FORWARD

The Calectro Semiconductor Project Book consists of nine state-of-the-art projects; each intended to be of interest to the beginner as well as the experienced hobbyist. The projects selected are all of general interest, varying from a simple decade counter to a complex frequency generator.

Each project describes the theory of operation, as well as providing printed circuit board layouts, detailed drawings for suggested enclosures, and intended applications. If normal care in construction is followed, you should find many hours of enjoyment in building your own circuits and employing them in your own creative applications.

Edited by Gary S. Ebens

๙
 CONTENTS

PAGE NO.
CRYSTAL TIMEBASE 4
CALECTRO C-MOS DECADE COUNTER 6
SCA DECODER 12
CALECTRO DUAL POWER SUPPLY 18
SUPER CLOCK 24
CALECTRO FREQUENCY COUNTER 36
CALECTRO C-MOS DIGITAL THERMOMETER 46
DELUXE WAVEFORM GENERATOR 60
CALECTRO DVM 75

All circuits have been built and thoroughly tested, but we cannot assume responsibility for their function or consequences of application.

CRYSTAL TIME BASE

This project provides various timing pulses which can be used whenever a clocking function is needed, such as the decade counter project. It will give you six different outputs starting at one cycle per second (1 Hz) and increasing by multiples of 10 up to one million cycles per second (1 MHz). The amplitude or voltage of the output will always equal the supply voltage, which can be varied between 4 and 15 volts. Accuracy of the time base is . 005 of one percent. Once the temperature of the crystal is stabilized, Cl may be adjusted to compensate for the tolerance so that the 1 MHz output is achieved. Referring to the schematic (Fig. 1); ICl, CXI and their associated components make up the 1 MHz oscillator. The output, which is a square wave, is fed into IC2, the first divide by 10 counter. The output of IC2 will be 100 KHz , which is in turn fed into IC3. This process of dividing by 10 continues until the lhz output is achieved at the output of the sixth divide by 10 counter. In some applications it may be unnecessary to divide down to 1 Hz . In these cases you may eliminate all J4-4029's not required without affecting the circuit performance.

Fig. 1 Schematic

This project may be constructed on perforated board or perferably on a printed circuit board. The PC board may be produced by using our new J4-828 Lift-It kit and the layout supplied. (See page81)Figure 2 shows the component placement for the PC board. Install resistors R1 \& R2, capacitors Cl-C3, crystal $\mathrm{CX1}$, and all jumpers prior to installing the I.C.'s. It would be advisable to use I.C. sockets although it isn't mandatory.

Be sure to follow C-MOS handing instructions before removing I.C.'s from display card. After the assembly is completed check to see that all components are installed correctly and that there are not any solder bridges.

If accuracy of greater than .005 of 1 per cent is desired, attach a frequency counter to the lMhz output and adjust Cl to obtain exactly lMhz.

Fig. 2 Component Layout

*=JUMPER WIRE

PARTS LIST

SYMBOL
IC 1
IC2-7
Up/Down Counter

PARTS LIST (CONT.)

SYMBOL	DESCRIPTION	CALECTRO NO.
CXI	1 MHz Crystal	J4-1900
C1	4-40 pf Capacitor	A1-246
C2	68 pf Capacitor	A1-005
C3	10 pf Capacitor	A1-001
All resistors $1 / 2$ watt 10% tolerance		
R1	$22 \mathrm{M} \mathrm{(GC} \mathrm{No)}$.	26-152
R2	8200	B1-395

CALECTRO C-MOS DECADE COUNTER

This project consists of a very versatile decade counter and LED readout, with the option of choosing between a . 3 inch or .6 inch readout. The counter utilizes a J4-4029 pre-settable up/ down; binary/BCD decade counter and a J4-4511 BCD to 7 segment decoder latch, and driver, both C-MOS devices. Either the J4-903 2/3" or J4-901 $1 / 3^{\prime \prime}$ seven segment common cathode LED display can be used. J4-645 Digi-Klips greatly simplify construction, eliminating point to point wiring between PC board and readout, and providing means for display mounting. (Fig. 1)

Fig. 1 Digi-Klip Layout

DIGI-KLIPS MOUNTED ON FOIL SIDE OF PC BOARD

This project can be built on perforated board (J4-616) or preferably the printed circuit boards may be produced by using our new J4-828 Lift-It kit and the supplied full size layouts (Fig. 3) (see pages $83,85, \& 87$) The printed circuit layout for the display boards is shown for the mounting of six LED's. This can be expanded or reduced to meet whatever requirements you have.

Figure 3 shows the component placement for the counter board. All jumpers and resistors should be installed prior to installing IC's. It would be advisable to use sockets for the IC's although it isn't mandatory. Be sure to follow C-MOS handling instructions when attaching IC's to the printed circuit board.

Values for resistors R1-R8 are determined by the voltage that is used. The counter can be operated from any voltage ranging between 3 and 15 volts DC.

The table below gives you values for three typical voltages. If voltages other than these three are to be used, set the value for R1-R8 so that there is approximately 10-15 mA flowing thru each segment of the LED.

VOLTAGE
 VALUE FOR R1-R-8

5 V	1000 HM
10 V	4700 HM
15 V	680 HM

Fig. 3 Component Layout

Jumpers shown provide down count assuming there is a input to the clock.

The J4-4029 has various inputs which must be connected to either ground (low, Vss) or positive (high, Vdd) depending upon the operations you want it to perform. Binary counting is accomplished when the Binary/Decade input is "high"; the counter counts in the decade mode when the Binary/Decade input is low. For use with our 7 segment readouts this input should be "low". The counter counts "up" when the up/down input is "high". A "high" on the Carry In will inhibit the advancement of the counter. The Carry Out output may be left floating, (unconnected) when not in use, or must be connected to the Carry In input of next counter when more than one counter is used, (Fig.4). The four Jam Inputs are used to preset, or reset, the counter to any state. Jam Input \#1 controls output Q1, Jam Input \#2 controls output Q2, and etc. Input states of the Jam Inputs are transfered to their respective Q output when the Preset Enable is "high". Refer to Truth Table X for proper biasing of Jam Inputs to obtain desired display. All Jam Inputs must be tied "low" when not used.

The Preset Enable must be "low" while counting, and "high" when a reset or preset is desired.

Table X

	Jam		4	3	2	1	Display
			0	0	0	0	5
			0	0	0	1	1
			0	0	1	0	
			0	0	1	1	
			0	1	0	0	4
			0	1	0	1	E
			0	1	1	0	1
Valid only when Preset			0	1	1	1	
Enable is high			1	0	0	0	θ
1=positive							
$\mathrm{O}=$ ground			1	0	0	1	-
			1	0	1	0	Blank
			1	0	1	1	Blank
			1	1	0	0	Blank
			1	1	0	1	Blank
			1	1	1	0	Blank
				1	1	1	Blank

Fig. 4 Parallel Clocking

Note: Parallel Clocking must be used when switching the Up/Down mode during a $\mathbf{0}$ or $\overline{9}$ count.

The J4-4511 has three inputs which must be tied to either ground or positive. Referring to Truth Table Z the Latch Enable (LE) must be tied "low" to show the counting sequence on the display, a"high" on the LE will hold the last number shown on the display prior to trying L.E "high". This is used in applications such as frequency counters and digital voltmeters where only the final count is desired. The Blanking Input ($\overline{B I}$) should be tied high. A "low" on the BI will shut off the display. This may be used in a "standby" condition to conserve power. Upon returning the BI to a "high" state the display will show the most recent information in the latches. The Lamp Test (LT) is used only for that purpose, to test the LED's. It should be tied "high" normally. A "low" on the [T will display an eight on the LED. Remember, these three inputs to the J4-4511 only affect the display. They do not inhibit the internal counting functions of the I.C.'s.

Table Z

TRUTH TABLE

LE	$\overline{B 1}$	$\overline{\text { LT }}$	D	C	8	A	a	b	c	d	e	f	9	Display
x	x	0	X	x	x	x	1	1	1	1	1	1	1	\square
X	0	1	x	X	x	x	0	0	0	0	0	0	0	Blank
0	1	1	0	0	0	0	1	1	1	1	1	1	0	
0	1	1	0	0	0	1	0	1	1	0	0	0	0	
0	1	1	0	0	1	0	1	1	0	1	1	0	1	
0	1	1	0	0	1	1	1	1	1	1	0	0	1	
0	1	1	0	1	0	0	0	1	1	0	0	1	1	1
0	1	1	0	1	0	1	1	0	1	1	0	1	1	
0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	0	1	1	1	1	1	1	0	0	0	0	
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	
0	1	1	1	0	1	0	0	0	0	0	0	0	0	Blank
0	1	1	1	0	1	1	0	0	0	0	0	0	0	Blank
0	1	1	1	1	0	0	0	0	0	0	0	0	0	Blank
0	1	1	1	1	0	1	0	0	0	0	0	0	0	Blank
0	1	1	1	1	1	0	0	0	0	0	0	0	0	Blank
0	1	1	1	1	1	1	0	0	0	0	0	0	0	Blank
1	1	1	x	x	\times	x				-				-
$\mathrm{X} \equiv$ Don't Care														

Note: Display is blank for all illegal input codes (BCD >1001).

With the addition of J4-4011, inputs for both a "Clock Up" and a "Clock Down" can be easily realized as shown in Fig. 5. When using this configuration and counting "up" the "Clock Down" input must be maintained "high" and conversely when counting "down" the "Clock Up" input must be tied "high".

Fig. 5

Conversion of "clock up", "clock down" input signals to "clock" and "up/down" input signals.

Schematic

PARTS LIST

SYMBOL	DESCRIPTION	CALECTRO NO.
IC 1	Up/down counter	J4-4029
IC2	Decoder Driver	J4-4511
R1-8	Resistor	See text
D1	LED	J4-903 or J4-901
QTY.	MISCELLANEOUS	
1 pkg	Digi-K1ips	J4-645
1	PC board	J4-604

SCA DECODER

How would you like to listen to music on your FM radio without any commercials; light classics or modern ballads without interruption, hour after hour?

These programs are transmitted on commercial FM stations every day. However, they are hidden in a special sub-carrier, mixed in with the commercial programming signal, and are undetected by your FM receiver.

The FCC has allowed FM broadcasters to transmit this subcarrier to stores, supermarkets, and businesses who are interested in a continuous flow of soft background music. The broadcaster rents the special decoder to the store. It's illegal for a commercial establishment to decode these programs without the consent of the broadcaster. However it is perfectly all right to listen to these programs privately for your own pleasure.

The sub-carrier is called an S.C.A. channel, and is usually a 67 KHz FM modulated signal with a 14 KHZ bandwidth. Some broadcasters use a 47 KHz carrier, provided they're not transmitting stereo.

Just a few years ago it would have required several tuned circuits and a fist full of transistors to build an S.C.A. decoder. Now, with the advent of the phase-lock loop circuit I.C., a decoder can be built with just one integrated circuit and its associated components.

Referring to the schematic (Fig. l), Jl picks up the composite audio signal from your FM tuner. Here a high pass filter attenuates the low frequency components of the signal. The signal is then fed into the input of the phase-locked loop. The J4-1210 consists of a phase detector or comparator, a voltage controlled oscillator, an amplifier, and a low pass filter. (Fig. 2) The VCO is set to 67 KHz by the adjustment of R1. This frequency is then compared to the incoming frequency by the phase comparator. If there is a phase difference, indicating the incoming frequency is
changing, the phase detector output voltage increases or decreases just enough to keep the oscillator frequency the same as the incoming frequency, preserving the locked condition. The changing output of the phase comparator is actually the demodulated audio signal. This signal is then amplified and passed through the internal low pass filter and the external three stage low pass filter to provide de-emphasis and attenuated the high frequency noise that often accompanies SCA transmission.

Fig. 1 Schematic

Fig. 2

Since the output of the PLL is approximately 50 mV this must be amplified again to achieve a output signal of significant amplitude to drive the inputs of the pre-amplifier of your stereo. Q1 , Q2 and their associated components provide this function.

This project may be built on perforated board (J4-616); or preferably the printed circuit board may be produced by using our new J4-828 Lift-It kit and the supplied full size layout Fig. 4 (see page 89)

Referring to the component layout (Fig. 4) assemble all resistors and capacitors to the PC board first, followed by the semiconductors and integrated circuit. Be sure to observe polarities of all electrolytics. The center tap wire of transformer $T l$ may be clipped off.
The PC board can be mounted in a H4-742 aluminum chassis box. It provides a very compact attractive enclosure and also provides very effective RF shielding. The chassis layout (Fig. 5) shows dimensions for mounting PC board, AC cord, and RCA jacks. Use 4-40 mounting hardware and $1 / 4^{\prime \prime}$ or $3 / 8^{\prime \prime}$ spacers for securing PC board to chassis. Use shielded cable between the PC board and the input and output jacks.

Fig. 5
Chassis Layout

The input of the SCA adapter is connected to the tuner section after the ratio detector or discriminator and ahead of any de-emphasis circuitry. Fig. 6 shows a typical connection. Output of the adapter is connected to either the auxillary or tape monitor input on the rear of receiver or amplifier. Adjust potentiometers R9 and R19 to mid-point and plug SCA adapter into 120VAC outlet. Scan the FM dial. The regular F M broadcast may be picked up but it will sound very distorted. Once a SCA station is tuned in adjust R9 and R19 for maximum sound clarity. The most simple way to locate a SCA station would be to contact a local radio station and ask them at what frequency SCA is broadcast in your area.

Fig. 6 Typical Hookup

Ratio Detector
Section

PARTS LIST

SYMBOL	DESCRIPTION	CALECTRO NO.
D1	1.5 Amp Bridge	J4-1605
C1	1000 mfd 25 V Electrolytic	A1-133
C2	220 mfd 12 V Electrolytic	A1-113
C 3	4.7 mfd 12 V Electrolytic	A1-103
C4, C5	470 pf	A1-013
C6, C7	. 001 mfd	A1-026
C8	. 02 mfd	A1-030
C9, C10	. 05 mfd	A1-031
C11	. 01 mfd	A1-029
C12, C13	10 mfd 12 V Electrolytic	A1-104
IC 1	Phase-locked loop IC	J4-1210
J1, J2	RCA Jack	F2-806
Q1, Q2	NPN Audio	J4-1644
Q 3	Darlington Amp	J4-1634
All resistors $1 / 2$ watt 10% tolerance		
R 1	100 Ohms	B1-372
R2	22,000 0 hms	B1-400
R3-R6	4,700 0 hms	B1-392
R7	10,000 0hms	B 1-396
R8, R 17	1,800 0 hms (G.C.Part No.)	26-052
R9	2K Trim Pot	B1-643
R10-R12	1,000 0hms	B1-384
R13	$100,0000 \mathrm{hms}$	B1-408

CALECTRO DUAL POWER SUPPLY

Need a dual power supply to power OP-AMP's or MOS shift registers or memories while you work with them on the bench? Build this dual regulated supply, featuring current limiting at 100 mA . Two independent supplies, variable from 3 to 20 VDC are included in one cabinet, with a common switchable voltmeter. Because the supplies are separate, they may be used to power two different circuits or strapped to supply, for instance, +5 V and -12 V .

LAYOUT AND ASSEMBLY:
Refer to the illustrations. Layout and mount front panel parts first.

Fig.A Front Panel Layout

Load and solder the $P C$ boards next (make your boards from the enclosed foil pattern). (Fig.5) (see page 91) Mount the L-brackets to the boards.

Fig.B P.C. Layout

Now position and drill for all bottom and rear chassis parts.

Fig.C Chassis Wiring

Mount all components except the PC boards. Cut and tape the red/yellow transformer leads. Wire and solder all connections except to PC boards. Allow enough wire length to reach the boards. Check your wiring carefully. Now solder all connections to the PC boards following the letter designations shown on the PC layout and chassis wiring diagram. Mount the PC boards to the chassis.

ADJUSTMENTS:

1) Set the green 10 K OHM trimmer pots to mid range.
2) Set voltage - adjust pots P-1 and P-2 counterclockwise.
3) Put meter switch in position "A".
4) Apply power and turn on supply.
5) Adjust pot on board PC-1 for a meter reading of 3.0 V . Do not turn pot to its full extremity.
6) Turn voltage adjust pot P-1 slowly clockwise. Voltage should increase to over 20 V .
7) Set voltage with P-1 to 20V. Apply a 220 0HM 2 W load resistor to Jl-J2. Voltage should not drop more than 0.5 V .
8) Repeat steps 3 and 7 for position "B" and J3-J4.

Fig.D Schematic

N.C. $=$ NO CONNECTION

то
OTHER BOARD

USE:
For most applications, strap jacks J2 and J3 for "Common" or "ground" connections, using Jl for "+" and J4 for "-". Do not parallel the jacks. If you need more current, do the following: Move transistor $Q-1$ to the chassis, mounting it with a thermal washer and pad. Extend wire leads from the $P C$ board to the transistor. Change R-1, -2 to smaller values (use 1 watt resistors). Current limiting takes place when the voltage across these resistors reaches 0.65 V . For example, a pair of 3.30 HM resistors for R-1, - 2 will current-limit at 0.39 A . Do not use smaller values than 3.3 OH Make these changes for both boards.

PARTS LIST

SYMBOL

J1, J2, J3, J4
F-1
PL-1
SW-1
M-1
P-1, P-2
SW-2
T-1, T-2
PC-1, PC-2
C-1
Q-1
P-3
$D-1, \quad D-2$

B-1
C- 2
IC-1
D-3, D-6
R-3
R-1
R-2
C-3
QTY.
1
1
1
2
1
1

CALECTRO NO.

F2-926
E2-495
E2-420
E2-119
D 1-923
B1-683
E2-160
D1-752
A1-155
J4-1649
P-3
J4-1610

J4-1605
A1-013
J4-1 200
J4-1600
B1-384
26-002
B1-362
A1-103

H4-747
L3-717
L3-770
D2-127
E2-705
E2-710
J4-641

SUPER CLOCK

Prior to the introduction of integrated circuits, construction of a digital clock would have been a hopelessly complicated task, requiring hundreds of parts and a maze of wiring. Then, in the early 60's as the first integrated circuits became available containing basic logic gates, counters and flip-flops, a digital clock could be constructed using just 12-15 IC's. As a result, many digital clock projects were published in the electronics magazines. However, with these 12-15 IC's you could build only a basic clock. And it cost in the neighborhood of seventy five dollars to purchase the parts.

Now with the introduction of large scale integration, digital clock circuitry has undergone a dramatic cost and size reduction. The J4-4900 L.S.I. integrated circuit contains all of the. functions of those 12-15 IC's in just one 28 pin package, and thats just the beginning of the story.

In addition to the basic 6 digit clock, the "chip" contains a calendar which is alternately displayed, a 24 hour alarm, with 10 minute snooze delay, and a 10 hour timer.

Let's take these one at a time. The calendar is displayed for 2 seconds, then the time for 8 seconds. The date is displayed as two numbers; thus May 15 becomes 5 15. Once you set the correct date, the proper number of days are counted for each month. The calendar must be corrected only once every leap year when February contains 29 days instead of the usual 28 days.

The 24 hour alarm can be preset for any time A.M. or P.M. and will sound only at this time. Pressing the snooze switch shuts off the alarm for ten minutes after which it again sounds. Another switch turns off the alarm.

The 10 hour timer can be preset to any time interval of 1 minute - 9 hours 59 minutes. When the timer switch is activated, the timer counts down one minute at a time until it reaches zero. With the addition of the relay board of Fig. 5 page 33
you can use the timer or the 24 hour alarm to turn on any device for a specified interval or to turn on the device after a preset time interval.

CONSTRUCTION

Constructing the digital clock is quite simple due to use of two circuit boards, one for the main circuit, and one for the six digit display. The full size patterns of figure 1 \& figure 2 can be duplicated with the Calectro Lift-It kit, (Fig 6 \& Fig 7). (See Pages 93 \& 95) After you have etched and drilled both boards insert and solder all parts following the illustrations. Be certain that all diodes, IC's and transistors are correctly oriented before soldering them into place. It is strongly recommended that you use a socket for the clock chip, as the IC is susceptible to damage from static electricity. Carefully insert the IC into the socket after all parts have been mounted to the board and all connections made between the boards and the swtiches. Handle the clock chip by the ends, avoiding as much as possible touching the pins.

The many connections between the boards and the switches are letter coded. Example: point K on the main circuit board is connected to point K on the display board. You should have no trouble making these connections if you carefully follow the illustrations.

You can enclose the clock in any suitable case. We assembled ours in the Calectro H4-747 case which we trimmed down in height to give the clock a modern, low profile. Mount the display to the base of the cabinet with brackets and cover the display surface with clear or red transparent plastic. GC 22-294 rubylith is a flexible film which is ideal as contrast increasing filter for the display. However, since the film is flexible it will require a clear plastic backing of some type.

The relay board is not shown installed in the clock but if you wish to add this feature make the connections between this board and the main circuit board as shown and mount the relay board wherever convenient.

Referring to figure 3 , setting any function is very simple. Just rotate the rotary switch to the desired function, push down the momentary hour/month switch and the hour digits will advance at one count per second. Release the button when the desired number is reached. Then depress the min. / day switch until the desired number is displayed. Each function is independently set and will not affect any other setting. The other switches perform as labelled. Close the alarm switch and the alarm will sound at the preset time. Push the snooze button momentarily and the alarm ceases for 10 minutes. The $12 / 24$ hour mode switch selects conventional 12 hour timing or the 24 hour format. The alternate/clockonly switch selects either the alternating time and calendar display or clock-only display. The timer switch actuates the timer countdown.

Well, there you have it. A digital clock that is much more than just a clock. We think that after you build it and check out the many features it contains, you will see why we call it the "Super Clock".

DIGITAL CLOCK PARTS LIST

SYMBOL
R1
R2
R3, R8,R15-R29
R4, R30
R6, R7
R9-R15
R31
R32
R33
R5
C 1
C2
C3
D1, D6-D17
D2, D3
D4
D5
Q1
Q2
Q3

DESCRIPTION
68 ohm
460 ohm
22 K ohm
27 K ohm
1 K ohm
47 ohm
5.6 K ohm
4.7 K ohm

22 ohm
10 K ohm
1000 uf. 25 V
220 pf. silver mica .01 uf. disc.
Silicon signal diode
Silicon diode
$9 V$ zener diode
12V zener diode
PNP power transistor
NPN transistor
NPN darlington trans.

CALECTRO NO.
*26-020
*26-042
B1-400
B1-401
B1-384
B1-368
*26-066
B1-392
B1-365
B1-396
A1-133
Al-008
Al-066
J4-1610
J4-1600
J4-1620
J4-1622
J4-1648
J4-1628
J4-1634

IC1	7001 clock/calendar	J4-4900
IC2, IC3	Quad digit driver	J4-970
IC4	Hex digit driver	J4-971
SW1-SW3	SPST momentary switch	E2-140
SW4, SW5, SW7,	SPST miniature	
SW8, SW6	toggle switch 2 pole 5 position	E2-116
SW8	rotary switch	E2-163
DY1-DY6	. 3" 7 segment display	J4-901
SP1	Miniature speaker	S2-215
S01	28 pin IC socket	F2-1006
LED1, LED2	Light Emitting Diode	J4-940

MISCELLANEOUS

QTY.

1
1 Ass't.
1 Ass't.
1
1
1
1
1

Hook-up wire
L3-633
Mounting Hardware
Spacer assortment
Rubylith film
Line cord
Blank copper board Knob Cabinet

J4-834
J4-846
*22-294
L3-717
J4-604
E2-705
H4-747

* Indicates

GC part, not offered in Calectro

Relay Board Parts List

| RY1 | |
| :--- | :--- | :--- |
| Q4 | |
| R31 | |
| R35 | |
| S01, | S02 |

12 Vdc relay
D1-967
NPN Darlington transistor
J4-1634
100K $\frac{1}{2}$ watt resistor
B1-408
$22 \mathrm{~K} \frac{1}{2}$ watt resistor
B1-400
SO1, S02
F3-100

Fig. 2 Component Placement
$\mathbf{J}=$ indicates jumper wire
Components shown by dotted lines are mounted to component side of board.

You will have to remove two leads from Displays before inserting them into board

Fig. 5 Relay Board Assembly

To point To point RR

(See page 97 Fig. 8
For full size P.C. pattern)

Fig. 6 Schematic

CALECTRO FREQUENCY COUNTER

The frequency counter is a recent addition to the range of test equipment available to the serviceman and hobbyist. This device, made possible with the introduction of digital integrated circuits provides a quick means of determining the true frequency of operation of any frequency source. This can be an invaluable aid in experimenting with and servicing audio, digital, and low frequency RF circuits. This article describes a low cost frequency counter you can build.

The frequency counter presented here is a six digit unit with a maximum count frequency of about three mhz. The accuracy of the counter is determined by that of the 60 hz 1 ine frequency since this is used as a timebase. Though not as stable as a crystal timebase, the line frequency is stated to be accurate to $.03 \%$, or three parts in ten thousand. Thus, when displaying a frequency of $10,000 \mathrm{hz}$. the 1 ast digit is accurate to ± 3 counts. If you require better accuracy, you can modify the circuit so that another more stable 60 hz source is inserted into D3 in place of the line frequency. However, this modification will be left to the discretion of the experimenter and will not be discussed further here. For most applications the line time base will prove more than adequate.

Here, in brief form, is how the frequency counter operates. Referring to figure 1, the 60 hz line frequency is run into the shaping circuit where it is squared up for use as the clock input to the programmable timer and the J-K flip-flop. The low-frequency oscillator and monostable which feed into the J input of the $J-K$ provide a short pulse about once every three seconds which changes the Q output of the J-K to a logic one, coincidently with the rising edge of the clock waveform, triggering the programmable timer.

The timer can be arranged to divide by any integer from 1 to 256; in this application it is set up to divide by 6 or 60 , selectable from a switch on the front panel, providing timing intervals of 100 milliseconds and one second respectively.
The output of the timer remains low for this interval, then resets to a high state. As long as the output of the timer is low the decade counters are enabled. They count the input frequency which first passes thru an amplifier and shaper. As the timer output resets, the counters are disabled, but whatever count they have reached remains at their outputs.

Upon the positive transition of the timer output, monostable 2 is activated producing a short inverted pulse which is applied to the latch inputs of the six decoder-drivers. This transfers the previous count which appears at the counter outputs and at the decoder/driver inputs to the decoder-driver outputs, and thus to the displays.

As monostable 2 resets, it triggers monostable 3 which produces another short pulse which resets the counters and the $J-K$ flip-flop. The frequency counter is then in a reset state awaiting another pulse from the low frequency oscillator-monostable which will initiate another counting sequence. Thus, the frequency counter sums the incoming frequency once every three seconds, updating the display following each count.

With SWI in the one second position the maximum displayable frequency is 999 kilohertz. Using the . 1 second timebase the maximum count is 1 imited to about 3 megahertz, due to the maximum toggle rate of the CMOS logic. Swl also selects the appropriate decimal point along with the proper L.ED labelled KHZ or MHZ .

CONSTRUCTION

The control circuitry as well as the input amplifier and shaper are contained on the main PC board, shown full size in Fig.g (see page 99). A separate printed circuit board is required for each of the six decade counter-digit drivers. Fig. 10 (see page 101) contains a full size pattern for these six boards. The pattern is repeated six times so that it can be etched on one $4 \frac{1}{2} \times 6$ " copper board and then separated into the six individual boards, after etching.

The printed circuit board for the 6 2/3" displays is illustrated in the decade counter project presented elsewhere in this book. Refer to this article for the full size pattern and the component mounting illustrations. Connections between the display board and the six digit driver boards are greatly simplified by the use of Digi-Klips R as shown in the decade counter article.

After you have etched and drilled all of the printed circuit boards, insert and solder all components to the boards following the illustrations. Be especially careful that lead orientation is correct before soldering diodes, IC's, and transistors. Also, note that the tantalum and electrolytic capacitors must be mounted with their plus terminals oriented as in the illustrations. A word of caution about the CMOS ICs: handle these IC's by the body only, avoiding touching the pins as much as possible. Insert and solder the CMOS IC's after all other components have been soldered into place. It is also good practice to attach a clip lead from the tip of the soldering iron to the ground foil on the circuit board while soldering these IC's to the board. If you wish, the IC's can be mounted in sockets, eliminating the possibility of damage during soldering.

Fig. 3 Component Mounting Digit Driver Board

(See fig. 10, page 101 for full size PC pattern)

After you have assembled the main circuit board, the six digit driver boards and the display board, plug the driver boards into the display board and connect the six boards as described here and illustrated in figure 4 . Wire all latch enable terminals in parallel on the six boards. You can do this by feeding a bare wire thru each of the latch terminals, soldering the wire at each of the boards. Following this procedure wire all clock terminals together, Vss terminals, Vdd terminals, and reset terminals. Then connect the carry-out terminal of board 1 to the carryin terminal on board 2 ; the carry-out terminal of board 2 to the carry-in terminal of board 3, etc., until you make the last connection between the carry-out terminal of board 5 and the carryin terminal of board 6. All connections between the driver boards and the main board are also illustrated in figure 4.

The frequency counter can be enclosed in any suitable case; we chose the Calectro H4-748 case. Figure 5 illustrates the assembly of the counter into this case. Make all connections between the power switch, the timebase switch, the LEDs, the transformer, and the input terminals as you assemble the counter into the case. A suggested front panel arrangement is shown in figure 6.

Fig. 5 Frequency Counter Assembly

Fig. 6 Finished Frequency Counter

No calibration is necessary after completion of the frequency counter. All that is required to check the proper functioning of the counter is some frequency source of known accuracy and stability. Connect this to the input of the counter and adjust R18 for a stable reading. The resultant measured frequency should be within the stated accuracy of the frequency source plus that of the frequency couner. The minimum input amplitude is approximately 200 mv .

Figure 7 Schematic Diagram of Frequency Counter

FREQUENCY COUNTER

PARTS LIST

Main Board

SYMBOL
R1,R3,R5,R6
R7,R11,R13,
R2,R9,R19,R20
R4
R8
R10
B12
R14,R15
R16,R17
R18
C $1, \mathrm{Cl0}$
C2, Cl 1
C3, C6
C4, C5
C 7
C8
C9
Q1, Q2, Q5
Q3
Q4
D1
D2
D3
IC 1
IC2
IC 3
IC4
IC5

DESCRIPTION
l00K All resistors
B1-408
$\frac{1}{2}$ watt
1 K B1-384
820
56 K
5.6 K

220 K
2.2 K

390
lok Potentiometer
33pf silver mica
.01 disc
1 mfd tantalum .004 mfd mylar
.47 mfd tantalum
10 mfd tantalum
1000 mfd electrolytic
NPN type $2 N 2222$
PNP type MPSAS6
NPN type MPSAO6
12V zener diode
Full wave bridge
Silicon signal diode
Dual monstable
Programmable timer
Quad Schmitt trigger
Dual J-K flip flop
Quad 2-input norgate
CALECTRO NO.
*26-046
*26-090
*26-066
B1-412
B1-388
*26-038
B1-683
A1-003
A 1-066
A)-304

A1-078
A1-302
Al-308
A1-133
J4-1628
J4-1650
J4-1651
J4-1622
J4-1605
J4-1610
J4-4098
J4-1214
J4-4093
J4-4027
J4-4001

Decoder/Driver and Display Boards Parts List

R1-R48
ICl-IC6
IC7-ICl2
Display 1-6
3 pkg

T1
LEDI,LED2
SW1
SW2
BP1,BP2

390 ohm
*26-038
Decade counter
Decoder, driver,latch
J4-4029
J4-4511
.6"7' segment LED
$\begin{array}{ll}\text { display } & \text { J4-903 } \\ \text { Digi-clips } & \text { J4-645 }\end{array}$
Chassis
12V 2A Transformer D1-747
Light emitting diode J4-940
DPDT toggle switch E2-133
SPST toggle switch E2-130
Binding Posts

MISCELLANEOUS

QTY.
1

Aluminum Cabinet	$H 4-748$
Rubylith filter	$\star 22-294$
Mounting Hardware	$\mathrm{J} 4-834$
Hookup wire	$L 3-633$

* = denotes GC no.: item not offered in Calectro

CALECTRO C-MOS DIGITAL THERMOMETER

The advances in I.C. technology have made possible projects that a few years ago would have been staggering due to complexity and component count. The CALECTRO Digital Thermometer uses two discrete transistors and five diodes, all other functions being implemented by I.C.'s. The thermometer can be used to not only measure indoor or outdoor temperatures, but also to monitor other air or liquid temperatures from below $0^{\circ} \mathrm{Fto}$ over a $100^{\circ} \mathrm{F}$.

Fig.1A, 1B, \& IC.
(A)

Temperatre to Frequency Converter

(B)

OPERATION:

The digital thermometer consists of six major sections (Fig. la.). A common drawback of all transistors is their change in beta with a change in temperature. This characteristic is used to produce the temperature sensing circuit for the thermometer. In Fig. lb, RQ1 represents the effective series resistance of transistor, which forms a voltage divider with the 3.9 K collector resistor. In Fig. 2, the trim-pots, R4 and R7, are used to match the response of Q1 to produce the desired temperature reading.

With an increase in temperature, the beta of Q1 also increases, causing Ql to draw more current, thus decreasing the resistance R-Q1 (Fig. lb.) and lowering the voltage VI. The relationship between VI and temperature is very linear and makes an ideal sensor without resorting to a special and/or expensive thermistor. I.C.l and its associated components form an oscillator whose frequency is determined by V1 (Fig. lb.), and thus proportional to the temperature of Q1. If the output of I.C.l (Fig. lc.) is counted for a fixed period of time, tl, (Fig. lc.) the total number of pulses for that period will represent the temperature. If the temperature increases, the frequency of I.C.l increases, thus yielding a higher count during the fixed counting period, tl.

It is easy to see that the accuracy of the temperature measurement depends not only on the operation of Q1 and I.C.l, but on the stability of the fixed timing period, tl, i.e., if tl were to vary for the same temperature, then a different number of pulses would be counted, giving different temperature readings. For this reason the time-

Fig. 2 Main Board Schematic

Fig. 3 Counter \& Display Board Schematic

Fig. 4 Component Side - Main Board

Fig. 5 Component Side - Counter Board

Fig. 6 Display Board Layout

base, I.C.2, is driven from the 60 Hz power line frequency, which provides a stable and accurate reference for generating ti. In Fig. lc the sequence of operation is shown. The I.C.. 1 output frequency (clock), which is dependent on temperature, is counted for the period tl (count enable waveform).
When the count enable goes to "l" (end of tland start of t2) the temperature information is held in the counters, and the output of I.C. 1 has no further effect on the counting and display stages (I.C. 6 to I.C.13). As period t2 starts, the "display update" line goes to "0" and the information in the counters is transferred to the L.E.D. displays. After the "display update" line returns to "l", (which stores the information until a "0" is again present on the "display update" the "reset" line goes to "1" which resets the counters and prepares them for the next period, tl. The lengths of periods tl and t2 are each 1.07 seconds, which gi*es an updated temperature reading every 2.14 seconds.

Fig. 7 Display To Counter Board Hook-up

DISPLAY BOARD

FOIL SIDE OF DISPLAY BOARD

Fig. 8 Case Mounting

INSIDE BOTTOM

Fig. 9 Probe Construction

In order to obtain a (-) or "below zero" temperature readout, the up/down mode of the counters (I.C. 10 and I.C.12) is used. At the start of the counting period, tl, the counters (I.C.10 and I.C. 12) start counting down from 200, i.e., 200, 199, 198,197, etc. When the count reaches "0" the "minus sign" is turned off and the "plus sign" on, and the count continues "up", i.e., 1, 2, 3, 4, etc. If the probe (Q1) is in a cold environment the clock frequency (I.C.l) will be slow. If the temperature is -5°, the counters will start counting down from 200 at the beginning of tl (Fig. Tc). Period tl will end when the counters have the information "05" at their output, the output of I.C. 8 will be "O" and I.C. 9 will be "-". At this time the display update line (Fig. 1c) will go "low" and transfer the information into I.C.7. I.C.9, I.C.11. This information will then be stored in these I.C.'s for the remainder for period t2 and the following tl. Since the L.E.D. readouts only display information that is stored in I.C.7, I.C.9, and I.C.11, only the final count will be displayed.

CONSTRUCTION:

Begin construction by making the P.C. boards. A full size foil layout for each P.C. board will be found starting on page 103 Figs. $11,12, \& 13$. The CALECTRO Lift-It Kit can be used for making your P.C. boards from these layouts. When the boards are drilled,insert parts according to Figs. 4, 5 and 6. Solder in all resistors, capacitors, and I.C.'s. Be sure to solder in the I.C.'s last.

Refer to Fig. 7 and connect the display board to the counter board. Figs. 4 \& 5 show interconnection between main and counter boards. The three P.C. boards can be mounted as shown in Fig. 8 or another suitable enclosure can be used.

After mounting is complete prepare the probe (Q1) by covering the transistor and its leads (fig. 9) with a coat of epoxy glue.

This is necessary for calibration procedure and if liquid temperatures are to be measured. Make sure the epoxy covers an inch of the lead wires past the solder connection to the transistor leads. Plug in the line cord and with a voltmeter, measure the voltage fromground to pin 3 of I.C.3. Use trim-pot Ri5 to set voltage to 11.5 V . Then measure the voltage betweer ground and the base of Q1, set this voltage to $1.3 \% \mathrm{~V}$ with trim-pot R4. Turn trim-pot $R 7$ to maximum resistance. Prepare two containers of water, one with cracked ice, the other with the water at 100 to $120^{\circ} \mathrm{F}$. Place an accurate thermometer in the warm water to monitor its temperature. Place the probe (Q1) in the warm water and use R7 to set the temperature. Remove the probe and place it in the container of water and ice.

Use R4 to set the display temperature to

+33. R7 and R4 will interact with each other so the above procedure will have to be repeated several times. When changing the probe from one container to the other allow a minute or so for it to stablize before setting R7 or R4. When this procedure is complete your digital thermometer is ready for use. If you desire to use more thanone probe see Fig. 10 . This assembly may be built on a piece of perf-board and SWl should have as many positions as probes desired. Remember to calibrate each probe. For Probe A use R4A and R7A, for probe B use R4B and R7B, etc.

PARTS LIST

SYMBOL	DESCRIPTION	CALECTRO NO.
	MAIN BOARD	
IC1	Timer IC	J4-1555
IC2	5 V . Regulator IC	J4-1201
IC3	Voltage Regulator IC	J4-1200
IC4	Timer Counter	J4-1214
IC5	NOR Gate	J4-4002
IC6	Hex Inverter	J4-4049
Q1	NPN Transistor	J4-1644
Q2	NPN Transistor	J4-1644
D1,2	Switching Diode	J4-1610
D3,4,5	Rectifier Diode	J4-1600
R1,18,19,20	3.9 K ohm All	
R2,8	330 Resistors	B1-378
R3,10,17	$1 \mathrm{~K} \quad \frac{1}{2}$ watt	B1-384
R4	500 pot unless	B1-642
R5	8.2K otherwise	B1-395
R6	10K noted.	B1-396
R7, 15	10K pot	B1-644
R9,23	5.6K	23-066(GC)
R11,12	10	B1-360
R1 3	3.3K	B1-390
R14	1.8 K	26-054 (GC)
R16	680	26-044 (GC)
R21	39K	26-110
R22	1.5K	B1-386
C1	. 1 mfd 35 V. Tant.	A1-300
C2,6,8,9	. 01 mfd disc.	A1-029
C3	470 mfd 25 V .	A1-132
C4	1000 mfd 25 V .	A1-133
C5	4.7 mfd 25 V .	A1-126
C7,11	. 1 mfd disc.	A1-032
C10	10 mfd 25 V .	A1-127
T1	12.6V © . 5 Amp	D1-746
	COUNTER BOARD	
IC7	D Flip-Flop	J4-4013
IC8	J-K Flip-Flop	J4-4027
IC9,11	Decoder-Driver	J4-4511
IC10,12	Counter	J4-4029
IC13	Hex Inverter	J4-4049
IC14	NOR, Inverter	J4-4000
R24,25,26	82 K ohm	26-094 (GC)
C12,13,14	. 01 disc	Al-029
C15	. 1 disc	A1-032

PARTS LIST

SYMBOL	DESCRIPTION	CALECTRO NO.
	DISPLAY BOARD	
LED1	+ 1 LED Digit	J4-902
LED2, 3	$\overline{7}-$ Seg. LED	J4-903
R27 thru		
R44	470 ohm $\frac{1}{4}$ wt.	J4-975

MISC. ITEMS
Hardware, Case, Line Cord, Rubylith

DELUXE WAVEFORM GENERATOR

How would you like to build a deluxe waveform generator which produces six basic waveforms over a frequency range of 45 Hz to 100 Khz , and contains in addition, selectable AM or FM modulation of these waveforms. This generator produces sine, triangle, square, saw-tooth, ramp and pulse waveforms. These waveforms can be frequency or amplitude modulated by an internai lkhz oscillator, capable of producing sine, triangle, and squarewave modulation waveforms. The generator should prove a valuable aid wherever a variable frequency signal source is needed.

The heart of the waveform generator is the J4-1213, an integrated circuit containing a voltage controlled oscillator that produces the six basic waveforms. It also contains a modulator which is capable of modulating the the oscillator output in accordance with the input to the modulator. The modulation input is provided either by a second identical I.C., which operates at a fixed lkhz, or from an external source thru the external modulation inputs. Thus a variety of waveforms are available at the output of the generator, as shown in figure 8.

Power to the waveform generator is supplied by the voltage regulator, I.C.l, which provides a stable ripple-free 12 V .

The generator is housed in the handsome new Calectro H4-748 cabinet, which lends a professional appearance to the completed unit.

CONSTRUCTION

The entire circuit is contained on the printed circuit board (see page 109 Fig. 14) simplifying construction. You can duplicate this board with the new Calectro LIFT-IT kit.

After etching and drilling the printed circuit board, insert and solder all components, carefully following the diagram in figure 1. Make special note of the polarity of the electrolytic capacitors and the orientation of the I.C.'s.

Fig. 1 Component Layout

Fig. 2 Front Panel Hole Locations

HOLE CHART	
LTR.	DIA.
A	$3 / 16^{\prime \prime}$
B	$1 / 2^{\prime \prime}$
C	$3 / 8^{\prime \prime}$
D	$1 / 4^{\prime \prime}$

Next punch or drill the front panel following figure 2. After completing this, label all functions as illustrated in figure 3. For best results use transfer-decal lettering available at office and art supply stores. Following figure 4 mount all switches, jacks, potentiometers and the LED to the front panel. Glue the LED into place after inserting it into the front panel. Then, still following figure 4 make all connections between front panel components as shown.

Fig. 3 Front Panel

Fig. 5 Capacitor Mounting to Switch 1

Figure 5 illustrates the mounting of capacitors to switch 1. Assemble and solder these capacitors to the switch as shown.

The connections between the front panel and circuit board are letter coded in figures 1 and 4. Example: connect point C on the circuit board to point C on the front panel. Make wires long enough so that the PC board can be mounted horizontally behind the front panel in the cabinet.

Drill the back panel of the cabinet and fasten the line cord and fuse holder as illustrated in figure 6. Drill the bottom panel to provide mounting holes for the PC board and transformer. Fasten the transformer to the bottom panel with machine screws. Then assemble the cabinet leaving the top panel off. Pass the $P C$ board thru the front frame and make the connection between the board and the transformer.

Fig. 6 Fuse Holder and Line Cord Mounting

FUSE HOLDER requires $1 / 2^{\prime 4}$ dia. hole

TO TRANSFORMER

R
STRAIN RELIEF requires 7/16" dia.hole

TO TRANSFORMER PRIMARY
Fig. 7 Dial Scale cut out and bond to stiff backing of same size

Fasten the PC board down using machine screws and spacers. The front panel can now be fastened to the cabinet, and the one remaining connection made between the power switch and the xformer. Next, cut out the dial scale of figure 7 , and glue it to a stiff backing such as cardboard or plastic. Cut the backing to the same size, then punch or drill a $3 / 8^{\prime \prime}$ hole in the center of the disc, indicated by the crossmarks. Glue a knob, Calectro E2-728, directly over the center hole, and after it dries mount the dial assembly on the front panel. This completes the assembly of the generator. All that remains is the calibration of the unit.

CALIBRATION PROCEDURE

Set all front panel controls as listed below:

Modulation waveform selector-0FF.
Modulation level--maximum (full C.W.).
Carrier waveform selector--sinewave.
Carrier level--maximum (full C.W.).
Frequency multiplier--X100 (A scale).
Output gain control-maximum (full C.W.).

Set frequency dial to 10 on the A scale. Connect an oscilloscope to the main output, and adjust R17 for a symmetrical waveform. Then adjust R22 for the most perfect sine waveform.

Now, using either a frequency counter or an oscilloscope adjust R28 until the output frequency is lkhz.

Next move the oscilloscope connections to the lKhz output and adjust R10 to obtain the best sinewave.

OPERATING INSTRUCTIONS

Operation of the generator is straight forward. If you wish to obtain an unmodulated waveform set modulation wave-
form selector to off. Select proper carrier waveform, and frequency multiplier. The output level control sets the output waveform amplitude and in addition, determines the phase of the waveform. At the extremes of rotation the waveform is shifted 180°.

Other control functions are explained below.

Carrier frequency multiplier--selects the frequency range of operation. Multiply the dial reading on the appropriate scale of frequency adjust by the selected multiplier. Note: the frequency ranges apply only to the symmetrical waveforms, sine, triangle, square and ramp. For the asymmetric waveforms (sawtooth and pulse) the actual frequency will be about one-half the frequency setting.

Carrier frequency adjust--varies the carrier output frequency over approximately a 5:1 range, for any given setting of the frequency multiplier.

Carrier waveform--selects one of 6 waveforms.
This control consists of 2 toggle switches SW5 and SW6 and the rotary switch SW2. The selection of the proper waveform is illustrated on the front panel in figure 3. With the rotary switch in position 1 , the toggle switch on the left selects either sine or triangle waveform. With the rotary switch in position 2 this toggle switch selects square or pulse waveform. With the rotary switch in position 3 the right hand toggle switch selects between sawtooth and ramp waveforms.

Carrier level control-controls the output amplitude.

Modulation level control-controls the modulation amplitude.

Output level controls the output amplitude.

Modulator waveform-selects between the three modulator waveforms.

Modulation switch-selects between internal AM or FM modulation. When using external modulation inputs or unmodulated mode this switch should be in the center-off position.

External modulation inputs-the carrier waveform may be FM or AM modulated by applying a signal to these inputs. A signal amplitude of $6 \mathrm{~V} p-p$ is sufficient.
lkhz out-fixed 1 Khz modulator output.

Main out-generator output connection providing modulated or unmodulated carrier output.

Fig. 8 Waveforms Produced by Generator

Fig. 8 Waveforms Produced by Generator (Cont.)

SAWTOOTH

RAMP

SINEWAVE AM MODULATION

SQUAREWAVE AM MODUCATION

FM MODULATION

Fig. 9 Schematic Diagram of Waveform Generator

PARTS LIST

WAVEFORM GENERATOR

SYMBOL

R27, R32
R25, R42 R29
R9, R23
R24
R30, R26
R11, R35
R4, R5, R8,
R15, R21
R2, R3,
R16, R18
R7, R12, R13, R14, R19, R20,
R34, R36, R37
R38
R39
R40
R41
R1, R6, R31
R33
R10, R22
R17
R28
C1, C18, C15,
C2, C3
C7, Cl9
C4, C5, C6,
C8, C9, Cl0,
Cl1
C12
C 13
C14
C 16
C17
C20, C21
C22
C23
IC 1
IC2, IC3
T1
D 1
LEDI
S 1
S 2
S3

DESCRIPTION

560 0hms
1 K Ohms
1.8K Ohms
3.3 K 0 hms
3.9 K Ohms
5.6 K Ohms

15 K 0 hms
33 K 0 hms

100 K Ohms	B 1-408
100 hms	B 1-360
4.7 K 0 hms	B1-392
6.8 K Ohms	B 1-394
68 K	B 1-406
Linear Taper 5K Ohms	B 1-680
Audio Taper 5K 0hms	B1-681
Trimmer 10 K 0hms	B1-644
Trimmer 50 K Ohms	B1-645
Trimmer 2 K Ohms	B 1-643
0.1 mfd-Mylar	A1-082
0.01 mfd-Mylar	Al-079

10 mfd electrolytic 12 V
4.7 mfd tantalum

1 mfd tantalum
.47 mfd tantalum
.047 mfd Mylar
.01 mfd Mylar
33 pF silver mica
100 pF silver mica
200 mfd electrolytic
Voltage Regulator
Wave form generator
12V transformer
Bridge Rectifier
Light emitting diode
2 pole 6 pos.
4 pole 3 pos.
3 pole 4 pos.

B1-398
*26-042
B1-384
*26-054
B1-390
*26-062
*26-066

B1-402

B1-408
B1-360
B1-392
B1-394
B1-406
B1-680
B1-681
B1-644
B1-645
B1-643
A $1-082$
A1-079

A1-105
A 1-306
A 1-304
A 1-302
A1-081
A 1-079
A 1-003
A 1-006
A 1-113
J4-1200
J4-1213
D1-750
J4-1605
E2-169
E2-166
E2-168

S4	DPDT (Center off)	(Electro-
Craft)		
S5, S6		E2-118
S7	DPDT Toggle	E2-122
J4-J4	SPDT	F2-806

MISCELLANEOUS

QTY.

1
6
1
1
1
1
1
1

DESCRIPTION
knob
Knobs
AC cord
Cabinet
Fuse holder
Machine screw assortment
Spacer assortment Hookup wire

Calectro No.
E2-728
E2-705
L3-717
H4-748
E2-495
J4-835
J4-846
L3-633

* GC Electronics Cat. No.

CALECTRO DVM

The CALECTRO DVM project will enable you to convert the CALECTRO FREQUENCY COUNTER to a digital voltmeter. This converter can also be used with most any commercially available frequency counter. If the CALECTRO FREQUENCY COUNTER is to be built for use with this project, then only three digits are needed.

Transistors Q1 and Q2 form an input buffer, which isolates the circuit under test from the input of ICl. IC1 and IC2 are used as a voltage controlled oscillator. The frequency of the ouput is dependent, and proportional to the input voltage.

Fig. 2

Begin construction by making the PC board. The CALECTRO LIFT-IT kit can be used to duplicate the full size foil pattern. (see page 111 Fig. 15). After the board is drilled, insert and solder the components. Solder $8^{\prime \prime}$ of shielded cable to the input and output pads on the PC board and attach the transformer leads.

Fig. 3

OUTPUT TO
FREQUENCY COUNTER

The assembly can be mounted in a chassis box as shown in Fig. 4.

Fig. 4
T1
P.C. BOARD MOUNTED ON 1/4" SPACERS

To calibrate the voltmeter connect the output to a frequency counter. Short the center terminal of R11 to ground, short the input
jacks, and adjust R7 for a "zero" reading. As R7 is turned thru its range the value displayed on the frequency counter will decrease and stop at "zero".

The proper setting for $R 7$ is just at the point where a zero count is obtained. Remove the connection between R1l and ground. Connect an accurate source of 10 volts DC to the input terminals and adjust Rll for a count of 100 . This represents a reading of 10.0 volts. If greater voltage ranges are desired a resistive divider network can be used at the input terminals.

PARTS LIST

SYMBOL
R1, 2
R3, 4, 13
R5
R6
R7
R8
R9, 14,15
R10
R11
R12, R17
R16
C1, 2
C3, 4
C5, 6, 8
C7
C9
C10, 11
D1, 2, 3, 4
D5, 6
01
Q2
FET 1
IC 1
IC2
BP
J
T1
SW1

DESCRIPTION

470 hm	B1-380
2.2 K	B1-388
15 K	B1-398
47 K	B1-404

100K Trimpot
33 K
10K
22 K
50K Trimpot
150 K
10k Trimpot
100/50V
$22 / 25 \mathrm{~V}$
. 01 Disc
33pf
. 005 Disc
. 1 Disc
1A/50PIV Diode
Switching Diode
NPN Trans.
PNP Trans.
N-Chan FET
OP-AMP (741)
Timer (555)
Binding Posts
RCA Jack
Transformer
Power Switch Chassis box

CALECTRO NO.
B1-380
B1-388
B1-404
B1-646
B1-402
B1-396
B1-400
B1-645
B1-401
B1-644 A1-154 A1-128
A 1-092
A 1 -003
Al $=028$
Al-032
J4-1600
J4-1610
J4-1644
J4-1645
J4-1710
J4-1215
J4-1555
F2-926
F2-806
D1-751
E2-116
H4-746

Misc.
Mounting screws, line cord, spacers, test leads, \& hook-up wire.

Fig. 2

Fig. 3

Fig. 3

Fig. 3

Fig. 4

Fig. 5

Fig. 8

Fig. 9

Fig. 11

Fig. 13

Fig. 14

Fig. 15

NOTES

NOTES

"LIFT-IT"
 CAT. NO. J4-828

The new, positive approach to negatives for printed circuits

Steps to Remove P.C. Pattern
from Printed Page
STEP 1. Securing P.C. Pattern

STEP 2.
Applying LIFT-IT

STEP 3. Removing Paper

STEP 4. Let Dry

STEP 5. Finishing The
"Positive"

- Complete, illustrated instructions
- Transform your printed page circuit layout into an etched wiring pattern.

AVAILABLE FROM:

