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HIGH VERSUS LOW ANTENNAE IN RADIO
TELEGRAPHY AND TELEPHONY

I. PREFATORY CONSIDERATIONS

1. CurreNT NoTioNs RELATING TOo THE HEIGHT OF Rabpio
ANTENNAE

In a paper presented before the British Institution of
Electrical Engineers in 1899, Marconi announced a relation
between the working telegraphic distance of a pair of wireless
stations and the height of the station antennae. This rela-
tion, which has come to be known.as Marconi’s law, is as
follows: For stations with antennae of equal height, “the
distance at which signals can be obtained varies approxi-
mately with the square of the distance of the capacities from
earth, or perhaps with the square of the length of the vertical
conductors.”*

This relation, which is based upon experiments between
stations with antennae each consisting of a single vertical
wire or a single wire connected to a capacity area of very
moderate dimensions, has exerted and now exerts a guiding
or dominating influence in the practice of wireless telegraphy.
The great elevation—from 100 to 1000 feet—at which the
capacity areas are mounted in all wireless stations is con-
clusive evidence either of the necessity or of the importance
of high antennae in the minds of those practicing the art of
wireless telegraphy at the present time.

From the very early years of the art, the practice in the
construction of wireless antennae has been to use, not single
wires, but a multiplicity of wires arranged in the form of a
fan, a harp, an umbrella, a cylindrical cage, or an inverted
cone or pyramid. These wires constitute an extended
“capacity area,” and, as previously stated, the practice is

*Marconi, Wireless Telegraphy—Jour. of the Insl. of Elecirical Engineers 1899
Vol. 28, page 279.
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6 BULLETIN OF THE UNIVERSITY OF WISCONSIN

to mount this extended capacily area, or at least a large
part of it, at a great elevation above the earth. For example,
the capacity area of the government station at Arlington,
D. C., consists of three approximately horizontal wire harps
suspended at a mean elevation of about 500 feet above the
surface of the earth. Each harp contains 23 strings and has
a width of 88 feet and a mean length of 300 ft.

The following elementary considerations seemed to the
writer to warrant a critical examination of the practice of
mounting such extended capacity areas at these great eleva-
tions.

S

M

2. THE ELECTROSTATIC FIELD AT A GREAT DisTANCE FRrROM
AN EXTENDED CHARGED SHEET

In Fig. 1, let M represent an extended circular sheet of
conducting material insulated from and parallel to the sur-
face of the earth. Imagine this conducting or capacity area
M to be maintained at a steady voltage E above the potential
of the earth, and let us calculate the potential gradient which
is thereby set up at a point P near the surface of the earth
and at a great distance from the capacity area.

Let E represent the difference of potential in volts between
the area M and the earth.

Let x represent the horizontal distance from the center
of M to the point P.

Let R represent the radius of the area M.

Let h represent the height of M above the earth.

Let p represent the permittivity of the air (8.84 x10™'*)

All distances are to be expressed in centimeters.

Suppose now that h is small in comparison with R and
that the distance x in comparison with R is very large. For

[184]



BENNETT—RADIO TELEGRAPHY AND TELEPHONY 7

example, suppose the radius R is of the order of 60 meters
(200 ft.), that the height h is between 1 meter and 30 meters
(3 and 100 feet), and that the distance x to the point P is 10
kilometers (6.2 miles) or more. For these proportions the
following statements are approximately correct.

Neglecting ‘‘edge effects” and displacement from the upper
face of M, the capacity C of the sheet M with reference to
the earth is

C= p’-rhﬂzfarads

The quantity of electricity (Q) on M is

Q=CE= pllllizE coulombs

The potential gradient F, at P due to the charge Q on M is
exerted in the direction OP and is

-1 Q@ _ RE
Zxp (P4x)  Ah(WT %)

Since h? < .00001 x2,

F, volts per cm.

F, = volts per cm. (approximately)

R2E
‘4hx?

The gradient at P which results from the distribution of
the charge (—Q) on the surface of the earth is calculated by
introducing the electrical image of the charge Q with refer-
ence to the equipotential surface SS, which is hereinafter
treated as a plane surface. The image of Q is the charge
(—Q) located on the surface M’ at the distance h below the
plane SS.

The charge (—Q) at M’ would give rise at the point P to a
gradient F; exerted along the line O’P and equal to

RE

Fa=— 5

volts per cm.

The gradients F, and F, at P may be resolved into com-
ponents parallel to and normal to the surface of the earth.
The components parallel to the surface neutralize, and those

[185]
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normal to the surface add. The component of F, normal to
the surface of the earth is—

h

Fnl= Fl Sin 0 = FIQhTT—x?= F[;

F volts per ecm.

l=_
M4x3

Therefore the resultant potential gradient F at the point
P is normal to the surface of the plane SS, is directed down-
ward, and is approximately expressed by

2
F =B—l;: volts per cm.
2

Fic 2

The expression for the gradient at P does not involve h, the
height of capacity area M. Therefore, within the limits pre-
viously specified, the gradient at P due to an extended sheet
M maintained at a given potential E above the ground is in-
dependent of the height of the sheet above the ground.*

* [Lis to be recognized that thistreatmentis notrigorous and that the conclusions
apply only within certain limits. If h is made large as compared with R, the ca-
})acltv of the sheet M to the plane SS becomes independent of h and equal to & bR

arads. Therefore the gradient at P is normal to the surface of the planc and is

Rh E

Tx?
tional to the height of the sheet M above the surface SS.

The fact that the earth’s surface is a spherical surface and not a plane surface does
not alter the conclusion that the gradient at the point P is independent of the
height of the shect above the ground. For e‘amp c, by applym% the method of
nuagcs to the spherical surface shown in Fig. 2, it may be shown that the gradient

equal to 4 volts per ecm. That is, the gradient at P will be directly porpor-

at the point P which is at a quadrant’s (hv.tancc from M is given by the expression
2 R2E
F = \/—D’— volts per em. (apptoximately)

This expression does not involve h. the height of the sheet M above the surface
of the sphere.  (Asin the case of the plane surface. this expression applies only for
the case in which his small in comparison with R.)

[186]



BENNETT—RADIO TELEGRAPHY AND TELEPHONY 9

In view of the fact that the height of the capacity area is
(within limits) without influerce upun the steady state of
the medium at P, this (uestion now arises. If the potential
of the sheet M, instead of being maintained constant, is
caused to vary in a periodic manner, how will the magnitude
of the disturbance thereby set up in the medium at the point
P be affected by the height of the sheet M?

3. SIMPLIFICATION OF THE RADIATING SYSTEM

To answer the question thus raised by the discussion of
the steady state of the field requires the application of the
equations of the electro magnetic field to the radiating system
shown in Fig. 3. In its simplest form the radiating system

T —m 7 e
w - W
«—C «— G
£ S )

-
S —raa==—"

Fic. 4 Fic. 3

comprises an extended circular plate M with its surface par-
allel to the surface of the earth, a vertical conductor W and a
generator G generating a sine e. m.f. To treat such asystem,
the surface SS is imagined to have infinite conductivity. It
thus becomes an equipotential surface and the cffect of the
distributions of current and charge over this surface is de-
termined by replacing this conducting surface by the images
of elements M, W, and G in the surface, as in Fig. 4.

The conditions to be fulfilled at the boundaries of Fig.
4—that is, at the surfaces of the conductors—are so involved
that a rigorous analytical treatment is impossible. If the
conditions are simplified by assuming the conducting sheet
M and wire W to have infinite conductivity, the boundary
conditions are still too involved for treatment. It becomes
necessary, therefore, to further simplify the radiating system
by depicting it as in Fig. 5. In Fig. 5 a positive charge Q
distributed over a circular area of radius R is assumed to

[187]
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move up and down in such a manner that at any moment its

elevation (h) above the surface SS is given by the expression
h =hgcoswt.

A negative charge (—Q), also distributed over a circular area
of radius R, moves up and down so that its elevation is given
by the expression

h = —h,coswt

The charges Q and —Q are not uniformly distributed over the
two circular areas, but they may be imagined to be confined

.+ Q

-
S_SQ S
~-Q

Fic. 5

to insulated circular strips. When the two charges move up
and down, the circular strips carrying the positive charge
may be imagined to pass between the circular strips carrying
the negative charge at the instant both charges pass in oppo-
site directions across the surface SS. The steady states at
great distances which correspond to the instantaneous states
of such a radiating system are identically the same as the
states corresponding to a Fig. 4 system, provided the total
voltage generated in the two generators of Fig. 4 is given by
the expression
2Qh,
1rR2p
[188)

e=2Ecoswt= cos wt




BENNETT—RADIO TELEGRAPHY AND TELEPHONY 11

In the case of the radiating system depicted in Fig. 5,
there are no conduction currents to deal with, and the elec-
tric charges move in a simple predetermined manner. We
proceed (a) to set up the differential equations applying to
this system, (b) to indicate a solution of these equations,
and (c) from this solution to draw conclusions as to the
relative merits of high versus low capacity areas in wire-
less telegraphy.

II. DIFFERENTIAL EQUATIONS OF THE ELECTRO-
MAGNETIC FIELD..

4. NOTATION.
At any point in the electromagnetic field,

Let
p represent the volume density of electricity in coulombs
per cu. cm.

the velocity of the moving charge in cm. per
sec.

the electric force or potential gradient in volts
per cm.

the magnetic force in ampere-turns per cm.

the electrostatic flux density or displacement
in coulombs per sq. cm.

the magnetic flux density in webers per sq.
cm.

the retarded displacement potential.

the retarded vector potentiial.

(13

(X3

(3

(X3

(X3

= oom m <

[

(13

> o

Let
f represent the frequency of the radiating system in cycles
per sec.
p ¢ the permittivity of the medium in coulombs
per sq. cm. per volt per cm.

For free space p =Lﬁq—11_0ﬁ or 8.84 10714

(13

n the permeability of the medium in webers per
sq. cm. per ampere-turn per cm.

[189]
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For free space u = 4—1'; or 1.257107*

10
s ¢ L_= 3 10'°- = velocity of light.
vV up
dz dz d:
-2« R T A T
v (dx2 + dy? + dz’)

The quantities represented by bold faced capitals are
vector quantities. Let their X, Y, and Z components be des-
ignated by the subscripts ,, 5, and ;. Thus,

Let
D, D; D; represent the X, Y, and Z components of the
displacement.

V, V; Vi represent the X, Y, and Z components of the
velocity, etc.

It will be noted that all quantities are to be expressed in
terms of the Ampere, Ohm, Ampere-turn, Weber system of
units.

5. FUNDAMENTAL RELATIONS EXPRESSED IN VECTOR NOTA-
TION

The fundamental relations which must be satisfied at all
points of the electromagnetic field are expressed by the fol-
lowing differential equations.

divD = p (1)

divB =o (2)
dD .

curl H =W+pv 3)
dB ,

curl F = T 1)

D = pF )

B = uH (6)

These same relations when expressed by differential equa-
tions involving the rectangular components of the vectors
take the following forms.

[190]
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6. FUNDAMENTAL RELATIONS EXPRESSED IN RECTANGULAR

COORDINATES
Equations (1) and (2) may be written:
dD, , dD, , dD;s _
dx + d—y_ + dz - " (1a)
dB, , dB; , dB;

Tt T (22)

Equation (3) may be written:
. (dIl; dH. dH, dH, dH, dH,
'(d—y‘d—z)+ a )+k(dx v

dD, dD, dD;
dt+pv)+" dl+ V2)+k dt+9va)

This yields the three equations:
dH, dH, dD,

T el (32)
dH, dl; _dD,
d_z——d_x_W-Fsz (3b)
dH2 dH] _ dD.’l
W__d—y___d_t—-*_ Pva (36)

In like manner, equation (4) yields the following three
ecquations:

dF, _dF, _ _dB,
dy " dz T T odt (1a)
dF, dF, _ dB.

& dx - T at (4b)
dF, dF, _ _ dB, l
& dy At ()

7. PHysicAL INTERPRETATION OF THE DIFFERENTIAL [EQua-
TIONS

The relations expressed in the differential equations 1 to 4

are more familiar to engineers when stated in a form more

suitable for application to circuits of finite dimensions. It

[191]
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may, therefore, be well,'before we proceed to the solution of
these differential equations, to identify the equations with
the more familiar statements of the laws they express.

Equation 4 results from the application of Faraday’s Law
of Induction to a circuit of infinitesimal dimensions. The
law of induction is, “The electromotive force induced in a
closed circuit, or the line integral of the electric force around
the circuit, is equal to the rate of decrease of the magnetic
flux threading the circuit.”” This is called by Heaviside the
second law of circuitation. Consider the application of this
law to the small circuit bounding the infinitesimal square
parallel to the XY plane in Fig. 6.

»
2
\
5
L 4
|

Fic. 6
The magnetic flux threading this circuit is Bsdxdy

The rate of decrease of this flux is —(11—]?3 dxdy

Now if F, and F; represent the X and Y components of
the electric force or voltage gradient at this point, it is evi-
dent that the resultant or net electromotive force around the
circuit in the direction indicated (or, in other words, the line
integral of the electric force around the boundary of the
square) is given by the expression

Line integral of F = F, dx + [F,+‘i§:dx] dy - [F1+
1y ax — ry = (45— ) ax ay
d—de] dx — Fudy = X dy dx dy

[192]
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According to Faraday’s law, the electromotive force in-
duced in a circuit around the boundary of this square is
equal to the rate of decrease of the flux threading the square.

Therefore the line integral of the electric force F around
the area dydx or—

dF, dF, dB;
I ) dx dy is equal to — at ——dx dy
Whence
Line integral of F around dx dy or dF; dF,
area dx  dy
_dB,
dt

This is equation (4c). In like manner equations (4a) and
(4b) may be derived.

Now the curl of a vector F at any point P and in any plane
passing through that point is defined as a vector M whose
length is equal to the line integral of the vector F taken around
the boundary of an infinitesimal portion of the plane divided
by the area of the infinitesimal portion. The vector M is to
be drawn normal to the plane and in that direction in which
aright hand screw would advance if it were threaded through
the plane and rotated in the direction in which the boundary
was traversed in taking the line integral. At the given
point P there will be some plane for which this quotient, or
the curl, has a maximum value. This maximum value is
called ““The Curl of the vector F at the point P.”” If the curl
of the vector F in three planes parallel to the XY, XZ, and
YZ planes is taken, the three vectors so obtained are the Z,
Y, and X components of ‘“The Curl of the vector.”

To summarize the above discussion, the quotient obtained
by dividing the line integral of the electric force F around
the boundary of a small area parallel to the XY plane by
the area was found to be (:1F2 - (il—I;—) Through the applica-
tion of Faraday’s Law of Induction, this quotient was shown
to equal the rate of decrease of the Z component of the flux
density at the point. In other words, the curl of the electric
force F in a plane parallel to the XY plane, or the Z com-

[193 ]
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ponent of the curl of F, is equal to the rate of decrease of the
Z component of the flux density. Likewise, the X and Y
components of the curl of F are equal respectively to the
rates of decrease of the X and Y components of the flux den-
sity B. Or
- _d8 ,
curl F = ar 4

8. Equation (3) is obtained by applying to a circuit of in-

finitesimal dimensions the familiar conception that the

B
Ik
. <A

‘el »
e

B

o

Fic. 7

magnetomotive force in ampere turns exerted around any
complete circuit, or the line integral of the magnetic force
around the circuit, is equal to the current passing through
and looping with the circuit around which the line integral
is taken. By the current passing through the circuit is meant
the sum of the conduction current plus the convection cur-
rent plus the displacement current. This is called by IHea-
viside the first law of circuitation.

To illustrate a specific application of this law to a circuit
of finite dimensions, suppose we wish to determine the mag-
netomotive force exerted upon the magnetic circuit-—the
iron core—of the current transformer illustrated in two
different positions A and B in Fig. 7.

[194 )
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To find the current passing through and looped with the
core we imagine any surface, plane or curved, of which the
core is the boundary. The current looping with the iron core
at any instant is, then, the net current passing across this
surface. Imagine a plane surface of which the core is the
boundary. Then with the current transformer in the posi-
tion A, substantially the only current which crosses the plane
surface is the conduction current in the high tension lead of
the power transformer P. (The secondary circuit of the
current transformer is assumed to be open.)

Suppose, however, the current transformer is shifted to
the position B, a position in which the plane surface bounded
by the core cuts through the dielectric of the condenser C,
and consequently, a position in which no conduction current
crosses the plane surface. In this position the current cross-
ing the plane surface is a displacement current. This dis-
placement current—the rate of change of the electrotrostatic
flux which passes across the plane surface bounded by the
core—is less than the conduction current in the trans-
former lead at A by the displacement which takes place be-
tween the leads along paths, as def, which do not loop
through the iron core. If the leads are short and the con-
denser plates large, the magnetomotive force exerted upon
the core in the position B will be only slightly lower than in
the position A.

As in the previous case, let these considerations be applied
to a small square circuit of infinitesimal dimensions similar
to that shown in Fig. 6.

The line integral of the magnetic force H around the
boundary of the square is—

dH, dH,

The current passing through the area dxdy is—
dD;

Since the magnetomotive force around the boundary of the
area equals the current through the area, these expressions
are equal.

[195]
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Whence (dH’ dH') dx dy = (pv. +9Ds) Gy dy

dt
de dDS
( ax dy ) ("V‘ + )

This is equation (3¢). The left member is the curl of the
magnetic force H in a plane parallel to the XY plane, or it is
the Z component of the curl of . The right member is the ex-
pression for the Z component of the convection current density
plus the Z component of the displacement current density.

Equations (3a) and (3b) may be derived in a similar manner.

<1 A,
v D, + ﬂ% ]
D+ ‘7?)‘-
()
3
Z Fic. 8

9. Equation (1) expresses the fact that the Faraday tubes
of electric force originate on the electric charges. The rela-
tion is perhaps more familiar in either of the following forms:

“The number of tubes of displacement which cross any
closed surface in the field is equal to the quantity of electricity
contained within the surface,” or, “The surface integral of
the displacement taken over any closed surface is equal to
the quantity of electricity contained within the surface.”

Let this law be applied to the small cubical volume shown
in Fig. 8.

The surface integral of the displacement taken over the
surface of the cube is:

~D,dydz+ [D, +dd—Dx'dx] dy dz — D,dx dz
+[Dz+ddD’dyj| dxdz — D; dxdy + [D, +dle3dz:| dxdy

dD, , dD; , dD;
[W + e + d—] dxdydz

[196 ]
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The quantity of electricity within the cube is p dxdydz

dD, , dD, , dD; _

Whence [a— + —a? + E] dXdde = p dxdydl
dD, , dD, , dDs| _
r [H Tt d—z] =

The left member of equation (1a) is the quotient obtained
by dividing the surface integral of D taken over the surface
of the infinitesimal cube by the volume of the cube. The
value of this quotient is called the divergence of the vector
D at the point.

(1a)

10. Equation 2 expresses the fact that the tubes of mag-
netic induction do not originate or diverge from any portion of
space. They are closed tubes, linking with the current and
returning into themselves.

III. INTEGRATION OF THE DIFFERENTIAL
EQUATIONS

11. To OBTAIN THE DIFFERENTIAL EQUATIONS IN A Form
INvoLVING ONLY ONE DEPENDENT VARIABLE, AS D,
Differentiating (3a) with respect to (t),

d*H; d*H,_d:D,
dtdy dtdz dt2

Substituting in (4b) and (4c) xH for B, differentiating (4c)
with respect to y, and (4b) with respect to z, and substituting

d2 II:; d2 Hz . .
i dy and didz in equation (7),

_1[(12 Fi_ D,  d'F,_d: Fz] _aD,
pl dy* dydx ' dzz dzdx] @ dt

d
+a—t (Pvl) (7)

the values so obtained for

d
+ a—l (Pvl) 8

Substituting for F in equation (8), its value from equation
(%),
ll:dz D, d*D, " d*D, d? Da] _d*D,
wpL dy? dydx ' dzz2 dzdx] @ dt
[197 ]
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Differentiating (1a) with respect to x and substituting the

4 1 _ d2 D2 (:l2 D3 . .

value so obtained for ( hdx &z dx) in equation (9)
dz2D,  d:D, dle]_ d’D,_dp d, .

[ dx? + dy? + dz2 P di2 dx + l‘pdt (pV1) (10a)

Writing s for 7— = 3 10t°

1
vV up

and V2for dz d* d: )

Equation (10a) may be written,
1 d2 D] d P 1 d

VDi- 5w T e ar eV (102)
or[v - L& o= Gra L lovy (10a)

In like manner the following equations may be obtained,
R LSRRI (10b)
and :vz -2 ad{z_] D, =24 L Qv (10¢)

12. To OBraIiN DiFrerenNnTIAL EQUAaTIONS INVOLVING H,
ONLY

Differentiating (4a) with respect to (t), and substituting

for B, its value u H,,

d*F; d*F, dz H,

dtdy dtdz kae (11)

Substituting for D in equations (3b) and (3c) its value pF,
differentiating (3c) with respect to (y) and (3b) with respect

2
to (z), and substituting the values so obtained for ((lit—cl;;;: and
d? Fg . .
T in equation (11),
1{d*H, d&*H, d d*H, d*H,  d . ]
D [dx dy dv?  dy Vo)~ Yz T @z (pV2)

[ 198 ]
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Differentiating (2a) with respect to (x) and substituting the

value so obtained for %;—zl; + j;—%) in equation (12),
[t ] [ o,
— dﬂz(pv,)] (13a)
This may be written:
- L s - [Revo-Zova]  asw

In like manner the following equations may be obtained:

1 dz ] d d .

_Vz - ? ?l—t;_ H, = — _d—Z(va) - d—'x(va)_ (13b)
1 d d, . d .

and [v2 - ;f -(Tl—z—-] Ha = — [a-’—((p\/ 2) - (T}—'(pV,)] (13(‘)

13. THE DALEMBERTIAN OPERATOR
The differential equations for which the solution is de-
sired take the forms:

1 _dp, 1d .

[“ 3 —dtz]D‘ =&t wareVy (12a)
1 d2 d d . .

and [v2 - ;2— W] H, = - [d—v(pV3) - (E(p\/z)] (133)

That is to say, in the solutions or integrated equations,
D, and H, must be such functions of time and of the position
2
of a point in space that the operation [\‘2 - sl %] ap-
plied to the function will yield a result whose value is deter-
mined by the volume density (p) and the current density
(pV) at the point.
It is very convenient to have a name for the result of
. . 1 d2
the operation [V - Fdac
Lorentz has suggested* that the result of the operation be
¢ H. A. Lorentz, Theory of Electrons, page 17.
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called the “Dalembertian of the quantity,” since d’Alembert
was the first to solve the differential wave equation involving
d: 1 d2

rrcii ELT] which is a special case of

the operation [

1 dz
2 _ 9
I:V s? dt’]

Adopting this suggestion, we may say that the Dalem-
bertians of the components of [) and H are given in equations
(10) and (13) in terms of the volume density (p) and current
density (pV).

Now in the system of moving charges depicted in Fig. 3,
(p) and (pV) are known functions of time and of the position
of a point in space. That is to say, the right hand members
of equations (10a) and (13a) are functions of known form,
and the problem is to find the functional expression which
will give the value of D,, or of H,, at any point in space and
for any moment of time. If the known form assumed by
the right hand member of equation (10a) is represented by
the expression f (t, X, Y, Z), we have given—

1 d
I:V2 - dt’:l D, =1t XY, 2) (14)
Or, dropping the subscripts, the problem is—

Given, Dalembertian D = f (t, X, Y, Z),

to find, the expression for D.
We proceed to demonstrate the following proposition.

14. ProprosiTION THAT THE ‘“RETARDED POTENTIALIZING
OpeRrRATION” PeERFORMED UpoN THE f (, X, v, Z) YIELDS
A FunctioN WHOSE DALEMBERTIAN EQUALS THE
ft,x,v,z).*

“If the Dalembertian of D equals f (t, X, Y, Z), then the
value of D may be found by an operation which may be
called the operation of forming the “‘retarded potential” of
the f (t, X, Y, Z). The operation of forming the retarded
potential of the f (t, X, Y, Z) may be symbolized by stating
that the value of D will be given by the equation,

* Whittaker, History of the Theories of Aether and Electricity, pages 268 & 298.

:Il.l(;\\&liliolr:):“ttlfl Tl""leulr '({;‘«r:g o(f”l‘:lf;r'(r\nzls ??g:m:;t 287,

. Riemann, Phid. Mag. (1867) Vol. 34, page 368.
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all space
D= — 4i f[(t -_’_), X,Y,Z,]
" , 5 . dv (15)

This expression is to be read as follows: The value of Data
given instant (t) and for a given point P = (x, y, z) is equal

to (— 41;) times the summation obtained—

(a) by dividing all space into volume elements (dv),

(b) dividing the volume of each element by its distance
r=v X —x)+ (Y —y)2 + (Z — z)? from the
point P.

(c) multiplying this quotient by the value of the f (t, X,
Y, Z) at the volume element, not for the instant (t),

but for the instant of time (t ——:— ,orr /s seconds

earlier,
(d) and finally summing up all the products so obtained.”

4,

Fic. 9

Before taking up the proof of this proposition it may be
noted that if there are no moving charges in the field the
operation of obtaining the retarded potential becomes iden-
tically the same as the more familiar operation of obtaining
the potentials in the gravitational or in the electrostatic
field. If there are no moving charges, the Dalembertian of
D degrades to the Laplacian of D.

[201]
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15. PROOF FOR CHARGES AT A DISTANCE FROM THE POINT
To show that the value of D defined by equation (15)
satisfies the differential relation expressed in equation (14).
Let P = (x,y, z), Fig. 9, be any point for which the value
of D is desired for the instant (t). In performing the integra-
tion indicated in equation (15), we are concerned with only
those volume elements for which the f (t, X, Y, Z) has a

value at the instant (t __rs_) That is, only those volume

elements which contain a charge at the instant (t —%)con-

tribute to the integral. All the balance of space contributes
nothing to the integral. A few of the volume elements pre-
sumed to contribute to the integral have been shown in Fig. 9.

Consider first the part of the integral contributed by any
volume element whatsoever except the element immediately
surrounding the point P.

The part of the integral contributed by the volume element
dv) at M = (X, Y, Z) is—

1 f[(t—.f_),x,\',z]
Pu=-fp L% 5 dv

I f[(t V&0t Yoyr+ (2"2)2)’X,Y',Z:|
= " 1ir s dv

i
VX=x)+ (Y-y)+ (Z-2? (16)
Taking the second derivative of Dyy with respect to (t),
w1 r[(1-2).xa]
de M7~ Ty '“r dv (17)

(See the footnote* for the meaning of f”’ [(t —r /5),X,Y,Z])

*In the expression f [(t— —:—- ) X.Y.Z]. let (t—-:—) be represented by (u).
Then— ) )

LOTC-E) v - [oxnd]
and ——‘ir[u\\y]
a%‘[(““)\‘?] (Ix d‘f[uxyz]l
-Iix‘if["\‘7]+(d") [o xvz]
~a r[(= ) xva] « () e [(v- 5 ) xve]
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Taking the second derivative of Dy, with respect to (x),

& by = —ﬂff"[(t—_f),x,y,z](_x_‘x_)’

C N
s M 4r | s*r3

’ r XY 3 (X —x)? 1
+f[(t_8)’ ' Z:I[ st sr”]
s ) 1} ) r5 rs {

In like manner, the following derivatives are obtained:

d%DM = d" {f"[(t-—) XY7] Y-y

+ f’[(t——r—), X,Y,ZJ [—3 Y —y)? L]
N3 SI S
+1 [(t —L), X,Y.Z] [——3 (¥ —y)* l]'
S . 19 3 ’
d’ — dV j ’” _ (Z—Z)2
WDM = f I:(t “) XYZ] 253
s
s i sr
§
f

IR [
Adding i

e, dr I U (t—i ,X,Y,Z:I
[W+E{?+dz2]D" T dr:—k dv

r

and

Hence from equations (17) and (18),

[V2 - 1 ddz]Du =0

As the volume element at M represents any volume ele-
ment save the element surrounding P, it follows that the
Dalembertian of all that portion of D which is contributed

[203]
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by volume elements other than the clement immediately
surrounding P is zero.

There remains to he considered the value contributed to
the integral by the volume element N immediately surround-
ing the point P. Let this element be taken as a small spher-
ical volume of radius R. To establish our proposition, the
Dalembertian of the quantity which is contributed to D by
this volume element must be demonstrated to equal the
value of the f (t, x, y, z) at P.

If the f [(t —§) X,Y,Z] is zero within the sphere N, this

portion of space contributes nothing to D. Therefore, if at
P thef (1, x, y, z) is zero, the Dalembertian of D for the point
P is zero, and the value obtained for D by the summation ex-
pressed by equation (15) satisfies the differential relation
expressed in equation (14).

16. PrRooF FOR CHARGES AT THE POINT
If the, f[(t —g) X,Y,Z] is not zero within the small

sphere N surrounding the point P — in other words, if this
sphere contains a charge—the value Dy contributed to D

by the values of f[(t ——E—), X,Y,Z] within this spherical

volume must be determined, and, as previously stated, to

establish our proposition, the Dalembertian of Dy must be

shown to equal the value of the f (t, x, y, z) at the point P.
The value of Dy is defined by the equation,

Vol. of the sphere

1§t t-i),x,Y,Z]
Dnv = -1, [( 5 dv

47
r

In the first place, it is to be noted that the infinite value
assumed by the integrand when r equals zero does not mean
that the integral Dy is infinite. This may be demonstrated
as follows:

Over the space within a sphere of infinitesimal radius R

the f [(t - SL) X,Y,Z] will, for any given instant of time,

[204]
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have substantially the same values at all points within the
sphere. Or, at any rate, the values of the function for the
different points within the sphere may be conceived to lie
between a maximum value f, and a minimum value f;,, By
letting the radius of the sphere approach zero, these values
may be made to differ by an infinitesimal amount from the
value of the function at the center of the sphere, namely
f,xy,z).

Consequently, the f [(t - si), X,Y,Z] may be imagined

to have the uniform value f (t, x, y, z) at all points within the
sphere. The value of Dy may then be computed by dividing

Fic. 10

up the spherical volume into spherical shells of thickness
(dr) and carrying out the indicated integration.
Whence

- R
- _1 f (t,x,y,z) 4r 12 dr
Dy = él‘ll"J'a T
= ‘%f (t.x,y,z) (19)

The value of Dy is therefore not only finite, but it can be
caused to decrease without limit by decreasing the radius
of the sphere without limit.

For the purpose of calculating the Dalembertian of the
value Dy which is contributed to the retarded potential by
the space within the sphere N, let the origin of the system
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of coordinates be transferred Lo the center (P) of the sphere.
Then let the retarded potential be calculated—not for the
point P—but for a point K, Fig. 10, displaced along the X
axis by an infinitesimal distance (x) from the center. (This
is for the purpose of obtaining the expression for Dy in such
a form that the value of ddlz may be calculated.)

Imagine the volume of the sphere N to be made up of
plane slices of thickness (dX), and these slices in turn to be
constituted of circular rings of radius (Y), as shown in Fig.
10.

The expression for the integral Dy now takes the form:

—VR-X
f f f (1,x,y,z) 27 YdYdX
— _RYY =0 Vx-X)+ Y?
X=R . Y=VR:-X

f (t,x,y,z) 2r YdYdX
Vv (X —x)? +Y’ (20)
X =x

R? «x? ) 5
- (‘Q‘ - F) f (t'x’>7z) ("'1)

Taking the second derivative of Dy with respect to x and
letting R approach zero, the second derivative approaches
the following limit:

d*Dy
d2

Integrating,

== f(tx,} Z)

In like manner it may be shown that

d:Dy _ 1 i
ot 3 f (t,x,y,2)
d*Dy _ 1

and iz =3 f (t,x,v.2)
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Taking the second derivative of (19) or (21) with respect
to (t) and letting R approach zero, the second derivative
approaches the following limit.

d’Dyn _
dtz Y
Therefore

1 d
[V’—- oy dp]DN=f(tx3 z)

This establishes the proposition that the values of D de-
termined by equation (15) satisfy the differential relation
expressed in equation (14), or the values of a time and point
function D whose Dalembertian is a given time and point
function f (t, x, y, z) may be found by the operation of form-
ing the retarded potential of the f (t, x, y, z).

17. Proor THAT THE ForceEs MAy BE CALCULATED From
THE “RETARDED DISPLACEMENT POTENTIAL” AND THE
“RETARDED VECTOR POTENTIAL.”

By equations (10a) and (15),

1p 1 *
' (L& ]
Dl = — —1; dx t g S2 (l:' 1) (t—r %) dv (22)

Splitting the right hand member of (22) into two parts,
equation (22) may be written

' ([a]
D,=D/+ D,/ = —Fr dx l.(l—-r:‘s) dv
- (p 1)
U-r 9 dy (22a)

In which, D/’ represents the 1st, and D,” the 2nd term.
¢ For the meaning of the subscript (t—r/s), sce the footnote to equation (26).
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In like manner,

WHE ”]
D;= D, +D,"= — —f [ dy - dv
r
(Pvz)
‘—f it da=rm gy (22b)
(e
D,= D'+ Ds" = i | dz r(l—r/s\ dv
(PVa
- ‘—f ki Ja-ry gy (22¢)
By equations (13) and (15),
r [d d ]
IR N B PN AR A
H] = IE' _d S dz J (t—1/s) dv (233)
oJ T
r [d d )
1| =] 3= (bV1) — 7= (pVs)
H, = _ﬂ _d Z dx _J (t—r/8) dv (23b)
y r
r [d d ]
= — 1 — | 32 (pV2) — I, (pV1)
Hs = ‘E"u _dx ].d y J (t=r/s) dv (23(:)

The right hand members of equations (22) and (23) con-
tain terms of the type g—x and (pVa) Now the values
of these terms depend upon the actual space distribution of
the moving charge. Thus far, we have not specified in de-
tail the manner in which the moving charges of Fig. 5 are
distributed. All that has been stated of Fig. 5 is that two
charges, a positive charge Q and a negative charge -Q, are
distributed in some manner over two sets of thin circular
rings which move up and down in a simple harmonic man-
ner. The values of D,, D,, D; and of H,, Hs, Hs might be
computed by making any arbitrary assumptions as to the
distribution of the charges over the rings, subject only to the
condition that the total charge is to equal +Q on one set
and —Q on the other set of rings. It is far more convenient,
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however, to follow a procedure which involves no specific
assumptions of this kind. This procedure is as follows:
The components of the displacement and of the magnetic
force may be derived from two auxiliary point functions
defined as follows:
Let the “retarded displacement potential*’ & be defined
as a scalar point function satisfying the differential relation,

1 d&
[ve- L ]e=-s (24)

Also let the ‘“‘retarded vector potential” A be defined as
a vector point function satisfying the differential relation,

[v= -5 j‘T] A-—oV (25)

In other words, & and A are defined as quantities whose
Dalembertians are to be equal to the negative of the volume
density and the negative of the current density respectively.
Therefore the values of  and A will be found by the operation
of forming the retarded potentials of —, and —,V. Thus

T Adnx —;'-"’”’ dv (26)
_ 1 [pV]
A= 4“! l‘(t_'r/s) dv (27)

The components of the vector A will be given by the equa-
tions,

A = 1 [Pvl]
1 p . (t—r/s) dv (273)
1 pV2
A2 ke (t—r/s)
Tr ) LU=t gy (27b)
* *“The displacement potential’’ should not be confused with “‘the potential.”” The

gradient of the former gives displacement and of the latter, electric force. The
value of the former is p (the permittivity) times the latter. o

tThe subscripts (t—r/s) aplpearing in equations (26) and (27) indicate that in
finding the retarded potential at a point P for the instant of time (t), any element
of vol/u;ne is to be multiplied by the value of p or pV in the clement at the instant
(t—r/s).
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1 [pVa]
As ‘ﬂf——%’*’ dv (27¢)

It may be shown that,

,_ _do w_ 1 d __dtb_li
D[ = d—'x and D[ = ?(‘rl\l or D] = d—x S—z th]
(28a)
,_ _do v_ 1 d, _de 1d
Dz = a—} and Dz = ? d—'—-Az or D'g—-— d_) -8-2— (FAz
(28b)
'___d‘b, n___l d __d‘b_ 1 d
D3 = a——zdnd D-; = ?(HAS or Dg— d_i ?2 &Aa
(23c)
Or in vector notation,
1 d
And that
_dA;  dA, _
H,= dy " dz X component of curl of A (29a)
_dA, dA;
H. = 9z dx - Y component of curl of A (29h)
_dA, dA,_
H; = ax dy Z component of curl of A (29¢)
Or in vector notation,
H= curl A (29)

The proof of these statements is as follows:

18. To Swow THat D, = -:—(:
Let P, Fig. 11, represent any point in space and K a second
point displaced from P in a direction parallel to the X axis
by the infinitesimal amount (dx). Let the values of the re-
tarded potential ® at these two points for a given instant of
time be represented by &, and ¢,.
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Let the operation of forming the retarded potentials at
the points P and K for the instant (t) be visualized as car-
ried out in the following manner:

First: Visualize all space as divided into volume elements,
with radii extending from the point P to all those volume
elements which contain a charge at the instant (t —r/s). A
few of these volume elements and radii have been shown in
Fig. 11. The value of &, is the result of carrying out the sum-
mation expressed by equation (26) over this system.

Second: Now visualize a second set of radii (indicated by
the dotted lines in Fig. 11) all issuing from the point K and

J
S i

r'd

S IR 1

\

o
poatelecccccenanaaa
.
DR

z

Fic. 11

drawn parallel and equal to the radii issuing from point P.
The value &, is the result of carrying out the summation
expressed by equation (26) over this system.

How do the summations for &, and &, differ? Every
radius with its terminal volume element in one system can be
matched by a corresponding radius and volume element in the
other. The only difference is in the density of the charge pin
corresponding volume elements. If the volume density in any
element belonging to the point P system (as the element C of
Fig. 11) is p;, the volume density in the corresponding ele-
ment of the point K system (J of Fig. 11) is (m+ g—;dx).
Therefore the values of ¢, and ¢, will be given by summations
involving identical combinations of (r) and (dv) associated

with the volume density p in the P system and with (p+

dp .
ax dx) in the K system.
[211])
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By = 1 * Fp-i-g—pdx:l
K i L X M=rs gy
o r
1 (s | [‘L"dx]
Tin | L daregey o dx (t=rs) |y
J r | I
and
A -
1
oJ r
Therefore

dp
1 —d
Pk —‘PP:ﬂfMMﬂ dv
r

s
P—d, 1 —]
o & = uf—-%d" S dy

h-a,  do
dx dx

But

and from equation (22a)

(]
Dl,=_4~r dx r(t-r 9 dv

deo

In like manner it may be shown that

,_ e
and D3'=—£lib—

dz
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19. To Suow THAT D, = — Lz ﬂ A,
s? dt

From equation (27a), the X component A, of the retarded
vector potential is

' (L]
Al:ﬂf p ,r(t_r/s)dv

By visualizing the operations involved in finding the
values of A, at any point P for two instants of time t, and
(t, + dt), it may be seen that

d d 1 I:le:I
atora [ﬂf——“" %w]

r
- (La ()]
—:l—x - (t—1 /%) dv

But from equation (22a),

1 d
”n 1 2 A V
D= —nf [ %), dv

r

Therefore
"_ _ 1 d
Dl = 'S'—z a—tAl
In like manner it may be seen that
w__ 1 d
D= ah
" 1
and D;"’ = i dgl_ s
20. To Snow Tuat H, =33 _ dA:
dy dz

By equation (27c¢),

([
Az:ﬂf[p sr(l—r ®) dv
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By visualizing the summations involved in finding the
values of A; at a point P and at a second point K displaced
from P in a direction parallel to the Y axis by the infinitesimal
amount (dy), it may be seen that

d
d, 1 [~,(pva)]
d_yA“'“;l_;f dy ~ Jazrw gy

r

In a similar way it may be seen that

d =_ (sz) ,
dz : U=r = gy

But from equation (2‘3a),

r 4
- lf[d (V) = dz(p\z)]“_r -

r

Therefore

dA, dA,
H: = dy " dz (29a)

Similar demonstrations may be used to establish equations
(29b) and (29c).

21. To SUMMARIZE:

If a system of charges moves in space in a known manner,
the electric displacement D and the magnetic force H at any
point in space may be derived from the retarded displace-
ment potential ® and the retarded vector potential A by the
equations,

1 d
= - - = pA
D grad ¢ 7 d tA (29)
H= curl A (29)

The values of the retarded potentials ® and A are to be

computed by the equations,

_ 1 [p]
b = 1 ,rf _;“‘L‘ dv (26)
[pV]
L Jdzry gy (27

r

Aol

Ax
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IV. EXPRESSIONS FOR THE FORCES AT GREAT
DISTANCES FROM THE RADIATOR

22. THE FI1ELD AT PoINTs NEAR THE EARTH’S SURFACE

We proceed to compute the electric displacement D and
the magnetic force |4 at a point P near the earth’s surface
and at a great distance (100 wave lengths or more) from the
radiator shown in Fig. 5. * In order that we may have spe-
cific conditions to discuss, let the radiator be assumed to be of
the following proportions:

Y
P
_— =
- - - :Y
o & T —x—
_—— -—
Mf-—g
Fic. 12
Table I
Radius of charged areas........................... 165 meters
Maximum elevation attained by the
charged area............................ 60 meters
Frequency...................................... 80,000 cycles
Distance to the point P....................... 600 kilometers
Elevation of the point P above SS........... 90 meters
Maximum potential of + area to earth.. 100 kv.

The radiating system has been redrawn in Fig. 12. In
this figure, the XZ plane has been taken to coincide with the
neutral surface SS of I‘ig 5; the XY plane has been passed
through the point P = (x, y, O); and the positive and
negative charges on the two sets of rings are assumed to be

*In the subsequent discussion, the following approximations are used: (a) the
earth’s surface is treated—not as a spherical surface—but as a plane surface, (b)
the resistance losses in the surfacc of the earth and the absorption losses in the
atmosphere have been neglected.
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symmetrically distributed about the Y axis. The two sets
of rings carry the charges +Q and —Q coulombs, and their
respective elevations above the XZ plane are expressed by
the equations:

h, = h, cos wt (30a)
h, = —h, cos wt (30b)

23. THE RETARDED DISPLACEMENT POTENTIAL &

As the element of charge (dQ) located at the center of the
positive plate moves up and down in the simple harmonic
manner expressed by equation (30a), its distance (r) from
the point P varies in the manner expressed by the following
equation.

r= [x’+ (h, cos wt -—y)ﬂ:ll/2

(h, cos wt — y)?
=x [1+—ﬁ’2—i Fo ]

Let us first draw the curves showing the steady state values
of the displacement potential at P which correspond to the
position of the charges at any instant of time, and then pro-
ceed to consider in what respect these curves must be altered
to make them represent the retarded potential. By the
“steady state value of the potential at P corresponding to
the position of the charges at any instant” is meant the
potential which would be assumed by the point P if the
charges ever after remain fixed in the position they have at
the instant under consideration.

The value at point P of the steady state displacement
potential due to the various positions of the charge (dQ) is
given by the equation,

dd>,,=4lr , dQ
—v)2
x[1+ M]
2x?
=ﬂ[1_w2]
47X X2

[1 - 2xiz(h(,ﬂ cos? wt — 2h,y cos wt +y2):| @31)

[216]



BENNETT—RADIO TELEGRAPHY AND TELEPHONY 39

As the element of charge (—dQ) located at the centerof the
negative plate moves up and down, its distance (r) from the
point P varies in the manner expressed by the following
equation,

1
r= [x2+( —h, cos wt —y){l/z

The value at the point P of the steady state displacement
potential due to the various positions of this charge, is given
by the equation,

de, = -—ﬂ 1- 1—(h 2 cos’wt+2h'yc05¢ot+y’)] (32)

" 47X 2x2 "¢ °
The resultant displacement potential at P due to the cor-

responding elements of charge at the centers of the positive
and negative sets of rings is

do=do,+do,= (dQ) Y cos ot (33)

Curves showing the variation in time of the values of the
- terms of equations (31), (32), and (33) have been drawn (but
not to scale) in Figures 13, 14, and 15 respectively. For
example, the right hand member of equation (31) consists

2

of the constant term dQ (1 —-" ) upon which two very
47X Zx?

small variable terms are superimposed; the variable term

dQ lw is of the same frequency as the frequency of

drx x2

vibration of the moving charge, and the term —g—g(
2 2

h—'%fmt is of double this frequency. These terms are

represented by curves A, B, and C of Fig. 13.

This question now arises: How must these curves be
modified in order to make them represent the values of the
retarded displacement potential at P?

At the instant at which the charges pass in opposite direc-
tions across the neutral surface (as the instant t,), the dis-
tance of the elementary charges from P is v x2+y2. Now the
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effect corresponding to the location of any element of the
charge at the instant (t,) is felt at P (r/s) seconds later.
Therefore it follows that the potential shown by Figures 13,
14, and 15 for the instant (t,) represents the retarded po-

Vxi4y'y
S

tential at P at the instant (t; +—

During the quarter cycle from (t,) to (t:), the positive
charge moves farther and farther away from P and the nega-
tive charge approaches P. At the instant (t;), the positive
charge is at its maximum distance and the negative charge is
at its minimum distance from P. At this instant the positive
charge is approximately 1.2 cm. farther from, and the nega-
tive charge is approximately .6 cm. nearer to P than they
were at the instant (t,).

Therefore, the potential shown in Fig. 13 for the instant
(t2) represents the retarded potential at P at the instant

‘/ xz+y2

I:t2 +— 4+ T2:|, while the potential shown in Fig. 14

for the instant (t;) represents the retarded potential at P at
V X2+ yz 3 _6
s s |

the instant l:tz + That is to say, in alter-

ing the curves in Figs. 13, 14, and 15 in order to make
them represent the retarded potentials, the potentials shown
for the instant (t,) in Figs. 13 and 14 must be shifted back

2+y

2
in time by seconds, the potential shown for the in-

2 2
stant (tz) in Fig. 13 must be shifted\/x—:l

1.
+ TZ seconds,
and the potential shown for the instant (t,) in Fig. 14 must

2 2
be shifted -1

- £seconds.
s
There is, therefore, between points on the Fig. 13 and

Fig. 14 curves a relative shift which never exceeds (172 +

?6) seconds, or 6 107!' seconds. Now a shift of 6 107!

seconds in time corresponds at a frequency of 80,000 cycles
[219]
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to a shift of only five one-millionths of a cycle or .0018
degrees.

From this it follows that for all practical purposes,* the
curves of Figures 13, 14, and 15 will represent the retarded
Vxi+y?

s

potentials at P if they are shifted in time by

seconds, or substantially by % seconds. From equation

(33), it follows that the value of the retarded displacement
potential at P due to the corresponding elements of charge
at the centers of the positive and negative sets of rings is
given by the expression:

do, = [dQhy o (t _ _’S.‘-) (34)

2rx3

In like manner, every element of the positive charge may
be paired with its corresponding element. of the negative
charge; any pair may be seen to contribute to the value of
the retarded potential at P the quantity

_ (dQ) hyy (x - X) i
d‘b—m Cosw(t——s—) (30)

in which, X is the abscissa of the pair of charges under
consideration. Thus, the resultant potential at P will be
the sum of a great number of harmonic functions of the
same frequency but differing somewhat in phase. The maxi-
mum difference in phase will be equal to the interval re-
quired for the transmission of the disturbance over a dis-
tance equal to the diameter of the radiator. This interval
equals 330 + 3 10% or 1.1 10—® seconds, which at a frequency
of 80,000 cycles means a phase difference of .088 of a cycle,
or 32 degrees.

Since the charges on the radiator have been assumed to
be symmetrically disposed about the axis, and since the
contribution made by any pair of elements to the potential

. *It should be borne in mind that none of these arguments or conclusions apply
if the point P is within a few wave lengths of the radiator, or if the line OP from
the radiator to P makes an angle freatcr than one or two degrees with a horizontal
plane. If OP makes an appreciable angle with the horizontal, these simple consid-
crations require modification. See Appendix A for the forces at elevated points.
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does not differ in phase by more than 16 degrees from the
contribution of the central pair of charges, it follows that
the value of the retarded displacement potential at P will,
to within a few tenths of one per cent, be given by the ex-
pression;

_Qh,y ( _X)
b = Sy COS © t - | (36)

24. THE RETARDED VECTOR POTENTIAL A
The retarded vector potential A is defined by the equation,

_ 1 [pV:I
A“E L _a-r gy (27)

T

Now, in Fig. 5, the charges move only in a direction
parallel to the Y axis. Therefore, the X and Z components
of V are zero, or the vector potential A is a vector parallel
to the Y axis. For the positive charge, the Y component of
the velocity V is,

= q-l—]- =

dt
and for the negative charge, the Y component of the velocity
is,

Vy, —hgw sin wt

Van =heo sin ot

Since the moving charges are symmetrically disposed
about the Y axis, and since the vector potential contributed
by any element does not differ in phase by more than 16
degrees from the potential contributed by the charges mov-
ing along the Y axis, it follows that the value of the retarded
vector potential at P will, to within a few tenths of one per-
cent, be given by the expression

A =Az=4—2x{—how sin m(t —%)}
+ %{hom sin o (t —%)}

or A,=—Qz—l;‘;l) sinm(t—%) (37)

[221]



44 BULLETIN OF THE UNIVERSITY OF WISCONSIN

25. THE: DISPLACEMENT AND POTENTIAL GRADIENT AT P.
From equation (28), the displacement is given by,

1 d

Taking the derivatives of &, as expressed in equation (36),

(B=9h"[ :ﬂfcos>(t——)+—'2 sin o (t—i)]
dx 27 S

dy 2ax? )
de
a—z—O

At points of the neutral surface (the XY plane), g is
zero since (y) is zero. At points near the XY plane, g—?: is

negligibly small in comparison with g—d) That is to say, the

Y component of the gradient of ® or D, is the only com-
ponent of appreciable magnitude at points near the neutral
surface. The Y component of the qradlent of ® is given by
the expression,

de _ Qh, X
Dz-——ﬂ— e cos«;(t ?)

Since the X and Z components of the vector potential
are zero, and by equation (37),

A= —Q,)h"(" sin © (t - i) | (37)
zrX S
Therefore
Dlll = Dsll —_ O

and

"o 1 d, Qhy X
D,"” o1 ?(HAg— S COS ® (t —g—)
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Therefore the displacement at point P is parallel to the
Y axis, and its value (vertically upward) is given by the
expression,

m=D+Hy'Q2[———l]mSmO—_)aw

s2X X3

The potential gradient at P is likewise parallel to the Y
axis and its value (vertically upward) is,

_Qh, [ _ l:l ( X .
F, = p Zﬂ'p -Sz_x F cos w {t —g—- 39)

26. THE MAGNETIC FORCE AT P
From equation (29), the magnetic force H is given by,

H=curl A (29)

Now, at all points in space the X and Z components of
the vector A are zero, and at the point P, the value of A is,

“r_ _Qhy . _Xx
A=A.= o sine (t—— (37)
Therefore,
dAs _dA,
Hiorgr -4z =9
dAl dA3 -
Heor ~ax -
dAz _ dAl :
I; or &  dy 1s,
H;, =9h [_ cos (t ——) +— smw(t—l)] (40)
2r 5

That is to say, the magnetic force is exerted in a direction
which is normal to the plane determined by the point P and
the axis of the radiator. The magnetic force is exerted along
circular paths which are centered upon the axis of the radi-
ator, and which lie in planes normal to this axis.

The magnetic flux density at P will be given by the ex-
pression:

Qe[ (1-3) 2o (1-3)]
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V. APPLICATION OF THE EXPRESSIONS FOR THE
FORCES AT DISTANT POINTS

27. THE ELEcTRIC FORCE

The expression for the electric force at P—equation (39)—
contains two terms. As the distance from the radiator to
the point P is increased, the first term decreases as the first
power of the distance and the second term decreases as the
cube of the distance. At zero frequency, that is, with the
charges stationary, the first term disappears from the equa-
tion, and the second term is seen to be identical with the
expression previously derived for the gradient in the electro-
static field by the method of images. Hence, we may call
the first term the ‘“‘radiant term” and the second term the
“steady-state term.”

The radiant and steady-state terms are of equal magni-

tude at the point x =2 , or at a point .159 of a wave length
w

from the radiator. (It should be noted, however, that equa-
tions (39) and (40) do not apply to points this close to the
radiator). For all points at a greater distance than this
from the radiator, the radiant term is the larger term; at
great distances, the steady-state term becomes negligibly
small. For example: at a point P which is at a distance of
600 kilometers from the radiator specified in Table I, the
electric force or potential gradient is

6.2 6.2

o W‘] cos 500,000 (t —.002)

F, (in volts per cm.) = [

The magnitude of the radiant term at this point is seen
to be one million times as great as the steady-state term.

For points at a great distance from a radiator vibrating
at the usual wireless frequencies, the steady-state term may
be dropped and equation (39) may be written thus:

F,= 210 Qh 2 o (t - i) (42)
S X S

o
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28. THE MAGNETIC FORCE

The expression for the magnetic force at P—equation
(40)—also consists of two terms. As the distance from the
radiator to the point P is increased, the first term decreases
as the first power of the distance, and the second term de-
creases as the square of the distance. Both terms vanish
for zero frequency. The coefficient of the second term,
Qhyw

2mrx?

up at P if the two charges, instead of oscillating, were to
move continuously away from each other with a uniform
velocity equal to the velocity they have when crossing the
neutral surface. Therefore, we may call the first term the
“radiant” term and the second the ‘“‘steady-current” term.

As in the case of the electric force, the two terms in the
magnetic force are of equal magnitude at a point .159 of a
wave length from the radiator. At greater distances the
radiant term is the larger term. For example: At a point P
which is 600 kilometers from the radiator specified in Table

I, the magnetic force is
1.66 coS ® (t -—i)
107 ' s

The magnitude of the radiant term at this point is one thou-
sand times as great as the ‘‘steady-current” term. For
points at great distances from a radiator vibrating at the
usual wireless frequencies the steady current term may be
dropped and equation (40) may be written,

H, = 27 Qhef® o (t —i) (43)
X S

namely is the magnetic force which would be ‘set

H; (in ampere-turns per cm.) =

1.66 . X
+ WO— Sln&)(t _?)

29. THE RADIANT VECTOR

By Poynting’s Theorem, the rate P, at which energy
streams across unit area at P is the vector product of the
electric and magnetic forces at P.

P:=F XH (watts per sq. cm.)
[ 225
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Using the approximate values for F and H given in equa-
tions (42) and (43) and taking the vector product, it is seen
that the radiant vector P, at P points radially away from the
oscillator and has the value,

p, = 1800 QM e (t - i) (44)
S x? S

For the specific conditions of Table I, this reduces to
_ Lol . X
P, (in watts per sq. cm.) o cos (t _:T)

This result may be arrived at in another way. The
electro-potential energy per unit volume at P is

1 . 240x Qzh2f _x)
?pr‘ OFTTCOSW t ?

The electro-kinetic energy per unit volume at P is

2 2
% uwH? or 243(3” M— cos? w (t - —)

The energy in the electro-potential form per unit volume is
seen to equal the energy in the electro-kinetic form, and the

3 2 2 f4
total energy per unit volume is 4850” Q ]; f cos? w (t - —)

Since the state of the medium is propagated outward with
the velocity (s), the rate at which energy streams across unit
area at P will be (s) times the energy per unit volume.

[4801r’ Qhft ( L_X )] _ 48073 Q?h,? 1!
S

53 x2 S‘Z x2

cos? w (t -l)
S

This product is seen to be identical with the expression in
equation (44).

30. THE “RaApIATION FIGURE OF MERIT’’ OF AN ANTENNA

We are now in a position to answer the question raised at
the beginning of this discussion, namely: How is the magni-
tude of the disturbance which is set up in the medium at a

[226 ]
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distant point P affected by the height of the capacity area
of the radiating station?

The expressions for the electric force, for the magnetic
force, and for the rate at which energy streams past P—
equations (38) to (44)—all contain the factor (Qh,). That
is, the magnitudes of the forces and fluxes are directly pro-
portional to the value of the product of the charge (Q) on
the capacity area times the maximum height (h,) of the
capacity area, and the rate at which energy streams past P
is proportional to the square of this product.

Now the charge Q on any capacity area may be written
as equal to the capacity (C) of the area to earth times the
voltage (E) from the charged area to earth, both C and E
being the values for the instant when the area is at its point
of maximum elevation. Accordingly, (Qh,) may be replaced
by its equivalent (Ch,E). Now the maximum voltage (E)
which may be applied between the capacity area and earth
is limited by such considerations as the failure of the in-
sulators and the ionization losses around the wires. This
voltage is (within limits) substantially independent of the
capacity (C) and elevation (h,). Possibly the limiting volt-
age would be somewhat lower for a radiator having the
capacity area at a great elevation (150 meters) than for a
radiator having the capacity area at a moderate elevation
(10 meters), because of the greater mechanical difficulties
encountered in insulating an extended area at a great eleva-
tion.

From this it follows that if two different antennae of ex-
tended area are operated at the same voltage and frequency,
then the magnitudes of the electric forces—or of the magnetic
forces—at the same distance from the two antennae are
proportional to the values of the (Ch) products of the two
antennae. The product Ch—the product of the capacity
of the extended area times its elevation—may, therefore, be
called the Radiation Figure of Merit of the antenna.

The question now is, How is the figure of merit of an
antenna having an extended capacity area affected by the
height of the capacity area above the ground? Imagine the
area to be in the form of a circular sheet of radius R, as in
Fig. 1. If the radius (R) is large as compared with the eleva-
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tion (h), the capacity (C) is given approximately by the
expression
pr R?

h

Whence Ch =pr R?

That is to say, the radiation figure of merit of the antenna is
independent of h, or the values of the electric and magnetic
forces at distant points are independent of the height of the
capacity area. On the other hand, if the radius R is small in
comparison with h, the capacity is given approximately by
the expression,

C=

C = 8pR
Whence Ch = 8pRh

That is, the radiation figure of merit of the antenna is di-
rectly proportional to the elevation h. Between these ex-
treme conditions, the figure of merit of an antenna of given
area increases with the elevation of the capacity area, but
at a lower rate than the first power of the elevation.

This leads us to a brief consideration of the feasibility of
mounting the capacity areas in wireless telegraph stations
at a low elevation.

31. A CoMPARISON OF SPECIFIC ExaMPLES oF HiGH AND Low
ANTENNAE

As typical examples of low and high antenna, let the
radiator specified in Table I (mounted, however, at only 10
meters elevation) be compared with the antenna of the Gov-
ernment Wireless Station at Arlington, D. C.*

As previously stated, the capacity area of the Arlington
Station consists of three approximately horizontal wire
harps suspended at an elevation of approximately 150
meters. The capacity of this antenna as determined by
measurement is reported to be .0094 microfarads. The
antenna cannot, however, be regarded as the equivalent of
a radiating area at an elevation of 150 meters and having a

capacitly of .0091 microfarads. To find the real capacity of an

*For a dese nplmn of the Arlington Station see . W, Todd, Jour. Am. Soc. Naval
Engineers, Vol. 25, February 1913, Also Kintner, lurl)cs Kroger and Hogan,
United States Navy Wireless Station in Electrical World, Vol. 61, page 721, April 1913,
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area which, mounted at an elevation of 150 meters, would be
the radiating equivalent of the Arlington antenna, one must
subtract from the measured value of the Arlington antenna
to allow for such effects as the following:

Ist. A part of the capacity of .0094 microfarads is through
the insulators to the steel towers. Any displacement current
through the insulators is accompanied by a conduction cur-
rent flowing up and down the steel supporting towers. Again,
a portion of the electrostatic flux from the wire harps termin-
ates on the upper portions of the steel towers; this leads to
conduction currents in the towers. These charges running
up and down the steel towers move in the opposite direction
to the charges in the tail of the antenna and so partially
neutralize the radiation from the antenna.

2d. The .0094 microfarads includes the capacity due to
displacement from the lower portions of the antenna tail to
ground. This capacity area is of course not very effective
because of its low elevation.

I should estimate that the radiating power of the Arlington
antenna is not greater than that of a capacity area at an
elevation of 150 meters and having a capacity of .005 mi-
crofarads. The radiation figure of merit of the Arlington
antenna is therefore estimated to be .005 x 150 = .75 mi-
crofarad-meters. The capacity area specified in Table I is a
circular sheet of 165 meters radius mounted at an elevation
of 60 meters. The capacity of this sheet to earth is approxi-
mately .0125 microfarads, and its figure of merit is .75 mi-
crofarad-meters. The radiator of Table I if operated at the
same voltage and frequency as the Arlington antenna may,
therefore, be expected to set up at distant points a field of
the same intensity as the Arlington antenna. Moreover,
this sheet of 165 meters radius if mounted at a height of 5
or 10 meters will set up the same field as if mounted at the
height of 60 meters.

By mounting the capacity area at an elevation of 10 me-
ters, its capacity is increased to .075 microfarads. This is
only 40 per cent less than the capacity of the compressed air
condensers used in the primary oscillation circuit of the Ar-
lington station. Now the antenna can very readily be in-
sulated for operating voltages far in excess of the voltages
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usually applied to the condensers in the primary circuit
(30 to 50 Kv). Therefore, if the capacity area is mounted at
the moderate elevation of 5 or 10 meters, it is possible to
store in the antenna circuit more energy than is generally
stored in the condensers of the primary circuits of high
power wireless stations. This makes it feasible to dispense
with the coupled circuits which are at present used in spark
systems of wireless telegraphy and to obtain slightly damped
oscillations from a simple oscillating circuit comprising an
extended capacity area M, an inductance L, and a spark gap
S as shown in Fig. 16.

M M
T L L
h,
R s “—
Fic. 17 Fic. 16

32. CONSTANTS OF A SENDING STATION

The constants of an antenna of the dimensions given in
Table 1, save that the capacity area is mounted at an eleva-
tion of only ten meters, would be as follows:

TABLE II
CONSTANTS OF AN ANTENNA 10 METERS IN HEIGHT

Radius of capacity area................... 165 meters
Height of capacity area....................... 10 meters
Capacily of area toearth.............. ... .075 microfarads
Assumed operaling conditions
Voltage at moment of discharge........ 100 peak Kv
Frequency of oscillation............... ... 80,000 cycles per sec.
For the above voltage & frequency
Energy stored..................................... .. 375 joules
Power input at 1000 sparks per second.. 375 Kw.
Peak value of antenna current................ 3800 amperes
Critical resistance of oscillatory circuit... 53 ohms
Initial rate of radiation..................... 80. Kw
Radiation resistance (See Appendix B) .011 ohms
Logarithmic decrement per cycle due to

radiation of energy.......................... 0013

Linear decrement per cycle due to radia-
tion of energy.......................... .13 per cent
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It will be noted that the decrement due to the radiation
of energy is extremely low; the decrease in the voltage or cur-
rent due to radiation losses is only .13 of one per cent per
cycle. In addition to the radiation loss, the following losses
require consideration: the I?R loss in the conductors, the
ionization losses in the air around the conductors, and the
losses in the spark gap. The resistance of the conductors to
the 80,000 cycle currents can readily be made less than .01
ohms, and the ionization losses made negligibly small. The
equivalent resistance of the spark will be of the order of .1
ohms (between .05 and .15 ohms). If the equivalent re-
sistance of the spark is estimated to be .1 of an ohm, the total
damping resistance is .12 ohms. This resistance will cause
a decrement of only 1.4 per cent per cycle.

The current and the rate of radiation in Table II are cal-
culated for a peak voltage of 100 Kv. This is considerably
in excess of the voltages which have hitherto been used with
rotary spark gaps. There may be some uncertainty as to the
performance of a rotary spark gap at this voltage.

VI. THE LOW ANTENNA FOR RECEIVING
PURPOSES

33. THE INDUCED VOLTAGE

Thus far the low antenna has heen discussed only as a
radiator of electromagnetic waves. This question now
arises: Is the effectiveness of an extended antenna as an
absorber or receiver of electromagnetic energy independent
(within the limits previously stated) of its height above the
ground?

Imagine the receiving station to comprise an extended
capacity area M, (Fig. 17) mounted at the height (h;) above
the ground, an inductance L, and receiving devices of ohmic
resistance R. (The receiving devices may be inductively
coupled with the simple series circuit shown in Fig. 17; in
this case, R represents the resistance of the receiving devices
reduced to the primary circuit). Assume the circuit shown in
Fig. 17 to be resonant to the frequency of the sending station,
and to be located at the distance (x) from the sending sta-
tion.
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From equation (42), the potential gradient at the receiving
station is

F, =240 Qhof* (t —%) (42)

S X

Therefore the voltage E, between the plate M of the receiving
station and earth is

E, =207 QR 0, (t _i) )
s X S

34. THE BUILDING UP OF THE OSCILLATION

Neglecting minor terms, the equation for the start of an
alternating current in a highly oscillatory circuit resonant
to the impressed frequency, and comprising resistance, in-
ductance, and capacity in series is as follows:

Measuring time from the instant at which the electromo-
tive force is impressed in the circuit, and representing the
impressed electromotive force (e) by the equation

e=Ecosw (t—t,)
the equation for the current (i) in the circuit is

i =%—(l—s —.?Tt COS © (t—tl) (46)
in which ’

R is the resistance of the resonant circuit, and
L is the inductance of the resonant circuit.

Now the resistance of the receiving station consists of—
(1) the useful resistance R, that is, the equivalent resistance
of the devices which consume a part of the received energy
and are actuated thereby.

(2) the unavoidable ohmic resistance R, of the antenna
conductors and ground connections.
(3) the radiation resistance R; of the antenna.

Item (2) can be made smaller than Item (3), and of two
stations operating at the same frequency, the station having
the higher radiation resistance would, in general, have the
higher Item (2) resistance. That is, the two items (2) and
(3) may be regarded as very roughly proportional. Let us,
therefore, lump items (2) and (3), and denote their sum by
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R, = R: + Ri. R, will consist mainly of the radiation re-
sistance Rj, the expression for which is,

_160x2h,? f?
2

R; 5

ohms* 47)
From this expression it will be noted that the radiation re-
sistance of the antenna is proportional to the square of the
height of the capacity area.

Let us first compare the ultimate values to which the cur-
rent and voltage build up, and the rate at which they build
up to these values, in two receiving stations in which the
only resistance is the resistance R,. Let station A have the
capacity area mounted at the height (h;) and station B at
the height (nh,), and let the antennae be of the same area in
the two stations. The constants of the two circuits are as
shown in Table III. ‘

TABLE 111
Relative Constants of Low and High Antennae
Station A Station B
Height of capacity area.......... h, nh,
Induced voltage (peak).... ..... E nE
Capacity.............ocooeeiiii C %
Inductance......................cco. L nL
Radiation resistance................ R nZR
. E E
Final current (peak).............. R IR
. ) E E
Finalcondenservoltage (peak) RCo RCo
. LE2 LE?
: 1 = el
Final energy stored 5LI%..... e on it
1 CE‘; 2 E2
or P ZRCo? IR*nCo?
. f radiati E: E:?
Final rate of radiation........... " "
. 2L 2L
Time constant....................... 5 R

*See Appendix B.



56 BULLETIN OF THE UNIVERSITY OF WISCONSIN

It is seen that the receiving properties of the two antennae
correspond with their relative radiating properties. The
current in the low antenna builds up to (n) times the current.
in the high; both build up to the same condenser voltage;
therefore, the low antenna stores (n) times as much energy
as the high, and has a time constant (n) times as long as
that of the high antenna. The final rate of radiation is the
same for both stations. That is, both antennae ultimately
abstract energy at the same rate from the passing electro-
magnetic waves, but the high antenna abstracts energy at a
greater rate than the low antenna during the initial stages
(first few swings) of the oscillation. The high antenna will,
therefore, respond much more readily to highly damped
waves than will the low antenna. This means, of course,
that when receiving undamped or slightly damped waves,
the high antenna will be subject to greater interference
from atmospheric disturbances than will the low antenna.
To reduce this interference in the case of stations with high
antenna, additional capacity is used in the “interference
preventer’ circuits. In other words, the low antenna is to
be regarded as the equivalent of a high antenna and ‘“‘inter-
ference preventer’” combined.

Let us now suppose that the two stations under compari-
son contain receiving devices. The maximum amount of
power is expended in these devices if the resistance R, of the
utilizing devices is made equal to the resistance R,. With
the resistence R; so proportioned, the final rate at which
energy is abstracted from the passing waves by the antenna
is half as great as it would be if the utilizing devices were
left out of the circuit. Of the energy so abstracted, one half
is expended in the utilizing devices and one half is re-radi-
ated. That is, in the case of both the high and the low an-
tenna, the maximum rate at which energy can be expended
in the utilizing devices is approximately equal to one quarter
of the final rate of radiation with the utilizing devices cut
out of the circuit. Since—as shown in Table ITI—-this rate
of radiation is the same for stations A & B, the conclusions
previously drawn as to the relative receiving properties of
the two stations are not altered by the insertion of utilizing
devices with properly proportioned resistances.
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35. CoMpPUTED VALUE OF THE RECEIVED POWER

If the station whose constants are given in Table II is
used to emit undamped waves and if a similar station is used
for receiving, then the maximum amount of power will be
expended in the utilizing devices if their equivalent resistance
is approximately .02 ohms. With such a resistance and
with a distance of 5000 kilometers between the two stations
and no absorption losses in transmission, the computed
final values of the power received, current, etc. in the
receiving station are given in Table IV.

TaBLE IV

Computed value of received power with similar
sending and receiving stations

Height of capacity areas.............. 10 meters
Capacity of antenna to earth...... .075 microfarads
Distance between stations............ 5000. Km

Assumed sending conditions
Voltage..........cooooooiiiiiiii 100 peak Kv
Current...................ooocoiii 3800 peak amperes
Frequency................c...cccc..... 80000 cycles per sec.
Rate of radiation...................... 80 Kw

Receiving Station
Radiation plus wire & earth re-

sistance..........................c.o .02 ohms
Resistance of utilizing devices...... .02 ohms
Induced voltage........................... .0076 peak volts
Final condenser voltage............... 5.0 peak volts
Final current........................... .19 peak amperes
Final expenditure in utilizing de-

VICES.......ooooioviiiieiee .00035 watts
Inductance. ................... ... 53. microhenries
Time constant.................. ... .0026 seconds
Time constant.......................... 210. cycles
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VII. SUMMARY
36. To SUMMARIZE:

1st. If an electro-magnetic radiator having a capacity
area with a radius which is large in comparison with any
feasible mounting elevation is operated at a given voltage
and frequency, its radiation figure of merit is independent of
the elevation at which the capacity area is mounted.

2nd. It is feasible to construct a radiator with the capac-
ity area at a very moderate elevation which will have a ra-
diation figure of merit equal to or greater than the values
which are at present attained in long distance wireless sta-
tions by mounting the capacity arca at a great elevation.

3rd. An elevated antenna will respond more readily to
rapidly damped oscillations than will a low antenna. Both
antennae (if the capacity areas are equal) will ultimately
absorb the same amount of power from sustained or very
slightly damped trains of waves. Therefore, when receiving
sustained oscillations, the low antenna may be less subject
to interference from atmospheric disturbances and other
stations.

4th. The relative advantages of low versus high antennae
for high power radio telegraph stations have been tabulated
below.

ADVANTAGES OR MERITS OF Low VERsuUs HIGH ANTENNAE
FOR HiGH POWER STATIONS

Low Antenna

High Antenna

Lower first cost (except where the cost
of land per acre is very high)

Power condensers are unncecessary
Single frequency of oscillation.
Apparently possible to obtain a smaller
decrement than  where power con-
densers are necessary.

Less likelihood of damage by hahtmnn
Probably lus interference from ‘‘at-
mospheric.”

Smaller antenna current—this may be
of considerable advantage where arc
gencerators or high frequency alterna-
tors are used

A smaller number of insulators will be
required: less likelihood of interrup-
tion due to insulator failures.

[236 ]
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APPENDIX A

THE FORCES AT POINTS AT A GREAT DISTANCE
FROM THE RADIATOR AND AT ANY ELE-
VATION ABOVE THE NEUTRAL PLANE

37. Let P in Fig. 18 represent any point at a great distance
from the radiator, and let Q represent any small portion of
the positive moving charge.

We wish to calculate the potentials and the forces at the
point at the instant t which arise from this moving charge
and its image —Q.

“v Pa(»v.2)

Let some element in the moving charge Q be selected, and
let us suppose that this element reaches the point O in space
at such an instant (t,) previous to (t) that the distance OP
will, at the velocity of propogation (s) in the intervening
medium, be traversed in the interval (t —t,). Then

OP or r =s (t—t,) 48)
[ 2371
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Let O (regarded as a point fixed in space) be chosen as the
origin of coordinates and let the coordinates of P be repre-
sented by x, y, z.

Let us take any other element of the charge, as the element
N, whose coordinates at the instant (t,) are X, Y, Z, and de-
termine its coordinates when it is occupying such a position
that the influence propogated from the element N will reach
the point P at the instant (1), that is, simultaneously with
the influence from the element at O. This position will be
called ““the effective position of the element N corresponding
to the instant (t)”. Let this effective position be represented
by Nl (= X), Y[, Zl.)

Assume that this effective position N, is reached at an in-
stant (t,) which is later than the instant (t,) by the interval r.

Then

th=t, + 7 (49)
The condition that N, shall be the effective position of the
element is that the distance
N,P shall equal s(t—t,) = s(t—to,—7) (50)

If the charge Q is assumed to be all moving in the same di-
rection with the velocity YV (components V,, Vi and V,),
then

X,= X4V,
Y.= Y+ Var 1)
Zi= Z+Vsr )

But

NP=v x-X)+(y-Y1)+(z-2Z)?
=V E=X-=-Vir)+(y=Y =Var)24+(z-Z—=V;37)* (52)
Therefore, from (50) and (52),
L=ty —7)2=(x=X-=Vi7r)2+(y =Y = Va7)2 +
(z—Z—-V;r1)? B3)
Iexpanding, and dropping infinitesimals of higher orders.

, (S _XV1 +}'\7Q+ZV3) _ XX+ yY “+ zZ
r r

[238]
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But xV, +YY2+ZV3

is the component of the velocity of the

charge in the direction OP, or along the radius (r) to the
point P.

Representingjw3 by V,, (54)
_ 1 xX+yY+:zZ
T=iTV. . (55)
It will be noted that ’EZHY—rY“_Z. is the projection of
the radius ON on the radius OP.
Representing](—}{—_}_)?—-"_—g by R,, (56)
equation (55) may be written
R,
T= V. B7)

The element which at the instant (t,) has the coordinates
N: (= X, Y, Z,) has its effective position corresponding to
the instant (t) at the point N, = X,, Y,, Z,, and its distance
from P, namely N,P is (by equations (50) and (57),

sR;
s—-V,

NP=s(t—t,—7)=r—sr=r— (58)

38. Letusnow assume that themovingcharge Q is spherical,
that the element O is the center of the charge, and that the
integrations indicated in equations (26) and (27) for the re-
tarded potentials ® and A are to be carried out over this
charge for the instant (t). It will be noted that the volume
occupied by the charge in its ‘“‘effective position correspond-
ing to the instant (t)” (that is, the volume over which the
integrations are to be taken) is not spherical in shape. This
is due to the fact that the influence of any element of the
charge, as N, which is nearer to the point P than is the center
O of the sphere, reaches P before the influence from O. The
effective position of N is therefore some position, as N,

(239]
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which it occupies later in time. That is, the effective position
of any element whose distance from P is less than OP will
be found by displacing the element in the direction of move-
ment of the charge by an amount which in the case of slowly
moving charges will be shown to be proportional to the dis-
tance R, of the element from the plane CC, and to the velocity
of the moving charge. On the other hand, the effective posi-
tion of any element M whose distance from P is greater than
OP will be found by displacing the element in a direction
opposite to the direction of movement of the charge. The
integrations indicated in equations (26) and (27) for the re-
tarded potentials must, therefore, be carried on over the
space found by distorting the sphere as indicated by the
dotted outlines of Fig. 18.

The relative volume of the spherical space and the space
within the dotted outline may be found as follows. Consider
a differential slice of the charge included between two planes
AA and BB perpendicular to the radius OP. Let the pro-
jection on OP of the radius to any point in the plane AA be
R;, and the projection of any point in BB be R, + dR,. The
effective position of any element in the AA plane is given
by equations (51) and (57) as

Xi=X+V,r=X+_20 v,
s—V,
R,

Y|=Y+V21=Y+ Vg
s—V,
R,

Zl=Z+V31'=Z+S_ ¥ Va

That is, in their effective positions corresponding to the
instant (t) all elements in the AA plane are displaced in the

R
S-—V,. r
In like manner, all elements in the BB plane are displaced
by the amount s_—VT (R, +dR,)

The displacement of the BB plane is therefore greater

direction of movement of the charge by the amount

than that of the AA plane by the amount S—LV dR,. Since

(240 ]
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this difference is between displacements in the direction of
motion of the charge, the increase in the perpendicular dis-

tance between the planes is V{/ dR,

Hence the volume between the planes in their effective
V., V.2 .
1+.T g )tlmes

the volume between the planes AA and BB. That is, the
effective volume over which the integration is to be taken is

positions is equal to (1 +

greater than the spherical volume in the ratio of (1 +\L —V?
=
........ ) to 1. r
-

39. For the case of slowly moving charges, asin the low fre-
quency station whose constants are discussed in Section 31,
we may now repeat the arguments used in Sections 22 to 24,

save that the charge must be multiplied by (l +V ‘; )

and that P must be taken to represent a pomt at any
elevation above the neutral plane and at a great distance from
the radiator.

Letting 0 represent the angle between the line OP and the
axis of the radiator, the following expressions are obtained
for the retarded potentials at P.

g:r [— e C(s)s 0 sin (t —L)
+ co_s_0 cos w (t ——):I (59)

A== -2y (- 1) (60)

From these expressions have been omitted the terms which
in the case of slowly moving charges, are negligible at great
distances from the radiator.

From these expressions for the retarded potentials, the
following expressions may be derived for the radiant terms
in the electric and magnetic force at P.

H1=Hz= O
[241 ]
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H, = 27Qh[ o 0c03w(t——r) (61)
sr s
F,= —w cos 6 sin 6 cos v (l —L) (62)
sr s
F, —2407*Qh,f* sin? @ cos w (t ——E) (63)
sr S
F; = O

The resultant electric force (the resultant of F, and F,) is
seen to be normal to the radius OP, to have the absolute
value F given below, and to lie in the plane determined by
the point P and the axis of the radiator.

F =240w:*’?h(,f’

Since the magnetic force is perpendicular to this plane,
the electric and magnetic forces are both perpendicular to
the line OP, and they are perpendicular to each other.
Therefore, the radiant vector is in the direction of the line OP,
and the rate P, at which energy streams out across a plane
perpendicular to OP at the point P is

480 Qh, 2f*

s? r?

b

sin 6 cos (t —--{-) (64)

P1=

sin? 0 cos?w (t —%) (watts per sq. cm.)
(69)

(212]
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APPENDIX B

THE RATE OF RADIATION AND THE RADIATION
RESISTANCE

40. RATE oF RADIATION

At any point at a great distance from the radiator, the
direction of flow of energy is normal to the surface of a sphere
passing through the point and having the radiator as a center.
The rate P, at which energy passes outward across a square
centimeter of the surface of the sphere at the point is given
in equation (63). The rate of radiaiion is a maximum in
the equatorial plane of the radiator and falls off toward the
pole as the square of the sine of the angular distance of the
point from the pole.

The mean rate of radiation P from the radiator (with un-
damped oscillations) will be found by integrating over the
entire surface of a hemisphere described about the radiator,
and then writing the mean value for a cycle of the expression
so obtained. Upon carrying out this integration, the follow-
ing expression is obtained for the rate of radiation P through
a hemisphere described about the radiator.

320mr4Q%h,2f*
= — e w

P atts (66)

41. RADIATION RESISTANCE

The charges depicted in Fig. 5 each cross the neutral plane
2f times per second. The quantity of electricity which crosses
the neutral plane per second is, thercfore, 4fQ coulombs, or
the moving charges convey the same quantity as an alternat-
ing current whose average value is 4fQ amperes, and whose
r. m. s. value (I) is

I=v2 rfQ r. m.s. amperes (67)

Now the ‘“‘radiation resistance” may be defined as a ficti-
tious resistance of such a value that the product of the radia-

(213 ]
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tion resistance times the square of the current will equal the
rate of radiation from the radiator. That is, the radiation
resistance R; is defined by the equation

R3=B,:

Substituting the values of P and I as given in equations (66)
and (67),

_ 1602 fzh,?

Ri= =,

(68)

42. LoGARITHMIC DECREMENT DUE TO THE RADIATION OF
ENERGY

The logarithmic decrement (2) of the oscillation is defined
as the Naperian logarithm of the ratio of any peak value to
that following it by a cycle.

Let it be assumed that the oscillation of the radiator is not
sustained but is damped, and that the only loss is that due
to radiation. For a slightly damped circuit containing re-
sistance, inductance and capacity in series, the value of the
logarithmic decrement is given quite accurately by the ex-
pression

2r R
K.

s= (69)

in which,
R is the actual resistance of the circuit, and
R. is its critical resistance, defined by the equation

/L _
R.=2y ¢~

where f is the natural frequency of oscillation of the circuit.
Now, in the case of a low extended antenna of area A,
the capacity C is given approximately by the expression.

_PA

Cho

[211]
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Whence

120 s h,
Re=—— (70)

Substituting in equation (69) the value of R, as given in
equation (70) and for R the value of R; as given in equation
(68), the following expression is obtained for the logarithmic
decrement.

5 = 8x* f3h, A (71)

v .
REX



