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Preface 
This textbook is designed for the person continuing a study of basic electricity. It provides the 

general information, theory, and problem-solving techniques required for an analysis and 

application of alternating current (ac) circuits—from the simplest to the most complex. Its aim 

is to help provide a solid foundation for the person interested in learning the concepts and 

principles of basic electricity and then, if the opportunity arises, in advancing in the studies of 

physics, electronics, computer science, and engineering. The book is written both as a textbook 

for classroom students and instructor and as a textbook for individualized learning. It has been 
written and organized in a way that will help the reader best acquire the knowledge necessary 

to analyze ac circuits, and to gain a basic understanding of some of the measurement 

techniques used in such analysis. Each lesson has specific objectives, detailing exactly what 

the reader should know or be able to do after completing the lesson. 

Even though a knowledge of simple algebra in mathematics and a basic understanding of 
direct current (dc) circuits is assumed, new concepts and terms and the necessary mathematics 
are introduced as needed with illustrative examples. Detailed computations are carried out 

step by step so that algebraic methods, the use of exponents and scientific notation are 
easily understood. 

The book begins with an introduction to alternating current, how an alternating voltage is 

generated and why the sine function describes the characteristics of such a voltage and the 
resulting circuit current. 

Since the oscilloscope is such a basic measuring tool for observing alternating voltages and 

currents a lesson is devoted to describing it before continuing with resistive ac circuit analysis 

New concepts of capacitance and inductance and their action in ac circuits are discussed 

and then respective circuit analysis techniques are covered for series and parallel resistive-
capacitive and resistive-inductive circuits. Contained within the inductance lesson is the 

important discussion of mutual inductance and transformers. 

Since the reaction of inductance and capacitance in circuits that have time-varying voltages that 

produce time-varying currents is so important to ac circuit analysis, a lesson on time constants 
for resistive-capacitive and resistive-inductive circuits is included. 

Building on prior lessons, more complex circuit analysis continues by including resistive, 
capacitive and inductive components all at the same time in series, parallel and combination 

series-parallel ac circuits. Right triangle analysis is replaced with phasor algebra with the 
introduction of imaginary numbers so that the techniques of analyzing the most complex ac 
circuit are presented. 

A discussion of the special case in ac circuits where the ac frequency is varied to resonance 

completes the text. 

The text is not written to support theories with complete rigid mathematical proofs but is . 

written to explain the fundamental ideas so the reader may understand how to put electricity 
to use in practical ways. We hope we have succeeded in that goal. S.F. 

C.R. 
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Features of This Book 
As stated in the preface this book is designed primarily for the person continuing a study of 
basic electricity the entry level student. It assumes that the reader has a basic knowledge of 

the principles of direct current (dc) electricity and a basic mathematics background that 
includes algebra. 

There are several features of this book specifically designed to increase its efficiency and help 

the reader grasp the principles of analyzing ac circuits. 

1. At the beginning of each lesson, detailed objectives are listed. These objectives state 

what new things you should be able to do upon successful completion of the lesson. It 

is suggested that these objectives he read before beginning the lesson. 

2. Although this book is designed to be a stand-alone text, it is also an essential part of a 
Texas Instruments Learning Center videotape course. This book, however, contains 

supplemental material not included in the videotape. For this reason, the book has 
been organized in a special way. All of the figures which are in the videotape are 

enclosed in a heavy- line border; figures which are book-only have no border. 
Equations appearing on videotape are in bold-face (darker) type; book-only equations 

are in standard typeface. The person using the book as a stand-alone text needs to 

know of these variations but should disregard them. They are not important for 

understanding the material. 

3. At the end of each lesson there are three types of diagnostic material to help the 

reader understand better the basic concepts and apply the principles and techniques 

discussed in the lesson. One is a set of worked-through examples, with detailed 
step-by-step solutions. These worked-through examples apply the theory in each 

lesson to typical applications involving ac circuits. In this way you are led from the 
knowledge of the concepts you need to know, to the application of those concepts to 

ac circuit problems and applications. 

Another is a set of practice problems with answers provided at the end of the text 
material. These problems give you the opportunity to try your new knowledge and test 

your accuracy applying that knowledge. 

Finally, there is a quiz consisting of questions with answers provided at the end of the 

text material. The quiz can be taken in a relatively short period of time, and it will 

indicate areas in which you are proficient and areas in which you need to further 

review key concepts and principles. 
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For Use With Videotape 
Although this book is designed to be a stand-alone text, it is also an essential part of the Texas 
Instruments Learning Center videotape course, "Basic AC Circuits." When using this book 
along with the videotape, you can increase your efficiency, retention, and enjoyment of the 
material by keeping the following points in mind. 

LISTEN FAST AND WATCH FAST. Videotaped lectures typically cover two to three times 
more material as a live instructor would in the same length of time. rhe steady pace of 
videotape gives you highly concentrated information and leaves no time for asking questions, 

daydreaming, or chatting. If the television lecture raises any question in your mind, jot it down 
quickly and get clarification after the tape, but put it out of your mind while you absorb the 
rest of the lecture. 

TAKE VERY FEW NOTES. This book contains all of the material that is in the videotape, 
including equations. It is, essentially, a printed record —often verbatim of the speaker's 
remarks. Limit any notetaking, therefore, to brief comments that will help you study later. 

This book contains supplemental material not included in the videotape. All of the figures 
which are in the videotape are enclosed by a heavy-line border; figures which are in the 
book only are borderless. All equations that are in the videotape are in bold-face (darker) type. 
Book-only equations are in standard typeface. Both of these aids should allow you to move to 
the next sequential video information quickly in the book, particularly the figures. 

KEEP YOUR PRIMARY ATTENTION ON THE TV SCREEN. While watching the 
videotape, you can use the book to get a closer look at the figures, but do not try to follow 
the speaker's words in the textbook. Although all of the material in the book is in the same 
sequence as it appears in the videotape, each lesson contains supplemental material. 
Therefore, trying to follow along using the book is too distracting. Special media techniques 
are used to link the speaker's voice and visual aids to your thinking, allowing quicker coverage 
and better retention. Take full advantage of this by keeping your primary attention on 
the videotape. 

RELAX. The TV lecturer will not be interrupted with questions. Nor will he ask for your 
opinions. You will be freed from such distractions so you can open your consciousness to 
absorb the material. 

ENJOY IT. Education using videotape coupled with special textbooks, such as this one, is one 
of the most effective ways to learn. Through the years, attendees at videotaped seminars and 
courses from Ti's Learning Center have found them to be informative, effective, and 
enjoyable. We hope you do too. 
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LESSON 1 

e Introduction 
to Alternating 
Current 
This lesson is an introductory lesson. Alternating 
current (ac) is defined and compared to direct current 
(dc), and the operation of an ac generator is discussed. 
Time, frequency and cyclic characteristics of the ac 
waveform are analyzed with examples provided for each 
concept. 
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INTRODUCTION 
TO ALTERNA [INC CURRENT 

Objectives 

At the end of this lesson you should be able to: 

1. Define an ac waveform and identify dc and ac waveforms from 
diagrams provided. 

2. Describe how an ac generator produces an ac waveform. 

3. Identify a cycle and the period of an ac waveform. 

4. Given the time of one cycle, calculate the frequency of the waveform. 

5. Given the frequency of a waveform, calculate the time of one cycle. 
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INTRODUCTION 
TO ALTERNATING CURRENT 

• Definition of Alternating Current 
• Generating An AC Waveform 1 
INTRODUCTION 

The action of alternating currents in 
circuits is the subject of this book. The 
electromagnetic wave displayed on an 
oscilloscope in Figure 1.1 is an electronic 
picture of alternating current and is one 
of the most useful and mysterious of all 
phenomena known to man. Waveforms 
such as this are radiating from radio, TV, 
telephone and other communication system 
antennas around the world each day. The 
alternating current in the antenna is a 
primary man-made source of electromagnetic 
waves. Words, music, TV pictures, other 
sounds are alternating currents amplified 
by various electronic circuits and applied 
to antennas to radiate through space 
and communicate information. 

It is a textbook designed to provide the 
general information, theory, and problem-
solving techniques required for an analysis 
of ac circuits from the simplest to the 
most complex. This first lesson provides 
an operational definition for ac with 
comparisons of ac and dc waveforms; 
theorizes and demonstrates the generation of 
an ac waveform; and introduces period and 
frequency relationships of ac waveforms. 

AC VOI.TAGE AND CURRENT 

Definition of Alternating Current 

AC is the abbreviation for alternating 
current. Alternating current is an electrical 
current which changes in both magnitude and 
direction. The term, magnitude, refers to the 

quantitative value of the current in a circuit— 
in other words, how much current is flowing. 
The term, direction, refers to the direction 
current flows in a circuit. 

.411111r 

f\ ñ 
V .V V V 

Figure 1.1 An AC Waveform Displayed on 
an Oscilloscope 

DC 
SUPPLY 

GALVANOMETER 

RESISTOR 

Figure 1.2 A Simple DC Circuit With a Galvanometer 

Generating An AC Waveform 

The simple dc circuit in Figure /.2 can be 
used to simulate alternating current. The 
circuit consists of a variable dc power supply, 
a resistor, and a galvanometer. The 

galvanometer is an ammeter with a center 
scale value of zero amperes. If current flows 
in the circuit in a counter-clockwise direction, 
the meter needle will deflect to the left. If 
current flows in a clockwise direction, the 
meter needle will deflect to the right. 
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INTRODUCTION 

To Ai TERNATING CURRENT 

II Plotting An AC Waveform 

With the circuit configuration as shown in 
Figure 1.3, electron current flow will be in 
a counter-clockwise direction. I f the power 
supply voltage is increased, the galvanometer 
needle will deflect to the left to some 
maximum current value. As the voltage is 
decreased to zero volts, current flow in the 
circuit will decrease to zero amperes. 

Therefore, a current flow has been predicted 
which changes in magnitude. This meets one 
of the two specified criteria for alternating 
current. To meet the other criterion, a 
change in direction, the polarity of the 

battery can be reversed as in Figure 1.4 
Notice that current now flows in a 
clockwise direction. 

As the power supply voltage is increased, the 
galvanometer needle deflects to the right to 
some maximum value. As the voltage is 
decreased to zero volts, current flow in the 
circuit decreases to zero amperes. 

Plotting an AC Waveform 

This alternating current can be represented 
in graphical form, as shown in Figure 1.5. 
Notice that the axes of this graph are 
specified to plot current versus time. Time is 
plotted on the horizontal, or X axis. Current 
is plotted on the vertical, or Y axis. The 
vertical axis is divided into a positive (+) 
current value above the X axis and a negative 
(—) current value below the X axis. This 
polarity designation is used simply to 
differentiate between direction of 
current flow. 

For this application, current flow in a 
counter-clockwise direction will be designated 
as positive current, and current flow in the 
opposite, clockwise direction, will be 
designated a negative current. The polarity 
and direction selections are arbitrary. 

GALVANOMETER 

DC 
SUPPLY 

Figure 1.3 Current Flow in a Counter-
clockwise Direction 

DC 
SUPPLY 

GALVANOMETER 

CCW l \ CW 

RESISTOR 

Figure 1.4 Current Flow in Clockwise Direction 

u 

(Y AXIS) R 
E 
N 

TIME 
(X AXIS) 

Figure 1.5 Graph Used to Plot AC Current 
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INTRODUCTION 
TO ALTERNATING CURRENT 

• AC Voltages 1 
With the circuit connected as in Figure /.3, 
current, 1, flows in a counter-clockwise 
direction, with current flow increasing and 
decreasing. Note that the direction of current 
stays the sanie. Only the value of the current 
is changed. Current in this direction is plotted 
in the top half of the graph to indicate 
positive current as shown in Figure 1.6. 

With the battery reversed as shown in 
Figure I.4, current now flows in a clockwise 
direction. The current always flows in the 
same direction. The magnitude of the current 
increases and decreases following the 
magnitude of the applied voltage, and the 
current is plotted in the negative (—) portion 
of the graph of Figure 1.7. This indicates 
negative current or, more precisely, a current 
that is flowing in a direction opposite to the 
direction originally chosen for positive 
current. Note the two distinguishing 
characteristics of this waveform. First, there 
is a change in current value—in this example, 
the change is continuous. Second, the direction 
of current flow has changed. This change in 
direction is indicated by the waveform 
crossing the X axis into the negative half of 
the graph. If these two criteria are met, the 
waveform can be categorized as an ac waveform. 

The particular waveform shown in Figure 1.7 
is only one type of an ac waveform, a sine 
wave. Other ac waveforms which meet the 
specified criteria for an ac waveform will be 
introduced later. 

AC Voltages 

If there is current flow in a circuit, a 
difference in potential, or voltage, must be 
present. The voltage, E, that produces an 
alternating current must change in the same 
manner as the current as shown by the 
diagrams in Figure 1.8. 

MAX 

(Y AXIS) 0 

MIN 

(X AXIS) 

N 

To   T. 
TIME 

4t. .0# 

Figure 1.6 Current Plotted in Positive Direction 

MAX 

(Y AXIS) 0 

MIN 

(X AXIS) 

To 
TIME 

4,11.  

Figure 1.7 Curren/ Plotted in Positive and 
Negative Directions 

íM 

VOLTS 0AVX 
E 

MAXMIN 

AMPS OA 

MIN 

Tx 

Figure 1.8 Comparison of Alternating Voltage and 

Alternating Current 
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INTRODUCTION 
TO ALTERNATING CURRENT 

• Summary of DC and AC Voltages and Currents 

The polarity of the voltage must change to 
cause current to change direction. A voltage 
that causes an alternating current is called an 
ac voltage. 

Summary of DC and AC Voltages 
and Currents 

The difference between dc and ac voltages 
and currents can now be summarized. 

DC is direct current— a current which flows 
in only one direction. It can change in 
magnitude, and if it does, it generally is called 
pu/sating dc. A de voltage is a voltage that 

produces a direct current. It does not change 
in polarity. 

AC is alternating current— a current which 
changes in both magnitude and direction. 
AC voltage is a voltage that produces an 
alternating current. It changes in amplitude 
and polarity. Amplitude is the magnitude or 
value of an ac voltage. 

CONTRASTING DC AND AC W AVEFORMS 

A comparison of some different types of dc 
and ac voltage waveforms should help you 
understand the differences between the two. 

The waveform in Figure 1.9a is a dc waveform 
because it does not change polarity. Note that 
the amplitude remains at a constant level. A 
plot of the current versus time in a circuit 
with the voltage of Figure /.9a applied would 
also be a constant value as a result of a fixed 
value of dc voltage. 

The waveform in Figure 1.96 is also a dc 
waveform. It has a polarity opposite to that 
of the waveform in Figure /.9a, but it too 
does not change in amplitude. 

A 

DC I OR *E I  

• 

DC I ORE 

a 

t 

Figure 1.9 a. A DC Waveform; b. A DC Waveform of 
Polarity Opposite to That of the One in a. 

Figure 1.10 a. A Pulsating DC Waveform; b. A DC 
Waveform Constantly Changing Amplitude 

The waveform in Figure 1.10a is a dc 
waveform, and it is a pulsating waveform. 
The entire waveform is in the positive portion 
of the graph, and never crosses the X axis. If 
the line graph had crossed the X axis into the 
opposite half of the graph, and if this voltage 
were applied to a circuit, then it would have 
caused the circuit current to change direction, 

and it would no longer be considered a dc 
voltage. This is the most important point in 
distinguishing between dc and ac waveforms. 
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INTRODUCTION 
TO ALTERNATING CURRENT 

• The AC Generator 

The waveform in Figure I.10b is a dc 
waveform that is constantly changing 
amplitude. This type of waveform is often 
referred to as an ac waveform riding on a 
steady state or constant dc voltage or current 
(indicated by the dotted line). The output 
from signal—amplifier circuits often looks like 
the one in Figure I.10b. There is a steady-state 

dc voltage at the output displaced from zero 
when there is no signal being amplified. 
When a signal is amplified it rides on top 
of the dc voltage and swings the dc voltage 
above and below its steady-state value. 
In many circuits, resistive and capacitive 
coupling circuits are used to remove, or 
block, the dc component of the waveform. 
The resultant waveform then looks like 
Figure 1.11a. 

Both waveforms in Figure 1.11 are ac 
waveforms. Both are constantly changing in 
amplitude and direction. Figure 1.11a shows 
a typical sine waveform. Figure 1.116 shows 
an ac square waveform, commonly called a 

square wave. Note that the square wave 
maintains a constant amplitude for a period 
of time and then almost instantly changes 
to the same constant amplitude of opposite 
polarity for the same period of time. So the 
periods of time are equal and the constant 
amplitudes of opposite polarity are equal, 

and the changes are almost instantaneous 
or step-like. 

E 

AC I ORE 

AC I OR E 

 •.• 

Figure 1.11 Two Different AC Waveforms 

GENERATING AN AC W AVEFORM 

Now that the differences in dc and ac have 
been determined and a definition of ac has 
been established, how alternating current is 
produced can be discussed. 

Alternating current can be produced by 
periodically reversing the connections from a 
dc power source to the circuit. This, however, 
is impractical. For example, typical household 
alternating current resulting from a source 
voltage of 110 VAC, 60 hertz, reverses 
polarity 60 times every second. Reversing the 
connections to a dc power source 60 times 
per second is virtually impossible. A more 
practical method of generating alternating 
current is with an ac generator. 

The AC Generator 

An ac generator is a device which generates 
an ac voltage by rotating a loop of conductor 
material through a magnetic field. To 
understand the operation of an ac generator, 
some basic understanding of magnetic theory 
is necessary. 
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INTRODUCTION 
TO ALTERNATING CURRENT 

• Magnetic Lines of Force 
• Electromagnetic Induction 

Magnetic Lines of Force 

It is generally known that magnets have north 
poles and south poles, and that they attract 

other materials with magnetic properties. If 
two magnets are brought close to one 

another, then a magnetic field exists between 

their two poles. If these two poles are unlike, 

one a north pole and the other a south pole, 
the direction of the flux lines is from the 

north pole to the south pole, as shown in the 

diagram of Figure 1.12. The stronger the 

magnets, the stronger the magnetic field 

between the two poles. 

Iron filings can be used to indicate the 
presence of the flux lines between north and 

south magnetic poles as shown in Figure 1.13. 
The magnets are placed on the table with 

north and south poles as shown, a sheet of 

plexiglas is placed over them and iron filings 
sprinkled on top. The iron fillings, 

because they are magnetic material, align 

themselves with the flux lines of the magnetic 

field. These lines are important because they 
are used to explain how to generate ac. 

Electromagnetic Induction 

In 1831, Michael Faraday, a British physicist, 
discovered that if a moving magnetic field 
passes through a conductor, a voltage will 

he induced in the conductor and if the 

conductor is connected in a circuit a current 
will flow. 

Conversely, if a moving conductor passes 

through a magnetic field, a voltage will also 
be induced in the conductor causing current 

to flow as shown in Figure 1.14, by generating 

an electromotive force by a process called 
electromagnetic induction. The direction of 

current flow in the conductor depends on the 

direction of the magnetic field and the 
direction of motion of the conductor through 

the field. This fact is summarized in what is 

known as the left-hand rule for generators. 

Figure 1.12 Flux Lines Between Unlike Magnetic Poles 

N.‘ MAGNETIC 
FLUX LINES 

Figure 1.13 Magnetic Flux Line Around Two Magnets 

CONDUCTOR 

N \ MAGNETIC 
FLUX LINES 

Figure 1.14 Electromagnetic Induction 
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INTRODUCTION 
TO AI TERNATING CURRENT 

• Electromagnetic Induction 1 
Figure 1.15 is a drawing illustrating this rule. 
The thumb points in the direction of motion 
of the conductor through the magnetic field. 
The forefinger points in the direction of the 
lines of magnetic field. And the index finger 
points in the direction of electron current flow. 
Electron current flow will be used throughout 
this book unless otherwise noted. Electron 
flow with its moving negative charges is 
opposite from the conventional current flow 
direction which was used by Ben Franklin 
when he assumed that positive charges were 
moving to constitute current flow. 

A practical application of this concept is the 
ac single loop rotary generator shown in 
Figure 1.16. In this type of generator, a single 
loop of wire is rotated in a circular motion 
in a magnetic field. The direction of the 
magnetic field flux lines is as shown. 

There are 360 degrees in any circle, and 
various points of rotation can be defined in 
terms of degrees. For this example, the loop 
is assumed closed and the current flow in the 
loop as a result of the induced voltage at four 
points of rotation of the loop, A, B, C and D 
as shown in Figure 1 16, will be analyzed. 

The circular motion of the loop will be started 
at point A or 0 degrees; continue to point B 
at 90 degrees; go to point C, 180 degrees; 
pass through point D, 270 degrees; and 
return to point A at 360 degrees, or 0 
degrees. The arrow in the drawing of Figure 
1.16 indicates the direction in which the 
conductor is moving through the stationary 

magnetic field. 

As shown in Figure 1.17, at point A, 0°, and 
point C, 180°, the conductor is moving 
parallel to the lines of flux. It cuts no flux 
lines; therefore, no voltage is induced and 
no current will flow in the wire. However, at 
point B, 90° and point D, 270', the conductor 
is moving perpendicular to the flux lines; 

NORTH 
POLE 

CONDUCTOR 
MOTION 

MAGNETIC 
FIELD 

ELECTRON 
CURRENT 

Figure 1.15 Left-hand Rule for Generators 

DIRECTION OF 
FLUX LINES 

180°C 

270 

SOUTH 
POLE 

DIREC110N OF 

Figure 1.16 AC Single-Loop Rotary Generator 

FLUX 
LINES 

180' C 

270' 

DIRECTION OF 
CONDUCTOR 

360* 

Figure 1.17 Relationship of Flux Lines and Direction 
of Conductor 
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1 

therefore, a maximum voltage is induced and 
a maximum current flows in the loop. 

Changing Directions of Current Flow 

An important point is that while the wire loop 
rotates from 0° through 180°, current flows 
in one direction. While the wire loop rotates 
from 180° through 360°, current flows in the 
opposite direction. 

This fact is explained by the left hand rule for 
generators using electron flow which is shown 
in Figure 1.15. If one were using conventional 
current then the right hand rule for 

generators as shown in Figure 1.18 explains 
the direction of conventional current that 
flows. These diagrams show the relationship 
between the magnetic field, the direction 
of movement of the conductor, and the 
direction of current flow in the conductor. 

Plotting an AC Generator Output Waveform 

Based on this discussion of an ac single loop 
generator, a graph of the current flow in the 
wire loop through 360 degrees of rotation will 
be plotted on a graph. 

As shown in Figure 1.19, the axes of the graph 
are defined in current on the Y, or vertical 
axis, and degrees of rotation at points A.B.C. 
and D on the X, or horizontal axis. Notice 
that the Y axis shows positive current above 
the origin, (zero axis) and negative current 
below the origin. This is simply to distingush 
between opposite directions of current flow. 

As shown in Figure 1.17 with the loop at 0', 
no flux lines are being cut. Therefore, no 
current flows in the loop. This current value 
is plotted at the 0 current level at point A on 
the graph of Figure 1.19. 

After 90° of rotation, as shown in Figure 
1.17, a maximum amount of flux is being cut 
and a maximum current flows in the loop. 
Therefore, a maximum current level is 
plotted at point B on the graph. 

SOUTH 
POLE 

CONDUCTOR 
MOTION 

CONVENTIONAL 
CURRENT 

NORTH 
POLE 

MAGNETIC 
FIELD 

Figure 1.18 Right-hand Rule for Generators 

Figure 1.19 Plot of One Complete Revolution of Loop 

At 180° of rotation, the loop is again moving 
parallel to the flux lines. Therefore, no 
current flows. The value is plotted at point 

C on the graph. 

At 270°, a maximum current again flows, 
but now the current flows in the opposite 
direction to the direction at point B because 
the conductor is moving in the opposite 
direction. This maximum current is plotted 

at point D in the negative area of the graph 
to distinguish it from current flow in the 

opposite direction during the previous 180 
degrees of rotation. 
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At 360°, current again decreases to zero and 
is plotted at 0° at point A. 

If the rotation should continue through 
another 360 degrees, the current flow would 
be identical to the previous rotation and 
identical points would be plotted on 
the graph_ 

Between the four points plotted for each cycle 
of loop rotation, current flow is not linear. It's 
a smooth, continuously changing waveform 
called a sine wave When the current values at 
the four points A, B, C and D are connected 
as shown in Figure 1.19, a waveform called 
a sinusoidal waveform is the result. 

It is the type of waveform most commonly 
found in ac, and it will be the primary type 
of waveform studied throughout this book. 
The characteristics of the waveform will be 
explained in detail in following lessons. 

IDENTIFICATION OF W AVEFORM CYCLES 

With an ac generator, when the loop makes 
one complete revolution, it generates a 
voltage that produces a current that 
progressively increases in value to a 
maximum, then decreases to zero, goes to 
a negative maximum, then returns to zero. 
As the loop begins another rotation within 
the magnetic field, the output is an exact 
duplicate of the previously generated 
waveform, provided the generator continues 
to rotate at a constant speed. Thus, the 
output repeats itself again and again every 
360' of rotation as shown in Figure 1.20. Each 
360° of rotation produces one cycle. 

u 

E 
N 

270• 110' 

0" I 
no' I 

I I 

I I 

1 CYCLE 
360' 

ROTATION 

270" 90' 270' 

0' 
360' 180' 

I I 
I I I 

1 CYCLE 
360' 

ROTATION 

o. 
360' 

I I 
I I 
I I 

DEGREES 

Figure 1.20 MultIple Cycles 

V 
o u 

T OR R 
A E 
G N 
E 

Figure 1.21 Allernalions of a Cycle 

Cycle Alternations 

One cycle of a sinusoidal waveform can also 
be described in terms of alternations Each 
cycle has two alternations: a positive 
alternation and a negative alternation. The 
positive alternation occurs while current is 
flowing in the same direction which is defined 
as the positive direction. The negative 
alternation occurs while current flows in the 
opposite direction. 

Cycle alternations are identified in 
Figure 1.21. 
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Cycle Identification 

There are several cycles of an ac waveform 

in the diagram of Figure 1.22. The first cycle 
begins at point A and continues for 360 

degrees to point B. The second cycle starts 

at point B where the first cycle ends and 
continues for the next 360 degrees to point C. 

The remaining part of the waveform between 

points C and D should be recognized as not 

being a complete cycle. It is only one-half of a 

cycle: 180 degrees of a cycle. 

To generate the complete waveform, the loop 
of the generator would have to be rotated two 

complete turns and one-half of the next turn. 

Non-standard Cycles 

It should be understood that it is not 

necessary for all waveforms to begin at 
zero degrees and continue through 360 

degrees to be defined as a cycle. The 

waveform in Figure 1.23 begins at the 90° 

point. A cycle will be completed at the 
following 90° point and another cycle at the 
following 90° point. 

One cycle of a waveform may be observed beginning 
al any degree point. It must continue from that 

point through a 360-degree change to be a complete 

cycle. For example, observe the waveform in 
Figure 1.24 which begins at the 135° point. A 
cycle will be completed when it progresses 

through a 360-degree change and returns 
to 135°. 

✓ C 
O U 
L R 
T R 
A E 
G N 
ET 

s.  
Figure 1.22 Multiple Cycles 
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TO ALTERNATING CURRENT 

Figure 1.23 Cycles Beginning al 90°-Point 

Figure 1.24 Non-standard Cycles Beginning at 
135° Point 
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If a waveform is observed beginning at 
a negative peak as in Figure 1.25, one 
cycle would be completed at the next 
negative peak. 

Cycle Defined 

Repetitious waveforms which are not 
sinusoidal have cyclic properties as shown in 
Figure 1.26. In each example the waveform 
has completed one cycle when it reaches a 
point where repetition of the waveform begins. 

A cycle of a waveform can now be defined 
as a waveform that begins at any electrical 
degree point and progresses through a 
360-degree change. 

The square waves in Figure 1.27 also have 
cyclic characteristics. 

✓ C 
O U 
L R 
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1 1 CYCLE ' 1 CYCLE 

'\ 

DEGREES 

Figure 1.25 Non-standard Cycles Beginning at a 
Negative Peak 

1 CYCLE 

I. 

Figure 1.26 Repetitious Non-sinusoidal Waveform 

1 CYCLE 

 • 

1 CYCLE 

Figure 1.27 Square Waves 
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Voltage Considerations in 

Cycle Identification 

When identifying cycles, you should pay 

particular attention to the voltage values and the 
waveform shape at the beginning and end of 
each cycle of a waveform. The repetitious 

sawtooth waveform in Figure 1.28 can be divided 

in cycles using this criteria. Notice the value of 
the voltage and slope of the waveform at the 

start and end of each cycle are the same. 

W AVEFORM FREQUENCY CALCULATIONS 

Repetitious waveforms, or waveforms that are 
constantly repeated, are commonly described 

in terms of frequency and amplitude. In this 

section the frequency of a waveform is 
discussed. The amplitude characteristic will 
be described in detail in the following lesson. 

Frequency Defined 

From previous discussion, you should now 

understand that any waveform which is 
repetitious can be described in terms of 
cycles. The rate at which a waveform cycles is 

called the frequency of the waveform. The 

frequency of the waveform is defined as the 

number of cycles occurring in each second of 
time. The unit of frequency, cycles per 

second, is often abbreviated cps. 

For example, Figure 1.29 shows three 
sinusoidal waveforms, each having a different 
frequency. In Figure I.29a, only one cycle 

occurs in one second of time. The frequency 
of this waveform is one cycle per second (cps). 

In Fig-tue 1.296, three cycles occur in one 
second. In this example, the frequency is 
three cycles per second. 

In Figure 1.29c, five cycles occur in one-half 
second. If the waveform is repetitious, 10 
cycles must occur in one second. Therefore, 
the frequency is 10 cycles per second. 

OR 

1 CYCLE I 1 CYCLE ! 

1 CYCLE 

Figure 1.28 Sawtooth Waveform 

1 CYCLE 

PERIOD 

Figure 1.29 Three Sinusoidal Wavefonus of 
Different Frequencies 

Unit of Frequency: Hertz 

In recent years, the unit of frequency, cycles 
per second, has been replaced by the term 

hertz, abbreviated Hz. The unit hertz was 
adopted to honor the German physicist, 
Heinrich Hertz, who made important 

discoveries in the area of electro- magnetic 
waves in the late nineteenth century. 
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One hertz is simply one cycle per second. 
Applying the newer terminology to the 
waveform of Figure 1.29, the waveform of 
Figure I.29a has a frequency of one hertz, the 
waveform of Figure 1.296 has a frequency of 
three hertz, and the frequency of Figure 1.29c 
is 10 hertz. 

Frequency Prefixes 

Prefixes are often used to simplify the writing 
of high frequencies. The common prefixes 
used are: 

k for kilo or thousand 
M for mega or million, and 
G for giga or billion 

For example, a radio station broadcasting at 
820,000 hertz (Hz) can have its frequency 
described as 820 kilohertz (kHz). 

A 1,210,000 hertz signal could be written as 
1.21 megahertz (MHz). 

A radar system operating at 27,000,000,000 
hertz may be specified as 27 gigahertz (GHz). 

WAVEFORM PERIOD CALCULATIONS 

Period Defined 

The frequency of a waveform is determined 

by the lengh of time of one cycle. This time 
of one cycle of a waveform is defined as the 
period of the waveform. 

The symbol T is used to represent time 
and period. Remember that the terms 
are synonomous. The period or time of 
a waveform is simply the Lime required 
to complete one cycle of the waveform. T has 
units of seconds. 

Period Calculation Examples 

Let's return to the examples in Figure 1.29 
and determine the period of each of the 
three waveforms. 

The waveform in Figure 1.29a has a frequency 
of one hertz. One cycle occurs in one second 
of time. Therefore, the time of one cycle, the 
period, of this waveform is one second. 

In Figure I.29b the waveform has a frequency 
of three hertz. One cycle occurs during each 
one-third of a second time interval. 
Therefore, the period of one cycle is 
one-third second or 0.333 second. The 
waveform in Figure I.29c has five cycles 
occurring in one-half of a second. The 
waveform repeats itself every one-tenth of 
a second. Each cycle occupies a one-tenth 
second time interval; therefore the period, 
T, of the waveform is one-tenth (0.1) second. 

Period or Time Equation 

There is a mathematical relationship between 
the period and frequency of a waveform. This 
mathematical relationship is expressed by 
this equation: 

1  
period or time(s) — (/—/) 

frequency (Hz) 

The time of one cycle or period, T, of a 
waveform in seconds can be determined by 
dividing the number one by the frequency 
of the waveform in hertz. This equation is 
normally simplified by writing it in this form: 

1 
T = T  (1-2) 

You must remember that to obtain the period 
of a waveform in seconds, the frequency in 
hertz must be used in the equation. Attempts 
to calculate the period of a waveform by 
leaving the zeroes out of the frequency value 

will result in an incorrrect answer. 
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Using equation 1-2 to find the period of 
a waveform when the frequency is known is 

a common technical electronic solution. For 
example, find the time of one cycle when the 
frequency is known to be 50 hertz. 

T (S) 
1  

f (Hz) 
_ 1 

— 50 
= 0.02 
= 20ms 

The time of one cycle is 20 milliseconds. 
If the known frequency is a larger value. 
the solution can at first appear difficult, 
but the technique is identical to the previous 

example. For example, what is the time of 
one cycle when the frequency is 650,000 

hertz? Using equation 1-2: 

T (S) 
1 

f (Hz) 

650,000Hz 
= 0.00000154 
= 1.54u.s 

The time of one cycle is 1 54 microseconds. 

CONVERTING FROM TIME TO 
FREQUENCY MEASUREMENTS 

A typical method of determining the 
frequency of a waveform is to measure the 
time of one cycle on an oscilloscope and 
calculate the frequency from the period 
measurement. 

The period equation can be manipulated 
in another form to allow the calculation of 
a frequency when the period is known. 

The frequency of the waveform in hertz can 
be found by dividing the number one by the 
period of waveform in seconds. 

f = (1-3) 

Notice once again that the unit values of the 

variables are very important. To obtain a 
correct answer, you must keep the time value 
in its original form. Attempts to modify the 

time-value to simplify the mathematical 
manipulation will often result in an 

incorrect answer. 

Using equation 1-3 to find the frequency 

of a waveform when the period of the 
waveform is known is a common technical 

electronic solution. 

For example, find the frequency when the 

period of the waveform is known to be 
0.05 second. 

0.05s 
= 20Hz 

If the known time of one cycle is a smaller 
value, the solution at first can appear more 

difficult, but the technique is identical to the 
previous example. Here's another example. 
The period of a waveform is measured to be 
0.000002 seconds or 2 microseconds (2 x 

10 - 6 seconds). 

Therefore, 

f — 
2 x 10 6 

f = 0.5 x 106 
f = 0.5 megahertz 

1 

Another example: The period has been 
measured as 100 seconds. Therefore, the 
frequency is 

1-16 BASIC AC CIRCUITS 



INTRODUCTION 
TO AI I ERNATING CURRENT 

• Summary 

1 

Additional time and frequency conversion 
examples will be provided in the following 
lesson, and the amplitude characteristics of 
sinewaves will be discussed. 

SUM MARY 

In this lesson, ac was defined and dc and ac 
waveforms were compared. The operation 
of an ac generator was discussed and the 
ac waveform was described in terms of time 
(period) and frequency. Examples were 
provided using the time and frequency 
equations. 
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1. For each of the diagrams below, identify the waveform as an ac or dc waveform. 

a 

o 

d 

e 

Solution: Recall the criteria for identifying an ac waveform; the magnitude and direction of 
current flow must change. Therefore, the polarity of the voltage causing the current flow must 

change and the waveform will be plotted in both the plus and minus portions of the graph. 

a. dc 

b. pulsating dc 
c. ac 
d. pulsating dc 

e. ac square wave 
f. dc square wave 
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2. Identify the number of cycles in each of the following diagrams: 

a. 

e 

Solution. Remember the definition of a cycle; the waveform must make a complete 360 degree 
change. The starting point of the waveform is significant. 

a. 3 cycles 
b. 41/2  cycles 
c. 1 cycle 

d. 11/2  cycles 
e. 13/4 cycles 

f. 2 cycles 
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Worked-Out Examples 

3. Given the time of each cycle below, calculate the frequency (three significant figures). 

1 1  
foiz) = — - - 33.3Hz 

T (1) 0.03s 

b. fOlz) 
1 

T(1) 

1  
0.002s - 500Hz 

AA  
O V V V 
005s 

0.01. 

411.111. 

0.00113. 

1  1 1  
c. foio = T(.) — 

0.00001s 10 x 10 -6 
- 100,000Hz = 100kHz 
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d 2 cycles = 0.005s 

. 1 cycle -= 0.0025s 

1  
finzi = - 400Hz 

0.0025s 

e. 1/2  cycle =- 0.0 Is 

1 cycle = 0.02s 

f (H z) 0.02s 
- 50Hz 

1  
1(11‘) - 121 Hz 

0.0083s 

4. Given the following frequencies, calculate the period of the waveform (three 

significant figures). 

a. f = 105Hz 
b. f = 60Hz 

c. f = 850011z 

d. f = 16.8kHz 

e f = 320kHz 
f. f = 6.1MHz 

Solution Remember that period is the time of one cycle 

a. T( - 

1  
h. 1-(,) r 

.( H Z) 

T (,) - r  
If Hz) 

1 
0.00952s 

105Hz 

1 
- 0.0167s = 16.7ms 

60Hz 

1  
- 0.000118s = 118s 

8500Hz 

1 1  
d. T - - 5.95 x 10 -5s = 59.5p.s 

(s) 16.8kHz 16.8 x 10 3 

1 1  
e. - - 0.00000313s = 3.1311s Too 

320kHz - 320 x 105 

f« T(') - 6.1MHz - 6.1 x 106 

1 1 
- 1.64 x 10 -7s = 0.164iis 
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5. On the graph below, draw three cycles of an ac sinewave 

Solution: 

hsvovv 
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II Practice Problems 

1. In each of the six following diagrams, identify the waveform as an ac or dc waveform. 

a 

b. 

C. 

(I 
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2. Identify the number of cycles in each of the following diagrams: 

a 
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3. Given the time of each waveform as shown, calculate the frequency (three significant figures). 

a. d. 

15ms 

0.001s 

I). e. 

f. 

4. Given the following frequencies, calculate the time of one cycle (three significant figures). 

a. f = 40Hz 
b. f = 1.5kHz 

c. f = 63kHz 
d. f = 118kHz 

e. f = 0.8MHz 

f. 1= 1.5MHz 
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5. On the graph, draw three cycles of positive dc square waveform. 
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Quiz 

1. In each of the following diagrams, 

identify the waveforms as an ac or 
dc waveform. 

a 

a 

b. 

d 

nvÍV\ 

/11/Ib 

2. Identify the number of cycles in each of 
the following diagrams. 

a. 

b. 
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WI Quiz 

e. 

f. 

111••••• 

1-28 

3. Given the following periods of each cycle, 
calculate the frequency: 

a. T = 0.015s 
b. T = 37.2ms 
c. T = 37.2u.s 
d. T = 0.000008s 
e. T = 48ms 
f. T = 7.35µs 

4. Given the following frequencies, calculate 

the period of the waveform: 

a. f = 30Hz 
b. f = 300Hz 

f = 63.8kHz 
(cl. f = 20kHz 

f = 1700Hz 
f. f = 22MHz 

5. Draw two cycles of an ac square waveform 

on this graph. 
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LESSON 2 

e AC and 
the Sine Wave 
In Lesson 1, the sine wave was introduced by describing 
the development cf an ac waveform with a single loop 
generator. The ac waveform was described in terms 
of its frequency or period, and another waveform 
parameter, the amplitude of the waveform, was 
mentioned briefly. 

This lesson discusses in detail the amplitude 
descriptions of a sinusoidal waveform. Also, the time 
and frequency measurement of a waveform are 
reviewed, and an introduction to the trigonometric 
function will be presented. 
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THE SINE WAVE 

• Objectives 

This lesson discusses the amplitude descriptions of sinusoid a waveform and 
introduces the trigonometric functions which are essential to an analysis and 
understanding of ac circuits. At the end of this lesson, you should be able to: 

1. Explain the three ways to express the amplitude of a sinusoidal waveform and the 
relationship between them. 

2. Understand the importance of the 0.707 constant and how it is derived. 

3. Convert peak, peak-to-peak, and rms voltage and current values from one value 
to another. 

4. Explain the sine, cosine, and tangent trigonometric functions. 

5. Explain the relationship between the sine trigonometric function and an 
ac waveform. 

6. Calculate the value of the sine of any angle between 0° and 360°. 
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• Frequency and Period Relationships 
• Frequency and Period Calculations 

REVIEW OF W AVEFORM FREQUENCY AND 
PERIOD RELATIONSHIPS 

Any sinusoidal waveform can be described 
completely by identifying either time or 
frequency parameters and one of three 
possible amplitude specifications. 

The frequency of a waveform is the number 
of cycles of the waveform which occur in one 
second of time. Common unit of measurement 
is hertz (Hz). 

The period of a waveform, which sometimes is 
called its time, is the time required to complete 
one cycle of a waveform. It is measured in 
units of seconds, such as seconds, tenths of 
seconds, milliseconds, or microseconds. 

If a waveform is to be properly described in 
terms of its period or frequency, it. must be a 
repetitious waveform. A repetitious waveform 
is one in which each following cycle is identical 
to the previous cycle. 

Frequency and Period Relationships 

The frequency of a waveform in cycles per 
second is mathematically described in terms 
of the period, T, of the waveform as: 

1 
f = (2-1) 

where fis the frequency of the waveform in 
hertz, and T is the time of one cycle of the 

waveform in seconds. 

Frequency and Period Calculations 

If the time of one cycle, or period, of a 
waveform is known, the frequency of the 
waveform can be calculated using equation 
2-1. For example, Figure 2.1 shows one cycle 

Figure 2.1 One Cycle of Waveform with a Period of 
0.025 Milliseconds 

of a waveform in which the cycle occurs 
in 0.025 milliseconds. Its frequency 
is calculated: 

f 1 = 

1 

0.025 x 10' 
1  

25 x 10 -6 
= 0.04 x 106 
= 40 x 10' 
= 40kHz 

The frequency of the waveform is 
40 kilohertz. 

Or, for another example, a waveform has 
one cycle occurring every 10 milliseconds. Its 
frequency is calculated using equation 2-1. 

1 
f — 

T 
1  

10 x 10 
= 1 x 102 
= 100Hz 

The frequency of the waveform is 100 hertz. 
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MI Additional Frequency Calculation Examples 

Equation 2-1 can be manipulated to describe 
the period of the waveform in terms 
of frequency. 

T = -1 
(2-2) 

The unit of the variables in the equation 
remain the same as in the frequency 
equation 2-1. 

If the frequency of a waveform is known, the 
time of one cycle of the waveform can be 
calculated using equation 2-2. 

For example, a waveform's frequency is 120 
hertz. The time of one cycle of that waveform 
is calculated: 

T = -1-
f 
1 

120 
= 0.00833 
= 8.33ms 

The time of one cycle, or the period, is 
8.33 milliseconds. 

Or, for another example, a waveform has a 

frequency of 80 kilohertz. The period of one 
cycle is calculated: 

T = -1 

1  

80 x 10' 
= 0.0000125 

= 12.5 x 10 -6 
12.5µs 

The period of one cycle of the waveform is 
12.5 microseconds. 

Additional Frequency Calculation Examples 

The following worked-out problems are 
additional examples of how to use equations 
2-1 and 2-2 to calculate the frequency or 
period of a waveform. 

t.. 

AC AND 
I SINE WAVE 

For example, the frequency of a waveform is 
8 hertz. Its period is calculated: 

T = 

—8 

- 125ms 

the period of the waveform is 
125 milliseconds. 

As another example, assume that the period 

of a waveform is 250 milliseconds. Therefore, 

1  
250 x 10 
1  

0.250 
= 41-1z 

l'he frequency of the waveform is calculated 
to he 4 hertz, one-half of the frequency of the 
waveform with a period of 125 milliseconds. 

Since the period is twice as large the 
frequency is half as much. Thus the accuracy 
of the previous calculations is confirmed. 

These two examples should show you vividly 
the frequency and period relationships of ac 
waveforms, and also, that one equation can be 
used to verify your calculations performed 
using the other. 

WAVEFORM AMPLITUDE SPECIFICATIONS 

In addition to frequency and period values, a 
third major specification of a waveform is the 
amplitude or height of the wave. There are three 
possible ways to express the amplitude of a 
sinusoidal waveform: peak, peak-to-peak, and 
root-mean-square (rms). 
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MI Peak-to-peak Amplitude Specifications 

2 AC, AND 

THE SINE W M. E 

Peak Amplitude Specifications 

The peak amplitude of a sinusoidal waveform is 

the maximum positive or negative deviation of a 

waveform from its zero reference level. Recall 

from the discussion of the single-loop generator 
in Lesson 1 that this maximum voltage or 

current occurs as the loop of wire cut the 
magnetic flux at a 90-degree angle. 

The sinusoidal waveform is a symmetrical 

waveform, so the posuive peak value is the same 

as the negative peak value as shown in Figure 2.2. 

If the positive peak has a value of 10 volts, then 

the negative peak will also have a value of 10 

volts. When measuring the peak value of a 

waveform, either positive or negative peaks can 

be used. 

Peak-to-peak Amplitude Specifications 

The peak-to-peak amplitude is simply a 

measurement of the amplitude of a waveform 
taken from its positive peak to its negative 

peak as shown in Figure 2.3. 

For the non-sinusoidal waveform shown in 

Figure 2.4, the peak-to-peak value of the 

voltage can be determined by adding the 

magnitude of the positive and the negative 

peak. In this example, the peak-to-peak 

amplitude is 18 volts plus 2 volts for a total 

of 20 volts, peak-to-peak. 

For sinusoidal waveforms, if the positive peak 
value is 10 volts in magnitude, then the 
negative peak value of the same waveform is 

also 10 volts. Measuring from peak-to-peak, 

there is a total of 20 volts. Therefore, the 

value of the sinusoidal waveform in Figure 2.2 
can be specified as either 10 volts peak or 20 

volts peak-to-peak. 

20V 

POSITIVE PEAK 

NEGATIVE PEAK 

Figure 2.2 A Sinusoidal 1,t'aveform is Synmetrical 

PEAK-
TO-
PEAK 

POSITIVE PEAK 

NEGATIVE PEAK 

s. 

Figure 2.3 Peak-to-Peak Measurement of n 
Sinusoidal Waveform 

e 
POSITIVE 
PEAK 

NEGATIVE 
PEAK 

Figure 2.4 Peak-io-Peak Measurement of a 
Non-Sinusoidal Waveform 
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1", 
Summary of Peak and Peak-to-Peak 
Voltage Specifications 

There is a mathematical relationship of peak 
and peak-to-peak amplitude specifications for 
all sine waves. Since the positive peak value is 
equal to the negative peak value, the peak- to-
peak value is equal to two times the value of 
either peak voltage. 

These voltage relationships can be expressed 
in these equations: 

E k L= 2 X 

Eprak = "F-pralc•to-peak 

(2-3) 

(2-4) 

If the voltage applied to the ac circuits that 
will be studied in this text alternates in a sine 
wave fashion, then the current that flows will 
also vary according to a sine wave. Therefore, 
current relationships of peak and peak-to-
peak amplitude specifications for all sine 
waves are the same as those used for voltage 
and can be expressed in these equations: 

'el-Io-peak = 2 X 'peak 

= 0.5Ipeak•to peak 

(2-5) 

(2-6) 

However, if a waveform is non-sinusoidal, 
these relationships may or may not hold true. 

Root-Mean-Square Amplitude Specifications 

The third specification for ac waveforms is 
called root-mean-square abbreviated rms. This 
term allows the comparison of ac and dc 
circuit values. Root-mean-square values are 
the most common methods of specifying 
sinusoidal waveforms. In fact, almost all ac 
voltmeters and ammeters are calibrated so 
that they measure ac values in terms of 
rms amplitude. 

RMS Relation to DC Heating Effect 

An runs value is also known as the effective 

value and is defined in ternis of the 
equivalent heating effect of direct current. 
The rms value of a sinusoidal voltage is 
equivalent to the value of a dc voltage which causes 
an equal amount of heat (power dissipation) due lo 
the circuit current flowing through a resistance. 

Since heating effect is independent of the 
direction of current flow, resistive power 

dissipation can he used as the basis for 
comparison of ac and (lc values. 

In other words, applying an ac voltage with a 

particular rots value to a resistive circuit will 
dissipate as much power in the resistors as a 

dc voltage would that has the same value. 

The rms value of a sinusoidal voltage or 
current waveform is 70.7 percent or 0.707 of 

its peak amplitude value. 

Erin, = 0.707E1,„k (2-7) 

(2-8) 
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That is, as shown in Figure 2.5, a sinusoidal 
voltage with a peak amplitude of 1 volt has 
the same effect as a dc voltage of 0.707 volts 
as far as its ability to reproduce the same 
amount of heat in a resistance. Because the ac 
voltage of I volt peak or 0.707 volts rms is as 
effective as a dc voltage of 0.707 volts, the rms 
value of voltage is also referred to as the 
effective value. 

Effective value and rms value are used 
interchangeably in electronics terminology. 
The rms value, however, is used more 
extensively and therefore it is the designation 

which will be used throughout this book. 

Determining the 0.707 Constant 

How is the 70.7 percent of peak-value 
constant derived? Essentially, the words root-
mean-square tell how because they define the 
mathematical procedure used to determine 
the constant. 

The word square comes from the square of 
instantaneous values of the ac waveform. 
Recall from dc circuit calculations that power 
dissipated in a circuit is equal to E, the voltage 
applied, times I, the current flowing in the 
circuit, as expressed in equation 2-9. 

P = El (2-9) 

By Ohm's law the applied voltage, E, is equal 
to the circuit current I times the circuit 
resistance This is expressed in equation 2-10. 

E = IR (2-10) 

Substituting equation 2-10 for E in equation 
2-9 provides equation 2-11, which allows the 
power dissipated in a circuit to be calculated 
if the circuit current and circuit resistance 
are given. 

P = !RI 
I2R 

(2-11) 

EaC 

HEAT HEAT 

fk 

1V, 

Epc 
—  0.707V 

0.707V.e 

Figure 2.5 Relationship of a Sinusoidal Voltage to a 
IX Voltage 

If the Ohm's law equation 2-10 is rearranged 
then equation 2-12 results 

I 
E 

= (2-12) 

Substituting equation 2-12 in equation 2-9 for 
I provides equation 2-13, which allows the 
power dissipated in a circuit to be calculated 
if the applied voltage E and total circuit 
resistance are given. 

P = 

P = 

E 7  E 

E2 

(2-13) 

Note that in both equation 2-11 and 2-13 
power is determined by the square of either 
the voltage or current values. 

Power calculations in ac circuits are somewhat 
different. Since the applied voltage and the 
resulting circuit current are both sine waves, 

they are constantly changing. Therefore, the 
power dissipated is constantly changing. 
For this reason a means of averaging the 
constantly changing values was derived. 
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The averaging is done as follows: The 
instantaneous values of voltage or current 
are sampled at regular equally-spaced points 
along the waveform as shown in Figure 2-6 

- in this case every 15 degrees of rotation of 
the sine wave. Twelve of these samplings are 
made for the positive alternation. The voltage 
values are listed in table form as shown in 
the first column in Figure 2-7. The second 
column is the square of the instantaneous 

values in the first column. All of the squared 
values are summed together as shown in 
Figure 2-7 and an average or mean value 
calculated by dividing by the number of 
samples taken, in this case, twelve. 

Since the mean value is an average of squared 
values, the square root of the mean is the 
single value that is equivalent to a steady-state 
dc value. Thus, the result is the name root-
mean-square since it is the square root of the 
mean of squared values. Mean is an average of 
the sum of the squares of instantaneous values 
of the voltage or current waveform. Root is 
the square root of the mean. 

Power is dissipated on both the positive and 
negative alternation; it makes no difference 
which direction the current is flowing. 
However, squaring the instantaneous 
values eliminates any concern of direction 
or polarity. 

Equation 2-14 is an expression for the mean 
value of the voltage waveform of Figure 2.6. 

sum of E 2 values  
total number of E,2 values 

The mean value is the sum of the squared 
instantaneous voltage values divided by 
the number of squared instantaneous 
voltage values. 

mean - (2-14) 

• 14 14V 
1366V 
12.25V 

10 00v 

7.07V 

3.66V 

OV 
A 

14 14V 

90 

BDFH 

75 
60 
45 

30 

J L 
C E 

15 

Figure 2.6 Instantaneous Voltage Values of a Voltage 

Sine Wave 
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RMS Calculation 

inalanieneou• 
Voltage Value@ 

(Volts) 

0.0 
3.66 
7.07 
10.00 
12.25 
13.68 
14.14 
13.66 
12.25 
10.00 
7.07 
3.86 
0.0 

TOTAL = 

MEAN = 

Square of 
Inetantaneeva 

V01118 
(V0118 ) 

0.0 
13 39 
49.98 
100 00 
149.95 
11111 55 
199 94 
166.55 
149.95 
10003 
49.98 
13.39 
0.0 

1190.611 
1199.61 

12 

Figure 2.7 Instantaneous Voltage Values for the Voltage 

Sine Wave of Figure 2.6 

Therefore, for the E,2 values of Figure 2.7, 

mean 
1199.66  

12 

- 99.97 

1199.66 volts divided by 12 provides a mean 

value of 99.97 volts. 

The square root of the mean, 99.97 volts, is 

approximately 10.0 volts: 

Er,„, = \rrt7In 

= V99.97 
10V 

(2-15) 
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Thus, the rms voltage value of the waveform 
of Figure 2.6 is approximately 10 volts. In the 
example, if a larger number of instantaneous 
points had been selected rather than 12, the 
rms value would have been exactly 10.0 volts. 

The calculated rms voltage value can be 
proved to be 70.7 percent or 0.707 times the 
measured peak value of voltage of 14.14 volts. 

Ertilf 10.0V  

14. I4V 
= 0.707 

(2-16) 

Converting the 0.707 ratio of rms voltage 
to peak voltage to a percentage gives 
equation 2-17. 

Fr„,, = (0.707) (100%)Ei„.,,i, (2-17) 

Err,. = 7 °• 7 %Epeak 

Relationship of an AC Waveform and 
DC Waveform 

Graphically, the relationship of a dc 
waveform to an ac waveform is as shown in 
Figure 2.8. The rms value, or 0.707 of the 
peak value, is located about three-quarters of 
the way up the ac waveform. And as you can 
see, the peak value of the ac waveform is 
considerably higher than the level of the dc 
waveform. This should not he surprising 
since an ac voltage is at its peak only 
momentarily and then drops back down. 

The rms value of the wave can be determined 
if the peak voltage or current is known by 
rearranging the rms ratio equation 2-16. This 
can be rewritten as 

E,„,. = 0.707Ep..k (2-7) 

Figure 2.8 Relationship of a DC Waveform to an 
AC Waveform 

HEAT 

E r;r;---1 _L. 
• Epc 

  70 7VDC   

HEAT 

a ac circuit b. equivalent dc circuit 

Figure 2.9 Relationship of Sinusoidal Voltage to 
DC Voltage 

It's important to remember that rms or peak 
values can be used when referring to either 
voltage or current. For example, as shown in 
Figure 2.9, suppose a 100-volt peak sinusoidal 
voltage is applied across a resistor and one 
wants to know the value of dc voltage which 
could be applied across the resistor to create 
the same amount of power dissipation. The 
value of the ac voltage equals 0.707 of the 
peak value. Therefore, this can be calculated: 

• = 0.707 x 100V 
• = 70.7 volts 
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Thus the value of dc voltage that will create 
the saine amount of power dissipation as 

an ac voltage with E pk of 100 volts is 70.7 
velts dc. 

If one wants to determine the peak value 
from the rms value, the ratio equation 2-16 

can be rewritten: 

EPeak = 0.707 

1  

= 1.4141Er„,„ 

This equation can be applied to either 

sinusoidal voltage or current 
waveforms. Therefore: 

and 

(2-18) 

Eps„k = 1.414E„„, (2- I 9) 

= rm. (2-20) 

For example, using equation 2-19, the peak 
value of a waveform of 10 volts rms can 

be calculated: 

E p„k = 1.414E,„„ 

= (1.414)(10) 
= 14.14V 

The peak value of the waveform is 14.14 

volts. Therefore, as shown in Figure 2.10 
14.14 volts peak sinusoidal voltage is required 
to create the same amount of heat or power 

as that caused by 10 volts dc. 

Standard Notation of Voltage RMS Values 

Because ac voltage values are commonly 

specified as rms values, you will normally see 
voltages such as standard 60-hertz power 
voltages written as 115VAC. The VAC 
notation is a simplified way of specifying 
rms voltage values. 

Any ac voltage listed as VAC can be assumed to 

be an rm-s value, and where the type of specification 

is not provided, you can also assume rms values. 

10Vac 

Figure 2.10 10 Volts DC Is as Effeclive as 14.14 Peak 

Volts AC 

RMS, Peak, and Peak-to-Peak 

Conversion Examples 

The following examples are typical 
conversion problems that you will encounter 

when working with ac circuits. 

Peak and Peak-to-Peak From RMS 

Calculate E p„k and E,,,,k.,„. peak of 120VAC. 
Use the conversion equations 2-19 and 
2-3. The VAC designation indicates that the 
voltage is an rms value. From now on Ept, will 

designate peak voltage instead of E peak and 

Epp will designate peak-to-peak voltage 

instead of Epealc-to-peak• 

E pk = 1.414E..m. 
= (1.414)(120VAC) 

= 169.68V 

and 

PP E = 2E Pk 

= (2)(169.68) 
= 339.36V 

This is summarized in Figure 2.11. 

2-10 
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Peak and RMS From Peak-to-Peak 

If a peak-to-peak value is given, the 
conversion will be to peak and mis values 
using equations 2-4 and 2-7. For example, 
Epl, and Ern), of a 60 volt peak-to-peak sine 
wave is: 

Epk = 0.5Ep, 
= (0.5)(60Vpp) 
= 30V 

Erm, = 0.707E pk 
= (0.707)(30V) 
= 21.21VAC 

This is summarized in Figure 2.12. Remember 

then that ac voltage amplitudes can be 
specified in one of three ways. peak, peak-to-
peak, or rms, and that the same specifications 
can be used for current amplitudes. 

THE SINE WAVE AND SINE 
TRIGONOMETRIC FUNCTION 

The term sinusoidal has been used to describe 
a waveform produced by an ac generator. 
Fhe term sinusoidal comes from a 
trigonometric function called the 
sine function. 

Right-Triangle Side and 
Angle Relationships 

As you may know, trigonometry is the study 
of triangles and their relationships. The basic 
triangle studied in trigonometry is a right 
triangle which is a triangle that has a 90° angle 
as one of its three angles. A 90° triangle has a 
unique set of relationships from which the 
rules for trigonometry are derived. 

Figure 2.13 shows a right triangle and 
identifies the 90° angle. In order to study the 
relationships of a right triangle one of the 
remaining two angles will be labeled with the 
Greek letter theta, 0. 

4%.  

Figure 2.11 Peak and Peak-to-Peak Voilages 
of ¡20V AL 

Figure 2.12 Peak and Peak-to-Peak Voltages of 60 „ 

ee 

HYPOTENUSE — H 

ADJACENT— A 

OPPOSITE — 

Figure 2.13 A 90° Righi Triangle 
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To help distinguish the sides of a right 

triangle from one another, a name is given to 
each side. The sides of the triangle are named 
with respect to the angle theta. The side of 
the triangle across from or opposite to the 
angle theta is called the opposite side The 
longest side of a right triangle is called the 
hypotenuse. The remaining side is called the 
adjacent side because it lies beside or adjacent 
to the angle. These names are commonly 

abbreviated to their first initials: 0, H and A 

As long as the angle theta remains 

unchanged, the sides of the right triangle will 
retain the same relationship to one another. 
Figure 2.14 shows an example to illustrate this 

point. The sides of that right triangle are 6, 8, 
and 10 inches long. The 10-inch side can be 

compared to the 6-inch side by dividing the 
length of one side by the length of the other 

6 

—10 = 0.6 

The result is the decimal fraction 0.6. 

Therefore, since a ratio is defined as the 
value obtained by dividing one number by 
another, the ratio of the 6-inch side to the 
10-inch side is 0.6. 

Keeping theta constant, what will happen to 
the ratio if the lengths of the sides of the 
triangle are doubled? Figure 2.15 shows a 
triangle which has sides which are 12, 16 and 

20 inches long —double the length of the 
sides of the triangle of Figure 2 .14 The 
same two sides, the opposite side and the 
hypotenuse, are compared by dividing 
12 by 20: 

12 

20 = 0.6 

2-12 

8" 

A( AND 
II* SINE WAVE 

6" 

90' ANGLE 

Figure 2.14 TP Jangle With Length of Its Sides 6,8, and 
10 Inches Long 

20" 

1/4 

16" 

12" 

Figure 2.15 Triangle With Length of Its Sides 12, 16, 
and 20 Inches Long 

Therefore, the ratio is 0.6, the same ratio as 
the first triangle. The ratio of the length of 
the sides remained constant because the angle 
theta remained constant. The ratios of the 
sides of right triangles will remain constant 
no matter what the lengths of their sides as 
long as the angle theta is not changed. 

However, if the angle theta is changed, then 
the ratio of the length of the sides will 
also change. 
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Basic Trigonometric Functions 

In trigonometry, these ratios have specific 
names. The three most commonly-used ratios 
in the study of right triangles are called sine, 
cosine, and tangent. The sine of the angle theta 
is equal to the ratio formed by the length of 
the opposite side divided by the length of 
the hypotenuse: 

sine O = 
hypotenuse 

The cosine of the angle theta is equal to the 
ratio formed by length of the adjacent side 
divided by the length of the hypotenuse: 

adjacent  
cosine 8 = 

hypotenuse 

The tangent of the angle theta is equal to the 
ratio formed by length of the opposite side 
divided by the length of the adjacent side: 

opposite 
tangent O — . 

adjacent 

Remember that the sine, cosine and tangent 
represent a ralio of sides of triangles. 
Specifically, these ratios compare the lengths 
of the sides of a triangle. 

The names sine, cosine and tangent are often 
abbreviated sin for sine, cos for cosine and Ian 
for tangent. 

The cosine and tangent functions will be 
used in later lessons. In this lesson the sin( 
function will be discussed. 

opposite 
(2-21) 

(2 22 , 

(2-2 

The Sine Function Related to an 
AC Waveform 

In the previous two examples, the lengths of 
two sides of two triangles were cornpared. In 
both examples the ratio of the opposite side 
to the hypotenuse was determined. In fact, 
what was determined was the conditions for 
the angle theta. For both triangles theta is 
37°. The sine of theta for both triangles is 
0.60. It was stated that no matter how large 
the triangle might become or how long the 
sides, as long as the angle theta does not 
change, the ratio of the sides will not change 
and the sine of 37° will always be 0.60181502 
(rounded off to two places this is 0.60). 

Every angle theta has its own specific sine 
value. This is true for all angles between 0° 
and 360°. The sine for each angle between 0° 
and 360° could be calculated by dividing the 
length of the opposite side of the triangle by 
the length of the hypotenuse. Fortunately, 
this has already been done and published as a 
set of trigonometric tables. Figure 2.16 shows 
a part of a trigonometric table. 

Moreover, the values of these common 
trigonometric functions are provided as 
functions available on scientific calculators. 
Therefore, such calculators can be used to 
find the sine, cosine or tangent of an angle 
instead of a trigonometric table. Specific 
examples are included at the end of 
this lesson. 
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Rotating AC Generator 

l'ou may be wondering why all of this 

emphasis is being placed on the sine function. 
It is for one important reason: the sine of 
an angle theta is an exact mathematical 

statement describing the voltage Produced by 
an ac generator. Therefore, the table which 
tabulates the sine of theta for any angle 

between (rand 360° enables ac voltages to be 

expressed at any point in a cycle. To explain 
these statements, the relationship of the 

rotation of an ac generator, its sinusoidal 

output, the resulting vector right triangles, 
and the sine function will be discussed. 

To demonstrate, a circle with a rotating 

arrow as shown in Figure 2.17 will be used 
to represent an ac generator producing 

one cycle of an ac waveform. The arrow in 
Figure 2.17 has been rotated 30 degrees, and 
a line perpendicular to the horizontal axis has 

been drawn downward from the tip of the 
arrow. As you can see, a right triangle has 

been formed. The arrow is the hypotenuse. 

The perpendicular line is the opposite side. 
The horizontal axis is the adjacent side. When 
the generator is rotated to different angles, 
the length of the hypotenuse (arrow) will 

never change. Only the opposite and adjacent 
sides will change length. 

Recall from equation 2-21 that the sine theta 
is equal to the length of the opposite side 

divided by the length of the hypotenuse: 

opposite Sin O= --
hypotenuse 
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Figure 2.16 A Part of a Trigonometric Table 

.0175 
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0524 
0699 
0875 

1051 

1228 
1405 
1584 
1763 

Figure 2.17 Circle Representation of an AC Generator 

In Figure 2.17 the length of the hypotenuse 
never changes, it is a constant. By setting the 
constant length of the hypotenuse equal to 

I or unity, it remains constant at 1 as the 
generator is rotated. This simplifies the 
equation for sine theta as shown in equation 
2-24 because now the opposite side will be 
divided by 1: 

sin O = 
1 

opposite 
(2-24) 

LI 
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So in this instance the sine of theta is equal to 
the length of the opposite side itself: 

sine = opposite 

Therefore, examining the length of the 
opposite side as theta varies will help 

demonstrate how the sine function varies. 

(2-25) 

During the following discussion the length 

of the opposite side of the resulting right 
triangle at different degree points around the 

circle will be compared to the unity value of 

the hypotenuse. The resulting values of these 
ratios will be the value of the sine function for 

different angles. The values will be plotted on 

the graph shown in Figure 2.18. 

Let's begin when the rotating arrow in 

Figure 2.17 is at 0°. In this case, the length of 

opposite side of the right triangle is zero units 

long. Therefore, 

sin 

= 0.00 

The original position of the arrow in 

Figure 2.17 is 30°. If you were to measure the 
opposite side you would find that it would be 

one-half the length of the hypotenuse, or 0.5 

units long. Therefore, 

0.5 
sin 30° = — 

-= 0.5 

This point is plotted at 30° on the graph 

shown in Figure 2.18. Remember this point 
indicates the voltage amplitude when the 

hypotenuse has been rotated 30 degrees from 

the 0° reference. 

1.000 

0.866 

0.500 

o 

0.500 

-0.866 

- 1.000 

30 60' 

90' 1130" 270 360' 

Figure 2.18 Sine Values Belween 0° and 360° al 
30-Degree Intervals 

s.  

90° 

180' 

270° 

o 

Figure 2.19 Generator Has Been Rotated 60 Degrees 

In Figure 2 19, the generator has been rotated 
to 60°. The length of the opposite side is 86.6 

percent of the length of the hypotenuse, or 

0.866 units long. Therefore, 

0.866 
sin 60° — 

1 

= 0.866 

This point is plotted at 60° on the graph 

shown in Figure 2.18. 
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In Figure 2.20, the rotating hypotenuse is at 

90°. Notice that at this point the length of the 

opposite side must be equal to the length of 
the arrow, (hypotenuse). Therefore, 

1 
sin 90° - 

1 

= 1.000 

As shown plotted at 90° on the graph of 
Figure 2.18, the amplitude of this point is 

a maximum 

In Figures 2.21 and 2.22 with the arrow at 

120' and 150°, respectively, right triangles are 

produced with angles of theta equal to the 60° 

and 30° angles. The opposite sides will be 

respectively, 0.866 and 0.5 units. 

Therefore, at 120°, 

Sin 120° = 0.866 

and at 150', 

90° 

180° 

Figure 2.20 Gene; atar Has Been Rotated 90 Degren 

Sin 150° = 0.5 I 180° 

These are plotted at their respective points on 
Figure 2.18. 

When the hypotenuse reaches 180° as shown 
in Figure 2.23, the length of the opposite side 
is again zero units long, and, 

0 
sin 180° = -1 

= 0.000 

This is plotted at 180° on Figure 2.18. Note 

that all the values plotted are positive values. 
In Figure 2.24 all of the points are connected 

with a curve indicating the continuously 

changing values as the generator rotates. 

Figure 2.21 GenePa1ot Has Been Rotated 120 Degrees 

Figure 2.22 Generator Has Been Rotated 150 Degrees 
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Note that from 0° to 90° of rotation the 
amplitude ut the sine wave goes from 0 to 
1, and from 90' to 180' that the amplitude 
comes down from 1 to 0 following a 
similarly-shaped curve. -1 herefore, the 
amplitude values of a sine wave repeat 
themselves during the second 90 degrees of 
rotation in reverse order from the amplitude 
variations during the first 90 degrees 
of rotation. 

Thus far, all of the points have been in the 
positive region of the graph because the 
perpendicular line has extended in an 
upward, or positive, direction. lf the 
hypotenuse is rotated to the bottom half 
of the circle as shown in Figure 2.25, right 
triangles are produced which duplicate the 
right triangles in the top part of the circle 
However, the opposite side of the right 
triangle is now extending in a downward 
direction which gives the sine of the angles 
negative values. The points are plotted on 
Figure 2.18 and connected by a curve in 
Figure 2.24. Note that the negative portion of 
the curve is an exact replica of the positive 
portion; both sides are symmetrical. 

In this discussion and demonstration, you 
should have become aware of the fact that the 
sine wave is an exact mathematical statement 
of the output of an ac generator. Also, the sine 
wave is inertly a plot of the sines of angles between 
0° and 360°. Therefore the voltage or current 
output of an ac generator at any angle of 
rotation, theta, depends directly on the sine 
of the angle theta. This dependence is a very 
important point, and, in a later lesson, more 
explicit use will be made of the sine function 
in relation to the ac sine wave. 

90° 

180° 

270' 
11‘  

Figure 2.23 Generator Has Been Rotated 180 Degrees 

1.000 
0.866 

0.500 

o 

0 500 

- 0.866 
1.000 

41. 
90' 180* 270' 

Figure 2.24 Plot Points Connected With a Line 

Figure 2.25 Theta Between 1800 and 360' 

360 

270° 
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USING A 0° TO 90° TRIGONOMETRIC TABLE 

Many tables of trigonometric functions list 

only the function values from 0° to 90'. If you 
have a good understanding of how the angles 

of the trigonometric functions are related, 
this will cause no problems. To help you 

understand the trigonometric relationship 

and the relationship to the rotation of an a( 

generator the rotation will be divided into 
four equal parts. Each part is called 
a quadrant. 

Figure 226 shows a graph that is divided into 

four quadrants with each quadrant labeled 

with a Roman numeral 1, II, III, or IV. 

Notice that the Roman numerals increase 
in a counter-clockwise direction around 

the graph. 

Therefore, as shown in Figure 2.27, as the 

generator goes one-quarter turn from 0° 

to 90° in quadrant 1, the sine wave follows 
a curve through a set of amplitudes that 

increase from 0 to 1. Through the next 
quarter-turn from 90° to 180° in quadrant 

11, the sine wave follows a curve through the 
same set of values, but now in reverse order 

and decreasing from 1 to 0. During the next 

quarter-turn from 180° to 270° in quadrant 

Ill, and the next quarter-turn from 270° to 
360° in quadrant IV, the same curves through 
the same set of amplitude values are gone 

through from 0 to 1 and 1 to 0 as were gone 

through in quadrant I and II. In quadrants 
111 and IV, however, the amplitude of the 
sine wave is negative. 

Because of this repetition, most trigonometric 

function tables, as shown in Figure 2.28, only 
give the values of the function between 0° and 
90°. However, the generator rotates through 

360 degrees; therefore, one must be able to 
find the sine of any angle from 0° to 360°. 

That can be done by using the table given for 
quadrant 1 to also determine the sine of 
angles of quadrant II, 111, and IV, as well. 

FOUR QUADRANTS 

II 

III 

Figure 2.26 4 Four-Quachaut Graph 

90° 

IV 

270° 

Figure 2.27 Relationship of the Quadrants and a 

Sine Wave 

0' 0.0000 
5 0872 

10 1736 
IS 2588 

20 3420 
25 4226 
30 5000 
35 5736 
40 6426 
45 .7071 
SO 7660 
55 8192 
60 8660 
85 9063 
70 9397 
75 9659 
80 9848 
65 9962 
90 1,0000 

cas 

1.000 
.9942 
.9846 
1856 
.9397 
.9063 
.6660 
.8192 
.7880 
.7071 
.8426 
8734 
.5000 
.4228 
.3420 
2588 
.1736 
.0872 
.0000 

TAN 

0 0 0 0 0 
.0875 
1763 
2679 
3640 
4663 
5774 
.7002 
8391 
1 0000 
1.1918 
1.4281 
1.7321 
21445 
2.7475 
3.7321 
5.6713 
11.43 

Figure 2.28 A Pari of a Trigonotnetru. Table 
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To find the sine of an angle less than 90° as 
shown in Figure 2.29 the value is read directly 
from the table. For example, suppose you 
want to find the sine of 30°. You would look 
in the table, such as the one shown in 
Figure 2.28, under the angle column for 30°. 
Then you would look to the right of the angle 
in the sine column to locate the value of the 

sine of this angle. You can see in the table 
that it is 0.5. Thus, the sine of 30° is 0.5. 

The sine of quadrant II angles, that is, angles 
between 90° and 180°, can be determined 
using a 0°-90° trig table by first converting the 
angle in the second quadrant to what is called 
a first-quadrant equivalent angle. For angles 
in the second quadrant, theta ii, the first-
quadrant equivalent, theta ', is determined 

by subtracting theta !' from 180°: 

01 = 180° — (2-26) 

For example, suppose that you want to 
determine the sine of the second quadrant 
angle theta ii = 120°, as shown in Figure 2.30. 
The first-quadrant equivalent angle of 120° is 

= 180' — 9 
= 180° — 120° 

60° 

Now, using the 0°-90° table of Figure 2.28, you 
would look up the sine of 60°. This is 0.8660 
and which, therefore, also equals the sine 
of 120°. 

Angles in quadrant Ill and quadrant IV also 
must be converted to quadrant I equivalents 
to be able to use a 0°-90° table to find the sine 

values of these angles. Use equation 2-27 to 
determine first-quadrant equivalents for 
angles in quadrant Ill. 

01 = Om  — 180° (2-27) 

Use equation 2-28 for angles in Quadrant IV. 

01 = 360° — eiv (2-28) 

Figure 2.29 Any Angle in Quadrant I Can Be Read 
Directly From Trig Table 

Figure 2.30 Angle of 120° on Quadrant Graph 
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The equations and where to use them are 

summarized in Figure 2.31 to enable you to 
find the sine of any angle between 0° and 
360' using a 0°-90° trigonometric table. 
Remember, however, that the sine has posnive 
values in quadrants 1 and II, but that it has 
negative values in quadrants Ill and IV This 
also is summarized in Figure 2.31. 

Additional Trigonometric Calculations 

You have seen how a sine wave is generated 
and how evaluating the amplitude of the sine 
wave corresponds to measuring the opposite 
side of a right triangle with hypotenuse equal 
to 1, as the hypotenuse rotates from 0 to 360°. 

Since you will encounter two other common 
trigonometric functions, cosine and tangent, 
it will be worthwhile to review them 
briefly also. 

Cosine 

Recall from equation 2-22 that the cosine of 
an angle theta of a right triangle is equal to 
the ratio of the adjacent side divided by 
the hypotenuse. 

adjacent  
cos O = (2-22) 

hypotenuse 

The cosine function is generated in the 
same way as the sine function except that 
now the amplitude of the cosine waveform 
corresponds to measuring the adjacent side of 
a right triangle with hypotenuse equal to I. 

In Figure 2.32a is shown the same hypotenuse 
that was rotated for the sine wave. Its 
amplitude is kept constant at I (equal to 
unity). The hypotenuse is positioned at a 
rotation of 15° in solid lines and at 75° in 
dotted lines. Note that at 15° the adjacent side 
is almost 1 so that the ratio of the adjacent 

EQUIVALENT ANGLES 

90' 
0, - 180" - 

SINE VALUES 
POSITIVE 

180° 

SINE VALUES 
NEGATIVE 

0,  — 160' 

III 
270° 

0, — READ DIRECT 
FROM TABLE 

SINE VALUES 
POSITIVE 

00 

SINE VALUES 
NEGATIVE 

0,= 360° 0,v 

Iv 

I> 

Figure 2.31 Quadrant Graph With Equivalent-

nee Equations 

90' 
0.956 

1 UTI—Negetive 
edieeent 
aide 

Ill 

Positive 
idlacant 
side / 

270' 

iv 

a. Quadrant rotation 

o• 

360' 
270' 

b. Cosine wavelorrn 

Figure 2.32 Variation of Cosine 

side to the hypotenuse is 0.966, as plotted 
on the cosine curve of Figure 2.326 at 15°. If 
the hypotenuse were rotated back to 0°, the 
adjacent side equals the hypotenuse and the 
cosine is equal to I. 

At a rotation of 75°, as shown in Figure 2.32a, 
the adjacent side is reduced to 0.259 of the 
hypotenuse and therefore, the cosine is 0.259. 
This is plotted at 75° in Figure 2.32b. 
Therefore, as the hypotenuse rotates through 
the first quadrant from 0° to 90°, the cosine 

decreases from I to 0. 
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You can go through the exercise of rotating 
the hypotenuse through quadrants II. III and 

IV, calculate the equivalent first—quadrant 
angle, and verify that the cosine varies from 

0 to — I in quadrant 11. from — I to 0 in 
quadrant Ill, and from 0 to I in quadrant IV. 

It is particularly important to recognize that 

the adjacent side is a negative value for 

quadrant 11 and III. 

Tangent 

The tangent of the angle theta of a right 

triangle from equation 2-23 is equal to the 

ratio of the side opposite to the side adjacent. 

opposite 
tan O — adjacent 

The hypotenuse equal to unity is again 
rotated as shown in Figure 2.33a. Now the 

opposite side of the formed right triangle 
must be divided by the adjacent side in order 

to form the tangent ratio. The ratio does not 
correspond to the measurement of just one 
side as it did for the sine and cosine functions. 

For this reason the tangent waveform has a 

much different shape than the sine and 
cosine waveform. 

(2-23) 

Recall that as the sine function is formed it 

varies from 0 to 1 as the rotation goes from 

0° to 900. In other words the opposite side is 
increasing from 0 to J. From Figure 2.32 for 

the cosine, the adjacent side decreases from 
1 to 0 through this same rotation. Therefore, 

the tangent has the numerator (the opposite 

side) increasing from 0 to 1 and the 
denominator decreasing from 1 to 0, 

tan 8 
-) I 

14— 0 
(2-29) 

as shown in equation 2-29, for theta from 

0° to 90°. 

II 120' 
135' 

(+0 
- A 4 

1806 

225' 

270' 

45' 

2 
1.73. 

- 1.0 - 

0.557 
15' 0 260 
0* 

- 0.268 
0.577 

315' 
iv -1 - 

6, 270. 

135* / 225' 315'  
80' 270' 360' 

0 90' l @ 270' 
a. Quadrant rotation b. Tangent waver) m 

Figure 2.33 Variation of Tangent 

Let's look at Figure 2.33a. When the rotation 
is at 0', the adjacent side is I and the opposite 

side is O. Therefore, the tangent is 0 as 
plotted on Figure 2.33b. At 15° rotation the 

opposite side has taken on a small value and 
the adjacent side is still near 1 (0.966 as 

shown on Figure 2.32b). The tangent is 0.268 
and is plotted on Figure 2.331) at 15°. At 45° 

both the opposite side and the adjacent side 
are equal to the same value so that the 

tangent is I as plotted on Figure 2.336. As the 
rotation increases above 45° the opposite side 
is larger than the adjacent side and the 

tangent is increasing and greater than I 
(specifically 1.73 at 60°). At 90° the opposite 
side is 1 and the adjacent side is 0. Division 

by 0 results in the tangent having a value of 
infinity at 90° and again at 270° as shown in 

Figure 2.336. The opposite side is positive 

and the adjacent side is positive so that the 
tangent is positive in the first quadrant. 
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As the rotation continues, the tangent 
changes value from positive to negative as 
the rotation goes beyond 90° because the 
adjacent side becomes negative. Therefore, 
it decreases from infinity to smaller negative 
values as shown in Figure 2.336. At 180° the 
tangent is again 0. In the third quadrant, the 
opposite side is negative and the adjacent side 
is negative, therefore, the tangent is positive 
and increases, from 0 to infinity in the sanie 
fashion as it did for the first quadrant. in like 
fashion, as shown in Figure 2.336, the rotation 
through the fourth quadrant repeats the 
same tangent values as for the second 
quadrant. Each time the equivalent first 
quadrant angle is 45 degrees in any of the 
quadrants, the tangent is equal to I. These 
points are plotted at 45°, 135°, 225° and 315° 
in Figure 2.33b. 

Finding Sides When Theta and Hypotenuse 
are Given 

One more important extension of right 
triangle mathematics and trigonometry that is 
important concerns calculating or evaluating 
the sides of a right triangle when the angle 
theta is given. 

Look at Figure 2.34a. What is known about 
the sides in relationship to the angle theta? 
First of all, the ratio of the lengths of the 
sides is known by the equations 2-21, 2-22 
and 2-23. (Abbreviations are inserted for 
convenience, H for hypotenuse, 0 opposite, 
and A for adjacent.) 

O 
sin O = —H 

A 
cos 0 = —H 

O 
tan 0 = 

(2-21) 

(2-22) 

(2-23) 

o Ht 

a. General b. Hypotenuse and e. 0 and A 
theta given sides given 

Figure 2.34 Determining Sides When Theta u Given 

Secondly, when the hypotenuse and the 

angle are given as shown in Figure 2.346, 
the opposite side and adjacent side can be 

determined easily. Rearranging equation 

2-21 into equation 2-30. 

o = 1-1 sin 0 (2-30) 

allows the opposite side to be calculated if the 
hypotenuse and angle theta are given. 

Rearranging equation 2-22 into 

equation 2-31, 

A = H cos 0 (2-31) 

allows the adjacent side to be calculated if the 

hypotenuse and angle theta are given. 

Find the Hypotenuse and Angle When Sides 

are Given 

Thirdly, if the opposite and adjacent 
sides are given, as shown in Figure 2.34c, 
the hypotenuse and angle theta can be 
calculated easily. 
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From the given opposite and adjacent sides 
the tangent of theta can be determined by 
using equation 2-23. Knowing that theta 
is an angle that has a tangent equal to the 
calculated ratio, the angle can be determined 
from the trigonometric tables or by using a 

calculator that has the trigonometric 
functions such as the 11-35 shown in 
Figure 2.35. 

When the angle theta is known the 
hypotenuse can be determined by using 
equation 2-30 or 2-31, rearranged. 

or 

0 
H — 

sin 

H = A  
cos 

2 32 

(2 7 ) 

First Example 

Here's an example of how io determine 
unknowns. Figure 2.36a shows a right triangle 
with an angle, theta, of 39° and a hypotenuse 
of 100. 
Using equation 2-30, 

O = H sin 
= 100 sin 39° 
= (100)(0.629) 
= 62.9 

The opposite side equals 62.9. 

You can use a trigonometric table or a 
calculator. If a trigonometric table is used, 
you enter the table in the degrees column and 
scan across to the sine column and read the 
sine of 39° and use it in the equation. 

Figure 2 95 Typical Calculator with 
nigunomelric Functions 

H = 100 

= 39° 

90 

a. Hypotenuse and b. Opposite and adjacent 
theta given sides given 

Figure 2.36 Example Problem 
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When a calculator is used then the result can 
be obtained almost immediately by following 
these keystrokes: 

Press Display/Comments  

100 100 
[in 100 
39 39 

0.62932039 
EIJ 62.932039 

Using equation 2-31, 
A = H cos 
= 100 cos 39° 
= (100)(0.777) 
= 77.7 

The adjacent side equals 77.7. 
The calculator keystrokes are: 

Press Display/Comments  

100 100 
f_TO oo 
39 39 
kos] 0.77714596 

77.714596 

Second Example 

in Figure 2.366 shows a right triangle which 
has the opposite side equal to 90 and the 
adjacent side equal to 60. Using 
equation 2-23 

o 
tan O = —A 

90 
= 60 
=1.5 

Locating 1.5 in the tangent column of a 
trigonometric function table and scanning 
across to the degree column you find that the 
angle is 56.31 degrees. 

If a calculator is used, the following 
keystrokes arc followed to luid the angle: 

Press Display/Co .!! 

90 90 
90 

60 60 
1.5 

• (my' L5 

• [tan 1 56.309932 

*might be tan key 

The hypotenuse can be determined by using 

equation 2-32, 

0 
= 

sin e 
90 

sin 56.31° 
90 

0.832 
= 108.17 

The hypotenuse is 108.17 

This is easily calculated using a calculator 

with the following keystrokes: 

Press 

90 
14-1 
56.31 

EJ 

12:!..1221.07nmen_ts 

90 
90 

56.31 
0.83205095 
108.16645 
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SUMMARY 

In this lesson the relationship of period to 
frequency was reviewed and you were shown 
how to specify the amplitude of a sine wave 
in terms of its peak, peak-to-peak, and rms 
values. The definitions of the various 
trigonometric functions were presented and 
related to right triangles and a quadrant 
graph. You were shown how to determine 
the value of the sine of any angle between 
0° and 360° and how to use it, the cosine, and 

tangent to solve right triangle problems. 
In the next lesson, you will learn about an 
instrument that provides an electronic picture 
of an ac sine wave, and you will learn how to 
use it to study further the characteristics of 
sine waves. 
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1. Given the frequency of waveform, determine the period, or time of one cycle. 

f = 16kHz, T =   

Solution: 

1 1  
TO) = f(Hz) 16kHz 16 x 10 

  — 0.0625 x 10 = 62.51Ls 
3 

2. Given the time of one cycle, determine the frequency ol the waveform 

T = 2651-Ls, f =   

Solution: 

1 1  
i(HL) T,., 265u.s 

1  
265 x 10 =- — 0.00377 x 106 = 3.77kHz 

265 x 10 -6 

3. Given the rms amplitude of a sine waveform, determine the peak and peak-peak values. 

Ermi = 8.3V 

=   

E PP =-

Solution. 

Epk, = 1.414 x Er„,. = 1.414 X 8.3V = 11.7V 

Epp 2 x Epk = 2 x 11.7V = 23.4V 

4. Given the peak amplitude of a sine waveform, determine the rms and peak-to-peak values. 

= SmV 

Errn. 

E PP =   

Solution . 

= 0.707 X Epk = 0.707 x 8mV 5.66mV 

Epp = 2 x Epk = 2 x 8mV = 16mV 
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5. Given the peak-to-peak amplitude of a sine waveform, determine the peak and rms values 

pp 

l„ 

Irrnj 

= I6mA 

Solution: 

= 0.5 x 1pp = 0. 5 X 16mA 8mA 

1,„„ = 0.707 x Ipk = 0.707 x 8mA = 5.66mA 

6. a. Given the following right triangle, determine the sine of the angle and with a calculator 
or using tables find the angle. 

0 = 8 

A 9 

Solution: 

O 
sin O = = —8 = 0.667 

H 12 

Calculator Solution for Angle: 

Enter the ratio into the calculator so it is displayed. Press inv and sin keys or sin -1 key 
and the calculator will display the angle in decimal degrees. 

Table Solution for Angle: 

Enter the table of natural trigonometric functions by locating the ratio in the sine column. 
Read across to the angle in decimal degrees in the degree column. 

arc sin 0.667 = 41.8° 

Given the following right triangle, determine the cosine of the angle and with a calculator 
or using tables find the angle. 

Solution: 

cos O = — = —3 = 0.25 = 75.5° 
A 

H 12 

= 11.6 H=12 

A = 3 
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Calculator Solution for Angle: 

Enter the ratio into the calculator so it is displayed. Press inv and cos keys or the cos - 

key and the calculator will display the angle in decimal degrees. 

Table Solution for Angle: 

Enter the table of natural trigonometric functions by locating the ratio in the cosine 

column. Read across to the angle in decimal degrees in the degree column 

7. Given the following right triangle, determine the sine, cosine, and tangent ol the angle and 

the angle itself using a calculator or table as in problem 6. 

Solution: 

sin 0 =   — 0.8484 = 0.85 0 = 58.2° 
H 9.43 

9.43 

8 

A 5 
cosO = = 943 = 0.530 = 0.53 0 = 58° or 

0 
tan 0 = —A = —5 = 1.6 0 = 58° 

There may be as much as 0.2 to 0.3 of a degree variation in the angle calculated from the 
sine, cosine or tangent depending on the rounding off of the sine, cosine or tangent ratio as 

it is calculated. 

8. Given the following right triangle, determine the remaining sides. 

a. 

H 100 

e 40  
A 7 

Solution: 

sin 0 = 9— 

O = 7 0= H sin 0 ---- 100 sin 40° = 100 x 0.643 = 64.3 

cos O = 
H 

A = H cos 0 = 100 cos 40° = 100 x 0.766 = 76.6 
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b. Solution: 

tan O —0 
A 

0 10 10 
A — — 5.77 

tan 8 - tan 60° - 1 73 

0 
sin O = 

o 

sin 8 

cos O = 
H 

10 10  
— 11.5 or 

- sin 60° - 0.866 

A 5.77 5.77  
= 11.5 

cos 8 - cos 60° 0.5 

Calculator Solution for Szne, Cosine or Tangent: 

Enter the angle in the calculator so it is displayed. Press the sine, cosine or tangent key for the 
respective function required and the value will read out directly on the display. 

Table Solution for Sine, Cosine or Tangent: 
Enter the table of natural trigonometric functions by locating the angle in the degrees 
column. Scan across to the respective sine, cosine or tangent column and read the value in 
whole numbers and/or decimals. 

9. If a hypotenuse of length equal to unity (length = 1) is rotated from the zero-degree position 
by the following angles, identify the quadrant in which the hypotenuse is located. 

a. 278° e. 229° 
b. 153° f. 460° 
c. 92° g. 191° 
d. 10° h. 89° 
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Solution: 

a. 278° is greater than 270° and less than 360° fourth quadrant 

b. 153° is greater than 90° and less than 180°— second quadrant 

c. 94° is greater than 90° and less than 180°— second quadrant 

d. 10° is greater than 0° and less than 90°— first quadrant 

e. 229° is greater than 180° and less than 270°— third quadrant 

f. 460° — 360° =- 100° 

100° is greater than 90° and less than 180° second quadrant 

g. 191° is greater than 180° and less than 270' third quadrant 

h. 89' is greater than 0° and less than 90° first quadrant 

10. a. Find the quadrant I equivalent of a 136' angle. 

Solution: 

= 180° — 0ii = 180° — 136° = 44° 

b. Find the quadrant 1 equivalent of a 197° angle. 

Solution: 

81 = 8iii — 180° = 197° — 180° =17° 

c. Find the quadrant 1 equivalent of a 338° angle 

Solution: 

81 = 360° — eiv = 360° — 338° = 22° 
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1. Given the following frequencies, calculate the period of the waveform. 

a. f = 6.3kHz, T 

b. fr 276Hz, T =   

= 37.8kHz, T =   

d f = 7.6MHz, T =   

2. Given the following times of one cycle of a waveform, calculate the frequency of 
each waveform. 

a. T = 5Orns, f =   

b. T = 0.0057s, f -   

T = 33.8p,s, f =   

d. T - 4.7s, f =   

3. Given the following peak-to-peak amplitudes, c alculate the peak and rms amplitude values. 

a. E = 370V E pp = 7.5mV -PP 

Epe. 

(2.) Ernis (2.) Er, 

b. F'PP = 17.8V 

(1.) E p k 

(2.) E. 

d. Inn = 32mA 

(I.) 

(2.) Inn, 

4. Given the following rms amplitudes, calculate the peak and peak-to-peak amplitude values. 

a. Erms = 10V 

(I.) E L 

(2.) Epp 

b. Ern„ -= 120V 

(I.) Epk 

(2.) E" 

Erms = 7 8mV 

(1.) Epk 

(2.) E" 

d. 'ruIu - 2.5mA 

(I.) 

(2.) 'pp 
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5. Given the following right triangles, calculate the sine, cosine, and tangent of the angles. 

a. b. 

(1.) sin 0 

(2.) cos 0 

(3.) tan 0 

= 14 

6. Find the angles of the following ratios: 

a. sin 8 = 0.95 8 =   

b. cos = 0.5 8 =   

c. tan 8 = 1.0 8 =   

d. sin 8 = 0.5 8 =   

e. cos 8 = 0.12 8 =   

f. tan 0 = 0.07 0 =   

10 

(1.) sin 

(2.) cos 0 

(3.) tan 

7. Determine the value of the hypotenuse H of the following right triangles with opposite side 

0 and adjacent side A and the angle 8. 

e o 

a. 30° 10 

b. 60° 

c. 45° 

d. 75° 100 

A H 

10 

10 
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8. Determine the missing sides for the following right triangles with the hypotenuse and angle 
8 given. 

H A 

a. 20° 100 

b. 40° 100 

100 

d. 80° 100 

9. In which quadrant are the following angles? 

a. 91° 

b. 362° 

c. 200° 

d 145° 

e. 300° 

10. Find the quadrant 1 equivalent angle of the following angles. 

e 
a. 46° 
b. 100° 
c. 205° 
d. 420° 
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Quiz 

1. Given the following periods or 

frequencies, determine the frequency or 
time of one cycle of the waveform. 

a. f = 5.3MHz, T =   
b. f = 163kHz, T =   
c. T = 37ms, f =   
d. T = 2.811s, f =   

2. Given the following peak amplitudes, 

determine the peak-to-peak and 
rms values. 

a. Eic -= 37V P 
(L) Epp 
(2 .) Erms 

b. E pk = 75mV 
(1.) Epp 
(2.) Erms 

C. = 540iLA 

(I.) Ir,,, 

(2.) 1,„„ 

3. Given the following rms amplitude 

values, determine the peak and peak-to-
peak values. 

a. E m. = 60V 
(1.) E pk 

(2.) Epp 
b. I = 6.7mA 

(I.) Ipk 

(2.) pp 

C. Irms  = 3.15A 

(I.) Ipk 

(2.) 1pp 

4. Given the following right triangles, 
calculate the sine, cosine, and tangent of 

the angles. 

a. 

A = 27 

(1.) sin 
(2.) cos 8 
(3.) tan 

b. 

20 

20.9 

(1.) sin 
(2.) cos 
(3.) tan 

5. Using the data given, determine if the 

opposite side of a right triangle is greater 
than, equal to, or less than the adjacent 
side when the angle theta is: 

O sin cos tan 

30° 0.5 45° 0.707 0.866 0.577 
0.707 1.0 

60° 0.866 0.5 1.73 

a. 30° 
b. 450 
c. 60° 
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6. The opposite side of a right triangle 

a. is the one larger than the hypotenuse. 
b. remains constant.for 

changing hypotenuse. 

t plots the sine wave functions as the 
angle theta changes. 

d. is always equal to the adjacent side. 

7. The tangent trigonometric function of 
the angle theta for a right triangle 

a. always has the opposite side and 
adjacent side equal. 

b. is the ratio of the opposite side to the 
adjacent side. 

c. is equal to the sine plus the cosine. 
d. is equal to the hypotenuse times the 

sine of theta. 

8. An angle in the second quadrant 

a. is a negative angle. 
b is between 270° and 360°. 
c. is one for which the sine function 

varies from I to 0. 
d. is the same as an angle in the 

third quadrant. 

9. If the hypotenuse has rotated 361 0, it is 
in quadrant 

a. I 
b. II 
c. III 
d. IV 

10. Find the quadrant I equivalent angle of 
the following angles. 

a. 137° 
b. 232° 
c. 307° 
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LESSON 3 

we The 
Oscilloscope 
and its Use 
In this lesson one of the most important electronic 
measuring instruments for ac voltages and currents 
is discussed—the oscilloscope. It is particularly 
important because it allows one to "take" an 
electronic picture of ac waveforms. The construction 
of an oscilloscope is explained. The function and 
adjustment of an oscilloscope's controls are described. 
And you are told how to use an oscilloscope to 
perform some electrical measurements. 
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AND ITS USE 

Objectives 
• 

At the end of this lesson you should be able to: 

1. Describe the major sections of an oscilloscope 

2. Explain how the vertical and horizontal deflection systems of an 
oscilloscope function. 

3. Adjust the basic controls of a typical oscilloscope 

4. Use an oscilloscope to measure the peak and peak-to-peak voltages of a 

waveform, and use these to calculate rms values. 

5. Use an oscilloscope to determine the period of a sinusoidal waveform and 

calculate the waveforms frequency. 
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Ill Introduction 3 
INTRODUCTION 

In the first two lessons, discussion concerned 

how ac is generated and how it is specified 
in terms of amplitude and frequency. You 
learned how to determine the instantaneous 
amplitude at various points in the cycle, and 
how the sine wave derives its name from the 
sine function. 

Before continuing with an investigation 

of actual ac circuits, however, one of the 
instruments which is very important for 
making electrical measurements in the circuits 

which you will learn about throughout this 
book is the oscilloscope (or scope for short). 
A typical oscilloscope is shown in Figure 3.1. 

In earlier lessons it was explained how dc and 
ac voltages versus time are graphed as shown 
in Figure 3.2. The oscilloscope is capable of 
automatically displaying an ac or dc voltage 
graphed versus time as shown in Figure 3.3. 
The oscilloscope, then, can be called a "visual 
voltmeter". But, in fact, it is more than just 
a voltmeter; the scope actually displays 
waveforms so that the intricacies of 
waveforms can be observed clearly. It 
is an instrument which converts electrical 
signals to visual waveforms on a screen. 

An oscilloscope performs three basic 
functions: One of these is waveform 
observation. The scope allows the size and 
shape and type of waveform to he observed. 
A second function is amplitude measurement. 
The oscilloscope vertical deflection is 
calibrated on the screen so that actual 
voltage amplitudes can he measured. The 
third function is a measurement of time. 
The oscilloscope sweep across the screen 
horizontally is calibrated in time increments 
which allows the measurement of time 
periods or time duration. 

Figure 3.1 A Typical Oscilloscope 

a 

Figure 3.2 Plots of: a. DC Voltage; b AC Voltage 

Figure 3.3 Scope Face with AC and D(, 
Waveforms Displayed 
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• The Cathode-Ray Tube 
• Electron Gun 

There are many different oscilloscopes in use 
today. Figure 3.4 and 3.5 show several typical 

scopes. Each of these scopes is unique in 

operation and design. However, there are 

many basic controls and functions common 

to all scopes. Once you become familiar with 

these basic controls, operation of practically 
any scope becomes a simple process 

Therefore, the intention of the following 

discussion is to familiarize you with the basic 

concepts and the common controls of most 

scopes so that you will learn how they are 

constructed, how they perform electrical 

measurements, and how they are used. 

A BASIC OSCILLOSCOPE 

As shown in Figure 3.6, the scope can he 
divided into two major segments: 1) the 

cathode-ray tube (also called a crt), and 2) the 
controlling circults. 

The Cathode-Ray Tube 

The crt is the heart of the oscilloscope. Its 

'face' displays the waveform being measured, 
similar to the crt which displays the picture 

received by a television receiver. As shown in 
Figure 3.7, it consists of three major parts: 1) 
an electron gun; 2) a deflection system; and 

3) a screen. 

Electron G1111 

The electron gun is located at the rear of the 

crt, away from the screen. Its job is to emit a 
narrow stream of electrons. These electrons 

are (accelerated), focused into a beam and 
accelerated toward the screen of the crt by a 
high positive potential applied to the electron 

gun anode placed near the front end of the 

electron gun. Note: oscilloscopes may employ 

an acceleration system that accelerates the 

electrons in the beam either before or after 

the beam passes through the deflection 
system. The pre-deflection anode potentials 

are on the order of 3000 to 4000 volts. 

Figure 3.4 Typical Oscilloscope 

CONTROL 
CIRCUITS 

Figure 3.5 Typical Oscilloscope 

Figure 3.6 Interior of a Typical Oscilloscope 
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• Electron Gun 3 
Post-deflection anode potentials may be 
several thousand volts higher. Some may 
reach 25,000 volts. 

The electron beam travelling toward the 
screen passes through the deflection system. 
The deflection system consists of four 
deflection plates as shown in Figure 3.8. 
Two plates—one on the top and one on the 
bottom— are called vertical deflection plates. 
The two plates on the sides are the horizontal 
deflection plates. By applying positive or 
negative potentials to these deflection plates, 
the electron beam is caused to deflect up 
or down and right or left as it passes 
through them. 

The more potential applied to the plates, the 
more the electron beam deflects. Therefore, 
the amount of this deflection is actually 
a measure of the voltage, or potential 
difference, applied to the plates. The force 
bending the beam is electrostatic force and 
it follows the first law of electrostatics: like 
charges repel and unlike charges attract. 

If a voltage is applied across the vertical 
deflection plates as shown in Figure 3.9a, the 
electron beam moves upwards. If the polarity 
applied to the plates is reversed, as shown in 
Figure 3.9b, the beam moves downwards. 

If a voltage is applied across the horizontal 
deflection plates as shown in Figure 3.10a, the 
electron beam will travel from left to right. If 
the polarity applied to the deflection plates is 
reversed as shown in Figure 3.106, the beam 
moves from right to left. 

If voltages are applied to the vertical and 
horizontal deflection plates simultaneously, 
the beam moves vertically and horizontally 
at the same time, diagonally. This is shown 
in Figure 3.11. 

If no potential is applied to the plates, the 
beam returns to the center of the tube. This 
was the original position shown in Figure 3.8. 

I  

ELECTRON 
GUN 

HIGH POSITIVE 
POTENTIAL 

le 45(1 ••• •••••• • 

DEFLECTION 
SCREEN SYSTEM 

Figure 3.7 Simplified Construction of a Typical CRT 

A 

• 

A 

A— VERTICAL DEFLECTION PLATES 

B— HORIZONTAL DEFLECTION PLATES 

Figure 3.8 End-View of CRT Deflection Plates and 
Electron Beam 

VERTICAL 
DEFLECTION 

PLATES 

++++++ 

Figure 3.9 Vertical Deflection 
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• The Screen 
II Control Circuits 

The Screen 

The third and remaining part of a crt is the 

screen. After the beam is emitted and travels 

through the deflection system, it strikes the 

screen at. a point determined by the deflection 

plates. As shown in Figure 3.12, the inside 
surface of the screen of a crt is coated with a 

phosphor material which has the property of 

phosphorescence. Phosphorescence, in this case, 
is defined as the ability of a material to emit 

light after being struck by electrons. The 

trace observed when viewing the scope is 
caused by the electron beam striking the 

phosphor material of the screen. The very 

high positive potential (typically from 3,000 

volts for small scopes to 25,000 volts for tv 

picture tubes) accelerates the electrons to 

the screen to provide the energy for light 
emission. 

Control Circuits 

The other portion of an oscilloscope shown 

in Figure 3.6 and again in Figure 3.12 is its 

control circuits. These are electronic circuits 
that perform several functions. They cause 

the crt to emit electrons, regulate how many 

electrons make up the beam current, and 

control the direction of the beam of electrons. 
The control circuits are connected to the 

electron gun and deflection plates in the crt 
through a connector at the base of the crt as 

shown in Figure 3.12. 

Most controls and inputs for the control 
circuit are located on the front panel of the 
oscilloscope as shown in Figure 3.13. While 

the scope in Figure 3.13 is typical and very 
similar to other scopes, other scopes do have 

differences. It does, however, provide basic 
oscilloscope functions, and therefore it will 
give you a good idea of a scope's basic 
controls, how a waveform is displayed, and 

how to use it to measure voltages. It is a 

dual-trace scope, and therefore it has two 

HORIZONTAL 
DEFLECTION 

PLATES 

+ + 

+ + 

-OAP> + + 
+ + 
+ + 
+ + 

a 

Figure 3.10 Horizontal Deflection 

++ ++++ 

Figure 3.11 Diagonal Deflection 

HIGH POSITIVE 
POTENTIAL 

CONTROL 
CIRCUITS 

Figure 3.12 CRT and Control Circuits 

PHOSPHOR 
SCREEN 
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identical vertical input controls so that it can 
display the traces of two different input 
signals at the same time. 

The controls can be divided into three major 
groups: 1) the mainframe group, 2) the vertical 
control group, and 3) the horizontal control 
group. This is shown in Figure 3.14. 

MAINFRAME CONTROLS 

An enlarged view of the mainframe controls 
is shown in Figure 3.15. Once the scope is 
connected to a standard wall receptacle, 
power can be applied to all circuits in the 
scope with the power switch. After the power 
switch is activated, one to two minutes are 
required before the scope circuits are 
operational. After this "warm up" period, 
a trace may or may not be observed on the 
screen of the err. 

Beam Control— Intensity 

If a trace is not observed, the intensity control 
should be turned clockwise. The intensity 
control regulates the number of electrons in 
the beam striking the screen. As the intensity 
control knob nears mid-position, a spot or a 
trace should be visible. If the intensity control 
is set too high as shown in Figure 3./6, the 
spot or trace (horizontal line across screen) on 
the screen will not be crisp and sharp; it will 
instead appear overbright and be fuzzy. This 
is called "blooming". if a high intensity like 
this is allowed to continue, the phosphor can 
be burned off the inside of the screen where 
the beam strikes it, and that portion of the 
scren will be damaged. It is advisable to 
increase the intensity only to the point 
where the trace is barely visible. You should 
remember to turn the intensity down before 
turning the scope off to keep the crt from 
blooming the next time the scope is turned 
on. In addition, it is not advisable to leave the 
intensity control turned up when there is a 
single spot on the screen rather than a trace. 
It could burn the screen. 

V. POSITION 

V. INPUT 

V. INPUT--.4' 

V. POSITION 

INTENSITY 

FOCUS 

BEAM 
FINDER 

e—. POWER 

H. POSITION 

SECONDS, 
DIVISION 

LEVEL 

SOURCE 

Figure 3.13 Front-Panel Contrai of a Typical 

Oscilloscope 

Figure 3.14 The Three i'lla)or Control Groups of a 
Typical Scope 

Figure 3.15 The Mainframe Controls 
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Beam Control— Focus 

The focus control is used to focus the trace. 

There are two basic ways this can be done. 

One, if the trace appears as a spot travelling 

slowly from left to right across the screen, 
focus the spot to a point. Two, if the trace 

appears as a horizontal line, use the focus 

to sharpen the line to a narrow trace. A 

properly-focused trace is shown in 
Figure 3.17. 

Beam Control— Astigmatism 

A third beam control that may be found on 

some oscilloscopes is the astigmatism control. 
This control is used to adjust the roundness of 

the spot. The scope shown in Figure 3.15 does 

not have an astigmatism control. 

Beam Control— Position 

Thus far it has been assumed that the trace 
should be immediately evident after the 

intensity has been increased. But suppose the 

intensity is increased and the trace is still not 

visible. The beam-finder button on the scope 

in Figure 3./5 then should be pushed to help 
locate the trace. Often when the scope is 
turned on, previous settings may be such 

that the trace is deflected off the screen. 
The beam-finder button normally reduces all 

deflection potentials so that the trace appears 
on the screen, By noting the trace position, 
you know the direction in which the trace 

is deflected. This enables you to adjust the 
position controls to move the trace hack to the 
center of the screen. The position controls, 

located on the vertical control panel, will be 
described in a moment. 

Calibration 

Below the power switch is the calibrator 
loop. A signal of a specific frequency and 

amplitude passes through this loop. A typical 
squarewave calibration signal is shown in 

Figure 3.18. These signals with their known 
specifications can be used to check the 

Nft.  

Figure 3.16 Excessive Brightness Causes "Blooming.' 

Figure 3.17 A Well-focused Trace 

CONSTANT 
AMPLITUDE 

--H CONSTANT 
FREQUENCY 

Figure 3.18 A Typical Square Wave Calibration Signal 
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accuracy of the vertical and horizontal 
deflection systems of the scope. The 
procedure, involving the use of a known 
signal, is called calibration. 

Screen Graticule 

To the left of all of these mainframe 
controls, of the scope in Figure 3.13 is the 
crt. Figure 3.19 shows an enlarged view of the 
front of the screen. Notice that the screen has 
been marked off into eight vertical divisions 
and ten horizontal divisions. Each division 
has been further marked off into five equal 
increments. Each increment represents 
two-tenths of one division. This scale is 
called a graticule. 

Equipped with a graticule, the oscilloscope 
provides an electronic graph of voltage 
against time. It essentially is a calibrated scale 
with the vertical divisions of the graticule 
representing voltage values and the horizontal 
divisions representing time increments. 

Some scopes have an illumination control 
which provides lighting for the graticule. -1 he 
scope shown in Figure 3.13 does not have 
that function. 

VERTICAL CONTROL 

The vertical controls shown in Figure 3.20 
adjust circuits that are connected to the 
vertical deflection plates and performs 
two control functions: 1) they control the 
trace's vertical position, and 2) they select 
the amount of voltage each vertical 

division represents. 

The vertical position control, is used to 
position the electron beam which forms the 
spot or trace on the graticule vertically. Any 
initial vertical reference level can be selected. 
It is usually positioned without any signal 
applied to the scope input. The most common 
level is on the center horizontal line of the 
graticule as shown in Figure 3.21. The spot 
can be moved vertically by applying a voltage 

II  I I I 

Figure 3.19 A Typical Graticule 

Figure 3.20 Vertical Control Group 

E 

Figure 3.21 Vertical Trace Positioned on Zero-
Reference Line 
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%Jr 

to the vertical input jack. The input is applied 

through the input jack to electronic circuits 

which amplify, or attenuate, the input and 
apply the potentials to the vertical 
deflection plates. 

The Scope as a Voltmeter 

Remember, the scope basically acts as a 
voltmeter; therefore, as shown in Figure 3 22, 

it must be connected across circuit components 

to measure voltages across those components. 

However, instead of one connection being a 

negative lead, it is a common lead on most 
scopes, and it is at ground potential. If 

measurements are to be made in a circuit with 

a ground, the scope common (ground) lead 

should be connected only to the circuit ground 
as shown in Figure 3.23. Failure to practice 

this procedure will often cause damage to the 
circuit or the scope, or it could expose the 

operator to a possible electrical shock. 

Vertical Deflection— DC Voltage 

What does happen when a dc voltage is 
applied to the vertical input of a typical 

scope? First, assume that the scope is turned 
on and that its controls have been set to 

produce a spot at the center of the screen 

without any signal applied to its vertical input. 

The screen is as shown in Figure 3.24. Now a 

dc voltage from a power supply is connected 
to the scope's vertical input, connected as 

shown in Figure 3.25. When the power supply 
is connected to the scope the spot will move 
up or down depending on the polarity of the 

connections between power supply and scope 

input. The spot moves in the direction of the 
most positive vertical deflection plate. One 

deflection plate is more positive than the 

other because one side of the power supply 

applied is more positive than the other. 

R1 

TO 
SCOPE 

VERTICAL 
INPUT 

Figure 3.22 A Scope Must Connected Across 
Components to Measure Voltages in Those Component, 

R1 
TO 
SCOPE 

+ INPUT 

TO 
SCOPE 

GROUND 

Figure 3.23 Scope's Ground Lead Should be Connected 
Only to Circuit Ground 

414  

Figure 3.24 Spot at Center of CRT Without Any Signal 
Applied to Vertical Input 
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Therefore, the spot which is actually a 
beam of negatively-charged electrons — 
is attracted to the more positive of the 
deflection plates. If the connections between 
the power supply and scope input are 
reversed as shown in Figure 3.26, the spot 
will move in the opposite direction it moved 
before the connections were reversed. This is 
because the opposite vertical deflection plate 
is now more positive than the other. The 
important fact is that the spot can be made to 

move up or down from a reference position by 
applying a voltage of the proper polarity to 
the vertical input. The examples here were 
for constant de voltage inputs. 

Vertical Deflection—AC Voltage 

If an ac voltage is applied to a scope's vertical 
input, the spot will deflect up and down 
periodically from the center reference point 
of Figure 3.24. It does this because, as you 
know, ac is sinusoidal, constantly changing 
polarity from positive to negative and back 
again with time in a sine wave fashion. 
Therefore, a straight vertical line will appear 
on the scope face as shown in Figure 3.27a. 
The line is being created by the spot moving 
up and down very rapidly between the 
rapidly-changing positive and negative 
potentials on the vertical deflection plates. 
Even though a sinusoidal ac voltage is being 
input to the scope as shown in Figure 3.27b, 
it doesn't look like a sinewave because the 
voltage is being applied only to the vertical 
deflection plates, and therefore, there is no 
horizontal deflection. The line is simply an 
indication of the voltage amplitude changes 
of the applied ac voltage, as shown in Figure 
3.27b. The length of the line will become 
longer or shorter as the ac voltage amplitude 
is increased or decreased. It obviously is not 
the standard graph of a sinusoidal waveform. 

Figure 3.25 A DC Power Supply Connected to 
Vertical Input 

E 

Figure 3.26 DC Power Supply Connections Reversed 

a 

Figure 3.27 a. Voltage Display on CRT; b. Stnusoidal 
Voltage Input to Scope 
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Voltage Measurements 

Some of the amplitude units of measurement 

applicable to sinusoidal waveforms can be 
observed and measured directly on the scope 
face using the graticule. As shown in Figure 
3.28, the maximum positive deflection from 
the reference position is the positive peak 
voltage of the waveform. The maximum 
negative deflection from the reference 

position is the negative peak voltage. 
Therefore, the peak-to-peak voltage is the 
sum of the positive and negative peak voltage 

values. Or, the peak-to-peak voltage is the 
value of voltage measured from the positive 
peak deflection to the negative 
peak deflection. 

Vertical Deflection—Volts per Division 

The amplitudes of ac waveforms can be any 
voltage value from zero to many hundreds of 
volts. Therefore, some method is needed to 
determine the peak or peak-to-peak voltage 
values of a wide range of possible input 
voltages. This is done by using the scope's 

graticule markings and a control called the 
volts-per-division selector. It is shown on the 
scope's vertical control panel in Figure 3.20. 
Two vertical volts-per-division selectors are 
shown on the panel because it is a dual-trace 
scope designed to provide two separate 
waveform traces from two separate vertical 
input sources. Only one vertical volts-per-
division selector and input are needed to 
display a single trace on a scope. 

The magnitude of voltage represented 
by a vertical division on the graticule is 
determined by the setting of the volts-per-
division selector. For example, if the dial 
is set to 1 volt per division, the vertical 
deflection circuits have been adjusted so that 
each major vertical division on the graticule 
equals 1 volt. 

Figure 3.28 Measurement Units Applied Lo an AC 

Waveform Displayed on Scope CRT 

Figure 3.29 spot Deflected + l Volt 

Now, a dc voltage is applied to the scope's 
vertical input. If the spot deflects up from a 
reference position exactly one division, as 
shown in Figure 3.29, a potential of +1 volt is 

being measured. If the spot deflects down 
exactly one division as shown in Figure 3.30, a 

potential of —1 volt is being measured. 

Each major vertical division is further divided 

into five subdivisions. The voltage interval 
represented by each subdivision is two-tenths 

of the voltage of one major division. 
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If the spot deflects up one major division 
from a reference position plus four-tenths 
of the next major division (two subdivisions) 
as shown in Figure 3.31, then the number of 
divisions is 1 4. The potential being measured 
is calculated: 

(1.4 divisions)(1 volt-per-division) = 1.4 volts 

The voltage being measured is 1.4 volts. 
Other applied voltages are calculated the 
same way. The value of the voltage is 
determined by multiplying the number of 
graticule divisions by the setting on the 
volts-per-division selector. 

E = (number of divisions) x (3-1) 
(number of volts-per-division) 

An Example 

For example, assume that an ac voltage 
whose voltage level is unknown is applied to 
a scope's vertical input. The waveform on the 
scope's crt is as shown in Figure 3.32. The 
scope's vertical selector is set to 2 volts-per-
division. What are the peak and peak-to-peak 
voltages of the input voltage? 

To evaluate the scope measurement, count 
the number of graticule divisions from the 
zero (center) horizontal graticule reference to 
the top of the waveform. In this example that 
is two and one-half divisions. This is the peak 
voltage of the ac voltage. It can be calculated 
using equation 3-1. 

E pk = (number of divisions) 
(volts-per-division) 

= (2.5)(2V) 
= 5V 

Figure 3.30 Spot Deflected — I Volt 

I  

Figure 3.31 Spot Deflected +1.4 Volts 

Figure 3.32 Sinusoidal Waveform on Scope CRT 
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Volts-per-Division 

Thus, the positive peak deflection is 5 volts. 
Since the negative peak voltage is the same as 

the positive peak voltage as shown in Figure 
3.33, the peak negative deflection is also 5 
volts. Recall that the peak-to-peak voltage 
is calculated. 

E„ = 2E pk 

= (2)(5V) 
= 10V 

(3-2) 

The peak-to-peak voltage is 10 volts. 

However, the peak-to-peak voltage of the 
waveform can also be determined another 
way. The total number of graticule divisions 
from the top of the positive peak to the 
bottom of the negative peak of the waveform 
can be counted. In this example that is five 
graticule divisions. Therefore, using 
equation 3-1, 

Epp = (5 divisions)(2 volts-per-division) 
= 10V 

This is the same amount of peak-to-peak 

voltage calculated using equation 3-2. Thus 
either method can be used to determine the 

peak-to-peak voltage of a waveform if it is a 
sine wave or a symmetrical ac waveform. With 
its volts-per-division controls and graticule 
markings a scope can be used to determine 
the peak and peak-to-peak values of 
any unknown voltage within its 
measurement range. 

Vertical Deflection — 
Variable Volts-per-Division 

The scope shown in Figure 3.20 has a 
variable volts-per-division control located in 
the center of the volts-per-division selector. 

This control must be turned fully clockwise 
to the calibrated position as indicated by the 
arrow on the inner control to read the correct 
amplitudes from the scope graticule as 
indicated by the main volts-per-division 

IM1 

Figure p.33 Voltage Waveform for Calculation Example 

selector. (This is a detent position called CAL, 
or there may even be a light indicator on 
latest model scope.) If the variable control 
is taken out of the calibrated position, the 
number of volts for each graticule division 
would become more than the setting on the 
main volts-per-division selector. This control 

should remain in the CAL position except 
when making special-purpose measurements 
which are outlined in the scope manual. 

Vertical Coupling Control 

Beside the vertical input connector on the 
scope in Figure 3.20 there is a pushbutton 
control that is labeled vertical coupling control. 
It can be set to AC or DC. In general, the 
vertical coupling control should be set to ac 
when measuring ac voltages such as in Figure 
3.276. The control should be set to dc to 

measure dc voltages. If a particular waveform 
has both ac and dc voltage components as 
shown in Figure 3.34, set the control on the 

scope to the dc position to examine both 
components and it will appear as shown. If 
you wish to measure only the ac component 
of a waveform with both dc and ac 
components, change the vertical coupling 
control to the ac position. The dc component 
will be eliminated as shown in Figure 3.35. 
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Another vertical input control pushbutton in 
Figure 3.20 labeled GND is used to set the 
trace to zero or reference position before 
taking measurements. When this control is 
pushed in, the input signal is removed, and 
zero volts, or ground potential is applied 
to the scope input circuit. The trace can 
then be moved to a point on the graticule 
representing the zero point. This zero 
reference point is normally set at the center 
horizontal line of the graticule, but it can be 
moved to any vertical position on the screen 
using the vertical deflection 
positioning control. 

HORIZONTAL CONTROLS 

The horizontal control section. identified in 
Figure 3.14 and shown magnified in Figure 
3.36 determines the potentials on the right 
and left horizontal deflection plates causing 
the spot to move from side to side on the 
scope lace. This side-to-side movement of the 
spot is called sweep. The spot is always swept 
from left to right across the screen of the 
scope as shown in Figure 3.37. 

Horizontal Sweep 

Recall that the vertical deflection of the spot 
is proportional to the voltage amplitude of the 
waveform. The horizontal sweep of the spot 
on the other hand, is proportional to an 
amount of time it takes time for the spot to 
move from one side of the scope's crt face 
to the other. Thus, as stated previously, the 
vertical deflection of the scope plots voltage 
and the horizontal deflection plots time. 

If the spot is swept with the vertical input 
grounded, there will be no vertical deflection 
and only the effect of the horizontal controls 
on the spot will be viewed. 

  t 

Figure 3.34 Waveform Containing AC and DC 
Components Displayed Using DC Coupling 

+ E 

— E 
 —1 

ONE CYCLE 

  t 

Figure 3.35 Waveform of Figure 7 34 l'sing 

C Coupling 

Figure 3.36 Horizontal Control Group 
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Horizontal Positioning and Triggering 

The posihon control in the horizontal control 
section shown in Figure 3.36 determines the 
place at which the spot begins its sweep. 

The act of starting the sweep is called 
triggering. Basically, the triggering circuits 
and their controls shown in the lower 

right-hand part of the scope in Figure 3.36 
allow you to select when a sweep will begin 
relative to some reference signal. Generally, 
the most useful triggering method is to set the 
scope trigger controls to internal auto trigger. 
With this setting the signal applied to the 

vertical plates, and therefore observed on the 
screen, actually acts to trigger its own sweep. 

In the internal auto trigger mode, when the 

incoming applied signal reaches a specific 
point on its waveform, determined by the 
scope's slope and level controls, the sweep 
begins. By adjusting these controls the sweep 
can be caused to begin at any desired point of 
the waveform displayed. If the input signal is 

removed the horizontal trace would not be 
triggered. By changing the trigger controls to 
the auto mode the scope will begin triggering 

itself (free run) so that there is a reference 
trace on the crt face. 

Horizontal Sweep Time 

The spot is swept across the screen by the 
horizontal deflection circuits changing the 
electrical potentials on the horizontal 
deflection plates. The time interval required 
for the trace to travel across the screen is 
controlled by the horizontal deflection time 
selector. The selector is calibrated in units 
of seconds per division. This is comparable 
to the volts-per-division units of the vertical 
deflection selector. The sweep is measured 

in units of time, usually in seconds or some 
fraction of a second. 

41. el- .110- •••• 

Figure 3.37 spot Moves From Left lo Right Across 
Scope Face 

When a time in seconds or decimal fractions 
of a second is selected by a horizontal time 
selector setting, the spot then sweeps one 

division on the graticule horizontal scale 
in the selected time. For example, if the 
horizontal time (sweep) selector is set to one 
second per division, the spot moves from left 

to right on the scope face at a rate of one 
major graticule division per second. 

In Figure 3.37 for instance, it would take one 
second for the spot to move across the scope 

face from one major graticule mark to 
another. There are ten major divisions across 
the graticule. Therefore, with a horizontal 
setting of one second per division, it would 
take ten seconds for the spot to move from 
the left-hand edge of the scope face to its 
right-hand edge. 
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Also note in Figure 3.37 that each major 
horizontal division is divided into five 
subdivisions. This is further clarified in Figure 
3.38. The time interval represented by each 
subdivision represents two-tenths of the time 
of one major division. For example, if the 
horizontal time (sweep) selector is set to one 
second per division, each subdivision on the 
horizontal axis represents two-tenths of one 
second. If, however, the selector is set to two 
microseconds per division then the spot 
moves across the screen at the rate of one 
major graticule division in two microseconds, 
and each subdivision represents 0.4 
microseconds as shown in Figure 3.39. 

As the sweep time interval per division 
is decreased by changing the setting of 
the horizontal time control, the sweep 
moves more rapidly across the scope face. 
Eventually, the sweep (the spot) is moving so 
rapidly that it appears to be a continuous line. 
Actually, the sweep ends and starts just like 
on the larger time per division sweep settings, 
but the motion is too fast for the eye to see. 

The selection of horizontal time units may be 
different on different scopes. With the scope 
shown in Figure 3.36, the trace can be made 
to move across the screen from a rate of 
five seconds per division to a rate up to one 
microsecond per division. "1- he common name 
for the horizontal time control is horizontal 
sweep selector, therefore, that name will be 
used from now on. 

0 2S 

1.0s 

IS  -1111 It f st 

Figure 3.38 Time Required to Move Spot Across 
Graticule When Horizontal Control ú Set to I Second 
per Division 

et f 

Figure 3.39 Time Required Lo Move Spot Across . 
Graticule When Horizontal Control is Set to 2 
Microseconds per Division 

Variable Sweep Time 

In the center of the horizontal sweep control 
is a variable-control knob. This knob is similar 
to the variable control of the vertical 
deflection control. For the seconds-per-
division control setting to indicate the correct 
sweep time it must be in the calibrated 
position, turned fully clockwise as indicated 
by the arrow. This is the CAL position. This 
control is in the CAL position except when 
making special-purpose measurements which 

are outlined in the scope manual. 
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MEASUREMENT OF AN AC W AVEFORM 

An important measurement that can be done 
easily using a scope is the measurement of 
the period of an ac waveform. The period 
measurement is significant because the 
period information can be applied to the 
time-frequency equation to calculate the 
frequency of the waveform. 

The first step is to apply an ac voltage to 
the scope's vertical input with the scope's 
coupling control set to measure an ac voltage 
Next the horizontal sweep selector should be 
adjusted to provide a display of one or two 

cycles of the waveform. For this example, 
assume that the horizontal sweep selector is 
set at two-tenths milliseconds (0.2ms) per 
division. Make sure the inner variable control 
is set at CAL. 

Recall that the period of a waveform is the 
time duration, T, of one cycle as shown in 
Figure 3 35. One cycle exists between any two 
points that have the same value and where 
the waveform is varying in the same direction. 
The points most commonly used to measure 
the time of one cycle are the points where the 
waveform crosses the zero axis line on the 
positive-going part of the waveform. 

For this example, the waveform displayed on 
the face of the scope is as shown in Figure 
3.40. Two hashmarks have been drawn to 
indicate one cycle of the waveform. To 
determine the amount of time between the 
two hashmarks, the number of graticule 
divisions between them is counted. There are 
exactly five divisions between them. 

Recall that the scope's horizontal sweep 
selector is set to two-tenths milliseconds 
(0.2ms) per division. The period of the 
waveform is then calculated by multiplying 
the time per division by the number 
of divisions: 

1-

14 41 5111:4 4' 

Figure 3.40 Waveform for Period Calculation Example 

T = (seconds per division) x (3-3) 
(number of divisions) 
(0.2ms/division)(5 divisions) 

= 1ms 

The period of the waveform is 
one millisecond. 

The period of any sinusoidal waveform can 

be determined in the same way. 

Now that the period of the waveform is 
known, the frequency of the waveform can be 

calculated easily using this equation: 

(3-4) 

Since T is one millisecond; 

f = 
I ms 
1 --

0.001 
= 1 x 103 

= IkHz 

The frequency of the waveform is 1 kilohertz. 

You have now learned how to use a scope to 
determine the amplitude and frequency of an 
ac waveform. Another example will help you 
practice the technique. We will start with an 
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unknown waveform and use the scope to 
determine its amplitude and frequency. 

Figure 3.41 shows the unknown waveform 
as it would appear displayed on the face of 
a scope when the trigger control is set for 
internal. The scope's vertical output control 
is set to 2 volts per division. The scope's 
horizontal sweep selector is set to 2 
milliseconds per division. 

The waveform's peak-to-peak amplitude can 
be determined, as stated previously, one of 
two ways. In this example, the number of 
graticule divisions between the top of the 
positive peak and the bottom of the negative 
peak will be counted. Then that number and 
equation 3-1 will be used to calculate the 
peak-to-peak voltage of the waveform. Thus, 
since the waveform amplitude covers six 
divisions, the peak-to-peak voltage is: 

Epp = (6)(2V) 
= 12Vp, 

The unknown waveform is 12 volts peak-
to-peak. 

The frequency is calculated by determining 
the period of the waveform by counting 
horizontal graticule divisions. In this case, the 
number of graticule divisions for one period 
of the waveform is six. The time per division 
is 2 milliseconds. Using equations 3-3 and 
3-4, the period and the frequency of the 
waveform can be calculated: 

T = (6)(2 x 10 -3) 
= 12 x 10 -3 seconds 
= 12ms 

and 

f = 

1  

12 x 10 -3 
= 0.0833 x 103 
= 83.3Hz 

1 1 I 1+11 I 1 I 

Figure 3.41 IVaveform for Amplitude and Frequency 
Calculation Example 

The waveform's frequency is 83.3 hertz. 

Therefore, the unknown waveform is a 12 
volt peak-to-peak ac voltage with a frequency 
of 83.3 hertz. 

SUMMARY 

Discussion in this lesson has tried to 
familiarize you with one of the most 
important pieces of electronic measuring 
equipment—the oscilloscope. The 
construction of a scope was described. It 
was explained why the scope is capable of 
measuring the voltage and time of electrical 
signals very accurately. The function of a 
scope's controls and how they must be 
adjusted, were described, and you were 
shown how to use a scope to measure and 
determine amplitude, period and frequency 
of ac waveforms. In following lessons these 
qualities will be required of many circuits that 
will be studied. The scope is a very useful 
instrument for these measurements. 

One other point: there are a great number 
of different types of scopes in use. A scope 
is supplied, generally, with an operational 
instruction manual. If you need any 
additional information regarding any control 
on a particular scope you are using, you 
should refer to the manual for that scope. 
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Determine the values of voltage, period, and frequency for the following waveforms shown as 
they would appear on an oscilloscope. 

1. The waveform shown is a dc voltage. 
Since it is below the OV-reference level, it 
is a negative voltage: 

E = (2 divisions)(5 V/divisions) 

E -= 10V 

But remember, this is a negative 
voltage; therefore, 

E is a —10V. 

A constant dc voltage has no frequency. 

OV 
reference 

2. The waveform is an ac sine wave. 
Therefore its amplitude can be specified 
in terms of peak, peak-to-peak, or rms 
voltage. From its positive peak value to 
its negative peak value it spans 6 vertical 
divisions. Thus its peak-to-peak voltage is 

Epp = (6 divisions)(0.2V/divisions) 

Epp = 1.2V 

Its peak voltage is one-halfits 
peak-to-peak value, so OV 

reference 
Epb. 1/2 (I.2V) =- 0.6V 

Its rms voltage is 0.707 times its peak 
voltage value. Therefore, 

Ern . = 0.707(0.6V) 

= 0.42V 

H 14 I 

V,clIvIslon 5V T dIvislon 1ms 

Iftt H I I 44-H +4-H 

V dIvislon 0 2V T dIvIslon 1ms 
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File period of the waveform is contained 
within 8 horizontal divisions. Thus 

T (8 divisions)(1ms/division) 

T = 8 ms 

Knowing the period of the waveform, the 
frequency can be calculated: 

r 1 = — = 125Hz 
8ms 

3. The waveform is called a square wave. 
It is like the waveform that is usually 
used as a calibration waveform for most 
oscilloscopes. Note that it alternates 
between a dc voltage level two divisions 
above the OV-reference level and two 
divisions below the OV-reference level. 
Its amplitude is the difference between 
these two levels: 

E = (4 divisions)(2V/division) 

E = 8V 

This square wave also has a frequency. Its 
frequency is the rate at which it alternates 
between its +4-volt and —4-volt levels. 
The cycle of the waveform exists between 
the points x and y shown on the graticule. 
The number of divisions which the cycle 
spans is four. Therefore, the period of 
the waveform is 

T = (4 divisions)(10p.s/division) 

T = 40µ,s 

The frequency of the square wave can 
now be determined as 

1  
= 25kHz 

40u.s 

OV 
reference 

3 

7MML.177-1- Ir," ."-- 7= 

ti  ii 

V/dIvIslon = 2V TidIvIslon = 10,..sec 
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1. Use the oscilloscope diagram on the following page to identify the following controls and 

specify the section of the oscilloscope controls in which they are located. 

Sections: M = mainframe control group 

V = vertical control group 
Fl = horizontal control group 

(time hase) 

a scope ground jack 

b level control 

c external input jack 

d voltsidiv control 

e intensity control 

f line trigger source control 
g ac/dc coupling control (for 

signal measured/displayed) 
h input ground control 

 i beam finder 
 j power switch 

k automatic trigger mode 

control 
seconds/division control 

m. +/— slope control 
n. external trigger source 

control 

o. single sweep/reset mode 

control 
p graticule 

focus control 

r input jack (for signal 
measured/displayed) 

s. calibrator 
t up/down position control 

for trace 
u. left right position control 

for trace 

2. Using direct coupling, how many vertical divisions are required to display an 8-volt 

(peak-to-peak) waveform with the vertical volts-per-division control set to 2V/division? 

number of divisions =   

3. Using direct coupling, how many vertical divisions are required to display a 2.5-volt 

(peak-to-peak) waveform with the vertical volts-per-division control set to 0.2V/division? 

number of divisions =   
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4. How many horizontal divisions are required to display a sine wave with a period of 1.6 

milliseconds with the horizontal seconds-per-division control set to 0.5ms/division? 

number of divisions =   

5. How many horizontal divisions are required to display a sine wave with a frequency of 5 

kilohertz with the horizontal seconds-per-division control set to 0.1ms/division? 

number of divisions =   

For the following waveforms shown as they would appear on the graticule of an oscilloscope, 

determine the values of voltage, period, and frequency as specified: 

6. Vicliv = 0.2V 

T/div = 2ms 

a. EPP =   

b. E p k 

C. Erms 

d. T -   

e. 

7. Vidiv = 5V 

T/div = 0.011.1.s 

a. 

b. 

EPP 

E p k = 

c. Err°, 

d. T 

e f 

i 4 7 F-H 4 i V 

sill  15+1 4111 Ill  t-i 414-1 III-4 Il 
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8. V/div = 0.1 V 

T/div = 5 Oils 

a. E.pp 

b. Epk 

C. E =   

d. T 

e. f 

9. %/Mitt = 0.01 

T/div = 20p.s 

a. Epp =   

b. Epk =   

C. E _mu =   

d. T =   

e. f 

114I  1111 I If 

7--

141I- 1441 t I t 4f 1111 444 

I II 411 eIII 4114 
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10. Vldiv = 10 

= 10ms 

a. 

b. E p k 

C. ErtlIS 

d. T 

e. 

tItt 1111  11-t—•-1  ell 
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1. Using the oscilloscope diagram on the 

following page, identify the location of 
each of the controls listed below by 
placing the letter designator of the 
control in the space beside the name 
of the control: 

  a level 
  b intensity 
  c vertical position control 
  d horizontal position control 
  e vertical volts/division control 
  f. horizontal seconds/division 

control 
  g external input jack 
  h vertical input ground control 

vertical input ac/dc coupling 
control 
variable volts/division control 

  k. beam finder 
  I. calibrator loop 

variable seconds/division 
control 

  n line triggering source control 
  o external triggering source 

control 
  p graticule 
  q power switch 
  r automatic triggering mode 

control 
  s focus control 
  t +/ — slope control 
  u. single sweep triggering mode 

control 
reset (for single sweep) 
control 

  w vertical input jack 
  x oscilloscope ground jack 

The following 20 questions are multiple 
choice; circle the letter of the most-
correct answer. 

2. The three basic functions that an 
oscilloscope performs are 

a. waveform observation, current 
measurement, frequency 
measurement 

b. frequency measurement, voltage 
measurement, period measurement 

c. waveform observation, voltage 
measurement, time measurement 

d. period measurement, power 
measurement, current measurement 

3. The two major segments of the 
oscilloscope are the 

a. CRT and electron gun 
b. screen and vertical section 

CRT and controlling circuits 
d. vertical and mainframe circuits 

4. The CRT is composed of three 
major parts: 

a. screen, deflection system, and 
screen coating 

b. electron gun, deflection system, 
and screen 

c. electron gun, cathode, and grid 
d. anode, cathode, and pentode 

5. The controlling circuits are divided into 
three major groups: 

a. mainframe, underframe, and 
overframe control groups 

b. mainframe, vertical, and CRT 
c. mainframe, vertical, and horizontal 
d. front, back, and side 

6. The type of deflection employed by most 
oscilloscopes is 

a. magnetic 
b. electrostatic 
c. yoke 
d. both a and c 
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7. The ability of a material to emit light 

after being struck by electrons thus 

enabling you to see the location of the 

electron beam on the screen of the 

oscilloscope is called 

a. 

h 

phosphorescence 

luminance 

lasing 
ionization 

8. The purpose of the power switch is to 

control power 

a. 
I). 

d. 

to the circuit under test 

only to the C RT 

to all scope circuits 
none of the above 

9. The purpose of the intensity control is to 

adjust the 

a. graticule illumination 

b. brilliance of the electron trace 
c. current to the circuit under test 

d. calibrator output 

10. Ille purpose of the focus control is to 

locus the 

a. 

b. 

scale illumination 

electron trace to a spot or line 

graticule markings 
output pulses of the calibrator 

11. The purpose of the beam finder control 
is to 

a. automatically reposition the trace 

b. turn off the scope power until the 
beam is found 

reduce deflection potentials so that the 

trace appears 
d. none of the above 

12. [he purpose of the calibrator is to 

a. Supply a square wave signal of known 

amplitude and frequency for checking 

the scope's accuracy (i.e. calibration) 
b. supply an appropriate signal used to 

self-calibrate the scope 

automatically calibrate the scope each 
time it is turned on 

d. b and c 

13. Each small mark on the center vertical 
and horizontal graticule lines is 

a. 

b. 

C. 

d. 

1/4 0 of a major division 

1/2  of a major division 

1/4  of a major division 
2/to of a major division 

14. The purpose of the vertical position 

control is to control the 

a. vertical position of the trace 

b. vertical attitude of the scope 
position of the vertical 

attenuator knob 

cl. none of the above 

15. Ille purpose of the vertical attenuator 

(volts/division control) is ro 

a. control the level of the signal from the 

oscilloscope vertical circuits to the 
circuit under test 

b. attenuate the signal to the 
triggering circuits 

select the number of volts each 
vertical graticule major division 

represents 
d none of the above 
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16. The purpose of the ac/dc vertical input 
coupling control is to 

a. turn on an ac or dc voltage when 
switched to the corresponding 
position 

b. eliminate the dc component of a 

waveform when in the ac position 
c. eliminate the ac component of a 

waveform when in the dc position 
d. none of the above 

17. The purpose of the ground vertical input 
(pushbutton) control is to 

a. ground the chassis of the scope to 
earth ground 

b. remove the input signal from the 
vertical deflection circuits 
apply ground potential (zero volts) to 
the vertical deflection circuits in order 
to set the trace to zero or reference 
position before taking measurements 

d. both b and c 

18. The purpose of the horizontal position 
control is to control the horizontal 
position of the 

a. 
b. 
C. 

d. 

time/division knob 
trace 
scope 
graticule markings 

19. The purpose of the horizontal 
seconds/division control is to 

a. set the number of seconds/division 

each major horizontal graticule 
mark represents 

b. set the speed at which the trace 
(electron beam) moves from right 
to left across the face (graticule) 
of the scope 

assist in determining the period 
and hence frequency of a 
measured waveform 

d. all of the above 

( 

20. The purpose of the triggering controls is 

to select when 

a. 
b. 
C. 

cl. 

the scope will reset 
the trace will be blanked (disappear) 

the sweep will begin 
all of the above 

21. For most general-purpose measurements, 
the triggering method to use is to set the 

scope controls on 

a. 
b. 
C. 

d. 

non-automatic, line triggering 

automatic, external triggering 
internal, automatic triggering 
external, line triggering 

22. Using direct coupling, how many 
divisions (vertically and horizontally) are 
required to display one complete cycle 
of a 3-volt (peak-to-peak), 40 kilohertz 
waveform with the vertical volts/division 
control set to 0.5V/division and the 
horizontal seconds/division control set 

to 5F.t.s division? 

number of vertical divisions -=   
number of horizontal divisions 
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23. V/div = 0.5 

T/div = 10ms 

a. Epp =   

b. Epk = 
c. Eg.„„ =   
d. T 
e. I 

Ft I 1111 4111 

:." 

24. V/div = 0.2 
T/div = 21.ts 

a. Epp =   

b. Epk 

C. Ernis 

d. T 
e. f 

1111:111 49 1 4,4 • 

25. V/div = 2 
T/div = 0.2ms 

a. Epp =   

b. Epk 

Erms =   

d T 
e 

J q-

+ --4-4-1 1  

26. V/div = 5 

T/div = 1 ms 

a. Epp 

b. E„k 

IIIS 

Id. T 
e. 

4 I 1 4114 14 1 

Z." 

tiii eut 1144 +4e4 1444 r,si , 

Z. 
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27. Vichy = 10 

Thliv = 0.5ms 

— 1 

j,,  44 e 
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LESSON 4 

My The Sine Wave 
and Phase 
In this lesson, the use of the sine function to determine 
instantaneous voltage and current values of a sine wave 
is discussed. The relationship between the period of a 
sinusoidal waveform and the electrical degrees of a 
cycle is described. The radian as a unit of angular 
measure is introduced. It is explained how to determine 
and specify the phase relationships of sinusoidal 
waveforms and the use of phasor notation is described. 
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At the end of this lesson you should be able to: 

I. Determine the instantaneous value of a waveform at a specified angle using the 
equation e, = Epoine when given the amplitude of a sinusoidal waveform and 
a number of degrees into the waveform cycle 

2. Determine the instantaneous value of a waveform at a specified time using the 

equation e, = Epksin(360f1) when given the amplitude and frequency of a 
sinusoidal waveform and an elapsed time into the waveform. 

3. Plot a sine wave having a specified amplitude by using the equation e, 
Epksin8 using 10° or 15° intervals. 

4. Define the term sinusoidal. 

5. Define the terni non-sinusoidal. 

6. Identify waveforms as being either sinusoidal or non-sinusoidal. 

7. Express an angle in radians when given its value in degrees. 

8. Express an angle in degrees when given its value in radians. 

9. Specify the phase relationship of two sinusoidal waveforms by stating the lead 
or lag difference of one waveform from the other and the angular difference 
between the two waveforms. 

10. Given a pair of sinusoidal waveforms, represent each pair by an equivalent 
phasor diagram showing both phase relationships and magnitudes. 

11. Sketch the sinusoidal waveform representation of two sinusoidal waveforms 
showing correct amplitudes and phase relationships when given a phasor 
diagram of the two waveforms. 

12. Specify the lead or lag difference and the angular difference of two sinusoidal 
waveforms when given a phasor diagram of the two waveforms. 
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THE SINE WAVE 
AND PHASE 

Sine Wave Instantaneous Values 

INTRODUCTION 

III the last lesson discussion departed from 
the sine function and its relation to the 
sinusoidal ac waveform to investigate the 
practical operation and use of the 
oscilloscope. In Lesson 2 the relationship 
between the period and frequency of a 
periodic ac waveform was discussed and some 
practical examples were analyzed. Three ways 
in which a sinusoidal ac voltage's amplitude 
may be specified were introduced: in terms 
of its peak, peak-to-peak or R MS amplitude. 
The concept of trigonometric functions and 
specifically, the sine function, was introduced. 
The use of the table of trigonometric 
functions and how to determine the value of 
the sine function for any angle 0° to 360° 
were explained. 

INSTANTANEOUS VALUES OF ELECTRICAL 
DEGREE POINTS 

In Lesson 2 the concept of instantaneous 
voltage was introduced briefly during an 
explanation of the 0.707 constant. The 
concept of instantaneous voltage is vital to an 
understanding of an ac waveform. Therefore, 
this section describes in detail exactly what 
is meant by the instantaneous voltage of a 
sinusoidal waveform. 

Note that the sine wave shown in Figure 4./ 
has a peak amplitude of 10 volts. If the 
voltage is measured at various instantaneous 
points throughout the cycle, however, it 
will be found that the voltage is not always 
10 volts. At the beginning of the cycle, the 
voltage is zero volts. As the cycle progresses, 
the value of the voltage increases until one-
quarter of the way through the cycle, at 90°, 
the voltage is at its maximum positive value, 
at its peak of 10 volts. 

Figure 4.1 A 10V0 AC Waveform 

Obviously, the voltage when going from zero 
volts to 10 volts had to increase through many 
instantaneous values. They are called 
instantaneous because they are not constant. 
They are only momentary. They are that 
particular value only for an instant. 

Past 90°, the instantaneous value of the 
voltage decreases until at 180° through the 
cycle, it is zero volts again. The negative 
alternation or half-cycle is simply a mirror 
image of the positive half-cycle. Recall that 
instantaneous values of the negative half-
cycle, however, are said to be negative 
voltages since the polarity of this cycle 
is opposite that of the first half-cycle. 

Sine Wave Instantaneous Values 

The relationship of the sinusoidal waveform 
to the trigonometric sine function is useful 
in determining the instantaneous value of a 
sinusoidal voltage or current waveform at any 
electrical degree point. The relationship of 
instantaneous voltage values to the sine 
function is expressed mathematically by 
equation 4—/, 

ei = 14ksine (4-1) 
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IZ Angles Greater Than 90' 

where e, is the instantaneous voltage or 
current value at the electrical degree point 

theta; F.pk is the peak value (maximum 

amplitude) of the sinusoidal waveform being 

considered; and sine of theta is the value 
of the trigonometric sine function of the 
electrical degree point theta where an 

instantaneous value is desired. 

For example, suppose you wanted to know 
the instantaneous amplitude of a 40-volt peak 
sinusoidal voltage such as the one shown in 

Figure 4.2 30° into the cycle. This can be 

calculated using equation 4-1: 

e, = Epksin0 

= 40Vsin30° 
40V(0.5) 

= 20V 

The instantaneous voltage at 30° is 20 volts. 

This calculation was comparatively simple 

since theta was between 0° and 90°, and 
therefore, the sine of theta could easily 

be determined from almost any 
trigonometric table. 

Angles Greater Than 90° 

Suppose, however, the angle theta at which 

you want to determine the instantaneous 
voltage is an angle greater than 90°. To 

find the sine of theta then, you must first 

determine the first quadrant equivalent angle 

as discussed in Lesson 2. The chart for 
determining equivalent angles from Lesson 2 
is shown again in Figure 4.3 

For example, suppose you wanted to know 
the instantaneous voltage amplitude of a 50-
volt peak waveform at 200° into the cycle as 

illustrated in Ftgure 4.4. It is calculated: 

ei = E.pksine 
= 50Vsin200° 

• 

+ 40V 

20V 

—40V 

Figure 4.2 A 40tio AC Waveform 

• 

EQUIVALENT ANGLES 

II 90° 
0, = 180 — O., 

SINE VALUES 
POSITIVE 

180° 

SINE VALUES 
NEGATIVE 

0, = 0,., 180° 

III 
270° 

0,— READ DIRECT 
FROM TABLE 

SINE VALUES 
POSITIVE 

4 
0° 

SINE VALUES 
NEGATIVE 

0,= 360° - oio 

Figure 4.3 Chart for Determining Equivalent Angles 

4' 

• 

Figure 4.4 200° Point of a 501/0 AC Waveform 
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• Plotting a Sine Wave—Electrical Degrees 

200° is in the third quadrant. It is in the 
first-half of the negative half-cycle of the 

waveform. From Figure 4.3, to find the first 
quadrant equivalent (or first-half of the 
posi/ive half-cycle equivalent) angle of 200°, 
180° must be subtracted from the angle 200°. 
This yields a result of 20° as follows: 

= - 180° 
= 200° — 180' 
= 20° 

This 20° is the angle of which you must find 
the sine. 

e; Epoine 
= 50Vsin20° 
= 50V(0.3420) 
= 17.1V 

But this value of voltage lies in the negative 
half-cycle, and therefore, it is a negative value 
of voltage. Thus, the instantaneous voltage of 
the 50-volt peak sinusoidal waveform 200° 
into the cycle is — 17.1 volts. Remember, 
instantaneous values for angles from 180° to 
360° will be negative as shown in Figure 4.5. 

Plotting a Sine Wave—Electrical Degrees 

Since equation 4-/ provides instantaneous 
values of a sinusoidal waveform, the entire 
waveform can he plotted using this equation. 
For example, suppose you wanted to plot 
a sinusoidal waveform of 20-volts peak 
amplitude versus time. Using the 
equation 4—/, 

e, = 20Vsine 

the instantaneous value of voltage at 
any value of theta into the cycle can 
be determined. 

Figure 4.5 Instantaneous Values for Angles from 180° 
to 360° are Negative 

"I.o help 'ou understand this concept, the 
instantaneous values for a 20-volt peak 
waveform will be calculated at 30° waveform 
increments throughout the cycle beginning at 
0°. This will be very similar to the way the sine 
function was plotted in Lesson 2. When the 
electrical degrees of the cycle progress 
beyond 90° then equivalent quadrant I angles 
must he calculated as shown in the following 
calculations. Either a 0°- 90° trigonometric 
table or a calculator with trigonometric 
functions can be used to determine sine theta 
when performing the calculations. 

Point I: 0° 

ei = 20Vsine 
= 20V(sin0°) 
= 20V(0) 
= OV 

Point 2: 30° 

e; = 20Vsin0 
= 20V(sin30°) 
= 20V( + 0.5) 

10V 
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Point 3: 60° 

e/ = 20Vsin0 

= 20V(sin60°) 

= 20V( + 0.866) 
= + 17.32V 

Point 4: 900 

ei =-- 20Vsin0 

= 20V(sin90°) 
= 20V(+ 1) 
= +20V 

Point 5 1200 

e; = 20Vsin0 

= 20V(sin 120°) 

= 20V(sin60°)* 
= 20V( + 0.866) 
= +17.32V 

*0/ = 180° - 

= 180° - 120° 
= 60° 

Point 6: 150° 

e; = 20Vsin0 

= 20V(sin150°) 
= 20V(sin30°)* 
= 20V(+0.5) 
= +10V 

*8 1 = 180° - 

= 180' - 150° 
= 30° 

Point 7: 180° 

e; = 20Vsin0 

= 20V(sin180°) 

20V(sin0°)* 
= 20V(0) 
= OV 

*81 = 180° - 81; 

= 180° - 1800 
= 0° 

Point 8: 210° 

ei = 20Vsin0 

= 20V(sin210°) 

• 20V(sin - 30°)* 
= 20V( - 0.5)** 
• - 10V 

*0 1 = — (e„, — 180°) 
= - (210° - 180°) 

= - 30° 

**Note: 

sin( -0) = - sin0 

i.e. 

sin( - 30°) = (sin30°) 
- 0.5 

Point 9: 240° 

ei = 20Vsin0 
= 20V(sin240°) 
- 20V(sin - 600)* 

= 20V( - 0.866) 

= - 17.3V 

*01 = — (8111 - 180°) 
= - (240' - 180') 

= - 60° 

Point 10: 270° 

ei = 20Vsin0 
= 20V(sin270°) 
= 20V(sin - 90°)* 

= 20V( - I) 
= -20V 

*el = (ow — 180°) 
= -(270° - 180°) 
= -90° 

*First quadrant equivalent angle. 
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• Instantaneous Current 

Point 11. 300° 

e, = 20Vsine 
= 20V(sin300°) 

= 20V(sin — 60°)* 
= 20V( — 0.866) 
= — 17.3V 

*0 1= — (360° — eiv) 
= —(360° — 300°) 
— — 60° 

Point 12: 330° 

e, = 20Vsin0 
= 20V(sin330°) 
= 20V(sin — 30°)* 
= 20V( —0.5) 
— 10V 

*8 1 = —(360° — 
= — (360° 

—30° 

etv) 
330°) 

Point 13: 360° 

e, = 20Vsine 
= 20V(sin360°) 
= 20V(sin0')* 
= 20V(0) 
= OV 

et = (3600 etv) 
= — (360° — 360°) 

= 
= 

*First quadrant equivalent angle. 

All of these calculated instantaneous voltage 
values can be plotted in graph-form as shown 
in Figure 4.6. The electrical degrees are 
plotted on the X axis. If these points are 
connected with a smooth curve, the result is a 

sinusoidal waveform with a peak amplitude of 
20 volts. Obviously, this is the same waveform 
as was plotted for the sine function in Lesson 2 
modified, of course, by the 20 volts amplitude. 

Figure 4.6 Instantaneous Voltage Values of a 
Sine Wave at 30° Increments 

Instantaneous Current 

The current that flows as a result of this 
applied sinusoidal voltage will also be a 
sinusoidal waveform. The peak value of the 
current can be calculated. The peak value of 
current in a resistive circuit is simply the peak 
value of voltage divided by the resistance in 
the circuit: 

I pk 

E pk 
(4-2) 

Using equation 4-2, if the 20-volt peak 
waveform is applied to a resistance of 10-
ohms as shown in Figure 4.7a, a peak current 
of 2 amperes will be produced. The 
calculation is: 

1 = 

20V  

Ion 
= 2A 

Epk 

The waveform of this current is shown 
graphically in Figure 4.7b. 
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• Sinusoidal Versus Non-Sinusoidal Waveform 

The instantaneous voltage equation 4-1 can 

be used in Ohm's law to obtain an equation 
for instantaneous current in the circuit. 

ei 
=  

Substituting equation 4-1, 

Epoin0 

Epv 
Since — is the peak current, then 

= Ipoine (4-3) 

Note this equation is similar to the equation 
used to calculate the value of voltage. 

Therefore, the instantaneous value of current 

at any electrical degree point of the current 

waveform can be calculated in the same way 

an instantaneous voltage value is calculated. 

For example, if the instantaneous current 

value of this 2-ampere waveform at 30° is 

desired as shown in Fig- re 4.8, the known 
values can be substituted in equation 4-3 to 

calculate i,: 

= Ipk sin(i 

= 2Asin30° 

= 2(0.5) 
= IA 

The instantaneous current value at the 30' 
point of the current waveform is 1 ampere. 

Sinusoidal Versus Non-Sinusoidal Waveform 

As expressed previously in Lesson 2, 

a sinusoidal waveform can be defined as 

any waveform that may he expressed 

mathematically by using the sine function 
The sinusoidal waveform always has the same 

general appearance shown in Figure 4 9. 

a 

2A 

2A 

Figure 4.7. a. AC Circuit , b. Current Waveform 

+2A V.-• 

0  

— 2A 

30° 

Figure 4.8 Instantaneous Value of Current 30° Point of 
Current Waveform 

ee 

con4 j 

Figure 4.9 Sinusoidal Waveforms 

4-8 BASIC AC CIRCUITS 



THE SINE WAVE 
AND PHASE 

• Modifying the e, — E p i, sine Equation 

There are also, however, non-sinusoidal 
waveforms. As its name implies, a non-

sinusoidal waveform is any waveform that 
cannot be expressed mathematically by the 
sine function. For example, the waveforms 
shown in Figure 4.10 are non-sinusoidal. Each 
of those waveforms has a distinctly différent 
shape than that of the sine wave. 

INSTANTANEOUS VALUES AT TIME INTERVALS 

So far in this lesson, you have seen how an 
instantaneous voltage or current value of 
a sine wave can be determined at any degree 
point in its cycle using equations 4-1 and 
4-3. Therefore, if you know Epk, you can 
determine e, at any number of degrees, O. 
into the cycle. 

Now, suppose. however, it is necessary to 
calculate e, at some lime interval into the cycle. 
That too, can be done. Previously, you were 
told that every periodic waveform such as the 
one shown in Figure 4.11 has a period which 
is related to its frequency. The equation which 
states this relationship is: 

f = (4-4) 

Modifying the ei = Epksine Equation 

Recall that the period, T, of a sinusoidal 
waveform is the time duration of one cycle. 
and that a cycle is the result of a conductor 
traveling in a circular path through 360 
electrical degrees. Therefore, 360 electrical 
degrees is equivalent to the period of a cycle 
as shown in Figure 4.11 Moreover, as 
illustrated in Figure 4.12 an amount of time, 

t, less than the period of a cycle, T, can be 
equated with a number of electrical degrees, 
8, less than 360 degrees. 

a 

Figure 4.10 Non-sinusoidal Waveforms 

 3600  N 

Figure 4.11 Period of a Sine Wave 

1/4  
Figure 4.12 Relationship oft to 
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Consider the waveform shown in Figure 4.13 

that has a frequency of 1 cycle per second 
(1 cps or 1 hertz). In previous lessons you 
recall that the period is obtained from a 
rearrangement of equation 4-4 as in 
equation 4-5. 

T = —I (-/- 5 1 

Using equation 4-5, the period is calculated• 

1 
T = —f 

1 
1Hz 

= Is 

The period is I second. Therefore, after one 

second, the waveform has passed through 360 
degrees. That is, one second in terms of time 
is the same as 360 degrees in terms of 
electrical degrees. After one-fourth second 
the waveform has passed through 90° as 
shown in Figure 4.14, and after one-half 
second it has passed though 180°. One-half 
second is the same as 180 electrical degrees 
at this frequency. 

Expressing Theta as a Function of f and t 

Note that one-half second (an amount of time 
into the cycle) is the same fraction of 1 second 
(the period) that 180 degrees (the number of 
electrical degrees corresponding to the time 
into the cycle) is of 360 degrees (the number 
of degrees corresponding to the period). Both 
ratios equal one-half. Expressed mathematically: 

t 0.5s 

— Is 
1 = 

e 180° 
360° - 360° 

_ 1 

— 2 

Therefore, the ratio of —t is the same as the 

ratio of 
360° . 

• 

Figure 4.13 Sine Wave With a Period of 1 Second 

• 411 

t 1/23 

Figure 4.14 ' 4 s and ii2s Poznts of a Sine Wave With 

T = Is 

If the frequency of a waveform changes, 
the electrical degrees of the waveform %yin 
correspond to different Limes (absolute times) 
into the cycle because the period of the cycle 

has changed. However if an instantaneous 
voltage is required at a particular elapsed 
time, t, into the cycle the ratio of the time 
elapsed into the period divided by the period 
will be the same as the electrical degrees at 
time, t, into the cycle divided by 360 degrees. 
The relationship of T, t, 8, and 360 electrical 
degrees is shown graphically in Figure 4.15. 
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In terms of a ratio: 

_  e  

T 360° 
(4-6) 

If both sides of this equation are multiplied 
by 360°, 

360° () 
T 

3600(-) 
\ T 

-  360°) 360° 
\  

= 0 

Since frequency equals 1/T, the equation can 

be rewritten: 

= 3600( ,tr (4-7) 

O 1 = 360°(—T ) t 

O = 360° (f) t (4-8) 

Now, when determining the instantaneous 

voltage of an ac waveform, theta can be 
replaced in the expression by 360 ft because 

theta equals 360 times f times t. Thus, 
equation 4-1 for the instantaneous value 

of the voltage can be rewritten: 

e, = Epksine 
Epksin(360ft) (4-9) 

At first glance 360 ft may not appear to yield 

(3 in degrees. BLit remember, as long as you 

express the frequency (f) in hertz, and the 
time elapsed into the cycle (t) in seconds, that 

360 ft will yield O in degrees. 

Instantaneous Voltages at Specific Times 

For example, consider a 50-volt peak, 
4-kilohertz waveform such as the one in 
Figure 4.15. The period is 250 microseconds. 

Suppose you want to know the instantaneous 

amplitude of the waveform 100 microseconds 
into the cycle. Using equation 4-9, the 
instantaneous voltage can be calculated: 

Figure 4.15 Relationship of T t and 360 
Electrical Degrees 

e, = Epksin(360ft) 
= 50Vsin(360ft) 

= 50Vsin(360 x 4000Hz x 100s) 

= 50Vsin(360 x 4 x 10 x 0.1 x 10 -3) 
= 50Vsin(144°) 

= 50V(0.5878) 
= 29.39V 

29.39 volts is the instantaneous voltage 100 

microseconds into a cycle of an ac voltage of 

50 volts peak and a frequency of 4 kilohertz. 

RADIANS 

An alternate unit of angular measure used 
when dealing with sinusoidal waveforms is 

the radian (abbreviated RAD). A radian is 

defined as the angle included within an arc 

equal to the radius of a circle. That is, if you 

measure off the radius of a circle on its edge 
as shown in Figure 4./6, the value of the angle 

p (greek letter rho) defined by the arc R is 
equal to one radian. 
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To help understand the radian, consider the 
following facts regarding a circle (Figure 
4.17). The ancient Greeks discovered that the 
ratio of the circumference of a circle (the 
length or distance around a circle) to its 
diameter (how far it is from one side of the 

circle through the center to the other side of a 
circle) is always the same number no matter 
what the size of the circle. This number. 
which they labeled with the Greek letter pi 

(7t), equals 3.14. Therefore, the ratio of 
circumference (c) to diameter (d) is a 
constant. Expressed mathematically, to two 
decimal places, 

—d = ir = 3.14 (4-10) 

This means that the circumference of a circle 
is 3.14 times longer than its diameter or said 
another way, the diameter divides into the 
circumference 3.14 times. 

The radius of a circle is one-half its diameter 
Therefore, as shown in Figure 4.18, the radius 
will divide the circumference twice as many 
times as the diameter, 6.28 times (2 x 3.14 = 
6.28). The circumference of a circle (c) is 6.28 
or 2-rt times longer than its radius. Expressed 
mathematically, 

c = 2ir R = 6.28R (4-11) 

Since a radian is the number of degrees 
included within the arc marked off by the 
radius on the circumference, you should see 
that there are 6.28, or 21r, radians in 360° (the 
number of degrees in a circle). Therefore, 
one radian equals 360° divided by 6.28 or 
57.3' as shown in Figure 4.19. Expressed 
mathematically, 

6.28 RAD = 360° (4-12) 
360° 

1RAD(p) — (4-13) 
6.28  

= 57.3° 

Figure 4.16 The Unit Rho (p) is Equal to One Radian 

C (circumference) 

Figure 4.17 Diameter and Circumference of a Circle 

Figure 4.18 The Radius Will Divide a Circle Two Times 

More Than the Diameter 
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Instantaneous Voltage at Radian Rotation 

The instantaneous voltage equation 4-9, 

e, = Epksin(360ft) (4-9) 

can be rewritten substituting 27r (the number 
of radians in 3600) for 360. The resulting 
expression is: 

ei = Epksin2iift (4-14) 

Expressed in this 27rft form of the angle theta 
has the dimensions of radians of angular 
rotation. The 27r1 portion of this equation is 
given the name tia (Greek letter omega). It is 
not the capital omega used for resistance 
measurements (fi), but the lower-case omega 
that looks like a small w. This 27rf form will be 
used at times in equations in the following 
lessons in this book. 

PHASE RELATIONSHIPS 

An important basic concept included in the 
subject of ac is that of the phase relationship 
—called the phase angle—of two or more 
instantaneous waveforms. 

Recall that in discussions in a previous lesson 
that when the single-loop generator began 
its rotation through the magnetic field its 
rotation began at a point where the induced 
voltage in the loop was a minimum. Thus, the 
sinusodial waveform it produced was like the 
one in Figure 4.20. In the following discussion 
it will be called waveform A. 

Some time after this generator A has started, 
suppose that you decided to start another 
identical generator, generator B, and you 
want to compare its output voltage with 
that of the first generator. You wait until 

generator A has gone one-fourth turn before 

you start generator B and then observe the 
output voltage. B's output would appear as 
shown in Figure 4.21. Note that waveform B 

begins at the time that generator A is 90 

degrees into its cycle because it began one-
fourth turn (90 degrees) later. 

Figure 4.19 One Radian (p) Is Equivalent to 57.3° 

• 

Figure 4.20 Sinusoidal Waveform A 

•.› 

Figure 4.21 Sinusoidal Waveform B 
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Generator A will always be one-fourth turn 
(90 degrees) ahead of generator B This 
can be shown by placing waveform B and 

waveform A on the same graph as shown in 
Figure 4.22. This angular difference between 
A and B is called the phase difference between 
A and B In this case it is said that A leads B 
by 90 degrees. 

Now, you can certainly start generator B 

whenever you like. If you were to wait less 
time before starting B, say half the time 
previously, then A would only lead B by 45 
degrees, as seen in Figure 4.23. Or generator 
B could just as easily be started before 
generator A. If B starts 45 degrees before A, 
waveform B leads waveform A by 45 degrees 
as shown in Figure 4.24. If generator B were 
started 90 degrees before generator B the 
waveforms would be as shown in Figure 4.25. 
Waveform B leads A by 90 degrees. Note that 
in this discussion the generators are identical 
and the frequency of both waveforms is 
the same. 

The phase angle, then, is just a convenient 
way of exactly describing the relationship of 
one sine wave to another. 

In-Phase and Out-of-Phase 

If both generators start at the same time, one 
wave runs simultaneously with the other as 
shown in Figure 4.26. This is a zero-degree 
phase difference. In a case such as this, the 
waves are said to be in phase. 

If generator B waits until generator A has 
gone through one-half cycle before it starts, 
a 180-degree phase difference will exist as 
shown in Figure 4.27. In this case, whenever 
wave A swings positive, wave B swings 
negative, and vice versa. Since both waves are 

always exactly the opposite, they are said to be 
inverted from each other, or 180° oul of phase. 

Figure 4.22 Waveform A Leads Waveform B by 
90 Degrees 

Figure 1.23 Waveform A Leads Waveform B by 

45 Degrees 

BA 

4. 

Figure 4.24 Waveform B leads Waveform A by 
45 Degrees 
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Now, up to this point, we've only specified 
that one wave leads another. This situation is 
much like two runners in a race as shown in 
Figure 4.28. You can say runner A is in the 
lead, but you could just as well say that 
runner B is lagging behind. Both mean the 
same thing; both are correct. Similarly, when 

describing the phase relationship of the two 
waveforms shown in Figure 4.22 you can say A 
leads B by 90 degrees or you can just as 
correctly say, B lags A by 90 degrees. Both 
statements mean the same thing. The 
90-degree phase difference is a common one, 
and it will be studied in more detail in later 
lessons. Therefore, it is important that you 
are able to recognize phase differences. 

Determining Phase Difference for 
Partial Waveforms 

In oscilloscope patterns, you may often have 
two waveforms shown and not really see the 
beginning of either wave. One of the simplest 
methods you can use to determine the phase 
difference is to first choose a point at 
which both waveforms are of the same 
instantaneous value of voltage or current. 
A convenient level to choose is the zero 
reference level. In Figure 4.29, waveform A 
and waveform B are the same value at all 
points where they cross the zero reference: 
zero volts. But, you must choose two points 
which are side by side and where waveform A 
is moving in the same direction as waveform B. 
That is, both must be either increasing or 
decreasing in amplitude. Points X and Y 
are side by side, and both waveforms are 
changing from their designated positive 
polarity to negative polarity, or decreasing. 
Between these two points, then, you can 
measure the phase angle. In this case that 
is 90 degrees. 

Figure 4.25 Waveform B Leads Waveform A by 
90 Degrees 

• 

Figure 4.26 Waveforms A and B in Phase 

Figure 4.27 Waveforms A and B 180° OW of Phase 
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When observing waveforms on a scope, 

remember that times to the left on the time 
axis are earlier than times to the right. With 
this in mind, waveform B crosses the zero 
reference level sooner in time than does 
waveform A. Therefore, waveform B leads 
waveform A. Again, you could just as 
correctly state that waveform A lags 
waveform B by 90 degrees. 

l'ou could also look at the peaks as the 
reference level for comparing the phase 
relationships of two waveforms. in Figure 
4.29, for example, you see that waveform 
B reaches its positive peak to the left of 
waveform A. Waveform A reaches its positive 
peak at the point where waveform B reaches 
a zero point later on. Waveform B leads 
waveform A by 90 degrees. Waveform B 
peaks and 90 degrees later waveform A peaks 
where B reaches a zero point. 

Summarizing, then, look for any two points 
on the waveform that have the same value 
and are moving in the same direction. 
Examine where the second waveform is with 
respect to the first. 

Frequency of Waveforms Compared 

An important fact that you must remember 
when comparing the phase differences of 
two or more waveforms is that all of the 
waveforms must be of the same frequency. 
The two waveforms of Figure 4.30 do not 
have the same frequency. Therefore, there is 
not a constant relationship between the two 
waveforms. Thus, any attempt to compare 
phase relationships of the two waveforms is 
futile; the results will be inaccurate. 

Note that in this lesson in all discussions 
concerning the comparison of waveforms A 
and B, it was stated that generators A and B 
are identical. Therefore, the frequency of 
each waveform is identical. 

Figure 4.28 Runners A and li are Similar to Waveforms 

A and B 

90° 
A 

Figure 4.29 Measuring Phase Difference 
['sing Waveforms 

Figure 4.30 Two Sinusoidal Waveforms of 
Different Frequency 
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AND PHASE 

Conventional Phase Difference Specification 

There is another interesting point about the 
phase of waveforms. In Figure 4.31. waveform 
B leads wave A by 90 degrees. Waveform A 

crosses the zero reference axis at point W. 
Note that if you look to the right, waveform B 
reaches a similar point (point Z) 270 degrees 
later on. Focusing on this relationship, it can 
be stated that waveform A leads waveform B 
by 270 degrees. Originally it was stated that 
waveform B leads A by 90 degrees. By 
comparing the phase at points X and Y this 
is verified. 

These different phase relationships illustrate 
a key point— there are many ways of 
correctly expressing the phase between two 
waveforms. By convention, however, usually 
an angle of less than 180° is used to specify 
the phase. In other words, if A leads B by 
225°, it is more common to say that B lags A 
by 135°. Other equivalent specifications can 
be found because of the repetitive nature 
of the sine function, and these are just 
as correct. 

Amplitude Versus Phase 

Another important point about phase 
relationships is that the amplitude of a sine 
wave has no bearing on its phase. The phase 
relationship of two sine waves of different 
amplitude is determined in the same way as 
two sine waves of the same amplitude. For 
example in Figure 4.32 waveform B leads A 
by 90 degrees. B has a greater amplitude than 
A, but the frequency of both is the same. 
Therefore, it is possible to determine 
accurate phase relationships between the 
two waveforms. 

Figure 4.31 Waveform A Leads Waveform B By 270° 

Figure 4.32 Two Waveforms of Different Amplitudes 

Phasor Notation 

Thus far in this discussion of phase, sine 
wave plots of both waveforms have been used 
to determine and describe the phase. You 
probably have realized that if you wanted 
to decipher the phase relationships of three 
or more waveforms using these diagrams, 
it could become very tedious if not 
virtually impossible. 
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gay 

For example, in Figure 4.33 are three 
waveforms, A, B. and C. C leads A by 90 
degrees, and is out of phase with B by 100 
degrees. Although the phase relationships are 
simple, these diagrams are very complicated 
and there must be an easier way. There is. 
A method you can use to simplify the 
examination of phase relationships is called 
phasor notation. The word phasor is a word 
meaning phase vector What are phase vectors, 
and how can they help you keep track of 
phase relationships? First, you have to know 
what a vector is. 

Vectors 

A vector is defined as a line that represents 
a direction and whose length represents a 
magnitude. In Lesson 2, trigonometry was 
discussed and you were told how to find the 
value of a trigonometric function by using a 
90-degree trigonometric table. Also, a circle 
was divided into four quadrants and a line, 
A, rotated through various degree points as 
shown in Fire 4.34. This line will now be 
referred to as a vector. The vector extends 
from point 0 to some point A out on the 
circumference. By rotating the vector, 0—A, 
any degree point from 0° to 360° can be 
indicated. By lengthening or shortening the 
vector line, any magnitude can be indicated. 
Vectors are used in this fashion to represent 
voltage and current phase relationships, and 
when they do they are called phasors. 

Using Phasor Notation 

Phasor notation can be used to represent the 
phase relationship between two sinusoidal 
waveforms such as those shown in Figure 4.35. 

Figure 4.33 Three Different Sinusoidal Waveforms 

1800 

90° 

360° 

270° 

0° 

 • 

Figure 4.34 Vector 0-A Can Represent Any Degree 

From 0° to 360° 

Figure 4.35 Example Waveforms for Phasor Notation 
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When using phasor notation, first one 
waveform must be chosen as the reference. In 
this example, the reference will be waveform 
A. The reference waveform phasor, EA, 

is then positioned along the X axis, as 
shown in Figure 4.36, at the zero-degree 

rotational reference. This phasor is a vector 
representing the voltage of an ac generator as 

its conductors are rotated through a magnetic 
field. By convention, this rotation will 

always be rotated in a counterclockwise 
(ccw) direction. 

I f you look at the waveform diagram of 
Fzgure 4.35, you see that waveform B leads 
waveform A by 90 degrees. Waveform B. 
then, can be represented by another phasor, 
E. placed so that it leads phasor EA by 90 
degrees. Since EA is at the 0° point, and the 
phasors are to be rotated counter-clockwise, 
this means that phasor En should be placed at 
the 90° point as shown in Figure 4.37. 

Since the two phasors, EA and EB, represent 
voltages generated in conductors, adding Eft 
is like adding another conductor to the ac 
generator. Therefore, when the two 
conductors are rotated in the magnetic field 
of the ac generator. the voltage from 
conductor EB will lead conductor EA by 90 
degrees throughout the cycle as shown in 
Figure 4.38, and the waveform EB will lead 
the waveform EA by 90 degrees throughout 
the entire cycle. Thus, since the phasors 
represent voltages generated by conductors, 
the phasor representation of the generator 
action graphically shows the phase 
relationship of two or more waveforms 
throughout an entire cycle. 

Remember that phasors that are positioned 
counter-clockwise from EA Will lead EA, and 
phasors positioned clockwise from EA Will 
lag EA. 

90° 

180° 

270° 

ROTATION 

0° 
360° 

Figure 4.36 Phasor EA Is ai the 0° Point 

Figure 4.37 Phasor E5 Leads Phasor EA by 90 Degrees 

90' 90° 90° 

270 270' 

a 

Figure 4.38 Phasor E, leads EA b) 90 Degrees 

Throughout the Entire Cycle 
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Phasor Magnitude 

Recall that previously it was stated that a 
phasor is a vector that is a line whose position 
on a set of axis represents a direction and 
whose length represents a magnitude. As a result, 
the length of a phasor is proportional to the 
quantity it represents. For example, phasor 
EA could be 8 units long to represent an 
8-volt peak voltage of waveform A, 
and phasor Eg could be 5 units long to 
represent a 5-volt peak voltage of waveform 
B This is shown in Figure 4.39. Any 
waveform amplitude specification (peak, 

peak-to-peak, rms) can be used when 
specifying phasor length as long as you are 
consistent. If one phasor represents the peak 
amplitude, the other phasor must also 
represent peak amplitude. 

In summary, the phasor diagram can show 
graphically both phase relationships and 
amplitude relationships of two or more 
sinusoidal waveforms. The phasor diagram 
can be interpreted more easily than a 
waveform diagram. 

Phasor Notation Examples—Two Vectors 

Suppose you want to represent in phasor 
notation the relationship of the two 
waveforms shown in Figure 4.40a. Note that 
waveform A leads waveform B by 90 degrees, 
and they both have the same peak amplitude, 
5 volts. The phasor representation of their 
phase relationship would appear as shown in 
Figure 4.406. Waveform A has been selected 
as the reference waveform. Thus, phasor EA 
(5 units in length) is placed at the 0° point. 

Figure 4.39 Phasor Representation of Waveforms A and 
13 with Different Amplitudes 

Figure 4.40 Two Waveforms 90° Out of Phase, EA at 
0° a Waveforms; b. Phasor Diagram 

Since waveform A leads waveform B, phasor 
El; (5 units in length) is placed at 270°, 90 

degrees out of phase with E,. Both phasors 
have the same length since both represent 
the same peak amplitude, 5 volts. From the 
phasor diagram, then, you can interpret that 

EA leads En by 90 degrees or that Eg lags EA 

by 90 degrees. 
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As another example, suppose that you are 
shown the phasor diagram illustrated in 
Figure 4.41a. What is represented? That 
diagram shows that EA leads Ea by 90 
degrees. It also shows that EA and EB are 
the same amplitude because phasor EA and 
En are the same length. What would the 
waveforms represented by the phasor 
diagram look like? 

The sinusoidal wavelOrm representation of 

these waveforms is shown in Figure 4.41b. The 
phasor diagram of Figure 4.41a represents the 
voltages at the instantaneous degree point of 
point X showing EA at the 90° point and En at 
the 0° point in Figure 4.41b. 

Figure 4.42a shows a phasor diagram of two 
voltages which are the same amplitude, but 
180 degrees out of phase. The sinusoidal 
waveforms showing this phase relationship 
are as shown in Figure 4.4211 Note that the 
waveform EA is passing through zero 
amplitude at the 0° point and is increasing in 
a positive direction. To correspond to this, the 
phasor EA is positioned at the 0° reference on 
the phasor diagram. The EB waveform also 
is passing through zero amplitude but is 
increasing negatively, so the axis crossing 
point is at 180 electrical degrees. To represent 
this, the phasor is postioned at 180° on the 
phasor diagram. 

Figure 4.43 shows two voltages of different 
amplitude that are in phase. Note that EA 
is greater in amplitude than Ea, since it is 
longer than EB on the phasor diagram. 

Figure 4.41 Two Waveforms 90° Out of Phase, EA al 
9(.) a. Phasor Diagram, b. Waveforms 

Figure 4.42 Two Waveforms 180° Out of Phase 
a. Phasor Dlagram; b. Waveforms 

Figure 4.43 Two In-Phase Waveforms with Different 
Amplitudes: a. Phasor Diagram b. Waveforms 
Represented by Phasor Diagram 
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Phasor Notation Examples— 
Multiple Vectors 

So far, phase relationships between only two 
phasors or waveforms have been considered. 
Suppose, however, that the phase 
relationships between three phasors, 
representing three waveforms must be 
considered. Figure 4.44 shows a phasor 
diagram of three voltages out of phase with 

one another, but of the same amplitude. The 
phase relationships can be described in 
several ways. ER leads EA by 45 degrees. Ec 
leads EA by 90 degrees. And Ec leads ER by 
45 degrees. It could also be said that ER lags 
Ec by 45 degrees, or that EA lags ER by 45 
degrees, or that EA lags Ec by 90 degrees. All 
of these statements about the phasors in the 
diagram are true. 

The sinusoidal waveforms showing these 

phase relationships would appear as shown in 
Figure 4.45. It should be obvious that reading 
the phasor diagram is much easier than 
deciphering a sine wave diagram. 

Figure 4.46 is a phasor diagram of another 
example of three voltages out of phase. The 
phasor lines indicate that each voltage is of 
the same amplitude, but 120 degrees out of 
phase with each other. This type of phase 
relationship exists between the voltages in a 
three-phase power system as shown by the 
waveforms in Figure 4.47. 

e 

180°— — 

270° 

Figure 4.44 Phasor Diagram of Three Voltages Out 
of Phase 

Figure 4.45 Waveforms of the Three Voltages Shown in 
the Phasor Diagram of Figure 4 44 

f 90° 

120/ 

180°— — — 0' 

120° 

120° 

270° 

Figure 4.46 Phasor Diagram of Three Voltages Oui 
of Phase 

 1 
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Summary 

It should be obvious that phasor notation 
greatly simplifies the visual description of the 
phase relationships of voltages. Phasors can 
also be used to show current relationships, ot 
voltage-current relationships, or even power 
relationships. In fact, phasor diagrams 
showing voltage-current phase relationships 
are used extensively when working with ac. 
A typical example is the phasor diagram of 
Figure 4.48 which shows a voltage leading a 
current by 90 degrees. 1 n fact, as you will see 
in later lessons, one of the quantities in an ac 
circuit that is important is the phase angle — 
the phase difference in electrical degrees 
between the voltage applied to a circuit and 
the total circuit current. 

SUMMARY 

In this lesson you were shown how to 
calculate the instantaneous voltage or current 
at any point in a sinusoidal waveform by 
using the sine function. The difference 
between sinusoidal waveforms was described 
and examples of each were shown. The 
relationship of the electrical degrees of a cycle 
and the period of a cycle was explained. The 
phase relationship of sinusoidal waveforms 
was described and you were shown how to 

simplify the visualization of those phase 
relationshiim with vector notation by 
using phasors. 

Figure 4.47 1Vaueforms of the Three Voltages 

of Figure 4.46 

180 

1E 

1 

1 

270° 
 • 

Figure 4.48 Voltage-Current Pilaus,- Diagram 

00 
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1. If the amplitude of a sine wave is 20V„k, determine the instantaneous amplitude of the sine 
wave 10°, 150°, 230°, and 300° into the cycle. 

Solution: 

The equation which relates the instantaneous amplitude of a sine wave at various degree 
points into the cycle is 

e, -= Eo, sin 

Since the amplitude is 20V pk the equation can he rewritten as 

e, = 20V sin 

Now, all you must do is evaluate the value of sin Et at 10°, 1500, 230° and 300' into the cycle 

and use the equation to determine the instantaneous amplitudes at these points: 

At 10°: sin 10° = 0.1736 

e, = 20V(0.1736) ,---- 3.47V 

At 150°: sin 150' = sin(180° — 150°) = sin 30° = 0.5 

e, = 20V(0.5) = 10V 

At 230°: sin 230° = sin(230° — 180°) = sin 50° = 0.7660 

But for angles greater than 180°, the sine wave is negative; therefore, 

sin 230° = — 0.7660 

e, -= 20V( —0.7760) = — 15.32V 

At 300°: sin 300° = sin(360° — 300°) = sin 60° = 0.8660 

But for angles greater than 180°, the sine wave is negative; therefore, 

sin 230° -=- —0.8660 

e, = 20V( —0.8660) = —17.32V 
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For clarity, these values are plotted on ti e sine wave below: 

90' 

+20V 

10V 

3.47V 

OV 

-15.32V 
-17.32V 

-20V - 

180' 360' 270' 

230 t 300' 

2. If the amplitude of a sine wave is 45V,k, and has a frequency of 10kHz, determine the 

instantaneous value of the sine wave at 4µs and 80µs into the cycle. 

Solution: 

The equation which relates the time, frequency, and amplitude of a sine wave to an 

instantaneous value of voltage at that point is 

e, = E pk sin(360ft) 

Since the amplitude and frequency are specified, the equation can be rewritten: 

e, = 45V sin(360 x 10kHz x t) 

Now, all that must be done to evaluate the instantaneous voltage at times into the cycle is to 
use (360 x 10kHz x t) to determine the number of degrees that specified times into the 

cycle (t) represent and solve for the sine of these angles. 

The equation can then be used to determine the instantaneous value of voltage as in 

example 1. 

4p.s: 

80µs: 

360ft = (360)(10kHz)(4µs) 

= (360)(10 x 10sHz)(4 x 10 -6s) = 14.4° 

e, = 45V sin 14.4° = 45V(0.2487) = 11.2V 

360ft = (360)(10kHz)(80µs) 

= (360)(10 x 101Hz)(80 x 10 -6 s) = 288° 

e, = 45V sin 288° = 45V( — 0.9511) = —42.8V 
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For clarity, these values are plotted on the sine wave below: 

0µ11 

0' 

25µs 

90' 

50, s 75µà 

180° 

r 80gs 

360° 

3. Plot a sine wave having an amplitude of 12 VAC. Tabulate values for each 20° between 0° and 

360°, then plot the sine wave. Use e, = Epk sin 8. Also plot values at 0°, 90°, 180°, and 270°. 

The table of values for angles between 0° and 360° is shown below. Note that a 12 VAC sine 
wave has a peak value of 17V pk. (E pk = 1.414 x E13 = 1.414 x 12V = 17V) Thus, the 

equation used is e, = I7V sin 8. 

O sin O Epk O sin O Epk 

o O o 
20 0.3420 5.8V 
40 0.6428 10.9V 

60 0.8660 14.7V 
80 0.9848 I6.7V 

90 1 17V 
100 0.9848 I6.7V 
120 0.8660 14.7V 

140 0.6428 I0.9V 

160 0.3420 5.8V 
180 

200 -0.3420 -5.8V 
220 - 0.6428 - I0.9V 

240 -0.8660 - I4.7V 
260 - 0.9848 - 16.7V 

270 - 1 -17V 

280 - 0.9848 - I6.7V 

300 -0.8660 - 14.7V 
320 -0.6428 - 10.9V 
340 -0.3420 -5.8V 
360 
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OV IIIIitil ;1111$11 
20 40 60 80 100 120 140 160 200 220 240 260 I 280 300 320 340 

90 180 270 

4. For the following angles specified in radians, determine the equivalent angle in degrees: 

1 rad, 3.6 rad, 4.7 rad, and 5.9 rad. 

Solulion: 
180° 

Since there are-2r radians in 360°, there must be ir radians in 180°. Therefore, there are ir 

degrees in each radian. Thus, 57.29578° or 57.3' equals 1 radian. To determine the number 
of degrees a certain number of radians represents, simply multiply the number of radians 

by 57.3°. 

1 rad: 1 rad x 57.3°/rad = 57.3° 

3.6 rad: 3.6 rad x 57.3°/rad -= 206.3° 

4.7 rad: 4.7 rad x 57.3°/rad = 269.3° 

5.9 rad: 5.9 rad x 57.3°/rad = 338° 
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5. For the following angles specified in degrees, determine the equivalent angle in radians: 15°, 
88°, 150°, 230°, 300°. 

Solution: 

180° 
Since there are degrees in each radian and therefore 57.3° equals 1 radian, simply divide 

the number of degrees by 57.3' to determine the number of radians corresponding to the 
specified number of degrees. 

15°: 

88°: 

150°: 

230°: 

15°  
57.3°/rad 

88°  

57.3°/rad 

150°  

57.3°/rad 

230°  

57.3°/rad 

300°: 300° 

— 0.262 rad 

— 1.54 rad 

— 2.62 rad 

— 4.01 rad 

— 5.24 rad 
57.3°/rad 

6. For the following pairs of waveforms, specify the phase relationships of the waveforms 
stating lead/lag and phase difference. 

a. A leads B by 90° b. A lags B by 135° 

I I 
I I 

Es I I 
I I 

A crosses the zero level 
first, 90° ahead of B. 

A crosses the zero level 
135° after B crosses it. 

135' 
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7. Sketch the equivalent phasor diagram for the waveforms in question 6. Use waveform A as 
reference at 0° position. 

a. b. 

8. For the two following phasor diagrams, state the phase relationship of the phasors stating 

lead/lag and phase difference. 

a. A lags B by 45° b. A leads B by 135° 
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9. For the following phasor diagrams shown below, sketch the sinusoidal waveform 

representation of the pair showing appropriate amplitudes and phase relationships. 

a. b. 

101 
A 

B leads A by 90° 

A is the same amplitude as 
B since both phasors are the 
same length. 

A leads B by 90° 
B is one-half the amplitude 
of A since B's phasor length 
is one-half A's phasor length. 
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1. Determine the instantaneous amplitude of the following sine waves at the specified number 
of degrees into the cycle: 

a. 40Vpk, 38° into the cycle: 

b. 28V k, 156° into the cycle: 

c. 25VAC, 65° into the cycle: 

d. 58VAC, 271° into the cycle'   

e. 87Vpk, 322° into the cycle: 

f. 36VAC, 94° into the cycle: 

2. Determine the instantaneous amplitude of the following sine waves at the specified time 

elapsed into the cycle: 

a 35Vpk, 30k Hz, 20µs into the cycle: 

b 15VAC, 400Hz, 800µs into the cycle: 

c. 220VAC, 60kHz, 3µs into the cycle: 

d. 50Vpk, 4MHz, 44ns into the cycle: 

e. 30V pk, 16kHz, 51µs into the cycle: 

f. 120VAC, 455kHz, 540ns into the cycle'   

3. Plot a sine wave having an amplitude of 48Vpp using 18° increments, from 0° to 360°. 

4. For the following angles expressed in radians, determine the equivalent angle in degrees: 

a. 3 rad 

b. 5.2 rad =   

c. 2.3 rad =   

d. 4.1 rad =   

e. 1.8 rad =   

f. 0.6 rad =   

5. For the following angles expressed in degrees, determine the equivalent angle in radians: 

a. 38° =   rad 

b. 100° =   rad 

c. 231° =   rad 

d. 285° =   rad 

e. 344° =   rad 

f. 84° =   rad 
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• Practice Problems 

6. For the following pairs of waveforms, specify the phase relationships of the waveforms 
stating lead/lag and phase difference: 

a. A 

+SV 

OV 

-5V 

B by 

c. A  B by 
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7. Sketch the equivalent phasor diagram for the waveforms in question 6. Use waveform A as 
reference at the 0° position. 

a. b. 

d. 

8. For the following phasor diagrams, state the phase relationship of the phasors stating lead/lag 

and phase difference: 

a A  B by  b. A  B by  

a 

A 
45' 

a 

o 
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9. For the following phasor diagrams, sketch the sinusoidal waveform representation of the pair 

showing appropriate amplitudes and phase relationships 

a. b. 

45° 

A A 
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1. Determine the instantaneous amplitude 
of the following sine waves at the 
specified number of degrees into 
the cycle: 

a. 45V pk at 54° into 
the cycle •   V 

b. 18VAC at 220° into 
the cycle •   V 

2. Determine the instantaneous amplitude 
of the following sine waves at the 
specified time elapsed into the cycle: 

a. 33V pk, 25kHz, 411.s into 
the cycle •   V 

b. 10VAC. 50Hz. 3ms into 
the cycle •   V 

3. For the following angles expressed in 
radians, determine the equivalent angle 
in degrees: 

a. 3.9 rad =   
b. 5.5 rad =   

4. For the following angles expressed in 
degrees, determine the equivalent angle 
in radians: 

a. 44° =   rad 
b. 248° =   rad 

5. For the following pairs of waveforms, 
specify the phase relationships of the 
waveforms stating lead/lag and phase 
difference, then sketch the equivalent 
phasor diagram using waveform A as 
reference at the 0° position. 

a. 

A B by  

b. 

A B by 

c. (for a.) 

d. (for b.) 
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6. For the following phasor diagrams, sketch 
the sinusoidal waveform representation 
of the pair showing appropriate 
amplitudes and phase relationships. 

a. 

b. 

A 

C. 

"IM 
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LESSON 5 

0 Resistive Circuits 
In previous lessons, ac was discussed in general terms. 
With this lesson, a more detailed investigation of actual 
circuits with an ac voltage applied will begin. This lesson 
describes how to determine voltages and current in 
series, parallel, and series-parallel resistive circuits 
when an ac voltage is applied. Peak, peak-to-peak, and 
rms voltage, current and power values are calculated. 
The phase and frequency of circuit current and 
component voltages in ac resistive circuits are analyzed. 
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• Objectives o 
At the end of this lesson, you should be able to: 

1. Analyze the phase and frequency relationships of current and voltage in an 
ac resistive circuit. 

2. Explain the relationship of peak, peak-to-peak, and rms values for an ac 
resistive circuit and be able to convert from one value to another. 

3. Calculate the instantaneous voltage and current values in an ac resistive 
circuit and plot the results. 

4. Analyze series, parallel, and series-parallel ac circuits as shown and 
calculate voltage, current, and power values. 
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5 RESISTIVE 
CIRCUITS 

REVIEW OF A FEW BASICS 

AC Applied to a Resistor 

Recall that when a fixed dc voltage is applied 
to a resistor as shown in Figure 5.1, current 
flows in only one direction and its value is 
determined by the value of the voltage and 
the resistor in the circuit. According to Ohm's 
law, the current is equal to the voltage divided 
by the resistance. 

E 
I = 

10V  

100011 
= 10mA 

(5-1) 

Therefore, the current in the circuit of Figui‘ 
5.1 is 10 milliamperes. 

lf the connections to the battery are reversed 
as shown in Figure 5.2, the direction of the 
current reverses, but the current value is the 

same. The current is still 10 milliamperes. 

lf, now, a sinusoidal voltage is applied to the 
same circuit with the resistor as shown in 
Figure 5.3, the voltage in the circuit will be 

changing constantly. This is shown in Figure 
5.4. Ohm's law still applies and can be used at 
each meani of lime to calculate the current just 
as it was used to calculate the current when 
a constant dc voltage was applied. This is an 
important point of this lesson and bears 
repeating. When a known ac voltage is 
applied to a purely resistive circuit Ohm's law 
can be used at any instant of time to calculate 
the current at that same instant of time. 

Calculating Instantaneous Voltages 
and Currents 

Recall that the instantaneous value of the 
voltage for a sinusoidal waveform can be 
calculated using this equation: 

e, = Epoine (5-2) 

Figure 5.1 A Typical Resistive DC Circuit 

Ecic 

10V 

Figure 5.2 The Resistive DC Circuit of Figure 5.1 With 
Battery Connections Reversed 

EA 
10V p 

Figure 5.3 The Resistive Circuit With AC 

Voltage Applied 
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The instantaneous voltage is equal to the peak 
voltage times the sine theta. 

Figure 5.5 shows a sinusoidal waveform that 
can he described with equation 5-2. The peak 
amplitude of that waveform is 10 volts. Since 
the sine of zero degrees is zero, at zero 
degrees the voltage is zero. At 45 degrees 
the voltage has risen to 7.07 volts calculated 
as follows: 

e,= Epksine 
= (10) (0.707) 
= 7.07V 

At 90 degrees the voltage has risen to 10 
volts. The waveform voltage declines as the 
angle theta increases. At 135 degrees the 

voltage is once again 7.07 volis, and at 180 
degrees, the voltage is zero. 

During the negative alternation, the voltage 
amplitude varies in the same manner as for 
the positive alternation, but with opposite 
negative— polarities. 

Ohm's law can be used with each of these 
instantaneous voltage values to calculate the 
instantaneous curTem value just as if each 
instantaneous voltage were produced by a 
battery of voltage E, placed in the circuit at 
the right moment as shown in Figure 5.6. At 
zero degrees (point A of Figure 5.5) the 
instantaneous value of the voltage is zero. 
Therefore, according to Ohm's law, the 
instantaneous current at zero degrees equals 
the voltage divided by the resistance: 

I — 

It is zero amperes. 

OV 

lkIl 
= OA 

+ 1 0 V 

o 

— 1 0 V 

Figure 5.4 An AC. Voltage is Changing Constantly 

+ 10V 

+ 7.07V 

OV 

7.07 V 

- 10V 

Figure 5.5 A 10-Volt Peak Sinusoid Waveform 

kfI 

Figure 5.6 DC Equivalent Circuit Used to Calculate 

Instantaneous Current Values 

• 
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At 45 degrees (point B of Figure 5.5) the 
instantaneous voltage, ei, is 7.07 volts. This 
can be represented by a 7.07 volt battery as 

shown in the circuit in Figure 5.7. Using 
Ohm's law as before, the current at 45 
degrees is: 

7.07V  
= 

= 7.07mA 
The current flowing at that instant in the 
cycle is 7.07 milliamperes. 

Instantaneous current values continue to vary 
this way throughout the entire cycle as shown 
in Figure 5.8. In the negative alternation, 
however, the current is plotted as negative 
because its direction of flow is opposite to the 
direction called positive. If all of these plotted 
points are connected with a smooth curve, 
as shown in Figure 5.9, it is found that the 
current is also sinusoidal. 

Relationship of Peak, Peak-to-Peak, 
and RMS Values 

Recall that the amplitude of a sinusoidal 
voltage can be specified in three ways: peak, 
peak-to-peak, and rms. The voltage waveform 
in the previous example has a peak amplitude 
of 10 volts as shown in Figure 5.10. Thus, it 
has a peak-to-peak amplitude of 20 volts. 

Epp = 2(E pk) 
= (2)(10) 
= 20V 

It also has an rms amplitude of 

Er.„„ = 0.707(E pk) 
= (0.707)(10) 
= 7.07V 

Thus, its rms voltage is 7.07 volts. 

7.07V 
R 

1 kfi 

Figure 5.7 DC Equivalent Circuit When AC 
Instantaneous Voltage, e„ is 7.07 Volts 

Figure 5.8 Instantaneous Current Values During 
One Cycle 

Figure 5.9 The Current Waveform is Sinusoidal 
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Because the current is also sinusoidal, it too 
has peak, peak-to-peak, and rms amplitudes. 

In the example, the current has a peak 
amplitude of 10 milliamperes as shown in 
Figure 5.11. It, therefore, has a peak-to-peak 
amplitude of 20 milliamperes (twice the peak 
amplitude); and it has an rms amplitude 
of 7.07 milliamperes (0.707 times the 
peak amplitude). 

There should be no doubt that ohm's law 
applies to an ac resistive circuit. However, 
with ac circuits you must be aware of the way 
in which the circuit values are specified For 
example, if the peak voltage of the waveform 
is divided by the resistance, the result is peak 
current. In the example the peak current is 
10 milliamperes calculated as follows: 

Ipk = 
E pk 

10V pk 

lkf/ 
= 10mApk 

Peak-to-peak voltage divided by the resistance 
yields peak-to-peak current. In the example 
this is 20 milliamperes calculated as follows: 

E 
PP 

20V 

lkfl 
PP  

= 20mA PP 

IPP 

And the rms voltage divided by the resistance 
yields rms current. In the example this is 
7.07 milliamperes. 

I,„,. 
E,„„ 

= 7.07mA,,,„, 

Figure 5.10 Voltage Waveform for Example Circuit 

Figure 5.11 Current Waveform for Example Circuit 

Converting Values 

An applied voltage or current can by 
specified in one of these three ways. But 
suppose a current or voltage value is specified 
as peak and its rms amplitude is needed. As 
you may recall from previous discussions, it is 
easy to convert the peak specification to its 

rms value by calculation. RMS voltage or 
current is equal to 0.707 times the peak 

voltage or peak current. 

Erma = 0.707 E pk (5-3) 

I,„„ = 0.707 Ipk (5-4) 
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Or it may be necessary to convert from any 
one of these peak, peak-to-peak, and rms 

specifications to another. A table, Table 5.1, 

of conversion equations is included to enable 

you to convert from any one of these 
specifications to another for either voltage 

or current. 

Voltage and Current Phase Relationship 

If the voltage waveform and the current 

waveform are examined together as shown 

in Figure 5.12, it can be seen that when the 

voltage is at a maximum or peak, the current 

is also at a maximum or peak. The current 

flow is less as the value of the instantaneous 

voltage decreases. When the voltage is at zero, 

the current is at zero. Also note that the 

current is flowing in a direction determined 

by the polarity of the voltage. That is, in the 

example shown, a positive 10 milliamperes 
flows when the voltage is a positive 10 volts 

and a negative 10 milliamperes flows when 

the voltage is a negative 10 volts. 

As shown in Figure 5.13, the voltage and 

current peak at the same time. Because they 
both peak at the same time, and are zero 

at the sanie time, and move in the same 

direction, the voltage and current are in phase. 

This means there is no phase difference 

between them. Their amplitudes and 
polarities are the same for each instant of 

time. Therefore, the phase angle between 
them is zero. 

IF YOU 
WANT 

RNIS 

PK 

PP 

IF YOU HAVE 

RMS PK PP 

>< = 0.707,, = 0.3535„ 

= 1.414„. >< = 0.5„ 

= 2.828,,„ = 2,, 

Table 5.1 Conversions 

Figure 5.12 a. Voltage Waveform, b. Current Waveform 

4. 

Figure 5.13 Phaie of Voltage and Current 
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As you recall from previous sessions, this 
phase relationship can be represented with a 

pair of phasors as shown in Figure 5.14. One 
phasor represents the phase of the voltage; 

the other phasor represents the phase of the 
current. One phasor is drawn on top of the 
other to show that there is no phase angle or 
phase difference. The vector lengths have no 
real meaning because they have different 
units. To compare two vector lengths 
meaningfully the units of both vectors must 
be the same—both must represent volts, 
amperes, ohms, milliamperes, etc. In Figure 
5.14 one vector represents volts while the 
other represents amperes. A comparison of 
the amplitude of the two quantities means 

nothing; only the phase relationships of the 
two quantities is of importance. The phase 

relationship of currents and voltages is very 
significant in ac circuits. It will be discussed in 

detail later in the lesson. 

There's another important point concerning 
the two waveforms. Since one cycle of the 
voltage waveform corresponds to one cycle of 
the current waveform as shown in Figure 5.13 
the frequency of both is the same. Therefore, 
no matter what frequency of voltage is 
applied to any circuit of this type, all voltages 
and currents in that circuit will have the 
same frequency. 

CIRCUIT ANALYSIS 

As you know, resistive circuits can consist of 
several resistors in series, as shown in Figure 
5.15, in parallel as shown in Figure 5.16, and 
in series-parallel combinations as shown in 
Figure 5.17. 

AC resistive circuits can be analyzed just like 
dc resistive circuits, and the circuit voltage 
and current values determined in the same 
manner. This is possible because currents and 
voltages are in phase in this type of circuit. 

Figure 5.14 Voltage, E. and Current, 1, Vectors 

A1 
2102 

EA 
10V pk 

Figure 5.15 Series Resistive AC Circuit 

R2 

81(11 

If 

EA 
30Vpp 

R2 

61d2 

Figure 5.16 Parallel Resistive AC Circuit 
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The voltage or current values can be 
described in peak, peak-to-peak, or rms 
values. You must make the necessary 
conversions to obtain your answers in the 
desired units. 

Series Resistive AC Circuit 

The first circuit to be analyzed is the series 
circuit shown in Figure 5.15. There are two 
resistors in this circuit in series with an 
applied ac voltage of 10 volts peak. To 
determine the voltages and currents in this 
circuit, first the total resistance must be 
calculated. The total resistance in the circuit 

is the sum of the individual resistances, 

RT = R1 T R2 
= 21in + 8kfl 
= 101c12, 

The total resistance of the circuit is 10 
kilohms. Once RT has been determined the 
voltages and currents in the circuit can 
be calculated. 

Since the total resistance we calculated is 
10 kilohms, to find the total current in the 
circuit, divide the applied voltage by the 
total resistance: 

EA 
—R T 

10V p k 

101t.i2 
= ImA„,k 

The total current in the circuit is 1 
milliampere peak. Since this is a series circuit, 

this current is the only current in the circuit. 
It follows only one path —through both 
resistors in the circuit. 

EA 
24VAC 

I. 

R1 
2kI2 

R4 

3kf2 

R3 

121(f/ 

Figure 5.17 Serzes-Parallel Resisiive AC Circuit 

Next, the voltage drops across each resistor 
can be found using Ohm's law. The voltage 
drop across R1 is equal to the current through 
RI, which is the total current, times the 
value of I2 1: 

EA' ITR I 
= (1mA pk )(2kf2) 

= 2V Pk 

The drop across R2 is calculated similarly: 

ER2 = 1TR2 
= (1mA„k)(8kft) 

= 8Vpk 

Notice that Kirchhoffs voltage law is satisfied 
because the voltage drop across RI, 2 volts 
peak, plus the voltage drop across R2, 
8 volts peak, equals the applied voltage, 
10 volts peak: 

ET E R, + ER2 
10,k = 2V p k T 8V pk 
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The circuit source is an ac voltage and this 
voltage is specified in terms of its peak 

amplitude. It is 10 volts peak. The peak value 
of voltage was used to calculate the voltage 
drops and current in the circuit. Therefore, 
the currents and voltage drops calculated are 
peak currents and peak voltages. For this 
reason the written calculated values include 
the word peak. 

If the applied voltage had been specified 
as 10 volts peak-to-peak, then the circuit 
currents and voltage drops would also be 
peak-to-peak values because calculations 
would be performed using the 10 volts 
peak-peak. The specification peak-to-peak 
would be written along with the calculated 
value as shown in Figure 5.18. Similarly, if 
the applied voltage had been specified as 
rms, then the voltage drops and currents 
calculated using this rms value would also 
be rms values. 

In summary then, to determine the voltages 
and currents in a resistive circuit with an ac 
voltage source, calculate the voltages and 
currents in the circuit the same as these 
factors are calculated in a dc series circuit. 
The circuit voltages and currents are 
specified the same as the ac applied voltage: 
peak, peak-to-peak or rms. 

Once all voltages and currents in a circuit 
have been calculated using one amplitude 
specification, the other two types of 
amplitude values of these same circuit 
currents and voltages can be determined 
readily by directly converting each value 
using the appropriate conversion equation. 

Using the series circuit problem we just 
solved as an example, a table of values can 
be created as shown in Figure 5.19. In the 
column labeled peak are all the peak values 
calculated for the circuit. The peak-to-peak 
value is twice their peak value. The rms 

E. 
10V 

Pit 
PP 
rms 

R2 
8ki/ 

8V 
Pli 
PP 
rms 

Figure 5.18 Specification of EA as Peak. Peak-to-Peak 
or RMS, Determines Specification of Other 

Circuit Values 

e 

PEAK PEAK-TO-PEAK RMS 

ER 10Vp 

ER1 2Vp 

ER2 8V, 

ly 1mA, 

201/0„ 7.07V 

4Vp, 1.414V 

16Vpp 5.656V 

2mA„,, 70711A 

Figure 5.19 Calculated Values for Series AC 

Circuit Example 
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Series Resistive AC Circuit 5 
values are 0.707 of the peak values. For 
example, the rms values have been calculated 
using equations 5-3 and 5-4 as follows: 

= 0.707E pk 

EA, (0.707)(10V) = 7.07V 

ER I rms (0.707)(2V) = 1.414V 
ER2rms = (0.707)(8V) = 5.656V 
Inns = 0.7074k 
I n„, = (0.707)(1mA) = 0.707mA = 707p.A 

in other words, in the circuit, the applied 
voltage is 10 volts peak. which equals 20 volts 
peak-to-peak or 7.07 volts rms. These values 
are shown graphically in Figure 5.20. 

The 2 volt peak voltage drop across R1 equals 
4 volts peak-to-peak or 1.414 volts rms as 
shown in Figure 5.21. The three values, 8 volts 
peak, 16 volts peak-to-peak and 5.656 volts 
rms are shown in Figure 5.22 for ER2. 

The circuit current shown graphically in 
Figure 5.23, is 1 milliampere peak..f-his 
equals 2 milliamperes peak-to-peak or 707 
microamperes rms. 

Remember that all voltages and currents in 
this purely resistive circuit are in phase and 
of the same frequency. Also note in Figure 5.19 
that in each column the value of ERI and ER2 
add up to the applied voltage in each column. 

If a circuit has the source voltage specified 

in a peak-to-peak value, but answers are 
required in rms values, the voltages and 
currents can be determined one of two ways. 
either by using the peak-to-peak values and 
then converting all answers to rms values 
or by converting the source voltage to an 
rms value before performing any other 
calculations. Then all of the following 
calculations will be in rms values. 

Also an important point to remember is 
that whenever the designation VAC is used, 
it is understood, by convention, to mean an 

rms value. 

Figure 5.20 EA for Series AC Circuit Example 

Figure 5.21 Enj for Series Circuit Example 

PP 
16V 

Figure 5.22 ER2 for Series Circuit Example 
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Parallel Resistive AC Circuit 

Now that you have been shown how to 
determine all values of voltage and current 
in a senes resistive circuit, the next step is to 
show you how this is done with a parallel 

resistive circuit. 

In the resistive circuit of Figure 5.16 and 
repeated as Figure 5.24, 30 volts peak-to-peak 
ac voltage is applied to a 3 kilohm and 6 

kilohm resistor connected in parallel. First 
the circuit will be analyzed in terms of 
peak-to-peak amplitudes and then all voltages 
and currents will be converted to their peak, 
and rms amplitudes. 

Just like dc parallel circuits, in ac parallel 

circuits the applied voltage (in this example 
30 volts peak-to-peak) is across each resistor 

If this applied voltage is divided by each 
branch resistor's value, the peak-to-peak 

branch current for each branch can 
be determined. 

-= 
ERI 

30Vpp 

la 31(1-1 
10mA pp 

The peak-to-peak current through resistor RI 
is 10 milliamperes. 

IR2 = 
R2 
30Vpp 

FR, 

6kfl 

5mA pp 

The peak-to-peak current through resistor R2 
is 5 milliamperes. 

DP 
2mA 

Figure 5.23 I for Series Circuit Example 

R2 
61(11 

Figure 5.24 Parallel Resistive AC Circuit 

The total current is the sum of the branch 
currents. Since the branch currents are 

known, they can be added to determine the 

total current. 

= 1R1 + 1R2 
= 10mApp + 5mA pp 

15mApp 

The total current is 15 milliamperes peak-
to-peak. 
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Therefore, as in a dc parallel circuit, the 
turret! through each branch of an ac parallel 
circuit may be different depending on the 
resistor values, while the voltage drop across 
each resistor is the same. Also, the algebraic 
sum of the branch currents equals the 
total current. 
To verify that this is the correct total current 
the applied voltage can be divided by the total 
resistance in the circuit. Recall that the total 
resistance for two parallel resistors is their 
product divided by their sum. A special 
symbol is used to indicate the parallel 
connection. Therefore, 

RII1R2 

indicates that Ri is in parallel with R.,. Thus, 

RI X R2 
R dR2 

R1 + R2 

is the expression to calculate the total 
resistance of two resistors connected 
in parallel. 

In the example circuit of Figure 5.24, the 
total resistance, calculated by using equation 
5-5, is: 

RT - 
R I x R2 

R1 + R2 

(3k)(6k)  

3k + 6k 
18k 

9k 
= 2kn 

(5-5) 

The total current in the circuit is calculated 
using Ohm's law: 

ET 

= 

30Vpp 

2k1/ 
= 15mApp 

This calculation shows that 15 milliamperes 
peak-to-peak current is the total current and 
verifies previous calculations. Using these 
peak-to-peak values for the circuit, the peak 
and rms values can be calculated Peak values 
are one-half the peak-to-peak values. The 
rms values are 0.707 times the peak value or 
0.3535 times the peak-to-peak value. The 
calculations for the peak values are as follows: 

30V 
PP  

E A p k — — 15V 
2 

pk 

ER2p1r. 

ITpk 

10mApp 
—  — 5mA 

2 
5mA„ 
 — 2.5mA 
2 

15mA p 
  - 7.5mA PP 

The calculations for the rms values are 
as follows: 

EA rms = (0.3535)(30V„) = 10.6V 
1R1 ,.„„ = (0.3535)(10mA„) = 3.54mA(3.535) 

IR2rms = (0.3535)(5mA pp) = I 77mA(1.7675) 
1-r,„ = (0.3535)(15mA„) = 5.30mA 

Once calculated they can be written in tabular 
form as shown in Figure 5.25. Remember that 
all voltages and currents are in phase, and 
that they all have the same frequency. Also, 
the branch currents sum to the total current 
in each column. 
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Series-Parallel Resistive AC Circuit 

Now that a series resistive circuit and a 
parallel-resistive circuit have been analyzed, 
the next circuit to be studied is a series-

parallel resistive circuit shown in Figure 5.26. 
This is the same circuit as Fzgure 5.17. 

In the circuit, 24 volts ac is applied to a 

series-parallel combination of four resistors. 
Recall that if an ac voltage is specified as VAC 
then the value is an mis amplitude. That is, 
the applied voltage is 24 volts rms. 

Simplified Circuit 

The series-parallel combination of resistors 

consists of R1 and R4 in series with the 
parallel combination of R2 and Rg. To begin 
determining the voltages and currents in this 
circuit, as with dc circuits, first the circuit is 
simplified by finding the equivalent resistance 
of R2 and R3 in parallel. It is calculated using 
the form of equation 5-5. 

R2 x R3  

122 + Rs 
(4k)(12k)  

4k + 12k 
48k 

R23 R2IIR3 — 

16k 
= 31(11 

Thus, the parallel combination of R2 and 
R3(R23) can be thought of as a 3 kilohm 
resistor substituted in the circuit as shown 
in Figure 5.27. As you probably realize, 
the circuit is now a simple series circuit. 
Therefore, its total resistance is equal to the 
sum of the individual resistances. 

/e 

PEAK PEAK-TO-PEAK RMS 

EA 15V, 30Vpp 10.6V 

IR1 5mAp 10mA pp 3.54mA 

Ip2 2.5mAp 5m App 1.77mA 

IT 7.5mAp 15mApp 5.3mA 

Figure 5.25 Calculated Values of the Circuit of 

Figure 5.24 

le" 

R1 
2kfl 

RO 
31(11 

R3 
12kfl 

Figure 5.26 Series-Parallel Resistive AC Circuit 

EA 
24V 
RMS 

R4 
3kf/ 

Figure 5.27 Series-Parallel Resistive AC 
Circuit Simplified 
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Total Resistance 

The total resistance equals 2 kilohms for RI, 
plus 3 kilohms for the parallel combination of 
R2 and R3, plus 3 kilohms for R4: 

RT = R1 + (R 2I1113) +R4 

= 21(fl + 31(.0 + 31(11 
= 81cf2 

The total resistance is 8 kilohms. 

Total Current 

To determine the total current supplied 
by the ac voltage generator to the circuit 
the applied voltage is divided by the total 
resistance. 24 volts divided by 8 kilohms is: 

= 
EA 

RT 
24V,„„ 

81d2 
= 3mA rn,. 

The total current is 3mA rms. This total 
current flows through R I, through the parallel 
combination of R2 and R3, and through R4. 

Therefore, 'RI and 1R4 are 3mA rms. 

Voltage Drops 

Ohm's law is now used to determine the 
voilage drop across each resistance. It is the 
value of the resistance multiplied by the 
current through it. Thus, 

ER' IT R 

= (3mA...„.)(21c(1) 
= 6V,.„„ 

The voltage drop across R 1 is 6 volts rms. 

The voltage drop across R2 in parallel with Ra 
is equal to the total current times the value of 
the equivalent parallel resistance R29: 

Elt23 = IT R 23 

= (3mAr„,„)(3Kn) 
= 

The voltage drop across R23 is 9 volts rms. 

The voltage drop across R4 is calculated in a 
similar manner as: 

ER4 = 

= (3mArme)(3kfl) 
= 9V,„„ 

The voltage drop across R4 is also 9 volts rms. 

Branch Currents 

Now the current through R2 and R3 can be 
calculated. Since there are 9 volts across R23, 

the parallel combination of R., and R3, there 
are 9 volts across R2 and 9 volts across R3. 

Thus, you see that this parallel combination is 
treated just like the separate parallel circuit. 
Using Ohm's law the value of the current 
through R2 and through R3 (these are like the 
branch circuits in the separate parallel circuit) 
can be determined by dividing the voltage 
across either resistor by the value of 
the resistor. 

For R2, the value of the current is: 

ER2 
= 

Ry 

9Vrm. 

4kfl 
= 2.25mArm. 

1R2 of Figure 5.26 is 2.25 milliamperes rms. 
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The current through R3 is calculated 
similarly: 

IRS = 
R3 

9V ,.„,. 

ERS 

121c11 
= 0.75mA,„„ 

IRS of Figure 5.26 is 0.75 milliamperes rms. 

Voltage Chart 

Figure 5.28 shows a tabulation of the voltages 
in this series-parallel circuit. These values are 
in the rms column since the applied voltages 

and all the voltage drops calculated are rms. 
These rms values can be converted directly to 

both peak, and peak-to-peak values. -I-he peak 
values are simply 1.414 times the rms values. 
To determine the peak-to-peak amplitude, 
either the peak values can be doubled, or the 
rms values can be multiplied by 2.828. Note 
that in each column the voltage across R2 and 
R3 is the same since they are in parallel, and 
this voltage along with the other series circuit 
voltages ERI and E4, add up to the 
applied voltage. 

Current Chart 

Figure 5.29 shows a tabulation of the values 
of the currents for the circuit for Figure 5.26. 
The rms current values are the original ones 
calculated and these values are used to 
convert to peak and peak-to-peak current 
values. The peak current calculations are 
as follows: 

IRIpk = (1.414)(3mA) = 4.24mA 
IR20, = (1.414)(2.25mA) = 3.18mA 
IR3pk = (I.414)(0.75mA) = 1.06mA 
IR4 p k = (1.414)(3mA) = 4.24mA 

PEAK PEAK-TO-PEAK RMS 

E, 

ER, 

E,,2 

pi 3 

ERIS 

33.9V„ 

12.7V,, 

12.7V,, 

12.7V,, 

67.8V„,, 

17V„„ 

25.4V,,„ 

25.4V„,, 

25.4V„„ 

24V 

6V 

9V 

9V 

9V 

Figure 5.28 Calculated Voltage Values for the Circuit of 

Figure 5.26 

PEAK PEAK-TO-PEAK RMS 

IR1 

1R2 

13 

IR4 

4.24mA 

3.18mA 

1.06mA 

4.24mA 

8.48mA 

6.36mA 

2.12mA 

8.48mA 

3mA 

2.25mA 

0.75mA 

3mA 

Figure 5.29 Calculated Current Values for the Circuit of 

Figure 5.26 
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C1RCLATS 

The peak-to-peak current values are 
as follows: 

IRIpp 

IR2pp 

IR3pp 

IR4pp 

= (2)(4.24mA) = 8.48mA 
= (2)(3.18mA) = 6.36mA 
= (2)(1.06mA) = 2.12mA 
= (2)(4.24mA) = 8.48mA 

The results are a bit different through the 

voltage chart. Now the two branch currents 
through the parallel combination of R2 and 
R3 add to the total series current, which is 
the same through RI and R.4. 

The effects of ac voltages and currents in 
series, parallel. and series-parallel resistive 
circuits have now been discussed thoroughly. 
However, there is another important 
consideration in these circuits - the 
power oksszpated. 

POWER DISSIPATION 

In ac circuits there are three kinds of power: 
real, reactive and apparent power. The kind of 
power that exists in purely resistive circuits is 
what is called real power. Real power is power 
that is dissipated in the form of heat and is 
measured in watts as illustrated in Figure 5.30. 

Recall, as shown in Figure 5.31, that in dc 
circuits the amount of power dissipated in 
watts can be calculated by multiplying the 
voltage across a resistor by the current 
passing through it. 

P = EI (5-6) 

The power, P, is in watts, when the voltage, E, 
is in volts, and the current, I, is in amperes. It 
turns out that equation 5-6 is true whether a 
dc voltage or an ac voltage is applied. This is 
shown in Figures 5.30 and 5.31. 

HEAT 
(WATTS) 

1/4  

Figure 5.30 Power Dissipation in an AC Circuit 

pp 
R 

HEAT 

Figure 5.31 Power Dissipation in a DC. Circuit 
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3 Power Dissipation o 
There is one difference, however. The power 
in an ac resistive circuit can be specified as 
peak, peak-to-peak, or rms power If the peak 
voltage across a resistor is multiplied by the 
peak current passing through it, the result is 
peak power: 

Ppk EpkIpk 

If the rms voltage across a resistor is 
multiplied by the rms current through it, 
the result is the rms power value. 

Pr • E rIT1• I rMr1111 

(5-7) 

(5-8) 

If the peak-to-peak voltage across a resistor 
is multiplied by the peak-to-peak current 
through it, the result is the peak-to-peak 
power value: 

PPP = EP I P PP (5-9) 

Each of these three different power values 
is of different importance in ac circuit 
considerations. The peak-to-peak power 
dissipation has little significance because 
power does not depend on the polarity of a 

voltage or the direction of the current. The 
peak power dissipation also is usually only 
significant in certain applications because 
peak power is an instantaneous value 
occurring only at the instant the voltage and 
current are at their peak values. The most 
significant power specification in an ac circuit 
is the rms power. It is more significant 
because it is the type of ac power that can be 
equated with dc power. (Remember that rms 
was defined to provide the same equivalent 
heating effect as dc). 

Using equation 5-6 the power dissipated by 
a resistor is determined by multiplying the 

voltage across the resistor by the current 
flowing through it. 

PR ERIR (5-10) 

Figure 5.32 Series-Parallel Resistive AC Circuit Power 

Calculation Example 

Thus, this equation can he used to calculate 
the rms power dissipated in series, parallel, 
and series-parallel ac resistive circuits. For 
example, it can be used to calculate the power 
dissipated in each of the four resistors in our 

previous series-parallel circuit shown again in 
Figure 5.32. This is the same circuit as Figure 
5.26 with the rms current calculated values 
added. Keep in mind that it is a series-parallel 
circuit and that the principles discussed can 

be applied to determine the rms power 
dissipated in simple series or simple parallel 

circuits as well. 

The voltage drop across R I of 6 volts rms was 
previously calculated. It is used along with the 
current through RI to calculate the power 

dissipated in RI as follows: 

PRI ERIIRI 
= (6V)(3mA) 
= 18mW 
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• Summary 

.['he rms power dissipated by R1 is 
18 milliwatts. 

The power being dissipated by resistors R2, 
R3, and R.1 can be calculated similarly. Recall 
that the voltage drop across the parallel 
combination of R2 and R3 was calculated as 
9 volts and across R4 as 9 volts. Therefore, 

PR2 = ER2I2 
= (9V)(2.25mA) 
= 20.25mW 

PR] ER1Ibt3 
= (9V)(0.75mA) 
6.75mW 

PR4 = ER4IR4 
= (9V)(3mA) 
= 27mW 

Therefore, the rms power dissipated by each 
of these resistors is: R2 = 20.25 milliwatts; 
R3 = 6.75 milliwatts; and R4 = 27 milliwatts. 

The total power being dissipated within the 
entire circuit equals the total applied voltage 
times the total current. 

PT EAIT 
= (24V)(3mA) 
= 72mW 

The total power in the circuit is 72 milliwatts. 

All individual power dissipation values should 
add up to the total power calculated: 

'RI PR2 PR3 PR4 = PT 
18mW + 20.25mW + 6.75mW + 

27mW = 72mW 

The total is 72 milliwatts which verifies the 
previous calculation for total power. 

Remember that in all of these power 
calculation examples, calculations have 
been rms power. 

SUMMARY 

In this lesson purely resistive circuits with an 
ac voltage applied were analyzed. Calculations 
were performed to show you how to 
determine the amplitudes of the voltages, 
currents, and power dissipations in series, 
parallel, and series-parallel ac resistive 
circuits. You were also shown how to convert 
between the peak, peak-to-peak, and rms 
amplitude specifications of these quantities. 

It should be remembered that all voltages 
and currents in these circuits have the same 
period and therefore, the same frequency. In 
pure resistive ac circuits there is no phase 
difference between the voltages and currents, 
so the voltage and current are said to be 
"in phase". 
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1. Given the peak-to-peak circuit values shown in the table, complete the table by converting to 

peak and rms values. 

Solution 

a. FR1 pk 

peak-to-peak peak irns 

ER1 50V a.   e   

ER2 30V b.   r   
ER3 27V c   g   
E4 14V d.   h   

= 0.5 X ER ipp = 0.5 x 50V = 25v 

b. ER2pk = 0.5 x ER2pp = 0.5 x 30 = 15V 

C. ER3pk = 0.5 x ERSpp = 0.5 x 27V = 13.5V 

d. ER4pk = 0.5 x ER,Ipp = 0.5 x 14V = 7V 

e. ER h.,„, = 0.707 x ERIpk = 0.707 x 25V = 17.7V 

f. E = 0.707 x ER2 pk = 0.707 x 15V = 10.6V —R2rms 

g. Easrm. = 0.707 x ER3 pk = 0.707 x 13.5V = 9.54V 

h. ER4, 4 = 0.707 x ER4 pk = 0.707 x 7V = 4.95V 

2. For the circuit below, calculate the instantaneous voltage and current values specified by 
the table: 

3kfl 

Degrees e, 

0 a.   h 
30 b.   i 

60 c   _I 
90 d.   k 

120 e.   I 
150 f   m 

180 8-   n 
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Solution: 

Epk is determined: 

Epk = 0.5 X Epp = 0.5 X 15V pp - 7.5V 

Then the instantaneous voltage and current values can be calculated. 

Finding e,(X.): 

a. e, (Ø) = sin 0° x Epk = 0.00 x 7.5V = OV 

h. ei(3(,.) = 

C. ei(601 

d. e, 190.) = 

sin 30° x Epk = 0.5 x 7.5V = 3.75V 

sM 60° X Lk = 0.866 x 7.5V = 6.5V 

sin 90° x Epk = 1 x 7.5V = 7.5V 

e. ei,120.) = e1,60.1 6.5V 

f. ei(150.) = ei(30.1 = 3.75V 

g. e(18( .) = = OV 

Finding 

ei(o.)  OV 
h. ior, - 0.0A Ri - 3kn -  

ei(301 

R 

3.75V  
- 1.25mA 

ei(60-) 6.5V  
J. 1(60 ., - R. = 3kfl - 2.17mA 

eocr) 7.5V  
- - 2.5mA 

R I 31(11 

I. 1(120.) = i(60° - 2.17mA 

m = J(3e) = 1.25mA 

n. = = 0.0A 
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3. For the circuit in Example 2, plot the current and voltage waveforms based on the calculated 

instantaneous values. 

Solution. 

7.5V-
6.5V - 

3.75V-

0° 30' 60 90'120'150°180° 

2.5mA - 
2.17mA - 

1.25mA - 

OA 

0° 30° 60' 90'120°150180' 

4. For the following circuit and the typical circuit values shown, determine the circuit values 

specified in rms values 

EA = 
40VAC 

a. R, 

b. I 

c. 'Ri 

d. IR2 

e. 1R3 =   

f. ER) 

Solutions: 

a. R-r = R1 + R2 4- R, = 3kfl + 4.5kfl + 1.7kfl = 9.2kfl 

b. IT 

c.,d.,e. 

f. 

g. 

h. 

ER) 

E 2 

ERs 

PRI 

PR2 

ET 40VAC 
— — — 
RT 

'RI = 1R2 = IRs = Ii = 4.35mArm• 

= 'RI x R1 = 4.35mA,, x 31d1 = 13.0VAC 

▪ IR2 X R2 = 4.35mA,„„ x 4.5kfl = 19.6VAC 

= IRS x R3 = 4.35mA,, x 1.7kfl = 7.4VAC 

= 'RI X ER) = 4.35mAr„„ x 13VAC = 56.5mW,„,„ 

▪ IR2 X ER2 = 4.35mAr„„ x 19.6VAC = 85.2mW. 

g. 

h 

J. 

k. 

I. 

ER2 

Elks 

PRi 

PR2 

PRS 

Pr 

=-. 
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k PR3 = IR3 X ER3 = 4.35mA,„„ x 7.4VAC = 

I P, = IT X EA = 4.35mAr„„ x 40VAC 

5. For the following circuit and typical circuit values shown, determine the circuit values 

specified in peak values. 

E. * 

20Vpk 

Solutions: 

a. I RI 
ER) 

Rip Ri = 
4.Skii 1.7kfi 

20V„k 
  - 6.67mA 

12 1 - 31(11 Pk 

a. 

b. 

d. 

1R2 

IRS 

RT =   

ER I 

ER2 20V p k 

b. R2 = —   R2 4.5k11 - 4.44mApk 

C. 1R3 = 
ERs 20V p k 

  — 11.8mA 
Rs - 1.71(1.1 pk 

g ER2 =   

h. ERS =   

PR I =   

J. PR2 =   

k. PR5 =   

I. PT =   

d. I r = 'RI + IR2 + 'RS 6.67mApk + 4.44mAp, + 11 8mA pk = 22.9mARk 

EA 2OVpk  
e. RT - - 8731) 

IT 22.9mA pk 

f..g..h. ER i = ER2 - ERs = EA = 20V p k 

i. PR' = 'RI X ER) = 6.67mA pk x 20V pk = 133mWpk 

j. PR2 = IR2 X ER2 = 4.44mA pk x 20V pk = 88.8mWpk 

k. PR3 = IRS X ERs = 1 1.8MApk X 20V p k = 236mW„k 

I. P1 = IT X EA = 22.9mA pk x 20V pk = 458mW k 
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Solution. 

Ill Worked-Out Examples 

6. For the following circuit and typical circuit values shown, determine the circuit values 

specified in peak-to-peak values. 

= 4.5k11 

R, = 
1.7k11 

• R,   g• ER2 

b. I, —   h. ERS = 

C. 'RI P - RI 

= -   j. PR2 = 

e 1,, k. = 

f. ER 1 I. PT 

a. RT = R1 // (R2 + R3) = 3kfl (4.5kfl + 1.7kf2) = 3kfIll 6.21d1 

3kfl x 6.2kfl  
3kfl + — 

b. IT 
EA IOVAC 

— —  — 4.95mA rm, 
Rr 2.02kfl 

ER1 EA IOVAC 
—   — 3.33mA.m. 

R, 3kfl 

d.,e• IR2 = 'RS = 
ER2 + E 3 EA IOVAC 

  = 1.61mAkm, 
R2 4- R3 - R2 + R3 - 6.2kfl 

f. ER1 = 'RI X R1 = 3.33mArms x 3kfl = IOVAC = EA 

g. 

h. 

E 2 = R2 

ERS = R3 

RI = I RI 

X R2 =- I.61mAr„„ = 7.25VAC 

X R3 = 1.6ImAr„„ x = 2.74VAC 

X ER1 = 3.33mAr„,s x IOVAC = 33.3mW,„,. 

PR2 'R2 X ER2 = 1.61mA rm, x 7.25VAC = 11.7mW rn,,, 

k. PRS = IRS X ERS = 1.61mA rini x 2.74VAC = 

I. PT = 1.1 EA EA = 4.95mArm, x IOVAC = 49.5mWum. 
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1. Given the rms circuit values below, complete the table by converting to peak and peak-to-
peak values. 

rMS peak peak-to-peak 

IRI 75mA a.   e 
IR2 32.7mA b.   
1R3 7.35mA 
IRI 248.2mA d.   h   

2. For the following circuit, calculate the instantaneous voltage and current values specified by 
the table: 

E. = 
15Vpp 

degrees e, 

180 a.   h   
210 b.   
240 

R = 
3k0 270 d.   

300 e.   I. 
330 f.   
360 g. 

3. For the circuit in Problem 2, plot the current and voltage waveforms based on the calculated 
instantaneous values. 

4. For the following circuit and typical circuit values shown, determine the circuit values 
specified in peak-to-peak values. 

R, = 800 

E. = 
100Vpp 

a. R1 =   

b. I 

C. 'RI 

d. 1R2 

e. 1Rs 

f. ER 

g• ER2 
h. E 3 

I. PR 

j• PR2 

k. PRS 

I. PT 

BASIC AC CIRCUITS 5-25 



RESISTIVE 
CIRCUITS 

III Practice Problems 

5. For the following circuit and typical circuit values shown, determine the circuit values 
specified in rms values. 

ER2 

ER3 

I'R 

PR2 

k. PR3 =   

I. PT 

6. For the following circuit and typical circuit values shown, determine the circuit values 
specified in peak values. 

R, = 110k11 

h 

ER2 

= 

PR = 

J • PR2 

k. PR3 

f. F. I. P•1 =--
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Quiz 5 
1. Given the peak circuit values shown in the 

table, complete the table by converting to 

peak-to-peak and rms values. 

peak peak-to-peak rms 

'RI 44mA a.   e 
1R2 573p.A b.   f. 

ER1 16.3V C.   g   

ER2 109.7V d.   h   

2. For the following circuit, calculate the 
instantaneous voltage and current values 
specified by the table. 

E. = 
50Vpk 

degrees e, 

R = 
211kfl 

0 a.   l• 
45 b   k   
90 c   I 
135 d   m   
180 e.   n   
225 f.   o   

270 g.   P   
315 h   cl•   
370 I.   r 

3. For the circuit in problem 2, plot the 
current and voltage waveforms based on 
the calculated instantaneous values. 

4. For the following circuit and the typical 
circuit values, determine the circuit values 
specified in peak values. 

R, = 82011 

E. = 
30Vpk 

R3 = 5400 

a. RI- —   

h. =   

=   

d. I R2 =   

e. 183 

f. Eici 

8. 

h 

J. 

k. 

I. 

ER2 =   

ER3 =   

RI =-

PR2 =   

P R3 =   

PT =   

5. For the following circuit and typical 
circuit values shown, determine the 
circuit values specified in peak-to-
peak values. 

E. = 
110Vpp 

a. 'RI 

b. 1R2 

C . I Rs 

d. IT 

e. RT 

f. ER1 

I I 
non> 1.2kfl 5400 

R 3 = R, = R, = 

  g• ER2 
  h. Eits 

I. PR = 

  j• PR2 

  I. PT =   
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6. For the following circuit and typical 
values shown, determine the circuit 
values specified in rms values. 

a• RT 

b. I 

C. 'RI 

d. I R2 

C. IRS 

f. ER1 

R, = 8200 

  g• ER2 -   

=   h. ERs =   

PR' =   

  J. PR2 =   

  k. Pro =   

  I- PT = — 
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LESSON 6 

0 Capacitance 
In this lesson, the electrical property of capacitance and 
another electronic circuit component, the capacitor, are 
introduced. The physical and electrical properties of 
capacitors are discussed. Series and parallel capacitive 
ac circuits are described and analyzed. The capacitor 
and the effects of capacitive action in ac series and 
parallel circuits are described. 
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• Objectives 

At the end of this lesson, you should be able to: 

1. List the names of common types of capacitors and discuss the characteristics 
of each. 

2. Define capacitance and the capacitive property. 

3. Describe two effects of capacitors in ac circuits. 

4. Describe the result of using different types of dielectrics, different sizes of plates, 
and increasing the distance between the plates of capacitors. 

5. Given a schematic diagram of the types shown and typical circuit values, you 

should be able to calculate capacitance, capacitive reactance, current, voltage, and 
power for each capacitor and for the circuit total. 

Ii 
TT  T 

R 

I / I f 

I\- 1 

 If 
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• Definition of Capacitance 
II Basic Schematic Symbol 

INTRODUCTION 

In the previous lesson, discussion concerned 
the action of alternating current in resistive 
circuits. As you probably noted, this concept 
was very similar to an analysis of direct current 
in resistive circuits. Resistor series, parallel, and 
series-parallel circuits were analyzed. Total and 
individual values of current, voltage, resistance, 
and power were determined for each of these 
types of circuits. 

In this lesson, capacitive properties and the 
effects of capacitance in ac circuits will be 
described and circuits containing capacitors 
connected in series and parallel will 
be analyzed. 

Capacitors, like resistors, do not amplify or 
increase voltage or current. However, they 
perform a unique function by storing an 
electrical charge. This has the effect of 
opposing any changes in voltage. 

PROPERTIES OF CAPACITANCE 

Definition of Capacitance 

The ability of a nonconductor to store an 
electrical charge is called capacitance. This 
capability is particularly important for 
applications that require short bursts of 
relatively large amounts of current. For 
example, a flash tube for a camera uses a burst 
of current to produce light for a fraction of a 
second. An electronic ignition system in a car 
has a capacitor in it to help provide interrupted 
current conditions that produce the high 
voltage for the spark discharge. Spot-welding 

equipment uses a capacitor to obtain peak 
current almost instantaneously. Capacitors are 
also used in medical equipment. For example, 
in a defibrillator used to revive a patient's 
heartbeat, a capacitor is discharged between 
two paddles which are applied to the patient's 
body. The paddles, thus, deliver a controlled 
amount of electrical energy to the patient. 

e' 

CAPACITOR 

METAL INSULATOR 
PLATES 

Figure 6.1 A Capacitor's Schematic Symbol 

PHYSICAL DESCRIPTION O F A CAPACITOR 

Basic Schematic Symbol 

Essentially, a capacitor is two conductive 
metal plates separated by an insulator. Figure 
6.1 shows a capacitor's schematic symbol. The 
straight and curved lines represent the two 
conducting plates of the capacitor. The space 
between the two lines is the dielectric of the 
capacitor. A dielectric is a nonconductor of 
electric current. 
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• Types of Capacitors 
• Charging a Capacitor ID 
Types of Capacitors 

Different types of capacitors can be 
manufactured by using various materials 
for the dielectric, such as paper, ceramic (a 
porcelain or baked-clay material), Teflon* 
(an inert, tough insoluble polymer), and 
air. Several types of capacitors are shown 

in Figure 6.2. More detail on various types of 
capacitors is presented in the section about 
capacitor values and following. 

Charging a Capacitor 

How does a capacitor store a charge? In 
Figure 6.3 two plates of a capacitor are shown 
in a circuit with a battery. Switch 1 is open. 
Therefore, the plates contain equal numbers 
of neutral atoms, positive ions, and free 
electrons that are associated with all 
conductive materials. This equality makes the 

plates electrically neutral. When a battery is 
connected between the two plates by closing 
switch 1, as shown in Figure 6.4, current flows. 
(As in all other discussions in this book, 
current is electron current.) Current flows 
because the positive potential applied to plate 
A attracts free electrons from the neutral 
atoms of the plate. This action creates an 
excess of positive ions. The free electrons are 
pulled to the positive terminal of the battery. 
They are deposited on the negative terminal 
by the chemical action within the battery and 
repelled by the negative battery potential and 
then they collect on plate B of the capacitor. 
The creation of positive ions on plate A 
constitutes a net positive charge on the plate. 
The excess electrons on plate B creates a net 
negative charge on that plate. The difference 
between the charges on the two plates is a 
potential difference which is defined as 
voltage. If there is no restriction of current 
flow in the circuit, the voltage, or potential 
difference, between the plates of the 
capacitor becomes equal to the battery voltage 
very quickly. 

'Trademark of DuPont Company 

• e-
L 

LINENCO 

V J 

1/4  

PAPER 

. 11!) 

CERAMIC 

ELECTROLYTIC 

MICA 

Figure 6.2 Several Types of Capacitors 

s, 
_fl 71 

£27 PLATE A 

47, PLATE B 

N. 
Figure 6.3 Plates of a Capacitor Normally Are 
Electrically Neutral 

si 

T  
4:27 PLATE A 

Lir — PLATE B 
 .>d 

Figure 6.4 Capacitor Connected to a Battery 
and Charging 
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• Storing a Charge 
• Discharging a Capacitor 6 
In Figure 6.5, the positive potential on plate 
A is equal to the positive potential on the 
battery. Therefore, no more electrons are 
removed from the positive plate, A. The 
negative potential on plate B is equal to the 
negative potential on the battery. Therefore, 
the B plate cannot collect any more electrons. 

At this point the current in the circuit stops. 
The charges have been distributed on the 
positive and negative plates until the voltage 
across the capacitor is equal to the battery 
voltage, and the capacitor is fully charged. 
The amount of time necessary for the 
capacitor to charge and the values of voltage 
across the capacitor after different time 
periods are discussed in Lesson 10 of this 
book and in Lesson 13 of the 11 Learning 
Center textbook Basic Electricity and DC Circuits. 

Storing a Charge 

If the capacitor is disconnected from the 
battery by opening the switch as shown in 
Figure 6.6, the attraction of the charges on the 
two plates maintains the potential difference 
between the two plates. Also, the dielectric 
(insulator) material prevents electrons from 
moving from plate B to neutralize the positive 

ions on plate A. Therefore, the charge is 
stored. By storing a charge equal to the 
applied battery voltage, the capacitor opposes 
any change in voltage which normally occurs 
NvIten the battery is disconnected from 
the circuit. 

Discharging a Capacitor 

To discharge the capacitor, a wire can be 
connected between the two plates, as shown 
in Figure 6.8. Current flows during a period 
of time, the excess electrons from plate B 
neutralize the positive ions on plate A, and 
both plates return to their original neutral 
condition and current stops as shown in 
Figure 6.9. The discharge time is related to 
the charge time. This also is discussed in 
Lesson lo. 

4e 

s, 

Z,,4 PI ATP 

10V 10V 
— g PLATE 

1*.  

Figure 6.5 Capacitor u Fully Charged 

A 

Si 

£-7 
10V 10V 

PLATE A 

_T _ PLATE 

• 

Figure 6.6 Charged Capacitor Disconnected from 
Battery 

si 

10V 

+ 47 PLATE A 
10V 

— PLATE B 

Figure 6.7 A Wire Connected Between the Two Plates 
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CAPACITANCE 

The Farad 

VALUES OF CAPACITORS 

The Farad 

The value of capacitance in a circuit is 

described by the capacitive unit, the farad, 
named for Michael Faraday. Faraday, a 

British physicist who lived during the 19th 
century, is credited with developing the 
method of measuring capacitance. Faraday 

stated a capacitor has a value of one farad of 
capacitance if one volt of potential difference 
applied across its plates moves one coulomb of 
electrons from one plate to another. This is 
illustrated graphically in Figure 6.10, and it is 
expressed in this equation: 

C = 

Where 

(6 1) 

Q = the charge transferred in Coulombs. 
(One Coulomb = 6.25 x 10' s electrons.) 

C = value of capacitor in farads. 
E = voltage applied across the capacitor 

plates in volts. 

Figure 6.8 Capacitor Plates Discharging 

SI 

+1"—. 7 PLATE A 

10y 

T 
PLATE B 

Figure 6.9 After Discharge both Plates are Once Again 

Electrically Neutral 

1 FARAD 

+ — 

1 a 

 fill  
1 VOLT 

Figure 6.10 Circuit Factors for Measuring One Farad 
of Capacitance 
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• Standard Values of Capacitance 
• Abbreviations of Capacitive Unit 
• Equation for Calculating Capacitive Values 
Based on Physical Parameters 

CAPACITANCE 

6 
Standard Values of Capacitance 

6.25 x 10' 8 electrons is a very large number 
of electrons; therefore, a one farad capacitor 
is very large electrically and physically. 
Practical units of capacitance vary from a 
small capacitor of one picofarad (1 pF = 
0.000000000001 farads = 10 -12 farads) to 
1000 microfarads (1000 1.1.F = 0.001 farads = 
1 x 10 farads), for a large capacitor. 
Typical capacitors of these values are shown 

in Figure 6.11. 

Abbreviations of Capacitive Unit 

The capacitance value of most capacitors is in 
either microfarads or picofarads. There are 
many ways that these units can be expressed 
and abbreviated. For example, the value of a 
0.001 microfarad capacitor can be written: 

0.001 x 10 -6 For 1000 x 10 12 F 
or 1000 picofarads or 1000 pF or 1 kpF 
or 1000 micromicrofarads or 1000 p.µ,F, 
or 1000 x 10'6 x 10 -6 F. 
or 1 nanofarad or 1 x 10 -9 F. 

All other capacitance values can be expressed 
and abbreviated in as many ways. Although 
the capacitance value of a capacitor is usually 
printed on it, it can be in any one of many 
different abbeviations because all 
manufacturers have not established a standard 
abbreviation code for capacitance units. 
This can pose some deciphering problems. 
However, as a rule of thumb, remember that 
practical values of capacitance are fractions of 
one farad, and they typically range from one 
picofarad to several thousand microfarads. 

dtk 

Figure 6.11 Typical Small-Value and Large-
Value Capacitors 

Equation for Calculating Capacitive Values 
Based on Physical Parameters 

Capacitors of different values are 
manufactured by varying several factors, such 
as the area of the plates, the distance between 
the plates, and the type of dielectric material 
used. An equation which relates these 
factors is 

Where C = 
ke = 

C = ke(—A ) Eo 
d 

(6-2) 

the value of the capacitor in farads 
the dielectric constant of the 
dielectric material (no units) 

A = the area of either plate 
(square meters) 

d = the distance between the plates 
(meters) 

= the permittivity of dry air 
(8.85 x 10 12 farads per meter) 
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MI Area of the Plates 
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• Dielectric Constant 

II Voltage Ratings of Capacitors 

Area of the Plates 

If the area of the plates is increased the 

capacitor will be able to store mure charge for 
every volt applied across its plates. Thus, il 
the dielectric and the distance between the 

plates remain constant, capacitance will be 
increased if the plate area is increased. 

Distance Between Plates 

If the distance between the plates of a 
capacitor is increased, then the capacitor 
stores less charge for every volt applied across 

its plates. Therefore if the dielectric and the 
plate area remain constant, capacitance will 
be decreased if the distance between plates 
is increased. 

Dielectric Constant 

The dielectric constant of a dielectric material 
is a ratio of the permittivity of a dielectric 
material to the permittivity of a vacuum, or 
more practically. dry air. The permittivity of 

a material is its ability to concentrate the flux 
density of an electric field. For example, the 
dielectric constant of glass is 8. Therefore, 
glass has a permittivity of 8 times that of air. 

The ratio of the permittivity of glass to the 
permittivity of air is 8:1. the air having an 
assigned constant of 1. 

The larger the value of dielectric constant, 
the greater the concentration of the electric 
field between the two charged plates. 

Therefore, assuming that the area of the 
plates and the spacing between plates remain 
constant, the value of a capacitor will be 
increased if the dielectric constant is 

increased, and it will be decreased if the 
dielectric constant is decreased. 

A table of typical dielectric constants of 
various materials used in the construction 
of capacitors is shown in Figure 6.12. 

6-8 

DIELECTRIC 

MATERIAL 

C A l'A CI TANcE 

DIELECTRIC 

CONSTANT 

AIR 1 

CERAMICS 80-1200 VARIES WITH TYPE 
GLASS 

MICA 3-8 VARIES WITH TYPE 
TEFLON 2.1 

OIL 2-5 VARIES WITH TYPE 

PAPER 2-6 VARIES WITH TYPE 

8 

Figure 6.12 ()alert, ic Constant of Various .11atenals 

Voltage Ratings of Capacitors 

In addition to their capacitance values, all 
capacitors are also rated as to the maximum 
allowable dc voltage that may be applied 

across the plates without arc-over and 
subsequent damage to it and the circuit. This 
lining is called the working voltage dc, usually 

abbreviated WVDC or simply VDC when 
printed on a capacitor. For example, if a 
capacitor is rated at 100 WVDC, no voltage 
greater than IOU volts dc should be applied 
across its plates. 

If a capacitor is used in an ac circuit, the peak 
value of the ac voltage should be compared to 
WVDC rating of the capacitor to be sure that 

the voltage will not exceed that rating and cause 
the capacitor to arc between its plates. In a 
circuit in which the voltage across the capacitor 
is 40 volts peak to peak, the peak value of this 

voltage is 20 volts and therefore, the WVDC 
rating of the capacitor should be a minimum of 
20 volts. 
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CAPACITANCF. 

6 
Dielectric Strength 

The M'VDC rating of a capacitor is related 
to the dielectric strength (breakdown voltage) 
of the type of dielectric material used in 
the capacitor's construction. The dielectric 
strength is different for different materials. 

The dielectric strength of a material is 
typically rated in volts per mil (Wind). One 
mil is 0.001 inches. The V/mil rating of a 
dielectric material indicates how many volts 
a one-mil thickness of the material can 

withstand without breaking down. Figure 6.13 
lists some Wind ratings of several dielectric 
materials commonly used in the construction 
of capacitors. 

It is also important to remember that the 
working voltage of any capacitor decreases 
as temperature increases. Therefore, if the 
circuit in which a capacitor of a particular 
WVDC rating is to be used will be subjected 
to high temperatures, the capacitor should 
be chosen so that its working voltage will 
exceed expected circuit voltages at 
those temperatures. 

TYPES OF CAPACITORS 

As stated previously, the dielectric material 
used in the construction of a capacitor 

primarily determines the type of capacitor. 
Some of the common types are ceramic, 
paper, air, and electrolytic capacitors. 

Ceramic Disc Capacitors 

Ceramic disc capacitors usally consist of two 
conductive discs on each side of a piece of 
ceramic insulator, one lead attached to each 
plate, and coated with some type of inert, 
waterproof coating, often made of some type 
of ceramic composition. Ceramic capacitors 
typically are manufactured in values from 
I picofarad up to thousands of microfarads 
and dc working volts from 10 volts up to 5000 
volts. Several ceramic disc capacitors are 
shown in Figure 6.2. 

MATERIAL 
DIELECTRIC STRENGTH 
(VOLTS/MIL) 

AIR 
CERAMICS 
PYREX GLASS 
MICA 
TEFLON 
OIL 
PAPER 

20 
600-1250 VARIES WITH TYPE 
330 
600-1500 VARIES WITH TYPE 
1525 
375 
400-1250 VARIES WITH TYPE 

Figure 6.13 Dielectric Strength of Various Materials 

LEAD 

-•••••,. 

PLATES 

LEAD 

DIELECTRIC 

AXIAL LEADS 

DIELECTRIC 

Figure 6.14 Typical Paper Capacitor 

Paper Capacitors 

A paper capacitor typically consists 
of a sheet of paper insulator (dielectric) 
sandwiched between two sheets of foil, 
rolled in cylindrical form as shown in 
Figure 6./4. Paper capacitors are typically 
manufactured in capacitive values from 
about 1000 picofarads to one microfarad. 
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CAPACITANCE 

Electrolytic Capacitors 

Paper, mylar, and other tubular film-type 
capacitors typically have a band at one end 
of the capacitor as shown in Figure 6.15. 
The band identifies the outside foil of the 
capacitor. The lead closest to the band 
should be connected to the ground or lowest 
potential point in the circuit. This provides rf 
shielding in high frequency circuits. It also 

provides a safety factor for the technician if 
the insulating material would happen to wear 
away and expose the capacitor's outside plate. 

Electrolytic Capacitors 

A typical electrolytic capacitor consists 
of an outer aluminum shell and an inner 
aluminum electrode. As shown in Figure 6.16, 
the electrode is wrapped in gauze permeated 
with a solution of phosphate, borax, or 

carbonate. This solution is called the 
electrolyte. When a dc voltage is placed across 
the plates of the capacitor, an oxide coating 
forms between the electrode and the 

electrolyte. A capacitor is then formed with 
the oxide as the dielectric, the inner electrode 
as the positive plate (anode), and the outer 
shell and electrolyte as the negative 
plate (cathode). 

Several capacitors of different values can 
be formed within one outer shell by using 
several electrodes and applying different 
potentials to the electrodes. Figure 6.17 shows 
two views of a typical multisection electrolytic 
capacitor. The side view shows a typical way 
the capacitance and WVDC ratings of each 
section of the capacitor are marked on its 
side. Note that a small geometric symbol is 
marked beside each of the section ratings. 
These symbols are used to identify each of 
the capacitor's sections. The bottom view 

shows several lugs extending outward from 
the bottom of the capacitor. Each of the inner 
lugs is connected to an inner (usually positive) 
electrode of each individual capacitor section. 

OUTER 

FOIL 

CONNECTION 

Figure 6.15 Capacitor with Outer Foil Connection 

Indicated with Band 

OXIDE-COATED 
ALUMINUM FOIL • 
(POS. ELECTRODE) 

ALUMINUM 
FOIL -- - 
CONTACT TO 
ELECTRODE 
(NEG ELECTRODE) 

NEGATIVE LEAD 

METAL CONTAINER 

INSULATING AND 

SEALING DISC 

POSITIVE 
LEAD 

1 

PAPER SEPARATORS 
SATURATED WITH ELECTROLYTE 
(ACTUAL NEGATIVE ELECTRODE) 

Figure 6.16 Construction of an Electrolytic Capacitor 

404 

I 

Figure 6.17 A Mulusection Electrolytic Capacitor 
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CAPACITANCE 

• Air Capacitors 

Note that the small geometric symbol marked 
beside each of these lugs match the symbols 
marked on the side. Therefore, the 
capacitance value and WVDC rating of each 
section (lug) can be determined easily. Note 
also that there are several lugs around the 
outer edge of the capacitor. These lugs are 

part of the outer shell of the capacitor which 
is usually the negative (ground) side of the 
capacitor, common to each section. These 
lugs are used to mount the capacitor and 
provide a common negative connection in 
the circuit. 

Some electrolytic capacitors use special 
metals called tantalum or niobium as the anode 
and are called tantalum or niobium capacitors. 
These capacitors have a larger capacitance 
in a much smaller size than other types of 

standard electrolytics. Because of their small 
physical size, they are ideal for use in 
miniaturized electronic circuits where space 
considerations are important. 

Since an electrolytic capacitor utilizes a 
chemical process for its capacitive ability, it has 
a designated shelf life. That is, an electrolytic 
capacitor can be stored only for a specified 
length of time without use before it 
changes value. 

The schematic symbol for an electrolytic 
capacitor has the added notation of the plus 
and minus signs. Electrolytic capacitors must 
be used in circuits with the end marked 
positive always at a more positive potential 
than its negative end. Thus, they are normally 
used only where dc or pulsating dc voltages 
are present. Special types of non-polarized 
electrolytic capacitors are available for use in 
ac circuits. Specified symbols for electrolytic 
capacitors are shown in Figure 6.18. 

(NON-POLARIZED) 

Figure 6.18 Electrolytic Capacitor Symbols 

Electrolytic capacitors are available from 
about one microfarad to several thousand 
microfarads, with working voltage ranging 
from several volts to several hundred volts. 
The applied voltage to an electrolytic 
capacitor should be approximately equal 
to the voltage rating of the electrolytic. This 
will help insure that the proper value of 
capacitance will be present in the circuit. 

Air Capacitors 

With air capacitors, capacitance is varied by 
meshing and unmeshing the capacitor plate, 
with the air between the plates serving as 
the dielectric. As shown in Figure 6.19, air 
capacitors are commonly used as a variable 
tuning capacitor in receiver circuits. 

The variable capacitor is designated 
schematically by adding an arrow to the 
standard schematic symbol also shown in 
Figure 6./9. Air capacitors are available 
usually in variable values from a few 
picofarads to several hundred picofarads. 
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Leakage Current 

Leakage Current 

A theoretical capacitor will hold a charge 
indefinitely. Practically, however, if a 
capacitor is charged and set down for a tinte, 
it actually loses a small amount of its charge. 
This is because all insulators are conductors 
to some degree. The dielectric, even though 
a poor conductor, allows some electrons to 
'leak' back across to the other plate. This 
small electron flow discharge is what is called 

leakage current. Leakage current is greatest in 
electrolytic capacitors due to their method of 
construction and impurities in the foil 
and electrolyte. 

A table showing leakage current for common 
types of capacitors for typical ranges of values 
and WV DC ratings is shown in Figure 6.20. 

a 

VARIABLE 

Figure 6.19 Variable Tuning Air Capacitor and as 

Schematic Symbol 

Capacitor 

Type 

Range of 
Capacitance 

Range cr1 
WVDC 

(in volts) 

Range of 
Temperature 

(*C) 

R, = Insulation Resistance 

IL = Leakage Current 
(at 25°C) Comments 

Ceramic 

1 

1 pF - 2.5 p.F 20 - 200 - 55 +125 R, = 100 GIVµF Small size 

Low cost 

Paper 0.001 - 2 µF 50 - 2000 - 55 + 105 R, = 3 - 20 Gf1/µF Low cost 

Electrolytic 0.5 - 1,000.000 uF 2.5 - 700 80 +125 IL = 0.1 µA or more Vary small alza 
Very low cost 

klylar 0.001 - 20 µF 50 - 1000 - 55 + 150 14, = 50131-1/µF 

_ 

Small size 
Relatively 
high cost 

Air 10 - 400 pF 200/0.01 in 
air gap 

— — Variable 

Mica 1 pF - 1 u.F 50 - 100,000 - 55 + 150 R, = 10 - 100 Gale Cap. change 
with age 
very small _ 

. Oil Filled 0.001 - 15 eiF 100 - 12.500 -55 +85 141 = 2 - 1001311/0.F Low cost 

Figure 6.20. Typical Capacitor Parameters 
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CAPACITANCE 

6 
COMPARISON OF RESISTANCE 
AND CAPACITANCE 

A comparison of resistive and capacitive 
properties should help you understand better 
the effects of capacitors in circuits. A resistor 
limits, and therefore, controls the flow of 
current in a circuit. A capacitor stores a 
charge and as a result, opposes a change in 
voltage in the circuit. 

Resistors in DC and AC Circuits 

Re( all I roni previous lessons that in both dc 
and ac circuits, as shown in Figure 6.21, a 
iesistor places a fixed amount of resistance 
in the circuit, and as a result, governed by 

Ohm's law, determines the amount of current 
flow. A capacitor, however, stores a 
charge and as a result, opposes any change 
in voltage in a circuit. 

Capacitors in DC Circuits 

In dc circuits, a capacitor with no charge 
instantly acts as a short circuit by allowing a 
maximum value of current to flow, as shown 
in Figure 6.22a. As the capacitor charges, and 

the voltage across the capacitor increases in 
a polarity which opposes the battery or 
voltage source, the amount of current flowing 
decreases. When the capacitor is fully 
charged, current no longer flows in the 
circuit, and the capacitor then acts as an open 
circuit, as shown in Figure 6.22b. The time 
required for a capacitor to become fully 
charged is almost instantaneous, and is 
determined by RC time constants which will 
be discussed in detail in Lesson 10. 

Capacitors in AC Circuits 

1 n ac circuits, the capacitive property of 
capacitors is observed in two related ways. 
First, the voltage across the capacitor lags the 
current through the capacitor by 90 degrees, 
as shown in Figure 6.23. Second, also shown in 

Figure 6.23, a capacitor represents a varying 

DC CIRCUIT AC CIRCUIT 

Figure 6.21 Resistors in DC and AC Circuits 

CAPACITORS IN 

DC CIRCUITS 
Instantly After Charge 

10v +0v(short) 10v +10v (open) 

I=MAX I= 0 AMPS 
a 

Figure 6.22 Capacitors in D( Circuits 

Figure 6.23 Capacitor in AC Circuits 
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• Ec and le Relationships 
• Rate of Change of Ec 

opposition to current flow that is inversely 
related to the frequency of the ac source 

causing the current flow. This changing 
opposition of a capacitor to current flow 
is called capacitive reactance. 

PHASE RELATIONSHIPS iN 
CAPACITIVE CIRCUITS 

Current flows in every closed electrical 
circuit. Also, in every capacitive electrical 
circuit there are certain predictable and 
precise relationships between current, 

voltage, and capacitance. These relationships 
can be precisely described in terms of phase 
relationships. And a good way to begin a 

discussion and understanding of capacitive 
circuits is by analyzing phase relationships of 
the factors in such circuits. 

Ec and lc Relationships 

An equation that mathematically describes the 
relationship between the voltage and current 
in a purely capacitive circuit is 

(6-3) 

Where lc = capacitive current (amperes) 
C = capacitance (farads) 

à = a change in quantity 
Ec = volts across the capacitor 
I = time (seconds) 

Since à designates a change in quantity, then 
the value LEg is the change in voltage (in 

à t 
volts) across the capacitor divided by the 
change in time (in seconds) in which that 
change occurred. This à E is called the rate 

à t 
of change of the voltage. Because à E is the 

à t 
rate of change (ROC) of voltage, equation 6-3 
can be rewritten: 

Ic =Cx[ ROC Ec ] (6-4) 

Figure 6.24 Maximum Rate of Change of Voltage 

Rate of Change of Ec 

Since there are rates of change of voltage in a 
capacitive ac circuit, it is important that you 
know where the maximum and minimum 
rates of change occur. Using equation 6-4, 
certain characteristics of the current can be 

determined. A good example is to examine 
the rate of change of voltage at various points 
in a sine wave. A fixed amount of time, à t, 
will be moved along a time axis and examined 
to see how much change in voltage occurs at 

various intervals of the sine wave. As shown 
in Figure 6.24, the maximum change in 
voltage occurs as the sine wave crosses the 
axis at the zero voltage level. Thus, the rate of 
change of voltage is maximum as the sine wave 

crosses the zero voltage level. 
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• Ee Versus lc 

SS 
On the other hand, the change in voltage is 
minimum or zero as the voltage peaks. Thus, 
the rate of change of voltage is zero as the 
sine wave peaks as shown in Figure 6.25. This 
should be obvious because when the sine 
wave peaks, the voltage stops increasing and 
begins decreasing. 

Ec Versus Ic 

Remember that the current is equal to the 
value of the capacitor times the rate of change 
of the voltage. When the rate of change of 
voltage is zero (E( is at either peak), the value 
of the current is zero. When the rate of 
change of voltage is maximum (as E(- crosses 
the zero voltage level), the value of the 
current is a maximum. The zero and 
maximum points of lc are indicated by the 
Xs in Figure 6.26. Since the voltage changes 
sinusoidally, the rate of change of voltage 
changes in a sinusoidal shape and therefore, 
so does the current. Connecting these points 
with a sinusoidal waveform, as shown in 
Figure 6.27, the current waveform can be 
plotted. Note in Figure 6.27 that the current 
leads the voltage by 90 degrees as was 
described earlier. 

FREQUENCY RELATED TO 
CAPACITIVE IMPEDANCE 

In a circuit, a capacitor impedes—opposes - 
the flow of current. he opposition is called 
capacitive reactance. The capacitive reactance 
depends on the frequency of the source. The 
rate-of-change equation can be used to relate 
the capacitive opposition to the frequency of 
the voltage in a capacitive circuit. 

E 
lr ,\  4-- ROC =0 

t 

ROC= 0 

Figure 6.25 Minimum Rate of Change of Voltage 

Ic= Cx [ROC Ec] 

OV 

Figure 6.26 Zero and Maximum Points of ic 

OV 

90° 

 S. 

Figure 6.27 Relationship of le to E. c 
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Rate of Change Versus Frequency 

As frequency increases, the rate of 
change of the voltage is much higher. For 
example, as shown in Figure 6.28a, a 10 volt 
peak-to-peak one kilohertz waveform makes a 
10 volt transition in 0.5 (1/2) millisecond But, 
as shown in Fig-ure 6.286, with the same 
amplitude, and an increase in frequency to 4 

kilohertz, the same 10 volt transition is made 
in one-fourth of this time, or in 0.125 
millisecond. Calculating the rate of change of 
voltage in each case, it is found that at 
1 kilohertz. 

Rate of change =-t 

10V  

0.5ms 
20V = — 

and at 4 kilohertz: 

àE 
Rate of change = 

10V  

0.125ms 
80V 
MS 

The approximate rate of change of 
the 1 kilohertz waveform is 20 volts per 
millisecond. The approximate rate of change 
of the 4 kilohertz waveform is 80 volts per 
millisecond. Obviously, the rate of change 
of the higher frequency voltage is greater. 
According to equation 6-4, the voltage with 
the higher frequency with its greater rate of 
change would produce a higher current when 
applied to a capacitor. 

tàEc 
ft at i lc i 

0.5 ms 
a 

4 kHz 

0.125ms 

Figure 6.28 Rate of ( liange of Voltage Versus 

Frequency 

According to Ohm's law, if voltage is constant 

and current increases then the opposition to 
current flow must have decreased. 

On the other hand, if source frequency is 
decreased, the current will also decrease, 
which means an increase in opposition must 

have occurred. These relationships can 

be expressed as: 

tiE4 
f 1 -i--at 1 Ic and Xc 

CAPACITIVE REACTANCE 
As stated earlier, this changing opposition of 
a capacitor is called capacitive reactance and is 

inversely related to the source frequency. 

Equation for Xc 

Capacitive reactance is measured in ohms of 

reactance like resistance, and depends on the 
frequency of the applied voltage and the value 

of the capacitor. 

xc (a) = 2,f(Hz)c(F) 
where 2e= 6.28. 

(6-5) 
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Analysis of an AC Capacitive Circuit 6 
I he symbol for reactance is X. To specify a 
specific type of reactance, a subscript is used. 

In this case, since it's capacitive reactance, the 
subscript C is used. The constant 21T comes 
from the number of radians in one cycle of 
a sinusoidal ac waveform. Therefore, this 
equation is valid only for calculating the 
capacitive reactance of a capacitor to 
sinusoidal alternating current. 

Analysis of an AC Capacitive Circuit 

.1 he circuit in Figure 6.29 will be used to 
determine the capacitive reactance using the 
capacitive reactance equation. That circuit 
contains a 10 microfarad capacitor with an 
applied voltage with a frequency of .1 
kilohertz. The capacitive reactance 
is calculated: 

1  
Xe — 

2-n-fC 
1 

27r(4 x 103Hz) (10 x 10 76F) 
1  

251.2 x 10 -3 

Xe = 3.9811 

If the applied voltage is 10 volts, as shown in 
Figure 6.30, the current in the circuit will be 
the value of the applied voltage divided by 
the value of the capacitive reactance. 

EAC IC = 
XC 
10V  
3.9811 

= 2.51A 

The current in the circuit is 2 51 amperes. 
Remember, the voltage and current values 
are rms values since they have not been 
otherwise specified. 

f =4kHz 

EA scr- 1 P 

Figure 6.29 Example Circuit to Calculate X,. 

EA 

10V 

4kHz Xc =3.98 Q 

Figure 6.30 Example Circuit to Calculate I( 
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Analysis of an AC Capacitive Circuit with 
an Increased Source Frequency 

If the current in the previous example is 
2.51 amperes, what is going to happen to the 
current if the frequency of the source voltage 
is increased? Figure 6.31 shows the same 

circuit used in the previous example with 
one difference — the frequency has been 
increased from 4 kilohertz to 10 kilohertz. 
Capacitive reactance of the circuit is 
calculated as in the previous example. 

1 
Xc 

2-rrfC 
1 

6.28(10 x 103Hz) (10 x 10 -6F) 
1  

6.28 x 10' 

= 1.5911 

The current in the circuit, repeated in Figure 
6.32, is calculated by dividing the applied 
voltage by the capacitive reactance of 
the circuit: 

EA 
Ic -= 

Xc 
10V  

1.5911 
= 6.28A 

Obviously, this current is greater than the 
current in the same circuit when the applied 
frequency was lower. 

Figure 6.33 summarizes the relationships 
between capacitive reactance. Xc, circuit 
current, lc, and frequency, f, of the source 
voltage for the two example circuits just 
discussed. From this summary, it is apparent 
that as frequency of source voltage increases, 
capacitive reactance decreases and 
current increases. 

EA 
10V 

10kHz 

Figure 6.31 Example Circuit to Calculate X, 

EA 

10V 

10kHz 

lOpf 

X c = 1 . 5 9 o 

11%  

Figure 6.32 Example Circuit to Calculate 

t = 4kHz 

EA = 10V 

1 = 10kHz 

xc 3.98f1 1.59S1 

IC 2.51A 6.28A 

't 

Figure 6_33 X, Versus ir ai Two Different Frequencies 

of Sour( e Voltage 
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• Capacitive Reactance in Series 6 
The Capacitor as a Variable Resistance 

A capacitor can be thought of as a variable 
resistor whose value is controlled by the 
applied frequency. As frequency increases, its 

opposition to current or its capacitive reactance 
decreases, as shown in Figure 6.34. Figure 6.3 
shows the same concept graphically. 

CAPACITIVE REACTANCE IN SERIES 
AND PARALLEL 

As observed in the preceding section, 
capacitors in ac circuits present opposition to 
current flow based on the capacitive reactance 
equation, equation 6-5. As mentioned, it is 
similar to the resistance of a resistor. The X( 
designation differentiates it from a resistor R. 
In a purely capacitive circuit where no 
resistance is present, totals of capacitive 
reactance can be calculated the same way that 
totals of resistance are calculated in purely 
resistive circuits. 

Capacitive Reactance in Series 

When capacitors are connected in series, the 
total reactance of the capacitors ()Cur) is 
simply a sum of the capacitive reactance of 
the capacitors present. This procedure is 
identical to the way total resistance (RT) is 
determined in a series resistive circuit. 
Equation 6-6 is used to calculate total 
capacitive reactance (X( -1-) in series: 

XcT = Xc Xc2 Xc . Xc N (6-6) 

Figure 6.36 is a circuit containing four 
capacitors in series with the capacitive 
reactance shown for each. Using equation 
6-6, the total capacitive reactance for the 
circuit can be calculated: 

XcT = Xci + XC2 + Xc3 + Xc4 
XcT = 1 kfl + 2.5kfl + 41(fl + 3.3kfl 
XcT = 10.81(.0 

fiXcl 

Figure 6 34 A Capacitor as a Variable Resistor 

Xch 

IXc=  1  
2r f'C 

Figure 6.35 Capacitive Reactance Versus Frequency 

XCi XC2 
1 kfl 2.51(f/ 

XC3 
4ki-2 

Xc4 
3.31(0 

XCT 
10. 8k 

Figure 6.36 Example Circuit for Calculating XcT 
in Series 
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Capacitive Reactance in Parallel 

When capacitors are connected in parallel. 
the total reactance of the capacitors, X'cr, is 
found in the same manner that total 

resistance. RT, is determined in a parallel 
resistive circuit. These two equations are used 
to calculate total capacitive reactance, XCT, 
in parallel: 

For two capacitors in parallel— 

XCT 
XcA X XcR 

XcA XcR 
(6-7) 

For any number of capacitors in parallel-

1 1 1 
XCT Xci Xc2 Xcg XcN 

(6-8) 

Figure 6.37 is a circuit containing four 

capacitors in parallel with the capacitive 
reactance shown for each. Using equation 
6-8, the total capacitive reactance for the 
circuit can be calculated: 

XCT X(1 XC2 Xt9 X( 4 

1 1 1 1 1  = 
XcT 6k11 12k11 18kfl 101cfl 
1 3 + 1.5 + 1 + 1 8  

XCT 181d1 
1 7.3 

XCT I 8kfl 
XCT 181d1 
I - '7.3 

XcT = 2.47kfl. 

In summary, in series circuits with only 
capacitive reactance, XCT can be calculated 
the same as RT in series. XCT in circuits with 
parallel capacitive reactance can be calculated 
the same as RT in parallel. 

Xc2 
121ffl 

XCT 
2.47kfl 

Xci 
6k1/ 

Xcg 
18k1/ 

Xc4 
10k1I 

Figure 6.37 Example Circuit fnr Calculating Xer 

in Parallel 

CAPACITANCE IN SERIES AND PARALLEL 

Thus far, discussion has concerned capacitive 
reactance connected in series or in parallel 
in circuits. What about capacitance? What 
happens to total capacitance when several 
capacitors are combined in series or parallel? 
To best understand this concept, the variables 
that determine the value of a capacitor should 

first be examined. 

Equation 6-2 explains the value of a 
capacitor. and it is repeated here: 

C = ke-) 
d 

(6-9) 

Notice that the value of a capacitor is 
determined by dividing the area of the plates 

by the distance between the plates and 
multiplying by a constant which is 
characteristic of the insulating materials. 
In this case the constant Ice is formed by 
multiplying the dielectric constant and co, the 
permittivity of air. It is a simplified equation 

6-2 which was 

C = k, (31 E. 
d/ 

(6-2) 

Equation 6-9 indicates that the value of a 
capacitor increases if the plate area of the 
capacitor increases: 

= ke 
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• Capacitance in Series 

• It also indicates that the value of a capacitor 
decreases if the distance separating the two 
plates increases. 

C = 
d t 

Capacitance in Series 

With equation 6-9 in mind, look at Figure 
6.38 in which two capacitors of equal value 
are connected in series. Note that the total 
effective distance between the plates 
connected directly to the battery is doubled. 
Since an increase in distance between the 
plates decreases capacitance, it can be 
concluded that the total capacitance of the 
two equal capacitors connected in series will 
be only one-half of the capacitance of one 
capacitor. This reciprocal relationship 
between total capacitance and capacitors in 
series is described by these two equations. 

For two capacitors in series — 

CI x C2 
CT = (6-10) 

C I + C2 

For any number of capacitors in series — 

1 . 1 11 
CT C I + —C2 + —C3 + CN 

These equations probably look familiar to you 
because they are similar to the equations for 
total resistance when resistors are connected 
in parallel. 

Figure 6.39 is a circuit containing four 
capacitors in series with the capacitance value 
for each shown. Using equation 6—//, the 
total capacitance for the circuit can 
be calculated: 

(6—//) 

C 1 C2 

fmmmlf °  

TrI 4Clis2 

CI C2 

C°..m. 1 F'— ') 

(11 d2 

Figure 6.38 Capacitances Connected in Series Decrease 
Total Capacitance 

Cl 
4p.F 

I I 
1 0 Ff I  

Cd C3 
15p.F 5p.F 

CT 
1.62p.F 

Figure 6.39 Example Circuit for Calculating Cr 
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I 1 1 1 I  . + + + 
C/ CI C2 C3 C4 
1 1 1 1 I  

C1 41.LF + 10p.F + 5p + .F 15p.F 
1  3.75 + 1.5 + 3 + 1  _ 
C1 1 5 p.17 
1 9.25 

Gr 15p.F 
CT 15p.F 

1 — 9.25 
CT = 1.62p.F 

Capacitance in Parallel 

When two equal capacitors are connected 
in parallel, the plates of the individual 
capacitors, in effect, combine to form one 
capacitor representing total capacitance. 
Notice in Figure 6.40 that the effective plate 

area of the equivalent capacitor has doubled 
Since an increase in plate area increases 
capacitance, it can be concluded that the total 
capacitance of the two capacitors in parallel is 

equal to the sum of the two capacitors. This 
direct relationship between total capacitance 
and capacitors in parallel is described by 
this equation: 

CT = C 1 + C + C3 + ... CN (6-12) 

This equation should look familiar to you. It 
is similar to the equation used for calculating 
the total resistance of resistors connected 
in series. 

Figure 6.41 is a circuit containing four 
capacitors connected in parallel with the 
capacitance value for each shown. Using 
equation 6-12, the total capacitance for 
the circuit can be calculated: 

CT = C 1 + C2 -4- C3 + C4 

CT = 2MS 31.I.F ± 611.F + 51/F 
CT = 16µF 

4.  

Figure 6.40 Capacitances Connected in Parallel 

Increase Total Capacitance 

C2 
3p.F 

CT 
1611F 

CI 
2'IF 

C3 
61.1-F 

C4 
51.LF 

Figure 6.41 Example Circuit for Calculating Cr 

6-22 BASIC AC CIRCUITS 



CAPACITANCE 
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ln summary, the total capacitance of 
capacitors in series can be described 
mathematically with an equation (6-11) 
similar to that for calculating the total 
resistance of resistors connected in parallel. 
Similarly, total capacitance of capacitors 

connected in parallel can be calculated 
(equation 6-12) like the total resistance of 
resistors connected in series. 

ANALYSIS OF SERIES AND PARALLEL 
CAPACITIVE CIRCUITS 

Thus far in this lesson, capacitive circuits 
have been analyzed that contain only a known 
voltage source and a single capacitor In this 
next discussion, circuits with a known voltage 
source and multiple capacitors connected in 

series or parallel will be analyzed. 

Series Capacitive Circuit Analysis 

In the circuit of Figure 6.42 are two 
capacitors, 4 microfarads and 12 microfarads, 
connected in series. Applied voltage is 10 
volts, 3 kilohertz. Capacitive reactance is 
calculated first using equation 6-5. The 
capacitive reactance of C. 1 = 4 microfarads is: 

X CI 
1 

2TrfC, 
= 13.2(1 

As shown, inserting values and calculating, 
it is found that Xci =- 13.2 ohms. Similar 
calculations are performed for the 12 
microfarad capacitor, C 2. 

Xc2 
2-frfC2 

= 4.4n 

And we find that X(.2 = 4.4 ohms. Notice 
that as capacitance increases, the capacitive 
reactance decreases: 

1  
1 Xc = 

2.1rft 

Figure 6.42 Example Serres Lapacihue Circuri 

There is a definite mathematical relationship 
between increase and decrease of the values. 
In the circuit of Figure 6.42 the capacitance of 
C2 is three times the capacitance of CI. 

12p.F _ 3 
4p.F 1 

The capacitive reactance of C2 is one-third of 
the capacitive reactance of Cl. 

4 4f1 1 
13.20 3 

Now that the individual reactances in the 
circuit have been determined, the reactance 
ohms are treated as resistive ohms. That is, 
all series reactances are added. 

XCT = XCI XC2 

= 13.2 + 4.4 
= 17.611 

The total capacitive reactance is 17.6 ohms. 
This total capacitive reactance is the total 
opposition that the circuit presents to current 
flow at the applied frequency. 
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An alternate method of finding this total 
reactance is to first determine the total 
capacitance. The total capacitance is 4 

microfarads in series with 12 microfarads. 
An alternate product-over-sum method is 
then used to calculate total capacitance of 
two capacitors in series. 

Cl X C2  
C = 

CI + C2 
(4)(12)  

4 + 12 
-= 

Total capacitance for the circuit is 3 
microfarads. Using this, the total capacitive 
reactance of the circuit can be calculated 
using equation 6-5 as a total capacitive 
reactance equation. 

Xur = 
27r fCT 

Substituting circuit values, 

1 

XCT 
6.28(3kHz)(34F) 

= 17.611 

Total capacitive reactance is 17.6 ohms,the 
same total capacitive reactance calculated 
earlier by adding individual reactances. 

Once the total capacitive reactance has been 
determined, the total current in the circuit 
can be calculated. The total current is 
equal to: 

I = EA 

T Xcr 
10V  

= 568mA 

The applied voltage divided by the total 
capacitive reactance equals 0.568 amperes — 
568 milliamperes. Therefore, as shown in 
Figure 6.43, most information about the 
circuit has been calculated. 

CI 41/IF 13.20 

10V 

EA ( .11;-1 (2 142.1e 

3kHz IT'568mA 

Figure 6.43 Summation of Calculated Circuit Values 

Now the rules of series circuits are applied to 
find the voltage drops across CI and C2. Since 
it is a series circuit, the current is the total 

current and it is the same throughout the 
circuit. The voltage drop across C1 is equal 
to the value of its capacitive current times 

its opposition to that current: 

Eci = IciXci 
= ITXci 
= (568mA)(13.2f1) 

= 7.5V 

The voltage drop across C2 is 

calculated similarly. 

Ec2 = Ic2Xc2 

= ITXc2 

= (568mA)(4.4f1) 

= 2.5V 

In a purely capacitive circuit, the voltage 
drops add to the total applied voltage as in 

a series resistive circuit: 

EA = E1 E2 

= 7.5V + 2.5V 
= 10V 

6-24 
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The circuit with these calculated voltages 
indicated is shown in Figure 6.44. 

Thus, you can see that knowing just a few 
factors about a circuit can allow you to 
calculate most all other factors. 

Parallel Capacitive Circuit Analysis 

Now, a parallel combination of two capacitors, 
as shown in Figure 6.45, will be analyzed. The 
same voltage, frequency and two capacitors 
used in the circuit of Figure 6.42 will be used 
in this analysis. The capacitive reactance of 
the respective capacitors will be the same — 
13.2 ohms for Xcl and 4.4 ohms for Xc2 — 

since the values of the capacitors and the 
applied frequency are the same. The branch 
current for the C 1 branch may be determined 
by dividing the voltage across the branch by 
the opposition in the branch. 

— 
- Xc I 
_ 

- Xcl 
10V  

▪ 13.2 U) 
= 757mA 

The current for the C2 branch is 
calculated similarly. 

1C2 
E — _G2 
X2 

EA 

Xc2 

10V  

4.4f1 
= 2.273A 

The total current in the circuit is the sum 
of the branch currents: 

= + 1c2 
= 0.757A + 2.273A 

= 3.03A 

EA CI 7.5V 

f-10V lc 2.5V 

Figure 6.44 Example Circuit Calculated Voltages 

CI 4/4 13.2a 

EA 
10V 

3kHz 

 e 

Figure 6.45 Example Parallel Circuit 
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• Calculations of Reactive Power 

This information can then be placed on the 
circuit as shown in Figure 6.46. 

Another way to determine the total current is 
to first find the total capacitive reactance and 
then divide the applied voltage by the total 
capacitive reactance. One way to determine 
the total capacitive reactance, would be to use 
the product-over-sum equation to calculate 
the reactances of Cl and C2. However, 
there's an easier method. First, the total 

capacitance is determined using 
equation 6-/2 

CT = C1 + C2 
= 4F.LF + 121.1.F 
= 1611F 

Next, the total capacitive reactance is 
calculated using the value of total 

capacitance, 16p.F. 

XCT -   
2.14C-1 

1 

6.28(3kHz)(16µF) 
= 3.312 

Last, total current in the circuit can 
be calculated: 

=  EA  

XCT 
10V 

3.312 
= 3.03A 

The total current calculated is 3.03 amperes, 
which is the identical answer calculated 
previously using a different equation. 

Therefore, performing this last calculation 
proved that the earlier calculation 
was correct. 

IT=3.03A CI 40 

EA 4— I  TIC212/4F 10V 

TT T 
3kHz Icr.757A Ic2=2.273 

Figure 6.46 Example Parallel Circuit with 
Calculated Values 

Calculations of Reactive Power 

Power in capacitive circuits can be calculated 
similar to the way power is calculated in 
resistive circuits. 

Recall that power in resistive circuits is 
converted to heat and dissipated. That is, 
the electrical energy is converted into heat 
energy. This is not true with capacitors. The 

electrical energy in capacitive circuits is stored 
temporarily on the plates of the capacitors in 
what is called an electrostatic field. The 
energy is then returned to the circuit. 

Recall that the basic power equation is 

P = El (6-13) 

This same equation is used to calculate power 
in capacitive circuits. However, the power in 
capacitive circuits is measured in units called 
VAR, not watts as in resistive circuit. VAR 
stands for Volts-Amperes-Reactive. The 
power in a capacitive circuit is called reactive 
power since the opposition to current in the 
circuit is totally reactive. Therefore, the basic 
equation to calculate power in a capacitive 
circuit (with appropriate units) is: 

P = E x I (6-14) 
(VAR) (volts) (amperes) 
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Power in Series Capacitive Circuit 

The series capacitive circuit of Figure 6.47 

(which is the circuit that was discussed earlier) 
will be used for the example of calculating 
power in such a circuit. In that circuit, Eel is 
7.5 volts and the current through C 1 is 568 
milliamperes (0.568A). 

The power equation can be used to calculate 
the reactive power of Ci. Pci equals E1 
times Ici . 

Pci Ecilci 
= (7.5V)(0.568A) 

= 4.26VAR 

As shown this equals 7.5 volts times 0.568 
amperes which equals 4.26 VAR. 

Similarly, the reactive power of C2 can 
be calculated. 

PC2 EC2IC2 
= (2.5V)(0.568A) 
= 1.42VAR 

By adding these two values of reactive 
power the total reactive power of the circuit 
is obtained: 

PXT = PC1 + PC2 

= 4.26VAR + 1.42VAR 
5.68 VAR 

The total reactive power of the circuit could 
also have been determined by multiplying the 

total applied voltage times the total current. 

PXT EATT 
= (10V)(0.568A) 
= 5.68VAR 

10 volts times 0.568 amperes equals 5.68 
VAR which is the same power calculated 
previously, and proves that calculation 
was correct. Thus, using the basic power 
equation as the reactive power equation, 
the individual and total reactive powers 

have been calculated. 

Figure 6.47 Example Series Circuit 

Power in Parallel Capacitive Circuit 

The same type of calculations can be 
performed to obtain the reactive power 
quantities for a parallel capacitive circuit. The 
parallel capacitive circuit of Figure 6.45 used 
earlier will be used again, and is repeated in 
Figure 6.48. 
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Summary 

First the power of capacitor C 1 is calculated 

Pci = 
= (10V)(0.757A) 
= 7.57VAR 

Pci equals 10 volts across Cl times 0.757 
amperes Ici equals 7.57 VAR. 

Next the power of capacitor C2 is calculated. 

PC2 = EC2 1C2 

= (10V)(2.273A) 
= 22.73VAR 

PC2 equals 10 volts across C2 times 2.273 
amperes, 1c2, equals 22.73 VAR 

Last, the total reactive powet of the circuit 
is calculated. 

PXT PC I + PC2 

= 7.57VAR + 22.73VAR 
= 30.3VAR 

Total reactive power equals 30.3 VAR. Also, 
the total reactive power equals the total 
applied voltage times the total current. In 
this case, that would be 10 volts times 3.03 
amperes which equals 30.3 VAR. This is the 
same answer calculated previously and proves 
the previous calculations are correct. 

Using the equations discussed you should be 
able to calculate similar information about 
any other series or parallel capacitive circuit. 

SUMMARY 

This lesson has provided an introduction to 
capacitive circuits. The physical properties of 
different types of capacitors and the concept 
of capacitance and charge were discussed. 
How a capacitor functions when it is charged 
and discharged relating capacitive properties 
to a stored charge and an opposition to 
voltage changes, was described. The concepts 
of capacitive reactance as an opposition to 
current flow and as a function of frequency 

EA 
10V 

3kHz 

CI 4/4 13.20 

112,0 (2 440 

T T 

Figure 6.48 Example Patallel Circuit 

were covered. Current/voltage relationships 
were explained using the rate of change 
equation. Series and parallel capacitive 
circuits were analyzed determining reactance 
voltage drops, currents, and power. All of 

these concepts will be used in following 
lessons to solve more complex circuits. 
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1. Describe the characteristics of a ceramic disc capacitor. 

Solution: The ceramic disc capacitor is available in small values of capacitance from 
approximately I picofarad to 2.5 microfarads. Typical working voltages are 20 volts up to 
about 200 volts. It is a good insulator, and it has a permittivity of almost 1000 times more 

than that of dry air. 

2. Define capacitance. 

Solution: Capacitance is the ability of a nonconductor to store a charge. If a voltage of 50 volts 

is applied to a capacitor for a period of time, the capacitor will charge to the 50-volt value and 

retain that difference in potential for a period of time after that voltage is removed. 

3. Describe one effect of the capacitive property in ac circuits 

Solution: In ac circuits, the current through the capacitive branch of the circuit leads the 
voltage across the capacitor by 90 degrees This is explained by the equation I, = C x ROC. 

4. A mylar capacitor with a dielectric 2 mils thick has a value of 0.01 microfarads. What would 
be the result of increasing the dielectric 2 mils thickness to 4 mils if all of the other variables 

remain the same? 

Solution: The equation describing the physical parameters of a capacitor is: 

C = K, (—)A  

The d variable represents the distance between the plates, and the equation shows that 
distance is indirectly related to capacitance. If the distance between the plates increases as 

proposed in the problem, capacitance will decrease. Because the distance has doubled, the 
capacitance value will be halved, and the value of capacitance will be 0.005 microfarads. 

5. Calculate the area of either plate of a 1 farad paper capacitor with a dielectric 1 millimeter 

thick. Assume K, = 4. 

Solution: 

C = Kr (1 ) €0 
d 

Solving for A: 

C x d IF x 0.001m 0.001  
A — 28.2 x 106 square meters 

Ke€0 4 x 8.85 X 10 -12 3.54 x 10." 
or about 12 square miles. 
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6. Solve for XcT in this circuit: 

XCI = X( 

Solution: In a series capacitive circuit, total capacitive reactance is calculated the same as total 

resistance in series is calculated. 

XcT = Xci ± Xc2 X(g Xc4 = 4kfl + 8kfl + 2.5kc1 + 3.3kí = 17.81in 

7. Solve for CT in this circuit: 

C1 = 0.0Se.iF 

T C3 = 0 02ixF 

---)1 

Ca - 

0.1µF 

Tc 
CI = 

Solution: In a series capacitive circuit, total capacitance is calculated similar to the way total 

resistance is calculated in a parallel resistive circuit. 

1 I 1 1 1 1 I  

CT = CI + C2 4- C3 0.051./F + 0.14F + 0.02p.F 
1  1 1  

= .  0.05 x 111 + 0.1 x 10." + 0.02 x 10-6 — 20 x 106 + 10 x 106 + 50 x 106F '  

= 80 x 106F 

1  
CT = 80 x 106 F — 0.0125e 
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8. Solve for Xc in this circuit: 

= 

2kHz 

Solution: 

C = 
0.05p.F X( 

1  X( - 1  1  - - - 1.59 x 103 = 1.591d1 
2rfC 628 x 2 x 103 x 0.05 x 10- 6.28 x 10 -6(1 

9. Solve for C-r in this circuit: 

Xci = 'Mr/ 

= 
400Hz 

Cl =   

Solution: Solve for XcT by circuit simplication. 

= 
400Hz 

400Hz 

Xo1.2.3 

of Xey = 

3kfl 

Xc - 
2efC 

and 

1 

XCT 2rfCT 

Solving for CT 

1 

1 1  
CT 

- 21113(cT - 6.28 X 400 x 3000 

1 
7.54 x 106 - 0-133µF 
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10. What source frequency must be applied to a O. microlarad pacitor so that the capac itor 
will have a capacitive reactance of 10() ohms?  

Solution: 

X 
1 

2..rtfC 

C = 

xc = 
loon 

Solving for f 

1  1  f —   
2TrX(C: 6.28 x 100 x 0.5 x 10 -6 — 314 x 10 „ — 3.18kHz 

11. Solve for the circuit values specified for this circuit: 

a. C 1 

EA = 
10V 

= 
200Hz 

C, = C, 
0.05µF 0.01µIF 

g. 

h. 

Solution: 

a. CT = C + C2 + C3 = 0.054F + 0.01µF + 0.26µF 

X( I —   

X (:2 =   

Xcs =   

Xc: i• =   

Ec. =   

k. 

I. 

in 

ti 

EC2 =   0. 

EC3 =   

IC I 

1(72 

IC3 

IC r 

PCI 

PC2 

PC3 

PCT 

1 1  1  
b. Xci — 15.9kn 

2.TrfC i 6.28 x 200 x 0.05 x 10"" 6.28 x 10' 

6-32 

6.28 x 200 x 0.01 x lo — 12.58 x 
  — 79.61d1 
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d. Xc;s 
1  1  

6.28 x 200 x 0.2 x 10.6 - 251 x 10 6 - 3-98kn 

1 1 I 1 1 1 1 
e. 

Xc2 X( 1 15.9k 79.6k 3.98k 

or X, , 

= 62.9 x l0 + 12.6 x 10 + 2.51 x 10 -3 = 327 x 10 

2rFC 628 x 200 x 0.26 x 10 -6 3.27 x 10 

0.306 x 104 = 3.061E11 

f,g.1-1 In parallel EA, IOVAC, is across all components. 

1C2 = 

k- i = 

EC I 

XCI 

EC2 

XC2 

10V  
630p.Arm. 

15.9k11 

10V  
- 126p.A 

- 79.61(11 

E3 10V  
- 2.51mA 

Xc3 - 3.98kfl 

327 x 

I. ICI- ▪ ICI + 1C2 + 1c3 = 630p.A + 126/LA + 2.51mArm, = 3.27mA or 

EA 10V 
1CT : = 3.27mA 

▪ Xc-r 3.06  

m. P - ct = Ici x Eci =- 630p.A x 10V = 6.3mVAR 

n. Pc2 ▪ 1C2 X E 2 = 126p.A x 10V = 126mVAR 

o. 

p. 

PC3 = Ics x Ecs = 2.51mA x 10V = 25.1mVAR 

PCT ▪ Pc 1 + Pc2 + Pc 3 = 6.3mVAR + 1.26mVAR + 25. ImVAR = 32.7mVAR or 

PCT = 1CTEA = (3.27mA) (10V) = 32.7mVAR 

10 3 - 
3.06k1-1 

BASIC AC CIRCUITS 6-33 



-\ PAC I T NCE 

• Worked-Out Examples 

12. Solve for the circuit s'alues specified for this circuit: 

Xc, = 50H 

= 
4k Hz 

X" = 25H 

Solution: 

- X,., 

301) 

a. 

b. 

C. 

e. 

f. 

g. 

h. 

I. 

Xc •K   

a. X( I = X( + X(2 + X 1 = 5011 + 3011 + 2511 1051) 

h. C1 

. C2 

d. 

1 1  1  
2rrfX( 6.28 x 4k x 50 — 0.7964F 1.256 x 106 

1 1  1  

2r- f-X(2 6.28 x 4k x 30 - 754 x 10' 
1.33µF 

1 1  1  

2irfX( 6.28 x 4k x 25 628 x 103 1.59i1F 

1 1  1  
C . — .379µF 

2-rrfX( - 6.28 x 4k x 105 2.64 x 106 —  

f,g,h. In series, total current flows through all components, See 'CT. 

EA 50V 
i. 1CT 

• Xc - 105n= 0.476A(rms) 

j. Eci 

k. E2 

= 'CI x Xci = 0.476A x 5011 = 23.8V 

= 1c2 X Xc2 = 0.476A x 301-1 = 14.3V 

I. Ec3 = 1c3 x = 0.476A x 2511 = 11.9V 

m. E 1 = EA = Ec + E2 E3 = 23.8V + I4.3V + 11.9V = 50V 
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Worked-Out Examples 6 
n. P = Ici x E 1 = 0.476A x 23.8V = 11.3VAR 

O. Pc2 = IC2 X EC2 = 0.476A x 14 3V = 6.81VAR 

PC9 = IC3 X E 3 = 0.476A x 11.9V - 5.66VAR 

PCT Pc' + Pc2 Pcg = 11.3 + 6.81 + 5.66 = 23.8VAR or 

PCT = 'CT X EA = 0.476A X 50V = 23.8VAR 

13. Solve for the circuit values specified for this circuit: 

E. 
25V 

= 
15k Hz 

Solution: 

a. Xci 

b. Xe.' - 6.28 x 15k x I x 10 .6 

Xe3 = 120 

1.0p.F 

a. 

b. 

C. 

d. 

e. 

f. 

g. 

h. 

I. 

Xcal 

X(:4 

C2 

C3 

XcT 

CT 

IT 

Ec 

1 1  

- 2irfC = 6.28 x 15k x 0.5 x 10'6 

1 

C. C2 

d. C3 

1  1  = 1.33p.F 
2efX - 6.28 x 15k x 8 

1  
6.28 x 15k x 12 - 0.885µF 

- 21.2(1 

m. 

n. 

o. 

P. 

cl. 

r. 

s. 

t. 

1C2 

'Cs 

IC.' 

E3 

EC4 = 

PC 1 

PC2 

PC] 

PC4 

PT 
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la Worked-Out Examples 

e. Xcl = by simplification 

f. CT 

g. IT 

Xcl = 21.211 Xca = 1211 Xc, = 21.20 

25V 

25V 

27rfXcT 6.28 x 15k x 27.1 6.28 x 15 x 

EA 

XcT 

25V  
- 0.923A,„„ 

27.1n 

h. ICI = IT = 0.923A 

E 1 = Ici x Xc l = 0.923A x 21.2n = I9.6V 

103 x 27.1 2.55 x 106 

ID 

= 0.39p1 

811 (1211 + 10.6(1)  _ 
j• EC2 E2. 3. 4 = 'T XC2, 3, 4 = 'T 0.923A x 5.9111 = 5.45V 

8f1 + 1211 + 10.6n) - 

k. IC2 Te 
EC2 45V 

0.681A 
xc, = 8(1 

EC3, 4 E2I. , 3. 4 
M .1C3 1C4 = y 

4 •C3, 1 

n. E3 IC3 X Xcg = 0.24A X 1212 = 2.88V 

5.45V  5.45V 

12n + 10.611 22.611 
0.24 IA 
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• Worked-Out Examples 6 
o. x = 0.24A x 10.611 = 2.54V 

p. Pci 

r. 

PC2 

PCS 

= Ici x F.() = 0.923A x I 9.6V = 18. IVAR 

= IC2 x E(1 - 0.681 A x 5.45V = 3.7 IVAR 

= 1C3 X E( = 1.241 A x 2.88 V = 0.695VAR 

S. Pc4 = IC4 X EC 4 = 0.24 IA x 2.54 V 0.612VAR 

t. PI = PC I + PC2 + PC3 + Pc4 = 23.1VAR or 

P = x EA = 0.923A x 25V = 23.1 VAR 
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II Practice Problems 

1. Describe the characteristics of a paper capacitor. L'se the tables provided in the text. 

2. Predict what will happen in the circuits below: a. with the switch in position L b. With the switch 
moved from position 1 to position 2; c. with the switch moved from position 2 to position 3. 

POS 20 
POS 3 

20V 

C. 

20V 

o 

b. 

20V — 

c 

3. In Example 3 of the Worked-Out Examples, one effect of the capacitive property was 

discussed. Discuss briefly the other effect. 

4. Relate the plate area of a capacitor to capacitors connected in parallel. 

5. Solve for Xcr in this circuit: 

= 
loan 

XCI skri 

6. Solve for CT in this circuit: 

V 

C, - 
1kpF 

C2 I  C3 = 

'-r 
CT =   
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II Practice Problems 6 
7. What value of capacitor will have a resistance of 2.5k1-2 in this circuit: 

f = Xc =   
5kHz 

rT 
8. Solve for X(1- and C 1 in this circuit: 

f = 
100k Hz 

C, = 0.001 p.F Xe, = 1.7kfl 

1( I  I( 

1  22 T2kfl 0.0020.F 

N I 

Cs = 500pF 

C =   

9. Solve for the circuit values specified in this circuit: 

E. = 
5V 

f = 
10kHz 

= 5eàf 

C, 21.à.F 
g. 

h. 

CT = 

T cr -r =   

j. 

k. 

I. 

fn. 

n. 

o. 

P. 

EC I 

EC2 

Ec3 

EC T 

PC 1 

PC2 

PC, 

PCT 
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II Practice Problems 

10. Solve for the circuit values specified in this circuit: 

E„ 
10V 

h. 

a. 

b. 

c. 

f. 

X(._ I 

CI =   

C 2 =   

C3 =-

CT 

Et I =   

EC2 =   

Er 9 =   

11. Solve for the circuit values specified in this circuit: 

= Ion 

EA 
20V 

= 
20kHz 

2011 

a. C1 

b. C3 

C. Xc2 

d. Xc, 

Te 

f. CT 

g. Ec i 

h. E 2 

i. Ec 3 

J. E 4 

J. 

k. 

1. 

M. 

n. 

o. 

P. 

ICI 

1C2 

'Cs = 

'CT 

PC I 

PC2 

PC9 

PCT 

k lc' 

I IC2 

Ic3 

n. IC4 

O. IT 

p. Pc ' 

q. Pc2 =   

I. PC9 =   

9. PC4 =   

t. PT =   
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la Quiz 

1. Using the tables provided in the text, 
answer the following questions: Which 
type of capacitor has: 

a. The greatest dielectric strength? 
b. The largest dielectric constant? 
c. The largest capacitance value? 
d. The largest value of working voltage? 

2. a. If a neutrally-charged capacitor is 
connected to a 50-volt source, what 
will happen to the capacitor? 

b. If the source is then removed from 

the capacitor, what happens? 
c. If a charged capacitor is shorted with 
a piece of wire, what occurs in the 
resulting circuit? 

3. Draw a phasor diagram showing the 
relationship of k and E( in an ac 

capacitive circuit. 

4. Draw a sine wave graph showing the 
relationship of k and E( in an ac 
capacitive circuit. 

5. A capacitor in an ac circuit may be best 
defined as: 

a. An open circuit 
b. A short circuit 
c. A fixed resistance 
d. A variable resistance 
e. A short circuit instantly, an open 

circuit after the capacitor is charged. 

6. a. What is the source frequency? Note 
the given values of Ci and Xci . 

b. 
c. 

= 

Xt r = 

Xc, =2000 

C, = 5µF 

I I. 
2gF 1500 T 

Xc3 = 8011 

7. Solve for the circuit values specified for 
this circuit: 

= 
10V 

400Hz 

IC, = 0.01µF 

I 

C3 = 0.05gF 

a. CT =   

b. Xci • 

C. X 2 =   k. 

m. 

n. 

o. 

d. Xc, =   
e. XcT =   

f. lc' = 

g. 1c2 = 
h. Ics 13-

IT 

E1 

EC2 

EC: 

PC1 

PC2 

PC3 

PT 

C. = 
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• Quiz 

8. Solve for the circuit values specified for 
this circuit: 

Ea = 
SOV 

1 = 
2 kHz 

a. X = 
b. C1 = 

C. C2 = 
d. C3 ."=. 
e. CT = 

f. Eci = 
g• E 2 =   
h. E 5 =   

Xca 343 
zsn son 

I. Ici =   

• Icz =   
k. IC3 =   
I. IT 

m. PC I =   
n Pc2 =   

o. PCS 

P PT =   

9. Solve for the circuit values specified for 
this circuit: 

Ea = 
25V 

f = 
10111Hz c, 4.0„.F  

a• C2 =   
b. C, =   
C. Xci =   

k. IT = 

I. EC I 
m. E 2 = 

d. Xcl =   n. E 3 = 

o. E 4 = 

p. Pc' =   
q. Pc2 —   

r. Pc S 
S. Pc4 =   
t. Pc3 =   

e.  
f. CT =   

8- Ici 

h.j.  Icz 
lc, =   

i• 1C4 =   

10. Are the voltage, current, and power 
values calculated in Problems 7, 8, and 
9 rms, peak, or peak to peak values? 
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LESSON 7 

0 RC Circuit 
Analysis 
In this lesson, discussion concerns ac circuits in which 
capacitors and resistors are combined in series and 
parallel. Phasor diagrams are developed for both types of 
circuits. Ohm's law and the Pythagorean theorem are 
used to calculate the various circuit values. 
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RC CIRCUIT 
ANALYSIS 

Objectives 

This lesson describes series and parallel RC ac circuits and the various methods used 
to analyze these types of circuits. At the end of this lesson, you should be able to: 

1. Draw phasor diagrams which show the phase relationships of the various 
circuit values in series and parallel RC circuits. 

2. Identify the circuit values in series and parallel circuits that are described by 
Pythagorean theorem relationships. 

3. Use the tangent trigonometric function to solve for phase angles. 

4. Define the term phase angle, and describe positive and negative phase angles 
in series and parallel RC ac circuits. 

5. Analyze series and parallel RC ac circuits as shown and calculate voltage, 

current, and power values. 
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al Phase Relationships in Series RC Circuits 

RC CIRCUIT 
ANALYSIS 

INTRODUCTION 

In the previous lesson, the capacitor and its 
properties were discussed and ac capacitive 
circuits were analyzed. A more common 
circuit, however, is one in which capacitors 
are combined in series or parallel with 
resistors as shown in Figure 7.1 In this lesson, 
discussion will concern how to solve various 
ac circuit problems for total resistance, total 
capacitance, power, and other electrical 
values using series and parallel RC circuits. 

PHASE RELATIONSHIPS IN SERIES 
RC CIRCUITS 

A good way to begin to learn about RC 
circuits is by analyzing a simple circuit in 
which a single resistor is connected in series 
with a single capacitor. The circuit, shown 
in Figure 7.2, is called a series RC circuit. 
In this circuit, like in any series circuit, the 
current flowing through all components is 
the same value. 

= = 1R (7-1) 

However, the algebraic sum of the voltage 
drop across the resistor and the voltage drop 
across the capacitor does not equal the 
applied voltage as it would in either a purely 
resistive or purely capacitive circuit. 
Therefore, 

ET is not ER Ec (7-2) 

This can be demonstrated with a specific 
example. Suppose the resistance of Figure 7.2 
is 40 ohms and the capacitive reactance, Xc, 

is 30 ohms. With an applied voltage of 10 
volts, the voltage drops across R and C 
are calculated to be 8 volts and 6 volts 
respectively. The algebraic sum of the voltage 
drops is 14 volts and does not equal the 
applied voltage of 10 volts. 

This is true because the phase relationship 

between the voltage across and the current 
through each component is different. 

Figure 7.1 Typical Series and Parallel RC AC Circuits 

Figure 7.2 Simple Series RC AC Circuit 
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• Voltage and Current Relationships 

RC CIRCUIT 
ANALYSIS 

Voltage and Current Relationships 

The voltage across a resistor, ER, is in phase 
with the current through it as shown in Figure 

7.3. For a capacitor, however, recall that the 
current leads the voltage by 90 degrees, as 
shown in Figure 7.4. Since the resistor and 
capacitor are in series with one another, the 
common factor in both phase relationships is 
the current. 

Phasor diagrams can be drawn for the voltage 
and current waveforms of Figure 7.3 and 
Figure 7.4. The voltage ER, equal to 8 volts, 
across the resistor is in phase with the 
current, I, in the series circuit as shown in 
Figure 7.5. The same series current, 1, leads 
the voltage Ec across the capacitor by 90 
degrees as shown in Figure 7.6. Ec is 6 volts. 

Comparing the phase relationships of the two 
voltage drops, it is found that the voltage 
across the resistor leads the voltage across 

the capacitor by 90 degrees. Because these 
two voltages are out of phase, they cannot be 
added as the voltage drops in a resistive series 
circuit would be added to obtain the total 
applied voltage. Mathematically, therefore: 

ET is not equal ER Ec (7-3) 

The total voltage must be calculated, 
therefore, by another type of addition 
known as vector addition. 

ER  

ER 8 VOLTS 

1 

Figure 7.3 Phase Relationship of Resistor Voltage and 

Current 

Figure 7.4 Phase Relationship of Capacitor Voilage and 

Current 

r ER -n 8 VOLTS 

_4( t11 .7 

I ER 

Figure 7.5 Pha.sor Diagram for ER and I 
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RC CIRCUIT 
ANALYSIS 

• Common Phasor Diagram 
• Parallelogram Method 

VECTOR ADDITION 

Common Phasor Diagram 

Since I is the same in both of the phasor 
diagrams of Figure 7.5 and Figure 7.6, a 
common phasor diagram can be formed as 
shown in Figure 7.7. It is now very apparent 
that ER and Ec are 90 degrees out of phase. 
More specifically, the voltage across the 
resistor leads the voltage across the capacitor 
by 90 degrees. In Figure 7.7 ER and Ec are 
two vectors. Their length represents their 
amplitude and their direction represents 
their phase. 

Parallelogram Method 

When two vectors are added, the parallelogram 
method is used. The sum of the two vectors, as 
shown in Figure 7.8, is represented by a third 
vector called the resultant. To add two vectors 
using the parallelogram method, the 
parallelogram begun by the two original 
vectors are merely completed. The two 
original vectors in Figure 7.8 are the two solid 
lines with arrows at points ER and E. Then 
a line parallel to each vector beginning at the 
tip of the other and shown as the two dotted 
lines in Figure 7.8 are drawn. 

The first line begins at the tip of E. and is 
parallel to line ER. The second line begins at 
the tip of ER and is parallel to line EL. The 
point where these two dotted lines intersect 
determines where the tip of the resultant 
vector will be located. The resultant vector is 
then drawn from the origin (as are all vectors) 
to the point of intersection as shown. 

If the length and phase of ER and Ec are 
drawn to scale, the length of the resultant 
vector obtained in this manner will indicate 
its magnitude. Therefore, using the diagram, 
the resultant vector's magnitude and phase 
relationship to the other two vectors can be 
measured. The resultant is the vector sum of 
ER and Er;. 

"*. 

lEc=6VOLTS 

Ec 

Figure 7.6 Capacitor Voltage and Current 
Phase Relationships 

IT 

Figure 7.7 Phase Relationships of the Resistor and 
Capacitor Voltage Drops 

 .# 

Ec 

 ;- ER 

RESULTANT 

Figure 7.8 Parallelogram Method of Vector Addition 
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ANALYSIS 

• Voltage Vector Addition 
• Resistance and Reactance Vector Addition 

Voltage Vector Addition 

The voltage across the capacitor, Ec, and the 
voltage across the resistor, ER, in Figure 7.7 

must be added vectorially in a series RC 

circuit. Using the parallelogram method, the 
vector sum of ER and Ec equals the total 

applied voltage, EA. A diagram to perform 
this calculation is shown in Figure 7 9. This 

diagram is the voltage vector diagram for a 
series RC circuit. 

Resistance and Reactance Vector Addition 

Recall that in a purely resistive series circuit, 
the total ohms of resistance is equal to the 

sum of all individual ohms of resistance. 

RT = RI + R2 • • • 4. RN (7-4) 

In a purely reactive (capacitors only) series 

circuit, the total ohms of reactance is equal to 
the sum of all individual ohms of reactance. 

XCT = XCI XC2 • • • + XCN 

However, in a series RC circuit, like the 

one shown in Figure 7.10, there exists 

a combination of ohms resistance 
and ohms reactance. 

(7-5) 

This combination is called impedance, also 
measured in ohms. Just as voltages were 

represented by vectors whose length 
represents their magnitude and whose 

direction represents their phase, R. X( , 
and the impedance Z can be represented 

as vectors. For a series RC circuit, the 
relationship of the vectors is shown in Figure 
7.11. Both resistance and reactance impede 

the current; therefore, the total impedance 

of an RC series circuit is the vector sum of 
the resistance and reactance in the circuit as 

shown in Figure 7.11. The length of the Z 
vector is its magnitude and the direction 

its phase. 

By Ohm's law, 

E = IR (7-6) 

e 

Ec 6V 

Figure 7.9 Voltage Vector Diagram foro Series RC 
AC Circuit 

R [ohms] 

(IT) ( 1 X[ohms] 

• 

Figure 7.10 Typical Series RC Circuit 

f 

X c 

r ohms 

R (ohms) 

Figure 7.11 Phase Relationship Between Resistance, R, 
Capacitive Reactance, Xc, and Impedance, Z 
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ANALYSIS 

• Resistance and Reactance Vector Addition 

The current, I. flowing in the series RC 
circuit of Figure 7.10 is the same through each 
circuit element. Thus, 

ER = IR (7-7) 

and the vector ER in Figure 7.12 is made equal 

to IR The current is the same for the 
capacitor, therefore, 

E, = IX (7-8) 

and the E, vector of Figure 7.12 is made equal 
to IX. E, and ER previously were plotted at 
right angles since ER leads E.( by 90 degrees. 

Also by Ohm's law, the total applied voltage is 
equal to the circuit current I times the total 
impedance so that, 

EA = IZ (7-9) 

As a result. IZ is substituted for the applied 

voltage EA in the voltage vector diagram as 
shown in Figure 7.12. In that diagram: 

EA = vector sum of ER and E( (7-10) 
IZ = vector sum of IR and IX( (7-11) 

Because the total current is the common 
factor, it can he factored out of equation 7-11. 

= vector sum ofle and '1.X (7-12) 

Equation 7-12 becomes, for a series 
RC Circuit, 

Z = vector sum of R and X( . (7-13) 

This shows clearly that Z is the vector sum of 
R and X(:. 

The resultant diagram is shown in Figure 7.13. 

The parallelogram method is used to show 
the relationship of the resultant total 
impedance, Z, to the value of the resistance 
and capacitance in a series RC circuit. Its 
magnitude is its length and its direction 
its phase. 

Figure 7.12 Vector Factors for R. X. and Z in Series 
RC Circuit 

 1 
Figure 7.13 Impedance as a Vector Sum in a Series 
RC Circuit 

VECTOR SOLUTIONS 

It is possible, then, to determine the 
impedance by graphing the resistance 
and reactance vector to scale, using the 
parallelogram method to obtain the resultant 
impedance, and then measuring the length of 
the impedance vector to determine the value 
of the circuit impedance. This graphing 
method, however, can be tedious and 
somewhat inaccurate. Therefore, it is more 
reliable to use a method of calculation to 
determine the impedance. 
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RC CiFtcuIT 
ANALYSIS 

• Pythagorean Theorem 

• Pythagorean Theorem Applied to Impedance Solutions 

Pythagorean Theorem 

The method used to calculate impedance is 
based upon a mathematical theorem involving 

right triangles stated centuries ago by a man 

named Pythagoras. He found that there was 

a special relationship between the lengths of 

the three sides of a right triangle, which is 
a triangle in which the major angle is 90 

degrees. He found that the length of the 

longest side, called the hypotenuse, is equal 

to the square root of the sum of the square 

of the length of each of the other two sides. 
Mathematically, from Figure 7.14. 

C(Hypotenuse) = VA 2 + 112 (7-14) 

For example, in Figure 7.14, side A is 3 inches 

long, and side B is 4 inches long. Side C, 

hypotenuse, is calculated: 

C = VA' + B2 

= N.732 + 42 

= 1/9 

= N/F5--
= 5 inches 

The length of the hypotenuse of this triangle, 
then, is 5 inches. 

Pythagorean Theorem Applied to 

Impedance Solutions 

The Pythagorean theorem can be applied 

to circuit problems involving resistance and 
reactance. Figure 7.15 shows the resistive-
reactance phasor diagram for a series RC 
circuit. The total impedance of the circuit, Z, 
is the vector sum of the resistance, R, and 

reactance, Xc. If the values of the resistance 
and reactance are known, the impedance can 

be calculated using the Pythagorean theorem. 

f 

If 

'14  

Figure 7.14 Right Triangle Used in Example Problem 

Figure 7.15 Pythagorean Theorem Can be Used to 
Calculate Impedance on Vector Diagram 
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ANALYSIS 

• Pythagorean Theorem Applied to Voltage Solutions 

Notice that the length of the reactance vector 

is the same as the length between the tip of 
the resistance vector and the tip of the 
impedance vector , In fact, the vector diagram 
can be drawn with the reactance vector placed 
as shown in Figure 7.16. Now, the right 
triangle of the Pythagorean theorem becomes 
evident. Applying the Pythagorean theorem, 
the total impedance (the hypotenuse) can 
be calculated, 

z =_ VR2 + ),cc 2 (7-15) 

Total impedance is equal to the square 
root of the resistance squared plus the 
reactance squared. 

Figure 7.17 shows a typical series RC circuit. 
The impedance can be calculated using 
equation 7-15. The resistance of this RC 
circuit is 12 ohms and the capacitive reactance 
is 16 ohms. 

Z = N/R2 + x„2 

= V122 + 162 

= V144 + 256 

= 1.44(:) 
= 20i/ 

(7-15) 

Thus, the total impedance of the circuit is 
20 ohms. 

Pythagorean Theorem Applied to 
Voltage Solutions 

Similar mathematical calculations using the 
Pythagorean theorem can be performed to 
show the relationship between the voltage 
drops and applied voltage in a series RC 
circuit. In this case the phasor diagram is 
drawn as shown in Figure 7.18. Shifting the 
capacitive voltage vector, as shown in Figure 
7.19, equation 7-15 can be rewritten to 
calculate easily the applied voltage, EA. 

EA = ER2 + E 2 (7-16) 

Figure 7.16 Vector Diagram Redrawn with the 
Reactance Vector Obvious 

120 

a 

xc 
160 

120 
Xc 
160 

Figure 7.17 Example Circuit for Calculating Impedance 
Using Equation 7-1 5 

ER 

Iv 

Ec 
11.M111 — _J 

EA 

Figure 7.18 Phasor Diagram of Voltage Relationship an 
a Series RC Circuit 
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ANALYSIS 

III Pythagorean Theorem Applied to Voltage Solutions 

An example circuit is shown in Figure 7.20 

which also shows the vector relationship 
between ER, E.c, and EA. In that circuit the 

voltage across the capacitor is 10 volts, rms; 

the voltage across the resistor is 20 volts, rms. 

Using equation 7-16. EA is calculated: 

EA = VER2 E 2 

= V202 + 102 

= V400 + 100 

= V5t1;1) 
= 22.36V 

Thus, the total applied voltage to the circuit is 

22.36 volts(rms). 

SERIES RC CIRCUIT ANALYSIS 

It's now time to take a series RC circuit and 
determine the total impedance, the total 

current, and the individual voltage drops 

across the resistor and capacitor using the 
Pythagorean theorem to solve for phase-
related circuit values. 

When vectors are used to represent phase 

relationships of circuit values, the resulting 

diagrams are commonly called phasor 
diagrams. This terminology will be used 

during the remainder of this book. 

ER 

Ec 

Figure 7.19 Vector Diagram Redrawn so That the Ec 
Factor is Obvious 

20V ,,,,, 

I 10Vrms 
C 

ER= 20V,— 

  Ec 
10Vrm. 

Figure 7.20 Example Series RC Circuit and Its 
Vector Diagram 
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• Calculations of Xc 
• Calculation of Z 

RC CIRCUIT 
ANALYSIS 

Calculations of X-

First, capacitive reactance, X(:, will be 
calculated in a typical series RC circuit shown 
in Figure 7.21. The value of the resistor is 
30 ohms. The value of the capacitor is 4 
microfarads. The applied voltage is 100 VAC 
with a frequency of 995 hertz. To determine 
the total impedance of this circuit, the value 
of the capacitive reactance must first 
be calculated 

1  
Xc = 

27rfC 

• (6.28) (995Hz) (41.1,F) 
= 40S1 

Therefore, X( equals 40 ohms. 

Calculation of Z 

The impedance phasor diagram may now 
be drawn to show the relationship between 
the values of resistance, reactance, and 
impedance in the circuit as shown in Figure 
7.22. The value of impedance is calculated by 
using the Pythagorean theorem (equation 
7—/5). The vectors being plotted are the sides 
of a right triangle. 

Z = N/R2 + Xc2 

= N/302 + 402 

= V900 + 1600 

= V2500 

= 5011 

Thus, the value of the total impedance of this 
circuit is 50 ohms. Impedance is defined as 
the total opposition of a resistive-reactance 
circuit to the flow of alternating current. 
It is something that impedes the current. 

e 

R = 30 

EA 
100 (17 - 14/./F 

995 Hz 

Figure 7.21 Example Series RC Circuit Used to 
Calculate Xc, 2, Ir. ER, and E. 

R=30° 

Figure 7.22 Impedance Phasor Diagram of Circuit in 
Figure 7.21 
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Calculation of IT 

Recall that in a purely resistive circuit or 
purely reactive circuit, the total current in 
the circuit is calculated using Ohm's law by 
dividing the applied voltage by the total 
resistance or reactance. For resistance: 

EA 
ur = 

RT 

And for reactance: 

IT = 
i•CT 

E, 

(7-17) 

(7-18) 

Similarly, in a resistive-reactive circuit, like 
the one shown in Figure 7.23, the total current 
is found using Ohm's law by dividing the 
applied voltage by the total impedance of 
the circuit. 

EA 
IT = (7-19) 

This relationship between voltage, current 
and impedance is often referred to as Ohm's 
law for ac circuas. 

Figure 7.24 is a typical resistive-reactive series 
circuit, with circuit values as shown. Using 
equation 7-19, the total current in the circuit 
can be calculated. That equation requires that 
ZT be known. As calculated in the previous 
section, ZT for the circuit is 50 ohms. 
Therefore, 

EA 
IT = - 

ZT 
100V 
son 

= 2A 

The total circuit current equals 2 amperes. 

E A 

Figure 7.23 Typical RÉ3I-Sillle•Reactive Series Circuit 

R = 30e 
  Ix' 00 EA 

loo V 

Figure 7.24 Example Circuit for Calculating IT 
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Calculations of ER and Ec 

Voltage drops across the resistor and 
capacitor are now calculated as they would be 
in any series circuit. The voltage drop across 
the resistor is calculated: 

ER = I1R 
-= (2A) (30() 
= 60V 

The voltage drop across the capacitor is 
then calculated: 

Ec = ITXc 
= (2A) (401/) 
= 80V 

Relationship of ER. Ec and EA in Series 
RC Circuits 

Notice that the voltage across the capacitor 
plus the voltage across the resistor add to 140 
volts. This is more than the applied voltage 
and at first, seems to contradict Kirchhoffs 
voltage law. Recall that Kirchhoffs voltage 
law essentially states that the total voltage 

applied to any closed circuit path always 
equals the sum of the voltage drops across the 
individual parts of the path. Also remember, 
however, that the voltage across the resistor 
and the voltage across the capacitor are out of 
phase by 90 degrees as shown in Figure 7.25. 
Therefore, they must be added vectorially 
like this: 

EA = VER2 

= N/602 + 802 

= V3600 + 6400 

= 
= 100VAC 

The applied voltage in the example circuit is 
100 VAC. Thus, the °eaur sum of the circuit 
voltage drops equals the applied voltage. This 
type of calculation can be performed to check 
the calculated voltage drops in the circuit. 

Figure 7.25 Phase Relaiionshrp of Ep and EL 
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Calculations of Phase Angle in Series 
RC Circuits 

Recall that when originally forming the 
voltage phasor diagram for a series RC circuit 
it was determined that the current is the 

same throughout a series circuit. Therefore, 
current was used as a reference quantity. 
This total current is in phase with the voltage 
across the resistor. Notice in Figure 7.26, 
however, that the applied voltage and the 
total current are out of phase. Specifically, 
the current leads the applied voltage by a 
certain number of degrees. This angle by 
which the total applied voltage and total 
current are out-of-phase is called the phase 
angle of the circuit. The phase angle, by 
definition, is the number of degrees the total 
current and the total applied voltage are out 
of phase. The phase angle is usually denoted 
by the Greek letter theta, 8. 

The phase angle in a series RC circuit can also 
be recognized as the angle between the 
voltage across the resistor and applied 

voltage as shown in Figure 7.27. Figure 7.12 
showed that the impedance phasor diagram 
is proportional to the voltage phasor diagram 

because ER = IR 

Ec = DEc 
EA = IZ 

and the fact that I cancels because it is 
common to each term. Therefore, as shown 
in Figure 7.27, the voltage across the 
resistor ER is in phase with the series circuit 
current. The phase angle in a series RC 
circuit is also the angle between the resistance 
vector and the impedance vector as shown in 
Figure 7.28. 

Definition of Tangent Function 

The value of the phase angle can be 
calculated by using a trigonometric function 
called the tangent function. Recall from Lesson 

2 that the tangent, abbreviated tan, of an 
angle in a right triangle, is equal to the ratio 

Figure 7.26 Circuit's Phase Angle 

ER = 60V 

e Ec = 80V 

E 

Figure 7.27 Phase Angle— Voltage Phasor Diagram 

• 

Figure 7.28 Phase Angle— Impedance Phasor Diagram 
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of the length of the side opposite the angle 

divided by the length of the side adjacent to 
the angle: 

tan 8 — 
adjacent side 

opposite side 
(7-20) 

For example, as shown in Ftgure 7.29, the 
side of a right triangle opposite from the 
angle O is 10 units long and the side 
adjacent to the angle (3 is 5 units long. Then, 

opposite 
tan O — 

adjacent 
10 
5 

= 2 

Thus, the tangent of O in this right triangle 
is equal to 2. A calculator or trigonometric 
function table is then used to determine the 
angle which has a tangent of 2. The angle 
which has a tangent of 2 is about 64°. 

Relationship of Tangent and Arctangent 

Recall from equation 7-20 that the value 
obtained by dividing the lengths of the 
sides of a right triangle is called the ratio 
of the two sides. It will be a ratio that has 
a value from 0 to infinity. If given the ratio, 
the angle can be found using a calculator or 
trigonometric table. 

The inverse process of determining the angle 
when the ratio is known is called finding the 
ardan gent, abbreviated arctan. 

opposite  
arctan — 

adjacent 

This equation reads: (3 is an angle of a right 
triangle whose tangent is the ratio called out 
in the arctan function. 

(7-21) 

For example, the arciangent of the ratio of 2 

is about 64°: 

arctan(2) = 64° 

ADJACENT 
5 

OPPOSITE 
10 

Figure 7.29 Triangle Used to Calculate 8 in 
an Example 

Said inversely, the tangent of 64° is 
approximately 2: 

tan 64° 2 

Taking a second example, the tangent of 
35° = 0.7. Therefore, the arctangent of 
0.7 35°. Sometimes, arctangent is 
abbreviated by writing: tan (tan to the minus 
one). Both notations indicate the arctangent 
function. Therefore, the arclangent of a ratio 
indicates an angle whose tangent is the ratio. 

opposite  
arctan — 

adjacent 
opposite  - tan — 
adjacent 

Application of Tangent Function in Solving 
for Phase Angles 

Using the tangent function to find the phase 
angle of the RC circuit in Figure 7.24 the 
side opposite the phase angle in the voltage 
phasor diagram of Figure 7.27 is the vector 
E. The length of this vector represents the 
value of the voltage drop across the capacitor. 
The side adjacent to the phase angle in the 
voltage phasor diagram is the vector, ER, 
whose length represents the value of the 
voltage drop across the resistor. 
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The tangent of the phase angle is equal to 
the ratio of the opposite side divided by the 
adjacent side, 

Ec 
tan 0 = —ER 

for the voltage phasor diagram. The 
arctangent of this ratio yields the value 
of the phase angle, e; 

arctan 
Ec 

—ER 

In the series RC circuit shown in Figure 7.30, 
the voltage across the capacitor is 80 volts and 
the voltage across the resistor is 60 volts. 
Therefore, 

80V 
arctan (&)--v ) = 

arctan (1.33) = 

530 = e 

Completing the calculations the arctangent 

of ER divided by E.c. equals the arctangent of 
80 volts divided by 60 volts which equals the 

arctangent of 1.33. Using your calculator or 
trigonometric table, you can determine that 
the tangent function has a value of 1.33 for 
an angle of about 53°, or the arctangent of 
1.33 is 53°. Therefore, the phase angle of this 
RC series circuit is 53°. 

Recall that earlier it was shown that the 
impedance phasor diagram of a series circuit 
is proportional to the voltage phasor diagram. 
Since these two phasor diagrams are 
proportional, the phase angle also can be 
determined using an impedance phasor 

diagram. This will provide an identical value 
for the phase angle for the RC circuit of 
Figure 7.24. 

ER = 60V 

116 

Ec 
80V 

Figure 7.30 Example Circuit Used to Calculate 
Phase Angle 

The side opposite to the phase angle in the 
impedance phasor diagram in Figure 7.28 is 

the reactance vector, Xc. The length of this 
vector represents the value of the capacitive 
reactance. The side adjacent to the phase 
angle in the impedance phasor diagram is the 
resistance vector, R. Its length represents the 
value of the resistor. Recall that the tangent 
ratio is the opposite side divided by adjacent 

side, therefore, 

X( 
tan e = — 

R 

The arctangent of this ratio yields the value 
of the phase angle. 

/ XL \ 
arctan I —R ) = 

There is one other important point about 
calculating theta of a series RC circuit. In the 
series RC circuit of Figure 7.24, the value of 
the capacitive reactance is 40 ohms and the 
value of the resistor is 30 ohms. Therefore: 

(7-22) 

on 
arctan (-30n ) — 

arctan(1.33) = 
53° = e 

(7-23) 
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40 divided by 30 results in a ratio of 1.33. 
The arctangent of 1.33 is 53°. This is the 

same phase angle derived using the voltage 
phasor diagram. Thus, it should be 
remembered that the value of the phase angle 
in a series RC circuit can be determined 
from either the voltage or impedance 

phasor diagram. 

Negative Phase Angle in Series RC Circuits 

The value of the phase angle in a series RC 
circuit is considered to be a negative value. 
That is, the phase angle in the example circuit 
of Figure 7.24 is actually negative 53° degrees as 
shown in Figure 7.31. The reason the phase 
angle is considered to be negative is because, 
previously, the angle of rotation of phasors in 
a counter-clockwise direction was designated as 
positive. Thus, the angle of rotation of a 
phasor in a clockun.se direction, in agreement 
with the convention, is said to be negative. 
This is illustrated graphically in Figure 7.32. 

Remember that the total current in the series 

RC circuit was used as the reference, which 
is at zero degrees. Thus, as shown in Figure 
7.33, the negative sign of the phase angle 
indicates that the applied voltage is rotated 

53 degrees clockwise from the current 
vector direction. 

CALCULATION OF POWER IN RESISTIVE AND 
REACTIVE CIRCUITS 

In previous examples, power was calculated 
in purely resistive circuits (real power) and in 
purely reactive circuits (reactive power). In 
RC circuits there is a combination of real 
power, PR, (in watts), and reactive power, 

Pc, (in VAR). 

ER 

\i—e 
EA '-53° 

Figure 7.31 Phase Angle Calculated is Actually a 
Negative 53 Degrees 

COUNTERCLOCKWISE 
900 

+ ROTATION 
180° Iv\ 

14„i 
' —ROTATION 

270 ° 
CLOCKWISE 

Figure 7.32 Negative and Positive Phase Angles 

90° 

I ER 

180°- \„/._. - -0., 
5 

270° 

Ec 

Figure 7.33 Rotation of Phasors in Example Circuit is 
Clockwise, Therefore, Negative 
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Calculation of Real Power 

In the example series RC circuit of Figure 

7.30, the power dissipated by the resistor can 
be calculated by multiplying the voltage 
across the resistor by the current through the 

resistor. The current is total current. Recall 

that previously the current through the 

resistor, IR, was calculated to be 2 amperes, 

and ER and Ec were calculated to be 60 volts 
and 80 volts, respectively. Thus, 

Pit = Eala 
(60V)(2A) 

= 120W 

The real power in the circuit equals 120 watts. 
It is the power dissipated as heat in 
the circuit. 

Calculation of Reactive Power 

The reactive power of the capacitor is 

calculated as it was in a purely 
capacitive circuit. 

Pc = Eric 
= (80V)(2A) 

= 160VAR 

The reactive power in the circuit is 160 VAR. 
No actual heat is generated unless the 
capacitor has resistance included in it. 

Calculation of Apparent Power 

As stated previously, in a series RC circuit 

like the one in Figure 7.30, there exists a 
combination of real power and reactive power. 

This combined power calculated using total 
current and total voltage circuit values is 

called apparent power. Since the apparent 
power is a combination of real and reactive 
power, it cannot be designated either watts or 

VAR. Instead, it is measured in units called 
volt—amperes, abbreviated VA. 

Power in a circuit is always calculated by 

multiplying a voltage times a current. 

PT = EAIT (7-24) 

Equation 7-24 is such an equation and à 
can be used to calculate total power in any 

resistive—reactive circuit. In the circuit being 

used (Figure 7.30) EA = 100 volts and IT = 2 
amperes. Thus, 

PT = (100V)(2A) 

= 200VA 

Recall that in a purely resistive circuit the total 

real power is the sum of all the individual real 
power values: 

PR = PRI PR2• • • + PRN 

and in a purely reactive circuit the total 

reactive power is the sum of all individual 
reactive power values: 

= Pc + PC2 • • • + Pcni 

(7-25) 

(7-26) 

However, in resistive and reactive circuits, the 

simple sum of the real power and reactive 
power does not equal the apparent power. 

PT is not PR + Pc (7-27) 

This occurs because the phase relationship 
between the voltage across and the current 

through each component are different. 
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• Calculation of Apparent Power 

• In series RC circuits, the phase relationships 
of the three power determinations are similar 

to the voltage phase relationships, as shown in 
Figure 7.34. 

Since each power determination is made by 

multiplying the voltage shown times the 
current, the power phasor diagram is 
proportional to the voltage phasor diagram 

by a factor of the total current, as shown in 
Figure 7.34. 

Mathematically: 

EAIT = 

or 

phasor sum of 
ER1T + ECIT 

(7-28) 

Fr(apparent) = phasor sum of (7-29) 

Preal Preactive 

The total apparent power is calculated using 

the Pythagorean theorem. 

PT(a) = V PR2 Pc2 

It is equal to the square root of the real 

power squared plus the reactive power 

squared. Thus, the total apparent power 
in the example circuit of Figure 7.24 and 

Figure 7.30 as calculated, 200 volt-amperes, 
should be equal to the square root of 120 

watts squared plus 160 VAR squared. 

PT = VPR 2 + PC2 

= Ni1202 + 1602 

= N., 14,400 + 25,600 

= N/40,000 

= 200VA 

This is the relationship between the apparent 
power and the real and reactive power. Note 

in Figure 7.35 that the angle between the real 
and apparent power is the phase angle. In 

this example the phase angle is negative 

53 degrees. 

PT 

E PR 

Figure 7.34 Relation.shtop of Voltage and Power Factors 
In an RC Sertes Circuit 

Pc 

PR =120 W Pc =160 VARS 

PT = 200 VA 

Figure 7.35 Relationship of Vectors an Example Circuit 
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PARALLEL RC CIRCUIT ANALYSIS 

Now, that you have learned how to determine 
the voltages, currents, impedance, phase 
angle, and power in a series RC circuit, the 
next step is to learn how to determine these 
same quantities in a circuit in which a resistor 
is connected in parallel with a capacitor. Such 
a circuit is called a parallel RC circuit. A typical 
parallel RC circuit is shown in Figure 7.36. 

Summary of Phase Relationships in Parallel 
RC Circuits 

In the circuit of Figure 7.36, as in any parallel 
circuit, the voltage across all components is 
the same: EA = ER = Ec. However, the 
algebraic sum of the branch currents does 
not equal the total current in the circuit. 

IT is not IR + lc (7-31) 

This occurs because the phase relationships 
between the voltage and current are different 
for each component. 

Recall that the voltage across a resistor is in 
phase with the current (Figure 7.37a) and, in 
a capacitor, the current leads the voltage by 
90 degrees (Figure 7.376). 

Since the components in the circuit are in 
parallel with one another, the common factor 
in both relationships is the voltage, because 
the voltage across both components is the 
same. This voltage is the applied voltage, EA. 

For discussion purposes, the-diagram of 
Figure 7.376 is rotated by 90 degrees to make 
Ec horizontal, as shown in Figure 7.38a. 
Because the components in the example 
circuit are parallel with one another, the 
common factor in both relationships is the 
voltage. The voltage across both components 
is the applied voltage, therefore, Ec is equal 

to EA and ER equals EA. 

Figure 7.36 Typical Parallel RC Circuit 

a 

ER IR 

Ftgure 7.37 Phase Relationship of ER. 1R, and Ec, lc 

e 

a 

I lc 

IC 

•  
E ( IR 

•  
Ec IR 

ER 
EA 

Figure 7.38 Phase Relationship of lc, IR. Ec, ER, EA 
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Using the voltage as a common reference 
(instead of current which was used in an 

analysis of a series RC circuit), the two 
individual phasor diagrams can be combined 
into one as shown in Figure 7.38b. However, 
in order to match common voltage, the Ec 
vector has been rotated 90 degrees to match 
the direction of the ER and EA vectors. Also 
note that the current through the resistor 
is shown in phase with the applied voltage 
across it, while holding to the theory that 
the capacitive current is leading the applied 
voltage by 90 degrees. Comparing the phase 
relationships of the two branch currents, the 
capacitive current leads the resistive current 
by 90 degrees. 

Calculation of IR and Ic 

The individual branch currents in a parallel 
circuit can be calculated as they were 
calculated in a purely resistive or purely 
capacitive circuit. Simply divide the voltage 
across the branch by the opposition to current 
in that branch. 

In the resistive branch, the opposition to 
the flow of current is measured in ohms of 
resistance. Thus, in the circuit, shown in 
Figure 7.39, the resistive current is 
determined by dividing the applied voltage 
by the value of the resistor. 

IR 
ER EA 

(7 32) 

In the capacitive branch, the opposition to 
the flow of current is measured in ohms of 
reactance. Therefore the capacitive current is 
determined by dividing the applied voltage by 
the reactance of the capacitor. 

Ec EA 
IC = = 

Xc 

Figure 7.39 Example RC Parallel Circuit 

4— 

• 

Figure 7.40 Currents Must be Added Vector:ally 

e 

Calculation of IT 

To obtain the total current, IT, the currents 
in a parallel RC circuit cannot simply be 
added as the branch currents in a parallel 
resistive circuit would be added. Instead, 

these currents must be added vector-tally. 

As shown in Figure 7.40, the length of the 
capacitive current vector is the same as the 
length between the tip of the total current 
vector and the tip of the resistive current 
vector. Thus, the capacitive current vector 
may be shifted over to form a right triangle. 
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Now, the Pythagorean theorem can be used 
to determine the total current in the circuit. 
According to the Pythagorean theorem, the 

total current in a parallel RC circuit is equal 
to the square root of the resistive current 
squared plus the capacitive current squared. 

IT = VIR2 Ic2 (7-34) 

The parallel RC circuit shown in Figure 7.41 

can be used to illustrate how to use this 
equation to calculate IT. In the circuit the 
resistive current is 5 amperes, and the 

capacitive current is 12 amperes. Therefore, 

IT = V52 + 122 

= V25 + 144 

= 

= 13A 

The total current is 13 amperes. 

Calculation of ZT Using Ohm's Law 

Once the total current is known, the total 
impedance of the circuit can be determined 
using Ohm's law for ac circuits: 

EA = ITZT (7-35) 

Rearranging to solve for impedance, the 

total impedance of the circuit is equal to the 
applied voltage divided by the total current: 

EA 
ZT = 

IT 
(7-36) 

For example, in the circuit in Figure 7.41 
the applied voltage is 26 volts. The circuit 
impedance is calculated: 

EA 
ZT 

IT 
26V 
13A 
21-1 

The circuit's impedance is 2 ohms. 

EA A  IR lc 
26Vi 

IR = 5A lc =12A 

Figure 7.41Example Circuit for Calculating Ir 

Calculation of ZT Using Impedance Vectors 

The total impedance can also be determined 
directly. However, a more complex equation 
is involved. Note that in Figure 7.42a the total 
current is equal to the applied voltage divided 
by the total impedance. The resistive current 

is equal to the applied voltage divided by 
the resistance. And the capacitive current is 
equal to the applied voltage divided by the 
capacitive reactance. These E over Z, E over 
R, and E over X quantities can be substituted 
for the current they equal in the current 
phasor diagram as shown in Figure 7.426. 
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EA 
X C 

Since the applied voltage is the common 

factor, it can be factored out. The result, as 
shown in Figure 7.43, is an impedance phasor 
diagram relating the reciprocals of resistance, 
reactance and impedance. Now, using the 
Pythagorean theorem, it can be written that: 

Therefore, 

Z — 

y (7-37) 

1 

V( ill )2+ ( Xc 

The reciprocal of the impedance is equal 
to the square root of the reciprocal of the 
resistance squared plus the reciprocal of the 
reactance squared. The impedance, then, is 
equal to one divided by the square root of the 
reciprocal of the resistance squared plus the 
reciprocal of the reactance squared. 

Calculations using 

and 

show that 

26V 
R = 

5A 
_ 5A 

— 26V 

26V Y — - — 12A 
1 12A 

= 26V 

26  

Z T - V52 + 122 

_ 26 
— 13 
= 2n 

(7-38) 
Figure 7.42 a. Current Phasor Diagram, b. Factors 
Substituted for Current They Equal 

1 

Figure 7.43 Impedance Phasor Diagram Relating the 
Reciprocals of Resistance Reactance, and Impedance 
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Calculation of Phase Angle 

This method serves to check the impedance 
value obtained by dividing the applied voltage 
by the total current. It is described simply to 

provide an alternate method of calculation of 
impedance in a parallel RC Circuit. 

Calculation of Phase Angle 

Recall that the phase angle is the number 
of degrees of phase difference between the 
applied voltage and the total current. Also 
recall that the applied voltage is in phase with 
the resistive current and IT is the phasor sum 
of I R and k. Therefore, the phase angle, 
theta, is located between the EA value and IT 
value on the phasor diagram in Figure 7.44. 
The phase angle in a parallel RC circuit can 
also be recognized as the angle between the 
resistive current and the total current. 

The value of the phase angle can be 
calculated by finding the arctangent of the 
ratio of the opposite to adjacent sides: 

/opposite\ 
= arctan I . 

\adjacent/ 

As shown in figure 7.45, the opposite side's 
length represents the value of the capacitive 
current. The adjacent side's length represents 
the value of the resistive current. Thus, the 
tangent of the phase angle, 8, is equal to the 
ratio of the capacitive current divided by the 
resistive current as shown in equation 7-40. 

IC 
tan e = 

Therefore, 

( lc 
e = arctan 

1 1st 

(7-39) 

(7--40) 

(7-41) 

EA 1R 

Figure 7.44 Relationship of O. EA, and IT Values on 
Phasor Diagram 

I c 
OPPOSITE 

1R 
ADJACENT 

Figure 7.45 Adjacent and Opposite Sides Relationship 

The arctangent of the capacitive current 
divided by the resistive current equals the 
value of the phase angle. The phase angle, 
theta is an angle whose tangent is the 

ratio of capacitive current divided by 
resistive current. 

For the example of Figure 7.41 

arctan PIO ) 1 5 
= arctan 2.4 

O 67`' 
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ANALYSIS OF PARALLEL RC CIRCUITS: 
EXAMPLE 

With this background a parallel RC circuit 
will be analyzed further. The individual 
branch currents, the total current, the total 
impedance, and the phase angle will be 
determined. The Pythagorean theorem 
will be used to calculate phase-related 
circuit values. 

Circuit Summary 

The parallel RC circuit to be used in this 
example is shown in Figure 7.46. The value 
of the resistor is 15 ohms. The value of the 
capacitor is such that at the applied 
frequency, it has a capacitive reactance of 
20 ohms. The applied voltage is 60 VAC. 

Calculation of IR and Ic 

First the resistive branch current, 1R, is 
determined 

Eft 

LI on 

60V 

150 
= 4A 

The capacitive branch current, 1c, is 
determined in a similar manner: 

Ec 

Xc 
60V  

• 2011 
= 3A 

The current phasor diagram can now be 
drawn to show the relationships between the 
resistive and capacitive branch currents and 
the total circuit current. This diagram is 
shown in Figure 7.47. 

R=150 

EA= 
60V =200 

Figure 7.46 Example Parallel RC Circuit 

Figure 7.47 Relationship Between IR and lc in 
Example Circuit 
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Calculation of IT 

Using equation 7.34, the total current can 
be calculated. 

IR = 4 amperes, and lc = 3 amperes. 
Therefore, 

--- VIR2 + ic2 
= V42 + 32 
= V16 + 9 
= V25 
= 5A 

The total current flowing in the circuit is 
5 amperes. 

Calculation of Z 

The total impedance (Z) of the circuit can 

now be calculated dividing the applied voltage 

by the total current. Since, EA = 60 volts and 
IT = 5 amperes, therefore, 

Z = 
EA 

IT 

60V  

5A 

= 1211 

(7-42) 

Total impedance is 12 ohms. 

Calculation of Phase Angle 

The phase angle tan be recognized as the 
angle between the resistive current and the 

total current on the current phasor diagram 
in Figure 7.48. The value of lc = 3 amperes, 
and IR = 4 amperes. The phase angle is 
calculated using equation 7-41: 

O = arctan 

= arctan 

( lc ) 
1 Ia 
( 3A  \ 

1 4A 
= arctan (0.75) 
= 3.7° 

IT SA 

• 
I( 3A 

- - - -.* - - 

IR 4A 

Figure 7.48 Phasor Diagram of Example Circuit for 
Calculating 0 

The phase angle is equal to the arctangent 
of the ratio of the capacitive current to the 
resistive current. Thus, the phase angle, 8, is 

equal to the arctangent of 3 amperes divided 
by 4 amperes which equals the arctangent 

0.75. Using a calculator or trigonometric 
table, the angle whose arctangent is 0.75 

is approximately 37 degrees. Thus, the 

phase angle of this parallel RC circuit is 

approximately 37 degrees. 

Positive Phase Angle in Parallel RC Circuit 

The phase angle is said to be a positive 37 

degrees, as shown in Figure 7.49. This is 
because the applied voltage in the parallel 

RC circuit was used as a reference at zero 

degrees. The positive sign is used to indicate 
that the total current phasor is rotated 37 

degrees counter-clockwise from the applied 

voltage phasor. 

In Figure 7.50 it can be seen that in a series 

RC circuit, the phase angle is negative. But in 
a parallel circuit, as shown in Figure 7.51, the 

phase angle is positive. The sign of the phase 

angle is used simply to indicate in which 
direction of rotation from the reference that the 
phase angle is measured, therefore, if you 

know only that the circuit is an RC circuit, 
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la Calculation of PR (Real Power) 
II Calculation of Pc (Reactive Power) 

you can readily determine whether the 
resistor and capacitor are connected in series 
or parallel by the sign of the phase angle. 

POWER CALCULATIONS IN PARALLEL 
RC CIRCUITS 

In the example parallel RC circuit, shown 

in Figure 7 52, the power relationships are 
similar to those of a series RC circuit. 

Calculation of PR (Real Power) 

The real power, PR, is equal to the voltage 
across the resistor times the value of the 
current flowing through it. 

PR = ERIR 
= (60V) (4A) 
= 240W 

Real power is 240 watts. 

Calculation of Pc (Reactive Power) 

The reactive power, Pc, is equal to the voltage 
across the capacitor times the value of the 
current through it. 

= Ecic (7-43) 

In the example circuit, Ec = 60 volts; 
lc = 3 amperes. Therefore: 

Pc = Ede 
= (60V) (3A) 
= 180VAR 

Reactive power is 180 VAR. 

e. +37° 

41.a. ine 

1/4  

IT 

1R ER EA (:I° 

Figure 7.49 The Phase Angle for Example Circuit 
is Positive 

e 

1/4  
EA 

Figure 7.50 Phase Angle in a Series RC Circuit 

13 
4• r go, 

IR EA 

N  

Figure 7.51 Phase Angle in a Parallel RC Circuit 
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• Calculation of PT (Total Apparent Power) 
• Power Phasor Relationships in Parallel RC Circuits 

Calculation of PT (Total Apparent Power) 

The total apparent power, PT, is equal to the 
applied voltage times the total current: 

PT = EA IT (7-44) 

In the example circuit, EA = 60 volts; 

IT = 5 amperes_ Therefore: 

PT = EAlT 

= (60V) (5A) 

= 300VA 

Total apparent power is 300 volt amperes. 

Power Phasor Relationships in Parallel 

RC Circuits 

Since each power determination is made by 

multiplying the current shown times the 
applied voltage, the power phasor diagram is 

proportional to the current phasor diagram 
by a factor of the applied voltage as shown in 

Figure 7.53 

As in the series RC circuit, the total apparent 

power is the vector sum of the real and 
reactive power, as shown in Figure 7.54. That 

is, the apparent power is equal to the square 

root of the real power squared plus the 
reactive power squared. 

PT VPR2 + PC2 (7-45) 

Using the parallel RC circuit values as shown 

in Figure 7.52 the apparent power, PT, can 
be calculated. In that circuit PR = 240w; 
Pc = ISOVAR. 

PT = VPR2 + Pc2 

= V2402 + 1802 

= V57,600 + 32,400 

= V90,000 
= 300VA 

LAIR 

IT = 5A 

EA 
60V 

RC CIRCUIT 
ANALYSIS 

Xc--- 200 

IR = 4A R = I5L). lc = 3A 

Figure 7.52 Example Parallel RC Crrcuit 

EA lc 

Figure 7.53 Power Vector Relationships in a Parallel 

RC Circuit 

4— - 

Figure 7.54 Relationship Between Pr, PR, and Pc in 

Parallel RC Circuit 
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Therefore, the total apparent power 
calculated in this way is 300 volt-amperes 
which matches previous calculations and 
serves as a check that they were correct. 

SUMMARY 

In this lesson, techniques were discussed 
which are used to analyze series and parallel 
RC circuit operation and calculate circuit 
values. The different phase relationships 
between voltage and current for each 
component and the effects upon the circuit 
value for each type of circuit were described. 
You were told how to determine the currents 
and voltages, impedance, phase angle, and 
power values for both a series and parallel 
RC circuit. You can use these methods to 
determine the same circuit values of any 
series or parallel RC circuit. 
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• Worked-Out Examples 

1. Draw the phasor diagrams for the voltage and power circuit values in the circuit below. 

VOLTAGE POWER 

Solution: in a series circuit, current is common and used as the reference. ER is plotted in 
phase with IT, IR and k. E.(- lags k by 90 degrees. EA is the phasor sum of ER and E. 
Current is a common factor in the power equations, and the power values are plotted in 
phase with the voltage values. 

Pc 

P. 

2. Draw the phasor diagrams for the voltage and power circuit values in the circuit below. 

VOLTAGE 

E., EA, Ec 

PC 
p, I 

13„ 

Solution: in a parallel circuit, voltage is common and used as the reference circuit value in the 
phasor diagram. Voltage is a common factor in the power equations, and the power values 
are plotted in phase with the current values. lc leads Ec by 90°. IR is in phase with ER. 

3. Draw the Pythagorean theorem circuit value relationships for R, X( and Zr for the circuit in 
problem 1. 

Solution: 

4. Given the following angles find the tangent of the angle. 

a. 82° 
b. 48° 
c. 33.5° 

Calculator Solution: Enter the angle in degrees into the calculator and press the tan key. The 
tangent of the angle will be on the calculator. 

Of 

d. 21.9° 
e. 11° 
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Table Solution Obtain a table of natural trigonometric functions for angles in decimal degrees. 

Enter the table by locating the angle in the degree column. Scan across to the tangent column 

and read the tangent value. 

Angle Tangent 

82° 7.115 
48° 1.111 

33.5° 0.662 

21.9° 0.402 
I 1° 0.194 

5. Given the following arctangents find the angle. 

a. 0.3 d 3.00 

b. 0.477 e 21.20 

c. I 6 

Calculator Solution: Enter the ratio into the calculator so it is displayed Press the Inv and tan 

keys or the tan I key and the calculator will display the angle in decimal degrees. 

Table Solution: Enter the table of natural trigonometric functions by locating the ratio in the 

tangent column Read across to the angle in decimal degrees in the degree column. 

Ratio (tangent) Angle 

a. 0.3 

b. 0.477 

c. 1.6 

d. 3.00 

e. 21.20 

6. Fill in the blanks. 

a. arctan 0.700 

b. arctan 0.400 

c. arctan 1.00 

16.7° 

25.5° 

58.0° 
71.6' 

87.3° 

cl arctan     = 5' 

e. arctan   = 85° 

Solution tse same calculator or table procedure as for question 4 or 5. 

arctan 0.700 = 34.99° (35°) 

arctan 0.400 -= 21.8° 

arctan 1.00 — 45° 

arctan 0.0875 = 5° 
arctan 11.43 — 85° 
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• Worked-Out Examples 

7. In the phasor diagram for a parallel RC circuit shown. calculate the phase angle 

IT = 6.46A 

IR 5.3A 

Solution 

O Ic 

3.7A A IR 5.3A 

Ic 3.7 = 0.70 A 
tan = - = 

8. Solve for the circuit values specified for the circuit below. 

IC 
a. Z.1 

EA = b. Ir =   
45Vpk xe = 

66.3Hz C = 
Ci. It 

I = 2R.7:11 

T 
e. ER 

arctan 0 70 = 

arctan 0.70 = 35° 
8 = 35° 

1:( 

g. PR - 

L - 

I. PT = -

Phase angle = 

Solueion: 

a. ZT = 1//122 + X(2 = V2.7kfr + 3 8M2 = N/21.73M' = 4.661(1/ 

EA 45V pk 

4.66kfl 9.66mAPk 
b. IT 

c., d. IT = IR = lc = 9.66mA pk 

c. ER = X R = 9.66mA pk x 26.1V,k 

f. Ec =k x Xc = 9.66mA pk x 3.8kfl = 36.7Vpk 

g. PR = 1( X Ec 9.66mA pk x 26.IV„k = 0.252W pk 

h. Pc =I X Ec = 9.66mA pk x 36.7V pk = 0.354VARpk 

j. PT = X EA = 9.66mA pk x 45V pk = 0.435VApk 

Xc 3.8kfl  
j. tan e = 

R 2.71d) - 1.41 

arctan 1.41 = Phase angle 

arctan 1.41 = 54.6° 
.•.O = -54.6° (series circuit) 
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Worked-Out Examples 

9. Solve for the circuit values specified for the circuit below: 

E. 
9Vpk 

36 SkHz 

•"\_, 

Solulzon 

a. Xc 

c _ I 11501 

a. Xc:   g. Ec 

b. IR =   h. PR 

C. IC I. Pc =   

d. l-r =   J. PT =   

e. Zr =   k. Phase angle =   

f. ER 

1  

27rfC = 6.28 x 36.5 x 103 x 0.02 x 10 6 218iI - 4 58 x 10' 

ER 9V pk 
b. IR 0.06A. 

R ▪ I 501-1 pk 

Ec: 9V pk 
c. lc   — 0.04I3Apk 

▪ Xc ▪ 21811 

d. IT = VI R2 + Ic2 = V0.06A2 + 0.04I3A2 = V0.00531A2 = 0.0728A,k 

EA 9V,k 
e. ZT = — 12411 

IT 0.0728A pk 

f., g. EA = ER = Ec = 9V„k 

h. PR = 1R X ER = 0.06A pk X 9V pk = 0.54Wpk 

1. Pc = lc x Et- = 0.04 I3A pk x 9V pk = 0.372VAR pk 

j. P1 = II x EA = 0.0728A x 9V = 0.655VA pk 

0 1c 0.0413Ark  
k. tan() — _ _  — 0.688 

0.06A,k A IR 

arctan 0.688 = 

arctan 0.688 = 34.5° 
.•.O = +34.5° (parallel circuit) 

BASIC AC CIRCUITS 7-33 



RC CIRCUIT 
ANALYSIS 

• Worked-Out Examples 

10. Solve for the circuit values specified for the circuit below: 

C1 = 0 .0 051,4F 

EA 
10Vpk 

= 
15kHz 

C, = 1kpF 

Solution: Simplify the circuit. 

xc, and 
Xt., In »Hem 

a. Xci = 

b. X 2 

C. 

1 

217f-C1 4.71 x 10' 

a. X(1 

b. Xc.2 =   

C. X( T =   

d. RT =   

e. ZT 

f. =   

h 

ICI 

IC2 

1  
- 2.121d2 

1  1  

2-rrfC2 9.42 X 10 -5 - 1°.6kn 

xc-r --= Xc i 8c Xc2 in series 

= 2.121d1 + 10.06kfl = 12.18kfl 

(101d1)(30kil)  d. RT = 
10kfl + 30kil - 7.5kfl 

e. ZT 

7-34 

= ‘111 --r2 • • X •CT2 4-  

.= V2 jj 8Q2 

= Visri.a-rcf-12= 14.3161 

g ICI 

h. 1C2 

IR 1 

• 1R2 

k. 

m. 

n. ER2 

o. tan 

EC 1 

E 2 

I. 'RI 

J. 

k. 

M. 

1R2 = 

E 1 = 

EC2 = 

ER1 = 

n. ER2 = 

o. Phase angle 

EA 10V ok 
14.3kfl - 0.699mA k Z-r  

IT = 0.699mA pk 

IT = 0.699mA pk 

ERI 5.24V = 
0.524mApk 

RI 10k 

ER2 5.24V 

R2 30k 

IT X Xr, 1 

- 0.175mA„k 

= 0.699mA x 2.12kfl = 1.48Vph 

- 1C2 X Xic2 

= 0.699mA x 10.6k( = 7.4IVpk 

ERI IT X R I 

0.699mA pk x 7.5kfl = 5.24Ve  

= ERI = 5.24 Vpk 

XCT 

RT 
12.181(11 - 1.62 

7.51d1 

arctan 1.62 = e 

arctan 1.62 = -58.4° 
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NI Practice Problems 

1. Given the following angles find the tangent of the angle. 

a. 15° 
b. 30° 
c. 45° 
d. 60° 
e. 75° 

2. Given the following tangent values, determine the angle. 

a. 0.1 
b. 0.9 
c. 2.0 
d. 4.0 
e. 8.0 

3. What is the definition of arctangent? 

4. In each of the diagrams a., b., c., and d., solve for the value of the hypotenuse of the 
right triangle. 

a. b. 

4 UNITS 

40 FEET 

7 UNITS 3.7mA 

30 FEET 

d. 

5.5mA 

6.78V 

10.2V 

5. Solve for the phase angle in each of the circuits a., b., c., and d 

6. Draw a phasor diagram for the circuit shown. Show voltage, current and power phasors. 
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7. a. Identify the type of circuit which 

fits the current phasor diagram shown. 

b. Calculate I r. 

c. Calculate phase angle. 

8. Solve for the circuit values specified for this circuit. 

EA = 
20Vpk 

f = 
1 kHz 

C = 

a. Xc =-

h. Z1 

C. 

d. I =   1, 

e. 'K =   

f. E( 

IC = 7.8mA(r1114) 

IA = 18 OmA(rms) 

9. Solve for the circuit values specified for this circuit. 

EA = 
5Vpk 

= 
200Hz 

a. 1( 

h. lit —   

C. IT =   

d. Ir 

e. Ec 

10. Solve for the values specified for this circuit. 

EA = 
30Vpp 

= 
4kHz 

= 15011 a. Xcl 

h. Xc2   

Xcl-=   

d. RT =   

e. Z-r 

f. I I. 

g. IRI 

h. IR2 =   

I. Ici =   

J• 1C2 

g. 

h. 

k. Phase angle =   

f. 

g. 

h. 

J. 

ER =   

PC 

PR 

Pr 

Phase angle =   

k. 

ER2 

in. E1 

n. Et-2 = 

P • PR2 = 

cl. Pc1 = 

r. PC2 

S. Pi 

t. Phase angle = 
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• Quiz 

1. In each of the diagrams a., b., c., and d., 

solve for the value of the hypotenuse of the 

right triangle. 

a. 3 FEET 

23V 

10V 

b. 

4 FEET 

d 

180 

50mA 

50mA 

2. Solve for the phase angle in the circuits 

a., b., c., and d. 

120 

3. Draw a phasor diagram for this circuit. 

Show voltage, current, and power phasor. 

4. a. Identify the type of circuit which is the 

same as this voltage phasor diagram. 

b. Calculate its E r. 
c. Calculate its phasor angle. 

= 19.6V 

5. Solve for the circuit values specified for 

this circuit: 

E. = 
10V 

= 
10k142 

a. Xe 

b. ZT 

C. IT =   

d. I- =   

e. I. 

g. ER =   
h. Pc =   

i. PR 

=   
k Phase angle = 

f. Ec 

6. Solve for the circuit values specified for 

this circuit. 

E. = 
40Vpk 

a. Ie 
b. IR f. PR =   

C. IT   g. PT —   
d. Z1 =   h. Phase angle = 

r. PC =   
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Quiz 

7. Solve for the circuit values specified for 
the circuit below. 

• ER2 
k. E( 

I. EC2 

a. RT =   

b. XcT =   
C. ZT 
d. IT =   
e. =   

f. IR2 
g. Ici =   
h. 1C2 =   

XC2 
60f1 

m PR I =   
n. PR? 

0. PC1 
p- PC2 =   
q• P r =   

i. FRI =   r. Phase angle 

8. What values are the voltage, current and 
power in Question 5. 

a. rms 
b. peak to peak 
c. peak 

9. What values are the current and power in 
Question 6. 

a. rms 
b. peak to peak 
c. peak 

10. What values are the voltage, current and 
power in Question 7. 

a rms 
b. peak to peak 
c. peak 
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LESSON 8 

ED  Inductance 
and Transformers 
This lesson introduces the inductor and transformer 
with a discussion of their physical and electrical 
properties. Circuits containing series and parallel-
connected inductors are discussed and analyzed. 
The property of mutual inductance is introduced. 
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AND TRANSFORMERS 

Objectives 

At the end of this lesson, you should be able to: 

1. Define inductance, state the basic unit of inductance, and be able to explain 

two concepts used to explain the counter EMI.- of an inductor. 

2. Determine the effect of increasing or decreasing the permeability of the core 
material, the number of turns of conductor. and the cross-sectional area of 
the core or the length of the core on the value of an inductor. 

3. State the relationship between the voltage across an inductor and the current 

through it. 

4. Given a circuit of series-connected inductors or parallel-connected 
inductors, determine the total inductance of the circuit (no 
mutual inductance). 

5. Given the value of two inductors connected in series or parallel aiding or 
opposing and their coefficient of coupling, determine the total inductance of 
their combination. 

6. Given the turns ratio of a transformer, the input voltage, and the secondary 
load resistance, determine the secondary voltage, the primary and secondary 

current, the secondary frequency, and the primary and secondary power. 

7. State the differences between step-up, step-down, and autotransformers, 
and their advantages and disadvantages. 

S. Define inductive reactance and state the units in which it is measured. 

9. Given a circuit of series-connected inductors, the applied voltage, and 
frequency of the applied voltage, determine the inductive reactance of each 
inductor, the total inductance, the total current, the voltage across each 
inductor, the reactive power of each inductor, and the total reactive power in 
the circuit. 

10. Given a circuit of parallel-connected inductors, the applied voltage, and 
frequency of the applied voltage, determine the inductive reactance of each 
inductor, the total inductive reactance, the total inductance, each inductive 
branch current, the total current, the reactive power of each inductor, and 
the total reactive power in the circuit. 
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Ill Faraday's Discovery 8 
INTRODUCTION 

ln the last two lessons, discussion concerned 
the capacitor and how to analyze circuits 
composed of only capacitors or capacitors and 

resistors. This lesson is about the remaining 
passive circuit element — the inductor. 

Figure 8.1 shows some types of inductors. 
Basically, any inductor is a coil of thin wire 
wrapped on a cylinder called the core. The 
core may be hollow, of laminated paper — an 

air core—or made of some type of iron— an 
iron core. Often an inductor is also called 
a choke or coil. The turns of wire of the 
inductor are electrically insulated from each 
other by a thin, non-conductive coating. 

As shown in Figure 8.2 the schematic symbol 
used to represent the inductor resembles 

what it is— wire wrapped on a core. The 
inductor's letter symbol is a capital t. which 
represents linkages— flux linkages. 

An inductor has magnetic properties. 
Therefore, a brief review of the subject of 
magnetism should help you understand 
better the electrical properties of an inductor. 

ELECTROMAGNETIC PROPERTIES 

Faraday's Discovery 

Recall that in 1831, Michael Faraday showed 
that when a conductor connected in a closed 
circuit is moved through a magnetic field, an 
electron current flows as a result of a voltage 

induced in the conductor. (In this lesson, like 
in all other lessons in this book, current flow 
refers to electron current flow.) The amount of 
induced voltage is proportional to the rate of 
change of the magnetic field— the amount 
the magnetic flux changes in a specific 
time period: 

induced — change in magnetic flux 
voltage change in time (8-1) 

di le 1kt)* 
Figure 8.1 Typical Inductors 

Figure 8.2 Schematic Symbol for an Inductor 
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Oersted's Discovery 

As shown in Figures 8.3 and 8.4, it makes no 
difference if the conductor moves through a 

stationary magnetic field, or if the conductor 

is stationary and the magnetic field moves. 

As long as the lines of flux are caused to cut 
though the conductor, a voltage is induced in 
the conductor. 

Remember that the direction of the resulting 

electron current can be determined by the 

left-hand rule for generators which is shown in 
Figure 8.5. The thumb points in the direction 

of the conductor's motion. The forefinger 

points in the direction of the magnetic field. 
The index finger points in the direction the 
electron current is flowing. 

Oersted's Discovery 

Earlier, in 1819, a Danish physicist, Hans 

Christian Oersted, had discovered that a 

magnetic field surrounds any conductor 

through which a current is flowing. He also 

found that the greater the current, the 
stronger the magnetic field, and the larger 

the area of the magnetic field around the 

conductor. As illustrated in Figure 8.6, when 
a small current flows in the conductor, only 

a small magnetic field is produced. But as 
current is increased, the magnetic field 

expands. Conversely, if the current is 

decreased, the magnetic field decreases 
in size. 

All lines of flux are considered to have a 
definite direction. The direction of the lines 
of flux surrounding a conductor can be 

determined by what is known as the left-hand 
rule for conductors which is shown in Figure 8.7 

It states that if the conductor is grasped with 

the left-hand with the thumb pointing in the 

direction of the electron current, the fingers 
fold in the direction of the lines of flux. 

MOVING 
CONDUCTOR 
MOTION 

STATIONARY 
MAGNETIC 
FIELD 

( ) 

I -------.., 

Figure 8 3 Conductor Moving Through Magnetic Field 

MOVING 
MAGNETIC — 

— -as FIELD 

— 

STATIONARY — — 
CONDUCTOR 

Figure 8.4 Magnetic Field Moving Past Conductor 

CONDUCTOR 
MOTION 

SOUTH 
MAGNETIC POLE 
FIELD 

ELECTRON efi i«D 
CURRENT 

Figure 8.5 Left-Hand Rule for Generators 

NORTH 
POLE 
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III Inductance of a Wire 8 
THE PROPERTY OF INDUCTANCE 

The principle of inductance should be easier 
for you to understand if you realize that it is 
essentially the result of these two properties 

of electromagnetism: I ) That a voltage can 
be developed in a conductor which is in a 
changing magnetic field; 2) That a magnetic 
field is produced by current flowing in 
a conductor. 

Inductance of a Wire 

Consider a single piece of wire, as shown in 
Figure 8.8a, through which current is flowing 
in the direction indicated by the arrow. 

Suppose current is increasing in value 
from zero to some maximum, such as an 
alternating current would during a portion of 
its cycle. According to the left-hand rule, the 
changing magnetic field's lines of flux will 
have a clock-wise direction as indicated by the 

arrows in Figure 8.86, and will expand as the 
current increases. 

Imagine that the magnetic field starts at the 

center of the conductor and expands out as 
the current increases as shown in Figure 8.8. 
As the magnetic field first develops and 
expands, it cuts through the body of the 
conductor itself and induces a voltage that 
opposes the voltage producing the initial 
current. In other words, the induced voltage 
produces a circuit current opposite in 
direction to the initial current. 

This opposing current is called a counter-
induced current. This inductive action occurs 
in any piece of wire through which an 
electrical current flows. 

e 

SMALL CURRENT 
' 

MAGNETIC FIELD 

LARGE CURRENT 

Figure 8.6 The Size of a Ailagnetic Field Around 
a Conductor Vanes 

ELECTRON 
CURRENT 

MAGNETIC 
FIELD 

- CONDUCTOR 

Figure 8.7 Left-Hand Rule for Conductors 

a CURRENT 
FLOW 

b CURRENT 
FLOW 

c CURRENT 
FLOW 

Figure 8.8 A Length of Wire with an Electrical Current 
Flowing Through li 
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la North-South Magnetic Field of a Coil 

So there are two properties working together. 
The initial current produces a changing 

magnetic field which cuts a conductor and 
develops a voltage to produce a current as 
shown in Figure 8.9. This current flows in the 
circuit in a direction opposite to the initial 
current, and it opposes the changes of the 
initial current. 

Figure 8.10 illustrates this action in a circuit. 
When a current that changes in value passes 
through a conductor, it will induce a voltage 
that opposes the current change as shown in 
Figure 8.10a. The voltage induced is opposite 
in polarity to the voltage that produced the 
intial voltage. If the initial voltage is 
increasing to produce an increasing initial 
current, then the induced voltage is of a 
polarity to produce a current that opposes the 
increase of the initial current. If the initial 
circuit voltage now decreases to cause the 
initial current to decrease as shown in Figure 
8.106, the induced voltage is of a polarity to 
oppose the decrease of the initial current. An 
aiding current is produced which keeps the 
initial current flowing and opposes its change. 

North-South Magnetic Field of a Coil 

What happens if this wire is wound into a coil 
as shown in Figure 8.11? In a coil the lines of 
magnetic flux emanating from one turn of 
the coil not only cut through the wire from 
which they originate, but they also cut 
through other turns of the coil adjacent to it. 
The more turns that are present, the more 
the induced voltage and the more the 
opposition to any changes in current within 
the coil and within the circuit containing the 
coil. When a current passes through a coil of 
wire, the individual magnetic fields set up by 
each turn of wire in the coil add to form a 
magnetic field. Therefore, the inductance 
of a coil is greater than the inductance of 
an identical length of wire not coiled. The 
magnetic field formed by the coil is similar 
to that of a bar magnet. 

OPPOSING 
CURRENT 

INITIAL 
CURRENT 

FLOW 

INDUCED VOLTAGE 

Figure 8.9 Current Flow and Induced Voltage in a Wire 

a 

UPPOSING I 
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e
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Figure 8.10 Induave Action in a Circuit 

Figure 8.11 A Typical Coil 
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"1 he orientation of the magnetic field around 

the coil can be determined by using the left-
hand rule for coils. The rule states that if 
the fingers of the left hand are wrapped 

around the coil in the direction of current 
flow as shown in Figure 8.12, the thumb 

points toward the north pole end of the coil. 

Inductance of a Coil 

In a coil, the inductive action is multiplied 
because the lines of magnetic flux emanating 

from one section of the coil not only cut 
through the wire from which they originate, 
but they also cut through the sections of the 
coil adjacent to it. This is illustrated in Figure 
8.I3a and 8.13b. The more wire that is 
present, the more the opposition will be to 
any changes in current within that wire. 
Thus, the number of turns of wire determines 
a coil's inductance value. The magnetic field 
of a coil is shown in Figure 8 .13c. It is like the 
magnetic field of a bar magnet (Figure 8.13d). 

Counter EMF 

If an inductor is placed in a circuit as shown 
in Figure 8.14 which has a changing voltage, 
EA, applied to it, a current which changes in 
magnitude will attempt to flow in the circuit. 
The property of inductance that the inductor 

exhibits, however, will oppose the change of 
current through it. Thus, a voltage will be set 
up across the inductor due to the inductive 
action. This voltage has been given a special 
name It is called the counter EMF, 
abbreviated CEMF. This is the voltage that 
appears across inductors in ac circuits. It is 
due to the property called self-inductance. 

Recall that earlier it was stated that a coil 
must be composed of turns of wire in which 
all turns are insulated one from the other. 
It should be clear now why this is true. If 
the turns of wire are not electrically separate, 
then the coil would not act as an inductor, but 
as a conductor. 

S 

Figure 8.12 Left-Hand Rule for Coils 

a 

d 

Figure 8.13 Inductive Action of a Coil 

I\ 

COUNTER EMF 
CEMF 

EA 1C1? L 

I 
EA = SOURCE VOLTAGE 

Figure 8.14 A Voltage Across a Coil is a CEMF 
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Units of Inductance 

The amount of inductance in a coil of wire 

is measured in henrys or millihenrys 
(thousandths of a henry). Millihenrys is 
abbreviated mH. 

Physical Properties that Determine 
Inductance of a Coil 

The inductance of a coil can be determined 
by this equation. 

L = 

where 

N2 Als.p.„, 
(8-2) 

L = inductance of coil (henrys) 
N = number of turns of wire on coil 

p. -= permeability of core material 

A = cross sectional area of coil (m2) 

1 = length of coil (m) 

= absolute permeability for air, 

(1.26 x 10' H/m) 

This equation is valid for a single-layer 
coil only, but it can be used to help you 

understand the physical properties of any 
type of coil. 

In the equation, L represents the magnetic 

flux linkages that connect one part of a coil 
to the next part, causing the property of 

inductance. The permeablity of the core 
material is p., the ability of a material to 

conduct magnetic lines of force, also called 
magnetic flux. Together, p. and p.0 represent 
a constant. 

From this equation and, as shown in Figure 

8.15, you can see that if the number of turns 
of wire is increased, the inductance of the coil 
will increase by the square of the number of 

turns. As shown in Figure 8.16, a coil with a 

large cross-sectional area will have a greater 

value of inductance than one of a smaller 

cross-sectional area. As shown in Figure 8.17, 
a long coil will have a smaller value of 

inductance than a shorter one. Remember 

that when determining the effect of varying 

SMALLER L 

LARGER L 

Figure 8.15 The Number of Turns Affects a 
Coil's Inductance 

A2 > 

MORE INDUCTANCE 

Figure 8.16 The Cross Sectional Area of the Core Affects 
a Coil's Inductance 

(  I H (1 I () 
Long 2 - Small L 

JCL 
Short e = Large L 

Figure 8.17 Length Affects a Coil's Inductance 
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one specific factor of a coil, that all other 
factors must be held constant. From equation 
8-2, the value of a manufactured inductor 
depends basically on these four factors: 1) the 
number of turns of wire used, 2) the cross-
sectional area of the coil, 3) the overall length 
of the coil, and 4) the permeability of the 
core material. 

Working an example using equation 8-2 
should help you learn to use it to determine 
the inductance of a coil. In this example, as 
shown in Figure 8.18, a coil has 400 turns of 
wire wound on a round core 0.013 meter (0.5 
inch) in diameter, a length of 0.076 meter (3 
inches), and uses iron as a core material which 
has a permeability of 1000. What is the 
inductance of the coil? 

First of all, the cross sectional area of the coil 
is determined. 

A = irr2 
r = 1/2 d 
r = 1/2 (0.013m) 
= 0.0065m 

A = irr2 
= (3.14) (.0065m)2 
= 1.33 x 10'm2 

Then the inductance can be calculated. 

L   (8-2) 

_ (400)2(1.33 x 10 4m2)(1000)(1.26 x 10 8H/m) 

(0.076m) 
= 3.53 x 10'FI 
= 3.53mH 

Variable Inductors 

The fact that the permeability of the core 
material determines the value of a coil is put 
to use in manufacturing variable inductors. 
Iron is the most common core material used 
in the manufacture of inductors. Iron has a 
much higher permeability than air. Variable 
inductors are made by constructing an 
inductor with an iron core that can be 
inserted various lengths into the inductor. 

N = 400 TURNS 

d = 0.013m 

I 
0.076 

IRON CORE 
p. = 1000 

Figure 8.18 Coal Used an Induciance Equaiion Example 
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in a Circuit 

Figure 8.19 shows a typical variable inductor. 
The portion of the coil with the iron core has 
a much higher value of inductance than does 
the section with the air core. The two 
inductances add together to determine the 

overall inductance of the coil. As the iron 
core, sometimes called a slug, is screwed into 

the coil, the inductance increases. As the iron 
core is extracted, the inductance of the coil 
decreases. Thus, by varying the amount of 
iron core within the coil, a variable inductor 
has been created which can be "tuned' to a 
specific inductance. This type of variable 
inductor is called a permeability-tuned inductor. 

INDUCTANCE IN A CIRCUIT 

Effect of an Inductor on a Changing Current 
in a Circuit 

When considering the electrical action of an 
inductor in a circuit it is helpful to compare 

its action to that of a resistor. Recall that in a 
circuit containing only resistors, as shown in 
Figure 8.20, that when a voltage is applied by 
closing the switch, the full value of current 

flows almost immediately, and it continues 
to flow through the resistors as long as the 
voltage is applied. 

If, however, the resistor RI is replaced with 
an inductor, as shown in Figure 8.21, when 

the switch is closed the full value of current 
does not flow immediately. Instead, when the 
current first begins to increase in value from 
zero, the inductive action sets up a counter 
EMF that opposes the current change. When 
the switch is first closed, in fact, the rapid 
change in current that starts to flow causes a 
rapid change in magnetic flux that produces a 
high counter EMF. Therefore, very little 
current is allowed to flow initially. At this 
point in time, the inductance appears as an 
open circuit as illustrated in Figure 8.22. 

IRON CORE 
SLUG 

AIR IRON 
CORE CORE 

Figure 8.19 Typical Variable Inductor 

Figure 8.20 A Typical Resistive Circuit 

Figure 8.21 A Typical Resistive-Inductive Circuit 
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This can be compared to the physical 
property of inertia. Initially, it is difficult to 

get the current moving, but once moving, and 

if forces are not changed, it flows smoothly. 

When the self-inductance has stopped the 

initial flow of current, the self-inductance of 
the coil ceases since it depends on a change 

of current. "[he current again attempts 
to increase. As it increases slightly, the 
self-inductance again hinders the flow of 
current in the circuit. "[hen, when the 
self-inductance of the inductor has stopped 
the increase in current, the self-inductance 
ceases and the current attempts to increase 

again. This back-and-forth action continues 
smoothly until the current in the circuit 
reaches its maximum value. The maximum 
current in this circuit is determined by the 

value of R I and the internal resistance of 
the coil. 

Internal (Winding) Resistance of a Coil 

Every coil has some internal resistance 
because of the length of the wire used. 
The internal resistance of coils range from 
fractions of an ohm to several hundred ohms 
depending on the length and size (gauge) of 
wire used. You can measure this internal 
resistance easily with an ohmmeter. 

Exponential Change of Current 

Figure 8.23 shows graphically the action of a 
resistive-inductive (RL) circuit. At first, time 
th the voltage across the inductor is at 
maximum since the inductor appears as an 
open circuit initially. Current is zero. All 
of the applied voltage appears across the 
inductor as counter EMF. Gradually, the 
current begins to increase until it reaches its 
maximum value. As the current increases, the 
counter EMF across the inductor decreases. 

OPEN CIRCUIT 

E +-1-431. R2 

SI 

I = 0 AT INSTANT 

SI CLOSES 

OPIM IIISTENT SI CLOSES 

Figure 8.22 When SI is First Closed the Circuit Appears 
as an Open Circuit 

Figure 8.23 The Relationship of E and I in an 
RI. Circuit 

The increase of current and decrease of 
voltage is said to be exponential. However, if 

one examined the circuit action in very small 
periods of time, it would appear as small 
steps where current increases, counter EMF 
opposes it, current increases again, counter 
EMF opposes it again, and this action 
continues until the current attains its final 
value. As shown in Figure 8.24, it is, as 
stated, a step function. But the steps are 
infinitesimally small, and to us the action 
appears as a smooth exponential rise 
in current. 
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When the current has reached maximum 
value and ceases to change any further, time 

t2, the counter EMF across the inductor is 
zero volts since there is no more change in 
current. The fact that the current stopped 
changing is important because there must 
be a change in current value to cause the 
magnetic flux lines to expand or collapse so 
that they cut through the coil self-inducing 
the counter EM F. 

Rate-of-Change Equation 

An equation that mathematically describes the 

current-voltage relationship for an inductor is 

EL = L (8-3) 

El represents self-induced EMF. Recall that a 
à symbol designates a change in a quantity. 

,11  Thus, the value —àt is the change in current 

measured in amperes through the inductor 

divided by the change in time measured in 
seconds in which the change in current 

occurs. —àl is the rate of change of current. 
àt 

If this equation is substituted as the voltage 

across the inductor in the dc circuit of Figure 
8.21, and a dc voltage is applied when the 
switch is closed, then the solution for the 
circuit current will be the exponential curve 
shown in Figure 8.21. 

But what will happen in the circuit of Figure 
8.21 if the dc voltage is replaced with an ac 
voltage source? Figure 8.25 shows the circuit 
with an ac voltage source. In this circuit, the 
sinusoidal voltage is continually changing in 
magnitude and polarity, causing the magnetic 
field of the coil to continously expand 
and collapse. 

Figure 8.24 Step-Function Action of Current 

Figure 8.25 Typical AC RL Circuit 
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If the phase relationship of the voltage across 
the inductor, which is the counter EMF, is 
compared with the current in the inductor, 
it will be found that they are 90 degrees 
out of phase as shown in Figure 8.26. More 
specifically, the voltage leads the current by 
90 degrees. 

The voltage across the inductor, EL, in the 
circuit of Figure 8.25 can be calculated using 
equation 8-3. But before this is done one 
thing should be noted..rhe rate-of-change 

of current AI, may be abbreviated ROC. 
At 

Since any voltage that appears across the 
inductor is equal to the inductance times 
the rate of change of current through the 
inductor, equation 8-3 can be rewritten: 

EL = L(ROC of 1), (8 4, 

Discussion of an example will show how 

this equation describes the current-voltage 
relationship for an inductor. The sine wave 
of Figure 8.27 represents the current passing 

through the inductor. Since EL = L(rate of 
change of current), when the rate of change 
of current of the sinusoidal waveform is zero 
at its peak, the value of the voltage is zero. 

When the rate of change of current of the 
sinusoidal waveform is maximum as it crosses 

the zero axis either increasing positively or 
increasing negatively, the value of the voltage 
is a positive or negative maximum. Since 
the current changes sinusoidally, the 
rate-of-change of current changes 
sinusoidally and so does the voltage. By 
connecting these points with a smooth 
sinusoidal waveform as shown in Figure 8.27, 
the voltage waveform can be plotted. It can be 
seen that, as stated previously, the voltage 

leads the current by 90 degrees as shown in 
Figure 8.28. Therefore, it should give you a 
clear idea of the relationship of a current 
through and voltage across an inductance. 

e 

Figure 8.26 Voltage I.earls Current by 90 fleet's 

A 
R-ZERO ROC OF I A-MAX ROC OF I 

2ERO EL -MAX EL 

Li: 
L(ROC) 

Figure 8.27 Inductive Voltage and Current Relationship 

EL 

Figure 8.28 Voltage Leads Current by 90 Degrees 
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SERIES AND PARALLEL INDUCTORS 

When inductors are connected in series or in 
parallel, it may be necessary to know their 
total equivalent inductance. 

Series Inductors 

To calculate the total inductance of series-
connected inductors, simply add their 
individual inductance values as you would 
add up series resistances. Therefore, 

(8-5) 

For example, the circuit of FIgure 8.29 
contains two inductors, series-connected. 
Their total inductance value is simply 
their sum. 

LT It L 1 + L2 
= 4mH + 8mH 
= 12mH 

The effects of the inductors are additive 
because in a series circuit the current must 
flow through both inductors. Therefore, both 
inductors will respond to any changes in this 
current, and the effects are additive. 

Parallel Inductors 

When inductors are parallel to one another 
the total inductance is calculated using one of 
two methods. 

If three or more inductances are in parallel 
then the total inductance is calculated by this 
reciprocal equation. 

1 1 1 1 1 = 
L1 L2 1.2 L„ 

if 

Li 4mH 
2 

8mH LT- «.1 

Figure 8.29 Series Inductor Circuri 

For example, suppose three inductors of 

3mH, 6mH and I2mH are in parallel. The 

total inductance is 

1 1 
- 3m1-1 • 6mH 12mH 

4 + 2 + 1  

- 12mH 
7  

▪ 12mH 
1,1 = ( 12 ) mH 

= 1.771mH 

1 
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If two inductors are in parallel as shown in 
Figure 8.30, then total inductance is calculated 
by using the reciprocal addition process that 
was used to add parallel resistances. Like the 
parallel resistance equation for two resistors, 
the total inductance for two series inductors 
is calculated by using a product-over-
sum equation. 

LI X L2 
LT 

+ L2 
(8-6) 

If the two inductors are 3m H and 6mH, then, 
the total inductance of their combination is 

LT - 
+ L2 

(3 MH) (6mH) 
3m11 + 6mH 
18 

= ( —9 ) mll 

= 2mH 

L, x 

Note that the combination of parallel 
inductances, LT, is always less than the 
smallest individual inductance value. This 
result is similar to that obtained for a 
combination of two parallel resistances. 

It is interesting to note that the solution for 
total inductance could be accomplished by 
taking the inductances "two at a time" and use 
the product over sum equation. For example, 
a total inductance of 2mH, as previously 
calculated, can be used for the combination of 
3mEl and 6m H in parallel. This resultant can 
then be used in a product over sum equation 
with the 12mH inductor to determine the 

final total inductance. Here is the calculation 

LT - (2mH)  (12mH)  
(2mH + 12mH) 
24 \ 

= 

= (-n) ntH 
'7 , 

= 

LT 

1.13r/IFI 12- 6mH 

F zgure 8.30 Parallel Inductor Circuit 

Either method gives equal results. 

MUTUAL INDUCTANCE 

Although the total inductance of coils 
connected in series or parallel can be 
determined using the same technique used 
for determining the total resistance of 
resistors connected in series or parallel, 
inductors have a property not at all similar 
to resistive circuits. This property is called 
mutual inductance. When the current in an 
inductor increases or decreases, the magnetic 
flux field surrounding that inductor changes. 
The varying flux can cut across any other 
coil which may be nearby, causing induced 
voltage to exist in it. 
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•  Coefficient of Coupling 

For example, series-connected coils L I and L2 
in the circuit of Figure 8.31 are close to one 
another. An ac voltage source is connected to 
L1 and L2. The current through Li produced 
by the ac source causes a magnetic field to 
exist around L1 which also cuts through the 
windings of L2, inducing a voltage in its 
windings. Thus, a voltage exists across L, 
as a result of the magnetic field of LI cutting 

through its windings. At the same time Li is 
producing this voltage across L2, the current 
flowing through L2 produces a field around 

L2 that induces a voltage in Li. This effect is 
known as mutual inductance. 

Mutual inductance is measured in henrys and 
is designated by the symbol Lm. The amount 

of mutual inductance between two coils, LI 

and L2, can be calculated by this equation: 

Lm k L2 (8-7) 

Where 

LI value of Li in henrys 
L2 = value of L2 in henrys 

k = coefficient of coupling between 
the two coils 

LM = mutual inductance in henrys 

Coefficient of Coupling 

The coefficient of coupling is the fraction of 
total magnetic flux lines produced by both 

coils that is common to both coils. Stated as 
an equation: 

thcommon 
k cbtotal— 

Where 

4)common =flux linkages common to LI 

and L2 

4>tOlal = total flux produced by LI 

and L2 

8- 16 

(8-8) 

INDUCTANCE 
AND TRANSFORMERS 

Figure 8.31 ,11ulual Inductance is Caused by Interaction 
of Adjacent Magnetic Field 

For example, in a circuit there are two coils, 

L1 and L2, which produce 10,000 flux lines, all 
of which link both coils. Therefore, using 
equation 8-8 the coefficient of coupling can 
he calculated 

k - cticommon  

cbtotal 
10,000  

10,000 
-= 1 (unity) 

In this case, there is unity coefficient of 
coupling and k = 1. However, if LI and L2 
produce 1 0,000 lines of flux and only 5,000 
are common, the coefficient of coupling is 

k cbcommon  - 
cl)total 
5,000  
10,000 

= 0.5 

Therefore, in this case, the coefficient of 
coupling is 0.5. There are no units for k since 
it is a ratio of two amounts of magnetic flux. 
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A low value of k is called "loose coupling"; 

a high value of k is called "tight coupling". 
Coils wound on a common iron core can be 
considered to have a coefficient of coupling 
of one or "unity coupling". Figure 8.32 
summarizes the types of coupling and range 
of coefficients of coupling. 

The value of k can be varied by factors 
relative to the coils. For example, as shown 
in Figure 8.33, k becomes larger (with a 
maximum of one) as the coils are placed 
closer together; are placed parallel to one 
another, as opposed to perpendicular; or 
are both wound on a common iron core. 
Conversely, k becomes smaller as the coils 
are placed farther apart; are placed 
perpendicular to one another; or are both 
wound on sepaïate iron cores. 

Calculating Mutual Inductance 

Mutual inductance is calculated using 
equation 8-7. F:gure 8.34 shows a circuit with 
two inductors, L1 and L2. 1. 1 equals 20 henrys 
and L2 equals 5 henrys. The coefficient of 
coupling is 0.4. The coils' mutual inductance 
is calculated as follows: 

LM = k V(1- 1)(L2) 

= 0.4 V(20) (5) 

= 0.4 Via 
= 0.4 (10) 
= 4H 

COEFFICIENT OF COUPLING 

a LOW k LOOSE COUPLING 
(3.1-0.3) 

HIGH k TIGHT COUPLING 
(0.7-0.9) 

IRON CORE 
0 11 0 

O t_ 
k = 1 

UNITY COUPLING 

 Sr 

Figure 8.32 Coefficient of Coupling 

PARALLEL SEPARATE 

) ) )) IRON CORES 

CLOSE  

LARGE K LARGE K SMALL K 

PERPENDICULAR 

) APART COMMON IRON CORE 7 LI 1 
LARGE K SMALL K SMALL K 

Figure 8.33 Techniques for Varying the Coefficient 
of Coupling 

EA 

Li 20H 

(IT)  

K = 0.4 

L2 5H 

Figure 8.34 Example Circuit for Calculating 
Mutual Inductance 
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Series-Connected Inductors with 
Mutual Inductance 

When two series-connected inductors are 
separated by a sufficient distance, are 
mounted at right angles to one another, or 
are well-shielded, their mutual inductance is 

negligible. Their equivalent total inductance 
is the sum of the inductance values as 
described previously. However, if series-

connected inductors are situated so that their 
magnetic fields interact, the mutual inductance 
between the two coils must be considered. fheir 
total inductance, then, is determined by 
this equation: 

LT + L2 r"-- 2Lm (8-9) 

When the inductors are situated such that 
their magnetic fields aid each other the p/us 
sign is used. 

LT = L I 4- L2 4- 2Lm (fields aiding) (8-'0) 

When the Fields oppose, the MMUS sign is used. 

LT = L1 + L2 - 2Lm (fields opposing)(8-11) 

The 2 is used because magnetic fields of Li 
and L2 interact and affect each other. 

For example, a 10-henry and 20-henry coil 
are connected in series as shown in Figure 
8.35 such that their magnetic fields aid one 
another, and they have a mutual inductance 
of 5 henrys. Their total inductance 
is calculated: 

LT = L, + L2 + 2Lm 
= 10H + 20H + 2(5H) 
= 30H + 10H 
= 40H 

If the same two coils are oriented such that 
their magnetic fields oppose one another, their 

total inductance is calculated: 

LT = L1 + L2 - 2LN 
= 10H + 20H - 2(5H) 
= 30H - 10H 
= 20H 

Figure 8.35 Example Circuit for Calculating 

Total Inductance of Series-Aiding and Series-

Opposing Inductors 

Parallel-Connected Inductors with 

Mutual Inductance 

When two coils are parallel-connected without 
any mutual inductance, their equivalent total 
inductance is found by the reciprocal addition 

or product-over-sum method discussed 
earlier. However, if their magnetic fields 
interact, their equivalent total inductance is 
found by one of the following equations: 

Parallel-aiding connection — 
lf the two coils are oriented such that their 

magnetic fields aid each other. 

(L 1 + Lni)(L2 +  
L-1- — 

Li + L + 2Lm 

Parallel-opposing connection — 
If the two coils are oriented such that their 
magnetic fields oppose each other. 

(L 1 - Lr4)(L2 - 141) 
L1 Li + L2 - 2Lm 

(8-12) 

(8-13) 
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Using the same 10 henry and 20 henry coils 

with a mutual inductance of 5 henrys due to 
an aiding field, hut connected in parallel, the 
total inductance using equation 8-12 is 

L - (10mH + 5mH) (20mH + 5m11) 
10mH + 20mH + 2(5mH) 

(  (15)(25) 40) 

= 9.38mH 

mH 

TRANSFORMERS 

Basic Construction 

A device in which the property of mutual 
inductance is put to practical use is the 

transformer. A typical transformer is shown 
in Figure 8.36. A typical standard transformer 
consists of two separate coils, wound on a 
common iron core as shown in the schematic 
of Figure 8.37 and considered to have a 
coefficient of coupling of one. One coil is 

called the primary; the other is called the 
secondary. As a result of mutual inductance, 
a changing voltage across the primary will 
induce a changing voltage in the secondary. 

Thus, if the primary winding is connected to 
an ac source and the secondary to a load 
resistor, the transformer is able to transfer 
power from the primary to the secondary to 
the load resistance as illustrated in Figure 
8.38. By having more or fewer turns in the 
secondary as compared to the primary, the 
primary voltage may be either stepped-up or 
stepped-down to provide the necessary 
operating voltage for the load. 

Figure 8.36 4 Typical Transformer 

PRIMARY SECONDARY 
COIL COIL 

IRON 
CORE 

Figure 8.37 Schematic Drawing of a Transformer 

E 

PRIMARY SECONDARY 

RLOAD 

Figure 8.38 Transformer Opelation 
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Turns Ratio versus Voltage 

Recall that if a coil has a larger number of 
turns, a larger voltage is induced across 
the coil. With a smaller number of turns the 
voltage is less. Therefore it is easy to see 
that by having more or fewer turns in the 
secondary as compared to the primary, as 
shown in Figures 8.39 and 8.40, the voltage 
may either be stepped up or stepped down to 
provide the necessary operating voltage for 
the load. 

The ratio of the number of turns in a 
transformer secondary winding to the 
number of turns in its primary winding is 

called the turns ratio of a transformer. The 
equation for turns ratio is: 

Ns 
turns ratio = (8 - / 4 ) 

Np 

In the transformer schematic shown in Figure 
8.41, the number of turns in its primary is 
10 and the number of secondary turns is 5. 
Using equation 8-14, the turns ratio of the 
transformer can be calculated. 

turns ratio 

Primary Secondary 

10V 

Figure 8.39 Step-Up Transformer 

10 OV 

Primary Secondary 

10 OV 

Figure 8.40 Step-Down Transformer 

10V 

Primary Secondary 

10 TURNS 5 TURNS 
Np Ns 

Figure 8.41 Teansformer Used to Calculate Turns Ratio 
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Transformers have a unity coefficient of 
coupling. Therefore, the voltage induced in 
each turn of the secondary winding (E,$) is 
the same as the voltage self-induced (F.ip) in 
each turn of the primary, as shown in Figure 

8.42. The voltage self-induced in each turn of 
the primary equals the voltage applied to the 
primary divided by the number of turns in 
the primary. This can be written: 

Er 
EiP 

Np 
(8-15) 

Figure 8.43 shows a schematic of a 
transformer in which there are 8 turns in the 
primary and 8 volts ac is applied to it. Using 

equation 8-15, the voltage self-induced in 
each primary turn can be calculated. 

Er 

rd P 
E,p 

_ 8 

= IV 

In this example, one volt is induced in each 
turn of the primary. 

If each turn of the secondary has the same 
voltage induced in it, then the secondary 
voltage is equal to the number of secondary 
turns times the induced voltage. This can 
be written 

Es = Ns ( E P) 
Np 

Or rearranging, 

(8-16) 

Ns 
Es = Er (7%17.) (8-17) 

Figure 8.42 Transformer Voltage Induction 

Np 'S 
TURNS 

Ns 
TURNS 

4e  

Figure 8.43. Example Transformer Used to Calculate 
Self-Induced Voltage in Primary Turns 

The transformer shown in Figure 8.43 has 4 
turns in its secondary. Using equation 8-16, 
the secondary voltage can be calculated. 

Er 
Es = Ns (—Nr) 

= 

= 4V 

The transformer's secondary voltage is 
4 volts-4 turns times 1 volt per turn. 
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In another example, shown in Figure 8-44. 
there are 1000 turns in the primary winding 

of the transformer and there are 10,000 turns 
in its secondary winding. Thus, the turns 
ratio is 

turns ratio 
Ns 

Np 
10.000 

1,000 

10 

— I 
= 10 

Therefore, the secondary voltage would 
always be 10 times greater than the primary 
voltage. If the primary voltage is 10 volts ac, 
then the secondary voltage will be 

Es = 10Ep 
= 10(10V) 
= 100V 

Transformer secondary current is a function 
of secondary voltage and load resistance. If a 
1 kilohm load is placed across the secondary 
as shown in Figure 8-45, then the secondary 
current, by Ohm's law, will be 

Is = 
RL 
100V 

IkU 
= 0.1A 
= 100mA 

The secondary current is 100mA. The 
transformer secondary acts as an ac voltage 
source to the load. 

8-22 

Figure 8.44 Example for Calculating Turns Ratio 

and Es 

Primary Secondary 

Ep= 10V:1 RL=1k0. 
Es =100V 

1\ 

Figure 8.45 Example for Calculating Transformer is 
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Primary-to-Secondary Current Relationship 

Modern transformers, with coefficient of 
coupling considered to be one, and with no 
real power consumed in the windings or the 
core can be considered to have no loss, as 
shown in Figure 8.46. Therefore, the power in 

the primary is considered to be the same as 
the power in the secondary, Pp =Ps. Since 
P = El, 

P, = Ps 
Epl, = EsIs 

Rewriting this, 

Ip _ Es  

Is — Ep 

Note that the current relationship is the 
inverse of the voltage relationship. Thus, if 
the voltage is stepped up in a transformer by 
a factor of 10, the current must have been 
stepped down the same factor. This may be 

stated another way using equations 8-17 
and 8-18. 

Since 

Then 

Or 

I I. Es  =  Ns  

is Ep Np 
1p Ns 

Is Np 

1p = Is 
Np 

(8-18) 

(8-19) 

Thus, in the example shown in Figure 8.45, 
if E. is 10 volts, Es is 100 volts, and if Is, the 

secondary current, is 100 milliamperes, the 
primary current, ip, is calculated as: 

= 

\ Np/ 

The primary 
one ampere 

( 11000 ) ioomA 

= (10) 100mA 
= 1000mA 
= lA 

current in the transformer is 

Pp = Eplp 

Ps = ESIS 

Figure 8.46 Relationship of Transformer Primary and 
Secondary Windings 

Performing the following calculations it can 
be determined that both the primary and 
secondary power are equal; both are 10 watts. 

Pp = EpIp 

= (10V) (1A) 
= IOW 

Ps = EsIs 
= (100V) (100mA) 
= 10,000mW 
= 10W 

The transformer, then, either steps up or 
steps down the voltage and current, but 
conserves power from the primary to 
the secondary. 

However, transformers do not affect the 
frequency of the ac voltage they act upon_ 
If the frequency of the primary voltage and 
current is 60 hertz, then the secondary 
voltage and current will have a 60 

hertz frequency. 

Recall that a transformer will not operate with 
a dc voltage. That is because dc voltage is non-
changing and cannot produce an expanding 
or collapsing magnetic field to cut the 

secondary windings to produce a 
secondary voltage. 
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Efficiency 

Previously it was stated that the power in 
the transformer secondary is considered 

to be the same as that in the primary. This, 
however, is not precisely true with an actual 
operating transformer. When operating, the 
transformer's secondary power is usually 
slightly lower than that in the primary. As 
shown in Figure 8.47, this is caused by core 
and winding losses such as hysteresis and 
eddy currents in the transformer. In fact, 
these power losses are evidenced by the heat 
given off by a transformer during operation. 

How well a transformer delivers power from 
the primary to the secondary circuit is called 
its efficiency. Efficiency is defined as the ratio 
of the power in the secondary circuit divided 
by the power in the primary circuit. Because 
efficiency is usually stated as a percent, it can 
be written 

/Ps 
Percent Efficiency = 100 (8-20) 

To determine the actual percent efficiency of 
a transformer, primary voltage and current 
and secondary voltage and current are 
measured, the primary and secondary power 
are calculated and using equation 8-20, the 
percent efficiency is calculated. Typical 
transformer efficencies are about 80 to 
90 percent. 

Isolation 

Another feature of the transformer is that it 
provides electrical isolation between primary 
and secondary windings, as shown in Figure 
8.48. That is, there is no electrical connection 
between the primary and secondary windings 
of the transformer. (Only the electromagnetic 
field links the secondary with the primary). 
When a circuit is connected directly to the 
power source as shown in Figure 8.49a, no 
electrical isolation exists between the circuit 

Pp Ps 

Ps is not Pp 

Figure 8.47 In Operation, A Transformer Loses Power 

in the Form of Heat 

ELECTROMAGNETIC FIELD 

PRIMARY 
WINDING 

SECONDARY 
WINDING 

NO ELECTRICAL CONNECTION 

Figure 8.48 A Transformer's Secondary Winding u 
Isolated from its Primary Winding 

120 VAC 
60Hz 

a 

120 VAC 
60Hz 

Figure 8.49 Circuit Isolation: a. No Isolation of Cuna' 
from Power Line; b. Circuit Isolated from Power Lint 
by Transformer  
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and power source, which can present a shock 
hazard. But any circuit connected to the 
secondary of a transformer, as shown in 
Figure 8.49b, is electrically isolated from the 

primary, and thus, the power source. This 
prevents a shock hazard from existing 
regardless of the connection of the primary 
to the electrical ac power line. In fact, 
transformers designed to simply provide 
isolation with no voltage change from 

primary to secondary (i.e. a I: I turns ratio) 
are referred to as "isolation transformers". 
A schematic of an isolation transformer is 
shown in Figure 8.50. 

Autotransformers 

Transformers do exist, however, which 

do not provide isolation. These use a 
single winding and are referred to as 
autotransformers. As shown in Figure 8.51, 
an autotransformer utilizes a single tapped 
winding with one lead common to both 
input and output sides of the transformer. 
Therefore, there is no isolation. The voltages 
present across the primary and secondary 
portions of the transformer are proportional 
to the number of turns across which they 
appear. These are calculated the same as in a 
transformer with isolated windings by using 
equation 8-17. 

The obvious advantage of this type of 
transformer is that only one winding is 
needed. But a less obvious advantage is 
that an autotransformer provides a more 
constant output voltage under varying load 
conditions than does the two-winding type 
of transformer. This is because the primary 
and secondary currents are 180 degrees out 
of phase and tend to cancel in the portion of 
the winding that is common to both primary 
and secondary. 

Ep] 

120 VAC 
60 Hz 

Es 

120VAC 
60 Hz 

Figure 8.50 An Isolation Transformer Schematic 

•  

TAP 

E, Np 

e  

COMMON 
LEAD 

TAP 

Np E, 

Epl N, 

. f 
\ COMMON 
LEAD 

Figure 8.51 Autotransformers: a. Step-Down. 
b. Step-up 
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Variable-output Transformers 

Some manufacturers produce a type of 
autotransformer that has a variable output 
voltage. As shown in Figure 8.52, this is 
accomplished by making the secondary tap 
a wiper-type of contact (much like a wire-
wound variable resistor). By varying the 

position of the wiper contact, various output 
voltages are obtainable. Of course, the same 

effect could also be produced using a variable 
tap on the secondary of a two-winding 

transformer as shown in Figure 8.53. 

Multiple-secondary Transformers 

Transformers are also produced which 
have multiple-secondary and center-tapped 
secondary windings in order to provide for 
circuits requiring several different voltage 
levels. A schematic for a typical multiple-
secondary transformer is shown in 
Figure 8.54 

Transformer Lead Color Code 

Transformer leads are usually color coded 
using a standarized El A wire color coding 
technique. A chart showing the standard ElA 
color code is provided in the appendix. Not 

all manufacturers use this particular color 
code so there will be some variation. 

Transformer Specifications 

Manufacturers provide specifications for 
transformers. The specifications enable a user 
to select a transformer that best meets the 
requirement of the application. Transformer 
specifications usually include primary voltage 
and frequency, secondary voltage(s), 
impedance, dc winding resistances, and 
current capabilities. For example, the 
power transformer of Figure 8.54 has the 
following specifications: 

Primary voltage: 117V, 60Hz 
High-voltage secondary: 240V-0-240V (center-

tapped) 150mA 
Low-voltage secondary: 6.3V, 2A 
Low-voltage secondary: 5V, 3A 

E, 

WIPER 

COMMON LEAD 

Figure 8.52 Variable-Output Autolransformer 

E, 

Figure 8.53 Variable-Output Transformer 

Figure 8.54 Mulirpie-Secondary Power Transformer 
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Power transformers are multiple secondary 
winding transformers with both high and low 
voltage secondaries. Typical power, audio, 

and filament transformers are shown in 
Figure 8.55. Power transformers originally 
were developed for use with vacuum tube 

circuits in which high voltage for power 
supply levels and low voltage for vacuum tube 
filaments (heaters) were needed. The primary 

ratings specify the voltage and frequency at 
which the transformer is designed to be 
operated. The secondary ratings specify the 
voltages available from the various secondary 
windings as well as the maximum current 
which the secondaries can supply. 

Audio transformers are designed for 
input/output audio applications and are rated 
according to their primary and secondary 
impedances, power capabilities (wattage), 
and turns ratio. They have only a single 
secondary winding. 

Filament transformers are single secondary, 

low voltage, high current (several amperes, 
typically) transformers rated according to 
their primary voltage and frequency, 
secondary output voltage and maximum 
output current capabilities. 

INDUCTIVE REACTANCE 

Now that inductance, self-inductance, and 

transformer action have been discussed, the 
next step is a discussion of the effect of an 
inductor in an ac circuit. 

Inductance is measured and inductors are 

rated in henrys. An inductor's effect in a 
circuit depends on the inductance and is 
expressed in a quantity called inductive 
reactance. Inductive reactance is a quantity 
that represents the opposition that a given 
inductance presents to an ac current in a 
circuit, such as is shown in Figure 8.56. 

Figure 8.55 Typical Power, Audio, and 
Filament Tran.sformers 

f 

FAG 

Figure 8.56 Simple Inductive Circuit 
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Like capacitive reactance, it is measured in 
ohms and depends upon the frequency of the 

applied ac voltage and the value of the 
inductor. Inductive reactance can be 
expressed as follows: 

XL = 27rfL (8-21 

Where 

XL = inductive reactance (ohms) 
27r = 6.28 
f = frequency(Hz) 
L = inductance(H) 

The constant of 2.rr comes from the number 
of radians in one cycle of a sinusoidal ac 
waveform. Because of this, this equation is 
valid only for calculating the inductive 
reactance of an inductor with sinusoidal 
alternating current applied 

Figure 8.57 shows a simple inductive circuit. 
The inductor's value is 10 millihenrys. 

Applied frequency is 5 kilohertz. Using 
equation 8-21, inductive reactance, XL, 
is calculated: 

XL = 2-rtfL 
= (6.28)(5 x 1031-1z)(10 x 10'H) 
= 314S1 

Note from equation 8-21 that if either the 
frequency or the inductance is increased the 
inductive reactance increases. Figure 8.38 
shows graphically how a change in either 
the frequency or inductance changes the 
inductive reactance, XL. Note that the 
inductive reactance increases linearly with 
frequency and inductance. As the frequency 
or inductance increases, the inductor's 
opposition to the flow of current increases. 

These plots of inductive reactance versus 
frequency and inductive reactance versus 
inductance shown in Figures 8.59 and 8.60 
will be examined more closely to help you 

I understand these relationships more clearly. 

8-28 

EA 
f=5kHz 

L 10mH 

Figure 8.57 Example Circuit for Calculating 
Inductive Reactance 

XLI -2-f1 ti 
- with f 
— with L 

Figure 8.58 Frequency and Inductance Versus 
Inductive Reactance 
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Figure 8.59 shows the inductive reactance 
versus frequency for an inductance of 10 
millihenrys. It can be seen that as frequency 
increases so does the inductive reactance. For 
example, at a frequency of 159 hertz, the 
inductive reactance is 10 ohms. However, 
at a frequency of 1590 hertz the inductive 
reactance is now 100 ohms. Inductive 
reactance is directly proportional 
to frequency. 

In Figure 8.60, which plots inductive 
reactance versus inductance at a frequency 
of 159 hertz, it can be seen that as inductance 
increases so does the inductive reactance. For 
example, with an inductance of 0.01 henrys 
(10 millihenrys), inductive reactance is 10 
ohms. However, if the inductance is increased 
to 1 henry, the inductive reactance is now 1 

kilohm. Inductive reactance also is directly 
proportional to inductance. 

The basic equation for inductive reactance 
may be rewritten in two other forms: 

Or 

XL 
L = 

27rf 

(8-22) 

(8-23) 

Equation 8-22 can be used to determine 
the frequency at which an inductance will 
produce a certain reactance. Equation 8-23 
can be used to determine the inductance that 
will have a certain reactance at a certain 
frequency. For example, equation 8-22 can 
be used to determine the frequency at which 
an 8.5 henry inductor will have an inductive 
reactance of 5 kilohms. 

f = 

50001.1 

(6.28)(8.5H) 
=- 93.7Hz 

L = 10mH 

Figure 8.59 Inductive Reactance Versus Frequency for 
an Inductance of 10 ?PIN 

= 15914: 

(n) 

L(H) 

Figure 8.60 Inductive Reactance Versus Inductance al a 
Frequency of 159 Hz 

Equation 8-23 can be used to determine the 
value of inductance needed to produce an 
inductive reactance of 10 kilohms at a 
frequency of 300 kilohertz. 

L= )--1-
27rf 

10 x 10312  
(6.28)(300 )< 103Hz) 

= 0.531 x 10 -2H 

= 5.31mH 
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Compatibility of Reactance Equation with 
Rate-of-Change Equation 

It can be shown that the inductive reactance 
equation is compatible with the previous 
discussion of inductance where the voltage 
across an inductance is equal to L times a 

rate-of-change-of-current. Figure 8.61 shows a 
simple series ac circuit containing a resistance 
and inductance. The inductive reactance is 

determined using equation 8-21. II in this 
series circuit the frequency of the applied 
voltage increases, then inductive reactance 
increases and the voltage drop across the 
inductor increases because the inductive 
reactance is a larger portion of the total 
impedance in the circuit. 

When the voltage across the inductor is 
expressed using the rate-of-change-of-
current equation as shown in Figure 8.62, the 
voltage increases as the rate-of-change of' 
current increases. The rate of change of 
current increases as frequency increases. 
Therefore, the voltage across the inductance 
increases as frequency increases. 

Thus, both equations prove that in an 
inductive circuit, as frequency increases, the 
voltage across the inductor increases. This 

analysis also proves that the inductive 
reactance and the rate-of-change equations 
state the same basic principle. 

Like a capacitor, an inductor can be thought 
of as a variable resistor whose opposition to 
current flow (its inductive reactance) is 
controlled by the applied frequency. This 
is shown in Figure 8.63. 

XL! 2rf 

E 

Figure 8.61 Inductive Reactance Equation can be used 

to Determine Circuit Operation 

EL = L àt 

( ) 

EL t = L t 

Figure 8.62 Rate-of-Change Equation can be used to 
Determine Inductive Circuit Operation 

EA 

Figure 8.63 An Inductor can be Thought of as a 
Variable Resistor 
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SERIES AND PARALLEL INDUCTORS 
IN AC CIRCUITS 

Thus far, only circuits with a single inductor 
have been discussed More than one inductor 

can be used in a circuit. Therefore, an 
understanding of series and parallel 

combinations of inductors with applied 
voltage and frequency is important. 

Series Inductors 

Figure 8.64 shows a circuit in which two 
inductors, one 40 millihenrys, and the other 
20 millihenrys, are connected in series. The 
applied voltage is 40 volts at 10 kilohertz. 

First the inductive reactances of the two 
inductors will be calculated using the basic 

inductive reactance equation 8-21. 

XLI = 2rfl. 

= (6.28) (10 x 103Hz) (40 x 10 3H) 
-= 251211 

X L2 = 2-rrfl. 
= (6.28) (10 x 103Hz) (20 x 10 -3H) 
= 1256D 

In this circuit the inductive reactance of 1.. 1 is 

twice the inductive reactance of 1.2. Thus, if 
the inductance increases by a factor of two, 
the inductive reactance increases by a factor 
of two. 

Now that the individual reactances have been 
calculated, the reactance ohms are treated 
like resistive ohms, and series reactances 
are added. 

X LT = X L' X L2 

251211 + 125611 
3768(1 

Therefore, the total reactance for the circuit 
is 3768 ohms. This total reactance is the total 
opposition that the circuit presents to alternating 
current flow at the applied frequency. 

• 

Li=40mH 
EA =40V - 12 

10kHz = 2 0 m H 

Figure 8.64 Example Circuit for Determining 
Circuit Operation 

An alternate method of finding 
reactance is to first calculate total inductance. 

Lr = Li + 
= 40mH + 20mH 
= 60mH 

Assuming no mutual inductance, the total 
inductance is 60 millihenrys. Now the total 
inductive reactance can be calculated using 
the basic inductive reactance equation. 

X IT = 

= (6.28) (10 x 103Hz) (60 x 10 -3 H) 
= 3768f1 

This is the same value of total inductive 
reactance calculated using the other method 

Because the total inductive reactance has been 
determined, it can be used to calculate the 
total current in the circuit. The total current, 
by Ohm's law, is equal to the applied voltage 
divided by the total inductive reactance. 

EA 

XLT 
40V 

3768f1 
= 0.0106A 
=- 10.6mA 

(8-24) 
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Now the rules of a series circuit can be used 
to solve the voltage drop across Li and L,. 
Since it is a series circuit, the total current 
is the same throughout the circuit. 

ELI = ITXLI 
= (10.6mA) (251211) 
= 26.67V 

EL2 = ITXL2 
= (10.6mA) (125611) 
= 13.33V 

(8-25) 

In a purely inductive circuit, the voltage 
drops add to the total applied voltage as 
in a series resistive circuit. 

EA ELI + EL2 
= 26.67V + 13.33V 
= 40V 

(8-26) 

Parallel Inductors 

Figure 8.65 shows a circuit in which there is 
a parallel combination of two inductors. The 
voltage, frequency, and inductance are the 
same as those used in the previous discussion 
of series inductors. Keeping these the same 
should help you better understand the 
differences between series inductor and 
parallel inductor circuits. Since inductance of 
the coils is the same and applied frequency is 
the same, the inductive reactance of each of 
the inductors will be the same: 

L1 = 2512S1 
L2 = 1256n 

L2 

EA= 40 V,10 kHz 

Ll =40 mH L2 = 20mH 
XL1= 2512 Q XL2 .1256 ci 

• 

Figure 8.65 Example Circuit for Determining 
Circuit Operation 
The branch current for each branch can be 
determined by dividing the voltage across the 
branch by the opposition in the branch. 

ELI 

XLI 
EA 

XLI 
40V 

= i51211 
= 15.9MA 

EL2 
1L2 = 

EA 
= 

iLL2 
40V 

1256f1 
= 31.8mA 

The total current is simply the sum of the 

branch cutrents. 

= ILI + 1L2 
= 15.9mA + 31.8mA 
= 47.7mA 

(8-27) 
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To find the total inductive reactance, 
simply divide the applied voltage by the 
total current. 

XI/ 
IT 
40V  

47.7mA 
= 837.11 

EA 
(8-28) 

There are two alternate methods that can be 
used to find the total inductive reactance. 
The first method is to treat the inductive 
reactances as if they were parallel resistances 
and use the product-over-sum method of 
solution. 

Lr = 
(X LI) (x1.2) 

XL' + X1.2 

(2512(1) (125611) 

251211 + 125611 
= 83711 

(8-29) 

The other method is to first determine the 
total inductance of the circuit, then calculate 
the total inductive reactance using the total 
inductance. Using this method, 

(L 1) (L2) 
LT =   (8-30) 

LI + L2 
(40mH) (20mH)  
40mH + 20mH 

= 13.3mH 
Xur = 

= (6.28) (10 x 103Hz) (13.3 x 10'H) 
= 83711 

Power in Inductive Circuits 

In inductive circuits, power can be 
determined using calculations similar to 
the calculations used to determine power 

in resistive or capacitive circuits. Remember 
that in resistive circuits, electrical energy is 
converted into heat energy. However, in 
inductive circuits, the electrical energy is 
stored temporarily in the magnetic field 
around the inductor. This is similar to the 
storage of energy in an electrostatic field 
in a capacitor. Thus, inductors store 
electromagnetic energy temporarily; capacitors 
store electrostatic energy temporarily. 

Recall that the basic power equation is 

P = El (8-31) 

This power equation can be used to calculate 
the power in inductive circuits. The power in 
inductive circuits is measured in units called 
VAR as it is in capacitive circuits. VAR stands 
for Volts Amperes Reactive. The power in an 
inductive circuit is called reactive power since 
the opposition to current in the circuit is 
strictly reactive. 

Power Calculations for 
Series-Inductive Circuits 

In the series-inductive circuit discussed 
previously, and repeated in Figure 8.66, 
the voltage drop across L1 is 26.67 volts. 
The current through L1 and L2 is 10.6 
milliamperes. Reactive power for L1 
is calculated: 

Pt.] = (ELI) 
= (26.67V) (I0.6mA) 
= 282.7 m VA R 

Reactive power for L2 is calculated: 

PL2 = (42) (IL2) 

= (13.33V) (10.6mA) 
= 141.3mVAR 
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By adding these two values of reactive power, 
the total reactive power of the circuit can be 
determined. That is, 

PXT = PL 1 + PL2 (8-32) 
= 282.7m VAR + 141 3m VAR 
= 424mVAR 

Total reactive power of the circuit could also 
have been calculated by multiplying the total 
applied voltage times the total current. In 
this case, 

Px-r = EAly 

= (40V) (10.6mA) 
= 424mVAR 

Power Calculations for 

Parallel-Inductive Circuit 

Similar calculations can be performed to 
obtain the reactive power for the parallel 

inductive circuit shown in Figure 8.65. Recall 
in that circuit ILI = 15.9 milliamperes and 
11.2 = 31.8 milliamperes. Remember the 
voltage across each branch is the applied 
voltage. The reactive power of LI is: 

PLi = ELIILI 
= (40V) (1 5.9mA) 
= 636mVAR 

The reactive power of L2 is: 

PL2 EL2IL2 
= (40V) (31.8mA) 
= 1272mVAR 

The total reactive power is: 

Px-r = PLI PL2 

= 636mVAR + I272mVAR 
= 1908mVAR 

Also, the total reactive power in a parallel 
circuit equals the total applied voltage times 
the total current. 

PXT = EAIT 
= (40V) (47.7mA) 
1908mVAR 

Li = 40 mH 
EA =4 0 
10 kHz -;-) ;=20mH 

  I-10.6 mA 

ELI = 26.67 

E L2 = 13.33 V 

Figure 8.66 Example Series Inductive Circuit 

SUMMARY 

This lesson has been an introduction to the 
inductor, how it is structured, its schematic 
symbol, its typical units of inductance, and 

how it functions in typical circuits. The phase 
relationships of the voltage and current in 
an inductive circuit were discussed. Mutual 
inductance and how it is put to use in 
transformers, and how to make voltage and 
current calculations for transformer circuits 
were also discussed. Series and parallel 
inductive problems were solved, and reactive 
power calculations were described. 
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1. Describe the action of an inductor in a circuit. 

Solution: A magnetic field surrounds any wire carrying current. As current increases through 
a wire, the magnetic field expands through the wire inducing a counter current which 

opposes the increase in the initial current. As current decreases in a wire, the magnetic field 

collapses through the wire inducing current in the same direction and aiding the current 

which is trying to decrease, thus opposing the decrease of current. When the wire is wound 
into a coil, the magnetic field produced by each turn of wire in the coil interacts with adjacent 

turns increasing this inductive effect. Chis coil of wire is called an inductor. If it is placed in a 

circuit such that a changing current passes through it, it will oppose the change (increase or 

decrease) of current. 

2. Define inductance. 

Solution: Inductance is the property of a circuit which opposes any change in current. 

3. If the current through an 8 millihenry-coil is changing at the rate of 10 milliamperes every 5 

seconds, determine the rate of change of the current in amperes per second, and the voltage 

(CEME) induced across the coil. 

10mA 
a. Rate of change of current = — = — 2mA/sec 

at 5 sec 

b. CEMF = EL = = (8mH) (2mA/sec) = (8 x 10 3F1) (2 x 10 3A/sec) 

= 16 x 10-6V = 16p.V 

4. If two coils are connected in series as shown, determine their total inductance with no mutual 

inductance, and their mutual inductance and total inductance considering mutual inductance 

(aiding and opposing) if k --- 0.4. 

Solution: 
a. LT(no Lm) = L1 + L2 = I8H + 2H = 20H 

b. LT (aid) = 1- 1 + L2 4- 2L,T, = 18H + 2H + 2(2.4H) 

= 18H + 2H + 4.8H = 24.8H 

where Lm = k VL I X L2 = 0.4 V18H x 2H 

= 0.4 N./r617-1 = 0.4 (6)H = 2.4H 

c. Li(oppose) =L, + L2 - 2Lm = 18H + 2H — 2(2.4H) 

LT(oppose) = 20H — 4.8H = 15.2H 
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5. a. Given the circuit shown solve for the total inductance of the parallel-connected inductors 

if there is no mutual inductance. 

Ea 
30V 
1 kHz 

L, 
lOrnil 3 40mH 

Solution: 

L1 X L2 (10mH) (40mH) /400 \ „ 
1. 1 - mri 

L1 + 10mH + 40mH k 50 / 

1. 1 = 8mH 

b. Determine their mutual inductance and total inductance (aiding and opposing) if mutual 

inductance exists with a coefficient of 0.2. 

Solution: 

L i = k %/L i x L2 = 0.2 1/10ruH x 40mH = 0.2 V400mH = 0.2(20)mH 

1..m = 4mH 

(1. 1 + Lm) (L2 + 1-m) (10mH + 4mH) (40mH + 4mH) (14mH)(44mH) 
LT (aid) - _ = 

L1 + L2 + 2Lm 10mH + 40mH + 2(4mH) (58mH) 

LT (aid) = 10.62mH 

(L 1 - Lm) (1.2 - Lm) (10mH - 4mH) (40mH - 4mH) 
LT(oppose) = 5.14mH 

Li + L2 - 2Lm 10mH + 40mH - 2(4mH)  

6. If the primary voltage applied to a transformer is 120 VAC and the secondary voltage output 
is 480 VAC, determine the turns ratio for the transformer and state whether it is a step-up or 

step-down transformer. 

Solution: 

Ns Es 480V 4 
a. Turns ratio 

= Np = Ep - 120V - 1 

or written in Ns:Np form, 41 

b This is a step-up transformer since the secondary voltage is 

higher than the primary voltage. 
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7. Given the transformer with turns-ratio and load-resistance specified, determine the following 

values: E Pi„, and P. (Assume 100 percent efficiency.) 

150V 
50Hz 

10:1' 

 1 
= 1:10 

AL 
2.7k0 

Soluizon: 

Eiec = 

sec = 

Ns ) \ 
'pr. = (-10 1—) 150V = 15V (This is also 50 hertz.) 

Np  

15V  
Ri2.7kf1 = 5.56mA 

Ns 
1,, = (—)1,„ = (*) ) 5.56mA = 0.556mA 

Np 

P,„, = E1„, x = (150V) (0.556mA) = 83.4mW 

P,„ = E,„ x 1,„ = (I5V) (5.56mA) = 83.4mW 

Note that P - pri = Plec! 

8. If the primary voltage is 120 VAC with a primary current of 10mA and the secondary voltage 

is 12.6 VAC with a secondary current of 85 millamperes, determine the percent efficiency of 

this transformer. Explain the loss of power between primary and secondary. 

Soluizon: 

a. Ppr., = Epri x 11„, = (120V) (10mA) = 1200mW 

P,„ = E,„ x 1 = (I2.6V) (85mA) = 1071mW 

Psi  1071mW\ 
% Eff x 100% x 100% = 0.893 x 100% = 89.3% 

Pp 1200mW/  

b. The power loss (10.7 percent of the primary power) between primary and secondary is 

due to eddy currents, hysteresis and winding resistance heat loss. 
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9. Calculate the inductive reactance of the inductors at these specified frequencies: 

a. 10 millihenry coil operated at a frequency of 5 kilohertz: 

Solution: 

X L = 2rrfL. = (6.28) (5kHz) (10mH) = (6 28) (5 x 103Hz) (10 x 10 -3H) 

=- 314 x 10011 = 31411 

b. An 8.5 henry coil operated at a frequency of 60 hertz: 

Solution: 

X L = 2TrfL = (6.28) (60Hz) (8.5H) = 3202.8f2 -= 3.21(12 

c. A 45 microhenry coil operated at a frequency of 1250 kilohertz: 

Solution: 

X L = 2-trfL = (6.28) (1250kHz) (45µH) = (6.28) (1250 x 103Hz) (45 x 10 

= 353250 x 10 -3 C1 = 353.2512 

H) 

10. Calculate the value of the inductor needed to produce the reactance specified at the 

given frequency: 

a. A reactance of 1 megohm at a frequency of 40 kilohertz: 

Solution: 

XL IMfl 1 x 106S2  
L = - 3.9H 

2-rrf (6.28) (40kHz) (6 28) (40 x 103Hz) 

b. A reactance of 47 kilohms at a frequency of 108 megahertz: 

Solution: 

X L  L = - 47k1).  47 x 10311  47 x 103  \H 
= - 

2irf (6.28) (108MHz) (6.28) (108 x leHz) (678.24 x 106! 

= 0.0693 x 10 -3H = 0.0693mH = 69.3µH 
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11. Calculate the frequency at which the given inductors will have the specified reactance. 

a. A reactance of 50 kilohms with a 4 millihenry inductor: 

Solution: 

XL 50k11 50 x 103f1 50 x 103  ) 
— Hz 

27t1. (6.28) (4mH) (6.28) (4 x 10 -1 1-1) (25.12 x 10 -3 

= 2 x 106Hz = 2MHz 

b. A reactance of 25 ohms with a 5 millihenry inductor: 

Solution: 

X L  r 2511 = 2511  25  
— 796Hz 

2-trl. (6.28) (5mH) (6.28) (5 x 10 -3 H) - 0.0314 

12. Solve for the values indicated using the circuit shown. (Assume l.M = 0.) 

EA = 
16V 

25kHz 

Solution: 

a. L , 

I). 

(1. 

XLI 

XL2 

r 

XI I 

a. 

b. 

C. 

d. 

e. 

Li. = 

XLI = 

XL2 = 

= 

II = 

= L1 + L2 = 15m11 + 85mH = 100mH 

= 2irfL 1 it (6.28) (25kHz) (15mH) = 235511 = 2.36kfl 

= 2irfL., = (6.28) (25kHz) (85mH) = 1334511 = 13.351(11 

= XL1 + X1.2 = 2.36k11 + 13.35k11 = 15.71d1 or 

= 2TrfL1 = (6.28) (25kHz) (100mH) = 15.71c1) 

EA 16V  
e. I , — I.02mA 

XLI - 15.71:11 
C. E1 • 11.1XL, = I XL = (1 02mA) (2.361:11) = 2.4V 

g. EL2 = 11.2XL.2 XL2 = (1.02MA) (13.351d1) = 13.6V 

f. 

g. 

E11 

EL2 
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h. PL.) = ELA ILA = ELI IT = (2.4V) (1.02mA) = 2.45mVAR 

• PL2 = EL2IL2 EL2 1 1' (13.6V) (1.02mA) = I3.87mVAR 

J • PL .T  PLI PL2 = 2.45mVAR + 13.87mVAR = I6.32mVAR or 

PLT = EAIT = (16V) (I.02mA) = I6.32mVAR 

13. Solve for the values indicated using the circuit shown. (Assume Lm = 0.) 

EA = 
50V 
1 SOkliz 

Solution: 

a. LT 

a. LT 

b. X1.1 

C. XL2 

d. 

e• 

-= f. 

8. 

h. 

J• 

(1.8mH) (8.6mH) 15.48  ) 
mH = I.49mH 

+ L2 (1.8mH + 8.6mH) k 10.4 

b. X11 = 2-rrfL i = (6.28) (150kHz) (I.8mH) 1695.6f1 = 1.7kfl 

C. XL = 2-nfL2 = (6.28) (150kHz) (8.6mH) = 8101.212 = 8.1kfl 

d. 

e. 

f. 

g. 

h. 

j• 

112 

1, 

PLI 

PL2 

P1 I 

(X11) (XL2) (1.7kn) (8.11d1) or 1.4k fl 13 77  XLT fl fl 
X1.1 + XL2 (- 1.7kfl) + (8.1kfl) - 9.8 k 

XLT = 2iffL1 = (6.28) (150kHz) (1 49mH) = 1403.611 = 1.4k1/ 

ILI 

112 

EA 

XLI 

EA 

XL2 

50V  
1.7kfl - 29.4mA 

50V  
- • 8.11kfl 6.2mA 

IT ----- + IL2 = 29.4mA + 6.2mA = 35.6mA 

PLI = 

PL2 

PLT = 

EL ILI = EAlLi 

EL2IL2 EAIL2 

= (50V) (29.4mA) = 1470mVAR 

= (50V) (6.2mA) = 310mVAR 

EAIT = (50V) (35.6mA) = 1780mVAR or 

PIT = PLI 1)12 = 1470mVAR + 310mVAR = 1780mVAR 
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1. State a short del 'ninon of inductance. 

2. I he concepts of two men are used to explain CEMI; for inductors. Who are they? 

3. If an iron core is extracted from a coil, will the coil's inductance increase or decrease? Why? 

4. As the number of turns of wire used in a coil increases, does the value of its inductance 
increase or decrease? 

5. If two coils are placed in proximity of one another and one coil produces 4000 lines of 
flux, 3500 of which cut the second coil, what is the coefficient of coupling of these two 
coils? k =   

6. What is the range of values for the coefficient of coupling;   to   
(upper and lower limits for k). 

7. In the circuit shown, two coils are connected in series. Determine their total inductance 
with no mutual inductance. Then determine their mutual inductance and their combined 
inductance considering mutual inductance (aiding and opposing). k = 0.4, L1 = 4 henrys. 
and L2 = 9 henrys. 

a. (no l.m) =   

b. Lm =   
L, = 
9H t. Li-(aid) =   

d (opp) =   

k = 0.4 

8. In the circuit shown, determine the total inductance of the two parallel-connected inductors 
if there is no mutual inductance. Then determine their mutual inductance and total 
inductance (aiding and opposing) if they have a coefficient of coupling of 0.2. 

EA - 
40V 

100kHz 

a L (no Lm) =   

b. (aid) =   

c. I.. 8-(opp) =   

d. Lm =   

9. a. Sketch the magnetic field about the coil in the drawing. Indicate north and south poles. 
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b. Sketch the magnetic field about the conductor. Show its direction. 

10. If the current through a coil is changing at the constant rate of 40 milliamperes every 10 
seconds, determine the rate of change of the current in amperes per second. If the coil is 
rated at 5 millihenrys. determine the voltage across the coil. 

a. ROC of i =  A/sec 

b. Et. =   

11. What coefficient of coupling is desired for transformers? 

k=   

12. If the primary voltage is greater than the secondary voltage of a transformer, is it known 
as a step-up or step-down transformer? 

13. What two types of core losses in a transformer are associated directly with the core? 

a 

b. 

14. If Ep = 120 VAC and Es = 25.2 VAC, determine the turns ratio (Ns:Np) of the transformer. 

Turns ratio =   

15. What type of transformer does not provide electrical isolation of primary to secondary? 

16. If the primary voltage is 240 VAC with a primary current of 8 milliamperes and the 
secondary voltage is 50 VAC with a secondary current of 33 milliamperes, determine the 
percent efficiency of this transformer: 

% eff =   

17. A transformer has a turns ratio (N s:Np) of 1:4.5, has 120 VAC applied to its primary, and 
has a 6.8 kilohm resistor as a load on its secondary. Determine the secondary voltage, the 

secondary current, and primary current. (Assume 100 percent efficiency.) 

a. 

b. 'sec =   

C. 1p,.; =   
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18. When 40 VAC is applied to the primary of a transformer, a secondary current of 8 

milliamperes flows through a one kilohm resistor connected across the secondary. 
2 milliamperes of primary current is present. Determine the percent efficiency of the 
transformer and its turns ratio. 

a. % eff =   

b. Ns:Np =   

19. Calculate X L for a 2 millihenry coil operated at frequencies of 100 hertz, 5 kilohertz, and 
1.2 megahertz. 

a. Xdf = 100 hertz) =   

b. Xdf = 5 kilohertz) =   

c. Xdf = 1.2 megahertz) =   

20. From Problem 19, you see that as the frequency applied to an inductor increases, the 
inductive reactance of it   (increases, decreases). 

21. What is the value of an inductor needed to produce a reactance of 482 kilohms at a frequency 
of 5 kiluhertz? 

I. =   

22. What is the frequency at which an inductor of 8.5 henrys will have an inductive reactance of 
1 kilohms? 

f=   

23. Solve for the indicated values using the circuit shown. (Assume Lm O.) 

= 
20V 
5kHz 

a. 

b. 

L, = C. 
10mH 

d. 

e. 

X LI 

X L2 

X LT 

ELI 

24. Solve for the values using the circuit shown. (Assume LN.1 = O.) 

E. = 
25V 

300Hz 

f. EL2 

g. PLI 

h. PL2 

I. PLT 

a. L f. 1 

b. XLI   g• ELI 

C XL2 =   h. E12 =   

d. 11_1 =   i• 1L2 =   

e. XL1 

.= 
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Quiz Ela 
1. Inductance is the property of a 

circuit that 

a. 
b. 
C. 

d. 

opposes any change in voltage. 
opposes current 

opposes any change in current. 
opposes any change in frequency. 

2. Which of the factors listed below does not 
govern the value of a coil? 

a. 
b. 
C. 

cf. 

e. 

Number of turns 
The type of core material used 

The size (cross-sectional area) of 
the coil 

The length of the coil 

The size of the wire used in the coil 

3. The rise or fall of current through an 
inductor in a circuit is said to be: 

a. 
b. 
C. 

d. 

exponential 
logarithmic 
linear 

none of the above 

4. The voltage that appears across an 
inductor in a circuit is called   
and appears only when  
the inductor. 

a. counter EMF; the current is 
constant through 

b. voltage drop; the voltage 
changes across 

c. counter EMF; the current increases 
or decreases through 

d. voltage drop; the voltage is 
constant across 

5. The phase relationship of the voltage 
across an inductor and the current 
passing through it in an ac (sinusoidal) 

circuit is such that 

a. the voltage lags the current by 

90 degrees. 
b. the current leads the voltage by 

90 degrees. 
c. the voltage leads the current by 

90 degrees. 
d. the voltage and current are in phase. 

6. Determine the mutual inductance of two 

inductors having a coefficient of coupling 
of 0.8 if their values are 16 millihenrys 
and 5 millihenrys. 

a. 64mH 
b. 7.2mH 

c. 20mH 
d. 3.6mH 

7. If two inductors are series-connected and 
their values are 16 henrys and 25 henrys, 
determine their total inductance if they 

have no mutual inductance. 

a. 9.76H 

b. 6.4H 

c. 20H 
d. 41H 

8. If the two inductors of Question 7 have a 
coefficient of coupling of 0.2, determine 
their total inductance aiding and 
opposing. 

a. 41H, 49H 
b. 49H, 33H 

c. 49H, 41H 
d. 41H, 8H 

9. If a transformer has a turns ratio of 1:19 

an applied primary voltage of 

120 VAC, 60 hertz, and a secondary load 
resistance of 3.3 kilohms, determine the 
quantities specified below. (Assume 100 
percent efficiency.) 

a. Eiec =   

b. 1.ec =   
c. Ipri 
d. Ppri = P„, =   
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10. A transformer has a greater primary 
current than secondary current under 
load conditions. Is it a step-up or 
step-down transformer --

Using the inductive reactance equation 
and given the data specified below, solve 
for the unknown quantity. 

a. L = 15m1-l. f = 5kHz: XL = 
b. X1 = 201d2, f = 3.5MHz: L = 
C. X1 6001(D, L = 10mH: f =   

12. Determine the requested voltages, 
currents and power for these two circuits. 
(Assume Lm = O.) 

11. 

a. 

I) 

F. = 
150V 
41(112 

EA =' 
15V 
60Hz 

Circuit a 

L2 - 
4H 

Circuit b 

a. XLT =   I X1 

h. E1.1 =   J. 'II --

1. EL2 =   k. 1L2 =   
d. IT 

e. PL i =   

r PL2 -   
g. 
h. LT —   

IT = 
M Pi = 

n. PL2 = 

O. -g-
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LESSON 9 

0 RL Circuit 
Analysis 
In Lesson 8, you were introduced to a new circuit 
element, the inductor. In this lesson, the methods of 
analysis of series and parallel circuits containing 
resistors and inductors will be discussed. 
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• Objectives 

At the end of this lesson you should be able to: 

1. Determine the value of the inductive reactance, total impedance, total current, 

the component currents and voltages; real, reactive, and apparent power; and 

phase angle for series and parallel RI. circuits with various values of R. I_ 

applied voltage and frequency specified. 

2. Draw the impedance, voltage, current, and power phasor diagrams to show the 

phase relationships in series and parallel RI. circuits with certain circuit values 

specified. 

3. Determine the circuit values of series and parallel RI. circuits by using 

Pythagorean theorem relationships for vectoriallv adding circuit quantities. 

4. Determine phase angles of RL series and parallel circuits by using the tangent 

trigonometric function. 

5. Determine the Q of a coil when given the inductance and internal resistance of 

the coil. 
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II Phase Relationships in a Series RL Circuit 9 
INTRODUCTION 

in the previous lesson, the inductor and its 
properties were introduced. However, like 
capacitive circuits, inductors are not usually 
the only component in circuits. A more 
common circuit is one in which inductors 
are combined in series, or in parallel with 
resistors. In this lesson you will learn 
techniques to solve problems for circuits 
containing a resistor and an inductor. You 
will learn how the phase relationship between 
voltage and current affect the analysis of such 
circuits. And you will learn how to compute 
the values for current, voltage, impedance, 

phase angle, and power for series and parallel 
circuits containing a resistor and inductor. 

SERIES RL CIRCUIT 

Phase Relationships in a Series RL Circuit 

A typical series RL circuit is shown in Figure 
9.1 in it one resistor is connected in series 
with one inductor. In a series RI. circuit, as in 

any series circuit, the current through all the 
components is the same. However, the sum of 
the voltage drop across the resistor and the 

voltage drop across the inductor, do not 
simply add algebraically to equal the 
applied voltage as they would in either a 
purely resistive or a purely reactive circuit. 
1 his is because of the combination of 
resistance and reactance and the different 
phase relationship between the voltage and 
current for each component. 

Recall, as shown in Figure 9.2, that the voltage 
across a resistor is in phase with the current 
flowing through it; but for an inductor, 
however, the voltage leads the current by 90 
degrees. Since the components are in series 
with one another, the current through 
each component is the same. Therefore, 
mathematically, 

Ix = IL = IT 

Figure 9.1 RI. Serles Circuit 

4•-

a 

R 

‘b,  

1R ER 

E L 

'4es 

Figure 9.2 El Phase Relationship for a Resistor, a, and 
an Inductor, h 

Using the current then as a common basis for 
comparison, the two individual diagrams 
shown in Figure 9.2 can be combined into one 
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• Phasor Addition of Voltages 
• Derivation of Impedance Phasor Diagram 

as illustrated in Figure 9.3. In this composite 
phasor diagram, note that the voltage across 
the resistor is in phase with the current in the 
series circuit, while the voltage across the 
inductor leads this current by 90 degrees. If 
the phase relationships of the two voltage 

drops are compared, the voltage across the 
inductor leads the voltage across the resistor 
by 90 degrees. 

Phasor Addition of Voltages 

Because of their phase difference, these 
voltages cannot be added algebraically as one 
normally would add the voltage drops in a 
series circuit to obtain the total applied 
voltage. Instead, these voltages must be added 
vectorially, as show in Figure 9.4. This is like 
the voltages in a series RC circuit are added. 
Using the parallogram method, the vectorial 
sum of ER and EL is equal to the applied 
voltage of EA. This phasor diagram is called 
the voltage phasor diagram for this circuit. 

Derivation of Impedance Phasor Diagram 

Now, by applying Ohm's law, 

ER = IR (9-1) 

Since the current, through the resistor in this 
series RL circuit is the total current, 

ER = ITR (9-2) 

Remember also that 

EL = 11 XL (9-3) 

and that the current through the inductor is 
the same as the total current. Therefore, 
equation 9-3 could also be written as 

EL = ITXL (9-4) 

These IR and IXL quantities can be 
substituted for the voltages they equal on the 
voltage phasor diagram as shown in Figure 
9.5a. Since the total current is the common 
factor here, it may be factored out so that the 
phase relationship between R and Xt. remains 
as shown in Figure 9.5b. 

EL 

Figure 9.3 Composite RL Circuit Phase Relationships of 

a Series RL Circuit 

EA .04 
I. 

EL // e I EL 
I 

 ›•-• 
ER 

Figure 9.4 Voltage Phasor Diagram of a Series 
RL Circuit 

 1 

a 

Figure 9.5 Relationship of R and XL 
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RL CIRCUIT 
ANALYSIS 

• Calculating Impedance 9 
Recall that in a purely resistive series circuit 
the sum of all ohms of resistance equals the 
total ohms of resistance. And in a purely 
reactive series circuit the sum of all ohms of 
reactance equals the total ohms of reactance. 
In an RI. circuit, however, there exists a 
combination of resistance and reactance 
like in a series RC circuit, and it is called 
impedance, Z. measured in ohms, as 

illustrated in Figure 9.6. 

Calculating Impedance 

Impedance of an RC circuit can be calculated 
by adding the resistance and reactance 

vectorially on the phasor diagram. This is 
accomplished by simply applying the 

Pythagorean theorem. As illustrated in Figure 
9.6, the length of the reactance vector, XL, is 

the same as the length between the tip of the 
resistance vector and the tip of the impedance 
vector Z. In fact, the phasor diagram can be 
drawn with the reactance vector placed as 
shown in Figure 9.7. Now, the right triangle of 

the Pythagorean theorem becomes clearly 
evident. Applying the Pythagorean theorem, 
the total impedance is equal to the square 
root of the resistance squared plus the 
inductive reactance squared. 

Z = Vle + XL' (9- 5) 

For example, a typical series RI. circuit is 
shown in Figure 9.8 If the resistance in that 
circuit is 60 ohms and the inductive reactance 
is 80 ohms, then the total impedance of the 
circuit can be determined as follows: 

Z = N,R2 + xL2 

= V6o2 + 802 

= 1/3600 + 6400 

= VI0,000 
= 10011 

The total impedance of that circuit is 
100 ohms. 

X t(ohms) I, 

z (ohms) 

R (ohms) 

Figure 9.6 Resisiivelnduciive Circua Plzasor Diagram 

 F 

Figure 9.7 Righi Triangle Relaiionslup of Z. R. and XL 

XL= 80Q 

R= 
600 

Figure 9.8 Impedance Calculation Example 
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• Mathematical Relationship of Voltages 
• Example of Voltage Calculation 

When drawing voltage and impedance 

diagrams for circuits like this, it is often 
convenient to draw them in the form of a 

right triangle as shown in Figure 9.9. 

Mathematical Relationship of Voltages 

Using a voltage phasor diagram as shown in 

Figure 9.10, the same type of mathematical 
calculation can be used to show the 

relationships between the voltage drops 

in the circuit and the applied voltage. 

Shifting the inductive voltage vector as shown 
in Figure 9.11, and using the Pythagorean 

theorem, the applied voilage is equal to the 

square root of the voltage across the resistor 

squared plus the voltage across the inductor 
squared: 

EA = VER2 E1 2 (9-6) 

Example of Voltage Calculation 

Fig-ure 9.12 is a typical series RL circuit and 

will be used to show you how to calculate 

E, in such a circuit. The voltage across the 
resistor in that circuit is 20 volts, and the 
voltage across the inductor is 15 volts. The 

total applied voltage can be determined using 

equation 9-6. 

EA = VER T + EL2 

= V202 + 152 

= V400 + 225 
= • 625 
= 25V 

Figure 9.13 shows the right triangle 

relationship of the example circuit's 
EL, and ER. 

EA, 

R=602 

Figure 9.9 Right-Triangle Relationship of Z, XL, and R 
of the Example Circuit 

EL 

ER 

Figure 9.10 Voltage Pha.sor Diagram of a Senes 
RL Circuit 

EL 

E 
A 

Figure 9.11 Right Triangle Relationship of En. Ex, 
and EL 
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• Solution of a Series RL Circuit 9 
Solution of a Series RL Circuit 

Now, if you are given an applied voltage and 

values for R and I. for a series RI. circuit, 
you should be able to determine the total 
impedance, the total current, and the 
individual voltage drops across the resistor 
and inductor. For example, in the series RL 
circuit of Figure 9.14, the value of the resistor 
is 75 ohms, and the value of the inductor is 4 
millihenrys. The applied voltage is 250 volts 
with a frequency of 4 kilohertz. To determine 
the total impedance of this circuit, the 
value of the inductive reactance must first 
be calculated. 

XL = 2-rifL 
= (6.2S) (4kHz) (4mH) 
-= 10011 

The impedance phasor diagram shown in 
Figure 9./5 can now be drawn to show the 

relationships between the values of resistance, 
reactance, and impedance in the circuit. The 
value of impedance is calculated using the 
Pythagorean theorem. The impedance is 
equal to the square root of the resistance 
squared plus the inductive reactance squared: 

Z = Ni/112 + XL2 

= V752 + 1002 

= V5,625 + 10,000 

= 1715,625 
= 125f/ 

Remember that impedance is the total 
opposition of the resistive-reactive circuit to 
the flow of alternating current. Recall that in 
Lesson 7, this fact was used to determine a 
special form of Ohm's law which is called 
Ohm's law for ac circuits: 

EA = ITZT (9-7) 

Figure 9.12 Total Voltage Calculation Example 

EL= 
15 V 

Figure 9.13 Right-Triangle Relationship of EA, EL and 
ER of the Example Circuit 

EA = 
250 V 

• 

f = 4 kHz 

Figure 9.14 Series RL Example Problem 
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• Solution of a Series RI. Circuit 

Rewriting this equation and solving for 
the total current, the total current equals 
the applied voltage divided by the 
total impedance. 

EA 
IT = 

If this equation is applied to the example 
series RL circuit: 

250V 
IT — 

125S1 
= 2A 

(9-8) 

The voltage drop across the resistor, ER, and 
inductor, EL, can now be calculated as they 
would in any series circuit. The voltage drop 
across the resistor is equal to the current 
through it times the value of the resistance. 

ER = IR (9-9) 

The current through the resistor is the same 
as the total current. Thus, 

ER = ITR 
= (2A) (751-1) 
= 150V 

The voltage drop across the inductor is equal 
to the current through it times the value of 
the inductive reactance. 

EL = ILXL (9-10) 

again, IL is the same as the total current. 
Therefore, 

EL = ITXL 

= (2A) (loom 
= 200V 

f 

Figure 9.15 Impedance Phasor Diagram 

If the voltage across the resistor, 150 volts, 
and the voltage across the inductor, 200 volts, 
are added, the result is 350 volts. That is 
more than the applied voltage But remember 

that the voltage across the resistor and the 
voltage across the inductor are out of phase 
by 90 degrees. Therefore they must be added 
vectorially. Recall that vectorially. the applied 
voltage equals the square root of the voltage 
across the resistor squared, plus the voltage 
across the inductor squared Therefore, for 

the example circuit 

EA = VER2 + EL2 

= V1502 + 2002 

= V22,500 + 40,000 

= V62,500 
= 250V 

Thus, you can see that the vector sum of 
the circuit voltage drops does equal the 

applied voltage, 250 volts. 

This technique is a valuable tool for circuit 
analysis because the calculation can be used to 
check the accuracy of calculations performed 

to determine the various individual voltage 
drops in the circuit. Simply be sure that the 
vector sum of the circuit voltage drops equals 
the applied voltage. 
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Phase Angle in a Series RL Circuit 9 
Phase Angle in a Series RI. Circuit 

Recall that when originally forming the 
voltage phasor diagram shown in Figure 
9.16, the current in the circuit was used 
as a reference quantity since it is the same 
throughout the circuit. This total current is 
in phase with the voltage across the resistor 
Notice, however, that the applied voltage 
and the total current are out of phase. More 
specifically, the applied voltage leads the total 
current by a number of degrees. Recall that 
this angle by which the total applied voltage 
and the total current are out of phase is called 
the phase angle of the circuit. The phase angle 
is the number of degrees by which the 
current being drawn from the ac voltage 
source and the voltage of the ac voltage 
source are out of phase. The phase angle in a 
series RL circuit can also be recognized as the 
angle between the voltage across the resistor 
and the applied voltage, as shown in 
Figure 9.16. 

Since the impedance phasor diagram is 
proportional to the voltage phasor diagram 
by the common factor of total current which 
cancels, XL can be substituted for EL, Z can be 
substituted for EA, anti R can be substituted 
for ER as shown in Figure 9.17. Therefore, the 
phase angle in a series RI. circuit is also the 
angle between the resistance phasor and the 
impedance phasor. This is similar to a series 
RC circuit. Recall that when determining the 
value of this phase angle, a trigonometric 
function was used called the tangent function. 
Recall that the tangent of an angle in a right 
triangle is equal to the ratio of the length of 
the opposite side divided by the length of the 
adjacent side as shown in Figure 9.18. 

EL — 
EA 

‘• 

IT 

Figure 9.16 Location of Phase Angle 

VOLTAGE IMPEDANCE 
PHASOR PHASOR 

E1 Z 
EA 

ER 

•.\ 

 ee 

Figure 9.17 Voltage and Impedance Phasor Diagram 

TAN e = 
O 
A 

Figure 9.18 Tangent Function 
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• Calculating Phase Angle from Voltage Phasor Diagram 

The side opposite to the phase angle, 0, 

in the voltage phasor diagram of Figure 9.19 
is the vector EL. The length of the vector 

represents the value of the voltage drop 
across the inductor. The side adjacent to the 

phase angle, in the voltage phasor diagram, 

is the vector ER whose length represents the 
value of the voltage drop across the resistor. 

The tangent of the phase angle, 0, is equal to 

the ratio of the opposite side divided by the 
adjacent side: 

opposite 
tan 6 

adjacent 

EL 
tan 8 = — 

ER 

The value of the phase angle, 0, then is 

simply the arctangent of this ratio. 

/EL \ 
O = arctan I — I 

\ER/ 

Remember that arctangent also can be 

abbreviated, tan to the minus one: 

O EL) = tan -1 (— 
ER 

(9 //) 

(9-12) 

(9.13) 

(9-14) 

Calculating Phase Angle from Voltage 

Phasor Diagram 

As shown in Figure 9.20, in the series RL 

circuit of Figure 9.14 previously solved, the 
voltage across the inductor E1 was 

determined to be 200 volts, and the voltage 
across the resistor ER was 150 volts. 

Therefore theta is: 

O = tan-1 (t) 

_1 (200V\ 

tan U501‘/) 
= tan (1.33) 

= 53° 

Therefore, the phase angle of the example 
series RL circuit is 53 degrees, a posttzve 

53 degrees. 

Figure 9.19 Opposite and Adjacent Side in a Voltage 
Phasor Diagram 

EA= 
250V 

Ei = 
200V 

ER=150 V 

Figure 9.20 Sample Calculation of Phase Angle Using 

Calculated Voltage Phasor Diagram 
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• Series RL Phase Angle is Positive 
• Calculating Phase Angle from Impedance Phasor Diagram 9 
Series RL Phase Angle is Positive 

In the lesson about RC circuits an arbitrary 
standard was established for the angle of 
rotation of vectors for series circuits. It was 
established that the angle of rotation of 

a phasor in a counter-clockwise direction 
from the zero degree reference forms a 

positive phase angle as shown in Figure 9.21. 
Therefore, the positive sign of the phase 
angle, as shown in Figure 9.22, indicates that 
the applied voltage is rotated 53 degrees 
counter-clockwise (or up) from the current 

vector direction. Phase angles in series RL 
circuits will always be positive phase angles. 

Calculating Phase Angle from Impedance 
Phasor Diagram 

Recall that earlier it was described how the 
impedance phasor diagram is proportional to 
the voltage phasor diagram by a factor of the 
total current for a series circuit. Since these 
two phasor diagrams are proportional, it is 
possible to determine the phase angle from 
the impedance phasor diagram as illustrated 

in Figure 9.23. The side opposite to the phase 
angle, 8, in the impedance phasor diagram, is 
the reactance vector, XL. The length of this 
vector represents the value of the inductive 
reactance. The side adjacent to the phase 
angle in the impedance phasor diagram is 
the resistance vector, R. Its length represents 
the value of the resistor. The tangent of the 
phase angle, then, is equal to the ratio of the 
opposite side. XL, divided by the adjacent 
side, R. 

tan 0 = 
adjacent 
XL 

opposite 

= 

90° 

+ ccw 
ROTATION 

1 80° — — — — — — on 

me)  - CW 
ROTATION 

270° 

Figure 9.21 Postiave-Negative Phase Angle Convenil,, 

e = 53° 

el 

Figure 9.22 Positive Phase Angle in Series RL Circuit 

XL 

OPPOSITE 

ADJACENT 

Figure 9.23 Opposite and Adjacent Side in an 
Impedance Phasor Diagram 
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ANALYSIS 

1M Power Calculations in Series RL Circuit 

The arctangent of the ratio will yield the 
value of the phase angle. Recall that in the 
series RI. circuit, the value of the inductive 

reactance, X L , is 100 ohms, and the value of 
the resistance R is 75 ohms. Therefore 
theta is: 

X L 
8 arctan 

XL)R 

1001k  
75f1 ) 

= tan' (1.33) 

= 53° 

tan s 

= tan'' 

Thus, it should be apparent that the value 

of the phase angle in a series RL circuit can 
be determined from either the voltage or 
impedance phasor diagram. 

Power Calculations in Series RL Circuit 

Now, attention will be focused upon power 
calculations involved in the series RL circuit. 
These calculations are very similar to power 
calculations for series RC circuits. 

The real power, PR, dissipated by the resistor 
in Figure 9.24 can be calculated as it was in a 
purely resistive series circuit. Simply multiply 
the voltage drop across the resistor (150 volts 
in the example) times the current's value 
flowing through it (2 amperes). 

PR = ER X IR 
= (150V) (2A) 
= 300W 

The reactive power. PL, of the inductor is 
calculated as it was in a purely inductive 
circuit. Simply multiply the voltage across the 
inductor (200 volts in the example) times the 
current flowing through it (2 amperes). 

PL = EL x IL 
= (200V) (2A) 
= 400VAR 

Figure 9.24 Power in a Senei RI. Circuit 

Recall that the total power in a resistive-
reactive circuit is called the apparent power, 
measured in volts-amperes. The total or 
apparent power can be found by multiplying 
the applied voltage (250 volts in the example) 

times the total current (2 amperes). 

PA = EA X IT 
= (250V) (2A) 
= 500VA 

Remember, that the simple sum of the real 
power and the reactive power does not equal 
the apparent power. In the example, 500 

volt-amperes does not equal 300 watts plus 
400 VAR when they are added together 

PA # PR PL 

or 

500VA # 300W + 400VAR 
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• Power Calculations in Series RL Circuit 9 
This occurs because of the different phase 

relationships between the voltage and current 
for each component in the circuit. The 
phase relationships of the three power 
determinations are similar to the voltage 

phase relationships. Figure 9.25 shows the 
voltage phasor diagram with its values EA, 
ER, and EL. If each voltage is multiplied by 
the total current, IT, in the circuit, it will be 
found that the power phasor diagram is very 
similar to the voltage phasor diagram because 
as shown in Figure 9.26 

PA = EAIT (9-15) 

and 

PR = ERIT 

PL = ELIT 

(9-16) 

(9-17) 

In fact, the values are proportional to the 

voltage diagrams by the common factor of 
total current, I 

Using the Pythagorean theorem, the apparent 
power, PA, is equal to the square root of the 
real power, PR, squared plus the reactive 
power, PL, squared: 

PA = PR2 + (9-18) 

Thus, the total apparent power in this circuit, 
500 volt-amperes, should be equal to the 
square root of 300 watts squared plus 400 
VAR squared. By completing the calculation, 
it is found that the apparent power is equal to 
500 volt amperes: 

PA = VFR2 PL2 

= V3002 + 4002 

= N/90,000 + 16,000 

= V250,000 
500VA 

This is the same value obtained by 
multiplying the applied voltage by 
total current. 

Figure 9.25 Voltage Phasor Diagram 

ERIT 

Figure 9.26 Derivation of Power Phasor Diagram from 
Voltage Phasor Diagram 
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Phase Relationships in a Parallel RI. Circuit 

As shown in Figure 9.27, the angle 53 degrees 
between the real power. PR, and apparent 

power, A. is the same as the angle between 
applied voltage, EA, and resistive voltage, 
ER. As you can see, the methods used to 
determine the voltages, current, impedance. 

and phase angle and power throughout a 
series RL circuit are very similar to the 
methods used to determine the same 
quantities for a series RC circuit. 

PARALLEL RL CIRCUIT 

Now that you have seen how to determine 
these quantities for a series RL circuit, the 
next step is to learn how to determine the 
same quantities in a parallel RL circuit. The 
circuit, shown in Figure 9.28, in which a 
resistor is connected in parallel with an 
inductor, is called a parallel RI. circuit. 

Phase Relationships in a Parallel RL Circuit 

In this circuit, as in any parallel circuit, the 

voltage across all components is the same: 

EA =e ER ee EL 

However, the simple sum of the branch 
currents does not equal the total current in 
the circuit: 

IT R + IL 

This occurs because of the different phase 
relationships between the voltage and current 
of each component. 

Recall that the voltage across the resistor is 
in phase with the current through it; in the 
inductor, the voltage leads the current by 
90 degrees as shown in Figure 9.29. Since 
the components in this circuit are in parallel 
with one another, the common factor in 
both phasor diagrams is the voltage across 
the components: 

EA = ER = EL 

RL CIRCUIT 
ANALYSIS 

a 

Figure 9.27 Voltage and Power Phasor Diagrams 

Figure 9.28 Typical RI Circuzi 

te 

a 

4 
i 

tR 1 
1 
I i r 

I 8 R 1.' R 

b L ELI 

1  

1 IL 
te 

Figure 9.29 Phase Relationship for a Resistor, a, and an 
Inductor, ti 
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• Phasor Addition of Currents 9 
However, to illustrate the phase relationships 
in a parallel circuit, EL and IL must be rotated 
90 degrees as shown in Figure 9.30a. Then 
the two individual phasor diagrams can be 

combined, as shown in Figure 9.30b. Not that 

the current through the resistor is shown in 
phase with the applied voltage across it while 

the voltage across the inductor leads the 
current through it by 90 degrees. 

Phasor Addition of Currents 

Comparing the phase relationships of the 
two branch currents, the current through 
the resistor leads the current through the 
inductor by 90 degrees. These individual 
branch currents can be calculated as they 
were in either a purely resistive or purely 
inductive circuit. Simply divide the voltage 
across the branch by the opposition to current 
in that branch. 

In the resistive branch of the example circuit, 
the opposition to flow of current is measured 
in ohms of resistance; thus, in the example 
circuit, the resistive current is determined 
by dividing the applied voltage across the 
resistor by the value of the resistor: 

ER EA 

114 = 
(9-19) 

In the inductive branch, the opposition to 
the flow of current is measured in ohms of 
reactance; thus, in the example circuit, the 
inductive branch current is determined by 
dividing the applied voltage across the 
inductor by the inductive reactance: 

EL EA 
IL --

XL XL 
(9-20) 

These currents cannot be added algebraically 

to obtain the total current as the branch 
currents in a parallel resistive circuit can 
be added. The currents must be added 
vectorially because of the different phase 

Figure 9.30 Combining Phase Relation_ships for Parallel 
RL Circuit 

Figure 9.31 Right-Triangle Relationships of IR. IL, 
and IT 

relationship in a parallel RL circuit The same 

procedure is used that was used in other 
diagrams to form a right triangle between the 
tip of the inductive current vector and the tip 
of the resistive current vector, with the total 

current vector, IT, completing the hypotenuse 
of the triangle. This is illustrated in 

Figure 9.31. 
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al Parallel RL Circuit Example 
• Determining Impedance of a Parallel RL Circuit 

Now the Pythagorean theorem can be used to 
determine the total current in the circuit By 
the Pythagorean theorem, the total current 

in a parallel RL circuit is equal to the square 
root of the resistive current squared plus the 
inductive current squared: 

= VIR2 + (9-21) 

Parallel RL Circuit Example 

As an example, the circuit in Figure 9.32 will 
be used. In it, the resistive current is 28 

milliamperes and the inductive current is 
21 milliamperes. Total current is calculated: 

IT = VIR2 +12 
= V282 + 21 2 

= V784 + 441 

= V1225 
= 35mA 

Thus, the total current in the circuit is 
35 milliamperes. 

Determining Impedance of a Parallel 
RL Circuit 

Once the total current is known, the total 
impedance of the circuit can be determined 
using Ohm's law for ac circuits: 

EA = ITZ (9-22) 

However, this time the equation must be 
rewritten to solve for impedance. The total 
impedance of the circuit is equal to the 
applied voltage divided by the total current: 

EA 
Z = (9-23) 

RL CIRCUIT 
ANALYSIS 

T 

ÏR 
IR. 28 mA IL. 21mA 

Figure 9.32 Example Circuit for Calculation of 
Total Current 

IT= 35mA 
EA R 

70V 

.0( 

Figure 9.33 Example Circuit for Impedance Calculation 

For example, if in the previous example 
circuit the total applied voltage was 70 volts 

as shown in Figure 9.33, then the circuit 
impedance is equal to the applied voltage, 
70 volts, divided by the total current, 

35 millamperes: 

EA 

Z = —IT 
70V  
35mA 

= 2kfl 
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RL CIRCUIT 
ANALYSIS 9 

Phase Angle in a Parallel RL Circuit 

Now the phase angle of the example RI. 

circuit will be determined by utilizing the 
original current phasor diagram shown in 
Figure 9.34. Recall that the phase angle is the 
number of degrees of phase difference 
between the applied voltage and the total 
current. Also recall that the applied voltage, 
EA, is also the voltage across the resistor, ER, 

and that the current through the resistor is in 
phase with the voltage across it Therefore. 

the applied voltage is in phase with the 
resistive current, IR. The voltage across the 

inductor. EL, is the same as the applied 
voltage and it leads the current in the 
inductor by 90 degrees. Therefore. II. 
forms the right angle with I R, and I I is the 
hypotenuse of the right triangle. 

Since the applied voltage. EA, is in phase with 
the current through resistor I R, the phase 
angle is the angle, O. between IR and l I . And, 

as you can see, the phase angle is a parallel 
RL circuit is simply the angle between the 
resistive current and total current. 

The value of the phase angle of a parallel RI. 
circuit can be calculated by determining the 
arctangent of the ratio of the opposite and 
adjacent sides. The length of the opposite 
side represents the value of the inductive 
current. The length of the adjacent side 
represents the value of the resistive current. 
Mathematically, therefore: 

= arctan ( opposite 

or 

or 

O = arctan 

(9-24) 
adjacent 

(IL) 
\ it-) 

O = tan' 
IR 

(9-25) 

(9-26) 

e »eiN 

1R EA=EL=ER 
er  

N H L 

Figure 9.34 Current Phasor Diagram 

EA XL= 
120 V (lip' 12 k0 

R = 5 kç-2 
f= lkHz 

Figure 9.35 Parallel RL Circuit Example 

Solution of a Parallel RL Circuit 

In this section, a parallel RL circuit will be 
analyzed and the individual branch currents. 
the total current, the total impedance, and the 

phase angle determined. 

Branch Currents 

In the parallel RI. circuit shown in Figure 
9.35, the value of the resistor is 5 kilohms 
and the value of the inductor is 1.9 henrys. 
Therefore, at the applied frequency of 1,000 
hertz, the inductor has an inductive reactance 
of 12 kilohms. This is determined by the 

inductive reactance equation: 

XL = (9-27) 
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▪ Total Current 
• Impedance 

The applied voltage is 120 volts. The resistive 

branch current is found by dividing the 

voltage across the resistor, 120 volts, by the 

value of the resistor, 5 kilohms, which equals 
24 milliamperes: 

IR = 

120V  

5kfl 

= 24mA 

ER 

The inductive branch current is found in a 

similar manner by dividing the voltage across 

the capacitor, 120 volts, by the inductive 

reactance, 12 kilohms, which equals 

10 milliamperes. 

IL = 
XL 
120V 

121c1I 

= 10mA 

EL 

The current phasor diagram shown in 
Figure 9.36 can now be drawn to show the 

relationships between the resistive and 
inductive branch currents, and the total 

circuit current. 

Total Current 

Because of the different phases, total current 

is a vector sum. Therefore, using the 
Pythagorean theorem, the total current is 

equal to the square root of the resistive 
branch current squared plus the inductive 

branch current squared. Since 1R is 24 
milliamperes and IL is 10 milliamperes, total 
current is calculated: 

IT = it + 

= V242 + 102 

= V576 + 100 

= V676 

= 26mA 

Figure 9.36 Current Phasor Diagram for Example 
Parallel RI. Circuit 

Thus, the value of the total current is 26 

milliamperes. Since all of the current values 
were in milliamperes, the total current is 

measured in milliamperes also. 

Impedance 

-1 he total impedance of the example parallel 
RL circuit can now be determined by dividing 

the applied voltage by the total current. 

EA 
Z = 

120V  

26 x 10 -3 

= 4.61E11 

The total impedance is 4.6 kilohms. 
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• Phase Angle 
• Parallel RL Circuit Phase Angle is Negative 9 
Phase Angle 

Using the current phasor diagram shown 
in Figure 9.37, it can be seen that the phase 

angle is the angle between the resistive 
current and the total current. The value of 
the phase angle is equal to the arctangent of 
the ratio of the inductive current divided by 
the resistive current. 

O arctan IL\ (4  / 

10mA1 
= arctan 

( 24mA) 
= arctan (0.1166) 
= — 23° 

[he phase angle is a minus 23 degrees. 

Parallel RL Circuit Phase Angle is Negative 

The negative sign is used with the phase 
angle of this particular example and the 
phase angle is said to be a negative 23 
degrees. This is because the applied voltage 
in the parallel RL circuit is used as a reference 
at zero degrees. The negative sign is used 
to indicate that the total current phasor is 
rotated 23 degrees clockwise from the applied 
voltage phase, as shown in Figure 9.38. EA 
leads l T by 23 degrees. Or it could be said 

that IT lags EA by 23 degrees. 

You should realize, therefore, that in a serie  
RL circuit, the phase angle is positive as 
shown in Figure 9.39. However, in a parallel 
RL circuit, the phase angle is negative, as 
shown in Figure 9.40. 1'he sign of the phase 
angle is used simply to indicate the direction 
of rotation from the reference at zero 
degrees. As a result, if you know that a circuit 
is an RL circuit and you know its phase angle. 
you can readily determine whether the 
resistor and inductor are connected in series 
or parallel by knowing the sign of the 
phase angle. 

Figure 9.37 Phase Angle in Current Phasor Diagram 

Figure 9.38 Phase Angle of Example Circuit is 
- 23 Degrees 

Figure 9.39 Phase Angle of Series Rl. Cecil:Ls 
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III Parallel RL Circuit Power Calculations 

Parallel RL Circuit Power Calculations 

In a parallel RL circuit, the power 

relationships are similar to those of a series 

RL circuit. To show you how to calculate 

power in a parallel RL circuit, the example 
parallel RI. circuit used previously will be 
used. It is shown again in Figure 9.41 with 
some of its circuit values stated. 

The real power. PR, is equal to the voltage 
across the resistor, 120 volts, times the value 

of the current flowing through the resistor, 
24 milliamperes. 

PR = F.RI 

= (120V) (24mA) 

= 2.88w 

The reactive power is equal to the voltage 
across the inductor times the value of the 

current through it: 

PL ELIE. 
= (120V) (10mA) 

= 1.2VAR 

The total apparent power is equal to the 
applied voltage times the total current. 

PA = EA1T 
= (120V) (26mA) 
= 3.12VA 

Since each power determination is made by 

multiplying the current shown in the current 
phasor diagram of Figure 9.42 by the applied 
voltage, the power phasor diagram is 
proportional to the current phasor diagram 

by a factor of the applied voltage. The total 
apparent power, PA, is the vector sum of the 
real and reactive power. That is, the apparent 

power is equal to the square root of the 
real power squared plus the reactive 

power squared: 

PA = Vpa 2 pL2 (9-28) 

: I R 

(t)  

Figure 9.40 Phase Angle of Parallel RL Circuits 

EA 
120V 

IT 
26mA 

XL 
12kfl 

1R R IL 
24mA 51d1 10mA 

Figure 9.41 Circuit Values for Power Calculations 

1R 

a 

PR» EA 1R 

PL= EA IL 

PA» EA IT 

Figure 9.42 Comparison of Current and Power 
Phasor Diagrams 
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Concept of Q 9 
Therefore, PA for the example parallel RL 
circuit is calculated: 

1A VPR2 Pl 2 
= V2.882 + 1.22 

= V8.29 + 1.44 

= 
= 3.12VA 

The total apparent power calculated this 
way is 3.12 volt-amperes, the same as it was 

calculated using the equation PA = EAu. 

Q OF A COIL 

Now that solution methods of series and 

parallel RL circuits have been discussed, one 
other important topic concerning coils needs 
to be discussed— that is, the Q or quality factor 
of a coil. 

Concept of Q 

The inductive reactance. X L, of a coil is an 

indication of the ability of a coil to produce 
self-induced voltage. Recall that inductive 
reactance is expressed mathematically as 

Xi = 27rfL. 

The expression takes into consideration the 

rate of change of current in the circuit in 
terms of frequency (f) and the size of the 
inductor in terms of its value (L). To 
manufacture a coil, however, many turns of 
wire are used. This results in a resistance in 
the coil due entirely to the length of the wire. 
This internal resistance was mentioned in 
Lesson 8 and is represented by r1. Figure 9.43 
shows that the internal resistance of a coil is 
represented schematically by showing a small 
resistor in series with the coil. The coil 

represents the inductor's reactive qualities 
while the resistor represents its resistive 
qualities. 

r, 

Figure 9.43 Equivaleni Circuit for Coil 

HEAT 

ELECTROMAGNETIC 
FIELD 

Figure 9.44 Energy an a Coil 

When current is passed through a coil, energy 
is stored in the magnetic field as it expands 
around the coil, and then it is returned to the 
circuit when the magnetic field collapses 
(Figure 9.44). No heat energy is lost in a coil 
due to the coil's inductive quality. But the 
resistance of the wire of the coil dissipates 
energy in the form of heat just like any other 
resistor would. This energy is lost to the 
circuit and is non-recoverable. 
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RL CIRCUIT (t) 
ANALYSIS 

Basically, the quality of a coil is based on its 
ability to store energy in its magnetic field, 

then return that energy back to the circuit. 
Essentially, it is a measure of how efficient 
the coil is as far as its reactive, self-inductive 
qualities are concerned. 

Derivation of Q Equation 

Q is defined as the ratio of the reactive power 
in the inductance to the real power dissipated 
by its internal resistance. Mathematically, 

P Reactive PL 
Q — — (9-29) 

'Real r r, 

Figure 9.45 is the equivalent circuit of an 
inductor to which an ac voltage is applied. 
The power for the reactive and resistive 
properties of the coil can be written as: 

Pi = 12XL (9-30) 

and 

Pr. = 12r, (9-31) 

Substituting these power values into the 
equation for Q, 

Q = 

Factoring out 12, 

PL 12x, 
P... • 2 

r 
(9-32) 

(9-33) 

And writing XL as 2.741. yields, 

2-rrfL 
Q — (9-34) 

ri 

In the equations, r, is the resistance measured 
by an ohmmeter placed across the coil. I. is the 
inductance of the coil being considered. And 
f is a standard frequency chosen to compare 
the Q of different coils. This frequency is 
usually one kilohertz for large values of L. 

Figure 9.45 AC Voltage Applied to Equivalent Circuit 

of Coil 

Sample Calculation of Q 

Thus, to determine the Q of a coil of 8.5 
henrys, r, would be determined by measuring 
across it with an ohmmeter. In this example, r, 
is about 400 ohms. Then using equation 9-34 

and with f = one kilohertz, the coil's Q 

is calculated: 

= 2TrfL 
Q  

(6.28) (1000Hz) (8.5H) 

400e 
53,3800  

oon 
= 133 
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II Summary 9 
Factors Affecting Q of a Coil 

At low frequencies, ri is simply the dc 
resistance of the wire used in the coil, as 
measured by an ohmmeter. However, as 

frequency increases, additional losses occur 
within the coil. In air-core coils, (the type 

used in high-frequency radio and radar 
circuits) this additional loss is only one, 

called skin effect. This is the tendency of 
high-frequency current to flow near the 
surface of a conductor. This results from 
current near the center of the conductor 
encountering slightly more inductive 
reactance due to the concentrated magnetic 
flux in the center compared to the surface, 

where part of the flux is in the air. This effect 
increases the effective resistance of the 
conductor since current flow is limited to a 
small cross-sectional area near the surface. 

Because of this effect, conductors for very 
high-frequency applications are often made 
of hollow tubing called waveguides. 

In an iron core coil, greater losses occur 

because of eddy currents and hysteresis. 
These losses are due to the magnetic 
properties of the iron. These losses effectively 
increase ri. Any increase in ri tends to 

decrease the Q of the coil at high frequency 
even though XL is increasing as frequency 
increases. At high frequency, therefore, coils 
with air cores, which do not have added 
magnetic losses, are normally used to 
maximize Q. 

SUMMARY 

In this lesson, several techniques were used 
to solve for values in series and parallel RL 
circuits. You learned how the different phase 
relationship between voltage and current for 

each component affected the method of 
analysis of each type of circuit. 

You were shown how to determine the 
currents, voltages, impedance, phase angle 
and power for series and parallel RI. circuits. 

You were introduced to the concept of the Q 
of a coil and saw how you could determine 
the Q for a coil by using a simple 
measurement and calculation. 

The concepts introduced in this lesson for 
solving series and parallel RL circuits may 
be adapted to solve any series or parallel 
RI. circuit. 
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• Worked-Out Examples 

1. Calculate the voltage, current, power, and phase angle values shown for this series RL circuit. 

R 
10kIl 

E. . 
20V 

115kHz 

L 
16mH 

a. XL=   g. EL= 

b. 2.1-=   h. e = 

C. IT =   i. PR = 

d. IR =   J Pi = 

e. 1 =   k. PA - 

f. ER =   

Solution: 

a. )( 1. = 27rfL = (6.28) (65kHz) (16mH) = (6.28) (65 x 103Hz) (16 x 10 -3 11) 

6531.2f1 = 6.53kfl 

b. ZT = VR2 + XL2 = V102 + 6.53' kfl V100 4 42.6 kfl - \ 142.6 HI = I 1.9kfl 

EA 20V  
I - - 1.67mA 

Z - I 1.9k12 

d.,e. IR = IL = I, - 1.67mA (series circuit) 

f. ER IRR = (1.67mA) (10k11) = I6.7V 

g. EL = 1LXL = (1.67mA) (6.53kfl) = 10.9V 

h. 8 = arctan )(1 \ R arctan 
6 531(12 \ 

10k1) 
- arctan(0.653) = 

1. PR = ER1R = (16.7V) (1.67mA) = 27.9mW 

J. PL = EL1L = (10.9V) (1.67mA) = I8.2mVAR 

k. PA = ETIT = (20V) (1.67mA) = 33.5mVA 

+ 33° 
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MI Work out Examples 9 
2. For the circuit of Example I, sketch the voltage, impedance, and power phasor diagrams. 

Label all phasor lengths and locate the phase angle in each diagram. 

Solution: 

Z = 11.9161 

= +33° 

R = 10kfl 

XL -.-
6.531cii 

a. Impedance Phasor Diagram 

= 16.7V 

EL 
10.9V 

PR = 27.9mW 

P, = 
18.2mVAR 

b. Voltage Phasor Diagram c. Power Phasor Diagram 

3. Calculate the voltage, current, power, and phase angle values shown for this parallel 
RI. circuit. 

E. - 
30V 

250Hz 

Solution: 

1 5k 
L = 
5H 

a. XL= 

b. ER -=   

El =   

cl. IR =   

e. IL -   

f. I -   

a. XL = 21T11. = (6.28) (250Hz) (5H) = 7850f1 = 7.851d) 

b. ER = EA = 30V (parallel circuit) 

c. E1 = EA = 30V(paizillel circuit) 

ER 30V  
d. lR = 20mA 

R 1.5kfl 

Et 30V  
e. ka• — Xt. 7.85kf). 

3.82mA 

g Z =   

h 0 =   

1. PR=   

J. 

k PA   

f. IT = VIR2 + IL2 = V202 + 3.822 mA = V400 + 14.6 mA = 1./T‘izrimA = 20.4mA 
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g 1T — 
EA 30V  

— 1.47k11 
IT 20.4mA 

h. 8 = arctan 
3  i   — arctan 82m As 

\ IR 20mA 1 
arctan(0.191) - -II° 

PR = ERIR = (30V) (20mA) = 600mW 

J. PL E111 = (30V) (3.82mA) = 114.6mVAR 

k. PA = EA IT = (30V) (20.4mA) = 612mVA 

4. For the circuit of Example 3, sketch the current and power phasor diagrams. Label all phasor 

lengths and locate the phase angle in each diagram. 

Solution.-

a. h. 

= 20mA Pa = 600mW 

= -11' 

3.82mA 
IT = 20.4mA P„ = 612mVA 

= 
1146m VAR 

5. Determine the Q of a 10 mH coil that has an internal resistance of 7 ohms at a frequency 

of 1 kHz. 

Solution: 

Q = 
XL .. 2•trfL (6.28) (1kHz) (10mH) (6.28) (1 x 103Hz) (10 x 10 3H) _ 
r, r1 711 7fl 

62.8 x 10°11 62.8f2  
_  7f 7 1 7f1 
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MI Practice Problems 9 
1. For the circuit shown. determine the values specified for the circuit values given. 

Ea 

a• EA = 45V 
f = 15kFlz 
R = 
L = 15mli 

b. I- =- 120V 
= 60Hz 

R -- 1 kfl 
L = 6.5H 

EA = 26V 

f 600kilz 

R = 15kfl 

L = 3.5mH 

X1 =   XL =   XL =   

ER =   ER =   ER =   

EL =   EL =  EL =  

IR r=   IR ne   IR 

IL IL =   IL =   

It =   IT IT =   _ 

7 =   z z 

e =   e e 

pR =   PR   PR 

Pi_ = 131 -   PL 

I)A =   PA =   PA 

2. Sketch the voltage, impedance and power phasor diagrams for Problem lc Label all phasor 

lengths, locate and identify the phase angle for each diagi am. 

a. Voltage Phasor Diagram h. Impedance Phasor Diagram c. Power Phasor Diagram 
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• Practice Problems (t) 
3. For the circuit shown, determine the values specihed for the circuit values given. 

a. EA = 60V 
R = 12kil 

Xi = 5kS1 

b. EA = 3hV 

R = 18N111 

Xt. = 4Mí2 

C. EA = 24V 
R = 31a2 

X1 6kfl 

ER =   ER =   EK =   

EL =   El. =   F.1 -   

IR =   =   IR 

11. =   IL =   =   

IT =   ! =   il =   

Z Z =   Z =   

e -e =   e 

PR =   PR =   =   

PL =   PL =   Pl. =   

PA =   PA =   PA =   

4. Sketch the current and power phasor diagram for Problem 3c. Label all phasor lengths, 
locate and identify the phase angle for each diagram 

a. Current Phasor Diagram b. Power Phasor Diagram 

5. Determine the Q of a 65 mH coil at a frequency of I kHz if its resistance as measured with an 

ohmmeter is 2511 

Q = 
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Quiz 9 
1. For the circuit shown, determine the 

values specified, and sketch and label the 
impedance, voltage and power phasor 
diagrams. Label all phasor lengths. 

Locate and identify the phase angle in 
each diagram. 

E. = 
25V 
4kHz 

a. XL =   g. 
b. Z. =   h. 
c. ER I. 
d. Ei =   j. 

e• IR =   k. 
f. IL =   

I. Voltage Phasor Diagram 

L = 
100mH 

8 =   
PR —   
PI =   
PA =   

m. Impedance Phasor Diagram 

n. Power Phasor Diagram 

2. For the circuit shown, determine the 
values specified and sketch the current 
and power phasor diagrams. Label all 
phasor lengths. Locate and identify the 
phase angle in each diagram 

E. = 
12V 

400Hz 

L = 
4.71M 
R = 

2.5H 

a XL =   g. Z =   
b. ER =   h. 0 =   

c. EL =   I. PR 
d. IR = J. Pi. =   
e. l =   k. PA =   
f. IT =   

I. Current Phasor Diagram 

m. Power Phasor Diagram 

3. Determine the Q of 2.5 mH coil at 
a frequency of 1 kHz if its internal 
resistance is 211. 

Q = 
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• Quiz 

4. Determine the internal resistance of a coil 
if its value is 8.5 H with a Q of 15 at a 
frequency of 1 kHz. 

ri = 

5. What is the phase relationship of the 
voltage across the coil versus the voltage 
across the resistor of a series RL circuit? 

a. ER leads El by 90° 
b. EL leads ER by 90° 
C. ER and E1 are in phase 
d. ER and EL are 180° out of phase 
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LESSON 10 

RC and .1. 
RL Time 
Constants 
This lesson discusses the time relationships of current 
and voltage in dc resistive and capacitive, and resistive 
and inductive circuits. A special quantity, a time 
constant, is introduced and RC and RL time constants 
are defined. Voltages and currents are calculated after 
various time intervals of circuit operation. 
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RC AND RL TIN«. 
CONSTANTS 

al Objectives 

At the end of this lesson you should be able to: 

1. Define time constant for both RC and RL dc circuits. 

2. Draw the current and voltage waveforms during the charge and discharge time 

of a capacitor in a dc resistive and capacitive circuit. 

3. Draw the current and voltage waveforms during the time that current increases 

and decreases in a dc resistive and inductive circuit. 

4. Given a known time interval after a capacitor begins to charge or discharge in an 

RC circuit, calculate the instantaneous voltage and current values in the circuit. 

5. Given a known time interval after current begins to increase or decrease in an 

RL circuit, calculate the instantaneous voltage and current values in the circuit. 

6. Convert time intervals to time constants and time constants to time intervals in 

RC and RI. circuits. 
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Circuit Current Related to a Capacitor's Charge 

1 RC AND RL TIME 
CONSTANTS 

INTRODUCTION 

In the past several lessons. discussion was 
about RC and RI_ circuits with an ac voltage 
applied. Phase differences between the 
current, voltage and power were observed 
which caused phase differences between the 
applied voltages and total currents in the 
circuits. Several questions arise. What would 
be the response of these sanie circuits if a dc 

voltage were applied? I low long does it take 
to charge a capacitor to the applied voltage? 
And how long does it take for the current in 
an inductive circuit to rise to its maximum 
value? To answer these questions, in this 
lesson, unit values called RC and RI. time 
constants will be discussed, and RC and 
RI. circuits with dc voltages applied will 
be analyzed. 

RC DC CIRCUIT ANALYSIS: 

CHARGE CYCLE 

Before actual dc RC and RL circuits are 
analyzed. however, it is necessary to review 
and expand on basic capacitive and inductive 
circuit action that was presented in previous 
lessons. First, the capacitor and its response to 
a dc voltage will be reviewed. 

Circuit Current Related to a 
Capacitor's Charge 

In the circuit of Figure 10.1, there is a 10 
kilohm resistor in series with a I microfarad 
capacitor connected through a switch. SI, to a 
10-volt dc power supply. The switch is open 
and the capacitor, therefore, has no charge 
on its plates. 

Recall the basic action of a capacitor in this 
type of circuit was discussed in Lesson 6. 
When the switch first contacts position I. at 
tinte th as shown in Figure 10.2, the voltage 
is applied across the plates of the capacitor. 
Electrons then move front the upper plate of 
the capacitor through the circuit to the lower 
plate. This flow of electrons constitutes a 
current which will be called the charge current. 

Figure 10.1 A Typical RC CH lit !rh D( 

Voltage Applied 

e 

POS 

— 7 °1-C)--e\eNeNe-1 

—6 
= 10VOC 

R = Who 

T--C 1' F 

Figure 10.2 Capacitor Charges When SI Closes 
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CONSTANTS 

• Calculation of 1,„„„ 
• Variation of Ec 

Calculation of 

The initial current is large, but its maximum 
value is limited by the value of the resistance 
in the circuit. The maximum value of the 
charge current is equal to the applied voltage. 
ET, divided by the value of the resistance. 

ET 
'ma = R (10-1) 

In the circuit of Figure 10.1, E-r = 10 volts 
and R = 10 kilohms. Therefore, 

ET 

10V 

▪ 10k11 
= lmA 

10 volts divided by 10 kilohms equals 1 
milliampere of current. 

As more and more electrons are transferred 
and accumulate on the negative plate, it 
becomes increasingly difficult for the applied 
voltage to transfer additional electrons and 
the transfer rate decreases. Thus, the current 
in the circuit decreases. This current 
decreases until it is finally zero at which 
time the capacitor is fully charged. 

A graphic representation of this action is 
shown in Figure 10.3. where the current is 
plotted versus time. At first, at time t1 the 
current is at its largest value, 1 milliampere, 
then decreases to zero exponentially as the 
capacitor charges. 

Variation of Ec 

As this transfer of electrons occurs, as shown 
in Figure 10.4, current flows in the circuit, 
the charge on the capacitor builds, and a 
difference of potential is present across its 
plates. When the capacitor is fully charged, 
the voltage across it, Ec, is equal to the 
applied voltage of 10 volts. 

ImA 

time ••••• 

Figure 10.3 Gniph of ( urreril During (apart/or Charge 

POS 1 
S — 1 11 = 10k11 

— 7 C)-f"«. -- domme 

T -'-
- = 10VDC 

1 = 0 When Ec = 10V 

Figure 10.4 Current Flows Until Capacitor Ls 

Fully Charged 
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CONSTANTS 

Calculation of E, 1 o 
Figure 10.5 is a plot of that voltage, E(. 
Initially, the voltage across the capacitor is 
zero, but as the electrons are transferred, 
beginning at time ti, the capacitor charges 
exponentially to the applied voltage of 10 

volts during a period of time. Compare 
Figures 10.3 and 10.5 and note that the 
voltage across the capacitor increases 
as the current flow decreases and the 
capacitor charges. 

Calculation of ER 

The voltage across the resistor depends upon 
two factors: 1) the amount of current flowing 
through it, and 2) the value of the resistor. 
More specifically, by Ohm's law, 

ER = IR (10-2) 

Since the value of the resistor is constant (10 

kilohnis), the voltage across it depends upon 
the amount of current flowing in the circuit at 
any particular time. When the switch is first 
closed, as shown in Figure 10.6, the voltage 
across the resistor is equal to: 

ER = IR 
= (1mA) (10kfl) 
= 10V 

So at ti, the voltage across the resistor is 
10 volts. 

When the current is zero, the voltage across 

the resistor is equal to zero because: 

ER = IR 
= (0mA) (101t1I) 
= OV 

This is illustrated in Figure 10.7. 

1 
OmA 

10V 

Ec 

 ge 
Figure 10.5 Graph of Ec DU IA ng the Tune the 
Capacitor Charges 

1 
1mA 

Ee = 
OV 

Figure 10.6 Example Circuit for Calculating ER„,„„ 

Ec = 
10V 

Figure 10.7 Example Circuit for Calculating ER... 
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II Change in the Direction of Current Flow 

• Calculation of Ir„,.„ 

RC AND RE. TIME 
CONSTANTS how_ 

Graphically, the voltage across the resistor 
would appear as shown in Figure 10.8. The 
voltage is 10 volts when the switch is closed. 
and then it decreases exponentially to 
zero as the current decreases and as the 

capacitor charges. 

Remember that even if the switch is open 

and the dc source removed the capacitor will 

retain its charge. 

RC DC CIRCUIT ANALYSIS: 
DISCHARGE CYCLE 

If an additional current path in the example 
circuit is added, as shown in Figure 10.9, 
circuit action will change. The action begins 
at time t2 when the switch is placed in 
position 2. 

Change in the Direction of Current Flow 

When SI is placed in position 2, the capacitor 
has been provided with a discharge path 

through the resistor. Notice in Figure 10.9 
that the direction of electron flow (current) 
when discharging is opposite to the direction 
of the current while charging. 

The current is maximum and decreases to 
zero exponentially as the electrons transfer. 
This action is shown graphically in Figure 
10.10. Since the direction of flow is opposite, 

the current values are plotted as negative 
values on the graph. This illustrates 

graphically that the discharge current 
direction is opposite to the charge current 
direction. The charge current direction was 
arbitrarily chosen as positive. 

Calculation of 

The maximum amount of current during 
discharge depends upon the voltage to which 

the capacitor is charged and the value of 
the discharge path resistance. In this case, 
the resistance is the same as it was for 
the charge path. 

10V 

ER 

time —• 

Figure 10.8 Graph of ER During the Tun, the 
Capacitor Charges 

I. 

R =10ko SI 

_I_+iov _ 

Figure 10.9 A Additional Discharge Path as Added to 
the Example Circuit 

Figure 10.10 Negative Current Values During 
Capacitor Discharge Tune (Time from i2) 
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• Variation of Ec 
• Calculation of ER 1 o 
The maximum discharge current 
is calculated: 

In the example circuit, E(-= 10 volts and 

R = 10 kilohms. Therefore, 

Ec 

= R 

_ 10V 

10k12, 
= lmA 

1 milliamp is the discharge current. The 

discharge current decreases from the 
value exponentially as the capacitor 

discharges When the charge on the plates is 
balanced, no more electrons are transferred, 

the voltage across the capacitor is zero, and 
the circuit current is zero. 

Variation of Ec 

As the capacitor discharges, the voltage across 

the capacitor is 10 volts initially at t2, and then 

decreases to zero exponentially, as shown 
graphically in Figure 10.11. 

Calculation of ER 

The voltage across the resistor during 

capacitor discharge depends upon the 

amount of current passing through it at any 
particular time, as it did during capacitor 

charge. However, since the current during 

discharge flows in a direction opposite to its 

direction during the charging process, the 
polarity of the voltage across the resistor will 
be opposite to the polarity it had during 

charging as shown in Figure 10.12. 

10V 

Ec 

Figure 10.11 Graph of L., During Capacitor Discharge 

Time (Time from 12) 

Figure 10.12 Polarity of ER During Capacitor 
Discharge Time 
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RC AND RL TIME 

la RC Time Constant Defined 

This opposite polarity is shown by indicating 
the values of voltage across the resistor 
during discharge as being negative as shown 
in Figure 10.13. Remember that the voltage 
values were arbitrarily chosen as being 
positive because the charging current 

direction was chosen as positive for the 
charge process. 

The maximum voltage across the resistor 
during discharge is equal to the voltage to 
which the capacitor is charged. 

ER(max) = Ec (10-3) 

In this case, that voltage is 10 volts. This is 
evident from the tact that the voltage across 
the resistor can be written, by Ohm's law, as 
being equal to the current through it times its 
value of resistance: ER = IR. Therefore, in 
the circuit, 

ER IR 
= (1mA) (10kfl) 
= 10V 

The voltage across the resistor is equal to 
10 volts when the switch is initially placed 
in position 2. The voltage across the resistor 
directly dependent on the circuit current 
flowing, decreases to zero exponentially as 
the current decreases to zero. This shown in 
Figure 10.13. Note the shape is the same as 
the current waveform of Figure 10.10. 

RC TIME CONSTANTS 

A summary of the current and voltage 
waveforms for dc RC circuits during the 
charge and discharge time of the capacitor is 
shown in Figure 10.14. However, a question 
immediately comes to mind. How long does 
the charging and discharging take? The 
following discussion should answer 
that question. 

RC Time Constant Defined 

The time required for a capacitor to fully 
charge is measured in terms of a quantity 
called the lime constant of the circuit. 

+ 10t 

CHARGE 

FR 0 

DISCHARGE 

- 10t 

Il 

Figure 10.13 Negative ER Values During Capacitor 

Discharge Time (Time from 12) 

I CHARGE DISCHARGE 
+ 10V 

Ec 
+ lmA 

-1mA 

+10V 

ER 

- 10V ---
12 

Figure 10.14 A Summary of the Current and Voltage 

Waveforms for DC RC Circuits During Capacitor 
Charge and Discharge Times 

The time constant of an RC circuit is defined 
as the amount of time necessary for the 
capacitor to charge to 63.2 percent of its 

final voltage. 

The time constant is symbolized by the Greek 

letter, tau, T. 

For an RC circuit, tau is equal to the value of 
the resistance times the value of capacitance 
in the circuit. Expressed mathematically, 

T = RC (10-4) 

Where tau is measured in seconds, R in ohms, 

and C in farads. 
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Calculation of an RC Time Constant 

The resistance of the example RC circuit 
being discussed (Figure 10.1) is 10 kilolims. 

Its capacitance is 1 microfarad. The time 
constant for the circuit is calculated: 

= RC 
= (10k() (1u.F) 
= (10 x 103) (1 x 10 -6) 
= 10 x 10 -3 seconds 
= 10ms 

The time constant is 10 milliseconds. 

In the circuit, the capacitor is charging to 

10 volts. 63.2 percent of 10 volts is 6.32 volts. 
Thus, as shown in Figure 10.15, it takes 10 
milliseconds or one time constant of time for 
the capacitor to charge to 6.32 volts. 

In the next time duration of one time 

constant the capacitor will charge to 63.2 
percent of the remaining value of voltage 
between the maximum. 10 volts, and its 

present charge, 6.32 volts. Therefore, 

10V — 6.32V = 3.68V 

and 

63.2% of 3.68V = 2.33V 

Thus, at the end of two time constants or 
after 20 milliseconds of charging, as shown 
in Figure 10.16, the capacitor will have 
charged to 

6.32 + 2.33 = 8.65V 

This process continues with the capacitor 
charging 63.2 percent of the remaining 
difference during each time constant of time 
until after about live time constants, the 
capacitor, for all practical purposes, is fully 
charged with a charge of 9.93 volts as shown 
in Figure 10.17. Thus, it is assumed for 
practical cases that it takes five time constants 
for the capacitor to fully charge 

10V 

6.32V - 

63 2% 

17 

10ms 

tgure 10.15 Ec of Example Circuit After IT 

10V - 

6.65V 

6.32V - 

( 
10ms 28ms 

Figure 10.16 Ec of Example Circuit After 27 

10V 
9.93V 

8.65V 

6.32V 

9.5V 
9.82V 

37 I 47 57 

49ms 59ms 10ms 20ms 30ms 

Figure 10.17 Ec of Example Circuit After 57 
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In the example circuit with a time constant 
of 10 milliseconds, the time required for the 
capacitor to fully charge to 10 volts can 
be calculated: 

5i = 5(10ms) 
= 50ms 

It will require 50 milliseconds for the 
capacitor to fully charge. 

UNIVERSAL TIME CONSTANT CHART 

If a capacitor is charged to a final voltage 
and then discharged in an RC circuit, the 
discharge curve—just like the charge curve 
—will be exponential and governed by time 
constants. A chart that relates the percent 
of the final value to time in terms of time 
constants is the Universal Time Constant 
Chart (UTCC) shown in Figure 10.18. The 
curves shown on this chart can be used for 
any of the exponential rises or decays shown 
for voltage and current in any RC circuit that 
is being studied. 

By using the time constant chart, the value 
of voltage across a resistor or capacitor or 
the amount of current flowing in any RC 
circuit after an amount of time stated in 
terms of time constants for the circuit can 
be determined. 

Because the time constant changes if either 
resistance or capacitance changes, the time is 
specified in terms of time constants rather 
than in absolute units of time. Also, because 
the voltage may not always be 10 volts, 20 
volts, or any other specific voltage, the 
vertical axis is marked in terms of percent 

of final value only. This also allows the 
chart to be used for either voltage or 
current waveforms. 

DECAY — 
% OF 
FINAL 
VALUE 

63 

86 
95 
100 

ee 

2, 3, 4, 5, 

TIME (IN TIME CONSTANTS) 

Figure 10.18 trniversal Time Constant Chari 

95 - 
86 

63 - 

RISE— 
% OF 
FINAL 
VALUE 

100 
95 
86 

63 

RISE — 
1. OF 
FINAL 
VALUE 

UNIVERSAL TIME CONSTANT CURVE 
INCREASING VALUE 

98 

T 3, 4/ 5' 
TIME (IN TIME CONSTANTS) 

Figure 10.19 Percent E, Versus Time (r) 

UTCC Related to Ec 

Note that the increasing curve of Figure 10 19 
has a shape exactly like the shape of the rise 

of voltage across the capacitor. This can easily 
be proved true by plotting the voltages across 

the capacitor in the circuit of Figure 10.1 
against time measured in time constants for 
exact multiples of one time constant. 
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1 RC AND RI. TIME 
CONSTANTS 

Initially, the voltage across the capacitor is 
zero when the switch is closed. The origin 
represents time equals zero and voltage 
equals zero. This is the time when the switch 
closes with no initial voltage across the 
capacitor. As calculated previously and shown 
in Figure 10.17, after one time constant, (10 
milliseconds), the voltage across the capacitor 

equals 6.32 volts (63.2 percent of maximum). 

After two time constants, 20 milliseconds, the 
voltage across the capacitor equals 8.65 volts 
or 86.5 percent of maximum. After three 
time constants, 30 milliseconds, E( equals 9.5 
volts or 95 percent of maximum. After four 
time constants, 40 milliseconds, Ec equals 
9.82 volts or 98 percent of maximum. And 
after five turne constants, the voltage across 
the capacitor is equal to 9.93 volts or 99 
percent of maximum. 

If all of these points are connected with a 

smooth curve, the result is the rising curve 
shown on the UTCC of Figure 10.18 and 
Figure 10.19. 

Exponential Characteristic of the UTCC 

The shape of these curves follows a precise 
mathematical relationship which involves an 
exponent containing the time constant term. 
Because of the exponent containing the time 
constant term, they are called exponential 

curves. This characteristic results in the terms 
exponential increase or exponential decrease. 
Because these exponential equations are 
complex mathematically, the chart is used to 
provide a direct-read capability. 

DECAY — 
% OF 
FINAL 
VALUE 

63 - 

86 
95 - 

100 

UNIVERSAL TIME CONSTANT CURVE 
DECREASING VALUE 

98 

ii 2T 37 4, 

TIME (IN TIME CONSTANT) 

Figure 10.20 Exponential Characteristics of Curves 

UTCC Related to Circuit Current and ER 

Recall that it was stated earlier that the 
exponential curve applies to decreasing 
waveforms as well as to increasing waveforms. 
An example is the circuit current waveform 
which is maximum initially and decreases to 

zero in five time constants, as shown by the 
curve in Figure 10.20. The same waveform 
applies to the voltage across the resistor. This 
decaying waveform is simply a mirror image 
of the rising exponential waveform shown 
in Figure 10.19. 

At one time constant the decaying waveform 
has reduced 63.2 percent from its initial 
value. At two time constants the waveform 
has reduced 86.5 percent, 95 percent at three 

time constants, 98 percent at four time 
constants, and at five time constants an 
assumed reduction of 100 percent. 

BASIC AC CIRCUITS 10-11 



RC AND RL TIME 
CONSTANTS 

• Using the UTCC 

This mas' be expressed another way by 
changing the scale of the curve to percent 

of initial value as shown in Figure 10.21. In 
one time constant the exponential curve has 
decreased by 63.2 percent, to 36.8 percent 
of its initial value. It is down to 13.5 percent 
of its initial value in two time constants, 2 
percent in four time constants, and it is 
fully decayed in five time constants. 

Using the UTCC 

Any instantaneous voltage or current value 
across or through the components of a dc 
resistive-capacitive circuit during the charge 

and discharge of the capacitor can be 
determined by using the Universal rime 
Constant Chart. (Later in this lesson, it will 
also be used to predict values of current 
and voltage while current is increasing and 
decreasing in dc resistive-inductive circuits.) 
For instance, using the UTCC the percent 
of full charge on the capacitor after any 
charging time or time constant period can be 
determined. 

Figure 10.22 shows that after one and 
one-half time constants the percent of full 
charge, from the UTCC chart, is 
approximately 78 percent. If the applied 
voltage is 10 volts, as shown in Figure 10.23a, 

the voltage across the capacitor, Ec at this 
time is 78 percent of 10 volts which is 7.8 
volts. This is shown graphically in Figure 
10.23b. If 50 volts were applied, as shown in 
the circuit of Figure 10.24a, Ec is 78 percent 
of 50 volts which is 39 volts. This is shown 
graphically in Figure 10.24b. 

DECAY - 
•. OF 

INITIAL 
VALUE 

36.8 

13.8 

o 
17 27 37 47 Sr 

TIME (IN TIME CONSTANT) 

Figure 10.21 Exponential Decrease as a Percent of 

Initial Value 

78% 

1.57 

Figure 10.22 E( After 1.57 

1  )1 ,ov _L   Ec 

Ec 

1.5, 

Figure 10.23 a. Circuit with a 10-volt Source Voltage: 

b. Er After 1.5T 
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If, however, one wants to know the current in 
the circuit or the voltage across the resistor 

after a specified number of time constants the 
percent of maximum must be read from the 
decaying exponential waveform. After one 
and one-half time constants, for example, the 
percent of maximum read from the chart for 
current or voltage across the resistor is 22 
percent as shown in Figure 10.25. If the 
maximum current in the circuit is 10 
milliamperes then after one and one-half 

time constants, the current has decreased to 
22 percent of 10 milliamperes which is 2.2 
milliamperes (0.22 x 10mA = 2.2mA). This 
shown graphically in Figure 10.26. 

If the maximum voltage across the resistor 
was 30 volts, then after one and one-half time 

constants, the voltage across the resistor has 
decreased to 22 percent of 30 volts which 
is 6.6 volts (0.22 x 30V = 6.6V). This 
is shown graphically in Figure 10.27. 

During the discharge of the capacitor, the 
chart again is used. However, the appropriate 
curve must be chosen. 

Converting Time to Time Constants 

Sometimes it is necessary to convert from 
time to time constants. The technique is as 
follows. To find the number of time constants 
that a specified time represents, simply divide 
the time, in seconds, by the number of 
seconds in one time constant. 

Number of t (seconds)  
Time Constants T (seconds) (10-5) 

For example, if the value of R in an RC 
circuit is 100 ohms and the value of C is 
200 microfarads, then the time of one time 
constant, is equal to R times C, and 

T = RC 
= (100n) (200µ.F) 
= (I x 102) (20 x 10 -5) 
= 20ms 

50V - 
E0 39V 

o 
1.57 

Figure 10.24 a. Circuit with a 50-yoll Source Voltage; 
b Er After 1.5.r 

22% 

1.51-

Figure 10.25 1( After 1 57 

10mA 

2.2mA 
o 

1.57 

Figure 10.26 1 After 1 5 T with IT of 10 Milliamperes 
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in this example, equals 20 milliseconds. 

If the number of time constants represented 
by 60 milliseconds is desired, this is calculated 
by dividing the time in question, 60 
milliseconds in this case, by the length of 
one time constant, 20 milliseconds. 

Number of Time Constants = — 

60MS 

20ms 
= 3 

In this example, there are three time 
constants in 60 milliseconds. 

For the same R and C. the number of time 
constants in 4 milliseconds is calculated: 

Number Of Time Constants = —t 

4ms  

20ms 
= 0.2 

In this case, there is 0.2 of a time constant in 
4 milliseconds. Similar problems are solved by 
performing similar calculations. 

Solving for Instantaneous Voltage and 
Current Values: Charging 

The original circuit, shown in Figure 10.1 
and repeated in Figure 10.28, consists of 
a 10 kilohm resistor, a I microfarad capacitor, 
and a 10-volt dc source. Recall that one 
time constant for this circuit equals 10 
milliseconds. The voltage across the capacitor, 
the voltage across the resistor and the current 
after the capacitor has been charging for 5 
milliseconds (5 milliseconds after the switch 
contacts position 1)can be calculated using the 
information about time constants discussed in 
the previous section. 

Figure 10.27 ER after 1.5x with ET of 30 volts 

Figure 10.28 Example RC circuit 
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5 milliseconds in terms of time constants 
is calculated: 

Number Of Time Constants (i) =   

5rns 

10ms 

= 0.5 

In the example circuit of Figure 10.28, 5 
milliseconds equals 0.5 time constants. The 
waveforms for the circuit are as shown in 
Figure 10.29. The maximum capacitor charge, 
E.c, is 10 volts, or the applied voltage. The 

maximum current initially, is 10 volts - 10 
kilohms = I milliampere. The maximum 
voltage across the resistor is 10 volts, which is 
the same as the capacitor's maximum charge. 

The Universal Time Constant Chart of Figure 
10.20 can be used to determine the percent of 
maximum voltage across the capacitor. The 
rising curve, repeated in Figure 10.30, shows 
that the percent of maximum voltage across 
the capacitor after one-half of a time constant 
is about 40 percent. 

E, = 40% Ec(max) 
= (0.40)(10V) 

4V 

Thus, the voltage across the capacitor after 

one-half of a time constant (5 milliseconds) 
is 4 volts. 

Using the decaying curve as shown in Figure 
10.31, the percent of maximum current in the 
circuit after one-half of one time constant is 
determined to be 60 percent. Said another 

way, the current has decayed 40 percent from 
its initial value to a Q0 percent value. 

I = 60% I() 
= (0.6)(ImA) 
= 0.6 mA 

Thus, the current in the circuit after 5 
milliseconds is 0.6 milliamperes. 

Ec 

E. 

Figure 10.29 Waveform for the Example Circuit of 

Figure 10.28 

e 

40% 

0.57 

at 0.5r 
 .00# 

Figure 10.30 UTCC Can Be Used to Determine 

Percent Er. 

60°70 

40% 

0.57 

Figure 10.31 UTCC Can Be Used to Determine 

Percent 
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Current Values: Discharging 

The voltage across the resistor in the example 
RC circuit is equal to 60 percent of its 

maximum value of 10 volts, which is 6 volts 
(0.60 x 10 = 6). 

The voltage across the resistor could also have 
been calculated using Ohm's law: 

ER = IR 

= (0.6mA) (Iokn) 
= 6V 

Solving for Instantaneous Voltage and 
Current Values: Discharging 

When the switch is placed in position 2 as 

shown in Figure 10.32 (Figure 10.9 repeated) 
the capacitor begins to discharge. This 

changes circuit action. The instantaneous 
voltage across the capacitor, across the 

resistor, and the current in the circuit at a 

selected time after the switch contacts position 
2 can be calculated. This is best described 

using an example. The values calculated will 
be those present 30 milliseconds after the 
switch contacts position 2. 

The number of time constants represented by 
30 milliseconds is calculated: 

Number Of Time Constants = 2-

30ms  

10ms 
= 3 

In this case, there are three time constants. 
Waveforms for the circuit are as shown in 
Figure 10.33. The maximum capacitor 
voltage, lEc, is 10 volts at the instant that it 
begins discharge. The maximum current, 'max 

is equal to the charge on the capacitor as it 
begins discharge divided by the resistance. 

Ec 
= —R 

10V 

10kfl 
= lmA 

(10-6) 

S1 
1 

Noe. I 

R =10k0 

10V 2 10V 
T-

 1 

Ec 

Figure 10.32 Example RC Circuit with Switch in 
Position 2 

Ec 

ER 

10V 

1mA 

—1mA 

10V 

—10V 

Figure 10.33 Example Circuit Waveforms 

In this example, 'max = 1 milliampere. 
Remember, however, that the current is 
flowing opposite to the direction of current 
flow during charge. Thus, the maximum 
discharge current is designated as a negative 
I milliampere. 

The voltage across the resistor during 
discharge is equal to the voltage across the 
capacitor. The voltage is specified as negative 
during discharge since it is opposite in polarity 

to the voltage which appeared across the 
resistor during the charge of the capacitor. 
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From the Universal Time Constant Chart in 
Figure 10.34, using the decaying curve, the 

percent of maximum voltage or current after 
three time constants is determined to be four 
percent. Thus, after three time constants: 

E( = 

= (0.04) (10V) 
= 0.4V 

The charge on the capacitor has decreased 
from 10 volts to 0.4 volts after three 
time constants. 

After three constants, the current will 
decrease from l . to 4 percent of [max: 

1 = 4%1.. 
= (0.04) ( - lmA) 
= - 0.04mA 
= - 40p.A 

Therefore, after three time constants 1 = 
-40 microamperes. 

After three time constants, the voltage across 
the resistor will decrease from ER,„,,, to 

4 percent of ERmax: 

ER = 4%ERmax 
= (0.04) ( - 10V) 
= - 0.4V 

Thus, ER = - 0.4V. 

RC Time Constants Related to Kirchofrs 
Voltage Law 

It is interesting to note that Kirchoff's voltage 
law is valid for dc RC circuits. At any instant 
in time the voltage across the resistor plus the 
voltage across the capacitor equals the applied 
voltage: ER Ec = EA. Initially, at ti, when 
the switch in the circuit of Figure 10.28 is first 
contacted at position 1, the voltage across the 
resistor equals 10 volts, or the applied 
voltage, and the voltage across the capacitor 
equals zero volts. This is shown in Figure 
10.35. The sum of these two voltages equals 
10 volts, or the applied voltage. 

4% 

3» 

Figure 10.34 UTCC Used to Determine Percent Er, 1, 
and ER 

10V 

a 
EC IV i•-f 

10V 

b ER 6v 

o.sr 
57-

ti- 50ms 
 e 

Figure 10.35 Waveforms of Ec and ER in 
Example Circuit 

After one-half time constant, as calculated 
previously, the voltage across the resistor is 
6 volts, and the voltage across the capacitor is 
4 volts. The sum of these voltages is 10 volts 
(6V + 4V = 10V). 

After five time constants when the voltage 
across the resistor is 0 volts, the capacitor has 
charged to 10 volts. The sum of these voltage 
drops, too, is 10 volts (OV + 10V = 10V). 
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RL DC CIRCUIT ANALYSIS: OPPOSING A 
CURRENT INCREASE 

Bv this time, after considering RC circuits 
with an ac and a de voltage applied, you have 

learned that the laws used, such as Kirchoff's 
law and Ohm's law, apply equally well 

whether voltages and current have steady-
state values or whether they are changing with 

time. In addition you probably have realized 
that the actions and reactions and the circuit 

analysis methods of resistance-capacitive 
reactance circuits and resistance-inductive 
reactance circuits are similar. Recognizing 
that similarity, the discussion and analysis 

shifts to resistance-inductance (RL) circuits. 

Analysis of Circuit Current 

The dc RL circuit shown in Figure 10.36 
includes a 1 kilohm resistor in series with a 10 

millihenry inductor connected through switch 
SI to a 10 volt dc power supply. When the 
switch is open, the current in the circuit 
is zero. 

Remember the basic action of an inductor in 
the type of circuit which was discussed briefly 
in Lesson 8. When the switch first contacts 

position 1, which will be called time t1. the 
applied voltage causes the current to begin 
flowing in the direction indicated in Figure 
10.36. Recall that if the inductance L is 
removed and only the resistor is present in 
the circuit, the current will instantaneously 
increase to a final value determined by Ohm's 
law, the applied voltage divided by the 
resistance in the circuit. This current flow in a 
resistive circuit is shown in Figure 10.37. The 
current would rise immediately to 10mA (10 
volts divided by 1 kilohm). However, with 
an inductor in series with a resistor, the 
increasing current must pass through the 
inductor which opposes any change in 
current. What happens is that as the current 
initially attempts to increase from zero, the 
inductor sets up a counter-EMF. This counter 
EMF across the inductor inhibits the 

L 10mH 

Figure 10.36 A DC HL Circuit 

I with R only at ti 

10mA 

t I 

Figure 10.37 Current Flaw When a Voltage Is Applied 

to a Purely Resistive Circuit 

instantaneous rise of current as shown 
in Figure 10.38 The counter EMF of the 
inductor continues its opposition to the 
change of current until the current finally 
reaches its maximum value which is limited 

by the resistance in the circuit. 
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The rise of current in the inductive circuit 
follows an exponential curve as did the 
voltage rise across the plates of a capacitor. 
The maximum value of current is equal to 
the value of the applied voltage divided by 
the value of the resistance: 

ET 
L ax = R (10-7) 

Thus, the maximum current in the example 
circuit of Figure 10.36 can be calculated: 

Er 

10V = — 

= 10mA 

Calculation of ER 

Since the voltage across the resistor is a direct 
result of the current flowing in the circuit, the 
voltage rise will appear similar to the rise of 
current. The voltage across the resistor will 
have a maximum value which can be 
expressed by Ohm's law: 

ER = IR (10-8) 

Thus the voltage across the resistor in the 
example dc RL circuit is calculated: 

ER = IR 
= (10mA) (lkfl) 
= 10V 

For a value of maximum current equal to 
10 milliamperes, ER equals 10 volts. 

f 10mA 

1 

Figure 10.38 Ciment Flow When a Voltage h Applied 
to an RL Circuit 

Calculation of EL 

When the switch of the circuit in Figure 10.36 
is placed in position 1, no current flows 
instantly, and no voltage appears across the 
resistor: I = 0; ER = O. Remember that this is 
a series circuit with a dc voltage applied. 
Because of this, Kirchoff s voltage law applies, 
and the applied voltage must equal the sum 
of the voltage drops in the circuit which are 
the voltage across the resistor, ER, plus the 
voltage across the inductor, EL: 

ET = ER + EL (10-9) 

Because the voltage across the resistor is zero, 
the 10 volts applied to the circuit must a// be 
dropped across the inductor. That is, the 
counter EMF is 10 volts and ET = EL. In 
addition, this is physically correct because the 
voltage across the inductor is equal to the 
inductance times the rate of change 
of current: 

EL = L (.e ) (10-10) 

dl 
—ea also is expressed in many instances as d—t. 
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III Calculation of El 

As a result, the voltage across the inductor, 
E. appears as shown in the waveform of 

Figure 10.39. Its highest value of 10 volts is at 
time ti where the rate of change of current is 
at its maximum. 

As the voltage across the resistor increases, as 
shown in Figure 10.40, the voltage across the 
inductor must decrease to satisfy Kirchoffs 
law. When the current, I, has reached its 
maximum value, it stops changing value and 
the counter EMI' across the inductor is zero. 
Recall that this is true because the counter 
EMF is a result of the inductor's opposition to 

a change of current value. When the current 
reaches its maximum value the magnetic field 

surrounding the inductor is fully expanded as 
shown in Figure 10.41. The voltage across the 

resistor is now maximum, and it equals the 
applied voltage, thus obeying Kirchoff's 
voltage law. 

DC RL CIRCUIT ANALYSIS: OPPOSING 
CURRENT DECREASE 

What will happen to a dc RL circuit when 
there is no longer voltage available to 

continue to supply current to the inductor? 
The way to find out is to stop the voltage. 
So assume that in the example RI. circuit that 
the switch is placed in position 2 as shown 
in Figure 10.42. (The switch is of a type that 
makes contact at position 2 before it breaks 
contact at position 1.) Effectively, the applied 
voltage is removed from the circuit, and the 
resistor and inductor are connected in 
parallel with each other. 

10V 

EL 
(Cliff) 

Figure 10.39 Voltage Waveform Across the Inductor 

Figure 10.40 Voltage Waveform Across the Resistor 

Figure 10.41 Effect of Counter EMF in a dc RL Circuit 
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Analysis of Circuit Current 

Since the power supply has been 

disconnected, there is now no external voltage 
source to maintain current through the 
inductor and resistor. Thus, the magnetic 
field surrounding the inductor begins to 
collapse, and current begins to decrease in the 
circuit. As shown in Figure 10.43, the current 
direction is still the same, but it is becoming 
less and less in magnitude. The inductor, 

therefore, will generate a counter EMF to 
oppose the decrease in current. Thus, the 
collapsing magnetic field generates an EMF 

of the polarity shown in Figure 10.43 to keep 
current flowing in the circuit -- to keep 
current from decreasing. The decay 
of current is exponential, as shown in 

Figure 10.44, because of the action of 
the inductor. 

Analysis of ER 

The voltage across the resistor, which is a 
result of the current, decreases as the current 
decreases. This is evident in the decreasing 
curve after time t2 in the waveform 
representing ER in Figure 10.44. The counter 
EMF across the inductor has changed polarity 
in order to oppose the decrease in current. 

Analysis of EL 

To help clarify this fact, remember that 
because the magnetic field around the 
inductor is collapsing, the flux lines are now 
cutting the windings of the inductor in the 
opposite direction from the direction that 
occurred when the magnetic field was 
increasing. When the magnetic field was 
increasing because of a changing current 
that was increasing, the counter EMF set 
up opposed the increase in current. Now, 
however, when the current decreases, the 
collapsing magnetic field sets up a counter 
EMI; that now aids the current flow — to 
keep it going— to keep it from decreasing. 

Figure 10.42 Example RL Circuit with Switch Si in 
Position 2 

Figure 10.43 Parallel Relationship of R and L in 
Example Circuit 

a 

I:10mA 
ER =10V 

+10V 

b (CEMF1E 

—10V 

11%.  

Figure 10.44 Waveforms of ER and F 

BASIC AC CIRCUITS 10-21 



la Summary of Current and Voltage Changes as 
Current Decreases 

la Calculation of an RL Time Constant 

Therefore, the counter EMF is of the 

opposite polarity because it aids the current 
flowing instead of opposing it. 

Summary of Current and Voltage Changes as 
Current Decreases 

In summary, then, when the switch is placed 
in position 2 in the circuit shown in Figure 
10.42 the current exponentially decreases 
from 10 milliamperes to zero, as shown in 
Figure 10.45. The voltage across the resistor 
decreases from 10 volts to zero. And the 
voltage across the inductor changes polarity, 
and decreases in magnitude from — 10 volts 
to zero. 

RL TIME CONSTANTS 

The time duration of these changes of voltage 
and current, like in the RC circuit, are 
measured in terms of time constants. 

RL TIME CONSTANTS DEFINED 

The time constant of a series RI. circuit is 
equal to the value of the inductor, in henrys, 

divided by the value of the resistor in ohms: 

= — 
R (10-11) 

The time consiani of an RL circuit is defined as 
the amount of time necessary for the current 

in the circuit to reach 63.2 percent of its 
maximum value. 

Calculation of an RL Time Constant 

In the example RL circuit with the switch in 
position 1,L = 10 millihenries, R = 1 kilohm. 
Thus, the time constant is calculated: 

7 = —R 

10mH 

_ 10 x 10-3H 
— 1 x 103 12 

= 10 x 10 seconds 
= lOgs 

RC AND RL TIME 
CONSTANTS da 

nor 

Figure 10.45 Waveforms in Fxamftle RL Cute with 
Switch in Position 2 

The time constant is 10 microseconds. 

Five time constants are required for the 
current in the circuit to reach its maximum 
value. In the circuit the time constant is 10 
microseconds. Therefore, five time constants 
equal 50 microseconds. Thus, it takes 50 
microseconds for the current in the circuit to 
reach a value of 10 milliamperes. When the 
current decreases it also takes five time 
constants (50 microcseconds) for the current 
to decrease to zero provided that the current 
flows through the same resistance and 
inductance. Figure 10.46 graphically 
illustrates the time required for the current 
to increase or decrease in the example 
RI. circuit. 

10-22 
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RC AND RL TIME 
CONSTANTS 

RL Circuit Summary 1 o 
THE UTCC AND DC RL CIRCUIT 

Since the voltages and currents in an RL 

circuit increase and decrease exponentially 
and follow similar equations to the ones 

used for the RC circuit, the Universal Time 

Constant Chart can be used to determine 
voltages and/or current in the RL circuit 
during their rise or decay. 

RL Circuit Summary 

A typical RI. circuit will be used to show you 
how to use the UTCC to determine voltages 

and currents in such a circuit. The RL circuit 

is shown in Figure 10.47. It is composed of 
an 8 henry inductor and 100 ohm resistor 

connected through a switch, SI, as shown, 
to an applied voltage of 20 volts. 

The time constant is calculated: 

= 

8H  

100c1 
= 0.08 seconds 

= 80ms 

The maximum voltage across the resistor and 

inductor is the applied voltage of 20 volts. 

The maximum current is calculated using 
Ohm's law: 

ET 
L ea = R 

20V  
2r: loon 
= 0.2A 

= 200mA 

The current will take five time constants 

to reach its final value. Since it takes 80 
milliseconds for one time constant, it will take 

400 milliseconds to reach its maximum value 

of 200 milliamperes, (5 x 80ms = 400ms). 

Sops 4,— 5 OMS 
ti t2 

Figure 10.46 Time Required for the Current to increase 
or Decrease in Example RL Circuit 

Figure 10.47 Example RL Circuit for Discussion 
of LITCC 
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III Solving for Instantaneous Voltage and 
Current Values: Increasing Current 

Solving for Instantaneous Voltage and 
Current Values: Increasing Current 

Suppose that one wants to know the value of 

the current, the voltage across the resistor, 
and the voltage across the inductor 160 

milliseconds after the switch contacts position 
1 as shown in Figure 10.48. 

First, 160 milliseconds must be converted into 

terms of time constants. To do this, simply 
divide the time by the amount of time per 
time constant. In this case, the number of 
time constants represented by 160 

milliseconds is 160 milliseconds divided by 
80 milliseconds or two time constants. 

Number Of Time Constants = 

160ms 

8Orns 
= 2 

Using the Universal Time Constant Chart the 
percent of maximum current is determined. 
This is about 86 percent. Therefore, 

I = 

= (0.86) (200mA) 
= 172mA 

86 percent of 200 milliamperes is 172 

milliamperes. Thus, the current in the circuit 
after 160 milliseconds is 172 milliamps. 

The instantaneous voltage across the resistor 
can be calculated in the same way. However, 

since the voltage across the resistor is a result 
of the current in the circuit, the voltage across 
the resistor can be determined by using 
Ohm's law and the value of the current. 

ER = IR 

= (I72mA) (100I1) 
= 17.2V 

In this example, ER is 17.2 volts after 
160 milliseconds. 

RC AND RL TIME 
CONSTANTS 

Figure 10.48 Waveform Analysis after 160 Milliseconds 

The voltage across the inductor can be 

determined by using the chart. However, 
it can also be calculated. The calculation 

is based on the fact that the voltage across 
the resistor, ER, plus the voltage across the 
inductor, EL, must equal the applied voltage, 

ET. Mathematically, 

ET = ER + EL 

This expression can be rewritten to 
calculate EL: 

EL = ET — ER 

Therefore, if the voltage across the resistor 
is 17.2 volts: 

EL = ET — ER 

= 20V — 17.2V 
= 2.8V 

The voltage across the inductor 160 
milliseconds after t1 is 2.8V. 
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Solving for Instantaneous Voltage and 
Current Values: Decreasing Current 

Once the current has reached maximum, the 
switch in the circuit, as shown in Figure 10.49, 
is changed to position 2. For an example, the 
voltages and currents in that circuit will be 
calculated for a time 80 milliseconds after the 
switch has contacted position 2. The 
waveforms for FR, E1, and 1 are shown in 
Figure 10.50. 

First, the number of time constants after t2 
is calculated. 

Number Of Time Constants - 

T 
80ms 

80ms 
= 

Using the Universal Time Constant Chart, 
the percent to which the maximum current 

has decayed after one time current is 
determined as 37%. As shown in Figure 10.51, 
the current value after 80 milliseconds (one 
time constant) can be calculated: 

1 = 

= (0.37)(200mA) 
= 74mA 

8H 

Figure 10.49 Example RL Circuit with Switch SI in 
Position 2 

E, 

12 

Figure 10.50 Waveforms for ER. EL, and 1 for Example 
RL Circuit 

37% - 

Figure 10.51 Percent Current Related to 1 T on UTCC 
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• Solving for Instantaneous Voltage and 
Current Values: Decreasing Current 

IN Summary 

Thus, the current 80 milliseconds after 
time t2 is 74 milliamperes. This is shown 

graphically in Figure 10 52. 

The voltage across the resistor, ER after 80 
milliseconds is equal to 37 percent of 
and can be calculated: 

ER = 37%E gr„,„ 
= (0.37)(20V) 
= 7.4V 

This is shown graphically in Figure 10.53. 
Remember that Kirchoff's voltage law must 
be satisfied; therefore, the voltage across 
the inductor, EL, after 80 milliseconds is 

37 percent of ELm , but negative. 

EL -= 37%EL„,,,, 
= (0.37)( — 20V) 
= —7.4V 

This is shown graphically in Figure 10.54 

Consequently, in the example circuit 80 
milliseconds after t2, current will be 74mA, 
the voltage across the resistor will be 7.4 volts 
and the voltage across the inductor will be 
—7.4 volts. 

SUMMARY 

In this lesson the effect of dc voltage 
transitions on resistive-capacitive, and 
resistive-inductive circuits was discussed. The 
basic action of a capacitor and an inductor 
was reviewed again, and the concept of 
the time constant was introduced. The 
exponential curves describing the rise of 
voltage across a capacitor in an RC circuit or 
the rise of inductive current in an RL circuit 
were explained. And the Universal Time 
Constant Chart and its application in the 
calculation of instantaneous values of voltage 
and current (transient responses) of RC and 
RL circuits were described. 

200mA 

74mA 

I 
I I 

110m. 

11 

RC AND RI. TIME 

CONSTANTS 

12 

Figure 10.52 Example RL Circuit 1 Waveform 

E. 

20V 

7.4V 

Il 

I I 
I 

I.— eon,. 
12 

Figure 10.53 Example RL Circuit ER Waveform 

20V 

EL 

— 7.4V 

— 20V 

Figure 10.54 Example RL Circuit EL Waveform 
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RC AND RL TIME 
CONSTANTS 

• Worked-Out Examples 1 o 
1. Given the values for R and C below, calculate the time of one time constant. 

a. R = 601(11. C = 0.02p.F, Ir =   

b. R = 5kfl, C 30p.F, Ir =   

Solution. 

a. lr(s) = Rab x Co., = 601d1 x 0.02p.F 60 x 103 X 0.02 x 10•6 

= 1.2 x 10's = 1.2ms 

b. IT=RxC— 5x 103 x 30 x 10 -6 = 0.15s 

2. Given the values for and R below, calculate the value of C. 

a. IT = 5ms. R 301d1, C =   

b. 11. = 30p.s. R = 47S2, C 

Solution: 

I r 5ms  
a — 0.167p.F 

R 301(1.1 

30e.t.s  
= — 0.6384F 

R 47f1 

3. Given the values for 1r and ( below, calculate the value of R. 

a. Ir = 5s, C = 0.1gF, R =   

b. IT = 5ms, C = R —   

Solution 

a. R = 17 —  5s 50W) 
C 0.1 F.LF 

17 b. R =5ms— 50kfl 
C 0.1u.F 

4. Calculate one time constant for this circuit. 

R = 

. IF 
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RC AND RL TIME 
CONSTANTS 

la Worked-Out Examples 

So/lawn 

= R x C — 51d1 x 1 = (5 x 103) (1 X 10 -6) = 5 x 10 -3 seconds or 5ms 

5. Calculate one time constant for this circuit. 

Solution: 

R 2kIl POS 1 
 -o 

POS 2 

20V L ̂ 6H 

L 6H  6  
1 -rm = i-T  = 21(il 2 x — 3 x 10 -3 seconds or 3ms 

' 103 

6. For the circuit in Problem 4, draw the waveforms showing E, ER, and I while the switch is in 
position 1 and position 2 for 5 time constants. 

Ec 
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• Worked-Out Examples 

CONSTANTS I o 

RC AND RL TIME 

7. For the circuit in Problem 4, calculate the following: 

a. 

b. 

C. 

d. 5T 

'max = 

EC:max = 

ERmax = 

Solution: 

a. 

b. 

C. 

1,„„ = 

ECmax = 

ERmax = 

EA 20V 

R 51d2 

EA = 20V 

EA = 20V 

4mA 

d. 5T = 5 x IT = 5 x 5ms = 25ms 

8. If 1 time constant equals 20ms, calculate the number of time constants if: 

a. time = fims 

b. time = 30ms 
c. time - 50ms 

d time = 80ms 

Solution. 

time  6ms  
a. number of T - _ 

time of IT 20ms 

30ms  
b. number of T - 20ms - 1.5 

50ms  
number of I.= - 2.5ms 

20ms 

80ms  
d number of T - - 4 

20ms 

- 0.3 
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RC AND RL TIME 
CONSTANTS 

21 Worked-Out Examples 

9. If 1 time constant equals 50p.s, calculate the time interval if: 

a. number of time constants equals 0.77 
b. number of time constants equals 1.37 

c. number of time constants equals 2.57 

d. number of time constants equals 3.87 

Solution: 

a. time = 0.7 x 50p.s = 

b. time = 1.3 x 50p.s = 65p.s 

c. time = 2.5 x 50p.s = 125µs 

d. time = 3.8 x 50p.s = 190µs 

10. For the circuit in Problem 4, calculate the following instantaneous circuit values 12ms aller 

the switch is placed in position 1 

a. Ec =   

b. ER =   

C. 1 =   

Solution: 

(1) Calculate the number of time constant represented by 12ms: 

time  12ms  — 2.4T 
time of one time constant 5ms 

number of time constants — 

(2) Use UTCC to determine percent of maximum circuit value after 2.47: 

2.47 = 90% of Ec 

2.47 = 10% of ER and I 

a. Ec = 0.9 x 20V = 18V 

b. ER = 0.1 x 20V = 2V 

c. I = 0.1 x 4ma = 0.4mA 

10-30 
BASIC AC CIRCUITS 



• Practice Problems 

RC AND RI. TIME 
CONSTANTS 1 o 

1. Calculate one time constant for the circuit below. 

R 201(0 

35V 

2. Calculate one time constant for the circuit below. 

POS 1 
 o 

R 8000 

" POS 2 

C = 0.05µF 

15V L 40mH 

3. For the circuit in Problem 2, calculate the following: 

a. max —   

b. EL„,j,‘ =   

C. --Rmax 

d. =   

4. For the circuit in Problem 2, draw the waveforms showing EL, ER, and I while the switch is in 

position 1 for 5 time constants. 

5. If 1 time constant equals 8ms, calculate the number of time constants if: 

a. time = 3ms 

b. time = 10ms 

c. time = 20ms 
d. time = 38ms 
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U Practice Problems 

RC AND RI_ TIME 
CONSTANTS 

6. For the circuit in Problem 2, assume that the switch was in 
position 1 for 5 time constants and then moved to position 2. Calculate the following instantaneous values 100µs after the switch 

is moved to position 2. 

a. E1 

b. ER 

C. 

7. If R 10kfl and C = 0.004µF, calculate 17 

8. If 17 = 73ms and R = 36011, calculate C. 

9. If 17 = 474.s and C =0.015µF, calculate R. 

10. If IT = 37ms, calculate the time it takes to charge the capacitor in an RC time constant circuit. 
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RC AND RL TME 
CONSTANTS 

• Quiz lo 
1. Calculate one time constant for the 

circuit below. 

POS 1 

if 
BOV 

T 

R 21(f) 

C 0.2µF 

2. Calculate one time constant for the 
circuit below. 

POS 1 

if 
BOV 

R = 10ki) 

50MH 

3. For the circuit in Question 1, calculate 
the following: 

a 1„,,„ =   
b. Ec,„,„ =   
C. Egmj. =-
d. 57 =   

4. For the circuit in Question 2, assume 
switch has been in position 1 for 5 time 
constants and then moved to position 2. 
Draw the waveforms showing EL, ER, and 
I for 5 time constants after the switch is 
moved to position 2. 

5. If 1 time constant equals 25ms, calculate 
the time interval for the following 
time constants. 

a. 1.57 
b. 37 
c. 4.07 
d. 4.57 

6. If 1 time constant equals 1.8ms, calculate 
the number of time constants for the 
following time intervals. 

a. 0.8ms 
b. 1.2ms 

3.2ms 
d. 5.0ms 

7. For the circuit in Question 1, calculate 
the following instantaneous circuit 
values 6001.ts after the switch is moved 

to position I. 

a. Ec =   

c. 1 =   

8. If R = 63on and C =- 1511F, calculate 17. 

9. If 17 = 43p.s and R = 65kfl, calculate C 

10. If 17 = 33ms and C = 0.00511F, 
calculate R. 
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LESSON 11 

RLC Circuit 
Analysis 
In this lesson, series and parallel circuits with 
resistors, capacitors, and inductors are analyzed. 
Many of the same techniques used in the solution of 
resistive-capacitive and resistive-inductive circuits 
are used in this analysis. Phasor diagrams provide 
descriptions of the circuits that lead to Pythagorean 
theorem solutions of certain circuit values. 
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Ftl.0 CIRCUIT 
AN 

la Objectives 

At the end of this lesson, you should be able to: 

1. Draw phasor diagrams showing the phase relationships of various circuit 

values in series and parallel RIX: circuits. 

2. Identify the various circuit values in series and parallel 1.21.0 circuits that can 

be determined by Pythagorean theorem analysis. 

3. Identify the positive and negative phase angles in series and parallel 
RLC circuits. 

4. Calculate total reactance, total reactive current, total reactive voltage, and 

total reactive power in RLC circuits. 

5. Given schematic diagrams and typical circuit values for the circuits below, 

calculate current, voltage, impedance and power values. 
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• Phase Differences 
• Current as a Reference 
• Development of a Circuit Phasor Diagram 

1 RLC CIRCUIT 
ANALYSIS 

INTRODUCTION 

In previous lessons, series and parallel RI. 
and RC circuits with ac voltage sources have 

been discussed, and you learned several 
useful techniques for calculating values in RI. 
and RC circuits. In this lesson, discussion will 
concern an analysis of more complicated 
circuits consisting of series and parallel 
combinations of resistance, inductance, and 
capacitance. These circuits are called RLC 
circuits. In this lesson, you will simply apply 
the techniques you have already learned to 
determine RLC circuit values. 

SERIES RLC CIRCUITS SUMMARIZED 

The first circuit combination of resistance, 
capacitance and inductance to be analyzed is 
one that is connected in series. It is shown in 
Figure I 1.1, and is called a series RLC circuit. 

Phase Differences 

As in any series resistive-reactive circuit, the 

simple sum of the voltage drops in the circuit 
does not equal the applied voltage. 

EA ER + EL 4- lEc (11-1) 

Recall that this occurs because of the 
different phase relationships between the 
voltage and current for each component. 

Current as a Reference 

Recall that in a series circuit as shown 
in Figure 11.1, the current is the same 
throughout the circuit. Therefore, as shown 
in Figure 11.2, it will be used as the reference 
quantity when discussing the phase 
relationships of the voltages in the circuit. 

Development of a Circuit Phasor Diagram 

Also recall that as shown in Figure 11.3 the 
voltage across the resistor, ER. is in phase with 
the current passing through it. This is the 
circuit current so the voltage across the 
resistor is in phase with the circuit current. 

Figure 11.1 Typical Series RLC Circuit 

I 

— — 

Figure Ili Current ù the Same Throughout a 

Series Circuit 

I E 

Figure 11.3 Voltage Across the Resistor. ER 
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RLC CIRCUIT 
ANALYSIS 

• Voltage Phasor Comparisons 
• Calculations of Ex 

The voltage across a capacitor, Ec, lags the 

current through it by 90 degrees, as in any 
capacitive circuit, and as shown in Figure 11.4. 

The current again is the circuit current so 

that Ec lags the circuit current by 90 degrees. 

Finally, the voltage across the inductor, EL, 
leads the current through it, the circuit 

current, by 90 degrees as shown in Figure 

11.5. Plotting all of these on the same 

diagram, the phase relationships of the 

voltages and current in this series RLC circuit 

can be compared as shown in Figure 11.6. 

Voltage Phasor Comparisons 

As you can see in Figure 11.6, the voltage 

across the inductor, EL, leads the voltage 

across the resistor, ER, by 90 degrees and 

leads the voltage across the capacitor, Er by 
180 degrees. 

Because of the 180-degree phase difference 
between the voltage across the inductor, EL, 
and the voltage across the capacitor, Ec, these 

two reactive voltages are opposite in phase, as 
shown in Figure 11.7, and one value partially 

cancels the effect of the other. 

Calculations of Ex 

Because of the partial cancellation, a net 
reactive voltage, Ex, exists which is equal 
to the difference between the two reactive 

voltages, El and Ec as shown in Figure 11.8. If 

EL is larger than Ec, the net reactive voltage is 
in phase with EL. A positive Ex indicates that 

it is in phase with EL. If Ec is larger than EL, 

the net reactive voltage is in phase with E. A 
negative Ex indicates that it is in phase with 
E. The sign of Ex indicates its direction 
on the Y(reactive) axis. 

ER 

E( 

Figure 11.4 Voltage and Current Relationship 

of Capacitance 

¿EL 

ER 

Figure 11.5 Voltage and Current Relationship 
of Inductance 

EL 

Ec 

Figure 11.6 Phase Relationships in Example RLC 
Series Circuits 
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RLC CIRCUIT 
ANALYSIS 

II Calculations of EA 
MI Calculation of Circuit Voltage Values 11 
Calculation of EA 

Il- E., and Ec are known, it is possible to 

calculate the applied voltage, EA. For 

example, assume that EL is larger than E, . 

The net reactive voltage. Ex, will, therefore, 

be in phase with EL as shown in Figure 11.8. 

E, is then calculated by extending the phasor 

EA front the origin as shown in Figure 11.9. 

Note that if the phasor Ex is shifted to the 
right so that it extends between the tip of 

ER and the tip of EA, the right triangle for 

vector addition becomes apparent. By the 
Pythagorean theorem, EA equals the square 

root of ER squared plus Ex squared: 

E A v ER2 + E2 (11-2) 

Since Ex is the net difference between EL 
and Ec, 

Ex = EL — Ec: (11-3) 

Substituting this expression for Ex into 

equation //-2, the applied voltage is equal 

to the square root of ER squared plus EL 
minus E, quantity squared as shown in 

equation / 1-4 

EA = VER2 + (EL — Ec)2 (11-4) 

This equation described the relationship 
between the voltages present in the series 
RLC circuit. 

Calculation of Circuit Voltage Values 

Since, by Ohm's law, 

E = IR (11-5) 

the voltage across the resistor is the current 
through it tintes the resistance. 

ER = IR 

Because 

IR = IL =- = IT 

in a series RLC circuit, ER can be expressed: 
ER = ITR (11-7) 

EL 
180° 

Ec 

Figure 11.7 F 1 awl t Partial!) Cancel the Effects of 
tiie• Oth, r 

Ec 

Figure 11.8 Phase of Ex when EL u Greater than Ec 

EL . 
Ex. 

Figure 11.9 Phase Relationship of Ex, ER, and EA 
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RLC CIRCUIT 
ANALYSIS 

• Calculations of Total Reactance 

Also, recall that the voltage across an 

inductor, EL, is equal to the current through 
the inductance times the inductive 
reactance. Therefore 

and substituting 

EL = ILXL (11-8) 

= 
EL = ITXL 

The voltage across the capacitor 
equals the capacitive current times its 
capacitive reactance: 

and substituting 

Ec =IXc 

= IT' 

Ec = ITXc 

(11-9) 

(11-11) 

These equivalent IR and IX quantities can be 
substituted for the voltages of Figure 11.6 
they represent on the voltage phasor diagram 
as shown in Figure 11.10. Then by factoring 
out the common term of total current, the 
impedance phasor diagram is formed as 
shown in Figure 11 11 

Calculations of Total Reactance 

In a series RLC circuit, the inductive 
reactance and capacitive reactance are 180 
degrees out of phase as shown in Figure 
11.11. Because of this, the two reactive 
quantities are opposite in phase and one 
partially cancels the effect of the other. The 
result is a total reactance, called XI-, which is 
equal to the difference between the inductive 
reactance and the capacitive reactance values: 

XT = XL XC (11-12) 

If XL is larger than XL, the net total reactance 
is in phase with XL. This would be indicated 
by a positive quantity for XT. On the other 
hand, if Xc is larger than XL, the net total 
reactance is in phase with Xc. This would be 
indicated by a negative XT. The sign of XT 

indicates its direction on the Y(reactive) axis. 

1 Xc 
41%  

Figure 11.10 Subscrtuttng 1, and Ix Values 

R 

XL 
180 ° 

‘t,  
Figure 11.11 XL and Xc are 180 Degrees Oui of Phase 

If in the voltage phasor diagram, EL is 
larger than Ec to make Ex positive, then 
to correspond, X1 would be larger than Xc 
to make XT positive on the impedance 

phasor diagram. 
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• Calculation of IT 
la Calculation of the Phase Angle 

RLC CIRCUIT 
ANALYSIS 11 

Calculation of ZT 

Recall that the total opposition to the flow of 
ac current in a resistive-reactive circuit is 
called impedance, Z, as shown in Figure 11.12. 
The total impedance of a series RLC circuit is 
equal to the vector sum of the total resistance 
and net total reactance. 

ZT iS vector sum of RT 

plus XT (11-13) 

Note in Figure 11.12 that if phasor XT is 
shifted to the right so that it extends between 
the tip of Z and the tip of R. the right triangle 
for vectorial addition appears. By the 
Pythagorean theorem, the total impedance of 
the circuit is: 

ZT = v R 2 xT2 (11-14) 

Since XT is the net difference between X1 and 
Xr, per equation 11-12, substituting this 
expression for X 1 into equation 11-14 gives 
equation 11-15 for the total impedance. 

ZT = N/R2 ÷ (XL — XC)2 (11-15) 

Calculation of IT 

Recall that the total current in a series RLC 
circuit is simply equal to the applied voltage 

divided by the total impedance of the circuit 
(Ohm's law for ac circuits). 

EA 
IT = --

ZT (11-17) 

Once the total current is known, the 
voltage drops across each component may 
be determined by Ohm's law as stated 
in equations 11-7, 11-9, and 11-11. 

Calculation of the Phase Angle 

Recall that the phase angle is defined as the 
phase difference between the total applied 
voltage and the total current being drawn 

from that voltage supply. Returning to the 
voltage phasor diagram for the series RLC 

XL t 
XT  

7 4 R 

X T 

Figure 11.12 Impedance Phasor Diagram 

Figure 11.13 Voleage Phasor Diagram 

circuit, shown in Figure 11.13, remember that 

the total current in the circuit is used as a 
reference for determining phase relationships 
in the circuit. This total current is in phase 
with the voltage across the resistor. The 
circuit phase angle between the total applied 
voltage and the total current drawn from the 
voltage supply is represented by the angle 
theta. The tangent of any angle, theta, of a 
right triangle is: 

tan — opposite side  0  
adjacent side 

(11-17) 
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Ill Alternative Methods of Calculating the Phase Angle 
II Calculation of Series RLC Circuit Power ValupQ 

REA.. CIRCUIT 
ANALYSIS 

For the specific angle of Figure 11.13, 

Ex 
tan 0 --= 

ER 

The arctangent of this ratio equals the value 
of the phase angle. 

--= arctan 
Ex 

(11-19) 

Alternative Methods of Calculating the 
Phase Angle 

Since the impedance phasor diagram is 

proportional to the voltage phasor diagram 
by a factor of the total current, the phase 

angle is also equal to the phase difference 
between the total impedance of the circuit 

and the resistance as shown in Figure 11.14. 
For the impedance phasor diagram, the 

tangent of the phase angle is, using equation 
11-17 again and substituting for opposite 
and adjacent, 

XT 
tan 0 =-- (11-20) 

The arctangent of this ratio also equals the 
value of the phase angle: 

XT 
O = arctan (11 21) 

Calculation of Series RLC Circuit 
Power Values 

Power calculations in series and parallel RLC 
circuits are performed in a similar manner to 

power calculations in series and parallel RL 
and RC circuits. The primary difference is 

that both inductive and capacitive reactive 
power are involved. 

EL 

EA 

" C . 

R 

a 

XL 

XT 

X c 

Figure 11.14 Phase Angle Related to Voltage and 
Impedance Phasor Diagrams 

As you know, power is voltage times current 
or P = El. l'he real power, PR, in watts 
dissipated by the resistor, is equal to ER times 
111 .1 Ft is equal to I , the total circuit current of 
the series circuit. Similarly, the reactive power 

of the inductor, P1 in VAR. equals EL times 
IT and the reactive power of the capacitor, Pc 
in VAR, equals Ec times 1-r. 

In series RE.0 circuits, the power phasor 

diagram is proportional to the voltage phasor 
diagram by a factor of the total current as 
shown in Figure 11.15. The inductive power 

phasor and the capacitive power phasor are 
out of phase by 180 degrees. Thus, the 
resultant reactive power, which is designated 

Px. is equal to the difference between the 
inductive reactive power and the capacitive 
reactive power as shown in Figure 11.16. 

If Pi is larger than Pc, the net reactive power 

is in phase with PL. If Pc is larger than PL, 
the net reactive power is in phase with Pc. 
The sign of Px will determine its ultimate 
vectorial direction. 

BASIC AC CIRCUITS 



• Calculation of Series RLC Circuit Power Values 

1 RLC CIRCUIT 
ANALYSIS 

Recall that the total power in a resistive-
reactive circuit is the apparent power 
measured in volts-amperes, and is the vector 
sum of the resistive or real power and the net 
reactive power. 

Note in Figure 11 17 that if the phasor Px is 
shifted to the right so that it extends between 
the tip of the total apparent power and the tip 
of the real power, the right triangle for vector 
addition appears. By the Pythagorean 
theorem: 

PA = \TPR2 Px2 (11-22) 

Since Px is equal to the difference between Pt 
and P(, 

Px = Pt — Pc 11 -2 '1) 

Substituting this expression for Px into 
equation 11-22, the total apparent power is: 

PA = VPR2 (PL PC)2 

which is the relationship between the 
different types of power in a series 
RLC circuit. 

The total apparent power can also be 
expressed in P = El form as 

(11-24) 

PA = EA1T (n-25) 

where EA is the applied voltage and II 
the circuit current. The apparent power 
calculated by using one of these two methods 
should be identical to the apparent power 
calculated by using the other method. 

FLIT 

ER IT 

Figure 11.1 5 Voltage and Power Phasor Diagrams 

PR 

Figure 11.16 Calculation of Total Reactive Power 

P L (VAR) 

PA 
d 

PX   (VA) 

(WATTS) 
(VAR) C 

Figure 11.17 Total Apparent Power Phasor Diagram 
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• Resistance and Reactance Phasor Diagram 
• Calculation of ZT 
• Calculation of IT 
• Calculation of Circuit Voltage Values 

RLC CIRCUIT 
ANALYSIS 

ANALYSIS OF A SERIES RLC CIRCUIT 

Figure 11.18 is a series RLC circuit with 
an applied voltage of 50 volts, 20 ohms 

resistance, 45 ohms inductive reactance, and 
30 ohms capacitive reactance. Impedance, 
voltage, current, and power calculations will 
now be made for this circuit using the 
techniques described 

Resistance and Reactance Phasor Diagram 

At this point, it is useful to sketch the 
resistance and reactance phasor diagram to 
help visualize the relationships between the 
resistive and reactive quantities of the circuit 
Figure 11.19 shows such a diagram. Note that 
XL is larger than X(--; thus, the net total 
reactance is in phase with Xt and is, using 
equation 11-12, 

XT = XL — Xc 
= 4511 — 30(2 
= 15f1 

Calculation of ZT 

The total impedance, Z1, is equal to 

Z-r = VR2 + XT2 

= V202 + 152 

= V400 + 225 

= 

= 2511 

Calculation of IT 

By using Ohm's law for ac circuits the total 
current, IT, can be calculated. 

EA 
IT = 

50 
= 25 
= 2A 

R= 20Q 
EA = 

50V 

Xc = 300 

XL= 
45 0 

Figure 11.18 Series RI.0 Circuit Example 

XL 
45Q 
XT A 
150a 

R 200 

• Xc 300 

Figure 11.19 Resistance and Rectance Phasor Diagram 

Calculation of Circuit Voltage Values 

Using Ohm's law again, the voltage drops 
across each of the components in the circuit 

can be calculated. 

The voltage across the resistor, ER, is 

calculated: 

ER ITR 
= (2A) (2011) 
= 40V 

11-10 
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MI Calculation of ET 
la Calculation of Phase Angle 
MI Alternate Method of Calculating Phase Angle 

RLC CIRCUIT 
ANALYSIS 11 

The voltage across the inductor, EL, is 
calculated: 

= ITXL 
= (2A) (45(1) 
= 90V 

The voltage across the capacitor, E , is 
calculated: 

Ec = ITXc 
= (2A) (30(2) 
= 60V 

Calculation of ET 

At first, as shown in Figure I 1.20, this result 

appears impossible since there seems to be 
more voltage in the circuit than the applied 
voltage, EA. However, you must keep in mind 
that the voltage across the inductor and the 

voltage across the capacitor are 180 degrees 
out of phase and one partially cancels 
the other. 

Therefore, the applied voltage, EA, is 
calculated using equation /1-4. 

E, = VER2 + (EL — Ec)2 

= 402 + (90 — 60)2 

= N/402 + 302 

= V1600 + 900 

= V2500 
= 50V 

This calculation confirms the original applied 
voltage value given in the example. And this 
method gives you a valuable check of the 
accuracy of the calculation of the individual 
voltage drops that were calculated for each 
component in the circuit. 

e  

EA= 

50 V 

E =40 V 

Ec = 60 V 

[ EL= 
90 V 

Figure 11.20 Calculated Voltage Drops in Example 
Series RLC Circuit 

Calculation of Phase Angle 

Using the voltage phasor diagram of Figure 
11.13, the phase angle of the example series 
RLC circuit can be calculated. 

O = arctan ( Ex \ 
ER / 
30V \ 

= arctan (0.75) 
= 37° 

arctan 

The angle whose tangent is 0.75 is about 
37 degrees. 

Alternate Method of Calculating 
Phase Angle 

The same result may be obtained using the 
impedance phasor diagram. In this case the 
arctangent is XT divided by R. 

O = arctan 

= arctan 
15fl \ 
20T1 / 

= arctan (0.75) 
= 37° 
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• Positive and Negative Phase Angles 
• Calculation of Component Power Values 
• Calculation of Total Reactive Power 
• Calculation of Total Apparent Power 

Positive and Negative Phase Angles 

The phase angle calculated for the example 
series RLC circuit is considered to be a 
positive phase angle since the phase angle for 
the circuit is measured counter-clockwise. 
Thus, the phase angle for the circuit is stated 
as being a positive 37 degrees. 

The phase angle in a series RIX; circuit can 
either be positive or negative. If XL is greater 

than Xc, the angle is positive. On the other 
hand, if Xc is greater than XL, the angle is 
negative. 

Calculation of Component Power Values 

In the example series RLC circuit, the voltage 
drops in the circuit are: 40 volts across the 
resistor, 90 volts across the inductor and 60 
volts across the capacitor. The applied voltage 
is 50 volts and a total current of two amperes 
is flowing. 

Multiplying the voltage times the current for 
each component yields these individual 
power values: 

PR= ERIT = (40V) (2A) = 80W 
PL= EL1T = (90V) (2A) = 180VAR 
Pc= EcIT = (60V) (2A) --= 120VAR 

Calculation of Total Reactive Power 

The net reactive power, Px, is equal to the 
difference between PL and Pc, or 180 VAR 
minus 120 VAR which equals 60 VAR. Since 
PL is larger than Pc, Px is positive and is in 
phase with PL. 

RLC CIRCUIT 
ANALYSIS 

Calculation of Total Apparent Power 

By equation 11-22, the apparent power. Pm 
is equal to the square root of PR squared plus 

Px squared: 

= Px2 

= 74--6-012 

= V6400 + 360-15 

= V0 
= 100VA 

The total apparent power of the example 
series RLC circuit is 100 volt-amperes. 

This should be the same as the value obtained 
by multiplying the applied voltage, EA, by the 

total current, IT. 

PA = EAI r 
= (50V) (2A) 

= (100VA) 

It is, and proves the accuracy of the 

first calculation. 

PARALLEL RLC CIRCUITS SUMMARIZED 

Now that all calculations for a series RLC 
circuit have been made, the method of 

solution of a parallel RLC circuit will be 
discussed. The analysis of this circuit will be 
similar to the analysis of either a parallel RL 

or a parallel RC circuit. 

In a parallel RLC circuit, such as in Figure 
11.21, the sum of the branch currents is not 
equal to the total current as it would be in 
either a purely resistive, a purely inductive, or 

purely capacitive circuit. That is, 

IT # IR + IL + 1c (11-26) 

This occurs because of the different phase 
relationships between the voltage and current 
for each component. Recall that this was also 

true for RL and RC parallel circuits. 

11-12 
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• Voltage as a Reference 
• Development of a Circuit Phasor Diagram 
• Calculations of Branch Currents 

Rik CIRCUIT 
ANALYSIS 11 

Voltage as a Reference 

Since the voltage across all components of 

a parallel circuit is the same as the applied 
voltage, EA, it will be used as the reference 
quantity in discussing the phase relationships 
of the currents in the circuit. Therefore, 
EA = ER = E1 = E< 

Development of a Circuit Phasor Diagram 

Recall that the current through a resistor, IR, 
is in phase with the voltage across it, ER. The 
capacitive current, l( , leads the voltage across 
the capacitor, EA, by 90 degrees; and the 
current through an inductor, 11., lags the 
voltage across it. EA, by 90 degrees. Thus, 
the phase relationship of the applied voltage 
and currents in a parallel RI.0 circuit are as 
shown in Figure 11.22. 

Calculations of Branch Currents 

The individual branch currents in the 
example RLC circuit can be calculated as 
they are in either a purely resistive, purely 
capacitive, or purely inductive circuit. Simply 
divide the voltage across the branch by the 
opposition to current in the branch. 

In the resistive branch the opposition to 
the flow of current is measured in ohms 
of resistance. The resistive current 
is determined by dividing the applied voltage 
by the value of the resistor: 

EA 

T -t 
(11-27) 

In the inductive branch, the opposition to 
the flow of current is measured in ohms of 
inductive reactance. The inductive current is 
determined by dividing the applied voltage by 
the reactance of the inductor: 

EA 
IL = — (11-28) 

XL 

Figure 11.21 Parallel RLC Circuit Example 

6•MD •IM 

L 

EA 

Figure 11.22 Phase Relationships of EA and I in a 
Parallel RLC Circuit 

1 n the capacitive branch, the opposition to the 
flow of current is measured in ohms of 

capacitive reactance. The capacitive current is 
determined by dividing the applied voltage by 
the reactance of the capacitor: 

EA 

(// -29) 
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RIX: CIRCUIT 
ANALYSIS 

• Current Phasor Comparisons 
• Calculation of Ix e 
Current Phasor Comparisons 

In the parallel RLC circuit, since EA = ER = 

EL = Ec, and since I R is in phase with ER 

and thus all the voltages EL, Ec and EA, IR 

becomes the reference vector for the current 

phasor diagram of Figure 11.23. Comparing 

the current phase relationships using the 

current phasor diagram of Figure I 1.23, you 

can see that the capacitive branch current. lc. 

leads the resistive branch current, by 90 

degrees; the inductive branch current, IL, lags 

IR by 90 degrees. Because of the 180-degree 

difference between the capacitive branch 

current and the inductive branch current, 

these two reactive current values are opposite 

in phase, and one partially cancels the effect 
of the other. 

Calculation of Ix 

The difference between lc and IL is lx, which 

is the net reactive current. If lc is larger than 

IL, the net reactive current is in phase with lc 

and the value of lx is positive. If. on the other 

hand, IL is larger than lc, the net reactive 

current is in phase with IL and the value of lx 

is negative. The sign of Ix indicates its 

direction on the Y(reactive) axis. 

By adding the total current vector, 1T, to the 

current phasor diagram, and shifting vector 

lx to the right so that it extends between the 

tip of IR and the tip of IT, a right triangle is 

produced. This is shown in Figure 11.24. The 

right triangle can then be used to add the 

phasors 1R and Ix vectorially. 

Applying the Pythagorean theorem, 

= Vlit 2 Ix 2 (11-31) 

1/4  
Figure 11.23 Current Phasor Diagram for a Parallel 

RI.0 Circuit 

1800 EA I 

•  

IL 

••• 
'IR 

ee 

Figure 11.24 Current Phasor Dra gram with IT Phasor 

Since Ix is the net difference between 
IL, as shown in equation 11-31, 

= IC — IL 

k and 

(11-31) 

Ix is equal to lc minus IL. Substituting this 

expression for lx into equation 11-30, the 
total current is equal to 

IT = VIR2 + (Ic — (11-32) 

which is the relationship between the branch 
currents in a parallel RLC circuit. 

11-14 
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Ill Calculation of Z-, 
la Calculation of Phase Angle 
• Calculation of Power 

RLC CIRCUIT 
AN umsts 11 

Calculation of ZT 

Once the total current is known, the total 
impedance, ZT, of the circuit is easily 
determined using Ohm's law for ac circuits: 

EA 
ZT = — IT 

Calculation of Phase Angle 

Recall that the phase angle is the number 
of degrees of phase difference between the 
applied voltage and the total current. Also 
recall that the applied voltage is in phase with 
the resistive current. Therefore, the phase 
angle is measured from the horizontal vector 

IR (which is also EA) to the vector IT; it is 
identified by the angle, theta, on the current 
phasor diagram of Figure 11.25. 

The tangent of the phase angle, theta, is 
equal to the ratio of the net reactive current 
divided by the resistive current as shown in 
equation 11-34: 

Therefore, 

Ix 
tan O = —IR 

= arctan (Ix 
IR 

(11-33) 

(11-34) 

(11-35) 

the arctangent of the net reactive current 
divided by the resistive current equals the 
value of the phase angle. 

Calculation of Power 

Power calculations in parallel RLC circuits are 
the same as power calculations in series RLC 
circuits. The individual power values are 
calculated by multiplying current through a 
component times voltage across a component. 

Therefore, 

PR = 

PL = 

PC = 

ERIR = E AIR 

ELL EAIL 

Eck = EA lc 

(11-36) 

(11-37) 

(1 1-38) 

I X 

L EA 1R 

Figure 11.25 Phase Angle on the Current Phasor 
Diagram 

Pc 

Px 

PA 

PR PL 

Figure 11.26 Total Apparent Power Phasor Diagram 

The total apparent power is found by using 
the Pythagorean theorem solution of resistive 
and net reactive power shown in the power 
phasor diagram of Figure 11.26 defined by 

these equations: 

PA = Vp R 2 p x 2 

Px = PC — 

PA = VPR2 + (Pc — PL)2 

(//-39) 
(11-40) 

(11-41) 
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RLC CIRCUIT 
ANALYSIS 

• Calculation of Branch Currents 
▪ Current Phasor Diagrams 

ANALYSIS OF A PARALLEL RLC CIRCUIT 

Figure 11.27 shows a typical parallel RI.0 
circuit with 180 VAC, 60 kilohms resistance, 
30 kilohms inductive reactance, and 18 
kilohms capacitive reactance. Impedance, 
voltage, current, and power measurements 
will be performed for this circuit using the 
techniques just described. 

Calculation of Branch Currents 

The resistive branch current, I it. 
by dividing the voltage across the resistor, 180 

volts, by the value of the resistor. 60 kilohms. 

is calculated 

EA 
1R = 

180V  

60kfl 
= 3mA 

The inductive branch current is determined 
in a similar manner by dividing the 
voltage across the inductor by the 
inductive reactance. 

EA 

IL = XL 
180V 

30kfl 
= 6mA 

The capacitive branch current is calculated 
by dividing the voltage across the capacitor 
by the capacitive reactance. 

EA 

XC 
180V  

▪ 18kfl 
= 10mA 

e 

• 

R=601“/ 

Figure 11.27 Tvptcal Parallel RLC Circuii 

ee 

Figure 11.28 Current Phasor Diagram for Parallel RLC 
Circuit Example 

Current Phasor Diagrams 

The current phasor diagram can now be 
drawn to show the relationships between the 
resistive, inductive and capacitive branch 
currents as shown in Figure 11.28. Note that 
lc is larger than IL; therefore, the net reactive 
current is in phase with I. The net reactive 
current, lx, equals 

= — IL 
= 10mA — 6mA 
= 4mA 

11-16 BASIC AC CIRCUITS 



• Calculation of IT 
III Calculation of Z 
II Calculations of the Phase Angle 

RLC CIRCUIT 
ANALYSIS 11 

Calculation of IT 

As you can see in Figure 11.28. by shifting the 
phasor lx to the right so that it extends from 
the tip of the vector representing IR to the 

tip of the vector for II, a right triangle is 

formed. The right triangle cast then be used 
to determine the value of I i . Using the 

Pythagorean theorem, the total current. I , 

is now equal to the vector sum of the values 
of lx and IR. 

/x2 4_ /x 2 

= V32 + 42 

= \ 9 + 16 

= \ 25 

= 5mA 
-the total current in the circuit is 

5 milliamperes. 

Calculation of Z 

The total impedance of this circuit can now 
be calculated by dividing the applied voltage 

by the total current. 

Z = 
EA 

'T 
180V 

5mA 

= 361(12 

Calculations of the Phase Angle 

The phase angle, theta is the angle between 

the resistive current and the total current as 
shown on the current phasor diagram in 

Figure 11.29. The value of the phase angle is 

equal to the arctangent of the ratio of net 
reactive current to the resistive current. 

Therefore, 

0 =-- arctan 

= arctan 

( \ 

4mA\ 

\ 3mA) 
= arctan (1.33) 

= 53° 

Ic 10mA 
• 

IX 4mA  vialT 5mA 

IR 3mA 

IL 6mA 

Figure 11.29 Current Phasor Diagram for 
Calculating Theta 

IC 

a 

Figure 11.30 Current Phasor Diagrams for Positive and 
Negative Thetas 

Thus, the phase angle of this parallel 

RLC circuit is approximately 53 degrees. 

The phase angle is described as a positive 
phase angle because the total current phasor 

is rotated counter-clockwise from the 

reference. However, the phase angle of 

parallel RLC circuit may be either positive or 

negative depending upon the relationships of 

IL and lc. If k is greater than IL, the phase 

angle theta will be positive as shown in Figure 

11.30a. If IL is greater than k, Theta will be 
negative as shown in Figure 11.30b. 
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• Calculation of Component Power Values 
• Calculation of Total Reactive Power 
• Calculation of Total Power 

M.S.., CIRCUIT 
ANALYSIS e 

Calculation of Component Power Values 

As you know power values depend on the 
various voltages and currents in the circuit. 
In the parallel RLC circuit example shown 
in Figure 11.31, currents are: 1R equals 3 
milliamperes, I. equals 6 milliamperes, and 
lc equals 10 milliamperes. The applied 
voltage is 180 volts; the total current is 
5 milliamperes. 

The real power dissipated by the resistor, PR, 
is calculated: 

PR = EAIR 
= (180V) (3mA) 
= 540mW 

The inductive reactive power. P1 
is calculated: 

PL = EA1L 
= (180V) (6mA) 
= 1080mVAR 

The capacitive reactive power. Pc, 
is calculated: 

Pc Elc 
— (180V) (10mA) 
= 1800mVAR 

Calculation of Total Reactive Power 

The net reactive power, Px is calculated: 

PX = PC — PL 
= 1800mVAR — 1080mVAR 
= 720mVAR 

The power phasor diagram will look like the 
one in Figure 11.26. 

Since Pc is larger than PL, Px is positive and is 
in phase with Pc. 

EA 
180V 

1R IL 
3mA 6mA 10mA 

Figure 11.31 Branch Currents in Parallel RI.0 
Circuit Example 

Calculation of Total Power 

The apparent total power. PA, is calculated 

using equation 11-39: 

PA = VPR2 + Px2 

= 540n1W2 

= 24r -gT61---)0 

= V810,000 
= 900mVA 

This value should be the same as the 
apparent power value obtained by 
multiplying the applied voltage by the 

total current: 

PA =- EAIT 
= (180V) (5mA) 

= 900mVA 

11-18 
BASIC AC CIRCUITS 



• Summary 

1 RLC CIRCUIT 
ANALYSIS 

SUMMARY 

In this lesson, the concepts and techniques 
you learned in analyzing RL and RC circuits 
were applied to determine circuit values in 

RLC circuits. You were shown how to 
determine current, voltage, reactance, and 
the phase angle for any RLC circuit. Also, a 
new concept was introduced — that when 
values are in opposite phase, one value 
partially cancels the effect of the other. This 
difference is called the net effect. The net 
voltage, Lx, net total reactance, X-r, and net 
reactive current lx, were calculated. The 
methods you learned in this lesson should 
enable you to determine equivalent circuit 

values in any series or parallel RLC circuit. 
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The angle is rotated counterclockwise; 

RCC CIRCUIT 
ANALYSIS 

• Worked-Out Examples 

1. Draw a phasor diagram for this circuit showing current and impedance phasors. 

Soluiion: 

XL , 

X, 

R 1(i11) 

xc 

X L > X( ; therefore, X-1- is plotted in phase with Xi 

2. Draw voltage phasor diagrams for the circuit in Example I. Calculate the value and sign of 
the phase angle. 

ExT X o 411 
tan O = = = = 0.667 

arctan 0.667 = 33.7° 

therefore, the sign of the angle is positive. 
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RLC CIRCUIT 
ANALYSIS 

• Worked-Out Examples 11 
3. Draw phasor diagrams showing Pythagorean theorem relationships in parallel RI.0 circuits. 

Write equations for each solution. 

Solutton. 

IR 

= \i/iR 2 ix2 

- Ix2 + (It - ice 

pT = 'pR2 + px2 

= V PR' + (PL — Pc)2 

4. Given the circuit and typical circuit values shown, calculate the circuit values specified. 

R = 101/ 

= 
%Hz 

Ea = 
10V 

L = 0.2mH 

Solution: 

= 
2F 

a. 

b. 

C. 

d. 

e 

f. 

g. 

XI 

XT 

EL 

E( 

h. 1:4( = 

PL 

  J. PC = 

  k. PR 

Px =   

  m PA 

a. XL = 2-rrfL = 6.28 x 5 )< 103 x 0.25 x 10'9 = 7.8511 

n. Phase angle 

1 1  b 1  . Xc = 
2-trfC 6.28 x 5 x 103 x 2 x 10 6 — 6.28 x 10-2 — 15.9n 

C. XT = XL — X( = 7.8511 — 15.9n = 8.05S1 

d. ZT VR2 + XT2 = V102 + 8.052 = V1.65 X 102 = 12.811 

EA IOVAC  
C. IT — ZT — 12.8n — 0.781A..m. 

f. Et = 1TXL = 0.781A x 7.85f1 = 6.13VAC 

g. Ec = 11-Xc = 0.781A x 15.912 = 12.4VAC 
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Soluiion: 

MI Worked-Out Examples 

h ER = 11R = 0.781A x 101.1 = 7.81VAC 

= 1-,Ei = 0.78IA x 6.13V 4.79VAR rr„, 

I. P = ITEr = 0.78 IA x I2.4V 9.68VAR,„„ 

k PR = (TER = 0.781A x 7.81 V = 6.1W rrn, 

I. Px - PL - Pc = 4.79VAR - 9 68‘.AR 

RI.0 CIRCUIT 
ANALYSIS 

RI PA = V'PR2 Px2 = V6. 1 W 2 + 4.89VAR2 b n 7.82VA,.,„, 

XT 
n phase angle = arctan arctan 0 805 = 

e 

5. Given this circuit and typical circuit values shown, calculate the circuit values specified. 

a. 

b. 

d 

e. 

f. 

g. 

a. XL = 21TfL= 6.28 x 100 X 15 = 9.421d1 

1 
b. Xc - 

2efC • 6.28 x 100 x 0.5 x le 3.14 x 10 4 

C. 1R 
EA 50VAC 

51(fl 

EA 
d. IL - Xi 

e. lc = 
)(c. 

EA 

50VAC  

- 9.421d1 

- 

50VAC  
- 

- 3.181(11 

5.31mAr„,. 

f. Ix = IL - lc = 5.31mA - I5.7mA = I0.4mA 

h PR 

P, 

k Px 

L P,‘ 

m Phase angle 

- 3.18kfl 
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RI.0 CIRCUIT 
ANALYSIS 

• Worked-Out Examples 11 
g. IT = + = 10mA 2 + 10.4mA2 14.4mA„. 

h. PR = IREA = 10mA x 50V 

I. PL. = ILEA = 5 31mA x 50V 0.27VAR„s 

J• Pc = IcEA = 15 7mA x 50V = 0.79VAR,„„ 

k. Px = Pi — Pc = 0.27VAR — 0.79VAR = 0.52VAR,. 

1. PA N/PR2 + Px2 = V0.5W 2 + 0.52VAR2 = 1/F). -5-r 0.72VA„. or 

PA = ITEA = 14 4mA x 50V = 0.72VA,„„ 

In tan 0— -1—x 10.4mA — 1.04 
IR 10mA 

arctan 1.04 = 46.1° 

BASIC AC CIRCUITS 11-23 



RIC CIRCUIT 
ANALYSIS 

• Practice Problems 

1. Draw a phasor diagram for this circuit showing voltage and current phasors. 

27'mA 
1,. 
15 m A 

IC 
SmA 

2. Draw power phasor diagrams for the circuit in problem I Calculate the value and sign of ihe 
phase angle. 

3. Draw phasor diagrams showing Pvthagoren theorem relationships in series RLC circuits. 

Write equations for each solution. 

4. Given the circuit and typical circuit values below, calculate the circuit values specified. 

L = SmH 

Xe = 200f) 

a. X L 

b. XT 

Zr 

d. IT 

e ER 

f. EL 

E( 

h PR 

P L 

.1' 

k PA 

Phase angle 

5. Given this circuit and typical circuit values shown, calculate the circuit values specified. 

E. = 
20V 

  g. PR 

h. PL 

i. 

J. Px =   

  k. PA =   

I. Phase angle 
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RLC CIRCUIT 
ANALYSIS 

• Quiz 11 
1. Draw a phasor diagram for this circuit 

showing power and current phasors. 

X, = 

R = lkfl 

1.5k1/ 

2. Draw a phasor diagram for this circuit 

showing power and voltage phasors. 

15A 
IC = 
30A 

It = 
10A 

3. Calculate the value and sign of the phase 

angle in the circuit of Problem 1 

4. Calculate the value and sign of the phase 

angle in the circuit of Problem 2. 

5. Calculate the value of Z in Problem I 

6. Calculate the value of IT in Problem 2. 

7. Given this circuit and typical circuit 

values shown, calculate the circuit 

values specified. 

X, = 4011 

R = 501/ 

a. X( =   g. Et =   
b. X-1=   h. PR =   

C. =   i. PL =   

d. =j. Pc =   
e- ER =   k =   
f. E.' =   L Phase angle 

8. Given this circuit and typical values 

shown, calculate the circuit 

values specified 

- 

5kHz 

E. = 

40V 

a. 

b. 

d. 

e. 

f. 

1 
R Xc L = 

10ku 6kI/ 0 5H 

g. P1 — 
h. P,-

Px =   

.1- PA —   
k. Phase angle = 

9. In a series RCL circuit, which component 

will have the most voltage across it? 

10. In a parallel Rd. circuit_ which component 

will have the most current through it? 
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LESSON 12 

0 Phasor 
Algebra 
This lesson provides an introduction to phasor algebra 
by introducing you to the use of the j-operator and its 
application to the solution of simple RL and RC 
circuits. Both rectangular and polar coordinate 
representations of circuit impedance are presented as 
well as the methods of conversion from one form to the 
other. These techniques are used to solve the more 
complex circuits of Lesson 13. 
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Pli ASOR 

ALGEBRA 

U Objectives 

At the end of this lesson you should be able to: 

1. Specify both the rectangular and polar coordinates of a poin«in a 
complex plane. 

2. Simplify the expression of a multiplication or division problem involving 
the j-operator. 

3. Understand what numerical quantity j actually represents. 

4. Specify what effect multiplication by j or a power of j (i.e j2, j3, j4, or —j) will 

have on a vector (phasor) located somewhere on the complex plane. 

5. Write the complex impedance of an RL or RC circuit in either rectangular 

(R + jX) or polar (Z/13) form. 

6. Convert the complex impedance of a circuit in rectangular form to 

polar form. 

7. Convert the complex impedance of a circuit in polar form to 

rectangular form. 

8. Specify whether a circuit that has a positive or negative j terni will have a 

complex impedance in the rectangular form positive or negative phase angle. 
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PHASOR 
ALGEBRA 

• X-Y Coordinates 12 
INTRODUCTION 

In previous lessons, when discussing RL, RC 
and RLC, circuits, you have seen that it is 
necessary to work with phasor quantities in 
order to determine values of impedance, 

current, voltage and phase angle. The 
vectorial relationships in the circuits were 

simple enough to allow the use of right 
triangle trigonometric relationships and the 
Pythagorean theorem. However, if more 
complex ac circuits are encountered, the 
phase relationships become more complex 
and the solution of problems involving such a 
circuit with its various components and phase 
relationships could be a long process. Because 
of this, a different method of solution called 
phasor algebra must be used. The phasor 

algebra method simplifies solving complex 
ac circuit problems. 

INTRODUCTION TO PHASOR ALGEBRA 

Phasor algebra employs a simple method 
which can express the value or magnitude 
of voltage, current, reactance, resistance or 
impedance and their phase angles, and the 
phase relationships of these quantities with 
each other. 

Before this method of circuit analysis can be 

used, however, it is necessary to first review 
some basic facts concerning numbers 
and graphs. 

X-Y Coordinates 

Recall that in an earlier lesson discussion 
concerned how to graph a curve on a set of 
X-Y axes shown in Figure 12.1. The point 
where the two axes cross is called the origin. 
This is the point from which all other points 
on either axis are measured. Distances to the 
right on the X-axis, and up on the Y-axis are 
designated with positive numbers. Distances 
to the left and down are negative numbers. 

ORIGIN 

Y 
POSITIVE 

I - 

NEGATIVE 

X 

Figure 12.1 An X-Y Coordinates Graph 

- 
-3 -1 I I 23 

-4 -2 - 1 
I13. • III*I X 

-1 1 2 3 4 
-2« 

Figure 12.2 Positive and Negative Numbers 
on Coordinates 

Each number represents a unique point along 
the number line. Thus, as shown in Figure 
12.2, +4 represents the point that is four 
units to the right of the origin on the X-axis 
or four units above the origin on the Y-axis. 

Similarly, —2 represents a point that is two 
units to the left of the origin on the X-axis, or 
two units down from the origin on the Y-axis. 
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PHASOR 

ALGEBRA 

• Location of a Vector 

The location of any point on the X-Y plane 

can be defined in terms of its X and Y 

coordinates. For example, in Figure 12.3 the 

point shown is located at X equals four, and Y 
equals two. It is written: (4,2). Or, as another 

example, the point shown on the graph in 

Figure 12.4 is defined as being located at X 

equals minus two, and Y equals three. It is 

written: (— 2,3). 

These numbers which define the location of 

a specific point on the X-Y coordinate system 

are called the coordinates of the point. Note that 

the point is defined with two parts— an 

X-part and Y-part. 

Location of a Vector 

These indicators of unique points on 

the coordinate system can be used in an 

interesting way. To illustrate, a point is 

chosen that is defined by X equals four and Y 

equals three as shown in Figure 12.5. 

Projecting down from this point parallel to 
the Y axis onto the X axis it can be seen that 

the X axis is intersected at X equals 4. 

Projecting across from this point parallel to 

the X axis it can be seen that the Y axis is 
intersected at Y equals to 3. The point can be 

connected to the origin with a vector. For this 
example it is called vector H. Vector H is in a 

position on the X-Y coordinate system located 
by point (4,3). It originates at the origin and 

its length is a measure of the magnitude of 
the quantity it represents. 

The reason for calling it H is because, as 

you will note, it is the hypotenuse of a right 
triangle that has been used in previous lessons 
to determine phase angles and for vector 

additions. The right triangle is formed by 
a vector of Y units as the opposite side and 

a vector of X units as the adjacent side. 

4 - - 

3 - - 

1--

Ill' I •• 1 1 4 
- 4 3 2 - 1 _ _ 1 2 3 4 

--2 

- -3 

- -4 

Figure 12.3 Point (4,2) on the X-Y Coordinates 

- 4 - 3 - 2 - 1 - 11 2 3 4 

--3 

--4 

Figure 12.4 Point ( — 2,3) on the X-Y Coordinates 

Figure 12.5 Point (4,3) Used as an Example 

• 
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• Rotating a Vector 
II Square Roots of Negative Numbers 12 
Recall that the length of a hypotenuse is equal 

to the square root of the sum of the squared 
sides. Therefore, 

H = N/X2 + Y2 

= '42 + 32 

= N.7i6 9 

= \ 25 
= 5 

(12- 1 

The vector in this example has a length of 5 

units. As has been shown in past lesson, the 5 
units could be 5 volts, 5 amperes, 5 watts, and 
so forth 

Rotating a Vector 

When the vector H is rotated to the X axis as 
shown in Figure 12.6, you can see that it lies 
on the X axis and becomes a vector of 5 units 
long located by the point (5,0). There is no Y 
part. The Y part is equal to zero. 

Now the vector H is rotated back again to the 
original position as shown in Figure 12.5, note 
that vector H does not change in magnitude. 
It is still 5 units long. The parts X and Y 

always indicate the point in the X-Y 
coordinate system to which the vector is 
rotated. The original point from which it 
started is (4,3). To find the point to which 
vector H was rotated, you locate the + 4 on 
the X axis, and project up parallel to the Y 
axis three units. 

Thus, it can be seen that the X part of the 
number defines a vector along the X axis; the 

Y part of the number is a point that indicates 
how far the vector H has been rotated away 
from the X axis. 

Figure 12.6 Vector 11 Rotated to the X Axis 

Note that the distance from the axis to the 
final point is the Y part of the coordinates for 
the point. It is suggested that you think of 
the Y part of the coordinates as an "operator" 
because it is said to operate on the vector H to 
tell you how far the vector H has been moved 
from the X axis to arrive at the final 
Later in this lesson you will be told how to use 
this simple procedure to easily describe any 
vector in the coordinate system. 

Square Roots of Negative Numbers 
Remember that when you square any number 
— whether it is positive or negative— the 
result is always a positive quantity because a 
plus times a plus or a minus times a minus is 
always a plus. This is why plus or minus is 
always written when designating the square 
root of a positive number. There are two 
roots, a plus root and a minus root. For 

example, the square root of four could be 
either a plus two or a minus two: 

= ± 2 (12-2) 
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ALGEBRA 

Real and Imaginary Axis 

With this in mind, what is the square root of a 

minus four (V-4)? There is no real number 
which when squared results in a minus 
number. Thus, it is said that a minus number 
has no real square roots. However, there is 

a root for any square and for this reason, 
mathematicians have given the square root of 
a negative number a special name and special 

identification. They are called imaginary 
numbers—numbers that are the square roots 
of negative numbers. 

In electrical calculations there is a need to 
take the square root of negative numbers. 
The method used when calculating the square 
root of a negative number is to take the 
square root of the number as if it were 

positive and then write a j before it to indicate 
that it is an imaginary number. For example, 

and 

Similarly 

the 

= 3 

= j3 

V:71- = j2 

= p 
= j 

The square root of minus one can be written 
as just j. It is the basic imaginary quantity— 
the square root of a minus one —and the 
special identification is j. Therefore, the 
square root of minus 9 could be written as 
the square root of minus 1 times the square 
root of 9: 

( (Vi) = 

(12-3) 

(12-4) 

(12-5) 

(12-6) 

(12-7) 

Y-IMAGINARY 

1 1 1 1 
4 3 2 1 

14 - 

13-
12-

Ii 

# 3 + j4 

5 / 

/ 1 2 3 4 

—j1 

— 12 

— 13 

— j4 

X 
REAL 

Figure 12.7 Numbers Represenied by X and Y Axes 

The square root of minus 4 could be written 

as the square root of minus 1 times the square 
root of 4: 

(V-1) ( \ri) = j2 (12-8) 

Correspondingly, the square root of minus I 
could be written as the square root of minus I 

times the square root of I: 

(Ni -1) (VT)=P (12-9) 

In all cases then, the square root of a minus 
number can be considered as the square root 
of a positive number times the square root of 

minus one, or j. 

Real and Imaginary Axes 

Customarily, as shown in Figure 12.7, the 
Y-axis is used for representing imaginary 
numbers and is referred to as the imaginary 
axis, while the X-axis is referred to as the real 
axis. This coordinate system is used to define 
the location of points in terms of the distances 
marked off on the real and imaginary axes. 
For instance, the point shown in Figure 12 7 
is located at a real axis value of three and an 
imaginary axis value of j4. It is written simply 
as 3 plus j4, 3 + j4. 
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ALGEBRA 

• Complex Numbers 
II Polar Coordinates 12 
Complex Numbers 

If a vector is drawn from the origin (Figure 
12.7) to this point, its magnitude is again 5 
units as in the  previous example 

(5 = V 32 + <P). Thus once again the 
final point for the vector with a magnitude of 

5 has been identified with coordinates, but in 
a different way. This time they are identified 
with a real part (X-axis) and a so-called 
imaginary part (Y-axis). -The designations of 
these points on the real-imaginary 
coordinates represent actual numbers. 

However, since they are composed of a real 
part and an imaginary. part, they are called 
complex numbers. 

A complex number is defined as a number 
represented by the algebraic sum of a real number 
and an imaginary number. Consequently, the 
graph or plane defined by the real number 

and imaginary axes, in which point locations 
are defined by complex numbers, is known as 
a complex plane. Since the points are located by 
coordinates measured and plotted on lines 
that are perpendicular to each other, these 
coordinates are called rectangular coordinates. 

Polar Coordinates 

There is an alternate method of specifying the 
location of any unique point, and this is in 
terms of its polar coordinates. 

The point's distance from the origin is the 
length (magnitude) of the vector H as shown in 
Figure 12.8 and as discussed earlier. Recall it 
was calculated to be five units in magnitude. 
Two particular positions to which the vector 
was located are the points identified by the 
complex numbers 3 + j4 and 4 + j3. 

e 

IMAGINARY 
AXIS 4 + j3 

REAL AXIS 

4 

3 

".> 

Figure 12.8 Position of Point Location 4 + 13 
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• Polar Coordinates 

Of course, as shown in Figure 12.9, there 
could be many points five units from the 
origin, as represented by any point on a circle 
with a radius of five units and its center at the 
origin. Therefore, it is necessary to specify 
which point of all these possible ones is the 
specific point to be located. This is done by 
specifying the angle that exists between vector 
H and the real, X, axis. The value of this 
angle, theta, can be calculated from the 
tangent trigonometric function because this 
is an angle in a right triangle. Recall that the 

tangent of an angle is equal to the length of 
the opposite side divided by the length of the 
adjacent side: 

tan e — 
adjacent side 

opposite side 
(12-10) 

Therefore, for the example shown in Figures 
12.8 and 12.9, the tangent of theta is equal to 
three units divided by four units: 

3 
tan e = —4 

= 0.75 
0 = arctan(0.75) 
= 37" 

(12-12) 

Using a calculator as in Lesson 7, the 
arctangent of the ratio 0.75 is determined to 
be an angle of approximately 37 degrees 

The specific point is plotted in Figure 12.10 
and is at a distance of five units from the 
origin and at an angle from the positive 
X-axis of 37 degrees. It is written as 5 /37° 
and stated as "five at 37 degrees". Note that 
the angle specified is positive. That is 
because, as shown in Figure 12.11, angles 
measured in a counter-clockwise direction 
from the reference axis are positive. Note that 
the positive X-axis is the reference. Angles 
measured clockwise from the reference axis 
are considered to be negative. 

Figure 12.9 Polar Coordinates 

 N 

Figure 12.10 Theta of Example Vector H is 37 Degrees 

ANGLES 

j— ANGLES 

Figure 12.11 Numbers are Either Positive or Negative 
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MI Polar Coordinate Definition 
II Relationships of Rectangular/Polar 
Coordinate Systems to Circuit Analysis 

II The j Operator 

PHASOR 
ALGEBRA 12 

Polar Coordinate Definition 

The polar coordinates of a point in a plane 
specify the distance of the point from the 
origin at a specified angle from the X axis. 
Said another way, as shown in Figure 12.12, 
the distance from the origin is a vector of 
specified magnitude rotated from the X axis 

through a specific angle. In the example, 4 + 
j3 represents a point in rectangular coordinates. 

Five at 37 degrees represents the same point 
in polar coordinates. Four plus j3 locates a point 
in a plane to which a vector has been rotated; 
five at 37 degrees describes the same vector. 

4 + j3 SAME AS 5 a r (12 13) 

Relationships of Rectangular/Polar 
Coordinate Systems to Circuit Analysis 

Note in Figure I2.13a and l) that the 
relationship between the quantities X. Y, H 

and theta is identical to the relationships 
between resistance, reactance, impedance. 
and the phase angle. 

Because of this identical relationship, 

complex number methods can be used 
to solve ac circuit problems. 

The j Operator 

Before beginning a discussion of how the 
actual solutions are accomplished, there are 
some things you should keep in mind about 
the term j, and the powers of j. Remember, 
from equation /2-6, that j is equal to the 
square root of minus one. 

J-squared is equal to j times j or the square 
root of a minus one times the square root of 
a minus one, which is simply minus one. 
Expressed in equation form, using equation 
12-6, the result is: 

j = 
j2 = j x j 

= 
= - 

(12-14) 

14 ' 

13 - 
12 

Il 

(4 + j3) 

5 
4 -37° 
I I . 
1 2 3 4 

Figure 12.12 Relationship of Vector to X and 
Y Coordinates 

Figure 12.13 Relationships of X, Y, H, 8, Resistance, 
Reactance, and Impedance 

Following is a description of the effect of 
multiplying j by itself three times. J-cubed is 
equal to j times j times j, or j-squared time j. 
Since j-squared equals minus one, j-cubed is 
equal to minus one times j, or simply minus j 

Thus, j-cubed equals minus j. Expressed in 
equation form: 

j —ix jx j (12-15) 
= j2 x j 

Since j2 = 1 
j3 = — 1 xj 
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• Applying j-Operator Notation to Vectors 
II First Rotation 

Following is a description of the effect of 
raising j to the fourth power. J to the fourth is 
equal to j times j times j times j, or j-squared 

times j-square. Since j-squared equals minus 
one, j to the fourth is equal to minus one 
times minus one, which equals plus one. 

Therefore, j to the fourth is equal to plus one. 
Expressed in equation form: 

j4 =jxjxjxj (12-16) 
= j2 x j2 

Since e = — 1 

Remember: 

i4 = 1 )( 1) 

= 1 

= 
.2 _ 
J — 1 

is = 

j4 = 

(12-16) 

One other identity that may be useful is the 
fact that one divided by j is equal to minus j: 

1 
= — j (12-17) 

This is easily shown by multiplying both 
numerator and denominator by j. This does 
not change the value of the quantity, because 
effectively one over j has been multiplied by 
one. Multiplying through in the numerator 

and the denominator, j times one equals j and 
j times j equals j-squared, which is a minus 
one. J divided by minus one is minus j. So, 
one divided by j equals minus j. In equation 
form the steps are as follows 

(12-18) 

The 

X X 
t : 

4 

alW 

- JY 

Figure 12.14 A Vector 4 Units in Length on the X Axis 

Applying j-Operator Notation to Vectors 

With this background in the j-operator, you 
will now see how the real and imaginary 
coordinate axes can be used to describe the 

length of a vector and what effect the j-term 

has on that vector. 

If a point is designated as four units from the 
origin along the positive X-axis, as shown in 
Figure 12.14, a vector four units long can be 

drawn from the origin along the X-axis to 
describe the point. 

First Rotation 

A similar vector four units long can be 
drawn on the positive Y-axis as shown in 
Figure 12.15. lis length is designated by the 
imaginary number j4. Notice that this vector 

is the same length as the first vector, but it has 
been rotated 90 degrees. Thus, it can be said 
the factor j, when it multiplies a vector length, 
rotates that vector 90 degrees in a counter-
clockwise direction. That is why the name 
operator is used. It is said that j operates on the 
vector to rotate it 90 degrees counter-
clockwise. Thus, it is called the j-operator. 

In reality, the j written before the length 
of a vector indicates only that the vector is 
measured off on the positive imaginary axis. 
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• Second Rotation 
II Third Rotation 12 
Second Rotation 

Now, keeping in mind the idea that the 
j-operator rotates a vector 90 degrees 
counter-clockwise when it multiplies the 
vector's length, this vector, j four, is 
multiplied times j once more. 

j x j4 = j24 
= — 4 

Therefore, j x j4 will rotate the vector four 
units in length an additional 90 degrees 
further counter-clockwise as shown in Figure 
12.16. The vector is now located on the X 
axis, four units in length and pointing in the 
negative X direction. Thus, as you can see, 
the vector has rotated a total of 180 degrees 
from the original positive X-axis direction. 
The vector now indicates negative four units 
on the X axis. 

Note that, as shown in equation 12-19, j times 
j four equals j-squared times four. Since 
j-squared equals minus one, this becomes 
simply minus four, which describes exactly 
the position and length of the vector four 
units on the negative X axis. 

Third Rotation 

Now — 4 is multiplied by j. Multiplying by 
j rotates the vector another 90 degrees to 
the negative imaginary axis, as shown in 
Figure 12.17. 

j( — 4) = — j4 (12-20) 

This vector position is now —j4 (minus j 
four), 270 degrees from the original positive 
X axis position. 

-X 

JY 

J4 

1 1 1 

9 

-JY 

Figure 12.15 Vector 4 Units in Length Rotated 
90 Degrees 

124 
I  

JY 

-JY 

180° 

Figure 12.16 Vector 4 Units in Length Rotated 
180 Degrees 

Figure 12.17 Vector Rotated 270 Degrees from Onginta 
Position 
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• Fourth Rotation 

Fourth Rotation 

Now, multiplying the —j4 once again by j 
rotates the vector back to the positive X-axis 
as shown in Figure 12.18. In equation form 
this is: 

—j4) = j2(— 4) (12-21) 
= — 1(-4) 
= +4 

The vector, four units long, is now positioned 
from the origin along the positive X axis. 

Four multiplications by j or four 90-degree 
rotations— 360 degrees - places the vector 
back in the original positive X axis position. 
This is confirmed by equation 12-21 which 
shows that j times minus j four equals 

j-squared times minus four. Since j-squared is 
equal to minus one, this is equal to minus one 

times minus four or simply, four. This is the 
position from which the vector began. 

In summary, multiplying j times a vector 
length operates on the vector to rotate it 
90 degrees from the positive X-axis in a 
counter-clockwise direction. Figure 12.19 
shows how a vector of length ten is operated 
on by the j-operator. At point A the vector is 
+10. At point B it is +j10. At point C it is 
—10. At point D it is —j10. Note that — j10 
is —j times 10 and that —j10 is along the 
negative imaginary axis. For this reason it can 
be said that multiplying by — j effectively 
rotates the vector 90 degrees in a clockwise 
direction—in a negative direction from the 
positive X axis. As indicated by the arrows in 
Figure 12.19, this is opposite to the rotation 
caused by the positive j-operator. 

Another way to look at the operator is that a 
multiplier of one indicates a rotation from the 
positive X-axis of zero degrees as shown in 
Figure 12.20a. 

A multiplier of j indicates a 90-degree angle 
of rotation as shown in Figure 12.206. 

• 

Figure 12.18 Vector Rotated Back to Original Position 

—10 
C   

J10 

10 
— A 

D 

—J10 

Figure 12.19 Effect of ¡-Operator on a Ten-Unit Vector 

0° 

X 

90° 

JX 

Figure 12.20 Rotation of Vector in Quadrant 1:a. 
Multiplier of One; b. Multiplier of j 
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A multiplier off indicates a 180-degree 
rotation as shown in Figure 12.21a. 

A multiplier off indicates a 270-degree 
rotation as shown in Figure 12.21b. 

Note that a multiplier off is the same as a 

multiplier of minus j which indicates a minus 
90-degree rotation as shown in Figure 12.22. 

This type of j-operator notation is used to 
denote the phase relationships of quantities 
in ac circuits. For ac circuit analysis, the two 
most frequently used j-designations are j and 
—j, since j indicates a 90-degree phase shift in 
the counter-clockwise direction, (Figure 12.19) 
and minus j indicates a 90-degree phase shift 
in the clockwise direction. You have seen 
these 90' phase displacements repeatedly in 
the previous lessons on RC, RI. and RLC 
circuit analysis. 

APPLICATION OF J-OPERATOR TO AC 
CIRCUIT ANALYSIS 

It is now time to apply principles using the j 
operator and complex numbers to do circuit 
analysis. Several examples should 
demonstrate the technique. 

RL Impedance Written in Rectangular Form 

For example, Figure 12.23 shows an RL circuit 
with a 20-ohm resistor and an inductive 
reactance of 15 ohms. The impedance phasor 
diagram for the circuit is as shown in Figure 
12.24. The resistance vector can be written as 
20, while the reactance vector can be written 
as j15, which indicates a 90-degree phase 
difference between R and XL, with Xi. 
positioned on the +j axis. The resultant 
vector of the two quantities added vectorially 

is the impedance Z of the circuit. It can be 
written in complex-number form: 

Z = 20 + j15 (12-22) 

180° 

i2x 

a 

270° 

Figure 12.21 Rotation of Vector in Quadrant II and 
III a. Multiplier off; b. Multiplier off 

J3X 

270° — JX 

a 

Figure 12.22 Rotation of Vector in Quadrant IV: a. 
,Ylultilplzer of j3; b. Multiplier of — j 

= 20o. 

XL= 15Q 

Figure 12.23 Typical RL Circuit 
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• RC Written in Rectangular Form 
• Z Calculated 

N The impedance of a circuit in a more general 
form is written: 

Z = R-i-jX (12-23) 

This general form is used since X may pertain 
to either inductive or capacitive reactance. X 
simply designates a reactive quantity. Plus or 
minus j preceding the quantity indicates 
whether it is inductive or capacitive. 

RC Written in Rectangular Form 

For example, Figure 12.25 shows a series 
resistive-capacitive circuit composed of 40 
ohms of resistance and 30 ohms of capacitive 
reactance. There is a 90-degree phase 

difference between resistance and capacitive 
reactance as shown in the impedance phasor 
diagram of Figure 12.26. The impedance 
is written: 

Z = 40 — j30 (12-24) 

The — j preceding the 30 indicates capacitive 
reactance and that a 90-degree phase 
difference exists between R and X. with X. 
positioned on the — j axis 

Z Calculated 

The impedance can be calculated, as usual, by 
using the Pythagorean theorem. 

Z = VR2 x X 2 

= V402 X 302 

= V1600 x 900 

= N./7(1i 
= 50i1 

The impedance magnitude is 50 ohms 

The phase angle, theta, can be calculated: 

8 = arctan I —Xe 
R / 

( 30 \ 
= arctan 

40 / 
= arctan(0.75) 
= 3r 

r e 

Figure 12.24 Impedance Phasor Diagram for Circuit of 

Figure 12.23 

Figure 12.25 A Typical Series RC Circuit 

Xd 40o 

--;300 

ee 

Figure 12.26 Phase Relationship Between Resistance 
and Capacitive Reactance 
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• Converting Impedance From Rectangular to Polar Form 
III Converting Impedance From Polar to Rectangular Form 

PHASOR 
Al (.1 BRA 12 

The phase angle is approximately 37 degrees. 

Therefore, as shown in Figure 12.27, the 
resultant impedance in this example is a 
vector quantity that is neither along the 

X-axis as a resistance, nor along the Y-axis 
as a reactance. It is at an angle which you 
already know to be the phase angle of 
the circuit. 

Z in Polar and Rectangular Form 

To completely describe the impedance 
in its polar form, its magnitude must be 
accompanied hy its direction, which is the 
phase angle. In this example, the impedance 
in its polar form is 50 ohms at an angle of 
minus 37 degrees, or 

Z = 5011 /-37° (12-25) 

In its rectangular form, the impedance is 
written (equation 12-24): 

Z = 40 — j30. (12-24) 

Both represent the same impedance. 40 
minus j30 describes the same resultant 
impedance vector as 50 at minus 37 degrees. 

Using the diagram shown in Figure 12.28, 
both polar and rectangular forms of 
impedance can be indicated. The rectangular 
form of the impedance can be written R -1-
jX, and the polar form can be written Z /_Q-

Converting Impedance From Rectangular 
to Polar Form 

The conversion from rectangular to polar 
form can be written as a mathematical 
expression as shown in equation 12-26. 

Z = N/R2 + ) (12-26) 

This equation says: the magnitude of Z at 
the angle theta equals the square root of 
R-squared plus X-squared, the angle theta is 
an angle with a tangent which is X divided 
by R. 

e =-37° 
Ne, R 

Xc Z = 500 

ZA 

Figure 12.27 Impedance of Series RC Circuit Example 

JR 

4%.  

Figure 12.28 Diagram for Indicating Polar or 
Rectangular Form of Impedance 

Converting Impedance From Polar to 

Rectangular Form 

A reverse conversion is possible if the polar 

form of the impedance is known. This can be 
converted to the rectangular form using two 
trigonometric functions: 1) the sine function 

and 2) the cosine function. You have used the 
tangent function a great deal in these last 
lessons, but the sine and cosine functions 
haven't been used very much even though 
they are related to the tangent function and 

were discussed in previous lessons. 
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• Sine Function 
MI Polar to Rectangular Example 

Sine Function 

The sine of an angle of a right triangle as 

shown in Figure 12.29a, is equal to the length 
of the opposite side divided by the length of 
the hypotenuse: 

=  opposite  
sin 8  

hypotenuse 

Figure 12.296 is an impedance right triangle. 
The sine of theta for that triangle is 

X 
sin 8 = z— 

(12-27) 

(12-28) 

The sine of theta in this impedance right 
triangle, is equal to the ratio, X divided by Z. 
Solving for X, 

X = Z sin 0 (12-29) 

Recall from equation 12-23 that Z is 
identified by R jX. R is the real part; jX 
is the imaginary part. The magnitude of the 
imaginary part of the rectangular form of the 
impedance is Z sin 8. 

To determine the magnitude of the real part 
of the rectangular form, the cosine function 
must be used. The cosine of an angle is equal 
to the length of the adjacent side divided by 
the hypotenuse: 

cos 8 = 
hypotenuse 

adjacent 
(12-30) 

Therefore, in the impedance right triangle 
formed by R, X, and Z, 

cos 8 = —z (12-31) 

Solving for the magnitude of R, 

R = Z cos 0 (12-32) 

PH ASOR 
ALGEBRA 

Figure 12.29 Rig/it Triangle Relationships: a. Right 
Triangle, b. Z, X. R. and 

The magnitude of the real part of the 

rectangular form of the impedance is Z 

cos O. 

Therefore, if the values of Z and theta are 

known, the magnitude of R and X can be 
derived using these two relationships: 

R = Z cos 8 (12-32) 

X = Z sin 0 (12-29) 

The rectangular form can be expressed in the 
form of R plus jX or R minus jX depending 

on the value of O. 

Polar to Rectangular Example 

For example, suppose that the polar form of 

the impedance of a circuit is 5 ar as shown 
in Figure 12.30. The general expression for 
the impedance is given in equation 12-33. 

Z = Z cos 0 j(Z sin 8) (12-33) 

Solving for R using equation 12-32, 

R = Z cos 8 
= 5 cos 37'' 
= 5(0.799) 
= 5(0.8) 
= 411 
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R equals Z times the cosine of theta, or five 

times the cosine of 37 degrees. From 
trigonometric tables or by using a calculator 

the cosine of 37 degrees is determined to be 
approximately 0.8. Therefore, R equals five 

times 0.8, which is four ohms. 

Solving for X using equation 12-29, 

X = Z sin 0 

= 5 sin 37° 
= 5(0.602) 

= 5(0.6) 

= 311 
X equals 3 ohms. 

Thus, the rectangular form of the impedance 

of this circuit is R. the real part, equals four 

ohms and X, the reactive imaginary part, 
equals three ohms. Writing this in complex 

form, the impedance is four plus j3 ohms. 

2 = R + jX 

-= (4 + j3)S-1 

If the angle had been a negative 37 degrees 

the impedance would be four minus j3. 

The conversion formula can be written, 

as it was in equation 12-33, as a general 

mathematical expression: 

Z = zLQ 
= R ± jX 

= Z cos O ± j(Z sin 0) (12-33) 

Rectangular to Polar Example 

To help you understand the technique 

of converting rectangular to polar form, 
another example will be analyzed. .1-his 

example concerns a series RC circuit shown 

in Figure 12.31 which consists of a 10-ohm 
resistor and a capacitive reactance of 

24 ohms. 

The relationship of R, X(:, and Z for this 

circuit is shown in Figure 12.32. 

I. 

= 37 ° 

Z = 5 a7°0 
s.  
Figure 12.30 Circuit with an Impedance of 5/37° 

c=240 

Figure 12.31 Example Series RC Circuit 

  R=100. 

Xc 240 

Figure 12.32 Relationship of R. Xc, and Z of the 
Circuit of Figure 12.31 
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111 Polar to Rectangular Form Example 

The complex impedance of this circuit can be 
written in rectangular form as: 

Z = (10 - j24)S2 

This rectangular form of the impedance can 
be converted to polar form by using equation 
12-26 as follows: 

Z = x2Les_li_un ) (12-26) 

Solving for the magnitude of 2, 

Z = N/ R2 + X2 

= 24-5-

= ViFF:----F 576 

= N./67ff 

26f2 

Thus, the tjnagnitude of the impedance equals 
26 ohms. 

The angle, theta, is calculated as follows: 

= arctan 

= arctan / -24 
\ 10 

= arctan( - 2.4) 
= - 67° 

Note that this is a negative angle. It has its 
opposite side on the -j axis and its adjacent 
side is positive. This is in the fourth quadrant. 
Because it is measured clockwise from the 
postive real axis it is a negative angle. Thus, 
the impedance of this circuit in polar form is 

Z = 261-1 L-zfkr. 
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Z=1 0 

09=30° 

Figure 12.33 Impedance of an Example RL Circuit 

Polar to Rectangular Form Example 

Suppose that the impedance of a series RL 
circuit is as shown in Figure 12.33. It has been 

specified in polar form as Z = 10n ar. As 
in the first example, you have been asked to 
convert this specification to its rectangular 
form. Here is how it is done. Again, 
equation 12-33 gives the general form for 
the impedance: 

Z =- Z cos 0 + jZ sin 0 

= R + jX 

Solving for the real part you use: 

R = Z cos 0 (12-32) 

Solving for the imaginary part you use: 

jX jZ sin 0 Therefore, using the values in the exam ple, 4R) 

can be calculated: 

R = Z cos 0 
= 10 cos 30° 

= 10(0.866) 
= 8.66.Q 

(12-33) 

(12-33) 

The resistive portion of the impedance is 
8.66 ohms. 
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The reactive portion of the impedance is 
calculated similarly: 

jX = jZ sin 8 
= j10 sin 30° 
= j10(0.5) 
= j5f1 

There are 5 ohms of inductive reactance. 
Thus, 10/30' in polar form is the same 

impedance as 8.66 + j5 in rectangular form. 

Some Observations 

Note that when performing these conversions 
from polar to rectangular form that if the 
angle is positive the j-term is positive, 
indicating an inductive circuit as shown 

in Figure 12.34a If the angle is negative, 
indicating a capacitive circuit as shown in 

Figure I2.34b, a negative j-term results. 

Conversely, when converting from 
rectangular to polar form, if the j-term is 
positive, a positive angle results; if the j-term 

is negative, a negative angle results. 

The examples emphasized another important 
fact. When applying complex number analysis 
to ac resistive-reactive circuits, the resistance 
is the real term of the impedance, the 

reactance of an inductor is an imaginary term 
and is written as a positive j-term, and the 
reactance of a capacitor, another imaginary 
term, is written as a negative j-term. This is 
shown in Figure 12.35. This is also shown in 
the equations for impedance: for a series 
RL circuit, 

7 = R + jXL (12-35) 

and for a series RC circuit, 

Z = R — jX (2 (12-36) 

Remember that the plus or minus j simply 

indicates the 90-degree phase difference 
between R and X. 

+ ix • Z 

a 

Figure 12.34 Converting to Polar from Rectangular a. 
An Inductive Circuit Causes a Positive Angle; b. A 
Capacitive Circuit Causes a Negative Angle 

e 

XL Xc 

—tY— -*--
10c2 100 100 

10 +J10 

a 

— J10 

C 

Figure 12.35 Terms Used with Different AC Circuit 
Quantities 

Complex Problem Analysis 

You will find that when analyzing more 
complex ac circuits in following lessons that 
designating impedance in rectangular 
coordinates as complex numbers with real 
and imaginary parts allows the problem 
solutions to be accomplished essentially in two 
parts. One part concerns all the real values, 
and another part concerns all the imaginary 
values with their j operators. Adding, 
subtracting, multiplying, and dividing these 

complex numbers becomes almost as simple 
as solving purely resistive circuits. 
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3 Complex Problem Analysis 

Any vector positioned within the X-Y plane 
at any angle from zero to 360 degrees can 
be represented with complex number 
coordinates and manipulated mathematically 

as required. Rectangular coordinates are used 
mostly for addition and subtraction, and 
polar coordinates are used mostly for 
multiplication and division. 

For example, a series ac circuit has two 
voltage drops which must be added together 
to obtain total voltage. V, shown in Figure 
12.36 is one voltage. It is a vector in polar 
coordinates of magnitude 6.71 volts 
positioned at an angle of 116.6 degrees, 
6.71/116.60. In rectangular coordinates V, 
consists of a vector part on the real axis of 
minus three and an imaginary part of plus j 
six, V, — 3 + j6. 

V2 shown in Ftgure 12.37 is the second 
voltage. In polar coordinates it is a voltage 
with magnitude 6.71 volts positioned at an 
angle of 243.4 degrees, 6.71/234.40. It has 
a vector part on the real axis of minus three 
and an imaginary part of minus j six, 
V2 = — 3 — j6. 

The total voltage drop is: 

VT = V 1 V2 (12-37) 

In order to find the rectangular coordinates 
of VT the real part and imaginary parts of V, 
and V2 are simply added separately. 

V, = — 3 + j6 (12-38) 
V2 = — 3 — j6 
VT = — 6 + j0 

Minus three of V, plus minus three of V2 
gives a sum of minus 6 for the real part of VT. 

Plus j six and minus j six results in a sum of j 
zero for the imaginary part of VT. The result 
is a vector with a rectangular coordinate of 
minus six plus j zero. 

PHASOR 
ALGEBRA 

— 3 

Figure 12.36 Diagram for V of Example Circuit 

— 3 = 243.4 ° 

Figure 12.37 Diagram for V2 of Example Circuit 
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• Summary 

As shown in Figure 1238, the total voltage, 
VT, in polar form is a voltage with magnitude 
of six volts positioned at an angle of 180 
degrees, 6/180°. Any resultant vector can be 
obtained from the addition of any number of 

vectors in a similar fashion. 

You probably have noted in this lesson that 
when performing calculations with complex 
numbers only addition has been done. 
Subtraction of complex numbers can also be 
done using the rectangular form. However, 
multiplication and division of complex 
numbers are performed more easily if the 
numbers are in polar form. The subjects of 

subtraction, multiplication, and division of 
complex numbers are discussed in detail in 
lesson 13. 

SUMMARY 

In this lesson, the concept of imaginary 
numbers, complex numbers, and the 
j-operator were introduced. You learned how 
to express a complex number in rectangular 
and polar form, and how to convert from one 
to the other. In the next lesson, these ideas 
and techniques will be applied to solve for 
circuit values of complex RLC circuits. 

I 9.180 0 
-6 

Figure 12.38 Diagram for VT of Example Circuit 
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al Worked-Out Examples 

1. For the points shown on the complex plane shown, specify both rectangular and polar 
coordinates of the points. 

16 - - - 7 A 

15 - - I 

1 3 1 

-6 -5 4 3 -2 -1 2 I 4 5 6 
1 

-11-- ‘ 

1 
1 1 

-12 - - -r - - 2:4 c 
' 

13 11 

-14 - 440 

- 16 - 

a. Point A•  

b. Point. B  -

c. Point C•  

d. Point El•  

(rectangular coordinates) (polar coordinates) 
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So/idiom 

a Point A: 2 + j6 (rectangular coordinates) 

To determine polar coordinates, use conversion formulas R = 2, X = 6 

= VR2 + X = V22 + 62 -= N., 4 + 36 = V40 = 6.32 

0 - arctan x = arctan(-)= arctan (3) = 71.6 
2 

"rherefore -

Point A: 2 + j6 =- 6.32 /71.6° 

h. Point B: 4 + j4 (rectangular coordinates) 

To determine polar coordinates: R = 4, X = 4 

Z = + X 2 - V42 + 42 = V16 + 16 = V -3-2 = 5.66 

O 4 \ = arctan = arctan arctan (1) = 45° 
R 4 / 

Therefore -

Point B: 4 + j4 = 5.66/45° 

Point C: 3 — .j2 (rectangular coordinates) 

To determine polar coordinates: R = 3, X = —2 

• = VR2 + X2 = V32 + ( — 2)2 = V9 + 4 = = 3.6 

X 
ti = arctan arctan   = — arctan (0.67) = — 33.7° 

fherefore: 

Point C: 3 — j2 = 3.6/ — 33.7° 

d Point D: 1 j4 (rectangular coordinates) 

fo determine polar coordinates: R = 1, X = — 4 

• = R 2 + )(2 N/12 4. (_ 4)2 VI + 16 •• \/-1-7 = 4.12 

X \ 
0 arctan (- 1 - arctan --4 = —arctan (4) = — 76° 

R 1 

1-herefore 

Point D: 1 - j4 -= 4.12/ - 76° 
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Worked-Out Examples 

2. Simplify to the lowest-order expressions the following multiplication and division problems 
below involving thei-operator. 

1 

j2 

d. 

e (i3 )(-J2) 

h. j4 

J. 

1 
k. j 

I. (j2)(0)(i)(i4b 
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Solutions. 

a. (j)(j) = (Nr= i)(VIT) = 1 

13. (e) = (me) = — 1) = 

c. Fir). —)-i — _1 

V T-1( 
.2 + 1 

(j3)(j2) = ( (— 1) = j 

(19)(=F1 ) (j) = (— j) (j) = (—j2)( — 1) = (+ 1)( — 1) = — I 

= (--i)(J2)(J) = (-i2)(J2) = = -1 

j4 = (i2)(i2) = = +1 

=(±) = (-i)( - 1) = +.1 

1 

(*) (*) = - I) = 

(J2)(J3)(i)(i')i = (- 1)(-J)(i)(+ 1)(j) = +j3 = 
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3. NIultiplying by j terms rotates a vector. What j term would have to he used as a nmhiplier to 
move the vector shown from its initial position to its final (result) position. 

+14 

J4 (result) 

a. times 12 

3 
(result) 

h. times j2 

+ 3 

4. Write the complex impedance form of the following circuits in rectangular form, then 
convert it to polar form. 

a. 
R-
1001) 

Z R ± jX (rectangular) = 100 + j250 

Converting to polar: 

Z = N/R2 + X2 = V1002 + 2502 = V72,500 = 269.3S1 

X 
o = arctan (IT) = arctan arctan (2.5) = 68.2° 

100 

Z = 268.3/68.2° 
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1200 

E. 

Z = R ± jX (rectangular) 

= 120 — j85 

Converting to polar: 

)4=850 

Z = VR2 + X2 = V1202 + 852 = V21,625 = 147f1 
— 85 

e arctan (*) = arctan () — arctan ( — 0.7083) = — 35.3° 

.•. Z = 147/ —35.3° 

5. Convert the following complex impedances in polar form to rectangular form. 

a. Z = 150/25° 

R ± jX Z cos e ± jZ sin e = 150(cos 25°) + j150(sin 25°) 

= 150(0.9063) + j150(0.4226 ) = 135.9 + j63.411 

b. Z = 480/ — 80° 

R ± jX Z cos 0 ± jZ sin e = 480 cos( — 80°) + j480 sin( — 80°) 

= 480(0.1736) + j480( — 0.9848) = 83.3 — j472.711 
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la Practice Problems 

1. Specify the rectangular and polar coordinates of the points on this complex plane. 

15 - 

I  
-5 -4 -3 2 - 1 

14 

13 - 

12 

-11 - 

12 

- 13-

- J4 - 

1 2 3 4 5 

— — — — — I— —4 c 

POINT RECTANGULAR POLAR 
a. A 
b. 

C. 

d. D 

2. Simplify the following j-operator expressions: 

a. j2 

b. (j)(j)(j) =   

C. r =   

1 
d. 

e. (j2) (±) (j3) -  

f. (-I ) ., )(— =   

12-28 
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3. Show where the resulting vector will be located on the following complex plane if the vector 

shown is multiplied by the indicated j term. 

2 

a. times 

2 

b. times i c. times i3 

4. Write the complex impedance form of the following circuits in rectangular form. 

a / — 

EA R - 
4011 

Xe = 47011 

=   
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C. 

EA 

d 

X, = 7k11 

R= 
4.7Mil 

=   

5. Convert the following rectangular impedance expressions into polar form 

a. 50 + j30 =   

b. 3.2k — j4.7k =   

c. 370 — j150 =   

d. 3M — j500k =   

6. Convert the following polar impedance expressions into rectangular form. 

a. 550/28° =   

b. 100k/ — 60° =   

c. 68M/34° =   

d. 18k/ —25° =   

12-30 
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1. Specify the rectangular and polar 

coordinates of the points on the following 
complex plane. 

15 

J4 - - - B 

13-

2 

JI - - /- - - - A 

- 5 4 3 2 1 1 2 3 4 5 

1,01 NT 

a. A 
b. 

d. D 

11 
1 

13 

0 15 

REA IAN(,ULAK POLAR 

2. Simplify the following j-operator 
expressions: 

a. j =   
b. j2 =   

•  C. j3 -   

d. j4 =   

3. Show where the resulting vector will be 
located on the following complex plane if 
the vector shown is multiplied by the 
indicated j term. 

a 

b. 

3 

times j 

times — j 

4. Write the complex impedance form of the 

following circuits in rectangular form: 

a. 

EA 

XL = 1500 
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III Quiz 

b. 

=   

5. Convert the following rectangular 
impedance expressions into polar form: 

a. 10 + j50 =   
b. 370 — j600 =   
c. 29 + j65 =   
d. 7 — j9 =   

6. Convert the following polar impedance 
expressions into rectangular form: 

a. 68/ + 15° =   

b. 34/ — 24' =   

c. 16/ +72° =   

d. 27/ — 32° =   
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LESSON 13 

Complex 
RLC Circuit 
Analysis 
Lesson 12 introduced phasor algebra techniques that 
could be used to solve ac circuit problems. Imaginary 
numbers, complex numbers, and the j-operator were 
introduced. This lesson will show how to apply those 
concepts to solve RLC circuits which would be very 
difficult to solve using other methods. 
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COMPLEX RLC 
CIRCUIT ANALYSIS 

MI Objectives 

At the end of this lesson you should be able to: 

1. Calculate the sum, product, difference, or quotient of two or more 
j-operator terms. 

2. Determine the sum, product, difference, or quotient of two or more complex 
numbers in rectangular form (R + jX). 

3. Determine the product or quotient of two or more complex numbers in 
polar form (Z /0). 

4. Express the impedance of a series, parallel, or series-parallel circuit in 
rectangular or polar form. 

5. Write the impedance of a passive element (resistor, inductor, or capacitor) 
using j-operator notation or polar notation when given the reactance or 
resistance of that passive element. 

6. Determine the circuit impedance, currents, and voltages of an RIX; circuit 
and express them in either rectangular or polar form. 
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• A Series Circuit 

I COMPLEX RLC 
CIRCUIT ANALYSIS 

INTRODUCTION 

In the previous lesson, you were introduced 
to the concept of Imaginary numbers, 
complex numbers and the j-operator, and 

told how to express a complex number in 
rectangular or polar form. You were told how 

to convert from rectangular form to polar 
form and from polar form to rectangular 

form. The purpose of learning how to use 
complex numbers is to be able to simplify the 
solution of complicated ac circuits. 

WRITING IMPEDANCES WITH J-OPERATORS 

In the last lesson, it was stated that complex 
numbers, in either rectangular or polar form, 
are simply a code which can be used to 

express the value or magnitude of quantitites 
and their phase relationships in an ac circuit. 
It was also stated that the primary advantage 
of using complex numbers in the solution of 
ac circuits is that they could be solved using 
resistive circuit methods. 

A Series Circuit 

A good way to begin this lesson is by applying 
what you have already learned. Therefore, 
first a series RLC circuit shown in Figure 13.1 
will be discussed. It consists of two resistors 
of 10 ohms and 4 ohms connected to an 
inductor with a reactance of 8 ohms and a 
capacitor with a reactance of 20 ohms. To 
illustrate the technique that will be used 
throughout this lesson, the circuit first will 
be divided into two complex impedances as 
shown in Figure 13.2. 

The impedance of the series combination of 
R1 and L is called Z. It can be written: 

Z1 = R + jXL (13-1) 

or Zi = 10 + j8 

R1 
1011 

XL 
8/1 

2011 411 
Xc R2 

Figure 13.1 A Series RLC Circuit 

Figure 13.2 The Circuit of Figure 13.1 Divided into 
Two Complex Impedances 

The impedance of the series combination of 
R2 and C, is called Z2. It can be written: 

Zy = Ry (13-2) 

or Zy = 4 — j20 

jXt is a positive quantity because the vector 
XL leads the vector R by 90 degrees on the 
impedance phasor diagram shown in Figure 
/3.3. jXe is a negative quantity because the 
vector Xe lags the vector R on the 
same diagram. 
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The two series impedances. Z1 and Z2, can be 

treated as if they were series resistances. The 
total impedance of the circuit is: 

ZT = 21 + 22 (13-3) 

Substituting the expressions for Z and Z2, 

ZT = (10 j8) + (4 — j20) 

A Parallel Circuit 

Next, a parallel circuit composed of two 
resistive-reactance branches as shown in 
Figure 13.4 will be solved. The RE. branch 

has a resistance of 3 ohms and an inductive 
reactance of 4 ohms. The RC branch has a 
resistance of 6 ohms and capacitive reactance 
of 10 ohms. The same technique outlined in 
the previous example will be used First 
divide the circuit into two complex 
impedances, Z1 and Z2, as shown in Figure 
13.5. Then write the complex number 
representation of the impedance for each 
branch. Using equation 13-1 the resistive-
inductive branch, Zi, can be written as: 

Z1 = 3 + j4 

The impedance of the resistive-capacitive 
branch, Z2, can be written: 

Z2 = 6 — jlO 

The total impedance of the circuit is the 
parallel combination of Z1 and Z2 Recall 
from earlier lessons that when two resistors 
are connected in parallel, the total resistance 
can be calculated using the product-over-
sum equation: 

RT = R, + R2 

The total impedance for a circuit can be 
calculated using a similar equation: 

Z1 X Z2 

R, X R2 

Zr — 
Z, + Z2 

(13-4) 

(13-5) 

¿XL 

Xc 

Figure 13.3 Impedance Phasor Diagram for the Circuit 

of Figure 13 I 

Figure 13.4 A Parallel RLC Circuit 

Figure 13.5 The Circuit of Figure 13.4 Divided into 

Two Complex Impedances 
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• Math Operations Involving J-Operators 
• Addition 

Substituting the rectangular impedance for Zi 
and Z2, this equation becomes: 

(3 + j4)(6 - j I 0) 
ZT = 

(3 + j4) + (6 - jl 0) 

Once the impedance of the circuits has been 

converted to this form, addition, subtraction, 
multiplication, and division can be used to 

reduce the circuits to a single complex 
number representing the value of the total 
impedance. Because the j operator is 
included, a discussion of these arithmetic 
operators will be useful before you continue 
with the complete problem solution. 

Math Operations Involving J-Operators 

You already know how to perform math 
operations using real numbers. That is basic 
arithmetic. These same operations can be 
performed using imaginary numbers; 
addition, subtraction, multiplication, and 
division are performed with j-terms as you 
would add, subtract, multiply and divide 
using algebraic techniques. Simply treat the 

term j as you would the variable X in an 
algebraic expression and make sure that you 
recognize the positive and negative quantities. 
For example, addition and subtraction using 
imaginary numbers are performed like this: 

j2 + j6 = j8 

j4 j3 = ji 

j3 - j5 = -j2 
-j4 + j7 = j3 

Here are some additional examples: 

- j9 = -jI0 -j12 + j8 -j4 

Similarly, multiplication and division are 
performed like this: 

j2 x j4 = j28 

Here are some additional examples: 

-j3 x j4 = -j212   - 4 
j2 

-j8 x -j4 = j232 

(j5)( -j2) = -1210 
j420 
j25 - J24 

And since one over j equals minus j, 

16 1 16 

—j2 = —2 = 

or 

3 1 
j33  - - x 3 = j3 

1 

Once division or multiplication has been 
performed, terms containing a power of j 
can be simplified using the following basic 
identities which were introduced in 

Lesson 12: 

J2 = - I 
= --j 

j4 = + I 

For example, j28 may be simplified 
J28 = (_ 1)8 = _ 8 

MATH OPERATIONS WITH COMPLEX NUMBERS 
— RECTANGULAR FORM 

Now that basic mathematical equations using 
imaginary numbers have been illustrated, let's 

see how these operations may be performed 
using complex numbers. 

Addition 

To add two rectangular form complex 
numbers, simply add the two real parts and 
add the two imaginary parts. The result is 
expressed as another complex number called 
the comp/ex sum which has both real and 
imaginary parts. 

(R 1 + jX 1) + (R2 + jX2) (13-6) 
= (R 1 + R2) + j(X 1 + X2) 
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• Multiplication 

For example, suppose the two complex 
numbers 4 + j2 and 6 + ji must be added: 

(4 + j2) + (6 + ji) 
= (4 + 6) + (j2 + ji) 
= 10 + j3 

Thus, the sum of 4 + j2 and 6 + jI 
equals 10 + j3. 

As another example, 

( - 8 + j2) + (10 - j5) 
= ( - 8 + 10) + (j2 - j5) 
= 2 - j3 

Subtraction 

Subtraction using rectangular form complex 
numbers is very similar to addition. To 
subtract two complex numbers, first find the 
difference between the real parts, then find 
the difference between the imaginary parts. 
Remember, this must be the algebraic 
difference. The result is a complex number 
with real and imaginary parts. 

(RI + jX i) - (R2 + jX2) (13-7) 
= (R 1 - R2) + j(X i - X2) 

For example, 4 + j2 is subtracted 
from 8 + j8. 

(8 + j8) - (4 + j2) 
= (8 - 4) + (j8 - j2) 
= 4 + j6 

Effectively, the subtraction process is the same 
as any algebraic subtraction, you change the 
sign of the number that is being subtracted 
and then perform an addition. 

As a second example, 

(10 - j7) - (2 - j3) 
= (10 - 2) + j(- 7 + 3) 
= 8 - j4 

Written in a little different form may make it 
easier to understand. 

10 - j7 
-(2 - j3) 

2 - j3 is subtracted from 10 - j7 by 
changing the sign of 2 - j3 and adding 

10 - j7 

+ 2 + j3) 

8 - j4 

Multiplication 

The multiplication of two rectangular form 
complex numbers may be performed by using 
basic binomial algebraic methods. That is, the 

complex numbers are in the form (R 1 + jXi) 
and (R2 + jX2). When you multiply one by 
the other the result is obtained by multiplying 
each term in the first number times each term 

in the second number and adding the 

resulting products: 

(R 1 + jX j)(R2 + jX2) 
R,R2 + jR,X2 + jR2X, + j2X1X2 

You can then group like terms. At this time, 
terms 2 and 3 both have j-prefixes and can 

be grouped: 

(R 1R2) + j(R IX2 + R2X1) + j2(X1X2) 

Since .? = - 1 in term 4, the expression 

simplifies to: 

(R jR2 - XIX2) + j(R,X2 + R2X1) (13-9) 

As an example the product of 9 + j3 and 

4 - j2 is: 

(9 + j3)(4 - j2) 
= 36 - j18 + j12 - j26 

Combining like terms results in: 

= 36 - j6 - j26 

Since the j2 - 1, the result simplifies to: 

= 36 - j6 - ( -1)6 

= 36 - j6 + 6 

Finally, combining real terms: 

= 42 - j6 

13-6 
BASIC AC CIRCUITS 



• Division 
• Multiplication 

1 COMPLEX RIX; 
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Notice that the product reduces to the real 
plus imaginary complex number form. It is 

important to remember to carry along the 
sign of the reactance terms and apply the 

rules for the product of signed terms. 

+ X + = + 
+ X - 
X - + 

- X + = - 

Division 

The division of two rectangular form 
complex numbers may also be performed by 
using algebraic methods. The form is 

R1 + jX 1 

R2 iX2 

This process, however, becomes quite 
involved since the division of a real number 
by an imaginary number is not possible. 

Because of titts, the denominator must be 
converted first to a real number by a process 

called rationalization of the fraction. To do 
this, both the numerator and denominator 

must be multiplied by what is called the 
conjugate of the denominator. The conjugate 

of a complex number is simply the number 
with the j-term having an opposite sign. For 
example, the conjugate of 2 + j2 is 2 - j2. 
Similarly, the conjugate of 6 - j4 is 6 + j4. 

Following this rule to divide 3 + j2 by 2 + j2, 
you must multiply both the numerator and 
denominator by the conjugate of the 
denominator 2 - j2: 

(3 + j2) (2 - j2)  

(2 + j2) x (2 - j2) 

In doing so, you do not change the value of 
the fraction since (2 - j2) divided by (2 - j2) 
times the fraction is like multiplying the 
fraction times one. 

(3 + j2)  
x 

(2 + j2)  

(13-10) 

Multiplying numerators and denominators: 

(3 + j2) (2 - j2) 6 - j6 + j4 - j24  

(2 + j2) x (2 - j2) 4 - j4 + j4 - j24 

Combining j-terms in the numerator and 
denominator, the fraction becomes: 

6 - j2 - j2 4  

= 4 - j24 

Since j2 = - I, the expression can be reduced 
as follows: 

6 - j2 ( - 1)4 6 - j2 + 4 10 - j2  

4 - ( - 1)4 - 4 + 4 - 8 

Notice that all imaginary terms have been 
eliminated from the denominator. Recall 

that this is the purpose of rationalization. 
Now, the fraction can be split up and the 

division performed: 

10\ j2 
= - 1.25 - j0.25 

8 ) 8 )  

The final result is again a complex number 
with real and imaginary parts. Again, it must 
be remembered to follow all of the rules that 
pertain to multiplication and division of 

signed terms. 

MULTIPLICATION AND DIVISION IN 
POLAR FORM 

Complex numbers, expressed in rectangular 
form, can be multiplied and divided by using 
the basic algebraic methods discussed. 
However, it is much easier to multiply 
and divide complex numbers by converting 
them from rectangular form to polar form 
and then performing the operations in 
polar form. 

Multiplication 

To multiply in polar form, one need only 
multiply the magnitudes and add the angles: 

zi /e t x z2/231 (13-8) 
= Zi x Z21(8 1 + 02) 
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For example, 

2 /30° x 8 /20" 

= 2 x 8/30° + 20° = 16L50° 

additional examples: 

5/150° x 3 / —750 = 15/75° 

15/ — 200° x 6/180° = 90/ — 200  

The algebraic rules for signs apply to the 
addition of the angles. The polar magnitude 
is always positive if in some solution it were 
to come out negative it means that the angle 
should be changed by 180°. 

Division 

Division of polar complex numbers is similar. 
Simply divide the numerator's magnitude 
by the denominator's magnitude and 

subtract the denominator's angle from the 
numerator's angle. 

Zi 
— 01) (I 3-9) 

For example, 

14 /60° 14 
  —  7 /20° 7 /60° — 20° = 2 /40° 

Additional examples show how the algebraic 
convention of signs apply to the subtraction 
of the angles. The polar magnitude is 
always positive with the same provision 
as in multiplication. 

15 /-45°. = 15 /_45. (_45.) 

5 / — 45° 5 

40 / — 120° 40 120. 60 „, 

20 /60° 20 

16/60° =  i/60° — ( — 60°)  = 4 /120° 
4/ — 60° 4 

= 3 /0° 

= 2 / — 180°  

USE OF RECTANGULAR FORM VERSUS 

POLAR FORM 

It should be noted that addition and 
subtraction of complex numbers in polar 
form is usually not convenient or possible. 

Therefore, simply remember that addition 

and subtraction are performed most easily 
using the rectangular form of the complex 
number while multiplication and division are 
performed most easily using the polar form 

of the complex number. 

CIRCUIT ANALYSIS USING 

.1-OPERATOR NOTATION 

Now, with these basic mathematical 

operations for complex numbers in mind, 
the impedances of several RLC circuits 

will be simplified. 

Simplifying Impedance for A Series Circuit 

Suppose the impedance of a series RLC 

circuit can be written as: 

Z 80 + j60 — j20 

Combining the j-terms gives: 

Z = 80 + j40 

The resultant impedance of this circuit can 
be written simply as 80 + j40 in rectangular 
form. Notice that the j40 term indicates that 
the total reactance of the circuit is an induciive 
40 ohms. The components of this series RLC 
circuit are shown on the phasor diagram 
shown in Figure I 3.6. The various phasors 

are drawn with magnitudes to scale and 

positioned in phase. 

The polar form of this impedance can be 

found using the conversion equation 13-13. 

X 
Z/0 = N./112 + X2 âmlan(—R) (13-13) 
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• Series Circuit with Two Complex Impedances 

Substituting equation 13-13 for the values X 
and R gives: 

ZLO_ = \' 802 + 402 /arctan 4800 ) 

= \ 6400 + 1600 /arctan (0.5)  

-= N./8000 /arctan (0.5) 

= 89.4 /27° 

thus, the impedance of 80 + j40 in 

rectangular form equals 89.4 at 27 degrees in 

polar form. This polar form corresponds to a 

vector whose magnitude is the value of the 

impedance and whose angle is the phase 

angle of the circuit. This is shown in Figure 

13.7 It is the same answer that would be 
obtained by drawing the vector to scale 

and using the Pythagorean theorem. 
Both methods yield the same result. 

Since this circuit was simple enough to solve 

by right triangle phasor analysis, it should 

also be possible to use complex numbers 
to arrive at valid solutions of even more 

complex circuits. 

Series Circuit with Two 

Complex Impedances 

In the circuit of Figure 13.1 and 19.2, the total 
impedance is the series combination of two 

complex impedances. This was defined 
previously as, 

ZT = (10 j8) + (4 — j20) 

Combining real terms and imaginary terms, 

the total impedance of this circuit can be 
expressed as: 

ZT = (10 + 4) + j(8 — 20) 

= 14 — jI2 

Thus, the total impedance of the circuit can 

be expressed in rectangular form as 14 — j12. 

XL= 60a 

XT=40a LT 

  R-800 
Xc= 
20 a 

Figure 13.6 Phasor Diagrani for a Series RLC Circuit 

0 

.• Z=89.4o 

09=27 ° 

Figure 13.7 Impedance and Phase Angle for the 
RLC Circuit 

This can be converted to polar form which 
indicates the magnitude of the impedance 

and the phase angle of the circuit: 

Z/8 = VR2 + X2/arctan( 

= V142 + 122 /arctan( 

= V196 + 144 /arctan —(0.86)  

= V340 /arctan —0.86  

= 18.4 / — 40.6°  
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• A Parallel RLC Circuit 

The total impedance is 18.4 ohms at a 
negative angle of 40.6 degrees. 

A Parallel RLC Circuit 

In the circuit of Figure 13.4, the total 

impedance is the parallel combination of two 
complex impedances. By applying equation 

13-5, the total impedance of this circuit was 
determined as, 

z (3 + j4)(6 — j10)  
T —  (3 + j4) + (6 — j10) 

Performing the addition operation in the 

denominator first results in 

=  (3 + j4)(6 — j10)  

(9 — j6) 

The denominator is simplified to 9 — j6. 
Now, all remaining operations to be 

performed are either multiplication or 

division. Since multiplication and division 
operations are most easily performed in polar 

form, the easiest way to solve for the total 

impedance is to convert all rectangular terms 

to polar form. Using equation 13-13, the 
3 + j4 term becomes 5/53° in polar form. 
The calculations are: 

ZL_= VR2 + X2/arctan( \ 
K 

3 + j4 = V32 + 42 /arctan( 21) 

= V9 -t/arctan (1.33) 

= N./ii/arctan (1.33)  

= 5 /53° 

Similar calculations, 

6 — j10 = V62 + 102 /arctars( —61° ) 

= 1/36 + 100/arctan (— 1.671  

= V136 /arctari (-1.67)  

= 11.7 / — 59° 

result in a polar form of I .7/ —59° for the 

6 — j10 term. The angle is negative because 

the j-term is negative. 

The 9 -- j6 term in polar form is 10.8/_214° 

arrived at as follows: 

9 — j6 92 + 62/arctan( —9— ) 

= 1 81 + 36 Larctan_bille_ 

= 117 arctan_b_92K7)_ 

= 10.8 / —34°  

The angle, again, is negative since the j-term 

is negative. Thus, 9 — j6 is equal to 10.8 

/ — 34° in polar form. 

Substituting these equivalent polar-form 
impedances for their corresponding 

rectangular-form impedances in the original 

equation results in the following equation 

for Z-r. 

ZT = 
(10.8 / —34) 

(5 /53° )(11.7 / —59°) 

Now the total impedance can be determined 

simply by the multiplication and division of 

polar-form terms. Performing the 
multiplication operation in the 

numerator first: 

58.5 / — 

ZT — 10.8 /  —34° 

Now, performing the division: 

7̀ 1. (UR- 6°) —( 341 5.41e 

Therefore, the total impedance of the circuit 

is equal to 5.4 ohms at a phase angle of 

28 degrees. 
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Solving for Impedance of RLC Circuit 

Now these phasor algebra techniques will be 
applied to solve for the total impedance of the 
series-parallel ac circuit shown in Figure 13.8. 
First divide the circuit into several complex 
impedances as you have seen done previously 

to simplify its solution as illustrated in Figure 
13 9_ Let R, and L, be impedance 21, R2 
and C be impedance Z2 and R3 and L2 be 
impedance Z. 

Expressed in rectangular form these 
impedances are: 

Z, = 2 + j6 
Z2 = 3 - j4 
Z3 = 1 j2 

Looking at the circuit simply in terms of these 
three impedances, the total impedance of the 
circuit can be written as I, in series with the 
parallel combination of Z2 and Z3. That is, 

Z3 
Z-r = Z, + x (13-14) 

Z2 + Z3 

If the complex impedances are substituted 

ZT iS: 

ZT = (2 + j6) +  (3 - j4)(1 + j2)  
(3 - j4)+ (1 + j2) 

Rectangular form addition can be performed 
in the denominator. This makes ZT: 

= (2 + j6) + (3 - j4)(1 + j2)  
(4 - j2) 

Before the first and second term can be 
added in rectangular form, the second term 
must have its rectangular components 
converted to polar form so the multiplication 
and division can be performed. 

R1 
21-2 612 

Figure 13.8 Series-Parallel RLC Circuit 

Z1 

0-mtie,-erre-

'I R1 L1 
211 6f/ 

Zy 

Z2 

: R2 
'3(2 

C I 

R 3 

112 

L2 
2f2 

z3 
--1 

Figure 13.9 The Circuil of Figure 13.8 Divided Into 
Three Complex Impedances 

The 3 - j4 term is 5 / - 53: in polar form. 
The calculations are as follows: 

Z/0 17-32 + 42 /arctan  ( —34) 

= + 16/arctan - 1.33  

= V25/ - antan 1.33) 

= 5 / - 53°  

The angles are rounded to two significant 

figures. The angle is negative because the j 
term is negative. 
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The I + j2 term is 2.24 /63° in polar form 
calculated as follows: 

ZL_ = V1 2 + /arctan  

\ I + 4 /arctan (2)  

= VF/arctan (2)  

= 2.24 /63° 

Similarly, the 4 - j2 term is 4.47/27° in 
polar form. 

40_ = V42 + ( - 2)2 /arctan  (--2-4 ) 

= V16 + 4/arctan (-0.5)  

= V20 /arctan (- 0.5) 

= 4.47 / - 27°  

Substituting these polar-form impedances for 

the rectangular-form impedances which they 
equal, the total impedance equation for the 
complex RLC circuit now is: 

(5/ - 53°_)(2.24 /63°  ) 

(4.47/  -27°) 

Performing the multiplication in the 
numerator results in, 

ZT = (2 + j6) + 

ZT = (2 + j6) + 
(4.47/  -27°) 

Performing the division results in the total 
impedance of 

= (2 + j6) + 2.5/37° 

(11.2a) 

411 

7311 

Figure 13.10 Simple RL Circuit 

To perform the indicated addition, first 
the second term of the impedance in polar 
form should be converted to its equivalent 
rectangular form. Equation 13-15, discussed 
in previous lessons, is used for this purpose. 

R + jX = Z cost) + jZ sine (13-15) 
2.5/37° = (2.5 cos 37°) + j(2.5 sin 37°) 

= 2.5 (0.7986) + j2.5(0.6018) 

= 2 + j1.5 

Thus, the rectangular form of 2.5 /37° equals 

2 + j1.5. 

Substituting this rectangular form into the 
total impedance equation, and adding 

ZT becomes, 

ZT = (2 + j6) + (2 + j1.5) 

ZT = 4 + j7.5 

This is the total impedance of this 
series-parallel circuit expressed in rectangular 
form. Note as shown in Figure 13.10 that this 

impedance indicates that the circuit would 
appear to a power supply as a 4-ohm resistor 
in series with an inductor possessing an 
inductive reactance of 7.5 ohms at the applied 
frequency. Obviously, since reactances will 
change with changes in frequency, at a 
different frequency the circuit may appear to 

be either an RL or RC circuit. 
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The total impedance of the circuit can also 
be converted to its polar form to yield the 
magnitude of the impedance and the phase 
angle. It is 8.5 /62° shown as follows: 

= 4 + j7.5 

LLG = V42 + 7.52/arctan.( 
4 

= V16 + 56.25/arctan (1.875) 

= —\,//arctan (1.875)  

= 8.5/62' 

.1-his form is usually the most-desirable form 
since it not only gives the magnitude of the 
circuit's impedance, but also its phase angle. 

Solution of RLC Circuit 

These phasor algebra techniques can now be 
used to solve for the impedance, total current 
and voltage drops in the series RIX: circuit 
illustrated in Figure 13.11. The circuit 
contains 15 ohms resistance, 30 ohms 
capacitive reactance, 50 ohms of inductive 
reactance, and a second capacitive reactance 
of 40 ohms. The applied voltage, EA, is 50 
volts. If the reactances were not given, you 
would have to use the frequency of the 
applied voltage to calculate the capacitive and 
inductive reactances. Writing in j-operator 
notation, the reactance of C 1 is —j30 ohms, 
the reactance of the inductor is j50 ohms, and 
the reactance of C2 is —j40 ohms. 

Impedance 

The total impedance of the circuit can 
be written: 

ZT = 15 — j30 + j50 — j40 

Figure 13.11 Senes RLC Czrcuii Example 

The ohms are understood since only 
impedance terms are being considered. By 
addition of j terms the total impedance of the 
circuit reduces to 

ZT = 15 + j20 — j40 
= 15 — j20 

Converting this to polar form results in 
the total impedance equal to 25/ —53°. The 
calculations are as follows: 

ZT = 15 — j20 

—20' 
Z/0 = V152 + 202 15 

= V225 + 400/arctan (— 1.33)  

= V625-/arctan (— 1.33)  

= 25i— 53°  

Since the j-term is negative, the angle, 8, 
is negative. 

Total Current 

The total current of any ac circuit is equal 
to the applied voltage divided by the total 
impedance of the circuit: 

EA 
= (13-16) 
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• Pure Resistance Polar Form 
• Pure Reactance Polar Form 

Using the applied voltage as a reference at 

zero degrees, it can be expressed as 50 volts at 
0 degrees. If it seems unusual that the applied 
voltage is written in this form, recall that in 
reality, current and voltages have phase 

relationships, not resistance, reactance, or 

impedance. The total current in the circuit is 
calculated using equation 13-16. 

EA 50V/07 

IT = = — 5.fIL1. 

Carrying out the indicated division, 

50V 
IT = (0') — ( = 2A/53° 

25:1 

Thus, the total current equals 2A/53°. 

Voltage Drops 

Recall that according to Ohm's law the 
voltage drop across any resistor is equal 

to the current through it times the value 
of the resistor: 

ER = IR (13-17) 

Also recall that the voltage drop across any 

reactance is equal to the current through it 
times the value of the reactance: 

Ex = 1xX (13-18) 

Since the circuit is a series circuit, the current 
through all components is the same as the 
total current, IT. Thus, to determine the 

voltage drop across any component in the 

circuit, simply multiply the total current, 
2AL5_1:, times the resistance, R. Or reactance, 
X, of the component in the circuit. 

In order to perform multiplication of two 
complex numbers, both must be expressed in 
the same form, either rectangular or polar. 
The current is expressed in polar form, 
therefore , to multi Ply conveniently by the 
polar form of the current,  

you should convert 
all resistances and reactances in the circuit to polar form. 

13 -14 
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CIRCUIT ANALYSIS 

Pure Resistance Polar Form 

This is easily accomplished in terms of 
individual resistances or reactances. For 
example. 12 1, the resistance term of 15 ohms 
in the circuit of Figure 13.11, can be written in 
polar form as simply 15f1/0° which means the 
impedance is all resistive with no reactance. 
This might be more clearly understood when 
written in rectangular form. In the form 
R + jX, k = 15 ohms and X = 0 because it is 
all resistive. The polar form can be obtained 
by use of the conversion equation: 

ZZ.§ = R2 + X2/arctan(ie) 

Z/0 = 1/152 + 02 LaiLI(-105 

= 1/225 + O /arctan (0)  

= V225 /arctan (0)  

= 15/0° 

Pure Reactance Polar Form 

The polar form of the reactance of C1, —j30, 

is 300/ — 90°. Its rectangular form is really 
o — j30 which is a vector of a magnitude of 
30 plotted on the —j axis. The polar form 
30/ — 90° can also be verified using the 

conversion equation. Similarly, the reactance 
of the inductor, j50, can be written in polar 

form as 501//90°, and the reactance of C2, 
—j40. can be written in polar form as 
40f1/ — 90°. In summary, the polar forms are: 

Xcl = 301-11 — 90° 

XL = 5011/  +90° 

Xc2 = 4on/ —90° 

BASIC AC CIRCUITS 



• Phasor Diagram 

1 COMPLEX RIX: 
CIRCUIT ANALYSIS 

Notice in Figure 13.12 that these angles of 
zero degrees, 90 degrees and — 90 degrees 
denote the phase relationships of the 
resistances and reactances just like the 
j-operator did for the rectangular forms. 

Now that the resistances and reactances of the 
circuit are written in polar form, they can be 
multiplied easily by the polar-form current to 
obtain the voltage drops in the circuit. The 
voltage across the resistor, ER, equals the 
current times the resistance: 

ER = ITR 

= (2A /53°  )(15n/r) 
= (2A x 15f1)/53° + (0°)  

= 30V /53°  

The voltage across C 1. ELI, equals the current 
times the capacitive reactance of CI: 

Ec 1= ITXci 
= (2A /53°  )(3on/- 90°  ) 
= 2A x 30f1 /53° + (— 90°) 

= 60V / — 37°  

The voltage across the inductor, I:1,, equals 
the current times the inductive reactance: 

EL = ITXL 
= (2A /53°)(5011 /900) 

= (2A x 5011)/53° + 90°  

= 100V/143°  

The voltage across C2, E2, equals the current 
times the capacitive reactance of C2: 

E 2 ITXgc2 
= (2A /53° )(4012  90°  ) 

= (2A x 40f1)/53e + (-90°)  

= 80V /-37° 

1/4  

XL 
50.11 

R 1511 

3011 • 

40f2 

Figure 13.12 Phase Relationship of the Resistances and 
Reactances of Figure 13 11 

iflan UM M. 

EA 

50V 

Figure 13.13 E, as a Reference al O' 

Phasor Diagram 

Since the applied voltage was used as a 
reference at 0°, and the total current and 
voltage drops in the circuit were derived 
using the applied voltage as reference, all of 

these angles expressed in polar form in these 
calculations are measured with reference to 
the applied voltage as shown in Figure 13.13. 
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• Summary 

COMPLEX RLC 
t IRCLI I- ANALYSIS 

The phase angle can be determined by 

plotting the total current in reference to the 
applied voltage as shown on Figure /3./4. 

The voltage across the resistor ER equals 30 
volts at 53 degrees. The total current, I I, is 2 
amperes at 53 degrees. It is in phase with ER. 
Knowing that the angle between the total 

current and applied voltage in a circuit is the 
phase angle, you can see that it is 53 degrees 
for this circuit. 

Now the additional voltage phasors can be 

added. The voltage across C1 is 60 volts at 
— 37 degrees as shown in Figure 13.15. Note 

that this lags ER by 90 degrees because it lags 
the circuit current by 90 degrees. 

The voltage across the inductor EL is 100 
volts at 143 degrees. EL leads IT by. 90 
degrees and Eci by 180 degrees, the same 

relationship as when voltage and impedance 
phasor diagrams were plotted in previous 

lessons. The voltage across C2 is 80 volts at 

—37 degrees, in phase with Et1 . Since Et) 
and E 2 are in phase, they are both shown 
in the same direction, with the vector length 

of one added to the other. Thus, the total 
capacitive voltage EL, is 140 volts at 
— 37 degrees. 

Using this method provides the phase of 
every voltage or current in the circuit with 

respect to the reference quantity used, in this 
example, the applied voltage EA. 

With the same procedures the values of 
voltage, current and impedance can be solved 
for even the most complex RLC circuit. 

SUMMARY 

In this lesson you were introduced to 
applications for using complex numbers to 
solve for the total impedance of an ac 
circuit. You were told how to perform the 
mathematical operations of addition, 
subtraction, multiplication and division 

13-J6 

ER 
4 30V 
o 

53°  

EA 
50V 

Figure 13.14 Voltage Phasor Diagram with EA ale 

Figure 13.15 Phasor Diagram with EA 10° 

involving complex numbers in rectangular 
or polar form. 

You used these basic operations to simplify 
complex impedances of ac circuits, and then 
applied phasor algebra techniques to solve for 

voltage current and impedance values in a 
series RLC circuit. The results of the 

calculations were used to draw the voltage 
phasor diagram. Analyzing and 
understanding the phasor diagram should 
make you realize that the circuit solutions 

were similar to results that were obtained with 
much simpler circuits and that, using the 
demonstrated techniques, any complex RLC 
circuit can be analyzed.  
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II Worked-Out Examples 

3 COMPLEX RLC 1 
CIRCUIT ANALYSIS 

1. Perform the following operations involving j-operator terms: 

a. j2 + j8 = j10 

b. j6 — j3 = j3 

c. j8 x j5 = j240 

d. j10 j2 = 5 

e. (j2) + ( —j3) = j2 — j3 = —ji = — j 

f. (j4) — (—j3) = j4 + j3 = j7 

g. j26 j2 = (6 ) 
2 / j3 

h. j26 x j24 = j3(26 x 4) = j3104 

2. Perform the following operations involving rectangular form complex numbers: show 
your work. 

a. (6 + j2) + (3 — j4) = (6 + 3) + j(2 + (— 4)) 

= 9 + j(2 — 4) = 9 + j(— 2) = 9 — j2 

b. (4 + j3) (2 — j3) = (4 x 2) + (4 x j3) + (2 x j3) + (j3 x —j3) 

= (8) + ( — j12) + (j6) + (—j29) 

= 8 — j12 + j6 — j29 =- 8 — j6 — j29 

since j2 = — 1 the expression becomes: 

= 8 — j6 ( — 1)9 = 8 — j6 + 9 = 17 — j6 

c. (6 + j4) — (10 — j8) = (6 — 10) + j(4 — (— 8)) = (— 4) + j(4 + 8) = — 4 + j12 

d. 
(8 + j3) (8 + j3) (9 j4) 72 — j32 + j27 — j.2 12  

(9 + j4) — (9 + j4) A (9 — j4) 81 — j36 + j36 — j216 

72 — j5 — j212  

- 81 — j216 

since j2 = — 1 

72 — j5 (— 1)12 72 — j5 + 12  

- 81 — ( — 1)16 81 + 16 

84 — j5 84 \ 
- 97 — \ 97 ) j ( :7 = (0•87) — j(0.05) 
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COMPLEX 111.0 
CIRCUIT ANALYSIS 

• Worked-Out Examples 

3. Perform the indicated operations shown below involving polar form complex numbers. 

a. 10/16' x 8/ — 40' — (10 x 8)/(16') + (— 40°) = 80/ —24°  

20L11 , 20 \ 
b.  , — I 1/15° — 10°  = 4L5° 

c. 3/15° x 6/20° = (3 x 6)/15° 4 20° = 18/35°  

16 /40°  
a.   

8 / -  ( 
16) /40° - 101  = 2/40° + 10° = 2/50° 

4. Given the following RLC circuits, express the impedance of the circuit in both polar and 
rectangular form. 

a. 

R = 
Ion 

Xc 
40f1 

R = XL = 
eon soi) 

Z = 10S1 — j401.1 + j5012 + 601-1 = 10 — j40 + j50 + 60 

= 70 — j40 + j50 = 70 + j10(Rectangular) 

Z = 70 + j10 = V702 + 10Varctan (*) 

= VFOirliarctan (0.1429) = 70.7/8.1° (Polar) 

b. 
r - r 

ilon I I 50n \ 

1 

z ---.. T_ _ Ion j , _ _ loon] L_ 
o 

Dividing sections of circuit b into Z1, Z2 and Z3 
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• Worked-Out Examples 

3 COMPLEX RLC 1 
CIRCUIT ANALYSIS 

Z1 = 0 + j40 

Z2 = 0 —PO 

= (0 + j50) -I- (0 — .000) = j50 — j100 = —j50 

Now Z2 and Z3 are in parallel and their combination is in series with Z1, Thus 

Z2 X Z3 — j 10) (—j50) . —j2500  
Zr = Z1 + Z2 flZ5 = Z1 + Z2 +  Z  — j40 + _j, 10) + (H50) — J40 + j60 

s 

Since minus divided by a minus yields a positive result, j2 divided by j = j and 500 divided 
by 60 equals 8.33, the expression simplifies to 

Z1 = j40 + j8.33 = (0 +j48.33) (Rectangular) or 

Zr = 48.33 /90° (Polar) 

5. Express the resistance or reactance of the following passive elements in rectangular 

(j-operator) form and then in polar form. 

a. 

b. 

loo 

Rectangular (10 + 

Polar lon/er 

XL = son 
—rett-vs— 

Rectangular (0 + j50),11 

Polar 501-1/ + 90° 

Rectangular (0 — j40)1-1 

Polar 4011/ — 90° 
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II Worked-Out Examples 

Compi.Ex RLC 
CIRCUIT ANALYSIS 

6. Determine the values indicated below for the RL( (Arc on shown F xpress all answers in polar 
form. Use EA = 36V/0° for reference. 

EA = 

3611 

Solution 

a. Z 

Xc =  = h. 1 i 

11 
I Z2 

x, d. 12 
2" 1 I I 100 ' 

_J L_ e. ER, - 

ton II 
C. I, 

f. E, 1, 

g' Exc 

Ii. E 2 

I OCKT =   

Rect. 
a. Li RI + jXL + j20 = Polar  

102 + 202 /arctan = 22 4/ +63 .4° 

Z2 =R2 - iX( - 10 - j15 • 1.757/arctan ( -1015) - 18/ -56'3° 

Zi X Z2 
Z 1 = Z 11 Z2 = (10 + j20) (10 - j15) 

+ Z2 (fo + j2o) + (io j15) 

(10 + j20) (10 - j15) r_ (22.4 _-_1:§2,1°) (18/ - 56.3°) 

*Note: 20 + j5 = V202 + 52 /arctan = 20.6/14°) 

403.2/7.1° 
ZT 

20.6/14° = 19.611L1&_ 

EA 
b. IT = = - 36V/0° 

= ZT 19.6ûiz_L9: l.84Ajje 

C . ) EA 36Vb2: 
— 

§1 Z) 22.4n 63.4° 1' 

EA  d. 12 = — 36V/0° = 
2 2 18(1/_ 5630 = 2A/56.3° 

13-20 
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III Worked-Out Examples 

e 

f. 

h. 

ERI 

EXL = 

EXC. = 

ER2 = 

3 COMPLEX RLC I 
CIRCUIT ANALYSIS 

1 1R 1 = (1.6A/ — 63.4°) (10n/0°) = 16V/ — 63.4° 

I iXt — (1.6A/ -63.4°) (2on  +90°) = 32V/26.6° 

I2X( — (2A/56.3°) (15f1 / — 90°) = 30V/ —33.7 

12R2 = (2A/56.3°) (10f1 /0°) = 20V/56.3°  

secwr =6.9° (Polar Coordinate Angle of Current) 

*Recall that the phase angle of a circuit is the angle of phase difference between the total 
current and the applied voltage. Since EA is referenced at 0° and the current. I-r, is at 
6.9°, the angular difference is the phase angle: 6.9°. 
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COMPLEX RLC 
CIRCUIT ANALYSIS 

Ill Practice Problems 

1. Perform the indicated operations invoking j-operator terms: 

a. j5 + j10 =   

b. .134 j8 =   

c. j9 x j17 =   

d. j8 j26 =   

e. j7 + ( —j6) =   

f. j40 — (—j30) =   

g . J27 X ;23 =   
h. j38 4- ;22 =   

2. Perform the indicated operations involving rectangular form complex numhet s-

a. (6 + j4)(3 + j2)=   

b. (6 — j1)(4 — j3)=   

c. (10 — j2) + (8 + j3)=   

d. (4 + j6) — (3 + j2) =   

9 + j2  
e. 

8 — j3 
f. (16 + j2) — (3 — j6)=   

3. Perform the indicated operations shown below involving polar form complex numbers. 

a. 4/10* x 6/5° -=   

10/16' 
b.   

2.5/ —4° 

c. 6/10° x 5/ — 8° =   

40/60° 
d. 

8/20° — 

13-22 
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Practice Problems 

COMPLEX RLC 
CIRCUIT ANALYSIS 

4. Given the following RLC circuit, express the impedance of the circuit in both polar and 
rectangular form 

R, = XL = 
10f! 200 

= 
Ion 

Z2 •••—••••• 1. 
R2 = 
81) 

o  

R, = 
40 

5. Given the following RIX: circuit, express the impedance of the circuit in both polar and 
rectangular Form. 

ZT 

o  

R = 
150 
4orps 

XLI 
Ion 

= 
XC2 5f1 
150 

e*".• 
Xe, = 
200 

6. Given the following RLC circuit, express the impedance of the circuit in both polar and 

rectangular form. 

xL •=- 

2011 301) 

= R, = 
4on ion 

o 

7. Given the following RLC circuit, express the impedance of the circuit in both polar and 

rectangular form. 
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COMPLEX RLC 
CIRCUIT ANALYSIS 

• Practice Problems 

8. Express the resistance or reactance of the following passive elements in rectangulat 
(j-operator) form and then in polar form. 

a. 

b. 

R = 
150 

Rectangular 

Polar 

xc = 
ton 

Rectangular 

Polar 

XL = 
200 

Rectangular 

Polar 
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• Practice Problems 

1 COMPLEX RLC 
CIRCUIT ANALYSIS 

9. Determine the following values for the RLC circuit shown. Express all answers in polar form. 
Use EA as reference at 00. 

.2 a. 

b. 

X 2 = d 
son 

e. 

f. 

ZT 

11 

12 

g. 

h. 

J. 

13 =   k. 

ER I =   

ER2 =   

=   

EC I =   

E2 =   

OCKT =   

10. Determine the following values for the RC circuit shown. Express all answers in polar form. 
Use E, reference at 0°. 

R, = 
2500 

Xc = 
1500 

a. ZT 

b. IT 

c. 'RI 

d. IR2 

e. IC 

L ER I =   

g• ER2 =   

h Ec =   

I• ecicr =   
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COMPLEX RLC 
CIRCUIT ANALYSIS 

Ill Quiz 

1. Perform the indicated operations 
involving j-operator terms; simplify. 

a. j10 + j8 
b. j10 — j8 =   
c. j14 X j6 =   
d. j28 j24 =   
e. ;26 x j8 

f. 3 — j2 

2. Perform the indicated operations 

involving rectangular form complex 
numbers; simplify. 

a. (5 + j6) + (2 — j4) =   
b. (8 — j2) — (10 — j6) =   
c. (10 + j6)(4 — j3) 

d. 12 — •4 
8 — j3 

3. Perform the indicated operations 
shown below involving polar form 
complex numbers. 

a. 14/60° x 8/25' =   

b. 36/15° 

12/ 18° =. 

c. 5/12° x 6/ — 8° =   

d. 15/ —40°  

3/ —10° — 

4. Given the following RLC circuits, express 
the impedance of the circuit in both polar 
and rectangular form. 

R, 
loo 

7zon11_ j2f1 
Zef X C 

XL 1$n 

a. Z 1- = 

b. ZT = 

(Polar) 
(Rectangular) 

o y — 

=180 

Xc = 
150 

c. Z-r =   (Polar) 

X, = 
10f1 

(1. Zr =   (Rectangular) 

5. Determine the values indicated for the 
following circuits. Express all answers in 
polar form. Use EA al 0° as reference. 

1. 

EA — 
eovio. ( 'NJ) 

a. Z1- =   

b. IT =   

C. 1R 

d. I c =   

RI = 
4011 

Ea = 

XLI 
1000 

 IC .r.c= SOO 
400 

e. ER 

f. E, = -

g. Et = 

h. eox-r= 

XL2 
loon 

R, 
40f1 

a. ZT =   e• 1112 

b. IT =   f. ER' =   

g. =   

d. I, —   h ER2 =   

13-26 
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LESSON 14 

0 Resonance 
In this lesson the property of resonance will be 
introduced. Its effects on the impedance, currents, 
and voltages of a circuit will be examined. The 
response of RLC circuits to frequencies near 
resonance and the concept of the frequency response 
of a circuit will be investigated. The Q, or quality 
factor of a circuit, and its interaction with frequency 
response will be discussed. 
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RESONANCE 

Ill Objectives 

At the end of this lesson you should be able to: 

1. State the basic definition of resonance. 

2. Determine the resonant frequency of a circuit with a capacitor and inductor 

in parallel or series with one another. 

3. Determine the value of the inductance needed to achieve resonance when 

given the value of a typical capacitor and the desired resonant frequency. 

4. Determine the value of a capacitor needed to achieve resonance when given 

the value of a typical inductance and the desired resonant frequency. 

5. Determine the resonant frequency, the impedance at resonance, the total 

circuit current at resonance, the Q of the circuit, the expected phase angle. 

bandwidth, and the voltage across the inductor or capacitor at resonance 

when given the schematic of a series RLC circuit. 

6. Determine the effect on a circuit's frequency response when the resistance, 

inductance or capacitance is changed. 

7. Determine the resonant frequency, the impedance at resonance, the total 

circuit current at resonance, the Q of the circuit, the expected phase angle, 

current through the capacitor or inductor at resonance, and the bandwidth 

when given the schematic drawing of a parallel RLC circuit. 

8. Determine the effect on the frequency response of changing the circuit 

resistance, inductance or the capacitahce of a parallel resonant circuit. 

9. Determine the upper and lower cutoff frequency at the half-power points of 

the frequency response when given the bandwidth and resonant frequency of 

a resonant circuit. 

1 
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RESONANCE 

Inductive Versus Capacitive Reactance 14 
INTRODUCTION 

In Lessons 11 and 13 Rik: circuits containing 
series and parallel combinations of resistors, 
inductors, and capacitors were analyzed. The 
circuits had a particular value of inductive 
reactance and capacitive reactance which 

depended upon the frequency of the 
applied voltage. 

In this lesson, the concept of resonance will be 
introduced. A circuit is said to be resonant at 

the frequency where its inductive reactance and 
capacitive reactance are the same value. This 
frequency is called the resonant frequency of 
the circuit. Resonance plays a very important 
role in the operation of many circuits used 
to transmit and receive radio and television 
signals. In fact, radio and television could not 
operate without resonant circuits. 

CONCEPT OF RESONANCE 

Inductive Versus Capacitive Reactance 

First, let's review some basic considerations 
regarding inductive and capacitive reactance. 
Recall that both inductive and capacitive 
reactance are not only dependent upon the 
value of the inductor or capacitor, but they 
are also dependent upon the applied 
frequency. This is evident in the equations 
shown, 14-1 for inductive reactance and 
14-2 for capacitive reactance. 

XL = 27rfL (14-1) 

and 

1  
Xc - 

InfC 
(14-2) 

As was shown previously for an inductor, as 
the applied frequency increases, the reactance 
of the inductor (equation 14-1) increases if 
the value of the inductance remains constant. 

XL I = 2irf L 

1000 

900 
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700 
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400 
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200 
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o 
O 

A • 

1 2 3 4 5 6 7 
FREQUENCY (kHz) 

Figure 14.1 XL Versus f for a 10 Millihenry Inductor 

40 

36 

32 

29 

24 

X0(f1) 20 

16 

12 

4 

o 
o 

8 9 10 

7 9 1 2 3 4 5 6 10 
FREQUENCY kHz 

Figure 14.2 Xc Versus f for a 4 Microfarad Capacitor 

This is shown again in Figurel4 1, a graph for 
a 10 millihenry inductor. For a capacitor, as 
the applied frequency increases, the reactance 
of the capacitor decreases if the value of the 
capacitor remains constant. 

1  
Xc - 

Irrf T C 

Figure 14.2 shows how capacitive reactance 
of a 4 microfarad capacitor decreases as the 
applied frequency increases. 
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R ESON A NC E 

• Resonant Frequency 
la Equivalent Resonant Frequency Equations 

Resonant Frequency 

Suppose the 10 millihenry inductor and 4 
microfarad capacitor are connected in series 
with one another as shown in Figure 14.3. 

Now, as shown in Figure 14.4, as frequency 
increases, the value of the inductive reactance 
increases, and the value of the capacitive 
reactance decreases. At one value of 
frequency the inductive reactance and 
capacitive reactance are equal. For this 
example, the frequency value is 796 hertz. 
At this frequency the circuit is said to be at 
resonance and the frequency is called the 

resonant frequency of this circuit. The value of 
the resonant frequency of this circuit can be 
determined mathematically by setting the 
capacitive reactance equal to the inductive 
reactance as shown in equation 14-3. This is 
the basic definition of resonance. 

XL = Xc (14-3) 

Substituting equation 14-1 for XL and 
equation 14-2 for Xc into equation 
14-3 gives, 

1 
27rfL — 

27rfC 

By solving for f it is found that 

1  

27r VLC 

where L is the value of the inductor in 
henrys, C is the value of the capacitor in 
farads, 27r is the constant 6.28, and f is the 
resonant frequency in hertz. Since this is the 
resonant frequency, a subscript "r" is used to 
distinguish it from all other frequencies: 

f 
1  

= 
r 27r VI 

f = 

(14-4) 

Figure 14.3 Series LC Circuit 

796H1 
fIN FIZ 

Figure 14.4 XL and Xc for Series LC Circuit with 

Resonance at 796 Hertz 

Equivalent Resonant Frequency Equations 

For a specific inductance and capacitance, 
equation 14-4 is used to determine the 
frequency at which their reactances are equal 

in value— the resonant frequency. 

Suppose, however, that you want to know 
what value of inductor will provide a certain 
resonant frequency when connected with a 
given capacitor or vice-versa. These values 
can be determined by rewriting equation 

14-4 into equivalent forms; 

1  
L = (27r)7fr2C 

(14-5) 
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II Impedance 
• Minimum Impedance At Resonance 

1 RESONANCE 

or similarly, 

C =   
(27t)2t2L 

(14-6) 

SERIES RESONANCE 

Impedance 

Now, consider the effect of resonance on a 
series RI.0 circuit such as the one illustrated 
in Figure 14.5. You know that the general 
expression for the impedance of any series 
RLC circuit may be expressed as: 

Z = \ R2 + (X1, — Xc)2 

At resonance, from equation 14-3, 

XL = Xc 

and the net reactance of the circuit is zero. 
The impedance, then, at resonance, is 

Z = v  R 2 4. 02 

= \/R2 
= R 

(14-7) 

(14-8) 

Thus, at resonance, the impedance of the 
series RLC circuit appears entirely resistive 
and is equal to the resistance in the circuit. 

To further clarify this fact, note that the 
impedance phasor diagram for a series RLC 
circuit is as shown in Figure 14.6. If X1 . is 
equal in value to X L:, as in the case at 
resonance, the net reactance of the circuit is 
zero, and the impedance phasor falls directly 
upon the resistance phasor. This indicates 
that the impedance is equal to the value of 
the resistance at resonance. 

Minimum Impedance At Resonance 

Since XL equals Xc, the net reactance is zero 
and thus there is no reactive terni in the 
impedance equation, equation 14-7. As 
shown in Figure 14.4 if the applied frequency 
to the circuit is varied either side of the 
resonant frequency, then a difference will 
exist between Xi and X. This difference 

Figure 14.5 Series RLC Circuit 

 eR 

Figure 14.6 Impedance Phasor Diagram for a Series 
RLC Circuil ai Resonance 

would result in a net reactance and would add 
vectorially to the resistance in the circuit to 
create a larger impedance. Such circuits were 
the type discussed in previous lessons. Thus, 
it should be quite clear that at the resonant 
frequency of a series circuit the impedance 
expressed by equation /4-7 is at its lowest 
level, as expressed by equation /4-8. 
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• Current Is Maximum At Resonance 
• Voltage Phase Relationships At Resonance 
• Phase Angle Equals Zero 

RESONANCE tat 

Current Is Maximum At Resonance 

Since the impedance of the circuit is at a 

minimum, it follows that the current flowing 

in the circuit must be a maximum. This can 

be seen by using Ohm's law. Remember that 

for a series RLC circuit the total current is 
equal to the applied voltage divided by the 

circuit impedance: 

EA 
(14-9) 

At resonance, the impedance is equal to the 

resistance alone Therefore, the total current 
is equal to the applied voltage divided by 

the resistance 

IT = 
EA 

(14-10) 

Since in this circuit the resistance alone 
represents a minimum impedance, the 

current must be maximum. 

EA 
'Tunas = 

.sman 

Voltage Phase Relationships At Resonance 

Recall that the voltage phasor diagram is 

proportional to the impedance phasor 

diagram by a factor of the total current. This 

is shown in Figure 14.7. At resonance, when 
XL = Xc, then the voltage across the 
inductor, EL, must equal the voltage across 

the capacitor, E. If EL = Ec, these voltages 

cancel because they are 180 degrees out of 

phase. As a result the applied voltage, EA, is 
in phase with and equal to the voltage across 
the resistor, as shown in Figure 14 8. 

Phase Angle Equals Zero 

Assume the total current is taken as reference 
at zero degrees. Since the current is in phase 

with the voltage across the resistor, and at 

resonance the circuit becomes entirely 

resistive, then the applied voltage is in phase 
with the total current and the phase angle is 

zero. This also is shown in Figure 14.8. 

. X 

X 

a 

1E1.1 • X 1, 

Figure 14.7 Impedance and Voltage Phasor Diagrams 
for Series RLC Circuit at Resonance 

f. 

e = 0 

EL 

Ec 

  ER 
IT EA 

Figure 14.8 Phase Angle Equals Zero at Resonance 
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RESONANCE 14 
Q of a Circuit 

A circuit is sensitive to changes when used at 

the resonant frequency. This is determined by 
the Q or quality factor of the circuit. Recall that 
in the discussion of inductance in Lesson 8 
that the Q of a circuit was defined as the ratio 
of the reactive power of a reactive component 
to the real power dissipated in the resistance 
in the circuit. This is expressed again in 
equation 14-11. 

— PX (reactive power) 
Q  

PR (real powder) 

Let's consider the reactive power of the 
inductor in a series RIX: circuit, such as the 
one shown in Figure 14 5. The reactive power 
of the inductor is equal to the voltage across 
the inductor times the current through it: 

Px1 = ELIE. (14-12) 

Since EL = ILXL, equation 14-12 can be 
rewritten as the inductive current squared 
times the value of inductive reactance. The 
result is equation 14-13. 

XL = 117XL (14-13) 

The value of the real power dissipated by the 
resistance in the circuit is equal to the voltage 
across the resistance times the current 
through it (equation 14-14). 

Using the same reasoning, this can 
be rewritten 

PR = ERIR 
PR = IR2R (14-14) 

Substituting these two equations into equation 

14.11 for Q, 

IL2XL 
Q = 1,2R 

In the series circuit, the current through the 
inductor equals the current through the 

resistor, thus, 

(14-15) 

and 

= 

IL2 = 1R2 (14-16) 

As a result equation 14-15 simplifies to 
equation 14-17, 

(14-17) 

If the capacitive reactance had been used, the 
equation would be: 

Q = 
Xc 

(14-18) 

Thus, the Q of a resonant series RLC circuit 
is equal to the value of the inductive or 
capacitive reactance at the resonant frequency 
divided by the value of the series resistance in 
the circuit. 

Voltage Magnification 

Using the original equation 14-11 for Q, 

Px 
Q= 

and substituting the E-I equivalents for the 
power values, equation 14-19 results. 

ELIL 
Q= ERIR 

Since the current through the inductor, the 

current through the resistor, and the total 
current in the series circuit are the same, 
IT = IL = IR, both IL and IR in equation 
14-19 can be replaced by IT. 

ELIT 
Q = ERIT 

Cancelling IT, equation 14-20 simplifies to: 

(14-19) 

EL 
Q = 

Q is equal to EL divided by ER. 

(14-20) 

(14-21) 
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Measuring Q 

Earlier you saw in the voltage phasor diagram 
of Figure 14.8 that the voltage across the 
resistor and the applied voltage in a series 
circuit were equal at resonance. Substituting 
ER = EA into equation 14-21 results in-

EL 
Q = —E A (14-22) 

If both sides of equation 14-22 are multiplied 
by EA and rearranged. the result is 
equation 14-23: 

EAQ 
ELEA 

EA 
EL = QE, (14-23) 

Equation 14-23 relates the fact that at 
resonance, the voltage across the inductor will 
be Q times larger than the applied voltage. 
This is referred to as the voltage magnification 
in a series resonant circuit, and Q is sometimes 
referred to as the magnification factor. 

Measuring Q 

One of the easiest methods that can be used 
to measure the actual Q of a resonant circuit 
is based on the fact stated in equation 14-23. 
The first step in the method is to connect a 
frequency generator to the circuit as shown 
in Figure 14.9. Next, the circuit is brought to 
resonance by adjusting the frequency of the 
generator. With the circuit at resonance, a 
voltmeter is used to measure the applied 
voltage and the voltage across the inductor or 
capacitor as shown in Figure 14.9. (Either the 
inductor or capacitor can be used because 
the voltage across either is the same at 

resonance.) The value of Q is determined by 
equation /4-22 by simply dividing the voltage 
across the reactive component by the 
applied voltage. 

The rise in voltage across the inductor or 
capacitor at resonance also provides a means 
of determining when a circuit is resonant. For 
example, if the voltage across the inductor is 

Figure 14.9 Setup for Determining the Qof a Circuit 

EA 

50 V 

R=100 
4..`•-••••• 1 L 

10mH 

C= .4)./F 

Figure 14.10 Series Resonant Circuit 

monitored as the frequency is varied, when 

the circuit becomes resonant the current 
reaches a peak value and the voltage across 
the inductor rises to a maximum of Q times 

the applied voltage 

SERIES RESONANT CIRCUIT EXAMPLE 

With these facts about a series resonant 
circuit in mind, let's solve the series circuit 
shown in Figure 14.10 It consists of a 10-ohm 
resistor, a 10-millihenry inductor and a 
4-microfarad capacitor connected to a 50-volt 
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RESONANCE 14 
variable-frequency ac source. The frequency 
of the ac voltage is adjusted to the resonant 

frequency for the circuit. The values of 

impedance, current, circuit voltages, and 
Q of the circuit will be determined at the 
resonant frequency. 

Resonant Frequency 

Since L is 10 millihenrys and C is 4 

microfarads the resonant frequency is 
determined by using equation 14-4. 

f 
1  

— 

r 2n \/LC 

Substituting values, 

1 
f, = 

(6.28) V(10mH)(44F) 

(14-4) 

(6.28)1/(10 x 10 -3 H)(4 x 10 -6F) 

1 

(6 28) V40 X 10 -9 

(6.28) V4 x 10 -8 

• 6.28(2 x 10 -4) 
1  

- 12.56 X 10 4 
= 796Hz 

The resonant frequency of the circuit is 

796 hertz. 

Checking XL = Xc at Resonance 

Recall that it was stated that at the resonant 

frequency, the reactance of the inductor and 

the capacitor are equal. To prove this for the 

10-millihenry inductor and the 4-microfarad 

capacitor, their individual reactances at the 
resonant frequency of 796 hertz are 

calculated. 

The reactance of the inductor at 796 hertz is 

calculated using equation 14-1. 

XL = 2TrfL 

= (6.28)(796Hz)(10mH) 
= (6.28)(796)(10 X 10 -3) 

= 5011 

Next, the capacitive reactance at 796 hertz is 
calculated using equation 14-2. 

1  
Xc — 

2-rtfC 

1 

(6.28)(796Hz)(4µF) 
1 

(6.28)(796Hz)(4 x 10 -6) 

= 50f1 

Thus, at the resonant frequency, X1 = Xt = 

50 ohms. 

Impedance 

The magnitude of the impedance of this 
circuit in its most general form is calculated 

using equation 14-7: 

Z = VR2+ (XL — Xc)2 (14-7) 

Substituting R = 10 ohms and XL = 50 ohms 

and Xc = 50 ohms: 

Z = V102 + (50 — 50)2 

= V102 + 02 

= V100 

= 1011 

The impedance of this series circuit, when 
resonant, is 10 ohms, which is the value of 

the circuit resistance. 

Current 

The value of the series circuit current at 
resonance is determined by dividing the 

applied voltage by the impedance of 

the circuit: 
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EA 
= 

EA 

50V 

Ion 
= 5A 

Circuit Q 

The Q of the circuit is found equal to 5 by 
using equation 14-17: 

XL 

5on 
ion 

= 5 

EL And Ec 

The voltage across the inductor equals the 

voltage across the capacitor at resonance and 
both are equal to Q times the applied voltage 
(equation 14-23). 

EL = Ec = QEA 
= 5(50V) 
= 250V 

To verify this, the value of this voltage in the 
traditional manner can be calculated. Recall 
in that calculation the voltage across the 
inductor equals the current through the 
inductor times the value of the 
inductive reactance: 

EL = ILXL 
= (5A)(50f1) 
= 250V 

Since the capacitor has the same reactance at 
resonance, the voltage drop across it will be 
identical to the voltage across the inductor. 

Ec = IcXc 
= (5A)(50f1) 
= 250V 

It 

  WA 

fr 
f 

Figure 14.11 Frequency Resporme of Impedance 

Frequency Responses 

In Figure 14.4, inductive reactance and 
capacitive reactance versus frequency were 

graphed. With resonant circuits, it is usually 
helpful to graph the response of the circuit 
current or impedance against frequency as 

shown in Figures 14.11 and 14.12 These 
graphs are called the frequency responses of 

the circuit. 

As shown in Figure 14.11 the impedance. Z, of 
a series resonant circuit has a minimum value 

at the resonant frequency, fr. when XL = Xc, 
and the total reactance of the circuit is zero. 
The impedance increases on either side of the 
resonant frequency because XL and Xc are 
not equal and do not result in a net reactance 
of zero. In the series resonant circuit just 
solved, the impedance had a value of 10 ohms 

at resonance and would be plotted on the 
impedance response graph as shown in 

Figure 14.11. 

The current, on the other hand, has a 
maximum value at resonance and varies 

inversely with the impedance as shown in 
Figure 14.12. That is, as the impedance 
increases, the current decreases. For the 
series resonant circuit just solved the current 
frequency response appears as shown in 
Figure 14.12 with a maximum current of 5 
amperes plotted at the resonant frequency, I.,. 
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• Frequency Responses 14 
BANDWIDTH 

As indicated by the frequency response of 
Figure 14.12, the effect of resonance is most 

predominant at the resonant frequency. 
However, if you examine the responses of 
the circuit in greater detail by observing the 
effect of varying the frequency above and 
below the resonant frequency, you will find 
that for a band of frequencies the circuit 

exhibits very nearly the same effects as at 
resonance. This is shown in Figure 14.13. 

The band of frequencies over which the 
effect exists is called the bandwidth, and the 
end points of the band have been defined. 
The lower point is called f-lower, and the 
upper point is called f-upper. f-lower and 
f-upper are the frequencies at which the 
current has a value of 70.7 percent of its 
maximum value at resonance. The bandwidth 
can be determined mathematically by 

subtracting flower from f-upper: 

BW = fupper — flower (14-24) 

For the example circuit, of Figure 14.14, fr 
is 1000 hertz, f-upper is 1200 hertz, and 
f-lower is 800 hertz. Therefore, using 
equation 14-24, 

BW = 1200Hz — 800Hz 
= 400Hz 

The bandwidth is 400 hertz. 

The points f-lower and f-upper are also called 
the cutoff or edge frequencies because they 
define the points at which the resonance of a 
circuit begins to cut off— the points where 
resonance begins to lose its effect. 

Figure 14.12 Frequency Response of Current of Series 
Resonant Circuit 

MAX 

707% 

Ir 

— — 

—•-•J 

flower furiPer 

BANDWIDTH 

Figure 14.13 Bandwidth of Frequency Response 

4. 

MAX 

70.7mA 

800111/ fr 1200Hz 
f lower 1000H1 f upper 

Figure 14.14 Frequency Response Bandwidth of 
400 Hertz 
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• Relationship of Bandwidth to Resonant 
Frequency and Circuit Q 

Note that the upper cutoff frequency is just as 
many hertz above the resonant frequency as 
the lower cutoff frequency is below the 
resonant frequency. This is because the 

frequency response curve is symmetrical on 

both sides of the resonant frequency. Because 
of this, one-half of the bandwidth exists above 
the resonant frequency, and one-half exists 
below the resonant frequency. Expressed 
mathematically, 

Similarly, 

f = fr + -1 BW upper 2 

flower = fr BW 

(14-25) 

(14-26) 

You should realize, however, that the 
symmetry of the response curve is an assumed 
ideal situation. Therefore, actual circuit 
responses differ to some degree from the 
ideal situation. Even so, you may assume for 

purposes of calculation, that responses will be 
symmetrical and by doing so, you are able to 
predict the behavior of these types of circuits 
with a good degree of accuracy. 

Relationship of Bandwidth to Resonant 
Frequency and Circuit Q 

An interesting fact is that a relationship 
also exists between the value of the Q, the 
resonant frequency, and the bandwidth of 
a circuit. This relationship is shown in 
equation 14-27: 

BW 
f, 

(14-27) 

Equation 14-27 means that if the resonant 

frequency and the Q of a circuit are known, 

the bandwidth can be calculated. 

In the series circuit of Figure 14.10 solved 
previously, the resonant frequency was 796 

hertz and the Q had a value of 5. The 
bandwidth of that circuit, then, is calculated 

using equation 14-27. 

fr 
BW = — 

Q 
796Hz 

5 
= 159.2Hz 

The upper and lower cutoff frequencies 
can be calculated using equations 14-25 

and 14-26 as: 

fupper = r + 121  BW 

= 796Hz + 1 — (159.2Hz) 
2 

= 796Hz + 79.6Hz 

= 875.6Hz 

flower, = fr 2 
1 

= 796Hz — (159.2Hz) 
2 

= 796Hz - 79.6Hz 

= 716.4Hz 
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Half-Power Points 14 
These values are graphed in Figure 14.15. 
Recall that these frequencies define the points 
on the response curve at which the current 
is 70.7 percent of its maximum value. 
Therefore, in the series resonant circuit 
example of Figure 14.10 in which the current 

has a maximum value of 5 amperes, the value 
of the current at these cutoff frequencies is 
3.535 amperes, calculated as follows: 

1(cutoff frequency) = 70.7%I m ..„ (14-28) 

= 70.7%(5A) 
= 0.707(5A) 
= 3.535A 

Half-Power Points 

The upper and lower frequency cutoff points 
on the response curve are sometimes referred 
to as the half-power points of the frequency 
response. This is because at these points on 
the response curve, the real power dissipation 
in the circuit is exactly one-half of what it is at 
the resonant frequency. To illustrate this, the 
series circuit of Figure 14.10, which is 
repeated in Figure 14.16, will be used. Recall 
that the real power is equal to the current 
squared times the value of the resistance: 

PR = I2R (14-29) 

In the example circuit the series resistance is 
10 ohms, and at resonance the maximum 
current is 5 amperes. Therefore, 

PR = 12R 

= (5A)2(10f1) 

= (25)(10) 
= 250W 

Figure 14.15 licindwidth of Series Resonant Circuit 

fj fr fu 
716.4 796 875.6 

EA 

50V C/9 
fr . 

796Hz I )1 

4µF 

Figure 14.16 Series Resonant Circuit 

10mH 

At resonance, the real power dissipated is 250 
watts. At the cut-off frequency points the 

current from equation 14-28, is 3.535 
amperes. Using this value the power is 
calculated as: 

p R = 

(3.535A)2( I 011) 
= (12.5)(10) 
= 125W 

Therefore, at the cutoff frequencies, the real 
power dissipated in the circuit is 125 watts, 
one-half the real power dissipated at the 
resonant frequencies. 
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RESONANCE 

(1) 
CHANGING THE FREQUENCY RESPONSE 

Thus far, the frequency response of a specific 
series resonant circuit has been calculated and 
discussed. The frequency response can be 
changed by varying the values of the R, I. and 

C components in the circuit. The next several 
sections will show you how changing the value 
of the circuit components affects the 

frequency reponse curve without affecting 
the resonant frequency. That is, the resonant 
frequency is held constant. 

The bandwidth equation 14-27 provides a 

basic means by which one can determine what 
effect changing the value of a component will 
have upon the frequency response of the 
circuit. Recall that Q is dependent upon the 

value of either the inductive or capacitive 
reactance at resonance and the value of the 

circuit resistance as shown by equations 14-17 
and 14-18. If the value of either L, C, or R is 
changed, the Q of the circuit will be changed, 

and the bandwidth and overall response of 
the circuit will be changed. 

Effect of Changes in L and C 

Equation 14-4 shows that the resonant 

frequency is dependent upon the 

f 1 

2-rr ViC 

values of L and C. Changing either L or C 
changes the frequency response, but the value 
of either cannot be changed independently 
without changing the resonant frequency. 

However, since the resonant frequency is 
dependent upon the product of L and C, the 
resonant frequency can be held constant by 
changing both L and C without changing 

their product. For example, if a 6-henry 
inductor and a 2-farad capacitor are used 
initially, their LC product is 6 times 2 or 12 
((6H)(2F) = 12). 

(14-4) 

If the values are changed to a 4 henry 
inductor and a 3 farad capacitor, the LC 
product remains the same at 12 ((4H)(3F) = 
12), and the resulting resonant frequency will 

be the same. Note that to keep the product 
the same and therefore, the resonant 
frequency, the value of the inductor was 

decreased while the value of the capacitor was 
increased. Obviously, many other possible 
combinations of L and C will yield the 

same product, and thus, the same 
resonant frequency. 

L/C Ratio 

Although changing the values of L and C in 
this manner keeps the resonant frequency 
constant, it does have a definite effect upon 

the frequency response of the circuit. The 
curvature (steepness) of the sides of the 

frequency reponse curve is changed. This 

change in curvature represents a change in 
bandwidth. In many cases, this change is 
referred to as "changing skirts" of the 
response curve. 

For a series resonant circuit, the degree of 
steepness of the response curve (bandwidth) 
is determined by the L/C ratio. This is the 
ratio of the inductance divided by 
the capacitance: 

L/C ratio =- —L (14-30) 

When the value of L is increased, the ratio is 
increased; when the value of L is decreased, 
the ratio is decreased. Increasing L increases 
the L/C ratio and increases XL, the inductive 
reactance (equation 14-1). 

XLI =21TfrLt 

14-14 
BASIC AC CIRCUITS 



RESONANCE 

Effect of R 14 
From equation 14-17, an increase in X. will 
increase Q if the resistance of the circuit is 
held constant. Correspondingly, Q will 
decrease if X L is decreased. 

tQ = 
X L I 

(14-17) 

From equation 14-27, an increase or decrease 
in Q will affect the bandwidth. The resonant 
frequency, f„ is being held constant, 

therefore, an increase in the value of Q will 
cause a decrease in bandwidth: 

L BW - 
Q T 

(14-27) 

Therefore, when L is increased, X L increases, 
the LC ratio is increased, Q increases, the 
bandwidth is decreased and the sides of 
the response curve shown in Figure 14.17 

become steeper. Conversely, when L is 
decreased. X 1 decreases, the LJC ratio is 
decreased, Q decreases, the bandwidth is 
increased and the sides of the response curve 
become less steep as shown in Figure 14.18. 

Effect of R 

Another way to change the circuit's frequency 
response is to change the circuit's resistance. 
Recall from equation 14-4 that the resonant 
frequency of a series RI.0 circuit is not 
dependent on the value of the resistance, 
therefore, changing R will not change the 
resonant frequency. Changing R, affects the 
amount of maximum current at resonance. 
If L and C remain constant, a decrease in 
resistance causes an increase in the maximum 
current at resonance. As shown in Figure 
14.19, this has the effect of increasing the 
slope of the sides of the response curve and 
decreasing the bandwidth. Conversely, an 
increase in resistance will result in a decrease 
of the maximum current value at resonance 
and a corresponding increase in bandwidth. 
This also is shown in Figure 14.19. 

f, 

f, 

ORIGINAL 
RESPONSE 

Figure 14.17 Series Resonant Circuit Frequency 
Response Curve with Increased L 

ORIGINAL 
RESPONSE 

Figure 14.18 Series Resonant Circuit Frequency 
Response Curves with Decreased L 

DECREASING R 

Figure 14.19 Series Resonant Circuit Frequency 
Response Curves with Different R 
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al Resonant Frequency 
• Total Current 

This phenomena can be explained 

mathematically by using equation 14-17 and 
recalling that as the resistance of the circuit is 
changed the value of Q is changed If the 
resistance is increased, the Q of the circuit 
is decreased: 

If the resistance is decreased, the Q of the 
circuit is increased: 

XL 
Qt = 

As before, if the resonant frequency remains 

constant, a decrease in Q will cause an 
increase in bandwidth, 

BW  

and an increase in Q will cause a decrease 
in bandwidth. 

Consequently, by changing either the L/C 
ratio or the value of R, while holding the 

resonant frequency constant, the value of Q, 
and therefore the bandwidth and frequency 
response, can be changed. 

PARALLEL RESON ANCE 

Resonant Frequency 

Thus far, the characteristics of a series RLC 
circuit at resonance have been discussed. Now 
let's look at a parallel RLC circuit shown in 
Figure 14.20. It has a resistor, inductor and 
capacitor all connected in parallel with a 
variable frequency power supply. 

Recall that resonance was defined as the 
frequency at which X L equals X. Because 
resonance is defined in this way, it makes 
no difference whether the inductance and 
capacitance of the circuit are connected in 

Figure 14.20 Parallel RLC Ctrcuil 

series or in parallel. Therefore, equation 

14-14 for determining the resonant 
frequency is the same for a parallel circuit 

as it was for a series circuit: 

1  

27r 

At the resonant frequency for this parallel 

circuit, when X L and Xc are equal, the 
inductive and capacitive branch currents 
will be equal, IL = lc, and 180 degrees out 

of phase. 

(14-4) 

Total Current 

Recall that the total current, IT, in a parallel 
RIX: circuit is equal to the vector sum of the 

branch currents lc, IL and IR and it is 
calculated using equation 14-31. 

= Via2 + (lc - (14-31) 

The phasor diagram is shown in Figure 14.21. 

IR is the current in the resistive branch. IL is 
the current in the inductive branch and 1c is 
the current in the capacitive branch. At 
resonance, when It and lc are equal, the net 
reactive current is equal to zero and equation 

14-31 becomes, 

IT = VIR2 + 02 (14-32) 

14-16 
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II Impedance 14 
and can be rewritten as 

= «\/ 11. (14- 33) 

Solving for IT results in equation 14-34. 

IT = IR (minimum) (14-34) 

At resonance the total current in a parallel 
resonant RLC circuit is equal to the resistive 
branch current because as shown in Figure 
I4.22a, I = k and is 180 degrees out of 

phase with IC. Since at resonance the total 
current seen by the power source is resistive 
current, the current must be at its 
lowest level, at its minimum. If the applied 
frequency is varied either side of the resonant 

frequency, as shown by the phasor diagrams 
of Figure 14.22, then a difference will exist 
between the value of IL and lc. This 
difference will result in a net reactive current 
which would add vectorially to the resistive 
current of the circuit and create a larger value 
of total current. 

The phasor diagram of the parallel circuit at 
resonance is shown in Figure 14.23. Since the 
applied voltage is taken as reference at zero 
degrees, and since at resonance the resistive 
current is in phase with the applied voltage, 
the total current is in phase with the applied 
voltage and the phase angle is zero. 

Impedance 

The total impedance of the parallel circuit is 
equal to the applied voltage divided by the 
total current. 

(14-35) 

( 

(lc — IL) 
IT 

eb  

ER 1R 
• EL 
IL EC 

EA 

Figure 14.21 Total Current Phasor Diagram 

4»,  

1 IC 

IL 

a 

- - 

I T 

R 

Figure 14.22 Phasor Diagrams When fis Varied Either 
Side of Resonance 

e = 0 

IL 

EA IT 

Figure 14.23 Phase Angle Equals Zero Degrees 
al Resonance 

 J 
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MI Current Magnification 

Since the total current in the circuit is a 

minimum at resonance, the impedance must 
be at its maximum value. From equation 
14-34, the total current is equal to the 
resistive branch current, and therefore, 
equation 14-35 can be rewritten: 

EA 
= IR 

By Ohm's law, the applied voltage divided by 
the resistive current is equal to resistance: 

Z = R(maximum) (14-36) 

In other words, the impedance at resonance 
is simply equal to the value of the resistance 
in the resistive branch and is a maximum 
at resonance. 

Circuit Q of a Parallel-Resonant Circuit 

Recall from equation 14-11 that the Q of a 
resonant circuit is defined as the ratio of the 
reactive power to the resistive power. 

Px 
Q = (14-11) 

PR 

The reactive power is for either the inductor 
or capacitor since they are equal at resonance. 

To illustrate this, let's again use the reactive 
power of the inductor as an example. The 
reactive power of the inductor is equal to the 
voltage across the inductor times the current 

F. 
through it. Because II = , the equation can 

- XL 
be rewritten as the voltage across the inductor 
squared divided by the value of the inductive 
reactance (equation 14-37). 

PXL = ELIL 

EL 
= EL — 

XL 

EL! 

XL (14-37) 

RESONANCE 

'I'he real power dissipated by the resistor is 
equal to the voltage across the resistor times 

Ea 
the current through it. Because lx = -- • 

the equation can be rewritten as the voltage 
across the resistor squared divided by the 

value of the resistor (equation 14-38). 

PR = ERIR 
HER 

ER2 
(14-38) 

Substituting equations 14-37 and 14-38 into 

equation 14-11, 

Px 
Q= 

(EL 2/XL) 
 - 

(ER2 /R) 
(14-39) 

In the parallel circuit, EL, the voltage across 
the inductor equals ER, the voltage across the 
resistor. As a result equation 14-39 simplifies 

to equation 14-40. 

(1/XL) R 

Q  = (IR) = XL 

The Q of a parallel resonant circuit of the 
type shown in Figure 14.20 is equal to the 
value of the parallel circuit resistance divided 
by the value of the parallel circuit inductive 
reactance calculated at the resonant 
frequency. Since the capacitive reactance 
equals the inductive reactance at resonance, 

the same value of Q may be obtained by 
dividing the resistance by the capacitive 

reactance: 

Q = 3-Fc 

(14-40) 

(14-41) 

Current Magnification 

Now, let's take the original equation for Q, 

equation 14-11, and use it in a slightly 
different way. In equation 14-42, the E and I 

14-18 
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• Current Magnification 14 
equivalents are substituted for the power 
values, Px and P. 

Q= 

ELIL  
ERIR (14-42) 

Since the voltage across the inductor, EL, and 
voltage across the resistor, ER, are the same in 
the parallel circuit under consideration, and 

they both equal EA, they cancel each other 
and the equation simplifies to equation 14-43. 

E , 
Q =AI 

EAIR 

_ 

IR (14-43) 

Q equals the inductive branch current divided 
by the resistive branch current. 

Earlier you saw in the current phasor 
diagrams of Figure 14.22 and proven by 
equation 14-34 that the current through the 

resistor and the total current were equal at 

resonance. As a result of the substitution IR 
= IT, equation 14-43 for Q can be rewritten: 

(14-44) 

If both sides of equation /4-44 are multiplied 
by IT and rearranged, the equation can be 
rewritten as: 

ITQ = ) IT 

IT cancels on the right side, therefore, 

IL = QIT (14-45) 

The equation relates the fact that at 
resonance, the current through the inductor 

will be Q times larger than the total current. 

CONTINUOUS 
BUILD-UP AND 
COLLAPSE OF 
MAGNETIC FIELD 

Variable 

CONTINUOUS 
CHARGING AND 
DISCHARGING 

Figure 14.24 Ctrculatng Current In L and C Branches 
at the Resonant Frequency 

Since the capacitive current is equal to the 
inductive current, the capacitive current is 
also Q times the total circuit current at 
resonance (equation 14-46). 

= = QIT (14-46) 

This is referred to as the current magnification 
in a parallel resonant circuit. Q, again, is 
known as the magnification factor. 

You may find this unusual but, the current as 
expressed by equations 14-45 and 14-46 is 
much larger in the inductive and capacitive 
branches of a parallel circuit at resonance 
than the total current. This is shown in Figure 
14.24. The larger current in the inductive-
capacitive branches is a result of the continual 

charging and discharging of the capacitor 
and the continual building-up and collapsing 
of the magnetic field of the inductor at the 
resonant frequency. It is a characteristic of 
resonance and is known as the circulating 
current. The parallel combination of the 
inductor and capacitor is often called a 
tank circuit, often shortened simply to tank. 
Although the circulating current is large, 

the total current drawn by the circuit has a 
minimum value at resonance. 
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• Resonant Frequency 
• XL = Xc 

Frequency Response 

If the total current in a parallel resonant 
circuit is plotted versus frequency it appears 

as is shown in the solid-line curve in Figure 
14.25. It has a minimum value at resonance. 

Circuit impedance is shown by the dotted-line 
curve in Figure 14.25. Since total current is 

minimum at resonance, circuit impedance is 
at maximum at resonance. 

The specifications that describe the parallel 
circuit frequency response, such as 
bandwidth, the 70.7 percent half-power 
points, and upper and lower cutoff 
frequencies are determined exactly as they 
were for a series resonant circuit. 

PARALLEL RESONANT CIRCUIT EXAMPLE 

With these facts in mind concerning a 
parallel resonant circuit, let's solve the 
parallel circuit shown in Figure 14.26. It 
consists of a 1-kilohm resistor, a 10-millihenry 
inductor and a 4-microfarad capacitor 
connected in parallel to a 100 VAC variable-
frequency ac source adjustable to the circuit's 
resonant frequency. At resonance the values 
of currents, impedance, voltages, and Q of 
the circuit will be determined, and the 
circuit's frequency response curve will 
be drawn. 

Resonant Frequency 

In this circuit where L is 10 millihenrys and C 
is 4 microfarads, the resonant frequency is: 

- 
2-rr N/LC 

1 

(6.28) N/(10mH)(4p.F) 
= 796Hz 

fr 

RESONANCE 

• 1 

I 

Figure 14.25 Parallel Resonance Current and 
Impedance Frequency Responses 

EA 
100V 

4uF 

Figure 14.26 Parallel RLC Circuit 

XL = Xc 

At the resonant frequency of 796 hertz, 

the value of the inductive and capacitive 
reactance are equal and, as before, both 

are equal to 50 ohms. 

XL = 27rfL 
= (6.28)(796Hz)( 10mH) 

= son 

Xe = 
2TrfC 

1 

1 

(6.28)(796Hz)(4eLF) 

= 5011 
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RESONANCE 14 
Branch Currents 

The branch current can be calculated using 
Ohm's law for each branch. The voltage 
across each branch is EA which is equal to 100 
volts. IL is calculated first. 

= EA 
ti XL 

100V 

500. 
= 2A 

In a similar manner, the capacitive branch 
current IC, is determined: 

c EA 
i 
1 XL 

100V 

- 501-1 
= 2A 

The resistive branch current is the last to 
be calculated. 

IR F. 

100V  

I Kfl 
— 100mA 

Total Current 

The total current for the example circuit in its 
most general form is: 

IT = V1R 2 + (Ic — 11)2 

Substituting values, l R = 100mA, IL = 2A, 
lc = 2A, 

IT = V(100mA)2 + (2A — 2A)2 

= V(I00mA)2 + 02 

= V(100mA)2 
= 100mA 

As was determined previously for parallel 
RLC circuits the total current at resonance is 
simply equal to the resistive branch current. 
In this case it has a minimum value of 
100 milliamperes. 

Impedance 

The value of the impedance is equal to 
the applied voltage divided by the total 
current or, 

E, 
Z = 

100V 

- 100mA 
= lkfl 

The circuit impedance at resonance is a 
maximum value and equal to 1 kilohm, the 
value of the parallel branch resistance. 

Circuit Q 

The Q of the parallel circuit can now be 
determined by substituting R = 1 kilohm 
and XL = 50 ohms. 

= XL 
1000I2 

501.1 
= 20 

Circulating Current 

It was established previously that the 
capacitive or inductive circulating current was 
Q times the total current at resonance. It is 
calculated as follows: 

= IL = Q1T 
= (20)(100mA) 
= 2A 
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Frequency Response and Bandwidth 

This 2 amperes is identical to the value 
calculated for the inductive and capacitive 

branch currents determined earlier and 
verifies that calculation. 

Frequency Response and Bandwidth 

The frequency response of the circuit 
is shown in Figure 14.27. It shows that 
impedance is at a maximum of 1 kilohm at 

resonance: 796 hertz The bandwidth from 
equation 14-27 is equal to the resonant 
frequency divided by the Q of the circuit. 
It is calculated as follows: 

BW = 

796Hz 

20 
= 39.8Hz 

The upper and lower cut-off frequencies are 
calculated using equation 14-25 and 14-26. 
From equation 14-25, 

nu, 
1 

fupper = Ir —2- •-••• 

= 796Hz + —I (39.8Hz) 
2 

= 796Hz + 19.9Hz 
= 815.9Hz 

From equation 14-26, 

1 
flowr, = f, — —2 BW 

1 
-= 796Hz — —2 (39.8Hz) 

= 796Hz — 19.9Hz 
= 776.1Hz 

Remember that these upper and lower cut-off 
frequencies are the frequencies at which the 
frequency response is down to 70.7 percent of 
its maximum value. In this example, the value 
of the impedance at these cutoff frequencies 
is equal to 70.7 percent of 1 kilohm. 

1k11 

f, 
797Hz 

Figure 14.27 Impedance Frequency Response of Parallel 

RLC Circuit 

• 
fL. f, tv 

776.1Hz 797Hz 815.9Hz 

Figure 14.28 Parallel RLC Frequency Response 

Z(cutoff frequency) = 70.7% Z... 
= 70.7% (11(n) 
= 0.707 (1000i1) 

= 707(1 

All of these values are presented as they apply 

to the frequency response of the impedance 

in Figure 14.28. 
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II Effect of Changing R Value 14 
ALTERING THE FREQUENCY RESPONSE 

As in a series resonant circuit, the frequency 

response of a parallel resonant circuit can be 
altered by changing the value of R, L and C. 

In all of the following discussion, the 
resonant frequency is held constant. 
Component values are changed accordingly, 
as in series resonant circuits. 

Effect of Changing L/C Ratio 

Impedance plotted against frequency is 
shown in Figure 14.29. It also demonstrates 
the effect of changing the L over C ratio on 
the frequency response of a parallel resonant 
circuit. The effect of increasing the L/C ratio 
for a parallel resonant circuit has the opposite 
effect as it did for a series resonant circuit. 
An increase in the L/C ratio causes a decrease 

in Q, a decrease in the steepness of the 
response curve, and an increase 
in bandwidth. 

This effect can be substantiated 
mathematically by reasoning that in 
increasing the I./C ratio, L is increased 
causing an increase in the inductive reactance 
at the resonant frequency. Assuming the 
applied voltage is held constant, an increase 
in XL in this parallel circuit causes a decrease 
in the inductive branch current, IL, indicating 
a decrease in the circuit Q.. 

From equation 14-40 an increase in XL causes 
a decrease in the Q of the circuit, and from 
equation 14-27 a decrease in Q causes an 
increase in the bandwidth. Conversely, a 
decrease in the L/C ratio causes an increase 
in Q. an increase in the steepness of the 
response curve, and a decrease in bandwidth 
as shown in Figure 14.30. 

Effect of Changing R Value 

The effect of changing the resistance of the 
circuit on the frequency response of a parallel 
resonant circuit is shown in Figures 14.31 
and 14.32. 

fr 

ORIGINAL 
/ RESPONSE 

Figure 14.29 Frequency Response of a Parallel 
Resonant Circuit with Increasing LIC Ratio 

ORIGINAL 
RESPONSE 

Figure 14.30 Frequency Response of a Parallel 
Resonant Circuit with Decreasing LIC Ratio 

I I I 
- 4 — 

I I 
I 
I I I 

ORIGINAL 
RESPONSE 

SMALLER R 

f*" 

Figure 14.31 Frequency Response of Parallel Resonant 
Circuit with Smaller R 
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As you know by equation 14-4 the resonant 
frequency is not dependent upon the value 
of the resistance Therefore, the resistance 
can be changed without changing the 
resonant frequency. 

1 

2-rr VLC 

Changing the circuit resistance, however, does 

change the frequency response. You have 
seen by equation 14-36 that the circuit 
impedance at resonance is equal to R, 
and that the impedance is a maximum 
at resonance. 

(14-4) 

Z = R(maximum) (14-36) 

Changing the value of R changes the value of 

the maximum impedance at resonance. With 
L and C held constant, as R is decreased, the 
circuit impedance at resonance decreases 
(equation 14-36), the Q of the circuit 
decreases (equation 14-40), causing a 
corresponding increase in bandwidth 
(equation 14-27) and the steepness of the 
response curve decreases as shown in 
Figure 14.31. This may be confirmed 
mathematically: 

BWI = 
QI 

(14-36) 

(14-40) 

(14-27) 

Conversely, as shown in Figure 14.32, an 
increase in R causes an increase of circuit 
impedance at resonance along with 
an increase in the Q of the circuit, a 
corresponding decrease in bandwidth, a 
resulting increase in the steepness of the 
response curve. 

LARGER R 

ORIGINAL 
/ RESPONSE 

Figure 14.32 Effect on Frequency Response of Parallel 
Resonant Circuit with Larger R 

SUMMARY 

In this lesson, the concept of resonance was 
introduced and its effect on the impedance, 
currents, and voltages of a series RLC circuit 
was discussed. The concept of Q, the 
frequency response and the bandwidth of a 
resonant circuit were discussed. You were 
shown how the Q of a circuit could be 
changed by changing the components of the 

circuit and what effect changing its value had 
upon the frequency response of the circuit. 
Corresponding discussions showed you the 
same effects for a parallel RLC circuit. 

COURSE SUMMARY 

Throughout this text, the basic concepts 

of alternating current circuits have been 
developed from the simplest circuit to very 
complex RLC circuits. Basic tools and 
techniques have been explained and applied 
with worked-out examples such that a student 
completing this material should be able to 

analyze and solve the most complex ac 
circuit application. 
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1. Calculate the resonant frequency of the following L-C combinations: 

a. L = 25011H, C = 100; 

b. L = 16mH, C = 0.22µF 

Solutions. 

=   

fr =   

a. Using the resonant frequency equation: 

1  =  I  1  

V71. (6.28) V (25041-1)(10pF) - (6.28) V(250 x 10 -6H)(10 x 10 -12 F) 

1  1  1  

(6.28) V2.5 x 10 -15 6.28(5 x I0 -8) 3.14 x 10 -7 

= 3.18 x 105Hz = 3.18MHz 

b. Using the resonant frequency equation again: 

1 1  
fr - 

2-tr VLC - (6.28) V(16mH)(0.241) - (6.28) V(16 x 

1 1 

10 -3 H)(0.22 x 10 6F) 

(6.28) V3.52 x 10 g - (6.28)(5.93 x 10 -5) 3.73 x 
 10 - 2.68 x 103Hz = 2.68kHz 

-4 

2. Determine the value of the inductor needed to provide the resonant frequency specified if 

used in conjunction with the capacitor given: 

a. fr = 55kHz, C = 1.5µ.F 

b. f, = 27MHz, C = 10pF 

Solutions: 

a. L - 

L =   
L =  

41t2fr2C 4(ir)2(55kHz)2(1.5µF) 4• (3.14)2(55 x 103)2(1.5 x 10 -6) 

1  1 
5.57  - 4(9.86)(3.03 x 10 x 10 -5H = 5.57µ.H 

9)(1.5 x 10 -6) - 1• .79 x 10-- 

b. L - 
1 

4e2fr2C 4(r)2(27MHz)2(10pF) 4• (3.14)2(27 x 106)2(10 x 10 -12) 

1  1  
4(9.86)(7.29 x 10")(10 x 10 -12) - 2.88 x 10 3.48 x 10 -6H = 3.48µ.H -- 
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0) 

3. Determine the value of capacitor needed to provide the resonant frequency specified if used 

in conjunction with the inductor given: 

a. fr = 40kHz, L = 18mH C =   

b. f, = 1MHz, L = 0.05mH C =  

Solutions: 

a. C 

b. C — 

1 
47r2fr2L 4(7r)2(40kHz)2(18mH) - 4(3.14)2(40 x 103)2(18 x 10 -3) 

1  1  
4(9.86)(1.6 x 109)(18 x 10 - 8.80 x 10 -'6F = 880pF-3) - 1.14 x 

47r2fr2L 4(77)2(1MHz)2(0.05mH) = 4(3.14)2(1 x 106)2(0.05 x 10 -3) 

_ 1  1 10 -ioF = 507pF 
4(9.86)(1 x 10' 2)(0.05 x 10 - 3) 1.97 x 109 - 5.07 x 

4. For the following circuit, determine the resonant frequency of the circuit; then determine the 
values specified at the resonant frequency. 

R= 
sn 

IA - 
11V 

C = 
1.5µF 

Solutions: 

L= 
0.4m11 

a. 
b. Xt =   
C. Xc =   
d. ZT =   

e. 1-r =   
1.. EL =   

g. Ec = 
h. Q = -

j. BW = 

j. fupper = 

k. fi.wer 
1. 8 = 

1  a. f,. = _ /— 1 =    - 6.50kHz 
27r vLC (6.28) V(0.4mH)(1.5p.F) 

b. XL = 27rfL = (6.28)(6.5kHz)(0.4mH) = (6.28)(6.5 x 103)(0.4 x 10 -3) = 16.3f/ 

c. Xc = XL = 16.311 

d. ZT = R = 5f1 

EA EA 15V 

e. 1-r  

f. EL = 1TXL = (3A)(16.311) = 49V 
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w EL = Et = 49V 

h Q - 
X L 16.3n 

— 3.26 
5S1 

i. BW — 11- 6.5kHz 2kHz 
Q — 3.26  

J. 

14 

= Er + 1/2BW = 6.5kHz + 1/2 (2kHz) = 6.5kHz + 'kHz = 7.5kHz 

= fr — 1/2 BW = 6.5kHz — 1/2 (2kHz) = 6.5kHz — I kHz = 5.5kHz 

I = arctan iX ) where X 1 = X L — Xc 

0 
= arctan jj) = arctan (0) = 0° 

5. Sketch the frequency response of 1 versus frequency for the circuit of Problem 4. Show the 

location of the resonant frequency, upper and lower edge (cutoff) frequencies, bandwidth, 
and values of current at resonance and at the edge (cutoff) frequencies. 

= 3A -1 

= 2.1A 

= 0.707 

OW = 

J I 

/ 2kHz 

5.5 6.5 7.5 
kHz kHz kHz 
fi..., fr flop« 
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6. For the following circuit, determine the resonant 
values specified at the resonant frequency. 

Soluitons 

a. fr - 

b. 

C. 

xi 

x, 

d. IL 

1 

RESONANCE 

0) 
frequency of the circuit; then determine the 

a g. Z1 =   
b X 1 =   

1Xt_c h. =   J1.. 

e. I c =   
=   k. flower —   f.  

I. 8 =   

211. IC (6 28) V(15mH)(390p12) 

= 2-rrfL (6.28)(65.8kHz)(15mH) (6.28)(65.8 x 103)(15 x 10 5)11 = 6.2kf/ 

= X 1 = 6.2kfl 

EA I2V 
= = 6.2kû— 1.94mA XL  

e. Ic =I = 1.94mA 

EA 12V  
— 146y.LA 

f« = 82kfl 

g. z, = R = 82kfl 

h. Q = R 82kfl 
XL = 6.2kû = 13.2 

I. Bvbi k _ 65.8kHz  
13.2 — 4.98kHz 

— 65.8kHz 

fupper = fr 1/2 BW = 65.8kHz + 1/2 (4.98kHz) = 65.8kHz + 2.49kHz = 68.3kHz 

k. flo ,„er = — 1/28W = 65.8kHz — 1/2 (4.98kHz) = 65.8kHz 2.49kHz = 63.3kHz 
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RESONANCE 14 
7. Sketch the frequency response of Z versus frequency for the circuit of Problem 6. Show the 

location of the resonant frequency, upper and lower edge (cutoff) frequencies, bandwidth, 
and values of impedance at resonance and at the edge (cutoff) frequencies. 

Z„,.. 82kil 

HMO 

83.3 65.8 68.3 
kHz kHz kHz 

z.. = 0.707 Z„,.. 

110*., 1,  
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1. Calculate the resonant frequency of the following L-C combinations: 

a. L = 10mH C = 14t.t.F fr —   

b. L = 150µH C 8p.F fr =   

c. L = 2.5mH C = 0.22u.F fr =   

d. L = 184E1 C 14pF fr =   

2. Determine the value of the inductor needed to provide the resonant frequency specified if 

used in conjunction with the capacitor given: 

a. fr 100kHz C = 0.01i.LF L —   

b. fr = 1.5MHz C = 0.0024F L =   

C. fr = 8kHz C = 8pF L =   

d. f, = 450Hz C = 161.1.1; 1. ----

3. Determine the value of the capacitor needed to provide the resonant frequency 
used in conjunction with the inductor given: 

a. f, = 75kHz L = 0.1mH 

b. f, = 100Hz L = 8.5H 

c. fr = 11MHz L = 

d. Ç = 320kHz L = 0.5mH 

c -   
c -  
c -   
c =  

specified if 

4. For the following circuit, determine the resonant frequency; then determine the values 
specified at the resonant frequency: 

EA -
11IV 

- L - 
loan 2.5mH 

—oedy.--'19•M—H 

C 
0.005F 

a. f, 

b. XL =   

C. =   

d. ZT =   

e: IT =   

f- EL =   

g. 

h 

J. 

k. 

1. 

F.( = 

Q = 

BW = 

fupper 

flower = 

13 = — 

14-30 BASIC AC CIRCUITS 



Practice Problems 

RESONANCE 

14 
5. For the following circuit, determine the resonant frequency; then determine the values 

specified at the resonant frequency. 

R a. fr =   g. Ec =   
4711 

E. L --. el:s Xi==   h. Q =   c. Xc =   s. BW =   

d. ZrT =   j• fupper =   

15V k. f1 ,,. =   
C - 10mH 

f. EL. =   I. 0 =   
0.22F 

6. Sketch the frequency responses of 1 versus frequency for the circuits of Problems 4 and 5. 
Show the location of the resonant frequency, upper and lower edge (cutoff) frequencies, 
bandwidth, and values of current at resonance and at the edge (cutoff) frequencies. 

a. Current frequency response of the circuit of Problem 4: 

b. Current frequency response of the circuit of Problem 5: 
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7. For the following circuit, determine the resonant frequency; then determine the values 

specified at the resonant frequency. 

E. , 
10V 

R -≤ L - 
18111 85mH 

C 
15pF 

a. f, —   g. ZT —   
b. Xt. =   h. Q =   

c. X( =   I. BW =   
d. II =   J. fupper e.   

e. lc —   k. flower =   
f• li —   I. e =   

8. For the following circuit, determine the resonant frequency; then determine the values 
specified at the resonant frequency. 

g. Z1 = 
h Q = 
t. BW = 

• fupper 

k. flower '-

1 

9. Sketch the frequency responses of Z versus frequency for the circuits of Problems 7 and 8. 
Show the location of the resonant frequency, upper and lower edge (cutoff) frequencies, 
bandwidth, and values of impedance at resonance and at the edge (cutoff) frequencies. 

a. Impedance frequency response for circuit of Problem 7: 
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14 
b. Impedance frequency response of circuit of Problem 8: 

10. In the circuit shown below, it is desired to be able to change its resonant frequency 
from 540kHz to 1600kHz by adjusting the value of the capacitor. Determine the range of 

values over which the capacitor must be variable to achieve this. 

L= 
500µH C•  to  

BASIC AC CIRCUITS 14-33 



RESONANCE 

la Quiz 

1. Determine the value of the inductor 
needed to provide the resonant frequency 
specified if used in conjunction with the 
capacitor given: 

a. fr = 100kHz C = 25pF L   
b. f,. = 15kHz C = 0.04µ.F L 

2. Determine the value of the capacitor 
needed to provide the resonant frequency 
specified if used in conjunction with the 
inductor given: 

a. fr = 6.5MHz L = 0.4mH C 
b. fr = 850kHz L = 30001 C =   

3. For the following circuit, determine the 
resonant frequency; then determine 
the values specified at the resonant 
frequency. 

EA = 

a. fr = 
b. XL = 

C. Xc = 
d. ZT = 

e•  
1.8 =   

R = 
3.3k1) 

L = 
800mH 

C = 
0.004.F 

g. Ec =   
h. Q =   
j. I3W =   

j- fupper = 

k• flower = 

4. Sketch the frequency response of 
current versus frequency for the circuit 
of Question 3 Show the location of 
the resonant frequency, upper and lower 
edge (cutoff) frequencies, bandwidth, and 
values of current at resonance and at the 

edge (cutoff) frequencies. 

5. For the following circuit, determine the 
resonant frequency; then determine 
the values specified at the resonant 

frequency. 

C-
250pF 

a. fr g. ZT = 

b. XL =   h. Q = 
c. Xc =   j. BW — 

d. IL =   j• fupper 

e. lc =   
f. IT =   ki.• Oflower = 

= 
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6. Sketch the frequency response of 

impedance versus frequency for the 
circuit of Question 5. Show the location of 
the resonant frequency, upper and lower 
edge (cutoff) frequencies, bandwidth, and 
values of impedance at resonance and at 
the edge (cutoff) frequencies. 
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PRACTICE PROBLEM 
ANSWERS 

Lesson 1. Practice Problem Answers 

1. a. dc 

b. dc 

c. dc 
d. ac 

C. ac 
f. ac 

2. a. 53/4  cycles 

b. 3/4  cycle 

c. 3 cycles 

d. I 1/2 cycles 

e. 2 cycles 

f. 21/2  cycles 

3. a. 1000Hz 

b. 222Hz 

c. I2.2kHz 

d. 33.3Hz 
e. 200Hz 

f. 6.67kHz 

4. a. 0.025ms 

b. 6671.1.s 
c. 15.9p.s 

d. 8.47p.s 
e. 1.25p.s 

f. 0.667bis 

5. 
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ANSUI5 

Lesson 2. Practice Problem Answers 

1. a. 159eis 

b. 3.62ms 

c. 26.51Ls 

d. 132ns 

2. a. 20Hz 

b. 175Hz 

c. 29.6kHz 
d. 2I3kHz 

3. a. (1.) 185V pk 

(2.) 130.8VAC 
b. (1.) 8.9V pk 

(2.) 6.29VAC 
C. (1.) 3.75mV pk 

(2.) 2.65VAC 
d. (1.) 16mA pk 

(2.) 11.3mA,, 

4. a. (1.) 14.1V 0, 

(2.) 28.3V pp 
b. (1.) 170V p, 

(2.) 340V pp 

t. (I.) 1 I MVpk 

(2.) 22.1mV pp 
d. (1.) 3.54mA pk 

(2.) 7.07mA pp 

5. a. (1.) 0.593 
(2.) 0.805 

(3.) 0.737 
b. (1.) 0.447 

(2.) 0.894 
(3.) 0.500 

6. a. 71.8° 
b. 60° 

c. 45° 

d. 30° 

e. 83.1 ° 

f. 4° 

7. a. 20 

b. 20 
c. 14.1 

d. 103.5 

a. 
a. 34.2 

b. 64.3 
c. 86.6 
d. 98.5 

9. a. 11 

b. 
111 

d. II 
e. IV 

10. a. 46° 
b. 80° 

c. 25° 
d. 60° 

A 

94 
76.6 

50.0 

17.4 

P-2 
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PRACTICE PROBLEM 
ANSWERS 

II Lesson 3. Practice Problem Answers 

1. a. V I. H 

b. H m. H 

c. H n. H 
d. V o. H 

e. M p. M 

1. H q. M 

g. V r V 
h. V s. M 

i. M t V 

I M u. H 
k. H 

2. 4 

3. 12.5 

4. 3.2 

5. 2 

6. a. 0.8V = 800mV 

b. 0.4V = 400mV 

( 0.283V = 283mV 

d. 16ms 

e. 62.5Hz 

7. a. 30V 

b. 15V 

C. 10.6V 

d. 0.04µs = 4Ons 
e. 25MHz 

8. a. 0.4V = 400mV 
b. 0.2V = 200mV 

c. 0.I4V = 141mV 

d. 200µS 

e. 5kHz 

9. a. 0.028V = 28mV 
b. 14mV 

c. 9.89mV 

d. 28p.s 
e. 35.7kHz 

10. a. 14V 

b. 7V 

c. 4.95V 

d. 14ms 

e. 71.4Hz 

BASIC AC CIRCUITS P-3 



PRACTICE PROBLEM 

ANSWERS 

• Lesson 4. Practice Problem Answers 

1. a. 24.6V 

b. 11.4V 

c. 32V 

d. - 82V 

e. -53.6V 
f. 50.8V 

2. a. - 20.6V 

b. 19.2V 

c. 281.5V 
d. 44.7V 

e. - 27.5V 

f. 169.6V 

3. e sin 8 E„ 

O o o 
18 0.3090 7.4V 

36 0.5878 14.1V 

54 0.8090 19.4V 

72 0.9511 22.8V 

90 1 24V 

108 0.9511 22.8V 

126 0.8090 19.4V 
144 0.5878 14.1V 

162 0.3090 7.4V 

180 
198 -0.3090 -7.4V 

216 -0.5878 -14.1V 

234 -0.8090 -19.4V 

252 -0.9511 - 22.8V 
270 -1 -24V 

288 -0.9511 -22.8V 
306 -0.8090 - 19.4V 

324 -0.5878 - 14.1V 

342 0.3090 -7.4V 

360 

These values must now be plotted as Epk 
versus O. 

4. a. 172° 

b. 298° 

c. 131.8° 

d. 235° 

e. 103' 
f. 34.4° 

5. a. 0.663 rad 

b. 1.75 rad 

c. 4.03 rad 
d. 4.97 rad 

e. 6.00 rad 

f. 1.47 rad 

6. a. leads, 90° 

b. lags, 90° 
c. leads, 135° 

d. lags, 45° 

7. a. 

9 1 

A 

A 

BASIC AC CIRCUITS P-4 



PRAcrict- PROBLEM 
A NSWF RS 

In Lesson 4. Practice Problem Answers 

d. 

A 

8. a. lags, 45° 

b. leads, 90° 

9. a. 
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PRACTICE PROBLER 
ANS WE 

al Lesson 5. Practice Problem Answers 

1. a. 106mA 
b. 46.2mA 
C. 10.4mA 
d. 351mA 

2. a. 0.0V 

b. - 3.75V 
c. -6.5V 
d. -7.5V 
e. -6.5V 
f. - 3.75V 

13. 0.0V 

3. 

E CV 

- 3.75V 

e. 212mA 
f. 92.5mA 
g. 20.8mA 
h. 702mA 

h. 0.0A 
I. - 1.25mA 
j. -2.17mA 
k. -2.25mA 
I. -2.17mA 
m. -1.25mA 
n. 0.0A 

6.5V 
- 7.5V 

I e0 

1 OA 

- 1.25mA 

- 2.17mA 1-
- 2.5mA + 

160' 270' 

270 360' 

4. a. 165n 
b. 606mA pp 
c. 606mA„ 
d. 606mAp, 
e. 606mA pp 
f. 48.5V„ 

g. 12.1V 
h. 39.4V pp 

29.4W pp 
j. 7.33W„ 
k. 23.9W„ 
I. 60.6W„ 

5. a. 438mA„, 
b. 1.75A,, 
c. 538mA,, 
d. 2.73A„, 

e. 12.80 
f. 35VAC 

6. a. 81k11 
b 247i.i.A pk 
c. 49.4p.A pk 
d. 19811.A pk 
e. 247p.A pk 
f. 4V pk 

g. 35VAC 
h. 35VAC 

j. 61.3W„, 
k. 18.8W,„„ 
I. 95.6W,,„, 

g. 4V pk 
h. 16Vpk 
i. 198p.Wpk 
j. 792µWpt 
k. 3.95mWpk 
1. 4.94mWpk 

P-6 
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PRACTICE PROBLEM 
ANSWERS 

II Lesson 6. Practice Problem Answers 

1. Available in medium values from about 
0.001 microfarads to 2 inicrofarads; 

has a WVDC of about 50 to 2000 volts; 
and has a typical dielectric constant of 2 
to 6 with a dielectric strength of 400 to 

1250 volts per mil. 

2. a. C charges up to the applied 20 volts 

over a period of time. 
b. C retains the 20-volt charge. 

c. C discharges to a neutral (zero volts) 

charge over a period of time. 

3. A capacitor in an ac circuit acts as a 

variable resistance with the resistance 
being indirectly related to the source 

frequency. Specifically, 

X( -   
2.trfC 

4. Connecting capacitors in parallel is like 
increasing the area of the plates of the 

capacitor; both increase capacitance. 

5. 2 Ilka 

6. 4.5 1.1.F 

7. 0.0127p.F 

8. XcT  = 5.88 kil 

CT = 270 pF 

9. a. 1.25 p.F 

b. 3.1811 

c. 1.5911 
d. 7.96S1 
e. 12.71-1 

f. 0.394A 

g. 0 394A 
h. 0.394A 

t. I.25VAC 

j. 0.626VAC 
k. 3.14VAC 
I. Ec = EA = 5VAC 

m. 0.493 VAR 
n. 0.247VAR 

o. 1.24VAR 

p. 1.97VAR 

10. a. 2.8612 

b. 3.18µF 

C. 1.59p.F 

d. 6.371.i.F 

e. 11.1p.F 

f. IOVAC 

8. IOVAC 
h. IOVAC 

11. a. 0.796µF 

b. 0.398p.F 

c. 3.98fi 
d. 1.5911 

e. 14.912 

f. 0.5344F 

g. 13.4VAC 
h. 4.45VAC 

4.45VAC 

J. 2.13VAC 

i.  

J. 0.5A„, 
k. 2A,„„ 

I. 3.5A,, 

m. IOVAR 

n. 5VAR 
o. 20VAR 

p. 35VAR 

k. I.34A„„ 

I. 1 12A,, 

m. 0.223A,„„ 
n. 1.34A„„ 

O. 1.34A,„„ 

p. 18.0VAR 
q 4.98VAR 
r 0.992VAR 

s. 2.85VAR 
t. 26.8VAR 
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PRACTICE PROBLEM 
ANSWERS 

• Lesson 7. Practice Problem Answers 

1. a. 

b. 

d. 

e. 

2. a. 

b. 

C. 

d. 

e. 

0.268 

0.577 

1.0 

1.73 

3.73 

5.71° 

41.98' 
63.43° 

75.96° 

82.87° 

3. The arctangent is an angle in degrees 
whose tangent is the ratio given. 

4. a. 8.06 units 

b. 6.63mA 

5. a. 60.3° 
b. 33.9° 

6. 

7. a. 

b. 

C. 

c 50 feet 

d. 12.25V 

C. 36.9° 
d. 56.4° 

IT, PT 

Ea, E. Ea 
P. 

Parallel RC Circuit 
I5.2mA 
31° 

31.811 
67.911 

0.295A pk 
0.295 A pk 

0.295Apk 
9.38V pk 

1.25mA 
0.5mApk 

I.35mApk 
3.7kfl 
5V pk 

g. 17.7V k 

h. 2.77VAR,,k 
i. 5.22W pk 
j. 5.9VA pk 
k. 27.9° 

f. 5V pk 

g. 6.25mVAR,k 
h. 2.5mW pk 
i. 6.75mVA,,k 
j. 68.2° 

10. a. 79611 

b. 199011 

c. 56911 
d. 75011 

e. 941(1 

f. 31.9mA pp 

g. 31.9mA„ 

h. 31 9mA„ 

i. 22.9mApp 
j. 9 I5mA pp 

k.. 4.79V 
I  19.IVpp 

m... 18.2V 
n pp 

18.2V 
o pp 

0.153W 
1). pp 0.609W 
(1. " 0.417VAR" 

r 307.167VAR 
s „ 

0.957VA 
t .2. " 
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PRACTICE PROBLEM 
ANSWERS 

• Lesson 8. Practice Problem Answers 

1. Inductance is the property of a circuit 

that opposes any change in current. 

2. Oersted and Faraday 

3. Decrease. Fhis happens because the 
permeability of iron is more than that of 

air and as the iron core is extracted, the 

permeability of the core is reduced; rhos. 

the value of the inductance of the coil 
is decreased 

4. Increase 

5. k 
4, Common  

di Total 

3500  
- 0.875 

4000 

6. 0 to I = 0, no mutual inductance to 

k = I Unity coupling) 

7. a I3H 

b. 2.4H 

c. I7.8H 
d 8.211 

8. a. 3.45m11 

b. 4.9mH 

c. I.84mH 

il 2mH 

9. a 

b. 

10. a. ROC of i = 4 x 10 -3A/sec 

b. E1 = 20p.V 

11. k = I 

12. Step-down 

13. a. hysteresis 
b. eddy currents 

1m 
, Ns Es 25.2V 1  
. - -  Np Ep 120V 4.76 

Ns:Np - ¡:4.76 

15. Autotransformer 

16. Pr,, = 1920mW; P, = 1650mW 

% eff x 100 

1650mW 

1920mW 

17. a. 26.67V 

b. 3.92mA 

c. 0.87mA 

19. a 80% 

b. 1:5 (Ns:Np) 

19. a. 1.26e 
b. 62.8e 

15ke 

20. Increases 

21. 15.411 

22. 18 7Hz 

23. a. 62.8e 
b. 31411 

c. 376.811 
d. 53mA 

e. 3.3V 

24. a. I.875m14 
b. 4.71e 

c. 14.13e 

d. 5.3A 

e. 3.53e 

x 100 = 85.9% 

f. I6.7V 
g. I75mVAR 

h. 885mVAR 

j. 1060mVAR 

f. 7.07A 
g. 25V 

h. 25V 

i. 1.77A 
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PRACTICE PROBLEM 
ANSWERS 

al Lesson 9. Practice Problem Answers 

1. a. 

b. 

XL = 

ER = 
EL = 

IR = 

= 
IT = 

XL = 
ER = 

EL = 
1R = 

= 
IT = 

1.4131;f1 
39.8V 

20.8V 

14.75mA 
14.75mA 

14.75mA 

2.451a2 
45.3V 
111V 

45.3mA 

45.3mA 
45.3mA 

c. XL = 13.21:11 
ER = 19.5V 
EL ---- 17.2V 

1R = 1.3mA 
IL = 1 3mA 
IT = I.3mA 

Z = 3.051:12 

8 = +27.6° 
PR = 587mW 

= 306.8mVAR 
PA = 663.75mVA 

Z = 2.651:11 

O = +67.8° 
PR = 2.05W 

P. = 5.03VAR 

PA = 5.43VA 

Z 201a1 
O = +41.3° 

PR = 25.4mW 

= 22.4mVAR 

PA = 33.8mVA 

2. a. Voltage Phasor Diagram 

E, 
17.2V 

Ern 19.5V 

b. Impedance Phasor Diagram 

R = iskn 

c. Power Phasor Diagram 

PA = 33.8mVA 

Pt = 
22.4mVAR 

O = 41.3 

Pm = 25.4mW 

3. a. ER 6OV 

= 60V 

IR = 5mA 
= 12mA 

IT = 13mA 

b. ER = 36V 

EL = 36V 
I, = 2p.A 
IL = 91.t.A 

= 9.2p.A 

C. ER = 24V 

EL. = 24V 

IR = 8mA 
IL = 4mA 

I, = 8.94mA 

Z = 

PR 

Pt = 

PA - 

Z = 

0 - 

PR --
Pt. = 

PA = 

= 

= 
PR = 

PL =-
PA = 

4. a. Current Phasor Diagram 

= 8mA 

17 = 8.94mA 

b. Power Phasor Diagram 

PA = 192mW 

PA = 214.7mVA 

5. Q 16.3 

4.6k1-1 
-67.4° 

300mW 
720mVAR 

780mVA 

3.91t1f1 
-77.5° 

721.0-W 
324t.i.VAR 
331p.VA 

2.681(11 
-26.6° 
192mW 

96mVAR 
214.7mVA 

IL = 
4mA 

PL = 
96mVAR 
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PRACTICE PROBLEM 
ANSWERS 

• Lesson 10. Practice Problem Answers 

I. 1T = 1ms 

2. IT = 50µs 

3. a. 18.8mA 

b. 15V 

C. I5V 
d. 250µs 

4. 

5. a. 0.375T 

b. 1.25T 
c. 2.5T 

d. 4.75T 

6. a. 2.IV 

b 2.1 V 

c. 2.63mA 

7. 40µs 

8. 203µF 

9. 31.4kft 

10. 185ms 
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PRACTICE PROBLEM 
ANSWERS 

• Lesson 11. Practice Problem Answers 

1. I, > lc; therefore, lx is plotted in phase 
with l. 

2. 

3. 

IC 

Pc 

\\\ 1 1 i EOM) 

I 
I 

Pm 

▪ , 

Pt ' 

Ix 19mA 
tan =-= 15mA — 1.27 
arctan 1.27 = —51.7° 

The angle is rotated clockwise; therefore, 
the sign of the angle is negative. 

ET =- VER2 E 2 = VER2 + (EL — E(,) 2 

Zr = N/R2 + XT2 = R2 )k 

Pm 

PA = VP,,2 + 

4. a. 78.5f1 

b. 121.511 

c. 193S1 

d. 104mAr,„, 

e. 15.5VAC 
f. 8.16VAC 

5. a. 1.27k11 
b. 20mA,„„ 

c. 8mA„, 

d. 15.7mArrn, 
e. 7.7mA,, 
f. 21.4mA,., 

PIE 

 px2 = Pir z. 

g. 20.8VAC 
h. 1.61W,,„, 

j. 0.849VAR„,, 

1 2.16VAR,, 
k. 2.08VA,, 

—39° 

g. 0.4W,, 

h. 0.16VAR., 
i. 0.314VARr., 

j. 0.154VARrms 
k. 0.429VA,„„ 

I. +21.1° 
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PRACTICE PROBLEM 
ANSWERS 

• Lesson 12. Practice Problem Answers 

1. a. 3 + j4 = 5[53° 

b. 5 + j2 = 5.38/21.8°  

c. 4 — j2 = 4.47/ — 26.6° 

d. 3 — j5 = 5.83/ —59° 

2. a. —1 

b. —j 
c. + I 

d. —j 
e. +1 

f. —j 

3. a. 

b. 

C. 

-12 

+ 2 

4. a. 40 + j50 
b. 500 — j470 
C. 1000 + j7000 
d. 4.7M — jIM 

5. a. 58.3/31° 

b. 5.69k/55.8° 

c. 399/ —22.1°  

d. 3.04M/ —9.46°  

6. a. 485.6 + j258.2 

b. 50k — j86.6k 
c. 56.4M + j38M 
d. 16.3k — j7.6k 
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PRACTICE Minim 
ANSWERS 

• Lesson 13. Practice Problem Answers 

1. a. j15 
b. j26 
c. j2153 = - 153 
d. -j1.33 
e. j 1 = j 
f. j70 
g. j421 = 21 
h. j4 

2. a. 10 + j24 

b. 21 - j22 
c. 18 + j 1 
d. 1 + j4 
e. 0.9 + j0.6 
f. 13 + j8 

3. a. 24/15° 

b. 4/20°  

C. 30/2° 

d. 5/40° 

4. (38.9 - j1.57)11 = 38.911/ -2.3° 

5. (15 - j20)11 = 25f11 -53° 

6. (40 + j20)1 = 44.711/26.6° 

7. (9.27 + j13.9)11 = 16.7/56.3° 

8. a. 1511 = 1511/0° 

b. -j1012 = 1011/ - 90° 

c. +j2011 = 2011/ +90° 

9. a. 43.611/ - 17° 

b. 573mA/17° 

c. 573mA/17° 

d. 105mA/ -20.6° 

e. 493mA/24.4° 

f. 22.9V/17° 

g. 5.23Vi  -20.6° 

h. 4.93V/114.4° 

i. 12.3V/  -65.6° 

j. 5.23V/110.6° 

k. 17° 

10. a. 322.511/ - 8.2°  

b. 372mA/8.2° 

c. 372mA/8.2° 

d. 310mA/ -25.5° 

e. 207mA/64.5° 

f. 93V/8.2°  

g. 31V/ -25.5°  

h. 31V/ - 25.5° 

i. 8.2° 
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PRACTICE PROBLEM 

ANSWERS 

Lesson 14. Practice Problem Answers 

1. a. 425.4kHz 
b. 4.59kHz 
c. 6.79kHz 
d. 10MHz 

2. a. 253p.H 
h. 5.63p.H 
c. 49.5H 

d. 7.82mH 

3. a. 0.045p.F 
b. 0.2981.LF 
c. 4.19pF 
d. 475pF 

4. a. 45kHz 
b. 707f/ 
C. 7071-1 
d. 10011 
e. 180mA 
f. I27V 

g. I27V 
h. 7.07 
I. 6.36kHz 

j. 48.2kHz 
k. 4I.8kHz 
I. 0° 

5. a. 3.39kHz 
b. 21311 
c. 213i2 
d. 4711 
e. 3I9mA 
f. 68V 
g. 68V 
h. 4.54 
i. 747Hz 
j. 3.76kHz 
k. 3.02kHz 
I. 0° 

6. a 

b. 

180mA - 

127mA 

319mA - 

160mA 

7. a. 141kHz 
b. 75.3k1/ 
c. 75.311 
d. 133p.A 
e. 133p.A 
f. 10p.A 

g. Irvin 
h. 13.3 
j. 10.6kHz 
j. 146.3kHz 
k. 135.7kHz 
I. 0° 

41 8k.Hz ' 48.2kHz 
1, 

45kHz 

i ow - 

/I I 747Hz 
I 

I l 

I I 
itI I I 

fl..., f.or», 
3.02kHz 3.76kHz 

I, 
3.39kHz 
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PRACTICE PROBle 
ANS'ne 

Lesson 14. Practice Problem Answers 

8. a. 9.19kHz 

b. 11.511 
C. 11.5f1 
d. 2.17A 

e. 2.17A 

f. 92.6mA 

g. 27011 
h. 23.5 

I. 391Hz 

j. 9.39kHz 
k. 8.99kHz 

1. 0° 

9.a. 

2 

b. 

zelY• 

min 

707k0 

1  

135.7kHz 

141kHz 

Z 01•• 

2700 

4,0 
11110 

10. 19 8pF to 174pF 

fuo••• 
146.3kHz 

I3W = 
399Hz 

\ 

\. 

8.99kHz 9.i397111z 

9.10kHz 
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QUIZ ANSWERS 

• Lesson I. Quiz Answers 

1. a. dc 

b. dc 

C. ac 

d. ac 
r. dc 

f. ac 

2. a. 4 cycles 

b. 11/4  cycles 
c. 21/2 cycles 

d. 31/2  cycles 

e. 21/2  cycles 

f. 21/2  cycles 

3. a. 66.7Hz 
b. 26.9Hz 

c. 26.9kHz 

d. 125kHz 

e. 20.8Hz 

f. 136kHz 

4. a. 33.3ms 
b. 3.33ms 

c. 15.7p.s 

d. 50i.s.s 

e. 588p.s 

f. 45.5ns 

5. 

BASIC AC CIRCUITS Q- 1 



QUIzANSWUL5 

Lesson 2. Quiz Answers 

1. a. 189ns 

b 6.13u.s 

c. 27Hz 

d. 357kHz 

2. a. (1.) 74V 

(2.) 26.2V 
b. (1.) 150mV 

(2.) 53mV 
c. (L) I.08mA 

(2.) 3821.LA 

3. a. (I.) 84.8V 

(2.) 169.7V 

b. (1.) 9.5mA 

(2.) 18.9mA 

c. (l.) 4.5A 

(2.) 8.9A 

4. a. (1.) 0.880 

(2.) 0.475 

(3.) 1.85 

b. (1.) 0.287 

(2.) 0.957 

(3.) 0.300 

5. a. less than 
b. equal to 

c. greater than 

6. c 

7. b 

B. c 

9. a 

10. a. 43° 
b. 52° 

C. 53° 

Q-2 
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QUIZ ANSWERS 

MI Lesson 3. Quiz Answers 

1. a. P m. S 

b. A n. 

c. G o. X 
d. N p. 

e. H 1.D 
E. 0 r. 

g. Q s. 
h. M t. U 

u. V 

i. J v. w 
k. C w. I 

I. E x. E. 

2. c 

3. c 

4. b 

5. c 

6. b 

7. a 

8. c 

9. b 

10. b 

11. c 

12. a 

13. d 

14. a 

15. c 

16. b 

17. d 

18. b 

19. d 

20. c 

21. c 

22. 6 vertical divisions 

5 horizontal divisions 

23. a. 1.4V 

b. 0.7V 

c. 0.5V 
d. 40ms 

e. 25Hz 

24. a. 800mV 

b. 400mV 

c. 282mV 
d. 24p.s 

e. 41.7kHz 

25. a. 5.6V 
b. 2.8V 

C. 1.98V 

d. 560p.s 
e. I.79kHz 

26. el 10.0V 

b. 5.0V 
C. 3.5V 
d 8.4ms 
e 119Hz 

27. 25V 
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Quit ANsvicits 

• Lesson 4. Quiz Answers 

1. a. 36.4V 

h. — 16.4V 

2. a. 19.4V 
b. 11.4V 

3. a. 223.5° 

b. 315.2° 

4. a. 0.77 rad 

b. 4.33 rad 

5. a. lags, 90° 

b. leads, 45° 

C. 

b. 
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QUIZ ANSWERS 

Lesson 5. Quiz Answers 

1. a. 88mA e. 31.2mA 

b. 1.45mA f. 407u.A 

(.. 32.6V g. 11.6V 
d. 219.4V h. 77.9V 

2. a. 0.0V J. 0.0A 

b. 35.4V k. 1.77mA 

(. 50V I. 2.5mA 

d. 35.4V m. 1.77mA 
e. 0.0V n. 0.0mA 
f. -35.4V o. - 1.77mA 

g. - 50V P. - 2.5mA 
h. - 35.4V - 1.77mA 

j. 0.0V r. 0.0A 

3. 

+ 50V - 

+ 35.4V - 

E OV 

- 35.4V - 

-50V - 

r 45 90* 135' 160'225`270'315310* 

+ 2.5mA 

+ 1.77mA - 

OA 

- 1.77mA - 

- 2.5mA - 

r 45 90 135"180225270-315'360' 

4. a. 2.56kfl g. 14.0Vpk 
b. 11.7mA pk h. 6.32V pk 
c. II.7mApk I. 112mWpk 

d. 11.7mApk j. 164mW pk 
e. 11.7mApk k. 73.9mW k 

f. 9.59V I. 35ImW pk 

5. a. 97.6mA pp g. 80V pp 
b. 66.7mApp h. 80Vpp 

c. 148mApp j. 7.81W, 

d. 312mA pp J• 5.34Wp, 
e. 256f/ k. 11.8Wpp 

f. 80V pp I. 25Wpp 

6. a. 1.19kfl g. 3.12VAC 
b. 8.39mA,, h. 3.12VAC 

c. 8.39mA„, j. 57.7mW,, 

d. 2.6mA„, j. 8.11mWr„,, 

e. 5.78mA k. 18.0mW,„„ 

f. 6.88VAC I. 83.9mW„, 

BASIC AC CIRCUITS 
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Quiz ANSWERS 

• Lesson 6. Quiz Answers 

1. a 

d 

tenon 

ceramic 

electrolytic 

paper 

2. a. Charge to the 50-volt source voltage 
over a period of time. 

b. Retain the 50-volt charge. 

d. Discharge to zero volts over a period 
of time. 

3. 

IC IC  E5 

  of  1 

4. 

5. d. 

6. a. 

b. 

C. 

7. a. 

b. 

C. 

d. 

e. 

f. 

g. 
h. 

Ec 

159Hz 

39511 

2.53 p.F 

0.008p.F 

39.8kfl 

1.991d1 

7.96k(1 
49.8k1) 

0.201mA (rms) 

0.201mA (rms) 

0.201mA (rms) 

j. 0.20ImA (rms) 
j. 8VAC 

k. 0.4VAC 

I. 1.6VAC 
m. 1.61mVAR (rms) 

n. 80.4p.VAR (rms) 
o. 0.322mVAR (rms) 

p. 2.01mVAR (rms) 

8. a. 10.711 

b. 2.65p.F 

c. 3.18p.F 

d. 1.59i.i.F 
e. 7.441.F 

f. 50VAC 
50VAC 

h. 50VAC 
g. 

9. a. 1.59p.F 

b. 2.65p.F 
c. 7.96fl 
d. 4.0f1 

e. 12.2n 
f 1 31p,F 

g. 2.05A (rms) 
h. 0.616A (rms) 

i. 0.616A (rms) 
j. 1.44A (rms) 

10. rms 

k. 

nl 

n. 

o. 

P. 

k. 

n. 

o. 

1 67A (rms) 

2A (rins) 

IA (rms) 
4.67A (rms) 
83.5 VAR (rms) 
100 VAR (rms) 

50VAR (rms) 
233VAR (rms) 

2.05A (rms) 
16.3 VAC 

6.16VAC 

2.45 VAC 
8.61VAC 
33.4 VAR (rms) 

3 79VAR (rms) 
1 51VAR (rms) 

12.4 VAR (rms) 

51.1VAR (rms) 
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QUIZ ANSWERS 

• Lesson 7. Quiz Answers 

1. a. 5 trei 
b. 21.631.1 

2. a. 53.1° 

b. 33.7° 

3. 

c. 25.08V 

d. 70.7mA 

( 66.5° 

d. 45° 

I (all), E. P. 

E. Pc 

4. a. Series RC circuit 
b. 25.3V 

c. - 50.8° 

ET, PT 

5. a. 79.611 g. 8.33mA., 

b. 14411 h. 384mVARrin‘ 
c. 69.4mA,„„ I. 578mVARri-ns 

d 69.4mArnis j. 694VA,.„„ 

e. 69.4mArnis k. -33.6° 
f. 5.53VAC 

6. a. 57.1mA pk e. 2.29VAR pk 

h. 57.1m Api, f. 2.29W„k 

80.8mA pk g. 3.23VA pk 
d. 49511 h. 45° 

7. a. Isn j. 1.64V,, 

b. 2011 k. 5.46V g,.0 

c. 25.611 I. 5.46Vp.,, 
d. 0.273Ap.p m. 0.745Wp_p 

e. 0.273Ap.„ n. 0.448W„ 
f. 0.273A„.„ o. 0.994VARp.p 

g. 0.182A 1).p 13. 0.497VAR„ 
h. 0.091Ap.p q. 1.91VAp.p 
1. 2.73V p.p r. 51.3° 

8. rms 

9. peak 

10. peak-to-peak 
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QUIZ ANSWERS 

la Lesson B. Quiz Answers 

1. c. 

2. e 

3. a 

4. c 

5. C 

6. b 

7. d. 

8. b. 

9. a. 6.3VAC 

b. 1.9mA 

C. 0.1mA 
d. 12mW 

10. Step-up 

11. a. 471S2 

b. 0.9mH 

c. 9.55MHz 

12. a. 7.5kfl 

b. 12V 
c. 3V 

d. 2mA 
e. 24mVAR 

f. 6mVAR 

g. 30mVAR 
h. 20H 

1. 5011 
j. 2A 

k. IA 
E 3A 

m. 300VAR 

n. 150VAR 
o. 450VAR 
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Quiz ANSWERS 

1311 = 120mW 

R = 

Ill Lesson 9. Quiz Answers 

xi 

Z = 

ER = 

EL = 
1R = 

= 

II  = 

o = 

2512S2 = 2.51kfl 
4147f2 = 4.15kf2 

19.9V 

15.IV 
6.03mA 

6.03mA 

6.03mA 
+37.3° 

PR = 120mW 

PL = 91.3mVAR 

PA = I50.75mVA 

Voltage Phasor Diagram 

EL 
15.1V 

ER = 19.9V 

m. Impedance Phasor Diagram 

XL = 

2.511crl 

n. Power Phasor Diagram 

PL = 
91.3mVAR 

2. a. 

b. 

C. 

d. 

e. 

f. 

g. 
h. 

J. 
k. 

1 

6.28kft 

12V 

I2V 

2.55mA 

1.91mA 
3.I9mA 

3.76kt) 

-36.8° 
30.6mW 

22.9mVAR 
38.3mVA 

X = 

ER = 

EL 
1R = 

IL = 
IT = 
Z = 

= 

PR = 

PL = 
PA = 
Current Phasor Diagram 

= 2.55mA 

IL = 1.91mA 

m. Power Phasor Diagram 

3. Q = 7.85 

4. 3.56kfl 

5. b. 

30.6mW 

L = 22.9mVAR 
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Q UIZ ANSWERS 

a Lesson 10. Quiz Answers 

1. 400u.s 

2. 5i.as 

3. a. 40mA 
b. 80V 

c. 80V 

d. 2ms 

4. 

F.-- ST ••-•-•1 

i 

5. a. a. 37.5ms 

b. 75ms 
c. 100ms 
d. 113ms 

6. a. 0.4447 

b. 0.6677 

C. 1.787 

d. 2.787 

7. a. 60V 

b. 20V 

C. 10mA 

8. 9.45ms 

9. 662pF 

10. 6.610E1 
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QUIZ ANSWERS 

Lesson 11. Quiz Answers 

1. 

PL 

2. 

Pl 

Pc 

Pc 

Pl 
9> 

P. nail) 

3. + 26.6° 

4. +53.1' 

5. 1.12kfl 

6. 25A 

7. a. 

b. 

d. 

e 

f. 

8. a 

b. 

d. 
e. 
f. 

159(1 
119f1 

12911 

0.31A,„„ 
15.5 VAC 

12.4VAC 

15.7kfl 

4mA„, 

2.55mA„,„ 
6.67mA,, 

5.74mAr„,, 

0.16W,, 

PL 

g-

P. è(all) 

49.3 VAC 
h. 4.81W,, 

j. 3.84VARrm1 

j. 15.3VAR,.„„ 
k. 12.4VA,.„„ 

I. —67.2° 

g. 
h. 

J. 
k. 

0.102 VAR„, 

0.267VAR,„„ 
0.165VARr,„, 

0.23 VA,.,„, 
+ 45.8° 

9. The component with the largest value of 

resistance or reactance. 

10. The component with the smallest value of 
resistance or reactance. 
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QUIZ ANSWf.113 

• Lesson 12. Quiz Answers 

1. a. 5 + j 1 = 5. 1/11.3° 

b. 2 + j4 = 4.47/63.4° 

c. 1 — j2 = 2.23/ — 63.4°  

d. 4 + j5 = 6.4/ — 51.3° 

2. a. 

b. 

C. 

d. 

3. a. 

b. 

V7-1 

ii = - VIT 
+ 1 

h 

-13 

4. a. 200 + j150 
b. 390 — j62 

5. a. 51/78.7° 

b. 705/ — 58.3°  

c. 71.2/66° 

d. 11.4/ — 52°  

6. a. 65.7 + j17.6 
b. 31.1 — j13.8 

c. 4.94 + j15.2 
d. 22.9 — j14.3 
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Quiz ANSWERS 

Lesson 13. Quiz Answers 

1. a. j18 
b j2 

c. j284 = — 84 
d. —j7 
e. j348 = j48 
f. —j1.5 

2. a. 7 + j2 
b. — 2 + j4 
c. 58 — j6 
d. 1.48 + j0.055 

3. a. 112/85° 

b. 3/ — 3° 

c. 30/4° 

d. 5/ — 30° 

4. a. 33.82/ — 39.8°  

b. 25.98 — j2 I .66 
c. 12.5/65,6°  

d. 5.16 + j11.4 

5. I a. 145.811/31°  

b. 548.7mA/ — 31° 

1.94A/ — 76°. 

d. 1.6A/90° 

I9.4V/ — 76°  

f. 77.6V/14° 

g. 80V/0° 

h. 31° 

II. a. 67.41-1/ 16.8° 

b. 416mA/ — 16.8° 

c. 416mA/ — 16.8° 

d. 0.7A1 + 0.1° 

e. 323mA/ — 158.1° 

f. 16.6V/ — 16.8° 

g. 34.8V/ — 89.9°  

h. 12.9V/ — 158.1° 

BASIC AC CIRCUITS Q-13 



QUIZ AP:WEIS 

• Lesson 14. Quiz Answers 

1. a. 10ImH 

b. 2.8ImH 

2. a. 1.5pF 

b. 117pF 

3. a. 5.63kHz 

b. 28.3kfl 
c. 28.3kfl 

d. 3.3kfl 

e. 1.52mA 
f. 42.9V 

g. 42.9V 
h. 8.58 

L 656Hz 

j. 5.96kHz 
k. 5.30kHz 
I. 0° 

4. 

1.52mA - 

1.07mA - 

f 
5 30kHz 5.91SIcHz 

5 63k Hz 

5. a. 150kHz 

b. 4.24kil 

c. 4.241(11 

d. 2.36mA 

e. 2.36mA 

f. 6674A 

g. 15k11 
h. 3.54 

42.4kHz 

j. 171.2kHz 

k. 128.8kHz 

I. 0° 

6. 
151d1 

10.6k (1 - 

1 

12111.1111dir 17frAz 
f, 

150klis 

Q-14 
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APPENDIX I. UNIT CONVERSION CHARTS 
APPENDICES 

The following charts are listed to give a convenient method for comparing various common English and 
metric units to allow easy conversion from one unit to another. These comparisons are for common values 

of lengths, areas, volume, speed, and electric resistivity. Included also is a listing of several other miscella 
neous unit comparisons. 

Length Comparisons 

To use this chart to Compare (and thus convert) one unit to another, find the existing measurement in 

the From column and then find the desired unit in the vertical headings (TO) Where these two intersect 

will give you the conversion of one existing unit (From) into one new unit (To). For example, if you have 

one inch and you need this in centimeters. find "1 inch" in the From column (4th line down) and go over 

to the vertical column labeled cm; and you find that 1 inch = 2.54 cm. Then, if you wanted to convert 

25 inches (or any value of inches) into centimeters you would simply multiply 25 (or any given number of 
inches) by 2.54 for 63.5 centimeters. 

To 
From 

Crn meter 

Length Comparisons 

1 Centimeter 

1 Meter 

1 Kilometer 

1 Inch 

1 Foot 

1 Statute 
Mile 

1 Nautical 

Mile 

A-2 

1 

100 

1 X 106 

2 54 

30.48 

1.609 

X 105 

1 852 
X 105 

2.54 
X 10-2 

0 3048 

1609 

1852 

1 

2,54 

X 10-5 

3 048 
X 10-4 

1 609 

1 852 

in ft mile 

naut. 

mile 

3.281 6.214 5.40 
0.3937 X 10 -2 X 10 -6 X 10-6 

6.214 5.40 
39.37 3.281 X 10-4 -4 X 10 

3.937 
X 104 3281 0 6214 0.540 

8.333 1.578 1.371 
1 X 10-2 X 10 5 X 10-6 

1 894 1.646 
12 1 X 10 -4 X 10-4 

6.336 
X 104 5280 1 0.8670 

7.293 

X 104 6076.1 1.1508 1 
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APPENDIX 1. UNIT CONVERSION CHARTS APPENDICES 

The charts that follow are used in the same manner as the length comparison chart with the "From" 

in the left column and the "To" conversions listed in the following vertical columns. 

Area Comparison 

To 
From meter2 CITI 2 ft2 in2 cure mil 

1 square meter 1 1 X 104 10.76 1550 1 974 X 109 

1 square centimeter 1 X 10 -4 1 1.076 X 10 -3 0 1550 1.974 X 10 5 

1 square foot 9.290 X 10-2 929 0 1 144 1.833 X 108 

1 square inch 6.452 X 10 - 4 6.452 6.944 X 10-3 1 1.273 X 106 

1 circular mil 5067 X 10 -10 . 5.067 X 10-6  5.454 X 10-9 7 854 X 10 7 1 

Volume Comparison 

To 
From meter ] cm 3 1 ft 3 in 3 

, 

1 cubic meter 1 1 X 106 1000 35.31 6.102 X 104 

1 cubic centimeter 1 X 10-6 1 1. X 10-3 3.531 X 10 -5 6.102 X 10 -2 

1 liter 1 000 X 10 -3 1000 1 3 531 X 10 2 61.02 • 

1 cubic foot 2.832 X 10 -2 2 832 X 104 28 32 1 1728 

1 cubic inch 1 639 X 10-5 16.39 1.639 X 10 2 5.787 X 10 4 1 

Speed Comparison 

From To ft/see km/hr meter/sec miles/hr cm/sec knot 

1 foot 

per second 

1 kilometer 

per hour 

1 meter 

per second 

1 mile 

per hour 

1 centimeter 

per second 

1 k not 

1 

0.9113 

3.281 

1 467 

3.281 X 10 

1 688 

2 

- 

1 097 

1 

3.6 

1 609 

3.6 X 10 

1 852 

2 

0 3048 

0.2778 

1 

0.4470 

0 .01 

0.5144 

0 6818 

0 6214 

2 237 

1 

2 237 X 10 

1 151 

2 

30 48 

27 78 

100 

44 70 

1 

51 44 

0 5925 

0 540 

1 944 

0 8689 

1 944 X 10 

1 

-2 
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APPENDIX I. UNIT CONVERSION CHARTS APPENDICES 

Electric Resistivity Comparison 

To 

F rom 
m ohm- 

cm  

ohm -cm ohm-m  ohm•circ 

mil/ft 

1 micro-ohm centimeter 1 1 X -6 10 1 X 10-8 6.015 

1 ohm-centimeter 1 106 X 1 0.01 6.015 X 106 

1 ohm-meter 1 X 108 100 1 6.015 X 108 

1 ohm•circu lar mil per foot 0.1662 1.662 X 10 -7 1.662 X 10 1-9 

Miscellaneous Unit Comparisons 

1 fathom = 6 ft 

1 yard --- 3 ft 

1 rod = 16.5 ft 

1 U.S. gallon = 4 U.S. fluid quarts 

1 U.S. quart = 2 U.S. pints 

1 U.S. pint = 16 U.S. fluid ounces 

1 U.S. gallon = 0.8327 British imperial gallon 

1 British imperial gallon = 1.2 U.S. gallons 

1 liter = 1000 cm3 

1 knot = 1 nautical mile/hr 

1 mile/min = 88 ft/sec = 60 miles/hr 

1 meter = 39.4 in = 3.28 ft 

1 inch = 2 54 cm 

1 mile = 5280 ft = 1.61 km 

1 angstrom unit = 10-10 meters 

1 horsepower = 550 ft lb/sec = 746 watts 

A 4 
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APPENDIX 2. THE GREEK ALPHABET APPENDICES 

The Greek Alphabet 

(Including common use of symbols in basic electricity) 

Letter Capital Common Use of Symbol Lower Common Use of Symbol 

Alpha A a 

Beta El 0 

Gamma r -r 

Delta a change in h change in 

Epsilon L e base of natural logs 

Zeta Z 

Eta 

Theta 

FI 

(-) 

T, 

0, a angle (phase angle) 

Iota I 

Kappa l. K dielectric constant 

Lambda \ A wavelength 

Mu \I p micro 

Nu 

Xi 

N 

z 

v frequency 

Omicron 0 n 

Pi II rr 3.14159 

Rho 1-' P specific resistance, resistivity 

Sigma . _ sum of terms 0, ç 

Tau T 7 time constant 

Upsilon T ti 

Phi 

Chi 

.1, 

X 

4 . ,..1 

x 

magnetic flux 

Psi 4/ . 

Omega SI ohms angular frequency 

(Reversed (t5) mho 

Omega) 
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APPENDIX 3. BASIC SCHEMATIC SYMBOLS APPENDICES 

Symbol Device Symbol Device 

Hill-- 
Battery or 
D C Power 
Supply 

_L_ 
o 0 

Push Button 
 Normally Open 

(PBNO) 

Resistor 
£1.1.2 

_L 

A7 

Push Button 
Normally Closed 
(PBNC) 

Potentiometer 

— 

Earth Ground 

Rheostat Chassis Ground 

Tapped 
Resistor 1' 

_ 

Capacitor 

0  A mA 

Meters — 
Symbol to 
Indicate 
Function 

it 

P 
— 

Capacitor, 
Polarized 
(Electrolytic) 

— 

Lamp Coil, Air Core 

Switch 
SPST Coil, Iron Core 

O cKs Switch 
SPDT 

Fuse 

Switch 
DPST 

Conductor, General 

No Connection 

Connection 

I 
I 

o 

o 

04 0 

c/0 

Switch 
DPDT I i 

AC Power 
Supply Transformer 

. 
' . 
. 
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APPENDIX 4. BASIC EQUATIONS OF BASIC DC ELECTRICITY APPENDICES 

TERM UNIT 

FORMULA 

SERIES PARALLEL 

Charge Coulomb 0 1 coulomb = 6.28 X 10 18 electrons 

Voltage 

(Potential 
difference, 
EMF) 

Volt 

(V) 

= El + E + E3 +... ET = E1 = E2 = E3. ET 2 

IE1R 

Current 

(Flow of 
charge) 

Ampere 
(Amp) 

(A) 

= 11 = 12 = 13 IT = 11 + 12 + 13 T • • • 
'L5 ' 

- • 

=  

E/AT R 

Resistance 
Ohm 

MI 

1 
AT- = R1 + R2 + R3 +...IR 1/81 + 1/R2 + 1/R3 +. 

R1 R2 
= R Eli 

R1 + R2 

Rs 
1/G AT -= 

Conductance 
Mho 
US) 

G G1 = 1/RT G = 1/R GT = G1 + G2 + G3 . . . 

Power 
Watt 

(W) 

' P  P= IE  = IE 
/ 

P = E2/R P = E2/R 

fp• 

' 

. 12R p = 12R 

Capacitance 
Farad 

(F) 

1 C = O/E 

i CT - C1 + C2 + C3 + .. . 
1/C1 + 1/C2 + 1/C3 +.. = RC 

Inductance 
Henry 

(H) 

1 
LT = L1 + L2 + L3 +.. . / = L/R LT 

1/Li + 1/L2 + 1/L3 + . 
1 
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APPENDIX 5. BASIC EQUATIONS OF BASIC AC ELECTRICITY 
APPENDICES 

TERM 
RC CIRCUITS 

UNIT SYMBOL SERIES I PARALLEL 

frequency hertz fT 

1 
f - - 

Voltage Volt 
(V) 

E ER = lyR 
Ec - IT)(c, 
EA = ITZT or 

EA = ER = Ec 

N./ER2 + E2 
ITZT - VIT2R2 + IT2Xc2 

Current Ampere 
(Amp) 
(A) 

I 
= E. 

I --«- or 
Z 

I = lc = IA  

hi. fA 
= _ R - II 

= 

= \/777-0 

z - \/ X2 Xc2 = --6- or 
IT 

1 

\ 1112 .% ,y 17T\2 
Z. V. Vii) + lid 

Impedance Ohm 
(n) 

Z 

Capacitive 
Reactance 

Ohm 
(D) 

Xc Xc = 1 
2,rrfC 

rductive Ohm 
Reactance I (n) 

L XL - 21rfL 

!Real Power Watt 
(W) 

PR PR - ERIR PR = ERIR - E.'s 

Apparent 
Power 

Volt-
Ampere 

(VA) 

PT 
or 

P - EAIT or PT = EAIT or 

PT = VPR2 + Pc2 PT =  

Reactive Volt-
Power Ampere- 

Reactive 
(VAR) 

Pc 
or 

PL 

= Ecic Pc = Ecic = EAlc 

Phase \ 
Angle 

Degree 
r) 

e = arctan ( 

or 

- arctan ( or 
ER 

= tan 1 E('`--; \, or 

= arctan i ER j 
/ Xc \ 

or 
1 PI / 
Xc 

IR 

= ten -1 
1 IR / 

R 

A-8 
BASIC AC CIRCUITS 



APPENDIX 5. BASIC EQUATIONS OF BASIC AC ELECTRICITY APPENDICES 

RL CIRCUITS 

SERIES PARALLEL 

RIC CIRCUITS 

SERIES PARALLEL 

f — 
T 

ER = ITR 
EL ITXL 
EA = ITZ or 

•\, ER2 + EL' 

ITZT = VIT2R2 IT2X 2 

A ER = ITR 
EL = ITXL 
Ec = ITXc 
Ex = EL Ec 

EA = VER2 E 2 or 

EA = VER2 (EL E)2 

• = EL = Ec 

EA 
= 

— = 

ER fjek 

R R 

— - XL XL 

= VIR2 + (L2 

= EA 

IT -= I = IL = IR 

Ex E 
R = 

EL E 

XL XL 
Ec EA 

IC = 
XC XC 

lx = IC — IL 
IT = lx2 or 

= R2 + (lc — )2 

— VR2 + XL2 = VR2 + XT2 or 

VR2 + (XL — Xc)2 
EA  

IT 

1  
Xc — 

27rfC 

XL = 

— ERIR ERIR EAIFI — ERIR R = ERIR EAIR 

PA = EAIT or 

PA = VPR2 PL2 

PA = EAIT or 

PA — VPR 2 4- PL2 

= EAIT or 

PA = \./PA2 + Px2 or 

PA = VPR2 + — Pc/2 

PA = EA X IT or 

PA = N./PA2 + Px2 or 

PA = VPR2 + (Pc — P 

PL = ELIL = E111 = EAIL P = ELL Pc = Eck = ExIc 
PL = ELI. = ExIL 

arctan 

tan -1 

= arctan 

▪ tan 

--E t-R or 

(17FL) Or 

+):,) 
Or 

XL \ 

R ) 

= arctan ) or 
la 

= tan (—j) IR 

= arctan 

= tan -

= arctan 

= tan' 

gje  or 

\ ER 
/ Ex \ 

Ea 
or 

'\ R ) 
(XT  

j2( e = arctan _)or 
\ IR 

( Ix \ 8 = tan' 
\ IF, ) 

BASIC AC CIRCUITS A-9 



APPENDIX 6. RIGHT TRIANGLE INFORMATION AND 
EQUIVALENT FIRST—QUADRANT ANGLES 

APPENDICES 

Right Triangle Functions 

opposite 
sine El -   

hypotenuse 

cosine O — 
hypotenuse 

adjacent 

tangent 
adjacent 

opposite 

Equivalent First-Quadrant Angles 

HYPOTENUSE 

EOUIVALENT ANGLES 

8. = ISO' — 

SINE VALUES 
POSITIVE 

180° 

SINE VALUES 
NEGATIVE 

8. = e — 180° 

ADJACENT 

900 
fl —READ DIRECT 

FROM TABLE 

"111.....\ SINE VALUES 
POSITIVE 

270° 
III Iv 

SINE VALUES 
NEGATIVE 

8.- 360' — Olv 

OPPOSITE 

A-10 
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APPENDIX 7. 0-90° TRIGONOMETRIC FUNCTIONS APPENDICES 

I 
ANGLE SIN COS TAN ANGLE SIN COS TAN 

0 " 0.0000 1.000 0.0000 45 ° 0.7071 0.7071 1.0000 

1 .0175 .9998 .0175 46 .7193 .6947 1.0355 
2 .0349 9994 0349 47 .7314 .6820 1.0724 
3 .0523 9986 .0524 48 .7431 .6691 1.1106 
4 0698 9976 .0699 49 7547 .6561 1.1504 
5 0872 .9962 .0875 50 .7660 .6428 1.1918 

6 .1045 .9945 1051 51 .7771 .6293 1.2349 
7 .1219 9925 1228 52 .7880 .6157 1.2799 

8 1392 9903 .1405 53 7986 .6018 1.3270 
9 .1564 9877 1584 54 .8090 .5878 1.3764 
10 1736 9848 .1763 55 .8192 .5736 1.4281 

11 1908 9816 1944 56 8290 .5592 1.4826 
12 .2079 .9781 .2126 57 .8387 .5446 1.5399 
13 .2250 .9744 .2309 58 .8480 .5299 1.6003 
14 .2419 .9703 2493 59 .8572 .5150 1.6643 

15 .2588 9659 2679 60 .8660 .5000 1.7321 

16 .2756 9613 .2867 61 .8746 .4848 1 8040 

17 2924 .9563 3057 62 .8829 .4695 1 8807 

18 .3090 .9511 .3249 63 .8910 .4540 1.9626 

19 3256 .9455 .3443 64 .8988 4384 2.0503 

20 .3420 .9397 .3640 65 .9063 .4226 2.1445 

21 3584 9336 .3839 66 .9135 4067 2.2460 

22 3746 .9272 .4040 67 .9205 .3907 2.3559 

23 .3907 9205 .4245 68 .9272 .3746 2.4751 

24 .4067 .9135 .4452 69 .9336 .3584 2.6051 

25 .4226 9063 .4663 70 .9397 .3420 2.7475 

26 4384 8988 .4877 71 .9455 .3256 2.9042 

27 .4540 .8910 .5095 72 9511 .3090 3.0777 

28 .4695 .8829 .5317 73 .9563 .2924 3.2709 

29 .4848 .8746 .5543 74 .9613 .2756 3.4874 

30 .5000 .8660 .5774 75 9659 .2588 3.7321 

31 .5150 .8572 .6009 76 .9703 .2419 4.0108 

32 .5299 .8480 .6249 77 .9744 .2250 4.3315 

33 .5446 .8387 .6494 78 .9781 .2079 4.7046 

34 .5592 .8290 .6745 79 .9816 .1908 5.1446 

35 .5736 .8192 .7002 80 .9848 .1736 5.6713 

36 .5878 .8090 .7265 81 .9877 .1564 6.3138 

37 6018 7986 .7536 82 .9903 .1392 7.1154 

38 .6157 7880 .7813 83 .9925 .1219 8.1443 

39 .6293 .7771 .8098 84 .9945 .1045 9.5144 

40 .6428 .7660 .8391 85 .9962 .0872 11.43 

41 .6561 .7547 .8693 86 .9976 .0698 14.30 

42 .6691 .7431 .9004 87 .9986 .0523 19.08 

43 .6820 .7314 .9325 88 .9994 .0349 28.64 

44 .6947 .7193 .9657 89 .9998 .0175 57.29 

90 1.0000 .0000 
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APPENDICES 

APPENDIX 8. HOW TO USE SQUARE ROOT TABLES 

The following table can be used to find the square root or square of most any number. Numbers from 

1 to 120 can be read directly from the table But what about a number such as 150? How can its square or 

square root be found? The secret to the use of this table is in the understanding of factoring. Factoring a 

number means to break the original number up into two smaller numbers, that, when multiplied together. 
give you back the original. For example, 150 is equal to 10 times 15. Ten and 15 are said to be /actors of 
150. If 10 times 15 is equal to 150, then the square root of 10 times the square root of 15 is equal to the 
square root of 150. Both 10 and 15 are listed on the square and square root table. The square root of 10 

from the table is equal to 3.162 The square root of 15 is equal to 3.873; 3.162 times 3.873 is equal to 
12.246426, which should be the square root of 150. You can test this number by multiplying it by Melt 

Thus, 12.246426 squared is equal to 149.97, etc., — very close to 150. (Small errors due to rounding will 

normally occur when using the tables.) The factoring procedure written out mathematically would then be 

150 = 10 X 15 

NrI50 = \jib X N/TS- (Look up \fib-, NJ-3- in tables) 

Nil-5E= 3 162 X 3.873 

N/T5-0-= 12 246 . 

Try another number now, say, 350. First, factor 350: 

350 = 35 X 10 

The square root of 350 must equal the square root of 35 times the square root of 10. 

./g5 x ,/To 

Go to the tables and look up the square roots of 10 and 35: 

N/150- = 5.9161 X 3.162 

Multiply the square roots of 10 and 35, and you have found the square root of 350. 

0 .575.= 18.706   

To check the accuracy of your calculations, multiply 18.706 by itself. 

18.7062 = 349.91 

Again, very close to the original number. 

Try one more number, this time 1150. 

First, factor 1150. 

1150 = 115 X 10 

The square root of 1150 must equal the square root of 115 times the square root of 10. 

N/1150 = ‘/TTS—x Jr 
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APPENDIX 8. HOW TO USE SQUARE ROOT TABLES APPENDICES 

Look up the square roots of 115 and 10 from the tables. 

v'115-0 = 10.7238 X 3.162 

Multiply the square roots of 115 and 10, and you have the square root of 1150. 

J1150 = 33.908 

To check the validity of this number, square it. It should be very close to 1150. 
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APPENDIX 8. HOW TO USE SQUARE ROOT TABLES APPENDICES 

N N2 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

1.000 
1.414 
1.732 
2.000 
2.236 

2.449 
2.646 
2.828 
3.000 
3.162 

3.3166 
3.4641 
3.6056 
3.7417 
3.8730 

4.0000 
4.1231 
4.2426 
4.3589 
4 4721 

4 5826 
4.6904 
4 7958 
4 8990 
5 0000 

5.0990 
5.1962 
5.2915 
5.3852 
5.4772 

5.5678 
5.6569 
5.7446 
5.8310 
5.9161 

6.0000 
6.0828 
6.1644 
6.2450 
6.3246 

1 
4 
9 
16 
25 

36 
49 
64 
81 
100 

121 
144 
169 
196 
225 

256 
289 
324 
361 
400 

441 
484 
529 
576 
625 

676 
729 
784 
841 
900 

961 
1024 
1089 
1156 
1225 

1296 
1369 
1444 
1521 
1600 

N 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

51 
52 
53 
54 
55 

56 
57 
58 
59 
60 

61 
62 
63 
64 
65 

66 
67 
68 
69 
70 

71 
72 
73 
74 
75 

76 
77 
78 
79 
80 

- 

6.71.031 
6.4807 
6.5574 
6.6332 
6 7082 

6.7823 
6.8557 
6 9282 
7 0000 
7.0711 

7.1414 
7.2111 
7.2801 
7.3485 
7 4162 

7.4833 
7 5498 
7.6158 
7.6811 
7.7460 

7,8102 
7.8740 
7 9373 
8 0000 
8 0623 

8.1240 
8.1854 
8.2462 
8.3066 
8.3666 

8.4261 
8.4853 
8.5440 
8.6023 
8.6603 

8.7178 
8.7750 
8.8318 
8 8882 
8 9443 

N2 

1681 
1764 
1849 
1936 
2025 

2116 
2209 
2304 
2401 
2500 

2601 
2704 
2809 
2916 
3025 

3136 
3249 
3364 
3481 
3600 

3721 
3844 
3969 
4096 
4225 

4356 
4489 
4624 
4761 
4900 

5041 
5184 
5329 
5476 
5625 

5776 
5929 
6084 
6241 
6400 

N 

81 
82 
83 
84 
85 

86 
87 
88 
89 
90 

91 
92 
93 
94 
95 

96 
97 
98 
99 
100 

101 
102 
103 
104 
105 

106 
107 
108 
109 
110 

111 
112 
113 
114 
115 

116 
117 
118 
119 
120 

9.0000 
9.0554 
9.1104 
9.1652 
9.2195 

9 2736 
9.3274 
9.3808 
9 4340 
9.4868 

9.5394 
9.5917 
9.6437 
9.6954 
9.7468 

9.7980 
9.8489 
9.8995 
9.9499 
10.0000 

10.0499 
10.0995 
10.1489 
10.1980 
10.2470 

10.2956 
10.3441 
10.3923 
10.4403 
10.4881 

10.5357 
10.5830 
10.6301 
10.6771 
10.7238 

10.7703 
10.8167 
10.8628 
109087 
10.9545 

N2 

6561 
6724 
6889 
7056 
7225 

7396 
7569 
7744 
7921 
8100 

8281 
8464 
8649 
8836 
9025 

9216 
9409 
9604 
9801 
10000 

10201 
10404 
10609 
10816 
11025 

11236 
11449 
11664 
11881 
12100 

12321 
12544 
12769 
12996 
13225 

13456 
13689 
13924 
14161 
14400 
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APPENDIX 9. EXTRACTING SQUARE ROOT USING CALCULATOR* APPENDICES 

i+l 

THE DIVIDE-AND-AVERAGE METHOD TO FIND SQUARE ROOTS 

STEP 

1. CHOOSE A NUMBER 
LET'S USE 89. 

2. ESTIMATE A SQUARE 
ROOT; DIVIDE BY IT. 

3 ADD YOUR ESTIMATE 
TO DISPLAY 

4 DIVIDE BY 2. 

PRESS DISPLAY 

pac, 89 89. 

9. 

9.8888888 

9 9. 

2 

18.888888 

2. 

9.444444 
(HALF WAY BETWEEN) 

5. CHECK TO SEE IF 
IT IS A ROOT. 89.197522 

6. IF NOT, REPEAT 
THE PROCESS rn- 9.444444 

Lt_J 9.4235298 

(ig) 9.444444 

2 [teAC [P41+1 9.4339865 

89.000101 

*This procedure is for use with calculators that do not have a square root key but do have a memory 
function. The calculator that was used to keystroke this example was a TI 1750 which does have a 
square root key (as do most scientific calculators) and the above result could have been obtained by 
entering the number 89 and pressing the square root key. 
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APPENDIX 10. SCIENTIFIC NOTATION AND THE METRIC PREFIXES 
Arrffloicts 

G 

Giga 

I  

Mega Kilo Units 

1•1 

Milli Micro 

X10+9 X10+6 X10+3 X10° X10-3 X10-6 

Nano 

p(MP) 

X10-9 X10-12 

1 unit = 1 • 

. 0 0 1 = 1 milli 

1 kilo = 1 0 0 0 . 

. O 0 0 0 0 1 = 1 micro 

1 mega = 1 0 0 0 0 0 . 

. 000 000001= 1nano 

1 giga = 1 0 0 0 0 0 0 0 0 0 . 

• 000 000 000 001= 1pico 

1 STANDARD FORM: X.XX x 10+exponent 

Symbol Prefix Value Power of 10 

G giga 1, 0 0 0, 000, 000. X10+9 

M 

k 

mega 

kilo 

1, 0 0 0, 

1, 

0 0 0 . 

000. 

X 10+6 

X10+3 

— (units) 1 . X10° 

m milli . 0 0 1 X10-3 

u micro . 0 0 0 0 0 1 X10-6 

n nano . 0 0 0 0 0 0 0 0 1 X10-9 

P WO pico .000 000 000 0 0 1 X10-12 

_ 
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APPENDIX II . THE UNIVERSAL TIME CONSTANT GRAPH APPENDICES 

F
R
A
C
T
I
O
N
 O
F
 M
A
X
.
 "
E
"
 O
R
 "

I"
 

1.0 

.9 

8 

.7 

.6 

.5 

.4 

.3 

.2 

.1 

How to Use This Chart 

95% 
98% 99%1 

86% 

"CHARGING 
"INCREASING 

, 
CURVE"(CAPACITORS) 

6' 9( 63% 

CURRENT" CURVE (INDUCTOR 

37% 

39%), 

' DISCHARGE CURVE" (CAPACITORS)  
' DECREASING CURRENT CURVE" (INDUCT( 

/ 14% 

5% 2% 1% 

o .5 1 1.5 2 2.5 3 
TIME (IN TIME CONSTANTS) 

4 5 

S) 

RS) 

This chart can be used to graphically determine the voltage or current at any point in time for an RC 

or L'R circuit, during charging (or current buildup), or discharge (or current collapse) 

The examples shown below illustrate the use of the chart 

F Ind the voltage across the capacitor shown in the circuit below, 1 second after the switch is thrown. 

Solution 

R = 1 win 

a. First find the circuit time constant 

= RC 

= (1 X 106) X (2 X 10-6) = 2 seconds 

The voltage at any point along a charge or discharge curve may be calculated by using one of these 

two mathematical formulas: 

c—t/FICI Charge: e (at time t) = Eapp ( I _ 

Discharge: e (at time t) = E app RC) 
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APPENDIX II. THE UNIVERSAL TIME CONSTANT GRAPH 
APPENDICES 

Express the time (t) at which the capacitor voltage is desired in time constants. 

Here you want the voltage after 1 second and the time constant is 2 seconds, so t = 1/2 (the 
time constant) 

or t = 0.5'r 

Look at the chart, on the horizontal axis and locate 0.5 time constants. 

d. Move up the vertical line until it reaches the appropriate curve (in this case the charging curve). 

Read from the vertical axis the fraction of the applied voltage at the time (here 39%1. 

e. At t = 1 second, the voltage across the capacitor equals 39% of 10 volts or 

Ec = 0.39 X 10 

Ec - 3.9 volts 

2. Find the voltage across the capacitor shown in the circuit below 2 seconds after the switch, S. is 

thrown. The capacitor is charged to 20 volts before the switch is thrown. 

(ORIGINAL CAPACITOR 

VOLTAGE 20 VOLTS) 

Solution 

a. Find the circuit time constant 

T = RC 

• = (500 X 10 -131 X fl X 10-61 

▪ = 0.5 seconds 

b. Express the time at which the capacitor's voltage is desired in time constants. Here, 2 seconds 

divided by 0.5 seconds is 4; 2 seconds is 4 time constants for this circuit. 

t = 4 

c. Look at the chart, locate 4 time constants on the horizontal axis. 

d. Move up the vertical line until it reaches the appropriate curve (the discharge curve). Read 

the fraction of the original voltage from the vertical axis 12%1. 
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APPENDIX II. THE UNIVERSAL TIME CONSTANT GRAPH APPENDICES 

e. At t = 2 seconds, the voltage across the capacitor is at 2% of the original voltage or is at 2% 

of 20 volts. 

Ec = 0.02 X 20 

Ec = 0.40 volts 

Remember that 5 time constants is required for a 100% charge (full charge or discharge for 
RC circuits, maximum or zero current for L/R circuits). 
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APPENDIX 12. PEAK, PEAK-TO-PEAK, AND 
RMS CONVERSION CHART 

APPENDICES 

This chart contains factors to easily convert one ac value of a voltage or current to the other two types of values. 

IF YOU 
WANT 

RMS 

PK 

PP 

F YOU HAVE 

RMS PK PP 

..›..... 

=. 1.414,„ 

_ 

= 0.707,. = 0.3535,,p 

>< = 0.5pp 

= 2.828 = 2,k 
>< 
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APPENDIX 13. RESONANCE APPENDICES 

With f, Constant 

R L X1 û BW L/C RESPONSE 

Series Resonance 

= Xi f, - 
- - 
R 

f, 
Bw ...„ _ 

a 

1 

A 
• i 1 .1, I 1 0—"s 

2-rrVLC 

I • • 1 I • ...0^%.... 

••• • 1• I 1 A 
Parallel Resonance 

R . .= _ f, - 
X, 

f, 
BW = — 

O 

1 

• , , 
• 1 .1. I 1 , A — 

2-rTVLC 

I • • . I 1 A 
1 . . 1 t . ....---..._ 

Common 

BW = fu - fi. 

fu = f, + 1/2 BW 

fi = 1, - 1/2 BW 

*Factor held constant 

Half-power point—Real power is exactly one-half of what it is at the 

resonant frequency, f,. 

Bandwidth—Those frequency values where the frequency response 

is equal to or greater than 70.7 percent of the value at the mid-band 
frequency, in this case the resonant frequency. 
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APPENDIX 14. COLOR CODES APPENDICES 

II Resistor and Capacitor Color Codes 

1ST SIGNIFICANT DIGIT 
TOLERANCE BAND 

IF GOLD t 5% 
2ND SIGNIFICANT DIGIT I I SILVER t 10% 

IF NO 4TH BAND *- 20% 

DECIMAL MULTIPLIER 

(# OF ZEROS TO PLACE AFTER FIRST TWO DIGITS) 

RESISTORS AND CAPACITORS 

Significant 

Digit 

Decimal Multiplier 

(Put These Zeros Be-

hind First Two Digits) 

CAPACITORS 

ONLY 

(Power of Ten) 

To 

In % 

Voltage 

Rating (VI 

Black 

Brown 

Red 

Orange 

Yellow 

Green 

Blue 

Violet 

Gray 

White 

o 

1 

2 

3 

4 

5 

6 

7 

1 0 

1 00 

1 0 0 0 

1 0 0 0 0 

1 0 0 0 0 0 

1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

10° 
101 

Gold 

Silver 

Multiply by 0.1 

Multiply by 0.01 

10 ' 

10 2 

20 

1 

2 

3 

4 

5 

6 

7 

9 

10 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

2000 

No Color 20 500 
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APPENDIX 14. COLOR CODES A PPENDICFS 

IMMM 

PREFERRED VALUES FOR RESISTORS AND CAPACITORS 

The numbers listed in the chart below, and decimal multiples of these numbers, are the 

commonly available resistor values at 5%, 10%, and 20% tolerance. Capacitors generally fall into the 
same values, except 20, 25, and 50 are very common, and any of the values can have a wide range 
of tolerances available. 

20% Tolerance 
(No 4th Band) 

10% Tolerance 
(Silver 4th Band) 

5% Tolerance 
(Gold 4th Band) 

10* 10 10 

11 

12 12 

13 

15 15 15 

16 

18 18 

20 

22 22 22 

24 

27 27 

30 

33 33 33 

36 

39 39 

47 47 47 

51 

56 56 

62 

68 68 68 

75 

82 82 

91 

100 100 100 
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APPENDIX 14. COLOR CODES APPENDICES 

la Mica Capacitor Color Codes 

WHITE - EIA 
BLACK - MIL 
SILVER - ASW PAPER 

IIF ANY OTHER COLOR APPEARS HERE, 
THE CAPACITOR IS ONE OF THE TWO 
OLDER 6-DOT VERSIONS' 

PRESENT 6-DOT CODE 

OLD RMA CODE 

OLD 6-DOT CODE 

OLD 5-DOT CODE 

OLD 3-130T CODE 

/  
d di 

Iqqs> 
\   MULTIPLIER 

2ND 

1ST 
, SIGNIFICANT DIGIT 

2No I 

MULTIPLIER 

TOLERANCE 

CLASSIFICATION 

1ST ) 

2ND SIGNIFICANT DIGIT 

3RD I 

MULTIPLIER 

TOLERANCE 

WORKING VOLTAGE 

1ST 
SIGNIFICANT DIGIT 

2ND 

MULTIPLIER 

TOLERANCE (THIS IS THE IDENTIFYING 

BLANK CHARACTERISTIC OF 

WORKING VOLTAGE THIS CAPACITOR CODE TYPEI 

WORKING VOLTAGE 

TOLERANCE 

1ST SIGNIFICANT DIGIT 

ALL RATED AT 500 INVDC 

TOLERANCE 1206) 

\  MULTIPLIER 

  2ND11ST SIGNIFICANT DIGIT 
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APPENDIX 14. COLOR CODES APPENDICES 

• Tubular Capacitor Color Codes 

All Values Are Read in Picofarads 

Color 
Significant 

Digit 
Decimal 
Multiplier 

Tolerance Temperature 
Coefficient ppmrC Above 10 pF (in %) Below 10 pF (in pF) 

Black 0 1 20 2.0 0 

Brown 1 10 1 —30 

Red 2 100 2 —80 

Orange 3 1000 —150 

Yellow 4 -220 

Green 5 5 0.5 -330 

Blue 6 
, 

—470 

Violet 7 —750 

Gray 8 0.01 0.25 30 

White 9 0.1 10 1.0 500 

AXIAL 

LEADS 

RADIAL 

LEADS 

5-130T 

RADIAL 

LEADS 

6-DOT 

TEMPERATURE COEFFICIENT 

1ST I 

2ND 
SIGNIFICANT DIGIT 

TOLERANCE 

MULTIPLIER 

TEMPERATURE COEFFICIENT 

1ST 
SIGNIFICANT DIGIT 

2ND  

TOLERANCE 

MULTIPLIER 

TEMPERATURE COEFFICIENT 

1ST 
SIGNIFICANT DIGIT 

2ND 

VOLTAGE 

TOLERANCE 

MULTIPLIER 

BROWN - 150 

ORANGE - 350 

GREEN 

OR NONE - 500 
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APPENDICE1 

APPENDIX 14. COLOR CODES 

• Ceramic Capacitor Color Codes 

SIGNIFICANT DIGIT  

5-DOT DISK 

TEMPERATURE 

COEFFICIENT 

3-DOT DISK 

SIGNIFICANT DIGIT 

2ND 

1ST 

1ST 

2ND 

TEMPERATURE 

COEFFICIENT 

STAND-OFF 

MULTIPLIER 

TOLERANCE 

SIGNIFICANT DIGIT 

BUTTON HEAD 

2ND 

1 1ST 

TEMPERATURE 

COEFFICIENT 

MULTIPLIER 

TOLERANCE 

MULTIPLIER 

SIGNIFICANT DIGIT 

MULTIPLIER 

TOLERANCE 
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APPENDIX 14. COLOR CODES APPENDICES 

Chassis and Transformer Wiring Color Code 

Most of the following color codes are standardized by the Electronic Industries Association (EIA). 
Although members are not required to adhere to the color codes, it is industry practice to do so 
where practical. 

Chassis Wiring 

In electronic systems wires are usually color-coded to ease assembly and speed tracing connections 
when troubleshooting the equipment. Usually the colors of the wires are in accordance with the 
following system. 

COLOR CONNECTED TO 

Red B + voltage supply 

Blue Plate of amplifier tube or collector of transistor 
Green Control grid of amplifier tube or base of transistor 

(also for input to diode detector) 
Yellow Cathode of amplifier tube or emitter of transistor 
Orange Screen grid 
Brown Heaters or filaments 
Black Chassis ground return 
White Return for control grid (AVC bias) 

I-F Transformers 

Blue— plate 

Red— B* 
Green—control grid or diode detector 
White—control grid or diode return 
Violet—second diode lead for duodiode detector 

A-F Transformers 

Blue— plate lead fend of primary winding) 
Red— B + (center-tap on push-pull transformer) 

Brown—plate lead (start of primary winding on push-pull transformer) 
Green—finish lead of secondary winding 
Black—ground return of secondary winding 
Yellow—start lead on center-tapped secondary 

Power Transformers (Figure 1) 

Primary without tap—black 
Tapped primary: 

Common—black 
Tap—black and yellow stripes 
Finish—black and red stripes 

High-voltage secondary for plates of rectifier—red 
Center tap—red and yellow stripes 

Low-voltage secondary for rectifier filament—yellow 
Low-voltage secondary for amplifier heaters—green, 

brown, or slate 
Center tap—same color with yellow stripe 

o  
Black-red 

Bleck-yellow 

o  

Rod 

Yellow 

 o 

 o 
 o 

 o 

Green-yellow 

Green 

Figure 1. Power Transformer color code 
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adjacent side 

The side of a right triangle beside or adjacent to an included angle theta. 

algebraic sum 

All positive quantities in an expression added together and each negative quantity subtracted 
from that result. 

alternating current 

An electrical current which changes in both magnitude and direction. 

alternating current generator 
A device which generates an alternating voltage by rotating a loop of conductor material 
through a magnetic field. 

ammeter 
A meter connected in series with a circuit, branch, or component which measures the current 

flowing through that circuit, branch, or component 

ampere 
The unit of measure for current flow which equals I coulomb of electrons passing one point 

in a circuit in I second. 

arctangent 
Inverse of the tangent function. Arctangent of an angle theta means that theta is an angle 
whose tangent is the arctangent value. 

bandwidth 
The band of frequencies over which ac quantities remain within specified limits. In the case 

of resonant circuits, it is the band of frequencies over which the resonant effect exists. 

branch 

Path for current flow in a circuit. 

bridge circuit 
A special type of parallel-series circuit in which the voltages in each branch may be balanced 

by adjustment of one component. A special version called a Wheatstone bridge may be used 
to accurately measure resistance. 

capacitance 
The ability of a nonconductor to store a charge. Equal to the quantity of stored charge (Q) 
divided by the voltage (E) across the device when that charge was stored. Unit of 

measurement is the farad. 
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capacitive reactance 

The changing opposition of a capacitor to the flow of alternating electrical cur tent at the 

applied frequency. It is inversely related to the source f requency. It is ineasut ed in ohms and 
has the symbol fi 

capacitor 

A device that can store a charge on conducting plates through the action of an electrostatic 
field between the plates. 

cell 

A single unit device which converts chemical energy into electrical energy. 

chassis 

A metal frame used to secure and house electrical components and associated circuitry. 

circuit 

A complete path for current flow from one terminal to the other of a source such as a battery 
or a power supply or an alternating current generator. 

circuit analysis 

A technique of examining components in circuits to determine various values of voltage, 
current, resistance, power. etc. 

circuit reduction 

A technique of circuit analysis whereby a complex combination of circuit components is 
replaced by a single equivalent component or several equivalent components. 

circuit sense 
An ability to recognize series or parallel portions of complex circuits to apply series and 

parallel circuit rules to those portions of the circuit for circuit analysis. 

circulating current 
A characteristic of resonance, it is the larger current in the inductive-capacitive branches 
of a resonant circuit, the result of the continual charging and discharging of the capacitor 
and the continual expansion and collapse of the magnetic field of an inductor at the 
resonant frequency. 

coefficient of coupling 
The fraction of the total magnetic flux lines produced by two coils which is common 
to both coils. 

coil 
A number of turns of wire wrapped around a core used to oppose changes in current flow. 
(Also called an inductor.) 
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combining like terms 

Algebraic addition of parts of an equation that each contain the same unknown quantity. 

common point 

A voltage reference point in a circuit. A point which is "common" to many components 
in the circuit. 

complex number 
A number represented by the algebraic sum of a real number and an imaginary number. 

condenser 

See capacitor. 

conductance 

rhe ability to conduct or carry current. Conductance is equivalent to the reciprocal of (or one 
over) the resistance. 

conductor 
A material with many free electrons that will carry current. 

conjugate of a complex number 
A complex number with the j-operator having an opposite sign from its mate. For example, 
the conjugate of 2 + j2 is 2 - j2 and the conjugate of 6 — j4 is 6 + j4. 

coulomb 

A large quantity of electrons that form a unit that is convenient when working with electricity 
and equals 6.25 billion, billion electrons (or 6.25 x 10" electrons). 

counter electromotive force (CEMF) 
The voltage that appears across an inductor with a changing current flowing through it due 
to a property called self-inductance. 

current 

"Electron current" is the flow of electrons (negative charges) through a material from a 
negative potential to a positive potential. "Conventional current" is the flow of positive 
charges from a positive potential to negative potential. Current flow is a general term often 
used to mean either of the above. Symbol is I, unit is ampere. 

current magnification 
The increase in total circuit current caused by the Q factor. 

cutoff frequency 
Specified end frequency points that define bandwidth. In the case of resonance, the 
frequency at which the effects of resonance fall outside specified limits. 
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dielectric 

An insulating material with properties that enable its use between the two plates 
of a capacitor. 

dielectric breakdown (in a capacitor) 

Failure of an insulator to prevent current flow from one plate of a capacitor through the 

insulator to the other plate. This often causes permanent damage to the capacitor. 

dielectric constant 

A factor which indicates how much more effective (compared to air) a material is in helping a 
capacitor store a charge when the insulating material is between the capacitor's plates. 

dielectric strength 

A factor which indicates how well a dielectric resists breakdown under high voltages. 

direct current 

Current that flows in only one direction. Its magnitude may change but its direction does not. 

direct relationship 

One in which two quantities both increase or both decrease while other factors 
remain constant. 

earth ground 

A point that is at the potential of the earth or something that is in direct electrical connection 
with the earth such as water pipes. 

efficiency (of a transformer) 

The ratio of the power in a secondary circuit divided by the power in a primary circuit. 

effective value 

Also referred to as rms value. (See root-mean-square value.) 

electricity 

The flow of electrons through simple materials and devices. 

electrolyte 
A chemical (liquid or paste) which reacts with metals in a cell to produce electricity. 

electromagnetic field (magnetic field) 
A field of force produced around a conductor whenever there is current flowing through it. 
This field can be visualized with magnetic lines of force called magnetic flux. 
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electromotive force (EMF) 

A force that makes a current flow in a circuit measured by the amount of work done on a 
quantity of electricity passing from one point of electrical potential to a higher or lower point 
of electrical potential. Measured in volts (V). 

electron 

Negatively charged particles surrounding the nucleus of an atom which determine chemical 
and electrical properties of the atom. 

electrostatic force 

A force which exists between any two charged objects. If the two objects each have the same 
type of charge, the force is a repulsion If the two objects each have different types of charge, 
the force is an attraction. Unlike charges attract; like charges repel. 

energy 

The ability to do work. Unit commonly used in measuring energy is the joule which is equal 
to the energy supplied by a l-watt power source in I second. 

equivalent resistance 

The value of one single resistor that can be used to replace a more complex connection of 
several resistors. 

exponent 
A number written above and to the right of another number called the base. Example: 102, 
10 is the base, 2 is the exponent. A number which indicates how many times the base is 
multiplied by itself. 102 = 10 x 10 100. 

farad 
The unit of capacitance. A capacitor has I farad of capacitance when it can store 1 coulomb 

of charge with a 1-volt potential difference placed across it. 

free electrons 
Electrons which are not bound to a particular atom but circulate among the atoms of the 
substance. 

galvanometer 

An ammeter with a center scale value of zero amperes. 

giga 
The metric prefix meaning one billion or 109. Abbreviated G. 

graticule 
The scale on the face of the cathode-ray tube of an oscilloscope. 
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ground 

A voltage reference point in a circuit which may be connected to earth ground. 

half—power points 

The upper and lower frequency points of a frequency response curve at which the real power 

dissipation in the circuit is exactly one-half of what it is at the mid-band frequencies. For 
resonant circuits the mid-hand frequency is the resonant frequencies. 

henry 

Unit of measure for inductance. A I-henry coil produces I volt when the current through it is 
changing at a rate of I ampere per second. Abbreviated H. 

horizontal sweep 

A proportional amount of time required for the spot on the cathode-ray tube face of an 
oscilloscope to travel from one side of the face to the other side. 

hypotenuse 

The longest side of a right triangle. 

imaginary axis 

Customarily the Y-axis used to represent an imaginary number in a complex number system. 

impedance 

The opposition to the flow of alternating electrical current. The impeding of the current. It is 
measured in ohms and has the symbol a 

inductance 
The ability of a coil to store energy and oppose changes in current flowing through it . A 
function of cross sectional area, number of turns on coil, length of coil, and core material. 

inductive reactance 
A quantity that represents the opposition that a given inductance present to a changing ac 
current in a circuit. It is measured in ohms. It is a direct function of the frequency of the 
applied ac voltage and the value of the inductor. 

inductor 
A number of turns of wire wrapped around a core used to provide inductance in a circuit. 
(Also called a coil.) 

in-phase 
Two or more waveforms in which there is a zero-degree phase difference between 
the waveforms. 
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instantaneous value 

The value of voltage or current at a specific instant in the cycle of an ac signal 
(e.g. a sine wave). 

insulator 

A material with very few free electrons. A nonconductor. 

inverse relationship 

A relationship between two quantities in which an increase in one quantity causes a decrease 
in the other quantity while other factors are held constant. 

junction 

A connection common to more than two components in a circuit. Also called a node. (See also 
common point.) 

kilo 

A metric prefix meaning 1000 or 103. Abbreviated k. 

Kirchhofrs current law 
One of many tools of circuit analysis which states that the sum of the currents arriving at any 
point in a circuit must equal the sum of the currents leaving that point. 

Kirchhofrs voltage law 
Another tool of circuit analysis which states that the algebraic sum of all the voltages 
encountered in any loop equals zero. 

leakage resistance 
The normally high resistance of an insulator such as a dielectric between the plates 
of a capacitor. 

load 
A device such as a resistor which receives electrical energy from a source and that draws 
current and/or provides opposition to current, requires voltage, or dissipates power. 

lagging waveform 
A waveform whose cycle begins after another waveform cycle. 

leading waveform 
A waveform whose cycle begins before another waveform cycle. 

leakage current 
The small electron flow discharge between plates of a capacitor due to the fact an insulator is 
not a perfect nonconductor. 
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loop 

A closed path for current flow in a circuit. 

loop equation 

The algebraic sum of all the voltages in a loop set equal to zero. 

lower cutoff frequency 
The end frequency point defining the lower end of the bandwidth For resonant circuits, the 
frequency below the resonant frequency at which the effect of resonance is outside of 
specified limits. 

magnetic flux 

Magnetic lines of force in a material 

mega 

A metric prefix meaning one million or 1,000,000 or 106. Abbreviated M. 

micro 
A metric prefix meaning one millionth of 1/1,000,000 or 10 -6. Abbreviated with the Greek 
letter mu(µ). 

milli 

A metric prefix meaning one thousandth or 1/1000 or 10 Abbreviated m. 

mutual inductance 
A measure of the voltage induced in a coil due to a changing current flowing in another coil 

close by. Measured in units called henrys (H). 

nano 

A metric prefix meaning one billionth or 1/1,000,000,000 or 10 -9. Abbreviated n. 

negative ion 
An atom which has gained one or more electrons. 

node 
A junction. A connection common to more than two components in a circuit. 

node current equations 
A mathematical expression of Kirchhoffs current law at a junction or node. 

node voltage 
The voltage at a node with respect to some reference point in the circuit. 
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non-sinusoidal waveform 

A waveform that cannot be expressed mathematically by using the sine function. 

ohm 

The unit of resistance. Symbol f2. 

ohmmeter 

An instrument used to measure resistance. 

Ohm's law 
A basic tool of circuit analysis which states that, in simple materials, the amount of current 
through the material varies directly with the applied voltage and varies inversely with the 
resistance of the material. Gives rise to three common equations for use in circuit analysis: 
E = IR, R = Ed, I = E/R. 

open circuit 
A circuit interruption that causes an incomplete path for current flow. 

opposite side 
The side of a right triangle across from or opposite to the included angle theta. 

oscilloscope 
An electronic measuring instrument that can visually display rapidly varying electrical signals 
as a function of time. Often used to measure voltage or current. 

out of phase 
Two or more waveforms in which there is a finite number of degrees of phase difference 
between the waveforms. 

parallel circuit 
A circuit that has two or more paths (or branches) for current flow. 

parallel-series circuit 
A circuit with several branches wired in parallel. Each branch contains one or more 
components connected in series, but no single component carries the total circuit current. 

peak amplitude 
The maximum positive or negative deviation of an electrical signal (e.g. sinewave) from a 

zero reference level. 

peak-to-peak amplitude 
The distance between an ac signal's maximum positive and maximum negative peaks. 
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percent 

A ratio of one part to the total amount. One part of a hundred. 

permeability of core material 

The ability of a material to conduct magnetic lines of force or magnetic flux. 

phase 

The term used to describe the relative position of ac quantities in time reference 
to each other. 

phase angle 

The angular difference in electrical degrees between the total applied voltage and total 

current being drawn from the voltage supply in an ac circuit. 

phasor 

A phase vector. 

phasor algebra 

A mathematical method which expresses the value or magnitude of ac quantities such as 

current, reactance, resistance, or impedance and their respective phase angles, and indicates 

the phase relationships of these quantities with each other. 

phasor diagram 
A diagram showing the relationships of vectors used to represent phase relationships of ac 

circuit quantities. 

phosphorescence 

The ability of a material to emit light after being struck with electrons. 

pico 

A metric prefix meaning one million millionth or 10 - 12. Abbreviated p. 

polar coordinators 
A means of identifying an ac quantity as a vector with a given magnitude (length) and a given 

direction (phase angle) in a quadrant coordinate system. 

polarity of voltage 

A means of describing a voltage with respect to some reference point, either positive 

or negative. 

positive ion 
An atom that has lost one or more electrons. 
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potential difference 

A measure of force produced between charged objects that moves free electrons. Also called 
voltage or electromotive force. Symbol is E, unit is the volt (abbreviated V). 

power 

The rate at which work is done or the rate at which heat is generated (abbreviated P). The 
unit of power is the watt (abbreviated W), which is equal to one joule per second 

power (real) 
The power dissipated in purely resistive circuit components. It is measured in units called 
watts (W). 

power (reactive) 

The product of the voltage across and current through purely reactive circuit components. 
It is measured in units called volts-amperes-reactive (VAR). 

power (apparent) 
A combination of real and reactive power added vectorially, calculated using total current 
and total voltage values. It is measured in units called volt-amperes (VA). 

power dissipated 
Power which escapes from components in the form of heat by the convection of air moving 
around the component 

power rating of a resistor (or component) 
How much power a resistor can dissipate (give off) safely in the form of heat in watts. 

power supply 
A device which is usually plugged into a wall outlet and can replace a battery in many 
applications by providing a known potential difference between two convenient terminals. 

Pythagorean theorem 
A mathematical theorem describing the relationships between the lengths of the sides of a 
right triangle: the square of the length of the hypotenuse of a right triangle equals the sum of 
the squares of the lengths of the other two sides. 

quadrant 
One-fourth of a circle. 

quality factor (Q) 
The ratio of the reactive power in an inductance to the real power dissipated by its internal 
resistance. It is a measure of the ability of a coil to store energy in its magnetic field and what 
part of that energy is returned back to the circuit containing the inductance. 
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radian 

The angle included within an arc on the circumference equal to the radius of a circle. 

rationalization 

The conversion of the denominator of a fractional number to a real number. 

real axis 

Customarily the X-axis used to represent real numbers in a complex number system. 

reciprocal 

Mathematical "inverse". The reciprocal of any number is simply that number divided 
into one. 

rectangular coordinates 
A means of identifying an ac quantity with two numbers which define the location of a 
specific point on a rectangular X-Y coordinate system. 

reference point 

An arbitrarily chosen point in a circuit to which all other points in the circuit are compared, 
usually when measuring voltages. Also called reference node. 

relay 

A switch (or combination of switches) activated by an electromagnetic coil. 

repetitious waveform 

A waveform in which each following cycle is identical to the previous cycle. 

resistance 

Opposition to current flow which is a lot like friction because it opposes electron motion and 
generates heat. Symbol is R. Unit is the ohm (l). 

resonant frequency 

A frequency at which a circuit's inductive reactance and capacitive reactance are the same 
value. At this frequency the circuit is said to be at resonance. 

resultant 

A vector which represents the sum of two vectors. 

root-mean-square 
The square root of the mean of squared values. Mean is an average of the sum of the squares 
of instantaneous values of a voltage or current waveform. Root is the square root of the 

mean. It is abbreviated rms and is sometimes referred to as an effective value. 
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root-mean-square (rms) value 
An ac voltage value equivalent to the value of a dc voltage which causes an equal amount of 
power dissipation due to the circuit current flowing through a resistance. The rms value of a 
sinusoidal waveform is 70.7 percent or 0.707 of its peak amplitude value. RMS value is also 
referred to as effective value It is the effective value of an ac voltage that produces the same 
amount of resistor power dissipation in heat as a specific dc voltage. 

rounding off 

A procedure by which a number with many digits can be reduced to a number with only a 
selected number of significant digits. For example, if three significant digit rounding is 
desired, the first three significant digits are kept, and the fourth examined. If the fourth 
digit is 5 or greater, the third significant digit is raised by one. If the fourth digit is 4 or less, 
the first three digits are kept unchanged. 

scientific notation 
A type of shorthand used to keep track of decimal places which utilizes powers of the number 
10 Standard form for scientific notation is D.DD x le, where D represents each of the first 
3 significant digits, and E represents the exponent, or power of ten. 

series circuit 
A circuit with only one path through which current can flow. 

series-parallel circuit 
A group of series and parallel components in which at least one circuit element lies in series 
in the path of the total current. 

short circuit 
A path with little or no resistance connected across the terminals of a circuit element. 

shunt 
Another term which means parallel. Often also refers to the low value of parallel resistance 
used in an ammeter for determining or changing the "range" of the meter. 

significant digits 
Those digits within a number which have the greatest weight. In the decimal system digits to 
the left of any designated digit are more significant than those to the right. 

sign of a voltage 
A notation, either positive ( +) or negative (—), in front of a voltage. (Important in solving 
circuit equations when analyzing circuits and helps determine the voltage that aids or opposes 
current flow in a circuit, especially a dc circuit.) 
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sinusoidal waveform 

A waveform that can be expressed mathematically by using the sine function. A waveform 
produced by an alternating current generator which constantly varies in magnitude and 

direction as determined by the sine trigonometric function. 

skin effect 

The tendency of high frequency current to flow near the surface of a conductor. 

solenoid 

A term used to mean coil or inductor, also used to mean a type of relay such as that used to 
switch the starter current in an automobile. 

source 

A device, such as a battery or power supply, which supplies the potential difference and 
electrical energy to the circuit. 

square root of a number 

A number which must be multiplied by itself to obtain the original number. 

square of a number 
A number multiplied by itself. 

store 
A calculator operation where the number in the display is transferred to the memory wheie it 
is held until it is recalled. Identified with STO, M + or other such memory keys. 

substitute 
To replace one part of a formula or equation with another quantity which is its equal. 

switch 
A device that is used to open or close circuits, thereby stopping or allowing current flow in a 

circuit or through a component. 

symmetrical 
Parts on opposite sides of a dividing line or median plane correspond in size, shape, and 
relative position. 

tank circuit 
A parallel combination of an inductor and capacitor 

terminal 
A connection point on a device or component. 
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time constant 

The time it takes in seconds for a capacitor to charge up to approximately 63 percent of 
the applied voltage or the time it takes for a fully charged capacitor to discharge from 100 
percent down to approximately 37 percent of full charge. Equal to the product of R (in ohms) 
times C (in farads) in a resistive-capacitive circuit. Also a measure of the current rise and fall 
in inductive circuits. Equal to the quotient of 1./R in resistive-inductive circuits, L in henries, 
R in ohms. Symbol is n. 

total current 

The total current supplied by a voltage source applied to a circuit. 

transposing (rearranging) 
Moving a quantity from one side of an equation across the equal sign to the other side of the 
equation and changing its sign. 

triggering 
The act of starting a horizontal sweep on an oscilloscope 

trigonometry 

The study of triangles and their relationships and functions. 

troubleshooting 
A technique used to locate a problem in a circuit. 

upper cutoff frequency 
The end frequency point defining the upper end of the bandwidth. For resonant circuits, the 
frequency above the resonant frequency at which the effect of resonance is considered to be 

outside of specified limits. 

vector 
A line whose length represents a magnitude and whose direction represents its phase with 

respect to some reference. 

vector addition 
The sum of two or more vectors. 

vertical deflection 
The direction the trace on a scope will travel up and down periodically from a center 
reference point. 

volt 
The unit of voltage or potential difference. Abbreviated V. 

BASIC AC CIRCUITS G-15 



GLOSSARY 

III Glossary 

voltage 

A measure of the push or potential difference which makes each electron move. Symbol E. 
Unit is the volt. 

voltage divider 

A type of circuitry that provides an economical way to obtain one or several lower voltages 
from a single higher voltage supply. 

voltage drop 

Change in voltage available between points in a circuit produced by current flow through 
circuit components that provide opposition to current flow. Also called an IR, IX or 1Z drop. 
Unit is the volt. 

voltmeter 

An instrument used to measure voltage between two points in a circuit. 

watt 

The unit of power. Abbreviated W. Equal to one joule per second. 

waveform amplitude 
The height of a measured electrical signal (e.g. sine wave) of voltage, current, or impedance 

on a scale representing the magnitude of the signal, the signal value. 

waveform cycle 

A waveform that begins at any electrical degree point and progresses through a 
360-degree change. 

waveform frequency 

The number of waveform cycles occurring within one second of time. 

waveform period (also referred to as waveform time) 
The time required to complete one cycle of the waveform. 

working voltage 

The recommended maximum voltage at which a capacitor should be operated. 

G-16 BASIC AC CIRCUITS 



INDEX 

• Index 

Index 
AC- alternating current, 

Basic equations, A-8, A-9 
Defined, 1-3, 1-6 
Generating, 1-3, 1-7, 1-8, 

1-9, 1-10, 1-11 
Alternating current generator, 1-7, 2-14, 

2-15, 2-16, 2-17 
Alternating current voltages, 1-5, 1-6 
Alternating current waveform, 

Defined, 1-5 
Generation, 1-3, 1-7, 1-8, 1-9 
Measurement of, 3-18, 3-19 
Plotting, 1-4, 1-10 

Amplitude of sinusoidal waveform, 
Converting value, 5-6, 5-7, A-20 
Peak, 2-5 
Peak-to-peak, 2-5 
RMS, 2-6, 2-7 
Versus phase 4-17 

Arctangent function, 7-15, 7-16 
Autotransformer, 8-25 
Axis, 

Imaginary, 12-6 
Real, 12-6 

Bandwidth, 14-11 through 14-16 
Bandwidth and frequency response, 14-22 
Basic ac electricity equations, A-8, A-9 
Basic dc electricity equations, A-7 

Capacitance, 
Calculation of, 6-7, 6-8 
Defined, 6-3 
In parallel, 6-22 
In series, 6-21 
Standard Values, 6-7 

Capacitive circuit phase relationship, 6-14 
Capacitive reactance, 

Analysis using, 6-17 
Defined, 6-16 
Equation, 6-16 
In parallel, 6-20 
In series, 6-19 
Versus inductive reactance, 14-3 

Capacitive unit, 6-7 
Capacitor, 

Air, 6-11 
Ceramic disc, 6-9 
Charge, 1-3, 10-4, 10-5 
Charging of, 6-4, 6-5 
Current, 10-3, 10-4 
Dielectric constant, 6-8 
Discharging, 6-5, 10-6, 10-7 

Electrolytic. 6-10, 6-11 
In ac circuits, 6-13 
In dc circuits, 6-13 
Leakage current, 6-12 
Paper, 6-9 
Schematic symbol, 6-3 
Types, 6-9, 6-10, 6-11 
Values of, 6-6 
Voltage rating, 6-8 

Changing directions of current flow, 1-10 
Coefficient of coupling, 8-16, 8-17, 8-21, 8-23 
Coil, 8-6, 8-7, 8-8, 8-9, 8-10, 8-11, 8-15, 9-21 
Color Codes, A-22 through A-27 
Complex numbers, 

Conversion of rectangular to polar, 13-9 
through 13-15 

Defined, 12-7, 13-3 
Rectangular form, 13-5, 13-6, 13-7 
Polar form, 13-7 

Complex problem analysis, 12-19, 12-20, 
12-21 

Constant, 0.707, 2-7 
Conversions, 

Peak to peak-to-peak and rms, 5-6, 5-7, A-2 
Time to frequency 1-16 
Time to time constants, 10-13, 10-14 

Coordinates x and y, 12-3 
Cosine theta, 2-13, 2-20 
Coulomb, 6-6 
Counter EMF, 8-7 
Current magnification, 14-18 
Cycle, 

Alternations, 1-11 
Defined 1-13 
Identification, 1-12 
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DC-direct current, 
Basic equations, A-7 
Defined. 1-6 
Waveform, 1-6 

Dielectric, 
Constant, 6-8 
Materials, 6-8 
Strength. 6-9 

Effective value, (See RMS.) 
Electromagnetic induction, 1-8 
Electron current flow, 8-3 
Equivalent first-quadrant angles, A-10 
Extracting square root using a 

calculator, A-15 

Farad, 6-6 

Faraday, Michael, 8-3 
Frequency of waveform. 

Calculation, 1-16 
Defined, 1-14 
Equation, 1-16, 3-18 
Prefixes, 1-15 
Unit, 1-14 

Frequency response, 
And bandwidth, 14-22 

Changing, 14-14, 14-15, 14-16, 14-23, 14-24 
Factors, 14-10 
Graphing, 14-10 

Greek alphabet, A-5 

Half-power points, 14-13 
Hertz, 1-15 

Impedance, 6-15, 7-6, 7-11, 7-18, 7-22, 7-23, 
9-4, 9-5, 9-11, 9-16, 9-18, 13-3, 13-8, 13-9, 
13-10, 13-11, 14-5, 14-9, 14-17, 14-21 

Inductance, 8-5, 8-6, 8-7, 8-8, 8-9, 8-10, 8-11 
Inductive reactance, 8-27, 8-28, 8-29, 14-3 
Inductor, 8-6, 8-7, 8-9, 8-10, 8-18, 8-30 
Instantaneous current, 4-7, 4-8, 5-4, 10-14, 

10-16, 10-24, 10-25 

Instantaneous sine wave values, 4-3, 4-4, 
4-5, 4-9 

Instantaneous voltage, 4-3, 4-4, 4-5, 4-9, 4-10, 
4-11, 5-3, 5-4, 10-14, 10-16, 10-24, 10-25 

J-operator, 
Circuit analysis using, 13-8 through 13-16 
Introduction to. 12-9 through 12-21 
Math operations involving, 13-5 
Writing impedance with, 13-3, 13-4, 13-5 

L/C ratio, 14-15. 14-16, 14-23 
Leakage current. 6-12 
Left-hand rule for conductors, 8-5 

Left-hand rule for generators, 1-8, 1-9 

Magnetic lines of force. 1-8 
Metric prefixes, A-16 

Mutual inductance, 8-15, 5-16, 8-1 7. 8-18, 8-19 

Negative numbers, 12-5, 12-6 

Oersted, Hans, 8-4 
Ohm's law, 2-7, 7-12, A-7 
Oscilloscope, 

Basic, 3-4 
Control circuits, 3-6 
CRT, 3-4 
Electron gun, 3-4 
Horizontal controls, 3-15, 3-16 
Horizontal positioning and triggering, 3-16 
Horizontal sweep, 3-15, 3-16, 3-17 
Mainframe controls, 3-7, 3-8, 3-9 
Screen, 3-6 
Vertical controls, 3-9, 3-10, 3-11, 3-12 
Vertical deflection, 3-12, 3-13 
Voltage measurements, 3-12 

Parallel capacitive ac circuit, 6-20, 6-22, 6-25, 
6-27, 6-28 

Parallel inductive ac circuit, 8-32, 8-33 
Parallel inductors, 8-14, 8-15 
Parallel resistive ac circuit, 5-12, 5-13 
Parallel resistive-capacitive ac circuit, 7-20, 

7-21, 7-22, 7-23, 7-24, 7-25, 7-26 
Parallel resistive-inductive ac circuit, 9-14 

through 9-20 
Parallel resonance. 14-16 through 14-24 
Parallel resonant circuit, 14-16 through 14-24 
Parallel RLC circuits, 11-12 through 11-18 
Parallelogram method, 7-5 
Peak amplitude, 2-5 
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Peak, peak-to-peak, rms conversion 
chart, A-20 

Peak, peak-to-peak, rms conversions, 5-6, 5-7 
Peak-to-peak amplitude, 2-5 
Period, (See Time of waveform.) 
Phase. 

Amplitude versus, 4-17 
Difference, 4-15, 4-16, 4-17, 11-3 
Frequency versus, 4-16 
In phase, 4-14 
Out of phase, 4-14 
Relationships, 4-13, 4-14, 5-7, 5-8, 6-14, 

6-15, 9-3, 14-6 
Phase angle, 

At resonance. 14-6 
In parallel RC circuit, 7-26 
In parallel RL circuit, 9-17, 9-19 
In parallel RLC circuit. 11-15, 11-17 
In series RC circuit, 7-14, 7-15, 7-16, 7-17 
In series RI. circuit, 9-9, 9-10, 9-11, 9-12 
In series RIX'. circuit, 11-7, 11-8, 

11-11, 11-12 
Phasor addition, 9-4, 9-15 
Phasor algebra, 12-3, 13-3 through 13-16 
Phasor diagram, 11-3, 11-10, 11-4, 

13-15, 13-16 
Phasor magnitude, 4-20 
Phasor notation. 4-17, 4-18, 4-19, 4-20, 

4-21, 4-22 
Plotting an ac generator output waveform, 

1-10. 1-Il 
Polar coordinates. 12-7, 12-8, 12-9, 12-15, 

12-17, 12-18 
Polar form, (See Complex numbers.) 
Power, 

Apparent, 5-17, 5-18, 5-19, 7-18 
Reactive, 5-17, 5-18 
Real, 5-17. 5-18. 7-18 
RMS, 5-18, 5-19 
In parallel RC circuit, 7-27, 7-28, 7-29 
In parallel RI. circuit, 9-20 
In parallel RLC circuit, 11-15, 11-18 
In series inductive circuit, 8-33, 8-34 
In series RC circuit, 7-18, 7-19 
In series RL circuit, 9-12, 9-13, 9-14 
In series RI.0 circuit, 11-8, 11-9, 11-12 
Transformer, 8-23 
Pythagorean theorem, 7-8, 7-9 

Q of a circuit, 

Calculation of, 14-10 
Defined, 14-7 
Measurement of, 14-8 
Relationship to bandwidth, 14-12 

Q of a coil, 9-21, 9-22, 9-23 
Q of a parallel resonant circuit, 14-18, 

14-19, 14-21 

Radian, 4-11, 4-12, 4-13 
Rate of change (ROC), 

Equation, 8-12, 8-13, 8-30 
Of Ee, 6-14 
Versus frequency, 6-16 

RC time constant. 
Calculation, 10-9 
Defined, 10-8 
Related to Kirchoffs voltage law, 10-17 

Reactance, (See Capacitive reactance and 
Inductive reactance.) 

Reactive power, 6-26 
Real and imaginary axes, 12-6 
Rectangular coordinates, 12-9, 12-13, 12-14, 

12-15, 12-17, 12-18 
Rectangular form, (See Complex numbers.) 
Relationship of ac and dc waveforms, 2-9 
Resistor in ac and dc circuits, 6-13 
Resonance, 

Basic equations, A-21 
Concept of, 14-3 
Series, 14-5, 14-6 
XL at, 14-9 

Resonant frequency, 14-4, 14-9, 14-12, 
14-16, 14-20 

Right-hand rule for generators, 1-10 

Right triangle, 
Functions, 2-13, A-10 
Relationships, 2-11, 2-12 

RI. DC circuit analysis, 10-18 through 10-25 
RMS (root-mean-square) amplitude, 

Conversion, 5-6, 5-7, A-20 
Defined, 2-6 

Rotating ac generator, 2-14, 2-15. 2-16 
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Schematic symbols, A-6 
Scientific notation, A-16 
Self-inductance, 8-7, 8-11 
Series capacitive ac circuit, 6-18, 6-19, 6-21, 

6-23. 6-24. 6-27 
Series inductive ac circuit, 8-31, 8-32 
Series inductors, 8-14 
Series-parallel resistive ac circuit, 5-14, 

5-15, 516 
Series RC ac circuit, 7-3, 7-4, 7-9, 7-10. 7-11 

7-12, 7-13, 7-14 
Series-resistive ac circuit, 5-9, 5-10, 5-11 
Series resonant circuit, 14-8 through 14-16 

Series RL ac circuit, 9-3, 9-4, 9-5 through 9-14 
Series RLC circuit 11-3 through 11-17 
Sine function, 

Defined, 12-16 
Related to an AC waveform. 2-13 
Sine theta defined, 2-13 

Single loop rotary generator, 1-9 

Sinusoidal waveform, 
Defined, 2-17, 4-8 
Plotting a, 4-5 
Related to AC waveform, 2-12 
Versus non-sinusoidal waveform, 4-8, 4-9 

Square roots of negative numbers, 12-5, 12-6 
Square root table, A-12, A-13, A-14 

L 
Tangent function, 2-13, 7-14, 7-15 
Theta, (See Sine function, Tangent function, 

and Cosine function.) 
Time constant, (See RC time constant.) 
Time constant chart, (See Universal Time 

Constant Chart.) 
Time of waveform, 

Calculation, 1-16, 2-4 
Equation, 1-15, 2-4 

Transformers, 
Autotransformers, 8-25 
Basic construction, 8-19 
Current relationship, 8-23 
Efficiency, 8-24 
Isolation, 8-24, 8-25 
Lead color code, 8-26, A-14 
Multiple-secondary, 8-26 
Specifications, 8-26, 8-27 
Step-down, 8-20 

Step-up, 8-20 
Turns ratio versus voltage, 8-20, 8-21, 8-22 

Variable-output, 8-26 
Trigonometric functions, 2-13, A-10 

Trigonometric table, 
Use of, 2-18 
00 to 90° functions, A-11 

Trigonometry, 
Defined, 2-11 

Turns ratio. 8-20 

Unit conversion charts, A-2 

Universal Time Constant Chart, 
And DC RL circuit, 10-23 
Defined, 10-10 
Diagram. 10-10, A-17 
Exponential characteristic of, 10-11 
Related circuit current and Ex. 10-11 
Related to Et, 10-11 
Using, 10-12, 10-15, A-I8. A-I9 

VAR, 
Defined. 6-26 

Variable inductors, 8-9 
Vector, 

Addition, 7-5, 7-6, 7-7 
Defined, 4-18 
Location, 12-4 
Multiple, 4-21 
Rotating, 12-5 
Solutions, 4-20, 4-21, 4-22, 7-7 

Voltage magnification, 14-7 
Voltage phasor diagram. 9-10 
Volts-ampere-reactive, (See VAR.) 

Waveform amplitude, 2-4, 2-5, 2-6, 2-7 
Waveform cycles, 

Alterations, 1-11 
Defined, 1-13 
Frequency, 1-14, 2-3 
Identification, 1-12 
Non-standard. 1-12 
Time, 1-15, 2-3, 2-4 

Waveform frequency, (See Frequency of 
waveform.) 

X-Y coordinates, 12-3 
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About the book — "Basic AC Circuits": 

Basic AC Circuits is a stand-alone text. It is the second part of the BASIC ELECTRICITY 
SERIES and is a natural and recommended follow-on to the first part — Basic Electricity and DC 
Circuits. Students, technicians and beginning engineers can easily apply the ,::omprehens'i ve, 
mathematics-oriented dc concepts for the study of ac. This book is designed to improve your 
analysis techniques so that you can ultimately predict and control ac circuit behavior in a system. 
And, like the dc book, new concepts arid terms and the necessary mathematics are introduced as 
needed, with illustrative examples. While the text is designed to encourage self-paced, 
individualized learning, it is also an ideal tool for classi.00m instruction. Detailed objectives begin 
each lesson. You'll see what new skills you should have, and what new things you will be able to 
accomplish with the successful completion of the curreni lesson. Examples throughout each lesson 
illustrate the use of basic concepts and principles as you learn them. Basic concepts are then applied 
to practical problems so that solutions become more apparent. You can analyze the examples or try 
a problem of your own. A quiz at the end of each lesson allows personal evaluation of progress. 
This text, along with the Texas Instruments Learning Center videotape course, BASIC AC 
CIRCUITS, provides a solid foundation for the student interested in advancing to the studies of 
physics, electronics, computer science and engineering. 
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