SOMS

BASIC ELECTRICITY SERIES

Basic AC Circuits

A step-by-step approach for the beginning student, fectirician or engineer. Basic AC Circuits continues the tradition of the Baslc Electricity Series oi self-paced, individualized learning. Covers concepts, terms and the mathematics required to understand ac circuit problems, simple or complex. The easy-to-undersiand iormat includes stated learning objectives, fully illustrated worked-out examples, pracfice problems and quizzes to measure progress.

By: Stanley R. Fulton John Clayton Rawlins

BASIC AC CIRCUITS

Stanley R. Fulton, Ed.D.
Instructor, Mountain View College Dallas County Community College District

John Clayton Rawlins, M.S.
Instructor, Eastfield College
Dallas County Community College District

With Contributions by Gerald Luecke

Edited by Robert E. Sawyer

This book is part of the BASIC ELECTRICITY SERIES from the TEXAS INSTRUMENTS LEARNING CENTER consisting of:

> Basic Electricity and DC Circuits Basic AC Circuils

It is designed for use either as a basic stand-alone text, or as an integral part of the TI course package Basic AC Circuits.

Howard W. Sams \& Co. A Division of Macmillan, Inc. 4300 West 62nd Street, Indianapolis, Indiana 46268

The BASIC AC CIRCUITS materials were developed by
For the Book:
The Staff of the Texas Instruments Information Publishing Center

Managing Editor - Gerald Luecke Technical Editor - Robert E. Sanyer

Word Processing - Vicki Seale
With Contributions by:
Ross Wise
Charles Battle

For the Course:

The Staff of the Texas Instruments Media Center:

$$
\begin{aligned}
& \text { Manager - Al M. Bond } \\
& \text { Video Producers - Steve Floyd } \\
& \\
& \text { - Dave Woody } \\
& \text { Video Director - Greg Rardin } \\
& \text { Video Recording - Harold Wallace } \\
& \text { Talent }
\end{aligned}
$$

In cooperation with:

The Wisconsin Foundation for Vocational, Technical and Adult Education, Inc.
Grants Officer - Loren Brumm
Milwaukee Area Technical College Associate Dean- Terry Adams Technical Editor- Charles H. Evans

Texas Instruments Information Publishing Center - Orm F. Henning
Acknowledgements: Oscilloscope photographs and equipment courtesy of Tektronix ${ }^{48}$, Inc.
Artwork and Layout By: Plunk \& Associates
First Edition, Fifth Printing
ISBN 0-672-27025-0
Library of Congress Catalog Number 80-54793

IMPORTANT NOTICE REGARDING BOOK MATERIALS

Texas instruments makes no warranty. Either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for particular purpose, regarding these book materials and makes such materials available solely on an "as-is" basis.
In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these book materials and the sole and exclusive liability to Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this book. Moreover. Texas Instruments shall not be liable for any claim of any kind whatsoever against the user of these book materials by any other party.
Copyright © 1981
Texas Instruments Incorporated, All Rights Reserved
Printed in the United States of America

Contents

Preface vi
Features of This Book vii
For Use with Videotape viii
Lesson 1 Introduction to Alternating Current
Objectives 1-2
Text 1-3
Worked-Out Examples 1-18
Practice Problems 1-23
Quiz 1-27
Lesson 2 AC and the Sine Wave
Objectives 2-2
Text 2-3
Worked-Out Examples 2-26
Practice Problems 2-31
Quiz 2-34
Lesson 3 The Oscilloscope and its Use
Objectives 3-2
Text 3-3
Worked-Out Examples 3-20
Practice Problems 3-22
Quiz 3-27
Lesson 4 The Sine Wave and Phase Objectives 4-2
Text 4-3
Worked-Out Examples 4-24
Practice Problems 4-31
Quiz 4-35
Lesson 5 Resistive Circuits
Objectives 5-2
Text 5-3
Worked-Out Examples 5-20
Practice Problems 5-25
Quiz 5-27
Lesson 6 Capacitance
Objectives 6-2
Text 6-3
Worked-Out Examples 6-29
Practice Problems 6-38
Quiz 6-41
Lesson 7 RC Circuit Analysis Objectives 7-2
Text 7-3
Worked-Our Examples $7-30$
Practice Problems 7-35
Quiz 7-37
Lesson 8 Inductance and Transformers
Objectives 8-2
Text 8-3
Worked-Out Examples 8-35
Practice Problems 8-41 8-41
Quiz $8-44$
Lesson 9 RL Circuit Analysis
Objectives 9-2
Text 9-3
Worked-Out Examples 9.24
Practice Problems 9.27
Quiz $9-29$ $9-29$
Lesson 10 RC and RL Time Constants
Objectives 10-2
Text 10-3
Worked-Out Examples 10-27
Practice Problems 10-31
Quiz 10-33
Lesson 11 RLC Circuit Analysis
Objectives 11-2
Text 11.3
Worked-Out Examples 11 -20
Practice Problems 11 -24
Quiz 11-25
Lesson 12 Phasor Algebra
Objectives 12-2
Text 12-3
Worked-Out Examples 12-22
Practice Problems 12-28
Quiz 12-31
Lesson 13 Complex RLC Circuit Analysis
Objectives 13-2
Text 13-3
Worked-Out Examples 13-17
Practice Problems 13-22
Quiz 13-26
Lesson 14 Resonance
Objectives 14-2
Text 14-3
Worked-Out Examples 14-25
Practice Problems 14-30
Quiz 14-34
Practice Problem Answers P-1
Quiz Answers Q-1
Appendices
Appendix Unit Conversion Charts A-2
Appendix 2 The Greek Alphabet A-5
Appendix 3 Basic Schematic Symbols A-6
Appendix 4 Basic Equations of Basic DC Electricity A-7
Appendix 5 Basic Equations of Basic AC Electricity A-8
Appendix. 6 Right Triangle Information and Equivalent First-Quadrant Angles A-10
Appendix $7 \quad 0^{\circ}-90^{\circ}$ Trigonometric Functions A-11
Appendix 8 How to Use Square Root Tables. A- 12
Appendix 9 Extracting Square Root Using a Calculator A-15
Appendix 10 Scientific Notation and the Metric Prefixes A-16
Appendix 11 The Universal Time Constant Graph A-17
Appendix 12 Peak, Peak-to-Peak, and RMS Conversion Chart A-20
Appendix 13 Resonance A-21
Appendix 14 Color Codes A-22
Bibliography B-1
Glossary G-1
Index 1-1

Preface

This textbook is designed for the person continuing a study of basic electricity. It provides the general information, theory, and problem-solving techniques required for an analysis and application of alternating current (ac) circuits - from the simplest to the most complex. Its aim is to help provide a solid foundation for the person interested in learning the concepts and principles of basic electricity and then, if the opportunity arises, in advancing in the studies of physics, electronics, computer science, and engineering. The book is written both as a textbook for classroom students and instructor and as a textbook for individualized learning. It has been written and organized in a way that will help the reader best acquire the knowledge necessary to analyze ac circuits, and to gain a basic understanding of some of the measurement techniques used in such analysis. Each lesson has specific objectives, detailing exactly what the reader should know or be able to do after completing the lesson.
Even though a knowledge of simple algebra in mathematics and a basic understanding of direct current (dc) circuits is assumed, new concepts and terms and the necessary mathematics are introduced as needed with illustrative examples. Detailed computations are carried out step by step so that algebraic methods, the use of exponents and scientific notation are easily understood.
The book begins with an introduction to alternating current, how an alternating voltage is generated and why the sine function describes the characteristics of such a voltage and the resulting circuit current.

Since the oscilloscope is such a basic measuring tool for observing alternating voltages and currents a lesson is devoted to describing it before continuing with resistive ac circuit analysis.

New concepts of capacitance and inductance and their action in ac circuits are discussed and then respective circuit analysis techniques are covered for series and parallel resistivecapacitive and resistive-inductive circuits. Contained within the inductance lesson is the important discussion of mutual inductance and transformers.

Since the reaction of inductance and capacitance in circuits that have time-varying voltages that produce time-varying currents is so important to ac circuit analysis, a lesson on time constants for resistive-capacitive and resistive-inductive circuits is included.

Building on prior lessons, more complex circuit analysis continues by including resistive, capacitive and inductive components all at the same time in series, parallel and combination series-parallel ac circuits. Right triangle analysis is replaced with phasor algebra with the introduction of imaginary numbers so that the techniques of analyzing the most complex ac circuit are presented.
A discussion of the special case in ac circuits where the ac frequency is varied to resonance completes the text.

The text is not written to support theories with complete rigid mathematical proofs but is written to explain the fundamental ideas so the reader may understand how to put electricity to use in practical ways. We hope we have succeeded in that goal. S.F.
C.R

Features of This Book

As stated in the preface this book is designed primarily for the person continuing a study of basic electricity - the entry level student. It assumes that the reader has a basic knowledge of the principles of direct current (dc) electricity and a basic mathematics background that includes algebra.

There are several features of this book specifically designed to increase its efficiency and help the reader grasp the principles of analyzing ac circuits.

1. At the beginning of each lesson, detailed objectives are listed. These objectives state what new things you should be able to do upon successful completion of the lesson. It is suggested that these objectives be read before beginning the lesson.
2. Although this book is designed to be a stand-alone text, it is also an essential part of a Texas Instruments Learning Center videotape course. This book, however, contains supplemental material not included in the videotape. For this reason, the book has been organized in a special way. All of the figures which are in the videotape are enclosed in a heavy-line border; figures which are book-only have no border. Equations appearing on videotape are in bold-face (darker) type; book-only equations are in standard typeface. The person using the book as a stand-alone text needs to know of these variations but should disregard them. They are not important for understanding the material.
3. At the end of each lesson there are three types of diagnostic material to help the reader understand better the basic concepts and apply the principles and techniques discussed in the lesson. One is a set of worked-through examples, with detailed step-by-step solutions. These worked-through examples apply the theory in each lesson to typical applications involving ac circuits. In this way you are led from the knowledge of the concepts you need to know, to the application of those concepts to ac circuit problems and applications.
Another is a set of practice problems with answers provided at the end of the text material. These problems give you the opportunity to try your new knowledge and test your accuracy applying that knowledge.
Finally, there is a quiz consisting of questions with answers provided at the end of the text material. The quiz can be taken in a relatively short period of time, and it will indicate areas in which you are proficient and areas in which you need to further review key concepts and principles.

For Use With Videotape

Although this book is designed to be a stand-alone text, it is also an essential part of the Texas Instruments Learning Center videotape course, "Basic AC Circuits." When using this book along with the videotape, you can increase your efficiency, retention, and enjoyment of the material by keeping the following points in mind

LISTEN FAST AND WATCH FAST. Videotaped lectures typically cover two to three times more material as a live instructor would in the same length of time. The steady pace of videotape gives you highly concentrated information and leaves no time for asking questions, daydreaming, or chatting. If the television lecture raises any question in your mind, jot it down quickly and get clarification after the tape, but put it out of your mind while you absorb the rest of the lecture.

TAKE VERY FEW NOTES. This book contains all of the material that is in the videotape, including equations. It is, essentially, a printed record - often verbatim - of the speaker's remarks. Limit any notetaking, therefore, to brief comments that will help you study later.

This book contains supplemental material not included in the videotape. All of the figures which are in the videotape are enclosed by a heavy-line border; figures which are in the book only are borderless. All equations that are in the videotape are in bold-face (darker) type Book-only equations are in standard typeface. Both of these aids should allow you to move to the next sequential video information quickly in the book, particularly the figures.
KEEP YOUR PRIMARY ATTENTION ON THE TV SCREEN. While watching the videotape, you can use the book to get a closer look at the figures, but do not try to follow the speaker's words in the textbook. Although all of the material in the book is in the same sequence as it appears in the videotape, each lesson contains supplemental material. Therefore, trying to follow along using the book is too distracting. Special media techniques are used to link the speaker's voice and visual aids to your thinking, allowing quicker coverage and better retention. Take full advantage of this by keeping your primary attention on the videotape.

RELAX. The TV lecturer will not be interrupted with questions. Nor will he ask for your opinions. You will be freed from such distractions so you can open your consciousness to absorb the material.

ENJOY IT. Education using videotape coupled with special textbooks, such as this one, is one of the most effective ways to learn. Through the years, attendees at videotaped seminars and courses from Tl's Learning Center have found them to be informative, effective, and enjoyable. We hope you do too.

LESSON 1

(1) Introduction to Alternating Current

This lesson is an introductory lesson. Alternating current (ac) is defined and compared to direct current (dc), and the operation of an ac generator is discussed. Time, frequency and cyclic characteristics of the ac waveform are analyzed with examples provided for each concept.

At the end of this lesson you should be able to:

1. Define an ac waveform and identify dc and ac waveforms from diagrams provided.
2. Describe how an ac generator produces an ac waveform
3. Identify a cycle and the period of an ac waveform
4. Given the time of one cycle, calculate the frequency of the waveform
5. Given the frequency of a waveform, calculate the time of one cycle.

Definition of Alternating Current
Generating An AC Waveform

Introduction

The action of alternating currents in circuits is the subject of this book. The electromagnetic wave displayed on an oscilloscope in Figure 1.1 is an electronic picture of alternating current and is one of the most useful and mysterious of all phenomena known to man. Waveforms such as this are radiating from radio, TV, telephone and other communication system antennas around the world each day. The alternating current in the antenna is a primary man-made source of electromagnetic waves. Words. music, TV pictures, other sounds are alternating currents amplified by various electronic circuits and applied to antennas to radiate through space and communicate information.
lt is a textbook designed to provide the general information, theory, and problemsolving techniques required for an analysis of ac circuits from the simplest to the most complex. This first lesson provides an operational definition for ac with comparisons of ac and dc waveforms; theorizes and demonstrates the generation of an ac waveform; and introduces period and frequency relationships of ac waveforms

aC voltage and Current
 Definition of Alternating Current

AC is the abbreviation for alternating current. Alternating current is an electrical current which changes in both magnitude and direction. The term, magnitude, refers to the quantitative value of the current in a circuit in other words, how much current is flowing. The term, direction, refers to the direction current flows in a circuit.

Figure I.1 An AC Waveform Displayed on an Oscilloscope

Figure 1.2 A Simple DC Circuit With a Galvanometer

Generating An AC Waveform

The simple dc circuit in Figure 1.2 can be used to simulate alternating current. The circuit consists of a variable dc power supply, a resistor, and a galvanometer. The galvanometer is an ammeter with a center scale value of zero amperes. If current flows in the circuit in a counter-clockwise direction, the meter needle will deflect to the left. If current flows in a clockwise direction, the meter needle will deflect to the right.

With the circuit configuration as shown in Figure 1.3, electron current flow will be in a counter-clockwise direction. If the power supply voltage is increased, the galvanometer needle will deflect to the left to some maximum current value. As the voltage is decreased to zero volts, current flow in the circuit will decrease to zero amperes.

Therefore, a current flow has been predicted which changes in magnitude. This meets one of the two specified criteria for alternating current. To meet the other criterion, a change in direction, the polarity of the battery can be reversed as in Figure 1.4 Notice that current now flows in a clockwise direction.

As the power supply voltage is increased, the galvanometer needle deflects to the right to some maximum value. As the voltage is decreased to zero volts, current flow in the circuit decreases to zero amperes.

Plotting an AC Waveform

This alternating current can be represented in graphical form, as shown in Figure 1.5 Notice that the axes of this graph are specified to plot current versus time. Time is plotted on the horizontal, or X axis. Current is plotted on the vertical, or Y axis. The vertical axis is divided into a positive (+) current value above the X axis and a negative $(-)$ current value below the X axis. This polarity designation is used simply to differentiate between direction of current flow.

For this application, current flow in a counter-clockwise direction will be designated as positive current, and current flow in the opposite, clockwise direction, will be designated a negative current. The polarity and direction selections are arbitrary.

Figure 1.3 Current Flow in a Counterclockwise Direction

GALVANOMETER

Figure 1.4 Current Flow in Clockwise Direction

Figure 1.5 Graph Used to Plot AC Current

With the circuit connected as in Figure 1.3, current, I. flows in a counter-clockwise direction, with current flow increasing and decreasing. Note that the direction of current stays the same. Only the value of the current is changed. Current in this direction is plotted in the top half of the graph to indicate positive current as shown in Figure 1.6.

With the battery reversed as shown in Figure 1.4, current now flows in a clockwise direction. The current always flows in the same direction. The magnitude of the current increases and decreases following the magnitude of the applied voltage, and the current is plotted in the negative (-) portion of the graph of Figure 1.7. This indicates negative current or, more precisely, a current that is flowing in a direction opposite to the direction originally chosen for positive current. Note the two distinguishing characteristics of this waveform. First, there is a change in current value - in this example. the change is continuous. Second, the direction of current flow has changed. This change in direction is indicated by the waveform crossing the X axis into the negative half of the graph. If these two criteria are met, the waveform can be categorized as an ac waveform.
The particular waveform shown in Figure 1.7 is only one type of an ac waveform, a sine wave. Other ac waveforms which meet the specified criteria for an ac waveform will be introduced later.

AC Voltages

If there is current flow in a circuit, a difference in potential, or voltage, must be present. The voltage, \mathbf{E}, that produces an alternating current must change in the same manner as the current as shown by the diagrams in Figure 1.8.

Figure 1.6 Current Plotted in Positive Direction

Figure 1.7 Current Plotted in Positive and Negative Directions

Figure 1.8 Comparison of Alternating Voltage and Allernating Current

The polarity of the voltage must change to cause current to change direction. A voltage that causes an alternating current is called an ac voltage.

Summary of DC and AC Voltages and Currents

The difference between dc and ac voltages and currents can now be summarized.

DC is direct current - a current which flows in only one direction. It can change in magnitude, and if it does, it generally is called pulsating dc. A dc voltage is a voltage that produces a direct current. It does not change in polarity.

AC is alternating current-a current which changes in both magnitude and direction. AC voltage is a voltage that produces an alternating current. It changes in amplitude and polarity. Amplitude is the magnitude or value of an ac voltage.

Contrasting dC and ac Waveforms

A comparison of some different types of dc and ac voltage waveforms should help you understand the differences between the two.

The waveform in Figure 1.9a is a dc waveform because it does not change polarity. Note that the amplitude remains at a constant level. A plot of the current versus time in a circuit with the voltage of Figure $1.9 a$ applied would also be a constant value as a result of a fixed value of dc voltage.
The waveform in Figure $1.9 b$ is also a dc waveform. It has a polarity opposite to that of the waveform in Figure 1.9a, but it too does not change in amplitude.

Figure 1.9 a. A DC Waveform; b. A DC Waveform of Polarity Opposite to That of the One in a.

Figure 1.10 a. A Pulsating $D C$ Waveform; b. A DC Waveform Constantly Changing Amplitude

The waveform in Figure $1.10 a$ is a dc waveform, and it is a pulsating waveform. The entire waveform is in the positive portion of the graph, and never crosses the X axis. If the line graph had crossed the X axis into the opposite half of the graph, and if this voltage were applied to a circuit, then it would have caused the circuit current to change direction, and it would no longer be considered a dc voltage. This is the most important point in distinguishing between dc and ac waveforms.

The waveform in Figure 1.10b is a dc waveform that is constantly changing amplitude. This type of waveform is often referred to as an ac waveform riding on a steady state or constant dc voltage or current (indicated by the dotted line). The output from signal-amplifier circuits often looks like the one in Figure 1.106. There is a steady-state dc voltage at the output displaced from zero when there is uo signal being amplified. When a signal is amplified it rides on top of the dc voltage and swings the dc voltage above and below its steady-state value. In many circuits, resistive and capacitive coupling circuits are used to remove, or block, the dc component of the waveform. The resultant waveform then looks like Figure 1.11a

Both waveforms in Figure 1.11 are ac waveforms. Both are constantly changing in amplitude and direction. Figure 1.11a shows a typical sine waveform. Figure $1.11 b$ shows an ac square waveform. commonly called a square wave. Note that the square wave maintains a constant amplitude for a period of time and then almost instantly changes to the same constant amplitude of opposite polarity for the same period of time. So the periods of time are equal and the constant amplitudes of opposite polarity are equal, and the changes are almost instantaneous or step-like.

Figure 1.11 Two Different AC Waveforms

Generating an aC Waveform

Now that the differences in dc and ac have been determined and a definition of ac has been established, how alternating current is produced can be discussed

Alternating current can be produced by periodically reversing the connections from a dc power source to the circuit. This, however, is impractical. For example, typical household alternating current resulting from a source voltage of $110 \mathrm{VAC}, 60$ hertz, reverses polarity 60 times every second. Reversing the connections to a dc power source 60 times per second is virtually impossible. A more practical method of generating alternating current is with an ac generator.

The AC Generator

An ac generator is a device which generates an ac voltage by rotating a loop of conductor material through a magnetic field. To understand the operation of an ac generator, some basic understanding of magnetic theory is necessary.

Magnetic Lines of Force

It is generally known that magnets have north poles and south poles, and that they attract other materials with magnetic properties. If two magnets are brought close to one another, then a magnetic field exists between their two poles. If these two poles are unlike, one a north pole and the other a south pole, the direction of the flux lines is from the north pole to the south pole, as shown in the diagram of Figure 1.12. The stronger the magnets, the stronger the magnetic field between the two poles.

Iron filings can be used to indicate the presence of the flux lines between north and south magnetic poles as shown in Figure 1.13. The magnets are placed on the table with north and south poles as shown, a sheet of plexiglas is placed over them and iron filings are sprinkled on top. The iron fillings, because they are magnetic material, align themselves with the flux lines of the magnetic field. These lines are important because they are used to explain how to generate ac.

Electromagnetic Induction

In 1831, Michael Faraday, a British physicist, discovered that if a moving magnetic field passes through a conductor, a voltage will be induced in the conductor and if the conductor is connected in a circuit a current will flow.

Conversely, if a moving conductor passes through a magnetic field, a voltage will also be induced in the conductor causing current to flow as shown in Figure 1.14, by generating an electromotive force by a process called electromagnetic induction. The direction of current flow in the conductor depends on the direction of the magnetic field and the direction of motion of the conductor through the field. This fact is summarized in what is known as the left-hand rule for generators.

Figure 1.12 Flux Lines Between Unlike Magnetic Poles

Figure 1.13 Magnetic Flux Line Around Two Magnets

Figure 1.14 Electromagnetic Induction

Electromagnetic Induction

Figure 1.15 is a drawing illustrating this rule The thumb points in the direction of motion of the conductor through the magnetic field The forefinger points in the direction of the lines of magnetic field. And the index finger points in the direction of electron current flow. Electron current flow will be used throughout this book unless otherwise noted. Electron flow with its moving negative charges is opposite from the conventional current flow direction which was used by Ben Franklin when he assumed that positive charges were moving to constitute current flow.
A practical application of this concept is the ac single loop rotary generator shown in Figure 1.16. In this type of generator, a single loop of wire is rotated in a circular motion in a magnetic field. The direction of the magnetic field flux lines is as shown.
There are 360 degrees in any circle, and various points of rotation can be defined in terms of degrees. For this example, the loop is assumed closed and the current flow in the loop as a result of the induced voltage at four points of rotation of the loop, A, B, C and D as shown in Figure 1.16, will be analyzed.
The circular motion of the loop will be started at point A or 0 degrees; continue to point B at 90 degrees; go to point C, 180 degrees; pass through point D, 270 degrees; and return to point A at 360 degrees, or 0 degrees. The arrow in the drawing of Figure 1.16 indicates the direction in which the conductor is moving through the stationary magnetic field.
As shown in Figure 1.17, at point A, 0°, and point C, 180°, the conductor is moving parallel to the lines of flux. It cuts no flux lines; therefore, no voltage is induced and no current will flow in the wire. However, at point $B, 90^{\circ}$ and point $\mathrm{D}, 270^{\circ}$, the conductor is moving perpendicular to the flux lines;

Figure 1.15 Left-hand Rule for Generators

Figure 1.16 AC Single-Loop Rotary Generator

Figure 1.17 Relationship of Flux Lines and Direction of Conductor
therefore, a maximum voltage is induced and a maximum current flows in the loop.

Changing Directions of Current Flow

An important point is that while the wire loop rotates from 0° through 180°, current flows in one direction. While the wire loop rotates from 180° through 360°, current flows in the opposite direction.
This fact is explained by the left hand rule for generators using electron flow which is shown in Figure 1.15. If one were using conventional current then the right hand rule for generators as shown in Figure 1.18 explains the direction of conventional current that flows. These diagrams show the relationship between the magnetic field, the direction of movement of the conductor, and the direction of current flow in the conductor.

Plotting an AC Generator Output Waveform

Based on this discussion of an ac single loop generator, a graph of the current flow in the wire loop through 360 degrees of rotation will be plotted on a graph.

As shown in Figure 1.19, the axes of the graph are defined in current on the Y, or vertical axis, and degrees of rotation at points A, B, C, and D on the X, or horizontal axis. Notice that the Y axis shows positive current above the origin, (zero axis) and negative current below the origin. This is simply to distingush between opposite directions of current flow.

As shown in Figure 1.17 with the loop at 0°. no flux lines are being cut. Therefore, no current flows in the loop. This current value is plotted at the 0 current level at point A on the graph of Figure 1.19.

After 90° of rotation, as shown in Figure 1.17, a maximum amount of flux is being cut and a maximum current flows in the loop. Therefore, a maximum current level is plotted at point B on the graph.

Figure 1.J8 Right-hand Rule for Generators

Figure 1.19 Plot of One Complete Revolution of Loop

At 180° of rotation, the lonp is again moving parallel to the flux lines. Therefore, no current flows. The value is plotted at point C on the graph
At 270°, a maximum current again flows, but now the current flows in the opposite direction to the direction at point B because the conductor is moving in the opposite direction. This maximum current is plotted at point D in the negative area of the graph to distinguish it from current flow in the opposite direction during the previous 180 degrees of rotation.

At 360°, current again decreases to zero and is plotted at 0° at point A

If the rotation should continue through another 360 degrees, the current flow would be identical to the previous rotation and identical points would be plotted on the graph

Between the four points plotted for each cycle of loop rotation, current flow is not linear. It's a smooth, continuously changing waveform called a sine wave. When the current values at the four points A, B, C and D are connected as shown in Figure 1.19, a waveform called a sinusoidal waveform is the result.
It is the type of waveform most commonly found in ac, and it will be the primary type of waveform studied throughout this book. The characteristics of the waveform will be explained in detail in following lessons.

1dentification of Waveform Cycles

With an ac generator, when the loop makes one complete revolution, it generates a voltage that produces a current that progressively increases in value to a maximum, then decreases to zero, goes to a negative maximum, then returns to zero. As the loop begins another rotation within the magnetic field, the output is an exact duplicate of the previously generated waveform, provided the generator continues to rotate at a constant speed. Thus, the output repeats itself again and again every 360° of rotation as shown in Figure 1.20. Each 360° of rotation produces one cycle.

Figure 1.20 Multiple Cycles

Figure 1.21 Allernations of a Cycle

Cycle Alternations

One cycle of a sinusoidal waveform can also be described in terms of alternations. Each cycle has two alternations: a positive alternation and a negative alternation. The positive alternation occurs while current is flowing in the same direction which is defined as the positive direction. The negative alternation occurs while current flows in the opposite direction.

Cycle alternations are identified in Figure 1.21.

Cycle Identification

There are several cycles of an ac waveform in the diagram of Figure 1.22. The first cycle begins at point A and continues for 360 degrees to point B. The second cycle starts at point B where the first cycle ends and continues for the next 360 degrees to point C
The remaining part of the waveform between points C and D should be recognized as not being a complete cycle. It is only one-half of a cycle: 180 degrees of a cycle.

To generate the complete waveform, the loop of the generator would have to be rotated two complete turns and one-half of the next turn.

Non-standard Cycles

It should be understood that it is not necessary for all waveforms to begin at zero degrees and continue through 360 degrees to be defined as a cycle. The waveform in Figure 1.23 begins at the 90° point. A cycle will be completed at the following 90° point and another cycle at the following 90° point.

One cycle of a waveform may be observed beginning at any degree point. It must continue from that point through a 360 -degree change to be a complete gcle. For example, observe the waveform in Figure 1.24 which begins at the 135° point. A cycle will be completed when it progresses through a 360 -degree change and returns to 135°.

Figure 1.22 Multiple Cycles

Figure 1.23 Cycles Beginning at 90°-Point

Figure 1.24 Non-standard Cycles Beginning at 135°-Point

If a waveform is observed beginning at a negative peak as in Figure 1.25, one cycle would be completed at the next negative peak

Cycle Defined

Repetitious waveforms which are not sinusoidal have cyclic properties as shown in Figure 1.26. In each example the waveform has completed one cycle when it reaches a point where repetition of the waveform begins

A cycle of a waveform can now be defined as a waveform that begins at any electrical degree point and progresses through a 360-degree change

The square waves in Figure 1.27 also have cyclic characteristics.

Figure 1.25 Non-slandard Cycles Beginning at a Negative Peak

Figure 1.26 Repetitious Non-sinusoidal Waveform

Figure 1.27 Square Waves

Voltage Considerations in
 Cycle Identification

When identifying cycles, you should pay particular attention to the voltage values and the waveform shape at the beginning and end of each cycle of a waveform. The repetitious sawtooth waveform in Figure 1.28 can be divided in cycles using this criteria. Notice the value of the voltage and slope of the waveform at the start and end of each cycle are the same

Waveform Frequency Calculations

Repetitious waveforms, or waveforms that are constantly repeated, are commonly described in terms of frequency and amplitude. In this section the frequency of a waveform is discussed. The amplitude characteristic will be described in detail in the following lesson.

Frequency Defined

From previous discussion, you should now understand that any waveform which is repetitious can be described in terms of cycles. The rate at which a waveform cycles is called the frequency of the waveform. The frequency of the waveform is defined as the number of cycles occurring in each second of time. The unit of frequency, cycles per second, is often abbreviated cps.

For example, Figure 1.29 shows three sinusoidal waveforms, each having a different frequency. In Figure 1.29a, only one cycle occurs in one second of time. The frequency of this waveform is one cycle per second (cps).

In Figure 1.29b, three cycles occur in one second. In this example, the frequency is three cycles per second.
1n Figure 1.29c, five cycles occur in one-half second. If the waveform is repetitious, 10 cycles must occur in one second. Therefore, the frequency is $\mathbf{1 0}$ cycles per second.

Figure 1.28 Sawlooth Waveform
-

Figure 1.29 Three Sinusoidal Wavefonns of Different Frequencies

Unit of Frequency: Hertz

In recent years, the unit of frequency, cycies per second, has been replaced by the term hertz, abbreviated Hz . The unit hertz was adopted to honor the German physicist, Heinrich Hertz, who made important discoveries in the area of electro-magnetic waves in the late nineteenth century.

One hertz is simply one cycle per second Applying the newer terminology to the waveform of Figure 1.29, the waveform of Figure $1.29 a$ has a frequency of one hertz, the waveform of Figure $1.29 b$ has a frequency of three hertz, and the frequency of Figure 1.29c is 10 hertz.

Frequency Prefixes

Prefixes are often used to simplify the writing of high frequencies. The common prefixes used are
k for kilo or thousand M for mega or million. and G for giga or billion

For example, a radio station broadcasting at 820,000 hertz (Hz) can have its frequency described as 820 kilohertz (kHz).

A $1,210,000$ hertz signal could be written as 1.21 megahertz (MHz).

A radar system operating at $27,000,000,000$ hertz may be specified as 27 gigahertz (GHz).

Waveform Period Calculations

Period Defined

The frequency of a waveform is determined by the lengh of time of one cycle. This time of one cycle of a waveform is defined as the period of the waveform.

The symbol T is used to represent time and period. Kemember that the terms are synonomous. The period or time of a waveform is simply the time required to complete one cycle of the waveform. T has units of seconds.

Period Calculation Examples

Let's return to the examples in Figure 1.29 and determine the period of each of the three waveforms.

The waveform in Figure 1.29a has a frequency of one hertz. One cycle occurs in one second of time. Therefore, the time of one cycle, the period, of this waveform is one second.

In Figure $1.29 b$ the waveform has a frequency of three hertz. One cycle occurs during each one-third of a second time interval. Therefore, the period of one cycle is one-third second or 0.333 second. The waveform in Figure 1.29c has five cycles occurring in one-half of a second. The waveform repeats itself every one-tenth of a second. Each cycle occupies a one-tenth second time interval; therefore the period, T, of the waveform is one-tenth (0.1) second.

Period or Time Equation

There is a mathematical relationship between the period and frequency of a waveform. This mathematical relationship is expressed by this equation:

$$
\text { period or time }(s)=\frac{1}{\text { frequency }(\mathrm{Hz})}(1-1)
$$

The time of one cycle or period, T, of a waveform in seconds can be determined by dividing the number one by the frequency of the waveform in hertz. This equation is normally simplified by writing it in this form:

$$
\begin{equation*}
T=\frac{1}{f} \tag{1-2}
\end{equation*}
$$

You must remember that to obtain the period of a waveform in seconds, the frequency in hertz must be used in the equation. Attempts to calculate the period of a waveform by leaving the zeroes out of the frequency value will result in an incorrrect answer.

Using equation $1-2$ to find the period of a waveform when the frequency is known is a common technical electronic solution For example, find the time of one cycle when the frequency is known to be 50 hertz.

$$
\begin{aligned}
T_{(s)} & =\frac{1}{f(\mathrm{~Hz})} \\
& =\frac{1}{50} \\
& =0.02 \\
& =20 \mathrm{~ms}
\end{aligned}
$$

The time of one cycle is 20 milliseconds. If the known frequency is a larger value. the solution can at first appear difficult. but the technique is identical to the previous example. For example, what is the time of one cycle when the frequency is 650.000 hertz? Using equation $1-2$:

$$
\begin{aligned}
T_{(S)} & =\frac{1}{f(H z)} \\
& =\frac{1}{650,000 H z} \\
& =0.00000154 \\
& =1.54 \mu \mathrm{~s}
\end{aligned}
$$

The time of one cycle is 1.54 microseconds.

Converting From Time to Frequency Measurements

A typical method of determining the frequency of a waveform is to measure the time of one cycle on an oscilloscope and calculate the frequency from the period measurement.
The period equation can be manipulated in another form to allow the calculation of a frequency when the period is known.
The frequency of the waveform in hertz can be found by dividing the number one by the period of waveform in seconds.

$$
\begin{equation*}
f=\frac{1}{T} \tag{1-3}
\end{equation*}
$$

Notice once again that the unit values of the variables are verv important. To obtain a correct answer, you must keep the time value in its original form. Attempts to modify the time-value to simplify the mathematical manipulation will often result in an incorrect answer.
Using equation $l-3$ to find the frequency of a waveform when the period of the waveform is known is a common technical electronic solution.
For example, find the frequency when the period of the waveform is known to be 0.05 second

$$
\begin{aligned}
f & =\frac{1}{T} \\
& =\frac{1}{0.05 \mathrm{~s}} \\
& =20 \mathrm{~Hz}
\end{aligned}
$$

If the known time of one cycle is a smaller value, the solution at first can appear more difficult, but the technique is identical to the previous example. Here's another example. The period of a waveform is measured to be 0.000002 seconds or 2 microseconds ($2 \times$ 10^{-6} seconds).
Therefore.

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2 \times 10^{-6}} \\
& \mathrm{f}=0.5 \times 10^{6} \\
& \mathrm{f}=0.5 \text { megahertz }
\end{aligned}
$$

Another example: The period has been measured as 100 seconds. Therefore, the frequency is

$$
\begin{aligned}
\mathrm{f} & =\frac{\mathrm{l}}{\mathrm{~T}} \\
\mathrm{f} & =\frac{1}{100} \\
\mathrm{f} & =0.01 \mathrm{~Hz}
\end{aligned}
$$

Summary

Summary

In this lesson, ac was defined and dc and ac waveforms were compared. The operation of an ac generator was discussed and the ac waveform was described in terms of time (period) and frequency. Examples were provided using the time and frequency equations

Additional time and frequency conversion examples will be provided in the following lesson, and the amplitude characteristics of sinewaves will be discussed

Worked-Out Examples

1. For each of the diagrams below, identify the waveform as an ac or de waveform

Solution: Recall the criteria for identifying an ac waveform; the magnitude and direction of current flow must change. Therefore, the polarity of the voltage causing the current flow must change and the waveform will be plotted in both the plus and minus portions of the graph.
a. dc
b. pulsating dc
c. ac
d. pulsating dc
e. ac square wave
f. de square wave
2. Identify the number of cycles in each of the following diagrams:
a.

d.

b.

e.

c.

f.

Solution: Remember the definition of a cycle; the waveform must make a complete 360 degree change. The starting point of the waveform is significant.
a. 3 cycles
b. $41 / 2$ cycles
c. 1 cycle
d. $11 / 2$ cycles
e. $13 / 4$ cycles
f. 2 cycles
3. Given the time of each cycle below, calculate the frequency (three significant figures).

Solution:

a. $f_{\left(H_{z}\right)}=\frac{1}{T_{(s)}}=\frac{1}{0.03 \mathrm{~s}}=33.3 \mathrm{~Hz}^{2}$
b. $f_{(H z)}=\frac{1}{T_{(\varepsilon)}}=\frac{1}{0.002 \mathrm{~s}}=500 \mathrm{~Hz}$
c. $f_{(H z)}=\frac{1}{T_{(\mathrm{s})}}=\frac{1}{0.00001 \mathrm{~s}}=\frac{1}{10 \times 10^{-6}}=100,000 \mathrm{~Hz}=100 \mathrm{kHz}$
d. 2 cycles $=0.005 \mathrm{~s}$

$$
1 \text { cycle }=0.0025 \mathrm{~s}
$$

$$
\mathrm{f}_{(\mathrm{Hz})}=\frac{1}{0.0025 \mathrm{~s}}=400 \mathrm{~Hz}
$$

e. $1 / 2$ cycle $=0.01 \mathrm{~s}$

$$
1 \text { cycle }=0.02 \mathrm{~s}
$$

$$
f_{\left(H_{2)}\right)}=\frac{1}{0.02 \mathrm{~s}}=50 \mathrm{~Hz}
$$

f. $f_{(H z)}=\frac{1}{0.0083 \mathrm{~s}}=121 \mathrm{~Hz}$
4. Given the following frequencies, calculate the period of the waveform (three significant figures).
a. $\mathrm{f}=105 \mathrm{~Hz}$
b. $f=60 \mathrm{~Hz}$
c. $\mathrm{f}=8500 \mathrm{~Hz}$
d. $\mathrm{f}=16.8 \mathrm{kHz}$
e. $\mathrm{f}=320 \mathrm{kHz}$
f. $\mathrm{f}=6.1 \mathrm{MHz}$

Solution: Remember that period is the time of one cycle.
a. $\quad T_{(s)}=\frac{1}{f_{(1 / z)}}=\frac{1}{105 \mathrm{~Hz}}=0.00952 \mathrm{~s}$
b. $T_{(s)}=\frac{1}{f_{\left(H_{z}\right)}}=\frac{1}{60 \mathrm{~Hz}}=0.0167 \mathrm{~s}=16.7 \mathrm{~ms}$
c. $T_{(\mathrm{s})}=\frac{1}{f_{(H z)}}=\frac{1}{8500 \mathrm{~Hz}}=0.000118 \mathrm{~s}=118 \mu \mathrm{~s}$
d. $\mathrm{T}_{(\mathrm{s})}=\frac{1}{16.8 \mathrm{kHz}}=\frac{1}{16.8 \times 10^{3}}=5.95 \times 10^{-5} \mathrm{~s}=59.5 \mu \mathrm{~s}$
e. $T_{(\mathrm{s})}=\frac{1}{320 \mathrm{kHz}}=\frac{1}{320 \times 10^{3}}=0.00000313 \mathrm{~s}=3.13 \mu \mathrm{~s}$
f. $T_{(s)}=\frac{1}{6.1 \mathrm{MHz}}=\frac{1}{6.1 \times 10^{6}}=1.64 \times 10^{-7} \mathrm{~s}=0.164 \mu \mathrm{~s}$
5. On the graph below, draw three cycles of an ac sinewave.

Solution:

1. In each of the six following diagrams, identify the waveform as an ac or dc waveform

e.

c.

2. Identify the number of cycles in each of the following diagrams:
a.
d.

b.

c.

e.

f.

3. Given the time of each waveform as shown, calculate the frequency (three significant figures).

4. Given the following frequencies, calculate the time of one cycle (three significant figures).
a. $f=40 \mathrm{~Hz}$
b. $f=1.5 \mathrm{kHz}$
c. $f=63 \mathrm{kHz}$
d. $f=118 \mathrm{kHz}$
e. $f=0.8 \mathrm{MHz}$
f. $f=1.5 \mathrm{MHz}$

Practice Problems
5. On the graph, draw three cycles of positive dc square waveform.

1. In each of the following diagrams, identify the waveforms as an ac or dc waveform
a.

b.

d.

2. Identify the number of cycles in each of the following diagrams.
a.

b.

Quiz

d.

e.

3. Given the following periods of each cycle, calculate the frequency
a. $T=0.015 \mathrm{~s}$
b. $\quad T=37.2 \mathrm{~ms}$
c. $\quad \mathbf{T}=37.2 \mu \mathrm{~s}$
d. $T=0.000008 \mathrm{~s}$
e. $T=48 \mathrm{~ms}$
f. $T=7.35 \mu \mathrm{~s}$
4. Given the following frequencies, calculate the period of the waveform
a. $\quad\{=30 \mathrm{~Hz}$
b. $f=300 \mathrm{H}_{\iota}$
c. $f=63.8 \mathrm{kH} \ell$
d. $f=20 \mathrm{kHz}$
c. $f=1700 \mathrm{~Hz}$
f. $f=22 \mathrm{MHz}^{2}$
5. Draw two cycles of an ac square waveform on this graph

LESSON 2

AC and the Sine Wave

In Lesson 1, the sine wave was introduced by describing the development of an ac waveform with a single loop generator. The ac waveform was described in terms of its frequency or period, and another waveform parameter, the amplitude of the waveform, was mentioned briefly.

This lesson discusses in detail the amplitude descriptions of a sinusoidal waveform. Also, the time and frequency measurement of a waveform are reviewed, and an introduction to the trigonometric function will be presented.

This lesson discusses the amplitude descriptions of sinusoid a waveform and introduces the trigonometric functions which are essential to an analysis and understanding of ac circuits. At the end of this lesson, you should be able to:

1. Explain the three ways to express the amplitude of a sinusoidal waveform and the relationship between them.
2. Understand the importance of the 0.707 constant and how it is derived.
3. Convert peak, peak-to-peak, and rms voltage and current values from one value to another.
4. Explain the sine, cosine, and tangent trigonometric functions.
5. Explain the relationship between the sine trigonometric function and an ac waveform.
6. Calculate the value of the sine of any angle between 0° and 360°.

Review of Waveform Frequency and Period Relationships

Any sinusoidal waveform can be described completely by identifying either time or frequency parameters and one of three possible amplitude specifications.

The frequency of a waveform is the number of cycles of the waveform which occur in one second of time. Common unit of measurement is hertz (Hz)

The period of a waveform, which sometimes is called its time, is the time required to complete one cycle of a waveform. It is measured in units of seconds. such as seconds, tenths of seconds, milliseconds, or microseconds

If a waveform is to be properly described in terms of its period or frequency, it must be a repetitious waveform. A repetitious waveform is one in which each following cycle is identical to the previous cycle.

Frequency and Period Relationships

The frequency of a waveform in cycles per second is mathematically described in terms of the period. T, of the waveform as:

$$
\begin{equation*}
f=\frac{1}{T} \tag{2-1}
\end{equation*}
$$

where f is the frequency of the waveform in hertz, and T is the time of one cycle of the waveform in seconds.

Frequency and Period Calculations

If the time of one cycle, or period, of a waveform is known, the frequency of the waveform can be calculated using equation 2-1. For example, Figure 2.1 shows one cycle

Figure 2.I One Cycle of Waveform with a Period of 0.025 Milliseconds
of a waveform in which the cycle occurs in 0.025 milliseconds. Its frequency is calculated:

$$
\begin{aligned}
f & =\frac{1}{T} \\
& =\frac{1}{0.025 \times 10^{-3}} \\
& =\frac{1}{25 \times 10^{-6}} \\
& =0.04 \times 10^{6} \\
& =40 \times 10^{3} \\
& =40 \mathrm{kHz}
\end{aligned}
$$

The frequency of the waveform is 40 kilohertz.

Or, for another example, a waveform has one cycle occurring every 10 milliseconds. Its frequency is calculated using equation 2-1.

$$
\begin{aligned}
f & =\frac{1}{T} \\
& =\frac{1}{10 \times 10^{-3}} \\
& =1 \times 10^{2} \\
& =100 \mathrm{~Hz}
\end{aligned}
$$

The frequency of the waveform is 100 hertz.

Equation $2-1$ can be manipulated to describe the period of the waveform in terms of frequency.

$$
\begin{equation*}
T=\frac{\mathbf{l}}{\mathbf{f}} \tag{2-2}
\end{equation*}
$$

The unit of the variables in the equation remain the same as in the frequency equation 2-1.

If the frequency of a waveform is known, the time of one cycle of the waveform can be calculated using equation $2-2$.
For example, a waveform's frequency is 120 hertz. The time of one cycle of that waveform is calculated:

$$
\begin{aligned}
T & =\frac{1}{f} \\
& =\frac{1}{120} \\
& =0.00833 \\
& =8.33 \mathrm{~ms}
\end{aligned}
$$

The time of one cycle, or the period, is 8.33 milliseconds.

Or, for another example, a waveform has a frequency of 80 kilohertz. The period of one cycle is calculated:

$$
\begin{aligned}
T & =\frac{1}{f} \\
& =\frac{1}{80 \times 10^{3}} \\
& =0.0000125 \\
& =12.5 \times 10^{-6} \\
& =12.5 \mu \mathrm{~s}
\end{aligned}
$$

The period of one cycle of the waveform is 12.5 microseconds.

Additional Frequency Calculation Examples

The following worked-out problems are additional examples of how to use equations $2-1$ and 2-2 to calculate the frequency or period of a waveform.

For example, the frequency of a waveform is 8 hertz. Its period is calculated:

$$
\begin{aligned}
T & =\frac{1}{f} \\
& =\frac{1}{8} \\
& =125 \mathrm{~ms}
\end{aligned}
$$

The period of the waveform is 125 milliseconds

As another example, assume that the period of a waveform is 250 milliseconds. Therefore.

$$
\begin{aligned}
I & =\frac{1}{T} \\
& =\frac{1}{250 \times 10^{-.3}} \\
& =\frac{1}{0.250} \\
& =4 \mathrm{~Hz}
\end{aligned}
$$

The frequency of the waveform is calculated to be 4 hertz, one-half of the frequency of the waveform with a period of 125 milliseconds. Since the period is twice as large the frequency is half as much. Thus the accuracy of the previnus calculations is confirmed.
These two examples should show you vividly the frequency and period relationships of ac waveforms, and also, that one equation can be used in verify your calculations performed using the other

Waveform Amplitude Specifications

In addition to frequency and period values, a third major specification of a waveform is the amplitude or height of the wave. There are three possible ways to express the amplitude of a sinusoidal waveform: peak, peak-to-peak, and root-mean-square (rms).

Peak Amplitude Specifications

The peak amplitucle of a simusoidal waveform is the maximum positive or negative deviation of a waveform from its zero reference level. Recall from the discussion of the single-loop generator in Lesson I that this maximum voltage or current occurs as the loop of wire cut the magnetic flux at a 90 -degree angle

The sinusoidal waveform is a symmetrical waveform, so the posttive peak value is the same as the negative peak value as shown in figure 2.2. If the positive peak has a value of 10 volts, then the negative peak will also have a value of 10 volts. When measuring the peak value of a waveform, either positive or negative peaks cam le used

Peak-to-peak Amplitude Specifications

 The peak-to-peak amplitucle is simply a measurement of the amplitude of a waveform taken from its positive peak to its negative peak as shown in Figure 2.3.For the non-sinusoidal waveform shown in Figure 2.4, the peak-to-peak value of the voltage can be determined by adding the magnitude of the positive and the negative peak. In this example, the peak-to-peak amplitude is 18 volts plus 2 volts for a total of 20 volts, peak-to-peak
For sinusoidal waveforms, if the positive peak value is 10 volts in magnitude, then the negative peak value of the same waveform is also 10 volts. Measuring from peak-to-peak, there is a total of 20 volts. Therefore, the value of the sinusoidal waveform in Figure 2.2 can be specified as either 10 volts peak or 20 volts peak-to-peak.

Figure 2.2 A Simusoidal Waveform is Symmetrical

Figure 2.3 Peak-to-Peak Measurement of a Sinusoidal Waveform

Figure 2.4 Peak-to-Peak Measurement of a Non-Sinusoidal Waveform

- Root-Mean-Square Amplitude Specifications - RMS Relation to DC Heating Effect

Summary of Peak and Peak-to-Peak Voltage Specifications

There is a mathematical relationship of peak and peak-to-peak amplitude specifications for all sine waves. Since the positive peak value is equal to the negative peak value, the peak topeak value is equal to two times the value of either peak voltage.

These voltage relationships can be expressed in these equations:

$$
\begin{align*}
\mathbf{E}_{\text {pe:ih-to-peak }} & =2 \times \mathbf{E}_{\text {peat }} \tag{2-3}\\
\mathbf{E}_{\text {peak }} & =0.5 \mathbf{E}_{\text {peastio-pealk }} \tag{2-4}
\end{align*}
$$

If the voltage applied to the ac circuits that will be studied in this text alternates in a sine wave fashion, then the current that flows will also vary according to a sine wave. Therefore. current relationships of peak and peak-topeak amplitude specifications for all sine waves are the same as those used for voltage and can be expressed in these equations:

$$
\begin{align*}
I_{\text {peak-to-peak }} & =2 \times I_{\text {peak }} \tag{2-5}\\
I_{\text {peak }} & =0.5 I_{\text {peak-10-peak }} \tag{2-6}
\end{align*}
$$

However, if a waveform is non-sinusoidal, these relationships may or may not hold true.

Root-Mean-Square Amplitude Specifications

The third specification for ac waveforms is called rool-mean-square abbreviated rms. This term allows the comparison of ac and dc circuit values. Root-mean-square values are the most common methods of specifying sinusoidal waveforms. In fact, almost all ac voltmeters and ammeters are calibrated so that they measure ac values in terms of rms amplitude.

RMS Relation to DC Heating Effect

An roms value is also known as the effective value and is defined in terms of the equivalent heating effect of direct current. The rms value of a sinusoidal voltage is equivalent to the value of a $d c$ voltage which causes an equal amount of heal (power dissipation) due to the circuit current flowing through a resistance. Since heating effect is inclependent of the direction of current flow. resistive power dissipation can be used as the basis for comparison of ac and de values.
In other words, applying an ac voltage with a particular rms value to a resistive circuit will dissipate as much power in the resistors as a de voltage would that has the same value.
The rms value of a sinusoidal voltage or current waveform is 70.7 percent or 0.707 of its peak amplitude value.

$$
\begin{align*}
\mathrm{E}_{\mathrm{rms}} & =0.707 \mathrm{E}_{\text {peatk }} \tag{2-7}\\
\mathrm{I}_{\mathrm{rms}} & =0.7071_{\text {pe.t. }} \tag{2-8}
\end{align*}
$$

That is, as shown in Figure 2.5, a sinusoidal voltage with a peak amplitude of 1 volt has the same effect as a dc voltage of 0.707 volts as far as its ability to reproduce the same amount of heat in a resistance. Because the ac voltage of 1 volt peak or 0.707 volts rms is as effective as a dc voltage of 0.707 volts, the rms value of voltage is also referred to as the effective value.
Effective value and rms value are used interchangeably in electronics terminology. The rms value, however, is used more extensively and therefore it is the designation which will be used throughout this book

Determining the 0.707 Constant

How is the 70.7 percent of peak-value constant derived? Essentially, the words root-mean-square tell how because they define the mathematical procedure used to determine the constant

The word square comes from the square of instantaneous values of the ac waveform Recall from dc circuit calculations that power dissipated in a circuit is equal to \mathbf{E}, the voltage applied, times I, the current flowing in the circuit, as expressed in equation 2-9

$$
\begin{equation*}
\mathbf{P}=\mathbf{E I} \tag{2-9}
\end{equation*}
$$

By Ohm's law the applied voltage, E , is equal to the circuit current 1 times the circuit resistance. This is expressed in equation 2-10.

$$
\begin{equation*}
\mathbf{E}=\mathbf{I R} \tag{2-10}
\end{equation*}
$$

Substituting equation 2-10 for E in equation 2-9 provides equation 2-11, which allows the power dissipated in a circuit to be calculated if the circuit current and circuit resistance are given.

$$
\begin{align*}
P & =I R I \tag{2-11}\\
& =I^{2} R
\end{align*}
$$

Figure 2.5 Relationship of a Sinusoidal Vollage to a DC Vollage
If the Ohm's law equation $2-10$ is rearranged then equation $2-12$ results

$$
\begin{equation*}
1=\frac{E}{R} \tag{2-12}
\end{equation*}
$$

Substituting equation 2-12 in equation 2-9 for 1 provides equation 2-13, which allows the power dissipated in a circuit to be calculated if the applied voltage E and total circuit resistance are given.

$$
\begin{align*}
& P=E\left(\frac{E}{R}\right) \tag{2-13}\\
& P=\frac{E^{2}}{\mathbf{R}}
\end{align*}
$$

Note that in both equation 2-11 and 2-13 power is determined by the square of either the voltage or current values.
Power calculations in ac circuits are somewhat different. Since the applied voltage and the resulting circuit current are both sine waves, they are constantly changing. Therefore, the power dissipated is constantly changing. For this reason a means of averaging the constantly changing values was derived.

The averaging is done as follows: The instantaneous values of voltage or current are sampled at regular equally-spaced points along the waveform as shown in Figure 2-6 - in this case every 15 degrees of rotation of the sine wave. Twelve of these samplings are made for the positive alternation. The voltage values are listed in table form as shown in the first column in Figure 2-7. The second column is the square of the instantaneous values in the first column. All of the squared values are summed together as shown in Figure $2-7$ and an average or mean value calculated by dividing by the number of samples taken, in this case, twelve

Since the mean value is an average of squared values, the square root of the mean is the single value that is equivalent to a steady-state dc value. Thus, the result is the name root-mean-square since it is the square rool of the mean of squared values. Mean is an average of the sum of the squares of instantaneous values of the voltage or current waveform. Root is the square root of the mean.
Power is dissipated on both the positive and negative alternation; it makes no difference which direction the current is flowing. However, squaring the instantaneous values eliminates any concern of direction or polarity.
Equation 2-14 is an expression for the mean value of the voltage waveform of Figure 2.6

$$
\begin{equation*}
\text { mean }=\frac{\text { sum of } E_{i}{ }^{2} \text { values }}{\text { total number of } E_{i}{ }^{2} \text { values }} \tag{2-14}
\end{equation*}
$$

The mean value is the sum of the squared instantaneous voltage values divided by the number of squared instantaneous voltage values.

Figure 2.6 Instantaneons Vollage Values of a Voltage Sine Wave

RMS Calculation			
Degreen Rotetion	Polnt	Inalanlaneous Voltege Values (Volts)	Square of Instantaneoul Voltage (Volle?)
0	A	0.0	0.0
15	B	3.66	13.99
30	C	7.07	49.98
45	0	10.00	100.00
60	E	12.25	188.55
75	F	13.65	199.94
90	G	14.14	199.94
105	H	13.68	149.95
120	1	12.25	100.00
135	\pm	10.00 707	100.00
150	k	7.07	13.39
185	L	3.66	0.0
180	M	TOTAL $=$	- 1199.14
			1199.68
		MEAN	12

Figure 2.7 Instantaneous Voltage Values for the Voltage Sine Wave of Figure 2.6
Therefore, for the $\mathbf{E}_{\mathbf{1}}{ }^{2}$ values of Figure 2.7,

$$
\begin{aligned}
\text { mean } & =\frac{1199.66}{12} \\
& =99.97
\end{aligned}
$$

1199.66 volts divided by 12 provides a mean value of 99.97 volts.
The square root of the mean, 99.97 volts, is approximately 10.0 volts:

$$
\begin{align*}
E_{r m s} & =\sqrt{m e a n} \tag{2-15}\\
& =\sqrt{99.97} \\
& \cong 10 \mathrm{~V}
\end{align*}
$$

Thus, the rms voltage value of the waveform of Figure 2.6 is approximately 10 volts. In the example, if a larger number of instantaneous points had been selected rather than 12, the rms value would have been exactly 10.0 volts.
The calculated rms voltage value can be proved to be 70.7 percent or 0.707 times the measured peak value of voltage of 14.14 volts

$$
\begin{align*}
\frac{E_{\text {rms }}}{E_{\text {pe:ak }}} & =\frac{10.0 \mathrm{~V}}{14.14 \mathrm{~V}} \tag{2-16}\\
& =0.707
\end{align*}
$$

Converting the 0.707 ratio of rms voltage to peak voltage to a percentage gives equation 2-17.

$$
\begin{align*}
& \mathbf{E}_{\text {rins }}=(0.707)(100 \%) \mathbf{E}_{\text {peak }} \tag{2-17}\\
& \mathbf{E}_{\text {rms }}=70.7 \% \mathbf{E}_{\text {peak }}
\end{align*}
$$

Relationship of an AC Waveform and DC Waveform

Graphically, the relationship of a dc waveform to an ac waveform is as shown in Figure 2.8. The rms value, or 0.707 of the peak value, is located about three-quarters of the way up the ac waveform. And as you can see, the peak value of the ac waveform is considerably higher than the level of the dc waveform. This should not be surprising since an ac voltage is at its peak only momentarily and then drops back down.

The rms value of the wave can be determined if the peak voltage or current is known by rearranging the rms ratio equation $2-16$. This can be rewritten as

$$
\begin{equation*}
E_{r m a}=0.707 E_{\text {peak }} \tag{2-7}
\end{equation*}
$$

Figure 2.8 Relationship of a DC Waveform to an AC Waveform

Figure 2.9 Relationship of Sinusoidal Voltage to DC Voleage
lt's important to remember that rms or peak values can be used when referring to either voltage or current. For example, as shown in Figure 2.9, suppose a 100 -volt peak sinusoidal voltage is applied across a resistor and one wants to know the value of dc voltage which could be applied across the resistor to create the same amount of power dissipation. The value of the ac voltage equals 0.707 of the peak value. Therefore, this can be calculated:

$$
\begin{aligned}
& \mathbf{E}_{\mathrm{rms}}=0.707 \times 100 \mathrm{~V} \\
& \mathbf{E}_{\mathrm{rms}}=70.7 \text { volts }
\end{aligned}
$$

Thus the value of dc voltage that will create the same amount of power dissipation as an ac voltage with $E_{p k}$ of 100 volts is 70.7 volts dc.

If one wants to determine the peak value from the rms value, the ratio equation $2-16$ can be rewritten:

$$
\begin{align*}
\mathbf{E}_{\text {pest }} & =\frac{\mathbf{E}_{\text {rms }}}{0.707} \tag{2-18}\\
& =\frac{1}{0.707} E_{\mathrm{rm}} \\
& =1.414 \mathrm{E}_{\mathrm{rm}}
\end{align*}
$$

This equation can be applied to either sinusoidal voltage or current waveforms. Therefore:

$$
\begin{equation*}
\mathrm{E}_{\text {peat }}=1.414 \mathrm{E}_{\text {ross }} \tag{2-19}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\text {pest }}=1.414 I_{\text {rims }} \tag{2-20}
\end{equation*}
$$

For example, using equation $2-19$, the peak value of a waveform of 10 volts rms can be calculated:

$$
\begin{aligned}
\mathbf{E}_{\text {peak }} & =1.414 \mathrm{E}_{\mathrm{rms}} \\
& =(1.414)(10) \\
& =14.14 \mathrm{~V}
\end{aligned}
$$

The peak value of the waveform is 14.14 volts. Therefore, as shown in Figure 2.10 14.14 volts peak sinusoidal voltage is required to create the same amount of heat or power as that caused by 10 volts dc.

Standard Notation of Voltage RMS Values

Because ac voltage values are commonly specified as rms values, you will normally see voltages such as standard 60-hertz power voltages written as 115 VAC . The VAC notation is a simplified way of specifying rms voltage values.
Any ac voltage listed as VAC can be assumed to be an rms value, and where the type of specification is not provided, you can also assume rms values.

Figure 2.10 10 Volts DC Is as Effective as 14.14 Peak Vols AC
RMS, Peak, and Peak-to-Peak
Conversion Examples
The following examples are typical conversion problems that you will encounter when working with ac circuits.

Peak and Peak-to-Peak From RMS

Calculate $\mathbf{E}_{\text {peak }}$ and $\mathbf{E}_{\text {peak-to-peak }}$ of 120 VAC . Use the conversion equations $2-19$ and $2-3$. The VAC designation indicates that the voltage is an rms value. From now on $E_{p k}$ will designate peak voltage instead of $E_{p e a k}$ and $\mathbf{E}_{P P}$ will designate peak-to-peak voltage instead of $E_{\text {peak-to-peak. }}$

$$
\begin{aligned}
\mathbf{E}_{p^{k}} & =1.414 \mathrm{E}_{\mathrm{rm}} \\
& =(1.414)(120 \mathrm{VAC}) \\
& =169.68 \mathrm{~V}
\end{aligned}
$$

and

$$
\begin{aligned}
E_{P P} & =2 E_{p k} \\
& =(2)(169.68) \\
& =339.36 \mathrm{~V}
\end{aligned}
$$

This is summarized in Figure 2.11 .

Peak and Peak-to-Peak From RMS
Right-Triangle Side and Angle Relationships

Peak and RMS From Peak-to-Peak

If a peak-to-peak value is given, the conversion will be to peak and rms values using equations $2-4$ and $2-7$. For example, $E_{p k}$ and $E_{r m s}$ of a 60 volt peak-to-peak sine wave is:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{p k}} & =0.5 \mathbf{E}_{\mathbf{p p}} \\
& =(0.5)\left(60 \mathrm{~V}_{\mathrm{pp}}\right) \\
& =30 \mathrm{~V} \\
\mathbf{E}_{\mathrm{rms}} & =0.707 \mathbf{E}_{\mathrm{pk}} \\
& =(0.707)(30 \mathrm{~V}) \\
& =21.21 \mathrm{VAC}
\end{aligned}
$$

This is summarized in Figure 2.12. Remember then that ac voltage amplitudes can be specified in one of three ways: peak, peak-topeak, or rms, and that the same specifications can be used for current amplitudes.

The Sine Wave and Sine Trigonometric Function

The term sinusoidal has been used to describe a waveform produced by an ac generator.
The term sinusoidal comes from a trigonometric function called the sine function.

Right-Triangle Side and Angle Relationships

As you may know, trigonometry is the study of triangles and their relationships. The basic triangle studied in trigonometry is a right triangle which is a triangle that has a 90° angle as one of its three angles. A 90° triangle has a unique set of relationships from which the rules for trigonometry are derived.

Figure 2.13 shows a right triangle and identifies the 90° angle. In order to study the relationships of a right triangle one of the remaining two angles will be labeled with the Greek letter theta, θ.

Figure 2.11 Peak and Peak-to-Peak Vollages of 120 VAC

Figure 2.12 Peak and Peak-to-Peak Voliages of 60V

Figure 2.13 A 90° Right Triangle

To help distinguish the sides of a right triangle from one a nother, a name is given to each side. The sides of the triangle are named with respect to the angle theta. The side of the triangle across from or opposite to the angle theta is called the opposite side. The longest side of a right triangle is called the hypotenuse. The remaining side is called the adjacent side because it lies beside or adjacent to the angle. These names are commonly abbreviated to their first initials: O, H and A As long as the angle theta remains unchanged, the sides of the right triangle will retain the same relationship to one another. Figure 2.14 shows an example to illustrate this point. The sides of that right triangle are 6.8 , and 10 inches long. The 10 -inch side can be compared to the 6 -inch side by dividing the length of one side by the length of the other:

$$
\frac{6}{10}=0.6
$$

The result is the decimal fraction 0.6 . Therefore, since a ratio is defined as the value obtained by dividing one number by another, the ratio of the 6 -inch side to the 10 -inch side is $\mathbf{0 . 6}$.

Keeping theta constant, what will happen to the ratio if the lengths of the sides of the triangle are doubled? Figure 2.15 shows a triangle which has sides which are 12, 16 and 20 inches long - double the length of the sides of the triangle of Figure 2.14. The same two sides, the opposite side and the hypotenuse, are compared by dividing 12 by 20 :

$$
\frac{12}{20}=0.6
$$

Figure 2.14 Triangle With Length of Its Sides 6, 8, and 10 Inches Long

Figure 2.15 Triangle With Length of Its Sides 12, 16. and 20 Inches Long

Therefore, the ratio is 0.6 , the same ratio as the first triangle. The ratio of the length of the sides remained constant because the angle theta remained constant. The ratios of the sides of right triangles will remain constant no matter what the lengths of their sides as long as the angle theta is not changed. However, if the angle theta is changed, then the ratio of the length of the sides will also change.

Basic Trigonometric Functions

In trigonometry, these ratios have specific names. The three most commonly-used ratios in the study of right triangles are called sine, cosine, and tangent. The sine of the angle theta is equal to the ratio formed hy the length of the opposite side divided by the length of the hypotenuse:

$$
\begin{equation*}
\text { sine } \theta=\frac{\text { opposite }}{\text { hypotenuse }} \tag{2-2I}
\end{equation*}
$$

The cosine of the angle theta is equal to the ratio formed by length of the adjacent side divided by the length of the hypotenuse

$$
\begin{equation*}
\operatorname{cosine} \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \tag{2-22}
\end{equation*}
$$

The tangent of the angle theta is equal to the ratio formed by length of the opposite side divided by the length of the adjacent side:

$$
\begin{equation*}
\text { tangent } \theta=\frac{\text { opposite }}{\text { adjacent }} \tag{2-23}
\end{equation*}
$$

Remember that the sine, cosine and tangent represent a ratio of sides of triangles Specifically, these ratios compare the lengths of the sides of a triangle.

The names sine, cosine and tangent are often abbreviated \sin for sine, cos for cosine and lan for tangent
The cosine and tangent functions will be used in later lessons. In this lesson the sine function will be discussed

The Sine Function Related to an AC Waveform

In the previous two examples, the lengths of two sides of two triangles were compared. In both examples the ratio of the opposite side to the hypotenuse was determined. In fact, what was determined was the conditions for the angle theta. For both triangles theta is 37°. The sine of theta for both triangles is 0.60 . It was stated that no matter how large the triangle might become or how long the sides, as long as the angle theta does not change, the ratio of the sides will not change and the sine of 37° will always be 0.60181502 (rounded off to two places this is 0.60).
F.very angle theta has its own specific sine value. This is true for all angles between 0° and 360°. The sine for each angle between 0° and 360° could be calculated by dividing the length of the opposite side of the triangle by the length of the hypotenuse. Fortunately, this has already been done and published as a set of trigonometric tables. Figure 2.16 shows a part of a trigonometric table.
Moreover, the values of these common trigonometric functions are provided as functions available on scientific calculators. Therefore, such calculators can be used to find the sine, cosine or tangent of an angle instead of a trigonometric table. Specific examples are included at the end of this lesson.

Rotating AC Generator

You may be wondering why all of this emphasis is being placed on the sine function It is for one important reason: the sine of an angle theta is an exact mathematical statement describing the voltage produced by an ac generator. Therefore, the table which tabulates the sine of theta for any angle between 0° and 360° enables ac voltages to be expressed at any point in a cycle. To explain these statements, the relationship of the rotation of an ac generator, its sinusoidal output, the resulting vector right triangles, and the sine function will be discussed To demonstrate, a circle with a rotating arrow as shown in Figure 2.17 will be used to represent an ac generator producing one cycle of an ac waveform. The arrow in Figure 2.17 has been rotated 30 degrees, and a line perpendicular to the horizontal axis has been drawn downward from the tip of the arrow. As you can see, a right triangle has been formed. The arrow is the hypotenuse. The perpendicular line is the opposite side. The horizontal axis is the adjacent side. When the generator is rotated to different angles, the length of the hypotenuse (arrow) will never change. Only the opposite and adjacent sides will change length.
Recall from equation 2-21 that the sine theta is equal to the length of the opposite side divided by the length of the hypotenuse:

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}
$$

ANGLE	SIN	COS	TAN
0	0.0000	1.000	0.0000
1	.0175	9998	.0175
2	.0349	9994	.0349
3	.0523	9986	.0524
4	.0698	9976	.0699
5	.0872	9962	.0875
6	1045	9945	1051
7	1219	9925	1228
8	1392	.9903	1405
9	1564	9877	.1584
10	1736	9848	1763

Figure 2.16 A Part of a Trigonometric Table

Figure 2.17 Circle Representation of an AC Generator
In Figure 2.17 the length of the hypotenuse never changes, it is a constant. By setting the constant length of the hypotenuse equal to 1 or unity, it remains constant at I as the generator is rotated. This simplifies the equation for sine theta as shown in equation 2-24 because now the opposite side will be divided by 1 :

$$
\begin{equation*}
\sin \theta=\frac{\text { opposite }}{1} \tag{2-24}
\end{equation*}
$$

So in this instance the sine of theta is equal to the length of the opposite side itself:

$$
\begin{equation*}
\sin \theta=\text { opposite } \tag{2-25}
\end{equation*}
$$

Therefore, examining the length of the opposite side as theta varies will help demonstrate how the sine function varies.

During the following discussion the length of the opposite side of the resulting right triangle at different degree points around the circle will be compared to the unity value of the hypotenuse. The resulting values of these ratios will be the value of the sine function for different angles. The values will be plotted on the graph shown in Figure 2.18
Let's begin when the rotating arrow in Figure 2.17 is at 0°. In this case, the length of opposite side of the right triangle is zero units long. Therefore,

$$
\begin{aligned}
\sin 0^{\circ} & =\frac{0}{1} \\
& =0.00
\end{aligned}
$$

The original position of the arrow in Figure 2.17 is 30°. If you were to measure the opposite side you would find that it would be one-half the length of the hypotenuse, or 0.5 units long. Therefore,

$$
\begin{aligned}
\sin 30^{\circ} & =\frac{0.5}{1} \\
& =0.5
\end{aligned}
$$

This point is plotted at 30° on the graph shown in Figure 2.18. Remember this point indicates the voltage amplitude when the hypotenuse has been rotated 30 degrees from the 0° reference.

Figure 2.18 Sine Values Between 0° and 360° at 30-Degree Intervals

Figure 2.19 Genetator Has Been Rotated 60 Degrees
In Figure 2.19, the generator has been rotated to 60°. The length of the opposite side is 86.6 percent of the length of the hypotenuse, or 0.866 units long. Therefore,

$$
\begin{aligned}
\sin 60^{\circ} & =\frac{0.866}{1} \\
& =0.866
\end{aligned}
$$

This point is plotted at 60° on the graph shown in Figure 2.18.

In Figure 2.20, the rotating hypotenuse is at 90°. Notice that at this point the length of the opposite side must be equal to the length of the arrow, (hypotenuse). Therefore.

$$
\begin{aligned}
\sin 90^{\circ} & =\frac{1}{1} \\
& =1.000
\end{aligned}
$$

As shown plotted at 90° on the graph of Figure 2.18, the amplitude of this point is a maximum.

In Figures 2.21 and 2.22 with the arrow at 120° and 150°, respectively, right triangles are produced with angles of theta equal to the 60° and 30° angles. The opposite sides will be respectively, 0.866 and 0.5 units.

Therefore, at 120°,

$$
\operatorname{Sin} 120^{\circ}=0.866
$$

and at 150°.

$$
\operatorname{Sin} 150^{\circ}=0.5
$$

These are plotted at their respective points on Figure 2.18.

When the hypotenuse reaches 180° as shown in Figure 2.23, the length of the opposite side is again zero units long, and,

$$
\begin{aligned}
\sin 180^{\circ} & =\frac{0}{1} \\
& =\mathbf{0 . 0 0 0}
\end{aligned}
$$

This is plotted at 180° on Figure 2.18. Note that all the values plotted are positive values. In Figure 2.24 all of the points are connected with a curve indicating the continuously changing values as the generator rotates.

Figure 2.20 Generator Ilas Been Rotuled 90 Degrees

Figure 2.21 Generator Has Been Rotated 120 Degrees

Figure 2.22 Generator Has Been Rolated 150 Degrees

Note that from 0° to 90° of rotation the amplitude of the sine wave goes from 0 to 1. and from 90° to 180° that the amplitude comes down from 1 to 0 following a similarly-shaped curve. Therefore, the amplitude values of a sine wave repeat themselves during the second 90 degrees of rotation in reverse order from the amplitucle variations during the first 90 degrees of rotation.

Thus far, all of the points have been in the positive region of the graph because the perpendicular line has extended in an upward, or positive, direction. If the hypotenuse is rotated to the bottom half of the circle as shown in Figure 2.25, right triangles are produced which duplicate the right triangles in the top part of the circle However, the opposite side of the right triangle is now extending in a downward direction which gives the sine of the angles negative values. The points are plotted on Figure 2.18 and connected by a curve in Figure 2.24. Note that the negative portion of the curve is an exact replica of the positive portion; both sides are symmetrical.

In this discussion and demonstration, you should have become aware of the fact that the sine wave is an exact mathematical statement of the output of an ac generator. Also, the sine wave is merely a plot of the sines of angles between 0° and 360°. Therefore the voltage or current output of an ac generator at any angle of rotation, theta, depends directly on the sine of the angle theta. This dependence is a very important point, and, in a later lesson, more explicit use will be made of the sine function in relation to the ac sine wave.

Figure 2.23 Generator Has Been Rotated 180 Degrees

Figure 2.24 Plot Points Connecled With a Line

Figure 2.25 Thela Between 180° and 360°

Using a 0° TO 90° Trigonometric Table Many tables of trigonometric functions list only the function values from 0° to 90°. If you have a good understanding of how the angles of the trigonometric functions are related. this will cause no problems. To help you understand the trigonometric relationship and the relationship to the rotation of an ac generator the rotation will be divided into four equal parts. Each part is called a quadrant.

Figure 2.26 shows a graph that is divided into four quadrants with each quadrant labeled with a Roman numeral I, I1, III. or IV. Notice that the Roman numerals increase in a counter-clockwise direction around the graph.

Therefore, as shown in Figure 2.27, as the generator goes one-quarter turn from 0° to 90° in quadrant I , the sine wave follows a curve through a set of amplitudes that increase from 0 to 1 . Through the next quarter-turn from 90° to 180° in quadrant 11. the sine wave follows a curve through the same set of values, but now in reverse order and decreasing from 1 to 0 . During the next quarter-turn from 180° to 270° in quadrant 111 , and the next quarter-turn from 270° to 360° in quadrant IV, the same curves through the same set of amplitude values are gone through from 0 to 1 and 1 to 0 as were gone through in quadrant I and II. In quadrants III and IV, however, the amplitude of the sine wave is negative.

Because of this repetition, most trigonometric function tables, as shown in Figure 2.28, only give the values of the function between 0° and 90°. However, the generator rotates through 360 degrees; therefore, one must be able to find the sine of any angle from 0° to 360°. That can be done by using the table given for quadrant 1 to also determine the sine of angles of quadrant I1. 111, and IV, as well.

Figure 2.26 A Four-Quadranl Graph

Figure 2.27 Relationship of the Quadrants and a Sine Wave

Figure 2.28 A Part of a Trigonometric Table

Rotating AC Generator

To find the sine of an angle less than 90° as shown in Figure 2.29 the value is read directly from the table. For example, suppose you want to find the sine of 30°. You would look in the table, such as the one shown in Figure 2.28, under the angle column for 30°. Then you would look to the right of the angle in the sine column to locate the value of the sine of this angle. You can see in the table that it is 0.5 . Thus, the sine of 30° is 0.5 .

The sine of quadrant 11 angles, that is, angles between 90° and 180°, can be determined using a $0^{\circ}-90^{\circ}$ trig table by first converting the angle in the second quadrant to what is called a first-quadrant equivalent angle. For angles in the second quadrant, theta ${ }_{11}$, the firstquadrant equivalent, theta ${ }_{1}$, is determined by subtracting theta ${ }_{11}$ from 180° :

$$
\begin{equation*}
\theta_{\mathbf{I}}=180^{\circ}-\theta_{\mathbf{I I}} \tag{2-26}
\end{equation*}
$$

For example, suppose that you want to determine the sine of the second quadrant angle theta ${ }_{11}=120^{\circ}$, as shown in Figure 2.30. The first-quadrant equivalent angle of 120° is

$$
\begin{aligned}
\theta_{\mathbf{I}} & =180^{\circ}-\theta_{\mathbf{I I}} \\
& =180^{\circ}-120^{\circ} \\
& =60^{\circ}
\end{aligned}
$$

Now, using the $0^{\circ}-90^{\circ}$ table of Figure 2.28, you would look up the sine of 60°. This is 0.8660 and which, therefore, also equals the sine of 120°.

Angles in quadrant III and quadrant IV also must be converted to quadrant I equivalents to be able to use a $0^{\circ}-90^{\circ}$ table to find the sine values of these angles. Use equation 2-27 to determine first-quadrant equivalents for angles in quadrant III.

$$
\begin{equation*}
\theta_{1}=\theta_{1 I I}-180^{\circ} \tag{2-27}
\end{equation*}
$$

Use equation 2-28 for angles in Quadrant IV.

$$
\begin{equation*}
\theta_{\mathbf{I}}=360^{\circ}-\theta_{\mathbf{I V}} \tag{2-28}
\end{equation*}
$$

Figure 2.29 Any Angle in Quadrant I Can Be Read Direclly From Trig Table

Figure 2.30 Angle of 120° on Quadrant Graph

The equations and where to use them are summarized in Figure 2.31 to enable you to find the sine of any angle between 0° and 360° using a $0^{\circ}-90^{\circ}$ trigonometric table.
Remember, however, that the sine has positive values in quadrants I and 11, but that it has negative values in quadrants 111 and IV. This also is summarized in Figure 2.31.

Additional Trigonometric Calculations

You have seen how a sine wave is generated and how evaluating the amplitude of the sine wave corresponds to measuring the opposite side of a right triangle with hypotenuse equal to 1 , as the hypotenuse rotates from 0 to 360°

Since you will encounter two other common trigonometric functions, cosine and tangent, it will be worthwhile to review them briefly also.

Cosine

Recall from equation 2-22 that the cosine of an angle theta of a right triangle is equal to the ratio of the adjacent side divided by the hypotenuse

$$
\begin{equation*}
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \tag{2-22}
\end{equation*}
$$

The cosine function is generated in the same way as the sine function except that now the amplitude of the cosine waveform corresponds to measuring the adjacent side of a right triangle with hypotenuse equal to 1

In Figure $2.32 a$ is shown the same hypotenuse that was rotated for the sine wave. Its amplitude is kept constant at 1 (equal to unity). The hypotenuse is positioned at a rotation of 15° in solid lines and at 75° in dotted lines. Note that at 15° the adjacent side is almost 1 so that the ratio of the adjacent

Figure 2.31 Quadram Craph With ËquivalentAngle Equalions

- Quadrant rotation

b. Cosine wavelorm

Figure 2.32 Variation of Cosine
side to the hypotenuse is 0.966 , as plotted on the cosine curve of Figure 2.32 b at 15°. If the hyputenuse were rotated back 100°, the adjacent side equals the hypotenuse and the cosine is equal to 1 .
At a rotation of 75°, as shown in Figure 2.32a, the adjacent side is reduced to 0.259 of the hypotenuse and therefore, the cosine is 0.259 . This is plotted at 75° in Figure 2.32 b. Therefore, as the hypotenuse rotates through the first quadrant from 0° to 90°, the cosine decreases from 1 to 0.

You can go through the exercise of rotating the hypotenuse through quadrants 11. III and IV. calculate the equivalent first-quadrant angle, and verify that the cosine varies from 0 to - 1 in quadrant 11. from -1100 in quadrant III, and from 0 to 1 in quadrant IV It is particularly important to recognize that the adjacent side is a negative value for quadrant II and III.

Tangent

The tangent of the angle theta of a right triangle from equation 2-23 is equal to the ratio of the side opposite to the side adjacent.

$$
\begin{equation*}
\tan \theta=\frac{\text { opposite }}{\text { adjacent }} \tag{2.23}
\end{equation*}
$$

The hypotenuse equal to unity is again rotated as shown in Figure 2.33 a . Now the opposite side of the formed right triangle must be divided by the adjacent side in order to form the tangent ratio. The ratio does not correspond to the measurement of just one side as it did for the sine and cosine functions. For this reason the tangent waveform has a much different shape than the sine and cosine waveform.

Recall that as the sine function is formed it varies from 0 to 1 as the rotation goes from 0° to 90°. In other words the opposite side is increasing from 0 to 1. From Figure 2.32 for the cosine, the adjacent side decreases from Ito 0 through this same rotation. Therefore, the tangent has the numerator (the opposite side) increasing from 0 to 1 and the denominator decreasing from 1 to 0 .

$$
\begin{equation*}
\tan \theta=\frac{0 \rightarrow 1}{1 \leftarrow 0} \tag{2-29}
\end{equation*}
$$

as shown in equation 2-29, for theta from 0° to 90°.

Figure 2.33 Variation of Tangent
Let's look at Figure $2.33 a$. When the rotation is at 0°, the adjacent side is 1 and the opposite side is 0 . Therefore, the tangent is 0 as plotted on Figure 2.33b. At 15° rotation the opposite side has taken on a small value and the adjacent side is still near 1 (0.966 as shown on Figure 2.32b). The tangent is 0.268 and is plotted on Figure 2.33 b at 15°. At 45° both the opposite side and the adjacent side are equal to the same value so that the tangent is 1 as plotted on Figure 2.336. As the rotation increases above 45° the opposite side is larger than the adjacent side and the tangent is increasing and greater than I (specifically 1.73 at 60°). At 90° the opposite side is 1 and the adjacent side is 0 . Division by 0 results in the tangent having a value of infinity at 90° and again at 270° as shown in Figure 2.33 b . The opposite side is positive and the adjacent side is positive so that the tangent is positive in the first quadrant.

As the rotation continues, the tangent changes value from positive to negative as the rotation goes beyond 90° because the adjacent side becomes negative. Therefore, it decreases from infinity to smaller negative values as shown in Figure 2.33b. At 180° the tangent is again 0 . In the third quadrant, the opposite side is negative and the adjacent side is negative, therefore, the tangent is positive and increases, from 0 to infinity in the same fashion as it did for the first quadrant. In like fashion, as shown in Figure 2.33 b, the rotation through the fourth quadrant repeats the same tangent values as for the second quadrant. Each time the equivalent first quadrant angle is 45 degrees in any of the quadrants, the tangent is equal to 1 . These points are plotted at $45^{\circ}, 135^{\circ}, 225^{\circ}$ and 315° in Figure 2.33 b.

Finding Sides When Theta and Hypotenuse are Given

One more important extension of right triangle mathematics and trigonometry that is important concerns calculating or evaluating the sides of a right triangle when the angle theta is given.
Look at Figure 2.34a. What is known about the sides in relationship to the angle theta? First of all, the ratio of the lengths of the sides is known by the equations 2-21, 2-22 and 2-23. (Abbreviations are inserted for convenience, H for hypotenuse, O opposite, and A for adjacent.)

$$
\begin{align*}
& \sin \theta=\frac{O}{H} \tag{2-21}\\
& \cos \theta=\frac{A}{H} \tag{2-22}\\
& \tan \theta=\frac{O}{A} \tag{2-23}
\end{align*}
$$

A

a. General b. Hypotenuse and theta given

Figure 2.34 Determining Sides When Theta is Given
Secondly, when the hypotenuse and the angle are given as show in in Figure 2.34b, the opposite side and adjacent side can be determined easily. Rearranging equation 2-21 into equation 2-30.

$$
\begin{equation*}
O=H \sin \theta \tag{2-30}
\end{equation*}
$$

allow's the opposite side to be calculated if the hypotenuse and angle theta are given.
Rearranging equation 2-22 into equation 2-31.

$$
\begin{equation*}
A=H \cos \theta \tag{2-31}
\end{equation*}
$$

allows the adjacent side to be calculated if the hypotenuse and angle theta are given.
Find the Hypotenuse and Angle When Sides are Given
Thirdly, if the opposite and adjacent sides are given, as shown in Figure 2.34c, the hypotenuse and angle theta can be calculated easily.

From the givell opposite and adjacent sides the tangent of theta can be determined by using equation 2-23. Knowing that theta is an angle that has a tangent equal to the calculated ratio, the angle can be determined from the trigonometric tables or by using a calculator that has the trigonometric functions such as the Tl-35 shown in Figure 2.35
When the angle theta is known the hypotenuse can be determined by using equation 2-30 or 2-31, rearranged.

$$
\begin{equation*}
H=\frac{O}{\sin \theta} \tag{2-32}
\end{equation*}
$$

or

$$
\begin{equation*}
H=\frac{A}{\cos \theta} \tag{2-33}
\end{equation*}
$$

First Example

Here's an example of how to determine unknowns. Figure $2.36 a$ shows a right triangle with an angle, theta. of 39° and a hypotenuse of 100 .
Using equation 2-30,

$$
\begin{aligned}
O & =H \sin \theta \\
& =100 \sin 39^{\circ} \\
& =(100)(0.629) \\
& =62.9
\end{aligned}
$$

The opposite side equals 62.9 .
You can use a trigonometric table or a calculator. If a trigonometric table is used, you enter the table in the degrees column and scan across to the sine column and read the sine of 39° and use it in the equation.

Figure 2.35 Typical Calculator with Trigonometric Functions

Figure 2.36 Example Problem

When a calculator is used then the result can be obtained almost immediately by following these keystrokes:

Press	Display/Comments
100	100
$[x]$	100
39	39
$1 \sin$	0.62932039
\equiv	62.932039

Using equation 2-31,

$$
\begin{aligned}
A & =H \cos \theta \\
& =100 \cos 39^{\circ} \\
& =(100)(0.777) \\
& =77.7
\end{aligned}
$$

The adjacent side equals 77.7.
The calculator keystrokes are:

$\frac{\text { Press }}{}$	Display/Comments
100	100
$[X 7$	100
39	39
$[\cos]$	0.77714596
\equiv	77.714596

Second Example

In Figure 2.36 b shows a right triangle which has the opposite side equal to 90 and the adjacent side equal to 60 . Using equation 2-23

$$
\begin{aligned}
\tan \theta & =\frac{O}{A} \\
& =\frac{90}{60} \\
& =1.5
\end{aligned}
$$

Locating 1.5 in the tangent column of a trigonometric function table and scanning across to the degree column you find that the angle is 56.31 degrees.

If a calculator is used, the following keystrokes are followed to find the angle:

Press	Display/Commenls
90	90
+	90
60	60
\square	1.5
\square	1.5
$-[t a n$	56.309932

*might be tan $^{-1}$ key
The hypotenuse can be determined by using equation 2-32,

$$
\begin{aligned}
H & =\frac{O}{\sin \theta} \\
& =\frac{90}{\sin 56.31^{\circ}} \\
& =\frac{90}{0.832} \\
& =108.17
\end{aligned}
$$

The hypotenuse is 108.17
This is easily calculated using a calculator with the following keystrokes:

$\frac{\text { Press }}{}$	Display/Comments
	90
+	90
56.31	56.31
\sin	0.83205095
\square	108.16645

Summary

Summary

In this lesson the relationship) of period to frequency was reviewed and you were shown how to specify the amplitude of a sine wave in terms of its peak, peak-to-peak, and rins values. The definitions of the various trigonometric functions were presented and related to right triangles and a quadrant graph. You were shown how to determine the value of the sine of any angle between 0° and 360° and how to use it, the cosine, and tangent to solve right triangle problems. In the next lesson, you will learn about an instrument that provides an electronic picture of an ac sine wave, and you will learn how to use it to study further the characteristics of sine waves.

1. Given the frequency of waveform, determine the period, or time of one cycle $\mathrm{f}=16 \mathrm{kHz}, \mathrm{T}=$ \qquad
Solution:

$$
T_{(s)}=\frac{1}{f(\mathrm{~Hz})}=\frac{1}{16 \mathrm{kHz}}=\frac{1}{16 \times 10^{3}}=0.0625 \times 10^{-9}=62.5 \mu \mathrm{~s}
$$

2. Given the time of one cycle, determine the frequency of the waveform.

$$
\mathrm{T}=265 \mu \mathrm{~s}, \mathrm{f}=
$$

\qquad

Solution:

$$
\begin{aligned}
& f_{(H z)}=\frac{1}{T_{(0)}}=\frac{1}{265 \mu s} \\
& 265 \times 10=\frac{1}{265 \times 10^{-6}}=0.00377 \times 10^{6}=3.77 \mathrm{kHz}
\end{aligned}
$$

3. Given the rms amplitude of a sine waveform, determine the peak and peak-peak values.
$\mathbf{E}_{\mathrm{rms}}=8.3 \mathrm{~V}$
$\mathbf{E}_{\mathrm{pk}}=$
$\mathbf{E}_{\mathrm{pp}}=$

Solution:

$$
\begin{aligned}
& E_{p k}=1.414 \times E_{r m s}=1.414 \times 8.3 \mathrm{~V}=11.7 \mathrm{~V} \\
& E_{p p}=2 \times E_{p k}=2 \times 11.7 \mathrm{~V}=23.4 \mathrm{~V}
\end{aligned}
$$

4. Given the peak amplitude of a sine waveform, determine the rms and peak-to-peak values.

$$
\begin{aligned}
& \mathbf{E}_{\mathbf{p k}}=8 \mathrm{mV} \\
& \mathbf{E}_{\mathrm{rmv}}= \\
& \mathbf{E}_{\mathbf{p p}}=
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& E_{\text {rms }}=0.707 \times E_{p k}=0.707 \times 8 \mathrm{mV}=5.66 \mathrm{mV} \\
& E_{p p}=2 \times E_{p k}=2 \times 8 \mathrm{mV}=16 \mathrm{mV}
\end{aligned}
$$

5. Given the peak-to-peak amplitude of a sine waveform, determine the peak and rms values
$I_{\mathrm{Pp}}=16 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{pk}}=\square$
$\mathrm{I}_{\mathrm{rms}}=\square$

Solution:

$i_{p k}=0.5 \times i_{p p}=0.5 \times 16 \mathrm{~mA}=8 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{rms}}=0.707 \times \mathrm{I}_{\mathrm{pk}}=0.707 \times 8 \mathrm{~mA}=5.66 \mathrm{~mA}$
6. a. Given the following right triangle. determine the sine of the angle and with a calculator or using tables find the angle.

Solution:

$$
\sin \theta=\frac{0}{H}=\frac{8}{12}=0.667
$$

Calculator Solution for Angle:
Enter the ratio into the calculator so it is displayed. Press inv and sin keys or $\sin ^{-1}$ key and the calculator will display the angle in decimal degrees.

Table Solution for Angle:
Enter the table of natural trigonometric functions by locating the ratio in the sine column.
Read across to the angle in decimal degrees in the degree column.

$$
\arcsin 0.667=41.8^{\circ}
$$

b. Given the following right triangle, determine the cosine of the angle and with a calculator or using tables find the angle.

Solution:

$$
\cos \theta=\frac{A}{H}=\frac{3}{12}=0.25=75.5^{\circ}
$$

Calculator Solution for Angle.

Enter the ratio into the calculator so it is displayed. Press inv and cos keys or the $\cos ^{-1}$ key and the calculator will display the angle in decimal degrees.

Table Solution for Angle.

Enter the table of natural trigonometric functions by locating the ratio in the cosine column. Read across to the angle in decimal degrees in the degree column;
7. Given the following right triangle, determine the sine, cosine, and tangent of the angle and the angle itself using a calculator or table as in problem 6 .

Solution:

$$
\begin{array}{rlrl}
\sin \theta & =\frac{0}{H}=\frac{8}{9.43}=0.8484=0.85 \theta & =58.2^{\circ} \\
\cos \theta & =\frac{A}{H}=\frac{5}{9.43}=0.530=0.53 & \theta=58^{\circ} \text { or } \\
\tan \theta=\frac{0}{A}=\frac{8}{5}=1.6 & \theta=58^{\circ}
\end{array}
$$

There may be as much as 0.2 to 0.3 of a degree variation in the angle calculated from the sine, cosine or tangent depending on the rounding off of the sine, cosine or tangent ratio as it is calculated
8. Given the following right triangle, determine the remaining sides.
a.
Solution:

$$
\begin{aligned}
& \sin \theta=\frac{0}{H} \\
& 0=H \sin \theta=100 \sin 40^{\circ}=100 \times 0.643=64.3 \\
& \cos \theta=\frac{A}{H}
\end{aligned}
$$

$$
A=H \cos \theta=100 \cos 40^{\circ}=100 \times 0.766=76.6
$$

b.

Solution:

$$
\tan \theta=\frac{0}{A}
$$

$$
A=\frac{0}{\tan \theta}=\frac{10}{\tan 60^{\circ}}=\frac{10}{1.73}=5.77
$$

$$
\sin \theta=\frac{0}{H}
$$

$$
\therefore H=\frac{0}{\sin \theta}=\frac{10}{\sin 60^{\circ}}=\frac{10}{0.866}=11.5 \text { or }
$$

$$
\cos \theta=\frac{\mathrm{A}}{\mathrm{H}}
$$

$$
H=\frac{A}{\cos \theta}=\frac{5.77}{\cos 60^{\circ}}=\frac{5.77}{0.5}=11.5
$$

Calculator Solution for Sine, Cosine or Tangent:

Enter the angle in the calculator so it is displayed. Press the sine, cosine or tangent key for the respective function required and the value will read out directly on the display.

Table Solution for Sine, Cosine or Tangent:

Enter the table of natural trigonometric functions by locating the angle in the degrees column. Scan across to the respective sine, cosine or tangent column and read the value in whole numbers and/or decimals.
9. If a hypotenuse of length equal to unity (length $=1$) is rotated from the zero-degree position by the following angles, identify the quadrant in which the hypotenuse is located.

a.	278°	e.
b.	153°	f.
c.	460°	
c.	92°	g.
d.	191°	
		h.
9°		

Solution:

a. 278° is greater than 270° and less than 360° - fourth quadrant
b. 153° is greater than 90° and less than 180° - second quadrant
c. 94° is greater than 90° and less than 180° - second quadrant
d. 10° is greater than 0° and less than 90° - first quadrant
e. 229° is greater than 180° and less than 270° - third quadrant
f. $460^{\circ}-360^{\circ}=100^{\circ}$
100° is greater than 90° and less than 180° - second quadrant
g. 191° is greater than 180° and less than 270° - third quadrant
h. 89° is greater than 0° and less than 90° - first quadrant
10. a. Find the quadrant I equivalent of a 136° angle.

Solution:
$\theta_{1}=180^{\circ}-\theta_{11}=180^{\circ}-136^{\circ}=44^{\circ}$
b. Find the quadrant l equivalent of a 197° angle

Solution:
$\theta_{1}=\theta_{111}-180^{\circ}=197^{\circ}-180^{\circ}=17^{\circ}$
c. Find the quadrant I equivalent of a 338° angle

Solution:
$\theta_{1}=360^{\circ}-\theta_{I V}=360^{\circ}-338^{\circ}=22^{\circ}$

1. Given the following frequencies, calculate the period of the waveform.
a.

$$
\begin{array}{ll}
\text { a. } & \mathrm{f}=6.3 \mathrm{kHz} \\
\text { b. } & \mathrm{f}=276 \mathrm{~Hz} \\
\text { c. } & \mathrm{f}=37.8 \mathrm{kHz}
\end{array}
$$

$$
\mathrm{T}=
$$

\qquad

$$
\text { b. } \quad \mathrm{f}=276 \mathrm{~Hz}, \quad \mathrm{~T}=
$$

\qquad
$\mathrm{T}=$ \qquad
d. $\quad \mathrm{f}=7.6 \mathrm{MHz}, \quad \mathrm{T}=$ \qquad
2. Given the following times of one cycle of a waveform, calculate the frequency of each waveform.
a. $T=50 \mathrm{~ms}$,
§ = \qquad
b. $T=0.0057 \mathrm{~s}$,
$\mathrm{f}=$ \qquad
c. $T=33.8 \mu \mathrm{~s}$,
$\mathrm{f}=$ \qquad
d. $T=4.7 \mu \mathrm{~s}$,
$\mathrm{f}=$ \qquad
3. Given the following peak-to-peak amplitudes, calculate the peak and rms amplitude values.
a. $E_{p p}=370 \mathrm{~V}$
(1.) $E_{p k}$
(2.) $\mathrm{E}_{\text {rın }}$
$=$ \qquad
c. $E_{p p}=7.5 \mathrm{mV}$
(1.) E_{ph}
(2.) $\mathrm{E}_{\mathrm{rms}}$
d. $\mathrm{I}_{\mathrm{pp}}=32 \mathrm{~mA}$
\qquad
$=$ \qquad
b. $E_{p P}=17.8 \mathrm{~V}$
(1.) $\mathbf{E}_{p k}$
$=$ \qquad
(2.) $\mathrm{E}_{\mathrm{r} \text { (1) }}$
$=$ \qquad
(1.) $1_{p k}$
(2.) $l_{\text {rins }}$
$=$ \qquad
$=$ \qquad
4. Given the following rms amplitudes, calculate the peak and peak-to-peak amplitude values.
a. $\quad \mathrm{E}_{\text {rins }}=10 \mathrm{~V}$
(1.) $\mathrm{E}_{\mathrm{pk}}=$ \qquad
c. $E_{\text {rmis }}=7.8 \mathrm{mV}$
(1.) $E_{p k}$
(2.) E_{p}
$=\square$
(2.) $E_{p p}$
\qquad
d. $1_{r \mathrm{~ms}}=2.5 \mathrm{~mA}$
$\begin{array}{ll}\text { (1.) } 1_{p k} & = \\ \text { (2.) } 1_{p p} & =\end{array}$ \qquad
(1.) $E_{p k}$
$=$ \qquad
(2.) $E_{p p}$
$=$ \qquad
(2.) $1_{p p}$ \qquad
5. Given the following right triangles, calculate the sine, cosine, and tangent of the angles.
a.

(1.) $\sin \theta=$ \qquad
(2.) $\cos \theta=$ \qquad
(3.) $\tan \theta$ \qquad
(1.) $\sin \theta$
$=$ \qquad
(2.) $\cos \theta$
$=$ \qquad
b.

(3.) $\tan \theta$
$=$ \qquad
6. Find the angles of the following ratios:
a. $\sin \theta=0.95 \quad \theta=$ \qquad
b. $\cos \theta=0.5 \quad \theta=$ \qquad
c. $\tan \theta=1.0 \quad \theta=$ \qquad
d. $\sin \theta=0.5 \quad \theta=$ \qquad
e. $\cos \theta=0.12 \quad \theta=$ \qquad
f. $\tan \theta=0.07 \theta=$ \qquad
7. Determine the value of the hypotenuse H of the following right triangles with opposite side 0 and adjacent side A and the angle θ.

θ		0	A	H
a.	30°	10		\square
b.	60°		10	\square
c. 45°		10	\square	
d. 75°	100			

Practice Problems
8. Determine the missing sides for the following right triangles with the hypotenuse and angle θ given.

	θ	H	A	
a.	20°	100		
b.	40°	100		-
c.	60°	100	-	-
d.	80°	100		

9. In which quadrant are the following angles?
I
II
III
IV
a. 91°
b. 362°
c. 200°
d. 145°
e. 300°
10. Find the quadrant I equivalent angle of the following angles.
θ
a. 46°
b. 100°
c. 205°
d. 420°
11. Given the following periods or frequencies, determine the frequency or time of one cycle of the waveform.
a. $f=5.3 \mathrm{MHz}, \quad \mathrm{T}=$ \qquad
b. $\mathbf{f}=163 \mathrm{kHz}, \quad \mathrm{T}=$ \qquad
c. $\mathrm{T}=37 \mathrm{~ms}, \quad \mathrm{f}=$
d. $T=2.8 \mu \mathrm{~s}$,
f = \qquad
12. Given the following peak amplitudes, determine the peak-to-peak and rms values.
a. $\quad E_{p k}=37 \mathrm{~V}$

b. $\quad \mathbf{E}_{\mathrm{pk}}=75 \mathrm{mV}$
(1.) $E_{p p}$
$=$ \qquad
(2.) $E_{r m s}$

$$
=
$$

c. $\quad I_{p k}=540 \mu \mathrm{~A}$
(1.) $I_{p p}$
$=$ \qquad
(2.) I_{rms}
$=$
3. Given the following rms amplitude values, determine the peak and peak-topeak values.
a. $E_{\text {rms }}=60 \mathrm{~V}$

$$
\begin{array}{ll}
\text { (1.) } \mathbf{E}_{p k} & = \\
\text { (2.) } \mathbf{E}_{p p} & = \\
\hline
\end{array}
$$

(2.) E_{pp}
b. $\quad \mathrm{I}_{\mathrm{rms}}=6.7 \mathrm{~mA}$
(1.) $I_{p k}$
$=$ \qquad
(2.) $I_{p p}$
$=$

c. $I_{\mathrm{rms}}=3.15 \mathrm{~A}$

4. Given the following right triangles, calculate the sine, cosine, and tangent of the angles.
a.

(1.) $\sin \theta$
(2.) $\cos \theta$
(3.) $\tan \theta$
$=$ \qquad
.

(1.) $\sin \theta$
$=$ \qquad
(2.) $\cos \theta$
=
(3.) $\tan \theta$
$=$ \qquad
5. Using the data given, determine if the opposite side of a right triangle is greater than, equal to, or less than the adjacent side when the angle theta is:

$\boldsymbol{\theta}$	\sin	\cos	\tan
30°	0.5	0.866	0.577
45°	0.707	0.707	1.0
60°	0.866	0.5	1.73

a. 30°
b. 45° \qquad
c. 60° \qquad
6. The opposite side of a right triangle
a. is the one larger than the hypotenuse.
b. remains constant.for changing hypotenuse.
c. plots the sine wave functions as the angle theta changes.
d. is always equal to the adjacent side
7. The tangent trigonometric function of the angle theta for a right triangle
a. always has the opposite side and adjacent side equal.
b. is the ratio of the opposite side to the adjacent side.
c. is equal to the sine plus the cosine
d. is equal to the hypotenuse times the sine of theta.
8. An angle in the second quadrant
a. is a negative angle
b. is between 270° and 360°.
c. is one for which the sine function varies from 1 to 0
d. is the same as an angle in the third quadrant.
9. If the hypotenuse has rotated 361°, it is in quadrant
a. I
b. II
c. I1I
d. IV
10. Find the quadrant I equivalent angle of the following angles.
a. 137°
b. 232°
c. 307°

LESSON 3

The Oscilloscope and its Use

In this lesson one of the most important electronic measuring instruments for ac voltages and currents is discussed -the oscilloscope. It is particularly important because it allows one to "take" an electronic picture of ac waveforms. The construction of an oscilloscope is explained. The function and adjustment of an oscilloscope's controls are described. And you are told how to use an oscilloscope to perform some electrical measurements.

At the end of this lesson you should be able to:

1. Describe the major sections of an oscilloscope.
2. Explain how the vertical and horizontal deflection systems of an oscilloscope function.
3. Adjust the basic controls of a typical oscilloscope.
4. Use an oscilloscope to measure the peak and peak-to-peak voltages of a waveform, and use these to calculate rms values.
5. Use an oscilloscope to determine the period of a sinusoidal waveform and calculate the waveform's frequency.

Introduction

In the first two lessons, discussion concerned how ac is generated and how it is specified in terms of amplitude and frequency. You learned how to determine the instantaneous amplitude at various points in the cycle, and how the sine wave derives its name from the sine function.

Before continuing with an investigation of actual ac circuits, however, one of the instruments which is very important for making electrical measurements in the circuits which you will learn about throughout this book is the oscilloscope (or scope for short). A typical oscilloscope is shown in Figure 3.1.
In earlier lessons it was explained how dc and ac voltages versus time are graphed as shown in Figure 3.2. The oscilloscope is capable of automatically displaying an ac or dc voltage graphed versus time as shown in Figure 3.3. The oscilloscope, then, can be called a "visual voltmeter". But, in fact, it is more than just a voltmeter; the scope actually displays waveforms so that the intricacies of waveforms can be observed clearly. It is an instrument which converts electrical signals to visual waveforms on a screen.
An oscilloscope performs three basic functions: One of these is waveform observation. The scope allows the size and shape and type of waveform to be observed. A second function is amplitude measurement. The oscilloscope vertical deflection is calibrated on the screen so that actual voltage amplitudes can be measured. The third function is a measurement of time. The oscilloscope sweep across the screen horizontally is calibrated in time increments which allows the measurement of time periods or time duration.

Figure 3.1 A Typical Oscilloscope

Figure 3.2 Plots of: a. DC Voltage; b. AC Voltage

Figure 3.3 Scope Face with AC and DC Waveforms Displayed

The Cathode-Ray Tube Electron Gun

There are many different oscilloscopes in use today. Figure 3.4 and 3.5 show several typical scopes. Each of these scopes is unique in operation and design. However, there are many basic controls and functions common to all scopes. Once you become familiar with these basic controls, operation of practically any scope becomes a simple process. Therefore, the intention of the following discussion is to familiarize you with the basic concepts and the common controls of most scopes so that you will learn how they are constructed, how they perform electrical measurements, and how they are used.

A Basic Oscilloscope

As shown in Figure 3.6, the scope can be divided into two major segments: 1) the cothode-ray tube (also called a crt), and 2) the controlling circuits.

The Cathode-Ray Tube

The crt is the heart of the oscilloscope. Its 'face' displays the waveform being measured, similar to the crt which displays the picture received by a television receiver. As shown in Figure 3.7, it consists of three major parts: 1) an electron gun; 2) a deflection system; and 3) a screen.

Electron Gun

The electron gun is located at the rear of the crt, away from the screen. Its job is to emit a narrow stream of electrons. These electrons are (accelerated), focused into a beam and accelerated toward the screen of the crt by a high positive potential applied to the electron gun anode placed near the front end of the electron gun. Note: oscilloscopes may employ an acceleration system that accelerates the electrons in the beam either before or after the beam passes through the deflection system. The pre-deflection anode potentials are on the order of $\mathbf{3 0 0 0}$ to 4000 volts.

Figure 3.4 Typical Oscilloscope

Figure 3.5 Typical Oscilloscope

Figure 3.6 Interior of a Typical Oscillascope

Electron Gun

Post-deflection anode potentials may be several thousand volts higher. Some may reach 25,000 volts.

The electron beam travelling toward the screen passes through the deflection system. The deflection system consists of four deflection plates as shown in Figure 3.8. Two plates - one on the top and one on the bottom - are called vertical deflection plates. The two plates on the sides are the horizontal deflection plates. By applying positive or negative potentials to these deflection plates, the electron beam is caused to deflect up or down and right or left as it passes through them.

The more potential applied to the plates, the more the electron beam deflects. Therefore, the amount of this deflection is actually a measure of the voltage, or potential difference, applied to the plates. The force bending the beam is electrostatic force and it follows the first law of electrostatics: like charges repel and unlike charges attract.

If a voltage is applied across the vertical deflection plates as shown in Figure 3.9a, the electron beam moves upwards. If the polarity applied to the plates is reversed, as shown in Figure 3.9b, the beam moves downwards.
If a voltage is applied across the horizontal deflection plates as shown in Figure 3.10a, the electron beam will travel from left to right. If the polarity applied to the deflection plates is reversed as shown in Figure 3.10b, the beam moves from right to left.
If voltages are applied to the vertical and horizontal deflection plates simultaneously, the beam moves vertically and horizontally at the same time, diagonally. This is shown in Figure 3.11.

If no potential is applied to the plates, the beam returns to the center of the tube. This was the original position shown in Figure 3.8.

Figure 3.7 Simplified Construction of a Typical CRT

A-VERTICAL DEFLECTION PLATES
b-horizontal deflection plates

Figure 3.8 End-View of CRT Deflection Plates and Electron Beam

Figure 3.9 Vertical Deflection

The Screen

The third and remaining part of a crt is the screen. After the beam is emitted and travels through the deflection system, it strikes the screen at a point determined by the deflection plates. As shown in Figure 3.12, the inside surface of the screen of a crt is coated with a phosphor material which has the property of phosphorescence. Phosphorescence, in this case, is defined as the ability of a material to emit light after being struck by electrons. The trace observed when viewing the scope is caused by the electron beam striking the phosphor material of the screen. The very high positive potential (typically from 3,000 volts for small scopes to $\mathbf{2 5 , 0 0 0}$ volts for tv picture tubes) accelerates the electrons to the screen to provide the energy for light emission.

Control Circuits

The other portion of an oscilloscope shown in Figure 3.6 and again in Figure 3.12 is its control circuits. These are electronic circuits that perform several functions. They cause the crt to emit electrons, regulate how many electrons make up the beam current, and control the direction of the beam of electrons. The control circuits are connected to the electron gun and deflection plates in the crt through a connector at the base of the crt as shown in Figure 3.12.

Most controls and inputs for the control circuit are located on the front panel of the oscilloscope as shown in Figure 3.13. While the scope in Figure 3.13 is typical and very similar to other scopes, other scopes do have differences. It does, however, provide basic oscilloscope functions, and therefore it will give you a good idea of a scope's basic controls, how a waveform is displayed, and how to use it to measure voltages. It is a dual-trace scope, and therefore it has two

Figure 3.10 Horizontal Deflection

Figure 3.11 Diagonal Deflection

Figure 3.12 CRT and Control Circuits
identical vertical input controls so that it can display the traces of two different input signals at the same time.

The controls can be divided into three major groups: 1) the mainframe group, 2) the vertical control group, and 3) the horizontal control group. This is shown in Figure 3.14.

Mainframe Controls

An enlarged view of the mainframe controls is shown in Figure 3.15. Once the scope is connected to a standard wall receptacle, power can be applied to all circuits in the scope with the power switch. After the power switch is activated, one to two minutes are required before the scope circuits are operational. After this "warm up" period, a trace may or may not be observed on the screen of the crt.

Beam Control - Intensity

If a trace is not observed, the intensity control should be turned clockwise. The intensity control regulates the number of electrons in the beam striking the screen. As the intensity control knob nears mid-position, a spot or a trace should be visible. If the intensity control is set too high as shown in Figure 3.16, the spot or trace (horizontal line across screen) on the screen will not be crisp and sharp; it will instead appear overbright and be fuzzy. This is called "blooming". If a high intensity like this is allowed to continue, the phosphor can be burned off the inside of the screen where the beam strikes it, and that portion of the screen will be damaged. It is advisable to increase the intensity only to the point where the trace is barely visible. You should remember to turn the intensity down before turning the scope off to keep the cri from blooming the next time the scope is turned on. In addition, it is not advisable to leave the intensity control turned up when there is a single spot on the screen rather than a trace. It could burn the screen.

Figure 3.13 Front-Panel Controls of a Typical Oscilloscope

Figure 3.14 The Three Major Control Groups of a Typical Scope

Figure 3.15 The Mainframe Controls

Beam Control - Focus

The focus control is used to focus the trace There are two basic ways this can be done One, if the trace appears as a spot travelling slowly from left to right across the screen, focus the spot to a point. Two, if the trace appears as a horizontal line, use the focus to sharpen the line to a narrow trace. A properly-focused trace is shown in Figure 3.17.

Beam Control-Astigmatism

A third beam control that may be found on some oscilloscopes is the astigmatism control. This control is used to adjust the roundness of the spot. The scope shown in Figure 3.15 does not have an astigmatism control

Beam Control - Position

Thus far it has been assumed that the trace should be immediately evident after the intensity has been increased. But suppose the intensity is increased and the trace is still not visible. The beam-finder button on the scope in Figure 3.15 then should be pushed to help locate the trace. Often when the scope is turned on, previous settings may be such that the trace is deflected off the screen. The beam-finder button normally reduces all deflection potentials so that the trace appears on the screen, By noting the trace position, you know the direction in which the trace is deflected. This enables you to adjust the position controls to move the trace back to the center of the screen. The position controls, located on the vertical control panel, will be described in a moment.

Calibration

Below the power switch is the calibrator loop. A signal of a specific frequency and amplitude passes through this loop. A typical squarewave calibration signal is shown in Figure 3.18. These signals with their known specifications can be used to check the

Figure 3.16 Excessive Brightness Causes "Blooming"

Figure 3.17 A Well-focused Trace

Figure 3.18 A Typical Square Wave Calibration Signal
accuracy of the vertical and horizontal deflection systems of the scope. The procedure, involving the use of a known signal, is called calibration.

Screen Graticule

To the left of all of these mainframe controls, of the scope in Figure 3.13 is the crt Figure 3.19 shows an enlarged view of the front of the screen. Notice that the screen has been marked off into eight vertical divisions and ten horizontal divisions. Each division has been further marked off into five equal increments. Each increment represents two-tenths of one division. This scale is called a graticule.
Equipped with a graticule, the oscilloscope provides an electronic graph of voltage against time. It essentially is a calibrated scale with the vertical divisions of the graticule representing vollage values and the horizontal divisions representing time increments.
Some scopes have an illumination control which provides lighting for the graticule. "I he scope shown in Figure 3.13 does not have that function.

Vertical Control

The vertical controls shown in Figure 3.20 adjust circuits that are connected to the vertical deflection plates and performs two control functions: 1) they control the trace's vertical position, and 2) they select the amount of voltage each vertical division represents.

The vertical position control, is used to position the electron beam which forms the spot or trace on the graticule vertically. Any initial vertical reference level can be selected. It is usually positioned without any signal applied to the scope input. The most common level is on the center horizontal line of the graticule as shown in Figure 3.21. The spot can be moved vertically by applying a voltage

Figure 3.19 A Typical Gralicule

Figure 3.20 Vertical Control Group

Figure 3.21 Verlical Trace Positioned on ZeroReference Line
to the vertical input jack. The input is applied through the input jack to electronic circuits which amplify, or attenuate, the input and apply the potentials to the vertical deflection plates.

The Scope as a Voltmeter

Remember, the scope basically acts as a voltmeter; therefore, as shown in Figure 3.22, it must be connected across circuit components to measure voltages across those components. However, instead of one connection being a negative lead, it is a common lead on most scopes, and it is at ground potential. If measurements are to be made in a circuit with a ground, the scope common (ground) lead should be connected only to the circuit ground as shown in Figure 3.23. Failure to practice this procedure will often cause damage to the circuit or the scope, or it could expose the operabor to a possible electrical shock.

Vertical Deflection - DC Voltage

What does happen when a dc voltage is applied to the vertical input of a typical scope? First, assume that the scope is turned on and that its controls have been set to produce a spot at the center of the screen without any signal applied to its vertical input. The screen is as shown in Figure 3.24. Now a dc voltage from a power supply is connected to the scope's vertical input, connected as shown in Figure 3.25. When the power supply is connected to the scope the spot will move up or down depending on the polarity of the connections between power supply and scope input. The spot moves in the direction of the most positive vertical deflection plate. One deflection plate is more positive than the other because one side of the power supply applied is more positive than the other.

Figure 3.22 A Scope Must Comected Across
Components to Measure Voltages in Those Conipmints

Figure 3.23 Scope's Ground Lead Should be Connected Only to Circuil Ground

Figure 3.24 Spot at Center of CRT Without Any Signal Applied to Vertical Inpul

Therefore, the spot - which is actually a beam of negatively-charged electrons is attracted to the more positive of the deflection plates. If the connections between the power supply and scope input are reversed as shown in Figure 3.26, the spot will move in the opposite direction it moved before the connections were reversed. This is because the opposite vertical deflection plate is now more positive than the other. The important fact is that the spot can be made to move $u p$ or down from a reference position by applying a voltage of the proper polarity to the vertical input. The examples here were for constant dc voltage inputs.

Vertical Deflection-AC Voltage

If an ac voltage is applied to a scope's vertical input, the spot will deflect up and down periodically from the center reference point of Figure 3.24. It does this because, as you know, ac is sinusoidal, constantly changing polarity from positive to negative and back again with time in a sine wave fashion. Therefore, a straight vertical line will appear on the scope face as shown in Figure $3.27 a$. The line is being created by the spot moving up and down very rapidly between the rapidly-changing positive and negative potentials on the vertical deflection plates. Even though a sinusoidal ac voltage is being input to the scope as shown in Figure 3.27 b, it doesn't look like a sinewave because the voltage is being applied only to the vertical deflection plates, and therefore, there is no horizontal deflection. The line is simply an indication of the voltage amplitude changes of the applied ac voltage, as shown in Figure 3.27 b . The length of the line will become longer or shorter as the ac voltage amplitude is increased or decreased. It obviously is not the standard graph of a sinusoidal waveform.

Figure 3.25 A DC Power Supply Connected to Vertical Input

Figure 3.26 DC Power Supply Connections Reversed

Figure 3.27 a. Voltage Display on CRT; b. Sinusoidal Voltage Input to Scope

Voltage Measurements

Some of the amplitude units of measurement applicable to sinusoidal waveforms can be observed and measured directly on the scope face using the graticule. As shown in Figure 3.28, the maximum positive deflection from the reference position is the positive peak voltage of the waveform. The maximum negative deflection from the reference position is the negative peak voltage. Therefore, the peak-to-peak voltage is the sum of the positive and negative peak voltage values. Or, the peak-to-peak voltage is the value of voltage measured from the positive peak deflection to the negative peak deflection.

Vertical Deflection - Volts per Division

The amplitudes of ac waveforms can be any voltage value from zero to many hundreds of volts. Therefore, some method is needed to determine the peak or peak-to-peak voltage values of a wide range of possible input voltages. This is done by using the scope's graticule markings and a control called the volts-per-division selector. It is shown on the scope's vertical control panel in Figure 3.20. Two vertical volts-per-division selectors are shown on the panel because it is a dual-trace scope designed to provide two separate waveform traces from two separate vertical input sources. Only one vertical volts-perdivision selector and input are needed to display a single trace on a scope.
The magnitude of voltage represented by a vertical division on the graticule is determined by the setting of the volts-perdivision selector. For example, if the dial is set to 1 volt per division, the vertical deflection circuits have been adjusted so that each major vertical division on the graticule equals 1 volt.

Figure 3.28 Measurement Units Applied to an AC Waveform Displayed on Scope CRT

$+H$					1				

Figure 3.29 Spot Deflected +1 Volt
Now, a dc voltage is applied to the scope's vertical input. If the spot deflects up from a reference position exactly one division, as shown in Figure 3.29, a potential of +1 volt is being measured. If the spot deflects down exactly one division as shown in Figure 3.30, a potential of -1 volt is being measured.
Each major vertical division is further divided into five subdivisions. The voltage interval represented by each subdivision is two-tenths of the voltage of one major division.

If the spot deflects up one major division from a reference position plus four-tenths of the next major division (two subdivisions) as shown in Figure 3.31, then the number of divisions is 1.4 . The potential being measured is calculated

(1.4 divisions)(l volt-per-division) $=1.4$ volts

The voltage being measured is 1.4 volts. Other applied voltages are calculated the same way. The value of the voltage is determined by multiplying the number of graticule divisions by the setting on the volts-per-division selector.

$$
\begin{align*}
E= & \text { (number of divisions) } x \tag{3-1}\\
& \text { (number of volts-per-division) }
\end{align*}
$$

An Example
For example, assume that an ac voltage whose voltage level is unknown is applied to a scope's vertical input. The waveform on the scope's crt is as shown in Figure 3.32. The scope's vertical selector is set to 2 volts-perdivision. What are the peak and peak-to-peak voltages of the input voltage?

To evaluate the scope measurement, count the number of graticule divisions from the zero (center) horizontal graticule reference to the top of the waveform. In this example that is two and one-half divisions. This is the peak voltage of the ac voltage. It can be calculated using equation $3-1$.

$$
\begin{aligned}
& E_{\text {pk }}=\text { (number of divisions) } \times \\
& \text { (volts-per-division) } \\
& =(2.5)(2 \mathrm{~V}) \\
& =5 \mathrm{~V}
\end{aligned}
$$

Figure 3.30 Spot Deflected -I Volt

Figure 3.31 Spot Deflected +1.4 Volts

Figure 3.32 Sinusoidal Waveforn on Scope CRT

V Vertical Deflection - Variable Volts-per-Division
- Vertical Coupling Control

Thus, the positive peak deflection is 5 volts Since the negative peak voltage is the same as the positive peak voltage as shown in Figure 3.33, the peak negative deflection is also 5 volts. Recall that the peak-to-peak voltage is calculated:

$$
\begin{align*}
\mathbf{E}_{\mathbf{p p}} & =2 \mathbf{E}_{\mathbf{p k}} \tag{3-2}\\
& =(2)(5 \mathrm{~V}) \\
& =10 \mathrm{~V}
\end{align*}
$$

The peak-to-peak voltage is 10 volts.
However, the peak-to-peak voltage of the waveform can also be determined another way. The total number of graticule divisions from the top of the positive peak to the bottom of the negative peak of the waveform can be counted. In this example that is five graticule divisions. Therefore, using equation 3-1,

$$
\begin{aligned}
\mathbf{E}_{\mathrm{pp}} & =(5 \text { divisions })(2 \text { volts-per-division }) \\
& =10 \mathrm{~V}
\end{aligned}
$$

This is the same amount of peak-to-peak voltage calculated using equation $3-2$. Thus either method can be used to determine the peak-to-peak voltage of a waveform if it is a sine wave or a symmetrical ac waveform. With its volts-per-division controls and graticule markings a scope can be used to determine the peak and peak-to-peak values of any unknown voltage within its measurement range.

Vertical Deflection -
 Variable Volts-per-Division

The scope shown in Figure 3.20 has a variable volts-per-division control located in the center of the volts-per-division selector. This control must be turned fully clockwise to the calibrated position as indicated by the arrow on the inner control to read the correct amplitudes from the scope graticule as indicated by the main volts-per-division

Figure 3.33 Voltage Waveform for Calculation Example
selector. (This is a detent position called CAL, or there may even be a light indicator on latest model scope.) If the variable control is taken out of the calibrated position, the number of volts for each graticule division would become more than the setting on the main volts-per-division selector. This control should remain in the CAL position except when making special-purpose measurements which are outlined in the scope manual.

Vertical Coupling Control

Beside the vertical input connector on the scope in Figure 3.20 there is a pushbutton control that is labeled vertical coupling control. It can be set to AC or DC. In general, the vertical coupling control should be set to ac when measuring ac voltages such as in Figure $3.27 b$. The control should be set to dc to measure dc voltages. If a particular waveform has both ac and dc voltage components as shown in Figure 3.34, set the control on the scope to the dc position to examine both components and it will appear as shown. If you wish to measure only the ac component of a waveform with both dc and ac components, change the vertical coupling control to the ac position. The dc component will be eliminated as shown in Figure 3.35.

Another vertical input control pushbutton in Figure 3.20 labeled GND is used to set the trace to zero or reference position before taking neasurements. When this control is pushed in, the input signal is removed, and zero volts, or ground potential is applied to the scope input circuit. The trace can then be moved to a point on the graticule representing the zero point. This zero reference point is normally set at the center horizontal tine of the graticule, but it can be moved to any vertical position on the screen using the vertical deflection
positioning control.

Horizontal Controls

The horizontal control section. identified in Figure 3.14 and shown magnified in Figure 3.36 determines the potemials on the right and left horizontal dellection plates causing the spot to move from side to side on the scope face. This side-to-side movement of the spot is called sweep. The spot is always swept from left to right across the screen of the scope as shown in Figure 3.37.

Horizontal Sweep

Recall that the vertical deflection of the spot is proportional to the voltage amplitude of the waveform. The horizontal sweep of the spot on the other hand, is proportional to an amount of time it takes time for the spot to move from one side of the scope's crit face to the other. Thus, as stated previously, the vertical deflection of the scope plots voltage and the horizontal dellection plots time.
If the spot is swept with the vertical input grounded, there will be no vertical deflection and only the effect of the horizontal controls on the spot will be viewed.

Figure 3.34 Waveform Canlaining $A C$ and $D C$ Components Displayed Using DC Coupling

Figure 3.35 Waveform of Figure $3.3+$ Using AC Coupling

Figure 3.36 Horizontal Control Ciroup

Horizontal Positioning and Triggering - Horizontal Sweep Time

Horizontal Positioning and Triggering

The position control in the horizontal control section shown in Figure 3.36 determines the place at which the spot begins its sweep.

The act of starting the sweep is called triggering. Basically, the triggering circuits and their controls shown in the lower right-hand part of the scope in Figure 3.36 allow you to select when a sweep will begin relative to some reference signal. Generally. the most useful triggering method is to set the scope trigger controls to internal auto trigger. With this setting the signal applied to the vertical plates, and therefore observed on the screen, actually acts to trigger its own sweep.
In the internal auto trigger mode, when the incoming applied signal reaches a specific point on its waveform, determined by the scope's slope and level controls, the sweep begins. By adjusting these controls the sweep can be caused to begin at any desired point of the waveform displayed. If the input signal is removed the horizontal trace would not be triggered. By changing the trigger controls to the auto mode the scope will begin triggering itself (free run) so that there is a reference trace on the crt face.

Horizontal Sweep Time

The spot is swept across the screen by the horizontal deflection circuits changing the electrical potentials on the horizontal deflection plates. The time interval required for the trace to travel across the screen is controlled by the horizontal deflection time selector. The selector is calibrated in units of seconds per division. This is comparable to the volts-per-division units of the vertical deflection selector. The sweep is measured in units of time, usually in seconds or some fraction of a second.

Figure 3.37 Spot Moves From Left to Right Across Scope Face

When a time in seconds or decimal fractions of a second is selected by a horizontal time selector setting, the spot then sweeps one division on the graticule horizontal scale in the selected time. For example, if the horizontal time (sweep) selector is set to one second per division, the spot moves from left to right on the scope face at a rate of one major graticule division per second.
In Figure 3.37 for instance, it would take one second for the spot to move across the scope face from one major graticule mark to another. There are ten major divisions across the graticule. Therefore, with a horizontal setting of one second per division, it would take ten seconds for the spot to move from the left-hand edge of the scope face to its right-hand edge.

Also note in Figure 3.37 that each major horizontal division is divided into five subdivisions. This is further clarified in Figure 3.38. The time interval represented by each subdivision represents two-tenths of the time of one major division. For example, if the horizontal time (sweep) selector is set to one second per division, each subdivision on the horizontal axis represents two-tenths of one second. If, however, the selector is set to two microseconds per division then the spot moves across the screen at the rate of one major graticule division in two microseconds, and each subdivision represents 0.4 microseconds as shown in Figure 3.39.

As the sweep time interval per division is decreased by changing the setting of the horizontal time control, the sweep moves more rapidly across the scope face. Eventually, the sweep (the spot) is moving so rapidly that it appears to be a contimous line. Actually, the sweep ends and starts just like on the larger time per division sweep settings. but the motion is too fast for the eye to see.

The selection of horizontal time units may be different on different scopes. With the scope shown in Figure 3.36, the trace can be made to move across the screen from a rate of five seconds per division to a rate up to one microsecond per division. The common name for the horizontal time control is horizontal sweep selector, therefore, that name will be used from now on.

Figure 3.38 Time Required to Move Spol Across Graticule When Horizontal Control is Set to 1 Second per Division

Figure 3.39 Time Required to Move Spot Across Graticule When Horizontal Control is Set to 2 Microseconds per Division

Variable Sweep Time

In the center of the horizontal sweep control is a variable-control knob. This knob is similar to the variable control of the vertical deflection control. For the seconds-perdivision control setting to indicate the correct sweep time it must be in the calibrated position, turned fully clockwise as indicated by the arrow. This is the CAL position. This control is in the CAL position except when making special-purpose measurements which are outlined in the scope manual.

Measurement of an ac Waveform

An important measurement that can be done easily using a scope is the measurement of the period of an ac waveform. The period measurement is significant because the period information can be applied to the time-frequency equation to calculate the frequency of the waveform

The first step is to apply an ac voltage to the scope's vertical input with the scope's coupling control set to measure an ac voltage Next the horizontal sweep selector should be adjusted to provide a display of one or two cycles of the waveform. For this example, assume that the horizontal sweep selector is set at two-tenths milliseconds (0.2 ms) per division. Make sure the inner variable control is set at CAL.

Recall that the period of a waveform is the time duration, T, of one cycle as shown in Figure 3.35. One cycle exists between any two points that have the same value and where the waveform is varying in the same direction. The points most commonly used to measure the time of one cycle are the points where the waveform crosses the zero axis line on the positive-going part of the waveform.
For this example, the waveform displayed on the face of the scope is as shown in Figure 3.40. Two hashmarks have been drawn to indicate one cycle of the waveform. To determine the amount of time between the two hashmarks, the number of graticule divisions between them is counted. There are exactly five divisions between them.
Recall that the scope's horizontal sweep selector is set to two-tenths milliseconds $(0.2 \mathrm{~ms})$ per division. The period of the waveform is then calculated by multiplying the time per division by the number of divisions:

Figure 3.40 Waveform for P'eriod Calculation Example

$$
\begin{aligned}
T= & (\text { seconds per division) } \times \\
& \text { (number of divisions) } \\
= & (0.2 \mathrm{~ms} / \text { division })(5 \text { divisions }) \\
= & 1 \mathrm{~ms}
\end{aligned}
$$

The period of the waveform is one millisecond

The period of any sinusoidal waveform can be determined in the same way
Now that the period of the waveform is known, the frequency of the waveform can be calculated easily using this equation:

$$
\begin{equation*}
f=\frac{1}{T} \tag{3-4}
\end{equation*}
$$

Since T is one millisecond:

$$
\begin{aligned}
\mathrm{f} & =\frac{1}{1 \mathrm{~ms}} \\
& =\frac{1}{0.001} \\
& =1 \times 10^{3} \\
& =1 \mathrm{kHz}
\end{aligned}
$$

The frequency of the waveform is 1 kilohertz.
You have now learned how to use a scope to determine the amplitude and frequency of an ac waveform. Another example will help you practice the technique. We will start with an

Summary

unknown waveform and use the scope to determine its amplitucle and frequency.

Figure 3.41 shows the unknown waveform as it would appear displayed on the face of a scope when the trigger control is set for internal. The scope's vertical output control is set to 2 volts per division. The scope's horizontal sweep selector is set to 2 milliseconds per division

The waveform's peak-to-peak amplitude can be determined, as stated previously, one of two ways. In this example, the number of graticule divisions between the top of the positive peak and the bottom of the negative peak will be counted. Then that number and equation 3-1 will be used to calculate the peak-to-peak voltage of the waveform. Thus, since the waveform amplitude covers six divisions. the peak-to-peak voltage is:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{P p}} & =(6)(2 \mathrm{~V}) \\
& =12 \mathrm{~V}_{\mathrm{pp}}
\end{aligned}
$$

The unk nown waveform is 12 volts peak-to-peak.

The frequency is calculated by determining the period of the waveform by counting horizontal graticule divisions. In this case, the number of graticule divisions for one period of the waveform is six. The time per division is 2 milliseconds. Using equations $3-3$ and $3-4$, the period and the frequency of the waveform can be calculated:

$$
\begin{aligned}
\mathrm{T} & =(6)\left(2 \times 10^{-3}\right) \\
& =12 \times 10^{-9} \text { seconds } \\
& =12 \mathrm{~ms}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathfrak{f} & =\frac{1}{\mathrm{~T}} \\
& =\frac{1}{12 \times 10^{-3}} \\
& =0.0833 \times 10^{3} \\
& =83.3 \mathrm{~Hz}
\end{aligned}
$$

Figure 3.41 Waveform for Amplitude and Frequency Calculalion Example

The waveform's frequency is 83.3 hertz.
Therefore, the unknown waveform is a 12 volt peak-to-peak ac voltage with a frequency of 83.3 hertz.

Summary

Discussion in this lesson has tried to familiarize you with one of the most important pieces of electronic measuring equipment - the oscilloscope. The construction of a scope was described. It was explained why the scope is capable of measuring the voltage and time of electrical signals very accurately. The function of a scope's controls and how they must be adjusted, were described, and you were shown how to use a scope to measure and determine amplitude, period and frequency of ac wavelorms. In following lessons these qualities will be required of many circuits that will be studied. The scope is a very useful instrument for these measurements.

One other point: there are a great number of different types of scopes in use. A scope is supplied, generally, with an operational instruction manual. If you need any additional information regarding any control on a particular scope you are using, you should refer to the manual for that scope.

Determine the values of voltage, period, and frequency for the following waveforms shown as they would appear on an oscilloscope

1. The waveform shown is a dc voltage

Since it is below the OV-reference level, it is a negative voltage:

$$
\begin{aligned}
& E=(2 \text { divisions })(5 \mathrm{~V} / \text { divisions }) \\
& E=10 \mathrm{~V}
\end{aligned}
$$

But remember, this is a negative voltage; therefore.
E is a $\mathbf{- 1 0 V}$.
A constant dc vollage has no frequenc):
2. The waveform is an ac sine wave.

Therefore its amplitude can be specified in terms of peak, peak-to-peak, or rms voltage. From its positive peak value to its negative peak value it spans 6 vertical divisions. Thus its peak-to-peak voltage is

$$
\begin{aligned}
& E_{p p}=(6 \text { divisions })(0.2 \mathrm{~V} / \text { divisions }) \\
& E_{p p}=1.2 \mathrm{~V}
\end{aligned}
$$

Its peak voltage is one-halfits peak-to-peak value, so

$$
E_{p k}=1 / 2(1.2 \mathrm{~V})=0.6 \mathrm{~V}
$$

lis rms voltage is 0.707 times its peak voltage value. Therefore,

$$
\begin{aligned}
& E_{r m s}=0.707(0.6 \mathrm{~V}) \\
& E_{\mathrm{rms}}=0.42 \mathrm{~V}
\end{aligned}
$$

Vidivision $=0.2 \mathrm{~V}$
Thalviston $=1 \mathrm{~ms}$

Worked-Out Examples

The period of the waveform is contained within 8 horizomtal divisions. Thus

$$
\begin{aligned}
& T=(8 \text { divisions })(1 \mathrm{~ms} / \text { division }) \\
& T=8 \mathrm{~ms}
\end{aligned}
$$

Knowing the period of the wavelorm, the frequency can be calculated

$$
\mathrm{f}=\frac{\mathrm{l}}{\mathrm{~T}}=\frac{\mathrm{l}}{8 \mathrm{~ms}}=125 \mathrm{~Hz}
$$

3. The waveform is called a square wave. It is like the waveform that is usually used as a calibration waveform for most oscilloscopes. Note that it alternates between a dc voltage level two divisions above the $O V$-reference level and two divisions helow the OV'reference level. Its amplitude is the difference between these two levels:

$$
\begin{aligned}
& E=(4 \text { divisions })(2 \mathrm{~V} / \text { division }) \\
& \mathbf{E}=8 \mathrm{~V}
\end{aligned}
$$

This square wave also has a frequency. Its frequency is the rate at which it alternates between its +4 -volt and -4 -volt levels. The cycle of the waveform exists between the points x and y shown on the graticule. The number of divisions which the cycle spans is four. Therefore, the period of the waveform is

$$
\begin{aligned}
& T=(4 \text { divisions })(10 \mu \mathrm{~s} / \text { division }) \\
& T=40 \mu \mathrm{~s}
\end{aligned}
$$

The frequency of the square wave can now be determined as

$$
r=\frac{1}{T}=\frac{1}{40 \mu \mathrm{~S}}=25 \mathrm{kHz}
$$

1. Use the oscilloscope diagram on the following page to identify the following controls and specify the section of the oscilloscope controls in which they are located.

$$
\text { Sections: } \begin{aligned}
M= & \text { mainfraine control group } \\
V= & \text { vertical control group } \\
H= & \text { horizontal control group } \\
& \text { (time base) }
\end{aligned}
$$

—a. scope ground jack
b. level control
c. external input jack
d. volts/div control
e. intensity control
f. line trigger source control
g. ac/de coupling control (for signal measured/displayed)
\qquad h. input ground control i. beam finder
j. power switch
___ k. automatic trigger mode control
_ ! . seconds/division control
___m. m /- slope control
_n. external trigger source control
___ o. single sweep/reset mode control
P. graticule
_q. focus control
__r. input jack (for signal measured/displayed)
_ s. calibrator
__ t. up/down position control for trace
\qquad u. left/right position control for trace
2. Using direct coupling, how many vertical divisions are required to display an 8 -volt (peak-to-peak) waveform with the vertical volts-per-division control set to $2 \mathrm{~V} /$ division?

$$
\text { number of divisions }=
$$

\qquad
3. Using direct coupling, how many vertical divisions are required to display a 2.5 -volt (peak-to-peak) waveform with the vertical volts-per-division control set to $0.2 \mathrm{~V} /$ division?
number of divisions $=$ \qquad

VERTICAL

MAINFRAME

HORIZONTAL
4. How many horizontal divisions are required to display a sine wave with a period of 1.6 milliseconds with the horizontal seconds-per-division control set to $0.5 \mathrm{~ms} / \mathrm{d}$ ivision?
number of divisions $=$ \qquad
5. How many horizontal divisions are required to display a sine wave with a frequency of 5 kilohertz with the horizontal seconds-per-division control set to $0.1 \mathrm{~ms} /$ division?

$$
\text { number of divisions }=
$$

\qquad
For the following waveforms shown as they would appear on the graticule of an oscilloscope, determine the values of voltage, period, and frequency as specified:
6. $\mathrm{V} / \mathrm{div}=0.2 \mathrm{~V}$
$\mathrm{T} / \mathrm{div}=2 \mathrm{~ms}$
a. $\mathbf{E}_{\mathrm{pp}}=$ \qquad
b. $\mathbf{E}_{\mathrm{ph}}=$ \qquad
c. $\mathbf{E}_{\text {rins }}=$ \qquad
d. $\mathrm{T}=$ \qquad
e. $f=$ \qquad

7. $\mathrm{V} / \mathrm{div}=5 \mathrm{~V}$
$\mathrm{T} / \mathrm{div}=0.01 \mu \mathrm{~s}$
a. $\mathbf{E}_{\mathbf{p p}}=$ \qquad
b. $\mathbf{E}_{\mathbf{p k}}=$ \qquad
c. $\mathbf{E}_{\mathrm{rins}}=$ \qquad
d. $\mathbf{T}=$ \qquad
e. $f=$ \qquad

Practice Problems
8. $\mathrm{V} / \mathrm{div}=0.1 \mathrm{~V}$

T/div $=50 \mu \mathrm{~s}$
a. $E_{p p p}=$ \qquad
b. $\mathbf{E}_{p \mathrm{k}}=$ \qquad
c. $\mathbf{E}_{\mathrm{rms}}=$ \qquad
d. $T=$ \qquad
e. $f=$ \qquad

10. $V / \mathrm{div}=10$
$T / \mathrm{div}=10 \mathrm{~ms}$
a. $\mathbf{E}_{\text {pp }}=$
b. $\mathbf{E}_{\mathrm{pl}}=$ \qquad
c. $\mathbf{E}_{\text {rims }}=$
d. $\mathrm{T}=$
e. $\mathbf{f}=$ \qquad

1. Using the oscilloscope diagram on the following page, identify the location of each of the controls listed below by placing the letter designator of the control in the space beside the name of the control:

The following 20 questions are multiple choice; circle the letter of the mostcorrect answer.
2. The three basic functions that an oscilloscope performs are
a. waveform observation, current measurement, frequency measurement
b. frequency measurement, voltage measurement, period measurement
c. waveform observation, voltage measurement, time measurement
d. period measurement, power measurement, current measurement
3. The two major segments of the oscilloscope are the
a. CRT and electron gun
b. screen and vertical section
c. CRT and controlling circuits
d. vertical and mainframe circuits
4. The CRT is composed of three major parts:
a. screen, deflection system, and screen coating
b. electron gun, deflection system, and screen
c. electron gun, cathode, and grid
d. anode, cathode, and pentode
5. The controlling circuits are divided into three major groups
a. mainframe, underframe, and overframe control groups
b. mainframe, vertical, and CRT
c. mainframe, vertical, and horizontal
d. front, back, and side
6. The type of deflection employed by most oscilloscopes is
a. magnetic
b. electrostatic
c. yoke
d. both a and c

Quiz

7. The ability of a material to emic light after being struck by electrons thus enabling you to see the location of the electron beam on the screen of the oscilloscope is called
a. phosphorescence
b. luminance
c. lasing
d. ionization
8. The purpose of the power switch is to control power
a. to the circuit under test
b. only to the CRT
c. to all scope circuits
d none of the above
9. The purpose of the intensity control is to adjust the
a. graticule illumination
b. brilliance of the electron trace
c. current to the circuit under test
d. calibrator output
10. The purpose of the focus control is to focus the
a. scale illumination
b. election trace to a spot or line
c. graticule markings
d. output pulses of the calibrator
11. The purpose of the beam finder control is to
a. automatically reposition the trace
b. turn off the scope power until the beam is found
c. reduce deflection potentials so that the trace appears
d. none of the above
12. The purpose of the calibrator is to
a. supply a square wave signal of known amplitude and frequency for checking the scope's accuracy (i.e. calibration)
b. supply an appropriate signal used to self-calibrate the scope
c. automatically calibrate the scope each time it is curned on
d. band c
13. Each small mark on the center vertical and horizontal graticule lines is
a. $1 / 10$ of a major division
b. $1 / 2$ of a major division
c. $1 / 4$ of a major division
d. $2 / 10$ of a major division
14. The purpose of the vertical position control is to control the
a. vertical position of the trace
b. vertical attitude of the scope
c. position of the vertical attenuator knob
d none of the above
15. The purpose of the vertical attenuator (voles/division control) is to
a. control the level of the signal from the oscilloscope vertical circuits to the circuit under test
b. attenuate the signal to the triggering circuits
c. select the number of volts each vertical graticule major division represents
d. none of the above
16. The purpose of the ac/dc vertical input coupling control is to
a. turn on an ac or dc voltage when switched to the corresponding position
b. eliminate the dc component of a waveform when in the ac position
c. eliminate the ac component of a waveform when in the dc position
d. none of the above
17. The purpose of the ground vertical input (pushbutton) control is to
a. ground the chassis of the scope to earth ground
b. remove the input signal from the vertical deflection circuits
c. apply ground potential (zero volts) to the vertical deflection circuits in order to set the trace to zero or reference position before taking measurements
d. both b and c
18. The purpose of the horizontal position control is to control the horizontal position of the
a. time/division knob
b. trace
c. scope
d. graticule markings
19. The purpose of the horizontal seconds/division control is to
a. set the number of seconds/division each major horizontal graticule mark represents
b. set the speed at which the trace (electron beam) moves from right to left across the face (graticule) of the scope
c. assist in determining the period and hence frequency of a measured waveform
d. all of the above
20. The purpose of the triggering controls is to select when
a. the scope will reset
b. the trace will be blanked (disappear)
c. the sweep will begin
d. all of the above
21. For most general-purpose measurements, the triggering method to use is to set the scope controls on
a. non-automatic. line triggering
b. automatic, external triggering
c. internal, automatic triggering
d. external, line triggering
22. Using direct coupling, how many divisions (vertically and horizontally) are required to display one complete cycle of a 3 -volt (peak-in-peak), 40 kilohertz waveform with the vertical volts/division control set to $0.5 \mathrm{~V} /$ division and the horizontal seconds/division control set to $5 \mu \mathrm{~s}$ division?
number of vertical divisions $=$ number of horizontal divisions $=$
\qquad
23. $\mathrm{V} / \mathrm{div}=0.5$
$\mathrm{T} / \mathrm{div}=10 \mathrm{~ms}$
a. $\mathbf{E}_{p p}=$
b. $\mathbf{E}_{[2 \mathrm{~h}}=$
c. $\mathrm{E}_{\text {rms }}=$
d. $\mathrm{T}=$
e. $1=$ \qquad

24. $\mathrm{V} / \mathrm{div}=0.2$
$\Gamma / \mathrm{div}=2 \mu \mathrm{~s}$
a. $\mathbf{E}_{p p}=$ \qquad
b. $\mathbf{E}_{\mathrm{pk}}=$ \qquad
c. $\mathbf{E}_{\mathrm{rmis}}=$ \qquad
d. $\mathrm{T}=$
e. $\mathrm{f}=$ \qquad

25. $\mathrm{V} / \mathrm{div}=2$
$\mathrm{T} / \mathrm{div}=0.2 \mathrm{~ms}$
a. $\mathbf{E}_{p p}=$
b. $\mathbf{E}_{p \mathrm{k}}=$
c. $\mathrm{E}_{\mathrm{rms}}=$
d. $\mathrm{T}=$
e. $\int=$ \qquad

26. $\mathrm{V} / \mathrm{div}=5$
$1 / \mathrm{div}=1 \mathrm{~ms}$
a. $\mathrm{E}_{\mathrm{pp}}=$
b. $\mathbf{E}_{\mathrm{p}^{k}}=$
c. $\mathbf{E}_{\text {rims }}=$
d. $T=$
e. $f=$

Quiz
27. $V / \mathrm{div}=10$
$\mathrm{T} / \mathrm{div}=0.5 \mathrm{~ms}$
$\mathrm{E}=$

LESSON 4

The Sine Wave and Phase

In this lesson, the use of the sine function to determine instantaneous voltage and current values of a sine wave is discussed. The relationship between the period of a sinusoidal waveform and the electrical degrees of a cycle is described. The radian as a unit of angular measure is introduced. It is explained how to determine and specify the phase relationships of sinusoidal waveforms and the use of phasor notation is described.

At the end of this lesson you should be able to:

1. Determine the instantaneous value of a waveform at a specified angle using the equation $e_{1}=E_{p k} \sin \theta$ when given the amplitude of a sinusoidal waveform and a number of degrees into the waveform cycle
2. Determine the instantaneous value of a waveform at a specified time using the equation $e_{1}=E_{p k} \sin (360 f t)$ when given the amplitude and frequency of a sinusoidal waveform and an elapsed tine into the wave form.
3. Plot a sine wave having a specified amplitude by using the equation $e_{1}=$ $E_{p k} \sin \theta$ using 10° or 15° intervals.
4. Define the term sinusoidal.
5. Define the term non-sinusoidal.
6. Identify waveforms as being either sinusoidal or non-sinusoidal
7. Express an angle in radians when given its value in degrees.
8. Express an angle in degrees when given its value in radians.
9. Specify the phase relationship of two sinusoidal waveforms by stating the lead or lag difference of one waveform from the other and the angular difference between the two waveforms.
10. Given a pair of sinusoidal waveforms, represent each pair by an equivalent phasor diagran showing both phase relationships and magnitudes.
11. Sketch the sinusoidal waveform representation of two sinusoidal waveforms showing correct amplitudes and phase relationships when given a phasor diagram of the two waveforms.
12. Specify the lead or lag difference and the angular difference of two sinusoidal waveforms when given a phasor diagrant of the two waveforms.

Introduction

In the last lesson discussion departed from the sime function and its relation to the sinusoidal ac waveform to investigate the practical operation and use of the oscilloscope. In Lesson 2 the relationship between the period and frequency of a periodic ac waveform was discussed and some practical examples were analyzed. Three ways in which a sinusoidal ac voltage's amplitude may be specified were introduced: in terms of its peak. peak-to-peak or RMS amplitude The concept of trigonometric functions and specifically, the sine function, was introduced The use of the table of trigonometric functions and how to determine the value of the sine function for any angle 0° to 360° were explained.

Instantaneous Values of Electrical Degree Points

In Lesson 2 the concept of instantaneous voltage was introduced briefly during an explanation of the 0.707 constant. The concept of instantaneous voltage is vital to an understanding of an ac waveform. Therefore, this section describes in detail exactly what is meant by the instantaneous voltage of a sinusoidal waveform.

Note that the sine wave shown in Figure 4.1 has a peak amplitude of 10 volts. If the voltage is measured at various instantaneous points throughout the cycle, however, it will be found that the voltage is not always 10 volts. At the beginning of the cycle, the voltage is zero volts. As the cycle progresses, the value of the voltage increases until onequarter of the way through the cycle, at 90°, the voltage is at its maximum positive value, at its peak of 10 volts

Figure 4.1 A $10 V_{p A} A C$ Waveform
Obviously, the voltage when going from zero volts to 10 volts had to increase through many instantaneous values. They are called instantaneous because they are not constant. They are only momentary. They are that particular value only for an instant.

Past 90°, the instantaneous value of the voltage decreases until at 180° through the cycle, it is zero volts again. The negative alternation or half-cycle is simply a mirror image of the positive half-cycle. Recall that instantaneous values of the negative halfcycle, however, are said to be negative voltages since the polarity of this cycle is opposite that of the first half-cycle.

Sine Wave Instantaneous Values

The relationship of the sinusoidal waveform to the trigonometric sine function is useful in determining the instantaneous value of a sinusoidal voltage or current waveform at any electrical degree point. The relationship of instantaneous voltage values to the sine function is expressed mathematically by equation 4-1,

$$
\begin{equation*}
\mathbf{e}_{\mathrm{i}}=\mathbf{E}_{\mathbf{p k}} \sin \theta \tag{4-1}
\end{equation*}
$$

where e_{T} is the instantaneous voltage or current value at the electrical degree point theta; $E_{p k}$ is the peak value (maximum amplitude) of the sinusoidal waveform being considered; and sine of theta is the value of the trigonometric sine function of the electrical degree point theta where an instantaneous value is desired.

For example, suppose you wanted to know the instantaneous amplitude of a 40 -volt peak sinusoidal voltage such as the one shown in Figure 4.230° into the cycle. This can be calculated using equation 4-1:

$$
\begin{aligned}
\mathbf{e}_{1} & =\mathbf{E}_{\mathbf{p} k} \sin \theta \\
& =40 \mathrm{~V} \sin 30^{\circ} \\
& =40 \mathrm{~V}(0.5) \\
& =20 \mathrm{~V}
\end{aligned}
$$

The instantaneous voltage at 30° is 20 volts.
This calculation was comparatively simple since theta was between 0° and 90°, and therefore, the sine of theta could easily be determined from almost any trigonometric table.

Angles Greater Than 90°

Suppose, however, the angle theta at which you want to determine the instantaneous voltage is an angle greater than 90°. To find the sine of theta then, you must first determine the first quadrant equivalent angle as discussed in Lesson 2. The chart for determining equivalent angles from Lesson 2 is shown again in Figure 4.3.
For example, suppose you wanted to know the instantaneous voltage amplitude of a 50volt peak waveform at 200° into the cycle as illustrated in Figure 4.4. It is calculated:

$$
\begin{aligned}
\mathbf{e}_{\mathbf{i}} & =\mathbf{E}_{\mathbf{p} \mathbf{k}} \sin \theta \\
& =50 V \sin 200^{\circ}
\end{aligned}
$$

Figure 4.2 A $40 V_{p^{4}} A C$ Waveform

Figure 4.3 Charl for Determining Equivalent Angles

Figure 4.4200° Point of a $50 V_{p h} A C$ Waveform

Plotting a Sine Wave - Electrical Degrees
200° is in the third quadrant. It is in the first-half of the negative half-cycle of the waveform. From Figure 4.3, to find the lirst quadrant equivalent (or first-half of the positive half-cycle equivalent) angle of 200°. 180° must be subtracted from the angle 200° This yields a result of 20° as follows:

$$
\begin{aligned}
\theta_{1} & =\theta_{111}-180^{\circ} \\
& =200^{\circ}-180^{\circ} \\
& =20^{\circ}
\end{aligned}
$$

I his 20° is the angle of which you must find the sine.

$$
\begin{aligned}
\mathbf{e}_{\mathbf{i}} & =\mathbf{E}_{\mathbf{p k}} \sin \theta \\
& =50 \mathrm{~V} \sin 20^{\circ} \\
& =50 \mathrm{~V}(0.3420) \\
& =17.1 \mathrm{~V}
\end{aligned}
$$

But this value of voltage lies in the negative half-cycle, and therefore, it is a negative value of voltage. Thus, the instantaneous voltage of the 50 -volt peak sinusoidal waveform 200° into the cycle is -17.1 volts. Remember, instantaneous values for angles from 180° to 360° will be negative as shown in Figure 4.5.

Plotting a Sine Wave - Electrical Degrees

Since equation 4- 1 provides instantaneous values of a sinusoidal waveform, the entire waveform can he plotted using this equation. For example, suppose you wanted to plot a sinusoidal waveform of 20 -volts peak amplitude versus time. Using the equation 4-1,

$$
e_{\mathrm{i}}=20 \mathrm{~V} \sin \theta
$$

the instantaneous value of voltage at any value of theta into the cycle can be determined.

Figure 4.5 Instantaneous Values for Angles from 180° to 360° are Negative

To help vou understand this concept, the instantaneous values for a 20 -volt peak waveform will be calculated at 30° waveform increments throughout the cycle beginning at 0°. This will be very similar to the way the sine function was plotted in Lesson 2. When the electrical degrees of the cycle progress beyond 90° then equivalent quadrant 1 angles must he calculated as shown in the following calculations. Either a $0^{\circ}-90^{\circ}$ trigonometric table or a calculator with trigonometric functions can be used to determine sine theta when performing the calculations.

$$
\begin{aligned}
& \text { Point 1: } 0^{\circ} \\
& \begin{aligned}
\mathbf{e}_{\mathbf{i}} & =20 \mathrm{~V} \sin \theta \\
& =20 \mathrm{~V}\left(\sin 0^{\circ}\right) \\
& =20 \mathrm{~V}(0) \\
& =0 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

Point 2: 30°
$e_{i}=20 V \sin \theta$
$=20 \mathrm{~V}\left(\sin 30^{\circ}\right)$
$=20 \mathrm{~V}(+0.5)$

$$
=10 \mathrm{~V}
$$

Point 3: 60°
$e_{i}=20 V \sin \theta$
$=20 \mathrm{~V}\left(\sin 60^{\circ}\right)$
$=20 \mathrm{~V}(+0.866)$
$=+17.32 \mathrm{~V}$
Point 4: 90°
$\mathbf{e}_{\mathrm{i}}=20 \mathrm{~V} \sin \theta$
$=20 \mathrm{~V}\left(\sin 90^{\circ}\right)$
$=20 \mathrm{~V}(+1)$

$$
=+20 \mathrm{~V}
$$

Point 5: 120°
$e_{i}=20 V \sin \theta$

$$
=20 \mathrm{~V}\left(\sin 120^{\circ}\right)
$$

$$
=20 \mathrm{~V}\left(\sin 60^{\circ}\right)^{*}
$$

$$
=20 \mathrm{~V}(+0.866)
$$

$$
=+17.32 \mathrm{~V}
$$

$$
\theta_{1}=180^{\circ}-\theta_{11}
$$

$$
=180^{\circ}-120^{\circ}
$$

$$
=60^{\circ}
$$

Point 6: 150°

$$
e_{i}=20 V \sin \theta
$$

$$
=20 \mathrm{~V}\left(\sin 150^{\circ}\right)
$$

$$
=20 \mathrm{~V}\left(\sin 30^{\circ}\right)^{*}
$$

$$
=20 V(+0.5)
$$

$$
=+10 \mathrm{~V}
$$

$$
\theta_{1}=180^{\circ}-\theta_{11}
$$

$$
=180^{\circ}-150^{\circ}
$$

$$
=30^{\circ}
$$

Point 7: 180°
$e_{i}=20 V \sin \theta$
$=20 \mathrm{~V}\left(\sin 180^{\circ}\right)$
$=20 \mathrm{~V}\left(\sin 0^{\circ}\right)^{*}$
$=20 \mathrm{~V}(0)$

$$
=0 \mathrm{~V}
$$

$$
* \theta_{1}=180^{\circ}-\theta_{11}
$$

$$
=180^{\circ}-180^{\circ}
$$

$$
=0^{\circ}
$$

Point 8: 210°

$$
\begin{aligned}
\mathbf{e}_{\mathbf{i}} & =20 \mathrm{~V} \sin \theta \\
& =20 \mathrm{~V}\left(\sin 210^{\circ}\right) \\
& =20 \mathrm{~V}\left(\sin -30^{\circ}\right)^{*} \\
& =20 \mathrm{~V}(-0.5)^{* *} \\
& =-10 \mathrm{~V} \\
{ }^{*} \theta_{1} & =-\left(\theta_{111}-180^{\circ}\right) \\
& =-\left(210^{\circ}-180^{\circ}\right) \\
& =-30^{\circ}
\end{aligned}
$$

**Note:
$\sin (-\theta)=-\sin \theta$
i.e.

$$
\begin{aligned}
\sin \left(-30^{\circ}\right) & =-\left(\sin 30^{\circ}\right) \\
& =-0.5
\end{aligned}
$$

Point 9: 240°

$$
e_{i}=20 \mathrm{~V} \sin \theta
$$

$$
=20 \mathrm{~V}\left(\sin 240^{\circ}\right)
$$

$$
=20 \mathrm{~V}\left(\sin -60^{\circ}\right)^{*}
$$

$$
=20 \mathrm{~V}(-0.866)
$$

$$
=-17.3 \mathrm{~V}
$$

$$
* \theta_{1}=-\left(\theta_{111}-180^{\circ}\right)
$$

$$
=-\left(240^{\circ}-180^{\circ}\right)
$$

$$
=-60^{\circ}
$$

Point 10: 270
$e_{\mathrm{i}}=20 \mathrm{~V} \sin \theta$

$$
=20 \mathrm{~V}\left(\sin 270^{\circ}\right)
$$

$$
=20 \mathrm{~V}\left(\sin -90^{\circ}\right)^{*}
$$

$$
=20 \mathrm{~V}(-1)
$$

$$
=-20 \mathrm{~V}
$$

$$
* \theta_{\mathrm{I}}=\left(\theta_{111}-180^{\circ}\right)
$$

$$
=-\left(270^{\circ}-180^{\circ}\right)
$$

$$
=-90^{\circ}
$$

*First quadrant equivalent angle.

Point 11: 300

$$
\begin{aligned}
\mathbf{e}_{\mathrm{i}} & =20 \mathrm{~V} \sin \theta \\
& =20 \mathrm{~V}\left(\sin 300^{\circ}\right) \\
& =20 \mathrm{~V}\left(\sin -60^{\circ}\right)^{*} \\
& =20 \mathrm{~V}(-0.866) \\
& =-17.3 \mathrm{~V} \\
*_{\theta_{1}} & =-\left(360^{\circ}-\theta_{1 \mathrm{~V}}\right) \\
& =-\left(360^{\circ}-300^{\circ}\right) \\
& =-60^{\circ}
\end{aligned}
$$

Point 12: 330°
$\mathrm{e}_{\mathrm{i}}=20 \mathrm{~V} \sin \theta$
$=20 \mathrm{~V}\left(\sin 330^{\circ}\right)$
$=20 \mathrm{~V}\left(\sin -30^{\circ}\right)^{*}$
$=20 \mathrm{~V}(-0.5)$
$=-10 \mathrm{~V}$
${ }^{*} \theta_{1}=-\left(360^{\circ}-\theta_{1 v}\right)$
$=-\left(360^{\circ}-330^{\circ}\right)$
$=-30^{\circ}$
Point 13: 360°
$e_{i}=20 \mathrm{~V} \sin \theta$
$=20 \mathrm{~V}\left(\sin 360^{\circ}\right)$
$=20 \mathrm{~V}\left(\sin 0^{\circ}\right)^{*}$
$=20 \mathrm{~V}(0)$
$=0 \mathrm{~V}$
$\theta_{1}=-\left(360^{\circ}-\theta_{\mathrm{IV}}\right)$
$=-\left(360^{\circ}-360^{\circ}\right)$
$=-\left(0^{\circ}\right)$

$$
=0^{\circ}
$$

*First quadrant equivalent angle.

All of these calculated instantaneous voltage values can be plotted in graph-form as shown in Figure 4.6. The electrical degrees are plotted on the X axis. If these points are connected with a smooth curve, the result is a sinusoidal waveform with a peak amplitude of 20 volts. Obviously, this is the same waveform as was plotted for the sine function in Lesson 2 modified, of course, by the 20 volts amplitude.

Figure 4.6 Instantaneous Voltage Values of a $20-V_{p k}$ Sine Wave at 30° Increments

Instantaneous Current

The current that flows as a result of this applied sinusoidal voltage will also be a sinusoidal waveform. The peak value of the current can be calculated. The peak value of current in a resistive circuit is simply the peak value of voltage divided by the resistance in the circuit:

$$
\begin{equation*}
\mathbf{I}_{\mathbf{p k}}=\frac{\mathbf{E}_{\mathbf{p k}}}{\mathbf{R}} \tag{4-2}
\end{equation*}
$$

Using equation $4-2$, if the 20 -volt peak waveform is applied to a resistance of 10 ohms as shown in Figure 4.7a, a peak current of 2 amperes will be produced. The calculation is:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{pk}} & =\frac{E_{p k}}{R} \\
& =\frac{20 \mathrm{~V}}{10 \Omega} \\
& =2 \mathrm{~A}
\end{aligned}
$$

The waveform of this curient is shown graphically in Figure 4.7b.

The instantaneous voltage equation $4-1$ can be used in Ohm's law to obtain an equation for instantaneous current in the circuit.

$$
i_{i}=\frac{e_{i}}{R}
$$

Substituting equation 4-1,

$$
i_{i}=\frac{E_{p k} \sin \theta}{R}
$$

Since $\frac{E_{p k}}{K}$ is the peak current, then

$$
\begin{equation*}
\mathbf{i}_{\mathbf{i}}=\mathbf{I}_{\mathbf{p l}} \sin \theta \tag{4-3}
\end{equation*}
$$

Note this equation is similar to the equation used to calculate the value of voltage
Therefore, the instantaneous value of current at any electrical degree point of the current waveform can be calculated in the same way an instantaneous voltage value is calculated

For example, if the instantaneous current value of this 2 -ampere waveform at 30° is desired as shown in Figure 4.8, the known values can be substituted in equation 4-3 to calculate i_{i} :

$$
\begin{aligned}
\mathbf{i}_{\mathbf{i}} & =\mathbf{I}_{\mathrm{pl}} \sin \theta \\
& =2 \mathrm{~A} \sin 30^{\circ} \\
& =2(0.5) \\
& =1 \mathrm{~A}
\end{aligned}
$$

The instantaneous current value at the 30° point of the current waveform is 1 ampere.

Sinusoidal Versus Non-Sinusoidal Waveform
As expressed previously in Lesson 2, a sinusoidal waveform can be defined as any waveform that may be expressed mathematically by using the sine function. The sinusoidal waveform always has the same general appearance shown in Figure 4.9.

a

Figure 4.7. a. AC Circuit ; b. Current Waveform

Figure 4.8 Instantaneous Value of Current 30° Point of Current Waveform

Figure 4.9 Sinusoidal Waveforms

There are also, however, non-sinusoidal waveforms. As its name implies, a nonsinusoidal waveform is any waveform that cannot be expressed mathematically by the sine function. For example, the waveforms shown in Figure 4.10 are non-sinusoidal. Each of those waveforms has a distinctly different shape than that of the sine wave.

Instantaneous Values at Time intervals

So far in this lesson, you have seen how an instantaneous voltage or current value of a sine wave can be determined at any degree point in its cycle using equations $4-1$ and 4-3. Therefore, if you know $E_{p k}$, you can determine $e_{\text {, }}$ at any number of degrees. θ, into the cycle.
Now, suppose, however, it is necessary to calculate e_{1} at some time interval into the cycle. That too, can be done Previously, you were told that every periodic waveform such as the one shown in Figure 4.11 has a period which is related to its frequency. The equation which states this relationship is:

$$
\begin{equation*}
f=\frac{1}{T} \tag{4-4}
\end{equation*}
$$

Modifying the $\mathbf{e}_{\mathbf{i}}=\mathbf{E}_{\mathrm{ph}} \sin \boldsymbol{i n}$ Equation

Recall that the period, T, of a sinusoidal waveform is the time duration of one cycle. and that a cycle is the result of a conductor traveling in a circular path through 360 electrical degrees. Therefore, 360 electrical degrees is equivalent to the period of a cycle as shown in Figure 4.11. Moreover, as illustrated in Figure 4.12 an amount of time, t, less than the period of a cycle. T, can be equated with a number of electrical degrees, 0. less than 360 degrees.

Figure 4.10 Non-sinusoidal Waveforms

Figure 4.11 Period of a Sine Wave

Figure 4.12 Relationship of t to θ

Consider the waveform shown in Figure 4.13 that has a frequency of 1 cycle per second (l cps or 1 hertz). In previous lessons you recall that the period is obtained from a rearrangement of equation $4-4$ as in equation 4-5.

$$
\begin{equation*}
T=\frac{1}{f} \tag{4-5}
\end{equation*}
$$

Using equation 4-5, the period is calculated

$$
\begin{aligned}
T & =\frac{1}{f} \\
& =\frac{1}{1 H z} \\
& =1 \mathrm{~s}
\end{aligned}
$$

The period is 1 second. Therefore, after one second, the waveform has passed through 360 degrees. That is, one second in terms of time is the same as 360 degrees in terms of electrical degrees. After one-fourth second the waveform has passed through 90° as shown in Figure 4.14, and after one-half second it has passed though 180°. One-half second is the same as 180 electrical degrees at this frequency.

Expressing Theta as a Function of f and t

Note that one-half second (an amount of time into the cycle) is the same fraction of 1 second (the period) that 180 degrees (the number of electrical degrees corresponding to the time into the cycle) is of 360 degrees (the number of degrees corresponding to the period). Both ratios equal one-half. Expressed mathematically:

$$
\begin{aligned}
\frac{t}{T} & =\frac{0.5 \mathrm{~s}}{1 \mathrm{~s}} & \frac{\theta}{360^{\circ}} & =\frac{180^{\circ}}{360^{\circ}} \\
& =\frac{1}{2} & & =\frac{1}{2}
\end{aligned}
$$

Therefore, the ratio of $\frac{t}{T}$ is the same as the ratio of $\frac{\theta}{360^{\circ}}$.

Figure 4.13 Sine Wave With a Period of 1 Second

Figure $4.141 / 4 s$ and $1 / 25$ Points of a Sine Wave With $T=1 \mathrm{~s}$

If the frequency of a waveform changes, the electrical degrees of the waveform will correspond to different times (absolute times) into the cycle because the period of the cycle has changed. However if an instantaneous voltage is required at a particular elapsed time, t, into the cycle the ratio of the time elapsed into the period divided by the period will be the same as the electrical degrees at time, t, into the cycle divided by 360 degrees. The relationship of T, t, θ, and 360 electrical degrees is shown graphically in Figure 4.15.

Interms of a ratio:

$$
\begin{equation*}
\frac{1}{T}=\frac{\theta}{360^{\circ}} \tag{4-6}
\end{equation*}
$$

If both sides of this equation are multiplied by 360°,

$$
\begin{aligned}
360^{\circ}\left(\frac{t}{T}\right) & =\left(\frac{\theta}{360^{\circ}}\right) 360^{\circ} \\
360^{\circ}\left(\frac{t}{T}\right) & =\theta
\end{aligned}
$$

Since frequency equals $1 / T$, the equation can be rewritten

$$
\begin{align*}
& \theta=360^{\circ}\left(\frac{t}{T}\right) \tag{4-7}\\
& \theta=360^{\circ}\left(\frac{1}{T}\right) t \\
& \theta=360^{\circ}(f) t \tag{4-8}
\end{align*}
$$

Now, when determining the instantaneous voltage of an ac waveform, theta can be replaced in the expression by 360 ft because theta equals 360 times f times t. Thus, equation $4-1$ for the instantaneous value of the voltage can be rewritten:

$$
\begin{align*}
\mathbf{e}_{\mathbf{i}} & =\mathbf{E}_{\mathbf{p k}} \sin \theta \\
& =\mathbf{E}_{\mathbf{p k}} \sin (360 \mathrm{ft}) \tag{4-9}
\end{align*}
$$

At first glance 360 ft may not appear to yield θ in degrees. But remember, as long as you express the frequency (f) in hertz, and the time elapsed into the cycle (t) in seconds, that 360 ft will yield θ in degrees.

Instantaneous Voltages at Specific Times

For example, consider a 50 -volt peak, 4-kilohertz waveform such as the one in Figure 4.15. The period is 250 microseconds. Suppose you want to k now the instantaneous amplitude of the waveform 100 microseconds into the cycle. Using equation 4-9, the instantaneous voltage can be calculated:

Figure 4.15 Relationship of T, t, θ, and 360
Electrical Degrees

$$
\begin{aligned}
\mathbf{e}_{i} & =\mathbf{E}_{p \mathrm{ph}} \sin (360 \mathrm{ft}) \\
& =50 \mathrm{~V} \sin (360 \mathrm{ft}) \\
& =50 \mathrm{~V} \sin (360 \times 4000 \mathrm{~Hz} \times 100 \mu \mathrm{~s}) \\
& =50 \mathrm{~V} \sin \left(360 \times 4 \times 10^{+3} \times 0.1 \times 10^{-3}\right) \\
& =50 \mathrm{~V} \sin \left(144^{\circ}\right) \\
& =50 \mathrm{~V}(0.5878) \\
& =29.39 \mathrm{~V}
\end{aligned}
$$

29.39 volts is the instantaneous voltage 100 microseconds into a cycle of an ac voltage of 50 volts peak and a frequency of 4 kilohertz.

Radians

An alternate unit of angular measure used when dealing with sinusoidal waveforms is the radian (abbreviated RAD). A radian is defined as the angle included within an arc equal to the radius of a circle. That is, if you measure off the radius of a circle on its edge as shown in Figure 4.16, the value of the angle ρ (greek letter rho) defined by the arc R is equal to one radian.

To help understand the radian, consider the following facts regarding a circle (Figure 4.17). The ancient Greeks discovered that the ratio of the circumference of a circle (the length or distance around a circle) to its diameter (how far it is from one side of the circle through the center to the other side of a circle) is always the same number no matter what the size of the circle. This number. which they labeled with the Greek letter pi (π), equals 3.14. Therefore, the ratio of circumference (c) to diameter (d) is a constant. Expressed mathematically, to two decimal places,

$$
\begin{equation*}
\frac{c}{d}=\pi=3.14 \tag{4-10}
\end{equation*}
$$

This means that the circumference of a circle is 3.14 times longer than its diameter or said another way, the diameter divides into the circumference 3.14 times.

The radius of a circle is one-half its diameter. Therefore, as shown in Figure 4.18, the radius will divide the circumference twice as many times as the diameter, 6.28 times ($2 \times 3.14=$ 6.28). The circumference of a circle (c) is 6.28 or 2π times longer than its radius. Expressed mathematically,

$$
\begin{equation*}
c=2 \pi R=6.28 R \tag{4-11}
\end{equation*}
$$

Since a radian is the number of degrees included within the arc marked off by the radius on the circumference, you should see that there are 6.28 , or 2π, radians in 360° (the number of degrees in a circle). Therefore, one radian equals 360° divided by 6.28 or 57.3° as shown in Figure 4.19. Expressed mathematically,

$$
\begin{aligned}
6.28 \mathrm{RAD} & =360^{\circ} \\
\operatorname{IRAD}(\rho) & =\frac{360^{\circ}}{6.28} \\
& =57.3^{\circ}
\end{aligned}
$$

Figure 4.16 The Unit Rho (ρ) is Equal to One Radian

Figure 4.17 Diameter and Circumference of a Circle

Figure 4.18 The Radius Will Divide a Circle Two Times More Than the Diameter

Instantaneous Voltage at Radian Rotation

The instantaneous voltage equation $4-9$,

$$
\begin{equation*}
e_{1}=E_{p k} \sin (360 f t) \tag{4-9}
\end{equation*}
$$

can be rewritten substituting 2π (the number of radians in 360°) for 360 . The resulting expression is:

$$
\begin{equation*}
e_{i}=E_{p k} \sin 2 \pi f t \tag{-14}
\end{equation*}
$$

Expressed in this $2 \pi \mathrm{ft}$ form of the angle theta has the dimensions of radians of angular rotation. The $2 \pi f$ portion of this equation is given the name ω (Greek letter omega). It is not the capital omega used for resistance measurements (Ω), but the lower-case omega that looks like a small w. This $2 \pi f$ form will be used at times in equations in the following lessons in this book.

Phase Relationships

An important basic concept included in the subject of ac is that of the phase relationship -called the phase angle - of two or more instantaneous waveforms.

Recall that in discussions in a previous lesson that when the single-loop generator began its rotation through the magnetic field its rotation began at a point where the induced voltage in the loop was a minimum. Thus, the sinusodial waveform it produced was like the one in Figure 4.20. In the following discussion it will be called waveform A.

Some time after this generator A has started, suppose that you decided to start another identical generator, generator B, and you want to compare its output voltage with that of the first generator. You wait until generator A has gone one-fourth turn before you start generator B and then observe the output voltage. B's output would appear as shown in Figure 4.21. Note that waveform B begins at the time that generator A is 90 degrees into its cycle because it began onefourth turn (90 degrees) later.

Figure 4.19 One Radian (ρ) Is Equivalent to 57.3°

Figure 4.20 Sinusoidal Waveforn A

Figure 4.21 Sinusoidal Waveforn B

Generator A will always be one-fourth turn (90 degrees) ahead of generator B. This can be shown by placing waveform B and waveform A on the same graph as shown in Figure 4.22. This angular difference between A and B is called the phase difference between A and B. In this case it is said that A leads B by 90 degrees.

Now, you can certainly start generator B whenever you like. If you were to wait less time before starting B, say half the time previously, then A would only lead B by 45 degrees, as seen in Figure 4.23. Or generator B could just as easily be started before generator A. If B starts 45 degrees before A, waveform B leads waveform A by 45 degrees as shown in Figure 4.24. If generator B were started 90 degrees before generator B the waveforms would be as shown in Figure 4.25 Waveform B leads A by 90 degrees. Note that in this discussion the generators are identical and the frequency of both waveforms is the same.

The phase angle, then, is just a convenient way of exactly describing the relationship of one sine wave to another.

In-Phase and Out-of-Phase

If both generators start at the same time, one wave runs simultaneously with the other as shown in Figure 4.26. This is a zero-degree phase difference. In a case such as this, the waves are said to be in phase.

If generator B waits until generator A has gone through one-half cycle before it starts, a 180 -degree phase difference will exist as shown in Figure 4.27. In this case, whenever wave A swings positive, wave B swings negative, and vice versa. Since both waves are always exactly the opposite, they are said to be inverted from each other, or 180° out of phase.

Figure 4.22 Waveform A Lends Waveform B by 90 Degrees

Figure 4.23 Waveform A Leads Waveform B b) 45 Degrees

Figure 4.24 Waveform B leads Waveform A by 45 Degrees

Now. up to this point, we've only specified that one wave leads another. This situation is much like two runners in a race as shown in Figure 4.28. You can say runner \mathbf{A} is in the lead. but you could just as well say that rumner B is lagging behind. Both mean the same thing; both are correct. Similarly, when describing the phase relationship of the two waveforms shown in Figure 4.22 you can say A leads B by 90 degrees or you can just as correctly say. 13 lags A by 90 degrees. Both statements mean the same thing. The 90 -degree phase difference is a cummon one, and it will be studied in more detail in later lessons. Therefore, it is important that you are able to recognize phase differences.

Determining Phase Difference for Partial Waveforms

In oscilloscope patterns, you may often have two waveforms shown and not really see the beginning of either wave. One of the simplest methods you can use to determine the phase difference is to first choose a point at which both waveforms are of the same instantaneous value of voltage or current. A convenient level to choose is the zero reference level. In Figure 4.29, waveform A and waveform B are the same value at all points where they cross the zero reference: zero volts. But, you must choose two points which are side by side and where waveform A is moving in the same direction as waveform B. That is, both must be either increasing or decreasing in amplitude. Points X and Y are side by side. and both waveforms are changing from their designated positive polarity to negative polarity, or decreasing. Between these two points, then, you can measure the phase angle. In this case that is 90 degrees.

Figure 4.25 Waveform B Leads Waveform A by 90 Degrees

Figure 4.26 Waveforms A and $B \operatorname{In}$ Phase

Figure 4.27 Waveforms A and B 180° Oul of Phase

W'hen observing waveforms on a scope. remember that times to the left on the time axis are earlier than times to the right. With this in mind, waveform 13 crosses the zero reference level sooner in time than does waveform A. Therefore, waveform B leads waveform A. Again, you could just as correctly state that waveform A lags waveform B by 90 degrees.

You could also look at the peaks as the reference level for comparing the phase relationships of iwo waveforms. In Figure 4.29, for example, you see that waveform B reaches its positive peak to the left of waveform A. Waveform A reaches its positive peak at the point where waveform B reaches a zero point later on. Waveform B leads waveform A by 90 degrees. Waveform B peaks and 90 degrees later waveform A peaks where B reaches a zero point

Summarizing, then, look for any two points on the waveform that have the same value and are moving in the same direction. Examine where the second waveform is with respect to the first.

Frequency of Waveforms Compared

An important fact that you must remember when comparing the phase differences of two or more waveforms is that all of the waveforms must be of the same frequency. The two waveforms of Figure 4.30 do not have the same frequency. Therefore, there is not a constant relationship between the two waveforms. Thus, any attempt to compare phase relationships of the two waveforms is futile; the results will be inaccurate.

Note that in this lesson in all discussions concerning the comparison of waveforms A and B, it was stated that generators A and B are identical. Therefore, the frequency of each waveform is identical

Figure 4.28 Runners A and B are Similar to Waveforms A and B

Figure 4.29 Measuring Phase Difference Using Waveforms

Figure 4.30 Two Sinusoidal Waveforms of Different Frequency

Conventional Phase Difference Specification

 There is another interesting point about the phase of waveforms. In Figure 4.31. waveform B leads wave A by 90 clegrees. Waveform A crosses the zero reference axis at point W. Note that if you look to the right, waveform B reaches a similar point (point Z) 270 degrees later on. Focusing on this relationship, it can be stated that waveform A leads waveform B by 270 degrees. Originally it was stated that waveform B leads A by 90 degrees. By comparing the phase at points X and Y this is verified.These different phase relationships illustrate a key point - there are many ways of correctly expressing the phase between two waveforms. By convention, however, usually an angle of less than 180° is used to specify the phase. In other words, if A leads B by 225°, it is more common to say that B lags A by 135°. Other equivalent specifications can be found because of the repetitive nature of the sine function, and these are just as correct.

Amplitude Versus Phase

Another important point about phase relationships is that the amplitude of a sine wave has no bearing on its phase. The phase relationship of two sine waves of different amplitude is determined in the same way as two sine waves of the same amplitude. For example in Figure 4.32 waveform B leads A by 90 degrees. B has a greater amplitude than A, but the frequency of both is the same. Therefore, it is possible to determine accurate phase relationships between the two waveforms.

Figure 4.31 Waveform A Leads Waveform B By 270°

Figure 4.32 Two Waveforms of Different A mplitudes

Phasor Notation

Thus far in this discussion of phase, sine wave plots of both waveforms have been used to determine and describe the phase. You probably have realized that if you wanted to decipher the phase relationships of three or more waveforms using these diagrams, it could become very tedious if not virtually impossible.

For example, in Figure 4.33 are three waveforms, A, B. and C. C leads A by 90 degrees, and is out of phase with B by 100 degrees. Although the phase relationships are simple, these diagrams are very complicated and there must be an easier way. There is. A method you can use to simplify the examination of phase relationships is called phasor notation. Ithe word phasor is a word meaning phase vector. What are phase vectors, and how can they help you keep track of phase relationships? First, you have to know what a vector is.

Vectors

A vector is defined as a line that represents a direction and whose length represents a magnitude. In Lesson 2, trigonometry was discussed and you were told how to find the value of a trigonometric function by using a 90 -degree trigonometric table. Also, a circle was divided into four quadrants and a line, A, rotated through various degree points as shown in Figure 4.34. This line will now be referred to as a vector. The vector extends from point 0 to some point A out on the circumference. By rotating the vector, $0-A$, any degree point from 0° to 360° can be indicated. By lengthening or shortening the vector line, any magnitude can be indicated. Vectors are used in this fashion to represent voltage and current phase relationships, and when they do they are called phasors.

Using Phasor Notation

Phasor notation can be used to represent the phase relationship between two sinusoidal waveforms such as those shown in Figure 4.35.

Figure 4.33 Three Different Sinusoidal Waveforms

Figure 4.34 Vector 0-A Can Represent Any Degree From 0° to 360°

Figure 4.35 Example Waveforms for Phasor Notation

Using Phasor Notation

When using phasor notation, first one waveform must be chosen as the reference. In this example, the reference will be waveform A. The reference waveform phasor, E_{A}. is then positioned along the X axis, as shown in Figure 4.36, at the zero-degree rotational reference. This phasor is a vector representing the voltage of an ac generator as its conductors are rotated through a magnetic field. By convention, this rotation will always be rotated in a counterclockwise (ccw) direction.

If you look at the waveform diagram of Figure 4.35, you see that waveform B leads waveform A by 90 degrees. Waveform B. then, can be represented by another phasor, E_{B}, placed so that it leads phasor E_{A} by 90 degrees. Since E_{A} is at the 0° point, and the phasors are to be rotated counter-clockwise. this means that phasor E_{13} should be placed at the 90° point as shown in Figure $\$.37$.

Since the two phasors, E_{A} and E_{B}, represent voltages generated in conductors. adding \mathbf{E}_{B} is like adding another conductor to the ac generator. Therefore, when the two conductors are rotated in the magnetic lield of the ac generator. the voltage from conductor \mathbf{E}_{B} will lead conductor \mathbf{E}_{A} by 90 degrees throughout the cycle as shown in Figure 4.38, and the waveform E_{B} will lead the waveform E_{A} by 90 degrees throughout the entire cycle. Thus, since the phasors represent voltages generated by conductors, the phasor representation of the generator action graphically shows the phase relationship of two or more waveforms throughout an entire cycle.
Remember that phasors that are positioned counter-clockwise from E_{A} will lead \mathbf{E}_{A}, and phasors positioned clockwise from $\mathbf{E}_{\boldsymbol{A}}$ will $\operatorname{lag} \mathrm{E}_{\mathrm{A}}$.

Figure 4.36 Phasor E_{A} Is at the 0° Point

Figure 4.37 Phasor E_{A} Leads Phasor E_{A} by 90 Degrees

Figure 4.38 Phasor E_{B} Leads E_{A} by 90 Degrees
Throughout the Entire Cycle

Phasor Magnitude

Recall that previously it was stated that a phasor is a vector that is a line whose position on a set of axis represents a direction and whose length represents a magnitude. As a result, the length of a phasor is proportional to the quantity it represents. For example, phasor E_{A} could be 8 units long to represent an 8 -volt peak voltage of waveform A, and phasor E_{B} could be 5 units long to represent a 5 -volt peak voltage of waveform B This is shown in Figure 4.39. Any waveform amplitude specification (peak, peak-to-peak, rms) can be used when specifying phasor length as long as you are consistent. If one phasor represents the peak amplitude, the other phasor must also represent peak amplitude.

In summary, the phasor diagram can show graphically both phase relationships and amplitude relationships of two or inore sinusoidal waveforms. The phasor diagram can be interpreted more easily than a waveform diagram

Phasor Notation Examples - Two Vectors

Suppose you want to represent in phasor notation the relationship of the two waveforms shown in Figure 4.40a. Note that waveform A leads waveform B by 90 degrees, and they both have the same peak amplitude. 5 volts. The phasor representation of their phase relationship would appear as shown in Figure 4.40 b . Waveform A has been selected as the reference waveform. Thus, phasor E_{A} (5 units in length) is placed at the 0° point.

Figure 4.39 Phasor Representation of W'aveforms A and B with Different Amplitudes

Figure 4.40 Two Waveforms 90° Out of Phase, E_{1} al 0° : a. Waveforms; b. Phasor Diagram

Since waveform A leads waveform B, phasor $E_{B}\left(5\right.$ units in length) is placed at $270^{\circ}, 90$ degrees out of phase with E_{A}. Both phasors have the same length since both represent the same peak amplitude, 5 volts. From the phasor diagram, then, you can interpret that E_{A} leads E_{B} by 90 degrees or that E_{B} lags E_{A} by 90 degrees.

As another example, suppose that you are shown the phasor cliagram illustrated in Figure 4.41a. What is represented? That diagram shows that E_{A} leads E_{B} by 90 degrees. It also shows that E_{A} and E_{B} are the same amplitude because phasor $\mathbf{E}_{\mathbf{A}}$ and $E_{1 s}$ are the same length. What would the waveforms represented by the phasor diagram look like?

The sinusoidal waveform representation of these waveforms is shown in Figure 4.416. The phasor diagram of Figure 4.41 a represents the voltages at the instantaneous degree point of point X showing F_{A} at the 90° point and F_{B} at the 0° point in Figure 4. 116 .

Figure $4.42 a$ shows a phasor diagram of two voltages which are the same amplitude, but 180 degrees out of phase. The sinusoidal waveforms showing this phase relationship are as shown in Figure 4.12b. Note that the waveform E_{A} is passing through zero amplitude at the 0° point and is increasing in a positive direction. To correspond to this, the phasor E_{A} is positioned at the 0° reference on the phasor diagram. The E_{B} waveform also is passing through zero amplitude but is increasing negatively, so the axis crossing point is at 180 electrical degrees. To represent this, the phasor is postioned at 180° on the phasor diagram.

Figure 4.43 shows two voltages of different amplitude that are in phase. Note that E_{A} is greater in amplitude than E_{B}, since it is longer than E_{B} on the phasor diagram

Figure 4.41 Two Waveforms 90° Out of Phase, E_{A} al 90° : a. Phasar Diagram; b. Waneforms

Figure 4.42 Two Waveforms 180° Oul of Phase. a. Phasor Diagran; b. Waveforms

Figure 4.43 Two In-Phase Waveforms with Different Amplitudes: a. Phasor Diagram b. Waveforms
Represented by Phasor Diagram

Phasor Notation Examples - Multiple Vectors

Phasor Notation Examples Multiple Vectors

So far, phase relationships between only two phasors or waveforms have been considered Suppose, however, that the phase relationships between three phasors, representing three waveforms must be considered. Figure 4.44 shows a phasor diagram of three voltages out of phase with one a nother, but of the same amplitude. The phase relationships can be described in several ways. \mathbf{E}_{B} leads E_{A} by 45 degrees. \mathbf{E}_{C} leads E_{A} by 90 degrees. And E_{C} leads E_{B} by 45 degrees. It could also be said that E_{B} lags $\mathbf{E}_{\mathbf{C}}$ by 45 degrees, or that \mathbf{E}_{A} lags \mathbf{E}_{B} by 45 degrees, or that E_{A} lags E_{C} by 90 degrees. All of these statements about the phasors in the diagram are true.

The sinusoidal waveforms showing these phase relationships would appear as shown in Figure 4.45. It should be obvious that reading the phasor diagram is much easier than deciphering a sine wave diagram.

Figure 4.46 is a phasor diagram of another example of three voltages out of phase. The phasor lines indicate that each voltage is of the same amplitude, but 120 degrees out of phase with each other. This type of phase relationship exists between the voltages in a three-phase power system as shown by the waveforms in Figure 4.47.

Figure 4.44 Phasor Diagram of Three Voltages Out of Phase

Figure 4.45 Waveforms of the Three Voltages Shown in the Phasor Diagram of Figure 4.44

Figure 4.16 Phasor Diagram of Three Voltages Out of Phase

It should be obvious that phasor notation greatly simplifies the visual description of the phase relationships of voltages. Phasors can also be used to show current relationships, or voltage-current relationships, or even power relationships. In fact, phasor diagrams showing voltage-current phase relationships are used extensively when working with ac A typical example is the phasor diagram of Figure 4.48 which shows a voltage leading a current by 90 degrees. In fact, as you will see in later lessons, one of the quantities in an ac circuit that is important is the phase angle the phase difference in electrical clegrees between the voltage applied to a circuit and the total circuit currem.

Summary

In this lesson you were shown how to calculate the instantaneous voltage or current at anv point in a sinusoidal waveform by using the sine function. The difference between simusoidal waveforms was clescribed and examples of each were shown. The relationship of the electrical degrees of a cycle and the period of a cycle was explained. The phase relationship of sinusoidal waveforms was clescribed and you were shown how to simplify the visualization of those phase relationships with vector notation by using phasors.

Figure 4.47 Waveforms of the Three Voltages of Figure 4.46

Figure 4.48 Voltage-Current Phasor Diagram

1. If the amplitude of a sine wave is $20 \mathrm{~V}_{p k}$, determine the instantaneotis amplitude of the sine wave $10^{\circ}, 150^{\circ}, 230^{\circ}$, and 300° into the cycle.

Solution:

The equation which relates the instantaneous amplitude of a sine wave at various degree points into the cycle is

$$
e_{i}=E_{p h} \sin \theta
$$

Since the amplitude is $20 \mathrm{~V}_{\mathrm{pk}}$ the equation can be rewritten as

$$
e_{i}=20 V \sin \theta
$$

Now, all you must do is evaluate the value of $\sin \theta$ at $10^{\circ}, 150^{\circ}, 230^{\circ}$ and 300° into the cycle and use the equation to determine the instantaneous amplitudes at these points

```
Al \(10^{\circ}: \quad \sin 10^{\circ}=0.1736\)
\(e_{1}=20 \mathrm{~V}(0.1736)=3.47 \mathrm{~V}\)
At \(150^{\circ}: \quad \sin 150^{\circ}=\sin \left(180^{\circ}-150^{\circ}\right)=\sin 30^{\circ}=0.5\)
\(e_{i}=20 \mathrm{~V}(0.5)=10 \mathrm{~V}\)
At \(230^{\circ}: \quad \sin 230^{\circ}=\sin \left(230^{\circ}-180^{\circ}\right)=\sin 50^{\circ}=0.7660\)
But for angles greater than \(180^{\circ}\), the sine wave is negative; therefore,
\(\sin 230^{\circ}=-0.7660\)
\(e_{1}=20 \mathrm{~V}(-0.7760)=-15.32 \mathrm{~V}\)
At \(300^{\circ}: \quad \sin 300^{\circ}=\sin \left(360^{\circ}-300^{\circ}\right)=\sin 60^{\circ}=0.8660\)
But for angles greater than \(180^{\circ}\), the sine wave is negative; therefore,
\(\sin 230^{\circ}=-0.8660\)
\(e_{i}=20 \mathrm{~V}(-0.8660)=-17.32 \mathrm{~V}\)
```

lor clarity, these values are plotted on the sine wave below:

2. If the amplitude of a sine wave is $45 \mathrm{~V}_{p k}$, and has a frequency of 10 kHz , determine the instantaneous value of the sine wave at $4 \mu \mathrm{~s}$ and $80 \mu \mathrm{~s}$ into the cycle.

Solution:

The equation which relates the time, frequency, and amplitude of a sine wave to an instantaneous value of voltage at that point is

$$
e_{1}=E_{p k} \sin (360 f t)
$$

Since the amplitude and frequency are specified, the equation can be rewritten:

$$
e_{i}=45 \mathrm{~V} \sin (360 \times 10 \mathrm{kHz} \times \mathrm{t})
$$

Now, all that must be done to evaluate the instantaneous voltage at times into the cycle is to use ($360 \times 10 \mathrm{kHz} \times \mathrm{t}$) to determine the number of degrees that specified times into the cycle (t) represent and solve for the sine of these angles.

The equation can then be used to determine the instantaneous value of voltage as in example 1 .
$4 \mu \mathrm{~s}$

$$
\begin{aligned}
& 360 \mathrm{ft}=(360)(10 \mathrm{kHz})(4 \mu \mathrm{~s}) \\
&=(360)\left(10 \times 10^{3} \mathrm{~Hz}\right)\left(4 \times 10^{-6} \mathrm{~s}\right)=14.4^{\circ} \\
& e_{1}=45 \mathrm{~V} \sin 14.4^{\circ}=45 \mathrm{~V}(0.2487)=11.2 \mathrm{~V}
\end{aligned}
$$

$80 \mu \mathrm{~s}$:

$$
\begin{aligned}
& 360 \mathrm{ft}=(360)(10 \mathrm{kHz})(80 \mu \mathrm{~s}) \\
&=(360)\left(10 \times 10^{3} \mathrm{~Hz}\right)\left(80 \times 10^{-6} \mathrm{~s}\right)=288^{\circ} \\
& e_{i}=45 \mathrm{~V} \sin 288^{\circ}=45 \mathrm{~V}(-0.9511)=-42.8 \mathrm{~V}
\end{aligned}
$$

For clarity, these values are plotted on the sine wave below:

3. Plot a sine wave having an amplitude of 12 VAC . Tabulate values for each 20° between 0° and 360°, then plot the sine wave. Use $e_{\mathrm{Y}}=\mathrm{E}_{\mathrm{pk}} \sin \theta$. Also plot values at $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°.

The table of values for angles between 0° and 360° is shown below. Note that a 12 VAC sine wave has a peak value of $17 \mathrm{~V}_{\mathrm{pk}} \cdot\left(\mathrm{E}_{\mathrm{pk}}=1.414 \times \mathrm{E}_{\mathrm{rms}}=1.414 \times 12 \mathrm{~V}=17 \mathrm{~V}\right) \mathrm{T}$. equation used is $e_{1}=17 \mathrm{~V} \sin \theta$.

θ	$\boldsymbol{\operatorname { s i n }} \theta$	$E_{p k}$	8	$\sin \theta$	$\mathbf{E p k}_{\text {p }}$
0	0	0	200	-0.3420	-5.8V
20	0.3420	5.8 V	220	-0.6428	$-10.9 \mathrm{~V}$
40	0.6428	10.9V	240	-0.8660	-14.7V
60	0.8660	14.7V	260	-0.9848	-16.7V
80	0.9848	16.7V	270	-1	-17V
90	1	17 V	280	-0.9848	-16.7V
100	0.9848	16.7V	300	-0.8660	-14.7V
120	0.8660	14.7V	320	-0.6428	-10.9V
140	0.6428	10.9 V	340	-0.3420	-5.8V
160	0.3420	5.8 V	360	0	0
180	0	0			

Solution:

4. For the following angles specified in radians, determine the equivalent angle in degrees: $1 \mathrm{rad}, 3.6 \mathrm{rad}, 4.7 \mathrm{rad}$, and 5.9 rad

Solution:

Since there are 2π radians in 360°, there must be π radians in 180°. Therefore, there are $\frac{180^{\circ}}{\pi}$ degrees in each radian. Thus, 57.29578° or 57.3° equals 1 radian. To determine the number of degrees a certain number of radians represents, simply multiply the number of radians by 57.3°.

$$
\begin{array}{ll}
1 \mathrm{rad}: & 1 \mathrm{rad} \times 57.3^{\circ} / \mathrm{rad}=57.3^{\circ} \\
3.6 \mathrm{rad}: & 3.6 \mathrm{rad} \times 57.3^{\circ} / \mathrm{rad}=206.3^{\circ} \\
4.7 \mathrm{rad}: & 4.7 \mathrm{rad} \times 57.3 \% \mathrm{rad}=269.3^{\circ} \\
5.9 \mathrm{rad}: & 5.9 \mathrm{rad} \times 57.3 \% \mathrm{rad}=338^{\circ}
\end{array}
$$

5. For the following angles specified in degrees, determine the equivalent angle in radians: 15°, $88^{\circ}, 150^{\circ}, 230^{\circ}, 300^{\circ}$.

Solution:

Since there are $\frac{180^{\circ}}{\pi}$ degrees in each radian and therefore 57.3° equals 1 radian, simply divide the number of degrees by 57.3° to determine the number of radians corresponding to the specified number of degrees.

$15^{\circ}:$	$\frac{15^{\circ}}{57.3^{\circ} / \mathrm{rad}}=0.262 \mathrm{rad}$
$88^{\circ}:$	$\frac{88^{\circ}}{57.3^{\circ} / \mathrm{rad}}=1.54 \mathrm{rad}$
$150^{\circ}:$	$\frac{150^{\circ}}{57.3^{\circ} / \mathrm{rad}}=\mathbf{2 . 6 2 \mathrm { rad }}$
$230^{\circ}:$	$\frac{230^{\circ}}{57.3^{\circ} / \mathrm{rad}}=4.01 \mathrm{rad}$
$300^{\circ}:$	$\frac{300^{\circ}}{57.3^{\circ} / \mathrm{rad}}=\mathbf{5 . 2 4 \mathrm { rad }}$

6. For the following pairs of waveforms, specify the phase relationships of the waveforms stating lead/lag and phase difference.
a. A leads B by 90°

A crosses the zero level first, 90° ahead of B.

A crosses the zero level 135° after B crosses it.
7. Sketch the equivalent phasor diagranı for the waveforms in question 6. Use waveform A as reference at 0° position.
a.

b.

8. For the two following phasor diagrams, state the phase relationship of the phasors stating lead/lag and phase difference.
a. A lags B by $\mathbf{4 5}^{\circ}$
b. A leads B by 135°

9. For the following phasor diagrams shown below, sketch the sinusoidal waveform representation of the pair showing appropriate amplitudes and phase relationships.
a.

B leads A by 90°
A is the same amplitude as B since both phasors are the same length.
b.

A leads B by 90°
B is one-half the amplitude of A since B's phasor length is one-half A's phasor length.

1. Determine the instantaneous amplitude of the following sine waves at the specified number of degrees into the cycle:
a. $40 \mathrm{~V}_{\mathrm{pk}} .38^{\circ}$ into the cycle:
b. $28 \mathrm{~V}_{\mathrm{pk}}, 156^{\circ}$ into the cycle:
c. $25 \mathrm{VAC}, 65^{\circ}$ into the cycle:
d. $58 \mathrm{VAC}, 271^{\circ}$ into the cycle: \qquad
e. $87 \mathrm{~V}_{\mathrm{pk}}, 322^{\circ}$ into the cycle:
f. $36 \mathrm{VAC}, 94^{\circ}$ into the cycle:
2. Determine the instantaneous amplitude of the following sine waves at the specified time elapsed into the cycle:
a. $35 \mathrm{~V}_{\mathrm{pk}}, 30 \mathrm{kHz}, 20 \mu \mathrm{~s}$ into the cycle:
b. $15 \mathrm{VAC}, 400 \mathrm{~Hz}, 800 \mu \mathrm{~s}$ into the cycle:
c. $220 \mathrm{VAC}, 60 \mathrm{kHz}, 3 \mu$ s into the cycle:
d. $50 \mathrm{~V}_{\mathrm{pk}}, 4 \mathrm{M} \mathrm{Hz}, 44 \mathrm{~ns}$ into the cycle:
e. $30 \mathrm{~V}_{\mathrm{pk}}, 16 \mathrm{kHz}, 51 \mu \mathrm{~s}$ into the cycle:
f. $120 \mathrm{VAC}, 455 \mathrm{kHz}, 540 \mathrm{~ns}$ into the cycle: \qquad
3. Plot a sine wave having an amplitude of $48 \mathrm{~V}_{\mathrm{pp}}$ using 18° increments, from 0° to 360°.
4. For the following angles expressed in radians, determine the equivalent angle in degrees:
a. $3 \mathrm{rad}=$ \qquad -
b. $5.2 \mathrm{rad}=$ \qquad -
c. $2.3 \mathrm{rad}=$ \qquad ${ }^{\circ}$
d. $4.1 \mathrm{rad}=$ \qquad -
e. $1.8 \mathrm{rad}=$ \qquad -
f. $0.6 \mathrm{rad}=$ \qquad -
5. For the following angles expressed in degrees, determine the equivalent angle in radians:
a. $38^{\circ}=$ \qquad rad
b. $100^{\circ}=$ \qquad rad
c. $231^{\circ}=$ \qquad rad
d. $285^{\circ}=$ rad
e. $344^{\circ}=$ rad
f. $84^{\circ}=$ \qquad rad
6. For the following pairs of waveforms, specify the phase relationships of the waveforms stating lead/ag and phase difference
a. \mathbf{A} \qquad B by \qquad $-$
b. A \qquad B by \qquad -

c. A \qquad B by \qquad -
d. A \qquad B by \qquad $-$

7. Sketch the equivalent phasor diagram for the waveforms in question 6. Use waveform A as reference at the 0° position.
a.

b.

c.

d.

8. For the following phasor diagrams, state the phase relationship of the phasors stating lead/lag and phase difference:
a. A
B by \qquad -
b. A \qquad B by \qquad -

9. For the following phasor diagrams, sketch the sinusoidal waveform representation of the pair showing appropriate amplitudes and phase relationships
a.

b.

d.

10. Determine the instantaneous amplitude of the following sine waves at the specified number of degrees into the cycle:
a. $45 \mathrm{~V}_{\text {pk }}$ at 54° into the cycle \qquad V
b. 18 VAC at 220° into the cycle V
11. Determine the instantaneous amplitude of the following sine waves at the specified time elapsed into the cycle:
a. $33 \mathrm{~V}_{\mathrm{pk}}, 25 \mathrm{kHz}, 4 \mu \mathrm{~s}$ into the cycle: \qquad V
b. $10 \mathrm{VAC}, 50 \mathrm{~Hz}, 3 \mathrm{~ms}$ into the cycle \qquad V
12. For the following angles expressed in radians, determine the equivalent angle in degrees:
a. $3.9 \mathrm{rad}=$ \qquad \circ
b. $5.5 \mathrm{rad}=$ \qquad -
13. For the following angles expressed in degrees, determine the equivalent angle in radians:
a. $44^{\circ}=$ \qquad rad
b. $248^{\circ}=$ \qquad rad
14. For the following pairs of waveforms, specify the phase relationships of the waveforms stating lead/lag and phase difference, then sketch the equivalent phasor diagram using waveform A as reference at the 0° position.
a.

b.

A \qquad B by \qquad $-$
c. (for a.)

d. (for b.)

A \qquad B by \qquad -
6. For the following phasor diagrams, sketch the sinusoidal waveform representation of the pair showing appropriate amplitudes and phase relationships.
a.

b.

c.

LESSON 5

() Resistive Circuits

In previous lessons, ac was discussed in general terms. With this lesson, a more detailed investigation of actual circuits with an ac voltage applied will begin. This lesson describes how to determine voltages and current in series, parallel, and series-parallel resistive circuits when an ac voltage is applied. Peak, peak-to-peak, and rms voltage, current and power values are calculated. The phase and frequency of circuit current and component voltages in ac resistive circuits are analyzed.

At the end of this lesson, you should be able to

1. Analyze the phase and frequency relationships of current and voltage in an ac resistive circuit.
2. Explain the relationship of peak, peak-to-peak, and rms values for an ac resistive circuit and be able to convert from one value to another
3. Calculate the instantaneous voltage and current values in an ac resistive circuit and plot the results
4. Analyze series, parallel, and series-parallel ac circuits as shown and calculate voltage, current, and power values.

a

b

c

Review of a Few Basics

AC Applied to a Resistor

Recall that when a fixed dc voltage is applied to a resistor as shown in Figure 5.1, current flows in only one direction and its value is determined by the value of the voltage and the resistor in the circuit. According to Ohm's law, the current is equal to the voltage divided by the resistance.

$$
\begin{align*}
\mathbf{I} & =\frac{\mathbf{E}}{\mathbf{R}} \tag{5-1}\\
& =\frac{10 \mathrm{~V}}{1000 \Omega} \\
& =10 \mathrm{~mA}
\end{align*}
$$

Therefore, the current in the circuit of Figure 5.1 is 10 milliamperes.

If the connections to the battery are reversed as shown in Figure 5.2, the direction of the current reverses, but the current value is the same. The current is still 10 milliamperes.
If, now, a sinusoidal voltage is applied to the same circuit with the resistor as shown in Figure 5.3, the voltage in the circuit will be changing constantly. This is shown in Figure 5.4. Ohm's law still applies and can be used at cach instant of time in calculate the current just as it was used to calculate the current when a constant do voltage was applied. This is an important point of this lesson and bears repeating. When a known ac voltage is applied to a purely resistive circuit Ohm's law can be used at any instant of time to calculate the current at that same instant of time.

Calculating Instantaneous Voltages and Currents

Recall that the instantaneous value of the voltage for a sinusoidal waveform can be calculated using this equation:

$$
\begin{equation*}
e_{i}=E_{p k} \sin \theta \tag{5-2}
\end{equation*}
$$

Figure 5.1 A Typical Resistive DC Circuil

Figure 5.2 The Ressstive DC Circuit of Figure 5.1 With Battery Connections Reversed

Figure 5.3 The Resistive Circuil With AC Vollage Applied

The instantaneous voltage is equal to the peak voltage times the sine theta.
Figure 5.5 shows a sinusoidal waveform that can be described with equation $5-2$. The peak amplitude of that waveform is 10 volts. Since the sine of zero degrees is zero, at zero degrees the voltage is zero. At 45 degrees the voltage has risen to 7.07 volts calculated as follows:

$$
\begin{aligned}
\mathbf{e}_{\mathbf{i}} & =\mathbf{E}_{\mathbf{p k}} \sin \theta \\
& =(10)(0.707) \\
& =7.07 \mathrm{~V}
\end{aligned}
$$

At 90 degrees the voltage has risen to 10 volts. The waveform voltage declines as the angle theta increases. At 135 degrees the voltage is once again 7.07 volis, and at 180 degrees, the voltage is zero.
During the negative alternation, the voltage amplitude varies in the same manner as for the positive alternation, but with opposite negative - polarities.
Ohm's law can be used with each of these instantaneous voltage values to calculate the instantaneous current value just as if each instantaneous voltage were produced by a battery of voltage E_{1} placed in the circuit at the right moment as shown in Figure 5.6. At zero degrees (point A of Figure 5.5) the instantaneous value of the voltage is zero. Therefore, according to Ohm's law, the instantaneous current at zero degrees equals the voltage divided by the resistance:

$$
\begin{aligned}
\mathbf{i} & =\frac{\mathbf{0 V}}{1 \mathbf{k} \Omega} \\
& =\mathbf{0 A}
\end{aligned}
$$

It is zero amperes.

Figure 5.4 An AC Voltage is Changing Constantly

Figure 5.5 A 10 -Vole Peak Sinusoid Waveform

Figure 5.6 DC Equivalent Circuit Used to Calculate Instantaneous Current Values

Relationship of Peak, Peak-to-Peak, and RMS Values

At 45 degrees (point B of Figure 5.5) the instantaneous voltage, e_{i}, is 7.07 volts. This can be represented by a 7.07 volt battery as shown in the circuit in Figure 5.7. Using Ohm's law as before, the current at 45 degrees is:

$$
\begin{aligned}
i & =\frac{7.07 \mathrm{~V}}{1 \mathrm{k} \Omega} \\
& =7.07 \mathrm{~mA}
\end{aligned}
$$

The current flowing at that instant in the cycle is 7.07 millianmeres.
Instantaneous current values continue to vary this way throughout the entire cycle as shown in Figure 5.8. In the negative alternation, however, the current is plotted as negative because its direction of flow is opposite to the direction called positive. If all of these plotted points are connected with a smooth curve. as shown in Figure 5.9, it is found that the current is also sinusoidal.

Relationship of Peak, Peak-to-Peak, and RMS Values

Recall that the amplitude of a sinusoidal voltage can be specified in three ways: peak, peak-to-peak, and rms. The voltage waveform in the previous example has a peak amplitude of 10 volts as shown in Figure 5.10. Thus, it has a peak-to-peak amplitude of 20 volts.

$$
\begin{aligned}
\mathbf{E}_{\mathbf{p p}} & =2\left(\mathbf{E}_{p k}\right) \\
& =(2)(10) \\
& =20 \mathrm{~V}
\end{aligned}
$$

It also has an rms amplitude of

$$
\begin{aligned}
\mathrm{E}_{\mathrm{rms}} & =0.707\left(\mathrm{E}_{\mathrm{pk}}\right) \\
& =(0.707)(10) \\
& =7.07 \mathrm{~V}
\end{aligned}
$$

Thus, its rms voltage is 7.07 voles.

Figure 5.7 DC Equivalent Circuit When AC Instantaneous Voltage, e_{1} is 7.07 Volts

Figure 5.8 Instantaneour Current Values During One Cycle

Figure 5.9 The Current Waveform is Sinksoidal

Because the current is also sinusoidal, it too has peak, peak-to-peak, and rms amplitudes. In the example, the current has a peak amplitude of 10 milliamperes as shown in Figure 5.11. It, therefore, has a peak-to-peak amplitude of 20 milliamperes (twice the peak amplitude); and it has an rms amplitude of 7.07 milliamperes (0.707 times the peak amplitude).

There should be no doubt that Ohm's law applies to an ac resistive circuir. However, with ac circuits you must be aware of the way in which the circuit values are specified. For example, if the peak voltage of the waveform is divided by the resistance, the result is peak current. In the example the peak current is 10 milliamperes calculated as follows:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{p k}} & =\frac{\mathbf{E}_{\mathbf{p k}}}{\mathbf{R}} \\
& =\frac{10 V_{\mathbf{p k}}}{1 \mathrm{k} \Omega} \\
& =10 \mathrm{~mA} A_{p k}
\end{aligned}
$$

Peak-to-peak voltage divided by the resistance yields peak-to-peak current. In the example this is 20 milliamperes calculated as follows:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{P P}} & =\frac{\mathbf{E}_{\mathrm{PP}}}{R} \\
& =\frac{20 V_{p P}}{1 \mathrm{k} \Omega} \\
& =20 \mathrm{~mA}_{p p}
\end{aligned}
$$

And the rms voltage divided by the resistance yields rms current. In the example this is 7.07 milliamperes.

$$
\begin{aligned}
\mathbf{I}_{\mathrm{rms}} & =\frac{\mathbf{E}_{\mathrm{rms}}}{R} \\
& =\frac{7.07 \mathrm{~V}_{\mathrm{rms}}}{1 \mathrm{k} \Omega} \\
& =7.07 \mathrm{~mA} \mathrm{Arms}^{\mathrm{rm}}
\end{aligned}
$$

Figure 5.10 Voltage Waveform for Example Circuil

Figure 5.11 Current Waveform for Example Circuil

Converting Values

An applied voltage or current can by specified in one of these three ways. But suppose a current or voltage value is specified as peak and its rms amplitude is needed. As you may recall from previous discussions. it is easy to convert the peak specification to its rms value by calculation. RMS voltage or current is equal to 0.707 times the peak voltage or peak current

$$
\begin{align*}
\mathbf{E}_{\mathrm{rm}} & =0.707 \mathrm{E}_{\mathrm{pk}} \tag{5-3}\\
\mathrm{I}_{\mathrm{rm}} & =0.707 \mathrm{I}_{\mathrm{pk}} \tag{5-4}
\end{align*}
$$

Or it may be necessary to convert from any one of these peak, peak-to-peak, and rms specifications to another. A table. Table 5.1, of conversion equations is included to enable you to convert from any one of these specifications to another for either voltage or current.

Voltage and Current Phase Relationship

If the voltage waveform and the current waveform are examined together as shown in Figure 5.12, it can be seen that when the voltage is at a maximum or peak, the current is also at a maximum or peak. The current flow is less as the value of the instantaneous voltage decreases. When the voltage is at zero, the current is at zero. Also note that the current is flowing in a direction determined by the polarity of the voltage. That is, in the example shown, a positive 10 milliamperes flows when the voltage is a positive 10 volts and a negative 10 milliamperes flows when the voltage is a negative 10 volts.
As shown in Figure 5.13, the voltage and current peak at the same time. Because they both peak at the same time, and are zero at the same time, and move in the same direction, the voltage and current are in phase. This means there is no phase difference between them. Their amplitudes and polarities are the same for each instant of time. Therefore, the phase angle between them is zero.

IF YOU HAVE

Table 5.1 Conversions

Figure 5.12 a. Voltage Waveform; b. Current Waveform

Figure 5.13 Phase of Voltage and Current

As you recall from previous sessions, this phase relationship can be represented with a pair of phasors as shown in Figure 5.14. One phasor represents the phase of the voltage; the other phasor represents the phase of the current. One phasor is drawn on top of the other to show that there is no phase angle or phase difference. The vector lengths have no real meaning because they have different units. To compare two vector lengths meaningfully the units of both vectors must be the same - both must represent volts, amperes, ohms, milliamperes, etc. In Figure 5.14 one vector represents volts while the other represents amperes. A comparison of the amplitude of the two quantities means nothing; only the phase relationships of the two quantities is of importance. The phase relationship of currents and voltages is very significant in ac circuits. It will be discussed in detail later in the lesson.

There's another important point concerning the two waveforms. Since one cycle of the voltage waveform corresponds to one cycle of the current waveform as shown in Figure 5.13 the frequency of both is the same. Therefore, no matter what frequency of voltage is applied to any circuit of this type, all voltages and currents in that circuit will have the same frequency.

Circuit Analysis

As you know, resistive circuits can consist of several resistors in series, as shown in Figure 5.15, in parallel as shown in Figure 5.16, and in series-parallel combinations as shown in Figure 5.17.

AC resistive circuits can be analyzed just like dc resistive circuits, and the circuit voltage and current values determined in the same manner. This is possible because currents and voltages are in phase in this type of circuit.

Figure 5.14 Vollage, E, and Current, I, Vectors

Figure 5.15 Series Resistive AC Circuil

Figure 5.16 Parallel Resistive AC Circuil

The voltage or current values can be described in peak, peak-to-peak, or rms values. You must make the necessary conversions to obtain your answers in the desired units.

Series Resistive AC Circuit

The first circuit to be analyzed is the series circuit shown in Figure 5.15. There are two resistors in this circuit in series with an applied ac voltage of 10 volts peak. To determine the voltages and currents in this circuit, first the total resistance must be calculated The total resistance in the circuit is the sum of the individual resistances,

$$
\begin{aligned}
\mathbf{R}_{\mathbf{r}} & =\mathbf{R}_{1}+\mathbf{R}_{2} \\
& =2 k \Omega+8 k \Omega \\
& =10 k \Omega
\end{aligned}
$$

The total resistance of the circuit is 10 kilohms. Once R_{T} has been determined the voltages and currents in the circuit can be calculated.

Since the total resistance we calculated is 10 kilohms, to find the total current in the circuit, divide the applied voltage by the total resistance:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{R}_{\mathbf{T}}} \\
& =\frac{10 \mathrm{~V}_{\mathbf{p k}}}{10 \mathrm{k} \Omega} \\
& =1 \mathrm{~m} \mathrm{~A}_{\mathbf{p k}}
\end{aligned}
$$

The total current in the circuit is 1 milliampere peak. Since this is a series circuit, this current is the only current in the circuit. It follows only one path - through both resistors in the circuit.

Figure 5.17 Series-Parallel Resistive $A C$ Circuit

Next, the voltage drops across each resistor can be found using Ohm's law. The voltage drop across R_{1} is equal to the current through \mathbf{R}_{1}, which is the total current, times the value of \mathbf{R}_{1} :

$$
\begin{aligned}
E_{R_{1}} & =\mathbf{I}_{T} R_{1} \\
& =\left(1 \mathrm{~mA}_{p k}\right)(2 k \Omega) \\
& =2 V_{p h}
\end{aligned}
$$

The drop across R_{2} is calculated similarly:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R} 2} & =I_{\mathbf{T}} \mathbf{R}_{2} \\
& =\left(1 \mathrm{~m} A_{p k}\right)(8 \mathrm{k} \Omega) \\
& =8 V_{p k}
\end{aligned}
$$

Notice that Kirchhoff's voltage law is satisfied because the voltage drop across $\mathrm{R}_{1}, 2$ volts peak, plus the voltage drop across R_{2}, 8 volts peak, equals the applied voltage, 10 volts peak:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{T}} & =\mathbf{E}_{\mathbf{R} 1}+\mathbf{E}_{\mathbf{R} 2} \\
10_{\mathbf{p k}} & =2 \mathbf{V}_{\mathbf{p k}}+8 V_{\mathbf{p k}}
\end{aligned}
$$

The circuit source is an ac voltage and this voltage is specified in terms of its peak amplitude. It is 10 volts peak. The peak value of voltage was used to calculate the voltage drops and current in the circuit. Therefore. the currents and voltage drops calculated are peak currents and peak voltages. For this reason the written calculated values include the word peak.
If the applied voltage had been specified as 10 volts peak-to-peak, then the circuit currents and voltage drops would also be peak-to-peak values because calculations would be performed using the 10 volts peak-peak. The specification peak-to-peak would be written along with the calculated value as shown in Figure 5.18. Similarly, if the applied voltage had been specified as rms, then the voltage drops and currents calculated using this rms value would also be rms values.

In summary then, to determine the voltages and currents in a resistive circuit with an ac voltage source, calculate the voltages and currents in the circuit the same as these factors are calculated in a do series circuit. The circuit voltages and currents are specified the same as the ac applied voltage: peak, peak-to-peak or rms.

Once all voltages and currents in a circuit have been calculated using one amplitude specification, the other two types of amplitude values of these same circuit currents and voltages can be determined readily by directly converting each value using the appropriate conversion equation.

Using the series circuit problem we just solved as an example, a table of values can be created as shown in Figure 5.19. In the column labeled peak are all the peak values calculated for the circuit. The peak-to-peak value is twice their peak value. The rms

Figure 5.18 Specification of E_{A} as Peak, Peak-8o. Peak, or R.MS, Delermines Specification of Other Circull Values

Figure 5.19 Calculaled Values for Series AC Circuil Example
values are 0.707 of the peak values. For example, the rms values have been calculated using equations 5-3 and 5-4 as follows:

$$
\begin{aligned}
\mathbf{E}_{\mathrm{rms}} & =0.707 \mathrm{E}_{\mathrm{pk}} \\
\mathbf{E}_{\mathrm{Arms}} & =(0.707)(10 \mathrm{~V})=7.07 \mathrm{~V} \\
\mathbf{E}_{\mathbf{R} \mid \mathrm{rms}} & =(0.707)(2 \mathrm{~V})=1.414 \mathrm{~V} \\
\mathbf{E}_{\mathrm{R} 2 \mathrm{rins}} & =(0.707)(8 \mathrm{~V})=5.656 \mathrm{~V} \\
\mathbf{I}_{\text {rms }} & =0.7071_{\mathrm{pk}} \\
\mathbf{I}_{\text {Trins }} & =(0.707)(1 \mathrm{~mA})=0.707 \mathrm{~mA}=707 \mu \mathrm{~A}
\end{aligned}
$$

In other words, in the circuit, the applied voltage is 10 volts peak, which equals 20 volts peak-10-peak or 7.07 volts rms. These values are shown graphically in Figure 5.20

The 2 volt peak voltage drop across R_{1} equals 4 volts peak-to-peak or 1.414 volts rms as shown in Figure 5.21. The three values, 8 volts peak. 16 volts peak-to-peak and 5.656 volts rms are shown in Figure 5.22 for $\mathrm{E}_{\mathrm{R}_{2}}$.

The circuit current shown graphically in Figure 5.23, is I milliampere peak. This equals 2 milliamperes peak-to-peak or 707 microamperes rms.
Remember that all voltages and currents in this purely resistive circuit are in phase and of the same frequency. Also note in Figure 5.19 that in each column the value of $\mathbf{E}_{\mathbf{R} 1}$ and $E_{R 2}$ add up to the applied voltage in each column
If a circuit has the source voltage specified in a peak-to-peak value, but answers are required in rms values, the voltages and currents can be determined one of two ways: either by using the peak-to-peak values and then converting all answers to rms values or by converting the source voltage to an rms value before performing any other calculations. Then all of the following calculations will be in rms values.

Also an important point to remember is that whenever the designation VAC is used, it is understood, by convention, to mean an rms value.

Figure $5.20 E_{A}$ for Series $A C$ Circuit Example

Figure $5.21 E_{R 1}$ for Series Circuit Example

Figure 5.22 $E_{R 2}$ for Series Circuil Example

Parallel Resistive AC Circuit

Now that you have been shown how to determine all values of voltage and currens in a series resistive circuit, the next step is to show you how this is done with a parallel resistive circuit.

In the resistive circuit of Figure 5.16 and repeated as Figure 5.24, 30 volts peak-to-peak ac voltage is applied to a 3 kilohm and 6 kilohm resistor connected in parallel. First the circuit will be analyzed in terms of peak-to-peak amplitudes and then all voltages and currents will be converted to their peak. and rms amplitudes.

Just like de parallel circuits, in ac parallel circuits the applied voltage (in this example 30 volts peak-to-peak) is across each resistor. If this applied voltage is divided by each branch resistor's value. the peak-to-peak branch current for each branch can be determined

$$
\begin{aligned}
I_{R 1} & =\frac{E_{R 1}}{R_{1}} \\
& =\frac{30 V_{P P}}{3 k \Omega} \\
& =10 m A_{P P}
\end{aligned}
$$

The peak-to-peak current through resistor R_{1} is 10 milliamperes

$$
\begin{aligned}
\mathbf{I}_{R 2} & =\frac{E_{R 2}}{R_{2}} \\
& =\frac{30 V_{P P}}{6 k \Omega} \\
& =5 \mathrm{~mA} A_{P P}
\end{aligned}
$$

The peak-to-peak current through resistor \mathbf{R}_{2} is 5 millia mperes.

Figure 5.23 I for Series Circuil Example

Figure 5.24 Parallel Resistive AC Circuit

The total current is the sum of the branch currents. Since the branch currents are known, they can be added to determine the total current.

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\mathbf{I}_{\mathbf{R} 1}+\mathbf{I}_{\mathbf{R} 2} \\
& =10 \mathrm{~m} A_{\mathbf{P P}}+5 \mathrm{~mA}_{\mathbf{P P}} \\
& =15 \mathrm{~mA}_{\mathbf{P P}}
\end{aligned}
$$

The total current is 15 milliamperes peak-to-peak

Therefore, as in a dc parallel circuit, the current through each branch of an ac parallel circuit may be different depending on the resistor values, while the voltage drop across each resistor is the same. Also, the algebraic sum of the branch currents equals the total current.
To verify that this is the correct total current the applied voltage can be divided by the total resistance in the circuit. Recall that the total resistance lor two parallel resistors is their product divided by their sum. A special symbol is used to indicate the parallel connection. Therefore,

$$
\mathbf{R}_{\mathbf{t}} \| \mathbf{R}_{2}
$$

indicates that R_{1} is in parallel with R_{2}. Thus,

$$
\begin{equation*}
\mathbf{R}_{1} \| \mathbf{R}_{2}=\frac{\mathbf{R}_{1} \times \mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}} \tag{5-5}
\end{equation*}
$$

is the expression to calculate the total resistance of two resistors connected in parallel.

In the example circuit of Figure 5.24 , the total resistance, calculated by using equation $5-5$, is:

$$
\begin{aligned}
\mathbf{R}_{T} & =\frac{\mathbf{R}_{1} \times \mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}} \\
& =\frac{(3 k)(6 k)}{3 k+6 k} \\
& =\frac{18 k}{9 k} \\
& =2 k \Omega
\end{aligned}
$$

The total current in the circuit is calculated using Ohm's law:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\frac{\mathbf{E}_{\mathbf{T}}}{\mathbf{R}_{\mathbf{T}}} \\
& =\frac{30 \mathbf{V}_{\mathbf{p p}}}{2 \mathrm{k} \Omega} \\
& =15 \mathrm{~m} \mathbf{A}_{\mathbf{P P}}
\end{aligned}
$$

This calculation shows that 15 milliamperes peak-to-peak current is the total current and verifies previous calculations. Using these peak-to-peak values for the circuit, the peak and rms values can be calculated. Peak values are one-half the peak-to-peak values. The rms values are 0.707 times the peak value or 0.3535 times the peak-to-peak value. The calculations for the peak values are as follows:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{Apk}}=\frac{30 \mathrm{~V}_{\mathrm{Pp}}}{2}=15 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{R} \mid \mathrm{pk}}=\frac{10 \mathrm{~mA}}{2}=5 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{R} 2 p k}=\frac{5 \mathrm{~mA}}{2}=2.5 \mathrm{~mA} \\
& 1_{\mathrm{Tpk}}=\frac{15 \mathrm{~mA}_{p p}}{2}=7.5 \mathrm{~mA}_{\mathrm{pp}}
\end{aligned}
$$

The calculations for the rms values are as follows:

$$
\left.\begin{array}{rl}
E_{\text {Arms }}=(0.3535)\left(30 \mathrm{~V}_{p p}\right) & =10.6 \mathrm{~V} \\
\mathrm{I}_{\mathrm{R} 1 \mathrm{rms}}=(0.3535)\left(10 \mathrm{~mA}_{p p}\right) & =3.54 \mathrm{~mA}(3.535) \\
\mathrm{I}_{\mathrm{R} 2 \text { rms }}=(0.3535)\left(5 \mathrm{~mA}_{p p}\right) & =1.77 \mathrm{~mA}(1.7675) \\
\mathrm{I}_{\text {Trms }} & =(0.3535)\left(15 \mathrm{~mA}_{p p}\right)
\end{array}\right)=5.30 \mathrm{~mA} .
$$

Once calculated they can be written in tabular form as shown in Figure 5.25. Remember that all voltages and currents are in phase, and that they all have the same frequency. Also, the branch currents sum to the total current in each column.

Series-Parallel Resistive AC Circuit Simplified Circuit

Series-Parallel Resistive AC Circuit

Now that a series resistive circuit and a parallel-resistive circuit have been analyzed, the next circuit to be studied is a seriesparallel resistive circuit shown in Figure 5.26. This is the same circuit as Figure 5.17.

In the circuit, 24 volts ac is applied to a series-parallel combination of four resistors. Recall that if an ac voltage is specified as VAC then the value is an rms amplitude. That is, the applied voltage is 24 volts rms.

Simplified Circuit

The series-parallel combination of resistors consists of R_{1} and R_{4} in series with the parallel combination of R_{2} and R_{3}. To begin determining the voltages and currents in this circuit, as with dic circuits, first the circuit is simplified by finding the equivalent resistance of R_{2} and R_{3} in parallel. It is calculated using the form of equation 5-5.

$$
\begin{aligned}
\mathbf{R}_{23}=\mathbf{R}_{2} \| \mathbf{R}_{3} & =\frac{\mathbf{R}^{2} \times \mathbf{R}^{3}}{\mathbf{R}^{2}+\mathbf{R}^{3}} \\
& =\frac{(4 k)(12 k)}{4 k+12 k} \\
& =\frac{48 k}{16 k} \\
& =3 k \Omega
\end{aligned}
$$

Thus, the parallel combination of R_{2} and $R_{9}\left(R_{23}\right)$ can be thought of as a 3 kilohm resistor substituted in the circuit as shown in Figure 5.27. As you probably realize, the circuit is now a simple series circuit. Therefore, its total resistance is equal to the sum of the individual resistances.

	PEAK	PEAK-TO-PEAK	RMS
E_{A}	$15 \mathrm{~V}_{\rho}$	$30 \mathrm{~V}_{P D}$	10.6 V
$\mathrm{I}_{\text {R1 }}$	$5 \mathrm{~mA}_{P}$	$10 \mathrm{~mA}_{D D}$	3.54 mA
$\mathrm{I}_{R 2}$	2.5 mA	$5 \mathrm{~mA} A_{D D}$	1.77 mA
I_{T}	$7.5 m A_{\rho}$	$15 \mathrm{~mA}_{D D}$	5.3 mA

Figure 5.25 Calculated Values of the Circuit of Figure 5.24

Figure 5.26 Series-Parallel Resistive AC Circuil

Figure 5.27 Series-Parallel Resistive AC Circuit Simplified

Total Resistance

The total resistance equals 2 kilohms for \mathbf{R}_{1}, plus 3 kilohms for the parallel combination of $\mathbf{R}_{\mathbf{2}}$ and $\mathbf{R}_{\mathbf{3}}$, plus 3 kilohms for $\mathbf{R}_{\mathbf{4}}$:

$$
\begin{aligned}
\mathbf{R}_{\mathbf{T}} & =\mathbf{R}_{1}+\left(\mathbf{R}_{2} \| \mathbf{R}_{3}\right)+\mathbf{R}_{\mathbf{4}} \\
& =2 \mathbf{K} \Omega \mathbf{}, 3 \mathbf{k} \Omega+3 \mathbf{k} \Omega \\
& =8 \mathbf{k} \Omega
\end{aligned}
$$

The total resistance is 8 kilohms.

Total Current

To determine the total current supplied by the ac voltage generator to the circuit the applied voltage is divided by the total resistance. 24 volts divided by 8 kilohms is:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{R}_{\mathbf{T}}} \\
& =\frac{24 \mathbf{V}_{\mathrm{rma}}}{8 \mathbf{k} \Omega} \\
& =3 \mathrm{~m} \mathbf{A}_{\mathrm{rnms}}
\end{aligned}
$$

The total current is 3 mA rms. This total current flows through \mathbf{R}_{1}, through the parallel combination of R_{2} and R_{3}, and through R_{4}. Therefore, $I_{R 1}$ and $\mathbf{I}_{R 4}$ are $3 \mathrm{~mA}_{\text {rms }}$.

Voltage Drops

Ohm's law is now used to determine the voltage drop across each resistance. It is the value of the resistance multiplied by the current through it. Thus,

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R} 1} & =\mathbf{I}_{\mathbf{T}} \mathbf{R}_{1} \\
& =\left(3 \mathrm{~m} A_{\mathrm{rma}}\right)(2 \mathrm{k} \Omega) \\
& =6 \mathbf{V}_{\mathrm{rms}}
\end{aligned}
$$

The voltage drop across R_{1} is 6 volts rms.

The voltage drop across R_{2} in parallel with R_{3} is equal to the total current times the value of the equivalent parallel resistance \mathbf{R}_{29} :

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R} 23} & =\mathbf{I}_{\mathbf{T}} \mathbf{R}_{23} \\
& =\left(3 \mathrm{~mA}_{\mathrm{rras}}\right)(3 \mathrm{~K} \Omega) \\
& =\mathbf{9} \mathbf{V}_{\mathrm{rmz}}
\end{aligned}
$$

The voltage drop across R_{23} is 9 volts rms.
The voltage drop across R_{4} is calculated in a similar manner as:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R} 4} & =\mathbf{I}_{\mathbf{r}} \mathbf{R}_{\mathbf{4}} \\
& =\left(3 \mathrm{~mA}_{\mathbf{r m s}}\right)(3 \mathrm{k} \Omega) \\
& =\mathbf{9} \mathbf{V}_{\mathbf{r m}}
\end{aligned}
$$

The voltage drop across R_{4} is also 9 volts rms.

Branch Currents

Now the current through R_{2} and R_{3} can be calculated. Since there are 9 volts across R_{23}, the parallel combination of R_{2} and R_{3}, there are 9 volts across R_{2} and 9 volts across R_{3}. Thus, you see that this parallel combination is treated just like the separate parallel circuit. Using Ohm's law the value of the current through R_{2} and through R_{3} (these are like the branch circuits in the separate parallel circuit) can be determined by dividing the voltage across either resistor by the value of the resistor.

For R_{2}, the value of the current is:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{R} 2} & =\frac{\mathbf{E}_{\mathbf{R} 2}}{\mathbf{R}_{2}} \\
& =\frac{9 \mathbf{V}_{\mathrm{rm}:}}{4 \mathrm{k} \Omega} \\
& =2.25 \mathrm{~mA} A_{\mathrm{rm}}
\end{aligned}
$$

$\mathbf{1}_{\mathrm{R} 2}$ of Figure 5.26 is 2.25 milliamperes rms .

Voltage Chart
 Current Chart

The current through $\mathbf{R g}_{9}$ is calculated similarly:

$$
\begin{aligned}
I_{R S} & =\frac{E_{R S}}{R_{s}} \\
& =\frac{9 V_{r m s}}{12 k \Omega} \\
& =0.75 \mathrm{~mA}_{\mathrm{rms}}
\end{aligned}
$$

I_{Rg} of Figure 5.26 is 0.75 milliamperes rms.

Voltage Chart

Figure 5.28 shows a tabulation of the voltages in this series-parallel circuit. These values are in the rms column since the applied voltages and all the voltage drops calculated are rms. These rms values can be converted directly to both peak, and peak-to-peak values. The peak values are simply 1.414 times the rms values. To determine the peak-to-peak amplitude, either the peak values can be doubled, or the rms values can be multiplied by 2.828 . Note that in each column the voltage across R_{2} and R_{g} is the same since they are in parallel, and this voltage along with the other series circuit voltages $E_{R 1}$ and $E_{R 4}$, add up to the applied voltage.

Current Chart

Figure 5.29 shows a tabulation of the values of the currents for the circuit for Figure 5.26. The rms current values are the original ones calculated and these values are used to convert to peak and peak-to-peak current values. The peak current calculations are as follows:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{R} 1 \mathrm{pk}}=(1.414)(3 \mathrm{~mA})=4.24 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{R} 2 \mathrm{pk}}=(1.414)(2.25 \mathrm{~mA})=3.18 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{R} 3 \mathrm{pk}}=(1.414)(0.75 \mathrm{~mA})=1.06 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{R} 4 \mathrm{pk}}=(1.414)(3 \mathrm{~mA})=4.24 \mathrm{~mA}
\end{aligned}
$$

	PEAK	PEAK-TO-PEAK	RMS
$E_{\text {A }}$	33.9V	67.8V Vp	24V
$E_{\text {R }}$	8.5V	$17 \mathrm{~V}_{p p}$	6V
$E_{\text {R2 }}$	12.7V $\mathrm{V}_{\text {f }}$	25.4Vpp	9V
$E_{\text {R }}$	$12.7 \mathrm{~V}_{0}$	25.4Vpop	9V
$E_{\text {R }}$,	12.7V ${ }_{\text {¢ }}$	25.4V p_{ρ}	9V

Figure 5.28 Calculated Voltage Values for the Circuil of Figure 5.26

	PEAK	PEAK-TO-PEAK	RMS
$I_{\text {R }}$	4.24 mA	8.48 mA	3 mA
$I_{\text {R } 2}$	3.18 mA	6.36 mA	2.25 mA
$I_{\text {R }}$	1.06 mA	2.12 mA	0.75 mA
$I_{\text {R }}$	4.24 mA	8.48 mA	3mA

Figure 5.29 Calculated Current Values for the Circuit of Figure 5.26

The peak-to-peak current values are as follows:

$$
\begin{aligned}
& I_{\mathrm{R} 1 \mathrm{pp}}=(2)(4.24 \mathrm{~mA})=8.48 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{R} 2 \mathrm{pp}}=(2)(3.18 \mathrm{~mA})=6.36 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{R} 3 \mathrm{pp}}=(2)(1.06 \mathrm{~mA})=2.12 \mathrm{~m} \mathrm{~A} \\
& \mathrm{I}_{\mathrm{R} 4 \mathrm{pp}}=(2)(4.24 \mathrm{~mA})=8.48 \mathrm{n} 1 \mathrm{~A}
\end{aligned}
$$

The results are a bit different through the voltage chart. Now the two branch currents through the parallel combination of R_{2} and R_{3} add to the total series current, which is the same through R_{1} and R_{4}

The effects of ac voltages and currents in series, parallel. and series-parallel resistive circuits have now been discussed thoroughly However, there is another important consideration in these circuits - the power dissipated.

Power Dissipation

In ac circuits there are three kinds of power: real, reactive and apparent power. The kind of power that exists in purely resistive circuits is what is called real power. Real power is power that is dissipated in the form of heat and is measured in watts as illustrated in Figure 5.30.
Recall, as shown in Figure 5.31, that in dc circuits the amount of power dissipated in watts can be calculated by multiplying the voltage across a resistor by the current passing through it.

$$
\begin{equation*}
\mathbf{P}=\mathbf{E} \mathbf{I} \tag{5-6}
\end{equation*}
$$

The power, P, is in watts, when the voltage, E, is in volts, and the current, I, is in amperes. It turns out that equation 5-6 is true whether a dc voltage or an ac voltage is a pplied. This is shown in Figures 5.30 and 5.31

Figure 5.30 Power Dissipation in an AC Circuil

Figure 5.31 Power Dissipation in a DC Circuit

There is one difference, however. The power in an ac resistive circuit can be specified as peak, peak-to-peak, or rms power. If the peak voltage across a resistor is multiplied by the peak current passing through it, the result is peak power:

$$
\begin{equation*}
P_{p k}=E_{p k} l_{p k} \tag{5-7}
\end{equation*}
$$

If the rms voltage across a resistor is multiplied by the rms current through it, the result is the rms power value:

$$
\begin{equation*}
P_{r m s}=E_{r m s} I_{r m} \tag{5-8}
\end{equation*}
$$

If the peak-to-peak voltage across a resistor is multiplied by the peak-to-peak current through it, the result is the peak-to-peak power value:

$$
\begin{equation*}
\mathbf{P}_{\mathbf{p p}}=\mathbf{E}_{\mathbf{p} \mathbf{p}} \mathbf{I}_{\mathbf{p p}} \tag{5-9}
\end{equation*}
$$

Each of these three different power values is of different importance in ac circuit considerations. The peak-to-peak power dissipation has little significance because power does not depend on the polarity of a voltage or the direction of the current. The peak power dissipation also is usually only significant in certain applications because peak power is an instantaneous value occurring only at the instant the voltage and current are at their peak values. The most significant power specification in an ac circuit is the rms power. It is more significant because it is the type of ac power that can be equated with dc power. (Remember that rms was defined to provide the same equivalent heating effect as dc).

Using equation 5-6 the power dissipated by a resistor is determined by multiplying the voltage across the resistor by the current flowing through it.

$$
\begin{equation*}
\mathbf{P}_{\mathbf{R}}=\mathbf{E}_{\mathbf{R}} \mathbf{I}_{\mathbf{R}} \tag{5-10}
\end{equation*}
$$

Figure 5.32 Series-Parallel Resistive AC Circuit Power Calculation Example
Thus, this equation can be used to calculate the rms power dissipated in series, parallel, and series-parallel ac resistive circuits. For example, it can be used to calculate the power dissipated in each of the four resistors in our previous series-parallel circuit shown again in Figure 5.32. This is the same circuit as Figure 5.26 with the rms current calculated values added. Keep in mind that it is a series-parallel circuit and that the principles discussed can be applied to determine the rms power dissipated in simple series or simple parallel circuits as well.

The voltage drop across RI of 6 volts rms was previously calculated. It is used along with the current through RI to calculate the power dissipated in R1 as follows:

$$
\begin{aligned}
P_{R 1} & =E_{R 1} I_{R 1} \\
& =(6 V)(3 \mathrm{~mA}) \\
& =18 \mathrm{~mW}
\end{aligned}
$$

The rms power dissipated by R_{1} is 18 milliwatts.

The power being dissipated by resistors K_{2}, K_{3}, and R_{4} can be calculated similarly. Recall that the voltage drop across the parallel combination of R2 and R3 was calculated as 9 volts and across R4 as 9 volis. Therefore,

$$
\begin{aligned}
\mathbf{P}_{R 2} & =\mathbf{E}_{\mathbf{R} 2} I_{2} \\
& =(9 \mathrm{~V})(2.25 \mathrm{~mA}) \\
& =20.25 \mathrm{~mW} \\
\mathbf{P}_{\mathrm{R} 3} & =\mathbf{E}_{\mathrm{R} 3} I_{\mathrm{R} 3} \\
& =(9 \mathrm{~V})(0.75 \mathrm{~mA}) \\
& =6.75 \mathrm{~mW} \\
\mathbf{P}_{R 4} & =\mathbf{E}_{\mathbf{R} 4} \mathbf{I}_{\mathbf{R} 4} \\
& =(9 \mathrm{~V})(3 \mathrm{~mA}) \\
& =27 \mathrm{~mW}
\end{aligned}
$$

Therefore, the rms power dissipated by each of these resistors is: $R_{2}=20.25$ milliwats; $\mathrm{K}_{3}=6.75$ milliwatis; and $\mathrm{K}_{4}=27$ milliwatts.

The total power being dissipated within the entire circuit equals the total applied voltage times the total current.

$$
\begin{aligned}
\mathbf{P}_{\mathbf{T}} & =\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{T}} \\
& =(24 \mathbf{V})(3 \mathrm{~mA}) \\
& =72 \mathrm{~mW}
\end{aligned}
$$

The total power in the circuit is 72 milliwatts.
All individual power dissipation values should add up to the total power calculated

$$
\begin{gathered}
P_{R 1}+P_{R 2}+P_{R S}+P_{R 4}=P_{T} \\
18 \mathrm{~mW}+20.25 \mathrm{~mW}+6.75 \mathrm{~mW}+ \\
27 \mathrm{~mW}=72 \mathrm{~mW}
\end{gathered}
$$

The total is 72 milliwatts which verifies the previous calculation for total power.
Remember that in all of these power calculation examples, calculations have been rms power.

Summary

In this lesson purely resistive circuits with an ac voltage applied were analyzed. Calculations were performed to show you how to determine the amplitudes of the voltages, currents, and power dissipations in series, parallel, and series-parallel ac resistive circuits. You were also shown how to convert between the peak, peak-to-peak, and rms amplitude specifications of these quantities.
It should be remembered that all voltages and currents in these circuits have the same period and therefore, the same frequency. In pure resistive ac circuits there is no phase difference between the voltages and currents, so the voltage and current are said to be "in phase".

1. Given the peak-to-peak circuit values shown in the table, complete the table by converting to peak and rms values.

Solution

a. $\mathbf{E}_{R 1 p k}=0.5 \times \mathbf{E}_{R 1 P P}=0.5 \times 50 \mathrm{~V}=25 v$
b. $E_{R 2 p k}=0.5 \times E_{R 2 p p}=0.5 \times 30=15 \mathrm{~V}$
c. $E_{R 9 p k}=0.5 \times E_{R 3 p p}=0.5 \times 27 \mathrm{~V}=13.5 \mathrm{~V}$
d. $E_{R 4 p k}=0.5 \times E_{R 4 p p}=0.5 \times 14 V=7 V$
e. $E_{R 1 \mathrm{rms}}=0.707 \times \mathrm{E}_{\mathrm{R} \mid \mathrm{pk}}=0.707 \times 25 \mathrm{~V}=17.7 \mathrm{~V}$
f. $E_{R 2 \mathrm{rms}}=0.707 \times \mathrm{E}_{\mathrm{R} 2 \mathrm{pk}}=0.707 \times 15 \mathrm{~V}=\mathbf{1 0 . 6 V}$
g. $\mathbf{E}_{\mathbf{R g r m s}}=0.707 \times \mathbf{E}_{\mathbf{R 9 p k}}=0.707 \times 13.5 \mathrm{~V}=9.54 \mathrm{~V}$
h. $E_{R 4 r m s}=0.707 \times E_{R 4 p k}=0.707 \times 7 \mathrm{~V}=4.95 \mathrm{~V}$
2. For the circuit below, calculate the instantaneous voltage and current values specified by the table:

Solution

First. \mathbf{E}_{pk} is determined
$\mathrm{E}_{\mathrm{pk}}=0.5 \times \mathbf{E}_{\mathrm{pp}}=0.5 \times 15 \mathrm{~V}_{\mathrm{pp}}=7.5 \mathrm{~V}$
Then the instantaneous voltage and current values can be calculated
Finding $\mathbf{e}_{1\left(x^{\circ}\right)}$:
a. $\mathrm{e}_{1\left(0^{\circ}\right)}=\sin 0^{\circ} \times \mathrm{E}_{\mathrm{pk}}=0.00 \times 7.5 \mathrm{~V}=0 \mathrm{~V}$
b. $\mathbf{e}_{\mathrm{i}\left(3()^{\circ}\right)}=\sin 30^{\circ} \times \mathbf{E}_{\mathrm{pk}}=0.5 \times 7.5 \mathrm{~V}=3.75 \mathrm{~V}$
c. $\mathbf{e}_{i\left(60^{\circ}\right)}=\sin 60^{\circ} \times \mathbf{E}_{p k}=0.866 \times 7.5 \mathrm{~V}=6.5 \mathrm{~V}$
d. $\mathbf{e}_{\text {(}\left(90^{\circ}\right)}=\sin 90^{\circ} \times \mathbf{E}_{j \mathrm{pk}}=1 \times 7.5 \mathrm{~V}=7.5 \mathrm{~V}$
e. $\mathbf{e}_{\mathrm{i}\left(120^{\circ}\right)}=\mathbf{e}_{\mathbf{i}\left(60^{\circ}\right)}=6.5 \mathbf{V}$
f. $e_{i\left(150^{\circ}\right)}=e_{i\left(30^{\circ}\right)}=3.75 \mathrm{~V}$
g. $e_{i\left(180^{\circ}\right)}=e_{i\left(0^{\circ}\right)}=0 V$

Finding $i_{\left(x^{\circ} 0\right)}$:
h. $i_{\left(0^{\circ}\right)}=\frac{e_{i\left(0^{\circ}\right)}}{R_{:}}=\frac{0 \mathrm{~V}}{3 \mathrm{k} \Omega}=0.0 \mathrm{~A}$
i. $i_{\left(30^{\circ}\right)}=\frac{e_{i\left(30^{\circ}\right)}}{R_{\mathrm{T}}}=\frac{3.75 \mathrm{~V}}{3 \mathrm{k} \Omega}=1.25 \mathrm{~mA}$
j. $i_{\left(60^{\circ}\right)}=\frac{e_{i\left(60^{\circ}\right)}}{R_{t}}=\frac{6.5 \mathrm{~V}}{3 \mathrm{k} \Omega}=\mathbf{2 . 1 7 \mathrm { mA }}$
k. $i_{\left(90^{\circ}\right)}=\frac{e_{1\left(90^{\circ}\right)}}{R_{T}}=\frac{7.5 \mathrm{~V}}{3 \mathrm{k} \Omega}=2.5 \mathrm{~mA}$

1. $i_{\left(120^{\circ}\right)}=i_{\left(60^{\circ}\right)}=2.17 \mathrm{~mA}$
m. $i_{\left(150^{\circ}\right)}=i_{\left(90^{\circ}\right)}=1.25 \mathrm{~mA}$
n. $i_{\left(180^{\circ}\right)}=i_{\left(0^{\circ}\right)}=0.0 \mathrm{~A}$
2. For the circuit in Example 2, plot the current and voltage waveforms based on the calculated instantaneous values.

Solution:

4. For the following circuit and the typical circuit values shown, determine the circuit values specified in rms values.

Solutions:

a. $\mathbf{R}_{\cdot}=\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{s}}=3 \mathrm{k} \Omega+4.5 \mathrm{k} \Omega+1.7 \mathrm{k} \Omega=9.2 \mathrm{k} \Omega$
b. $I_{T}=\frac{E_{T}}{R_{T}}=\frac{40 \mathrm{VAC}}{9.2 \mathrm{k} \Omega}=4.35 \mathrm{~mA}_{r m}$
c., d.,e. $\quad I_{R 1}=I_{R 2}=I_{R 9}=I_{T}=4.35 \mathrm{~mA}_{\mathrm{rm}}$
f. $E_{R 1}=I_{R 1} \times R_{1}=4.35 \mathrm{~mA}_{\mathrm{rm}} \times 3 \mathrm{k} \Omega=13.0 \mathrm{VAC}$
g. $\mathbf{E}_{\mathrm{R} 2}=\mathrm{I}_{\mathrm{R} 2} \times \mathrm{R}_{2}=4.35 \mathrm{~mA}_{\mathrm{rms}} \times 4.5 \mathrm{k} \Omega=19.6 \mathrm{VAC}$
h. $E_{R 3}=I_{R 3} \times R_{3}=4.35 \mathrm{~mA}_{\mathrm{rms}} \times 1.7 \mathrm{k} \Omega=7.4 \mathrm{VAC}$
i. $\quad P_{R 1}=I_{R 1} \times E_{R 1}=4.35 \mathrm{~mA}_{r m s} \times 13 V A C=56.5 \mathrm{~mW} \mathrm{~W}_{\mathrm{rm}}$.
j. $P_{R 2}=I_{R 2} \times E_{R 2}=4.35 \mathrm{~mA}_{r m s} \times 19.6 \mathrm{VAC}=85.2 \mathrm{~mW} \mathrm{~W}_{\mathrm{rm}}$.

$$
\begin{aligned}
& \text { k. } P_{R 3}=I_{\mathrm{R} 3} \times \mathrm{E}_{\mathrm{R} 3}=4.35 \mathrm{~mA}_{\mathrm{rms}} \times 7.4 \mathrm{VAC}=32.2 \mathrm{~m} \mathrm{~W}_{\mathrm{rms}} \\
& \text { 1. } \quad P_{\mathrm{T}}=I_{\mathrm{T}} \times \mathrm{E}_{\mathrm{A}}=4.35 \mathrm{~mA}_{\mathrm{rms}} \times 40 \mathrm{VAC}=174 \mathrm{~m} \mathrm{~W}_{\mathrm{rms}}
\end{aligned}
$$

5. For the following circuit and typical circuit values shown. determine the circuit values specified in peak values.

Solutions

a. $I_{R 1}=\frac{E_{R I}}{R_{I}}=\frac{20 V_{p k}}{3 k \Omega}=6.67 \mathrm{~mA}_{p k}$
b. $I_{R 2}=\frac{E_{R 2}}{R_{2}}=\frac{20 V_{p k}}{4.5 k \Omega}=4.44 \mathrm{~mA}_{\mathrm{pk}}$
c. $I_{R 3}=\frac{E_{R 3}}{R_{3}}=\frac{20 \mathrm{~V}_{\mathrm{Pk}}}{1.7 \mathrm{k} \Omega}=11.8 \mathrm{~mA} \mathrm{~A}_{\mathrm{pk}}$
d. $I_{T}=I_{R 1}+I_{R 2}+I_{R 3}=6.67 m A_{p k}+4.44 m A_{P k}+11.8 m A_{P k}=22.9 m A_{p k}$
e. $R_{T}=\frac{E_{A}}{I_{T}}=\frac{20 V_{p k}}{22.9 m A_{p k}}=873 \Omega$
f.og..h. $\quad E_{R 1}=E_{R 2}=E_{R 3}=E_{A}=20 V_{P k}$
i. $P_{R 1}=I_{R 1} \times E_{R 1}=6.67 \mathrm{~mA}_{p k} \times 20 \mathrm{~V}_{\mathrm{Pk}}=133 \mathrm{~m} \mathrm{~W}_{\mathrm{Pk}}$
j. $\quad P_{R 2}=I_{R 2} \times E_{R 2}=4.44 \mathrm{~mA}_{P k} \times 20 V_{p k}=88.8 \mathrm{~mW} \mathrm{P}_{\mathrm{pk}}$
k. $P_{R S}=I_{R S} \times E_{R G}=11.8 \mathrm{~mA}_{p k} \times 20 V_{p k}=236 \mathrm{~m} W_{p k}$

1. $P_{T}=I_{T} \times E_{A}=22.9 \mathrm{~mA}_{\mathrm{pk}} \times 20 \mathrm{~V}_{\mathrm{pk}}=458 \mathrm{~m} \mathrm{~W}_{\mathrm{pk}}$
2. For the following circuit and typical circuit values shown. determine the circuit values specified in peak-to-peak values

a. $\quad \mathbf{R}_{T}=\square$ g. $\mathbf{E}_{\mathbf{R} 2}=$
b. $\mathbf{I}_{\mathrm{T}}=\ldots$ h. $\mathbf{E}_{\mathrm{R} 3}=$
\qquad
\qquad
c. $\mathbf{1}_{\mathrm{RI}}=$ i. $\mathrm{P}_{\mathrm{KI}}=$ \qquad
d. $1_{k 2}=$ j. $P_{R 2}=$ \qquad
e. $\mathrm{I}_{\mathrm{R} 3}=\square$ k. $\mathrm{P}_{\mathrm{R} 3}=$ \qquad
f. $\mathrm{E}_{\mathrm{RI}}=$ 1. $\mathrm{P}_{\mathrm{T}}=$ \qquad

Solution:
a. $R_{\mathrm{r}}=\mathbf{R}_{1} / /\left(\mathbf{R}_{\mathbf{2}}+\mathrm{R}_{\mathrm{g}}\right)=3 \mathrm{k} \Omega / /(4.5 \mathrm{k} \Omega+1.7 \mathrm{k} \Omega)=3 \mathrm{k} \Omega / / 6.2 \mathrm{k} \Omega$

$$
=\frac{3 \mathrm{k} \Omega \times 6.2 \mathrm{k} \Omega}{3 \mathrm{k} \Omega}+6.2 \mathrm{k} \Omega \quad=2.02 \mathrm{k} \Omega
$$

b. $I_{T}=\frac{E_{A}}{R_{\mathrm{T}}}=\frac{10 \mathrm{VAC}}{2.02 \mathrm{k} \Omega}=4.95 \mathrm{~m} \mathrm{~A}_{\mathrm{rms}}$
c. $I_{R_{1}}=\frac{E_{R_{1}}}{R_{1}}=\frac{E_{A}}{R_{1}}=\frac{10 \mathrm{VAC}}{3 \mathrm{k} \Omega}=3.33 \mathrm{~mA}_{\mathrm{rms}}$
d.,e. $I_{R 2}=I_{R 3}=\frac{E_{R 2}+E_{R 3}}{R_{2}+R_{3}}=\frac{E_{A}}{R_{2}+R_{3}}=\frac{10 V A C}{6.2 \mathrm{k} \Omega}=1.61 \mathrm{~mA} \mathrm{Ams}$
f. $\mathbf{E}_{\mathbf{R I}}=\mathbf{I}_{\mathbf{R}!} \times \mathbf{R}_{1}=3.33 \mathrm{~mA}_{\mathrm{rms}} \times 3 \mathrm{k} \Omega=10 \mathrm{VAC}=\mathbf{E}_{\mathbf{A}}$
g. $\mathbf{E}_{\mathbf{R} 2}=I_{R 2} \times \mathbf{R}_{2}=1.61 \mathrm{~mA}_{\mathrm{rms}} \times 4.5 \mathrm{k} \Omega=7.25 \mathrm{VAC}$
h. $\mathbf{E}_{\mathbf{R} 3}=\mathrm{I}_{\mathrm{R} 3} \times \mathbf{R}_{\mathbf{3}}=1.61 \mathrm{~mA}_{\mathrm{rms}} \times 1.7 \mathrm{k} \Omega=2.74 \mathrm{VAC}$
i. $P_{R 1}=I_{R 1} \times E_{R 1}=3.33 \mathrm{~mA}_{\mathrm{rm}} \times 10 \mathrm{VAC}=33.3 \mathrm{~mW} \mathrm{~W}_{\mathrm{rm}}$,
j. $\quad P_{R 2}=I_{R 2} \times E_{R 2}=1.61 \mathrm{~mA}_{\mathrm{rms}} \times 7.25 \mathrm{VAC}=11.7 \mathrm{~mW} \mathrm{~F}_{\mathrm{rms}}$
k. $P_{R S}=I_{R S} \times E_{R 3}=1.61 \mathrm{~mA}_{\mathrm{rms}} \times 2.74 \mathrm{VAC}=4.41 \mathrm{~mW} \mathrm{rms}$

1. $P_{T}=1_{\mathrm{r}} \times \mathrm{E}_{\mathrm{A}}=4.95 \mathrm{~mA}_{\mathrm{rms}} \times 10 \mathrm{VAC}=49.5 \mathrm{~mW} \mathrm{~F}_{\mathrm{rm}}$
2. Given the rms circuit values below, complete the table by converting to peak and peak-topeak values.

	rms peak	peak-to-peak	
$\mathrm{I}_{\mathrm{R} 1}$	75 mA	e.	
$\mathrm{I}_{\mathrm{R} 2}$	32.7 mA	b. \quad e.	
$\mathrm{I}_{\mathrm{R} 3}$	7.35 mA	c.	
$\mathrm{I}_{\mathrm{R} 4}$	248.2 mA	d.	g.

2. For the following circuit, calculate the instantaneous voltage and current values specified by the table

3. For the circuit in Problem 2, plot the current and voltage waveforms based on the calculated instantaneous values.
4. For the following circuit and typical circuit values shown, determine the circuit values specified in peak-to-peak values.

Practice Problems

5. For the following circuit and typical circuit values shown, determine the circuit values specified in rms values.

6. For the following circuit and typical circuit values shown, determine the circuit values specified in peak values.

$$
\begin{aligned}
& \text { a. } \quad \mathbf{R}_{\mathrm{T}}=\square \text { g. } \mathbf{E}_{\mathbf{R} 2}= \\
& \text { b. } \mathbf{I}_{\mathrm{T}}=\text { h. } \mathbf{E}_{\mathrm{RY}}= \\
& \text { c. } \mathbf{I}_{\mathbf{R I}}= \\
& \text { i. } \quad P_{R 1}= \\
& \text { d. } \mathbf{I}_{\mathbf{R} 2}=\text { j. } P_{\mathbf{R}_{2}}= \\
& \text { e. } \mathbf{l}_{\mathrm{R} 3}=\square \\
& \text { k. } P_{\mathrm{R} 3}= \\
& \text { f. } E_{R 1}= \\
& \text { 1. } P_{T}=
\end{aligned}
$$

\qquad
\qquad
\qquad

1. Given the peak circuit values shown in the table, complete the table by converting to peak-to-peak and rims values.

	peak	peak-to-peak	rms
$I_{\text {RI }}$	44 mA	a.	
$\mathrm{I}_{\mathrm{R} 2}$	$573 \mu \mathrm{~A}$	b.	f.
$\mathrm{E}_{\mathrm{R} 1}$	16.3 V	c. g	
$\mathbf{E}_{\text {R2 }}$	109.7 V	d.	-

2. For the following circuit, calculate the instantaneous voltage and current values specified by the table

degrees			i_{1}
0	a.	j.	
45	b.	k.	
90	c.	1.	
135	d.	m.	
180	e.	n.	
225	f.	o.	
270	g	p.	
315	h.	q.	
370	1.	r.	

3. For the circuit in problem 2, plot the current and voltage waveforms based on the calculated instantaneous values.
4. For the following circuit and the typical circuit values, determine the circuit values specified in peak values.

a. $\mathrm{R}_{\mathrm{T}}=$ \qquad g. $\mathbf{E}_{\mathbf{R} 2}=$ \qquad
b. $\mathbf{I}_{\mathbf{T}}=$ \qquad h. $\mathbf{E}_{\mathbf{R} 3}=$ \qquad
c. $\mathrm{I}_{\mathrm{RI}}=\square$
i. $P_{\mathrm{R}_{1}}=$ \qquad
d. $\mathbf{I}_{\mathbf{R} 2}=$ j. $\quad \mathbf{P}_{\mathrm{R} 2}=$ \qquad
e. $\mathbf{I}_{\mathrm{R} G}=\square$
k. $P_{\mathbf{R} 3}=$
f. $\mathbf{E}_{\mathrm{RI}}=$ \qquad 1. $\mathbf{P}_{\mathbf{T}}=$
\qquad

For the following circuit and typical circuit values shown, determine the circuit values specified in peak-topeak values.

a. $\mathbf{I}_{\mathrm{R} 1}=$ g. $\mathbf{E}_{\mathbf{R} 2}=$
b. $\mathbf{I}_{\mathbf{R} 2}=$ h. $\mathbf{E}_{\mathbf{R} 9}=$ \qquad
c. $\mathrm{I}_{\mathrm{R} 3}=$ \qquad i. $\quad P_{R 1}=$ \qquad
d. $I_{T}=$ \qquad j. $\quad P_{R 2}=$
e. $\mathbf{R}_{\mathrm{T}}=$ k. $\mathrm{P}_{\mathrm{R} 3}=$ \qquad
f. $\mathbf{E}_{\mathbf{R I}}=$ \qquad 1. $P_{T}=$ \qquad

Quiz
6. For the following circuit and typical values shown, determine the circuit values specified in rms values.

a. $\mathbf{R}_{\mathrm{T}}=$ \qquad g. $\quad \mathbf{E}_{\mathbf{R} 2}=$ \qquad
b. $\mathbf{I}_{\mathrm{T}}=$ \qquad h. $\mathbf{E}_{\mathbf{R} 3}=$ \qquad
c. $\mathbf{I}_{\mathbf{R}_{1}}=$ \qquad i. $\quad \mathbf{P}_{\mathbf{R}_{1}}=$ \qquad
d. $\mathbf{I}_{\mathbf{R} 2}=$ \qquad j. $\quad \boldsymbol{P}_{\mathbf{R} 2}=$ \qquad
e. $\mathrm{I}_{\mathrm{Rg}}=$ \qquad k. $\quad \mathbf{P}_{\mathrm{RS}}=$ \qquad
f. $\mathbf{E}_{\mathbf{R}_{1}}=$ \qquad 1. $\mathbf{P}_{\mathbf{T}}=$ \qquad

LESSON 6

© Capacitance

In this lesson, the electrical property of capacitance and another electronic circuit component, the capacitor, are introduced. The physical and electrical properties of capacitors are discussed. Series and parallel capacitive ac circuits are described and analyzed. The capacitor and the effects of capacitive action in ac series and parallel circuits are described.

At the end of this lesson, you should be able to:

1. List the names of common types of capacitors and discuss the characteristics of each.
2. Define capacitance and the capacitive property.
3. Describe two effects of capacitors in ac circuits.
4. Describe the result of using different types of dielectrics, different sizes of plates, and increasing the distance between the plates of capacitors.
5. Given a schematic diagrain of the types shown and typical circuit values, you should be able to calculate capacitance, capacitive reactance. current, voltage, and power for each capacitor and for the circuit total

Introduction

In the previous lesson, discussion concerned the action of alternating current in resistive circuits. As you probably noted, this concept was very similar to an analysis of direct current in resistive circuits. Resistor series, parallel, and series-parallel circuits were analyzed. Total and individual values of current, voltage, resistance, and power were determined for each of these types of circuits.

In this lesson, capacitive properties and the effects of capacitance in ac circuits will be described and circuits containing capacitors connected in series and parallel will be analyzed.

Capacitors, like resistors, do not amplify or increase voltage or current. However, they perform a unique function by storing an electrical charge. This has the effect of opposing any changes in voltage.

Properties Of Capacitance

Definition of Capacitance

The ability of a nonconductor to store an electrical charge is called capacitance. This capability is particularly important for applications that require short bursts of relatively large amounts of current. For example, a flash tube for a camera uses a burst of current to produce light for a fraction of a second. An electronic ignition system in a car has a capacitor in it to help provide interrupted current conditions that produce the high voltage for the spark discharge. Spot-welding equipment uses a capacitor to obtain peak current almost instantaneously. Capacitors are also used in medical equipment. For example, in a defibrillator used to revive a patient's heartbeat, a capacitor is discharged between two paddles which are applied to the patient's body. The paddles, thus, deliver a controlled amount of electrical energy to the patient.

Figure 6.1 A Capacitor's Schematic Symbol

Physical Description Of A Capacitor

Basic Schematic Symbol

Essentially, a capacitor is two conductive metal plates separated by an insulator. Figure 6.1 shows a capacitor's schematic symbol. The straight and curved lines represent the two conducting plates of the capacitor. The space between the two lines is the dielectric of the capacitor. A dielectric is a nonconductor of electric current.

Types of Capacitors
Charging a Capacitor

Types of Capacitors

Different types of capacitors can be manufactured by using various materials for the dielectric, such as paper, ceramic (a porcelain or baked-clay material), Teflon* (an inert, tough insoluble polymer), and air. Several types of capacitors are shown in Figure 6.2. More detail on various types of capacitors is presented in the section about capacitor values and following.

Charging a Capacitor

How does a capacitor store a charge? In Figure 6.3 two plates of a capacitor are shown in a circuit with a battery. Switch 1 is open Therefore, the plates contain equal numbers of neutral atoms, positive ions, and free electrons that are associated with all conductive materials. This equality makes the plates electrically neutral. When a battery is connected between the two plates by closing switch 1, as shown in Figure 6.4, current flows. (As in all other discussions in this book, current is electron current.) Current flows because the positive potential applied to plate A attracts free electrons from the neutral atoms of the plate. This action creates an excess of positive ions. The free electrons are pulled to the positive terminal of the battery. They are deposited on the negative terminal by the chemical action within the battery and repelled by the negative battery potential and then they collect on plate B of the capacitor.
The creation of positive ions on plate A constitutes a net positive charge on the plate.
The excess electrons on plate B creates a net negative charge on that plate. The difference between the charges on the two plates is a potential difference which is defined as voltage. If there is no restriction of current flow in the circuit, the voltage, or potential difference, between the plates of the capacitor becomes equal to the battery voltage very quickly.
-Trademark of DuPont Company

Figure 6.2 Several Types of Capaciors

Figure 6.3 Plates of a Capacitor Normally Are Electrically Neutral

Figure 6.4 Capacitor Connected to a Battery and Charging

In Figure 6.5, the positive potential on plate A is equal to the positive potential on the battery. Therefore, no more electrons are removed from the positive plate, A. The negative potential on plate B is equal to the negative potential on the battery. Therefore, the B plate cannot collect any more electrons. At this point the current in the circuit stops. The charges have been distributed on the positive and negative plates until the voltage across the capacitor is equal to the battery voltage, and the capacitor is fully charged. The amount of time necessary for the capacitor to charge and the values of voltage across the capacitor after different time periods are discussed in Lesson 10 of this book and in Lesson 13 of the T1 Learning Center textbook Basic Electricity and DC Circuits.

Storing a Charge

If the capacitor is disconnected from the battery by opening the switch as shown in Figure 6.6, the attraction of the charges on the two plates maintains the potential difference between the two plates. Also, the dielectric (insulator) material prevents electrons from moving from plate B to neutralize the positive ions on plate A. lherefore, the charge is stored. By storing a charge equal to the applied battery voltage, the capacitor opposes any change in voltage which normally occurs when the battery is disconnected from the circuit.

Discharging a Capacitor

To discharge the capacitor, a wire can be connected between the two plates, as shown in Figure 6.8. Current flows during a period of time. the excess electrons from plate B neutralize the positive ions on plate A, and both plates return to their original neutral condition and current stops as shown in Figure 6.9. The discharge time is related to the charge time. This also is discussed in Lesson 10.

Figure 6.5 Capacitor is Fully Charged

Figure 6.6 Charged Capacitor Disconnected from Ballery

Figure 6.7 A Wire Connected Between the Two Plates

Values Of Capacitors

The Farad

The value of capacitance in a circuit is described by the capacitive unit, the farad, named for Michael Faraday. Faraday, a British physicist who lived during the 19th century, is credited with developing the method of measuring capacitance. Faraday stated a capacitor has a value of one farad of capacitance if one volt of potential difference applied across its plates moves one coulomb of electrons from one plate to another. This is illustrated graphically in Figure 6.10, and it is expressed in this equation:

$$
\begin{equation*}
C=\frac{Q}{E} \tag{6-1}
\end{equation*}
$$

Where

$Q=$ the charge transferred in Coulombs. (One Coulomb $=6.25 \times 10^{18}$ electrons.)
$C=$ value of capacitor in farads.
E = voltage applied across the capacitor plates in volts.

Figure 6.8 Capacitor Plates Discharging

Figure 6.9 After Discharge both Plates are Once Again Electrically Neutral

Figure 6.10 Circuit Factors for Measuring One Farad of Capacitance

Standard Values of Capacitance

6.25×10^{18} electrons is a very large number of electrons; therefore, a one farad capacitor is very large electrically and physically. Practical units of capacitance vary from a small capacitor of one picofarad ($1 \mathrm{pF}=$ 0.000000000001 farads $=10^{-12}$ farads) to 1000 microfarads $(1000 \mu \mathrm{~F}=0.001$ farads $=$ 1×10^{-9} farads), for a large capacitor Typical capacitors of these values are shown in Figure 6.11

Abbreviations of Capacitive Unit

The capacitance value of most capacitors is in either microfarads or picofarads. There are many ways that these units can be expressed and abbreviated. For exanıple, the value of a 0.001 microfarad capacitor can be written:

$$
\begin{aligned}
& 0.001 \times 10^{-6} \mathrm{~F} \text { or } 1000 \times 10^{-12} \mathrm{~F} \\
& \text { or } 1000 \text { picofarads or } 1000 \mathrm{pF} \text { or } 1 \mathrm{kpF} \\
& \text { or } 1000 \text { micromicrofarads or } 1000 \mu \mu \mathrm{~F} \text {. } \\
& \text { or } 1000 \times 10^{-6} \times 10^{-6} \mathrm{~F} \text {. } \\
& \text { or } 1 \text { nanofarad or } 1 \times 10^{-9} \mathrm{~F} \text {. }
\end{aligned}
$$

All other capacitance values can be expressed and abbreviated in as many ways. Although the capacitance value of a capacitor is usually printed on it, it can be in any one of many different abbeviations because all manufacturers have not established a standard abbreviation code for capacitance units. This can pose some deciphering problems. However, as a rule of thumb, remember that practical values of capacitance are fractions of one farad, and they typically range from one picofarad to several thousand microfarads.

Figure 6.11 Typical Small-Value and LargeValue Capacitors
Equation for Calculating Capacitive Values Based on Physical Parameters
Capacitors of different values are manufactured by varying several factors, such as the area of the plates, the distance between the plates, and the type of dielectric material used. An equation which relates these factors is

$$
\begin{equation*}
C=k_{e}\left(\frac{A}{d}\right) \epsilon_{o} \tag{6-2}
\end{equation*}
$$

Where $\quad C=$ the value of the capacitor in farads
$k_{e}=$ the dielectric constant of the dielectric material (no units)
$A=$ the area of either plate (square meters)
$d=$ the distance between the plates (meters)
$\epsilon_{0}=$ the permittivity of dry air (8.85×10^{-12} farads per meter)

Area of the Plates

If the area of the plates is increased, the capacitor will be able to store more charge for every volt applied across its plates. Thus, if the dielectric and the distance between the plates remain constant, capacitance will be increased if the plate area is increased

Distance Between Plates

If the distance between the plates of a capacitor is increased, then the capacitor stores less charge for every volt applied actoss its plates. Therefore, if the dielectric and the plate area remain constant, capacitance will be decreased if the distance between plates is increased

Dielectric Constant

The dielectric constant of a dielectric material is a ratio of the permittivity of a dielectric material to the permittivity of a vaculum, or more practically, dry air. The permittivity of a material is its ability to concentrate the flux density of an electric field. For example, the dielectric constant of glass is 8 . Therefore, glass has a permittivity of 8 times that of air The ratio of the permitivity of glass to the permittivity of air is $8: 1$, the air having an assigned constant of 1 .

The larger the value of dielectric constant, the greater the concentration of the electic field between the two charged plates. Therefore, assuming that the area of the plates and the spacing between plates remain constant, the value of a capacitor will be increased if the dielectric constant is increased, and it will be decreased if the dielectric constant is decreased.
A table of typical dielectric constants of various materials used in the construction of capacitors is shown in Figure 6.12.

DIELECTRIC	DIELECTRIC
MATERIAL	CONSTANT
AIR	1
CERAMICS	$80-1200$ VARIES WITH TYPE
GLASS	8
MICA	$3-8$ VARIES WITH TYPE
TEFLON	2.1
OIL	$2-5$ VARIES WITH TYPE
PAPER	$2-6$ VARIES WITH TYPE

Figure 6.12 Diclectric Constane of Various , Materials

Voltage Ratings of Capacitors

In addition to their capacitance values, all capacitors are also rated as to the maximum allowable de voltage that may be applied across the plates without arc-over and subsequent damage to it and the circuir. This rating is called the working voltage dc, ustally abbrevated WVDC or simply VDC when printed on a capacitor. For example, if a capacitor is rated at $100 \mathrm{~W} \mathrm{~V}^{\prime} \mathrm{DC}$. no voltage greater than 100 volts de should be applied across its plates.

If a capacitor is used in an ac circuit, the peak value of the ac voltage should be compared to WVDC rating of the capacitor to be sure that the voltage will not exceed that rating and cause the capacitor to arc between its plates. In a circuit in which the voltage across the capacitor is 40 volts peak to peak, the peak value of this voltage is 20 volts and therefore, the WVDC rating of the capacitor should be a minimum of 20 volts.

Dielectric Strength

The WVDC rating of a capacitor is related to the dielectric strength (breakdown voltage) of the type of dielectric material used in the capacitor's construction. The dielectric strength is different for different materials. The dielectric strength of a material is typically rated in voles per mil (V/mil). One mil is 0.001 inches. The V / mil rating of a dielectric material indicates how many volts a one-mil thickness of the material can withstand without breaking down. Figure 6.13 lists some $V / n i l$ ratings of several dielectric materials commonly used in the construction of capacitors.

It is also important to remember that the working voltage of any capacitor decreases as temperature increases. Therefore, if the circuil in which a capacitor of a particular WVDC rating is to be used will be subjected to high temperatures, the capacitor should be chosen so that its working voltage will exceed expected circuit voltages at those temperatures.

Types Of Capacitors

As stated previously, the dielectric material used in the construction of a capacitor primarily determines the type of capacitor. Sone of the common types are ceramic, paper, air, and electrolytic capacitors.

Ceramic Disc Capacitors

Ceramic disc capacitors usally consist of two conductive discs on each side of a piece of ceramic insulator, one lead attached to each plate, and coated with some type of inert. waterproof coating, often made of some type of ceramic composition. Ceramic capacitors typically are manufactured in values from 1 picofarad up to thousands of microfarads and dc working volts from 10 volts up to 5000 volts. Several ceramic disc capacitors are shown in Figure 6.2

DIELECTRIC STRENGTH

 (VOLTS/MIL)MATERIAL
AIR
CERAMICS PYREX GLASS
MICA
teflon
20
600-1250 VARIES WITH TYPE 330
600-1500 VARIES WITH TYPE 1525
OIL
PAPER

400-1250 VARIES WITH TYPE

Figure 6.13 Dielectric Strengih of Vartous Materials

Figure 6.14 Typical Paper Capacitor

Paper Capacitors

A paper capacitor typically consists of a sheet of paper insulator (dielectric) sandwiched between two sheets of foil, rolled in cylindrical form as shown in Figure 6.14. Paper capacitors are typically manufactured in capacitive values from about 1000 picofarads to one microfarad.

Paper, mylar, and other tubular film-type capacitors typically have a band at one end of the capacitor as shown in Figure 6.15. The band identifies the outside foil of the capacitor. The lead closest to the band should be connected to the ground or lowest potential point in the circuit. This provides r! shielding in high frequency circuits. It also provides a safety factor for the technician if the insulating material would happen to wear away and expose the capacitor's outside plate.

Electrolytic Capacitors

A typical electrolytic capacitor consists of an outer aluminum shell and an inner aluminum electrode. As shown in Figure 6.16, the electrode is wrapped in gauze permeated with a solution of phosphate, borax, or carbonate. This solution is called the electrolyte. When a dc voltage is placed across the plates of the capacitor, an oxide coating forms between the electrode and the electrolyte. A capacitor is then formed with the oxide as the dielectric, the inner electrode as the positive plate (anode), and the outer shell and electrolyte as the negative plate (cathode).
Several capacitors of different values can be formed within one outer shell by using several electrodes and applying different potentials to the electrodes. Figure 6.17 shows two views of a typical multisection electrolytic capacitor. The side view shows a typical way the capacitance and WVDC ratings of each section of the capacitor are marked on its side. Note that a small geometric symbol is marked beside each of the section ratings. These symbols are used to identify each of the capacitor's sections. The bottom view show's several lugs extending outward from the bottom of the capacitor. Each of the inner lugs is connected to an inner (usually positive) electrode of each individual capacitor section.

Figure 6. 15 Capacitor with Outer Foil Connection Indicated with Band

Figure 6.16 Construction of an Electrobytic Capacitor

Figure 6.17 A Mulisection Electrolytic Capacitor

Note that the small geometric symbol marked beside each of these lugs match the symbols marked on the side. Therefore, the capacitance value and WVDC rating of each section (lug) can be determined easily. Note also that there are several lugs around the outer edge of the capacitor. These lugs are part of the outer shell of the capacitor which is usually the negative (ground) side of the capacitor, common to each section. These lugs are used to mount the capacitor and provide a common negative connection in the circuit.

Some electrolytic capacitors use special metals called tantalum or nobium as the anode and are called tantalum or niobium capacitors. These capacitors have a larger capacitance in a much smaller size than other types of standard electrolytics. Because of their small physical size, they are ideal for use in miniaturized electronic circuits where space considerations are important.

Since an electrolytic capacitor utilizes a chemical process for its capacitive ability, it has a designated shelf life. That is, an electrolytic capacitor can be stored only for a specified length of time without use before it changes value.
The schematic symbol for an electrolytic capacitor has the added notation of the plus and minus signs. Electrolytic capacitors must be used in circuits with the end marked positive always at a more positive potential than its negative end. Thus, they are normally used only where dc or pulsating dc voltages are present. Special types of non-polarized electrolytic capacitors are available for use in ac circuits. Specified symbols for electrolytic capacitors are shown in Figure 6.18.

Figure 6.18 Electrolytic Capacitor Symbols
Electrolytic capacitors are available from about one microfarad to several thousand microfarads, with working voltage ranging from several volts to several hundred volts. The applied voltage to an electrolytic capacitor should be approximately equal to the voltage rating of the electrolytic. This will help insure that the proper value of capacitance will be present in the circuit.

Air Capacitors

With air capacitors, capacitance is varied by meshing and unmeshing the capacitor plate, with the air between the plates serving as the dielectric. As shown in Figure 6.19, air capacitors are commonly used as a variable tuning capacitor in receiver circuits.

The variable capacitor is designated schematically by adding an arrow to the standard schematic symbol also shown in Figure 6.19. Air capacitors are available usually in variable values from a few picofarads to several hundred picofarads.

Leakage Current

Leakage Current

A theoretical capacitor will hold a charge indefinitels. Practically, however, if a capacitor is charged and set down for a time, it actually loses a small amount of its charge. This is because all insulators are conductors to some degree. The dielectric, even though a poor conductor, allows some electrons to 'leak' back across to the other plate. This small electron flow discharge is what is called leakage current. Leakage currem is greatest in electrolytic capacitors due to their method of construction and impurities in the foil and electrolyte.

A table showing leakage current for common types of capacitors for typical ranges of values and W'VDC ratings is shown in Figure 6.20

Figure 6.19 Variable Tunang Air Capachor and its Schematic Symbol

Capacitor Type	Range of Capachance	Aange of wVDC (In valts)	Range of Temperature (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \mathbf{R}_{1}=\text { Insulation Resistance } \\ L_{L}=\text { Leakage Current } \\ \left(\text { at } 25^{\circ} \mathrm{C}\right) \end{gathered}$	Comments
Ceramic	$1 \mathrm{pF}-2.5 \mu \mathrm{~F}$	20-200	$-55+125$	$\mathrm{R}_{1}=100 \mathrm{G} \Omega / \mu \mathrm{F}$	Small size Low cost
Papar	0.001-2 $\mu \mathrm{F}$	50-2000	$-55+105$	$\mathrm{A}_{1}=3-20 \mathrm{G} \Omega / \mu \mathrm{F}$	Low cost
Elactrolytic	0.5-1,000,000 $\mu \mathrm{F}$	2.5-700	$-80+125$	$L_{L}=0.1 \mu A$ or more	Very smallsize Very low cost
Mylar	0.001-20 $\mu \mathrm{F}$	50-1000	$-55+150$	$\mathrm{A}_{1}=50 \mathrm{G} \Omega / \mu \mathrm{F}$	Small slze Relatively high cost
Alr	10-400 pF	200/0.01 in alr gap	-	-	Variable
Mica	$1 \mathrm{pF}-1 \mu \mathrm{~F}$	50-100,000	$-55+150$	$A_{1}=10-100 \mathrm{G} \Omega / \mu \mathrm{F}$	Cap. change with age very small
Oll Fllied	$0.001-15 \mu \mathrm{~F}$	100-12,500	$-55+85$	$\mathrm{A}_{1}=2-100 \mathrm{G} \Omega / \mathrm{L} \mathrm{F}$	Low cost

Figure 6.20. Typical Capacitor Parameters

Resistors in DC and AC Circuits
Capacitors in DC Circuits
Capacitors in AC Circuits

Comparison Of Resistance And Capacitance

A comparison of resistive and capacitive properties should help you understand better the effects of capacitors in circuits. A resistor limits, and therefore, controls the flow of current in a circuit. A capacitor stores a charge and as a result, opposes a change in volrage in the circuit.

Resistors in DC and AC Circuits

Recall Irom previous lessons that in both dc and ac circuits, as shown in Figure 6.21, a resistor places a fixed amount of resistance in the circuit, and as a result, governed by Ohm's law, determines the amount of current flow. A capacitor, however, stores a charge and as a result, opposes any change in voltage in a circuit

Capacitors in DC Circuits

In de circuits, a capacitor with no charge instantly acts as a short circuit by allowing a maximum value of current to flow, as shown in Figure 6.22a. As the capacitor charges, and the voltage across the capacitor increases in a polarity which opposes the battery or voltage source, the amount of current tlowing decreases. When the capacitor is fully charged, current no longer flows in the circuit, and the capacitor then acts as an open circuit, as shown in Figure $6.22 b$. The time required for a capacitor to become fully charged is almost instantaneous, and is determined by RC time constants which will be discussed in detail in Lesson 10

Capacitors in AC Circuits

In ac circuits, the capacitive property of capacitors is observed in two related ways. First, the voltage across the capacitor lags the current through the capacitor by 90 degrees, as shown in Figure 6.23. Second, also shown in Figure 6.23, a capacitor represents a varying

Figure 6.2I Resistors in DC and AC Circuits

CAPACITORS IN DC CIRCUITS

Figure 6.22 Capacitors in DC Circuits

Figure 6.23 Capacitor in AC Circuits
opposition to current flow that is inversely related to the frequency of the ac source causing the current flow. This changing opposition of a capacitor to current flow is called capacitive reactance.

Phase Relationships In Capacitive Circuits

Current flows in every closed electrical circuit. Also, in every capacitive electrical circuit there are certain predictable and precise relationships between current, voltage, and capacitance. These relationships can be precisely described in terms of phase relationships. And a good way to begin a discussion and understanding of capacitive circuits is by analyzing phase relationships of the factors in such circuits.

E_{C} and I_{C} Relationships

An equation that mathematically describes the relationship between the voltage and current in a purely capacitive circuit is

$$
\begin{equation*}
\mathbf{I}_{C}=C \frac{\Delta E_{C}}{\Delta t} \tag{6-3}
\end{equation*}
$$

Where $\mathbf{l}_{\mathrm{C}}=$ capacitive current (amperes)
$C=$ capacitance (farads)
$\Delta=$ a change in quantity
$\mathbf{E}_{\mathbf{C}}=$ volts across the capacitor $\mathrm{t}=$ time (seconds)
Since Δ designates a change in quantity, then the value $\frac{\Delta E_{C}}{\Delta t}$ is the change in voltage (in volts) across the capacitor divided by the change in time (in seconds) in which that change occurred. This ΔE_{C} is called the rate of change of the voltage $\frac{\Delta_{t}}{t}$ of change of the voltage. Because ΔE_{s} is the rate of change (ROC) of voltage, equation 6-3 can be rewritten:

$$
\begin{equation*}
\mathbf{I}_{\mathbf{C}}=\mathbf{C} \times\left[\operatorname{ROC} \mathbf{E}_{\mathbf{C}}\right] \tag{6-4}
\end{equation*}
$$

Figure 6.24 Maximum Rate of Change of Vollage

Rate of Change of $\mathbf{E}_{\mathbf{C}}$

Since there are rates of change of voltage in a capacitive ac circuit, it is important that you know where the maximum and minimum rates of change occur. Using equation 6-4, certain characteristics of the current can be determined. A good example is to examine the rate of change of voltage at various points in a sine wave. A fixed amount of time, Δt, will be moved along a time axis and examined to see how much change in voltage occurs at various intervals of the sine wave. As shown in Figure 6.24, the maximum change in voltage occurs as the sine wave crosses the axis at the zero voltage level. Thus, the rate of change of voltage is maximum as the sine wave crosses the zero voltage level.

On the other hand, the change in voltage is minimum or zero as the voltage peaks. Thus, the rate of change of voltage is zero as the sine wave peaks as shown in Figure 6.25. This should be obvious because when the sine wave peaks, the voltage stops increasing and begins decreasing.

$\mathbf{E}_{\mathbf{C}}$ Versus I_{C}

Remember that the current is equal to the value of the capacitor times the rate of change of the voltage. When the rate of change of voltage is zero (E_{C} is at either peak), the value of the current is zero. When the rate of change of voltage is maximum (as E_{c} crosses the zero voltage level), the value of the current is a maximum. The zero and maximum points of I_{C} are indicated by the Xs in Figure 6.26. Since the voltage changes sinusoidally, the rate of change of voltage changes in a sinusoidal shape and therefore, so does the current. Connecting these points with a sinusoidal waveform. as shown in Figure 6.27, the current waveform can be plotted. Note in Figure 6.27 that the current leads the voltage by 90 degrees as was described earlier.

Frequency Related to Capacitive Impedance

In a circuit, a capacitor impedes - opposes the flow of current. The opposition is called capacitive reactance. The capacitive reactance depends on the frequency of the source. The rate-of-change equation can be used to relate the capacitive opposition to the frequency of the voltage in a capacitive circuit.

Figure 6.25 Minimum Rate of Change of Vollage

Figure 6.26 Zero and Maximum Points of I_{C}

Figure 6.27 Relationship of I_{C} to E_{C}

Rate of Change Versus Frequency

As frequency increases, the rate of change of the voltage is much higher. For example, as shown in Figure 6.28a, a 10 volt peak-to-peak one kilohertz waveform makes a 10 volt transition in $0.5(1 / 2)$ millisecond But. as shown in Figure 6.28b, with the same amplitude, and an increase in frequency to 4 kilohertz, the same 10 volt transition is made in one-fourth of this time, or in 0.125 millisecond. Calculating the rate of change of voltage in each case, it is found that at 1 kilohertz:

$$
\begin{aligned}
\text { Rate of change } & =\frac{\Delta E}{\Delta t} \\
& =\frac{10 \mathrm{~V}}{0.5 \mathrm{~ms}} \\
& =\frac{20 \mathrm{~V}}{\mathrm{~ms}}
\end{aligned}
$$

and at 4 kilohertz:

$$
\begin{aligned}
\text { Rate of change } & =\frac{\Delta E}{\Delta t} \\
& =\frac{10 \mathrm{~V}}{0.125 \mathrm{~ms}} \\
& =\frac{80 \mathrm{~V}}{\mathrm{~ms}}
\end{aligned}
$$

The approximate rate of change of the 1 kilohertz waveform is 20 volts per millisecond. The approximate rate of change of the 4 kilohertz waveform is 80 volts per millisecond. Obviously, the rate of change of the higher frequency voltage is greater. According to equation 6-4, the voltage with the higher frequency with its greater rate of change would produce a higher current when applied to a capacitor.

$$
f \uparrow \frac{\Delta \mathbf{E}_{C}}{\Delta t} \uparrow \mathbf{I}_{\mathbf{c}} \uparrow
$$

Figure 6.28 Rate of Change of Vollage Versus Frequency
According to Ohm's law, if voltage is constant and current increases then the opposition to current flow must have decreased.

$$
1 \uparrow=\frac{E}{X_{C} \downarrow}
$$

On the other hand, if source frequency is decreased, the current will also decrease, which means an increase in opposition must have occurred. These relationships can be expressed as:

$$
\mathfrak{f} \downarrow \frac{\Delta \mathbf{E}_{\mathrm{C}}}{\Delta t} \downarrow \mathrm{I}_{\mathrm{C}} \downarrow \text { and } \mathrm{X}_{\mathrm{C}} \uparrow
$$

Capacitive Reactance

As stated earlier, this changing opposition of a capacitor is called capocitive reactance and is inversely related to the source frequency.

Equation for $\mathbf{X}_{\mathbf{C}}$

Capacitive reactance is measured in ohms of reactance like resistance, and depends on the frequency of the applied voltage and the value of the capacitor.

$$
\begin{equation*}
X_{C}(\Omega)=\frac{1}{2 \pi f(H z) C(F)} \tag{6-5}
\end{equation*}
$$

where $2 \pi=6.28$.

Analysis of an AC Capacitive Circuit

The symbol for reactance is X. To specify a specific type of reactance, a subscript is used. In this case, since it's capacitive reactance, the subscript C is used. The constant 2π comes from the number of radians in one cycle of a sinusoidal ac waveform. Therefore, this equation is valid only for calculating the capacitive reactance of a capacitor to sinusoidal alternating current.

Analysis of an AC Capacitive Circuit

The circuit in Figure 6.29 will be used to determine the capacitive reactance using the capacitive reactance equation. That circuit contains a 10 microfarad capacitor with an applied voltage with a frequency of 4 kilohertz. The capacitive reactance is calculated:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C}} & =\frac{1}{2 \pi \mathrm{fC}} \\
& =\frac{1}{2 \pi\left(4 \times 10^{3} \mathrm{~Hz}\right)\left(10 \times 10^{-6} \mathrm{~F}\right)} \\
& =\frac{1}{251.2 \times 10^{-3}} \\
\mathrm{X}_{\mathrm{C}} & =3.98 \Omega
\end{aligned}
$$

If the applied voltage is 10 volts, as shown in Figure 6.30, the current in the circuit will be the value of the applied voltage divided by the value of the capacitive reactance.

$$
\begin{aligned}
\mathbf{I}_{\mathbf{C}} & =\frac{\mathbf{E}_{\mathbf{A C}}}{\mathbf{X}_{\mathbf{C}}} \\
& =\frac{10 \mathrm{~V}}{3.98 \Omega} \\
& =2.51 \mathrm{~A}
\end{aligned}
$$

The current in the circuit is $\mathbf{2 . 5 1}$ amperes. Remember, the voltage and current values are rms values since they have not been otherwise specified.

Figure 6.29 Example Circuit to Calculate X_{C}

Figure 6.30 Example Circuit to Calculate IC

Analysis of an AC Capacitive Circuit with an Increased Source Frequency

If the current in the previous example is 2.51 amperes, what is going to happell to the current if the frequency of the source voltage is increased? Figure 6.31 shows the same circuit used in the previous example with one difference - the frequency has been increased from 4 kilohertz to 10 kilohertz Capacitive reactance of the circuit is calculated as in the previous example.

$$
\begin{aligned}
X_{C} & =\frac{1}{2 \pi f C} \\
& =\frac{1}{6.28\left(10 \times 10^{3} \mathrm{~Hz}\right)\left(10 \times 10^{-6} F\right)} \\
& =\frac{1}{6.28 \times 10^{-1}} \\
& =1.59 \Omega
\end{aligned}
$$

The current in the circuit, repeated in Figure 6.32 , is calculated by dividing the applied voltage by the capacitive reactance of the circuit:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{C}} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{C}}} \\
& =\frac{10 \mathrm{~V}}{1.59 \Omega} \\
& =6.28 \mathrm{~A}
\end{aligned}
$$

Obviously, this current is greater than the current in the same circuit when the applied frequency was lower.

Figure 6.33 summarizes the relationships between capacitive reactance, $X_{\mathbf{C}}$, circuit current, I_{c}, and frequency, f, of the source voltage for the two example circuits just discussed. From this summary, it is apparent that as frequency of source voltage increases. capacitive reactance decreases and current increases.

10kHz

Figure 6.31 Example Carcuil to Calculate \mathbf{X}_{C}

Figure 6.32 Example Circuil to Calculate IC

$E_{A}=10 \mathrm{~V}$	
	$1=4 \mathrm{kHz}$
X_{C}	3.98Ω
I_{C}	2.51 A

Figure $6.33 X_{C}$ Versus I_{C} at Two Different Frequencies of Source Voltage

The Capacitor as a Variable Resistance

A capacitor can be thought of as a variable resistor whose value is controlled by the applied frequency. As frequency increases, its opposition to current or its capacitive reactance decreases, as shown in Figure 6.34. Figure 6.35 shows the same concept graphically

Capacitive Reactance in Series and Parallel

As observed in the preceding section, capacitors in ac circuits present opposition to current flow based on the capacitive reactance equation, equation 6-5. As mentioned, it is similar to the resistance of a resistor. The X_{C} designation differentiates it from a resistor \mathbf{R}. In a purely capacitive circuit where no resistance is present, totals of capacitive reactance can be calculated the same way that totals of resistance are calculated in purely resistive circuits.

Capacitive Reactance in Series

When capacitors are connected in series, the total reactance of the capacitors ($\mathrm{X}_{\mathbf{C r}}$) is simply a sum of the capacitive reactance of the capacitors present. This procedure is identical to the way total resistance (K_{r}) is determined in a series resistive circuit. Equation 6-6 is used to calculate total capacitive reactance ($X_{C T}$) in series

$$
X_{C 7}=X_{C 1}+X_{C 2}+X_{C 3} \ldots+X_{C N}(6-6)
$$

Figure 6.36 is a circuit containing four capacitors in series with the capacitive reactance shown for each. Using equation 6-6, the total capacitive reactance for the circuit can be calculated:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{CT}}=\mathrm{X}_{\mathrm{C} 1}+\mathrm{X}_{\mathrm{C} 2}+\mathrm{X}_{\mathrm{C} 3}+\mathrm{X}_{\mathrm{CH}} \\
& \mathrm{X}_{\mathrm{CT}}=1 \mathrm{k} \Omega+2.5 \mathrm{k} \Omega+4 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega \\
& \mathrm{X}_{\mathrm{CT}}=10.8 \mathrm{k} \Omega
\end{aligned}
$$

Figure 6.34 A Capacitor as a Variable Resistor

$$
x_{c}=\frac{1}{2 \pi+c}
$$

Figure 6.35 Capactive Reactance Versus Frequency

Figure 6.36 Example Circuit for Calculating $X_{C T}$ in Series

Capacitive Reactance in Parallel

When capacitors are connected in parallel. the total reactance of the capacitors, $\boldsymbol{X}_{\mathrm{Cr}}$, is found in the same nianner that total resistance, R_{r}, is determined in a parallel resistive circuit. These two equations are used to calculate total capacitive reactance, $X_{C T}$, in parallel:
For two capacitors in parallel -

$$
\begin{equation*}
X_{C T}=\frac{X_{C A} \times X_{C: B}}{X_{C A}+X_{C A}} \tag{6-7}
\end{equation*}
$$

For any number of capacitors in parallel-

$$
\begin{equation*}
\frac{1}{X_{C T}}=\frac{1}{X_{C 1}}+\frac{1}{X_{C 2}}+\frac{1}{X_{C S}} \ldots+\frac{1}{X_{C N}} \tag{6-8}
\end{equation*}
$$

Figure 6.37 is a circuit containing four capacitors in parallel with the capacitive reactance shown for each. Using equation $6-8$, the total capacitive reactance for the circuit can be calculated:

$$
\begin{aligned}
& \frac{1}{X_{C T}}=\frac{1}{X_{C 1}}+\frac{1}{X_{C 2}}+\frac{1}{X_{C S}}+\frac{1}{X_{C 4}} \\
& \frac{1}{X_{C T}}=\frac{1}{6 \mathrm{k} \Omega}+\frac{1}{12 \mathrm{k} \Omega}+\frac{1}{18 \mathrm{k} \Omega}+\frac{1}{10 \mathrm{k} \Omega} \\
& \frac{1}{X_{C T}}=\frac{3+1.5+1+1.8}{18 \mathrm{k} \Omega} \\
& \frac{1}{X_{C T}}=\frac{7.3}{18 \mathrm{k} \Omega} \\
& \frac{X_{C T}}{1}=\frac{18 \mathrm{k} \Omega}{7.3} \\
& X_{C T}=2.47 \mathrm{k} \Omega
\end{aligned}
$$

In summary, in series circuits with only capacitive reactance, $X_{C_{T}}$ can be calculated the same as R_{T} in series. $X_{C T}$ in circuits with parallel capacitive reactance can be calculated the same as $\mathbf{R}_{\mathbf{T}}$ in parallel.

Figure 6.37 Example Circuil for Calculating $X_{C T}$ in Parallel

Capacitance in Series and Parallel

Thus far, discussion has concerned capacitive reactance connected in series or in parallel in circuits. What about capacitance? What happens to total capacitance when several capacitors are combined in series or parallel? To best understand this concept, the variables that determine the value of a capacitor should first be examined
Equation 6-2 explains the value of a capacitor, and it is repeated here:

$$
\begin{equation*}
C=k_{e}\left(\frac{A}{d}\right) \tag{6-9}
\end{equation*}
$$

Notice that the value of a capacitor is determined by dividing the area of the plates by the distance between the plates and multiplying by a constant which is characteristic of the insulating materials.
In this case the constant k_{e} is formed by multiplying the dielectric constant and ε_{0}, the permittivity of air. It is a simplified equation 6-2 which was

$$
\begin{equation*}
C=k_{e}\left(\frac{A}{d}\right) \epsilon_{o} \tag{6-2}
\end{equation*}
$$

Equation 6-9 indicates that the value of a capacitor increases if the plate area of the capacitor increases:

$$
C \uparrow=k_{e}\left(\frac{A \uparrow}{d}\right)
$$

It also indicates that the value of a capacitor decreases if the distance separating the two plates increases

$$
C \downarrow=k_{e}\left(\frac{A}{d \uparrow}\right)
$$

Capacitance in Series

With equation 6-9 in mind, look at Figure 6.38 in which two capacitors of equal value are connected in series. Note that the total effective distance between the plates connected directly to the battery is doubled. Since an increase in distance between the plates decreases capacitance, it can be concluded that the total capacitance of the two equal capacitors connected in series will be only one-half of the capacitance of one capacitor. This reciprocal relationship between total capacitance and capacitors in series is described by these two equations.
For two capacitors in series -

$$
\begin{equation*}
\mathbf{C}_{\mathrm{T}}=\frac{\mathbf{C}_{1} \times \mathbf{C}_{2}}{\mathbf{C}_{1}+\mathbf{C}_{2}} \tag{6-10}
\end{equation*}
$$

For any number of capacitors in series -

$$
\frac{1}{\mathrm{C}_{\mathrm{T}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}} \ldots+\frac{1}{\mathrm{C}_{\mathrm{N}}} \quad(6-11)
$$

These equations probably look familiar to you because they are similar to the equations for total resistance when resistors are connected in parallel.
Figure 6.39 is a circuit containing four capacitors in series with the capacitance value for each shown. Using equation 6-11, the total capacitance for the circuit can be calculated:

Figure 6.38 Capacitances Connected in Seres Decrease Total Capacitance

Figure 6.39 Example Circuut for Calculating C_{T}

$$
\begin{aligned}
\frac{1}{C_{T}} & =\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\frac{1}{C_{1}} \\
\frac{1}{C_{T}} & =\frac{1}{4 \mu F}+\frac{1}{10 \mu F}+\frac{1}{5 \mu F}+\frac{1}{15 \mu F} \\
\frac{1}{C_{T}} & =\frac{3.75+\frac{1.5+3+1}{15 \mu \mathrm{~F}}}{\frac{1}{C_{T}}}=\frac{9.25}{15 \mu \mathrm{~F}} \\
\frac{C_{T}}{1} & =\frac{15 \mu \mathrm{~F}}{9.25} \\
C_{T} & =1.62 \mu \mathrm{~F}
\end{aligned}
$$

Capaciance in Parallel

When two equal capacitors are connected in parallel, the plates of the individual capacitors, in effect, combine to form one capacitor representing total capacitance. Notice in Figure 6.40 that the effective plate area of the equivalent capacitor has doubled Since an increase in plate area increases capacitance, it can be concluded that the total capacitance of the two capacitors in parallel is equal to the sum of the two capacitors. This direct relationship hetween total capacitance and capacitors in parallel is described by this equation:

$$
C_{T}=C_{1}+C_{2}+C_{3}+\ldots C_{N}
$$

This equation should look familiar to you. It is similar to the equation used for calculating the total resistance of resistors connected in series.

Figure 6.41 is a circuit containing four capacitors connected in parallel with the capacitance value for each shown. Using equation 6-12, the total capacitance for the circuit can be calculated:

$$
\begin{aligned}
& C_{T}=C_{1}+C_{2}+C_{3}+C_{4} \\
& C_{T}=2 \mu F+3 \mu F+6 \mu F+5 \mu F \\
& C_{T}=16 \mu F
\end{aligned}
$$

Figure 6.40 Capactlances Connected in Parallel Increase Tolal Capacilance

Figure 6.41 Example Circuil for Calculating C_{T}

In summary, the total capacitance of capacitors in series can be described mathematically with an equation ($6-11$) similar to that for calculating the total resistance of resistors connected in parallel. Similarly, total capacitance of capacitors connected in parallel can be calculated (equation 6-12) like the total resistance of resistors connected in series.

Analysis of Series and Parallel. Capacitive Circuits

Thus far in this lesson, capacitive circuits have been analyzed that contain only a known voltage source and a single capacitor. In this next discussion, circuits with a known voltage source and multiple capacitors connected in series or parallel will be analyzed.

Series Capacitive Circuit Analysis

In the circuit of Figure $6 .+2$ are two capacitors, 4 microfarads and 12 microfarads, connected in series. Applied voltage is 10 volts. 3 kilohertz. Capacitive reactance is calculated first using equation 6-5. The capacitive reactance of $\mathrm{C}_{1}=4$ microfarads is:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C} 1} & =\frac{1}{2 \pi \mathrm{fC}} \\
& =13.2 \Omega
\end{aligned}
$$

As shown, inserting values and calculating, it is found that $X_{C 1}=13.2$ ohms. Similar calculations are performed for the 12 microfarad capacitor, C_{2}.

$$
\begin{aligned}
X_{C 2} & =\frac{1}{2 \pi f C_{2}} \\
& =4.4 \Omega
\end{aligned}
$$

And we find that $X_{C 2}=4.4$ ohms. Notice that as capacitance increases, the capacitive reactance decreases:

$$
\downarrow X_{C}=\frac{1}{2 \pi \mathrm{fC} \uparrow}
$$

Figure 6.42 Example Series Capacitive Circuit

There is a definite mathematical relationship between increase and decrease of the values. In the circuit of Figure 6.42 the capacitance of C_{2} is three times the capacitance of C_{1} :

$$
\frac{12 \mu F}{4 \mu F}=\frac{3}{1}
$$

The capacitive reactance of C 2 is one-third of the capacitive reactance of $C 1$.

$$
\frac{4.4 \Omega}{13.2 \Omega}=\frac{1}{3}
$$

Now that the individual reactances in the circuit have been determined, the reactance ohms are treated as resistive ohms. That is, all series reactances are added.

$$
\begin{aligned}
\mathbf{X}_{\mathbf{C T}} & =\mathbf{X}_{\mathbf{C} 1}+\mathbf{X}_{\mathbf{C} 2} \\
& =13.2+4.4 \\
& =17.6 \Omega
\end{aligned}
$$

The total capacitive reactance is 17.6 ohms. This total capacitive reactance is the total opposition that the circuit presents to current flow at the applied frequency.

An alternate method of finding this total reactance is to first determine the total capacitance. The total capacitance is 4 microfarads in series with 12 microfarads. An alternate product-over-sum method is then used to calculate total capacitance of two capacitors in series.

$$
\begin{aligned}
\mathbf{C}_{r} & =\frac{C_{1} \times \mathbf{C}_{2}}{C_{1}+\mathbf{C}_{2}} \\
& =\frac{(4)(12)}{4+12} \\
& =3 \mu \mathrm{~F}
\end{aligned}
$$

Total capacitance for the circuit is 3 microfarads. Using this, the total capacitive reactance of the circuit can be calculated using equation 6-5 as a total capacitive reactance equation.

$$
X_{C r}=\frac{1}{2 \pi f C_{r}}
$$

Substituting circuit values,

$$
\begin{aligned}
X_{C T} & =\frac{1}{6.28(3 \mathrm{kHz})(3 \mu \mathrm{~F})} \\
& =17.6 \Omega
\end{aligned}
$$

Total capacitive reactance is 17.6 ohms, the same total capacitive reactance calculated earlier by adding individual reactances.

Once the total capacitive reactance has been determined, the total current in the circuit can be calculated. The total current is equal to:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\frac{\mathbf{E}_{\mathbf{O}}}{\mathbf{X}_{\mathbf{C T}}} \\
& =\frac{10 \mathrm{~V}}{17.6 \Omega} \\
& =568 \mathrm{~mA}
\end{aligned}
$$

The applied voltage divided by the total capacitive reactance equals 0.568 amperes 568 milliamperes. Therefore, as shown in Figure 6.43, most information about the circuit has been calculated.
$C_{1} 4 \mu$ F 13.2Ω

$3 \mathrm{kHz} \underset{\mathrm{T}}{ } \mathbf{5 6 8 \mathrm { mA }}$

Figure 6.43 Summation of Calculated Circull Values

Now the rules of series circuits are applied to find the voltage drops across C_{1} and C_{2}. Since it is a series circuit, the current is the total current and it is the same throughout the circuit. The voltage drop across C_{1} is equal to the value of its capacitive current times its opposition to that current:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{C} 1} & =\mathbf{I}_{\mathbf{C} 1} \mathbf{X}_{\mathbf{C 1}} \\
& =\mathbf{I}_{\mathbf{T}} \mathbf{X}_{\mathbf{C 1}} \\
& =(568 \mathrm{~mA})(13.2 \Omega) \\
& =7.5 \mathrm{~V}
\end{aligned}
$$

The voltage drop across C_{2} is calculated similarly.

$$
\begin{aligned}
\mathbf{E}_{\mathbf{C} 2} & =\mathbf{I}_{\mathbf{C} 2} \mathbf{X}_{\mathbf{C} 2} \\
& =\mathbf{I}_{\mathbf{T}} \mathbf{X}_{\mathbf{C} 2} \\
& =(568 \mathrm{~mA})(4.4 \Omega) \\
& =2.5 \mathrm{~V}
\end{aligned}
$$

In a purely capacitive circuit, the voltage drops add to the total applied voltage as in a series resistive circuit:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{A}} & =\mathbf{E}_{\mathbf{C}_{1}}+\mathbf{E}_{\mathbf{C}_{2}} \\
& =7.5 \mathrm{~V}+2.5 \mathrm{~V} \\
& =10 \mathrm{~V}
\end{aligned}
$$

Parallel Capacitive Circuit Analysis

The circuit with these calculated voltages indicated is shown in Figure 6.44
Thus, you can see that knowing just a few factors about a circuit can allow you to calculate most all other factors.

Parallel Capacitive Circuit Analysis

Now, a parallel combination of two capacitors, as shown in Figure 6.45, will be analyzed. The same voltage, frequency and two capacitors used in the circuit of Figure 6.42 will be used in this analysis. The capacitive reactance of the respective capacitors will be the same 13.2 ohms for $\mathrm{X}_{\mathrm{C} 1}$ and 4.4 ohms for $\mathrm{X}_{\mathbf{C 2}}$ since the values of the capacitors and the applied frequency are the same. The branch current for the C_{1} branch may be determined by dividing the voltage across the branch by the opposition in the branch.

$$
\begin{aligned}
\mathbf{I}_{\mathbf{C I}} & =\frac{\mathbf{E}_{\mathbf{C l}}}{\mathbf{X}_{\mathbf{C I}}} \\
& =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{C I}}} \\
& =\frac{10 \mathrm{~V}}{13.21 \Omega} \\
& =757 \mathrm{~mA}
\end{aligned}
$$

The current for the C_{2} branch is calculated similarly.

$$
\begin{aligned}
\mathbf{I}_{\mathbf{C} 2} & =\frac{\mathbf{E}_{\mathbf{C} 2}}{\mathbf{X}_{\mathbf{C} 2}} \\
& =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{C} 2}} \\
& =\frac{10 \mathrm{~V}}{4.4 \Omega} \\
& =2.273 \mathrm{~A}
\end{aligned}
$$

The total current in the circuit is the sum of the branch currents:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\mathbf{I}_{\mathbf{C} 1}+\mathbf{I}_{\mathbf{C} 2} \\
& =0.757 \mathrm{~A}+2.273 \mathrm{~A} \\
& =3.03 \mathrm{~A}
\end{aligned}
$$

Figure 6.44 Example Circuit Calculated Voltages

Figure 6.45 Example Parallel Circuit

This information can then be placed on the circuit as shown in Figure 6.46.

Another way to determine the total current is to first find the total capacitive reactance and then divide the applied voltage by the total capacitive reactance. One way to determine the total capacitive reactance, would be to use the product-over-sum equation to calculate the reactances of Cl and C 2 . However, there's an easier method. First, the total capacitance is determined using equation 6-12

$$
\begin{aligned}
C_{T} & =C_{1}+C_{2} \\
& =4 \mu F+12 \mu F \\
& =16 \mu F
\end{aligned}
$$

Next, the total capacitive reactance is calculated using the value of total capacitance, $16 \mu \mathrm{~F}$.

$$
\begin{aligned}
X_{C T} & =\frac{1}{2 \pi f C_{T}} \\
& =\frac{1}{6.28(3 \mathrm{kHz})(16 \mu \mathrm{~F})} \\
& =3.3 \Omega
\end{aligned}
$$

Last, total current in the circuit can be calculated:

$$
\begin{aligned}
\mathrm{I}_{\mathbf{C T}} & =\frac{\mathrm{E}_{\mathbf{A}}}{\mathrm{X}_{\mathbf{C T}}} \\
& =\frac{10 \mathrm{~V}}{3.3 \Omega} \\
& =3.03 \mathrm{~A}
\end{aligned}
$$

The total current calculated is $\mathbf{3 . 0 3}$ amperes, which is the identical answer calculated previously using a different equation. Therefore, performing this last calculation proved that the earlier calculation was correct.
$\mathrm{I}_{\mathrm{T}}=3.03 \mathrm{~A} \quad \mathrm{C}_{1} 4 \mu \mathrm{~F}$

$$
3 \mathrm{kHz} \quad \mathrm{I}_{1}=757 \mathrm{~A} \quad \mathrm{I}_{2}=2.273
$$

Figure 6.46 Example Parallel Circuil with Calculated Values

Calculations of Reactive Power

Power in capacitive circuits can be calculated similar to the way power is calculated in resistive circuits.

Recall that power in resistive circuits is converted to heat and dissipated. That is, the electrical energy is converted into heat energy. This is not true with capacitors. The electrical energy in capacitive circuits is stored temporarily on the plates of the capacitors in what is called an electrostatic field. The energy is then returned to the circuit.

Recall that the basic power equation is

$$
\begin{equation*}
P=E 1 \tag{6-13}
\end{equation*}
$$

This same equation is used to calculate power in capacitive circuits. However, the power in capacitive circuits is measured in units called VAR, not watts as in resistive circuit. VAR stands for Volts-Amperes-Reactive. The power in a capacitive circuit is called reactive power since the opposition to current in the circuit is totally reactive. Therefore, the basic equation to calculate power in a capacitive circuit (with appropriate units) is:

$$
\underset{\text { (VAR) }}{\mathbf{P}}=\underset{\text { (volts) }}{\mathbf{E}} \times \underset{\text { (amperes) }}{\mathbf{I}}
$$

Power in Series Capacitive Circuit

The series capacitive circuit of Figure 6.47 (which is the circuit that was discussed earlier) will be used for the example of calculating power in such a circuit. In that circuit, E_{Cl} is 7.5 volts and the current through Cl is 568 milliamperes (0.568A)
The power equation can be used to calculate the reactive power of $C_{1} . P_{C I}$ equals $E_{C I}$ times \mathbf{I}_{CI}

$$
\begin{aligned}
\mathbf{P}_{\mathbf{C}_{1}} & =\mathbf{E}_{\mathbf{C}_{1} \mathbf{I}_{\mathbf{C}}} \\
& =(7.5 \mathrm{~V})(0.568 \mathrm{~A}) \\
& =4.26 \mathrm{VAR}
\end{aligned}
$$

As shown this equals 7.5 volts times 0.568 amperes which equals 4.26 VAR .

Similarly, the reactive power of C_{2} can be calculated.

$$
\begin{aligned}
\mathbf{P}_{\mathbf{C} 2} & =\mathbf{E}_{\mathbf{C} 2} \mathbf{I}_{\mathbf{C} 2} \\
& =(2.5 \mathrm{~V})(0.568 \mathrm{~A}) \\
& =1.42 \mathrm{VAR}
\end{aligned}
$$

By adding these two values of reactive power the total reactive power of the circuit is obtained

$$
\begin{aligned}
\mathbf{P}_{\mathbf{X T}} & =\mathbf{P}_{\mathbf{C 1}}+\mathbf{P}_{\mathbf{C 2}} \\
& =4.26 \mathrm{VAR}+1.42 \mathrm{VAR} \\
& =5.68 \mathrm{VAR}
\end{aligned}
$$

The total reactive power of the circuit could also have been determined by multiplying the total applied voltage times the total current.

$$
\begin{aligned}
P_{\mathbf{X T}} & =E_{\mathbf{A}} \mathbf{I}_{\mathbf{T}} \\
& =(10 \mathrm{~V})(0.568 \mathrm{~A}) \\
& =5.68 \mathrm{VAR}
\end{aligned}
$$

10 volts times 0.568 amperes equals 5.68 VAR which is the same power calculated previously, and proves that calculation was correct. Thus, using the basic power equation as the reactive power equation, the individual and total reactive powers have been calculated.

Figure 6.47 Example Series Circuit

Power in Parallel Capacitive Circuit

The same type of calculations can be performed to obtain the reactive power quantities for a parallel capacitive circuit. The parallel capacitive circuit of Figure 6.45 used earlier will be used again, and is repeated in Figure 6.48

First the power of capacitor C_{1} is calculated

$$
\begin{aligned}
\mathbf{P}_{\mathbf{C 1}} & =\mathbf{E}_{\mathbf{C 1}_{1} \mathbf{I}_{\mathbf{C 1}}} \\
& =(10 \mathrm{~V})(0.757 \mathrm{~A}) \\
& =7.57 \mathrm{VAR}
\end{aligned}
$$

P_{Cl} equals 10 volts across Cl times 0.757 amperes I_{C} equals 7.57 VAR .

Next the power of capacitor C_{2} is calculated.

$$
\begin{aligned}
\mathbf{P}_{\mathbf{C} 2} & =\mathbf{E}_{\mathbf{C} 2} \mathbf{I}_{\mathbf{C} 2} \\
& =(10 \mathrm{~V})(2.273 \mathrm{~A}) \\
& =22.73 \mathrm{VAR}
\end{aligned}
$$

$P_{C 2}$ equals 10 volts across $\mathbf{C} 2$ times 2.273 amperes, $\mathbf{I}_{\mathbf{C} 2}$, equals 22.73 VAR

Last, the total reactive powet of the circuit is calculated.

$$
\begin{aligned}
\mathbf{P}_{\mathbf{X T}} & =\mathbf{P}_{\mathbf{C} 1}+\mathbf{P}_{\mathbf{C} 2} \\
& =7.57 \text { VAR }+22.73 \mathrm{VAR} \\
& =30.3 \text { VAR }
\end{aligned}
$$

Total reactive power equals 30.3 VAR. Also, the total reactive power equals the total applied voltage times the total current. In this case, that would be 10 volts times 3.03 amperes which equals 30.3 VAR . This is the same answer calculated previously and proves the previous calculations are correct.
Using the equations discussed you should be able to calculate similar information about any other series or parallel capacitive circuit.

Summary

This lesson has provided an introduction to capacitive circuits. The physical properties of different types of capacitors and the concept of capacitance and charge were discussed. How a capacitor functions when it is charged and discharged relating capacitive properties to a stored charge and an opposition to voltage changes, was described. The concepts of capacitive reactance as an opposition to current flow and as a function of frequency

3kHz

Figure 6.48 Example Parallel Circuit
were covered. Current/voltage relationships were explained using the rate of change equation. Series and parallel capacitive circuits were analyzed determining reactance voltage drops, currents, and power. All of these concepts will be used in following lessons to solve more complex circuits.

1. Describe the characteristics of a ceramic disc capacitor.

Solution: The ceramic disc capacitor is available in small values of capacitance from approximately 1 picofarad to 2.5 microfarads. Typical working voltages are 20 volts up to about 200 volts. It is a good insulator, and it has a permittivity of almost 1000 times more than that of dry air.
2. Deline capacitance.

Solution: Capacitance is the ability of a nonconductor to store a charge. If a voltage of 50 volts is applied to a capacitor for a period of time, the capacitor will charge to the 50 -volt value and retain that difference in potential for a period of time after that voltage is removed
3. Describe one effect of the capacitive property in ac circuits.

Solution: In ac circuits, the current through the capacitive branch of the circuit leads the voltage across the capacitor by 90 degrees. This is explained by the equation $I_{C}=C \times R O C$.
4. A mylar capacitor with a dielectric 2 mils thick has a value of 0.01 microfarads. What would be the result of increasing the dielectric 2 mils thickness to 4 mils if all of the other variables remain the same?

Solution: The equation describing the physical parameters of a capacitor is:

$$
C=K_{c}\left(\frac{A}{d}\right) \epsilon_{o}
$$

The d variable represents the distance between the plates, and the equation shows that distance is indirectly related to capacitance. If the distance between the plates increases as proposed in the problem, capacitance will decrease. Because the distance has doubled, the capacitance value will be halved, and the value of capacitance will be 0.005 microfarads.
5. Calculate the area of either plate of a 1 farad paper capacitor with a dielectric 1 millimeter thick. Assume $K_{e}=4$.

Solution:

$C=K_{e}\left(\frac{A}{d}\right) \epsilon_{o}$
Solving for A:
$\mathrm{A}=\frac{\mathrm{C} \times \mathrm{d}}{\mathrm{K}_{\mathrm{e}} \epsilon_{\mathrm{O}}}=\frac{1 \mathrm{~F} \times 0.001 \mathrm{~m}}{4 \times 8.85 \times 10^{-12}}=\frac{0.001}{3.54 \times 10^{-11}}=\begin{aligned} & 28.2 \times 10^{6} \text { square meters } \\ & \text { or about } 12 \text { square miles. }\end{aligned}$
6. Solve for X_{CT} in this circuit:

Solution: In a series capacitive circuit, total capacitive reactance is calculated the same as total resistance in series is calculated

$$
\mathrm{X}_{\mathbf{C T}}=\mathrm{X}_{\mathbf{C 1}}+\mathrm{X}_{\mathbf{C} 2}+\mathrm{X}_{\mathbf{C 3}}+\mathrm{X}_{\mathbf{C 4}}=4 \mathrm{k} \Omega+8 \mathrm{k} \Omega+2.5 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega=17.8 \mathrm{k} \Omega
$$

7. Solve for C_{T} in this circuit:

Solution: In a series capacitive circuit, total capacitance is calculated similar to the way total resistance is calculated in a parallel resistive circuit.

$$
\begin{aligned}
\frac{1}{C_{T}} & =\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{9}}=\frac{1}{0.05 \mu \mathrm{~F}}+\frac{1}{0.1 \mu \mathrm{~F}}+\frac{1}{0.02 \mu \mathrm{~F}} \\
& =\frac{1}{0.05 \times 10^{-6}}+\frac{1}{0.1 \times 10^{-6}}+\frac{1}{0.02 \times 10^{-6}}=20 \times 10^{6}+10 \times 10^{6}+50 \times 10^{6} \mathrm{~F} \\
& =80 \times 10^{6} \mathrm{~F} \\
\mathrm{C}_{\mathrm{T}} & =\frac{1}{80 \times 10^{6}} \mathrm{~F}=0.0125 \mu \mathrm{~F}
\end{aligned}
$$

8. Solve for X_{C} in this circuit:

$\mathbf{X}_{\mathrm{C}}=\ldots$

Solution

$$
X_{C}=\frac{1}{2 \pi f \mathrm{f}}=\frac{1}{628 \times 2 \times 10^{3} \times 0.05 \times 10^{-6}}=\frac{1}{6.28 \times 10^{-6} \Omega}=1.59 \times 10^{3}=1.59 \mathrm{k} \Omega
$$

9. Solve for C_{T} in this circuit:

\qquad

Solution: Solve for $\mathrm{X}_{\mathbf{C T}}$ by circuit simplication.

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}} \\
& \text { and } \\
& \mathrm{X}_{\mathrm{CT}}=\frac{1}{2 \pi \mathrm{fC}_{\mathrm{T}}}
\end{aligned}
$$

Solving for $\mathrm{C}_{\mathbf{T}}$

$$
\begin{aligned}
C_{T} & =\frac{1}{2 \pi f X_{C T}}=\frac{1}{6.28 \times 400 \times 3000} \\
& =\frac{1}{7.54 \times 10^{6}}=0.133 \mu \mathrm{~F}
\end{aligned}
$$

10. What source frequency must be applied to a 0.5 microfarad capacitor so that the capacitor will have a capacitive reaclance of 100 ohms?

Solution:

$$
X_{C}=\frac{1}{2 \pi f C}
$$

Solving for \mathbf{f}

$$
\mathrm{f}=\frac{1}{2 \pi \mathrm{X}_{\mathrm{C}} \mathrm{C}}=\frac{1}{6.28 \times 100 \times 0.5 \times 10^{-6}}=\frac{1}{314 \times 10^{-6}}=3.18 \mathrm{kHz}
$$

11. Solve for the circuit values specified for this circuit:

Solution:
a. $C_{T}=C_{1}+C_{2}+C_{3}=0.05 \mu F+0.01 \mu F+0.2 \mu F=0.26 \mu F$
b. $X_{C I}=\frac{1}{2 \pi \mathrm{fC}_{1}}=\frac{1}{6.28 \times 200 \times 0.05 \times 10^{-6}}=\frac{1}{6.28 \times 10^{-5}}=15.9 \mathrm{k} \Omega$
c. $X_{\mathrm{C} 2}=\frac{1}{6.28 \times 200 \times 0.01 \times 10^{-6}}=\frac{1}{12.58 \times 10^{-6}}=79.6 \mathrm{k} \Omega$

$$
\begin{aligned}
& \text { d. } X_{C 3}=\frac{1}{6.28 \times 200 \times 0.2 \times 10^{-6}}=\frac{1}{251 \times 10^{-6}}=3.98 \mathrm{k} \Omega \\
& \text { e. } \frac{1}{X_{C 1}}=\frac{1}{X_{C 1}}+\frac{1}{X_{C 2}}+\frac{1}{X_{C 3}}=\frac{1}{15.9 \mathrm{k}}+\frac{1}{79.6 \mathrm{k}}+\frac{1}{3.98 k} \\
& =62.9 \times 10^{.3}+12.6 \times 10^{-3}+2.51 \times 10^{-3}=327 \times 10^{-3}=\frac{1}{327 \times 10^{-3}}=3.06 \mathrm{k} \Omega \\
& \text { or } \mathrm{X}_{\mathrm{CT}}=\frac{1}{2 \pi \mathrm{~F} \mathrm{C}_{\mathrm{T}}}=\frac{1}{6.28 \times 200 \times 0.26 \times 10^{-6}}=\frac{1}{3.27 \times 10^{-4}} \\
& =0.306 \times 10^{4}=3.06 \mathrm{k} \Omega
\end{aligned}
$$

f,g,h. In parallel $E_{A}, 10 V A C$, is across all components.
i. $I_{C I}=\frac{E_{C 1}}{X_{C 1}}=\frac{10 \mathrm{~V}}{15.9 \mathrm{k} \Omega}=630 \mu \mathrm{~A}_{\mathrm{rma}}$
j. $\quad I_{C 2}=\frac{E_{C 2}}{X_{C 2}}=\frac{10 \mathrm{~V}}{79.6 \mathrm{k} \Omega}=126 \mu \mathrm{~A}$
k. $I_{C S}=\frac{E_{C 3}}{X_{C 3}}=\frac{10 \mathrm{~V}}{3.98 \mathrm{k} \Omega}=2.51 \mathrm{~mA}$
I. $I_{C T}=I_{C 1}+I_{C 2}+I_{C 3}=630 \mu \mathrm{~A}+126 \mu \mathrm{~A}+2.5 I_{\mathrm{mA}}^{\mathrm{rms}}, 3.27 \mathrm{~mA}$ or

$$
\mathrm{I}_{\mathrm{CT}}=\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{X}_{\mathrm{CT}}}=\frac{10 \mathrm{~V}}{3.06}=3.27 \mathrm{~mA}
$$

$\mathrm{m} . \mathrm{P}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 1} \times \mathrm{E}_{\mathrm{C} 1}=630 \mu \mathrm{~A} \times 10 \mathrm{~V}=6.3 \mathrm{mVAR}$
n. $P_{\mathbf{C} 2}=\mathbf{l}_{\mathbf{C} 2} \times \mathbf{E}_{\mathbf{C} 2}=126 \mu \mathrm{~A} \times 10 \mathrm{~V}=126 \mathrm{mVAR}$
o. $P_{C 9}=I_{C S} \times E_{C s}=2.51 \mathrm{~mA} \times 10 \mathrm{~V}=25.1 \mathrm{mVAR}$
p. $P_{C T}=P_{C 1}+P_{C 2}+P_{C 3}=6.3 \mathrm{mVAR}+1.26 \mathrm{mVAR}+25.1 \mathrm{mVAR}=32.7 \mathrm{mVAR}$ or $\mathbf{P}_{\mathbf{C T}}=\mathbf{I}_{\mathbf{C T}} \mathbf{E}_{\mathrm{A}}=(3.27 \mathrm{~mA})(10 \mathrm{~V})=\mathbf{3 2 . 7} \mathbf{m V A R}$
12. Solve for the circuit values specified for this circuit

Solution:
a. $\mathrm{X}_{\mathrm{CH}}=\mathrm{X}_{\mathrm{C} 1}+\mathrm{X}_{\mathrm{C} 2}+\mathrm{X}_{\mathrm{C} 3}=50 \Omega+30 \Omega+25 \Omega=105 \Omega$
b. $\mathrm{C}_{1}=\frac{1}{2 \pi \mathrm{XX}_{\mathrm{C} 1}}=\frac{1}{6.28 \times 4 \mathrm{k} \times 50}=\frac{1}{1.25\left(6 \times 10^{6}\right.}=0.796 \mu \mathrm{~F}$
c. $\mathrm{C}_{2}=\frac{1}{2 \pi \mathrm{XX}_{\mathrm{C} 2}}=\frac{1}{6.28 \times 4 \mathrm{k} \times 30}=\frac{1}{754 \times 10^{3}}=1.33 \mu \mathrm{~F}$
d. $C_{3}=\frac{1}{2 \pi \mathrm{X}_{\mathrm{C}} 3}=\frac{1}{6.28 \times 4 \mathrm{k} \times 25}=\frac{1}{628 \times 10^{3}}=1.59 \mu \mathrm{~F}$
e. $C_{H}=\frac{1}{2 \pi \mathrm{XX}_{\mathrm{CT}}}=\frac{1}{6.28 \times 4 \mathrm{k} \times 105}=\frac{1}{2.64 \times 10^{6}}=0.379 \mu \mathrm{~F}$
f,g,h. In series, total current flows through all components, See ICT.
i. $I_{C T}=\frac{E_{\Lambda}}{X_{C T}}=\frac{50 \mathrm{~V}}{105 \Omega}=0.476 \mathrm{~A}(\mathrm{rms})$
j. $E_{C 1}=l_{C 1} \times X_{C 1}=0.476 \mathrm{~A} \times 50 \Omega=23.8 \mathrm{~V}$
k. $\mathbf{E}_{\mathbf{C} 2}=\mathbf{I}_{\mathbf{C} 2} \times \mathrm{X}_{\mathrm{C} 2}=0.476 \mathrm{~A} \times 30 \Omega=14.3 \mathrm{~V}$

1. $E_{C 3}=I_{C 9} \times X_{C 3}=0.476 \mathrm{~A} \times 25 \Omega=11.9 \mathrm{~V}$
m. $E_{C T}=E_{A}=E_{C 1}+E_{C 2}+E_{C 3}=23.8 \mathrm{~V}+14.3 \mathrm{~V}+11.9 \mathrm{~V}=50 \mathrm{~V}$

$$
\begin{aligned}
& \text { n. } P_{C l}=I_{C 1} \times E_{C I}=0.476 \mathrm{~A} \times 23.8 \mathrm{~V}=11.3 \mathrm{VAR} \\
& \text { o. } P_{C 2}=I_{C 2} \times E_{C 2}=0.476 \mathrm{~A} \times 14.3 \mathrm{~V}=6.81 \mathrm{VAR} \\
& \text { p. } P_{C 9}=I_{\mathrm{C} 3} \times \mathrm{E}_{\mathrm{C} 3}=0.476 \mathrm{~A} \times 11.9 \mathrm{~V}=5.66 \mathrm{VAR} \\
& \text { q. } P^{P}{ }^{C T}=P_{C 1}+P_{C 2}+P_{C 3}=11.3+6.81+5.66=23.8 \mathrm{VAR} \text { or } \\
& P_{C T}=1_{C T} \times \mathbf{E}_{\mathbf{A}}=0.476 \mathrm{~A} \times 50 \mathrm{~V}=23.8 \mathrm{VAR}
\end{aligned}
$$

13. Solve for the circuit values specified for this circuit:

Solution:
a. $\mathrm{X}_{\mathrm{Cl}}=\frac{1}{2 \pi \mathrm{C}_{1}}=\frac{1}{6.28 \times 15 \mathrm{k} \times 0.5 \times 10^{.6}}=21.2 \Omega$
b. $X_{C_{4}}=\frac{1}{6.28 \times 15 \mathrm{k} \times 1 \times 10^{.6}}=10.6 \Omega$
c. $\mathrm{C}_{2}=\frac{1}{2 \pi \mathrm{fX}}=\frac{1}{6.28 \times 15 \mathrm{k} \times 8}=1.33 \mu \mathrm{~F}$
d. $\mathrm{C}_{3}=\frac{1}{6.28 \times 15 \mathrm{k} \times 12}=0.885 \mu \mathrm{~F}$
c. $X_{C T}=$ by simplification

f. $\mathrm{C}_{\mathrm{T}}=\frac{1}{2 \pi \mathrm{X}_{\mathrm{Cr}}}=\frac{1}{6.28 \times 15 \mathrm{k} \times 27.1}=\frac{1}{6.28 \times 15 \times 10^{3} \times 27.1}=\frac{1}{2.55 \times 10^{6}}=0.39 \mu \mathrm{~F}$
g. $I_{T}=\frac{E_{A}}{X_{C T}}=\frac{25 \mathrm{~V}}{27.1 \Omega}=0.923 A_{\text {rms }}$,
h. $I_{C I}=I_{T}=0.923 \mathrm{~A}$
i. $E_{C I}=1_{C 1} \times X_{C 1}=0.923 \mathrm{~A} \times 21.2 \Omega=19.6 \mathrm{~V}$
j. $\quad E_{C 2}=E_{C 2.3 .4}=I_{T} \times X_{C 2,3.4}=I_{T}\left(\frac{8 \Omega(12 \Omega+10.6 \Omega)}{8 \Omega+12 \Omega+10.6 \Omega}\right)=0.923 \mathrm{~A} \times 5.91 \Omega=5.45 \mathrm{~V}$
k. $\mathbf{I}_{\mathrm{C} 2}=\frac{\mathrm{E}_{\mathrm{C} 2}}{\mathrm{X}_{\mathrm{C} 2}}=\frac{5.45 \mathrm{~V}}{8 \Omega}=0.681 \mathrm{~A}$
l. $\mathrm{m} . \mathrm{I}_{\mathrm{C} 3}=\mathrm{l}_{\mathrm{C} 4}=\frac{\mathrm{E}_{\mathrm{Cs} .4}}{\mathrm{X}_{\mathrm{C} .4}}=\frac{\mathrm{E}_{\mathrm{C} 2.3 .4}}{\mathrm{X}_{\mathrm{C} 3.4}}=\frac{5.45 \mathrm{~V}}{12 \Omega+10.6 \Omega}=\frac{5.45 \mathrm{~V}}{22.6 \Omega}=0.241 \mathrm{~A}$
n. $E_{C 3}=I_{C 3} \times X_{C 3}=0.24 \mathrm{~A} \times 12 \Omega=2.88 \mathrm{~V}$

$$
\begin{aligned}
& \text { o. } \mathbf{E}_{C+4}=1_{C 4} \times X_{C 4}=0.24 \mathrm{~A} \times 10.6 \Omega=2.54 \mathrm{~V} \\
& \text { p. } P_{C 1}=l_{C 1} \times E_{C 1}=0.923 \mathrm{~A} \times 19.6 \mathrm{~V}=18.1 \mathrm{VAR} \\
& \text { 4. } P_{C 2}=1_{C 2} \times \mathbf{E}_{\mathrm{C} 2}=0.681 \mathrm{~A} \times 5.45 \mathrm{~V}=3.71 \mathrm{VAR} \\
& \text { r. } P_{\mathrm{C} 3}=1_{\mathrm{C} 3} \times \mathbf{E}_{\mathrm{C} 3}=1.241 \mathrm{~A} \times 2.88 \mathrm{~V}=0.695 \mathrm{VAR} \\
& \text { s. } P_{C_{4}}=1_{C_{4}} \times E_{C_{4}}=0.241 \mathrm{~A} \times 2.54 \mathrm{~V}=0.612 \mathrm{VAR} \\
& \text { 1. } \mathbf{P}_{\mathrm{T}}=\mathbf{P}_{\mathrm{C} 1}+\mathbf{P}_{\mathrm{C} 2}+\mathbf{P}_{\mathrm{C} 3}+\mathbf{P}_{\mathrm{C} 4}=\text { 23.1VAR or } \\
& P_{T}=1_{C T} \times E_{A}=0.923 \mathrm{~A} \times 25 \mathrm{~V}=23.1 \mathrm{VAR}
\end{aligned}
$$

1. Describe the characteristics of a paper capacitor. Use the tables provicled in the text.
2. Predict what will happen in the circuits below: \mathbf{a}. with the switch in position 1 ; \mathbf{b}. with the switch moved from position 1 to position 2 ; c. with the switch moved from position 2 to position 3.

3. In Example 3 of the Worked-Out Examples, one effect of the capacitive property was discussed. Discuss briefly the other effect.
4. Relate the plate area of a capacitor to capacitors connected in parallel.
5. Solve for X_{Cr} in this circuit:

$\mathrm{X}_{\mathrm{CH}}=$ \qquad
6. Solve for C_{T} in this circuit:

$\mathrm{C}_{\mathrm{T}}=$ \qquad
7. What value of capacitor will have a resistance of $2.5 \mathrm{k} \Omega$ in this circuit:

$$
C=
$$

8. Solve for X_{CT} and C_{r} in this circuit:

9. Solve for the circuit values specified in this circuit:

10. Solve for the circuit values specified in this circuit

\qquad
11. Solve for the circuit values specified in this circuit:

k. $\mathbf{l}_{\mathbf{C l}}=$ \qquad
12. $\mathrm{I}_{\mathrm{C} 2}=$ \qquad
$\mathrm{m} \cdot \mathrm{l}_{\mathrm{C}}=$ \qquad
n. $I_{C_{4}}=$ \qquad
o. $\mathbf{I}_{\mathbf{T}}=$ \qquad
p. $\mathrm{P}_{\mathrm{Cl}}=$ \qquad
q. $P_{C 2}=$ \qquad
r. $P_{C 3}=$ \qquad
s. $P_{C_{4}}=$ \qquad
t. $P_{T}=$ \qquad
13. Using the tables provided in the text, answer the following questions: Which type of capacitor has
a. The greatest dielectric strength?
b. The largest dielectric constant?
c. The largest capacitance value?
d. The largest value of working voltage?
14. a. If a neutrally-charged capacitor is connected to a 50 -volt source, what will happen to the capacitor?
b. If the source is then removed from the capacitor, what happens?
c. If a charged capacitor is shorted with a piece of wire, what occurs in the resulting circuit?
15. Draw a phasor diagram showing the relationship of I_{C} and E_{C} in an ac capacitive circuit
16. Draw a sine wave graph showing the relationship of I_{C} and E_{C} in an ac capacitive circuit
17. A capacitor in an ac circuit may be best defined as
a. An open circuit
b. A short circuit
c. A fixed resistance
d. A variable resistance
e. A short circuit instantly, an open circuit after the capacitor is charged.
18. a. What is the source frequency? Note the given values of C_{1} and $\mathrm{X}_{\mathrm{C} 1}$.
b. $\mathbf{X}_{\mathbf{C T}}=$ \qquad
c. $\mathbf{C}_{T}=$ \qquad

19. Solve for the circuit values specified for this circuit

a. $\mathbf{C}_{\mathbf{T}}=$ i. $\mathbf{l}_{\mathrm{T}}=$
b. $X_{C_{1}}=$ \qquad j. $\quad \mathbf{E}_{\mathbf{C l}}=$
c. $X_{\mathrm{C}_{2}}=$ \qquad k. $\quad \mathbf{E}_{\mathrm{C} 2}=$
d. $\mathrm{X}_{\mathrm{Cs}}=$ \qquad 1. $\mathbf{E}_{\mathbf{C}}=$
m. $\mathbf{P}_{\mathrm{C}_{1}}=$
\qquad
\qquad
\qquad
e. $\mathrm{X}_{\mathrm{CT}}=$ \qquad
n. $P_{C 2}=$
o. $\mathrm{P}_{\mathrm{Cs}}=$
p. $P_{T}=$
\qquad
f. $\mathbf{I}_{\mathrm{C}_{1}}=$ \qquad
\qquad
g. $\mathbf{I}_{\mathbf{C}_{2}}=$ \qquad
\qquad
\qquad
\qquad
20. Solve for the circuit values specified for this circuit:

a. $\mathrm{X}_{\mathrm{Cr}}=$ \qquad i. $\mathbf{I}_{\mathrm{C}_{1}}=$ \qquad
b. $\mathrm{C}_{1}=$ \qquad j. $l_{C_{2}}=$ \qquad
c. $\mathrm{C}_{2}=$ \qquad k. $\mathbf{I}_{\mathbf{C} 3}=$ \qquad
d. $\mathrm{C}_{3}=$ \qquad l. $\mathbf{I}_{\mathbf{T}}=$ \qquad
e. $\mathrm{C}_{\mathbf{T}}=$ \qquad m. $\mathbf{P}_{\mathrm{Cl}}=$ \qquad
f. $\mathrm{E}_{\mathrm{C}_{1}}=$ \qquad n. $P_{C_{2}}=$ \qquad
g. $\mathbf{E}_{\mathbf{C}_{2}}=$ \qquad o. $P_{C s}=$ \qquad
h. $\mathbf{E}_{\mathbf{C s}}=$ \qquad p. $P_{T}=$ \qquad
21. Solve for the circuit values specified for this circuit:

a. $\mathrm{C}_{2}=$ \qquad k. $\mathbf{I}_{T}=$
22. $\mathbf{E}_{\mathbf{C l}}=$
\qquad
b. $\mathrm{C}_{4}=$ - \qquad
c. $\mathrm{X}_{\mathrm{Cl}_{1}}=$ \qquad m. $E_{C 2}=$ \qquad
d. $\mathrm{X}_{\mathrm{C},}=$ \qquad n. $\mathbf{E}_{\mathbf{C} 3}=$
o. $\mathbf{E}_{C_{4}}=$ \qquad
e. $\mathrm{X}_{\mathrm{CT}}=$ \square
p. $P_{C 1}=$
q. $P_{C 2}=$
r. $P_{C_{3}}=$ \qquad
h. $\mathbf{I}_{\mathrm{C} 2}=$ \qquad
23. $P_{C_{4}}=$ \qquad

i.	$\mathbf{I}_{\mathbf{C s}}=$
j.	$\mathbf{I}_{\mathbf{C 4}}=$

t. $P_{C 5}=$ \qquad
10. Are the voltage, current, and power values calculated in Problems 7.8, and 9 rms , peak, or peak to peak values?

LESSON 7

3 RC Circuit Analysis

In this lesson, discussion concerns ac circuits in which capacitors and resistors are combined in series and parallel. Phasor diagrams are developed for both types of circuits. Ohm's law and the Pythagorean theorem are used to calculate the various circuit values.

This lesson describes series and parallel RC ac circuits and the various methods used to analyze these types of circuits. At the end of this lesson, you should be able to:

1. Draw phasor diagrams which show the phase relationships of the various circuit values in series and parallel RC circuits.
2. Identify the circuit values in series and parallel circuits that are described by Pythagorean theorem relationships.
3. Use the tangent trigonometric function to solve for phase angles.
4. Define the term phase angle, and describe positive and negative phase angles in series and parallel RC ac circuits.
5. Analyze series and parallel $R C$ ac circuits as shown and calculate voltage, current, and power values.

INTRODUCTION

In the previous lesson, the capacitor and its properties were discussed and ac capacitive circuits were analyzed. A more common circuit, however, is one in which capacitors are combined in series or parallel with resistors as shown in Figure 7.1. In this lesson, discussion will concern how to solve various ac circuit problems for total resistance, total capacitance. power, and other electrical values using series and parallel RC circuits.

Phase Relationships in Series RC Circuits

A good way to begin to learn about RC circuits is by analyzing a simple circuit in which a single resistor is connected in series with a single capacitor. The circuit, shown in Figure 7.2, is called a series RC circuit. In this circuit, like in any series circuit, the current flowing through all components is the same value.

$$
\begin{equation*}
\mathbf{I}_{\mathbf{T}}=\mathbf{I}_{\mathrm{C}}=\mathbf{I}_{\mathbf{R}} \tag{7-1}
\end{equation*}
$$

However, the algebraic sum of the voltage drop across the resistor and the voltage drop across the capacitor does not equal the applied voltage as it would in either a purely resistive or purely capacitive circuit. Therefore,

$$
\begin{equation*}
\mathbf{E}_{T} \text { is not } \mathbf{E}_{\mathbf{R}}+\mathbf{E}_{\mathbf{C}} \tag{7-2}
\end{equation*}
$$

This can be demonstrated with a specific example. Suppose the resistance of Figure 7.2 is 40 ohms and the capacitive reactance, X_{C}. is 30 ohms. With an applied voltage of 10 volts, the voltage drops across R and C are calculated to be 8 volts and 6 volts respectively. The algebraic sum of the voltage drops is 14 volts and does not equal the applied voltage of 10 volts.
This is true because the phase relationship between the voltage across and the current through each component is different.

Figure 7.1 Typical Series and Parallel RC AC Circuits

Figure 7.2 Simple Series RC AC Circuit

Voltage and Current Relationships

The voltage across a resistor, E_{R}, is in phase with the current through it as shown in Figure 7.3. For a capacitor, however, recall that the current leads the voltage by 90 degrees. as shown in Figure 7.4. Since the resistor and capacitor are in series with one another, the common factor in both phase relationships is the current.

Phasor diagrams can be drawn for the voltage and current waveforms of Figure 7.3 and Figure 7.4. The voltage E_{R}, equal to 8 volts, across the resistor is in phase with the current, I, in the series circuit as shown in Figure 7.5. The same series current, 1, leads the voltage E_{C} across the capacitor by 90 degrees as shown in Figure 7.6. E \mathbf{c} is $\mathbf{6}$ volts.
Comparing the phase relationships of the two voltage drops, it is found that the voltage across the resistor leads the voltage across the capacitor by 90 degrees. Because these two voltages are out of phase, they cannot be added as the voltage drops in a resistive series circuit would be added to obtain the total applied voltage. Mathematically, therefore:

$$
\begin{equation*}
\mathbf{E}_{r} \text { is not equal } E_{R}+E_{C} \tag{7-3}
\end{equation*}
$$

The total voltage must be calculated, therefore, by another type of addition known as vector addition.

Figure 7.3 Phase Relationship of Resistor Voltage and Current

Figure 7.4 Phase Relationship of Capacitor Vollage and Current

Figure 7.5 Phasor Diagram for E_{R} and I

Vector Addition

Common Phasor Diagram

Since I is the same in both of the phasor diagrams of Figure 7.5 and Figure 7.6, a cominon phasor diagram can be formed as shown in Figure 7.7. It is now very apparent that E_{R} and E_{C} are 90 degrees out of phase More specifically, the voltage across the resistor leads the voltage across the capacitor by 90 degrees. In Figure $7.7 \mathbf{E}_{\mathbf{R}}$ and $\mathbf{E}_{\mathbf{C}}$ are two vectors. Their length represents their amplitude and their direction represents their phase

Parallelogram Method

When two vectors are added, the parallelogram method is used. The sum of the wo vectors, as shown in Figure 7.8, is represented by a third vector called the resultant. To add two vectors using the parallelogram method, the parallelogram begun by the two original vectors are merely completed. The two original vectors in Figure 7.8 are the two solid lines with arrows at points E_{k} and E_{C}. Then a line parallel to each vector beginning at the tip of the other and shown as the two dotted lines in Figure 7.8 are drawn.

The first line begins at the tip of E_{C} and is parallet to line $\mathbf{E}_{\mathbf{R}}$. The second line begins at the tip of E_{R} and is parallel to line E_{C}. The point where these two dotted lines intersect determines where the tip of the resultant vector will be located. The resultant vector is then drawn from the origin (as are all vectors) to the point of intersection as shown.

If the length and phase of E_{R} and E_{C} are drawn to scale, the length of the resultant vector obtained in this nanner will indicate its magnitude. Therefore, using the diagram, the resultant vector's magnitude and phase relationship to the other two vectors can be measured. The resultant is the vector sum of E_{R} and E_{C}

Figure 7.6 Capacitor Voltage and Current Phase Relationships

Figure 7.7 Phase Relationships of the Resistor and Capacitor Voltage Drops

Figure 7.8 Parallelogram Method of Vector Addition

Voltage Vector Addition

The voltage across the capacitor, E_{C}, and the voltage across the resistor, E_{R}, in Figure 7.7 must be added vectorially in a series RC circuit. Using the parallelogram method, the vector sum of E_{R} and E_{C} equals the total applied voltage, $\mathbf{E}_{\mathbf{A}}$. A diagram to perform this calculation is shown in Figure 7.9. This diagram is the voltage vector diagram for a series RC circuit.

Resistance and Reactance Vector Addition

Recall that in a purely resistive series circuit, the total ohms of resistance is equal to the sum of all individual ohms of resistance.

$$
\begin{equation*}
\mathbf{R}_{\mathbf{T}}=\mathbf{R}_{1}+\mathbf{R}_{2} \ldots+\mathbf{R}_{N} \tag{7-4}
\end{equation*}
$$

In a purely reactive (capacitors only) series circuit, the total ohms of reactance is equal to the sum of all individual ohms of reactance.

$$
\mathbf{X}_{\mathbf{C T}}=\mathbf{X}_{\mathbf{C} 1}+\mathbf{X}_{\mathbf{C} 2} \ldots+\mathbf{X}_{\mathbf{C N}}
$$

However, in a series RC circuit, like the one shown in Figure 7.10, there exists a combination of ohms resistance and ohms reactance.

This combination is called impedance, also measured in ohms. Just as voltages were represented by vectors whose length represents their magnitude and whose direction represents their phase, $\mathbf{R}, \mathbf{X}_{\mathbf{C}}$. and the impedance Z can be represented as vectors. For a series RC circuit, the relationship of the vectors is shown in Figure 7.11. Both resistance and reactance impede the current; therefore, the total impedance of an RC series circuit is the vector sum of the resistance and reactance in the circuit as shown in Figure 7.11. The length of the \mathbf{Z} vector is its magnitude and the direction its phase.

By Ohm's law,

$$
\begin{equation*}
E=I R \tag{7-6}
\end{equation*}
$$

R [ohms]

Figure 7.10 Typical Series RC Circuil

Figure 7.11 Phase Relationship Between Ressistance, R, Capacitive Reactance, X_{C}, and Impedance, 2

The current, l, llowing in the series RC circuit of Figure 7.10 is the same through each circuit element. Thus,

$$
\begin{equation*}
E_{R}=I R \tag{7-7}
\end{equation*}
$$

and the vector $E_{\mathbf{R}}$ in Figure 7.12 is made equal to IR. The current is the same for the capacitor, therefore.

$$
\begin{equation*}
\mathbf{E}_{\mathrm{c}}=\mathbf{I} \mathbf{X}_{\mathrm{C}} \tag{7-8}
\end{equation*}
$$

and the \mathbf{E}_{C} vector of Figure 7.12 is made equal to $1 \mathrm{X}_{\mathrm{C}} . \mathrm{E}_{\mathrm{C}}$ and E_{R} previously were plotted at right angles since \mathbf{E}_{R} leads \mathbf{E}_{C} by 90 degrees.

Also by Ohm's law, the total applied voltage is equal to the circuit current I times the total impedance so that,

$$
\begin{equation*}
E_{A}=I Z \tag{7-9}
\end{equation*}
$$

As a result, IZ is substituted for the applied voltage E_{A} in the voltage vector diagram as shown in Figure 7.12. In that diagram

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{A}}=\text { vector sum of } \mathrm{E}_{\mathrm{R}} \text { and } \mathrm{E}_{\mathrm{C}} \quad(7-10) \\
& I \mathrm{Z}=\text { vector sum of } 1 \mathrm{R} \text { and } \mathrm{I} \mathrm{X}_{\mathrm{C}}:(7-11)
\end{aligned}
$$

Because the total current is the common factor, it can be factored out of equation 7-11.

$$
\begin{equation*}
V_{.}=\text {vector sum of } X R \text { and } X X_{C} \tag{7-12}
\end{equation*}
$$

Equation 7-12 becomes, for a series RC Circuit,

$$
Z=\text { vector sum of } R \text { and } X_{C} . \quad(7-13)
$$

This shows clearly that Z is the vector sum of R and X_{C}.

The resultant diagram is shown in Figure 7.13.
The parallelogram method is used to show the relationship of the resultant total impedance, Z , to the value of the resistance and capacitance in a series RC circuit. Its magnitude is its length and its direction its phase.

Figure 7.12 Vector Factors for R, X_{C}, and Z in Series RC Circuil

Figure 7.13 Impedance as a Vector Sum in a Series RC Circuit

Vector Solutions

It is possible, then, to determine the impedance by graphing the resistance and reactance vector to scale, using the parallelogram method to obtain the resultant impedance, and then measuring the length of the impedance vector to determine the value of the circuit impedance. This graphing method, however, can be tedious and somewhat inaccurate. Therefore, it is more reliable to use a method of calculation to determine the impedance.

Pythagorean Theorem

The method used to calculate impedance is based upon a mathematical theorem involving right triangles stated centuries ago by a man named Pythagoras. He found that there was a special relationship between the lengths of the three sides of a right triangle, which is a triangle in which the major angle is 90 degrees. He found that the length of the longest side, called the hypotenuse, is equal to the square root of the sum of the square of the length of each of the other two sides. Mathematically, from Figure 7.14.

$$
\mathbf{C}(\text { Hypotenuse })=\sqrt{A^{2}+B^{2}}(7-14)
$$

For example, in Figure 7.14, side A is 3 inches long, and side B is 4 inches long. Side C, hypotenuse, is calculated:

$$
\begin{aligned}
C & =\sqrt{A^{2}+B^{2}} \\
& =\sqrt{3^{2}+4^{2}} \\
& =\sqrt{9+16} \\
& =\sqrt{25} \\
& =5 \text { inches }
\end{aligned}
$$

The length of the hypotenuse of this triangle, then, is 5 inches.

Pythagorean Theorem Applied to Impedance Solutions

The Pythagorean theorem can be applied to circuit problems involving resistance and reactance. Figure 7.15 shows the resistivereactance phasor diagram for a series RC circuit. The total impedance of the circuit, Z, is the vector sum of the resistance, R, and reactance, X_{C}. If the values of the resistance and reactance are known, the impedance can be calculated using the Pythagorean theorem.

Figure 7.14 Right Triangle Used in Example Problem

Figure 7.15 Pythagorean Theorem Can be Used to Calculate Impedance on Vector Diagram

Notice that the length of the reactance vector is the same as the length between the tip of the resistance vector and the tip of the impedance vector. In fact, the vector diagram can be drawn with the reactance vector placed as shown in Figure 7.16. Now, the right triangle of the Pythagorean theorem becomes evident. Applying the Pythagorean theorem, the total impedance (the hypotenuse) can be calculated,

$$
\begin{equation*}
\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathbf{X}_{\mathrm{C}}^{2}} \tag{7-15}
\end{equation*}
$$

Total impedance is equal to the square root of the resistance squared plus the reactance squared

Figure 7.17 shows a typical series RC circuit.
The impedance can be calculated using equation 7-15. The resistance of this RC circuit is 12 ohms and the capacitive reactance is 16 ohms.

$$
\begin{aligned}
\mathrm{Z} & =\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}^{2}} \\
& =\sqrt{12^{2}+16^{2}} \\
& =\sqrt{144+256} \\
& =\sqrt{400} \\
& =20 \Omega 2
\end{aligned}
$$

Thus, the total impedance of the circuit is 20 ohms.

Pythagorean Theorem Applied to Voltage Solutions

Similar mathematical calculations using the Pythagorean theorem can be performed to show the relationship between the voltage drops and applied voltage in a series RC circuit. In this case the phasor diagram is drawn as shown in Figure 7.18. Shifting the capacitive voltage vector, as shown in Figure 7.19, equation $7-15$ can be rewritten to calculate easily the applied voltage, E_{A}.

$$
\begin{equation*}
E_{A}=\sqrt{E_{R}^{2}+E_{C}^{2}} \tag{7-16}
\end{equation*}
$$

Figure 7.16 Vector Diagram Redrawn with the Reactance Vector Obvious

Figure 7.17 Example Circuit for Calculating Impedance Using Equation 7-15

Figure 7.18 Phasor Diagram of Vollage Relationship in a Series RC Circuil

An example circuit is shown in Figure 7.20 which also shows the vector relationship between E_{R}, E_{C}, and E_{A}. In that circuit the voltage across the capacitor is 10 volts, rms: the voltage across the resistor is 20 volts, rms Using equation 7-16. E_{A} is calculated:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{A}} & =\sqrt{\mathbf{E}_{\mathbf{R}}^{2}+\mathbf{E}_{\mathbf{C}}^{2}} \\
& =\sqrt{20^{2}+10^{2}} \\
& =\sqrt{400+100} \\
& =\sqrt{500} \\
& =22.36 \mathrm{~V}
\end{aligned}
$$

Thus, the total applied voltage to the circuit is 22.36 volts(rms).

Series RC Circuit Analysis

It's now time to take a series $R C$ circuit and determine the total impedance, the total current, and the individual voltage drops across the resistor and capacitor using the Pythagorean theorem to solve for phaserelated circuit values.

When vectors are used to represent phase relationships of circuit values, the resulting diagrams are commonly called phasor diagrams. This terminology will be used during the remainder of this book.

Figure 7.19 Vector Diagram Redrawn so Thot the E_{C} Factor is Obvious

Figure 7.20 Example Series RC Circuil and I/s Vector Diagram

Calculations of $\mathbf{X}_{\mathbf{C}}$

First, capacitive reactance, X_{C}, will be calculated in a typical series RC circuit shown in Figure 7.21. The value of the resistor is 30 ohms. The value of the capacitor is 4 microfarads. The applied voltage is 100 VAC with a frequency of 995 hertz. To determine the total impedance of this circuit, the value of the capacitive reactance must first be calculated

$$
\begin{aligned}
X_{C} & =\frac{1}{2 \pi f C} \\
& =\frac{1}{(6.28)(995 H z)(4 \mu F)} \\
& =40 \Omega
\end{aligned}
$$

Therefore, X_{C} equals 40 ohms.

Calculation of \mathbf{Z}

The impedance phasor diagram may now be drawn to show the relationship between the values of resistance, reactance, and impedance in the circuit as shown in Figure 7.22. The value of impedance is calculated by using the Pythagorean theorem (equation 7-15). The vectors being plotted are the sides of a right triangle

$$
\begin{aligned}
\mathbf{Z} & =\sqrt{\mathbf{R}^{2}+\mathbf{X C}^{2}} \\
& =\sqrt{\mathbf{3 0}^{2}+40^{2}} \\
& =\sqrt{900+1600} \\
& =\sqrt{2500} \\
& =50 \Omega
\end{aligned}
$$

Thus, the value of the total impedance of this circuit is $\mathbf{5 0}$ ohms. Impedance is defined as the total opposition of a resistive-reactance circuit to the flow of alternating current. It is something that impedes the current.

Figure 7.21 Example Series $R C$ Circuit Used to Calculate $X_{C}, Z_{1}, I_{T}, E_{R}$, and E_{C}.

Figure 7.22 Impedance Phasor Diagram of Circuit in Figure 7.21

Calculation of I_{T}

Recall that in a purely resistive circuit or purely reactive circuit, the total current in the circuit is calculated using Ohm's law by dividing the applied voltage by the total resistance or reactance. For resistance:

$$
\begin{equation*}
\mathbf{I}_{\mathbf{T}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{R}_{\mathbf{T}}} \tag{7-17}
\end{equation*}
$$

And for reactance:

$$
\begin{equation*}
\mathbf{I}_{\mathbf{T}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{C T}}} \tag{7-18}
\end{equation*}
$$

Similarly, in a resistive-reactive circuit, like the one shown in Figure 7.23, the total current is found using Ohm's law by dividing the applied voltage by the total impedance of the circuit.

$$
\begin{equation*}
\mathbf{I}_{\mathbf{T}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{Z}_{\mathbf{T}}} \tag{7-19}
\end{equation*}
$$

This relationship between voltage, current and impedance is often referred to as Ohm's law for ac circuits.

Figure 7.24 is a typical resistive-reactive series circuit, with circuit values as shown. Using equation 7-19, the total current in the circuit can be calculated. That equation requires that Z_{T} be known. As calculated in the previous section, $\mathbf{Z}_{\mathbf{T}}$ for the circuit is 50 ohms. Therefore,

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{Z}_{\boldsymbol{r}}} \\
& =\frac{100 \mathrm{~V}}{50 \Omega} \\
& =2 \mathrm{~A}
\end{aligned}
$$

The total circuit current equals 2 amperes.

Figure 7.23 Typical Resistive-Reactive Series Circuil

Figure 7.24 Example Circuil for Calculating IT

Calculations of $\mathbf{E}_{\mathbf{R}}$ and $\mathbf{E}_{\mathbf{C}}$

Voltage drops across the resistor and capacitor are now calculated as they would be in any series circuit. The voltage drop across the resistor is calculated

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R}} & =\mathbf{I}_{\mathrm{T}} \mathbf{R} \\
& =(2 \mathrm{~A})(30 \Omega) \\
& =60 \mathrm{~V}
\end{aligned}
$$

The voltage drop across the capacitor is then calculated

$$
\begin{aligned}
\mathbf{E}_{C} & =I_{\boldsymbol{T}} X_{C} \\
& =(2 A)(40 \Omega) \\
& =80 \mathrm{~V}
\end{aligned}
$$

Relationship of $\mathbf{E}_{R}, \mathbf{E}_{C}$ and \mathbf{E}_{A} in Series RC Circuits

Notice that the voltage across the capacitor plus the voltage across the resistor add to 140 volts. This is more than the applied voltage and at first, seems to contradict Kirchhoffs voltage law. Kecall that Kirchhoffs voltage law essentially states that the total voltage applied to any closed circuit path always equals the sum of the voltage drops across the individual parts of the path. Also remember, however. that the voltage across the resistor and the voltage across the capacitor are out of phase by 90 degrees as shown in Figure 7.25. Therefore, they must be added vectorially like this:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{A}} & =\sqrt{\mathbf{E}_{\mathbf{R}}^{2}+\mathbf{E}_{\mathbf{C}^{2}}} \\
& =\sqrt{60^{2}+80^{2}} \\
& =\sqrt{3600+6400} \\
& =\sqrt{10,000} \\
& =100 \mathrm{VAC}
\end{aligned}
$$

The applied voltage in the example circuit is 100 VAC . Thus, the vector sum of the circuit voltage drops equals the applied voltage. This type of calculation can be performed to check the calculated voltage drops in the circuit.

Figure 7.25 Phase Relationship of E_{R} and E_{C}

Calculations of Phase Angle in Series RC Circuits

Recall that when originally forming the voltage phasor diagram for a series $R C$ circuit it was determined that the current is the same throughout a series circuit. Therefore, current was used as a reference quantity This total current is in phase with the voltage across the resistor. Notice in Figure 7.26, however, that the applied voltage and the total current are out of phase. Specifically, the current leads the applied voltage by a certain number of degrees. This angle by which the total applied voltage and total current are out-of-phase is called the phase angle of the circuit. The phase angle, by definition, is the number of degrees the total current and the total applied voltage are out of phase. The phase angle is usually denoted by the Greek letter theta, θ.

The phase angle in a series RC circuit can also be recognized as the angle between the voltage across the resistor and applied voltage as shown in Figure 7.27. Figure 7.12 showed that the impedance phasor diagram is proportional to the voltage phasor diagram because

$$
\begin{aligned}
& \mathbf{E}_{\mathbf{R}}=\mathbf{I} \mathbf{R} \\
& \mathbf{E}_{\mathbf{C}}=\mathbf{I} \mathbf{X}_{\mathbf{C}} \\
& \mathbf{E}_{\mathbf{A}}=\mathbf{I} \mathbf{Z}
\end{aligned}
$$

and the fact that I cancels because it is common to each term. Therefore, as shown in Figure 7.27, the voltage across the resistor $\mathbf{E}_{\mathbf{R}}$ is in phase with the series circuit current. The phase angle in a series RC circuit is also the angle between the resistance vector and the impedance vector as shown in Figure 7.28.

Definition of Tangent Function

The value of the phase angle can be calculated by using a trigonometric function called the tangent function. Recall from Lesson 2 that the tangent, abbreviated tan, of an angle in a right triangle, is equal to the ratio

Figure 7.26 Circuit's Phase Angle

Figure 7.27 Phase Angle - Voltage Phasor Diagram

Figure 7.28 Phase Angle - Impedance Phasor Diagram
of the length of the side opposite the angle divided by the length of the side adjacent to the angle

$$
\begin{equation*}
\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }} \tag{7-20}
\end{equation*}
$$

For example, as shown in Figure 7.29, the side of a right triangle opposite from the angle θ is 10 units long and the side adjacent to the angle θ is 5 units long. Then,

$$
\begin{aligned}
\tan \theta & =\frac{\text { opposite }}{\text { adjacent }} \\
& =\frac{10}{5} \\
& =2
\end{aligned}
$$

Thus, the tangent of θ in this right triangle is equal to 2. A calculator or trigonometric function table is then used to determine the angle which has a tangent of 2 . The angle which has a tangent of 2 is about 64°.

Relationship of Tangent and Arctangent

Recall from equation 7-20 that the value obtained by dividing the lengths of the sides of a right triangle is called the ratio of the two sides. It will be a ratio that has a value from 0 to infinity. If given the ratio, the angle can be found using a calculator or trigonometric table.
The inverse process of determining the angle when the ratio is known is called finding the arctangent, abbreviated arctan.

$$
\begin{equation*}
\arctan \frac{\text { opposite }}{\text { adjacent }}=\theta \tag{7-21}
\end{equation*}
$$

This equation reads: θ is an angle of a right triangle whose tangent is the ratio called out in the arctan function.
For example, the arctangent of the ratio of 2 is about 64° :

$$
\arctan (2)=64^{\circ}
$$

ADJACENT

Figure 7.29 Triangle Used to Calculate θ in an Example
Said inversely, the tangent of 64° is approximately 2 :

$$
\tan 64^{\circ} \cong 2
$$

Taking a second example, the tangent of $35^{\circ}=0.7$. Therefore, the arctangent of $0.7=35^{\circ}$. Sometimes, arctangent is abbreviated by writing: $\tan ^{-1}$ (tan to the minus one). Both notations indicate the arctangent function. Therefore, the arctangent of a ratio indicates an angle whose tangent is the ratio.

$$
\begin{aligned}
& \arctan \frac{\text { opposite }}{\text { adjacent }}=\theta \\
& \tan ^{-1} \frac{\text { opposite }}{\text { adjacent }}=\theta
\end{aligned}
$$

Application of Tangent Function in Solving for Phase Angles

Using the tangent function to find the phase angle of the RC circuit in Figure 7.24 the side opposite the phase angle in the voltage phasor diagram of Figure 7.27 is the vector E_{C}. The length of this vector tepresents the value of the voltage drop across the capacitor. The side adjacent to the phase angle in the voltage phasor diagram is the vector, E_{R}. whose length represents the value of the voltage drop across the resistor.

The tangent of the phase angle is equal to the ratio of the opposite side divided by the adjacent side.

$$
\tan \theta=\frac{\mathbf{E}_{C}}{\mathbf{E}_{R}}
$$

for the voltage phasor diagram. The arctangent of this ratio yields the value of the phase angle, θ;

$$
\arctan \frac{\mathbf{E}_{C}}{\mathbf{E}_{\mathbf{R}}}=\theta
$$

In the series RC circuit shown in Figure 7.30, the voltage across the capacitor is 80 volts and the voltage across the resistor is $\mathbf{6 0}$ volts.
Therefore,

$$
\begin{aligned}
\arctan \left(\frac{80 V}{60 V}\right) & =\theta \\
\arctan (1.33) & =\theta \\
53^{\circ} & =\theta
\end{aligned}
$$

Completing the calculations the arctangent of E_{R} divided by \mathbf{E}_{c} equals the arctangent of 80 volts divided by 60 volts which equals the arctangent of 1.33 . Using your calculator or trigonometric table, you can determine that the tangent function has a value of 1.33 for an angle of about 53°, or the arctangent of 1.33 is 53°. Therefore, the phase angle of this RC series circuit is 53°.

Recall that earlier it was shown that the impedance phasor diagram of a series circuit is proportional to the voltage phasor diagram. Since these two phasor diagrams are proportional, the phase angle also can be determined using an impedance phasor diagram. This will provide an identical value for the phase angle for the RC circuit of Figure 7.24.

Figure 7.30 Example Circuit Used to Calculale Phase Angle
The side opposite to the phase angle in the impedance phasor diagram in Figure 7.28 is the reactance vector. \mathbf{X}_{6}. The length of this vector represents the value of the capacitive reactance. The side adjacent to the phase angle in the impedance phasor diagram is the resistance vector, R. Its length represents the value of the resistor. Recall that the tangent ratio is the opposite side divided by adjacent side, therefore,

$$
\begin{equation*}
\tan \theta=\frac{X_{C}}{R} \tag{7-22}
\end{equation*}
$$

The arctangent of this ratio yields the value of the phase angle.

$$
\begin{equation*}
\arctan \left(\frac{X_{C}}{R}\right)=\theta \tag{7-23}
\end{equation*}
$$

There is one other important point about calculating theta of a series RC circuit. In the series RC circuit of Figure 7.24, the value of the capacitive reactance is 40 ohms and the value of the resistor is 30 ohms. Therefore:

$$
\begin{aligned}
\arctan \left(\frac{40 \Omega}{30 \Omega}\right) & =\theta \\
\arctan (1.33) & =\theta \\
53^{\circ} & =\theta
\end{aligned}
$$

40 divided by 30 results in a ratio of 1.33 . The arctangent of 1.33 is 53°. This is the same phase angle derived using the voltage phasor diagram. Thus, it should be remembered that the value of the phase angle in a series RC circuit can be determined from either the voltage or impedance phasor diagram.

Negative Phase Angle in Series RC Circuits

The value of the phase angle in a series $R C$ circuit is considered to be a negative value. That is, the phase angle in the example circuit of Figure 7.24 is actually negative 53° degrees as shown in Figure 7.31. The reason the phase angle is considered to be negative is because, previously, the angle of rotation of phasors in a counter-clockwise direction was designated as positive. Thus, the angle of rotation of a phasor in a clockwise direction, in agreement with the convention, is said to be negative. This is illustrated graphically in Figure 7.32

Remember that the total current in the series RC circuit was used as the reference, which is at zero degrees. Thus, as shown in Figure 7.33, the negative sign of the phase angle indicates that the applied voltage is rotated 53 degrees clockwise from the current vector direction.

Calculation of Power in resistive and Reactive Circuits

In previous examples, power was calculated in purely resistive circuits (real power) and in purely reactive circuits (reactive power). In RC circuits there is a combination of real power, P_{R}, (in watts), and reactive power, P_{C}, (in VAR).

Figure 7.31 Phase Angle Calculated is Actually a Negative 53 Degrees

Figure 7.32 Negative and Positive Phase Angles

Figure 7.33 Rotation of Phasors in Example Circuil is Clockwise, Therefore, Negative

Calculation of Real Power

In the example series RC circuit of Figure 7.30, the power dissipated by the resistor can be calculated by multiplying the voltage across the resistor by the current through the resistor. The current is total current. Recall that previously the current through the resistor, I_{R}, was calculated to be 2 amperes, and $\mathbf{E}_{\mathbf{R}}$ and $\mathbf{E}_{\mathbf{C}}$ were calculated to be 60 volts and 80 volts, respectively. Thus,

$$
\begin{aligned}
\mathbf{P}_{\mathbf{R}} & =\mathbf{E}_{\mathbf{R}} \mathbf{I}_{\mathbf{R}} \\
& =(60 \mathrm{~V})(2 \mathrm{~A}) \\
& =120 \mathrm{~W}
\end{aligned}
$$

The real power in the circuit equals 120 watts. It is the power dissipated as heat in the circuit.

Calculation of Reactive Power

The reactive power of the capacitor is calculated as it was in a purely capacitive circuit.

$$
\begin{aligned}
\mathbf{P}_{\mathbf{C}} & =\mathbf{E}_{\mathbf{C}} \mathbf{l}_{\mathbf{C}} \\
& =(80 \mathrm{~V})(2 \mathrm{~A}) \\
& =160 \mathrm{VAR}
\end{aligned}
$$

The reactive power in the circuit is 160 VAR No actual heat is generated unless the capacitor has resistance included in it.

Calculation of Apparent Power

As stated previously, in a series RC circuit like the one in Figure 7.30, there exists a combination of real power and reactive power. This combined power calculated using total current and total voltage circuit values is called apparent power. Since the apparent power is a combination of real and reactive power, it cannot be designated either watts or VAR. Instead, it is measured in units called volt-amperes, abbreviated VA.

Power in a circuit is always calculated by multiplying a voltage times a current.

$$
\begin{equation*}
\mathbf{P}_{\mathbf{T}}=\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{T}} \tag{7-24}
\end{equation*}
$$

Equation 7-24 is such an equation and it can be used to calculate total power in any resistive-reactive circuit. In the circuit being used (Figure 7.30) $\mathbf{E}_{\mathrm{A}}=100$ volts and $\mathbf{I}_{\mathrm{T}}=2$ amperes. Thus,

$$
\begin{aligned}
P_{\mathrm{T}} & =(100 \mathrm{~V})(2 \mathrm{~A}) \\
& =200 \mathrm{~V} A
\end{aligned}
$$

Recall that in a purely resistive circuit the total real power is the sum of all the individual real power values

$$
\begin{equation*}
\mathbf{P}_{\mathbf{R}}=\mathbf{P}_{\mathbf{R}_{1}}+\mathbf{P}_{\mathbf{R}_{2} \ldots+\mathbf{P}_{\mathbf{R N}}} \tag{7-25}
\end{equation*}
$$

and in a purely reactive circuit the total reactive power is the sum of all individual reactive power values:

$$
\begin{equation*}
\mathbf{P}_{\mathbf{T}}=\mathbf{P}_{\mathbf{C}_{1}}+\mathbf{P}_{\mathbf{C}_{2}} \ldots+\mathbf{P}_{\mathbf{C N}} \tag{7-26}
\end{equation*}
$$

However, in resistive and reactive circuits, the simple sum of the real power and reactive power does not equal the apparent power.

$$
\begin{equation*}
P_{T} \text { is not } P_{R}+P_{C} \tag{7-27}
\end{equation*}
$$

This occurs because the phase relationship between the voltage across and the current through each component are different.

In series RC circuits, the phase relationships of the three power determinations are similar to the voltage phase relationships, as shown in Figure 7.34

Since each power determination is made by multiplying the voltage shown times the current, the power phasor diagram is proportional to the voltage phasor diagram by a factor of the total current, as shown in Figure 7.34.
Mathenatically:

$$
\begin{align*}
E_{A} l_{T}= & \text { phasor sum of } \tag{7-28}\\
& E_{R} l_{T}+E_{C} l_{T}
\end{align*}
$$

or

$$
\begin{align*}
P_{r}(\text { apparent })= & \text { phasor sum of } \tag{7-29}\\
& P_{\text {real }}+\mathbf{P}_{\text {reactive }}
\end{align*}
$$

The total apparent power is calculated using the Pythagorean theorem.

$$
\mathbf{P}_{\mathbf{T}(\mathrm{a})}=\sqrt{\mathbf{P}_{\mathbf{R}}^{2}+\mathbf{P}_{\mathrm{C}}^{2}}
$$

It is equal to the square root of the real power squared plus the reactive power squared. Thus, the total apparent power in the example circuit of Figure 7.24 and Figure 7.30 as calculated, 200 volt-amperes. should be equal to the square root of 120 watts squared plus 160 VAR squared.

$$
\begin{aligned}
\mathbf{P}_{\mathbf{T}} & =\sqrt{\mathbf{P}_{\mathbf{R}}^{2}+\mathbf{P C}^{2}} \\
& =\sqrt{120^{2}+160^{2}} \\
& =\sqrt{14,400+25,600} \\
& =\sqrt{40,000} \\
& =200 \mathrm{VA}
\end{aligned}
$$

This is the relationship between the apparent power and the real and reactive power. Note in Figure 7.35 that the angle between the real and apparent power is the phase angle. In this example the phase angle is negative 53 degrees.

Figure 7.34 Relationshiop of Voltage and Power Factors in an RC Series Circuil

Figure 7.35 Relationship of Vectors in Example Circuit

Parallel RC Circuit analysis

Now, that you have learned how to determine the voltages, currents, impedance, phase angle, and power in a series RC circuit, the next step is to learn how to determine these same quantities in a circuit in which a resistor is connected in parallel with a capacitor. Such a circuit is called a parallel $R C$ circuit. A typical parallel RC circuit is shown in Figure 7.36.

Summary of Phase Relationships in Parallel RC Circuits

In the circuit of Figure 7.36, as in any parallel circuit, the voltage across all components is the same: $\mathbf{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{R}}=\mathrm{E}_{\mathrm{C}}$. However, the algebraic sum of the branch currents does not equal the total current in the circuit.

$$
\begin{equation*}
I_{T} \text { is not } I_{R}+I_{C} \tag{7-31}
\end{equation*}
$$

This occurs because the phase relationships between the voltage and current are different for each component.

Recall that the voltage across a resistor is in phase with the current (Figure 7.37a) and, in a capacitor, the current leads the voltage by 90 degrees (Figure 7.37b).
Since the components in the circuit are in parallel with one another, the common factor in both relationships is the voltage, because the voltage across both components is the same. This voltage is the applied voltage, $\mathbf{E}_{\mathbf{A}}$.

For discussion purposes, the diagram of Figure $7.37 b$ is rotated by 90 degrees to make E $_{\mathrm{C}}$ horizontal, as shown in Figure 7.38a. Because the components in the example circuit are parallel with one another, the common factor in both relationships is the voltage. The voltage across both components is the applied voltage, therefore, E_{C} is equal to $\mathbf{E}_{\boldsymbol{A}}$ and $\mathbf{E}_{\boldsymbol{R}}$ equals $\mathbf{E}_{\boldsymbol{A}}$.

Figure 7.36 Typical Parallel RC Circut
a

b

Figure 7.37 Phase Relationship of E_{R}, I_{R}, and E_{C}, I_{C}

Figure 7.38 Phase Relationship of $I_{C}, I_{R}, E_{C}, E_{R}, E_{A}$

Calculation of I_{R} and I_{C}
Calculation of I_{T}

Using the voltage as a common reference (instead of current which was used in an analysis of a series RC circuit), the two individual phasor diagrams can be combined into one as shown in Figure 7.386. However, in order to match common voltage, the E_{C} vector has been rotated 90 degrees to match the direction of the E_{R} and E_{A} vectors. Also note that the current through the resistor is shown in phase with the applied voltage across it, while holding to the theory that the capacitive current is leading the applied voltage by 90 degrees. Comparing the phase relationships of the two branch currents, the capacitive current leads the resistive current by 90 degrees.

Calculation of $\mathbf{I}_{\mathbf{R}}$ and $\mathbf{I}_{\mathbf{C}}$

The individual branch currents in a parallel circuit can be calculated as they were calculated in a purely resistive or purely capacitive circuit. Simply divide the voltage across the branch by the opposition to current in that branch.

In the resistive branch, the opposition to the flow of current is measured in ohms of resistance. Thus, in the circuit, shown in Figure 7.39, the resistive current is determined by dividing the applied voltage by the value of the resistor.

$$
\begin{equation*}
\mathbf{I}_{\mathbf{R}}=\frac{\mathbf{E}_{\mathbf{R}}}{\mathbf{R}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{R}} \tag{7-32}
\end{equation*}
$$

In the capacitive branch, the opposition to the flow of current is measured in ohms of reactance. Therefore the capacitive current is determined by dividing the applied voltage by the reactance of the capacitor.

$$
\begin{equation*}
\mathbf{I}_{\mathbf{C}}=\frac{\mathbf{E}_{\mathbf{C}}}{\mathbf{X}_{\mathbf{C}}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{C}}} \tag{7-33}
\end{equation*}
$$

Figure 7.39 Example RC Parallel Circuit

Figure 7.40 Currents Must be Added Vectorially

Calculation of $\mathbf{I}_{\mathbf{T}}$

To obtain the total current, $\mathbf{1}_{\mathrm{T}}$, the currents in a parallel RC circuit cannot simply be added as the branch currents in a parallel resistive circuit would be added. Instead, these currents must be added vectorially.

As shown in Figure 7.40, the length of the capacitive current vector is the same as the length between the tip of the total current vector and the tip of the resistive current vector. Thus, the capacitive current vector may be shifted over to form a right triangle.

Now, the Pythagorean theorem can be used to determine the total current in the circuit According to the Pythagorean theorem, the total current in a parallel RC circuit is equal to the square root of the resistive current squared plus the capacitive current squared

$$
\begin{equation*}
\mathbf{I}_{\mathrm{T}}=\sqrt{\mathbf{I}_{R}^{2}+\mathbf{I}_{C}^{2}} \tag{7-34}
\end{equation*}
$$

The parallel RC circuit shown in Figure 7.41 can be used to illustrate how to use this equation to calculate I_{T}. In the circuit the resistive current is 5 amperes, and the capacitive current is 12 amperes. Therefore,

$$
\begin{aligned}
\mathbf{I}_{\mathrm{T}} & =\sqrt{5^{2}+12^{2}} \\
& =\sqrt{25+144} \\
& =\sqrt{169} \\
& =13 \mathrm{~A}
\end{aligned}
$$

The total current is 13 amperes.

Calculation of $\mathbf{Z}_{\mathbf{T}}$ Using Ohm's Law

Once the total current is known, the total impedance of the circuit can be determined using Ohm's law for ac circuits:

$$
\begin{equation*}
\mathbf{E}_{\mathbf{A}}=\mathbf{I}_{\mathbf{T}} \mathbf{Z}_{\mathrm{T}} \tag{7-35}
\end{equation*}
$$

Rearranging to solve for impedance, the total impedance of the circuit is equal to the applied voltage divided by the total current:

$$
\begin{equation*}
\mathbf{Z}_{\mathbf{T}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{I}_{\mathbf{T}}} \tag{7-36}
\end{equation*}
$$

For example, in the circuit in Figure 7.41 the applied voltage is 26 volts. The circuit impedance is calculated:

$$
\begin{aligned}
\mathbf{Z}_{\mathbf{T}} & =\frac{\mathbf{E}_{\mathrm{A}}}{I_{\mathbf{T}}} \\
& =\frac{26 \mathrm{~V}}{13 \mathrm{~A}} \\
& =2 \Omega
\end{aligned}
$$

The circuit's impedance is 2 ohms.

Figure 7.41Example Circuit for Calculating I_{T}
Calculation of $\mathbf{Z}_{\mathbf{T}}$ Using Impedance Vectors The total impedance can also be determined directly. However, a more complex equation is involved. Note that in Figure $7.42 a$ the total current is equal to the applied voltage divided by the total impedance. The resistive current is equal to the applied voltage divided by the resistance. And the capacitive current is equal to the applied voltage divided by the capacitive reactance. These E over Z. E over R, and E over X quantities can be substituted for the current they equal in the current phasor diagram as shown in Figure 7.426 .

Since the applied voltage is the common factor, it can be factored out. The result, as shown in Figure 7.43, is an impedance phasor diagram relating the reciprocals of resistance, reactance and impedance. Now, using the Pythagorean theorem, it can be written that

$$
\begin{equation*}
\frac{1}{Z}=\sqrt{\left(\frac{1}{R}\right)^{2}+\left(\frac{1}{X_{c}}\right)^{2}} \tag{7-37}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
Z=\frac{1}{\sqrt{\left(\frac{1}{R}\right)^{2}+\left(\frac{1}{X_{C}}\right)^{2}}} \tag{7-38}
\end{equation*}
$$

The reciprocal of the impedance is equal to the square root of the reciprocal of the resistance squared plus the reciprocal of the reactance squared. The impedance, then, is equal to one divided by the square root of the reciprocal of the resistance squared plus the reciprocal of the reactance squared.

Calculations using

$$
\begin{aligned}
R & =\frac{26 V}{5 A} \\
\frac{1}{R} & =\frac{5 A}{26 V}
\end{aligned}
$$

and

$$
\begin{aligned}
& x_{C}=\frac{26 V}{12 A} \\
& \frac{1}{X_{C}}=\frac{12 A}{26 V}
\end{aligned}
$$

show that

$$
\begin{aligned}
Z_{T} & =\frac{26}{\sqrt{5^{2}+12^{2}}} \\
& =\frac{26}{13} \\
& =2 \Omega
\end{aligned}
$$

b

Figure 7.42 a. Current Phasor Diagram; b. Factors Substituted for Current They Equal

Figure 7.43 Impedance Phasar Diagram Relating the Reciprocals of Resistance Reactance, and Impedance

This method serves to check the impedance value obtained by dividing the applied voltage by the total current. It is described simply to provide an alternate method of calculation of impedance in a parallel RC Circuit.

Calculation of Phase Angle

Recall that the phase angle is the number of degrees of phase difference between the applied voltage and the total current. Also recall that the applied voltage is in phase with the resistive current and I_{T} is the phasor sum of I_{R} and I_{C}. Therefore, the phase angle, theta, is located between the E_{A} value and I_{T} value on the phasor diagram in Figure 7.44. The phase angle in a parallel RC circuit can also be recognized as the angle between the resistive current and the total current.

The value of the phase angle can be calculated by finding the arctangent of the ratio of the opposite to adjacent sides:

$$
\begin{equation*}
\theta=\arctan \left(\frac{\text { opposite }}{\text { adjacent }}\right) \tag{7-39}
\end{equation*}
$$

As shown in Figure 7.45, the opposite side's length represents the value of the capacitive current. The adjacent side's length represents the value of the resistive current. Thus, the tangent of the phase angle, θ, is equal to the ratio of the capacitive current divided by the resistive current as shown in equation 7-40.

$$
\begin{equation*}
\tan \theta=\frac{I_{C}}{I_{R}} \tag{7-40}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\theta=\arctan \left(\frac{I_{C}}{I_{R}}\right) \tag{7-41}
\end{equation*}
$$

Figure 7.44 Relationship of θ, E_{A}, and I_{T} Values on Phasor Diagram

Figure 7.45 Adjacent and Opposite Sides Relationship

The arctangent of the capacitive current divided by the resistive current equals the value of the phase angle. The phase angle, theta is an angle whose tangent is the ratio of capacitive current divided by resistive current.

For the example of Figure 7.41

$$
\begin{aligned}
& \theta=\arctan \left(\frac{12}{5}\right) \\
& \theta=\arctan 2.4 \\
& \theta \equiv 67^{\circ}
\end{aligned}
$$

Analysis of Parallel RC Circuits:

Example

With this background a parallel RC circuit will be analyzed further. The individual branch currents, the total current, the total impedance, and the phase angle will be determined. The Pythagorean theorem will be used to calculate phase-related circuit values.

Circuit Summary

The parallel RC circuit to be used in this example is shown in Figure 7.46. The value of the resistor is 15 ohms . The value of the capacitor is such that at the applied frequency, it has a capacitive reactance of 20 ohms. The applied voltage is 60 VAC .

Calculation of $\mathbf{I}_{\mathbf{R}}$ and $\mathbf{I}_{\mathbf{C}}$

First the resistive branch current, I_{R}, is determined

$$
\begin{aligned}
\mathbf{I}_{\mathbf{R}} & =\frac{\mathbf{E}_{\mathbf{R}}}{\mathbf{R}} \\
& =\frac{60 \mathrm{~V}}{15 \Omega} \\
& =4 \mathrm{~A}
\end{aligned}
$$

The capacitive branch current, I_{C}, is determined in a similar manner:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{C}} & =\frac{\mathbf{E}_{\mathbf{C}}}{\mathbf{X}_{\mathbf{C}}} \\
& =\frac{60 \mathrm{~V}}{20 \Omega} \\
& =3 \mathrm{~A}
\end{aligned}
$$

The current phasor diagram can now be drawn to show the relationships between the resistive and capacitive branch currents and the total circuit current. This diagram is shown in Figure 7.47.

Figure 7.46 Example Parallel RC Circuit

$$
I_{C}=3 \mathrm{~A} \quad \mathrm{I}_{\mathrm{R}}=4 \mathrm{~A}
$$

Figure 7.47 Relationship Between I_{R} and I_{C} in Example Circuit

Calculation of $\mathbf{I}_{\mathbf{T}}$

Using equation 7.34, the total current can be calculated.
$\mathrm{IR}=4$ amperes, and $\mathrm{I}_{\mathrm{C}}=3$ amperes.
Therefore,

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\sqrt{\mathbf{I}_{\mathrm{R}}{ }^{2} \mathbf{I}_{\mathbf{C}}{ }^{2}} \\
& =\sqrt{4^{2}+3^{2}} \\
& =\sqrt{16+9} \\
& =\sqrt{25} \\
& =5 \mathrm{~A}
\end{aligned}
$$

The total current flowing in the circuit is 5 amperes.

Calculation of \mathbf{z}

The total impedance (Z) of the circuit can now be calculated dividing the applied voltage by the total current. Since, $\mathrm{E}_{\mathrm{A}}=60$ volts and $\mathrm{I}_{\mathrm{T}}=5$ amperes, therefore,

$$
\begin{align*}
\mathbf{Z} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{I}_{\mathbf{T}}} \tag{7-42}\\
& =\frac{60 \mathbf{V}}{5 \mathrm{~A}} \\
& =12 \Omega
\end{align*}
$$

Total impedance is 12 ohms.

Calculation of Phase Angle

The phase angle can be recognized as the angle between the resistive current and the total current on the current phasor diagram in Figure 7.48. The value of $\mathrm{I}_{\mathrm{C}}=3$ amperes, and $I_{R}=4$ amperes. The phase angle is calculated using equation 7-41:

$$
\begin{aligned}
\theta & =\arctan \left(\frac{I_{C}}{I_{R}}\right) \\
& =\arctan \left(\frac{3 \mathrm{~A}}{4 \mathrm{~A}}\right) \\
& =\arctan (0.75) \\
& =37^{\circ}
\end{aligned}
$$

Figure 7.48 Phasor Diagram of Example Circuil for Calculating θ
The phase angle is equal to the arctangent of the ratio of the capacitive current to the resistive current. Thus, the phase angle, θ, is equal to the arctangent of 3 amperes divided by 4 amperes which equals the arctangent 0.75. Using a calculator or trigonometric table, the angle whose arctangent is 0.75 is approximately 37 degrees. Thus, the phase angle of this parallel RC circuit is approximately 37 degrees.

Positive Phase Angle in Parallel RC Circuit

The phase angle is said to be a positive 37 degrees, as shown in Figure 7.49. This is because the applied voltage in the parallel RC circuit was used as a reference at zero degrees. The positive sign is used to indicate that the total current phasor is rotated 37 degrees counter-clockwise from the applied voltage phasor.
In Figure 7.50 it can be seen that in a series RC circuit, the phase angle is negative. But in a parallel circuit, as shown in Figure 7.51, the phase angle is positive. The sign of the phase angle is used simply to indicate in which direction of rotation from the reference that the phase angle is measured, therefore, if you know only that the circuit is an RC circuit,
you can readily determine whether the resistor and capacitor are connected in series or parallel by the sign of the phase angle.

Power Calculations in Parallel

RC Circuits

In the example parallel RC circuit, shown in Figure 7.52, the power relationships are similar to those of a series RC circuit.

Calculation of $\mathbf{P}_{\mathbf{R}}$ (Real Power)

The real power, P_{R}, is equal to the voltage across the resistor times the value of the current flowing through it.

$$
\begin{aligned}
P_{\mathbf{R}} & =\mathbf{E}_{\mathbf{R}} \mathbf{I}_{\mathbf{R}} \\
& =(60 \mathrm{~V})(4 \mathrm{~A}) \\
& =240 \mathrm{~W}
\end{aligned}
$$

Real power is 240 watts.

Calculation of \mathbf{P}_{C} (Reactive Power)

The reactive power, P_{C}, is equal to the voltage across the capacitor times the value of the current through it.

$$
\begin{equation*}
\mathbf{P}_{\mathrm{C}}=\mathbf{E}_{\mathbf{C}} \mathbf{I}_{\mathbf{C}} \tag{7-43}
\end{equation*}
$$

In the example circuit, $\mathrm{E}_{\mathrm{C}}=60$ volts; $I_{C}=3$ amperes. Therefore:

$$
\begin{aligned}
\mathbf{P}_{\mathbf{C}} & =\mathbf{E}_{\mathbf{C}} \mathbf{I}_{\mathbf{C}} \\
& =(60 \mathrm{~V})(3 \mathrm{~A}) \\
& =180 \mathrm{VAR}
\end{aligned}
$$

Reactive power is 180 VAR.

Figure 7.49 The Phase Angle for Example Circuit is Positive

Figure 7.50 Phase Angle in a Series RC Circuit

Figure 7.51 Phase Angle in a Parallel RC Circuit

Calculation of P_{r} (Total Apparent Power)

The total apparent power, P_{T}, is equal to the applied voltage times the total current:

$$
\begin{equation*}
\mathbf{P}_{\mathrm{T}}=\mathrm{E}_{\mathrm{A}} \mathrm{I}_{\mathrm{T}} \tag{7-44}
\end{equation*}
$$

In the example circuit, $\mathrm{E}_{\mathbf{A}}=60$ volts; $\mathrm{l}_{\mathbf{T}}=5$ amperes. Therefore:

$$
\begin{aligned}
\mathbf{P}_{\mathrm{T}} & =\mathbf{E}_{\boldsymbol{A}} \mathrm{I}_{\mathbf{T}} \\
& =(60 \mathrm{~V})(5 \mathrm{~A}) \\
& =300 \mathrm{~V}
\end{aligned}
$$

Total apparent power is 300 volt amperes.

Power Phasor Relationships in Parallel RC Circuits

Since each power determination is made by multiplying the current shown times the applied voltage, the power phasor diagram is proportional to the current phasor diagram by a factor of the applied voltage as shown in Figure 7.53

As in the series RC circuit, the total apparent power is the vector sum of the real and reactive power, as shown in Figure 7.54. That is, the apparent power is equal to the square root of the real power squared plus the reactive power squared.

$$
\begin{equation*}
\mathbf{P}_{\mathrm{T}}=\sqrt{\mathbf{P}_{\mathbf{R}}^{2}+\mathbf{P}_{\mathrm{C}}^{2}} \tag{7-45}
\end{equation*}
$$

Using the parallel RC circuit values as shown in Figure 7.52 the apparent power, P_{T}, can be calculated. In that circuit $P_{R}=240 w$; $P_{C}=180 V A R$.

$$
\begin{aligned}
\mathbf{P}_{\mathrm{T}} & =\sqrt{\mathbf{P}_{\mathrm{R}}^{2}+\mathbf{P}_{\mathrm{C}}^{2}} \\
& =\sqrt{240^{2}+180^{2}} \\
& =\sqrt{57,600+32,400} \\
& =\sqrt{90,000} \\
& =300 \mathrm{VA}
\end{aligned}
$$

Figure 7.52 Example Parallel RC Circuit

Figure 7.53 Power Vector Relationships in a Parallel RC Circuit

Figure 7.54 Relationship Between P_{T}, P_{R} and P_{C} in Parallel RC Circuit

Therefore, the total apparent power calculated in this way is 300 volt-amperes which matches previous calculations and serves as a check that they were correct.

Summary

In this lesson, techniques were discussed which are used to analyze series and parallel RC circuit operation and calculate circuit values. The different phase relationships between voltage and current for each component and the effects upon the circuit value for each type of circuit were described. You were told how to determine the currents and voltages, impedance, phase angle, and power values for both a series and parallel RC circuit. You can use these methods to determine the same circuit values of any series or parallel RC circuit.

1. Draw the phasor diagrams for the voltage and power circuit values in the circuit below.

Solution: In a series circuit, current is common and used as the reference. E_{R} is plotted in phase with $\mathbf{I}_{T}, \mathbf{I}_{R}$ and \mathbf{I}_{C}. E_{C} lags I_{C} by 90 degrees. E_{A} is the phasor sum of E_{R} and E_{C}. Current is a common factor in the power equations, and the power values are plotted in phase with the voltage values.
2. Draw the phasor diagrams for the voltage and power circuit values in the circuit helow.

Solution: In a parallel circuit, voltage is common and used as the reference circuit value in the phasor diagram. Voltage is a common factor in the power equations, and the power values are plotted in phase with the current values. $\mathbf{I}_{\mathbf{C}}$ leads $\mathbf{E}_{\mathbf{C}}$ by $\mathbf{9 0 ^ { \circ }} . \mathbf{I}_{\mathrm{R}}$ is in phase with \mathbf{E}_{R}.
3. Draw the Pythagorean theorem circuit value relationships for R, X_{C} and Z_{T} for the circuit in problem 1.

Solution:

or

4. Given the following angles find the tangent of the angle.
a. 82°
b. 48°
c. 33.5°
d. 21.9°
e. 11°

Calculator Solution: Enter the angle in degrees into the calculator and press the tan key. The tangent of the angle will be on the calculator.

Table Solution: Obtain a table of natural trigonometric functions for angles in decimal degrees Enter the table by locating the angle in the degree column. Scan across to the tangent column and read the tangent value.

Angle	Tangent
82°	7.115
48°	1.111
33.5°	0.662
21.9°	0.402
11°	0.194

5. Given the following arctangents find the angle

| a. 0.3 | d. | 3.00 |
| :--- | :--- | :--- | :--- |
| b. 0.477 | e. | 21.20 |
| c. 1.6 | | |

Calculator Solution: Enter the ratio into the calculator so it is displayed. Press the inv and tan keys or the $\tan ^{-1}$ key and the calculator will display the angle in decimal degrees.

Table Solution: Enter the table of natural trigonometric functions by locating the ratio in the tangent column. Read across to the angle in decimal degrees in the degree column.

Ralio (tangent)		Angle
		$\mathbf{1 6 . 7}^{\circ}$
a. 0.3		$\mathbf{2 5 . 5}^{\circ}$
b. 0.477	$\mathbf{5 8 . 0}^{\circ}$	
c. 1.6	$\mathbf{7 1 . 6}^{\circ}$	
d. 3.00	$\mathbf{8 7 . 3}^{\circ}$	

6. Fill in the blanks.
a. $\arctan 0.700=$ \qquad
b. $\arctan 0.400=$ \qquad
c. $\arctan 1.00=$ \qquad
d. $\arctan =5^{\circ}$
e. $\arctan \quad=85^{\circ}$

Solution: Use same calculator or table procedure as for question 4 or 5 .

```
arctan 0.700 = 34.99 (35')
arctan 0.400 =21.8
arctan 1.00 = 45
arctan 0.0875 = 5
arctan 11.43=85
```

7. In the phasor diagram for a parallel RC circuit slown. calculate the phase angle

Solution.

$\tan \theta=\frac{O}{A}=\frac{I_{C}}{I_{R}}=\frac{3.7 \mathrm{~A}}{5.3 \mathrm{~A}}=0.70$
$\arctan 0.70=0$
$\arctan 0.70=35^{\circ}$ $\theta=35^{\circ}$
8. Solve for the circuit values specified for the circuit below

a. $\mathbf{Z}_{\mathbf{r}}=\ldots$ f. $\quad \mathbf{E}_{\mathbf{C}}=$ \qquad
b. $\mathbf{I}_{\mathrm{T}}=\square$ g. $\mathrm{P}_{\mathrm{R}}=$ \qquad
c. $\mathbf{I}_{\mathrm{R}}=$ \qquad h. $P_{C}=$ \qquad
d. $\mathbf{I}_{\mathbf{C}}=$ i. $\mathbf{P}_{\mathrm{T}}=$ \qquad
e. $\mathbf{E}_{\mathbf{R}}=\ldots$ j. Phase angle $=$ \qquad

Solution:
a. $Z_{T}=\sqrt{R^{2}+X_{C}{ }^{2}}=\sqrt{2.7 \mathrm{k} \Omega^{2}+3.8 \mathrm{k} \Omega^{2}}=\sqrt{21.73 \mathrm{k} \Omega^{2}}=4.66 \mathrm{k} \Omega$
b. $I_{T}=\frac{E_{A}}{Z_{T}}=\frac{45 \mathrm{~V}_{\mathrm{pk}}}{4.66 \mathrm{k} \Omega}=9.66 \mathrm{~m} \mathrm{~A}_{\mathrm{pk}}$
c., d. $I_{T}=I_{R}=I_{C}=9.66 m A_{p k}$
e. $E_{R}=I_{R} \times R=9.66 \mathrm{~mA}_{\mathrm{pk}} \times 2.7 \mathrm{k} \Omega=26.1 \mathrm{~V}_{\mathrm{pk}}$
f. $E_{C}=1_{C} \times X_{C}=9.66 \mathrm{~mA}_{p k} \times 3.8 \mathrm{k} \Omega=36.7 \mathrm{~V}_{\mathrm{pk}}$
g. $P_{R}=I_{C} \times E_{C}=9.66 m A_{p k} \times 26.1 V_{p k}=0.252 W_{p k}$
h. $P_{C}=I_{C} \times E_{C}=9.66 \mathrm{~mA}_{p k} \times 36.7 \mathrm{~V}_{\mathrm{pk}}=0.354 \mathrm{VAR}_{p k}$
i. $P_{T}=1_{T} \times E_{A}=9.66 \mathrm{~mA}_{p k} \times 45 \mathrm{~V}_{\mathrm{pk}}=0.435 \mathrm{VA}_{\mathrm{pk}}$
j. $\tan \theta=\frac{X_{C}}{R}=\frac{3.8 \mathrm{k} \Omega}{2.7 \mathrm{k} \Omega}=1.41$

```
arctan 1.41 = Phase angle
arctan 1.41 = 54.6
    \therefore0=-54.6}\mp@subsup{}{}{\circ}\mathrm{ (series circuit)
```


Worked-Out Examples

9. Solve for the circuit values specified for the circuit below:

Solution

a. $\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{C} C}=\frac{1}{6.28 \times 36.5 \times 10^{3} \times 0.02 \times 10^{-6}}=\frac{1}{4.58 \times 10^{.5}}=218 \Omega$
b. $\mathrm{I}_{\mathrm{R}}=\frac{\mathrm{E}_{\mathrm{R}}}{\mathrm{R}}=\frac{9 \mathrm{~V}_{\mathrm{Pk}}}{150 \Omega}=0.06 \mathrm{~A}_{\mathrm{pk}}$
c. $I_{C}=\frac{E_{G}}{X_{C}}=\frac{9 V_{p k}}{218 \Omega}=0.0413 A_{p k}$
d. $I_{T}=\sqrt{I_{R}{ }^{2}+I_{C}{ }^{2}}=\sqrt{0.06 A^{2}+0.0413 A^{2}}=\sqrt{0.00531 A^{2}}=0.0728 A_{p k}$
e. $Z_{T}=\frac{E_{A}}{I_{T}}=\frac{9 V_{p k}}{0.0728 A_{p k}}=124 \Omega$
f., g. $E_{A}=E_{R}=E_{C}=\mathbf{9} V_{\text {pu }}$
h. $P_{R}=I_{R} \times E_{R}=0.06 A_{p k} \times 9 V_{p k}=0.54 W_{p k}$
i. $P_{C}=I_{C} \times E_{C}=0.0413 A_{p k} \times 9 V_{p k}=0.372 \mathrm{VAR}_{p k}$
j. $P_{T}=I_{T} \times E_{A}=0.0728 \mathrm{~A} \times 9 \mathrm{~V}=0.655 \mathrm{VA}_{\mathrm{Pk}}$
k. $\tan \theta=\frac{\mathrm{O}}{\mathrm{A}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{R}}}=\frac{0.0413 \mathrm{~A}_{p k}}{0.06 \mathrm{~A}_{p k}}=0.688$

$$
\begin{aligned}
\arctan 0.688 & =\theta \\
\arctan 0.688 & =34.5^{\circ} \\
\therefore \theta & =+34.5^{\circ} \text { (parallel circuit) }
\end{aligned}
$$

10. Solve for the circuit values specified for the circuit below:

Solution: Simplify the circuit.

a. $X_{C_{1}}=\frac{1}{2 \pi \mathrm{fC}_{1}}=\frac{1}{4.71 \times 10^{-4}}=2.12 \mathrm{k} \Omega$
b. $\mathrm{X}_{\mathrm{C} 2}=\frac{1}{2 \pi \mathrm{fC}_{2}}=\frac{1}{9.42 \times 10^{-5}}=10.6 \mathrm{k} \Omega$
c. $\mathbf{X}_{\mathbf{C T}}=\mathrm{X}_{\mathrm{C} 1} \& \mathrm{X}_{\mathrm{C} 2}$ in series

$$
=2.12 \mathrm{k} \Omega+10.06 \mathrm{k} \Omega=12.18 \mathrm{k} \Omega
$$

d. $R_{T}=\frac{(10 \mathrm{k} \Omega)(30 \mathrm{k} \Omega)}{10 \mathrm{k} \Omega+30 \mathrm{k} \Omega}=7.5 \mathrm{k} \Omega$

$$
\text { e. } \begin{aligned}
\mathrm{Z}_{\mathrm{T}} & =\sqrt{\mathrm{R}_{\mathrm{T}}^{2}+\mathrm{X}_{\mathrm{CT}^{2}}} \\
& =\sqrt{7.5 \mathrm{k} \Omega^{2}+12.18 \mathrm{k} \Omega^{2}} \\
& =\sqrt{204.6 \mathrm{k} \Omega^{2}}=14.3 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { f. } \mathrm{I}_{\mathrm{T}}=\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{Z}_{\mathrm{T}}}=\frac{10 \mathrm{~V}_{\mathrm{pk}}}{14.3 \mathrm{k} \Omega}=0.699 \mathrm{~mA}_{\mathrm{pk}} \\
& \text { g. } I_{C 1}=I_{T}=0.699 \mathrm{~mA}_{p k} \\
& \text { h. } I_{C 2}=I_{T}=0.699 \mathrm{~mA}_{\mathrm{ph}} \\
& \text { i. } I_{R 1}=\frac{E_{R 1}}{R_{1}}=\frac{5.24 \mathrm{~V}}{10 k}=0.524 \mathrm{~mA}_{p k} \\
& \text { j. } \quad \mathbf{I}_{\mathbf{R} 2}=\frac{\mathbf{E}_{\mathbf{R} 2}}{\mathbf{R}_{2}}=\frac{5.24 \mathrm{~V}}{30 \mathrm{k}}=0.175 \mathrm{~mA}_{\mathrm{pk}} \\
& \text { k. } \mathbf{E}_{\mathbf{C} 1}=\mathbf{I}_{\mathbf{T}} \times \mathbf{X}_{\mathbf{C}_{1}} \\
& =0.699 \mathrm{~mA} \times 2.12 \mathrm{k} \Omega=1.48 \mathrm{~V}_{\mathrm{pk}} \\
& \text { 1. } \mathbf{E}_{\mathbf{C} 2}=\mathbf{I}_{\mathbf{C} 2} \times \mathbf{X}_{\mathbf{C} 2} \\
& =0.699 \mathrm{~mA} \times 10.6 \mathrm{k} \Omega=7.41 \mathrm{~V}_{\mathrm{pk}} \\
& \text { m. } \mathbf{E}_{\mathbf{R I}}=\mathbf{I}_{\mathbf{T}} \times \mathbf{R}_{\mathrm{T}} \\
& =0.699 \mathrm{~mA}_{\mathrm{pk}} \times 7.5 \mathrm{k} \Omega=5.24 \mathrm{~V}_{\mathrm{pk}} \\
& \text { n. } \quad E_{R 2}=E_{R 1}=5.24 V_{p k} \\
& \text { o. } \tan \theta=\frac{\mathrm{X}_{\mathrm{CT}}}{\mathrm{R}_{\mathrm{T}}}=\frac{12.18 \mathrm{k} \Omega}{7.5 \mathrm{k} \Omega}=1.62 \\
& \arctan 1.62=\theta \\
& \arctan 1.62=-58.4^{\circ}
\end{aligned}
$$

1. Given the following angles find the tangent of the angle.
a. 15°
b. 30°
c. 45°
d. 60°
e. 75°
2. Given the following tangent values, determine the angle
a. 0.1
b. 0.9
c. 2.0
d. 4.0
e. 8.0
3. What is the definition of arctangent?
4. In each of the diagrams a., b., c., and d., solve for the value of the hypotenuse of the right triangle.

5. Solve for the phase angle in each of the circuits a., b., c., and d.
6. Draw a phasor diagram for the circuit shown. Show voltage, current and power phasors.

7. a. Identify the type of circuit which fits the current phasor diagram shown
b. Calculate \mathbf{I}_{T}.
c. Calculate phase angle.
8. Solve for the circuit values specilied for this circuit.

9. Solve for the circuit values specified for this circuit.

$$
\begin{array}{lll}
\text { a. } & \mathbf{I}_{\mathrm{C}}= & \text { f. } \quad \mathbf{I}_{\mathrm{R}}= \\
\text { b. } & \mathbf{I}_{\mathrm{R}}= & \text { g. } \mathbf{P}_{\mathrm{C}}= \\
\text { c. } & \mathbf{I}_{\mathrm{T}}= & \text { h. } \mathbf{P}_{\mathrm{K}}= \\
\text { d. } & \mathrm{Z}_{\mathrm{T}}= & \text { i. } \mathbf{P}_{\mathrm{H}}=
\end{array}
$$

\qquad
\qquad
\qquad
e. $\mathbf{E}_{\mathrm{C}}=$ j. \quad Phase angle $=$
10. Solve for the values specified for this circuit.

1. In each of the diagrams a., b., c., and d., solve for the value of the hypotenuse of the right triangle.
a.

d.

2. Solve for the phase angle in the circuits a., b., c., and d
3. Draw a phasor diagram for this circuit Show voltage, current, and power phasor.

4. a. Identify the type of circuit which is the same as this voltage phasor diagram.
b. Calculate its $\mathbf{E r r}_{\text {r }}$.
c. Calculate its phasor angle.
5. Solve for the circuit values specified for this circuit:

a. $\quad \mathrm{X}_{\mathrm{C}}=$ \qquad g. $E_{R}=$ \qquad
b. $\mathrm{Z}_{\mathrm{T}}=$ \qquad h. $P_{C}=$ \qquad
c. $\mathbf{l}_{\mathrm{T}}=$ \qquad i. $\quad \mathrm{P}_{\mathrm{R}}=$ \qquad
d. $\mathrm{l}_{\mathrm{C}}=$ \qquad j. $\quad P_{\mathrm{r}}=$ \qquad
e. $\mathrm{I}_{\mathrm{R}}=$ \qquad k. \quad Phase angle $=$
f. $\mathbf{E}_{\mathrm{C}}=$ \qquad
\qquad
6. Solve for the circuit values specified for this circuit.

a. $\mathrm{I}_{\mathbf{C}}=$
e. $P_{C}=$
b. $\mathrm{I}_{\mathrm{R}}=$
f. $P_{R}=$
\qquad
c. $\mathbf{l}_{\mathrm{T}}=$
g. $P_{T}=$
\qquad
d. $Z_{I}=$ \qquad h. Phase angle $=$

7. Solve for the circuit values specified for the circuit below.

a. $R_{T}=$ \qquad j. $\quad \mathbf{E}_{\mathbf{R}_{2}}=$ \qquad
b. $X_{C T}=$ \qquad k. $\mathbf{E}_{\mathrm{C} 1}=$ \qquad
c. $\mathrm{Z}_{\mathrm{T}}=$ \qquad 1. $\mathbf{E}_{\mathbf{C}_{2}}=$ \qquad
d. $1_{T}=$ \qquad m. $\mathbf{P}_{\mathbf{R}_{1}}=$ \qquad
e. $\mathrm{I}_{\mathrm{RI}}=$ \qquad n. $P_{R 2}=$ \qquad
f. $\mathbf{1}_{\mathbf{R 2}}=$ \qquad o. $\mathrm{P}_{\mathrm{Cl}}=$ \qquad
g. $\mathbf{1}_{\mathbf{C l}_{1}}=$ \qquad p. $\mathrm{P}_{\mathrm{C} 2}=$ \qquad
h. $\mathbf{l}_{\mathrm{C} 2}=$ \qquad q. $P_{T}=$ \qquad
i. $\mathbf{E}_{\mathbf{R I}}=$ \qquad r. \quad Phase angle $=$
8. What values are the voltage, current and power in Question 5.
a. rms
b. peak to peak
c. peak
9. What values are the current and power in Question 6.
a. rms
b. peak to peak
c. peak
10. What values are the voltage, current and power in Question 7.
a. rms
b. peak to peak
c. peak

LESSON 8

Inductance and Transformers

This lesson introduces the inductor and transformer with a discussion of their physical and electrical properties. Circuits containing series and parallelconnected inductors are discussed and analyzed. The property of mutual inductance is introduced.

At the end of this lesson, you should be able to:

1. Define inductance, state the basic unit of inductance, and be able to explain two concepts used to explain the counter EMF of an inductor.
2. Determine the effect of increasing or decreasing the permeability of the core material, the number of turns of conductor, and the cross-sectional area of the core or the length of the core on the value of an inductor
3. State the relationship between the voltage across an inductor and the current through it.
4. Given a circuit of series-connected inductors or parallel-connected inductors, determine the total inductance of the circuit (no mutual inductance).
5. Given the value of two inductors connected in series or parallel aiding or opposing and their coefficient of coupling, determine the total inductance of their combination.
6. Given the turns ratio of a transformer, the input voltage, and the secondary load resistance, determine the secondary voltage, the prinary and secondary current, the secondary frequency, and the primary and secondary power.
7. State the differences between step-up, step-down, and autotransformers, and their advantages and disadvantages.
8. Define inductive reactance and state the units in which it is measured.
9. Given a circuit of series-connected inductors, the applied voltage, and frequency of the applied voltage, determine the inductive reactance of each inductor, the total inductance, the total current, the voltage across each inductor, the reactive power of each inductor, and the total reactive power in the circuit.
10. Given a circuit of parallel-connected inductors, the applied voltage, and frequency of the applied voltage, determine the inductive reactance of each inductor, the total inductive reactance, the total inductance, each inductive branch current, the total current, the reactive power of each inductor, and the total reactive power in the circuit.

Introduction

In the last two lessons, discussion concerned the capacitor and how to analyze circuits composed of only capacitors or capacitors and resistors. This lesson is about the remaining passive circuit element - the inductor.

Figure 8.1 shows some types of inductors. Basically, any inductor is a coil of thin wire wrapped on a cylinder called the core. The core may be hollow, of laminated paper - an air core - or made of some type of iron - an iron core. Often an inductor is also called a choke or coil. The curns of wire of the inductor are electrically insulated from each other by a thin, non-conductive coating.

As shown in Figure 8.2 the schematic symbol used to represent the inductor resembles what it is - wire wrapped on a core. The inductor's letter symbol is a capital L. which represents linkages - flux linkages.

An inductor has magnetic properties. Therefore, a brief review of the subject of magnetism should help you understand better the electrical properties of an inductor.

Electromagnetic Properties

Faraday's Discovery

Recall that in 1831, Michael Faraday showed that when a conductor connected in a closed circuit is moved through a magnetic field, an electron current flows as a result of a voltage induced in the conductor. (In this lesson, like in all other lessons in this book, current flow refers to electron current flow.) The amount of induced voltage is proportional to the rate of change of the magnetic field - the amount the magnetic flux changes in a specific time period:

$$
\begin{aligned}
& \text { induced } \\
& \text { voltage }
\end{aligned}=\frac{\text { change in magnetic flux }}{\text { change in time }}(8-1)
$$

Figure 8.1 Typical Inductors

Figure 8.2 Schematic Symbol for an Inductor

As shown in Figures 8.3 and 8.4, it makes no difference if the conductor moves through a stationary magnetic field, or if the conductor is stationary and the magnetic field moves. As long as the lines of flux are caused to cut though the conductor, a voltage is induced in the conductor.

Remember that the direction of the resulting electron current can be determined by the lefl-hand rule for generators which is shown in Figure 8.5. The thumb points in the direction of the conductor's motion. The forefinger points in the direction of the magnetic field. The index finger points in the direction the electron current is flowing.

Oersted's Discovery

Earlier, in 1819, a Danish physicist, Hans Christian Oersted, had discovered that a magnetic field surrounds any conductor through which a current is flowing. He also found that the greater the current, the stronger the magnetic field, and the larger the area of the magnetic field around the conductor. As illustrated in Figure 8.6, when a small current flows in the conductor, only a small magnetic field is produced. But as current is increased, the magnetic field expands. Conversely, if the current is decreased, the magnetic field decreases in size.

All lines of flux are considered to have a definite direction. The direction of the lines of flux surrounding a conductor can be determined by what is known as the left-hand rule for conductors which is shown in Figure 8.7. It states that if the conductor is grasped with the left-hand with the thumb pointing in the direction of the electron current, the fingers fold in the direction of the lines of flux.

Figure 8.3 Conductor Moving Through Magnetic Field

Figure 8.4 Magnetic Field Mouing Past Conductor

Figure 8.5 Left-Hand Rule for Generators

The Property of Inductance

The principle of inductance should be easier for you to understand if you realize that it is essentially the result of these two properties of electromagnetism: 1) That a voltage can be developed in a conductor which is in a changing magnetic field; 2) That a magnetic field is produced by current flowing in a conductor

Inductance of a Wire

Consider a single piece of wire, as shown in Figure 8.8a, through which current is flowing in the direction indicated by the arrow. Suppose current is increasing in value from zero to some maximum, such as an alternating current would during a portion of its cycle. According to the left-hand rule, the changing magnetic field's lines of Nux will have a clock-wise direction as indicated by the arrows in Figure 8.86, and will expand as the current increases.

Imagine that the magnetic field starts at the center of the conductor and expands out as the current increases as shown in Figure 8.8c. As the magnetic field first develops and expands, it cuts through the body of the conductor itself and induces a voltage that opposes the voltage producing the initial current. In other words, the induced voltage produces a circuit current opposite in direction to the initial current.

This opposing current is called a counterinduced current. This inductive action occurs in any piece of wire through which an electrical current flows.

Figure 8.6 The Size of a Magnetic Field Around a Conductor Varies

Figure 8.7 Left-Hand Rule for Conductors

Figure 8.8 A Length of Wire with an Electrical Current Flowing Through It

So there are two properties working together. The initial current produces a changing magnetic field which cuts a conductor and develops a voltage to produce a current as shown in Figure 8.9. This current flows in the circuit in a direction opposite to the initial current, and it opposes the changes of the initial current.

Figure 8.10 illustrates this action in a circuit. When a current that changes in value passes through a conductor, it will induce a voltage that opposes the current change as shown in Figure 8.10a. The voltage induced is opposite in polarity to the voltage that produced the intial voltage. If the initial voltage is increasing to produce an increasing initial current, then the induced voltage is of a polarity to produce a current that opposes the increase of the initial current. If the initial circuit voltage now decreases to cause the initial current to decrease as shown in Figure 8.10 b , the induced voltage is of a polarity to oppose the decrease of the initial current. An aiding current is produced which keeps the initial current flowing and opposes its change.

North-South Magnetic Field of a Coil

What happens if this wire is wound into a coil as shown in Figure 8.11? In a coil the lines of magnetic flux emanating from one turn of the coil not only cut through the wire from which they originate, but they also cut through other turns of the coil adjacent to it. The more turns that are present, the more the induced voltage and the more the opposition to any changes in current within the coil and within the circuit containing the coil. When a current passes through a coil of wire, the individual magnetic fields set up by each turn of wire in the coil add to form a magnetic field. Therefore, the inductance of a coil is greater than the inductance of an identical length of wire not coiled. The magnetic field formed by the coil is similar to that of a bar magnet.

OPPOSING INITIAL CURRENT CURRENT

Induced voltage

Figure 8.9 Current Flow and Induced Vollage in a Wire

Figure 8.10 Inductve Action in a Circuil

Figure 8.11 A Typical Coil

The orientation of the magnetic field around the coil can be determined by using the lefthand rule for coils. The rule states that if the fingers of the left hand are wrapped around the coil in the direction of current llow as shown in Figure 8.12, the thumb points toward the north pole end of the coil

Inductance of a Coil

In a coil, the inductive action is multiplied because the lines of magnetic flux emanating from one section of the coil not only cut through the wire from which they originate, but they also cut through the sections of the coil adjacent to it. This is illustrated in Figure $8.13 a$ and $8.13 b$. The more wire that is present, the more the opposition will be to any changes in current within that wire. Thus, the number of tuins of wire determines a coil's inductance value. The magnetic field of a coil is shown in Figure 8.13c. It is like the magnetic field of a bar magnet (Figure 8.13d).

Counter EMF

If an inductor is placed in a circuit as shown in Figure 8.14 which has a changing voltage, E_{A}, applied to it, a current which changes in magnitude will attempt to flow in the circuit The property of inductance that the inductor exhibits, however, will oppose the change of current through it. Thus, a voltage will be set up across the inductor due to the inductive action. This voltage has been given a special name It is called the counter EMF, abbreviated CEMF. This is the voltage that appears across inductors in ac circuits. It is due to the property called self-inductance.

Recall that earlier it was stated that a coil must be composed of turns of wire in which all turns are insulated one from the other. It should be clear now why this is true. If the turns of wire are not electrically separate, then the coil would not act as an inductor, but as a conductor.

Figure 8.12 Left-Hand Rule for Coils

Figure 8.13 Inductive Action of a Coil

COUNTEREMF

 CEMF
$E_{A}=$ SOURCE VOLTAGE

Figure 8.14 A Voltage Across a Coil is a CEMF

Units of Inductance

The amount of inductance in a coil of wire is measured in henrys or millihenrys (thousandths of a henry). Millihenrys is abbreviated mH .

Physical Properties that Determine Inductance of a Coil

The inductance of a coil can be determined by this equation:

$$
\begin{equation*}
\mathbf{L}=\frac{\mathbf{N}^{2} \mathbf{A} \mu \mu_{\mathbf{0}}}{\boldsymbol{l}} \tag{8-2}
\end{equation*}
$$

where
$\mathrm{L}=$ inductance of coil (henrys)
$\mathrm{N}=$ number of turns of wire on coil
$\mu=$ permeability of core material
$A=$ cross sectional area of coil $\left(\mathrm{m}^{2}\right)$
$\ell=$ length of coil (m)
$\mu_{0}=$ absolute permeability for air, ($1.26 \times 10^{-8} \mathrm{H} / \mathrm{m}$)
This equation is valid for a single-layer coil only, but it can be used to help you understand the physical properties of any type of coil.

In the equation, L represents the magnetic flux linkages that connect one part of a coil to the next part, causing the property of inductance. The permeablity of the core material is μ, the ability of a material to conduct magnetic lines of force, also called magnetic flux. Together, μ and μ_{0} represent a constant.

From this equation and, as shown in Figure 8.15 , you can see that if the number of turns of wire is increased, the inductance of the coil will increase by the square of the number of turns. As shown in Figure 8.16, a coil with a large cross-sectional area will have a greater value of inductance than one of a smaller cross-sectional area. As shown in Figure 8.17, a long coil will have a smaller value of inductance than a shorter one. Remember that when determining the effect of varying

Figure 8.15 The Number of Turns Affects a Coil's Inductance

$A_{2}>A_{1}$

MORE INDUCTANCE

Figure 8.16 The Cross Sectional Area of the Core Affects a Coil's Inductance

Figure 8.17 Length Affects a Coil's Inductance
one specific factor of a coil, that all other factors must be held constant. From equation $8-2$, the value of a manufactured inductor depends basically on these four factors: 1) the number of turns of wire used, 2) the crosssectional area of the coil, 3) the overall length of the coil, and 4) the permeability of the core material.

Working an example using equation 8-2 should help you learn to use it to determine the inductance of a coil. In this example, as shown in Figure 8.18, a coil has 400 turns of wire wound on a round core 0.013 meter (0.5 inch) in diameter, a length of 0.076 meter (3 inches), and uses iron as a core material which has a permeability of 1000 . What is the inductance of the coil?
First of all. the cross sectional area of the coil is determined.

$$
\begin{aligned}
\mathrm{A} & =\pi \mathrm{r}^{2} \\
\mathrm{r} & =1 / 2 \mathrm{~d} \\
\mathrm{r} & =1 / 2(0.013 \mathrm{~m}) \\
& =0.0065 \mathrm{~m} \\
\mathrm{~A} & =\pi \mathrm{r}^{2} \\
& =(3.14)(.0065 \mathrm{~m})^{2} \\
& =1.33 \times 10^{-4} \mathrm{~m}^{2}
\end{aligned}
$$

Then the inductance can be calculated.
$\mathrm{L}=\frac{\mathbf{N}^{2} \mathrm{~A} \mu \mu_{0}}{\mathrm{l}}$
$=\frac{(400)^{2}\left(1.33 \times 10^{4} \mathrm{~m}^{2}\right)(1000)\left(1.26 \times 10^{.8} \mathrm{H} / \mathrm{m}\right)}{(0.076 \mathrm{~m})}$
$=3.53 \times 10^{-3} \mathrm{H}$
$=3.53 \mathrm{mH}$

Variable Inductors

The fact that the permeability of the core material determines the value of a coil is put to use in manufacturing variable inductors. Iron is the most common core material used in the manufacture of inductors. Iron has a much higher permeability than air. Variable inductors are made by constructing an inductor with an iron core that can be inserted various lengths into the inductor.

Figure 8.18 Coil Used in Inductance Equation Example

Figure 8.19 shows a typical variable inductor. The portion of the coil with the iron core has a much higher value of inductance than does the section with the air core. The two inductances add together to determine the overall inductance of the coil. As the iron core, sometimes called a slug, is screwed into the coil, the inductance increases. As the iron core is extracted, the inductance of the coil decreases. Thus, by varying the amount of iron core within the coil, a variable inductor has been created which can be "tuned' to a specific inductance. This type of variable inductor is called a permeability-tuned inductor.

Inductance in a Circuit

Effect of an Inductor on a Changing Current in a Circuit

When considering the electrical action of an inductor in a circuit it is helpful to compare its action to that of a resistor. Recall that in a circuit containing only resistors, as shown in Figure 8.20, that when a voltage is applied by closing the switch, the full value of current flows almost immediately, and it continues to flow through the resistors as long as the voltage is applied

If, however, the resistor R1 is replaced with an inductor, as shown in Figure 8.21, when the switch is closed the full value of current does not flow immediately. Instead, when the current first begins to increase in value from zero, the inductive action sets up a counter EMF that opposes the current change. When the switch is first closed, in fact, the rapid change in current that starts to flow causes a rapid change in magnetic flux that produces a high counter EMF. Therefore, very little current is allowed to flow initially. At this point in time, the inductance appears as an open circuit as illustrated in Figure 8.22.

Figure 8.19 Typical Variable Inductor

Figure 8.20 A Typical Resistive Circuil

Figure 8.21 A Typical Resistive-Inductive Circuil

This can be compared to the physical property of inertia. Initially, it is difficult to get the current moving, but once moving, and if forces are not changed, it flows smoorhly.

When the self-inductance has stopped the initial flow of current, the self-inductance of the coil ceases since it depends on a change of current. The current again attempts to increase. As it increases slightly, the self-inductance again hinders the flow of current in the circuit. Then, when the self-inductance of the inductor has stopped the increase in current, the self-incluctance ceases and the current attempts to increase again. This back-and-forth action continues smoothly until the current in the circuit reaches its maximum value. The maximum current in this circuit is determined by the value of RI and the internal resistance of the coil.

Internal (Winding) Resistance of a Coil

Every coil has some internal resistance because of the length of the wire used The internal resistance of coils range from fractions of an ohm to several hundred ohms depending on the length and size (gauge) of wire used. You can measure this internal resistance easily with an ohmmeter.

Exponential Change of Current

Figure 8.23 shows graphically the action of a resistive-inductive (RL) circuit. At first, time t_{1}, the voltage across the inductor is at maximum since the inductor appears as an open circuit initially. Current is zero. All of the applied voltage appears across the inductor as counter EMF. Gradually, the current begins to increase until it reaches its maximum value. As the current increases, the counter EMF across the inductor decreases.

Figure 8.22 When S1 is First Closed the Circuil Appears as an Open Circuil

Figure 8.23 The Relationship of E and $/$ in an R1. Circuit

The increase of current and decrease of voltage is said to be exponential. However, if one examined the circuit action in very small periods of time, it would appear as small steps where current increases, counter EMF opposes it, current increases again, counter EMF opposes it again, and this action continues until the current attains its final value. As shown in Figure 8.24, it is, as stated, a step function. But the steps are infinitesimally small, and to us the action appears as a smooth exponential rise in current.

When the current has reached maximum value and ceases to change any further, time t_{2}, the counter EMF across the inductor is zero volts since there is no more change in current. The fact that the current stopped changing is important because there must be a change in current value to cause the magnetic flux lines to expand or collapse so that they cut through the coil self-inducing the counter EMF.

Rate-of-Change Equation

An equation that mathematically describes the current-voltage relationship for an inductor is

$$
\begin{equation*}
\mathbf{E}_{\mathrm{L}}=\mathbf{L}\left(\frac{\Delta \mathbf{I}}{\Delta \mathbf{t}}\right) \tag{8-3}
\end{equation*}
$$

\mathbf{E}_{L} represents self-induced EMF. Recall that a Δ symbol designates a change in a quantity. Thus, the value $\frac{\Delta I}{\Delta t}$ is the change in current measured in amperes through the inductor divided by the change in time measured in seconds in which the change in current occurs. $\frac{\Delta I}{\Delta t}$ is the rate of change of current.

If this equation is substituted as the voltage across the inductor in the dc circuit of Figure 8.21 , and a dc voltage is applied when the switch is closed, then the solution for the circuit current will be the exponential curve shown in Figure 8.21.

But what will happen in the circuit of Figure 8.21 if the dc voltage is replaced with an ac voltage source? Figure 8.25 shows the circuit with an ac voltage source. In this circuit, the sinusoidal voltage is continually changing in magnitude and polarity, causing the magnetic field of the coil to continously expand and collapse.

CURVE IS EXPONENTIAL

Figure 8.24 Step-Function Action of Current

Figure 8.25 Typical AC RL Circuil

If the phase relationship of the voltage across the inductor, which is the counter EMF, is compared with the current in the inductor, it will be found that they are 90 degrees out of phase as show in Figure 8.26. More specifically, the voltage leads the current by 90 degrees.

The voltage across the inductor, E_{L}, in the circuit of Figure 8.25 can be calculated using equation $8-3$. But before this is done one thing should be noted. The rate-of-change of current $\Delta 1$, may be abbreviated ROC

Since any voltage that appears across the inductor is equal to the inductance times the rate of change of current through the inductor, equation $8-3$ can be rewritten:

$$
\begin{equation*}
E_{L}=L(R O C \text { of } I) \tag{8-4}
\end{equation*}
$$

Discussion of an example will show how this equation describes the current-voltage relationship for an inductor. The sine wave of Figure 8.27 represents the current passing through the inductor. Since $E_{L}=L$ (rate of change of current), when the rate of change of current of the sinusoidal waveform is zero at its peak. the value of the voltage is zero. When the rate of change of current of the sinusoidal waveform is maximum as it crosses the zero axis either increasing positively or increasing negatively, the value of the voltage is a positive or negative maximum. Since the current changes sinusoidally, the rate-of-change of current changes sinusoidally and so does the voltage. By connecting these points with a smooth sinusoidal waveform as shown in Figure 8.27, the voltage waveform can be plotted. It can be seen that, as stated previously, the voltage leads the current by 90 degrees as shown in Figure 8.28. Therefore, it should give you a clear idea of the relationship of a current through and voltage across an inductance.

Figure 8.26 Voltage Leads Current by 90 Degrees

Figure 8.27 Inductive Voltage and Current Relationship

Figure 8.28 Voltage Leads Current by 90 Degrees

Series and Parallel. Inductors

When inductors are connected in series or in parallel, it may be necessary to know their total equivalent inductance.

Series Inductors

To calculate the total inductance of seriesconnected inductors, simply add their individual inductance values as you would add up series resistances. Therefore,

$$
\begin{equation*}
\mathbf{L}_{\mathbf{T}}=\mathbf{L}_{1}+\mathbf{L}_{2} \ldots+\mathbf{L}_{\mathrm{N}} \tag{8-5}
\end{equation*}
$$

For example, the circuit of Figure 8.29 contains two inductors, series-connected Their total inductance value is simply their sum.

$$
\begin{aligned}
\mathbf{L}_{T} & =\mathbf{L}_{1}+\mathbf{L}_{2} \\
& =4 \mathrm{mH}+8 \mathrm{mH} \\
& =12 \mathrm{mH}
\end{aligned}
$$

The effects of the inductors are additive because in a series circuit the current must flow through both inductors. Therefore, buth inductors will respond to any changes in this current, and the effects are additive.

Parallel Inductors

When inductors are parallel to one another the total inductance is calculated using one of two methods.

If three or more inductances are in parallel then the total inductance is calculated by this reciprocal equation

$$
\frac{1}{L_{T}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{1}} \cdots \frac{1}{L_{n}}
$$

Figure 8.29 Series Inductor Circult
For example, suppose three inductors of $3 \mathrm{mH}, 6 \mathrm{mH}$ and 12 mH are in parallel. The total inductance is

$$
\begin{aligned}
\frac{1}{L_{T}} & =\frac{1}{3 \mathrm{mH}}+\frac{1}{6 \mathrm{mH}}+\frac{1}{12 \mathrm{mH}} \\
& =\frac{4+2+1}{12 \mathrm{mH}} \\
& =\frac{7}{12 \mathrm{mH}} \\
\mathbf{L}_{T} & =\left(\frac{12}{7}\right) \mathrm{mH} \\
& =1.71 \mathrm{mH}
\end{aligned}
$$

If two inductors are in parallel as shown in Figure 8.30, then total inductance is calculated by using the reciprocal addition process that was used to add parallel resistances. Like the parallel resistance equation for two resistors, the total inductance for two series inductors is calculated by using a product-oversum equation

$$
\begin{equation*}
\mathbf{L}_{\mathbf{T}}=\frac{\mathbf{L}_{1} \times \mathbf{L}_{2}}{\mathbf{L}_{1}+\mathbf{L}_{2}} \tag{8-6}
\end{equation*}
$$

If the two inductors are 3 mH and 6 mH , then, the total inductance of their combination is

$$
\begin{aligned}
\mathbf{L}_{T} & =\frac{\mathbf{L}_{1} \times \mathbf{L}_{2}}{\mathbf{L}_{1}+\mathbf{L}_{2}} \\
& =\frac{(3 \mathrm{mH})(6 \mathrm{mH})}{3 \mathrm{mH}+6 \mathrm{mH}} \\
& =\left(\frac{18}{9}\right) \mathrm{mH} \\
& =2 \mathrm{mH}
\end{aligned}
$$

Note that the combination of parallel inductances, L_{T}, is always less than the smallest individual inductance value. This result is similar to that obtained for a combination of two parallel resistances
It is interesting to note that the solution for total inductance could be accomplished by taking the inductances "iwo at a time" and use the product over sum equation. For example, a total inductance of 2 mH , as previously calculated, can be used for the combination of 3 mH and 6 mH in parallel. This resultant can then be used in a product over sum equation with the 12 mH inductor to determine the final total inductance. Here is the calculation

$$
\begin{aligned}
\mathbf{L}_{V} & =\frac{(2 \mathrm{mH})(12 \mathrm{mH})}{(2 \mathrm{mH}+12 \mathrm{mH})} \\
& =\left(\frac{24}{14}\right) \mathrm{mH} \\
& =\left(\frac{12}{7}\right) \mathrm{mH} \\
& =1.71 \mathrm{mH}
\end{aligned}
$$

Figure 8.30 Parallel Inductor Circuu

Either method gives equal results.

Mutual Inductance

Although the total inductance of coils connected in series or parallel can be determined using the same technique used for determining the total resistance of resistors connected in series or parallel, inductors have a property not at all similar to resistive circuits. This property is called mutual inductance. When the current in an inductor increases or decreases, the magnetic flux field surrounding that inductor changes. The varying llux can cut across any other coil which may be nearby, causing induced voltage to exist in it.

For example, series-connected coils L_{1} and L_{2} in the circuit of Figure 8.31 are close to one another. An ac voltage source is connected to L_{1} and L_{2}. The current through L_{1} produced by the ac source causes a magnetic field to exist around L_{1} which also cuts through the windings of L_{2}, inducing a voltage in its windings. Thus, a voltage exists across L^{2} as a result of the magnetic field of L_{1} cutting through its windings. At the same time L_{1} is producing this voltage across L_{2}, the current Howing through L_{2} produces a field around L_{2} that induces a voltage in L_{1}. This effect is known as mutual inductance.

Mutual inductance is measured in henrys and is designated by the symbol L_{N}. The amount of mutual inductance between two coils, L_{1} and L_{2}, can be calculated by this equation:

$$
\begin{equation*}
\mathbf{L}_{M}=k \sqrt{L_{1} \times L_{2}} \tag{8-7}
\end{equation*}
$$

Where

$$
\begin{aligned}
\mathrm{L}_{1}= & \text { value of } \mathrm{L}_{1} \text { in henrys } \\
\mathrm{L}_{2}= & \text { value of } \mathrm{L}_{2} \text { in henrys } \\
k= & \text { coefficient of coupling between } \\
& \quad \text { the two coils } \\
\mathrm{L}_{M}= & \text { mutual inductance in henrys }
\end{aligned}
$$

Coefficient of Coupling

The coefficient of coupling is the fraction of total magnetic flux lines produced by both coils that is common to both coils. Stated as an equation:

$$
\begin{equation*}
k=\frac{\text { dcommon }}{\text { diotal }} \tag{8-8}
\end{equation*}
$$

Where

$$
\begin{aligned}
\text { фcommon }= & \text { flux linkages common to } L_{1} \\
& \text { and } L_{2} \\
\text { कtotal }= & \text { total flux produced by } L_{1} \\
& \text { and } \mathrm{L}_{2}
\end{aligned}
$$

Figure 8.31 Mutual Inductance is Caused by Interaction of Adjacent Magnetic Field
For example, in a circuit there are wo coils, L_{1} and L_{2}, which produce 10,000 flux lines, all of which link both coils. Therefore, using equation $8-8$ the coefficient of coupling can be calculated

$$
\begin{aligned}
k & =\frac{\phi \text { common }}{\phi t o t a l} \\
& =\frac{10,000}{10,000} \\
& =1 \text { (unity) }
\end{aligned}
$$

In this case, there is unity coefficient of coupling and $k=1$. However, if L_{1} and L_{2} produce 10,000 lines of flux and only 5,000 are common, the coefficient of coupling is

$$
\begin{aligned}
k & =\frac{\phi \text { commnn }}{\phi \text { total }} \\
& =\frac{5,000}{10,000} \\
& =0.5
\end{aligned}
$$

Therefore, in this case, the coefficient of coupling is 0.5 . There are no units for k since it is a ratio of two amounts of magnetic flux.

A low value of k is called "loose coupling": a high value of k is called "tight coupling". Coils wound on a common iron core can be considered to have a coefficient of coupling of one or "unity coupling". Figure 8.32 summarizes the types of coupling and range of coefficients of coupling.

The value of k can be varied by factors relative to the coils. For example, as shown in Figure 8.33, k beconmes larger (with a maximum of one) as the coils are placed closer together; are placed parallel to one another, as opposed to perpendicular; or are both wound on a conmmon iron core. Conversely, k becomes smaller as the coils are placed farther apart; are placed perpendicular to one another; or are both wound on separate iron cores

Calculating Mutual Inductance

Mutual inductance is calculated using equation $8-7$. Figure 8.34 shows a circuit with two inductors, L_{1} and L_{2}. L_{1} equals 20 henrys and L_{2} equals 5 henrys. The coefficient of coupling is 0.4 . The coils' mutual inductance is calculated as follows

$$
\begin{aligned}
\mathrm{L}_{M} & =k \sqrt{\left(\mathrm{~L}_{1}\right)\left(\mathrm{L}_{2}\right)} \\
& =0.4 \sqrt{(20)(5)} \\
& =0.4 \sqrt{100} \\
& =0.4(10) \\
& =4 \mathrm{H}
\end{aligned}
$$

Figure 8.32 Coefficient of Coupling

Figure 8.33 Techniques for Varying the Coefficient of Coupling

LI 20H

Figure 8.34 Example Circuil for Calculating Mutual Inductance

Series-Connected Inductors with Mutual Inductance

When two series-connected inductors are separated by a sufficient distance, are mounted at right angles to one another, or are well-shielded, their mutual inductance is negligible. Their equivalent total inductance is the sum of the inductance values as described previously. However, if seriesconnected inductors are situated so that their magnetic fields interact, the mutual inductance between the two coils must be considered. Their total inductance, then, is deternined by this equation:

$$
\begin{equation*}
\mathbf{L}_{T}=\mathbf{L}_{1}+\mathbf{L}_{2} \pm 2 \mathbf{L}_{M} \tag{8-9}
\end{equation*}
$$

When the inductors are situated such that their magnetic fields aid each other the plus sign is used.

$$
\mathbf{L}_{\tau}=\mathbf{L}_{1}+\mathbf{L}_{2}+2 \mathbf{L}_{M}(\text { fields aiding })(8-10)
$$

When the fields oppose, the minus sign is used
$\mathbf{L}_{T}=\mathbf{L}_{1}+\mathbf{L}_{2}-2 \mathbf{L}_{\mathrm{M}}$ (fields opposing) $(8-11)$
The 2 is used because magnetic fields of L_{1} and L_{2} interact and affect each other.

For example, a 10 -henry and 20 -henry coil are connected in series as shown in Figure 8.35 such that their magnetic fields aid one another, and they have a mutual inductance of 5 henrys. Their total inductance is calculated:

$$
\begin{aligned}
\mathrm{L}_{T} & =\mathrm{L}_{1}+\mathrm{L}_{2}+2 \mathrm{~L}_{M 1} \\
& =10 \mathrm{H}+20 \mathrm{H}+2(5 \mathrm{H}) \\
& =30 \mathrm{H}+10 \mathrm{H} \\
& =40 \mathrm{H}
\end{aligned}
$$

If the same two coils are oriented such that their magnetic fields oppose one another, their total inductance is calculated:

$$
\begin{aligned}
L_{r} & =L_{1}+L_{2}-2 L_{M} \\
& =10 \mathrm{H}+20 \mathrm{H}-2(5 \mathrm{H}) \\
& =30 \mathrm{H}-10 \mathrm{H} \\
& =20 \mathrm{H}
\end{aligned}
$$

Figure 8.35 Example Circunt for Calculating Tolal Induclance of Series-Aıding and Series. Opposing Inductors

Parallel-Connected Inductors with Mutual Inductance

When two coils are parallel-connected without any mutual inductance, their equivalent total inductance is found by the reciprocal addition or product-over-sum method discussed earlier. However, if their magnetic fields interact, their equivalent total inductance is found by one of the following equations

Parallel-aiding connection-
If the two coils are oriented such that their magnetic fields aid each other.

$$
\begin{equation*}
L_{F}=\frac{\left(L_{1}+L_{M}\right)\left(L_{2}+L_{M}\right)}{L_{1}+L_{2}+2 L_{M}} \tag{8-12}
\end{equation*}
$$

Parallel-opposing connection If the two coils are oriented such that their magnetic fields oppose each other.

$$
\begin{equation*}
L_{T}=\frac{\left(L_{1}-L_{M}\right)\left(L_{2}-L_{M}\right)}{L_{1}+L_{2}-2 L_{M}} \tag{8-13}
\end{equation*}
$$

Using the same 10 henry and 20 henry coils with a mutual inductance of 5 henrys due to an aiding field, but connected in parallel, the total inductance using equation $8-12$ is

$$
\begin{aligned}
\mathrm{L}_{\mathrm{T}} & =\frac{(10 \mathrm{mH}+5 \mathrm{mH})(20 \mathrm{mH}+5 \mathrm{mH})}{10 \mathrm{mH}+20 \mathrm{mH}+2(5 \mathrm{mH})} \\
& =\left(\frac{(15)(25)}{40}\right) \mathrm{mH} \\
& =9.38 \mathrm{mH}
\end{aligned}
$$

Transformers

Basic Construction

A device in which the property of mutual inductance is put to practical use is the transformer. A typical transformer is shown in Figure 8.36. A typical standard transformer consists of two separate coils, wound on a common iron core as shown in the schematic of Figure 8.37 and considered to have a coefficient of coupling of one. One coil is called the primary; the other is called the secondary. As a result of mutual inductance, a changing voltage across the primary will induce a changing voltage in the secondary. Thus, if the primary winding is connected to an ac source and the secondary to a load resistor, the transformer is able to transfer power from the primary to the secondary to the load resistance as illustrated in Figure 8.38. By having more or fewer turns in the secondary as compared to the primary, the primary voltage may be either stepped-up or stepped-down to provide the necessary operating voltage for the load.

Figure 8.36 A Typical Transformer

Figure 8.37 Schematic Drawing of a Transformer

Figure 8.38 Transformer Operation

Turns Ratio versus Voltage

Recall that if a coil has a larger number of turns, a larger voltage is induced across the coil. With a smaller number of turns the voltage is less. Therefore it is easy to see that by having more or fewer turns in the secondary as compared to the primary, as shown in Figures 8.39 and 8.40 , the voltage may either be stepped up or stepped down to provide the necessary operating voltage for the load.

The ratio of the number of turns in a transformer secondary winding to the number of turns in its primary winding is called the turns ratio of a transformer. The equation for turns ratio is:

$$
\begin{equation*}
\text { turns ratio }=\frac{N_{S}}{N_{\mathrm{F}}} \tag{8-14}
\end{equation*}
$$

In the transformer schematic shown in Figure 8.41 , the number of turns in its primary is 10 and the number of secondary turns is 5 . Using equation $8-14$, the turns ratio of the transformer can be calculated.

$$
\begin{aligned}
\text { turns ratio } & =\frac{\mathbf{N}_{\mathbf{s}}}{\mathbf{N}_{\mathbf{p}}} \\
& =\frac{5}{10} \\
& =\frac{1}{2}
\end{aligned}
$$

Primary

Secondary

Figure 8.39 Step-Up Transformer

Figure 8.40 Slep-Doun Transformer

Primary Secondary

10 TURNS
N_{P}
5 TURNS
N
Figure 8.41 Transformer Used to Calculate Turns Ratio

Transformers have a unity coefficient of coupling. Therefore, the voltage induced in each turn of the secondary winding (E_{i}) is the same as the voltage self-induced (E_{ip}) in each turn of the primary, as shown in Figure 8.42. The voliage self-induced in each turn of the primary equals the voltage applied to the primary divided by the number of turns in the primary. This can be written:

$$
\begin{equation*}
E_{i P}=\frac{E_{P}}{N_{P}} \tag{8-15}
\end{equation*}
$$

Figure 8.43 shows a schematic of a transformer in which there are 8 turns in the primary and 8 volts ac is applied to it. Using equation $8-15$, the voltage self-induced in each primary turn can be calculated

$$
\begin{aligned}
E_{P_{P}} & =\frac{E_{P}}{N_{p}} \\
& =\frac{8}{8} \\
& =1 \mathrm{~V}
\end{aligned}
$$

In this example, one volt is induced in each turn of the primary

If each turn of the secondary has the same voltage induced in it, then the secondary voltage is equal to the number of secondary turns times the induced voltage. This can be written

$$
\begin{equation*}
E_{S}=N_{S}\left(\frac{E_{r}}{N_{p}}\right) \tag{8-16}
\end{equation*}
$$

Or rearranging,

$$
\begin{equation*}
E_{S}=E_{p}\left(\frac{\mathbf{N}_{\mathbf{S}}}{\mathbf{N}_{\mathbf{p}}}\right) \tag{8-17}
\end{equation*}
$$

Figure 8.42 Transformer Voltage Induction

Figure 8.43. Example Transformer Used to Calculate Self-Induced Voltage in Primary Turns

The transformer shown in Figure 8.43 has 4 turns in its secondary. Using equation 8-16, the secondary voltage can be calculated.

$$
\begin{aligned}
\mathbf{E}_{\mathbf{S}} & =\mathbf{N}_{\mathbf{S}}\left(\frac{\mathbf{E}_{\mathbf{P}}}{\mathbf{N}_{\mathbf{P}}}\right) \\
& =4\left(\frac{8}{8}\right) \\
& =4 \mathrm{~V}
\end{aligned}
$$

The transformer's secondary voltage is 4 volts - 4 turns times I volt per turn.

In another example, shown in Figure 8-44. there are 1000 turns in the primary winding of the transformer and there are 10,000 turns in its secondary winding. Thus, the turns ratio is

$$
\begin{aligned}
\text { turns ratio } & =\frac{N_{S}}{N_{p}} \\
& =\frac{10,000}{1.000} \\
& =\frac{10}{1} \\
& =10
\end{aligned}
$$

Therefore, the secondary voltage would always be 10 times greater than the primary voltage. If the primary voltage is 10 volts ac, then the secondary voltage will be

$$
\begin{aligned}
\mathbf{E}_{\mathbf{S}} & =10 \mathrm{E}_{\mathbf{P}} \\
& =10(10 \mathrm{~V}) \\
& =100 \mathrm{~V}
\end{aligned}
$$

Transformer secondary current is a function of secondary voltage and load resistance. If a 1 kilohm load is placed across the secondary as shown in Figure 8-45, then the secondary current, by Ohm's law, will be

$$
\begin{aligned}
\mathbf{I}_{\mathbf{S}} & =\frac{\mathbf{E}_{\mathbf{S}}}{\mathbf{R}_{\mathbf{L}}} \\
& =\frac{100 \mathrm{~V}}{1 \mathrm{k} \Omega} \\
& =0.1 \mathrm{~A} \\
& =100 \mathrm{~mA}
\end{aligned}
$$

The secondary current is 100 mA . The transformer secondary acts as an ac voliage source to the load.

Primary Secondary

Figure 8.44 Example for Calculating Turns Ratio and E_{S}

Figure 8.45 Example for Calculating Transformer Is

Primary-to-Secondary Current Relationship

Modern transformers, with coefficient of coupling considered to be one, and with no real power consumed in the windings or the core can be considered to have no loss, as shown in Figure 8.46. Therefore, the power in the primary is considered to be the same as the power in the secondary, $\mathrm{P}_{\mathrm{P}}=\mathrm{P}_{\mathrm{s}}$. Since $\mathbf{P}=\mathbf{E} \mathbf{I}$.

$$
\begin{aligned}
\mathbf{P}_{\mathbf{P}} & =\mathbf{P}_{\mathbf{S}} \\
\mathbf{E}_{\mathbf{P}} \mathbf{I}_{\mathbf{P}} & =\mathbf{E}_{\mathbf{S}} \mathbf{I}_{\mathbf{S}}
\end{aligned}
$$

Rewriting this,

$$
\begin{equation*}
\frac{\mathbf{I}_{P}}{\mathbf{I}_{S}}=\frac{\mathbf{E}_{S}}{\mathbf{E}_{\mathbf{p}}} \tag{8-18}
\end{equation*}
$$

Note that the current relationship is the inverse of the voltage relationship. Thus, if the voltage is stepped up in a transforiner by a factor of 10 . the current must have been stepped down the same factor. This may be stated another way using equations $8-17$ and 8-18.

Since

$$
\begin{equation*}
\frac{I_{\mathrm{P}}}{\mathrm{I}_{\mathrm{S}}}=\frac{\mathrm{E}_{\mathrm{S}}}{\mathbf{E}_{\mathrm{p}}}=\frac{\mathrm{N}_{\mathrm{S}}}{N_{\mathrm{P}}} \tag{8-19}
\end{equation*}
$$

Then

$$
\frac{\mathbf{I}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{S}}}=\frac{\mathrm{N}_{\mathrm{S}}}{\mathrm{~N}_{\mathrm{p}}}
$$

Or

$$
I_{P}=\left(\frac{N_{S}}{N_{p}}\right) I_{S}
$$

Thus, in the example shown in Figure 8.45. if E_{p} is 10 volts, E_{s} is 100 volts, and if I_{s}, the secondary current, is 100 milliamperes, the primary current, I_{p}, is calculated as:

$$
\begin{aligned}
I_{1} & =\left(-\frac{N_{S}}{N_{1}}\right) \mathrm{I}_{\mathrm{S}} \\
& =\left(\frac{100}{10}\right) 100 \mathrm{~mA} \\
& =(10) 100 \mathrm{~mA} \\
& =1000 \mathrm{~mA} \\
& =1 \mathrm{~A}
\end{aligned}
$$

The primary current in the transformer is one ampere.

Figure 8.46 Relationship of Transformer Primary and Secondary Windings
Performing the following calculations it can be determined that both the primary and secondary power are equal; both are 10 watts.

$$
\begin{aligned}
\mathbf{P}_{\mathbf{P}} & =\mathbf{E}_{\mathbf{P}} \mathbf{I}_{\mathbf{P}} \\
& =(10 \mathrm{~V})(1 \mathrm{~A}) \\
& =10 \mathrm{~W} \\
\mathbf{P}_{\mathbf{S}} & =\mathbf{E}_{\mathbf{S}} \mathbf{I}_{\mathbf{S}} \\
& =(100 \mathrm{~V})(100 \mathrm{~mA}) \\
& =10,000 \mathrm{~mW} \\
& =10 \mathrm{~W}
\end{aligned}
$$

The transformer, then, either steps up or steps down the voltage and current, but conserves power from the primary to the secondary.

However, transformers do not affect the frequency of the ac voltage they act upon. If the frequency of the primary voltage and current is 60 hertz, then the secondary voltage and current will have a 60 hertz frequency.
Recall that a transformer will not operate with a dc voltage. That is because dc voltage is nonchanging and cannot produce an expanding or collapsing magnetic field to cut the secondary windings to produce a secondary voltage.

EIsolation

Efficiency

Previously it was stated that the power in the transformer secondary is considered to be the same as that in the primary. This, however, is not precisely true with an actual operating transformer. When operating, the transformer's secondary power is usually slightly lower than that in the primary. As shown in Figure 8.47, this is caused by core and winding losses such as hysteresis and eddy currents in the transformer. In fact. these power losses are evidenced by the heat given off by a transformer during operation.
How well a transformer delivers power from the primary to the secondary circuit is called its effeciency. Efficiency is defined as the ratio of the power in the secondary circuit divided by the power in the primary circuit. Because efficiency is usually stated as a percent, it can be written

$$
\begin{equation*}
\text { Percent Efficiency }=\left(\frac{P_{S}}{P_{10}}\right) 100 \tag{8-20}
\end{equation*}
$$

To determine the actual percent efficiency of a transformer, primary voltage and current and secondary voltage and current are measured, the primary and secondary power are calculated and using equation $8-20$, the percent efficiency is calculated. Typical transformer efficencies are about 80 to 90 percent.

Isolation

Another feature of the transformer is that it provides electrical isolation between primary and secondary windings, as shown in Figure 8.48. That is, there is no electrical connection between the primary and secondary windings of the transformer. (Only the electromagnetic field links the secondary with the primary). When a circuit is connected directly to the power source as shown in Figure 8.49a, no electrical isolation exists between the circuit

P_{S} is not P_{P}
Figure 8.47 In Operation, A Transformer Loses Power in the Form of Heal

NO ELECTRICAL CONNECTION

Figure 8.48 A Transformer's Secondary Winding is Isolated from its Primary Winding

Figure 8.49 Circuil Isolation: a. No Isolation of Circuit from Power Line; b. Circuil Isolated from Power Lime by Transformer
and power source, which can present a shock hazard. But any circuit connected to the secondary of a transformer, as shown in Figure 8.49b, is electrically isolated from the primary, and thus, the power source. This prevents a shock hazard from existing regardless of the connection of the primary to the electrical ac power line. In fact, transformers designed to simply provide isolation with no voltage change from primary to secondary (i.e. a $1: 1$ turns ratio) are referred to as "isolation transformers". A schematic of an isolation transformer is shown in Figure 8.50

Autotransformers

Transformers do exist, however, which do not provide isolation. These use a single winding and are referred to as autotransformers. As shown in Figure 8.51. an autotransformer utilizes a single tapped winding with one lead common to both input and output sides of the transformer. Therefore, there is no isolation. The voltages present across the primary and secondary portions of the transformer are proportional to the number of turns across which they appear. These are calculated the same as in a transformer with isolated windings by using equation 8-17.

The obvious advantage of this type of transformer is that only one winding is needed. But a less obvious advantage is that an autotransformer provides a more constant output voltage under varying load conditions than does the two-winding type of transformer. This is because the primary and secondary currents are 180 degrees out of phase and tend to cancel in the portion of the winding that is common to both primary and secondary.

120 VAC 60 Hz

120VAC 60 Hz

Figure 8.50 An Isolation Transformer Schemalic

Figure 8.51 Autotransformers: a. Slep-Down: b. Step-Up

Variable-output Transformers

Some manufacturers produce a type of autotransformer that has a variable output voltage. As shown in Figure 8.52, this is accomplished by making the secondary tap a wiper-type of contact (much like a wire wound variable resistor). By varying the position of the wiper contact, various output voltages are obtainable. Of course, the same effect could also be produced using a variable tap on the secondary of a two-winding transformer as shown in Figure 8.53

Multiple-secondary Transformers

Transformers are also produced which have multiple-secondary and center-tapped secondary windings in order to provide for circuits requiring several different voltage levels. A schematic for a typical multiplesecondary transformer is shown in

Figure 8.54

Transformer Lead Color Code

Transformer leads are usually color coded using a standarized E1A wire color coding technique. A chart showing the standard ElA color code is provided in the appendix. Not all manufacturers use this particular color code so there will be some variation

Transformer Specifications

Manufacturers provide specifications for transformers. The specifications enable a user to select a transformer that best meets the requirement of the application. Transformer specifications usually include primary voltage and frequency, secondary voliage(s), impedance, dc winding resistances, and current capabilities. For example, the power transformer of Figure 8.54 has the following specifications:

Primary voltage: $\quad 117 \mathrm{~V}, 60 \mathrm{~Hz}$	
High-voltage secondary:	$240 \mathrm{~V}-0-240 \mathrm{~V}$ (center-
	tapped) 150 mA
Low-voltage secondary:	$6.3 \mathrm{~V}, 2 \mathrm{~A}$
Low-voltage secondary:	$5 \mathrm{~V}, 3 \mathrm{~A}$

High-voltage secondary: $240 \mathrm{~V}-0-240 \mathrm{~V}$ (centertapped) 150 mA
Low-voltage secondary: $6.3 \mathrm{~V}, 2 \mathrm{~A}$
Low-voltage secondary: $5 \mathrm{~V}, 3 \mathrm{~A}$

Figure 8.52 Variable-Outpul Autotransformer

Figure 8.53 Variable-()utput Transformer

Figure 8.54 Mulliple-Secondary Power Transformer

Power transformers are multiple secondary winding transformers with buth high and low voltage secondaries. Typical power, audio, and filament transformers are shown in Figure 8.55. Power transformers originally were developed for use with vacuum tube circuits in which high voltage for power supply levels and low voltage for vacuum tube filaments (heaters) were needed. The primary ratings specify the voltage and frequency at which the transformer is designed to be operated. The secondary ratings specify the voltages available from the various secondary windings as well as the maximum current which the secondaries can supply.
Audio transformers are designed for inputoutput audio applications and are rated according to their primary and secondary impedances, power capabilities (wattage), and turns ratio. They have only a single secondary winding.
Filament transformers are single secondary. low voltage, high current (several amperes, typically) transformers rated according to their primary voltage and frequency, secondary output voltage and maximum output current capabilities.

Inductive Reactance

Now that inductance, self-inductance, and transformer action have been discussed, the next step is a discussion of the effect of an inductor in an ac circuit.
Inductance is measured and inductors are rated in henrys. An inductor's effect in a circuit depends on the inductance and is expressed in a quantity called inductive reactance. Inductive reactance is a quantity that represents the opposition that a given inductance presents to an ac current in a circuit, such as is shown in Figure 8.56.

Figure 8.55 Typical Power, Audio, and Filament Transformers

Figure 8.56 Simple Inductive Circuil

Like capacitive reactance, it is measured in ohms and depends upon the frequency of the applied ac voltage and the value of the inductor. Inductive reactance can be expressed as follows:

$$
\begin{equation*}
X_{\mathrm{L}}=2 \pi \mathrm{fL} \tag{8-21}
\end{equation*}
$$

Where

$$
\begin{aligned}
X_{\mathbf{L}} & =\text { inductive reactance (ohms) } \\
2 \pi & =6.28 \\
\mathbf{f} & =\text { frequency }(\mathbf{H z}) \\
\mathbf{L} & =\text { inductance }(\mathrm{H})
\end{aligned}
$$

The constant of 2π comes from the number of radians in one cycle of a sinusoidal ac waveform. Because of this, this equation is valid only for calculating the inductive reactance of an inductor with sinusoidal alternating current applied
Figure 8.57 shows a simple inductive circuit. The inductor's value is 10 millihenrys. Applied frequency is 5 kilohertz. Using equation 8-21, inductive reactance, X_{L}, is calculated:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{L}} & =2 \pi \mathrm{fL} \\
& =(6.28)\left(5 \times 10^{3} \mathrm{~Hz}\right)\left(10 \times 10^{-3} \mathrm{H}\right) \\
& =314 \Omega
\end{aligned}
$$

Note from equation $8-21$ that if either the frequency or the inductance is increased the inductive reactance increases. Figure 8.58 shows graphically how a change in either the frequency or inductance changes the inductive reactance, X_{L}. Note that the inductive reactance increases linearly with frequency and inductance. As the frequency or inductance increases, the inductor's opposition to the flow of current increases.
These plots of inductive reactance versus frequency and inductive reactance versus inductance shown in Figures 8.59 and 8.60 will be examined more closely to help you understand these relationships more clearly.

Figure 8.57 Example Circuit for Calculating Inductive Reactance

Figure 8.58 Frequency and Inductance Versus Inductive Reactance

Figure 8.59 shows the inductive reactance versus frequency for an inductance of 10 millihenrys. It can be seen that as frequency increases so does the inductive reactance. For example, at a frequency of 159 hertz, the inductive reactance is 10 ohms. However, at a frequency of 1590 hertz the inductive reactance is now 100 ohms. Inductive reactance is directly proportional to frequency.

In Figure 8.60, which plots inductive reactance versus inductance at a frequency of 159 hertz, it can be seen that as inductance increases so does the inductive reactance. For example, with an inductance of 0.01 henrys (10 millihenrys), inductive reactance is 10 ohms. However, if the inductance is increased to 1 henry, the inductive reactance is now 1 kilohm. Inductive reactance also is directly proportional to inductance.

The basic equation for inductive reactance may be rewritten in two other forms:

$$
\begin{equation*}
f=\frac{X_{L}}{2 \pi I} \tag{8-22}
\end{equation*}
$$

Or

$$
\begin{equation*}
L=\frac{X_{L}}{2 \pi f} \tag{8-23}
\end{equation*}
$$

Equation 8-22 can be used to determine the frequency at which an inductance will produce a certain reactance. Equation $8-23$ can be used to determine the inductance that will have a certain reactance at a certain frequency. For example, equation $8-22$ can be used to determine the frequency at which an 8.5 henry inductor will have an inductive reactance of 5 kilohms.

$$
\begin{aligned}
f & =\frac{X_{\mathrm{L}}}{2 \pi \mathrm{~L}} \\
& =\frac{5000 \Omega}{(6.28)(8.5 \mathrm{H})} \\
& =93.7 \mathrm{~Hz}
\end{aligned}
$$

Figure 8.59 Inductive Reaclance Versus Frequency for an Induclance of 10 mH

Figure 8.60 Inductive Reactance Versus Inductance al a Frequency of 159 Hz
Equation $8-23$ can be used to determine the value of inductance needed to produce an inductive reactance of 10 kilohms at a frequency of 300 kilohertz.

$$
\begin{aligned}
L & =\frac{X_{L}}{2 \pi f} \\
& =\frac{10 \times 10^{3} \Omega}{(6.28)\left(300 \times 10^{3} \mathrm{~Hz}\right)} \\
& =0.531 \times 10^{-2} \mathrm{H} \\
& =5.31 \mathrm{mH}
\end{aligned}
$$

Compatibility of Reactance Equation with Rate-of-Change Equation

It can be shown that the inductive reactance equation is compatible with the previous discussion of inductance where the voltage across an inductance is equal to L times a rate-of-change-of-current. Figure 8.61 shows a simple series ac circuit containing a resistance and inductance. The inductive reactance is determined using equation $8-21$. If in this series circuit the frequency of the applied voltage increases, then inductive reactance increases and the voltage drop across the inductor increases because the inductive reactance is a larger portion of the total impedance in the circuit
When the voltage across the inductor is expressed using the rate-of-change-ofcurrent equation as shown in Figure 8.62, the voltage increases as the rate-of-change of current increases. The rate of change of current increases as frequency increases. Therefore, the voltage across the inductance increases as frequency increases.

Thus, both equations prove that in an inductive circuit, as frequency increases, the voltage across the inductor increases. This analysis also proves that the inductive reactance and the rate-of-change equations state the same basic principle

Like a capacitor, an inductor can be thought of as a variable resistor whose opposition to current flow (its inductive reactance) is controlled by the applied frequency. This is shown in Figure 8.63.

Figure 8.61 Inductive Reactance Equation can be used 10 Determine Circull Operation

Figure 8.62 Rate-of-Change Equation can be used to Delermine Inductive Circuit Operation

Figure 8.63 An Inductor can be Thought of as n Variable Resistor

Series and Parallel Inductors in AC Circuits

Thus far, only circuits with a single inductor have been discussed. More than one inductor can be used in a circuit. Therefore, an understanding of series and paralle! combinations of inductors with applied voltage and frequency is important

Series Inductors

Figure 8.64 shows a circuit in which two inductors, one 40 millitienrys, and the other 20 millihenrys, are connected in series. The applied voltage is 40 volts at 10 kilohertz
First the inductive reactances of the two inductors will be calculated using the basic inductive reactance equation $8-21$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{L} 1} & =2 \pi \mathrm{fL} \\
& =(6.28)\left(10 \times 10^{3} \mathrm{~Hz}\right)\left(40 \times 10^{-3} \mathrm{H}\right) \\
& =2512 \Omega \\
\mathrm{X}_{\mathrm{L} 2} & =2 \pi \mathrm{fL} \\
& =(6.28)\left(10 \times 10^{3} \mathrm{~Hz}\right)\left(20 \times 10^{-3} \mathrm{H}\right) \\
& =1256 \Omega
\end{aligned}
$$

In this circuit the inductive reactance of L_{1} is twice the inductive reactance of L_{2}. Thus, if the inductance increases by a factor of two, the inductive reactance increases by a factor of two.

Now that the individual reactances have been calculated, the reactance ohms are ireated like resistive ohms, and series reactances are added.

$$
\begin{aligned}
X_{L T} & =X_{L 1}+X_{L .2} \\
& =2512 \Omega+1256 \Omega \\
& =3768 \Omega
\end{aligned}
$$

Therefore, the total reactance for the circuit is 3768 ohms. This total reactance is the total opposition that the circuit presents to alternating current flow at the applied frequency.

Figure 8.64 Example Circuit for Determining Circuit Operation

An alternate method of finding total reactance is to first calculate total inductance.

$$
\begin{aligned}
\mathrm{L}_{\mathrm{T}} & =\mathrm{L}_{1}+\mathrm{L}_{2} \\
& =40 \mathrm{mH}+20 \mathrm{mH} \\
& =60 \mathrm{mH}
\end{aligned}
$$

Assuming no mutual inductance, the total inductance is 60 millihenrys. Now the total inductive reactance can be calculated using the basic inductive reactance equation

$$
\begin{aligned}
X_{L T} & =2 \pi \mathrm{~L}_{\mathrm{T}} \\
& =(6.28)\left(10 \times 10^{3} \mathrm{~Hz}\right)\left(60 \times 10^{-3} \mathrm{H}\right) \\
& =3768 \Omega
\end{aligned}
$$

This is the same value of total inductive reactance calculated using the other method.
Because the total inductive reactance has been determined, it can be used to calculate the total current in the circuit. The total current. by Ohm's law, is equal to the applied voltage divided by the total inductive reactance.

$$
\begin{align*}
\mathbf{I}_{\mathbf{T}} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{L T}}} \tag{8-24}\\
& =\frac{40 \mathrm{~V}}{3768 \Omega} \\
& =0.0106 \mathrm{~A} \\
& =10.6 \mathrm{~mA}
\end{align*}
$$

Now the rules of a series circuit can be used to solve the voltage drop across L_{1} and L_{2}. Since it is a series circuit, the total current is the same throughout the circuit.

$$
\begin{align*}
\mathbf{E}_{\mathbf{L} 1} & =\mathbf{I}_{\mathrm{T}} \mathbf{X}_{\mathrm{L} 1} \tag{8-25}\\
& =(10.6 \mathrm{~mA})(2512 \Omega) \\
& =26.67 \mathrm{~V} \\
\mathbf{E}_{\mathbf{L} 2} & =\mathbf{I}_{\mathrm{T}} \mathbf{X}_{\mathrm{L2}} \\
& =(10.6 \mathrm{~mA})(1256 \Omega) \\
& =13.33 \mathrm{~V}
\end{align*}
$$

In a purely inductive circuit, the voltage drops add to the total applied voltage as in a series resistive circuit.

$$
\begin{align*}
\mathbf{E}_{\mathbf{A}} & =\mathbf{E}_{\mathbf{L 1}}+\mathbf{E}_{\mathbf{L} 2} \tag{8-26}\\
& =26.67 \mathrm{~V}+13.33 \mathrm{~V} \\
& =40 \mathrm{~V}
\end{align*}
$$

Parallel Inductors

Figure 8.65 show's a circuit in which there is a parallel combination of two inductors. The voltage. frequency. and inductance are the same as those used in the previous discussion of series inductors. Keeping these the same should help you better understand the differences between series inductor and parallel inductor circuits. Since inductance of the coils is the same and applied frequency is the same, the inductive reactance of each of the inductors will be the same:

$$
\begin{aligned}
& \mathbf{L}_{1}=2512 \Omega \\
& \mathbf{L}_{2}=1256 \Omega
\end{aligned}
$$

Figure 8.65 Example Circuil for Determining Circuil Operalion
The branch current for each branch can be determined by dividing the voltage across the branch by the opposition in the branch.

$$
\begin{aligned}
\mathbf{I}_{L 1} & =\frac{E_{L 1}}{X_{L 1}} \\
& =\frac{E_{A}}{X_{L 1}} \\
& =\frac{40 \mathrm{~V}}{2512 \Omega} \\
& =15.9 \mathrm{~mA} \\
\mathbf{I}_{L \mathbf{L}} & =\frac{E_{L 2}}{X_{L 2}} \\
& =\frac{E_{\mathbf{A}}}{X_{L 2}} \\
& =\frac{40 \mathrm{~V}}{1256 \Omega} \\
& =31.8 \mathrm{~mA}
\end{aligned}
$$

The total current is simply the sum of the branch currents.

$$
\begin{align*}
\mathbf{I}_{\mathbf{T}} & =\mathbf{I}_{\mathbf{L 1}}+\mathbf{I}_{\mathbf{L 2}} \tag{8-27}\\
& =15.9 \mathrm{~mA}+31.8 \mathrm{~mA} \\
& =47.7 \mathrm{~mA}
\end{align*}
$$

To find the total inductive reactance. simply divide the applied voltage by the total current

$$
\begin{align*}
\mathbf{X}_{\mathbf{I T}} & =\frac{\mathbf{E}_{\mathrm{A}}}{\mathbf{I}_{\mathrm{T}}} \tag{8-28}\\
& =\frac{40 \mathrm{~V}}{47.7 \mathrm{~mA}} \\
& =837 \Omega
\end{align*}
$$

There are two alternate methods that can be used to find the total inductive reactance. The first method is to treat the inductive reactances as if they were parallel resistances and use the product-over-sum method of solution.

$$
\begin{align*}
\mathbf{L}_{T} & =\frac{\left(X_{L_{1}}\right)\left(X_{L_{L} 2}\right)}{X_{1.1}+X_{1.2}} \tag{8-29}\\
& =\frac{(2512 \Omega)(1256 \Omega)}{2512 \Omega+1256 \Omega} \\
& =837 \Omega
\end{align*}
$$

The other method is to first determine the total inductance of the circuit, then calculate the total inductive reactance using the total inductance. Using this method,

$$
\begin{aligned}
\mathbf{L}_{T} & =\frac{\left(\mathbf{L}_{1}\right)\left(\mathbf{L}_{2}\right)}{\mathbf{L}_{1}+\mathbf{L}_{2}} \\
& =\frac{(40 \mathrm{mH})(20 \mathrm{mH})}{40 \mathrm{mH}+20 \mathrm{mH}} \\
& =13.3 \mathrm{mH} \\
X_{\mathbf{L T}} & =2 \pi \mathrm{f}_{\mathrm{T}} \\
& =(6.28)\left(10 \times 10^{3} \mathrm{~Hz}\right)\left(13.3 \times 10^{.3} \mathrm{H}\right) \\
& =837 \Omega
\end{aligned}
$$

Power in Inductive Circuits

In inductive circuits, power can be determined using calculations similar to the calculations used to determine power in resistive or capacitive circuits. Remember that in resistive circuits, electrical energy is converted into heat energy. However, in inductive circuits, the electrical energy is stored temporarily in the magnetic field around the inductor. This is similar to the storage of energy in an electrostatic field in a capacitor. Thus, inductors store electromagnetic energy temporarily; capacitors store electrostatic energy temporarily.
Recall that the basic power equation is

$$
\begin{equation*}
P=E I \tag{8-31}
\end{equation*}
$$

This power equation can be used to calculate the power in inductive circuits. The power in inductive circuits is measured in units called VAR as it is in capacitive circuits. VAR stands for Volts Amperes Reactive. The power in an inductive circuit is called reactive power since the opposition to current in the circuit is strictly reactive.

Power Calculations for Series-Inductive Circuits

In the series-inductive circuit discussed previously, and repeated in Figure 8.66. the voltage drop across L_{1} is 26.67 volts. The current through L_{1} and L_{2} is 10.6 milliamperes. Reactive power for L_{1} is calculated:

$$
\begin{aligned}
P_{L_{1}} & =\left(E_{L_{1}}\right)\left(I_{L_{1}}\right) \\
& =(26.67 \mathrm{~V})(10.6 \mathrm{~mA}) \\
& =282.7 \mathrm{mVAR}
\end{aligned}
$$

Reactive power for L_{2} is calculated

$$
\begin{aligned}
\mathbf{P}_{\mathbf{L} 2} & =\left(\mathbf{E}_{\mathbf{L} 2}\right)\left(\mathbf{I}_{\mathbf{L} 2}\right) \\
& =(13.33 \mathrm{~V})(10.6 \mathrm{~mA}) \\
& =141.3 \mathrm{mVAR}
\end{aligned}
$$

By adding these two values of reactive puwer. the total reactive power of the circuit can be determined That is,

$$
\begin{aligned}
P_{X T} & =P_{1,1}+P_{L 2} \\
& =282.7 \mathrm{mVAR}+141.3 \mathrm{mVAR} \\
& =424 \mathrm{mVAR}
\end{aligned}
$$

Total reactive power of the circuit could also have been calculated by multiplying the total applied voltage times the total current. In this case,

$$
\begin{aligned}
P x_{T} & =E_{A} l_{T} \\
& =(40 \mathrm{~V})(10.6 \mathrm{~mA}) \\
& =424 \mathrm{mVAR}
\end{aligned}
$$

Power Calculations for
 Parallel-Inductive Circuit

Similar calculations can be performed to obtain the reactive power for the parallel inductive circuit shown in Figure 8.65. Recall in that circuit $1_{1,1}=15.9$ milliamperes and $I_{L_{2}}=31.8$ milliamperes. Remember the voltage across each branch is the applied voltage. The reactive power of L_{1} is:

$$
\begin{aligned}
P_{L 1} & =E_{L 1} 1_{L 1} \\
& =(40 \mathrm{~V})(15.9 \mathrm{~mA}) \\
& =636 \mathrm{mVAR}
\end{aligned}
$$

The reactive power of L_{2} is:

$$
\begin{aligned}
P_{L 2} & =E_{L \cdot 2} \mathbf{l}_{L 2} \\
& =(40 \mathrm{~V})(31.8 \mathrm{~mA}) \\
& =1272 \mathrm{mVAR}
\end{aligned}
$$

The cotal reactive power is:

$$
\begin{aligned}
P_{X T} & =P_{L 1}+P_{L 2} \\
& =636 \mathrm{mVAR}+1272 \mathrm{mVAR} \\
& =1908 \mathrm{mVAR}
\end{aligned}
$$

Also, the total reactive power in a parallel circuit equals the total applied voltage times the total current.

$$
\begin{aligned}
\mathbf{P}_{\mathbf{X T}} & =\mathbf{E}_{\hat{\mathbf{A}}} \mathbf{l}_{\mathbf{T}} \\
& =(40 \mathrm{~V})(47.7 \mathrm{~mA}) \\
& =1908 \mathrm{mVAR}
\end{aligned}
$$

$$
\begin{aligned}
& E_{A}=40 \mathrm{~V}=40 \mathrm{mH} \\
& E_{L_{1}}=26.67 \\
& E_{L 2}=13.33 \mathrm{~V}
\end{aligned}
$$

Figure 8.66 Example Series Inductive Circuil

Summary

This lesson has been an introduction to the inductor, how it is structured, its schematic symbol, its typical units of inductance, and how it functions in typical circuits. The phase relationships of the voltage and current in an inducrive circuit were discussed. Mutual inductance and how it is put to use in transformers, and how to make voltage and current calculations for transformer circuits were also discussed. Series and parallel inductive problems were solved, and reactive power calculations were described.

1. Describe the action of an inductor in a circuit.

Solution: A magnetic field surrounds any wire carrying current. As current increases through a wire, the magnetic field expands through the wire inducing a counter current which opposes the increase in the initial current. As current decreases in a wire, the magnetic field collapses through the wire inducing current in the same direction and aiding the current which is trying to decrease, thus opposing the decrease of current. When the wire is wound into a coil, the magnetic field produced by each turn of wire in the coil interacts with adjacent turns increasing this inductive effect. This coil of wire is called an inductor. If it is placed in a circuit such that a clanging current passes through it, it will oppose the change (increase or decrease) of current
2. Define inductance

Solution: Inductance is the property of a circuit which opposes any change in current.
3. If the current through an 8 millihenry-coil is changing at the rate of 10 milliamperes every 5 seconds, determine the rate of change of the current in amperes per second, and the voltage (CEMF) induced across the coil.
a. Rate of change of current $=\frac{\Delta i}{\Delta t}=\frac{10 \mathrm{~mA}}{5 \mathrm{sec}}=2 \mathrm{~mA} / \mathrm{sec}$
b. $C E M F=E_{L}=L\left(\frac{\Delta_{i}}{\Delta t}\right)=(8 \mathrm{mH})(2 \mathrm{~mA} / \mathrm{sec})=\left(8 \times 10^{-9} \mathrm{H}\right)\left(2 \times 10^{-9} \mathrm{~A} / \mathrm{sec}\right)$

$$
=16 \times 10^{-6} \mathrm{~V}=16 \mu \mathrm{~V}
$$

4. If two coils are connected in series as shown, determine their total inductance with no mutual inductance, and their mutual inductance and total inductance considering mutual inductance (aiding and opposing) if $k=0.4$.

Solution:

b. $L_{\cdot}(\mathrm{aid})=L_{1}+\mathrm{L}_{2}+2 \mathrm{~L}_{\mathrm{m}}=18 \mathrm{H}+2 \mathrm{H}+2(2.4 \mathrm{H})$

$$
=18 \mathrm{H}+2 \mathrm{H}+4.8 \mathrm{H}=24.8 \mathrm{H}
$$

where $L_{M}=k \quad \sqrt{L_{1} \times L_{2}}=0.4 \quad \sqrt{18 H \times 2 H}$
$=0.4 \sqrt{36 \mathrm{H}}=0.4(6) \mathrm{H}=2.4 \mathrm{H}$
c. L_{r} (oppose) $=L_{1}+L_{2}-2 L_{M}=18 \mathrm{H}+2 \mathrm{H}-2(2.4 \mathrm{H})$
L_{r} (oppose) $=20 \mathrm{H}-4.8 \mathrm{H}=15.2 \mathrm{H}$
a. $L_{\cdot 1}\left(\right.$ no $\left.L_{M}\right)=L_{1}+L_{2}=18 H+2 H=20 H$
5. a. Given the circuit shown solve for the total inductance of the parallel-connected inductors if there is no mutual inductance

Solution

$$
\begin{aligned}
& \mathbf{L}_{T}=\frac{\mathbf{L}_{1} \times \mathbf{L}_{2}}{\mathbf{L}_{1}+\mathbf{L}_{2}}=\frac{(10 \mathrm{mH})(40 \mathrm{mH})}{10 \mathrm{mH}+40 \mathrm{mH}}=\left(\frac{400}{50}\right) \mathrm{mH} \\
& \mathbf{L}_{T}=8 \mathrm{mH}
\end{aligned}
$$

b. Determine their mutual inductance and total inductance (aiding and opposing) if mutual inductance exists with a coefficient of 0.2 .

Solution

$$
\begin{aligned}
& L_{M}=k \sqrt{L_{1} \times L_{2}}=0.2 \sqrt{10 \mathrm{mH} \times 40 \mathrm{mH}}=0.2 \sqrt{400 \mathrm{mH}}=0.2(20) \mathrm{mH} \\
& L_{M}=4 \mathrm{mH} \\
& L_{T}(\text { aid })=\frac{\left(L_{1}+L_{M}\right)\left(L_{2}+L_{M}\right)}{L_{1}+L_{2}+2 L_{M}}=\frac{(10 \mathrm{mH}+4 \mathrm{mH})(40 \mathrm{mH}+4 \mathrm{mH})}{10 \mathrm{mH}+40 \mathrm{mH}+2(4 \mathrm{mH})}=\frac{(14 \mathrm{mH})(44 \mathrm{mH})}{(58 \mathrm{mH})} \\
& L_{T}(\text { aid })=10.62 \mathrm{mH} \\
& \left.L_{T} \text { (oppose }\right)=\frac{\left(L_{1}-L_{M}\right)\left(L_{2}-L_{M}\right)}{L_{1}+L_{2}-2 L_{M}}=\frac{(10 \mathrm{mH}-4 \mathrm{mH})(40 \mathrm{mH}-4 \mathrm{mH})}{10 \mathrm{mH}+40 \mathrm{mH}-2(4 \mathrm{mH})}=5.14 \mathrm{mH}
\end{aligned}
$$

6. If the primary voltage applied to a transformer is 120 VAC and the secondary voltage output is 480 VAC, determine the turns ratio for the transformer and state whether it is a step-up or step-down transformer.

Solution:

a. Turns ratio $=\frac{N_{S}}{N_{P}}=\frac{E_{S}}{E_{P}}=\frac{480 \mathrm{~V}}{120 \mathrm{~V}}=\frac{4}{1}$
or written in $\mathbf{N}_{\mathbf{s}}: \mathbf{N}_{\mathbf{p}}$ form, 4:1
b. This is a step-up transformer since the secondary voltage is bigher than the primary voltage.
7. Given the transformer with turns-ratio and load-resistance specified, determine the following values: $E_{\text {sec }}, I_{\text {sec }} \cdot I_{\text {pri }}, P_{\text {pri }}$ and $P_{\text {sec }}$. (Assume 100 percent efficiency.)

Solution:

Note that $\mathrm{P}_{\mathrm{pri}}=\mathrm{P}_{\text {sec }}$!
8. If the primary voltage is 120 VAC with a primary current of 10 mA and the secondary voltage is 12.6 VAC with a secondary current of 85 millamperes, determine the percent efficiency of this transformer. Explain the loss of power between primary and secondary.

Solution:

a. $P_{p r i}=E_{p r i} \times I_{p r i}=(120 \mathrm{~V})(10 \mathrm{~mA})=1200 \mathrm{~mW}$

$$
P_{\text {sec }}=E_{\text {sec }} \times I_{\text {sec }}=(12.6 \mathrm{~V})(85 \mathrm{~mA})=1071 \mathrm{~mW}
$$

$$
\% \text { Eff }=\frac{P_{S}}{P_{\mathrm{p}}} \times 100 \%=\left(\frac{1071 \mathrm{~mW}}{1200 \mathrm{~mW}}\right) \times 100 \%=0.893 \times 100 \%=89.3 \%
$$

b. The power loss (10.7 percent of the primary power) between primary and secondary is due to eddy currents, hysteresis and winding resistance heat loss.
9. Calculate the inductive reactance of the inductors at these specified liequencies:
a. 10 millihenry coil operated at a frequency of 5 kilohertz:

Solution:

$$
\begin{aligned}
X_{\mathrm{L}} & =2 \pi \mathrm{fl}=(6.28)(5 \mathrm{kHz})(10 \mathrm{mH})=(6.28)\left(5 \times 10^{3} \mathrm{~Hz}\right)\left(10 \times 10^{-3} \mathrm{H}\right) \\
& =314 \times 10^{\circ} \Omega=314 \Omega
\end{aligned}
$$

b. An 8.5 henry coil operated at a frequency of 60 hertz

Solution:

$$
X_{\mathrm{L}}=2 \pi \mathrm{fL}=(6.28)(60 \mathrm{~Hz})(8.5 \mathrm{H})=3202.8 \Omega=3.2 \mathrm{k} \Omega
$$

c. A 45 microhenry coil operated at a frequency of 1250 kiloheriz:

Solution:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL} & =(6.28)(1250 \mathrm{kHz})(45 \mu \mathrm{H})=(6.28)\left(1250 \times 10^{3} \mathrm{l} z\right)\left(45 \times 10^{-6} \mathrm{H}\right) \\
& =353250 \times 10^{-9} \Omega=353.25 \Omega
\end{aligned}
$$

10. Calculate the value of the inductor needed to produce the reactance specified at the given frequency:
a. A reactance of 1 megohm at a frequency of 40 kilohertz:

Solution:

$$
L=\frac{X_{L}}{2 \pi f}=\frac{1 \mathrm{M} \Omega}{(6.28)(40 \mathrm{kHz})}=\frac{1 \times 10^{6 i} \Omega}{(6.28)\left(40 \times 10^{3} \mathrm{~Hz}\right)}=3.9 \mathrm{H}
$$

b. A reactance of 47 kilohms at a frequency of 108 megaheriz:

Solution:

$$
\begin{aligned}
L & =\frac{X_{\mathrm{L}}}{2 \pi f}=\frac{47 \mathrm{k} \Omega}{(6.28)(108 \mathrm{MHz})}=\frac{47 \times 10^{9} \Omega}{(6.28)\left(108 \times 10^{6} \mathrm{~Hz}\right)}=\left(\frac{47 \times 10^{9}}{678.24 \times 10^{65}}\right) \mathrm{H} \\
& =0.0693 \times 10^{-3} \mathrm{H}=0.0693 \mathrm{mH}=69.3 \mu \mathrm{H}
\end{aligned}
$$

11. Calculate the frequency at which the given inductors will have the specified reactance.
a. A reactance of 50 kilohms with a 4 millihenry inductor:

Solution:

$$
\begin{aligned}
f=\frac{X_{I}}{2 \pi \mathrm{~L}} & =\frac{50 \mathrm{k} \Omega}{(6.28)(4 \mathrm{mH})}=\frac{50 \times 10^{3} \Omega}{(6.28)\left(4 \times 10^{-3} \mathrm{H}\right)}=\left(\frac{50 \times 10^{3}}{25.12 \times 10^{-3}}\right) \mathrm{Hz} \\
& =2 \times 10^{6} \mathrm{~Hz}=2 \mathrm{MHz}
\end{aligned}
$$

b. A reactance of 25 ohms with a 5 millihenry inductor:

Solution

$f=\frac{X_{\mathrm{L}}}{2 \pi \mathrm{I}}=\frac{25 \Omega}{(6.28)(5 \mathrm{mH})}=\frac{25 \Omega}{(6.28)\left(5 \times 10^{-9} \mathrm{H}\right)}=\frac{25}{0.0314}=796 \mathrm{~Hz}$
12. Solve for the values indicated using the circuit shown. (Assume $\mathrm{L}_{\mathrm{M}}=0$.)

a. $\mathbf{L}_{7}=\ldots \quad$ f. $\mathbf{E}_{\mathbf{L 1}}=$ \qquad
b. $X_{L 1}=$ g. $E_{L 2}=$ \qquad
h. $P_{L 1}=\square$
c. $X_{L 2}=$ h. $\mathbf{P}_{\mathbf{L 1}}=$ \qquad
e. $1_{7}=$ j. $P_{1, I}=$ \qquad

Solution:
a. $L_{T}=L_{1_{1}}+L_{2}=15 m H+85 m H=100 m H$
b. $X_{t .1}=2 \pi f L_{1}=(6.28)(25 \mathrm{kHz})(15 \mathrm{mH})=2355 \Omega=2.36 \mathrm{k} \Omega$
c. $X_{\mathrm{L} 2}=2 \pi \mathrm{fl}_{2}=(6.28)(25 \mathrm{kHz})(85 \mathrm{mH})=13345 \Omega=13.35 \mathrm{k} \Omega$
d. $X_{L \cdot r}=X_{1,1}+X_{1.2}=2.36 k \Omega+13.35 k \Omega=15.7 \mathrm{k} \Omega$ or
$X_{L r}=2 \pi f l_{\gamma}=(6.28)(25 k H z)(100 \mathrm{mH})=15.7 \mathrm{k} \Omega$
e. $J_{1}=\frac{E_{A}}{X_{L T}}=\frac{16 \mathrm{~V}}{15.7 \mathrm{k} \Omega}=1.02 \mathrm{~mA}$
f. $E_{1,1}=1_{1.1} X_{1,1}=1_{1} X_{1,1}=(1.02 \mathrm{~mA})(2.36 \mathrm{k} \Omega)=2.4 \mathrm{~V}$
g. $E_{L 2}=I_{1,2} X_{L 2}=I_{1} X_{L 2}=(1.02 \mathrm{~mA})(13.35 \mathrm{k} \Omega)=13.6 \mathrm{~V}$
h. $P_{L 1}=E_{L_{1}} \mathbf{I}_{\mathrm{L} 1}=E_{\mathrm{L}_{1}} \mathbf{I}_{\mathrm{T}}=(2.4 \mathrm{~V})(1.02 \mathrm{~mA})=2.45 \mathrm{mVAR}$
i. $\quad P_{L 2}=E_{L 2} \mathbf{l}_{\mathrm{L} 2}=E_{L_{2}} \mathbf{l}_{\mathrm{T}}=(13.6 \mathrm{~V})(1.02 \mathrm{~mA})=13.87 \mathrm{mVAR}$
j. $P_{L T}=P_{L 1}+P_{L 2}=2.45 \mathrm{mVAR}+13.87 \mathrm{mVAR}=16.32 \mathrm{mVAR}$ or
$P_{L T}=E_{A} \mathbf{l}_{\mathbf{T}}=(16 \mathrm{~V})(1.02 \mathrm{~mA})=16.32 \mathrm{mVAR}$
13. Solve for the values indicated using the circuit shown. (Assume $\mathrm{L}_{\mathrm{M}}=0$.)

a. $\mathbf{L}_{\mathbf{T}}=$ \qquad
b. $X_{1,1}=\square$ g. $I_{T}=$ \qquad
c. $\mathrm{X}_{\mathrm{L} 2}=$
h. $P_{L_{1}}=$ \qquad
d. $X_{17}=\square$ i. $P_{12}=$ \qquad
e. $\mathbf{I}_{\mathrm{L} 1}=\square \mathrm{j} \cdot \mathbf{P}_{\mathrm{LT}}=$ \qquad

Solution:

a. $L_{T}=\frac{L_{1} L_{2}}{L_{1}+L_{2}}=\frac{(1.8 \mathrm{mH})(8.6 \mathrm{mH})}{(1.8 \mathrm{mH}+8.6 \mathrm{mH})}=\left(\frac{15.48}{10.4}\right) \mathrm{mH}=1.49 \mathrm{mH}$
b. $X_{\mathrm{LI}}=2 \pi \mathrm{fl}_{1}=(6.28)(150 \mathrm{kHz})(1.8 \mathrm{mH})=1695.6 \Omega=1.7 \mathrm{k} \Omega$
c. $\mathrm{X}_{\mathrm{L} 2}=2 \pi \mathrm{fL}_{2}=(6.28)(150 \mathrm{kHz})(8.6 \mathrm{mH})=8101.2 \Omega=8.1 \mathrm{k} \Omega$
d. $X_{L T}=\frac{\left(X_{1.1}\right)\left(X_{L 2}\right)}{X_{L 1}+X_{L 2}}=\frac{(1.7 \mathrm{k} \Omega)(8.1 \mathrm{k} \Omega)}{(1.7 \mathrm{k} \Omega)+(8.1 \mathrm{k} \Omega)}=\left(\frac{13.77}{9.8}\right) \mathrm{k} \Omega=1.4 \mathrm{k} \Omega$ or

$$
X_{L T}=2 \pi f L_{T}=(6.28)(150 \mathrm{kHz})(1.49 \mathrm{mH})=1403.6 \Omega=1.4 \mathrm{k} \Omega
$$

e. $1_{\mathrm{L}_{1}}=\frac{E_{\mathrm{A}}}{\mathrm{X}_{\mathrm{L}_{1}}}=\frac{50 \mathrm{~V}}{1.7 \mathrm{k} \Omega}=29.4 \mathrm{~mA}$
f. $1_{\mathrm{L} 2}=\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{X}_{\mathrm{L} 2}}=\frac{50 \mathrm{~V}}{8.11 \mathrm{k} \Omega}=6.2 \mathrm{~mA}$
g. $I_{T}=I_{L 1}+I_{L 2}=29.4 m A+6.2 m A=35.6 m A$
h. $P_{L 1}=E_{L 1} I_{L 1}=E_{A} I_{L 1}=(50 \mathrm{~V})(29.4 \mathrm{~mA})=1470 \mathrm{mVAR}$
i. $P_{L 2}=E_{L 2} I_{L 2}=E_{A} I_{L 2}=(50 \mathrm{~V})(6.2 \mathrm{~mA})=310 \mathrm{mVAR}$
j. $\quad P_{\mathbf{L T}}=\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{T}}=(50 \mathrm{~V})(35.6 \mathrm{~mA})=1780 \mathrm{mVAR}$ or
$P_{L T}=P_{L 1}+P_{L 2}=1470 \mathrm{mVAR}+310 \mathrm{mVAR}=1780 \mathrm{mVAR}$

1. State a short definition of inductance.
2. The concepts of two men are used to explain CEMF for inductors. Who are they?
3. If an iron core is extracted from a coil, will the coil's inductance increase or decrease? Why?
4. As the number of turns of wire used in a coil increases, does the value of its inductance increase or clecrease?
5. If two coils are placed in proximity of one another and one coil produces 4000 lines of llux. 3500 of which cut the second coil, what is the coefficient of coupling of these two coils? $k=$ \qquad
6. What is the range of values for the coefficient of coupling? \qquad 10 \qquad (upper and lower limits for k)
7. In the circuit shown, two coils are connected in series. Determine their total inductance with no mutual inductance. Then determine their mutual inductance and their combined inductance considering mutual inductance (aiding and opposing). $k=0.4, L_{1}=4$ henrys. and $\mathrm{L}_{\underline{2}}=9$ henrys.

$$
\begin{aligned}
& \text { a. } \quad \mathrm{L}_{1}\left(\text { no } \mathrm{l}_{\mathrm{M}}\right)= \\
& \text { b. } \mathrm{L}_{\mathrm{M}}=
\end{aligned}
$$

\qquad
c. $L_{1}($ aid $)=$ \qquad
d $L_{T}($ opp $)=$ \qquad

$$
k=0.4
$$

8. In the circuit shown. determine the total inductance of the two parallel-connected inductors if there is no mutual inductance. Then determine their mutual inductance and total inductance (aiding and opposing) if they have a coefficient of coupling of 0.2 .

a. $L_{T}\left(n o L_{11}\right)=\square$
b. $L_{1}($ aid $)=$ \qquad
c. $\mathrm{L}_{1}($ opp $)=$ \qquad
d. $L_{M}=$
9. a. Sketch the magnetic field about the coil in the drawing. Indicate north and south poles.

b. Sketch the magnetic field about the conductor. Show its direction.

10. If the current through a coil is changing at the constant rate of 40 milliamperes every 10 seconds, determine the rate of change of the current in amperes per second. If the coil is rated at 5 millihenrys. determine the voltage across the coil.

$$
\begin{aligned}
& \text { a. } \mathrm{ROC} \text { of } \mathbf{i}=\square \mathrm{A} / \mathrm{sec} \\
& \text { b. } \mathbf{E}_{\mathrm{L}}=
\end{aligned}
$$

11. What coefficient of coupling is desired for transformers?

$$
k=
$$

12. If the primary voltage is greater than the secondary voltage of a transformet, is it known as a step-up or step-down transformer?
13. What two types of core losses in a Iransformer are associated directly with the core?
\qquad
b.
14. If $E_{P}=120 \mathrm{VAC}$ and $\mathrm{E}_{\mathrm{S}}=25.2 \mathrm{VAC}$, determine the turns ratio $\left(\mathrm{N}_{\mathrm{S}}: \mathrm{N}_{\mathrm{P}}\right)$ of the transformer.

Turns ratio $=$ \qquad : \qquad
15. What type of transformer does not provide electrical isolation of primary to secondary?
16. If the primary voltage is 240 VAC with a primary current of 8 milliamperes and the secondary voltage is 50 VAC with a secondary current of 33 milliamperes, determine the percent efficiency of this transformer:

$$
\% \text { eff = }
$$

\qquad
17. A transformer has a turns ratio $\left(N_{S}: N_{P}\right)$ of $1: 4.5$, has 120 VAC applied in its primary, and has a 6.8 kilohm resistor as a load on its secondary. Determine the secondary voltage, the secondary current, and primary current. (Assume 100 percent efficiency.)
a. $\quad E_{\text {sec }}=$ \qquad
b. $\quad 1_{\text {sec }}=$ \qquad
c. ${ }^{\text {pri }}=$ \qquad
18. When 40 VAC is applied to the primary of a transformer, a secondary current of 8 milliamperes flows through a one kilohm resistor connected across the secondary. 2 milliamperes of primary current is present. Determine the percent efficiency of the transformer and its turns ratio.

$$
\begin{aligned}
& \text { a. } \% \text { eff }= \\
& \text { b. } \quad N_{S}: N_{p}=
\end{aligned}
$$

19. Calculate X_{1} for a 2 millihenry coil operated at frequencies of 100 hertz, 5 kilohertz, and 1.2 megahertz

$$
\begin{aligned}
& \text { a. } X_{\mathrm{L}}(\mathrm{f}=100 \text { her } \mathrm{f})= \\
& \text { b. } \mathrm{X}_{\mathrm{L}}(\mathrm{f}=5 \text { kilohertz })= \\
& \text { c. } \\
& X_{\mathrm{L}}(\mathrm{f}=1.2 \text { megahert } \mathrm{z})=
\end{aligned}
$$

\qquad
\qquad
20. From Problem 19, you see that as the frequency applied to an inductor increases, the inductive reactance of it \qquad (increases, decreases).
21. What is the value of an inductor needed to produce a reactance of 482 kilohms at a frequency of 5 kiluhertz?

$$
\mathbf{L}=
$$

\qquad
22. What is the frequency at which an inductor of 8.5 henrys will have an inductive reactance of I kilohms?

$$
\mathrm{f}=
$$

23. Solve for the indicated values using the circuit shown. (Assume $L_{M}=0$.)

a. $X_{L 1}=$ \qquad f. $\mathbf{E}_{\mathrm{L} 2}=$ \qquad
b. $\mathrm{X}_{\mathrm{L} 2}=$ \qquad g. $P_{L 1}=$ \qquad
c. $X_{L T}=$ h. $P_{L 2}=$ \qquad
d. $\mathrm{I}_{\mathrm{T}}=\square$
i. $\quad P_{L T}=$ \qquad
e. $\mathrm{E}_{\mathrm{L} 1}=$ \qquad
24. Solve for the values using the circuit shown. (Assume $L_{M}=0$.)

a. $\mathbf{L}_{T}=\square$
f. $\mathbf{l}_{T}=$ \qquad
b. $X_{L 1}=$ \qquad g. $\mathbf{E}_{\mathbf{L I}}=$ \qquad
c. $X_{\mathrm{L}, 2}=$ \qquad h. $\mathbf{E}_{\mathbf{L} 2}=$ \qquad
d. $I_{L 1}=$
i. $\mathrm{I}_{\mathrm{L} 2}=$ \qquad
25. Inductance is the property of a circuit that
a. opposes any change in voltage.
b. opposes current.
c. opposes any change in current.
d. opposes any change in frequency.
26. Which of the factors listed below does not govern the value of a coil?
a. Number of turns
b. The type of core material used
c. The size (cross-sectional area) of the coil
d. The length of the coil
e. The size of the wire used in the coil
27. The rise or fall of current through an inductor in a circuit is said to be:
a. exponential
b. logarithmic
c. linear
d. none of the above
28. The voltage that appears across an inductor in a circuit is called and appears only when the inductor.
a. counter EMF; the current is constant through
b. voltage drop; the voltage changes across
c. counter EMF; the current increases or decreases through
d. voltage drop; the voltage is constant across
29. The phase relationship of the voltage across an inductor and the current passing through it in an ac (sinusoidal) circuit is such that
a. the voltage lags the current by 90 degrees.
b. the current leads the voltage by 90 degrees.
c. the voltage leads the current by 90 degrees
d. the voltage and current are in phase.
30. Determine the mutual inductance of two inductors having a coefficient of coupling of 0.8 if their values are 16 millihenrys and 5 millihenrys.
a. 64 mH
b. 7.2 mH
c. 20 mH
d. 3.6 mH
31. If two inductors are series-connected and their values are 16 henrys and 25 henrys, determine their total inductance if they have no mutual inductance.
a. 9.76 H
b. 6.4 H
c. 20 H
d. 41 H
32. If the two inductors of Question 7 have a coefficient of coupling of 0.2 , determine their total inductance aiding and opposing.
a. $41 \mathrm{H}, 49 \mathrm{H}$
b. $49 \mathrm{H}, 33 \mathrm{H}$
c. $49 \mathrm{H}, 41 \mathrm{H}$
d. $41 \mathrm{H}, 8 \mathrm{H}$
33. If a transformer has a turns ratio of $1: 19$ ($\mathrm{N}_{\mathrm{s}}: \mathrm{N}_{1}$), an applied primary voltage of $120 \mathrm{VAC}, 60$ hertz, and a secondary load resistance of 3.3 kilohms, determine the quantities specified below. (Assume 100 percent efficiency.)
a. $\quad \mathbf{E}_{\text {sec }}=$ \qquad
b. $\mathrm{l}_{\mathrm{sec}}=$
c. $\mathrm{I}_{\mathrm{pri}}=$
\qquad
d. $P_{p r i}=P_{\text {sec }}=$ \qquad

Quiz
10. A transformer lias a greater primary current than secondary current under load conditions. Is it a step-up or step-down transformer?
11. Using the inductive reactance equation and given the data specilied below, solve for the unknown quantity
a. $L=15 \mathrm{mH}, \Gamma=5 \mathrm{kHz}$:
$X_{\mathrm{L}}=$ \qquad
b. $X_{\mathrm{L}}=20 \mathrm{k} \Omega . \mathrm{I}=3.5 \mathrm{MHz}: L=$
c. $X_{1}=600 \mathrm{k} \Omega, \mathrm{L}=10 \mathrm{mH}: \mathrm{r}=$ \qquad
12. Determine the requested voltages, currents and power for these two circuits. (Assume $L_{s 1}=0$.)
a.

Circuit a
Circuit b
a. $X_{1 T}=$ \qquad i. $\mathrm{X}_{1 . T}=$
b. $\mathbf{E}_{\mathrm{L} 1}=$ \qquad j. $\mathbf{I}_{\mathrm{L}, \mathrm{I}}=$
k. $\mathrm{I}_{\mathrm{L} 2}=$

1. $\mathbf{I}_{\mathrm{T}}=$ \qquad
d. $\mathrm{l}_{\mathrm{T}}=$
\qquad
\qquad
e. $P_{L 1}=$ \qquad in. $\mathrm{P}_{1.1}=$
f. $P_{L 2}=$ \qquad n. $P_{L_{2}}=$
\qquad
g. $P_{L T}=$ \qquad o. $P_{L T T}=$ \qquad
\qquad

LESSON 9

(\%) RL Circuit Analysis

In Lesson 8, you were introduced to a new circuit element, the inductor. In this lesson, the methods of analysis of series and parallel circuits containing resistors and inductors will be discussed.

Objectives

At the end of this lesson you should be able to:

1. Determine the value of the inductive reactance, total impedance, total current, the component currents and voltages; real, reactive, and apparent power; and phase angle for series and parallel RI. circuits with various values of R, L, applied voltage and frequency specified
2. Draw the impedance, voltage, current, and power phasor diagrams to show the phase relationships in series and parallel RL circuits with certain circuit values specified
3. Determine the circuit values of series and parallel RI circuits by using Pythagorean theorem relationships for vectorially adding circuit quantities
4. Determine phase angles of RL series and parallel circuits by using the tangent trigonometric function.
5. Determine the Q of a coil when given the inductance and internal resistance of the coil.

Introduction

In the previous lesson, the inductor and its properties were introduced. However, like capacitive circuits, inductors are not usually the only component in circuits. A more common circuit is one in which inductors are combined in series, or in parallel with resistors. In this lesson you will learn techniques to solve problems for circuits containing a resistor and an inductor. You will learn how the phase relationship between voltage and current affect the analysis of such circuits. And you will learn how to compute the values for curremt, voltage, impedance, phase angle, and power for series and parallel circuits containing a resistor and inductor.

SERIES RL CIRCUIT

Phase Relationships in a Series RL Circuit

A typical series RL circuit is shown in Figure 9.1. In it one resistor is connected in series with one inductor. In a series RL circuit, as in any series circuit, the current through all the components is the same. However, the sum of the voltage drop across the resistor and the voltage drop across the inductor, do not simply add algelraically to equal the applied voltage as they would in either a purely resistive or a purely reactive circuit. This is because of the combination of resistance and reactance and the different phase relationship between the voltage and current for each component.
Recall, as shown in Figure 9.2, that the voltage across a resistor is in phase with the current flowing through it; but for an inductor, however, the voltage leads the current by 90 degrees. Since the components are in series with one another, the current through each component is the same. Therefore, mathematically,

$$
\mathbf{I}_{\mathbf{R}}=\mathbf{I}_{\mathbf{L}}=\mathbf{I}_{\mathbf{T}}
$$

Figure 9.1 RL Series Circuit

Figure 9.2 EI Phase Relationship for a Resistor, a, and an Inductor, b

Using the current then as a common basis for comparison. the two individual diagrams shown in Figure 9.2 can be combined into one
as illustrated in Figure 9.3. In this composite phasor diagram, note that the voltage across the resistor is in phase with the current in the series circuit, while the voltage across the inductor leads this current by 90 degrees. If the phase relationships of the two voltage drops are compared, the voltage across the inductor leads the voltage across the resistor by 90 degrees.

Phasor Addition of Voltages

Because of their phase difference, these voltages cannot be added algebraically as one normally would add the voltage drops in a series circuit to obtain the total applied voltage. Instead, these voltages must be added vectorially, as show in Figure 9.4. This is like the voltages in a series RC circuit are added. Using the parallogram method, the vectorial sum of \mathbf{E}_{R} and \mathbf{E}_{L} is equal to the applied voltage of E_{A}. This phasor diagram is called the voltage phasor diagram for this circuit.

Derivation of Impedance Phasor Diagram

 Now, by applying Ohm's law,$$
\begin{equation*}
E_{\mathbf{R}}=I R \tag{9-1}
\end{equation*}
$$

Since the current, through the resistor in this series RL circuit is the total current,

$$
\begin{equation*}
\mathbf{E}_{\mathbf{R}}=\mathbf{I}_{\mathbf{T}} \mathbf{R} \tag{9-2}
\end{equation*}
$$

Remember also that

$$
\begin{equation*}
\mathbf{E}_{\mathrm{L}}=\mathbf{1}_{\mathrm{L}_{\mathrm{s}}} \mathbf{X}_{\mathrm{L}} \tag{9-3}
\end{equation*}
$$

and that the current through the inductor is the same as the total current. Therefore, equation 9-3 could also be written as

$$
\begin{equation*}
\mathbf{E}_{\mathbf{L}}=\mathbf{I}_{\mathbf{T}} \mathbf{X}_{\mathbf{L}} \tag{9-4}
\end{equation*}
$$

These $I R$ and $I X_{L}$ quantities can be substituted for the voltages they equal on the voltage phasor diagram as shown in Figure $9.5 a$. Since the total current is the common factor here, it may be factored out so that the phase relationship between R and X_{1} remains as shown in Figure 9.5b.

Figure 9.3 Composite RL. Circuit Phase Relationships of a Series RL Circuit

Figure 9.4 Voltage Phasor Diagram of a Series RL Circuit

Figure 9.5 Relationship of R and X_{L}

Recall that in a purely resistive series circuit the sum of all ohms of resistance equals the total ohms of resistance. And in a purely reactive series circuit the sum of all ohms of reactance equals the total ohms of reactance. In an RI circuit, however, there exists a combination of resistance and reactance like in a series RC circuit, and it is called impedance, Z, measured in ohms, as illustrated in Figure 9.6

Calculating Impedance

Impedance of an RC circuit can be calculated by adding the resistance and reactance vectorially on the phasor diagram. This is accomplished by simply applying the Pythagorean theorem. As illustrated in Figure 9.6, the length of the reactance vector, X_{L}, is the same as the length between the tip of the resistance vector and the tip of the impedance vector 2 . In fact, the phasor diagram can be drawn with the reactance vector placed as shown in Figure 9.7. Now, the right triangle of the Pythagorean theorem becomes clearly evident. Applying the Pythagorean theorem, the total impedance is equal to the square root of the resistance squared plus the inductive reactance squared.

$$
\begin{equation*}
\mathbf{Z}=\sqrt{\mathbf{R}^{2}+\mathbf{X}_{\mathrm{L}}{ }^{2}} \tag{9-5}
\end{equation*}
$$

For example, a typical series RL. circuit is shown in Figure 9.8. If the resistance in that circuit is 60 ohms and the inductive reactance is 80 ohms, then the tota! impedance of the circuit can be determined as follows:

$$
\begin{aligned}
Z & =\sqrt{\mathbf{R}^{2}+X_{L}^{2}} \\
& =\sqrt{60^{2}+80^{2}} \\
& =\sqrt{3600+6400} \\
& =\sqrt{10,000} \\
& =100 \Omega
\end{aligned}
$$

The total impedance of that circuit is 100 ohms.

Figure 9.6 Resistive.Inductive Circuit Phasor Diagram

Figure 9.7 Right Triangle Relationship of 2, R. and X_{L}

Figure 9.8 Impedance Calculation Example

When drawing voltage and impedance diagrams for circuits like this. it is often convenient to draw them in the form of a right triangle as shown in Figure 9.9.

Mathematical Relationship of Voltages

Using a voltage phasor diagram as shown in Figure 9.10, the same type of mathematical calculation can be used to show the relationships between the voltage drops in the circuit and the applied voltage.
Shifting the inductive voltage vector as shown in Figure 9.11, and using the Pythagorean theorem, the applied voltage is equal to the square root of the voltage across the resistor squared plus the voltage across the inductor squared:

$$
\begin{equation*}
\mathbf{E}_{\mathbf{A}}=\sqrt{\mathbf{E}_{\mathbf{R}}{ }^{2}+\mathbf{E}_{\mathbf{L}}{ }^{2}} \tag{9-6}
\end{equation*}
$$

Example of Voltage Calculation

Figure 9.12 is a typical series RL circuit and will be used to show you how to calculate \mathbf{E}_{A} in such a circuit. The voltage across the resistor in that circuit is 20 volts, and the voltage across the inductor is 15 volts. The total applied voltage can be determined using equation 9-6.

$$
\begin{aligned}
\mathbf{E}_{\mathbf{A}} & =\sqrt{\mathbf{E}_{\mathbf{R}}^{2}+\mathbf{E}_{\mathrm{L}}^{2}} \\
& =\sqrt{20^{2}+15^{2}} \\
& =\sqrt{400+225} \\
& =\sqrt{625} \\
& =25 \mathrm{~V}
\end{aligned}
$$

Figure 9.13 shows the right triangle relationship of the example circuit's E_{A}. E_{L}, and E_{R}.

Figure 9.9 Right-Trangle Relationship of Z, X_{L} and R of the Example Circuit

Figure 9.10 Voltage Phasor Diagram of a Series RL Circuit

Figure 9.11 Right-Triangle Relationship of E_{A}, E_{R} and E_{L}

Solution of a Series RL Circuit

Now, if you are given an applied voltage and values for R and L for a series RL circuit. you should be able to determine the total impedance, the total current, and the individual voltage drops across the resistor and inductor. For example, in the series RL circuit of Figure 9.14, the value of the resistor is 75 ohms, and the value of the inductor is 4 millihenrys. The applied voltage is 250 volts with a frequency of 4 kilohertz. 'To determine the total impedance of this circuit, the value of the inductive reactance must first be calculated

$$
\begin{aligned}
X_{L} & =2 \pi f L \\
& =(6.28)(4 \mathrm{kHz})(4 \mathrm{mH}) \\
& =100 \Omega
\end{aligned}
$$

The impedance phasor diagrain shown in Figure 9.15 can now be drawn to show the relationships between the values of resistance, reactance, and impedance in the circuit. The value of impedance is calculated using the Pythagorean theorem. The impedance is equal to the square root of the resistance squared plus the inductive reactance squared:

$$
\begin{aligned}
\mathrm{Z} & =\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}} \\
& =\sqrt{75^{2}+100^{2}} \\
& =\sqrt{5,625+10,000} \\
& =\sqrt{15,625} \\
& =125 \Omega
\end{aligned}
$$

Remember that impedance is the total opposition of the resistive-reactive circuit to the flow of alternating current. Recall that in Lesson 7, this fact was used to determine a special form of Ohm's law which is called Ohm's law for ac circuits:

$$
\begin{equation*}
\mathbf{E}_{\mathbf{A}}=\mathbf{I}_{\mathbf{T}} \mathbf{Z}_{\mathbf{T}} \tag{9-7}
\end{equation*}
$$

Figure 9.12 Total Voltage Calculation Example

Figure 9.13 Right-Triangle Relationship of E_{A}, E_{ℓ} and E_{R} of the Example Circuit

$$
f=4 \mathrm{kHz}
$$

Figure 9.14 Series RL Example Problem

Rewriting this equation and solving for the total current, the total current equals the applied voltage divided by the total impedance.

$$
\begin{equation*}
\mathbf{I}_{\mathrm{T}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{Z}_{\mathbf{T}}} \tag{9-8}
\end{equation*}
$$

If this equation is applied to the example series RL circuit:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{T}} & =\frac{250 \mathrm{~V}}{125 \Omega} \\
& =2 \mathrm{~A}
\end{aligned}
$$

The voltage drop across the resistor, E_{R}, and inductor, E_{L}, can now be calculated as they would in any series circuit. The voltage drop across the resistor is equal to the current through it times the value of the resistance.

$$
\begin{equation*}
E_{R}=I R \tag{9-9}
\end{equation*}
$$

The current through the resistor is the same as the total current. Thus,

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R}} & =\mathbf{I}_{\mathbf{T}} \mathbf{R} \\
& =(2 \mathrm{~A})(75 \Omega) \\
& =150 \mathrm{~V}
\end{aligned}
$$

The voltage drop across the inductor is equal to the current through it times the value of the inductive reactance.

$$
\begin{equation*}
\mathbf{E}_{\mathbf{L}}=\mathbf{I}_{\mathbf{L}} \mathbf{X}_{\mathbf{L}} \tag{9-10}
\end{equation*}
$$

again, I_{L} is the same as the total current. Therefore,

$$
\begin{aligned}
\mathbf{E}_{\mathrm{L}} & =\mathbf{I}_{\mathrm{T}} \mathbf{X}_{\mathbf{L}} \\
& =(2 \mathrm{~A})(100 \Omega) \\
& =200 \mathrm{~V}
\end{aligned}
$$

Figure 9.15 Impedance Phasor Diagram
If the voltage across the resistor, 150 volts, and the voltage across the inductor, 200 volts, are added, the result is 350 volts. That is more than the applied voltage. But remember that the voltage across the resistor and the voltage across the inductor are out of phase by 90 degrees. Therefore they musi be added vectorially. Recall that vectorially, the applied voltage equals the square root of the voltage across the resistor squared, plus the voltage across the inductor squared. Therefore, for the example circuit

$$
\begin{aligned}
\mathbf{E}_{\mathbf{A}} & =\sqrt{\mathbf{E}_{\mathbf{R}}{ }^{2}+\mathbf{E}_{\mathbf{L}}^{2}} \\
& =\sqrt{150^{2}+200^{2}} \\
& =\sqrt{22,500+40,000} \\
& =\sqrt{62,500} \\
& =250 \mathrm{~V}
\end{aligned}
$$

Thus, you can see that the vector sum of the circuit voltage drops does equal the applied voltage, 250 volts.
This technique is a valuable tool for circuit analysis because the calculation can be used to check the accuracy of calculations performed to determine the various individual voltage drops in the circuit. Simply be sure that the vector sum of the circuit voltage drops equals the applied voltage.

Phase Angle in a Series RL Circuit

Recall that when originally forming the voltage phasor diagram shown in Figure 9.16. the current in the circuit was used as a reference quantity since it is the same throughout the circuit. This total current is in plase with the voltage across the resistor Notice, however, that the applied voltage and the total current are out of phase. More specifically, the applied voltage leads the total current by a number of degrees. Recall that this angle by which the total applied voltage and the total current are out of phase is called the phase angle of the circuit. The phase angle is the number of degrees by which the current being drawn from the ac voltage source and the voltage of the ac voltage source are out of phase. The phase angle in a series Kl . circuit can also be recognized as the angle hetween the voltage across the resistor and the applied voltage, as shown in Figure 9.16.
Since the impedance plasor diagrans is proportional to the voltage phasor diagran by the common factor of total current which cancels, X_{L} can be substituted for E_{L}, Z can be substituted for \mathbf{E}_{A}, and R can be substituted for E_{R} as shown in Figure 9.17. Therefore, the phase angle in a series R1 circuit is also the angle between the resistance phasor and the impedance phasor. This is similar to a series RC circuit. Recall that when determining the value of this phase angle, a trigonometric function was used called the tangent function Recall that the tangent of an angle in a right triangle is equal to the ratio of the length of the opposite side divided by the length of the adjacent side as shown in Figure 9.18.

Figure 9.16 Location of Phase Angle

Figure 9.17 Vollage and Impedance Phasor Diagram

Figure 9.18 Tangent Function

The side opposite to the phase angle, θ, in the voltage phasor diagram of Figure 9.19 is the vector \mathbf{E}_{L}. The length of the vector represents the value of the voltage drop across the inductor. The side adjacent to the phase angle, in the voltage phasor diagram, is the vector E_{R} whose length represents the value of the voltage drop across the resistor. The tangent of the phase angle, θ, is equal to the ratio of the opposite side divided by the adjacent side:

$$
\begin{align*}
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \tag{9-11}\\
& \tan \theta=\frac{E_{L}}{E_{R}} \tag{9-12}
\end{align*}
$$

The value of the phase angle, θ, then is simply the arctangent of this ratio.

$$
\begin{equation*}
\theta=\arctan \left(\frac{E_{\mathbf{L}}}{E_{\mathbf{R}}}\right) \tag{9-13}
\end{equation*}
$$

Remember that arctangent also can be abbreviated, tan to the minus one:

$$
\begin{equation*}
\theta=\tan ^{-1}\left(\frac{E_{L}}{E_{\mathbf{R}}}\right) \tag{9-14}
\end{equation*}
$$

Calculating Phase Angle from Voltage Phasor Diagram

As shown in Figure 9.20, in the series RL circuit of Figure 9.14 previously solved, the voltage across the inductor \mathbf{E}_{L} was determined to be 200 volts, and the voltage across the resistor $\mathbf{E}_{\mathbf{R}}$ was 150 volts.
Therefore theta is:

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{\mathbf{E}_{\mathbf{L}}}{\mathbf{E}_{\mathbf{R}}}\right) \\
& =\tan ^{-1}\left(\frac{200 \mathrm{~V}}{150 \mathrm{~V}}\right) \\
& =\tan ^{-1}(1.33) \\
& =53^{\circ}
\end{aligned}
$$

Therefore, the phase angle of the example series RL circuit is 53 degrees, a positive 53 degrees.

Figure 9.19 Opposite and Adjacent Side in a Voltage Phasor Diagram

Figure 9.20 Sample Calculation of Phase Angle Using Calculated Vollage Phasor Diagram

Series RL Phase Angle is Positive
Calculating Phase Angle from Impedance Phasor Diagram

Series RL Phase Angle is Positive

In the lesson about RC circuits an arbitrary standard was established for the angle of rotation of vectors for series circuits. It was established that the angle of rotation of a phasor in a counter-clockwise direction from the zero degree reference forms a positive phase angle as shown in Figure 9.21 Therefore, the positive sign of the phase angle, as shown in Figure 9.22, indicates that the applied voltage is rotated 53 degrees counter-clockwise (or up) from the current vector direction. Phase angles in series RL circuits will always be positive phase angles.

Calculating Phase Angle from Impedance Phasor Diagram

Recall that earlier it was described how the impedance phasor diagram is proportional to the voltage phasor diagram by a factor of the total current for a series circuit. Since these two phasor diagrams are proportional, it is possible to determine the phase angle from the impedance phasor diagram as illustrated in Figure 9.23. The side opposite to the phase angle, θ, in the impedance phasor diagram, is the reactance vector. X_{L}. The length of this vector represents the value of the inductive reactance. The side adjacent to the phase angle in the impedance phasor diagram is the resistance vector, R. Its length represents the value of the resistor. The tangent of the phase angle, then, is equal to the ratio of the opposite side, X_{L}, divided by the adjacent side, R.

$$
\begin{aligned}
\tan \theta & =\frac{\text { opposite }}{\text { adjacent }} \\
& =\frac{X_{L}}{R}
\end{aligned}
$$

Figure 9.21 Positive-Negative Phase Angle Convention

Figure 9.22 Positive Phase Angle in Series RL Circuil

Figure 9.23 Opposile and Adjacent Side in an Impedance Phasar Diagram

The arctangent of the ratio will yield the value of the phase angle. Recall that in the series RL circuit, the value of the inductive reactance, X_{L}, is 100 ohms, and the value of the resistance R is 75 ohms. Therefore theta is:

$$
\begin{aligned}
\theta & =\arctan \left(\frac{X_{\mathrm{L}}}{R}\right) \\
& =\tan ^{-1}\left(\frac{X_{L}}{R}\right) \\
& =\tan ^{-1}\left(\frac{100 \Omega}{75 \Omega}\right) \\
& =\tan ^{-1}(1.33) \\
& =53^{\circ}
\end{aligned}
$$

Thus, it should be apparent that the value of the phase angle in a series RL circuit can be determined from either the voltage or impedance phasor diagran.

Power Calculations in Series RL Circuit

Now, attention will be focused upon power calculations involved in the series RL circuit These calculations are very similar to power calculations for series RC circuits.

The real power, P_{R}, dissipated by the resistor in Figure 9.24 can be calculated as it was in a purely resistive series circuit. Simply multiply the voltage drop across the resistor (150 volts in the example) times the current's value flowing through it (2 amperes).

$$
\begin{aligned}
\mathbf{P}_{\mathbf{R}} & =\mathbf{E}_{\mathbf{R}} \times \mathbf{I}_{\mathbf{R}} \\
& =(150 \mathrm{~V})(2 \mathrm{~A}) \\
& =300 \mathrm{~W}
\end{aligned}
$$

The reactive power, P_{L}, of the inductor is calculated as it was in a purely inductive circuit. Simply multiply the voltage across the inductor (200 volts in the example) times the current flowing through it (2 amperes).

$$
\begin{aligned}
\mathbf{P}_{\mathbf{L}} & =\mathbf{E}_{\mathbf{L}} \times \mathbf{I}_{\mathbf{L}} \\
& =(200 \mathrm{~V})(2 \mathrm{~A}) \\
& =400 \mathrm{VAR}
\end{aligned}
$$

Figure 9.24 Power in a Series RL Circuil
Recall that the total power in a resistivereactive circuit is called the apparent power, measured in volts-amperes. The total or apparent power can be found by multiplying the applied voltage (250 volts in the example) times the total current (2 amperes).

$$
\begin{aligned}
\mathbf{P}_{\mathbf{A}} & =\mathbf{E}_{\mathbf{A}} \times \mathbf{1}_{\mathbf{T}} \\
& =(250 \mathrm{~V})(2 \mathrm{~A}) \\
& =500 \mathrm{VA}
\end{aligned}
$$

Kemember, that the simple sum of the real power and the reactive power does not equal the apparent power. In the example, 500 volt-amperes does not equal 300 watts plus 400 VAR when they are added together.

$$
P_{A} \neq P_{R}+P_{1}
$$

or

$$
500 \mathrm{VA} \neq 300 \mathrm{~W}+400 \mathrm{VAR}
$$

This occurs because of the different phase relationships between the voltage and current for each component in the circuit. The phase relationships of the three power determinations are similar to the voltage phase relationships. Figure 9.25 shows the voltage phasor diagram with its values E_{A}, E_{R}, and E_{L}. If each voltage is multiplied by the total current. I_{T}, in the circuit, it will be found that the power phasor diagram is very similar to the voltage phasor diagram because as shown in Figure 9.26

$$
\begin{align*}
& \mathbf{P}_{\mathbf{A}}=\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{T}} \tag{9-15}\\
& \mathbf{P}_{\mathbf{R}}=\mathbf{E}_{\mathbf{R}} \mathbf{I}_{\mathbf{T}} \tag{9-16}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{P}_{\mathbf{L} .}=\mathbf{E}_{\mathbf{L}} \mathbf{I}_{\mathbf{T}} \tag{9-17}
\end{equation*}
$$

In fact, the values are proportional to the voltage diagrams by the common factor of total current, \mathbf{I}_{7}.

Using the Pythagorean theorem, the apparent power, P_{A}, is equal to the square root of the real power, P_{R}, squared plus the reactive power, P_{L}, squared:

$$
\begin{equation*}
\mathbf{P}_{A}=\sqrt{\mathbf{P}_{R}^{2}+\mathbf{P}_{L}^{2}} \tag{9-18}
\end{equation*}
$$

Thus, the total apparent power in this circuit, 500 volt-amperes, should be equal to the square root of 300 watts squared plus 400 VAR squared. By completing the calculation, it is found that the apparent power is equal to 500 volt amperes:

$$
\begin{aligned}
\mathbf{P}_{\mathbf{A}} & =\sqrt{\mathbf{P}_{\mathbf{R}}^{2}+\mathbf{P}_{\mathrm{L}}{ }^{2}} \\
& =\sqrt{300^{2}+400^{2}} \\
& =\sqrt{90,000+16,000} \\
& =\sqrt{250,000} \\
& =500 \mathrm{VA}
\end{aligned}
$$

This is the same value obtained by multiplying the applied voltage by total current.

Figure 9.25 Voltage Phasor Diagram

Figure 9.26 Derivation of Power Phasor Diagram from Voltage Phosor Diagram

As shown in Figure 9.27, the angle 53 degrees between the real power, P_{R}, and apparent power, P_{A}, is the same as the angle between applied voltage, E_{A}, and resistive voltage, $\mathbf{E}_{\mathbf{R}}$. As you can see, the methods used to determine the voltages, current, impedance. and phase angle and power throughout a series RL circuit are very similar to the methods used to determine the same quantities for a series RC circuit.

Parallel RL Circuit

Now that you have seen how to determine these quantities for a series RL circuit, the next step is to learn how to determine the same quantities in a parallel RL circuit. The circuit, shown in Figure 9.28, in which a resistor is connected in parallel with an inductor, is called a parallel RL circuit.

Phase Relationships in a Parallel RL Circuit

 In this circuit, as in any parallel circuit, the voltage across all components is the same:$$
\mathbf{E}_{\mathbf{A}}=\mathbf{E}_{\mathbf{R}}=\mathbf{E}_{\mathbf{L}}
$$

However, the simple sum of the branch currents does not equal the total current in the circuit:

$$
\mathbf{I}_{\mathbf{T}} \neq \mathbf{I}_{\mathbf{R}}+\mathbf{I}_{\mathbf{L}}
$$

This occurs because of the different phase relationships between the voltage and current of each component.

Recall that the voltage across the resistor is in phase with the current through it; in the inductor, the voltage leads the current by 90 degrees as shown in Figure 9.29. Since the components in this circuit are in parallel with one another, the common factor in both phasor diagrams is the voltage across the components:

$$
\mathbf{E}_{\mathbf{A}}=\mathbf{E}_{\mathbf{R}}=\mathbf{E}_{\mathbf{L}}
$$

Figure 9.27 Vollage and Power Phasor Diagrams

Figure 9.28 Typical RLCircuit
a

b

Figure 9.29 Phase Relationship for a Resistor, a, and an Inductor, b

However, to illustrate the phase relationships in a parallel circuit, E_{L} and I_{L} must be rotated 90 degrees as shown in Figure 9.30a. Then the two individual phasor diagrams can be combined, as shown in Figure 9.306. Not that the current through the resistor is shown in phase with the applied voltage across it while the voltage across the inductor leads the current through it by 90 degrees.

Phasor Addition of Currents

Comparing the phase relationslips of the two branch currents, the current through the resistor leads the current through the inductor by 90 degrees. These individual branch currents can be calculated as they were in either a purely resistive or purely inductive circuit. Simply divide the voltage across the branch by the opposition to current in that branch.

In the resistive branch of the example circuit, the opposition to flow of current is measured in ohms of resistance: thus, in the example circuit, the resistive current is determined by dividing the applied voltage across the resistor by the value of the resistor:

$$
\begin{equation*}
\mathbf{I}_{\mathbf{R}}=\frac{\mathbf{E}_{\mathbf{R}}}{\mathbf{R}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{R}} \tag{9-19}
\end{equation*}
$$

In the inductive branch, the opposition to the flow of current is measured in ohms of reactance; thus, in the example circuit, the inductive branch current is determined by dividing the applied voltage across the inductor by the inductive reactance:

$$
\begin{equation*}
\mathbf{I}_{\mathrm{L}}=\frac{\mathbf{E}_{\mathrm{L}}}{\mathbf{X}_{\mathrm{L}}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathrm{L}}} \tag{9-20}
\end{equation*}
$$

These currents cannot be added algebraically to obtain the total current as the branch currents in a parallel resistive circuit can be added. The currents must be added vectorially because of the different phase

Figure 9.30 Combining Phase Relationships for Parallel RL Circuil

Figure 9.31 Right. Triangle Relationships of I_{R}, I_{L}, and I_{T}
relationship in a parallel RL circuit. The same procedure is used that was used in other diagrams to form a right triangle between the tip of the inductive current vector and the tip of the resistive current vector, with the total current vector, I_{T}, completing the hypotenuse of the triangle. This is illustrated in Figure 9.31.

Now the Pythagorean theorem can be used to determine the total current in the circuit. By the Pythagorean theorem, the total current in a parallel RL circuit is equal to the square root of the resistive current squared plus the inductive current squared:

$$
\begin{equation*}
I_{T}=\sqrt{I_{R}{ }^{2}+I_{L}{ }^{2}} \tag{9-21}
\end{equation*}
$$

Parallel RL Circuit Example

As an example, the circuit in Figure 9.32 will be used. In it, the resistive current is 28 milliamperes and the inductive current is 21 milliamperes. Total current is calculated:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\sqrt{\mathbf{I}_{\mathbf{R}}{ }^{2}+\mathbf{I}_{\mathbf{L}}{ }^{2}} \\
& =\sqrt{28^{2}+21^{2}} \\
& =\sqrt{784+441} \\
& =\sqrt{1225} \\
& =35 \mathrm{~mA}
\end{aligned}
$$

Thus, the total current in the circuit is 35 milliamperes.

Determining Impedance of a Parallel RL Circuit

Once the total current is known, the total impedance of the circuit can be determined using Ohm's law for ac circuits:

$$
\begin{equation*}
\mathbf{E}_{\mathbf{A}}=\mathbf{I}_{\mathbf{T}} \mathbf{Z} \tag{9-22}
\end{equation*}
$$

However, this time the equation must be rewriten to solve for impedance. The total impedance of the circuit is equal to the applied voltage divided by the total current:

$$
\begin{equation*}
\mathbf{Z}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{I}_{\mathbf{T}}} \tag{9-23}
\end{equation*}
$$

Figure 9.32 Example Circuit for Calculation of Total Current

Figure 9.33 Example Circuit for Impedance Calculation
For example, if in the previous example circuit the total applied voltage was 70 volts as shown in Figure 9.33, then the circuit impedance is equal to the applied voltage, 70 volts, divided by the total current, 35 millamperes:

$$
\begin{aligned}
\mathbf{Z} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{I}_{\mathbf{T}}} \\
& =\frac{70 \mathrm{~V}}{35 \mathrm{~mA}} \\
& =2 \mathrm{k} \Omega
\end{aligned}
$$

Phase Angle in a Parallel RL Circuit

Now the phase angle of the example RL circuit will be determined by utilizing the original current phasor diagram shown in Figure 9.34. Recall that the phase angle is the number of degrees of phase difference between the applied voltage and the total current. Also recall that the applied voltage, E_{A}, is also the voltage across the resistor, E_{R}, and that the current through the resistor is in phase with the voltage across it. Therefore, the applied voltage is in phase with the resistive current, 1_{R}. The voltage across the inductor. E_{L}, is the same as the applied voltage and it leads the current in the inductor by 90 degrees. Therefore, I_{1}. forms the right angle with I_{R}, and I_{T} is the hypotenuse of the right triangle.
Since the applied voltage, E_{A}, is in phase with the current through resistor l_{R}, the phase angle is the angle, θ, between l_{R} and I_{T}. And, as you can sec, the phase angle is a paralle! RL circuit is simply the angle between the resistive current and total current.

The value of the phase angle of a parallel RL circuit can be calculated by determining the arctangent of the ratio of the opposite and adjacent sides. The length of the opposite side represents the value of the incluctive current. The length of the adjacent side represents the value of the resistive current. Mathematically, therefore:

$$
\begin{equation*}
\theta=\arctan \left(\frac{\text { opposite }}{\text { adjacent }}\right) \tag{9-24}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta=\arctan \left(\frac{\mathbf{I}_{\mathrm{L}}}{\mathbf{I}_{\mathrm{R}}}\right) \tag{9-25}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta=\tan ^{-1}\left(\frac{I_{1}}{I_{\mathbf{R}}}\right) \tag{9-26}
\end{equation*}
$$

Figure 9.34 Current Phasor Diagram

Figure 9.35 Parallel RL Circuil Example

Solution of a Parallel RL Circuit

In this section, a parallel RL circuit will be analyzed and the individual branch currents, the total current, the total impedance, and the phase angle determined

Branch Currents

In the parallel RL circuit shown in Figure 9.35, the value of the resistor is 5 kilohms and the value of the inductor is 1.9 henrys. Therefore, at the applied frequency of 1,000 hertz, the inductor has an inductive reactance of 12 kilohms. This is determined by the inductive reactance equation:

$$
\begin{equation*}
X_{\mathrm{L}}=2 \pi \mathrm{fL} \tag{9-27}
\end{equation*}
$$

The applied voltage is 120 volts. The resistive branch current is found by dividing the voltage across the resistor, 120 volts, by the value of the resistor, 5 kilohms, which equals 24 milliamperes:

$$
\begin{aligned}
I_{R} & =\frac{E_{R}}{R} \\
& =\frac{120 V}{5 k \Omega} \\
& =24 \mathrm{~mA}
\end{aligned}
$$

The inductive branch current is found in a similar manner by dividing the voltage across the capacitor, 120 volts, by the inductive reactance, 12 kilohms, which equals 10 milliamperes:

$$
\begin{aligned}
I_{\mathrm{L}} & =\frac{\mathbf{E}_{\mathrm{L}}}{\mathrm{X}_{\mathrm{L}}} \\
& =\frac{120 \mathrm{~V}}{12 \mathrm{k} \Omega} \\
& =10 \mathrm{~mA}
\end{aligned}
$$

The current phasor diagram shown in Figure 9.36 can now be drawn to show the relationships between the resistive and inductive branch currents, and the total circuit current.

Total Current

Because of the different phases, total current is a vector sum. Therefore, using the Pythagorean theorem. the total current is equal to the square root of the resistive branch current squared plus the inductive branch current squared. Since I_{R} is 24 milliamperes and I_{L} is 10 milliamperes, total current is calculated:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\sqrt{\mathbf{1}_{\mathbf{R}}^{2}+\mathbf{I}_{\mathbf{L}}^{2}} \\
& =\sqrt{24^{2}+10^{2}} \\
& =\sqrt{576+100} \\
& =\sqrt{676} \\
& =26 \mathrm{~mA}
\end{aligned}
$$

Figure 9.36 Current Phasor Diagram for Example Parallel R1. Circuit
Thus, the value of the total current is 26 milliamperes. Since all of the current values were in milliamperes, the total current is measured in milliamperes also.

Impedance

The total impedance of the example parallel RL. circuit can now be determined by dividing the applied voltage by the total current.

$$
\begin{aligned}
Z & =\frac{E_{A}}{\mathbf{I}_{\mathrm{T}}} \\
& =\frac{120 \mathrm{~V}}{26 \times 10^{-3}} \\
& =4.6 \mathrm{k} \Omega
\end{aligned}
$$

The total impedance is 4.6 kilohms.

Phase Angle

Using the current phasor diagram shown in Figure 9.37, it can be seen that the phase angle is the angle between the resistive current and the total current. The value of the phase angle is equal to the arctangent of the ratio of the inductive current divided by the resistive current.

$$
\begin{aligned}
\theta & =\arctan \left(\frac{I_{L}}{I_{\mathbf{R}}}\right) \\
& =\arctan \left(\frac{10 m A}{24 m A}\right) \\
& =\arctan (0.1166) \\
& =-23^{\circ}
\end{aligned}
$$

The phase angle is a minus 23 degrees

Parallel RL. Circuit Phase Angle is Negative

The negative sign is used with the phase angle of this particular example and the phase angle is said to be a negative 23 degrees. This is because the applied voltage in the parallel RL circuit is used as a reference at zero degrees. The negative sign is used to indicate that the total current phasor is rotated 23 degrees clockwise fron the applied voltage phase, as shown in Figure 9.38. E_{A} leads I_{T} by 23 degrees. Or it could be said that I_{T} lags E_{A} by 23 degrees.
You should realize, therefore, that in a series RL circuit, the phase angle is positive as shown in Figure 9.39. However, in a parallel RL circuit, the phase angle is negative, as shown in Figure 9.40. The sign of the phase angle is used simply to indicate the direction of rotation from the reference at zero degrees. As a result, if you know that a circuit is an RL circuit and you know its phase angle. you can readily determine whether the resistor and inductor are connected in series or parallel by knowing the sign of the phase angle.

Figure 9.37 Phase Angle in Current Phasor Diagram

Figure 9.38 Phase Angle of Example Circut is - 23 Degrees

Figure 9.39 Phase Angle of Series RL Circuits

Parallel RL Circuit Power Calculations

In a parallel RL circuit, the power relationships are similar to those of a series RL circuit. To show you how to calculate power in a parallel RL circuit, the example parallel RI circuit used previously will be used. It is shown again in Figure 9.41 with some of its circuit values stated.

The real power, P_{R}, is equal to the voltage across the resistor, 120 volts, times the value of the current flowing through the resistor, 24 milliamperes.

$$
\begin{aligned}
P_{R} & =E_{R} I_{R} \\
& =(120 \mathrm{~V})(24 \mathrm{~mA}) \\
& =2.88 \mathrm{~W}
\end{aligned}
$$

The reactive power is equal to the voltage across the inductor times the value of the current through it:

$$
\begin{aligned}
\mathbf{P}_{\mathrm{L}} & =\mathbf{E}_{\mathrm{L}} \mathbf{l}_{\mathbf{L}} \\
& =(120 \mathrm{~V})(10 \mathrm{~mA}) \\
& =1.2 \mathrm{VAR}
\end{aligned}
$$

The total apparent power is equal to the applied voltage times the total current.

$$
\begin{aligned}
\mathbf{P}_{\mathbf{A}} & =\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{T}} \\
& =(120 \mathrm{~V})(26 \mathrm{~mA}) \\
& =3.12 \mathrm{VA}
\end{aligned}
$$

Since each power determination is made by multiplying the current shown in the current phasor diagram of Figure 9.42 by the applied voltage, the power phasor diagram is proportional to the current phasor diagram by a factor of the applied voltage. The total apparent power, P_{A}, is the vector sum of the real and reactive power. That is, the apparent power is equal to the square root of the real power squared plus the reactive power squared:

$$
\begin{equation*}
P_{A}=\sqrt{P_{R}^{2}+P_{L}^{2}} \tag{9-28}
\end{equation*}
$$

Figure 9.40 Phase Angle of Parallel RL Circuits

Figure 9.41 Circuit Values for Power Colculations

$b: P_{R}=E_{A} I_{R}$

$$
P_{A}=E_{A} I_{T}
$$

Figure 9.42 Comparison of Current and Power
Phasor Diagrams

Therefore, P_{A} for the example parallel RL circuit is calculated

$$
\begin{aligned}
\mathrm{P}_{\mathrm{A}} & =\sqrt{\mathrm{P}_{\mathrm{R}}{ }^{2}+\mathrm{P}_{\mathrm{L}}{ }^{2}} \\
& =\sqrt{2.88^{2}+1.2^{2}} \\
& =\sqrt{8.29+1.44} \\
& =\sqrt{9.73} \\
& =3.12 \mathrm{VA}
\end{aligned}
$$

The total apparent power calculated this way is 3.12 volt-amperes, the same as it was calculated using the equation $P_{A}=E_{A} l_{\gamma}$.

Q of a Coil

Now that solution methods of series and parallel RL circuits have been discussed, one other important topic concerning coils needs to be discussed - that is, the Q or quality factor of a coil.

Concept of \mathbf{Q}

The inductive reactance, X_{1}, of a coil is an indication of the ability of a coil to produce self-induced voltage. Recall that inductive reactance is expressed mathematically as

$$
X_{L}=2 \pi f L
$$

The expression takes into consideration the rate of change of current in the circuit in terms of frequency (f) and the size of the inductor in terms of its value (L). To manufacture a coil, however, many turns of wire are used. This results in a resistance in the coil due entirely to the length of the wire This internal resistance was mentioned in Lesson 8 and is represented by r_{i}. Figure 9.43 shows that the internal resistance of a coil is represented schematically by showing a small resistor in series with the coil. The coil represents the inductor's reactive qualities while the resistor represents its resistive qualities.

Figure 9.43 Equivalent Circuit for Coil

Figure 9.44 Energy in a Coil
When current is passed through a coil, energy is stored in the magnetic field as it expands around the coil, and then it is returned to the circuit when the magnetic field collapses (Figure 9.44). No heat energy is lost in a coil due to the coil's inductive quality. But the resistance of the wire of the coil dissipates energy in the form of heat just like any other resistor would. This energy is lost to the circuit and is non-recoverable.

Basically, the quality of a coil is based on its ability to store energy in its magnetic field, then return that energy back to the circuit Essentially, it is a measure of how efficient the coil is as far as its reactive, self-inductive qualities are concerned.

Derivation of Q Equation

Q is defined as the ratio of the reactive power in the inductance to the real power dissipated by its internal resistance. Mathematically,

$$
\begin{equation*}
\mathbf{Q}=\frac{\mathbf{P}_{\text {Reactive }}}{\mathbf{P}_{\text {Real }}}=\frac{\mathbf{P}_{\mathbf{L}}}{\mathbf{P}_{\mathrm{r}_{\mathbf{1}}}} \tag{9-29}
\end{equation*}
$$

Figure 9.45 is the equivalent circuit of an inductor to which an ac voltage is applied The power for the reactive and resistive properties of the coil can be written as:

$$
\begin{equation*}
\mathbf{P}_{\mathrm{L}}=\mathbf{I}^{2} \mathbf{X}_{\mathrm{L}} \tag{9-30}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{P}_{\boldsymbol{r}_{1}}=\mathbf{I}^{2} \mathbf{r}_{\mathbf{i}} \tag{9-31}
\end{equation*}
$$

Substituting these power values into the equation for \mathbf{Q},

$$
\begin{equation*}
Q=\frac{P_{I_{1}}}{P_{r_{1}}}=\frac{I^{2} \mathbf{X}_{\mathrm{L}}}{\mathrm{I}_{\mathbf{r}_{\mathrm{i}}}^{2}} \tag{9-32}
\end{equation*}
$$

Factoring out $\mathbf{I}^{\mathbf{2}}$.

$$
\begin{equation*}
Q=\frac{X_{L}}{r_{i}} \tag{9-33}
\end{equation*}
$$

And writing X_{L} as $2 \pi f L$ yields,

$$
\begin{equation*}
Q=\frac{2 \pi f L}{r_{i}} \tag{9-34}
\end{equation*}
$$

In the equations, r, is the resistance measured by an ohmmeter placed across the coil. L is the inductance of the coil being considered. And f is a standard frequency chosen to compare the Q of different coils. This frequency is usually one kilohertz for large values of L.

Figure 9.45 AC Voltage Applied to Equivalent Circuit of Coil

Sample Calculation of \mathbf{Q}

Thus, 10 determine the Q of a coil of 8.5 henrys, r, would be determined by measuring across it with an ohmmeter. In this example, r, is about 400 ohms. Then using equation 9-34 and with $\mathrm{f}=$ one kilohertz, the coil's Q is calculated

$$
\begin{aligned}
Q & =\frac{2 \pi f L}{r_{i}} \\
& =\frac{(6.28)(1000 \mathrm{~Hz})(8.5 \mathrm{H})}{400 \Omega} \\
& =\frac{53,380 \Omega}{400 \Omega} \\
& =133
\end{aligned}
$$

Factors Affecting Q of a Coil

Summary

Factors Affecting \mathbf{Q} of a Coil

At low frequencies, r_{i} is simply the dc resistance of the wire used in the coil, as measured by an ohmmeter. However, as frequency increases, additional losses occur within the coil. In air-core coils, (the type used in high-frequency radio and radar circuits) this additional loss is only one, called skin effect. This is the tendency of high-frequency current to flow near the surface of a conductor. This results from current near the center of the conductor encountering slightly more inductive reactance due to the concentrated magnetic flux in the center compared to the surface, where part of the flux is in the air. This effect increases the effective resistance of the conductor since current flow is limited to a small cross-sectional area near the surface. Because of this effect, conductors for very high-frequency applications are often made of hollow tubing called waveguides.

In an iron core coil. greater losses occur because of eddy currents and hysteresis. These losses are due to the magnetic properties of the iron. These losses effectively increase r_{i}. Any increase in r_{i} tends to decrease the Q of the coil at high frequency even though X_{L} is increasing as frequency increases. At high frequency, therefore, coils with air cores, which do not have added magnetic losses, are normally used to maximize Q.

Summary

In this lesson, several techniques were used to solve for values in series and parallel RL circuits. You learned how the different phase relationship between voltage and current for each component affected the method of analysis of each type of circuit.

You were shown how to determine the currents, voltages, impedance, phase angle and power for series and parallel RL circuits.

You were introduced to the concept of the Q of a coil and saw how you could determine the Q for a coil by using a simple measurement and calculation.

The concepts introduced in this lesson for solving series and parallel RL circuits may be adapted to solve any series or parallel RL circuit.

1. Calculate the voltage, current, power, and phase angle values shown for this series RL circuit.

a. $\mathbf{X}_{\mathbf{L}}=\ldots$ g. $\mathbf{E}_{\mathbf{L}}=$ \qquad
b. $\quad \mathbf{Z}_{\mathrm{T}}=$ \qquad h. $\theta=$ \qquad
c. $\quad \mathbf{1}_{\mathrm{T}}=$ \qquad i. $P_{R}=$ \qquad
d. $\mathrm{I}_{\mathrm{B}}=$ \qquad j. $\mathbf{P}_{\mathbf{L}}=$ \qquad
e. $\mathrm{I}_{\mathrm{L}}=$ \qquad k. $P_{A}=$ \qquad
f. $E_{R}=$ \qquad

Solution:
a. $X_{\mathrm{L}}=2 \pi \mathrm{fL}=(6.28)(65 \mathrm{kHz})(16 \mathrm{mH})=(6.28)\left(65 \times 10^{9} \mathrm{~Hz}\right)\left(16 \times 10^{-3} \mathrm{H}\right)$

$$
=6531.2 \Omega=6.53 \mathrm{k} \Omega
$$

b. $\mathbf{Z}_{\mathrm{T}}=\sqrt{\mathbf{R}^{2}+\mathbf{X}_{\mathrm{L}}{ }^{2}}=\sqrt{10^{2}+6.53^{2}} \mathrm{k} \Omega=\sqrt{100+42.6} \mathrm{k} \Omega=\sqrt{142.6} \mathrm{k} \Omega=11.9 \mathrm{k} \Omega$
c. $I_{T}=\frac{E_{A}}{Z}=\frac{20 \mathrm{~V}}{11.9 \mathrm{k} \Omega}=1.67 \mathrm{~mA}$
d.e. $\quad I_{R}=I_{L}=I_{T}=1.67 \mathrm{~mA}$ (series circuit)
f. $E_{R}=I_{R} R=(1.67 \mathrm{~mA})(10 \mathrm{k} \Omega)=16.7 \mathrm{~V}$
g. $E_{L}=I_{L} X_{L}=(1.67 \mathrm{~mA})(6.53 \mathrm{k} \Omega)=10.9 \mathrm{~V}$
h. $\theta=\arctan \left(\frac{X_{L}}{R}\right)=\arctan \left(\frac{6.53 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}\right)=\arctan (0.653)=+33^{\circ}$
i. $\quad P_{R}=E_{R} l_{R}=(16.7 \mathrm{~V})(1.67 \mathrm{~mA})=27.9 \mathrm{~mW}$
j. $\quad P_{L}=E_{L} I_{L}=(10.9 \mathrm{~V})(1.67 \mathrm{~mA})=18.2 \mathrm{mVAR}$
k. $P_{A}=E_{T} l_{T}=(20 \mathrm{~V})(1.67 \mathrm{~mA})=33.5 \mathrm{mVA}$
2. For the circuit of Example 1, sketch the voltage, impedance, and power phasor diagrams. Label all phasor lengths and locate the phase angle in each diagram.
Solution

a. Impedance Phasor Diagram
b. Voltage Phasor Diagram
c. Power Phasor Diagram
3. Calculate the voltage, current, power, and phase angle values shown for this parallel RI circuit.

Solution:

a. $\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fl} .=(6.28)(25(\mathrm{Hzz})(5 \mathrm{H})=7850 \Omega=7.85 \mathrm{k} \Omega$
b. $\quad E_{R}=E_{A}=30 \mathrm{~V}$ (parallel circuit)
c. $E_{1}=E_{A}=30 V$ (parallel circuit)
d. $\mathrm{I}_{\mathrm{R}}=\frac{\mathrm{E}_{\mathrm{R}}}{\mathrm{R}}=\frac{30 \mathrm{~V}}{1.5 \mathrm{k} \Omega}=20 \mathrm{~mA}$
e. $I_{L}=\frac{E_{L}}{X_{L}}=\frac{30 \mathrm{~V}}{7.85 \mathrm{k} \Omega}=3.82 \mathrm{~mA}$
f. $I_{T}=\sqrt{I_{\mathrm{K}}{ }^{2}+I_{\mathrm{L}}{ }^{2}}=\sqrt{20^{2}+3.82^{2}} \mathrm{~mA}=\sqrt{400+14.6} \mathrm{~mA}=\sqrt{414.6} \mathrm{~mA}=20.4 \mathrm{~mA}$
g. $Z_{T}=\frac{E_{\Lambda}}{1_{T}}=\frac{30 \mathrm{~V}}{20.4 \mathrm{~mA}}=1.47 \mathrm{k} \Omega$
h. $\theta=\arctan \left(\frac{I_{L}}{I_{R}}\right)=\arctan \left(\frac{3.82 m A}{20 m A}\right)=\arctan (0.191)=-11^{\circ}$
i. $\quad P_{R}=E_{R} I_{R}=(30 \mathrm{~V})(20 \mathrm{~mA})=600 \mathrm{~mW}$
j. $\quad P_{L}=E_{L} l_{L}=(30 \mathrm{~V})(3.82 \mathrm{~mA})=114.6 \mathrm{mVAR}$
k. $P_{A}=E_{A} I_{T}=(30 \mathrm{~V})(20.4 \mathrm{~mA})=612 \mathrm{mVA}$
4. For the circuit of Example 3, sketch the current and power phasor diagrams. label all phasor lengths and locate the phase angle in each diagram

Solution:

a.

b.

5. Determine the Q of a 10 mH coil that has at internal resistance of 7 ohms at a frequency of 1 kHz .

Solution:

$$
\begin{aligned}
Q=\frac{X_{L}}{r_{i}}=\frac{2 \pi f L}{r_{i}} & =\frac{(6.28)(1 \mathrm{kHz})(10 \mathrm{mH})}{7 \Omega}=\frac{(6.28)\left(1 \times 10^{3} \mathrm{~Hz}\right)\left(10 \times 10^{-3} \mathrm{H}\right)}{7 \Omega} \\
& =\frac{62.8 \times 10^{\circ} \Omega}{7 \Omega}=\frac{62.8 \Omega}{7 \Omega}=8.97
\end{aligned}
$$

1. For the circuit shown. determine the values specified for the circuit values given

a. $E_{A}=45 \mathrm{~V}$
b. $E_{A}=120 \mathrm{~V}$
c. $E_{A}=26 \mathrm{~V}$
$i=60 \mathrm{~Hz}$
§ $=600 \mathrm{kHz}$
$\mathrm{f}=15 \mathrm{kHz}$
$\mathrm{K}=2.7 \mathrm{k} \Omega$
$\mathbf{R}=1 \mathrm{k} \Omega$
$\mathrm{R}=15 \mathrm{k} \Omega$
$\mathrm{L}=15 \mathrm{mH}$
$\mathrm{L}=6.5 \mathrm{H}$
L. $=3.5 \mathrm{mH}$

\qquad
\qquad
$\mathbf{E}_{\mathrm{L}}=$ \qquad
$\mathbf{I}_{\mathrm{R}}=$ \qquad
$1_{L}=$ \qquad
$\mathrm{I}_{\mathrm{T}}=$ \qquad
Z $=$ \qquad
θ
\qquad
$P_{\mathrm{A}}=$ \qquad
$\mathbf{P}_{\mathbf{R}}=$ \qquad
$P_{L}=$ \qquad
2. Sketch the voltage, impedance and power phasor diagrams for Problem Ic. Label all phasor lengths, locate and identify the phase angle for each diagram.
a. Voltage Phasor Diagram
b. Impedance Phasor Diagram
c. Power Phasor Diagram
3. For the circuit shown, determine the values specified for the circuit values given.

a. $E_{A}=60 \mathrm{~V}$
$R=12 \mathrm{k} \Omega$
$\mathrm{X}_{\mathrm{t}}=5 \mathrm{k} \Omega$
b. $\quad E_{A}=36 \mathrm{~V}$
c. $E_{A}=24 \mathrm{~V}$
$R=18 \mathrm{M} \Omega$
$\mathrm{R}=3 \mathrm{k} \Omega$
$\mathrm{X}_{1}=4 \mathrm{M} \Omega$
$\lambda_{1}=6 k \Omega$
$\mathbf{E}_{\mathrm{R}}=$ \qquad $\mathbf{E}_{\mathrm{R}}=\square$
$E_{R}=$ \qquad
$\mathbf{E}_{\mathrm{L}}=\square$
$\mathbf{E}_{1}=\square$
$\mathrm{F}_{\mathrm{i}}=$ \qquad
$\mathbf{I}_{\mathrm{K}}=\square$
$\mathrm{I}_{\mathrm{R}}=\square$
$\mathrm{I}_{\mathrm{R}}=$ \qquad
$\mathbf{1}_{\mathrm{L}}=\square$
$\mathrm{I}_{\mathrm{L}}=$
$1_{\mathrm{L}}=$ \qquad

$\mathrm{I}_{1}=$ \qquad

\qquad $2=$ \qquad

$\theta=$ \qquad $\theta=$ \qquad
$P_{R}=$ \qquad
\qquad $\mathrm{P}_{\mathrm{K}}=$ \qquad
$\mathrm{P}_{\mathrm{L}}=$ \qquad $\mathbf{P}_{\mathbf{L}}=\square$
$\mathrm{P}_{\mathrm{L} .}=$ \qquad
$\mathrm{P}_{\mathrm{A}}=$ \qquad $\mathbf{P}_{\mathrm{A}}=$ \qquad $P_{A}=$ \qquad
4. Sketch the current and power phasor diagram for Problem 3c. Label all phasor lengths, locate and identify the phase angle for each diagram.
a. Current Phasor Diagram
b. Power Phasor Diagran
5. Determine the Q of a 65 mH coil at a frequency of 1 kHz if its resistance as measured with an ohmmeter is 25Ω.

$$
Q=
$$

\qquad

1. For the circuit shown, determine the values specified, and sketch and label the impedance, voltage and power phasor diagrams. Labe! all phasor lengths. Locate and identify the phase angle in each diagram.

a. $X_{1}=$ \qquad g. $1_{1}=$ \qquad
b. $\mathbf{Z}=$ \qquad h. $\theta=$ \qquad
c. $\mathbf{E}_{\mathbf{k}}=$ \qquad i. $\quad \mathbf{P}_{\mathrm{R}}=$ \qquad
d. $E_{L}=$ \qquad j. $\quad \mathbf{P}_{\mathbf{L}}=$ \qquad
e. $\mathbf{I}_{\mathrm{R}}=$ \qquad k. $P_{A}=$ \qquad
f. $\mathbf{1}_{\mathrm{L}}=$ \qquad
2. Voltage Phasor Diagram
m. Impedance Phasor Diagranı
3. For the circuit shown, determine the values specified and sketch the current and power phasor diagrams. Label all phasor lengths. Locate and identify the phase angle in each diagram.

a. $X_{L}=$ \qquad g. $\mathrm{Z}=$ \qquad
b. $\mathbf{E}_{\mathrm{R}}=$ \qquad h. $\theta=$ \qquad
c. $\mathbf{E}_{\mathbf{L}}=$ \qquad i. $\quad \mathbf{P}_{\mathbf{R}}=$ \qquad
d. $I_{R}=\square$ j. $P_{L}=$ \qquad
e. $\mathbf{I}_{\mathbf{L}}=$ \qquad k. $P_{\mathbf{A}}=$ \qquad
f. $I_{T}=$ \qquad
I. Current Phasor Diagram
m. Power Phasor Diagram
4. Determine the Q of 2.5 mH coil at a frequency of 1 kHz if its internal resistance is 2Ω
$Q=$ \qquad
5. Determine the internal resistance of a coil if its value is 8.5 H with a Q of 15 at a frequency of 1 kHz .
$r_{i}=$ \qquad
6. What is the phase relationship of the voltage across the coil versus the voltage across the resistor of a series RL circuit?
a. E_{R} leads E_{R} by 90°
b. E_{R} leads E_{R} by 90°
c. E_{R} and E_{L} are in phase
d. E_{R} and E_{L} are 180° out of phase

LESSON 10

RC and RL Time Constants

This lesson discusses the time relationships of current and voltage in dc resistive and capacitive, and resistive and inductive circuits. A special quantity, a time constant, is introduced and RC and RL time constants are defined. Voltages and currents are calculated after various time intervals of circuit operation.

At the end of this lesson you should be able to:

1. Define time constant for both $R C$ and $R L$ de circuits
2. Draw the current and voltage waveforms during the charge and discharge time of a capacitor in a dc resistive and capacitive circuit.
3. Draw the current and voltage waveforms during the time that current increases and decreases in a de resistive and inductive circuit.
4. Given a known time interval after a capacitor begins to charge or discharge in an RC circuit, calculate the instantaneous voltage and current values in the circuit.
5. Given a known time interval after current begins to increase or decrease in an RL circuit, calculate the instantaneous voltage and current values in the circuit.
6. Convert time intervals to time constants and time constants to time intervals in RC and RL circuits.

Introduction

In the past several lessons, discussion was about RC and KI . circuits with an ac voltage applied. I'hase differences between the current, voltage and power were observed which caused phase differences between the applied voltages and utal currents in the circuits. Several questions arise. What would be the response of these same circuits if a do voltage were applied? How long does it take to charge a capacitor to the applied voltage? And how long does it take for the current in an inductive circuit to rise to its maximum value? To answer these questions, in this lesson, unit values called RC and KI, time constants will be discussed, and RC. and R1. circuits with de voltages applied will be analyzed

RC DC Circuit Analysis:

Charge Cycle

Before actual dc RC and RL circuits are analyzed, however. it is necessary to review and expand on basic capacitive and incluctive circuit action that was presented in previous lessons. First, the capacitor and its response to a dc voltage will be reviewed

Circuit Current Related to a Capacitor's Charge

In the circuit of Figure 10.1, there is a 10 klohm resistor in series with a I microfarad capacitor connected through a switch. S1, to a 10 -volt de power supply. The switch is open and the capacitor, therefore, has no charge on its plates.

Recall the basic action of a capacitor in this type of circuit was discussed in Lesson 6.
When the switch first contacts position 1, at time t_{1}, as shown in Figure 10.2, the voltage is applied across the plates of the capacitor. Electrons then move from the upper plate of the capacitor through the circuit to the lower plate. This flow of electrons constitutes a curcent which will be called the charge current.

Figure 10.1 A Typical RC Circuit with DC
Voltage Applied

Figure 10.2 Capacilor Charges When SI Closes

Calculation of $I_{\text {max }}$

The initial current is large, but its maxinum value is limited by the value of the resistance in the circuit. The maximum value of the charge current is equal to the applied voltage. E_{T}, divided by the value of the resistance

$$
\begin{equation*}
\mathbf{I}_{\mathrm{max}}=\frac{\mathbf{E}_{\mathbf{T}}}{\mathbf{R}} \tag{10-1}
\end{equation*}
$$

In the circuit of Figure $10.1, \mathbf{E}_{\mathrm{r}}=10$ volts and $\mathrm{R}=10$ kilohms. Therefore,

$$
\begin{aligned}
I_{\text {max }} & =\frac{E_{T}}{R} \\
& =\frac{10 \mathrm{~V}}{10 \mathrm{k} \Omega} \\
& =1 \mathrm{~mA}
\end{aligned}
$$

10 volts divided by 10 kilohms equals 1 milliampere of current

As more and more electrons are transferred and accumulate on the negative plate, it becomes increasingly difficult for the applied voltage to transfer additional electrons and the transfer rate decreases. Thus, the current in the circuit decreases. This current decreases until it is finally zero at which time the capacitor is fully charged.
A graphic representation of this action is shown in Figure 10.3. where the current is plotted versus time. At first, at time t_{1} the current is at its largest value, 1 milliampere, then decreases to zero exponentially as the capacitor charges.

Variation of $\mathbf{E}_{\mathbf{C}}$

As this transfer of electrons occurs, as shown in Figure 10.4, current flows in the circuit, the charge on the capacitor builds, and a difference of potential is present across its plates. When the capacitor is fully charged, the voltage across it, E_{c}, is equal to the applied voltage of 10 volts.

Figure 10.3 Graph of Current During Capacitor Charge

$$
I=0 \text { When } E_{c}=10 \mathrm{~V}
$$

Figure 10.4 Current Flows Until Capacilor is Fully Charged

Calculation of $\mathbf{E}_{\mathbf{R}}$

Figure 10.5 is a plot of that voltage, $\mathbf{E}_{\mathbf{C}}$. Initially, the voltage across the capacitor is zero, but as the electrons are transferred, beginning at time t_{1}, the capacitor charges exponentially to the applied voltage of 10 volts cluring a period of time. Compare Figures 10.3 and 10.5 and note that the voltage across the capacitor increases as the current llow decreases and the capacitor charges.

Calculation of $\mathbf{E}_{\mathbf{R}}$

The voltage across the resistor depends upon two factors: 1) the amount of current flowing through it, and 2) the value of the resistor. More specifically, by Ohm's law,

$$
\begin{equation*}
\mathbf{E}_{\mathbf{R}}=\mathbf{I R} \tag{10-2}
\end{equation*}
$$

Since the value of the resistor is constant (10 kilohns), the voltage across it depends upon the amount of current flowing in the circuit at any particular tine. When the switch is first closed, as shown in Figure 10.6, the voltage across the resistor is equal to:

$$
\begin{aligned}
E_{R} & =1 R \\
& =(1 \mathrm{~mA})(10 \mathrm{k} \Omega) \\
& =10 \mathrm{~V}
\end{aligned}
$$

So at t_{1}, the voltage across the resistor is 10 volts.
When the current is zero, the voltage across the resistor is equal to zero because:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R}} & =I R \\
& =(0 \mathrm{~mA})(10 \mathrm{k} \Omega) \\
& =\mathbf{0 V}
\end{aligned}
$$

This is illustrated in Figure 10.7.

Figure 10.5 Graph of E_{C} During the Time the Capacitor Charges

Figure 10.6 Example Circuit for Calculating $E_{\text {Rmax }}$

Figure 10.7 Example Circuit for Calculating $E_{\text {Rmin }}$

Change in the Direction of Current Flow

Graphically, the voltage across the resistor would appear as shown in Figure 10.8. The voltage is 10 volus when the switch is closed and then it decreases exponentially to zero as the current decreases and as the capacitor charges.
Remember that even if the switch is open and the dc source removed the capacitor will retain its charge

RC DC Circuit Analysis: discharge Cycle

If an additional current path in the example circuit is added, as shown in Figure 10.9. circuit action will change. The action begins at time t_{2} when the switch is placed in position 2.

Change in the Direction of Current Flow

 When S 1 is placed in position 2, the capacitor has been provided with a discharge path through the resistor. Notice in Figure 10.9 that the direction of electron flow (current) when discharging is opposite to the direction of the current while charging.The current is maximum and decreases to zero exponentially as the electrons transfer. This action is shown graphically in Figure 10.10. Since the direction of flow is opposite. the current values are plotted as negative values on the graph. This illustrates graphically that the discharge current direction is opposite to the charge current direction. The charge current direction was arbitrarily chosen as positive.

Calculation of $I_{\text {max }}$

The maximum amount of current during discharge depends upon the voltage to which the capacitor is charged and the value of the discharge path resistance. In this case, the resistance is the same as it was for the charge path.

Figure 10.8 Groph of E_{R} During the Time the Capacitor Charges

Figure 10.9 A Additional Discharge Palh is Added to the Example Circuil

Figure 10.10 Negative Current Values During Capacilor Discharge Time (Time from t_{2})

The maximum discharge current is calculated

$$
\mathbf{I}_{\max }=\frac{\mathbf{E}_{\mathrm{C}}}{\mathbf{R}}
$$

In the example circuit, $\mathrm{E}_{\mathbf{C}}=10$ volts and $\mathrm{R}=10$ kilohms. Therefore,

$$
\begin{aligned}
I_{\max } & =\frac{\mathbf{E}_{\mathrm{C}}}{\mathbf{R}} \\
& =\frac{10 \mathrm{~V}}{10 \mathrm{k} \Omega} \\
& =1 \mathrm{~mA}
\end{aligned}
$$

1 milliamp is the discharge current. The discharge current decreases from the $I_{\text {max }}$ value exponentially as the capacitor discharges. When the charge on the plates is balanced, no more electrons are transferred, the voltage across the capacitor is zero, and the circuit current is zero.

Variation of $\mathbf{E}_{\mathbf{C}}$

As the capacitor discharges, the voltage across the capacitor is 10 volts initially at t_{2}, and then decreases to zero exponentially, as shown graphically in Figure 10.11

Calculation of $\mathbf{E}_{\mathbf{R}}$

The voltage across the resistor during capacitor discharge depends upon the amount of current passing through it at any particular time, as it did during capacitor charge. However, since the current during discharge flows in a direction opposite to its direction during the charging process, the polarity of the voltage across the resistor will be opposite to the polarity it had during charging as shown in Figure 10.12.

Figure 10.11 Graph of Er Dunng Capacitor Discharge Time (T ime from t_{2})

Figure 10.12 Polarity of E_{R} During Capacitor Discharge Time

This opposite polarity is shown by indicating the values of voltage across the resistor during discharge as being negative as shown in Figure 10.13. Remember that the voltage values were arbitrarily chosen as being positive because the charging current direction was chosen as positive for the charge process.

The maximum voltage across the resistor during discharge is equal to the voltage 10 which the capacitor is charged.

$$
\begin{equation*}
\mathbf{E}_{R_{(\text {max })}}=\mathbf{E}_{\mathrm{C}} \tag{10-3}
\end{equation*}
$$

In this case, that voltage is 10 volts. This is evident from the fact that the voltage across the resistor can be written, by Ohm's law, as being equal to the current through it times its value of resistance: $\mathbf{E}_{\mathbf{R}}=1 R$. Therefore, in the circuit,

$$
\begin{aligned}
E_{R} & =I R \\
& =(1 \mathrm{~mA})(10 \mathrm{k} \Omega) \\
& =10 \mathrm{~V}
\end{aligned}
$$

The voltage across the resistor is equal to 10 volts when the switch is initially placed in position 2. The voltage across the resistor directly dependent on the circuit current flowing, decreases to zero exponentially as the current decreases to zero. This shown in Figure 10.13. Note the shape is the same as the current waveform of Figure 10.10

RC Time Constants

A summary of the current and voltage waveforms for dc RC circuits during the charge and discharge time of the capacitor is shown in Figure 10.14. However, a question immediately comes to mind. How long does the charging and discharging take? The following discussion should answer that question.

RC Time Constant Defined

The time required for a capacitor to fully charge is measured in terms of a quantity called the time constant of the circuit.

Figure 10.13 Negalive \boldsymbol{E}_{11} Values Dutigg Capacilor Discharge Time (Time from (2)

Figure 10.14 A Summary of the Current and Voltage Waveforms for DC RC Circuits During Capactor Charge and Discharge Times
The time constant of an RC circuit is defined as the amount of time necessary for the capacitor to charge to 63.2 percent of its final voltage.
The time constant is symbolized by the Greek letter, tau, τ.
For an RC circuit, tau is equal to the value of the resistance times the value of capacitance in the circuit. Expressed mathematically,

$$
\begin{equation*}
\tau=\mathbf{R C} \tag{10-4}
\end{equation*}
$$

Where tau is measured in seconds, \mathbf{R} in ohms, and C in farads.

Calculation of an RC Time Constant

The resistance of the example KC circuit being discussed (Figure 10.1) is 10 kilohms. Its capacitance is 1 microfarad. The time constant for the circuit is calculated:

$$
\begin{aligned}
\tau & =R C \\
& =(10 \mathrm{k} \Omega)(1 \mu \mathrm{~F}) \\
& =\left(10 \times 10^{3}\right)\left(1 \times 10^{.6}\right) \\
& =10 \times 10^{-3} \text { seconds} \\
& =10 \mathrm{~ms}
\end{aligned}
$$

The time constant is 10 milliseconds.
In the circuit, the capacitor is charging to 10 volts. 63.2 percent of 10 voles is 6.32 voles. Thus, as shown in Figure 10.15, it takes 10 milliseconds or one time constant of time for the capacitor to charge to 6.32 volts.

In the next time duration of one time constant the capacitor will charge to 63.2 percent of the remaining value of voltage between the maximum. 10 volts, and its present charge, 6.32 volts. Therefore,

$$
10 \mathrm{~V}-6.32 \mathrm{~V}=3.68 \mathrm{~V}
$$

and

$$
63.2 \% \text { of } 3.68 \mathrm{~V}=2.33 \mathrm{~V}
$$

Thus, at the end of two time constants or after 20 milliseconds of charging, as shown in Figure 10.16, the capacitor will have charged to

$$
6.32+2.33=8.65 v
$$

This process continues with the capacitor charging 63.2 percent of the remaining difference during each time constant of time until after about live time constants, the capacitor, for all practical purposes, is fully charged with a charge of 9.93 volts as shown in Figure 10.17. Thus, it is assumed for practical cases that it takes five time constants for the capacitor to fully charge

Figure $10.15 E_{C}$ of Example Circuit After IT

Figure 10.16 E_{C} of Example Circuil After 2 ד

Figure $10.17 E_{C}$ of Example Circuit After 5 T

In the example circuit with a time constant of 10 milliseconds, the time required for the capacitor to fully charge to 10 volts can be calculated

$$
\begin{aligned}
5 \tau & =5(10 \mathrm{~ms}) \\
& =50 \mathrm{~ms}
\end{aligned}
$$

It will require 50 milliseconds for the capacitor to fully charge

Universal Time Constant Chart

If a capacitor is charged to a final voltage and then discharged in an RC circuit, the discharge curve - just like the charge curve - will be exponential and governed by time constants. A chart that relates the percent of the final value to time in terms of time constants is the Universal Time Constant Chart (UTCC) shown in Figure 10.18. The curves shown on this chart can be used for any of the exponential rises or decays shown for voltage and current in any RC circuit that is being studied.

By using the time constant chart, the value of voltage across a resistor or capacitor or the amount of current flowing in any RC circuit after an amount of time stated in terms of time constants for the circuit can be determined.

Because the time constant changes if either resistance or capacitance changes, the time is specified in terms of time constants rather than in absolute units of time. Also, because the voltage may not always be 10 volts, 20 volts, or any other specific voltage, the vertical axis is marked in terms of percent of final value only. This also allows the chart to be used for either voltage or current waveforms.

Figure 10.18 Universal Time Constant Chart

UNIVERSAL TIME CONSTANT CURVE INCREASING VALUE

Figure 10.19 Percent E_{C}. Versus Time (τ)

UTCC Related to $\mathbf{E}_{\mathbf{C}}$

Note that the increasing curve of Figure 10.19 has a shape exactly like the shape of the rise of voltage across the capacitor. This can easily be proved true by plotting the voltages actoss the capacitor in the circuit of Figure 10.1 against time measured in time constants for exact multiples of one time constant.

Initially, the voltage across the capacitor is zero when the switch is closed. The origin represents time equals zero and voltage equals zero. This is the time when the switch closes with no initial voltage across the capacitor. As calculated previously and shown in Figure 10.17, after one time constant, (10 milliseconds), the voltage across the capacitor equals 6.32 volts (63.2 percent of maximum)

After two time constants, 20 milliseconds, the voltage across the capacitor equals 8.65 volts or 86.5 percent of maximum. After three time constants, 30 milliseconds, E_{C} equals 9.5 volts or 95 percent of maximum. After four time constants, 40 milliseconds. E C $_{C}$ equals 9.82 volts or 98 percent of maximum. And after five time constants, the voltage across the capacitor is equal to 9.93 volts or 99 percent of maximum

If all of these points are connected with a smooth curve. the result is the rising curve shown on the UTCC of Figure 10.18 and Figure 10.19.

Exponential Characteristic of the UTCC

The shape of these curves follows a precise mathematical relationship which involves an exponent containing the time constant term. Because of the exponent containing the tine constant term. they are called exponential curves. This characteristic results in the terms exponential increase or exponential decrease. Because these exponential equations are complex mathematically, the chart is used to provide a direct-read capability.

Figure 10.20 Exponential Characteristics of Curves

UTCC Related to Circuit Current and $\mathbf{E}_{\text {R }}$

Recall that it was stated earlier that the exponential curve applies to decreasing waveforms as well as to increasing waveforms. An example is the circuit current waveform which is maximum initially and decreases to zero in five time constants, as shown by the curve in Figure 10.20. The same waveform applies to the voltage across the resistor. This decaying waveform is simply a mirror image of the rising exponential waveform shown in Figure 10.19.
At one time constant the decaying waveform has reduced 63.2 percent from its initial value. At two time constants the waveform has reduced 86.5 percent. 95 percent at three time constants, 98 percent at four time constants, and at five time constants an assumed reduction of 100 percent.

This may be expressed a nother way by changing the scale of the curve to percent of initial value as shown in Figure 10.21. In one time constant the exponential curve has decreased by 63.2 percent, to 36.8 percent of its initial value. It is down to 13.5 percent of its initial value in two time constants, 2 percent in four time constants, and it is fully decayed in five time constants.

Using the UTCC

Any instantaneous voliage or current value across or through the components of a dc resistive-capacitive circuit during the charge and discharge of the capacitor can be determined by using the Universal Time Constant Chart. (Later in this lesson, it will also be used in predict values of current and voltage while current is increasing and decreasing in dc resistive-inductive circuits.) For instance, using the UTCC the percent of full charge on the capacitor after any charging time or time constant period can be determined

Figure 10.22 shows that after one and one-half time constants the percent of full charge, from the UTCC chart, is approximately 78 percent. If the applied voltage is 10 volts, as shown in Figure 10.23a, the voltage across the capacitor, E_{C} at this time is 78 percent of 10 volts which is 7.8 volts. This is shown graphically in Figure 10.23 b. If 50 volts were applied, as shown in the circuit of Figure $10.24 a, \mathrm{E}_{\mathrm{C}}$ is 78 percent of 50 volts which is 39 volts. This is shown graphically in Figure 10.24b.

Figure 10.21 Exponential Decrease as a Percent of Initial Value

Figure $10.22 E_{c}$ After 1.5τ

Figure 10.23 a. Circuit with a 10 -voll Source Vollage: b. Er. After 1.5 T

If. however, one wants to know the current in the circuit or the voltage across the resistor after a specified number of time constants the percent of maximum must be read from the decaying exponential waveform. After one and one-half time constants, for example, the percent of maximum read from the chart for current or voltage across the resistor is 22 percent as shown in Figure 10.25. If the maximum current in the circuit is 10 milliamperes then after one and one-half time constants, the current has decreased to 22 percent of 10 milliamperes which is 2.2 milliamperes $(0.22 \times 10 \mathrm{~mA}=2.2 \mathrm{~mA})$. This shown graphically in Figure 10.26
If the maximum voltage across the resistor was 30 volts, then after one and one-half time constants. the voltage across the resistor has decreased to 22 percent of 30 volts which is 6.6 volts $(0.22 \times 30 \mathrm{~V}=6.6 \mathrm{~V})$. This is shown graphically in Figure 10.27.
During the discharge of the capacitor, the chart again is used. However, the appropriate curve must be chosen

Converting Time to Time Constants

Sometimes it is necessary to convert from time to time constants. The technique is as follows. To find the number of time constants that a specified time represents. simply divide the time, in seconds, by the number of seconds in one time constant.

$$
\begin{aligned}
& \text { Number of } \\
& \text { Time Constants }
\end{aligned}=\frac{t(\text { seconds })}{T(\text { seconds })}(10-5)
$$

For example, it the value of R in an $R C$ circuit is 100 ohms and the value of C is 200 microfarads, then the time of one time constant, τ, is equal to R times C, and

$$
\begin{aligned}
\tau & =R C \\
& =(100 \Omega)(200 \mu \mathrm{~F}) \\
& =\left(1 \times 10^{2}\right)\left(20 \times 10^{-5}\right) \\
& =20 \mathrm{~ms}
\end{aligned}
$$

a

b

Figure 10.24 a. Circult with a 50 -voll Source Voltage, b. Er. After 1.54

Figure $10.25 I_{C}$ After 1.5τ

Figure 10.26 I After 1.5 T with I_{T} of 10 , Millhamperes

Solving for Instantaneous Voltage and Current Values: Charging

In this example, τ equals 20 milliseconds.
If the number of time constants represented by 60 milliseconds is desired, this is calculated by dividing the time in question, 60 milliseconds in this case, by the length of one time constant, 20 milliseconds.

$$
\begin{aligned}
\text { Number of Time Constants } & =\frac{t}{T} \\
& =\frac{60 \mathrm{~ms}}{20 \mathrm{~ms}} \\
& =3
\end{aligned}
$$

In this example, there are three time constants in 60 milliseconds.

For the same R and C, the number of time constants in 4 milliseconds is calculated:

$$
\begin{aligned}
\text { Number Of Time Constants } & =\frac{1}{\tau} \\
& =\frac{4 \mathrm{~ms}}{20 \mathrm{~ms}} \\
& =0.2
\end{aligned}
$$

In this case, there is 0.2 of a time constant in 4 milliseconds. Similar problems are solved by performing similar calculations.

Solving for Instantaneous Voltage and Current Values: Charging

The original circuit, shown in Figure 10.1 and repeated in Figure 10.28, consists of a 10 kilohm resistor, a 1 microfarad capacitor, and a 10 -volt de source. Recall that one time constant for this circuit equals 10 milliseconds. The voltage across the capacitor, the voltage across the resistor and the current after the capacitor has been charging for 5 milliseconds (5 milliseconds after the switch contacts position 1)can be calculated using the information about time constants discussed in the previous section.

Figure $10.27 E_{R}$ after 1.5 t with E_{T} of 30 volls

Figure 10.28 Example RC circuul

5 milliseconds in terms of time constants is calculated

$$
\text { Number Of Time Constants } \begin{aligned}
(\tau) & =\frac{t}{\tau} \\
& =\frac{5 \mathrm{~ms}}{10 \mathrm{~ms}} \\
& =0.5
\end{aligned}
$$

In the example circuit of Figure $10.28,5$ milliseconds equals 0.5 time constants. The waveforms for the circuit are as shown in Figure 10.29. The maximum capacitor charge, E_{C}, is 10 volts, or the applied voltage. The maximum current initially, is 10 volts $\div 10$ kilohms $=1$ milliampere. 7 'he maximum voltage across the resistor is 10 volts, which is the same as the capacitor's maximum charge.

The Universal Time Constant Chart of Figure 10.20 can be used to determine the percent of maximum voltage across the capacitor. The rising curve, repeated in Figure 10.30 , shows that the percent of maximum voltage across the capacitor after one-half of a time constant is about 40 percent.

$$
\begin{aligned}
\mathbf{E}_{c} & =40 \% \mathbf{E}_{c(\max)} \\
& =(0.40)(10 \mathrm{~V}) \\
& =4 \mathrm{~V}
\end{aligned}
$$

Thus, the voltage across the capacitor after one-half of a time constant (5 milliseconds) is 4 volts.

Using the decaying curve as shown in Figure 10.31, the percent of maximuin current in the circuit after one-half of one time constant is determined to be 60 percent. Said another way, the current has decayed 40 percent from its initial value to a 60 percent value.

$$
\begin{aligned}
I & =60 \% I_{(\text {max })} \\
& =(0.6)(1 \mathrm{~mA}) \\
& =0.6 \mathrm{~mA}
\end{aligned}
$$

Thus, the current in the circuit after 5 milliseconds is 0.6 milliamperes.

Figure 10.29 Waveforms for the Example Circuit of Figure 10.28

Figure 10.30 UTCC Can Be Used to Deternine Percent Es.

Figure 10.31 UTCC Can Be Used to Determine Percent $I_{\text {max }}$

Solving for Instantaneous Voltage and Current Values: Discharging

The voltage across the resistor in the example RC circuit is equal to 60 percent of its maximum value of 10 volts, which is 6 volts $(0.60 \times 10=6$) .

The voltage across the resistor could also have been calculated using Ohm's law:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R}} & =I R \\
& =(0.6 \mathrm{~mA})(10 \mathrm{k} \Omega) \\
& =6 \mathrm{~V}
\end{aligned}
$$

Solving for Instantaneous Voltage and Current Values: Discharging
When the switch is placed in position 2 as shown in Figure 10.32 (Figure 10.9 repeated) the capacitor begins to discharge. This changes circuit action. The instantaneous voltage across the capacitor, across the resistor, and the current in the circuit at a selected time after the switch contacts position 2 can be calculated. This is best described using an example. The values calculated will be those present 30 milliseconds after the switch contacts position 2.
The number of time constants represented by 30 milliseconds is calculated:

$$
\begin{aligned}
\text { Number Of Time Constants } & =\frac{1}{\tau} \\
& =\frac{30 \mathrm{~ms}}{10 \mathrm{~ms}} \\
& =3
\end{aligned}
$$

In this case, there are three time constants. Waveforms for the circuit are as shown in Figure 10.33. The maximum capacitor voltage, E_{C}, is 10 volts at the instant that it begins discharge. The maximum current, $1_{\text {max }}$ is equal to the charge on the capacitor as it begins discharge divided by the resistance.

$$
\begin{align*}
I_{\max } & =\frac{E_{C}}{R} \tag{10-6}\\
& =\frac{10 \mathrm{~V}}{10 \mathrm{k} \Omega} \\
& =1 \mathrm{~mA}
\end{align*}
$$

From the Universal Time Constant Chart in

 Figure 10.34, using the decaying curve, the percent of maximum voltage or current after three time constants is determined to be four percent. Thus, after three time constants:$$
\begin{aligned}
\mathbf{E}_{C} & =4 \% \mathbf{E}_{C_{\max }} \\
& =(0.04)(10 \mathrm{~V}) \\
& =0.4 \mathrm{~V}
\end{aligned}
$$

The charge on the capacitor has decreased from 10 volts to 0.4 volts after three time constants.

After three constants, the current will decrease from $I_{\text {max }}$ to 4 percent of $1_{\text {max }}$:

$$
\begin{aligned}
1 & =4 \% 1_{\max } \\
& =(0.04)(-1 \mathrm{~mA}) \\
& =-0.04 \mathrm{~mA} \\
& =-40 \mu \mathrm{~A}
\end{aligned}
$$

Therefore, after three time constants $1=$ - 40 microamperes

After three time constants, the voltage across the resistor will decrease from $\mathrm{E}_{\text {Rimax }}$ to 4 percent of $E_{R_{\max }}$:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R}} & =4 \% \mathbf{E}_{\mathbf{R}_{\max }} \\
& =(0.04)(-10 \mathrm{~V}) \\
& =-0.4 \mathrm{~V}
\end{aligned}
$$

Thus, $\mathbf{E}_{\mathrm{R}}=-0.4 \mathrm{~V}$.

RC Time Constants Related to Kirchoff's Voltage Law

It is interesting to note that Kirchoffs voltage law is valid for dc RC circuits. At any instant in time the voltage across the resistor plus the voltage across the capacitor equals the applied voltage: $E_{R}+E_{C}=E_{A}$. Initially, at t_{1}, when the switch in the circuit of Figure 10.28 is first contacted at position 1, the voltage across the resistor equals 10 volts, or the applied voltage, and the voltage across the capacitor equals zero volts. This is shown in Figure 10.35. The sum of these two voltages equals 10 volts, or the applied voltage.

Figure 10.34 UTCC Used to Determine Percent $E_{C,}$ I. and E_{R}

Figure 10.35 Waveforms of E_{C} and E_{R} in Example Circuil
After one-half time constant, as calculated previously, the voltage across the resistor is 6 volts, and the voltage across the capacitor is 4 volts. The sum of these voltages is 10 volts $(6 V+4 V=10 V)$.
After five time constants when the voltage across the resistor is 0 volts, the capacitor has charged to 10 volts. The sum of these voltage drops, too, is 10 volts $(0 \mathrm{~V}+10 \mathrm{~V}=10 \mathrm{~V})$.

Rl DC Circuit Analysis: Opposing a Current Increase

By this time, after considering RC circuits with an ac and a dc voltage applied, you have learned that the laws used, such as Kirchoffs law and Ohm's law, apply equally well whether voltages and current have steadystate values or whether they are changing with time. In addition you probably have realized that the actions and reactions and the circuit analysis methods of resistance-capacitive reactance circuits and resistance-inductive reactance circuits are similar. Recognizing that similarity, the discussion and analysis shifts to resistance-inductance (RL) circuits.

Analysis of Circuit Current

The dc RL circuit shown in Figure 10.36 includes a 1 kilohm resistor in series with a 10 millihenry inductor connected through switch S1 to a 10 volt dc power supply. When the switch is open, the current in the circuit is zero.

Remember the basic action of an inductor in the type of circuit which was discussed briefly in Lesson 8. When the switch first contacts position 1, which will be called time t_{1}, the applied voltage causes the current to begin flowing in the direction indicated in Figure 10.36. Recall that if the inductance L is removed and only the resistor is present in the circuit, the current will instantaneously increase to a final value determined by Ohm's law, the applied voltage divided by the resistance in the circuit. This current flow in a resistive circuit is shown in Figure 10.37. The current would rise immediately to 10 mA (10 volts divided by 1 kilohm). However, with an inductor in series with a resistor, the increasing current must pass through the inductor which opposes any change in current. What happens is that as the current initially attempts to increase from zero. the inductor sets up a counter-EMF. This counter EMF across the inductor inhibits the

Figure 10.36 A DC RL Circuit

I with R only at t_{1}

Figure 10.37 Current Flow Whicen a Voltage is Applied to a Purely Resistive Circuit
instantaneous rise of current as shown in Figure 10.38. The counter EMF of the inductor continues its opposition to the change of current until the current finally reaches its maximum value which is limited by the resistance in the circuit.

The rise of current in the inductive circuit follows an exponential curve as did the voltage rise across the plates of a capacitor. The maximum value of current is equal to the value of the applied voltage divided by the value of the resistance:

$$
\begin{equation*}
I_{\max }=\frac{\mathbf{E}_{\mathrm{T}}}{\mathrm{R}} \tag{10-7}
\end{equation*}
$$

Thus, the maximum current in the example circuit of Figure 10.36 can be calculated:

$$
\begin{aligned}
I_{\max } & =\frac{E_{r}}{R} \\
& =\frac{10 \mathrm{~V}}{1 \mathrm{k} \Omega} \\
& =10 \mathrm{~mA}
\end{aligned}
$$

Calculation of $\mathbf{E}_{\mathbf{R}}$

Since the voltage across the resistor is a direct result of the current flowing in the circuit, the voltage rise will appear similar to the rise of current. The voltage across the resistor will have a maximum value which can be expressed by Ohm's law

$$
\begin{equation*}
\mathbf{E}_{\mathbf{R}}=\mathbf{I R} \tag{10-8}
\end{equation*}
$$

Thus the voltage across the resistor in the example de RL circuit is calculated:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R}} & =I R \\
& =(10 \mathrm{~mA})(1 \mathrm{k} \Omega) \\
& =10 \mathrm{~V}
\end{aligned}
$$

For a value of maximum current equal to 10 milliamperes, E_{R} equals 10 volts.

10 mA

Figure 10.38 Curient Flow When a Voliage Is Applied to all RL Circult

Calculation of \mathbf{E}_{L}

When the switch of the circuit in Figure 10.36 is placed in position 1, no current flows instantly, and no voltage appears across the resistor: $1=0 ; \mathrm{E}_{\mathrm{R}}=0$. Remember that this is a series circuit with a dc voltage applied Because of this, Kirchoffs voltage law applies. and the applied voltage must equal the sum of the voltage drops in the circuit which are the voltage across the resistor, E_{R}, plus the voltage across the inductor, E_{L} :

$$
\begin{equation*}
\mathbf{E}_{\mathbf{T}}=\mathbf{E}_{\mathbf{R}}+\mathbf{E}_{\mathbf{L}} \tag{10-9}
\end{equation*}
$$

Because the voltage across the resistor is zero, the 10 volts applied to the circuit must all be dropped across the inductor. That is, the counter EMF is 10 volts and $\mathbf{E}_{\mathbf{T}}=\mathbf{E}_{\mathbf{L}}$. In addition, this is physically correct because the voltage across the inductor is equal to the inductance times the rate of change of current:

$$
\begin{equation*}
E_{\mathrm{L}}=\mathrm{L}\left(\frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}\right) \tag{10-10}
\end{equation*}
$$

$\frac{\Delta I}{\Delta t}$ also is expressed in many instances as $\frac{d I}{d t}$

Calculation of \mathbf{E}_{L}

As a result, the voltage across the inductor, E_{L}, appears as shown in the waveform of Figure 10.39. Its highest value of 10 volts is at time t_{1} where the rate of change of currellt is at its maximum.

As the voltage across the resistor increases, as shown in Figure 10.40, the voltage across the inductor must decrease to satisfy Kirchoffs law. When the current, 1 , has reached its maximum value, it stops changing value and the counter EMF across the inductor is zero. Recall that this is true because the counter EMF is a result of the inductor's opposition to a change of current value. When the current reaches its maximum value the magnetic field surrounding the inductor is fully expanded as shown in Figure 10.41. The voltage across the resistor is now maximum, and it equals the applied voltage, thus obeying Kirchoffs voltage law.

DC RL Circuit Analysis: Opposing Current Decrease

What will happen to a de RL circuit when there is no longer voltage available to continue to supply current to the inductor? The way to find out is to stop the voltage. So assume that in the example RL circuit that the switch is placed in position 2 as shown in Figure 10.42. (The switch is of a type that makes contact at position 2 before it breaks contact at position 1.) Effectively, the applied voltage is removed from the circuit, and the resistor and inductor are connected in parallel with each other.

Figure 10.39 Voltage Waveform Across the Inductor

Figure 10.40 Voltage Wiaveform Across the Resistor

Figure 10.41 Effecl of Counter EMF in a de RL Circuil

Analysis of Circuit Current

Since the power supply has been disconnected, there is now no external voltage source to maintain current through the inductor and resistor. Thus, the magnetic field surrounding the inductor begins to collapse, and current begins to decrease in the circuit. As shown in Figure 10.43, the current direction is still the same, but it is becoming less and less in magnitude. The inductor, therefore, will generate a counter EMF to oppose the decrease in current. Thus, the collapsing magnetic field generates an EMF of the polarity shown in Figure 10.43 to keep current flowing in the circuit - to keep current from decreasing. The decay of current is exponential, as shown in Figure 10.44, because of the action of the inductor.

Analysis of $\mathbf{E}_{\mathbf{R}}$

The voltage across the resistor, which is a result of the current. decreases as the current decreases. This is evident in the decreasing curve after time t_{2} in the waveform representing \mathbf{E}_{K} in Figure 10.44. The counter EMF across the inductor has changed polarity in order to oppose the decrease in current.

Analysis of $\mathbf{E}_{\mathbf{L}}$

To help clarify this fact, remember that because the magnetic field around the inductor is collapsing, the flux lines are now cutting the windings of the inductor in the opposite direction from the direction that occurred when the magnetic field was increasing. When the magnetic field was increasing because of a changing current that was increasing, the counter EMF set up opposed the increase in current. Now, however, when the current decreases, the collapsing magnetic field sets up a counter EMF that now aids the current flow - to keep it going - 10 keep it from decreasing.

Figure 10.42 Example RL Circuit with Switch SI in Position 2

Figure 10.43 Parallel Relationship of R and L in Example Circut

Figure 10.44 Waveforms of E_{R} and E_{1}.

Therefore, the counter EMF is of the opposite polarity because it aids the current flowing instead of opposing it.

Summary of Current and Voltage Changes as
 Current Decreases

In summary, then, when the switch is placed in position 2 in the circuit shown in figure 10.42 the current exponentially decreases from 10 milliamperes to zero, as shown in Figure 10.45. The voltage across the resistor decreases from 10 volts to zero. And the voltage across the inductor changes pularity, and decreases in magnitude from - 10 volts to zero.

RL Time Constants

The time duration of these changes of voltage and current, like in the RC circuit, are measured in terms of time constants.

RL Time Constants Defined

The time constant of a series RL circuit is equal to the value of the inductor, in henrys, divided by the value of the resistor in ohms:

$$
\begin{equation*}
T=\frac{\mathbf{L}}{\mathbf{R}} \tag{10-11}
\end{equation*}
$$

The time constant of an RL circuit is defined as the amount of time necessary for the current in the circuit to reach 63.2 percent of its maximum value.

Calculation of an RL Time Constant

In the example RL circuit with the switch in position $1, L=10$ millihenries, $\mathrm{R}=1$ kilohm. Thus, the time constant is calculated:

$$
\begin{aligned}
T & =\frac{L}{R} \\
& =\frac{10 \mathrm{mH}}{1 \mathrm{k} \Omega} \\
& =\frac{10 \times 10^{-3} \mathrm{H}}{1 \times 10^{3} \Omega} \\
& =10 \times 10^{-6} \text { seconds } \\
& =10 \mu \mathrm{~s}
\end{aligned}
$$

Figure 10.45 W'aveforms in Example RL Circull with Swith in Posilion 2

The time constant is 10 microseconds.
Five time constants are required for the current in the circuit to reach its maximum value. In the circuit the time constant is 10 microseconds. Therefore, five time constanis equal 50 microseconds. Thus, it takes 50 microseconds for the current in the circuit to reach a value of 10 milliamperes. When the current decreases it also takes five time constants (50 microcseconds) for the current to decrease to zero provided that the current flows through the same resistance and inductance. Figure 10.46 graphically illustrates the time required for the current to increase or decrease in the example RL circuit

The UTCC and DC RL Circuit

Since the voltages and currents in an RL. circuit increase and decrease exponentially and follow similar equations to the ones used for the RC circuit, the Universal Time Constant Chart can be used to determine voltages and/or current in the RL circuit during their rise or decay.

RL Circuit Summary

A typical RL circuit will be used to show you how to use the UTCC to determine voltages and currents in such a circuit. The RL. circuit is shown in Figure 10.47. It is composed of an 8 henry inductor and 100 ohm resistor connected through a switch, SI, as shown, to an applied voltage of 20 volts.

The time constant is calculated

$$
\begin{aligned}
T & =\frac{L}{R} \\
& =\frac{8 H}{100 \Omega} \\
& =0.08 \text { seconds } \\
& =80 \mathrm{~ms}
\end{aligned}
$$

The maximum voltage across the resistor and inductor is the applied voltage of 20 volts.

The maximum current is calculated using Ohm's law:

$$
\begin{aligned}
\mathbf{I}_{\text {mox: }} & =\frac{E_{T}}{\mathbf{R}} \\
& =\frac{20 \mathrm{~V}}{100 \Omega} \\
& =0.2 \mathrm{~A} \\
& =200 \mathrm{~mA}
\end{aligned}
$$

The current will take five time constants to reach its final value. Since it takes 80 milliseconds for one time constant, it will take 400 milliseconds to reach its maximum value of 200 milliamperes, $(5 \times 80 \mathrm{~ms}=400 \mathrm{~ms})$.

Figure 10.46 Time Required for the Current to Increase or Decrease in Example RL Circuit

Figure 10.47 Example RL Circuit for Discussion of UTCC

Solving for Instantaneous Voltage and Current Values: Increasing Current

Solving for Instantaneous Voltage and Current Values: Increasing Current Suppose that one wants to know the value of the current, the voltage across the resistor, and the voltage across the inductor 160 milliseconds after the switch contacts position 1 as shown in Figure 10.48
First, 160 milliseconds must be converted into terms of time constants. To do this, simply divide the time by the amount of time per time constant. In this case, the number of time constants represented by 160 milliseconds is 160 milliseconds divided by 80 milliseconds or two time constants.

$$
\begin{aligned}
\text { Number Of Time Constants } & =\frac{t}{\tau} \\
& =\frac{160 \mathrm{~ms}}{80 \mathrm{~ms}} \\
& =2
\end{aligned}
$$

Using the Universal Time Constant Chart the percent of maximum current is determined. This is about 86 percent. Therefore,

$$
\begin{aligned}
I & =86 \% I_{\text {max }} \\
& =(0.86)(200 \mathrm{~mA}) \\
& =172 \mathrm{~mA}
\end{aligned}
$$

86 percent of 200 milliamperes is 172 milliamperes. Thus, the current in the circuit after 160 milliseconds is 172 milliamps.
The instantaneous voltage across the resistor can be calculated in the same way. However, since the voltage across the resistor is a result of the current in the circuit, the voltage across the resistor can be determined by using Ohm's law and the value of the current.

$$
\begin{aligned}
E_{\mathbf{R}} & =I R \\
& =(172 \mathrm{~mA})(100 \Omega) \\
& =17.2 \mathrm{~V}
\end{aligned}
$$

In this example, $\mathbf{E}_{\mathbf{R}}$ is 17.2 volts after 160 milliseconds.

Figure 10.48 Waveform A nalysis after 160 Milliseconds
The voltage across the inductor can be determined by using the chart. However, it can also be calculated. The calculation is based on the fact that the voltage across the resistor, E_{R}. plus the voltage across the inductor, E_{L}, must equal the applied voltage, E_{T}. Mathematically,

$$
\mathbf{E}_{\mathbf{T}}=\mathbf{E}_{\mathbf{R}}+\mathbf{E}_{\mathbf{L}}
$$

This expression can be rewritten to calculate \mathbf{E}_{2} :

$$
\mathbf{E}_{\mathbf{L}}=\mathbf{E}_{\mathbf{T}}-\mathbf{E}_{\mathbf{R}}
$$

Therefore, if the voltage across the resistor is 17.2 volts:

$$
\begin{aligned}
\mathbf{E}_{\mathrm{L}} & =\mathbf{E}_{\mathrm{T}}-\mathbf{E}_{\mathrm{R}} \\
& =20 \mathrm{~V}-17.2 \mathrm{~V} \\
& =2.8 \mathrm{~V}
\end{aligned}
$$

The voltage across the inductor 160 milliseconds after t_{1} is 2.8 V .

Solving for Instantaneous Voltage and

 Current Values: Decreasing CurrentOnce the current has reached maximum, the switch in the circuit, as shown in Figure 10.49, is changed to position 2. For an example, the voltages and currents in that circuit will be calculated for a time 80 milliseconds after the switch has contacted position 2. The waveforms for E_{R}, E_{1}, and 1 are shown in Figure 10.50.
First, the number of time constants after t_{2} is calculated

$$
\begin{aligned}
\text { Number Of Time Constants } & =\frac{1}{T} \\
& =\frac{80 \mathrm{~ms}}{80 \mathrm{~ms}} \\
& =1
\end{aligned}
$$

Using the Universal Time Constant Chart, the percent to which the maximum current has decayed after one time current is determined as 37%. As shown in Figure 10.51. the current value after 80 milliseconds (one time constant) can be calculated:

$$
\begin{aligned}
I & =37 \% I_{\max } \\
& =(0.37)(200 \mathrm{~mA}) \\
& =74 \mathrm{~mA}
\end{aligned}
$$

Figure 10.49 Example RL. Circuit with Switch SI in Position 2

Figure 10.50 Waveforms for E_{R}, E_{L} and I for Example RL Circuit

Figure 10.51 Percent Current Related to 1 т on UTCC

Thus, the current 80 milliseconds after time t_{2} is 74 milliamperes. This is shown graphically in Figure 10.52.

The voltage across the resistor, F_{R} after 80 milliseconds is equal to 37 percent of $E_{R \text { max }}$ and can be calculated:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R}} & =37 \% \mathbf{E}_{\mathbf{R}_{\max }} \\
& =(0.37)(20 \mathrm{~V}) \\
& =7.4 \mathrm{~V}
\end{aligned}
$$

This is shown graphically in Figure 10.53. Remember that Kirchoff's voltage law must be satisfied; therefore, the voltage across the inductor, E_{L}, after 80 milliseconds is 37 percent of $E_{\text {Lmax }}$ but negative.

$$
\begin{aligned}
\mathbf{E}_{\mathrm{L}} & =37 \% \mathbf{E}_{\mathrm{Lmax}} \\
& =(0.37)(-20 \mathrm{~V}) \\
& =-7.4 \mathrm{~V}
\end{aligned}
$$

This is shown graphically in Figure 10.54
Consequently, in the example circuit 80 milliseconds after t_{2}, current will be $74 \mathrm{~mA}_{\text {, }}$ the voltage across the resistor will be 7.4 volts and the voltage across the inductor will be -7.4 volts.

Summary

In this lesson the effect of dc voltage transitions on resistive-capacitive, and resistive-inductive circuits was discussed. The basic action of a capacitor and an inductor was reviewed again, and the concept of the time constant was introduced. The exponential curves describing the rise of voltage across a capacitor in an RC circuit or the rise of inductive current in an RL circuit were explained. And the Universal Time Constant Chart and its application in the calculation of instantaneous values of voltage and current (transient responses) of RC and RL circuits were described.

Figure 10.52 Example RL Circuil I Waveform

Figure 10.53 Example RL Circuit E_{R} Waveform

Figure 10.54 Example $R L$ Circuil E_{L} Waveform

1. Given the values for R and C below, calculate the time of one time constant.
a. $\mathbf{R}=60 \mathrm{k} \Omega, \mathrm{C}=0.02 \mu \mathrm{~F}, \mathrm{IT}=$ \qquad
b. $R=5 \mathrm{k} \Omega, C=30 \mu \mathrm{~F}, \mathrm{I} \tau=$ \qquad

Solution

$$
\text { a. } \begin{aligned}
1 \mathrm{~T}_{(\mathrm{s})} & =\mathrm{R}_{(\Omega)} \times \mathrm{C}_{(\mathrm{F})}=60 \mathrm{k} \Omega \times 0.02 \mu \mathrm{~F}=60 \times 10^{3} \times 0.02 \times 10^{-6} \\
& =1.2 \times 10^{-3} \mathrm{~s}=1.2 \mathrm{~ms}
\end{aligned}
$$

b. $\quad 1 \tau=\mathrm{R} \times \mathrm{C}=5 \times 10^{3} \times 30 \times 10^{6}=\mathbf{0 . 1 5} \mathrm{s}$
2. Given the values for 1τ and R below, calculate the value of C
a. $\quad 1 \tau=5 \mathrm{~ms}, \mathrm{R}=30 \mathrm{k} \Omega, \mathrm{C}=$ \qquad
b. $1 \tau=30 \mu \mathrm{~s}, \mathrm{~K}=47 \Omega, \mathrm{C}=$ \qquad
Solution.
a. $C=\frac{1 \tau}{R}=\frac{5 \mathrm{~ms}}{30 \mathrm{k} \Omega}=0.167 \mu \mathrm{~F}$
b. $C=\frac{1 \tau}{R}=\frac{30 \mu \mathrm{~s}}{47 \Omega}=0.638 \mu \mathrm{~F}$
3. Given the values for 1τ and C below, calculate the value of R.
a. $\quad I \tau=5 \mathrm{~s}, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{R}=$ \qquad
b. $\quad 1 \tau=5 \mathrm{~ms}, \mathrm{C}=0 . I \mu \mathrm{~F}, \mathrm{R}=$ \qquad

Solution

a. $R=\frac{1 \tau}{C}=\frac{5 \mathrm{~s}}{0.1 \mu \mathrm{~F}}=50 \mathrm{M} \Omega$
b. $R=\frac{1 \tau}{C}=\frac{5 \mathrm{~m} \mathrm{~s}}{0.1 \mu \mathrm{I}^{i}}=50 \mathrm{k} \Omega$
4. Calculate one time constant for this circuit.

Worked-Out Examples

Solution:

$l_{(3)}=R \times C=5 k \Omega \times 1 \mu F=\left(5 \times 10^{3}\right)\left(1 \times 10^{-6}\right)=5 \times 10^{-3}$ seconds or 5 ms
5. Calculate one time constant for this circuit

Solution:
$I_{T_{(s)}}=\frac{L}{R}=\frac{6 H}{2 \mathrm{k} \Omega}=\frac{6}{2 \times 10^{3}}=3 \times 10^{-3}$ seconds or 3 ms
6. For the circuit in Problem 4, draw the waveforms showing $\mathbf{E}_{\mathbf{C}}, \mathbf{E}_{\mathbf{R}}$, and I while the switch is in position 1 and position 2 for 5 time constants.

7. For the circuit in Problem 4, calculate the following:
a. $\mathbf{I}_{\text {max }}=$ \qquad
b. $\mathbf{E}_{\text {C.max }}=$ \qquad
c. $\mathbf{E}_{\mathbf{R}_{\text {max }}}=$ \qquad
d. $5 \mathrm{~T}=$ \qquad

Solution.

a. $I_{\text {max }}=\frac{E_{A}}{R}=\frac{20 \mathrm{~V}}{5 \mathrm{k} \Omega}=4 \mathrm{~mA}$
b. $E_{\text {C.inax }}=E_{A}=20 \mathrm{~V}$
c. $E_{R_{\text {max }}}=E_{A}=20 V$
d. $5 \mathrm{~T}=5 \times 1 \mathrm{~T}=5 \times 5 \mathrm{~ms}=25 \mathrm{~ms}$
8. If I time constant equals 20 ms , calculate the number of time constants if:
a. \quad time $=6 \mathrm{~ms}$
b. tine $=30 \mathrm{~ms}$
c. time $=50 \mathrm{~ms}$
d. tine $=80 \mathrm{~ms}$

Solution

a. number of $\tau=\frac{\text { time }}{\text { time of } 1 \tau}=\frac{6 \mathrm{~ms}}{20 \mathrm{~ms}}=0.3$
b. number of $\tau=\frac{30 \mathrm{~ms}}{20 \mathrm{~ms}}=1.5$
c. number of $\tau=\frac{50 \mathrm{~ms}}{20 \mathrm{~ms}}=2.5 \mathrm{~ms}$
d. number of $\tau=\frac{80 \mathrm{~ms}}{20 \mathrm{~ms}}=4$
9. If I time constant equals $50 \mu . \operatorname{s}$, calculate the time interval if:
a. number of time constants equals 0.7τ
b. number of time constants equals 1.3τ
c. number of time constants equals 2.5 T
d. number of time constants equals 3.8τ

Solution:

a. \quad time $=0.7 \times 50 \mu \mathrm{~s}=35 \mu \mathrm{~s}$
b. time $=1.3 \times 50 \mu \mathrm{~s}=65 \mu \mathrm{~s}$
c. time $=2.5 \times 50 \mu \mathrm{~s}=125 \mu \mathrm{~s}$
d. time $=3.8 \times 50 \mu \mathrm{~s}=190 \mu \mathrm{~s}$
10. For the circuit in Problem 4, calculate the following instantaneous circuit values 12 ms after the switch is placed in position 1
a. $\mathbf{E}_{\mathrm{C}}=$ \qquad
b. $\quad \mathbf{E}_{\mathbf{R}}=$ \qquad
c. $1=$ \qquad

Solution:

(1) Calculate the number of time constant represented by 12 ms :
number of time constants $=\frac{\text { time }}{\text { time of one time constant }}=\frac{12 \mathrm{~ms}}{5 \mathrm{~ms}}=2.4 \tau$
(2) Use UTCC to determine percent of maximum circuit value after 2.4 :
$2.4 \tau=90 \%$ of E_{C}
$2.4 \mathrm{~T}=10 \%$ of E_{R} and I
a. $\mathbf{E}_{\mathrm{C}}=0.9 \times 20 \mathrm{~V}=18 \mathrm{~V}$
b. $E_{R}=0.1 \times 20 \mathrm{~V}=2 \mathrm{~V}$
c. $1=0.1 \times 4 \mathrm{ma}=0.4 \mathrm{~mA}$

1. Calculate one time constant for the circuit below.

2. Calculate one time constant for the circuit below.

3. For the circuit in I'roblem 2, calculate the following:
a. $I_{\text {max }}=$ \qquad
b. $\quad \mathbf{E}_{\text {Lmax }}=$ \qquad
c. $\mathfrak{E}_{\text {RTIAX }}=$ \qquad
d. $5 \tau=$ \qquad
4. For the circuit in Problem 2, draw the waveforms showing $\mathbf{E}_{\mathbf{L}}, \mathrm{E}_{\mathrm{R}}$, and I while the switch is in position I for 5 time constants.
5. If It time constant equals 8 ms , calculate the number of time constants if:
a. time $=3 \mathrm{~ms}$
b. \quad time $=10 \mathrm{~ms}$
c. time $=20 \mathrm{~ms}$
d. \quad time $=38 \mathrm{~ms}$
6. For the circuit in Problem 2, assume that the switch was in position I for 5 time constants and is moved to position 2 .
a. $\mathbf{E}_{\mathrm{L}}=$ \qquad
b. $\mathbf{E}_{\mathrm{R}}=$ \qquad
c. $1=$ \qquad
7. If $R=10 \mathrm{k} \Omega$ and $\mathrm{C}=0.004 \mu \mathrm{~F}$, calculate $\mathrm{I} \tau$
8. If $1 \tau=73 \mathrm{~ms}$ and $\mathrm{R}=360 \Omega$, calculate C .
9. If $I \tau=471 \mu \mathrm{~s}$ and $\mathrm{C}=0.015 \mu \mathrm{~F}$, calculate K
10. If $1 \tau=37 \mathrm{~ms}$, calculate the time it takes to charge the capacitor in an RC time
11. Calculate one time constant for the circuit below

12. Calculate one time constant for the circuit below

13. For the circuit in Question 1, calculate the following:
a. $I_{\text {max }}=$ \qquad
b. $\mathbf{E}_{\text {Cmax }}=$ \qquad
c. $\mathbf{E}_{\mathbf{R}_{\text {max }}}=$ \qquad
d. $5 \tau=$ \qquad
14. For the circuit in Question 2, assume switch has been in position 1 for 5 time constants and then moved to position 2. Draw the waveforms showing E_{L}, E_{R}, and I for 5 time constants after the switch is moved to position 2.
15. If 1 time constant equals 25 ms , calculate the time interval for the following time constants.
a. 1.5τ
b. 3τ
c. 4.0τ
d. 4.5τ
16. If 1 time constant equals 1.8 ms , calculate the number of time constants for the following time intervals.
a. 0.8 ms
b. $\quad 1.2 \mathrm{~ms}$
c. 3.2 ms
d. 5.0 ms
17. For the circuit in Question 1, calculate the following instantaneous circuit values $600 \mu \mathrm{~s}$ after the switch is moved to position 1
a. $\mathbf{E}_{\mathrm{C}}=$ \qquad
b. $\mathbf{E}_{\mathbf{R}}=$ \qquad
c. $\mathbf{I}=$ \qquad
18. If $R=630 \Omega$ and $C=15 \mu \mathrm{~F}$, calculate $\mathrm{I} \tau$.
19. If $I \tau=43 \mu \mathrm{~s}$ and $\mathrm{R}=65 \mathrm{k} \Omega$, calculate C .
20. If $\mathrm{I} \tau=33 \mathrm{~ms}$ and $\mathrm{C}=0.005 \mu \mathrm{~F}$, calculate \mathbf{R}.

LESSON 11

RLC Circuit Analysis

> In this lesson, series and parallel circuits with resistors, capacitors, and inductors are analyzed. Many of the same techniques used in the solution of resistive-capacitive and resistive-inductive circuits are used in this analysis. Phasor diagrams provide descriptions of the circuits that lead to Pythagorean theorem solutions of certain circuit values.

At the end of this lesson, you should be able to:

1. Draw phasor diagrams showing the phase relationships of various circuit values in series and parallel RLC circuits.
2. Identify the various circuit values in series and parallel RLC circuits that can be determined by Pythagorean theorem analysis
3. Identify the positive and negative phase angles in series and parallel RLC circuits.
4. Calculate total reactance, total reactive current, total reactive voltage, and total reactive power in RLC circuits.
5. Given schematic diagrams and typical circuit values for the circuits below, calculate current, voltage, impedance and power values

INTRODUCTION

In previous lessons, series and parallel RI and RC circuits with ac voltage sources have been discussed, and you learned several useful techniques for calculating values in RL and RC circuits. In this lesson, discussion will concern an analysis of more complicated circuits consisting of series and parallel combinations of resistance, inductance, and capacitance. These circuits are called RI.C circuits. In this lesson, you will simply apply the techniques you have already learned to determine RLC circuit values.

Series RlC Circuits Summarized

The first circuit combination of resistance, capacitance and inductance to be analyzed is one that is connected in series. It is shown in Figure 11.1, and is called a series RLC circuit

Phase Differences

As in any series resistive-reactive circuit, the simple sum of the voltage drops in the circuit does not equal the applied voltage.

$$
\begin{equation*}
\mathbf{E}_{A} \neq \mathbf{E}_{\mathbf{R}}+\mathbf{E}_{\mathrm{L}}+\mathbf{E}_{\mathrm{C}} \tag{11-1}
\end{equation*}
$$

Recall that this occurs because of the different phase relationships between the voltage and current for each component.

Current as a Reference

Recall that in a series circuit as shown in Figure 11.1, the current is the same throughout the circuit. Therefore, as shown in Figure 11.2, it will be used as the reference quantity when discussing the phase relationships of the voltages in the circuit.

Development of a Circuit Phasor Diagram

Also recall that as shown in Figure 11.3 the voltage across the resistor, E_{R}, is in phase with the current passing through it . This is the circuit current so the voltage across the resistor is in phase with the circuit current.

The voltage across a capacitor, E_{c}, lags the current through it by 90 degrees, as in any capacitive circuit, and as shown in Figure 11.4 The current again is the circuit current so that E_{C} lags the circuit current by 90 degrees. Finally, the voltage across the inductor, $\mathbf{E}_{1 .}$, leads the current through it, the circuit current, by 90 degrees as shown in Figure 11.5. Plotting all of these on the same diagram, the phase relationships of the voltages and current in this series RLC circuit can be compared as shown in Figure 11.6

Voltage Phasor Comparisons

As you can see in Figure 11.6, the voltage across the inductor, E_{L}, leads the voltage across the resistor, E_{R}, by 90 degrees and leads the voltage across the capacitor, E_{c} by 180 degrees.

Because of the 180 -degree phase difference between the voltage across the inductor, E_{L}, and the voltage across the capacitor, \mathbf{E}_{C}, these two reactive voltages are opposite in phase, as shown in Figure 11.7, and one value partially cancels the effect of the other

Calculations of $\mathbf{E x}_{\mathbf{x}}$

Because of the partial cancellation, a net reactive voltage, $E_{\mathbf{x}}$, exists which is equal to the difference between the two reactive voltages, E_{L} and E_{C} as shown in Figure 11.8. If \mathbf{E}_{L} is larger than $\mathbf{E}_{\mathbf{C}}$, the net reactive voltage is in phase with $\mathbf{E}_{\mathbf{L}}$. A positive $\mathbf{E}_{\mathbf{x}}$ indicates that it is in phase with \mathbf{E}_{L}. If $\mathbf{E}_{\mathbf{C}}$ is larger than \mathbf{E}_{L}, the net reactive voltage is in phase with E_{C}. A negative E_{x} indicates that it is in phase with $\mathbf{E}_{\mathbf{C}}$. The sign of $\mathbf{E}_{\mathbf{X}}$ indicates its direction on the Y (reactive) axis.

Figure 11.4 Voltage and Current Relationship of Capacitance

Figure 11.5 Voltage and Current Relationship of Inductance

Figure 11.6 Phase Relationships in Example RLC Series Circuits

Calculation of $\mathbf{E}_{\boldsymbol{A}}$

If E_{L} and E_{C} are known, it is possible to calculate the applied voltage, E_{A}. For example, assume that E_{L} is larger than E_{C} The net reactive voltage, E_{X}, will, therefore, be in phase with E_{L} as shown in Figure 11.8 E_{A} is then calculated by extending the phasor E_{A} from the origin as shown in Figure 11.9
Note that if the phasor E_{X} is shifted to the riglot so that it extends between the tip of E_{R} and the tip of E_{A}, the right triangle for vector addition becomes apparent. By the Pythagorean theorem, E_{A} equals the square root of $F_{R_{R}}$ squared plus E_{X} squared:

$$
\begin{equation*}
\mathbf{E}_{\mathrm{A}}=\sqrt{\mathbf{E}_{\mathbf{R}}^{2}+\mathbf{E}_{\mathrm{x}}{ }^{2}} \tag{11-2}
\end{equation*}
$$

Since E_{X} is the net difference between E_{L} and E_{C}.

$$
\begin{equation*}
\mathbf{E}_{X}=\mathbf{E}_{\mathrm{L}}-\mathbf{E}_{\mathrm{C}} \tag{11-3}
\end{equation*}
$$

Substituting this expression for $\mathbf{E}_{\mathbf{x}}$ into equation $11 \cdot 2$, the applied voltage is equal to the square root of \mathbf{E}_{R} squared plus $\mathbf{E}_{\mathbf{L}}$ minus E_{C} quantity squared as shown in equation 11-4

$$
\begin{equation*}
E_{A}=\sqrt{E_{R}^{2}+\left(E_{L}-E_{C}\right)^{2}} \tag{11-4}
\end{equation*}
$$

This equation described the relationship between the voltages present in the series RLC circuit.

Calculation of Circuit Voltage Values

Since, by Ohm's law,

$$
\begin{equation*}
\mathbf{E}=\mathbf{I} \mathbf{R} \tag{11-5}
\end{equation*}
$$

the voltage across the resistor is the current through it times the resistance.

$$
\begin{equation*}
\mathbf{E}_{\mathbf{R}}=\mathrm{IR} \tag{11-6}
\end{equation*}
$$

Because

$$
\mathbf{I}_{\mathbf{R}}=\mathbf{I}_{\mathrm{L}}=\mathbf{I}_{\mathrm{C}}=\mathbf{I}_{\mathrm{T}}
$$

in a series RLC circuit, E_{R} can be expressed:

$$
\begin{equation*}
\mathbf{E}_{\mathbf{R}}=\mathbf{I}_{\mathrm{T}} \mathbf{R} \tag{11-7}
\end{equation*}
$$

Figure $11.7 E_{L}$ and E_{C} Partially Cancel the Effects of the Other

Figure 11.8 Phase of E_{X} when E_{L} is Greater than E_{C}

Figure 11.9 Phase Relationship of E_{N}, E_{R}, and E_{A}

Also, recall that the voltage across an inductor, E_{L}, is equal to the current through the inductance times the inductive reactance. Therefore

$$
\begin{equation*}
\mathbf{E}_{\mathrm{L}}=\mathbf{I}_{\mathbf{L}} \mathbf{X}_{\mathrm{L}} \tag{11-8}
\end{equation*}
$$

and substituting

$$
\begin{align*}
& \mathbf{I}_{\mathbf{L}}=\mathbf{I}_{\mathbf{T}}, \\
& \mathbf{E}_{\mathbf{L}}=\mathbf{I}_{\mathbf{T}} \mathbf{X}_{\mathbf{L}} \tag{11-9}
\end{align*}
$$

The voltage across the capacitor equals the capacitive current times its capacitive reactance:

$$
\begin{equation*}
\mathbf{E}_{\mathrm{C}}=\mathbf{I}_{\mathbf{C}} \mathbf{x}_{\mathbf{C}} \tag{11-10}
\end{equation*}
$$

and substituting

$$
\begin{align*}
& \mathbf{I}_{\mathbf{C}}=\mathbf{I}_{\mathbf{T}} \\
& \mathbf{E}_{\mathbf{C}}=\mathbf{I}_{\mathbf{T}} \mathbf{X}_{\mathbf{C}} \tag{11-11}
\end{align*}
$$

These equivalent IR and IX quantities can be substituted for the voltages of Figure 11.6 they represent on the voltage phasor diagram as shown in Figure 11.10. Then by factoring out the common term of total current, the impedance phasor diagram is formed as shown in Figure 11.11

Calculations of Total Reactance

In a series RLC circuit, the inductive reactance and capacitive reactance are 180 degrees out of phase as shown in Figure 11.11. Because of this, the two reactive quantities are opposite in phase and one partially cancels the effect of the other. The result is a total reactance, called X_{T}, which is equal to the difference between the inductive reactance and the capacitive reactance values:

$$
\begin{equation*}
\mathbf{X}_{\mathbf{T}}=\mathbf{X}_{\mathbf{L}}-\mathbf{x}_{\mathbf{C}} \tag{11-12}
\end{equation*}
$$

If X_{L} is larger than X_{C}, the net total reactance is in phase with X_{L}. This would be indicated by a positive quantity for X_{T}. On the other hand, if X_{C} is larger than X_{1}, the net total reactance is in phase with X_{c}. This would be indicated by a negative X_{T}. The sign of $\mathrm{X}_{\mathbf{T}}$ indicates its direction on the Y (reactive) axis.
 $y_{T} X_{C}$

Figure 11.10 Substituting I_{A} and I_{X} Values

Figure $11.11 X_{L}$ and X_{C} are 180 Degrees Out of Phase
If in the voltage phasor diagram, E_{L} is larger than E_{C} to make E_{x} positive, then to correspond, X_{L} would be larger than X_{C} to make X_{T} positive on the impedance phasor diagram.

Calculation of $\mathbf{Z}_{\mathbf{T}}$

Recall that the total opposition to the flow of ac current in a resistive-reactive circuit is called impedance, Z, as shown in Figure 11.12. The total impedance of a series RLC circuit is equal to the vector sum of the total resistance and net total reactance

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{T}} \text { is vector sum of } \mathbf{R}_{\mathbf{T}} \\
& \text { plus } \mathbf{X}_{\mathbf{T}}
\end{aligned}
$$

Note in Figure 11.12 that if phasor X_{T} is shifted to the right so that it extends between the tip of Z and the tip of K , the right triangle for vectorial addition appears. By the Pythagorean theorem, the total impedance of the circuit is

$$
\begin{equation*}
\mathbf{Z}_{\mathrm{T}}=\sqrt{\mathbf{R}^{2}+\mathbf{X}_{\mathrm{T}}{ }^{2}} \tag{11-14}
\end{equation*}
$$

Since X_{T} is the net difference between X_{L} and X_{C}, per equation $11-12$, substituring this expression for X_{r} into equation $11-14$ gives equation $11-15$ for the total impedance.

$$
\begin{equation*}
\mathbf{Z}_{\mathrm{T}}=\sqrt{\mathbf{R}^{2}+\left(\mathbf{X}_{\mathrm{L}}-\mathbf{X}_{\mathrm{C}}\right)^{2}} \tag{11-15}
\end{equation*}
$$

Calculation of $\mathbf{I}_{\mathbf{T}}$

Recall that the total current in a series RLC circuit is simply equal to the applied voltage divided by the total impedance of the circuit (Ohm's law for ac circuits).

$$
\begin{equation*}
\mathbf{I}_{\mathbf{T}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{Z}_{\mathbf{T}}} \tag{11-17}
\end{equation*}
$$

Once the total current is known, the voltage drops across each component may be determined by Ohm's law as stated in equations 11-7, 11-9, and 11-11.

Calculation of the Phase Angle

Recall that the phase angle is defined as the phase difference between the total applied voltage and the total current being drawn from that voltage supply. Returning to the voltage phasor diagram for the series RLC

Figure 11.12 Impedance Phasor Diagram

Figure 11.13 Voltage Phasor Diagram
circuit, shown in Figure 11.13. remember that the total current in the circuit is used as a reference for determining phase relationships in the circuit. This total current is in phase with the voltage across the resistor. The circuit phase angle between the total applied voltage and the total current drawn from the voltage supply is represented by the angle theta. The tangent of any angle, theta, of a right triangle is:

$$
\begin{equation*}
\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }} \tag{11-17}
\end{equation*}
$$

For the specific angle of Figure 11.13,

$$
\begin{equation*}
\tan \theta=\frac{E_{X}}{E_{R}} \tag{11-18}
\end{equation*}
$$

The arctangent of this ratio equals the value of the phase angle.

$$
\begin{equation*}
\theta=\arctan \frac{E_{X}}{E_{R}} \tag{11-19}
\end{equation*}
$$

Alternative Methods of Calculating the Phase Angle

Since the impedance phasor diagram is proportional to the voltage phasor diagram by a factor of the total current, the phase angle is also equal to the phase difference between the total impedance of the circuit and the resistance as shown in Figure 11.14 For the impedance phasor diagram, the tangent of the phase angle is, using equation 11-17 again and substituting for opposite and adjacent,

$$
\begin{equation*}
\tan \theta=\frac{X_{T}}{R} \tag{11-20}
\end{equation*}
$$

The arctangent of this ratio also equals the value of the phase angle:

$$
\begin{equation*}
\theta=\arctan \frac{X_{T}}{\bar{K}} \tag{11-21}
\end{equation*}
$$

Calculation of Series RLC Circuit
 Power Values

Power calculations in series and parallel RLC circuits are performed in a similar manner to power calculations in series and parallel RL and RC circuits. The primary difference is that both inductive and capacitive reactive power are involved.

Figure 11.14 Phase Angle Related to Voltage and Impedance Phasor Diagrams
As you know, power is voltage times current or $P=E l$. The real power, P_{R}, in watts dissipated by the resistor, is equal to E_{R} times $I_{R} \cdot I_{\mathbf{R}}$ is equal to I_{1}, the total circuit current of the series circuit. Similarly, the reactive power of the inductor, P_{L} in VAR, equals E_{L} times I_{T} and the reactive power of the capacitor, P_{C} in VAR, equals E_{C} times I_{T}.
In series RLC circuits, the power phasor diagram is proportional to the voleage phasor diagram by a factor of the total current as shown in Figure 11.15. The inductive power phasor and the capacitive power phasor are out of phase by 180 degrees. Thus, the resultant reactive power, which is designated $\mathbf{P}_{\mathbf{x}}$, is equal to the difference between the inductive reactive power and the capacitive reactive power as shown in Figure 11.16.
If P_{L} is larger than P_{C}, the net reactive power is in phase with P_{L}. If P_{C} is larger than P_{L}, the net reactive power is in phase with P_{C}. The sign of P_{x} will determine its ultimate vectorial direction.

Recall that the total power in a resistivereactive circuit is the apparent power measured in volts-amperes, and is the vector sum of the resistive or real power and the net reactive power.
Note in Figure 11.17 that if the phasor P_{X} is shifted to the right so that it extends between the tip of the total apparent power and the tip of the real power, the right triangle for vector addition appears. By the Pythagorean theorem:

$$
\begin{equation*}
P_{A}=\sqrt{P_{R}^{2}+P_{X}^{2}} \tag{11-22}
\end{equation*}
$$

Since P_{X} is equal to the difference between P_{L}. and P_{C},

$$
\begin{equation*}
\mathbf{P}_{\mathbf{X}}=\mathbf{P}_{\mathbf{L}}-\mathbf{P}_{\mathbf{C}} \tag{11-23}
\end{equation*}
$$

Substituting this expression for P_{X} into equation $11-22$, the cotal apparent power is:

$$
P_{A}=\sqrt{P_{R}^{2}+\left(P_{L}-P_{C}\right)^{2}}(11-2 t)
$$

which is the relationship between the different types of power in a series RLC circuit.

The total apparent power can also be expressed in $P=E I$ form as

$$
\begin{equation*}
\mathbf{P}_{\mathrm{A}}=\mathbf{E}_{\boldsymbol{A}} \mathbf{I}_{7} \tag{11-25}
\end{equation*}
$$

where E_{A} is the applied voltage and I_{1} the circuit current. The apparent power calculated by using one of these two methods should be identical to the apparent power calculated by using the other method.

Figure 11.15 Voltage and Power Phasor Diagrams

Figure 11.16 Calculation of Total Reactive Power

$$
\text { (VAR) } P_{\mathrm{C}} \mathbf{P}_{\mathrm{L}}(\mathrm{VAR})
$$

Figure 11.17 Total Apparent Power Phasor Diagram

Analysis of a Series RlC Circuit

Figure 11.18 is a series RLC circuit with an applied voltage of 50 volts, 20 ohms resistance, 45 ohms inductive reactance, and 30 ohms capacitive reactance. Impedance, voltage, current, and power calculations will now be made for this circuit using the techniques described

Resistance and Reactance Phasor Diagram

At this point, it is useful to sketch the resistance and reactance phasor diagram to help visualize the relationships between the resistive and reactive quantities of the circuit Figure 11.19 shows such a diagram. Note that X_{L} is larger than X_{C}; thus, the net total reactance is in phase with X_{L} and is, using equation 11-12,

$$
\begin{aligned}
\mathbf{X}_{\mathrm{T}} & =\mathbf{X}_{\mathrm{L}}-\mathbf{X}_{\mathrm{C}} \\
& =45 \Omega-30 \Omega \\
& =15 \Omega
\end{aligned}
$$

Calculation of $\mathbf{Z}_{\mathbf{T}}$

The total impedance, Z_{T}, is equal to

$$
\begin{aligned}
\mathbf{Z}_{\mathbf{T}} & =\sqrt{\mathbf{R}^{2}+\mathbf{X}_{\mathbf{T}}^{2}} \\
& =\sqrt{20^{2}+15^{2}} \\
& =\sqrt{400+225} \\
& =\sqrt{625} \\
& =25 \Omega
\end{aligned}
$$

Calculation of \mathbf{I}_{T}

By using Ohm's law for ac circuits the total current. 1_{T}, can be calculated.

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{Z}_{\mathbf{T}}} \\
& =\frac{50}{25} \\
& =2 \mathrm{~A}
\end{aligned}
$$

Figure 11.18 Series RLC Circuia Example

Figure 11.19 Resistance and Rectance Phasor Diagram
Calculation of Circuit Voltage Values
Using Ohin's law again, the voltage drops across each of the components in the circuit can be calculated.

The voltage across the resistor, E_{R}, is calculated:

$$
\begin{aligned}
E_{R} & =I_{T} R \\
& =(2 A)(20 \Omega) \\
& =40 \mathrm{~V}
\end{aligned}
$$

The voltage across the inductor, E_{L}, is calculated:

$$
\begin{aligned}
\mathbf{E}_{\mathrm{L}} & =\mathbf{I}_{\mathrm{T}} \mathbf{X}_{\mathrm{L}} \\
& =(2 A \mathrm{~A})(45 \Omega) \\
& =90 \mathrm{~V}
\end{aligned}
$$

The voltage across the capacitor, E_{8}, is calculated:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{C}} & =\mathbf{I}_{\mathbf{T}} \mathbf{X}_{\mathbf{C}} \\
& =(2 \mathrm{~A})(30 \Omega) \\
& =60 \mathrm{~V}
\end{aligned}
$$

Calculation of \mathbf{E}_{T}

At first, as shown in Figure 11.20, this result appears impossible since there seems to be more voltage in the circuit than the applied voltage, E_{A}. However, you must keep in mind that the voltage across the inductor and the voltage across the capacitor are 180 degrees out of phase and one partially cancels the other.

Therefore, the applied voltage, E_{A}, is calculated using equation $11-4$

$$
\begin{aligned}
\mathbf{E}_{\mathbf{A}} & =\sqrt{\mathbf{E}_{\mathbf{R}}^{2}+\left(\mathbf{E}_{\mathbf{L}}-\mathbf{E}_{\mathbf{C}}\right)^{2}} \\
& =\sqrt{40^{2}+(90-60)^{2}} \\
& =\sqrt{\mathbf{4 0}^{2}+30^{2}} \\
& =\sqrt{1600+900} \\
& =\sqrt{2500} \\
& =50 \mathrm{~V}
\end{aligned}
$$

This calculation confirms the original applied voltage value given in the example. And this method gives you a valuable check of the accuracy of the calculation of the individual voltage drops that were calculated for each component in the circuit.

Positive and Negative Phase Angles

The phase angle calculated for the example series RLC circuit is considered to be a positive phase angle since the phase angle for the circuit is measured counter-clockwise. Thus, the phase angle for the circuit is stated as being a positive 37 degrees.

The phase angle in a series RLC circuit can either be positive or negative. If $\mathrm{X}_{\mathbf{L}}$ is greater than X_{C}, the angle is positive. On the other hand, if X_{C} is greater than X_{1}, the angle is negative.

Calculation of Component Power Values

In the example series RLC circuit, the voltage drops in the circuit are: 40 volts across the resistor, 90 volts across the inductor and 60 volts across the capacitor. The applied voltage is 50 volts and a total current of two amperes is flowing

Multiplying the voltage times the current for each component yields these individual power values:

$$
\begin{aligned}
& P_{\mathbf{R}}=E_{\mathbf{R}} I_{T}=(40 \mathrm{~V})(2 \mathrm{~A})=80 \mathrm{~W} \\
& P_{\mathbf{L}}=E_{\mathbf{L}} \mathbf{I}_{\mathbf{T}}=(90 \mathrm{~V})(2 \mathrm{~A})=180 \mathrm{VAR} \\
& \mathrm{P}_{\mathbf{C}}=E_{\mathbf{C}} I_{T}=(60 \mathrm{~V})(2 \mathrm{~A})=120 \mathrm{VAR}
\end{aligned}
$$

Calculation of Total Reactive Power

The net reactive power, P_{X}, is equal to the difference between P_{L} and P_{C}, or 180 VAR minus 120 VAR which equals 60 VAR. Since P_{L} is larger than P_{C}, P_{X} is positive and is in phase with P_{L}.

Calculation of Total Apparent Power

By equation 11-22, the apparent power, P_{A}, is equal to the square root of P_{R} squared plus P_{x} squared

$$
\begin{aligned}
P_{A} & =\sqrt{P_{R}^{2}+P_{x}^{2}} \\
& =\sqrt{80^{2}+60^{2}} \\
& =\sqrt{6400+3600} \\
& =\sqrt{10.000} \\
& =100 \mathrm{VA}
\end{aligned}
$$

The total apparent power of the example series RLC circuit is 100 volt-amperes.
This should be the same as the value oblained by multiplying the applied voltage, E_{A}, by the total current, I .

$$
\begin{aligned}
P_{A} & =E_{A} I_{r} \\
& =(50 \mathrm{~V})(2 \mathrm{~A}) \\
& =(100 \mathrm{VA})
\end{aligned}
$$

It is, and proves the accuracy of the first calculation.

Parallel RLC Circuits Summarized

Now that all calculations for a series RLC circuit have been made, the method of solution of a parallel RLC circuit will be discussed. The analysis of this circuit will be similar to the analysis of either a parallel RL or a parallel RC circuit.
In a paralle! RLC circuit, such as in Figure 11.21, the sum of the branch currents is not equal to the total current as it would be in either a purely resistive, a purely inductive, or purely capacitive circuit. That is,

$$
\begin{equation*}
\mathbf{I}_{\mathbf{T}} \neq \mathbf{I}_{\mathrm{R}}+\mathbf{I}_{\mathrm{L}}+\mathbf{I}_{\mathbf{C}} \tag{11-26}
\end{equation*}
$$

This occurs because of the different phase relationships between the voltage and current for each component. Recall that this was also true for RL and RC parallel circuits.

Voltage as a Reference

Since the voltage across all components of a parallel circuit is the same as the applied voltage, E_{A}, it will be used as the reference quantity in discussing the phase relationships of the currents in the circuit. Therefore,

$$
\mathbf{E}_{\mathrm{A}}=\mathbf{E}_{\mathbf{R}}=\mathbf{E}_{\mathbf{1}}=\mathbf{E}_{\mathbf{6}}
$$

Development of a Circuit Phasor Diagram

Recall that the current through a resistor, I_{R}, is in phase with the voltage across it. F_{R}. The capacitive current, l_{C}, leads the voltage across the capacitor, E_{A}, by 90 degrees; and the current through an inductor, 1_{1}, lags the voltage across it. E_{A}, by 90 degrees. Thus, the phase relationship of the applied voltage and currents in a parallel RLC circuit are as shown in Figure 1/. 22.

Calculations of Branch Currents

The individual branch currents in the example RLC circuit can be calculated as they are in either a purely resistive, purely capacitive, or purely inductive circuit. Simply divide the voltage across the branch by the opposition to current in the branch.

In the resistive branch the opposition to the flow of current is measured in ohms of resistance. The resistive current is determined by dividing the applied voltage by the value of the resistor:

$$
\begin{equation*}
\mathbf{I}_{\mathbf{R}}=\frac{\mathbf{E}_{\mathrm{A}}}{\mathbf{R}} \tag{11-27}
\end{equation*}
$$

In the inductive branch, the opposition to the flow of current is measured in ohms of inductive reactance. The inductive current is determined by dividing the applied voltage by the reactance of the inductor:

$$
\begin{equation*}
I_{L}=\frac{E_{A}}{X_{L}} \tag{11-28}
\end{equation*}
$$

Figure 11.21 Parallel RLC Circuil Example

Figure 11.22 Phase Relationships of E_{A} and I in a Parallel RLC Circuit
In the capacitive branch, the opposition to the flow of current is measured in ohms of capacitive reactance. The capacitive current is determined by dividing the applied voltage by the reactance of the capacitor:

$$
\begin{equation*}
\mathbf{I}_{\mathbf{C}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{C}}} \tag{11-29}
\end{equation*}
$$

Current Phasor Comparisons

In the parallel RLC circuit, since $\mathbf{F}_{\mathbf{A}}=\mathrm{E}_{\mathbf{R}}=$ $E_{L}=E_{C}$, and since I_{R} is in phase with E_{R} and thus all the voltages E_{L}, E_{C} and E_{A}, I_{R} becomes the reference vector for the current phasor diagram of Figure 11.23. Comparing the current phase relationships using the current phasor diagram of Figure 11.23, you can see that the capacitive branch current, I_{C}, leads the resistive branch current, I_{R}, by 90 degrees; the inductive branch current, I_{L}, lags I_{R} by 90 degrees. Because of the 180 -degree difference between the capacitive branch current and the inductive branch current, these two reactive current values are opposite in phase, and one partially cancels the effect of the other

Calculation of $\mathbf{I}_{\mathbf{x}}$

The difference between I_{C} and I_{L} is I_{X}. which is the net reactive current. If I_{c} is larger than I_{L}, the net reactive current is in phase with I_{C} and the value of I_{X} is positive. If, on the other hand, I_{L} is larger than I_{C}, the net reactive current is in phase with I_{L} and the value of I_{X} is negative. The sign of I_{X} indicates its direction on the Y (reactive) axis.

By adding the total current vector, I_{T}, to the current phasor diagram, and shifting vector I_{x} to the right so that it extends between the tip of I_{R} and the tip of I_{T}, a right triangle is produced. This is shown in Figure 11.24. The right triangle can then be used to add the phasors I_{R} and I_{X} vectorially.

Applying the Pythagorean theorem,

$$
\begin{equation*}
I_{T}=\sqrt{I_{R}{ }^{2}+I_{X}{ }^{2}} \tag{11-31}
\end{equation*}
$$

Figure 11.23 Current Phasar Diagram for a Parallel RLC Circuit

Figure 11.24 Current Phasor Diagram with I_{T} Phasor
Since I_{x} is the net difference between I_{C} and I_{L}, as shown in equation 11-31,

$$
\begin{equation*}
\mathbf{I}_{\mathbf{X}}=\mathbf{I}_{\mathbf{C}}-\mathbf{I}_{\mathbf{L}} \tag{11-31}
\end{equation*}
$$

I_{X} is equal to I_{C} minus I_{L}. Substituting this expression for I_{x} into equation $11-30$, the total current is equal to

$$
\begin{equation*}
\mathbf{I}_{\mathbf{T}}=\sqrt{\mathbf{I}_{\mathbf{R}}{ }^{2}+\left(\mathbf{I}_{\mathrm{C}}-\mathbf{I}_{\mathbf{L}}\right)^{2}} \tag{11-32}
\end{equation*}
$$

which is the relationship between the branch currents in a parallel RLC circuit.

Calculation of \mathbf{Z}_{T}

Once the total current is known, the total impedance, Z_{T}, of the circuit is easily determined using Ohm's law for ac circuits:

$$
\begin{equation*}
\mathbf{Z}_{\mathbf{T}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{I}_{\mathbf{T}}} \tag{11-33}
\end{equation*}
$$

Calculation of Phase Angle

Recall that the phase angle is the number of degrees of phase difference between the applied voltage and the total current. Also recall that the applied voltage is in phase with the resistive current. Therefore, the phase angle is measured from the horizontal vector I_{R} (which is also E_{A}) to the vector I_{T}; it is identified by the angle, theta, on the current phasor diagram of Figure 11.25
The tangent of the phase angle, theta, is equal to the ratio of the net reactive current divided by the resistive current as shown in equation 11-34:

$$
\begin{equation*}
\tan \theta=\frac{I_{X}}{I_{R}} \tag{11-34}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\theta=\arctan \left(\frac{\mathrm{I}_{\mathrm{x}}}{\mathrm{I}_{\mathrm{R}}}\right) \tag{11-35}
\end{equation*}
$$

the arctangent of the net reactive current divided by the resistive current equals the value of the phase angle.

Calculation of Power

Power calculations in parallel RLC circuits are the same as power calculations in series RLC circuits. The individual power values are calculated by multiplying current through a component times voltage across a component.
Therefore,

$$
\begin{array}{ll}
\mathbf{P}_{\mathbf{R}}=\mathbf{E}_{\mathbf{R}} \mathbf{I}_{\mathbf{R}}=\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{R}} & (11-36) \\
\mathbf{P}_{\mathbf{L}}=\mathbf{E}_{\mathbf{L}} \mathbf{I}_{\mathbf{L}}=\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{L}} & (11-37) \\
\mathbf{P}_{\mathbf{C}}=\mathbf{E}_{\mathbf{C}} \mathbf{I}_{\mathbf{C}}=\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{C}} & (11-38)
\end{array}
$$

Figure 11.25 Phase Angle on the Current Phasor Diagram

Figure 11.26 Total Apparent Power Phasor Diagram
The total apparent power is found by using the Pythagorean theorem solution of resistive and net reactive power shown in the power phasor diagram of Figure 11.26 defined by these equations:

$$
\begin{align*}
& \mathbf{P}_{\mathbf{A}}=\sqrt{\mathbf{P}_{\mathbf{R}}^{2}+\mathbf{P}_{\mathbf{X}}^{2}} \tag{11-39}\\
& \mathbf{P}_{\mathbf{X}}=\mathbf{P}_{\mathrm{C}}-\mathbf{P}_{\mathbf{L}} \tag{11-40}\\
& \mathbf{P}_{\mathbf{A}}=\sqrt{\mathbf{P}_{\mathbf{R}}^{2}+\left(\mathbf{P}_{\mathbf{C}}-\mathbf{P}_{\mathbf{L}}\right)^{2}} \tag{11-41}
\end{align*}
$$

Analysis of a Parallel Rlc Circuit

Figure 11.27 shows a typical parallel RLC circuit with 180 VAC, 60 kilohms resistance, 30 kilohms inductive reactance, and 18 kilohms capacitive reactance. Impedance, voltage, current, and power measurements will be performed for this circuit using the techniques just described.

Calculation of Branch Currents

The resistive branch current, I_{k}, is calculated by dividing the voltage across the resistor, 180 volts, by the value of the resistor, 60 kilohms.

$$
\begin{aligned}
I_{R} & =\frac{E_{A}}{R} \\
& =\frac{180 \mathrm{~V}}{60 \mathrm{k} \Omega} \\
& =3 \mathrm{~mA}
\end{aligned}
$$

The inductive branch current is determined in a similar manner by dividing the voltage across the inductor by the inductive reactance.

$$
\begin{aligned}
\mathbf{I}_{\mathrm{L}} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathrm{L}}} \\
& =\frac{180 \mathrm{~V}}{30 \mathrm{k} \Omega} \\
& =6 \mathrm{~mA}
\end{aligned}
$$

The capacitive branch current is calculated by dividing the voltage across the capacitor by the capacitive reactance.

$$
\begin{aligned}
\mathbf{I}_{\mathbf{C}} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{C}}} \\
& =\frac{180 \mathrm{~V}}{18 \mathrm{k} \Omega} \\
& =10 \mathrm{~mA}
\end{aligned}
$$

Figure 11.28 Current Phasor Diagram for Parallel RLC Circuil Example

Current Phasor Diagrams

The current phasor diagram can now be drawn to show the relationships between the resistive, inductive and capacitive branch currents as shown in Figure 11.28. Note that I_{C} is larger than I_{L}; therefore, the net reactive current is in phase with I_{C}. The net reactive current, I_{x}, equals

$$
\begin{aligned}
I_{X} & =I_{C}-I_{L} \\
& =10 m A-6 m A \\
& =4 m A
\end{aligned}
$$

Calculation of \mathbf{I}_{T}

As you can see in Figure 11.28, by shifting the phasor I_{X} to the right so that it extends from the tip of the vector representing I_{R} to the tip of the vector for I_{1}, a right triangle is formed. The right triangle can then be used to determine the value of I_{r}. Using the Pythagorean theorem, the total current. If. is now equal to the vector sum of the values of 1_{X} and I_{R}.

$$
\begin{aligned}
\mathbf{I}_{\mathrm{T}} & =\sqrt{\mathbf{I}_{\mathbf{R}}{ }^{2}+\mathbf{I}_{\mathrm{X}}{ }^{2}} \\
& =\sqrt{3^{2}+4^{2}} \\
& =\sqrt{9+16} \\
& =\sqrt{25} \\
& =5 \mathrm{~mA}
\end{aligned}
$$

The total current in the circuit is 5 milliamperes.

Calculation of \mathbf{Z}

The total impedance of this circuit can now be calculated by dividing the applied voltage by the total current.

$$
\begin{aligned}
Z & =\frac{\mathbf{E}_{\mathrm{A}}}{\mathbf{I}_{\mathrm{T}}} \\
& =\frac{180 \mathrm{~V}}{5 \mathrm{~mA}} \\
& =36 \mathrm{k} \Omega
\end{aligned}
$$

Calculations of the Phase Angle

The phase angle, theta is the angle between the resistive current and the total current as shown on the current phasor diagram in Figure 11.29. The value of the phase angle is equal to the arctangent of the ratio of net reactive current to the resistive current. Therefore,

$$
\begin{aligned}
\theta & =\arctan \left(\frac{I_{x}}{I_{R}}\right) \\
& =\arctan \left(\frac{4 \mathrm{~mA}}{3 \mathrm{mAA}}\right) \\
& =\arctan (1.33) \\
& =53^{\circ}
\end{aligned}
$$

Calculation of Component Power Values

As you know power values depend on the various voltages and currents in the circuit In the parallel RLC circuit example shown in Figure 11.31 , currents are: I_{R} equals 3 milliamperes, I_{L} equals 6 milliamperes, and I_{c} equals 10 milliamperes. The applied voltage is 180 volts; the total current is 5 milliamperes.

The real power dissipated by the resistor, P_{R}, is calculated:

$$
\begin{aligned}
\mathbf{P}_{\mathbf{R}} & =\mathbf{E}_{\boldsymbol{A}} \mathbf{I}_{\mathbf{R}} \\
& =(180 \mathrm{~V})(3 \mathrm{~mA}) \\
& =540 \mathrm{~mW}
\end{aligned}
$$

The inductive reactive power, P_{1}. is calculated:

$$
\begin{aligned}
P_{L} & =E_{A} I_{L} \\
& =(180 \mathrm{~V})(6 \mathrm{~mA}) \\
& =1080 \mathrm{mVAR}
\end{aligned}
$$

The capacitive reactive power, P_{C}. is calculated:

$$
\begin{aligned}
P_{C} & =E_{A} I_{C} \\
& =(180 V)(10 \mathrm{~mA}) \\
& =1800 \mathrm{mVAR}
\end{aligned}
$$

Calculation of Total Reactive Power

The net reactive power, P_{X} is calculated:

$$
\begin{aligned}
\mathbf{P}_{\mathbf{x}} & =\mathbf{P}_{\mathbf{C}}-\mathbf{P}_{\mathbf{L}} \\
& =1800 \mathrm{mVAR}-1080 \mathrm{mVAR} \\
& =720 \mathrm{mVAR}
\end{aligned}
$$

The power phasor diagram will look like the one in Figure 11.26

Since P_{C} is larger than P_{L}, P_{X} is positive and is in phase with P_{C}.

Figure 11.31 Branch Currents in Parallel RIC Circuit Example

Calculation of Total Power

The apparent total power, P_{A}, is calculated using equation 11-39:

$$
\begin{aligned}
P_{A} & =\sqrt{P_{R}{ }^{2}+P_{x}^{2}} \\
& =\sqrt{540 \mathrm{~mW}^{2}+720 \mathrm{mVAR}} \\
& =\sqrt{291,600+518,400} \\
& =\sqrt{810,000} \\
& =900 \mathrm{mVA}
\end{aligned}
$$

This value should be the same as the apparent power value obtained by multiplying the applied voltage by the total current:

$$
\begin{aligned}
\mathbf{P}_{\mathrm{A}} & =\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{T}} \\
& =(180 \mathrm{~V})(5 \mathrm{~mA}) \\
& =900 \mathrm{mVA}
\end{aligned}
$$

Summary

In this lesson, the concepts and techniques you learned in analyzing RL and RC circuits were applied to determine circuit values in RLC circuits. You were shown how to determine current, voltage, reactance, and the phase angle for any RLC circuit. Also, a new concept was introduced - that when values are in opposite phase, one value partially cancels the effect of the other. This difference is called the net effect. The net voltage, E_{X}, net total reactance, X_{r}, and net reactive current I_{x}, were calculated. The methods you learned in this lesson should enable you to determine equivalent circuit values in any series or parallel RLC circuit

Worked-Out Examples

1. Draw a phasor diagram for this circuit showing current and impedance phasors

Solution:

$X_{L}>X_{C}$; therefore, X_{T} is plotted in phase with X_{L}
2. Draw voltage phasor diagrams for the circuit in Example 1. Calculate the value and sign of the phase angle.

Solution:

$$
\begin{aligned}
& \tan \theta=\frac{E_{X T}}{E_{R}}=\frac{X_{Y}}{R}=\frac{4 \Omega}{6 \Omega}=0.667 \\
& \arctan 0.667=33.7^{\circ}
\end{aligned}
$$

The angle is rotated counterclockwise; therefore, the sign of the angle is positive.
3. Draw phasor diagrams showing Pythagorean theorem relationships in parallel RLC circuits. Write equations for each solution.

Solution:

$$
\begin{aligned}
\mathbf{I}_{\mathbf{T}} & =\sqrt{\mathbf{I}_{\mathbf{R}}^{2}+\mathbf{I}_{\mathbf{X}}^{2}} \\
& =\sqrt{\mathbf{I}_{\mathbf{R}}^{2}+\left(\mathbf{I}_{\mathbf{L}}-\mathbf{I}_{\mathbf{C}}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{P}_{\mathbf{T}} & =\sqrt{\mathbf{P}_{\mathbf{R}}^{2}+\mathbf{P}_{\mathbf{X}}^{2}} \\
& =\sqrt{\mathbf{P}_{\mathbf{R}}^{2}+\left(\mathbf{P}_{\mathbf{L}}-\mathbf{P}_{\mathbf{C}}\right)^{2}}
\end{aligned}
$$

4. Given the circuit and typical circuit values shown, calculate the circuit values specified.

$$
\text { h. } \mathbf{E}_{\mathrm{k}}=
$$

a. $\mathrm{X}_{\mathrm{L}}=$ \qquad
b. $X_{C}=$ \qquad

$$
\text { c. } X_{T}=\text { j. } P_{\mathrm{C}}=
$$

$$
\text { d. } \mathbf{Z}_{\mathrm{T}}=\text { k. } \mathbf{P}_{\mathrm{K}}=
$$

$$
\text { e. } I_{T}=1 \text { 1. } P_{X}=
$$

f. $\mathbf{E}_{\mathrm{L}}=$ \qquad
g. $\mathbf{E}_{\mathrm{C}}=$ \qquad
\qquad

$$
\text { i. } P_{\mathrm{L}}=
$$

\qquad
\qquad
\qquad
\qquad

$$
\mathrm{m} \cdot \mathbf{P}_{\mathrm{A}}=
$$

\qquad
n. Phase angle $=$ \qquad
Solution:
a. $\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=6.28 \times 5 \times 10^{9} \times 0.25 \times 10^{.9}=7.85 \Omega$
b. $\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}=\frac{1}{6.28 \times 5 \times 10^{9} \times 2 \times 10^{-6}}=\frac{1}{6.28 \times 10^{-2}}=15.9 \Omega$
c. $\mathrm{X}_{\mathrm{r}}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}=7.85 \Omega-15.9 \Omega=8.05 \Omega$
d. $Z_{T}=\sqrt{\mathrm{R}^{2}+\overline{X_{\mathrm{T}}}{ }^{2}}=\sqrt{10^{2}+8.05^{2}}=\sqrt{1.65 \times 10^{2}}=12.8 \Omega$
e. $I_{T}=\frac{E_{A}}{Z_{T}}=\frac{10 \mathrm{VAC}}{12.8 \Omega}=0.781 \mathrm{~A}_{\mathrm{rm}}$,
f. $E_{\mathrm{f}}=1_{\mathrm{T}} \mathrm{X}_{\mathrm{L}}=0.781 \mathrm{~A} \times 7.85 \Omega=6.13 \mathrm{VAC}$
g. $E_{C}=I_{T} X_{C}=0.781 \mathrm{~A} \times 15.9 \Omega=12.4 \mathrm{VAC}$
h. $E_{R}=1 . R=0.781 A \times 10 \Omega=7.81 \mathrm{VAC}$
i. $P_{L}=I_{7} E_{\mathrm{L}}=0.781 \mathrm{~A} \times 6.13 \mathrm{~V}=4.79 \mathrm{VAR}_{\mathrm{rms}}$
j. $\quad P_{C}=I_{T} E_{C}=0.781 \mathrm{~A} \times 12.4 \mathrm{~V}=9.68 \mathrm{VAR}_{\mathrm{rms}}$
k. $\quad P_{R}=I_{T} E_{R}=0.781 \mathrm{~A} \times 7.81 \mathrm{~V}=6.1 \mathrm{~W}_{\mathrm{rm}}$

1. $P_{X}=P_{L}-P_{C}=4.79 \mathrm{VAR}-9.68 \mathrm{VAR}=4.89 \mathrm{VAR}_{\mathrm{rm}}$
m. $P_{A}=\sqrt{P_{R}{ }^{2}+P_{x}{ }^{2}}=\sqrt{6.1 W^{2}+4.89 V A R^{2}}=\sqrt{6.11}=7.82 V_{r m s}$
n. phase angle $=\arctan \left(\frac{X_{T}}{R}\right)=\arctan 0.805=-38.8^{\circ}$
2. Given this circuit and typical circuit values shown, calculate the circuit values specified.

a. $X_{L}=$ \qquad h. $P_{R}=$
b. X_{C} : $=$ \qquad i. $P_{1}=$
c. $\mathbf{I}_{\mathbf{R}}=$
d. $I_{L}=$
e. $\mathbf{I}_{\mathrm{C}}=$ \qquad
f. $1_{x}=$ \qquad m. Phase angle $=$
g. $\mathbf{I}_{T}=$ \qquad

Solution:
a. $\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{RL}=6.28 \times 100 \times 15=9.42 \mathrm{k} \Omega$
b. $\quad X_{C}=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 100 \times 0.5 \times 10^{-6}}=\frac{1}{3.14 \times 10^{-4}}=3.18 \mathrm{k} \Omega$
c. $I_{R}=\frac{E_{A}}{R}=\frac{50 \mathrm{VAC}}{5 \mathrm{k} \Omega}=10 \mathrm{~mA} \mathrm{Ama}_{\mathrm{ma}}$
d. $I_{L}=\frac{E_{A}}{X_{L}}=\frac{50 V A C}{9.42 \mathrm{k} \Omega}=5.31 \mathrm{~mA}_{\mathrm{rm}}$.
e. $I_{C}=\frac{E_{A}}{X_{C}}=\frac{50 V A C}{3.18 \mathrm{k} \Omega}=15.7 \mathrm{~mA} \mathrm{~A}_{\mathrm{rm}}$.
f. $1_{\mathrm{X}}=\mathrm{I}_{\mathrm{L}}-\mathbf{1}_{\mathrm{C}}=5.31 \mathrm{~mA}-15.7 \mathrm{~mA}=10.4 \mathrm{~mA}$
g. $I_{T}=\sqrt{I_{R}^{2}+I_{X}{ }^{2}}=\sqrt{10 m A^{2}+10.4 m A^{2}}=14.4 m A_{\mathrm{ma}}$
h. $P_{R}=I_{R} E_{A}=10 \mathrm{~mA} \times 50 \mathrm{~V}=0.5 \mathrm{~W}_{\mathrm{rms}}$
i. $P_{L}=I_{1} E_{A}=5.31 \mathrm{~mA} \times 50 \mathrm{~V}=0.27 \mathrm{VAR}_{\mathrm{rm}}$,
j. $\quad P_{C}=\mathbf{I}_{C} \mathbf{E}_{\mathrm{A}}=15.7 \mathrm{~mA} \times 50 \mathrm{~V}=0.79 \mathbf{V A R}_{\mathrm{rms}}$
k. $P_{X}=P_{L}-P_{C}=0.27 \mathrm{VAR}-0.79 \mathrm{VAR}=0.52 \mathrm{VAR}_{\mathrm{rm}}$.

1. $P_{A}=\sqrt{P_{R}^{2}+P_{x}^{2}}=\sqrt{0.5 W^{2}+0.52 V A R^{2}}=\sqrt{0.52}=0.72 \mathrm{VA}_{\mathrm{rm}}$ or $P_{\mathrm{A}}=\mathrm{I}_{\mathrm{T}} \mathrm{E}_{\mathrm{A}}=14.4 \mathrm{~mA} \times 50 \mathrm{~V}=0.72 \mathrm{VA}_{\mathrm{rm}}$,
in. $\tan \theta=\frac{I_{X}}{I_{R}}=\frac{10.4 \mathrm{~mA}}{10 \mathrm{~mA}}=1.04$
$\arctan 1.04=46.1^{\circ}$
2. Draw a phasor diagrain for this circuit showing voltage and current phasors.

3. Draw power phasor diagrams for the circuit in problem I. Calculate the value and sign of the phase angle.
4. Draw phasor diagrams showing Pythagoren theorem relationships in series RLC circuits. Write equations for each solution.
5. Given the circuit and typical circuit values below, calculate the circuit values specified.

6. Given this circuit and typical circuit values shown, calculate the circuit values specified.

7. Draw a phasor diagram for this circuit showing power and current phasors.

8. Draw a phasor diagram for this circuit showing power and voltage phasors.

9. Calculate the value and sign of the phase angle in the circuit of Problem 1 .
10. Calculate the value and sign of the phase angle in the circuit of Problem 2
11. Calculate the value of Z_{r} in Problem I
12. Calculate the value of 1_{1} in Problem 2.
13. Given this circuit and typical circuit values shown, calculate the circuit values specified

a. $X_{C}=$ \qquad g. $\mathbf{E}_{\mathrm{C}}=$
b. $\quad X_{T}=$ \qquad h. $\mathrm{P}_{\mathrm{K}}=$
c. $\mathrm{Z}_{\mathrm{T}}=$ \qquad i. $\quad P_{\mathrm{L}}=$
d. $\mathrm{I}_{\mathrm{r}}=$ \qquad j. $\quad \mathrm{P}_{\mathrm{C}}=$
e. $\mathbf{E}_{\mathrm{R}}=$ \qquad k. $\mathrm{P}_{\mathrm{A}}=$
f. $\mathbf{E}_{\mathrm{L}}=$ \qquad 1. \quad Phase angle $=$
14. Given this circuit and typical values shown, calculate the circuit values specified

a. $\quad X_{1}=$ \qquad g. $P_{L}=$
b. $\mathrm{I}_{\mathrm{R}}=$ \qquad h. $P_{\mathbf{C}}=$
\qquad
c. $\mathrm{l}_{\mathrm{L}}=$ \qquad i. $\quad \mathbf{P}_{\mathbf{X}}=$
d. $\mathbf{I}_{\mathbf{C}}=$ \qquad j. $\quad P_{\mathbf{A}}=$
\qquad
e. $\mathbf{I}_{\mathbf{T}}=\quad$ k. Phase angle $=$
f. $\mathbf{P}_{\mathbf{k}}=$ \qquad -
15. In a series RCL circuit, which component will have the most voltage across it?
16. In a parallel RCL circuit, which component will have the most current through it?

LESSON 12

2/0 Phasor Algebra

This lesson provides an introduction to phasor algebra by introducing you to the use of the j-operator and its application to the solution of simple RL and RC circuits. Both rectangular and polar coordinate representations of circuit impedance are presented as well as the methods of conversion from one form to the other. These techniques are used to solve the more complex circuits of Lesson 13.

At the end of this lesson you should be able to:

1. Specify both the rectangular and polar coordinates of a point on a complex plane.
2. Simplify the expression of a multiplication or division problem involving the j-operator.
3. Understand what numerical quantity j actually represents
4. Specify what effect multiplication by j or a power of j (i.e. j^{2}, j^{3}, j^{4}, or $-j$) will have on a vector (phasor) located somewhere on the complex plane
5. Write the complex impedance of an RL or $R C$ circuit in either rectangular $(R+j X)$ or $\operatorname{polar}(Z / \theta)$ form.
6. Convert the complex impedance of a circuit in rectangular form to polar form
7. Convert the complex impedance of a circuit in polar form to rectangular form
8. Specify whether a circuit that has a positive or negative j term will have a complex impedance in the rectangular form positive or negative phase angle.

Introduction

In previous lessons, when discussing RL, RC and RLC circuits, you have seen that it is necessary to work with phasor quantities in order to determine values of impedance, current, voltage and phase angle. The vectorial relationships in the circuits were simple enough to allow the use of right triangle trigonometric relationships and the Pythagorean theorem. However, if more complex ac circuits are encountered, the phase relationships become more complex and the solution of problems involving such a circuit with its various components and phase relationships could be a long process. Because of this, a different method of solution called phasor algebra must be used. The phasor algebra method simplifies solving complex ac circuit problems.

Introduction to Phasor Algebra

Phasor algebra employs a simple method which can express the value or magnitude of voltage, current, reactance, resistance or impedance and their phase angles, and the phase relationships of these quantities with each other.

Before this method of circuit analysis can be used, however, it is necessary to first review some basic facts concerning numbers and graphs.

X.Y Coordinates

Recall that in an earlier lesson discussion concerned how to graph a curve on a set of $\mathrm{X}-\mathrm{Y}$ axes shown in Figure 12.1. The point where the two axes cross is called the origin. This is the point from which all other points on either axis are measured. Distances to the right on the X -axis, and up on the Y -axis are designated with positive numbers. Distances to the left and down are negative numbers.

Figure 12.1 An X-Y Coordinates Graph

Figure 12.2 Positive and Negative Numbers on Coordinates

Each number represents a unique point along the number line. Thus, as shown in Figure 12.2, +4 represents the point that is four units to the right of the origin on the X -axis or four units above the origin on the \mathbf{Y}-axis.

Similarly, -2 represents a point that is two units to the left of the origin on the X -axis, or two units down from the origin on the Y -axis.

The location of any point on the $X-Y$ plane can be defined in terms of its X and Y coordinates. For example, in Figure 12.3 the point shown is located at X equals four, and Y equals two. It is written: $(4,2)$. Or, as another example, the point shown on the graph in Figure 12.4 is defined as being located at X equals minus two, and Y equals three. It is written: $(-2,3)$.

These numbers which define the location of a specific point on the $\mathrm{X}-\mathrm{Y}$ coordinate system are called the coordinates of the point. Note that the point is defined with two parts - an X -part and Y -part.

Location of a Vector

These indicators of unique points on the coordinate system can be used in an interesting way. To illustrate, a point is chosen that is defined by X equals four and Y equals three as shown in Figure 12.5.
Projecting down from this point parallel to the \mathbf{Y} axis onto the \mathbf{X} axis it can be seen that the X axis is intersected at X equals 4. Projecting across from this point parallel to the X axis it can be seen that the Y axis is intersected at Y equals to 3. The point can be connected to the origin with a vector. For this example it is called vector H. Vector H is in a position on the $X-Y$ coordinate system located by point (4,3). It originates at the origin and its length is a measure of the magnitude of the quantity it represents.
The reason for calling it H is because, as you will note, it is the hypotenuse of a right triangle that has been used in previous lessons to determine phase angles and for vector additions. The right triangle is formed by a vector of Y units as the opposite side and a vector of X units as the adjacent side.

Figure 12.3 Point (4,2) on the X-Y Coordinates

Figure 12.4 Point ($-2,3$) on the X - Y Coordinates

Figure 12.5 Point $(4,3)$ Used as an Example

Recall that the length of a hypotenuse is equal to the square root of the sum of the squared sides. Therefore,

$$
\begin{aligned}
H & =\sqrt{X^{2}+Y^{2}} \\
& =\sqrt{4^{2}+3^{2}} \\
& =\sqrt{16+9} \\
& =\sqrt{25} \\
& =5
\end{aligned}
$$

The vector in this example has a length of 5 units. As has been shown in past lesson, the 5 units could be 5 volts, 5 amperes, 5 watts, and so forth

Rotating a Vector

When the vector H is rotated to the X axis as shown in Figure 12.6, you can see that it lies on the X axis and becomes a vector of 5 units long located by the point $(5,0)$. There is no Y part. The Y part is equal to zero.
Now the vector H is rotated back again to the original position as shown in Figure 12.5, note that vector H does not change in magnitude. It is still 5 units long. The parts X and Y always indicate the point in the $\mathrm{X}-\mathrm{Y}$ coordinate system to which the vector is rotated. The original point from which it started is $(4,3)$. To find the point to which vector H was rotated, you locate the +4 on the X axis, and project up parallel to the Y axis three units.

Thus, it can be seen that the X part of the number defines a vector along the X axis; the Y part of the number is a point that indicates how far the vector H has been rotated away from the X axis.

Figure 12.6 Vector H Rolaled to the X Axis
Note that the distance from the axis to the final point is the Y part of the coordinates for the point. It is suggested that you think of the Y part of the coordinates as an "operator" because it is said to operate on the vector H to tell you how far the vector H has been moved from the X axis to arrive at the final point. Later in this lesson you will be told how to use this simple procedure to easily describe any vector in the coordinate system.

Square Roots of Negative Numbers

Remember that when you square any number - whether it is positive or negative - the result is always a positive quantity because a plus times a plus or a minus times a minus is always a plus. This is why plus or minus is always written when designating the square root of a positive number. There are two roots, a plus root and a minus root. For example, the square root of four could be either a plus two or a minus two:

$$
\begin{equation*}
\sqrt{4}= \pm 2 \tag{12-2}
\end{equation*}
$$

With this in mind, what is the square root of a minus four $(\sqrt{-4})$? There is no real number which when squared resules in a minus number. Thus, it is said that a minus number has no real square roots. However, there is a root for any square and for this reason, mathematicians have given the square root of a negative number a special name and special identification. They are called imaginary numbers - numbers that are the square roots of negative numbers.

In electrical calculations there is a need to take the square root of negative numbers. The method used when calculating the square root of a negative number is to take the square root of the number as if it were positive and then write ajbefore it to indicate that it is an imaginary number. For example,

$$
\begin{equation*}
\sqrt{9}=3 \tag{12-3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{-9}=j 3 \tag{12-4}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\sqrt{-4}=j 2 \tag{12-5}
\end{equation*}
$$

the

$$
\begin{align*}
\sqrt{-1} & =j 1 \tag{12-6}\\
& =j
\end{align*}
$$

The square root of minus one can be written as just j . It is the basic imaginary quantity the square root of a minus one - and the special identification is j. Therefore, the square root of minus 9 could be written as the square root of minus 1 times the square root of 9 :

$$
\begin{equation*}
(\sqrt{-1})(\sqrt{9})=j 3 \tag{12-7}
\end{equation*}
$$

Figure 12.7 Numbers Represented by X and Y Axes
The square root of minus 4 could be written as the square root of minus 1 times the square root of 4:

$$
\begin{equation*}
(\sqrt{-1})(\sqrt{4})=j 2 \tag{12-8}
\end{equation*}
$$

Correspondingly, the square root of minus 1 could be written as the square root of minus I times the square root of 1 :

$$
\begin{equation*}
(\sqrt{-1})(\sqrt{1})=j 1 \tag{12-9}
\end{equation*}
$$

In all cases then, the square root of a minus number can be considered as the square root of a positive number times the square root of minus one, or j.

Real and Imaginary Axes

Customarily, as shown in Figure 12.7, the Y -axis is used for representing imaginary numbers and is referred to as the imaginary axis, while the X -axis is referred to as the real axis. This coordinate system is used to define the location of points in terms of the distances marked off on the real and imaginary axes. For instance, the point shown in Figure 12.7 is located at a real axis value of three and an imaginary axis value of j 4 . It is written simply as 3 plus $\mathrm{j} 4,3+j 4$.

Complex Numbers

If a vector is drawn from the origin (Figure 12.7) to this point, its magnitude is again 5 units as in the previous example ($5=\sqrt{3^{2}+4^{2}}$). Thus once again the final point for the vector with a magnitude of 5 has been identified with coordinates, but in a different way. This time they are identified with a real part (X -axis) and a so-called imaginary part (Y -axis). The designations of these points on the real-imaginary coordinates represent actual numbers.
However, since they are composed of a real part and an imaginary part, they are called complex numbers.

A complex number is defined as a number represented by the algebraic sum of a real number and an imaginary number. Consequently, the graph or plane defined by the real number and imaginary axes, in which point locations are defined by complex numbers, is known as a complex plane. Since the points are located by coordinates measured and plotted on lines that are perpendicular to each other, these coordinates are called rectangular coordinates.

Polar Coordinates

There is an alternate method of specifying the location of any unique point, and this is in terms of its polar coordinates.
The point's distance from the origin is the length (magnitude) of the vector H as shown in Figure 12.8 and as discussed earlier. Recall it was calculated to be five units in magnitude. Two particular positions to which the vector was located are the points identified by the complex numbers $3+j 4$ and $4+j 3$.

Figure 12.8 Position of Point Location $4+j 3$

Of course, as shown in Figure 12.9, there could be many points five units from the origin, as represented by any point on a circle with a radius of five units and its center at the origin. Therefore, it is necessary to specify which point of all these possible ones is the specific point to be located. This is done by specifying the angle that exists between vectur H and the real, X, axis. The value of this angle, theta, can be calculated from the tangent trigonometric function because this is an angle in a right triangle. Recall that the tangent of an angle is equal to the length of the opposite side divided by the length of the adjacent side:

$$
\begin{equation*}
\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }} \tag{12-10}
\end{equation*}
$$

Therefore, for the example shown in Figures 12.8 and 12.9, the tangent of theta is equal to three units divided by four units:

$$
\begin{align*}
\tan \theta & =\frac{3}{4} \tag{12-11}\\
& =0.75 \\
\theta & =\arctan (0.75) \tag{12-12}\\
& =37^{\circ}
\end{align*}
$$

Using a calculator as in Lesson 7, the arctangent of the ratio 0.75 is determined to be an angle of approximately 37 degrees
The specific point is plotted in Figure 12.10 and is at a distance of five units from the origin and at an angle from the positive X -axis of 37 degrees. It is written as $5 / 37^{\circ}$ and stated as "five at 37 degrees". Note that the angle specified is positive. That is because, as shown in Figure 12.11, angles measured in a counter-clockwise direction from the reference axis are positive. Note that the positive $\mathrm{X}-\mathrm{axis}$ is the reference. Angles measured clockwise from the reference axis are considered to be negative.

Figure 12.9 Polar Coordinales

Figure 12.10 Theta of Example Vector H is 37 Degrees

Figure 12.11 Numbers are Either Positive or Negative

Polar Coordinate Definition

The polar coordinates of a point in a plane specify the distance of the point from the origin at a specified angle from the X axis. Said another way, as shown in Figure 12.12, the distance from the origin is a vector of specified magnitude rotated from the X axis through a specific angle. In the example, $4+$ j3 represents a point in rectangular coordinates. Five at 37 degrees represents the same point in polar coordinates. Four plus j3 locates a point in a plane to which a vector has been rotated; five at 37 degrees describes the same vector.

$$
\begin{equation*}
4+\mathrm{j} 3 \text { SAME AS } 5 / 37^{\circ} \tag{12-13}
\end{equation*}
$$

Relationships of Rectangular/Polar Coordinate Systems to Circuit Analysis

Note in Figure 12.13a and b that the relationship between the quantities X, Y, H and theta is identical to the relationships between resistance, reactance, impedance. and the phase angle.
Because of this identical relationship, complex number methods can be used to solve ac circuit problems.

The j Operator

Hefore beginning a discussion of how the actual solutions are accomplished, there are some things you should keep in mind about the term j , and the powers of j . Remember, from equation $12-6$, that j is equal to the square root of minus one.
J-squared is equal to j times j or the square root of a minus one times the square root of a minus one, which is simply minus one. Expressed in equation form, using equation $12-6$, the result is:

$$
\begin{aligned}
\mathbf{j} & =\sqrt{-1} \\
\mathbf{j}^{2} & =\mathbf{j} \times \mathbf{j} \\
& =\sqrt{-1} \times \sqrt{-1} \\
& =-1
\end{aligned}
$$

Figure 12.12 Relationship of Vector 10 X and Y Coordinates

Figure 12.13 Relationships of X,Y,H, Ө, Resistance. Reactance, and Impedance
Following is a description of the effect of multiplying j by itself three times. J-cubed is equal to j times j times j, or j-squared time j. Since j-squared equals minus one, j-cubed is equal to minus one times j, or simply minus j Thus, j-cubed equals minus j. Expressed in equation form:

$$
\begin{align*}
j^{3} & =j \times j \times j \tag{12-15}\\
& =j^{2} \times j
\end{align*}
$$

$$
\text { Since } \begin{aligned}
j^{2} & =-1 \\
j^{3} & =-1 \times j \\
& =-j
\end{aligned}
$$

Following is a description of the effect of raising j to the fourth power. J to the fourth is equal to j times j times j times j, or j-squared times j-square. Since j-squared equals minus one, j to the fourth is equal to minus one times minus one, which equals plus one. Therefore, j to the fourth is equal to plus one Expressed in equation form:

$$
\begin{align*}
\mathbf{j}^{4} & =\mathbf{j} \times \mathbf{j} \times \mathbf{j} \times \mathbf{j} \tag{12-16}\\
& =\mathbf{j}^{2} \times \mathbf{j}^{2}
\end{align*}
$$

$$
\text { Since } \begin{aligned}
j^{2} & =-1 \\
j^{4} & =(-1)(-1) \\
& =+1
\end{aligned}
$$

Remember:

$$
\begin{align*}
& \mathrm{j}=\sqrt{-1} \tag{12-16}\\
& \mathbf{j}^{2}=-1 \\
& \mathbf{j}^{3}=-\mathrm{j} \\
& \mathrm{j}^{4}=+1
\end{align*}
$$

One other identity that may be useful is the fact that one divided by j is equal to minus j :

$$
\begin{equation*}
\frac{1}{j}=-j \tag{12-17}
\end{equation*}
$$

This is easily shown by multiplying both numerator and denominator by j . This does not change the value of the quantity, because effectively one over j has been multiplied by one. Multiplying through in the numerator and the denominator, j times one equals j and j times j equals j-squared, which is a minus one. J divided by minus one is minus j. So, one divided by j equals minus j. In equation form the steps are as follows:

$$
\begin{align*}
\frac{1}{j} \times \frac{j}{j} & =\frac{j}{j^{2}} \tag{12-18}\\
& =\frac{j}{-1} \\
& =-j
\end{align*}
$$

Therefore,

$$
\frac{1}{j}=-j
$$

Figure 12.14 A Vector 4 Units in Length on the X Axis

Applying j-Operator Notation to Vectors

 With this background in the j-operator, you will now see how the real and imaginary coordinate axes can be used to describe the length of a vector and what effect the j-term has on that vector.If a point is designated as four units from the origin along the positive X -axis, as shown in Figure 12.14, a vector four units long can be drawn from the origin along the X -axis to describe the point.

First Rotation

A similar vector four units long can be drawn on the positive Y -axis as shown in Figure 12.15. Its length is designated by the imaginary number j 4 . Notice that this vector is the same length as the first vector, but it has been rotated 90 degrees. Thus, it can be said the factor j, when it multiplies a vector length, rotates that vector 90 degrees in a counterclock wise direction. That is why the name operator is used. It is said that j operates on the vector to rotate it 90 degrees counterclockwise. Thus, it is called the j -operator.
In reality, the j written before the length of a vector indicates only that the vector is measured off on the positive imaginary axis.

Second Rotation

Now, keeping in mind the idea that the j-operator rotates a vector 90 degrees counter-clockwise when it multiplies the vector's length, this vector, j four, is multiplied times j once more.

$$
\begin{align*}
j \times j 4 & =j^{2} 4 \tag{12-19}\\
& =-4
\end{align*}
$$

Therefore, $\mathrm{j} \times \mathrm{j} 4$ will rotate the vector four units in length an additional 90 degrees further counter-clockwise as shown in Figure 12.16. The vector is now located on the X axis, four units in length and pointing in the negative X direction. Thus, as you can see, the vector has rotated a total of 180 degrees from the original positive X -axis direction. The vector now indicates negative four units on the X axis.

Note that, as shown in equation $12-19$, j times j four equals j-squared times four. Since j-squared equals minus one, this becomes simply minus four, which describes exactly the position and length of the vector four units on the negative X axis.

Third Rotation

Now -4 is multiplied by j. Multiplying by j rotates the vector another 90 degrees to the negative imaginary axis, as shown in Figure 12.17.

$$
\begin{equation*}
j(-4)=-j 4 \tag{12-20}
\end{equation*}
$$

This vector position is now -j 4 (minus j four), 270 degrees from the original positive X axis position.

Figure 12.15 Vector 4 Units in Length Rotated 90 Degrees

Figure 12.16 Vector 4 Units in Length Rolated 180 Degrees

Figure 12.17 Vector Rotated 270 Degrees from Original Position

Fourth Rotation

Now, multiplying the $-j 4$ once again by j rotates the vector back to the positive X -axis as shown in Figure 12.18. In equation form this is:

$$
\begin{align*}
j(-j 4) & =j^{2}(-4) \tag{12-21}\\
& =-1(-4) \\
& =+4
\end{align*}
$$

The vector, four units long, is now positioned from the origin along the positive X axis Four multiplications by j or four 90 -degree rotations - 360 degrees - places the vector back in the original positive X axis position. This is confirmed by equation $12-21$ which shows that j times minus j four equals j-squared times minus four. Since j-squared is equal to minus one, this is equal to minus one times minus four or simply, four. This is the position from which the vector began

In summary, multiplying j times a vector length operates on the vector to rotate it 90 degrees from the positive X -axis in a counter-clockwise direction. Figure 12.19 shows how a vector of length ten is operated on by the j-operator. At point A the vector is +10 . At point B it is +J 10 . At point C it is -10 . At point D it is $-\mathrm{jl0}$. Note that -j 10 is -j times 10 and that -j 10 is along the negative imaginary axis. For this reason it can be said that multiplying by -j effectively rotates the vector 90 degrees in a clockwise direction - in a negative direction from the positive X axis. As indicated by the arrows in Figure 12.19, this is opposite to the rotation caused by the positive j-operator.

Another way to look at the operator is that a multiplier of one indicates a rotation from the positive X-axis of zero degrees as shown in Figure 12.20a.
A multiplier of j indicates a 90 -degree angle of rotation as shown in Figure 12.20b.

Figure 12.18 Vector Rotated Back to Original Position

Figure 12.19 Effect of j-Operalor on a Ten-Unil Vector

Figure 12.20 Rotation of Vector in Quadrant I:a. Multiplier of One; b. Multiplier of j

A multiplier of j^{2} indicates a 180 -degree rotation as shown in Figure 12.21 a.
A mulliplier of j^{3} indicates a 270 -degree rotation as shown in Figure 12.216.
Note that a multiplier of j^{3} is the same as a multiplier of minus j which indicates a minus 90 -degree rotation as shown in Figure 12.22

This type of j-operator notation is used to denote the phase relationships of quantities in ac circuits. For ac circuit analysis, the two most frequently used j-designations are j and - j, since j indicates a 90 -degree phase shift in the counter-clockwise direction, (Figure 12.19) and minus j indicates a 90 -degree phase shift in the clockwise direction. You have seen these 90° plase displacements repeatedly in the previous lessons on RC, RI, and RLC circuit analysis.

Application of J-Operator to ac Circuit Analysis

It is now time to apply principles using the j operator and complex numbers to do circuit analysis. Several examples should demonstrate the technique

RI. Impedance Written in Rectangular Form

For example, Figure 12.23 shows an RL circuit with a 20 -ohm resistor and an inductive reactance of 15 ohms. The impedance phasor diagram for the circuit is as shown in Figure 12.24. The resistance vector can be written as 20 , while the reactance vector can be written as j15, which indicates a 90 -degree phase difference between R and X_{1}, with X_{1}. positioned on the $+j$ axis. The resultant vector of the two quantities added vectorially is the impedance Z of the circuit. It can be written in complex-number form:

$$
\begin{equation*}
Z=20+j 15 \tag{12-22}
\end{equation*}
$$

Figure 12.21 Rotation of Vector in Quadrant II and III: a. Mulliplier of $j^{2} ; b$. Multiplier of j^{3}

a
b

Figure 12.22 Rotation of Vector in Quadrant IV: a. Multilplier of $j^{\mathbf{3}} ; b$. Multiplier of $-j$

Figure 12.23 Typical RL Circuit

The impedance of a circuit in a more general form is written:

$$
\begin{equation*}
\mathbf{Z}=\mathbf{R} \pm j \mathbf{X} \tag{12-23}
\end{equation*}
$$

This general form is used since X may pertain to either inductive or capacitive reactance. X simply designates a reactive quantity. Plus or minus j preceding the quantity indicates whether it is inductive or capacitive.

RC Written in Rectangular Form

For example, Figure 12.25 shows a series resistive-capacitive circuit composed of 40 ohms of resistance and 30 ohms of capacitive reactance. There is a 90 -degree phase difference between resistance and capacitive reactance as shown in the impedance phasor diagram of Figure 12.26. The impedance is written:

$$
\begin{equation*}
Z=40-j 30 \tag{12-24}
\end{equation*}
$$

The -j preceding the 30 indicates capacitive reactance and that a 90 -degree phase difference exists between R and X_{r}, with X_{C} positioned on the -jaxis.

2 Calculated

The impedance can be calculated, as usual, by using the Pythagorean theorem.

$$
\begin{aligned}
\mathbf{Z} & =\sqrt{\mathbf{R}_{2} \times \mathbf{X}_{\mathrm{C}}^{2}} \\
& =\sqrt{40^{2} \times 3^{2}} \\
& =\sqrt{1600 \times 900} \\
& =\sqrt{2500} \\
& =50 \Omega
\end{aligned}
$$

The impedance magnitude is $\mathbf{5 0}$ ohms The phase angle, theta, can be calculated:

$$
\begin{aligned}
\theta & =\arctan \left(\frac{X_{C}}{R}\right) \\
& =\arctan \left(\frac{30}{40}\right) \\
& =\arctan (0.75) \\
& =37^{\circ}
\end{aligned}
$$

Figure 12.24 /mpedance Phasor Diagram for Circuil of Figure 12.23

Figure 12.25 A Typical Series RC Circuit

$$
\begin{aligned}
& \xrightarrow[\text { X }_{c} \downarrow \longrightarrow 40 \Omega]{ } \\
& -\mathrm{j} 30 \Omega
\end{aligned}
$$

Figure 12.26 Phase Relationship Between Resistance and Capacitive Reactance

The phase angle is approximately 37 degrees Therefore, as shown in Figure 12.27, the resultant impedance in this example is a vector quantity that is neither along the X -axis as a resistance, nor along the Y -axis as a reactance. It is at an angle which you already know to be the ploase angle of the circuit

Z in Polar and Rectangular Form

To completely describe the inpedance in its polar form, its magnitude must be accompanied by its direction, which is the phase angle. In this example, the impedance in its polar form is 50 ohms at an angle of minus 37 degrees, or

$$
\begin{equation*}
\mathbf{z}=50 \Omega \angle-37^{\circ} \tag{12-25}
\end{equation*}
$$

In its rectangular form, the impedance is written (equation 12-27):

$$
\begin{equation*}
Z=40-j 30 \tag{12-24}
\end{equation*}
$$

Both represent the same impedance. 40 minus j30 describes the same resultant impedance vector as 50 at minus 37 degrees.
Using the diagram shown in Figure 12.28. both polar and rectangular forms of impedance can be indicated. The rectangular form of the impedance can be written $\mathrm{K}+$ $j X$, and the polar form can be written Z / θ.

Converting Impedance From Rectangular to Polar Form

The conversion from rectangular to polar form can be written as a mathematical expression as shown in equation 12-26.

$$
\mathbf{Z} / \underline{\theta}=\sqrt{R^{2}+X^{2}} \angle \arctan \left(\frac{X}{R}\right)(12-26)
$$

This equation says: the magnitude of 2 at the angle theta equals the square root of R -squared plus X -squared, the angle theta is an angle with a tangent which is X divided by R.

Figure 12.27 Impedance of Series RC Circual Example

Figure 12.28 Diagram for Indicating Polar or
Rectangular Form of Impedance Rectangular Form of Impedance

Converting Impedance From Polar to Rectangular Form

A reverse conversion is possible if the polar form of the impedance is known. This can be converted to the rectangular form using two trigonometric functions: 1) the sine function and 2) the cosine function. You have used the tangent function a great deal in these last lessons, but the sine and cosine functions haven't been used very much even though they are related to the tangent function and were discussed in previous lessons.

Sine Function

The sine of an angle of a right triangle as shown in Figure 12.29a, is equal to the length of the opposite side divided by the length of the hypotenuse:

$$
\begin{equation*}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \tag{12-27}
\end{equation*}
$$

Figure $12.29 b$ is an impedance right triangle The sine of theta for that triangle is

$$
\begin{equation*}
\sin \theta=\frac{x}{z} \tag{12-28}
\end{equation*}
$$

The sine of theta in this impedance right triangle, is equal to the ratio, X divided by Z Solving for X .

$$
\begin{equation*}
\mathbf{X}=\mathbf{Z} \sin \theta \tag{12-29}
\end{equation*}
$$

Recall from equation $12-23$ that \mathbf{Z} is identified by $R \pm j X . R$ is the real part; $j X$ is the imaginary part. The magnitude of the imaginary part of the rectangular form of the impedance is $Z \sin \theta$

To determine the magnitude of the real part of the rectangular form, the cosine function must be used. The cosine of an angle is equal to the length of the adjacent side divided by the hypotenuse:

$$
\begin{equation*}
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \tag{12-30}
\end{equation*}
$$

Therefore, in the impedance right triangle formed by R, X, and Z.

$$
\begin{equation*}
\cos \theta=\frac{R}{Z} \tag{12-31}
\end{equation*}
$$

Solving for the magnitude of \mathbf{R},

$$
\begin{equation*}
\mathbf{R}=\mathbf{Z} \cos \theta \tag{12-32}
\end{equation*}
$$

Figure 12.29 Rught Triangle Relationships: a. Right Triangle: b. Z, X. R, and θ
The magnitude of the real part of the rectangular form of the impedance is Z $\cos \theta$
Therefore, if the values of Z and theta are known, the magnitude of R and X can be derived using these two relationships:

$$
\begin{align*}
& \mathbf{R}=\mathbf{Z} \cos \theta \tag{12-32}\\
& \mathbf{X}=\mathbf{Z} \sin \theta \tag{12-29}
\end{align*}
$$

The rectangular form can be expressed in the form of R plus $j X$ or R minus $j X$ depending on the value of θ.

Polar to Rectangular Example

For example, suppose that the polar form of the impedance of a circuit is $5 \angle 37^{\circ}$ as shown in Figure 12.30. The general expression for the impedance is given in equation 12-33.

$$
\begin{equation*}
\mathrm{Z} \Leftrightarrow \theta=\mathrm{Z} \cos \theta \pm j(\mathrm{Z} \sin \theta) \tag{12-33}
\end{equation*}
$$

Solving for R using equation 12-32,

$$
\begin{aligned}
\mathbf{R} & =\mathbf{Z} \cos \theta \\
& =5 \cos 37^{\circ} \\
& =5(0.799) \\
& =5(0.8) \\
& =4 \Omega
\end{aligned}
$$

R equals Z times the cosine of theta, or five times the cosine of 37 degrees. From trigonometric tables or by using a calculator the cosine of 37 degrees is determined to be approximately 0.8 . Therefore, R equals five limes 0.8 , which is four olims.

Solving for \boldsymbol{X} using equation 12-29,

$$
\begin{aligned}
\mathbf{X} & =\mathbf{Z} \sin \theta \\
& =5 \sin 37^{\circ} \\
& =5(0.602) \\
& =5(0.6) \\
& =3 \Omega
\end{aligned}
$$

X equals 3 ohms.
Thus, the rectangular form of the impedance of this circuit is R , the real part, equals four ohms and X, the reactive imaginary part, equals three ohms. Writing this in complex form, the impedance is four plus $\mathbf{j} 3$ ohms.

$$
\begin{aligned}
Z & =R+j X \\
& =(4+j 3) \Omega
\end{aligned}
$$

If the angle had been a negative 37 degrees the impedance would be four minus j 3 .
The conversion formula can be written, as it was in equation 12-33, as a general mathematical expression:

$$
\begin{align*}
\mathbf{Z} & =\mathbf{Z} \angle \theta \\
& =\mathbf{R} \pm j \mathbf{X} \\
& =\mathbf{Z} \cos \theta \pm j(\mathbf{Z} \sin \theta) \tag{12-33}
\end{align*}
$$

Rectangular to Polar Example

To help you understand the technique of converting rectangular to polar form, another example will be analyzed. This example concerns a series RC circuit shown in Figure 12.31 which consists of a 10 -ohm resistor and a capacitive reactance of 24 ohms.

The relationship of $\mathrm{R}, \mathrm{X}_{\mathrm{C}}$, and Z for this circuit is shown in Figure 12.32.

Figure 12.30 Circuit with an Impedance of $5 / 37^{\circ}$

Figure 12.31 Example Series RC Circuil

Figure 12.32 Relationship of R, X_{C}, and Z of the Circuit of Figure 12.31

The complex impedance of this circuit can be written in rectangular form as

$$
Z=(10-j 24) \Omega
$$

This rectangular form of the impedance can be converted to polar form by using equation $12-26$ as follows:

$$
\mathrm{Z} \angle \theta=\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}} \operatorname{Larctan}\left(\frac{\mathrm{X}}{\mathrm{R}}\right)(12-26)
$$

Solving for the magnitude of Z,

$$
\begin{aligned}
\mathrm{Z} & =\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}} \\
& =\sqrt{10^{2}+-24^{2}} \\
& =\sqrt{100+576} \\
& =\sqrt{676} \\
& =26 \Omega
\end{aligned}
$$

Thus, the magnitude of the impedance equals 26 ohms.

The angle, theta, is calculated as follows:

$$
\begin{aligned}
\theta & =\arctan \left(\frac{X}{R}\right) \\
& =\arctan \left(\frac{-24}{10}\right) \\
& =\arctan (-2.4) \\
& =-67^{\circ}
\end{aligned}
$$

Note that this is a negative angle. It has its opposite side on the $-j$ axis and its adjacent side is positive. This is in the fourth quadrant. Because it is measured clockwise from the postive real axis it is a negative angle. Thus, the impedance of this circuit in polar form is

$$
Z=26 \Omega \angle-67^{\circ}
$$

Figure 12.33 Impedance of an Example RL Circuit

Polar to Rectangular Form Example

Suppose that the impedance of a series RL. circuit is as shown in Figure 12.33. It has been specified in polar form as $Z=10 \Omega \angle 30^{\circ}$. As in the first exaniple, you have been asked to convert this specification to its rectangular form. Here is how it is done. Again, equation 12-33 gives the general form for the impedance:

$$
\begin{align*}
\mathbf{Z} / \theta & =\mathbf{Z} \cos \theta+j Z \sin \theta \tag{12-33}\\
& =R+j X \tag{12-33}
\end{align*}
$$

Solving for the real part you use:

$$
\begin{equation*}
\mathrm{R}=\mathrm{Z} \cos \theta \tag{12-32}
\end{equation*}
$$

Solving for the imaginary part you use:

$$
\begin{equation*}
j X=j Z \sin \theta \tag{12.34}
\end{equation*}
$$

Therefore, using the values in the example, R can be calculated:

$$
\begin{aligned}
R & =Z \cos \theta \\
& =10 \cos 30^{\circ} \\
& =10(0.866) \\
& =8.66 \Omega
\end{aligned}
$$

The resistive portion of the impedance is 8.66 ohms.

Some Observations
 Complex Problem Analysis

The reactive portion of the impedance is calculated similarly:

$$
\begin{aligned}
\mathrm{jX} & =\mathrm{jZ} \sin \theta \\
& =\mathrm{j} 10 \sin 30^{\circ} \\
& =\mathrm{j} 10(0.5) \\
& =j 5 \Omega
\end{aligned}
$$

There are 5 ohms of inductive reactance. Thus, $10 / 30^{\circ}$ in polar form is the same impedance as $8.66+j 5$ in rectangular form .

Some Observations

Note that when performing these conversions from polar to rectangular form that if the angle is positive the j-term is positive, indicating an inductive circuit as shown in Figure 12.34a. If the angle is negative, indicating a capacitive circuit as shown in Figure 12.34b, a negative j-term results.
Conversely, when converting from rectangular to polar form, if the j-term is positive, a positive angle results; if the j-term is negative, a negative angle results.

The examples emphasized a nother important fact. When applying complex number analysis to ac resistive-reactive circuits, the resistance is the real term of the impedance, the reactance of an inductor is an imaginary term and is written as a positive j -term, and the reactance of a capacitor, another imaginary term, is written as a negative j-term. This is shown in Figure 12.35. This is also shown in the equations for impedance: for a series RL circuit,

$$
\begin{equation*}
\mathbf{Z}=\mathbf{R}+j \mathbf{X}_{\mathbf{L}} \tag{12-35}
\end{equation*}
$$

and for a series $R C$ circuit.

$$
\begin{equation*}
\mathbf{Z}=\mathbf{R}-j \mathbf{X}_{\mathbf{c}} \tag{12-36}
\end{equation*}
$$

Reniember that the plus or minusj simply indicates the 90 -degree phase difference between R and X.

Figure 12.34 Converting to Polar from Rectangula: a. An Inductive Circuit Causes a Positive Angle; b. A Capacitive Circuit Causes a Negative Angle

Figure 12.35 Terms Used with Different AC Circuit Quantities

Complex Problem Analysis

You will find that when analyzing more complex ac circuits in following lessons that designating impedance in rectangular coordinates as complex numbers with real and imaginary parts allows the problem solutions to be accomplished essentially in two parts. One part concerns all the real values, and another part concerns all the imaginary values with their j operators. Adding, subtracting, multiplying, and dividing these complex numbers becomes almost as simple as solving purely resistive circuits.

Any vector positioned within the $\mathbf{X}-\mathbf{Y}$ plane at any angle from zero to 360 degrees can be represented with complex number coordinates and manipulated mathematically as required. Rectangular coordinates are used mostly for addition and subtraction. and polar coordinates are used mostly for multiplication and division.

For example, a series ac circuit has two voltage drops which must be added together to obtain total voltage. V_{1} shown in Figure 12.36 is one voltage. $1 t$ is a vector in polar coordinates of magnitude 6.71 volts positioned at an angle of 116.6 degrees, $6.71 / 116.60$ In rectangular coordinates V_{1} consists of a vector part on the real axis of minus three and an imaginary part of plus j six, $V_{1}=-3+j 6$.
V_{2} shown in Figure 12.37 is the second voltage. In polar coordinates it is a voltage with magnitude 6.7 I volts positioned at an angle of 243.4 degrees, $6.71 / 234.40$. It has a vector part on the real axis of minus three and an imaginary part of minus j six,
$\mathrm{V}_{2}=-3-\mathrm{j} 6$.
The total voltage drop is:

$$
\begin{equation*}
V_{T}=V_{1}+V_{2} \tag{12-37}
\end{equation*}
$$

In order to find the rectangular coordinates of V_{T} the real part and imaginary parts of V_{1} and V_{2} are simply added separately.

$$
\begin{align*}
& V_{1}=-3+j 6 \tag{12-38}\\
& V_{2}=-3-j 6 \\
& V_{T}=-6+j 0
\end{align*}
$$

Minus three of V_{1} plus minus three of V_{2} gives a sum of minus 6 for the real part of V_{T}.
Plus j six and minus j six results in a sum of j zero for the imaginary part of $\mathrm{V}_{\mathbf{T}}$. The result is a vector with a rectangular coordinate of minus six plusjzero.

Figure 12.36 Diagram for V_{\downarrow} of Example Circuil

Figure 12.37 Diagram for V_{2} of Example Circuil

As shown in Figure 12.38, the total voltage, V_{T}, in polar form is a voltage with magnitude of six volts positioned at an angle of 180 degrees, $6 \angle 180^{\circ}$. Any resultant vector can be obtained from the addition of any number of vectors in a similar fashion.

You probably have noted in this lesson that when performing calculations with complex numbers only addition has been done. Subtraction of complex numbers can also be done using the rectangular form. However, multiplication and division of complex numbers are performed more easily if the numbers are in polar form. The subjects of subtraction, multiplication, and division of complex numbers are discussed in cletail in lesson 13.

Summary

In this lesson, the concept of imaginary numbers, complex numbers, and the j-operator were introduced. You learned how to express a complex number in rectangular and polar form, and how to convert from one to the other. In the next lesson, these ideas and techniques will be applied to solve for circuit values of complex RLC circuits.

Figure 12.38 Diagram for V_{r} of Example Circuil

1. For the points shown on the complex plane shown, specify both rectangular and polar coordinates of the points.

a. Point A \qquad $=$ \qquad
b. Point B: \qquad
\qquad
c. Point C : \qquad
\qquad
d. Point D: \qquad (polar coordinates)

Solutions

a. Point A: $2+j 6$ (rectangular coordinates)

To determine polar coordinates, use conversion formulas: $R=2, X=6$
$Z=\sqrt{R^{2}+X^{2}}=\sqrt{2^{2}+6^{2}}=\sqrt{4+36}=\sqrt{40}=6.32$
$\theta=\arctan \left(\frac{X}{R}\right)=\arctan \left(\frac{6}{2}\right)=\arctan (3)=71.6^{\circ}$
Therefore
Point A: $2+\mathrm{j} 6=6.32 / 71.6^{\circ}$
b. Point B: $4+j 4$ (rectangular coordinates)

To determine polar coordinates: $R=4, X=4$
$Z=\sqrt{R^{2}+X^{2}}=\sqrt{4^{2}+4^{2}}=\sqrt{16+16}=\sqrt{32}=5.66$
$\theta=\arctan \left(\frac{X}{R}\right)=\arctan \left(\frac{4}{4}\right)=\arctan (1)=45^{\circ}$
Therefore:
Point B: $4+j 4=5.66 / 45^{\circ}$
c. Point C: $3-\mathrm{j} 2$ (rectangular coordinates)

To determine polar coordinates: $\mathbf{R}=3, \mathbf{X}=-2$
$Z=\sqrt{R^{2}+X^{2}}=\sqrt{3^{2}+(-2)^{2}}=\sqrt{9+4}=\sqrt{13}=3.6$
$\theta=\arctan \left(\frac{X}{R}\right)=\arctan \left(\frac{-2}{3}\right)=-\arctan (0.67)=-33.7^{\circ}$
Therefore:
Point C: $3-\mathrm{j} 2=3.6 /-33.7^{\circ}$
d. Point D: $1-j 4$ (rectangular coordinates)

To determine polar coordinates: $\mathbf{R}=1, X=-4$
$Z=\sqrt{R^{2}+X^{2}}=\sqrt{1^{2}+(-4)^{2}}=\sqrt{1+16}=\sqrt{17}=4.12$
$\theta=\arctan \left(\frac{X}{R}\right)=\arctan \left(\frac{-4}{1}\right)=-\arctan (4)=-76^{\circ}$
Therefore:
Point D: $1-\mathrm{j} 4=4.12 /-76^{\circ}$
2. Simplify to the lowest-order expressions the following multiplication and division problems below involving the j-operator.
a. $(\mathrm{j})(\mathrm{j})$
b. j^{3}
c. $\frac{1}{j^{2}}$
d. $\sqrt{\frac{-1(j)}{j^{2}}}$
e. $\left(j^{3}\right)\left(j^{2}\right)$
f. $\left(j^{3}\right)\left(\frac{1}{j^{2}}\right)\left(\frac{1}{j}\right)$
g. $\quad\left(\frac{1}{j}\right)\left(j^{2}\right)\left(\frac{j^{2}}{j}\right)$
h. j^{4}
i. $\frac{1}{j^{3}}$
j. $\quad j^{3}\left(\frac{1}{j}\right)$
k. $j\left(\frac{1}{j^{2}}\right)$

1. $\left(j^{2}\right)\left(j^{3}\right)(j)\left(j^{4}\right) j$

Solutions

a. $(j)(j)=(\sqrt{-1})(\sqrt{-1})=-1$
b. $\left(j^{3}\right)=(j)\left(j^{2}\right)=j(-1)=-j$
c. $\left(\frac{1}{j^{2}}\right)=\frac{1}{-1}=-1$
d. $\left[\frac{\sqrt{-1}(j)}{j^{2}}\right]=\frac{(\sqrt{-1})(\sqrt{-1})}{-1}=\frac{-1}{-1}=+1$
e. $\left(j^{3}\right)\left(j^{2}\right)=(-j)(-1)=j$
f. $\left(j^{3}\right)\left(\frac{1}{j^{2}}\right)(j)=(-j)\left(\frac{1}{-1}\right)(j)=\left(-j^{2}\right)(-1)=(+1)(-1)=-1$
g. $\left(\frac{1}{j}\right)\left(j^{2}\right)\left(\frac{j^{2}}{j}\right)=(-j)\left(j^{2}\right)(j)=\left(-j^{2}\right)\left(j^{2}\right)=-j^{4}=-1$
h. $j^{4}=\left(j^{2}\right)\left(j^{2}\right)=(-1)(-1)=+1$
i. $\quad \frac{1}{j^{3}}=\left(\frac{1}{j}\right)\left(\frac{1}{j^{2}}\right)=(-j)(-1)=+j$
j. $\quad j^{3}\left(\frac{1}{j}\right)=\frac{j^{3}}{j}=j^{2}=-1$
k. $j\left(\frac{1}{j^{2}}\right)=j\left(\frac{1}{-1}\right)=j(-1)=-j$

1. $\left(j^{2}\right)\left(j^{3}\right)(j)\left(j^{4}\right) j=(-1)(-j)(j)(+1)(j)=+j^{3}=-j$
2. Multiplying byj terms rotates a vector. What jterm would have to be used as a multiplier to move the vector shown from its initial position to its final (resuli) position

a. times j^{2}

b. times j^{2}
3. Write the complex impedance form of the following circuits in rectangular form, then convert it to polar form
a.

$$
Z=R \pm j X \text { (rectangular) }=100+j 250
$$

Converting to polar:

$$
\begin{aligned}
& Z=\sqrt{R^{2}+X^{2}}=\sqrt{100^{2}+250^{2}}=\sqrt{72.500}=269.3 \Omega \\
& \theta=\arctan \left(\frac{X}{R}\right)=\arctan \left(\frac{250}{100}\right)=\arctan (2.5)=68.2^{\circ} \\
& \therefore Z=268.3 \angle 68.2^{\circ}
\end{aligned}
$$

b.

$$
\begin{aligned}
& Z=R \pm j X \text { (rectangular) } \\
& Z=120-j 85
\end{aligned}
$$

Converting to polar

$$
\begin{aligned}
& Z=\sqrt{R^{2}+X^{2}}=\sqrt{120^{2}+85^{2}}=\sqrt{21,625}=147 \Omega \\
& \theta \arctan \left(\frac{X}{R}\right)=\arctan \left(\frac{-85}{120}\right)=\arctan (-0.7083)=-35.3^{\circ}
\end{aligned}
$$

$$
\mathrm{Z}=147 /-35.3^{\circ}
$$

5. Convert the following complex impedances in polar form to rectangular form
a. $Z=150 / 25^{\circ}$

$$
\begin{aligned}
R \pm j X & =Z \cos \theta \pm j Z \sin \theta=150\left(\cos 25^{\circ}\right)+j 150\left(\sin 25^{\circ}\right) \\
& =150(0.9063)+j 150(0.4226)=135.9+j 63.4 \Omega
\end{aligned}
$$

b. $Z=480 /-80^{\circ}$

$$
\begin{aligned}
R \pm j X & =Z \cos \theta \pm j Z \sin \theta=480 \cos \left(-80^{\circ}\right)+j 480 \sin \left(-80^{\circ}\right) \\
& =480(0.1736)+j 480(-0.9848)=83.3-j 472.7 \Omega
\end{aligned}
$$

1. Specify the rectangular and polar coordinates of the points on this complex plane.

	POINT	RECTANGULAR	POLAR
a.	A	-	
b.	B	-	-
c.	C	-	
d.	D	-	-

2. Simplify the following j-operator expressions:
a. $j^{2}=$ \qquad
b. $(j)(j)(j)=$ \qquad
c. $j^{4}=$ \qquad
d. $\frac{1}{j}=$ \qquad
e. $\left(j^{2}\right)\left(\frac{1}{j}\right)\left(j^{3}\right)=$ \qquad
f. $\left(\frac{1}{j^{3}}\right)\left(j^{4}\right)(-1)=$
3. Show where the resulting vector will be located on the following complex plane if the vector shown is multiplied by the indicated j term.

a. times j

b. times - j
c. ${\text { times } j^{3}}^{3}$
4. Write the complex impedance form of the following circuits in rectangular form:
a.

$$
\mathbf{Z}=
$$

b. \qquad
$\mathrm{Z}=$

c.

Z = \qquad

d.

Z = \qquad
5. Convert the following rectangular impedance expressions into polar form
a. $50+\mathrm{j} 30=$ \qquad
b. $3.2 k-j 4.7 k=$ \qquad
c. $370-\mathrm{j} 150=$ \qquad
d. $3 \mathrm{M}-\mathrm{j} 500 \mathrm{k}=$ \qquad
6. Convert the following polar impedance expressions into rectangular form
a. $550 / 28^{\circ}=$ \qquad
b. $\quad 100 \mathrm{k} /-60^{\circ}=$ \qquad
c. $68 \mathrm{M} / 34^{\circ}=$ \qquad
d. $18 k /-25^{\circ}=$ \qquad

1. Specify the rectangular and polar coordinates of the points on the following complex plane

	POINT	RECTANGULAR	POLLAR
a.	A	-	
b.	B	-	
c.	C	-	
d.	D	-	-

2. Simplify the following j-operator expressions:
a. $\mathrm{j}=$
b. $\mathrm{j}^{2}=$
\qquad
c. $j^{3}=$
d. $j^{4}=$ \qquad
3. Show where the resulting vector will be located on the following complex plane if the vector shown is multiplied by the indicated j term.
a.

times j
b.

$$
\text { times }-\mathrm{j}
$$

4. Write the complex impedance form of the following circuits in rectangular form:
a.

$\mathbf{Z}=$ \qquad

Quiz
b.

$$
\mathrm{Z}=
$$

\qquad
5. Convert the following rectangular impedance expressions into polar form:
a. $10+\mathrm{j} 50=$ \qquad
b. $370-\mathrm{j} 600=$ \qquad
c. $29+\mathrm{j} 65=$ \qquad
d. $7-\mathrm{j} 9=$ \qquad
6. Convert the following polar impedance expressions into rectangular form:
a. $68 \angle+15^{\circ}=$ \qquad
b. $34 \angle-24^{\circ}=$ \qquad
c. $16 \angle+72^{\circ}=$ \qquad
d. $27 \angle-32^{\circ}=$ \qquad

LESSON 13

Complex RLC Circuit Analysis

Lesson 12 introduced phasor algebra techniques that could be used to solve ac circuit problems. Imaginary numbers, complex numbers, and the j-operator were introduced. This lesson will show how to apply those concepts to solve RLC circuits which would be very difficult to solve using other methods.

At the end of this lesson you should be able to

1. Calculate the sum, product, difference, or quotient of two or more j-operator terms.
2. Determine the sum, product, difference, or quotient of two or more complex numbers in rectangular form $(\mathrm{R}+\mathrm{jX})$.
3. Determine the product or quotient of two or more complex numbers in polar form (Z / $\boldsymbol{\theta}$).
4. Express the impedance of a series, parallel, or series-parallel circuit in rectangular or polar form
5. Write the impedance of a passive element (resistor, inductor, or capacitor) using j-operator notation or polar notation when given the reactance or resistance of that passive element
6. Determine the circuit impedance, currents, and voltages of an RLC circuit and express them in either rectangular or polar form

Introduction

In the previous lesson, you were introduced to the concept of imaginary numbers. complex numbers and the j-operator, and told how to express a complex number in rectangular or polar form. You were told how to convert from rectangular form to polar form and from polar form to rectangular form. The purpose of learning how to use complex numbers is to be able to simplify the solution of complicated ac circuits.

Writing Impedances with J-Operators

In the last lesson, it was stated that complex numbers, in either rectangular or polar form, are simply a code which can be used to express the value or magnitude of quantitites and their phase relationships in an ac circuit. It was also stated that the primary advantage of using complex numbers in the solution of ac circuits is that they could be solved using resistive circuit methods.

A Series Circuit

A good way to begin this lesson is by applying what you have already learned. Therefore, first a series R1.C circuit shown in Figure 13.1 will be discussed. It consists of two resistors of 10 ohms and 4 ohms connected to an inductor with a reactance of 8 ohms and a capacitor with a reactance of 20 ohms. To illustrate the technique that will be used throughout this lesson, the circuit first will be divided into two complex impedances as shown in Figure 13.2.
The impedance of the series combination of R_{1} and L is called Z_{1}. It can be written:

$$
\begin{equation*}
\mathbf{Z}_{1}=\mathbf{R}_{1}+j \mathbf{X}_{\mathbf{L}} \tag{13-1}
\end{equation*}
$$

or

$$
Z_{1}=10+j 8
$$

Figure 13.1 A Series RLC Circuit

Figure 13.2 The Circuit of Figure 13.1 Divided into Two Complex Impedances

The impedance of the series combination of R_{2} and C, is called Z_{2}. It can be written:
or

$$
\begin{equation*}
\mathbf{Z}_{\mathbf{2}}=\mathbf{R}_{\mathbf{2}}-\mathbf{j} \mathbf{X}_{\mathbf{c}} \tag{13-2}
\end{equation*}
$$

$j X_{L}$ is a positive quantity because the vector X_{L} leads the vector R by 90 degrees on the impedance phasor diagram shown in Figure 13.3. $\mathrm{j} \mathrm{X}_{\mathrm{c}}$ is a negative quantity because the vector X_{C} lags the vector R on the same diagram.

The two series impedances, Z_{1} and Z_{2}, can be treated as if they were series resistances. The total impedance of the circuit is:

$$
\begin{equation*}
\mathbf{Z}_{\mathbf{T}}=\mathbf{Z}_{1}+\mathbf{Z}_{2} \tag{13-3}
\end{equation*}
$$

Substituting the expressions for Z_{1} and Z_{2},

$$
Z_{T}=(10+j 8)+(4-j 20)
$$

A Parallel Circuit

Next, a parallel circuit composed of two resistive-reactance branches as shown in Figure 13.4 will be solved. The RL branch has a resistance of 3 ohms and an inductive reactance of 4 ohms. The RC branch has a resistance of 6 ohms and capacitive reactance of 10 ohms. The same technique outlined in the previous example will be used. First divide the circuit into two complex impedances, \mathbf{Z}_{1} and \mathbf{Z}_{2}, as shown in Figure 13.5. Then write the complex number representation of the impedance for each branch. Using equation $13-1$ the resistiveinductive branch, Z_{1}, can be written as:

$$
\mathbf{Z}_{1}=3+j 4
$$

The impedance of the resistive-capacitive branch, Z_{2}, can be written:

$$
Z_{2}=6-j 10
$$

The total impedance of the circuit is the parallel combination of \mathbf{Z}_{1} and \mathbf{Z}_{2}. Recall from earlier lessons that when two resistors are connected in parallel, the total resistance can be calculated using the product-oversum equation:

$$
\begin{equation*}
\mathbf{R}_{\mathrm{T}}=\frac{\mathbf{R}_{1} \times \mathbf{R}_{\mathbf{2}}}{\mathbf{R}_{1}+\mathbf{R}_{2}} \tag{13-4}
\end{equation*}
$$

The total impedance for a circuit can be calculated using a similar equation:

$$
\begin{equation*}
\mathbf{Z}_{\mathrm{T}}=\frac{\mathbf{Z}_{1} \times \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \tag{13-5}
\end{equation*}
$$

Figure 13.3 Impedance Phasor Diagram for the Circuil of Figure 13.1

$$
\begin{aligned}
& R=3 \Omega \quad R=6 \Omega \\
& X_{L}=4 \Omega \quad X_{C}=10 \Omega
\end{aligned}
$$

Figure 13.4 A Parallel RLC Circuil

Figure 13.5 The Circuit of Figure 13.4 Divided into Two Complex Impedances

Substituting the rectangular impedance for Z_{1} and Z_{2}, this equation becomes:

$$
Z_{T}=\frac{(3+j 4)(6-j 10)}{(3+j 4)+(6-j 10)}
$$

Once the impedance of the circuits has been converted to this form, addition, subtraction, multiplication. and division can be used to reduce the circuits to a single complex number representing the value of the total impedance. Because the joperator is included, a discussion of these arithmetic operators will be useful before you continue with the complete problem solution

Math Operations Involving J-Operators

You already know how to perform math operations using real numbers. That is basic arithmetic. These same operations can be performed using imaginary numbers; addition, subtraction, multiplication, and division are performed with j-terms as you would add, subtract, multiply and divide using algebraic techniques. Simply treat the term j as you would the variable X in an algebraic expression and make sure that you recognize the positive and negative quantities. For example, addition and subiraction using imaginary numbers are performed like this:

$$
\begin{aligned}
& \mathrm{j} 2+\mathrm{j} 6=\mathrm{j} 8 \quad \mathrm{j} 3-\mathrm{j} 5=-\mathrm{j} 2 \\
& \mathrm{j} 4-\mathrm{j} 3=\mathrm{j} 1 \quad-\mathrm{j} 4+\mathrm{j} 7=\mathrm{j} 3
\end{aligned}
$$

Here are some additional examples:

$$
-j 1-j 9=-j 10 \quad-j 12+j 8=-j 4
$$

Similarly, multiplication and division are performed like this:

$$
\begin{array}{ll}
\mathrm{j} 2 \times \mathrm{j} 4=\mathrm{j}^{2} 8 \quad & \frac{\mathrm{j}^{*} 6}{\mathrm{j}^{2} 2}=\mathrm{j} 3 \\
\frac{\mathrm{j} 8}{2}=\mathrm{j} 4
\end{array}
$$

Here are some additional examples

$$
\begin{array}{rlrl}
-j 3 \times j 4 & =-j^{2} 12 & \frac{-j 8}{j^{2}} & =-4 \\
-j 8 \times-j 4 & =j^{2} 32 & j^{4} 20 \\
(j 5)(-j 2) & =-j^{2} 10 & \frac{j^{2} 5}{-j}=-j^{2} 4
\end{array}
$$

And since one over j equals minus j .

$$
\frac{16}{j 2}=\frac{1}{j} \times \frac{16}{2}=-j 8
$$

or

$$
\frac{-j^{2} 9}{j^{3} 3}=-\frac{3}{j}=-\frac{1}{j} \times 3=j 3
$$

Once division or multiplication has been performed, terms containing a power of j can be simplified using the following basic identities which were introduced in Lesson 12:

$$
\begin{aligned}
& \mathrm{j}^{2}=-1 \\
& \mathrm{j}^{3}=-\mathrm{j} \\
& \mathrm{j}^{4}=+1
\end{aligned}
$$

For example, $\mathrm{j}^{2} 8$ may be simplified

$$
j^{2} 8=(-1) 8=-8
$$

Math Operations with Complex Numbers - Rectangular Form

Now that basic mathematical equations using imaginary numbers have been illustrated, let's see how these operations may be performed using complex numbers.

Addition

To add two rectangular form complex numbers, simply add the two real parts and add the two imaginary parts. The result is expressed as another complex number called the complex sum which has both real and imaginary parts.

$$
\begin{align*}
& \left(\mathbf{R}_{1}+j \mathbf{X}_{1}\right)+\left(\mathbf{R}_{2}+j \mathbf{X}_{2}\right) \tag{13-6}\\
= & \left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)+j\left(\mathbf{X}_{1}+\mathbf{X}_{2}\right)
\end{align*}
$$

For example, suppose the two complex numbers $4+j 2$ and $6+j 1$ must be added:

$$
\begin{aligned}
& (4+j 2)+(6+j 1) \\
= & (4+6)+(j 2+j 1) \\
= & 10+j 3
\end{aligned}
$$

Thus, the sum of $4+j 2$ and $6+j 1$
equals $10+j 3$
As another example.

$$
\begin{aligned}
& (-8+j 2)+(10-j 5) \\
= & (-8+10)+(j 2-j 5) \\
= & 2-j 3
\end{aligned}
$$

Subtraction

Subiraction using rectangular form complex numbers is very similar to adcition. To subtract two complex numbers, first find the difference between the real parts, then find the difference between the imaginary parts. Remember, this must be the algebraic difference. The result is a complex number with real and imaginary parts.

$$
\begin{align*}
& \left(R_{1}+j X_{1}\right)-\left(R_{2}+j X_{2}\right) \tag{13-7}\\
= & \left(R_{1}-R_{2}\right)+j\left(X_{1}-X_{2}\right)
\end{align*}
$$

For example, $4+j 2$ is subtracted from $8+j 8$.

$$
\begin{aligned}
& (8+j 8)-(4+j 2) \\
= & (8-4)+(j 8-j 2) \\
= & 4+j 6
\end{aligned}
$$

Effectively, the subtraction process is the same as any algebraic subiraction, you change the sign of the number that is being subiracted and then perform an addition.
As a second example.

$$
\begin{aligned}
& (10-j 7)-(2-j 3) \\
= & (10-2)+j(-7+3) \\
= & 8-j 4
\end{aligned}
$$

Written in a little different form may make it easier to understand.

$$
\begin{gathered}
10-j 7 \\
-(2-j 3) \\
\hline
\end{gathered}
$$

$2-j 3$ is subtracted from $10-j 7$ by
changing the sign of $2-j 3$ and adding

$$
\begin{gathered}
10-j^{7} \\
+(-2+j 3) \\
\hline 8-j^{4}
\end{gathered}
$$

Muliplication

The multiplication of two rectangular form complex numbers may be performed by using basic binomial algebraic methods. That is, the complex numbers are in the form $\left(R_{1}+j X_{1}\right)$ and ($\mathbf{R}_{2}+j \mathbf{X}_{2}$). When you multiply one by the other the result is obtained by multiplying each term in the first number times each term in the second number and adding the resulting products

$$
\left(R_{1}+j X_{1}\right)\left(R_{2}+j X_{2}\right)
$$

$$
\begin{align*}
& \left(\mathbf{R}_{1}+j \mathbf{X}_{1}\right)\left(\mathbf{R}_{2}+j \mathbf{X}_{2}\right) \tag{13-8}\\
= & \mathbf{R}_{1} \mathbf{R}_{2}+j \mathbf{R}_{1} \mathbf{X}_{2}+j \mathbf{R}_{2} \mathbf{X}_{1}+j^{2} X_{1} \mathbf{X}_{2}
\end{align*}
$$

You can then group like terms. At this time. terms 2 and 3 both have j-prefixes and can be grouped

$$
\left(R_{1} R_{2}\right)+j\left(R_{1} X_{2}+R_{2} X_{1}\right)+j^{2}\left(X_{1} X_{2}\right)
$$

Since $j^{2}=-1$ in term 4 , the expression simplifies to:

$$
\begin{equation*}
\left(R_{1} R_{2}-X_{1} X_{2}\right)+j\left(R_{1} X_{2}+R_{2} X_{1}\right) \tag{13-9}
\end{equation*}
$$

As an example the product of $9+j 3$ and 4-j2 is:

$$
\begin{aligned}
& (9+j 3)(4-j 2) \\
= & 36-j 18+j 12-j^{2} 6
\end{aligned}
$$

Combining like terms results in:

$$
=36-j 6-j^{2} 6
$$

Since the $j^{2}=-1$, the result simplifies to:

$$
\begin{aligned}
& =36-j 6-(-1) 6 \\
& =36-j 6+6
\end{aligned}
$$

Finally, combining real terms:

$$
=42-j 6
$$

Notice that the product reduces to the real plus imaginary complex number form. It is important to remember to carry along the sign of the reactance terms and apply the rules for the product of signed terms.

$$
\begin{aligned}
& +x+=+ \\
& +x-=- \\
& -x-=+ \\
& -x+=-
\end{aligned}
$$

Division

The division of two rectangular form complex numbers may also be performed by using algebraic methods. The form is

$$
\begin{equation*}
\frac{\mathbf{R}_{1}+j \mathbf{X}_{1}}{\mathbf{R}_{2}+j \mathbf{X}_{2}} \tag{13-10}
\end{equation*}
$$

This process, however, becomes quite involved since the division of a real number by an imaginary number is not possible. Because of this, the denominator must be converted first to a real number by a process called rationalization of the fraction. To do this, both the numerator and denominator must be multiplied by what is called the conjugate of the denominator. The conjugate of a complex number is simply the number with the j-term having an opposite sign. For example, the conjugate of $2+\mathrm{j} 2$ is $2-\mathrm{j} 2$. Similarly, the conjugate of $6-j 4$ is $6+j 4$.
Following this rule to divide $3+j 2$ by $2+j 2$, you must multiply both the numerator and denominator by the conjugate of the denominator $2-\mathrm{j} 2$:

$$
\frac{(3+\mathrm{j} 2)}{(2+\mathrm{j} 2)} \times \frac{(2-\mathrm{j} 2)}{(2-\mathrm{j} 2)}
$$

In doing so, you do not change the value of the fraction since $(2-\mathrm{j} 2)$ divided by $(2-\mathrm{j} 2)$ times the fraction is like multiplying the fraction times one.

$$
\frac{\left(3+j^{2}\right)}{\left(2+j^{2}\right)} \times 1
$$

Multiplying numerators and denominators:

$$
\frac{(3+j 2)}{(2+j 2)} \times \frac{(2-j 2)}{(2-j 2)}=\frac{6-j 6+j 4-j^{2} 4}{4-j 4+j 4-j^{2} 4}
$$

Combining j-terms in the numerator and denominator, the fraction becomes.

$$
=\frac{6-j^{2}-j^{2} 4}{4-j^{2} 4}
$$

Since $j^{2}=-1$, the expression can be reduced as follows:

$$
\frac{6-j 2-(-1) 4}{4-(-1) 4}=\frac{6-j 2+4}{4+4}=\frac{10-j 2}{8}
$$

Notice that all imaginary terms have been eliminated from the denominator. Recall that this is the purpose of rationalization. Now, the fraction can be split up and the division performed:

$$
=\left(\frac{10}{8}\right)-\left(\frac{j^{2}}{8}\right)=1.25-j 0.25
$$

The final result is again a complex number with real and imaginary parts. Again, it must be remembered to follow all of the rules that pertain to multiplication and division of signed terms.

Multiplication and Division in Polar Form

Complex numbers, expressed in rectangular form, can be multiplied and divided by using the basic algebraic methods discussed. However, it is much easier to multiply and divide complex numbers by converting them from rectangular form to polar form and then performing the operations in polar form.

Multiplication

To multiply in polar form, one need only multiply the magnitudes and add the angles:

$$
\begin{align*}
& \mathbf{Z}_{1} / \theta_{1} \times \mathbf{Z}_{2} / \theta_{2} \tag{13-8}\\
= & \mathbf{Z}_{1} \times \mathbf{Z}_{2}\left\langle\left(\theta_{1}+\theta_{2}\right)\right.
\end{align*}
$$

For example,

$$
\begin{aligned}
& 2 \angle 30^{\circ} \times 8 \angle 20^{\circ} \\
= & 2 \times 8 \angle 30^{\circ}+20^{\circ}=16 / 50^{\circ}
\end{aligned}
$$

additional examples:

$$
\begin{aligned}
& 5 \angle 150^{\circ} \times 3 /-75^{\circ}=15 \angle 75^{\circ} \\
& 15 \angle-200^{\circ} \times 6 / 180^{\circ}=90 \angle-20^{\circ}
\end{aligned}
$$

The algebraic rules for signs apply to the addition of the angles. The polar magnitude is always positive. If in some solution it were to come out negative it means that the angle should be changed by 180°.

Division

Division of polar complex numbers is similar. Simply divide the numerator's magnitude by the denominator's magnitude and subtract the denominator's angle from the numerator's angle.

$$
\begin{equation*}
\frac{\mathbf{Z}_{1} / \theta_{1}}{\mathbf{Z}_{2} / \underline{\theta_{2}}}=\left(\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{2}}\right)\left\langle\left(\theta_{1}-\theta_{2}\right)\right. \tag{13-9}
\end{equation*}
$$

For example,

$$
\frac{14 / 60^{\circ}}{7 / 20^{\circ}}=\frac{14}{7} \angle 60^{\circ}-20^{\circ}=2 \angle 40^{\circ}
$$

Additional examples show how the algebraic convention of signs apply to the subtraction of the angles. The polar magnitude is always positive with the same provision as in multiplication.

$$
\begin{aligned}
\frac{15 \angle-45^{\circ}}{5 \angle-45^{\circ}} & =\frac{15}{5} \angle-45^{\circ}-\left(-45^{\circ}\right) \\
\frac{40 \angle-120^{\circ}}{20 / 60^{\circ}} & =3 / 0^{\circ} \\
\frac{16 / 60^{\circ}}{20} & =\frac{16}{4} \angle 60^{\circ}-\left(-60^{\circ}\right) \\
4 \angle-60^{\circ} & =4 \angle 120^{\circ}
\end{aligned}
$$

Use of Rectangular Form Versus Polar Form

It should be noted that addition and subtraction of complex numbers in polar form is usually not convenient or possible.
Therefore, simply remember that addition and subtraction are performed most easily using the rectangular form of the complex number while multiplication and division are performed most easily using the polar form of the complex number.

Circuit Analysis Using

J-Operator Notation

Now, with these basic mathematical operations for complex numbers in mind, the impedances of several RLC circuits will be simplified

Simplifying Impedance for A Series Circuit

 Suppose the impedance of a series RLC circuit can be written as:$$
z=80+j 60-j 20
$$

Combining the j-terms gives:

$$
z=80+j 40
$$

The resultant impedance of this circuit can be written simply as $80+\mathrm{j} 40$ in rectangular form. Notice that the $\mathbf{j 0 ~ t e r m ~ i n d i c a t e s ~ t h a t ~}$ the total reactance of the circuit is an inductive 40 ohms. The components of this series RLC circuit are shown on the phasor diagram shown in Figure 13.6. The various phasors are drawn with magnitudes to scale and positioned in phase.
The polar form of this impedance can be found using the conversion equation 13-13.

$$
\begin{equation*}
Z / \theta=\sqrt{R^{2}+X^{2}} \angle \arctan \left(\frac{X}{R}\right) \tag{13-13}
\end{equation*}
$$

Series Circuit with Two Complex Impedances

Substituting equation $13-13$ for the values X and R gives:

$$
\begin{aligned}
\mathbf{Z} \angle \theta & =\sqrt{80^{2}+40^{2}} \angle \arctan \left(\frac{40}{80}\right) \\
& =\sqrt{6400+1600} \angle \arctan (0.5) \\
& =\sqrt{8000} \angle \arctan (0.5) \\
& =89.4 \angle 27^{\circ}
\end{aligned}
$$

Thus, the impedance of $80+j 40$ in rectangular form equals 89.4 at 27 degrees in polar form. This polar form corresponds to a vector whose magnitude is the value of the impedance and whose angle is the phase angle of the citcuit. This is shown in Figure 13.7. It is the same answer that would be obtained by drawing the vector to scale and using the Pythagorean theorem. Both methods yield the same result.
Since this circuit was simple enough to solve by right triangle phasor analysis, it should also be possible to use complex numbers to arrive at valid solutions of even more complex circuits.

Series Circuit with Two

Complex Impedances

In the circuit of Figure 13.1 and 13.2, the total impedance is the series combination of two complex impedances. This was defined previously as,

$$
Z_{T}=(10+j 8)+(4-j 20)
$$

Combining real terms and imaginary terms, the total impedance of this circuit can be expressed as:

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{T}} & =(10+4)+j(8-20) \\
& =14-\mathrm{j} 12
\end{aligned}
$$

Thus, the total impedance of the circuit can be expressed in rectangular form as $14-\mathrm{j} 12$.

$$
\begin{gathered}
\mathrm{X}_{\mathrm{L}}=60 \Omega \\
\substack{\mathrm{X}_{\mathrm{T}}=40 \Omega \\
\mathrm{X}_{\mathrm{C}}=-20 \Omega} \\
\\
\\
\mathrm{Z}_{\mathrm{T}}
\end{gathered}
$$

Figure 13.6 Phasor Diagram for a Series RLC Circuit

Figure 13.7 Impedance and Phase Angle for the RLC Circuit

This can be converted to polar form which indicates the magnitude of the impedance and the phase angle of the circuit:

$$
\begin{aligned}
Z / \theta & =\sqrt{R^{2}+X^{2}} / \arctan \left(\frac{X}{R}\right) \\
& =\sqrt{14^{2}+12^{2}} \angle \arctan \left(\frac{-12}{14}\right) \\
& =\sqrt{196+144} \angle \arctan -(0.86) \\
& =\sqrt{340} \angle \arctan -0.86 \\
& =18.4 \angle-40.6^{\circ}
\end{aligned}
$$

The total impedance is 18.4 ohms at a negative angle of 40.6 degrees.

A Parallel RLC Circuit

In the circuit of Figure 13.4, the total impedance is the parallel combination of two complex impedances. By applying equation 13-5, the total impedance of this circuit was determined as,

$$
Z_{T}=\frac{(3+j 4)(6-j 10)}{(3+j 4)+(6-j 10)}
$$

Performing the addition operation in the denominator first results in

$$
Z_{T}=\frac{(3+j 4)(6-j 10)}{(9-j 6)}
$$

The denominator is simplified to $9-j 6$. Now, all remaining operations to be performed are either multiplication or division. Since multiplication and division operations are most easily performed in pular form, the easiest way to solve for the total impedance is to convert all rectangular terms to polar form. Using equation 13-13, the $3+j 4$ term becomes $5 / 53^{\circ}$ in polar form. The calculations are:

$$
\begin{aligned}
Z \angle \theta & =\sqrt{R^{2}+X^{2} / \arctan }\left(\frac{X}{K}\right) \\
3+j 4 & =\sqrt{3^{2}+4^{2}} \underline{\arctan }\left(\frac{4}{3}\right) \\
& =\sqrt{9+16}\lfloor\arctan (1.33) \\
& =\sqrt{25} / \arctan (1.33) \\
& =5 / 53^{\circ}
\end{aligned}
$$

Similar calculations,

$$
\begin{aligned}
6-j 10 & =\sqrt{6^{2}+10^{2}} \angle \arctan \left(\frac{-10}{6}\right) \\
& =\sqrt{36+100} \angle \arctan (-1.67) \\
& =\sqrt{136} / \arctan (-1.67) \\
& =11.7 \angle-59^{\circ}
\end{aligned}
$$

result in a polar form of $11.7 /-59^{\circ}$ for the $6-j 10$ term. The angle is negative because the j-term is negative.
The $9-j 6$ term in polar form is $10.8 \angle-34^{\circ}$ arrived as as follows:

$$
\begin{aligned}
9-j 6 & =\sqrt{9^{2}+6^{2}} / \arctan \left(\frac{-6}{9}\right) \\
& =\sqrt{81+36} / \arctan (-0.67) \\
& =\sqrt{117} \angle \arctan (-0.67) \\
& =10.8 \angle-34^{\circ}
\end{aligned}
$$

The angle, again, is negative since the j-term is negative. Thus, $9-\mathrm{j} 6$ is equal to 10.8 $\angle-34^{\circ}$ in polar form.
Substituting these equivalent polar-form impedances for their corresponding rectangular-form impedances in the original equation results in the following equation for Z_{T}.

$$
Z_{T}=\frac{\left(5 / 53^{\circ}\right)\left(11.7 /-59^{\circ}\right)}{\left(10.8 /-34^{\circ}\right)}
$$

Now the total impedance can be determined simply by the multiplication and division of polar-form terms. Performing the multiplication operation in the numerator first:

$$
\mathrm{Z}_{\mathrm{T}}=\frac{58.5 /-6^{\circ}}{10.8 /-34^{\circ}}
$$

Now, performing the division:

$$
Z_{T}=\left(\frac{58.5}{10.8}\right) /\left(-6^{\circ}\right)-\left(-34^{\circ}\right)=5.4 / 28^{\circ}
$$

Therefore, the total impedance of the circuit is equal to 5.4 ohms at a phase angle of 28 degrees.

Solving for Impedance of RL.C Circuit

Now these phasor algebra techniques will be applied to solve for the total impedance of the series-parallel ac circuit shown in Figure 13.8. First divide the circuit into several complex impedances as you have seen done previously to simplify its solution as illustrated in Figure 13.9. I.et R_{1} and L_{1} be impedance $\mathrm{Z}_{1}, \mathrm{R}_{2}$ and C be impedance Z_{2} and R_{3} and L_{2} be impedance Z_{3}.
Expressed in rectangular form these impedances are:

$$
\begin{aligned}
& Z_{1}=2+j 6 \\
& Z_{2}=3-j 4 \\
& Z_{5}=1+j 2
\end{aligned}
$$

Looking at the circuit simply in terms of these three impedances, the total impedance of the circuit can be written as Z_{1} in series with the parallel combination of Z_{2} and Z_{3}. That is,

$$
\begin{equation*}
Z_{\mathrm{T}}=Z_{1}+\frac{\mathbf{Z}_{2} \times \mathbf{Z}_{3}}{\mathbf{Z}_{2}+Z_{3}} \tag{13-14}
\end{equation*}
$$

If the complex impedances are substituted Z_{T} is:

$$
Z_{T}=(2+j 6)+\frac{(3-j 4)(1+j 2)}{(3-j 4)+(1+j 2)}
$$

Rectangular form addition can be performed in the denominator. This makes $\mathbf{Z}_{\mathbf{T}}$:

$$
Z_{T}=(2+j 6)+\frac{(3-j 4)(1+j 2)}{(4-j 2)}
$$

Before the first and second term can be added in rectangular form, the second term must have its rectangular components converted to polar form so the multiplication and division can be performed.

Figure 13.8 Series-Parallel RLC Circuit

Figure 13.9 The Circuit of Figure 13.8 Divided Into Three Complex Impedances
The $3-\mathrm{j} 4$ term is $5 \angle-53^{\circ}$ in polar form. The calculations are as follows:

$$
\begin{aligned}
2 \angle \underline{\theta} & =\sqrt{3^{2}+4^{2}}\left\lfloor\arctan \left(\frac{-4}{3}\right)\right. \\
& =\sqrt{9+16} \angle \arctan -1.33 \\
& =\sqrt{25} L-\arctan 1.33) \\
& =5 \angle-53^{\circ}
\end{aligned}
$$

The angles are rounded to two significant figures. The angle is negative because the j term is negative.

The $1+j 2$ term is $2.24 / 63^{\circ}$ in polar form calculated as follows:

$$
\begin{aligned}
\mathrm{Z} \angle \underline{\theta} & =\sqrt{1^{2}+2^{2}} \angle \arctan \left(\frac{2}{1}\right) \\
& =\sqrt{1+4} \angle \arctan (2) \\
& =\sqrt{5} \angle \arctan (2) \\
& =2.24 \angle 63^{\circ}
\end{aligned}
$$

Similarly, the $4-j 2$ term is $4.47 / 27^{\circ}$ in polar form.

$$
\begin{aligned}
Z \angle \theta & =\sqrt{4^{2}+(-2)^{2}} / \arctan \left(\frac{-2}{4}\right) \\
& =\sqrt{16+4} / \arctan (-0.5) \\
& =\sqrt{20} \angle \arctan (-0.5) \\
& =4.47 \angle-27^{\circ}
\end{aligned}
$$

Substituting these polar-form impedances for the rectangular-form impedances which they equal, the total impedance equation for the complex RLC circuit now is:

$$
Z_{T}=(2+j 6)+\frac{\left(5 L-53^{\circ}\right)\left(2.24 / 63^{\circ}\right)}{\left(4.47 L-27^{\circ}\right)}
$$

Performing the multiplication in the numerator results in,

$$
Z_{T}=(2+j 6)+\frac{\left(11.2 \swarrow 10^{\circ}\right)}{\left(4.47 L-27^{\circ}\right)}
$$

Performing the division results in the total impedance of

$$
\mathrm{Z}_{\mathrm{T}}=(2+j 6)+2.5 / 37^{\circ}
$$

Figure 13.10 Simple RL. Circuit

To perform the indicated addition, first the second term of the impedance in polar form should be converted to its equivalent rectangular form. Equation 13-15, discussed in previous lessons, is used for this purpose.

$$
\begin{align*}
\mathbf{R}+\mathrm{jX} & =Z \cos \theta+\mathrm{jZ} \sin \theta \tag{13-15}\\
2.5\left(37^{\circ}\right. & =\left(2.5 \cos 37^{\circ}\right)+\mathrm{j}\left(2.5 \sin 37^{\circ}\right) \\
& =2.5(0.7986)+\mathrm{j} 2.5(0.6018) \\
& =2+\mathrm{j} 1.5
\end{align*}
$$

Thus, the rectangular form of $2.5 \angle 37^{\circ}$ equals $2+j 1.5$.
Substituting this rectangular form into the total impedance equation, and adding Z_{T} becomes,

$$
\begin{aligned}
& Z_{T}=(2+j 6)+(2+j 1.5) \\
& Z_{T}=4+j 7.5
\end{aligned}
$$

This is the total impedance of this series-parallel circuit expressed in rectangular form. Note as shown in Figure 13.10 that this impedance indicates that the circuit would appear to a power supply as a 4 -ohm resistor in series with an inductor possessing an inductive reactance of 7.5 ohms at the applied frequency. Obviously, since reactances will change with changes in frequency, at a different frequency the circuit may appear to be either an RL or RC circuit.

The total impedance of the circuit can also be converted to its polar form to yield the magnitude of the impedance and the phase angle. It is $8.5 / 62^{\circ}$ shown as follows:

$$
\begin{aligned}
& Z_{\mathrm{T}}=4+j 7.5 \\
Z \angle \theta= & \sqrt{4^{2}+7.5^{2} / \arctan \left(\frac{7.5}{4}\right)} \\
= & \sqrt{16+56.25} / \arctan (1.875) \\
= & \sqrt{72.25} / \arctan (1.875) \\
= & 8.5 / 62^{\circ}
\end{aligned}
$$

This form is usuaily the most-desirable form since it not only gives the magnitude of the circuit's impedance, but also its phase angle.

Solution of RLC Circuit

These phasor algebra techniques can now be used to solve for the impedance, total current and voltage drops in the series RLC circuit illustrated in Figure 13.11. The circuit contains 15 ohms resistance, 30 ohms capacitive reactance, 50 ohms of inductive reactance, and a second capacitive reactance of 40 ohms . The applied voltage, E_{A}, is 50 volts. If the reactances were not given, you would have to use the frequency of the applied voltage to calculate the capacitive and inductive reactances. Writing in j-operator notation, the reactance of C_{1} is $-j 30$ ohms, the reactance of the inductor is j 50 ohms, and the reactance of C_{2} is $-j 40$ ohms.

Impedance

The total impedance of the circuit can be written:

$$
Z_{T}=15-j 30+j 50-j 40
$$

Pure Resistance Polar Form
Pure Reactance Polar Form

Using the applied voltage as a reference at zero degrees, it can be expressed as 50 volts at 0 degrees. If it seems unusual that the applied voltage is written in this form, recall that in reality, current and voltages have phase relationships, not resistance, reactance, or impedance. The total current in the circuit is calculated using equation 13-16.

$$
I_{T}=\frac{\mathbf{E}_{A}}{Z_{\tau}}=\frac{50 V / \underline{0}^{\circ}}{25 \Omega L-53^{\circ}}
$$

Carrying out the indicated division,

$$
I_{T}=\frac{50 \mathrm{~V}}{25 \Omega} /\left(0^{\circ}\right)-\left(-53^{\circ}\right)=2 \mathrm{~A} / 53^{\circ}
$$

Thus. the total current equals $2 \mathrm{~A} / 53^{\circ}$.

Voltage Drops

Recall that according to Ohm's law the voltage drop across any resistor is equal to the current through it times the value of the resistor:

$$
\begin{equation*}
E_{R}=I R \tag{13-17}
\end{equation*}
$$

Also recall that the voltage drop across any reactance is equal to the current through it times the value of the reactance:

$$
\begin{equation*}
\mathbf{E}_{\mathbf{x}}=\mathbf{I}_{\mathbf{x}} \mathbf{X} \tag{13-18}
\end{equation*}
$$

Since the circuit is a series circuit, the current through all components is the same as the total current, 1_{T}. Thus, to determine the voltage drop across any component in the circuit, simply multiply the total current, $2 A \angle 53^{\circ}$, times the resistance, R, or reactance, X, of the component in the circuit.
In order to perform multiplication of two complex numbers, both must be expressed in the same form, either rectangular or polar. The current is expressed in polar form, therefore, 10 multiply conveniently by the polar form of the current, you should convert all resistances and reactances in the circuit to
polar form.

Pure Resistance Polar Form

Ihis is easily accomplished in terms of individual resistances or reactances. For example, R_{1}, the resistance term of 15 ohms in the circuit of Figure 13.11, can be written in polar form as simply $15 \Omega / 0^{\circ}$ which means the impedance is all resistive with no reactance. This might be more clearly understood when written in rectangular form. In the form $R+j X, K=15$ ohms and $X=0$ because it is all resistive. The polar form can be oblained by use of the conversion equation:

$$
\begin{aligned}
\mathbf{Z} / \theta & =\sqrt{\mathbf{R}^{2}+X^{2}} / \arctan \left(\frac{X}{R}\right) \\
Z \angle \underline{\theta} & =\sqrt{15^{2}+0^{2}} \angle \arctan \left(\frac{0}{15}\right) \\
& =\sqrt{225+0} / \arctan (0) \\
& =\sqrt{225} / \arctan (0) \\
& =15 / 0^{\circ}
\end{aligned}
$$

Pure Reactance Polar Form

The polar form of the reactance of $C_{1},-j 30$, is $30 \Omega \angle-90^{\circ}$. Its rectangular form is really $0-j 30$ which is a vector of a magnitude of 30 plotted on the $-j$ axis. The polar form $30<-90^{\circ}$ can also be verified using the conversion equation. Similarly, the reactance of the inductor, j 50 , can be written in polar form as $50 \Omega / 90^{\circ}$, and the reactance of C_{2}. - j40, can be written in polar form as $40 \Omega \angle-90^{\circ}$. In summary, the polar forms are:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C} 1}=30 \Omega /-90^{\circ} \\
& \mathrm{X}_{\mathrm{L}}=50 \Omega /+90^{\circ} \\
& \mathrm{X}_{\mathrm{C} 2}=40 \Omega \angle-90^{\circ}
\end{aligned}
$$

Notice in Figure 13.12 that these angles of zero degrees, 90 degrees and -90 degrees denote the phase relationships of the resistances and reactances just like the j-operator did for the rectangular forms.
Now that the resistances and reactances of the circuit are written in polar form, they can be multiplied easily by the polar-form current to obtain the voltage drops in the circuit. The voltage across the resistor, \mathbf{E}_{R}, equals the current times the resistance:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{R}} & =\mathbf{I}_{\mathrm{T}} \mathbf{R} \\
& =\left(2 \mathrm{~A} / 53^{\circ}\right)\left(15 \Omega / 0^{\circ}\right) \\
& =(2 \mathrm{~A} \times 15 \Omega 2) / 53^{\circ}+\left(0^{\circ}\right) \\
& =30 \mathrm{~V} \angle 53^{\circ}
\end{aligned}
$$

The voltage across $\mathrm{C}_{1}, \mathrm{E}_{\mathrm{C}_{1}}$, equals the current times the capacitive reactance of C_{1} :

$$
\begin{aligned}
\mathbf{E}_{\mathbf{C} 1} & =\mathbf{I}_{\mathbf{T}} \mathbf{X}_{\mathbf{C 1}} \\
& =\left(2 \mathrm{~A} / 53^{\circ}\right)\left(30 \Omega \angle-90^{\circ}\right) \\
& =2 \mathrm{~A} \times 30 \Omega \angle 53^{\circ}+\left(-90^{\circ}\right) \\
& =60 \mathrm{~V} /-37^{\circ}
\end{aligned}
$$

The voltage across the inductor, $E_{1 .,}$ equals the current times the inductive reactance:

$$
\begin{aligned}
\mathbf{E}_{\mathrm{L}} & =\mathrm{I}_{\mathrm{T}} \mathrm{X}_{\mathbf{1}} \\
& =\left(2 \mathrm{~A} / 53^{\circ}\right)\left(50 \Omega / 90^{\circ}\right) \\
& =(2 \mathrm{~A} \times 50 \Omega) \angle 53^{\circ}+90^{\circ} \\
& =100 \mathrm{~V} \angle 143^{\circ}
\end{aligned}
$$

The voltage across $\mathbf{C} 2, \mathrm{E}_{\mathrm{C} 2}$, equals the current times the capacitive reactance of C 2 :

$$
\begin{aligned}
\mathrm{E}_{\mathbf{C}_{2}} & =\mathrm{I}_{\mathbf{T}} \mathrm{X}_{\mathrm{C}_{2}} \\
& =\left(2 \mathrm{~A} / 53^{\circ}\right)\left(40 \Omega \angle-90^{\circ}\right) \\
& =(2 \mathrm{~A} \times 40 \Omega) \angle 53^{\circ}+\left(-90^{\circ}\right) \\
& =80 \mathrm{~V} \angle-37^{\circ}
\end{aligned}
$$

Figure 13.12 Phase Relationship of the Resistances and Reactances of Figure 13.11

Figure $13.13 E_{A}$ as a Reference al 0°

Phasor Diagram

Since the applied voltage was used as a reference at 0°, and the total current and voltage drops in the circuit were derived using the applied voltage as reference, all of these angles expressed in polar form in these calculations are measured with reference to the applied voltage as shown in Figure 13.13.

The phase angle can be determined by plotting the total current in reference to the applied voltage as shown on Figure 13.14.
The voltage across the resistor E_{R} equals 30 volts at 53 degrees. The total current. 1_{1}, is 2 amperes at 53 degrees. It is in phase with E_{R}. Knowing that the angle between the total current and applied voltage in a circuit is the phase angle, you can see that it is 53 degrees for this circuit.

Now the additional voltage phasors can be added. The voltage across C_{1} is 60 volts at -37 degrees as shown in Figure 13.15. Note that this lags E_{R} by 90 degrees because it lags the circuit current by 90 degrees.
The voltage across the inductor E_{1} is 100 volts at 143 degrees. E_{1} leads I_{T} by 90 degrees and $E_{C 1}$ by 180 degrees, the same relationship as when voltage and impedance phasor diagrams were plotted in previous lessons. The voltage across C_{2} is 80 volts at -37 degrees, in phase with $\mathrm{E}_{\mathrm{C}_{1}}$. Since $\mathrm{E}_{\mathrm{Cl}_{1}}$ and $E_{C 2}$ are in phase, they are both shown in the same direction, with the vector length of one added to the other. Thus, the total capacitive voltage E_{C} is 140 volts at - 37 degrees.

Using this method provides the phase of every voltage or current in the circuit with respect to the reference quantity used, in this example, the applied voltage E_{A}.
With the same procedures the values of voltage, current and impedance can be solved for even the most complex RLC circuit.

Summary

In this lesson you were introduced to applications for using complex numbers to solve for the total impedance of an ac circuit. You were told how to perform the mathematical operations of addition, subtraction, multiplication and division

Figure 13.14 Vollage Phasor Diagram with E_{A} al 0°

Figure 13.15 Phasar Diagram with $E_{A} / 0^{\circ}$ involving complex numbers in rectangular or polar form.
You used these basic operations to simplify complex impedances of ac circuits, and then applied phasor algebra techniques to solve for voltage current and impedance values in a series RLC circuit. The results of the calculations were used to draw the voltage phasor diagram. Aualyzing and understanding the phasor diagram should make you realize that the circuit solutions were similar to results that were obtained with much simpler circuits and that, using the demonstrated techniques, any complex RLC circuit can be analyzed.

1. Perform the following operations involving j-operator terms:
a. $\mathrm{j} 2+\mathrm{j} 8=\mathrm{j} 10$
b. $\mathrm{j} 6-\mathrm{j} 3=\mathrm{j} 3$
c. $\mathrm{j} 8 \times \mathrm{j} 5=\mathrm{j}^{\mathbf{2}} \mathbf{4 0}$
d. $\mathrm{j} 10 \div \mathrm{j} 2=5$
e. $(\mathrm{j} 2)+(-\mathrm{j} 3)=\mathrm{j} 2-\mathrm{j} 3=-\mathrm{j} 1=-\mathrm{j}$
f. $(\mathrm{j} 4)-(-\mathrm{j} 3)=\mathrm{j} 4+\mathrm{j} 3=\mathrm{j} 7$
g. $j^{2} 6+j 2=\frac{j^{2} 6}{j 2}=\left(\frac{j^{2}}{j}\right)\left(\frac{6}{2}\right)=j^{3}$
h. $j 26 \times j^{2} 4=j^{3}(26 \times 4)=j^{3} 104$
2. Perfortn the following operations involving rectangular form complex numbers; show your work.
a. $(6+\mathrm{j} 2)+(3-\mathrm{j} 4)=(6+3)+\mathrm{j}(2+(-4))$

$$
=9+j(2-4)=9+j(-2)=9-j 2
$$

b. $(4+\mathrm{j} 3)(2-\mathrm{j} 3)=(4 \times 2)+(4 \times-\mathrm{j} 3)+(2 \times \mathrm{j} 3)+(\mathrm{j} 3 \times-\mathrm{j} 3)$

$$
\begin{aligned}
& =(8)+(-j 12)+(j 6)+\left(-j^{2} 9\right) \\
& =8-j 12+j 6-j^{2} 9=8-j 6-j^{2} 9
\end{aligned}
$$

since $j^{2}=-1$ the expression becomes:

$$
=8-j 6-(-1) 9=8-j 6+9=17-j 6
$$

c. $(6+j 4)-(10-j 8)=(6-10)+j(4-(-8))=(-4)+j(4+8)=-4+j 12$
d. $\frac{(8+\mathrm{j} 3)}{(9+\mathrm{j} 4)}=\frac{(8+\mathrm{j} 3)}{(9+\mathrm{j} 4)} \times \frac{(9-\mathrm{j} 4)}{(9-\mathrm{j} 4)}=\frac{72-\mathrm{j} 32+\mathrm{j} 27-\mathrm{j}^{2} 12}{81-\mathrm{j} 36+\mathrm{j} 36-\mathrm{j}^{2} 16}$

$$
\begin{aligned}
& =\frac{72-j 5-j^{2} 12}{81-j^{2} 16} \\
& \text { since } j^{2}=-1 \\
& =\frac{72-j 5-(-1) 12}{81-(-1) 16}=\frac{72-j 5+12}{81+16} \\
& =\frac{84-j 5}{97}=\left(\frac{84}{97}\right)-j\left(\frac{5}{97}\right)=(0.87)-j(0.05)
\end{aligned}
$$

3. Perform the indicated operations shown below involving polar form complex numbers.
a. $10 \angle 16^{\circ} \times 8 L-40^{\circ}=(10 \times 8) /\left(16^{\circ}\right)+\left(-40^{\circ}\right)=80 \angle-24^{\circ}$
b. $\frac{20 / 15^{\circ}}{5 / 10^{\circ}}=\left(\frac{20}{5}\right) / 15^{\circ}-10^{\circ}=4 / 5^{\circ}$
c. $3 \angle \underline{15^{\circ}} \times 6 / 20^{\circ}=(3 \times 6) \angle 15^{\circ}+20^{\circ}=18 / 35^{\circ}$
d. $\frac{16 \angle 40^{\circ}}{8 \angle-10^{\circ}}=\left(\frac{16}{8}\right) \angle 40^{\circ}-\left(-10^{\circ}\right)=2 \angle 40^{\circ}+10^{\circ}=2 \angle 50^{\circ}$
4. Given the following RLC circuits, express the impedance of the circuit in both polar and rectangular form.
a.

$$
\begin{aligned}
Z & =10 \Omega-j 40 \Omega+j 50 \Omega+60 \Omega=10-j 40+j 50+60 \\
& =70-j 40+j 50=70+j 10(\text { Rectangular }) \\
Z & =70+j 10=\sqrt{70^{2}+10^{2}} / \arctan \left(\frac{10}{70}\right) \\
& =\sqrt{5000}\left\lfloor\arctan (0.1429)=70.7 / 8.1^{\circ}\right. \text { (Polar) }
\end{aligned}
$$

b.

Dividing sections of circuit b into Z_{1}, Z_{2} and Z_{3}

$$
\begin{aligned}
& Z_{1}=0+j 40 \\
& Z_{2}=0-j 10 \\
& Z_{3}=(0+j 50)+(0-j 100)=j 50-j 100=-j 50
\end{aligned}
$$

Now Z_{2} and Z_{3} are in parallel and their combination is in series with Z_{1}, Thus

$$
Z_{T}=Z_{1}+Z_{2} \| Z_{3}=Z_{1}+\frac{Z_{2} \times Z_{3}}{Z_{2}+Z_{3}}=j 40+\frac{(-j 10)(-j 50)}{(-j 10)+(-j 50)}=j 40+\frac{-j^{2} 500}{-j 60}
$$

Since minus divided by a minus yields a positive result, j^{2} divided by $j=j$ and 500 divided by 60 equals 8.33 , the expression simplifies to

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{T}}=j 40+j 8.33=(0+j 48.33) \text { (Rectangular) or } \\
& \mathrm{Z}_{T}=48.33 / 90^{\circ} \text { (Polar) }
\end{aligned}
$$

5. Express the resistance or reactance of the following passive elements in rectangular (j-operator) form and then in polar form.
a.

b.

Rectangular	$(10+\mathbf{j} 0) \Omega$
Polar	$10 \Omega / 0^{\circ}$

Reciangular	$(0+j 50) \Omega$
Polar	$50 \Omega \angle+90^{\circ}$

c.

Rectangular	$(0-\mathrm{j} 40) \Omega$
Polar	$40 \Omega /-90^{\circ}$

a. $Z_{\mathrm{I}}=$
b. $1_{1}=$
c. $1_{1}=$
d. $\mathrm{I}_{2}=$
e. $\mathrm{E}_{\mathrm{kI}}=$ \qquad
\qquad

Solution:
a. $\quad \mathbf{Z}_{1}=\mathbf{R}_{\mathbf{1}}+j \mathbf{X}_{\mathbf{L}}=\frac{\text { Rect }}{10+j 20}=\sqrt{10^{2}+20^{2}} / \arctan \left(\frac{20}{10}\right)=\frac{\text { Polar }}{22.4 \angle+63.4^{\circ}}$
$Z_{2}=R_{2}-j X_{\mathbf{C}}=10-j 15=\sqrt{10^{2}+(-15)^{2}} / \arctan \left(\frac{-15}{10}\right)=18 L-56.3^{\circ}$
$Z_{T}=Z_{1} \| Z_{2}=\frac{Z_{1} \times Z_{2}}{Z_{1}+Z_{2}}=\frac{(10+j 20)(10-j 15)}{(10+j 20)+(10-j 15)}$
$=\frac{(10+\mathrm{j} 20)(10-\mathrm{j} 15)}{(20+\mathrm{j} 5)^{*}}=\frac{\left(22.4 L+63.4^{\circ}\right)\left(18 L-56.3^{\circ}\right)}{\left(20.6 / 14^{\circ}\right)}$
*Note: $20+\mathrm{j} 5=\sqrt{20^{2}+5^{2}} \arctan \left(\frac{5}{20}\right)=20.6\left(\underline{14^{\circ}}\right)$

$$
Z_{T}=\frac{403.2 / 7.1^{\circ}}{20.6 / 14^{\circ}}=19.6 \Omega /-6.9^{\circ}
$$

b. $\quad I_{T}=\frac{E_{\mathrm{A}}}{Z_{\mathrm{T}}}=\frac{36 \mathrm{~V} / 0^{\circ}}{19.6 \Omega L-6.9^{\circ}}=1.84 \mathrm{~A} L+6.9^{\circ}$
c. $\quad I_{1}=\frac{E_{A}}{Z_{1}}=\frac{36 \mathrm{~V} / 0^{\circ}}{22.4 \Omega / 63.4^{\circ}}=1.6 \mathrm{~A} /-63.4^{\circ}$
d. $I_{2}=\frac{E_{A}}{Z_{2}}=\frac{36 \mathrm{~V} / 0^{\circ}}{18 \Omega /-56.3^{\circ}}=2 \mathrm{~A} / 56.3^{\circ}$
e. $E_{R_{1}}=I_{1} R_{1}=\left(1.6 \mathrm{~A} /-63.4^{\circ}\right)\left(10 \Omega / \underline{0}^{\circ}\right)=16 \mathrm{~V} /-63.4^{\circ}$
f. $\mathbf{E}_{\mathbf{X L}}=1_{1} X_{\mathrm{L}}=\left(1.6 \mathrm{~A} /-63.4^{\circ}\right)\left(20 \Omega \angle+90^{\circ}\right)=32 \mathrm{~V} / 26.6^{\circ}$
g. $E_{X C}=I_{2} X_{C}=\left(2 \mathrm{~A} / 56.3^{\circ}\right)\left(15 \Omega /-90^{\circ}\right)=30 \mathrm{~V} /-33.7$
b. $E_{R 2}=I_{2} R_{2}=\left(2 \mathrm{~A} / 56.3^{\circ}\right)\left(10 \Omega \angle 0^{\circ}\right)=20 \mathrm{~V} / 56.3^{\circ}$
i. ${ }^{*} \theta_{\mathbf{c k t}}=6.9^{\circ}$ (Polar Coordinate Angle of Current)
*Recall that the phase angle of a circuit is the angle of phase difference between the total current and the applied voltage. Since E_{A} is referenced at 0° and the current, I_{T}, is at 6.9°, the angular difference is the phase angle: 6.9°.

1. Perform the indicated operations involving j-operator terms:
a. $\mathrm{j} 5+\mathrm{j} 10=$ \qquad
b. $\mathrm{j} 34-\mathrm{j} 8=$ \qquad
c. $\mathrm{j} 9 \times \mathrm{j} 17=$ \qquad
d. $\mathrm{j}^{8} \div \mathrm{j}^{2} 6=$ \qquad
e. $j 7+(-j 6)=$ \qquad
f. $\mathrm{j} 40-(-\mathrm{j} 30)=$ \qquad
g. $j^{27} \times j^{2} 3=$ \qquad
h. $j^{3} 8 \div j^{2} 2=$ \qquad
2. Perform the indicated operations involving rectangular form complex numbers.
a. $(6+\mathrm{j} 4)(3+\mathrm{j} 2)=$ \qquad
b. $(6-\mathrm{j} 1)(4-\mathrm{j} 3)=$ \qquad
c. $(10-\mathrm{j} 2)+(8+\mathrm{j} 3)=$ \qquad
d. $(4+j 6)-(3+j 2)=$ \qquad
e. $\frac{9+\mathrm{j}^{2}}{8-\mathrm{j}^{3}}=$ \qquad
f. $(16+j 2)-(3-j 6)=$ \qquad
3. Perform the indicated operations shown below involving polar form complex numbers.
a. $4 / 10^{\circ} \times 6 / 5^{\circ}=$ \qquad
b. $\frac{10 / 16^{\circ}}{2.5 /-4^{\circ}}=$ \qquad
c. $6 / \underline{10^{\circ}} \times 5 \angle-8^{\circ}=$ \qquad
d. $\frac{40 \boxed{60^{\circ}}}{8 \underline{20^{\circ}}}=$
4. Given the following RLC circuit, express the impedance of the circuit in both polar and rectangular form

5. Given the following R1.C circuit, express the impedance of the circuit in both polar and rectangular form

6. Given the following RLC circuit, express the impedance of the circuit in both polar and rectangular form

7. Given the following RLC circuit, express the impedance of the circuit in both polar and rectangular form.

8. Express the resistance or reactance of the following passive elements in rectangular (j-operator) form and then in polar form
a.

Rectangular
Polar

b.

Rectangular
Polar

c.

Rectangular
Polar

9. Determine the following values for the RLC circuit shown. Express all answers in polar form. Use E_{A} as reference at 0°

a. $\mathbf{Z}_{\mathrm{T}}=$ \qquad g. $E_{R 2}=$ \qquad
b. $\mathrm{I}_{\mathrm{T}}=$ \qquad h. $E_{L}=$ \qquad
c. $\mathbf{1}_{1}=$ \qquad i. $\mathbf{E}_{\mathbf{C l}}=$ \qquad
d. $\mathbf{I}_{2}=$ \qquad j. $E_{\mathbf{C}_{2}}=$
e. $1_{3}=$ \qquad k. $\theta_{\mathrm{CKT}}=$ \qquad
f. $\mathbf{E}_{\mathrm{R} 1}=$ \qquad
10. Determine the following values for the RC circuit shown. Express all answers in polar form. Use E_{A} reference at 0°.

11. Perform the indicated operations involving j-operator terms; simplify.
a. $\mathrm{j} 10+\mathrm{j} 8=$ \qquad
b. $\mathrm{j} 10-\mathrm{j} 8=$ \qquad
c. $j 14 \times j 6=$
d. $j 28 \div j^{2} 4=$ \qquad
e. $j^{2} 6 \times j 8=$ \qquad
f. $3 \div j 2=$ \qquad
12. Perform the indicated operations involving rectangular form complex numbers; simplify.
a. $(5+j 6)+(2-j 4)=$ \qquad
b. $\left(8-j^{2}\right)-(10-j 6)=$ \qquad
c. $(10+j 6)(4-j 3)=$ \qquad
d. $\frac{12-j 4}{8-j^{3}}=$ \qquad
13. Perform the indicated operations shown below involving polar form complex numbers.
a. $14 / 60^{\circ} \times 8 / 25^{\circ}=$ \qquad
b. $\frac{36 / 15^{\circ}}{12 / 18^{\circ}}=$ \qquad
c. $5 / 12^{\circ} \times 6 /-8^{\circ}=$ \qquad
d. $\frac{15 L-40^{\circ}}{3 /-10^{\circ}}=$
14. Given the following RLC circuits, express the impedance of the circuit in both polar and rectangular form.

a. $\quad \mathbf{Z}_{\mathbf{i}}=$ \qquad (Polar)
b. $\mathbf{Z}_{T}=$ \qquad (Rectangular)

c. $\mathbf{Z}_{7}=$ \qquad (Polar)
d. $Z_{T}=$ \qquad (Rectangular)
15. Determine the values indicated for the following circuits. Express all answers in polar form. Use E_{A} al 0° as reference. 1.

a. $\quad \mathbf{Z}_{\mathrm{T}}=$
e. $E_{R}=$
b. $\quad \mathbf{I}_{\mathrm{T}}=$ \qquad f. $\mathbf{E}_{\mathbf{1}}=$
c. $I_{R}=$ \qquad g. $E_{C}=$
\qquad
d. $\mathbf{I}_{\mathrm{C}}=$ \qquad h. $\theta_{\text {CKT }}=$ \qquad
[1.

a. $\mathbf{Z}_{\boldsymbol{T}}=$ \qquad e. $I_{R 2}=$
b. $\mathbf{I}_{\mathrm{T}}=$ \qquad f. $E_{R 1}=$
c. $\mathbf{1}_{\mathrm{R} 1}=$ \qquad g. $\mathbf{E}_{\mathrm{C}}=$
d. $I_{c}=$ \qquad h. $\mathbf{E}_{\mathbf{R} 2}=$
\qquad
\qquad
\qquad
\qquad

LESSON 14

Resonance

In this lesson the property of resonance will be introduced. Its effects on the impedance, currents, and voltages of a circuit will be examined. The response of RLC circuits to frequencies near resonance and the concept of the frequency response of a circuit will be investigated. The Q, or quality factor of a circuit, and its interaction with frequency response will be discussed.

At the end of this lesson you should be able to:

1. State the basic definition of resonance.
2. Determine the resonant frequency of a circuit with a capacitor and inductor in parallel or series with one another.
3. Determine the value of the inductance needed to achieve resonance when given the value of a typical capacitor and the desired resonant frequency.
4. Determine the value of a capacitor needed to achieve resonance when given the value of a typical inductance and the desired resonant frequency.
5. Determine the resonant frequency, the impedance at resonance, the total circuit current at resonance, the Q of the circuit, the expected phase angle. bandwidth, and the voltage across the inductor or capacitor at resonance when given the schematic of a series RLC circuit.
6. Determine the effect on a circuit's frequency response when the resistance, inductance or capacitance is changed.
7. Determine the resonant frequency, the impedance at resonance, the total circuit current at resonance, the Q of the circuit, the expected phase angle, current through the capacitor or inductor at resonance, and the bandwidth when given the schematic drawing of a parallel RLC circuit.
8. Determine the effect on the frequency response of changing the circuit resistance, inductance or the capacitance of a parallel resonant circuit.
9. Determine the upper and lower cutoff frequency at the half-power points of the frequency response when given the bandwidth and resonant frequency of a resonant circuit.

Introduction

In Lessons 11 and 13 RLC circuits containing series and parallel combinations of resistors, inductors, and capacitors were analyzed. The circuits had a particular value of inductive reactance and capacitive reactance which depended upon the frequency of the applied voltage.
In this lesson, the concept of resonance will be introduced. A circuit is said to be resonant at the frequency where its inductive reactance and capacitive reactance are the same value. This frequency is called the resonant frequency of the circuit. Resonance plays a very important role in the operation of many circuits used to transmit and receive radio and television signals. In fact, radio and television could not operate without resonant circuits.

Concept of Resonance

Inductive Versus Capacitive Reactance

First, let's review some basic considerations regarding inductive and capacitive reactance Recall that both inductive and capacitive reactance are not only dependent upon the value of the inductor or capacitor, but they are also dependent upon the applied frequency. This is evident in the equations shown, 14-1 for inductive reactance and 14-2 for capacitive reactance.

$$
\begin{equation*}
X_{L}=2 \pi f L \tag{14-1}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{C}=\frac{1}{2 \pi f C} \tag{14-2}
\end{equation*}
$$

As was shown previously for an inductor, as the applied frequency increases, the reactance of the inductor (equation 14-1) increases if the value of the inductance remains constant.

$$
\mathbf{X}_{\mathbf{L}} \uparrow=2 \pi \mathbf{f} \uparrow \mathbf{L}
$$

Figure $14.1 X_{L}$ Versus ffor a 10 Millihenry Inductor

Figure 14.2 X_{C} Versus ffor a 4 Microfarad Capacitor
This is shown again in Figure14.1, a graph for a 10 millihenry inductor. For a capacitor, as the applied frequency increases, the reactance of the capacitor decreases if the value of the capacitor remains constant.

$$
X_{c} \downarrow=\frac{1}{2 \pi f \uparrow C}
$$

Figure 14.2 shows how capacitive reactance of a 4 microfarad capacitor decreases as the applied frequency increases.

Resonant Frequency

Suppose the 10 millihenry inductor and 4 microfarad capacitor are connected in series with one a nother as shown in Figure 14.3 Now, as shown in Figure 14.4, as frequency increases, the value of the inductive reactance increases, and the value of the capacitive reactance decreases. At one value of frequency the inductive reactance and capacitive reactance are equal. For this example, the frequency value is 796 hertz. At this frequency the circuit is said to be at resonance and the frequency is called the resonant frequency of this circuit. The value of the resonant frequency of this circuit can be determined mathematically by setting the capacitive reactance equal to the inductive reactance as shown in equation $14-3$. This is the basic definition of resonance.

$$
\begin{equation*}
\mathbf{X}_{\mathrm{L}}=\mathbf{X}_{\mathrm{C}} \tag{14-3}
\end{equation*}
$$

Substituting equation $14-1$ for X_{L} and equation $14-2$ for X_{C} into equation 14-3 gives,

$$
2 \pi f L=\frac{1}{2 \pi f C}
$$

By solving for f it is found that

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

where L is the value of the inductor in henrys, C is the value of the capacitor in farads, 2π is the constant 6.28, and f is the resonant frequency in hertz. Since this is the resonant frequency, a subscript " r " is used to distinguish it from all other frequencies:

$$
\begin{equation*}
f_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{L C}} \tag{14-4}
\end{equation*}
$$

Figure 14.3 Sernes LC Circuit

Figure $14.4 X_{L}$ and X_{C} for Series LC Circuil with Resonance at 796 Hertz

Equivalent Resonant Frequency Equations

For a specific inductance and capacitance, equation $14-4$ is used to determine the frequency at which their reactances are equal in value - the resonant frequency.

Suppose, however, that you want to know what value of inductor will provide a certain resonant frequency when connected with a given capacitor or vice-versa. These values can be determined by rewriting equation $14-4$ into equivalent forms;

$$
\begin{equation*}
L=\frac{1}{(2 \pi)^{2} f_{r}{ }^{2} C} \tag{14-5}
\end{equation*}
$$

or similarly,

$$
\begin{equation*}
C=\frac{1}{(2 \pi)^{2} f_{r}^{2} L} \tag{14-6}
\end{equation*}
$$

Series Resonance

Impedance

Now, consider the effect of resonance on a series RLC circuit such as the one illustrated in Figure 14.5. You know that the general expression for the impedance of any series RLC circuit may be expressed as:

$$
\begin{equation*}
\mathbf{Z}=\sqrt{\mathbf{R}^{2}+\left(\mathbf{X}_{\mathbf{l}}-\mathbf{X}_{\mathrm{c}}\right)^{2}} \tag{14-7}
\end{equation*}
$$

At resonance, from equation 14-3,

$$
\mathbf{x}_{\mathrm{L}}=\mathbf{x}_{\mathrm{C}}
$$

and the net reactance of the circuit is zero. The impedance, then, at resonance, is

$$
\begin{aligned}
\mathbf{Z} & =\sqrt{\mathbf{R}^{2}+\mathbf{0}^{2}} \\
& =\sqrt{\mathbf{R}^{2}} \\
& =\mathbf{R}
\end{aligned}
$$

Thus, at resonance, the impedance of the series RLC circuit appears entirely resistive and is equal to the resistance in the circuit.

To further clarify this fact, note that the impedance phasor diagram for a series RLC circuit is as shown in Figure 14.6. If X_{L} is equal in value to X_{C}, as in the case at resonance, the net reactance of the circuit is zero, and the impedance phasor falls directly upon the resistance phasor. This indicates that the impedance is equal to the value of the resistance at resonance.

Minimum Impedance At Resonance

Since X_{L} equals X_{C}, the net reactance is zero and thus there is no reactive term in the impedance equation, equation $14-7$. As shown in Figure 14.4 if the applied frequency to the circuit is varied either side of the resonant frequency, then a difference will exist between X_{L} and X_{C}. This difference

Figure 14.5 Series RLC Circuil

Figure 14.6 Impedance Phasor Diagram for a Series RLC Circuit at Resonance
would result in a net reactance and would add vectorially to the resistance in the circuit to create a larger impedance. Such circuits were the type discussed in previous lessons. Thus, it should be quite clear that at the resonant frequency of a series circuit the impedance expressed by equation $14-7$ is at its lowest level, as expressed by equation $14-8$.

Current Is Maximum At Resonance

Since the impedance of the circuit is at a minimum, it follows that the current flowing in the circuit must be a maximum. This can be seen by using Ohm's law. Remember that for a series RLC circuit the total current is equal to the applied voltage divided by the circuit impedance:

$$
\begin{equation*}
I_{T}=\frac{E_{A}}{\mathbf{Z}} \tag{14-9}
\end{equation*}
$$

At resonance, the impedance is equal to the resistance alone. Therefore, the total current is equal to the applied voltage divided by the resistance.

$$
\begin{equation*}
\mathbf{I}_{\mathrm{T}}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{R}} \tag{14-10}
\end{equation*}
$$

Since in this circuit the resistance alone represents a minimum impedance, the current must be maximum.

$$
\mathbf{I}_{\mathrm{T} \operatorname{tax}}=\frac{\mathbf{E}_{\mathrm{A}}}{\mathbf{R}_{\min }}
$$

Voltage Phase Relationships At Resonance

 Recall that the voltage phasor diagram is proportional to the impedance phasor diagram by a factor of the total current. This is shown in Figure 14.7. At resonance, when $X_{L}=X_{C}$. then the voltage across the inductor, E_{L}, must equal the voltage across the capacitor, $\mathbf{E}_{\mathbf{C}}$. If $\mathbf{E}_{\mathrm{L}}=\mathrm{E}_{\mathbf{C}}$, these voltages cancel because they are 180 degrees out of phase. As a result the applied voltage, E_{A}, is in phase with and equal to the voltage across the resistor, as shown in Figure 148.
Phase Angle Equals Zero

Assume the total current is taken as reference at zero degrees. Since the current is in phase with the voltage across the resistor, and at resonance the circuit becomes entirely resistive, then the applied voltage is in phase with the total current and the phase angle is zero. This also is shown in Figure 14.8.

Figure 14.7 Impedance and Voltage Phasor Diagrams for Series RLC Circuil al Resonance

Figure 14.8 Phase Angle Equals Zero at Resonance

Q of a Circuit

A circuit is sensitive to changes when used at the resonant frequency. This is determined by the Q or quality factor of the circuit. Recall that in the discussion of inductance in Lesson 8 that the Q of a circuit was defined as the ratio of the reactive power of a reactive component to the real power dissipated in the resistance in the circuit. This is expressed again in equation 14-11

$$
\begin{equation*}
\mathbf{Q}=\frac{\mathbf{P}_{\mathbf{X}(\text { reactive power })}}{\mathbf{P}_{\mathbf{R}(\text { real power })}} \tag{14-11}
\end{equation*}
$$

Let's consider the reactive power of the inductor in a series RLC circuit, such as the one shown in Figure 14.5. The reactive power of the inductor is equal to the voltage across the inductor times the current through it:

$$
\begin{equation*}
\mathbf{P}_{\mathbf{X L}}=\mathbf{E}_{\mathbf{L}} \mathbf{I}_{\mathbf{L}} \tag{14-12}
\end{equation*}
$$

Since $\mathbf{E}_{\mathrm{L}}=\mathbf{1}_{\mathrm{L}} \mathrm{X}_{\mathrm{L}}$, equation 14-12 can be rewritten as the inductive current squared times the value of inductive reactance. The result is equation 14-13

$$
\begin{equation*}
\mathbf{P}_{\mathbf{X L}}=\mathbf{I}_{\mathbf{L}}{ }^{2} \mathbf{X}_{\mathrm{L}} \tag{14-13}
\end{equation*}
$$

The value of the real power dissipated by the resistance in the circuit is equal to the voltage across the resistance times the current through it (equation 14-14).

Using the same reasoning, this can be rewritten

$$
\begin{align*}
& \mathbf{P}_{\mathbf{R}}=\mathbf{E}_{\mathbf{R}} \mathbf{I}_{\mathbf{R}} \\
& \mathbf{P}_{\mathbf{R}}=\mathbf{I}_{\mathbf{R}}{ }^{2} \mathbf{R} \tag{14-14}
\end{align*}
$$

Substituting these two equations into equation 14.11 for Q.

$$
\begin{equation*}
Q=\frac{\mathbf{I}_{\mathrm{L}}{ }^{2} \mathbf{X}_{\mathrm{L}}}{\mathbf{I}_{\mathbf{R}}{ }^{2} \mathbf{R}} \tag{14-15}
\end{equation*}
$$

In the series circuit, the current through the inductor equals the current through the resistor, thus,

$$
\mathbf{I}_{\mathrm{L}}=\mathbf{I}_{\mathbf{R}}
$$

and

$$
\begin{equation*}
\mathbf{I}_{\mathrm{L}}{ }^{2}=\mathrm{I}_{\mathrm{R}}{ }^{2} \tag{14-16}
\end{equation*}
$$

As a result equation $14-15$ simplifies to equation 14-17,

$$
\begin{equation*}
\mathbf{Q}=\frac{\mathbf{X}_{\mathrm{L}}}{\mathbf{R}} \tag{14-17}
\end{equation*}
$$

If the capacitive reactance had been used, the equation would be:

$$
\begin{equation*}
\mathbf{Q}=\frac{\mathbf{X}_{\mathrm{C}}}{\mathbf{R}} \tag{14-18}
\end{equation*}
$$

Thus, the Q of a resonant series RLC circuit is equal to the value of the inductive or capacitive reactance at the resonant frequency divided by the value of the series resistance in the circuit.

Voltage Magnification

Using the original equation 14-11 for Q ,

$$
\mathbf{Q}=\frac{\mathbf{P}_{\mathbf{x}}}{\mathbf{P}_{\mathbf{R}}}
$$

and substituting the E.I equivalents for the power values, equation $14-19$ results.

$$
\begin{equation*}
\mathbf{Q}=\frac{\mathbf{E}_{\mathbf{L}} \mathbf{I}_{\mathbf{L}}}{\mathbf{E}_{\mathbf{R}} \mathbf{I}_{\mathbf{R}}} \tag{14-19}
\end{equation*}
$$

Since the current through the inductor, the current through the resistor, and the total current in the series circuit are the same, $\mathbf{I}_{\mathbf{T}}=\mathbf{I}_{\mathbf{L}}=\mathbf{I}_{\mathbf{R}}$, both $\mathrm{I}_{\mathbf{L}}$ and $\mathrm{I}_{\mathbf{R}}$ in equation 14-19 can be replaced by I_{T}.

$$
\begin{equation*}
\mathbf{Q}=\frac{\mathbf{E}_{\mathbf{L}} \mathbf{I}_{\mathbf{T}}}{\mathbf{E}_{\mathbf{R}} \mathbf{I}_{\mathbf{T}}} \tag{14-20}
\end{equation*}
$$

Cancelling \mathbf{I}_{T}, equation $14-20$ simplifies to:

$$
\begin{equation*}
\mathbf{Q}=\frac{\mathbf{E}_{\mathbf{L}}}{\mathbf{E}_{\mathbf{Q}}} \tag{14-21}
\end{equation*}
$$

Q is equal to E_{L} divided by E_{R}.

Earlier you saw in the voltage phasor diagram of Figure 14.8 that the voltage across the resistor and the applied voltage in a series circuit were equal at resonance. Substituting $E_{R}=E_{A}$ into equation 14-21 results in:

$$
\begin{equation*}
\mathrm{Q}=\frac{\mathbf{E}_{\mathrm{L}}}{\mathbf{E}_{\mathrm{A}}} \tag{14-22}
\end{equation*}
$$

If both sides of equation 14-22 are multiplied by EA and rearranged. the result is equation 14-23:

$$
\begin{align*}
\mathbf{E}_{\mathbf{A}} \mathbf{Q} & =\frac{\mathbf{E}_{\mathbf{L}} \mathbf{E}_{\mathbf{A}}}{\mathbf{E}_{\mathbf{A}}} \\
\mathbf{E}_{\mathbf{L}} & =\mathbf{Q} \mathbf{E}_{\mathbf{A}} \tag{14-23}
\end{align*}
$$

Equation 14-23 relates the fact that at resonance, the voltage across the inductor will be Q times larger than the applied voltage. This is referred to as the voltage magnification in a series resonant circuit, and Q is sometimes referred to as the magnification factor.

Measuring \mathbf{Q}

One of the easiest methods that can be used to measure the actual Q of a resonant circuit is based on the fact stated in equation 14-23. The first step in the method is to connect a frequency generator to the circuit as shown in Figure 14.9. Next, the circuit is brought to resonance by adjusting the frequency of the generator. With the circuit at resonance, a voltmeter is used to measure the applied voltage and the voltage across the inductor or capacitor as shown in Figure 14.9. (Either the inductor or capacitor can be used because the voltage across either is the same at resonance.) The value of Q is determined by equation 14-22 by simply dividing the voltage across the reactive component by the applied voltage.
The rise in voltage across the inductor or capacitor at resonance also provides a means of determining when a circuit is resonant. For example, if the voltage across the inductor is

Figure 14.9 Selup for Determining the Q of a Circull

Figure 14.10 Series Resonant Circuil
monitored as the frequency is varied, when the circuit becomes resonant the current reaches a peak value and the voltage across the inductor rises 10 a maximum of Q times the applied voltage.

Series Resonant Circuit Example

With these facts about a series resonant circuit in mind, let's solve the series circuit shown in Figure 14.10. It consists of a 10 -ohm resistor, a 10 -millihenry inductor and a 4 -microfarad capacitor connected to a 50 -volt
variable-frequency ac source. The frequency of the ac voltage is adjusted to the resonant frequency for the circuit. The values of impedance, current, circuit voltages, and Q of the circuit will be determined at the resonant frequency.

Resonant Frequency

Since L is 10 millihenrys and C is 4 microfarads the resonant frequency is determined by using equation 14-4.

$$
\begin{equation*}
f_{r}=\frac{1}{2 \pi \sqrt{L C}} \tag{14-4}
\end{equation*}
$$

Substituting values,

$$
\begin{aligned}
f_{r} & =\frac{1}{(6.28) \sqrt{(10 \mathrm{mH})(4 \mu \mathrm{~F})}} \\
& =\frac{1}{(6.28) \sqrt{\left(10 \times 10^{-3} \mathrm{H}\right)\left(4 \times 10^{-6} \mathrm{~F}\right)}} \\
& =\frac{1}{(6.28) \sqrt{40 \times 10^{-9}}} \\
& =\frac{1}{(6.28) \sqrt{4 \times 10^{-8}}} \\
& =\frac{1}{6.28\left(2 \times 10^{-4}\right)} \\
& =\frac{1}{12.56 \times 10^{-4}} \\
& =796 \mathrm{~Hz}
\end{aligned}
$$

The resonant frequency of the circuit is 796 heriz.

Checking $\mathbf{X}_{\mathbf{L}}=\mathbf{X}_{\mathbf{C}}$ at Resonance

Recall that it was stated that at the resonant frequency, the reactance of the inductor and the capacitor are equal. To prove this for the 10 -millihenry inductor and the 4 -microfarad capacitor, their individual reactances at the resonant frequency of 796 hertz are calculated.

The reactance of the inductor at 796 hertz is calculated using equation 14-1.

$$
\begin{aligned}
X_{\mathrm{L}} & =2 \pi \mathrm{fL} \\
& =(6.28)(796 \mathrm{~Hz})(10 \mathrm{mH}) \\
& =(6.28)(796)\left(10 \times 10^{-3}\right) \\
& =50 \Omega)
\end{aligned}
$$

Next, the capacitive reactance at 796 hertz is calculated using equation 14-2.

$$
\begin{aligned}
X_{C} & =\frac{1}{2 \pi f C} \\
& =\frac{1}{(6.28)(796 H z)(4 \mu F)} \\
& =\frac{1}{(6.28)(796 H z)\left(4 \times 10^{-6}\right)} \\
& =50 \Omega
\end{aligned}
$$

Thus, at the resonant frequency, $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}=$ 50 ohms

Impedance

The magnitude of the impedance of this circuit in its most general form is calculated using equation 14-7:

$$
\begin{equation*}
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \tag{14-7}
\end{equation*}
$$

Substituting $\mathbf{R}=10$ ohms and $X_{L}=50$ ohms and $X_{C}=50$ ohms:

$$
\begin{aligned}
Z & =\sqrt{10^{2}+(50-50)^{2}} \\
& =\sqrt{10^{2}+0^{2}} \\
& =\sqrt{100} \\
& =10 \Omega
\end{aligned}
$$

The impedance of this series circuit, when resonant, is 10 ohms, which is the value of the circuit resistance.

Current

The value of the series circuit current at resonance is determined by dividing the applied voltage by the impedance of the circuit:

$$
\begin{aligned}
\mathbf{I}_{T} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{Z}} \\
& =\frac{\mathbf{E}_{\mathrm{A}}}{\mathbf{R}} \\
& =\frac{50 \mathrm{~V}}{10 \Omega} \\
& =5 \mathrm{~A}
\end{aligned}
$$

Circuit Q

The Q of the circuit is found equal to 5 by using equation 14-17.

$$
\begin{aligned}
\boldsymbol{Q} & =\frac{X_{L}}{R} \\
& =\frac{50 \Omega}{10 \Omega} \\
& =5
\end{aligned}
$$

\mathbf{E}_{L} And $\mathbf{E}_{\mathbf{C}}$

The voltage across the inductor equals the voltage across the capacitor at resonance and both are equal to Q times the applied voltage (equation 14-23):

$$
\begin{aligned}
\mathbf{E}_{\mathbf{L}}=\mathbf{E}_{\mathbf{C}} & =\mathbf{Q} \mathbf{E}_{\hat{A}} \\
& =5(50 \mathrm{~V}) \\
& =250 \mathrm{~V}
\end{aligned}
$$

To verify this, the value of this voltage in the traditional manner can be calculated. Recall in that calculation the voltage across the inductor equals the current through the inductor times the value of the inductive reactance:

$$
\begin{aligned}
\mathbf{E}_{\mathbf{L}} & =\mathbf{I}_{\mathbf{L}} \mathbf{X}_{\mathbf{L}} \\
& =(5 \mathrm{~A})(50 \Omega) \\
& =250 \mathrm{~V}
\end{aligned}
$$

Since the capacitor has the same reactance at resonance, the voltage drop across it will be identical to the voltage across the inductor.

$$
\begin{aligned}
\mathbf{E}_{\mathbf{C}} & =\mathbf{I}_{\mathbf{C}} \mathbf{X}_{\mathbf{C}} \\
& =(5 A)(50 \Omega) \\
& =250 \mathrm{~V}
\end{aligned}
$$

Figure 14.11 Frequency Response of Impedance

Frequency Responses

In Figure 14.4, inductive reactance and capacitive reactance versus frequency were graphed. With resonant circuits, it is usually helpful to graph the response of the circuit current or impedance against frequency as shown in Figures 14.11 and 14.12. These graphs are called the frequency responses of the circuit.

As shown in Figure 14.11 the impedance, 2, of a series resonant circuit has a minimum value at the resonant frequency, f_{r}, when $X_{L}=X_{C}$. and the total reactance of the circuit is zero. The impedance increases on either side of the resonane frequency because X_{L} and X_{C} are not equal and do not result in a net reactance of zero. In the series resonant circuit just solved, the impedance had a value of 10 ohms at resonance and would be plotted on the impedance response graph as shown in Figure 14.11.
The current, on the other hand, has a maximum value at resonance and varies inversely with the impedance as shown in Figure 14.12. That is, as the impedance increases, the current decreases. For the series resonant circuit just solved the current frequency response appears as shown in Figure 14.12 with a maximum current of 5 amperes plotted at the resonant frequency, f_{r}.

Bandwidth

As indicated by the frequency response of Figure 14.12, the effect of resonance is most predominant at the resonant frequency. However, if you examine the responses of the circuit in greater detail by observing the effect of varying the frequency above and below the resonant frequency, you will find that for a band of frequencies the circuit exhibits very nearly the same effects as at resonance. This is shown in Figure 14.13.
The band of frequencies over which the effect exists is called the bandwidth, and the end points of the band have been defined. The lower point is called f-lower, and the upper point is called f-upper. f-lower and f-upper are the frequencies at which the current has a value of 70.7 percent of its maximum value at resonance. The bandwidth can be determined mathematically by subtracting f-lower from f-upper:

$$
\begin{equation*}
\mathbf{B W}=\mathbf{f}_{\text {upper }}-\mathbf{f}_{\text {lower }} \tag{14-24}
\end{equation*}
$$

For the example circuit, of Figure 14.14, fr is 1000 hertz, f-upper is 1200 hertz, and f -lower is 800 hertz. Therefore, using equation 14-24.

$$
\begin{aligned}
B W & =1200 \mathrm{~Hz}-800 \mathrm{~Hz} \\
& =400 \mathrm{~Hz}
\end{aligned}
$$

The bandwidth is $\mathbf{4 0 0}$ hertz.
The points f-lower and f-upper are also called the cutoff or edge frequencies because they define the points at which the resonance of a circuit begins to cut off - the points where resonance begins to lose its effect.

Figure 14.12 Frequency Response of Current of Series Resonant Circuil

Figure 14.13 Bandwidth of Frequency Response

Figure 14.14 Frequency Response Banduridit of 400 Hertz

Relationship of Bandwidth to Resonant

 Frequency and Circuit QNote that the upper cutoff frequency is just as many hertz above the resonant frequency as the lower cutoff frequency is below the resonant frequency. This is because the frequency response curve is symmetrical on both sides of the resonant frequency. Because of this. one-half of the bandwidth exists above the resonant frequency, and one-half exists below the resonant frequency. Expressed mathematically,

$$
\begin{equation*}
\mathrm{f}_{\text {upper }}=\mathrm{f}_{\mathrm{r}}+\frac{1}{2} \mathrm{BW} \tag{14-25}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
f_{\text {lower }}=f_{r}-\frac{1}{2} B W \tag{14-26}
\end{equation*}
$$

You should realize, however, that the symmetry of the response curve is an assumed ideal situation. Therefore, actual circuit responses differ to some degree from the ideal situation. Even so, you may assume for purposes of calculation, that responses will be symmetrical and by doing so, you are able to predict the behavior of these types of circuits with a good degree of accuracy.

Relationship of Bandwidth to Resonant Frequency and Circuit Q

An interesting fact is that a relationship also exists between the value of the Q, the resonant frequency, and the bandwidth of a circuit. This relationship is shown in equation 14-27:

$$
\begin{equation*}
\mathbf{B W}=\frac{\mathbf{f}_{\mathbf{r}}}{\mathbf{Q}} \tag{14-27}
\end{equation*}
$$

Equation 14-27 ineans that if the resonant frequency and the () of a circuit are known, the bandwidtly can be calculated.
In the series circuit of Figure 14.10 solved previously, the resonant frequency was 796 hertz and the Q had a value of 5 . The bandwidth of that circuit, then, is calculated using equation 14-27:

$$
\begin{aligned}
B W & =\frac{f_{r}}{Q} \\
& =\frac{796 H z}{5} \\
& =159.2 \mathrm{~Hz}
\end{aligned}
$$

The upper and lower cutoff frequencies can be calculated using equations 14-25 and $14-26$ as:

$$
\begin{aligned}
f_{\text {upper }} & =f_{r}+\frac{1}{2} B W \\
& =796 \mathrm{~Hz}+\frac{1}{2}(159.2 \mathrm{~Hz}) \\
& =796 \mathrm{~Hz}+79.6 \mathrm{~Hz} \\
& =875.6 \mathrm{~Hz} \\
f_{\text {lower }} & =f_{r}-\frac{1}{2} B W \\
& =796 \mathrm{~Hz}-\frac{1}{2}(159.2 \mathrm{~Hz}) \\
& =796 \mathrm{~Hz}-79.6 \mathrm{~Hz} \\
& =716.4 \mathrm{~Hz}
\end{aligned}
$$

These values are graphed in Figure 14.15 Recall that these frequencies define the points on the response curve at which the current is 70.7 percent of its maximum value. Therefore, in the series resonant circuit example of Figure 14.10 in which the current has a maximum value of 5 amperes, the value of the current at these cutoff frequencies is 3.535 amperes, calculated as follows:

$$
\begin{aligned}
\text { I(cutoff frequency) } & =70.7 \% 1_{\text {Max }} \quad(14-28) \\
& =70.7 \%(5 \mathrm{~A}) \\
& =0.707(5 \mathrm{~A}) \\
& =3.535 \mathrm{~A}
\end{aligned}
$$

Half-Power Points

The upper and lower frequency cutoff points on the response curve are sometimes referred to as the half-power points of the frequency response. This is because at these points on the response curve, the real power dissipation in the circuit is exactly one-half of what it is at the resonant frequency. To illustrate this, the series circuit of Figure 14.10, which is repeated in Figure 14.16, will be used. Recall that the real power is equal to the current squared times the value of the resistance:

$$
\begin{equation*}
P_{R}=I^{2} R \tag{14-29}
\end{equation*}
$$

In the example circuit the series resistance is 10 ohms, and at resonance the maximum current is 5 amperes. Therefore,

$$
\begin{aligned}
\mathbf{P}_{\mathbf{K}} & =I^{2} \mathbf{R} \\
& =(5 A)^{2}(10 \Omega) \\
& =(25)(10) \\
& =250 \mathrm{~W}
\end{aligned}
$$

Figure 14.15 Bandwidth of Series Resonant Circuit

Figure 14.16 Series Resonant Circuit
At resonance, the real power dissipated is 250 watts. At the cut-off frequency points the current from equation $14-28$, is 3.535 amperes. Using this value the power is calculated as:

$$
\begin{aligned}
P_{\mathbf{R}} & =I^{2} \mathbf{R} \\
& =(3.535 \mathrm{~A})^{2}(10 \Omega) \\
& =(12.5)(10) \\
& =125 \mathrm{~W}
\end{aligned}
$$

Therefore, at the cutoff frequencies, the real power dissipated in the circuit is 125 watts, one-half the real power dissipated at the resonant frequencies.

Changing the Frequency Response

Thus far, the frequency response of a specific series resonant circuit has been calculated and discussed. The frequency response can be changed by varying the values of the R, L and C components in the circuit. The next several sections will show you how changing the value of the circuit components affects the frequency reponse curve without affecting the resonant frequency. That is, the resonant frequency is held constant
The bandwidth equation $14-27$ provides a basic means by which one can determine what effect changing the value of a component will have upon the frequency response of the circuit. Recall that Q is dependent upon the value of either the inductive or capacitive reactance at resonance and the value of the circuit resistance as shown by equations 14-17 and 14-18. If the value of either L, C, or R is changed, the Q of the circuit will be changed, and the bandwidth and overall response of the circuit will be changed

Effect of Changes in L and C

Equation 14-4 shows that the resonant frequency is dependent upon the

$$
\begin{equation*}
f_{r}=\frac{1}{2 \pi \sqrt{L C}} \tag{14-4}
\end{equation*}
$$

values of L and C. Changing either L or C changes the frequency response, but the value of either cannot be changed independently without changing the resonant frequency. However, since the resonant frequency is dependent upon the product of L and C, the resonant frequency can be held constant by changing both L and C without changing their product. For example, if a 6 -henry inductor and a 2 -farad capacitor are used initially, their LC product is 6 times 2 or 12 $((6 H)(2 F)=12)$.

If the values are changed to a 4 henry inductor and a 3 farad capacitor, the LC product remains the same at $12((4 \mathrm{H})(3 \mathrm{~F})=$ 12), and the resulting resonant frequency will be the same. Note that to keep the product the same and therefore, the resonant frequency, the value of the inductor was decreased while the value of the capacitor was increased. Obviously, many other possible combinations of L and C will yield the same product, and thus, the same resonant frequency.

L/C Ratio

Although changing the values of L and C in this manner keeps the resonant frequency constant, it does have a definite effect upon the frequency response of the circuit. The curvature (steepness) of the sides of the frequency reponse curve is changed. This change in curvature represents a change in bandwidth. In many cases, this change is referred to as "changing skirts" of the response curve.
For a series resonant circuit, the degree of steepness of the response curve (bandwidih) is determined by the L/C ratio. This is the ratio of the inductance divided by the capacitance:

$$
\begin{equation*}
L / C \text { ratio }=\frac{L}{C} \tag{14-30}
\end{equation*}
$$

When the value of L is increased, the ratio is increased: when the value of L is decreased, the ratio is decreased. Increasing L increases the L / C ratio and increases X_{L}, the inductive reactance (equation $14-1$).

$$
X_{L} \uparrow=2 \pi f_{r} L \uparrow
$$

From equation 14-17, an increase in X_{L} will increase Q if the resistance of the circuit is held constant. Correspondingly, Q will decrease if X_{L} is decreased.

$$
\begin{equation*}
\uparrow Q=\frac{X_{L} \uparrow}{R} \tag{14-17}
\end{equation*}
$$

From equation 14-27, an increase or decrease in Q will affect the bandwidth. The resonant frequency. f_{r}, is being held constant, therefore, an increase in the value of Q will cause a decrease in bandwidth:

$$
\begin{equation*}
d B W=\frac{t_{r}}{Q \uparrow} \tag{14-27}
\end{equation*}
$$

Therefore, when L is increased, X_{L} increases, the L / C ratio is increased. Q increases, the bandwidth is decreased and the sides of the response curve shown in Figure 14.17 become steeper. Conversely, when L is decreased, X_{t} decreases, the L / C ratio is decreased. Q decreases, the bandwidth is increased and the sides of the response curve become less steep as shown in Figure 14.18.

Effect of R

Another way to change the circuit's frequency response is to change the circuit's resistance. Recall from equation 14-4 that the resonant frequency of a series RLC circuit is not dependent on the value of the resistance, therefore, changing R will not change the resonant frequency. Changing R, affects the amount of maximum current at resonance. If L and C remain constant, a decrease in resistance causes an increase in the maximum current at resonance. As shown in Figure 14.19, this has the effect of increasing the slope of the sides of the response curve and decreasing the bandwidth. Conversely, an increase in resistance will result in a decrease of the maximum current value at resonance and a corresponding increase in bandwidth. This also is shown in Figure 14.19.

Figure 14.17 Series Resonant Circuil Frequency Response Curve with Increased L

Figure 14.18 Series Resonant Circuil Frequency Response Curves with Decreased L

Figure 14.19 Series Resonanl Circuit Frequency Response Curves with Different R

This phenomena can be explained mathematically by using equation 14-17 and recalling that as the resistance of the circuit is changed the value of Q is changed. If the resistance is increased, the Q of the circuit is decreased:

$$
\mathrm{Q} \downarrow=\frac{\mathbf{X}_{\mathrm{L}}}{\mathbf{R} \uparrow}
$$

If the resistance is decreased, the Q of the circuit is increased:

$$
\mathrm{Q} \uparrow=\frac{\mathbf{X}_{\mathrm{L}}}{\mathrm{R} \downarrow}
$$

As before, if the resonant frequency remains constant, a decrease in Q will cause an increase in bandwidth.

$$
\mathbf{B W} \uparrow=\frac{\mathbf{F}_{\mathrm{F}}}{\mathbf{Q} \downarrow}
$$

and an increase in Q will cause a decrease in bandwidth.

$$
B W \downarrow=\frac{F_{F}}{Q \uparrow}
$$

Consequently, by changing either the L/C ratio or the value of R, while holding the resonant frequency constant, the value of Q, and therefore the bandwidth and frequency response, can be changed.

Parallel Resonance

Resonant Frequency

Thus far, the characteristics of a series RLC circuit at resonance have been discussed. Now let's look at a parallel RLC circuit shown in Figure 14.20. It has a resistor, inductor and capacitor all connected in parallel with a variable frequency power supply.
Recall that resonance was defined as the frequency at which X_{L} equals X_{C}. Because resonance is defined in this way, it makes no difference whether the inductance and capacitance of the circuit are connected in

Figure 14.20 Parallel RLC Circuil
series or in parallel. Therefore, equation 14-14 for determining the resonant frequency is the same for a parallel circuit as it was for a series circuit:

$$
\begin{equation*}
f_{r}=\frac{1}{2 \pi \sqrt{L C}} \tag{14-4}
\end{equation*}
$$

At the resonant frequency for this parallel circuit, when X_{L} and X_{C} are equal, the inductive and capacitive branch currents will be equal, $I_{L}=I_{C}$, and 180 degrees out of phase.

Total Current

Recall that the total current, I_{T}, in a parallel RLC circuit is equal to the vector sum of the branch currents I_{C}, I_{L} and I_{R} and it is calculated using equation 14-31.

$$
\begin{equation*}
\mathbf{I}_{\mathbf{T}}=\sqrt{\mathbf{I}_{\mathbf{R}}{ }^{2}+\left(\mathbf{I}_{\mathbf{C}}-\mathbf{I}_{\mathbf{L}}\right)^{2}} \tag{14-31}
\end{equation*}
$$

The phasor diagram is shown in Figure 14.21. I_{R} is the current in the resistive branch, I_{L} is the current in the inductive branch and I_{C} is the current in the capacitive branch. At resonance, when I_{L} and I_{C} are equal, the net reactive current is equal to zero and equation 14-31 becomes,

$$
\begin{equation*}
I_{T}=\sqrt{I_{R}^{2}+0^{2}} \tag{14-32}
\end{equation*}
$$

and can be rewritten as

$$
\begin{equation*}
\mathbf{I}_{\mathbf{T}}=\sqrt{\mathbf{I}_{\mathbf{R}}{ }^{2}} \tag{14-33}
\end{equation*}
$$

Solving for I_{T} results in equation $14-34$.

$$
\begin{equation*}
\mathbf{I}_{\mathbf{T}}=\mathbf{I}_{\mathbf{R}}(\text { minimum }) \tag{14-34}
\end{equation*}
$$

At resonance the total current in a parallel resonant RLC circuit is equal to the resistive branch current because as shown in Figure $14.22 a, 1_{1}=I_{C}$ and is 180 degrees out of phase with I_{C}. Since at resonance the total current seen by the power source is resistive current, the current must be at its lowest level, at its minimum. If the applied frequency is varied either side of the resonant frequency, as shown by the phasor diagrams of Figure 14.22, then a difference will exist between the value of I_{L} and 1_{C}. This difference will result in a net reactive current which would add vectorially to the resistive current of the circuit and create a larger value of total current.

The phasor diagram of the parallel circuit at resonance is shown in Figure 14.23. Since the applied voltage is taken as reference at zero degrees, and since at resonance the resistive current is in phase with the applied voltage, the total current is in phase with the applied voltage and the phase angle is zero.

Impedance

The total impedance of the parallel circuit is equal to the applied voltage divided by the total current.

$$
\begin{equation*}
\mathbf{Z}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{I}_{\mathbf{T}}} \tag{14-35}
\end{equation*}
$$

Figure 14.21 Total Current Phasor Diagram

Figure 14.22 Phasor Diagrams When f is Varied Either Side of Resonance

Figure 14.23 Phase Angle Equals Zero Degrees al Resonance

Since the total current in the circuit is a minimum at resonance, the impedance must be at its maximum value. From equation 14-34, the total current is equal to the resistive branch current, and therefore, equation 14-35 can be rewritten

$$
\mathbf{Z}=\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{I}_{\mathbf{R}}}
$$

By Ohm's law, the applied voltage divided by the resistive current is equal to resistance:

$$
\begin{equation*}
\mathbf{Z}=\mathbf{R}(\text { maximum }) \tag{14-36}
\end{equation*}
$$

In other words, the impedance at resonance is simply equal to the value of the resistance in the resistive branch and is a maximum at resonance.

Circuit \mathbf{Q} of a Parallel-Resonant Circuit

Recall from equation 14-11 that the Q of a resonant circuit is defined as the ratio of the reactive power to the resistive power.

$$
\begin{equation*}
\mathbf{Q}=\frac{\mathbf{P}_{\mathbf{x}}}{\mathbf{P}_{\mathbf{R}}} \tag{14-11}
\end{equation*}
$$

The reactive power is for either the inductor or capacitor since they are equal at resonance.
To illustrate this, let's again use the reactive power of the inductor as an example. The reactive power of the inductor is equal to the voltage across the inductor times the current through it. Because $I_{L}=\frac{F_{\cdot}}{X_{L}}$, the equation can be rewritten as the voltage across the inductor squared divided by the value of the inductive reactance (equation 14-37).

$$
\begin{align*}
\mathbf{P}_{\mathbf{X L}} & =\mathbf{E}_{\mathbf{L}} \mathbf{I}_{\mathbf{L}} \\
& =\mathbf{E}_{\mathbf{L}} \frac{\mathbf{E}_{\mathbf{L}}}{\mathbf{X}_{\mathbf{L}}} \\
& =\frac{\mathbf{E}_{\mathbf{L}}^{2}}{\mathbf{X}_{\mathbf{L}}} \tag{14-37}
\end{align*}
$$

The real power dissipated by the resistor is equal to the voltage across the resistor times the current through it. Because $I_{R}=\frac{E_{R}}{R}$. the equation can be rewritten as the voltage across the resistor squared divided by the value of the resistor (equation 14-38).

$$
\begin{align*}
\mathbf{P}_{\mathbf{R}} & =\mathbf{E}_{\mathbf{R}} \mathbf{1}_{\mathbf{R}} \\
& =\mathbf{E}_{\mathbf{R}}\left(\frac{\mathbf{E}_{\mathbf{R}}}{\mathbf{R}}\right) \\
& =\frac{\mathbf{E}_{\mathbf{R}}^{2}}{\mathbf{R}} \tag{14-38}
\end{align*}
$$

Substituting equations 14-37 and 14-38 into equation 14-11,

$$
\begin{align*}
\mathbf{Q} & =\frac{\mathbf{P}_{\mathbf{X}}}{\mathbf{P}_{R}} \\
& =\frac{\left(E_{L}{ }^{2} / \mathbf{X}_{L}\right)}{\left(E_{R}{ }^{2} / \mathbf{R}\right)} \tag{14-39}
\end{align*}
$$

In the parallel circuit, E_{L}, the voltage across the inductor equals E_{R}, the voltage across the resistor. As a result equation 14-39 simplifies to equation 14-40.

$$
\begin{equation*}
Q=\frac{\left(1 / X_{\mathrm{L}}\right)}{(1 / R)}=\frac{R}{X_{\mathrm{L}}} \tag{14-40}
\end{equation*}
$$

The Q of a parallel resonant circuit of the type shown in Figure 14.20 is equal to the value of the parallel circuit resistance divided by the value of the parallel circuit inductive reactance calculated at the resonant frequency. Since the capacitive reactance equals the inductive reactance at resonance, the same value of Q may be obtained by dividing the resistance by the capacitive reactance:

$$
\begin{equation*}
\mathbf{Q}=\frac{\mathbf{R}}{\mathbf{X}_{\mathrm{C}}} \tag{14-41}
\end{equation*}
$$

Current Magnification

Now, let's take the original equation for Q, equation 14-11, and use it in a slightly different way. In equation 14-42, the E and I
equivalents are substituted for the power values, P_{X} and P_{R}

$$
\begin{align*}
\mathbf{Q} & =\frac{\mathbf{P}_{\mathbf{X}}}{\mathbf{P}_{\mathbf{R}}} \\
& =\frac{\mathbf{E}_{\mathbf{R}} \mathbf{I}_{\mathbf{L}}}{\mathbf{E}_{\mathbf{R}} \mathbf{I}_{\mathbf{R}}} \tag{14-42}
\end{align*}
$$

Since the voltage across the inductor, E_{L}, and voltage across the resistor, E_{R}, are the same in the parallel circuit under consideration, and they both equal E_{A}, they cancel each other and the equation simplifies to equation 14-43

$$
\begin{align*}
\mathbf{Q} & =\frac{\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{I}}}{\mathbf{E}_{\mathbf{A}} \mathbf{I}_{\mathbf{R}}} \\
& =\frac{\mathbf{I}_{\mathbf{L}}}{\mathbf{I}_{\mathbf{R}}} \tag{14-43}
\end{align*}
$$

Q equals the inductive branch current divided by the resistive branch current.

Earlier you saw in the current phasor diagrams of Figure 14.22 and proven by equation 14-34 that the current through the resistor and the total current were equal at resunance. As a result of the substitution I_{R} $=I_{T}$, equation 14-43 for Q can be rewritten:

$$
\begin{align*}
& Q=\frac{I_{L}}{I_{R}} \\
& Q=\frac{I_{L}}{I_{T}} \tag{14-44}
\end{align*}
$$

If both sides of equation 14-44 are multiplied by I_{T} and rearranged, the equation can be rewritten as:

$$
\mathbf{I}_{\mathbf{T}} \mathbf{Q}=\left(\frac{\mathbf{I}_{\mathbf{L}}}{\mathbf{I}_{\mathbf{T}}}\right) \mathbf{I}_{\mathbf{T}}
$$

l_{T} cancels on the right side, therefore,

$$
\begin{equation*}
\mathbf{I}_{\mathbf{L}}=\mathbf{Q} \mathbf{I}_{\mathbf{T}} \tag{14-45}
\end{equation*}
$$

The equation relates the fact that at resonance, the current through the inductor will be Q times larger than the total current.

Figure 14.24 Circulatng Current in L and C Branches at the Resonant Frequency
Since the capacitive current is equal to the inductive current, the capacitive current is also Q times the total circuit current at resonance (equation 14-46).

$$
\begin{equation*}
\mathbf{I}_{\mathbf{L}}=\mathbf{I}_{\mathbf{C}}=\mathbf{Q} \mathbf{I}_{\mathbf{T}} \tag{14-46}
\end{equation*}
$$

This is referred to as the current magnification in a parallel resonant circuit. Q, again, is known as the magnification factor.

You may find this unusual but, the current as expressed by equations $14-45$ and $14-46$ is much larger in the inductive and capacitive branches of a parallel circuit at resonance than the total current. This is shown in Figure 14.24. The larger current in the inductivecapacitive branches is a result of the continual charging and discharging of the capacitor and the continual building-up and collapsing of the magnetic field of the inductor at the resonant frequency. It is a characteristic of resonance and is known as the circulating current. The parallel combination of the inductor and capacitor is often called a tank circuit, often shortened simply to tank. Although the circulating current is large, the total current drawn by the circuit has a minimum value at resonance.

Frequency Response

If the total current in a parallel resonant circuit is plotted versus frequency it appears as is shown in the solid-line curve in Figure 14.25. It has a minimum value at resonance.

Circuit impedance is shown by the dotted-line curve in Figure 14.25. Since total current is minimum at resonance, circuit impedance is at maximum at resonance.

The specifications that describe the parallel circuit frequency response, such as bandwidth, the 70.7 percent half-power points, and upper and lower cutoff frequencies are determined exactly as they were for a series resonant circuit.

Parallel Resonant Circuit Example

With these facts in mind concerning a parallel resonant circuit, let's solve the parallel circuit shown in Figure 14.26 . It consists of a 1 -kilohm resistor, a 10 -millihenry inductor and a 4-microfarad capacitor connected in parallel to a 100 VAC variablefrequency ac source adjustable to the circuit's resonant frequency. At resonance the values of currents, impedance, voltages, and Q of the circuit will be determined, and the circuit's frequency response curve will be drawn.

Resonant Frequency

In this circuit where L is 10 millihenrys and C is 4 microfarads, the resonant frequency is:

$$
\begin{aligned}
f_{r} & =\frac{1}{2 \pi \sqrt{L C}} \\
& =\frac{1}{(6.28) \sqrt{(10 \mathrm{mH})(4 \mu F)}} \\
& =796 \mathrm{~Hz}
\end{aligned}
$$

Figure 14.25 Parallel Resonance Current and Impedance Frequency Responses

Figure 14.26 Parallel RLC Circuit
$\mathbf{X}_{\mathrm{L}}=\mathbf{X}_{\mathrm{C}}$
At the resonant frequency of 796 hertz, the value of the inductive and capacitive reactance are equal and, as before, both are equal to 50 ohms.

$$
\begin{aligned}
\mathrm{X}_{\mathrm{L}} & =2 \pi \mathrm{fL} \\
& =(6.28)(796 \mathrm{~Hz})(10 \mathrm{mH}) \\
& =50 \Omega \\
\mathrm{X}_{\mathrm{C}} & =\frac{1}{2 \pi \mathrm{fC}} \\
& =\frac{1}{(6.28)(796 \mathrm{~Hz})(4 \mu \mathrm{~F})} \\
& =50 \Omega
\end{aligned}
$$

Branch Currents

The branch current can be calculated using Ohm's law for each branch. The voltage across each branch is E_{A} which is equal to 100 volts. l_{1} is calculated first

$$
\begin{aligned}
\mathbf{I}_{\mathrm{L}} & =\frac{\mathbf{E}_{\mathrm{A}}}{\mathbf{X}_{\mathrm{L}}} \\
& =\frac{100 \mathrm{~V}}{50 \Omega} \\
& =2 \mathrm{~A}
\end{aligned}
$$

In a similar manner, the capacitive branch current $\mathbf{I}_{\mathbf{C}}$ is determined

$$
\begin{aligned}
\mathbf{I}_{\mathrm{C}} & =\frac{\mathbf{E}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{C}}} \\
& =\frac{100 \mathrm{~V}}{50 \Omega} \\
& =2 \mathrm{~A}
\end{aligned}
$$

The resistive branch current is the last to be calculated

$$
\begin{aligned}
\boldsymbol{I}_{\mathbf{R}} & =\frac{E_{A}}{R} \\
& =\frac{100 \mathrm{~V}}{1 \mathrm{~K} \Omega} \\
& =100 \mathrm{~mA}
\end{aligned}
$$

Total Current

The total current for the example circuit in its most general form is:

$$
I_{T}=\sqrt{I_{R}{ }^{2}+\left(I_{C}-I_{L}\right)^{2}}
$$

Substituting values, $I_{R}=100 \mathrm{~mA}, I_{L}=2 \mathrm{~A}$, $l_{c}=2 A$,

$$
\begin{aligned}
\mathbb{I}_{\mathrm{T}} & =\sqrt{(100 \mathrm{~mA})^{2}+(2 \mathrm{~A}-2 \mathrm{~A})^{2}} \\
& =\sqrt{(100 \mathrm{~mA})^{2}+0^{2}} \\
& =\sqrt{(100 \mathrm{~mA})^{2}} \\
& =100 \mathrm{~mA}
\end{aligned}
$$

As was determined previously for parallel RLC circuits the total current at resonance is simply equal to the resistive branch current. In this case it has a minimum value of 100 milliamperes.

Impedance

The value of the impedance is equal to the applied voltage divided by the total current or,

$$
\begin{aligned}
Z & =\frac{E_{\mathrm{A}}}{I_{\mathrm{T}}} \\
& =\frac{100 \mathrm{~V}}{100 \mathrm{~m} \mathrm{~A}} \\
& =1 \mathrm{k} \Omega
\end{aligned}
$$

The circuit impedance at resonance is a maximum value and equal to 1 kilohm, the value of the parallel branch resistance.

Circuit Q

The Q of the parallel circuit can now be determined by substituting $\mathrm{R}=1$ kilohm and $\mathrm{X}_{\mathrm{L}}=50$ ohms.

$$
\begin{aligned}
Q & =\frac{R}{X_{L}} \\
& =\frac{1000 \Omega}{50 \Omega} \\
& =20
\end{aligned}
$$

Circulating Current

It was established previously that the capacitive or inductive circulating current was Q times the total current at resonance. It is calculated as follows:

$$
\begin{aligned}
\mathbf{I}_{\mathrm{C}}=\mathbf{I}_{\mathrm{L}} & =Q \mathbf{I}_{\mathrm{r}} \\
& =(20)(100 \mathrm{~mA}) \\
& =2 \mathrm{~A}
\end{aligned}
$$

This 2 amperes is identical to the value calculated for the inductive and capacitive branch currents determined earlier and verifies that calculation.

Frequency Response and Bandwidth

The frequency response of the circuit is shown in Figure 14.27. It shows that impedance is at a maximum of 1 kilohm at resonance: 796 hertz. The bandwidth from equation $14-27$ is equal to the resonant frequency divided by the Q of the circuit. It is calculated as follows:

$$
\begin{aligned}
B W & =\frac{f_{r}}{Q} \\
& =\frac{796 \mathrm{~Hz}}{20} \\
& =39.8 \mathrm{~Hz}
\end{aligned}
$$

The upper and lower cut-off frequencies are calculated using equation 14-25 and 14-26. From equation 14-25.

$$
\begin{aligned}
f_{\text {upper }} & =f_{r}+\frac{1}{2} B W \\
& =796 \mathrm{~Hz}+\frac{1}{2}(39.8 \mathrm{~Hz}) \\
& =796 \mathrm{~Hz}+19.9 \mathrm{~Hz} \\
& =815.9 \mathrm{~Hz}
\end{aligned}
$$

From equation 14-26,

$$
\begin{aligned}
\mathbf{f}_{\text {lower }} & =f_{r}-\frac{1}{2} B W \\
& =796 \mathrm{~Hz}-\frac{1}{2}(39.8 \mathrm{~Hz}) \\
& =796 \mathrm{~Hz}-19.9 \mathrm{~Hz} \\
& =776.1 \mathrm{~Hz}
\end{aligned}
$$

Remember that these upper and lower cut-off frequencies are the frequencies at which the frequency response is down to 70.7 percent of its maximum value. In this example, the value of the impedance at these cutoff frequencies is equal to 70.7 percent of 1 kilohm.

Figure 14.27 Impedance Frequenc Response of Parallel RLC Circuil

Figure 14.28 Parallel RLC Frequency Response

$$
\begin{aligned}
\text { Z(cutoff frequency) } & =70.7 \% \mathrm{Z}_{\max } \\
& =70.7 \%(1 \mathrm{k} \Omega) \\
& =0.707(1000 \Omega) \\
& =707 \Omega
\end{aligned}
$$

All of these values are presented as they apply to the frequency response of the impedance in Figure 14.28.

Effect of Changing L/C Ratio

Effect of Changing R Value

Altering the Frequency Response

As in a series resonant circuit, the frequency response of a parallel resonant circuit can be altered by changing the value of K, L and C.
In all of the following discussion, the resonant frequency is held constant. Component values are changed accordingly, as in series resonant circuits.

Effect of Changing L/C Ratio

Impedance plotted against frequency is shown in Figure 14.29. It also demonstrates the effect of changing the L over C ratio on the frequency response of a parallel resonant circuit. The effect of increasing the L / C ratio for a parallel resonant circuit has the opposite effect as it did for a series resonant circuit. An increase in the L/C ratio causes a decrease in Q, a decrease in the steepness of the response curve, and an increase in bandwidth.

This effect can be substantiated mathematically by reasoning that in increasing the L / C ratio, L is increased causing an increase in the inductive reactance at the resonant frequency. Assuming the applied voltage is held constant, an increase in X_{L} in this parallel circuit causes a decrease in the inductive branch current, I_{L}, indicating a decrease in the circuit Q.
From equation 14-40 an increase in X_{L} causes a decrease in the Q of the circuit, and from equation 14-27 a decrease in Q causes an increase in the bandwidth. Conversely, a decrease in the L/C ratio causes an increase in Q, an increase in the steepness of the response curve, and a decrease in bandwidth as shown in Figure 14.30.

Effect of Changing \mathbf{R} Value

The effect of changing the resistance of the circuit on the frequency response of a parallel resonant circuit is shown in Figures 14.31 and 14.32 .

Figure 14.29 Frequency Response of a Parallel Resonant Circuit with Increasing L/C Ratio

Figure 14.30 Frequency Response of a Parallel Resonant Circuit with Decreasing L/C Ratio

Figure 14.31 Frequency Response of Parallel Resonant Circuit with Smaller R

As you know by equation 14 -4 the resonant frequency is not dependent upon the value of the resistance. Therefore, the resistance can be changed without changing the resonant frequency.

$$
\begin{equation*}
f_{r}=\frac{1}{2 \pi \sqrt{L C}} \tag{14-4}
\end{equation*}
$$

Changing the circuit resistance, however, does change the frequency response. You have seen by equation 14-36 that the circuit impedance at resonance is equal to R, and that the impedance is a maximum at resonance.

$$
\begin{equation*}
\mathbf{Z}=\mathbf{R} \text { (maximum) } \tag{14-36}
\end{equation*}
$$

Changing the value of R changes the value of the maximum impedance at resonance. With L and C held constant, as R is decreased, the circuit impedance at resonance decreases (equation 14-36), the Q of the circuit decreases (equation 14-40), causing a corresponding increase in bandwidth (equation 14-27) and the steepness of the response curve decreases as shown in Figure 14.31. This may be confirmed mathematically:

$$
\begin{align*}
\mathbf{Z} \downarrow & =\mathbf{R} \downarrow \tag{14-36}\\
\mathbf{Q} \downarrow & =\frac{\mathbf{R} \downarrow}{\mathbf{X}_{\mathbf{L}}} \tag{14-40}\\
\mathbf{B W} \uparrow= & \frac{\mathbf{f}_{\mathrm{I}}}{\mathbf{Q} \downarrow} \tag{14-27}
\end{align*}
$$

Conversely, as shown in Figure 14.32, an increase in R causes an increase of circuit impedance at resonance along with an increase in the Q of the circuit, a corresponding decrease in bandwidth, a resulting increase in the steepness of the response curve.

Figure 14.32 Effect on Frequency Response of Parallel Resonant Circuit with Larger R

Summary

In this lesson, the concept of resonance was introduced and its effect on the impedance, currents, and voltages of a series RLC circuit was discussed. The concept of Q, the frequency response and the bandwidth of a resonant circuit were discussed. You were shown how the Q of a circuit could be changed by changing the components of the circuit and what effect changing its value had upon the frequency response of the circuit. Corresponding discussions showed you the same effects for a parallel RLC circuit.

Course Summary

Throughout this text, the basic concepts of alternating current circuits have been developed from the simplest circuit to very complex RLC circuits. Basic tools and techniques have been explained and applied with worked-out examples such that a student completing this material should be able to analyze and solve the most complex ac circuit application.

Worked-Out Examples

1. Calculate the resonant frequency of the following L-C combinations:
a. $L=250 \mu \mathrm{H}, \mathrm{C}=10 \mathrm{pF}$
$f_{r}=$ \qquad
b. $L=16 \mathrm{mH}, \mathrm{C}=0.22 \mu \mathrm{~F}$

$$
f_{r}=
$$

\qquad

Solutions:

a. Using the resonant frequency equation:

$$
\begin{aligned}
f_{r}=\frac{1}{2 \pi \sqrt{L C}} & =\frac{1}{(6.28) \sqrt{(250 \mu \mathrm{H})(10 \mathrm{pF})}}=\frac{1}{(6.28) \sqrt{\left(250 \times 10^{-6} \mathrm{H}\right)\left(10 \times 10^{-12} \mathrm{~F}\right)}} \\
& =\frac{1}{(6.28) \sqrt{2.5 \times 10^{-15}}}=\frac{1}{6.28\left(5 \times 10^{-8}\right)}=\frac{1}{3.14 \times 10^{-7}} \\
& =3.18 \times 10^{6} \mathrm{~Hz}=3.18 \mathrm{MHz}
\end{aligned}
$$

b. Using the resonant frequency equation again:

$$
\begin{aligned}
f_{r} & =\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{(6.28) \sqrt{(16 \mathrm{mH})(0.22 \mu \mathrm{~F})}}=\frac{1}{(6.28) \sqrt{\left(16 \times 10^{-3} \mathrm{H}\right)\left(0.22 \times 10^{-6} \mathrm{~F}\right)}} \\
& =\frac{1}{(6.28) \sqrt{3.52 \times 10^{-9}}}=\frac{1}{(6.28)\left(5.93 \times 10^{-5}\right)}=\frac{1}{3.73 \times 10^{-4}}=2.68 \times 10^{3} \mathrm{~Hz}=2.68 \mathrm{kHz}
\end{aligned}
$$

2. Determine the value of the inductor needed to provide the resonant frequency specified if used in conjunction with the capacitor given:
a. $f_{r}=55 \mathrm{kHz}, \mathrm{C}=1.5 \mu \mathrm{~F}$
$\mathrm{L}=$ \qquad
b. $f_{r}=27 \mathrm{MHz}, C=10 \mathrm{pF}$
$\mathrm{L}=$ \qquad

Solutions:

a. $\quad \mathbf{I}=\frac{1}{4 \pi^{2} \mathrm{C}_{\mathrm{r}}{ }^{2} \mathrm{C}}=\frac{1}{4(\pi)^{2}(55 \mathrm{kHz})^{2}(1.5 \mu \mathrm{~F})}=\frac{1}{4(3.14)^{2}\left(55 \times 10^{3}\right)^{2}\left(1.5 \times 10^{-6}\right)}$

$$
=\frac{1}{4(9.86)\left(3.03 \times 10^{9}\right)\left(1.5 \times 10^{-6}\right)}=\frac{1}{1.79 \times 10^{5}}=5.57 \times 10^{-6} \mathrm{H}=5.57 \mu \mathrm{H}
$$

b. $L=\frac{1}{4 \pi^{2} f_{r}^{2} C}=\frac{1}{4(\pi)^{2}(27 \mathrm{MHz})^{2}(10 \mathrm{pF})}=\frac{1}{4(3.14)^{2}\left(27 \times 10^{6}\right)^{2}\left(10 \times 10^{-12}\right)}$

$$
=\frac{1}{4(9.86)\left(7.29 \times 10^{14}\right)\left(10 \times 10^{-12}\right)}=\frac{1}{2.88 \times 10^{5}}=3.48 \times 10^{-6} \mathrm{H}=3.48 \mu \mathrm{H}
$$

3. Determine the value of capacitor needed to provide the resonant frequency specified if used in conjunction with the inductor given:
a. $f_{r}=40 \mathrm{kHz}, \mathrm{L}=18 \mathrm{mH}$
$C=$ \qquad
b. $f_{\mathrm{r}}=1 \mathrm{MHz}, L=0.05 \mathrm{mH}$
$C=$ \qquad

Solutions:

a. $C=\frac{1}{4 \pi^{2} f_{r}^{2} L}=\frac{1}{4(\pi)^{2}(40 \mathrm{kHz})^{2}(18 \mathrm{mH})}=\frac{1}{4(3.14)^{2}\left(40 \times 10^{3}\right)^{2}\left(18 \times 10^{-3}\right)}$

$$
=\frac{1}{4(9.86)\left(1.6 \times 10^{9}\right)\left(18 \times 10^{-3}\right)}=\frac{1}{1.14 \times 10^{9}}=8.80 \times 10^{-10} \mathrm{~F}=880 \mathrm{pF}
$$

b. $\quad C=\frac{1}{4 \pi^{2} f_{r}^{2} L}=\frac{1}{4(\pi)^{2}(1 \mathrm{MHz})^{2}(0.05 \mathrm{mH})}=\frac{1}{4(3.14)^{2}\left(1 \times 10^{6}\right)^{2}\left(0.05 \times 10^{-3}\right)}$

$$
=\frac{1}{4(9.86)\left(1 \times 10^{12}\right)\left(0.05 \times 10^{-3}\right)}=\frac{1}{1.97 \times 10^{9}}=5.07 \times 10^{-10} \mathrm{~F}=507 \mathrm{pF}
$$

4. For the following circuit, determine the resonant frequency of the circuit; then determine the values specified at the resonant frequency.

Solutions:

a. $f_{T}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{(6.28) \sqrt{(0.4 \mathrm{mH})(1.5 \mu \mathrm{~F})}}=6.50 \mathrm{kHz}$
b. $X_{L}=2 \pi \mathrm{f}=(6.28)(6.5 \mathrm{kHz})(0.4 \mathrm{mH})=(6.28)\left(6.5 \times 10^{3}\right)\left(0.4 \times 10^{-3}\right)=16.3 \Omega$
c. $X_{C}=X_{L}=16.3 \Omega$
d. $Z_{T}=R=5 \Omega$
e. $I_{T}=\frac{E_{A}}{Z_{T}}=\frac{E_{A}}{R}=\frac{15 \mathrm{~V}}{5 \Omega}=\mathbf{3 A}$
f. $E_{L}=1_{T} X_{L}=(3 A)(16.3 \Omega 2)=49 V$

$$
\begin{aligned}
& \text { g. } E_{C}=E_{\mathrm{L}}=49 \mathrm{~V} \\
& \text { h. } \mathrm{Q}=\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}=\frac{16.3 \Omega}{5 \Omega}=3.26 \\
& \text { i. } \mathrm{BW}=\frac{\mathrm{f}_{\mathrm{r}}}{\mathrm{Q}}=\frac{6.5 \mathrm{kHz}}{3.26}=2 \mathrm{kHz} \\
& \text { j. } \mathrm{f}_{\text {upper }}=\mathrm{f}_{\mathrm{r}}+1 / 2 \mathrm{BW}=6.5 \mathrm{kHz}+1 / 2(2 \mathrm{kHz})=6.5 \mathrm{kHz}+1 \mathrm{kHz}=7.5 \mathrm{kHz} \\
& \text { k. } \mathrm{f}_{\text {lower }}=\mathrm{f}_{\mathrm{r}}-1 / 2 \mathrm{BW}=6.5 \mathrm{kHz}-1 / 2(2 \mathrm{kHz})=6.5 \mathrm{kHz}-1 \mathrm{kHz}=5.5 \mathrm{kHz} \\
& \text { I. } \theta=\arctan \left(\frac{X_{\mathrm{T}}}{\mathrm{R}}\right) \text { where } \mathrm{X}_{\mathrm{T}}=\left|\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right| \\
&=\arctan \left(\frac{0}{5 \Omega}\right)=\arctan (0)=0^{\circ}
\end{aligned}
$$

5. Sketch the frequency response of I versus frequency for the circuit of Problem 4. Show the location of the resonant frequency, upper and lower edge (cutoff) frequencies, bandwidth, and values of current at resonance and at the edge (cutoff) frequencies.

6. For the following circuit, determine the resonant frequency of the circuit; then determine the values specified at the resonant frequency.

Solutions:

a. $f_{r}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{(6.28) \sqrt{(15 \mathrm{mH})(390 \mathrm{pF})}}=65.8 \mathrm{kHz}$
b. $X_{L}=2 \pi \mathrm{fL}=(6.28)(65.8 \mathrm{kHz})(15 \mathrm{mH})=(6.28)\left(65.8 \times 10^{3}\right)\left(15 \times 10^{-3}\right) \Omega=6.2 \mathrm{k} \Omega$
c. $X_{C}=X_{L}=6.2 \mathrm{k} \Omega$
d. $I_{L}=\frac{E_{A}}{X_{L}}=\frac{12 \mathrm{~V}}{6.2 \mathrm{k} \Omega}=1.94 \mathrm{~mA}$
e. $I_{C}=I_{t}=1.94 \mathrm{~mA}$
f. $I_{T}=I_{R}=\frac{E_{A}}{R}=\frac{12 \mathrm{~V}}{82 \mathrm{k} \Omega}=146 \mu \mathrm{~A}$
g. $Z_{T}=R=82 k \Omega$
h. $Q=\frac{R}{X_{L}}=\frac{82 \mathrm{k} \Omega}{6.2 \mathrm{k} \Omega}=13.2$
i. $\quad \mathrm{BW}=\frac{\mathrm{f}_{\mathrm{I}}}{\mathrm{Q}}=\frac{65.8 \mathrm{kHz}}{13.2}=4.98 \mathrm{kHz}$
j. $f_{\text {upper }}=f_{r}+1 / 2 B W=65.8 \mathrm{kHz}+1 / 2(4.98 \mathrm{kHz})=65.8 \mathrm{kHz}+2.49 \mathrm{kHz}=68.3 \mathrm{kHz}$
k. $f_{\text {lower }}=f_{r}-1 / 2 B W=65.8 \mathrm{kHz}-1 / 2(4.98 \mathrm{kHz})=65.8 \mathrm{kHz}-2.49 \mathrm{kHz}=63.3 \mathrm{kHz}$

Worked-Out Examples
7. Sketch the frequency response of Z versus frequency for the circuir of Problem 6. Show the location of the resonant frequency, upper and lower edge (cutoff) frequencies, bandwidth, and values of impedance at resonance and at the edge (cutoff) frequencies.

1. Calculate the resonant frequency of the following L-C combinations
a. $L=10 \mathrm{mH}$
$C=14 \mu \mathrm{~F}$
$f_{r}=$ \qquad
b. $L=150 \mu \mathrm{H}$
$C=8 \mu \mathrm{~F}$
$\mathrm{f}_{\mathrm{r}}=$ \qquad
c. $L=2.5 \mathrm{mH}$
$C=0.22 \mu \mathrm{~F}$
$\mathbf{f}_{\boldsymbol{\delta}}=$ \qquad
d. $L=18 \mu \mathrm{H}$
$C=14 \mathrm{pF}$
$\mathrm{f}_{\boldsymbol{r}}=$ \qquad
2. Determine the value of the inductor needed to provide the resonant frequency specified if used in conjunction with the capacitor given:
a. $f_{r}=100 \mathrm{kHz}$
$C=0.01 \mu \mathrm{~F}$
$\mathbf{L}=$ \qquad
b. $f_{r}=1.5 \mathrm{MHz}$
$C=0.002 \mu \mathrm{~F}$
$\mathbf{L}=$ \qquad
c. $\mathrm{f}_{\mathrm{r}}=8 \mathrm{kHz}$
$C=8 p F$
$L=$ \qquad
d. $f_{r}=450 \mathrm{~Hz}$
$C=16 \mu \mathrm{~F}$
I. $=$ \qquad
3. Determine the value of the capacitor needed to provide the resonant frequency specified if used in conjunction with the inductor given:
a. $f_{\mathrm{r}}=75 \mathrm{kHz}$
$\mathrm{L}=0.1 \mathrm{mH}$
$\mathbf{C}=$ \qquad
b. $f_{r}=100 \mathrm{~Hz}$
$\mathrm{L}=8.5 \mathrm{H}$
C $=$ \qquad
c. $\mathrm{f}_{\mathrm{r}}=11 \mathrm{MHz}$
$L=50 \mu \mathrm{H}$
C $=$ \qquad
d. $f_{\tau}=320 \mathrm{kHz}$
$L=0.5 \mathrm{mH}$
$C=$ \qquad
4. For the following circuit, determine the resonant frequency; then determine the values specified at the resonant frequency:

a. $f_{r}=$ \qquad g. $\mathbf{E}_{\mathrm{C}}=$
b. $\mathrm{X}_{\mathrm{L}}=$ \qquad h. $Q=$
\qquad
c. $\mathbf{X}_{\mathrm{C}}=$ \qquad i. $\mathbf{B W}=$
d. $Z_{T}=$ \qquad j. $f_{\text {upper }}=$ \qquad
e. $I_{T}=$ \qquad k. $\mathrm{f}_{\text {lower }}=$ \qquad
f. $\mathbf{E}_{\mathrm{L}}=$ \qquad 1. $\boldsymbol{\theta}=$ \qquad
5. For the following circuit, determine the resonant frequency; then determine the values specified at the resonant frequency.

a. $f_{r}=$
g. $E_{C}=$
b. $X_{\mathrm{L}}=$
\qquad
h. $Q=$
c. $X_{C}=$
d. $\mathrm{Z}_{\mathrm{T}}=$ \qquad
i. $\mathbf{B W}=$
j. $f_{\text {upper }}=$ \qquad
e. $\mathrm{l}_{\mathrm{T}}=$ \qquad k. $f_{\text {lower }}=$ \qquad
f. $\mathbf{E}_{\mathrm{L}}=$ \qquad l. $\theta=$
\qquad
\qquad
\qquad
6. Sketch the frequency responses of 1 versus frequency for the circuits of Problems 4 and 5. Show the location of the resonant frequency, upper and lower edge (cutoff) frequencies, bandwidth, and values of current at resonance and at the edge (cutoff) frequencies.
a. Current frequency response of the circuit of Problem 4:

b. Current frequency response of the circuit of Problem 5:

7. For the following circuit, determine the resonant frequency; then determine the values specified at the resonant frequency.

c. $X_{\mathrm{L}}=$
d. $\mathrm{I}_{\mathrm{L}}=$ \qquad
e. $\mathbf{I}_{\mathbf{C}}=\square$

\qquad 1. $\theta=$
8. For the following circuit, determine the resonant frequency; then determine the values specified at the resonant frequency

9. Sketch the frequency responses of Z versus frequency for the circuits of Problems 7 and 8 . Show the location of the resonant frequency, upper and lower edge (cutoff) frequencies, bandwidth, and values of impedance at resonance and at the edge (cutoff) frequencies.
a. Impedance frequency response for circuit of Problem 7:

b. Impedance frequency response of circuit of Problem 8:

10. In the circuit shown below, it is desired to be able to change its resonant frequency from 540 kHz to 1600 kHz by adjusting the value of the capacitor. Determine the range of values over which the capacitor must be variable to achieve this.

11. Determine the value of the inductor needed to provide the resonant frequency specified if used in conjunction with the capacitor given:
a. $f_{r}=100 \mathrm{kHzC}=25 \mathrm{pF} \quad \mathrm{L}=$ \qquad
b. $f_{r}=15 \mathrm{kHz} \mathrm{C}=0.04 \mu \mathrm{~F} \quad \mathrm{~L}=$ \qquad
12. Determine the value of the capacitor needed to provide the resonant frequency specified if used in conjunction with the inductor given:
a. $f_{r}=6.5 \mathrm{MHzL}=0.4 \mathrm{mH} \quad \mathrm{C}=$
b. $\mathrm{f}_{\mathrm{r}}=850 \mathrm{kHzL}=300 \mu \mathrm{H} \quad \mathrm{C}=$ \qquad
13. For the following circuit, determine the resonant frequency; then determine the values specified at the resonant frequency.

a. $\mathrm{f}_{\mathrm{r}}=$ \qquad g. $\mathbf{E}_{C}=$ \qquad
b. $\mathbf{X}_{\mathbf{L}}=$ \qquad h. $Q=$ \qquad
c. $\mathbf{X}_{\mathbf{C}}=$ \qquad i. $\mathbf{B W}=$ \qquad
d. $Z_{T}=$ \qquad j. $f_{\text {upper }}=$

e. $\mathbf{I}_{T}=$ \qquad k. $f_{\text {lower }}=$ \qquad
f. $E_{L}=$ \qquad 1. $\theta=$ \qquad
14. Sketch the frequency response of current versus frequency for the circuit of Question 3. Show the location of the resonant frequency, upper and lower edge (cutoff) frequencies, bandwidth. and values of current at resonance and at the edge (cutoff) frequencies.

15. For the following circuit, determine the resonant frequency; then determine the values specified at the resonant frequency.

a. $f_{r}=$
b. $\mathrm{X}_{\mathrm{L}}=$
g. $Z_{T}=$ \qquad
c. $\mathrm{X}_{\mathrm{C}}=$ \qquad
h. $Q=$ \qquad
\qquad
16. $\mathbf{B W}=$ \qquad
d. $I_{L}=$
j. $\quad f_{\text {upper }}=$ \qquad
e. $\mathbf{I}_{\mathbf{C}}=$ \qquad k. $\mathfrak{f}_{\text {lower }}=$ \qquad
f. $\mathrm{I}_{\mathrm{T}}=$ \qquad l. $\theta=$ \qquad
17. Sketch the frequency response of impedance versus frequency for the circuit of Question 5. Show the location of the resonant frequency, upper and lower edge (cutoff frequencies, bandwidth, and values of impedance at resonance and at the edge (cutoff) frequencies.

18. a. dc
b. dc
c. dc
d. ac
e. ac
f. ac
19. a. $53 / 4$ cycles
b. $3 / 4$ cycle
c. 3 cycles
d. $11 / 2$ cycles
e. 2 cycles
f. $21 / 2$ cycles
20. a. 1000 Hz
b. 222 Hz
c. 12.2 kHz
d. 33.3 Hz
e. 200 Hz
f. 6.67 kHz
21. a. 0.025 ms
b. $667 \mu \mathrm{~s}$
c. $15.9 \mu \mathrm{~s}$
d. $8.47 \mu \mathrm{~s}$
e. $1.25 \mu \mathrm{~s}$
f. $0.667 \mu \mathrm{~s}$
22.

1. a. $159 \mu \mathrm{~s}$
b. $\quad 3.62 \mathrm{~ms}$
c. $26.5 \mu \mathrm{~s}$
d. 132 ns
2. a. 20 Hz
b. $\quad 175 \mathrm{~Hz}$
c. 29.6 kHz
d. 213 kHz
3. a. (1.) $185 \mathrm{~V}_{\mathrm{pk}}$
(2.) 130.8 VAC
b. (1.) $8.9 \mathrm{~V}_{\mathrm{pk}}$
(2.) 6.29 VAC
c. (1.) $3.75 \mathrm{mV}_{\mathrm{pk}}$
(2.) 2.65 VAC
d. (1.) $16 \mathrm{~mA}_{\mathrm{pk}}$
(2.) $11.3 \mathrm{~mA}_{\mathrm{rms}}$
4. a. (1.) $14.1 \mathrm{~V}_{\mathrm{pk}}$
(2.) $28.3 \mathrm{~V}_{\mathrm{pp}}$
b. (1.) $170 \mathrm{~V}_{\mathrm{pk}}$
(2.) $340 \mathrm{~V}_{\mathrm{pp}}$
c. (1.) $11 \mathrm{mV}_{\mathrm{pk}}$
(2.) $22.1 \mathrm{mV}_{\mathrm{pp}}$
d. (1.) $3.54 \mathrm{~mA}_{p k}$
(2.) 7.07 mA pp
5. a. (1.) 0.593
(2.) 0.805
(3.) 0.737
b. (1.) 0.447
(2.) 0.894
(3.) 0.500
6. a. 71.8°
b. 60°
c. 45°
d. 30°
e. 83.1°
f. 4°
7. a. 20
b. 20
c. $\quad 14.1$
d. 103.5
8.

	0	A
	0	94
a.	34.2	76.6
b.	64.3	50.0
c.	86.6	17.4
d.	98.5	

9. a. 11
b. 1
c. 11I
d. 11
e. IV
10. a. 46°
b. 80°
c. 25°
d. 60°

1. a.	V	I.	H
b.	H	m.	H
c.	H	n.	H
d.	V	o.	H
e.	M	p.	M
f.	H	q.	M
g.	V	r.	V
h.	V	s.	M
i.	M	e.	V
j.	M	u.	H

2. 4
3. 12.5
4. 3.2
5. 2
6. a. $0.8 \mathrm{~V}=800 \mathrm{mV}$
b. $0.4 \mathrm{~V}=400 \mathrm{mV}$
c. $0.283 \mathrm{~V}=283 \mathrm{mV}$
d. 16 ms
e. 62.5 Hz
7. a. 30 V
b. 15 V
c. 10.6 V
d. $0.04 \mu \mathrm{~s}=40 \mathrm{~ns}$
e. 25 MHz
8. a. $0.4 \mathrm{~V}=400 \mathrm{mV}$
b. $0.2 \mathrm{~V}=200 \mathrm{mV}$
c. $0.14 \mathrm{~V}=141 \mathrm{mV}$
d. $200 \mu \mathrm{~S}$
e. 5 kHz
9. a. $0.028 \mathrm{~V}=28 \mathrm{mV}$
b. 14 mV
c. 9.89 mV
d. $28 \mu \mathrm{~s}$
e. 35.7 k Hz
10. a. 14 V
b. 7 V
c. 4.95 V
d. 14 ms
e. 71.4 Hz

Lesson 4. Practice Problem Answers

1. a. 24.6 V
b. 11.4 V
c. 32 V
d. -82 V
e. -53.6 V
f. 50.8 V
2. a. -20.6 V
b. 19.2 V
c. 281.5 V
d. 44.7 V
e. -27.5 V
f. 169.6 V
3.

θ	$\sin \theta$	$E_{p k}$
0	0	0
18	0.3090	7.4 V
36	0.5878	14.1 V
54	0.8090	19.4 V
72	0.9511	22.8 V
90	1	24 V
108	0.9511	22.8 V
126	0.8090	19.4 V
144	0.5878	14.1 V
162	0.3090	7.4 V
180	0	0
198	-0.3090	-7.4 V
216	-0.5878	-14.1 V
234	-0.8090	-19.4 V
252	-0.9511	-22.8 V
270	-1	-24 V
288	-0.9511	-22.8 V
306	-0.8090	-19.4 V
324	-0.5878	-14.1 V
342	0.3090	-7.4 V
360	0	0

These values must now be plotted as E_{pk} versus θ.
4. a. 172°
b. 298°
c. 131.8°
d. 235°
e. 103°
f. 34.4°
5. a. 0.663 rad
b. 1.75 rad
c. 4.03 rad
d. 4.97 rad
e. 6.00 rad
f. 1.47 rad
6. a. leads, 90°
b. lags, 90°
c. leads, 135°
d. lags, 45°
7. a .

b.

c.

■ Lesson 4. Practice Problem Answers
d.

B. a. $\operatorname{lags}, 45^{\circ}$
b. leads, 90°
9. a .

b.

c.

d.

1. a. 106 mA
e. 212 mA
b. $\quad 46.2 \mathrm{~mA}$
f. 92.5 mA
c. $\quad 10.4 \mathrm{~mA}$
g. 20.8 mA
d. 351 mA
h. 702 mA
2. a. 0.0 V
h. 0.0 A
b. -3.75 V
i. -1.25 mA
c. -6.5 V
j. $\quad-2.17 \mathrm{~mA}$
k. -2.25 mA
d. -7.5 V
3. -2.17 mA
f. -3.75 V
m. -1.25 mA
g. 0.0 V
n. 0.0 A
4.

4. a. 165Ω
b. $606 \mathrm{~mA}_{p p}$
g. $12.1 \mathrm{~V}_{\mathrm{pp}}$
c. $606 \mathrm{~mA}_{p p}$
d. $606 \mathrm{~mA}_{\mathrm{pp}}$
e. $606 \mathrm{~mA}_{\mathrm{pp}}$
f. $48.5 \mathrm{~V}_{\mathrm{pp}}$
h. $39.4 \mathrm{~V}_{\mathrm{pp}}$
i. $29.4 \mathrm{~W}_{\mathrm{PP}}$
j. $7.33 W_{p p}$
k. $23.9 W_{p p}$

1. $60.6 \mathrm{~W}_{\mathrm{PP}}$
2. a. $438 \mathrm{~mA}_{\mathrm{rms}}$
b. $\quad 1.75 \mathrm{~A}_{\mathrm{rms}}$
c. $538 \mathrm{~mA}_{\mathrm{rms}}$
d. $2.73 \mathrm{~A}_{\mathrm{rms}}$
e. 12.8Ω
f. 35 VAC
3. a. $81 \mathrm{k} \Omega$
b. $247 \mu \mathrm{~A}_{\mathrm{pk}}$
c. $49.4 \mu \mathrm{~A}_{\mathrm{pk}}$
d. $198 \mu \mathrm{~A}_{p k}$
e. $247 \mu \mathrm{~A}_{p k}$
f. $4 V_{p k}$
g. 35 VAC
h. 35 VAC
i. $15.3 \mathrm{~W}_{\mathrm{rms}}$
j. $61.3 \mathrm{~W}_{\mathrm{rms}}$
k. $18.8 \mathrm{~W}_{\mathrm{rms}}$
4. $95.6 \mathrm{~W}_{\mathrm{rm}}$,
g. $4 V_{p k}$
h. $16 \mathrm{~V}_{\mathrm{pk}}$
i. $198 \mu \mathrm{~W}_{\mathrm{pl}}$
j. $792 \mu W_{p k}$
k. $3.95 \mathrm{~mW}_{\mathrm{pk}}$
l. $4.94 \mathrm{~mW}_{\mathrm{pk}}$
5. Available in medium values from about 0.001 microfarads to 2 microfarads; has a WVDC of about 50 to 2000 volts; and has a typical dielectric constant of 2 to 6 with a dielectric strength of 400 to 1250 volts per mil.
6. a. C charges up to the applied 20 volts over a period of time.
b. C retains the 20 -volt charge.
c. C discharges to a neutral (zero volts) charge over a period of time.
7. A capacitor in an ac circuit acts as a variable resistance with the resistance being indirectly related to the source frequency. Specifically,

$$
X_{\mathrm{C}}=\frac{1}{2 \pi f C}
$$

4. Connecting capacitors in parallel is like increasing the area of the plates of the capacitor; both increase capacitance.
5. $2.11 \mathrm{k} \Omega$
6. $4.5 \mu \mathrm{~F}$
7. $0.0127 \mu \mathrm{~F}$
8. $\mathrm{X}_{\mathrm{CT}}=5.88 \mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{T}}=270 \mathrm{pF}$
9. a. $1.25 \mu \mathrm{~F}$
b. 3.18Ω
c. 1.59Ω
d. 7.96Ω
e. 12.7Ω
i. 1.25 VAC
j. 0.626 VAC
k. 3.14 VAC
f. 0.394 A
10. $\mathbf{E}_{\mathbf{C I}}=\mathbf{E}_{\mathrm{A}}=5 \mathrm{VAC}$ m. 0.493 VAR
g. 0.394 A
n. 0.247 VAR
h. 0.394 A
o. 1.24 VAR
p. 1.97 VAR
11. a. 2.86Ω
i. $1 \mathrm{~A}_{\mathrm{rm}}$,
b. $3.18 \mu \mathrm{~F}$
c. $\quad 1.59 \mu \mathrm{~F}$
j. $0.5 \mathrm{~A}_{\mathrm{rms}}$
d. $6.37 \mu \mathrm{~F}$
e. $11.1 \mu \mathrm{~F}$
k. $2 \mathrm{~A}_{\mathrm{rms}}$
f. lovac
l. $3.5 \mathrm{~A}_{\text {rms }}$
f. IOVAC
m. 10VAR
g. 10 VAC
n. 5VAR
h. IOVAC
o. 20 VAR
p. 35VAR
12. a. $0.796 \mu \mathrm{~F}$
k. $1.34 \mathrm{~A}_{\mathrm{rms}}$
b. $0.398 \mu \mathrm{~F}$
c. 3.98Ω
d. 1.59Ω
l. $1.12 \mathrm{~A}_{\mathrm{rms}}$
m. $0.223 \mathrm{~A}_{\mathrm{rms}}$
e. 14.9Ω
n. $1.34 \mathrm{~A}_{\mathrm{rms}}$
f. $0.534 \mu \mathrm{~F}$
o. $1.34 \mathrm{~A}_{\mathrm{rm}}$,
g. 13.4 VAC
h. 4.45 VAC
p. 18.0 VAR
q. 4.98 VAR
i. 4.45 VAC
r. 0.992 VAR
j. 2.13 VAC
s. 2.85 VAR

Lesson 7. Practice Problem Answers

1. a. 0.268
b. 0.577
c. $\quad 1.0$
d. 1.73
e. 3.73
2. a. 5.71°
b. 41.98°
c. 63.43°
d. 75.96°
e. 82.87°
3. The arctangent is an angle in degrees whose tangent is the ratio given.
4. a. 8.06 units
b. $\quad 6.63 \mathrm{~mA}$
c. 50 feet
5. a. 60.3°
d. 12.25 V
b. 33.9°
c. 36.9°
d. 56.4°
6.

7. a. Parallel RC Circuit
b. $\quad 15.2 \mathrm{~mA}$
c. 31°
8. a. 31.8Ω
b. 67.9Ω
c. $0.295 \mathrm{~A}_{\mathrm{pk}}$
d. $0.295 \mathrm{~A}_{\mathrm{pk}}$
e. $0.295 \mathrm{~A}_{\mathrm{pk}}$
f. $9.38 \mathrm{~V}_{\mathrm{pk}}$
9. a. 1.25 mA
b. $0.5 \mathrm{~mA}_{\mathrm{pk}}$
c. $\quad 1.35 \mathrm{~mA}_{\mathrm{pk}}$
d. $3.7 \mathrm{k} \Omega$
e. $5 \mathrm{~V}_{\mathrm{pk}}$
g. $\quad 17.7 \mathrm{~V}_{\mathrm{pk}}$
h. $2.77 \mathrm{VAR}_{\mathrm{pk}}$
i. $\quad 5.22 \mathrm{~W}_{\mathrm{pk}}$
j. $5.9 \mathrm{VA}_{\mathrm{pk}}$
k. 27.9°
f. $5 \mathrm{~V}_{\mathrm{pk}}$
g. $6.25 \mathrm{mVAR}_{\mathrm{pk}}$
h. 2.5 mW pk
i. $\quad 6.75 \mathrm{mVA}_{p \mathrm{k}}$
j. 68.2°
10. a. 796Ω
b. 1990Ω
c. 569Ω
d. 750Ω
e. 941Ω
f. $31.9 \mathrm{~mA} \mathrm{~A}_{\mathrm{p}}$
g. $31.9 \mathrm{~m} A_{p p}$
h. $31.9 \mathrm{~mA}_{\mathrm{pp}}$
i. $22.9 \mathrm{~mA} \Lambda_{p p}$
j. $\quad 9.15 \mathrm{~mA}_{\mathrm{PP}}$
k. 4.79 V

1. $19.1 \mathrm{~V}_{\mathrm{pp}}$
m. $18.2 \mathrm{~V}_{\mathrm{pp}}$
n. $18.2 \mathrm{~V}_{\mathrm{pp}}$
o. $0.153 \mathrm{~W}_{\mathrm{pp}}$
p. $0.609 \mathrm{~W}_{\mathrm{pp}}$
q. $0.417 \mathrm{VAR}_{p p}$
r. $0.167 \mathrm{VAR}_{p p}$
s. $0.957 \mathrm{VA}_{\mathrm{pp}}$
L. 37.2°
2. Inductance is the property of a circuit that opposes any change in current.
3. Oersted and Faraday
4. Decrease. This happens because the permeability of iron is more than that of air and as the iron core is extracted, the permeability of the core is reduced; Thus. the value of the inductance of the coil is clecreased
5. Increase
6. $k=\frac{\phi \text { Common }}{\phi \text { Total }}=\frac{3500}{4000}=0.875$
7. 0 to $1(k=0$, no mutual inductance to $\mathrm{k}=1$, unity coupling)
8. a. 13 H
b. 2.4 H
c. 17.8 H
d. 8.2 H
9. a. 3.45 mH
b. 4.9 mH
c. 1.84 mH
d. 2 mH
10. a

b.

11. a. ROC of $i=4 \times 10^{-9} \mathrm{~A} / \mathrm{sec}$
b. $E_{\mathrm{l}}=20 \mu \mathrm{~V}$
12. $k=1$
13. Step-down
14. a. hysteresis
b. eddy currents
15. $\frac{N_{S}}{N_{p}}=\frac{E_{S}}{E_{\mathrm{P}}}=\frac{25.2 \mathrm{~V}}{120 \mathrm{~V}}=\frac{1}{4.76}$
$N_{s}: N_{1}=1: 4.76$
16. Autotransformer
17. $P_{\text {pri }}=1920 \mathrm{~mW} ; P_{\text {sec }}=1650 \mathrm{~mW}$

$$
\begin{aligned}
\% \text { eff } & =\frac{P_{\text {sec }}}{P_{\text {pri }}} \times 100 \\
& =\frac{1650 \mathrm{~mW}}{1920 \mathrm{~mW}} \times 100=85.9 \%
\end{aligned}
$$

17. a. 26.67 V
b. 3.92 mA
c. 0.87 mA
18. a. 80%
b. $1: 5\left(\mathrm{~N}_{\mathrm{S}}: \mathrm{N}_{\mathrm{f}}\right)$
19. a. 1.26Ω
b. 62.8Ω
c. $15 \mathrm{k} \Omega$
20. Increases
21. 15.4 H
22. 18.7 Hz
23. a. 62.8Ω
f. 16.7 V
b. 314Ω
g. 175 mVAR
c. 376.8Ω
h. 885 mVAR
d. 53 mA
i. 1060 mVAR
e. 3.3 V
24. a. 1.875 mH
f. 7.07 A
b. 4.71Ω
c. 14.13Ω
g. 25 V
d. 5.3 A
h. 25 V
e. 3.53Ω

Lesson 9. Practice Problem Answers

2. a. Voltage Phasor Diagram

b. Impedance Phasor Diagram

c. Power Phasor Diagram

3. a. $E_{K}=60 \mathrm{~V}$
$\mathrm{E}_{1}=60 \mathrm{~V}$
$\mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$
$I_{\text {I }}=12 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{T}}=13 \mathrm{~mA}$
b. $E_{R}=36 \mathrm{~V}$
$\mathrm{F}_{\mathrm{L}}=36 \mathrm{~V}$
$\mathrm{I}_{\mathrm{K}}=2 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{L}}=9 \mu \mathrm{~A}$
$I_{T}=9.2 \mu \mathrm{~A}$
c. $\mathbf{E}_{\mathrm{R}}=24 \mathrm{~V}$
$E_{1}=24 \mathrm{~V}$
$\mathrm{I}_{\mathrm{R}}=8 \mathrm{n} . \mathrm{A}$
$I_{L}=4 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{T}}=8.94 \mathrm{~m} . \mathrm{A}$
Current Phasor Diagram

b. Power Phasor Diagram

5. $Q=16.3$

Lesson 10. Practice Problem Answers

1. $1 \tau=1 \mathrm{~ms}$
2. $I \tau=50 \mu \mathrm{~s}$
3. a. 18.8 mA
b. 15 V
c. 15 V
d. $250 \mu \mathrm{~s}$
4.

5. a. 0.375τ
b. 1.25τ
c. 2.5τ
d. 4.75 T
6. a. 2.1 V
b. 2.1 V
c. 2.63 mA
7. $40 \mu \mathrm{~s}$
8. $203 \mu \mathrm{~F}$
9. $31.4 \mathrm{k} \Omega$
10. 185 ms

Lesson 11. Practice Problem Answers

1. $\mathbf{I}_{\mathrm{L}}>\mathrm{I}_{\mathrm{C}}$; therefore, $\mathrm{I}_{\mathbf{X}}$ is plotted in phase with $I_{\text {! }}$.

2.

$\tan \theta=\frac{I_{X}}{I_{R}}=\frac{19 \mathrm{~mA}}{15 \mathrm{~mA}}=1.27$
$\arctan 1.27=-51.7^{\circ}$
The angle is rotated clockwise; therefore, the sign of the angle is negative.
3.

$$
E_{T}=\sqrt{E_{R}^{2}+E_{X}{ }^{2}}=\sqrt{E_{R}^{2}+\left(E_{L}-E_{C}\right)^{2}}
$$

$Z_{r}=\sqrt{R^{2}+X_{T}^{2}}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$

$P_{A}=\sqrt{P_{R}{ }^{2}+P_{X}{ }^{2}}=\sqrt{P_{R}{ }^{2}+\left(P_{L}-P_{C}\right)^{2}}$
4. a. 78.5Ω
g. 20.8 VAC
b. $\quad 121.5 \Omega$
h. $1.61 \mathrm{~W}_{\mathrm{rms}}$
c. 193Ω
i. $0.849 \mathrm{VAR}_{\mathrm{rm}}$
d. $104 \mathrm{~mA}_{\mathrm{rm}}$
j. $2.16 \mathrm{VAR}_{\mathrm{rms}}$
e. 15.5 VAC
k. $2.08 \mathrm{VA}_{\text {rm }}$,
f. 8.16 VAC
l. -39°
5. a. $1.27 \mathrm{k} \Omega$
g. $0.4 \mathrm{~W}_{\mathrm{rms}}$
b. $20 \mathrm{~mA}_{\mathrm{rms}}$
h. $0.16 \mathrm{VAR}_{\mathrm{rm}}$
c. $8 \mathrm{~mA}_{\mathrm{rms}}$
d. $15.7 \mathrm{~mA}_{\mathrm{rm}}$
e. $7.7 \mathrm{~mA}_{\mathrm{rms}}$
i. $0.314 \mathrm{VAR}_{\mathrm{rms}}$
f. $21.4 \mathrm{~mA}_{\mathrm{rms}}$
j. $0.154 \mathrm{VAR}_{\mathrm{rms}}$
k. $0.429 \mathrm{VA}_{\mathrm{rm}}$,
l. $+21.1^{\circ}$

1. a. $3+\mathrm{j} 4=5 \angle 53^{\circ}$
b. $5+\mathrm{j} 2=5.38 / 21.8^{\circ}$
c. $4-\mathrm{j} 2=4.47 \angle-26.6^{\circ}$
d. $3-\mathrm{j} 5=5.83 /-59^{\circ}$
2. a. -1
b. -j
c. +1
d. -j
e. +1
f. -j
3. a

b.

c.

4. a. $40+j 50$
b. $500-\mathrm{j} 470$
c. $\quad 1000+\mathrm{j} 7000$
d. $4.7 \mathrm{M}-\mathrm{j} 1 \mathrm{M}$
5. a. $58.3 / 31^{\circ}$
b. $5.69 \mathrm{k} / 55.8^{\circ}$
c. $399<-22.1^{\circ}$
d. $3.04 \mathrm{M} /-9.46^{\circ}$
6. a. $485.6+\mathrm{j} 258.2$
b. $50 \mathrm{k}-\mathrm{j} 86.6 \mathrm{k}$
c. $56.4 \mathrm{M}+\mathrm{j} 38 \mathrm{M}$
d. $16.3 k-j 7.6 k$
7. a. j 15
b. j 26
c. $j^{2} 153=-153$
d. -jl .33
e. $\mathrm{jl}=\mathrm{j}$
f. j 70
g. $j^{4} 21=21$
h. j 4
8. a. $10+j 24$
b. $21-\mathrm{j} 22$
c. $18+\mathrm{jl}$
d. $1+j 4$
e. $0.9+\mathrm{j} 0.6$
f. $13+j 8$
9. a. $24 / 15^{\circ}$
b. $4 / 20^{\circ}$
c. $30 / \underline{2}^{\circ}$
d. $5 / 40^{\circ}$
10. $(38.9-j 1.57) \Omega=38.9 \Omega /-2.3^{\circ}$
11. $(15-\mathrm{j} 20) \Omega=25 \Omega /-53^{\circ}$
12. $(40+j 20) \Omega=44.7 \Omega / 26.6^{\circ}$
13. $(9.27+j 13.9) \Omega=16.7 / 56.3^{\circ}$
14. a. $15 \Omega=15 \Omega / 0^{\circ}$
b. $-j 10 \Omega=10 \Omega \angle-90^{\circ}$
c. $+\mathrm{j} 20 \Omega=20 \Omega \angle+90^{\circ}$
15. a. $43.6 \Omega /-17^{\circ}$
b. $573 \mathrm{~mA} / 17^{\circ}$
c. $573 \mathrm{~mA} / 17^{\circ}$
d. $105 \mathrm{~mA} /-20.6^{\circ}$
e. $493 \mathrm{~mA} / 24.4^{\circ}$
f. $22.9 \mathrm{~V} / 17^{\circ}$
g. $5.23 V /-20.6^{\circ}$
h. $4.93 \mathrm{~V} / 114.4^{\circ}$
i. $12.3 \mathrm{~V} /-65.6^{\circ}$
j. $5.23 \mathrm{~V} / 110.6^{\circ}$
k. 17°
16. a. $322.5 \Omega /-8.2^{\circ}$
b. $372 \mathrm{~mA} / 8.2^{\circ}$
c. $372 \mathrm{~mA} / 8.2^{\circ}$
d. $310 \mathrm{~mA} /-25.5^{\circ}$
e. $207 \mathrm{~mA} / 64.5^{\circ}$
f. $93 \mathrm{~V} / 8.2^{\circ}$
g. $31 \mathrm{~V} /-25.5^{\circ}$
h. $31 \mathrm{~V} /-25.5^{\circ}$
i. 8.2°

Lesson 14. Practice Problem Answers

1. a. 425.4 kHz
b. 4.59 kHz
c. 6.79 kHz .
d. 10 MHz
2. a. $253 \mu \mathrm{H}$
b. $5.63 \mu \mathrm{H}$
c. 49.5 H
d. 7.82 mH
3. a. $0.045 \mu \mathrm{~F}$
b. $0.298 \mu \mathrm{~F}$
c. 4.19 pF
d. 475 pF
4. a. 45 kHz
b. 707Ω
c. 707Ω
d. 100Ω
e. 180 mA
f. 127V
g. 127 V
h. 7.07
i. 6.36 kHz
j. 48.2 kHz
k. 41.8 kHz
l. 0°
5. a. 3.39 kHz
b. 213Ω
c. 213Ω
d. 47Ω
e. 319 mA
f. 68 V
g. 68 V
h. 4.54
i. 747 Hz
j. 3.76 kHz
k. 3.02 kHz
l. 0°
6. a.

b.

7. a. 141 kHz
b. $75.3 \mathrm{k} \Omega$
c. 75.3Ω
d. $133 \mu \mathrm{~A}$
e. $133 \mu \mathrm{~A}$
f. $10 \mu \mathrm{~A}$
g. $1 \mathrm{M} \Omega$
h. 13.3
i. $\quad 10.6 \mathrm{kHz}$
j. 146.3 kHz
k. 135.7 kHz
8. 0°
9. a. 9.19 kHz
b. 11.5Ω
c. 11.5Ω
d. 2.17 A
e. 2.17 A
f. 92.6 mA
g. 270Ω
h. 23.5
i. 391 Hz
j. 9.39 kHz
k. 8.99 kHz
l. 0°
9.a.

10. 19.8 pF to 174 pF
11. a. dc
b. dc
c. ac
d. ac
e. dc
f. ac
12. a. 4 cycles
b. $11 / 4$ cycles
c. $21 / 2$ cycles
d. $31 / 2$ cycles
e. $21 / 2$ cycles
f. $21 / 2$ cycles
13. a. 66.7 Hz
b. 26.9 Hz
c. 26.9 kHz
d. 125 kHz
e. 20.8 Hz
f. 136 kHz
14. a. 33.3 ms
b. 3.33 ms
c. $15.7 \mu \mathrm{~s}$
d. $50 \mu \mathrm{~s}$
e. $588 \mu \mathrm{~s}$
f. 45.5 ns
15.

1. a. 189 ns
b. $6.13 \mu \mathrm{~s}$
c. 27 Hz
d. 357 kHz
2. a. (1.) 74 V
(2.) 26.2 V
b. (1.) 150 mV
(2.) 53 mV
c. (1.) 1.08 mA
(2.) $382 \mu \mathrm{~A}$
3. a. (1.) 84.8 V
(2.) 169.7 V
b. (1.) 9.5 mA
(2.) 18.9 mA
c. (1.) 4.5 A
(2.) 8.9 A
4. a. (1.) 0.880
(2.) 0.475
(3.) 1.85
b. (1.) 0.287
(2.) 0.957
(3.) 0.300
5. a. less than
b. equal to
c. greater than
6. c
7. b
8. c
9. a
10. a. 43°
b. 52°
c. 53°

Lesson 3. Quiz Answers

1. a.	P	m.	S
b.	A	n.	R
c.	G	o.	X
d.	N	P.	F
e.	H	q.	D
f.	O	r.	T
g.	Q	s.	B
h.	M	t.	U
i.	K	u.	V
j.	J	v.	W
l.	C	w.	I
l.	E	x.	L

2. c
3. c
4. b
5. c
6. b
7. a
8. c
9. b
10. b
11. c
12. a
13. d
14. a
15. c
16. b
17. d
18. b
19. d
20. c
21. c
22. 6 vertical divisions 5 horizontal divisions
23. a. 1.4 V
b. 0.7 V
c. 0.5 V
d. 40 ms
e. 25 Hz
24. a. 800 mV
b. 400 mV
c. 282 mV
d. $24 \mu \mathrm{~s}$
e. 41.7 kHz
25. a. 5.6 V
b. 2.8 V
c. 1.98 V
d. $560 \mu \mathrm{~s}$
e. 1.79 kHz
26. a. 10.0 V
b. 5.0 V
c. 3.5 V
d. 8.4 ms
e. 119 Hz
27. 25 V

Lesson 4. Quiz Answers

1. a. 36.4 V
b. -16.4 V
2. a. 19.4 V
b. 11.4 V
3. a. 223.5°
b. 315.2°
4. a. 0.77 rad
b. 4.33 rad
5. a. lags, 90°
b. leads, 45°
c.

d.

6. a.

b.

c.

1. a.	88 mA	e. 31.2 mA
b.	1.45 mA	f. $407 \mu \mathrm{~A}$
c.	32.6 V	g. 11.6 V
d.	219.4 V	h.
2.	77.9 V	
2.	0.0 V	j.
a.	0.0 A	
b.	35.4 V	k. 1.77 mA
c. 50 V	l. 2.5 mA	
d.	35.4 V	m. 1.77 mA
e.	0.0 V	n. 0.0 mA
f. -35.4 V	o. -1.77 mA	
g. -50 V	p. -2.5 mA	
h. -35.4 V	q. -1.77 mA	
i. 0.0 V	r. 0.0 A	

3.

4. a. $2.56 \mathrm{k} \Omega$
b. $11.7 \mathrm{~mA}_{\mathrm{pk}}$
c. $11.7 \mathrm{~mA}_{\mathrm{pk}}$
d. $11.7 \mathrm{~mA}_{\mathrm{pk}}$
e. $11.7 \mathrm{~mA}_{\mathrm{pk}}$
f. $9.59 \mathrm{~V}_{\mathrm{pk}}$
g. $14.0 \mathrm{~V}_{\mathrm{pk}}$
h. $6.32 \mathrm{~V}_{\mathrm{pk}}$
i. $\quad 112 \mathrm{~mW} \mathrm{pk}$
j. $164 \mathrm{~mW} \mathrm{pk}^{\mathrm{p}}$
k. $73.9 \mathrm{~mW}_{\mathrm{pk}}$

1. $351 \mathrm{~mW} \mathrm{pk}^{\mathrm{p}}$
2. a. $97.6 \mathrm{~mA}_{\mathrm{pp}}$
b. $66.7 \mathrm{~mA}_{\mathrm{pp}}$
c. $148 \mathrm{~mA}_{\mathrm{pp}}$
d. $312 \mathrm{~mA}_{\mathrm{pp}}$
e. 256Ω
f. $80 \mathrm{~V}_{\mathrm{pp}}$
3. a. $1.19 \mathrm{k} \Omega$
b. $\quad 8.39 \mathrm{~mA}_{\mathrm{rm}}$,
c. $8.39 \mathrm{~mA}_{\text {rms }}$
d. $2.6 \mathrm{~mA}_{\text {rms }}$
e. 5.78 mA
f. 6.88 VAC
g. $80 V_{p p}$
h. $80 \mathrm{~V}_{\mathrm{pp}}$
i. $7.81 \mathrm{~W}_{\mathrm{pp}}$
j. $5.34 \mathrm{~W}_{\mathrm{pp}}$
k. $11.8 \mathrm{~W}_{\mathrm{pp}}$
l. $25 \mathrm{~W}_{\mathrm{pp}}$
g. 3.12 VAC
h. 3.12 VAC
i. $\quad 57.7 \mathrm{~mW}_{r \mathrm{~ms}}$
j. $8.11 \mathrm{~mW} \mathrm{~m}_{\mathrm{rm}}$
k. $18.0 \mathrm{~mW}_{\mathrm{rms}}$
l. $83.9 \mathrm{~mW}_{\mathrm{rms}}$
4. a. teflon
b. cerannic
c. electrolytic
d. paper
5. a. Charge to the 50 -volt source voltage over a period of time.
b. Retain the 50 -volt charge
d. Discharge to zero volts over a period of time
6.

4.

5. d
6. a. 159 Hz
b. 395Ω
c. $2.53 \mu \mathrm{~F}$
7. a. $0.008 \mu \mathrm{~F}$
b. $39.8 \mathrm{k} \Omega$
i. $\quad 0.201 \mathrm{~mA}(\mathrm{rms})$
c. $1.99 \mathrm{k} \Omega$
j. 8VAC
d. $7.96 \mathrm{k} \Omega$
k. 0.4VAC
e. $49.8 \mathrm{k} \Omega$

1. 1.6VAC
f. $0.201 \mathrm{~mA}(\mathrm{rms})$
m. 1.61 mVAR (rms)
g. 0.201 mA (rms)
n. $80.4 \mu \mathrm{VAR}$ (rms)
h. 0.201 mA (rms)
o. 0.322 mVAR (rms)
p. 2.01 mVAR (rms)
2. a. 10.7Ω
b. $2.65 \mu \mathrm{~F}$
c. $3.18 \mu \mathrm{~F}$
d. $1.59 \mu \mathrm{~F}$
e. $7.42 \mu \mathrm{~F}$
f. 50VAC
g. 50 VAC
3. 50VAC
4. a. $1.59 \mu \mathrm{~F}^{\circ}$
b. $2.65 \mu \mathrm{~F}$
c. 7.96Ω
d. 4.0Ω
e. 12.2Ω
f. $1.31 \mu \mathrm{~F}$
g. $2.05 \mathrm{~A}(\mathrm{rms})$
h. $0.616 \mathrm{~A}(\mathrm{rms})$
i. $0.616 \mathrm{~A}(\mathrm{rms})$
j. $\quad 1.44 \mathrm{~A}(\mathrm{rms})$
i. $\quad 1.67 \mathrm{~A}$ (rms)
j. 2 A (rms)
k. $\quad \mathrm{A}$ (rms)
l. 467 A (rms)
I. 83.5VAR (rms)
n. 100VAR (rms)
o. $50 \mathrm{VAR}(\mathrm{rms})$
p. 233VAR (rms)
k. 2.05 A (rms)
l. 16.3 VAC
in. 6.16 VAC
n. 2.45 VAC
o. 8.61VAC
p. 33.4VAR (rms)
q. 3.79 VAR (rms)
r. 1.5!VAR (rms)
s. 12.4 VAR (rms)
t. 5I.IVAR (rms)
5. rms

Lesson 7. Quiz Answers

1. a. 5 feel
c. 25.08 V
b. 21.63Ω
d. 70.7 mA
2. a. 53.1°
c. 66.5°
b. 33.7°
d. 45°
3.

4. a. Series RC circuit
b. 25.3 V
c. -50.8°
5. a. 79.6Ω
b. 144Ω
c. $69.4 \mathrm{~mA}_{\mathrm{rm}}$,
d. $69.4 \mathrm{~mA}_{\mathrm{rms}}$
e. $69.4 \mathrm{~mA}_{\mathrm{rms}}$
f. 5.53 VAC

6. a. $57.1 \mathrm{~m} A_{p k}$	e. $2.29 \mathrm{VAR}_{p k}$
b. $57.1 \mathrm{~mA}_{\text {pk }}$	f. $2.29 \mathrm{~W}_{\text {pk }}$
c. $80.8 \mathrm{~mA}_{\text {pk }}$	g. $3.23 \mathrm{VA}_{p k}$
d. 495Ω	h. 45°

7. a. 16Ω
b. 20Ω
c. 25.6Ω
c. $0.273 \mathrm{~A}_{\mathrm{p}-\mathrm{p}}$
e. $0.273 \mathrm{~A}_{\mathrm{p} \cdot \mathrm{P}}$
f. $0.273 \mathrm{~A}_{\mathrm{p}-\mathrm{p}}$
g. $0.182 \mathrm{~A}_{\mathrm{p} \cdot \mathrm{p}}$
h. $0.091 \mathrm{~A}_{\mathrm{p}-\mathrm{p}}$
i. $\quad 2.73 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
g. $8.33 \mathrm{~mA}_{\mathrm{rms}}$
h. $384 \mathrm{mVAR}_{\text {rm }}$
i. 578 mVAR rms
j. $694 \mathrm{VA}_{\mathrm{rms}}$
k. -33.6°
j. $\quad 1.64 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
k. $5.46 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
l. $5.46 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{p}}$
ili. $0.745 W_{p-p}$
n. $0.448 \mathrm{~W}_{\mathrm{p}-\mathrm{p}}$
o. $0.994 \mathrm{VAR}_{p \cdot p}$
p. $0.497 \mathrm{VAR}_{\mathrm{p}-\mathrm{p}}$
q. $1.91 \mathrm{VA}_{p, p}$
r. 51.3°
8. rms
9. peak
10. peak-to-peak

Lesson 8. Quiz Answers

1. c.
2. C
3. a.
4. c.
5. c .
6. b
7. d.
8. b
9. a. 6.3VAC
b. $\quad 1.9 \mathrm{~mA}$
c. 0.1 mA
d. 12 mW
10. Step-up
11. a. 471Ω
b. 0.9 mH
c. 9.55 MHz
12. a. $7.5 \mathrm{k} \Omega$
b. 12 V
c. 3 V
d. 2 mA
e. 24 mVAR
f. $6 m V A R$
g. 30mVAR
h. 20 H
i. 50Ω
j. 2 A
k. IA
13. 3 A
m. 300VAR
n. 150 VAR
o. 450 VAR
14. a. $X_{1}=2512 \Omega=2.51 \mathrm{k} \Omega$
b. $Z=4147 \Omega=4.15 \mathrm{k} \Omega$
c. $E_{R}=19.9 \mathrm{~V}$
d. $E_{L}=15.1 \mathrm{~V}$
e. $I_{R}=6.03 \mathrm{~mA}$
f. $l_{\mathrm{L}}=6.03 \mathrm{~mA}$
g. $I_{T}=6.03 \mathrm{~mA}$
h. $\theta=+37.3^{\circ}$
i. $\quad P_{R}=120 \mathrm{~mW}$
j. $\quad P_{\mathrm{L}}=91.3 \mathrm{mVAR}$
k. $\quad P_{A}=150.75 \mathrm{mVA}$
l. Voltage Phasor Diagram

m . Impedance Phasor Diagram

n. Power Phasor Diagram

15. a. $X_{L}=6.28 \mathrm{k} \Omega$
b. $E_{R}=12 \mathrm{~V}$
c. $E_{L}=12 \mathrm{~V}$
d. $I_{R}=2.55 \mathrm{~mA}$
c. $I_{L}=1.91 \mathrm{~mA}$
f. $I_{T}=3.19 \mathrm{~mA}$
g. $Z=3.76 \mathrm{k} \Omega$
h. $\theta=-36.8^{\circ}$
i. $\quad P_{R}=30.6 \mathrm{~mW}$
j. $\quad P_{\mathrm{L}}=22.9 \mathrm{mVAR}$
k. $\quad P_{A}=38.3 \mathrm{mVA}$
16. Current Phasor Diagram

m. Power Phasor Diagram

17. $Q=7.85$
18. $3.56 \mathrm{k} \Omega$
19. b.

Lesson 10. Quiz Answers

1. $400 \mu \mathrm{~s}$
2. $5 \mu \mathrm{~s}$
3. a. 40 mA
b. 80 V
c. 80 V
d. 2 ms
4.
5. a. 37.5 ms
b. 75 ms
c. 100 ms
d. 113 ms
6. a. 0.444τ
b. $0.667 \boldsymbol{T}$
c. 1.78τ
d. 2.78 т
7. a. 60 V
b. 20 V
c. 10 mA
8. 9.45 ms

5 ms
9. 662 pF
10. $6.6 \mathrm{M} \Omega$

Lesson 11. Quiz Answers
1.

2.

3. $+26.6^{\circ}$
4. $+53.1^{\circ}$
5. $1.12 \mathrm{k} \Omega$
6. 25 A
7. a. 159Ω
g. 49.3VAC
b. 119Ω
h. $4.81 \mathrm{~W}_{\mathrm{rms}}$
c. 129Ω
i. $\quad 3.84 \mathrm{VAR}_{\mathrm{rms}}$
d. $0.31 \mathrm{~A}_{\mathrm{rm}}$,
j. $\quad 15.3 \mathrm{VAR}_{\mathrm{rms}}$
e. 15.5 VAC
k. $12.4 \mathrm{VA}_{\mathrm{rm}}$
f. 12.4 VAC
l. -67.2°
8. a. $15.7 \mathrm{k} \Omega$
g. $0.102 \mathrm{VAR}_{\text {rms }}$
b. $4 \mathrm{~mA}_{\mathrm{rms}}$
h. $0.267 \mathrm{VAR}_{\mathrm{rms}}$
c. $2.55 \mathrm{~mA}_{\text {rms }}$
i. $0.165 \mathrm{VAR}_{\mathrm{rm}}$;
d. $6.67 \mathrm{~mA}_{\text {rm }}$,
j. $0.23 \mathrm{VA}_{\mathrm{rms}}$
e. $5.74 \mathrm{~mA}_{\text {rms }}$
k. $+45.8^{\circ}$
f. $0.16 \mathrm{~W}_{\mathrm{rms}}$
9. The component with the largest value of resistance or reactance.
10. The component with the smallest value of resistance or reactance.

1. a. $5+j 1=5.1 / 11.3^{\circ}$
b. $2+j 4=4.47 / 63.4^{\circ}$
c. $1-\mathrm{j} 2=2.23 /-63.4^{\circ}$
d. $4+j 5=6.4 /-51.3^{\circ}$
2. a. $\sqrt{-1}$
b. -1
c. $-j=-\sqrt{-1}$
d. +1
3. a .

b.

4. a. $200+j 150$
b. $390-\mathrm{j} 62$
5. a. $51 / 78.7^{\circ}$
b. $705 /-58.3^{\circ}$
c. $71.2 / 66^{\circ}$
d. $11.4 L-52^{\circ}$
6. a. $65.7+j 17.6$
b. $31.1-j 13.8$
c. $4.94+j 15.2$
d. $22.9-j 14.3$
7. a. j 18
b. j^{2}
c. $j^{2} 84=-84$
d. $-j 7$
e. $j^{3} 48=-j 48$
f. $-j 1.5$
8. a. $7+j 2$
b. $-2+j 4$
c. $58-\mathrm{j} 6$
d. $1.48+\mathrm{j} 0.055$
9. a. $112 / 85^{\circ}$
b. $3 /-3^{\circ}$
c. $30 / 4^{\circ}$
d. $5 /-30^{\circ}$
10. a. $33.82 /-39.8^{\circ}$
b. $25.98-\mathrm{j} 21.66$
c. $12.5 / 65.6^{\circ}$
d. $5.16+\mathrm{j} 11.4$
11. 12. a. $145.8 \Omega / 31^{\circ}$
b. $548.7 \mathrm{~mA} /-31^{\circ}$
c. $1.94 \mathrm{~A} /-76^{\circ}$
d. $1.6 \mathrm{~A} / 90^{\circ}$
e. $19.4 \mathrm{~V} /-76^{\circ}$
f. $77.6 \mathrm{~V} / 14^{\circ}$
g. $80 \mathrm{~V} / 0^{\circ}$
h. -31°
1. a. $67.4 \Omega / 16.8^{\circ}$
b. $416 \mathrm{~mA} /-16.8^{\circ}$
c. $416 \mathrm{~mA} /-16.8^{\circ}$
d. $0.7 \mathrm{~A} /+0.1^{\circ}$
e. $323 \mathrm{~mA} /-158.1^{\circ}$
f. $16.6 \mathrm{~V} /-16.8^{\circ}$
g. $34.8 \mathrm{~V} /-89.9^{\circ}$
h. $12.9 \mathrm{~V} /-158.1^{\circ}$

Lesson 14. Quiz Answers

1. a. 101 mH
b. 2.81 mH
2. a. 1.5 pF
b. 117 pF
3. a. 5.63 kHz
b. $28.3 \mathrm{k} \Omega$
c. $28.3 \mathrm{k} \Omega$
d. $3.3 \mathrm{k} \Omega$
c. 1.52 mA
f. 42.9 V
g. 42.9 V
h. 8.58
i. 656 Hz
j. 5.96 kHz
k. 5.30 kHz
l. 0°
4.

5. a. 150 kHz
b. $4.24 \mathrm{k} \Omega$
c. $4.24 \mathrm{k} \Omega$
d. 2.36 mA
e. 2.36 mA
f. $667 \mu \mathrm{~A}$
g. $15 \mathrm{k} \Omega$
h. 3.54
i. 42.4 kHz
j. $\quad 171.2 \mathrm{kHz}$
k. 128.8 kHz

1. 0°
2.

Appendices

APPENDIX 1. UNIT CONVERSION CHARTS

The following charts are listed to give a convenient method for comparing various common English and metric units to allow easy conversion from one unit to another. These comparisons are for common values of lengths, areas, volume, speed, and electric resistivity. Included also is a listing of several other miscella neous unit comparisons.

Length Comparisons

To use this chart to compare (and thus convert) one unit to another, find the existing measurement in the From column and then find the desired unit in the vertical headings (TO). Where these two intersect will give you the conversion of one existing unit (From) into one new unit (To). For example, if you have one inch and you need this in centimeters; find " 1 inch" in the From column (4th line down) and go over to the vertical column labeled $\mathbf{c m}$; and you find that $1 \mathrm{inch}=2.54 \mathrm{~cm}$. Then, if you wanted to convert 25 inches (or any value of inches) into centimeters you would simply multiply 25 (or any given number of inches) by 2.54 for 63.5 centimeters.

The charts that follow are used in the same manner as the length comparison chart with the "From" in the left column and the "To" conversions listed in the following vertical columns.

Area Comparison

To	meter 2	$\mathbf{c m}^{2}$	$\mathbf{f t}^{2}$	in^{2}	circ mil
1 square meter	1	1×10^{4}	10.76	1550	1.974×10^{9}
1 square centimeter	1×10^{-4}	1	1.076×10^{-3}	0.1550	1.974×10^{5}
1 square foot	9.290×10^{-2}	929.0	1	144	1.833×10^{8}
1 square inch	6.452×10^{-4}	6.452	6.944×10^{-3}	1	1.273×10^{6}
1 circular mil	5.067×10^{-10}	5.067×10^{-6}	5.454×10^{-9}	7854×10^{-7}	1

Volume Comparison

From	meter 3	$\mathrm{~cm}^{3}$	1	fl^{3}	in^{3}
1 cubic meter	1	1×10^{6}	1000	35.31	6.102×10^{4}
1 cubic centimeter	1×10^{-6}	1	$1 . \times 10^{-3}$	3.531×10^{-5}	6.102×10^{-2}
1 liter	1.000×10^{-3}	1000	1	3531×10^{-2}	61.02
1 cubic foot	2.832×10^{-2}	2832×10^{4}	28.32	1	1728
1 cubic inch	1639×10^{-5}	16.39	1.639×10^{-2}	5.787×10^{-4}	1

Speed Comparison

From To	$\mathrm{ft} / \mathrm{sec}$	km/hr	meter/sec	miles/hr	$\mathrm{cm} / \mathrm{sec}$	knot
1 foot per second	1	1.097	0.3048	0.6818	30.48	0.5925
1 kilometer per hour	0.9113	1	0.2778	0.6214	27.78	0.540
1 meter per second	3.281	3.6	1	2.237	100	1.944
1 mile per hour	1.467	1.609	0.4470	1	44.70	0.8689
1 centimeter per second	3.281×10^{-2}	3.6×10^{-2}	0.01	2.237×10^{-2}	1	1.944×10^{-2}
1 knot	1.688	1.852	0.5144	1.151	51.44	1

Electric Resistivity Comparison

To	$\begin{array}{c}\mu \mathrm{ohm} \\ \mathrm{cm}\end{array}$	$\begin{array}{c}\text { ohm- } \mathrm{cm} \\ \text { From }\end{array}$	1	1×10^{-6}		
1 micro-ohm centimeter	1×10^{6}	1	1×10^{-8}	6.015		
1 mil/ft					$]$	ohm-centimeter
:---						
1 ohm-meter						
1 ohm-circular mil per foot						

Miscellaneous Unit Comparisons

```
1 fathom \(=6 \mathrm{ft}\)
1 yard = 3 ft
\(1 \mathrm{rod}=16.5 \mathrm{ft}\)
1 U.S. gallon \(=4\) U.S. fluid quarts
1 U.S. quart = 2 U.S. pints
1 U.S. pint = 16 U.S. fluid ounces
1 U.S. gallon = 0.8327 British imperial gallon
1 British imperial gallon=1.2 U.S. gallons
```

1 liter $=1000 \mathrm{~cm}^{3}$
$1 \mathrm{knot}=1$ nautical mile $/ \mathrm{hr}$
$1 \mathrm{mile} / \mathrm{min}=88 \mathrm{ft} / \mathrm{sec}=60 \mathrm{miles} / \mathrm{hr}$
1 meter $=39.4 \mathrm{in}=3.28 \mathrm{ft}$
1 inch $=2.54 \mathrm{~cm}$
1 mile $=5280 \mathrm{ft}=1.61 \mathrm{~km}$
1 angstrom unit $=10^{-10}$ meters
1 horsepower $=550 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{sec}=746$ watts

The Greek Alphabet
(Including common use of symbols in basic electricity)

Letter	Capital	Common Use of Symbol	Lower	Common Use of Symbol
Alpha	A		0	
Beta	B		β	
Gamma	r		γ	
Delta	Δ	change in	δ	change in
Epsilon	t		ϵ	base of natural logs
Zeta	2		ζ	
Eta	H		η	
Theta	Θ		0, 8	angle (phase angle)
lota	1		1	
Kappa	k		κ	dielectric constant
Lambda	A		λ	wavelength
Mu	M		μ	micro
Nu	N		ν	frequency
Xi	Ξ		ξ	
Omicron	0		0	
Pi	11		π	3.14159
Rho	P		ρ	specific resistance, resistivity
Sigma	2	sum of terms	o.r	
Tau	T		τ	time constant
Upsilon	r		v	
Phi	小		0.6	magnetic flux
Chi	X		x	
Psi	Ψ		ψ	
Omega	Ω	ohms	ω	angular frequency
(Reversed	(v)	mho		
Omega)				

TERM	UNIT	$\begin{gathered} S \\ \text { S } \\ \text { M } \\ \text { है } \end{gathered}$	FORMULA
			SERIES PARALLEL
Charge	Coulomb	0	1 coulomb $=6.28 \times 10^{18}$ electrons
Voltage (Potential difference. EMF)	Volt (V)	E	$E_{T}=E_{1}+E_{2}+E_{3}+\ldots$
Current (Flow of charge)	Ampere (Amp) (A)	1	$I_{T}=I_{1}=I_{2}=I_{3}$ $I_{T}=I_{1}+I_{2}+I_{3}$
Resistance	Ohm (s2)	R	$\begin{aligned} & R_{T}=R_{1}+R_{2}+R_{3}+\ldots R_{T}=\frac{1}{1 / R_{1}+1 / R_{2}+1 / R_{3}+} \\ & R=E / 1 \\ & R=1 / G R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \\ & R=\frac{R_{S}}{N} \end{aligned}$
Conductance	Mho (25)	G	$G_{T}=1 / R_{T} \quad G=1 / R \quad G_{T}=G_{1}+G_{2}+G_{3}$
Power	Watt (W)	P	$P=I E$ $P=E^{2} / R$ $P=1^{2} R$
Capacitance	Farad (F)	C	$C_{T}=\frac{1}{1 / C_{1}+1 / C_{2}+1 / C_{3}+\ldots, \frac{C=O / E}{T=R C}} C_{T}=C_{1}+C_{2}+C_{3}+$
Inductance	Henry (H)	L	$L_{T}=L_{1}+L_{2}+L_{3}+\ldots \quad \quad T=L / R \quad L_{T}=\frac{1}{1 / L_{1}+1 / L_{2}+1 / L_{3}+}$

TERM	UNIT	SYMBOL	RC CIRCUITS	
			SERIES	PARALLEL
frequency	hertz	1	$t=\frac{1}{T}$	
Voltage	Volt (V)	E	$\begin{aligned} & E_{R}= I_{T} R \\ & E_{C}= I_{T} X_{C} \\ & E_{A}= I_{T} Z_{T} \text { or } \\ & \sqrt{E_{R}{ }^{2}+E_{C}{ }^{2}} \\ & I_{T} Z_{T}=\sqrt{1_{T}{ }^{2} R^{2}+I_{T}{ }^{2} X_{C}{ }^{2}} \end{aligned}$	$E_{A}=E_{B}=E_{C}$
Current	Ampere (Amp) (A)	1	$\begin{aligned} & I_{T}=\frac{E_{A}}{Z} \text { or } \\ & I_{T}=I_{C}=I_{G} \end{aligned}$	$\begin{aligned} & I_{R}=\frac{E_{B}}{R}=\frac{E_{A}}{R} \\ & I_{C}=\frac{E_{C}}{X_{C}}=\frac{E_{A}}{X_{C}} \\ & I_{T}=\sqrt{I_{R}{ }^{2}+I_{C}{ }^{2}} \end{aligned}$
Impedance	Ohm (Ω)	Z	$Z=\sqrt{R^{2}+X_{c}{ }^{2}}$	$\begin{aligned} & Z=\frac{E_{A}}{I_{T}} \text { or } \\ & Z=\sqrt{\left(\frac{1}{R}\right)^{2}+\left(\frac{1}{x_{C}}\right)^{2}} \end{aligned}$
Capacitive Reactance	Ohm (Ω)	x_{c}		$\frac{1}{2 \pi \mathrm{fC}}$
Inductive Reactance	Ohm (Ω)	X_{L}		2π fL
Real Power	Watt (W)	$P_{\text {R }}$	$P_{R}=E_{\text {R }} l_{R}$	$P_{\text {A }}=E_{\text {R }} I_{\mathbf{R}}=E_{A} I_{\mathbf{A}}$
Apparent Power	VoltAmpere (VA)	$\begin{aligned} & P_{T} \\ & \text { or } \\ & P_{A} \end{aligned}$	$\begin{aligned} & P_{T}=E_{A} I_{T} \text { or } \\ & P_{T}=\sqrt{P_{R}^{2}+P_{G}^{2}} \end{aligned}$	$\begin{aligned} & P_{T}=E_{A} l_{T} \text { or } \\ & P_{T}=\sqrt{P_{R}{ }^{2}+P_{C}^{2}} \end{aligned}$
Reactive Power	Volt-AmpereReactive (VAR)	$\begin{aligned} & P_{c} \\ & \text { or } \\ & P_{L} \end{aligned}$	$\mathrm{P}_{\mathrm{c}}=\mathrm{E}_{\mathbf{c}} \mathbf{l}_{\mathbf{c}}$	$P_{C}=E_{C l} l_{C}=E_{A} l_{C}$
Phase Angle	Degree $\left({ }^{\circ}\right)$	θ	$\begin{array}{ll} \theta=\arctan & \left(\frac{E_{C}}{E_{R}}\right) \text { or } \\ \theta=\tan ^{-1} & \left(\frac{E_{C}}{E_{R}}\right) \text { or } \\ \theta=\arctan & \left(\frac{\left.X_{C}\right)}{R}\right) \text { or } \\ \theta=\tan ^{-1} & \left(\frac{X_{C}}{R}\right) \end{array}$	$\begin{aligned} & \theta=\arctan \left(\frac{I_{c}}{I_{n}}\right) \text { or } \\ & \theta=\tan ^{-1} \quad\left(\frac{I_{C}}{I_{n}}\right) \end{aligned}$

RL CIRCUITS		RLC CIRCUITS	
SERIES	PARALLEL	SERIES	PARALLEL
$f=\frac{1}{T}$			
$\begin{aligned} & E_{R}= I_{T} R \\ & E_{L}= I_{T} X_{L} \\ & E_{A}= I_{T} Z_{\text {or }} \\ & \sqrt{E_{R}{ }^{2}+E_{L}{ }^{2}} \\ & I_{T} Z_{T}=\sqrt{1_{T}{ }^{2} R^{2}+I_{T}{ }^{2} X_{L}{ }^{2}} \end{aligned}$	$\mathrm{E}_{\mathbf{A}}=\mathrm{E}_{\mathbf{G}}=\mathrm{E}_{\mathbf{L}}$	$\begin{aligned} & \mathbf{E}_{\mathbf{R}}=I_{T} R \\ & \mathbf{E}_{\mathbf{L}}=I_{\boldsymbol{T}} X_{\mathbf{L}} \\ & \mathbf{E}_{\mathbf{C}}=I_{\boldsymbol{T}} X_{\mathbf{C}} \\ & \mathbf{E}_{\mathbf{X}}=\mathbf{E}_{\mathbf{L}}-\mathbf{E}_{\mathbf{C}} \\ & \mathbf{E}_{\mathbf{A}}=\sqrt{\mathbf{E}_{\mathbf{R}}^{2}+\mathbf{E}_{\mathbf{X}}{ }^{2}} \text { or } \\ & \mathbf{E}_{\mathbf{A}}=\sqrt{\mathbf{E}_{\mathbf{R}}{ }^{2}+\left(\mathbf{E}_{\mathbf{L}}-\mathbf{E}_{\mathbf{C}}\right)^{2}} \end{aligned}$	$E_{A}=E_{\text {R }}=E_{L}=E_{C}$
$\begin{aligned} & I_{T}=\frac{E_{A}}{Z} \\ & I_{T}=I_{L}=I_{R} \end{aligned}$	$\begin{aligned} & I_{R}=\frac{E_{R}}{R}=\frac{E_{A}}{R} \\ & I_{L}=\frac{E_{L}}{X_{L}}=\frac{E_{A}}{X_{L}} \\ & I_{T}=\sqrt{I_{R}{ }^{2}+I_{L}{ }^{2}} \end{aligned}$	$\begin{aligned} & I_{T}=\frac{E_{A}}{2} \\ & I_{T}=I_{C}=I_{L}=I_{A} \end{aligned}$	$\begin{aligned} & I_{R}=\frac{E_{G}}{R}=\frac{E_{A}}{R} \\ & I_{L}=\frac{E_{L}}{X_{L}}=\frac{E_{A}}{X_{L}} \\ & I_{C}=\frac{E_{C}}{X_{C}}=\frac{E_{A}}{X_{C}} \\ & I_{X}=I_{C}-I_{L} \\ & I_{T}=\sqrt{I_{R}^{2}+I_{X}^{2}} \text { or } \\ & I_{T}=\sqrt{I_{R}^{2}+\left(I_{C}-I_{L}\right)^{2}} \end{aligned}$
$Z=V \overline{R^{2}+X^{2}}$	$Z=\frac{E_{A}}{I_{T}}$	$\begin{aligned} & Z=\sqrt{R^{2}+X_{T}^{2}} \text { or } \\ & Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \end{aligned}$	$Z=\frac{E_{A}}{I_{T}}$
$X_{c}=\frac{1}{2 \pi \mathrm{fC}}$			
$\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}$			
$P_{\text {A }}=E_{\text {R }} \mathrm{I}_{\mathrm{A}}$		$P_{\text {R }}=E_{\text {R }} I_{\mathbf{R}}$	$P_{\text {f }}=E_{\text {A }} I_{\text {R }}=E_{A} I_{\text {A }}$
$\begin{aligned} & P_{A}=E_{A} I_{T} \text { or } \\ & P_{A}=\sqrt{P_{A}^{2}+P_{L}^{2}} \end{aligned}$	$\begin{aligned} & P_{A}=E_{A} I_{T} \text { or } \\ & P_{A}=\sqrt{P_{R}^{2}+P_{L}^{2}} \end{aligned}$	$\begin{aligned} & P_{A}=E_{A} I_{T} \text { or } \\ & P_{A}=\sqrt{P_{A}^{2}+P_{X}{ }^{2}} \text { or } \\ & P_{A}=\sqrt{P_{A}^{2}+\left(P_{L}-P_{C}\right)^{2}} \end{aligned}$	$\begin{aligned} & \mathbf{P}_{A}=E_{A} \times l_{T} O r \\ & P_{A}=\sqrt{P_{R}^{2}+P_{X}^{2}} \text { or } \\ & P_{A}=\sqrt{P_{A}{ }^{2}+\left(P_{C}-P_{L}\right)^{2}} \end{aligned}$
$P_{L}=E_{L} \mathbf{l}_{\mathbf{L}}$	$P_{L}=E_{L} L_{L}=E_{A} I_{L}$	$\mathrm{P}_{\mathrm{L}}=\mathrm{E}_{\mathbf{L}} \mathrm{l}_{\mathrm{L}}$	$\begin{aligned} & P_{C}=E_{C} I_{C}=E_{A} I_{C} \\ & P_{L}=E_{L} I_{L}=E_{A} I_{L} \end{aligned}$
$\begin{aligned} & \theta=\arctan \left(\frac{E_{\mathrm{L}}}{E_{\mathrm{R}}}\right) \text { or } \\ & \theta=\tan ^{-1} \quad\left(\frac{E_{\mathrm{L}}}{E_{\mathrm{R}}}\right) \text { or } \end{aligned}$	$\begin{aligned} & \theta=\arctan \left(\frac{I_{L}}{I_{R}}\right) \text { or } \\ & \theta=\tan ^{-1} \quad\left(\frac{I_{L}}{I_{R}}\right) \end{aligned}$	$\begin{array}{ll} \theta=\arctan & \left(\frac{E_{X}}{E_{R}}\right) \text { or } \\ \theta=\tan ^{-1} & \left(\frac{E_{X}}{E_{R}}\right) \text { or } \end{array}$	
$\begin{aligned} & \theta=\arctan \left(\frac{X_{L}}{R}\right) \text { or } \\ & \theta=\tan ^{-1}\left(\frac{X_{L}}{R}\right) \end{aligned}$		$\begin{aligned} & \theta=\arctan \left(\frac{X_{T}}{R}\right) \text { or } \\ & \theta=\tan ^{-1}\left(\frac{X_{T}}{R}\right) \end{aligned}$	

Right Triangle Functions

$$
\begin{aligned}
\text { sine } \theta & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\operatorname{cosine} \theta & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\text { tangent } \theta & =\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

Equivalent First-Quadrant Angles

ANGLE	SIN	cos	TAN	ANGLE	SIN	cas	TAN
0 -	0.0000	1.000	0.0000	45°	0.7071	0.7071	1.0000
1	0175	9998	. 0175	46	7193	. 6947	1.0355
2	0349	9994	0349	47	. 7314	. 6820	1.0724
3	. 0523	9986	0524	48	. 7431	. 6691	1.1106
4	0698	9976	. 0699	49	. 7547	. 6561	1.1504
5	0872	. 9962	. 0875	50	. 7660	6428	1.1918
6	. 1045	9945	1051	51	. 7771	. 6293	1.2349
7	. 1219	9925	. 1228	52	. 7880	. 6157	1.2799
8	1392	9903	. 1405	53	7986	. 6018	1.3270
9	1564	9877	1584	54	. 8090	. 5878	1.3764
10	. 1736	9848	1763	55	8192	. 5736	1.4281
11	1908	9816	1944	56	8290	5592	1.4826
12	2079	9781	2126	57	. 8387	. 5446	1.5399
13	2250	9744	2309	58	. 8480	. 5299	1.6003
14	. 2419	9703	2493	59	8572	. 5150	1.6643
15	. 2588	9659	2679	60	8660	. 5000	1.7321
16	. 2756	9613	. 2867	61	8746	. 4848	1.8040
17	. 2924	9563	3057	62	8829	. 4695	1.8807
18	3090	. 9511	. 3249	63	8910	. 4540	1.9626
19	3256	. 9455	. 3443	64	. 8988	. 4384	2.0503
20	. 3420	. 9397	. 3640	65	. 9063	. 4226	2.1445
21	3584	9336	. 3839	66	. 9135	4067	2.2460
22	3746	. 9272	. 4040	67	. 9205	. 3907	2.3559
23	. 3907	. 9205	. 4245	68	. 9272	. 3746	2.4751
24	4067	. 9135	. 4452	69	. 9336	. 3584	2.6051
25	. 4226	. 9063	. 4663	70	. 9397	. 3420	2.7475
26	. 4384	8988	. 4877	71	. 9455	. 3256	2.9042
27	. 4540	. 8910	. 5095	72	. 9511	. 3090	3.0777
28	4695	8829	5317	73	. 9563	. 2924	3.2709
29	. 4848	. 8746	. 5543	74	. 9613	. 2756	3.4874
30	5000	8660	5774	75	. 9659	. 2588	3.7321
31	5150	. 8572	6009	76	. 9703	2419	4.0108
32	. 5299	. 8480	. 6249	77	. 9744	. 2250	4.3315
33	. 5446	. 8387	. 6494	78	. 9781	. 2079	4.7046
34	. 5592	. 8290	. 6745	79	. 9816	. 1908	5.1446
35	. 5736	. 8192	7002	80	. 9848	. 1736	5.6713
36	. 5878	8090	. 7265	81	. 9877	. 1564	6.3138
37	. 6018	. 7986	. 7536	82	9903	. 1392	7.1154
38	. 6157	. 7880	. 7813	83	. 9925	. 1219	8.1443
39	. 6293	. 7771	. 8098	84	. 9945	. 1045	9.5144
40	. 6428	. 7660	. 8391	85	. 9962	. 0872	11.43
41	. 6561	. 7547	. 8693	86	. 9976	. 0698	14.30
42	. 6691	. 7431	. 9004	87	. 9986	. 0523	19.08
43	. 6820	. 7314	. 9325	88	. 9994	. 0349	28.64
44	. 6947	7193	. 9657	89	. 9998	. 0175	57.29
				90	1.0000	. 0000	-

The following table can be used to find the square root or square of most any number. Numbers from 1 to 120 can be read directly from the table. But what about a number such as 150 ' How can its square or square root be found? The secret to the use of this table is in the understanding of factoring. Factoring a number means to break the original number up into two smaller numbers, that when multiplied together, give you back the original. For example, 150 is equal to 10 times 15 . Ten and 15 are said to be factors of 150. If 10 times 15 is equal to 150 , then the square root of 10 times the square root of 15 is equal to the square root of 150 . Both 10 and 15 are listed on the square and square root table. The square root of 10 from the table is equal to 3.162 . The square root of 15 is equal to 3.873 .3 .162 times 3.873 is equal to 12.246426, which should be the square root of 150 . You can test this number by multiplying it by inself. Thus, 12.246426 squared is equal to 149.97 , etc., - very close to 150 . (Small errors due to rounding will normally occur when using the tables.) The factoring procedure written out mathematically would then be.

$$
\begin{aligned}
150 & =10 \times 15 \\
\sqrt{150} & =\sqrt{10} \times \sqrt{15} \quad \text { (Look up } \sqrt{10}, \sqrt{15} \text { in tables) } \\
\sqrt{150} & =3162 \times 3.873 \\
\sqrt{150} & =12.246 \ldots
\end{aligned}
$$

Try another number now. say, 350. First, factor 350

$$
350=35 \times 10
$$

The square root of 350 must equal the square root of 35 times the square root of 10 .

$$
\sqrt{350}=\sqrt{35} \times \sqrt{10^{\circ}}
$$

Go to the tables and look up the square roots of 10 and 35

$$
\sqrt{350}=5.9161 \times 3.162
$$

Multiply the square roots of 10 and 35 , and you have found the square root of 350 .

$$
\sqrt{350}=18.706 \ldots \ldots
$$

To check the accuracy of your calculations, multiply 18.706 by itself.

$$
18.706^{2}=349.91
$$

Again, very close to the original number.
Try one more number, this time 1150.
First, factor 1150.

$$
1150=115 \times 10
$$

The square root of 1150 must equal the square root of 115 times the square root of 10 .

$$
\sqrt{1150}=\sqrt{115} \times \sqrt{10}
$$

Look up the square roots of 115 and 10 from the tables.

$$
\sqrt{1150}=10.7238 \times 3.162
$$

Multiply the square roots of 115 and 10 , and you have the square root of 1150 .

$$
\sqrt{1150}=33.908
$$

To check the validity of this number, square it. It should be very close to 1150 .

N	\sqrt{N}	N^{2}	N	\sqrt{N}	N^{2}	N	\sqrt{N}	N^{2}
1	1.000	1	41	6.4031	1681	81	9.0000	6561
2	1.414	4	42	6.4807	1764	82	9.0554	6724
3	1.732	9	43	6.5574	1849	83	9.1104	6889
4	2.000	16	44	6.6332	1936	84	9.1652	7056
5	2.236	25	45	6.7082	2025	85	9.2195	7225
6	2.449	36	46	6.7823	2116	86	9.2736	7396
7	2.646	49	47	6.8557	2209	87	9.3274	7569
8	2.828	64	48	6.9282	2304	88	9.3808	7744
9	3.000	81	49	7.0000	2401	89	9.4340	7921
10	3.162	100	50	7.0711	2500	90	9.4868	8100
11	3.3166	121	51	7.1414	2601	91	9.5394	8281
12	3.4641	144	52	7.2111	2704	92	9.5917	8464
13	3.6056	169	53	7.2801	2809	93	9.6437	8649
14	3.7417	196	54	7.3485	2916	94	9.6954	8836
15	3.8730	225	55	7.4162	3025	95	9.7468	9025
16	4.0000	256	56	7.4833	3136	96	9.7980	9216
17	4.1231	289	57	7.5498	3249	97	9.8489	9409
18	4.2426	324	58	7.6158	3364	98	9.8995	9604
19	4.3589	361	59	7.6811	3481	99	9.9499	9801
20	4.4721	400	60	7.7460	3600	100	10.0000	10000
21	4.5826	441	61	7.8102	3721	101	10.0499	10201
22	4.6904	484	62	7.8740	3844	102	10.0995	10404
23	4.7958	529	63	7.9373	3969	103	10.1489	10609
24	4.8990	576	64	8.0000	4096	104	10.1980	10816
25	5.0000	625	65	8.0623	4225	105	10.2470	11025
26	5.0990	676	66	8.1240	4356	106	10.2956	11236
27	5.1962	729	67	8.1854	4489	107	10.3441	11449
28	5.2915	784	68	8.2462	4624	108	10.3923	11664
29	5.3852	841	69	8.3066	4761	109	10.4403	11881
30	5.4772	900	70	8.3666	4900	110	10.4881	12100
31	5.5678	961	71	8.4261	5041	111	10.5357	12321
32	5.6569	1024	72	8.4853	5184	112	10.5830	12544
33	5.7446	1089	73	8.5440	5329	113	10.6301	12769
34	5.8310	1156	74	8.6023	5476	114	10.6771	12996
35	5.9161	1225	75	8.6603	5625	115	10.7238	13225
36	6.0000	1296	76	8.7178	5776	116	10.7703	13456
37	6.0828	1369	77	8.7750	5929	117	10.8167	13689
38	6.1644	1444	78	8.8318	6084	118	10.8628	13924
39	6.2450	1521	79	8.8882	6241	119	10.9087	14161
40	6.3246	1600	80	8.9443	6400	120	10.9545	14400

THE DIVIDE-AND-AVERAGE METHOD TO FIND SQUARE ROOTS

STEP	PRESS	DISPLAY
1. CHOOSE A NUMBER LET'S USE 89.	(MC] 89	89.
2. ESTIMATE A SQUARE ROOT; DIVIDE BYIT.	동	9.
3. ADD YOUR ESTIMATE TO DISPLAY	+ 9	9.8888888 9.
4. DIVIDE BY 2.	$\begin{aligned} & \mp \\ & 2 \\ & \equiv M+1 \end{aligned}$	18.888888 2. 9.444444 (HALF WAY BETWEEN
5. CHECK TO SEE IF IT IS A ROOT.	$\overline{M R} \times \overline{M R}]$	89.197522
6. IF NOT, REPEAT THE PROCESS	$89 \div 4$	9.444444
	\pm	9.4235298
	[M]	9.444444
	$\begin{aligned} & \div 2[\equiv[\overline{M C}[\mathrm{M}+1 \\ & \div \mathrm{MR}] \mathrm{MR} \equiv \end{aligned}$	9.4339865 89.000101

*This procedure is for use with calculators that do not have a square root key but do have a memory function. The calculator that was used to keystroke this example was a Tl 1750 which does have a square root key (as do most scientific calculators) and the above result could have been obtained by entering the number 89 and pressing the square root key.

$$
001=1 \mathrm{milli}
$$

1 kilo $=1000$

$$
.000001=1 \text { micro }
$$

1 mega $=1000000$.

$$
.000000001 \text { = } 1 \text { nano }
$$

1 giga $=1000000000$.
$.000000000001=1$ pico

STANDARD FORM: $\times . \times \times \times 10^{\text {+exponent }}$			
Symbol	Prefix	Value	Power of 10
G	giga	1, 000000000	$\times 10^{+9}$
M	mega	1. 000000.	$\times 10^{+6}$
k	kilo	1. 000 .	$\times 10^{+3}$
-	(units)	1.	$\times 10^{0}$
m	milli	001	$\times 10^{-3}$
μ	micro	000001	$\times 10^{-6}$
n	nano	000000001	$\times 10^{-9}$
P $(\mu \mu)$	pico	000000000001	$\times 10^{-12}$

How to Use This Chart
This chart can be used to graphically determine the voltage or current at any point in time for an RC or L/R circuit, during charging (or current buildup), or discharge (or current collapse)

The examples shown below illustrate the use of the chart.

1. Find the voltage across the capacitor shown in the circuit below, 1 second after the switch is thrown.

a. First find the circuit time constant

$$
\begin{aligned}
& T=R C \\
& T=\left(1 \times 10^{6}\right) \times\left(2 \times 10^{-6}\right)=2 \text { seconds }
\end{aligned}
$$

The voltage at any point along a charge or discharge curve may be calculated by using one of these two mathematical formulas

Charge: $e($ at time $t)=E_{a p p}\left(1-c^{-t / R C}\right)$
Discharge: e (at time $t)=E_{\text {app }}\left(e^{-t / R C}\right)$
b. Express the time (t) at which the capacitor voltage is desired in time constants.

Here you want the voltage after 1 second and the time constant is 2 seconds, so $t=1 / 2$ the time constant)
or $\mathrm{t}=0.5 \mathrm{~T}$
c. Look at the chart, on the horizontal axis and locate 0.5 time constants.
d. Move up the vertical line until it reaches the appropriate curve lin this case the charging curvel. Read from the vertical axis the fraction of the applied voltage at the time (here 39%).
e. At $t=1$ second. the voltage across the capacitor equals 39% of 10 volts or
$E_{C}=0.39 \times 10$
$E_{C}=3.9$ volts
2. Find the voltage across the capacitor shown in the circuit below 2 seconds after the switch. S, is thrown. The capacitor is charged to 20 volts before the switch is thrown

IORIGINAL CAPACITOR VOLTAGE 20 VOLTS)

Solution

a. Find the circuit time constant

$$
\begin{aligned}
& T=R C \\
& T=\left(500 \times 10^{+3}\right) \times\left(1 \times 10^{-6}\right) \\
& T=0.5 \text { seconds }
\end{aligned}
$$

b. Express the time at which the capacitor's voltage is desired in time constants. Here, 2 seconds divided by 0.5 seconds is $4 ; 2$ seconds is 4 time constants for this circuit.

$$
t=4 \tau
$$

c. Look at the chart, locate 4 time constants on the horizontal axis.
d. Move up the vertical line until it reaches the appropriate curve (the discharge curve). Read the fraction of the original voltage from the vertical axis $(\mathbf{2 \%})$.
e. At $t=2$ seconds, the voltage across the capacitor is at 2% of the original voltage or is at 2% of 20 volts.

$$
\begin{aligned}
& E_{C}=0.02 \times 20 \\
& E_{C}=0.40 \text { volts }
\end{aligned}
$$

Remember that 5 time constants is required for a 100\% charge (full charge or discharge for RC circuits, maximum or zero current for L/R circuits)

APPENDIX 12. PEAK, PEAK-TO-PEAK, AND RMS CONVERSION CHART

This chart contains factors to easily convert one ac value of a voltage or current to the other two types of values.
if you have

		With f, Constant						
		R	L	X_{L}	0	BW	LC	RESPONSE
Series Resonance		-	\uparrow	\uparrow	\uparrow	\downarrow	\uparrow	\bigcap
$\mathrm{O}=\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}$	$f_{f}=\frac{1}{2 \pi \sqrt{L C}}$	-	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	\bigcirc
		\uparrow	-	-	\downarrow	\uparrow	-	\sim
		\downarrow	-	-	\uparrow	\downarrow	-	Λ
Parallel Resonance		-	\uparrow	\uparrow	\downarrow	\uparrow	\uparrow	\bigcirc
$\mathrm{O}=\frac{\mathrm{R}}{\mathrm{X}_{\mathrm{L}}}$	$f_{f}=\frac{1}{2 \pi \sqrt{L C}}$	-	\downarrow	\downarrow	\uparrow	\downarrow	\downarrow	\bigcap
		\uparrow		-	\uparrow	\downarrow	-	\bigcap
		\downarrow	-	-	\downarrow	\uparrow	-	\sim
Common$\begin{aligned} & B W=f_{U}-f_{L} \\ & f_{U}=f_{f}+1 / 2 B W \\ & f_{L}=f_{f}-1 / 2 B W \end{aligned}$		- Factor held constant Half-power point - Real power is exactly one-half of what it is at the resonant frequency, f_{r}. Bandwidth - Those frequency values where the frequency response is equal to or greater than 70.7 percent of the value at the mid-band frequency, in this case the resonant frequency.						

Resistor and Capacitor Color Codes

(\# OF ZEROS TO PLACE AFTER FIRST TWO DIGITS)

RESISTORS AND CAPACITORS				CAPACITORS ONLY	
	Slgnificant Digit	Declmal Multiplior	(Power of Ten)	Tolerance In \%	Voltage Rating (V)
		(Put These Zeros Behind First Two Digits)			
Black	0	1	10°	20	
Brown	1	10	10^{\prime}	1	100
Red	2	100	10^{2}	2	200
Orange	3	1000	10^{3}	3	300
Yellow	4	10000	10^{4}	4	400
Green	5	100000	10^{5}	5	500
Blue	6	1000000	10^{6}	6	600
Violet	7	10000000	10^{7}	7	700
Gray	8	100000000	10^{8}	8	800
White	9	1000000000	10^{9}	9	900
Gold	-	Multiply by 0.1	10^{-1}		1000
Silver	-	Multiply by 0.01	10^{-2}	10	2000
			No Color	20	500

PREFERRED VALUES FOR RESISTORS AND CAPACITORS

The numbers listed in the chart below, and decimal multiples of these numbers, are the commonly available resistor values at $5 \%, 10 \%$, and 20% tolerance. Capacitors generally fall into the same values, except 20,25 , and 50 are very common, and any of the values can have a wide range of tolerances available.

20\% Tolerance (No 4th Band)	10\% Tolerance (Silver 4th Band)	5\% Tolerance (Gold 4th Band)
10^{*}	10	10
		11
	12	12
		13
15	15	15
		16
	18	18
		20
22	22	22
		24
	27	27
		30
33	33	33
		36
	39	39
47	47	47
		51
	56	56
		62
68	68	68
		75
	82	82
		91
100	100	100

Mica Capacitor Color Codes

Tubular Capacitor Color Codes

All Values Are Read in Picofarads

Color	Significant Digit	Decimal Multiplier	Tolerance		Temperature Coefficient ppm/ ${ }^{\circ} \mathrm{C}$
			Above 10 pF (in \%)	Below 10 pF (in pF)	
B lack	0	1	20	2.0	0
Brown	1	10	1		-30
Red	2	100	2		-80
Orange	3	1000			-150
Yellow	4				-220
Green	5		5	0.5	-330
Blue	6				-470
Violet	7				-750
Gray	8	0.01		0.25	30
White	9	0.1	10	1.0	500

3-DOT DISK

SIGNIFICANT DIGIT

SIGNIFICANT DIGIT

Chassis and Transformer Wiring Color Code

Most of the following color codes are standardized by the Electronic Industries Association (EIA) Although members are not required to adhere to the color codes, it is industry practice to do so where practical.

Chassis Wiring

In electronic systems wires are usually color-coded to ease assembly and speed tracing connections when troubleshooting the equipment. Usually the colors of the wires are in accordance with the following system.

COLOR
 CONNECTED TO

Red $\quad B+$ voltage supply
Blue Plate of amplifier tube or collector of transistor
Green Control grid of amplifier tube or base of transistor
(also for input to diode detector)
Yellow Cathode of amplifier tube or emitter of transistor
Orange Screen grid
Brown Heaters or filaments
Black Chassis ground return
White Return for control grid (AVC bias)

I-F Transformers

Blue-plate
Red-B*
Green - control grid or diode detector
White - control grid or diode return
Violet - second diode lead for duodiode detector

A-F Transformers

Blue - plate lead (end of primary windingl
Red - B + (center-tap on push-pull transformer)
Brown - plate lead (start of primary winding on push-pull transformer)
Green - finish lead of secondary winding
Black - ground return of secondary winding
Yellow-start lead on center-tapped secondary

Power Transformers (Figure 11

Primary without tap - black
Tapped primary:

Common - black

Tap-biack and yellow stripes
Finish - black and red stripes
High-voltage secondary for plates of rectifier - red
Center tap-red and yellow stripes
Low-voltage secondary for rectifier filament - yellow
Low-voltage secondary for amplifier heaters-green, brown. or slate

Figure 1. Power Transformer color code

Center tap-same color with yellow stripe

Adams, J. E., Electrical Principles and Practices, New York, N. Y.: McGraw-Hill Book Co., 1963. Angerbauer, G., Principles of DC and AC Circuits, North Scituate, Massachusetts: Duxbury Press, 1978.

Bell, D. A., Fundamentals of Electric Circuits, Reston, Virginia: Reston Publishing Co., Inc., 1978.
Blitzer. R., Basic Electricity for Electronics, New York, N. Y.: John Wiley and Sons., Inc., 1974.
Bureau of Naval Personnel, Basic Electricity, New York, N. Y.: Dover Publications, Inc., 1970.
Carper, D., Basic Electronics, Columbus, Ohio: Charles E. Merrill Publishing Co., 1975.
Churchman, L. W., Introduction to Circuits, New York, N.Y.: Holt, Rinehart, and Winston, 1976.
Cooke, N. M., Basic Mathematics for Electronics, Second Edition, New York, N.Y.: McGraw-Hill Book Co., 1960

DeFrance, J. J., Electrical Fundamentals, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1969
Doyle, J. M., An Introduction to Electrical Wiring, Reston, Virginia: Reston Publishing Co., Inc., 1975

Fiske, K. A., and Harter, J. H., Direct Current Circuit Analysis Through Experimentation, Third Edition, Seal Beach, California: The Technical Education Press, 1970.
Gillie, A. C., Electrical Principles of Electronics, Second Edition, New York, N.Y.: McGraw-Hill Book Co., 1969.

Gothmann, W. H., Electronics: A Contemporary Approach, Englewood Cliffs, N.J.: Prentice Hall, Inc., 1980.

Graf, R. F., Modern Dictionary of Electronics, Indianapolis, Indiana: Howard W. Sams and Co., Inc., 1968.
Graham, K. C., Fundamentals of Electricity, Fifth Edition: Chicago, Illinois: American Technical Society, 1968.

Grob, B., Basic Electronics, Second Edition, New York, N.Y.: McGraw-Hill Book Co., 1971.
Halliday, D., and Resnick, R., Physics for Students of Science and Engineering, Parl II, New York, N.Y.: John Wiley and Sons, 1960.

Harris, N. C., and Hemmerling, E. M., Introductory Applied Physics, Third Edition, New York, N.Y.: McGraw-Hill Book Co., 1972

Herrick, C. M., Unified Concepls of Electronics, Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1970.
Jackson, H. W., Introduction to Electric Circuits, Englewood Cliffs, N.J.: Prentice Hall, Inc., 1976.
Mileaf, H., Electricity One-Seven, New York, N.Y.: Hayden Book Co., Inc. 1966.
Mileaf, H., Electronics, One-Seven, Rochelle Park, N.J.: Hayden Book Co., 1967.
Naval Air Technical Training Command, Basic Electricity, Memphis, Tennessee: NavAirTech Training Center, 1967.

Oppenheimer, S. L. Hess, F. R., Borchers, J. P., Direct and Alternating Currents, Second Edition, New York, N.Y.: McGraw-Hill Book Co., 1973

Philco Education Operations, Basic Concepts and DC Circuits, Fort Washington. Pennsylvania: Philco Corporation, 1960.
Shrader, R. L., Electrical Fundamentals for Technicians, New York, N. Y.: McGraw-Hill Book Co., 1969.

Singer, B. B., Basic Mathematics for Electricity and Electronics, Second Edition, New York, N.Y.: McGraw-Hill Book Co., 1965.
Siskind, C. S., Electrical Circuits, Direct and Alternating Current, Second Edition. New York, N.Y.: McGraw-Hill Book Co., 1965.
Staff of Buck Engineering Co., Inc. (DeVito, M. J., Project Supervisor), Introduction to Electricity and Electronics, Farmingdale, New Jersey: Buck Engineering Co., Inc., 1971.
Staff of Electrical Technology Department, New York Institute of Technology, Schure, A., Project Director, A Programmed Course in Basic Electricity, New York, N.Y.: McGraw-Hill Book Co., 1970.
Suffern, M. G., Basic Electrical and Electronic Principles, Third Edition, New York, N. Y.: McGrawHill Book Co., 1962.

Thomson, C. M., Fundamentals of Electronics, Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1979.
Timbie, W. H. Essentials of Electricity, Third Edition, New York, N. Y.: John Wiley and Sons, Inc. 1963.
Tocci, R. J., Introduction to Electric Circuit Analysis, Columbus, Ohio: Charles E. Merrill Publishing Co., 1974

Trejo, P. E., DC Circuils, Palo Alto, California: Westinghouse Learning Press, 1972.
Turner, R. P., Basic Electricity, Second Edition, New York, N. Y.: Holt, Rinehart, and Wilson, 1963.
Weick, C. B., Principles of Electronic Technology, New York, N. Y.: McGraw-Hill Book Co., 1969.
Wellman, W. R., Elementary Electricity, Second Edition, New York, N.Y.: Van Nostrand Reinhold Company, 1971.

Glossary

adjacent side

The side of a right triangle beside or adjacent to an included angle theta

algebraic sum

All positive quantities in an expression added together and each negative quantity subtracted from that result

alternating current

An electrical current which changes in both magnitude and direction

alternating current generator

A device which generates an alternating voltage by rotating a loop of conductor material through a magnetic field

ammeter

A meter connected in series with a circuit, branch, or component which measures the current flowing through that circuit, branch, or component.
ampere
The unit of measure for current flow which equals I coulomb of electrons passing one point in a circuit in 1 second.

arctangent

Inverse of the tangent function. Arctangent of an angle theta means that theta is an angle whose tangent is the arctangent value.

bandwidth

The band of frequencies over which ac quantities remain within specified limits. In the case of resonant circuits, it is the band of frequencies over which the resonant effect exists.

branch

Path for current flow in a circuit.

bridge circuit

A special type of parallel-series circuit in which the voltages in each branch may be balanced by adjustment of one component. A special version called a Wheatstone bridge may be used to accurately measure resistance.

capacitance

The ability of a nonconductor to store a charge. Equal to the quantity of stored charge (Q) divided by the voltage (E) across the device when that charge was stored. Unit of measurement is the farad.

Glossary

capacitive reactance

The changing opposition of a capacitor to the flow of alternating electrical current at the applied frequency. It is inversely related to the source frequency. It is measured in ohms and has the symbol Ω.

capacitor

A device that can store a charge on conducting plates through the action of an electrostatic field between the plates.
cell
A single unit device which converts chemical energy into electrical energy.

chassis

A metal frame used to secure and house electrical components and associated circuitry.

circuit

A complete path for current flow from one terminal to the other of a source such as a battery or a power supply or an alternating current generator.

circuit analysis

A technique of examining components in circuits to determine various values of voltage, current, resistance, power, etc.

circuit reduction

A technique of circuit analysis whereby a complex combination of circuit components is replaced by a single equivalent component or several equivalent components.

circuit sense

An ability to recognize series or parallel portions of complex circuits to apply series and parallel circuit rules to those portions of the circuit for circuit analysis.

circulating current

A characteristic of resonance, it is the larger current in the inductive-capacitive branches of a resonant circuit, the result of the continual charging and discharging of the capacitor and the continual expansion and collapse of the magnetic field of an inductor at the resonant frequency.

coefficient of coupling

The fraction of the total magnetic flux lines produced by two coils which is common to both coils.
coil
A number of turns of wire wrapped around a core used to oppose changes in current flow. (Also called an inductor.)

Glossary

combining like terms

Algebraic addition of parts of an equation that each contain the same unknown quantity.

common point

A voltage relerence point in a circuit. A point which is "common" to many components in the circuit.
complex number
A number represented by the algebraic sum of a real number and an imaginary number.
condenser
See capacitor.
conductance
The ability to conduct or carry current. Conductance is equivalent to the reciprocal of (or one over) the resistance.
conductor
A material with many free electrons that will carry current.
conjugate of a complex number
A complex nuinber with the j -operator having an opposite sign from its mate. For example, the conjugate of $2+\mathrm{j}^{2}$ is $2-\mathrm{j} 2$ and the conjugate of $6-\mathrm{j} 4$ is $6+\mathrm{j} 4$.
coulomb
A large quantity of electrons that form a unit that is convenient when working with electricity and equals 6.25 billion, billion electrons (or 6.25×10^{18} electrons).
counter electromotive force (CEMF)
The voltage that appears across an inductor with a changing current flowing through it due to a property called self-inductance.

current

"Electron current" is the flow of electrons (negative charges) through a material from a negative potential to a positive potential. "Conventional current" is the flow of positive charges from a positive potential to negative potential. Current flow is a general term often used to mean either of the above. Symbol is I, unit is ampere.

current magnification

The increase in total circuit current caused by the Q factor.

cutoff frequency

Specified end frequency points that define bandwidth. In the case of resonance, the frequency at which the effects of resonance fall outside specified limits.

dielectric

An insulating material with properties that enable its use between the two plates of a capacitor.

dielectric breakdown (in a capacitor)

Failure of an insulator to prevent current flow from one plate of a capacitor through the insulator to the other plate. This often causes permanent damage to the capacitor.

dielectric constant

A factor which indicates how much more effective (compared to air) a material is in helping a capacitor store a charge when the insulating material is between the capacitor's plates

dielectric streogth

A factor which indicates how well a dielectric resists breakdown under high voltages.

direct current

Current that flows in only one direction. Its magnitude may change but its direction does not

direct relationship

One in which two quantities both increase or both decrease while other factors remain constant.

earth ground

A point that is at the potential of the earth or something that is in direct electrical connection with the earth such as water pipes.

efficiency (of a transformer)

The ratio of the power in a secondary circuit divided by the power in a primary circuit.

effective value

Also referred to as rms value. (See root-mean-square value.)
electricity
The flow of electrons through simple materials and devices.

electrolyte

A chemical (liquid or paste) which reacts with metals in a cell to produce electricity.

electromagnetic field (magnetic field)

A field of force produced around a conductor whenever there is current flowing through it. This field can be visualized with magnetic lines of force called magnetic flux.

electromotive force (EMF)

A force that makes a current flow in a circuit measured by the amount of work done on a quantity of electricity passing from one point of electrical potential to a higher or lower point of electrical potential. Measured in volts (V).

electron

Negatively charged particles surrounding the nucleus of an atom which determine chemical and electrical properties of the atom.

electrostatic force

A force which exists between any two charged objects. If the two objects each have the same type of charge, the force is a repulsion. If the two objects each have different types of charge, the force is an attraction. Unlike charges attract; like charges repel.

energy

The ability to do work. Unit commonly used in measuring energy is the joule which is equal to the energy supplied by a 1 -watt power source in 1 second.

equivalent resistance

The value of one single resistor that can be used to replace a more complex connection of several resistors.

exponent

A number written above and to the right of another number called the base. Example: $\mathbf{1 0}^{\mathbf{2}}$, 10 is the base, 2 is the exponent. A number which indicates how many times the base is multiplied by itself. $10^{2}=10 \times 10=100$.

farad

The unit of capacitance. A capacitor has 1 farad of capacitance when it can store 1 coulomb of charge with a 1 -volt potential difference placed across it.

free electrons

Electrons which are not bound to a particular atom but circulate among the atoms of the substance.

galvanometer

An ammeter with a center scale value of zero amperes.

giga

The metric prefix meaning one billion or 10^{9}. Abbreviated \mathbf{G}.

graticule

The scale on the face of the cathode-ray tube of an oscilloscope.

Glossary

ground

A voltage reference point in a circuit which may be connected to earth ground
half-power points
The upper and lower frequency points of a frequency response curve at which the real power dissipation in the circuit is exactly one-half of what it is at the mid-band frequencies. For resonant circuits the mid-band frequency is the resonant frequencies

henry

Unit of measure for inductance. A I-henry coil produces I volt when the current through it is changing at a rate of 1 ampere per second. Abbreviated H
horizontal sweep
A proportional amount of time required for the spot on the cathorle-ray tube face of an oscilloscope to travel from one side of the face to the other side.

hypotenuse

The longest side of a right triangle

imaginaryaxis

Customarily the Y -axis used to represent an imaginary number in a complex number system.

impedance

The opposition to the flow of alternating electrical current. The impeding of the current. It is measured in ohms and has the symbol Ω.

inductance

The ability of a coil to store energy and oppose changes in current flowing through it A function of cross sectional area, number of turns on coil, length of coil, and core material.

inductive reactance

A quantity that represents the opposition that a given inductance present to a changing ac current in a circuit. It is measured in ohms. It is a direct function of the frequency of the applied ac voltage and the value of the inductor.

inductor

A number of turns of wire wrapped around a core used to provide inductance in a circuit. (Also called a coil.)

in-phase

Two or more waveforms in which there is a zero-degree phase difference between the waveforms.

Glossary

instantaneous value

The value of voltage or current at a specific instant in the cycle of an ac signal
(e.g. a sine wave).

insulator

A material with very lew free electrons. A nonconductor.

inverse relationship

A relationship between two quantities in which an increase in one quantity causes a decrease in the other quantity while other factors are held constant.

junction

A connection common to more than two components in a circuit. Also called a node. (See also common point.)

kilo

A metric prefix meaning 1000 or 10^{3}. Abbreviated k.

Kirchhoff's current law

One of many tools of circuit analysis which states that the sum of the currents arriving at any point in a circuit must equal the sum of the currents leaving that point.

Kirchhoff's voltage law

Another tool of circuit analysis which states that the algebraic sum of all the voltages encountered in any loop equals zero.

leakage resistance

The normally high resistance of an insulator such as a dielectric between the plates of a capacitor.

load

A device such as a resistor which receives electrical energy from a source and that draws current and/or provides opposition to current, requires voltage, or dissipates power.

lagging waveform

A waveform whose cycle begins after another waveform cycle.

leading waveform

A waveform whose cycle begins before another waveform cycle.

leakage current

The small electron flow discharge between plates of a capacitor due to the fact an insulator is not a perfect nonconductor.

Glossary

loop

A closed path for current flow in a circuit.

loop equation

The algebraic sum of all the voltages in a loop set equal to zero.

lower cutoff frequency

The end frequency point defining the lower end of the bandwidth. For resonant circuits, the frequency below the resonant frequency at which the effect of resonance is outside of specified limits.

magnetic flux

Magnetic lines of force in a material

mega

A metric prefix meaning one million or $1,000,000$ or 10^{6}. Abbreviated M

micro

A metric prefix meaning one millionth of $1 / 1,000,000$ or 10^{-6}. Abbreviated with the Greek letter mu(μ).

milli

A metric prefix meaning one thousandth or $1 / 1000$ or 10^{-3}. Abbreviated m.

mutual inductance

A measure of the voltage induced in a coil due to a changing current flowing in another coil close by. Measured in units called henrys (H).

nano

A metric prefix meaning one billionth or $1 / 1,000,000,000$ or 10^{-9}. Abbreviated n.

negative ion

An atom which has gained one or more electrons.
node
A junction. A connection common to more than two components in a circuit.
node current equations
A mathematical expression of Kirchhoff's current law at a junction or node.

node voltage

The voltage at a node with respect to some reference point in the circuit.

non-sinusoidal waveform

A waveform that cannot be expressed mathematically by using the sine function.

ohm

The unit of resistance. Symbol Ω.

ohmmeter

An instrument used to measure resistance.

Ohm's law

A basic tool of circuit analysis which states that, in simple materials, the amount of current through the material varies directly with the applied voltage and varies inversely with the resistance of the material. Gives rise to three common equations for use in circuit analysis: $E=1 R, \mathbf{R}=\mathbf{E} / \mathbf{I}, \mathbf{I}=\mathbf{E} / \mathbf{R}$.

open circuit

A circuit interruption that causes an incomplete path for current flow.

opposite side

The side of a right triangle across from or opposite to the included angle theta.

oscilloscope

An electronic measuring instrument that can visually display rapidly varying electrical signals as a function of time. Often used to measure voltage or current.

out of phase

Two or more waveforms in which there is a finite number of degrees of phase difference between the waveforms.

parallel circuit

A circuit that has two or more paths (or branches) for current flow.
parallel-series circuit
A circuit with several branches wired in parallel. Each branch contains one or more components connected in series, but no single component carries the total circuit current.

peak amplitude

The maximum positive or negative deviation of an electrical signal (e.g. sinewave) from a zero reference level.
peak-to-peak amplitude
The distance between an ac signal's maximum positive and maximum negative peaks.

percent

A ratio of one part to the total amount. One part of a hundred

permeability of core material

The ability of a material to conduct magnetic lines of force or magnetic tlux.

phase

The term used to describe the relative position of ac quantities in time reference to each other

phase angle

The angular difference in electrical degrees between the total applied voltage and total current being drawn from the voltage supply in an ac circuit

phasor

A phase vector.

phasor algebra

A mathematical method which expresses the value or magnitude of ac quantities such as current, reactance, resistance, or impedance and their respective phase angles, and indicates the phase relationships of these quantities with each other.

phasor diagram

A diagram showing the relationships of vectors used to represent phase relationships of ac circuit quantities.

phosphorescence

The ability of a material to emit light after being struck with electrons.

pico

A metric prefix meaning one million millionth or 10^{-12}. Abbreviated p .

polar coordinators

A means of identifying an ac quantity as a vector with a given magnitude (length) and a given direction (phase angle) in a quadrant coordinate system.
polarity of voltage
A means of describing a voltage with respect to some reference point, either positive or negative.

positive ion

An atom that has lost one or more electrons.

Glossary

potential difference

A measure of force produced between charged objects that moves free electrons. Also called voltage or electromotive force. Symbol is \mathbf{E}, unit is the volt (abbreviated V).

power

The rate at which work is done or the rate at which heat is generated (abbreviated P). The unit of power is the watt (abbreviated W), which is equal to one joule per second.

power (real)

The power dissipated in purely resistive circuit components. It is measured in units called watts (W).
power (reactive)
The product of the voltage across and current through purely reactive circuit components. It is measured in units called volis-amperes-reactive (VAR).

power (apparent)

A combination of real and reactive power added vectorially, calculated using total current and total voltage values. It is measured in units called volt-amperes (VA).

power dissipated

Power which escapes from components in the form of heat by the convection of air moving around the component
power rating of a resistor (or component)
How much power a resistor can dissipate (give off) safely in the form of heat in watts.

power supply

A device which is usually plugged into a wall outlet and can replace a battery in many applications by providing a known potential difference between two convenient terminals.

Pythagorean theorem

A mathematical theorem describing the relationships between the lengths of the sides of a right triangle: the square of the length of the hypotenuse of a right triangle equals the sum of the squares of the lengths of the other two sides.

quadrant

One-fourth of a circle.
quality factor (Q)
The ratio of the reactive power in an inductance to the real power dissipated by its internal resistance. It is a measure of the ability of a coil to store energy in its magnetic field and what part of that energy is returned back to the circuit containing the inductance.

Glossary

radian

The angle included within an arc on the circumference equal to the radius of a circle.

rationalization

The conversion of the denominator of a fractional number to a real number

real axis

Customarily the X -axis used to represent real numbers in a complex number system.

reciprocal

Mathematical "inverse". The reciprocal of any number is simply that number divided into one.

rectangular coordinates

A means of identifying an ac quantity with two numbers which define the location of a specific point on a rectangular $X-Y$ coordinate system

reference point

An arbitrarily chosen point in a circuit to which all other points in the circuit are compared, usually when measuring voltages. Also called reference node
relay
A switch (or combination of switches) activated by an electromagnetic coil.

repetitious waveform

A waveform in which each following cycle is identical to the previous cycle.

resistance

Opposition to current flow which is a lot like friction because it opposes electron motion and generates heat. Symbol is \mathbf{R}. Unit is the ohm (Ω).

resonant frequency

A frequency at which a circuit's inductive reactance and capacitive reactance are the same value. At this frequency the circuit is said to be at resonance.
resultant
A vector which represents the sum of two vectors.

root-mean-square

The square root of the mean of squared values. Mean is an average of the sum of the squares of instantaneous values of a voltage or current waveform. Root is the square root of the mean. It is abbreviated rms and is sometimes referred to as an effective value.

root-mean-square (rms) value

An ac voltage value equivalent to the value of a dc voltage which causes an equal amount of power dissipation due to the circuit current flowing through a resistance. The rms value of a sinusoidal waveform is 70.7 percent or 0.707 of its peak amplitude value. RMS value is also referred to as effective value. It is the effective value of an ac voltage that produces the same amount of resistor power dissipation in heat as a specific dc voltage.

rounding off

A procedure by which a number with many digits can be reduced to a number with only a selected number of significant digits. For example, if three significant digit rounding is desired, the first three significant digits are kept, and the fourth examined. If the fourth digit is 5 or greater, the third significant digit is raised by one. If the fourth digit is 4 or less, the first three digits are kept unchanged

scientific notation

A type of shorthand used to keep track of decimal places which utilizes powers of the number 10. Standard form for scientific notation is $\mathrm{D} . \mathrm{DD} \times 10^{k}$, where D represents each of the first 3 significant digits, and Erepresents the exponent, or power of ten.

series circuit

A circuit with only one path through which current can flow.

series-parallel circuit

A group of series and parallel components in which at least one circuit element lies in series in the path of the total current.

short circuit

A path with little or no resistance connected across the terminals of a circuit element

shunt

Another term which means parallel. Often also refers to the low value of parallel resistance used in an ammeter for determining or changing the "range" of the meter.

significant digits

Those digits within a number which have the greatest weight. In the decimal system digits to the left of any designated digit are more significant than those to the right.

sign of a voltage

A notation, either positive (+) or negative (-), in front of a voltage. (Important in solving circuit equations when analyzing circuits and helps determine the voltage that aids or opposes current flow in a circuit, especially a dc circuit.)

sinusoidal waveform

A waveform that can be expressed mathematically by using the sine function. A waveform produced by an alternating current generator which constantly varies in magnitude and direction as determined by the sine trigonometric function.

skin effect

The tendency of high frequency current to flow near the surface of a conductor.

solenoid

A term used to mean coil or inductor, also used to mean a type of relay such as that used to switch the starter current in an automobile.

source

A device, such as a battery or power supply, which supplies the potential difference and electrical energy to the circuit.

square root of a number

A number which must be multiplied by itself to obtain the original number.
square of a number
A number multiplied by itself.

store

A calculator operation where the number in the display is transferred to the memory where it is held until it is recalled. Identified with STO, M + or other such memory keys.

substitute

To replace one part of a formula or equation with another quantity which is its equal.

switch

A device that is used to open or close circuits, thereby stopping or allowing current flow in a circuit or through a component.

symmetrical

Parts on opposite sides of a dividing line or median plane correspond in size, shape, and relative position.

tank circuit

A parallel combination of an inductor and capacitor

terminal

A connection point on a device or component.

Glossary

time constant

The time it takes in seconds for a capacitor to charge up to approximately 63 percent of the applied voltage or the time it takes for a fully charged capacitor to discharge from 100 percent down to approximately 37 percent of full charge. Equal to the product of \mathbf{R} (in ohms) times C (in farads) in a resistive-capacitive circuit. Also a measure of the current rise and fall in inductive circuits. Equal to the quotient of L / R in resistive-inductive circuits, L in henries, R in ohms. Symbol is Ω.

total current

The total current supplied by a voltage source applied to a circuit
transposing (rearranging)
Moving a quantity from one side of an equation across the equal sign to the other side of the equation and changing its sign.

triggering

The act of starting a horizontal sweep on an oscilloscope

trigonometry

The study of triangles and their relationships and functions.

troubleshooting

A technique used to locate a problem in a circuit.

upper cutoff frequency

The end frequency point defining the upper end of the bandwidth. For resonant circuits, the frequency above the resonant frequency at which the effect of resonance is considered to be outside of specified limits.

vector

A line whose length represents a magnitude and whose direction represents its phase with respect to some reference.

vector addition

The sum of two or more vectors.

vertical deflection

The direction the trace on a scope will travel up and down periodically from a center reference point.
volt
The unit of voltage or potential difference. Abbreviated V.
voltage
A measure of the push or potential difference which makes each electron move. Symbol \mathbf{E}. Unit is the volt.
voltage divider
A type of circuitry that provides an economical way to obtain one or several lower voltages from a single higher voltage supply

voltage drop

Change in voltage available between points in a circuit produced by current flow through circuit components that provide opposition to current flow. Also called an IR, IX or IZ drop. Unit is the volt.

voltmeter

An instrument used to measure voltage between two points in a circuit
watt
The unit of power. Abbreviated W. Equal to one joule per second.

waveform amplitude

The height of a measured electrical signal (e.g. sine wave) of voltage, current, or impedance on a scale representing the magnitude of the signal, the signal value.
waveform cycle
A waveform that begins at any electrical degree point and progresses through a 360-degree change.
waveform frequency
The number of waveform cycles occurring within one second of time.
waveform period (also referred to as waveform time)
The time required to complete one cycle of the waveform.

working voltage

The recommended maximum voltage at which a capacitor should be operated.

Index

AC - alternating current, Basic equations, A-8, A-9
Defined, 1-3, 1-6
Generating, 1-3, 1-7, 1-8, 1-9, 1-10, 1-11
Alternating current generator, 1-7, 2-14, 2-15, 2-16, 2-17
Alternating current voltages, 1-5, 1-6
Alternating current waveform,
Defined, 1-5
Generation, 1-3, 1-7, 1-8, 1-9
Measurement of, 3-18, 3-19
Plotting, 1-4, 1-10
Amplitude of sinusoidal waveform,
Converting value, 5-6. 5-7, A-20
Peak, 2-5
Peak-to-peak, 2-5
RMS, 2-6, 2-7
Versus phase 4-17
Arctangent function, 7-15, 7-16
Autotransformer, 8-25
Axis,
Imaginary, 12-6
Real, 12-6
Bandwidth, 14-11 through 14-16
Bandwidth and frequency response, 14-22
Basic ac electricity equations, A-8, A-9
Basic de electricity equations, A-7
Capacitance,
Calculation of, 6-7, 6-8
Defined, 6-3
In parallel, 6-22
In series, 6-21
Standard Values, 6-7
Capacitive circuit phase relationship, 6-14
Capacitive reactance,
Analysis using, 6-17
Defined, 6-16
Equation, 6-16
In parallel, 6-20
In series, 6-19
Versus inductive reactance, 14-3

Capacitive unit, 6-7
Capacitor,
Air, 6. 11
Ceramic disc, 6-9
Charge, 1-3, 10-4, 10-5
Charging of, 6-4, 6-5
Current, 10-3, 10-4
Dielectric constant, 6-8
Discharging, 6-5, 10-6, 10-7
Electrolytic, 6-10, 6-11
In ac circuits, 6-13
In dc circuits, 6-13
Leakage current, 6-12
Paper, 6-9
Schematic symbol, 6-3
Types, 6-9, 6-10, 6-11
Values of, 6-6
Voltage rating, 6-8
Changing directions of current flow, 1-10
Coefficient of coupling, 8-16, 8-17, 8-21, 8-23
Coil, 8-6, 8-7, 8-8, 8-9, 8-10, 8-11, 8-15, 9-21
Color Codes, A-22 through A-27
Complex numbers,
Conversion of rectangular to polar, 13-9
through 13-15
Defined, 12-7, 13-3
Rectangular form, 13-5. 13-6, 13-7
Polar form, 13-7
Complex problem analysis, 12-19, 12-20, 12-21
Constant, 0.707, 2-7
Conversions,
Peak to peak-to-peak and rms, 5-6, 5-7, A-2
Time to frequency 1-16
Time to time constants, $\mathbf{1 0 - 1 3}, 10-14$
Coordinates x and $y, 12-3$
Cosine theta, 2-13, 2-20
Coulomb, 6-6
Counter EMF, 8-7
Current magnification, 14-18
Cycle,
Alternations, 1-11
Defined 1-13
1dentification, 1-12

Index

DC-direct current,
Basic equations, A-7
Defined, 1-6
Waveform, 1-6
Dielectric,
Constant, 6-8
Materials. 6-8
Strength. 6-9

Effective value, (See RMS.)

Electromagnetic induction, 1-8
Electron current flow, 8-3
Equivalent first-quadrant angles, A-10
Extracting square root using a
calculator. A-15
Farad, 6-6
Faraday, Michael. 8.3
Frequency of waveform,
Calculation, 1-16
Defined, 1-14
Equation, 1-16, 3-18
Prefixes, 1-15
Unit. 1-14
Frequency response,
And bandwidth, 14-22
Changing, 14-14, 14-15, 14-16, 14-23, 14-24
Factors, 14-10
Graphing, 14-10
Greek alphabet, A-5
Half-power points, 14-13
Hertz, 1-15
Impedance, 6-15, 7-6, 7-11, 7-18, 7-22, 7-23, 9-4, 9-5, 9-11, 9-16, 9-18, 13-3, 13-8, 13-9. 13-10, 13-11, 14-5, 14-9, 14-17, 14-21
Inductance, 8-5, 8-6, 8-7, 8-8, 8-9, 8-10, 8-11
Inductive reactance, 8-27, 8-28, 8-29, 14-3
Inductor, 8-6, 8-7, 8-9, 8-10, 8-18, 8-30
Instantaneous current, 4-7, 4-8, 5-4, 10-14, 10-16, 10-24, 10-25
Instantaneous sine wave values, 4-3, 4-4, 4-5, 4-9
Instantaneous voltage, 4-3, 4-4, 4-5, 4-9, 4-10, 4-11, 5-3, 5-4, 10-14, 10-16, 10-24, 10-25

J-operator,
Circuit analysis using, 13-8 through 13-16
Introduction to. 12-9 through 12-21
Math operations in volving, 13-5
Writing impedance with, 13-3, 13-4, 13-5
L/C ratio, 14-15, 14-16, 14-23
Leakage current. 6-12
Left-hand rule for conductors, 8-5
Left-hand rule for generators, 1-8, 1-9
Magnetic lines of force, 1-8
Metric prefixes, A-16
Mutual inductance, 8-15, 8-16, 8-17, 8-18, 8-19
Negative numbers, 12-5, 12-6
Oersted, Hans, 8-4
Ohm's law, 2-7, 7-12, A-7
Oscilloscope.
Basic. 3-4
Control circuits. 3-6
CRT, 3-4
Electron gun, 3-4
Horizontal controls, 3-15, 3-16
Horizontal positioning and triggering, 3-16
Horizontal sweep, 3-15, 3-16, 3-17
Mainframe controls, 3-7, 3-8, 3-9
Screen. 3-6
Vertical controls, 3-9, 3-10, 3-11, 3-12
Vertical deflection, 3-12, 3-13
Voltage measurements, 3-12
Parallel capacitive ac circuit, 6-20, 6-22, 6-25, 6-27, 6-28
Parallel inductive ac circuit, 8-32, 8-33
Parallel inductors, 8-14, 8-15
Parallel resistive ac circuit, 5-12, 5-13
Parallel resistive-capacitive ac circuit, 7-20, 7-21, 7-22, 7-23, 7-24, 7-25, 7-26
Parallel resistive-inductive ac circuit, 9-14 through 9-20
Parallel resonance, 14-16 through 14-24
Parallel resonant circuit, 14-16 through 14-24
Parallel RLC circuits, 11-12 through 11-18
Parallelogram method, 7-5
Peak amplitude, 2-5

Peak, peak-to-peak, rms conversion chart, A-20
Peak, peak-to-peak, rms conversions, 5-6. 5-7
Peak-to-peak amplitude, 2-5
Period. (See Time of waveform.)
Phase,
Anmplitude versus, 4-17
Difference, 4-15, 4-16, 4-17, 11-3
Frequency versus, 4-16
In phase, 4-14
Out of phase, 4-14
Relationships, 4-13, 4-14, 5-7, 5-8, 6-14, 6-15, 9-3, 14-6
Phase angle,
At resonance, 14-6
In parallel RC circuit, 7-26
In parallel RL circuit, 9-17, 9-19
In parallel RLC circuit, 11-15, 11-17
In series RC circuit, 7-14, 7-15, 7-16, 7-17
In series R1. circuit, 9-9, 9-10, 9-11, 9-12
In series RLC circuit, 11 -7, 11 -8, 11-11.11-12
Phasor addition, 9-4, 9-15
Phasor algebra, 12-3, 13-3 through 13-16
Phasor diagram, 11-3, 11-10, 11-4. 13-15, 13-16
Phasor magnitude, 4-20
Phasor notation, 4-17, 4-18, 4-19, 4-20. 4-21, 4-22
Ploting an ac generator output waveform, 1-10.1-11
Polar coordinates, 12-7, 12-8, 12-9, 12-15, 12-17, 12-18
Polar form, (See Complex numbers.)
Power.
Apparent, 5-17,5-18,5-19, 7-18
Reactive, 5-17, 5-18
Real, 5-17, 5-18, 7-18
RMS, 5-18, 5-19
In parallel RC circuit, 7-27, 7-28, 7-29
In parallel RL circuit, 9-20
In parallel RLC circuit, 11-15, 11-18
In series inductive circuit, 8-33, 8-34
In series KC circuit, 7-18, 7-19
In series RL circuit, 9-12, 9-13, 9-14
In series RLC circuit, 11-8, 11-9, 11-12
Transformer, 8-23
Pythagorean theorem, 7-8, 7-9

Q of a circuit,
Calculation of, 14-10
Defined, 14-7
Measurement of, 14-8
Relationship to bandwidth, 14-12
Q of a coil, 9-21, 9-22, 9-23
Q of a parallel resonant circuit, 14-18,
14-19, 14-21
Radian, 4-11, 4-12, 4-13
Rate of change (ROC),
Equation, 8-12, 8-13, 8-30
Of $E_{C}, 6-14$
Versus frequency, 6-16
RC time constant.
Calculation, 10-9
Defined, 10-8
Related to Kirchoff's voltage law, 10-17
Reactance, (See Capacitive reactance and
Inductive reactance.)
Reactive power, 6-26
Real and imaginary axes, 12-6
Rectangular coordinates, 12-9, 12-13, 12-14, 12-15, 12-17, 12-18
Rectangular form, (See Complex numbers.)
Relationship of ac and dc waveforms, 2-9
Resistor in ac and dc circuits, 6-13
Resonance,
Basic equations, A-21
Concept of, 14-3
Series, 14-5, 14-6
X_{L} at, 14-9
Resonant frequency, 14-4, 14-9, 14-12, 14-16, 14-20
Right-hand rule for generators, 1 -10
Right triangle,
Functions, 2-13, A-10
Relationships, 2-11, 2-12
R1. DC circuit analysis, 10-18 through 10-25
RMS (root-mean-square) amplitude,
Conversion, 5-6, 5-7, A-20
Defined, 2-6
Rotating ac generator, 2-14, 2-15. 2-16

Schematic symbols, A-6
Scientific notation, A-16
Self-inductance, 8-7, 8-11
Series capacitive ac circuit, 6-18, 6-19, 6-21,
6-23, 6-24, 6-27
Series inductive ac circuit, 8-31, 8-32
Series inductors, 8-14
Series-parallel resistive ac circuit. 5-14, 5-15, 516
Series RC ac circuit, 7-3, 7-4, 7-9, 7-10, 7-11 7-12, 7-13, 7-14
Series-resistive ac circuit, 5-9, 5-10, 5-11
Series resonant circuit, 14-8 through 14-16
Series RL ac circuit, 9-3, 9-4, 9-5 through 9-14
Series RLC circuit 11-3 through 11-17
Sine function,
Defined, 12-16
Related to an AC waveform, 2-13
Sine theta defined, 2-13
Single loop rotary generator, 1-9
Sinusoidal waveform.
Defined, 2-17, 4-8
Plotting a, 4-5
Related to AC waveform, 2-12
Versus non-sinusoidal waveform, 4-8, 4-9
Square roots of negative numbers, 12-5, 12-6
Square root table, A-12, A-13, A-14
Tangent function, 2-13, 7-14, 7-15
Theta, (See Sine function, Tangent function, and Cosine function.)
Time constant. (See RC time constant.)
Time constant chart, (See Universal Time Constant Chart.)
Time of waveform,
Calculation, 1-16, 2-4
Equation, 1-15, 2-4
Transformers,
Autotransformers, 8-25
Basic construction, 8-19
Current relationship, 8-23
Efficiency, 8-24
1 solation, 8-24, 8-25
Lead color code, 8-26, A-14
Multiple-secondary, 8-26
Specifications, 8-26, 8-27
Step-down, 8-20

Step-up, 8-20
Turns ratio versus voltage, 8-20, 8-21, 8-22
Variable-output, 8-26
Trigonometric functions, 2-13. A-10
Trigonometric table,
Use of, 2-18
0° to 90° functions, A-11
Trigonometry,
Defined, 2-11
Turns ratio, 8-20
Unit conversion charts, A-2
Universal Time Constant Chart.
And DC: RL circuit, 10-23
Defined, $10-10$
Diagram. 10-10, A-17
Exponential characteristic of, $\mathbf{1 0 . 1 1}$
Related circuit current and $E_{k}, 10-11$
Related to E_{c}, 10-11
Using, 10-12, 10-15, A-18. A-19
VAR,
Defined, 6-26
Variable inductors, 8-9
Vector,
Addition, 7-5, 7-6, 7-7
Defined, 4-18
Location, 12-4
Multiple, 4-21
Kotating, 12.5
Solutions, 4-20, 4-21, 4-22, 7-7
Voltage magnification, 14-7
Voltage phasor diagram, 9-10
Volts-ampere-reactive, (See VAR.)
Waveform amplitude, 2-4, 2-5, 2-6, 2-7
Waveform cycles,
Alterations, 1-11
Defined, 1-13
Frequency, 1-14, 2-3
Identification, 1-12
Non-standard, 1-12
Time, 1-15, 2-3, 2-4
Waveform frequency, (See Frequency of waveform.)
$X-Y$ coordinates, 12-3

About the book - "Basic AC Circuits":

Basic AC Circuits is a stand-alone text. It is the second part of the BASIC ELECTRICTTY SERIES and is a natural and recommended follow-on to the first part - Basic Electricity and DC Circuits. Students, technicians and beginning engineers can casily apply the comprehensive, mathematics-oriented de concepts for the study of ac. This bonk is designed to improve your: analysis techniques so that you can ultimately predict ance control ac circuit behavior in a system. And, like the de book, new concepts and terms and the necessary mathematics are introduced as needed, with illustrative examples. While the text is designed to encourage self-paced, individualized learning, it is also an ideal too? for classivom instruction. Detailed objectives begin each lesson. You'll see what new skills you should have, and what new things you will be able to accomplish with the successful completion of the current lessim. Examples throughout each lesson illustrate the use of basic concepts and principles as you learn them. Basic concepts are then applied to practical problems so that solutions become more apparent. You can analyze the examples or try a problem of your own. A quiz at the end of each lesson aliows personal evaluation of progress. This text, along with the Texas Instruments Learning Center videotape course, BASIC AC CIRCUITS, provides a solid foundation for the student interested in advancing to the studies of physics, electronics, computer science and engincering.

About the Authors -

STANLEY R. FULTON has ten years of industrial experience and ten years of community college teaching experience. His bachelor's and master's degrees are from the University of Arkansas and his doctorate is from East Texas State University. He is currently an instructor at Mountain View College of the Dallas County Community College District.
JOHN CLAYTON RAWLINS has taught digital and linear electronics technology courses at the post-secondary level for the past nine years. He received his BS in electrical engineering from Southern Methodist University and MS in vocational education from East Texas State University. He is currently an instructor at Eastfield College of the Dallas County Community College District.

