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Preface

An active filter is some combination of integrated-circuit opera-
tional amplifiers, resistors, and capacitors that does things that nor-
mally could be done only with expensive inductor-capacitor passive
filter combinations. Active filters are versatile, low-cost items that
are easy to design and easy to tune. They have gain and have a num-
ber of other benefits. Active filters are well suited for most subaudio,
audio, and ultrasonic filtering or equalizing applications. Important
areas of use for active filters include communications, electronic
music, brainwave research, quadrature art, speech and hearing stud-
ies, telephony, psychedelic lighting, medical electronics, seismology,
instrumentation, and many other areas.

This book is about active filters. It is user-oriented. It tells you
everything you need to know to build active filters, and does so with
an absolute minimum of math or obscure theory.

If you know nothing at all about active filters and simply need a
frequency-selective circuit, this book will serve you as a catalog of
“ripoff” circuits that are ready for immediate use—with math ranging
from none at all to one or two simple multiplications.

If you are interested in the how and why of active filters, there is
more-detailed information here that lets you do more-involved design
work, optimizing things to your particular needs and perhaps using
a simple handheld calculator for the actual final design effort.

Finally, if you are an active-filter specialist, you will find in this
text a unified and detailed base that includes both analysis and syn-
thesis techniques that can be easily expanded on by using a com-
puter or programmable calculator. This book should be extremely
useful as a college-level active-filter course book or supplemental text.

Chapter 1 begins with some basics, introducing such terms as
damping, order, cascadeability, and other important filter concepts.



Chapter 2 tells all about operational amplifiers, particularly the cir-
cuits needed for active filters, and has a mini-catalog of suitable
commercial devices.

The basic properties of the five elemental first- and second-order
building blocks appear in Chapter 3.

Complete response curves that help us decide how much of a
filter is needed for a certain job are the subjects of Chapters 4 and 5.
The high-pass and low-pass curves of Chapter 4 cover seven differ-
ent shape options through six orders of filter. The shape options rep-
resent a continuum from a Bessel, or best-time-delay, filter through
a flattest-amplitude, or Butterworth, filter through various Cheby-
shev responses of slight, 1-, 2-, and 3-dB dips. The bandpass curves
of Chapter 5 show us exactly what the response shape will be, again
through the sixth order with five shape options. This chapter intro-
duces a simple technique called cascaded-pole synthesis that greatly
simplifies the design of active bandpass filters and gives you abso-
lutely complete and well-defined response curves.

Actual filter circuits appear in Chapters 6 through 8. Four differ-
ent styles of low-pass, bandpass, and high-pass circuits are shown.
Low-pass and high-pass circuits include the simple and easily tune-
able Sallen-Key styles, along with the multiple IC state-variable
circuits. Bandpass versions include a single op-amp multiple-feed-
back circuit for moderate Qs and state-variable and biquad circuits
circuits for Qs as high as several hundred.

Chapter 9 shows us how to perform switching, tuning, and voltage
control of active filters. It also looks at some fancier filter concepts
such as allpass networks and bandstop filters and finally ends up with
a very high performance ultimate-response filter called a Cauer, or
elliptic, filter. Design curves through the fourth order are given.

Finally, Chapter 10 shows where and how to use active filters and
gives such supplemental data as touch-tone frequencies, musical
scale values, modem values, and so on, along with photos of here-
and-now applications of the text techniques.

DonN LANCASTER

This book is dedicated to the Bee Horse.
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CHAPTER 1

Some Basics

A filter is a frequency-selective network that favors certain fre-
quencies of input signals at the expense of others. Three very com-
mon types of filter are the low-pass filter, the handpass filter, and
the high-pass filter, although there are many more possibilities.

A low-pass filter allows signals up to a certain maximum fre-
quency to be passed on; frequencies above this cutoff frequency
are rejected to a greater or lesser degree. Hi-fi treble controls and
turntable scratch filters are typical low-pass filters.

A bandpass filter selects a range of median frequencies while
attenuating or rejecting other frequencies above and Dhelow those
desired. The tuning dial on an a-m radio is an example of a varia-
Dle bandpass filter.

Similarly, a high-pass filter blocks frequencies below its cutoff
frequency while favoring those above. Hi-fi bass controls and turn-
table rumble filters are typical examples. Fig. 1-1 shows these filter
characteristics.

Filters are an extremely important electronic concept. They are
absolutely essential for radio, television, voice, and data commu-
nications. Telephone networks could not possibly exist without
them. Audio and hi-fi systems need them, and electronic music finds
them mandatory. Research tasks as diverse as seismology, brain-
wave research, telemetry, biomedical electronics, geophysics, speech
therapy, new art forms, and process instrumentation all rely heavily
on filter concepts.

Capacitors and inductors are inherently frequency-dependent
devices. Capacitors more easily pass high frequencies and inductors
better handle lower frequencies. Thus, most filters traditionally have
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been designed around combinations of inductors and capacitors.
These are called passive filters.

Today, there is a new and often much better way to do filtering.
Integrated circuitry, particularly the IC op amp, can be combined
with resistors and capacitors to accurately simulate the performance
of traditional inductance-capacitance filters. Since this new ap-
proach usually has gain and needs some supply power, filters built
this way are called active filters. While active filters as a concept
have been around for quite some time, only recently have reliable,
easy-to-use circuits and simple design processes emerged.

This book is about these active filters and the design techniques
behind them. It will show you the integrated circuits that can be
used in active filters, the basic concepts of filter response shapes and
how to get them, the circuits you can use to actually build the filters,
the refinements you can add (such as tuning and voltage-controlled
tracking), and finally, the application areas where active filters are
now widely used.

¢ ot
O

LOW-PASS
FILTER

BANDPASS
FiLTER

HIGH-PASS
FILTER

FREQUENCY

Fig. 1-1. Common types of filters.

WHY USE ACTIVE FILTERS?

There are many advantages of active filters, compared with tra-
ditional passive filters:

Low Cost—Component costs of active filters are usually far lower,
particularly at very low frequencies, where inductors are large
and expensive.

Isolation—Most active filters have very high input impedances and
very low output impedances. This makes their response essen-
tially independent of source and load impedances and their
changes.

Cascadeability—Owing to the good isolation of active filters, com-
plex filter problems are easily broken down into simple sections
that combine to produce the desired final result.

Gain—Active filters can provide gain or loss as needed to suit sys-
tem or filter requirements. Current gain is almost always pro-
vided; voltage gain is an option.

Tuning—Many active filters can be easily tuned over a wide range



without changing their response shape. Tuning can be done elec-
tronically, manually, or by voltage control. Tuning ranges can go
beyond 1000:1, much higher than is usually possible with passive
circuits.

Small Size and Weight—This is particularly true at low frequen-
cies, where inductors are bulky and heavy.

No Field Sensitivity—Shielding and coupling problems are essen-
tially nonexistent in active filters.

Ease of Design—Compared with traditional methods, the methods
explained in this book make the design of active filters trivially
easy.

We might also consider what is wrong with active filters and what
their limitations are:

Supply Power—Some supply power is needed by all active filter
circuits.

Signal Limits—The operational amplifier used sets definite signal
limits, based on its input noise, its dynamic range, its high-fre-
quency response, and its ability to handle large signals.

Sensitivity—Variations in response shape and size are possible when
component or operational-amplifier tolerances shift or track with
temperature.

FREQUENCY RANGE AND Q

The range of useful frequencies for active filters is far wider than
for any other filter technique. A frequency range of at least eight
decades is practical today.

A useful lower frequency limit is somewhere between .01 and 0.1
Hz. Here capacitor sizes tend to get out of hand even with very
high impedance active circuits, and digital, real-time computer filter
techniques become competitive.

An upper limit is set by the quality of the operational amplifier
used; something in the 100-kHz to 1-MHz range is a reasonable
limit. Above this frequency, conventional inductor-capacitor filters
drop enough in size and cost that they are very practical; at the
same time, premium op amps and special circuits become necessary
as frequency is raised. Still, the theoretical frequency range of ac-
tive filters is much higher and even microwave active filters have
been built.

If we consider using very simple circuits and very low cost oper-
ational amplifiers, active filters are pretty much limited to subaudio,
audio, and low ultrasonic frequency areas.

When bandpass filters are used, there is also a narrowness of the
response that can be obtained. The bandwidth inverse of any sin-



gle filter structure is called its Q and is simply the ratio of its band-
width to its center frequency. A filter whose center frequency is
200 Hz and whose bandwidth is 2 Hz has a Q of 100.

With active filters, Q values of 500 or less are realizable. These
higher Q values require active filter circuits with three or four oper-
ational amplifiers if the response is to be predictable and stable.
Single operational-amplifier circuits are much more restricted in
their maximum Q. A Q of 25 is an outside practical limit for these
one-amplifier circuits. With today’s dual and quad op-amp packages,
using more than one op amp is not much more expensive than using
a single one, particularly if you are guaranteed better circuit per-
formance. Complete design details of both types of bandpass circuit
will appear in Chapter 7.

A SIMPLE ACTIVE-FILTER CIRCUIT

Let us look at a simple active-filter circuit and see how it com-
pares to its passive counterpart. Fig. 1-2 shows details. Active-filter
circuits are rarely expected to “replace” one or more inductors on
a one-for-one basis; instead, the overall mathematical response or
circuit transfer function is considered and the filter is designed to
simulate or synthesize this overall response. Instead of saying “this
op amp replaces this inductor,” we say “this active-filter circuit
performs identically to (or better than) this passive inductor-
capacitor filter.” As long as the math turns out the same, we can
get the same circuit performance, even if we cannot show exactly
where the inductor “went.”

Fig. 1-2A shows a low-pass filter made up of a series inductor, a
shunt capacitor, and a load resistor. The reactance of an inductor
increases with frequency, which makes it harder for high-frequency
signals to reach the output. The reactance of a capacitor decreases
with frequency, which means it has little effect on low-frequency
signals but progressively shorts out or shunts to ground higher-
frequency inputs. This two-step elimination process makes possible
a second-order low-pass filter with a response that falls off as the
square of frequency for high frequencies.

There are many possible response curves for this circuit. At very
low frequencies, the gain of the circuit is nearly unity, since the
reactance of the inductor is very low and that of the capacitor is
very high. At very high frequencies, the two-step elimination proc-
ess causes the response to fall off as the square of frequency, equal
to a rate of 12 dB per octave.

We can call the point where the response starts to fall off signifi-
cantly the cutoff frequency of the filter. The cutoff frequency is
determined by the product of the inductor and capacitor values.
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(A) Passive LC, second-order, low-pass filter and response.
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(C) Passive RC filter, emitter follower added to isolate load.
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(D) Active RC filter and response identical to (A).

Fig. 1.2, Building a simple active filter.



We can control not only the product of the inductor and capaci-
tor, but also their ratio. For instance, if the capacitor is very large
and the inductor very small, the load resistor will not load the LC
circuit much. The circuit behaves as a series-resonant circuit with
relatively low losses, and so it will be on the verge of oscillation.
For some frequencies near resonance, the circuit will exhibit volt-
age gain or peaking. This gives the underdamped response curve
of Fig. 1-2A.

A more balanced ratio of load resistance, inductance and capaci-
tance leads to a flatter response with no peaking or gain. The flat-
test of these is called a critically damped curve. If we go further and
use a very small capacitor and a very large inductor, the load resis-
tor dominates and gives a very droopy, highly damped response.

Note that these three responses all start out near unity gain and
and end up dropping as the square of the frequency. Setting the
damping by changing the inductur-capacitor ratio determines only
the shape of the response curve near the cutoff frequency. The
numerical value of the cutoff frequency is set by the product of the
inductor and capacitor; the damping and the performance near the
cutoff frequency are set by the ratio of the two.

We can add more capacitors and more inductors, picking up new
products and ratios of component values. This lets us improve the
response by increasing the order of the filter. Regardless of the
order desired, the trick is to find a way to do this without inductors
—and still get the same overall response.

Fig. 1-2B shows an approach using nothing but resistors and ca-
pacitors. Here there are two cascaded RC low-pass sections. Since
two capacitors are shunting higher frequencies to ground, you
would expect the ultimate falloff to also increase with the square of
frequency. For high values of load resistance, you would also expect
something near unity gain, perhaps a little less. So, this must be a
second-order section with at least some responses similar to that of
the inductor-capacitor circuit of Fig. 1-2A.

The problem is that the damping of this circuit is very high. The
network is obviously lossy because of the two resistors. The damping
is so bad that, instead of a reasonable shape near cutoff, there is a
gradual falling off beyond the cutoff frequency. Still, this is a second-
order section. Is there some way to repair the high damping by
adding energy from a power source? Fig. 1-2C shows a first attempt
in that direction.

In Fig. 1-2C, an emitter follower has been added to the output.
This has eliminated any output loading effects since the emitter
follower has unity gain, a high input impedance, and a low output
impedance. Now, at least, the gain and damping are independent
of the output load, even if the damping remains pitifully bad.



The key to building an active filter appears in Fig. 1-2D. Here the
first capacitor is removed from ground and connected to the output
of the emitter follower, so that there is positive feedback from the
output back into the middle of the RC filter. This positive feedback
bolsters the response and lets us reduce the damping to a point
where we can get any acceptable response shape we like, just as we
did by controlling the inductor-capacitor ratio of the passive filter
of Fig. 1-2A.

What we have done is used energy from the power supply to
make up for the losses in the filter resistors.

The positive-feedback connection delivers this excess energy back
into the filter only near the cutoff frequency. This “localized” feed-
back is caused by the reactance of the feedback capacitor being too
high to do much good at very low frequencies, and by the output
signal being too small to be worth feeding back at very high fre-
quencies. Thus, the response curve is boosted only near the cutoft
frequency—the feedback does what it is supposed to do only where
it is needed.

By changing the ratio of these two capacitors, the damping is
changed, just as the response shape of the passive filter is controlled
by using the ratio of inductor to capacitor. By the same token, the
resistor-capacitor product sets the cutoff frequency, just as the in-
ductor-capacitor product sets the passive frequency. The mathe-
matical response of one circuit turns out to be identical to the re-
sponse of the other circuit.

Note that one inductor and one capacitor set the frequency of the
passive filter, while two capacitors and two resistors are needed to
do the same job with the active filter. From an energy-storage stand-
point, both circuits have two, and only two, energy-storage compo-
nents—this is what makes them a second-order circuit.

What we have done is built an active filter that does exactly the
same thing as a passive one, with the additional benefit of load
isolation. At the same time, we have eliminated the cost, size,
weight, and hum susceptibility of the inductor.

TYPES OF ACTIVE-FILTER CIRCUITS

Normally, we replace the simple emitter follower with an opera-
tional amplifier to pick up some other performance benefits. As
many second-order sections as needed can be cascaded to get a
desired overall response. Instead of cascading identical sections,
the frequency and damping of each section is chosen to be a factor of
the overall response. You can also tack on a first-order section (ac-
tive or passive) consisting of a single resistor-capacitor pair to pick
up odd-order filters such as a third- or fifth-order filter.
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Figs. 1-3 through 1-8 show the basic second-order active-filter-
section circuits that will be used in this text. When these are com-
bined with other first- and second-order sections, following the
guidelines of Chapters 4 and 5, virtually any desired overall filter
response can be obtained.

Fig. 1-3 shows two low-pass circuits. The first of these is simply
the circuit of Fig. 1-2D converted to an operational amplifier. It is
called a unity-gain Sallen-Key circuit and it works on the principle
of bolstering the response of two cascaded resistor-capacitor sec-
tions. Complete design and tuning details on all these sections will

——0 € it

OPERATIONAL GAIN = +1
AMPLIFIER
2
'01“3““[ I.msx%uF
t must return to ground via low-impedance dc path.
(A) Unity-gain Sallen-Key.
39K x (2-d)
einto —O¢€,ut

GAIN = + (3-d}

. 016 uF I 016 uf

t must return to ground via low-impedance dc path.
(B) Equal-component-value Sallen-Key.

Fig. 1-3. Active low-pass filters, 1-kHz cutoff frequency, second-order.

be found later in the text; our interest here is simply to catalog what
we are going to work with., The component values are shown for a
1-kHz cutoff frequency. In later chapters you will find that they are
easily altered for any cutoff frequency you wish.

When the Sallen-Key math is examined in detail, it is seen that
there is a “magic” gain value that makes everything very simple and
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independent of everything else. This magic gain value is 3 — d, and
d here stands for the damping we are after. The result is the equal-
component-value Sallen-Key filter of Fig. 1-3B. This circuit features
identical capacitors, identical resistors, easy tuning, and a damping
set independently by the amplifier gain.

The bandpass circuits appear in Fig. 1-4. The Sallen-Key tech-
niques do not really stand out as good bandpass circuits, so a slightly
different circuit called a multiple-feedback bandpass filter appears
in Fig. 1-4A. This circuit also uses an operational amplifier to bolster
the response of a two-resistor, two-capacitor network, but does
things in a slightly different way. The Q of the circuit is limited to
25 or less, and it turns out that any single-amplifier bandpass filter
is limited to lower Q values.

—
. 016pF ——AAA
10K x 2Q
€ i O—AAA————]
lg_K L0164F 0% ut
Q

GAIN - -2Q?
10K x 2Q

MAXIMUM RECOMMENDED Q = 25

(A) Single-amplifier, multiple feedback.

10K
10K xQ
! AAA 4t
.Ol6uF 10K .016F
€ i 1 O——AAA—t VWA - AA— -
10K 10K 10K
+
—0 €out
K x im GAIN - Q
t must return to ground vla low-impedance dc path. MAXIMUM RECOMMENDED Q = 500

(B) Three-amplifier biquadratic.

Fig. 1-4. Second-order, active bandpass filters, 1-kHz resonance.

Fig. 1-4B shows a very interesting bandpass filter called a biquad.
It supplies high-Q, single-resistor tuning if required, and an indepen-
dent adjustment of frequency and handiwidth (not Q, but band-
width). With this filter, Q values of 500 or higher are easily obtained,



Chapters 6 and 8, while the more advanced Cauer or elliptical filters
are introduced in Chapter 9.

The rest of the book shows how to design and use these circuits,
and how to decide what damping and frequency values are needed
to get a desired response at a given cutoff frequency.

SOME TERMS AND CONCEPTS

Let us quickly review some important active-filter concepts that
will be needed and used later in the book:

Cascading—High-performance active filters are built by cascading
individual, noninteracting, first- and second-order sections. These
sections are never identical, and each contributes its individual
relative cutoff frequency and damping as a factor of an overall de-
sired transfer-function response.

Cutoff Frequency—The cutoff frequency is the final point at which
the filter response drops 3 dB or to 0.707 of its peak value on the
way out of the passband. All filters in this book are referenced to
a cutoff frequency 3 dB below peak, regardless of the size of any
passband lumps or the amount of filter delay.

Damping—The damping of a second-order filter section is an index
of its tendency toward oscillation. Practical damping values range
from 2 to 0, with zero damping being the value for an oscillator,
a damping of 1414 being a critical value that gives maximum
flatness without overshoot, and a damping of 2 being what you
get when you cascade but isolate two resistor-capacitor networks
that are identical. Highly damped filter sections combine to pro-
duce smooth filters with good overshoot and transient response.
Slightly damped filters combine to produce lumpy filters with
sharp rejection characteristics.

Decibels—Decibels are a logarithmic way of measuring gain or loss.
Decibels are defined as 20 log;, of a voltage ratio. In active-filter
work, decibels refer ONLY to a voltage ratio and are totally inde-
pendent of any impedance or standard reference level considera-
tions. A decibel chart appears as Fig. 1-7. When several stages
are cascaded, their gain values multiply, but their decibel values
simply add. Some useful relationships appear in Fig. 1-8.

Normalization—A normalized filter is one whose component values
are adjusted to a convenient frequency and impedance level. A
filter is easy to analyze if it is normalized to a frequency of 1
radian per second and an impedance level of 1 ohm. Designing
with a filter is easy when the filter is normalized to a 10K-ohm
impedance level and a 1-kHz cutoff frequency.

Order—The order of a filter governs the strength of its falloff with



Fig. 1-7. Voltage decibel chart.
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1274 | 7es2 [ 6 | 2018 | .aoss ] 1001 | 3099 1 3126 14 | 5070 | 1972 | 18,1 | 8.035 | L1245
1288 | 77621 62 | 2042 | .ag98 | 10.2 | 3.236 | 3090 § 142 | 5.129 | .1950 ]| 18.2 | 8.128 | 1230
1303 | 7674 [} 63 | 2.065 | 4842 § 103 | 3.273 | 3055 | 143 | 5.188 | .1928 || 18.3 | 8.222 | 1216
1318 | 7586 || 64 | 2089 | 4786 | 10.4 | 3311 | 3020 § 14.4 | 5.248 | .1905 | 18.4 | 8.318 | 1202
1334 | 7499 || 65 | 2113 | 4732 | 105 { 3.350 1 .2985 | 14.5 | 5.309 | .1884 [ 18.5 | 8.414 | 1189
1349 | 7413} 66 | 2138 | 4677 | 106 | 3.388 | .2951 | 14.6 | 5.370 | .1862 | 186 | 8511 | .1175
1365 | 7328 0] 67 | 2163 | 4624 | 107 | 3.428 | 2917 | 14.7 | 5.433 | .184) J 18.7 | 0.610 | .1161
1380 | 7244 68 | 2188 | 4571 ] 108 | 3.467 |.2884 J 148 | 5495 | .1820 ) 188 | 8.710 | .1148
1396 | 7160 69 2213 | 4519 § 109 [ 3508 |.2851 J 149 | 5559 | .1799 | 18.9 | 8.811 | .1135
ra13 | 7079l 70 | 2239 | aas7 | 110 ] 3548 | 2818 150 | 5623 | 1778 | 19.0 | 8913 | 1122
1429 | 6998 || 7.1 | 2265 | 4416 | 11.1 | 3589 | 2786 J 151 [ 5689 | .1758 | 191 | 9.016 | 1109
1445 | 6918 || 7.2 | 2291 | 4365 § 11.2 | 3631 | 2754 | 152 | 5.754 | .1738 | 19.2 | 9.120 | .1096
1462 | 6839 f 73 | 2317 | anis | 113 {3673 12723 153 | 5821 |.1718 | 19.3 [ 9.226 | .1084
1479 | 6761 | 7.4 | 2344 | 4268 f11.4 [ 3715 | 2692 § 154 | 5888 |.1698 || 19.4 | 9.333 | .1072
1496 | 8683 | 75 | 2371 | 4217 § 115 [ 3.758 | 2661 155 | 5.957 | 1679 || 19.5 | 9.441 | 1059
1514 | 6607 | 76 [ 2390 | 4160 f 116 {3802 |.2630 F156 | 6.026 | .1660 || 19.6 | 9.550 | .1047
153) | 6531 4 77 | 2427 | 121 [ 117 | 3846 | 2600 | 157 | 6.005 | 1641 § 19.7 | 9.661 |.1035
1549 | 6457 f 78 | 2455 | 4074 | 11.8 | 3.890 | 2570 Q158 | 6.166 | .1622 § 19.8 |9.772 | .102)
1567 | 6383 | 7.9 | 2.483 | 4027 § 11.9 | 3.936 | 2541 J 159 | 6.237 | 1603 [ 19.9 |9.886 |.1012
Current or Veltage Ratio Current or Voltage Ratie
ds Gain Loss dB Gain Loss
20.0 10.00 0.1000 85.0 1778 X 10 5.623 X 10
25.0 17.78 0.0562 90.0 3162 X 10 162X 10%
30.0 31.62 0.0316 95.0 5.632 X 10* 178 X 107
35.0 56.23 0.0178 100.0 0t 10"
40.0 100.00 0.0100 110.0 3162 X 10 362X 10"
45.0 1778 0.0056 120.0 0 10
50.0 3162 0.0032 1300 316210 3162 X107
55.0 562.3 0.0018 140.0 10’ 107’
60.0 10* 10" 150.0 3.162 X 10 3.162%10™
65.0 1778 X 10* 5623 X107 160.0 10t 10°
70.0 3.162 X 10° 362X 10" 170.0 3162 10" 3162x10™
75.0 5623 X 10* 178 X 107 180.0 10 10
80.0 10* 10"




Voltage decibels = 20 log,, S

out
€in
A ONE-decibel change is approximately a 10% change
A TWO-decibel change is approximately a 20% change
A THREE-decibel change drops to 70% amplitude

A SIX-decibel change is a 2:7 ratio

A TEN-decibel change is approximately a 3:1 ratio

A TWELVE-decibel change is a 4:1 ratio

AN EIGHTEEN-decibel change is an 8:1 ratio

TWENTY decibels is a 10:1 ratio

THIRTY decibels is approximately a 30:1 ratio
FORTY decibels is a 100:1 ratio

FIFTY decibels is approximately a 300:1 ratio
SIXTY decibels is a 1000:1 ratio

EIGHTY decibels is a 10,000:1 ratio

Active-filter decibels are VOLTAGE RATIOS ONLY; they ignore
impedance or reference levels.

Fig. 1-8. Some useful decibel relationships.

frequency. For instance, a third-order low-pass filter falls off as
the cube of frequency for high frequencies, or at an 18-dB-per-
octave rate. The number of energy-storage capacitors in most ac-
tive filters determines their order. A fifth-order filter usually takes
five capacitors, and so on. The higher the order of the filter, the
better its performance, the more parts it will take, and the more
critical the restrictions on component and amplifier variations.

Q—Q is simply the inverse of the damping and is used to measure
the bandwidth of a second-order bandpass section. Practical Q val-
ues range from less than one to several hundred.

Scaling—Scaling is denormalizing a filter by changing its frequency
or impedance level. Impedance level is increased by multiplying
all resistors and dividing all capacitors by the desired factor.
Frequency is shifted inversely by multiplying all frequency-
determining resistors or by multiplying all frequency-determining



capacitors by the desired factor. To double the frequency, cut
all capacitor values by 2 or cut all resistor values by 2; do both
and the frequency will be quadrupled.

Sensitivity—The sensitivity of an active filter is a measure of how
accurate the component and operational-amplifier tolerances have
to be to get a response within certain limits of what is desired.
The sensitivity of the active filters in this book is normally quite
good. Sensitivity guidelines appear in Chapters 4 and 5.

Shape Option—For a given-order filter, a wide variety of choices
called shape options exist that determine the lumpiness of the
passband, how fast the initial falloff will be, how bad the transient
response will be, and so on. For low-pass and high-pass responses,
this book gives you a choice of seven shape options called best
delay, compromise, flattest amplitude, slight dips, 1-dB dips, 2-dB
dips, and 3-dB dips. Shape options for bandpass filters include
maximum peakedness, maximum flatness, 1-dB dips, 2-dB dips,
and 3-dB dips. Cauer or elliptical-shape options appear in Chap-
ter 9.

Transfer Function—The transfer function of an active filter is simply
what you get out of the filter compared to what you put in. It is
usually expressed as the ratio e,./ei,. The transfer function usu-
ally includes both amplitude and phase information and some-
times is expressed in terms of a complex variable, “S.” In this text,
we will be concerned mostly with the amplitude response, and our
main involvement with “S” will be as a notational convenience.

A DESIGN PLAN

Active-filter design is a multistep process, but one that can be
made very easy if it is done one step at a time. First, we need to
know more about operational amplifiers, particularly their theoretical
circuit capabilities, along with the characteristics of commercial
units. These are discussed in the next chapter.

Before an attempt is made to combine first- and second-order
sections into composite responses, more details are needed on the
circuits and mathematical properties of these basic building blocks.
These are covered in Chapter 3. Chapters 4 and 5 show how to
combine the basic building blocks into a filter of the desired re-
sponse shape, with low-pass and high-pass filters appearing in Chap-
ter 4 and bandpass filters in Chapter 5. Incidentally, the bandpass
analysis techniques that are discussed are extremely simple and tell
you the total response that you will get.

From that point, we get into the actual circuits, finding out what
they do and how to get a desired response out of them. These are
handled in Chapters 6 (low-pass), 7 (bandpass) and 8 (high-pass).
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Chapters 6 and 8 also give you two catalogs of “ripoff” circuits
which are immediately ready for your use without any mathematics.

Chapter 9 covers some practical points about component types,
values, and tuning, along with two powerful techniques for voltage-
controlled tuning. Finally, in Chapter 10, we will look at some of the
products and concepts that use active filters, along with some spe-
cialized design data such as music scales, touch-tone frequencies,
and so on.



CHAPTER 2

The Operational Amplifier

Integrated-circuit operational amplifiers are used as the basic
gain block in most active filters. The op amp provides load isolation
and a way to route energy from the supply in the proper amounts at
the proper places in a resistor-capacitor network to simulate the
energy storage of one or more inductors. The operational amplifier
normally has a high input impedance and a low output impedance.
This lets us cascade first- and second-order filter sections to build
up a higher-order filter.

Op amps suitable for active-filter use are often based on the “741”
style of device and its improved offspring. All of these circuits are
very easy to use, and many cost less than a dollar.

Five ways are shownto use op amps in filters:

1
2.

As a voltage follower, or as a unity-gain, high-input-impedance,
low-output-impedance, noninverting amplifier.

As a noninverting voltage amplifier, providing a gain of 1 or
more, with high input impedance and low output impedance.

. As a current-summing amplifier, providing any desired gain,

moderate input impedance, low output impedance, and signal
inversion.

. As a summing block that combines several input signals, some

of which get inverted and some of which do not, a moderate
input impedance, and a low output impedance.

- As an integrator or “ramp generator” amplifier that mathemati-

f:ally gives us the integral, or the “area under the curve,” of an
input signal. Integrators usually invert the signal and have a
moderate input impedance and a low output impedance.
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A CLOSER LOOK

Fig. 2-1 shows the internal schematic of a typical 741 type of op-
erational amplifier. The op amp is normally powered by a dual or
split power supply ranging from +5 to +15 volts. There are two
inputs, each usually consisting of the base of an npn transistor. The
internal circuitry gives high amplification of the difference voltage
between these two inputs.

The input having a phase the same as the output at low frequen-
cies is called the noninverting input and is identified by a + symbol.
The input having a phase the opposite or 180° from the output is
called the inverting input and is shown as a — on the symbol. A
positive input step on the noninverting, or +, input drives the output
positive; a positive input step on the inverting, or —, input drives the
output negative.

After input amplification, the response of the op amp is compen-
sated or stabilized by an internal 30-pF capacitor. This compensa-
tion ensures amplifier stability for any reasonable set of circuit
connections. After compensation, the amplified signals are routed
to an output stage that provides a low output impedance and con-
siderable drive power.

The typical gain of an op amp at low frequencies is over 100,000,
but this drops rapidly as frequency is increased. Because of this
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Fig. 2-1. A type 74] operstional amplifier. Note that dc bias current must be provided
for both inputs.
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very high gain, an op amp is NEVER run “wide open.” You always
lace resistive or capacitive negative feedback around the circuit
from the output to the inverting (—) input.

If the feedback is properly placed, the circuit gain or its response
function will be set ONLY by the input and feedback resistors, and
the response will be essentially independent of the actual amplifier
gain, the supply voltage, or temperature effects.

Note that the inputs to the operational amplifier are usually by way
of the bases of two npn transistors. A small bias current must be pro-
vided, and any differences between these transistors or their external
source resistors will produce a bias current difference called an
offset current. It is ABSOLUTELY ESSENTIAL that there be a
direct-current return path to ground or another stable dc bias point
for BOTH inputs at all times. Ideally, these return paths should be
of identical impedance value to minimize offsets caused by differen-
tial bias drops. Resistors in the 10K to 100K region are often a good
choice for working values.

Fig. 2-2 sums up the operating rules for an operational amplifier.
The op-amp circuits that follow simply will not work unless these
three rules are obeyed.

An operational amplifier circuit will not work at all unless:

1. External feedback limits the gain or desired response to a design
value,

2. Both inputs have o direct-current return path to ground or a simi-
lar reference.

3. The input frequencies and required gain are well within the per-
formance limitations of the op amp used.

Fig. 2-2. Some important op-amp rules.

SOME OP-AMP CIRCUITS
The Voltage Follower

The voltage follower of Fig. 2-3 can be thought of as a super emit-
ter follower. It has unity gain, a very high input impedance, and a
very low output impedance, and it does not invert. The circuit has
Its inverting input connected to its own output. The noninverting
Input receives the signal. The high gain of the amplifier forces the
difference between the two inputs continually to zero, and the out-
put thus follows the input at identical amplitude.



The load presented by the + input on the active-filter circuitry
is very light, yet the output of the amplifier can drive a substantial
or changing output load without any changes getting back to the
input and altering the response of the filter.

The feedback resistor from the output to the inverting input is
not particularly critical in value. Usually it is chosen to provide an
offset identical to that of the input by making its value identical
to the impedance seen back to ground through the active-filter cir-
cuit. Optionally, this resistor can also be adjusted to provide a way
of zeroing the small output offset voltage.

10K

" » OUTPUT — pig. 2:3. The voltage foll
10K GAIN » +1 19. . e voltage rollower.

4 INPUT IMPEDANCE = HIGH
OUTPUT IMPEDANCE = LOW
o CIRCUIT DOES NOT INVERT

Voltage followers are used to isolate a load or to obtain a high
input impedance and a low output impedance. Note that a dc return
path must be provided back to ground through an active filter cir-
cuit, even though only a light loading at the + input exists. Imped-
ance levels in the 10K to 100K range are usually recommended.
Values below these are hard to drive, and values above these tend
to introduce offset and offset adjustment problems.

A single transistor connected as an emitter follower could also be
used as a high-input-impedance, low-output-impedance, “unity-
gain” amplifier. Its limitations include a gain always slightly less
than one, a temperature-dependent, 0.6-volt, output offset voltage,
and a lower ratio of input to output impedance. For most applica-
tions, the price difference between the two circuits is negligible and
the op-amp voltage follower is the better choice.

Voltage Amplifier

Fig. 2-4 shows how to add one resistor to a voltage follower to get
a noninverting amplifier with gain. Instead of the output going back
directly to the inverting input, it goes back through a voltage di-
vider. The step-down ratio of this divider determines the circuit
gain. We retain a high input impedance and a low output imped-
ance.

Suppose the feedback resistor, R, is 22K. What will the gain be?
Since R is 22K, the total divider resistance will be 22K + 10K, or
32K. Only 10/32 of the output will get back to the inverting input
to match the input signal, so the gain will turn out to be 32/10, or
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10K +R
GAIN = + 10K

(ALWAYS 2 +1)

INPUT IMPEDANCE = HIGH
QUTPUT IMPEDANCE = LOW
CIRCUIT DOES NQT INVERT

Fig. 2-4. The noninverting amplifier with gain.

3.2. Depending on R, we can get any positive gain we like from
unity up to values near the open-loop gain of the op amp at the
frequencies of interest. Note that there is no way to reduce the gain
of this circuit below unity. As with the voltage follower, the +
input only lightly loads the active-filter circuitry preceding it, but a
dc return path to ground through the active filter is essential if the
circuit is to work.

The values of the voltage-divider resistors are not particularly
critical, although their ratio is, since the ratio sets the gain. Usually,
you arrange things so that the parallel combination of the voltage-
divider resistors is about the same as the impedance looking back
on the noninverting input. This minimizes balance-and-offset prob-
lems.

Current-Summing Amplifier

A unity-gain current-summing amplifier appears in Fig. 2-5. While
it looks about the same as the earlier circuits, its behavior is very
much different. In this circuit, the operational amplifier is forced by
feedback to present an extremely low apparent input impedance at
the — or inverting input. Ideally, this very low impedance is ZERO.
The concept is called a virtual ground. Let us see why it exists and
why this circuit inverts the input signal.

The + input is essentially at ground, since the base current
through the 5K resistor will give us a drop of only half a millivolt or

AAA

10K
—_—— ——aAn—
10K » O OUTPUT
GAIN = -1
Cin
5K INPUT IMPEDANCE = 10K

OUTPUT IMPEDANCE = LOW
CIRCUIT DOES INVERT

Fig. 2-5. Unity-gain inverting amplifier.
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so. Suppose that a small positive-going input is applied to the.left
end of the 10K input resistor. This signal gets strongly amplified
and drives the output negative. The negative-going output 1s fed

back through the top or feedback resistor and continuously attempts
to 5rive t ge voltagep on fthe - in;gustlstorgﬁ%umi Looking at things

a bit differently, only a negligible input current actually goes inside

the op amp at the — input, so current through the input resistor

must also go through the feedback resistor. If the voltage at the —

input is not zero, the very high gain of the operational amplifier

strongly amplifies the error difference. The error difference is fed

back to drive the — input continuously to ground. Since the —

input is always forced very near ground regardless of the size of the
input signal, the —s ignal is a virtual ground point.

The operational amplifier continuously forces its inverting —
input to ground. Since the same current must flow through input
and feedback resistors, and since both these resistors are the same
size, the output will follow the input, but will be its inverse, swing-
ing positive when the input goes to ground, and vice versa. If the
input is a low-frequency sine wave, it will undergo a 180-degree
phase reversal while going through the amplifier.

Since the — input is a virtual ground, the input impedance will
be determined only by the input resistor. In this circuit, the input
impedance is 10K. As with virtually all op-amp circuits, a dc bias
return path MUST be provided back through the active-filter cir-
cuitry and must eventually reach ground.

Once again, the value of the resistor feeding the noninverting +
input is not particularly critical. It is often chosen to be equal to

the parallel equivalent of the total of the resistors on the — input,
as this value minimizes bias current offset effects.

The 10K input resistor could theoretically be split up any way
between the previous circuit source impedance and a fixed input
resistor. For best overall performance, use a fixed input resistor and
the lowest possible source impedance. In this way, source impedance
variations and drifts are minimized.

A variable-gain inverting amplifier is shown in Fig. 2-6. The
input current must equal the feedback at all times, minus a negligi-
ble input bias current. The — input essentially sits at a virtual
ground. So, by making the feedback resistor larger or smaller, we
can get any gain we want. If the feedback resistor is doubled, the
output voltage swing must double to provide for the same input cur-
rent as before; the gain then becomes —2 (the gain is negative
because of circuit inversion). If the value of the feedback resistor is
divided by 4, the gain drops to —1/4, and so on.

The gain obtained turns out to be the negative ratio of the feed-
back resistor to the input resistor. As long as this ratio is much less
28



than the amplifier open-loop gain at the frequencies of interest,
the circuit gain will be completely determined by the resistor ratio
and will be independent of temperature, op-amp gain, or supply
voltage.

1f we like, we could hold the feedback resistor constant and vary
the input resistor. With this design procedure, the gain varies in-
versely with input resistance. The input impedance also changes if

AAA
VWV~

—_——— AAA——d
o p Lo ourpur
GAIN - - &

e 10K

x INPUT IMPEDANCE = 10K
OUTPUT IMPEDANCE = LOW
- e CIRCUIT DOES INVERT

Fig. 2-6. Variable-gain inverting amplifier.

you change the input resistor. Note that gain values of greater or
less than unity are obtained, depending only on the ratio of the
two resistors.

A summing amplifier with two inputs is shown in Fig. 2-7. Since
each input resistor goes to a virtual ground, there is no interaction
between inputs, and the gain of each input is set by the ratio be-

€x
: RA f
INPUTS 741 0 OUTPUT
* R
e f
8 Rg GAINA - R
[ @ VW R
> - GAINB - -
INPUT IMPEDANCE = R \OR R 8

OUTPUT IMPEDANCE - LOW
CIRCUIT DOES INVERT

Fig. 2-7. Two-input, inverting, current-summing amplifier.

tween itself and the common feedback resistor. As usual, dc return
paths must be provided back through the input circuitry. The value
of the resistor on the noninverting input is not critical and often
may be replaced with a short circuit. Its optimum value equals the
parallel combination of all resistors on the — input. This optimum
value gives minimum offset.

_ The input impedance of each input is simply the value of the
Input resistor, since all resistors on all inputs go to a virtual ground.



Summing Block

The inputs on the + and — pins of the op amp can be combined
to get many simultaneous combinations of inverting and noninvert-
ing inputs and gains. One thing that cannot be done is to make the
gains of all the inputs independently adjustable if there is only one
op amp and there are mixed inverting and noninverting signals.
One circuit is shown in Fig. 2-8.

e, AA

VWA

inA=— R
Gain A = Ra
inB=—Re
Gain B = R
_ RrRa + ReRg+ RAR, Ro
G“'"C‘+[ RaRs ] [ac+ao]

Input impedance = R, or Ry
or (R + Rp)

Output impedance = low
A and B invert; C does not

Fig. 2-8. A summing block that inverts two inputs but does not invert the third. Gains
t be independently adjusted without interaction. Note that gain “C” is not an
obvious expression.

You can analyze this circuit by assuming you have only one input
at a time and have shorted all the other input signals to ground.

The gain of the inverting input signals is independent of the
signal applied to the noninverting (+) input, as long as the invert-
ing input somehow obtains its bias and as long as operation is within
a frequency range where there is lots of extra open-loop gain. Thus,
the inverting-input signals behave just as they did before; their
gains are simply a ratio of their individual input resistances to the
feedback resistance.

The gain applied to a signal by a noninverting input is by no
means an obvious thing; in fact, it turns out to be a rather complex
expression. There are two things that enter into the gain of non-
inverting input C: the voltage attenuation of the divider R¢ and Rp,



and the actual gain of the circuit looking from the + input as
determined by Ra, Rp, and Rg.

If input signals A and B are temporarily removed and replaced
with short circuits, the positive voltage gain from the + input is set
by a voltage divider. This voltage divider consists of the feedback
resistor, Ry, and the parallel combination of Rx and Rg. The final
gain expression appears in Fig. 2-8, and is quite complex. There is
also a limit to the gain values you can have, as the gain from the +
input to the output always has to be unity or greater.

This may seem like a strange circuit, but it is very useful for the
state-variable input summing block. Its main limitation is that the
gain of A or B cannot be changed without the C gain also changing
in an obscure way. You can change the gain from input C without
changing A or B, though, simply by varying resistor Re. We will
encounter this circuit in several places later in the text.

If we want three independently variable, noninteracting inputs,
two of which invert and one of which does not, one simple approach
is to add a second op amp to invert the signal we eventually want
to end up with in noninverted form. This can be followed with a
three-input version of Fig. 2-7, and all three gains can be simply
and independently adjusted.

The Integrator

If the feedback resistor of a one-input inverting op-amp circuit is
replaced with a capacitor (Fig. 2-9), an operational amplifier is

dwf
—AAA— t
10K » —ooutPuT  €out - / et
0
Ein INPUT IMPEDANCE = 10K
10K OUTPUT IMPEDANCE = LOW

CIRCUIT DOES INVERT

Fig. 2-9. Integrator. The rate of integration is set by input resistor and feedback capacitor.

converted into an integrator or an “area-under-the-curve” type of
device. This happens because the capacitor has a memory or an
ability to store the previous history of current/time variations,
through the use of its stored charge.

Suppose that the charge on the capacitor is zero and that we
apply a positive input current. The op amp will always adjust its
Output to provide an offsetting or cancelling input current, since any
current that goes through the input resistor must come out of the
Capacitor if a virtual ground is to be held at the — input. If the
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left end of the resistor has a positive input voltage on it and if the
right end is at a virtual ground, then the current through the resistor
must be constant. The current through the capacitor must also .be
constant, so the capacitor will have to charge linearly in the negative
direction. The output voltage will be a negative-going ramp. If we
look at the input signal as a voltage-versus-time curve, the capaci-
tor will be providing an output voltage that represents the time-
voltage integral or the total of the history of the time-voltage varia-
tions.

Charging cannot go on forever, for eventually the op amp will
saturate as it nears its negative supply. We have to pick a suitable
time constant of the input resistor and feedback capacitor to match
the input-signal frequencies; otherwise the op amp will eventually
saturate on either the positive or the negative swing.

Fig. 2-10 shows two typical integrator waveforms. With a square-
wave input, we get a negative triangle-wave output, since a triangle

INPUT, SQUARE WAVE INPUT, S INE WAVE

g

AL ALA JARVANY.
N

e SV

OUTPUT, TRIANGLE WAVE
OUTPUT, COS INE WAVE

Fig. 2-10. Typical integrator waveforms.

wave represents the time average “area under the curve” of a square
wave. We have to pick a suitable time constant to match the fre-
quency of the input. If the time constant is too long, the output
triangle wave will be very small; if the time constant is too short,
the output triangle wave will try to get so big that the op amp will
saturate near the supply limits.

If the input to the integrator is a sine wave, an interesting thing
happens. A sine wave appears at the output, but its phase is shifted
by 90 degrees, so it is really a cosine output. If the time constant
exactly equals the radian input frequency, the output amplitude
will equal the input amplitude but will be shifted in phase by 90
degrees. A 1-ohm resistor and a 1-farad capacitor would give a
theoretical time constant of one second; a 10K resistor and a .016-



microfarad capacitor would give a time constant useful in a 1-kHz-
cutoff active filter.

A simple sine-wave oscillator can be built out of two integrators
and an inverter, as shown in Fig. 2-11. This is the electronic analog
of a pendulum. Suppose that we start with a sine wave from some
unspecified source that is the right frequency and amplitude. If it
is integrated with the right time constant, a new sine wave is ob-
tained that is actually a cosine wave that is shifted in phase by 90
degrees. We also get an inversion since the sine wave was applied to
the — input. Suppose that we integrate again, still with the right

INTEGRATOR INTEGRATOR
——  (SINE WAVD) [ = tcosmewave — [
S1GN CHANGER
X {-SINEWAVD) o

(A) Theoretical circuit.
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it VWA
. 016uF LOl6uF 10K
0K 141 10K 141 b——O OUTPUT
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10K 10K £

(B) Practical 1-kHz oscillator. R1 may have to be adjusted to ensure starting and
a stable level.

Fig. 2-11. Building a sine-wave oscillator penduium analog with two integrators
and an inverter.

time constant. This picks up another 90-degree phase shift, giving
180 degrees of phase shift and two inversions. The two inversions
cancel out, so we end up with an inverted replica of the input. We
route this input replica to a stage with a gain of —1, and end up
with an output signal that looks just like the input. To build an
oscillator, simply connect output to input. This gives the analog of a
lossless pendulum.

This circuit is widely used to generate low-distortion sine waves,
although some technique to stabilize amplitude must be used. A
Practical solution to the amplitude problem appears in Chapter 10.
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Now, an oscillator is normally not a good filter, since we obviously
do not want any output if no input has been applied. If some rust
or some air resistance is added to the pendulum, we get the equiva-
lent of a mechanical filter. To do this electronically, we must add
some damping to the circuit. This can be done in two ways.

In the first way, damping is added by putting a resistor directly
across one of the capacitors. This gives a circuit called a biquad,
useful as an active bandpass filter or an electronic chime or ringing
circuit. In the second way, feedback is electronically added from the
other integrator. This, too, behaves as damping, leading to a state-
variable filter that is useful as an active low-pass, bandpass, high-
pass, or special-purpose filter.

SOME OP-AMP LIMITATIONS

Several restrictions must be observed if an op amp is to perform as
expected. These restrictions include the frequency response of the
op amp, its slew rate, its input noise, its offset voltages and currents,
and its dynamic range.

At the highest frequency of operatién, there must be available
enough excess gain to let the feedback resistors behave properly.
Excess gain also usually ensures that internal op-amp phase shifts
will not introduce impossible problems.

Data sheets for any operational amplifier always show the fre-
quency response. A quick look at a 741 data sheet (Fig. 2-13) shows
that the frequency response is already 3 dB down from its dc value
at 6 hertz! From this point, it continues to drop 6 dB per octave,
ending with unity gain near 1 MHz. A reasonable guideline is to
make sure that the op amp you are using has at least ten times, and
preferably twenty times, the gain you are asking of it at the highest
frequency of interest. In the case of a low-pass or a bandpass filter,
you normally are not very interested in frequencies much above the
passband. On the other hand, with a high-pass filter, the op amp
must work through the entire passband of interest. The frequency
response of the op amp will set the upper limit of the passband,
while the active high-pass circuit will set the lower passband limit.

With an integrator, excess gain is still needed, but just how much
extra depends on the circuit. A reasonable minimum limit is three to
five times the Q expected of the circuit at the highest frequency of
interest.

The maximum frequency of operation depends both on the op
amp and the circuit. Specific maximum limits are spelled out later in
the text.

The slew rate is a different sort of high-frequency limitation. It
can be a limit much more severe than the simple frequency-response
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Jimitations. The slew rate places a limit on how fast the large-signal
swing can change. Thus, the large-signal response is often much
worse than the small-signal high-frequency response.

For instance, if the slew rate is 0.5 volt per microsecond, and we
have a 3-volt peak-to-peak signal, it will take 6 microseconds to
change 3 volts at 0.5 microsecond per volt. This will take care of one
half of the signal swing, and the other half will go the other way.
So, 12 microseconds is the highest frequency period we can handle
at a 3-volt level, or at 80 kHz or so equivalent frequency. As the
output amplitude goes up, the maximum possible operating fre-
quency goes down because of this slew-rate limitation. The slew-rate
limit is independent of the open-loop gain and is just as much or
more of a problem at unity gain as at higher values.

Premium op amps have much higher slew rates than the common
741-type devices and are much more useful at higher frequencies.
We will look at some actual figures in just a bit. For many upper-
frequency audio applications, the conventional 741 has too low a
slew rate to be genuinely useful.

Offset effects can involve both voltages and currents and can be
both internal to and external to the op amp. An offset current or
voltage gives a nonzero output voltage for a zero input voltage.
Normally, the op amp itself has its offset matched to within a few
millivolts, referenced to the input. Sometimes there are extra pins
on an op-amp package that let you null the offset to a minimum
value. Even when the offset is nulled, there is still some temperature
dependence, so the best you can usually hope for is several hundred
microvolts of offset.

You end up introducing additional offset whenever the input base-
bias current provides a voltage drop across an input resistor. If the
voltage drops on both the + and — inputs can be made identical,
these offsets can be made to nearly cancel.

For instance, a typical 741 input-bias current is something under
0.1 microampere. This current gives a millivolt drop across a 10K
resistor, a 10-millivolt drop across a 100K resistor, and 0.1-volt drop
across a 1-megohm resistor. If you keep the resistors on the inputs
nearly identical and below 100K, offsets should not be a serious
problem. You will have to watch more closely at higher impedance
levels, however. Note that offset is referred to the input. With a gain
of 3, you get 3 times the output offset. With a gain of 100, you get

00 times the input offset at the output.

e operational-amplifier noise is the output signal you get in the
absence of an input signal, again referenced to the input. A typical
Input broad-band noise value would be 10 microvolts; at a gain of
3, you would get 30-microvolts output, and so on. This noise sets a
definite lower limit to the size of the input signals, depending on

35



the signal-to-noise ratio you want. For many active-filter problems,
input noise is not a serious restriction. Premium low-noise devices
are available where ultrasmall input signals must be used.

The dynamic range of an op amp is the ratio of the largest useful
signal to the smallest. Obviously, the system signal levels should be
adjusted to make sure they are in the center of the dynamic range of
the amplifier being used; otherwise you will be seriously restricted
in terms of input signal amplitudes. The minimum signal you can
handle is set by input noise or offset problems. About 5 millivolts of
output at unity gain is a safe lower limit. The maximum signal you
can handle is set by the supply voltages and by how near to the
supply the op-amp output can come without distorting. With +15-
volt supplies, up to 5 volts rms can usually be handled. There is then
a safe 1000:1 or 60-dB dynamic range at your disposal. Forty deci-

1. The OUTPUT SIGNAL LEVEL should lie between 15 millivolts rms
and 1.5 volts rms.

2. The OPEN-LOOP GAIN should be at least ten times the desired
circuit gain at the highest frequency of interest. On an active
filter using integrators the open-loop gain should be a minimum
of five times the circuit Q.

Circuit Gain Minimum Op Amp Gain
1 10
3 30
2Q? 20Q?
Integrator SQ

3. The op-amp SLEW RATE sets the following limits on the highest
1-volt rms sine-wave frequency:

Max 1-Volt Sine-Wave
Slew Rate Frequency
.5V psec 80 kHz
1V/psec 160 kHz
70 V/ psec 10 MHz

4. Input BIAS CURRENTS generate around one millivolt per 10K
impedance in a 741 type amplifier,

Fig. 2-12. Some guidelines for operational-amplifier circuits.
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bels of dynamic range is more than enough for many routine applica-
tions; so if about 10 dB is lopped off from both ends, the optimum
working signal level at the op-amp output should range from 15 mil-
livolts to 1.5 volts rms.

Some rule-of-thumb use and design rules for operational amplifiers
appear in Fig. 2-12.

WHICH OPERATIONAL AMPLIFIER?

Four very good operational amplifiers for active-filter use appear
in Figs. 2-13 through 2-16. Each figure shows the pin connections
and important parameters, such as the gain versus the frequency.

GAIN, d8

100

(A) Basing.

SUPPLY VOLTAGE RANGE + 5 TO 18V
SLEW RATE: 0.5 VOLT/ uSEC

NOISE: 10 uvOLTS, 100kHz Af
GAIN, QUTPUT

INPUT

100K

10K

1K

100

10 100 K 1K 100K 1M 10M 100M
FREQUENCY, HERTZ

(B) Small-signal frequency response.

Fig. 2-13. Characteristics of the (tA741 operational amplifier.
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Fig. 2-13 shows the pA741 manufactured by Fairchild and others.
This is the original easy-to-use op amp and is probably the most
widely available one as well. Its internal compensation makes it very
easy to use and very low in cost. Its typical price is less than a dollar,
with surplus units as low as 35¢ each.

On the debit side, the 741 has a rather poor frequency response
and an extremely bad slew-rate limit of half a volt per microsecond.
The 741 is limited in usefulness above 10 kHz or in midaudio high-Q
active filters.

The 741 has an internal input-offset adjustment using pins 1 and 5.
These are usually left open in active-filter use.

TOP VIEW
(A) Basing.

SUPPLY VOLTAGE RANGE + 5 TO 18V
SLEW RATE: 0.5 VOLT/ uSEC
NOISE: 10 uVOLTS, 100kHz Af

GAIN, ¢8 GAIN, OUTPUT
TNPUT
100 100K
80 10K
60 1K
@ 100
. 10
0 1

1 10 100 K 1K 100K 1M 10M 100M
FREQUENCY, HERTZ

(B) Small-signal frequency response.
Fig. 2-14. Characteristics of the 5558 dual operational amplifier.



Fig. 2-14 shows the Signetics 5558, a dual-741 in an 8-pin minidip
package. While its performance is essentially identical (no offset
provisions) to the 741, it provides two amplifiers in an 8-pin minidip
package at very low cost and circuit size.

You can also get quad 741s in a standard 16-pin DIP package. The
Raytheon 4136 of Fig. 2-15 is typical and is particularly handy for
state-variable and other multiple op-amp applications. A pair of
5558s take up the same amount of room as a single 4136. Again, there
are no offset adjustments.

TOP VIEW

(A) Basing.

SUPPLY VOLTAGE RANGE + 5 T0 £ 18V
SLEW RATE: 1 VOLT/ ySEC
GAIN, d8 NOISE: 3 VOLTS, 100kHz At

GAIN, OUTPUT
INPUT
100 \\ 100K
0 N,

\ 10K
AN 1

N
100

N
20 \ 10
\
\‘ )
1 10 100 1K 1K 100K 1M lOM\ 100M
FREQUENCY, HERTZ

(B) Small-signal frequency response.

Fig. 2-15. Characteristics of the RM4136 operational amplifier.



There are several “second generation” 741s with improved slew
rates and slightly better frequency response. The typical slew rate of
these improved devices is around 5 volts per microsecond, enough
better that these devices are good throughout the high-frequency
audio range. Typical devices go by 741S or 741HS numbers and are
manufactured by Motorola, Silicon General, and others. The Ray-
theon 4558 is an improved version of the 5558, with higher gain and
slew rate and lower bias currents. If you use this device, note that
the inputs are pnp transistors and the bias current sense is backward.

(A) Basing.

SUPPLY VOLTAGE RANGE + 5 10 + 20V
SLEW RATE: 70'VOLTS / uSEC

NOISE: 3 f
GAIN, 08 WVOLTS, 100kHz A GAIN, OUTPUT
120 1M TRRUT

100 \\ 100K
\\

) \\ 10K

o 1K
\\

© \ 100

» N,

10
N

1

1 10 100 X 1K 100K 1M 10M 100M
FREQUENCY, HERTZ

(B) Smaltsignal frequency response.
Fig. 2-16. Characteristics of the LM318 operational amplifier.



Designing op-amp active-filter circuits—some m

A. For an equal-component-value Sallen-Key low-pass section, provide a noninverting,
high-input-impendance, low-output-impedance amplifier with a gain of 3 — d where
d is some number between zero and twe.

We use the circuit of Fig. 2.4. At a 10K impedance level,

10K 4 R
10K

(3 —d) 10K=10K 4 R
R=10K (3 —d —1)

Gaoin=3—d =

R=10K (2 —d)
The final circuit looks like this:
10K 10K(2-)
INPUT — — OouTRUT

Thus a feedback resistor of normalized value 2 — d is needed in this circuit to get
a gain of 3 — d overall.

B. For a state-variable universal filter, provide o summing block with two inverting
unity-gain inputs and a noninverting input with o gain of “d,” where d is some
number between zero and twe.

We use the circvit of Fig. 2-8. Pick Rg = 10K. Ry and Ry will also be 10K. The
other two resistors are somewhat more difficult to calculate. Let Rp be 5K for
optimum offset performance. We now have to calculate resistor Re:

e g — [1OK10K) + (10K)(10K) + (10K)10K) [ 5K
Goin ¢ ="d "[ (10K)(10K) ][Rc+sx]

5K
==
dRe + d5K = [3]5K
3—d

and the final circuit looks like this: -1 INPUT O—AAA- AAA~
10K 10K

1 '"’“’W—omm

+d INPUT O—AAA—
(Zi)xsx K 1

[

This way, a feedback resistor of normalized valve (3 — d)/d is needed to get an
overall gain of +d.

Fig. 2.17.
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The National LM318 of Fig. 2-16 is a much more sophisticated
amplifier than the 741, despite its identical pin connections. It has a
slew rate of 70 volts per microsecond and a unity-gain frequency
response of approximately 30 megahertz. It is priced around three to
four times the cost of a 741, with a $4 unit price being typical. It is
an excellent choice for all high-frequency active-filter applications,
although the one-per-can limitation can be restrictive when many
op amps are needed in a fancy filter circuit.

All of these amplifiers are internally compensated. This makes
them very easy to use, but it severely limits the slew rate and fre-
quency response. There are lots of uncompensated op amps avail-
able. These are usually much faster, but in exchange for this you have
to add external parts yourself to stabilize the amplifier. One surprise
as you start using these uncompensated amplifiers is that the lower
the gain you are after, the harder the amplifier will be to stabilize.
Suitable units are offered by Texas Instruments, Harris Semiconduc-
tor, Advanced Micro Devices, and others. The LM318 has optional
external compensation—you can improve its response with external
components if you need slightly -better performance. The RCA 3130
is a low-cost, field effect, CMOS op amp with a better performance
than a 741 and incredibly lower input currents. It is stabilized with
a 50 pF capacitor. Much higher impedance levels may be used with
a 3130, particularly at very low filter frequencies.

Another type of amplifier is the “automotive op amp,” or Norton
amplifier. It is low in cost and available in quads and often operates
from a single supply. It is NOT a true traditional operational ampli-
fier. This type is tricky to use and needs vastly different biasing than
is shown in this chapter. It cannot be “one-for-one” dropped into the
circ}:ﬁts of this text. Use this type only if you are thoroughly familiar
with it.

Better op amps are coming along daily. But at this writing, the
4558 is the best choice for simple active filters in terms of size and
economy; the LM318 should be used at higher frequencies or where
high performance is needed; the 3130 is a good choice for low-fre-
quency, high-impedance work.

Fig. 2-17 shows two examples of operational-amplifier circuit
design.
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CHAPTER 3

First- and Second-Order Networks

Complex active filters are normally built up by cascading two rel-
atively simple types of circuits called first-order and second-order
networks. If we choose the right combination of values for these net-
works, we get an overall response curve that does a more complex
filter task. By using active techniques, we prevent the cascaded sec-
tions from interacting. Methods of this chapter and the following
two can be used to select the right values for each part of each net-
work to get the composite filter result that is desired.

There are only two first-order networks, a high-pass one and a
low-pass one. All you can control on these is the center frequency
and the impedance level. There are seven possible second-order net-
works. Of these, the three most popular are a low-pass, a bandpass,
and a high-pass response. The others can be obtained by summing
these three in different ways.

On a second-order section, it is possible to control the impedance
level, the center frequency, and a new feature called the damping,
d, or its inverse, Q. Damping or Q sets the peaking or droop of the
response at median frequencies near the cutoff frequency.

A first-order section is not very useful by itself as a filter. Some
second-order sections make good limited-performance filters. Better-
working active filters use combinations of first- and second-order
sections in cascade, perhaps combining two second-order sections for
a fourth-order response, or two seconds and a first for a fifth-order
filter, and so on.

In this chapter, we will first look at an important work-saving con-
cept called normalization and its related technique, scaling or de-
normalization. Then, we will look at the basic properties of all the



major first- and second-order sections. Chapters 4 and 5 will show
how to combine these sections into useful filter response curves,
while the following chapters show exactly how to build the circuits
to do these tasks.

NORMALIZATION AND SCALING

Fortunately, it is necessary to analyze a certain filter only once.
After that, a simple multiplication or division of component values
can be used to shift the filter to any desired impedance level or cen-
ter frequency. In this way, we do not have to start from scratch every
time a new filter design is needed.

Since we have a choice of frequencies and impedance levels, it
pays to choose the simplest possible one for analysis. Later on, we
should choose the simplest possible one for synthesis, or actual usage.
Both of these simplified circuits are normalized ones. Denormaliza-
tion to get a final filter is called scaling.

Analysis is easiest to do on a circuit with a cutoff frequency of one
radian per second and an impedance level of one ohm. The time con-
stant of a 1-ohm resistor and a 1-farad capacitor has a frequency
equivalence of one radian per second. Synthesis is easiest to do when
the circuit is designed to a 10K impedance level and a 1-kHz cutoff
frequency. The time constant of a .016-microfarad capacitor and a
10K resistor is equivalent to a 1-kHz cutoff frequency.

Fig. 3-1 shows a typical example of two normalized circuits and a
final-use one. We can get circuit values between the two normalized
circuits by appropriate modifications of the simple rules of Fig. 3-2.

To raise the impedance of a circuit, proportionately raise the im-
pedance of everything. To increase the impedance by 5, multiply all
resistors by 5. But, remember that capacitive reactance is inversely
proportional to capacitor size; the larger the capacitor, the lower its
impedance. So, to raise the impedance of a capacitor by 5, divide its
value by 5. To scale impedance, multiply the resistors and divide
the capacitors by the desired value.

When moving the center frequency of a circuit, you should look
carefully at the particular filter circuit involved. Tuning guides will
detail this later. In most of the filters of this book, very few com-
ponents are used to affect the operating frequency. Most often they
are two resistors or two capacitors for a second-order filter, and a
single resistor and capacitor for a first-order network. It is usually
very important to keep the ratio of all frequency-determining com-
ponents constant. Usually, both resistors must be kept the same value
or both capacitors must be kept the same value (or some other speci-
fied ratio of each other). Failure to keep this ratio will ruin the per-
formance of the filter.
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(A) Typical low-pass active filter normalized to 1 ohm and 1 radian per second.
Use for analysis.
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(B) Same circuit normalized to 10K ohms and 1-kHz cutoff. Use for design.
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(C) Same circuit moved to final cutoff frequency of 588 Hz by scaling.

Fig. 3-1. Normalization and scaling techniques greatly simplify active-filter design.

To get FROM a 1-ohm, 1 radian-per-second ANALYSIS circuit TO a
1-kHz, 10K DESIGN circuit:

MULTIPLY all resistors by 10,000
DIVIDE all capacitors by 62.8 million, or 6.28 X 107,

To get FROM a 1-kHz, 10K DESIGN circuit TO a 1-radian-per-second,
1-ohm ANALYSIS circuit:

DIVIDE all resistors by 10,000
MULTIPLY all capacitors by 62.8 million, or 6.28 X 107,

S

Fig. 3-2. Normalizing rules



To raise the frequency of a circuit, multiply all frequency-det.er-
mining resistors or all frequency-determining capacitors by the in-
verse ratio of the old frequency to the new one. Remember to keep
the ratio of the resistors to a specified value and to keep the ratio of
the capacitors to a specified value (often 1:1) at all times.

For instance, most second-order sections will have two frequency-
determining resistors and two frequency-determining capacitors.
Halve the resistors to double the operating frequency. Or, halve the
capacitors to double the operating frequency. Do both and you will
quadruple the cutoff frequency. Fig. 3-3 summarizes the scaling rules
that let you move a 10K, 1-kHz filter to any desired cutoff frequency.

In a filter consisting of several cascaded sections, the impedance
of any individual section can be changed to anything within reason,
without affecting the response shape. On the other hand, if the fre-
quency of several cascaded sections is scaled, each section must be
scaled by exactly the same amount.

Always start with a 1-kHz, 10K impedance level circuit.
TO SCALE WMPEDANCE:

To change impedance, multiply all resistors and divide all capacitors by the new
value, expressed in units of 10K. A 20K impedance level doubles all resistors and
halves all capacitors. A 3.3K impedance level cuts all resistors by 1/3 and triples
capacitor values.

Individual sections of a cascaded active filter can have their impedance levels indi-
vidually scaled without altering the overall response shape.

TO SCALE FREQUENCY:
USING ONLY THE FREQUENCY-DETERMINING CAPACITORS:

Keep the ratio of both frequency-determining capacitors constant. Double the
capacitors to halve the frequency, and vice versa. If the 1-kHz capacitor value
is .016 uF, changing to 1600 pF will raise the frequency to 10 kHz. Similarly,
a 0.16-uF capacitor will lower the frequency to 100 Hz.

USING ONLY THE FREQUENCY-DETERMINING RESISTORS:

Keep the ratio of both frequency-determining resistors constant. Double the
resistance to halve the frequency. A 33K resistor lowers the frequency to one
third of its initial valve.

INDIVIDUAL SECTIONS OF A COMPOSITE ACTIVE FILTER CANNOT HAVE
THEIR CUTOFF FREQUENCY CHANGED WITHOUT DRAMATICALLY CHANGING
THE OVERALL RESPONSE SHAPE. If one section of a finalized filter is scaled
in frequency, ALL sections must be scaled by the same amount.

Fig. 3-3. Scaling rules.



Scaling is best shown in going from the 1-ohm, 1-farad normalized-
for-analysis circuit to the 10K, 0.16-uF, ready-for-use circuit. We
might start by moving the frequency to 1 Hz. One hertz is 27, or 6.28,
radians per second, so a normalization to 1 Hz would take a 1-ohm
resistor and a 1/6.28-farad capacitor (.16 farad). Next we can move
to 1 kHz. We can do this by changing the capacitor. To increase the
frequency by 1000, divide the capacitor by 1000. This gives a 160-uF
capacitor and a 1-ohm resistor at a 1-kHz cutoff frequency.

Fnally, we can raise impedance. To do this, multiply the resistor
by 10,000, getting 10K, and divide the capacitor by 10,000, getting
.016 microfarad. In this way, the farad-sized capacitors used for
analysis are readily reduced to more practical values when changing
to the normal circuit frequencies and impedance levels.

Yet another normalization trick is used sometimes in this text.
When you are analyzing the theory behind active filters, it is some-
times convenient to normalize a component to some handy value,
perhaps setting an inductor to a value of “Q” henrys or “d” henrys or
whatever. Once this is done, the analysis is very simple, and it is usu-
ally easy to scale components to final values later on. The same type
of benefit can sometimes be had by forcing some point in a circuit to
some convenient value—say one volt—and then letting everything
else fall in place.

For analysis, work with 1 ohm and 1 radian per second. For syn-
thesis, work with 1 kilohertz and 10K impedance levels.

To raise impedance, multiply all the resistors and divide all the
capacitors. To raise frequency, divide the capacitors or the fre-
quency-determining resistors. Always hold the frequency-determin-
ing resistors and the frequency-determining capacitors to the ratio
called for by the filter. Remember, you can scale the impedance of
any section at any time, but if you change frequency, the frequency
of ALL cascaded sections must be changed identically.

FIRST-ORDER LOW-PASS SECTION

Fig. 3-4 shows the first-order low-pass section. An operational am-
plifier may be used as a voltage follower to isolate any load from the
circuit. Optionally, it can provide a positive circuit gain, K, as shown.
The op amp does not enter into any energy exchange or feedback in
this circuit; it simply unloads a passive RC section.

The math involved is shown in Fig. 3-5, while the plots of ampli-
tude and phase versus frequency appear as Figs. 3-6 and 3-7.

At very low frequencies, the capacitor does not load the resistor,
giving unity gain and nearly zero degrees of phase shift. At very high
frequencies, the capacitor shunts everything heavily to ground, re-
sulting in heavy attenuation and a phase shift of nearly 90 degrees.
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At a cutoff frequency of f = 1 for a normalized section, the resist-
ance equals the capacitive reactance. The vector sum of the two act-
ing as a voltage divider attenuates the output to 0.707 amplitude, or
3 decibels below the low-frequency value. This is a low-pass filter,
with the passband being all the frequencies below the cutoff fre-
quency and the stopband being all the frequencies above. The phase
shift at cutoff is 45 degrees.

L e
e o—yi,s,To out
K=l (A) Passive.

——AAA AA

r 1 K1

e o_~;~_I_>—‘—OOout (B) Active.

o (HK) _ (+K) _  (HKlwe

ein Jo+1  S+1 T S+w, (C) Transfer function.
(forf.=1) (forf. = w,)

Fig. 3-4. First-order, low-pass sections.

If the resistor is 1 ochm and the capacitor is 1 farad, the cutoff fre-
quency will be 1 radian per second. If the resistor is 10K and the
capacitor is .016 microfarad, the cutoff frequency will be 1 kilohertz.

The slope of the response well above the cutoff frequency is —6 dB
per octave. This means the amplitude is halved for every doubling of
frequency. Since the highest power of frequency in this expression
is unity, this is called a first-order section.

FIRST-ORDER HIGH-PASS SECTION

Fig. 3-8 shows the first-order high-pass section. It is simply an “in-
side out” version of the low-pass. Once again, the operational ampli-
fier simply unloads the output and optionally provides gain. The
math involved appears in Fig. 3-9. The amplitude and phase re-
sponses are shown in Figs. 3-10 and 3-11.

At high frequencies, the reactance of the capacitor is very low and
the resistor does not significantly load the output. We have unity
gain and a phase shift of nearly zero degrees. At very low frequen-
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The first-order low-pass section.
U

se the circuit of Fig. 3-4A. It is a voltage divider.

__impedance of capacitor

Cout = Jotal series impedance . o
4 J.

o _ jwC _ jwC 1

ein 1  jwC+R jo+1

joC joC
Where @ = 27rf and j = V-1

If we let S = Jw as a notation convenience

e,.,,_ ] _ ]
en jo+1 S+1

1st-order low-pass

1T
Vi'te* Vite
expressed in dB of loss

The amplitude will be or

Cout

= 20logio[1 + w?}%

€in

amplitude response

And the phase is

w
¢ = —tan"T = —tan~"'

phase angle

@

Fig. 3-5.

cies, the reactance of the capacitor is very high compared to the re-
sistor, so we get heavy attenuation and a phase shift of nearly 90
degrees.

At the cutoff frequency, reactance and resistance are equal, and
their vector sum drops the output 3 dB from its high-frequency
value. The cutoff-frequency phase shift is 45 degrees.

The passband consists of all frequencies above cutoff, and the
stopband consists of those frequencies below. This mirror-image re-

49



FREQUENCY

.25 .3 4 5 .6 .7.8.910 2 3 4

0 1.0

3 0 &

P, [ .5

35 _— 2
w -0 ]
—
& fout K 208
2 ™ S+1 =
S 0 10 R g

Fig. 3-6. Amplitude response—first-order low-pass section.

lationship between high-pass and low-pass is called mathematical
1/f transformation. Very handily, the design of a low-pass filter can
usually be “turned inside out” to get an equivalent high-pass struc-
ture, simply by substituting resistors for capacitors and vice versa.
You do have to make sure the op amp still gets its input current from
some dc return path to ground, but this is usually readily done.

FREQUENCY
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Fig. 3-7. Phase response—first-order low-pass section.

As with the first-order low-pass system, falloff is at a 6-dB per-
octave rate, only in this case falloff is with decreasing rather than
with increasing frequency. With either section, only the impedance
level and the center frequency can be controlled.

SECOND-ORDER LOW-PASS SECTION

Fig. 3-12 shows the basic second-order low-pass sections. While
there are many active circuits that will do this job, Fig. 3-12B is one
that is simple and convenient for analysis. In theory, two resistors
and two capacitors would be cascaded to get a second-order low-pass
section. The trouble is that if this were done, the performance would
be so poor that we probably could not use the results.



(A) Passive. 1 ®-1

(B) Active.

oo _ (+KMNw _ (+K)§ _  (+K)S

(C) Transfer function, en Jo+1 S+1 = S+,
(forfe=1) (forf. = w,)

Fig. 3-8. First-order high-pass sections.

To build a useful second-order section, either you have to use an
inductor and a capacitor together or else you must use an active cir-
cuit where an operational amplifier provides the equivalent of the
energy-storage ability of the inductor. Instead of actually storing
energy, the op amp can remove energy from the power supply and
put it in the right place at the right time to get a transfer function
like the one obtained by using an inductor and a capacitor.

Looking at things a bit differently, you could think of some active
second-order low-pass sections as poorly performing two-resistor,
two-capacitor, RC filters, each filter being followed by an op amp
and a feedback connection that modifies or repairs the normally poor,
highly damped, RC response and changes it into some more useful
shape. Another possibility is a group of operational amplifiers which
compute a response identical to an inductor-capacitor filter. Either
way, what used to be energy stored in the inductor is now energy
routed by the op amp from the supply and into the passive RC
Clrcuit.

Besides being essential in the energy feedback and response bol-
stering, the op amp also gives optional gain and a low output im-
Pedance that lets sections be cascaded without interaction.

The math behind this section is shown in Fig. 3-13, and the ampli-
tude and phase response curves are shown in Figs. 3-14 and 3-15.
This particular active circuit works by letting its capacitors have
very little effect at low frequencies, which results in an essentially

at, very low frequency response. At very high frequencies, the ca-
Pacitors separately shunt the signal to low-impedance points, one to
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The first-order high-pass section.

Use the circuit of Fig. 3-8A. It is a voltage divider.

impedance of resistor

Cout = {otal series impedance Cin

Cow_ R R _ jo

€in R+;—I—— |w(.t+R jo+1
jwC jw

where @ = 27f and | =\/—1.

If we let S = jw as a notation convenience

€t _ do S
ein jo+1 S+
1st order high-pass

o _
ViP+ o' Vit+o®
Expressed in dB of loss

The amplitude will be

2

amplitude response

€out

in

And the phase is

|
— ’ -1
¢ = —tan =

phase angle

Fig. 3-9.

ground and one to a highly attenuated signal output. This two-step
shunting causes response at very high frequencies to fall off as the
square of frequency, Hence the name, a second-order section.

The performance at very low and very high frequencies turns out
to be identical to two cascaded and isolated RC sections, starting out
flat and ending up falling at 12 dB per octave.

With the active section, things are much more interesting around
the cutoff frequency. With the second-order active section, a new
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Fig. 3-12. Second-order low-pass sections.
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THE MATH BEHIND The second-order low-pass section.

Use the circuit of Fig. 3-12A, it is a voltage divider with

__ parallel impedance of R and C

Cour = total series impedance in
d

€out __ Kd + iOJ _ K _ K
— = = n = T3 1
€in d. + de 1 4 jo(d + jw) o? + jod +

d+ jw

or letting S = jw
€out _ K K

em  (—w)+tijwd S +dS+1
second-order low-pass

The amplitude response referred to K will be
1

V(i - 0*)? + d*ew?

, or expanded and converted to decibels

€out
€in

= 20 logyo\/@* + (d* — 2)w? + 1

amplitude response

and the phase will be

dw

¢ = —tan™!

phase response

we want a minimum of

w*+ (d* — 2)w* + 1

any basic calculus textbook. The derivative is
40® + 20(d* — 2)

and must be zero at a maximum or minimum
Fig. 3-13.

(A)

(8

©

To find the peak amplitude and frequency, we seek the minimum of
20 logio\/w* + (d? — 2)w? + 1 which for a given value of d means

We can do this by trial and error or by taking the derivative, following



40*°+2(d*—2)=0
20*+ (d*—2)=0

2-—d* d?
Wmax — 2 =V _7

peak frequency, if peak exists

peak -~

€out

Putting the frequency of (D) into (B) gives us

2 2

=20 Iogw%\/-t — (2 —d*)?

=20 |09|o\/(2 — d’)’ + @ —22-d) +

€out
Zovt — 20 log‘°
€in

(5]

peak amplitude, if peak exists

Fig. 3-13—continued.

(E) will be negative since we are using decibels of loss.

©)

A value of d* =2 or d = 1.414 will have no peak and will be the
flattest possible amplitude.

(E)

parameter called the damping (d) generates a family of curves near
the cutoff frequency. These curves range from d =2 (obtained by
isolating and cascading two passive RC sections) to a best-time-
delay curve of d =1.73 and a flattest-amplitude curve of d =141,

FREQUENCY
25,3 .4 .5 .6.7.8.9L0 2 34
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Sle -0 AMPLITUDE d = 1.414 N
“ b 2
= 1T 171 \ .
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S TIME DELAY}d = 1.73 1
s 20 T+ 11 .
248 PEAK et K
R N - (3
{ NOT SHOWN) Cin  5°+dS+1 ’
-30 L1 [ { i 1 i
Fig. 3-14. Amplitude resp d-order low-pass section.
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through lower and lower values of d that provide a more and more
peaked response. Finally, at d = 0, you get an infinite-peak response,
or an oscillator.

The second-order section is more obviously a low-pass filter since
its passband and stopband areas are much better defined than those
of the first-order low-pass. To actually build a second-order low-pass,
a simple frequency translation, or scaling, is needed to make the
desired curve have its —3-dB response curve correspond to a desired
cutoff frequency. This text will always refer to the —3-dB cutoff fre-
quency as 3 dB below the peak value of the response shape.
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Fig. 3-15. Phase response—segond-order low-pass section.

With the passive LC circuit, d is changed by changing the ratio of
the inductor to the capacitor. As d gets smaller, the inductor gets
smaller and the capacitor gets larger. This reduces the loading of the
output resistor and gives a more peaked response.

013 10
+18 8
[ .2
w - L
g #02 ]
%" 2 4037 1 ¢ §
w >
- Andt -
< d=0. 4 3
% d=0. 766 (3 68} a0.5 s
s 8 ame® | g 2 §
¢-1.0451 ¢B) Y \2.7/ 406
. a1y [
eL1 \ ¢LO r2y)
} 1
0% .1 .8 K Lo
FREQUENCY
Fig. 3-16. Peak amplitude and freq Y, d-order, low-pass section

with low damping.



With the active-filter circuit shown, damping is lowered by pro-
viding more gain from the operational amplifier. As the gain goes up,
proportionately more signal is fed back near the cutoff frequency,
and the response becomes more and more peaked. If too much signal
were fed back, we would have an oscillator. Fortunately, most of the
d values needed in low-pass active filters are far removed from gain
values that could cause oscillation. In addition, gain values are usu-
ally quite easy to stably set as a ratio of two passive resistors, thus
minimizing variations that might tend toward oscillation.

A second-order filter is rarely designed with more than a 3-dB
peaking (d =0.766), but when we cascade sections for fancier re-
sponse shapes, lower values of d are often called for. Fig. 3-16 shows
the peak amplitude and the peak frequency obtained with lower
damping values.

SECOND-ORDER BANDPASS SECTION

The series RLC circuit of Fig. 3-17A and one possible active equiv-
alent (Fig. 3-17B) give us a simple resonant pole that is equivalent
to a second-order bandpass response. We can use one of these by it-

Q Hy
*no— € out
(A) Passive. 1KQ FARAD
1Q

Kel)
¢
L
1

9

(B) Active.
A i >
On %‘.i‘-—f 'l‘ o
2Q + O
GAIN - -20?
Sovt _ KJw)  _ XS (d ) )
=— LI _1
Q
(C) Transfer function. . =1)
= KweS (d - i)
[ +&S + wol )
Q

(fe = w,e)
Fig. 3-17. Second-order bandpass sections.
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THE MATH BEHIND A second-order bandpass section.

Use the circuit of Fig. 3-17A. It is a voltage divider with

impedance of resistor
€out = —
°' ™ total series impedance

€out __ K _ K _ (K)jw

€in

€in . Q1L TP —17 o+ Q- w?)
1+i[Qe—2] 1+ie[*——]
= (5 S L —— letting K’ = LS and S = jw
Q w'—1+j= Q
'a
. ’
Ee‘ﬂ = x—1 —= K]S (A)
in 2 __ . 2 - 1
(w 1)+ iq $?+ Q S+
second-order bandpass
1
5=3
The amplitude will be ! ., or
12+ Q2 [—“’:_ 3
®
Relating to decibels of loss
Cou] _ af@’ =17
"eut| = 20logro/1 + Q[ 2 ] ()

amplitude response

And the phase will be

¢ =—tan—! Q’[w: — ]]

)
phase response

Since @ = 27f, either w =1 or f = 1 may be used inter-
changeably in any of these expressions,

Fig. 3-18.

58



FREQUENCY

25.3 .4 .5 .6.7.8.9L0 2 3 4
0 Y Lo
-3 Af =d .6 L .10
-10
/]
-20
HIE / 2ls
LK )
2 3 2
e .
s 1 NN =
-40 . - ta &
N N ]
L~ N 4r. ! N
0. .q—»—o—.w
\ Piw s &I ]
- —gr
- // ein sz+§5o1 ’,% |
A d-af
60 Lirt 1 o1
Fig. 3-19. Amplitude resp d-order bandpass section.

self, or we can cascade two, three, or more sections. By carefully
staggering the frequencies of the cascaded poles slightly, we can
control the overall response shape.

The math behind this section appears in Fig. 3-18, and the ampli-
tude and phase response curves are shown as Figs. 3-19 and 3-20.
Unlike the low-pass section, the peak value always occurs at the
resonant frequency, or at f. =1 for a normalized filter. This can, of
course, be scaled in frequency as needed.
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Fig. 3-20. Phase resp d-order bandpass section.
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At very low frequencies, the equivalent circuit is that of a series
capacitor, so the low-frequency behavior is a rising, first-order
response of 6 dB per octave. At the resonant frequency, the inductor,
capacitor, and resistor interact to give a very peaked response. At
resonance, the reactances cancel and the result is unity gain and zero
degrees of phase shift.

At very high frequencies, the response is that of a single series in-
ductor, a first-order response falling at a rate of 6 dB per octave.

The damping controls the peakedness of the response, just as it did
with the low-pass section. The usual range of damping values called
for involves extremely low values of d.

Because of this, it is convenient to use the inverse of the damping,
called Q. Q is 1/d. Q is also the bandwidth to the —3-dB points for
a normalized f. = 1 response. A damping value of .05 corresponds to
a Q of 20.

The peak buildup of a single second-order bandpass section rises
to “Q” above the point where the 6 dB per octave low- and high-
frequency extended slopes would cross. Peak value is unity for the
passive circuit and can be controlled in various active bandpass
circuits,

The phase response starts out at a capacitive 90 degrees, swings
through zero at resonance, and ends up as an inductive 90 degrees
at very high frequencies.

Note that as you go away from the resonance frequency the band-
pass response curves fall far less rapidly than at the start. Rejection
values far from resonance cannot be predicted by continuing the

ono—| 8 out
d FARAD
Ud Hy 1Q (A) Passive.
=)
7 249
e
o o—fb— :1>— out
\ 1 (8) Active.
<
<1 SEI
K=3-d)
-
Con _ (-} __ (+KS'  _  (+K)S’
e diw+ (0 —w) S +dS+1 S Fdw.S+ w.® (O Transfer function.

(fe =1) e = wo)

Fig. 3-21. Second-order high-pass sections.



curves in a straight line near the —3-dB cutoff points. The important
thing to note is that no matter how high the Q of the bandpass pole,
the low- and high-frequency falloff rates will only be 6 dB per octave
per section. All that the high Q gives is a narrower bandwidth to the
—3-dB upper and lower cutoff frequencies and a more peaked re-

sponse. Chapter 5 will give complete response curves on this.

A second-order high-pass section.

Use the circuit of Fig. 3-21A, It is a voltage divider with

_ parallel impedance of Rand L

Cout = yotal series impedance Sin

_ie
€out — d — Ki(l) — K(_wz)
ein j© 1 1— w0+ jod

[

or, letting § = jw

_m _ _(J.)z _ KS’
en 1 —w'+jod  S?+dS+1
second-order high-pass

The amplitude response is given by

€out

=20 Ioglo\f(ﬁ) Tk T

wz

€in

amplitude response

and the phase response is

phase response

pass results (Fig. 3-14) and letting ¥ = 1/f or o’ = 1/w

Fig. 3.29,

(A)

®

©

(B) and (C) may be obtained by manipulating (A) or by taking the low-
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SECOND-ORDER HIGH-PASS SECTION

The high-pass response is simply an inside-out, second-order low-
pass one. The circuit for this section appears in Fig. 3-21, and the
math and response plots are shown in Figs. 3-22, 3-23, and 3-24. This
time, the high-frequency performance is flat and the low-frequency
falloff drops at a 12-dB-per-octave rate, cutting to one-fourth for
each halving in frequency.
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Fig. 3-23. Amplitude resp d-order high-pass section.

Near the cutoff frequency, once again there is a family of curves
controlled by d, with identical d values used for comparable peaking.
The peak frequencies are inverses of the low-pass; response curves
appear in Fig. 3-25.

This high-pass response curve is based on the assumption that the
op amp has a frequency response well beyond the maximum fre-
quency of interest. In reality, there is no such thing as an active high-
pass filter, for the falling response of the amplifier sets an upper limit
to frequencies that can be passed.
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Fig. 3-24. Phase resp d-order high-pass section.
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The phase of the second-order high-pass filter starts out at a value
near zero at very high frequencies and ends up very near 180 degrees
for very low frequencies. The phase shift of a second-order low-pass
filter is —90 degrees at cutoff. The phase shift of a second-order high-
pass is +90 degrees at cutoff. Note that these two responses can can-

Lea1 F1o

+18 8
r (=]
6 ';
2 d+0.2 L g
g =
S T X3 ‘3
e .
= d-0.4 E]
= . ¢ 0886 (2 dB) 2
3 d-0. 4 E3
Y 406 e z ]
T s \ | eLus| &

> d0.9 o 0@
A d = 0.766 {3 dB) .

Lo 11 1.2 1.3 14 15
FREQUENCY

Fig. 3-25. Peak amplitude and frequency, second-order high-pass section
with low damping.

cel each other out if you sum them together, giving a null at the cut-
off frequency.

OTHER SECOND-ORDER RESPONSES

The remaining second-order responses are obtained by summing
in different ways the three we already have. For instance, if we sum
a second-order high-pass and a low-pass response, we get complete
cancellation at the cutoff frequency, giving a bandstop response. A
partial summing still gives a cancellation, only at a different fre-
quency with different response amplitudes above and below can-
cellation. This useful effect applies to elliptical, or Cauer, filters;
more details on this in Chapter 9. A summing of low-pass, bandpass,
and high-pass together with inversion on the bandpass can give an
all-pass response, useful where we want a constant amplitude but a
controlled, varying phase response. Important applications are in
equalizers and compensation networks. Combined bandpass-high-
Pass and bandpass—low-pass responses can be used in formant filters
in electronic music applications. More details on these concepts
appear in Chapter 10. Once we have the three basic second-order

responses, we can easily combine them for these more specialized
uses,
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K AND §

So far, not much has been said about the gain value, K, and the S
that crops up in all the transfer functions.

K is simply a gain value, denoting how big the gain is for the entire
response. K is usually something less than unity for passive sections.
with active filters, K is controllable either to get a desired gain or to
set a desired response into a particular active section. K affects all
frequencies identically. Its value can be changed by adding gain or
resistive padding either before, during, or after active filtering.

In this book, S is simply a notation convenience for any place we
normally would write a jw or jf expression. S is a complex variable
that becomes extremely important if advanced analysis techniques
are used in active filter design. We use S for two reasons: first, to
make the notation simple and compact, and second, to get all the
math into a standard form. S§ has both amplitude and phase associ-
ated with it. If S = jw or jf, a single S has a phase of 90 degrees and
$2 has a phase of 180 degrees, or simply a sign change from + to —,

SUMMING THINGS UP

Many interesting and useful filters can be built by properly cascad-
- ing the five elemental filter sections. These are the first-order high-
pass and low-pass, and the second-order low-pass, bandpass, and
high-pass. Fig. 3-26 summarizes the transfer functions of these ele-
mental sections, using S notation.

What remains now for the next two chapters is to find a way of
specifying how many sections to use and what the damping, Q, and
relative center frequencies are to be for a given response. Note that
you cannot simply cascade identical sections and still end up with
something reasonable in the way of response. For instance, a d = 1.4,
second-order low-pass filter has the flattest amplitude of any you
can build. Cascade three of these and, sure enough, you get a sixth-
order filter. The trouble is that instead of being flat out to a —3-dB
cutoff frequency, the old —3-dB point is now a —9-dB one, and you
end up with a very drooped response. The trick is to find the mathe-
matical second-order factors that, when cascaded properly, multiply
together to get the final desired response.



CHAPTER 4

Low-Pass and High-Pass
Filter Responses

In the last chapter, five elemental building blocks were covered:
the first-order low-pass and high-pass sections, and the second-order
low-pass, bandpass, and high-pass sections. While these are some-
what useful by themselves as simple active filters, they are much
better performers when they are combined by suitable cascading to
build higher-order filters. This chapter will show how to choose the
proper values of damping and relative cutoff frequencies for each
section, along with the needed component tolerances for seven basic
and useful filter-response shapes, both high-pass and low-pass. The
bandpass response is just enough different that Chapter 5 has been
reserved for it.

ORDER

The order of a filter is given by the highest power of frequency, or
radian frequency, that appears under the e,./e:, transfer function.
For instance, in a first-order low-pass section, the highest power of
w, or f, is 1; it is a first-order section, and the best ultimate falloft
that can be expected at very high frequencies is 1/f or a halving of
response as the frequency is doubled. This is equivalent to a slope
of 6 dB per octave. The second-order lowpass filter has an S, an f2,
or an w? under the transfer function. For values where f is large, f*
is much larger, and the response eventually falls off as the square of
frequency, going down by a factor of 4 as the frequency doubles.
This is equal to a slope of 12 dB per octave.
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As the order of a filter increases, the highest power of frequency
under the transfer function increases, and the ultimate response fall-
off versus frequency gets better. The rate is 6N dB per octave, where
N is the order.

Fig. 4-1 shows the ultimate rate of falloff for filters of orders one
through six. A sixth-order low-pass filter has an ultimate response

T\

Ao

Filter Ultimate Slope Ultimate Slopes Ultimate Slope

Order Low-Pass Bandpass* High-Pass
1 —6 dB/octave 000 +6 dB/octave
2 —12 dB/octave +6 dB/octave +12 dB/octave
3 —18 dB/octave @ @00@0o————— +18 dB/octave
4 —24 dB/octave +12 dB/octave +24 dB/octave
5 —30 dB/octave 00— +30 dB/octave
6 —36 dB/octave +18 dB/octave +36 dB/octave

v

(*See Chapter 5—Bandpass filters are normally even-order only.)

Fig. 4-1. How the order of a filter sets the ultimate rejection slopes.

falloff of 36 dB per octave. We can build filters of orders one through
six by properly cascading first- and second-order sections ( Fig. 4-2).
Each section is carefully chosen to be a factor of the overall response
shape desired; the sections cascaded are rarely identical, and the
response shape of the individual sections normally appears wildly
different from the final response shape. Further, the cutoff frequen-
cies of each individual section may also be very much different from
the final overall cutoff frequency desired.

Bandpass filters are usually limited to second, fourth, sixth, and
higher-order responses, as will be shown in the next chapter.

SELECTING A SHAPE

To improve the response of a filter, we can increase the order, as
increasing the order increases the ultimate rate of cutoff well away
from the cutoff frequency. Can we do anything else?

With a first-order filter, the answer is no, but with higher orders
there are new things that can be adjusted. With a second-order filter,
We can adjust the damping and thus the response shape near the
cutoff frequency. With a third-order filter consisting of a cascaded

Ist- and second-order section, we can adjust the damping and the
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ratio of the cutoff frequencies. With a fourth-order filter, we have
two damping values and a frequency ratio to adjust, and so on.

So, while we are limited to a flat low-frequency response and an
ultimate falloff rate of 6N dB per octave for a filter of a particular
order, we usually can control the shape around the cutoff frequency
to get a particular response.

1T~
HR?I{?E?ER INO———] ORDER |}——o0uT
SECTION
-ORDER 2ND-
SEC?&?ERO : INO——— ORDER |——oOUT
SECTION
1ST- 2ND-
TH‘EPL}%:DER INO ORDER ORDER  p————00UT
SECTION SECTION
FOURTH-ORDER 2ND- 2ND-
FILTER IN o— ORDER ORDER ————0 OUT
SECTION SECTION
FIFTH- ORDER 15T - 2ND- 2ND-
FILTER INO————  ORDfR ORDER ORDER =m0 OUT
SECTION SECTION SECTION
R 2ND- 2ND- 2ND-
S"‘I’.‘u‘éﬁm INO——— ORDER ORDER ORDER f}———o OUT
SECTION SECTION SECTION

Fig. 4-2. Higher-order high-pass and low-pass filters are built by cascading first- and
second-order active sections. Adjustment of frequency and damping of each section
gives overall desired response shape.

The response shape you go after depends on what is important to
you. For any property you consider important in a filter, you can find
a mathematician who will dream up a wild set of functions to opti-
mize it—at the expense of everything else. For example, you might
consider the best possible time delay to be the most important. This
would give you a filter with excellent transient response—but rotten
attenuation skirts. Or, you might want to optimize the flattest possi-
ble passband. This is often a very useful compromise. Or, you might
ask for a faster falloff outside the passband, but you will have to
accept lumps (ripple) in the passband with it. Finally, you might
want fast falloff to be optimized at the cost of everything else—even



continuously increasing attenuation of the frequency response in the
stopband. (This is an advanced filter technique requiring an ellipti-
cal filter—see Chapter 9.)

But, regardless of what property you optimize and regardless of
how complex the math theory behind it is, when all is said and done,
you simply have a stack of first- and second-order building blocks.
On these you can control the damping and the frequency—no more,
no less. All that the fancy math does is lead you in the right direction.
You can get to the same place by trial and error. What you always
end up with is a list of damping and frequency values.

For instance, on a second-order filter, if we let d =1.73, we get a
filter that has the best possible time-delay response but with a very
gradual falloff and a drooping passband. If we set d to 1.41, we get a
passband that is the flattest obtainable, with a moderately poorer
transient and time-delay response. With d =1.045, we get a 1-dB
hump in the passband but a sharper initial falloff outside the pass-
band. At d = 0.886, we get a 2-dB hump and a still faster falloff. At
d = 0.766, we get a 3-dB hump and an initial falloff that is better yet.
While all the initial falloff has been improving, the transient and
overshoot response have been getting progressively worse. Lower
d values will give too much of a good thing, and the passband will
become too peaked to use in normal applications.

The problem, then, is to simply define several useful shapes for any
order and normalize them to force all their 3-dB-below-peak cutoff
frequencies at f = 1. Regardless of how peaked the filter is, we will
define the cutoff frequency to be 3 dB below peak on the way out of
the passband.

Once these curves for f =1 are obtained, it is a simple matter of
scaling to adjust the final cutoff frequency to anything you like.

You can use the curves of this chapter in several different ways.
They can show the options in filter shapes for a particular response
problem, given what has to be passed and what has to be rejected
and by how much. They can show how a particular selection of filter
order and shape will perform versus frequency. Most important, the
charts that accompany the curves will tell how many basic first- and
second-order sections are needed to do the job, along with the exact
locations of their individual relative cutoff frequencies, their damp-
ing values, and the accuracy that must be maintained to realize the
desired shape.

Note as you go through this chapter that we never use identical
cascaded sections—at the least their damping values will differ.
Except for the flattest-amplitude-filter shape option, the frequency
values of each section will also differ by a specified amount. Each
section must be a mathematical factor of the composite response we
are after and not just the result of a bunch of sections stuck together.
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THE MATH BEHIND Low-pass response curves.

A low-pass transfer function is usually expressed as a polynomial in “S.”
For instance, a fifth-order filter might have a transfer function of

€out — f(S) - ]
en S +aS*+bS® +cS?+dS+1
Remembering that we can let S = jw, S* corresponds to a fifth power

of w or frequency. At very low frequencies @ is small and powers of

m

1 .
® are even smaller, so the response is simply i 1. At very high

frequencies @® is very large, so the response falls off at & or 30 dB/

octave. We can get any response shape we might reasonably want
near @ =1 by a correct choice of a, b, ¢, and d. Generdlly a, b, ¢,
and d are complex numbers.

For reasonableness and ease of active-filter design, we can factor
the polynomial into first- and second-order sections. For instance

1
S* +aS* + bS® + ¢S* + dS + 1

1 1 1
TS Vs tw  STtas +y>< S+z

And our v, w, x, ¥, and z are uniquely related to o, b, ¢, and d by
multiplying them out and solving simultaneous equations. Once this is
done, each first-order section will simply specify its own frequency,
while each second-order section will specify its frequency and damping.

To get a desirable response characteristic, we can use trial and error
adjustment of the frequency and damping values of the factored sec-
tions. Or we can start with a polynomial that has known, useful prop-
erties and factor it to get the desired damping and frequency values.

There are lots of good polynomials to use. A polynomial that gives
the best possible time delay is called a Bessell polynomial. A Butterworth
polynomial has the flattest amplitude, and so on. These and other poly-
nomials appear in factored form in Network Analysis and Synthesis,
L. Weinberg, and Operational Amplifiers—Design and Applications,
G. E. Tobey, listed in the references. All we have done in the curves that
follow is use these factors, adjusting them slightly in frequency to get
all the —3-dB response points to correspond to the cutoff frequency.

The actual response plots are most easily made by finding the re-
sponse of the individual sections and then simply adding the decibel loss

#S) =

Fig. 4-3.
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and phase angle of each section. Note that adding decibels is the same
as multiplying the actual numeric loss of cascaded sections.
The loss of a first-order section is found by finding the amplitude of
1 . R 1
S+1 PR The amplitude will be Tos
expressed as decibels of loss

or, letting § = or

Amplitude of first-order section =20 logio[w? + 1]%2
in decibels

and the phase is simply

Phase angle of first-order section = tan~'w

A second-order section amplitude response is found from
1

STrasTT o letting S = jw, the response becomes

1
(0 —o?)+ide’
The amplitude is then
1 _ 1
V(1 — 0?4+ (dw)? Vo' + [d®—2]e?+1
or expressed as decibels of loss

Amplitude of second-order section =
20 logro[@* + (d? — 2)w? + 1]%2
in decibels

and the phase is

Phase of second-order section = tan™"

1 — w?

Usually w or f will differ from the desired filter-cutoff frequency. A
simple scaling of frequency is then needed, forming a new f’ or @’ by
dividing by the design frequencies. For instance, if the section is sup-
posed to have a design frequency of .834f, the response of that sec-
tion ut f will be the same as a normalized (f = 1) section at a frequency

f _I—
o _834 f 1.199.

Fig. 4-3—continued.
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LOW-PASS RESPONSE CURVES

The math behind the low-pass response curves appears in Fig. 4-3,
and the curves themselves are shown in Figs. 4-4 through 4-9. Along
with each curve is a chart showing the frequency and damping
values needed for each cascaded first- or second-order section that is
used to make up the filter.
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Fig. 4-4. First-order low-pass response.

The charts show a total of seven possible different filter-shape
options, while only four responses are shown on the graphs. The
missing response curves are simply read halfway between the exist-
ing curves. All of the response options assume that there is to be no
ripple in the stopband and that once it is started, attenuation con-
tinues to increase without limit with increasing frequency.

The shape options trade off smoothness of response against rapid-
ity of falloff. Their only real difference is in the specification of the
relative cutoff frequency and the damping values of each cascaded
section. The responses available are:

Best-Time-Delay Filter—Sometimes called a Bessel filter. This one
has the best possible time delay and overshoot response, but it has
a droopy passband and very gradual initial falloff.

Compromise Filter—Often called a Paynter or transitional Thompson-
Butterworth filter. It has a somewhat flatter passband and initially
falls off moderately faster than the best-time-delay filter, with only
moderately poorer overshoot characteristics.

Flattest-Amplitude Filter—This is the Butterworth filter and has the
flattest passband you can possibly provide combined with a mod-
erately fast initial falloff and reasonable overshoot. The overshoot
characteristics appear in Fig. 4-10. The Butterworth is often the
best overall filter choice. It also has a characteristic that sets all
cascaded sections to the same frequency, which makes voltage con-
trol and other wide-range tuning somewhat easier.

Slight-Dips Filter—This is the first of the Chebyshev filters. It has a
slight peaking or ripple in the passband, a fast initial falloff, and a
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(A) Response curves.

A second-order filter is built with a single second-order section. Its ultimate at-
tention rate is —12 dB/octave.

For a cutoff (—3 dB) frequency of f, the section parameters are:

Second-Order Section
Filter Type Frequency Damping
Best Delay i 1.274 1.732
Compromise 1.128 f 1.564
Flattest Amp 1.000 f 1.414
Slight Dip 0.929 { 1.216
1-Decibel Dip 0.863 f 1.045
2-Decibe! Dip 0.852 f 0.895
3-Decibe! Dip 0.841 § 0.767

Zero freq y aftenuation is O decibels for first four filter types, —1 dB for 1-.dB
dip, —2 dB for 2-dB dip, and —3 dB for 3-dB dip filter types.

NOTE—Values on this chart valid only for second-order filters. See other charts for
svitable values when sections are cascaded.

(B) Section values.
Fig. 4-5. Second-order low-pass filters.

transient response only slightly worse than the flattest-amplitude
filter. The ripple depends on the order and varies from 0.3 dB for
the second-order response down to .01 dB at the sixth-order.
One-dB-Dips Filter—This is another Chebyshev filter. It has 1 dB
of passband ripple. The ripple peaks and troughs are constant in
amplitude, but you get more of them as the order increases. They
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For a cutoff (—3 dB) frequency of f, the section parameters are:

A third-order filter needs a cascaded first- and second-order section. Its ultimate
aftenuation rate is —18 dB/octave.

Second-Order First-Order
Section Section

Filter Type Frequency Damping Frequency
Best Delay 1.454f 1.447 1.328f
Compromise 1.206f 1.203 1.152¢%
Flottest Amp 1.000f 1.000 1.000f
Slight Dips 0.954¢ 0.704 0.672f
1-Decibe! Dips 0.911f 0.496 0.452¢
2-Decibel Dips 0.913f 0.402 0.322f
3-Decibe! Dips 0.916¢ 0.326 0.299f

Zero freq tt tion is O decibels for all filter types.
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(B) Section values.

Fig. 4-6. Third-order low-pass filters.
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A fourth-order filter needs two cascaded second-order sections. l#s ultimate attenu-
tion rate is —24 dB/octave,

For a cutoff (—3 dB) frequency of f, the section parameters are:

First Section Second Section
Filter Type Frequency Damping Frequency Damping
Best Deloy 1.436f 1.916 1.610f 1.241
Compromise 1.198f 1.881 1.269f 0.949
Flotest Amp 1.000f 1.848 1.000f 0.765
Slight Dip 0.709¢f 1.534 0.971f 0.463
1-Decibel Dip 0.502f 1.275 0.943f 0.281
2-Decibel Dip 0.466f 1.088 0.946t 0.224
3-Decibel Dip 0.443f 0.929 0.950f 0.179
Zero freq y ai tion is O dB for first four filter types, —1 dB for 1-dB dip,

—2 dB for 2-dB dip, —3 dB for 3-dB dip filter types.

(B) Section values.

Fig. 4-7. Fourth-order low-pass filters.
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(A) Response curves.

A fifth-order filter needs two cascaded second-order sections cascaded with a single
first-order section. lts ultimate attenuation rate is —30 dB/octave.

For a cutoff {(—3 dB) frequency of f, the parameters of the sections are:

Second-Order Second-Order First-Order
13t Section 2nd Section Section

Filter Type Frequency Damping Frequency Damping Frequency
Best Delay 1.613f 1.775 1.819¢f 1.091 1.557¢
Compromise 1.270f 1.695 1.348f 0.821 1.248f
Flattest Amp 1.000f 1.618 1.000f 0618 1.000f
Slight Dips 0.796f 1.074 0.980f 0.334 0.529¢
1-Decibel Dips 0.634f 0.714 0.961f 0.180 0.280f
2-Decibel Dips 0.624f 0.578 0.964f 0.142 0.223f
3-Decibel Dips 0.614f 0.468 0.967¢f 0.113 0.178f

Zero frequency attenuation is 0 dB for all filter types.

(B) Section values.

Fig. 4-8. Fifth-order low-pass filters.
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tend to crowd together near the cutoff frequency, particularly
when viewed on a log response plot.

Two-dB-Dips Filter—Another Chebyshev filter. The 2-dB ripple gives
faster initial stopband falloff and progressively poorer transient
and overshoot characteristics.

Three-dB-Dips Filter—This final Chebyshev filter offers the fastest
initial falloff you can possibly get in a filter with acceptable pass-

band lumps and continually increasing attenuation in the stop-
band.

In general, the damping values of the individual sections become
less and less as you proceed from best-time-delay to 3-dB Chebyshev.
This means that the sections become somewhat harder to build and
more critical in tolerance as you move toward the Chebyshev end of
the shape options, with the 3-dB-dips filter being the most critical of
the seven options.

The passbands of only the flattest-amplitude and 3-dB-dips filters
are shown in the response curves. Compromise and best-time-delay
filters will have more droop than the flattest-amplitude curve, but
they will be ripple free. The slight-dips passband and the 1- and
2-dB-dips passbands will fall between the two curves shown. All
filters are 3 dB down from their peak value at the cutoff frequency
f=1

Note that the “dc” or ultralow-frequency response depends on the
order and shape. For all odd-order filters and for all even-order,
ripple-free filters (best-time-delay, compromise, and flattest-ampli-
tude), the “dc” value of filter attenuation is zero decibels.

For even-order, underdamped filters with passband ripple, the d¢
value of the attenuation is down by the passband ripple in the curves
shown. This standardizes the peak height and the —3-dB cutoff fre-
quencies for meaningful comparison. A simple gain adjustment else-
where is easily made to allow for the overall gain constant.

Once again, note that all the curves have a —3-dB cutoff frequency
in common that defines the boundary between passband and stop-
band, independent of ripple amplitude or amount of delay.

HIGH-PASS-FILTER CHARACTERISTICS

We can likewise generate a family of high-pass response curves,
following the math of Fig. 4-11 and the corresponding curves of
Figs. 4-12 through 4-17. Thanks to a process called mathematical
transformation by 1/f, the high-pass filters are simply mirror images
of their low-pass counterparts. One minor difference is that the low-
pass best-time-delay filter is more properly called a well-damped
filter in the high-pass case. Qutside of this minor semantic detail, the
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responses are simply mirror images of each other, obtained from a
1/f frequency transformation.

While the high-pass curves shown are flat theoretically to infinite
frequency, the actual circuits of Chapter 8 will impose an upper cut-
off frequency. In reality, there is no such thing as an active high-pass
filter. What we really have is a bandpass filter whose lower cutoff
frequency is set by the designed-in high-pass filter and whose upper
cutoff frequency is determined by the op amp in use. Normally, you
place this upper cutoff frequency limit beyond the range of whatever
signals you are filtering.

HOW ACCURATE?

How closely must we match these curves to the real-world damp-
ing and frequency values we get from active sections? This is called
the sensitivity problem, and it rapidly leads to a lot of difficult math.
One simple and highly useful way to estimate the degree of accuracy
required by the frequency and damping values of cascaded sections
is to assume that a 1-dB change in the worst possible position of the
most sensitive section sets an upper limit to what we will accept as a
reasonable shape variation. We then force the other sections to also
meet this requirement.

The math involved is shown in Fig. 4-18, and the main results,
rounded off to stock tolerance values, appear in Fig. 4-19.
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(A) Response curves.
Fig. 4-9. Sixth-order
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A sixth-order filter needs three cascaded second-order sections. Its ultimate attenuation rate is —36 dB/octave.

For a cutoff (—3 dB) frequency of f, the p. s of the d-order sections are:
First Section Second Section Third Section
Filter Type Frequency Damping Frequency Damping Frequency Damping
Best Delay 1.609f 1.959 1.694f 1.636 1.910¢ 0.977
Compromise 1.268¢ 1.945 1.301f 1.521 1.382f 0.711
Flattest Amp 1.000f 1.932 1.000f 1.414 1.000f 0.518
Slight Dips 0.589f 1.593 0.856f 0.802 .988f 0.254
1-Decibel Dips 0.347¢ 1.314 0.733f 0.455 977¢ 0.125
2-Decibel Dips 0.321¢ 1121 0.727¢ 0.363 976f 0.0989
3-Decibel Dips 0.298f 0.958 0.722f 0.289 .975f 0.0782

Zero frequency attenuation is 0 dB for first four filter typas, —1 dB for 1-dB dip, —2 dB for 2-dB, and —3 dB for 3-dB dip filter types.

(B) Section values.




Order Overshoot

2 5%
3 9%
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5 13%
é 15%

Fig. 4-10. Approximate overshoot of Butterworth (flattest-amplitude) low-pass filters to
a sudden change of input.

THE MATH BEHIND High-pass filter response.

High-pass respanse analysis could be done just like the lowpass
analysis of Fig. 4-3, for instance, starting with @ polynomial such as

Co _ s
ein S*+aS*+bS3+cS2+ S+ 1
And factoring it into first- and second-order sections:
ﬂ _ S’ X S’ X S
ein S*+vS+w S+ xS+y  S+1z

Again relating a, b, ¢, and d to v, w, x, y, and z by multiplying out
and solving simultaneous equations.

A much easier way to do the job is to let §' = lg orf = ]? to "inside

out” the low-pass response. This is called a frequency transformation
and is simply done by mirror-imaging the low-pass curves and design
frequencies.

To find a high-pass response equivalent to a low-pass

onelet 8’ = -;—, o = % yorf = ] everywhere in its ex-

f

pression, or use a mirror image graphically.

Fig. 4-11.
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(A) Response curves.

ation rate is <-12 dB/octave.

For a cutoff (—3 dB) frequency of f, the section parameters are:

A second-order filter is built with a single second-order section. Its ultimate attenu-

Second-Order Section
Filter Type Frequency Damping
Highly Damped 0.785¢ 1.732
Compromise 0.887f 1.564
Flattest Amp 1.000f 1.414
Slight Dip 1.076f 1.216
1-Decibel Dip 1.159% 1.045
2-Decibel Dip 1.174¢ 0.895
3-Decibel Dip 1.189f 0.767

dip, —2 dB for 2-dB dip, and —3 dB for 3-dB dip filter types.

svitable values when sections are cascaded.

S

Very high frequency attenuation is O dB for first four filter types, —1 dB for 1-dB

NOTE—Values on this chart valid only for second-order filters. See other charts for

(B) Section values.
Fig. 4-13. Second-order high-pass filters.
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aftenvation rate is +18 dB/octave.

A third-order filter needs a cascaded first- and second-order section. its vltimate

For a cutoff (—3 dB) frequency of f, the section parameters are:

Second-Order Section First-Order Section
Filter Type Frequency Damping Frequency
Highly Damped 0.688f 1.447 0.753f
Compromise 0.829f 1.203 0.868f
Flattest Amp 1.000f 1.000 1.000f
Slight Dip 1.048f 0.704 1.488f
1-Decibel Dip 1.098f 0.496 2.212f
2-Decibel Dip 1.095¢ 0.402 3.105¢
3-Decibel Dip 1.092f 0.326 3.344f

Very high frequency attenuation is 0 dB for all filter types.

(B) Section values.

Fig. 4-14. Third-order high-pass filters.
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ation rate is 24

dB/octave.

For a cutoff (—3 dB) frequency of f, the section parameters are:

A fourth-order filter needs two cascaded second-order sections. Its ultimate attenu-

First Section Second Section
Filter Type Frequency Damping Frequency Damping
Highly Damped 0.696f 1.916 0.621f 1.24}
Compromise 0.834f 1.881 0.788f 0.949
Flattest Amp 1.000f 1.848 1.000f 0.765
Slight Dip 1.410f 1.534 1.029¢f 0.463
1-Decibel Dip 1.992¢ 1.275 1.060f 0.281
2-Decibel Dip 2.146f 1.088 1.057f 0.224
3-Decibel Dip 2.257f 0.929 1.053f 0.179

———

Very high frequency attenuation is 0 dB for first four filter types, —1 dB for 1-dB
dip, —2 dB for 2-dB dip, and —3 dB for 3.dB dip filter types.

(B) Section values.
Fig. 4-15, Fourth-order high-pass filters.
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A fifth-order filter needs two cascaded second-order sections cascaded with a single
first-order section. Its vltimate attenuation rate is 430 dB/octave.

For a cutoff (—3 dB) frequency of f, the parameters of the sections are:

Second-Order Second-Order First-Order
st Section 2nd Section Section

Filter Type Frequency Damping Frequency Damping Frequency
Highly Damped 0.620f 1.775 0.550f 1.091 0.642f
Compromise 0.787¢ 1.695 0.742f 0.821 0.801f
Flattest Amp 1.000f 1.618 1.000f 0.618 1.000f
Slight Dip 1.256f 1.074 1.020f 0.334 1.890f
1-Decibel Dip 1.577¢ 0.714 1.041f 0.180 3.571f
2-Decibel Dip 1.603f 0.578 1.037f 0.142 4.484f
3-Decibel Dip 1.629f 0.468 1.034f 0.113 5.618¢

Very high frequency attenuation is 0 dB for all filter types.

Fig. 4-16. Fifth-order high-pass filters.

(B) Section values.




These results tell us that a 10% damping accuracy is good enough
for all the filters of this chapter, while accuracies of 109 down to
1% are needed when the frequency of each section is set. Most of the
circuits shown are easily handled with a 5% tolerance.

Often, an active-filter circuit uses two capacitors or two resistors
together to determine frequency. This lets us achieve a nominal 1%
frequency accuracy with components that are accurate to approxi-
mately 2%. It turns out that the majority of active filters are easily
handled with fixed 5% components except for very special or critical
needs.

On the other hand, we cannot be sloppy or radically out of toler-
ance. The sixth-order filters have damping values as low as 0.07. This
response shape by itself has a peak of around 24 dB. Put this in the
wrong place and you are bound to get a response that will be wildly
wrong. The practical limitation is that you have to use the most-
accurate components you can for a filter task. Such things as ganged,
low-tolerance potentiometers for wide-frequency tuning should be
avoided (see Chapter 9), as should individual tuning or damping
adjustments that cover too wide a range.

USING THE CURVES
Here is how to use the data of this chapter:

1. From your filter problem, establish the cutoff frequency and
the allowable response options. Also, choose some response-
shape criterion that you would like to meet, in terms of a cer-
tain frequency, a certain amount above cutoff, to be attenuated
by so many decibels.

2. Check through the curves to find what filter options you have.
Always try a flattest-amplitude filter first. Remember that filters
less damped than flattest-amplitude will fall off faster initially
but will have ripple in the passband and a poorer transient re-
sponse. Filters more damped than a flattest-amplitude filter will
have good to excellent transient response but a very droopy
passband and a poor initial falloff.

3. Read the frequency and damping values you need for each cas-
caded section and scale them to your particular cutoff fre-
quency.

4. Determine the accuracy and the tolerance you need from Fig.
4-19,

Several examples appear in Fig. 4-20.

CAN WE DO BETTER?

Newcomers to the field of filter design may find some of these
Tesponse shapes disappointing. Can we do any better?



Remember that each circuit shown optimizes something. The best-
delay filter is the best and finest one you can possibly build. The
flattest-amplitude filter is indeed the flattest. The 3-dB-dips filter
drops off as fast as it possibly can, consistent with an increasing at-
tenuation with changing frequency. Each of these curves is the best
possible design that you can achieve in filter work, for some feature
of the filter.

There are three additional things we can do if the curves of this
chapter are inadequate:

Increase the Order—Higher-order filters will offer better responses,
at the expense of more parts, tighter tolerance, and generally lower
damping values. Parameter values can be found by trial and error
or by consulting advanced filter-theory texts.

Go Elliptic—A certain type of filter that provides ripple in the stop-
band as well as in the passband gives you the fastest possible filter
falloff and a null, or zero, just outside the passband—but the transi-
ent and overshoot performance is relatively poor, and frequencies
far into the stopband are not attenuated much. Details on this type
of filter are shown in Chapter 9. Circuits are relatively complex.

Consider Alternatives—If your circuit requirement cannot be
achieved with the curves of this chapter, chances are that your
specification is too restrictive or otherwise unrealistic. The over-
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THE MATH BEHIND Tolerance and sensitivity analysis.

Finding the accuracy needed for the frequency and damping values
of each section can be a very complicated and confusing task. This
can be substantially simplified by assuming that a 1-dB change in the
most underdamped (lowest d) section is an outer limit of acceptability,
and then imposing this tolerance limit on the other sections.

This 1-dB shift can be calculated ot the peak value of the section
response, for it will usually be the most dramatic at that point. The
amplitude response of a second-order section is

Sout — 20 logye [@* + (d? — 2)w? + 1]%

and the peak frequency (d < 1.41) is

Wmax = \/l—-dz—’

and the peak amplitude is

— 2
Cour _ 20]09“[«!\/42 d ]

From Figs. 3-16 and 4-3 we can then select low values of d and shift
them independently in frequency and damping to produce a 1-dB er-
ror. These values are then related to minimum d values needed for a
given response and conservatively rounded off, resulting in the chart of
Fig. 4-19.

Fig. 418.

whelming majority of practical filter problems can be handled
with the circuits of this book. If yours is not one of them, consider
some alternate technique, such as digital computer filters, side-
band or multiplier modulation techniques, or phase-lock loops.



Order
Filter Type 2 3 4 5 6

Best Delay (LP) *10% *+10% +10% *£10% +10%
Highly Damped (HP)

Compromise *+10% *+10% +£10% £10% *+10%
Flattest Amp *10% *10% *+10% *10% *+10%
Slight Dips +10% *+10% +10% +10% * 5%
1-Decibel Dip +10% +10% + 5% + 5% *+ 2%
2-Decibel Dip *+10% =+ 5% X 5% *+ 2% =+ 2%
3-Decibel Dip *10% =+ 5% =+ 2% £2% =+ 1%

Damping accuracy for any order, any filter—=+109%.

Fig. 4-19. Tuning accuracy needed for low-pass or high-pass filters.




Using the curves; some m

A. A low-pass filter is to have its cutoff frequency at 1 kHz and reject all frequencies
above 2 kHx by at least 24 dB. What type of filter can do this?

None of the first- or second-order filters offer enough attenuation. Third-order
low-pass structures with 1-, 2-, or 3-dB dips in them will do the job. A fourth-order,
maximally flat amplitude will just do the job, while a fourth-order “slight dips”
filter offers a margin of safety. Even through sixth-order, a best-time-delay filter
cannot offer this type of rejection. The best choice is probably the fourth-order
flattest-amplitude filter.

B. A high-pass, fourth-order, 3-dB dips filter has its cutoff frequency at 200 Hz. What
will the response be at 1000, 400, 200, 100, and 20 Hz?

Since 200 Hz is the cutoff frequency, the response here is —3 dB by definition.
400 Hz is 400/200, or twice the cutoff frequency. From Fig. 4-15A, the response
is —2 dB and, of course, in the passband. 1000 Hz is 1000/200 or 5 times the cut-
off frequency. It is off the curve, but is near the —3 dB “very high frequency”
response point. At 100 Hz, the frequency is 100/200 or 0.5 times the cutoff fre-
quency and the rejection from Fig. 4-15A will be —39 dB. Twenty hertz is only
0.1 times the cutoff frequency and is thus off the curve. By inspection, it is well
below —60 dB.

if we want an exact valve far 20 Hz, we can come up two octaves in frequency to
80 Hz. Eighty Hz is 80/200 times the cutoff frequency and the attenvation at 0.4
frequency is —47 dB. Since the curves continve at —24 dB per octave and since
there are twa octaves between 20 and 80 Hz, the 20-Hz attenvatian is theoretically
47 + 24 | 24 = 95 dB. In the real world, attenvations greater than 60 dB are
aften masked by direct feedthrough, circvit strays, coupling, and so forth. Very high
valves of attenuation and rejection are only obtained with very careful circuit de-
signs and using circvits with extreme dynamic ranges.

C. A third-order, 350 Hz, 1-dB-dip, low-pass filter is to be built. What are the damp-
ing and frequency valves of the cascaded sections? How accurate do they have
to be?

From Fig. 4-6B, we see that we need two sections, a first-order and a second-order
one. The cutoff frequency of the first-order section is to be 0.452 fimes the design
frequency or 0.452 X 350 = 158 Hz. The cutoff frequency of the second-order
section is ta be 0.911 times the cutoff frequency ar 319 Hz, while its damping is
read directly as 0.496.

From Fig. 4-19, a 10% accuracy on the damping and a 10% accuracy an frequency
shauld be acceptable.

These values may then be taken to Chapter 6 for actual constructian of the filter.

Fig. 4-20.



CHAPTER 5

Bandpass Filter Response

In this chapter, you will find out how to decide what the response
shape of a bandpass filter is and how to properly pick the center fre-
quency, the Q, and the frequency offset of cascaded filter sections.

The technique we will use is called cascaded pole synthesis. In it,
you simply cascade one, two, or three active second-order bandpass
circuits to build up an overall second-, fourth-, or sixth-order re-
sponse shape. By carefully choosing the amount of staggering and
the Q of the various sections, you can get a number of desirable
shape factors. The advantages of this method are that it is extremely
simple to use, requires no advanced math, and completely specifies
the entire response of the filter, both in the passband and in the
entire stopbands.

We will limit our designs to five popular bandpass shapes—maxi-
mum-peakedness, flattest-amplitude, and shapes with 1-, 2-) or 3-dB
passband dips.

SOME TERMS

Fig. 5-1 shows some typical bandpass filter shapes. The bandpass
shape provides lots of attenuation to very low and very high frequen-
cies, and much less attenuation to a band of medium frequencies.
The actual values of the attenuation depend on the complexity
(order) of the filter, the passband smoothness (relative Q or damp-
ing), and the gain or loss values designed into the filter.

A bandpass filter is used when we want to emphasize or pass a
narrow signal band while attenuating or rejecting higher- or lower-
frequency noise or interfering signals.



The bandwidth of the filter is defined as the difference between
the upper and lower points where the filter response finally falls to
3 dB below its peak value on the way out of the passband. Our defini-
tion of bandwidth is always made 3 dB below peak, even if there is
some other amount of passband ripple.

The center frequency of the filter is the geometric mean of the
upper and lower 3-dB cutoff frequencies (Fig. 5-1). Sometimes the
center frequency of a one-pole bandpass filter is called the resonance
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Fig. 5-1. Bandpass filter shapes and terminology.

frequency. Note that the center frequency is never at “half the differ-
ence” between the upper and lower cutoff frequencies. It is always
the square root of the product of the upper and lower cutoff fre-
quencies.

Usually, we make the center frequency unity. Once the analysis
and design are completed, the component values can be scaled as
needed to get any desired center frequency.

The fractional bandwidth and the percentage bandwidth are two
different ways of expressing the ratio of the bandwidth to the center
frequency, with the formulas given in Fig. 5-1. The percentage band-
width is always 100 times the fractional bandwidth. Either way is
useful in suggesting an approach to a particular filter problem.
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For instance, suppose we have a filter with an upper cutoff fre-
quency of 1200 Hz and a lower cutoff frequency of 800 Hz. The
center frequency will be 1000 Hz, right? Wrong! The center fre-
quency is the geometric mean of the upper and lower cutoff fre-
quencies, or 980 Hz. The bandwidth is simply the difference between
the upper and lower cutoff frequencies, or 400 Hz. The fractional
bandwidth will be the ratio between the bandwidth and center fre-
quency, or 400/980, or 0.41. The percentage bandwidth is 100 times
this, or 41%.

We can easily have a percentage bandwidth far in excess of 100%,
although many filter problems usually deal with percentage band-
widths of under 50%. For instance, a bandpass filter to handle
phone-quality audio from 300 Hz to 3000 Hz has a percentage band-
width of 285%.

SELECTING A METHOD

The fractional bandwidth is the deciding factor in selecting the
best filter for a particular filtering job. If the fractional bandwidth is
very large, you do not build a “true” bandpass filter; instead, you get
the passband by overlapping a high-pass and a low-pass filter. Our
phone audio example covering 300 to 3000 Hz could best be done by
using cascaded high-pass and low-pass sections. On the other hand,
a modem data filter might cover 900 to 1300 Hz. It has a percentage
bandwidth of only 37% and is best done by using the “true” band-
pass techniques of this chapter and Chapter 7.

If the percentage bandwidth is less than 80 to 100%, use the “true”
bandpass methods of Chapters 5 and 7.

if the percentage bandwidth is more than 80 to 100%, use an over-
lapping high-pass and low-pass filter cascaded, using the methods
of Chapters 4, 6, and 8.

Fig. 5-2. Picking a bandpass design method.

You should usually make your decision around 80 to 100% band-
width. Wider than this, and you will get better performance and a
simpler design, with overlapping high-pass and low-pass sections,
by following the methods of Chapters 4, 6, and 8. Narrower than this,
and you should use the methods of this chapter and Chapter 7. Fig.
-2 sums up this rule.
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FILTER-SHAPE OPTIONS

One, two, three, or more cascaded poles can be used for the band-
pass filter. Since each pole is a second-order active bandpass section,
the order of the filter is twice the number of poles, resulting in sec-
ond-, fourth-, or sixth-order filters.

With a single second-order bandpass section, all we can control is
the center frequency and the damping, or its inverse, Q. The Q sets
the bandwidth directly, as 1/Q will be the bandwidth of a unity-
normalized filter.

With two cascaded sections, we can individually control the reso-
nant frequency of each section and the Q of each section. For a bal-
anced or symmetric response, it is best to keep both Qs identical.
We can generate shape options by spreading the frequencies of the
two sections symmetrically away from the center frequency.

For instance, if we place both sections at the same frequency, we
get a very sharp response which we might call a maximum-peaked-
ness response. The selectivity will be very high, but the passband
will have a lot of droop.

Suppose we start spreading out the two poles in frequency while
keeping their Q constant. This is done by introducing a factor “a”
that is near unity. You multiply one frequency by “a” and divide the
other one by “a,” and the two poles split symmetrically from the
center frequency.

As the spacing is increased, the passband becomes flatter and flat-
ter, until a shape option called a flattest-amplitude filter is reached.
More spacing, and we get a dip in the passband with 1, 2, or 3 dB of
sag. All of these are useful shapes also. More spacing yet, and the
filter breaks down into a useless two-humped response.

Insertion loss of the filter also goes up as the poles are spaced
apart, but this is easily made up, as we will shortly see.

When three poles or three cascaded sections are used, we have
many options, for each pole can have a specified frequency and Q,
and we can spread them in different ways. You get useful results if
you make two poles move and leave the third one at the center fre-
quency. Again, a value “a” (different from the two-section case) is
used to multiply one filter section and divide the other one in fre-
quency. To keep the passband reasonably shaped, we set the Q of
the outside two sections to some identical value and set the inside
section to a Q value of one-half the outside two.

Once again, we generate different shape options as we vary “a,”
starting out with maximum-peakedness, flattest-amplitude, and on
through the 1-, 2-, and 3-dB-dip filters. This time there are three
peaks and two valleys in the response. The bandwidth is controlled
by changing the Q of each section. Obviously, there is a unique rela-
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tionship between Q and “a” that must be carefully controlled if we
are going to get the shape we desire for various bandwidths.

These 11 shape options should cover the majority of bandpass
filter applications. Higher-order shapes are easily worked out for
specialized applications. We will find out as we go along that the
shape options with dips in them tend to require higher-Q sections
and need tighter tolerances on their design, and that their ringing,
overshoot, and transient response get considerably worse. These dis-
advantages are traded off for a faster initial rate of falloff outside the
passband.

The problem now is to come up with some response curves that
show what we can expect from the one-, two-, and three-section cas-
caded sections. Then we can turn this information “inside out” so
that we can start with a bandwidth or rejection need, find out how to
fill the need with a given number of poles, and determine what the
Q, center frequency, and separation of the poles are to be. Following
this, we have to work out some tolerance criteria that tell us how
accurate we must be.

SECOND-ORDER BANDPASS FILTER

Circuits that will give us a single response pole or a second-order
bandpass response are shown in Fig. 5-3. Chapter 7 will show easy
methods for actually building and tuning these circuits.

The math behind the single-pole response is shown in Fig. 5-4,
and a plot of a 10% bandwidth (Q = 10) pole is shown in Fig. 5-5.

THE MATH BEHIND A single response pole.

Use the series RLC circuit of Fig. 5-4A for analysis:
L
T Cout

€in RLOAD
By voltage-divider analysis: )
Sout _ Ry = Ry
ein Ry +ilXe — Xe) S o]
Ry + [(wL wC)
i=v-1) (A)

If we can get the results for any one normalized circuit, we can use
the results for all possible circuits simply by scaling impedance and
frequency. To do this, pick component values as follows:

Fig. 5-4.
9
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varQ puinpul exp Y
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The loss of the circuit is 1/gain or

=1+ io["”w_ ] ©

€in

loss =

Cout

This is a vector quantity. The magnitude of the loss will be

vy + (Q["” — '})’ =i+ Q’("”w_ ')’ )

w

Expressed in decibels, the loss is

e::' =20 log,o\/l +Q? (w’w— ])’ ®
or the gain is
-2:;":'2—20 |09|o[1 +Q’(w’w_1)’:"h )

Note that the loss is minimum (0 dB) at w =1 and increases for all
other values of w. The very same response will be obtained for any
frequency of resonance by simple scaling. Thus

Cout _ _99 log,.[1 + Q’(if“—')’ T' G)

single-pole response fc =

The equivalent “S plane” expression for Z”'

= is found by letting S = jw

in (B) above. The result is

Ee?:'l__-[é:'[5’+?65+'I] (H)

Fig. 5-4—continved. 97




72—
To find a frequency for a specific attenuation, note that = Af

and rewrite (G). Let x = aftenuation

x = 1+Q=(if_—l)=\ﬁ+_cW

x2 =1+ Q2Af?
Vx? — 1 = QAf
7_
s0, Af =22 3 ! )
For instance, Q = 30 and 20 dB attenuation, x = 10.0
VI00—1_9.94 _
Af = 30 =30 = .331

To relate Af, fy and f| we already have these expressions:
Af = fu - fL fc = fqu

During analysis, always letf¢ = 1. So Vyf =1 and fy =:—
L

Now the normalized Af = fy — f = fy — ;-
U

fu?2 —1

Af = T

Rearranging
f2—-Affy—1=0

This is a quadratic. Solving:

A+ V(AN + 4 Af — V(A2 + 4
fy T and f, =—
fuzl/fL fL=]/fu (J)

Relating fy, 1, and Af when f¢=1

Fig. 5-4—continved.

There are several very important things to notice about Fig. 5-5.
First, the response is symmetrical on a log frequency scale, with the
same response at one-half and at two times the center frequency, at
one-fourth and at four times the center frequency, and so on. To get
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Fig. 5-5. Frequency responses of a single-pole, @ — 10 filter (see text).

symmetrical curves like these, you must use a log scale on your plot.
Linear scales will skew or distort the picture.

The gain is highest at the center frequency. In a passive RLC
series circuit with a good inductor, the input voltage will equal the
output voltage at the resonance frequency, and the gain will be
unity, or zero decibels. With an active second-order bandpass, you
will see that you can make the gain anything you like, although it
often turns out to be related to the bandwidth and Q for a specific
circuit.

As we go up or down in frequency from resonance, more and more
insertion loss is picked up. The —3-dB points (0.707 voltage ratio)
with respect to the center-frequency value are called the cutoff fre-
quencies, while the difference between the upper and the lower cut-
off frequencies is called the bandwidth.

We call the inverse of the bandwidth Q. A Q of 85 is a fractional
bandwidth of .012, or a percentage bandwidth of 1.2%. Note that Q
is the inverse of the —3-dB bandwidth only if a single section is in
use.

As we go farther from the center frequency, the response starts
dropping off very sharply, expressed as so many decibels per octave
of bandwidth. But, sooner or later the curves start flattening out,
giving much less rejection than you might except from looking at the
initial rate of falloff. Why?

The answer is easiest to see in the case of the passive RLC circuit.
Near resonance, all three components are active in the response. But,
at very high frequencies the reactance of the capacitor is negligible,
and the circuit degenerates to a simple series-RL circuit dropping
at a 6-dB-per-octave absolute frequency rate.

Similarly, at very low frequencies the reactance of the inductor
becomes very small, and the circuit looks like a series-RC circuit,
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which also drops at a 6-dB-per-octave absolute frequency rate in the
opposite direction. Regardless of how high the Q is or how fast the
response drops off initially, the ultimate response falloff is only 6 dB
per octave.

We can easily generate a family of curves or a listing by using the
math of Fig. 5-4. Fig. 5-6 is a plot of the Q versus the 1-, 3-, 10-, 20-,
30-, and 40-dB bandwidths, the upper-frequency cutoff points, and
the lower-frequency cutoff points. This plot contains all that is
needed to completely specify a single-pole bandpass filter to nomi-
nal accuracy. Fig. 5-7 gives some examples of how to use this re-
sponse curve.
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Fig. 5-6. Complete response characteristics of a single-pole bandpass filter.

TWO-POLE, FOURTH-ORDER BANDPASS RESPONSE

Single-pole filters usually do not offer enough stopband attenuation
to be very useful, particularly at frequencies far into the stopband.
Their performance can be dramatically improved by adding a sec-
ond section, particularly if it is staggered slightly in frequency from
the first one.
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Single-pole bandpass filter design m

1. Sketch the response plot of @ Q = 60, single-pole bandpass filter centered at 1 kHz
without using any math.

The maximum response will be zero decibels at 1 kHz. From Fig. 5-6, the 3-dB band-
width is read as a normalized .0165. Multiply this by 1000 to get the bandwidth in
hertz, or 16.5 Hz to the —3-dB points. The upper cutoff frequency will be 1.0085
times the center frequency, or 1.0085 Hz; the lower cutoff frequency will be .9915
fimes the center frequency, or 991.5 Hz. We then read the —10-dB points as 975 Hz
and 1025 Hz. The —20-dB points are 918 Hz and 1089 Hz. The —30-dB points are
770 Hz and 1290 Hz and the —40-dB points are 480 Hz and 2100 Hz. The plot can
now be accurately sketched on semilog paper.

2. Sketch the response plot of a Q = 60, single-pole bandpass filter centered at 250 Hz.

We simply use the results of example No. 1 and move everything to the new fre-
quency by multiplying all the answers by 250/1000, the frequency-scaling factor.
Results are as follows:

Center frequenty . ...........oiiiuunnunnenenaneeanannnn 250

Bandwidth ... ... ... i e 4.125 Hz

3 dB e e i, 247.8 & 251.9 Hz
—0 dB L e e e 243.7 & 256.25 Hz
=20 dB ... e et 229.5 & 272.25 Hz
=30 dB . e et 192.5 & 3225 Hz
—A40 dB ... e 120 & 525 Hz.

3. What is the maximum —3-dB bandwidth of a 2-kHz single-pole bandpass filter if it
is to give at least 30 dB of rejection to @ 1500-Hz interfering signal?

The 1500 Hz is 1500/2000 times the center frequency, or an f, of 0.75. From Fig. 5-6

at 075 f; and 30-dB loss, we read a Q of 56, and a corresponding normalized
bandwidth of .0175. When the normalized —3-dB bandwidth of .0175 is multiplied
by the 2000-Hz center frequency, a final bandwidth of 35 Hz results.

Note that this example simply calls for 30 dB of attenuation te an interfering sig-
nal. This in NO WAY guarantees that all interfering signals will be 30 dB below
the desirable ones; all it means is that any interfering signal comes out of the filter
30 dB lower than it went in. For instance, if your interference starts out 40 dB
stronger than the signal you want, the filter will provide the 30-dB rejection you
asked it to, only you will still end up with a —10-dB signal-to-ncise ratioc. When
you establish how much rejection is to be provided, the relative signal levels and
dynamic ranges must be taken into account.

Fig. 5-7.
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For a symmetrical response, make the Qs of both poles identical.
The ratio of the pole Q to the staggering will set the shape of both
the passband and the stopband. Qutside of this new staggering fac-
tor, the math and the design are just about the same as for the single-
pole filter.
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Fig. 5-8. Frequency response of a two-staggered-pole, @ = 10 filter (see text and
Fig. 5-12).

In Fig. 53-8, we have plotted several Q = 10 pole pairs for different
amounts of staggering, while Fig. 5-9 shows the related mathematics.
The staggering factor is called “a.” Usually, “a” is a number slightly
more than unity. It multiplies the center frequency of the upper-pole

location and divides the center frequency of the lower-pole location.
THE MATH BEHIND Two-pole bandpass response.

From Fig. 5-4(G), the single-pole filter response is

Lot _ 99 |0910|:.l + Q’(f2 f_ ])’]V’

(fe=1 (A)

Cascading two of these will give us their product, or

et = 20 logo| (1 + Q’{P - ]}’ )‘h(l + Q’{P 3 ]})%] (8)

This expression directly handles the maximum-peakedness case. For

pole pairs symmetrically different from fc = 1, a term “a” is introduced
that is multiplied by the center frequency of one pole and divided by
the other. The expression becomes

Fig. 5-9.
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eL'u' =20 logw[(] + Q:{f’q:a— 'I}l )‘/:

(el

amplitude response, two poles staggered by a, fc =1

The problem now consists of finding a, Q, and f values for useful filter
shapes. Since there is no sane way of solving (C) for a, Q, or f, trial-
and-error substitution is the best and easiest way, easily done on a
hand calculator, programmable calculator, or BASIC computer program.

if Q =10 is picked for analysis, the “a” values for maximum peak-
edness, maximum flatness, and 1-, 2-, and 3-dB dips are 1.000, 1.057,
1.085, 1.104, and 1.129, respectively. Once Q and a values are found,
the Q = 10 curves can be plotted.

Insertion loss is given by solving at fc = 1 and is

e—‘_"":20|ogno|:1+0’(°’:])’:|+K ()

insertion loss, two-pole staggered filter

K is 0 for maximum peakedness and maximally flat responses. It is +1
dB for a 1-dB dip, +2 dB for a 2-dB dip and +3 dB for a 3-dB dip.
You always measure the insertion loss to the peak value, even when it
does not occur at fc = 1. For instance, insertion loss of a 2-dB dip filter
is its loss calculated at fc =1 or —13.2 dB plus its peak valve (+2dB)
or —11.2 dB.

For different bandwidths, new pairs of Q and a have to be calculated.
All these curves will have identical insertion loss at fc = 1 for a given
selected shape. Letting f =1 in (C) and requiring a constant insertion
loss tells us that

] 2
1+ Q? ( ) has to be a constant.

a? —

which meansthat Z = Q ( ]) must be constant for a given response

shape. To find a new a, Q pair, let

a? —1

Z=Q

or

Fig. 5-9—continued.
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a? — é a — 1 = 0. Once again, this is a

quadratic and solving for the larger value of a gives us

-/
2

a for a given Q and given shape.

®

Once all the a, Q pairs are found, response can be plotted for various
bandwidths. If we find the —3-, —10-, —20-, —30-, —40-dB points for
the Q = 10 pairs, we can predict values for other Qs by letting QAf
= constant, and solving for new fs corresponding to a new Q value.

Values of extremely low Q (less than Q@ = 3) have to be separately
calculated. Insertion losses for ultra-low Q are also higher than (D). Qs
less than 2 are not normally useful as filters.

Fig. 5-9—continved.

As “a” increases, the passband shape first gets much flatter; then it
picks up a progressively deeper ripple trough, at the same time giv-
ing a sharper initial falloff outside the passband. Larger values of “a”
break the response into a two-humped one that usually is not useful.

As “a” gets bigger, an insertion loss appears, which turns out to be
constant for any particular response shape, regardless of the pole Q
and the bandwidth. This loss is independent of frequency and easily
made up elsewhere in the circuit. Many active bandpass circuits pro-
vide a lot of gain which is usually more than enough to offset this in-
sertion loss and then some, particularly with higher Qs and narrower
bandwidths.

Fig. 5-10 shows the insertion losses for the various shape options.
These range from zero dB for the maximum-peakedness option up
through 17 dB for the —3-dB-trough shape. If we subtract these
fixed insertion losses from the curves of Fig. 5-8, the new plot of Fig.
5-11 results. This makes the benefits of passband dips more obvious.
Note that the insertion loss is always defined with reference to the
peak of the response curve and the bandwidth is defined with refer-
ence to 3 dB below the peak on the way out of the passband.
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Maximum peakedness ................ ... .. 00...n. 0 dB

Maximum flatness ............cvuiinninnnnnnnnn, 7.0 dB
TdB dip ..o e 11.2 dB
2dB dip ... e e 14.0 dB
3dBdip ... e 17.0 dB

Loss is measured from the peak of the response. Center frequency
attenuation of 1-, 2-, and 3-dB dip filters will exceed their respective
losses by 1, 2, and 3 dB.

Fig. 5-10. Insertion losses of two-pole bandpass filters (Q = 3).

«

The Q, the staggering, the “a” value, and the bandwidth no longer
have a simple relationship as was the case for a single-pole filter. A
specific Q value must be paired with a specific “a” value for a given
response shape. This is plotted in Fig. 5-12.

Bandwidth-versus-Q plots appear in Figs. 5-13 through 5-17 for
the five shape options. Note that the selection of a shape option and
a Q value uniquely defines the needed “a” value, shown in Fig. 5-12.
An example showing how to use the two-pole curves appears in Fig.
5-18.

The maximum-peakedness curve is seldom used because of the
steepness of its passband and its inefficiency. The best overall choice
is usually the flattest-amplitude curve, except where “every inch” of
initial stopband rejection is needed. Also, the flattest-amplitude re-
sponse gives better transient and overshoot performance, takes
lower-Q poles of looser tolerance, and has less insertion loss.

FREQUENCY
2 3 4 5.6 8 10 20 3 4 s
0
MAX PEAKEDNESS
l . -10
|- MAX FLATNESS a- 1,057
| 1
1dB DIP a=1.08 3 s
— 112
\ 2B DIP 2= 1,104 “
A \ AN\ 3¢8 bIP 2~ 112 g
ae
TN > E
\
©

Fig. 5-11. Q = 10, 2-pole response redrawn from Fig. 5-8 with insertion losses removed.
Note the steeper falloff of curves with dips in them. Accurate values can be read from
Figs. 5-13 through 5-17.
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Fig. 5-12, Values of “Q-a” pairs for a given-response-shape, 2-pole bandpass filter.
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Fig. 5-14. Complete response characteristics of a two-pole, maximally flat bandpass filter.
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107



UPPER CUTOFF FREQUENCY 1,

€8s g S 2 o w @ o o S
—_ e - Pt —_ — i —_ o -~ | T.l l~
H‘H“lllv y ll l'l'l l[vlr lxl|[|l|“1”= “,‘,-",éaoo
g&'—g g 5‘__8 8—12H 8 8 9‘ 8[-0—4-":..200
3 ] t
S \ = \\ LOWER CUTOFF rasoumcv f, +H
\
N N LI 100
fe =10
\ T
\\ N ~,01~~— INSERTION LOSS = 14.0dB
% Q
\\ N %
%
N ?00, &\
BN 20
\\0\ . /00@ N N
N, N NN
Na\e NN
N N A, 10
NN NG
AN
N N N
AR N
N A UAN
NN N
WA N
N N,
-0 .1 1.0 10
NORMALIZED BANDWIDTH Af
r | T 1
1 10 100 1000

PERCENTAGE BANDWIOTH Af x 100

Fig. 5-16. Complete response characteristics of a two-pole, 2-dB dip bandpass filter.
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Fig. 5-17. Complete response characteristics of a two-pole, 3-dB dip bandpass filter.
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Using the two-pole curves; an m

PROBLEM: An octave-wide two-pole filter is to cover 200 Hx ta 400 Hx with a 1-dB
dip in the passband.

(a) What will the rejection be te 50, 100, 800, and 1600 Hz?
(b) What are the Q values and pole frequencies for the twa poles?

SOLUTION: The filter has a bandwidth of 200 Hx and a center frequency of
V200 X 900 = 283 Hz. The bandwidth is 200/283 = .706 or 70.6%.

(a) 100 Hzx will be at a frequency of 100/283 or .3533 times the center
frequency. From Fig. 5-15 we see that a bandwidth af .706 ta the
3-dB points corresponds to a Q of 3.2. The attenuation of a Q = 3.2
pole at .3533 times the center frequency is araund 25 dB.

50 Hz will be at a frequency aof 50/283 or .0176 times the center.
Attenuatian here far a Q of 3.2 will be abaut 40 dB. Similarly, 800 Hz
will be at a frequency of 800/283 or 2.82 times the center frequency
and will also have an attenuation of 25 dB. Finally, 1600 Hx will be
1600/283 or 5.653 times the center frequency and will also be attenu-
ated 40 dB.

(b

-~

From part (a) we know that the Q of each pole is ta have a valve of
3.2. This Q must be associated with a unique “a” value ta get the
1-dB dip shape. Fram Fig. 5-12, we read “a‘ as 1.32.

The upper pole locatian will be at 283 X 1.32 or 374 Hz. The lower
pole location will be ot 283/1.32 = 214 Hz.

Insertion lass will be 11.2 dB. If each of our active poles has a gain
of “Q” (see Chapter 7), their cascaded gains will be 3.2 X 3.2 = 10.24,
ar 20.2 dB. Thus the net gain of the active circuit will be 9 dB, or
2.8 times the input voltage.

Fig. 5-18.

THREE-POLE, SIXTH-ORDER BANDPASS RESPONSE

The analysis of the three-pole filter is similar to that of the two-
pole filter. We limit our choice of shapes to one that has two poles
staggered from the center frequency by a factor “a,” just as in the
two-pole case, only “a” will have a slightly different value for a given
response.

Next, we add a new pole at the center frequency. We set the Q of
this new pole, which is not moved by “a,” to one-half the Q of the
two outer poles, so that its contribution to the bandwidth is essen-
tially twice that of the others.
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With the three-pole response, a maximum always occurs at the
center frequency. If “a” is unity, we have the maximum-peakedness
case. Fig. 5-19 shows the effects of spacing the two outer poles by
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Fig. 5-19. Three-pole response; outer poles, @ — 10; center pole, @ — 5. Note change
of frequency scale frem Fig. 5-11. These curves are much stesper for a given bandwidth.
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“a” for a Q = 10 value case. The center pole is held to a Q =5. As
with Fig. 5-11, the insertion loss has been removed from all the
curves so that their shapes can be better compared. The curves with
dips in them have a maximum value at the center frequency, a dip,
and then a second pair of maximum values above and below the dip
frequencies, giving three humps to the curves. If for the center pole
we pick some value of Q that is not one-half the value of the outer
ones (actually very slightly less than one-half for the dip cases, but
not worth bothering over), the outer peak amplitudes will be above
or below the middle one, which gives us a “camel” response shape of
limited usefulness.

The math behind the three-pole bandpass filter is shown in Fig.
5-20, and the fixed insertion losses we can expect appear as Fig. 5-21.
Values for very low Q (less than three) will be somewhat higher
than these figures. The relationship between (A) and “a,” which is
needed for certain shapes, is given in Fig. 5-22, while the complete
response characteristics for the various shapes are shown in Figs.
5-23 through 5-27. Finally, Fig. 5-28 shows how to use the curves in
an example.

COMPONENT TOLERANCES AND SENSITIVITIES

How accurate do the components and active circuits have to be
for a given response shape? As a general rule, the narrower the band-
width or the deeper the passband dips, the more accurate the com-

110



Three-pole bandpass response.

There are many possible Q and "“a” arrangements. Nearly optimum
results occur if a new pole of one-half the Q is added to the center

(fc = 1) of a two-pole response. Adding the new pole to the expression
of Fig. 5-9C gives us

ou f2a? — 1 Ya
et =20 logha| {1 +a( —‘;;,—)}

(@ T | w

three-pole response, two poles are Q-shifted by ““a,” one
pole of one-half Q stationary at f¢ =1

Once again, trial and error is needed to find optimum “Q-a” pairs. For
Q =10, max peakedness “a” = 1.00; max flatness “a” = 1.14; 1-dB dips,
a=1.215; 2-dB dips, “a” = 1.275; and 3-dB dips, “a” = 1.34; with a
center-pole Q = 5.

Since one peak value occurs at fc = 1, the insertion loss remains as

LIS, log,.[l + Q’(E’a;'—)’] (8)

three-pole insertion loss

Other “Q-a” pairs are predicted as in Fig. 5-12. Low-Q (less than 3)
“a” valves have to be separately calculated. Insertion losses for these
values are also higher than Fig. 5-21 values. Qs less than 3 are rarely
useful as 3-pole filters.

Fig. 5-20.
Maximum peakedness ............... ... . ... ..., 0 dB
Maximum flatness . ............. it 18.0 dB
T-dBdips .o oii e i 242 dB
2edB AiPS <t e 28.0 dB
BedB AiPS - oot 31.2 dB

Fig. 5-21. Insertion losses of three-pole bandpass filters (@ = 3).
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ponent choices have to be. Except for very wide bandwidth filters,
some means of adjusting or tuning the center frequency should be
provided. For very narrow filters, a means of adjusting Q is handy,
as well, although the frequency adjustment is often far more impor-
tant.

Calculating real sensitivities is a painful process; you tend to lose
insight into what is really happening when you get into the math
details. Instead of this route, you can directly estimate the sensitivi-
ties by using Figs. 5-6, 5-12, and 5-22, as shown in the example of
Fig. 5-29.

Generally, you estimate how much f, Q, or “a” can be shifted be-
fore the shape of the final response curve is altered enough that you
do not want it or cannot use it. This gives you an upper bound on the
allowable component and circuit variations.

USING THIS CHAPTER

The curves of this chapter tell you exactly what the response shape
of a given type of bandpass filter will be for all frequencies, both
near and far from the passband. The same curves do the essential
conversion from a filter need to a set of values that can be cranked
into the circuitry of Chapter 7. Finally, these curves tell you fairly
accurately just how precise your need is and what range of adjust-
ment you should include on your filter.

The following is a set of rules for use of this chapter:

1. Specify what you want to pass and what you want to block in
terms of bandwidths, center frequencies, and rejection frequen-
cies. Normalize this to a unity center frequency.

2. If the bandwidth is over 80 to 100%, use cascaded high-pass and
low-pass sections. If it is lower, use the methods of this chapter.

3. From the curves, select the simplest, most heavily damped re-
sponse characteristic that does the job. If three poles do not
seem to do the job, chances are you have overspecified require-
ments. (For cases where you must have higher performance,
consider a higher order, the elliptical filters of Chapter 9, or
alternatives such as digital filters, phase-locked loops, quartz
resonators, sideband techniques, etc.)

4. From your choice of shape, specify the Q, “a,” and frequency
values needed and convert them to actual frequencies in order
EC]’ spell out the real-world parameters you will need for your

ter.

5. Estimate the component tolerances and sensitivity using the
guidelines of Fig. 5-29.

6. Using the Q, f, “a,” and insertion-loss values, go to Chapter 7
and build the filter.
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Fig. 5-22. Values of “Q-a* pairs for a given-response-shape, 3-pole bandpass filter.
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Fig. 5-24. Three-pole, maximally flat bandpass filter response.
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Fig. 5-26. Complete response characteristics of a three-pole, 2-dB dips bandpass filter.
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Fig. 5-27. Complete response characteristics of a three-pole, 3-dB dips bandpass filter.
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Using the three-pole curves; an m

PROBLEM: A bandpass filter to be used in some brain-wave research is to have a
good transient resp , a passband from 7.0 to 8.0 Hz, and at least 40 dB
of rejection to a freq y of 5 Hz. Specify the filter.

SOLUTION: The center frequency is \/7 X 8 = 7.48 Hz. The bandwidth is 1/7.48 =
.133 or 13.3%. The 5-Hz reject frequency is 5/7.48 = .67 when normal-
ized to the center frequency.

We first try a single-pole filter, Fig. 5.7. For a 13.3% bandwidth, the
rejection at .67 is only 17 dB or 30, much too little. We then try the two-
pole filters of Figs. 5-14 through 5-18. Even with the 3-dB dip, the attenu-
ation at .67 frequency is only 38 dB. We might be tempted to cheat a bit
and use the simpler circvit, except for the fact that we also need good
transient perfor , and this is the most poorly damped of all the two-
pole filters. So, we try the three-pole curves.

Fig. 5-24, a maximum-peakedness filter, cannot do the job, so we try the
maximally flat curve of Fig. 5-25, which easily gives us well over the needed
40 dB. The Q valve of 22 is used directly for the outer poles and a Q of
11 is used at the center pole. From Fig. 5-23, the corresponding “a” valuve
is 1.06. This is multiplied by one pole and divided by a second and ignored
by the third. The final pole frequencies and Qs would be

Lower: Q — 22

f = 7.48/1.06 =7.05 Hz
Center: Q = 11

f —=7.48 Hz
Upper: Q = 22

f =748 X 1.06—=792Hz

The tolerances couvld be estimated as in the next example. While any of
the three-pole curves with deeper passband dips would also work and even
give us more attenuation, a price in tolerance and ringing would have to
be paid. The maximally fiat filter is usvally the best overall chaice. if the
n = 3, 3-dB dip filter or less cannot do a defined filter job, then the specs
are probably too tight ta be done reasonably with any active filter technique.

Fig. 5-28.
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Frequency and Q tolerance and sensitivity; an

PROBLEM:

SOLUTION:

Fig. 5-29.

A certain two-pole, 1-dB dip, bandpass filter needs pole Q values of 10 and
“a" valves of 1.09. How accurate do we have to be in the final circuit?

We estimate accuracy by setting up some limit of degradation of response
that is acceptable. With 1-dB dip filter, letting it become a 2-dB dip one
sets one possible response limit. We can directly estimate frequency accu-

racy by shifting the “a” value on Fig. 5-12, and we can estimate the Q
accuracy by shifting Q to these limits.

Frequency: The nominal “a value of 1.09 increases te 1.11 for a 2-dB dip
at Q = 10. This is a change of (1.11 — 1.09)/1.09 — .0183, or 1.83%.
Thus a frequency tolerance somewhat tighter than 2% is needed.

Q Accuracy: The nominal “Q” valve of 10 increases to 12 for a 2-dB dip
at “a’ = 1.09. This is a change of (12 — 10)/10 == .2, or 20%. Q may
change 20% to reach this limit.

Generally, the Q tolerance is less critical than the frequency tolerance.
Tighter restrictions are associated with higher Qs, narrower bandwidths,
deeper dips, and higher order responses.
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CHAPTER 6

Low-Pass Filter Circuits

Chapter 4 showed how to take a need for a low-pass filter and
convert this need into a specification for a filter of a certain order
and shape option. This information was then converted by the tables
of Chapter 4 into listings for a group of cascaded first- and second-
order sections. The frequency of the first-order sections and the fre-
quency and damping values of the second-order sections were com-
bined to get the desired overall shape.

In this chapter, we will consider how to actually build active first-
and second-order circuits. We will learn how to cascade them prop-
erly to get what we are after. For those who are interested in the
“why” of these circuits, we will give a detailed analysis of what the
circuits do and what options they can give you. As usual, we will
avoid any advanced math.

Finally, we will present a catalog of instant design, math-free,
“ripoft,” low-pass-filter, final circuits that are ready for instant use,
and we will give a few examples.

TYPES OF LOW-PASS FILTERS

There are two basic types of low-pass filters. One is the “true” low-
pass filter; the other is the “ac-coupled” low-pass filter. As Fig. 6-1
shows us, there are very specific restrictions that influence your
choice of which one to use.

The response of a true low-pass filter extends down to dc, which
means that any input voltage levels, bias shifts, etc., are accepted and
passed on to the output of the filter. If the input voltages are too
large, they will restrict the dynamic range of the filter or drive it into
clipping, limiting, or saturation. One advantage of true low-pass



1. The response of a true low-pass filter extends down in frequency
to dc. Any voltages, bias levels, drifts, offsets, etc. at the input get
passed on to the output. Such dc “signals” can saturate the filter
or otherwise restrict its dynamic range.

2. If a low-pass filter has its input “ac coupled” to block dc input
voltages and offsets, some internal dc bias path to ground MUST
be provided for proper filter operation.

Fig. 6-1. Input restrictions on an active low-pass filter.

filtering is that there are no transient effects caused by coupling
capacitors when inputs are suddenly shifted or changed. Further-
more, the input signals are continually referenced to a specific base
line or voltage level.

In an ac-coupled low-pass filter, we simply put a blocking capaci-
tor on the input to pass the signal but block any bias levels or dc off-
sets on the input. Actually, what we have done is converted the filter
into a bandpass filter whose lower cutoff frequency is sloppily deter-
mined by the time constant of the input capacitor and whose upper
cutoff frequency is precisely set by the active low-pass filter.

For most audio filtering applications, ac coupling, with the lower
frequency being set at a few hertz, is best, even though thumping,
switch transients, and lack of dc restoration can be introduced. There
is, however, one major and serious restriction to all ac-coupled low-
pass filters:

On ALL active low-pass filters, some dc bias path to ground
MUST be provided at all times for proper biasing of the opera-
tional amplifiers used in the filter.

If we ac couple, this means we must provide this bias return path
internally to the filter. Fig. 6-2 shows how we can use an operational-
amplifier voltage follower both to ac couple the input and to provide
a ground reference dc bias return for the active filter stages that fol-
low. Gain or loss can also be added to this stage to adjust system
levels, if this is needed.

FIRST-ORDER LOW-PASS CIRCUITS

There is only one basic first-order, low-pass, active section, as
shown in Fig. 6-3. It consists simply of a passive RC low-pass filter
with an op-amp voltage follower on the output. The voltage follower
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This resistor should
match the other one.
Adjusting it adjusts

op-amp offset.
This capacitor /
provides ac coupling;
blocks input bias gyt

/ - OUTPUT TO ACTIVE
INPuTO—{ —D— © LOW-PASS FILTER
1uF f---0R--

This resistor provides
dc return poth to
Diodes protect Yy x 10K —— ground, needed with
gainst fransients; 4 ' active filters for bias
ordinary ones for k"‘OR === return
small signals; zeners o e
for large signals. —3 dB frequency = 1.6 Hz

Fig. 6-2. One method of ac coupling a low-pass filter.

isolates any output loads and prevents them from loading the capaci-
tor. Normally, the gain is precisely unity, but gain can be added by
providing a second resistor from the inverting input to ground. As
with all active low-pass filters, the input must be provided with a
low-impedance, dc bias return path to ground.

We will show two normalized versions of many of the circuits we
will be using. One is convenient for analysis and is based on a
l-ohm and 1-radian-per-second reference. The second version is
more convenient for actual use and is centered on a 10K impedance
level and a 1-kHz cutoff frequency. To shift the frequency from 1
kHz, just read a new capacitor value from Fig. 6-21 or else just
change the capacitor inversely with frequency. Doubling the capaci-
tance halves the frequency, and so on.

The feedback resistor from output to inverting input is not critical
in value, and in simple applications may be replaced with a short.

10K

et ——0¢8,yt eint b———08 out
10K
GAIN =1 GAIN =]
I 1 I 016 uF
t must return to-ground via low-impedance d¢ path. t must return to_ground via low-impedance dc path.
(A) Normalized to 1 ohm and (B) Normahized to 10K and 1-kHz
1 radian/sec. cutoff frequency.

Fig. 6-3. First-order low-pass active section.
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Its optimum value should match the resistance on the noninverting
input to minimize op-amp offset. In critical applications, you can
adjust this resistor to minimize the offset.

For very low frequencies, the impedance level of this circuit can
be raised to 100K, which multiplies the resistors by ten and divides
the capacitors by ten. Capacitors will be much smaller, but op-amp
offset will be more of a problem.

The cutoff frequency of the first-order low-pass circuit can be
tuned by switching the capacitor or by varying the resistor over a
reasonable range. For instance, a 10:1 resistance variation will give
a 10:1 cutoff-frequency variation, with the higher frequency associ-
ated with the lower resistance value.

Theoretically, first- and second-order sections can be cascaded in
any order, but to prevent very large out-of-band signals from ringing
or clipping, it always pays to put the first-order section first in any
cascading, and second-order sections should follow with the highest-
damped (large d values) sections towards the input and the lowest-
damped (smallest d values) sections towards the output. In this way,
large unwanted signals are cut down considerably before they get to
a stage where they could ring, clip, or introduce other distortion.

SECOND-ORDER LOW-PASS CIRCUITS

There are many possible second-order active low-pass circuits,
even if we eliminate the ones that are difficult or impossible to tune,
that have too high a component sensitivity or output impedance, that
interact, or that are hard to design or otherwise impractical. My
choice in this text is to use four basic second-order active sections
with various available features. Two of these are called Sallen-Key or
VCVS (voltage-controlled voltage source) filters; two are called
state-variable circuits. Let’s take a closer look.

UNITY-GAIN SALLEN-KEY CIRCUITS

This is the simplest second-order active filter you can build; we
used it in Fig. 1-2D to show what an active filter had to offer. Second-
order Sallen-Key circuits in general consist of two cascaded RC sec-
tions driving a high-input-impedance noninverting amplifier. Feed-
back from the output to one of the resistors or capacitors bolsters
what would normally be a drooping, highly damped, cascaded RC
response. This positive feedback provides enough extra gain near the
cutoff frequency to give us any value of damping we might like. The
op amp serves to route energy from the supply into the proper point
of the circuit to provide a response with a mathematical equivalent
dentical to that of a single inductor-capacitor section—minus, of
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Sallen-Key low-pass second-order sections.

Sallen-key second-order low-pass filters can usually be redrawn into a
passive network with an active source that looks like this:

R1 v R2
ANA- ’ A ' oe,-1
e e
o i3
°m® 112 c2
Kez= K
- em ot s

Since this network has to behave identically for any reasonable voltage
at any point, it is convenient to let e, =1 volt and e,,,= Ke, =K.
Solve for iy, ia, and iy, then sum them:

_Tvolt _ 1T _ .|
s = I - 1 - jwC2
jwC2

v=1+4+R2i, =1+ jwC2R2

. _Cin—YVY
"TTR
iz = (K — v)jwC1
i] + iz = i;
e";u_ + (K — )jwC1 = jwC2

= jwRT1CT + v — (K — v)jwR1C1 _
ein = {jw)*R1CIR2C2 + (jw)[R1CT + C2R2 + (1 — K)R1C1] + 1
Letting S = jw and dividing by RIC1R2C2

= R]C]R2C2[S’ + W]ci + R;C]
+(1 - chz}s + 1/R1C1R2C2:’
et =K
Cour _ K/R1CTR2C2
Cin g2y I:R2]C] + R1]c1 +(a— K)R2C2]s + 1/RICIR2C2
Fig. 6-4.
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For a useful filter, we would like to have frequency, gain, and damp-
ing independently adjustable, which places very definite restrictions on
values of K and the ratios of the resistors and capacitors. If we can
get the expression into a form of

€out — K

€in S’ + dS + 1
we have a second-order low-pass section. For frequencies notf equal
to unity, we must make the expression look like

€out __ Kw?

ein S+ dwS + @? (A)

Otherwise any attempt at changing damping will change gain or
frequency, and vice versa. Getting things into this final form places
very specific restrictions on gain and component values. let us derive
two possible useful, noninteracting circuits:

(1) Unity gain, equal resistors: Let R =R2 and K =1. RIR2C1C2 =1

1
for w =1, so Cl =
1 1 1 2
[R2Cl taat - K)chz]s [Cl ]5 [c1] S
. 2 2 _d
.d= a and C1 = 3 and C2 = 2

Further, for R1 =R2 =1 we have expression (A) above, guaran-
teeing noninteracting adjustments. The circuit looks like this:

The amplifier can be an emitter follower or an op-amp voltage fol-
lower

(2) All components identical:
let RI=R2=C1=C2. For w=1, R1=R2=C1=C2=1
l: 1 1 R2C2

seitme —K)—-]S— [1+1+1—K]S
=[3—K]S

3—K=d so K=3—-d

Fig. 6-4—continued.
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Note that this is the only value of K that will let the circuit behave
properly. Note further that we are once again in the form of ex-
pression (A), giving us no interaction. The circuit looks like this:

K =3-d

€in P——0¢€qut

.[1 II
A circuit to provide a high input impedance and a gain of 3 —d
looks like this:

t must return to ground via low-impedance dc path.
The op amp continues to force the + and — inputs to zero. The
1 1
1+2—-d 3-d

fraction of the output fed back is

so the gainis 3 — d.

Fig. 6-4—continved.

course, the loading restrictions, hum problems, and cost of the
inductor.

The math behind the Sallen-Key sections appears in Fig. 6-4.
Using this circuit, there are an incredible variety of tradeoffs be-
tween resistance and capacitance ratios, circuit gain, available damp-
ing values, and so forth. There are very definite restrictions on what
circuit values can go with each other in a Sallen-Key circuit for a
certain response. Two of the most useful of the workable Sallen-Key
circuits are the unity-gain Sallen-Key «nd the equal-component-
value Sallen-Key sections.

Both of these circuits have fixed gains and will operate as expected
ONLY at the gain specifically designed into the section. These gains
are rather handy, obviously being unity in the unity-gain version and
a precisely specified value around 2:1 voltage or +6 dB per second-
order section in the equal-component-value case. If we need other
gain values, they are easiest to obtain by external adjustment of sys-
tem levels. Or, if you must, you can attack the math of Fig. 6-4 at
your own risk for custom gain values.

The unity-gain Sallen-Key circuits appear in Fig. 6-5. For extreme
economy, this circuit can be built with nothing but an emitter fol-
lower (Fig. 6-5A), but there are lots of advantages to using an op
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OUTPUT

2
d 2
GAIN=1

-V
t must return to ground via iow-impedance dc path,
(A) Discrete version, normalized to 1 ohm and 1 radian/sec.

p—OOUTP!
et UTPUT

1 1 GAIN-1

' 1

t must return to ground via low-impedance dc path,

z
d

rja

(B) Op-amp circuit, normalized to 1 ohm and 1 radian/sec.
20K

——OOUTPUT
10K 10K GAIN - 1

2 g
T.mexd I.mexz

t must return to ground via low-impedance dc path.

Cint

{C) Op-amp circuit, normalized to 10K and 1-kHz cutoff frequency.

Fig. 6-5. Simplest form of unity-gain, Sallen-Key, second-order, low-pass, active section.

amp instead. These advantages include a higher ratio of input im-
pedance to output impedance, the absence of a 0.6-volt temperature-
dependent offset between input and output, less supply-voltage-to-
signal interaction, and, finally, a gain of precisely unity. Unity gain
can be important in sections with low damping values. The gain of
an emitter follower is always slightly less than unity.

The frequency of this circuit is set by the product of the resistors
and capacitors, while the damping is controlled by the ratio of the
capacitors. The resistors MUST always be identical in value, and the
capacitors MUST always be arranged so that the left capacitor is 4/ d?
times as large as the right one. Fig. 6-6 shows the tuning details.
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Change
smaothly by varying these
two resistors. Keep both
resistors identical in value at
all times. A 10:1 resistance
change provides a 10:1
frequency change, with the

This resistar is not critical

and may be replaced with a
short in some circuits.
Ideally, the resistance on the

— and + inputs should be
lower resistance values

ini ffset.
providing higher frequencies. equal, for minimum offse

/

€int O€out
1 1
2 g of this circuit is
d I 2 fixed at +1 and shauld not
\/ \ be adjusted. Adjust signal
levels elsewhere in the system.
Change [FREQUENCY ] Adjust by

changing the ratio of these
two capacitors, keeping their
product constant. The right
capacitor should be d*/ 4
times the value of the left one.

in steps by switching these
capacitors. Keep the left
capacitor 4/d” times as
large as the right one at all
times. Doubling the

capacitors halves frequency (There is no reasonable way

to convert this circuit to
high-pass or bandpass with
simple switching.)

and vice versa.

1t must return to ground via low-impedance dc path,

Fig. 6-6. Adjusting or tuning the unity-gain, Sallen-Key, second-order low-pass section.

Frequency is changed smoothly by changing both resistors simulta-
neously by means of a dual pot or a ganged pair of trimmers. Fre-
quency is changed in steps by switching capacitors, always keeping
their ratio constant at 4/d2. A 10:1 change in capacitors provides a
decade step in frequency, with larger capacitor values providing
lower frequencies.

As with many of the other circuits, the feedback resistor from out-
put to inverting input is not critical and can often be replaced with a
short; for minimum offset its optimum value is identical to the dc
impedance seen from the noninverting input to ground. We must
also provide a dc return path to ground for the noninverting input
via the input circuitry.

This circuit is very handy and quite simple, but there are some
limitations that may make us look for something better. There is no
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way that simple switching can be used to convert this circuit to a
high-pass circuit of identical performance. The capacitor values are
not easy to calculate, and the spread of values gets out of hand for
low d values. (A d of 0.1 means a 400:1 capacitor spread.) Finally,
damping is hard to trim for minor adjustment without interaction
with the frequency to which the section is tuned.

EQUAL-COMPONENT-VALUE SALLEN-KEY CIRCUITS

Few active-filter designers seem aware that there is a “magic”
combination of Sallen-Key circuit values that lets everything fall into
place for an extremely easy-to-use, easy-to-design, and easy-to-tune
filter. This magic combination occurs if we force both resistors to
identical values and both capacitors to identical values. This can
work with only one value of circuit gain. That magic value is 3 — d.
Very nicely, the gain of the amplifier controls only the damping, let-
ting us trim or adjust it at will. The resistors and capacitors are iden-
tical in respective values and thus are trivial design considerations.
As an extra bonus, it is simple to convert the circuit to an identical
high-pass one, just by switching the capacitors and resistors to their
opposite positions.

This circuit is called the equal-component-value Sallen-Key cir-
cuit. It appears in Fig. 6-7. Tuning details are given in Fig. 6-8.

[ 2-d |

e
1 1 GAIN = 3-
.{q Tl

t must return to ground via low-impedance dc path.

(A) Normalized to 1 ohm and 1 radian/sec.

—O¢ out
GAIN = 3-d

‘|>.016uF I.Olb uF

t-must return to ground via low-impedance d¢ path.
(B) Normalized to 10K and 1-kHz cutoff frequency.
Fig. 6-7. Equ.l-componom value, Sallen-Key, second-order, low-pass filter has

d o,

P ly adj

2akl

damping and frequency.
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To adjust frequency, adjust both resistors, keeping their values
identical at all times. The higher resistance values go with the lower
frequencies. You can switch frequency in steps by changing capaci-
tors, always keeping both capacitor values identical. Capacitance
values can be read from Fig. 6-21, or they can be simply calculated
as an inverse frequency ratio.

Change by
vsing these two resistors to
Change [FREQUENCY set the amplifier gain at

(3 — d). This is done by
making the right resistor

2 — d times larger than the
left one. The absolute values
of these resistors are
noncritical. Ideally the
resistance seen on the +

and — inputs should be equal
for minimum offset.

smoothly by varying these
two resistors. Keep both
these resistors identical in
valve at all fimes. A 10:1
resistance change provides
a 10:1 frequency change,
with the lower resistance
valves providing higher
frequencies.

et

jA

Change | FREQUENCY | in of this circvit is

teps by switching these fixed at 3 — d or roughly 2:1
copacitrs, Keep both (+6 docibels). Adius
capacitors identical in value signal levels elsewhere in
at all times. Doubling the the system.
capacitors halves the

frequency ond vice versa.
(Cirevit becomes high-pass

t must return to ground via low-impedance dc path, by switching positions of
frequency-determining

resistors and copacitors.)

Fig. 6-8. Adjusting or tuning the equal-component-value, Sallen-Key, second-order,
low-pass section.

Damping is controlled and adjusted by changing the gain of the
amplifier. Note that if we ever attempted to set the gain to a value
greater than 3, we would have negative damping, or an oscillator.
This operating point is well away from normal operation, and the
gain is normally stably set by the ratio of two resistors. Nevertheless,
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if you are going to provide a variable damping control, make sure
its highest gain value is something less than 3.

The ratio of the resistors on the inverting input acts as a voltage
divider to set the stage gain and damping. If you are running an op
amp very near its upper frequency limit (see Fig. 6-22), damping
values slightly lower than normal might be used to compensate for
amplifier-gain falloff.

The absolute value of the gain-determining resistors is not particu-
larly critical. Ideally, for minimum offset, their parallel combination
should equal the total resistance seen to ground at the noninverting
input. Thus, with two 10K frequency-determining resistors, the + or
noninverting input sees a 20K resistance path to ground. A typical
damping resistor calculated as 39K times (2 —d) will be roughly
39K; this in parallel with the 39K divider resistor is about 20K, bal-
ancing the impedances on both inputs. Incidentally, with a 39K re-
sistor from inverting input to ground, the critical d =0 feedback
resistor would be 78K; feedback resistors always must be lower than
this value for stable operation.

As usual, we have to provide an op-amp bias path through the in-
put. The circuit is switched to an identically performing high-pass
one by using 4pdt (4-pole double-throw) switching to interchange
capacitors and resistors.

UNITY-GAIN STATE-VARIABLE CIRCUITS

The equal-component-value Sallen-Key low-pass filter is just about
the easiest-to-design and easiest-to-use single-op-amp filter you can
possibly obtain, particularly if you have to tune it over a frequency
range or have to trim the damping. If you want something still more
in the way of performance, you most likely will have to go to a
multiple-op-amp universal filter using three, or even four, operational
amplifiers.

Why bother? For the majority of fixed or manually tuned low-pass
applications, there is no reason to look for anything better, even if
extra op amps are cheap. However, there just may be a few times
when something better is needed. For instance:

If you need a filter that is easy to tune electronically or control
with voltage over a very wide frequency range.

If you need extremely low d values without worrying about
stability.

If you need a filter that is very easy to switch to high-pass or
bandpass.

If you must have variable gain inside the filter.

If you are involved with things like quadrature art (see Chapter
10), or electronic music where two quadrature outputs (90°-
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phase-shifted) are either handy or essential.

If you are working with fancy transfer functions, such as all-pass
or bandstop, that need simultaneous outputs.

If you are building a Cauer, or elliptic, filter that needs both a
low-pass and a high-pass output at the same time (see
Chapter 9).

If any of these advanced requirements are needed, then a univer-
sal filter module called the state-variable filter is the answer. The
state-variable filter uses three or four operational amplifiers. It is
shown mathematically in Fig. 6-9.

Despite its fancy name, the circuit is nothing but the analog of a
pendulum. Two op amps are connected as inverting integrators in
cascade. The output of the second op-amp integrator is unity-gain
inverted and sent around to the input of the first integrator. This
solves the differential equation for an undamped pendulum or a
simple sine-wave oscillator. Additional feedback from the first inte-
grator is also sent back to its own input (adding “rust” or “air resist-
ance” to the “pendulum” or its “hinge”) to provide a selected amount
of damping.

Finally, an input signal is also routed to the input of the summing
stage in front of the first integrator, giving us an electronic input or
driving force for the “pendulum.” The input-summing stage com-
bines oscillatory feedback, damping, and input signals. With the
proper design of this summing block, you can independently adjust
the circuit gain, frequency, and damping.

THE MATH BEHIND State-variable, low-pass, second-order sec-
tions.

An op-amp integrator circuit looks like this:

Cx
14
min

—
!
Ry 2

———0¢€ out

€in h

The high gain of the op amp continuously drives the difference between
+ and — inputs to zero. The voltage on the — input will always be
extremely close to ground and may be treated as a virtual ground.

Fig. 6-9.
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€in . . . .
5— since point a is a virtual ground

[ J—
ll_

Rx
o e
> 1/iwC ~ ' T Ry
Cout __ 1 . .
o j@RC, or letting S = jw
ew'__ 1
©in - R,‘st

The state-variable circuit for analysis looks like this:

Cl C2
it {——
- R1 R2
elno—ed X Z —AAA- - AAA -

+ L + + $

HP 1 LP
- eout

d -OBP

enp = —Kein + €, + dep,

— __Chp
% = TSRICI

e =@l = — ebp = ehp
out — Clp SC2R2 ~ S?RICIR2C2

ehp = €out (S?R1CIR2C2)

and
€bp = —equt (SC2R2)

Combining these gives

€out (S?RIR2C1C2) = —Kejy — equs — d(SC2R2)eys

eor  —K/RICIR2C2

€in - 2 d 1
S +RICIS+RICIR2C2

e . K
We see that this is inherently in the form $ T a5 for w or f normal-

. . Ko? .
ized to unity and of form ST daS F o for any frequency, meaning

Fig. 6-9—continved.
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interaction-free adjustment of frequency and damping should be inher-
ent provided we keep R1IC1 =R2C2. One problem is to provide a sim-
ple summing circuit that allows individual adjustment of gain and damp-
ing. A suitable two-op-amp circuit looks like this:

€| p O——AAA—— AAA-
1 1

€ in O—APAC -
1 08y

K

AAA
VW
—

A

AN
d

1

If we attempt to use a single amplifier as a summer, gain-damping inter-
action will result. A one-amplifier, fixed-gain circuit looks like this:

" MWA————¢p
1

b e AA - ¢
E VIW—‘ 3ok 8P
d

Circuit values are for unity gain. At the + input the gain is 3; the lower
two resistors are a voltage divider with a gain of d/3; net gain is +d
from the ey, input. Resistor * may be similarly calculated for other fixed
gain valves,

Fig. 6-9—continved.

There are three possible outputs: a low-pass, a bandpass, and a
high-pass. All normally have identical gain. At critical damping, the
center frequency of the bandpass output equals the cutoff frequen-
cies of the high-pass and low-pass outputs. For a design of d =02,
the high-pass and low-pass outputs will behave as filters with a
damping value of 0.2; the bandpass section will have a Q of 5, and
the peak outputs of all three sections are nominally identical in
amplitude and frequency.
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We have several possible options for the summing block. A single
op amp can sum feedback, an input, and damping in almost any
ratio. But, since the damping does not get inverted and the other two
signals do, we cannot independently adjust the gain—at least not with
a single potentiometer—without also changing the damping.

A fixed, unity-gain, state-variable, low-pass filter is shown in Fig.
6-10, and its tuning details are shown in Fig. 6-11. It pays to keep

AAA

1
AAA di IL
JV " n
1 1 1
Cint O—AAMA—8— ~ VWA - VWA -
1 1 1 b——O LOW-PASS OUTPUT
+ ! + + GAIN = +1
i 1 1 OPTIONAL
e R ettt e T OHIGH-PASS OUTPUT
—AA A e -OBANDPASS OUTPUT
_f_ 1 ‘3d
= d
t must return to ground via low-impedance dc path.
(A) Normalized to 1 ohm and 1 radian/sec.
10K
1K 016 uF 016 pF
€ tO—AAA— VWA~ - LOW-PASS
10K 10K 10K . 0 “ourpur
GAIN = -1
10K* 10k%*

d

t must return to ground via low-impedance dc path.
* optional offset compensation, may be replaced with short in noncritical circuits,

[ 5k (3-';'),(5'(

(B) Normalized to 10K and 1-kHz cutoff frequency.

Fig. 6-10. Three-amplifier, state-variable filter offers low sensitivity, easy voitage-
controlled tuning, and easy conversion to bandpass or high-pass. Gain is unity.

the frequency-determining resistors identical in value and the fre-
quency-determining capacitors also identical in value. As with the
earlier circuits, varying both resistors together varies frequency in-
versely, as does step selection of capacitors. The lower frequencies
are associated with the larger RC products. The C values are read
from Fig. 6-21 or are calculated as simple frequency inverses. Damp-



Keep the ratio of
these 3 resistors
at 1:1:1 at all
times.

Change | FREQUENCY
smoothly by varying

these two resistors.
Keep both resistors
identical in value at all
times. A 10:1 resistance
change provides a

10:1 frequency change,
with the lower
resistance values
providing higher
frequencies.
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in steps by switching
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by using these two
resistors to set the
amplifier gain from
point “BP" to a value
of +d. This is done by
making the right
resistor (3 — d)/d
times the left one. The
absolute value of
these resistors is
noncritical. ideally,
the resistance seen
on the + and — inputs
should be equal for
minimum offset.

Resistors marked **

are not critical and
often may be replaced
with a short circuit.
Ideally the resistance
seen on + and —
inputs should be equal
for minimum offset.

b—-CO 8o 18
LOW-PASS

[GAIN] of this
circvit is fixed at + 1
and should not be
adjusted. Adjust signal
levels elsewhere in
the system.

(Circuit becomes
high-pass or bandpass
simply by selecting

HP or BP outputs)

t must return to ground via low-impedance dc path.
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Fig. 6-11. Adjusting or tuning the unity-gain, state-variable, second-order low-pass section.




ing is controlled with a single resistor adjustment, calculated as
(3 —d)/d times the resistor on the noninverting input of the sum-
ming block.

The input, feedback, and summing resistors should be kept at a
1:1:1 ratio for unity gain. As before, we must provide a dc return
path for the input through the source circuit. Absolute values of re-
sistors on the + or noninverting inputs once again are not critical and
can be used to minimize offset. The ratio of resistors on the nonin-
verting input of the summing op amp should set the overall gain
from the bandpass output back through the summer to the high-pass
output to a gain value of “d.”

Switching to bandpass or high-pass is trivial. Just select the appro-
priate output with a spdt (single-pole double-throw) or sp3t (single-
pole triple-throw) selector switch. You can easily recalculate the in-
put op-amp values for different gains. Remember that the gain on
the loop feedback must be —1, and the gain on the “rust” or damping
input should be +d. Chapter 2 gave an example of calculation of
mixed gains on the inverting and noninverting inputs of a summing
amplifier. See Fig. 2-17B.

VARIABLE-GAIN STATE-VARIABLE CIRCUITS

The simplest way to make gain and damping completely inde-
pendent is to invert the damping signal with a fourth operational
amplifier of minus d gain and then sum the input, feedback, and
damping signals independently on the inverting input, classic op-
amp style. As another benefit, the resistor value for “d” is simply 10K
times “d,” thus eliminating complex calculations. This variable-gain
circuit is shown in Fig. 6-12; tuning and adjustment details are
shown in Fig. 6-13. Outside of the gain and damping independence,
it is essentially identical to the three-amplifier circuit.

THE “RIPOFF” DEPARTMENT
Stock, Ready-to-Use, Low-pass Active Filters

The equal-component-value Sallen-Key filter is a good basic build-
ing block for many filter applications. Figs. 6-14 through 6-20 are a
collection of standard, ready-to-use low-pass filters of orders one
through six and with seven response options ranging from best-delay
through 3-dB dips. (See Chapter 9 for more details on the Cauer, or
elliptical, response-shape option.) All of the filters are shown having
a 1-kHz cutoff frequency; all of them use identical .016-microfarad
capacitors for all points in all stages. To change cutoff frequency, you
simply read a new capacitance value from Fig. 6-21 or calculate the
ratio of the new capacitor to the old one as the inverse of the fre-
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quency ratio. Should the final capacitance value fall between two
stock values, just raise or lower the impedance of the circuit to hit
the right value.

All resistance values needed have been rounded off to stock one-
percent values. The guidelines of actual accuracies needed appear in
Fig. 4-19, while each of the charts indicates a recommended working
tolerance for each circuit. Five-percent values are more than ade-
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t must return to ground via low-impeadance dc path.

(A) Normalized to 1 ohm and 1 radian/sec.
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AN “_ ’ " |
10K . 016 uF 016 WF
8in 1O—AMA - VWA - A -
ke b0 LOW- PASS
v + 1k + 10 + OuTPUT
K
GAIN = +K
2.4¢% 10K% 10x%*
! {10K) x d
Q10K

+
6. 8K¥

1 must return to ground via low-impedance dc path,
*optional offset compensation, may be repiaced with short in noncritical circuits.

(B) Normalized to 10K and 1-kMz cutoff frequency.

Fig. 6-12. Variable-gain, state-variable filter. Gain, freq Y, and damping are
) P A __'" .‘i Py W)
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Keep the ratio of these
three resistors at 1:1:1

at all fimes.
\

Change | FREQUENCY
smoothly by varying
these two resistors.
Keep both resistors
identical in value at all
times. A 10:1 resistance

Change | FREQUENCY

in switchi
e i e
frequency change, with both capacitors identical
the lower n.!iikma in value at all times.
v?luot providing the Doubling the capacitors
higher frequencies. halves the frequency

and vice versa.

~\

€in 1O—AAN
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[GAIN] of this
cirevit is adjusted with
this resistor. Gain is

1
']' " —08 out
+ LOW-PASS
1 * GAIN » +K
o8P

A oo by
changing the ratio of these
two resistors. Keep the left
resistor d times as large as

unity if this resistor
equoals the others on
the (—) input. Doubling
the resistor halves

the gain and vice versa.

Resistors marked * are not
critical and often may be

replaced with a short cirevit.

Ideally, the resistance seen
on + and — inputs should

be equal for minimum offser.

the right one at all times.
Absolute values of these
resistors are not critical.

(Circvit becomes high-pass or
bandpass by selecting HP
or BP output.)

t must return to ground via low-impedance dc path.

Fig. 6-13. Adjusting or tuning the variable-gain, state-variable, second-order

low-pass section.
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10K

et €ou
10K

016 uF
I All Capacitors . 016 uF
1 must return to ground via low-impedance dc path.

Gain Gain Component

Response RF1 eout/ €in Decibels Tolerance
Best Delay 10K 1 0 10%
Compromise 10K 1 0 10%
Flattest Amp 10K 1 0 10%
Slight Dips 10K 1 0 10%
1-Decibel Dip 10K 1 0 10%
2-Decibel Dip 10K 1 0 10%
3-Decibel Dip 10K i 0 10%

To change frequency, scale all capacitors svitably. Tripling the capacity cuts frequency
by one-third, and vice versa.

Fig. 6-14. First-order, low-pass circuits, —6 d8/octave rolloff, 1-kHz cutoff frequency.

quate for the majority of the circuits. Nevertheless, use the best ac-
curacy you possibly can.

The filters are arranged with the higher-damped sections toward
the input. The overall circuit gain is also given, both as an output/
input ratio and in decibels. To use one of these, first decide which
one you want, using Chapter 4 as a guide. Then draw its schematic,
substitute the resistance values, and scale the capacitors to your cut-
off frequency. That’s all there is to it.

First-, second-, and third-order circuits appear in Figs. 6-14
through 6-16. The second op amp can usually be eliminated from a
noncritical third-order filter by using the trick of Fig. 6-17. Here, the
input RC section is unloaded by reducing its impedance to one-tenth
of normal, so the following second-order section does not load it
excessively. This drops the input impedance to around 1000 ohms,
compared to the 10K or so nominal impedance of the second-order
section.

Fourth-, fifth, and sixth-order filters with rolloff responses of 24,
30, and 36 dB per octave appear in Figs. 6-18 through 6-20. Use of a
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RD1

. X

All Capacitors 016 pF
RF1

€int ——"O¢out

t must return to ground via low-impedance dc path,

Gain Gain Component

Response RF1 RD1 eout!€in Decibels Tolerance
Best Delay 7.87K 10.5K 1.3 23 10%
Compromise 8.87K 16.9K 1.4 3.0 10%
Flattest Amp 10.0K 22.6K 1.6 4.1 10%
Slight Dips 10.7K 30.9K 1.8 5.2 10%
1-Decibel Dip 11.5K 37.4K 2.0 6.0 10%
2-Decibel Dip 11.8K 43.2K 2.1 6.4 10%
3-Decibel Dip 11.8K 48.7K 2.2 6.8 5%

To change frequency, scale all capacitors svitably. Tripling the capacity cuts frequency
by one-third, and vice versa.

Fig. 6-15. Second-order, low-pass circuits, —12 dB/octave rolioff, 1-kHz cutoff frequency.

two-amplifier fifth-order filter similar to that of Fig. 6-17 is possible,
but some trimming will most likely be needed.

Capacitor values for different frequencies are calculated using
Fig. 6-21.

PITFALLS AND RESTRICTIONS

Fig. 6-22 shows the recommended upper-frequency limits for the
741 and LM318 operational amplifiers used in the four basic filter
types of this chapter. Whenever you are operating near the recom-
mended limit, damping values may have to be decreased slightly to
get the desired responses.

Remember that slew-rate limitations may place a much more
severe restriction on operating frequency when you are dealing with
high-amplitude, high-frequency signals. This was outlined in Chap-
ter 2.

A list of some of the other pitfalls and design problems you may
encounter appears in Fig. 6-23. The most common of these are fail-
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RD2
10K
et RF1 —o0e€,
. 016 uf . 016 uF
I T 016 puf I
t must return to ground via low-impedance dc path. All Capacitors . 016 uF
Gain Gain Component
Response RF1 RF2 RD2 eour/ein | Decibels Tolerance

Best Delay 7.50K 6.81K | 21.5K 1.6 4.1 10%
Compromise 8.68K 8.25K 31.6K 1.8 5.1 10%
Flattest Amp 10.0K 10.0K 39.2K 2.0 6.0 10%
Slight Dips 15.0K 10.5K 51.1K 2.3 7.3 10%
1-Decibel Dip 22.1K 11.0K 59.0K 2.5 8.0 5%
2-Decibel Dip | 30.9K 11.0K 63.4K 2.6 8.3 5%
3-Decibel Dip | 33.2K 11.0K 66.5K 2.7 8.6 2%
To change frequency, scale all capacitors suitably. Tripling the capacity cuts frequency
by one-third, and vice versa.

Fig. 6-16. Third-order, low-pass circuits, —18 dB/octave rolloff, 1-kHz cutoff frequency.

ing to provide an input bias dc return path and ignoring the very
specific capacitor and resistor ratios that are called for in the various
circuits.

SOME DESIGN RULES

We can summarize the design rules very simply:
If you can use the equal-component-value Sallen-Key circuit:

1. Referring to your original filter problem and using Chapter 4,
select a shape and order that will do the job.

2. Construct this circuit from Figs. 6-14 through 6-20 and substi-
tute the proper resistance values.

3. Scale the circuit to your cutoff frequency by using Fig. 6-21 or
by calculating capacitor ratios inversely as frequency.

4. Tune and adjust the circuit by using the guidelines in this chap-
ter and Chapter 9. For very low frequencies, consider a 10X
increase in impedance level to get by with smaller capacitors.

140



A V———— VWA M
10K 39. X 39. X

€in io—w—j>_‘ :(>—Oeout
10K 10K 10K

=016 uF . Ol6 W
.06 uF I

A

=

t must return to ground via low-impedance dc path,

(A) Typical third-order, low-pass with a single op amp.

Make this resistor

ONE TENTH | its

former value.

et O€ oyt

16 016 uF
/I T.ms uF I

Make this capacitor

TEN TIMES | its former INPUT IMPEDANCE | of
value. this circuit is 1/10th
5 that of circuit (A).
t must return to qround via low-impedance d¢ path.
(B) One-op-amp approximation to (A).

Fig. 6-17. Approximating a third-order, low-pass with a single op amp.

To build any low-pass active filter:

1. Referring to your original filter problem and using Chapter 4,
select a shape and order that will do the job, including a list of
the frequencies and damping values for each section to be
cascaded, along with an accuracy specification.

. Select a suitable second-order section from this chapter for each
section you need, normalized to 1 kHz. Shift the frequencies of
the cascaded sections as called for to realize the particular
shape. Remember that increasing the resistance or capacitance
decreases the frequency.

. Set the damping value of each cascaded section as called for.

. Scale the circuit to your cutoff frequency by using Fig. 6-21 or
by calculating capacitors inversely as frequency.

. Arrange the circuits starting with the highest-damped one first,
adding a first-order active section if needed.

. Tune and adjust the circuit, using the guidelines of this chap-
ter and Chapter 9. For very low frequencies, consider a 10X
increase in impedance level to get by with smaller capacitors.

Several low-pass filter design examples appear in Fig. 6-24.
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Fig. 6-21. Capacitance values for frequency scaling.
741 Ltm318
Unity-Gain 25 kHz 500 kHz
Sallen-Key
Equal-Component- 10 kHz 200 kHz
Value Sallen-Key
Unity-Gain
25 kH 500 kH
State-Variable g 00 kHz
Gain-of-Ten
2.5 kH 50 kH:
State-Variable z *

Fig. 6-22. Recommended upper cutoff frequency limits for the op amps of Chapter 3.
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1. Forgetting to provide a low-impedance dc input return path to
ground.

. Damping resistors missing or wrong value or too loose a tolerance.

2
3. R and C values not kept as specified ratios of each other.
4. Using an op amp beyond its frequency limits.

5

. Components too loose in tolerance or tracking poorly when ad-
justed (see Chapter 9).

6. Forgetting about input signal levels or nonzero bias levels or volt-
age offsets that saturate filter or limit dynamic range.

Fig. 6-23. Common pitfalls in low-pass, active-filter circuits.

Designing active low-pass filters—some m

A. Design a 250-hertz, third-order, 1-dB dip, low-pass, active filter.

Use the circuit of Fig. 6-16, placing a 22.1K resistor on the first-order stage, an
11.0K resistor for the second-order frequency resistors, and a 59.0K resistor to set
the second-stage damping. The capacitor values for a@ 250-Hz frequency will be
1000/250 of their 1-kHz valve or .062 uF, either as calculated or as read from
Fig. 6-21. The circuit looks like this:

22X

eint
2.

I.NZ

1 must return to ground via low-Impedance dc path.

Or, we can eliminate the first op amp by reducing the input resistor to 2.21K and
increasing the capacitor to 0.62 uF:

——O¢,,

T2l

Fig. 624, t must return to ground via low-impedance dc path.



Ten-percent P s are

ble for either circuit.

8. A filter for a biomedical experiment has to have a cutoff frequency of 10 Hz, a
tolerable transient and overshoot response, and must reject frequencies above 15 Hz

P

by a minimum of 30 dB. Design the filter.

Fifteen Hz is 1.5 times the 10-heriz cutoff frequency. From Fig. 4-8A, we see that a
1-, 2-, or 3-dB dips fifth-order filter will work, while from Fig. 4-9A, a sixth-order
slight-dips filter will also do the job. Looking at the damping values in Figs. 4-8
and 49, we conclude that we will probably get the best transient performance with
the sixth-order slight-dips filter. We then go to Fig. 6-20 and select the component
values. Since 10 Hz is 1/100 times 1 kHz, the capacitance values have to be 100
fimes the normal values, or 1.6 microfarads. This is a bit large, so, let's scale im-
pedance by a factor of 10, multiplying all resistors by 10 and dividing all capaci-

tors by ten. The final circuit looks like this:

mxl
=0.16 wI

Q16pF

—O%at

GAIN = +18, 608

t must return 1o ground vie low-impadancs dc path.

Two percent tolerance is recommended for this circuit. If we are interested only in
rejecting 15 Hz, the elliptical techniques of Chapter 9 may use simpler circuits.

Design the section.

A precision application with a low damping suggests a state-variable filter, and the

hi'h fl., ,J d a pr

op amp such as the LM318. We use the circuit
of Fig. 6-10. Capacitors are scaled to 1/45 their normal value to raise the fre-
quency to 45 kHz, leaving us with 355 pF. The damping resistor is calculated as

(3 — d)/d times 5K or 178K. The section looks like this:

AAA

. Part of a precision telephone-network active equalizer needs a second-order low-
pass section with a cutoff frequency of 45 kHz and a damping value of 0.082.

10K
AV {¢ it
10K 355 ¢ 355 0F
&jnto—AA— VWA - VWA -
10K 10K wolg 10K wols
10K 10K
SK 178K

t fnusl return to ground via low-impedance dc path.

Component tolerance would depend on the application; for such a low damping

value, 196 campanents may be needed.

Fig. 6-24—continued.
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D. Design a general-purpose, fourth-order, flattest-amplitude, variable lab filter, adjust-
able from 10 Hz to 10 kHz.

We will do this problem two ways since we will need the results in a later example.
The maximum-flatness filter is often the best choice when it has to be tuned, as all
the frequency-determining resistors are equal for all stages, making wide-range
tuning easy and still allowing identical stock capatcitors on each stage.

Using equal<omponent-valve Sallen-Key:

From Fig. 6-18, we let the frequency-determining resistors vary from 10K to 110K,
using a quad 100K potentiometer (See Chapter 9 for more details on this tech-
nique). Damping resistors are 5.90K and 48.7K. Capacitors are switched in value.
.016uF and 10K will be the upper end of the 10-kHz range, 0.16 uF for the 100-Hz
range, and 1.6 uF for the 10-Hz range. The circuit looks like this:

1= 5.90 .1 Y
1 oAy Ja I3 g o€
lOK',(‘i'wK lOK', 100K lOKl,/';WK lOK’l 100K GAIN = +8.3d8
—————— . -2 R J
[ [ - -
S R
- -
t must return to ground via low-Impedance dc path,
RANGE C

1-10Hz 1.600 uF
10-1004z | 0.160 uF
100- 1kHz 0.016 uF
1-10kHz | 1600 pF

Using state-variable sections:

We use Fig. 4-78. Damping values we need are 1.848 for the first section and 0.765
for the second. The equivalent (3 — d)/d times 5K resistance valves are 14.7K and
3.09K. The rest of the design is essentially the same, and the final circuit looks
like this:

10K
e . : ' \
\ \
& .3\. fione AW A
it 1t - 1t
1K
10-100K 10-100K 10- 300K 10-100K
S = = ,‘( = = g =
1™ * ,/ + H + 1 * H H +
: i i
il@l i‘“ im 13 10
® o0 $ = W0

1 must return b ground vie Kow-inpedence dc peth.

Five-percent component valves are recommended for either circuit. We will see in
Chapter 8 that either of these circuits readily converts to a high-pass one, although
the equal<omponent-value tircuit needs B-pole, double-throw switching, while the
state-variable filter only needs a simple double-pole, double-throw switch.

Fig. 6-24—continued.
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CHAPTER 7

Bandpass Filter Circuits

Chapter 5 showed us how to take the need for a bandpass response
and convert this need into the specifications for a cascaded group of
one, two, or three resonant poles of a certain center frequency, stag-
gering, and Q. In this chapter, we will discuss how to build the
actual circuits we need, starting with these specifications. After pick-
ing up the circuits and learning how to tune them, we will look at a
few examples. We will end with an often neglected topic, the tran-
sient decay characteristics of high-Q filters, that is becoming very
important for electronic-music percussion applications.

Bandpass circuits are normally associated with much lower damp-
ing and higher Q values than the usual low- or high-pass responses.
We saw that the low-pass filters took tighter and tighter tolerances
and more-stringent gain restrictions as damping was lowered, which
made the circuits progressively harder to build and tune as the
damping went down and the Q went up. This is also true of bandpass
circuits.

In fact, it has pretty much been proven that a high-performance,
high-Q bandpass active pole can NOT be built with a single opera-
tional amplifier. With a single op-amp circuit, you will ALWAYS get
into component-spread problems, sensitivity problems, or severe gain
restrictions as you try to raise the circuit Q beyond a certain point.

If we are only interested in low-Q applications in the Q =2 to
Q = 5 range, we have a choice of several circuits, some of them simi-
lar to the single op-amp low-pass versions of the last chapter. For Q
values of 50 to 500 or more, we MUST use three and four op-amp
circuits to get a stable, useful response. For intermediate Q values,
the multiple-op-amp circuits are strongly recommended, particu-
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larly if wide tuning is needed. Fig. 7-1 sums up these recommenda-
tions.

Fortunately, Q values in the 2 to 5 range are ideal for many audio
problems, including equalizers, tone modifiers, formant filters for
electronic music, psychedelic lighting systems, and so on (see Chap-
ter 10). On the other hand, asking too much Q or too high a fre-
quency from these ultrasimple circuits is asking for problems. Single
op-amp bandpass filters should only be used for low-Q applications
where a bunch of them are used together in multiple channels. The
3- and 4-op-amp circuits should be used for all other needs.

Our main stock in trade will be the multiple-feedback bandpass
filter, a single IC circuit and two state-variable bandpass filters, a
3-amplifier fixed-gain variation, and a 4-amplifier variable-gain ver-
sion. We will also take a brief look at some Sallen-Key single-ampli-
fier circuits and a biquad 3-amplifier filter. These latter versions are
occasionally used for special purposes.

MULTIPLE-FEEDBACK BANDPASS CIRCUIT

Fig. 7-2 shows two versions of this single-IC bandpass section. One
section builds a single resonant pole equivalent to a second-order
factor of the bandpass response we are after.

There are two feedback loops in the circuits. The 2Q resistor from
op-amp output to input sets the gain and the current through the
lower, frequency-determining capacitor. The upper capacitor pro-
vides feedback from the output to the middle of the circuit. The
math involved appears in Fig. 7-3.

1. Use the methods of this chapter only if the percentage bandwidth
is less than 80 to 100%. For wider bandwidths, use overlapping
high-pass and low-pass filters instead.

2. You can NOT build a stable, high-Q, easy-to-tune, single-IC band-
pass filter.

—Single-IC circuits for Qs in the 2 to 5 range.

—Multiple-IC circuits (state-variable or biquad) must be used for
Qs of 25 to 500.

—For intermediate Q values and where wide tuning is needed,
multiple-IC circuits are strongly urged.

Fig. 7-1. Guidelines for bandpass filter circuits.
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INPUT O—AAA- —4¢ =
1Q 1 . —0 OUTPUT
GAIN = -20?
(A) Normalized to 1 ohm and 1 radian/sec.
.
.016 F
10k 2Q)
INPUT —
i o olteur
GAIN = -2
10K{2Q)

(B) Normalized to 10K and 1-kHz cutoff frequency.
Fig. 7-2. Single-amplifier, multiple-feedback, bandpass circvit.

The single-amplifier, multiple-feedback.

bandpass filter.

Fig. 7-2 may be redrawn for analysis:

S It
WA ¢
I i3
®in c2 r, ®out Cout R2 liz
IVIRTUAL VIRTUAL

= GROUND 4 § ~ GROUND

Solving for currents and summing:

2 = &'v = —i,ch =—_i’ = —Cout
R2 iwC2  jwR2C2
€in — V _ €jpn €out

i|=

Rl ~ Rl jwRIR2C2

Fig. 7-3.
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is = Y Cont = (v — eon)jwCl = —emlel[l + —
y 43
i] + i, = i;
Oin Cout €

out
r Tiorirzcz T Re = °°“'""C'[' +ioR2c2

This rearranges to

Sout _ —jwR2C2
e;n 1+ joRIC2 + jwCl1(jwRIR2C2 + R1)

Letting S = jw and reworking

1

jwR2C2

wR2C2]

g 1
Cour _ “RiC
e gryst(l 1) 1
S +$R2(CI+C2)RIR2C‘IC2

, /1 — oy — —
w will equal m. let C1 =C2=1.R1 = 1/R2

For equal C values, at w =1

Let R2 = 2Q. R1 = 1/2Q

1
e R 2Q

2 — —
At resonance $2 = —1 and = P 2 2

R2 2Q

Gain of circuit is —2Q? and normalized form is

_“_ 00 ot

3~

Oin
GAIN= -20

Fig. 7-3—continued.
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Change
smoothly by varying these
two resistors. Always keep
the right resistor 4Q” times
as large as the left one.
Increasing resistance
decreases frequency .

Change :
steps by switching these
capacitors. Always keep
both capacitors identical in
valve. Increasing the

« capacitance 2:1 cuts
frequency of resonance in

half.

L——oourpur
GAIN = -2¢%
[GAIN] of this circuit is

fixed at —2Q* and cannot
be independently adjusted.

Change [Q] by varying

"‘0. ratio of 'b"‘ "'°' Op-amp gain at resonance
resistors, keeping their should be a minimum of
product constant. For o 20Q*
Q of 3, the right resistor
should be 36 times the This resistor is not crifical.
value of the left one. Its optimum value should be
Always hold the ratio at 4Q". 2Q for minimum offset. t may
be replaced with a short

circuit in many applications.
Fig. 7-4. Tuning the single-amplifier, multiple-feedback circuit.

This is a simple and well-behaved circuit at low to moderate Q.
The gain is —2Q?2, and the op amp has to have an open-loop gain of
at least 20Q2 at the resonance frequency. So as Q goes up, the useful
maximum resonance frequency drops dramatically. (See Fig. 7-15.)
The spread of resistor values also increases to the tune of 4Q?, thus
lowering the input resistance and raising the op-amp feedback
resistance.

The circuit is tuned by following Fig. 7-4. We can switch capaci-
tors, providing a 10:1 change in frequency with a 10:1 capacitor
change, but we have to keep both capacitors identical in value at all
times. We can vary the resistance as well, but we must keep the
right resistor 4Q? times the value of the left one at all times. The
limits to resistance tuning are set by the maximum value the op-amp
feedback resistor can be and the minimum value we are willing to
drive. The offset of the op amp will also change as we change the
feedback resistor.



We can change the Q and the bandwidth by changing the ratio of
the two tuning resistors, keeping their product constant. As we
change frequency, the Q and the percentage bandwidth stay con-
stant. Thus, for higher frequencies, the bandwidth automatically in-
creases to always give us the same percentage we selected.

Fig. 7-5 shows how we can add a resistor to the input. This will
lower the circuit gain and raise the input impedance at the same
time. For instance, with a 10:1 input attenuation, the input imped-
ance will be raised by almost 11 times, and the gain will be cut by a
factor of 10, from —2Q2 to —Q?/5. Note that this resistor does noth-
ing to the frequency limits on the op amp; we still need an open-loop
gain of 20Q? at the resonance frequency.

These two resistors GAIN » .9;
have a parallel equivalent
of 1/2Q. They attenvate
the input by 10:1 and
raise the input impedance

by about 10:1.

:(>\-—oom

Op amp stifl needs

open-loop gain of
20Q" ot resonance
(no change).

Fig. 7-5. Modified version of multiple-feedback circuit reduces gain, raises
input impedance.

This is a good, general-purpose, low-Q circuit. The upper Q limit
depends on the op amp, the frequency, and the type of component
spread you can drive. While Qs of 50 and above are possible, the cir-
cuit works best for Qs less than 10.

SALLEN-KEY BANDPASS CIRCUIT

We can build Sallen-Key bandpass circuits as well, but they have
very serious tuning and frequency restrictions. Fig. 7-6A shows the
basic one-amplifier circuit. It has the advantage of using very small
capacitors, making the circuit potentially useful for very low fre-
quency work. Circuit gain is —3Q, but the op amp must have a gain
of at least 90Q? at the center frequency, and there is a strong interac-
tion between frequency and Q. The gain restrictions are lifted some-
what by using two amplifiers, as shown in Fig. 7-6B, but tuning
problems still remain.
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016 F
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(A) Single amplifier.
IL
111
112Q
2
NPUT fo—MV— m‘q_Mllv_‘ b——o outPuT

CIRCUITGAIN® -2Q
[: 1 -1

i & 3ch op-amp gain, open loop * 20Q

t must return to ground via low-impedance dc path.

CIRCUIT GAIN=-2Q

2Q x 10K

! 2Q-1110K

L each op-amp gain, open loop = 20Q
t must return to ground via low-impedance dc path,

(B) Double amplifier.

Fig. 7-6. Sallen-Key bandpass circuits (see text).



STATE-VARIABLE ACTIVE FILTERS

We saw in the last chapter how the state-variable filter using three
or four IC op amps is a universal filter with three outputs: a low-
pass, a bandpass, and a high-pass. We can even sum these outputs
for fancier second-order responses. The state-variable filter consists
of two cascaded integrators and a summing block that combines in-
put and feedback signals in the proper ratio to get a desired response.
The circuit is essentially an analog computer model of a transfer
function equivalent to the one that we are after.

1
- — i
1 1 1
€ in tO—AAA— VWA - VA -
1 1 1
+ +
o
{HP} {LP}
A AN ' _ ——OBANDPASS OUTPUT
L x-1 GAIN =+Q
. min op-amp open-loop gain *3Q  PHASE » 90°
AT RESONANC
t must return to ground via low-impedance dc path. £
(A) Normalized to 1 ohm and 1 radian/sec.
10K
M 46— ——
10K . 016 yF . 016 uF
€ int O—AAA—d VWA - A
10K 10K . 10K
10K 10K
A A ' i —0 BANDPASS OUTPUT
m 5K(3Q-1) CAINRQ
i min op-amp open ) in=3 -
t must return to ground via low-impedance dc path. in op-amp cpen loop gain - 3Q PHASE = 90°
AT RESONANCE

(B) Normalized to 10K and 1-kHz cutoff frequency.

Fig. 7-7. Gain of a Q state-variable bandpass circuit.

Fig. 7-7 shows the 3-amplifier circuit. This time, we have con-
nected it for bandpass use and expressed the feedback resistor in
terms of Q rather than of damping. The circuit gain is +Q, and the
op amp need only have a gain of 3Q or so, open-loop, at the reso-
nance frequency. This is a much less severe restriction than the
earlier filters, so state-variable techniques are ideal for high-Q and
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high-frequency uses, for a particular choice of IC. The math behind
this circuit appears in Fig, 7-8.

Fig. 7-9 shows how we can tune the filter. As before, we switch
capacitors for step changes in frequency, keeping their values identi-
cal. Two frequency-determining resistors can also be simultaneously
varied to change frequency independent of Q or gain. Circuit Q and
bandwidth are adjusted with a single resistor. As the frequency
changes, the Q and percentage bandwidth stay constant. The abso-

State-variable bandpass second-order sec-
tions.

An op-amp integrator looks like this:

Cx

The high gain of the op amp continuously drives point a to ground,
forming a virtual ground.

since point a is a virtual ground.

Ry
i :___eouf =i =ei ﬂ:___]
T/l ' T Ry €in j@RCx
or letting S = jw
€out _ 1
€in - Rxcxs

the state-variable circuit for analysis looks like this:

Cl [or4

—i—  —i—

. R1 ~ R2
e K P ANA ‘r> WA~ >
+ +
* I L o

1Q O€ou

Fig. 7-8.
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1
e = °°"'[_R2czs]
1 1 1
o = ety — Kein + Goou = (et Q]°°"' Kein

Cout = “"[_mcl:ls] [mcrs + (R2<1:2$ Q)eo... Ke;..]
Simplifying yields

1
Gin =K 1 1

2
$+ana’ t ricire

or letting R1 = R2 =C1 =C2

in 9 2
S +QS+I

AtS=1 S§?=-—

and 2 = kQ

The summing block can be realized several ways:
(A) Q gain

VW8,

e»-n=—[°'-+°'n (ﬁ:%)]

1
=—en —ept aebp

Fig. 7-8—continved.



(B) Variable gain
W ~—8p
v
1O AMA- -
1K -
+
[o]
| ®up
<
:: AAA
Q
M-ty
1
€hp €in— €elp — (_6) €bp

Fig. 7-8—continued.

lute bandwidth goes up or down proportionately with the center
frequency.

One more op amp gives us variable gain, independent of frequency
and bandwidth. Details are shown in Fig. 7-10, and the circuit is
tuned as shown in Fig. 7-11.

There is one refinement we might like to add to bandpass versions
of the state-variable filter. The Q resistors can get rather large with
respect to the other components. Circuit strays, particularly the op-
amp input capacitance, can cause shifts in response. Fig. 7-12 shows
how to use a voltage divider on the bandpass output to lower the
value of the Q-determining network. All that we have really done is
replace one high-value resistor with three lower-value ones having
the same equivalent current-proportioning ratio.

Note that at resonance the output phase lags the input by 90 de-
grees, or is in quadrature. Note also that the gain is +Q for the 3-
amplifier circuit. The high gain limits the maximum size of input
signal that can be allowed. For instance, with a 5-volt peak-to-peak
output swing and a Q of 100, the input signal has to be limited to
50 millivolts or less to keep from saturating the amplifier. Care
should also be taken at high gain values to keep input and output
signal paths well separated.

THE BIQUAD

Fig. 7-13 shows a circuit that resembles a state-variable circuit,
but only in appearance. It is called a biquad. The circuit consists of
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Keep these resistors
at 1:1:1 at all
times.

Change
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Keep both resistors
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all times. A 10:1
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provides o 10:1
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higher frequencies.
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these capacitors. Keep
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>

<
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times the left one. The
absolute value of these
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on the + and — inputs
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minimum offset.
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should be restricted so that
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replaced with a short circuit.
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[GAIN] of this
circuit is fixed ot +Q
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adjusted. Adjust signal
levels elsewhere in

system.

(Circuit becomes high-pass
or low-pass by selecting

HP ar LP outputs.)

t must return t ground via low-impedance dc path.

Fig. 7-9. Tuning the gain of a Q state-variable bandpass circuit.
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X . 1 + 1
8 > &
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>
$
1
= ANA -08 gyt BP
. Q
GAIN* +KQ
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10K

t must return to ground via low-il-npedance de path.
(B) Normalized 1o 10K and 1-kHz cutoff frequency.

Fig. 7-10. Variable-gain, state-variable bandpass circuit.

two integrators and an inverter. Loss is introduced into one of the
integrators with a damping and Q-setting resistor. There is no high-
pass output, and a possible low-pass output is only of very limited
use.

The gain of the circuit is —Q for a unity input resistor and can be
anything else, depending on the value of this resistor. The biquad is
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Fig. 7-11. Tuning the variable-gain, state-variable bandpass circuit.
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(A) Three-amplifier, unity-gain circuit. (B) Four-amplifier, variable-gain circuit.
Fig. 7-12. Lowering the value of the Q-setting resistor.
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Fig. 7-13. Biquad bandpass circuit (see text).
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tuned by varying the capacitors in steps or by varying the tuning re.
sistors. If we like, we can use a single-resistor tuning of the biquad,
varying only RF2. The frequency will then vary as the square root
of the resistor variation, giving us only a 3:1 or so variation for g
10:1 resistance change.

In contrast to the state-variable circuit, in the biquad circuit as the
frequency changes, the bandwidth remains constant. This is the
absolute bandwidth, not the percentage bandwidth. The Q goes up
and the percentage bandwidth goes down as frequency is increased,
and vice versa. If we used the low-pass output, we would find a very
strong interaction between damping and center frequency.

The biquad is handy if you want a group of identical absolute-
bandwidth channels in a system. This need is common in telephone
applications, but otherwise it is rare. Generally, when you have a
batch of channels, you want the higher-frequency ones to be propor-
tionately wider than the lower-frequency ones, particularly in audio
equalizers and electronic music.

FREQUENCY LIMITATIONS

The choice of op amp limits the frequency and Q that can be ob-
tained, much more so with single IC circuits than with multiples.
Fig. 7-14 gives some approximate recommended limits for the cir-
cuits of this chapter and the op amps of Chapter 2.

ALLOWABLE OPERATION I
BELOW AND LEFT OF H
500 EACH CURVE, I
N 61,32’
[»
4 )
A& '
.
9, J\
10 (’wo”o A s
X, T
&L @‘
4
Q N7,
4040
10
"7 £
R, g
Ly, C
’o((“; N
[699 4 N
&%
2 L]
100 Hz 1kHz 10kH2z 100 kHz
FREQUENCY

Fig. 7-14. Q and frequency limits for active bandpass filters, small output swings.
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Note that this figure does not take large-signal slew rates into ac-
count. This may further restrict the maximum operating frequency
if you need high-level outputs.

The tolerance and accuracy needed for cascaded filter sections
were outlined in Chapter 5, particularly in Figs. 5-6, 5-12, 5-22, and
5-28.

SOME RULES
Any bandpass filter can be designed by using these guidelines:

1. If the percentage bandwidth is greater than 80 to 100 percent,
use overlapping high-pass and low-pass filters instead. If the
bandwidth is lower, use the circuits of this chapter.

2. Referring to the original problem and using Chapter 5, decide
how many poles are needed and what their center frequency,
Q, and staggering “a” are to be, and estimate their tolerances.

3. Pick a filter circuit, using the 1-kHz and 10K normalized values.
The multiple-feedback circuit is recommended for fixed fre-
quency, fixed low-Q (2 to 5) uses; the state-variable circuit for
just about everything else.

4. Substitute the Q values needed for each stage.

5. Shift the stages by “a,” multiplying or dividing the frequency-
determining resistors by “a” as needed (fourth- and sixth-order
filters only).

6. Scale the filter sections to their final center frequency, changing
capacitor values by using Fig. 6-21 or by calculating the inverse
frequency ratio.

7. Build, tune, and test the circuit.

Some examples are shown in Fig. 7-15. Most of the possible pitfalls
of Figs. 6-23 and 8-22 also apply to the bandpass case. It is particu-
larly important to maintain the component ratios at a constant value.
Failure to do this can cause greatly different responses and strong
interactions between tuning, Q, and gain.

RINGING, ELECTRONIC BELLS,
AND THE TIME DOMAIN

Hit a pendulum with an impulsive hammer blow and it will oscil-
late for quite some time, dying out only when its nonperfect Q finally
removes all the energy of the impulse. The same is true of electronic
bandpass circuits. The narrower the bandwidth or the higher the Q,
the longer the decay period, or time it takes to die out. We call this
ringing the transient response of the pole.
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Designing active bandpass filter circuits—some m

A. Build a 3-kHz, Q = 30 bandpass pole.

We use the three-amplifier, state-variable circuit. From Fig. 7-14, we see that a 741
can handle the response. The Q resistor is calculated as 5K X (3Q — 1) or 440K.
The capacitors will be 1/3 of .016 uF or 5600 pF. Final circuit looks like this:

AAA

10K
A~ 4t {—e
10 5600 5600
INPUT O—WVJ AN - VWV -
10K 10¢ 10€
+ +
x
1ok* - OPTIONAL
—AAA AAA - - ——OOUTPUT = 30e,,
L ax P

B. An octave-wide two-pole filter is 1o cover 200 Hz to 400 Hz with a 1-dB passband
dip. Design the filter.

This is the same as the example in Fig. 5-18. From the previous results, we need a
Q of 3.2, a staggering “a’’ valve of 1.32, and a center frequency of 283 Hi. We
can use a multiple-feedback section for each of the two poles. Resistance values
initially will be 10K X 3.2 ond 10K/3.2, or 32K and 3.12K. These must be lowered
in value for the higher frequency pole and raised in value for the lower frequency
pole by the “a’” factor of 1.32. Final resistance values will then be 44K and 4.4K

for the first stage and 24K and 2.4K for the second.

Frequency is scaled by increasing .016 pF by 1000/283 to .056 uF. The final circvit
looks like this:

it JiL
LA "
.05 uF L0656 F
“x uK
INPUT O-AMA——{ f—4— ~ WA——] —
4.4K . 056 F . 24K (56 uF ouTPUT
ac* 24Kk

*OPTIONAL

Had our example needed o sixth-order response, one of the poles is left at the
center frequency and designed to one half of the Q of the other poles. The remain-

ing two poles are raised and lowered in frequency by their ““a” valve. See Chap-
ter 5 for examples.

Circuit gain will be 2Q*, or approximately 16 dB per stage, for a total of 32 dB.
From this the staggering loss of 11 dB must be subtracted, leaving us with a gain
of 21 dB or slightly over 10:1.

Fig. 7-15.
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A single bandpass pole decays to 1/€ of its initial amplitude in Q/
cycles

(1/€ is 37% of the initial value, or 8.7 dB)

Fig. 7-16. Decay or “rundown’ rule for a previously disturbed bandpass single pole.
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Fig. 7-17. Ringing or exponential decay of a 1-kHz pole.

Ringing and decay times in a bandpass pole—some

A. A sudden transient is routed to a 1-kHz, Q = 50 pole. How long does it take for
the oscillation to die below 30 dB of its initial value? How many cycles will this be?

From Fig. 7-17, we directly read a decay time of about 56 milliseconds, equivalent to
56 cycles as well.

B. Design an electronic C3 bell to drop to 10% amplitude in 0.8 second.
C3 is o frequency of 131 Hz (Fig. 10-3). An 800-millisecond ringing of this bell is
the scaled equivalent of a ringing 131/1000 as long by a 1-kHz tone, or 105 milli-

seconds. From Fig. 7-17, we read the Q as approximately 140, nofing that 10%
amplitude is a 20-dB drop. The number of cycles to —20 dB will be approximately 105.

Fig. 7-18.
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Sometimes, we might like to purposely use a bandpass filter as a
ringing circuit, perhaps as an electronic bell, chime, or percussion
instrument, or maybe in a quadrature art circuit (see Chapter 10).
In these applications, we are more interested in the free-swinging,
time-domain response than in the usual, forced frequency-domain
response.

So, how long does it take a bandpass pole to die down, or decay?
The rule is summed up in Fig. 7-16, and a useful plot of this rule
appears in Fig. 7-17. The figure is for a 1-kHz pole, but the usual
scaling will apply for other frequencies. Two examples are given
in Fig. 7-18.



CHAPTER 8

High-Pass-Filter Circuits

In this chapter, we will learn how to build active high-pass circuits
of orders one through six. The catalog circuits of this chapter are
very similar to the low-pass ones of Chapter 6 and are essentially
“inside out” versions of the same circuits with frequency-determin-
ing capacitors and resistors interchanged.

SOME HIGH-PASS RESTRICTIONS

Fig. 8-1 summarizes two important restrictions on the use of high-
pass filters. In reality, there is no such thing as an active high-pass
filter, for the upper-frequency rolloff of the operational amplifiers in
use will combine to give a passband. If an active filter is to be good
for anything, we have to save enough “daylight” between the lower
passband limit of the active circuit and the upper limit set by the op
amp. Very often, the maximum useful frequency limit for an active
high-pass filter is a lot less than for an equivalent low-pass.

1. There is no such thing as an active high-pass filter. Op-amp re-

sponse sets an upper frequency limit defining a response pass-
band.

2. If a high-pass filter circuit also has a low-pass output inherently
available, a dc bias path to ground must be provided at the input.

Fig. 8-1. Restrictions on an active high-pass filter.
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If we have a high-pass-only type of circuit, the op-amp biasing
paths are usually internal, and we do not have to worry any more
about providing a dc return path through the input. This is not
true if we are using a universal filter that consists of integrators or
has high-pass, bandpass, and low-pass outputs, and we still have to
provide the return path to ground through the input. Very often,
operational-amplifer bias and offset problems are much less severe
in high-pass circuits.

Another limitation of active high-pass circuits is that they are in-
herently noisier than low-pass ones. There are several obvious rea-
sons for this. A high-pass filter is a differentiator that responds to
sudden changes in inputs and uses this transient information to pro-
vide an output. In a high-pass filter, noise above the range of useful
signals gets passed on, as do harmonics of “rejected” waveforms,
unlike in a low-pass filter where these are strongly attenuated.
Finally, in some op-amp circuits, the internal high-frequency limita-
tions tend to decrease stability as frequencies near the upper limits
are reached. The opposite is often true in many low-pass circuits
where the op amp increases the damping and adds rolloff to the
response.

FIRST-ORDER HIGH-PASS CIRCUITS

The first-order high-pass sections appear in Fig. 8-2. They are
shown normalized, as usual, to one radian per second and one ohm
and to 10K and a 1-kHz cutoff frequency. In the first-order section,
the op amp is simply a voltage follower that frees the RC section
from output loading.

The feedback resistor from the output to the inverting input is not
particularly critical and should equal the value of the input-fre-
quency resistor for minimum offset. As this frequency resistor will
often be adjusted to adjust the frequency of this section, the feed-
back-resistor value often has to be a compromise that should be

€ino—{ Ot €jno—| T Ofu

(A) Normalized to 1 ochm and 1 radian/sec. (B) Normalized to 10K and 1-kHz
cutoff frequency.

Fig. 8-2. First-order high-pass sections.
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about the same as the average value of the tuning resistor. Often a
blocking capacitor can be provided at the output of an active high-
pass section to completely eliminate any offset shifts from appearing
in the output.

SECOND-ORDER HIGH-PASS CIRCUITS

We can use the second-order low-pass circuits over again, rear-
ranging them only slightly to get high-pass responses. The four low-
pass responses were the unity-gain Sallen-Key, the equal-component-
value Sallen-Key, the unity-gain state-variable, and the variable-gain
state-variable.

Unity-Gain Sallen-Key Circuit

The math behind both Sallen-Key high-pass circuits appears in
Fig. 8-3. As with the low-pass circuits, we have two cascaded RC
sections driving an operational amplifier. The op amp both unloads
the circuit from any output and feeds back just the right amount of

Sallen-Key, high-pass, second-order sec-

tions.

Sallen-Key, second-order, high-pass filters can usually be redrawn into
a passive network with an active source that looks like this:

cl ‘ c2
1t {¢- ! Oty 1
— —
h i3
in ‘2' R2
= o =
Kea K = eon

Since this network has to behave identically for any reasonable voltage
at any point, it is convenient to force e, =1 volt and egy = Keq =K.
Solve for iy, ia, i3 and then sum them:

. _Tvolt 1

TR TR2

_ B 1 _jwR2C2+1
vEIt e T Y aRat2 T jeR2C2
. _K— . .
|,=R—1v iv = (ejn — V)jwCl

Fig. 8-3.
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1 K 1 .
e 0C1) = oz — 2+ v (o + juC1)

j@R2C2

1
ein(jwCl) = Rl2(in2c2) - %(mzcz) + (WR2C2 + gz + jwC1)

Rearranging and simplifying

1 (jw)?
em ] T 11— K] _
(j)* + [R2Cl troe Tre i

And letting S = jo and substituting for e

1
R1IR2C1C2

Cout _ Ks?

€in 2 1 1 1—K] 1
St [R2Cl Tzt ra St rrcie

Just as we did on the low-pass analysis, we have to restrict component
values if K, frequency, and damping are to be independent. Two useful
restrictions are:

(A) Unity-gain, equal capacitors: Let C1 =C2 and K=1. For 0 =1
RIR2C1IC2 =1, s0 C1 =C2=1 and R1 = 1/R2

1 ] 1—-K_ 1 12
R2C1 +chz + R1C1 =d= R2 + R2 ~ R2
2 d .. . .
R2 = d and R1 =§ . The circuit looks like this:
eho—‘ - oeout
1 1
K=1

Nl

2
d

A unity-gain, equal-resistor realization is not possible for reasonable
values of d.

(B) All components identical:

Llet RI=R2=C1=C2 for w=1 RI=R2=C1=C2=1
] ] 1—K_, e
R2C1+R2C2+R1C1 =d=1+1+1-K=d

and K = 3 — d. Note that this is the only value of K that will work
properly. The circuit looks like this:

Fig. 8-3—continved.
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AAA
VW

K« 3-d
™ O—JIG—]HTD—V—NM
] 1

A circuit to provide a high input impedance and a gain of 3 —d is

b ! 2-4
e —C €

Lo .. T 1
Gain is set by voltage-divider feedback, which is TT2-=4-

1
——, forcing the gain to 3 — d.

3—-d
W
1 1
< 2 €out
< d
GAIN=1
v

Fig. 8-3~continued.
(A) Discrete, normalized to 1 ohm and 1 radian/sec.

T
1

VWA~
~Nja

A

emo——1— R
1

1
GAIN =1

Z

d

AAA
VWA

4
H

(B) Op amp, normalized to 1 ohm and 1 radian/sec.

AAA
VWi

20K

(C) Op amp, normalized to 10K and 1-kHz cutoff frequency.

Fig. 8-4. Simplest form of second-order high-pass active section—unity-gain Sallen-Key.
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signal near the cutoff frequency to bolster the response to get the
desired damping and shape. The main difference between the high-
pass and low-pass circuits is that the positions of the resistors and
capacitors have been interchanged. The circuit is shown in Fig. 8-4.

The main advantage of the unity-gain Sallen-Key is its extreme
simplicity. In noncritical circuits it can even be done with a single-
transistor emitter follower. The disadvantages are that the damping

Change in
steps by switching these
capacitors. Keep both
capacitors identical in valve
at all times. A 10:1
capacitance change provides
a 10:1 frequency change, be equal for minimum
with the lower C values offset.

producing higher frequencies. /

This resistor is net critical
and may be replaced with

a short for noncritical circuits.
ideally the de resistance

on + and — inputs should

08yt
GAIN = +]1

of this circuit is
fixed at +1 and should not
be adjusted. Adjust signal
levels elsewhere in the
system.

Change [FREQUENCY Adiust | DAMPING | by

smoothly by varying these changing the ratio of these
resistors. Keep the right two resistors while keeping
resistor 4/ d” times as large their product constant.

as the left one at all times.

Doubling resistance halves 5

frequency and vice versa. (There is no reasonable way
to convert this circuit to
low-pass or bandpass with

simple switching.)
Fig. 8-5. Adjusting or tuning the unity-gain, Sallen-Key, second-order high-pass section.

and frequency cannot be independently adjusted and that frequency
variation calls for the tracking of two different-value resistors. Fig.
8-5 shows the tuning interactions.

Another inobvious limitation of this circuit is that you cannot sim-
ply interchange the components to turn it into an equivalent low-
pass filter. Compare Fig. 8-4B with Fig. 6-5B. Note that the upper
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components are always in a 1:1 ratio and the lower are always in a
4/d? ratio. The low-pass filter uses equal-value resistors; the high-
pass filter uses equal-value capacitors. No simple switching of four
parts can be used to interchange the two circuits.

Equal-Component-Value Sallen Key Circuit

The equal-component-value Sallen-Key circuit uses identical resis-
tor values and identical values for capacitors. Thus, it is easy to
switch the response from low-pass to high-pass and back again, pro-
vided we are willing to use a 4pdt switch per section. The circuits
are shown in Fig. 8-6, and the tuning values and methods are shown
in Fig. 8-7.

pP—C0¢€,t

GAIN = 3-d

—O08 ot

GAIN = 3-d

(B) Normalized to 10K and 1-kHz cutoff frequency.

Fig. 8-6. Equal-component-value, Sallen-Key, second-order high-pass filter has
independently adjustabie d and fr

hl A

L ikt

Like the low-pass circuits, these have a moderate positive gain.
The damping is set by setting the gain. Damping and frequency may
be independently adjusted. As usual, both capacitors must stay the
same value and both frequency-determining resistors must remain
identical in value at all times.

The ratio of the two resistors on the inverting input sets the gain
and the damping. The absolute value of these resistors is not particu-
larly critical. It is normally set so that the parallel combination equals
the resistance seen from the noninverting input to ground. Note that
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Change by
using these two resistors

1o set the amplifier gain

to (3 — d). This is done by
making the right resistor
(2 — d) times larger than
the left one. The absolute

value of these resistors is
Chang: [FREQUENCY ] in not critical. ideally the
steps by switching these resistance on the + and —
capacitors. Keep both inputs should be equal for
capacitors identical in value minimum offset.
at all times. Doubling
P 7Y hak f' q Y

and vice versa.

O g0

GAIN = 3-d

Chang ] FREQUENCY I
smoothly by varying these
two resistors. Keep both

resistors identical in valve

[GAIN] of this circuit is
fixed at 3 — d or roughly 2:1
(+6.dB). Adjust signal
levels elsewhere in the system.

at all times. A 10:1 resistance

change provides a 10:1 (Circuit becomes low-pass by

frequency change, with the switching positions of
lower frequency values frequency-determining
associated with the larger resistors and capacitors.)
resistance valves.
Fig. 8-7. Adjusting ar tuning the equal P t-value, Sallen-Key, second-order

high-pass section.

the optimum-offset resistor values for low-pass will generally be
twice that for the high-pass circuits, since we only have a single
frequency-determining resistor returning directly to ground in the
high-pass case. In a low-pass circuit, we have two frequency-deter-
mining resistors returning to ground through the source.

Offset is usually a much smaller problem in high-pass circuits.
Usually, if your circuit is to switch between high-pass and low-pass,
you use the optimum resistor values for the low-pass case.
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Unity-Gain State-Variable Circuit

The math behind both state-variable filters is shown in Fig. 8-8,
while the unity-gain circuit and its tuning appear in Figs. 8-9 and
8-10. We normally save the state-variable circuits for more elaborate

THE MATH BEHIND State-variable, high-pass, second-order
sections.

An op-amp integrator looks like this:

Cx
JL
1
1
2
B o
$in© Vv b——o0
—r

h

The high gain of the op amp continuously drives the difference be-
tween + and — input to zero. Point a is thus a virtual ground.

. €in . . . .
iy = Ri since point a is essentially at ground.
x

i :————e°u' =i :Eﬂ
? 1/jwC, ~ '~ R,
€ out . .
= ———or, letting S = jw,
€in jwRx Cy 9 I
€out J— 1
€in RxCyS
The state-variable circuit
c1 c2
—i—  —i—
- R1 R2
¢ K Y AA- - A -
Doy =) >
e &p
d Otpp
can now be analyzed:
epp = — Kein — €1 + dep, = oy
€hp
€pp = —
b~ T SRICT

Fig. 8-8.
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ebp ehp

e|p=—sm=+ S?R1C1R2C2
Kein= —epp + dep, — &
which rearranges to
out —KS?
ST+ d S+ ]

€in R1C1 RI1R2C1C2
If R1C1 = R2C2 =1, this becomes

€out __ _Ks2
ein__ S?+dS+1___
There are several ways to realize the summing block:

(A) Unity gain:

(B) Variable gain:

M 8 p
1
1
e c_A.é -
no— o0,
X +

AAA.

Qﬁ"‘w“"»
1
as previously analyzed in Fig. 6-9 and Ch&3pter 2.

Fig. 8-8—continued.
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or more critical jobs. They take three or four operational amplifiers
per second-order section compared to the single one needed by the
Sallen-Key circuits. State-variable circuits are often used where criti-
cal, low-damping values are needed, where voltage-controlled tuning
is to take place over a wide range, where 90-degree quadrature out-
puts are needed, or where very simple switching between high-pass,
bandpass, and low-pass responses is needed. They are also essential
for the elliptical filters of the next chapter.

£ jn tO—AAA— VWA = A =
1 1 1 b- — ~OLP OUT
+ +

OPTIONAL

p—AAA

I

w
a£'g
<
w
8
»
ha )
o
9

——08 o, HIGH-PASS

t -
t must return to ground via low-impedance dc path. GAIN - -1

(A) Normalized to 1 ohm and 1 radian/sec.

AAA,

10
A r——'# ﬁ.
10K . 016 uF . 016 uf
8 jn O—AAN——{ = VWA - r—vw—l
10K 10K 10
+ +
10K 10x*

I"' (ﬁ)vxsx O €out

d
*ootional offset compensation resistors - may be replaced with short circult in noncritical applications.

(B) Normalized to 10K and 1-kHz cutoff frequency.

Fig. 8-9. Three-amplifier, state-variable filter offers unity gain, easy tuning, and easy
conversion to low-pass or bandpass.

Since the circuit also provides low-pass and bandpass responses, a
dc return path through the source must still be provided. Resistors
on the noninverting inputs are optimized for minimum offset just as
they were for the low-pass versions. The gain of the circuit is unity
with a phase reversal.
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Change
smoothly by varying
these two resistors.

Keep both resistance
values identical at all
times. A 10:1 resistance
change provides a

10:1 frequency change,
with lower resistance

Keep the ratio of
these 3 resistors

Change
FREQUENCY | in

steps by switching
these capacitors.

’ Keep both capacitors

identical in value at
all times. Doubling
the capacitors halves

f d
ot 1:1:1 at all values providing requency an
i ; . vice versa.
times. higher frequencies.
N1 \
A I+ i .
1 1 l'
€ n tO—AA— A - WA =
1 1 1
+ + J}
LP
% %
AAA WA o
L \ 3‘;_6 O®out HIGH-PASS

by using these'two
resistors to set the
op-amp gain to a
value of +d. This is
done by making the
right resistor (3 — d)/d
times the left one.

The absolute value of
these resistors is not
critical. Ideally, the
resistance seen on

the + and — inputs
should be identical for
minimum offset.

@ of this
circvit is fixed at —1
and should not be
changed. Adjust signal
levels elsewhere in
the system.

Resistors marked %<
are not critical and
often can be replaced
with a short circuit.
Ideally, the resistance
seen on + and —
inputs should be
identical for minimum
offset.

{Circuit becomes
low-pass or bandpass
by selecting LP or BP
output.)

t must return to ground via low-impedance dc path.

Fig. 8-10. Adjusting or tuning the unity-gain, state-variable, second-order
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Variable-Gain State-Variable Circuit

If you want a fixed gain different from unity, you can recalculate
resistor values for this gain. Since gain changes interact with the
damping, a variable gain is not reasonable with the circuit of Fig.
8-9. The simplest way around this is to use a fourth op amp as shown

in Fig. 8-11 and tuned as in Fig. 8-12.

1
AAA 1. IL
LA R4y
1 1 1
€0 tO—AM- - VWA - A -
1K 1 1
+ + +
[}
i <L L LP
s . O g4 HIGH-PASS
<
AAA GAIN = -K
d
- AAA OBP
1
+
t must return to ground via low-impedance dc path,
(A) Normalized to 1 ohm and 1 radian/sec.
10K
AAA- g( {‘_
10K 016 uF 016 4F
€ jn tO—AAA - A - AN -
0K 10K 10K
K + +
o]
LP
2.4K* 10k% 10K
:E 10K —0@ oyt HIGH-PASS
" GAIN = -K
{10K) x ¢
- AAA— O BP
10K
+
6. 8K¥*

t must return to ground via Io-«-lmpedance dc path.
* optional offset compensation resistors - may be replaced with short circuit in noncritical applications.

(B) Normalized to 10K and 1-kHz cutoff frequency.

Fig. 8-11, Variable-gain, state-variable filter.



Keep the ratio of
these three resistors

Change | FREQUENCY

smoothly by varying
these two resistors.
Keep both resistors
identical in value at
all fimes. A 10:1
resistance change
provides a 10:1
frequency change with
the lower resistance

Change

[ aeQUENEY]
steps by switching
these capacitors.
Keep both capacitors
identical in valve at
all times. Doubling
the capacitors halves

at 1:1:1 at all valves providing the frequency and
times. higher frequencies. vice versa.
N\ {
WA~ I+ {—de
1 1 1
€ in O VWA - VWA -
1K 1 . 1 +
[o]
1% l* LP
s
? 1 ~O & oyt
HIGH-PASS
AN GAIN - K

m is adjusted
with this resistor.
Gain is unity if this
resistor equals the
others on the (—)
input. Doubling the
resistor halves the
gain and vice versa.

BP

—0 W

! % Change l DAMPING I by
changing the ratio of these
two resistors. Keep the left
resistor d times the right one
at all times. Absolute value
of these resistors is not
critical.

Resistors marked ¥* are not
critical and often may

be replaced with short
circuits. Ideclly, the
resistance on the + and
— inputs should be equal
for minimum offset.

(Circuit becomes low-pass
or bandpass by selecting
LP or BP outputs.)

t must return to ground via low-impedance dc path.

Fig. 8-12. Adjusting or tuning the varisble-gain, state-variable, second-order
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The gain is inversely set by the input resistor, independent of the
damping. Damping, gain, and frequency are completely and inde-
pendently adjustable. The output usually has a 180-degree phase
inversion, which gives a stability advantage for higher gain values.

ANOTHER “RIPOFF” DEPARTMENT
Stock, Ready-to-Use Active High-pass Filters

For most simple applications, the equal-component-value Sallen-
Key filter is often the best choice. Just as we have done with the low-
pass filters, we can generate a catalog of response shapes of orders
one through six for the seven shape options. These appear in Figs.
8-13 through 8-19.

Resistance values appear as 1% values, although the actual com-
ponent tolerances needed for most of the circuits are typically 5% as
shown. The damping-resistance values have remained the same as
in the low-pass case, although their theoretically optimum values
with regard to offset are one-half the values shown in these figures.

’Ino—'
. 016 wF

All Capacitors . 016 uf

Gain Gain Component

Response RF1 ew,/e;n Decibels Tolerance
Highly Damped 10K 1 0 10%
Compromise 10K 1 0 10%
Flattest Amp 10K 1 0 10%
Slight Dips 10K ! 0 10%
1-Decibel Dip 10K 1 0 10%
2-Decibel Dip 10K 1 0 10%
3-Decibel Dip 10K 1 0 10%

To change frequency, scale all capacitors suitably. Tripling the capacity cuts frequency
by one-third, and vice versa.

Fig. 8-13. First-order high-pass circuits, +6 dB/octave rolloff, 1-kHz cutoff frequency.
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Optimum offset values will vary as the frequency-determining resis-
tors are changed during tuning.

A third-order response can be approximated by a single opera-
tional amplifier as shown in Fig. 8-16. This is done by lowering the
input impedance on the input RC section to one-tenth its normal
impedance. This lowers the input impedance but also isolates any
loading effects of the active section.

Since high-pass filters tend to be used with lower cutoff frequen-
cies, scaling of the resistors to 100K or even higher can be done to
lower the capacitor values. Offset problems will, of course, increase,
but offset is rarely a problem in high-pass-only circuits until it gets
so large it cuts into dynamic range or becomes temperature depen-
dent or something equally drastic.

Capacitor values are all identical and are shown for 1 kHz. To
scale capacitors to other cutoff frequencies, just calculate their in-
verse ratio or read the values from Fig. 8-20, a repeat of the curves
of Fig. 6-21.

RD]

All CapacRors . 016 pF

¢no———

016 uF
‘)
RF1 ::

Gain Gain Component

Response RF1 RD1 et/ €in Decibels Tolerance
Highly Damped 12.7K 10.5K 1.3 2.3 10%
Compromise 11.3K 16.9K 1.4 3.0 10%
Flattest Amp 10.0K 22.6K 1.6 4.1 10%
Slight Dips 9.31K 30.9K 1.€ 5.2 10%
1-Decibel Dip 8.66K 37.4K 2.0 6.0 10%
2-Decibel Dip 8.45K 43.2K 2.1 6.4 10%
3-Decibel Dip 8.45K 48.7K 2.2 6.8 5%

To change frequency, scale all capacitors suitably. Tripling the capacity cuts frequency
by one-third, and vice versa.

Fig. 8-14. Second-order, high-pass circuits, +12 dB/octave rolloff, 1-kHz cutoff frequency.
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¢ino—| Us
. 016 wF .016 uF

RF1

All Capacitors . 016 uF

Gain Gain Component

Response RF1 RF2 RD2 €501/ ®;n | Decibels | Tolerance
Highly Damped 13.3K 14.7K 21.5K 1.6 4 10%
Compromise 11.5K 12.1K 31.6K 1.8 5.1 10%
Flattest Amp 10.0K 10.0K 39.2K 2.0 6.0 10%
Slight Dips 6.65K 9.53K 51.1K 2.3 7.3 10%
1-Decibel Dip 4.53K 9.09K 59.0K 2.5 8.0 5%
2-Decibel Dip 3.24K 9.09K 63.4K 2.6 8.3 5%
3-Decibel Dip 3.01K 9.09K 66.5K 2.7 8.6 2%

To change frequency, scale all capacitors suitably. Tripling the capacity cuts frequency
by one-third, and vice versa.

Fig. 8-15. Third-order high-pass circuits, 418 dB/octave rolloff, 1-kHz cutoff frequency.

The op-amp limitations rarely will interfere directly with the high-
pass response. Instead of this, they usually place an upper limit on
the passband. If we are to have a minimum of one-decade (10:1)
frequency response well-defined as a passband, the limits of Fig. 8-21
are suggested for the op amps of Chapter 2.

As with the low-pass filters, there are lots of ways to get into trou-
ble with these circuits. Common pitfalls are summarized in Fig. 8-22.
Added to the low-pass restrictions are the generally worse noise
performance you will get with a high-pass response and the need to
save room for the passband between the filter and op-amp cutoff
frequencies.

SOME HIGH-PASS DESIGN RULES

The following rules summarize how to use the circuits and curves
of this chapter:
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If you can use the equal-component-value Sallen-Key circuit:

1. Referring to your original filter problem and using Chapter 4,
choose a shape and order that will do the job.

2. Select this circuit from Figs. 8-13 through 8-19 and substitute
the proper resistance values.

3. Scale the circuit to your cutoff frequency, using Fig. 8-20 or
calculating capacitor ratios inversely as frequency.

-~

10K

¢ino—|

. 016 wf 016 uF

. 016 pF

10

(A) Typical third-order, two op-amp filter (flattest amplitude, 1-kHz cutoff shown).

Make this capacitor

TEN TIMES

its former value.
e ho—'
.16 F
Make this
resistor l INPUT IMPEDANCE l
ONE TENTH of this circuitis 1/10
its former value. that of circuit (A).

(B) One-op-amp approximation to (A).

Fig. 8-16. Approximating a third-order high-pass circuit with a single op amp.

4. Tune and adjust the circuit, using the guidelines in this chapter
and Chapter 9. For very low frequencies, consider a 10X in-
crease in impedance level to get by with smaller capacitors.

To build any active high-pass filter:

1. Referring to your original filter problem and using Chapter 4,
choose a shape and order that will do the job, along with a list
of the frequency and damping values for each section and an
accuracy specification.

2. Pick a suitable second-order section from this chapter for each
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£81

ino—{—1+—1

. 016 uF

>
RFIQ

Gain Gain Component

Response RF1 RD1 RF2 RD2 ot/ ®in Decibels Tolerance
Highly Damped 14.3K 3.24K 16.2K 29.4K +1.90 56 10%
Compromise 12.1K 4.64K 12.7K 41.2K 4230 7.2 10%
Flattest Amp 10.0K 5.90K 10.0K 48.7K +2.60 8.3 5%
Slight Dips 7.15K 18.2K 9.76K 60.4K +4-3.72 1.4 5%
1-Decibel Dip 5.23K 28.7K 9.53K 66.5K 470 13.4 5%
2-Decibel Dip 4.64K 35.7K 9.53K 69.8K -45.31 14.5 2%
3-Decibel Dip 4.42K 42.2K 9.53K 71.5K -}-5.84 153 1%

To change frequency, scale all capacitors svitably. Tripling the capacity cuts frequency by one-third, and vice versa.

Fig. 8-17. Fourth-order high-pass circuits, --24 dB/octave rolloff, 1-kHx cutoff frequency.
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Fig. 8-20. Capacitance values for frequency scaling.
741 LM318
Unity-Gain 2.5 kHz 50 kHz
Sallen-Key
Equal-Companent-
Value Sallen- 1.0 kHz 20 kHz
Key
Unity-Gain
State-Variable 2.5 kHz 50 kHz
Gain-of-Ten
{20 dB) State- 250 Hz 5 kHz
Variable

Fig.8-21. Recommended highest cutoff frequency limits for the op amps of Chapter 2.
There is a one decade minimum passband with these limits.
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1. Forgetting that high-pass circuits emphasize system noise, com-
pared to low-pass ones that minimize it.

2. Forgetting to provide a low-impedance return path to ground on
state-variable or other circuits that use integrators.

3. Damping resistors missing, wrong value, or 100 loose a tolerance.
4. R and C values not kept as specified ratios of each other.

5. Running an active high-pass cutoff frequency so close to op-amp
high-frequency limitations that no passband remains.

6. Components too loose in tolerance or tracking poorly when ad-
justed. (See Chapter 9.)

7. Input signals too large, allowing saturation and ringing.

Fig. 8-22. Common pitfalls in high-pass active-filter circuits.

section you need, normalized to 1 kHz. Shift the frequencies of
the cascaded sections as called for to realize the particular
shape you are after. Remember that increasing resistance de-
creases frequency.

3. Set the damping value of each cascaded section to the value
called for.

4. Scale the circuit to your cutoff frequency, using Fig. 8-20 or
calculating capacitors inversely as frequency.

5. Arrange the circuits, starting with the highest-damped one near
the input and lower-damped sections towards the output. Add
a first-order active or passive section to the input if needed for
an odd-order response.

6. Tune and adjust the circuit, using the guidelines of this chap-
ter and Chapter 9. For very low frequencies, consider a 10X in-
crease in impedance level to get by with smaller capacitors.

Several design examples of active high-pass filters appear in Fig.
8-23.

Designing active high-pass filters—some

A. Design o second-order rumble filter for a phonograph amplifier having a 1-dB peak
and a 20-Hz cutoff frequency.

Use the circuit of Fig. 8-14, using 8.2K for the frequency resistors and a 39K re-
Fig. 8-23.
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sistor for the damping resistors. Ten times the capacitor value scales to 100 Hz at
0.16 uF. Twenty Hz will be five times larger still, or 0.82 microforads. While this
capacitor is not particularly unr ble, it is a bit expensive, which suggests raising

the impedance of everything by a factor of 10. This gives us an input impedance of
something around 100K for frequencies in the passband and gets us by with smaller
0.082 uF capacitors. The circuit looks like this:

B. Design an electronic music filter to make the third harmonic of a C3 note (130.81
Hz) a minimum of 30 dB stronger than the fundamental. The note is a sawtooth.

The harmonic components of a sawtooth vary inversely in strength as the harmonic.
Thus, the second harmonic is 1/2 the fundamental or 6 dB down, while the third
harmonic is 1/3 the fundamental, or 10 dB down. Thus we start with the third har-
monic —10 dB with respect to the fundamental and want to end up with the funda-
mental —30 dB with respect to the third. So, we apparently want to use a filter that
will put the harmonic 40 dB above the fundamental.

If we use Fig. 4-1A, we see that a 3-dB-dips, high-pass filter peaks at 1.2 times its
cutoff frequency. One-third this frequency is 0.4, the fundamental. We see the attenu-
ation will be down by some 35 dB. Since a fourth-order filter would take a second
op amp, we should probably try this one to see what it sounds like. So, we want a
third-order, 3-dB-dips filter for trial. The cutoff frequency will be 130.8/0.4 = 327 Hz.
We use the circuit of Fig. 8-15, noting that frequency resistors are 3.01K for the first
stage and 9.09K for the second stage, with a second-stage damping of 66.5K. This
time, since capacitor values are not a problem but input impedance might be, we
will leave the first-stage impedance where it was and scale the second by 10 to elimi-
nate the op amp. The capacitor value is apparently .016/.327 — .047 uF for the
first stage and 4700 pF for the second. The filter looks like this:

eino—y
.0A7TuF | 4700 pF | 4700 pF
3.01K

Two-percent tolerance components are recommended, but we could probably get
away with 5% cut-and-try in this particvlar application.

C. Part of a complex synthesis problem calls for a section that simultaneously provides
a 2.4-kHz low-pass and high-pass response and has a damping of 0.3. Design the
section.

Fig. 8-23—continued.
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This calls for a state-variable filter. We will assume that unity gain is acceptable.
Capacitar values scale fram .016/2.4 = 6800 pF and the damping resistor is

3—d
(——) 5K = 9 X 5K — 45K =~ 45.3K. The final circuit is in this farm:

d
10K
e —— ——t
10K 6800 pF 6800 pF
10€ 10K 10K Lo LOW-PASS
+ OUTPUT
€in
10K 10K
A ANA——b _ ' HIGH-PASS
_L ax —O ouTPUT

D. Show how we can canvert the universal laboratory filters of Fig. 6-24D so that we
can select either a low-pass or a high-pass response over the range of 10 Hz to

10 kHz.

For the Sallen-Key version, we arrange 8-pole dauble-throw switching to interchange
the resistors and capacitors at the input to each op amp. Switching for a single

sectian is as follows:

|}

—-~--f-/-l ---------------- -+ SECOND SECTION

------------ ~+= SECOND SECTION

Far the state-variable version, the switching is much simpler, but of course, six op
amps are used instead of just two:

=

HIGH-PASS HIGH-PASS
FIRST STATE- SECOND STATE-
ejnO—m{ VARIABLE Nr- VARIABLE °‘fo—oourPur
SECTION ! SECTION :
H !
H H
LOW-PASS | ! LOW-PASS | !
3 1
L

Fig. 8-23—continued.

LOW-PASS
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CHAPTER 9

Tuning, Voltage Control,
and Elliptical Filters

This chapter is about advanced techniques. We will look first at
components and tuning methods, and then at ways to use electronic
control, voltage control, or digital tuning with an active filter. From
there, we will look into some notch and bandstop filters. We will end
with an overview of elliptical filters, a very powerful, ultimate-falloff
type of circuit that is really nothing but a very simple extension of
the basic state-variable filter circuits.

COMPONENTS AND TUNING

It is always important to use the most accurate and most stable
components you can get for any active filter system. One good choice
of capacitor is the polystyrene type. It is stable and cheap and comes
in many sizes to 5%, 2%, and even 1% tolerance. Its only disadvan-
tages are that it melts if you touch it with a soldering iron and that
some flux removers and solvents will attack it. So it must be used
with reasonable care, but it is the all-around best bet for an active
filter capacitor.

The second-best choices are Mylar capacitors for larger values and
mica capacitors for smaller values. Mylar capacitors are limited in
the choice of values and the tightness of the tolerance readily avail-
able. If you have a way to measure capacitance, parallel combina-
tions can often be used to get a precision value at low cost.

NEVER use a disc ceramic or an electrolytic capacitor as a fre-
quency component in an active filter. The discs are wide in tolerance
and lossy, and their value changes with voltage and time. Electro-
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lytics have the same disadvantages, in addition to being polarity
sensitive and needing a bias voltage.

It should go without saying that you have to use good printed-
circuit-layout techniques and reasonably high, well-regulated, prop-
erly bypassed power supplies. Circuit layout should obviously be as
reasonably compact as possible, and the input and output portions
of all active filters should be well separated from each other. Ground
and supply systems should be broad foil and arranged so that no sup-

ply current or noise flows through the input ground-return connec-
tion.

Resistors

Ordinary carbon-film resistors are a good choice for many simpler
active filters. Five-percent tolerance is usually good enough, although
you can use parallel resistors to lower the value or series resistors to
increase the value in final designs.

Newer molded metal-film resistors (Mepco/Electra) have 1%
accuracy yet cost less than a dime in moderate quantities. They are
thus far cheaper than traditional precision resistors.

Another obvious way to trim the value of a resistor is to put a small
trimming pot in series with the resistor; this gives a 5% to 10%
adjustment range. Several upright pc potentiometers can sometimes
be controlled from a common bar shaft if they are placed just right
on a pc board.

MANUAL WIDE-RANGE TUNING

The frequency of an active filter can usually be changed 10:1 by
changing the capacitors to a value ten times or one-tenth their pre-
vious value. If we want continuous control, we can, in theory, use
potentiometers. Normally, we need two pots per active section,
which means four ganged pots for a fourth-order section and six for
a sixth-order section. The problem is that reasonably priced snap-on
multiple pots simply are not good enough for precision active filters,
although they are just barely usable in economy circuits.

Fig. 9-1 shows a flattest-amplitude fourth-order filter we can adjust
over a 10:1 range. Flattest-amplitude filters are usually the best
choice for wide tuning since the value of the frequency resistor is the
same in all sections, and the same is true of the capacitor value.
Other responses require either a different resistor or a different ca-
pacitor value per cascaded section.

Ordinary quad pots, particularly the snap-together units, have
some problems. The first is that resistance behavior is usually very
unpredictable at the extremes of pot rotation, with the electrical
rotation being much different and usually quite a bit shorter than
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100K QUAD POT AUDIO TAPER

RANGE C
1-10Hz | 1.600 oF
10-100Hz | 0.160 oF
100-1000Hz | 0. 016 uF
1-10kHz | 1600 pF
10-100kHz | 160 pF

Fig. 9-1. A 10:1 tunable fourth-order filter.

the mechanical rotation. A second problem is that we would like to
see 5% tracking between the elements. This is much tighter than is
normally provided, particularly with tapered or log pots. Both of
these problems are solved with more expensive components, but the
cost gets out of hand very quickly.

A third problem that we can do something about is the linearity.
Since the frequency varies inversely with resistance, a linear pot will
give a very cramped scale at one end. Fig. 9-2 shows how to beat
this problem. In Fig. 9-2A, an ordinary linear pot takes half its rota-
tion to get from a “1” to a “2” reading. In Fig. 9-2B, an ordinary audio
log pot (10% cw log taper) makes things much worse. In Fig. 9-2C,
a reverse taper (10% ccw log) straightens things out pretty well.
The problem is, these are hard to find. Finally, in Fig. 9-2D, we use
the same standard audio log pot that we used earlier; only, this time
we put the dial on the pot shaft and the pointer on the panel. While
the numbers go the usual way, the pot actually gets rotated back-
wards, reversing the taper for us. This last route is the simplest and
cheapest way to get a reasonably linear scale.

One way to ease the pot problems is to restrict the tuning range,
perhaps to 3:1 or less, and do more capacitor switching. A second is
to go to digital or voltage control, which we will look at in just a bit.

A third route is popular with many commercial active-filter instru-
ments. Instead of continuously adjusting the cutoff frequency, you
use switched resistors. Fig. 9-3 shows one possibility. The cost is not
much greater than when special pots are used, and the response is
usually much more predictable and uniform. Enough switch posi-
tions are added to give the equivalent to continuous tuning. Usually
the frequencies are arranged on a proportional log scale rather than
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(A) Linear-taper pot.
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1 10

(C) Reverse log-taper pot. (D) Standard log-taper pot. Dial on pot;
pointer on panel.

Fig. 9-2. Using log pots and reverse dials to provide linear scales on tuning control.

on a linear basis. Ordinary 5% film resistors are usually adequate.
Another advantage of switched control is that you can use different
values for each section to build other response shapes and still use
identical capacitors.

O A
10K

W | Mk | K | w0 | & l va Y 1 'a'('l '4(1 'i'l x | =
1 L2 dus dus b2z bar bsa dae dar bse bes laz duo

{LOG FREQUENCY STEPS)

Fig. 9-3. Switched resistors give discrete cutoff frequencies, offer more precision, and
afford better control.

Switching

We might like to use switches for changing from high-pass to low-
pass and back again. With the state-variable filters, this is easily.done
with one spdt selector per second-order section or a dpdt switch for
a fourth-order filter. A fourth-order Sallen-Key filter takes Spdt
switching, but it uses only 2 op amps instead of 6. One reasonably
easy way to get 8pdt switching is to use a multiple-station 4pdt push-
button switch. One button down puts the other button up, giving
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8pdt switching, and the extra buttons can be used for off-on control
and bypassing,.

VOLTAGE AND DIGITAL CONTROL

Often, we would like to electronically change the frequency or Q
of an active filter on a real-time basis, either by means of a control
voltage or a digital computer command. This is particularly impor-
tant in electronic music where a several hundred-to-one or higher
frequency range might be desirable without mechanical switching.
How do we go about it?

Fortunately, almost all of the circuits in this book let you change
frequency widely without changing Q or damping. This is a major
step in the right direction. If your filter frequency response cannot be
independently controlled, there is essentially no way to provide volt-
age or digital control.

We can expect two things of any voltage- or digital-control system.
First, there must be just as many voltage-controlled “things” varying
as there were pots in the original manual circuit. This is usually two
resistors for frequency control per second-order section. We also
have to force the “things” that are varying to be identical in value
and within a certain tolerance, just as we did with the manual
resistors.

Second, we can expect the inverse frequency relationship to hold—
that is, if we raise the equivalent resistance of the “thing” we are
using for tuning, the frequency goes down.

We can think of our frequency-determining resistor as a “network”
that gives us a certain current out for a certain voltage in. This volt-
age-to-current relationship must be accurately controllable from
unit to unit to guarantee reasonable tuning values. More important,
if we replace the resistor with something else, it has to respond
equally well to positive or negative signal swings. We say it has to
be bhilateral. In addition, we would like the “thing” replacing the
resistor to be easy to drive, and we would not want any of the drive
signal or any offset to appear in the output.

Electronic tuning is really quite simple. All we have to do is find
a “thing” that acts like an electronically variable resistor. We can
adjust the equivalent output current from a minimum possible value
(minimum frequency) to a maximum possible value (maximum fre-
quency) consistent with what the op amp can use and what it can
drive—1000:1 should be theoretically possible, perhaps even more
with newer, ultralow-input-current op amps.

So what is our “thing” going to be? Fig. 9-4 shows some older
approaches to the electrically variable resistor problem. In Fig. 9-4A,
we use a lamp and photoconductive cell. These used to be extremely
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nonlinear, but by replacing the lamp with a light-emitting diode, we
can improve the linearity somewhat. In Fig. 9-4B, we use a junction
field-effect transistor at zero bias and very low signal. This gives an
electrically variable resistor, but it is not bilateral for large signal
swings and it limits dynamic range and introduces distortion.

Fig. 9-4C uses a discrete MOS transistor with a floating substrate
and feedback to linearize the response. This gives an electrically
variable, bilateral resistor that handles up to several volts of signal
with ease. We still get unit-to-unit variations, and transistors like the
2N4351 cost several dollars each. You can rework an ordinary hex
inverter logic gate, the CMOS 4049, into six of these. They are useful
at lower levels but will have distortion and dynamic range limita-
tions.

23819

CONTROL CONTROL «—R

o -0 «—Ry x

A$ )
(A) Lamp-photoconductor. (B) Junction FET.
CONTROL
-—Ry
1MQ 1IMQ

Ry — O———x

NC (TRANSMISS [ON) X out
CONTROL O———Y
2N4351

. MC1495, AD532, 5596, efc....

(C) MOSFET. (D) Multiplier 1C.

Fig. 9-4. Some older approaches to voltage-controlled resistance.

Fig. 9-4D uses a “sledgehammer” technique. Each resistor is re-
placed with an integrated circuit called a four-quadrant multiplier.
The multiplier in turn drives the lowest value of frequency resistor
and scales the amplitude to make the output current of the resistor
lower for lower input values. Very nicely, low input control voltages
produce low output currents and low output frequency, and high
input control voltages produce high output currents and high output
frequency. Thus, we get a linear response to the cutoff frequency
with respect to the input voltage. There are two restrictions to the
circuit. First, you have to be sure the control voltage never gets
below zero, or the output phase will reverse and latch the filter.
Second, these units are expensive, particularly if you buy four or six
at a time.
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Fig. 9-5 shows how we can use electronic multipliers for voltage-
controlled tuning of a state-variable filter section. Some suitable de-
vices include the Motorola MC1495, the Signetics 5596, and the Ana-
log Devices AD532. The connections and the external parts needed
for trimming and bias vary with the device used, so always work
directly with the appropriate data sheet and application notes.

Sections can be matched fairly accurately, and, by changing the
output resistor slightly, we can accommodate different resistance
values for cascaded sections of fancier response shapes.

AA

10K

it Ji

LA v
10K 016 uF 016 uF
 jn O—AAA—4 X outl—vWA = ——x outhl—AAA -
10¢ M K . M 3 .
¥ Y oLP ouT
Hp
out r i " o FREQUENCY
N CONTROL
f-;‘ v}j;ﬁ -OBP OUT
(E)x
1kHz -
RES PONSE
100 Hz 1
0.1vOLT 1VOLT

Fig. 9-5. Voltage-controlled filter using IC four-quadrant multipliers.

TWO NEW TECHNIQUES

Let us look at two relatively new integrated circuits, each of which
gives us several reasonable and cheap ways to achieve acceptable
accuracy with digital or voltage control. The first of these is the
CMOS quad bilateral switch, the CD4016, available from most
CMOS manufacturers (RCA, Motorola, Signetics, Fairchild, SSS,
etc.). The second is the RCA CA3080, a low-cost variable-gain am-
plifier ideally suited to active filter use.

An Analog Switch

The CD4016 is shown in mini-catalog form in Fig. 9-6. It is simply
a very good bilateral analog switch suitable for any off-on applica-
tion. You apply supply power of +5 and —5 volts to the IC, and the
analog input signal can be anything between these values up to 10
volts peak-to-peak. The control input is essentially an open circuit
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CMOS QUAD 4016
BILATERAL SWITCH

TOP VIEW -5y

This circuit contains four independent switches that may be used for
off-on control of digital or analog signals. Signals to be controlled
must be less than +5 and more than —5 volts.

+5 volts applied to pin 13 turns ON the connection between pins 1
and 2. —5 volts applied to pin 13 turns OFF the connection between
pins 1 and 2. The other three switches are similarly controlled.

Input impedance to pin 13 is essentially an open circuit. The OFF
resistance of pins 1 and 2 is many megohms; the ON resistance is
300 ohms. A lower-impedance, improved version is available as the
4066.

Fig. 9-6. A quad bilateral switch.

needing no drive current. A signal of +5 volts turns the switch ON
and —5 volts turns it OFF. There are four completely independent
switches in each package. Note that we use this device only as an
OFF-ON controller. The on resistance is 300 ohms or so for the 4016
and 80 ohms for an improved version, the 4066.

Fig. 9-7 shows three ways to use the 4016. In Fig. 9-7TA, we use it
simply for high-pass/low-pass switching or for component insertion.
The advantage of this method is that we can use dc control signals
rather than having to route the actual active-filter signals through
switches or other panel controls.
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In Fig. 9-7B, we use four switches in combination to select com-
binations of resistors weighted 10K, 20K, 40K, and 80K. In combina-
tion, we get 16 different frequency values. The input is a 4-bit digital
word. Obviously, we can use more switches and resistors for finer
resolution,

ACTIVEFILTER

P Ao 28

t
INPUT O——in o016 ! ——O0UTPUT

LP —q'o—?—J
| INVERTER i
+5 = HP H _J

seect 12 o
14089, etc, ..)

(A) Selecting outputs with dc control voltages.

_w___é‘omdr ITa
80K il
+—vw—————oﬁ'¢
INPUTO0——4 40K i -
A A——— o -
20K ] , +
] 1
AAA M 3 1
H i 1
10K E ! !
[¢) o o [}
INPUT CONTROL

(DIGITAL .. 16 COMBINATIONS)

(B) Selecting resistors under digital command (D/ A conversion).

it
LY

4016
o—av—a T -
INPUT e o— | oupur
+
TWO OF THESE MAY BE USED IN A d
= .
+ .

SECOND-ORDER STATE-VARIABLE FILTER.
PULSE WIDTH CONTROL DUTY CYCLE

MULTIPLIES RESISTOR VALUE

(C) Duty-cycle modulator provides variable resistance. Switching rate must be much
faster than signal frequencies.

Fig. 9-7. Using the 4016 switch.

This process is called digital-to-analog conversion, and it permits
direct control of the cutoff frequency of the filter with a digital word,
derived either from local simple logic or from a computer. Note that
this circuit is fully bilateral; many common d/a (digital-to-analog)
converters are unilateral and will not work in this application.

Fig. 9-7C shows an interesting technique that is usable on low-
frequency low-pass or bandpass state-variable filters. It changes the
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apparent value of fixed resistors by modulating their duty cycle.
Suppose we place an analog switch in series with a frequency-deter-
mining resistor and turn it on and off at a very fast rate. The inte-
grating capacitors of the filter will average out the rapid on-off input
current fluctuations to some intermediate value.

Now, if we control the duty cycle or the percentage of the time
the resistor is in the circuit, we can alter the filter cutoff frequency.
A 10K resistor at a 50% duty cycle acts like a 20K resistor. At a 10%
duty cycle, it acts like a 100K resistor, and so on, provided that the
off-on switching is much higher in frequency than the signals and
the time constants of the filter.

Variable-duty-cycle pulse generators are easy to build, particularly
if you base them on a 555 timer, an 8038 function generator, an
XR2240 astable, or any of many CMOS gate astable circuits. The
beauty of this method is that we can get very accurate tracking for
four, six, eight, or as many resistors as we like, and the price of each
extra resistor is only one-fourth of a CD4016, or around 25¢. The lim-
itations of the method are that the switching frequency must be
much higher than the center or cutoff frequency and that noise, dis-
tortion, and feedthrough effects must be carefully controlled.

A TWO-QUADRANT MULTIPLIER

The RCA CA3080 is a transconductance amplifier that can be
hooked up to make an ordinary output resistor act like an electroni-
cally variable one. The device is shown in Fig. 9-8. It looks somewhat
like an op amp, but there are some important differences. The im-
portant thing is that we can use it as a linear voltage-versus-fre-
quency gain-controlled amplifier. The cost of this circuit is under
50¢, in quantity. Fig. 9-9 shows its use in a state-variable filter.

This is a transconductance amplifier. It has a very high output im-
pedance, provided by a bilateral current source. The output load
resistor sets the voltage gain between input and output. In addition,
a gain-control input varies the gain from the maximum possible set
by the load resistor down to zero. As we provide more and more cur-
rent to this pin, the gain of the circuit goes up proportionately. For
a given input signal level, we get a variable and electronically con-
trolled output current.

There are three important considerations when you use this device.
The first is that input signals must be limited to 100 millivolts or less
since the input to the circuit is an npn-transistor differential amplifier
operating without feedback. Higher input signal swings will limit or
clip. So, normally, you attenuate the active filter signals at the input
and then build up with additional internal gain. The amount of gain
will set the cutoff frequency of the filter.
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TRANSCONDUCTANCE 3080
AMPLIFIER

WITH A 1K LOAD

+I5V GAIN CONTROL = GAIN OF 6
GND GAIN CONTROL =GAIN OF 3
10% VALUES FOR 10K LOAD

GAIN CONTROL INPUT
O -15V = OFF
+I5V = MAX GAIN

NON INVERTING
INPUT

RUA
TOP VEW

This circuit may be used as a variable-gain amplifier or as a two-
quadrant multiplier. The difference in input voltage on pins 2 and 3
is amplified and provided as an output current. The current gain is
set by the current into pin 5 and is linearly electrically variable. The
voltage gain of the circuit depends on the current gain and the out-
put load resistor.

Note the following use restrictions to this device:
1. The input voltage must be limited to 100 millivolts or less.
2. The output is a current; the load resistor will thus set the overall
voltage gain.
3. Current limiting via a series resistor (100K minimum) MUST be
provided to pin 5 or the device will self destruct.

Fig. 9-8. A variable-gain amplifier that is a nearly ideal multiplier for active-filter work.

Second, remember that the output is a current, not a voltage, so
the output resistor has a linear relationship with the voltage gain.

Third, the voltage-control input consists of the base of a transistor
current, mirror connected to a negative supply. The input current
sets the gain, This input current must be limited by a series resistor,
usually 100K or more. Apply a voltage or ground this pin, and you
destroy the IC.

The transconductance amplifier offers a very simple and low-cost
way to provide linear control of the frequency of an active filter over
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Fig. 9-9. Electrically variable filter using a CA3080.

a very wide range. The technique applies directly to the state-vari-
able filter and others where one end of a resistor goes either to
ground or to a virtual ground at the input of an op amp. With addi-
tional circuitry, it can be applied to “floating” resistors.

Log Operation

The CA3080 and the 4-quadrant multiplier provide a linear volt-
age-versus-frequency control. Sometimes, and particularly for elec-
tronic music, a log (exponential) characteristic is more desirable, so
that a shift of one octave (2:1 frequency) always takes the same
amount of control voltage, regardless of whether it is from 16 Hz to
32 Hz or from 2 kHz to 4 kHz.

We can build a log converter for the d/a conversion systems by
providing a word changer called a read-only memory between the
logic and the switches. For the analog circuits, the linear-to-log con-
version is usually done by putting the base emitter junction of a tran-
sistor inside the feedback loop of an op amp. More details on this
appear in various issues of Electronotes, in The Nonlinear Circuits
Handbook by Analog Devices, and in Operational Amplifiers edited
by Tobey, Graeme, and Huelsman (Burr-Brown Research Corp).

Note that all of the voltage- and digital-control techniques have
been shown controlling the frequency of the filter. The same type of
circuit can be used to control the Q or the damping. Most often, only
a single device is needed per second-order section for Q setting,
while two are needed for frequency setting. Remember that in com-
posite, high-order filters, you have to proportion all filter sections
equally. Thus, most sixth-order filters need six electronically variable
resistors for frequency control and three of them for Q or damping.

NOTCH FILTERS

We can easily sum the outputs of high-pass, bandpass, and low-
pass responses to get more-elaborate results. This is very easy to do
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Fig. 9-10. Notch filter built by summing low-pass and high-pass outputs of
state-variable filter.

with the state-variable filter circuit that simultaneously gives us all
three outputs. Two of the most useful responses are the notch, or
bandstop, filter and the elliptical, or Cauer, response. Notch or band-
stop filters are used whenever we want to reject or block a band of
frequencies. Elliptical filters are similar to the low-pass and high-pass
filters mentioned earlier in this book, except that they have the fastest
possible falloff with frequency and a null or point of zero transmis-
sion just outside the passband.

Fig. 9-10 shows the basic notch configuration. We simply sum the
high-pass and low-pass outputs of a state-variable filter and end up
with a notch at the resonance frequency.

The response of a Q = 5 notch is shown is Fig. 9-11. The response
of the notch and the bandpass are related. The resonance frequency
of the bandpass response will equal the point of zero response of the
notch. For reasonable Q values, the bandwidth of both responses will
be the same. This means that the frequencies at which the bandpass
response is down 3 dB from its peak resonance value will equal the
frequencies at which the notch response also is 3 dB down. So, the

e e
,—;"—"—uaams e;“"
" 0 0 "
N A =
\\ // -5
10 3
\|/ 2
-2 .1
.05
K 9 1.0 L1 17 @
FREQUENCY

Fig. 9-11. Response of 2 @ = S notch filter.
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bandpass of the bandpass response is equal to the response width of
the notch, both defined to their 3-dB-down-from-peak-value fre-
quencies.

As with the usual bandpass response curves, the notch response is
symmetrical when you plot it on a log frequency scale.

If we did not want the notch to go to zero but only to some lower
value, all we would have to do is sum part of the input signal with
the high- and low-pass outputs of the filter. We can get any second-

THE MATH BEHIND A transmission-zero filter.
B

y changing one resistor value in Fig. 9-10, we can build an op-amp
summing circuit that gives us a notch or transmission zero just outside a
passband:

AA
VWA
1

R
HP INPUT O—"W—

141 ——0 QUTP!
LP INPUTO—‘V\I"'— + ouTPUT

Assume we are using a low-pass response and R > 1

€out — — [Ei—n_)hp + (ei_n)|P]

R 1
§? . h
If our HP signal ST gs T and our LP signal is gy e
. SR+ . . 1 — w?/R
sum will be [m] or, letting S = jo, [m]

whose amplitude is

1 — w?/R
Vo' + (d?* - 2)w? + 1

leou":

A transmission zero occurs at 1 — w?/R = 0 or at @ = \/R. At very high
frequencies w* >> w? >> 1, so the response is approximately

-
R _1
Vo' R

if R =1, the circuit becomes the notch filter of Fig. 9-10.

Fig. 9-12.
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order response we like simply by summing inputs and outputs from a
state-variable circuit,

CAUER, OR ELLIPTICAL, FILTERS

Fig. 9-12 shows how we can change the gain of the high-pass out-
put to produce a notchlike circuit that introduces a transmission zero
just outside the passband of the filter. We can vary the frequency of
the transmission zero with respect to the filter cutoff frequency by
changing the ratio of high-pass to low-pass gain. Generally, the closer
the gain is to unity, the sharper the response is, the closer the zero
is to the filter cutoff frequency, and the more uniform the values of
very high and very low frequency gain are.

This technique offers an obvious way to speed up the rate of fall-
off of the response of a filter immediately outside the passband, for
things can fall off much faster if they are heading for a zero just out-
side the passband instead of heading for a zero at very high frequen-
cies.

R 'Av"
SECOND-ORDER, HPL A, 10K
1dB DIP,
STATE-VARIABLE, =
INO—=1IN """ | ow-Pass Lo ourpur
d=1.045 P +
f=0,863 out VWA
10K 1
R Null Freq HF Attn
© 0 12 dB/octave
100K 2.7 —20dB flat
33K 1.5 —10dB flat

Fig. 9-13. Second-order, elliptical, low-pass filter.

If we design the filter to have the fastest possible falloff with fre-
quency, we can use this transmission-zero technique to build a very
strong class of filters called Cauer, or elliptical, filters. These filters
fall off much more sharply outside the passband than the earlier fil-
ters described in this book. This makes them a very powerful design
tool.

Of course, there has to be a catch. In exchange for this fast falloff,
the filter response is allowed to bounce back up to some value well
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Fig. 9-14. Response of Fig. 9-13 circuit (second-order).

into the stopband and then either continue at a constant low value or
else gradually fall off with increasing frequency. So, for frequencies
near cutoff, you will get more attenuation, but for frequencies well
into the stopband, you will get less attenuation than with the earlier
filters.

Some typical examples appear in Figs. 9-13 through 9-18. The
second-order response of Figs. 9-13 and 9-14 drops very fast with in-
creasing frequency but bounces back up as shown. The third-order
response curves do almost the same thing, only they continue falling
off with frequency at a rate of 6 dB per octave above the bounce

HP  *
FIRST-ORDER | SECOND-ORDER STATE

o] | SECTION ~VARIABLE SECTION
f-.914

fe.452 1 A

il 10K

——O0¢out

z
—
]

<

<
§+ l;

R Null Freq HF Attn

© © 18 dB/octave
68K 2.55 6 d8/octave
33K 1.44 6 dB/octave

Fig. 9-15. Yhird-order, elliptical, low-pass filter.
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Fig. 9-16. Response of Fig. 9-15 circuit (third-order).

peak. Fourth-order curves are similar, only they end up falling off at
12 dB per octave above the bounce peak.

You can design filters like these just by starting with a conventional
state-variable filter, perhaps the 1-dB-dips version, and then adding
the single transmission-zero of Fig. 9-12. Varying the resistor on the
high-pass output sets the notch frequency and the amount of bounce.
While the math is rather complicated, it is a simple matter to change
the one resistor and see what happens to the circuit.

AANA,

10K
SECOND -ORDER SECOND-ORDER  [HP AV.RVA
SECTION STATE- VARIABLE >
e
o> e SECTION o ——o0¢ ot
4-.2 fe.94 d-.280 [(P jo¢ +
R Null Freq HF Attn
=) © 24 dB/octave
68K 2.44 12 dB/foctave
22K 1.42 12 dB/octave

Fig. 9-17. Fourth-order, elliptical, low-pass filter.
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Fig. 9-18. Response of Fig. 9-17 circuit (fourth-order).

The transient and delay performance of these filters will be just
about the same as the response of the filter you started with. Actu-
ally, for ideal passband response, the damping of one section should
be lowered and its frequency should be raised, so an ideal elliptical
filter will have somewhat poorer transient and delay response than
an equivalent “all zeros at infinity” filter from earlier in the book.

We can generate equivalent high-pass filters simply by interchang-
ing the inputs to the transmission-zero summer. However, the only
type of filter that can be practically switched from high-pass to low-
pass and back again is the flattest-amplitude, or Butterworth, re-
sponse for orders of three and higher.
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CHAPTER 10

Some Applications—
What Good Are Active Filters?

So far, we have shown how to take the need for a particular filter
and convert it into an actual working circuit. But what good are
active filters? Where can we use them?

This chapter is about applications. It will show you many different
things that can be done with active-filter techniques. Mostly, we will
be zeroing in on uses that are simple and that provide new solutions
to old problems. Rather than go into extreme detail, we will try to
cover as many different application areas as we can. From there, you
should be able to fill in the details yourself, using the earlier chapters
and the references in this chapter as a design guide.

Many of the devices described in this chapter are available in kit
form. One source is PAIA Electronics, Box 14359, Oklahoma City,
OK 73114. A second source is Southwest Technical Products, 219
West Rhapsody, San Antonio, TX 78216.

BRAINWAVE RESEARCH

The human brain continuously generates low-frequency, low-am-
plitude electrical signals. With suitable scalp electrodes, these sig-
nals can be picked up, separated with active bandpass filters, and
then monitored, displayed, or measured. Fig. 10-1 shows one possible
system.

Systems of this type have clinical use in studies of epilepsy, stroke
damage, schizophrenia, and related problems. More popularly, brain-
wave research leads to altered states of awareness, where visual,
aural, or touch feedback of the brain’s activity can lead to control of
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Fig. 10-1. Brain-wave (biofeedback) monitor using active filters.

emotions and creative drives as well as achieving transcendental
meditative states similar to those of yoga, mind-altering drugs, or
strict religious training. Positive feedback of the brain’s activity has
also been demonstrated to be useful in attaining partial control of
normally automatic body functions. Relief or elimination of migraine
headaches is one demonstrated possibility.

Four characteristic frequency bands are recognized. The lowest
are the delta waves between 2 and 4 Hz; these are associated with
deep sleep and young infants. Theta waves of 5 to 6 Hz are related to
self control, annoyance, and frustation. Alpha waves range from 8 to
13 Hz and are associated with awareness and relaxation. Finally,
beta frequencies of 13 to 28 Hz seem to be related to tension or
surprise.

The normal signal level at a scalp contact is a few dozen micro-
volts at most, and quality brainwave instruments have to provide a
sensitivity of a very few microvolts for adequate pickup. Active filters
are ideal for such low frequencies, using the bandpass techniques of
Chapter 7. Moderately to highly damped filter versions are recom-
mended for minimum transient effects.

More information on these techniques appears in Altered States of
Auwareness, a book by T. J. Teyler. An alpha wave construction proj-
ect appeared in the January 1973 Popular Electronics.

ELECTRONIC MUSIC

Active filters are such an integral part of today’s electronic music
scene that it is hard to imagine what it would be like without them.
Let us look at four popular application areas—modifiers of conven-
tional instrument sounds, formant filters, synthesizer vcfs (voltage-
controlled filters), and percussion generators.
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Modifiers

An active filter added to a guitar preamplifier can dramatically
change the sound of the instrument by selectively emphasizing or
de-emphasing portions of the acoustic spectrum of the guitar. A typi-
cal instrument is shown in Fig. 10-2, and technical details appeared
in the June 1974 Radio Electronics. Similar active circuits can alter
or modify the sound of virtually any conventional instrument.

Courtesy Southwest Technical Products Corp.

Fig. 10-2. Guitar preamp uses active filters as modifiers.

Formant Filtering

There are two fundamentally different ways of modifying elec-
tronic tone sources in electronic music. If we use a fixed-filter system,
we are using formant filtering. The harmonics of each note of differ-
ing frequency vary in structure. This is also the case with many con-
ventional musical instruments where their size and shape provide a
fixed acoustical filtering response. On the other hand, if we use a
voltage-controlled filter, or vcf, the harmonics of each note can be
pretty much the same and usually independent of frequency. This
creates a distinct “electronic” or “synthesizer” sound.

The frequencies of the various notes involved in Western music
appear in Fig. 10-3. There are usually twelve notes per octave. An
octave is a 2:1 frequency range, and the note frequencies repeat in
higher octaves ina 1, 2, 4, 8, .. . sequence.

Fig. 10-4 shows some formant-filtering techniques that make opti-
mum use of active filters. Start with a square wave and filter it lightly
with a low-pass filter. You will get a group of tone structures that
sound “hollow” or “woody,” similar to the sound of such instruments
as clarinets. Minor filter action on a sawtooth wave leads to string
voices, made brighter by high-pass filtering or more mellow through
low-pass emphasis. The same sawtooth routed through a bandpass
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Note

Octave

Number C (94 D D E F
o* 16.352 17.324 18.354 19.445 20.602 21.827
1 32.703 34.648 36.708 38.891 41.203 43.654
2 65.406 69.296 73.416 77.782 82.407 87.307
3 130.81 138.59 146.83 155.56 164.81 174.61
4 261.63 27718 293.66 311.13 329.63 349.23
5 523.25 554.37 587.33 622.25 659.26 698.46
[} 1046.5 1108.7 11747 1244.5 1318.5 1396.9
7 2093.0 2217.5 23493 2489.0 2637.0 2793.8
8 4186.0 4434.9 4698.6 4978.0 5274.0 5587.7

Note
Octave

Number F G GL A AL B
o* 23.125 24.500 25.957 27.500 29.135 30.868
1 46.249 48.999 51.913 55.000 58.270 61.735
2 92.499 97.999 103.83 110.00 116.54 123.47
3 185.00 196.00 207.65 220.00 233.08 246.94
4 369.99 392.00 415.30 440.00 466.16 493.88
5 739.99 783.99 830.61 880.00 932.33 987.77
[ 1480.0 1568.0 1661.2 1760.0 1864.7 1975.5
7 2960.0 3136.0 3322.4 3520.0 37293 3951.1
8 5919.9 6271.9 6644.9 7040.0 7458.6 7902.1

*Octave zero is very seldom used. Frequencies shown are in hertz and are valid for any
electronic musical instrument, organs, and any conventional instrument except the piano.
“Middle C' is C4 at 261.63 Hz. Standard pitch is A4 = 440.

Fig. 10-3. Standard frequencies for the 12-note, equally tempered music scale.

filter produces horn sounds. Multiple-spectrum instruments such as
the bassoon, English horn, and oboe take multiple-bandpass filters or
a notch filter. Heavy filtering of a sawtooth will recover only the fun-
damental with slight second-harmonic components, characteristic of
the flute and some organ voices.

Realistic imitation of traditional instruments depends both on the
control of the harmonics and the envelope or amplitude of the note.
Usually the envelope and formant filtering are done separately and
then combined in a voltage-controlled amplifier (vca), a keyer, or a
multiplier.

Voltage-Controlled Filters

The electronic tuning techniques of Chapter 9 let us build wide-
range voltage-controlled filters well-suited for electronic music use.
One important advantage of the vcf route is that you can change the
harmonic structure of a note during its existence, particularly on the
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attack (rise time) and decay (dying out or fall time) portions. Volt-
age-controlled filter techniques are more often associated with single-
voiced or monophonic music systems, while formant-filtering systems
are more common with polyphonic systems having many or overlap-
ping notes simultaneously possible. Two synthesizers using voltage-
controlled filter techniques appear in Figs. 10-5 and 10-6.

ACTIVE HOLLOW OR WOODY
LOW-PASS E>
I | | | :> W-pAS (CLARINET}
SQUARE WAVE
/1/1/1/] JAcrive E> BRIGHT STRING
) GH-PA (VIOLINY
SAWTOOTH
ACTIVE
MELLOW STRING
LOW-PASS l:>
/‘/\/‘/‘ D prhiet CELLO)
SAWTOOTH
/l/\/l/] ACTIVE HORN
BANDPASS :}
» NDPAS (TRUMPET)
SAWTOOTH
MULTIPLE MPLEX HORN
/\/1/1/] (= BANDPASS = CBASSUON)
FILTER
SAWTOOTH i
/‘/1/1/] FUNDAMENT AL PURE TONE
FILTER (FLUTE)
SAWTOOTH

Fig. 10-4. Active formant filter basics.

Percussion Generators

The transient response of a bandpass filter can be used as a simple
bell or chime by following the design guidelines of Chapter 7. With
several transient generators, we can produce most of the percussion
music voices, particularly if some white noise or modified noise is
properly introduced at the same time. A two-step decay often gives
the most realistic responses. A struck bell or cymbal has a distinct
“clang” at the instant it is struck, followed by a long drawn out decay
of relatively pure tone.

For more information on electronic music technique, see Electro-
notes (203 Snyder Hill Road, Ithaca, NY 14850), a series of articles
beginning in the September 1973 Popular Electronics, and the Feb-
ruary 1974 Radio Electronics. Synthesizer techniques are often cov-
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Courtesy PAIA Electronics
Fig. 10-5. Synthesizer using VCF techniques.

Courtesy PAIA Electronics

Fig. 10-6. “Gnome” microsynthesizer uses active voltage-controlied filter.
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ered on a professional level in the Journal of the Audio Engineering
Society, and the characteristic sounds of traditional instruments are
often analyzed in depth in the Journal of the Acoustical Society of
America.

AUDIO EQUALIZERS

Any time you want to emphasize or de-emphasize a portion of the
audio spectrum, an active filter can be used. Most often, we are deal-
ing with damped filters for low-pass and high-pass responses and
with very moderate Q values (from 2 to 5) for bandpass applications

CUT <e—= BOOST

ACTIVE
BANDPASS
FILTER

ACTIVE
€ BANDPASS
FILTER

ACTIVE
€ BANDPASS
FILTER

OP AMP

INPUT O— W OUTPUT

ACTIVE
< BANDPASS
FILTER

FEEDBACK LOOP

SLIDE POTS

Fig. 10-7. Graphic equalizer uses multiple active filters within a single feedback loop.

for general audio use. This means that the active filters become ex-
tremely simple and economical to use for general audio applications.

One currently popular form of spectrum modifier is the graphic
equalizer. This most often consists of a bank of slide potentiometers
that emphasize or de-emphasize portions of the audio spectrum. The
graphic equalizer is used to improve or match apparent room acous-
tics, to modify or match instruments, to add special effects to an
otherwise dull recording, to improve speech intelligibility on a noisy
channel, and similar tasks.

Often the individual filter channels are made of single-op-amp,
low-Q, active bandpass filters. These are usually placed inside the
feedback loop of an operational amplifier as shown in Fig. 10-7. This
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Courtesy Southwest Technical Products Corp.

qualizer yses eigh active filters.

Fig. 10-8. Graphic

feedback provides a “boost” or “cut” operation where each slide con-
trol provides a flat response in the middle of its range and provides
progressively more emphasis or de-emphasis as the limits of the slider
are approached. Fig. 10-8 shows a kit stereo 18-channel equalizer;
Fig. 10-9 shows one of the internal circuit boards. Note the extreme
simplicity and compactness of the circuit. More details on these
equalizer techniques appear in the May 1974 Popular Electronics.

QUADRATURE ART

The state-variable active filter has opened up an interesting new
art form we can call quadrature art. It is based on the fact that there

Courtesy Southwest Technical Products Corp.
Fig. 10-9. Inside of equalizer shows nine active filters. Note extreme simplicity
and compactness.
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are two 90-degree (quadrature) phase-shifted outputs available from
these filters. Route these outputs to an X-Y display system, such as
a plotter or an oscilloscope, and drive them from a source of interest-
ing audio signals and you generate unique families of constantly
changing closed-line art forms. The basic setup is shown in Fig.
10-10, and some of the simpler response curves appear in Fig. 10-11.

The key to the system is that two 90-degree phase-shifted sine
waves generate a circle. The size of the circle is set by the input
amplitude. If the input is changing, the relative phase shifts of the
two outputs also change, generating the unusual response plots. In
addition, the active filter provides a transient response and ringing
to sudden changes that get added to the normal steady-state response
to a slowly changing input. Together the two add up to a wild variety

of possibilities.
0SC ILLOSCOPE O

X9 oy
FUNCTION SECOND-ORDERJLPOUT | 0
GENERATOR STATE -

R VARIABLE PLOTTER

AUDIO SOURCE FILTER o o0t

Fig. 10-10. Basic quadrature art setup.

It is rather hard to set down some rules for this new art form. Nor-
mally the frequencies of the input signals are much lower than the
center frequency of the active filter. The filter Q sets the tightness or
the number of turns of any spiral. The total number of lumps in the
response depends on the ratio of input frequency to filter frequency.
The amplitude of the input sets the size of the output display. Grad-
ual input changes elicit the forced or steady-state filter response,
while abrupt input changes produce the transient response.

Varying the ratio of the X gain and the Y gain changes the aspect
ratio of the display, from elliptical to circular to elliptical forms
again. The photos of Fig. 10-11 show fixed, single-input, steady-fre-
quency responses to the various square, ramp, pulse, and triangle
outputs of an ordinary function generator. You can get considerably
more-elaborate displays when the inputs are changing or are a com-
bination of many sources. Driving the filter from a music synthesizer
offers many dynamic possibilities.

Raster-scan (tv-type) displays present a few problems and cannot
directly be driven by a quadrature art system, except at very low
speeds. One way around this is to remove the yoke from the picture
tube of a conventional tv set, leaving it connected to the rest of the
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Courtesy Synergetics

Fig. 10-11. Some elementary quadrature art forms.
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circuit. A new yoke is then placed on the picture tube and driven
from a stereo amplifier. This converts the tv from a raster scan to an
XY scanning system.

Some spot protection that blanks the display when the input am-
plitudes of both deflection amplifiers hit zero is recommended. This
prevents phosphor burns and gives the best appearance. Another
approach to raster-scan display of quadrature art is to use some form
of digital memory between the active filter and the final raster-scan
display.

OSCILLATORS AND SIGNAL SOURCES

Provide enough external feedback to almost any filter and you can
convert the filter into an oscillator or signal source. Let us look at a
typical example:

Suppose you wanted a constant-amplitude, low-distortion sine-
wave oscillator that you could voltage-tune, say, over a 1000:1 fre-
quency range or more. How would you go about it?

Most of the traditional ways to do this { heterodyning two radio
frequencies, Wein bridge circuits with agc loops, diode break distor-
tion networks, etc.) have one or more problems that limit the design
or performance. How can active filters with feedback do any better?

Fig. 10-12 shows one possibility. We build a state-variable, elec-
tronically tunable (see Chapter 9) active bandpass filter with unity

N[ BANDPASS ] . LIMITER
ACTIVE . OR
FILTER J} COMPARATOR
f TUNE |
fo S
TUNING IN JUU\ H”[”
{SETS FREQUENCY} S INE OUT
SQUARE OUT

Fig. 10-12. Wide-range sine-wave/square-wave signal source using state-variable or
biquad active filter.

gain, covering the frequency range of interest. We take the bandpass
output and run it into a constant-amplitude square-wave converter,
such as a limiter or a comparator. We then take the output square
wave and route it right back to the input of the active filter.

What happens? The square wave is always of constant amplitude.
Its fundamental frequency always equals the center frequency of the
active filter (except during sudden changes), and the output ampli-
tude of the sine wave will also be constant.
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A square wave consists of a fundamental and a group of odd har-
monics. The third harmonic will be 1/3, or 33%, of the amplitude of
the fundamental. The fifth harmonic will be 1/5, or 209, and so on.
The bandpass filter is set to the fundamental frequency of the square
wave, so it strongly attenuates the third harmonic and even more
strongly attenuates the higher harmonics.

As you change frequency, the active filter temporarily adds or
removes enough phase shift while the frequency is shifting to move
the output in the right direction to reach the new frequency.

The Q of the active filter trades off the sine-wave distortion against
the speed with which you can slew or sweep the response without
transient effects during a frequency change. For instance, with a Q
of 10, Fig. 5-6 tells us that we would get an attenuation of around 28
dB to the third harmonic. This would reduce the distortion to slightly
over 2%. A distortion of 0.2% can theoretically be obtained with a Q
of 40, again with values read from Fig. 5-6, and higher Qs will yield
still lower distortion values.

On the other hand, with a Q of 10, you will not want to change
frequency faster than something like 109 per cycle unless you want
violent changes in amplitude during the change process. With a Q
of 40, this limit moves down to 2.5% per cycle and so on. If you
change frequency well under these limits, the amplitude stays con-
stant as you change frequency. Above these limits, you can go
through some wild amplitude gyrations before you get a final output
of stable value. By the way, it is important to make sure the trip
points on the sine-to-square-wave converter are identical for positive
and negative cycles; otherwise, some second-harmonic distortion will
be introduced.

As plus benefits of this technique, you get a “free” pair of 90-
degree phase-shifted outputs if you use the low-pass output as well,
along with the equivalent frequency square wave.

TEST AND LAB FILTERS

A universal, wide-range fourth-order active filter is useful for gen-
eral-purpose audio testing, eliminating noise in experimental setups,
designing tone systems, and so on. You can build one yourself, using
the guidelines of Figs. 6-24 and 8-23. A version that gives fourth-
order high- and low-pass responses, which can be switched in decade
steps and adjusted smoothly over a 10:1 range, works well for many
applications. Simple switching allows for either Bessell (highly
damped) or Butterworth (maximum-flatness or critically damped)
responses. One possible package is shown in Fig. 10-13.

These instruments are also available commercially, either as a
complete system (Fig. 10-14) or as individual modular blocks (Fig.
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active filter

S P reaen

Courtesy Synergetics

Fig. 10-13. Generalpurpose lab or shop filt

Courtesy lthaco

Fig. 10-14. Precision variable active filter.
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Courtesy Burr-Brown Research Corporation

Fig. 10-15. Commercial active-filter modules.

10-15). Bandpass filters as well as high/low versions are also possi-
ble. One configuration would have two poles and control of pole Q
and staggering. A group of fixed-frequency active filters is shown in

Fig. 10-16.

Courtesy Frequency Devices, Inc.
Fig. 10-16. Group of fixed-frequency active filters.
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SPEECH THERAPY

Visual feedback of sound is useful as a training aid to help cure
speech impediments such as stuttering and some forms of mental
retardation. Fig. 10-17 shows one possibility. We take a microphone
pickup and divide the audio into many narrow channels using active
bandpass filters. The energy in each channel is detected and used to
control either a single colored lamp or LED, or else to combine the
outputs on some sort of bar graph or color-tv display. Similar tech-
niques are involved in speech analysis and computer-based artificial-
speech-generation circuitry.

ACTIVE
BANDPASS
FILTER

ACTIVE
BANDPASS
FILTER

ACTIVE
BANDPASS *
FILTER

PREAMP

ACTIVE
MICROPHONE BANDPASS

FILTER

ACTIVE
BANDPASS T
FILTER

ACTIVE L
BANDPASS
FILTER LED, LAMP ARRAY

I OR TV DISPLAY

| ACTIVE
BANDPASS

FILTER

Fig. 10-17. Speech-therapy system uses active bandpass filters.

AN ALWAYS-ACCURATE CLOCK

One method of making a digital clock self-resetting and always
accurate is to tie it into one of the time services of the National
Bureau of Standards. These services present timing information that
can be recovered as a parallel code. The code can then be loaded
into a clock to correct its time display.
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DIGITAL CLOCK

I2:559:02

14

100-+z
LEVELER
wwy ACTIVE CODE
RECEWER ||  low-pass (7= MO L ™1 converter
FILTER

Fig. 10-18. Self-resetting, always-accurate clock.

The timing information of the radio station WWYV service ap-
pears as a 100-Hz subcarrier on the audio. The audio output of a
communications receiver (Fig. 10-18) is routed through an active
filter that sharply attenuates everything about 100 Hz and mildly
attenuates the lower frequencies to eliminate power-supply hum and
extra noise. Since extra attenuation of 100-Hz signals can be
contrib-uted by the output amplifier and particularly by the
output trans-former, the signal is best obtained directly at the
detector or at a low-level audio stage.

The output of the active filter is stabilized in amplitude and then
converted into a series of pulses whose time width establishes one
bit at a time of a complete code. The bits arrive at a one-per-second
rate. A binary zero lasts 0.2 second; a “1” lasts 0.5 second, and a con-
trol or frame pulse lasts 0.8 second. The serial code is then converted
to a parallel word with a shift register and then loaded into the tim-
ing system for automatic correction. More information on these tech-
niques appears in NBS Special Publication No. 236.

PSYCHEDELIC LIGHTING

Most psychedelic lighting systems relate a visual display of some
sort to music. One approach is shown in Fig. 10-19. We take an audio
signal from the speaker system, chop it up into spectral chunks with
a group of active bandpass filters, and then control a semiconductor
controlled rectifier (SCR) or a triac in proportion to the amplitude of
the signals in each channel. The SCR or triac then drives the load,
several hundred to a few thousand watts of light. The blue lamps
follow the lows, the yellows the accompaniment, the reds the rhythm,
and so on, or whatever color combination is selected. The lamps can
be projected onto a display or viewed through patterned but trans-
parent plastic materials to create the final display effects.

Two-pole bandpass filters one-octave wide (2:1 frequency) with
a 1-dB dip in them are a good approach (see example of Figs. 5-18
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Fig. 10-19. Psychedelic lighting system.

and 7-16). A Q of 3.2 does the job, allowing any of the single op-amp
circuits of Chapter 7 to handle the task. One important precaution in
active psychedelic filtering is to leave gaping holes in the spectrum
between the filters, perhaps as in the response of Fig. 10-20. This is
important because of the strong harmonic content of music and the
fact that you do not want all the lamps lit at all times. Further, the
dropouts that happen when an instrument hits the guard bands be-
tween filters add considerably to the liveliness and interest of the
display. Long-term agc or automatic volume control can be used to
minimize long-term effects of loudness changes.

Design details on an early all-active-filter, six-channel, stereo psy-
chedelic lighting control appear in the September 1969 Popular
Electronics.

TONE SIGNALING

There are lots of different ways to communicate by means of tones
over a wire, cassette recorder, or phone line. Some older and some-
OCTAVE-WIDE

GUARD BANDS (IXZ“TA[\)IFF;WIDE
BETWEEN FILTERS ACTIVE BANDPASS

Ay

FREQUENCY

AMPLITUDE

Fig. 10-20. R ded filter

ing for psychedelic lighting.

g
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what standardized systems used a single tone of one frequency, as-
signed to one of a dozen or more channels. The tones can be used in
alarm systems, for industry telemetry, for process monitoring, or for
anything else that needs a simple “yes-no” or “on-off” remote con-
trol. Active filters can be used with feedback for tone generation and
can be used for detection or demodulation. Often the best detection
route combines an active filter with a phase-lock-loop demodulator
integrated circuit.

More modern systems use the standard touch-tone signaling fre-
quencies. Typical system architecture is shown in Fig. 10-21, and the
standard frequencies appear in Fig. 10-22. The touch-tone frequen-
cies consist of eight assignments in two groups of four each. To
signal, two tones are simultaneously sent, one tone from the low
group and one tone from the high group. At the receiving end,
both tones are detected and an output is provided only if both tones
are simultaneously present. The two-tone system gives lots of immu-
nity from noise and interference. As a side benefit of the system, the
touch-tone dial of the telephone itself can often serve in place of a
transmitter.

Other tone-signaling schemes that involve active filters appear in
tape/slide synchronization systems and in cassette automatic phone-
answering systems. The active filters normally serve to reject un-
wanted signals and false alarms while passing on the desired signal
or tone.

MODEMS

A modem is a modulator-demodulator that lets you transmit digi-
tal data over a phone line or to a cassette recorder. A typical modem
setup is shown in Fig. 10-23, and the key frequencies of two popular
modem systems are shown in Fig. 10-24,

Active filters often greatly simplify modems designs. For modem
transmitters, the active filter makes sure that only sine waves of the
correct frequency are transmitted, eliminating any harmonic prob-
lems that could add noise and errors to data systems. At the receiving
end, active filters are used to eliminate potential interference from
out-of-band signals. In some circuits, they form the actual tone-de-
tection circuitry. A more popular combination combines an active
prefilter with a phase-locked-loop detector that does the actual tone
reception.

Active filters for modems must be designed so that all frequency
components of a digital pulse waveform are delayed by an equal
amount. Otherwise, portions of the filtered signal will “slop over” into
the available time slot for the next bit of information. This is called
the group delay distortion problem. All active filters used in modem

229



receivers must be carefully designed, or else they have to be special
versions that carefully control the group delay to acceptable error-
rate levels. More details on modem filters appear in Motorola Appli-
cation Note AN-731.

un I—«m—Jo———— HIGH
2 GROUP
1336 er_Jo—— 0sC

1209 l—m—«/ FrO—
COMBINER

AND
ACTIVE FILTER

.74 rWF—JO_ Low
GROUP
0sC

m [ %— OPTIONAL

(A) Transmitter.

1633 DET
1477 DET
1336 DET
1209 DET 3 ;
AMPLIFIER —
N o0— AND 2'2" R
ACTIVE FILTER —
sic [
941 DET ]
—_o 0
—0 %
—3%
OUTPUTS
T70DE
697 DET

(8) Receiver.

Fig. 10-21. Touch-tone communication uses 2-of-8 code.
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Fig. 10-22. Standard touch-tone frequencies. Two tones are always
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Fig. 10-23. Modems allow digital data transmission over the telephone system.
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300 Bits/Second (Bell 103 Standard)
Two-Way (full duplex), Voice-Grade Line

Originate Mode: “’Space’” = “0’* = 1070 Hz
“Mark” =1 = 1270 Hz
Answer Mode: “Space’”’ — 0’ == 2025 Hz
“Mark’ = "1 == 2225 Hz

(Also disables echo suppressors
on phone network)

1200 Bits/Second (Bell 202 Standard)
One-Way, Yoice-Grade Line

“Space’” = “0"” = 1200 Hz

“Mark’ = 1" == 2200 Hz

Fig. 10-24. Standard frequencies for two popular modem systems.

OTHER APPLICATIONS

The telephone industry probably uses more active filters than any-
one else. They were the inventors of active filters, and they continue
to lead in the development of theory and practical circuits for their
use. Active filters are used to combine many voice or data channels
together onto a common carrier for cable, microwave, or satellite
transmission. Different types of active filters are used to continuously
measure and adjust the characteristics of telephone lines for best
quality and minimum error rate in digital communications. Some of
these circuits are called adaptive equalizers. Echo suppressors, which
improve voice communications over long distances but which must
be disabled for digital data use, are controllable by active filters.
Another application area involves the combination of supervisory
and control signals with voice and data messages and, later, their
separation for recovery of the messages.

We can expect to see active filters emerging strongly in automotive
electronics, pollution control systems, and environmental sciences in
general.

Geology and the earth sciences use active filters in studies of grav-
ity anomalies, earthquake prediction, and studies of geomagnetic
micropulsations. Active filters also aid the study of magnetic fields,
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particularly for proton magnetometers, where miniscule signal rang-
ing from 1600 to 200 Hz must be extracted and accurately measured
from a substantial noise background.

Much of medical electronics can use active filters to advantage,
where tiny signals, be they heart rhythms, pressure signals, nerve
impulses or whatever, are buried in a noisy environment and must
be recovered for display, control, or analysis.

As the simplicity and ease of applying active filters becomes better
known, we can expect more and more in the way of applications, par-
ticularly when the simple, compact, and low-cost methods we have
shown you are used. What can you do with them?

233



References

Colin, Denis P. “Electrical Design and Musical Applications of an Uncondition-
ally Stable Combination Voltage Controlled Filter/Resonator.” Journal of the
Audio Engineering Society, Vol. 19, No. 11, December 1971, pp. 923-8.

Fleischer, P. E. “Design Formulas for Biquad Active Filters Using Three Opera-
tional Amplifiers.” Proceedings of the IEEE, May 1973, pp. 662-3.

Herrington, D. E., and Meacham, Stanley. Handbook of Electronic Tables and
Formulas. Indianapolis: Howard W. Sams & Co., Inc., 1959,

Kerwin, W. J. “State Variable Synthesis for Insensitive Integrated Circuit Trans-
fer Functions.” IEEE Journal of Solid State Circuits, Vol. SC-2 September
1967, pp 87-92.

Mitra, S. K. Active Inductorless Filters. New York: IEEE Press, 1971.

Sallen, R. P. “A Practical Method of Designing RC Active Filters,” IRE Trans-
actions Circuit Theory, Vol. CT-2, March 1955, pp. 74-85.

Tobey, G. E.; Graeme, J. G.; and Huelsman, L. P., eds. Operational Amplifiers—
Design and Applications. New York: McGraw Hill, 1971.

Weinberg, L. Network Analysis and Synthesis. New York: McGraw Hill, 1962.

Westman, H. P. Reference Data for Radio Engineers. Indianapolis: Howard W.
Sams & Co., Inc., 1968,

Wittlinger, H. A. Applications of the CA3080 High Performance Operational
Transconductance Amplifiers. Application Note ICAN6668, New Jersey: RCA,
1973.

234



Index

A

Ac-cougled low-pass filter, 118-119
Active filter
advantages of, 8-9
circuit, 10-13
definition of, 8
frequency range, 9
Q of, 9-10
types, 13-18
Adaptive equalizers, 232
All-pass response, 63
Amplifier
current-summing, 23, 27-29
voltage, 26-27
Amplitude response
first-order
high-pass section, 53
low-pass section, 50
second-order high-pass section, 62
a,” staggering factor, 102
Audio equalizers, 218-219
Automotive op amp, 42

B

“«

Bandpass
circuit
Sallen-Key, 154-155
variable-gain
state-variable, 161
tuning of, 162
filter, 7
biquad, 159, 161, 163
circuits, 149
multiple-feedback, 150-154
design examples, 166
design rules, 165
mulhple-feedback
math analysis, 151-152
tuning of, 153-154
shapes, 91-92
second-order, 96-100

Bandpass—cont
response
three-pole
maximally flat filter, 114
maximum-peakedness filter, 113
1-dB dips filter, 114
2-dB dips filter, 115
3-dB dips filter, 115
sixth-order filter, 109-111
two-pole, fourth-order, 100, 102
section, second-order, 57-61
Bandstop response, 63
Bandwidth, 92
fractional, 92
percentage, 92, 93
Bessel filter, 72
Best-time-delay filter, 72
Biquad, 34
bandpass filter, 159, 161, 163
Brainwave research, 212-213
Butterworth filter, 72
overshoot, 80

C

Capacitance values for frequency scal-
ing, 145, 190
Capacitors
isc ceramic, 194
electrolytic, 194-195
Mylar, 194
polystyrene, 194
Carbon-film resistors, 195
Cascaded pole, 94
synthesis, 91
Cascading, 18
Cauer filter, 63, 208
Center frequency, 92
Chebyshev filter, 72, 73, 77
Circuits
bandgass filter, 149
tiple-feedback, 150-154
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Circuits—cont
equal-component-value Sallen-Key,
127-129
first-order
high-pass, 170-171
low-pass, 119-121
second-order
high-pass, 171-183
low-pass, 121
unity-gain
Sallen-Key, 121-127
state-variable, 129-130
variable-gain
state-vsagiable filter, 135-136, 181-
1

bandpass, 161
Clock, always-accurate, 226
Compensation, internal, 42
Compromise filter, 72
Critical damping, 12
Current, offset, 25
Current-summing amplifier, 23, 27-29
Curves, design examples in use of, 90
Cutoff frequency, 10, 13, 18

limits, for op amps, 190

D

Damping, 12, 18, 55
critical, 12
Dc bias path, 119
Decibel chart, 19
Decibels, 18
Design examples
high-pass hlters 191-193
low-pass filter, 146-148
Design rules
bandpass filters, 165
high-pass filter, 185
low-pass filter, 140-141
Digital control of frequency, 198
Disc ceramic capacitors, 194
Dynamic range, op-amp, 36

E

Echo suppressors, 232
Electrolytic capacitors, 194-195
Electronic
music, 213-217
tuning, 198-200
Elliptical filter, 63, 208
Equal-component-value
filter, 14-15
Sallen-Key
circuit, 127-129, 175-176
second-order high-pass
adjustment, 176
Equalizers
adaptive, 232
audio, 218-219
graphic, 218

circuit,
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F

Feedback, positive, 13
Fifth-order

high-pass
circuits, 30-dB rolloff, 188
filter, 84

low-pass
circuits, 30-dB rolloff, 143
filter, 76

Filter

active
advantages of, 8-9
definition of, 8
applications, 212-234
bandpass, 7
bandwidth, 92
Bessel, 72
best-time-delay, 72
Butterworth, 72
Cauer, 63, 208
Chebyshev, 72, 73, 77
components, 194
compromise, 72
defined, 7
elliptical, 63, 208
equal-component-value, 14-15
fifth-order
high-pass, 84
low-pass, 76
flattest-amplitude, 72, 94
formant, 63
fourth-order
high-pass, 83
low-pass, 75
high-pass, 7
lab, 223-224
low-pass, 7, 10
multiple-feedback bandpass, 15
notch, 205-207
one-dB dips, 73, 77
order of, 66-67
passive, 8
Paynter, 72
response shape, 67-69
Sallen-Key, 14-16
second-order
bandpass, 96-100
high-pass, 81
low-pass, 73
sensitivity, 21
shaﬁe options, 94-96
sixth-order
high-pass, 86-87
low-pass, 78-79
slight-dips, 72
state-variable, 16-17
test, 223
third-order
high-pass, 82
low-pass, 74
three-dB dips, 77



Filter—cont
transitional Thompson-Butterworth,
72

two-dB dips, 77
unity-gain, 14
voltage-controlled, 215-216
First-order
high-pass
circuits, 170-171
6-dB rolloff, 183
filter response, 81
section, 48-50
low-pass
circuits, 119-121
6-dB rolloff, 138
response, 72
section, 47-48
networks, 44-53
Flattest-amplitude filter, 72, 94
Formant
filter, 63
filtering, 214-215
Four-quadrant multiplier, 199-200
Fourth-order
high-pass
circuits, 24-dB rolloff, 187
filter, 83
low-pass
circuits, 24-dB rolloff, 142
filter, 75
elliptical, 210
two-pole 2bandpass response, 100,
10!

Fractional bandwidth, 92
Frequency
change
by voltage control, 198
by digital control, 198
cutoff, 10, 13, 18
limits
bandpass filters, 164
upper cutoff, 145
range of active filters, 9
scaling, Sa(l)pacitance values for, 145,
1

tolerance and sensitivity, example,
117

G

Gain, open-loop, 36
Graphic equalizers, 218
Ground, virtual, 27-28

H

High-pass
circuits

fifth-order 30-dB rolloff, 188
first-order, 170-171
first-order 6-dB rolloff, 183
fourth-order 24-dB rolloff, 187
second-order, 171-183
second-order, 12-dB rolloff, 184

High-pass—cont
circuits
sixth-order, 36-dB rolloff, 189
third-order, 18-dB rolloff, 185
unity-gain Sallen-Key, 171-175
filter, 7
characteristics, 77-78
circuits, 169-193
list of pitfalls, 191
design examples, 191-193
design rules, 185
fifth-order, 84
fourth-order, 83
response curves, 80-84
filter
response
rst-order, 81
math analysis, 80
restrictions on use, 169-170
second-order, 81
sixth-order, 86-87
third-order, 82
section
first-order, 48-50
second-order, 62-63
state-variable, second-order section,
math analysis, 177-178

1

Insertion loss, two-pole bandpass filter,
105

Integrator, 23, 31-34
waveforms, 32

Internal compensation, 42

Inverting input, 24

K
K, gain value, 65
L

Lab filter, 223-224
Low-pass
circuits
fifth-order, 30-dB rolloff, 143
first-order, 6-dB rolloff, 138
fourth-order, 24-dB rolloff, 142
second-order, 12-dB rolloff, 139
sixth-order, 36-dB rolloff, 144
third-order, 18-dB rolloff, 140
filter, 7, 10

ac-coupled, 118-119
design examples, 146-148
fifth-order, 76
fourth-order, 75

elliptical, 209
second-order, 73

elliptical, 208
sixth-order, 78-79
third-order, 74

elliptical, 209
types, 118-119
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Low-pass—cont
response curves, 70-77
math analysis, 70-71
section
first-order, 47-48
second-order, 50-57

M

Manual tuning, wide-range, 195
Math analysis
high-pass filter response, 80
low-pass response curves, 70-71
multiple-feedback bandpass
151-152
single response pole, 96-98
second-order
bandpass section, 58
high-pass section, 61
low-pass section, 54-55
Sallen-Key, high-pass, second-order
section, 171-173
state-variable, high-pass, second-
order section, 177-178
three-pole bandpass response, 111
tolerance and sensitivity, 88
transmission-zero filter, 207
two-pole04bandpass response, 102-
1

filter,

Maximum-peakedness response, 94
Metal-film resistors, 195
Modems, 229, 231-232
Multiple-feedback bandpass

circuit, 150-154

filter, 15

filter, math analysis, 151-152
Multiplier

four-quadrant, 199-200

two-quadrant, 203
Music, electronic, 213-217
Mylar capacitors, 194

N

National Bureau of Standards, 226
Networks

first-order, 44-53

second-order, 43, 54-65
Noninverting input, 24
Normalization, 18, 44-45
Normalizing rules, 45
Notch filters, 205-207

o

Offset, 35
current, 25
One-dB dips filter, 73, 77
Open-loop gain, 36
Operational amplifier (op amp ), 23
automotive, 42
characteristics, 37-40
cutoff frequency limits, 190
dynamic range, 36
uses of, 23
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Order, of a filter, 18, 20, 66-67
Oscillators, 222-223
Overshoot, Butterworth filter, 80

P

Passive filter, 8
Paynter, filter, 72
Percentage bandwidth, 92, 93
Percussion generators, 216
Phase response
first-order
high-pass section, 53
low-pass section, 50
second-order
bandpass section, 59
high-pass section, 62
low-pass section, 56
Phone-answering systems, 229
Polystyrene capacitors, 194
Positive feedback, 13
Psychedelic lighting, 227-228

Q

Q, 20, 60
active filters, 9-10
limits, bandpass filters, 164
state-variable bandpass circuit, tun-
ing of, 160
tolerance 7and sensitivity, example,

11
Quad bilateral switch, 201
Quadrature art, 219-222

R

Raster-scan display, 220, 222
Rejection slope, 67
Resistors

carbon-film, 195

metal-film, 195
Resonance frequency, 92
Response

characteristics

two-pole
maxir_;)ally flat bandpass filter,
10

maximum-peakedness bandpass
filter, 106
1-dB dip bandpass filter, 107
2-dB dip bandpass filter, 108
3-dB dip bandpass filter, 108
curves
high-pass filters, 80-84
low-pass filters, 70-77
use of, 85-86
examples, 90
first-order low-pass, 72
maximum-peakedness, 94
Ringing, 165, 168
and decay times, bandpass pole, ex-
amples, 167



Sallen-Key
circuits
bandpass, 154-155
equal-component-value, 127-129,

175-176
second-order high-pass, adjust-
ment of, 176
unity-gain, 121-127
filter, 14-16
high-pass, second-order section,

math analysis, 171-173
low-pass, second-order section, math
analysis, 122-124
unity-gain, second-order, high-pass
section, adjustment, 174
Scaling, 20-21, 44-47
rules, 46
S, complex variable, 65
Second-order
bandpass
circuits, 95
filter, 96-100
section, 57-61
math analysis, 58
phase response, 59
elliptical, low-pass filter, 208
high-pass
circuits, 171-183
12-dB rolloff, 184
filter, 81
section, 60, 62-63
ampfitude response, 62
math analysis, 61
phase response, 62
low-pass
circuits, 121
12-dB rolloff, 139
filter, 73
section, 50-57
math analysis, 54-55
phase response, 56
networks, 43, 54-65
Sensitivity
analysis, 78, 88-89
filter, 21

Shape
OF filter response, 67-69
option, 21
Signaling
tone, 228-229
touch-tone, 229
Single-pole bandpass
circuits, 95
filter design examples, 101
Single response pole, math analysis,
Sixth-order
high-pass
circuits, 36-dB rolloff, 189
filter, 86-87

Sixth-order—cont
ow-pass
circuits, 36-dB rolloff, 144
filter, 78-79
Slew rate, 34-35, 36
Slight-dips filter, 72
Slope, rejection, 67
Speech therapy, 226
Staggering factor, “a,” 102
State-variable
filter, 16-17, 156-157
ban({pass5 gﬁlter, math analysis, 157-
1

high-pass, second-order  section,
math analysis, 177-178
low-pass, second-order section, math
analysis, 130-132
Summing block, 30-31
Switching, §70 change filter response,
19

Synchronization, tape/slide, 229

T

Tape/slide synchronization, 229
Test filter, 223
Third-order
high-pass
circuits, 18-dB rolloff, 185
filter, 82
low-pass
circuits, 18-dB rolloff, 140
elliptical flter, 209
filter, 74
Thompson-Butterworth filter, 72
Three-dB dips filter, 77
Three-pole
bandpass response, math analysis,

curves, example of use, 116
maximally flat bandpass response,

maximum-peakedness bandpass re-
sponse, 113
1-dB dips bandpass filter response,

114

2-dB dips bandpass filter response,
11 -

3-dB dips5 bandpass filter response,

sixth-order bandpass response, 109-
111

Tolerance

analysis, 88-89

and sensitivity, math analysis, 88
Tone signaling, 228-229
Touch-tone

frequencies, standard, 231

signaling, 229
Transconductance amplifier, 204
Transfer function, 21, 66-67
Transformation, 1/f, 16, 50
Transient response, 165, 168

239



Transmission-zero filter, math analysis,

Tuning
electronic, 198-200
manual, wide-range, 195
Two-dB dips filter, 77
Two-pole
bandpass filter, insertion loss, 105
bandpass response, math analysis,
102-104
curves, use of, an example, 109
fourth-ordzer bandpass response, 100,
10
maximally flat bandpass filter, re-
sponse characteristics, 107
maximum-peakedness bandpass fil-
t%r, response characteristics,

106
1-dB dip bandpass filter, response
characteristics, 107
2-dB dip bandpass filter, response
characteristics, 108
3-dB dip bandpass filter, response
characteristics, 108
Two-quadrant multiplier, 203
u
Unity-gain
Sallen-Key
circuits, 121-127
high-pass circuit, 171-175
second-order high-pass section,
adjustment, 174
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Unity-gain—cont
filter, 14
state-vartig%ble circuits, 129-130, 177-
1
adjustment, 134
second-order high-pass section ad-
justment, 180
Upper cutoff frequency limits, 145

A%

Variable-gain, state-variable
bandpass circuit, 161
tuning of, 162
circuits, 135-136, 181-183
tuning, 137
second-order high-pass section, ad-
justment, 182
Virtual ground, 27-28
Voltage
amplifier, 26-27
follower, 23, 25-26
control of frequency, 198
Voltage-controlled filters, 215-216

w

Waveforms, integrator, 32
Wide-range tuning, manual, 195
WWV, 227

WWVH, 227

Z
Zero—transndission filter, math analysis,
207
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