnect lead to center tap of volume volume, control resistance element
Sharp drop in record volume control action
Wavering, vibrating 1) remove phono panel shipping blocks record reproduction,
Strong hum
RCA-VICTOR 331
See also case histories listed for RCA-Victor 330
Radio or phono inoper--.--1) open contacts on radio-phono transfer ative, intermittent switch. Replace switch
No plate voltage on
2) open contacts on radio-phono transfer type '58 r-f tube switch. Replace switch

Poor control of record

1) disconnect lead to center tap of volume volume,
Sharp drop in record volume-control action
Wavering, vibrating___-_1) remove phono panel shipping blocks record reproduction
Strong hum
Pick-up lowers upon_-_-_-_1) re-adjust switch-lever locating screw record, but needle does not slip into first groove
Pick-up lowers upon
2) re-adjust switch-lever locating screw record, but needle skips several grooves
Mechanism fails to trip...-1) re-adjust tension of pawl trip
12" records bind against_1) raise turntable by small washer inserted mechanism cover between turntable and spindle
Slow speed,
3) bend up notched lever

Inoperative
2) raise lever assembly with small washers
RCA-VICTOR 341, ..... 381(See last 3 items for RCA-Victor 331)
(For RCA-Victor 381 see also items listed for RCA-Victor 281)RCA-VICTOR (CANADIAN) RECEIVERS

- (All RCA-Victor American) receivers are listed on pages immediately ahead of this section)
(See also the RCA-Victor Canadian-American receiversCross-Index on page 1B-1)RCA-VICTOR (CANADIAN) R-7, R-7ASame case histories as those listed for RCA-Victor R-4
RCA-VICTOR (CANADIAN) R-8
Same case histories as those listed for RCA-Victor R-8, R-10
RCA-VICTOR (CANADIAN) R-8A, R-9A
Same case histories as those listed for RCA-Victor R-4RCA-VICTOR (CANADIAN) R-10, R-12
Same case histories as those listed for RCA-Victor R8, R10
RCA-VICTOR (CANADIAN) R-15Same case histories as those listed for RCA-Victor R-11RCA-VICTOR (CANADIAN) R-20RSame case histories as those listed for RCA-Victor R-11
RCA-VICTOR (CANADIAN) R-20, R-21
Same case histories as those listed for Radiola 17
RCA-VICTOR (CANADIAN) R-22
Same case histories as those listed for RCA-Victor R-78
RCA-VICTOR (CANADIAN) R-28
Same case histories as those listed for RCA-Victor R-28
RCA-VICTOR (CANADIAN) R-29, R-31
Same case histories as those listed for RCA-Victor R-28P
RCA-VICTOR (CANADIAN) R-35Same case histories as those listed for Radiola 80
RCA-VICTOR (CANADIAN) R-37
Same case histories as those listed for RCA Victor R-28
RCA-VICTOR (CANADIAN) R-39
Same case histories as those listed for Radiola 80

RCA-VICTOR (CANADIAN) R-49
Same case histories as those listed for RCA-Victor 330
RCA-VICTOR (CANADIAN) R-50
Same case histories as those listed for RCA-Victor R-71
RCA-VICTOR (CANADIAN) R-52
Same case histories as those listed for RCA-Victor R-71
RCA-VICTOR (CANADIAN) R-53
Same case histories as those listed for RCA-Victor R-73
RCA-VICTOR (CANADIAN) R-54, R-56
Same case histories as those listed for RCA-Victor R-74
RCA-VICTOR (CANADIAN) R-78
Same case histories as those listed for RCA-Victor R-4
RCA-VICTOR (CANADIAN) R-104
Same case histories as those listed for RCA-Victor R-10
RCA-VICTOR (CANADIAN) R-107
Same case histories as those listed for RCA-Victor R-10
RCA-VICTOR (CANADIAN) R-109
Same case histories as those listed for RCA-Victor R-11
RCA-VICTOR (CANADIAN) RAE-59
Same case histories as those listed for RCA-Victor RAE-59
RCA-VICTOR (CANADIAN) RAE-84
Same case histories as those listed for RCA-Victor RAE-84
RCA-VICTOR (CANADIAN) RE-33
Same case histories as those listed for RCA-Victor R-28
RCA-VICTOR (CANADIAN) RE-41
Same case histories as those listed for RCA-Victor R-11
RCA-VICTOR (CANADIAN) RE-80
Same case histories as those listed for RCA-Victor RE-80
RCA-VICTOR (CANADIAN) RE-81
Same case histories as those listed for RCA-Victor RE-81
RCA-VICTOR (CANADIAN) 90
Same case histories as those listed for RCA-Victor R-90
RCA.VICTOR (CANADIAN) 118
Same case histories as those listed for RCA-Victor 118
RCA-VICTOR (CANADIAN) 122
Same case histories as those listed for RCA-Victor 220
RCA-VICTOR (CANADIAN) 128
Same case histories as those listed for RCA-Victor 128

RCA-VICTOR (CANADIAN) 140

Same case histories as those listed for RCA-Victor 140
RCA.VICTOR (CANADIAN) 143
Same case histories as those listed for RCA-Victor 143
RCA-VICTOR (CANADIAN) 211
Same case histories as those listed for RCA-Victor 117
(RCA-VICTOR (CANADIAN) 221, 222
Same case histories as those listed for RCA-Victor 220
RCA-VICTOR (CANADIAN) 224
Same case histories as those listed for RCA-Victor 224
RCA-VICTOR (CANADIAN) 242
Same case histories as those listed for RCA-Victor 143
RCA-VICTOR (CANADIAN) 262
Same case histories as those listed for RCA-Victor 262
RCA-VICTOR (CANADIAN) 331
Same case histories as those listed for RCA-Victor 331
RCA-VICTOR (CANADIAN) 381
Same case histories as those listed for RCA-Victor 281
ROCKOLA (all models using type '6B5 output tubes)
Intermittent noise

1) type '6B5 tube becomes too hot. Substitute a new tube in place
2) replace condenser in tone-control circuit with a $0.001-m f d$. tubular unit

## ROGERS (CANADIAN) "BATTERYLESS" 200A

"Popping" noise

1) intermittent short-circuiting of tuning condenser plates, caused by vibration transmitted to chassis. Straighten out plates or replace tuning-condenser gang

ROGERS (CANADIAN) R-561
Distortion at low vol- .-1) change the value of the 50,000 -ohm reume on local stations sistor connected between the cathode and B-plus of the first type '58 i-f tube

## ROGERS (CANADIAN) 725-A, 740-A, 755-A (using the spray-shielded tubes)

Noisy reception
(replacing volume control does not cure the trouble)

Intermittent reception .-1) defective $0.05-\mathrm{mfd}$. condensers under the tuning condenser shield

## ROGERS (CANADIAN) 951

Poor sensitivity …......1) defective $0.003-\mathrm{mfd}$ ground coupling
(tubes and voltages check O.K.) condensers connected to either of the coils in the first i-f transformer (even though they may test O.K.). Replace
2) open-circuited primary winding in the push-pull input transformer, not usually apparent on account of the $20,000-$ ohm plate resistor which is shunted across it

## ROY.AL A.C.-D.C. RECEIVER

Poor tone,
Distortion
(tubes test O.K.)
(voltages slightly low on type ' 43 tube)

1) solder a No. 16 copper wire to all grounded terminals including the tuning condenser rotor contacts. Then solder this wire in turn to chassis, thereby obtaining a good low-resistance ground to chassis

SENTINEL 550
Same case histories as those listed for Silvertone 550

Noisy reception, Intermittent reception

Cross modulation when used near a powerful local station

## SERENADER 160

1) defective r-f tube socket split at the plate prong, thus allowing the plate voltage to arc to ground. Replace

SILVER 30

1) replace the first r-f tube with a type '27 tube, making the following changes in the circuit: remove the 400 -ohm resistor connected to the cathode prong and the 2600 -ohm resistor at the grid terminal. Remove the red condenser lead from this terminal to the cathode terminal. Clip off the screen-grid lead. Remove the grid clip from the wire leading to the antenna choke and push it through a $1 / 8$-inch hole to be drilled near the tube socket. Solder this wire to the grid terminal and resolder the 2600 -ohm resistor between the cathode and chassis

SILVER-MARSHALL A
Low volume, .... ... .... 1) by-pass condenser across the type ' 47 Foor tone tube bias resistor not of sufficient capacity. Replace with a $10-\mathrm{mfd}$., 25 -volt electrolytic condenser

## SILVER-MARSHALL "BEARCAT"

Volume control inop- 1) increase in value of the bleeder resistor erative at low settings connected from the volume control to B-plus, from 6,000- to over 35,000 -ohms. Replace with a new unit

## SILVER-MARSHALL C



## SILVER-MARSHALL Q

Motorboating only at 1) decrease in value of AVC plate resistor. resonance and strong signals
Replace with new unit
2) leaky AVC tube plate by-pass condenser. Replace with new unit

## SILVER-MARSHALI, R (10 Tube)

Inoperative
(set tests O.K.)
No signal when set
is turned on but
starts to play during
first 5 or 10 minutes

Motorboating, Excessive hum

1) i-f amplifier out of alignment
2) replace first filter condenser with 8 -mfd. electrolytic unit
3) poor filtering in circuit acts as a signal on the AVC tube grid. If distortion and loud volume results when the AVC tube (first type ' 227 tube of row of three next to type 551) is withdrawn, and the set is tuned to a local station, then the fault lies in the AVC system
4) excessively high resistance in tone control (which is the plate resistor in detector circuit). If control checks O.K. replace $0.5-\mathrm{mfd}$. condenser from lower contact to ground with a $0.25-\mathrm{mfd}$. condenser, and connect a $1 / 4$-megohm resistor across the outer points of the tone control

SILVER-MARSHALL 36A
Intermittent oscillation 1) defective r-f choke in series with cath(insertion of analyzer cable clears up trouble, making testing difficult)

## SILVER-MARSHALL 37, 38, 39, 782



SILVER MARSHALL 1480
Distortion, .------------------1) replace Tun-a-lite

Tun-a-lite inoperative, Weak reception

Inoperative .-.-....................
Hum $\qquad$ 1) two negative sides of condenser block short-circuited internally
2) one side of high-voltage secondary opencircuited

1) 1,500 -ohm section of voltage divider open-circuited

SILVERTONE 36, 37, 41
Low volume, ..... ...... .....-1) loosen the set screw on the rear end
Insensitive

Oscillation $\qquad$ 1) condenser gang out of alignment

## SILVERTONE 42

No reception between ---1) ground one side of the antenna coil to

540 and 950 kc
Oscillation
Poor reception between
540 and 950 kc
(noise and whistles accompanying signals) of the volume control shaft where the movable primary coil is attached, moving it about $1 / 8$ - to $1 / 4$-inch into the secondary coils, and tightening the set screws on the shaft
2) replace the type ' 24 tubes in the r-f section with type ' 35 tubes the chassis
2) apply an external ground to the chassis
.1) ground one side of the antenna coil to the chassis
2) connect an external ground to the chassis to reduce hum and improve DX reception

## SILVERTONE 550

Inoperative
(tubes and voltages test O.K.),
Oscillator inoperative unless lead is touched to grid of i-f or second detector tube

1) connect an 8 -mfd. filter condenser from the set side of the filter choke to the common negative return lead on the chassis

SILVERTONE 1172
Same case histories as those listed for Silvertone 36

SILVERTONE 1506
No reception .-.-.--------.-.--1) short-circuited $0.01-m f d$. by-pass condenser between the plate and grid of the type ' 47 tube

SILVERTONE 1570, 1574
Electrolysis in output ...-1) due to use of paper winding form whose transformer composition contains some chemical which is electrolytic. Repair by replacing with Bakelite form and impregnate winding with some moisture-proofing compound

## SILVERTONE 1584

Continual blowing of .-.-1) due to surge built up in primary when $0.003-\mathrm{mfd}$., 600 -volt line switch is operated. Replace with condenser connected across power-transformer primary 800 -volt condenser across line side of the on-off switch and the chassis

SILVERTONE 1620, 1622
Ballast lamp burns .---.-.-1) volume control short-circuiting to chassis out

SILVERTONE 1640
Undesirable time lag .-.-1) replace the 0.1 -mfd. condenser in AVC in AVC system, Weak stations interrupted during static bursts

Feedback unit, Hiss

1) insert r-f chokes in the red plate leads of type '283 tube
"Blurping" at high $\qquad$ 1) reverse transformer secondary leads to grids of type ' 46 tubes

SILVERTONE 1652, 1654
Poor selectivity in .-.......1) replace second i-f untuned transformer models with 0.005mfd. condenser in i-f stage under chassis with a tuned unit (part R6115A) and re-align both i-f stages. If oscillation should result, reverse connections on plate coil in second i-f stage, being careful not to disturb connections from plate and B-plus to trimmer. The rotor must go to plus

SILVERTONE 1700
Speaker rattle -----------..-1) speaker cone off center
SILVERTONE 1711
Audio "Howl," ...- .........-1) coil shield on right front of chassis Microphonics (looking from rear of cabinet) touching a nut which holds the speaker to the front of the grille. Enlarge the chassis

## SILVERTONE 1711 (cont'd)

bolt holes on the back side of the chassis and "float" the speaker to the front of the chassis on a concentric circle of cardboard

SILVERTONE 1712, 1713


## SILVERTONE 1732

See also case histories listed for Silvertone 1721
Low volume

1) increase the screen-grid voltage from 55 - to 80 -volts by replacing the 15,000 ohm screen-grid resistor with a $10,000-$ ohm unit

## SILVERTONE 1750

Filter condensers blow out,
Type '25Z5 tube burns out

1) short-circuit the 200 -ohm fixed resistor in series with the speaker field and ground. Connect a 40 -ohm resistor in series with the plate of the ' 25 Z 5 tube, connecting to the line cord and eliminating the original connection

SILVERTONE 1762
Same case histories as those listed for Silvertone 1700

SILVERTONE 1801 A.C.-D.C.
Hum after regular $-\ldots-1$ ) connect the cathodes of the type '25Z5
filter replacement
tube together

## SILVERTONE 1904

Volume cannot be re- ... 1) volume control coil slipping. on shaft duced to zero 2) defective type '6C5-G AVC tube (even though it may test O.K.). Substitute other tubes in socket
3) leakage between the type '6A7 grid-return lead and the B-plus lead. Isolate the grid return lead from it
4) shield the fixed coil of the volume control, by fastening a small shield to the mounting screw by means of a nut. With the volume control at minimum setting make adjustments by bending the shield toward, or away from, the coil

Image interference, Whistles
"Fluttering" on shortwave band

1) remove wire from broadcast antennacoil primary to wave-band switch, and run a wire from the outside of the primary winding down through the hole alongside the electrolytic condenser across the top of the chassis down through the power transformer mounting slot to the wave-switch terminal from which the original lead was removed
2) volume control setting too high
3) signal of station too strong Note: The above condition may be remedied by connecting an $8-\mathrm{mfd}$. condenser across the terminal furthest removed from the condenser on the triple terminal board, and the wiper on the dial-end section of the variable condenser (the negative terminal being connected at this point). The leads should be as short and direct as possible

## SILVERTONE 1905

Loose selectivity control shaft

1) convex washer on shaft should face the back end, otherwise the shaft will work loose

SILVERTONE 1906, 1914
Same case histories as those listed for Silvertone 1904
SILVERTONE 1915
Same case histories as those listed for Silvertone 1905
SILVERTONE 1954
Same case histories as those listed for Silvertone 1904

SILVERTONE 1955
Same case histories as those listed for Silvertone 1905

## SILVERTONE 1964

Same case histories as those listed for Silvertone 1904

SILVERTONE 1965
Same case histories as those listed for Silvertone 1905

## SILVERTONE 1967C (Early Models)

Hum ----- ------------------.- .- 1) replace 14 -mfd. electrolytic condenser with a $25-\mathrm{mfd}$. unit

Modulation hum

1) connect a $75,000-\mathrm{hm}$ resistor between the screen-grids of the r-f and translator tubes and the B-plus
2) connect a $0.2-\mathrm{mfd}$. condenser between the r-f and translator tubes to ground
3 ) replace the $20,000-$ ohm section of the voltage-divider section with a 10,000ohm, 2-watt unit

## SIMPLEX MODEL R

Set smokes

1) short-circuited 4 -mfd. condenser in the power supply system

SONORA A
Inoperative at the low- -1) short-circuiting tuning condenser plates frequency setting of the tuning dial,
Noisy reception at the high-frequency setting

SONORA A30, A32, A36


## SONORA A40, A44, A46

See also case histories listed for Sonora A30, A32, A36


## SPARTON JR. D.C. RECEIVERS

Weak reception, $---\quad-\quad-\quad$ 1) replace $22 \frac{1}{2}$-volt "C" battery
Distortion

## SPARTON 9-A

Oscillation over the ... 1) dirty or corroded condenser-gang conentire dial tacts Clean contacts carefully or solder flexible pigtails between the rotor and the condenser frame

SPARTON 9-30
Intermittent reception _-.1) broken wire on one of the band-pass coils in r-f unit
2) broken wire in detector plate circuit choke in r-f unit
3) loose prongs on r-f tube sockets (Cont'd)

## SPARTON 9-30 (cont'd)

No reception
Noisy reception
Hum

Weak reception on lower.-...._1)	1)shorted plate by-pass condenser   loose bolts holding r-f unit to common   connector plate
end of dial	2) readjust antenna series condenser

## SPARTON 12

Intermittent reception,
Inoperative at low-frequency setting of tuning dial, (set resumes normal operation when chassis is jarred)

1) high-resistance connection between the tuning condenser rotor plates and the shaft. Replace with a new tuning condenser gang, or repair by drilling each rotor section through the shaft and inserting a copper dowel pin into each hole drilled

## SI'ARTON 14

Intermittent reception
(shaking cabinet re-
stores normal opera-
tion)

1) wire from i-f transformer to type '58 tube short-circuiting to shield can of tube due to loss of insulation at this point
Fading,
Intermittent reception
2) components mounted on terminal strip

Hum,
Distorted reproduction,
Pentode output tube grids bright red

Unstable, --...---.-------frequencies

1) open-circuited 3,000 -ohm resistor in first detector-oscillator cathode circuit
2) open-circuited $0.002-\mathrm{mfd}$. first detectoroscillator cathode by-pass condenser
Oscillation
3) electrolytic condensers lost capacity

## SPARTON 16

Frequency drift, .-. 1) loose connections on oscillator coil, check Fading, Oscillation

Excessive motorboating

Hum
Unstable,
Weak reception at high frequencies

1) r-f signal from oscillator being im-
shorting to one another
2) partially "shorted" dynamic speaker field coil
3) electrolytic condensers dried up pressed on second detector, causing periodic blocking of set through AVC action and periodic releases. Insert a static shield between the oscillator condenser stator and the adjacent r-f stator on the tuning condenser gang

## SPARTON 18

AVC tube does not $\qquad$ 1) defective $0.01-\mathrm{mfd}$. condsener between function the plate and cathode of AVC tube
Intermittent reception, ....1) components mounted upon terminal strip Volume lowers shorting to one another
2) unsoldered connections to wire-wound resistors

No control of volume ._-_1) cathode-heater leakage in '58 AVC tube
2) grounded noise-suppressor control lugs

Unstable,

1) open-circuited $3,000-\mathrm{hm}$ resistor in cath-

Weak reception at high frequencies ode circuit of first detector-oscillator tube
2) open-circuited $0.002-\mathrm{mfd}$. first detectoroscillator cathode by-pass condenser

Distortion,

1) defective electrolytic filter condensers

Hum, (high leakage)
Poor control of volume
Oscillation

1) capacity of electrolytic condensers abnormally low

## SPARTON 25

Inoperative

1) short-circuited $0.1-\mathrm{mfd}$. screen by-pass cartridge condenser
2) center terminal of screen by-pass cartridge condenser shorting to chassis
Set dead $\qquad$ 1) replace secondary coil in control-grid (plate and screen
voltage check O.K.),
High voltage between control-grid of first detector and ground.
Receiver operates
when the secondary
coil is grounded,
AVC inoperative
Oscillation, Motorboating,
Weak reception
3) "open" $0.1-\mathrm{mfd}$. screen by-pass condenser
4) add r-f choke in first i-f cathode circuit
5) employ separate bias resistor and bypass condenser for i-f stage
Fading
6) high-resistance contact between the diecast rotor plates on the condenser gang and the condenser shaft. Drill and tap holes in each rotor through to the shaft and insert set-screws

Fading,

1) gassy AVC tube

Weak reception
Fading,

1) leaky 2 -mfd. r-f, first detector and i-f

Poor control of volume secondary-return by-pass condensers

Hum

1) loose power transformer laminations

## SPARTON 26

See also case histories listed for Sparton 25
Intermittent reception 1) replace the round metal-clad 1-mfd. condenser
2) leaky 0.2 -mfd., 200 -volt condenser. Replace with new unit
3) leaky $0.05-\mathrm{mfd}$., 400 -volt condenser. Replace with new unit
4) leaky $0.006-\mathrm{mfd}$., 600 -volt condenser. Replace with new unit

## SIARTON 26AW

See also the case histories listed for Sparton 25
Intermittent condition ...1) open-circuiting i-f transformer windings. Inoperative Coil leads snap at terminal lugs

## SPARTON 27A

Low volume,
Distortion

No AVC action $\qquad$ 1) change in value of AVC resistor. Replace with new unit of proper value
Noisy reception

1) defective inter-station noise-suppressor resistor: Replace with new unit

SPARTON 28
See also the case histories listed for Sparton 26AW

Noisy reception,
Intermittent reception at around 600 kc

1) loose variable condenser plates. Secure plates to shaft with brass pins

SPARTON 30
See also "case histories" listed for Sparton 25, 26AW
Does not play 10 or .........1) open contacts of indicating switch within 12" records kick-off arm compartment
2) plunger arm of solenoid binding to solenoid
3) insufficient tension of plunger arm spring
4) open-circuited solenoid

Fuse blows when record 1) indicating switch contacts shorting to is rejected kick-off arm compartment

## SPARTON 36

Short life of vibrators 1) life can be prolonged by connecting a $0.01-\mathrm{mfd}$., 600 -volt condenser across the power transformer secondary winding

## SI'ARTON 45

Inoperative

1) type ' 45 tubes biasing resistor shortcircuiting to chassis. Replace with a new 1250 -ohm, 10 -watt unit
2) defective $\mathbf{1 0 , 0 0 0}$-ohm carbon resistor connected from the chassis to one side of the volume control. Replace with a wire-wound unit

## SPARTON 57

Hum

1) loose connection in the first detector coil. Resolder this connection, making sure that the joint is well soldered

## SPARTON 61, 62

Distortion (tubes and voltages test O.K.)

Tunable squeal all over .. 1
dial

1) defective 5 -mfd. section of filter condenser connected across speaker field and tapped filter choke (yellow lead) 1eaky 5-mfd., 165-volt section of filter condenser block. Replace with 8 -mfd. 200-volt unit

## SPARTON 65, 66

Oscillation $\qquad$

Dial pointer does not turn

Poor selectivity (early models only)

1) metal braid shielding on control-grid lead of type ' 78 tubes pushed back, leaving part of the lead unshielded. Shielding braid should cover full length of wire
2) loosen the front chassis screw so that the chassis will "float" on its rubber. cushions
3) add a tuned circuit in the primary of i-f transformer $L-5$, by replacing with the new $L-5$ unit and installing a new C-s unit. Connect one side of this condenser across the primary and the other side across the secondary
4) remove resistor $R-11$ and replace with a 2,200 -ohm, $1 / 4$-watt unit
5) replace resistor $R-15$ with a $50,000-\mathrm{ohm}$, $1 / 4$-watt unit

SPARTON 67, 68
Mechanical vibration

1) replace small pieces of rubber in middle of rear edge of chasis base plate with small strips of 1 -inch masking tape along the edges of the plate, thereby preventing it from vibrating against chassis frame. Stick one end of tape to top side of plate, and fold other end around so it sticks to bottom

SPARTON 71, 71B, 72, 78
Noisy reception .-----.-.-.-1) high-resistance connection to chassis caused by riveted joints at tube shields. Solder these in place

## SPARTON 79

No control of volume _-_1) leaky cathode by-pass condenser allow(constantly plays at ing current to pass regardless of volume full volume level) control setting. Replace with new unit

SPARTON 80, 83, 84
$\begin{aligned} & \text { Inoperative } \\ & \begin{array}{l}\text { denser connected from the plate circuit }\end{array} \\ & \text { of the AVC-controlled tubes to ground. } \\ & \text { Replace with a } 600 \text {-volt unit }\end{aligned}$

SPARTON 99

	short-circuited $0.25-\mathrm{mfd}$. plate by-pass condenser in r-f amplifier   5th r-f transformer-primary short-circuiting to secondary
Weak reception, $\qquad$ Distorted reception	leaky $0.25-\mathrm{mfd}$. plate by-pass condenser in r-f amplifier
Weak reception-------------.-.-1)	) open-circuited detector grid choke
Intermittent reception,.-....1) Fading	r-f coil leads snapped at terminals corroded band-pass tuner coupling pin
No control of volume.-......1)	leaky 1 -mfd. cathode by-pass condenser leakage between cathode and heater of types ' 484 and 485 tubes
Noisy tuning - 2)	burrs on tuning condenser plates. Burn with high-voltage leads disconnected defective first audio transformer. Replace with new unit or remove transformer and substitute resistance coupling in place
Inoperative, $\qquad$   Rectifier tube plates red hot,   Fuses blow	rubber covered leads under power unit shorting to shield (for Sparton 99 only)
	SPARTON 104
Noisy reception (tubes and voltages check O.K.)	defective a-f transformer (even though it may test O.K.). Replace with new unit

SPARTON 109
Same case histories as those listed for Sparton 9-30 and Sparton 99
SPARTON 110, 111
Same case histories as those listed for Sparton 99

## SPARTON 193

Inoperative except when antenna is placed on stator of fourth r-f stage tuning condenser, resulting in reception of local stations only (all r-f coils, condensers and tubes test O.K.)

1) open-circuited grid winding on one of the r-f band-pass coils
2) open-circuited soldered connection at one end of the coil connecting lugs. Resolder all connections at soldering lugs

SPARTON 210 MIDGET
Oscillation some time ...-1) insufficient r-f tube cathode bias-reafter set is switched sistor-to-ground by-pass condenser on capacity. Replace with a $0.1-\mathrm{mfd}$. condenser

SPARTON 235
Same case histories as listed for Sparton 110
SPARTON 301
See also case histories listed for Sparton 99
Distorted reproduction, -.-_1) dynamic speaker field coil connections Weak reception reversed

SPARTON 333

Intermittent reception, ..1) Noisy reception	open-circuiting stator connections under condensers. Replace with stranded wire pigtails
Intermittent hum, .........1) Fading	poor ground connection at the eyelet of the type ' 42 output tube, due to a loose eyelet. Solder direct grounding wires from the heater circuit at this point and at all other points where grounding is dependent upon eyelets

SPARTON
400

Short-circuit between
i-f tube plate and chassis

Noisy reception $\qquad$

1) dust and other foreign particles between condenser-gang plates. Clean out with pipe cleaners and burn with high voltage (terminals disconnected) if trouble is not entirely removed

SPARTON 410, 420
Inoperative

1) insulated common $\mathbf{B}+$ terminal shorting to chassis
2) r-f plate leads shorting to shielding braid

Noisy tuning .----.-..........-1) burrs on tuning condenser plates. Burn with high voltage-all terminals disconnected
2) dust between plates
3) corroded rotor contacts. Bond rotors to condenser frame with flexible pigtails

Oscillation

1) corroded rotor contacts

Oscillation

1) replace both type ' 183 tubes
(set checks O.K.) 1) dirty or corroded condenser-gang contacts. Clean contacts carefully or solder flexible pigtails between the rotor and the condenser frame

SPARTON 478
Same case histories as those listed for Sparton 71

SPARTON 506

Speaker	cardboard tube separator resting against speaker cone. This should be removed
Microphonics	remove wooden packing blocks from set

SPARTON 564, 570, 574, 578, 589
Same case histories as those listed for Sparton 99
SPARTON 591
See also case histories listed for Sparton 99
Noisy reception ---------------.-1) noisy audio transformer primary
SPARTON 593
Same case histories as those listed for Sparton 99
SPARTON 600, 610
See also case histories listed for Sparton 99
Intermittent reception,----1) primary winding of audio transformer Noisy reception short-circuits to core intermittently

Weak reception

1) leads of band-pass coils snapped at lugs

Weak reception,
Broad tuning at the

1) leaky by-pass condenser in the first type lower frequencies ' 484 tube cathode circuit. Replace with a 0.2 -mfd. condenser if its terminal resistance is less than $10-$ megohms
2) leads of band-pass coils snapped at lugs

Distorted reproduction

1) partially shorted dynamic spkr. field coil
2) weak, gassy, or unbalanced power output tubes
3) unbalanced push-pull input transformer secondary

Hum at resonance ---------1) connect a $0.5-\mathrm{mfd}$. condenser from one side of power transformer primary to chassis
Oscillation,

1) open-circuited $15,000-\mathrm{hm}$ bleeder reDistorted reproduction sistor
2) bleeder resistor increases in value

No control of volume .-.-.-1) leaky $0.2-\mathrm{mfd}$. cathode by-pass condenser in pre-selector stage
2) pre-selector stage cathode by-pass condenser grounding to shield

Lack of sensitivity

1) high-resistance contacts between the socket prongs and tube prongs. Remove sockets and bend prongs back in shape. This is a result of rocking the tube while removing it from the tube socket, thereby bending the socket prongs

## SPARTON 611

Same case histories as those listed for Sparton 99

## SPARTON 612



SPARTON 620
Same case histories as those listed for Sparton 600

SPARTON 691
Same case histories as those listed for Sparton 67
SPARTON 737 (Black Chassis)
See also case histories listed for Sparton 600


## SPARTON 737 (Serial Number 6502)

See also case histories disted for Sparton 600

## Inoperative

1) open-circuited $13,000-\mathrm{hm}$ plate voltage dropping resistor
No type ' 80 tube fila- ...1) open-circuited filament resistors ment voltages
No type '183 tube filament voltage
Fuses blow .----.------.---------1) power transformer breaking down
SPARTON 740, 750
See also case histories listed for Sparton 99
Hum, 1) loose common terminal connection of
Oscillation,
Distorted reception

Hum

1) defective type ' 485 tubes, caused by

Poor control of volume short-circuited or loose elements. Test each tube by substitution, replacing if defective

Blasting,

1) open-circuited 7,000 -ohm bleeder resistor

Poor tone, Oscillation
2) bleeder resistor increased in value

Fading

1) leaky cathode of by-pass condenser in pre-selector stage
2) pre-selector cathode by-pass condenser grounding to shield
Fading,
3) poor contact between band-pass preselector unit and r-f amplifier proper. Tighten spring in socket so that it makes good contact with the pin
Intermittent reception -...1) intermittently open- or short-circuiting untuned r-f coil. Test carefully and replace any of the units which are found to be defective
4) nuts on grounding-strip bolts working loose. These should be tightened to insure uniform contact
No control of volume .-.-.-1) short-circuited pre-selector stage cathode by-pass condenser
5) pre-selector cathode by-pass condenser grounding to shield

## SPARTON 766M

1) remove the $1.5-\mathrm{mg}$ ohm, $1 / 4$-watt resistor connected to the green wire of the cable leading to the "magic eye" tube. This will cause a more pronounced movement of the "magic eye" shadow (Cont'd)

## SPARTON 766M (Cont'd)

Microphonics ---.-...-.-...-.....-1) remove wooden packing blocks from set

## SPARTON 870

Noisy reception, -------....... 1) poor insulation of filter choke outlet at Arcing side of power unit

## SPARTON 871

Same case histories as those listed for Sparton 99
SPARTON 930, 931
See also case histories listed for Sparton 99
Reception only between . 1) cold soldered joint at first r-f plate 850 and 1500 kc , choke (voltages and tubes test O.K.)
2) increase in value of 15,000 -ohm bleeder resistor. Replace with new unit
No plate voltage

1) short-circuited plate by-pass condenser. Replace with a 400 -volt unit, as low voltage units are a frequent source of trouble
Low volume ... . .. .1) high-resistance connection at movable arm lug of tone control. Resolder this connection
Intermittent reception 1) loose tuning condenser rotor section Cutting off causing plates to rock slightly
2) corroded rotor contacts, causing highresistance connection between rotor and condenser frame. Bond with flexible pigtails
Double-spot reception. Oscillation
3) worn bearing in tuning condenser shaft, causing plates to get out of alignment
Oscillation after re-
4) connect a $0.001-\mathrm{mfd}$., 600 -volt condenser between the plate and cathode of the first r-f amplifier tube tubes
(tubes and voltages test O.K.)
Hum between stations . 1) connect a $0.001-\mathrm{mfd}$., 600 -volt condenser between one plate and the filament of the type '80 rectifier tube
Hum,
Noisy reception
5) faulty contact of electrolytic filter condenser can to chassis

## STEINITE 70, 80, 90

 speaker cable, causing short-circuits. Replace with new cable
2) defective screen and plate supply bypass condensers. Replace with $0.5-\mathrm{mfd}$. units

## STERLING G

Power transformer ......-.1) short-circuited power transformer pri-
smokes,
Fuses blow mary. Replace transformer coil or entire unit

## STEW ART-WARNER "COMPANION" A.C.-D.C.

Excessive hum, Poor sensitivity

1) leakage between the condenser block and chassis, caused by the soaking through of the liquid through the cardboard container. Wrap a layer of thick waxed paper around the condenser block and replace it in the chassis (Note: "Empire" cloth will be even more satisfactory)

## STEWART-WARNER SERIES 50

Weak reception with .-.-1) realign the broadcast gang, trimmers the local-distance switch in the "local" position with the switch in the "local" position

STEWART-WARNER R100-A, R100-B, R100-E
Distortion $\ldots-\ldots-\ldots$ (1) leaky 0.1-mfd. coupling condenser be-
tween the type 27 detector tube plate
cholse and the grid of the first audio
tube
2) replace the second r-f tube with a type '35 or '51 tube to eliminate oscillation

Intermittent reception (low r-f tube plate voltages)

1) defective smaller section of the wirewound resistor under the condenser can. Replace with a 1,000 -ohm, 10 -watt unit
(Cont'd)

## STEWART WARNER R100-A, R100-B, R100-E (Cont'd)



Volume control burns .-..1) defective 20,000 -ohm bleeder resistor out connected between the screen circuit and the voltage divider
Oscillation when type ....1) increase the value of the screen-grid ' 24 tubes are replaced resistor by-pass condenser to about 0.5 with type '24A's mfd.

STEWART-WARNER R102-A
Poor quality, .-................-1) defective $0.1-\mathrm{mfd}$. condenser near the
No volume
2) defective $0.02-\mathrm{mfd}$. detector-audio coupling condenser
3) defective 2 -megohm second detector-screen-grid resistor
Oscillation all over .------1) open-circuited $0.1-\mathrm{mfd}$. by-pass condial (voltages test O.K.) denser across 500 -ohm cathode series resistor in the type ' 51 tube circuit. Replace with new unit
Intermittent hum

1) low end of type ' 47 tube grid resistor short-circuiting to chassis
(slight jar brings set back to normal when hum starts)

STEWART-WARNER R-102 D.C.
Low volume

1) open-circuited 2 -megohm, $1 / 2$-watt second detector tube screen-grid resistor. Replace with a 1 -watt unit

## STEWART WARNER R-105 SERIES

Broadcast interference.....1) de-tune center short-wave i-f trimmer on short waves (counter clockwise)

Weak reception in
"local" position

1) re-align broadcast circuits

Fading $\qquad$ 1) open-circuited 2 -megohm AVC tube grid resistor
Noisy, $\qquad$ 1) corroded contacts on wave-band switch

Intermittent reception
Microphonic

1) loose chassis-mounting bolts

No short-wave reception..1) short-circuited trimmer condenser in short-wave detector plate circuit


## STEWART-W ARNER R-111, R-115

Tunable hum

1) open-circuited line by-pass condenser 15. Replace with new unit

## STEWART-WARNER R-116

Weak reception at low ...-1) poor connections at soldered joints of end of dial
Set goes off calibration
Inoperative on the $\qquad$ broadcast band,
Noise at several positions on the station selector trimmer condensers. Resolder joints and re-balance circuits

1) open-circuited section in the antenna coil. Re-wind with new wire of the same size

2) poor contact of the grounding lug of the vitreous enamel voltage-divider resistor
3) cut out of the circuit the 230 -ohm negative section of the bleeder resistor and substitute a separate 230 -ohm wirewound resistor in place
4) power cord within set too close to the $0.05-\mathrm{mfd}$., 100 -volt insulating condenser which is connected to one side of the volume control. Pull power cord away from condenser
5) reverse connections on speaker field coil

## STEWART-WARNER R116-AH

I-f trimmer requires
.1) temperature causes unit to contract and frequent adjustment expand. In regions of wide temperature variation, adjustments are required every two or three months

## STEWART-WARNER R-130

Oscillation on shortwave band

1) short-wave detector shunt trimmer screw set too far out
2) detector circuit tuned to the receiver oscillator frequency instead of to the frequency of the desired signal

## STEWART-WARNER R142-A, R142-AS

Code interference at ....1) adjust the wave-trap for minimum output with the test oscillator set at 456 kc

## STEWART-WARNER R202-A

Set dead

1) open-circuited $6,000-\mathrm{hm}$ screen-grid supply resistor. Replace with new unit
detectage on first screen grids)

STEW ART-WARNER R301, R301-A, R301-B, R301-E

Inoperative
(especially on high frequencies)

Inoperative

1) plate voltage applied to type ' 27 oscillator tube low. Substitute a series plate resistor for the present one, which will drop the voltage so that 100 -volts are applied to the plate
2) resolder all coil and high-frequency connections
3) defective 2 -mfd. 600-volt electrolytic condenser. Replace with new unit

STEWART-WARNER 102A
Distortion at any vol- ...1) add a 500,000 -ohm resistor between the
ume level
(tubes and voltages test O.K.)
set resumes normal operation when detector screen-grid voltage is checked on 500 -volt range of voltmeter

1) remove first 500,000 -ohm resistor in pentode output tube grid circuit
STEWART-WARNER 1181, 1182, 1183
Inoperative unless
"local" switch is turned on and off
2) change 50,000 -ohm resistor on '6A7 tube
3) if set goes into oscillation place a 0.25 mfd. condenser from cathode to ground on type '6A7 tube
Bell-like rattle
4) loose tubular condensers inside power transformer cover. Remove cover and resolder and re-tape condensers to it
Faint response on powerful signals, Inoperative
5) broken lead on coupling condenser con- nected to movable arm of volume control

STEWART WARNER 1201
Hum ........................-.-1) add filter choke and 8-mfd. filter con-
2) add one or two 8-mfd. electrolytic condensers

Distortion at resonance, ..1) open-circuited cathode section of AVC Unstable voltage divider
No short-wave reception ..1) short-circuited trimmer condenser in plate circuit of short-wave detector
Slightly distorted, Lowered output,

1) open-circuited $0.02-\mathrm{mfd}$. audio coupling condenser
Noisy reception
2) clean wave-band switch contacts

STEWART WARNER 1251-1259
Intermittent reception, -..-1) poor contact of wave-band switch shortInoperative on shortwave band
Code interference

1) install wave-trap adjusted to 456 kc

STEWART WARNER 1261-1269

Intermittent reception or inoperation on broadcast band
Noisy reception
Inoperative,
Motorboating
Weak short-wave reception

Distortion
Slipping dial

1) open-circuiting oscillator coil for broadcast band at lug to which postage stamp type condensel is connected
2) open-circuiting diode load by-pass condensers, a dual unit
3) open-circuited $0.25-\mathrm{mfd}$. screen by-pass condenser
4) increase oscillator plate voltage. Replace oscillator plate resistor with $15,000-$ ohm resistor
5) leaky or short-circuited $0.1-\mathrm{mfd}$. grid filter condenser for triode of '75 tube
6) free the action of dial pointer pivot

STROMBERG CARLSON 10, 11
Inoperative ............................) insulated screws in condenser shields connected to stators of tuning condensers, grounding

Intermittent reception..---1) open-circuiting $0.04-\mathrm{mfd}$. bi-resonator condensers
Weak, $\qquad$ 1) primary of push-pull input transformer

Distorted reception
Noisy reception short-circuiting to secondary winding

Poor control of volume .. 1) breakdown of $0.015-\mathrm{mfd}$. condenser con-

1) noisy primary of push-pull input transf. nected in series with the ground, as a result of stress imposed upon it when

## STROMBERG CARLSON 10, 11 (cont'd)

Poor control of volume .. 1) (receiver operates at full volume regardless of volume control setting)	defective $\mathbf{1 0 0}, \mathbf{0 0 0}$-ohm resistor connected between the grid returns of the first and third $r$-f tubes and the movable arm of the volume control potentiometer short-circuited, or leaky, $0.3-\mathrm{mfd}$. bypass condenser connected between the movable arm of the volume control po tentiometer and the chassis
	leaky $0.04-\mathrm{mfd}$. bi-resonator condensers
ading (operative only with volume control at maximum setting)	open-circuited 700 -ohm section of voltage divider resistor. Replace with a 10 watt unit

## STROMBERG CARLSON 12, 14

No reception ..._-_1) shorted detector plate filter condenser

Poor tuning meter action..1) insufficient antenna
2) poor second type '24-r-f tube
3) change AVC tube

Noisy reception, fading . 1) leaky 0.04 -mfd. bi-resonator condensers
2) defective volume control. Replace with new unit
Intermittent reception-....-.1) open-circuited $0.04-\mathrm{mfd}$. bi-resonator condensers
Both type ' 80 tubes .....1) intermittently short-circuiting filter conspark denser

## STROMBERG CARLSON 19, 20

Intermittent reception__1) oscillator coil leads snapped at lug
2) open-circuiting $0.04-\mathrm{mfd}$. bi-resonator condenser
Set does not light

1) defective ' 80 tube causes fuse to burn out

## STROMBERG CARLSON 22, 22A

Poor action of tuning.....-.-1) insufficient antenna. Lengthen antenna meter 2) shunt $30-\mathrm{ohm}$ resistor across meter terminals

Intermittent reception,.....-1) short-circuiting i-f trimmer condenser
Noisy reception 2) poor connections to carbon resistors

Intermittent reception -...1) open-circuiting $0.04-\mathrm{mfd}$. condensers | used as bi-resonator and first detector |
| :--- |
| secondary return by-pass units |

Fading,
Weak reception

1) grounding of screw passing through first tuning condenser shield and connected to stator of first tuning section

## STROMBERG CARLSON 25, 26

Distortion at any volume_1) leaky second detector cathode by-pass

- level

Distortion at low volume..1) change second detector type '24A tube condensers
2) shield cans cutting into connecting leads to coils

Inoperative, $\qquad$
Intermittent reception
Distorted,
Weak reception
Noisy reception.

1) primary of push-pull input transformer shorting to core or to secondary winding
2) primary of push-pull input transformer short-circuited to secondary winding
3) noisy primary winding of push-pull input transformer
4) leaky $0.001-\mathrm{mfd}$. detector plate by-pass condenser
5) leaky second detector cathode by-pass condensers
No control of volume...-.-1) leaky $0.05-\mathrm{mfd}$. bi-resonator condensers
6) leaky $0.3-\mathrm{mfd}$. r-f, first detector and i-f secondary-return by-pass condensers
7) $100,000-\mathrm{ohm}$ resistor in control-grid sec-ondary-return circuit shorting to chassis

## STROMBERG CARLSON 27

Poor action of tuning.---.-1) insufficient antenna. Lengthen antenna meter 2) open-circuited $30-\mathrm{hm}$ meter shunt
Volume cannot be made_-1) change volume control
low

Fading,
Intermittent,
Weak reception
Weak reception,
Poor action of tuning meter,
Station hiss
Inoperative $\qquad$

Inoperative below $\qquad$ 1) open-circuited section of oscillator coil secondary winding; lead snapped at lug

1) short-circuited $0.0001-\mathrm{mfd}$. second i-f transformer coupling condenser
2) leaky $0.04-\mathrm{mfd}$. bi-resonator condensers
3) open-circuiting $0.04-\mathrm{mfd}$. bi-resonator condensers
4) open-circuited primary winding of preselector coil
5) open-circuited bi-resonator in r-f stage

Poor action of tuning meter,
Weak,
Station hiss,
Dial settings incorrect

## STROMBERG CARLSON 29



## STROMBERG-CARLSON 38, 38A, 39, 40 (First Type)

Noisy reception

Hum at resonance, Fading

Weak reception, Distortion

1) defective volume control. Replace with new unit
2) gassy first audio tube. Replace with new tube
3) cathode-heater leakage in type ' 56 tubes. Test by substitution, replacing defective tubes
4) change in value of $600-\mathrm{ohm}$ cathode resistor in the first r-f stage. Reception is improved when this resistor is shortcircuited out of the circuit entirely

## STROMBERG CARLSON 38, 39, 40, 41 (SECOND TYPE)

Noisy v	replace type '55 tubes
W	open-circuited pre-selector coil primary
Station hiss, 2)	pre-selector primary grounded to
Background noise	braid of antenna binding post lead
Distortion at resonance..-.-.1)	shield can grounding to r-f, or first detector secondary-return leads
Intermittent reception, .-1) Fading	unsoldered leads to terminals on oscillator tracking condenser unsoldered lead to terminal lug of second i-f primary trimmer condenser
Inoperative $\qquad$ 1) 2)	open-circuited tuning meter   short-circuited $0.3-\mathrm{mfd}$. r-f, first detector   plate by-pass condenser
Weak reception, $\qquad$ 1) Tuning meter action normal	short-circuited demodulator plate 2 -mfd. by-pass condenser
Inoperative,	poor weld in type '56 oscillator tube
Intermittent reception, 2)   Meter swings to left and sticks	open-circuiting oscillator coil secondary

## STROMBERG CARLSON 48, 49, 50

Slipping tuning drive $-\ldots-\ldots$ - 1) U washer on friction drive binding to opening in cabinet

Hum

1) replace type '55 tube
2) change position of detector plate audio choke
3) short detector plate audio choke out of circuit
Distortion at resonance;-1) faulty volume control. Replace with new at low volume units
Microphonic
4) loosen chassis mounting bolts
5) insert rubber cushions under chassis
6) change type ' 55 tubes
7) insulate type ' 55 control-grid cap from control-grid lead with tape
Distortion at resonance, --1) open-circuited pre-selector coil primary

Weak reception,
Station hiss
2) pre-selector coil primary grounding to metal braid of antenna binding post lead
3) broken lead to 2nd section of condenser gang from coil
Distortion at resonance.-.-1) coil shields grounding to r-f, or first detector secondary-return leads
Inoperative

1) open-circuited tuning meter
2) short-circuited $0.3-\mathrm{mfd}$. r-f and first detector plate by-pass condenser (Cont'd)

## STROMBERG CARLSON 48, 49, 50 (cont'd)

Inoperative $\qquad$ 3) (Cont'd)	open-circuited 600 -ohm resistors in pushpull input transformer secondary-return circuit
Noisy reception ..---.-.-_-1)	loose or shorted filaments of type '2A3 output tubes
Hum at resonance ---------.-1)	cathode-heater leakage of type '56 oscillator tube cathode-heater leakage of type '58 tube
Intermittent reception ----- 1)	open-circuiting $0.04-\mathrm{mfd}$. bi-resonator condensers
Meter burns out $\qquad$ 1)	short-circuited $0.3-\mathrm{mfd}$. meter by-pass condenser
Noisy reception 1) $\qquad$	noisy primary winding of intermediate push-pull input transformer
STROM   (See also last item liste	BERG CARLSON 51   ed for Stromberg Carlson 48, 49, 50)
Record is released near-----1) turntable spindle	adjust pick-up shoe adjust pick-up tongue pick-up head too high or too low
$\begin{aligned} & \text { Record released by } \\ & \text { carrying arm lever } \end{aligned}$	adjust height of rails adjust height of turntable spindle
Needle does not slip..........1) into first groove of 2) record	shift position of pick-up head increase tension of groove springs
Needle skips past 1) several grooves	decrease tension of groove springs

## STROMBERG-CARLSON 52

Hum,

1) cable wires in base of chassis shifted
"Tweets,"
Poor selectivity from their original position

## STROMBERG-CARLSON 54

See also case histories listed for Stromberg-Carlson 52

Noisy reception (noise ceases when type '27 detector tube is removed from socket)

1) defective double voltage divider resistor, which sparks in operation. Replace with new unit
2) noisy $0.0005-\mathrm{mfd}$. by-pass condenser in the detector filter unit. Replace with new unit

## STROMBERG CARLSON 55, 56

Distorted reproduction.-......1) leakage of, and between, filter condenser block sections

## STROMBERG CARLSON 60

Noisy reception, ..... -... .-1) push-pull input transformer primary	
ntermittent, .....--.....-....-_1)	) tone control defect
Noisy reception 2)	) loose voice coil lea
No short-wave reception 1)	open-circuited section of oscillator coil.   Lead snapped at lug   poor switch contacts
	poor contact of electrolytic condenser can to chassis
es blow ..._-_1)	short-circuited section of line by-pass condenser   high-voltage winding of power transformer partially short-circuited
Intermittent reception__1) Inoperative	) defective type '6A7 tube-may test O.K.
Fading, $\qquad$ 1)   Oscillation,   Distortion	poor electrical grounding of type '6B7 tube shield
Inoperative, $\qquad$ 1) Strong oscillation	turn screw of second i-f transformer trimmer slightly
Stations received at $\qquad$ two points 20 kc apart	leaky 0.04 -mfd. by-pass condensers for r-f and first detector secondary returns

STROMBERG CARLSON GOPR

Erratic operation of	$---1)$
tone-arm	counter-balance on tone-arm binding   against back of cabinet. Move balance
forward	

## STROMBERG CARLSON 64

Noisy reception ___ 1) noisy primary of first audio transformer

Oscillation,
Motorboating,
Intermittent reception

1) open-circuiting $0.01-\mathrm{mfd}$. r-f and first. detector secondary return by-pass condensers
2) increase value of above condensers

Hum,
Distortion

1) leakage between sections of electrolytic filter condenser block
2) leakage between contacts of filter condenser block socket

Intermittent reception,__1) open-circuiting bi-resonator condenser
Fading

## STROMBERG CARLSON 64 (cont'd)

Intermittent reception___1) open-circuited first audio transformer

Inoperative
Oscillation at low frequencies

Hum

1) replace filter block or dried-up section

Fuses blow,
Type '5Z3 tube blows,
Power transformer smells and heats up

## STROMBERG CARLSON 68

No control of volume, ---.-1) primary and secondary winding of AVC

Distortion, No meter action, Needle off scale

Loud hum

1) output transformer primary shorting to core of unit.
2) line-switch contact shoe shorting to tone-

Loud hum,
Tone control noisy control lug within unit.

Noisy tone control, $\qquad$ 1) leaky or short-circuited tone-control con-denser- $0.2-\mathrm{mfd}$. (this condenser is in the power unit)

1) short-circuiting i-f trimmer condensers

Intermittent reception,----1) short-circuiting i-f trimmer condensers
Noisy reception noisy
3) push-pull input transformer primary noisy
Distortion at resonance--.-1) control-grid return-leads (bus-bar) of type '6D6 or '6A7 tube grounding to chassis
2) leaky $0.1-\mathrm{mfd}$. bypass condensers in type ' 6 D 6 or ' 6 A7 secondary return circuit

Fuses blow

1) short-circuited or leaky $1.3-\mathrm{mfd}$. first filter condenser

Tubes in tuner do not light

1) check each tube for open heater (heaters wired in series)

Intermittent reception, Inoperative
Shorted d-c output

Noisy tuner
Fuses blow, Rectifier blows, Power transformer smells and heats up i-f transformer shorting to one another. Transformer must be replaced

Receiver inoperative at one end of tone control
) open-circuited first audio transformer primary

1) coupling lead between tuner and amplifier shorting to shield within cable
2) loose connection within i-f transformer
3) leaky or short-circuited first filter condenser contained within second audio transformer
(Cont'd)

## STROMBERG-CARLSON 68

Hum 2)	leakage between sections of electrolytic filter condenser block   leakage between contacts of filter condenser block socket
No control of volume, -.-1)   Distortion at resonance,   No meter action,   Meter needle off scale	leakage or short-circuit between primary and secondary windings of AVC i-f transformer
"Popping" and "crack- - 1) ling" noise	leakage in audio transformer between first layer of wire and core. Replace with new unit (part No. 24025) short-circuiting i-f trimmers loose connections in tuner
No reception below $\qquad$ 1) 930 kc ,   1300 -kc station received at 940 kc ,	oscillator section of tuning gang shortcircuited. Clear bonding pig-tail from stator lead
$150-\mathrm{kc}$ station received . 1) at $1,140 \mathrm{kc}$	oscillator section of tuning gang shortcircuited. Clear bonding pig-tail from stator lead
Weak reception, $\qquad$ 1)   Low screen voltage on r-f and first detector tubes	leaky 4 -mfd. electrolytic by-pass condenser for screen circuits in tuner
Stations around 700 kc .- 1) heard at three points	change entire receiver for new 68-F chassis which employs an i-f of 465 kc

## STROMBERG-CARLSON 70

Excessive hum .-----------.-1) defective type '2A3 tubes. Substitute several different types until the hum is found to be least objectionable

## STROMBERG-CARLSON 82

Audio howl on strong .-.-1) due to vibration of oscillator coil assemsignals bly. Place several tight-fitting soft rubber washers on discs inside the coil form

STROMBERG CARLSON 635, 636
Choked reception, $\qquad$ 1) pilot light socket shorting to chassis Distortion
2) short-circuited speaker-output condenser
House fuse blows

1) short-circuited $0.01-\mathrm{mfd}$. buffer condensers
Noisy tuning,
2) corroded condenser-gang rotor contacts

## STROMBERG CARLSON 635, 636 (cont'd)

Oscillation _1) inoperative volume control. Replace
Noisy reception,
Fading

## STROMBERG CARLSON 641, 642

See also case histories listed for Stromberg Carlson 651 model
Distorted reproduction, -.-1) grounded filament circuit of ' 45 at filter No bias voltage on type choke lug terminals. Disconnect ' 45 fila-
'45 tube
Intermittent reception, ..1) loose lugs on 800 -ohm volume control Fading

Noisy reception, Static
(antenna and ground wires disconnected from receiver) ment circuit from these terminals resistor

1) short-circuited turns or high-resistance joints in the first a-f transformer following the type ' 27 detector tube. Repiace with new unit

## STROMBERG CARLSON 651

Intermittent reception, ..1) worn carbon element in rear volume con-
Fading
2) leaky $0.0005-\mathrm{mfd}$. detector plate by-pass condensers
3) open-circuiting detector plate choke
4) intermittent short-circuiting of condensers in detector plate choke unit to can

Noisy reception,...............1) arcing of voltage divider sections Arcing
No reception $\qquad$ 1) shorted $0.4-\mathrm{mfd}$. by-pass condenser; shorted $2-\mathrm{mfd}$. condenser in same block with audio transformer
Record "wow" (Model........1) change "felt" washers on the spindle, to 654) "rubber" washers
2) clean motor commutator and re-seat brushes

Noisy tuning

1) corroded condenser-gang rotor contacts Oscillation

## STROMBERG CARLSON 652, 654

Same case histories as those listed for Stromberg Carlson 641 and 651

## STROMBERG CARLSON 734

No reception ................._1) "open" 5,000-ohm plate series resistor
2) poor contact in phono-radio switch

Weak reception

1) needle does not reach red line on meter. Defective tungar tubes

## STROMBERG CARLSON 846

See also case histories listed for Stromberg Carlson 848
Inoperative until one of ...1) shorted primary-secondary push-pull inoutput tubes is removed put transformer

Motor-boating between stations,
Oscillation,
Noisy tuning
Noisy reception,
Static
(antenna and ground wires disconnected from receiver)

1) dirty or high-resistance tuning condenser rotor contacts. Clean contacts or solder flexible pigtails between rotors and condenser frame
2) short-circuited turns on high-resistance joints in the first a-f transformer following the type ' 27 detector tube. Replace with new unit

STROMBERG CARLSON 848

Intermittent fading, $\ldots-. .-1)$	check small wire-wound resistor in ser-
ies with antenna control, which is in	
Antenna control	
inoperative	turn shunted across the antenna coil.
	Disconnect resistor and tighten up rivet,
	holding one end

## SUN-GLOW "MELODY CHEST"

Inoperative .... ......- .....-. 1) defective 0.5 -mfd. section of 4 -unit metal-clad by-pass condenser pack, which connects to B-plus. Replace with new single-section unit externally connected

## TCA CHASSIS

Scratchy sound (similar to defective audio transformer)

1) defective "Candohm" resistor. Cut wires in each section for a considerable distance with a sharp knife and solder a 10,000 -ohm, 10 -watt resistor across the high-voltage section and a $5,000-\mathrm{ohm}$, 10 -watt unit across the low-voltage section. The original terminals of the unit are excellent for connecting lugs
(Cont'd)

## TCA CHASSIS (cont'd)

Failure of the tuned .-.-2) replacement of entire block is necessary. filter system

If this is difficult to secure, the following may serve as a substitute: Connect a $0.0005-\mathrm{mfd}$. condenser from the type '47 tube control grid to chassis, a 0.01mfd . condenser from one side of switch to chassis, a $12-\mathrm{mfd}$. electrolytic condenser from the high-voltage end of the "Candohm" resistor to chassis and an $8-\mathrm{mfd}$. condenser from the type ' 80 tube filament to the center tap of the highvoltage winding. If necessary, a tone condenser may also be connected between the tone switch and the chassis (capacity $0.02-\mathrm{mfd}$.)

TEMPLE 8-80

Fading ---------------------------1)	open-circuiting bias resistor in the third r-f stage
w volume	intermittently open-circuiting filament
(tubes and voltages	on the type ' 27 detector tube, shown by
test O.K.)	the intermittent incandescense of the
	filament. Replace with new tube

TEMPLE 10
Same case histories as those listed for TCA Chassis
TOM THUMB P45
Same case histories as those listed for Zenith A


U S. RADIO \& TELEVISION APEX 7-TUBE RECEIVER

Receiver dead,
(test shows negative screen-grid voltage)

1) leaky $0.1-\mathrm{mfd}$. condenser in the screengrid circuit

## U. S. RADIO \& TELEVISION APEX 8 SERIES SUPER

Distortion,

1) defective type ' 27 second detector tube

Low volume,
Motorboating with volume control at maximum setting

Loud hum immediately after switch is snapped on

Fading
2) decrease in capacity of the $8-\mathrm{mfd}$. condenser across the output of the filter. unit. Replace with new unit

1) open-circuited 8 -mfd. cardboard electrolytic filter condensers. Replace with new units
2) defective $0.04-\mathrm{mfd}$. coupling condenser between the plate of the type ' 27 sec ond detector tube and the type ' 47 output tube. Replace with new unit
U. S. RADIO \& TELEVISION APEX 9A

Oscillation,
Motorboating
(voltages abnormally   high)
2)
section. Replace with new unit
put. Replace with new unit
connect a 0.5-mfd., 600-volt condenser
between the i-f screen or cathode cir-

cuits and ground

## U. S. RADIO \& TELEVISION APEX 10 SERIES

See also "case histories" listed for Airline 1955

Hum,
Volume control will not reduce hum to zero

Hum

1) replace the $8-\mathrm{mfd}$. condenser under the resistance strip in the center of the chassis
2) short-circuited 25,000 -ohm second detector plate filter resistor
2 ) short- or open-circuited $0.06-\mathrm{mfd}$. condenser connected across the filter choke
3) electrostatic shield in power transformer not grounded or ground is open-circuited

## U. S. RADIO \& TELEVISION APEX 12

R-f and i-f circuits dead,
Audio circuit operative (plate-to-cathode voltages on r-f and i-f tubes about 10 -volts; chassis-to-cathode voltages about 250 volts)

1) short-circuited turns on $4,600-\mathrm{ohm}$ section of speaker No. 2. Rewind or replace with new coil

## U. S. RADIO \& TELEVISION "NEW YORKER"

Set dead $\qquad$ (no screen or gridbias voltage on the type '24A tubes. High plate current on the type '71A tube)

1) open-circuited $5,000-\mathrm{hm}$ section of the field coil forming part of the voltage divider system. If possible, locate the break and rewind the coil. If not, replace

Electrolytic condensers ..1) leaky units. Replace with 8-mfd., 400drawing too much current

Inoperative,

1) short-circuited $0.01-\mathrm{mfd}$. r-f cathode reLow volume sistor by-pass condenser. Replace with a new unit
2) defective $0.05-\mathrm{mfd}$. detector control grid to cathode isolating condenser. Replace with new unit
3) leaky $0.01-\mathrm{mfd}$. condenser connected between the detector plate and the type '71A control grid. Replace with a 600volt unit
4) leaky $0.1-\mathrm{mfd}$. condensers connected between the detector, screen-grid and ground and by-passing the type '71A tube control-grid resistor. Replace with new units
5) both field windings opposing each other magnetically. Reverse the connections on one of the windings

## U. S. RADIO \& TELEVISION APEX 26-P

Poor control of volume, -.1) defective volume control. Replace with Intermittent volume a new $8,000-\mathrm{mfd}$. unit

Oscillation, $\qquad$ (extremely high screen voltages)

Inoperative $\qquad$ (faint signals from local stations only)

1) short-circuited $0.4-\mathrm{mfd}$. screen-grid by-
2) open-circuited $2,560-\mathrm{hm}$ resistor. Replace with 2,500 -ohm, 20 -watt unit pass condenser. Replace with a $0.5-\mathrm{mfd}$. tubular unit
U. S. RADIO \& TELEVISION APEX 41, 42, 43, 44, 60, 60A

Same case histories as those listed for Airline AE-11
U. S. RADIO \& TELEVISION APEX 80

Weak reception $\qquad$ (jarring the receiver brings it back to normal)

1) defective a-c receptacle of dynamic speaker, resulting in a loose connection and no field excitation current. Replace receptacle
U. S. RADIO \& TELEVISION APEX 99

Low volume ----------..-------1) open-circuited or lowered capacity 4and $8-\mathrm{mfd}$. filter condensers

## U. S. RADIO \& TELEVISION APEX 120

Same case histories as those listed for U. S. Radio \& Television Apex 12

## U. S. RADIO \& TELEVISION RADIOTROPE 27

Oscillation ---------------------1)	open-circuited $0.4-\mathrm{mfd}$. by-pass condenser section. Replace with $0.5-\mathrm{mfd}$., 200-volt condenser
No plate voltage on $\qquad$ 1) type '27 tube, No screen voltages on type '24 tubes	open-circuited 8,400 -ohm voltage divider section. Replace with new unit

U. S. RADIO \& TELEVISION 25 SERIES

Code interference .....--.-.1) overproduction of harmonics by the oscillator, causing strong short-wave code signals to be heterodyned. The tunedin broadcast signal heterodynes these signals at audio frequencies, making them audible in the receiver. Remedy: increase the value of the type ' 57 oscillator first detector tube cathode bias resistor, by placing a variable resistor in the circuit and varying the bias until all the code interference disappears. A fixed resistor may be installed in place of the variable one when the proper value is found

## U. S. RADIO \& TELEVISION 28, 28A, 29

Oscillation, $-\ldots-\ldots-\ldots$ - 1 ) decrease in value of $0.04-\mathrm{mfd}$. first audio High-pitched whistle by-pass condenser. Replace with a 0.05 mfd. unit

## VICTOR R-32

Indistinct reproduction.--.-1) defective cone (replace)
Peculiar odor

1) defective power transformer. Replace with one of higher wattage rating-not with original one
No reception
2) shorted by-pass condenser
3) shorted filter condenser, do not replace with original
Noisy,
4) loose resistor in strips of volume control

Intermittent reception
2) corroded volume control resistance strip and contact arms
3) open-circuiting pigtail connection to dynamic speaker voice coil
4) loose contacts of radio-phono transfer switch


1) short-circuited $0.1-\mathrm{mfd}$. filter choke
2) defective $0.1-\mathrm{mfd}$. audio condenser across filter choke
3) clean and adjust hum control

Inoperative,
No detector plate voltage

1) corroded or open contacts on radio-phono Distortion,
2) loose detector grid leak Unstable

## VICTOR R-35, R-39

Weak,
Distorted reception,

1) open-circuited 1.5 -megohm detector screen resistor
Fading in a few seconds
2) open-circuited detector plate resistor
3) open-circuited first audio plate resistor
4) open-circuited r-f plate chokes
5) open-circuited r-f screen chokes
6) open-circuited r-f cathode chokes

Intermittent radio-...-...-.-.-1) corroded contact segments of master phono operation (RE-57)
No volume ....-.-.-.-.-.-. 1) replace defective screen resistor

## VICTOR R-52

Same case histories as those listed for Victor R-32
VICTOR R-57
Same case histories as those listed for Victor R-35, R-39

VICTOR RE-45, RE-75
Same case histories as those listed for Victor R-32
VICTOR 7-11
Same case histories as those listed for Radiola 18
VICTOR 7-25
Same case histories as those listed for Radiola 17
VICTOR 9-16
Same case histories as those listed for Radiola 18
VICTOR 9-18, 9-54
Tuning meter fluctuates....1) shunt $0.001-\mathrm{mfd}$. condenser across meter

Distorted,
Weak
Weak reception,
No control of volume
Intermittent reception .-.-1) snapped tabs on oscillator series condenser

Inoperative below 600 kc 1) snapped tabs on oscillator series conDial settings incorrect
Insensitive at either high or low frequencies

1) oscillator trimmers out of adjustment
2) r-f compensator condenser out of adjustment

VICTOR 14, 15

Choked, distorted reception
Hum,
Positive grid bias on type '45 tubes,
Weak reception
Noisy tuning, $\qquad$ Intermittent reception

1) short-circuited $0.025-\mathrm{mfd}$. audio coupling condensers
2) short-circuited $0.025-\mathrm{mfd}$. audio coupling condensers
3) plating peeling from variable condenser plates. Burn with high voltage-all leads disconnected
4) corroded-gang condenser rotor shaft clips

Oscillation

1) corroded-gang condenser rotor shaft clips

Fading,

1) broken resistance elements in dual vol-

Intermittent reception, Noisy
No r-f screen voltage .-...-1) open-circuited r-f choke in screen circuit
Hum

1) change type ' 24 detector tube

WELLS-GARDNER S-732 SERIES
Same "case histories" as those listed for Wells-Gardner $06 Z$

WELLS-GARDNER 05A UNIVERSAL
Excessive hum ............1) connect a 4-mfd. condenser (electrolytic) between the second detector cathode and ground

## WELLS-GARDNER TRUETONE 052 SERIES

Weak reception $-----\quad$ 1) defective $0.1-\mathrm{mfd}$. condenser from type '35 screen to ground
2) replace 250,000 -ohm 8 -watt resistor connected from second detector type '57 tube plate to the type ' 80 filament (even if it tests O.K.). On load it sometimes drops the plate voltage from 180- to 100 -volts. Use a one-watt carbon replacement resistor

WELLS-GARDNER 0GZ AUTO-RADIO


Excessive vibrator noise in speaker

Oscillation $\qquad$ 1) open-circuited lead of $0.25-\mathrm{mfd}$. $\mathrm{r}-\mathrm{f}$ cathode condenser. Replace with new lead or solder the open circuit. Also anchor bulk of condenser to tuning condenser frame

1) dirt in speaker. Replace with new speaker and re-install set so that speaker is facing down or out and not up
Set locked in both the locked and unlocked key position
2) defective filter condenser. Replace with new unit
3) short-circuited $0.02-\mathrm{mfd}$. condenser connected across the power transformer secondary. Replace with new unit
4) defective vibrator. Replace vibrator and transformer with new type units
5) ground the pigtail on the antenna lead
6) broken lead at terminal of 0.02 -mfd. condenser across the power transformer secondary. Solder broken lead and anchor bulk of the secondary to power transformer
7) cathode leakage or short-circuits in tubes. Replace tubes one at a time, noting the difference in the noise ol
8) warped cast aluminum strip, thus locking volume control in both key positions. Bend strip so as to clear set-screw in unlocked position only

## WELLS-GARDNER 2CM SERIES

Excessive a-c hum

1) inductive pickup by the type '6F6 driver lead which is located alongside the lead running between the choke and the type ' 80 socket in the center of the chassis. Separate these two leads as far as possible
2) unbalanced plate current condition in the output stage, employing types '6F6 tubes. In no case should their plate currents differ by more than 10 -milliamperes. If they do, try substituting several different tubes until the proper. balance is obtained

## WELLS-GARDNER 5E



## WELLS-GARDNER 9B

Poor tone . . .- .-.....-.-1) change the grid bias on the type '19 output tubes from 6 to $41 / 2$ volts, by, connecting the white lead marked "C-6" to the $41 / 2$-volt tap on the " C " battery

## WELLS-GARDNER 65

Intermittent audio howl _-1) replace the double $12-12-\mathrm{mfd}$. audio electrolytic condenser with new unit

Low volume

1) defective coupling condensers in series with volume control. Replace condensers

## WELLS-GARDNER 872 SERIES

Broad tuning, -------------1) poorly soldered connections at r-f or i-f
Low volume
2) defective type ' 57 AVC tube (even though it may test O.K.). Replace
3) receiver circuits out of alignment. When re-aligning the receiver, connect a $0.05-$ mfd . condenser between the signal generator output and the first detector tube grid. The ground of the signal generator should connect to chassisWESTINGHOUSE (AMERICAN) RECEIVERSThe case histories of (Canadian) Westinghouse receivers will befound after the listing for the last American set.See also Cross-Index table on page 1B-1
WESTINGHOUSE WR-4
See also case histories listed for Radiola 48
Noisy volume control .-. 1) bunching up of volume control wire. Replace volume control

## WESTINGHOUSE WR-5 to WR-8, WR-6-R, WR-7-R

See also case histories listed for Radiola 80
Severe crackling noise -- 1) partially short-circuited turns in i-f transformers as a result of glue from labels pasted on them corroding the insulation of the wire
WESTINGHOUSE WR-10, WR-10A
See also case histories listed for RCA-Victor R-4
Noisy reception

1) defective volume control
2) peeling condenser plates-burn with high voltage (all terminals disconnected)
WESTINGHOUSE WR-12
See also case histories listed for RCA-Victor R-4
Set dead
3) open-circuited first i-f transformer secondary winding. Replace transformer
4) open-circuit or change in value of 8,000 ohm resistor in first r-f oscillator and first i-f cathode circuits. Replace
WESTINGHOUSE WR-13
Same case histories as those listed for Radiola 86
WESTINGHOUSE WR-15

Fading	open-circuited 5-megohm resistor
	leaky $0.1-\mathrm{mfd}$. AVC tube grid-return by-pass condensers
Weak,	leaky 0.1-mfd. AVC tube grid-return
Insensitive	by-pass condensers
Inoperative until AVC..... tube is withdrawn	leaky $0.1-\mathrm{mfd}$. AVC tube grid-return by-pass condensers
Distortion at low volume Noisy tuning, $\qquad$	primary-secondary "short" in push-pull input transformer
Oscillation	1) corroded condenser-gang rotor contacts
Distortion at any volume level	1) carbonized voltage divider resistors. Install wire-wound unit for screen-drop resistor

WESTINGHOUSE WR-15A
Same case histories as those listed for RCA-Victor R-10

WESTINGHOUSE WR-17
Same case histories as those listed for RCA-Victor R-4
WESTINGHOUSE WR-18
Same case histories as those listed for RCA-Victor R-8
WESTINGHOUSE WR-19
Same case histories as those listed for RCA-Victor R-71
WESTINGHOUSE WR-20
Same case histories as those listed for RCA-Victor R-74
WESTINGHOUSE WR-22
Same case histories as those listed for RCA-Victor R-73
WESTINGHOUSE WR-23
Same case histories as those listed for RCA-Victor RE-80
WESTINGHOUSE WR-24
Noisy reception ............-1) loose tube sockets. Tighten with longnosed pliers

WESTINGHOUSE WR-25
Same case histories as those listed for RCA-Victor RE-80
WESTINGHOUSE WR-26-M
Same case histories as those listed for RCA-Victor R-17-M
WESTINGHOUSE WR-27
Same case historics as those listed for RCA-Victor A-28-P
WESTINGHOUSE WR-28
Same case histories as those listed for RCA-Victor R-28
WESTINGHOUSE WR-30, WR-31
Same case histories as those listed for RCA-Victor 140, 141
WESTINGHOUSE WR-37
Same case histories as those listed for RCA-Victor 121
WESTINGHOUSE WR-45
Same case histories as those listed for RCA-Victor 143
WESTINGHOUSE WR-46
Same case histories as those listed for RCA-Victor 128
WESTINGHOUSE WR-48
Same case histories as those listed for RCA-Victor 118
WESTINGHOUSE 90
Intermittent reception ....1) intermittent short-circuiting to chassis of $0.04-\mathrm{mfd}$. condenser connected across the first filter choke to tune it. Remove this condenser

## WESTINGHOUSE 90 (cont'd)

Hum $\qquad$ 1) change in capacity of the $0.04-\mathrm{mfd}$. "tuning condenser connected across the choke. Replace with new unit

Fading about 15 or 20 .-.-1) intermittently open-circuiting volume minutes after normal operation
control resistance strip. Replace with a new unit

WESTINGHOUSE (CANADIAN) RECEIVERS
Case histories of (American) Westinghouse receivers are on the pages immediately ahead of this one. See also Cross-Index of American and Canadian Westinghouse receivers on the table on page 1B-1.

WESTINGHOUSE (CANADIAN) B103
Same case histories as those listed for Radiola 18
WESTINGHOUSE (CANADIAN) W-53
Same case histories as those listed for RCA-Victor R-28, R-28P
WESTINGHOUSE (CANADIAN) W-61
Same case histories as those listed for Radiola 48

Inoperative $\qquad$ (negative potential on the plate of the detector tube)

1) short-circuited 2 -mfd. filter condenser between the center tap of the filter choke and terminal No. 6

WESTINGHOUSE (CANADIAN) W-64
Same case histories as those listed for RCA-Victor 121
WESTINGHOUSE (CANADIAN) W-71
Same case histories as those listed for Westinghouse (Canadian) W-61

WESTINGHOUSE (CANADIAN) W-73
Same case histories as those listed for RCA-Victor 330
WESTINGHOUSE (CANADIAN) W-81
Same case histories as those listed for Westinghouse (Canadian) W-61

WESTINGHOUSE (CANADIAN) W-82
Same case histories as those listed for RCA-Victor R-71
WESTINGHOUSE (CANADIAN) W-83AW
Same case histories as those listed for RCA-Victor 140
WESTINGHOUSE (CANADIAN) W-84
Same case histories as those listed for RCA-Victor 143
WESTINGHOUSE (CANADIAN) W-89
Same case histories as those listed for Radiola 66
WESTINGHOUSE (CANADIAN) W-101
Same case histories as those listed for Radiola 80

## WESTINGHOUSE (CANADIAN) W-103

Same case histories as those listed for RCA-Victor R-90
WESTINGHOUSE (CANADIAN) W-122
Same case histories as those listed for RCA-Victor R-78
WESTINGHOUSE (CANADIAN) W-155
Same case histories as those listed for RCA-Victor 117, 118
WESTINGHOUSE (CANADIAN) W-165A
Same case histories as those listed for RCA-Victor 128
WESTINGHOUSE (CANADIAN) W-165X
Same case histories as those listed for RCA-Victor 224
WESTINGHOUSE (CANADIAN) W-185X
Same case histories as those listed for RCA-Victor 143
WESTINGHOUSE (CANADIAN) W-254
Same case histories as those listed for RCA-Victor 118
WESTINGHOUSE (CANADIAN) W-801
Same case histories as those listed for RCA-Victor R-4
WESTONE 20

Inoperative on broadcast band

1) single bolt holding chassis to cabinet touching contacts on short-wave switch, causing broadcast sections of both r-f coils to ground to chassis. Tape bolt or put fibre bushing around it

WURLITZER
See case histories listed for Lyric models
ZENITH A, B, C, D
Poor reception

1) increase in value of bleeder resistors
2) defective 900 -ohm type ' 45 bias resistor. Replace with a 10 -watt unit
Intermittent hum ---......-1) replace the filter condensers
ZENETTE A, B, C, D
Erratic operation,
3) replace $25,000-\mathrm{ohm}$ series plate resistor with same unit in 10 -watt size
4) check all high value resistors in detector plate circuit for $25 \%$ change in value, also 1-megohm resistor in first r-f grid-return circuit. If defective, replace
5) connect $0.00025-\mathrm{mfd}$. condenser from detector choke to ground
6) in radio-phono combinations, keep wire from phono switch as far away from receiver circuits as possible

## ZENITH CH SERIES

No control of volume, Excessive regeneration
..1) defective electrolytic condenser located in square can at far end of chassis, which by-passes choke located underneath the chassis

Loss of volume when ....1) drop in value of $1 / 2$-megohm plate revolume control is advanced or tuning dial shifted


## ZENITH MH

Intermittent oscillator ---1) defective oscillator condensers
(even after coil con-2) defective oscillator coil. Replace with nections are re- new unit soldered) sistor in AVC tube circuit

1) defective $0.5-\mathrm{mfd}$. condenser connected from the ground to the cathode of the second detector tube (even though it may test O.K.). Replace with new unit
(tubes and voltages check O.K.)
(normal operation retor tube is tapped)

ZENITH 10, 11
Intermittent,
Noisy reception

1) corroded or loose contacts on 3-point antenna switch
2) audio coupling condenser shorting to chassis
Inoperative $\qquad$ 1) audio coupling condenser short-circuited to chassis
Oscillation,
Fading
3) open-circuiting $0.1-\mathrm{mfd}$. screen by-pass condenser
4) open-circuiting $0.1-\mathrm{mfd}$. cathode by-pass condenser

Microphonic hum

1) change type ' $24-\mathrm{A}$ detector tube

## ZENITH 11E

Intermittent reception,......1) short-circuiting compensating condensers Inoperative on condenser gang

## ZENITH 12

Same case histories as those listed for Zenith 10, 11

ZENITH 14E
Same case histories as those listed for Zenith 11 E
ZENITH 15-E, ת15-E-P
Weak reception.
Distorted reproduction

1) open-circuited 100,000 -ohm detector plate resistor

## ZENITH 33, 33X

Poor selectivity,
Hum, --------1$)$
Oscillation when volume
control is turned
toward maximum

1) open-circuited antenna primary coil located in inverted can below the first r-f tube socket under the chassis. Replace with new unit or solder a flexible lead which has a phone tip soldered to its other end to one terminal of a 0.01 mfd. condenser. Plug the end with the phone tip into the "long antenna" tip jack and ground the other end of the condenser to the chassis. Re-align circuits for maximum response
Weak reception,
Audio circuits test $O . K$.
2) open-circuited, or omitted $2,000-\mathrm{hm}$ resistance from ground to movable antenna compensating coil under chassis. Replace with a new resistor

Tone raspy -----------------------------
Noisy reception

1) substitute a ' 112 tube for the ' 71 tube
2) high-resistance ground in secondary of original a-f transformer (green corrosion usually found on terminal ligs)
Intermittent reception,----.1) variable condenser plates blistered and
Noisy tuning peeling, causing shorts. Burn with high voltage-all leads disconnected
Inoperative .-.---.-...-.-........-1) "open" section in voltage divider
3) "shorted" filter condenser in power pack

Intermittent reception,---.-1) dirty or loose socket contacts
Fading
2) defective volume control
3) defective audio transformer

ZENITH 34, 34P
Same case histories as those listed for Zenith 33X

ZENITH 35, 35A, 35P, 35AP
Same case histories as those listed for Zenith 33X

## ZENITH 41, 42

Oscillation,

1) loose or broken terminal lug of r-f plate circuit py-pass condenser
Intermittent,
Noisy reception
2) poor contacts in "local-distance" toggle switch

## ZENITH 50

Excessive hum .................1) by the a-f transformer between the first and final a-f stages. Remove the blocking condenser between the plate of the first a-f stage and the a-f transformer primary; shunt the transformer primary with a 0.1 -megohm resistor. Connect the "low" end of this resistor through a 2 -mfd. by-pass condenser to ground. Now connect in series with the "low" end of the audio transformer primary and B-plus a 0.1-megohm resistor. Disconnect the former connection of that part of the a-f transf. primary to ground

## ZENITH 52, 53, 54, 55

Hum ...........................-.-.-.-1) defective electrolytic filter condenser. Short-circuit the terminal of each unit momentarily to chassis and note the ef-fect-the hum might be cured. If not, replace with new units
2) connect $100,000-\mathrm{hm}$ resistor across type 27 first-audio tube grids
3) defective type ' 27 tube
4) defective volume control

Intermittent fading....-.......1) defective cathode by-pass condenser

Fading,
Intermittent reception

1) "cold-soldered" connections to variable condensers
2) "open" r-f coils, leads snap at lug
3) worn carbon resistance in volume control
4) break in pigtail to r-f stator vernier of first $r$-f tuning condenser
5) snapping of fine wire leads of r-f chokes at eyelets

Weak reception, ............-1) intermittent short-circuiting of the two Intermittent reception, filament supporting stems in the pilot lamp, thus also short-circuiting the filaments of the type ' 45 power tubes, across which it is connected. Replace lamp

Type '80 tubes burn ....1) automatic tuner pilot light or socket out sho:ting to metal frame

No signals on certain.

1) variable condenser plates blistered and wavelengths peeling, causing short-circnits. Burn with high voltage-all leads disconnected

No reception below $\qquad$ 1) end rotor plates of tuning condensers 650 kc shorting to stator plates

Noisy tuning

1) corroded copper contact and washer at Oscillation end of condenser gang rotor shaft

## ZENITH 70 SERIES

See also case histories listed for Zenith 52, 53, 54, 55

Fading, Weak reception

Noisy reception $\qquad$

Motorboating $\qquad$

Inoperative

Fading,
No dip action on tuning meter,
Erratic operation on "local" side of localdistance switch
No AVC action

1) defective AVC resistor

Inoperative unless AVC. tube is withdrawn
Distortion at resonance_-_-1) AVC screen-cathode voltage divider
Local-distance switch inoperative

1) defective a-f transformer

ZENITH 75-C

1) defective dual $0.01-\mathrm{mfd}$. condenser. Replace with new unit

## ZENITH 90

1) defective 8 -mfd. dry electrolytic filter condenser. Replace with new unit

ZENITH 91, 92

1) open- or short-circuited $0.25-\mathrm{mfd}$. dual plate by-pass condenser connected in the first and second r-f stages. Replace
2) "open" or "shorted" 0.03-mfd. audio coupling condenser. Replace with new
3) change in resistance of the two 2,800 and 3,600 -ohm bleeder resistors connected in series across the d-c line. Replace with resistors of higher wattage rating
changed in value
4) open-circuited section cathode voltage divider
5) open-circuited 4.5-megohm carbon resistor

ZENITH 102, 112, 132
Same case histories as those listed for Zenith 10, 11

## ZENITH 230

Distortion at low volume_-.1) improperly centered voice coil of either dynamic speaker

Hum,
Distortion
Oscillation,
Weak and distorted

1) capacity of electrolytic filter condensers dropped below normal
2) capacity of third electrolytic filter condenser dropped below normal

ZENITH 240
See also case histories listed for Zenith 230
Set does not tune to .-. 1) oscillator trimmer condensers out of proper frequency setting of tuning dial
Distortion,
2) celluloid dial scale requires adjustment

1) back left mounting bolt screwed up too

Weak reception far, causing it to short-circuit to bias resistor

ZENITH 244
See also case histories listed for Zenith 230

Poor tone, -------------------1$)$	defective type '57 AVC tube (even
Distortion	
at low volume	tube

2) improperly centered voice coil on the large speaker. Re-adjust the voice coil

## ZENITH 245

Same case histories as those listed for Zenith 230

ZENITH 342, 342P, 352, 352A, 352AP, 352P, 362, 362X
Same case histories as those listed for Zenith 33X
ZENITH 410, 411, 420
Hum ---- ---------------------1) partially short-circuited field coil, put-
(present only when stations are tuned in) ting a greater load on the line and thereby lowering the plate voltages supplied to the tubes. Replace the field coil

Hum

1) faulty electrolytic filter condensers

Inoperative

1) open-circuited shadowgraph tuning meter

Fading after a few $\qquad$ 1) replace type AVC '57 tube minutes of operation

ZENITH 422
Same case histories as those listed for Zenith 41, 42
ZENITH 430, 440
Same case histories as those listed for Zenith 410, 411, 420
ZENITH 474
Same case histories as those listed for Zenith 755

ZENITH 475
Same case histories as those listed for Zenith 760

ZENITH 476B
Same case histories as those listed for Zenith 770B
ZENITH 500, 501, 503, 514, 515, 516
Intermittent reception, -.-1) open-circuiting $0.5-\mathrm{mfd}$. grid filter con-

Oscillation, Motor-boating, Station hiss
denser for $r$-f, i-f and first detector stages

ZENITH 522, 532, 542
Same case histories as those listed for Zenith 52, 53, 54, 55

ZENITH 600, 604, 606
Same case histories as those listed for Zenith 500

## ZENITH 608

Intermittent reception, ..1) open-circuiting r-f first detector, i-f secVolume cuts down to lower level ondary-return by-pass condensers

## ZENITH 610, 616, 618

Same case histories as those listed for Zenith 500

## ZENITH 701



ZENITH 705, 706, 707, 711, 712
Broad tuning ...- ....-.-.-...-1) remove the $5,400-\mathrm{hm}$ resistor and $5-\mathrm{mfd} ., 20$-volt condenser in the cathode of the type '2A6 tube, grounding the cathode. This removes the QAVC feature of the receiver. Realign the i-f and r-f stages, before putting the set in operation
Motorboating between -..-1) defective 0.1 -mfd. by-pass condenser in stations AVC circuit. Replace with new unit (part No. 22-190)

Oscillation,

1) open-circuited $0.05-\mathrm{mfd}$. cathode by-pass condensers for first detector and i-f stages
2) electrolytic filter condenser making poor contact with the metal chassis. Turn the condenser about $1 / 8$ turn to tighten it
Intermittent reception,--- 1) open-circuiting $0.1-\mathrm{mfd}$. i-f secondaryOscillation, Motorboating

Distortion, $\qquad$ 1) can of electrolytic filter condenser

Glowing type '59 tube grounding to shield grids
2) connecting lug of electrolytic condenser grounding to chassis
Inoperative at high frequencies

1) intermittent oscillator plate by-pass condenser

Inoperative, $\qquad$ 1) shorted primary-secondary windings of i-f transformer get red hot
Code interference $\qquad$ 1) shunt wave trap tuned to 485 kc across aerial and ground

## ZENITH 715

Same case histories as those listed ior Zenith 705, 755

## ZENITH 750

See also case historics listed for Zenith 705, 706, etc.
Motorboating .-.-...-.-.-...-.-1) type '89 tube weak on low frequencies. Reverse the i-f transformer primary terminal connections

Intermittent reception ...1) defective type '59 tube (even though it may test O.K.). Replace with new tube by substitution

ZENITH 755, 756
For Zenith 755 see also case histories listed under Zenith 756
Weak reception, $\qquad$ 1) leaky first audio plate by-pass condenser Distortion,
Low plate voltage
on type '55 tube

Inoperative,
Very weak
Oscillator inoperative below 850 kc

1) open-circuited 15,000 -ohm screen voltage dropping resistor
2) absorbed moisture in antenna coil. Replace with new unit, or dry out moisture and dope coil with a good doping compound

ZENITH 756
Noisy reception at low ..-1) replace type '55 tube volume
Steady popping
Distortion, _____-_1) leaky r-f, or first detector secondaryPoor AVC action return by-pass condensers

Intermittent reception,_-_1) open-circuiting r-f, first detector and i-f Oscillation secondary-return by-pass condensers

Hum $\qquad$ 1) add extra filter choke between type ' 80 filament and speaker field and connect an 8 -mfd. electrolytic condenser after filter choke to chassis

Hum on resonance_-_-_-_-_1) cathode-heater leakage of type '56 oscillator tube

Inoperative,
D-C output shorted

1) type '58 r-f plate coil lead grounding to chassis

## ZENITH 760, 765

Distortion,   Poor AVC action	leaky or short-circuited secondary-return by-pass condensers
```Intermittent reception, .....1) Fading, Motorboating,```	open-circuiting r-f, first detector and i-f secondary-return by-pass condensers
Oscillation, 1) Hum \qquad 2)	add 8 -mfd. electrolytic filter condenser afte" first speaker field to chassis add additional filter choke between ' 80 tube filament and first spealier field, and connect 8 -mfd. electrolytic filter condenser from ' 80 filament to chassis
```Hum (after regular _-- 1) values of filter con- densers have been installed)```	by-pass the $0.5-\mathrm{mfd}$. by-pass condenser next to the primary of the input transformer with an 8 -mfd. electrolytic condenser
Hum at resonance ...-...-.-..... 1)	cathode-heater leakage of type '56 oscillator tube
Distortion -...-.---------.......-1)	by-pass the center tap of the volume control resistor to ground with a $0.00015-$ mfd. mica unit, thereby reducing the r-f load on the grid of the first $a-f$ tube and allowing greater a-f amplification

## ZENITH 767

Same case histories as those listed for Zenith 715, 755, 756

ZENITH 770, 775, 775B
Inoperative

1) open-circuited shadowgraph
2) open-circuited audio coupling condenser

Very weak

1) open-circuited audio coupling condenser

Distorted reception
No AVC action,-...--.-..........1) open-circuited AVC grid-coupling conDistortion at resonance denser

Motorboating between
stations

1) open-circuiting r-f, first detector and i-f secondary-return by-pass condensers
Hum at resonance
2) cathode-heater leakage in type '56 oscillator tube

Intermittent reception -1) type '58 tube bias resistor grounding lug

Cutting off upon vibration

Inoperative,
Shadowgraph functions normally,
Intermittent reception
loose

1) open-circuiting audio coupling condensers
2) open-circuiting diode audio coupling condensers
(Cont'd)

## ZENITH 770, 775, 775B (cont'd)

Intermittent reception, .-1) open-circuiting grid filter condensers in
Fading,
r-f, $i-f$ and first detector secondary re-

Oscillation,
Station hiss
Intermittent reception -.1) leaky insulation in AVC resistor bypass condenser lead. Slip a piece of spaghetti over this lead

## ZENITH 805

Insensitive,

1) short-circuited oscillator plate condenser.

Inoperative above 900 -kc Replace with 0.01 -mfd. unit (part No. 22-276)

## ZENITH 835

Intermittent reception, _-1) open-circuiting $0.02-\mathrm{mfd}$. audio coupling Fading, condenser
Inoperative
Oscillation,

1) open-circuited $0.1-\mathrm{mfd}$. r-f screen by-pass

Motorboating condenser

ZENITH 880
See also case histories listed for Zenith 835
Distortion, $-\ldots-\ldots-\ldots-\ldots-\ldots$--------1) short-circuited $0.0004-m f d$. condenser in AVC tube blocking first r-f coil can (part No. 22-285)

ZENITH 970, 975

Inoperative, ..............
Screen voltages on r-f, i-f and translator tubes only 20 volts,
Positive indication from control grids to ground

Intermittent reception, _-1) open-circuiting diode audio coupling conPopping noises

1) Screen drop resistor short-circuiting to diode load resistor. Clear by moving denser rear right chassis bolt tightened too much

2) intermittent short-circuiting of screenvoltage dropping resistor to diode load resistor
3) open-circuiting r-f grid filter condenser

## ZENITH 5052 Chassis

Insensitive at low ...-.-.-1) defective second i-f transformer (even frequencies though it looks and tests O.K.). Replace with new unit

## REMEDIES FOR STUBBORN CASES OF IGNITION INTERFERENCE IN VARIOUS MAKES AND MODELS OF AMERICAN CARS

Chapter XXVII of Modern Radio Servicing* explains the general installation and servicing procedures for auto-radio receivers. While the details given are complete, and furnish all the information necessary for the satisfactory installation of auto-radio receivers in most cars, there are often cases where additional steps must be taken to eliminate entirely the interference resulting from the ignition system of the car. These stubborn cases are due to conditions peculiar to the particular model of car, or even to the particular individual car. Since the causes which may be responsible for these conditions are so varied, a great many hours may often be spent before the exact cause of the trouble, and its remedy, are found. For this reason, the information gained by a considerable amount of experience in auto-radio installation has been compiled here for the assistance of the service man-to save his time when attempting to eliminate stubborn cases of ignition system interference encountered when making auto-radio installations in various makes and models of American cars. The remedies are tabulated under the headings of the various commercial car names. These names are arranged in alphabetical order.

It is assumed that the noise persists after the standard suppressor equipment has already been installed on the car, and the receiver is securely bolted in place and connected properly. In those cases in which the use of spark-plug and distributor suppressors actually increases the noise level, the fact is stated; otherwise it is understood that the standard spark-plug and distributor suppressors are recommended to be installed.

[^2]Since the necessity for by-passing differs according to the make of car, the following data specify the by-pass condensers to be used in nearly every car. When the location of the condenser is critical, the fact is stated. If all of the suggested remedies fail, then the reader is referred to Chapter XXVII of Modern Radio Servicing for more detailed information on the causes and remedies of car noise interference. The chart in Sec. 5 of this book should be consulted for the correct breaker and spark plug gaps recommended by the car manufacturer.

It must not be supposed that every car of the same make and model requires the same treatment in every case. For instance, as explained in Chapter XXVII of Modern Radio Servicing, poor bonding between the metal parts of one particular car may cause excessive noise interference in that car. Since this may be an exceptional case, it cannot be expected that all cars of that particular make and model will have the same resistance between different parts of the body and chassis, and be troubled by the same interference. For this and other similar reasons, any steps that succeed in minimizing the noise in one car cannot always be relied upon to give exactly the same results in another similar car. However, in most cases the troubles and their remedies are similar, so the information which follows should prove of great value.

All of the remedies specified here have actually been employed on hundreds of cars, and represent the findings of both the author and many other experienced service men. In the cases of those cars which are not listed, the reader is to assume that no special characteristic troubles will arise, and that the standard suppressor remedies will suffice to minimize all interference.

It is wise to try one of the suggested remedies at a time and note the effect in each case, as often a single change is all that is necessary to minimize the noise, even though there is more than one suggestion for each make of car. Wherever bonding is done, be sure to clean away all paint and grease with a scraper and emery cloth first, to insure good electrical contact between the bonding braid and the metal of the car. Otherwise, the bond will be ineffective and may even result in a source of noise itself if it should happen to make poor or intermittent contact.

## AUBURN

General: On almost all Auburn cars it may be necessary to shield the high-tension lead from the ignition coil to the distributor, bonding the shield to the lock cable. It is also necessary to bond and ground all control rods entering the car from the engine compartment, and to ground all metal floor plates.

On antenna-equipped cars, it may be necessary to install a length of shielded braid over the antenna lead-in up into the roof structure; the shield should be grounded to the frame with the same screw that holds the glove box in place.

On the 1930 and 1931 models, thoroughly ground the aluminum plate which houses the distributor, on both top and bottom, with a length of braided shield fastened to one of the motorblock bolts.

By-pass condensers are required on the ignition coil, ammeter and generator. If interference still persists, connect by-pass condensers between each of the battery terminals and the instrument panel.

On the 1934 models, the ignition coil by-pass condenser should be connected to the terminal of the coil to which the yellow lead is attached. It is also necessary to connect a bypass condenser at the generator. The antenna lead-in wire should be shielded as completely as possible, so that none of the lead-in wire will be exposed behind the instrument panel. It is advisable to even cover the point where the aerial wire from the receiver is spliced to the lead-in, with a piece of shielding sleeve which fits over the regular shield and which can be slid over the splice after it is made. The ends of this shielding sleeve should be tightly taped so that it makes good contact with the rest of the shielding braid from both the leadin and the lead from the recciver. The shield should be grounded at the point where it enters the corner post. Also ground the windshield wiper pipe at the point where it passes through the dashboard, and insert a dome-light filter at the point where the dome-light lead enters the right front corner post. The filter may consist of a choke coil (about 12 to 20 turns of No. 18 wire wound on a $1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$ form) connected in series with
the dome-light lead and by-passed to ground with a $0.5-\mathrm{mfd}$. condenser.

In some cases, it may be necessary to eliminate the sparkplug suppressors and to include an additional by-pass condenser from one side of the ammeter to ground.

On the 1935 models, suppressors are necessary at the spark plugs and the distributor and by-pass condensers are required at the ignition coil, ammeter and generator. The lead-in should also be carefully shielded, as outlined above for the 1934 models.

On the 1936 models, install suppressors at the distributor and spark plugs, and by-pass condensers at the generator, ignition coil and ammeter. Install a dome-light filter as explained above for the 1934 models, grounding the filter to the bulkhead. The hood should be bonded with flexible bonding braid and grounded to the bulkhead. Connect by-pass condensers to the tail-light leads, which run across the top of the car and come down the left-hand front corner post. In some cases, removal of the distributor suppressor may actually improve reception.

## BUICK

General: Ground the spark-plug cover with flexible braid to the water pump nut and to the oil lines at the rear of the motor. In some cases, it may be necessary to install a copper screen enclosure from the spark-plug cover over to the distributor, enclosing all the high-tension leads in between. Both ends of this enclosure should be bonded to the motor block.

Install a dome-light switch between the ammeter and the dome light at the left-hand side of the dash. It may sometimes be necessary to shield the dome-light wire, grounding the shield at both ends. If this does not help, use a choke coil (consisting of 12 to 20 turns of No. 18 wire wound on a $1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$ form) in series with the dome-light lead, and by-pass the choke to ground with a $0.5-\mathrm{mfd}$. condenser. Install a strip of copper screening under the toe boards and floor boards, and ground the screen to the car frame.

By-pass condensers are required on the ammeter and generator. Spark-plug suppressors may not be required in this car;
they may actually increase the noise level. When plug suppressors must be used, they should be mounted under the cover plate of the engine.

In the 1929-30 and 1931 models, the windshield wiper tubing as well as the small metal braces on both sides of the windshield should be grounded. The lead-in wire should be shielded with copper braid and the braid grounded to the nut on the upper instrument panel bolt.

On the 1933 models, ground the dome-light filter on the right corner post and install a condenser on the dome-light switch.

On the 1934 models, the lead-in wire, which is tacked to the lower cross bar of the windshield, should be loosened and a length of shielding loom slid over it so that as much of the wire as possible is covered. The shielding loom should be grounded at the bolt on the instrument pancl. At the corner post, where the lead-in passes through a plastic compound, insert a piece of tubing for shielding and slide it about an inch inside the shielding loom. Solder a pigtail from the loom to the tube.

Connect by-pass condensers to the battery side of the ignition coil, between the ammeter and ground, and at the generator. If interference still persists, it may be necessary to install an additional by-pass condenser from the battery side of the generator voltage regulator.

On the 1935 models, a suppressor is necessary at the distributor, and by-pass condensers are required at the ammeter and generator. Since these models usually employ running-board antennas, it is necessary to shield the lead-in completely from the antenna to the receiver and to install "grounds" or "static collectors" on the front wheels.

On the 1936 models, it is necessary to shield the antenna lead-in and instal! "static collectors" on the front wheels, as explained above for the 1935 models. Install a suppressor at the distributor, and a by-pass condenser at the generator. In some cases, it may also be necessary to bond the muffler to the car frame with flexible bonding braid making good electrical contact.

## CADILLAC

General: Take the primary wire which connects the distributor to the ignition coil and remove it from the ignition wire duct. Shield this wire, and ground the shield at both ends. When a roof aerial is used, bond all pipes and control rods that enter the driver's compartment from the engine compartment.

Ground the shielding over the antenna lead-in which runs from the receiver to the corner post. The shield should be grounded at the point where the lead-in enters this post.

By-pass condensers are required on the primary side of the ignition coil, on the generator, and on the starting motor. A by-pass condenser may or may not be required on the ammeter. If so, the usual $0.5-\mathrm{mfd}$. unit is suitable; try either side of the ammeter to ground through the condenser.

On the 1934 models, connect the lead of the by-pass condenser on the starting motor to the generator terminal of the solenoid relay of the starting motor, and ground the condenser case to one of the screws of the starting motor. Spark-plug suppressors are sometimes unnecessary on these models, as they may actually increase the noise level. Shield the antenna lead-in and install a dome-light filter where the dome-light lead enters the right front corner post, in the manner explained for the 1934 Auburn cars.

On the 1935 and 1936 models, suppressors are necessary at the distributor and spark plugs. Install by-pass condensers at the "battery" side of the generator ignition coil, clock and dome light. A tubular condenser should also be installed at the ignition coil case and the condenser case grounded to the coil case with solder. The condenser lead connects to the "batt." terminal of the ignition coil. It is also necessary to install "static collectors" on the front wheels, and to bond the muffler and transmission housing to the car frame with flexible bonding braid.

## CHEVROLET

General: It is sometimes necessary to ground the rain spout running around the edge of the car roof. This should be grounded to a corner post, after checking the resistance of the corner
post to ground to make certain that it is well grounded to the car chassis.

Grounding the windshield frame as well as the small metal braces on both sides of the windshield will be found very effective when a roof antenna is employed.

In many cases, it will be found that reversing the ignition coil primary wires will cut down interference considerably. It may also be necessary to shield the entire ignition primary circuit wiring, bonding each shield separately to the bulkhead. If interference still persists, the same should be done with the hightension leads. The distributor rotor should also be peened carefully in order to lengthen it, thereby reducing the length of the arc.

In severe cases of noise in 1929, 30, 31 and 32 models, it may be necessary to bond the body to the frame, or chassis, at both sides, in the front-preferably at the bulkhead. A piece of heavy bonding braid should be used, and it should be fastened to cleaned points in both the body and the frame by self-tapping screws with washers. In extremely noisy cases, the Electrolock cable and wire should be moved and the ignition should be wired up with a switch in the hot lead, like the later model.

On the 1930, 31 , and 32 models, where a roof aerial is employed, install a dome-light switch at the dash between the ammeter and the dome-light lead. In some cases, it may also be necessary to shield the dome-light wire up into the door posts as far as possible. It is sometimes necessary to shield the hightension lead between the ignition coil and the distributor housing. When this treatment does not help, a separate shielded primary lead must be run from the ignition switch to the battery, grounding the shielding at both ends. Disconnect and disregard the old primary lead from the switch to the coil.

The 1933 model is already equipped with a roof-antenna, but it is necessary to shield the lead-in from the receiver to a point as near the antenna as possible. This can be done by pushing a piece of braided shield over the antenna lead to the receiver. It is sometimes necessary to install a switch or choke coil in series with the dome-light circuit. The coil may consist of 12
to 20 turns of No. 18 wire wound on a $1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$ form.
On the 1934 models, it is necessary to install a dome-light filter as explained above for the 1933 models and to shield the antenna lead as completely as possible. Also connect a condenser from the battery side of the igintion switch, grounding it to the instrument panel. If interference still persists, place a piece of screen over the toe boards and under the floor mat on the right side of the car and ground it to the bulkhead. For cases of "bucking" or missing at very high or low speeds on these models, replace the suppressors with wire-wound units.

On the 1935 models, by-pass condensers are necessary at the ammeter, generator and dome light, and a suppressor is necessary on the distributor only. Bond the muffler to the car frame and install "static collectors" on the front and rear wheels.

On the 1936 models, by-pass condensers are required at the ammeter and generator, the latter requiring a "dual" type condenser mounted on the cut-out relay. The condenser case should be mounted under the screw which holds the relay bracket. One of its leads should be connected to the generator output terminal of the cut-out relay. On the Master 6 model, the other lead should be connected to the field stud to which the field supply wire is connected; on the Standard 6 model, both leads are connected to the output terminal. It may also be necessary to connect a condenser between the spring clip located at the end of the wire which contains the fuse holder on the dash control unit and the terminal on the discharge side of the ammeter. The condenser should be connected to the spring clip by means of a self-threading screw, and the spring connector when compressed will easily slide on over the ammeter stud.

Coil-type "static collectors" are necessary on the front, and brush-type "static collectors" are necessary on the rear wheels. Suppressors are required at both the distributor and spark plugs. In some cases, it may also be necessary to bond the muffler to the car frame.

## CHRYSLER

General: In all these models, it may be necessary to remove
the primary wire (which connects the ignition coil to the breaker points on the distributor) from the metal high-tension wire duct. Shield this wire and bond the shield to the fire-wall or motor block. The high-tension lead from the coil to the distributor should also be shielded, and the shield grounded to the bulkhead of the car. In some cases, it may be necessary to peen the distributor rotor in order to lengthen it and thereby reduce the length of the arc.

When a roof aerial is used, install a dome-light filter or a $0.5-\mathrm{mfd}$. condenser from dome-light lead to ground; it is sometimes advisable to install a switch on the dash between the ammeter and the dome light.

It is important that the motor block and steering column be firmly bonded to the fire-wall and chassis of the car. It may sometimes be necessary to install a metal screen under the floor mat near the receiver. This screen should be well grounded to the chassis.

By-pass condensers are required on the generator, dome-light, and ignition switch in the 1934 models. The condenser case attached to the dome-light wire should be grounded to the cowl panel in front of the hood lining by drilling a $1 / 8^{\prime \prime}$ hole where the wood overlaps, and as close to the pillar as possible. It may also be necessary to connect an additional $0.5-\mathrm{mfd}$. condenser from the ammeter to ground.

On the 1935 models, by-pass condensers are necessary at the generator, dome-light and ignition switch. It is also necessary to install suppressors at the spark plugs and the distributor.

On the 1936 models, by-pass condensers are necessary at the generator, dome-light and the ammeter or ignition switch. Ground the steering column to the dash. Ground the speedometer cable, oil line and temperature indicator tube at the points where they enter the dash. Use No. 14 stranded wire for the bonding, and a self-tapping screw for fastening the bonding wire to the dash (a $1 / 4^{\prime \prime}$ drilled hole is provided for this screw on the dash). It is also necessary to shield the antenna lead-in wire as much as possible with braided shielding.

## DE SOTO

General: The remedies for stubborn cases of noise in this car are similar to those specified for the Chrysler, Dodge and Plymouth. Refer to these cars for further details.

## DODGE

General: In some cars the ignition-switch leads must be shielded, with the shicld grounded at both ends. It may also be necessary to remove the primary wire connecting the ignition coil and breaker points in the distributor, from the high-tension wire duct. This lead should be shielded, and the shield grounded at both ends to the engine block. It is usually necessary to shield the high-tension lead between the ignition coil and the distributor. Both ends of the shield must be carefully grounded. Try reversing the primary leads to the ignition coil.

If a roof acrial is employed, it may be necessary to install a switch or choke coil on the dashboard between the ammeter and the dome-light wires. The latter may consist of 12 to 20 turns of No. 18 wire wound on a $1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$ form.

By-pass condensers of about $0.5-\mathrm{mfd}$. capacity are required on the generator and the dome-light wire and should be grounded to the cowl panel in front of the hood lining by drilling a $1 / 8^{\prime \prime}$ hole where the wood overlaps, and as close to the pillar as possible. It may also be necessary to by-pass either side of the ammeter to ground. The oil-pressure and water-temperature indicator lines on the engine side of the bulkhead should be grounded.

On some of the 1934 model cars, the use of spark-plug suppressors may actually increase the noise level. Suppressors are generally required on these models at the spark plug and distributor. By-pass condensers are required at the generator, dome-light and ignition switch.

Tire static encountered in 1935 models may be eliminated by removing the tires from the wheels and removing the tire cement (dull gray in color) which is painted inside the casing over an area about 3 inches wide and 18 inches long. It is also necessary in these models, to by-pass the dome light, generator and
ignition switch and to connect suppressors at the distributor and spark plugs.

The interference-suppression remedies for the 1936 Dodge cars are essentially the same as those given for the 1936 Chrysler cars. By-pass condensers are required at the generator, dome light and ammeter or ignition switch. The steering column and control cables require bonding to the dasin. Suppressors are necessary at the spark plugs and the distributor. If the car uses an insulated roof as the antenna, connect a $0.00025-\mathrm{mfd}$. condenser in series with the antenna section of the gang condenser in the receiver. In some cases, it may also be necessary to bund the hood to the bulkhead.

## ESSEX

General: The receiver battery connection should be made directly to the storage battery. In the majority of these cars a by-pass condenser must be installed at the ignition switch, trying it at both sides for best results.

Good bonding is essential in these cars. The steering post should be bonded to the bulkhead, and the various rods passing through the bulkhead into the engine compartment should be grounded. The dome-light circuit should be by-passed with a $0.5-\mathrm{mfd}$. condenser to ground. The low-tension leads and the high-tension lead to the center of the distributor should be removed from the wire duct. It may be necessary to shield these leads, and ground the shields at both ends to the motor block.

## FORD MODELS A AND B

The armored cable which carries the primary wire from the switch to the distributor should be grounded to the metal bulkhead, and the spark control-rod should be grounded to the motor block.

In some cases it may be necessary to install a dome-light switch on the dashboard between the ammeter and the domelight wire and to shield the dome-light wires as far as possible.

In only a few instances will it be found necessary to shield the high-tension wire from the ignition coil to the distributor.

When this must be done, the shield should be grounded at both the ignition coil and distributor housings. The "battery" lead of the receiver should be connected directly to the storage battery.

No by-pass condenser is required on the ignition coil, though it is sometimes necessary to install a coil "suppressor" in 1933 models. This may be done by removing the coil from the bulkhead and pulling out the carbon brush and spring. Save the spring and discard the brush. Make a suppressor from a $40,000-$ ohm, 1-watt carbon resistor by cutting it to the same length as the original brush. Assemble this in place instead of the carbon brush, and remount the coil.

It may also be necessary to move the coil to the engine block; it may be mounted by enlarging the hole in the coil bracket. This may be done easily with a tapered reamer.

By-passing from the left terminal of the terminal block to the bulkhead, and from a low-tension coil terminal to the engine block, should also be tried in cases of extreme noise.

## FORD MODEL V-8

General: Remove the primary wire from the same conduit that carries the high-tension spark-plug wires. Reroute it, or shield it with braided shielding, being careful to ground the shield well at both ends. Also shield the resistor connected in series with the high-tension coil.

The dome-light wire should be shielded at least up to the door post. If a roof-type aerial is employed, the lead-in should be brought down the left-hand door post, since the dome-light wire comes down the right-hand post in most cases. It may also be necessary to by-pass the dome-light wire.

It will be found that more perfect noise suppression will be obtained if all control rods are grounded with flexible braid, care being taken to allow sufficient slack to permit their unhampered operation.

In some instances two by-pass condensers must be installed on the generator cut-out relay, one from each terminal to ground. Very often an ordinary $8-\mathrm{mfd}$. condenser, connected directly
across the battery from the fuse block to ground will aid greatly in eliminating the noise.

Because of unusual construction, the distributor suppressor must be installed in the following manner: Remove the ignition coil from the front of the motor by unscrewing the three machine screws in its base. Withdraw the carbon brush and spring from the end of the coil. Substitute a $25,000-\mathrm{ohm}$ carbon resistor, removed from a standard suppressor, for the brush. Enlarge the brass bushing in the opening from which the brush and spring were removed, with a one-half inch drill so that there will be no arc from the bushing to the collector ring on the rotor shaft. Use a strip of insulating paper one-half inch wide to make a bushing to replace that portion of the brass bushing drilled away. This can be done by wrapping the insulating paper around the brush spring about twice, so that the brush is held firmly in place. The end of the brush must set squarely on the rotor shaft.

By-pass condensers connected from either low-tension coil terminal to the engine block will help reduce interference considerably. When installing these, be sure to make the connections to clean metal surfaces on the engine block. Scrape away any paint or rust that may be encountered.

In many stubborn cases, interference may be reduced by connecting a coil (consisting of about 30 turns of No. 14 enameled wire wound on a $1 / 2$-inch form) in series with the low-tension lead at the spark coil next to the distributor assembly.

In 1933 models it is desirable to run the red lead to the distributor and the black-and-yellow lead to the generator in separate shields; bond the shields together every three inches and ground them to the copper gas line. Run the radio set battery lead under the floor mat to the battery; be careful that no leads are run on the engine side of the bullhead.

If interference still persists after these precautions, try removing, from the high-tension cable duct, the two wires that connect to the coil and generator. Shield each separately, and ground the shields to the motor block and bulkhead. It may be necessary to connect additional by-pass condensers at the primary side of the ignition coil, at the fuse block, and at the ignition switch.

In 1934 models, the by-pass condenser to be used at the fuse block can be connected underneath the bolt which holds the loom adjacent to the fuse block. Connect the condenser lead to the terminal on either end of the fuse. It is also necessary to ground the rear edge of the hood with flexable bonding braid. In extreme cases, ground the ignition wire ducts at the hoods with short, heavy bonds, since these ducts are not sufficiently grounded through their mounting brackets. It is advisable to use a cartop type aerial only, as interference cannot be easily eliminated with a running-board type.

In the 1935 models, it is necessary to use by-pass condensers on the gas and oil gauges, as well as the fuse block, generator, ignition coil and ignition switch (see information given for their installation later for 1936 cars). Suppressors are only necessary at the spark plugs. Bond the speedometer, oil and heat indicators; also bond the door sills to the metal floor and the hood to the bulkhead. If interference still persists, change the ignition coil.

Keep the antenna lead-in as far away from the loom (under the cowling containing the ignition und lighting wires) as possible. In some cases, it may be necessary to wrap a strip of copper screen spirally around this loom where it passes through the motor compartment, spotting with solder at different points to make the shield continuous, and then grounding it.

In the 1936 models, it is necessary to by-pass all the units stated above for the 1935 models. A special coil bracket type condenser should be used on the ignition coil. In connecting the oil gauge by-pass condenser, fasten the condenser on the transmission housing underneath the starter wire clamp, and connect the lead to the terminal of the gauge on the flywheel housing, being careful that the accelerator arm does not strike the condenser or rub the condenser lead during operation. A condenser equipped with a special bracket should be installed on the gasoline gauge, which is located on top of the left side of the gasoline tank. Access may be had to it by opening the top of the trunk and removing the circular covering. In cars not having a trunk, access may be had by moving the rear seat back
cushion forward. In coupes, it is necessary to lift the rear deck and then the rubber mat. Then remove the sheet metal screw and the rectangular metal cover. Fasten the dome-light condenser under the lower right mounting screw and connect the lead to the bullet connector on the dome-light wire at the pillar entrance. Mount the condenser at the fuse block behind the dash, directly to the left of the block. A hole is provided in the dash for mounting; it is only necessary to pierce the padding. Fasten the condenser in place with a No. $10,11 / 2$-inch long sheet metal screw. Connect the lead to the left coil resistance terminal.

In models which are not equipped with an oil gauge, it is well to ground the lead which is provided for it in the harness comprising the generator and ignition wires. In that case, a grounded "shield" is also formed for the other wires in the harness as a result of grounding this lead.

It will be found that suppressors may actually increase the noise on the 1936 models.

## FRANKLIN 1930, 31, 32

In these models, the conduit carrying the ignition wires must be grounded to the bulkhead on the engine side of the dash. Also, ground the ignition coil frame to the oil line in the driver's compartment. Shield the high-tension lead from the coil to the dash, and ground the shield at the dash.

Cut the dome-light wire and install a switch on the dashboard close to the door post along which the wire passes.

## GRAHAM

General: Shield the wire from the ignition coil to the ignition switch located on the stecring column, and ground this shield to the bulkhead. A by-pass condenser must be connected from one terminal of the fuse block located on the bulkhead, to ground. Another by-pass condenser may be required from the ignition switch terminal nearest the left side of the car (behind the instrument panel) to ground. This ground should be made securely to the top of the cowl bar immediately behind the instrument panel.

In the 1934 models, filtering is necessary for the dome light and the cigar lighter and clock light which are located in the header plate. Bond the ignition manifold with short bonds to the motor block at several places, making sure that both sections are bonded. Shield the antenna lead, as explained for the 1934 Auburn model.

In the 1935 and 1936 models, suppressors are necessary at the spark plugs and the distributor. By-pass condensers are required at the ignition switch in the 1935 models, and at both the generator and ignition switch in the 1936 models.

## HUDSON AND TERRAPLANE

In 1931 models, take the primary lead which connects from the ignition coil to the distributor and remove it from the hightension wire duct. Shield this lead, bonding the ends of the shield to both the ignition coil and to the distributor housings.

In 1933 models, it may be necessary to by-pass the ammeter to ground and to bond the steering column and motor block to the bulkhead.

In 1934 models, by-pass condensers are required on the ignition coil, generator, dome-light, gasoline gauge and water-level gauge. Connect the lead of the by-pass condenser in the gasoline gauge circuit to the battery terminal of the tank unit, and ground the condenser case to the tank. Connect the lead of the water-level gauge by-pass condenser to the terminal in the center of the radiator unit, and ground the condenser to one of the six screws at the rim of the radiator unit. The antenna lead-in should also be shielded as completely as possible and the shield properly grounded.

In the 1935 models, by-pass condensers are required at the dome light, ignition coil, and gasoline and water gauges. Suppressors are also necessary at the spark plugs and at the distributor. The manner in which the gasoline and water gauge by-pass condensers should be connected is described above for the 1934 models.

In the 1936 models, by-pass condensers are required at the
gasoline and water gauges and at the generator. In attaching to the gasoline gauge, attach the condenser case with one of the gauge mounting screws and connect the lead to the gauge terminal. Installing at the water gauge, attach the condenser to the upper rear cap screw of the water manifold of the engine, and attach the condenser lead to the terminal of the water temperature gauge element. On Terraplane models, this condenser is not required.

Also install under the floor mat, three grounding contact springs to the front, rear and left of the floor-board opening, so that the spring fingers will make contact with the transmission control housing. Be sure to clean the paint from the floor panel and transmission tower to insure good electrical contact. Place spacers under the ground clamps and secure them to the floorboard with sheet metal screws and tapping plates. Also install a ground strap from the front muffler bracket to the frame, being sure here, again, to scrape away the paint in order to insure good electrical contact.

In some cases, it may be necessary to install a dome-light filter or by-pass condenser. It may also be necessary in extreme cases, to bond the motor block, the hood and the headlights.

## HUPMOBILE

General: The antenna lead-in on these models should be well shielded. The shielding should be pushed over the lead-in and extended up into the right-hand pillar for a few inches. Ground the shield by drilling a hole in the cowl in front of the hood lacing, and connect the shield pigtail terminal to it with an 8-32 bolt and nut.

By-pass the generator by mounting a condenser under the generator relay mounting leg, and connect the condenser lead to the "battery" side of the relay. Also connect a by-pass condenser in the dome-light lead by drilling a $1 / 8^{\prime \prime}$ hole on the left side of the cowl in front of the hood lacing, fastening the condenser under the cowl with an 8-32 nut and bolt.

In the 1935 and 1936 models, by-pass condensers are neces-
sary at the generator, dome light and starting motor. Suppressors are also necessary at the spark plugs and at the distributor.

## LAFAYETTE

The ignition troubles and remedies for these cars are the same as those presented here for the Nash 400 model. Refer to the Nash ignition interference suppression information for complete details.

## La salle

General: In these cars, the primary lead from the distributor to the ignition coil passes through the high-tension wire duct. This wire must be removed from the duct, and, in some instances, should be shielded, the shield being grounded at both ends.

In some of the more recent custom-built models, the installation of two dome-light filters is necessary, especially when a roof aerial is employed. These filters must be connected underneath the car, at the junction boxes, to their respective circuits.

In 1932 models the ignition coil is located on the bulkhead on the driver's side, above the clutch pedal. It is sometimes necessary to move the ignition coil to some other location to prevent interference from being radiated by the body of the operator of the car.

In 1934 models, by-pass condensers are required on the ignition coil, generator and starting motor, and often in the ammeter circuit. Connect the lead of the by-pass condenser in the starting motor circuit to the generator terminal of the solenoid relay on the starting motor, and ground the condenser case to one of the screws holding the solenoid relay to the starting motor.

The high-tension wire between the coil and dash should be shielded and the shield grounded to the dash. In some cases, the body of the driver or a passenger in the front seat may reradiate interference to the antenna. In such cases, it is necessary to move the ignition coil to some other location, or to shield the ignition coil by installing a metal plate under it and grounding this plate securely to the instrument panel.

On the 1935 models, it is necessary to install suppressors on the spark plugs and at the distributor. By-pass condensers should be connected at the ignition coil, generator and starting motor.

On the 1936 models, by-pass condensers are necessary at the generator, ignition coil, clock and dome light. Suppressors are also necessary at the spark plugs and distributor. A tubular condenser must also be installed at the ignition coil case, grounding the grounding terminals to the coil case with solder. "Static collectors" are also necessary at the rear wheels.

## LINCOLN

General: In these cars there are two ignition coils which are mounted on the dash in the driver's compartment. The high-tension leads pass through the dash in metal conduits to the distributor which is located on the motor. The leads from the ignition coils should be well shielded and the shields carefully bonded to the fire-wall. It may be necessary to remove the coils and place them in the motor compartment (under the gear-case nuts).

Because of the complex dome-light wiring, shielding is usually necessary to eliminate interference from this point. A choke coil should be installed in series with the dome-light lead and bypassed to ground by a $0.5-\mathrm{mfd}$. condenser which is well grounded.

In some instances, it may also be necessary to by-pass the dome-light feeder (at the terminal box located in back of the rear seat cushion) to the body of the car with a $0.5-\mathrm{mfd}$. condenser.

By-pass the battery terminal of each coil to the coil-mounting plate, and by-pass either terminal of the ammeter to the instrument board. A suppressor should be used at the high-tension terminal of the coil as well as at the distributor.

In the event that noise still persists, add a by-pass condenser from the brush side of the generator cut-out to ground, reverse the primary leads to one coil, and bond all rods and metal parts passing through the bulkhead to the motor block and the bulkhead.

In the 1934 models, the antenna lead-in should be shielded as completely as possible. It is sometimes necessary to let the
antenna shield float free, so that it grounds at the radio set only.
In the 1935 models, it is necessary to connect by-pass condensers at the ignition coil and at the generator relay. The manufacturer recommends the use of special radio spark plugs in order to eliminate the use of external suppressors and disturbance of the ignition system in general.

## LINCOLN-ZEPHYR

On the 1936 models, the lead-in is located at the base of the left center door pillar. Carefully carry the shielded lead-in over the propeller shaft housing, and ground the shield to the floor of the car at the base of the pillar.

By-pass condensers are necessary at the generator, both ignition coils, the oil gauge, the gasoline gauge, the water thermometer and the relay. In installing the generator condenser, remove the generator cutout relay mounting screw and fasten the condenser bracket on the cutout relay mounting lug. Connect the condenser lead to the battery terminal of the cutout. In installing the by-pass condensers on the distributor, use the units specially designed for this installation. The oil gauge condenser should be installed on the transmission housing underneath the starter wire clamp. The condenser lead should be connected to the terminal on the oil gauge. The water gauge by-pass condenser should be fastened underneath the top radiator shell to the body bracket bolt at the top of the radiator. Connect the condenser lead to the water gauge terminal. The coil resistor condenser should be installed under the left cutout mounting strip and bolted to the dash. The lead should be connected to the battery terminal of the relay.

For severe cases of stubborn interference, try bonding the exhaust pipe to the car frame.

## NASH

1934 Nash cars require by-passing at the generator and at the ammeter. If radiation into the antenna is strong, shield the bulkhead with copper sheet or screen, and bond the shielding on
both sides to the engine block. It is also well to bond the instrument panel to the bulkhead.

In the 1936 models, it is necessary to install by-pass condensers at the generator, dome light and ignition coil. In the Ambassador 6 and 8 models, fasten the condenser under the generator cutout relay mounting screw, and connect its lead to the "battery" terminal of the relay. Install another condenser under the right door instrument board flange, and connect its lead to the dome-light wire-as close as possible to the corner post. (Note: this connection should be in the form of a splice, and must be soldered and taped). Another condenser should be fastened under the outside ignition coil bracket, and its terminal connected to the "ammeter" side of the ignition coil.

In the Nash 400 model, fasten a condenser under the generator cutout relay mounting screw and connect its lead to the battery terminal of the relay. Mount another condenser on the instrument board flange, and connect its lead to the discharge side of the ammeter.

## OAKLAND

General: The "battcry" lead of the receiver must be run directly to the car storage battery and must be completely shielded; the shield should be grounded at both ends.

In some instances, shielding of the spark-plug lead to the No. 8 spark plug is absolutely essential. The shield, of course, must be grounded.

Dome-light filters should be installed on all sedan models. A by-pass condenser may have to be installed from the starting motor terminal to the fire-wall. The lead from the coil to the fire-wall must be shielded, and the shield grounded to the firewall.

By-pass either terminal of the ammeter to the instrument board. The high-tension wire from the coil to the distributor should be shielded, and the shield grounded to the bulkhead. The low-tension lead from the coil to the breaker should also be shielded, and the shield grounded.

If interference still persists, it may be necessary to house the
distributor in a copper-screen shield and ground the shield to the engine block.

In the 1930 models, shield the antenna lead-in all the way to the antenna, and bond this shield to the corner post as near to the antenna as possible. Also bond the car body to the chassis frame with flexible bonding braid. If interference still persists, cover the entire floor board with copper screen, bonding the screen to the car frame. Also install all the customary bypass condensers.

## OLDSMOBILE

In the 1929 and 1930 cars, intermittent ignition interference (usually due to poor grounds) may be eliminated by shielding the antenna lead-in wire to a point within about 5 or 6 inches from the car aerial and grounding this shield to the steel body brace at the right or left top corner of the car. Also connect a bond between the header bar mounting bracket and one of the tabs holding the body sheet metal to the upper front door sill of the car. Return these bonds to the point where the lead-in is grounded. Do the same in the opposite front corner. If necessary, a conductor of $3 / 8^{\prime \prime}$ shielded braid should be extended from the common ground of these three points to the instrument panel, where it should be grounded and then extended to the dash or bulkhead. In extreme cases, bond the car body to the chassis.

On 1934 Oldsmobiles, the antenna lead-in should be shiclded for as long a length up the corner post as possible, but do not ground the pigtail of the shield until the set is installed. After installation, turn on the set and tune between stations with full volume. Start the engine and let it run just above idling speed. Note the noise level first with the shield ungrounded, then with the shield grounded to the nearest instrument panel bracket bolt, and finally with the shield grounded to the windshield wiper tube. If least noise is obtained with the shield ungrounded, then clip the pigtail close to the shield and tape the end to prevent its grounding. On the other hand, if the shield must be grounded, do so to the point where least noise was obtained.

Spark-plug suppressors should not be used as they may act-
ually increase the noise level. Connect the lead of the generator by-pass condenser to the generator terminal of the cut-out relay, and by-pass the ammeter to ground.

The high-tension lead from the coil, and the coil itself, should be shielded and the shields grounded with short, heavy bonding braid. Extreme care must be taken in shielding the coil, as the battery terminal of the coil is "hot." Disconnect the ignition system wire from the starter relay terminal before mounting the shield.

A shielded low-tension wire should replace the original lead from the ignition coil to the distributor. After the connections are made, a pigtail should be soldered to the shield braid at a point where the wire enters the engine compartment, as near to the grommet as possible. This pigtail should then be grounded to the dash at the nearest point, preferably by soldering.

A piece of $3 / 8^{\prime \prime}$ wide flexible copper braid $101 / 2^{\prime \prime}$ to $11^{\prime \prime}$ long should be secured for bonding. Cut off one piece about $31 / 2^{\prime \prime}$ long and bond the steering column to the dash at the point where it passes through the dash on the engine side. This bonding strip should be cut and soldered in place and cut as short as possible except for a small loop to allow for some movement between the bonded parts. The remaining length of braid should be used as a bond between the support bracket on the exhaust side of the engine immediately below the dash.

It is recommended that two $3 / 8^{\prime \prime}$ holes be punched in the ends of the piece of braid and then the entire end of the braid soldered over to make a good, hard terminal. This binding strip is then to be mounted under the top bolt which mounts the exhaust pipe bracket, and the other end is secured under the top bolt securing the engine support bracket. When these bolts are removed to attach the bonding strip, care should be taken to see that all the paint is removed from the under side of the bolt head and from the area under the bolt which will be covered by the bonding strip.

If interference still persists, the dome-light circuits should be by-passed or filtered. This is one of the few cars in which bypassing and bonding should be used in preference to suppressors. Only one suppressor, in the distributor lead, is usually necessary.

In some cases, the body of the driver or passengers in the front seat may re-radiate interference to the antenna. In such cases, it is necessary to move the ignition coil to a different location, or to install a metal plate about $5^{\prime \prime} \times 10^{\prime \prime}$ under the coil, fastening it to the instrument panel securely so as to shield the bottom of the coil.

In the 1935 models, by-pass condensers are necessary at the ammeter, generator and dome light. A suppressor is also necessary at the distributor. Also connect by-pass condensers to either, or both, terminals of the stop-light switch. If interference still persists, bond the last cylinder-head to the fire wall and the aluminum stops on the door sills. Also bond the relay core and base to the bulkhead.

In the 1936 models a by-pass condenser is necessary only at the generator, and a suppressor is necessary at the distributor. Connect the condenser lead on the generator to terminal $A$.

Connect a ground strap to the left chassis cross-member by means of a $5 / 16^{\prime \prime}$ bolt, nut, shakeproof lock-washer and $5 / 16^{\prime \prime}$ $X 3 / 4^{\prime \prime}$ plain washer. A hole is provided in the cross-member for this purpose. In making the connection, be sure that the surfaces are clean, and that good contact is made. The other end of the strap should be fastened under the head of one of the transmission case bolts, inserting a plain washer between the strap and the head of the bolt. Another similar ground strap should be fastened between one of the cylinder head bolts and the bolt at the top of the starting pedal bracket on the dash. Static collectors should also be installed on the front wheels, making sure that the connections are clean and that there is no grease at the contact surfaces (unless the grease has graphite mixed with it).

## PACKARD

General: Take the primary wire which connects the ignition coil to the breaker in the distributor housing, and remove it from the high-tension wire duct. Shield it, and ground this shield to the bulkhead or engine block. If the noise still persists,
it may be necessary to move the ignition coil to the front of the engine compartment.

Since the ignition switch mechanism is located at the base of the ignition coil, it will be necessary to remove this mechanism from the base, so that it can be used again; or, a new ignition switch may be installed on the dash.

In the first instance, the switch mechanism may be removed from the base of the coil. Solder the switch wires in the coil together, and cover with a fiber disc. A metal disc may then be cut and soldered in the base of the coil. Mount the coil in a horizontal position at the top of the radiator brace under the hood. Then reassemble the switch and make the connections from ammeter to switch and from switch to coil. Remount the switch and shield the wire from the switch to the coil, grounding the shield to the bulkhead.

In some cases, additional by-pass condensers must be connected from cither side of the ammeter to the instrument panel. By-pass condensers are also required at the generator, ignition switch, and, perhaps, from one terminal of the ignition coil primary to ground.

The low-tension lead between the coil and the breaker arm should be shielded and the shield grounded to the bulkhead.

In all cases, the spark-plug gap should be increased from $0.025^{\prime \prime}$ to $0.03^{\prime \prime}$.

In all the 1935 models, by-pass condensers are necessary at the ignition coil and generator. Suppressors are necessary at the spark plugs and distributor.

In the 1936 Packard 8 and Packard Super 8 models, connect a by-pass condenser at the ammeter side of the ignition switch, grounding it under the lower instrument light housing screw. Mount another condenser under the outside generator relay mounting screw and connect its lead to the relay battery terminal. The spark-plug gap should be increased from $0.025^{\prime \prime}$ to $0.03^{\prime \prime}$.

In the 1936 Packard 12 models, mount a condenser on the coil bracket, fastening it with the right-front coil mounting screw. Pass the condenser lead through the hole provided in the coil
bracket, and connect it to the lower side of the coil, to which a brass strip is fastened. In replacing the unit, make sure that the enamel is cleaned away so the condenser case is well grounded. Fasten another condenser under the outside generator relay mounting screw, and connect its lead to the relay "battery" terminal. Resistors may or may not be necessary in the coil wires. The spark-plug gap should be increased from $0.025^{\prime \prime}$ to $0.030^{\prime \prime}$.

In the 1936 Packard 120 model, solder the end of a braided grounding strap with an cyelet provided at the other end for grounding to the oil pressure gauge tubing and wind the strap tightly around each of the tubes and cables coming through the dash at this point. Before winding the strap, make sure that all the points which the strap touches on the various cables around which it is wound are clean and make good electrical contact with the strap. After winding, solder the strap to the pressure gauge tubing again and ground the cyelet in the braided strap to the dash. In some cases, it may also be necessary to bond the steering column to the dash with a short lead.

Install a condenser on the generator under the outside relay mounting screw, and connect the lead to the "battery" terminal of the relay.

## PIERCE-ARROW

In the 1936 models 8 and 12, two by-pass condensers are necessary at the generator and one at the ammeter. Fasten one of the condensers under the inside generator relay leg and connect its lead to the battery side of the relay. The second condenser is mounted under the current-limiting relay mounting screw, and its lead should be fastened to the same terminal to which the "A" lead is connected. The ammeter by-pass condenser should be fastened to the instrument board flange, and its lead connected to the ammeter. A suppressor is also necessary at the distributor.

## PLYMOUTH

General: The lead from the ignition coil should be shielded up to the metal fire-wall, and then grounded to the oil line. The
oil line, in turn, should be grounded, on the motor side, to the fire-wall. It is also essential on these models to remove the primary lead between the ignition coil and the distributor from the high-tension duct. This lead should be shielded, and the shield bonded to the engine and fire-wall.

Because of the use of the rubber "floating power" engine mounting in these cars (which insulates the motor block from the frame) it is absolutely essential that the motor block be carefully grounded to the car frame by means of stout, flexible copper braid, leaving sufficient slack so as not to interfere with the normal "rocking" of the motor.

By-passing is required at the dome light, generator and ignition switch in nearly all cases. It may also be necessary to bypass either side of the ammeter to the instrument board.

A dome-light switch or filter should be installed close to the left-hand side of the dash when a roof antenna is employed.

Interference is sometimes caused by a sticking brush in the distributor. Remove the top of the distributor housing and drop some thin oil on the brush in order to loosen it. This may eliminate a considerable amount of noise. In some cases, bonding the speedometer cable to the chassis will eliminate a considerable amount of interference.

In the 1935 models, interference caused by tire static may be eliminated by removing the tires from the wheels and removing the strip of cement (dull grey in color) about $3^{\prime \prime}$ wide and $18^{\prime \prime}$ long which is painted inside the casing. Remove with a wire buffer and benzine.

In the 1936 models, the interference suppression remedies are essentially the same as those presented here for the 1936 Chrysler models. By-pass condensers are required at the generator, dome light, ammeter or ignition switch. Suppressors are necessary at the distributor and spark plugs.

## PONTIAC

General: Shield the high-tension lead from the ignition coil
to the fire-wall, and ground the shield to the fire-wall. Shield the lead-in as described for Buick cars.

Remove the low-tension lead (which connects the coil to the distributor) from the high-tension wire-duct. Rearrange this lead behind the conduit alongside the motor block.

If a roof aerial is employed, a dome-light filter is necessary to eliminate pick-up from the dome light and leads. This filter should consist of an r-f choke and by-pass condenser.

Ground the generator and radiator shell to the same point on the motor block.

It is necessary that the ammeter, dome light, and generator be by-passed in these cars. The lead of the generator by-pass condenser should connect to the generator terminal of the cutout relay, and the ammeter by-pass condenser should be connected to the registering terminal. In order to prevent excessive noise pickup, it may also be necessary to carry the antenna lead-in wire under the floor boards, rather than under the dash. Spark-plug suppressors should not be used as they may actually increase interference noise.

In the 1936 models, a by-pass condenser is required at the generator, and a suppressor is required at the distributor. The generator by-pass condenser case should be mounted on the armature terminal, making sure that all paint and dirt are scraped away, so that good contact is made. Connect the condenser lead to the cover screw of the generator bearing. Do not connect it to the field terminal, as damage to the voltage regulator will result.

Bond the torque tube to the chassis frame, fastening the bonding strap to the web of one of the K members.

Install "static collectors" in the dust caps on the front wheels. See that the rounded contact button at the center of the helical spring is centered in the center hole of the axle shaft. File away all burrs at this hole to prevent wear at the contact point. Remove any grease from the end of the axle shaft and bend the cotter pin back against the flat of the nut to avoid interference with the collector spring.

Static collectors are also necessary on the rear whecls, but
the type to be used depends upon the particular type of flange on the wheels. If the flange is square, use a "pencil type" collector. If the flange is round, use a "static collector" which is made of sheet brass and carries a carbon contact brush.

## REO

In the 1936 models, by-pass condensers are necessary at the generator and dome light. Suppressors are necessary at the distributor and spark plugs. Fasten the generator by-pass condenser case under the screw that holds the generator cutout, and connect the condenser lead to the cutout terminal. Connect the dome-light wire condenser at the point where it enters the right windshield pillar, grounding it to the lower instrument board fastening screw. In some cases, it may be necessary to bond and ground all the metal controls that come through the large grommet in the center of the dash.

## ROCKNE

General: Shield the high-tension cable between the ignition coil and the distributor, and ground the shield to the oil line. Ground the oil line on the motor side of the fire-wall.

The dome-light wire should be disconnected and a switch installed. In some cases, the dome-light wire must be shielded from the switch to the cowl and up into the door post as far as possible. Ground the shield.

## STUDEBAKER

Shield the high-tension lead between the ignition coil and the distributor, and ground the shield at both ends. By-passing is necessary in the ammeter, generator, and dome-light circuits. It may also be necessary to by-pass the switch wire of the coil to the coil bracket.

The metal eavestrough around the top of the car is usually a source of interference radiation, and should be bonded to the chassis frame.

In the 1934 Studebaker models, the remaining interference-
elimination remedies are essentially the same as those already presented here for Dodge cars, and should be carried out.

In the 1936 Dictator models, it is necessary to by-pass the generator and ammeter, and to apply a suppressor to the distributor. Mount the case of the generator by-pass condenser under the relay mounting screw and connect the condenser lead to the "battery" terminal on the relay. The ammeter by-pass condenser should be mounted on the back of the speedometer, and the lead connected to one of the ammeter terminals.

In the 1936 President models, by-pass condensers are necessary at the generator, ignition coil and ammeter. A suppressor is necessary in the distributor. The by-pass condensers should be connected in the same way as outlined above for the Dictator models. The ignition coil by-pass condenser should be mounted on the bottom edge of the instrument board and the lead connected to the ignition coil switch terminal. The front end of the muffler should be bonded to the car frame.

## ELECTRICAL WIRING DIAGRAMS OF AUTOMOBILES

Since a knowledge of the electrical systems of automobiles is very important in auto-radio service work, there are shown in the following pages the diagrams of the electrical wiring systems of eighty Ainerican cars. As pointed out in Chapter XXVII of Modern Radio Servicing, and in Section 3 of this book, it is sometimes necessary to place suitable filters in lighting leads or in some of the switching circuits to prevent interference. While the proper location of such filters may be determined by cut-and-try methods, it is very desirable to know the relative position of the filter with respect to other electrical apparatus in the car. It is the purpose of these diagrams to show these positions.

There are other uses for these diagrams. Certain pieces of electrical equipment are at ground potential and others are not; certain cars have their switches in the negative lead and others have them in the positive lead; some cars use a two-wire system and others, like the Chevrolet, use a single-wire system; some switches are in the ground side of the line and others are in the "live" lead, regardless of the polarity of the grounded terminal of the battery. By means of the diagrams shown here, these peculiarities may be ascertained for the particular car in question.

In instances where the original wiring of the car has not been changed since it left the factory, the color coding shown in the diagrams may be used to advantage, especially in those cars whose wiring systems are somewhat complicated. The leads are usually cabled, and the individual wires in the cable may be checked and selected either by means of the color code (when it is used) or by means of an ohmmeter when necessary. Diagrams of this kind will be found very helpful in the work of installing, servicing, and eliminating electrical interference in auto-radio receivers. These diagrams are reproduced here by courtesy of Radio Retailing and Automobile Digest magazines.





BUICK 40, 1935


BUICK 50, 1935


BUICK 60, 1935


BUICK 40 "Special", 1936


CADILLAC V-8, 1935
(Series 10, 20 and 30)


CADILLAC V-12, 1935
(Series 40)


CADILLAC V-16, 1935
(Series 60)


CADILLAC V-8, 1936
(Saries 60, 70,75 )
Courtesy "Automobile Digest"


CHEVROLET MASTER 6, 1934
Courtesy "Automobile Digest"


CHEVROLET 1936
("St'd." and "Mas!er" Sixes)


CHRYSLER "AIRSTREAM 8", 1935
(Model C. $\%$ )


CHRYSLER "AIRFLOW 8", 1935
1 Mombl C.1. Imperi.al o Wadel C.2, \& lapmeri.al Custom is Model C-31


CHRYSLER "AIRFLOW 8", 1935
(Minlel CW)


DE SOTO "AIRFLOW", 1935
(Model SG)


DODGE 6, 1935
(Model DU)

Tail stop and


DUESENBERG

Courtesy "Radio Retailing"



FORD V-8, 1933


FORD V-8, 1934

Courtery "Automobile Digest"


FORD V-8, 1935


FORD V-8, 1936


GRAHAM SPECIAL 6, 1935
(Model 73)


GRAHAM 6, 1935
(Model 74)


GRAHAM 8, 1935
(Model 72)


GRAHAM "SUPERCH'GD 8", 1935
(Model 75)


HUDSON 6, 1935
(Model "GH" 6)


HUDSON 8, 1935
Courtesy "Automobile Digest"


HUPMOBILE 6, 1935
(Series 518-D)


HUPMOBILE 8, 1935
(Series 521-O)


LAFAYETTE, 1935
(Series 3510)


LA SALLE, 1935, 1936
(Series 35.50, 1935 and
Series 36.50, 1936


LINCOLN V-12, 1935


LINCOLN-ZEPHYR, 1936
Courtesy "Automobile Digest"


NASH 6 \& 8, 1935
(3520 "Six" and 3580 "Eight")



OLDSMOBILE 6, 1935


OLDSMOBILE 8, 1935


PACKARD 120, 1935


Th-Drive light rignal.
36-treling light rwitich


PACKARD 8, 1935
Twelfth Series
(Models 1200, 1201, 1202)


PACKARD 12, 1934.5
(Models 1207, 12081


PIERCE-ARROW 8, 1935
(Model 815)


PIERCE-ARROW 1240-A, 1248-A
(Car Models 338-341-617)


PLYMOUTH 6, 1934
(Model PF)


PLYMOUTH 6, 1936
(Series PI)


PONTIAC 8, 1934

"Standard" \& "De Luxe"
(1.01)


PONTIAC 8, 1935
(605)

Courtesy "Automobile Digest"


REO ROYALLE SIX, 1935


REO FLYING CLOUD, 1935


STUDEBAKER "DICTATOR-6", 1935


STUDEBAKER "COMMANDER-8", 1935
-and "PRESIDENT.8" 1935
Courtesy
"Automobile Digest"


STUDEBAKER "PRESIDENT-8", 1936


TERRAPLANE 6, 1935
("Special" and "De luxe")
Courtesy "Automobile Digest"

## CAR BATTERY POLARITIES, BREAKER-POINT AND SPARK-PLUG GAPS. GENERATOR "CHARGING" RATES, AND AUTO-RADIO INSTALLATION INSTRUCTIONS FOR AMERICAN CARS

A wealth of reference data which servicemen will find very helpful when installing and servicing auto-radio receivers in American cars has been compiled and presented in the following chart in a form which makes quick reference possible.

The Make and Model numbers of all the various automobiles of American manufarture have been arranged alplabetically according to name, and numerically by year (1932 to 1937). The various vertical columns tell, in turn, which terminal of the car storage battery is grounded, the correct breaker gap, the correct spark plug gap, the maximum normal charging rate it is safe to set the generator for, where suppressor resistors should be installed, where by-pass condensers should be installed, what parts of the ear should be "grounded" (by copper bonding braid or other appropriate means), whether the car comes from the factory with a built-in antenna or not, where the lead-in wire will be found (when an antenna has been provided). All of this data is presented for American car models from 1932 to 1937. It has been checked carefully.
(Sce Chart on following pages)

CAR BATTERY POLARITIES，BREAKER－POINT AND SPARK－PLUG GAPS GENERATOR＂CHARGING＂RATES AND AUTO－RADIO INSTALLATION INSTRUCTIONS FOR AMERICAN CARS   （Revised Sept．1937）												
Make \＆Model of Car	Year				Gas mat chat E． E			Install a   Suppressor at ：	Install a   By－Pa＊s Condenser   at ：	Ground the：		
Auburn（none mid．）．．－	1937	P	18		$\stackrel{\rightharpoonup}{10}$		－					
Auburn 654	1936	P	． 018	． 025	16	8.0	－－－	Inist．，S．P．	Cien．，I．C．，Amm．		Yes	Right
Auburn 852	1936	P	． 018	． 025	16	8.0	．．．．	Wist．，S．P．	（ien．，I．C．，Amm．		Yes	Right
Auburn 653	1935	P	． 018	． 025				）ist．，S．P．	Cien．，I．C．，Amm．		Yes	Right
Aluburn 851 ．．．．．．．．	1035	P	． 018	． 025				Dist．，S．P．	Cien．，I．C．，Amm．	，	Yes	Right
Auburn Std．6－52	193.	P	． 018	． 026							Yes	
Auburn Cust．6－52	1034 1034	P	． 018	． 020							Yes	
Auburn Cust．8－50 Aliburn Stal． $8-50$	1034 103.4	$\underset{\mathrm{P}}{\mathbf{P}}$	． 018	． 026							Yes	
Auburn Std．S－50．．．．．	1034 1034	$\stackrel{\mathrm{P}}{\mathrm{P}}$	． 018	． 026							Yes	
Auburn 8－101	1033	P	． 018	． 026							Yes No	
Auburn 8－105．	1033	$\mathbf{P}$	． 018	． 026							Yes	
Auburn 12－161 Auburn $12-165$	1933 1933	$\underset{\text { P }}{\text { P }}$	． 018	． 025							No	
Auburn 12－103 ．．．．． Aluburn 8－100 ．．．．	1932	$\underset{P}{P}$	． 018	． 025							Yes	
Auburn 12－160．．．．．	1932	$\mathbf{P}$	． 018	． 025								
Buick 40	1937	N	． 017	． 025	28	8.0	41	Dist．	dien．，I．C．	F．W．	Yes（Insul． 1 ）	
Buick 60．．．．．．．．．．．	1937	N	． 017	． 025	28	8.0	47	Dist．	ien.,I.c.	F．W．	Yes（Insul． 1 ）	
Buick 80	1937	N	． 017	． 027	28	8.0	45	lyist．	Gen．I．C．	［6．W．	Tes（Insul． R ）	
Buick 90	1937	N	． 017	． 025	28	8.0	42	Dist．	Gen．，I．C．	F．W．	Yes（In－ul．16）	

＊Note：Key to types of aerials：$R$ ．＂Running Board＂type；SS．＂Steel Screen＂type in root；W．＂Wire＂type in roof．
$\dagger$ Note：These cars have＂Turret＂or＂steel＂tops and require an antenna mounted on the outside of the car．
Key to Symbols：＂Amm．＂－Ammeter；＂C＂－Coil；＂Dist．＂－Distributor；＂D．L．＂－Dome Litht；＂E．C．＂Electric Clock；＂F．B．＂－Fuse Block； ＂F．W．＂－Front Wheels；＂Gen．＂－Generator；＂G．G．＂．Gasoline Gauge；＂I．C．＂－Ignition Coil；＂I．S．＇－Ignition Switch；＂Muff．＂．Mufler； O．G．＂Oil Gauge；＂Reg．＂－Regulator；＂Rel．＂－Relay；＂R．S．＂Rear Eprings；＂R．W．＇Rear U＂herla；＂S．C．＂－Steering Column：＂S．M．＂－ Starting Motor；＂S．P．＂－Spark Plugs；＂Transm．＂－Transmission；＂T．T．＂－Torque T＇ube；＂W．T．＂－Water Thermometer．（Con＇t over）

## (Continued from preceding page)


*Note: Key to types of acrials: R."Rumning Board" type; SS."Stcel scrpen" type in roof; W."W"ire" type ill roof.
tiote: These cars have "Turret" or "steel" tops and require an antenna mounted on the outside of the ear.


 starting Motor; "S.P."-Spark Jlups; "Transm."-Transmission; "T.T.".Torque Tube; "W.T."- IV'ater Thermometer. (Con't orer)
(Continued from preceding page)

*Note: Key to types of acrials: RR-"Running Board" type; SS."Steel Screen" type in roof; W."Wire" type in roof.

+ Note: These cars have "Turret" or "stecl" tops and require an antenns mounted on the outside of the car.
Key to Symbols: "Amm."-Amineter; "C".Coü; "Dist."-Distributor; "D.L."-Dome Light; "E.C."-Electric Clock; "F.B."-Fuse Block; "F.W".Front Wheels; "Gen."-Generator; "G.G." Gasoline Gauge; "I.C."Ignution Coil; "I.S."-Ignition Switch; "Muf."', Mufler; "O.G."-Oit Gauge; "Reg."-Regulator; "Rel."-Relay; "R.S." Rear Springs; "R.W.'-Rear Whcels; "S.C."-Steering Column; "S.M.".
Starting Motor; "S.P."-Spark Plugs; "Transm."'Transmission; "T.T."-Torque Tube; "W.T."-Water Thermoneter. (Con't over)


## (Continued from preceding page)


*Note: Key to types of aerials: RA."Kunning Board" type; SS."Steel Ncreen" type in roof ; W."Wire" type in roof.
+Note: These cars have "Turret" or "stecl" tops and require an antenna mounted on the ontside of the car.
Key to Symbols: "Amm."-Ammeter: "C"-Coil; "Dist."-Distributor; "D. L.".Dome Light; "E.C."-Electric Clock; "F.B,"Fure Block; "F"W "Front Wheels, "Gen."-fienerator; "G.G."-Gasoline Gauge; "I.C."-Ignition Coil; "II.S."-Ignition Switch; "Muff"-Mufler;

(Continued from preceding page)

*Note: Key to types of acrinls: R."Running Board" type; SS."Steel Screen" type in roof; W. "Wire" type in roof.
tNote: These cars have "Turret" or "steel" tops and require an antenna monnted on the outside of the car.
Key to Symbols: "Amm."-Ammeter; "C", Coul; "Dist".Distributor; "D.L.".Dome Light; "E.C.". E.lectric Clock; "F.B."-Fuse Block; "F'W."Front Whecls, "Gen."'Generator; "G.G."Gasoline Gauge; "I.C."'Ignition Coil; "I.S."-Ignition Switch; "Muff."•Mufler; "O.G."-Oil Gauge; "Reg."-Regulator; "Rel."-Relay; "R.S." Rear Springs; "R.W.'-Rear Wherla; "S.C."-Steering Column; "S.M.". Sturting Motor; "S.P.".Spark Plugs; "Transm."'Transmission; "T.T."-Torque Tube; "W.T."-Water Thermometer. (Con't over)

## (Continued from preceding page)


*Note: Key to types of aerials: R."Running Roarl" type; SS-"Steel Nercen" type in roof; W."Wire" typo in roof.
*Note: These cars have "Turret" or "stenl" tops and require an antennib mounted on the outside of the car.
Key to Symbols: "Ainm.".dmmeter: "C"-Coil. "Dist".Distributor; "D.L."-Dome Light; "E.C."-Electric Clock; "F.B."-Fuse Block; y to Symbols: "Amm.".Ammeter; "C"-Coil; "Dist."-Distributor; "D.L."-Dome Light; "E.C. -Electric Clock; "F.B. "Muse Bloch;


(Continued from preceding page)

Make \& Model			8			$\begin{aligned} & \text { nera } \\ & \text { ning } \end{aligned}$	or rmal rato	Install   a	Install a		苞 롤	\% ¢ .
of Car				$\left\|\right\|$	$$	$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$		Suppreseor   $a t$ :	at:	the:		
Hudson 6, 73 ............	1937	P	. 020	. 022	22	8.0		Dist.	(ien.,G.G., W.T.	Transm., Mufr.	No	
Hudson 8, 74, $75 . . . . . . . . . .$.	1937	P	. 017	. 022	22	8.0	$30$	Dist.	Gen.,G.G., W.T.	Transm. . 3 Iufr.	No	
Hudson 6 ---	1936	P	. 020	. 022				Dist.	Gen,,G.G., W.T.	Transm., Mufr.	Not	
Hudson 8.	1936	P	. 020	. 022				Dist.	Gen.,G.G., W.T.	Transm. ., Murr.	Not	
Hudson 6	1!35	P	. 020	. 022				Dist.,S.P.	Gen.,I.C.,D.J.,GG,W.G.		Yes	Left
Hudson 8	1095	$P$	. 020	. 022				Dist.,S.P.	Gen.,I.C.,D.I.,GG, W.G.		Yes	Left
Hudson 8 ...-.......	1934	$P$	. 020	. 022							Yes	
Hudson Super 6	1933	N	. 020	. 022							No	$\cdots$
Hudson 8 . Hudson S	1933	N	. 020	. 022							No	----
Hudson 8	1032	N	. 020	. 025							No	----
Hupniobile 618............	1936	P	. 018	. 028				Dist., S.P.	Gen, D.L.		Yes(SS)	Right
Hupmolsile 621 ............	1936	P	. 015	. 028				Dist.,S.P.	Gen., D.L.		Yes(SS)	Right
Hupmobile 518............	11135	P	. 018	. 028				Dist.,S.P.	Gen.,D.L.,S.M.	....	Yes	Right
Hupmobile 521...-.........	1935	P	. 015	. 028				Dist.,S.P.	Gen.,D.L.,S.M.	.-...		Right
Hupmobile 527.-...---	1035	$P$	. 020	. 028				Dist., S.P.	Gen.,D.L.,S.M.	....		
Hupmobile 417............	1984	P	. 015	. 025							Yes	Left
Hupmobile 421A Hupmobile 421J.	1634 1024	P	. 015	. 028							Yes	Right
Hupmobile 422...	1934	P	. 020	. 028							Yes	Right
Hupmobile 426 .-... -...--	11134	P	. 020	. 028							Yes	
Hupmobile 427...........--	1934	P	. 020	. 028							Yes	
Hupmobile 322, 326....-.	1933 1133	P	.015 .020	. 028							Yes	
Hupmobile 214, 216 ....	1:12	P	. 015	. 025							No	
Hupinobile 218...........	1032	P	. 020	. 028							No	--
Hupmobile 221, 222 Hupmobile 255,	$10 \% 2$ 1932	P	.020 .020	. 028							No	-
Hupmoble 255, 237.	1.82		. 020	. 048							No	....

*Note: Key to types of nerinls: R."Running Roard" type; SS."Stesl Screct" type in roof; W."TVire" type in roof.
fNote: These cars have "Turret" or "steel" topss nnd requirs an antenna mounted on the outside of the car.
Note: These cars have "Turret" or "steel" tops nnd requiry an antenna mounted on the outside of the car.
ey to Symbols: "Amm."-Ammeter; "C".Coil; "Dist,"Distributor; "D.L.".Dome Light; "E.C.".Electric Clock; "F.B.".Fuse Block; "F.W."Front Whecle; "Gen."Generator; "G.G."Gasoline, Gauge; "I.C." Ignition Coil, "I.S.".Ignition Switch; "Muff."-Mufler; "O.G.".Oil Gauge "Reg."-Regulator; "Rel."'Relay; "R.S." Rear springs; "R.W.'-Rear whenls; "S.C.", Stecring Column; "S.M.". starting Motor; "S.P."'Smark Pluge; "Transm."-Transmission; "T.T."-Torque Tube; "W".T."-Water Thermompler. (Con't over)
(Conlinued from preceding page)

"Note: Key to types of aerials: R."Rumning Buard" type; SS."Steel Screen" type in roof; I'."Nire" type in roof.
+Note: These cars have "Turret" or "sterl" tops and require an antenna mounted on the outside of the car.
Key to Symbols: "Amm,"+dmmeter; "C"+(oil; "Dist".Distributor; "D. I."-D)ome Jioht; "E.C."-Electric Clock; "k.B,"-Fuse Block; "r゙.W:"-Front Wheels; "Gen."-(ipmerotor; "G.G."•(rasoline Gause; "I.C."-Jgnilion Cuil; "I.S."-Ifmition Swifch; "Nuff.". Mufler; "O.G."-Oil Gauge; "Reg."-Jegmhtor; "Rel."-Relay; "R.S." Kpar Springs; "R.W"-Rear Wheels; "S.C.".Steering Column; "S.M.".

(Continued from preceding page)


[^3](Continued from preceding page)

Make \& Model		$\begin{gathered} 8 \\ \text { E } \\ \text { E } \\ \hline \end{gathered}$	B	罂最	Generator max. normal charging rate			Install a	Install a   By-Pass Condenser at :	Ground the:		
of Car				\|	$\underset{E}{\dot{8}}$	E		Suppressor at:				
Packard 6	1937	P	. 018	. 028	18	8.0	---	Dist.	Gen.,I.S.,E.C.	Controls,8.C.	Yes	Left
Packard 120	1937	P	. 013	. 028	20	8.0	--	Dist.	Gen.,I.S.,E.C.	Controls,8.C.	Ies	Left
Packard Super 8.	1937	P	. 013	. 028	26	8.0	--.	Dist.	Gen., Reg.,D.L.	....	Yes	Right
Packard 12..........	1937	P	. 018	. 028	30	8.0	---	Dist.	Gen.,Reg.,D.L.	....	Yes	Right
Packard 120.	1936	P	. 018	. 029				Dist.	Gen.,E.C.	....	Yes	Left
Packard 8.	1936	P	. 018	. 029				Dist.,S.P.	Gen.,I.S.	....	Yes	Right
Packard Super 8.	1936	P	. 018	. 029				Dist.,S.P.	Gen.,I.S.	....	Yes	Right
Packard 12.	1936	$\mathbf{P}$	. 018	. 029				Dist.,S.P.	Gen.,I. C.	....	Yes	Right
Packard 120	1935	P	. 018	. 025				Dist., S. P.	Gen.,I.S.		Yes	Right
Packard 8.	1935	P	. 018	. 025				Dist.,S.P.	Gen.,I.S.		Yes	Right
Packard Super 8.	1935	P	. 018	. 025				Dist.,S.P.	Gen.,I.S.		Yes	Right
Packard 12...........	1935	P	. 018	. 025				Dist.,S.P.	Gen.,I. C.		Yes	Right
Packard 8	1934	$\stackrel{P}{P}$	. 018	. 025							Yes	
Packard Super 8.	1934	P	. 018	. 025							Yes	
Packard 12.	1934	P	. 018	. 025							Yes	
Packard 8	1933	P	. 018	.025 .025							Yes	
Packard Super 8 Packard 12	1933	P	. 018	. 025							Yes	
Packard 901, 902	1932	P	. 015	. 025							No	$\cdots$
Packard 903, 904	1932	P	. 015	. 025							No	
Piorce Arrow 8	1937	$\mathbf{P}$	. 018	. 022	28	8.0	--	Dist.	Gen. (2), Amm.	$\cdots$	Yes(W)	Right
Piprce Arrow 12	1937	P	. 018	. 022	28	8.0	....	Dist.	(ien. (2), Amm.	----	Yes(W)	Right
Pierce Arrow 8...	1936	$\stackrel{P}{P}$	. 018	. 022				Dist.	Gen. (2), Amm.	...-	Yes(W)	Left
Pierce Arrow 1602.	1936	P	. 018	. 022				Dist.	Gen. (2), Amm.	----	Yes(W)	Left
Pierce Arrow 1603	1936	P	. 018	. 022				Dist.	Gen. (2), Ammn.	--	Yes(W)	Left
Pierce Arrow 845	1935	P	. 018	. 022							Yes Yes	
Pierce Arrow 1245.	1935	P	. 018	. 022							Yes	

Hote: Key to types of aerisls: R."Running Board" type; SS-"Eted Screen" type in roof; W."Wire" type in roof.
+Note: These cars have "Turret" or "stoel". topa and require an antenna mounted on the outside of the car.
 "F.W."-Front Wheels; "Gen.".Gonerator; "G.G."-Gasoline Gawge; "I.C."-Ignition Coul; "I.S."-Ignition Switch; "Muff."-Mufler; "O.G."-Ou Gauge; "Reg."-Regulator; "Rel."'Relay; "R.S." Rear Springs; "R.W.'-Rear Whers; "S.C."-Steering Column; "S.M.". Starting Motor; "S.P.".Spark Plugs' "Transm."-Tranomiesion; "T.T."-Torque Tubs; "W.T.".Water Thermometer. (Con't over)
（Continued from preceding page）

	Year	$\begin{aligned} & \text { E. } \\ & \text { Ev } \\ & \text { Eve } \end{aligned}$			m	encra noing	or rmal rat．	Intall a	Install a	Ground	융 튤	最 ㅌ．
of Car		烒		$\mid$	$\begin{aligned} & \dot{+} \\ & \stackrel{\rightharpoonup}{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & \stackrel{5}{0} \end{aligned}$	$\left\lvert\, \begin{array}{cc} 0 \\ 0 & \text { E } \\ 0 & 0 \\ 0 \end{array}\right.$	Suppreasor at：	By－Pass Condener at：	the：	毞	标菏
Plerce Arrow 1255．．．．．．．．	1935	P	． 018	． 022							Yes	
Plerce Arrow 840A．．．．．．．	1934	P	． 018	． 022							Yes	
Plerce Arrow 1240A	1934	P	． 018	． 022							Yes	
Plerce Arrow 1248A	1934	P	． 018	． 022							Yes	
	1933	P	． 018	． 022							Yes	
Pierce Arrow 1236．．．．．．－	1933	P	． 018	． 022							Yes	
Plerce Arrow 1242，47，．－ Plerce Arrow	1933	P	． 018	． 022							Yes	
Pierce Arrow 54	1932	P	． 018	． 025							Yes	
Pierce Arrow 52，51．．．．．．	1932	$\mathbf{P}$	． 018	． 022							Yes	
Plymouth 6، P3．	1937	$\Gamma$	． 020	． 025	15	8.0	18	Dist．	Gen．，Amm．or．I．S．	Controls	No	
Plymouth 6，P4．．．．．．．．．．．．．．	1937	P	． 020	． 025	22	7.8	18	Dist．	Gen．，Anım．or．I．S．	Controls	No	
Plymouth 6 ．．．－．．．．．．．．．．．．．．．	1936	P	． 020	． 025				Dist．，S．P．	（ien．，Amm．，D．L．		Yes（Ss）	Left
Plymouth 6 ．．os－a．a．－．．．．．．．．．．	1935	P	． 020	． 025				Dist．，S．P．	Gen．，D．L．，I．S．		Yes	Right
	1934	P	． 020	． 025							Yes	
Plymouth 6．．．．．．．．．．．．．．．．．．．．	1933	P	． 020	． 025							Yes	
Plymouth．．	1932	$\mathbf{P}$	． 020	． 020							No	
Pontiac 6 ．．．．．．．．．．．．．．．．．．．．．．．	1937	N	． 020	． 025	18	8.0	40	Dist．	Gen．	CsiHd．F．W．	Not	
	1937	N	． 015	． 025	18	8.0	40	Dist．	Gen．	Csilud．F．w．	Not	
Pontiac Master 6．．．．．．．．	1936	N	． 020	． 025				Dist．	Gen．	FW．RW．TT．	Not	
Pontiac DL． 6	1936	N	． 020	． 025				Dist．	Gen．	FW，RW，TT．	Not	
Pontiac DL． 8	1936	N	． 018	． 025				Dist．	Gen．	FW．RW．TT．	Not	
Pontlac 6.	1935	N	． 020	． 025				I inst．，S．P．	Gen．，Amm．，D．L．		No	$\cdots$
Pontiac 8．．．．．．．．．．．．．．．．．．．．．．．．	1935	N	． 018	． 025				Dist．，S．P．	Gen．，Amm．，D．L．		No	－
Pontiac 8．．．．．．．．．．．．．．．．．．．．．．．．	1934	N	． 013	． 022							Yes	Left
Pontiac 8．．．．．．．．．．．．．．．．．．．．．．．－	1933	N	． 013	． 018							Yes	Left

＂Note：Key to types of aerials：R．＂Running Board＂type；SS．＂Steel Screen＂type in roof；W．＂Wire＂type in roof．
$\dagger$ Note：These cars have＂Turret＂or＂steel＂tops and require an antenna mounted on the outside of the car
Key to Symbols：＂Amm．＂－Ammeter；＂C＂－Coil；＂Dist．＂－Distributor；＂D．L．＂－Dome Lioht；＂E．C．＂．Electric Clock；＂F．B．＂－Fuse Block； ＂F．W．＂－Front Wheels；＂Gen．＂Generator；＂G．G．＂－Gasoline Gauge；＂I．C．＂－Ignition Coil；＂I．S．＂－Ignition Switch；＂Muff．＂－Mufler； ＂O．G．＂－Ou Gauge；＂Reg．＂•Regulator；＂Rel．＂－Relay；＂R．S．＂Rear Springs；＂R．W．＇Rear Wheels；＂S．C．＂．Steering Column；＂S．M＂＇． Starting Motor；＂S．P．＂－Spark Plugs；＂Transm．＂－Tranemiesion；＂T．T．＂－Torque Tube；＂W．T．＂＇－Water Thermometer．（Con＇t over）
（Continued from preceding page）

						nera	or mal rate	Install a	Install a	Ground		若 品
of Car	Year				$\begin{aligned} & \dot{B} \\ & \underset{E}{8} \end{aligned}$	$\begin{aligned} & \text { Ï } \\ & \stackrel{y}{\circ} \end{aligned}$	\% \%	Suppressor at ：	By．Pass Oondoneer at ：	the：	范淢	呂
Reo Flying Cloud $6 . .$.	1936	N	． 018	． 025				Dist．，S．P．	Gen．，D．L．	Controls	Yes（SS）	Left
Reo Flying Cloud．．．．－．．．．	1936	N	． 020					Dist．，S．P．	Gen．，D．L．	Controls	Yes	
Reo Royale－－	1936	N	． 020					Dist．，S．P．	Gen．，D．L．	Controls	Yes	
Reo 6A．	1935	N	． 020	． 025				Dist．	Gen．，Amm．，D．L．		Yes	Right
Reo S	1935	N	． 020	． 025				Dist．	Gen．，Amm．，D．L．		Yes	Right
Reo S6．．．．．．．．．．．	1934	N	． 020	． 025							No	．．．－
Reo Royale 8 ．－．．．．．．．．．．	1934	N	． 020	． 025							No	－－．
Reo S．．．．．．．．．．．．－＿－．．．－－	1933	N	． 020	． 025							Yes	
Reo Royale．．．．．．．．－－	1933	N	． 020	． 025							Yes	
Reo 6－21．．．．．．．．．．．．．－－－－－－－－．．．．	1932	N	． 020	． 025							No	$\ldots$
Reo 8－21，2．．．．．．．．．－．－．－．．．．．．．．．．	1932	N	． 018	． 025							No	－－－
Reo 31，35．．．－．．．．．．．．．．．．－．．．．－	1932	N	． 022	． 025							No	．．．．
Studebaker Dict．6．．．．．．．	1937	P	． 020	． 022	18	7.8	26	Dist．	Gen．		No	
Studebaker Pres．8．．．．．	1937	P	． 020	． 022	26	8.0	25	Dist．	Gen．	Engine	No	－
Studebaker Dict． 6 ．－n．．．．	1936	P	． 025	． 023				Dist．	Gen．Amm．	$\ldots$	No	．．．．
Studebaker Pres． 8	1936	P	． 025	． 023				Dist．	Gen．，Amm．，I．C．	Muffler	No	－
Studebaker Dict．6．．．as．．．	1935	P	． 020	． 023				Dist．S．P．	Gen．，Aımm．，D．L．		Yes	Left
Studebaker Com．8．．．．．．．	1935	P	． 020	． 023				Dist．S．P．	Gen．，Amm．，D．L．		Yes	Left
Studebaker Pres．8．．．．．．．	1935	$\mathbf{P}$	． 020	． 023				Dist．S．P．	Gen．，Amm．，D．L．		Yes	Left
Studebaker Dict．6．．．．a．．．	1934	P	． 020	． 023							Yes	
Studebaker Com．8．．．．．－－	1934	P	． 020	． 023							Yes	
Studebaker Pres．8．．．．．．．． Studebaker 6．．．．．．．．．．．．	1934	P	． 020	． 023							Yes	
Studebaker Com． 8.	1933	P	． 020	． 025							Yes	
Studebaker Pres．8．．．．．	1933	P	． 020	． 025							Yes	
Studebaker Pres．8．．．－－	1933	P	． 020	． 025							Yes	

${ }^{* N o t e}$ ：Kev to types of serials：R ${ }^{-4 R u n n i n g}$ Board＂type；SS．＂Steal Screen＂type in roof；W．＂Wirs＂type in roof．

+ Note：These cars have＂Turret＂or＂steel＂tops and require an antenna mounted on the outside of the car．
Key to Symbols：＂Amm．＂－Ammeter；＂C＂－Coü；＂Dist．＂＇Distributor；＂D．L．＂－Dome Light；＂E．C．＂－Electric Olock；＂F．B．＂－Fuse Block； ＂F．W．＂Front Wheels；＂Gen．＂－Generator；＂G．G．＂－Gasoline Gauge；＂I．C．＂－Ignition Coil；＂I．S．＂－Ignition Switeh；＂Mufr＂－Mujler； ＂O．G．＂－Oil Gauge；＂Reg．＂－Regulator；＂Rel．＂－Relay；＂R．S．＂Rear springs；＂R．W．＇－Rear Wheels；＂S．C．＂－Steering Column；＂S．M．＂＇
(Continued from preceding page)

*Note: Key to types of aerials: R."Running Board" type; SS."Steel Screen" type in roof; W."Wire" type in roof.
+Note: These cars have "Turret" or "stee"" tops and require an an tenna mounted on the outside of the car.
Key to Symbols: "Amm."-Ammeter; "O" Coiz; "Dist."-Distributor; "D.L."DDome Light; "E.C.".Electric Clock; "F.B."-Fuoe Block; "F.W."Front Whels; "Gen."-Generator; "G.G."Gasoline Gauge; "I.C."Ignition Coil; "I.B."-Ignition Switch; "Muft"-Mufler; "O.G."-Oil Gauge; "Reg."-Regulator; "Rel."-Relay; "R.S." Rear Springs; "R.W.'-Rear Wheels; "S.C."-Steering Column; "S.M.". Starting Motor; "S.P."-Spark Plugs; "Transm."-Transmission; "T.T."-Torque Tube; "W.T."-Water Thermometer. (Con't over)


## TROUBLE-SHOOTING CHART FOR COMMON RECEIVER TROUBLES

It is apparent that there are a great many causes for inoperation or poor operation of a radio receiver; in fact, it is the distinct purpose of the text book Modern Radio Servicing to discuss the servicing of modern radio receivers in detail. The chart shown on the following pages has been compiled with the idea of presenting a short outline of the salient causes of some of the more common trouble-symptoms in both battery-operated and line-operated receivers of all types.

It must not be inferred that this chart is intended to be a complete servicing guide in itself. It was really compiled to act as a convenient reminder or trouble outline to which the radio service man can refer when he is "trouble-shooting" a receiver, so he can make sure that he has not overlooked some possible cause for the trouble symptom which the receiver is exhibiting. This makes it unnecessary for him to remember each of the 275 possible receiver troubles and trouble sources which the chart lists. After he has checked over the receiver in the usual way he can refer to this trouble-shooting chart to see if he has overlooked some possible cause for the trouble.

Examination of this chart will show that for each of the six common receiver trouble symptoms specified, several possible sources or causes of trouble are listed for each main part of the receiver. Thus, for the symptom of Weak Reception, five likely causes of trouble in the tubes of the receiver are listed, eight likely causes of trouble in the power supply unit are mentioned, etc. Of course, each of these possible troubles would have to be checked by making suitable tests on the proper components of the receiver in order to definitely locate the trouble in any case. Therefore, this chart serves best as a trouble reminder.

TROUBLE-SHOOTING CHART FOR COMMON RECEIVER TROUBLES

Passible   Trouble   Sources	Symptoms of Trouble					
	HUM	WEAK	NOISY	INOPERATIVE (no signals)	$\begin{gathered} \text { INTERMITTENT } \\ \text { RECEPTION, } \\ \text { FADING } \end{gathered}$	OSCILLATION,   DISTORTION
Tubes	1. "Gassy" power   2 U Ubes.   2. Unmatched   3. Catho tubes.   3. Cathode-heater   4. Center-tap con-   nection open.   5. Weak tubes.	1. Low emission   2. Wrong type   2. Wrons type   3. 1008e elements.   4. Gasay tubes.   5. Control-Erid cap not sol-	1. Loose elements. in tubes.   2. Shorting elements.   3. Corroded tube pin terminals.   4. Weak tubes.   5. Poor oscliator tube _"fat.'	1. Tube burned out.   2. Tube short-circuit-   ed or paralyzed.   3. "Flat" oscllator   4. Faulty tube prons.   4. contacts.   5. Series-connected pllot lamp burned out, so other tubes in set do ilght.	1. Imperfect prong contacta.   2. Loose elements in tubes.   3. Shorting tube ele-   ments.   4. Gassy screen grid tubea.   6. Cathode-heater leakage in indl-rect-heater type tubes.	1. Gassy, high emlssion tubes.   2. Wrong type tubes.   3. Cathode-heater leakage.   4. Weak power tubes   6. Gassy tubes.
Power   UNIT	1. Open = circuited   fiter condenser.   2. Loose laminations of power transformer.   3. Short-circuited fiter choke.   4. Loose laminations of Alter   Chore, Sirculted fiter choke by-   c. Open - circuited filter choke bypass condenser.   7. Electrolytic fi- ter or by -pass ter or by-pass "dried up."   8. Open-circuited line-voltage supply butter condensers.	1. Weak or gase. ous rectifer tubes (flament type).   2. Weak or exhausted rectiner tube (gas type).   3. Line voltage too low.   4. Open voltagedivider section.   5. Carbonfzed voltage system.   6. Transformer winding partially short-circuited.   7. Leaky or shortcirculted by-   8. Vasstage divider changed value.   inued on next.	1. Sparklng, porous voltage-dlvider.   2. Punctured filter or by-pass condenser "sparking over."   3. Nolsy carbon resistors.   4. High-voltage windIng of power transformer sparking over to shield.   b. Loose or corroded line switch or fuse contacts.   6. Carbonized rectifier socket.   7. Leaky line-bufter condensera.   8. Leaky or opencircuited high-voltage winding buffer condensers.   (e)	1. Not connected to   2. Fower bupply.   3. Rectiner inopera-   tive.   4. Line plug reversed   5. (dile).   b. Fitter choke opencircuited.   6. Open-ctrcuited voltage-divider section.   7. Open-circulted bias   8. $\begin{array}{r}\text { resistor } \\ \text { Short-circulted } \mathrm{nI}- \\ \hline\end{array}$ ter condenser or by-pass condenser.   9. Rectifer tube   10. Bocket funed.   11. Fuses blow. Shortcircuited butfer condenser, filter er transformer windtng.   12. Open-circulted high-valtage wind jng, or section or	1. Fluctuating ifne voltage.   2. Poor contact in   ilne switeh.   3. Poor contact at fuse block.   4. Corroded inne switch terminals or contacts.   5. Corroded fuse clip contacts.   6. Open-circuiting voltage-divider section.   7. Open-circulting   . fiter choke.   8. Leaky filter or bypass condenser.	1. Carbonized volt-age-divider tem.   2. Open-circuited   3. fiter condenser.   blas resistor.   4. Short-circuited by-   ранs condenser.   5. Weak rectifer tube.   6. Voltage - divider changed value.

## (Continued from preceding page)

"B" Battery   (if used)	1. Exhausted battery.	1. Battery exhausted. erm   2. Buttery termInals medinte: "inter- and "high") re. versed.	1. Fxhausted battery.   2. Puor internal connection.   3. Dead cell.   4. Noisy cell.	1. Battery exhausted. 2. Battery terminals reversed.	1. Defective cell.   2. Loose connection.   3. Battery exhausted.	1. Exhausted battery.   2. Defective cell.
"A" Battery   (if used)	1. Charger operating while receiver is in operation.	1. Battery ex hausted.   2. Corroded battery terminals.   3. Charger not functionlos.   4. Dead cell.	1. Battery sulphated.   2. Terminals corroded.   3. Charger operatlng while receiver is in operation.	1. Battery exhausted.   2. No water in storage battery.   3. Corroded battery terminals.   4. Dead cell.	1. Loose connecilon to battery.   2. Battery run down.   3. Renew acld.	1. Exhausted battery.   2. Whistle due to depleted battery.
Receiver   Circuits   Proper	1. Open-circuited center tapped resistor or hum control.   2. Hum control or balancer out of adjustment.   3. Push-pull Input transformer secondary unbalanced.   4. Open-circuited A.F. secondary winding or grid resistor.   5. Open-circuited or leaky line supply by-pass condenser.   6. Short-cirruited blas resistor or by-pass condепмет.   7. Oqen-eircuited screen or cathade by-pass condenser.	1. Tuned stages out of allenment.   2. Open-circuited R.F. coll.   3. Open-circulted A.F. transformer.   4. Open-circuited plate or grid reslstor or sup. pressor.   5. Open-circulted or leaky byjass condenser.   6. Upen-circuited, leaky or short. circuited coupling or isolat. ing condenser.   7. Antenna bindIng past   8. Foltage allvider carbonized, or open-circuited sectlon.   9. Short-circulted by-mans cion. denser.   10. Open-circuited blas resistor.	1. Nolsy carbon resistor.   2. Sparking wirewound resistor.   3. Nolsy A. F. transforner primary.   4. Nolsy volume control resistance element or contacts.   5. Condenser gang plates peeling.   6. Burrs on condenser gang plates.   7. Dirty or corroded condener gang rotor wiping contacts.   8. High-resistance or poorly soldered connertions especlally in R-F circulta, chassis soldored grounds and srid connections.   9. Leaky or nolsy hy-pisas condenser.   10. Corroded tube sucket contacts or prones.   11. Inndequate shielding of receiver.	1. Open-circuited R.F. coil. (prima -   2. Open-clicuited audio transformer. (primary or secondary).   3. Open-circuited plate or grid resistor.   4. Open-circuited voltage-divider section.   5. Short-circuited bypass condenser.   6. Open-circuited short-circuited coupling or isolating condenser.   7. Short-circuited tuning condenser. conipensating or meutralizing condenser.   8. Line switch opencircuited.	1. Open-circuited or. open-circuiting bypass condenser.   2. Leaky by-pass condenser.   3. Open-circuiting leaky or short-circulting coupling or isolating condenser.   4. Poor insulation on trinuner or compensator condensers.   5. Tuning condenser   - plates peeling.   6. Dirty or corroded condenser rotorwiping contacts.   7. Open-circuiting resistor.   8. Leads short-circulting.   9. Resistore shortcircuiting to one another.   10. Terminal rivets on wire-wuund resist or loose, or resistor element warped and shorting to chnsais.   11. High-resigtance leaks.   12. Poorly soldered connections espect ally in r-f circuits, chassts soldered grounds, and grid connections.	1. Short-circuited blas resistor.   2. Short-circulted bias resistor bypass condenser.   3. Leaky or open-clrculted coupling or lsolating condenser.   4. Carbonlzed volt -age-divider tem.   5. Open-circuited A.F. tranaformer secondary.   6. Tuned circults adjusted too sharply.   7. Plate or screen voltage too high.   8. Blas voltage to0 high or tou low.   9. Push-pult input transformer mecondary unbalanced.   10. Open-circulted plate, screen or cathode by-pass condenser.   11. Plot light socket or wiring shorting against chassis.   12. Dirty wiping contact on gang-condenser rotor.   13. Loose or dusty coll or tube shields.


REPRODUCER	1. Unfltered field coll supply.   2. Open-circulted flter condenser.   3. Voice coil rubbing.   4. Rectifler worn.   5. Loose output transiormer laminations.   6. Short-circuited huin-bucking coll.   7. Short-circulted field coll.	1. Speaker out of adjuntment.   2. Spider on cone worn.   3. Voice coll or speaker winding partially shortcirculted.   4. Field coil shortcircuited.   5. No field coll voltage supply.   6. Field coll opencircuited.   7. Worn rectifier for speaker field supply.   8. High-reslistance connection.	1. Speaker out of adJustment.   2. Snapped spider.   3. Scraping voice coll.   4. Poorly soldered connection.   5. Unfltered field supply.   6. Loose connection.   7. Loose apex.   8. Torn or worn cone.   9. Loose armature.   10. Loose mounting nuts or bolts.	1. Speaker disconnected.   2. Volce coll openclrculted.   3. Volce co circuited.   4. Speaker windints open or short-circulted.   5. Open or shortcirculted output transformer secondary.   6. Open or short-circulted output condenser.   7. Open-circuited output choke.   8. Opeh-circuited hum-bucking coll.	1. Loome connection to volce coll. speaker windins or field coll.   2. Open-clrculting or short-circulting field coll or volce coll.   3. Volce coll rubbing against pole plece.   4. Armature stlcke.   5. Loose apex.	1. Speeker out of adjustment.   2. Apider on cone gnapped.   3. Volce colt rubbing on pole plece.   4. Armature not centered.   5. Cone out of round or warped.   6. Cone too soft or too stift.   7. Speaker overloaded or not matched to output.   8. Insufficient fiold coll enersisins voltage.   9. Worn rectlfer In feld coll supply.
ANTENNA Ground	1. Antenna too close to power Ilnes.   2. Antenna too near that of an oscillating receiver.   3. No ground wire.   4. Remove ground wire.   5. Antenna lead , too close, or parallel to, linesupply cord.	1. Antenna or ground diaconnected.   2. High reslatance leaks or srounds.   3. Antenna 100 short.   4. Antenna too close to grounded object.   5. Short-clrculted lightning arrester.   6. No ground wire.	2. Antenna too long. (nolse withln building)   3. Loose or corroded connectlons.   4. Antenna or leadin too close to power line-supply cord.   6. Antenna or leadin near electrical devices.   6. Antenna grounding to nearby antenna or grounded ob-   7. Cor   8. Break   9. in antenna circuit.   9. Defective Ightning   arrester.	1. Antenna disconnected.   2. Antenns grounded.   3. Defective shortclrcuited lightning arrester.	1. Loose connectlons in antenna or   - Eround system.   2. Loose and "swingins" antenna.   3. Antenna grounding or short-circuitins to nearby aerial on grounded object.   4. Loose lead-in strip   5. Or ground clamp.   . Lead - In in midr.   6. Corroded connectlons.	1. Antenna too lons.   2. Insufflclent antenna.   3: No ground wire.
General	1. Poor modulation of station.   2. Electrical apparatus operating nearby.	1. Sensitivity of recelver inade. quate.   2. "Dead-Spot" reception.   3. Line voltage too low.	1. Natural static.   2. Man-made static due to electrical devices.   3. Xearby regenerslive recelver.   4. Lonse lamp fixtures.   5. Inose wiring in bullding.   6. Joose llne fuses or lamps.	1. Recelver incorrectly wired.   2. Receiver incorrect. ly connected.   3. S.O.S. on the air.   4. Receiver not turned on.   5. Station not broad. casting.   6. No power supply.	1. Fault of broadcasting statlon.   2. Natural fading (atmospheric causes or conditions).   3. Interrupted line supply.	1. Improper tunins.   2. Weather conditions unsatisfactory.   3. Two stat 10 n s broadcasting at or near ${ }^{\text {quency. }}$   4. Nearby oscillating receiver.   5. Poor modulation of broadcasting station.

# RMA TUBE "TYPE NUMBER" DESIGNATION SYSTEM FOR STANDARD-"GLASS" TUBES, OCTAL-BASED "GLASS" TUBES ("G" TUBES), AND OCTAL-BASED "ALL-METAL" TUBES 

The RMA sstem (standardized in 1933) which is employed for designating the type numbers of both the "glass" and "allmetal" type American tubes is interesting and should be understood by every radio service man. With this system, only three symbols are required (in most cases) to give a tube an identifying type number: a numeral, a letter and another numeral (see column 1 in the Tube Characteristic Data Chart of Section 11).

The first numeral indicates the filament or heater voltage. Thus, the numeral 1 is used for 2 -volt tubes (like the 1 A 6 ), the numeral 2 is used for 2.5 -volt tubes (like the 2 A 3 ), the numeral 5 is used for the 5 -volt tubes (like the 5Z3), the numeral 6 is used for the 6.3 -volt tubes (like the 6A6), the numeral 12 is used for the 12.6 -volt tubes (like the 12A5), etc.

The letter following the first numeral is supposed to distinguish one tube type from another which may happen to have the same nuincrals. Thus, the letter in the "type number" is the only thing which distinguishes between the identifying type numbers of the 1 A 6 and 1 C 6 tubes, etc. These letters are assigned in alphabetical sequence, starting with A , for all tubes except rectifiers. In the case of rectifiers, a separate assignment is made, starting with Z and working backward. The number of tube types manufactured has now become so large that two letters are employed in the type numbers of some tubes. This departure from the conventional system is made in cases where it is found that the type number which would ordinarily be assigned to a new tube if one letter were to be used, has already been assigned previously to some existing tube being manufactured. In such cases two letters are used in the type num-
ber of the newer tube to distinguish it from the other one. Examples of this are furnished by the 6Z5 and 6ZY5G tubes, the 6 B 5 and 6 AB 5 tubes, etc.

The last numeral indicates the number of useful elements which are brought out to the terminals. Thus, the 2A5 has five such "useful" elements: a heatcr, a cathode, two grids and a plate. In this particular tube, the suppressor is not brought out to an external terininal (it is connected to the cathode inside of the tube) so it is not counted.

In the case of " G " tubes (octal-based "glass" tubes) the letter " $G$ " follows the last numeral. This imnediately signifies that the tube is of the "glass" type but has an octal base. Examples of this are furnished by such type numbers as 6A5G, $6 B 8 G$, etc.

If the RMIA tube type-numbering system is kept in mind, it is usually possible to figure out the main information about a tube from a study of its type number. For instance, the 2A3 tube must have three "useful" elements brought out to terminals. The tube is certainly not a rectifier because it has the letter "A". It must therefore be a triode. Also, the last number does not allow for a heater in addition to the other three "useful" elements. Thercfore it must be a "direct-heater" or a "flament" type tube. Considering these deductions together with the first numeral, we find that the tube must be a 2.5 -volt filament-type triode. Information concerning many types of tubes cannot be deduced as easily as this from the type numbering system, but in all cases, the first number will at least supply definitely the filament or heater voltage. A study of the type numbers and specifications of some of the tubes listed in the chart in Section 11 will aid in understanding this system.

## RMA SOCKET \& TUBE BASE PIN DESIGNATION AND NUMBERING SYSTEM FOR STANDARD"GLASS" TUBES

Socket and Tube base pin numbering system for standard"glass" tubes: Modern tube development has led to an increased number of internal element arrangements and their external connections. The result is that many different tube base (and socket) terminal arrangements are now used. Fortunately, the entire method of designating socket and tube base terminals has also been systematized and standardized by the Radio Manufacturers Association (Nov. 1934). The numerical numbering system which has been standardized for standard-"glass" tubes has the advantage of establishing a basic method of referring to these terminals.

The fifth column from the left in the Tube Characteristic Chart in Section 11 lists the socket connection figure number corresponding to the tubes listed in column 1. The R.M.A. Standard socket terminal arrangements for the various tube bases have been reproduced in the Tube Socket Connection Charts which follow the Tube Characteristics Chart (in Section 11). The connections have been drawn as they appear when looking up at the socket from the bottom. Examination of any of the socket connection illustrations shown in these charts will show that the two large prongs, commonly known as the heater prongs, are toward the bottom of the chart. The left-hand heater or filament hole is always No. 1, and, going in a clockwise direction, the one immediately adjacent to it is always No. 2 ; this process of numbering continues until the right-hand heater or filament prong is reached. Thus, the right-hand filament or heater terminal now bears a number representative of the total number of pins on the tube base. It should be noted that the system of terminal numbering pertains to the number
of tube prongs (and hence the number of socket holes) only, and not to the structure of the tube directly.

When the socket is looked down upon from the top, the opposite is the case, i.e., the right-hand heater or filament terminal is always No. 1, and, going in a counter-clockwise direction, the terminal immediately adjacent to it is always No. 2; the numbers continuing in numerical order until the remaining filament or heater terminal is reached.

This method of designation is particularly convenient for the service man. Thus, plate voltage (from plate to cathode) may be designated as that between socket terminals 2 and 5 in a type ' 55 tube, between terminals 2 and 6 in a 6A7, between terminals 2 and 4 in a ' 56 , etc. In practice, the filament or heater terminal numbers are always the first and last terminal numbers for the socket. The plate is almost always terminal No. 2. This system is also a great convenience in the point-to-point analysis of radio receivers, since, through its use, simple voltage and resistance charts may be compiled without the necessity of referring continually to the various tube elements. All that need be specified in these charts are the socket terminal numerals between which voltage or resistance must be measured (regardless of the tube types involved), and the readings which should be obtained if the circuits and components are O.K.

## RMA SOCKET \& TUBE BASE PIN DESIGNATION AND NUMBERING SYSTEM FOR "ALL-METAL" AND "OCTAL"-BASED "GLASS" TUBES ("G" TUBES)

The socket-connection figure number for each of the all-metal and octal-based glass (" $G$ " tubes) is shown in the fifth column from the left in the Tube Characteristic Data Chart in Section 11.

The "octal" base provided on all-metal, and glass " $G$ " tubes has provisions for eight pins uniformly spaced 45 -degrees apart. Where fewer than 8 pins are required, the unnecessary ones are omitted and the spacing of the remaining pins is unchanged. These tube bases fit into a universal 8 -hole "octal" socket.

The numbering of the pins is in accordance with the RMA standard base pin numbering system, in which numbers are assigned to each of the eight possible pin positions. Numbering starts at the shell pin, which is always the first pin to the left of the locating lug when the tube base is viewed from the bottom (with the lug toward the observer). The numbering is clockwise on the basis of possible pin positions (see the octal tube base illustrated later). Thus, the numbers of the pins used in a particular 6 -pin octal tube base might be: No. 1 (shell), 2, 3, 5, 7 , and 8 (normal cathode).

The table following shows the pin positions, pin numbers, and terminal arrangements for the octal-based all-metal tubes, and base terminal arrangements for the octal-based all-metal tubes and the "Intermediate" or " G " type tubes. The " G " tubes have standard-size glass bulbs, and octal bases.

The octal-based glass tubes (" $G$ " tubes) include counterparts for all of the all-metal tubes, and in addition many types which are identical to "standard" glass tubes except for the hase. In general, metal tubes can be replaced hy " $G$ " tubes of rorresponding type, but such replacement should be followed hy
a realignment of all trimmer condensers connected to any tuned circuits which could be affected by capacity differences existing between the " G " tubes and the corresponding inetal types. Tube capacities are shown in the Tube Characteristic Data Chart (see Section 11) so that by looking up the tube capacities of both the original and the replacement tubes in this chart, the probable required retuning can be figured in advance. For r-f use, the " G " tubes must be shielded. Metal "glove" type shields with a special grounding clip which fits over the No. 1 or "shield" prong on the octal base can be had. This special shield is required when metal tubes are replaced with the " $G$ " type since grounding "fingers" or collars have not been provided on the receiver chassis for metal tubes.


An 8-pin "Octal". type tube base (viewed from the bottom) showing the eight pins, their numbers, and the guiding lug at the center.

A chart listing the base Pin Positions and Pin Numbers for both octal-based glass tubes (" G " tubes) and all-metal tubes, as well as the "type numbers" of the particular "glass" tubes which are equivalent to octal-based "all-metal" and " G " tubes, will be found in Section 10.





RAYTMEON SPECIAL"GLASS"TYPE TUBES   (SUPPLIED FOR REALACEAEEMT USK ONEV)													
$\begin{array}{c\|} \hline \text { MYE } \\ \text { MO. } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FILAMEHT } \\ \text { MOLTS AMPS } \end{array}$		SASIME		CMARACTEEISTICS, UST A OMMEN.	$\begin{gathered} \text { TYPE } \\ \text { NO. } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { TYPE } \\ \text { NQ } \\ \hline \end{gathered}$	FILAMENT		AASITG		CHARACTERISTICS, USE RDMEN.	$\begin{gathered} \hline \text { TYPE } \\ \mathrm{ma} \\ \hline \end{gathered}$
			VIEW	SHIELD CONM. TO				voirs	AMPS.	VIEW	SHIELD COHM. TO		
2s/as	2.5	435	50	CATHODE PIN	amporistrcir ${ }^{20} \mathrm{~m}^{4}$ OH INCM DIODC  	23/05	$2 A 75$	2.5	1.0	$7 C$	CATHODE PIN	SAME AS $2 A 7$	2075
15	2.0	0.22	$5 F$	HO SHIELD	cur corvormien is	15		2.5	1.5	48	NO SHIELD	SIMALL AR TO I-V	$22 \frac{2}{600}$
245	2.5	4.75	$5 E$	CATHODE PIN	SAME AS 24A	245	6075	6.3	0.3	76	CATHOLE PIN	SAME AS 6A7	6.875
275	2.5	1.75	$5 E$	CATHODE PIN	SAME AS 27	275	6875	6.3	0.3	70	GATHODE PIN	SAME AS 687	6875
$35 / 515$	2.5	1.75	$5 E$	CATHODE PIN	SAME AS 35	$35 / 515$	667	6.3	0.3	76	SEPAKATE PIN	SAME AS ESA-S	$6 C 7$
555	2.5	1.0	65	CATHODE PIN	SAME AS 55	555	607	6.3	0.3	7H	SEPARATE PIN	SAME A5 656	607
565	2.5	1.0	$5 A$	CATHODE PIN	SAME AS 56	565	6E7	6.3	0.3	7H	SEPARATE PIN	SAME AS 606	6.9
575	2.5	1.0	$6 F$	CATHODE PIN	SAMPE AS 57	575	$6 \mathrm{F7S}$	6.3	0.3	$7 E$	CATHODE PIN	SAME A5 6F7	6.75
5795	6.3	0.4	$6 F$	CAIHODE PIN	SAME AS 666. EXCEPT HEATER AMPS	5793	675	6.3	0.8	6	SEPARATE PIN	SIMILAR TO 6Z0/00	675
585	2.5	1.0	$6 F$	CATHODE PIN	SAME AS 50	585	625	$126 / 6.3$	$0.4 .8$	6K	NO SHIELD	SIMILAR TO 624/04	625
58 A 5	6.3	0.4	65	CAInODE PIN	SAME AS 606. EXCEPT HEATEP AMPS	581 5							
755	6.3	0.3	66	CATHODE PIN	SAME AS 75	755							
85A S	6.3	a. 3	66	heprep pin admach TO CATMODE PIM	 	85A 5							
1828	5.0	625	40	NOSHIELD	Nat vistiv Sso gen montory	1828							
183	5.0	1.25	$\triangle 0$	HO SHIELD		183							
485	3.0	1.25	$5 A$	NO SHIEID	 	485							
950	2.0	0.12	5K	NO SHIELD		950							


TUBE SOCKET CONNECTION CHART-FOR"GLASS"TYPE TUBES (LOOKING UP AT BOTTOM OF SOCKET)						
THE SOCKET CONNECTIONS SHOWN IN THIS CHART ARE THOSE WHICH APPEAR WHEN LOOKING UP AT THE SOCKET CONNECTIONS FROM THE BOTTOM. THE NO 1 TERMINAL IS THE LEFT HAND FILAMENT CONNECTION AND THE OTHER PINS ARE NUMBERED IN CLOCKWISE ROTATION   THE LETTER SYMBOLS USED IN THIS CHART ARE AS FOLLOWS.   F-Filament; H-Heater; P-Plate; K-Cathode; $G_{1}$-ControlGrid; $G_{2}$-Screen Grid; $G_{3}$-Suppressor Grid; $G_{L}$-Grid (triodel; $G_{R}$ Grid(triode-2); G-Triode orid; $G_{P}$-pentode grid; $P_{\text {-plote; }} P_{1}$-plote(triode-1); $P_{R}$-plate(triode-2); $P_{r}$ triode plate; $P_{P}$-pentode plate; $D_{1}$-one diode plate; $D_{2}$ other diode plate; - -top cap. (NOTE: these donot apply to tube boses $6 L$ and 7C.)						


TUBE SOCKET CONNECTION CHART-FOR"GLASS"TYPE TUBES (Continued)						
(20)						(20)

BASE PIN POSITIONS \& PIN NUMBERS FOR OCTALBASED "ALL-METAL" AND "G" TYPE TUBES

## STANDARD-"GLASS" TUBE EQUIVALENTS OF "ALL-METAL" \& "G" TUBES

Revised Oct. 1037

"All-Metal" or "G" Tube Type No.	Equivalent "Standard" Glass Type	PIN POSITIONS AND NCMHERS								Top   Cap
		1	2	3	4	5	6	\%	8	
		S 1	- ${ }^{\circ}$	$\mathrm{P}^{1}$	-	P2	-	NC	K	-
10\%	116	NC	$\underline{F}+$	$\mathrm{P}^{2}$	( $0,3-8,5$	(i)	(i2	r-	NC	G4
IDSG	1.14	- ${ }^{\circ}$	$1+$	1 '	(i?	$\cdots{ }^{\circ}$	-	F- (i3	. C	Cil
1Dici	1.66	Sc	r+	1	C.3-4:5	(i)	(:2	F-	$\times$	Cit
1FSC:	3134	NC	F.r	I'	(i2	N0	-	1-(i3	NC	Cl
18\% ${ }^{\text {c }}$	Twin 1F4	NC	$\mathrm{F}+$	P (k)	C1 (R)	(il (L)	$P^{\prime}(1)$	F-	(i2	-
1F5G;	1F4	NC	$\underline{r}+$	P'	(i2	Gi	-	1-	NC	-
165s;		NC	F	$p$	(i2	G1	-	F-C3	-	-
1114 G	30	$\cdots$	$\mathrm{F}+$	$p$	NC	G.1	-	F-	NC	-
$1 \mathrm{H6G}$	115	sc	F+	$P$	$D(+)$	D( -1	C	F-	$\cdots$	-
1J6G*	19	NC	F+	P (R)	$G$ (R)	G ( 1.	$\mathrm{P}(\mathrm{L}, \mathrm{l}$	$\mathrm{r}-$	NC	-
STA (Mctal)		Sc	F	-	1	-	P	-	$F$	-
51/4G	573	$\cdots$	1	N0:	1 '	Nc	1 P	NC	F	-
3F4G	$83{ }^{\circ}$	NC	H	NC	12	Nc	${ }^{1}$	NC	H-K	-
5 H (Metal)		Sh	F	-	12	-	P	-	F	-
511:4G		sc	F	NC	1 '	NC	$p$	NC	F	-
5.14G	523	SC	Sc	P2	. C	11	- C	F	F	-
$3{ }^{3} 3 \mathrm{G}$	80	NC	F	-	12	-	1'1	-	F	-
5Y4G	80	NC	NC	12	NC	11	NC	F	F	-
524 (Syctal)		Sh	H	-	12	-	P	-	H-K	-
6.A3G		NC	11	$1{ }^{\prime}$	NC	6	NC		$K$ and nter Hi'r,	-
6.48 (Mctal)		Sh	F	P	c.3-G5	C. 1	G2	H	K	G4
6.18 C	6.47	Sc	H	P	(63-G5	C1	C2	H	K	64
${ }^{6} \mathrm{BLS}$;	6.43	NC	11	${ }^{\prime}$	NC	G	NC	F	NC	-
6B6C	75	Nc	H	p	$\mathrm{D}(\mathrm{R})$	D ( $\mathrm{L}_{\text {, }}$ )	-	H	K	01
6188 (Mctal)		Sl	H	$p$	D2	DI	c2	H	K	O1
688G	$6 \mathrm{B7}$	NC	11	1	D2	DI	G2	H	K	01
6C5 (Metal)		Sh	H	P	-	G	-	H	K	-
${ }^{6} \mathrm{C} 3 \mathrm{C}$	-	\$h	H	P'	-	c	-	H	K	-
6C8G		NC	H	$\mathrm{P}(\mathrm{R})$	$\mathfrak{R}(R)$	G (L)	P (L)	H	K (L)	G(R)
6DSG		sc	11	P	G3-G5	Cil	G2	H	K	G4
6 FS ( Mictal)		Nh	H	-	P	-	-	H	K	G1
6F5G		$\cdots$	H	-	P	-	-	H	K	G1
6F6 (Metul)		sh	H	1	Ci2	61	-	H	K-G3	-
${ }^{6586}$	42	$\times$	H	${ }^{\prime}$	G2	G1	(1)	H	K-G3	$\square$
${ }^{6} \mathrm{FSG}$		NC	H	$P(R)$	K゙ (R)	G (1.)	$\mathbf{P}$ (1.)	H	K (L)	$G(R)$
$6 \mathrm{H6}$ (Metal)		Sh	H	P2	K2	11	-	H	K	-
$6 \mathrm{H6C}$;		Sh	H	P2	122	11	-	H	K 1	-
6.5 (Metal)		Sh	11	p	$\cdots$	(i)	-	H	$k$	-
-6J36	76 (M1120)	Nc	H	P	NC	c	-	H	K	-
							-C	minuod	on nert	pape.



(Cont'd over)

# BASE PIN POSITIONS \& PIN NUMBERS, AND STAN-DARD-"GLASS" TUBE EQUIVALENTS, OF OCTALBASED "ALI-METAL" \& "G" TUBES-(Cont'd) 

"All-Metal" or "G" Tube Type No.	Equivalent "Standard" Glass Type	PIN POSITIONS AND NUMBERS								$\begin{aligned} & \text { Top } \\ & \text { Cap } \end{aligned}$
		1	2	3	4	3	6	7	8	
697 (Metal)		S/1	II	P	(62	C3	-	H	k	GI
6.376	77	S ${ }_{1}$	H	P	C.2	6.3	-	H	K	Cil
8K5G	(High Mu   Triodr)	NC	H	P	NC	. C	--	H	K	(81
6K6G	41	NC	H	P	C.2	Cl	-	H	K.G3	-
$6 \mathrm{K7}$ (Metal)		Sh	H	r	6.2	C:3	-	H	K	61
0K7G	78	SC	H	1	(i2	G3	-	H	$1 \times$	G1
6L5G		Nc	11	r	-.	G	-	H	K	-
0 L0 (Metal)		Sh	H	p	G2	GI	-	H	K	-
-LEG		NC	11	p	C2	Cil	-	H	K	-
8L. 7 (Metal)		Sh	H	P	G2-G4	ci	-	H	K-G5	G1
6L.7a		NC	H	P	G2-G4	ci3	-	H	K-G5	GI
6N6G	685	NC	H	P (out)	P (ia)	G (in)	-	H	K (out)	-
ONB MG	6B5	Nc	H	P (out)	$\mathbf{P}$ (i0)	G (in)	-	H	K (out)	-
ON7 (Metal)		Sh	H	P1	G1	G2	P2	H	K	-
6N7G	616	NC	H	PI	G1	G2	P2	H	K	-
6P7G	657	NC	H	H	$\mathrm{P}(\mathrm{P})$	G2	P (T)	G(T)	K.G3	G1
697 (Metal)		Sh	H	P	$D(R)$	D (L)	-	H	K	G1
6070		NC	H	P	$D(R)$	D(L)	-	H	K	6.1
687 (Metal)		Sh	H	P	D (R)	D (L)	-	H	K	GI
6R7O		NC	H	P	D (R)	D (L).	-	H	K	G1
6870		NC	H	P	G2	63	-	H	K	G1
8170		NC	H	P	D2	D1	-	H	K	G
6U70	6D6	NC	H	P	G2	G3	-	H	$\boldsymbol{k}$	G1
6V6 (Metal)		Sh	H	P	G2	Gi	-	H	K	-
oveo		NC	H	P	62	G1	-	H	K	-
-v7a	86	NC	H	P	D2	D1	-	H	K	G
0W80		NC	H	P2	-	PI	-	H	$k$	
6X8 (Metal)		Sh	H	P1	-	P2	-	H	K	-
-x86	84	NC	H	P1	-	P2	-	H	K	-
EYec		NC	H	P	G2	G1	-	H	K	-
0Y7G	79	NC	H	$\mathrm{P}(\mathrm{R})$	$G(R)$	G (I.)	$\mathbf{P}$ (1)	H	K	-
6ZY60		NC	H	P2	-	PI	-	H	K	-
6276		NC	H	$P(R)$	G(R)	G(L)	P (L)	H	K	-
25A6 (Metal)		Sh	H	P	G2	G1	-	H	K-G3	-
$25 \times 60$	43	NC	H	P	G2	6.1	-	H	K-G3	-
25A7G		$K(\mathrm{D})$	H	$\mathbf{P}$ (P)	G2	G1	$P(D)$	H	K゙ (D)	
25880		NC	H	P	62	G1	-	H	K-G3	-
25.6		Sh	H	P	G2	GI	-	H	K	-
25 L 00		NC	H	P	G2	G1	-	H	K	-
2528 (Metal)		Sh	H	P2	K2	PI	-	H	K1	-
25280	2525	NC	H	P2	K2	P1	-	H	Kı	-

"G" at the end of a Tube Type No. indicates that it is $n$ "melal-glass" tuhe. "_-" indicates pin omitted.
"NC" indicates no lead wire in pin. "Filament current 0240 Ampere.
Courtes RAYTHEON PRODLCTION CORP.

responding metal types, and in general they are interchangeable with them* except in those cases where there is not sufficient space on the chassis for them, or where it is necessary to provide


An 8-pin "Octal" tube base (viewed from the bottom) showing the eight pins, their numbers, and the guiding lug at the center.
them with external shields). This table also lists those ordinary "glass" type tubes which are equivalent to some "all-metal" and " $G$ " type tubes.

[^4]
## PIN POSITIONS, PIN NUMBERS \& BASE TERMINAL ARRANGEMENTS FOR OCTAL AND

"G" TYPE TUBES

Type   Tube	Equivalent Glass Type	PIN POSITIONS AND NUMBERS								Top   Cap
		1	2	3	4	5	6	7	8	
0Z44 (Metal)		Sh	NC'	11	-	12	-	NC	K	-
1C7G	$1{ }^{1} 6$	NC	F+	$\boldsymbol{F}$	C3-65	(i)	Ci2	F-	NC	G4
1D5G	$1{ }^{14}$	NC	F+	$p$	62	NC	-	$\mathrm{F}-\mathrm{C} 3$	NC	G1
1D7G	1.46	NC	$\mathrm{F}+$	$P$	C3-G5	Gil	C:2	F-	NC	Ci4
1536	$1 \mathrm{B4}$	NC	F+	$P$	G2	NC	-	$\mathrm{F}-\mathrm{G} 3$	NC	Cil
1E7G	Twin 11\%4	NC	$\mathbf{F}+$	$P(R)$	GI (R)	G1 (L)	$\boldsymbol{P}(1$.	F-	G2	-
1F5G	1 F 4	NC	$\underline{F+}$	${ }^{\boldsymbol{P}}$	G2	GI	-	F-	NC	-
1H4C	30	NC:	$\mathbf{F}+$	$\underline{P}$	NC	GI	-	F-	NC	-
1 H6G	1135	$\cdots$	$\boldsymbol{F}+$	$P$	D ( + )	D ( -1	G	F-	NC	$\cdots$
156G*	19	NC	$\mathbf{F}+$	$P(R)$	G (R)	G (1.)	$P(1$.	F-	NC	-
5V4G	835	$\cdots$	H	NC'	P2	NC	P1	NC	H-K	-
5W4 (Metal)		Sh	F	-	P2	-	P1	$\cdots$	F	-
5X4G	573	NC	NC	P2	NC	Pl	NC	$F$	F	-
5Y3G	80	NC'	F	-	12	-	Pl	-	F	-
5Y4G	80	NC	NC	$P 2$	\ ${ }^{\circ}$	$P 1$	NC	F	F	-
$5 \% 1$ (Metal)		Sh	H	-	H2	-	P1	-	$\mathbf{H}-\mathbf{K}$	-
6.48 (Metal)		Sh	F	$p$	G3-63	Cl	Ci2	H	K	G4
6.48G;	6.47	N'	H	P	C3-G5	Cl	(:2	H	K	G4
6H4G	6 A 3	NC	H	P	NC	C	NC	F	NC	-
6B6G	75	NC	H	P	D (R)	D (1)	-	H	K	G1
6C5 (Metal)		Sh	H	P	D	G	-	H	$\mathbf{K}$	-
6C5G		Nh	H	$P$	$\rightarrow$	G	$\checkmark$	H	K	-
6F3 (Metal)		Sh	H	-	P	$\rightarrow$	-	HI	K	Cl
6 FSO		N	H	-	$P$	-	-	H	K	Cl
6F\% (Metal)		sh	H	$\mathbf{P}$	C 2	Gl	-	H	N-G3	-
AF6G	42	NC	H	P	C2	Cil	-	H	K-G3	-
$6 \mathrm{H6}$ (Metal)		Sh	H	12	122	11	-	H	K	-
6H6G		Sh	H	H 2	K2	$\mathbf{H 1}$	-	H	KI	-
6J5G	76 (M1120)	SC	H	$\underline{ }$	NC'	G	-	H	K	-
6J7 (Metal)		Sh	H	$\boldsymbol{P}$	G2	G3	-	H	K	Gl
6J7C	77	Sh	H	1	G2	G3	-	H	K	GI
6K3C	(High Mu Triode)	NC	H	$\boldsymbol{P}$	NC	NC	-	H	K	GI
6K6K	41	NC	H	P	G2	Gl	-	H	K-G3	-
OK7 (Metal)		Sh	H	$\boldsymbol{P}$	f2	G3	-	H	K	Cil
6K\%G	78	NC	H	$p$	(i2	C3	-	H	K	Cil
61.6 (Mctal)		Sh	H	$P$	Ci2	(:1	-	H	K	-
6186		NC	H	$\boldsymbol{P}$	Ci2	G1	-	H	K	-
63.7 (Metal)		Sh	H	$\boldsymbol{\nu}$	G2-G1	G3	-	H	K-G5	$G 1$
61.7G		NC.	H	$P$	G2-G1	G3	-	H	K-G5	(:1
6N6C;	6 BS	NC'	H	$\boldsymbol{P}$ (out)	$P$ (in)	G (in)	-	H	$\mathbf{K}$ (out)	-
0.56 MG	6B5	NC	H	$P$ (ont)	$\boldsymbol{P}$ (ia)	G (in)	-	H	K (out)	-
6N7 (Metal)		Sh	H	PI	Gl	(12	1 P 2	H	$\mathbf{K}$	-
6N7(;	8.16	SC	H	Pl	Gl	C22	P2	H	K	-
6P76	$65^{7}$	NC	H	H	$P(P)$	G2	$P(T)$	G ( ${ }^{\prime}$ )	K-G3	Gil
$6 \mathrm{Q7}$ (Metal)		Sh	H	P	$D(\mathbb{R})$	D (1.)	-	H	J	Cil
6076:		NC	H	1	$D(1)$	D (1.)	-	H	K	Cil
6R7( Metal)		Sh	H	$P$	D) (R)	D (L)	-	H	K	Cil
6R7C:		N'	H	$\underset{ }{P}$	$1)(R)$	D (I)	-	H	K	Cil
$0 \times 5$ (Metal)		Sh	H	1 l	-	P2	-	H	K	-
6XB6	81	N(*	11	${ }^{1} 1$	-	12	-	H	K	-
25.16 (Metal)		Sh	II	P	C62	GI	-	H	K-G3	-
25.46G	13	NC	II	P	C2	GI	-	H	K-G3	-
2576 (Mctal)		Sh	H	P2	K2	P1	-	H	K1	-
2526:	2525	NC	H	P2	K 2	PI	-	H	K1	$\cdots$

(MC) indicates "metal-glass" tubess. "-" indicates pin omitted. "NC" indicates no lead wire in pin.

- Filament current 0.240 Ampere.

Courtesy RAYTIIEO.V PRODUCTION CORP.


## TUBE INDEX

## CHARACTERISTIC DATA AND SOCKET-CONNECTION CHARTS FOR STANDARD-"GLASS", <br> "ALL-METAL", AND "G" TYPE TUBES

The Tube Index which follows enables one to tell exactly in which lettered section of the Tube Characteristic Chart the data for any tube type will be found. This makes it possible to find tube data in the main chart quickly.

TUBE INDEX SHOWING WHERE ANY TYPE TUBE WILL BE FOUND IN THE TUBE CHARACTERISTIC DATA CHART ON THE FOLLOWING PAGES							
Tube	Will be						
Type	Found in						
Number	Section	Number	Section	Number	Section	Number	Section
00A	E	1E5G	B	2 A 5	C	5X4G	J
01 A	E	1E7G	B	2 A 6	C	5Y3G	J
0Z4	J	1 F 4	B	2 A 7	C	5Y4G	J
0Z4G	J	1F5G	B	2A7S	K	$5 \mathrm{Z3}$	J
1A4T	B	1 F 6	B	2B7	C	5Z4	J
1A6	B	1F7G	B	2S/4S	K	6 A3	$F$
1B4/951	B	1G5G	B	2Z2/G84	K	6A4/LA	F
1B5/25S	B	1H4G	B	5 T 4	J	6A5G	F
1C6	B	1H6G	B	5U4G	J	6A6	F
1 C 7 G	B	1J6G	B	5V4G	J	6 67	F
1D5G	B	1 V	J	5W4	J	6A7S	K
1D7G	B	2 A 3	C	15W4G	J	6 68	F

Tube Index Continued on Page 11-13
The Tube Characteristic Chart presented on the pages which follow lists, by tube types, the operating characteristics of all the standard detector, amplifier and rectifier tubes of the "glass", "all-metal and " G " types which are now in use. The headings of the various columns are clearly specified. The Socket Connection chart which follows this shows the base terminal connections as they appear when looking up at the bottom of the sockets. The reference numbers under the drawings refer to the "basing" arrangements specified in the fifth column from the left in the "Characteristics" chart. These charts are published here by courtesy of the RAYTHEON PRODUCTION CORP.



SEC. 11 TUBE CHARACTERISTIC, \& SK'T. CONN. CHARTS 11-3




36	ortcrite	Hfracer	W asct	se ${ }^{36} 9$	＋31／32	19／34	0.3	$0 . \operatorname{son} 9$	$3 \cdot 1$	－ 2	－areter	798	ars	$\xrightarrow{-1.5}$	20：8	$4.7$	$\begin{aligned} & 970 \\ & 308 \end{aligned}$	$\begin{aligned} & 0.35 \mathrm{~N}^{2} \\ & 0.35 \mathrm{~m}^{\prime} \end{aligned}$	$850$		0．290	$\Rightarrow$	36
37	antergan ancivith	Floroc．	Westa		－3／34	1914	0.3	2.0	3.8	2－2	Hess perticioe	180 290		-20 -10	${ }_{8,3}^{2.3}$		9.2	4306 $0 \times 90$	806	0.6	${ }_{7}^{176000}$		37
38	mowifice	Maseos	M 4 atca	m．${ }^{5 / 5}$	－17／32	19／14	－． 3				mptirice	100 398 390	106 135 730	$\xrightarrow{-13}{ }^{-15}$	！	1.8 3,8 3	100 100 100		380 100 1200	$\begin{aligned} & 6.27 \\ & 0.38 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 13190 \\ & 131306 \\ & 80000 \end{aligned}$		36
$\frac{38}{42}$		cuolc	methe	sm．${ }^{35}$	－17／32	1 1／36	0.3	o.onde	3.5	10	131． $\begin{aligned} & \text { betectos } \\ & \text { melitat }\end{aligned}$	2070208	＊$\%$	ctisf．	9.1	1：	${ }_{10}$	－ $395 \mathrm{ma}^{2}$	869 1090			$3{ }^{-3}$	37
41	$\begin{array}{\|c\|} \hline \text { Ractice } \\ \hline \text { angurice } \\ \hline \end{array}$	matox	Mfati	sn © ${ }^{514}$	－3／10	$14 / 10$	0.0				matirice	${ }^{168}$	${ }^{120}$	$\frac{-1 / 3}{-1 / 5}$	${ }^{\frac{16}{16,5}}$	3：3	1150		11509   2200   200	13	${ }_{1}^{1965}$		41
42	$\begin{array}{\|c\|} \hline \text { Poud } \\ \text { anturita } \\ \hline \end{array}$	$\cdots$ nuroat	meatch		11／16	131／16	0.1					380 215 150 150	${ }^{215}$	－16．5 -72 -30	｜$\|$38   8.10	i．3	${ }^{195}$	${ }_{0}^{76080}$	388 760	部	7080 7000 650		42
		Doutt						$4{ }^{16}$	1	432 4	class A	130		－9	4810   03		9.2	17s0	3000	1.5	2000		52
32	mptrita	til10	Tis．	mo． 3 orm	－ $18 / 4$	1 เy／10	a． 3					100		－	－toen					－	2000 ml If		
73	of rectoo Anturte	Bypit dico 16100	Match	m．\％$\%$ Pr	－11／32	3916	0.3	L．${ }^{\text {a }}$	20	3.8		250		$-2$	1．0 0.1		100	\＄1000	1300		$0.25 \mathrm{c}^{4}$		75
76	$\begin{array}{\|cc\|c\|c\|} \hline \text { schuod } \\ \hline \end{array}$	rameor	mbatia		－3／36	10／6	0.3	2.4	3.9	2.9		\％		－i．${ }^{\text {a }}$	3.8		13.1	कण	1928	B／2	1888		76
77		flatsot	Mata	2x．as	［1732	1306	0.1	$0.00 \mathrm{~F}^{2}$	－0	13	$\begin{aligned} & \text { bicked } \\ & \text { melvicu } \end{aligned}$	18	$\frac{190}{109}$		2．）	8.8	1596	1．3¢	145			न\％	77
78	areciot			sm．${ }_{5}^{5}$	－1713．	1 1／4	0.3	$\begin{aligned} & \text { a.0ar } \\ & \text { mat. } \end{aligned}$	－ 0	1	1st．DXTCTom maptifice	230	200	$-10$	1.0	1.1	1100	$0.00^{*}$	1050			－42	78
79	$\begin{gathered} \text { rovice } \\ \text { anplifica } \end{gathered}$	${ }_{\text {coly }}^{\text {tow }}$	matct	为：	－173	19／10	－． 6			＊	Couplotel	250		－	2810 t0					1	10600		79
85	$\begin{aligned} & \text { ocrecros } \\ & \text { an mbill } \\ & \hline \end{aligned}$		Matit	9． 460	－เ1／32	（ \％／1＊	－． 3	1．1	2.0	3.3	01006 Derectom ThIOR ADLIFItE	${ }_{250} 8$		${ }_{-80}^{-813}$	8		8.3	8509   500   500	176	0．26	20000   8060   800		65
89	monerind		Matct	sa． 610	－13／32	19／4	－．0					$\frac{75}{210} \frac{10}{150}$	88	－71	$y^{5}$   32   61090	2.8	2.18	${ }^{7} 10000$	$1800^{\circ}$   1000	$\frac{0.8}{2.4}$			89
（G）7．5 VOLT A．C POWER ANPLIFIER T																							
10	mpowite	TH1000	Fin．	40． $0^{.5}{ }^{5}$	3 3／8	21／14	1.25				mpl｜lice	\％80		－178	18		7：8	3150 5000	（1350	\％ 1.5	${ }^{71050}$		10
So	aturily	taloex	\％R．	010． 2.80	－1／4	$21 / 14$	8．3				anplifit：	\％ 50		－	${ }^{25}$		1：	$\pm$	13009	\％ 2.8	：19		50
（H）	SERIES FILANENT POWER AMPLIER TUBES																						
12A7		$\begin{aligned} & \text { Fintoex } \\ & 4 \\ & \hline \end{aligned}$	M6at	． 3.80	17132	19／4	$\begin{aligned} & \text { e.30 } \\ & 12.6 \mathrm{c} \\ & \hline \end{aligned}$					1235	138	－13－5	30 max－	2.5	100	$0.1 x^{2}$	93	0.35	13900		$12 \times 7$
2346	Auplitic	Matoot	mfatco		$31 / 4$	1310	0．30				maturica	楽	388	-13 -80	38	3.9	${ }_{100} 0$	18000 40006	85000	2．09	8500 3000		25M6
25466		Matsee	mata	cctision	－ $3 / 2$	11616	is or				Pomemmitica	3tcoama roe tive as											25466
25a76		$\begin{aligned} & \text { etwrack } \\ & \text { i } 01000 \end{aligned}$	meatct	actacione	M s／4	－13／14	${ }^{0}$ is ${ }^{\text {lav }}$				Monts amplifie	1280	100	－19	${ }^{20.5}$	0.0	0	30000	1000	．n	13800		25AT6
25806	arande	Fureor	Wavti		13／0	$113 / 16$					mose ammirica	－ 0	$\stackrel{ }{ }{ }^{3}$	－15	－s	－－12			4000	t． 3	2500		23B6C
2566	foma	termoot	Mfatc	$\begin{aligned} & \text { oct } \\ & \text { ocipion } \end{aligned}$	31／4	13／06	$\stackrel{3,50}{\text { a，}}$				Postir matirita	110	110	－3， 5	04	411	12	10009	4100	2.2	2605		2516
23L66	mprifica	Huroor	MEAtct	acraitipis	－ 3 m	（ 13／18	${ }_{5}^{6.34}$				paxe maplifite	110	310	－7． 5	＊9	481	02	10003	1300	2.2	2000		$25 \mathrm{L6G}$
43	Apumita	Mutoec	wate	$\text { mo. } 58$	－ $31 / 14$	1 $13 / 16$	0．30				potth mentrict	\％	\％	-13 -80	30	\％\％	100	＋50000	（1006	2， 8.8	3906 3600		43
48	mowifice\|	Euroot			\＄3／4	1 1／84	${ }^{200}$				Mouct amplilit＂	$\%$	100	－${ }^{-18}$	38	8			33000	2.8	${ }^{1350}$		40


(J)	RECTIFER TUBES																
							FIL	$\begin{aligned} & \text { FIL } \\ & \text { volis } \end{aligned}$	max Ac volis mea anooce	max DC OUT Cuap (ales)	max plan mense volts	Max Ptax			man oc rats of	cmans inmat	
024	fubs mavt	Cas	cobe	0ctaiome	19/0	$13 / 8$	-	-	150		liso	0.80			$1: 3$	$3: 3$	024
OZ4G	fut meve	cas	coto	octatspin	23 3is	1 1/40	-	-	330	$0.07) \times 8$. $0.03-10$	12:3	0.200			18	3)	O24G
i-v	matir were	necicmmen	Matil	50.0.	$43 / 16$	19/13	0.3	6.1	150	0.030	1000	0.259		500	-20		1-V
574	Fublmay		$\mathrm{H}_{6}$		- $1 / 4$	123/32	2.0	5.0	450	0.850	12:9				2:3	35	574
Suag	Puct ware	- miciomm	H6.	octais ${ }^{\text {atin }}$	$33 / 10$	2 1/89	3.0	9.0				"1604terso	F4P6 3b				SU46
5V4G	Fuct vere	- niom	m6atid	$\operatorname{cccosidem}^{\text {at }}$	-3id	1:19/12	2.0	5.0				1000.6.600	Pe.r 3 ir				SV4G
$5 \mathrm{w} / 4$	futivari	vaium	Fit.		, 1/8	1 3/16	1.3	5.0	1:0	0.113	1509				in	(3)	Sind
SW4G	fuecenvi	$\cdots$	I:		- $1 / 3$	1 19/18	1.9	3.0	$3 \times$	0.110	100				3 s	9)	5 FWAG
$5 \times 46$	bukt wavp		Fth.		$23 / 56$	2 1/10	1.9	3.0				Ste 0ata cos	1098 38				$5 \times 46$
$5 \times 36$	-6tame	vくcom	Fil	uitactsp	-5/6	(19/14	2.0	5.0				He oufa far	THMC ${ }^{\text {do }}$				$5 \times 36$
5\%4g	Fmenert		Fit.	octainpin	${ }^{1} 3 / 8$		2.0	5.0				set data 60.	trat a				$5 \times 46$
523	Fult mavt	V6\%.	${ }^{1} 12$.		3310	21/10	1.0	3.0	360	0.230	$14 \times 0$	0.109			463	30	523
524	Futhent		"1076	craispmen	31/4	10718	2.0	3.0	* 60	0.173	1180	0.500			23	is	524
6WSG	Ful mavt		ntata	atabeold	-1/6	1015	0.	6.)	350	0.190	1750	0.330		300	48	312	6W5G
$6 \times 5$	Futume	-	mitatil	artais opin	$31 / 4$	$13 / 10$	0.6	6.3	330	0.019	1730	0.375		500	-13	: 3	$6 \times 5$
5x56	fulc wavi		meatio	criser $^{\text {chem }}$	${ }^{6} 1 / 8$	$10 / 10$	0.0	0.3	330	0.618	1250	0.318		. 500	43	14	6x56
${ }^{124}$	fuct vayt		meatir	54. 30	3/14	$19 / 26$	0.5	6.$)$	330	0.063	1100	0.800		500	43	3	$\frac{824}{34}$
$62 Y 36$	fult vevi	niont	Watck		- 1/1	1\%/16	0.3	6.3	$3: 0$	0.033	1000	0.158		-00			62136
1223	habr wart		Hf A7\% ${ }^{\text {a }}$	5m. ${ }^{\text {cifor }}$	3/14	${ }^{1} 9 / 16^{\circ}$	0.3	17.0	230	0.000	100	0.330		330	310		1223
2525		-16\%	miayta	54.\% \% $0 \cdot 0$	1/19	1 1/16	0.3	25.0	133	$\frac{0.208}{0.108}$	108	$\frac{0.351}{0.300}$	Rethmy	330	120		2575
2526	"Clifis" Dovaic:	Meck	mLata	$\operatorname{actac}^{\prime 2}+1$	$31 / 4$	13/16	0.3	35.8	173	0.108	$\frac{100}{700}$	$\frac{0.300}{0.300}$		230	$\frac{188}{138}$		2526
25266	actifife covati	vicum	matty	ocrsiotal	- 110	1 0/16	0.3	85.0				Ste caste cor	:rm ases				25266
80	fuil mayl	vecuiva	5.		- 11/80	1 1/16	2.0	5.0	$\frac{390}{\frac{305}{350}}$		$\frac{7969}{\frac{1188}{2506}}$	$\begin{aligned} & \frac{0.900}{0.150} \\ & 0.300 \end{aligned}$	3 HEMples		309	$\frac{-i \pi}{i \pi}$	80
81	Paif uart	ntuen	'儿.	mfu 0 : $n$	* 1/4	3 $1 / 16$	1.85	7.8	, 6	$0 . \operatorname{ces}$	20\%	0.000			330	357	8
82	'uns uavi		Bf.	m0. ${ }^{\circ} \mathrm{C}$	1/1/6	$113 / 8$	3.0	$-2.3$	590.	0.123	1000	0.000			300	429	82
83	duct yari		B\%t.	wo ' ${ }^{\circ}$	33/8	71/16	3.0	3.0	300	0.250	1400	0.000			\$30	$0 \times 0$	83
83	fuct mavi	vation	1.6	m0 $0^{41}$	- 11/40	1 13/16	2.0	9.0	090	0.800	1100	0.00			4.5	293	83 V
BA	fuct mave	cas ${ }^{\text {c }}$	colo		33/8	${ }^{2} 1 / 18$	-	-	330	0.330	1000	1,000				300	BA
Вн	friteayt	cas	cole		-1/0 ${ }^{1}$	$113 / 100$	-	-	1397	0.123	1800	0.009				300	BH
BR	malt unvi	cos	coso	H0.***	$31 / 4$	18/10	-	-	300	0.030	*30	0. 800			300		BR



- TUBE SOCKET CONNECTION CHART (LOOKING UP AT BOTTOM OF SOCKET)						
THE SOCKET CONNECTIONS SHOWN IN THIS CHART ARE THOSE WHICH APPEAR WHEN LOOKING UP AT THE SOCHET CONNECTIONS FROM THE BOTTOM. THE NO 1 TERMINAL IS THE LEFT-HAND FIL AMENT CONNECTION AND THE OTHER DINS ARE NUMBERED IN "LLOCKWISE"ROTATION.   THE LETTER SYMBOLS"USED IN THIS CHART ARE AS FOLLOWS:   F-Filament; H -Heater; P-Dlate; K-Cathode; $G_{-}$ControlGrid; $G_{2}$-Screen Grid; $^{2} G_{3}$-Suppressor grid; $G_{R}$ - Grid/triode); $G_{R}$ Grid(triode-2); $G_{-}$-Triode grid; $G_{p}$-pentode grid; P-plate; $P_{i}$-plate (triode-1); $P_{R}$-plate(triode-2); $P_{T}$ triode plate; $P_{P}$-pentode plate; D,-one diode plate; $D_{2}$ other diode plote; - -top cap. (NOTE: these do not apply to tube boses $6 L$ and $7 C$.						


TUBE SOCKET CONNECTION CHART - (Cont'd) ILOOKING UP AT BOTTOM OF SOCKETS						

SEC. 11 TUBE CHARACTERISTIC, \& SK'T. CONN. CHARTS 11-13
TUBE INDEX—Continacd from page 11-1*

Tube   Type Number	Will be Found in Section	$\left\lvert\, \begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}\right.$   Number	Will be Found in Section	Tube Type Number	Will be Found in Section	Tube Type Number	Will be Found in Section
6A8G	F	6L6G	F	$25 \mathrm{Z5}$	J	56	C
6AB5	F	6L7	F	25 Z 6	J	56AS	K
6B4G	F	6L7G	F	25Z6G	J	56S	K
6B5	F	6N5	F	10	G	57	C
6B6G	F	6N6G	F	12A	E	57 AS	K
6B7	F	6N7	F	15	B	57 S	K
6B7S	K	6N7G	F	19	B	58	C
6B8	F	6P7G	F	20	D	58 AS	K
6B8G	F	6Q7	F	22	D	58S	K
6C5	F	6Q7G	F	24A	C	59	C
6C5G	F	6R7	F	24S	K	71A	E
6C6	F	6R7G	F	26	C	75	F
6C7	K	6S7G	F	27	C	$75 S$	K
6C8G	F	$6 \mathrm{T5}$	F	27 S	K	76	F
6D6	F	6T7G	F	30	B	77	F
6D7	K	6U5	F	31	B	78	$\underset{F}{F}$
6D8G	F	6U7G	F	32	B	79	F
6E5	F	6V6	F	33	B	80	J
6E6	F	6V6G	F	34	B	81	J
6E7	K	6V7G	F	35/51	C	82	J
6 F 5	F	6W5G	J	$35 \mathrm{~S} / 51 \mathrm{~S}$	K	83	J
6F5G	F	6X5	J	36	F	83 V	J
6F6	F	6X5G	J	37	F	84/6Z4	J
6F6G	F	6 Y 5	K	38	F	85	F
6 F 7	F	6Y6G	F	39/44	F	$8_{89} 8$	$\underset{\text { K }}{\text { K }}$
6F7S	K	6 Y 7 G	F	40	$\underset{\mathrm{F}}{\mathrm{E}}$	V999	$\stackrel{\text { F }}{\text { D }}$
6G5/6H5	$5 \underset{\sim}{F}$	$6 \mathrm{6Z4} / 84$	K	41	$\stackrel{\mathrm{F}}{\mathrm{F}}$	- $\times 99$	D
6H6 6 H 6 G	$\stackrel{\mathrm{F}}{\mathrm{F}}$	6ZY5G	$\stackrel{\text { J }}{ }$	43	H	182B	K
6J5	F	6Z7G	F	45	C	183	K
6J5G	F	$12 \mathrm{A5}$	$\underset{\sim}{F}$	46	C	485 950	K
$6 \mathrm{J7}$	$\underset{F}{\mathrm{~F}}$	$12 \mathrm{A7}$	$\underset{\text { H }}{ }$	47	C	${ }_{951 / 1 B 4}$	K
6J7G	$\underset{\mathrm{F}}{\mathrm{F}}$	12233	K	48 49	H $\mathbf{B}$	WD-11	B
6K56G	$\stackrel{\mathrm{F}}{\mathrm{F}}$	25A6GG	H	50	G	W X-12	A
6K7	F	25A7G	H	52	F	BA	J
6K7G	F	25B6G	H	53	C	BH	J
6L5G	F	25 L 6	H	55	C	BR	F
6L6	F	25L6G	H	55S	K	LA (6A4)	). F



SGdXL GG月L LNGWGOVTd'H HO XGQNI-SSO\&う

	T1FE	$\begin{aligned} & \text { Punp in } \\ & \text { syock } \end{aligned}$		discmuption and use	Hre Po	OHD	NTinvotive	deschartion and use	Txps	$\begin{aligned} & \text { pound in } \\ & \text { Wuck } \end{aligned}$	$\begin{gathered} \text { ritom } \\ \text { wit vocre } \end{gathered}$	degchiption and usa
	023	j	-	Full wave gaveus rectifier	6R7,6R7C*	I	6.3	Diode detector $\frac{\text { triode emplibier }}{}$	49	b	20	Dual purpose power triode
	024	,	..	Full wave gaseous rectiber	6.55,6x56*	j	6.3	Full wave vacuum rectiber	so	\%	7.5	Triode pewer amplifer
	146	b	20	VariMu telrode araplifies or det.	6Y5	$\underline{k}$	6.3	Full wave racuum rectibur	52	1	6.3	Dual purpose power triode
	146	b	20	Electrom coupled occ. $\frac{1}{\text { a miser }}$	67A/84	j	6.3	Full wave vacuum rectitem	53	c	2.5	Twis triode clase B power ampli.
	184/951	b	20	Tetrode amplifiter of detector	625	1	6.3/126	Full wave necuum rectibur	55	c	2.5	Diode dotector at triode anplifier
	185/25s	b	2.0	I iode detector thtiode amplifier	12AS	1	12.6/63	Peotove power amplifier	555	k	2.5	Diode detector in triode amplifier
	IC6	b	2.0	Electron coupled onc. $\frac{1}{\text { a mixet }}$	12A7	${ }_{1}$	126	Power peatode $\frac{1}{\text { a rectifer }}$	56	c	2.5	Triodo amplitier or detector
	154	b	2.0	P'entale power amplitier	1273	;	126	Hall wave necuum rectiser	508	k	2.5	Trisde amplifier of detector
	$2{ }^{2}$	c	23	Triode powet amplibet	25A6,25,A6C	C* ${ }^{6}$	25.0	Pentode power smplifier	57	c	2.5	Pentode amplifier oe detector
	${ }^{2} \mathbf{A 3 H}$	c	25	Triede power amplifier	2585	j	250	Voltage doubling vecumm rectiger	575	k	25	Pealode amplifier os detector
	2 AS	c	25	Pertode puwes ampliser	257625766	- ${ }^{\text {j }}$	25.0	Voltage doubling vecuum rectiber	S7AS	k	6.3	Peotedo ampliber or detector
	${ }^{246}$	c	25	Diode detectos et triode amplifier	200A	)	5.0	Triodo detector	58	c	25	VariMa pentode ampliter or det.
	2 A 7	c	2.5	Electron coupled oce. \& mixier	01A	-	50	Triode amplitiet of detectos	588	k	25	VariMu pentode ampliter or det.
	2A7S	k	25	Elertrou compled oec. 4 mixer	I-V	j	6.3	Hillf wave vacuum rectifien	S8AS	1	6.3	VariMu pentode ampliter or det.
	$2 \mathrm{B7}$	c	2.5	Duo diode det. \& peatode ampli.	2S/4s	+	2.5	Duo diode detector	59	c	2.5	Triple parpose power amplitice
	222/684	k	23	Itulf wave flament rectifer	10	c	7.5	Triods power amplifier or ose.	714	-	5.0	Triode power momplifer
	SY3*	j	5.0	Full wave recuum rectifer	ED. 11	a	1.1	Triode amplitier of detector	75	1	6.3	Diode detector \% triode amplifer
	523	j	5.0	Full wave revumm rectifer	WX. 12	-	1.1	Triode amplifer or detectos	75S	k	6.3	Diode detertor titriode amplifer
	524	j	50	Foll wave rateuum rectifict	12\%	-	5.0	Triode amplifier or detector	76	1	6.3	Triode amplifer or detecter
	$6{ }^{6} 3$	I	6.3	Triode power amplifict	15	k	20	Tecrode tumplifer or delector	77	1	6.3	Pemode ampliber or detertor
	6A4/LA	I	6.3	Pentode power amplifer	19	b	20	Twin triode clam B power topli.	\%	1	6.3	VariMa pentode amplifier or det.
	646	1	6.3	Twis riode clase B poves ampli.	20	$d$	33	Triode power amplifier	79	1	6.3	Twio triode clen B power ampli.
	${ }_{647}$	1	6.3	Eleerron coupled ove. $\frac{1}{\text { a mizer }}$	22	d	3.3	Tetrode ampliber	50	j	5.0	Fall wave vecuum rectiter
	6A7S	k	6.3	Elearom coupled oce 4 mixer	24.1	c	2.5	Terode amplifer or detector	81	j	75	Italf mave receum rectifer
	6 68, ${ }^{\text {chab }}$	-	6.3	Eleciton coupled oce timixer	245	k	25	Tetrode amplifer or detector	82	i	25	Full weve mereury rectifer
	$6 \mathrm{6B5}$	!	6.3	Dual uriode power amplifier	26	c	1.5	Triode ne Slamest amplitiet	83	j	50	Full wave mercury rectifier
	687	1	6.3	Due diode der. 8 pestede ampli.	27	c	25	Triode mapplifier or detector	83 V	j	5.0	Full wave vecume rectifier
	6875	k	6.3	Dwo diede der. \& peatode ampli.	275	t	2.5	Triode amplifier or detector	84	j	6.3	See 6ZA/8A
	6CS, ,6, ${ }^{\text {c }}$		6.3	Triode amplifies or cec.	30	$b$	20	Triode mpplifier or detector	85		6.3	Diede derecter t crode amplitier
	${ }_{6}^{6} 6$	f	6.3	Pemtode amplitict \& detector	31	b	2.0	Triode power muplifier	85AS	k	6.3	Diode detector t riode amplifier
	$6{ }^{6} 7$	k	6.3	Diode detector ts triode amplifer	32	b	20	Tetrode ampliter of delector	89	1	6.3	Triple parpose power amplifer
	6106	!	6.3	$V \mathrm{Vrimu}$ pentode amplifier ef der.	33	b	20	Peatode power ampliticer	V. 99	$d$	3.3	Triode emplifies or detector
	607	k	6.3	Pemtode ampliter t deteetor	34	$b$	2.0	Pentale tetrode amplifier of det	X. 99	d	3.3	Triode applifier or derector
	6ES	!	63	Cathode ray tuning indieator	35/51	e	2.5	VariMm tetrode amplitier of det.	1828	k	5.0	Triode power amplifer
	6 Eb	I	6.3	Twin triode clen A power amplit.	35/515	!	25	VariMa telinde amplifer of det.	183	k	50	Triode power amplifer
	6 E 7	k	6.3	VariMa pentode amplifer il det.	36	1	6.3	Termde amplifiez or detector	485	k	3.0	Triode emplifer of detector
	6F3,6F3C*	-	6.3	Triode emplificr or detectior	37	1	6.3	Triode amplifier or dertector	950	t	20	Pentode power amplifer
P	6F6,6FGG*	- !	6.3	Pentode power arupliter	38	\%	6.3	Penuade power amplifer	BA	1	-.	Fell wave garoue rectifier
	${ }^{6 F 7}$	I	6.3	Triode 1 peatode ovc. $\frac{1}{\text { detector }}$	39/44	1	6.3	VariMu pentode amplifer or det.	BII	j	-.	Full wave gasoan rectiter
	${ }_{6} 675$	t	63	Triodet pentoda ose. ${ }^{\text {a d d detector }}$	40	e	50	Triode amplifier	BR	;	6	Hislf wave greome ructiler
	665	${ }^{\text {f }}$	6.3	Cathode ray tuning indicstor	41	1	6.3	Pentode power emplifier	LA	1	6.3	Sen 6 A/LA
	${ }^{6 H 66,6 H 6 C *}$	-	6.3	Twin diode devector	42	1	6.3	Peatode power amplifier	            unen with the nowe "GT GPen.			
	${ }^{617} 61576^{\circ}$	,	6.3	Pentode amplifier or deteetor	43	b	25.0	Pentude power exuplifier				
*	6K7,6K76*	-	63	Verimu pentode araplifer or det.	45	c	25	Triode power amplifier				
	6L7,4176	-	6.3	Heptode mixiser or amplifier	46	-	25	Deal parpose power triode				
8	6N7G*	1	63	Twin triode clane B amplifer	47	c	25	Pentode pewer amplliger				
	$60^{6,6076 *}$	-	63	Diode detector te triode emplifier	48	$b$	30.0	Pensode power amplifirs				

## RECTIFIER TUBE CHARACTERISTICS

It is often necessary for the radio service man to calculate the value of the voltage which the high-voltage secondary winding of the power transformer in a receiver must deliver to the rectifier tube in order that a certain d-c voltage (as specified by the manufacturer of the receiver) shall be available at the output terminals of the $B$-filter. This information is necessary when a new receiver is designed, and it is often necessary when the power transformer is to be replaced in an "orphan" set for which no voltage specifications are readily available. The proper transformer voltage required can be determined easily by the method which will be described here, if the total plate and bleeder currents, resistance of the filter choke coils, and the load characteristics of the type of rectifier tube to be used are known. The "load characteristics" of the types of rectifier tubes commonly used in receivers are shown in the cight sets of graphs which follow. Each is labeled for identification. (These are reproduced here through the courtesy of the enginecring department of the Raytheon Production Corp.)

In order to show exactly how a calculation of this kind is carried out, let us consider a typical example: We will assume that the sum of all the plate and screen currents in the entire receiver is 50 ma . and that the bleeder current (the current flowing through the "bleeder" resistance) is 10 ma . The value for the plate and screen currents could be obtained from the set manufacturer's data or from the Tube Characteristic Chart presented here in Section 11. The value of the "bleeder" current could be calculated by dividing the voltage across the bleeder resistor (which is usually the highest d-c voltage) by the resistance of the bleeder. We will assume further that a single filter choke having a resistance of 500 ohms is used, that a 13-1*
voltage of 250 volts $\mathrm{d}-\mathrm{c}$ is required across the bleeder resistor (this is the voltage output of the $B$-filter system), and that the input tank condenser has a value of 4 mfd . (the size of the tank condenser may be determined from the schematic circuit diagram of the receiver, or by checking with a capacity meter). The problem is to find the r-m-s ("root-mean-square" or "effective" value) voltage which each half of the high-voltage winding of the power transformer must deliver to the rectifier tube when the receiver is operating.

If a type ' 80 rectifier tube is used, then the set of load characteristic curves (which is shown on page 13-4*) for this tube, must be examined. It will be seen that there are three eurves (one drawn solid, one drawn dotted and one drawn in dot-dash form) for each value of rectifier plate (anode) voltage specified. One curve is for each value of the filter tank (input) condenser $C_{2}$. Thus, if a 2 mfd . tank condenser and a rectifier plate voltage of 350 volts were employed, the dotted curve marked 2 would represent the load current-output voltage characteristic of the rectifier tube for that condition of operation, etc.

Now the horizontal scale on the rectifier characteristic curves shown here represents the d-c output current of the rectifier in milliamperes, and the vertical scale represents the d-c input voltage to the filter-not the d-c output voltage of the filter. Therefore, it is necessary to obtain the former value indirectly from the known constants of the problem. It is known that the desired d-c output voltage of the filter is 250 volts, and it is known also that the current through the 500 -ohm filter choke is $50+10=60 \mathrm{ma}$; therefore, the d-c voltage drop across the choke is $0.06 \times 500=30$ volts. This means that the d-c input voltage to the filter must be equal to 250 plus 30 , or 280 volts in order to obtain an output of 250 volts.

Now we are prepared to refer to the load characteristic chart for the ' 80 type rectifier tube. Locate the 280 -volt point on the vertical "output volts" scale, and locate the $60-\mathrm{ma}$. point on the horizontal "output-milliamperes" scale. Follow across horizontally from the 280 -volt point and vertically from the $60-\mathrm{ma}$ point into the curve sheet until the point of intersection is reached; this point will be found to occur nearly midway be-
tween the two solid-line curves labeled 5 and 4. These curves represent operation with a 4 -mfd. tank condenser and 300 and 250 volts per anode (plate voltage) respectively. Therefore, in our case since the point of intersection lies about midway between these curves, the voltage is about 275 volts.

Since the voltage output of the rectifier tube (plus the small internal voltage drop in the tube itself) is practically equal to the a-c voltage across each half of the high-voltage secondary winding of the power transformer, each half of this winding in our power transformer must deliver 275 volts. Therefore it must have a total high-voltage secondary voltage output (under load) of $275 \times 2=550$ volts. It must also have the necessary proper filament windings which will deliver the required low voltages to the filaments or heaters of all the tubes in the receiver.

If the filter were of the "choke-input" type, $\left(C_{1}=0\right)$, then each half of the high-voltage winding would have to deliver a voltage represented by a point slightly above the No. 2 dotdashed characteristic curve which represents 350 volts per anode operation. By taking the proportional distances between the two adjacent dot-dashed curves and the intersection of the operating lines, the required voltage is found to be about 360 volts across each half of the winding; the total secondary voltage is then twice this value, or 720 volts. Notice that more input voltage (for a given output) is required when a choke-input type filter is used than when a condenser-input type filter is employed.

It is always well to allow an extra voltage margin to take care of conditions when the line voltage is below normal, etc. If this is done in our case, a 750 -volt center-tapped secondary winding on the power transformer will be about right for the particular receiver and filter system originally specified in our problem. This same procedure may be followed for solving problems involving any of the other types of rectifier tubes whose load-voltage characteristics are shown here.
(See Pages 13-4* and 15-5* for charts)


Characteristics of the ' 80 and 5Y3G rectifier tubes


Characteristics of the '82 rectifier.


Characteristics of the $25 \mathrm{Z5}$ and 25 Z 6 rectifier tubes.


Characteristics of the $12 \mathrm{Z3}$ rectifier.

Oourtery Raytheon Production Oorp.


Characteristics of the ' 83 rectifier.


Characteristics of the ' 84 rectifier.


Characteristics of the 5Z3 and 5U4G rectifier tubes.


Characteristics of the $1-\mathrm{V}$ rectifier.

## OPERATING CONDITIONS FOR COMBINATION TUBES EMPLOYED IN RESISTANCECOUPLED A-F AMPLIFIERS

Combination detector-amplifier tubes, such as the 55,75 , 2B7, etc., require a plate resistor and cathode (grid-bias) resistor of definite value. They also require a grid leak (grid resistor) of definite value in the following stage. The accompanying chart (which is reproduced here through the courtesy of the engineering department of the RCA Radiotron Co.) tabulates the operating data for these combination tubes for easy reference. All explanatory notes for the chart are included in the footnotes at the bottom.

The operating data are given for four different values of plate-supply voltage. For each plate-supply voltage, there are four different operating conditions, depending upon the output voltage required. For example, the $2 B 7$ tube may be used with 180 volts of $B$ supply. If an undistorted output of 45 volts (peak) is required to work the following tube, then the bias on the pentode portion of the 2 B 7 should be 2.6 volts negative, the cathode resistor should have a value of 7,600 ohms to obtain this bias, the plate resistor should have a value of 0.5 megohm, the grid resistor of the following tube should have a value of 0.25 megohm, and the voltage amplification of the stage will be about 53. (For tabulated data on Grid-Bias Resistors, Power Rating of Resistors, etc., see Sections 15 and 16 of this book.)
(Chart on the following page)


## GRID-BIAS RESISTOR CHART

The Bias Resistor Chart presented herewith through the courtesy of Radio Retailing is designed to facilitate the determination of the proper values of grid-bias resistors for self-biased tubes for the usual operating conditions. The various columns list the following data: tube type, use, $B$ supply voltage, gridbias, screen-grid current and voltage ( the latter in parentheses), the value of the bias resistor, and the power rating of the resistor.

By use is meant the function of the tube in the circuit. When a tube may be used for more than one purpose or under different operating conditions, the bias resistor for each purpose and condition is specified.

Combination tubes such as the 6F7 and the 6A7 are included in this chart. Unless otherwise specified, only the amplifier or detector portion of the combination tubes is considered, for the diode section of a 6 B 7 for example, has nothing to do with the value of the bias resistor required by the pentode section.

Certain tubes may be connected in push-pull; the resistance value of the bias resistor to be employed for tubes connected in push-pull is half of that specified in this chart unless otherwise stated. The wattage rating of the resistor employed should be double that specified in this chart. The 2A3, for example, uses slightly more than the usual one-tube bias when two are connected in push-pull; this occurs because the bias is different for two tubes than it is for one tube. The various common circuit arrangements which are employed for obtaining grid-bias voltages in modern receivers are discussed in detail in the book Modern Radio Servicing.

The "total" $B$ supply voltage (not the voltage between plate and cathode or filament) is listed in this chart. This is import(Text continued on Page 15-6 after the chart)

GRID-BIAS RESISTOR CHART							
Tube   Type	Tube Use	$\begin{gathered} \text { B } \\ \text { Supply } \end{gathered}$ Volts	Grid Bias Volts Neg.	Plate Ma.	$\begin{gathered} \text { Screen Ma. } \\ \text { (Screen } \\ \text { Volts) } \end{gathered}$	Grid Bias Resist. (Ohms)	Bias   Rcsist.   Rating   (Watts)
IA6	Pent. Conv.	183 138	3 3	.	.........	500 500	1
2A3	Pr.Amp. (1).....	295 362	45 62	${ }_{60 \times 2}^{60 \times 2}$		750 800	3 5
2A5	Pr. Amp. 1.	266	16.5	34	6.5	400	
2A6	Res. Coup. Volt. Amp.   Imp. Coup.	$\left\{\begin{array}{l} 250 \\ 180 \\ 135 \\ 252 \end{array}\right.$	$\begin{aligned} & 1.35 \\ & 1.30 \\ & 1.10 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.24 \\ & 0.09 \\ & 0.8 \end{aligned}$		$\begin{array}{r} 3.500 \\ 5.000 \\ 11.000 \\ 2.500 \end{array}$	
2 A 7	Sup. Conv.	250 150 100	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 3.5 \end{aligned}$	$\ldots$		$\begin{aligned} & 300 \\ & 150 \\ & 150 \end{aligned}$	$1$
2B7	Volt Amp. Pent. (RF) (IF)   Volt Amp. Pent A.F.	$\left\{\begin{array}{l}250 \\ 250 \\ 180 \\ 100 \\ 180 \\ 135 \\ 100\end{array}\right.$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 2.10 \\ & 1.95 \\ & 2.15 \end{aligned}$	9.0 6.0 3.4 5.8 0.85 0.300 0.23	$2.3(125 \mathrm{v})$ $1.5(00 \mathrm{v}$ $0.975 \mathrm{v})$ $1.7(100 \mathrm{v})$ $0.15(25 \mathrm{v}$ 0.100 l $0.020 \mathrm{v})$ 0.020 l	$\begin{array}{r} 250 \\ 400 \\ 750 \\ 400 \\ 4.000 \\ 5.000 \\ 10,000 \end{array}$	$1$
$6 \mathrm{A4}$	Pwr. Amp Pent. Single $\qquad$   P-P $\qquad$	, $\begin{aligned} & 180 \\ & 165 \\ & 135 \\ & 100 \\ & 180 \\ & 165 \\ & 135 \\ & 100\end{aligned}$	12 12 11 9.5 6.5 $\cdots \cdots$ $\cdots \cdots$	22 20 14 9 $\cdots \cdots$. $\cdots \cdots$	$\begin{gathered} \hline 3.9 \\ 3.5 \\ 2.5 \\ 1.6 \\ \ldots . \\ \ldots . \end{gathered}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 600 \\ & 250 \\ & 250 \\ & 250 \\ & 300 \end{aligned}$	
6 67	Sup. Conv.	250 150	1.5	$\ldots$	...........	300 150	$1$
$6 \mathrm{B7}$	Volt Amp. Pent. (RF) (IF)   Volt Amp. Pent. A. $\mathbf{F}$	[ 250	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 2.10 \\ & 1.95 \\ & 2.15 \end{aligned}$	9.0   6.0   3.4   5.8   0.45   0.30   0.23		$\begin{array}{r} 250 \\ 400 \\ 750 \\ 400 \\ 4.000 \\ 5,000 \\ 10,000 \end{array}$	
6 C 6	Biased Det.....   Amp.   Amp. Res. Coup.	250   250   250   250   253   180   135   100	4.3 3.86 1.7 1.95 3.95 1.30 1.25 1.05	$\begin{aligned} & \ldots . . \\ & \ldots \ldots \\ & 2.0 \\ & 0.38 \\ & 0.25 \\ & 0.23 \end{aligned}$		10.000 4.000 8.000 3.000 1.250 2.500 3.500 3.500 3.500	
6D6	Amp............	$\begin{aligned} & 253 \\ & 260 \end{aligned}$	$\begin{gathered} 3 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 8.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.0(100 \mathrm{v}) \\ & 0.5(100 \mathrm{v}) \end{aligned}$	$\begin{array}{r} 300 \\ 3,000 \end{array}$	$1$
$6 \mathrm{F7}$	Superhet Conv.. Diode Det. \& Pent. A.F. Amp	$\begin{array}{r} \hline \mathbf{P} 260 \\ \hline \mathbf{T} 260 \\ 250 \end{array}$	$\begin{gathered} 10 \\ \hline 0.1- \\ 3 \end{gathered}$	2.8	$0.6(100 \mathrm{v})$ $\ldots(50 \mathrm{v})$	$\begin{aligned} & 1.750 \\ & \hdashline 5.00 \end{aligned}$	$1$
9	Amp.   Bineed Det	$\left\{\begin{array}{l}145 \\ 95 \\ 150 \\ 100\end{array}\right.$	9 4.5 13.5 7.5	$\begin{aligned} & \hline 3.5 \\ & 2.5 \\ & 0.2 \\ & 0.2 \end{aligned}$	............	3.000 25000 65.000 40.000	


GRID－BIAS RESISTOR CHART（Cont＇d）							
$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	Tube Use	B Supply Volts	Grid   Bias   Volts   Neg．	$\begin{aligned} & \text { Plate } \\ & \text { Ma. } \end{aligned}$	$\begin{array}{r} \text { Screen Ma. } \\ \text { (Screen } \\ \text { Volts }) \end{array}$	Grid Bias Resist． （Ohms）	Bias Resist．   Rating   （Watts）
${ }^{\prime} 10$	Clase A Amp	$\left\{\begin{array}{l}465 \\ 380 \\ 270\end{array}\right.$	39   31   22	18   16   10	．．．．．．．．．．．	2，000 2,000 2,020 2,250	$1_{1}^{1}$
$\begin{aligned} & 11 \\ & \binom{W D 11}{W X I 2)} \end{aligned}$	Amp．．．．．．． Biamed Det．．	$\left\{\begin{array}{l}145 \\ 95 \\ 155 \\ 100\end{array}\right.$	10．5   18.5   18   10   13.5	$\begin{aligned} & 3 \\ & 2.5 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\ldots$	$\begin{array}{r}3,500 \\ \begin{array}{r}2,000 \\ 75000 \\ 50,000 \\ \hline\end{array} \\ \hline 2,000\end{array}$	
12－A	Clase A Amp Biased Det．．	$\left\{\begin{array}{l}195 \\ 145 \\ 95 \\ 200 \\ 150 \\ \hline\end{array}\right.$	13.5   9   4.5   40.5   15   2.5	7.7   7.2   5.0   0.0   0.2   6.2		$\begin{array}{r}\text { 2，000 } \\ 1,500 \\ 10,000 \\ 100,000 \\ 65,000 \\ \hline\end{array}$	
20	Pr．Amp．．．．	$\begin{array}{r}155 \\ 105 \\ \hline\end{array}$	22.5 16.5	${ }_{3}^{6.5}$		3,500   6,000	t
＇22	Amp RF．．．．	$\begin{array}{r}135 \\ \hline 135 \\ \hline\end{array}$	1．5	$\overline{3.7}$	$1.3(67.5 v)$ $0.6(45 v)$	300   600	$1$
＇24	Amp．．．．．．．． Bimod Dot．．	250   180   275	$\begin{aligned} & \hline 3 \\ & 3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 1.7(90 v) \\ & 1.7(90 v) \\ & 0.05(45 v) \end{aligned}$	$\begin{array}{r} 500 \\ 50,000 \\ 30,000 \end{array}$	$\overline{1}$
26	Amp．．．．．．．	$\begin{array}{r}195 \\ 145 \\ \hline 95 \\ \hline\end{array}$	$\begin{aligned} & 14.5 \\ & 10^{3} \\ & \hline \end{aligned}$	O．   6.2   $\mathbf{5 . 5}$   $\mathbf{2 . 9}$		2,5002,000   2,500$⿳ ㇒ ⿻ ⿱ 一 ⿱ 日 一 丨 一 力$	$1$
27	Amp．．．．．．． Biased Det．．	$\left\{\begin{array}{l}270 \\ 195 \\ 195 \\ 95 \\ 310 \\ 280 \\ \hline\end{array}\right.$	21．   13.5   9   63   33   30	5.9   5.0   4.5   4.7   0.2   0.2   0.2			
30	Amp．．．．．．．．   Biased Det．．．	$\left\{\begin{array}{l}195 \\ 145 \\ 950 \\ 200 \\ 150 \\ 100\end{array}\right.$	13.5   1.5   18.5   13.5   9	3．1 3.1 3.0 0.5 0.2 0.2 0.2			
31	$\overline{\text { Pwr．Amp．．．}}$	$\underline{\left\{\begin{array}{l}210 \\ 155\end{array}\right.}$	$\begin{aligned} & \overline{30} \\ & 22.5 \\ & \hline \end{aligned}$	12.3   8.0		2．500   $\mathbf{2 , 5 0 0}$	$1$
32	Amp．．．．．．．．   Biaeed Det．	$\left\{\begin{array}{l}180 \\ 135 \\ 180 \\ 180 \\ 135\end{array}\right.$	$\begin{aligned} & \hline 3 \\ & 3 \\ & 1.0 \\ & 6.5 \\ & \hline \end{aligned}$	1.7   1.7   0.25   0.2   0.2	$\begin{aligned} & \hline 0.4(67.5 \mathrm{v}) \\ & 0.4(67.5 v) \\ & 0.1(30 \mathrm{v}) \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{array}{r}\text { a } \\ \hline 1.500 \\ 1.5000 \\ 3.000 \\ 355000 \\ 20.000 \\ \hline\end{array}$	
33	Pwr．Amp．Pent	150	13.5	14.5	3.0	750	3
34	RF Amp．．．．．．．   Superhet．Mix．	$\left\{\begin{array}{l}180 \\ 135 \\ 67.5 \\ 185 \\ 140 \\ 72.5\end{array}\right.$	$\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \\ & 21.8 \\ & 1.8 \\ & 1.8 \end{aligned}$	$1.0(67.5 v)$ $1.0(67.50$ $1.1(67.5 v$ $1.0(67.5 v$ $1.0(67.5 v$ $1.1(67.57)$	850   850   850   2.000   2.000   2.000	
35	RFAmp．．．．．．   Superbet Mix．   俍	$\left\{\begin{array}{l} 250 \\ 180 \\ 250 \end{array}\right.$	$\begin{aligned} & 3 \\ & 3 \\ & 7 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.3 \\ & 3.7 \\ & \hline \end{aligned}$	$2.5(907)$ $2.5(90 v)$ $2.5(90 v)$	$\begin{array}{r} 350 \\ 350 \\ 1.250 \end{array}$	$1$
36	Amp．．．．．．．．．．	250		3.2	0．4（90v）		



GRID-BIAS RESISTOR CHART (Cont'd) ${ }^{\text {( }}$							
Tube Type	Tube Use	$\begin{gathered} B \\ \text { Supply } \end{gathered}$ Volts	Grid Bias Volts Neg.	Plate   Ma.	Screen Ma. Screen Volts)	Grid   Bias Resist. (Ohms)	Bias   Resist.   Rating   (Watts)
53	Pwr. Amp.Class	350 25	5	7		850 850	1
35	$\left\lvert\, \begin{gathered} \text { Amp. (Trans } \\ . C_{0 u p)} \\ \text { Amp. (Ree. } \\ \text { Coup.) } \end{gathered}\right.$	$\left\{\begin{array}{l}270 \\ 193 \\ 143 \\ 180 \\ 135 \\ 100\end{array}\right.$	20.   13.5   10.5   77.0   7.0   5.0   18	6 6 3.7 3.7 0.47 0.31 0.23		$\begin{array}{r}2,500 \\ 2.250 \\ 2.500 \\ 15.5000 \\ 20.000 \\ 20.000 \\ \hline\end{array}$	
56	Amp.a. ${ }^{\text {Biane }}$ -	263 270	${ }^{13.5}$	5 0.2		2,500 100,000	$1$
57	Biseod. Det   Amp........   Coup.)	250 250 259 250 250 253 180 135 100	4.3 3.86 1.7 1.95 3 1.30 1.30 1.05 1.05	al.   $\cdots \cdots$   $\cdots \cdots$   $\cdots 2.0$   0.38   0.25   0.23		$\begin{array}{r}10,000 \\ 4.000 \\ 8,000 \\ 3.000 \\ 1.230 \\ 12300 \\ 3.500 \\ 3,500 \\ 3,500 \\ \hline\end{array}$	
58	Amp. Superhoi Mix.	253 260	10	8.2   3.0	$\begin{aligned} & 2.0(1000) \\ & 0.3(100 \mathrm{v}) \end{aligned}$	300 3,000	1
59	Amp. Clam A Tri Amp.ClesA Pon	278	28	26 35	$9{ }^{\text {" }}$ (230\%)	$\begin{array}{r}1.000 \\ \hline 000 \\ \hline\end{array}$	$1$
71A	Pwr. Amp.	220   162   106	$\begin{aligned} & 40.5 \\ & 27.5 \\ & 16.5 \end{aligned}$	20 17.3 10		2,000   $\mathbf{2}, 500$   1,500	$1$
75	$\left\lvert\, \begin{array}{lll} \text { Reac } & \text { Coup. } \\ \text { Amp. } \\ \text { Imp. } & \text { Coup..... } \end{array}\right.$	$\left\{\begin{array}{l}250 \\ 180 \\ 135 \\ 252\end{array}\right.$	1.35 1.30 1.10 2	0.4   0.24   0.09   0.8   8.3		$\begin{array}{r}3,500 \\ \begin{array}{r}5,000 \\ 11.000 \\ 2,500 \\ \hline\end{array} \\ \hline\end{array}$	
77	Amp.......... Binced Dot. .	\{253   101   250   250   250	3 1.5 1.3 1.3 1.95 1.95	2.3 1.7 $\cdots \cdots$. $\cdots \cdots$		$\begin{array}{r} 1,000 \\ 750 \\ 10,000 \\ 3,000 \\ 12,500 \end{array}$	
78	Amp........	253 253 183 93 93	3   3   3   3	$\begin{array}{r} 10.5 \\ 7.0 \\ 4.0 \\ 5.4 \end{array}$	$\left.\begin{array}{l} 3.0(125 v \\ 2.0(1007 \end{array}\right)$   $1.0(750)$   1   1.5(90v	$\begin{aligned} & 250 \\ & 300 \\ & 300 \\ & 450 \end{aligned}$	
79	Clene A Tri.	250	1.5	0.5		3,000	1
85	$\begin{gathered} \text { Amp.(Trangenp.) } \\ \text { Coup. } \\ \text { Amp. (Res. } \\ \text { Coup.) } \end{gathered}$	$\left\{\begin{array}{l}270 \\ 193 \\ 145 \\ 180 \\ 135 \\ 100 \\ \hline\end{array}\right.$	$\begin{array}{r}20 \\ 13.5 \\ 10.5 \\ 7.0 \\ 7.0 \\ 5.0 \\ \hline\end{array}$	8.   8   3.7   0.47   0.31   0.23   18		$\begin{array}{r}3,000 \\ \hline 2.500 \\ 2.250 \\ 2.500 \\ 15000 \\ 20.000 \\ 20.000 \\ 20,000 \\ \hline\end{array}$	$1$
89	$\begin{aligned} & \begin{array}{l} \text { Amp. Clane A. } \\ \text { Tri. } \end{array} \\ & \text { Amp. Clam A. } \end{aligned}$	[281   202   180   275   198   198   148   18	$\begin{array}{\|l\|} \hline 31 \\ 22.5 \\ 20 \\ 25 \\ 18 \\ 13.5 \\ 10.5 \end{array}$	$\begin{gathered} 32 \\ 20 \\ 17 \\ 32 \\ 20 \\ 14 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 5.5 \cdots \cdots \\ & 3.0 \\ & 2.2 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 1,000 \\ 1,250 \\ 1,250 \\ 750 \\ 750 \\ 750 \\ 850 \\ 1,000 \end{array}$	
99	$\overline{\text { Amp.......... }}$	$\begin{array}{r} 94 \\ 100 \end{array}$	$10.5$	$\begin{aligned} & 2.5 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 2,000 \\ & 50,000 \end{aligned}$	$1$


GRID-BIAS RESISTOR CHART (Cont'd)							
Tube Type	Tube   $U_{8 e}$	$\begin{gathered} B \\ \text { Supply } \end{gathered}$ Volts	Grid   Bias   Volts   Neg	Plate Ma.	Screen Ma. (Screen Volts)	Grid   Bias Resist. (Ohms)	Bias Resist.   Rating   (Watts)
841	Amp.	1.000 425	9	2.2	……...	4,000 8,000	1
842	Pwr. Amp...	525   422	100 72	28 34	..........	3,500 $\mathbf{2 , 0 0 0}$	5
864	Amp....... Biased Det.	$\left\{\begin{array}{l}144 \\ 94 \\ 150 \\ 100\end{array}\right.$	$\begin{gathered} \hline 9.5 \\ 1.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.9 \\ & 0.2 \\ & 0.2 \end{aligned}$		2,500 1,500 75000 50,000	

(Text continued from Page 15-1) ant for, in a resistance-coupled amplifier for instance, the actual plate-cathode voltage as measured will usually differ considerably from the $B$ supply voltage, and hence may have little significance unless the supply voltage is known. In any case, the total $B$ supply voltage is equal to the voltage drop across the plate circuit load plus the plate-cathode voltage plus the grid dias voltage.

Although the correct bias resistor values for most tubes are given in this chart, it should be remembered that the value of the bias resistor required for any tube may also be computed easily by Ohm's law if the required bias voltage and cathode current are known. Thus, suppose the bias resistor for the type '58 tube as an amplifier is to be computed. The required bias voltage is to be 3 volts, the plate current is 8.2 ma . and the screen-grid current is 2.0 ma . (see chart). The sum of the plate and screen currents is the cathode current, which is 10.2 ma . in this case. The value of the bias resistor required is, then:

$$
R=E / I=3 / 0.0102=300 \text { ohms (nearly) }
$$

Note that the cathode current is expressed in amperes in this calculation (if the other units are in volts and ohms).

## RESISTANCE-CURRENT-VOLTAGE-POWER RATING CHART FOR RESISTORS

The chart shown on the opposite page (through the courtesy of RADIO TODAY Magazine) has been designed especially to enable rapid determination of the potential drop across, the current through, or the power dissipated in a given resistor to be made when any two of these four quantities are known. In addition, it enables one to select a resistor of the correct wattage rating for use under radio chassis operating conditions. The entire chart really represents Ohm's law plotted for the ranges of values commonly encountered in radio work, and it makes it unnecessary to carry out numerical calculations for simple problems involving resistor selection and design.

How to Use the Chart: With this chart, it is possible to find any two of the following items-current, voltage, wattage, resistance-if the other two are already known.

Lay a ruler or "straight-edge" across the chart so that it intersects the two scales at the points for which the values are known. The points at which the ruler crosses the other two scales mark the desired values. Do not use scale " $B$ " with scale " $A$ "--always employ similar scales-either "A" exclusively or "B" exclusively.

As an example of the method of using the chart, the dotted line which has been drawn on it indicates the following relationships:

## On scale "A":

(1) If 100 volts is applied to a resistor of 5000 olıns, then 20 ma. of current will flow. The power dissipated is 2 watts, and a 2 -watt composition type resistor may be used.
(2) If a current of 20 ma . is to flow through a resistor when 100 volts is applied across it, the resistor should
have a value of 5000 ohms and be a 2-watt "composition type unit".
(3) If a current of 20 ma. flows through a resistor of 5000 ohms, there will be a potential drop of 100 volts across it. The resistor must be a 2 -watt "composition type unit".

On scale "B":
(1) If 1000 volts is applied to a resistor of $500,000 \mathrm{ohms}$, then 2 milliamperes of current will flow. The power dissipated is 2 watts, and a 2 -watt "composition type" resistor may be used.
(2) If a current of 2 ma . is to flow through a resistor when 1000 volts is applied across it, the resistor should have a value of 500,000 ohms and be a 2 -watt "composition type unit".
(3) If a current of 2 ma . flows through a resistor of 500,000 ohms, there will be a potential drop of 1000 volts across it. The resistor must have a 2 -watt rating and may be the "composition type".

It is standard practice for resistor manufacturers to rate the wattage-dissipation values of their resistors on the basis of the resistors being mounted and operated in free air. When such resistors are mounted in the usual restricted, poorly ventilated positions under a radio chassis, they cannot dissipate as much electrical power (in the form of heat) as this without an abnormal and undesirable rise in operating temperature. Therefore, in radio receivers resistors having a larger wattage rating than the scale headed "WATTS" indicates must usually be used. The recommended values for radio set practice are listed in the column headed "USE RESISTOR LISTED BELOW".

Limitations of Chart: Obviously, this chart is of value only when the quantities involved fall within the ranges of the scales; for values beyond these limits, it is best to resort to numerical calculations, using the conventional Ohm's law formulas for resistance calculations and the formula $W=E \times I$, or $W=I^{2} R$, for power calculations. Then, too, this chart is suitable only when
"approximate" results are desired. Of course, the accuracy with which values may be found by means of this chart depends upon


Courtesy "Radio Today"
how accurately the ruler is placed at the exact points on the scales, and the accuracy with which the scales themselves are read. It is well for the student or novice to solve a simple
problem first by numerical calculation, and then to work it out by means of the chart in order to familiarize himself with the method of using it. He will then have a check on his own computations as well.

## RMA STANDARD COLOR CODES

FIXED RESISTORS-FIXED CONDENSERS-DYNAMIC SPEAKER LEADS-BATTERY CABLE LEADS-RADIO POWER TRANSFORMER LEADS-I-F TRANSFORMER LEADSAUDIO TRANSFORMER LEADS.

The "Standards Committee" of the Radio Manufacturers Association (RMA) has adopted standard color codes for marking fixed resistors, fixed condensers, dynamic speaker leads, radio power transformer leads, i-f transformer leads, and audio transformer leads. These codes enable one to determine the value of a resistor or a condenser by visual inspection without recourse to measurement. They also allow the service man to trace the connections from radio power, i-f and audio transformers, and from the output of the receiver to the various parts of the dynamic speaker. The codes have been in general use for some time, and may be relied upon where color coding is used on the components of receivers made by manufacturers who are members of the RMA.

The resistor and condenser color codes are of special importance. If a resistor open- or short-circuits in a receiver, the code enables the service man to determine at a glance the correct value of the replacement resistor; likewise with fixed condensers.

Resistor Color Code: Ten colors have been assigned to this code, one color for every digit, as shown below.

Color	Figure	Color	Figure
	Black	$\mathbf{0}$	Green
Brown	$\mathbf{1}$	$\mathbf{5}$	
Red	2	Blue	$\mathbf{6}$
Orange	3	Violet	7
Yellow	4	Gray	8

The resistor is colored in three places: on the body (or horizontal part of the unit) ; at one end, or tip; and by a band or small dot placed near the center of the resistor. These designations are shown in the accompanying illustration.

The number corresponding to the body color represents the first figure of the resistance value; the end or tip color represents the second figure of the resistance value; and the band or dot in


How the standard RMA Resistor Color Code is marked on a typical carbon resistor.
the center of the body represents the number of zeros following the first two figures. For example, the "body", or "main", color of a resistor is blue, the tip is red and the band is black. What is the value of the resistor? As seen in the table on page 197, blue corresponds to the digit 6 , red to the digit 2 , and the band-color black means that there are no zeros following the second figure. The resistor, therefore, has a value of 62 ohms. If the band color were brown, then the resistor value would be 620 ohms, since brown corresponds to the digit 1 , which means that there is one zero following the first two digits. The following table illustrates several additional examples, the various code color markings found on the resistor, and the correspondling resistor value in each case being given.

Body" Color   and Digit	"End" Color   and Digit	"Band"" or   "Dot" Color   and Zeros	Resistor   Value
Brown (1)	Black (0)	Black (none)	10 ohms
Red (2)	Black (0)	Brown (0)	200 ohms
Orange (3)	Black (0)	Red (00)	3,000 ohms
Orange (3)	Yellow (4)	Red (00)	3,400 ohms
Yellow (4)	Back (0)	Orange (000)	40,000 ohms
Yellow (4)	Yellow (4)	Orange (000)	44,000 ohms
Yellow (4)	Orange (3)	Orange (000)	43,000 ohms

Resistors in the late models of receivers which are manufactured by member companies of the RMA are marked with this
color code for easy identification. The service man will find it to his advantage to know this code. Since the resistors in many of the older receivers were not color coded according to this RMA standard code, it is a safe practice on all older models of receivers to refer to the manufacturer's service charts or a good service manual for the color codes used on the resistors.

Condenser Color Code: The condenser color code is applied to fixed mica condensers and is somewhat similar to the resistance code explained previously. The fixed condenser to be coded has three dots on it on the trademark side, each colored differently according to following color code:

Color	Figure	Color	Figure
	Black	0	Green
Brown	1	Blue	5
Red	2	Violet	7
Orange	3	Gray	8
Yellow	4	White	9

The first dot, reading from left to right, represents the first figure of the condenser value, the second color represents the second figure of the condenser value, and the third figure represents the number of zeros following the first two figures. This code, therefore is almost exactly the same as the resistor color code. The important point here is that the capacity of the condenser must be expressed in micro-microfarads (mmfd). The following table of examples will serve to illustrate the working of this code:

First Color   and Digit	Second Color   and Digit	Third Color   and Zeros	Condenser   Value   (Mmfd.)	Condenser   Value   (Mfd.)
	Black (0)	Green (5)	Black (none)	5
Brown (1)	Black (0)	Black (none)	10	.000005
Green (5)	Black (0)	Black (none)	50	.00001
Brown (1)	Black (0)	Brown (0)	100	.00005
Red (2)	Green (5)	Brown (0)	250	.00025
Green (5)	Black (0)	Brown (0)	500	.0005
Brown (1)	Black (0)	Red (00)	1,000	.001

This code covers most of the condenser values used in practice, but there may be values in which the third digit is not zero, such as in the case of a condenser having a capacity of 1,250 mmfd . In this case, the first two figures are colored on one side of the condenser and the third is left blank, which indicates that the remaining code is on the reverse side of the condenser. Use is then made of two code rings on the reverse side of the condenser (the reverse side from the trademark), the dot on the left indicating the third digit and the dot on the right indicating the number of zeros following the third digit. For example:
$1,250 \mathrm{mmfd} .=$ brown and red on one side (trademark side) and green and brown on the other.
375 mmfd . $=$ orange and violet on the trademark side and green and black on the other.

Dynamic Speaker Color Code: The leads from dynamic speakers to the speaker plugs may be color-coded according to the standard RMA color-code system shown in Figs. $A$ to $F$ inclusive of the illustration on page $17-5$. Figure $A$ shows the standard color code for a three-wire connection, as one side of the primary of the output transformer is connected internally, as shown, to one side of the field coil.

Figure $B$ represents conditions when separate field and output transformer leads are brought out. Figure $C$ is similar to Fig. $A$ except that the primary of the output transformer is tapped for push-pull use. Figure $D$ is similar to Fig. $B$ except that the primary of the output transformer is tapped. Figure $E$ shows the color coding when the field coil is also tapped. Figure $F$ shows the coding when two field coils are used in the same speaker.

Standard Battery Cable Color Code: A standard color code has also been approved by the National Electrical Manufacturers Association (NEMA) for the wires comprising the cables used for connecting battery-operated receivers to the batteries. This wire code is not standard on all battery-operated receivers, but it is being used by manufacturer members of the N.E.M.A. The standard battery cable color code is as follows:
$A+($ yellow $) ; ~ A-$ (black with yellow tracer) ; $B+$ max. (red) ;
$B+$ int. (maroon and red) $; B+\operatorname{det}$. (maroon) $; B-$ (black with red tracer) $; C+$ (green) ; $C$ - low (black and green) ; $C$ - max.


Standard RMA Color Code for the leads of the various dynamic loud speaker arrangements shown. (See explanation on page 17.4).
(black with green tracer) ; Loud Speaker, high side (brown); Loud Speaker, low side (black with brown tracer running through).

Radio Power Transformer-Lead Color Code: It is standard among member manufacturers of the RMA to use the following color code on the leads of power transformers for purposes of terminal identification. (This Color code was adopted on May 17, 1935.)


Standard RMA Color Code for the leads of radio power transformers. (See accompanying text for explanation).

Primary Leads: If the primary winding is not tapped, both primary leads are black.
If the primary winding is tapped, the leads are as follows:
Common-black
Tap-black and yellow 50/50 striped design
Finish—black and red 50/50 striped design
Rectifier Plate Winding: Outside leads-red; Center Tap-red and yellow 50/50 striped design

Rectifier Filament Winding: Outside leads-yellow; Center Tap-yellow and blue 50/50 striped design
Amplifier Fil. Winding No. 1: Outside leads-green; Center Tap-green and yellow 50/50 striped design
Amplifier Fil. Winding No. 2: Outside leads-brown; Center Tap-brown and yellow 50/50 striped design
Amplifier Filament Winding No. 3: Outside leads-slate; Center Tap-slate and yellow 50/50 striped design
An illustration which shows the various windings of a power transformer with these color-code markings applied to its leads is presented herewith to aid in understanding this code.

I-F Transformer Lead Color Code: The standard RMA color code (adopted as standard on May 17, 1935) employed on


Standard RMA Color Code for the leads of intermediate-frequency transformers. (See accompanying text for explanation).
the leads of intermediate-frequency transformers for purposes of terminal identification is as follows:

Plate Lead-blue
B+ Lead-red
Grid (or Diode) Lead-green
Grid Return Lead-black
Note: (For a "full-wave" transformer, the scoond diode lead is green-black)

This color code is shown pictorially in the illustration above.

Audio Transformer Lead Color Code: The standard RMA color code (adopted as standard on May 17, 1935) employed on the leads of audio-frequency transformers for purposes of terminal identification is shown in the accompanying illustration:


Standard RMA Color Code for the leads of audio-frequency transformers. (See accompanying text for explanation).

In cases of use of a single primary and/or a single secondary, only the top-half portion of the windings shown in the accompanying illustration should be used to indicate the color coding. When polarity of primary (and/or secondary) is not a
 factor, both outside leads may be the same color as indicated. Where polarity must be indicated, the Broun and Yellow leads shall indicate the start of the primary winding and the start of the secondary winding respectively. In the case of an output transformer, the Black lead shall be the start of the secondary.

## RMA STANDARD PANEL- OR DIAL-LIGHT LAMP BULB DATA

Following are the RMA standard specifications (adopted May 17, 1935) for the miniature incandescent lamp bulbs which are commonly employed to illuminate the tuning dials of radio receivers, act as pilot lights, wave-band indicator lights, etc.

Mazda   Lamp No.	Circuit Volts	$\begin{gathered} \text { Design } \\ V \text { olts } \end{gathered}$	Amperes	Normal C.P.	Hours Lije立	$\begin{gathered} \text { Type } \\ \text { Base } \end{gathered}$
40	6.3	6.3	. 15	$1 / 2$	3000	Min.Sc.
41	2.5	2.5	. 50	1/2	3000	Min.Sc.
* 44	6.3	6.3	. 25	$3 / 4$	3000	Min.Bay.
*46	6.3	6.3	. 25	$3 / 4$	3000	Min.Sc.
$\dagger$	2	2	. 06	-	1000	Min.Bay.
$\dagger$	2	2	. 06	-	1000	Min.Sc.

*Recommended for new designs.
$\dagger$ For two-volt battery service.
$\ddagger$ Normal average life expectancy at design volts.
Min.Sc. $=$ Miniature Screw base.
Min.Bay. $=$ Miniature Bayonet base.
$C . P .=$ candlepower.
The current, in amperes, taken by each bulb is specified in the table. It is often important to know this, especially in the case of series-filament receivers where the light-bulb filament is connected in some type of series or parallel-series arrangement with the receiver tube filament circuit.

## PHILCO FIXED RESISTOR COLOR CODE NUMBERING SYSTEM

A special eight-digit numbering system and color code arrangement is being employed by Philco for convenience in the Philco factory and should be understood by radio service men who have occasion to order Philco parts from the factory, or refer to the service bulletins of this manufacturer.

Part numbers for Philco fixed resistors consist of a prefix of two figures and a body of six figures. The prefix in all cases is the number " 33 ". The first three figures of the body number refer to the value of the resistor in ohms, and correspond to the Standard RMA Fixed Resistor Color Code already explained on page 17-2, that is:

The first figure of the body number indicates the dot color of the RMA color code (see page 17-2), or the number of zeros after the first two figures of the resistance value.

The second figure of the body number indicates the body color of the RMA color code, or the first figure of the resistance value.

The third figure of the body number indicates the tip color of the RMA color code, or the second figure of the resistance value.

The next (fourth) figure of the body number represents the wattage rating of the resistor, as follows:

1 equals $1 / 4$ watt	4 equals 1 watt
2 equals $1 / 3$ watt	5 equals 2 watts
3 equals $1 / 2$ watt	6 equals 3 watts

The next (fifth) figure of the body number denotes the manufacturing code of "tolerance".

The last (sixth) figure of the body number denotes the manufacturing code of "resistor type".

Examples: A resistor numbered 33 -215343 is a 1500 -ohm, $1 / 2$-watt insulated resistor. A resistor numbered 33-449431 is a 490,000 -ohm, 1 -watt lead-end resistor.

In connection with the Philco fixed resistor color coding, it will be noticed that resistors having odd values of resistance are commonly used instead of the more common nearest-even values employed by other manufacturers. For example, examination of a standard Philco chassis may reveal resistors coded 51,000 ohms, 99,000 ohms, etc., instead of the more usual "even" values of 50,000 and 100,000 ohms.

The reason why Philco resistors have these odd values is because of greater convenience in manufacturing under the bluishgreen light produced by the Cooper-Hewitt mercury vapor lamps employed for illumination throughout the Philco assembly plant. Under this type of light, it is extremely difficult to distinguish the colors in the color coding of a 50,000 -ohm resistor for example, but the color-code colors of a 51,000 -ohm resistor show up very clearly. The same applies with respect to other resistor values which may seem rather odd to service men. Of course the circuits are designed to operate correctly with these special values.

## CONDENSER REACTANCES AT POWER SUPPLY, AUDIO AND RADIO FREQUENCIES

The necessity for knowing the reactance of a condenser at the commonly used frequencies in radio work arises from time to time, and the service man must usually resort to numerical calculation in order to find it. The formula for the reactance of a condenser is:

$$
X_{c}=\frac{1}{2 \pi f C}
$$

where $X_{c}$ is the condenser reactance in ohms, $2 \pi$ equals 6.28 , $f$ is the frequency in cycles per second, and $C$ is the capacity in farads.

As the calculation of capacitive reactance is rather tedious due to the large numbers which are usually involved, the reactances of a number of "standard" size condensers at several commonly encountered frequencies have been calculated by means of this formula, and the answers have been arranged in the reactance chart presented here for convenience. For example, by referring to this chart, it is seen that a 0.05 mfd . condenser has a reactance of about 2.1 ohms at $1,500,000$ cycles (the upper end of the broadcast band), and a 0.01 mfd . condenser has a reactance of 318,471 ohms at 50 cycles. The values of condensers shown in the broadcast and power frequency sections are those which are used most in applications at these frequencies, as are those condenser sizes which are listed in the high-frequency section of the chart.

Examination of the foregoing formula shows that the reactance of a condenser is inversely proportional to the frequency. It is also inversely proportional to the capacity. Therefore, if the frequency of the voltage applied to the circuit in which a con(Text continued on Page 20-s)

REACTANCE OF "STANDARD SIZE" CONDENSERS AT POWER SUPPLY, AUDIO AND RADIO FREQUENCIES

CAP.   IN   MFDS.	FREQUENCY IN CYCLES PER SECOND											
	Power Supply Frequencies			Audio Frequencies $\left\|\begin{array}{c}\text { Broadcast Radio } \\ \text { Frequencies }\end{array}\right\|$				Short-Wave Radio Frequencies				
	25*	60**	120	50	10,000	50,000	1,500,000	$\left\|\begin{array}{r} 1.875 \mathrm{Mc} . \\ \text { (160 Moters) } \end{array}\right\|$	3.75 Mc . ( 80 Meters)	7.5 Mc . (40 Meters)	$\begin{gathered} 15 \mathrm{Mc} . \\ (20 \mathrm{Meters}) \end{gathered}$	$\begin{gathered} 30 \mathrm{Mc} . \\ (10 \mathrm{Meters}) \end{gathered}$
	CAPACITIVE REACTANCE IN OHMS											
. 00005	127,388,534	53,078,503	26,539, 252	63,694,267	318,471	6,369.4	2,123.1	1,696.	848.	424.	212.	106.
. 0001	63,694,267	26,539,252	13,269,626	31,847,133	159,235	3,184.7	1,061.6	848.	424.	212.	106.	53.
. 00025	25,477,706	10,615,600	5,307,850	12,738,853	63,694	1,273.8	424.6	339.2	169.6	84.8	42.4	21.2
. 0005	12,738,853	5,307,850	2,653,925	6,369,426	31,847	636.9	212.3	169.6	84.8	42.4	21.2	10.6
. 001	6,369,427	2,653,925	1,326,963	3,184,713	15,924	318.5	106.2	84.8	42.4	21.2	10.6	5.3
. 005	1,273,885	530,785	265,393	636,943	3,185	63.7	21.2	16.96	8.48	4.24	2.12	1.0
. 01	636,943	265,393	132,696	318,471	1,592	31.8	10.6	8.48	4.24	2.12	1.06	. 53
. 015	424,629	176,929	88,464	212,314	1,061	21.2	7.1	6.24	3.12	1.56	. 73	. 36
-. 02	318,471	132,697	66,348	159,235	796	15.9	5.3	4.16	2.08	1.04	. 52	. 26
. 05	127,389	53,078	26,539	63,694	318	6.4	2.1	1.68	. 84	. 42	. 21	. 1
. 1	63,694	26,539	13,270	31,847	169	3.2	1.1	. 8	. 42	. 20	.10	. 053
. 25	25,478	10,616	5,308	12,739	64	1.28	. 42	. 336	. 168	. 084	. 042	. 021
. 5	12,739	5,308	2,654	6,369	32	. 64	. 21	. 168	. 084	. 042	. 021	. 01
1.0	6,369	2,654	1,327	3,184	15.9	. 32	. 11	. 08	. 04	. 02	. 01	. 005
2.0	3,184	1,327	663	1,592	7.9	. 16	. 05	-	--	-	$\cdots$	--
4.0	1,592	664	332	769	3.9	. 08	. 03	-	-...	---	--	-
6.0	1,062	442	221	531	2.6	. 05	. 02	--	$\cdots$	---	$\cdots$	-
8.0	796	332	166	398	2.0	. 04	. 01	--	$\cdots$	-	--	$\cdots$
10.0	637	265	133	318	1.6	. 03	. 01	-	$\cdots$	--	--	-
15.0	425	177	88,	212	1.1	.02	. 01	-	--	-	$\cdots$	--

* Reactance of the condensers in the filter circult of a full-wave rectifier rectifying a 25 -cycle current is equivalent to the reactance values listed in the 50 -cycle column under "Audio Frequencies".
* Reactance of the condensers in the filter circuit of a full-wave rectifier rectifying a 60 -cycle current is equivalent to the reactance values listed in the $120-\mathrm{cycle}$ column under "Power Supply Frequencies".
Half wave rectification should never be employed for current from a 25 -cycle power line because of the difficulty in reducing the hum to a negligible value.
(Text continued from Page 20-1)
denser is used is doubled, say, the reactance of the condenser is reduced to half its former value. Likewise, if the capacity of a condenser is doubled, its reactance at a given frequency will be reduced to half its former value. If these relations are remembered, it is a simple matter to calculate mentally, the reactance of almost any capacity not listed in this chart, and at almost any frequency.

For instance, the reactance of a 0.001 mfd . condenser at a frequency of 30 megacycles is 5.3 ohms (from the chart). At a frequency of 25 megacycles (not listed on the chart) it would be equal to $30 / 25 \times 5.3=6.36 \mathrm{ohms}$. Similarly, at a frequency of 50 megacycles (not on the chart) it would be equal to only $30 / 50 \times 5.3=3.18$ ohms .

Likewise, the reactance of a 0.001 mfd . condenser at 30 megacycles is 5.3 ohms (from the chart). The reactance of a 0.003 mfd . condenser (not listed on the chart) at this same frequency is equal to $0.001 / 0.003 \times 5.3=1.77$ ohms. Similarly, the reactance of a 0.0007 mfd . condenser (not listed on the chart) at this same frequency is equal to $0.001 / 0.0007 \times 5.3=7.57$ ohms.

## LITZ WIRE TABLE

Litzendraht (commonly abbreviated "Litz") wire is used extensively in r-f coils when the resistance of the coil must be maintained at a low value even though the coil is to be used at very high frequencies. This wire consists of many strands of fine enameled wire bound together by a covering of single silk, double silk, or cotton. The number of strands varies with the requirements of the application.

Litz wire is gauged according to the same numbering system that is used for solid wires, although, due to the fact that there are void spaces between the individual strands of wire, its overall outside diameter is different than the diameter of a solid wire of corresponding gauge number. The table below lists the overall diameters of commonly used sizes of Litz wire. It also specifies the number and size of the individual strands of insulated wire of which it is composed. The number of turns per linear inch may be obtained (approximately) by dividing the diameters given here into 1.

## LITZ WIRE

Size B.deS. Gauge	Construction				Max.   Overall   Diameter   (Inches)
14	24	Strands	No.	28	0.100
15	49	"	"	32	0.076
16	162	"	"	38	0.084
20	16	"	"	32	0.057
20	60	"	"	38	0.048
21	35	"	"	36	0.041
21	48	"	"	38	0.054
22	37	"	"	38	0.037
23	32	"	"	38	0.038
28	10	"	"	38	0.021
25	20	"	"	38	0.025

21-1

## WIRE TABLE FOR BARE \& MAGNET COPPER WIRE

The following table is a compilation of data on all commonly used sizes of copper wire in both bare form and those insulated forms which are emptoyed extensively for coil windings of all sorts in radio receivers. This tabulation should prove helpful to radio service men. The diameter in mils (thousandths of an inch) may be converted to the more common measurement of area, the circular mil, by merely "squaring" the diameter in mils. Thus, No. 27 B\&S gauge wire (which has a diameter of 0.0142 inches, or $0.0142 \times 1,000=14.2 \mathrm{mils}$ ) has a cross-sectional area of $14.2 \times 14.2=201.6 \mathrm{CM}$ (circular mils). A column giving the area in circular mils of each size of wire is included in this tabulation. The remaining tabulations are selfevident.

The current-carrying capacity of wire wound into the form of a coil depends upon how fast the heat developed within the wire (by the flow of the current against its resistance), can be dissipated. This depends upon several factors; among these, are: (a) the ratio of the length to the diameter of the coil (this affects the total surface area effective for ventilation; $(b)$ the heat conductivity of the core material; (c) whether the coil is impregnated or not; (d) the amount of ventilation afforded; (e) the proximity of hot objects such as rectifier tubes, etc. It is evident, therefore, that the safe current-carrying capacity of magnet wire may vary over wide limits depending upon the physical makeup of the coil. In general, when a coil is constructed and mounted so that it is well ventilated, the safe current carrying capacity may be taken at $1,500 \mathrm{CM}$ per ampere of current; when it is not well ventilated (such as in a closelywound multi-layer coil), the current carrying capacity may be taken at the lower value of $1,000 \mathrm{CM}$ per ampere.

COPPER WIRE TABLE

$\begin{aligned} & \text { Gauge } \\ & \text { No. } \\ & \text { B. \&S. } \end{aligned}$	Diam． in Mila	Area in Circular Mils	Feet per Ohms （15C．）	Ohms per   1，000 feel   125 C .1	－Real Por Pound					Turst Per Linear Incht．						Turas mur Square Inchi			Safocurvent Carrying Cop． at $1,600 \mathrm{CM}$ per Amp．$\ddagger$	Curyens Requared to Fmes Wira
					Bare	S．S．C．	D．S．C．	s．c．c．	D．C．C．	Bare	ssc．	DSSC．	s．c．c：	D．C．C．	Enam．	$\begin{aligned} & \text { Enamel } \\ & + \text { s.c.c. } \end{aligned}$	D．C．C．	S．C．C．		
1	88.3	83.690	7.914	． 1884	3.98	－	－	${ }^{3.08}$	3.15	－	－	－	－	－	－	$\square$	－	－	65.7	$\square$
	257.6	66，370	6.274	1893	4.98	－	－	4.98	4.92	－	－	－	－	－		－	－	－	4.1	－
，	229.4	\＄2，640	4.977	．2008	\％．23	－	－	4.26	6.20	－	－	－	－	－		－	－	－	25.0	
4	204.3	61.740	3.967	． 2633	7.81	－	－	7.07	7.80	－	－	＝	＝	二			－	$=$	87.7	
b	181．3	28.100	8.180	． 3186	8.98	－		9.90	3.3		－	－	5.8	－				－	28.0	
	168.0	28.250	2.482	． 4028	12.68	－	－	12.48	18.97	－	＝	二	${ }^{8.4} 8$	5.46	二	二	二	二	17.8	－
7	144．3	20．820	1.969 1.861	． 6080	15.87 20.01	－	二	18.72 10.89	18.48	二	二	＝	4．23	\％．0．	7.6	二	－	－	19.8	－
！	181.8 116.4	18.810 18.080	1,661 1,288	6408	20.01 85.23	－	$\cdots$	10.89 86.00	18.64 84.60	$\cdots$	－	－	8.96	3.8	1.6	二	－	－	11.0 8.7	二
${ }^{6}$	116.4 101.9	18.080 10,980	${ }^{1.288} 8$	． 6.017	25.23 21.82	二	$\cdots$	36．00	84.60 30.9	$\cdots$	二	二	${ }^{7.85}$	${ }^{7.64}$	\％ 8.6	54.8	80.0	－7．	6.7	338.0
11	90.74	8.284	798.7	1.286	40.12	－		38.3	38.8	－	－	－	9.60	0．8！	10.1	106.	97．6	110.	6． 0	24.0
18	8.51	6，830	412.8	1.618	60．8）	－	$\sim$	80.8	48.9	－	－	$\rightarrow$	10.30	10.62	12.0	131.	121.	136.	4.4	285.0
12	71.96	8，178	889.7	2.042	83.80	－	$\cdots$	63.2	81.6	－	L	－	12.04	11.64	18.8	168.	180.	170.	1.8	200.4
14	ct．08	6，107	38.3	2.578	80.44	－	－	79.6	77.1	16.6	－	－	13.48	13.10	18.0	156.	188.	211.	2.7	186.0
14	87.07	3．267	308.0	3.247	101.4	100．5	300.	100.0	17．3	17.4	－	－	14.90	16.48	16.4	160.	223.	262.	2.2	138.0
18	60.32	2，688	24.2	4.004	127.3	184.6	124.	124.0	118.	19.4	－	－	17.20	16.40	18.8	306.	271.	321.	1.7	117.0
17	4 s .28	2，068	398.7	8.163	181.8	158.2	185.	146.	160.	22.0	－	$\sim$	18.40	18.10	21.2	372.	329.	$39 \%$.	1.2	99.0
18	40.30	1，484	168.6	6.610	203.4	200.4	13 \％	186.	188.	23.0	$\square$	－	81.00	80.00	23.4	054.	398.	49.	1.1	82.8
18	26.88	1，288	181.8	6.210	266.5	282.6	848.	247．	837.	27．4．	－	－	21.40	21.83	28.4	153.	476.	512.	． 64	68.7
80	21.96	1，022	96.6	10.38	322.4	218.	812.	111.	288.	31.0	27.	25.	26.40	23.21	29.4	725．	425.	776.	4	68.3
21	38.46	10.1	76.61	13.08	407.8	388.	38.	38.	370.	35.0	30.	27.	21.70	26.80	23.1	596.	76.	340.	． 4	48.1
82	25.86	442.4	60.76	18.48	514.8	306.	488.	491.	461.	38.0	14.	30.6	38.00	28.612	37.0	1，070．	＊10．	1.150.	． 41	41.8
28	22.67	300.5	48．18	30.76	64.4	485.	681.	614.	884.	44.0	28.	34.	84.30	31.12	41.8	1，200．	1，083．	1．400．	84	34.5
24	20.10	40.0	38.21	26.17	818.7	784．	779.	715.	745：	80.0	48.	34.	27.10	31.60	48.8	1，670．	1，260．	1．700．	． 27	28.1
24	17.90	320.4	30.30	33.00	1.091.	1，004．	48.	9st．	308.	$84.0{ }^{\circ}$	67.	4.	41.80	36.20	517	1．810．	1．810．	2．060．	.31	24.6
34	16.04	264.1	24.09	41.62	1，300．	1．240．	1.202.	1，188．	1，188．	68.0	${ }^{1}$	46.	48.30	13.80	ER．0	2，300．	1．960．	2，800．	． 17	20.6
27	14.20	201.5	18.06	6148	1．620．	1，813．	1．842．	1，583．	1．472．	70.0	$5{ }^{6}$	30.	48.40	48.40	4.8	2，750．	2．020．	2，030．	． 18	17.7
23	12.64	189.8	4.11	64.17	2.067.	2.088.	1，17．	1，908．	1，769．	70.0	64.	61.	84.00	4.80	72.7	2，880．	2，310．	3，670．	． 11	14.7
33	11.24	184.7	11．98	33.44	2，407．	2，625．	2.485.	2.461.	8．207．	88.0	11.	68.	88.40	48,00	81.4	2.800.	2．700．	4．390．	．0tic	18.6
30	10.03	100.5	8.60	306.2	3．287．	3．323．	2．900．	2，193．	2，636．	100.	30.	68.	61.40	1.10	90.5	4．640	3．020．	8．040．	． 085	10.15
11	4.92	78.70	1.84	132.9	4，145．	2.820.	2.483 ．	3，488．	2.768.	118.	4.	71.	3.00	6 6．to	101.	3，280．	－	6，980．	． 065	8.76
32	7．85	43.24	3．88	167.8	6．327．	4．876．	4，684．	4，414．	3，737．	128.	\％．	76.	75.00	60.20	118.	6，260．	－	7，060．	． 042	7.16
31	7.06	40．12	6.74	211.0	6.891.	0，243．	8．889．	s．638．	4．697．	141.	108.	3	81.00	64.30	187.	7．260．	－	4．120．	．038	6.17
34	4.81	38．78	2.18	266.0	8．810．	7．767．	7，111．	6，400．	4．148．	139.	116.	18.	87.60	68.60	148.	3，210．	－	2．600．	． 026	b． 12
38	3.62	11.62	2.51	338.4	10，485．	9，460．	8．634	8.393.	6．737．	178.	180.	104.	94.20	73.00	168.	1，700．	－	10，400．	． 021	4.37
36	8.00	25.00	2.38	433.0	12，210．	13，907．	10.040.	9，94．	7，979．	290.	146.	110.	101.	78.50	175．	10．700．	－	12，200．	． 017	8.68
37	4.48	19.63	1.87	833.4	18.660.	13.476.	10.670.	11，636．	9，309．	222.	180.	118.	108.	4.00	18 E ．	－	$\square$	－	． 013	8.08
38	3.94	13.72	1.49	672.4	21，010．	18，616．	14，220．	－13，883．	10．656．	256.	166.	188	118.	18.10	224.	－	－	－	． 016	2.85
38	8.63	12.47	1.18	848.1	88，500．	22．260．	16．680．	18，986．	11，10．	285.	130.	130.	122.6	85.00	248.	－	$\cdots$	－	．008	280
40	3.14	0． 88	． 94	1，069．0	33.430.	28.980.	21，330．	24，881．	14．222．	321.	200.	140.	180.	102.80	28.	二	－		．008	2.86
48	2.80	7.84	． 76	1，328．0	42.110.	－	－	80，810．	17，920．	－	二	二	168．	112.	－	－	二	二	008	－
${ }_{48}^{48}$	2.80	8.28	49	1.661 .0 2.105 .0	84．110． 64，970．	二	$\square$	28，700．	22.600. 20.410.	－	二	二	${ }_{198 .}$	124. 140.	－	$\stackrel{-}{\square}$	二	＝	． 0.004	－
44	2.82 1.98	4.93 2.91	． 38	2，663．0	34，440．	－	－	\＄1，400．	35，980．	－	－	－	110.	153.	－	－－		－	．0023	

A mil is $1 / 1000$（one thousandth）of an ineh． The sale rurrentarery（at $1000^{\circ} \mathrm{CM}$ per smpers）is equal to the eireular mil area（Column 3）divided by 1000 ． The sale currem－etarrying eapacity in omperes fat 1000 CM
Note：For bard－drawn eopper，increane resistance walue $2 \%$ ．

## RESISTANCE DATA FOR COMMON METALS AND ALLOYS

Relative Resistance: The accompanying table lists the relative resistances and temperature coefficients of commonly used elements and alloys. Relative resistance may be defined as the ratio of the resistance of a wire made of a certain material to the resistance of an annealed copper wire of the same diameter and length and at the same temperature. For instance, if the relative resistance of a certain material is 20 , it means that a piece of this material will have 20 times as much electrical resistance as would a piece of annealed copper of exactly the same dimensions and at the same temperature. If the relative resistance of a material is known, the exact resistance of a wire of certain size made of that material may easily be calculated from data which will be found in the Copper Wire Table on page 22-2. To show how this is done, let us consider the following problem:

Example: The resistance of a 1 -foot length of No. 14 "nichrome" wire at a temperature of 25 degrees Centigrade is to be found.
Solution: Referring to the Copper Wire Table on page 22-2 of this book we find that the resistance of No. 14 copper wire is approximately 2.58 ohms per 1,000 feet (at a temperature of 25 degrees centigrade). The resistance per foot is therefore $2.58 \div 1,000=0.00258$ ohms. Referring to the Resistance Data table in this section, we find that the relative resistance of "nichrome" wire is 57.9 (i.e., nichrome has 57.9 times as much resistance as copper at the same temperature). Therefore, the resistance of a 1 -foot length of No. 14 nichrome wire at a temperature of 25 degrees Centigrade is equal to $0.00258 \times 57.9=0.14$ ohms (approximately) Ans.
This calculation illustrates the usefulness of the table of "relative resistance" values when the resistance of wires made of
various resistance-alloy wires, etc., is to be calculated.
Temperature Coefficient of Resistance: The electrical resistance of pure metals and most alloys increases as their temperature rises. The resistance of carbon and electrolytes (fluid "RELATIVE RESISTANCE" AND "TEMPERATURE COEFFICIENT OF RESISTANCE" OF COMMON METALS AND ALLOYS

Material	Relative   Resistance	Temperature   Coefficient   of Resistance
Advance	27.8	.000002
Aluminum	1.64	.0034
Brass	4.06	.002
Cadmium	4.37	.0042
Carbon	200.	.0005
Climax	50.4	.0007
Cobalt	5.62	.0033
Constantin	25.5	.000002
Copper,		
$\quad$ (annealed)	1.00	.00393
(pure)	.98	.004
Eureka	27.2	.00005
Excello	53.3	.00016
German Silver	19.1	.0004
Graphite	464.	$--0-$
Gold	1.41	.0034
Iron	5.79	.005
Lead	12.7	.0043
Magnesium	2.67	.004
Manganin	25.5	.000000
Mercury	55.	.00089
Molybdenum	3.30	.0033
Monel Metal	24.3	.002
Nichrome	57.9	.0004
Nickel	4.52	.006
Platinum	5.79	.003
Silver	.94	.0038
Steel (Piano		
Wire)	6.84	.0032
Steel (invar.)	46.9	.002
Tantalum	8.98	.0031
Tin	6.66	.0042
Tungsten	3.19	.0045
Zinc	3.33	.0037

conductors) decreases as their temperature rises. The amount of change of resistance of different metals differs slightly, as will be seen by inspection of the right-hand column of the accompanying table. Since the temperature of a conductor may be changed greatly either by its surroundings or by the heat developed within it by the passage of current through it, the temperature must be taken into account when calculating its resistance if accurate results are desired. This is especially important if the conductor is operating at high temperature (as is the case in electric heating elements, vacuum tube filaments, etc.).

The amount in ohms that the resistance of a material changes per ohm per degree change in temperature is known as the temperature coefficient of resistance of that material. Values for the temperature coefficients of resistance for various metals and alloys will be found in the right-hand column of the accompanying table. The temperature coefficient of resistance of a material is not a constant value but varies slightly with the temperature. Some of the values given in the accompanying table are for a temperature of $0^{\circ}$ Centigrade, others are for $20^{\circ} \mathrm{C}$ and others are for $25^{\circ} \mathrm{C}$. The temperature is not stated in each case because the variation in temperature coefficient is so small throughout the ordinary range of temperatures that it may be neglected for all but the most accurate calculations. The following example illustrates the method of using the data in the table.

Example: A piece of "nichrome" wire whose resistance at the room temperature of 20 degrees Centigrade is 25 ohms is to be coiled up and used as a heater element. When current is sent through the wire to produce the heat, its temperature rises to 110 degrees Centigrade. What is the (hot) resistance of the wire at this temperature?
Solution: Referring to the accompanying table, we find that the temperature coefficient of resistance of nichrome is 0.0004 . This is the resistance change per ohm per degree $C$ change of temperature. Therefore, multiplying the "cold" resistance by the change in temperature ( $110-20$ ) and then by the temperature coefficient of resistance, we obtain $25 \times$ $90 \times 0.0004=0.9 \mathrm{ohm}$ as the increase in resistance. The "hot" resistance of the wire is therefore $25+0.9=25.9$ ohms.
For materials for which the temperature coefficient of resistance is negative (resistance decreases as the temperature is in-
creased), the "hot" resistance will be less than the "cold" resistance by the amount of the resistance change caused by the change in temperature. Carbon and electrolytes have a negative temperature coefficient of resistance. This should be remembered by radio service men when considering the effect which a rise in operating temperature has on the resistance of resistors made of carbon.

## TRANSFORMER TURNS-PER-VOLT CHART

The inductance of a coil depends upon the permeability of the substance used for its core; for air-cored transformers, the permeability is 1 ; for iron and certain grades of steel, the permeability may be as much as 1,000 or more. Moreover, the permeability of a magnetic core depends upon the flux density of the magnetism in the core. When the flux density and the core area in a power transformer are known, the following chart (reproduced here through the courtesy of the General Electric Co.) enables one to determine the number of primary-winding turns of wire to wind on that core per volt of applied voltage. It also enables one to find the number of turns of wire which must be wound to form a secondary winding which is to have a certain desired voltage induced in it. The following example will illustrate the use of the chart.

Example: Suppose a simple power transformer is to be wound on a core $1 / 2$ square inch in cross-sectional area and the proper flux density for the grade and type of core iron to be used is 50,000 lines ( 50 kilolines) per square inch. (The proper flux density for different grades of iron may be obtained from standard electrical engineering texts or from core-iron manufacturers.) The primary of this transformer is to connect to the 110 -volt 60 -cycle lighting circuit. A secondary winding which is to deliver 5 volts, and one to deliver 1,000 volts, are to be provided. The primary and secondary windings are to be wound over the center leg of the core.
Solution: Referring to the chart, we lay a ruler between the 50 kiloline point on the FLUX DENSITY scale (SQ. IN. side) and the 0.5 sq. inch point on the CORE AREA scale. A line $A-A$ is drawn through these two points. This line meets the 60 -cycle TURNS-PER-VOLT scale at about 14 turns-per-volt. Therefore, for every volt the primary connects to, or for every volt desired from the secondary winding, 14 turns must be wound. The primary, then, requires $110 \times 14=1540$ turns, and the 5 -volt secondary must have $5 \times 14=70$ turns.

The high-voltage secondary to deliver 1,000 volts must have $1,000 \times 14=14,000$ turns. (The flux density in the 24-1
core of a transformer of this type is very nearly the same from no load to full load.)
If the transformer were designed for operation from a 25 cycle line, then the turns-per volt would be about 34 (the point


TRANSFORMER TURNS-PER-VOLT CHART: Knowing the flux density and the core area, the turns-per-volt for either a primary or a secondary winding may be determined by merely drawing the straight line ( $A-A$ ) from the proper point on the "FLUX DENSITY" line through the proper point on the "CORE AREA" line-the extension of this line intersects the "TURNS-PER-VOLT" line at the point which represents the turns-per-volt of the transformer.

For convenience, the "FLUX DENSITY" line has "kilolines per square inch" and "kilolines per square centimeter" scales. The "CORE AREA" line has "square inch" and "square centimeter" scales. The 'TURNS-PER-VOLT" line gives values for 60 cycles on the left, and for 25 cycles on the right.
where the line $A-A$ crosses the 25 -cycle scale of the "TURNS-PER-VOLT" line).

The chart shown here also has a SQ.CM. scale for use when the flux density is specified in kilolines per sq. cm . and the core area is specified in sq. cm.

## METRIC PREFIXES USED IN RADIO WORK

It so happens that many of the units used extensively in electrical work are either too small or too large for convenient expression or use in radio work. Instead of using large, cumbersome numbers to indicate the fractional or multiple parts of these units, it has become customary to make use of standard metric prefixes ahead of the standard units to simplify expressions and calculations involving these quantities. These metric prefixes are so commonly used in radio work that the service man should familiarize himself with them, so that he may become proficient in understanding and using them. A list of these prefixes is given below:

Prefix	Abbreviation	Meaning
deci	$d$	one-tenth part of
centi	$c$	one-hundredth part of
mil or milli	$m$	one-thousandth part of
micro	$\mu$	one-millionth part of
pica or micro-micro	$\mu \mu$ or $m m$	one-millionth of a millionth part of
deka	$d k$	10 times
hekto	$h$	100 times
kilo	$k$	1,000 times
mega	M	1,000,000 times

Thus, the prefix deci ahead of a standard unit means that the new unit is 0.1 of the standard unit. Therefore, a decimeter is 0.1 of a meter. A milliampere is 0.001 of an ampere. A microhenry is 0.000001 of a henry. A microfarad is 0.000001 of a farad. Instead of saying that a condenser has a capacity of 0.00035 microfarads, for instance, it is more convenient to say that it has a capacity of 350 micro-microfarads, etc.

A centimeter of inductance is equal to 0.001 of a microhenry. This unit does not follow the general rule.

The prefix deka means that the new unit is ten times the standard unit. The prefix kilo means that the new unit is 1,000 times the standard unit. Thus, one kilocycle equals 1,000 cycles. The prefix meg or mega means that the new unit is $1,000,000$ times the original unit. Thus, one megohm equals $1,000,000$ ohms, etc.

CONVERSION OF UNITS EXPRESSED WITH METRIC PREFIXES
As it is often very difficult for persons inexperienced in the handling of mathematical computations to correctly convert from one form to another the various electrical units which are expressed with the common metric prefixes, the following factors for conversion have been arranged alphabetically here to assist in this work.

Multiply	$B y$	To Get
Amperes	$\times 1,000,000,000,000$	micro-microamperes
Amperes	$\times 1,000,000$	microamperes
Amperes	$\times 1,000$	milliamperes
Cycles	$\times .000001$	megacycles
Cycles	$\times$. 001	kilocycles
Farads	$\times 1,000,000,000,000$	micro-microfarads or picofarads
Farads	$\times 1,000,000$	microfarads
Farads	$\times 1,000$	millifarads
Henries	$\times 1,000,000$	microhenries
Henries	$\times 1,000$	millihenries
Horsepower	$\times .7457$	kilowatts
Horsepower	$\times 745.7$	watts
Kilocycles	$\times 1,000$	cycles
Kilovolts	$\times 1,000$	volts
Kilowatts	$\times 1,000$	watts
Kilowatts	$\times 1.341$	horsepower
Megacycles	$\times 1,000,000$	cycles
Mhos	$\times 1,000,000$	micromhos
Mhos	$\times 1,000$	millimhos
Microamperes	$\times .000001$	amperes
Microfarads	$\times .000001$	farads
Microhenries	$\times .000001$	henries
Micromhos	$\times .000001$	mhos
Micro-ohms	$\times .000001$	ohms
Microvolts	$\times .000001$	volts


Multiply	$B y$	To Get
Microwatts	$\times .000001$	watts
Micro-microfarads	$\times .000000000001$	farads
Micro-micro-ohms	$\times .000000000001$	ohms
Milliamperes	$\times .001$	amperes
Millihenries	$\times .001$	henries
Millimhos	$\times .001$	mhos
Milliohms	$\times .001$	ohms
Millivolts	$\times .001$	volts
Milliwatts	$\times .001$	watts
Ohms	$\times 1,000,000,000,000$	micro-micro-ohms
Ohms	$\times 1,000,000$	micro-ohms
Ohms	$\times 1,000$	milliohms
Volts	$\times 1,000,000$	microvolts
Volts	$\times 1,000$	millivolts
Watts	$\times 1,000,000$	microwatts
Watts	$\times 1,000$	milliwatts
Watts	$\times .001$	kilowatts

## THE USE OF EXPONENTS IN CALCULATIONS

It is very convenient to express very large or very small quantities by means of whole numbers with suitable exponents. For instance, the rather cumbersome number $350,000,000$ may be written as $3.5 \times 10^{8}$, which really means that 3.5 is multiplied by ten, eight times. The small number above, and to the side of, the figure 10 is called the exponent. In this case the exponent is 8 . Numbers less than 1 have negative exponents. Thus, five ten-thousandths may be expressed in the following ways:

$$
0.0005, \text { or } 5 \times 10^{-4}, \text { or } \frac{5}{10,000}, \text { or } \frac{5}{10^{4}}
$$

This representation is really a shorthand method of working with inconveniently large or small quantities, and the student should become thoroughly familiar with it, as it is used extensively in technical work. The table below will be found helpful in understanding how the proper exponent is found.

$$
\begin{aligned}
1 & =10^{0}=\text { Units } \\
10 & =10^{1}=\text { Tens } \\
100 & =10^{2}=\text { Hundreds } \\
1,000 & =10^{3}=\text { Thousands (Kilo.) } \\
1,000,000 & =10^{6}=\text { Millions (Mega.) } \\
1 & =10^{0}=\text { Units } \\
.1 & =10^{-1}=\text { Tenths } \\
.01 & =10^{-2}=\text { Hundredths } \\
.001 & =10^{-3}=\text { Thousandths (Milli.) } \\
.00001 & =10^{-6}=\text { Millionths (Micro.) }
\end{aligned}
$$

The rules dealing with these complicated looking figures are
simple, and, when mastered, provide an exceptionally easy method of handling large numbers. They are as follows:

When multiplying numbers, add the exponents.
When dividing numbers, subtract the exponents.
When squaring numbers, double the exponents.
When obtaining square roots, halve the exponents.
When transfering an exponent across the dividing line, change its sign.

Example: Express the following quantities in simple numbers by the use of exponents. (a) 342,000,000,000 (b) 9,653,000 (c) 0.0000084 (d) 0.000432 .

Answers: (a) $3.42 \times 10^{11}$ (b) $9.653 \times 10^{6}$ (c) $8.4 \times 10^{-6}$ (d) $4.32 \times$ 10-4. Ans.

Example: $6.28 \times 10^{18}$ electrons flowing past a given point in a second constitute a current of 1 ampere. How many electrons flow past a given point in a second when the number of amperes is (a) 600? (b) 0.002 ?
Solutions: (a) $6.28 \times{ }^{10^{18}} \times 6 \times 10^{2}=37.68 \times 10^{20}$ or $3.768 \times 10^{21}$. Ans.
(b) $6.28 \times 10^{18} \times 2 \times 10^{-3}=12.56 \times 10^{16}$ or $1.256 \times 10^{16}$. Ans.

## SUMMARY OF FORMULAS COMMONLY USED IN RADIO WORK

## Voltage, Current, Resistance:

$$
\begin{aligned}
& \text { amperes }=\frac{\text { volts }}{\text { ohms }},\left(I=\begin{array}{c}
E \\
R
\end{array}\right) \\
& \text { volts }=\text { amperes } \times \text { ohms, }(E=I \times R) \\
& \text { ohins }=\frac{\text { volts }}{\text { amperes }},\left(R=\frac{E}{I}\right)
\end{aligned}
$$

Power (D.C.): watts $=$ volts $\times$ amperes, $(W=E \times I)$ watts $=$ volts squared divided by ohms, $\left(W=\frac{E^{2}}{R}\right)$ watts $=$ amperes squared $\times$ ohms, $\left(W=I^{2} \times R\right)$
Resistance: $R=R_{c} \times P$, where $R_{c}$ is the resistance of copper of the same size, and $P$ is the relative resistance of the material (see tables on pages 22-2 and 23-2 of this book)
Resistance: $R=R_{c} \times P[1 \pm(a \times t)]$, where $a$ is the temperature coefficient of resistance and $t$ is the temperature change.

Resistances in series: (all resistances expressed in the same units)
$R=R_{1}+R_{z}+R_{s}+$ etc. (where $R$ is the total resistance; $R_{1}, R_{2}, R_{3}$ etc., are the individual resistances).
Resistances in parallel: (all resistances expressed in ohms)

$$
\begin{aligned}
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{z}}+\frac{1}{R_{3}}+\text { etc. (mhos) } \\
& \text { or, } R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{z}}+\frac{1}{R_{3}}+\text { etc. }} \text { (ohms) }
\end{aligned}
$$

or, $R=\frac{R_{1} \times R_{2}}{R_{i}+R_{2}}$ (ohms) for two resistors in parallel.
Capacity of a condenser:
$C=\frac{2235(N-1) A k}{10^{10} \times t}$ where $C$ is the capacity in mfd., $N$ is the number of plates, $A$ is the area of one side of one plate (in square inches), $K$ is the dielectric constant, and $t$ is the spacing between the plates (in inches).

Capacity of condensers in parallel: (all capacities must be expressed in same units)
$C=C_{1}+C_{2}+C_{3}+$ etc., (where $C$ is the total capacity; $C_{1}, C_{3}, C_{3}$, etc. are the individual capacities)

Capacity of condensers in series: (all capacities must be expressed in same units)

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{3}}+\frac{1}{C_{3}}+e t c .
$$

or, $C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{8}}+\frac{1}{C_{3}}+e t c .}$
or, $C=\frac{C_{1} \times C_{2}}{C_{1}+C_{2}}$ (for two condensers only)
Inductive Reactance: $X_{L}=2 \pi f L$ (ohms), where $\pi=3.14$, $f=$ frequency in cycles per second, and $L$ is the inductance in henries.

Capacitive Reactance: $\quad X_{c}=\frac{1}{2 \pi f C}$ (ohms), where $C$ is the
capacity in farads.
Impedance ( $Z$ ) of an a-c circuit containing inductance ( $L$ ), capacity ( $C$ ) and resistance ( $R$ ) at frequency ( $f$ ).

$$
\begin{aligned}
& Z=\sqrt{R^{2}+X^{2}} \\
& =\sqrt{R^{2}+\left(2 \times 9.14 \times f \times L-\frac{1}{2 \times 3.14 \times f \times C}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& I=\frac{E}{\sqrt{R^{2}+\left(2 \pi f L-\frac{1}{2 \pi f C}\right)^{2}}} \\
& \text { and, } f=\frac{1}{2 \pi \sqrt{L C}}
\end{aligned}
$$

Frequency and wavelength relations for radio (not for sound) :

$$
\begin{aligned}
& \text { Meters }(\text { wavelength })=\frac{300,000,000}{\text { cycles }} \\
& \text { Frequency }(\text { cycles })=\frac{300,000,000}{\text { meters }(\text { wavelength })} \\
& \text { Frequency }(k c)=\frac{900,000}{\text { meters }(\text { wavelength })}
\end{aligned}
$$

Wavelength at which resonance in a series tuned circuit takes place with a given inductance ( L ) and capacity (C).

Meters (wavelength) $=1885 \sqrt{L(\text { microhenries }) \times C(m f d .)}$
Meters (wavelength) $=1.885 \sqrt{ } \bar{L}$ (microhenries) $\times C$ (mmfd.)
Frequency at which resonance occurs with given constants of inductance and capacity:

$$
\begin{aligned}
& \text { Frequency }(\text { cycles })=\frac{159,000}{\sqrt{L(\text { microhenries }) \times C(\text { mfd. })}} \\
& \text { Frequency }(\text { cycles })=\frac{159,000,000}{\sqrt{L(\text { microhenries }) \times C(\text { mmfd. })}}
\end{aligned}
$$

Loud speaker baffle length:

$$
L=\frac{282}{\text { frequency }} \text { (feet) }
$$

Inductance of a single-layer air-core coil:

$$
L=0.0251 d^{2} n^{2} l K
$$

where $L$ is the inductance in microhenries; $d$, is the mean diameter of the coil in inches; $n$, is the number of turns per inch; $l$, is the length of the coil (when wound) in
inches; and $K$ is a "form factor" (Nagoaka's currection factor), which depends for its value upon the ratio of the diameter to the length of the coil. Values of $K$ for a wide range of coil diameter-to-length ratios are presented in the table below.

VAlUES OF "K" FOR USE IN THE INDUCTANCE FORMULA*

d/l	K	d/l	$K$	$d / l$	K	d/l	K	$d / l$	$K$
0.00	1.0000	1.20	. 64	2.80	. 4452	5.40	. 3050	16.00	
10	. 9588	1.30	. 6290	3.00	. 4292	5.80	. 2916	18.00	. 1336
. 20	. 9201	1.40	. 6115	3.20	. 4145	6.20	. 2795	20.00	. 1236
. 30	. 88	1.50	950	3.40	. 4008	6.60	2685	24.00	. 1078
. 40	. 848	1.60	. 5795	3.60	. 3882	7.00	. 2584	28.00	. 0959
. 50	. 818	1.	. 56	3.8	. 376	7.40	. 24	35.00	. 080
. 60	. 7885	1.80	. 5511	4.00	. 3654	7.80	. 2406	45.00	. 066
. 70	. 7609	1.90	. 5379	4.20	. 3551	8.50	. 2272	60.00	. 052
. 80	. 7351	2.00	. 5255	4.40	. 3455	9.50	. 2106	80.00	. 0419
0	. 71	2.20	. 502	4.60	. 3364	10.00	. 2033	00.00	
0	. 688	2.40	. 4816	4.80	. 32	12.00	. 1		
1.10	. 667	2.60	. 4		. 3198	14.00	. 1605		

*Note: This formula assumes the coil to be wound with an infinitely thin conducting tape, the edges of which touch, though electrically insulated. The correction for the commercially available conductors commonly used for winding inductance coils employed in radio equipment (silk, cotton, or enamel-covered wires) is relatively small and may be neglected so far as practical results are concerned.

## WAVELENGTH, FREQUENCY AND L $\times \mathrm{C}$ CONVERSION TABLE

The formula for determining the frequency to which any circuit containing inductance and capacity will tune is:

$$
\begin{gathered}
f=\frac{159,000}{\sqrt{L \times C}} \\
\text { or, wavelength }=1885 \sqrt{L \times C}
\end{gathered}
$$

where, $f=$ the frequency in cycles per second
$L=$ the inductance of the coil in microhenries
$C=$ the capacity of the entire circuit in microfarads.
The product of the inductance $L$ and the capacity $C$ of the circuit determines the frequency at which the circuit is resonant or in "tune". For each frequency there is a definite value of this product (called the inductance-capacity product, or the " $L \times C$ " value) for which resonance occurs. If this value is known, it is possible to determine the correct amount of inductance required for use with any value of capacity, or the correct amount of capacity for use with any value of inductance, to produce resonance at that frequency. The $L \times C$ value is divided by the known capacity, or the known inductance, the quotient of the division being the required inductance or capacitance. Thus:

$$
\begin{aligned}
& \text { Inductance }=\frac{L \times C \text { value }}{\text { capacity }} \\
& \text { Capacity }=\frac{L \times C \text { value }}{\text { inductance }}
\end{aligned}
$$

The following table gives the inductance $\times$ capacity values
necessary to produce resonance at wavelengths from 1 to 39,000 meters (corresponding to frequencies from $300,000,000$ to 7,690 cycles). The inductance is in microhenries, the capacity is in microfarads, and $n$ is the frequency in cycles per second.

As examples of the use of this table, let it be desired to find the required inductance of a coil to tune to a frequency of 600 kilocycles ( 500 ineters) with a tuning condenser of 0.00035 microfarads maximum capacity. From the table, the $L \times C$ value for this frequency is found to be 0.0704 . Dividing this value by the capacity ( 0.00035 ) gives the result, 201 microhenries of inductance.

Let it be desired to find the required capacity of this tuning condenser to tune to the frequency of 1,500 kilocycles ( 200 meters) with the above coil of 201 microhenries inductance. The $L \times C$ value for this frequency is found from the table to be 0.01126 . Dividing this by the inductance (201) gives as a result 0.000055 microfarads for the minimum capacity. The tuning condenser must then have a range of capacity from 0.000055 to 0.00035 microfarads to cover this frequency range with this inductor. Any other coil and condenser combination may be calculated in this same way.

A study of the table shows that, as the frequency decreases, the $L \times C$ constant increases. If we divide the frequency by 10 , the $L \times C$ constant is $10^{2}$ (or 100) times as large. This must be kept in mind if values beyond the ranges of the table are to be determined. For instance, if we wish to determine the $L \times C$ constant for 2 kc ( 2,000 cycles), we may look up the value for 20,000 cycles in the table (it is 63.3 ). We then move the decimal point two places to the right; 6,330 is the correct $L \times C$ constant. If it is desired to check the results, remember that resonance occurs when the inductive reactance is equal to the capacitive reactance. The frequency at which this occurs is the resonance frequency.
(See Table on following pages)

## WAVELENGTH, FREQUENCY AND L $\times$ C CONVERSION TABLE

In this table the frequency $f$ is expressed in cycles per second. Also, $\mathrm{L} \times \mathrm{C}$ means the product of the inductance in microhenries and the capacity in microfarads required to produce resonance at the corresponding frequency or wavelength.

Meters	$f$	$\mathrm{L} \times \mathrm{C}$	Meters	$f$	L×C	Meters	$f$	$\mathrm{L} \times \mathrm{C}$
1	300,000,000	0.0000003	200	1,500,000	0.01126	550	546,000	0.0852
2	150,000,000	0.0000011	210	1,429,000	0.01241	555	541,000	0.0867
3	100,000,000	0.0000018	220	1,364,000	0.01362	560	536,000	0.0883
	75,000,000	0.0000045	230	1,304,000	0.01489	565	531,000	0.0899
5	60,000,000	0.0000057	240	1,250,000	0.01621	570	527,000	0.0915
6	50,000,000	0.0000101	250	1,200,000	0.01759	575	522,000	0.0931
7	42,900,000	0.0000138	260	1,154,000	0.01903	580	517,000	0.0947
8	37,500,000	0.0000180	270	1,111,000	0.0205	585	513,000	0.0963
9	33,330,000	0.0000228	280	1,071,000	0.0221	590	509,000	0.0980
			290	1,034,000	0.0237	595	504,000	0.0996
10	30,00,000	0.0000282	300	1,000,000	0.0253	600	500,000	0.1013
15	20,000,000	0.0000635	310	1968,000	0.0270	605	496,000	0.1030
20	15,000,000	0.0001129	320	938,000	0.0288	610	492,000	0.1047
25	12,000,000	0.0001755	330	909,000	0.0306	615	488,000	0.1065
30	10,000,000	0.0002530	340	883,000	0.0325	620	484,000	0.1082
35	8,570,000	0.0003446	350	857,000	0.0345	625	480,000	0.1100
40	7,500,000	0.000450	360	834,000.	0.0365	630	476,000	0.1117
45	6,670,000	0:000570	370	811,000	0.0385	635	472,000	0.1135
			380	790,000	0.0406	640	469,000	0.1153
			390	769,000	0.0428	645	465,000	0.1171
50		0.000704	400	750,000	0.0450	650	462,000	0.1189
55	5,450,000	0.000852	410	732,000	0.0473	655	458,000	0.1208
60	5,000,000	0.001014	420	715,000	0.0496	660	455,000	0.1226
65	4,620,000	0.001188	430	698,000	0.0520	665	451,000	0.1245
70	4,290,000	0.001378	440	682,000	0.0545	670	448,000	0.1264
75	4,000,000	0.001583	450	667,000	0.0570	675	444,000	0.1283
80	3,750,000	0.001801	460	652,000	0.0596	680	441,000	0.1302
85	3,529,000	0.002034	470	639,000	0.0622	685	438,000	0.1321
90	3,333,00	002280	480	625,000	0.0649	690	435,000	0.1340
95	3,158,000	. 002541	490	612,000	0.	695	432,000	0.1360
100	3,000,000	0.00282	500	600,000	0.0704	700	429,000	0.1379
110	2,727,000 0	0.00341	505	594,000	0.0718	705	426,000	0.1399
120	2,500,00	0.00405	510	588,000	0.0732	710	423,000	0.1419
130	2,308,000	0.00476	515	583,000	0.0747	715	420,000	0.1439
140	2,143,000	0.00552	520	577,000	0.0761	720	417,000	0.1459
150	2,000,000	0.00633	525	572,000	0.0776	725	414,000	0.1479
160	1,875,000	0.00721	530	566,000	0.0791	730	411,000	0.1500
170	1,764,000	0.00813	535	561,000	0.0806	735	408,000	0.1521
180	1,667,000	0.00912	540	556,000	0.0821	740	405,000	0.1541
190	1,579,000	0.01015	545	551,000	0.0836	745	403,000	0.1562

Relation of Natural Wavelength, etc.-Continuod

Meters	$f$	L×C	Meters	$f$	L×C	Meters	$f$	L×C
750	400,000	0.1583	1000	300,000	0.282	1500	200,000	0.633
755	397,000	0.1604	1010	297,100	0.287	1510	198,700	0.642
760	395,000	0.1626	1020	294,200	0.293	1520	197,400	0.650
765	392,000	0.1647	1030	291,300	0.299	1530	196,100	0.659
770	390,000	0.1669	1040	288,500	0.304 0.310	1540	194,800 193,500	0.667 0.676
775	387,000	0.1690	1050	285,700	0.310 0.316	1550 1560	193,500	0.676
780	385,000 382,000	0.1712 0.1734	1060 1070	283,000 280,400	0.316 0.322	1560	191,100	0.694
785 790	382,000 380,000	0 1734   0 1756  	1070 1080	287,400	0.322 0.328	1580	189,900	0.703
795	377,000	0.1779	1090	275,200	0.334	1590	188,700	0.712
800	375,000	01801	1100	272,700	0.341	1600	187,500	0.721
805	373,000	0.1824	1110	270,300	0.347	1610	186,300	0.730
810	370,000	0.1847	1120	267,900	0.353	1620	185,100	0.739
815	368,000	01870	1130	265,500	0.359	1630	184,000	0.748
820	366,000	0.1893	1140	263,200	0.366	1640	182,900	0.757
825	364,000	0.1916	1150	260,900	0.372	1650	181,800	0.766
830	361,000	0.1939	1160	258,600	0.379	1660	180,700	0.776
835	359,000	0.1962	1170	256,400	0.385 0.392	1670	179,600 178,500	0.785 0.794
840 845	357,000 355,000	0.1986 0.201	1180 1190	254,200 252,100	0.392 0.399	1680 1690	178,500 178,400	0.794 0.804
850	353,000	0.203	1200	250,000	0.405	1700	176,400	0.813
855	351,000	0.206	1210	247,900	0.412	1710	175,400	0.823
860	349,000	0.208	1220	245,900	0.419	1720	174,400	0.833
865	347,000	0.211	1230	243,900	0.426	1730	173,400	0.842
870	345,000	0.213	1240	241,900	0.433	1740	172,400	0.852
875	343,000	0.216	1250	240,000	0.440	1750	171,400	0.862
880	341,000	0.218	1260	238,100	0.447	1760	170,500	0.872
885	339,000	0.220	1270	236,200	0.454	1770	169,500	0.882
890	337,000	0.223	1280 1290	234,400 232,600	0.461 0.468	1780 1790	168,500 167,600	0.892 0.902
895	335,000	0.225	1290	232,600	0.468	1790	167,600	0.902
900	333,000	0.228	1300	230,800	0.476	1800	166,700	0.912
905	331,000	0.231	1310	229,000	0.483	1810	165,700	0.922
910	330,000	0.233	1320	227,300	0.490	1820	164,800	0.932
915	328,000	0.236	1330	225,600	0.498	1830	163,900	0.943
920	326,000	0238	1340	223,900	0.505	1840	163,000	0.953
925	324,000	0.241	1350	222,200	0.513	1850	162,200	0.963 0.974
930	323,000	0.243	1360	220,600	0.521	1860	161,300 160,400	0.974 0.984
935	321,000	0246	1370	219,000	0.528 0.536	1870	160,400 159,600	0.984 0.995
940	319,000 317,000	0.249 0.251	13880	217,400	0.536 0.544	1880	159,600 158,700	0.995 1.005
950	316,000	0.254	1400	214,300	0.552	1900	157,900	1.015
955	314,000	0.257	1410	212,800	0.560	1910	157,100	1.026
960	313,000	0.259	1420	211,300	0.568	1920	156,300	1.037
965	311,000	0.262	1430	209,800	0.576	1930	155,400	1048
970	309,000	0.265	1440	208,300	0.584	1940	154,600	1.059
975	308,000	0.268	1450	206,900	0.592	1950	153,800	1.070
980	306,000	0.270	1460	205,500	0.600	1960	153,100	1.081
985	305,000	0.273	1470	204,100	0.608	1970	152,300	1.092
990	303,000	0.276	1480	202,700	0.616	1980	151,500	1.103
995	302,000	0279	1490	201,300	0.625	1900	150,800	1.114

Relation of Natural Wavelength, etc.-Conlinued

Meters	$f$	$\mathbf{L} \times \mathbf{C}$	Meters	$f$	$\mathbf{L} \times \mathrm{C}$	Meters	$f$	L×C
2000	150,000	1.126	3000	100,000	2.53	4000	75,000	4.50
2020	148,500	1.148	3020	99;400	2.57	4020	74,700	4.55
2040	147,100	1.171	3040	98,700	2.60	4040	74,300	4.59
2060	145,600	1.194	3060	98,100	2.64	4060	73,900	4.64
2080	144,200	1.218	3080	97,400	2.67	4080	73,600	4.69
2100	142,900	1.241	3100	96,800	2.70	4100	73,200	4.73
2120	141,500	1.265	3120	96,200	2.74	4120	72,800	4.78
2140	140,200	1.289	3140	95,600	2.78	4140	72,500	4.82
2160	138,900.	1.313	3160	95,000	2.81	4160	72,100	4.87
2180	137,600	1.338	3180	94,400	2.85	4180	71,800	4.92
2200	136,400	1.362	3200	93,800	2.88	4200	71,500	4.96
2220	135,060	1.387	3220	93,200	2.92	4220	71,100	5.01
2240	133,904	1.412	3240	92,600	2.96	4240	70,800	5.06
2260	132,700	1.438	3260	92,000	2.99	:4260	70,400	5.11
2280	131,600	1.463	3280	91,500	3.03	4280	70,100	5.16
2300	130,400	1.489	3300	90,900	3.06	4300	69,800	5.20
2320	129,300	1.515	3320	90,400	3.10	4320	69,500	5.25
2340	128,200	1.541	3340	89,800	3.14	4340	69;100	5.30
2360 2380	127,100	1.568	3360	89,300	3.18	4360	68,800	5.35
2380	126,000	1.594	3380	88,800	3.22	4380	68,500	5.40
2400	125,000	1.621	3400	88,300	3.25	4400	68,200	5.45
2420	124,000	1.548	3420	87,700	3.29	4420	67,900	5.50
2440	122,900	-1.676	3410	87,200	3.33	4440	67,600	5.55
2460	121,900	1.703	3460	86,700	3.37	4460	67,300	5.60
2480	121,000	1.731	3480	86,200	3.41	4480	67,000	5.65
2500	120,000	1.759	3500	85,700	-3.45	4500	66,700	5.70
2520	119,000	1.787	3520	85,300	3.49	4520	66,400	5.75
2540	118,100	1.816	3540	84,800	3.53	4540	66,100	5.80
2560	117,200	1.845	3560	84,300	3.57	4560	65,800	5.85
2580	116,300	1.874	3580	83,800	3.61	. 4580	65,500	5.90
2600	115,400	1.903	3600	.83,400	3.65	4600	65,200	5.96
2620	114,500	1.932	3620	82,900	3.69	4620	.65,000	6.01
2640	113,600	1.962	3640	82,400	3.73	4640	64,700	6.06
2660	112,800	1.991	3660	82,000	3.77	4660	64,400	6.11
2680	111,900	2.02	3680	81,500	3.81	4680	64,100	6.17
2700	111,100	2.05	3700	81,100	3.85	4700	63,900	6.22
2720 2740	110,300 109,500	2.08	3720 3740	80,700	3.90	4720	63,600	6.27
2740 2760	109,500.	2.11	3740	80,200	3.94	4740	63,300	6.32
2760	108,700	2.14	3760	79,800	3.98	4760	63,000	6.38
2780	107,900	2.18	3780	79,400	4.02	4780	62,800	6.43
2800	107,100	2.21	3800	79,000	4.06	4800	62,500	6.49
2820	106,400	2.24	3820	78,600	4.11	4820	62,300	6.54
2840	105,600	2.27	3840	78,200	4.15	4840	62,000	6.59
2860	104,900	2.30	3860	77,700	4.19	4860	61,800	6.65
2880	104,200	2.33	3880	77,300	4.24	4880	61,500	6.70
2900	103,400	2.37	3900	76,900	4.28	4900	61,200	6.76
2920	102,700	2.40	3920	76,500	4.32	4920	61,000	6.81
2940	102,000	2.43	3940	76,200	4.37	4940	60,800	6.87
2960	101,300	2.47	3960	75,800	4.41	4960	60,500	6.92
2980	100.700	2.50	3980	75,400	4.46	4980	60,300	6.98

Relation of Natural Wavelength, etc.-Coninued

Meters	$f$	$\mathrm{L} \times \mathrm{C}$	Meters	$f$	L×C	Meters	$f$	$\mathrm{L} \times \mathrm{C}$
5000	60,000	7.04	7500	40,000	15.83	10000	30,000	28.2
5050	59,400	7.18	7550	39,700	16.04	10100	29,700	28.7
5100	58,800	7.32	7600	39,500	16.26	10200	29,400	29.3
5150	58,300	7.47	7650	39,200	16.47	10300	29,100	29.9
5200	57,700	7.61	7700	39,000	16.69	10400	28,800	30.4
5250	57,200	7.76	7750	38,700	16.90	10500	28,600	31.0
5300	56,600	7.91	7800	38,500	17.12	10600	28,300	31.6
5350	56,100	8.06	7850	38,200	17.34	10700	28,000	32.2
5400	55,600	8.21	7900	38,000	17.56	10800	27,800	32.8
5450	55,100	8.36	7950	37,700	17.79	10900	27,500	33.4
5500	54,600	8.52	8000	37,500	18.01	11000	27,300	34.1
5550	54,100	8.67	8050	37,300	18.24	11100	27,000	34.7
5600	53,600	8.83	8100	37,000	18.47	11200	26,800	35.3
5650	53,100	8.99	8150	36,800	18.70	11300	26,500	35.9
5700	52,700	9.15	8200	36,600	18.93	11400	26,300	36.6
5750	52,200	9.31	8250	36,400	19.16	11500	26,100	37.2
5800	51,700	9.47	8300	36,100	19.39	11600	25,900	37.9
5850	51,300	9.63	8350	35,900	19.62	11700	25,600	38.5
5900	50,900	9.80	8400	35,700	19.86	11800 11900	25,400 25,200	39.2 39.9
5950	50,400	9.96	8450	35,500	20.1	11900	25,200	
6000	50,000	10.13	8500	35,300	20.3	12000	25,000	40.5
6050	49,600	10.30	8550	35,100	20.6	12100	24,800	41.2
6100	49,200	10.47	8600	34,900	20.8	12200	24,600	41.9
6150	48,800	10.65	8650	34,700	21.1	12300	24,400	42.6
6200	48,400	10.82	8700	34,500	21.3	12400	24,200	43.3
6250	48,000	11.00	8750	34,300	21.6	12500	24,000	44.0
6300	47,600	11.17	8800	34,100	21.8	12600	23,800	44.7
6350	47,200	11.35	8850	33,900	22.0	12700	23,600	45.4
6400	46,900	11.53	8900	33,700	22.3	12800	23,400 23,300	46.1 46.8
6450	46,500	11.71	8950	33,500	22.5	12900	23,300	46.8
6500	46,200	11.89	9000	33,300	22.8	13000	23,100	47.6
6550	45,800	12.08	9050	33,100	23.1	13100	22,900	48.3
6600	45,500	12.26	9100	33,000	23.3	13200	22,700	49.0
6650	45,100	12.45	9150	32,800	23.6	13300	22,600	49.8
6700	44,800	12.64	9200	32,600	23.8	13400	22,400	50.5
6750	44,400	12.83	9250	32,400	24.1	13500	22,200	51.3
6800	44,100	13.02	9300	32,300	24.3	13600 13700	22,100 21,900	52.1 52.8
6850 6900	13,800 43,500	13.21 13.40	9350 9400	32,100 31,900	24.6 24.9	13700 13800	21,900 21,700	52.8 53.6
6950	43,200	13.60	9450	31,700	25.1	13900	21,600	54.4
7000	42,900	13.79	9500	31,600	25.4	14000	21,400	55.2
7050	42,600	13.99	9550	31,400	25.7	14100	21,300	56.0
7100	42,300	14.19	9600	31,300	25.9	14200	21,100	56.8
7150	42,000	14.39	9650	31,100	26.2	14300	21,000	57.6
7200	41,700	14.59	9700	30,900	26.5	14400	20,800	58.4
7250	41,400	14.79	9750	30,800	26.8	14500	20,700	59.2
7300	41,100	15.00	9800	30,600	27.0	14600	20,600	60.0
7350	40,800	15.21	9850	30,500	27.3	14700	20,400	60.8
7400	40,500	15.41	9900	30,300	27.6 27	14800 14900	20,300 20,100	61.6 62.5
7450	40,300	15.62	9950	30,200	27.9	14900	20,100	62.5

Relation or Natural Wavelengte, etc.-Continued

Meters	$f$	$\mathbf{L} \times \mathrm{C}$	Meters	$f$	L×C	Meters	$f$	L×C
15000	20,000	63.3	19000	15,790	101.5	26000	11,540	190.3
15100	19,870	64.2	19100	15,710	102.6	26200	11,450	193.2
15200	19,740	65.0	19200	15,630	103.7	26400	11,360	196.2
15300	19,610	65.9	19300	15,540	104.8	26600	11,280	199.1
15400	19,480	66,7	19400	15,460	105.9	26800	11,190	202.0
15500	19,350	67.6	19500	15,380	107.0	27000	11,110	205.0
15600	19,230	68.5	19600	15,310	108.1	27200	11,030	208.0
15700	19,110	69.4	19700	15,230	109.2	27400	10,950	211.0
15800	18,990	70.3	19800	15,150	110:3	27600	10,870	214.0
15900	18,870	71.2	19900	15,080	111.4	27800	10,790	218.0
16000	18,750	72.1	20000	15,000	112.6	28000	10,710	221.0
16100	18,630	73.0	20200	14,850	114.8	28200	10,640	224.0
16200.	18,510	73.9	20400	14,710	117.1	28400	10,560	227.0
16300	18,400	74.8	20600	14,560	119.4	28600	10,490	230.0
16400	18,290	75.7	20800	14,420	121.8	28800	10,420	233.0
16500	18,180	76.6	21000	14,290	124.1	29000	10,340	237.0
16600	18,070	77.6	21200	14,150	126.5	29200	10,270	240.0
16700	17,960	78.5	21400	14,020	128.9	29400	10,200	243.0
16800	17,850	79.4	21600	13,890	131.3	29600	10,130	247.0
16900	17,740	80.4	21800	13,760	133.8	29800	10,070	250.0
17000	17,640	81.3	22000	13,640	136.2	30000	10,000	253.0
17100	17,540	82.3	22200	13,510	138.7	31000	9,600	270.0
17200	17,440	83.3	22400	13,390	141.2	32000	9,380	288.0
17300	17,340	84.2	22600	13,270	143.8	33000	9,090	306.0
17400.	17,240	85.2	22800	13,160	146.3	34000	8,830	325.0
17500	17,140	86.2	23000	13,040	148.9	35000	8,570	345.0
17600	17,050	87.2	23200	12,930	151.5	36000	8,340	365.0
17700	16,950	88.2	23400	12,820	154.1	37000	8,110	385.0
17800	16,850	89.2	23600	12,710	156.8	38000	7,900	406.0
17900	16,760	90.2	23800	12,600	159.4	39000	7,690	428.0
18000	16,670	91.2	24000	12,500	162.1			
18100	16,570	92.2	24200	12,400	154.8			
18200	16,480	93.2	24400	12,290	167.6			
18300	16,390	94.3	24600	12,190	170.3			
18400	16,300	95.3	24800	12,100	173.1			
18500	16,220	96.3	25000	12,000	175.9			
18600	16,130	97.4	25200	11,400	178.7			
18700	16,040	98.4	25400	11,810	181.6			
18800	15,980	99.5	25600	11,720	184.5			
18900	15,870	100.5	25800	11,630	187.4			

## TOOLS FOR RADIO SERVICE WORK

There are a number of tools which may be considered to be essential in radio service work. There are others which, though they are not absolutely necessary, are very useful occasionally and are well worth owning. The number of tools that a radio service man should possess in any case, depends largely upon the type or scope of work that he is in the habit of handling. For instance, if he does auto-radio work an electric drill and a heavyduty electric soldering iron are essential; if he does not install these sets, he can do without these tools. While most service men will probably agree on the tools which are considered really essential in general service work, there are bound to be individual opinions regarding the so-called "extra" or "special" tools which it is desirable to have. However, a fairly complete list of tools (including such items as tape, solder, bolts and nuts, etc., which, although they are not strictly tools, are used so often that they may be considered as such) will be presented here for reference and check-up purposes, it being understood that it is subject to desirable changes to fit individual requirements.

[^5]
## bakelite insulated screw-driver

neutralizing adapters (UX, UY)
2 small files (breaker-point type, coarse)
small flashlight
steel wool and emery cloth
light hammer
dusting cloth
small camel's hair brush
roll of friction tape
small chisel
jack knife
pair of small high-resistance earphones
Although the tools listed above may seem at first glance to represent a rather formidable array, it will be found that each serves a definite purpose and will often be called into use. As is often the case, where an automobile is employed for service work, it may be well to include the following also: (a) brace and assorted bits; (b) extension bit; (c) hack-saw; (d) cold chisel, and reamer.

If auto-radio work is done the following tools will also be found useful:
electric drill (to take up to a $3 / 8$ - or $1 / 2$-inch drill)
adjustable wrench to take up to $3 / 4$-inch nuts
center punch
set of "feeler" or "thickness" gauges for adjusting "breaker point" and "spark-plug" gaps (see table in Sec. 5 for correct gap values)
Besides the tool kit, every service man should carry with him sufficient tubes and repair parts to enable him to render rapid service. The number and types of tubes to carry depends upon the models and receivers or receiver that he encounters. In addition to the tubes, the service kit may contain the following parts and material supplies.

```
two 8 mfd . electrolytic condensers (\(1 \mathrm{dry}, 1\) wet)
three 0.1 mfd . by-pass condensers (\(1 \mathrm{dry}, 1\) wet)
three 0.05 mfd . by-pass condensers (tubular)
two 0.01 mfd . condensers (tubular)
one 0.001 mfd . condenser
one 0.0025 mfd . condenser
one 2- or 4 -mfd. paper filter condenser, 400 V
one 0.5 mfd . by-pass condenser 200 V
20 carbon resistors (assorted sizes 500 ohms to 5 megohms)
two adjustable wire-wound resistors (1,000 and 15,000 ohms)
```

one 20 -ohm center-tapped resistor
two lengths dial cable (phosphor bronze and string)
Two Edison base fuses (3A., 15A.)
six small cartridge fuses (3A)
two female plugs
two male plugs
one 3 -way cube tap plug
assorted screws, nuts, washers
1 roll solid No. 18 push-back hookup wire
complete aerial kit
pilot lights, assorted sizes
5 standard mount sockets (4-prong, 5-prong, 6-prong and both sizes 7-prong)
small bottle Nujol
1 package pipe cleaners
small bottle walnut oil stain
small bottle furniture polish (with cloths)

## DRILL AND TAP SIZES AND USES

In the construction of radio and electrical equipment it is neecssary to drill and tap holes in various kinds of metals and insulating materials for the machine screws which hold the parts together. Machine screws of various sizes are used in radio work, the mrst common being the $6 \times 32$ (number 6 screw with 32 threads per inch) and the $8 \times 32$. The tap and clearance drill table shows the screw numbers, the number of threads per inch, and the drills to be used in making holes either for threading (tapping) or for allowing the screw to slide through the hole freely (clearance). Thus, to tap a hole for a $6 \times 32$ screw, first drill the hole with a No. 36 drill, and then tap it with a $6 \times 32$ tap. To drill a clearance hole through which a $6 \times 32$ screw will slide freely, use the No. 28 clearance size drill.

In many cases it is desirable to know the diameter, in inches or thousandths of an inch, of a certain size drill. Many mechanical specifications are such that holes are sized in thousandths of an inch. To determine the size drill required to make the hole, merely consult the Drill Diameter Table given here. It will be found that. in general, standard sized holes will be specified.

All metal drilling should be done with round twist drills, which are obtainable in the sizes designated by numbers, as in the table. When drilling brass, aluminum and cast iron, no lubricant is used. When drilling steel, the drill should be lubricated with light machine oil as it enters the hole.

Insulating materials such as Bakelite, Formica, Celoron, hard rubber, fibre, etc., should be drilled with the point of the drill ground to the usual sixty degree angle but with the front edge of the cutting edge ground straight or flat to remove the hook. Speeds up to $1,500 \mathrm{r}-\mathrm{p}-\mathrm{m}$ may be used, and the drill may be left (Text continued on Page so-s)

## Sizes of Tap* and Clearance Drills

$\begin{gathered} \text { Serew } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Th'd } \\ & \text { Per } \\ & \text { Inch } \end{aligned}$	$\underset{\text { Size }}{\text { Tap }}$	Drill Number		$\begin{aligned} & \text { Screvo } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Th'ds } \\ & \text { Per } \\ & \text { Inch } \end{aligned}$	${\underset{S i z e}{T a p}}^{T a p}$	Drill Number	
			For Tap	Olear. ance				For Tap	Clear ance
2	48	2x48	No. 50	No. 44	8	24	$8 \times 24$	30	17
2	56	2x56	50	44	8	32	$8 \times 32$	29	19
2	64	2x64	50	44	10	24	$10 \times 24$	25	10
3	40	3x40	47	39	10	30	$10 \times 30$	22	10
3	48	3x48	47	39	10	32	$10 \times 32$	21	10
3	56	$3 \times 56$	45	39	12	20	$12 \times 20$	19	2
4	32	$4 \times 32$	45	31	12	24	$12 \times 24$	16	2
4	36	4x36	44	31	12	28	$12 \times 28$	14	2
4	40	4x40	43	31	14	20	$14 \times 20$	10	$1 / 4$
6	32	6x32	36	28	14	24	$14 \times 24$	7	1/4
6	36	6:36	34	28					

*Note: These are the drill sizes for average use. The size drill to use really varics somewhat with the material being drilled. For tapping Bakelite or hard rubber use a drill one size larger than specified in this table.

Drill Diameter Table

Drill   No.	Dia.   (Mils)	Drill   No.	Dia.   $($ Mils $)$
1	228.	28	140.5
2	221.	29	136.
3	213.	30	128.5
4	209.	31	120.
5	205.5	32	116.
6	204.	33	113.
7	201.	34	111.
8	199.	35	110.
9	196.	36	106.5
10	193.5	37	104.
11	191.	38	101.5
12	189.	39	099.5
13	185.	40	098.0
14	182.	41	096.0
15	180.	42	093.5
16	177.	43	089.0
17	173.	44	086.0
18	169.5	45	082.0
19	166.	46	081.0
20	161.	47	078.5
21	159.	48	076.0
22	157.	49	073.0
23	154.	50	070.0
24	152.	51	067.0
25	149.5	52	063.5
26	147.	53	059.5
27	144.	54	055.0

Note: Diameters are specified in "thousandths" of an inch (mils). To change to inches, divide the diameter in mils by 1,000 .
dry or else lubricated with lard oil or light machine oil. Insulating materials of this kind are rather hard on the drills and dull the point quickly. When the drill comes through the hole in the back, it is advisable to hold a block of scrap wood solidly against the back surface to prevent the material from chipping or breaking through around the edges.

Taps are used for cutting threads on the inside of holes. Dies are for threading the outside of rods. The first part of each tap or die number indicates the gauge number of the rod stock from which the screws were cut, or the gauge number of the rod to be threaded, respectively; the second part of each number indicates the number of threads per inch, which should correspond to the number of threads per inch on the screw or nut to be used.

## COMMON FRACTIONS AND THEIR DECIMAL EQUIVALENTS

The following table gives the decimal equivalents of some of the commonly used fractions. The table lists the fractions in 64ths of an inch, starting with $1 / 64$ and increasing $1 / 64$ inch at a time. In all cases, the fractions have been reduced to the lowest denominator. Thus, the second fraction should be $2 / 64$, but it is shown as $1 / 32$ because it has been reduced.

COMMON FRACTIONS AND THEIR DECIMAL EQUIVALENTS

Fraction	Decimal	Fraction	Decimal	Fraction	Decimal	Praction	Decimal
$1 / 64$		.0156	$1 / 4$		.2500	$1 / 2$	.5000
$1 / 32$	.0313	$17 / 64$	.2656	$33 / 64$	.5156	$49 / 64$	.7500
$3 / 64$	.0469	$9 / 32$	.2813	$17 / 32$	.5313	$25 / 32$	.7656
$1 / 16$	.0625	$19 / 64$	.2969	$35 / 64$	.5469	$51 / 64$	.7969
$5 / 64$	.0781	$5 / 16$	.3125	$9 / 16$	.5625	$13 / 16$	.8125
$3 / 32$	.0938	$21 / 64$	.3281	$37 / 64$	.5781	$53 / 64$	.8281
$7 / 64$	.1094	$11 / 32$	.3438	$19 / 32$	.5938	$27 / 32$	.8438
		$23 / 64$	.3594	$39 / 64$	.6094	$55 / 64$	.8594
$1 / 8$	.1250	$3 / 8$	.3750	$5 / 8$	.6250	$7 / 8$	.8750
$8 / 64$	.1406	$25 / 64$	.3906	$41 / 64$	.6506	$57 / 64$	.8406
$5 / 32$	.1563	$13 / 32$	.4063	$21 / 32$	.6563	$29 / 32$	.9063
$11 / 64$	.1719	$27 / 64$	.4219	$43 / 64$	.6719	$59 / 64$	.9219
$3 / 16$	.1875	$7 / 16$	.4375	$11 / 16$	.6875	$15 / 16$	.9375
$13 / 64$	.2031	$29 / 64$	.4531	$45 / 64$	.7031	$61 / 64$	.9531
$7 / 32$	.2188	$15 / 32$	.4688	$23 / 32$	.7188	$31 / 32$	.9688
$15 / 64$	.2344	$31 / 64$	.4844	$47 / 64$	.7344	$63 / 64$	.9844

# ANSWERS TO NUMERICAL PROBLEMS IN MODERN RADIO SERVICING* 

(First Edition, Third Printing Dated June, 1936)
Pages 57-58-59.-Prob. 7: sensitivity is 1 ma . Prob. 13: (a) 5.6 ohms; (b) 1.02 ohms; (c) 0.05 ohm; (circuit arrangement shown below).


Prob. 14: 15,000 ohms for the 15 -volt range, 150,000 ohms for the 150 volt range, and 450,000 ohms for the 450 -volt range, 0.001 ampere through the movable coil, (same circuit arrangement) as shown in Fig. 2-21 on page 29 of Modern Radio Servicing. Prob. 15: (a) Connect a 250,000 -ohm multiplier resistor between the 450 -volt terminal and the new 700 -volt terminal, thus putting this resistor, $R$; in series with multiplier $R_{3}$ for the 700 -volt range, as shown in the illustration below; (b) 250,000-ohm multiplier resistor $R_{4}$; (c) diagram shown below.


Prob. 16: (a) a multiplier resistor of 5,000 ohms, one of 150,000 ohms and one of 300,000 ohms; (b) circuit diagram is shown below.


[^6]Prob. 27: (a) "average" value is 190.5 volts; (b) "effective" value is 212.1 volts. Prob. 28: (a) "effective" value is 11.1 amps ; (b) the pointer "deflects" according to the average value of the current but the scale is calibrated to indicate the "effective" value directly. Prob. 29: circuit arrangement is shown in the diagram below ( $R_{1}=$ $10,000 \mathrm{ohms} ; \boldsymbol{R}_{q}=50,000 \mathrm{ohms} ; \boldsymbol{R}_{s}=500,000 \mathrm{ohms} ; \boldsymbol{R}_{\xi}=1,000,000$ ohms).


Problem 29, Page 59

Prob. 31: (a) 20 volts $\pm$; (b) 20 volts $\pm$; (c) 4 per cent at halfscale reading, 8 per-cent at quarter-scale reading; (d) same as for the 100 -division 1,000-volt scale. Prob. 34: The meter having the 10 -volt range has the greater sensitivity.

Pages 84 and 85.-Prob. 2: 12 ohms. Prob. 3: (a) circuit diagram shown below; (b) 300 ohms.


Prob. 5: 66,666 ohms. Prob. 11: 14,250 ohms. Prob. 17: use a battery having a voltage ten times as high, and a current-limiting resistor having ten times as much resistance.

Page 98-Prob. 7: "low-range" scale values are as follows:

$I$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
$R_{z}$	$\\| 31 / 3$	$71 / 2$	13	20	30	45	70	120	270	X	

Prob. 9: The complete current and low range "ohms" scale for the meter is shown herewith:


Problem 9,
Page 98

Page 119.—Prob. 3: The various "breakdown" circuit diagrams are shown herewith:


Problem 3, Page 119

Prob. 5: The various "breakdown" circuit diagrams are shown here:


Problem 5, Page 119

Page 331.—Prob. 6: 0.0075 mfd . Prob. 7: 11 ohms.

Pages 374 and 375.--Prob. 4: 5.5 watts signal output. Prob. 11: The table of frequency values is shown here:

Fund. Freq.	2nd Harmonio	srd   Harmonio	4th Harmonio	5th   Harmonio	6th Harmonio
175	350	525	700	875	1,050
275	550	825	1,100	1,375	1,650
425	850	1,275	1,700	2,125	2,550
600	1,200	1,800	2,400	3,000	3,600

Page 550.-Prob. 1: 163 ohms. Prob. 2: 3.3 ohms. Prob. 3: 2,800 ohms. Prob. 4: 125 ohms. (The circuit diagram is shown herewith.)


Prob. 5: 1.5 amps . (The circuit diagram is shown herewith):


Page 598.-Prob. 18: Some value between 1,800 and 2,200 ohms.
Page 79.1.-Prob. 22: The i-f is 465 kc .
Pages 1020 and 1021.-Prob. 4: 12,912 kc. Prob. 5: Total width, 20 kc . Prob. 6: 12,920 kc. Prob. 19: Frequency ratio about $3 \frac{1}{2}$ to 1. Prob. 20: 3 bands are necessary to cover the all-wave frequency range from 540 to $18,000 \mathrm{kc}$.

Pages 1159-1162-1164.-Prob. 12: 2.5 times less objectionable. Prob. 13: The signal-to-noise ratio is 2. Prob. 14: The signal-to-noise ratio is 4. Prob. 59: Length should be approximately 495 feet. Prob. 60: The length of each horizontal section should be approximately 74.3 feet. Prob. 81: The overall length of the doublet for 6 mc . reception should be about 82.5 feet. The one for 15 mc . reception should be 33 feet long overall.

Page 1203.-Prob. 24: Per cent distortion is 7.5.

## INDEX

## (The figures refer to page numbers)

## - A -

Actual troubles in receivers, 2-1 Alloys, resistance data for, 23-1
Amplifiers, tubes in resistancecoupled, 14-1
Answers to numerical probs. in Mod. Radio Servicing, 32-1
Antenna data, auto-radio for cars, 5-1
Audio transf., (RMA color code) for leads, 17-18
Automobile, breaker point gaps (correct), 5-1
electrical system wiring diagrams, 4-1
polarity of storage battery grounded terminal, 5-1
spark-plug gaps (correct), 5-1
Auto-radio antenna data for cars, 5-1
ignition interference, 3-1

- B -

Batteries (car), 5-1
polarity of grounded terminal of, 5-1
Battery cable color code (RMA), 17-4
Bias resistor chart, 15-1
Breaker-point gaps, correct, 5-1

$$
-\mathbf{C -}
$$

Canadian receiver cross-index, 1B-1
Car batteries, polarity of, 5-1
Case histories, receiver, 2-1

Characteristics, "glass" tube, 9-1
"metal tube, 10-1
rectifier tube, 13-1
Chart, "glass" radio tube characteristics, 9-1
grid bias resistor, 15-1
"metal" radio tube characteristics, 10-1
pilot light bulb data, 18-1
transf. turns per-volt, 24-1
trouble-shooting for receiver troubles, 6-1
tube base terminal arrangement, "glass", 9-8
"metal", 10-3, 10-5
tube socket terminal arrangement, "glass", 9-8
"metal", 10-3, 10-5
Circuit diagrams of car electrical systems, 4-1
Color codes, RMA, 17-1
Philco, 19-1
Combination tubes in resistancecoupled amplifier, 14-1
Condenser color code, RMA, 17-3
Condenser reactances, 20-1
Conversion of metric prefix units, 25-1
Copper wire table (bare and magnet), 22-1
Cross-index, American receivers, 1A-1
Canadian receivers, 1B-1
-D -

Data, auto-radio antenna, 5-1
Decimal, equivalents of common fractions, 31-1
Diagrams, elect. wiring of cars, 4-1

Dial light bulb data, 18-1
Drill and tap sizes, 30-1
Dynamic speaker lead color code, 17-4

$$
-\mathbf{E}-
$$

Electrical wiring diagrams of automobiles, 4-1
Exponents, use of in calculations, 26-1

$$
-\mathbf{F}-
$$

Formulas used in radio work (summary), 27-1
Fractions, decimal equivalents of, 31-1
Frequency, wavelength and $\mathbf{L} \times \mathbf{C}$ values, 28-1

- G -
"G" tubes, 10-1, 10-5
Gap, correct breaker-point, 5-1
correct spark-plug, 5-1
Glass tube, characteristics chart, 9-1
base charts, $9-8$
type number designation system, 7-1
Grid-bias resistor chart, 15-1
Grounded terminal of car batteries, 5-1

$$
-\mathrm{I} \text { - }
$$

Ignition interference in cars, 3-1
Ignition wiring diagrams for cars, 4-1
Index of tube types, 12-1
Interference, ignition, remedies for, 3-1
Intermediate peak frequencies of receivers, 1-1
Intermediate-frequency transf. lead color code (RMA), 17-7

- L -
$\mathbf{L} \times \mathbf{C}$, resonance wavelength \& frequency values, 28-1
Litz wire table, 21-1
Loud speaker lead color code, 17-4
- M -

Magnet wire table, 22-1
Memoranda pages, M-1
Metal tube, base pin arrangements, $10-3,10-5$
characteristics chart, 10-1
type number designation system, 7-1
Metals, resistance data for, 23-1
Metric prefixes, 25-1
Model number cross-index, American RCA receivers, 1A-1
Canadian receivers, 1B-1
$-\mathrm{N}-$
Numerical problems, answers to (Mod. Radio Serv.) 32-1

$$
-\mathbf{P}-
$$

Peak intermediate frequencies of receivers, 1-1
Philco resistor color code, 19-1
Pilot light bulb data, 18-1
Polarity of car batteries, 5-1
Power rating graphs for resistors, 16-1
Power transformer lead color code (RMA), 17-6
Prefixes, metric, 25-1

$$
-\mathbf{R}-
$$

Rad:o formulas (summary), 27-1 Radio tube characteristics charts, 9-1, 10-1
Reactance of condensers, 20-1
Receiver i-f compilation, 1-1

Receiver trouble symptoms and remedies, 2-1
Receiver, trouble-shooting chart, 6-1
Rectifier tube characteristics, 13-1
"Relative resistance" values, 23-1
Remedies for auto-ignition interference, 3-1
Replacement tube types, 11-1
Resist.-coupled amplif., combination tubes in, 14-1
Resistance data for metals and alloys, 23-1
graphs for resistors, 16-1
"relative', 23-1
temperature coeff. of, 23-2
Resistor, color code (RMA), 17-1
color code (Philco), 19-1
grid-bias chart, 15-1
power rating graphs for, 16-1
resistance graphs for, 16-1
Resonance, wavelength-frequen-cy- $\mathrm{L} \times$ C values, $28-1$
RMA, standard color codes, 17-1
tube type designation systems, 7-1, 8-1

- S-

Socket, tube terminal arrangements, glass tubes, 9-8
metal tubes, 10-3
Spark-plug gaps (correct), 5-1
Standard RMA color codes, 17-1
Stubborn ignition system interference remedies, 3-1
Symptoms and remedies for receiver troubles, 2-1

$$
-\mathbf{T}-
$$

Table, bare and magnet wire, 22-1
Table, wavelength-frequency$\mathrm{L} \times \mathrm{C}$ (at resonance), 28-1

Taps and drills (sizes), 30-1
Temperature coefficients of resistance, 23-2
Terminal arrangements, of tube bases and sockets, 9-8, 10-3, 10-5
grounded, of car batteries, 5-1
Tools for serviec work, 29-1
Transformer, audio, RMA color code for leads, 17-8
i-f, RMA color code for leads, 17-7
power, RMA color code for leads, 17-6
turns-per-volt design chart, 24-1
Trouble-shooting chart for receiver troubles, 6-1
Troubles and remedies (receivers), 2-1
Troubles, trouble-shooting chart for, 6-1
Tube base and socket terminal arrangements, of "glass" tubes, 9-8
"metal" tubes, 10-3, 10-5
Tube characteristics charts, 9-1, 10-1
Tube, index of types, 12-1
Tube, replacement types, 11-1
Tube type designation systems, RMA, 7-1, 8-1
Tubes, (combination) in resist.coupled amplifiers, 14-1
Turns-per-volt chart (transformer), 24-1

$$
-\mathbf{w}-
$$

Wavelength-frequency- $\mathrm{L} \times \mathrm{C}$ values (resonance), 28-1
Wire table, (bare and magnet), 22-1
litz wire, 21-1
Wiring diagrams for electrical systems of cars, 4-1

## MEMORANDA

MEMO.

## MEMORANDA


[^0]:    - See also the corresponding listings under letter " FT " models, such as FT-6, FT-9, etc.

[^1]:    See also corresponding listings under:

    * letter " $\mathbf{C}$ " models, such as C-63, C-114, etc.
    t letter' "P'" models, such as $P$ 63, P-393, etc.
    $\ddagger$ letter "X" models, such as X41. X-63, etc.
    $\%$ letter " $Y$ " models, such as $Y$ 41, Y-43, etc.

[^2]:    *Modern Radio Servicing by Alfred A. Ghirardi-Radio \& Technical Publishing Co.

[^3]:    Note: Key to types of aerials: R-"Running Board" type; SS."Steel Screen" type in roof; W."Wire" type in roof.
    \$Note: These cars have "Turret" or ""teel"" tops and require an antenna mounted on the outside of the car.
    Key Io Symbols: "Amm."-Ammeter; "C".Coil; "Dist.".Distributor; "D.L."-Dome Light; "E.C."-Electric Olock; "F.B."-Fuse Block "F.W.".Front Wheels; "Gen.".Generator; "G.G."-Gasoline Gauge; "I.C."-Ignition Coil; "I.S.".Ignition Switch; "Muft", Mlupler, 'O.G."-Oi Gauge; "Reg."-Regulator; "Rel.'-Relay; "R.S." Rear Springs; "R.W.'Rear Wheels; "S.C."-Stering Column; "S.M" Starting Motor; "S.P."-Spark Pluge; "Transm.".Transmission; "T.T."'Torque Tube; "W.T."-Water Thermometer. (Con't over)

[^4]:    *Note: For type numbers of equivalent "glass" and "G" type tubes, see table on page 10-5.

[^5]:    diagonal side-cutting pliers ( $6^{\prime \prime}$ long)
    long nose pliers ( $6^{\prime \prime}$ long)
    linesman side-cutting pliers
    1 set small "Hex" end wrenches
    1 set Spintite wrenches
    small screw driver for dial set-screws
    small screw driver ( 4 inch)
    large screw driver 6 inch- 8 inch)
    offset screw-driver
    small hand drill with assorted drills and taps
    soldering iron and rosin-core solder
    can of soldering paste
    neutralizing tool
    tuning wand

[^6]:    *Modern Radio Servicing by Alfred A. Ghirardi, Radio \& Technical Publishing Co.

